!

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

ARCHITECTURE,

HISTORICAL, THEORETICAL, AND PRACTICAL.

PRINTED BY

SIOTHSWOODE ANB CO., NEW-STIELET SQUABR LONDUN

$$
\begin{array}{ll}
\text { en } \\
&
\end{array}
$$

$$
1, N+1+1+110
$$

$$
\text { s.t 5fic inct. in th } y=1.10 \times 4
$$

AN ENCYCLOPAEDIA

ARCHITECTURE

HIS'TORICAL, THEORETICAL, \& PRACTICAL.

H
JOSEPH (iVILST. F'ふA., F.Rふ.A.

New Edition,

REVISEO, PORTIONS REWRITTEN, AND WITH ADDITIONS
PY

WYATT PAPWORTH,

FELLOW OF THE ROYII INSTITETE OF RRITLSI ARCHITECTS.

LONDON:
LONGMANS, GREEN, AND CO. AND NELV YORK : 15 EAST $16^{\text {th }}$ STREET.
1888.

$$
6.43
$$

IBRAR
JUL 11967
ERSITY OF TOROH

PREFACE

TO

THE FIRST EDITION.

An Encyclopedia of any of the Fine Arts has, from its nature, considerable advantage over one which relates to the sciences generally. In the latter, the continual additions made to the common stock of knowledge frequently effect such a complete revolution in their bases and superstructure, that the established doctrines of centuries may be swept away by the discoveries of a single day. The arts, on the other hand, are founded upon principles unsusceptible of change. Fashion may, indeed - nay, often does-change the prevailing taste of the day, but first principles remain the same; and as, in a cycle, the planets, after a period of wandering in the heavens, return to the places wnich they occupied ages before, so, in the arts, after seasons of extravaganza and bizzareria, a recurrence to sound taste is equally certain.

It is unfortunate for the productions of the arts that the majority of those who are constituted their judges are little qualified for the task, either by education or habits; but on this, as it has been the complaint of every age, it is perhaps useless to dwell. This much may be said, that before any one can with propriety assume the name of architect, he must proceed regularly through some such course as is prescribed in this work. The main object of its author has been to impart to the student all the knowledge indispensable for the exercise of his profession; but should the perusal of this encyclopædia serve to form, guide, or correct the taste even of the mere amateur, the author will not consider that he has laboured in vain.

An encycloprdia is necessarily a limited arena for the exhibition of an author's power; for although every subject in the department of which it treats must be noticed, none can be discussed so extensively as in a separate work. An attempt to produce a Complete Body of Architecture the author believes to be entirely original. In his celebrated work, L'Ait de Bâtir, Rondelet has embodied all that relates to the construction of buildings. Durand, too (Leçons et Précis d'Architecture), has published some admirable rules on composition and on the graphic portion of the art. Lebrun (Théorit d^{\prime} Architecture) has treated on the philosophy of the equilibrium, if it may be
so called, of the orders. The Encyclopédie Méthodique contains, under various heads, some invaluable detached essays, many of which, however, suffer from want of the illustrative plates which were originally projected as an appendage to them. All these, with others in the French language, might, indeed, be formed into a valuable text-book for the architect; but no such attempt has hitherto been made. Neither in Germany nor in Italy has any complete work of the kind appeared. In the English, as in other languages, there are doubtless several valuable treatises on different branches of the art, though not to the same extent as in French. In 1756, Ware (London, folio) published what he called A Complete Body of Architecture. This, though in many respects an useful work, is far behind the wants of the present day. It is confined exclusively to Roman and Italian architecture; but it does not embrace the history even of these branches, nor does it contain a word on the sciences connected with construction. The details, therefure, not being sufficiently carried out, and many essential branches being entirely omitted, the work is not so generally useful as its name would imply. From these authorities, and many others, besides his own resources, the author of this encycloprdia has endeavoured to compress within the limits of one closely-printed volume all the elementary knowledge indispensable to the student and amateur; and he even ventures to indulge the belief that it will be found to contain information which the experienced professor may have overlooked.

Though, in form, the whole work pretends to originality, this pretension is not advanced for the whole of its substance. Not merely all that has long been known, but even the progressive discoveries and improvements of modern times, are usually founded on facts which themselves have little claims to novelty. As a five art, architecture, though in its applications and changes inexhaustible, is in respect of first principles confined within certain limits; but the analysis of those principles and their relation to certain types have afforded some views of the subject which, it is believed, will be new even to those who have passed their lives in the study of the art.

In those sciences on which the constructive power of the art is based, the author apprehended he would be entitled to more credit by the use of weightier authorities than his own. Accordingly, in the Second Book, he has adopted the algebra of Euler ; and in other parts, the works of writers of established reputation. The use of Rossignol's geometry may indeed be disapproved by rigid mathematicians; but, considering the variety of attainments indispensable to the architectural student, the author was induced to shorten and smooth his path as much as possible, by refraining from burdening his memory with more mathematical knowledge than was absolutely requisite for his particular art. On this account, also, the instruction in algebra is not carried beyond the solution of cubic equations; up to that point it was necessary to prepare the learner for a due comprehension of the succeeding inquiries into the method of equilibrating arches and investigating the presesures of their different parts.

In all matters of importance, in which the works of previous writers have been used, the sources have been indicated, so that reference to the originals may be made. Upon the celebrated work of Rondelet above mentioned, on many learned articles in the Encyclopédic Méthodique, and on the works of Durand and other esteemed authors, large contributions have been levied; but these citations, it will be observed, appear for the first time in an English dress. In that part of the work which treats of the doctrine of arches, the chief materials, it will be seen, have been borrowed from Rondelet, whose views the author has adopted in preference to those he himself gave to the world many years ago, in a work which passed through several editions. Again, in the section on shadows, the author has not used his own treatise on Seiography. In the one case, he is not ashamed to confess his inferiority in so important a branch of the architect's studies; and in the other, he trusts that matured experience has enabled him to treat the subject in a form likely to be more extensively useful than that of treading in his former steps.

The sciences of which an architect should be cognisant are enumerated by Vitruvius at some length in the opening chapter of his first book. They are, perhaps, a little too much swelled, though the Roman in some measure qualifies the extent to which he would have them carried. "For," he observes, "in such a variety of matters" (the different arts and sciences) "it cannot be supposed that the same person can arrive at excellence in each." And again: "That architect is sufficiently educated whose general knowledge enables him to give his opinion on any branch when required to do so. Those unto whom nature hath been so bountiful that they are at once geometricians, astronomers, musicians, and skilled in many other arts, go beyond what is required by the architect, and may be properly called mathematicians in the extended sense of that word." Pythius, the architect of the temple of Minerva at Priene, differed, however, from the Augustan architect, inasmuch as he considered it absolutely requisite for an architect to have as accurate a knowledge of all the arts and sciences as is rarely acquired even by a professor devoted exclusively to one.

In a work whose object is to compress within a comparatively restricted space so vast a body of information as is implied in an account of what is known of historical, theoretical, and practical architecture, it is of the highest importance to preserve a distinct and precise arrangement of the subjects, so that they may be presented to the reader in consistent order and unity. Without order and method, indeed, the work, though filled with a large and valuable stock of information, would be but an useless mass of knowledge. In treating the subjects in detail, the alphabet has not been nade to perform the function of an index, except in the glossary of the technical terms, which partly serves at the same time the purpose of a dictionary, and that of an index to the principal subjects noticed in the work. The following is a synoptical view of its contents, exhibiting its different parts, and the mode in which they arise from and are dependent on each other.
[A List of the Contents was here inserted.]

Perfection is not attainable in human labour, and the errors and defects of this work will, doubtless, in due time be pointed out; but as the subject has occupied the author's mind during a considerable practice, he is inclined to think that these will not be very abundant. He can truly say that he has bestowed upon it all the care and energy in his power; and he alone is responsible for its errors or defects-the only assistance he has to acknowledge being from his son, Mr. John Sebastian Gwilt, by whom the illustrative drawings were executed. No apology is offered for its appearance, inasnuuch as the want of such a book has been felt by every architect at the beginning of his career. Not less is wanted a similar work on Civil Engineering, which the author has pleasure in stating is about to be shortly supplied by his friend, Mr. Edward Cresy. [This work has since been published.]

Without deprecating the anger of the critic, or fearing what may be urged against his work, the author now leaves it to its fate. His attempt has been for the best, and he says with sincerity,

> "Si quid novisti rectius istis Candidus imperti ; si non his utere mecunn."
J. (${ }^{3}$.

Scptember 30: 1842.

ADYERTISEMENT.

GWILT'S ENCYCLOP EDIA, first published in 1842, has now passed through eight impressions, those of 1867 and 1876 having received extensive revision and many important additions at the hands of Mr. W yatt Papworth. In this, the ninth impression, besides many requisite amendments and additions throughout the pages, the chapters entitled Materials used in Bulddinga and Use of Materials, which constitute a main portion of the work, have been largely revised, parts rewritten and added to in important particulars, especially in regard to the details of Fireproof and Sanitary construction, in order to record the results of later theories and the numerous inventions introduced since the previous revision. The section Specifications has been recompiled and enlarged. Several sections of the chapter on Public and Private Bulldings have been withdrawn, and some re-inserted in other portions of the work: a few added revised. The Lives of eminent Architects have been brought down to date; as are also the Publications, which have been partly re-arranged in additional classes; while the Glossary of Terms has been amended where desirable. The Index has been carefully revised to include all new matter.

Paternoster Row: June 1888.

CONTENTS.

BOOK I.
 HISTORY OF ARCHITECTURE.

CHAPTER I.

origin of arcuitecture.
PAGE
Sect. 1. Wants of Man, and first
Buildings 1
2. Origin and Progress of Building 2
3. Different Sorts of Dwellings arising from different Ocenpations3

CHAPTER II.

 architecture of farious countries.Sect. 1. Druidical and Celtic . . 4
2. Pelasgic or Cyclopean 10
3. Babylonian . . . 15
4. Persepolitan and Persian . 19
5. Jewish and Phomician . 24
6. Indian 25
7. Egyptian 30
8. Chinese 43
9. Mexican 47
10. Arabian, Moresque, or Saril-
cenic 50
11. Grecian 57
12. Etruscan 74
13. Roman 75
14. Byzantine and Romanesque 107
15. (a) Origin of the Pointed Arch

119
(b) Mediæral Artificers . 125

Sect. 16. Italian 131
17. French 152
18. German 157
19. Spanish and Portugueso . 158
20. Russian 162

CHAPTER III.

ARCIIITECTURE OF BRITAIN.

Sect. 1. Early Houses and Architecture of the Britons . . $16 t$
2. Norman 169
3. Early English . . . 175
4. Ornamented English . . 178
5. Florid English or Tudor . 183
6. Elizabethan . . . 197
7. James I. to Anne . . 204
8. George I. 220
9. George II. 223
10. George III. . . . 225

CHAPTER IV.

pointed architecture.

Sect. 1. France 233
2. Belgium 242
3. Germany 245
4. Spain 251
5. Portngal 255
6. Italy 258
7. Sicily 263

BOOK II. THEORY OF ARCHITECTURE.

CHAPTER I. P'AOE
mathematics and mechanics ofCONSTRUCTION.page
Sect. 1. Geometry 264
2. Practical Geometry 291
3. Plane Trigonometry 296
4. Conic Sectious 302
5. Descriptive Geometry 317
6. Mensuration 330
7. Mechanics and Statics 339
8. Piers and Vaults 356
9. Walls and Piers 392
10. Beams and Pillars 415
CHAPTER II.
materials used in building.
Sect. 1. Stone 449
Decay of Stone 478
Preservation of Stone 480
Artificial Stone 482
2. Granite 484
3. Marble 488
4. Timber 494
Preservation of Timber 504
Decay and Dry Rot 505
5. Iron 508
Steel 512
Corrosion of Iron 513
6. Lead 515
7. Copper 517
8. Zine 518
9. Slate 520
10. Brick 522
Tile 528
Terra-cotta 530
11. Lime, Sand, Water, Mortar, Concrete, Cement 532
12. Glass 545
CHAPTER III.
use of materials, or practical berlding.
Sect. 1. Foundations and Drains 548
Sewerage 551
Drainage 553
Sect. 2. Bricklaying and Tiling
Sect. 2. Bricklaying and Tiling 558
Fireproof Flours 567
Concrete Building 569
Paving 572
Terra-cotta 574
3. Masonry 578
Columns. 584
Staireases 587
Stone-cutting 588
Gothic Vaulting 607
Marbles 613
4. Carpentry 615
Roofs 623
Domes 646
5. Joinery 649
6 Slating 676
7. Plumbery 681
Water-closets 686
Traps 688
Cisterns and Filters 690
Copper, Zinc, Brass 697
8. Glazing 700
9. Plastering 704
Cements 710
10. Smithery and Ironnongery 713
Ornamental Metal Work. 718
Gas Fitter 723
Electric Appliances 726
11. Foundery 728
Testing and Machinery 730
12. Painting, Gilding, Paper- hanging 732
13. Ventilation of Buildings 740
14. Warming of Buildings 746
15. Specifications 751
16. Measuring and Estimating 780
CIIAPTER IV.
MEDIUM OF EXPRESSION.
Sect. 1. Drawing in general 804
2. Perspective 811
3. Shadows 824
4. General Principles of Com- position 833
5. Drawings hecessary in Com- position 835
6. Working Drawings 836
BOOK III.
PRACTICE OF ARCHITECTURE.
CHAPTER I.
GRECIAN AND ITALIAN ARCHITECTURE.PAGE
Sect. 1. Beauty in Architecture 837
2. The Orders 814
Mouldings 847
3. Tuscan Order 854
4. Doric Order 857
5. Ionic Order 863
6. Corinthian Order 869
7. Composite Order 873
8. Pedestals 877
9. Intercolumniations 879
10. Areades and Arches 882
11. Orders abore Orders 89:
12. Arcades above Areades 896
13. Basements and Attics 898
14. Pilasters 899
15. Caryatides and Persians 902
16. Baiustrades and Balusters 903
17. Pediments 909
18. Cornices 910
19. Profiles of Doors 912
20. Windows 915
21. Niches and Statues 922
22. Chimney-Pieces 925
23. Staircases 927
24. Ceilings 931
25. Proportions of Rocms 933
CHAPTER II.
principlys of proportion.
Sect. 1. General Remarks 93i)
2. Horizontal and Vertical Com- binations of Buildings 935
3. Subdivisions and Apart- ments of Buildings, and their Points of Support 938
4. Combination of the Parts in Leading Forms 939
5. General Principles of Pro- portion (by E. Cresy) 942
CHAPTER III.
mediaval architecture.
Sket. 1. The Style in general 964
2. Periods of the Style 967
Sect. 3. Mouldings 9694. Piers and Columns5. Capitals975
9776. Bases
979
7. Vaulting Shafts and Ribs8. Hood Mouldings and StringCourses .981
9. Base Courses or Plinths 982
10. Parapets $98: 3$
11. Mouldings in Woodwork 984
12. Windows 988
13. Window Jambs and Arch Planes 992
14. Circular Windows 993
15. Tracery of Windows 994
16. Doorways 997
17. Porches 998
1S. Towers and Spires 1000
CHAPTER IV.
MEDIEVAL PROPORTION.
Sect. 1. Effect or Use of Numbers 1005
2. Early Use of Geometry and of a Measure 1008
3. The Vesica Piscis 1010
4. Modern Investigations 1011
5. Mouldings 1019
6. Principles of Proportion(by E. Cresy).1020
CHAPTER V.
SPECIAL SUBJECTS.
Sect. 1. Theatres 1066
2. Hospitals 1076
3. Infirmary 1079
4. Private Buildings 1080
5. In Towns 1081
6. In the Country 1083
7. Farm-House 1085
8. Cottages 1086
9. Town Dwellings f,r the Industrial Classes 1088
10. Sanitary Aspect of House Construction 1091
11. Technical School and Col- lege Buildings 1093
BOOK IV.VALUATION OF PROPERTY.
CIIAPTER I.
PAGEVALUATION OF PROPERTY . 1094
CHAPTER II.
CIVIL AND ECCLESIASTICAL DILAPIDATIONS . . . 1003
CHAPTER III.
CALCULATION OF INTEREST . 1101
CHAPTER IV.
COMPOUND INTEREST AND ANNUITY TABLES.
Obserrations 1104
Table 1. Amount of One Pound in any Number of Years . 11062. Present Value of OnePound payable at theEnd of any Number ofYears 1110
Table 3. Amount of One Pound per
Table 3. Amount of One Pound per Annum in any Number of Years 1114
„ 4. Present Value of One Pound per Annum for any Num- ber of Years 1118
5. The Annuity which One " Pound will Purchase for any Number of Years . 1122 ,
Lafe Annuity Tables.
, 6. Showing the Value of anAnnuity on One Life ac-cording to the Probabili-ties of Life in London . 1126
, 6a. Expectation of Life. 1126
, 7. Showing the Value of an

" 7. Showing the Value of anAnnuity on the JointContinuance of TwoLives, according to theProbabilities of Lifo inLondon .1127
" 8. Showing the Value of an Annuity on the longer of Two Lives . . . 1128

8. Showing the Value of an
Two Lives . . . 1128 Annuity on the Joint Continuance of Two Lives, according to the Probabilities of Lifo in London 1127
A List of ARCHITECTS of all Countries, and their PRINCIPAL WORKS 1129
Index to the NAMES therein 1157
A List of PUBLICATIONS relating to Architecture, arranged under Classes 1160
A GLOSSARY OF TERMS used in ARCHITECTURE and in BUILDING 1201
INDEA 1395 to 1443

ENCYCLOPADIA

A R C H I T E C T U R E.

BOOK I.

HISTORY OF ARCHITECTURF.

CHAP. I.
ON THE ORIGIN OF ARCIIITECTURE.

Sect. I.

WANTS OF MAN, AND FIRST RUILDINGS.

1. Protection from the inclemency of the seasons was the ancestor of architecture. Of little account at its birth, it rose into light and life with the civilisation of mankind; and. proportionately as security, peace, and good order were established, it became, not less than its sisters, painting and seulpture, one method of transmitting to posterity the degree of importance to which a nation had attained, and the moral value of that nation amongst the kingdoms of the earth. If the art, however, be considered strictly in respect of its actual utility, its principles are restricted within very narrow limits; for the mere art, or rather science, of construction, has no title to a place among the fine arts. Such is in various degrees to be found anong people of savage and uncivilised habits; and until it is brought into a system founded upon certain laws of proportion, and upon rules based on a refined analysis of what is suitable in the highest degree to the end proposed, it can pretend to no rank of a high class. It is only when a nation has arrived at a certain degree of opulence and luxury that architecture can be said to exist in it. Hence it is that arehitecture, in its origin, took the varied forms which have impressed it with such singular differences in different countries; differences which, though modified as each country advanced in civilisation, were, in each, so stamped, that the type was permanent, being refiaded only in a higher degree in their most important examples.
2. The ages that have elapsed, and the distance by which we are separated from the nations among whom the art was first practised, deprive us of the means of examining the shades of difference resulting from climate, productions of the soil, the precise spots upon which the earliest societies of man were fixed, with their origin, number, mode of life, and social institutions; all of which influenced them in the selection of one form in preference to another. We may, however, easily trace in the architecture of nations, the types of three distinct states of life, which are clearly discoverable at the present time; though in some cases the types may be thought doultful.

Sect. II.

ORIGIN ANT: PROGRFSS OF BUll.IING.

3. The original elasses into which mankind were divided worr, we may safely assume, those of hunters, of shepherds, and of those occupied in agricalture; and the buildings for protection which each would reguire, must have been characterised by their several ocenpations. The hunter and fisher found all the accommodation they required in the elefts and caverns of rocks; and the indolence
 which those states of life indeced, made them insensible or indifferent to greater comfort than such naturally-formed habitations alforded. We are certain that thus lived such tribes. Ierem: hh (chap. xlix. 16.), speaking of the judgment upon Edom, says. "() thou that divellest in the clefts of the rock, that holdest the height of the hill:" a text which of late has received ample illustration from travellers, and especially from the labours of Messrs. Leon de Laborde and Linant, in the splendid engravings of the ruins of Petra (fig. 1.). To the slepherd, the inhabitant of the phans wandering from one spot to another, as pasture became inadequate to the support of his flocks, another species of dwelling was more appropriate; one which he could remove with him in his wamderings: this was the tent, the type of the architecture of China, whose prople were, like all the Tartar races, mumules or scenites, that is, shepherds or dwellers in tents. Where a portion of the race fixed its abode for Fig. 1.
rulds of pzifa. the purposes of agriculture, a very dif. ferent species of dwelling was necessary. Solidity was reguired as well for the personal comfort of the husbandman as for preserving, from one season to another, the fruits of the earth, upon which he and his family were to exist. Inence, doubtless, the hut, which most authors have assumed to be the type of Grecian arehitecture.
4. Authors, says the writer in the Encyc. Methorlique, in their search after the origin of architecture, have generally confined their views to a single type, withont considering the modification which weald be necessary for a mixture of two or more of the states of mankind; for it is evident that any two or three of them may co-exist, a point mon which more will be said in speaking of Egyptian architecture. Hence have arisen the most discordant and contradictory systems, formed without suflicient aeguaintance with the customs of diflerent people, their origin, and first state of existence.
5. The earliest habitations which were eonstructed after the dispersion of mankind from the plains of Sematr (for there, certainly, as we shall hereafter see, even without the evidenee of Scripture, was a sreat multitude gathered together), were, of course, proportioned to the means which the spot aflorded, and to the nature of the climate to which they were to be adapted. Reeds, canes, the branches, bark, and leaves of trees, clay, and similar materials would be first used. The first houses of the ligyptians and of the people of l'atestine were of reeds and canes interwoven. At the present day the same materials serve to form the houses of the Perusians. According to Iliny (I. vii.), the first houses of the Greeks were only of clay; for it was a considerable time before that nation was acquainted with the process of hardening it into bricks. The Abyssimans still build with clay and reeds. Wond, however, offers such facilities of construction, that still, as of old, where it abounds, its adoption prevails. At first, the natural order seems to be that which Vitruvius describes in the first chanter of his second book. "The first attempt," says our author, "was the mere erection of a few spars, united together with twigs, and covered with mud. Others built their walls of dried lumps of turf; connected these walls together by means of timbers laid across horizontally, and covered the erections with reeds and boughs, for the purpose of sheltering themselves from the inclemeney of the seasons. Finding, however, that llat coverings of this sort would not eflectually shelter them in the winter seasom, they made their roots of two inclined planes, meeting each other in a ridge at the summit, the whole of which theg covered with clay, and thos carried off' the rain." 'The same author
afterwards observes，＂＇low woods about lontus furnish such abmadance of timber，that they build in the following mamer．Two trees are laid level on the earth，right and left， at such distance from each other as will suit the length of the trees which are to cross and
 connect them．On the extreme ends of these two trees are laid two other trces，transverse－ ly ：the space which the house will enclose is thus marked ont．The four sides being so set out，towers are raised，whose walls consist of trees laid horizon－ tally，butkeptper－ pendicularly over each other，the al－ ternate layers yoh－ ing the angles． ＇I＇he level inter－ stices，which the thickness of the trees alternately leave，is filled in with chips and mud． On a similar principle they form their roofs，except that gradually reducing the length of the trees which traverse tiom side to side，they assume a pyramidal form．They are covered with boughs，and thus，alter a rude fashion of vaulting，their quadrilateral roofs are formed．＂The northern parts of Germany，Poland，and Russia still exhibit traces of this method of building，which is also found i_{1} Florida，Lonisiana，and elsewhere，in various places See fin，2．

6．We shall not，in this place，pursue the disenssion on the timber hut，which has rertainly，with great appearance of probability，been so often said to contain within it the types of Grecian architecture，but shall，under that head，enlarge further on the suljeet．

Seet．III．

Daferent sokts of dwelinge arising from maffrent occupations．

7．The construction of the early habitations of mankind required little skill and as little knowlelge．A very restricted number of took and machines was required．The method of felling timber，which uncivilised nations still use，namely，by fire，might have served all purposes at first．The next step would be the slaping of hard and infrangible stones into cutting tools，as is still the practice in some parts of the continent of America．These，as the metals becaine known，would be supplanted by tools formed of them．Among the Peruvians，at their invasion by the Spaniards，the only toots in use were the hatchet and the adze；and we may fairly assume that similar tools were the only ones known at a period of high antiquity．The saw，mails，the hammer，and other instruments of carpentry were unknown．The Grecks，who，as Jacob Bryant says，knew nothing of their own history，ascribe the invention of the instruments necessary for working materials to Daedalus； but only a few of these were known even in the time of Homer，who confines himself to the hatchet with two edges，the plane，the auger，and the rule．He particularises neither the square，compasses，nor saw．Neither the Greek word $\pi \rho i \omega v$（a saw），nor its equivalent， is to be found in his works．Dedalus is considered，however，by Gognet as a fabulous person altogether，the word meaning，according to him，nothing more than a skilful workman，a meaning which，he observes，did not eseape the notice of lansanias．The surmise is borre out by the non－mention of so celebrated a character，if he had ever existed，by Homer，and， afterwards，by Herodotus．The industry and perseverance of man，however，in the ench， overcame the difficulties of construction．For wood，which was the earliest material，at length were substituted bricks，stone，marble，and the like；and edifices were reared of unparalleled magnificence and solidity．It seems likely，that bricks would have been in use for a considerable period before stone was employed in building．They were，probably， after moulding，merely subjected to the sun＇s rays to acquire hardness．These were the inaterials whereof the Tower of Babel was constructed．These also，at a very remote period，were used by the Egyptians．Tiles seem to have been of as high an antiquity as bricks，and to have been used，as in the present day，for covering roofs．

8 The period at which wrought stone was originally used for arenitectural purposes is
quite unknown, as is that in which cement of any kind was first employea as the medinm of uniting masonry. They were both, doubtless, the invention of that race which we have mentioned as cultivators of land, to whom is due the introduction of architecture, properly so callecl. To them solid and durable edifiees were neeessary as soon as they had fixed upon a spot for the settlement of themselves and their familics.
9. Chaldea, Egypt, Ihoenicia, and China are the first countries on record in which architecture, worthy the name, made its appearance. They had certainly attained considerable proficiency in the art at a very early period; though it is doubtful, as respects the three first, whether their reputation is not founded rather on the enormons masses of their works, than on beauty and sublimity of form. Strabo mentions many magnificent works which he attributes to Semiramis; and observes that, besides those in Babylonia, there were monuments of Babylonian industry throughout Asia. He mentions doi申ot (high altars), and strong walls and battlements to various cities, as also subterranean passages of communication, aqueduets for the conveyance of water under ground, and passages of great length, upwards, by stairs. Bridges are also mentioned by him (lib. xyi.). Moses has preserved the names of three cities in Chaldrea which were founded ly Nimrod (Gen. x. 10.). Ashur, we are told, built Nineveh: and (Gen. xix. 4.) as early as the age of Jacob and Abraham, towns had been established in Palestine. The Chinese attribute to Fohi the encireling of eities and towns with walls; and ia respeet of ligypt, there is no question that in Homer's time the celebrated eity of Thebes had been long in existence. The works in India are of very early date; and we shall hereafter ofler some remarks, when speaking of the extraordinary monument of Stonehenge, tending to prove, as Jacob Bryant supposes, that the earliest buildings of both nations, as well as those of Ilomieia and other countries, were crected by colonies of some great original nation. If the Peruvians and Mexicans, without the aid of carriages and horses, without scaffolding, cranes, and other machines used in building, without even the use of iron, were enabled to raise monuments which are still the wonder of travellers, it would seem that the mechanical arts were not indispensable to the progress of architecture; but it is much more likely that these were understood at an exceedingly remote period in Asia, and in so high a degree as to have lent their aid in the erection of some of the stupendous works to which we have alluded.
10. The art of working stone, which implies the use of iron and a knowledge of the method of tempering it, was attributed to Athôthis, the suecessor of Menes. It seems, however, possible that the ancients were in possession of some secret for preparing bronze tools which were capable of acting upon stone. Be that as it may, no country could have been called upon earlier than Egypt to adopt stone as a material, for the elimate does not favour the growth of timber; hence stone, marble, and granite were thus forced into use; and we know that, besides the facility of transport by means of canals, as carly as the time of Joseph waggons were in use. (Gen. xlv. 19.) We shall hereafter investigate the hypothesis of the architecture of Greece being founded upon types of timber buildings, merely observing here, by the way, that many of the columns and entablatures of Egypt had existence long before the carliest temples of Greece, and therefore that, without recurrence to timber construction, prototypes for Grecian architecture are to be found in the vencrable remains of Egypt, where it is quite certain wood was not generally employed as a material, and where the subterranean arehitecture of the country olfers a much more probable origin of the style.

CHAP. II.

A kCilftecture of various countrias.

Sect. I.
duUmical and celtic arcurtectuke.
11. If rudeness, want of finish, and the absence of all appearance of art, be criteri:a for judgment on the age of monuments of antiquity, the wonderful remains of Abury and Stonehenge must be considered the most ancient that have preserved their form so as to indicate the original plan on which they were constructed. The late Mr. Golfrey Higgins, a gentleman of the highest intelleetual attainments, in his work on the Celtic Druids (published 1829), has shown, as we think satisfactorily, that the Druids of the British Iskes were a colony of the first race of people, learned, enlightened, and descendants of the persons who escaped the deluge on the borders of the Caspian Sea; that they were the earliest oecupiers of Grecee, Italy, France, and Britain, and arrivel in thoxe places by a ronte nearly
along the forty-fifth paraltel of north latitude ; that, in a similar manner, colonies advanced from the same great nation by a southern line through Asia, pcopling Syria and Africa, and arriving at last by sea through the Pillars of Hereules at Britain; that the languages of the western world were the same, and that one system of letters - viz. that of the Irish Druids-pervaded the whole, was common to the British Isles and Gaul, to the inhabitants of Italy, Greece, Syria, Arabia, Persia, and Hindostan; and that one of the two alphabets (of the same system) in which the Irish MSS. are written-viz. the lieth-luis-mion-came by Gaul through Britain to Ireland; and that the other - the Bobeloth - came through the Straits of Gibraltar. Jacob Bryant thinks that the works called Cyclopean were executed at a remote age by colonies of some great original nation; the only difference between his opinion and that of Mr. Higgins being, that the latter calls them Druids, or Celts, from the time of the dispersion above alluded to.
12. The munewn stones, whose antiquity and purport is the subject of this section, are fomad in Hindostan, where they are denominated " pandoo koolies," and are attributed to a fabulous being named P'andoo and his sons. With a similarity of character attesting their common origin, we find them in India, on the shores of the Levant and Mediterrancan, in Belgium, Denmark, Sweden and Norway, in France, and on the shores of Britain from the Straits of Dover to the Land's End in Cornwall, as well as in many of the interior parts of the country. They are classed as follows:-1. The :ingle stone, pillar, or obelisk. 2. Circles of stones of different numiver and arrangeraent. 3. Sacrificial stones. 4. Cromlechs and eairns. 5. Logan stones. 6. Tohmen or colossal stones.
13. (1.) Single Stones. - Passages abound in Scripture in which the practice of erecting single stones is recorded. The reader on thiss point may refer to Gen. xxviii. 18., Judges, ix. 6., I Sam. vii. 12., 2 Sam. xx. 8., Joshua, xxiv. 27 . The single stone might be an emblem of the generative power of Nature, and thence an object of idolatry. That mentioned in the first scriptural reference, which Jacol set up in his journey to visit Laban, his uncle, and which he had used for his pillow, seems, whether from the vision he had while sleeping upou it, or from some other cause, to have become to him an olject of singular veneration ; for he set it up, and poured oil upon it, and called it " Bethel" (the house of Gorl). It is curious to observe that some pillars in Cornwall, assumed to have been erected by the Phoenicians, still retain the appellation Bethel. At first, these stones were of no larger dimension than a man could remove, as in the instance just cited, and that of the Gilgal of Jushua (Josh. iv. 20.) ; but that which was set up under an oak at Shechem (ibid. xxiv. 26.), was a great stone. And here we may notice another singular coincilence, that of the liothel in Cornwall being set up in a place which, from its proximi'y to an oak which was near the spot, was called Bothel-ac; the last syllable being the Saxon for an oak. It appears from the Scriptures that these single stones were raised on various occasions; sometimes, as in the case of Jacol's Bethel and of Samuel's Ebenezer, to commemorate instances of divine interposition ; sometimes to record a covenant, as in the case of Jacob and Laban (Gen. xxxi. 48.) ; sometimes, like the Greek stelæ, as sepulchral stones, as in the case of Rachel's grave (Gen. xxxvi. 20.), 1700 years b.c., according to the usual reckoning. They were occasionally, also, set up to the memory of individuals, as in the instance of Absalom's pillar and others. The pillars and altars of the patriarchs appear to bave been erected in honour of the only true God, Jehovah; but wherever the Camaanites appeared, they seem to have been the objects of idolatrous worship, and to have been dedicated to Baal or the sun, or the other false deities whose altars Moses ordered the Israelites to destroy. The similarity of pillars of single stones almost at the opposite sides of the earth, leaves no doulrt in our mind of their being the work of a people of one common origin widely scatterel; and the hypotheses of Bryant and Iliggins sufficiently account for their appearance in places so remote from each other. In consequence, says the latter writer, of some cause, no matter what, the llive, after the dispersion, casted and sent forth its swarms. One of the largest descended, according to Genesis (x. 2.), from Gomer, went north, and then west, pressed by succeeding swarms, till it arrived at the shores of the Atlantic Ocean, and ultimately colonised Britain. Another branch, observes the same author, proceeded through Sarmatia southward to the Euxine (Cimmerian Bosphorus) ; another to Italy, founding the states of the Umbrii and the Cimmerii, at Cuma, near Naples. Till the time of the Romans these different lines of march, like so many sheepwalks, were without any walled cities. Some of the origiual tribe found their way into Greece, and between the Carpathian mountains and the Alps into Gaul, scattering a few stragglers as they passed into the beautiful valleys of the latter, where traces of them in Druidical monuments and language are occasionally found. Wherever they settled, if the conjecture is correct, they employed themselves in recovering the lost arts of their ancestors.
14. To the Canaanites of Tyre and Sidon may be chiefly attributed the introduction of these primeval works into Britain. The Tyrians, inhabiting a small slip of barren land, reere essentially and necessarily a commercial people, and became the most expert and ulventurous sailors of antiquity. It has been supposed that the constancy of the needle to the pole, "that path which no fowl knoweth, and which the vulture's eye hath not seen."

Nas known to the 'Pyrians; and, indeed, it seems seareely possible that, by the help of the stars alone, they should have been able to maintain a commerce for tin on the shores of iritain, whose western coast fumbshed that metal in abondance, and whose islands (the
 Scilly) were known by the title of Cassiterides, or the islands. In this part of Britain there seems unguestionable evidence that they settled a colony, and were the arehitects of Stonehenge, Abury, and other similar works in the British islands. In these they might have been assisted by that part of the swarm which reached our shores through Gaul; or it is possible that the works in Iuestion may be thome of the latter only, of whom traces exist in Britany at the monment of Carnac, whereof it is eomputed 4000 stones still remain. From anong the number of pillars of this kind still to be seen in England, we give (fig. 3.) that standing at Rudstone, in the east riding of Yorkshire. It is deseribed by Drake, in his Eboracum, as " coarse rag stone or millstone grit, and its weight is computed at between 40 and 50 tons. In form (the sides being slightly concave) it approaches to an ellipse on the plan, the breadth leeing 5 ft .10 m ., and the thickness 2 ft . 3 in., in its general dimensions. Its height is 24 ft . and, according to a lrief account eommmicated to the late Mr. Pegge, in the year 1769 (Archeologia, vol. v. p. 95.) , its depth underground equals its height above, as appeared from an experiment made by the late Sir William Strickland."
1.5. (2.) Circles of Stome.-The Israclites were in the habit of arranging stones to represent the twelve tribes of Israel (Exol. xxiv. 4.), and for another purpose. (1)cut. xxvii. 2.) And in a circular form we find them set up by Joshua's order on the passage of the Israclites through Jordan to Gilgal (לд2); a word in wheh the radieal Gal or Gil (signifying a wheel) is doubled to denote the continued repetition of the action. In this last case, Joshua made the arrangement a type of the Lord rolling away their reproach from them.
16. Though traces of this species of monmment are found in various parts of the world, even in America, we shall contine our observations to those of Abury and Stonehenge, merely referring, by way of enumeration, to the places where they are to be found. Thus we mention Rolbrich in Oxfordshire, the Harlers in Cornwall, Long Meg and her danghters in Cumberland, remains in Derbyshire, Devonshire, Dorsetshire, at Stanton Drew in Somersetshire, and in Westmoreland. They are common in Wakes, and are found in the Western Isles. There are examples in Iceland, Norway, Sweden, Demmark, and various parts of Germany. Clarke, in his description of the hitl of Kushunlu Tepe in the Troad, observes, that all the way up, the traces of former works may be noticed, and that, on the summit, there is a small oblong area, six yards long and two broad, exhibiting vestiges of the highest antiunity; the stones forming the inclosure being as rude as those of Tiryns in Argolis, and encircled by a grove of oaks covering the top of this conical mountain. The entrance is from the sonth. Upon the east and west, outside of the trees, are stones ranging like what we in Eugland call Druidical circles. Three circles of stones are known in: Ameriea, one of which stands upon a high rock on the banks of the river Wimipigon. The stupendous monument of Carnac in Britany, of which we have above made mention, is not of a circular form ; the stones there being arranged in eleven straight lines, from 30 to 33 ft . apart, some of which are of enormous size. They are said to have formerly exchled thre leagues along the const A deverpion of this monmment is given in vol x xii. of the Archaologia; and in Gailhabaud, Monumens, 4to, Paris, 1s42-52.
17. Abury, or Avebury, in Wiltshire, of which we give a view in a restored state (fig.4.), is a speeimen of this species of building, in which the climax of magnificence was attained. Stukely, who examined the ruins when in much better preservation than at present, says, "that the whole figure represented a snake transmitted through a cirele;" and that, "to make their representation more natural, they artfully carried it over a variety of elevations and depressions, which, with the curvature of the avennes, produces sufficiently the desired effect. To make it still more clegant and pieture-like, the head of the snake is carried up the southern promontory of Hackpen Hill, towards the village of West Kemet; may, the very name of the hill is derived from this circumstance;" for ucen, he observes, signifies a serpent in the Chaldaic language. Dr. S. then goes on to state, "that the drucontiue was a name, amongst the first-learned nations, for the very ancient sort of temples of which they could give no account, nor well explain their meaning upon it." The ligure of the serpent extended two miles in length; and but a very faint idea can now be formed of what it was in its original state. Two double circles, one to the north and the other to the south of the centre, were placed within the large circle, which formed the principal body of the serpent, and from which branched out the head to Hackpen Hibl, in the direction of

West Kemnet, as one avenue; and the other, the tail, in the direction of Bechhampton.
Dr. Stukely makes the number of stones, 652 in all, as under: -

	ar and altar sout	one Cove jambs Ston
The great circle \qquad . 100	atral pillar and altar, sou	Long stone. Cove jambs
Onter circle north of the centre 30	circle	A stone he calls the ring stone
Inner ditto . . . 12	Kennet arenue . . 200	Closing stone of the tail
Outer circle, south . . 30	Beckhampton avente . 200	
Inner ditto . . . 12	Outer circle of llackpen . ${ }^{(1)}$	Total
Co	mmer ditto	

Of these, ouly seventy-six stones remained in the Kennet avenue in 1;22. The large circle was enclosed by a trench or vallum upwards of 50 ft . in depth and between 60 and

Fig. 5.
pian op stonebrace. 70 ft . in width, leaving entrances open where the avenues intersected it. The colossal mound, called "Silhury hill," close to the Bath road, was probably connected in some way with the circle we have described, from the cireumstance of the Roman road to Bath, made long afterwards, being diverted to avoid it. Dr. Owen thinks that the Abury circle was one of three primary circles in Great Britain, and that Silbury hill was the pile of Cyvrangon (heaping) characterised in the 14 th Welsh triad; but the conjecture affords us no assistance in determining the people by whom the monument was raised. If it be in its arrangement intended to represent a serpent, it becomes immediately connected with ophiolatry, or serpent worship, a sin which beset the Israelites, and which would stamp it as proceeding from the central N stamen of the hypothesis on whieh Mr. Higgins sets out. See Observations on Dracontia, by the Rev. John Bathurst Deane, Archavi. vol. xxv.

> "Eoliam Pitanen a læı parte relinquit,
> Fistaque desaxo longi simulacra Draconis,"-Ovid, Met. vii. 357.
whiel is a pieturesque deseription of Abury.
18. Stonehenge, on Salisbuy Plain, abont seven miles from Salisbury and two miles
to the west of Ambresbury, is certainly more artificial in its structure than Abury, and its construction may therefore be safely referred to a later date. Fig. 5. is a restored plan of this wonder of the west, as it may well be called. The larger circle is 105 feet in diameter, and bet ween it and the interior smaller circle is a space of about 9 feet. Within this smaller cirele, which is half the beight (8 feet) of the exterior one, was a portion of an ellipsis formed by 5 groups of stones, to which Dr. Stukely has given the name of trilithons, because formed by two vertical and one horizontal stone: the former are from 17 to $18 \frac{1}{2}$ feet high, the middle trilithon being the highest. Within this cliipsis is another of single stones, half the height of the trilithons. The outer cirele was crowned with a course of stones similar to an architrave or epistylium, the stones whereof were let into or joggled with one another by means of egg-shaped tenons formed out of the vertical blocks. The ellipsis was connected in a similar manner. Within the imer elliptical enclosure was a bloek 16 ft . long, 4 ft . broad, and 20 in . thick. This has usually been ca'led the altar stone. Round the larger circle, at the distance of 100 ft , a vallum was formed about 52 ft . in width, so that the external dimension of the work was a dianeter of 420 ft . The vallum surrounding these sacred places seems to have been borrowed by the Canaanites in imitation of the enclosure with which Moses surrounded Mount Simai, in order to prevent the multitude from approaching too near the sacred mysteries. The number of stones composing this monument is variously given. In the subjoined account we follow Dr. Stukely : -

Great circle	Stones.	Stones within rallum		Stones
Epistylia		Stones within valum		
Epistylia	30	A large table stone		
luner circle	40	Distant pillar		1
Vertieal stones of outer ellipsls	10	Another stone, supposed		
Epistylia to them	5	opposite the entrame		1
Ammer ellipsis	19	Total		140

Northwards from Stonehenge, at the distance of a few hondred yards, is a large single stone, which, at the period of its being placed there, has been by some thought to have marked a meridian line from the centre of the circle.
19. Fig. 6. is a view of the present state of this interesting ruin from the west.

Mr.

Cumington, in a letter to Mr. Higgins, gives the following aceount of the stones which remain of the monument: - " The stones on the outside of the work, those comprising the outward circle as well as the large (five) trilithons, are all of that species of stone called 'sarsen' found in the neighbourhood; whereas the imer circle of small upright stones, and those of the interior oval, are composed of granite, hornstone, \&c., most probably procured from some part of Devonshire or Cornwall, as I know not where such stones could be procured at a nearer distance."
20. Authors have in Stonehenge discovered an instrument of astronomy, and anong them Maurice, whose view as to its fomders coincides with those of the writers already cited, and with our own. We give no opinion on this point, but shall conclude the section by placing before the reater the substance of M. Bailly's notion thereon, recommending him to consult, in that respect, authorities better than we profess to be, and here expressing our own belief that the priests of ancient lbritain were priests of ljaal; and that the momments, the subjects of this section, were in existence long before the Greeks, as a nation, were known, albeit they did derive the word Druid from opos (an oak), and said that they themselves were avto $\theta_{00 \nu \text { es (sprung from the carth). }}^{\text {s }}$
21. Mr. Bailly says, on the origin of the seiences in Asia, that a nation possessed of profound wisdom, of elevated genius, and of an antiquity far superior to the Egyptians or Indians, immediately after the flood inhabited the country to the north of India, between the latitudes of 40 and 50 , or abont 50 north. Ne contends that some of the most celebrated observatories and inventions relating to astronomy, from their peenliar character, could have taken place only in those latituder, and that arts and improvements gradually
travelfed thence to the equator. The people to whom his description is most applieable is the northern progeny of Brahmins, settled near the Imaus and in Northern Thibet. We add, that Mr. IIastings informed Mauriee of an immemorial tradition that prevailed at Benares, winch was itself, in modern times, the grand seat of Indian learning, -that all the learning of India came from a country situate in 40° of N. latitude. Maurice remarks. "This is the latitude of Samarcand, the metropolis of Tartary ; and, by this cireumstance, the position of M. Bailly should seem to be contirmed. This is the eountry where, according to the testimony of Josephus and other historians eited by the learned Abbé l'ezron, are to be found the first Celte, by whom all the temples and caves of India were made. Higgms observes on this, that the worship of the Mithraitic bull existed in India, Persia, Greece, Italy, and Britain, and that the religion of the Druids, Magi, and Brahmins was the same.
22. (3.) Sacrificial Stones. - These have been confounded with the eromlech, but the differenee between them is wide. They are simple stones, either encireled by a shallow trench (vallum) and bank (agger), or by a few stones. Upon these almost all authors roncur in believing that human immolation was practised; indeed, the name blod, or blood-stones, which they bear in the north of Europe, seems to point to their infernal use. We do not think it necessary to pursue further inpuiry into them, as they present no remarkable nor interesting features.
23. (4.) Cromlechs and Cairus. - The former of these seem to stand in the same relation to the large circles that the modern cell does to the conventual chureh of the Catholies. They consist of two or more sides, or verticai stones, and sometimes a back stone, the whole being covered with one not usually placed exactly horizontal, but rather in an inclining
 position. We here (fig. 7.) give a representation of one, thes has received the name of Kit's Cotty Ifouse, which lies on the road between Maidstone and Rochester, about a mile northeast ward from Aylesford elaurch, and is thus described in the Beaktics of Eingland and Hules. It " is composed of four huge stones unwrought, three of them standing on end but inclined in. wards, and supporting the fourth, which lies transersely over them, so as to leave an open recess beneath. The dimensions and computed weights of these stones are as follows: - height of that on the south side 8 ft ., breadth $7 \frac{1}{2} \mathrm{ft}$., thickness 2 ft ., weight 8 tons; height of that on the north side 7 ft ., breadth $7 \frac{1}{2} \mathrm{ft}$., thickness 2 ft ., weight $8 \frac{1}{2}$ tons. The middle stone is very irregular ; its medium length as well as breadth may be about 5 ft , its thickness about 1 ft . 2 in ., and its weight about 2 tons. The upper stone or impost is also extremely irregular ; its greatest length is nearly 12 ft , and its breadth about $9 \frac{1}{4} \mathrm{ft}$; its thickness is 2 ft ., and its weight alont $10 \frac{1}{2}$ tons: the width of the recess at bottom is 9 ft ., and at top $7 \frac{1}{2} \mathrm{ft}$. ; from the ground to the mpper side of the covering stone is 9 ft . These stones are of the kind called kentish rag. Many years ago there was a single stone of a similar kind and size to those forming the erombech, about 70 yards to the north-west: this, which is thought to have once stood upright, like a pillar, has been broken into pieces and carried away." Another cromleeh stood in the neighhourhood, which bas been thrown down. The nonsense that has been gravely written upon this and similar monuments is scarcely worth mention. It will hardly be believed that there existed people who thought it was the sepulchral monument of king Catigern, from similarity of name, and others who consider it the grave of the Saxon chief, Horsa, from its proximity to Horsted. Cromlechs are found in situations remote indeed, a speeimen being seated on the Malabar coast ; and in the British isles they are so numerous, that we do not think it necessary to give a list of them.
24. The cuirn or curn which we have in this section coupled with the cromlech, perhaps improperly, is a conical heap of loose stones. Whether its etymology be that of Rowland, from the words קרץ-: ק (kern-ned), a coped heap, we shall, from too little skill in Hebrew, not venture to decide; so we do not feel quite sure that, as has been asserted, they were raised over the bodies of deceased heroes and chieftains. Our notion rather inclines to their laving been a species of altar, though the heap of stones to which Jacob gave the name of Galeed, if it were of this species, was rather a memorial of the agreement between him and laban. It can searcely be ealled an architectural work; but we should have considered our notice of the earlier monuments of antiquity incomplete without naming the cairn.
25. (5.) Logan or Rocking Stones. - These were large blacks poised so nicely on the points of rocks, that a small force applied to them produced oseillation. The weight of the eelebrated one in Cornwall, which is granite, has been computed at upward of 90 toms.

The use of these stones has been conjectured to be that of testing the innocence of persons accused of crime, the rocking of the stone heing eertain, unless wedged up by the judge of the tribumal, in eases where he knew the guilt of the criminal: but we think that such a purpose is highly improbable.
26. (6.) Tilmen or Colussal Stones. - The Tolmen, or hole of stone, is a stone of

Fis. 8.
tolamen in cornwall. passage of about three feet wide, hy as much high. The longest diameter of this stone is 33 ft., being in a direction due north and south. Its height, measured perpendicularly over the opening is, 14 ft .6 in., and the breadth, in the widest part, 18 ft . 6 in ., extending from east to west. I measured one half of the circumference, and found it, according to my computation, $48 \frac{1}{2} \mathrm{ft}$., so that this stone is 97 ft . in circumference, lengthwise, and about 60 ft . in girt, measured at the middle ; and, by the best information, it contains about 750 tons." We close this section by the expression of our belief that the extraorlinary monuments whereof we have been speaking are of an age as remote as, if not more so than, the pyramids of ligypt, and that they were the works of a colony of the great nation that was at the earliest period settled in central Asia, either through the swarm that passed north-west over Germany, or south-west through lhonicia; for, on either route, but rather, perhaps, the latter, traces of gigantic works remain, to attest the wonderful powers of the people of whom they are the remains.

Sker. II.

PELASGIC OR CYCH.OPEAN AHCHITECTURE.

2i. Velassic or Cyclopean architecture, (for that as well as the architecture of Plomicia, seems to have been the work of branches of an original similarly thinking nation) presents for the notice of the reader, little more than massive walls composed of huge pieces of rock, scareely more than piled together without the connecting medium of cement of any species. The method of its construction, considered as masonry, to the eye of the architect is quite sufficient to connect it with what we have in the preveding section called Druidical or Celtic arehitecture. It is next to impossible to believe that all these species were not executed by the same people. The nature and principles of ligyptian art were the same, but the specimens of it which remain bear marks of being of later date, the pyramids only excepted. The Greek fables about the Cyelopeans have been sufficiently exposed by Jaeoh Bryant, who has shown that the Grecks knew nothing about their own early history. Herodotus (lib. v. cap 57. ei sfo.) alludes to them under the name of Cadmians, sayiug they were particularly fanious for their architecture, which he says they introduced into Greece; and wherever they eame, erectud noble structures remarkable for their height and beanty. These were dedicated to the Sun under the names of Elonus and Jelorus. Hence every thing great and stupendons was called Pelorian; and, transferring the ideas of the works to the founders, they made them a race of giants. Homer says of Polyphemus, -

Virgil, too, deseribes him "Ipse arduus, alta pulsat sidera." Famous as lighthouse builders, wherein a ronnd easement in the upper story aflurded light to the mariner, the Greeks turned this into a single eye in the forehead of the race, and thus made them a set of monsters. Of the race were Trophonius and his brother Agamedes, who, according to P'allsanias (lib. ix.) eontrived the temple at Delphi and the Treasary constrneted to Úrius. So great was the fame for building of the Cyclopeans that, when the Sybil in Virgil shows Ancas the place of torment in the shades below, the poet separates it from the regions of bliss by a Cyclopean wall:-
" Cyclopum educta caminis
Mania conspicio."
Ain. lib. vi. v. Gi30
28. The walls of the city of Mycene are of the elass denominated Cyclopean, thus thenounced for ruin by Hercules in Seneca : -

> " - Quid moror ? majus mihi
> Bellum Mycenis restat, ut Cyclopea
> liversa manibus meenia nostris concidant."

Hircutis Furens, act. 4. v. 9: 6.
29. The gate of the enty and the chief tower were particularly ascribed to them (lausanias, lib. ii.) Argos had also the reputation of being Cyclopean. But, to return to Myene, Buripides, we should observe, speaks of its walls as being built after the Phomician rule and method: -

30. Fig. 9. is a representation of a portion of the postern gate of the walls of Mycene, for the purpose of exhibiting to the reader the chat racter of the masomry employed in it.
31. 'The walls of 'liryns, probably more ancient than those we have just mamed, are celebrated by Homer in the words Tipuvea $\tau \epsilon i \chi$ loe $\sigma \sigma a \nu$, and are said by Apollodorus and Strabo to have been built ly workien whom I'ratus brought from Lyeta. The

 l'ratus apprars to have used Tiryns as a harlour, and to have walled it hy the assistance of the Cyclops, who were seren in mumbrr, and called Gastrocheirs (bellyhanded), lemeng hy thcir labour. "These seven Cyclops," says Jacob Bryant, "were. I make no doult, seven Cyclopean towers built by the people." liurther on, he adds, "These towers were ereeted likewise for Purait, or I'uratheia, where the rites of fire were performed: but l'urait, or P'uraitus, the Greeks changed to l'retus; and gave out that the towers
made a king of that conntry." The same anthor says
F'g. 9. paht or the watis or anckak. were built for l'ratus, whom they made a king of that comntry." The same anthor says
that the Cyclopeans worshiped the sun under the symbol of a serpent; thus again connecting them with the builders of Abury.

Fig, 10. PARF OF THE WADIS OV THKNNS. and Alatrium; in the three last whereof the walls resemble those of Ciryns, Argos, and Mycene; also at Fiesole, Arezzo, and other places.
93. We shall now return to some further particulars in relation to Tiryns and Mycene, from which a more distinct notion of these fortresses will be obtained; but further investigation of those in l taly will hereafter be necessary, under the section on Etruscan architecture. The Acropolis of Tiryns, a little to the south-east of Argos, is on a mount rising about fifty
feet abore the level of the plain. the fuundations of its inclusure being still perfect and tracealle, as in the annesed figure (ing. 11.). The ancient city is thought to have sur-

romuled the fortress. and that formerly the city was nearer the sea than at present. Bryant, with his usual ingennity, has found in its general form a type of the long ship of Danans, which, we confess, our imagination is not lively enough to detect. On the east of the fortress are quarries. which furnish store similar to that whereof it is built. It had entrances from the east and the west, and one at the south-eastern angle. Tliat on the east. letiered A. is pretty fairly preserved, and is approached by an inelined access, $\mathrm{B}, 15 \mathrm{ft}$. wide, along the eastern and southern sides of the tumer. C. which is 20 ft . square and 40 ft . high, passing, at the end of the last named side, under a gaterway, composed of very large blocks of stone, that which forms the architrave being 10 f. long, and over which. from the fraginents lying on the spot, it is conjectured that a triangular stone was placed; but therevia is no appearance of sculpture. D is the present entrance. The general thickness of the walls is 25 ft ., and they are formed by three parallel ranks of stones 5 ft . thick, thus leaving
 two ranges of galleries each 3 ft . wide and 12 ft . high. Thie silles of the galleries are formed by two courses of stone, and the roof by two other horizontal courses, sailing over so as to meet at their summit, and somewhat resembling a pointed arch. (serig. 10.) That part of the gallery, fig. 12., now uncovered, is about 90 ft . long, and has ir openings or recesses towards the east, one whereof seems to have afforded a communication with some exterior building, of whose foundation traces are still in existence. The interval between these openings varies from 10 ft .6 in. to 9 ft .8 in ; the openings themselves being frum 5 ft .6 in . to 4 ft .10 in . wide. It is probable that these galleries extended all round the citadei, though now only accessible where the walls are least perfect, at the snuthern part of the inclosure. There are no remains of the south-eastern portal. It appears to have been: comnected with the eastern gate by an avenue enclosed between the outer and inner curtain, of which avenue the use is not known. Similar avenues have been found at Argos and other aneient cities in Greece. The northern point of the hill is least elevated, and smaller stunes have been employed in its wall. The exterior walls are built of rough stones, some of which are 9 ft .4 in . in length and $t \mathrm{ft}$. thick, their common size being somewhat lens When entire. the wall must have been 60 ft . high, and on the eastern side has been entirely destroyed The whole length of the citadel is about 650 ft ., and the breadth about 150 ft ., the walls being straight without regard to inequality of level in the rock.
34. The Acropolis of Mycene was probably constructed in an age nearly the same as that of Tiryns. Pausanias mentions a gate on which two lions were sculptured, to which the name of the Gate of the Lions has been given (fig. 13.) These are still in their original position. It is situate at the end of a recess about 50 ft . long, commanded liy projections of the walls, which are here formed of huge blocks of square stones, many placerl on each other without breaking joint, which circumstance gives it a very inartificial appearance. The epistylium of the gate is a single stone 15 ft . long and 4 ft . 4 in . high. To the south of the gate above mentioned the wall is much ruined. In one part something like a tower is discernible, whose walls, being perpendicular while the curtain inclines a little inward from its base, a projection remained at the top by which an archer could defend the wall beluw. The blocks of the superstructure are of great size, those of the sulstructure much smaller. The gates excepted, the whole citadel is built of rongh massen ri rock, nicely aljnsted and fitted to each other, though the smaller stones with whict: the
interstices were fille! have mostly disappeared. The soutliern ramparts of the citadel and all the other walls follow the naturab irregularity of the precipice on which they stand. At
 its eastern point it is attached by a narrow isthmus to the mountain. It is a long irregular triangle, standing nearly cast and west The walls are mostly of welljointed polygonal stones, although the rough construction oecasionally appears. The general thickness of the walls is 21 it ., in some places 25 ; their present height, in the most perfect part, is 43 ft . There are, in some places, very slight projections from the walls, resembling towers, whereof the most perfect one is at the sonth-cast angle, ite breadth being 33 ft . and its height 43 ft . 'The size of the block whereon the lions are sculptured is 11 ft . broad at the base, 9 ft . high, and about 2 ft . thich, of a triangular form suited to the vecens made for its reception. This block, in its appearance, resembles the green basalt of Egypt.
35. In this place we think it proper to notice a building at Myeene, which has been called by some the 'Treasury of Atreus, or the tomb of his son Aganembon mentioned by
 Pausanias. 'This louilding at first misled some anthors into a belief that the use of the arch was known in Greece at a very early period ; but examination of it shows that it was formed by horizontal courses, projecting beyond each other as they rose, and not by radiating joints or beds, and that the surface was afterwards formed so as to give the whole the appearance of a pointed dome, by cutting away the lower angles (fig. 14.). It is probably the most ancient of buildings in Greece; and it is a curious circumstance that at New Grange, near Drogheda, in 1reland, there is a monument whose form, construction, and plan of access resemble it su strongly that it is impossible to consider their similarity the result of accident. A repre-
 sentation of this may be seen in the work ly Mr. Higgins which we have so often quoted, and will, we think, satisfy the reader of the great probability of the hypothesis hereinbefore assumed having all the appearance of truth. By the subjoined plan (fig. 15.) it will be seen that a space 20 ft . wide, between the two walls, conducts us to the entrance, which is 9 ft .6 in . at the base, 7 ft .10 in . at the top, and about 19 ft . high. The entrance passage is 18 ft . long and teads to the main chamber, which, in its general form, has some resemblance to a bec-hive, whose diameter is about 48 ft , and height about 49. (fig. 16) The blocks are placed in courses as above shown, 34 courses being at present visible. They are laid with the greatest precision, without cement, and are unequal in size. Their Fig. 13. plan on maksurx on arnevs. average height may be taken at 2 ft., though to a spectator
it the floor, from the effect of the perspective, they appear to diminish very mach towards the vertex. This monument has a second chamber, to which you enter on the right from the larger one just described. 'This is about 27 ft by 20 , and 19 ft . high; but its walls, from the obstruction of the earth, are not visible. The doorway to it is $9 \frac{1}{2} \mathrm{ft}$. high, 4 ft .7 in . wide at the base, and 4 ft .3 in . at the top. Similar to the larger or principal doorway, it has at triangular opening over its lintel. The stones which fitted into these triangular openings were of enormons dimensions, for the height of that over the principal entrance is 12 ft ., and its breadth 7 ft .8 in . The vault has been either lined with metal or ornamented with some sort of decorations, inasmuch as a number of bronze nails are found fixed in the stones up to the summit. The lintel of the door consists of two pieces of stone, the largest whereof is 27 ft . long, 17 ft . wide, and 3 ft .9 in . thick, calculated, therefore, at 133 tons weight; a mass which can be compared with none ever used in building, except those at Balbec and in Egypt. The other lintel is of the same height, and probably (its ends are hidden) of
the same length as the first. It breadth, however, is only one foot. Its exterior has two farallel mouldings, which are contimed down the jambs of the doorway.

Fiz. 16.
chamher of trafasury of atrbus.
 rocks, and the eontiguous Jomnt Eubora, eonsist. It is the hathest anct compactest breceia
 whicl: Greece produces, resembling the antique marble ealled lireceia 'l'racagnina antica, sometimes found among the ruins of Rome. Near the gate lie some masses of rosso antico decorated with gruilloehe-like and zigzag ornaments, and a colmman base of a I'ersian chat rateter. Some have supposed that these belonged to the deroritions of the doorway ; but we are of a dillerent opinion, inasmmelt as they clestroy its grand chabater. We think if this were the tombl of Agamemmon, they were mach more likely to have been a part of the shrine in which the body or asties were deposited.
37. It is comjectured that the trea sury of Minyas, king of Orchomenos, whereof l'ansimias speaks, bore a resemblance to the builling we have just described; and it is very probable that all the subterranean chambers of Greeec, Italy, and Sicily were very similarly constructed. Fig. 17. represents the entrance to the buiding fron the ontside. The architecture of the early: races of which we lave been speaking will be further noticed in investigating nolur momurents. See the nublications liy Fergusson, Rude Stome Monuments in all Cuuntries, 8vo., 1872 ; and Schliemann, histarches, §̧., at Mucene and Tiryns, 8vo., 1878.

Sect. 11 I.

BABYIONIAN AHCIITECTUKE.
38 The name prefixed to this section must not induce the reader to suppose we slatl be able to afford him much instruction on this interesting subject. The materials are scanty; the momments, though once stupendous, still more so. "If ever," says Keith, in his Evilence of the Truth of the Christian Religion, "there was a city that seemed to bid defiance to any predictions of its fall, that city was Babylon. It was for a long time the most famous city in the Old World. Its walls, which were reckoned among the wonders of the world, appeared rather like the bulwarks of nature than the workmanship of man." The city of Babylon is thus described by ancient writers. It was situated in a plain of vast extent, and divided into two parts by the river Euphrates, which was of considerable width at the spot. The two divisions of the city were connected by a massive bridge of masonry strongly comected with iron and lead; and the embankments to prevent inroads of the river were formed of the same durable materials as the walls of the city. Herodotus says that the city itself was a perfect square enclosed by a wall 480 furlongs in circumference, whieh would make it eight times the size of London. It is said to have had numbers of houses three or four stories in height, and to have been regularly divided into streets ruming parallel with each other, and cross ones opening to the river: It was surrounded hy a wide and deep trench, from the earth whereof, when exeavated, spuare bricks were formed and baked in a furnace. With these, cemented together through tie medium of heated bitumen intermixed with reeds to bind together the viscid mass, the siles of the trenches were lined, and with the same materials the vast walls above mentioned were constructed. At certain intervals watel-towers were placed, and the city was entered by 100 gates of brass. In the centre of each of the principal divisions of the city a stupendons public monment was erected. In one (Major Remel thinks that on the castern side) stood the temple of Belus; in t'le other, within a large strongly fortified enclosure, the royal palace. 'fhe former was a square pite, each side being two furlongs in extent. The tower erected on its centre was a lurlong in breadth and the same in height, thus making it higher than the largest of the pyramids, supposing the furlong to contain only 500 fect. On this tower as a base were raised, in regular suceession, seven other lofty towers, and the whole, according to Diodorus, crowned with a bronze statue of the god Belus 40 feet high.
 See fig. 18., in whieh the dotted lines show the present remains, according to Sir K. K. l'orter's account in his Travels. The palace, serving also as a temple, stood on an area $1 \frac{1}{2}$ mile square, and was surrounded by circular walls, which, according to Diodorus, were decorated with scuptured animals resembling life, painted ia their natural colours, on the bricks of which thes were depicted, and ufterurards burnt in. Sueh was the city of Babylon in its meridian splendomr, that city whose fonder (if it were not Nimrod, sometimes called Belus,) is unknown. Great as Fw.
it was, it was enlarged by Semiramis, and still further enlarged and fortified by Nebuchatinezar. We shall how present, from the account of Mr. Rich, a gentleman who visited the spot early in this century, a sketch of what the city is now. The tirst grand mass of ruins marked A (fig. 19.), wheh the above gentleman describes, he says extends 1100 yards in length and 800 in its greatest breadth, in figure nearly resembling a quadrant ; its height is irregular, but the most elevated part may be about 50 or 60 ft . above the level of the plain, and it has been dug into for the purpose of procuring bricks. This mound Mr. M. distinguishes by the name of Amran. On the north is a valley 550 yards long, and then the second grand heap of ruins, whose shape is nearly a square of 700 yards long and broad : its south-west angle being comected with the north-west angle of the mounds of Amrans by a high ridge nearly 100 yards in breadth. This is the place where Beauchanp made his observations, and is highly interesting from every vestige of it being composed of buildings far superior to those whereof there are traces in the eastern quarter. 'The bricks are of the finest description, and, notwithstanding this spot beiug the principal magazine of them and constantly used for a supply, are still in abundance. The operation of extracting the bricks has caused much confusion, and increased the difficulty of deciphering the use of this mound. In some places the solid mass has been bored into, and the superincumbent strata falling in, frequently bury workmen in the rubhish. In all these excavations walls oí burnt brick laid in lime mortar of a good quality are to be scen; and among the ruins are to be found fragments of alabaster vessels, fine earthenware, marble, and great fuantities of varnished tiles, whose glazing and colouring are surprisingly fresh. "In a
hollow," obsurves Mr. Rich, "near the southern part, I found a sepulchral urn of earthen-

Fig. i9. tlan of babvian. ware, which had been broken in digging, and near it lay some human bones, which pulverised with the touch." Not more than 200 yards from the murthern extremity of this monnd, is a ravinc near 100 yards long, hollowed out by those who dig for bricks, on one of whose sides a few yards of wall remain, the face whereof is clear and perfeet, and appears to have been the front of some building. The opposite side is so confused a mass of rubbish, that it looks as if the ravine had been worked through a solid building. Under the foundations at the southern end was discovered a subterranean passage floored and walled with large bricks in bitumen, and covered over with pieces of sandstone a yard thick and several yards long, on which the pressure is so great as to have pushed out the side walls. What was seen was near seven feet in leight, its course being to the south. The upper part of the passage is cemented with bitumen, oither parts of the ravine with mortar, and the brieks have all writing on them. At the northern end of the ravine an excavation was made, and a statue of a lion of colossal dimensions, standing on a pedestal of coarse granite and rude workmanship, was discovered. This was about the spot marked E on the plan. A little to the west of the ravine at B is a remarkable ruin called the Kasr or I'alace, which, being uncovered, and partly detached from the rubbish, is visible from a considerable distance. It is "so surprosingly fresh," says the author, "that it was only after a minute inspection I was satisfied of its being in reality a Babylonian remain." It consists of several walls and piers, in some places ornamented with niches, and in others strengthened by pilasters of burnt brick in lime cement of great tenacity. The tops of the walls have been brohen down, and they may have been much higher. Contiguous to this ruin is a heap of rubbish, whose sides are curiously streaked by the alternation of its materials, probably unburnt brieks, of wheh a small quantity were fonnd in the neighbourhood, without however any reeds in their interstices. A little to the N. N. E. of it is the famous tree which the natives call Atheli. They say it existed in ancient Babylon, and was preserved by God that it might aflord a convenient place to Ali for tying up lis horse after the battle Hellah!" "It is an evergreen," says Mr. R., "something resembling the lignum vita, and of a kind, I believe, not common in this part of the country, though I am told there is a tree of the description at Bassora." The valley which separates the mounds just described from the river is white with nitre, and does not now appear to have had any buildings upon it except a small circular heap at D. The whole embankment is abrupt, and shivered by the action of the water. At the narrowest part E, cemented into the burnt brick wall, there were a number of urns filled with human bones which bad not undergone the action of lire. Firom a considerable quantity of burnt bricks and cither fragments of building in the water the river appears to have encroached here.
39. A mile to the north of the Kasr, and 950 yards from the bank of the river, is the last ruin of this series, which lietro della Valle, in 1616, described as the tower of Belus, in which he is followed by Remnell. The matives call it, according to the vulgar Arab pronunciation of those parts, Mujelibè, which means overturned. They sometimes also apply the same term to the mounds of the Kasr. This is marked F on the plan. "It is of an oblong shape, irregular in its height and the measurement of its sides, which face the cardinal points as follows: the northern side 200 yards in length, the southern 219, the easten 182, and the western 136. The elevation of the south-east or highest angle, 141 feet. The western face, which is the least elevated, is the most interesting on account of the appearance of building it presents. Near the summit of it appears a low wall, with interruptions, built of unburnt brieks mixed up with ehopped straw or reeds and cemented with clay mortar of great thickness." The sonth-west angle seems to have had a turret, the others are less perfect. The ruin is much worn into furrows, from the action of the weather, penetrating considerably into the mound in some places. The summit is covered with heaps of rubbish, among which fragments of burnt brick are found, and here and there
whole bricks with mseriptions on them. Interspersed are innumeralle fragments of pottery, brick, bitumen, pebbles, vitrified briek or scoria, and even shells, bits of glass, and mother
 of pearl. The northern fatee of the Mujelibé (fily. 20.) contains a niche of the height of a mann. at the back whereof a low aperture leads to a small eavity, whence a passalge branches off to the right till it is lost in the rublish. It is called by the natives the serdaub or cellar, and Mr. Rich was informed that four years previous to his survey, a quantity of marble was taken out from it, and a coffin of mulberry wood, in which was contained a human body enclosed in a tight wrapper, and apparently partially covered with bitumen, which erumbled into dust on exposure to the air. About this spot Mr. R. also excavated and found a cotin containing a skeleton in high preservation, whose antiquity was placed beyond dispute by the attachment of a brass bird to the outside of the coffin, and inside an ornament of the same material, which had seemingly been suspended to some part of the skeleton. On the western side of the river there is not the slightest vestige of ruins excepting opposite the mass of Amran, where there are two small mounds of earth in existence.
40. The most stupendous and surprising mass of the ruins of ancient Babylon is situate in the desert, about six miles to the south-west of Hellah. It is too distant to be shown on the block plan above given. By the Arabs it is called Birs Nemrond; by the Jews, Nebuehadnezzar's P'rison. Mr. Rich was
 the first traveller who gave any accom of this ruin, of which fiy. 21. is a representation; and the description following we shall present in Mr. Rich's own words. " The liirs Nemroud is a mound of an oblong fignre, the total circumference of which is 762 yards. At the eastern side it is eloven by a deep firrow, and is not more than tifty or sivty feet high; but at the western it rises in a conical figure to the elevation of 198 ft , and on its summit is a solid pile of brick 37 ft . high by 28 in breadth, diminishing in thickness to the top, which is broken and irregular, and rent by a large fissure extending through a third of its height. It is perforated by small square holes disposed in rhomboids. The fine burnt bricks of which it is built have inseriptions on them; and so admirable is the cement, whichappears to be lime mortar, that, though the layers are soclose together that it is difficult to discern what substance is hetween them, it is nearly impossible to extract one of the bricks whole. The other parts of the summit of the hill are oceupied by immense fragments of brick work, of no determinate figure, tumbled together and converted into solid vitrified masses, as if they had undergone the action of the fiereest fire or been blown up with gumpowder, the layers of the bricks being perfectly discernible,-a curions fact, and one for which 1 am utterly ineapable of accounting. These, incredible as it may seem, are actually the ruins spoken of by Pére Emanuel (See I'.A" rille, sur l'Euphrate et le Tigre), who takes no sort of notice of the prodigious mound on which they are elevated." The mound is a majestie ruin, and of a people whose powers were not lost, if the hypothesis brought before the reader in the previous section on Celtic and Druidical architecture be founded on the basis of truth, but shown afterwards, on their separation from the parent stock, in Abury, Stonehonge, Carnac, and many other places. Ruins to a considerable extent exist round the Birs Nemroud; but for our purpose it is not necessary to particularise them. The chance (for more the happiest conjeeture would not warrant) of eonclusively enabling the reader to come to a certain and definite notion of the venerable city, whereof it is our object to give him a faint idea, is far too indefinite to detain him and exhanst his patience. One circumstance, however, we must not onit; and again we shall use the words of the traveller to whom we are under to many obligations. They are, - " To these ruins I must add one, which, though iot in the same direction, bears such strong characteristies of a Babylonian origin, that it would he
improper to omit a description of it in this place. I mean Akerkouf, or, as it is more grenerally ealled, Nimrol's 'lower ; for the iuhahitants of these parts are as fond of attributing every vestige of antiquity to Nimrod as those of Egypt are to lharaol. It is situate ten miles to the north-west of Bagdad, and is a thiek mass of mumbut brick work, of an irregular shape, rising out of a base of rubbish; there is a layer of reeds betweer every fifth or sixth (for the number is not regulated) layer of bricks. It is perforated witt. small square holes, as the brickwork at the liirs Nemroud; and about half way up on the east side is an aperture like a window; the layers of cement are very thin, which, considering it is mere mud, is an extraordinary circumstance. The height of the whole is 126 ft . diameter of the largest part, 100 ft . ; eireumference of the foot of the brickwork above the rubbish, 300 ft .; the remains of the tower contain 100,000 eubie feet. (Vide Ices's Travels, p. 298.) To the east of it is a dependent monnd, resembling those at the liirs and AI Ilheimar."
41. The inguiry (following Mr. Rich) now to be pursued is that of identifying some of the remains which have been deseribed with the deseription which has been left of them. And, first, of the cireuit of the eity. The greatest eircumference of the city, aceording to the authors of antiquity, was 480 stadia (supposed about" 500 ft . each), the least 360 . Strabo, who was on the spot when the walls were suflieiently perfect to judge of their extent, states their cirenit at 385 stadia. It seems probable that within the walls there was a quantity of arable and pasture gromb, to enable the population to resist a siege; and that, unlike modern eities, the buildings were distributed in groups over the area inclosed; for Xenophon reports that when Cyrus took Babylon (which event happened at night) the imbabitants of the opposite quarter of the town were not aware of it till the third part of the day ; that is, three hours after sumbise. The aceounts of the height of the walls all agree in the dimension of 50 eubits. which was their redueed height from 350 ft . by Darius Hystaspes, in order to render the town less defensible. The embankment of the river with walls, according to Diodorus 100 stadia in lengtl, indientes very advaneed engineering skill; but the most wonderfinl strueture of the eity was the tower, pyramil, or sepulehre of Belus, whose base, aecording to Strabo, was a stadium on eaeh side. It stood in an enelosure of two miles and a half, and eontained the temple in which divine honours were paid to the tutelary deity of Babylon. 'The main interest attached to the tower of Belus arises from a belief of its identits with the tower whieh we learn from Scripture (Gen. xi.) the deseendants of Noalh, with Belus at their head, constructed in the plains of Shinar. The two masses of rains in which this tower must be songht, seem to be the Birs Nemroud, whose four sides are 2286 Linghish feet in length; and the Mujelibé, whose eireumference is 2111 ft . Now, taking the stadium at 500 ft ., the tower of Belus, aecording to the aceotants, would be 2000 ft . in ciremmferenee; so that both the ruins agree, as nearly as possible, in the reguisite dimensions, considering our uncertainty respeeting the exaet length of the stadium. Mr. Kich evidently inclines to the opinion that the Birs Nemrond is the ruin of this celebrated temple, though he allows "a very strong objection may be hrought against the Birs Nemroud in the distance of its position from the extensive remains on the eastern bank of the limphrates, which for its aecommodation would oblige us to extend the measurement of each side of the square to mine miles, or adopt a plan which would totally exelude the Mujelibe, all the ruins above it, and most of those below: even in the former case, the Mujelibe and the Birs would be at opposite evtremities of the thwn close to the walls, while we have every reason to believe that the tower of Belus oceupied a central situation."
42. The citadel or palace was surrounded ly a wall whose total length was 60 stadia, withm which was another of 40 stadia, whose inner face was ornamented with painting, a practice (says Mr. Rich) anong the Persians to this day. Within the last-mamed wall wis a third, on whiel hunting subjects were painted. The old palace was on the opposite side of the river, the outer wall whereof was no larger than the imer wall of the new oue. Above the palace or eitadel were, according to Straio, the hanging gardens, for which, in some respeets, a site near the Mujelibé would sufficiently answer, were it not that the s'eeletons found there "embarrass alinost any theory that may be formed on this extraordinary pile."
4.3. As yet, no traees have been found of the tumel under the Euphrates, nor of the obelisk which Diodorus says was ereeted by Semiramis; it is not, however, impossible that the diligence and perseverance of finture travellers may bring them to light. Rich believes that the mumber of buildings within the eity bore no proportion to the extent of the walls, -a circumstance which has already been passingly noticed. Ite moreover thinks that the houses were, in general, small; and firther, that the assertion of Herodotus, that it abounded in honses of two or three stories, argues that the majority consisted of only one. He well observes, "The peculiar elinate of this distriet must have cansed a similarity of habits and accomnodation in all ages; and if, upon this prineiple, we take the present bashion of building as some example of the mode heretofore practised in Babylon, the bouses that had more than one story must have consisted of the ground floor, or bense-cour, oecupied by stables, magazines, and serdaubs or cellars, sank a little below the gromid. lor
the comfort of the imhabitants during the heat; above this a gallery with the longing rooms opening into it; and over all the flat terrace fir the people to sleep on during the summer." In these observations we fully coneur with the author, believing that climate and habits influence the arts of all nations.
44. At Ninevel the extraordinary diseoveries of Botta and Layard have made us familiar witl at least the decorations and arrangement of Assyrian architecture. The eity, founded. as supposed, hy Ninus or Assur about 2,200 e.c., fell bef,re the rising wealth of Bahylon. Here, from the palace of Kouyunjik, Rawlinson establishes the identity of the king who built it with the Sennacherib of Scripture. Its date would therefore be about 713 в. $\%$. The sculptures at this place so mueh resemble those at Persepolis, and the arrow-headed characters also are so similar to them, as well as those of Babylon, that we may fairly conjecture similarity of habits and taste. Indeed, as the Persian empire grew out of the ruins of the Assyrian empire; and Persepolis, as a capital, succeeded to the capitals of Assyria, we may, without much fear of being wrong, judge by its architecture of that of its predecessors. Greater almost at its birth than ever afterwards, in this pait of Asia the art seems all at orce to have risen, as rẹpects absolute grandeur, to the highest state of which it was there susceptible; and, d:generating successively under the hands of other people, we may reckon by the periods of its decay the epochs of its duration.
45. No trace of the arch has been found in the ruins either at the Kasr or in the passages at the Mujelibé. Massy pieis, buttresses, and pilasters supplied the place of the column. The timber employed was that of the date tree, posts of which were used in their domestic architecture, round which, says Strabo, they twist reeds and apply a coat of paint to them. Thickness of wall was obtained by easing rubble work with fine brick, of which two sorts were made. The one was merely dried in the sun, the other burned in a kiln. The latter was 13 in . square and 3 in . thick, with varieties for different situations in the walls. They are of various colours The sun-dried is considerably larger than the kiln-dried. There is reason for believing that lime cement was more generally used than bitumen or clay; indeed, Niebuhr says that the bricks laid in bitumen were easily separated, but that where mortar had been employed, no foree could detach them from each other without breaking them in pie.es.

Sect. IV.
PERSFPOIITAN AND PERSIAN ARCHITECTURE.
46. Persepolis was the ancient capital of Persia proper. The ruins now remaining are situated (lat. about $30^{\circ} \mathrm{N}$., long. about $5: 3^{\circ} \mathrm{E}$) in the great plain of Merdasht or Istakhr, ne of the most fertile in the world, being watered in all directions by rivalets and artiticial drains, which ultimately unite in the Bundemir, the ancient Araxes. The site would, like Memphis, have searcely lelt a vestige by which it could liave been identified, but fur the celebrated ruins called Chel-Minar (fig. 22.), i.e. Forty Pillars, by the natives, which are believed to be the remains of that palace of the masters of Asia

to which Alexander set fire in a moment of madness and debauch. The deschiption which follows is obtained from De Bruvri, who examined the ruins in 1704, with some reference also to Niebuhr and Sir R. K. Porter. Mons. Texicr, cne of the latest travellers, has devoted many plates to these antiquities, in his large work. Arménie, \&c.. 1842; see also Vaux, Nineveh and Persepolis, gc., 1855 ; and Fergusson, Pulares of Nineveh and Persepolis hestored, 8vo., 1851.
47. The ruins are stmated at the foot and to the west of the monntain Kulirag met. On three sides the walls are rimaining, the moun'ain to the east forming the other side.

From north to south the extent is 600 paces (142.5 ft), and 390 (802 ft .) from west to east to the momatain on the sonth side, having no stairs on that side; average height about 18 ft .7 in . On the morth side it is 410 paces (926 ft .) from east to west, and the wall is 21 ft . high in some places. At the north-west corner of the wall, about 80 paces in extent westward, are some rocks before the principal stairease. (On mounting the steps there is found a large platform 400 paces in extent towards the mountain. Along the wall on three

sides a prament extends for a width of 8 ft . The principal stairease A (fiy. 23.) is mot placed in the midlle of the west side, but nearer to the north. It has a double flight, the distance between the flights at the bottom being 42 ft ., and the width of them is 25 ft .7 in . The steps are 4 in. high, and 14 in. wide. Fiiftylive of them remain on the north side, and fifty-three on the soutl); and it is probable that some are buried ly the ruins. The half spaces at the top of the first flight are 51 ft .4 in , wide. The upper flights are separated from the lower by a wall which runs through at the upper landing. The upper flights are in forty-eight steps, and are cut out of single blocks of the rock. The upper lamding is seventy-five feet between the flights.
48. Forty-two feet from the landing, at 13 , are two large portals and two columns (originally four). The bottom of the first is covered with two blocks of stone, which fill two thirds of the space; the other third having heen destroyed by time. The second portal is more covered by the earth than the first, hy five fect. They are 22 ft .4 in. decp, and 13 ft . 4 . in. wide. On the interior side-faces of their piers, and nearly the whole length of them, are large figures of bulls, cut in bas-relicf. The heads of these animals are entirely destroyed; and their breasts and fore feet projeet from the piers: the two of the first portal face to the staircase, and those of the other face towards the momian. On the uper part of the piers there are some arrow-headed characters, too small to be made ont
 from below. The remains of the first portal are 39 ft . high, and of the secoud 28 ft . The bawe of the piers is 5 ft .2 in . high, and projects inwards; and the hases upon which the figures stand are 1 ft . 2 in. high. We may hare oloserve that the ligures on the further portal have the body and legs of a bull, an enormons pair of wings (fiy. 24.) projecting from the shoulders, and the heads looking to the east show the laces of men. On the bead is a cylindrical diadem, on both sides of which horns are elearly represented winding from the brows upwards to the front of the crown ; the whole being surmonsted with a sort of coronet, formed of a range of leaves like the lotus, and bound with a fillet carved like roses. The two columns (at Sir R. K. l'orter's visit only one remained) are the most perfect among the ruins, and are 54 ft . high. At the distance of fifty-two feet sonthcastward from the second portico is a watertrough cut out of a single stone 20 ft . long and 17 ft .5 in . broad, and standing 3 ft . high from the gromed. From hence to the northe:n wall of the platform is covered with fragments; and the remains of one cohmm not chamelled as the others are; this is 12 ft .4 in . hiorh.
49. At one handred and seventy-two feet from the portals, southward, is another stancase of two flights (lettered C), one west and the other east. On the top of the ramp of the steps are some foliages, and a lion tearing to pieces a bull, in bas-reliet, and larger than nature. This stairease is half buried. The western flight has twenty-eight steps, and the other, where the ground is higher, has only eighteen. These steps are 17 ft . long, 3 in. high, and $14 \frac{1}{2}$ in. wide. The wall of the landing is senlptured with three rows of ligures, one above the other, and extending ninety-cight feet. The faces of these inner terrace walls

Fis ${ }^{2}$). are all decorated with bas-reliefs, of which fig. 25. is a specimen. On arriving at the top of this staircase, was found another large platform, paved with large bloeks of stone; and at the distance of twenty-two feet two inches from the parapet of the landing, are the most northern columns (lettered D), originally twelve in number, whereot in Sir R. K. l'orter's time only one remained. At seventy-one feet southward from these stood thirty-six columns more, at intervals of twenty-two feet two inches from each other, whereof only five now remain; the bases, however, of all the others are in their places, though most of them are mueh damaged. This group of cclumns is lettered E. To the east and west of the last-named group are two other groups of twelve each maiked F and G , whereof five still remain in the eastern one, and four in the western one. The columis of the central group are lifty-five feet high; and thone of the other three groups are sixy feet in height. 'To the south of the three groups of eolumns is situate the inost raised building on these ruins. (On the east, towards the mountain, a large mass of mins is visible (lettered I1), consisting of portals, passages, windows, \&e. The first are decorated with tigures on the interior; and the whole plot on which they stand is 95 paces from'east to west, and about 125 paces from worth to south. The centre part of the plot is covered with fragments of columis and other stones; and in the interior part there seems to bave been a group of seventy-six columns, whereof none are represented by Sir R. K. Porter, nor are they shown in either of Le Bruyn's views. The highest huilding as to fevel, marked I, is 118 ft . distant from the eolumns lettered G. Some foundations are visible in front of this building, to which there is not the slightest trace of a starrase. At fifty-three feet from the laçade of it to the sight is a staircase of double light, marked \mathbf{k}, whee dgain bassi relievi are to be fonnd, near which are the remains of some portals which Le bruyn thinks were destroyed by an earthquake. The next ruin (L) is $54 \frac{1}{2} \mathrm{ft}$. in extent, and has portals similar to those in other parts of the place. 'To its north, 11 exhibits uniform features, with windows, and what travellers have agreed to call niches, which are nothing more than square-headed recesses. Sculpture here again abound, whereof we do not think a deseription necessary, as in fig. 25. a specimen of it has been given, sulfieient to indicate its character. Behind this edifice is another, in some respects similar, exeept that it is thirty-eight feet longer. It is marked \mathbf{N} on the plan. One hundred feet to the south of this last set of ruins (lettered O), Sir IR. K. 1'orter seems to have found traces of colums, which, if we read I.e Bruyn rightly, he does not mention. In this, the last-named traveller found a staiccase leading to subterranean apartments, as he thought, but nothing of interest was discosered. The general dimensions of the building (1 ') extend abont 160 ft . from north to sonth, and 190 ft . from east to west. It exhibits ten portals in ruins, besides other remains; and there are traces of thirty-six columms, in six ranks of six eaeh. The spot is covered with fragments, mader which have been traced conveyances for water. To the west of the last-named building was another entirely in ruins : to the east of it are visible the remains of a fine staircase, much resembling that first described, and which, therefore, we do not think it necessary to particularise, more than we do the numberless fragments seattered over the whole area, which was equal to nearly thirty English acres! The ruins at Q are of portals. At R and S are tombs cut in the rock, of curious form, but evidently, from their character, the work of those who constructed the enormons pile of building of which we have already inserted a representation. Between the leading forms of the portals of these ruins, or porticoes, as Le Bruyn calls them, and those of the structures of Egypt, there is a very striking resemblance. On comparison of the two, it is impossible not to be struek with the large crowning hollowed member, which seems to have been common to the editices on the banks of the Nile and those on the plain of Merdasht. In both, this member, forming, as it were, an entablature, is ornamented with vertical ribs or leaves, and the large fillet above the hollow appears equally in each. In the walls of the Persepolitan remains, there is perhaps less real massiveness than in those which were the works of the Egyptians; but the similarity of apparance between them points to the conjecture that, though neither might have bean borrowed from the other, they are not many removes from one common parent. The an-
sexed diagram (fog. 26.) will give the reader some notion of the style of the architecture of

Persepolis. The diagram (fiy. 27.) exhibits a specimen of a column and capital. Fig. 28.
 is a capital from one of the tombs. The walls forming the revertement of the great esplanade are wonderfully perfect; and appear still capable of resisting equally the attacks of time and barbarism. 'lise surface of the plationm, generally, is mequal, and was of different levels: the whole seems to have been hewn from the monntain, from whene the marble has been extracted for constructing the edifices: hence the parements appear masses of marble, than which nothing more durable or beantiful ean be conceived. No eement appears to have been used, but the stones seem to have

Fig. $2 \overline{7}$. con ums and capital. been connected by cramps, whose removal, however, has neither deranged the courses from which they have been removed, nor atlected their nice fitting to each other ; they are, indeed, so well wrought that the

50. No person can look at the style of composition and details of Persepolis withont a conviction of some intimate comection between the arehitects of P'ersia and those of Lerypt. The principles of both are identical; and without inguiring into

Fis. 29.
ARROW-IIVA
ARROW-1 the exact date of the monument whose deseription we have just left, there is sufficient to convince us that the theory started in respect of the Cyelopean arehitecture, of the arts travelling in every direction from some central Asiatic point, is fully borne out; and that the Egyptian style had its origin in Asia. We are guite aware that conjectures, bearing a semblance of probability, have assigned the erection of this stupendous palace to legyptian captives, at a comparatively late period, after the conquest of Eirypt by

Canbyses; but we think they are answered by the similarity of arrow-headed characters used therein to those of ancient Babylon, whereof an example is here given (fig. 29.) from one of the portals of Persepolis. Λ few miles to the south of Persepolis, the hill of Nakshi Bustân (fig. 3C.) presents a number of scuphured tomb-,
the highest suppoced to be coeval with l'crscpolis, and formed for the sepulture of the early kings of Persia; and the lower to have belonged to the Parthian Sassanide dynasties.

51a. The eariy Persians were doultless indebted to the still earlier Assyrians for the principles on which their art was hase.' Persepolis lies eastward of Ninevel; ; its remains afford a more int.mate acquaintance with the details and construction emplyed. In beth places we tind the same arrangement of bassi rilievi against the walis-entrances decorated with gigantic "inged animals, bearing homan heads-similarity in ornament and costume -processions like those at Nimrond and Khor-abad. The enneiform character (see fig. 29.) is now a known langnage; and from an incription fount on the third terrace. the structure is asigned to the time of Darius. Susa, the ancient Shashan, the winter residence of Cyrus, was explord hy Mr. Loftus in 1851; and in 1886 by Mons. Dieulafioy, "ho has brought to the mmeum at the Lonve some fine examples of coloured tile wall work of the time of Darius, b.c. $5 \geq 1-485$. The plan much restmbled that at Persepolis, arel both may have heen designed by the same architect.
. 1 b . The present architecture of Persia much resembles that of other Mahometan countries. The city of Ispahan, in its prosperity, is said to have been surrounded by a wall twenty miles in circuit. The houses are generally mean in external appearance : they commonly consist of a large square court, surrounded with rooms of varying dimensions for different uses, the sides of the area being planted with flowers, and refreshed by fountains. Distinct from this is a smaller court, tound which are distributed the apartments belonging to the females of the family; and almost every dwelling has a garden attached to it. The interior apartments of the richer classes are splendidly finished, thongh simply furnished. Those inhabited by the governor, public officers, and opulent merchants, may almost vie with palaces. Nearly all are constructed with sun-dried bricks, the public editices only being built with burnt bricks; the roofs, mostly flat, have terraces, whereon the inhabitants sleep during several months of the year. According to Chardin, there were in his time within the walls 160 mosques, 48 college , 1802 caravanseras, 273 baths, 12 cemeteries, and 38,000 houscs. But the city has since fallen into great ruin. 'The Shah Meidan, however (figs. 31.

and 32.), or royal square, is still one of the largest and finest in the world. It is 440 paces in length, and 160 in breadth. On its south side stands the royal mosque, erected by Shah Abbas, in the sixteenth century, and constructed of stone, covered with highly varnished bricks and tiles, whereon are inseribed sentences of the Koran. On another side of the Meidan is a Mahometan coliege called the Medresse Shal Sultan Hossein. The entrance is through a lofty portico decorated with twisted columns of Tabriz marble, leadiag through two hrazen gates, whose extremities are of silver, and their whole sur ace sculptured and emhonsed with flowers, and verses from the Koran. Advancing into the court, on the rigltt side is a mosque, whose dome is covered with lacquered tiles, and adorned externally with ornaments of pure gold. This, and the minarets that flank it, are $n \mathrm{~m}$ falling into decay. The other sides of the square are occupied, one, by a lofty and beautiful portico, and the remaining two by small square cells for students, twelse in each front, disposed in two stories. In the city are few hospitals; one stands, however, beside the caravanserai of Shah Abbas, who erected both at the same time, that the revenue of the latter might support the proper uficers of the hospital. That the reader may have a proper idea of one of these inns of the

Vinst, if they may be so called, we have here given the plan of that just above named (fi!/.

Fig. 3.3.

CARAVANGERAI OD SHAH ARBAS. 33.). 'The palaces of the kingy are emelosed in a fort of lofty walls, about three miles in circuit; in general the front room or hall is very open, and the roof supported by carved and gitded columus. The windows glazed with curiously stained glass of a variety of colours ; each has a fountain in front. The palace of Chelel Sitoon or forty pillars, is placed in thr middle of an immense square intersected by canals, and planted with trees. Towards the garden is an open saloon whose ceiling is borne by eighteen columns, inlaid with mirrors, and appearing at a distance to consist entirely of glass. The base of each is of nasble, senlptured into four lions, so placed that the shafts stand on them. Nirrors are distributed on the walls in great profusion, and the ceiling is ornamented with gilt flowers. An arched recess leads from the apartment just described into a spacious and splendid hall. whose roof is formed into a variety of domes, decorated with painting and gilding. The walls are partly of white marble, and partly covered with mirrors, and are moreover deeorated with six large paintings, whose subjects are the battles and royal fëtes of shah hsmael and Shah Abbas the Great. Though of considerable age, the colours are fresh, and the gilding still brilliant. Adjoining the palaee is the harem, erected but a few years ago. The bazaars are much celebrated; they consist of large wide passages, arched, and lighted from above, with buildings or stores on each side. One of these was formerly 600 geometrical paces in length, very broad and lofty. From these being adjacent to each other, a person might traverse the whole city sheltered from the weather. In Ispahan, we must not forget to notice that some tine bridges exist, which cross the river Zencterond.

Sect. V.
JEWISII AND PIICENICIAN AHCHITECTURE.
52. We are scarcely justified in giving a section, though short, to the architecture of the Jews, since the only buildings recorded as of that nation are the Temple of Jerusalem constructed by Solomon, and the house of the forest of Lebanon. The shepherd tribes of Israel, indeed, do not seem to have required such dwellings or temples as would lead them, when they settled in cities, to the adoption of any style very different from that of their neighbours. Whatever monmments are mentioned by them appear to have been rade, and have been already noticed in the section on Druidical and Celtic architecture. When Solomon ascended the throne, anxious to fulfil the wish his father had long entertained of erecting a fixed temple for the reception of the ark, he was not only obliged to send to Tyre for workmen, but for an architect also. Upon this temple a dissertation bas been written by a Spaniard of the name of Villalpanda, wherein he, with consummate simplieity, urges that the orders, instead of being the invention of the Greeks, were the invention of God imself, and that Callimachus most shamefully put forth pretensions to the formation of the Corinthian capital which, he says, had been used centuries before in the temple at Jerusalem. The following account of the temple is from the sixth chapter of the First Book of Kings. Its plan was a parallelogram (taking the cubit at 1.824 ft ., being the length generally assigned to it) of about $109 \frac{1}{2} \mathrm{ft}$. by $36 \frac{1}{2} \mathrm{ft}$., being as nearly as may be two thirds of the size of the church of St. Martin's in the Fields. In front was a pronaos, or portico, stretching through the whole front ($36 \frac{1}{2} \mathrm{ft}$.) of the temple, and its depth was half its extent. The cell, or main body of the temple, was $54 \frac{3}{4} \mathrm{ft}$. deep, and the sanctuary beyond $36 \frac{1}{2}$ feet, the height of it being equal to its length and breadth. The height of the middle part, or cell, was $54 \frac{3}{4} \mathrm{ft}$; and that of the portico the same as the sanctuary, - that is, $36 \frac{1}{2} \mathrm{ft}$, - judging from the height of the columns. In the interior, the body of the temple was surrounded by three tiers of chambers, to which there was an ascent by stairs; and the central part was open to the sky. The ends of the beams of the tloors rested on corb. Is of stone, and were not inserted into the walls, which were lined with cedar, carved into
cherubims and palm trees, gilt. In the sanctuary two figures of cherubs were placed. whose wings tonched each other in the centre, and extended outwards to the walls. These were 10 eubits high. In the front of the portico were two pillars of brass, which were cast l,y Hiram, "a widow's son of the tribe of Naphtali," whose "father was a man of Tyre," and who "came to king Solomon and wrought all his work." These two pillars of brass (1 Kings, vii. 14, 15.) were each 18 cubits high, and their eircumference was 12 cubits; hence their diameter was 3.82 cubits. The chapiters, or capitals, were 5 eubits high; and one of them was decorated with lilies upon a net-work ground, and the other with pomegranates. From the representation (fig. 34.) here wiven, the reader must be struck with their resemblance to the columns of Egypt with their lotus leaves, and sometimes net-work. In short, the whole description would almost as well apply to a temple of Egypt as to one at Jerusalem. And this tends, Fib. 51 . though slightly it is true, to show that the Phenician workmen who were employed on the temple worked in the same style as those of Egypt.
53. The house of the forest of Lebanon was larger than the temple, having been 100 cubits in length, by 50 in breadth ; it also had a portico, and from the deseription seems to have been similar in style.
54. Phaniciun Architecture. - That part of the great nation of Asia which settled on the coasts of Palestine, called in seripture Canaanites, or merchants, were afterwarcis by the Greeks called I'honicians. Sidon was originally their capital, and Tyre, which afterwards became greater than the parent itself, was at first only a colony. From what we have said in a previous section on the walls of Mycene, it may be fairly presumed that their architecture partook of the Cyclopean style ; but that it was much more highly decorated is extremely probable from the wealth of a people whose merchants were princes, and whose traffickers were the honourable of the earth. Besides the verses of Euripides, which point to the style of Phenician architecture, we have the authority of Lucian for asserting that it was ligyptian in character. Unfortunately all is surmise; no monmments of Phonician architecture exist, and we therefore think it useless to dwell longer on the subject.

Sect. Vil.

INHAAN ARCHITECTURE

55. Whence the countries of India derived their architecture is a question that has occupsed abler pens than that which we wiehd, and a long period has not passed away since the impression on our own mind was, that the monuments of India were not so old as those of Eigypt. Upon maturer reflection, we are not sure that impression was filse; but if the arts of a country do not ehange, if the manners and habits of the people have not varied, the admis-

Fig. 35. a colums of FHK INDRA SUKBA. sion of the want of high antiquity of the momments actually in existence will not settle the point. The eapitals and columns about Persepolis have a remarkable similarity to some of the Hindoo examples, and seem to indicate a common origin; indeed, it is our opinion, and one which we have not adopted without considerable hesitation, that though the existing buildings of India be comparatively modern, they are in a style older than that of the time of their erection. Sir William Jones, whose opinion seems to have been that the Indian temples and edifices are not of the highest antiquity, says (3rd Discourse), "that they prove an early connection between India and Africa. The pyramids of Egypt, the colossal statues described by Pausanias and others, the Sphinx and the IIermes Canis (which last bears a great resemblance to the Varáhávatír, or the incarnation of Vishmu in the form of a boar), indicate the style and mythology of the same indefatigable workmen who formed the vast excavations of Canárah, the various temples and images of Buddha, and the idols which are continually dug up at Gayá or in its vicinity. The letters on many of these momments appear, as I have before intimated, partly of Indian and partly of Abyssinian or Ethiopic origin ; and all these indubitable facts may induce no ill-grounded opinion that Ethiopia and Hindustan were peopled or colonised by the same extraordinary race." In a previous page (fig. 27.), the reader will find a Persepolitan column and capital ; we place before him, in fig. 35., an example from the Indra Subba which much resembles it in detail, and at the Nerta Chabei at Chillambaram are very similar examples. Between the styles of Peesepolis and Egypt a resemblance will be hereafter traced, and to such an extent, that there seems no reasonable doubt of a common origin. The monuments of India may be divided into two classes, the excavated and constructed; the former being that wherein in building has been hollowed, or, as it were, quarried out of the rock; the latter, that built of scparate and dilferent sorts of materials, upon a regular plan, as may be seen in those buildings improperly called pagodas, which ornament the enclusures of the sacred edifices, of
whed they are component parts. The class first mamed seems to have interested travellers more than the last, from the apparent diffenlty of execution ; but on this aceount we are not so sure that they ought to create more astonishinent than the constructed temple, except that, weording to Wamel (Asint. Res, vol. i.), they are hollowed in hard and compact granite.
jG. The momments which belong to the first class are of two sorts; those actually hollowed. out of rocks, and those presenting forms of apparently constructed buildings, but whichare. in fact, rocks shaped by human hands into architectural forms. Of the first sort are the caves of Elephanta and Ellora; of the last, the seven large pagodas of Mavalipowram. It will immediately occur to the reader that the shaping of rocks into forms implies art, if the forms he imposing or well aranged : so, if the hollowing a rock into well-arranged and well.formed chambers be conducted in a way indicating an aeguaintance with architectural effect, we are not to assome that a want of taste must be consefuent on the first sort merely because it camot be called constructive architecture. And here we must observe, that we think the writer in the Enryclopédie Mithodique (art. Arch. Indieme) tails in his reasoning; our notion being simply this, that as far as respects these momaments, if they are worthy to he ranked as works of art, the means by which they were produced have nothing to do with the question. It must, however, be admitted, that what the architect understands by ordonnance, or the composition of a building, and the proper arrangement of its several parts, proints which so much engaged the attention of the Greeks and lomans, will not be fomed in Indian arehitecture as fir as onr acquaintance with it extends. Conjectures infinite might be placed before the reader on the antiguity of this species of art, but they would be valneless, no certain data, of which we are aware, existing to lead him in the right roal; and we mast, therefore, be content with emmerating some of the principal works in this style. 'The caves at Ellora consist of several apartments; the plan of that called the Indra Subba (fig. 36.) is here griven, to show the species of plam which these places

exhibit ; and fig. 37. is a view of a portion of the interior of the same. The group of temples which compose these excavations ate as follow: -

Temple of hidra. ft. in				
length -	-		- 54	0
Width	.	-	44	1
Height	-	-	27	0
Ileight of eolmmms	-	-	- $2 \cdot 2$	0
Another Temple.				
Length	-	-	- 111	0
Width	-	-	- 22	4
Iteight	-	-	- 13	0
Temple of Mahardeo.				
l.ength -	-	-	- 618	0
Witth	-	-	- 17	0
lleight	-	-	- 12	0
Temple of Ramichoner.				
I,ength - -	-	-	- 90	0
Height -	-	-	- 1.5	0
Temple of Katiaça.				
length -	-	-	- 88	0
Ileight	-	-	- 47	0

57. The most eelobrated exeavated temple is that of Elephanta (fig. 38.), near Bembay, of whose interior composition the reader may oltain a faint idea from the sulboined representation (fig. 39.). It is 130 ft . long, 110 ft . wide, and $14 \frac{1}{3} \mathrm{lt}$. high. The eeiling is Hat, and is apparently supported by four ranks of columns, about 9 ft . high, ated of a balustral form. These stand on pedestals, about one third of the height of the columms themselves. A great portion of the walls is covered with colossal human figures, forty to fifty in number, in high relief, and distingnished by a variety of symbols, probably representing the attributes of the deities

that were worshipped, or the actions of the heroes whom they represented. At the end of the eavern there is a dark recess, about 20 ft . square, entered by four doors, each Hanked by gigantic figures. "These stupendous works," says Robertson, "are of such high antiquity, that, as the natives camot, either from history or tradition, give any information concerning the time in which they were expeuted, they universally ascribe the formation of them to the power of superior beings. From the extent and grandeur of these sulbterraneous mansions, which intelligent travellers compare to the most celchrated monuments of human power and art in any part of the earth, it is manifest that they could not have been formed in that stage of social life where men continue divided into small tribes, unaccustomed to the efforts of persevering industry." Excavations similar to those we have named are found at Canáral, in the Island of Salsette, near Bombay. In these there are four stories of galleries, leading in all to three hundred apartments. The front is formed by cutting away one side of the rock. The principal temple, 84 ft . long. and 40 ft . broad, is entered by a portico of columms. The roof is of the form of a vault, 40 ft . from the ground to its crown, and has the appearance of being supported by thirty pillars, octagonal in plan, whose eapitals and bases are formed of elephants, tigers, and horses. The walls contain cavities for lamps, and are covered with sculptures of human figures of both sexes, elephants, horses, and lions. An altar, 27 ft . high and 20 ft . in diameter, stands at the further end, and over it is a dome shaped out of the rock. 'Though the sculptures in these caves are low in rank compared with the works of freek and Etrurian artists, yet they are certainly in a style superior to the works of the Egyptians; and we infer from them a favourable opinion of the state of the arts in India at the period of their formation. "It is worthy of notice," observes the historian we have just quoted, "that although several of the figures in the caverns at Elephanta be so different from those now exhibited in the pagodas as objects of veneration, that some learned Luropeans
hase imagined they represent the rites of a religion more ancient than that now established in 1lindostan ; yet by the Hindoos themselves the cavens are considered as hallowed places of their

Fiz. 40. pachen of cahilambaban. own worship, and they still resort thither to perform their derotions, and honour the figures there, in the same manner with those in their own pagodas." Mr. 11 unter, who in the year 1784 visited the place, considers the figures there as representing deities who are still objects of worship among the llindoos. One circumstance justifying this opinion is, that severai of the most conspicuous personages in the groups at Elephanta are decorated with the zennar, the sacred string or cord peculiar to the order of Bralmins, at: authentic evidenee of the distinction of casts having been established in India at the time when these works were tinislied.
58. The structure of the earliest Indian temples was extremely simple. Pyramidal, and of large dimensions, they had no light but that which the door afforded; and, indeed, the gloom of the cavean seems to have led them to consider the solemn darkness of such a mansion sacred. There are ruins of this sort at Deogur and at a spot near Tanjore, in the Carnatic. In proportion, however, to the progress of the country in opulence and refinement, their sacred buildings became highly ornamented, and must be considered as monuments exhibiting a high degree of civilisation of the people by whom they were erected. Very highly finished pagodas, of great antiguity, are found in different parts of Ilindostan, and partienlarly in its southern districts, where they were not subjeeted to the destructive fury of Mahometan zeal. To assist the reader in forming a notion of the style of the arelitecture whereof we are treathg, we here place before him a diagram (fig. 40.)

Fig. 11. pitaster prim the nerta chable. of part of the pagoda at Chillambaram, near Porto Novo, on the Coromandel coast ; one which is, on account of its antiguity, held in great veneration. The monument would be perhaps more properly descrited as a cluster of pagodas, enclosed in a rectangular space $13: 3 \mathrm{lt}$. in length, and 936 it . in width, whose walls are 30 lt t. in height, and 7 it. in thickness, cach side being provided with a highly decorated frustum of a pyramid over an entrance gateway. The large enclosure is subdivided into four subordinate ones, whereof the central one, surrounded bya colomade and steps, contains a piscina or basin for purification. That on the southern side forms a cloister enclosing three contignous temples called Chatei, lighted only by their doons and by lamps. The court on the west is also claustral, having in the middle an open portico, consisting of one humdred columas, whose roof is formed by large blocks of stone. 'The last is a square court with a temple and piscina, to which is given the name of the Stream of Eternal Joy. T'o the temple is attached a portico of thirty-six columns, in four paraltel ranks, whose central intercolmmiation is twice the width of those at the sides, and in the centre, on a platform, is the statue of the Bull Nundu. It is lighted artificially with lamps, which are kept constantly burning, and is much decorated with senlpture. The central inclosure, 01 its eastern side, has a temple raised on a platiorm, in length 224 ft., and in width 64 ft ., having a portico in front, consisting of a vast number of columms 30 ft . high; at the end of it a square vestibule is constructed with four portals, one whereof in the middle leads to the sanctuary, named Nerta Chabei, or Temple of Joy and Eternity, the altar being at the end of it. The temple is much decorated with seulpture, representing the divinities of India. The pilaster fig. 41. is placed at the sides of the door of the Nostu Chabei, and is extremely curious; but the most singular object about the building is a chain of granite earved out of the rock, attached to the pilasters, and supported at four other points in the face of the rock sor as to form ferstoons. The links are about 3 ft . long, and the whole length of the chain is 116 ft . The pyranids
above mentioned, which stand over the entranees of the outer enclosure, rise from reetangular bases, and consist of several tloors. The passage through them is level with the ground.
59. A very beautiful example of the ladian pagoda exists at Fanjore, which we aere insert (fig. 42.).
60. One of the largest temples known is that on the small island Seringham, near Trichinopoly, on the Coromandel coast. It is situate about a mile from the western extremity of the island, and is thus deseribed by Somerat. It is composed of seven square enclosures, one within the other, the walls
fig. 4\%. whereof are 25 ft . high, and 4 ft . thick.

Fig. 13.
of the temple at this place (fig. 44.).
 slipped by Brahma. These enclosures are 350 ft . distant from one another, and each has four large gates with a high tower; which are placed, one in the middle of each side of the enclosure, and opposite to the four cardinal points. The outward wall is near four miles in circumference, and its gateway to the south is ornamented with pillars, several of which are simple stones, 33 ft . long, and nearly 5 ft . in diameter ; and those which form the roof are still larger. In the innost inclosures are the chat pels. About half a mile to the east of Seringham, and nearer to the river Caveri than the Coleroon, is another large pagoda, called Jembikisma, but this has only one enclosure. The extreme veneration in which Seringham is held arises from a belief that it contains that identical image of the god Vishau which used to be wor-
61. We shall conclude this section with some observations on Choultry (or lm) at Madurah (fig. 43.). Its effect is quite theatrical, and its perfeet symmetry gives it the appearance of a work of great art, and of greater skill in composition than most other Indian works. Yet an examination of the details, and particularly of the system of corbelling over, destroys the clarm which a first glance at it creates. In it, the ornaments which in Grecian architecture are so well applied and balaneed, seem more the work of chance than of consideration. We here insert an external view The essential differences between Indian and Egyptian architecture, in comnection with the sculpture applied to them, have been well given in the Encyclopédie Méthodique, and we shall here subjoin then. In Egypt, the principal forms of the building and its parts preponderate, inasmuch as the hieroglyphacs with which they are covered never interfere with the general forms, nor injure the effect of the whole; in Iudia, the principal form is lost in the ornaments which divide and decompose it. In Egypt, that whiel is essential predominates; in India, you are lost in the multitudi of
acessorice. In the Eigytian architecture, even the smallent edifices are grand ; in that of India, the intinite suldivision into parts gives an air of littleness to the largest buildiags. In E.qym, soliflity is carried to the extreme; in Indi., there is not the slightest appearance of it. Publications on Indian and Eastern Arehi ecture, witten by the late James Ferguson and others, are mentioned in the Catalogue of Books.

Sect. V'll.

EGYIPTAN AREMIITECTURE.

62. We propose to consider the arehitecture of Egypt - First, in respect of the physical, political, and moral eanses which affected it. Secondly, in respect of its analysis and development. Thirdly, and lastly, in respeet of the taste, style, and character which it exhibits.
63. I. In our introduction, we have alluded to the three states of life which even in the present day distinguish diflerent mations of the earth - linnters, shepherds, and agriculturists; in the second elass whereof are inchaded those whose sulsistence is on the produce of the waters, whieh was most probably the principal food of the earliest inhabitants of Egypt. Seated on the lanks of a river whose name almost implies fertility, they would have been alle to live on the supply it afforded for a long period before it was necessary to resort to the labours of agriculture. In such a state of existence nothing appears more proImable than that they shond have availed themselves of the most obvions shelter whieh mature allorded against the extremes of heat and cold, namely, the eavern; whieh, consisting of tufin and a species of white soft stone, was casily enlarged or formed to meet their wants. Certain it is, that at a very early period the legyptians were extremely skilfil in working stone, an art which at a later time they carried to a perfection which has never been surpassed. As the Tryians, Sidonians, and other inhabitants of Palestine were, owing to the material whech their cedar forests afforded, lexterous in joinery, so the Egyptians received an inpulse in the style of their works from an abundance of the stone of all sorts which their quarries produced. Subterranean apartments, it will be said, are found in other countrice; but they will mostly, India exeepted, he fomed to be the remains of abandoned puarries, exhibiting no traces of arehitecture, nor places for dwelling. Egept, on the contrary, from time immemorial, was aceustomed to hollow out rocks for habitation. Pliny (lib. xxxvi. c. 13.) tells us, that the great Labyrinth consisted of immense excavations of this sort. Such were the subterranean chambers of Biban el Melook, those which have in the present day reeeived the name of the Labyrinth, and many others, which were not likely to have been tombs. When the finished and later monnments of a people resemble their first essays, it is easy to reengnise the influential causes from which they result. 'Thus, in Degytian architecture, every thing points to its origin. Its simplicity, not to say monotong, its extreme solidity, almost heaviness, form its prineipal characters. Then the want of profile and paucity of members, the small projection of its mouldings, the absence of apertures, the enomous diameter of the columns employed, much resembling the pillars left in I'marries for support, the pyramilal form of the doors, the omission of roofs and pediments, the ignoranee of the arch (which we believe to have been nuknown, thongh we are aware: that a late traveller of great intelligence is of a different opinion), -all enable us to recur to the type with which we have set out. If we pursue this investigation, we do not discover timber as an element in Egyptian compositions, whilst in Grecian architecture, the types eertainly do point to that material. It is not necessary to inquire whether the people had or had not tents or honses in which timber was used for beams or for support, since the elaracter of their architecture is speeially influenced by the exchusive use of stone as a material ; and however the form of some of their columns may not seem to bear out the hypothesis (such, for instance, as are shaped into bundles of reeds with imitations of plants in the capitals), all the upper parts are constructed without referenee to any other than stone construction. It is, morcover, well known that Egypt was extremely bare of wood, and especially of such as was suited for building.
64. The elimate of Egypt was, tioubtless, one great eause of the subterrancan style, as it must be in the original arehitecture of every nation. Materials so well atapted to the construetion it indueed, furnishing supports ineapable of being crushed, and single blocks of stone which dispensed with all carpentry in roofs or coverings, a purity of air and evenness of temperature which admitted the greatest simplicity of construction from the absence of all necessity to provide against the inclemeney of seasons, and which permitted the inseription of hieroglyphics even on soft stone without the fear of their disappearance, - all these coneurred in forming the character of their stupendons edifiees, and stimulated them in the development of the art.
6.5. The monarchical govermment, certainly the most favourable to the constrnction of great monuments, appears to have existed in Egypt trom time immemorial. The most
important edifices with which history or their ruins have made us acquainted, were raised under monarchies; and we scarcely need cite any other than the ruins of Persepolis, of which an account is given in a previons section, to prove the assertion: these, in point of extent, excced all that Egypt or Greece produced. Indeed, the latter nation sought beanty of form rather than immense edifices; and Rome, until its citizens equalled kings in their wealth, had no monuments worthy to be remembered by the listorian, or transmitted as models to the artist.
65. Not the least important of the causes that combined in the erection of their monuinents was the extraordinary population of Egypt : and thougln we may not perhaps entirely rely on the wonderful number of twenty thousand cities, which old historians have said were seated within its boundaries, it is past question that the country was favourable to the rearing and maintenance of an immense population. As in China at the present day, there appears in Egypt to have been a redundant population, which was doubtless employed in the publie works of the country, in which the workman received no other remuncration than his food.
66. The Egyptian monarchs appear to have gratified their ambition as much in the prorision for their own reception after this life as during their continuance in it. If we except the Memnonium, and what is called the Labyrinth at Memphis, temples and tombs are all that remain of their architectural works. Diodorus says, that the kings of Egypt spent those enormous sums on their sepulchres which other kings expend on palaces. They considered that the frailty of the body during life ought not to be provided with more than necessary protection from the seasons, and that the palace was nothing more than an inn, which at their death the successor would in his turn inhabit, but that the tomb was their cternal dwell. ing, and sacred to themselves alone. Hence they spared no expense in erecting indestructible edifices for their reception after death. Against the violation of the tomb it seems to have been a great object with them to provide, and doubts have existed on the minds of some whether the body was, after all, deposited in the pyramids, which have been thought to be enormous cenotaphs, and that the body was in some subterraneons and neighbouring spot. Other writers pretend that the pyramids were not tombs, assigning to them certain mystic or astronomical destinations. 'l'here are, however, too many circmmstances contradictory of such an assumption to allow us to give it the least credit; and there is little impropriety in ealling them sepulehral monuments, whether or not the bodies of the monarehs were ever deposited in them. The religion of Egypt, though not so fruittul, perhaps, as that of Grecce in the production of a great number of temples, did not fiil to engender an abundant supply. The priesthood was powerful and the rites unehangeable : a mysterious anthority prevailed in its ceremonies and outward forms. The temples of the comutry are impressed with mystery, on which the retigion was based. Here, indeed, Secresy was deified in the person of llarpocrates; and, according to l'hutarch (De Iside), the sphinx, which deenrated the entrances of their temples, signified that mystery and emblem were engralted on their theology. Numerons doors closed the succession of apartments in the temples, leaving the holy place itself to be seen only at a great distance. This was of little extent, containing mercly a living idol, or the representation of one. The larger portion of the temple was laid out for the reception of the priests, and disposed in galleries, porticoes, and ventibules. With few and umimportant variations, the greatest similarity and uniformity is observable in their temples, in plan, in elevation, and in general form, as well as in the details of their ormaments. In no country was the comection between religion and arehitecture closer than in Egypt, and as the conceptions and execution in architecture are dependent on the other arts, we will here briefly examine the influence which the religion of the country had uron them.
67. Painting and sculpture are not only intimately comected with arehitecture through the embellishments they are capable of affording to it, but are handmaids at her service in what depends upon taste, upon the prineiples of beauty, upon the laws of proportion, upon the preservation of character, and in various other respects. Nature, in one sense, is the model upons which architecture is founded; not as a sulbject of imitation, but as presenting for imitation. principles of the harmony, proportion, effect, and beanty, for which the arts generally are indebted to bature. We think it was Madame de Staèl who said that architecture was frozen music. Now, though in architecture, as in the other arts, there is no sensible imitation of nature, yet by a study of her mode of operating, it may be tenpered and modified so as to give it the power of language and the sublimity of poetry. In respect of the connection of the art with sculpture, little need be said : in a material light, architecture is but a sculptured production, and its beauty in every country is in an exact ratio with the skill which is exhibited in the use of the chisel. Facts, however, which are worth more than arguments, prove that as is the state of arehitecture in a country, so is that of the other arts. Two things prevented the arts of imitation being carried beyond a certain point in the country under our consideration; the first was politieal, the other religious. The first essays of art are subjects of veneration in all societies; and when, as in ligypt, all clange was forbidden, and a coustant and inviolable respect was entertained for that which had existed be-
fore, when all its institutions tended to preserve social order as established, and to discourage mad forhid all imovation, the duration of a style was doomed to become cternal. Religion, however, alone, was capable of ellecting the same object, and of restraining within certain bounds the imitative faculty, by the preservation of types and primitive conventional signs for the hieroglyphic language, which, from the saered purposes for which it was employed, soon acquired an authority from which no individua! would dare to deviate by an improvement of the forms under which it had appeared. Plato olserves, that no change took place in painting among the Eigytians; but that it was the esame, neither better nor worse,

68. Uniformity of plan eharacterises all their works; they never deviated from the right line and square. "Les Egyptiens", observes M. Caylus," ne nous ont laissé aucun momument public dont l'élévation ait été circulaire." 'The uniformity of their elevations is still more striking. Neither division of parts, contrast, nor efleet is visible. All this necessarily resulted from the political and religions institutions whereof we have been speaking.
69. II. In analysing the arehitecture of Egypt, three points ofler themselves for consideration, - construction, form, and decoration. In coscruucrion, if solidity be a merit, no nation has equalled them. Notwithstanding the contimed effect of time upon the edilices of the country, they still seem calculated for a duration equally long as that of the globe itself. The materials employed upon them were well adapted to insure a defiance of a!! that age could effect against them. The most aboudant material is what the ancients, called the Thebaic granite. Large quarries of it were seated near the Nile in Upper ligypt, between the first cataract and the town of Assoum, now Syene. The whole of the comintry to the east, the islands, and the bed of the Nile itself, are of this red granite, whereof were formed the obelisks, colossal statues, and columns of their temples. Blocks of dimensions surprisingly large were obtained from these quarries. Basalt, marhle, freestone, and alabaster were found beyond all limit compared with the purposes for which they were wanted.
70. We have already observed, that Egypt was deficient in timber, and especially that sort proper for building. There are some forests of palm trees on the Lybian side, near 1)endera (Tentyra) ; but the soil is little suited to the growth of timber. Next in quantity to the palm is the acacia ; the olive is rare. With the exception of the palm tree, there is none suited for architectural use. The oak is not to be found; and that, as well as the fir which the present inhabitants use, is imported firom Arabia. Diodorus says, that the early inhabitants used canes and reeds interwoven and plastered with mud for their huts; but he conlines this practice to the country away from towns, in which, from fragments that have been fonnd, we may infer that brick was the material in most common use.
71. Bricks dried in the sum were employed even on large monuments; but it is probable that these were originally faced either with stone or granite. The pyramids described by Pococke, called Ktoube el Meusehich, are composed of bricks, some of which are $13 \frac{1}{2} \mathrm{in}$. Iongg, $6 \frac{1}{2} \mathrm{in}$. wide, and 4 in . thick; others 15 in . long, 7 in . wide, and $4 \frac{1}{2} \mathrm{in}$. thick. They are not maited by eement, but in some instances emments of a bitusninous nature were employed and in others a mortar composed of lime or plaster and sand, of which it would seem that this second was exreedingly nowerful as well as durable.
72. 'The Egyptians arrived at the highest degree of skill in quarrying and working st:me, as well as in afterwards giving it the most perfect polish. In their masonry they placed no reliance on the use of cramps, but rather on the niee adjustment of the stones to one ansther, on the avoidance of all false hearings, and the nice batance of all overhanging weight. Of their mechanieal skill the reader will form some idea by reference to volume iii. p. 328. of Wilkinson's Manners and Customs of the Aucient Egyptinns, from a representation in a grotto at El Bersheh. A colossus on a sledge is therein pulled along by 172 men, but none of the mechanical powers seem to be called in to their assistance. "The ohelisks," says Mr. Wilkinson, "transported from the ruarries of Syene to Thebes and Iteliopolis, vary in size from 70 to 93 ft . in length. They are of one single stone ; and the largest in E.gypt, which is that at the great temple at Carnae, I calculate to weigh about 297 tons. This was brought about 138 miles from the quarry to where it now stands ; and those taken to Heliopolis passed over a space of 800 miles." Two colossi (one of them is the vecal Memmon), each of a single block 47 ft . in height, and containing 11,500 eubic feet, are carved from stone not known within several days' journey of the place; and at the Memnoninm is a colossal statue, which, when entire, weighed 887 tons. We consider, however, the raising of the obelisks a far greater test of mechanieal skill than the transport of these prodigious weights; but into the mode they adopted we have no insight from any representations yet discovered. We can satreely suppose that in the handling of the weights whereof we have spoken, they were massisted by the mechamical powers, although, as we have observed. no representations to warrant the onjecture have been brought to light.
73. In the construction of the pyramists it is manifest they would serve as their own

Fig. 45. SECTION OF PYRAMID OF CILEOPS. scaffolds. The oldest monuments of Egypt are the pyramids at Geezeh, to the north of Memphis, of which we give a view ($f \% .46$.), with a section of the largest of them built $1: y$ Suphis I., the Cheops of the Greeks (fig. 45.). Sir G. Wilkinson supposes them to have heen erected 2120 years b.c., Lépsius 3426 в. с.; hut the former admits that, previous to the reign of Osirtasen, 1740 B.c., linle certainty exists as to dates. 'Thuse pyramids (fig. 46.) known by the names of Cheops, Chepreren, and Mycerinus, are extraordinary for their cize and the consiquent labour besoued upon them; lut as works of the art they are of no further importance than being a link in the chain of its history. They are constructed of stone from the neighbouring mountains, and are in steps, of which in the largent there are two hun-

Fig. 46.
pyramids of geezeh. dred and three, varying in height from 3 ft . to about 4 and even 5 ft., deereasing in height as they rise towards the summit. Their width diminishes in the same proportion, so that a line drawn from the base to the summit touches the edge of each step. Sn great a difference exists in the measures given in the deseriptions by the several travellers, that we here subjoin those given of the pranid of Cheops, whilst believing that the careful admeasurements taken by Mr. l'erring are those to be relied upon :-

Mr Perring, a recent traveller, in respect of the proportions of the great pyramid, has endeavoured to prove that the unit of Egyptian measurement is an ell equal to $1 \cdot 713$ English feet, and that it is expressed a certain number of times without remainder in a correct measurement of the pyramids of Geezeh. Thus, he says, the perpendicular height of the great pyramid is exactly 280 of such ells, the base 448 ; and that $\frac{1}{2}$ base : perpendieular height : $:$ slant height: base. Upon the top thereof is a platform 32 ft . square, consisting of nine large stones, each about a ton in weight, though inferior in that respect to others in the edifiee, which vary from 5 fr . to 30 ft . in length, and from 3 ft . to 4 ft . in height. From this platform Dr. Clarke saw the pyramids of Sakkarahto the south, and on the east of them smalier monuments of the same kind nearer to the Nile. He remarked, moreover, an appearaner of ruins which might be traeed the whole way from the pyramids of Gizeh to those of Saceara, as if the whole had once constituted one great eity. 'The stones of the platform are soft limestone, a little harder and more compact than what in England is ealled clunch. The

Fig. 47. ENTRANCA TO THE SECOND PYRAMID. pyramidsare bull with common mortar externally, but no appearance of mortar can be discerned in the more perfect parts of the masonry. The faces of the pyramid are directed to the four cardinal points. The entrance is in the north front, and the passage to the central ehamber is shown on the precening section. That in the pyramid of Chephacren (fig. 47.) is thus deseribed by Betzoni: - The first passage is built of granite, the rest are cut out of the natural sandstone rock which rises above the level of the basis of the pyramid. This passage is 104 ft . long, 4 ft . high, and 3 ft . 6 in . wide; descending at an angle of 26 degrees : at the bottom is a portcullis, beyond which is a horizontal passage
of the same height as the first, and at the distance of 22 ft . it dencends in a dillerent direction, leading to some passages below. Hence it re-ascends towards the centre of the pyramid by agallery 84 ft . long, 6 ft . high, and 3 it .6 in . wide, leading to a chamber also cut out of the solid rock. The chamber is 46 ft . in length, 16 feet wide, and 23 It . 6 . in. in height, and contained a sarcophagus of granite 8 ft . long, 3 ft . 6 . in. wide, and 2 ft .3 in . deep in the inside. Returning from the ehamber to the bottom of the gallery a passage deseends at an angle of 26 degrees to the extent of 48 ft . 6 in., when it takes a horizontal direction for a length of 55 ft ; ; it then again ascends at the same angle and proceeds to the base of the pyramid, where another entrance is formed from the outside. About the middle of the horizontal passage there is a descent into another chamber, which is 32 ft . long, 10 ft . wide, and 8 ft .6 in . high. The dimensions of this pyramid, as given by Perring, are a base of 707 ft . and a height of 454 ft . 'Those of the pyramid of Myeerinus are a bise of 354 fi , and a height of 218 ft . The pyramids of Sakkarah, which are as many as twenty in number, vary in form, dimensions, and construction. They extend five miles to the north and south of the village of Sakkirah. Some of them are rounded at the top, and resemble hillocks cased with stone. One pramid is constructed with steps like that of (heops; there are six steps, each 25 ft . high, and 11 ft . wide. The height of one in the group is 150 ft ; ; another, built also in steps, is supposed to be as high as that of Cheops. The stones used are much decayed, and more crumbling than those of Gizeh; hence they are considered older. One is torined of unburnt bricks, containing shells, gravel, and chopped straw, and is in a very mouldering state. Ahout 300 paces from the second pyramid stands the gigantic Sphinx (fig. 48), whose length from

Fig. 48.
THE SPHINX. the fore-part to the tail has been found to be 150 ft . ; he paws extend 50 ft . Belzoni c'eared away the sand, and found a temple held between the leqs and another in one of its paws. It was excavated by Captain Caviglia in 1816; also in 1869 to the level on which the paws rest. Tise journals of 1886-7 describe the new works ly Prof. Maspero in excava'ing and seeuriag them from being refilled by the samid.

74a. The antiquily of the Egyptian temples may be comparatively determined from their size; the larger ones being posterior to the smaller. Since the insight obtained into the meaning of the hieroglyphies, much information has been gained as to their history. Solidity reigns througin the whole of them. The walls by which they are enclosed are sometimes 26 ft . thick, and those of the entrance gate of a temple of 'Thebes are as mueh as 5.3 lt. thick at their base, and are composed of block of enormous size. The masonry employed is that called by the Greeks emplectum ($\epsilon \mu \pi \lambda \epsilon \kappa \tau \sigma \nu$), all tilling in of an inferior or rubble work being disearded. They are masses of nieely squared and filted stones, and are built externally with a slope like the walls of a modern fortification. The columns are absolutely neeessary for the support of the ceilings, which consist of large blocks of stone, and are therefore of few cliameters in height. Sometiwes they are in a single piece, as at Thebes and Tentyra. The stones of which the ceilings are composed ar usually, according to Pococke, 14 ft , long, and $5 \frac{1}{2} \mathrm{fr}$. in breadth, but some run much larger.
75. Before adverting to the form and disposition of the Egyptian temple, we think it here necessary to notice the recent discovery of an areh in a tomb at Sakkarah, said to be of the time of ''sammeticus 1 I., and of one also at 'Thebes in the remains of a crude brick pyramid. (See Wilkinson's Customs of the Ancient Egyptians, vol. iii. p. 263. 321.) That exhibited in the tomb of Saceara, from the vignette given, is clearly nothing but a lining of the roek, and is, if truly represented in the plate, incapable of bearing weight, which is the olfice of an arel. That, however, at Thebes, to which Mr. W. assigns the date of 1500 s.c., with every respect for his great information on the subject, and with much deference to his judgment, not laving ourselves seen it, we camot easily believe to be of such antiquity. Its appearance is so truly Roman, that we must be permitted to doubt the truth of his conjecture. We are, moreover, fortified in the opinion we entertain by the principles, on which the style of Egyptian architecture is founded, which are totally at varianee with, the use of the arch. We have ventured to transfer this (fig. 49.) to our pages, that the reader may form a judgment on the subject, as well as ourselves. We will only add, that the reasons assigned by Mr. W. for the Egyptians not preferring such a mode of construction as the arch, because of the difficnlty of repairing it when injured, and the consequenees attending the decay of a single block, are not of any weight with us, because, practically, there is an easy mode of accomplishing such repair. And, again, the argnment that the superincumbent weight applied to an arch in such a case as that before
us will not hold good, inasmuch as the balanee on the back of each course would almost pre-
 serve the opening without any areh at all.
76. The form and disposition of the Egrptian temple seem to have been founded on immutable rules The only points wherein they differ from one ansother are in the number of their subdivisions and their extent, as the city for which they served was more or less rich. Untike the temples of the Greeks and Romans, whose parts were governed l,y the adoption of one of the orders, and whose whole, taken in at a single glanee, could he measured from any one of its parts, those of legypt were an assemblage of porticoes, courts, vestibules, galleries, apartments, eommunicating with each other, and surrounded with walls. Strabo, in his 17 th book, thus describes the temples in question. "At the entrance of the consecrated spot the gromnd is paved to the width of 100 ft . $(\pi \lambda \in \theta \rho o \nu)$ or less, and in length three or four times its width, and in some places even more. 'Ilis is called the court ($\delta \rho o \mu o s$, course) ; thus Callimachus uses the words -

'O jeouos isess oútes Avaubidos.

Throughont the whole length beyond this on each side of the width are placed sphinxes of stone, 20 cubirs or more distant from one another, one row being on the right, and the other on the left. Beyond the sphinxes is a great vestibule ($\pi \rho o \pi v \lambda o \nu$), then a further one, and beyond this ancther. The mumber, however, of the sphinxes, as of the vestibules, is not always the same, but varies according to the length and bieadih of the course. Beyond

fuost the restibules ($\pi \rho \circ \pi=\lambda a t \alpha$) is the temple ($\nu \in \omega s$), having a very large poreh ($\pi p o v a o s$), whieh is worthy to be recorded. The ehapel ($\sigma \eta \kappa 0 s$) is small, and without a statue; or. if there be one, it is not of hmman form, but that of some beast. The porch on each side has a wing ($\pi \tau \epsilon \rho a)$; these consist of two walls as high as the temple itself, distant from each other at the bottom a little more than the wisth of the foundations of the temple, then they incline towards each other, rising to the height of 50 or 60 enbits. These walls are sculptured with large figures, similar to those which are to be seen in the works of the Etruscans and ancient Greeks." This account is not at all exaggerated, as we shall immediately show by the introduction in this place of the plan, section, and elevation of the celebrated temple at Apollinopolis Magna, between Thebes and the first cataract, which, though, as we learn from the deciphering in these days, the hieroglyphies upon it are not of the time of the Pharaohs, seems admirably calculated to give the reader almost all the information necessary for understanding the sulnjeet. 'This will, moreover, so much more fully explain it than words, that we shall not need to do more than a'terwards come to some recital of the details.
77. This edifice, seated near Edfoo, about twenty miles south of 'Thebes, is one of the largest in Egypt, and is comparatively in good preservation Its form is rectangular, and its general dimeusions 450 ft . by 140 ft . (fig. 50.) In the centre of one of the short sides is the entrance, which consists of two buildings, each 100 ft . long, and 32 ft . in widtn; both pyramidal in form, and lying in the same direction, but separated by a passage Fig. 50 . plan or temple atapohmorolis mana
20 ft . in width, with a doorway at each extremity. This passage conducts us to a quadrangle 140 ft . long, and 120 ft . wide, flanked by twelve columns on each side, and eight more on the entrance side, all standing a few feet within the walls, and thus forming a colonnade romad three sides covered by a flat roof. A view of a portion of it is given in fig. 54. At the further end of the quadrangle (which rises by corded steps) opposite to the entrance, is a portico extending the whole breadth of the quadrangle, and 45 ft . in depth. It has three ranks of columns, containing six in each rank. is covered by a flat rooi, and is enclosed by walls on three sides. the fourth, or that opposite the entrance,
heing open. This is, however, closed breast high by a species of pedestals half inserted in the columns, and in the central intercolumniation a doorway is constructed with piers, over which are a lintel and cornice cut through. From this portico a doorway leads to an inner vestibule, in which are three ranks of four columns each, smaller than those first described, but distributed in the same way. Beyond this, in Cousin's plan, are sundry apartments, with staireases and passages, whereof the smaller central one was

Fig. 51.
d.ongtitidinal section un thampik at apohbonopohis.
doubtless the cell. Fig. 51. is a longitudinal section. Fig. 52. is the clevation. iVe

- ig . 52.

Fig. 53.
view of the tempig.
may here add, that there is so little diflerence between the earlier and later specimens of Eryptian architecture, that though, as we have hinted, this is of the latter. it will convey a pretty correct know-
 ledge of all. The general appearance of the temple is given in fig. 53 ., and a view of the interior in fiy. 54. The plan of the Egyptian temple is always miform, symmetrical, and rectangular. Its most brilliant feature is the great number of columns employed, in which is displayed a prodigality mapproached by any other nation. 'Ihis, however, was induced by the necessity for employing blocks of stone for the ceilings or roofs. The greatest irregularity oceurring in any of the plans known, is in that at the island of Phile (see fiy. 55.), and it is rery evident that the canse was the shape of the ground on which it is placed. The in-
 architecture is more particularly the utmost pitch of tolerance. The pyramidal form prevails in in wall dours, reneral masse, or details. . walls, door gin considering the principal parts of the elevations, the first feature that presents itself is the column, which we will notice without its attendant base and capital. If it were possible to establish a system relative to their invention and subsequent perfection, we might easily arrange them in distinet classes, principally as respects their decoration; but as far as regards general form, the ligyptian column may be reduced to two varieties, the circular and polygonal. The first are of two sorts. Some are found quite plain or smooth, hut ornamented with hieroglyphies (sue fig. 56.). Some
are composed with ranges of horizontal circles, and look like an assemblage of bundles

Fin. 56. of rods tied together at intervals. The only difference among thes: columns which are circular and plain is in their having hieroglyphics, or not. Of the second sort there are many varieties, of which we here present three specimens (fig. 57.). 'They have the appearance of being bound together by hoops, like barrels. These are usually in three rows with four or five divisions in each ; but these arrangements seem to bave been subject to no certain laws. The species of echmms in question is certainly curious, and appears based upon the innitation of stems of trees bound together, so as out of a number to form one strong post. It seems scarcely possible that they could have had their origin in mere whim or caprice. Many polygonal columns are to be found in Egypt. Some square specimens are to be seen in the grottos at Thebes cut out of the rock itself. Similar examples ocenr at the entrance of the sanctuary of a temple in the same city. Hexal-
 gonal ones are described by Norden, and I'owke mentions one of a form triangular on the plan. We do not at present remember any fluted specimen, except in the tombs of Beni-Hassan, of which a representation will be given in the section on Grecian architecture. Their character is shortness and thickness. They vary from three to eleven feet in diameter. the last dimension being the largest diameter that Poeocke observed, as in height the tallest was forty feet. Such were some of those he measured at Carnak and Luxor, but this he gives only as an approximation from the circumstance of so much of them being buried in the earth.
78. D'ilasters, properly so called, are not found in Egyptian arehitecture. 'The base of the column, when it appears, is extremely simple in its form. Anong the representations in Denon's work is one in which the base is in the slape of an inverted ogee. It belongs to a column of one of the buildings at 'Tentyra.
79. In their capitals, the Egyptians exhibited great variety of form. They may, how-
 ever, he rednced to three species, - the spuare, the vase-formed, and the swelled. The first (.fig. 58.) is nothing more than a simple alacus, merely placed on the top of the shaft of the colum, to which it is not joined by the intervention of any moulding. This abacus is, however, sometimes light enough to admit of a head being sculptured thereon, as in the annexed bi.ck. It does not appear, as in Grecian architecture, that in that of Egypt differently proportioned and formed columns had different capitals assigned to them. The notion of imparting expression to architecture by a choice of forms of different nature, and more or less complicated according to the character of an order, was unknown in Egypt. It was an arehitectural language which the people knew not. The vase-shaped capital (fig.59.) Yig. SS. caprat.. is variously modified : sometimes it oceurs ifuite plain; in other cases it is differe:tly decorated, of which we here give two examples. It certainly has all the appear-
 ance of having aflorded the first hint for the bell of the Corinthian capital. 'Ihe third or swelled capital is also fomd in many varieties; but if the form be not fonnded on that of the bud of a tree, we scarcely know whercin its original type is to be sought. Two examples of it are here appended.
so. The entallature, for such (however unlike it be to the same thing in the architecture
 of Greece) we suppose we must call the massive loading placed on the walls and columns of ancient Egypt, is very little sublivided. The upper part of it, which we may call the cornice, projects considerably, having a large concave member, in some cases consisting of ornaments representing a series of reeds parallel to cach other from top to bottom; in other cases in groups of three or six in a group, the mtervals between them being sculptured with winged globes, as on the portico of the temple at Tentyra, given in fig. 60 . Scnlptures of aninals, winged globes, and scarabeei, are the almost constant decorations placed on what may be called the architrave of the Egyptian temple. Of the winged globe, usually fond on the centre of it, as also of the great concave cornice, fig. 61. is a representation.

We close our observations on the cornices of the Egyptian temple by requesting the reater, if he have the smallest doutht on the common origin of the archi-
tectures of Egypt and Persepolis, to refer to fiy. 26., where he will find a precisely imilar use of the great cavetto which crowned the buildings of both countries. Thie writer who, in the Description Abrigée des Mumumens de la Hante Egypt, has found that this great curve is borrowed from the bending leaves of the palm tree, has mistaken the elements of de:oration for substantial constructive art, and has forgotten that the first object follows long after the latter. But we doubt if he really meant what his words import. The ceilings of Egypt are invariably monotonous. The non-use of the arch, whereon we have tonched in a preceding page, and the blocks of stone which the country afforded, allowed little scope for display of varied form. In the colounades of the country, architraves of stone rest on the columns (see fig. 54.), on which transversely are placed those which actually form the ceilings, just like the floor boards of a modern economical English building. Oin them are often found some of the most interesting representations that are in existence : we allude to those of the zodiacal constellations disposed circularly about the centre of the apartments in which they are placed. Lhough nothing has been deduecd from these t., satisfy us on the date of their coatinent buidings, they are not the less worthy of finther investigation, which, however, it is not our province here to purne.
81. The gates and portals of the Egyptian temples were either placed, as at Carrak

vant efforts developed on so apparently minor a point. and Luxor (figs. 62. and 63.), in masses of masonry, or between columns, as already noticed, inclined upwards, having generally: a reed moulding round them, and the whole crowned with a large cavetto. They were plentifully covered with hieroglyphies; frequently fronted by a pair of obelisks; and on their sides were placed staireases of very simple construction, leading to platforms on their summits. It is now difficult to account for the extraordnary labour bestowed on these masses of masonry. More than pictorial effeet must have been the motive. The reader will, by turning back t) fig. 52, be equally surprised with ourselves when he contemplates, in the gateway at the 'lem-

Fig. 63. point. The masses in these are always pyramidal, an I bear great resemblance to the gates of inodern fortifications. Sometimes they are extremely simple, and do not rise so high as the adjacent buildings which flank them. Their thickners is enormous, some of themestending to the extraordinary depth of fifty fect.
82. Window, were not frequently used. When they oecur they are long small parallelograms, rarely ornamented, but splayed inside. Many of the apartments were without windows at all.
83. We have, in a previous page, alluded to the Pyramids; to which we here add, that. whatever might have been their purpose, it is eertain that the form adopted in them - one that, among other people, was devoted to the purposes of sepulture-was of all architectural forms that calculated to ensure durability, and was, moreover, well suited to the views of a nation which took extraordinary means to preserve the body after life, and expended large sums on their tombs.
84. Ornament or Decoration may be considered under two heads, - that which consists in objects foreign to the forms of the edifices themselves, such as statues, obelisks, \&e.; and that which is actually affixed to them, such as the carving on the friezes, basreliefs, \&c.
85. The former of these are remarkable for the size and beauty of the materials whereof they are composed. First for notice are their statues of colossal dimensions, which are mostiv, if not always, in a sitting attitude. The two here given (fig. 64.) are from the Memnonium.

Thev are generally isolated, and placed on simple pedestals. The use of Caryatides, as they are called, perhaps improperly, in
 Egyptian architecture, if we may judge from remains, does not appear to have been very frequent. In the tomb of Osymandyas, we find, according to Diodorus, that there was a peristylium, 400 feet square, supported by animals 16 cubits high, each in one stone, instead of columns. The same author (vol. i. f. 56. ed. Wesseling), speaking of Psammeticus, says, " Ilaving now obtained the whole kingdom, he built a propylaum, on the east side of the temple, to the God at Memphis; which temple he encircled with a wall; and in this propylaum, instead of columns, substituted colossal statnes 12 eubits in height." Statues of sphinxes in allies or avenues were used for ornamenting the dromos of their temples. Of this species of ornament the ruins of Thebes present a magnificent example. They were placed on plinths facing one another, and about ten feet apart. Examples of lions also occur. 'The form of the Egyptian obelisks is too well known to need a description here. They have been alleged to be monuments consecrated to the sun. From the situation they often occupy, it is clear they were used neither as gnomons nor solar quadrants.
86. Amongst the ornaments affixed to their

Fig. 65. PRESENTATION 10 OStRIS. buildings, or rather forming a part of them, the most frequent are hieroglyphies and bas-reliefs. The custom of cutting the former upon almost every building was, as we now find, for the purpose of record; but it is nevertheless to be considered as ornamental in effect. The figures that are sculptured on the walls of the temples are mostly in low relief, and are destitute of proportion; and, when in groups, are devoid of sentiment. Painting was another mode of decoration. The grottoes of the Thebaid, and other subterranean apartments, abound with pictures, not only of hieroglyphies, but of other subjects. But the taste of all these, either in drawing, colouring, or composition, is not better than that of their seulpture. (See an example in fig. 65.) Yet in both these arts, from the precision with which they are cut and the uniformity of line and proportion they exhibit, a certain effeet is produced which is not altogether displeasing.
87. The nymphaea lotus, or water lily, seems to have been the type of mueh of the ornament used for the purpose of decoration. The leaf of the palm tree was another olyject of imitation, and is constantly found in the capitals of their columns. The use of the palm leaf in this situation may have been derived from a popular notion mentioned by Plutarch, (Symposiac. lib. vi. cap. 4.), that the palm tree rose under any weight that was placed upon it, and even in proportion to the degree of depression it experienced. This supposed peculiarity is also mentioned by Aulus Gellius (lib. iii. cap. 6.). The reed of the Nike, with its head, enters into some combinations of ornament, and moreover fashioned into bundles, seems to have been the type of some of the species of their columns. In their entablatures and elsewhere, animals of all sorts occasionally find a place as ornaments, even down to fishes, which occur in a frieze at Assouan; and, as we have before observed, there are few buildings of importance in which the winged globe does not appear as an orna. ment.
88. Some observations on the taste, style, and character of Egyptian architecture, will conclude this section. If the type was, as we imagine, derived from the early subterranean edifices of the people, whose customs allowed of no change or improvement, we cannot be surprised at the great monotony that exists in all their monuments. The absence of variety in their profiles, by means of projecting and re-entering parts, of the use of the arch, of the inclined roof, and of all deviation from those shades of different developments, which impart character to a work of art, generated the monotony, the subject of our complaint. It cannot be denied that in those arts which have nature for their model, the artists of Egypt never sought excellence in true representation. Now architecture is so allied to the other arts, that the principles by which they were guided in these latter were carried through in
the former. It was impossible that the abstract imitation of nature, which constitures almost the essence of architecture, which is founded upon the most refined observations of the impressions of different objects on our senses, which indicates numberless experiments and successive trials, and which therefore requires the indenendence of the artist, could be developed in a country where the restrictions of religion and the spirit of routine became the dominant genius of all the arts. In positive imitation, whose existence and principles have been already traced from grottoes and hollowed subterranean apartnents, the types of Eggytian architecture were unsuseeptible of variety, and very remote from that which characterises invention. The monotony thenee resalting was attended by another effect, that of endeavouring to correct it by a profusion of hieroglyphics. As to the other ornaments employed, they seem to have flowed from caprice, both in selection and enployment, resting on no fixed principles of necessity or fitness, nor subject to any laws but those of chance. The original forms, indeed, of Egyptian architecture, unfounded, like those of Greece, on a construction with timber, would not suggest the use of ornament. Nothing seemed fixed, nothing determined by natural types. We must, however, except some of their columns, which do appear to have been formed with some regard to imitation.
89. In the architecture of Egypt we find great want of proportion, or that suitable ratio which the different parts of a body should bear to each other and to the whole. In all organised beings, their parts so correspond, that, if the size of a single part be known, the whole is known. Nature has thus formed them for the sake of dependence on and aid to each other. In works of art, the nearer we approach a similar formation, the more refined and elegant will be its productions. Solidity is abused in the works of the Egyptians; the means employed always seem greater than were necessary. This discovers another cause of their monotony. The masses of material which the comntry produced measured their efforts and conceptions, and their。 invention was exhausted by a very restricted mumber of combinations. Their monuments are doubtless admirable for their grandeur and solidity; but the preponderance of the latter, when carried beyond certain bounds, becomes clumsiniss; art then disappears, and character bccomes carieature. Though we think it useful thus to analyse Egyptian art, it must not be supposed that we are insensible to its imposing, and often pieturesque, effect. It can never be revived, and our olservations upon it must be understood as in comparison with Greek aut, which has proved so susceptible of moditication that it is not likely to be abandoned in any part of the world where civilisation has appeared.
90. Though the private dwellings of the Egyptians were not comparable with their pulplic edifices, they were not altogether devoid of splendour. Examples of them from sculptures may be seell mir G. Withinson's work above quoted. la the townstiley of comane varied in size and plan. The streets were narrow and laid out with regul..rity; and the mixture, as frequently met with in eastern towns, of large houses with low hovels, appears to have been avoided. In Thebes, the number of stories were, according to Diodorus, in some cases as much as four and five. Houses of small size were usually eonnected together, rarely exceeding two stories. They were regular in plan, the rooms usually occupying three sides of a court-yard, separated by a wall from the strect; or on each side of a long passage from a similar entrance court. The court was sometimes common to several houses. Large mansions were detached, having often different entrances on their several sides, with portals very similar in form to those of their temples. These portals were about 12 or 15 ft . high, and on each side was a smaller door. Entering through the porch, the passage was into an open court wherein was a receiving room for visitors, and this was supported by columns, and closed in the lower part by intercolumnal panels. On the opposite side of the court was another door, by which the receiving room was entered from the interior. Three doors led from this court to another of larger dimensions, ornamented with trees, communicating on the right and left with the interior parts of the building, and having a back entrance. The arrangement of the interior was the same on each side of the court ; six or more chambers, whose doors faced each other, opened on a corridor supported by columns on the right and left of the area, which was shaded by a double row of trees. A sitting room was placed at the upper end of one of these areas, opposite the door leading to the great court ; and over this and the chambers were the apartments of the upper story. On each side of the sitting-room was a door opening on to the street. Of course there were houses on other plans, which are given by Wilkinson; but the above conveys a sufficient idea of their general distribution. On the tops of the houses were terraees, serving as well for repose as exereise. The walls and ceilings were richly painted, and the latter were formed into compartments with appropriate borders. Some of their villas were on a very lange scale, and were laid out with spacious gardens, watered by canals communicating with the Nile.
91. We close this section with a list of the principal ancient remains in Egypt (for which we are indebted to the Handbook, 1873, by Sir Gardiner Wilkinsun), whose situations are marked on the accompanying map (fig. 66.). At Heliopolis, morlern unme Matureeah (No. 1.), a little to the north of Cairo, the obelisk of O,irtasen I., and the remains of "alls

Fig. ifi6.
MAP OF THE NILE.
and houses. Near Cairo, on the wist bank, the pyramids (fig. 46,) of Geezeh (No 2.), Sakkarah and Dishoor. At Mitrabenny, on the cast bank (No. 3.), a colossus of IRameses II.; the mounds of Memphis, fragments of statues, aud remains of buildings. About thirtyeipht miles above Cairo, are the monds of Aphroditopolis (No. 4.) ; and on ti.e opposite bank a false nyramid. At seventy-three miles on the went bauk is Benisouf (No, $\overline{-}$.), where a road leads to the Fyoom; a l. rick pyramid at Illahoon (No. 6.), another at llawarah and traces of the Labyrinth; an obelish of Osittasen I. at Biggig; with tuins near Lake Moeris, and at Kasr el Kharoon (No. 8.). Mounds at Aboo Girgeli (No. 9.), from whence a road to Oxy rhinchus (Eehnesa) (No. 10.), where are mounds but no ruins. At Gebel el 'layr is an underground church. Eight miles below Minielı (Nu. 11.) is Acôris (Telneh), on the east hank, where is a Gieek Ptolemaic inseription on the eliff, tombs in the rock with inseriptions on the doors, hieroglyphic tablets, \&c. On the cast bank, seven miles above Minieh, Kom Ahmar, where are monnds of an old town; at a short distance beyond is Metahara with sepulchral grottoes.
27 Nine miles further up are the grottoes (fig. 90.) of Beni Hassan (No 12.); and about a mile and a half further on a rock-cut temple of Bubastis or Diana, At Antinoe (Sheylih Abádeh), some traces of the town, theatre, street, baths, hippodrome, \&c., erected by IIadrian. At El Bersheh or El Dayr, a grotto, wherein is a colossus on a sledge. Hermopolis magna, on the west bank (Oshmonntyn) (No 13.), only tombs. Not fir away is Gebel Toona with mummy pits and statues in bigh relicf. At Saeed or Upper Egypt (No. 14.), the mountains recede to the eastward, leaving the river; a little beyond the village of Tel el Amarna, are catacombs, and to the north of which are the remains of a small town, and to the south the ruins of the city, having houses buit of erude brick, from which a more correct idea of the ground plans can be obtaned than any in the ralley of the Nile. To the east are grottoes with sculptures; and on the summit of the hills an alabaster quarry. At El IIareib (No. 15.', the ruins of an old town. At Asljoot (Lycopolis) (No. 16.), are tonbs. At Gow (Amæopolis), a few stones of the temple close to the river. At Sheykh Hereedee, small caver; and a statue of a man chad in the Roman toga at the base of the mountain cut out of the rock. West of Sonhag (No. 17.), is the old town of Alhribis, where is a ruined temple, with extensive
mounds, and rock-cut tombs. Opposite is Ehhmeen (Panopolis) (No. 18.), Grech inscription of Temple of Pan, and remains of other stone buildings. Extensive mounds at Menshreyah (No. 19) (Ptolemais Hermii); twelve miles south from Girgeh, is Abydus (Arabut el Mhetfoon), where are two temples and many tombs. How (Diospolis parva), a lew mounds Denderah (No. 20.) (Tentyra) has
Fig. 67.
temple at textyra.
two temples (figs. 67. and 68.), inscriptions, zodiac, \&c. At Koft (Coptos), on east side, ruins of the old town, a pillar, and of remples ; and at the village of El Kulu, to the north, a sinall LRoman Egyptian temple. Kins (No. 21.) (Apollinopolis prava), no ruins. At Thebes or Keneh (Diu-polis magna), ou the east bank, re Carnak an I Luxor (No. 22.) (fiys. 62. and 63.); on the west, tomhs of the kings, private tombs, several temples, coiossi of the plain, \&.c. At Erment (No. 23.) (Hermonthis), a temple and early Christian church. At Tofnees and Asform (No. 24.) mounds of old towns Esneh (Latopolis) (No. 2.5) possesses a fine portico (fig. 69.) cleared out in 1842, zodiac, and quay. On the east bank, four miles beyond, is El Kub (Enceithyias), ruins of a very ancient
Fig. 68. intinior of temple at tentyila. town; the temples lately destroyed; grotoes in the mountain; and a short distance

F'g. 69.
 up the valley three small temples. Edfoo (No. 26.) (Apollinopolis magna), has two temphes, one cleared 1864 (figs. 50. to 54.). At Gebed Silsileh, west and tast banks, are the sandstone quarrics. At KomOmbo (No. 27.) (Ombos) are two templis, and a stone gateway in a crude brick wall on the east side of the inclosure, showing an earlier temple. At Assonn (No. 2s.) (Syene), ruins of a small Roman temple, columns, and granite quaries, in one of which is a broken obeliok. Island of Elephanta, opposite to Assooan, is a part of the Nilo:neter, with Greek inscriptions relating to the rise of the Nile; a quay, and a granite gateway. At Phile (No. 29.) temples (fig. 55.), and ruins. On the 1:land of Biggeh, opposite Phize. a amall rumed temple, tablets, Sc.
92. In Nuhia, temp'es at Dabod (No. 30.) (Parembole), and at Kalabsheh (No. 31.) (Talmis). apparently thrown down before it was completed. To the north of the last at Bryt el Welly a small hut interesting rock-cut temple, of the time of Rameses 11. A temple at Dendoor (No. 32.); and one rock-cut, of the time of Rameses 1I., at Gerf Hossign (Tutzis), un west bank. At Wuly S'booch (No. 33.), a temple of the same

Fig. in. $^{\text {n }}$
temple at ipmanbooh.

Fig. 71.
temilie at ipsambool.
period, with an avenue of sphinxes, the adytum rock-cut, the rest built. At Amada (No 34.), a temple of Thothmes III.; and nearly opposite, on the east bank, is Dayr. the capital of Nubia, where is a roch-eut temple, of the date of Rameses 1I. At Aboo Simbei
or Ipsambool (No. 35.) two fine temples (fygs. 70. and 71.) eut in the rock, of the time of Rameses II., and the finest out of the Thebes. Above the last named place there are no buildings of importance mentioned by our author.

Sect. Vill.

CHINESE ARCHITECTIRE.

93. In the first chapter, the reader will remember, we have said that in the tent is to be found the type of this architecture; and one which, M. de Pauw justly observed, cannot be mistaken. We are not aware of the utility of a very minute investigation of its style, whiel in this comtry is of no importance, the decoration of garden, with imitations of its productions being no lugger attempted; but as the ohject of this work would not be fully attained without some account of it, we propose to consider it, firstly, with respect to its principles, character, and taste; secondly, with respect to its buildmgs, their parts, and the method of construction adopred in them.
94. (1.) To judge of the arts of a people, we ought to be acquainted with the people themselves, the constitution of their minds, their power, their habits, and the comection of the arts with their wants and pleasures. As one man differs from another, so do these difler anong mations. The desire of improving on what has becn done before us, no less distingraishes nations than individuals from each other. Whatever may be the cause, this faculty loes not seem to be possessed by the Chinese. Unlike their Indian neighbours, amongst whom appears an exuberance of invention, the arts of imitation in China have been bound in the chains of mechanical skill. Their painters are rather naturalists than artists; and an Luropean, engaged on the foreground of a landscape, tells us that the criticism by a native artist on his work was confined to the observation that he had omitted some fibres and sinkings in some of the leaves of the foliage employed in it. The political and moral subjection of the people seems to have doomed them to remain in that confined circle wherein long habit and repugnance to change have enclosed them.
95. In speaking of the prineiples of Chinese architecture, the word is used in application to those primitive causes which gave birth to it, and which, in every species of architecture, are the elements of its character and the taste it exhibits. The imitation of the tent, as we have before observed, is the true origin of their buildings; and this agrees with our knowledge of the primitive state of the Chinese, who, like all the Tartar tribes, were nomadic. On this is founded the singular construction of their dwellings, which would stand were the walls destroyed; inasmuch as, independent of them, their roofs rest upou timber framing, just as though they had surromed tents with enclosures of masonry. Indeed, from the accounts of travellers, a Chinese city looks like a large permanent encampment, as well in respect of its roofs as its extent. If, again, we recur to their concave sloped sides, we can arrive at no other conclusion; and though the carpentry of which they are raised has for ages been subjected to these forms, when we consider the natural march of human invention, especially in cases of necessity, we camot believe that, in a country where the primitive construction was of timber, the coverings of dwellings would at once have been so simple and so light. Their framing seems as though prepared merely for a canvas covering. Again, we have, if more were wanting, another proof, in the posts employed for the support of their roofs. On them we find resting nothing analogous to the architecture for receiving and supporting the upper timbers of the carpentry ; on the contrary, the roof projects over and beyond the posts or colnmms, whose upper extremities are hidden by the eaves; thus superseding the use of a capital. A canvas covering requires but a slender support : hence lightness is a leading feature in the edifices of China. The system of carpentry (if such it can be called) thus induced, will be noticed under the second head; but we must here observe, that lightness is not at all incompatible with essential solidity of construction; and whilst other materials than those which formed tents have been substituted for them, the forms of the original type have been preserved, making this lightness the more singular, inasmuch as the slightest analogy between those of the original and the copy is imperceptible. This change of material prevents in the copy the appearance of solidity, and seems a defect in the style, unless we reeur to the type.
96. A characteristic quality of Chinese architecture is gaiety of effect. Their coloured roofs, compared by their poets to the rainbow, - their porticoes, diapered with variegated tints, - the varnish lavished on their buildings, - the keeping of this species of decoration with the light forms of the buildings, - all these unite in producing, to eyes accustomed to contemplate them, a species of pleasure which they would with difficulty relinquish; and it seems reasonable that the architecture of Europe must appear cold and monotonous to men whose pleasure in the arts is more dependent on their senses than on their judgment.
97. 'Taste in art is a quality of vague signification, except amongst those whose lives are
passed in its practice ; neither is this the place to sar, upon that subject, more than that. in the application of ornament or decoration to architecture, it must depend on the method o! construction. 'This is not found in that whereof we are writing. With the Chinese, the art of ornamenting a building is an application of capricious tinery and patchwork, in which grotesque repreventations of subjects connected with their mythology often prevail: yet, in this re-pect they exhibit a fertility of invention, and produce beautifil abutract combinations quite in character with the general forms. Indeed, the part, of their architecture are in harmony with each other. All is based upon natural principles, and is so adapted to the few and simple wants of a nation whose enormous population alone seems to render it indepeudent of every other people, that no period can be assigned to the future duration of ars architecture which, we apprehend, has existed amonget them from the carliest date of thei dwelling in cities.
98. (2.) Timber is the chief matrial in use among the Chinese; tha: of which the country produces, the | rincipal is the nan-mo, which, according to some, is a species of cedar; others hare placed it among the firs. It is a straight thick tree, and improres with age. De Pdur says that it furt islies sticks from twelve to thirteen feet high, of ureful wond: but Chamber, limits it to a smallet size. Respecting its beauty and duration, all travellets agree. Daris (Description of the Empire of China) says that the nan-mo is a kind of cedar. which re-ists insects aud lime, and appears to be esciusively used for imperi il dwellings and temples. It was an article of impeachment against the minister of Kien-loong. that he had presumed to use this wood in the construction of his frivate palace. According t., Du Halde. the iron-wood. the ly-mo, is as :all as the oaks of Europe, but is less in its truuk, and differs from it in colour, which is darker, and in weight. The anthor does not tell us whether it is empluyed for columns. The tseloû, also c.lled mo-scáng, or king of woods, resembles what we call rosewood: but its use is confined ce.ietty to articles of furn'ture. The tchou-tse. or bamboo, grows to a g eat height in China. Though boilow. it. is vers hard, and capable of bearing great weight. 1t is ermployed for scaffolding and sheris of all hinds; and the frame-work of their matted houses for theatrical exthibitivis is carried up with bambous in a few hours. It is in universal use. The missionaries inform us that ERICK has been in use with the nation from the earliest period, and of both species. - burnt and merely dried in the sun. Chambers describes the walls of the houses built of this material as generally eighteen inches thick. He says, the workmen bring up the foundations for three or four courses in solid work; after which, as the walls rise, the brick are uned in the alternate conrses as headers and stretchers on the two taces of them; so that the headurs mect, and thus occupy the whole thickness, leaving a void space between the strutchers: they then carry up another course of stretchers. breaking the vertical joints. Srose and makbee are litile employed; not on account of their scarcity; for they are abundant, nor on the score of economy, for they are açuainted with the method of working then. as is proved from their ue in public buildinge and tombs. Neither can it arise from the difficultr or want of acquaintance with the means of transport; for we find in their gardens immense blocks introduced for the purposes of ornameut; and in their marble staircases the stepwhatever the length, are always in a single piece. The fear of earthquakes, moreover, does not appear to base heen a motise for their rejection. That is rather to be found in the climate, which. expecially in the southern parts, would. from the great heat and moisture, tend to render their houses unwholesome. In the scaftiolding they use for the erection of their buildings, security and simplicity are the principal features ; not, howeser, unmixed with shill. It consists of long polec, so inclined as to make the ascent easy, and is erecuted without any transverse bearing pieces.
no. The police of architecture among the Chinese is, to an European, a cingular feature in its practice; and we cannot refrain from presenting to the reader the curious restricticnimponed upon every class in their several dwellings. l'olice, indeed, may be said to govern the arts of China. Its laws detail the magnitude and arrangement permitted for the lon, or palace of a prince of the first, second, or third destee; for a noble of the imperial family, for a grandee of the empire, for the president of a tribunal. for a mandarin, - for, indeed. all classes. They extend, also, to the regulation of the public buildings of capitals, and other cities, according to their rank in the empire. The richest citizen, unles bearing some office in the state. is compelled to restrict the estent of his house to his exact grade in the country ; and whatever form and comfort he may choose to give to the interior, the exterior of i is dwelling towards the street must be in every respect consisent with theer law- According to the primitive laws on this subject. the number of courts, the height of the level of the ground floor, the length of the buildings, and the height of the roofs, were in a progrewive ratio from the mere bourgeois to the emperor ; and the limits of each were esactly defined. The ordinary buildings are only a single story high : the climate seems to diccountename many stories. Though l'ekin is in the fortieth degree of north latitude, the police obligen the shopkeepers and manufacturers to sleep in the open air under their penthouses in the buttest part of the summer.
99. The leve is a building of several storics. Of this sort are ahmost all the small pralaces
built by the emperors in their pleasure gardens. The taste for this class of building at one period prevailed to such an extent that houses were constructed from 1.50 ft . to 200 ft . in height, flanked by towers extending to 300 ft . Though the emperors have, generally, abandoned these enormous buildings, they are still occasionally crected. Most houses of the comntry are so slightly built as to be ineapable of bearing more than one story. Indeed, the necessity for making the most of an area by doubling and tripling its eapacity, which exists in the capitals of Europe, does not operate in China.
100. The honses of the Chinese are uniform in their appearance. We here annex the
 plan and elevation of one (figs. 72. and 73.) ; from which it will be seen that a large portion of the area is occupied by courts, passages, and gardens. Sir W. Chambers deseribes those of the merchants at Cauton as being, generally, a long rectangle on the plan, two stories high, and the apartments divided on the ground floor by a wide passage, which extends through the whole length. On the side towards the street the shops are plaeed, beyond which a quadrangular open vestibule leads to the private apartments, which are distributed on the right and left of the passage. There is a salon, usually about 18 ft . or 20 ft . long, and 20 ft . wide, open towards the vestibule, or with a screen of canework to protect it from the sun and rain. At the back are doors extending from the floor about half way to the ceiling; the superior part being of trellis work, covered with painted gauze, which gives light to the bedroom. The partition walls are not carried higher than the ground story, and are lined with mats to the height of three feet, above which a painted paper is used. The pavement is of differently coloured stone, or marble squares. The doors are generally rectangular, of wood, and varnished or painted with figures. Sometimes the communication between apartments is in the form of an entire circle, whieh some have compared to the aperture of a bird-cage. 'The windows are rectangular, and filled in with framework in patterns of squares, parallelograms, polygons, and circles, variously inscribed in or intersecting each other. The railwork to the galleries is similarly ornamented. The compartments of the windows are generally filled in with a transparent oyster shell instead of
 house, is divided into several large apartments, which are, occasionally, by means of temporary partitions, converted into rooms for visitors, apart from the family. The sleeping rooms for the people connected with the business are over the shops. The roof stands on wooden columns; and its extremities, projecting beyond the walls, are usually decorated with the representation of a dragon.
101. In the system of earpentry practised by the Chinese, the columns and beams look more like the bars of a light cage than the supports and ties of a solid piece of

Fig. 71. cominmand CROBS-pIECB. framing, or like a collection of bamboos fantened to one another. The aceonspanying diagran (fig. 74.) will convey our meaning to the reader. Their columns vary in their forms and in their proportions from eight to twelve diameters in height, and are without capitals. They are generally of wood, standing on marble or stone bases, and are occasionally polygonal as well as circular. Some are placed on moulded bases.
103. The palaces are constructed on nearly the same plan. Nothing, say the missionaries of Pekin, gives a more impressive idea of a palace and the greatness of its inhabitant, whether we consider its extent, symmetry, elevation, and unifermity, or whether we regard it for the splendour and magnificence of its parts, than the palace of the emperor at Pekin. The whole, they say, produced an effect upon then for which they were not prepared. It oceupies an area of upwards of 3600 ft . from east to west, and above 3000 ft . ranges of offices, covered by routs sloping towards the interior. The included area is occupied by buildings not more than two stories high, and forming several quadrangular courts of rarious sizes, in the centres of which are buildings standing on granite plattorms, 5 ft . or 6 ft . high. These are surrounded by columns of wood, which support a projecting roof turned up at the angles. One of these buildings, serving as a lall of audience, stauds like the rest on a platform, aind
its projecting roof is supported by a double row of wooden columus, the intervals between which, in each row, are filled with brickwork to the height of 4 ft ; the part above the wall being filled in with lattice work, covered with transparent paper. The courts are intersected by canals spanned by several marble bridges. The gateways of the quadrangles are adorned with marble columns on pedestals, decorated with dragons. The courts contain sculptured lions 7 ft . or 8 ft . high; and at the angles of the building, surrounding each area, are square towers, two stories high, crowned with galleries. The reader will find a delineation of this extraordinary building in Cousin's work, Du Genie de L'Architecture, 4 to, Paris, $1822, \mathrm{pl} .26$. 'The peristylia of the interior buildings of the palace are built. upon a platform of white marble, above which they are raised but a few steps; but this platform is reached by three flights of marble steps, decorated with vases and other ornaments.
104. It is said that there are 10,000 miao, or idol temples in l'ekin and its environs. Some of these are of considerable size, others are more distinguished for their beauty ; there is, however, no sufficient account of them, and we shall therefore proceed to those of Canton, which have been describedby Chambers. Ile says that in this city there are a great numher of temples, to which Europeans usually apply the name of pagoda. Some of these are small, and consist of a single chamber; others stand in a court surrounded by corridors, at the extremity of which the ting, or idols, are placed. The most extensive of these pagodas is at Ho-naigg, in the sonthern suburb of Conan. Its interior area is of the length of 590 ft ., its width 250 ft . This area is surrounded by eells for 200 bonzes, having no light but what is obtained from the doors. The entrance to the quadrangle is by a vestibule in the middle of one of the short sides; and at the angles are buildings 30 ft . square, in which the principal bonzes reside. In the middle of each of the long sides is a rectangular area, surrounded by cells, one containing the kitchens and refectories, and the other, hospitals for animals, and a burying ground. The great quadrangle contains three pagodas or pavilions, each 33 ft . quare on the plan. They consist each of two stories, the lowest whereof is surrounded by a peristyle of twenty-four colmmns. The basement to each is 6 ft . high, to which there is a light of steps on each side, and the three basements are conneeted by a broad wall for the purpose of communication between them, with steps descending into the court. The roofs of the peristylia are concave on the exterior ; and the angles, which are curved upwards, are decorated with animals. The sides of the upper story are formed with wooden posts, filled in with open framework. Kound the foot on the exterior is a balcony with a rail in front. The roof resembles that of the peristyle, and has its angles similariy ornamented. The bildings are all covered with green varmished tiles.
105. The Chinese towers, which also Europeans call pagodas, are very common in the :ountry. The most celcbrated, whereof a diagran is presented here (fig. 75.), is thus

Fig. 75.
chinese tower, or pagoda. described by P. Le Comte. Its form on the plan is octagonal, and 40 ft . in diameter; so that cach side is full $16 \frac{1}{2} \mathrm{t}$. It is surrounded by a wall at a distance of' 15 ft., bearing, at a moderate height, a roof covered with varnished tiles, which seems to rive ont of the body of the tower, forming a gallery below. The tower consists of nine stories. each ornamented with a cornice of 3 ft . at the level of the windows, and each with a roof similar to that of the gallery, except that they do not project so much, not leing supported by a second wall. They grow smaller as the stories rise. The wall of the ground story is 12 ft . thick, and $8 \frac{1}{7} \mathrm{ft}$. high, and is cased with porcelain. whose lustre the rain and dust have much injured in the course of three centuries. The staircase within is small and inconvenient, the risers being extremely high. Each floor is formed by transverse beams, covered with planks forming a chamber, whose ceiling is decorated with painting. The walls are hollowed for numberless niches, containing idols in bas-relief. The whole work is gilt, and seems of marble or wrought stone; but the author thinks it of brick, which the Chinese are extremely skilful in moulding with ornaments thereon. The first story is the highest, but the eest are equal in leight. "I counted," says M. Le Comte, " 190 steps, of ten full inches each, which make 158 ft . If to this we add the height of the basement, and that of the ninth story, wherein there are no steps, and the covering, we shall find that the whole exceeds a height of 200 ft . The roof is not the least of the beanties which this tower boasts. It consists of a thick mast, whose foot stands on the eighth lloor, and rises thirty feet from
the ontside of the building. It appears enveloped in a large spiral hand of iron, clear by several feet from the pole, on whose apex is a gilt globe of extracrdinary dimensions.
106. The word tower has been vaguely applied to all these buildings; but in China there are differences in their application, which are classed under three heads $:-1$. Tu, "r platforms for astronomical or meteorological observations, or for enjoying the air and landscape. 2 Hou, such as that just described in detail, being edifices of several stories, isolated and circular, square and polygonal on the plan, built of different materials in different places. 3. Ta, which are sepulchral towers; these are usually massive, of strange but simple forms.
107. The P'ay-l ou, or triumphal arches of the Chinese, are to be lound in every city. They are crected to celebrate particular events. Those at Ning-po are with a central and two smaller side openirgs, and are ornamented with polygonal stone columns, supporting an entabluture of three or four fascia. These are usually without mouldings, the last but one excepted, which is a species of frieze filled with inseriptions. They are crowned with roofs of the unual fom, having broad projections, whose angles are turned upwards. The apertures are sometimes square, and sometimes circular headed.
108. Clina abounds in bridges; but Du Halde and the missionaries have made more of them in their accounts than they appear to deserve. What they have dereribed as a bridge of ninety-one arches between Soo-chns and IIâng-chow, wai passed by Lord Macartney, and found $t \cdot$ be nothing more than a long canseway. Its highent arch, lowever, was suppersed to, be between 20 lt. and 30 .t. high ; the length abont half a mile. Sir Gerrge Staunton (vol. ii. p.177.) observed a bridge which appeared to be skilfully construced. They were acquained with the use of the areh composed of wedge-shaped voussoirs, perhaps before it was known in Europe. Their great wall is a remarkable monument. In most paits it consists of an earthen mound retained on each side by walls of brick and masonry, wihh a terraced plat. form and a parapet of bricks. Its height is 20 ft . inchuding a parapet of 5 ft . The
 thickness at the base is 25 ft , and it diminishes to 15 ft . at the platiorm. Towers, at intervals of about 200 paces, are 40 ft . square at the base, and 30 ft , at the top; their height is abont 37 ft .; some of them, however, are 48 ft . higl, and consist of two stores. (Sce fig. 76.) In other parts the wall is little better than an earthen parapet with a ditch; in some places only rude stones heaped up. It extends a length of 1500 miles, and is conducted over mountains, valleys, and rivers. Mr. W. Simpson, in the Papers of the Inst. of Brit. Arehitecte, 1873-74. carefilly describes the impertant series of the Mung tombs, dating 1425-1629. Many works have been published of late on Chinese and Japancse architecture and ornament.

Sert. 1 X .

MEXICAN ARCHITECTURE.

109. The architecture of the people who had possession of America before its diseovery by Columbus has a considerable claim upon our attention. When a people appears to have had no means of modelling their ideas through study of the existing monuments of older nations, nor of preserving any traces of the style of building practised by the race from which they originated, their works may be expected to possess some novelty in the mode of combination or in the nature of the objects combined; and, in this point of view, American architecture is not without interest. It is, moreover, instructive in pointing out the bent of the human mind when unhiassed by example in the art.
110. North America was found by the Spaniards advanced in agriculture and civilisation, and more especially so in the valleys of Mexico and Oaxaca. These provinces seem to have been traversed by different migratory tribes, who left behind them traces of cultivation. It is not cur intention here to discuss the mode of the original peopling of America; but we muct, in passing, observe that the vicinity of the continents of Asia and America is such as to induce us to remind the reader that one of the swarins, which we mentioned in the section on Druidical and Celtic Arelitecture, might have moved in a direction which ultimately brought them to that which, in modern times, has received the name of the New World. The Toultecs appeared in 648, making roads, building cities, and constructing great pyramids, which are yet admired. They knew the use of hieroglyphical paintings,
frunded metals, and were able to eut the hardest stone. (IIumboldt, New Spain.) 'The Aztees appeared in 1196, and seem to have had a similar origin and language. Their works, thougl? they attest the infancy of art, bear a striking resemblance to several monuments of the most civilised people. The rigid adherence of the people to the forms, opinions, and eustoms which habit had rendered familiar to them, is common to all nations under a religious and military despotism.
111. The edifices erected by the Mexicans for religious purposes were solid masses of earth of a pyramidal shape, partly faeed with stone. They were ealled Teocallis (House; of God). That of aneient Mexico, 318 ft . at the base and 121 ft . in height, consisted of five stories; and, when seen at a distance, so truneated was the pyramid that the monument appeared an enormous cube, with small altars covered by wooden cupolas on the top. The place where these cupolas terminated was elevated 177 ft . above the base of the

Fig. 77. edifice or the pavement of the enclosure. Hence we may observe that the Teocalli was very similar in form to the ancient monument of Babylon, called the Mausoleum of Belus. The pyramids of Teothhaean (fig. 77.), which still remain in the Mexican Valley, have their faces within 52 minutes of a degree of the cardinal points of the compass. Their interior is elay, mixed with small stones. This kernel is covered with a thick wall of porous amygdaloid. Traces are perceived of a bed of lime, which externally covers the stone.
112. The great pyramid of Cholula (fig. 78.), the largest and most sacred temple in

Fg. 8 s.
GREAT PSRAMID OF CHOLUTA. Mexico, appears, at a distance, like a natural eonical hill, wooded. and erowned with a small ehureh; on approaehing it, its pyramidal form becomes distinet, as well as the four stories whereof it eonsists, though they are covered with vegetation. Humboldt compares it to a square whose base is four times that of the Place Vendome at Paris covered with brieks to a height twiee that of the Louvre. 'The height of it is 177 ft . . and the length of a side of the base 1423 ft . There is a flight of 120 steps to the platform. Subjoined is a comparative statement of the Egyptian and Mexican pyramids : -

Dimensions.	fGymian. After Peming.				Mexican.	
	Cheops.	Chepheren.	Mycerinus.	Saccar: (of tive stories)	$\begin{aligned} & \text { 'Teotihu- } \\ & \text { acan. } \end{aligned}$	Cholula.
Height in feet - -	480	454	218	$15!$	171	1-2
Leligth of base in feet	764	707	351	210	645	1305

The Cholula pyramid is construeted with unburnt bricks and clay, in alternate iayera. As in other T'eocallis, there are eavities of considerable size, intended for sepulchres. In cutting through one side of it to form the present road from P'uebla to Mexieo, a square chamber was diseovered, built of stones, and supported by beams of cypress wood. Two skeletons were found in it and a number of curiously painted and varnished vases. Humboldt, on an examination of the ruins, observed an arrangement of the brieks for the purpose of diminishing the pressure on the roof, by the sailing over of the brieks horizontally. The area on the top contains 3500 square yards, and was oceupied by the Temple of Quetzalcoatl, the God of Air, who has yielded his place to the Virgin. By the way, we may here mention that tumuli are found in Virginia, Canada, and Peru, in which there are galleries built of stone communicating with eael other by shafts; but these are not surmomited by temples.
113. In the northern part of the inter daney of Vera Cruz, west from the mouth of the Rio Tecolutla, two leagues distant from the great Indian village of Papantla, we meet with a pyramidal edifice of great antiquity. The pyramid of Papantla remained unknown to the first eonquerors. It is seated in the middle of a thick forest, and was only diseovered by some hunters about the year 1816. It is constructed of immense blocks of stone laid in mortar; but is not so remarkable for its size as for its form and the perfection of its timish, being only 80 ft . square at the base, and not quite 60 ft . high. A flight of fifty-siven
steps leads to the trmeated pyramid. Like all the Mesiean te callis, it is comprised of stages, six whereof are still distinguishable, and a seventh appears to be concealed by the vegetation with which its sides are covered. The facing of the storices is ornamented with hieroglyphics, in which serpents and erocodiles, carved in relievo, are discernible. Each story contains a great number of syuare niches symmetrically distributed. In the first story twenty-four are on each side; in the second, twenty; and in the third, sixtecn. The number of these niches in the body of the pyramid is 366 , and there are twelve in the stairs towards the east.
114. The military intrenehnent of Xochiculco, near 'Ietlama, two leagues south-west of Cuernavaea, is another remarkable ancient momment. It is an insulated hill, 370 ft . high, surrmanded with ditches or trenches, and divided by the hand of man into five terraces covered with masonry. 'The whole has the appearance of a truncated pyramid, whereof the four faces are in the cardinal points of the compass. The masonry is of porphyry, very regularly cut, and adorned with hieroglyphies; anong which are to be seen a crocodile sponting ין water, and men sitting cross-legged after the Asiatic fashion. On the phatform, which is very large, is a small spuare edifice, which was most probably a temple.
115. Thongh the province of Oaxaca contains no monments of ancient Aztec architecture, which astonish by their eolossal dimensions, like the lomses of the gods of Cholula, Papantla, and Teothinacan, it possesses the ruins of edifices remarkable for their symmetry and the clegance of their ornaments. The antiquity of them is mhown. In the district of Onxaca, sonth of Mexico, stands the palace of Mitla, contracted from Mignithan, signifying, in Aztee, the pluce of " coo. By. the 'Tzapotec Indians the ruins are called houbu, or huive Impial, or tomb), alluding to the excavations found beneath the walls. It is eonjectured to nave been a palace constructed over the tombs of the kings, for retirement, on the death of a relation. The tombs of Mitla are three edifiees, placed symmetrically in a very romantic situation. That in the best preservation, and, at the same time, the principal one, is nearly 130 ft . long. A staircase, formed in a pit, leats to a sulterranean apartment, 88 ft . iil length, and 26 ft . in width. This, as well as the exterior part of the edilice, is decorated with fret, and other ornaments of similar character (fig. T9.). But the most singular
 leature in these ruins, as compared with other Mexican architecture, was the discovery of six porphyry columns, placed for the support of a ceiling, in the midst of a vast hatl. 'They are almost the only ones which have been found in the new emintinent, and exhibit strong marks of the infancy of the art, having neither base nor capital. The mper part slightly diminithes. 'Their total height is 19 lt ., in single blocks of porphyry. The ceiling under which they were placed was formed by beams of Savine wood, and three of them are still in good preservation. The roof is of very large slabs. The number of separate buildings was originally five, and they were disposed with great regularity. The gate, whereof some vestiges are still discernible, led to a court 150 ft . square, which, from the rubbish and remains of subterranean apastments, it is supposed was surrounded hy four oblong edifices. That on the right is tolerably preserved, the remains of two columns being still in existence. The principal building had a terrace, raised between three and four feet above the level of the court, and serving as a base to the walls it surromads. In the wall is a niche, with pillars, four or tive feet above the level of the floor. The stone lintel, over the prineipal door of the hall, is in a single block, $f 2 \mathrm{ft}$. long and 3 ft . deep. The excavation is reached by a very wide stairease, and is in the form of a croms, supported by columns. The two portions of it, which intersect each other at right angles, are each 82 ft . hong by 25 ft wide. The inner court is surrounded by three small apartments, having no commmication with the fourth, which is behind the niche. The interiors of the apartments are decorated with paintings of weapons, sacritices, and trophies. Of windews there are no traces. Ilumboldt was struck with the resemblance of some of the ornaments to thoee on the Etruscan vases of Lower Italy: In the neighbourhood of these ruins are the remains of a large pyramid, and other buildings.
116. In the intendeney of Sonora, which lies north-west of the city of Mexico, and in the Gulf of California, oi the banks of the Rio Gila, are some remarkable ruins, known by the name of the Cusit (ritude. They stand in the middle of the vestiges of an ancient Aztec sity. The sides are in the direction of the four eardinal points, and are 445 te from nerth
to scuth, and 276 ft . from eat to west. The materials are unburned brick, symmetrically arranged, but unequal in size. The walls are 4 ft . in thickness. The luilding was of three stories. The principal edifice was surrounded by a wall with towers in it at intervals. From vestiges which appear, it is supposed the town was supplied with the water of the Rio Gila, by an artificial canal. The plain in the neighbourhood is covered with broken earthen pottery painted in white, red, and blue colours.
117. The capital of Mexico, reconstructed by the Spaniards, is undoubtedly one of the finest cities ever built by Europeans in either hemisphere. Perhaps there searcely exists a city of the same extent which, for the unilorm level of the ground on which it stands, for the regularity and breadth of the streets, and the extent of its great square, ean be compared to the capital of New Spain. The religious edifices are extensive and greatly decorated, but the architecture is much debased. To the dwellings ornament is sparingly applied; coloured tiles are used. The stones are a porous anygdaloid called tetzontli, and a porphyry of vitreous feld-spath, without any quartz; these give to the Mexican buildings an air of solidity, and sometimes even of magnificence. The wooden balconies and galleries which distigure the European cities in both the Indies are discarded; the balustrades and gates are all of Biscay iron ornamented with bronze ; and the houses, instead of roofs, have terraces, like those in Italy and other southern countries. It must, however, be admitted, notwithstanding the progress of the arts there since about 1820, that it is less from the grandeur and beauty of the edifices, than from the breadth and straightness of the streets, and their uniform regularity and extent, that Mexico commands the admiration of Europeans.

Sect. X.

ARAMAN, MOREGOUE, OK SARACENIC ARCHITEETURE.

118. Before the appearance of Nahomet, in the seventh century, and the consequent estallishment of Islamism, the Arabians were by no means celebrated for their skill in architecture. The beautiful country of Happy Yemen, wherein were seated the most ancient and populous of the forty-two cities of Arabia enumerated by Abulfeda, does not appear to have produced what might have been expected from the neighbours of the Egyptians, Syrians, Chaldeans, and Persians. The arts of the surrounding nations seen to have been lost upou them. Though a part of their time and industry was devoted to the management of their cattle, still they were collected into towns, and were employed in the labours of trade and agrieulture. The towers of Sana, compared by Abulfeda to Damaseus, and the marvellous reservoir of Merab, were constructed by the kings of the Homerites, who, after a sway of two thonsand years, became extinguished in 502. The latter, the Meriaba, mentioned by lliny as having been destroyed by the legions of Augustus, was six miles in ciremiference, and had not revived in the fourteenth century. "But," says Gibbon, "the prolime lustre of these was eelipsed by the prophatie giories of Medina and Mecea." Of the ancient architecture of Arabia there are so few examples remaining, that no satisfactory account can be given of it. Excavations, still seen in rocks, are said to be the houses of the people called Thamud; but the Caaba of Meeca is the only one of the seven temples in which the Arabians worshipped their idols now in existence. It is a quadrangular building, about 36 ft . long, 34 ft . broad, and about 40 ft . high. It is lighted by a door on the east side, and by a window, and the roof is supported by three octangular pillars. Since its adoption by Mahomet, it has been enelosed by the caliphs with a guadrangle, round which are porticoes and apartments for the pilgrims resorting to it. Here were the tombs of the eighty descendants of Mahomet and of his wife; but, in 1803, they were destroyed by the Wahabees, who, however, respected and spared the Caaba and its enclosures.
119. 'The extraordinary conquests from the Indus to the Nile, under Omar, ti:s second ealiph, who, after a reign of ten years, died in A. n. 644, brought the victorions Moslems in contact with nations then much more civilised than themselves. As their empire extended, their love for the arts and sciences increased. The first mosque built out of the limits of Arabia is supposed to be that which was founded by Omar on the site of the aneient temple at Jerusalem. Under the dynasty of the Ommiades, of which race Omar was a member, the cultivation of architecture was carried on with success. The seat of the empire was removed to Damascus, which was considerably enlarged and improved. Among its numerous splendid buildings was the celebrated mosque founded by Alwalid II. It was he who introduced the lofty minaret, whieh, though an innovation at the time, seems, in later years, to have been as neeessary a portion of the mosque as the main body of it. This caliph made considerable additions to the mosque at Medina, as he also did to that which had been built by Omar on the site of the Temple of Solomon, alove mentioned. His generals and governors of provinces seem to have been equally zealous in the cause of art and the prophet; witness the mosque built by one of the former on taking Samareand, and
the universal improvement in the provinces under the sway of the latter. Great as were the works just mentioned, the removal of the seat of the empire to the westem frontier of Persia, by the second caliph of the dynasty of the Abassides, gave a lustre to Arabian arehitecture which almost surpasses belief. Almansor, the brother and successor of Salfilh, laid the foundations of Bagdad in the year 145 from the Héjira (A. n. 762), a city which remained the imperial seat of his posterity during a period of five hundred years. The chosen spot is on the eastern bank of the Tigris, about fifteen miles above Modain; the double wall was of a cireular form; "and such," says Gibbon, "was the rapid increase of a eapital, now dwindled to a provincial town, that the funeral of a popular saint might be attended by eight hundred thousand men and sixty thousand women of Bagdad and the adjacent villages." The magnificence displayed in the palace of the caliph could only he exceeded by that of the Persian kings; but the pious and charitable foundation of cisterns and caravanseras along a measured road of seven hundred miles, has never been equalled.
120. Ahout A. n. 660-5, the prudence of the victorious general Akbah had led him to the purpose of founding an Arabian colony in the heart of Afriea; and of forming a citadel that might secure, against the accidents of war, the wealth and families of the Saracens. With this view, under the modest title of a caravan station, he planted the colony of Cairoan, in the fiftieth year of the Héjira. "When," observes Gibbon, "the wild beasts and serpents were extirpated, when the forest, or rather wilderness, was cleared, the vestiges of a Roman town were discovered in a sandy plain : the vegetable food of Cairoan is brought from afar; and the scarcity of springs constrains the inhabitants to collect, in cisterns and reservoirs, a precarious supply of rain water. These obstacles were subdued by the industry of Akbah; he traced a circumference of three thousand and six hundred paces, which he encompassed with a brick wall; in the space of five years the governor's palace was surrounded with a sufficient number of private habitations; a spacious mosque was supported by five hundred columns of granite, porplyyry, and Numiouan marble."
121. "In the West, the Ommiades of Spain," says the same author, "supported with equal pomp the title of Commander of the Faithful. Three miles from Cordova, in honous of his faithful Sultana, the third and greatest of the Abdalralmans constructed the city, palace, and gardens of Zehra. Twenty-five years, and above three millions sterling, were employed by the founder: his liberal taste invited the artists of Constantinople, the most skilful sculptors and architects of the age; and the buildings were sustained by twelve hundred columns of Spanish and African, of Greek and Italian marble. The hall of audience was incrusted with gold and pearls, and a great bason in the centre was surrounded with the curious and costly figures of birds and quadrupeds." The streets and honses at this place are hollowed out of the rock, which stands 1200 feet above them.
122. Whether we contemplate the materials furnished by Babylon and its neighbour-. hood, the dismantled towns of Syria, or the abundant ruins of Egypt, and from Tripoli to the Atlantic, it is curious, as the historian of the western Arabs has remarked, to oliserve that no people constructed, without recourse to the quarry, so many magnificent edilices. In Spain, this was most remarkably the case, whereof the reater will be convinced by reference to Murphy's Arabian Antiquities, and Laborde's Voyage l'ittoresque de l'E:spagne.
123. From the latter half of the eighth century to nearly the middle of the ninth, the progress of the Arabians in the sciences was wonderful. Their merit, however, in the art which it is our province to investigate, was of a class inferior to that of the people who invented and earried into execution, though later, the principles which regulated the stupendous monuments of Gothic architecture in Europe. They certainly understood the science of architecture ; and works on it were written for the benefit of those whose oceupations led them to take an interest in the art.
124. We regret that our limits do not permit us to dwell on the progress in the sciences made by the Arabians, though some of them are intimately connected with our subject. But the information we omit will be much more satisfactorily obtained by the reader consulting the pages of the historian of the decline and fall of the Roman Empire. Onr purpose is now to present a concise view of the arehitecture of the Arabians from Laborde's Foyage Pittoresque de l'Espagne (vol. ii, part 1. xliii. et seq.); observing, by the way, that, from our own study of the subject, we are inclined fully to adopt it. In Spain there is a sufficient number of monuments of architecture to class them chronologically, and to assign an epoch to the different styles they exhibit. Though the species does not resemble that which has been denominated Gothie, which is clearly not an imitation, the one and the other sprung from the same source. The point of departure was the architecture of Byzantium, in which city, after the fall of Italy, a totally new style arose, whose development in different modes was the basis of all modern architecture. As though the Colisenm had furnished the hint, the immense edifices, in the style of the period, were constructed with a multiplicity of stories, - they were heavy without, though lightly and richly decorated within; the artists employed in their erection seeming to aim at a transference to the architecture and sculpture on which they were engaged of the oriental profusion of ornament visible in the stuffs of India. This Byzantine school prociuced the Lombard and

Saxon styles in the North, on which we shall enlarge in the section on Gothe architecture, and, in the South, it produced the Arabian, Saracenic, or Moresque style, by whichever name the reader may choose to distinguish it. Both were strongly impregnated with the vices and defects into which the Roman arehitecture of the period had fallen. For the sake of illustrating what we mean, we refer, as examples, to the Batlis of Dioclesian, to that emperor's palace at Salona, and to the buildings of Justinian and Theodosius, - from all which may be learned the abuses and incongruities which attended the fall, not only of architecture, but of all the other arts. We find in them arches springing from capitals, columns without entalbatures, and even zigzag ornaments. But, with all this perversion of taste, the general form of the plans of the edifices altered not: that of the temples more particularly continued unchanged. Some great convulsion was necessary before they could undergo alteration, and such was the introduction of Christianity. Thus, says Saint Isidore, the basilica suffered transformation into the Christian chureh:- " basilicae olim negotiis plenæ, nụ̣e votis pro salute susceptis." Of this, in a succeeding page, we shall have more to say. But the change was not confined to the basilica; the palace and domestic dwelling equally partook of the alteration of wants. The liomans, whilst masters of the world, were careless in protecting their cities by walls. Defence was only necessary on their frontiers; and there, walls and towers were constructed, from which was the first hint for the castle, of which the Roman villa, fortified, is the type. Whe?, however, Italy was invaded, the fate of war soon caused exterior decoration to be sacrificed to internal comfort and luxury; and even liome, under Belisarius, was surrounded by walls and towers. The people, whose prowess made these precautions necessary, soon found the convenience of adopting similar habits and buildings.
12.5. The Arabians, whose wandering life could searcely be imagined capable of such a change, ultimately established themselves in Roman castles, and turned the Christian churches, which, at the period, were extremely numerous, into mospues. For some time, the architecture of the Goths, of the Arabians or Moors, was, as respects plan, the same; not less so was the character of the ornaments employed by both nations; but it was not long before these diverged into styles which possessed each its peculiar beauties. The Christians soon used the pointed arch; and the style they adopted became slender and tall, whilst that of the Moslems, from the nature of the climate and their peculiar habits, was deficient in elevation, though in the end it aequired a lightness and elegance which it did not at its origin possess. But it is proper, here, to impress on the mind of the reader that Gothic and Arabian architecture have nothing in common between them, except their origin from a common source. It is an error to confound them, or to suppose that the pointed arch is found in any strictly Arabian edifices. 'That, as far as we can ascertain, did not exist before the eleventl century. It seems to have been a development in the parts of a style which, as it passed into more northern latitudes, became more acute in the roots, from the necessity of discharging the rain and snow with greater facility. This pointed style spread itself over some parts of India; but, there, none of the examples are older than the fonrteenth or fifteenth century. lixeept in ornamental detail, whereof we append two specimens (figs. 80, 81.) from the Alhambra, the Arabs were not inventive. It is not

mikely that their skill in geometry greatly assisted them in the extraordinary combination of lines to be found in their decorations, which nothing can surpass; nor was it till the time of the Abassides that the Arabians becam: finly acquainted with what had been done by the Grecks. 'This knowledge was not confined to them, for there is aboudant proot: 1. That all the modern arts, as well of the North, as of the West and Sonth, had their origin from the Greek empire at Constantinople, which at that period gave the fishoion in them, as did Italy five centuries afterwards. 2. That the plans of churches and mosyues are traceable to that of the ancient basilica, as in the citadels of the middle ages, and the palaces of the Greck emperors, are to be found the types of the Gothic castie and of the Morespue alcazar. 3. That the Gothic and Saracenie styles attained their several perfection in very - different maners as to the details of their distribution and ornament,

Fíg. 91 caphitat, athamala. and acquired peculiar characters, which in hoth may be divided into three periods, the last in each being lost in the change that took place in laly on the revival of the arts. The periods of the Gothic will be noticel under the proper section
126. The first period in the history of Morespue architecture is from the foundation of Islamism to the ninth century, of which the finest example was the Mosgue of Cordova in Spain. This was commenced in 770 by Abderahman, and finished by his son and suceessor, 1 isham. Its plan is a parallelogram, whose longest side is 620 ft . ly 440 , formed by a wall and comenterforts, both of which are embattled. The height of the wall varies from 35 to (ioflt, and its thichness is 8 ft . The whole of the quadrangular space is internally divided into two parts, viz. a court of 210 lt . in depth, the inosque itself covering the remainder of the area. Thp mosque consists of minctect naves (of a porthon of one whereof fig. \&2. is a
 diagram) formed by seventen ranks of columns, and a wall pienced with arches, from south to north, and thirty-t wo narrower naves from east to west. Each of these naves is about 16 ft . wide from north to south, and about 400 ft . long, their width in the opposite direction being less. Thus the intersection of the naves with each other produces 850 columns, which, with fifty-two columns in the court, form a total of upwards of 900 columns. They are about 18 in . in diancter, the mean height of them is about 1.5 ft ., and they are covered with a species of Corinthian and Composite capital, of which there are many varieties. The columns have neithcr soele nor base, and are comected by arches from one to another. The ceilings are of wood, printed, each range forming. on the outside, a small root, sep parated from Fip. 82 . moner ar condora. those adjoining by a gutter. The variety of the marbles of the columns produces an effect of richmess which all agree is very striking. They were most probably procured from the lioman ruius of the city. It is impossible to pass over the description of this mosque without calling to mind the resemblance it bears in its arrangement to the bisilicas at Rome. The reader who has seen St. Agnese and St. Patolo finori le mura. we are sure, will think with us. After the conquest of Cordova in 1236, this mosque was converted inio a cathedral. In 1598, it was much disfigured by modern erections, which were necessary for better adapting it to the service of the Chistan religion. These, however, have not sof far ruined its ancient effect as to prevent an idea being formed of it when in its splendour. The deeorations throughout are in stneco, painted of various colours, decorated with legends, and occasionally gilt like the churches of the Lower Empire.
127. In the second period, the style greatly improvea in elegance. It lasted till the close of the thirteenth century, just before whicin time was founded the royal palace and fortress of the Alhambra, at Granada (fig. 83.), perhaps the most perfect model of pure Arabian architecture that has existed. During this period, no traces of the Byzantine style are to be found. An exuberance of well-tempered ornament is seen in their edifices, whose distribution and luxury manifest the highest degree of retinement. Speaking of the interior of the building above mentioneri, MI de Laborde says, that it extribits "tout ce que la volupté, la grace, lindustrie peuvent reunir de plus agréable et de plus parfait." After passing the principal entranee, you arrive at two oblong courts; one whercof, celebrated in Arabian history, called the Court of the Lions, is in fig. 84. represented on the following page. This court is 100 ft . long and 50 ft . broad, having 128 columns of white marble. Round these two courts, on the ground floor, are disposed the apartments of the palace. Those for state look out towards the country; the rest, cooler and more retired, have openings for light under the intenior porticoes. The whole is on one plane, the walls being placed so as exactly to suit the plateau of the rock; its entire length is about 2300 ft ., and breadth 600 ft . The doors are few and large, and the windows, except on the side where the landseape is most maynificent, are elicfly towards the interior. In one of the apartments, the Arabian architect nas, in an inscripiom, given his reason for this adoption, in the following terms: - "Mts. sindows admit the ligint, and exclude the view of external oljects, lest the beanties of
nature should divert your attention from the beanties of my work." The walls are covered with arabesques, apparently cast in moulds, and afterwards joined together. The orna-

ments are in colours of gold, pink, light blue, and a dusky purple, the first colour being nearest the eye, and the last furthest from it; the general surface, however, is white. The

Fig. 81. COURT OF the bhons, Afistasthea. walls, to the height of four feet, were lined with variously figured and coloured porcelain mosaics, as were the floors. The Arabs of the Spanish caliphate appear to have known some mode of preventing the decay of paint and timber, for the paintings, in which the medium for the colour is not oil, retain the original freshness of their colours, and the woodwork of the ceilings presents no symptoms of decomposition. It has been conjectured that the soundness of the wood thronghout has anisen from the trees being lanced or drained of their sap at the time of felling; but it may be, that the coating of paint las had some effect in producing the result. Deseription conveys no notion of this extraordinary edifice: the reader who wishes to ohtain one must refer to Murphy's work, already mentioned.
128. The third period of Arabian architectare is from the end of the thirteenth century to the decline of the Saracen power in Spain. During a portion of this period, it was used by the Spaniards themselves, and like the Gothic, in the northern and middle parts of Europe, was engrafted on the style which erept from Italy into all countries till the Renaissance. During this period were built the castles of Benavento, Penatiel, and Tordesillas; and the alcazars of Segovia and Seville. The plans continued much the same; but Greek ornaments began to appear, with Moresque arches on Corinthian columns. At this time, also, representations of the human figure are to be seen, which, by the laws of Mahomet, were strictly forbidden. There was a charm about this architecture whieh makes one almosi regret that reason and advance in eivilisation have extinguished it.
129. We are not to look to the works of the Λ rabians for the real grandeur which is exhibited in the works of Egypt, Greece, or Rome. Briek was the material most used. When sione was employed, it was covered with a coating of stucco. In their constructive combinations there is nothing to surprise. The domes which crown their apartments are neither lofty nor large in diameter, neither do they exhibit extraordinary meehanical skill. The Arabian arehiteets seem to have been unaequainted with the science of raising vaults on lufty piers. In the specimen cited at Cordova, the span, from pier to pier is less than 20 ft , which would not have required much skill to vault, yet we find the ceilings of timber. The use of orders was unknown to them ; the antique columns which they introduced were employed as they found them, or imitations of them, without an acquaintance with the types from which they were derired, with their principles or proportions. In truth,
their colmms are posts. We do not find, in the forms of Arabian art, that character of originality which can be traced from local causes. The Arabians had spread themselves out in every direction, far from their own country, in which they had never cultivated the arts; hence their architecture was founded upon the models before them, which the

Fig. 85. ARABIAN ARCHES. Byzantine school supplied. Of the forms of their arches, some whereof are here exhibited (.fg. 85.), the most favourite seems to have been the horse-shoe form. They may be ranged into two classes, - that just named, and the other, that wherein the curve is of contrary flexure, and described from several centres. Both classes are vicious in respect of construction, froin the impossibility of gaining resistance to thrust at the abutments. In masonry, such arches could not be executed on a large scale. In brick arches, however, the surface of the cement is so increased, that if it be good, and great care be used in not removing the centres till the cement is set, great variety of form in them may be hazarded. If the pleasure - perhaps we may say sensuality- of the eye is alone to be consulted, the Arabians have surpassed all other nations in their architecture. The exquisite lines on which their decorations are based, the fantasticness of their forms, to which colour was most tastefully superadded, are highly seductive. Their works have the air of fairy enchantment, and are only to be compared to that imagination with which the oriental poetry abounds. The variety and profusion wherewith they employed ornament impart to the interior masses of their apartments the appearance of a congeries of painting, incrustation, mosaic, gilding, and foliage; and this was probably much augmented by the Mahometan law, which excluded the representation of the human figure. If a reason be umnecessary for the admission of ornament, nothing could be more satisfactory than the splendour and brilliancy that resulted from their combinations. One of their practices, that of introducing light into their apartments by means of openings in the form of stars, has a magical effect.
130. We have principally confined ourselves, in the foregoing remarks, to the architecture

Fig. SG. PTAN, HOUSB AT ADGHERS. leading features are - the mented ; doors, with steps and small high parapets, opened at intervals by a railing formed of brick, in which holes are left for the circulation of the air, at the same time giving an ornamentai appearance to the front; staircases narrow and inconvenient; rooms of good dimensions and well-proportioned, having, besides the principal windows, an upper tier. Damascus, of which a slight view (fig. 88.) is annexed, has been deseribed as resembling a large camp of conical tents, which, on a nearer approach, are found to be small cupolas to the houses. Brick, sun-dried, is the principal material, and the forms of the roofs mentioned are absolutely necessary-to protect against the winter rains. Streets generally narrow, houses well supplied with fountains, and containing a large number of houses that may be ranked as palaces. Mosques, many in number, but presenting none that are very remarkable. The bazaars and batlis of considerable size and splendour. In Bagdad, there are many large squares. The gates erected by the caliphs are still in existence, and are tine specimens of A rabian art. Its walls of mud are 2.5 ft . in height, but within them are ramparts, carried on arches. In Bussorch, the most remarkable feature is the mode in which they construct their arches, which is effected without centres.
132. We do not think it necessary to detain the reader on the architecture of Moorish or Western Arabia. As in the eastern parts of the ancient empire, the houses nsually consist of a court, whereof some or all of its sides are surrounded by galleries. Narrow sooms run generally parallel with the gallery, usnally without any opening but the door
opening on to the gallery. Roofs are flat or terraced. Walls varionsly built, often of lime plaster, and stones, carried in in a sort of easing, which is removed when the work is set

From want of good timber, the rooms are narrow. The mosquen are by no means wordhy of notice. Fez, an ancient Arahian city, contains some lofty and spacions houses. Its strects are narrow, and on their first floors have projections which mach interript the light. In the ecutre of cach house is an open Inadrangle, surrounded by a gallery, communicating with a stairease. Into this gallery the doors of the apartments open. 'The ceilings are lofty, the floors of brick. All the principal honses are supplied with cisterns in the lower parts, for furnishing a supply to the baths, a luxary with which also exery mosque is provided. In this town there are nearly two hmodred caramanseras or ims, thee stories high. in each of whose apartments, varying from lifty to one handred, water is laid on for ablution. The shops, as in Cairo, are very small; so much so, that the owner call reach all the articles he deals in without changing lis ponture. In Thipuli, the honses rarely exceed one story in height ; but we must be content witlo observing that the character is still the same. "Nee facies ommibus una, nee diversa tamen." Though the late Sultan built a new palace in the Italiam style at Constaminople, the Moslems will mot casily relinquish a style inti-

inately allied to their habits and religion, a style whercof fig. 89. will convey some inca te the reater. He is also referred to figs. 31,32 , and 33, as examples of the same style ir Persia.

Sec"r. XII.

GIRECIAN ARCHITECTURE

133. The architecture of Greece is identical with colmmar architecture. Writers on the subject have so invariably treated the hut as the type on which it is formed, that, though we are not thoroughly satisfied of the theory being correct, it would be diflienlt to wander from the path they have troden. In the section on Egyptian arehitecture, we have alluded to the tombs at Beni-hassan, and we here present a representation of a portion of them from a sketch with which we were davoused many yeats stoce by the late sul Charles. Barry fig. 30.). The reader will pereese
 in it the appearance of the Doric column abmost in its purity. Wilkinson (Munners and Customs of the Aucient Egyptians) is of opinion that the date of these tombs is $1740 \mathrm{e} . \mathrm{c}$. , that is, in the time of the first Osirtesen, an antiguity which can be as signed to no example in Grece. These tombs are excavated in a rock, a short distance from the Nile, on it.s right lank, about forty-eight French leagues south of Caino. Two of them have architectural fronts like the above plate. The eolumns are five diameters and a balf in height. Thenmmber of the flutes, which are shallow, is 20 , and the capital eonsists of a simple abacus. There are no indications of a base or plintla. Above the architrave, which is plain, there is a projecting ledge of the rock, somewhat resembling a eornice, whose soffit is senfptured, appurently in imitation of a series of reeds, laid transersely and horizontally. There certainly does, in this, appear some reference to imitation of a hut, and the refinement of the Greeks, in after ages, may have so exfended the analogy as in the end to account for all parts of the entablature. The tradition doubtless existed long before Vitruvins wrote, who gives us nothing more than the belief of the arehitects of his time. The point is not, at this time, likely to be answered satisfactorily; if it could, it might be important, as leading to the solntion of some points of detail, which limit the propriety or impropriety of eertain forms in partienlar situations. llaving thus cantioned the reader asainst implicit faith in the system we are about to develope, we shall preface it by the opinion, on this subject, of M. Quatremere de Quincy, an authority of great value in everything that relates to the art. Carpentry, sats that writer, is incontestably the model upon which Greek architecture is founded ; and of the three models which nature has supplied to the art, this is, beyond dombt, the finest and most perfect of all. And again, he ohserves, whoever hestows his attention on the subject, will easily perceive that, by the mature of it, it inchades all those parts that are effective for utility and beauty, and that the simplest wooden hut has in it the germ of the most magnificent palace.
134. We must here premise that this section is strictly confined to the architecture of Greece and its colonies. Much confusion has arisen from the want of strict limits to the sem Crecian Architecture, one which has been indiscriminately applied to all buidlings in which the orders appear. 'Ihe orders were altered in their profiles, proportions, and details by the Lomans; and thongh between them and these of the Greeks there is a general resemblanee, and their members are genemally smiar, yet, on a minnte examination, great difterence will be found. In the lormer, lor instance, the contour of every moulding is a portion of a circle ; in the latter, the eontours of the mouldings are portions of conic sections. In Roman architecture, we find the dome, which in Greek arehitecture never ocenrs. In the latter, the areh is never seen; in the former, it is often an important feature. Judeed, the colummar style, as used by the Greeks, rendered arches mmecessary ; hence, in all imitation of that style, its introduction produces a diseord which no skill ean render agreeable to the educated eye. Attempts have been made hy the modern (ierman architects to introduce the use of the arch with Greek forms; but they have been all signal failures, and that becanse it is incapable of amalgamation with the solemm majesty and purity of Greek composition. Before such blending can be accomplished with success, the nature of pure (ireek architecture must be changed.
135. Following, then, the anthors, ancient and modern, on the origin of the art, we now proceed to a development of its origin. The first trees or posts which were fixed in the earth for supporting a cover against the elements, were the origin of the iondated eoln:ans which afterwards became the supports of porticoes in temples. Diminishing in dianter
as they rose in height, the tree indicated the diminution of the columm. No type, however of base or perlestal is found in trees: hence the ancient Doric is without base. This practice, however, from the premature decay of wood standing immediately on the ground, caused the intervention of a step to receive it, and to protect the lower surface from the damp. Scamozzi imagines that the mouldings at the bases and capitals of columns had their origin in cinctures of iron, to prevent the splitting of the timber from the superincumbent weight. Others, however, are of opinion that the former were used merely to elevate the shatts above the dampness of the earth, and thereby prevent rot. In the capital, it seems natura: that its upper surface should be increased as much as possible, in order to procure a greater area for the reception of the architrave. This member, or chief beam, whose name hespeaks its origin, was placed horizontally on the tops of the columns, being destined, in effect, to carry the covering of the entire building. Upon the architrave lay the joists of the ceiling, their height heing occupied by the member which is called the frieze. In the Doric order, the ends of these joists were called triglyphs, from their being sculptured with two whole and two half glyphs or channels. These, however, in the other orders in strictly Greek architecture, do not appear in the imitation of the type, though in Roman architecture it is sometimes otherwise, as in the upper order of the Coliseum at Rome, where they are sculptured into consoles. The space between the triglyphs was, at an early period of ihe art, left opeu, as we learu from a passage in the Iphigenia of Euripides, where Pvlades advises Orestes to slip through one of the metopæ, in order to gain adunission into the temple. In after times, these intervals were filled up, and in the other orders they altogether disappear, the whole length of the frieze becoming one plain surface. The inclined rafters of the roof projected over the faces of the walls of the building, so as to deliver the rain clear of them. Their ends were the origin of the mutule or modillion, whereof the former had its under side inclined, as, among many other examples, in the Parthenon at Athens. The elevation, or as it is technically termed, pitch of the pediment, followed from the inclined sides of the roof, whose inclination depended on the climate (See sect. 2030). Thus authors trace from the hut the origin of the different members of architecture, which a consideration of the annexed diagram will make more intelligible to the reader. Figs. 91. and 92. exhibit the parts of a roof in elevation and section: a a are the arelitraves or

tanbes; bb the ridge piece or columen; c the king-post or columna of a roof; dd the tie-beam or transtrum; e the strut or capreolus; ff the rafters or cantherii; $\mathrm{g} g \mathrm{~g} \mathrm{~g}$ the purlines or .empla; $h_{1} l_{1}$ the common rafters or asseres. The form of the pediment beeame un object of so much admiration, and so essential a part of the temple, that Cicerosays, if a temple were to be built in heaven, where no rain falls, it would be necessary to bestow one upon it. "Capitolii fastigium illud, et eæterarum ædium, non venustas sed necessitas ipsa fabricata est. Nain cum esset hahita ratio quemadmodum ex utraque parte tecti aqua delaberetur utilitatem templi fistigii dignitas consecuta est, ut etiam si in ceelo capitolium statueretur ubi imber esse non potest, nullam sine fastigio dignitatem habiturum fuisse videatur." (De Orature, lib. iii.) The inclination of the pediment will be hereafter discussed, when we speak on the article Roof, in another part of the work. Under the section on Cyclopean Architecture, mention has been made of the works at Tiryns and Mycene. We do not think there is sufficient chain of evidence to connect those ruins with the later Grecian works, though it mnst be confessed that the temples of Sicily, especially at Sclinus, and perhaps those at I'æstum, are connecting links. Perhaps the sculptures at Selinus might be properly called Cyclopean sculpture. in its more refined state.

1:36. Architecture, as well as all the other arts, could only be carried to perfection by slow steps. Stone could not have been used in building until the mechanical arts had been well known. It is curious that Pliny gives the Greeks credit only for caves as their original dwellings, from which they advanced to simple huts, built of earth and clay. His words are (lib. vii. s. 57.), "Laterarias ac domus constituerunt primi Euryalus et Myperbias
fratres Athenis ：antea specus erant pro domibus，＂This，perhaps，is no more than a tradi－ tionary fable．Fables of this kind，however，often have some foundation in fact．We are not always inclined to discard them，for we have little more than tradition for the early ex． cellence of the Athenians in civilisation，a nation among the Greeks who first became a body politic，and whose vanity caused them to assume the name of Auto ${ }^{\theta 0 \nu \in s}$ ，from a belief，almost sanctioned by llato，that their ancestors actually rose from the earth．How strong the prevailing opinion was of the original superiority of the Athenians，may he gathered from Cicero，in his oration for llaceus．＂Adsunt，＂he says，＂Athenienses，unde humanitas，doctrina，religio，fruges，jura，leges ortæ，atque in omnes terras distribute putantur：de ghorum urbis possessione，propter pulehritudinem，etiam inter deos certamen fuisse proditum est ：quax vetustate eà est，ut ipsa ex sese suos cives genuisse dicatur．＂But we shall not attempt，here，an early history of Grecee ；for which this is not the place，and，if aecomplished，would little answer our views．The Greeks exhibited but little skill in their earliest edifices．The temple of Delphi，mentioned by Homer，in the first book of the Ihad（v．404．et seq．），which Bryant supposes to have been originally founded by Egyptians， was，as we learn from I＇ausanias（Plocic．c．5．），a mere hut，covered with laurel branches． Even the eclebrated Areopagus was but a sorry structure，as we learn from Vitruvius （lib．ii．cap．1．），who judged of it from its ruins．The fabulous Cadmus－for we cannot help following Jacob liryant in his eonjectures upon this personage－has been supposed to have existed abunt 1519 b．c．，to have instructed the Greeks in the worship of the ligyptian and lhonician deities，and to have taught them various useful arts；but this carries us so far back，that we should be retracing our steps into Cyclopean architecture，if we were here to dwell on the period；and we must leave the reader－as is our own，and as we apprehend will be the ease with all who may succeed us－to grope his way out of the darkness as best he may．

137．The earliest writer from whom gleanings can be made to elucidate the architecture of Greece is the father of poets．To Homer we are obliged to recur，little as we approve of the architectural graphic flights in which the poet is wont generally to indulge．Though the Odyssey may not be of so high antiquity as the Iliad，it is，from internal evidence，of great age，for the poem exhibits a govermment strictly patriarchal，and it sufficiently proves that the chief buildings of the period were the palaces of princes．We may here，in passing，observe，that in Greece，previous to Homer and Ilesiod，the seutptor＇s art appears to have been unknown，neither was practised the representation of Gods．The words of

 use，was nothing more than a hearth，whereon the victim was prepared for the meal； and it was not till long after Homer＇s time that a regular priesthood appeared in Greece． In Sparta，the kings performed the office．In Egypt，the dignity was obtained by inherit－ ance；as was the case in other places．The Odyssey places the altar in the king＇s palace； and we may reasonably assume that the spot was oceasionally，perhaps always，used as the temple．From such premises，it is reasonable to conjecture that until the sacerdotal was separated from the kingly office，the temple，either in Greece or elsewhere，had no existence． It may not he without interest to collect，here，the different passages in the Odyssey，which bear upon the nature and construction of the very earliest buildings of importance， Between the $\alpha u \lambda \eta$ and the $\delta o \mu o s$ there must have been a distinction．The former，from its etymology a a ，must have been a locus subdialis；and though it is sometimes used（Iliad，Z． 247．）for the whole palace，such is not generally its meaning in the Odyssey．The $\alpha v \lambda \eta$ was the place in which the female attendants of Penelope were slain by Telemachus（Odyss．X． 446．），by tying them up with a rope over the No入os or ceiling．Hence we arrive at the conclusion that this No入os belonged to the $\alpha t \theta o v \sigma \alpha$ or cloister，supposing，as we have done， that the au η was open at top，and the al θ ov $\sigma \alpha$ is described（Iliad，$\Upsilon, 176$ ．）as $\epsilon \rho \iota \delta o v \pi o s$ ，that is，sonorous or echoing，and as circumscribing the open part of the $\alpha v \lambda \eta$ ．The No入os was supported by ktoves，posts or columns，and in the centre of the $\alpha \cdot \lambda \eta$ stood the Bopos or altar． If our interpretation be correct，the $\mu \in \sigma o \delta \mu a l$ in this arrangement must be the spaces between the columns or posts，or the intercolumnations，as the word is usnally translated；and the passage in the Odyssey（T．37．），wherein Telemachus is said to nave ssen the light on the walls，becomes quite clear．The passage is as follows：－

There seems no doubt that the word al θ ovoa will bear the interpretation given，and the arrangement is nothing more than that of the hypathral，and even correspondent with the Egyptian temple，particularly that of the temple at Edfou，deseribed by Denon，and repre－ sented in his plate 34.

138．Before we quit this part of our subject，let us consider the description which Hor ger（Odyss．H．81．）gives of the house of Aleinous as illustrative of Greek architecture－ This dwelling，which Ulysses visited，had a brazen threshold，ovoos．It was u屯epequs a
lofty-: wofed. The walls were brazen on every side, from the thereshold to the imnermost part. 'Ihis, however, is rather poctic. The coping Apozkos was of a Wlue colour. The interior doors are deseribed as gold. The jambs of them, $\sigma \tau \alpha \theta \mu$, were of silver on a brazen threshold. The lintel $u \pi \epsilon p \theta$ opoov was silver, and the cornice кoowin of gold. Statues of doge, in gold and silver, which had been curiously contrived by Vulcan hinself, guarded the portal. Thus far, making all due allowance for the poet's fancy, we gain an insight into what was considered the value of art in his day, more dependent, it a, ould seem, on material than on form. Seats scemed to have been placed round the interior part of the house, on which seats were cushions, which the women wrought. But we must return to the construction of the $\alpha u \lambda \eta$, inasmuch as in it we find considerable resemblance to the rectangular and columar disposition of the comparatively more recent temple.
t39. It would be a hopeless task to connect the steps that intervened between the sole use of the altar and the establishment of the temple in its perfection; though it might, did our limits permit the investigation, be more easy to find out the period when the regular temple became an indispensable appendage to the religion of the country. It is closely connected with that revolution which abolished the civil, judicial, and military offices of kings leaving the sacerdotal office to another class of persons. 'Thought in the palace of the king no portion of it was appropriated to religious ceremony, the spot of the altar only ercepted, yet, as it was the depository of the furniture and utensils requisite for the rite of sacrifiee, when the palace was no more, an apartment would be wanting for then ; and this, comjoined with other matters, may have suggested the use of the cell. Euselins has conjectured that the temple originated in the reverence of the ancients for their departed relations and friends, and that they were only stately montments in honour of heroes, from whom the world had received considerable benelit, as in the ease of the temple of l'allas, at Larissa, really the sepulchre of Acrisins, and the temple of Minerva I'olias at Athens, which is supposed to cover the remains of Erichthonius. The passage in Virgil (AEn, ii. v. 74.).

——ntumulum antiquæ Cereris, sedemque steratam

Venimus -
is explanatory of the practice of the ancients in this respect; and, indecd, it is well known that sacrifices, prayers, and libations were offered at ahmost every tomb; may, the restingplace of the dead was an asylum or sanctuary not less sacred than was, afterwards, the temple it self. From Strabo (lib, ii.) it is clear that the temple was not always originally a strueture dedicated to a god, but that it was oceasionally reared in honour of other personages.
140. Before proceeding to that which is more accurately known, it may not be minstructive to the reader to glance at the houses of the Greeks, as may he gathered from passages in the Iliad and the Odyssey. We shall merely remind him that l'rian's honse had fifty separate chambers, though he lived in a dwelling apart from it. These honses were, in some pats, two storics in height. thongh the pascages supporting that assertion (lliad, B. $51-16.184$.) have been pronounced of doub.ful anti fuity. There is. how exer, not the slightest doubt that the dwellings of the East conssted of more than a single story. David wept for Absatom in the chamber orer the gate (2 Sam. xviii. 33.). The altars of Ahaz were on the terrace of the upper chamber (? Kings, xxiii. 12.). The stammer chamber of Eglon hati stairs to it, for by them Ehnd escaped, after he had revenged Israel (Julges, iii. 20.; 1 Kings, vi. 8.). In the Septuagint, these upper stories are all represented by the word intepoov, the same employed by Iloner. The Jewish law required (Deml. x vii. 8.) the terraces on the tops of their houses to be protected by a battlement; and, indeed, for want of a railing (Odyss. K. 559. et seq.) of this sort, Elpenor, one of the companions of Clysses, at the palace of Ciree, fell over and broke his neek. The use of the word $\kappa \lambda, \mu a \xi$ in the Odyssey, connected with the words avabaivelv and karabauveav, and the substantive $\dot{v} \pi \in \rho \omega o v$, is of frequent occurrence: it is cither a ladder or a staircase, and which of them is unimportant ; but it elearly indicates an upper story. To a comparatively late period, the Greek temple was of timber. Even statues of the deities were, in the time of Xenophon, made in wood for the smaller temples (libl. iv. c. 1.), where the revenue of them was not adequate to atford a more expensive material. But time and accidents would seareely permit their prolonged duration, and none survived long enough to allow of a proper description of them reaching us. The principle of their construction necessaril! bure some relation to the materials employed, and the use of stone must have imparted new features to them. In timber, the beam (epistylium), which was borne by the columns, would probably extend in one piece through each face of the building. But in a stone construction this could not take place, even had blocks of such dimensions been procurable, and had mechanical means been at hand to phace them in their proper position. Irom this ahon: follows a diminution of spaces between the columns. The arch, be it recollected, was makiown. It is curions to observe that the relative anticquity of the examples of Grecian Doric may be expressed in terms of the intercolumnations; that is, the number of diancters forming the intervals between the columns. There is, moreover, another point worthy of notice, which is, that their antiguity may be also estimated by the comparison of the heights of the columns compared with their diameters. This, however, will repuire
further consideration when we come to treat of the orders: here it is noticed only meidentally. Though we are not inclined to place reliance on the account given by Vitruvius of the origin of the orders of architecture, we should scarcely be justified in its omission here. It seems necessary to notice it in any work on architecture; and, after remarking that the age which that author assigns for their origin is long before Homer's time, at which there seems no probability of their existence, from the absence of all reference to them in his poems, we here subjom the account of Vitruvius (lib. iv. c. 1.) :-"Dorms, son of Hellen and the Nymph Orseis, reigned over Achaia and Peloponnesus. He built a temple of this (the Doric) order, on a spot sacred to Juno, at Argos, an ancient city. Many temples similar to it were afterwards raised in the other parts of Achaia, though, at that time, its proportions were not preeisely established. When the Athenians, in a general assembly of the states of Greece, sent over into Asia, by the advice of the Delphic oracle, thirteen colonies at the same time, they appointed a governer over each, reserving the chief command for Ion, the son of Xuthus, and Crousa, whom the Delphic Apollo had acknowledged as son. He led them over into Asia, where they oceupied the borders of Caria, and built the great eities of Ephesus, Miletus, Myus (afterwards destroyed by inundation, and its sacred rites and sufrages transferred by the Ionians to the inhahitants of Miletus), Priene, Samos, Teos, Colophon, Choos, Erythre, Phoeara, Clazomene, Leberlos, and Melite. 'Ihis last, as a punishment for the arroyance of its citizens, was detached from the other states in the course of a war levied on it, in a general comeil, and in its place, as a mark of favour towards king Attalus and Arsinoe, the city of Smyrna was received into the number of the lonian states. These received the appellation of lonian, after the Carians and Lelegee had been driven onit, from the name of Ion, the leader. In this country, allotting different sites to sacred purposes, they erected temples, the first of which was dedieated to Apollo Panionius. It resembled that whieh they had seen in Achaia, and from the species having been first used in the cities of Doria, they gave it the mame of Doric. As they wished to ereet this temple with columns, and were not aequainted with their proportions, nor the mode in which they should be adjusted, so as to be both adipted to the reception of the superincumbent weight, and to have a beatiful effect, they measured a man's height by the lengtly of the foot, which they found to be a sisth part thereof, and thence deduced the proportions of their columns. Thus the Doric order borrowed its proportion, strength, and beanty from the human figure. On similar prineiples, they afterwards built the temple of Diana; but in this, from a desire of varying the proportions, they used the female figure as a standard, making the height of the column eight times its thickness, for the purpose of giving it a more lofty effeet. Under this new order, they phaced a base as a shoe to the foot. They also added volutes to the capital, resembling the sraceful curls of the hair, hanging therefrom, to the right and left, certain mouldings and foliage. On the shaft, channels were sunk, bearing a resomblance to the folds of a matronal gament. Thus were two orders invented; one of a maseuline character, without ornament, the other of a character approaching the delicacy, decorations, and proportions of a female. The successors of these people, improving in taste, and preferring a more slender proportion, assigned seven diameters to the height of the Doric column, and eight and a half to the Ionie. That species, of which the Ionians were the inventors, has received the appellation of lonic. The third species, which is ealled Corinthian, resembles, in its character, the graceful elegant appearance of a virgin, whose limbs are of a more delicate form, and whose ornaments should be unobtrusive The following is the fabulous account of the origin of the eapital of this order. (Fig. 93.) A Corinthan virgin who was of mar-

Fig. 93. origis ug curin thian capltal. riageable age, fell a vietion to a violent disorder: after her interment, her nurse, collecting in a basket those articles to which she hat shown a partiality when alive, carried them to her tomb, and placed a tile on the basket, for the longer preservation of its contents. The basket was accidentally placed on the root of an acantlus plant, which, pressed by the weight, shot forth, towards spring, its stems and large foliage, and in the course of its growih, reached the angles of the tile, and thus formed volutes at the extremities. Callimachus, who, for his great ingenuity and taste in seulpture, was called by the Atheniaus кoтate $\chi^{\nu 0 S}$, haprpening at this time to pass by the tomb, observed the basket and the delicacy of the foliage that surounded it. lleased with the form and novelty of the combination, he took the hint for inventing these columns, using them in the country about Corinth," Sc. Now, though we regret to damage so elegant and romantic a story, we must remind those who would willingly trust the anthority we have quoted, that Vitruvius speaks of matters which oceurred so long before his time, that in such an investigation as that before us we must have other anthentication than that of the author we quote, and most especially in the ease of the Corinthian capital, whose type may be referred to in a
vast number of the examples of Egyptian capitals, one of which, among many, is seen in fiy. 94.
141. The progress of the art in Grecee, whose inhabitants, in the opinion of the Egyptian priests in the time of Solon, were so ignorant of all science that they neither understood the mythology of other nations nor their own (Plato, in T'iman), cannot be satisfactorily followed between the period assigned to the siege of 'Proy and the time of Solon and Pisistratus, or about 590 в. c. But it is, however, certain that within four eenturies after Homer's time, notwithstanding their originally coarse manners, the Grecians attained the highest exeellence in the arts. Gognet is of opinion the nurture of the art was principally in Asia Minor, in which country, he thinks, we must seek for the origin of the Doric and Lonic orders, whilst in Greece Proper the advaneement was slow. The Corinthian o: der

Fuid 91. buyprian capitat., w:as, however, the last invented, and it seems generally agreed that its invention belongs to the mother country; but this we shall not stop to discnss here. The Temple of Jupiter, at Olympia, one of the earliest temples of Greece (Pausanias, Elice. Ir. c. 10.), was built about 630 years before the Christan ara; and after this period were reared temples at Samoc, Priene, Ephens, and Magnesia, and other places up to that age when, under the administration of Perieles, the arehitecture of Greece attained perfection, and the highest beauty whereof it is supposed to be susceptible, in the larthenon (fig. y5.)

Fig. 95.
VIKW OF THR PARTHENON,
at Athens. The date of the erection of one of the temples of Diana, at Ephesus, was as remute as that of the temple of Jupiter. If Livy had sufficiently our confidence, and we concede that other writers corroborate his statement (lib. i. c. 45.), its date is as ancient as the time when Servius Tullius was king of Rome. Great, however, as were the works wheh the Grecians executed, the mechanieal powers were, if one may judge from Thucydides (lib. iv.), not then compendiously applied for raising weights.
142. The origin of the Duric ordee is a question not easily disposed of. Many provinecs of Greece bore the name of Doria; but a name is often the least satisfactory mode of acconnting for the hirth of the thing which bears it. We have already attempted to aceount for the parts of this order by a reference to its supposed connection with the hut. The writer, in the Encyclopédie Méthodique, truly says that if the Doric had an inventor, that inventor was a people whose wants were, for a long period, similar, and with whom a style of building prevailed suitable to their habits and climate, though but slowly modified and carried to perfection. At the begiming of this section, we have, however, suffimiently spoken on this matter. 13ut there are some peculiarities to be noticed with respeet to the Doric order, whieh we think will be better given here than in the third book, where we propose to treat of the orders more fully; and these consist in the great differences which are found in its proportions and parts in different examples. For this purpose, several buildings have been arranged in the following table, wherein the first colnmn exhibits the name of the building; the second the height of the column, of the example as a nume-
rator, and its lower dameter as a denominator, both in English feet; the third is the quotient of the second, showing the height of the column, expressed in terms of its lowen diameter ; the fourth column shows the height of the entablature in terms of diameter of the column; the fifth column gives the distance between the columus in the same terms; and the sixth shows the height of the capitals also in the same terms: -

Example.	Height divided by lower Diameter in Engli-h Feet.	Diameters high.	Height of Entablature in Terins of Diameter.	Intercolumniations.	Ileight of Capitai in terins of Diameter.
Temple at Corinth - - *	$\frac{23 \cdot 713}{5 \cdot 83}=$	4.065	- -	$1 \cdot 262$	$\cdot 405$
Hypæthral Temple at Pæstum -	$\xrightarrow{28 \cdot 950} 7 \cdot 0$	4-134	$1 \cdot 741$	$1 \cdot 167$	$\cdot .549$
Emneastyle Temple at Pæstum -	$\frac{21 \cdot(00}{4 \cdot 85}=$	4*329	$1 \cdot 140$	$1 \cdot 064$	-500
Greater Ilexastyle Temple at Selinus	$\begin{gathered}32 \cdot 6.8 \\ 7 \cdot 49\end{gathered}=$	$4 \cdot 361$	$2 \cdot 200$	$1 \cdot 490$	$\cdot 490$
Temple of Minerva at Syracuse -	$\frac{22 \cdot 665}{6 \cdot 50}=$	4.410	- .	- .	-486
Octastyle Iypæthral Temple at Selinus	$\begin{aligned} & 18 \cdot 585 \\ & 10 \cdot 62 \end{aligned}=$	4.572	2.038	1.023	$\cdot 450$
-Temple of Juno Lucina at Agrigentum	${ }_{21 \cdot 156}^{4 \cdot 59}=$	4 C05	- -	- -	$\cdot 570$
Temple of Concord at Agrigentum	$\xrightarrow[-2052]{-04}=$	4.753	$1 \cdot 976$	1.071	-487
Hexastyle Temple at Pastun *	$-\frac{20 \cdot 353}{4 \cdot 24}=$	4795	1917	$1 \cdot 111$	$\cdot 564$
Temple of Jupiter Panhellenins at Egina	$\frac{17 \cdot 351}{322}=$	$5 \cdot 305$	- -	$1 \cdot 680$	486
Parthenon - . - -	$\frac{34 \cdot 232}{6.15}=$	5565	1.977	$1 \cdot 275$	-459
Temple of Theseus at Athens -	$-\frac{18.717}{3 \cdot 30}=$	5669	$1 \cdot 964$	$1 \cdot 250$	502
Temple of Minerva at Sunium -	$-\frac{19 \cdot 762}{3 \cdot 34}=$	5.899	1.928	1.472	372
Doric Portico of Atigustus at Athens	$\frac{26 \cdot 206}{4 \cdot 33}=$	$6 \cdot 042$	$1 \cdot 724$	1.046	374
Temple of A pollo, Island of Delos .	$\begin{array}{r}18.721 \\ -3.02\end{array}=$	6.052	1900	1500	-555
Temple of Jupiter Nemeus - -	$\frac{33932}{522}=$	6-5.5	$1 \cdot 560$	$1 \cdot 348$	$\cdot 383$
Portico of Philip of Macedon -	$\frac{19 \cdot 330}{2 \cdot 6}=$	6.35	1.867	2.700	-480

143. Casting our eye down the third column of the above table, we find the height of the column in terms of its lower diameter varying from 4.065 to 6.535 . Lord A berdeen (Inquiry into the Principles of Beruty in Greek Architecture, 1822) seems to prefer the proportion of the capital to the column, as a test for determining its comparative antiquity ; but we are not, though it is entitled to great respect, of his opinion, preferring, as we do, a judgment from the height as compared with the diameter to any other criterion; although it must be admitted that it is not an infallible one. The last columns shows what an inconstant test the height of the capital exhibits. There is another combination, to which reference ought to be made, - the height of the entablature, which forms the third column of the table, in which it appears that the most massive is about one third the height of the whole order, and the lightest is about one fourth, and that these proportions coineide with the thickest and the thinnest columns.
144. The entasis or swelling, which the Greeks gave to their columns, and first verified by the observations of Mr. Allason, was a refinement introduced probably at a late period, though the mere diminution of them was adopted in the earliest times. The practice is said to have its type in the law which Nature observes in the formation of the trunks of trees. This diminution varies, in a number of examples, from one fifth to one third of the lower diameter; a mean of sixteen examples gives one fourth. The mere diminution is not, however, the matter for consideration; but the curved outline of the shaft, whish is attributed to some refined perception of the Greeks
relative to the apparent diminution of objects as their distance from the eye was increased, which Vitruvins imagines it was the object of the entasis to correct. It cannot be denied that in a merely conjeal shaft there is an appearance of concavity, for which it is difficult to account. The following explanation of this phenomenon, if it may be so called, is miven by our esteemed and learned friend, Mr. Narrien, in the Encyc. Metropol. art. Architecture. "When," he observes, "we direet the axis of the eye to the middle of a tall colmm, the organ accommodates itself to the distance of that part of the object, in order to obtain distinctness of vision, and then the oblique pencils of light from the upper and lower parts of the column do not so accurately converge on the retina: hence arises a certain degree of obseurity, which always produces a pereeption of greater magnitude than would be produced by the same object if seen more distinctly. The same explamation may serve to account for the well-known fact, that the top of an undiminished pilaster appears so mueh broader than the body of its shaft ; to which, in this case, may be added some prejudice, caused by our more frequently contemplating other objects, as trees, which taper towards their upper extremities." Connected in some measure with the same optical deeeption is the rule which Vitruvius lays down (book iii. chap. 2.) for making the columns, at the angles of buildings, thicker than those in the middle by one fiftieth part of a diameter, - a law which we lind followed out to a much greater extent in the temples of the I'arthenon and of Theseus, at Athens, where the columns at the angles exceed in diameter the intermediate ones by one forty-fourth and one twenty-eighth respectively. Where, however, the columns were viewed against a clark ground, some artists think that a contrary deecption of the eye seems to take place.
145. In the investigation of the Doric order, among its more remarkable features are to be noted the longitudinal strix, called flutes, into which the colomn is eut ; every two whereof mite, in almost every case, in an edge. Their horizontal section varies in ditlerent examples. In some, the flutes are formed by segments of circles; in others, the form approaches that of an ellipsis. 'The number all round is usually twenty; such being the ease at A thens; but at Pestum the exterior order of the great temple has twenty-four, the lower interior order twenty, and the upper interior sixteen only. It has been strangely imagined, by some, that these flutings, which, be it remembered, are applied to the other orders as well as to the Doric, were provided for the reception of the spears of persons visiting the temples. The conjecture is scarcely worth refutation, first, because no situation for the doup oδ ок η (place for spears) would have led to their more continnal displacement from accident ; and secondly, because of the sloping or hemispherieal form in the other orders, the foot of the spear must have immediately slid off. 'Their origin may probably be fomad in the polygonal colum, whose sides received a greater play of light by being hollowed out, - a refinement which would not be long mpereeived by the Greeks.
146. We shall now notice some of the more important Doric edifices, as comected with the later history of the Doric order, which was that most generally used by the Einropean states of Greece, up to their subjugation by the Romans, The temple of dupiter Panhellenius, at Eigina, is probithly one of the most ancient in Greece. The story, however, of l'ausanias, that it was built by Racus, before the war of 'lyoy, is only useful as showing us its high antiquity. (Fig. 96.) 'The proportions of its colmons and entablature are to he

found in a preceding page. The senlpture with which this building was decorated is now at Munich. Though, perhaps, not so old as the buiding itself, it is of an antiquity coeval with the l'ersian invavion. The name of the architect of this temple was Libon, of whom no other work is known; its age is, perhaps, from about 600 years before Christ. 'The Doric temple at Corinth, of which five columns, with their architrave, are still in existence, is a very early specimen of Grecian architecture. The assertion that it was dedieated to Vemus is unsupported by testimony.
147. The Grecian temples in Sicily were erected at periods which it is not easy to fix ; and with respect to them, we can only, from circumstances connected with the island, reasom on the dates to be assigned to them. The founding of the city of Selinus or Selimuns, on the south-west coast of the island, has usually been attributed to a colony from Megara; but we are of opinion with the Baron lisani (Memoria sulle Metope Selinuntine) that it existed as a Phenician city long previous to the settlement there by the Megareans. The style and forms of the sculpture of the Selinuatine temples seem to bear marks of a remoter age than is usually allowed to them, that is, 500 н.с.; they are dated 600 b.c. by Angell \& Evans. (See 13. 111.) Of the means and the circumstances mder which the temples were ral sed we are ignorant; but their ruins sufficiently indicate the wealth and power that were employed upon them, as well as a considerably advanced state of the at.
148. The tenple of Jupiter Olympiuc, the largest in the island, and one of the mont stupendous momments of antiquity, was, as we learn from Diodorus (lib. siii. p. 82.), never completed. The Agrigentines were occupied upon it when the city was taken by Hamilear, cir. 247 ह. c. Its columns were on such a scale that their flutes were sufficiently large to receive the body of a man. The temples of Peace and of Concord, in the few vestiges that remain of them, attest the ancient magnificence of the city of Agrigentm, and are among the most beautiful as well as the best preserved remains of antiquity. A Corinthian colony established itself at Syracuse, as is said, 7.50 13. C. ; but no details of the history of the city furnish us with the means of ascertaining when the first temples there were eeected. Its riches and magnificence were, however, such that it soon became an object of temptation to the Carthaginians. Its temple of Ninerva is evidently of very remote autiquity.
149. The great Myprethral temple at l'astum was probably constructed during the period that the city was under the power of the Sybarites, who dispossessed its original inbabitants, enjoying, for upwards of two hundred years, the fruits of their usurpation. Marks of Greek art are visible in it, and the antiquity of the Hypethral temple itself is contirmed by the example. The city fell into the hands of the Lucanians about 350 years B.c.; after which, in about 70 years, it was a municipal town of the Roman empire. The following is perhaps the chronological order of the principal buildings of Sieily and Magna Graccia, riz. Syracuse, l'estum, Selinus, Segeste, and Agrigentum.

1!O. The dates of the edifices at Athens are, without difficulty, accurately fixed. The Propylieum (figs. 97 and 98.) was commenced by Mnesicles about 437 e.c., and, at a great

expense, was completed in five years. It is a specimen of the military architecture of the period, and at the same time forms a fine entrance to the Λ (eropolis of Λ thens. At the rear of its Doric portico the roof of the vestibule was supported within by two rows of lonic columns, whose bases still remain. Dy the introduction of these an increased height was obtained for the roof, the abaci of the lonic capitals being thas bronght level with the ex -

trion fricze of the building. The Parthemon (figs. 99. and 100 .) ereeted a few years later muder the superintendence of letimns, is well known as one of the finest remains of antiquily

Fig. Iow.
makia fion or the pahthenon.
As well as the building last mentioned, it was reared at the period when l'erieles had the manarement of public allairs, and was withont a rival in Athens. Phidias was the superintendent sculptor employed; and many of the productions which decorated this magnitieent edifiee have doubtless become known to the reader in his visits to the British Musemm, where a large portion of them are now deposited. Nearly coeval with the Propylaenm and I'arthemon, or perhaps a little earlier, is the temple of 'Thesens (fig. 101.), which was, it is supposed, erected to receive the ashes of the national hero, when removed from scyrus to Athens. 'Ihe ruins of' the architectural momments of this city attest that the boasted power and opulence of Grecee was not an idle tale. Pericles, indeed, was charged by his emmies with having brought disgrace upon the Athenams by removing the publie trea-

 roat a thons:mill taldolls, as a
 her-rif ant with, jowels ($\mathrm{I} / \mathrm{m}=$

 was probathly ly latimas lour
 His mehitoet was the templa of Apwlla lipuentins, ill Areadi.e still menly whtire Jlas
 Shordy detait. 'The frome has
 thirform in coll flank (the womal

 sille, lo the momber of sis, te-

 military architertare in their towers mad gates. At wn distant time fom the age in grese

 proportions are aproximated, an exace conformity will therwle is mot oberved in any. The

 that the propertions of Vitravins are obtained on a lime passing Heromgh lhe aver at the

 He temple of Jupiter at Selimes, very marly in newodanee will hae rule; lout in order for
 instead of intereohmmiations on the tlank, is manke exactly domble Hesen in liont. In
 others, the mumber of intereolmmiations on the tlank was mate domble the manher el

 She simplicity which flowed from these arrangements in fle (irecian fomplem was sill
 data, the diameter of the columa, the wilth of the: intereohmanimion, mul the bumber of columes in front, all the ofler parts might le fisumb.
1.53. The Jonie: order, at first chic!ly eonfined to the statug of Λ sia Minor, "pponrs to lanve

 seens to late been the promoter of a preat diallgio in the taste of hia diay. Vilonvins
(lib. iv. c. 3.) tells us that Ifermogenec, "after having prepared a large quantity of marble for a Doric temple, clanged his mind, and, with the materials collected, made it of the Ionie order, in honour of Bacchus." We are bound, however, to observe upon this, that the story is not confirmed by any other writer. It is probable that this splendid building was raised after the I'ersian invasion; fur, according to Strabo (lib. xiv.), all the sacred eciifices of the Ionian cities, Ephesus excepted, were destroyed by Xerxes. Besides this netastyle temple, those of Apollo Didymaeus, near Miletus, built about 376 в.c., and of Minerva Polias, at Priene, dedicated by Alexander of Macedon, are the ehict temples of this order of much fame in the colonies. We shall therefore confine our remaining remarks to the three Ionic temples at A thens, and shall, as in the Doric order, subjoin a synoptical view of their detanl.

Example:	Height divided be lower Ihameter, in Enytish Feet.	$\begin{aligned} & \text { Diameters } \\ & \text { lingh. } \end{aligned}$	Heicht of Enlallature in term- of bianter.	Intercolumniations.	Height of Caputal in terms of Diameter.	"ijucer Fianle er. lower Diant. being 1 O(k).
'Temple on the llyssus .	$\frac{14694}{17 \times 3}=$	82.41	$2 \cdot 265$	2090	C.610	-8.50
Temple of Minerva Polias -	$\frac{2.73 \cdot 7}{2 \cdot 7 \cdot 6}=$	$9 \cdot 119$	$2 \cdot 287$	$3 \cdot 500$	$0 \cdot 00$	-833
Temple of Erectheus -	$\frac{21 \cdot 625}{2 \cdot 317}=$	$9 \cdot 337$		2000	$0 \cdot 773$	-816

154. We here see that the Ionic column varies in height from cight diameters and nearly a quarter to nearly nine and a half, and the upper diameter in width between $\frac{85}{103}$ and $\frac{815}{10}$ The dissimilarity of the eapitals renders it impossible to compare them. The mean height of the entablature is about a fourth of the height of the whole order. The height of the Grecian Ionic cornice may be generally considered as two-ninths of the whole entablature.
155. The age of the double temple of Minerva Polias (fig. 102.) and Erectheus hits

now been stated as not completed in b.c. 409, at which time a committee was appointed to report on its condition. Ferguson, On the Erechthenm, read at the Royal Institute of British Architects, 1875-76, and 1878-79.
156. In the bases applied to the order in the Athenian buil:lings there are two tori, with a scotia or trochilus between them, a fillet below and above the scotia separating it from the tori. The lower fillet generally coincides with a vertical line let fall from the extreme projection of the upper torus. In the temple on the Ilyssus the lower fillet projects about half the distance between the hollow of the scotia and the extremity of the inferior torus. The height of the two tori and scotia are nearly ecqual, and a bead is placed on the upper
torus for the reception of the shaft of the column. The temples of Erectheus and that on the Ilyssus have the lower tori of their bases uncut, whilst the upper ones are fluted horizontally. In that of Minerva Polias, the upper torus is sculptured with a guilloche. The base just described is usually denominated the Arric Base, though also used in the colunies. The bases, however, of the temples of Minerva Polias at Priene, and of Apollo Didymaus near Miletus, are very differently formed.
157. The Volute, the great distinguishing feature of the order, varies considerably in the different examples. In the edifices on the Ilyssus and at lriene, as well as in that of Apollo Didymxus, the volute has only one channel between the revolutions of the spiral; whilst in those of Erectheus and Minerva Polias, at Athens, each volute is furnished with two distinct spirals and clannels. In the temple on the Ilyssus, the capital is terminated a little below the eye of the volute; in the others it reaches below the volutes, and is decorated with honeysuckle flowers and foliage. The number of flutes, which on the plan are usually elliptical, is twenty-four, and they are separated by fillets from each other. In some examples they descend into the apophyge of the shaft.
158. The tomb of Theron, at Agrigentum, in which Ionic columns and capitals are crowned with a Doric entablature, has, by some, been quoted as an example of the Ionic order ; but we do not believe it to be of any antiquity, and, if it were, it is so anomalous a specimen that it would be useless to pursue any inguiry into its foundation.
159. In the ante or pilasters of this order, as well as of the Doric, their capitals differ in profile from the columns, and are never decorated with volutes. Their breadth is usually less than a diameter of the column, and they are not diminished.
160. The highest degree of refinement of Greek architecture is exhibited in its examples of the Corintlian order, whose distinguishing feature is its capital. We have, in a preceding page (139), given Vitruvius's account of its origin ; but we much doult whether Callimachus was its inventor.
161. The capitals of Egyptian columns are so close upon the invention, that we ap-

-if. 103. choracic monument of Lissickatis. prehend it was only a step or two in advance of what had previonsly been done. The palm leaf, lotus flower, and even volutes, had been used in similar situations in Egypt, and the contour of the lotus flower itself bears no small resemblance to the bell of the Corinthian capital.
162. We are inclined to assign the period of the latter part of the Peloponnesian war as that in which the order first came into use. We find from Pausanias (Arcad. c. 45.) that Scopas, the celebrated arehitect of Paros, rebuilt the temple of Minerva at Tegiea, which was destroyed ly fire about 400 years e.c., and that, aecording to that anthor, it was the largest and most beantiful edifice in the Peloponnesus. The cell, which was hyprethral, was surrounded by two ranks of Doric columns, which were surmounted by others of the Corinthian order. The peristyle of this temple was Ionic.
163. The delicacy of formation of this order has, doubtless, subjected its examples to earlier destruction and decay than have attended the other orders: hence our knowledge of it is almost confined to the examples we meet of it in the Tower of the Winds, and the Choragic monument of Lysicrates (fig. 103.), both at Athens; the former whereof can seareely be considered Corinthian, and the latter not very strictly so. It was erected about 330 years B.c., as appears from the inseription on the frieze. These Choragie buildings, usually of sinall dimensions, were erected in honour of those who, as choragi or leaders of the chorus in the musical games, were honoured with the prize, which was a tripod. The following are the proportions observed in the Choragic monument of Lyy sicrates:-

From which it appears that the entablature is less than a fifth of the total height of the order. The intercolumiations are $2 \cdot 200$ diameters. The base is little different from that used in the lonic order.
16.I. In the ornaments applied for the decoration of the sacred edifices of the Greeks,
they imitated the real and symbolical oljects used in their worship. 'Thas, at the temple of Apollo at Teos, the lyre, tripod, and griffin oceur; in the 'Temple of the Winds at Athens, the winds are personified on the walls; the Choragic momunent of Lysicrates exhibits the conseguences of a contempt of music; on the temple of Victory, at the entrance of the Acropolis, was recorded, on the very spot, the assault and repulsion of the Amazons; the Lapithe are vanquished again in the temple of Theseus, the founder of the city; and lastly, in the larthenon is brought before the eye, on a belt round the cell of the temple, the Panathenaie procession, which, issuing from the door of the cell, biemnially perambulated the edilice, whilst its peeliment perpetuates the contest between Neptune and Minerva for the honour of maming the city, and ealls to remembrance the words of Cicero, "De quorum," (Atheniusium,) "urbis possessione, propter putheritudinem etiam inter doos certamen fuisse proditum est," \&c. In the capitals of the Corinthian examples just noticed the haves are those of the olive, a tree sacred to the tutelary goddess of Athens, and on that account as well as its beauty of form and simplicity adopted by a people whose consistency in art has never been excelled.
16.5. Besides the method of supporting an entablature by means of columns, the employment of figures was alopted, as in the temples of Erectheus and Minerva Polias before mentioned (see fig. 102.). They were called Caryatides; and their onigin, according to the account of it by Vitruvius (lib. i. c. J.), was that Carya, a city of Pelopomesus, having assisted the Persians against the Grecian states, the latter, when the conntry was freed from their invalers, turned their ams against the Caryans, captured their city, put the males to the sword, and led the women into captivity. The arehiteets of the time, to perpetnate the ignominy of the people, substituted statues of these women for columns in their porticoes, fiithfully copying their ornaments and drapery. It is, however, certain that the origin of their application for architectural purposes is of far higher antiquity than the invasion of Grece by the Persians, and in the above account Vitruvius is not corroborated by any other writer. Herodotus (Polymnia), indeed, observes that some of the states whom he enumerates sent the required offering of salt and water to Xerxes; but no mention is made of Carya, whose conduct, if punished in such an extraordinary manner, would have been too curious a matter to have ieen passed over in silence. Whether the use of statucs to perform the office of columns travelled into Greece from India or from Egypt, we will not pretend To determine. Both, however, will furnish examples of their applieation. In the latter country we find them employed in the tomb of King Osymandyas (Diodorus, tom. i. f. 56. Wesseling). Diodorus also, speaking of Psammeticus, says that having obtained the whe le kingdom, he built a propylamm on the cast side of the temple to the god at Memphis, which temple he encireled with a wall; and in this propyleum, instead of columns, substituted colossal statues (ko入oztoùs únoovi, $\sigma a s$) twelve cubits in height.
166. The application of statues and representations of animals is a prominent feature in the architecture of Egypt, whereof the temple at Ipsambool is a striking example, though in that the figures do not absolutely carry the entablature (see fig. 71.). In India many instances of this use of statues occur, as in the excavations of the temple near Vellore described by Sir C. Mallet (Asiat. Res. vol. vi.), wherein heads of lions, clephants, and imaginary animals apparently support the roof of the cave of Jugnath Subba; and at Elephanta, where colossal statues are ranged along the sides as high as the underside of the entablature (see fify. 39.). But as the settlement of the claims of either of these countries to the invention is not our object, we shall proceed to consider how they obtained in Greece the name that has been applied to them long before the period of which Vitruvius speaks.
167. Kapúa, the nut tree (Nux juglans), which Mlatareh (Sympos. lib. ii.) says reeeived its name from its erfect (кápos, sopor) on the senses, was that into which Bacelns, alter cohabitation with her, transformed Carya, one of the three daughters of Dion, king of Laconia, by his wife Iphitea. The other daughters, Orphe and Lyco, were turned into stones for having too closely watched their sisters intercourse with the lover. Diana, from whom the Lacedemonians learnt this story, was on that accomnt, as well perhaps as the excellence of the truit of the tree, therefore worshipped by them under the name of Diana Caryatis. (Servius, note on 8th Eel. of Virgil, edit. Burman.) Another account, however, not at all allecting the hypothesis, is given of the name of Diana Caryatis in one of the old commentators of Statius (Burthius, lib. iv. v. 225.). It is as follows. Some virgins threatened with danger whilst celcbrating the rites of the goddess, took refuge under the branches of a nut tree (кариа), in honour and perpetuation whereof they raised a temple to Diana Caryatis. If this, however, be an allusion to the famous interposition of Aristomenes in protecting some Spartan virgins taken by lis soldiers, it is not quite borne out by the words of Diodorus. Salmasius (Exercit. I'liniunce, f. 603. et seq.) says, that Diana was worshipped at Carya, near Sparta, under the name of Diana Caryatis; and that at her temple and statue the Lacedemonian virgius had an amiversary festival, with dancing, aceording to the custom of the comatry.

16is. Bat to return more closely to the sulbect, we will give the words of Pausanias (Luco-
nics) on the temple to the goddess at Carya. "The third turning to the right leads to Carya, and tlie sanctuary of Diana; for the neighbourhood of Carya is saered to that gooddess and her nymphs. The statue of Diana Caryatis is in the open air; and in this place the Lace, demonian virgins celebrate an anniversary festival with the old custom of the dance." Kuhnins on the passage in question, after reference to Hesychius, says, "Caryatides etiam dicuntur Lacenæ saltantes, sinistrî ansatæ, uti solebant Caryatides puellie in honorem Diane."
169. From the circumstances above mentioned, we think it may be fairly concluded that the statues called Caryatides were originally applied to or used about the temples of Diana; and that instead of representing captives or persons in a state of ignominy, they were in fact representations of the virgins engaged in the worship of that goddess. It is probable that after their first introduction other figures, in buildings appropriated to other divinities, were gradually employed; as in the Pandroseum (attached to the temple of Minerva Polias), for instance, where they may be representations of the virgins

Fig. 104.

Fig. 105. called Canephora, who assisted in the Panathenaic procession. Fig. 104. is a representation of one of those used in the Pandroseum (see also fig. 109.) ; and fig. 105. is from the Townley collection, now in the British Museum. Piranesi conjectured that this last, with others, supported the entablature of an ancient Roman building restored by him from some fragments fuund near the spot where they were discovered, which is rather more than a mile beyond the Capo di Bove, near Rome. Four of the statues were found ; and on one of the three, purchased by Cardinal Albani, -he following inscription was found: - KPITRN KAl NIKONAOZ EHOLOTN; showing that it was the work of Greek artists.
170. The republican spirit of Greece tended to repress all appearance of luxury in their private dwellings. The people seem to have thrown all their power into the splendour and magnificence of their temples; and it was not till a late period that their houses received much attention. Except in the open courts of them, it is difficult to conceive any application of the orders. It is certain that they frequently consisted of more than one story; but beyond this all is conjecture. In the time of Demosthenes (Orat. adv. Aistocratem) the private houses had begun to be increased in extent; and the description of them by Vitruvius, who knew Athens well, proves that they were then erected on an extent implying vast luxury.
171. Within the last few years discoveries have been made at Athens, which would lead us to the belief that it was the practice of the Greeks to paint in party colours every portion of their temples, and that in violently contrasted colours. This has received the name of polychrome architecture. It is rather strange that no ancient writer has spoken of the practice, and the only way to account for the omission is by supposing it to have been so comoron that no one thought of mentioning it. From late investigations (Inst. of Brit. 4rchitects, Trans. i., 1886.), it appears that many parts of the Parthenon were painted or gilt. Thus the coffers of the ceiling were painted, and its frieze ornamented with a fret in colours. The whole building, says M. Schaubert, as well as other temples, was thickly painted, in the metop x, in the pediment, on the drapery of the figures, on the capitals, and on all the mouldings. So that, as he says, with great simplicity, with its mouldings and carvings variously coloured, the simple Doric temple of Theseus was in effect richer than the most gorgeous example of Corinthian; and it would be worth the trouble to restore with accuracy a polychrome temple. From M. Quast (Mittheilungen ïler Alt und Neu Athen, Berlin, 1834), we learn that the colour was not used in a fluid state merely for the purpose of staining the marble, but in a thick coat, so that the material was completely covered; and that in the temple of Theseus this is more traceable than in any other. Though the colours, that of blue smalt more especially, have left but a grey crust, yet their original tone is still apparent. In this building deep blues and reds are the predominant colours, so as to relieve one another. The corona was deep blue, and the gutte of a brown red; the foliage of the cymatium was alternately streaked with blue and red, the ground being green, which colour is applied to the small leaves on some of the lesser mouldings. Some of the coffers are coloured of a red inclining to purple, on which the ornament is given; others exhibit a blue ground, with red stars. The architrave of the portico was a bright red; the figures in the fricze were painted in their proper natural colours: traces of the colour show that the walls were green. It was not discovered that in the columns more than the arrises of the flutes were painted, although the echinus was. We do not doubt the accuracy of MM. Semper and Quast, later writers on the same subject, hut after all it is possible that all this painting may have been executed at a period much later than that of the buildings themselves.
172. The most ancient theatres of Greeee were constructed in a temporary manner; but the little security from accident they afforded to a large concourse of persons soon made the Greeks more cautious for their security, and led to cdifices of stone, which, in the end, ex-
ceeded in magnitude all their other buildings. Their form on the plan (see fiy. lug.) was ru:her more than a semicircle, and consisted of two parts; the $\sigma \kappa \eta \nu \eta े$, scena, and кot $\lambda \boldsymbol{n}$,

Fig. 106.
curea. The seena was at first merely a partuion for the actors reaching guite across the stage, dressed with boughs and leaves, but in after times was very diflerently and more expensively constructed. It had three principal gates, two on the sides and one in the centre; at which last the principal characters entered. The whole scene was divided into several parts, whereof the most remarkable were-the $\beta \rho o \nu \tau \epsilon i \nu v$, brontaum, under the floor, where were deposited vessels full of stones and other materials for imitating the somd of thunder; the $\epsilon \pi$ тбкintov, episccnium, a place on the top of the scene, in which were plated the inachines for changing the various figures and prospects; the тарабкйиov, parascenium. which served the actors as a dressing room ; the $\pi \rho o \sigma \kappa$ hiov, proscenium, or stage, on which the performers acted; the o $\rho \chi \hat{\eta} \sigma \tau \rho \alpha$, orchestra, was the part in which the performers danced
 hyposcenium, was a partition under the pulpitum, where the music was placed; the кoìoov, cavea, was for the reception of the spectators, and consisted of two or three divisions of several seats, eacls rising above one another, the lowest division being appropriated to persons of rank and magistrates, the middle one to the commonalty, and the upper one to the women. Round the cavea porticoes were erected for shelter in rany weather, the theatre of the Greeks having no roof or covering. The theatre was always dedicated to Bacchus and Venus, the deities of sports and pleasures; to the former, indeed, it is said they owe their origin: hence, the plays acted in them were calted Δ avvatakà, Diomysiact, as belonging to Δ aovaros, or Bacchus. Every citizen shared by right in the publie diversion and public debate; the theatre was therefore open to the whole community.
173. The Athenian a oopai, or fira, weremmerons; but the two most eclebrated were the old and new formm. The old form was in the Ceramicus within the city. The assemblies of the prople were held in it, but its principal use was as a market, in which to every trade was assigned a particular portion.
164. The supply of water at Athens was ehiefly from welts, aqueducts being seareely known there before the time of the Romans. Some of these wells were dug at the public expense, others by private persons.
17.5. The first gymuasia are said to have been erected in Lacedemonia, but were afterwards much improved and extended, and became common throughout Greece. The gymnasium consisted of a number of buildings united in one enclosure, whereto large numbers resorted for different purposes. In it the philosophers, rhetoricians, and professors of all the other sciences, delivered their lectures; in it also the wrestlers and dancers practised and exercised; all which, from its space, they were enabled to do without interfering with one another. The chief parts (fig. 107.), following Vitruvins (lib. v. eap. 11.), are- Λ, the $\pi \epsilon-$
 $1,2,3$, are the σ тoat, portiens, with в в, $\epsilon \xi \in \delta \rho a t$, exherlra, where probably the scholars used wo meet ; 1, 4, is the double portico looking to the south; c, є申ibator, eplaberm, where the
ephebi or youths exereised, or, as some say, where those that designed to exercise met and agreed what kind of exercise they should contend in, and what should be the victor's reward; n , is the coryceum ; E , the кoviotipoov, conisterium, where the dust was kept for sprinkling those that had been anointed; F is the cold bath (frigidaluvatio); G , the $\epsilon \lambda$ ato-
 $\theta \in \sigma t o v$, elcothesium, or place for anointing those that were aboul to wrestle; \boldsymbol{H}, the frigidarium, ot cold chamber; 1 , passage to the propigncum, or furnace; x, the propigneum ; 3 , the arehed suIhatio, for sweating; N , the laronicum; o, the hot bath (culida lavatio) ; 5, 7, the two porticoes deseribed as out of the palastra, of which 7 forms the xystus, and 6 a double portico; $a u$, the margines, or semita of the xystus, to separate the spectators fiom the wrestlers; $b b$, the middle part excavated two steps, ec, down; e Q, gardens; $d d$, walks; ee, stationes for seats; 11 k , $\xi \dot{v} \sigma \tau \alpha$, , $y \mathrm{y}$ sta, sometimes called $\pi \in \rho \delta \delta \rho o \mu i \delta \epsilon s$, for walking or exercises; s, the studium, with raised seats round it.
176. The roofs of the edifices of Athens vary from $14 \frac{1}{2}$ to $15 \frac{1}{2}$ degrees in inclination, a subject which will be hereafter fully eonsidered, when we come to investigate the principles of constructing roofs. In liome, as will hereafter be seen, the inclination is much more. There is nothing to war. rant us in a belief that the arch was known to the Greeks till after the age of Alexander. Indecel, the want of a name for it in a language so generally copious as the Greek, suffices to show that they were unacquainted with it. It was most probably in much earlier use in Italy. The words No入os, a $\psi \downarrow s$, and $\psi a \lambda i s$, are not used in a sense that signifies an arch until after the reign of the above-named monarch; nor is any deseription extant from which may be coneeived the construction of an arcls on seientific principles.

1:7. From the time of Perieles to that of Alexander, all the arts, and most especially that of arehitecture, seem to have attained a high state of perfection. Every moral and physical ealuse had concurred in so advaneing them. But perfeetion, when onee reaehed in the works of man, is only the commencement of their falling away from it. Liberty, the love of country, ambition in every department of life, had made Athens the focus of the arts and seiences: the defeat of the Persians at Marathon and other celebrated victorics had bronght peace to the whole of the states of Grece. In the space of time preceding the l'eloponnesian war, there seems to have been, as it were, an explosion of every species of talent, and it was at this period that they set about rebuilding the temples and other edifices that the Persians had thrown down, of which a wise poliey had presersed the ruins, so that the contemplation of desolation and misfortune afforded them an eloquent reminisecnee of the peril in which they continually stood. It was indeed only after the flight of the general of Xerxes, and the victory gained by Themistoeles, that a general rentoration of their monuments and the rebuilding of Athens were set about. These were the true trophies of the battle of Salamis. About $3: 35$ years b.c. Alexander beeame master of Grecee. Fired with every speeies of glory, and jealous of leaving to posterity monmments that should be moworthy of his greathess and fame, or other than proofs of the refinement of his taste, this prince gave a new impulse to genius by the exclusive choice that he made of the most skilful artists, and by the liberal rewards he bestowed upon them. The sacking of Corinth by the Romans in less than two centuries (about 146 b.c.) was the first disaster that the fine arts eneounterel in Greece; their overthrow there was soon afterwards connpheted by the country fecoming a Roman province. At the former ocenrence l'olybius
(eited by Stral.0) says, that during the phunder the Roman soldiers were seen casting their dice on the celebrated picture of Bacehus by Aristides. Juvenal well deseribes sneli a seene (Satire xi. 100.) :

> Tunc rudis et Graias mirari nescius artes,
> Urbibus eversis, prædirum in parte reperta
> Magnorum artiticum frangebat pocula miles.

The well-known story of the consul Mummius shows either that the higher ranks among the Roman citizens were not very much enlightened on the arts, or that he was a singular blockhead. We have now arrived at the period at which Greece was despoiled and Rome enriched, and must pursue the history of the art among the Romans; incidental to which a short digression will be necessary on Etruscan architecture.

Secr. XII.

ETRUSCAN AllCHITECTUIE.

178. The inlabitants of Etruria, a country of Italy, now called Tuscany, are supposed to have been a colony from Greece. They certainly may have been a swarm from the original hive (see Druilicul, Cellic, 13.; and Cyclopean Architerture, 32.) that passed throngh Greece in their way to Italy. The few remains of their buildings still existing show, from their construction, that they are coeval with the walls of Tiryns, Myeenre (figs. 9. and 10.), and other works of a very early age; and it is our own opinion that the wandering from that great central nation, of which we have already so much spoken, was as likely to conduct the litrurians at once to the spot on whieh they settled, as to bring them throngh Greece to the place of their settlement. It is equally our opinion that, so far from the comntry whereof we now treat having reeeived their arts from the Greeks, it is quite as possible, and even likely, that the Greeks may have received their arts from the Etruscans. The history of Etraria, if we consult the different writers who have mentioned it, is such a mass of contradiction and obseurity, that there is no sure guide for us. It seems to be a moving pieture of constant emigration and re-emigration between the inhabitants of Greece and Italy. The only point upon which we can surely rest is, that there were many ancient relations between the two countries, and that in after times the dominion of the Etruscans extended to that part of Italy which, when it became occupied by Grecian colonies, took the name of Magna Griecia. The continual intercourse between the two countries lessens our surprise at the great similarity in their mythology, in their religious tenets, and in their early works of art. We are quite aware that the learned Lanzi was of opinion (Saggio di Lingua Etrusect), that the Etruscans were not the most aneient people of Italy. We are not about to dispute that point. He draws his conclusion from language; we draw our own from at comparison of the masonry employed in both nations, from the remains whereof we should, if there be a difference, assign the earliest date to that of Hetruria. This, to be sure, leaves open the question whether the country was preoceupied; one which, for our purpose, it is not necessary to settle. We have Winkelman and Guarnacci on our side, who from medals and coins arrived at the belief that among the Etruscans the arts were more advaneed at a very early age than among the Greeks; and Dr. Clarke's reasoning tends to prove for them a Phœenician origin.
179. Great solidity of construction is the prominent feature in Etrusean architecture. Their cities were surrounded by walls consisting of enormons blocks of stone, and usually very high. Remains of them are still to be seen at Volterra (fig. 108.), Cortena, Fiesole

rig. lios. wall at voltrara, (fiy. 109.), \&c. "Monibus," says Alberti (De Re AEdific. lib, vii. c. थ.) "reterun prasertim populi Etrurie quadratum enndemque vastissimum lapidem probavêre." In the walls of Cortona some of the stones are upwards of 22 Roman feet in length, and from 5 to 6 ft . high, and in them neither cramps nor cement appear to have been employed. The walls of Volterra are built atter the same gigantic fashion. In the carliest

Fig. 109. Walle af fiksolk. specimens of walling, the blocks of stone were of an irregular polygonal form, and so disp sed as that all their sides were in close contact with one another. Of this species is the wall at Cora, near Velletri. The gates were very simple, and built of stones of an oblong sypure form. The gate of 11 ercules, at Volterra, is an arch consisting of nineteen stones; a
circmistance which, if its antiquity be allowed to be only of a moderately remote period, would go far to disprove all Lanzi's reasoning, for, as we have noticed in the preceding ar. ticle, the arch was unknown in Greece till after the time of Alexander. Aceording to Gord (Museum Etruscum), vestiges of theatres have been discovered anong the ruins of some of their cities. That they were acquainted with the method of conducting theatrical representations is evident from Livy, who mentions an oceasion on which comedians were brought from Etruria to Rome, whose inhabitants at the time in question were only accustomed to the ganes of the circus. The gladiatorial sports, which were afterwards so much the delight of the Romans, were also borrowed from the same people. They constructed their temples peripterally; the pediments of them were decorated with statues, quadriga, and bassi rilievi, in terra cotta, many whereof were remaining in the time of Vitruvias and Pliny, Though it is supposed that the Etruscans made use of wood in the entablatures of their temples, it is not to be inferred that at even the earliest period they were unacquainterd with the use of stone for their architraves and lintels, as is sufficiently proved in the Piscina of Volterra.
180. The Romans, until the conquest of Grecee, borrowed the taste of their architecture from Etruria. Even to the time of Augnstus, the species called Tuscan was to be seen by the side of the acclimatised temple of the Greeks.
181. The atrium or court, in private houses, seems to have been an invention of the Etruseans. Festus derives its name from its having been tirst used at Atria, in Etruria : " Dictum Atrium quia id genus edificii primum Atrie in Etruria sit institutum." We slall. however, allude in the next section to Etruscan architecture as comnected with Roman; merely adding here, that in about a year after the death of Alexander the nation fell under the dominion of the Romans.

Sectr. Nilli.

ROMAN AKCHITECIIURE.

189. The Romans can searedy be said to have had an original arehitecture; they had rather a modification of that of the Greeks. Their first instruction in the ant was reeceived from the Etrustans, which was probably not until the time of the Tarpuins, when their editiens began to the constructed uph fixed principles, and to receive appropriate decoration. In the time of the first Tarquit, who was a native of Etruria, much had been done towards the improvement of Rome. He brought from his native combtry a taste for that graudeur and solidity which prevailed in the Etruscan works. After many victories he had the honour of a trimmpl, and applied the wealth he had acequired from the conquered cities to building a circus, for which a situation was chosen in the valley which reached from the Aventine to the Palatine Hill. Under his reign the city was fortified, cleansed, and beantitied. The walls were built of hewn stone, and the low gronnds about the Formm draned, which prepared the way for the second Targuin to construct that Cloaca Masima, which was reckoned among the wonders of the world. The Formm was surrounded with gralleries by him ; and his reign was further distinguished by the ercetion of temples, schools for both sexes, and halls for the administration of public justice. This, aecording to the best chronologies, mist have becon upwards of 610 years B. c. Servius Tullins enlarged the city, and among his other works continned those of the temple of Jupiter Capitolinus, which had been commeneed by his predecessor ; but the operations of both were eclipsed by monuments, for which the Romans were indebted to Targuinins Superbus, the seventh Ling of Rome. Under him the Circus was completed, and the most effective methods taken to finish the Cloaca Naxima. 'This work, on which neither labour nor expense wats spared to make the work everlasting, is of wrought stone, and its height and breadth are so considerable, that a cart loaded with hay could pass through it. Hills and roeks were cut through for the purpose of passing the filth of the city into the Tiber. Pliny calls the Cloacee, "operum omnium dictu maximum, suffiessis moatibus, atque urbe pensili, sub. tergue mavigata." The temple of Jupiter Capitolinus was not finished till after the expuldion of the kings, 508 B. c. ; but under 'Tarquinius Superbus it was considerally advanced. In the third consulship of lophicola, the temple was consecrated. As the name, which was changed, imports, this temple stood on the Mons Capitolinus, and embraced, according to llutarch, four acres of ground. It was twice afterwards destroyed, and twice rebuilt on the same foundations. Vespasian, at a late period, rebuilt it; and upon the destruction of this last by fire. Domitian raived the mont splendid of all, in which the gilding alone cost 19,000 talents. It is impossible now to trace the architecture of the Romans throngh its various steps between the time of the last hing, 508 s. c., and the sulb!egration of Greece ly that people in the year $145 \mathrm{~s} . \mathrm{c}$., a period of 363 years. The
isputes in which they were continually engaged left them little leisure for the arts of eace ; yet the few monuments with whieh we are aequainted show a power and shill bat mark them as an extraordinary race. Thus in the year 397 в. c., on the oceasion of te siege of Veii, the prodigy, as it was supposed, of the lake of Alba overflowing, when ere was little water in the neighbouring rivers, springs, and marshes, induced the autrorities to make an emissarium, or outlet for the superfluous water, which subsists to this ay. The water of the lake Albano, which runs along Castel Gondolfo, still passes throngh

A few years after this event an opportunity was afforded, which, with more care on ef part of the authorities, might have considerably improved it, after its demolition by rennus. This event oecurred 389 b. e., and was nearly the occasion of the population eing removed to Veii altogether, a place which offered them a spot fortified by art and ature. good houses ready built, a wholesome air, and a fruitful territory. The cloquence, owever, of Camillus prevailed over their despondency. Livy (b. vi.) observes, that in ee rebuilding, the state furnished tiles, and the people were allowed to take stone and ther materials wherever they could find them, giving security to finish their houses ithin the year. But the haste with which they went to work caused many eneroachents on each other's soil. Every one raised his house where he fomd a vacant space; so rat in many cases they built over the common sewers, which before ran under the streets. , little taste for regularity and beauty was observed, that the city, when rebuilt, was even ss regular than in the time of Romulus; and though in the time of Augustus, when ome had become the capital of the world, the temples, palaces, and private houses were ore magnificent than before, yet these decorations could not rectify the fault of the plan. hough perhaps not strictly within our own province, we may here mention the temple nilt in honour of Juno Moneta, in consequence of a vow of L. Furius Camillus when fore the Volsei. This was one of the temples on the Capitoline hill. The epithet above entioned was given to the queen of the gods, a short time before the taking of Rome by. e Gauls. It was pretended that from the temple of Juno a voice had proceeded, acmpanied with an earthquake, and that the voice had admonished the Romans to avert e evils that threatened them by sacrilieing a sow with pig. She was hence ealled Misintu rom monere). The temple of Juno Noneta becoming afterwards a public mint, the edals stamped in it for the current coin took the name of Moneta (money). This temple is ereeted about 345 years b.c., on the spot where the house of Marcus Manlius had stood. 183. In the time that Appius Claudius was censor, about 309 b. c., the carliest paved ad was made by the Romans. It was lirst carried to Capma, and afterwards continned Brundusimm, a length altogether of 350 miles. Statius calls it regint riarum. l'aved ith the hardest stone, it remains entire to the present day. Its breadth is about 14 ft . ; e stones of which it is composed vary in size, but so admirably was it put together that ey are like one stone. Its bed is on two strata; the first of rough stones cemented with ortar, and the second of gravel, the thickness altogether being about 3 ft . To the same ppius Claudius belongs the honour of having raised the first aumeduct. The water with nich it supplied the city was collected from the neighbourhood of Fraseati, about 100 ft . ove the level of Rome. 'The lRomans at this time were fast adsancing in the arts and iences; for in about nineteen years alterwards we find l'apirius, after his vietory over the mmites, built a temple to Quirinus out of a portion of its spoils. Upon this temple was ed (Iliny, b, vii. e. 60.) the first sun-dial that Rome ever saw. For a long while the omans marked only the rising and setting of the sun; they afterwards olserved, but in a de clumsy mamer, the hour of noon. When the sun's rays appeared between the rostra d the house appointed for the reeeption of the ambassadors, a herald of one of the consuls oclamed with a loud roice that it was mid-day. With the aid of the dial they now marked e hours of the day, as they soon after did those of the night by the aid of the elepsydra water-clock. The materials for carrying on the investigation are so scanty, and moreover, in the case of Grecian architecture, without examples whereon we can reason, that we ill not detain the reader with further speculations, but at once proceed to that perio:l 45 в.с.) when Greece was reduced to a Roman province. Art, in the strict application that word, was not properly understood by the vietorious Romans; and a barremness pears to have elung about that whereof we treat, even with all the adrantages that Rome essessed. It may be supposed that the impulse given to the arts would lave been immeate; but, like the waves generated by the ovean storm, a succession of them was neeessary fore the billows would approach the coast. l'erhaps, though it be only eonjectural, the st effect was visible in the temple reared to Minerva at lome, out of the spoils of the ithridatic war, by l'ompey the Great, about sixty years B.c., after a triumph nuparalleled shaps in the history of the world; after the conelusion of a war of thirty years' duration, which upwards of two millions of his fellow-creatures had been slain and vampuished; ter 846 ships had been sunk or taken, and 1538 towns and fortresses had been reduced the power of the empire, and all the countries between the lake Mawotis and the Red a had been subdued. It is to be regretted that no remains of this temple exist. The scription (I'lin. lib. vii. c. 26.) was as follows : -

CN . POMPEIUS . CN . F. MAGNUS . IMP .
BEIIIO - XXX . ANNOHUM . CONFECTO .
Q SIS . FUGATIS . OCCISIS . IN . DEDITIONEM . AC'CTHTIS HOMINUM . CENTIES VICIES . SENEL. CFNTENIS.
LXXXIII. M.
DFPRFSSIS . AUT . CAPT. NAVIBUS . DCOCXIVI
OI'TDIS . CASTEI.I.IS . MDXXXVHII
IN. FIDEM . RECEPTIS .
TEKKIS . A . MAEOTI . BACU • An . RUBHUM . MARE
subsctis.
VOTUM . MEHITO M MNEHVEE

181. The villas of the Romans at this period were of considerable extent; the statues of Greece had been acquired for their decoration, and every luxury in the way of decoration that the age could aflord had been poured into them from the plentiful supply that Greek art afforded. To such an extreme was carried the determination to possess every thing that talent could supply, that we find Cicero was in the habit of employing two architects, Chrysippus and Cluatius (ad Aiticum, lib. iii. epist. 29. and lib. xii. epist. 18.); the first certainly, the last prohably a Greek. 'Jheir extent would scarcely be eredited but for the corroboration we have of it in some of their ruins.
182. Until the time of Pompey no permanent theatre existed in Rome: the ancient discipline requiring that the theatre should contime no longer than the shows lasted. The most splendid temporary theatre was that of M. Emilius Scaurus, who, when adile, erected one capable of containing 80,000 persons, which was decorated, from all accounts, with singular magnificence and at an amazing cost. History (Ilin. xxxvi. 15.) records an extraordinary instance of mechanical skill, in the theatre erected by Curio, one of Casar's partisans, at the funeral exhibition in honour of his father. Two large theatres of timber were constructed batk to back, and on one side so connected with hinges and machinery for the purpose, that when the theatrical exhbitions had closed they were wheeled or slung round so as to form an amphitheatre, wheiein, in the afternoon, shows of glatiators were given. Leturning, however, to the theatre erected hy Iompey, which, to avoid the amimadversion of the censors, he dedicated as a temple to Venas: the plan (1liny, vii. 3.) was taken from that at Mitylene, but so enlarged as to be capable of containing 40,000 persons. Round it was a portico for shelter in case of bad weather : a curia or senate house was attached to it with a basilica or hall for the administration of jusnoe. The statues of male and female persons celebrated for their lives and characters were selected and placed in it by Atticus, for his attention to which Cicero (Ejnist ad Attoc. iv. 9.) was commissioned by Pompey to convey his thanks. The temple of Venus, which was attached to avoid the breach of the laws committed, was so contrived that the seats of the theatre served as steps to the temple; a contrivance which also served to escape the reproach of encountering so vast an expense for mere lusury, for the temple was so placed that those who visited the theatre might seem at the same time to come for the prorpose of worshipping the goddess. At the solemnity of its dedication the people were entertained with the most magnificent shows that had ever been exhibited in Rome. We camot prolong the account of this edifice by detailing them, -indeed that would be foreign to our purpose; but we may add, that such a building presents to us a genuine idea of the vast grandenr and wealth of those principal subjects of lome, who from their own jrivate revenues could rear such magnificent buildings, and provide for the entertainment of the people shows to which all the quarters of the glohe contributed, and which no monarch now on earth conld afford to exhibit. This theatre was finished about $54 \mathrm{s.c}$.
183. In the year $45 \mathrm{~b} . \mathrm{c}$. Rome witnessed a triumph not less extraordinary than that we have just recorded, - that of Julius Casar on his return from Utica. From the commencement of the civil war that had raged he had found no leisure for celebrating the triumphs which induced the people to create him dictator for ten years, and to place his statue in the Capitol opposite to that of Jupiter, with the globe of the earth muder his feet, and the inscription "To Casar the Demi-God." We need scarcely remind our readers that his first triumph was over the Gauls; that this was followed by that over Ptolemy and Egypt ; the third over Phamaces and Pontus; and the fourth over Juba. The triumph recorded these appropriately; but we leave that - merely observing, loy the way, that the fruit of his victories amounted to 65,000 talents and 2829 crowns of gold, weighing together 20,414 Roman pounds, - to state that on this occasion the Circus was enlarged, a lake sunk for the exhibition of Egyptian and Tyrian galleys, and that in the same year he dedicated a temple to Venus Genetrix, and opened his new formm. Warriors are not often inclined to call in the aid of the arts, except for commemorating their own actions. Not so with Casar. In the year 44 b.c., after lis triumph over the sons of Pompey, we once more find him engaged in the arts of peace. Λ temple to Clemency was elected by him, in which his statue was placed near to that of the goddess, and joining hands with her. In the next year he laid
fenmations of what at the time were considered two magnificent edifices for the ornatrent of the city: a temple to Venns, which for grandeur it is supposed would have surassed every example of that kind in the world; and a theatre of very gigantic dimensions, -hoth which were afterwards eompleted by Augustus. But the projects he conceived were wly equalled by those of Alexander. Ile began the rebuilding and repair of many towns Italy; the drainage of the P'ontine marshes, the malaria of which is the curse of liome , the present day ; the formation of a new bed for the Tiber from Rome to the sea, for the urpose of improving the navigation of that river ; the formation of a port at Ostia for the seeption of first-rate ships; a causeway over the Apemnines from the Adriatic to Rome ; te rebuilding of Corinth and Carthage, whither colonies had been sent by him, a scheme terwards perfected by Augustus; a canal through the 1sthmus of Corinth to avoid the avigation round the Peloponnesus; and lastly, the formation of an exact geographical rap of the Roman empire, with the roads marked thereon, and the distances of the towns on each other. Such was Cessar, whom to culogise would be impertinent.
184. Augustus deprived the Romans of their liberty, and in return for the deprivation msoled them with all the gratification the arts could supply. The victorious Romans ad known little of the arts in their highest state of refinement, and the degraded Greeks ere constrained to neglect them. They were in a state of barrenness during a portion of elast age of the Roman republic; nor did they exhibit any signs of fruitfulness until asar had established the empire on the ruins of the expiring republic, and his successor, iving peace to the universe, closed the temple of Janus, and opened that of the arts. By im skilful artists, pupils of the great masters, were invited from Greece, where, thongh .nguishing, they were yet silently working without fame or encouragement. Some who ad been led into slavery, like Rachel of old, carried their gods with them - the gods of the ts. Encouraged by the rising taste of their masters, they now began to develop the owers they possessed, and their productions became necessary to the gratification of the :ople. Thus it was that our art, among the others, born and reared in Greece, made taly its adopted country, and there shone with undiminished splendour, though perhaps ss happy and less durable. Though the exotic might have lost some beauties in the soil to hich it was transplanted, the stock possessed such extraordinary vigour that grafts from still continue to be propagated in every quarter of the globe.
185. The Greek architects who settled in Italy executed works of surprising beanty: rey raised up pupils, and founded a school. It must be conceded that it was more an aitative than an original school, wherein it was necessary to engraft Roman taste which as modified by different habits and climate, on Greek art. And here we camnot refrain om an observation or two upon the practice in these days of comparing Greek and Roman eliitecture. Each was suitable to the nation that used it ; the forms of Greek columns, eir intercoluminations, the inelination of the pediment, were necessarily clanged in a mutry lying between four and five degrees further north from the equator. But the suarficial writers. whose knowledge occasionally appears to instruct the wordl, never take rese matters into their consideration ; and we regret, indeed, to admit that in this country te philosophy of the art is little understood by the public, from the professors being gerally too mach engaged in its practiee to afford them leisure for diffusing the knowledge wey possess.
186. The Romans were trained to arms from their cradle; and that they were very averse the cultivation of the arts by their youth, the passage in the NEneid (b. vi. v. 847.), which as been so often quotel, is a sufficient proof: -

Excudent alii spirantia mollius ara
Credo equidem; vivos ducent e marmore rultus.
Tu regere imperio populos, Romane, memento;
Hae tibi crunt artes.
190. They were at all times anxious to subjugate for their own purposes those natons rat successfully cultivated the arts; a motive which, joined to the desire of aggrandisement. iduced them at a very early period to carry their arms against the Litruseans, who were in fire higher state of cultivation than themselves. This was also one motive to their connct in Sicily and Asia Minor; whence, as well as from Grecee, they drew supplies of tists for Rome, instead of employing their own citizens. Though in Rome architecture st in simplicity, it gained in magnilicence. It there took deeper root than the other arts, om its affording, by the dimensions of its monuments, more splendour to the claracter of , dominating a nation. Its forms are more susceptible of real grandeur than those of the ther arts, which are put in juxtaposition with nature herself; and hence they were more a keeping with the politics of the people. The patronage of the fine arts by Augustus as never before or since been equalled. They followed his grooi fortune, they dwelt in ie palace, and sat on the throne with him. His boast was not a vain one, when hee asserted nat he found his eapital built of brick and left it of marble. liy him was reared in the ipital in question the temple and form of Mars the Avenger: the temple of Jupiter

Tonans, on the Capitol; that of Apollo Palatine, with public libraries; the portico and basilica of Caius and Lacius; the porticoes of Livia and Oetavia; and the theatre of Marzellus. "The example," says Gibbon, " of the sovereign was imitated by his ministers and generals; and his friend Agrippa left behind him the immortal monument of the l'antheon."
191. Uuder Tiberius and Caligula architecture seans to have been in a state of languor. nor do we know of any thing in the reign of Claudius the filth Casar, save the completion of one of the finest aqueducts of Rome, that of Aqu: Claudia, whose length is 38 miles, in more than seven whereof the water passes over arches raised more than 100 ft . from the surface of the ground. Nero's reign, though his taste bordered more on show than intrinsie beauty, was on the whole favourable to architecture. Much could not be expected of a man who covered with gilding a statue of Alexander, and decapitated fine statues for the purpose of substituting his own head for that of the original. The colossal statues of himself which he caused to be sculptured inslicate a mind prone to vice and excess. The same taste for exaggeration was carried into his buildings. His prodigality in every way was inexhaustible; he scems rather to have left monuments of expenditure than of taste. A palace, which from its extraordinary richness has been called the Domns Aurea, was erected for him by his architects Severus and Celer, than which nothing could be more brilliant nor gorgeeus; beyond it no pomp of decoration conld be coneeived. In the midst of so much wealth the only object of contempt was its possessor. The reader may form some notion of it when told (Plin. lib. xxxvi.) that in finishing a part of it Otho laid out a sum equivalent to near 404,000 . sterting.
192. Galba, Otho, and Vitellins scarcely reigned It was reserved for Verpasian ald his son 'Titus, to astonish the world by masses of architecture such as it way be predicted will never again be reared. The
 Coliseum (fiys. 110. and 129.), named, according to some from its gig:utic dimensions, to others from its proximity to a colossal statue of Nero, was commenced by the father and finished by the som. According to Lepsius, the seats held $87, \mathrm{CO}$ persons. Fontama says it was capable of containing 109,000, who could vew the sports in the arena. Thiswe think an exaggeration. Taking the clear length at 615 feet, and breadth at 5 Io feet, we have an nrea of 246.340 sup . feet, whence deducting 38,842 for the arena, the remainder is 207,498 . Now supposing this surface covered with persons standing upright, each ocenpying only $2 * 385$ sup. feet, we have but 87,0 , and in the cirenit of the upper portico and parts relied upon by Fontana, 22,000 could not be placed. Hence the estimate of Lepsius seems worthy of contidence. The reader will, from the alove description, identify the structure mentioned by Martial : -

> Omnis Cesareo ced it lathr amphitheatro,
> Lnum pro cunctis tamal loquatur opus.
"Biennio post ac menses novem amphitheatri perfecto opere," is the expression of Vietor in respect to the time employed in its construction. Though the monument itself be astonishing, still more so is it that such a mass should have taken only two years and nine months in building, even with all the means that the emperors had under their power. We shall reserve a more particular description of it. (Sce p. 94. and 9i.) lin spite of the ravages of time, and the hands, ancient and modern, which have despoiled it for its materials, enough still remains completely to exbibit the original plan, and to enable the spectator to, form a perfect idea of the immense mass. The Baths of Titus were another of the wonders of the age. The remains of them are not so perfect as others, but they are still majestic. hesides the edilices erected by Vespasian and his son, they made it a part of their duty to take measures for the preservation of those which existed, and were in need of repair and restoration.
193. The last Casar, Domitian, was of a disposition too wicked to he of service to his country : lis reign was, fortunately for it, but short. In the year 98, on the death of Nerva, Trajan became master of the empire. He had served against the Jews under Vespasian and 'Titus, and probably acquired from then and their example a great taste for arehitecture, in which he shed a lustre upon the country as great as his splendid victories over the l'ersians and Dacians gained for it in the field. Of his works, which, as Gibbon says, bear the stamp of his genius, his bridge over the Danube must have been a surprising effort. According to Dio Cassius, this bridge was constructed with twenty stone piers in
the river, 1.50 ft . high and 60 feet wide, bearing arches of 170 ft . span. It was destroyed by Iladrian, his successor : some say out of envy ; but the plea was, that it served the barharians as an inlet to the empire, as mueh as it facilitated the passarge of its troops to keep them in subjection. Il is triumphal arches, his column (fig. 111.), and forum, and other

Fig. 111. works, attest the vigour and beauty of the art under the reign of 'Trajan. 'The formm was a quadrangle sur.. rounded by a lolty portico, into which the entrance was through four trinmphal arehes, and in the centre was the column. Apollodorus was his prineipal arehitect, by whom was erected the column above mentioned, which was not only the chef-d'euvre of the age, but has never been surpa sed. It is 115 ft . high wish the cap, 132 ft . with the figure, marking the height of the hill levellad to form the formm. "The public momments wi.h which IIa trian adorned every province of the empire were executed not only by his orders, bet under his immediate inspection. He was himself an atist ; and he loved the arts, as they conduced to the glory of the monarch. They were encouraged by the Antonines, as they contributed to the lappiness of the people. But if they ware the lirst, they ware not the only arehitects of their dominions. Their example was universally imitated by their prineipal subeects, who were not afiaid of declaring to the world that they had spirit to conceive and wealth to accomplish the noblest undertakings. Scareely had the proud structure of the Colisenm been dedicated at Rome, before edifices of a smaller seale indeed, but of the same design d materials, were erected for the ue and at the expense of the cities of Capua and Verona. 'he inscription of the stupendous bridge at Alcantara attests that it was thown over the 'agus by the contribution of a few Lusitanian communities. When Pliny was entrusted ith the govermment of Bithynia and Pontus, provinces by no means the riehent or most conderable of the empire, le found the cities within his jurisdiction striving with each other in :ery useful and ornamental work that might deserve the curiosity of strangers, or the gratitude itheir citizens. It was the duty of the proconsul to supply their defeiencies, to direct their iste. and sometimes to moderate their emulation. The opulent senator of Rome and the roviness esteemed it an honour, and almost an obligation, to adorn the splendour of their age od country ; and the infuence of fashion very frequently supplied the want of taste or enerosity. Among a crowd of these private benelactors, we select Herodes Atticus, an thenian citizen, who lived in the age of the Antonines. Whatever might be the motive f his conduct, his magnificence would have been wortly of the greatest kings." We make a apology for so long a quotation from the historian of the Decline and Full, whose exressions are so suitable to our purpose. The fimily of IIerod was highly deseended; but is grandfather had suffered by the hands of justice; and Julius Atticus, his father, must ave died in poverty, but for the diseovery of an immense treasure in an old house, the nly piece of his patrimony that remained. By the law this would have been the property f the emperor, to whom Julius gave immerliate information. Nerva the Just, who was nen on the throne, refused to accept it, desiring him to keep it and use it. The cautious thenian hesitatingly replied, that the treasure was too large for a subject, and that he new not how to use it. The emperor replied, "Abuse it then, for 'tis your own." Ile eems really to have followed the monarch's bidding, for he expended the greatest part of in the service of the public. 'This man's son, Herodes, had aequired the prefecture of the ee cities of Λ sia, among which the town of 'roas being ill supplied with water, he obained from the munificence of Hadrian a sum equivalent to $100,0 \% 01$. sterling for contrneting a new aqueduct. The work on execution amounted to double the estimate; and in the officers of the revenue complaining, Atticus charged himself with the whole of the dditional expense. Some considerable ruins still preserve the fane of his taste and municence. The Stadium which lie erected at Λ thens was 600 ft . in length, entirely of white aarble, and capable of receiving the whole body of the people. To the memory of his vife, llegilla, he dedicated a theatre, in which no wood except cedar was employed. Ile estored the Odeum to its ancient beauty and magnifience. His boundless liberality was ot, however, confined within the city of Λ thens. "The most splendid ornaments," says Sibbon, "bestowed on the temple of Neptune in the Isthuns, a theatre at Corinth, a tadium at Delphi, a bath at 'Fhermopyla, and an aqueduct at Canusiun in Italy, were nsufficient to exhaust his treasures. The people of Epirus, Thessaly, Euboea, Breotia, nd Peloponnesus experienced his favours, and inany inseriptions of the cities of Greece nd Asia gratefully style Ilerodes Λ tticus their patron and benefactor."
194. Arehitecture was still practised with success under the Antonines, the suceessors of IVadrian, among whom Mareus Aurelius was a great patron of the arts. On these history abmost instructs us, that the effect of the individual character of the sovereign, and the general and leading circumstances of his reign, are so influential as to enable us from the two last to estimate the prosperity of the lirst.
195. The rapidity with which after the time of Commodus, that most unworthy son of a worthy father, the emperors succeeded each other, was as unfavourable for the arts as for their country. A little stand was made against their rapid dechi:e, under Septimius Severus, whose triumphal arch still remains as a link in the chain of their decay, and pertaps the first. It is diflicult to conceive how in so short a period from the time of Marcus Aurelius, not thirty years. sculpture had so lost ground. In the areh commonly called that of the Goldsmiths, the form and character of good architecture is entirely obliterated. Its profiles are vicions, and its ornaments debased and orercharged.
196. The art was somewhat resuscitated under Alexander Severus, but it was fast following the fate of the empire in the West, and had become almost lifeless under Valerian and his son Gallienus, whose arch is an index to its state in his reign. 'The number of competitors for the purple, and the incursions of the barbarians, were felt. Aurelian and Probus suspended its total annihilation; but their reigns were unfortunately too short to do it substantial service. The extraordinary structures at Baalbec and l'almyra have been -eferred, on the authority of a fragment of John of Antioch, surnamed Malala, to the age of Antoninus I'ius; but we are inclined to think the style places them a little later than that period. Bathec. or, as its Syrian meaning imports, the City of Baal, or the Sun, is situate at the northeeastern extremity of the valley of Becat or Beka, near that place

where the two ℓ debanons unite, about fifty miles to the north-west of Damascus. The first traveller who described it with aceuracy was Mauadrell, in his Journey from Aleppo
 to Jerusalem, in 1697 . It has, however, been since visited, as well as Pahmyra, hy Messrs. Wood and Dawkins, in 1751, and by M. Volney at a later period. The principal building, the temple, is of a rectangular form, and is seated in the centre of the western extremity of a large quadrangular enclosure, two of whose sides were parallel to those of the temple; and parallel to its front was the throl. To this was attached an hexagonal court, serving as a vestibule, in front of which was the grand entrance portico. The length of the quadrangle is about 360 ft . and breadth about 350 ft . (Sec fig. 112 .) The temple, marked A, is, in round numbers, 200 ft . in length, and 100 ft . in breadth; it was dipteral. and had ten columns in front and nineteen on the sides. That the reader may form sone idea of the style, which was to the last degree debased, and would not justify by any utility the extending this ac-
count, we have in fig. 113. given the sketeh of a circular temple standing near the above. Of Emesa, the other celebrated Colo-Syrian city, not a vestige remains.
197. Of Tadmor, or Palmyra, denoting both in Syriac as well as Latin a multitnde of palm-trees, Solomon was said to have been the original founder. It lies considerably to the east of laalhee, and upwards of 200 miles from the nearest coast of Syria. Situate between the Roman and Parthian monarelies, it was suffered to observe a humble neutrality until after the victories of Trajan; when, sinking into the bosom of Rome, it flourished more than 1.50 years in the subordinate though humble rank of a colony. "It was during that peaceful period," observes Gibbon, "if we may judge from a few remaiuing inseriptions, that the wealthy Palmyrenians constructed those temples, palaces, and porticoes, whose ruins, seattered over an extent of several miles, have deserved the enriosity of our travellers." The ruins of it were discovered by some English travellers towards the end of the 17 th century, and were more lately visited by the Messrs. Dawkins and Wood, already mentioned. The power of Zenobia, who wished to slake off the subjection to Rome, was insufficient to withstand the forces of Aurelian, and Palmyra fell into his hands about the year 237. A slight sketch of the ruins (fig.114.) is here

given. The style of arehitecture is almost the same as that of Baalbee ; and, like that, so vitiated in almost every profile, that we do not think it necessary longer to dwell upon it, although great the extent of its ruins. In the same way, we must pass over those of Djerash, which were visited by Mr. Barry, and of other considerable eities, though some are said to contain examples in a better and purer Fig. 114.
rimins of palatira. style.
198. The reign of Dioclesian was extended, and was illustrious from his military exploits. It was also remarkable for the wisdom he displayed in dividing with others the diseharge of duties he could not himself perform ; as well as, finally, by ifis abdication and retirement to Spalatro. Architecture was, however, too far sunk for him to raise it ; and, thongh monuments of great grandeur were reared by him in Rome and his native town of Salona, they were degenerated by innovation and a profusion of ornaments which sometimes proved disastrons to those bencath, upon whom they oceasionally fell, but the tante for which, anong the Romans, had inereased by their intereourse with the East. At a period when no sculptor existed in Rome, this monareh raised the celebrated baths there which bear his name. His palace at Spalatro (fig. 115.) covered between nine and ten English acres. Its form was quadrangular, flanked with sixteen towers. Two of the sides were 600 ft ., and the other 700 ft . in length. It was constructed of stone little inferior to marble. Four streets, intersecting each other at right angles, divided the several parts of the edifice; and the approach to the principal apartment was from a stately entrance, still called the golden gate. By comparing the present remains with the Treatise by Vitruvius, there appears a coincidence in the practice here with the precepts of that author. The building consisted of only one story, and the rooms were lighted from above. Towards the south-west was a portico upwards of 500 ft . long, ornamented with painting and sculpture. We do not think it necessary to follow up further the decay of the arts in the West; it is sufficient to add that the fifth century witnessed the contemporaneous fall of them and of Rome itself.
199. Towards the year 330, the seat of the Roman empire was removed to Constantinople, where the reign of Constantine, thongh brilliant, was unsuccessful in restoring the arts, upon which religious as well as political causes had begun to act. The establishment of Christianity had less effect on arehitecture than on her sister arts. The new species of worship could be performed as well in the old as in temples of a new form, or the old columns might be employed in new edifices, in which, indeed, they were eminently serviceable; but statues of the gods were no longer wanted, and the sculptor's art was abandoned. The removal, however, of the government to the Bosphorus retarded the decline of the empire in the East. Byzantium, on whose foundations was placed the city of Constantinople, owed its origin to a colony of Megarians; and little was it to be imagined that its disasters would have closed in so glorious a termination as occurred to it. The ancient city still continued to possess some splendid productions of the schools of Λ sia Minor, which it almost touched, and in common with which it enjoyed the arts. Constantine profited by the circumstance, restored the monuments, and transported thither the best examples of sculpture.
200. Arehitecture was called in by the emperor to aid him in affording security, convenience, and pleasure to the inhabitants of the new metropolis. Vast walls surronnded the city; superb porticoes, squares of every kind, aqueducts, baths, theatres, hippodromes, olelisks,

Fig. 115.
triumphal arehes, stately and magnificent temples, were provided for the public. Schools of arcliitecture, which none but persons of good birth were allowed to enter, were established, with professors and pizes for the meritorious. From all this eare, one might have supposed a plentiful harvest would have been reaped. But, alas! with all the expense, with all the fine marbles that were employed, with the bronze and gold lavished on the construction and decoration of the edifices erected, the art was not re-established on its true prineiples. Every thing was rich; but, notwithstanding the exaggerated praises of the ignorant writers of the day, every thing was deficient in real beauty. Richness of material will never compensate for want of elegance in form. "The buildings of the new city," observes Gibbon, "were exeeuted by such artificers as the reign of Constantine could afford, but they were decorated by the hands of the most celebrated masters of the age of lericles and Alexander. To revive the genius of Phidias and Lysippus surpassed, indeed the power of a Roman emperor; but the immortal productions which they had bequeathed to posterity were exposed without defence to the rapacious vanity of a despot. By his
commands the cities of Greece and Λ sia were despoiled of their most valuable ornaments. The trophises of memorable wars, the objects of religious veneration, the most finished statues of the gods and heroes, of the sages and poets of ancient times, contributed to the splendid trimmph of Constantinople, and gave occasion to the remark of the historian Cedrenus, who observes, with some enthusiasm, that nothing seemed wanting except the souls of the illustrious men whom those admirable monuments were intended to represent."
201. In Rome the triumphal areh erected in honour of Constantine presents, to this day, an example of the barbarous and tasteless spirit of the age. It is nuthing less than an incongruous mixture, in sculpture and architecture, of two periods remote from each other. But, discorlant as the styles are, the absurdity of placing on it part of the triumphs of Trajan, whose arch was robbed for the oceasion, is still greater. Not only was Trajan's arch despoiled of its bas reliefs, but the columns and capitals, which the arehitect, from ignorance, scarcely knew how to put together, were stolen for the occasion. We have used the term ignorance of the architect, who, (if the monument were not standing, the fact could scarcely be credited.) with the tinest models before his eyes, paiced modillions with dentils in the cornice, and has used the same parts in his impost.
202. The partition of the empire at the death of Constantine was !ninions as well to the arts as to the empire; and at its reunion by Constantius in 353, he exhibited but little solicitude abont their prosperity. On a visit of thirty days to Rome, he presented the city with the obelisk that now stands in front of the Basilica of S. Giovami Laterano. It had been intended by Constantine for his new city ; and, after being brought down the Nile from the 'Temple of the Sun at Heliopolis, was conveyed to the banks of the Tiber instead of those of the Bosphorus. After being landed alont three miles from the city, it was first elevated in the Cireus Maximus. This piece of granite is alrout 118 ft . in length.
203. Julian's name is in bad odour with the Christian world; but he ought, nevertheless, to have justice rendered to him for his administration of the affairs of the empire, his love of freedom, and his patronage of the arts. This emperor, at Constantinople, constructed some porticoes and improved the port ; and, even at so remote a spot as laris. there still remain the ruins of a palace and baths of his constrnction; a circumstance wineh should make his memory all object of respect, perlaps veneration, to the inh:bitants of that city.
204. Under Valentinian and Valens the arts received little attention, though the former manifested some care for them. Gratian was entitled to a sort of negative praise for leaving the empire of the West to his brother Valentimian 11., and that of the East to Theodosius; who, after the death of the former, held the sway of the whole empire, patronising architecture, and erecting many large edifices in Constantinople. Alter this the empire was lastingly divided. On the death of Theodosius, Areadins suceeeded him in the East, and in the West Honorius, muder whom, whilst he was ingloriously enjoying the pleasures and luxuries of his palace at Ravema, Alarie, king of the Visigoths, entered and pillaged Rome in the year 410. Honorius raised or repaired several of the Basilicte at Rome ; among them that of S. Paolo fuori le Mura ; and, in honour of the two emperors, a trimplial areh was erected in the city in 406 , but of this no remains are in existence.
205. After this time, for sixty years the empire of the West was in a state of distraction. Nine princes filled the throne during that period, on and off the stage, rather like acturs than monarchs. But the extinction of the Roman name could be no longer protractec!. $\ln 455$, Genseric, king of the Vandals, gave up Rome for pillage to his soldiers for the space of three days, and some years after, his example was followed by Ricimer. In 476, the Roman empire in the West was ammihilated.
206. We have this, in this and the preceding section, shortly traced the history of Roman architecture from its dawn among the Etruscans to the close of the regal power in Rome; and from that period to the time of its culmination und r Augustus, an age of great splendour in the art, comparable even with the best days of A thens, if allowance be made for the respective habits of the nations and the climates under which they were placed. From the zenith we have followed it in its setting under Dioclesian, and after that through its crepusculum, which, in 476, was succeeded ly total darkness; a darkness, however, not without meteors and coruscations which oceasionally enabled us to enlighten the reader in the journey he has undertaken with us. The revolutions, however, of empires, like those of the globe on its axis, bring other dawns: such is the case with the arts, which follow those revolutions; and we shall hereafter have to record another dawn of them, which, like the light of our great luminary, had its day-spring in the east, whence came the architects of Venice and lisa. But, betore we approach that period, it will be necessary to take a cursory glance at those monuments of Rome and other places under its dominion, in which the ruins alone attest the extraordinary power and magnifience of that State, and to examine the details of their construction as respects what simply presents itself to the eyc.
207. We now, therefore, proceed to a view, 1. Of the religions buildings of the Romans in quadrangular and circular temples; 2. Of their public buldings in fora, triumphal arches, bridges, aqueducts, theatres, amphitheatres, and baths and circi; 3. Of their private
houses and tombs; eonfining ourselves to those ruins in the city, and occasionally the provinces, which best ill strate the subject.
208. Temples - 1. The quadrangular Roman temple partook very much of its Greek, or perhaps Etrasean, orisinal ; though oecasionally, as in the Temple of l'eace, there is a very comsiderable deviation from the type. But the exeeptions to the general rule are very few inleed in number. The most beautiful temple of the Corinthian order that perbaps (rerexisted in the world was the (formerly so called) Temple of Jupiter Stator, in the Campo Vaceino or more properly the Forum at Rome, and now designated the Temple of the Dioseuri or of Castor and Polluy, in consequence of reeent exeavations. It was an octastyle peripteral temple, with eleven columus in flank, and the cell occupied eight eolumns on eaeh side. No Greek work could surpass in elegance and beauty the profile of the Corinthian order employed in this edifice. The capital, whether considerel as to design or exceution, is unparalleled. At the same time it must be admitted that it bears every mark of the improvements that had been effected through the meliun of Greek artists. Three columus uith their entablature remain; these are 4765 ft . high, the lower diameter being 4.84 ; so that the collumus are 9.8 diameters lighl. The height of the entablature is a small fraction less than one quarter the height of the column. The intercolumniations are, as nearly as possible, $1 \cdot 5$ diameter of the column; whence the size of the temple will be easily determined.
209. At the font of ihe Ca, itol stands the Corinthian Temple of Jupiter Tonans (so called), al,o called Temple of Saturn, but now of Vespasian, of which, as of the last, only three columns remain. This was an hexastyle peripteral (except on the side towards the rock) temple, $11 ; \mathrm{ft}$. long and 92 ft . wide, measurel from outside to outside of coiumn. The eolumns are 47.08 ft . high, and their lower diameter is 4.60 ft .; their height, therefore, in terms of the diameter, is very nearly $10 \frac{1}{4}$ diameters. The height of the entablature is 9.77 ft , or not guite one fifth of the height of the column. The intercolumniations are $1: 56$ diameter. There is a tale in Suetonios, that Augustus had bells suspended round this temple on the oceasion of his dreaming that the god complained of a falling off in the number of his warshippers. Its style is inferior to the one above described, yet it is not without beanty, though the comice is, as compared with it, deficient in effect. (The description of the different species of temples mentioned by Vitruvius is giren in the Glossary, s. v. Temple.)
210. The Temple of Mars Ultor was one of those erected by Augustus. Its profile exhibits a fine and bold example of the Corinthian order. Is whole length was abrut 116 ft ., and its breadth about 73 ft . The cornice of the entablature is wanting. The intercolumniations are about $1 \frac{1}{2}$ diametcr.
211. In the Campo Vaceino are the remains of a Corinthian temple, built by M. Aurelius in honour of Antoninus, his predecessor, and Faustina, the wife of M. Aurelius, about the middle of the 2nd century. in a high style of art, and is considered the last pure building in Rume It was prostylos and hexastylos; the columns are 46.10 ft . high; the entablature 11.03 ft ; diameter of the columns 485 ft ; and the intercolumniations, except the centre one, which is wider than the others, are $1 \frac{1}{2}$ diameter of the columns; the columns are $9 \frac{1}{2}$ diameters high, and the entablature rather less than one fourth that heig't the frieze is ornamented with griffins and candelabra. It is not our intenti n to deseribe more than the prineipal temples, with their parts, but to afford to the reader in this place a general view cf the art ; we shall therefore merely mention those of the Maison Carrée at Nismes, and the little edifice at Trevi, which last is erected in a very vitiated style : both are of the Coriuthian order, and quadrangular in form.
212. Rome is very poor in examples of Ionic temples, the only two remaining being that of Fortuna Virilis and that of Concord; the first not very pure in its detail, and the latter in the very worst style. The Temple of Fortuna Virilis is of the species called protyle and tetrastyle; that is, with four columns in front and seren on the sides, whereof the cell occopies four intercolumaiations. The height of the columns is 2735 ft ; the lower dianneter of the columus 3.11 ft .; and the neisht of the entablature 6.78 ft . A peeuliarity has heen noticed in this example of the different centres of the ornamented members being ranged so as to lall with exaetness over the axes of the columns.
213. The (formerly so call-d) Temple of Concord, now of Saturn, or the Ærarium, which is a restoration of a furmer temple, is probably of the age of Constantine, and scarcely deserves the notice here taken of it, except as a connecting lin's in the chain of ar-. It was lexastyle and peripteral. The eight columns which remain are of red and white granite of different diameters. The bases are Attic, and witbout plinths, except those of the angular colunns. The capitals are inelegant and clumsily sculptured. The mouldings of the arehitrave have been ehiselled away to form a plane surface for comaining the inscription. Modillions and dentils are mit with in the cornice, and the frieze in the interior was sculptured. The leeight of the columns is 4286 fi., and their lower diameter $4 \cdot 48 \mathrm{ft}$. ; so that they are about $9 \frac{1}{2}$ diameters high. The height of the entablature is $7 \cdot 2 \mathrm{ft}$. or about one sixth of the height of the columis.
214. The circular temples of Rome and its neighbourhood will next be mentioned. Two of them, that of Vesta at Rome and of the Sybil at Tivoli, of the Corinthian order, are on considerable antiquity. Their cells are cylindrical, and are supposed to have been covered with domes resting on the walls, though that is by no means certain. The Temple of Vesta is raised on three steps, whilst that of the Sybil is raised on a circular basement about five feet high. Both the cella are encircled about with a colomade of the Corinthian order. The capitals of the Temple of the Sybil are extraordinary as pieces of eflective art The leaves of the capital, instead of being ippliquees to the bell, as in other examples, an in this cut into it, and impart a magical appearance to it. The tout ensemble of this temple seems to have been conceived with an eye to its situation, and the order seems calculated only for the spot on which it stands (see fig. 116.). The circular 'remple

of Dacehus is of a late date. In its exterior there is nothing to remark, except that it has lont a portico at its entrance which originally belonged to it. It consists of a central circular cell, if such it may be called, surromaded by a circular aisle, the former being separated from the latter by twelve pairs of double columns, coupled in the direction of the radii of the plan; from which columns arches spring, carrying a cylindrical wall $39 \% 36$ ft. diameter, covered with a hemispherical dome 6.6 ft . high from the pavement. The aisle or corridor is 14.75 ft . wide, surrounding the doulle colonnade, fiom which to the exterior wall is a semicircular vault, whose sofite is 32 ft . high from the pavement. Of the former so called Temple of Minerva Medica, now considered to be a Hall or Nympheum belonging to the great Thermæ of the 3rd century, of the time of Decius,

Fig. 117.
TEMPIE OF MINERVA MEDICA. s'anding. It was 110 ft . in diameter; but the intcrior was formed into ten plane faces, each having a semicircular recess towards the interior. A hemispherical briek dome was 113 ft . from the pavement. A semicircular wing, covered by a hemisplerically formed vault, stood on each side of the building, but they are now in ruins. Fig. 117. shows the ruin as it was in 1816, from a memorandum we then made. A rectan. gular vestibule with fom Corinthian columns formed
the entrance, and was surmounted by a pediment roof. The temple now stands in a private garden.
215. We have reserved for the last example of a circular temple the celcbrated Pantheon, supposed to have formed at one time a portion of the baths of Agrippa, and erected about в с. 27. The body of the temple was probably erected in the time of the republic with simple large niches, as in figs. 118. and 119.; the left side shows it as originally built, and the right side as now standing; the portico was probably erected by M. Aurelius Antoninus, cir. A.d. 166, and com-

entablature is 10.22 ft ., or nearly, not quite a fifth
 pleted by Septimius Severus, a.d. 202, at which time the columus were added to the niches, and other alterations made, as seen on the right half of the plan and scection. The interior is circular and about 139 ft . diameter, measuring from inside to inside of the columns, which are about 33 ft . high. At a height of 75 ft . from the ground in the interior springs the hemispherical d meme, which has five horizontal ranks of caissons or panels, the top of the dome being terminated by what is technically termed an eye, or circular opening, about 27 ft . diameter. All that is found in the temple is of the Corinthian order.
216. Fig. 120. is an elevation of the Pantheon, witt the portico of the Parthenon below it, for the purpose of comparing the relative sizes of the porticoes of the two buildings. The portico, it will be seen, is octastyle, and projects 62 ft . from the circumference of the cireular part of the edifice. The shafts of the columns are plain, and the portico is surmounted by a pediment similar to that on the wall of the building. The eolumns are 47.03 ft . high, and their lower diameter 4.79 ft . The of the heiglit of the colmm. The profile of the order is bold and well conceived, and the execution in a good style. It has been stripped of its ornaments, many whereof were bronze, by the cupidity of the possessors of power at various times. Though the present interior is comparatively modern, we think it right to give the following particulars of the order :- The columns are 34.67 it. high, the lower diameter being 3.64 ft . The shafts are fluted, and have what are called cablings \boldsymbol{p} one third of their height. It will be seen on inspection of the plan that these columns are placed in front of the great niches. We are not aware that the circumstance whereto we are about to alvert has been herctofore moticed, and we give the result of our calculation in round numbers only, as an approximation to the truth. The rules for lighting apartments will form the subject of a future section. We shall here mercly olserve, that the contents of the building, measuring round the inner convexity of the columns, and not ealculating the niches, is about $1,787,300$ culic feet, and that the area of the eye of the dome is abont 32 square ft., from which it follows that 2226 cubic ft. of space in this building are lighted by 1 foot superticial of light. The building is neither gloomy nor
dark : on the contrary a pleasant light is diffused throughout. and darkness is not fond in any eorner of it. This is a subjeet well worthy of consideration, and one whein wr bropose hereafter to turn to practieal account.

Fig. 120. blegation of pantheon.

Fig. 120.
porfico or parfingon.
217. 'IThe Temple of I'ace has been reserved by us to close the notices of the Roman temples, becanse of its deviation from the general form of other Greek and Roman temples, whieh in the quadrangular species are so formed on one general plan that ab uno disce omenes is the expression applicable to them. The figs. 121. and 122. represent the plan and section of this

Fig. 121. PTAN OF THE TIMPIPR OF PFACP, OR RAEHTCA DY EONCTANTINF. bulling. The former will be seen to lave been rectangular, with a poreh extending along the whole breadth of the building in front. 'I'his was vanlted, the summit interionly being 35 ft . high; and in front were seven semicireular-headed apertures serving as entrances. 'Ihe length of the temple outside, not ineluding the depth of the poreh, was 294 ft ; elepth of the porch: 30 ft. ; width of the building 197 ft. 'The temple was longitudinally divided into three nearly equal parts, whereof the central one was a rectangrular alone of the whole lengtli of the temple, whose breadth was one third of its lengrth. The roof of this was a valult with three groins, formed by the intersection of semieylindrical vaults at right anrgles to the conpavement was about $116 \mathrm{ft.}$, appers to have be'n decorated with sunk panels. We shall not however pursuc the
verbal description of this edifice, which will be much better understood hy an inspection of the diagrams. We will only add, that although the columas in the interior are entirely Eene, and the building is in a sad state of diapidation, enough has been discovered to prove that the restoration here submitted

Fis. 122.
thample up peacr. to the reader is not very far from the truth. In many cases the restorations of Palladio, whose works it is the fachion amongst half-instructed architects and still less informed anateurs to decry, are not to be wholly relied on in his capacity of antiguary, and certainly must not be takenfor granted; but his restoration of this temple camot widely difler from the truth. It appears to have been founded by Clandins, and finished by Vespasian after the somquest of Julea, and seems to have been the depository of the spoils of the temple at Jerusalem. It is uncertain by what accident in the reign of Commodus it was destroyed, lout it is conjectured it was rentored during his reign. It may not be here altogether ont of place to notice that the temple in question seems in some measure to have furnished the hint for the nave of the Italian Duomo with its side aisles. It was but in the aldition of the transepts and choir, whose type is indicated even in the basilicee of the lirst Cloristians, that a variation is to be seen. If the cross, however, be not sutficiently apparent in the basilica, it cannot be mistaken in the churehes bat little later.
218. Fora. - 2. The Forum of the Romans is described generally in Vitruvins (Book vi. chap. 1.). He directs that it should be a large rectangular area, whose breadth is to be ahout two thirds of its length. The basilica or court of justice, serving also as an exelange for the merchants, is to be attached to it. The formm in a Roman city was the arena on which business, polities, and pleasure were equally transacted, discussed, and enjoyed. Among the Greeks it was called the ayopa, signifying a place in which the citizens were collected. It is here to be observed, that the lora of the Romans were of two sorts: Forn Cicilia and Fora Fenalia; the former wheroof were designed as well with the object ol ornamenting the cities in which they were erected, as for admitting a site for the public courts of justice, and other public buildings; the latter were intended to provide for the necessities and conveniences of the inhabitants, and no doubt bore a resemblance to our markets. The great Forum at Rome was seated between the lalatine and Capitoline hills. Its houndary has of late years been more satisfictorily traced, by the extensive excavations which have laid bare the pavements and other details of the original buildings ericted around it. The theories of Bunsen, Becker, Dyer, and Canina, are arranged and explained by the late Mr. A. Ashpitel. in the paper read by him at the Inst. of Brit. Architect-, 1857. The explorations since 1870 are to some extent s'owa in Burn's Rome and the Campagnu, 1871; and in Taylor \& Cresy, Antiquities of home, new edit. fol. 1874. Photographs of a large size have likewise been published, not only of the existing ruins but of the discoveries. The Forum of Neria is said to have been 367 ft . Tong and 164 ft . widl. At one end were five arched entrances, and at the other the Temple of Nerva. The Formm of Trajan, built by the cmperor whose name it bears, was erected from the foreign spoils taken by him in his wars. The coverings of its editices were all of hrass, and the porticoes and their columns comstructed in an exceedingly splendid style of execution. Ammiamus Marcellimus (Ilist. iil. xvi.) describes, with much force, the delight of Constantius on contemplating it when he made his triumphal entry into Rome. The representations make its length 1150 ft ., and its mean breadth about 470 ft . In it was the emperor's magnificent column (fiy. 111.), at one end was the Temple of Trajan, and at the other his 'Triumphal Arch. This Formm contained the celebrated and splendid Basilica Upiana. The other example we shall mention was at fano, and we mention it because it contained a basilica by Vitruvius himself. He describes the portico of the Temple of Augustus as joining that side of the basilica which was furthest from the centre of the Forum, and a temple of Jupiter as standing at the opposite end. He goes on to describe the Treasury, Pri:on, and Curia, as placed on the longer sides of the Formm exteriorly to the shops which surrounded the area. The commentators on Yitruvins have been at considerable pains to make out the plan of the basilica of this building from the verbal description of it ly the author,perhaps none of them with greater success than old Daniel Barbaro.
219. But no words convey the description of a place so well as a diagram of the object under consideration; and as there exists at Pompeii a forum so perfect, that all the rules given ly our great master are exemplified in it, we here place the plan (fig. | 23 .) of the lormm there before the reader, so that he may have a complete notion of the arrangement. Entering from the gate of Herculanem, the principal treet leads to its north-west conner,
whenee the access to it is by a flight of steps downwards, through an arch in a brick wall, still patially covered with stucco. It has been conjectured with probability, that the entrances to it were occasionally closed, from the remains of iron gates having been found at some of them. A smaller passage occurs to the right of the arch just mentioned, and a fountain attached to the wall between them. A is supposed to have been a temple of Venus; B, a public granary; C, a temple of Jupiter; D, probably a Senaculum, or council chamber; F, a temple to Nercury; F, a Chaledicum; G G, curix; H, treasury; I. trimphal arch; K , areostyle portico with ambulatory above.

220. Trmmphal Arches. - The Romans were the first people who erected trimmphal arehes; ther earliest examples being extremely simple and plain. A plain arch with a statue of the victor and his trophies on the summit, was for a long period the only method pract:sed. The areh by degrees expanded in after times, the style became enriched, and the whole wats at length loaded with a profusion of every sort of ormament. Latterly they were a reetangular mass (see fig. 124. of the areh of Constantine), penetrated by three arclies, a central and two smaller side ones. The upper part consisted of a very high attic, frequently covered with inscriptions and has reliefis, statues, trimmphal cars and ornaments of that kind. The keystones were sometimes decorated with figures of victory. Of the triumphal arches hat remain there are three classes: - first, those consisting of a single arch, as the arch of Trajate at Ancona, and Titus at Rome; second, those in which there are two arches, as in the example at Verona; third, those with three arches, whereof the central was the prineipal one, and those at the sides much smaller, as the arehes of Constantine, Septimins Severus, \&ec. The most ancient of the remaining arches is that of Augustus at Rimini. It was erected on the occasion of his repairing the Flaminian way from that town to Rome. The erection of these trimphal arches afforded the means of gratifying the extraordinary vanity of the people with whom they originated. Many of them are in very had taste; a remark that applies even to the Arel of Titus, whien was erected before the arts had more han begun to droop. (See figs. in Book III.) The orders applied to them are unnecessary o he described in detail, because inapplicable except under precisely similar circumstances.
221. Bridges. - There is perhaps no single point in the history of architecture by which the civilisation of a peopic is so easily recognised as by that of their bridges. Latterly, in this country, the division of science as well as labour has so changed, that it seems almost necessary to refer to other works for knowledge on this subject ; but as this is one in which architecture in all its branches must be considered, we shatl here, as in the other sections of this work relating to the point in question, treat it in such mamner as to give the reader some notion of the subject. The history of the bridges in every nation is comected with local causes, which have great influence on their construction; and though in other respects a mation may in the arts have attained a high pitch of execllence, yet it is possible that in brilge building their progress may be very limited as respects seince. The matter
will depend entirely on the nature of the country. In our view of Grecian Architecture this subject has not been even mentioned. and it is nearly certain that Greece boasts no

Fis. 121.
bridge whose date is anterior to its occupation by the Romans. But, independent of its want of aequaintance with the arch, the circumstance may be accounted for by the country not being intersected by any river of magnitude. Those to which one inight he inclined to attach the name of river, are rather mountain torrents than sheets of water rolling their streams down to the ocean. A single arch in most cases would be all that was necessary to connect opposite banks, and the rocks themselves would form abutnents for the siagle arell that was to comeet them, without danger of failure.
222. In Italy, however, a country watered by many and considerable rivers, the study of the arehitecture of bridges was indispensable, as well for the accommodation of the eities with which it abounded, as for the service of the constant military expeditions of the restless and craving people who inhabited its surface. From its very earliest foundation, no city in the world would sooner have been placed in the predicanent of requiring bridges than Rome herself; besides which, skill was required in their construction over a river like the Tiber, rapid and liable to be swelled by sudden floods. The earliest bridges of the Romans were of timher: such was that which joined the Janiculum to the Mons Aventinns, called the Pons Sublicius from the sublice, stakes (Liv. i. c. 33.), whereof it was composed. It is not here our intention to enumerate the ancient bridges of Rome; but the ruins of those which have come under our observation exhibit skill and seience not inferior to the most extraordinary examples which modern art can exhibit; witness the Pons Narniensis on the Flaminian way :uear Narni, about sixty miles from liome. It was built by Augustus, and at the present day there remains, as though standing to mock modern science, an areh of a span of 150 ft ., whose intrados is 100 ft . above the level of the river below. But of the works of this kind exeeuted by the Romans we know of none, either in ancient or modern times, that is zomparable with that erected by 'Trajan over the Danube, whose piers from their foun dation were 150 ft . in height, and the span of whose arehes was 170 ft , and to the number of twenty. The bridge was 60 ft . in width. This work, whose existence is searcely credible, putting in the background all that of which in the present day it is our habit to boast, is reputed to have been destroyed by IHadrian, the successor of its founder, under a pretence that if the barbarians became masters of it, it might serve them as well
or making incursions on the empire, as for the empire in repressing those incursions. But ther less creditable motives have been attributed to Hadrian for its destruction, one of hem the envy he had of the name of its founder. There are still partial remains of an ncient Roman beidge over the Tagus near Alcantara. This consisted of six arches, each oft. span, extending altogether 800 ft . in length, and some of them 200 ft . high above he river. We do mot, in closing our brief view of the bridges of the Romans, more than ention the extraordinary temporary bridge which Casar threw over the Rhine.
229. Aqueducts. - It is obvious that of all the requisites for a city, the supply of holesome water is only equalled by that of discharging it, which latter we have before en was well provided for in the Eiternal City. The aqueducts by which the Romans upplied their cities with this necessary element, are among the largest and most magificent of their works. Their ruins alone, without other testimony, supply the means f estimating their extraorlinary power, skill, and industry. They are works which sink to nothingness all other remnants of antiquity, not even excluding the amphitheatres. -hich we shall soon have to notice, because they were for the comfort, not the pastime, of $1:$ people. The earliest aqueduct was that of Appius Claudius, which we have above oticed as constructed in the $442 d$ year of the city. It conveyed the Aqua Appia to tome, froin a distance of between seven and eight miles, by a deep subterraneous chamnel pwards of eleven miles in length. We shall here digress for a moment, by observing that pon the discovery of good water at a distance from the city at a much higher level than re service therein indicated, it was the practice to supply by means of a chamel raised at ny height as the case needed, through a stone-formed trough raised on the tops of arehes ; the course of it reguired over valleys, and otherwise became necessary from the nature of ie face of the country, such a quantity as the source would afford. Hence the arcales uised to carry this simple trough of supply were often of stupendous height, and their ngth was no less surprising. In the present day, the power of steam has afforded other reans of supplying a great city with water; but we much question whether the supply Forded by all the concealed pipes of this vast metropolis can compete in refreslunent ad general utility to its inhabitants with those at the present day poured into Rome, ithout becoming a burthen to the respective inhabitants, and this principally from the reans which their predecessors provided.
224. 'The aquerluct of Quintus Martius, crected 312 years before Christ, is anong the oost extraordinary of the Roman aqueducts. Commencing at a spring thirty-three iles distant from Rome, it made a circuit of three miles, and then, after being conveyed rough a vault or tunnel of 16 ft . in diameter, continued for thirty-eight miles along a ries of arcalles 70 ft . in height. It was formed with three distinct chamhels, one above the her, conveying the water from three different sources. In the upper one was the Ayua Hia, in the next the Aqua Tepula, and in the lowest the Aqua Nartia. The Aqua irginia was constructed by Agrippa, and in its course passed through a tumnel 800 paces in ngth. The Agua Claudia, begun by Nero, and finished ly Claudius, of which fig. 195. shows several arches, conveyed water to lione from a distance of thirty-eight miles; thirty miles of this length was subterrameous, and seven miles on arcades, and it still alfiords a supply of water to the city. The Anio was conveyed to Rome by two different chamnels: the first was carried over a length of forty-three miles, and the latter of sixty-three, whereof six
rches, many of them upwards of 100 ft in
aqua clac dia.
 ites and a half lormed a continued series of arches, many of them upwards of 100 it. in
sight above the ground on which they stood. At the begiming of the reign of Nerva, ere were nine great aqueducts at Rome. That emperor, under the superintendence of dius Firontimus, constructed live others, and at a later period there were as many as enty. According to Frontinus (de Aquæductibus) the nine earlier aqueducts supplied 1,018 quinaria daily, which are equal to $27,743,100$ cubic lt. ; and it has been computed at when all the aqueducts were in delivery, the surprising quantity of $50,000,000$ of , hic ft. of water was afforded to the inhabitants of Rome, so that, reckoning the populanat one million, which it probably never exceeded, 50 cubic ft. of water were allowed for e consumption of each inhalitant. More magnificent Roman aqueductsare, however, to be und in the provinces than those that supplied the city. That of Aetz, whereof many of e arcalles remain, is one of the most remarkable; extending across the Moselle, a river considerable breadth where it crosses it, it conveyed the water of the Gorse to the eity - Metz. From the reservoir in which the water was received, it was conducterl through hterranean chamels of hewn stone, so spacions that in them a man might stand upright. he arehes appear to have been ahout fifty in number, and alout 50 ft . in height. Those the middle of the river have been swept away by the ice, these at the extremities reaining entirc. In a still more perfect state than that at Meta is the alpueduct of Singoria.
of which one hundred and tifty of the arehes remain. all formed of large bloeks uncomected by cement, in two ranks of arcades one above the other.
225. It has been conjectured that the causes for not carrying these aqueducts in straight lines were first to avoid excessive height, where low grounds were crossed, and, secondly, to diminish the velocity of the water, so that it might not he delivered to the city in a turbid state. Along the line of an aqueduct, aecording to Montfauçon, at certain intervals, reservoirs called Castella were formed, in which the water might deposit its silt; these were round towers of masonry raised of course as high as the aqueduet itself, and sometimes highiy ornamented. The same author observes that below the general bed of the channel, pits were sunk for the reception and deposit of the earthy particles which the water contained. Vitruvius directs the channels to be covered over to protect the water from the sun's rays, and (lib. viii. chap. 7.) he moreover directs that when water-pipes are passed across a valley, a venter should be formed, which is a subterranean reservoir wherein the water may be collected, and by which its expansion may be diminished, so that the hydrostatical !ressure will not burst the joints. He also recommends that open vertieal pipes should be raised for the escape of the air which accompanies the water, a practice which the moderns have found it neeessary to adopt wherever it is neeessary to bend pipes upwards, and thus permit the escape of air, which would impede, and even stop altogether, the movement of the water in them. (Some additional details are given in the Glossary.)
226. Theatres. - The earliest stone theatre of Rome, as we have before stated (185.), was that of Iompey ; but it must be recollected that as there are notices in history of this theatre having heen more than once consumed by fire, there can be little donbt that a portion, probably the seats and seenes, were of wood. The second theatre of stone was raised by Julius Cesar, after which Augustus reared one in honour of Marcellus, the son of his sister. The scanty ruins of this last enable one to do little more than trace its elevation, and from their curve to compute its extent. There was no essential difference between the form of the Roman and Greek Theatre, of which latter we have given a diagram in fiy. 10G. We nevertheless think it right here to present the reader with one of the Roman Theatre fig. 126.), as nearly as it ean be made out from the description of Vitruvius. (Book r.

Chap. 6. "The form of

will separate the pulpitum of the proscenium from the orchestra. wiil separate the pulpitum of the prosceninm from the orchesfra. I'hus the pulpitum be comes more spacious and convenient that that of the Greeks, because our aetors remain chiefly on the seena. In the orchestra are assigned seats to the senators: the height of its pulpitum must not exceed 5 ft ., so that the spectators in the orchestra may have a clear view of the motions of the actors. The portions between the staireases (cumei) of the theatre are to be so divided that the vertices of the triangles, that couch the circumference, may point to the directions of the ascents and steps between the cumei on the first pracinction or story. Above these the steps are placed alternately and form the upper cunci in the middle of those below. 'The angles thus pointing to staireases will be seven in number, and the remaining' five will indicate certain points on the scene. That in the centre, for instance, is the situation for the royal door, those on the right and left the doors of the guests, and those at the extremities the points at which the road diverges. The seats (gradus) for the spectators are not to be less than 20 in . in height nor more than 22 . Their width is not to be more than $2 \frac{1}{2} \mathrm{ft}$. nor less than 2 ft ." Besides the theatres named, that of Cornelins Lathess, built by him in honour of Augustus, was on a scale of considerable magniticence.
227. The large theatre at Pompeii, as was frequently the case, was formed upon the slope f a hill, the corridor being the highest part, whence the andience deseended to their seats, ad staircases were saved. The grudus at this theatre were about 1 ft .3 in . high, and 2 ft . in. wide, and from a part which is divided and numbered off, $1 \mathrm{ft} .3 \frac{1}{2}$ in. appear to have een allotted to each spectator. There still remain some of the iron rings, for the reception f the masts from which the velurium or awning was suspended.
228. Amphithentres. - The amphitheatre was unknown to the Greeks. At an early period, owever, in Rome, human beings were compelled to fight for the amusement of speetators. 'he taste for such spectacles inereased with its indulgence; bat it was nevertheless not until the time of the em-

Fig. 12T.
ahohithratar at pola perors, that buildings were erected solely for exhibition of gladiatorial shows. 'I'he principal amphitheatres, of which remains still exist, are one at Alba, a small city of Latium; another near the Tiber at Otricoli; one of brick near the banks of the Garigliano; one at Puzzuoli, wherein parts of the ar. cades and caves for wild easts still remain; one at Capua; another at Verona; a very fine one at Pola in Istria fig. 127.). In France, Arles, Saintes, Autun, Nismes, and Nice possessed amphitheatres. n short, wherever the Romans went, they erected those extraordinary monuments of their ower and skill. But all that we have enumerated were far surpassed by the Coliseum, hich has been already briefly mentioned by us at page 79. The form of this buiding on pe plan is an ellipse, whose transverse exterior axis is 61.5 ft and its conjugate 510 ft ., overing therefore nearly six English acres of gromed. The whote mass is placed on an seent of six stages, which encircle its whole circumference. In the centre is the arena, a ane which it reeeived from being strewed with sand, the transverse and eonjugate axes hereof are 281 and 176 ft . respectively. Round the arena was a wall on whieh was the odium or fence; and immediately behind this wall all round was a row of eells in which e beasts were placed preparatory to their entranee into the arena. In the rear of the ells was a corridor from which vaults radiated in directions perpendicular or nearly so , the curve of the ellipse, and serving to support the first maxianum or interior range f seats. In some of these valults were steps leading to the podinm ; others were merely assages between the first corvidor and the next towards the interior. The seeond corridor as lighted by apertures cut through its vault to the pracinctio whieh separated the first nd second horizontal division of the seats. In rear of the second corridor, vanlts again adiated, in some whereof were steps leading to the second division of the seats, and in others rere galleries which led from the corridor to the double arcade, surrounding the whole difice. The description will be better comprehended by referenee to figs. 128. and 129., on the latter whereof a portion of the exterior side is removed, to exhibit the section.
229. About the whole exterior of the building, there are three orders of columns rising bove each other, and one of pilasters crowning the whole. The columns are of equal iameter, and are filled in between with eighty areades in each story. The arches of these reades have all archivolt mouldings round them. Four of the areades in the lower tier vere reserved for the admission of distingnished personages, the remainder for the populace: hese last were ealled vomitoria, serving both for ingress and egress to and from the places f the speetators, by meams of steps under the vaults that supported the seats. 'lhe piers vieh support the arehes are 7 ft .4 . in. wide; on each is a half column projecting from he general face of the wall. The opening between the piers is $17 \mathrm{ft} .3 \frac{6}{\mathrm{f}} \mathrm{in}$. Impost nondlings are placed at the springing of the arches, and encircle the buidding exeept where nterrupted by the columns and openings. The lower order resembles the Dorie, xeept that the frieze is without triglyphs and the eornice without mutales. Desgodetz nakes the height of the columns $27 \cdot 63 \mathrm{ft}$., and their lower diameter 291 ft . Their liminution is very small. The height of the entablature is 6.64 ft , and the height, herefore, of the whole order above the pavement is $34-27 \mathrm{ft}$. The seeond order is lonie, and stands on a dado 6 ft . high, broken muler the eolnmens to receive their rojection from the wall. The columns are $2.5 \cdot 73 \mathrm{ft}$. high. The volutes of the capitals are without ornament; the eye being merely marked by a circle. The entablature is ; 64 ft . high, and its subdivisions are like that in the order below. There are neither nodillions nor dentils in the cornice. The height of the whole order is $38: 37 \mathrm{ft}$. The hird order is Corinthian, standing on a dado 6.39 ft . high. The columns are 2.5 .58 ft . high, ne entablature 6.59 ft ., and the height of the entire order, ineluding the dado, is 38.57 ft .

The upper story is decorated with a series of Corinthian pilasters on subplinths 2.79 A . bigh, placed on a dado of the height of 7 ft . The height of the pilasters, which ate not

diminished, is 28 ft ., and the height of their entablature is $7 \cdot 37 \mathrm{ft}$. The frieze and architrave are broken vertically in each interpilaster over three corbels, on which it is supposed,

Fig. 149.
section and klevation op colisevm.
running throngh the back part of the cornice, poles were placed for holding the velarium, which was oceasionally stretched over the building to protect the spectators from the sun or rain. The whole height of the façade above the steps was 162 ft . The columns project rather more from the walls than their semidiameter; and the faces of the walls are not in the same vertical plane, but recede from it towards the interior of the building. The widths of the piers vary in the different stories, being respectively from the lower part upwards as $8.71,8.38$, and 7.28 ft . Between the pilasters, in the fourth order, are square windows. The velariun was attached to the poles round the circumference with a fall towards the interior, so that the rain was delivered into the arena. The following has been supposed as a method of spreading the velarium, of which Fontana gives a representation, but no description. To a cable placed round and made fast on the edge of the podium, and following its curve, strong ropes were attached in the direction (on the plan) of the radiating walls. These ropes passed through pullies in the poles, 240 in number, at the top of the building, which rested on the corbels above mentioned, and thus raised the velarium to the required height. It would fullow the inclination of the seats, and the cloth, of whatever fabric or materials it might be, being formed in gores equal on the outer edges to the distance of the masts from each other, might move on the radiating ropes by rings attached to the edges of
each gore, so as to be moved backwards and forwards by persons stationed on the parapet. Darine soldiers were employed for this purpose. The velarimm was sometimes of silk, but more usually vellow or brown woollen cloth. Nero once had a purple velariun stretched across the building, representing the heavens with stars of gold on it, and a design embroidered thereon of the Chariot of the Sun.
230. It has been conjectured by some Roman antiquaries that the arena was Loarded; and, from the changes that could be made on it in a very short period, the conjecture is highly probable. bomitian covered it with water for the purpose of exhibiting marine shows and naval fights. Sometimes it was changed into the representation of a forest with wild beasts roaming about. These alterations were effected by means of machines called pegmata. In particular parts of the building, pipes were provided for the distribution of perfunes, which it was a common practice to sprinkle in showers; but, on particularly great occasions, the perfumes were allowed to flow down the steps or gradus of the amphitheatre.
231. The conjecture relative to the boarded floor of the arena has been corroborated by the discoveries made while the French had possession of Rome. They excavated the arena, and found vaults and passages under its whole area. It is much to be regretted that these inguiries were not carried on, owing to an accumalation of waters, for which no drainage having been provided, they became unwholesome from stagnaney, and it therefore was necessary once more to close it again by obvious means. Great care was bestowed on the Arainage of this edifice, which was encircled by a large sewer for the reception of the water of the interior drains, that were all conducted into it. Another drain, 30 inches wide, was carried round under the second corridor, into which are conveyed the water from the perpendicular conduits and that from the third corridor, whose drain is 3 ft . in depth and 17 inches in width. The sides of these drains are lined with tiles. Another drain runs on the outer side of the third corridor, and is of the same size as the last named. Other drains commmicate with these towards the arena in varions directions.
232. Paoli thinks that amphitheatres were tirst used by the Etruscans, and by them introduced into Rome; that the people in question first exhilited their games in narrow valleys, and that the spectators were ranged around on the sides of the hills; that when these iports were exhibited in cities, an arena was lug into the level ground, and the earth thrown out was formed intos seats; and that when the commonity became rich enough, or the ganes cane to be held in greater esteem, the amphitheatre was enclosed with a wall, and the seats formed of wood or stome. It certainly appears to us that Paoli's conjecture is reasonable, mo that Etruscan buildings or formations were the original type.
233. The amphitheatre at Nismes was capable of containing 17,000 persons: it was 4.33 ft . ong and 333 ft . broad; it is two stories in height with an attic, and is the most perfict pecimen in existence after that at Verona, upon whose age antiquaries are divided in pinion, some maintaining that it was built in the time of Augustus and others as late as he time of Maximian; it is 508 ft long and 403 ft broad; and in far better prevervation han the Colosseum. Its exterior wall has three stories of Tuscan pilasters on the ice of the wall; between these pilasiers are areades of semicircular-headed aperturec, Hallei says this edilice would seat 22,000 spectators But in this there must be some nistake.
234. Baths. - Publius Victor says that the city of Rome contained public and private baths to the amazing number of 850 . Sone of these we know, from their ruins, were buildings of great extent and magnificence. They were all constructed, we mean the public ones, on plans very similar ; and, in order to a description of them, we give in fig. 130. a restored plan of the baths of Caracalla, at Rome. Those of Titus and Dioclesian may also be traced; the chief others being those of Agrippa, Nero, and Domitian. The hathis of Antominus Caracalla are thus described by Eustace (vol. i. p. 226.): "Repassing the Aventine IIIll, we came to the baths of Antonimus Caracalla, that occupy part of its declivity, and a considerable portion of the plain between it, Mons Cieliolus and Mons Cielius. No monument of ancient arehitecture is calculated to inspire such an exalted idea of Roman magnificence as the ruins of their therma, or baths. Many remain in \# greater or less degree of preservation; such as those of Titus, Dioclesian, and Caracalla. To give the untravelled reader some notion of these prodigious piles, I will contine my olservations to the latter, as the greatest in extent and as the best preserved; for, thongh it be entirely stripped of its pillars, statues, and ornaments, both internal and external, yet its walls still stand, and its constituent parts and principill apartments are evidently distinguishable. The length of the therme was 1840 ft ., its breadth 1476 . At each end were two temples; one to Apollo, and another to Esculapius, as the tutelary deities (genii tuteitres) of a place sacred to the improvement of the mind and the care of the body. The wo other temples were dedicated to the two protecting divinities of the Antonine family, Hercules and lacehus. In the principal building were, in the first place, a grand circular vestibule, with four halls on each side, for cold, tepid, warm, and steam baths: in the eentre was an immense square for exercise, when the weather was unfavourable to it in the

open air ; beyond it a great hall, where 1600 marble seats were placed for the convenience of the hathers: at each end of this hall were libraries. This building terminated on both sides in a court surrounded with porticoes, with a spacious odeum for music, and in the iniddle a spacious basin for swimming. Round this edifice were walks shaded by rows of trees, particularly the plane; and in its front extended a gymnasium for running, wrestling, \&c. in fine weather. The whole was bounded by a vast portico, opening into exedra, or spacious halls, where the poets declaimed and philosophers gave lectures to their auditors. This immense fabric was adorned within and without with pillars, stucco work, paintings, and statues. The stucco and paintings, though faintly indeed, are yet in many places perceptible. Pillars have been dug up, and some still remain amidst the ruins; while the Farnesian bull and the famons Hercules, found in one of these halts, announce the multiplicity and beauty of the statues which adorned the therme of Caracalla. The flues and reservoirs of water still remain. The height of the pile was proportioned to its extent, and still appears very considerable, even though the ground be raised at least 12 ft . above its ancient level. It is now changed into gardens and vineyards; its high massive walls form separations, and its limy ruins, spread over the surface, burn the soil and check its natural fertility."
235. Returning to the plan of the haths in question, we have now to explain that the circular apartment, lettered A, was called the solar cell. It was 111 ft . in diameter, and contained the different labra of the baths. This solar cell, Spartianus says, could not be equalled by the best architects of that age. The dome was lined with brass, of which material also were the lattices to the windows. B, the apodytertum, or undressing room. C, a aystus, or apartment for exercise in unfavourable weather. D contained the piscina, or large reservoir for swimming. E, vestibule for spectators and the dresses of the bathers. F, entrance vestibule of the thermæ, having libraries on each side. G G, rooms wherein the athlete prepared for their exereises. H, a court, having a piscina for bathing in the centre. I, ephebeum, place of exercise for the youth. K K, the elcotherium, or apartment for anointing the bathers with oil. L L, vestibules. MI, laconicum, an apartment so called, as it is said. from the name of the stove by which it was heated, and from the custom of the sudatio, or sweating, having originated in Laconia. N, culdarium, or hot water bath, which was most frequented. O, tepidarium, or tepid water bath. P, frigidarium, or cold water bath. Q, exedre for seats for the use of the philosophers and their scholars. W, rooms for conversation. R R, exedra, or large recesses for the use of the philosophers. Y, conisterium, or place where, after anointing, the wrestlers were sprinkled with dust.
236. We have just given the common explanation to the word laconicum; but it is riglit the reader should know that its true meaning is in some doubt. Galiani considers it a great chamber wherein the people underwent sweating. To this Cameron adds, "I for myself hold it certain that the apartment for this purpose has been by some authors improperly termed; the laconicum is nothing more than a little cupola which covered an aperture in the pavement of the hot bath, through which the vivid flame of the hypocaustum, or furnace, passed and heated the apartment at pleasure. Without this means," continues that author, " the hot bath would nut have had a greater heat than the other clambers, the
temperature of which was milder. I have been induced to form this opinion, not ouly from the ancient paintings found in the baths of 'Titus, but also by the authority of Vitruvius, who says that the hot bath (concamerata sudutio) had within it, in one of the corners, or rather ends, the laconicum. Now, if the laconicum was in the corner of the hot bath, it is clear that it is not the bath itself, but merely a part of it ; and if, as others have thought, it was the hot bath itself, to what ppripose served the concamerata sudatio?"
237. The baths and thermæ of the Romans, like the gymnasia of the Greeks, were highly ornamented with bassi relievi, statues, and paintings. I'he basins were of marble, and the beautiful mosaic pavements were only equalled by the decorations of the vaults and cupolas. Nothing more strongly proves the magnificence and luxury of the ancient Romans than the ruins of the baths still to be seen in Rome. Agrippa decorated his baths with encaustic paintings, and covered the walls of the caldarium with slabs of marble, in which small paintings were inserted. All these luxuries were introduced under the emperors; and the mere act of bathing, as described by Seneea in the instance of Scipio Africanns, appears to have been almost lost in the effeminacy of the later practice. The splendour of the places may be judged of by calling to the remembrance of the reader that the celebrated statue of the Laocoon was one of the decorations of the baths of Titus, and that of the Farnese Hercules of the baths of Caracalla.
238. We have, in the section on Aqueducts (224.), stated the extraordinary quantity of water with which the city was supplied by them, and there can be no doubt that the baths caused a very great consimption of that necessary article of life. After the removal of the empire to Constantinople, we hear of no therme being erected; and it is probable that at that period many of those in the city fell into decay. The aqueducts by which they were supplied were, morenver, injured by the incursions of invaders, another canse of the destruction of the baths. Remains of Roman baths have been discovered in this country, for descriptions whereof the reader is referred to the Archaologia.
239. We shall conelude our observations on the Roman baths by the mention of some curious paintings in the baths of Titus, very similar in their features to those fomd in places on the walls of Pompeii; we allude to representations of slender twisted columns, broken entablatures, and curvilinear pediments, columus standing on corbels attached to the walls, a profusion of seulpture, with fantastic animal figures and foliage, and many other estravaganzas, which found imitators after the restoration of the arts, and, in some cases, with great success.
240. Circi. - The circus of the Greeks was nothing more than a plain, or race course; from its length called $\Sigma \tau$ diñov (stadium); as also Kıркоs, from its oval figure. With the Romans it became a regular building of great dimensions and magnificence. The Circus Maximus, constructed originally in a rude manner by Romulus, and afterwards rebuilt by the elder Tarquin, is, in its external dimensions, computed to have been 2000 ft . long and 550 ft . broad, consisting of two parallel walls in the direction of its length, united at one extremity by a set of apartments, called carceres, arranged in the form of the segment of a circle of about 430 ft . radius; and, at the opposite short end, by a semicircular enclosure. The carceres contained the chariots ready for starting. 'The arena, or space thus enelosed. contained a long low wall called the spina, 1300 ft . iu length, running along its longitudinal axis, and commencing at the centre of the semicircular end, having a meta, or goal, at pach of its extremities. Like those of the theatre and amphitheatre, the seats of the spectators were placed round the arena with a podium in front; between which and the spina tue races of the chariots were exhibited. The circus of Nero was nearly of the same form, Lut neither so long nor so broad, being only 1400 ft . in length and 260 in breadth, and its spina but 800 ft .
241. The remains of the circus of Caracalla, of which Bianconi has given a very good aecount, are still sufficiently abmant to trace the plan (fig. 131.). It was nearly of the same dimensions as that of Nero. There are in this building some eurious examples of lightening the spandrels of the arches over which the seats were constructed, by filting them In with light vessels of pottery; a practice which has been partially adopted in some modern buildings, and is still nsefully practised on the Continent. Generally speaking, the circus was a parallelogram, whose external length was from four to five times its breadth. It was surrounded by seats ranged above each other and bounded by an exterior wall, probably piereed with areades. The spina was abont two thirds the length of the building, and was ornamented with statues, obelisks, and other ornaments, terminated at each end by the meta, which consisted of three obelisks or columns. The carceres were closed by gates in front and rear, which were not opened till the signal was given for starting. In the eireus of Caracilla, it will be seen that these carceres were placed obliquely to the long sides of the edifice, so as to equalise the length of their course from the starting point to the goal. So that it would seem there was as much nicety in a chariot race of old as in a modern horse race.
242. Privile IIouses. - The domestic arehitecture of the IRomans possesses great interest; the general instrnctions spread over the sisth book of Vitrיnvius upon their parts and pro-

portions have received much illustration from the discoveries at Pompeii ; and it is pleasant to find that, following his merely verbal directions, a building might be planned whieh would correspond as nearly with what we now know was the ease, as two houses, even in a modern city, may be expected to resemble one another. In the following observations we have used most abundantly the elegant little work of Mazois (Le Pulais de Scuurus, 2 d ed. 8 vo. Paris, 1822), and feel a pleasure in thus acknowledging our obligations to that author; but, before more immediately using his observations on the later habitations of the Romans, we shall premise that until after the war of Pyrrhus, towards the year 280 в.с., the use of tiles as a covering for them appears to have been unknown. Till then thatch or shingles formed the covering of the houses. They consisted of a single story ; for, accorling to Pliny (lib. xxxiv. e. 15.) and Vitruvius (lib. ii. c. 8.), a law was in force forbidlding walls of a greater thickness than one foot and a half; whence it is clear they could not have been safely raised higher than a single story with the unbaked bricks then in use. But the space within which the city was confined, with an inereasing population, rendered it necessary to provide in height that which could not beobtained in area; so that, in the time of Augustus, the height of a house was limited to 70 ft . (Aurel. Vict.; and Strabo, lib. v.)
243. The extraordinary fortmes that were realised in Rome towards the last years of the republic, when the refinements of the arts of Greece were introduced into the city, soon led its more favoured citizens to indulge in arelitectural splendour. Lucius Cassius had decorated his dwelling with columns of foreign marble; but all other prisate edifices were thrown into shade by that of Scaurus, in which were employed hlack marble columns of the height of 38 ft . Mamurra lined his apartments with marble; and, indeed, such was the prodigality, for it deserves that term, of the Romans, that Pliny (lib. xvii. e. 50.) tells us of Domitius Ahenobarbus having offered a sum equivalent to 48,500 , sterling (sexagies sestertium) for the house of Crassus, which was refused. Their villas were equally magnificent. Cicero bad two of great splenshour-his Forman and Tusculan villas; but the-e were exceeded in beauty by those of Lucullus and Pollio, the latter near P'osilippo, where some remains of it are still to he seen. Though Augustus attempted to stop this extraordinary rage for magnificence, he was unsuccessful; and the examples which were afforded by later emperors were unlikely to restrain the practice where the means existed. In the Domus Aurea of Nero, domestic architecture appears, from all accomnts, to have reached the utmont degree of spleadour and magnificence.
244. In the better class of Roman dwellings, certain apartments were considered indispensable; and these, in different degrecs of size and decoration, were always found. There were others which were or were not so found, according to the wealth and fancy of the proprietor. Thus, every private house of any pretension was so planned that one portion was assigned to the reception of strangers, or rather for publie resort, and the other for the private use of the family. The public part was destined for the reception of dependants or clients, who resorted to the honse of their patron for advice and assistance.

The mumber of these clients was honourable and useful to the patron，as they might，in civit matters，be depended on for their votes．IHence lawyers especially had their houses thronged with them；and it is amusing in the present day to see the term of client still kept up among our barristers：for although his state of dependence has lost nothing of its cxtent，the eminence of the patron is now measured by the quantity and amount of fees his clients enable him to consume．Vitruvius describes the public portion as consisting of the purticus，vestibulum，curadiam or utrium，tablinum，ula，fuuces，and some few others， which were not added except at the especial desire of the party for whom the building was to be erected．

24．5．The parts which were sacred to the use of the family were the peristyle，the ru－ bicula（sleeping apartments），the triclinium， the reci，the pimacotheca，or picture galleries， the billictheca，or library，baths，exedrir， rysti，and others．

2446．In the more extended mansions of the Romins was an area，surromeded on two sides be porticoes and shops，and ormamente． with statues，trophies，and the like，and on the third（the fontel being open）was the decorated entrance or portico of the house． But in smaller dwellings this entrance or portico was in a line with the front of the houses in the strect；the vestibule or pro－ thyrum（fig．132．）being in the Roman houses merely a passage room，which led from the strcet to the entrance of the atrium．In this vestibnle，or rather by its side，the as－ tiurius or porter was stationed，as in French houses we find a coneierge．When there were two courts，we are inclined to think that the one nearest the street was callend the atrium，and the farthest from it the ris－ roelinm；but in many cases we alus think that the atrimm served equally as a cavediun according to the owner＇s rank．The explan－ ation of Varro will eertainly answer for one as well as the other．It may be that the cavadium was a second atrium of larger size．
247．Of the atrium Vitruvius deseribes five sorts：1．The Tuscan，wherein the pro－ tecting roof was a sort of pent－house on the four sides，supported by beams framed at right angles into each other；the space in the centre forming the compluviun，and the basin or area in the centre the implucium．2．The tetristyle atrium（one with four

columns), which was similar to the 'Tusean, exeept that the angles of the beams of the ronf or pent-house rested on four columns. 3. The Corinthian atriun (fig. 133.), whelh differed only from the last in its size, and the number of its colnmms. 4. The atrium displuviatum in which the slope of the roofs was towards the body of the building. 5. The atriun testudirutum, which was covered with a ceiling, and with nothing, more than an aperture therein to afford light. The complaviom was sometimes (Plin. xis. c. i.) provided with a sort of awning 'The roof of the four sides of the atrium was covered with ornamental tiles, the eaves' faees whereof were terminated between their sloping junctions with carved faces called antefixe, similar to those in the roofs of the Grecian temples. The atrium was, moreover, frequently embellinhed with fountains. It was in the atrium that the splendid columns which we have mentioned, as decorating the honse of Seaurus, were plaeed. The walls were either lined with marble or painted with varions devices, and the pavement was deeorated with mosaic work or with precious marbles.
248. The tablinam, whieh ustally opened towards the atrium, seems to have been a sort of levee room, wherein the master of the mansion received his visitors or clients, lists of whom were therein recorded, and where the maestro di camera annomeed their names. Some have thought, and we do not say they are wrong, that this apartment contained (which it might also do without affeeting the truth of the first supposition) the family arehives, statues, pictures, pedigree, and other appurtenances incident to a long line of ancestors.
249. The apartments on the sides right and left of the tablimm were called, as their name signifies, ala. These were also furnished with portraits, statues, and other pieces relative to the family, not onitting inseriptions commenorative of actions worthy their name.
250. 'Two corridors, one cheach side of the atrium, which bed to the interior of the house from the atrinm, were called fiumes (jaws).
251. In houses of moderate dimensions, chambers were distributed round the atrium for

18.5.51.
eknis ryic. ar pospreth. the reception and lodging of strangers; but in establishments of importance, wherein the proprietor was a person of extended connexions, there was a separate hospitinu ap propriated to that purpose.
259. We have stated that the peristyle was a portion of the private part of the house. It was mostly, if not always, placed beyond the atrium, with which it commmicated by means of the tablinum and fances. Similar in general form and design to the atrium, for it was surrounded by columns (see fig. 134.), it was larger than that apartment. The eentre was usually provided with a parterre in whieh shrubs and flowers were distributed, and in its middle a tish pool. This portion of the peristyle was called the xystus (Vitr. lib. vi. c. 10.). In better houses there was an ante-room called procaton, to each of the bed-chambers, of whose arrangement very little is known. The triclinimu (трets клival, three beds), or dining-room, was so called from its having three conehes round the table on which the dimer was served; the fourth side being left open for the servants (see fig, 135.). It was raised two steps from the peristyle, and separated from the garden by a large window. Winter trielinia were placed towards the west, and those for summer to the cast. In large houses there were several triclinia, whose conches would contain a greater or less number of people. The ceci were large salous or halls, of Greek origin, and, like the atria, were of more than one speeies; as for instance the tetrastyle, the Corinthian, and the Egyptian. "There is this diflerence," observes Vitruvius (lib. v. cap. 6.), "between the Corinthian and Egyptian weens. The former has a single order of columns, standing either on a podium or on the gronnd, and over it architraves and corniees, either of wood or plaster, and a semicircular ceiling above the comice. In the Lgyptian œeus, over the lower column, is an architrave, from which to the surrounding walls is a boarded and paved floor, so as to form a passage round it in the open air. Then, perpendicularly over the architrave of the lower colunns, columns one fourth smaller are placed. Above their arehitraves and cormiees, they are decorated with ceilings, and windows are placed between the upper colunns. Thus they have the appearance of basiliee rather than of Corinthian triclinia." The owens, called Cyzicene by the Gieeks, was different to those of Italy. Its anpect was to the north, towards the gar-

Fig. 135. small taiclinium at pompeit.
dens, and had doors in the middle. It was made long, and broad enough to hold two trichinia opposite to each other. The Greek cetus was not, however, much used in Italy. The pinacotheca (picture room), where pose sible, faced the north: both this and the bib. liotheca (library), whose aspect was east, do not require explanation. The exedre of the Roman honses were large apartments for the general purposes of society. The upper stories of the house, the chief being on the ground floor, were occupied by slaves, freedmen, and the lower branches of the finnily. Sometimes there was a solarium (terrace), which was, in fine weather, much resorted to.
253. Fig. 136. is a plan of the house of Pansa at Pompeii, by reference to which the reader will gain a tolerable notion of the situation of the different apartments whereof we have been speaking. A is the prothyrum, which was paved with mosaic. 13 13 B B, Tuscan atrium, in whose centre is the compluvimu or basin (b) for the reception of the water from the roof. One of the proportions assigned to the atrium by Vitrusius is, that the length shall be once and a half the breadth; and here it is precisely such. e, a pedestal or altar of the household god. C C, alav. They were on three sides surrounded by seats, and, from Sir W. Gell's account, are analogous to similar recesses in the galleries of Turkish houses, with their divans: the thresholds were mosaic. Vitruvius directs them to be two sevenths of the length of the atrium; which is precisely their size here. D, tablinum. It was separated from the atrium by an aulæum, or curtain, like a drop scene. Next the innor court was sometimes, perhaps generally, a window, occupying the whole side. The tablinum was used as a dining-room in summer. E E E E, peristyle, which, in this example, exactly corresponds with the proportions directed ley Vitruvius. FF F F l: were domestic apartments, as penaria, or cubicula, or cellice domestica. G, probably the pinacotheca, or apartment for pictures. Ii, fances, or passage of communication betwern the outer and inner divisions of the house. I, cubieulum. Its use cannot be doubted, as it contains a bedstead, filling up the whole width of the further end of it . K, triclinium, raisel two steps from the peristyle, and separated from the garden by a large window. In this room company was reecived, and chairs placed for their accommodation. L I I, exedrx. М M M, cellx familiarie, or family chambers: the further one had a window looking into a court at d . N, lararium or armarim, a reeeptaele for the more revered and favourite gods O , kitchen with stoves therein, and opening into a court ate, and an inner room P, in which were dwarf walls to deposit oil jars. Q, fances conducting to the garden. Along the back front, R R R R, is a portics or pergula, for training vines and creepers on the back front of the house, before the windows of the triclinimm. S S: these two rooms, opening into the pergula, were, it is presumed, cubicula. T'T, \&c. : the apartments thus marked seem to have constituted a distin't portion of the honse, and commmieated with the street by a separate door. That they were in-
cluded in the establishnent of Pansa scems certain, from their being connected with the peristyle by the large apartment U. On excavating here, four skeletons of fimales were found marked by their gold ear-rings; also a candelabrum, two vases, a fine marble head of a faun, gold braeelets, rings with engraved stones, \&c. \&e. V V V are shops, which appear, by the remains of staireases, to have had apartments above. They contain dwarf walls for ranging oil jars and other goods against. W W, \&e are diffirent shops. One is ol a baker, and to it the neees ary conveniences are appended. X X. apotheca or store-rooms. Y is the bakehouse, containing the oven \mathcal{Z}, the mills, : kneading trongl, \&.c. : it is paved with volcanic stone in irregular polygons. g g, place for the wood and charcoal. happears to have leen almost a distinet dwelling : two of the apartments had windows to the street, which runs southward to the formm. f f f, entrances from the street to the house of Pansa. The house was surrounded by streets, or, in other words, was an insula. We have thus named the principal apartments, and identified them by an example. In more magnificent houses there were the sacrarium, the venereum, the spheristerium, the aleatorimn, \&c. \&.c. The painting fiy. 137. is in the kithen of the house of Pansa, and represents the worship of the lares, under whose care and protection the provistons and cooking utensils were placed.

Fís. 157.
254. Tomls.-The Romans were rather given to magnifieence in the tombs ereeted for their dead. Some of these were public, and others for the interment of individuals or families. The former were often of vast extent, and have been compared to subterranean eities; the nthers were pyranids, conical and cylindrical towers, with ranges of vaults in then for sepulture.
255. Perhaps the earliest tomb at lome is that of the Horatii, now known as that of Aruns, son of Porsenna, whieh stands on the Appian Way, and was probably constructed by Etruscan workmen. It has a basenent 45 ft square on the plant, on which stand five masses of rubble or eath, faced with masunry, in the form of frusta of cones, lour of which are ten feet diane er at the buttom, and are placed at the four angles of the busement. The fifih stands in the centre of the whole mass, and is larger than the others.
956 . The principal tombs about Romeare: 1 The pyramid of Caius Cestius, whosesides are 102 ft . long. and it, heisht about the same number of feet. The interior contains in the centre a rectangular ce $\mathrm{ll}, 20 \mathrm{fi}$. long. and 13 ft . broad. At each external angle of this pyramid stands a Dorie column, without any portion of entablature over it. It is possible these "cre intended as ornaments, hough it has often puzzed us to find out how they ever could have been so thought. 2. The tomb of Haxlian, now converted into the Castel St. Ang.lo, had originally a square basement, whoee sides were 170 ft . long. From this substructure rose a cylindrical tower, 115 ft . diameter, probably at one time encireled hy a colonnade. It is now used as a lortress, and was considerably altered by Pope Panl 111. 3. The mansolem of Ceeilia Metella is circular, 90 ft . in diameter, and 62 lt . high, standing on a basement of the same furm, which up to the frioge is of Travertine stone, used as a casing to a rublle wall: it is the a lie:t use of Travertine, вс. 10 ?, though some writer, state 50 в.f. The fricze is of mable. In what may be called the core is a cell, 19 ft . diameter, to whieh there is an entrance by a pass.ige.
257. We do not, however, think it necessary further to detail the Roman tombs which may be found in Rome or the provincer, but, in lieu of extending our deseription on this
heal, to give the reader a notion of their forms in fig. 138. by a group from Pompeii,
 among the remains of which city there are a great many and various examples. They are in general of small dimensions, and stand so near one another as to form a street, called the Street of the Tombs. Some of these are decorated very highly, both as respects ornament in the architeeture and hassi relievi on the different faces. The Romans were particular in keeping alive the memory of the dead, hence their tombs were constantly looked after and kept in repair; a matter which, in this country of commerce and polities, a man's deseendants rarely think of, after dividing the spoil at his death
2.58. Character of Roman Architecture.- The character of the Roman architecture in its best period was necessarily very dillerent from the (irecian, on which it wan founded. We envy not those who say that they feel no beanties except those which the pure Grecian Doric of the Parthenon possesses. Each style, in every division of architecture, has its beauties; and those, among other causes, arise from each style being suited to the comutry in which it was reared; neither can we too often repeat the answer which Quatremere de Quiney gives in the Encyclopedie Méthodique to the question many years since propounded by the French Academy of Inscriptions and Belles Lettres, "Whether the Greeks borrowed their architecture from the Egyptians?" The answer of that highly talented writer is, "That there is no such thing as general human architecture, because the wants of mankind must vary in different countries. The only one in which the different species of architerture can approach each other is intellectual ; it is that of impressions, which the qualities whose effects are produced by the building art can work upon the mind of every man, of every country. Some of them result from every species of architecture, - an art which spring, as well from the huts of Greeee, as from the subterraneous excavations of Egypt, from the tents of Asia, and from several mixed principles to us manown. Thus the use of the word architecture is improper. We ought to name the species; for between the idea of architecture as a genus and as a species there is the same difference as between language and tongue ; and to seek for a simple origin of arehitecture is as absurd as a search would be after the primitive language. If so, the hut of Vitruvius would be but an ingenions falbe, as some have said; but it would be a ridiculons falsehood if he had pretended that it was the type of all architecture." If we must confine ourselves to the simplicity and purity of line which the Greek temple exhibits,-circumstances, be it olserved, that no future oceasion can ever again effectually call up, 一all the admiration of the numberless monuments of the Romans is based upon false data, and we are not anong those who feel inclined to set ourselves up against the universal consent of our race. Thus far we think it necessary to observe on the silly rage which a few years ago existed for setting up in this metropolis pure Greek Doric porticoes and pure Greek profiles. What could more exhibit the poverty of an artist's imagination, for instance, if the thing exist, than appending to a theatre the Doric portico of a temple? But the thing is too ridiculous to dwell on, and we proceed to our purpose. Whether the Romans invented the Tuscan order we much doubt. No example of it exists similar in formation to that descrihed by Vitruvius : it must, however, be admitted that it is a beantiful combination of parts, and worthy so great a people. It seems highly probable that this orler was used by the Etruscans, and that to them its origin is attributable. The use of timber in the entablature, which we know was practised by them to a great extent, seems to sanction such an hypothesis. Its detail, as well as that of the other orders of arehitecture, belong to another part of this work; we shall not therefore further speak of it than in the language of Sir Henry Wotton, who says, with his usual quaintness and simplicity, that it is a sturdy labourer in homely apparel.
259. The Doric order with the Romans was evidently not a favourite. In their hands its character was much changed. The remains of it in the theatre of Marcellus, in the examples at Cora and Pompeii, and the fragment at the baths of Dioclesian, are not sufficient, the ease of the first only excepted, to justify us in remaining the reader on the matter. The
_ower order of the Coliseum, be it olserved, wants the triglyph, the distingnishing feature of the order; so that although in a previous page we have described it as Dorie, we scarcely know whether we have not erred in our description. But to approach the subject of the Roman Dorie more closely, we will examine the general form of the example which the theatre of Narcellus affords. Therein the whole height of the order is 31.15 ft . whereof the entablature is rather more than one fifth, and the colums are 7.86 dianeters high. From the intereolumniations nothing can be deduced, beeause the areade which separates puts them out of comparison with other examples. Its profile is clearly that which has formed the basis upon which the Dorie of the Italian architects is founded; they have, however, generadly added a base to it. There is great difference between it and the Grecian Doric, which in its form is much more pyramidal, and would, even in ancient Rome, have been out of character with the decorations applied in the arehitecture of the city, in which all severity of form was abandoned. 'The details, however, of the Ronan as well as of the Grecian Doric will be given. and, from the representations, better understood by the reader, when we come to treat of the Orders in the third book of this work, where some varieties of it are submitted to the reader.
260. In the examples of Roman Ionic, that of the theatre of Marcellus excepted, there is a much greater inferiority than in the instance of Roman Doric to which we have just alluded; indet, that of the Temple of Concord, now knewn as the Timple ol Saturn. is composed in so debased a style, that allusion ought scarcely to be made to it. The following table exthibits the general pioportions of the four Roman profiles of it : -

Examples.			11 eight divided hy lower D:imeter in English Fert.		Diametersin Ileight.	Entablature in l'erms of the Diameter.	Inter-columniation.	Height of Capital in Terms of the Diameter.	$\begin{aligned} & \text { Upper } \\ & \text { Detar of } \\ & \text { mectraft. } \\ & \text { Shat } \end{aligned}$
Fortuna Virilis	-	-	27.	$=$	8.796	$2 \cdot 182$	$2 \cdot 125$	-457	-874
Concord, now S.turn			$4286 i$ $4+86$	=	$9 \cdot 5.54$	1-605	1-807	-500	- 2.5
Marcellus (Theatre of)		-	23940	=	9.000	2.391	- -	-557	-842
Coliseun -	-	-	25731 291	$=$	8.842	2.280	- -	-466	. 833

261. From the above it appears that, except in the ease of the Temple of Saturn, the entablature is about one fifth of the height of the whole order, and that the column diminishes alout $\frac{16}{100}$ of its lower diameter. The eapitals of the Roman are much sinaller than those of the Grecian Ionic, and their eurves are ly no means so elegant and graceful. There is no appearance of refinement and care in their composition, for which the rules of Vitruvius give an altogether much more beantiful profile than those examples, we have here quoted, present. In the Temple of Saturn, the volutes are placed diagonally on the capital, so that the four faces are similar in form. In the Greek specimens, as also in the 'emple of Fortuna Virilis, this is done on one angle only of the eapital of the columus, and that for the purpose of again bringing the faces of the rolutes on to the flanks of the building, instead of showing the baluster sides of the capitals. On the whole, we think the modern Italian architects sueseeded in producing much more beautiful profiles of this order, which never appears to have been a favourite in Rome, than their ancient predecessors.
262. The Corinthian seems to have been greatly preferred to the other orders by the luxurious Romans. There is little doubt that the capitals were generally the work of Greek sculptors, and some of those they have left are exceedingly beautiful; one that we have already mentioned, that of Vespasian, points to sculpture of the highest class. The following table contains the general proportions of six well-known examples in Rome:-

Exan.ples.	Height divided by lower Diameter in English Feet.	Diametersin Height.	Entablature in Terms of the Diameter.	Inter-columniation.	Height of Capital in Terms of the Diameter.	$\begin{gathered} \text { Upper } \\ \text { Dia- } \\ \text { meter of } \\ \text { Shaft. } \end{gathered}$
Pantheon, Portico	47.099	9.804	2.317	$2 \cdot 092$	1175	-8.5.5
Pantheon, Interior	${ }_{3}^{3+674} \times$	$9 \cdot 499$	$2 \cdot 251$	$1 \cdot 834$	1.000	-866
Jupiter Tonans, now Vespasian -	${ }_{4}^{47.089} 4=$	10.241	$2 \cdot 069$	$1 \cdot 558$	$1 \cdot 167$	-867
Jupiter Stator, now Dioseuri -		$9 \cdot 820$	2.534	$1 \cdot 575$	1.08	-891
Façade of Nero - -	$\frac{65 \cdot 5 \cdot 8}{6.568}=$	9.973	$2 \cdot 439$	- -	$1 \cdot 269$	-883
Arch of Constantine	${ }_{2902}^{28^{\circ} 937}=$	$9 \cdot 661$	$2 \cdot 388$	- -	1.095	-882

263. From the above, it appears that a mean of the whole height of the Corinthian order in the Roman examples is $12 \cdot 166$ dianeters, and that the entablature is less than a lifth
of the height of the order, being as $\cdot 1686: 1 \cdot 0000$. The diminution of the shaft is not so much as in the lonie, being only $\frac{124}{}$ oon the lower diameter. The Temple of the sybil at 'Iivoli presents quite a distinct species, and is the romance of the art, if we may be allowed such an expression. The mean height of the columns is 9.833 diameters, heing rather slenderer than the height recommended by Vitruvius (Lib. iv. c. 9.). The attic base, which will be considered in another portion of the work. was frequently employed by the Roman artists.
264. The invention of the Composite order is attributed, with every probability, to the lomans. It resembles generally the Corinthian, the main variation consisting in the part thove the scond tier of leaves in the capital. The following table exhibits the general proportions of three examples : -
Example.
Arch of Titus -
Arch of Severus
Baths of Dioclesian
265. The mean of these makes the entablature a little less than one fifth of the cntire reight of the order, the ratio being as $1955: 1 \cdot 0000$. The diminution of the shaft is 183 of the lower diameters. The mean height of the cotumns is 9.806 diameters. A itrongly marked feature in Roman architecture is the stylobate or pedestal for the eception of columns, which was not used by the Greeks. In the examples, it varies in ecight, but, generally speaking, it is very nearly four diameters of the column ; a mean of hose used in the triumphal arches comes out at 3.86 dianeters. Another difference from Greek architecture is in the form of the Roman pilaster, which was sometimes so strongly narked as to form a sort of square column with capitals and bases similar to those of the :olumns it accompanies, except in being square instead of circular on the plan. It is diminished in some buildings, as in the portico of the Pantheon, and in that of Mars Litor, while in others, no such diminution takes place. The reader will recollect that the Greek intee were never diminished, that their projection was always very small, and that the mouldngs of their capitals were totally different from the columns with which they are comected. 266. But the most wonderful change the Romans effected in architecture was by the inroduction of the arch; a change which, by various steps, led, through the basilica, to the onstruction of the extraordinary Gothic cathedrals of Europe, in its progress opening reanties in the art of which the Greeks had not the remotest conception. These matters vill be more entered into in the next section: we only have to observe bere, that its importmee was not confined to the passage of rivers by means of brilges, but that it enabled the Romans to supply in the greatest abundance to their cities water of a wholesome quality, vithout which no city can exist. To the introduction, moreover, of the arch, their riumphal edifices were indebted for their principal beanties; and without it their theatres and amphitheatres would have lost half their elegance and magnificence. Whence the arch ame is not known, It is now considered to have been borrowed from the Etrucans, nd was employed at Rome in the oldest constructions of the Kings, as early as b.c. 640. . 1 the section on Egyptian architecture, the subject has already been noticed.
266. The use of coupled columns and niches exhibits other varieties in which the Romans lelighted; but the former are not fomd till an age in which the art of arehitecture had regan to dectine.
267. There is still another point to which the reader's attention must be directed, and it s ahnost a sure test of Roman or Greek design; namety, the form of the mouldings of an rder on their section. In purely Greek architecture, the contours of the mouldings are Ill formed from sections of the cone, whilst in that of the lRomans, the contours are all portions of aireles.
259 . Under the climate of Rome it became necescary to raise the pitch of the roof hagher han was neesssary in Greece; hence the Roman pediment was more inclined to the homon. As, however, when we consider the practical formation of roofs generally, we shall investigate the law which, forced by elimate upon the architect, governed the inelination of the pediment, the reader is referred, on that point, to the place in this work where the suljeet of roofs is treated. (See Book 15. Ch HII., sec. iv., par. 2027.)

Sfст. XIV.

BIZANTINE AND ROMANESQUE ARCIITECTURE.

270. We propose in this section to take a soncise view of the state of delsased Roman arehitecture, from the year 476 , in which the lloman empire in the West was destroyed, to the introduction of the pointed arch at the latter end of the 12 th century. It will be necessary to premise that the term Romanesque is very general, and comprises the works of the Lombards as well as those of a later species, which in this country are called Saxom and Norman, for the character of all is the same, and we think much confusion will be prevented by the arrangement we propose. Between the fifth and the eighth centuries, at the begiming of which latter period the whole of Europe formed one great Gothic kingdom, the prospect is over a dreary desert in which the oases of our art are few and far between. The constant change of power, the division of the empire, which was so overgrown that it could no longer hang tegether, the irruptions of the Goths, whose name has been most improperly connected with all that is barbarous in art, make it no easy task to give the unlearned reader more than a faint idea of what oceurred in the extended period through which, often in darkness, we must proceed to feel our way. But, previous to this, we shall continue the state of the architecture in the East : because, having already given some account of Saracenic architecture, which had its origin about the seventh century, we shall not again have to divert his attention from the subject until the reader is introduced to the pointed style : an arrangement which, we trust, will assist his memory in this history.
271. The emperor Theodosius, who died A. D. 395, exhibited great talent in arms, and was desirous to extend the benefit of his influence to the arts, in which he did much for the empire. His sons, Areadius in the eity of Constantinople, and Honorins at Rome, were incapable of doing them any serviee, though by them was raised the famous Theodosian column at the first named city, which was surrounded with bassi relievi, alter the fashion of that erected long before in honour of Trajan at Rome. The ascent of Theodosius II. to the throne promised as well for the empire as for the arts. He called arehitecture to his aid for embellishing the cities of the empire. Under him, in 418 , Constantinople was surromed with a new wall ; some extensive baths, and a magnificent palace for the two sisters of Puleheria were erected. In 447, an earthquake nearly destroyed the eity, which was so admirably restored under this emperor that he might with propriety have been called its second founder. Except some trifling matters under Anastasius II., and Justin his suceessor, little was done till Justinian, the nephew of the last named. ascended the throne of the Last, in 527. By him the celebrated arehitect Anthemius was invited to Constantinople. Through the genius of this artist, aided by his colleague lsidorus of Miletus, on the ruins of the principal chureh of the eity, which, dedicated to Saint Sophia or the Eternal Wisdom, had been twiee destroyed by fire, was raised so splendid an edifice, that Justinian is said on its rompletion to have exclaimed, as Gibbon olserves, "with devout vanity:" "Glory be to God, who hath thought me worthy to accomplish so great a work. I have vanquished thee, 0 Solomon." We shall make no apology for giving the description in the words of the historian we have just quoted; a representation of the building being appended in figs. 139. and 140. "But the pride of the Roman Solomon, before twenty years had elapsed, was humbled by an earthquake, which overthrew the
 eastern part of the dome. Its splendour was restored by the perseverance of the same prince; and in the thirty-sixth year of his reign, Justinian celebrated the second dedication of a temple, which remains, after twelve centuries, a stately monument of his fame. The architecture of St. Sophia, which is now converted into the principal mosque, has been imitated by the Turkish sultans, and that venerable pile continues to excite the fond admiration of the Grecks, and the more rational curiosity of European travellers. The eye of the spectator is disappointe by an irregular prospeet of half domes and shelving roofs: the western front, the principal approach, is destitute of simplicity and magnificence; and the scale of dimensions has been mueh surpassed by several of the Latin eathedrals. But the arehitect who lirst erected an aërial cupola is entitled to the praise of bold design and skilful execution. The tome of St. Sophia, illuminated by four and twenty windows, is formed with so small a curve, that thie depth is orly one-sixth of its diameter; the measure of that diancter is $106 \mathrm{ft} .7 \frac{1}{2} \mathrm{in}$.

Fig. 140.
30

and the lofty centre, where a erescent has supplanted the cross, rises to the perpendicular height of 182 ft . above the pavement. The circle which encompasses the dome lightly reposes on four strong arches, and their weight is firmly supported by four massy pile," (piers). "whose strength is assisted on the northern and sontl:ern sides by four columns of Fgyptian granite. A Greek cross inscrited in a qualrangle represents the form of the edofice; the exact breadth from b, to b. is 231 ft ., and 268 ft . from a, to $a_{\text {. , or the the }}$, extreme length; the width under the dome from c. to c. is 1096 ft . The vestibule opened into the "arthex or exterior portico. That partico was the humble station of the penitents. The nave or body of the church was filled by the congregation of the faithful; but the two sexes were prudently distinguished, and the upper and lower galleries were allotted for the more private devotion of the women. Beyond the northern and southerll piles" (piers), "a balustrade, terminated on either side by the thrones of the emperor and the patriarch, divided the nave from the choir; and the space, as far as the steps of the nltar, was occupied by the clergy and singers. The altar itself, a name which insensibly became familiar to Christian ears, was placed in the eastern recess, artificially built in the form of a demi-cylinder, and this sanctuary communicated by several doors with the sacristy, the vestry, the baptistery, and the contiguous buildings, subservient either to the pomp of worship or the private use of the ecclesiastical ministers." We should be fearful of thus continuing the quotation, but that we prefer the language of Gibbon to our own : beyond which, the practical knowledge the rest of the description discloses is not unworthy the scientific architect, and the subject is the type of the great modern cathedrals, that of St. Paul, in London, anong the rest. "The memory," he contimues, "of past calamities inspired Justinian with a wise resolution, that no wood, except for the doors, should be admitted into the new edifice; and the choice of the materials was applied to the strength, the lightness, or the splendour of the respective parts. The solid piles " (piers) "which sustained the cupola were composed of huge blocks of freestone, hewn into stuares and triangles, fortified by circles of iron, and firmly cemented by the infusion of lead and quicklime; bat the weight of the cupola was diminished by the levity of its substance, which consists either of pumice-stone that floats in the water, or of hricks from the ble of Rhodes, five times less ponderous than the ordinary sort. The whole frame of the edifice was eomstructed of brick; but those base materials were concealed by a crust of marble; and the inside of St. Sophia, the cupola, the two larger and the six smaller semi-domes, the walls, the hundred columns, and the pavement, delight even the eyes of barbarians with a rich and variegated picture" Various presents of marbles and mosaics, amongst which latter were seen representations of Christ, the Vargin, and saints, added to the magnifieence of the edifice, and the precious metals in their purity imparted splendour to the scene. Before the building was four feet out of the ground its cost had anomed to a sum equivalent to $200,000 \mathrm{l}$, sterling, and the total cost of it when timished may, at the lowest computation, be rechoned as exceeding one million. In Constantimople alone, the emberor Idedicated twenty-
tive churches to Christ, the Virgin, and favourite saints. These were highly decorated, and imposing situations were found for them. That of the IIoly $\Lambda_{\text {postles at Constantinople, }}$ and of St. John at Ephesus, appear to have had the church of St. Sophia for their types; but in them the altar was placed under the centre of the dome, at the junction of four porticues, expressing the figure of the cross. "The pious munifieence of the emperor was diffused over the lloly Land; and if reason," says Gibbon, "should condemn the monasteres of both sexes, which were built or restored by Justinian, yet charity must appland the wells which be sank, and the hospitals which he founded, for the relief of the weary pilgrims." "Ahmost every saint in the calendar aefuired the honour of a temple; almosit every city of the empire obtained the solid advantages of bridges, hospitals, and aqueducts; but the severe liferality of the monarch disdained to indulge his subjeets in the popular luxury of baths and theatres." He restored the Byzantine palace; but selfishness, as respected his own comfort, could not be laid to his charge: witness the costly palace he erected for the infamous Theodora, and the munifient gifts, equal to $180,000 \%$. sterling, which he bestowed upon Autioch for its restoration after an earthyuake. His care was not limited to the peaceful enjorment of life by the empire over which he presided; for the fortifications of Europe and Asia were multiplied by Justinian from Belgrade to the Euxine, from the conflux of the Save to the mouth of the Danube; a chain of above fourscore fortified places was extended along the banks of the great river, and many military stations a!ppeared to extend beyond the Damube, the pride of the Roman name. We might considerably extend the catalogue of the extraordinary works of Justinian; but our olject is a general view, not a history of the works of this extraordinary person, of whom, applying the verses architecturally, it inight truly be said -

Si Pergama dextra
Defendi possent: etiam hac defensa lillosent;
and by whom, if architecture could again have been restored, such a consummation would have been accomplished.
279. In 56.5 .Justin succeeded to the throne of the East, after whose reign nothing occurs to prevent our proceeding to the Western part of the empire, except the notice necessary to be taken of Leo the Isaurian, who ordered the statues in the different churches to be broken in pieces, and the paintings which deeorated them to be destroyed. Under him Ravenna was lost to the Eastern empire, and under his predecessors Nahomet appeared; and in his successors originated the Saracenic architecture described in a previous seetion. It was muder Justin, in 571 , that the prophet, as he is called, was horn, and was in 6.32 suceeeded by Abubekr.
273. We now return to the empire in the West, whose ruin, in 476, drew after it that of the arts, which had grievously degenerated since the fourth century, at which period their deculence was strongly marked. But we must digress a little by supplying a chasm in the history of our art relative to the ancient basilicie of Rome, the undoubted types of the comparatively modern eathedrals of Europe; and within the city of Rome we shall find ample materials for tracing the origiz. whereof we speak.
274. The severe laws against the Cnristians which Severus had passed expired with his authority, and the persecuted race, between A. n. 211 and 949 , enjoyed a calin, during which they had been permitted to erect and consecrate convenient edifices for the purposes of religious worship, and to purchase lands even at Rome for the use of the community. Under Dioelesian, however, in many places the churches were demolished, though in some situations they were only shut up. This emperor, as if desirous of committing to other hands the work of persecution he had planned by his edicts, no sooner published them, than he divested himself, by abdication, of the imperial purple.
275. Under Constantine, in the begiming of the fourth century, the Christians began again to breathe; and though that emperor's religion, even to the period of his death, is involved in some doubt, it is certain that his opinion, as far as we can judge from his acts, was mueh inclined towards Christianity. Out of the seven prineijal churehes, or basilicee, of Rome, namely, Sta. Croce di Gierusalemme, S. Giovanni Laterano, S. Lorenzo finori le Murà, S. Paolo, S. l'ietro, S. Sebastiano, and Sta. Maria Maggiore, all but the last were founded by Constantine himself. The ancient basilica, which derived its name from Baftitus (a king), and ousos (a house), was that part of the palace wherein justice was administered to the people. The building for this purpose retained its name long after the extinction of the kingly office, and was in use with the Romans as well as the Grecians. Vitruvius does not, however, give us any specifie difference between those erected ly one or the other of those people. In lib. v. c. 1. he gives us the details of its form and arrangement, for which the reader is referred to his work. The name of basilica was alterwards transferred to the tirst buildings for Christian worship; not because, as some have supposed, the first Christian emperors used the ancient basilice for the celebration of their religious rites, but more probably with reference to the idea of sovereignty which the religion exercised, though we do not assert that such conelusion is to be necessarily drawn

Chere can be no donbt that the most ancient Christian hasilicar were expressly constructed or the purpose of religion, and their architectural details clearly point to the epoch in which they were erected. These new temples of religion borrowed, nevertheless, as well int heir whole as in their details, so much from the ancient basilicx, that it is not surprising liey should have retained their name. We here place before the reader (fig. 141.) a plan of

Fig. 1:1.
He aucient basilica of S. Paolo fuori le Murà, and (fig. 142.) an interior view of it, wherely

Fig. 112.
intrbtor of basilita of st. paul.
ts general effeet may be better understood. The latter shows how admirably it was adapted a the reception of an extremely numerous congregation. The numberless columus which he ancient buildings readily supplied were put in refuisition for constructing these basiliea, hereof, adopting the buildings of the same name as the type, they proportioned the elevaion to the extent of the plans, and, in some cases, decorated them with the richest ornaments. nstead of al ways connecting the columns together by architraves on their summit, which might ot be at hand, arches were spanned from one to the other, on which walls were carried up o bear the roofing. Though the practice of vanlting large areas did not appear till a coniderable time after the building of the first Christian basilice, it must be recollected that he Temple of Peace at Rome had previously exhibited a specimen of the profound knowedge of the Romans in the practice of vaulting: in that example, groined vaults of very urge dimensions were borne on entablatures and columns. Nor does this knowledge appear have been lost in almost the last stage of decline of Roman architecture under the emperor doclesian. In the baths of this emperor are to be seen not only gromed vaults in thrie
divisions, whose span is nearly 70 ft ., but at the baek of eaeh springer a buttress, precisely of the nature of a Hying buttress, is contrived to counteract the thrusts of the vaulting.
276. In recording the annihilation of the arts on the invasion of Odoacer, at the end of the fifth and during the course of the sixth century, historians have imputed it to the Gothie nations, qualifying by this name the barbarous style which then degraded the produetions of the arts. Correet they are as to the epoch of their ruin, which eoineided truly enough with the empire of the Goths; but to this nation they are unjust in attributing the introduetion of a barbarous style.
277. History informs us, that as soon as the princes of the Goths and Ostrogoths had fixed themselves in Italy, they displayed the greatest anxiety to make the arts again flourish, and but for a number of adverse circumstanees they would have succeeded. Indeed, the people whom the Romans designated as barbarous, were inhabitants of the countries to the north and east of Italy, who actually acquired that dominion and power which the others lost. Instructed at first by their defeats, they ultimately acquired the arts of those who originally conquered them. Thus the Gauls, the Germans, the Pannonians, and Illyrians, had, from their summission to the Roman people, aequired quite as great a love for the arts as the Romans themselves. For instance, at Nismes, the birthplace of Antoninus Pius, the arts were in a state of high eultivation; in short, there were schools as good out of as in Italy itself.
278. Odoacer, son of Edicon, the chief of a Gothic tribe, after obtaining possession of Rome in 476, preserved Italy from invasion for six years; and there is little doubt that one of his objeets was the preservation of the arts. He was, however, stabbed by the hand, or at least the command, of his rival and successor, Theodorie, in 493. Theodorie, the son of 'Theodemir, had been educated at Constantinople, and though personally he neglected the enltivation of seience and art, he was very far from insensible to the advantages they conferred on a country. From the Alps to the extremity of Calabria, the right of conquest nad plaeed 'heodorie on the throne. As respects what he did for the arts, no better reeord of his fame could exist than the volume of publie Epistles composed by Cassiodorus, in the royal name. "The reputation of Theodoric," says Gibbon, " may repose with confidence on the visible peace and prosperity of a reign of thirty-three years; the unanimous esteem of his own times, and the memory of his wisdom and courage, his justice and humanity, which was deeply impressel on the minds of the Goths and Italians." The residenee of Theodoric was at Ravenna chiefly, oceasionally at Verona; but in the seventh year of his reign he visited the eapital of the Old World, where, during a residence of six months, he proved that one at least of the Gothic kings was anxious to preserve the monuments of the nations he had subdued. Royal ediets were framed to prevent the abuses, negleet, or depredations of the citizens upon works of art; and an arehitect, the annual suin of two hundred pounds of gold, twenty-five thousand tiles, and the receipt of customs from the luerine port, were assigned for the ordinary repairs of the publie buildings. Similar care was bestowed on the works of seulpture. L3esides the capitals, Pavia, Spoleto, Naples, and the rest of the Italian cities, aequired under his reign the useful or splendid decorations of elurches, aqueducts, baths, porticoes, and palaces. Ilis arehiteets were Aloysius for Rome, and Daniel for Ravenna, his instruetions to whom manifest his care for the art ; and under him Cassiodorus, for fifty-seven years minister of the Ostrogoth kings, was for a long period the tutelary genius of the arts. The death of Theodoric oceurred in 526 ; his mansoleum is still in existence at Ravenna, being now ealled Sta. Maria della Rotunda. That city contains also the chureh of St. Apollinaris, which shows that at this period very little, if any, ehange had been made in the arrangement of large churches on the plan of the basilica. The front of the convent of the lranciscan friars in the same town, which is reputed to be the entrance to the palace, bears considerable resemblance to the l'orta Aurea of Dioelesian, at Spalatro. These buildings are all ma heavy debased Roman style, and we are quite at a loss to understand the passage guoted by Tirabosehi, from Cassiodorns, who therein gives a partieular deseription of the very great lightness and elegance of eolumns; thus-" Quid dicamus columnarum juneeam proeeritatem? Moles illas sublimissimas labnicarnm quasi quibusdan ereetis thatilibus contineri et substantio qualitate coneavis canalims excavatas, ut magis ipsas æstimes fuisse transfusas; alias ceris judices factum, quod metallis durissimis videas expolitum." (Lib. vii. Var. 15.) We know no examples of the period that bear out these assertions of Cassiodorus; on the contrary, what is known of this period indicates a totally different style.
279. If the successors of Theodoric had succeeded to his talents as well as his throne, and if they had been assisted by ministers like Cassiodorus, the arts and letters of Italy might lave recovered; but. after the retirement of that minister, from the suceession of Vitiges, towards 538 , the arts were completely extinet. In 543-7, Rome was taken and plundered by Totila; and afterwards, in 553, this ill-fated city was again united to the Eastern empire by the talents of Belisarius and Narses.
280. From the year 568 up to the conquest of Italy by Charlemagne, in 774, the country was overrun by the Lombards, a people who quickly attained a high degree of civilization,
and were much given to the practice of arehitecture. Maffei, Muratori, and 'rabosehi have elearly proved that meither the Goths nor the Lombards introduced any particular style, but employed the architects whom they found in Italy. Fig 143. is the west end

of the church of St. Nichael, at I avia, a work executed under the Lombards, and, therefore. 1. re inserted as an example of style. The anxiety, however, of the Lombards to preserve the urts was not sufficient to prevent their inereasing decay, whieh daily beeame more apparent. Not more than the Goths do they deserve the reproach for their treatment of and indiffer'hee to them. Besides fortifications and citadels for defenee, they built palaces, baths, and emples, not only at l'avia, the seat of their empire, but at Turin, Milan, Spoleto, and Benevento. Hospitals under them began to be founded. 'The Queen Theodelinda, in artieular, signalised her pious zeal in founding one at Monza, near Milan, her farourite esidence, and endowing it in a most liberal manner.
281. In the eighth century the influence of the popes on the fine arts hegan to be felt. lohn VI. and Gregory I11., at the commeneement of the eighth century, showed great soliitude in their behalf. During this age the popes grained great temporal advantages, and heir revenues enabled them to treat those advantages so as to do great good for Italy. In he ninth century Adrian I. signalised himself in this passion to such an extent, that Ni-

5%. 144. cholas V. placed on his monument the in-seription,-

Restituit mores, mœenia, templa, Domos.
Ilis works were many and admirable. Among those of great use, he constructed porticoes from the city to San Paolo and S. Lorenzo fuuri le Murà.
282. Before we advance to the age of Charlemagne, it will be necessary to notice the church of St. Vitalis, at Ravenna, which we have reserved for this place on accont of the singularity of its construction. It was erected, as is usually believed, under the reign of Justinian, in the sixth century. See figs. 144. and 145. The exterior walls are formed in a regular oetagon, whose diameter is 128 ft . Within this octagon is another concentric one, 54 ft . in diameter, from the eight piers whereof (55 ft . in height) a hemispherical vault is gathered over, and over this is a timber conical roof. The peculiarity exhibited in the construction of the cupola is, that the spandrels are filled in with earthen vases; and that round the

exterior of its base semicircular headed windows are introduced, each of which is subdivided into two apertures of similar forms. Between every two piers hemicylindrieal recesses are formed, each covered by a semidome, whose vertex is 48 ft . from the pavement, and each of them contains two windows subdivided into three spaces by two columns of the Corinthian order, supporting semicireular-headed arehes. Between the piers and the external walls are two corridors, which surround the whole building, in two stories, one above the other, each covered hy hemicylindrical valting. The upper corridor above the vault is covered with a sloping or leanto roof. We have before noticed the introduction of vases in the spandrels at the Circus of Caracalla; and we cannot help being struck with the similarity of construction in the instance above citel. It fully bears out the observation of Mïler (Denkmahlir der Deutschen Bunkunst), "that, though heauty of proportion seems to have been unappreciated in these ages, and architecture was confined within a servile imi:ation of the earlier forms, the art of compounding cement, the proper selection of building materials, and an intimate acquaintance with the principles of solid construction with which the ancients were so conversant, were fully understood."
283. The ara of Charlemagne, which opened after the middle of the eighth century and continued into the early part of the ninth, gave rise to many grand edifices dedicated to Christianity. This extraordinary man, rising to extensive dominion, did much towards restoring the arts and civilisation. "Meanwhile, in the south-east," says in intelligent anonymous writer, " the decrepid Grecian empire, itself maintaining hut a sichly existence, !ad nevertheless continued so far to stretch a protecting wing over them [the artc] that they never had there equally approached extinction. It seems probable that Charlemagne drew thence the arehitect and artisans who were capable of designing and building snch a church as the eathedral of Aix-la-Chapelle, in Germany." "If Charlemagne," says Gibbon, " had fixed in Italy the seat of the Western empire, his genius would have aspired to restore, rather than violate, the works of the Ciesars; but as policy confined the French monarch to the forests of Germany, his taste could be gratified only by destruction, and the new palace and chureh of Aix-la-Chapelle were decorated with the marbles of Ravema and Rome." The fact is, that the Byzantine or Romanesque style continned, with various degrees of beanty, over the Continent, and in this country, till it was superseded by the introduction of the pointed style. Nöller, from whom we extract fig. 146. which represents the portico of the Convent of Lorsch, situate about two and a half German miles from Darmstadt, considers it as all that remains of the first church built in the time of Charlemagne. The same learned author observes, that, on comparison with each other of the ancient churches of Germany, two leading diiferences are discoverable in their styles, of which all others are grades or combinations. The first, or earliest, whose origin is from the South, is, though in its later period much degenerated, of a highly finished character, distinguished by forms and decorations resembling those of Roman buildings, by flat roofs, by hemieylindrical vaults, and by great solidity of construction. The second and later stvie still preserves the semicircular forms; but the high pitehed roof, more adapted to the seisoms

Fig. 146.
PUKTICO OF R.UHSCH.
If a northern climate, begins to be substituted for the flat roof of the South, as at the raliedral of Worms on the west side, the western tower of the chureh at Gelnhausen, and in nany other examples.
284. We are now approaching a period in which more light can be thrown on our subeet than on that we have just quitted. In the ninth century, on, as it is said, the designs of a Ireek artist, rose the eathedral of St. Mark at Venice, the largest of the Italian churehes in be lByzantine style. Its plan is that of a Greek cross, whose arms are vaulted hemicyindrically, and, meeting in the centre of the building, terminate in four semicircular arches in the four sides of a square, about 42 ft . in length in each direction. lirom the anterior ngles of the piers, pendentives gather over, as in St. Sophia, at Constantinople, and form a ircle wherefrom rises a cylindrical wall or drum in which windows for lighting the interior re introduced. From this drum, the principal dome, which is hemispherieal, springs. dougitudinally and transversely the chureh is separated by ranks of colums supporting emieircular arches. The aisles of the nave and choir, and those of the transepts, interseet ach other in four places about the centre of the cross, over which intersections are small lones; so that on the roof are four smaller and one larger dome. In the exterior from owards the liazza San Marco, the façade consists of two stories, in the centre of the lower me whereof is a large semicirenlarly arehed entrance, on each side of wheh are two other maller arehed entrances of the same form. These have all plain archivolts springing from he upper of two orders of columns. On each flank of the façade is a smaller open arcade pringing at each extremity from an upper of two orders of insulated columus. A gallery with a balustrade extends round the exterior of the chureh, in front whereof, in the eentre, are the four famous bronze horses which once belonged to the arch of Nero. The second tory towards the liazza San Marco consists of a central semicircular aperture, with two blank semicircular arehes on each side, not quite so high and wide. These five divisions are all crowned by canopy pediments of curves of contrary flexures, and ornamented with oliage. Between eath two arehes and at the angles a turret is introduced consisting of hree stories of eolumns, and terminated by a pinnacle. The building has been considerably iltered since its first construction; and, indeed, the ormaments last named point to a later ue than the rest of the edifice, the gencral character of which has, nevertheless, been preerved. There is considerable similarity of plan between this ehureh and that of St. sopma.
285. Very much partaking the chameter of composition of St. Mark, but dissimilar in
general plan, is the chureh of St. Anthony at ladna, which has six domes over the nave, transepts, centre, and choir. It is, moreover, distinguished by two slender towers or minarets, which impart to it the air of a Saracenic edifice.
286. The Italian architecture in the Byzantine or Romanesque style preserved a very different sort of character from that of the same date in Germany and other parts of Europe. Thus, -taking the cathedrals of Pisa and Worms, whose respective periods of construction are very chose together, - the former is separated into its nave and aisles by columns with Corinthian capitals, reminding one very much of the carly Christian basiliea; in the latter, the separation of the nave from the aisles is by square piers. The cathedral at Pisa, with its baptistery, campanile, and the campo santo or cemetery, are a group of huildings of more curiosity than any four edifices in the world, and the more so from being so strongly marked with the distingnishing features of the Byzantine and Romanesque styles. The cathedral (fiy. 147.), whose architect was Buschetto of Dulichio, a Greek, was built in the

Fig. 117. cohnnes arches spring, and over them is another order of columns, smaller and more mumerous, from the circumstance of one being inserted over the centre of an intercolumniation below, and from their accompanying two openings under arches nearly equal to the width of such intercolumniations. These form an upper gallery, or triforium, anciently appropriated to the use of females. The four aisles have also isolated columns of the Corinthian order, bat smaller, and raised on high plinths, in order to make them range with the others. 'The tra: septs have each a nave and two side aisles, with isolated columns, the same size as those of the other. The soffit of the great nave and of the transepts is of wood, gilt, but the smaller ones are groined. The height of the great nave is 91 ft ., that of the transepts about 84 ft ., und that of the aisles, 35 ft . In the centre nave are four piers, on which rest four large arches, supporting an elliptical cupola. The church is lighted by windows above the second order of the interior. The edifice is surrounded by steps. The extreme width of the western front, measured above the plinth moulding, is 116 ft ., and the height from the pavement to the apex of the roof is 112 ft .3 in . The façade has five stories, the first whereof consists of seven arehes, supported by six Corinthian columns and two pilasters, the middle areh being larger than the others : the second has twenty-one arches, supported by twenty columns and two pilasters; the third is singular, from the façade contracting where the two aisles finish, and forming two lateral inclined planes, whence in the middle are columns with arches on them as below. The columms which are in the two inclined planes gradually diminish in height : the fifth story is the same, and forms a triangular pediment, the columns and arches as they approach the angles becoming more diminutive. The two exterior sides have two orders of pilasters, one over the other. The roof of the nave is supported, externally, by a wall decorated with columns, and arches resting on their capitals. The whole of the building is covered with lead. The drum of the cupola is externally ornamented with eighty-eight columns connected by arches, over which are pediments in marble, forming a species of crowns. The principal point of difference in these cathedrals from the old basilica, in imitation whereof they were doubtless built, is in the addition of the transepts, by which a cruciform plan was given to these editices. The style of the building in guestion is much lighter than most of the buildings of the period. But, whatever the taste
and style, the architect of it was a very skilful mechanic. One of his epitaphs, at I'isa, we sulbioin, in proof of what we have stated.

Quod vix mille boum possent juga juncta movere,
Et quod vix poluit per mare ferre ratis,
Buschetti nisu, quad erat mirabile viru, Dena puellarum turba levarit outs.
987. In Germany, the 10th and 11 th centuries alford some edifices very important in the history of the art. Such are the eathedrals of Spire, Worms, Mayence, and others, still in existence to testify their extraordinary solidity and magnificence. In that country, as Möller remarks, there was a great disparity between its several provinces, as respeeted their degrees of civilisation. On the banks of the Rhine, and in the south, cities were established when those parts became subject to the Romans, and there the arts of peace and the Christim religion took root, and flourished; whilst, in the north and east, paganism was still in existence. Cluristianity, inleed, and civilisation gradually and generally extended from the southern and western parts. The clergy, we know from history, themselves directed the building of churches and convents. The buildings, therefore, of these parts are of great importance in the history of arehitecture. The leading forms of these churehes, as well as of those that were built about the same period in France and England, are founded upon the ancient basilica; that is, they were long parallelograms with side aisles, and transepts which represent the arms of the eross, over whose intersection with the mave there is frequently a lourro. The choir and chancel terminate semicircularly on the plan. The semicircle prevails in the vaultings and over openings. The nave is lofty, frequently covered with groined vaulting, sometimes with flat timber covering; the galles are of small inclination. In the upper parts small short columns are frequently introdnced. The prevailing feature in the exterior is horizontality, by which it is distingnished from the style which came into nse in the 13th eentury. The profiles of the mouldings are, almost without exception, of Roman origin; the impost mouldings under the arches are, in this respect, peculiarly striking; and among the parts the Attic base constantly appears. The Lioman basilice were always covered with fat horizontal ceilings; those of the clmrehes we are speaking of are mostly vaulted. Hence the necessity of sulstituting pillars or piers for the insulated columns, which had only to carry wooden roofs. There are, however, a few churehes remaining, which preserve the ancient type, as a church at Ratisbon, and the conventual churches of laulinzell and Schwarzaeh. Fig. 148. shows the plan, and fig. 149, a sketeh of one bay in a

longitudinal section of the north side of the nave of the eathedral at Worms, which was commenced in the year 996, and consecrated in 1016. It is one of the most ancient of the German churches, and one of the most instructive. On our examination of it, recently, we were astonished at its state of preservation. The plan, it will be seen, is strongly distinguished by the cross: the square piers are alternately decorated with half eolumns; and the chanecl, at the east end, terminates with a semicircle. The western end of the chureh, which is octagonal, seems to be more modern than the rest, inasinuch as the pointed areh appears in it. Fig. 150. is a view of the editice.
288. Parts of the cathedral at Mentz are more ancient than any part of that at Worms; hence it may be studied with advantage, as containing a view of the styles of several centuries. The sonth-eastern gate of the cathedral is given ly Möller in his work (Jlate VI.).
289. Whittington, a highly talented author, of whom the world was deprived at a very early age (Ilistorical Survey of the Ecclesiastical Antiquities of France, 4to. Lond. 1809), olserves, that the buildings in France of the 9 th and loth renturies were imi-

tated from the works of Charlemagne; but that his feeble sus:cessors, detieient both in riches and power, were unable to equal them in magnitude or beauty of materials. During a large portion of the 9 th eentury the country was a seene of conster. nation and bloodshed. 'I'ie most celebrated, and almost the only foundation of consequence which took place during this dreary period, was the abbey of Clugny. It was built, about 910, by Berno, abbot of Balme, with the assistance of William, Duke of Aquitaine and Anvergne. But there is little doubt that the present church was built in the following oentury. During the 11 th eentury, the French, relieved from their disordered state, hastened to rebuild and repair their eeclesiastieal structures, and their varions sities and provinces vied with each other in displays of enthusiastic devotion. Robert the lious, by his example, encouraged the zeal of his clergy and people; and the science of architecture revived with majesty and effeet from its fallen state. Norard, the abbot of St. Germain des l'rés, was enabled by this monareh to rebuild the church of his convent on a larger scale. St. Geneviéve was also restored, and a cloister added to it, by his order. He, moreover, made preparations for erecting a cathedral at Paris in a style of as great magnificence as the times would allow. At Orleans, the place of his hattivity, he built the churches of Nôtre Dame de bonnes nouvelles, St. Peter, and St. Aignan, whieh last was conseerated in 1029. But our space does not allow an emmeration of all the works undertaken during his reign. About this time, the eathedral of Chartres was rebult by Fulbert, its bishop, whose great reputation, in France and the rest of Europe, enabled him to exceute it in a manner till then unknown in his country. Cannte, the king of England, and Riehard, Duke of Normandy, were among the princes who assisted him with contributions. His suecessor, 'Ihierri or Theodoric, completed the building. 'The northern part was afterwards ereeted in 1060, at the expense of Jean Commier, a native of Chartres, and jhysician to the king. The length of the church is 420 ft ., its height 108 ft ., and the nave 48 ft . wide. The transepts extend 210 ft . The abbey charch of Cluny, which succeeded that above mentioned, was one of the largest and most interesting of the ecelesiastical monuments of France. It was begen in the commenemont of the 11 theentury, by the abbot Odilo, and finistied by his suscessor Hugh, in 1069 . The ceremony of its dedication did not, however, take place till many years after. Tie style of arehitecure in France, in the 11th, was the same as in the preceding cenouries; but the elurehes were larger and more solidly construeted. The oldest buildings of France, with some ex ceptions, are raceable to this ara; such are the venerable fabrics of St. Germain des Prés at Paris, St. Benigne at Dijon, those of Chartres, La Charité sur Loire (Cluny was destroyed 1789), and others; these all remain to illustrate the histoty of the arts at this period. But as we have said before, and eannot too often repeat, the style which prevailed was no more than a debased and feeble attempt to imitate the aneient architecture of Rome, and its best examples are not, in style even, equal to those of the art in its lowest state under the reign of Dioelesian; indeed the investigation is only important as being one of the means by whieh we can arrive at a just conclusion on the state of civilisation at different periods. Mores fabrica loquuntur is an expression of Cassiodorus, so true, that to prove it would indeed be lighting the sun with a candle; and we must not trifle with the patience of the reader.
290. The Saxon churches of England, to which and its more modern arehiteeture our suceeding chapter will be entirely devoted, were very inferior in every respect to the Noman churehes of France; and these latter differed materially from those in the neighbourhood of l'aris, and further to the south. The Norman churehes were larger in some examples; but they were more rude in design and execution. The abbey church of St. Stephen, raised at Caen by William the Conqueror, and that founded by his Queen Matilda in the same city in honour of the Holy Trinity, are the chief exaniples of the peculiar manner of building introduced by the Norman prelates into England at the end
of the 1 ith century; after which, as we shall presently see, a new and extraordinary st le made its appearance in Europe, a style whereof fiy. 151, will, on inspection, sufliciently give a general notion to the reader.

Fig. 15l. NiNs TO TWBAFEII CKASLHY.

291. Before leaving the subjeet of this section, we must fall back again upon Italy to notice two or three works intimately connected with this period of the art. We bere more particularly allude to the eclebrated baptistry and campanile of lisa, a city which seems to have been a great mursing mother to our art, no less than to those of painting and sculpture. The Campo Santo of that eity, of which, from the number of examples to be noticed, we regret we shall be mable to give but a short accomit, belongs to the next period, and must be noticed after them.
292. Dioti Salvi, whose birthplace even is onknown, commenced, in 1152, the baptistery of lisa (fig. 152.), and after eight years completed it It is close to the cathedral of the

F4. 152.
BAFTISTERY OF PISA. place, and though on the wall of the imer gallery there be an inseription, ent in the character of the middle ages, " a.15. 1278 , mumata fuit de wow," and it may he consistent with truth that the edifice was ormamented by John of lisisa, there is mothing to invalidate the belief that the building stands on the foundations originally set out, and that for its principal features it is indelted to the architect whose name we have mentioned. It is 100 ft . in dianneter within the walls, which are 8 ft. 6 in. thick. The covering is a double brick come, the immer one conical, the outer hemispherical. The former is a frustum of a pyramid of twelve sides. Its upper extremity forms a horizontal polygon, finished with a small parabolic cupola, showing twelve small marble ribs on the exterior. The outer vault terminates above, at the hase of the small enpola, which stands like a lantern over the aperture. From the pavement, the height of the cupola is 102 ft . The entrance is by a decorated doomay, from the sill of which the general pavement is sunk three steps romed the building; the space between the steps and the wall having been provided for the accommodation of the persons assembled to view the ceremmy of baptism. An aisle or corridor is consinued round its interior cireumference, being formed by eight granite columns and four piers, from which are turned semicircular arches, which support an upper gallery; and above the arehes are twelve piers, bearing the semicircular arches which support the pyramidal
dome. On the exterior are two orders of Corinthian columns engaged in the wall, which support semicircular arehes. In the upper order the columns are more numerous, inalsmuch as each areh below bears two columns above it. Over every two arches of the upper order is a sharp pediment, separated by a pinnaele from the adjoining ones; and above the pediments a horizontal cornice encireles the building. Aloove the second story a division in the compartments oecurs, which embraces three of the lower arches; the separation: being elfeeted by piers triangular on the plan, erowned by pimaeles. Between these piers. semicircular headed small windows are introdneed, over each of which is a small circular window, and thereover sharp pediments. Above these the consex surfate of the dome springs up, and is divided ly twelve ribs, truncated below the vertex, and ornamented with crockets. Between these ribs are a speeies of dormer windows, one between every two rils, ornamented with columns, and surmounted each by three smail pointed pediments. The total height is abont 179 ft . The cupola is covered with lead and tiles; the rest of the edifice is marble.
293. The extraordinary campanile, or bell tower, near the cathedral at Pisa, was built about 1174. It is celebrated from the circumstance of its overhanging upwards of thirteen feet, a peculiarity observable in many other Italian towers, but in none to so great an extent as in this. There can be no doubt whatever that the defect has arisen from bad foundation and that the failure exhibited itself long before the building was completed; because, on one side, at a certain height, the columns are higher than on the other; thms showing an endeavour on the part of the builders to bring back the upper part of the tower to as vertical a direetion as was practicable, and recover the situation of the centre of gravity. The tower is cylindrical, 50 ft . in diameter, and 180 ft . high. It consists of eight stories of colamns, in each of which they bear semicircular arehes, forming open galleries round the story. The roof is flat, and the upper story contains some bells. The last of the group of buildings in Pisa is the Campo Santo, whieh, from its style and date (127E), is only mentioned lere out of its place in order to leave this interesting spot without necessity for further reeurrence to it. It is the public burying place of the eity, and, whether from the remains on its walls of the earliest examples of Giotto, and Cimabue, the beauty of its proportions, or the scuppture that remains about, is mparalleled in interest to the artist. It is a quadrangle, 403 ft . in length, 117 ft . i: width, and is surrounded by a corridor 32 ft . in breadth. 'This corridor is roofed, forming a sort of cloister with semicireular-headed windows, which were at first simple apertures extending down to the pavement, but they have been subseguently divided into smaller apertures hy columns, whieh, from the springing of the arehes, brancli out into tracery of elegant design. The interior part of the quadrangle is open to the sky. Some of the arehes above mentioned were completed as late as the year 1464.

The style of the transition to pointed art will be noticed in the seetion on Ponrene Archifecture at the end of Book I.

Sect. XV.

(a) origin of the pointed arcif.
294. About the end of the 12 th and the beginning of the 13 th eentury, a most singular and important change took place in the architecture of Europe. The fat southern roof, says Möller, was superseded by the high pitehed northern covering of the eeclesiastieal elfifiees, and its introduction brought with it the use of the pointed areh, whieh was subsututed for the semicircular one: a neeessary consequence, for the roof and vaults being thus raised, the elaracter of the whole could not be preserved without changing the entire arrangement of the combination of forms. But we have great doubts on Möler's lypothesis; it will, indeed, be hereafter seen we have a different beliei on the origin of the pointed arch. Before we at all enter upon the edifices of the period, we think it will be better to put the reader in possession of the different hypotheses in which various writers have indulged, relative to the introduction or invention of the pointed areh; and though we attach very little importance to the discovery, if it could now be clearly established, we are, as our work would be incomplete without the notice, compelled to submit them for the reader's consideration.
295. 1. Some have derived this style from the holy groves of the early Celts. - But we can see no ground for this hypothesis, for it was only in the 14 th and 15 th centuries that ribs between the groins (which have been compared to the small branches of trees) were introduced; hence it is rather difficult to trace the similarity which its supporters contend for.
296. 2. That the style originuted from huts made with twigs and branches of trees intertwined. - An hypothesis fameifully conceived and exhibited to the world by Sir James IIall, in some very interesting plates attached to his work. Möller properly observes upon this theory of twigs, that it is only in the buildings of the 15 th and 16 th centuries that the supposed imitation of twigs appears.
297. 3. From the framed construction of tember buildings. - This is an lypothesis which it would be loss of time to examine, inasmuch as all the forms and details undoubtedly arise from the vault and arch; and a close examination of the buildings of the 13 th century proves that the ancient ecelesiastical style involves the scientific construction of stone valulting, all timber construction being limited to the framing of the roof.
298. 4. From the imitation of the aspiring lines of the pyramids of Eoypt. - This hypothesis is the fancy of Murphy, the ingenious and useful editor of a work on the convent of liatallia, in l'ortugal, and also of some of the finest edifices of the Moors in Spain. The following is the reasoning of the author: - The pyramids of the Egyptians are tombs; the read are buried in churches, and on their towers pyramidal forms are placed ; consequently, the pyramids of the towers indicate that there are graves in the churches; and as the pyramidal form constitutes the essence of the pointed arch style, and the pyramids of the towers are imitations of the Egyptian pyramids, the pointed areh is derived from the latter. 'The reader, we are sure, will not reguire from us any examiuation of the series of syllogisms here enwmerated.
299. 5. From the intersection of semicircular arches which recurs in lute instances of the Romumesque style. - This was the hypothesis of the late Dr. Mihner, a Catholic bishop of great learning and most amiable bearing, and a person so intimately acpuainted with the subject on whieh he wrote, that we regret his reasons for the conjecture are not satisfactory to us, albeit the combination (fig. 153.) whereof he speaks is, in the Romanesque style, of
 frequent oecurrence. The venerable prelate seems to have lost sight of a principle familiar to every artist - that in all art the details of a style are subordinate to and dependent on the masses, and that the converse never uceurs ; how, then, conld the leading features of a style so universal have had their origin in an accidental and unessential decoration, like that of the theory in question? None of the above hypotheses are satisfactory ; and Mölher well observes, that the solution of the question, whether the pointed style belongs to one nation exclusively, is attended with great difficulties. And it may be said that the problem for solution is not, who invented the pointed areh, but, in what way its provalence in the 13th century is to be accounted for.
300. We are not of opinion that it is of muel importance that this cexatu quastio should be settled; and that it will now satisfactorily be done, we consider very much out of the limits of probability. But we suppose that the reader will be inclined to ask for our own bias on the subjeet; and, as we are bound to answer such a question, the reply is, that we are of the fiith of the Rev. Mr. Whittington, to whose work we have before referred, that the pointed arch was of Eastern extraction, and that it was imported by the first crusaders into the West. "All eastern buildings," says that ingenious writer, " as far back as they go (and we camot tell how far), have pointed arches, and are in the same style; is it not fair to illppose that some of these are older than the leth century, or that the same style existed batore that time? Is it at all probable that the dark ages of the West should have given a mote of architecture to the East?" Lord Aberdeen, whose taste and learning in matters of his nature well qualified him for the posthmmons introduction to the public of the author we are using, observes, in his preface to Whittington's work, that, " if we could discover in any one country a gradual alteration of this style [the Romanesque], begiming with the form of the arch, and progressively extending to the whole of the ormaments and general denign; - after which, if we could trace the new fashion slowly making its way, and by degrees adopted by the other nations of Europe; - the supposition of Mr. Walpole [that it arose from what was conceived to be an improvement in the corrupt specimens of Roman taste then exhibited, and was afterwards gradually carried to perfection] would be greatly confirmed. Nothing, however, of this is the case. We find the Gothic [pointed] style, notwithstanding the richmess and variety it afterwards assmmed, appearing at once with all its distinctive marks and features, not among one people, but, very nearly at the same period of time, received and practised throughout Christendom. How will it be possible to aceount for this general and contemporary adoption of the style, but by a supposition that the taste mol knowledge of all on this subject were drawn from a common source? and where enn we ook for this source but to the East, which, during the crusades, attracted a portion of the opulation, and, in a great degree, oecupied the attention, of the dillerent states of Europe?" lhis was an opinion of Sir Christopher Wren, at least greatly so, his leaning being rather to dedacing the origin of the style from the Moors in Spain. It is the fashion of modern half-educated crities to place little reliance on such authorities as Wren. We have, from ex. perience, learned to venerate them. The noble author whom we have been quoting proceeds by stating that "the result receives confimation from the circumstance of there being no pecimen of Gothic [pointed] architecture erected in the West before the period in quesbon." Esception, however, is to be made for the rare oceurrence of a very few examples,
whose construction may perhaps be placed higher than the 12 th century, and the canse of whise existence may be satistactorily explained. "It may be sufficient here to observe, that no people versed in the science of architecture could long remain ignorant of the pointed form of the arch, the most simple and easy in construction, as it might be raised without a centre by the gradual projection of stones placed in horizontal courses; and, whether produced by aceident or necessity, we may reasonably expect to meet with it occasionally in their works." It is certain that, though neglected in their general practice, the ancients were acyuainted with this mode of building ' and the occurrence of an areh merely pointed and unaccompanied with any other characteristic of the style, is no better evidence of the prevalence of Gothic (pointed) arehitecture, than that the appearance of Corinthian capitals in Romanesque buildings must give them the right to be called classical edifices. It is not easy to answer the question, - In what part of the East are we able to point to buildings constructed in the p inted style, of a date anterior to those erected in the West? A little reflection, however, will solve the difficulty; and here we must again trespass on the author we have so copiously used, thongh our limits will not allow us to follow him in his own words. It is manifest that the frequent wars and revolutions of the East entailed the same fate on works of art and utility as attended the princes and chiefts of the states subverted. Thus the number of architectural examples, and especially those of carly date, was great'y dimimshed. Again, the people of the East with whom we are best acquainted, in a great measure sacrificed their less durable mode of building to that which they found establishoed by the Greeks. Thus, the church of Santa Sophia was a model, after the conquest of Constantinople, for all the mosques that were erected, with the addition oceasionally of minarets more or less lofty, as the piety and magnificence of the sultans might dictate. Previously to the conquest of the metropolis of the East, such a practice was prevalent, and in the cities of the empire many christian edifices were adapted to the purposes of Mohammedan worship. Yet, notwithstanding these causes, which form an impediment to full information on the state of the early arehitecture of the East, there is an abundance of facts to give probability to our notion, except in the eyes of those who riew the subject through the medimm of prejudice and established system; at least so we opine.
301. "If" a line," says our author, "be drawn from the north of the Euxine, through Constantinople to Figypt, we shall discover in every comntry to the eastward of this boundary frequent examples of the pointed arch, accompanied with the slenter proportions of Gothic [pointed] architecture; in Asia Minor, Syria, Arabia, l'ersia; from the neighbourhood of the Caspian, throngh the wilds of Tartary ; in the various kingdoms, and throughout the whole extent of India, and even to the furthest limits of China. It is true that we are unable, for the most part, to ascertain the precise date of these buildings; but this in reality is not very important, it being sufficient to state the fact of their comparative antiquity, which, joined to the vast diffusion of the style, appears adequate to justify cur conelusion. Sewing, then, the universal prevalence of this mode in the East, which is satisfactorily accounted for by the extensive revolutions and conquests efliected by Eastern warriors in that part of the world, it can searcely appear requisite to discuss the probability of its having been introduced from the West, or, still less, further to refute the notions of those who refer the origin of the style [as some have very ignorantly done] to the invention of Englishartists. Had it been adopted from the practice of the West, such a pecularity of taste and knowledge must have been imparted by some general communication: this has only occurred at one period, during which no building of the species in question existed in Europe. The inhabitants of the West could not convey a knowledge which they did not possess; but, as it became pretty general amongst them shortly after the epoch alluded to, it is reasonable to infer that they acpuired it from those nations they are said to have instructed. On the whole, it is probable that the origin of the Gothic style, notwithstanding the occasional imitation of a corrupt and degraded species of Roman architecture, is sufficiently indieated by the lofty and slender proportions, by the minute parts, and the fantastic ornaments of Oriental taste."

30\%. Möller, a writer for whose opinions we entertain the highest respect, is not, however, of opinion that the pointed arch originated with the Arabs; and be observes that a serutiny of their buildings will exhibit nothing that bears upon the Gothic, or pointed, style. He says that their arches are in the shape of a horseshoe; that the columms are low, that they stand single, and are not connected in groups; that the windows are small, the root's flat, and that the prevalent general forms are horizontal: that, in the ancient churehes of the 13th century, the arches are pointed, the pillars high and composed of several columns, windows large, and roofs and gables high. But at the end of his argument he admits that the solution of the question, "which of the European nations first introduced or improved the pointed style is not so easy, for we find this style of building almost contemporary in all parts of Europe." Now, though we are not about to use the argument which is not always valid, post hae ergo propter hor, we must observe, that the introduction of the pointed arch immediately after the first Crusade, and not before, is a most singnlar orurrence; and we are inclince to give it the same force as that used by old bishop
timer on the sulbject of the Goodwin Sands and Tenterden steeple. Ove of the points Moller's reasoning we do not think at all fortunate; it is that on the forms of the resifue arehes. Now, it must immediately occur to the reader that one of the forms (as at the side), and that a common one, is to be fomen in their arches, that of contrary flex:ne; a firm in the alchitecture of this country in the time of the 'Tudors miversally adopted, thongh, it must be allowed, much flattened in the application. other point seems to lave bern altogether overlooked by Moller, namely, the practice of pering the walls, whereof an in-tance occurs in Westminster Abbey; and one which I as ery strong affinity to the practice of the Moors, who left no space mornamented. Tie her-pitched gables of the northern roofs, we admit, fostered the discovery, by the introtion of forms from necessity, whith were admirably calculatel to carry out to their exme limits the principles of which the Crusaders had acquired some notion for practice on ir return to their respective countrics. As to the objiction that the Arais had no original hitecture, it is almitted. They mist, however, have had that of the tent, whose form inted would give all that is sought. These obs. rvations we do not throw out as partisans; hypothes:s adopted by us is san:tioned, in addition to the learned author upon whom have drawn so much, ly Warburton, and T. Warton, and Sir Christopher Wren; and ugh none of the se had the opportunity of basing their opinions upon the labours of the ent travellers whom we have been able to use, we do not think, upon this mooted ques3, either of them would be reduced to the neerssity of retacting what he has respectively tten.
303. In glancing over the many writers on the sulject, it is amusing to see the difference opinion that exists. For instance, twenty are of opinion that it originated in Germany; rteen, that it was of Eastern or Saracenic origin; six, that it arose from the lint sugted by the intersection of the Norman arches; four, that it was the invention of the this and Lombards; and three, that its origin was in Italy. Sprung, however, from atever place, it appears to have given in every sense an independence to the art not before onging to it, and to have introduced principles of far greater freedom, in respect of the o of points of support to the whole mass, than were previously exhibited or probably jwn. Those who may feel desirous of consulting these views in detail, will find notices sixty-six theories in the fifth volume of Britton's Architectural Antiquities. Only two of se theories attempt to account for the introduction of the pointed areh on the ground of fulness; one was put forward hy Dr. Whewell as regarded vaulting; the other by Dr. ung and Mr. Weir, who urged that the use of the pointed arch was originally due to a covery of its diminishing lateral pressure. Mr. Sharpe has advocated the same view. ese theories will also be found in Ramée, Manuel de l'Histvire Générule de l Architceture, 43, ii., 438, 248.
30sa. Michelet (Histoive de France) observes, "Or, lors de l'apparition de l'ogive en Oceiit re's 1200 , Innocent 111 est le dernier rayon de catte puissance universell., le ponvoir l'Eglise Catholique s'allibiblit. La tentative des ordres des mendiants, des pères prêcheurs infructueuse. Le pouvoir des prêtres tombe dans la main des laïques. La puissance droit canonique, de ce robuste anxiliaire de l'Eglise, s'eflace en lrance devant ces lois es faites par le pieux Roi St. Louis, et ses établissements immortels servent de code reau à sts siljets. En Angleterre le Roi Jean-sans-terre donne, en 1215, la grarde arte. Fin Allemagne, au commencement du treizième siècle, paraît le Saclisenspiegcl. milieu dut quatorzième, où le règne de l'ogive est à son apogée, l'Empereur Charles 1 V me la Bulle d'or. Au treizieme sièele se terminent les Croisades qui mirent le l'ape au sus des pouvoirs temporels. Ces guerres saintes avaient fait prévaloir l'antorité de vêque de Rome. Mais au treizième siècle l'activité des peuples chrit ens avait prit une re direction, et ils finirent par seconer toute espèee de domination." It is impossible, in ning the pontificate of Imnocent III., to refrain from noticing that it was an eproch, in ielı such men appeared on the scene as St. Thomas Aguinas, St. Dominic, St. Francis of sisi, John Gerson, author of the "Imitation of Jesus Christ," a composition that has on oftener printed than any other work; and in literature and the arts, about the same -iod, are to be found the names of Dinte, Robert de I usarches, Etiemse da Liomn weil, erre de Montereau, Lapo or Jacopo, besides a bost of others.
304. The foregoing remarks comprise a resumé of the carly views on this sulject, t we must not omit to mention those held by the learı ed writer, Mr. James Fergusson, o observes that Dr. Whewell, in his Nitcs on German Churches, has very distinetly stated : quention of such inguiries :-" These only tend to show how the form itself, as an arch, y have been suggested, not how the use of it must have become universal "(see also 299). rgusson then (Builder Journal, 1849, p. 290, 303, 317), treating the history of the pointed h suecinetly by certain facts, brings forward four sets of pointed arches. I., the aneient ildings estending down to the period of the Roman empire; Il., the decline of the man influence, extending to the present day, in the countries of the East to which these 0 classes of arches are confined; 111., the arch appearing in the south of France alone, in age of Charlmagne, extending to the 11th century, when it was superweded by the
round arelo style; and IV , the true Gothic pointed areh, prevailing almost universally over the whole of Europe till the time of the Reformation, in the 16th century. In the East, "arches still are more frequently constructed by placing the stones horizontally than in a radiating position." The history of the subject will never be correctly understood till we take hoth kinds into account, for the second almost certainly arose out of the first. 'The first example put forth by him is from the third pyramid at Gizeh, in the roof of the sepuleliral clamber (fig. 154), consisting

Fig. 155. CAMMDELL'S TOMB.
muly of two stones, showing how early the curvilinear form, with a point in the centre, was used, and consequently how familiar it must have been to the arehitects of all ages. Another early form is here given from the tomb called "Campbell's 'Tomb," fig. 155. The pyramids at Meiöe, in Ethiopia, dating about 1000 to 805 years b.c., at all events being of a period anterior to the age of the Greek and Roman influence, were discovered by Mr. Hoskins. Here, stone arches show hoth eircular and pointed forms (fig. 156) ; and Mr. Liyard discovered, at Nimroud, drains with pointed vaults of the same age as those at Meriie. A tumulus near Smyrna, in Asia Minor, presents an example almost a counterpart of that from the third pyramid; a gateway, near Missolonghi, is formed by the courses of masonry projecting beyond one another till they meet in the centre. Other examples are seen in the tomb of the Atride at Myeene (figs. 14 and 16, tomb called treasury of Aireus); in a city gateway at Arpino, in Italy; in an aqueduct at Tusculum; and in a gateway at Assos, in Asia Minor (fiy 157). This is known from the character of its

Fig. 150.
HYRAMD AT ME:GOE:

Fig. 157. GATEWAY AT ASSOS.
masonry and other circumstanees to belong to the hest period of Greek art, in fact to he eoeval, or nearly so, with the Parthenon. These examples explain all the peculiarities of this mode of construction.
305. With the appearance of Rome, this form entirely disappears from the countries to which her influence extended, and is supplanted so completely ly the cireular radiating form, that not a single instance is probably krown of a pointed areh of any form or mode of construction during the period of the Koman supremacy. The moment, however, that her power deelined, the pointed form reappears in Asia, its native seat; and we recur to the very few that remain in Syria and Western Asia for examples. The first of these are in the chureh of the Holy Sepulchre at Jerusalem, built by Constantine the Great, and now known as the Mosque of Omar. Its arches are thronghout pointed, but so timidly as to be scarcely observable at first sight. Fergusson also states the reasons for his inability to give other specimens; and describes the cathedr.ll of Ani, in Armenia, (sce al o Donaldson, in the Civil Engineer, fe. Journal, 1843, p. 183) whieh is huilt with pointed arches throughout, and contains an inseription proving that it was finished in the year 1010: he quotes M. T'exier's assertion (Descr. de l'Armenie, fol. 1842) that "it results that, at a time when the pointed arch was altogether unknown, and never had been used, in Europe, buildings were being constructed in the pointed arch style in the centre of Armenia." At Diarbekr, Mr. Fergusson continues, "there is an extremely remarkable building, now converted into a mosque ; the Armenians eall it, with much plausibility, the palace of Tigranes; the friezes and cornices are executed according to the prineiples of Roman art of the 4 th century, nevertheless the pointed areh is found everywhere mixed with the ar hitecture, as if it were currently practised in the country." The palace at Hodain, the ancient Ctesiphon.
nitding of the 6th century, is remarkable for the gigantie portal which has not a pointed an diptical arch. The pointed arch, however, was employed in Mesopotamia long ore it was known in Europe.
306. In the Roman empire, the aqueducts that supplicd Constantinoile with water. which re commeneed under Constantine immediately alter the founding of the eity, but comted under Valens, A.D 364 and 378 , exhibit pointed arches, generally in the lowest ry, and always in the oldest part, as near Pyryos-"I would have no hesitation," he says, i asserting the general use of the pointed arch by the Mahomedans foon the earliest years their existence to the present hour. The Arabs, it must be reeollected, when they left ir deserts to subdue the world, were warriors and not arehitects; they consequently emyed the natives of the compuered countries to erect their mosques; yet, with searecly a gle exception, all their colifiees are luilt with pointed arches. They are used in the oldest t of the mosutue of Amrou, at Old Cairo; this portion was built in the twenty-first year the Inegira, A.b. 643. Except the two mosques of Amron, in Egypt. I do not know of erections of the Saracens anterior to the end of the 7 th century. The pointed arch is d throughout the mosque erected by the Calif Walid at Jerusalem, in the year 87 , or ut A D. 705. The gieat mosque at Damaseus is of the same age; and from that iod to the present time there is no d.ffieulty. In Sicily, ton, which the Saracens oecnpied two centuries preeeding 1037, they ued the pointed arch in all the monuments they e left there. In Spain, however, although pointed arehes uceur in the baths at Geroma, Bare lona, and other places in the north, whose date is tolerally well aseertaned to be of 9 th or 10tl: centuries, as a general rule the Moors us d the round or horseshoe areln - fig. 85), almost universaliy in their erections in that e mitry. One other example should be noted, oeeurs it the celebrated mosque of Kootub, at Delhi. When the lians conguered India, in the begiming of the 13th century, they brouglit with them r own style of arehitecture. This building, carried out by the Hindoos, was comwed abont the year 123?, and completed in about ten years. The principal arch, 22 fect 1 and about 40 feet high, though of the pure eqnilateral Gothie form, is crected with iz intal courses to nearly the summit, when courses of stone are plaeed on their ends, as e in the aqueduct at Tusculum, before mentioned.
07. "With the Western styles, the first senies to be noticed is that found in the south lirance, eemprised to the south of the Loire and the north of the Garome, extending ${ }^{1}$ the Gulf of Nice to the shores of the Bay of Biseay; being, in date, from about the of Charlemagne till the middle or end of the 11th eentury. when it was superseded by round areh styles. 'This assortion may statle some readers, but it would long ago e been received as well established faets, had it not been for the preconceived opinion . no pointed areh existed in Europe anterior to the 12th century. One of the best wn examples is that of the eathedral at Avignon, where the porel and general ditails be elurch are so nearly classieal, that they are usually aseribed to the age of Chatemagne,

ib. 158.
we give a plan (fig. 159), was conmenced in the year 984, and was completed in 104:.

on the type of, if not copied from, the cathedral of St. Mark, at Venice. A section is given in fig. 160, exhibiting the use of the pointed arches in comstruction only. The choir at Loches was erected between the years 1140 and 1180 , and is in the late and elegant Norman style universal in that comery, just anterior to the introduction of the true pointed style, which was timidly effected in the north of France abont the year 1150 , being mixed with romad arches in all the great cathedrals and churches erected between 11.0 and 1200, at which date the style may be said to have been perficted in all its essential peculiarities.

307u. "In England it was in every respect above twenty-five years later The first really anthentie example of its use is in Canterbury Cathed:al after the fire in 1175, and was apparently introduced by William of Szns; nearly half a century passed before it can be said to have entirely superseded the Norman arel. In Germany, the introduction was somewhat later, and we know of no anthentic specimen of pure Gothic anterior to the commencement of the 13th century, and even then nearly half a century elapsed before it entirely superseded the round arch style. During the whole of the first half of that century, we find round arches mixed up with the pointed ones which were then coming into fashion."
$30: 6$. These views were combated by Mr. E. Sharpe, as noticed in the Builder, p. 317 , espeeially as to the first named works heing considered as arches at all; and a question arose at the Institute of

lig. 160. british Architects. as t. the age of the French bui'dings named; T: a wsactions, 1860-61, 1 . 211 \&e., and 115. Mr. Strect, in his Brick Architecture in Ital!, states, (p. 258) that"The Italians ignored, as much as possible, the elear exhibition of the pointed arch, and, even when they did use it, not unfrequently introduc. d it in such a way as to show their con- tempt for it as a feature of construction; employing it often only for ornament. and never hasitating to construct it in so fanlty a manner, that it required to he held together with iron rods from the very first day of its erection. This fault they found it absolutely necessary to eommit, because they scarecly ever brought themselves to allow theuse of the buttress."

> (b) medieysl abtificers.
308. In considering the question of the origin of pointed architecture, those who have hitherto been supposed to have devised the pointed arch itself must not be neglected : and to these persons we are indebted for the gigantic masses of exquisitely decorated composition, to be seen in the structures which they designed and erected. These men are imagined to have belonged to a corporation or guild haring authority over all countries, or to a guild in each country, having authority only in its own nation. This so-called confraternity has heen known as the Freemasons. In the following account of them we shatl much abridge the two papers read before the Royal Institute of British Arehitects, and given in

Thansartions of that society, 1860 and 1861. Before doing so, however, it will he eessary to introduce a few preliminary remarks on the state of architecture previous to period when the so-called looly of Freemasons is said to have arisen.
309. The pontificate, towards the end of the 10th century, of a Benedictine monk, named thert, afterwards known under the name of Sylvester 11., and whose life, if Platina ires of the P_{0} es) may be relied on, was not of the most virtuous character, secms to ve induced an extroordinary clange in the arts. Gerbert was a native of Auvergne, and, der Arabian masters at Cordova and Granadit, applied himself to, and became a great ,ficient in, mathematical learning. IIe afterwards appears to have settled at Rheims, 1 to have there planted a school which threw out many ramifications. The scholars of a period were confined to the clergy, and the sciences, having no tendency to injure the urch, were zealously cultivated by its members.
309a. In the 11th century, architecture, considered as an art, was little more than a barrous imitation of that of ancient Rome, and in it, all that appears tasteful was, perhaps, re attributable to the symmetry flowing from an acquaintance with geometry, than the ult of fine feeling in those that exercised it. It was adapted to religions monuments, th great modifications; but the materials and resources at hand, no less than the taste those engaged in it, had considerable influence on the developments it was doomed to dergo. The sculptures of the period were borrowed largely from the ancients, and ong them are often to be found centaurs and other fabulous animals of anticuity.
309b. In the 12 th century, the Elensents of Eurlid became a text book, and though this mery was then behind the Continent, as re-pected the art of architecture, there is good son for believing it was by no means so in regard to proficiency in mathematies, inaswh as the Benedictine monk, Adelard of Bath, is known to have been highly distinguished his acquirements in them.
310. The crusades had made the people of Europe aequainted with the East, and in the th century the result of the knowledge thus acquircd was manifist in France, England, 1 Germany ; it could, however, scarcely be expected that the art would emerge otherwise in slowly under the hands of the churchmen, who were the principal practitioners, as it generally supposed; but there were undoubtedly professional men, as they may be called, the 12th century, who undertook the management of work, a $;$ we shall notice presently; 1 it is well authenticated (De Beka, De Episcopis Ultraject.) that, in 1099, a certain hop of Utrecht was killed by the father of a young freemason, from whom the prelate 1 extracted the mystery (are.num magisterium) of layirg the foundations of a church. e period at which arose the celebrated Confiraternité des pouts, founded by St. lBenezet, known to have lieen towards the latter end of the 12 th o the beginning of the 13 th itury. The association of Freemasons had, however, its types at a period extremely remote. aong the Romans, and still carlier, among even the Gre ke, existed corporations (if they y be so called) of artificers and others; such were Numa's Collegia Fulrorum and Cola Artificum, who made regulations for their own governance. These collegia were much avour with the later Roman emperors, for in the third and fourth centuries we find that litects, painters, and sculptors, and many of the useful artaficers, were free from taxation. e downfall, however, of the eastern and western empires, involved them in one common n, though it did not actually extinguish them.
311. The idea of the early establishment of a superintending body of eo-workers such as Freemasons are said to have been, appears to have originated in the assumption, that the monuments of the 13th century bear so great a resemblance to each other, no er probable cause could be assigned for their similarity, than the influence of some werful association of operators. Allowance, however, must, in many cases, be made for : materials at hand in different localities, which, it is hardly necessary to observe, inence style in architecture most perceptibly. Another point too often forgotten in this uiry, is the gradual progression of the art, and the long transitional periods between h phase of pointed architecture. Some writers on the Freemasons lave imagined t the concealment of their modes of arranging arch stones was the chief object of ir association, and there can be no doult that the whole science of construction was died and tanglt in the lodges. Ohers have t ought that they inclined to Manicheism, which the seets were numberless: but we think they had enough to engage their ention, without discussing whether all things were effected by the combinat:on or ulsion of the good and the bad; or that men had a double soul, good and evil; or that ir bodies were formed, the upper half by Ged, and the lower half by the devil. Some e considered that though the Fremasons, as a body, were not hostile to the Chureh, they re inveterate enemies of the elergy and more particularly of the monks. This may he indantly seen in the ridicule and grotesque lampoons bestowed on them in the seulptures the 13th century. As an instance of the extreme length to which the ridicule of pricsts was then carried, there is at Strasburg the representation of an ass saying mass I served by other animals as acolytes: and this work must have been do:e under the s of the monks themselies!
312. The remarks by the present editor, On the Saperintendents of Enflish Buillings in the Middle Ages contains the first classified account of the official situations of peisons engaged, with some general idea of their duties. This list ineludes the terms:-1, Arehitect; !, Ingeniator; 3, Supervisor; 4, Surveyor; 5, Overseer; 6, Master of the Works; 7, Keeper of the Works; 8, Keeper of the Fabric; 9, Director; 10, Clerk of the Works; 11, Devizor ; 12, Master mason ; and 13. Freemason and mason, or inferior workman. It wi'l be impossible here to give more than a brief outline. To commence with the freemasons:-In 1077, Robertus, cemeutarius, was employed at St. Albans, and for his skill and labour, in which he is stated to have exeelled all the masons of his time, he had granted to him and his heirs, certain lands and a house in the town. In 1113, Arnold, I lay brother of Croyland Abbey, is designated "of thee art of masonry a most scientifie master." William of Sens, employed at Canterbury, was a layman and was called "magister"; the history of his work has been preserved to us in the well written account by the monk Gervase, who details the burning and rebuilding of that cathedral. A number of chosen eementarii were assembled at St. Albans in 1200, of whom the chief, magister Hugo de Goldelif, proved to be a "dzecitful but clever workman." Very many other names of masons are noticed, but these cannot all be here given. In 1217, a writer uses the synonyms maszun for cementarius; artificer is a word also used in the same century; marmorarius, or marbler; and lutsmus or lathomus, stone-cutter, also oceur. In 1360, a mason de fraunche pere ou de grosce pere is named in the Statutes; while it is not until 1:396 that the terms " lathomos vocatos ffremaceons," and " lathomos vocatos ligiers," are used to designate the masons who were called free(stone)masons, and the masons called layers or setters. In the fabrice rolls of Exeter cathedral, the term sime atarius is used before, and the term fremason after, the above-named period of 1396 . Thus the derivation of the term freemason, from a freestone worker, appears more probable than the many fanciful origins of it so often quoted. What becomes then of the "travelling bodies of freemasons" who are said to have ereeted all the great huildings of Europe? Did they ever exist? The earliest mention of them appears to have been promulgated ly Aubrey, some time before 1686, who cited Sir William Dugdale as having told him " many years since, that about IIenry IIl's time (1216-72), the P'ope gave a bull or patents to a company of Italim fr.emasons to travel up and down over all Europe to build churches. From them are derived the fraternity of Adopted Masons." No evidence has been adduced in support of this statement; searches have been made in the Vatican library without success. Wren's Parentulia gives an account of these personages to the same purport, though somewhat enlarged, (par. 401), and this has been guoted as an authority. From a careful comparison of circumstances, Dugdale's intormation to Aubrey most probably referred t, the "Letters of Indulgence " of Pope Nicholas 11 I., in 12 28 , and to others by his successors as late as the 14 th century, granted to the lodge of masons working at Strashurg eathedral, as also noticed on page 131 herein.
313. Concerning the Fratres Ioutis, or the Coufiateruité des ponts, already referred to, (Jar. 310), much has been written during the last one hundred years asserting that this brotherhood had been founded for the express purpose of travelling far and wide to luild bridges. Even as regards France, only a motice is found of such a troop laving been formed by St. Benezet, for building the bridge at Avignon, and that of St. Lisprit, over the Rhone, during the 12th and 14th centuries, (11:8 1188 and 1265-1:309). In Eingland no such companies are found recorded; but wherever a bridge was built, a chapel appears to have been founded, to which a priest was attached to pray for the soul of the fuunder, to recsive passage money, and sometimes to pray with the passenger for the safe termination of his journey. Two instances only, of an early date, have been put forward of so called fraternities of masons; the first is that Godfrey de Lucy, bishop of Winchester, formed in 120: a confraternity for repairing his chureh during the live years ensuing. "Such," says Milner, "was probahly the origin of the Society of Freemasons." The seeond, as asserted by Anderson, (Const tutions of the Free and Areepted Masons, 1738). but not since authenticated, is that the register of William Molart or Molash, prior of Canterbury cathedral, records that a respeetable lodge of freemasons was held in that city in 1429, under the patronage of Henry Chichele, the arehbishop, at which were present Thomas Stapylton, master, the warden, fifteen fellowerafts, and three entered apprentices. It dofs not then appear to have been known that eaeh cathedral establishment possessed a permanent staff of officers, with certain workpeople, and "took on" additional hands whenever the edifice was to receive additions, or to be rebuilt. The monareh also had an office for carrying out the repairs and rebuildings at the palaces and royal houses. A grild of masoms was undoubtedly in existence in London, in 1375, 49th Edward III, and in 1376 two companies of masons and of freemasons were in existance. 'The Masons' Company of London was ineorporated in 1411, and Stow says " they were formerly called fremasons." The masons, during the 17 th and 18 th centuries, olten became designers or architects, as witness Nicholas Stone, George Dance the elder, Sir Robert Taylor, and others.
314. At this date of 1375 , some writers have placed the origin of that wonderful society, caused, as they urge, hy the masoas combining and agreeing on centain signs and tokens ly
ch they might know one another; engaging to assist each other against the then common tom of impressment ly the monareh; and further, not to work muless free and on thi ir terms, esprecially as the monareh would not pay them as highly as did his suljects. All : appears probalile, but there is no sufficient authority for it. The workpeople had at es, as at Stratford-on-Avon, in 1353, special protection until the edifiee was completed. 15. But previous to 1:375, the date alove mentioned, the Stututes at L.arge afford mueh rable information, hitherto unquoted, on the subject of the manners and customs of -hpeople. In 1349, the Statute 2.3rd Edward 11I, relates that "great part of the ple and especially of workmen and servants late died of the pestilence, whercby many band excessive wages and will not work;" the hours of labour were settled at the same e. l.ecause "diverse artifieers and labourers, retained to work and serve, waste much part the day (the manner of doing so is described) and deserve not their wages." Their ges were settld in the year following; while in 1360-1, a Statute declares that "carpenters masons and all other labourers shall take from benceforth wages by the day and not by week, nor in any other manner," and continues "that all alliances and corines of masons 1 earpenters, and congregations, chapters, ordinances and oaths, hetwixt them made or to made, shall he from heneeforth roid and wholly annulled,"- with other de tails. This imtant Act was enforced by many others, and by the well-known Statute of S. rd Henry VI., 15 , passed at the "special request of the Commons," again putting down all chapters and gregations held by masons. . In 1436-7, 15th Henry VI., the "mastirs, wardens, and ple of the guilds, fraternities, and other companies ineorporate, dwelling in divers parts the realm," were warned not to "make among themselves unlawful and unreasonable inanees, for their singular profit and common damage to the people"-their letters ent were to be bronght to the justices and others for their approval. Many later tutes were passed; but they were all at length superseded by the well known Statute of Elizabeth, 1562 .3, whiel. continucd in force until so late as 181:3, when such portion s epeated as forbade exercise of trads ly persons not having scrved, and as egrulated mode of binding apprentices \&c., but at the same time the customs and privileges of es and boroughs were saved. It is certain, from all these ohseriations, that there were owships or guilds of masons existing before the middle of the 14 th century; liut ether the one in London had any communication with those guilds existing in the other porate towns, or whether there was a supreme guild which led to a systematic working, till witbout clucidation. It has been asserted for years, on the faith of certain manuipt "Constitutions." that a company of lireemasons, formerly existing at York, huld a orter of incorporation f:om King Athelstan, dated in 926, under which they claimed hority over the companies thronghout Eng and. As noticed herealter (\quad ar. $3 \leq 2 a$), it is tinetly proved that the Grand Ludge of Masons of Germany was not established until late as 145 ?.
316. These guilds or companies had legendary histories, as had probably most of the er building trades. That which belonged to the stonemasons was aceepted lyy the Scecity Free and Aecepted Masons, when it was established or reestablished in 1722; this last has ;eeded as a highly respected charitable and friendly socicty to the present day. Of suelt tories or "constitutions," besides at least six in manuseript, dating about 1646-60, ther two others in the British Musenm. The earliest one is presumed to date about the ter part of the 14 th century, and has the form of a poem in about 575 lines, entitled C_{m-} iotions of Geometry; it was first noticed by Mr. Halliwell, and edited hy him in 1840. e other manuscript, dating about 1500, has been printed nearly in facsimile by Mr. Cooke. They were all undoubtedly compiled for the use of a body of working sons; they refer to ycarly assemblics, to a lodge as a workshop, taking apprentices, rkmanship, moral conduet, punishment of offenders, and observance of their "articles 1 points," or bye-laws as they may be termed. No references are made to secret signs or masonic marks; as regards the latter, a few remarks will be offercd subsequently.
317. The masons when about to set to work, had a lodye or workshop provided for the m , 1 sometimes had to make it for themselves; this shed or building aloo served them ocionally as a residence, or place for eating their meals, as often octurs at the present day. is lodge is noted in an early account as being eavered with thateh, while in a moch er one it is to be "properly tiled," an expression still in use lyy the modern society, when door of their place of meeting is closed. This lodge is adverted to in the manuscripts ove mentioned, as also in the l'abric Rolls of York Minster, published in Browne's Hiz lory Furk Cathedral, 1828-47, and separately by the Surtees Society, in 1859. 'These records eidate many interesting points connected with works and workpeople; and causes us to ret that the example set in printing them has not yet led other D، ans and Chapters to do like, or to allow them to be puhlished. They show that there was a continnous line of ster masons from 1347, the date of the eariiest document, who were duly sworn to the ce, had a fixed salary, a residence, and if beconing blind (which appears to have been, 1 is still, very often a result of employment in masonry), or compelled by bodily infirmity give up the direction of the works, he was pensioned, and sometimes he was bound not
to undertake duties elsewhere while engaged at the eathedral. The master mason was often succeded by his junior or assistant; in one instance a fight took place in eonsequence of a master mason, who was a stranger to the place, having been appointed to the office. Gowns or robes, the latter sometimes lined with fur, were provided for the master, and tunies for his men, as well as gloves (at $1 \frac{1}{2} d$. each) to the masons and earpenters; also aprons and elogs, and oceasional potations and remmeration for extra work. This offieer in the king's household had a livery, as probably had the earpenter and other officers.
318. It is neeessary to mention that the trades, from a very early period, appear to have kept themselves to their distinet handierafts; thus, while the monasteries had masons and earpenters, and a plumber and his boy, at hand, yet the glazier, bell-founder, painter or ducorator, smith, and some others, were residents in the town or some adjoining city. Only in a few of the monasteries were the monks able to peiform some of these duties themselves. In Italy, however, talented youths were received and educated at such establishments, and became lay brethren, as mueh for their own safety as out of gratitude to their masters: the devotion of their time and talents in ornamenting the saered edifices, has led persons to urge that ecelesiastical buildings were designed, ereeted, and decorated, by elerical hands.
319. We will now proceed to notice very succinetly the other official titles. As far as the design of the building was concerned, that labour appears to have been left to the master mason, whatever interest the monaleh, the bishop, the aboot, or the prior, may have displayed in giving instructions as to their wishes; no doubt elever men then, as now, interlered with their arehitects and induced them to follow special orders, whether eorrect in taste or otherwise. 'The term "Arehitect" has rarely been found in the middle ages; perliaps to a certain extent the word "ingeniator," so early as 1199 , may have taken its Hate. "Supervisor" oceurs constantly, soon after the Conquest, and has been translated "surveyor," and sometimes "oversecr;" it is not always elear what is to be understood by the term; whether actually a "d signer" and professional man, as held ly some persons in the edebrated example of William of Wykeham, at Windsor Castle; or merely as a "diector," seeing to the orders of others being earried out: as we hold was the position of Wykeham, aeting for the monarch, the design being attributable to the master mason. Numerous examples are given in the paper from which we are quoting; and it likewise contains a searching enquiry into Wykeham's professional capacity, with what result we must beg the reader to judge for himself. The "Magister Operum" or "master of the works "was an important officer in many monastic establishments; at Croyland, for inst:mee, he was the first of the six greater officers, and to his superintendence was submitted the construction, reparation, beautifying, and enlarging, of all the buildings belonging to the monastery. The sacrist often held this office, and many names are known, more especially that of Alan de Walsingham, at Ely monastery, whose history and lahours deserve attention. In the agreement made at York, in 1367, it was arranged that the plumber was to work with his own hand wherever he should be required by the "master of the fabric ; " if his services were not required, he might obtain leave of absence from the chapter, or from the " master of the work," but to return when required by the said master. At the same period there appears to have been a "keeper of the fabrie" who was to settle the amount of the day's work for the plumber and his servants, and to pay salaries. As the "master of the work," the "keeper of the works," and the " master mason," are all mentioned in one doeument of the same period, they eannotbe considered as one person. The household of the monareh, as before noticed, comprised an office for earrying out works at the royal palaces. The earliest list yet found is of the reign of Edward 1V. (1461.83) ; in it the "elerk of the works," who is placed first, has a fee of two s!illings per day, or 36l. 10 s. per annum, a elerk at sixpence per day, four shillings per day for riding expenses, and twenty pence for boat hire. The next ollicer in the list is the comptroller, then follow the elerk of the engrossment of the pay-book, the purveyor with an allowance for his horse, the keeper of the store-house, the elerk of the cheek, the elerk of the comptrollements, the carpenter, the plumber, the mason (in this list is omitted), the juiner, the glazier, the surveyor of the mines, who las also $36 l$. 10 s . per annum, and lastly, the devizor of building, who has the same amount. It would appear from a passage in the Ordinances published by the Socisty of Antiquaries, 1790, that this elerk of the works was first instituted by Edward 111., and the livery for that officer is known to have been given as early as 1391. Similar lists oceur later; in Elizabeth's reign, the title beeomes that of surveyor and paymaster, or surveyor and elerk; in one of 1610 , containing the household of prince Ilenry, Inigo Jones is "surveyor of the works;" Mr. Smith, "paymaster and overseer; " and Edward Carter, "clerk of the works." Jones was subsequently "surveyor" of the king's works; and Denham, Sir C. Wren (who received the fee of $45 l .12 \mathrm{~s} .6 \mathrm{~d}$.), and others, were styled "surveyor-general." This royal establishment eventually beeame the Board of Works, then the Office of Works, and is now known as the Commission of Public Works. It was this Board of Works that served as the school for arehiteets, or to which the best architects were attached, during the 17 th and 18 th centuries The earliest instance of the tern "elerk of
the works" occurs in 1241, 25th IIenry III., for certain works to be done at Windsor ; in later times it appears in connection with the palaces at Westminster and elsewhere; and such an appointment it will be remembered was held by William of Wykeham, in 1356, and by Geoffrey Chaucer, in 1389. The "devizor" already named, although it occurs so carly as about 1470, is a title to which but one name has been attached, that of John ot Padua, on the faith of a passage in Walpole's Anecdote:

3:2. These careful notices are concluded by the statement that "there is one circumstaner respecting nearly all these officers which perhaps needs a passing comment. Very many ot ihem were either ecelesiastics or were rewarded with ecelesiastic preferment. But it must be remembered that, during the period to which our attention las been confined, the church was the only lield for exertion open to those of the nobility and gentry who were not inclined to embrace the profession of arms; it also afforded a means by which to obtain a livelihood; therefore the clergy, so called, would thus secure the offices at the disposal of the monareh and of the nebility. Some names, however, appear to have been unconnected with the churel." It might be added that in late times in lirance, eminent arelifects were appointed allés, and from their establistments derived the funds for the remuneration of their services. "It is very difficult to understand the duties of these officers. The overseer would be, perlaps, the most easily explained, but his Latin designation as used in the Records, is unknown to us unless the Latin word "Supervisor" has been the one the translators have found. The English word supervisor, if that of steward be questionable, is, perhaps, best kept for those who, acting on bebalf of others, as Wykeham for the monarch, have yet no grounds to be considered the designers of the building. The master of the works, as lie was called in the monastic establishments, and later in Scotland, held the place of the English king's chief professional man, and was, no doubt, one of the talented aduisers of the day. The king's clerk of the works clearly stood in the place of the arehitect. The master or keeper of the fabric was irobably the keeper of the whole structure; and the keeper of the works was, perhaps, only the custodian of the particular works then in progress; the edifice, under those circumstances, being developed by the master of the works or by the master mason. But there is one officer of whom we should desire to know much, but of whom nothing whatever is known; this is the devizor of buildings."
321. We would refer the student to the paper by Mr. Ferrey, read at the same society in 1864, Some remarlis upon the works of the early mediaral architects, Gundulph, Flambard, William of Sens, and others. The subject will be well coneluded by quoting the result of Mr. Strect's enquiry into the designers of the buildings in Spain. He states in his Account of Gothic Archit cture in Spain, $186.5, \mathrm{p}$. 464, that " it is often, and generally thoughtlessly, assumed that most of the churches of the middle ages were designed by monks or elerical architects. So far as Spain is concerned, the result at which we arrive is quite hostile to this assumption, for in all the names of architects that I have noticed there are but three who were clerics. In our own country it is indeed commonly asserted that the bishops and abbots were themselves the architects of the great churches built under their rule. Gundulph, Flambard, Walsingham, and Wykeham, have all been so deseribed. but J suspect upon insufficient evidence; and those who have devoted the most study and time to the subject seem to be the least disposed to allow the truth of the elaim made for them. The contrary evidence which I am able to addnce from Spain certainly serves to confirm these doubts. In short, the common belief in a raee of clerical arshitects and in nbiquitous bodies of freemasons, seems to me to be altogether erroneous." This work treats very minutely on the position of the designer of the buildings in Spain. (Sce par. 395.)
322. Among other matters connected with the progress of the art. Stieglitz, in 1834, brought to the notice of the public, the marks on courses of stone in many buildings in Germany, and elsewhere, called "mason's marks," which hy some have heen supposed to be the personal marks of the masters of the works, but which are, in fact, nothing more than directions to the selters, and, indeed, are used lyy masons up to the present hour. Some of these, however, are curious in form and figure, and were most probahly determined by the lodges. Their forms are principally rectangular, of forty-five degrees, of the equilateral triangle, of the intersuction of horizontal and perpendicular lines, and circular. Sume of them have so great a resemblance to Runic characters, that therefore it has been argned the Anglo-Saxons taught the Germans architecture, and that they cultivated the art, and had masonic lodges among themselves, at a very early period; but this seems rather mareasonahle; neither is it likely that the natives of this island were the chief artists employed on foreign eathedrals, though some may have been. That these marks, however, were used from some traditional knowledge has also been urged. Thus the mark $\rceil \mathrm{T}$, the cruciform hammer of Thor, is found in the minster at Bâle, and repeated in the sixteenth eentury in the churel at Osehatz. This mark abounds in a great variety of phases, -on medals, on amulets, in the museum of the Royal Academy of Copenhagen; and on many Runic monuments, as mentioned by Hobhouse in his illustrations of Childe Harold. It is also found on the sacred jar of the Vaishmavas (Asintic Researchrs, vol. viii.). At the Château de Coucy (13 th century) is found 4 , the Runic letter S . One mark of frequent recurrence
is \downarrow, an inverted Runic T. It may be seen at Fribourg, at the beantiful ehureh of St. Catherine at Oppenheim, and at Strashorg, conneeted with the letter N. Without founding any hypothesis upen the singular agrement of these marks with the sixteen letters of the Runic alphabet, it is at least a curious matter for further examination. Hobhouse, as above mentioned, states, that a character resembling the hammer of Thor is found in some Spanish inseriptions, and he seems to think it bears affinity to fig. 161. which is often drawn by boys in Italy, though no meaning is ascribed to it; this figure is found at New Shoreham chureh; Archaohuyical Jturnal, vii., p. 390.
322a. The carliest lodge of which we have any authentic knowledge, was that of Strasthurg. Erwin von Steinbach seems to have been at the head of it; he appears also to have been the first secular arehitect
 of importance that arose, and to have had priviluges of grtat inportance conceded to him by the emperor, Rodolph of IIapsburg. This lodge was regularly constituted, with power, romed a certain extent of territory, to maintain order and obedience among the workmen unde its jurisdiction. In 1278, Pope Nicholas 11 I. granted to the body a bull of absolution, which was renewed by his suceessors up to the time, in the fourteenth century, when Benedict XII. ocenpicd the papal chair. T'o Iodofue Dotzinger, master of the works at Strashurg in 1452, the merit scems attriLitable of so forming an alliance between the different lodges of Germany, as to induce a greater uniformity of practice. Whether from the central lodge of Strashurg, whence certainly branched lodges at Cologne, Viema, and Zurich, branched also the lodges of France, England, and Italy, in whici last maned country one existed at Orvieto, it is now perhaps too difficult a task to discover.

322b. Much stress has been laid upon the marks, which are found upon the faces and beds of stomes in mearly all countries. In fig.162. are given several of these fancilul forms, as we
maintain them originally to have leen. $\quad a$ and b, are from the interior and exterior of the nave of Gloucester cathedral. c, Malmesbury abbey church. d, Furness abbey. e, l'oitiers, in France. f, St. Radigoade. g, Colngne cathedral ; and h, Roman altars at Risingham: these are all from Mr. G. Godwin's paper in the Archeologia, vol. xxx. i, from Segovia cathedral; k, Tarragona eathedral; and l, Veruela cathedral; are given, with many others, by Mr. G. E. Street in his Guthic Aralitecture of Spain. Numerous examples are given in the Freemasons' Monthly Mugazine, \&e. new swries, 1862, and in the Builder Journal for 1863. Perhaps the fact of their occurrence, as in the present day, is simply due to their being the marks or signs by which cach mason recognises the particular stone for the eorrect workmanship of which he is answerable. On large works a list is kept of them by the foreman, and any new man having a mark similar to one already on the list, has to make a dintinctive difference. An eminent practical mason assured us that from the sharacter of the mark he could tell at once the kind of stone on which it was made.
A general history of Pointen Architecture is phaced at page 233; the Practice of Ponted Anchiecture is placed in Book lil., together with much relative information and illustration in Phincifles of Proportion, in the same book.

Sect. XVi.

HALIAN AKCHILECTURE.

323. The commencement of a new era in arehitecture first dawned in Florence, and then soon spread its meridian light over Italy and the rest of Europe. The French have well applied the term renaissance to its commencement. It is with us denominated that of the recical of the arts. The Florentines had at an early period, according to Villani, determined to ereet in their city a monument which should surpass all that had bef re appeared ; in 1294 Arno.fo di Lapo (according to Vasari), but Arnolfo di Cambio da Colle (according to Molini), had so prepared his plans that the first stone was laid Sept. 8, 1296, and the name of Sta. Maria del Fiore was then given to it. The works were stopped 1310 on the death of Arnolfo. In 1324 Giotto was capomaestro, who, dying

1396, his design for the campanile was carried out by Taddeo Gaddi, who died 1966. In 1355 Francisco Talenti, as capomaentro, was ordered to make a model to show how the chapels in the rear were to the disposed correct without any defect. On June 19, 1357, the foundations of a new and larger church were begun by Talenti. Andrea Orcagna, Bucozzo, Taddeo Gaddi and other architects of talent were consulted in turn, and in 1376 the last of the four arches was completed; the central tribune with its five chapels were completed 1407; and in 1421 the armatures (centering?) of the last tribune were taken down (The Times, May 12, 1887). This edifice, though co nmenced before the revival of the arts, is one of particular interest and instruction in the history of architceture, and one wherein is found a preparation for changing the style then pievalent into one sanctioned by the ancient principles of the art. Fig. 163 . shows the plan, and fig. 164

Fig. 163.
phan of santa maria def. whore at florency.
the half section and half elevation of it. The walls are a'most entirely eased with marble. The whole length of it is 454 feet; from the pavement to the summit of the cross is nearly 387 feet; the transept is nearly 334 feet long; the height of the mave 153 feet, and that of the side aisles $96 \frac{1}{2}$. In 1407 Brunelleschi was consulted with others as to the dome, but was not appointed until 1420; he nearly completed the drum at his death in 1446. The church was consecrated March 25, 1436, and the works ceased in 1474. The façade, destroyed in 1588 , was rebuilt from a design by E. de Fabris, and unveiled in May 1886. The revival of architecture is so connected with the life of Brunelleschi, that a few passages in the latter will assist us in giving information on the former. He was born in 1377, and was intended by his father, Lippo Lippi, a notary of Florence, to succeed him in his own profession; but the inclination of the youth heing bent towards the arts, the parent with reluctance placed him with a goldsmith, an occupation then so comected with sculpture that the greatest artints of the time applied themselves to the chasing and casting ornaments in the precious metals. Bruneleschi became skilful as a sculptor, but determined to devote himself to architecture, in which the field was then unoccupied. In company with Donatello he therefore visited Rome, and applied himself with ardour to the study of the ruins in the Eternal City, where he first began to meditate upon the seheme of uniting hy a grand cupola the four arms of the Dnomo at Florence. During his residence he settled in his mind the proporions of the orders of architecture from the elassic examples which the eity alforded, and studied the science of construction as practised by the ancients; from them he learnt that perlect aceordance which always exists between what is useful and what is beautiful, both of which are reciprocally subordinate to each other. Here he discovered the pronciples of that nice equilibrium, equally requisite for the beauty no less than for the sulidity of an edilice. He returned to Florence in 1407. In this year the citizens cunvoked an assembly of architects and engineers to deliberate upon some plan for finishing the Duomo. To this assembly Brunelleschi was invited, and gave his advice for raising the base drum or atic story upon which the cupola should be placed. It is not inportant here to detail the jealousies of rivals whieh impeded his project; nor, when the

Fig. 161.
HAL.F ELIBUATION AND IIALF SECTION OF SANTA MARIA DEL. YIORE.
commission was at length confided to him, the disgraceful assignment to him of Lorenzo Ghiberti as a colleague, whose ineapacity for such a task our architect soon made manifest. Suffice it to say, that before bis death he had the satisfaction to see the cupola finished, with the exception of the exterior of the drum under the cupola; for whose decoration, as well as for the lantern with which he proposed to crown the edifice, he left designs, which, however, were lost. One of the directions he left on his death particularly insisted upon the necessity of following the model he had prepared for the lantern, and that it was essential that it should be constructed of large blocks of marble so as to prevent the cupola from opening; an advice which experience has since proved in other cases to be far from sound. This cupola is octagonal on the plan, as will be seen by reference to the figures, and is 138 fect 6 inches in diameter, and from the cornice of the drum to the eye of the dome of the height of 133 feet 3 inches. Before it nothing had appeared with which it could be fairly put in comparison. The domes of St. Mark and that at l'isa are far below it in grandenr and simplicity of construction. In size it only yields to St. Peter's at Rome, for which it is probable it served as a model to Michael Angelo; for in both, the inmer and outer cupolas are connected in one arch at their springing. It is moreover well known that Buonarroti's admiration of it was so great that he used to say that to imitate it was indeed difficult, to surpass it impossible. Vasari's testimony of it shall close our account of this magnifieent structure: - "Se puo dir certo che gli antichi, non andarono mai tanto alto con lor fabriche, ne si messono a un risico tanto grande, che eglino volessino combattere col cielo, come par veramente ch' ella combatta, veggendosi ella estollere in tant' altezza che i monti intorno a Fiorenza paiono simili a lei. E nel vero pare, che il cielo ne abbia invidia poiche di continuo le saette tutto il giorno la percuotono." It might be supposed that such a work was sufficient to occupy the whole of Brunelleschi's time; not so: the Duke Filippo Maria engaged him on the fortifications at Milan, besides which
he was employed on several other military works; a proof of the great diversity of talent he possessed. It is, thercfore, from the extensive employ he enjoyed, not only in Florence, but in many other parts of Italy, quite certain that he infused a new taste into its buildings, and that he is justly entitled to the title of the Restorer of Architecture in Europe. He died, and was buried in the church he had raised in 1444. He left a number of scholars, anong whom Luca Fancelli and Michelozzo were perhaps the ablest. These pupiis spread throughout Italy the effeets of the vast change that had been thus begun; a taste for arehitecture was excited ; its true principles became known; and in a short space of time, as if the matter had been one of arrangement between them, the illustrious house of Medici, the dukes of Milan, and the princes and nobility of the country contended who should most patronise its professors. The learned began to expound to artists the books of Vitruvias, the only writer among the ancients whose works on that subject have come down to us.
324. Leo Battista Alberti, of the ancient and illustrious family of the Alberti of Horence, sueceeded Brunelleschi in earrying on the great change of which we have been speaking, and was, indeed, a great contributor to the art, not only by his literary labours on architecture, in which he displays profound erndition, knowledge of constraction, and an intimate acguaintance with the works of the ancients, but also by the distribution, elegance, grace, and variety, which his designs exhibit. Ilis book, De Re Edificatoriû, is the foundation of all that has been since written on the art, and deserves careful perusal by every one who studies for the purpose of practice. We shall here present a short account of it, which, in imitation of Vitruvius, he divided into ten books.
325. The first book treats on the origin and utility of arehitecture; the choice of the soil and situation for placing buildings; the preparation, measurement, and suitable division according to their nature, of the edifices to be erected; of columns and pilasters; of the different kinds of roofs, doors, and windows, their number and size; of the diflerent sorts of staireases and their landings; of the sewage or drains, and of suitable situations for them respectively. In the second book the subjects are, the choice of materials; the precautions to be taken before begiming a building; the models, of whatever description, that should be made; the choice of workmen; the trees lit for use, and the season in which they should be lelled; the methods for preventing rot, and susceptibility of fire ; of stone in its varieties; the different sorts of bricks, tiles, lime, sand, and mortar. The third book treats of construction; foundations according to the varieties of soil; encroachments; the earrying up and bond of masonry; rongh and rubble work; on the different sorts of masonry; on the inlaying and facing of walls; on beans, joists, and the method of strengthening them; on f.oors, arches, and vaults; the covering of roofs, pavements, and the season for beginning and completing certain works. The fimeth book is contined to the philosophy of the art, showing the causes which influence mankind in the adoption of modes of building according to the climate, the soil, and the habits or government of a people. It, bowever, treats of the proper position of a city ; of the size to be given to it ; of the form of the walls; of the customs and ceremonies of the ancients as applied to this point; of fortifications, bastions or towers, gates and ramparts; bridges, both of timber and stome; sewers, ports, harbours, and squares requisite in a city. The fifth book contains instructions for the erection of palaces for peaceable, and castles for absolute prinees; for the houses required by a republic; large and small religions edifices; academies, public schools, hospitals, and palaces for senators. In it are given some hints on military and naval architecture, on farm buildings, and country houses. In the sixth book Alberti treats on architectural ornament, columns, and the method of adjusting their proportions. After some observations on the principles of beanty, on taste, and on the mode of improving it , he enters shortly on the history of architecture. These are followed by several chapters on the doctrine of mechanies, maehines, the method of raising and working columns, polishing them, imitations in stucco and inerustation in thin layers, and matters of that nature. The seventh book continues the discussion on ornaments in architecture, but chiefly in respect of columns, showing the edifices in which the use of them is suitable; and, in imitation of Vitruvius in his directions relative to temples, our author dilates on buildings for ecelesiastical purposes. He shows what sorts of columns and pilasters are best suited to them, how far the employment of statues is proper, and how they should be sculptured. The eighth book is on roads and their decorations, tombs, pyramids, columns, altars, epitaphs, \&e. In it he turns to the suljects of strects, cities, ornaments appropriate to gates, ports, arches, bridges, crossways, markets, public squares, walks, porticoes, theatres, amphitheatres, circi, libraries, colleges, baths, \&.c.; and the style in which public buildings should be constructed and decorated. 'The ninth book is a continuation of the preceding one ; but in this he speaks in addition of the appropriate decoration of royal palaces, and of the ornaments respectively suitable to city and country dwellings, and of the paintings and seulpture that should be employed in them. In the tenth and last book the principal subjeet is the finding a supply of water for buidings both in town and country, and it closes with some useful hints on the aid of architecture to domestic economy. This truly great man constructed many works in different citics of Italy, some of which still remain to
attest his skill. We are not to examine them with the eye of an architect flourishing even half a century later, though under that category they do him honour, but with the eyc of an artist of his own day, and we shall then find our veneration for his memory cannot be two strongly expressed. In Fhorence he finished the Ruccellai palace, and built the choir of the Annunziata. At Mantua he built a church of singular beauty, consisting of a simple nave, crowned with a vault decorated with caissons, which rivals the works of the ancients. The additions he made to the church of St. Francesco at Rimini, a pointed chureh, though not in the same style, because it then came into disrepute, show an extraordinary aptitude for overcoming the most difficult and repulsive subjects with which an architect has to deal, and that work alone would stamp him as a man of genius. On his other acquirements it is not within our province to dwell; we shall merely sum them up by saying that he was poet, painter, sculptor, philosopher, mathematician, and antiquary. Such was Alberti, in whom was concentrated more refinement and learning than have hardly since appeared in a single individual of our species. The time of his death is not accurately known; some place it at the end of the fifteenth, and others at the beginning of the sixteenth century.
326. About the time that Alberti was engaged on the practice and literature of the art, a very extraordinary volume, written by a member of the Colonna family, was published by Aldus, at Venice, in 1499, folio. Its title is as follows:- Polyphili Hypmerotonachia; opus italicâ linguâ conscriptun; uli humana omnia non nisi somnium esse docet. This work deserves to be better known than we fear its rarity will ever permit. With the singularity of the plan, it unites the advantage of placing before the reader many elevated and elegant ideas, and, under the veil of a fable, of inculeating precepts of the greatest utility to artists and those that love the art. The testimony of Felibien in favour of this work runs so favourably, that we must transeribe it:-" Sans préjudice," says that author, "du grand profit qu'on peut tirer de la lecture de Vitruve, et de l'étude qu'on doit faire de ses prineipes et de ses règles, il ne faut pas moins examiner les tableaux curieux de plusieurs superbes édifices, monumens ou jardins, que l'imagination riante et féconde de l'auteur du Songe a mis sous les ycux de ses lecteurs." When it is recollected that the manuscripts of Vitruvius were extremely rare, and that when Colonna wrote (1467) that author had not been translated, when we reflect that in his descriptions he rears edifices as magnificent and regular as those which Vitruvius presents to us, we cannot withhohd our surprise at the genius and penetration of the author. With him architecture appears in all her majesty. l'yramids, obelisks, mausolea, colossal statues, circi, hippodromi, amphitheatres, temples, aqueducts, baths, fountains, nohle praces, delicious gardens, all in the purest taste and of the most perfect proportion, attend in her train, and administer to the pomp with which the author attires her. With him all these ideal productions of the art were not merely the result of an ardent imagination, but were the fruit of an intimate acquaintance with its rules, which he explains to his reader, and inspires him at the same time with a taste for the subject of his pages. He often breaks out against the gross ignorance of the architects of his day, and endeavours to inculcate in them the sound principles of the art. He demonstrates that it is not enough that an edifice possesses stability and solidity, but that it must be impressed with a character suitable to the purpose for which it is destined; that it is not enough that it be well decorated, but that the ornaments used arise from necessity, or at the least from utility. Architecture thus treated in fiction was much more pleasantly studied than it would have been by mere application to the dry rules of Vitruvius. The impression made by the work was increased by the poetic glow with which the precepts were delivered; the allegories it contained warmed the imaginations of a people easily excited, and 1taly soon saw realised what Polyphilus had seen in a dream. This work is decorated with wood engravings of singular beauty, in which the details and accessories are strietly classical; it is written with great spirit and elegance, and we are not amazed at the magical effect which, with the accompaniment of Alberti's book above mentioned, it every where produced.
327. The Italian school, which ultimately appropriated and adapted the ancient Roman orders and their details to comparatively modern habits, was for a long while engrafted on or amalgamated with what is.called Gothic. We here (fig. 165.) place before the reader an instance of this, in the celebrated Loggia at Florence, designed by Orgagna. The same feeling appears, indeed, in what Brunelleschi did in his Duomo, and in many other buildings in Florence, in Pisa, Siemna, and other cities. Brunelleschi doubtless made a strong effort to emancipate himself altogether from the mixture of two discordant styles, and in some measure succeeded. Still there continued, as is evident in the Ricardi, Strozzi, and other palaces in Florence, a lingering love for the mixture, which the arehitects had great apparent difficulty in shaking off. It is, however, extraordinary that with all this lingering love for the ancient style, in which there was much littleness, when the architects of this period came to the crowning members of their edifices, they placed on them such massive and finely romposed cornices that the other parts are quite lost; and in this member it is evident they were influenced by those feelings of unity and breadth that gave so much value to the best works of the ancients.

328. The revival of the arts in Italy was vastly assisted by the commerce and riches of the comentry; and with the decay of that commeree, nearly 300 years afterwards, their palmy days were no more: from that time they have never thriven in the country that gave them birth. It is our intention, in this view of Italian arehitecture, to consider it under the three schools which reigned in Italy - 1. 'lie Florentine ; 2. The Roman; 3. The Venetian.
329. 1. Florentine School. - Climate and the habits of a people are the prineipal agents in ereating real style in architecture; but these are in a great measure controlled, or it is perhaps more correct to say modified, by the materials which a country supplies. Often, indeed, these latter restrict the architect, and influence the lightness or massiveness of the style he adopts. The quarries of Tuseany furnish very large blocks of stone, lying so close to the surface that they are without other difficulty than that of carriage obtained, and removed to the spots where they are wanted. This is probably a circumstance which will arcount for the solidity, monotony, and solemnity whieh are such commanding features in the Florentine school; and which, if we may judge from the colossal ruins still existing, similarly prevailed in the buildings of ancient Etruria. In later times another cause contributed to the continuation of the practice, and that was the necessity of alfording places of defence for the upper ranks of socicty in a state where insurrection continually occurred. Thus the palaees of the Medici, of the I'itti, of the Strozzi, and of other families, served almost equally for fortresses as for palaces. The style seems to have interdicted the use of columns in the façades, and on this account the stupendous cornices that were used seem actually neeessary for the purpose of imparting grandeur to the composition. In the best and most celebrated examples of their palaces, sueh as the Strozzi, P'andollini, and others in Florence, and the licolomini palace at Sienna, the cornices are proportioned to the whole height of the building considered as an order, notwithstanding the horizontal subdivisions and small interposed cornices that are practised between the base and the crowning member. The
courts of these palaces are usnally surrounded by colnmms or areatdes, and their interior is scarcely ever indicated by the external distribution. From among the extraordinary palaces with whir's Florence abounds, we place before the reader the expuisite façade of the Pandolfin: palace, the design whereof (fig. 166.) is attributed to the divine Rallaclle d'Urbino.

Fig. 166.
pandolfini palace.
In it almost all the requisites of street architecture are displayed. It is an example wherein the principles of that style are so admirably developed, as to induce us to recommend it, in conjunction with the fagade of the Farnese palace hereafter given, to the eliburate study of the young arehitect.
330. Without further allusion to the double cupola of the Duomo, already noticed, the first of its species, and the prototype of that of St. Peter's at Rome afterwards reared by Michael Angelo, the principles and character of the Florentine seliool are not so manifest in its claurches as in its palaces. These nevertheless possess great interest ; for they were the bases on which those of the Roman sehool were formed, as well as of those examples which, with different degrees of purity, were atterwards ereeted in many of the capitals of Europe. Besides the plan of the Duomo, those of St. Michele, Sta. Maddelina, St. P'ancrazio, St. Lorenzo, and St. Spirito, are the key to all excellence in modern art, as respeets real church architecture. It is untortunate that of this selool few of the churelies have been finished, so that their façades are generally imperfect. 'The interior was properly, with them, a matter to be first considered and brought to perfection.
331. Amongst the many extraordinary arehiteets of the Florentine school, whercof a list will hereafter be given, was Bartolomeo Ammanati, whose bridge, "della Santissima Trinita," sufficiently proves that the greatness of the Florentine school does not alone depend on its palaces and churches. This, one of the most beautiful exampies, as well for design as constructive science, in which was obtained for the waters of the Arno a maximum of waterway, combined with a beauty of form inappreciable through graphic means, still strides the river of Florence, to attest the consmmate skill of Ammanati. The bridge in question consists of three arches: the middle one is 96 ft . span, and each of the others 86 ft .; the width of the piers is 26 ft .9 in ., and the breadth of the bridge between the parapets is 33 ft . The arehes are very slightly pointed, the cusp being hidden by the rams' heads sculptured on the keystones; their rise alove the springing is very little, hence they have been mistaken by some writers for cycloidal arches. Alfonso and Giulio Parigi, who assisted in constructing the work, left an account of the mode in which it was carried on, and the manuscript is still preserved in the Florentine Library. More recently, a description of this bridge has been published by Ferroni, under the title of "Della vera Curva degli Arehi del Ponte della Santissima Trinità di Firenze." The l'itti palace had heen begun in the time of Brunelleschi, in 1435, for Luea Pitti, a wealthy citizen of Florenee. Remaining long unfinished, it was at last sold to Eleonora, wife of Cosmo I., who purchased the adjoining ground, and planted the Boboli Gardens. About the middle of the 16th century, Nicolo Bracciani, surnamed Tribolo, made designs for finishing the building; and was succeeded by Bernardo Buontalenti. After him came our Ammanati, who left other designs for finishing, which was accomplished by Alfonso and Giulio l'arigi. It is now the residence of the grand duke, and has served as a model for imitation to many modern architeets, though there is in it much to condemn. The details, however, and proportions of the orders used in it by Ammanati, are very beautiful. This architect died in 1586, at the age of seventy-five. IIe was a pupil of Baecio Bandinelli, and during his life composed a large work, entitled La Città, whicb contained designs for all the fillrics belonging to a regular and well-arranged city, begiming with the gates, then proceeding to the palaees of the prince and magistrates, the churehes, the fommains, the squares, the loggia for the
merchaiats, the bridges, theatres, \&.c. This work appears to have been lost, the last posse:sur of it known having been the prince Ferdinand of 'Tuscany. 'Though in the higher refinement of finished details the llorentine school did not reach the extreme elegance of the Romau and Venctian schools, yet for bold imposing masses of architecture we think no city presents such a collection of highly picturesque arehitectural examples as Florence. The I'itti palace indeed, just mentioned, is more imposing by its broad parts than alnost any other building with which we are acquainted, though it becomes poor when translated into lieneh, as at the Luxembourg.
332. So late as 1454 , we find in the Strozzi and other palaces semicireular-headed windows, wherein are half columns at the sides, and a column in the middle, resenbling those in the Byzantine or Romanesque edifices. The two apertures thas formed are crowned by semicireular heads, whieh are circumseribed by the outer semicirele, and the spandrel formed by the three curves is oceupied by a patera.
333. The period of the lilorentine school, which must be taken as commencing with Bramelleschi, includes the names of Miehelozzo, Leo l3attista Alberti, l'ollainolo (who obtianed the soubriquet of Chronaca, from his constant recital of his travels), the architect of the Strozzi palace, Raffaelle Sanzio, Benedetto da Majano, Baceio d'Agnolo, Baceio Bandinelli, Buontalenti, Ammanati, and others: it extends from a. bl 1400 to a. d. 16000 . The works of Michael Angelo, thongh a lilorentine, do not belong to this sehool ; neither do those of San Gallo and some others, who have been improperly classed as lilorentine architects.
334. 2. Roman School. - Though the eity of Rome, during the period of the rise and progress of the Roman school of architecture, was not altogether free from insurrectionary troubles, its palatial style is far less massive than that of Florence. None of its buildings present the fortress-like appearance of those in the last-named city. Indeed, the Roman palaces, from their grace and lightness, indicate, on the part of the people, habits of a much more pacific nature, and an advancing state of the art, arising from a more intimate acquaintance with the models of antiquity whieh were on every side. The introduction of columns becomes a favourite and pleasing feature, and great care and study appear to have been constantly bestowed on the façades of their buildings; so much so, indeed, in many, that they are but masks to indifferent interiors. In them the entrance becomes a prineipal object; and though in a great number of eases the abuses which enter into its composition are manifold, yet the general effeet is usually suceessful. The courts in these palaces are most frequently surrounded with areades, whence a staircase of considerable dimensions leads to the sala or prineipal room of the palace. The general character is that of grandeur, but devoid altogether of the severity which so strongly marks the Florentine sehool. The noblest example of a palace in the world is that of the larnese family at Rome, to which we shall afterwards have oecasion to return.
335. Bramante, born in 1444 at some place, but which is still in doubt, in the duclyy of Urbino, must be considered the founder of the Roman school. Though educated as a painter under lira lartolomeo, and likely to lave ranked in that oecupation as a master of no ordinary powers, his great love of arehitecture induced him at an early period to guit painting as a profession. In Lombarly he wandered from city to city for the purpose of obtaining employment as an architect, but there is no evidence that his exertions in that part of laly were rewarded with great suecess. The dry style which afterwards chat racterised his works has been said to have had its origin in his protracted stay at Milan, while the works of the Duomo were carrying on there under Bernardino do Trevi, : buidder of such skill as to have gained the esteem of Leonardo da Vinci. be this as it may, it was in this city his determination to follow our art became irrevocable. From Milan he went straightway to Rome; where, however, he was obliged to make himself known by some works in his first profession of a painter in the church of St. Giovami Laterano. Naturally of hospitable and social disposition, and a lover of expense and luxury, so intense was his ardour to become great in the art he adopted that he refrained from all society, holding commeree only with the monuments of antiquity by which he was surrounded, studying with the utmost diligenee, and diawing them for his future application of the principles upon which they were fommed. He even extended his researches to Naples, losing no opportunity of noting all the ruins from whic! instruction in his art could be drawn. Oraffa (Cardinal of Naples), who had remarked his zeal, gave him his first commission in Rome, which was the construction of the cloister of the Convent della l'ace; and this, from the intelligence and speed with which he executed the task, brought him at once into repute. At this period Rome could boast but of few architects, and those that were established there were of small account. The llorentine school seems to have sprung in the most decided manner from the habits of the people and the massiveness of their materials, modified by some knowledge of the buildings of the ancients: that of Rome seems to have been founded upon the principle of making the ancient architecture of Rome suit the more modern habits of a very different people, though living on the same spot. To explain more immediately our meaning, we cite the small circular chupel
of St. lietro in Montorio, wherein we find a jump at onee in the adaptation of the circular peripteral temple of the Romans to the purpose of Christian ceremonies. And again, it is impossible to look at the P'alazzo della Cancelleria without being struck by the basement and two orders, which would be suggested by a contemplation of the Colisseum, though afterwards the Roman architects had the good sense to see that the orders of architecture placed against the walls of a building where the use was not required by the interior distribution was a tasteless and useless application of them. The arehitect of the l'alazzo larnese only uses them for the decorations of his windows. In this respect we hope good sense is once more returning to this country; and that the absurd practice in ahnost every case of calling in the orders to aid the effect of a façade, will be abandoned for the better plan of obtaining an imposing effect from the simplicity and arrangement of the necessary parts. We must, however, return to Bramante, whose other employment we pass over to come to his great work, -one which, after the continued labour upon it of his suceessor Michael Angelo, seems to have exhibited the great canons of art; one which has regulated all the modern cathedrals of Europe, for they are, in fact, but repetitions of it; and one, therefore, which requires a lengthened notice in this place, as intimately connected with the rapid progress of the Roman school. The ancient Basilica of St. l'eter had become so ruinous that Pope Nicholas V., a man who delighted in magnificent undertakings, a lover of architecture, and of more than ordinary genius, had conceived the project of rebuilding it, and under the designs of Bernardo Rosellini had actually seen a portion of the design rise from the ground before his death. The project seemed then to be forgotten and abandoned, until Michael Angelo Buonarroti, seeking a place for the rrection of the mausoleum of Julins II., upon which he was engaged, thought that the tribune of Rosellini's projected new basilica would be well suited for its reception, and accordingly proposed it to the pontilf. Julius, pleased with the suggestion, immediately sent for San Gallo and Bramante to examine into it. In these cases, one project generally suggests another, and the rearing a new St. Peter's became a fixed object in the mind of Julius II. 'The tribune of Nicholas V'. was no longer thought of, except as a space to be included within the new works. Ile consultel several architects upon the subject ; but the fact is, that the only real competition lay between Giuliano di San Gallo and Bramante. The last was the successful artist ; and from a great number of projects the pope at last chose that upon which St. l'eter's was atterwards commenced. 'The real design of Bramante can scarcely be traced in the basilica of the Vatican as executed. The changes it was doomed to undergo before completion, more than perhaps any other building was ever subjected to, have been drawn into a history hy the Jesuit Bonami. When Bramante died, his designs, if indeed he made any, were dispersed; and for what we do know of them we are indebted to Raffalle, who took much pains in collecting the ideas of our architect, us they afterwards appeared in Serlio's 'Treatise on Arehitecture. The original plam of Bramante was simple, grand, and in its parts harmonious, and would donbtless have been effective, far beyond the edifice as executed. It has been well observed by Q. de Quiney, in his Life of Bramante, "Le Saint l'ierre d'aujourd'hui parait moins grand qu'il ne l'est en effect. Le Saint l'ierre de Bramante aurait certainement été plus grand encore en apparence quien réalité." There would moreover have been an accordance between the interior and exterior. The peristyle was to have three ranks of columns in deptli, which would have necessarily had unequal intercolumniations. The cupola was rather that of the I'antheon, ornamented exteriorly with an order of colomns. Bramante carried his imitation even to the steps round the springing of that momment. From the medals of the design struck about the period, it seems that the façade was to have been decorated at its extremities with two campanili; but the authority of a medal may he doubtful. The idea, therefore, which is said to have originated with Miehae Angelo, of placing the dome of the P'antheon upon the vaulting of the Temple of Peace emanated from Bramante, though the honour of actually carrying such a project into execution belongs to Michael Angelo da Bnonarroti. It is not, however, probable that if Rramante lad lived he could have strictly executed the design he produced; for it has been well proved that the piers which carry the dome would not have been sufficiently substantial for the weight to be placed upon them, inasmucis as Bramante's cupola would have been much heavier than that execnted by Michael Angelo, and that architect considered it necessary to make his piers three times as thick as the former had proposed for his cupola. Bramante's general design having been adopted by Julius Il., was immediately commenced with a bolduess and promptitude of which few but such men as Julius and Bramante were capable. One half of the ancient basilica was taken down; and on the 18th of April, 1506, the first stone of the new fabric was laid by the pope in the pier of the dome, commonly called that of Sta.Veronica. 'Ihe four piers soon rose ; the centres were prepared for connecting them hy vanlts, which were actnally turned. The weight and thrust of the vaults, however, bent the piers, and cracks and fissures made their appearance in every direction. Thus, without more than their own weight, much less that of the enpola, the works threatened ruin. The great haste used in carrying on the
works had doultless much contributed to this catastrophe. Bramante in the meantime d ang, Raffielle, Giocondo, and Giuliano di San Gallo, and afterwards Baldazzare Peruzzi and Antonio San Gallo, were engaged on the edifiee, and severally used the proper means for remedying the defects that had arisen, and for fortifying the great piers of the dome. To do this, as well as to push forward its completion, Michael Angelo was employed ; and the rest of that great man's life was chiefly devoted to earrying on, under his own designs, the works of the fabric. From the death of Bramante in 1513 to 1546 , when Antonio San Gallo died, the arehitects above named, all of whose names are almost saered, had been more or less employed upon it. It was during this period that Bramante's original plan of 'a Latin was changed into a Greek cross by Peruzzi. The works had at this time become the source of much jobbing; every body that had any emp'oyment on them seemed bent on providing for hinself, when Michael Angelo consented, for he was far from desirous of being employed, to superintend the future progress of the fabric. The first use made of his authority by Michael Angelo was that of discharging all the agents and employés of the place; he may be said to have again driven the money-lenders out of the temple. That he might have more moral power over this worthless race, he set the example of declining to receive the salary of 600 crowns attached to his appointment as arehitect, and gratuitously superintended the works during the period of seventeen years,-a clisinterestedness that afterwards found a parallel in one of the greatest architects that this or any other country ever saw : we need scarcely mention the name of Inigo Jones. Michael Angelo began by undoing what his predecessor San Gallo had executed; and after having accomplisheu that, his whole powers were directed towards earrying on the structure to such a point that no change could possibly be made in his plans; so that after having strengthened the great piers, vaulted the naves, and carried up the exterior pedestal of the cupola, at the death of Paul 111. in 1549 the form of these parts of the basilica was unehangeably fixed. Under Julins [11., the suceessor of P'aul, the intrigues which had always been carried on against Michael Angelo were renewed. Ile was accused of having contrived the arrangement without sufficient light, and of having changed every thing his predecessors had done. Thus proeceded this great work; but notwithstanding the severe trials he had to undergo from the envy of his contemporaries, - rivals he could not encotinter, - Buonarroti steadily pursued his course. He felt that his own destiny and that of the fabric were identical; and, notwithstanding all the disgusting treatment to which he was exposed, determined to stand to his post while life remained. Writing to Vasari, he says, "For me to leave this place would be the cause of ruin to the charch of St. I'eter, which would be a lamentable oceurrence, and a greater sin. As I hope to establish it beyond the possibility of elanging the design, I could first wish to accomplish that end; if I do not already commit a crime, by disappointing the many cormorants who are in daily expectation of getting rid of me." And in another letter to Messer I ionardo Buonarrotti, in reply to the pressing instance of the grand duke to have him at Florence, he says, "I would prefer death to being in disgrace with the duke. In ail my affairs I have endeavoured to adhere to the trath; and if I have delayed coming to llorence as I promised, the promise should have been construed with this condition, that I would not depart hence until the fabric of st. P'eter's was so far advanced as to prevent its being spoiled by others, and my design altered; nor to leave opportunity for those thieves to return and plunder, as has been their custom, and as is still their hope. Thus placed by Divine Providence, I have exerted myself to prevent those evils. As yet, however, I have not been able to succeed in advancing the building to that point which I desire, trom want of money and men; and being old, without any one about me to whose care I could leave the work, as I serve for the love of God, in whom is all my hope, I eannot abaudon it." At this period, with the letter, to which we have not done suflicient justice in the translation, it is impossible not to sympathise, nor to be unaflected by the simple and unbending honesty of this honour to the race of man, independent of all our admiration of his stupendons power as an artist. At the age of eightyseven, the pedestal being then ready for the reception of the cupola, he made a small model in elay for that important feature of his work, which was afterwards, to a scale, accurately under his direction, executed in wood; but deficiency in the funds prevented the progress of the building. To the height of upwards of 28 ft . above the exterior attic the eupola is in one solid vault, whose diameter is near 139 ft . at its springing, at whieh place its thickness is near 10 ft . exelusive of the ribs. As the imner and cater vaults are not concentric, the interval between them increases as they rise. Where they receive the lantern they are 10 ft .7 in . apart. The construction of this dome proves the profundity of the architect's knowledge as a seientific builder to bave equalled his superiority as an architect.

3:36. After the death of Miehael Angelo, this cupola with its lantern was rigorously executed, upon the model he had left, by Jacopo della I'orta and Domenieo Fontana, His intentions were religionsly respected, in the completion of the fabric, until the time of Pirro Ligorio, whom Pius IV. deprived of his situation for attempting to swerve from the model and substitute his own work.
337. Between the foundation of the ehureh by Bramante, and its entire complation ly

Carlo Materno, as seen in gigs. 167. and 168., a century had clapsed, but during that century

F4. 167
DLAN GF St FRTHMS.

Fig. 168.
hay.f bibiafion and had.f sketion of st, phter's.
architcetural as well as graphical and plastic taste bad undergone great changes; and though the first was still far from the vicious point to which Borromini carried it, the great principles of order and authority, as founded on the models of anticuity, were passed away, and no longer oceupied the attention of the arehitect. The spirit of innovation, too ofteri mistaken for genims, hid made such inroads, that regularity of plan, simplicity of form,
and the happy mion of taste with common sense had altogether disappeared. The part silded to the edilice by Maderno appears in the plan in a darker tint, by which it is seen that he added three areades to the nave, in which the sme ordonnance is continued.
338. Respecting the alteration in, or rather addition to the plan, it is, and is likely to contime, a moot point, whether this change by Maderno has injured the effect of the church. "There are," says De Quiney, "in the method of judiging of works of arehitecture, so many dillerent points of view from which they may be judged, that it is quite possible to approve of even contrary things." We are not ourselves disposed to censure the application of Maderno, though it cannot be denied that the symmetry of the fabric was in some measure destroyed by it. It is possible that the constant habit of secing eathedrals with a prolonged nave, before we first saw St. Peter's, may have di-posed us to look leniently at a point which so many better judges than ourselves have coudemned. Michael Angelo's plan was, doubtless, one of great simplicity and unity. According to his intention, the cupola was the principal feature, the four arms of its cross being accessaries which would not interfere with or lessen the effect of its grandeur, whose points of view could not be much varied. On the other hand, the edifice, enlarged according to the first project of Brama:ite, has acquired an immensity of volume, which, observes the author before quoted, one would be now sorry to see it deprived of. "Ce sont deux yrumfeurs roisines sans être rivales." In its exterior, however, it must be admitted that the prolongation of the nave has not improved the effect; and that arose from the necessity of strietly conforming to the forms that oxisted. It is manifest that the number of divisions which resulted from the mixtilinear plan of Michael Angelo would not well sort with the extended mass which the nave created. It was absolutely necessary that it should be conformable with what had been completed; and the effect of this was lessening the clevation of the cupola in an almost fatal manner. The façade of entrance camot in any way be defended; and it is mueh to be regretted that the fine entrance designed by the great master was lost to the world.
339. St. Paul's is, perhaps, the only great instance in Europe wherein the design was made and wholly carried into execution by the same architect. Works of this nature usually exceed the span of man's life. St. Peter's was altogether a century and a half in building. The change of architects is not the least inconvenienee of cuch a state of things; for during so long a period such a change of taste arises that the lashion and style of an art are from accident seareely the same at its commencement and end. Thus the chureh of the Yatican, which was begun by Bramante in a comparatively pure style, was, in the rnd, delaced by the vicious bizarreries of Borromini. It was fortunate Michael Angelo, so far foreseeing accidents of this nature, had fixed unchangeably the main features of his composition.
340. That the first idea of this stupendous fabric owes its origin to Branante cannot be disputed ; but its greatness, as conceived by him, is confined to the boast of placing the enpola of the Pantheon upon the vaulting of the 'Temple of Peace. The sketch of it given by Serlio is nothing like the cupola which was executed. On the other hand, what was executed by Nichael Angelo was searcely new after what Brunellesehi hat aceomplished ut Sta. Maria del Fiore. This, however, was a chef l'œuvre of construction ; that of St. r'eter's was a chef d'euvre of construction and arehitecture combined. What was new in it was, that it was the loftiest and largest of all works, ancient or modern, uniting in its vast volume the greatest beauties of proportion to simplicity and unity of form; to magnificence and richess of decoration a symmetry which gives harmony to the whole, conoidered by itself, and not less so when considered in relation to the mass of which it is tue crown. The great superiority of this cupola over all others is visible in another point of view, which we shall more particularly notice in the account of St. Paul's in a subsequent page : it is, that the same masonry serves for the exterior as well as the interior, whereby an immense additional effect is gained in surveying it from the inside. All is fair ; there is no masking, as in other eupolas that followed it.
341. Whatever opinions may be formed on the other works of Michael Angelo, no difference can exist respecting the cupola of St. Peter's. "Si tont," observes De Quincy, "ce qui avait été fait et pensé, ou projeté avant lui, en ce genre, ne peut lui disputer le prix de l'invention et de l'originalité, et ne peut servir qu’à marquer la hauteur de son génie, il nous semble que les nombreuses coupoles élevées dans toute r'Europe depuis lui et d'après hia, ne doivent se considérer encore que comme antant d'échelons, propres à faire mieux sentir et mesurer sa superiorité." The bungling of Carlo Maderno at St. Peter's is mueh to be regretted. The arches he added to the nave are smaller in dimensions than those which had leers brought up immediately adjoining the piers of the cupola; and, what is still more unpardonable, the part which he added to the nave is not in a continued line with the other work, but inclines above 3 ft . to the north: in other words, the church is not straight, and that to such an extent as to strike every educated eye His taste, moreover, was exceedingly bad.
942. In the principal churches of Rome there is great similarity of plan; they usually consist of a nave and side aisles, in which latter, chapels are ranged along the sides. The separation of the nave and aisles is effected by arcades. The transepts are not much extended, and over the intersection of them with the nave and choir a cupola generally rises. The clapels of the Virgin and of the Holy Sacrament are commonly in the transepts; atid the great altar is at the end of the ehoir, which usually terminates semicircularly on the plan. Unlike those of the Florentine school, the intetiors of the Roman churches are decorated to excess. Pictures, wosaics, and marbles of every variety line the walls. A profusion of gilding imparts to them a richness of tone, and the architectural details are often in the highest state of enrichment. They are, indeed, temples worthy of the worship of the Deity. Yet, with all this magnificence, the façades are often mean; and when a display of arehitecture is exhibited in them, it is produced by abuses of the worst class. They are generally mere masks; for between the arehitecture of these false fromts and that of the interior there is no architectural conmection. In very many instances the sides of the churches are actually hidden by adjacent buildings, so that they are altogether mseen; a circminstance which may have condnced to the repetition of the abuse. Fanlty, nowever, as these edifices are, to them is Europe indebted as models, which have in modern times been more purified. We have not space to enumerate or criticise the churches with which Rome abounds. St. Carlo on the Corso, by Onorio Langhi, is a fine example of them, and gives a fair notion of the general distribution we have described. Those of a later date, especially those by Borromini, may be considered as indices rerum vitandurum in architecture ; and though we are, perhaps, from the cupidity of upholsterers und house decorators, likely to be doomed to sit in rooms stuffed with the absurdities of the taste prevalent in the time of Louis XV., we can hardly conceive it necessary in these days to recommend the student's abhorrence of such freaks of plan and elevation as are to be found in the church of St. Carlu alle quattro Fontane, by that arehitect.
343. The palaces of Rone are among the finest architectural works in Europe; and of those in Rome, as we have before observed, none equals the Farnese, whose façade is given in fig. 169. "Ce vaste palais rarnese, qui à tout prendre, pour la grandeur

de la masse, la regnlarité de son ensemble, et l'excellence de son architecture, a tenu jusqu'ici, dans l'opinion des artistes, le premier rang entre tous les palais qu'on renomme," is the general description of it by De Quiney, upon whom we have drawn largely, and mint continue to do so. This edifice, by San Gallo, forms a quadrangle of 256 ft . by 185 ft . It is constructed of brick, with the exception of the dressings of the doors and windows, the quoins of the fronts, and the entablature and loggia in the Strada Giulia, which are of travertine stone. Of the same stone, beautifully wrought, is the interior of the court. The building consists of three stories, ineluding that on the ground, which, in the elevations or façades, are separated by impost cormes. The only break in its symmetry and simplicity occurs in the loggia, placed in the centre of the first story, which connects the windows on each side of it by four columns. On the gromnd story the windows are decorated with square-headed dressings of extremely simple design ; in the next story they are flanked by col:mms, whose entablatures are crowned alternately with triangular and circular pediments; and in the third story are circular-headed windows, crowned throughout with trangular pediments. The taste in which these last is composed is not so yood as the rest, though they were probably the work of Miclaal Angelo, of whose cornice to the edifice Yisari o!serves, " E stupendissimo il corniccione maggiore del medesimo palazzo nella
faceiata dinanzi, non si potendo aleuna cosa ne più bella ne piì magnificà deriderare." The facade towards the Strada Ginlia is different from the other fronts in the centre only, wherein there are three stories of arcades to the loggia, each of whose piers are decorated with columns of the Doric, Ionic, and Corinthian orders in the respective stories as they rise, and these in form and dimensions correspond with the three ranks of arcades towards the court. It appears probable that this central arrangement was not in the original design of San Gallo, but introduced when the third story was completed. Magnificent as from its simplicity and symmetry is the exterior of this palace, which, as De Quincy observes, "est un édifice toujours digne d'être le sejour d'un prince," yet does it not exceed the beanty of the interior. The quadrangle of the court is 88 ft . square between the columns of the arcades, and is composed with three stories, in which the central arrangement above mentioned towards the Strada Giulia is repeated on the two lower stories, over the upper whereof is a solid wall piereed in the windows. The piers of the lower areade are ornamented with Doric columns, whose entablature is charged with triglyphs in its frieze, and its metopse are sculptured with various symbols. The imposts of the piers are very linely profiled, so as to form the entablatures when continued over the columns of the entrance vestibule. In the Ionic areade, over this, the frieze of the order is decorated with a series of festoons. The distribution of the different apartments and passage is well contrived. All about the building is on a scale of great grandeur. Though long moceupied, and a large portion of its internal ornaments has disappeared, it still commands our admiration in the Caracei Gallery, which has contimued to serve as a model for all subsernent works of the kind. The architecture of the Farnese palace, more especially as respects the areades of its court, is the most perfect adaptation of ancient arrangement to more modern habits that has ever been designed. We here allude more particularly to the arcades, upon whose piers orders of columns are introduced. This species of composition, heavier, doubtiess, less elegant, yet more solid than simple colonnades, is, on the last account, preferable to them, where several stories rise above one another. The idea was, certainly, conceived from the practice in the ancient theatres and amphitheatres; and in its application at the Farnese palace rivals in beauty all that antiçuity makes us in its remains acquainted with. San Gallo, its architect, died in 1546.
844. It would be impossible here to enumerate the palaces with which Rome abounds; but we must mention another, that of St. Giovanni Laterano, by Domenico Fontana, as a very beautiful specimen of the palatial style. Nilizia censures the detail of this edifice, and there is some truth in lis observations in that respect ; but the composition is so simple and grand, and the comice crowns it with so much majesty, that the detail is forgotten in the general effeet, and its architeet well deserves the rank of a great artist.
34.5. The villas, Ocelli d'Itulia, as they have been called, round the suburbs of Rome, are in a style far lighter than the palaces whereof we have just been speaking. They are the original models of the modern country houses of this island, and exhibit great skill in their plans and elegance in their façades. Generally they rose from the riches and taste of a few cardinals, who studded the environs of the Eternal City with some of the fairest gems of the art. MM. Percier and Fontaine published a collection of them at Paris, from which we extract the Villa l'ia (fig. 170.). It was designed by Pirro Ligorio, a Neapolitan

Fig. 1 IO.
vin.A , is.
architect, who died in 1580 and is thus described by the authors whose view of it we have borrowed. "It was built," say they, "in imitation of the houses of the ancients, which Ligorio had particularly studied. This clever artist, who to his talent as an architect joined the information of a learned antiquary, here threw into a small space every thing that could contrioute to render it a delightful dwelling. In the midst of verdant thickets, and in the eentre of an amphitheatre of flowers, he constructed an open lodge, decorated with stuccoes and agreeable pictures. The lodge is raised upon a base, bathed by the water of a basin, enclosed with marbles, fountains, statues, and vases. Two flights of steps, which lead to landings sheltered by walls ormamented with niches and scats of marble, ofler protection from the sun's rays by the trees that rise above them. Two porticoes, whose interior walls are covered with stuccoes, lead on each side to a court paved in mosaic work. This is enclosed by a wall, round which seats are disposed. Ilere is a fountain spouting up from the centre of a vase of precious marble. At the end of the court facing the lodge an open vestibule, supported by columns, fronts the ground floor of the principal pavilion; and is decorated with mosaies, stuccoes, and bassi-relievi of beautiful design. 'The apartments on the first floor are ornamented with fine pictures. Finally, from the summit of a small tower, which rises above the building, the view extends over the gardens of the Vatican, and the plains through which the Tiber takes its course, and the splendid edifices of Rome." For further information on the Roman villas, we refer the reader to the work we have quoted.
346. The Roman school of architecture, founded by Bramante, includes San Gallo, Buonarroti, Sansovino, Peruzzi, Vignola (whose extraordinary palace at Caprarola deserves the study of every architect), and many others. It ends with Domenico Fontana the period of its duration being from 1470 to 1607 , or little more than 130 years.
347. Before we proceed to the Venetian school, it will, however, be proper to notice two architects, whose works tended to change much for the worse the architecture of their time; we mean lhorromini and Bernini, though the latter was certainly purer in his taste than the former. Borromini, whose example in his art was followed throughomt Europe, and who, even in the present day, has his returning admirers, was the father of all modern abuses in arehitecture ; and the reader must on no account confoumd his works with those of the Koman school, which had eeased nearly half a century before the native of Bissona lad begun to practise. He inverted the whole system of Greek and Roman architecture, without replacing it by a substitute. He saw that its leading forms, sprung from a primitive type, were, hy an imitation more or less rigorous, subjected to the principles of the model from which its order and arrangement emanated. He formed the project of amihilating all idea of a model, all principles of imitation, all plea for order aud proportion. For the restriction in the art resultant from the happy fietion, or perhaps reality of a type, one whose tendency was to restrain it within the bounds of reason, he snbstituted the anarchy of imagination and fancy, and an mbimited fight into all species of saprice. Undulating Hexibility supplanted all regularity of form ; contours of the most grotesque description succeeded to right lines; the severe architrave and entahbature were bent to keep up the strange delusion; all species of curves were adopted in his operations, and the angles of his buildings were perplexed with an infinite number of breaks. What makes this pretended system of novelty more absurd is (and we are glad to have the opportunity here of observing that the remarks we are making are applicable to the present fashonable folly of decorating rooms a la Louis XIV. and XF.), that its only novelty was the disorder it introduced, for Borromini did not invent a single form. He was not serupulous in retaining all the parts which were indicated by imitating the type; he decomposed some, transposed others, and usualiy employed each member in a sitnation directly the reverse of its proper place, and, indeed, just where it never would be naturally placed. Thms, for example, to a part or ornament naturally weak, he would assign the othice of supporting some great weight ; whilst to one actually capable of receiving a great load, he would assign no office whatever. With him every thing seems to have gone by contraries; and to give truth the appearance of fiction, and the converse, seems to have heen his greatest delight. Out of all this arose a constant necessity for contrivance, which marked Borromini as a skilful constructor, in which respect he attained to an extraordinary degree of intelligence. It seems, however, not improbable that one of his great objects in studying construction was, that he might have greater facility in carrying his curious conceits into execution; for it may be taken almost as an axiom in architecture, so great is the relation between them, that simple forms and solid construction are almost inseparable ; and it is only necessary to have rccourse to extraordinary expedients in construction when our productions result from an umestrained imagination. Further notice of this architect is not necessary ; one of his most celebrated works is the restoration of the chureh of St. Giovanni Laterano, - after St. Peter's, the greatest in Rome. His purest work is the church of St. Aguese; whilst that of St. Carlo alle quattro fontane, which we have heretofore noticed, is the most hizarre. liorromini died in 1667.

3-18. Bemini, the other artist whom we have mentioned, was equally painter, senlptor,
gud architect ; his prmeipal work is the colomade in front of St. Peter's. He was, notwithstanding the aboses to be found in his works, a man of great talent. In their general arrangement his buildings are good and harmonious; his profiles are graceful; his ornaments, though sometimes profuse, are usually elegant. Bernini, however, was no check upon the pernicious character of his cotemporary Borromini ; instead, indeed, of relieving architecture of some of her alnuses, he encumbered her with fresh ones. He was also fond of broken pediments, and of placing them in improper situations. He employed undulations, projections imumerable, and intermixtures of right lines with curves; for beautifulsimplicity he sulstituted elegant fancy; and is to be imitated or admired by the student no farther than he followed nature and reason. He made some designs for the Louvre at Paris, which are exceedingly good. His death occurred in 1680
349. 3. The Ventian School is characterised by its lightness and elegance; by the convenient distribution it displays : and by the abundant, perhaps exuberant, use of columns, pilasters, and arcades, which enter into its composition. Like its sister school of painting, its address is more to the senses than is the case with those we have just quitted. We have already given an account of the church of St. Mark, in the 12th century : from which period, as the republic rose into importance by its arms and commerce, its arts were destined to an equally brilliant career. The possession in its provinces of some fine montuments of antiquity, as well as its early acquaintance with Greece, would, of course, work beneficially for the advancement of its arehitecture. That species of luxury, the natural result of a desire on the part of individuals to perpetuate their names through the medium of their halitations, though not productive of works on a grand or monumental scale, leads, in a democracy (as were the states of Venice), to a very general display of moderately splendid and elegant palaces. Hence the extraordinary number of specimens of the building art supplied by the Venctian school.
350. San Mieheli, who was horn in 1484, may, with propriety, be called its founder. Having visited Rome at the early age of sixteen for the purpose of studying its ancient monuments of art, and having in that city found much employment, he, after many years of absence, returned to his mative country. The mode in which he combined pure and beautiful architecture with the requisites called for in fortifications may be seen displayed to great advantage at Verona, in which city the Porta dell Pallio is an instance of his wonderful ingenuity and taste. But his most admired works are his palaces at Verona; thongh, perhaps, that of the Grimani family at Venice is his most magnificent production. The general style of composition, very different from that of the palaces of Florence ana Rome, is markedhy the use of a basement of rustic work, wherefrom an order rises, oftel with arehed windows, in which he greatly delighted, and these were connected with the order after the manner of an arcade, the whole being crowned with the proper entablature. As an example, we give, in fig. 171.. the façade of the Pompei palace at Verona. The genius of

Fig. 171.
FOMPEI PAJMCE, VE゙Z日NA,
San Micheli was of the very highest order; his works are as comspicuous for excellent construction as they are for convenience, unity, harmony, and simplicite, which threw into shede the minor abuses oceasionally found in them. If he had no other testimony, it wonld he sufficient to say, that for his taleuts he was held in great esteem by Michael Angelo; and our advice to the student would be to study his works with diligence. San Micheli devoted himself with great ardour to the practice of military architecture ; and thongh the invention was not for a long time afterwards assigned to him, he wa, the anthor of the
system used by Vauban and his school, who. for a long period, deprived him of the eredit of it. Before him all the ramparts of a fortification were round or square. He introduced a new method, inventing the triangular and pentangular bastion, with plain foss's, flanks, and sinare bases, which doubled the support; he moreover not only flanked the eurtain, but all the fosse to the next bastion, the covered way, and glacis. The mystery of this art consisted in defending every part of the inclosure by the flank of a bastion; hence, making it round or square, the front of it, that is, the space which remains in the triangle, which was before undefended, was by San Micheli provided against. We cannot, however, further proceed on this subjeet, which belongs to military, which at that period was intimately connected with civil arehiteeture. The Porta del Pallio at Verona has been mentioned; that eity, however, contains another gate of great architectural merit by this master. the l'orla Nuova, a square edifice, supported within by a number of piers of stone, with enelosures or apartments for the guards, artillery, \&c. The proportions, as a whole, are pleasing ; it is of the Doric order, devoid of all extraneous ornament, solid, strong, and suitable to the purposes of the building. Except in the middle gate and the architectural parts, the work is rusticated. The exterior façade stands on a wall, with two large pyrainidal pilasters of marble rising from the bottom of the fosse; at the top are two round enclosures approaching almost to towers. In the interior, to the two gates near the angles are two corresponding long passages, vaulted, leading to a number of subterraneous galleries and rooms. For beauty, however, we do not think this gate so beautiful as that of del Pallio, which we here give (fig. 172.). But the gem of this great master is the little circular

chapel at San Bernardino, whose beanty, we think, has seareely ever been surpassed, and which exhibits, in a striking degree, the carly perfection of the Venetian sehool. It was not tinished under San Mlicheli, and blemishes are to be fomud in it ; it is nevertheless an expuisite production, and, in a surprisingly small space, exhibits a refinement which elsewhere we seareely know equalled. The works which he designed surpass, we believe, in number those of all the masters of Italy, Palladio, perhaps, excepted. He gave a tone to his art in the Venetan states, which endured for a considerable period. His death oecurred in 1549.
351. Contemporary with San Micheli, was another extraordinary genius of this school, born at Florence,-Jacopo Tatti by name, but more usually called Sansovino, from the country of his master, Andrea Contucei di Monte Sansovino. Such was the respect for this artist in Venice, his adopted city, that at a moment when it beeame necessary to raise by means of taxation a large sum on the citizens, the senate made a special exemption in fivonr of him and Titian. The Roman school might lay elaim to him, if the works he evecuted at Rome, and not his style, would justily it ; but that is so marked, so tinetured with the system of arcades with orders, its distinguishing feature, that an inspection of his works will immediately satisfy even a superficial observer. He was a great master of his art; and though he does not in so great a degree appear to have protited by the exanples of antiquity as the architect last mamed, he has left behind buildings, which, for picturesque effect, leave him little inferior in our rating. He was the architect of the library of St. Mark at Venice, a portion whereof is given in fig. 173.; a building of noble design, notwithstanding the improprieties with which it is replete. It consists of two orders; the lower one of highly ornamented Dorie, and the upper one Ionic and very graceful in effect. Of both these orders, as will be seen in the figure, the entablatures are of inordinate comparative height. The upper one was expressly so set out for the purpose of exhihiting the beautiful sculptures with which it is decorated. The cornice is crowned with a balustrade, on whose piers statues were placed by the ablest seholars of Sansovino. A portico occupies the ground floor, which is raised three steps from the level of the piaza. This portico consists of twenty-one areades, whose piers are deeorated with colums. In the interior are arehes corresponding to the external ones, sixteen whereof, with their internal apartments, are appropriated for shops. Opposite the centre arch is a magnificent stairease leading to the hall, beyond which is the library of St. Alark. The

Fig. 173.
HHLAKE OF S\%. MAXK.
fiults of this building, which are very many, are lost in its grace and elegance, and it is perhaps the chef d'œurre of the master. Whilst Sansovino was engaged on it he propounded an architeetural problem, which reminds us very much of the egg of Columbus: "How call the exact half of a metope be so contrived as to stamd on the external angle of the Doric frieze?" The solution, elumsy as that of the navigator with his egg, practised in this building, is, however, a bungling alosurdity ; mamely, that of lengthening the frieze just so much as is necessary to make out the deficieney. Sansovino was invited to pass into lrance, where he gave some designs, which tended to the advancement of the art in that conntry. On his return he built the Zecca, or mint, one of his linest works. Another of his extraordinary productions is the palace of the Comari, on the Grand Canal at San Maurizio. The church of San Fimtino, among the finest of Venice, is also by him ; as is that of San Martino and many others. Jacopo was fertile in invention: his architecture was tull of grace and elegance; but lie was deficient in a thorough knowledge of construction, whieh, in the library of St. Mark, brought him into disgraee, of which, from all aceomets, the builders ought to have suffiered the principal share. Ile continually introduced the orders, and especiatly the Doric and Composite. The members of his entablatures were much senlptured; but his ormaments were extremely suitable and correct. In statnes and bassi relievi he greatly indulged, therely adding considerably to the eflect and majesty of his buildings. Scamozzi mentions is work by him on the construction of floors, and particularly destribes a method adopted by him for preventing dust falling through the joints of the boards. The work has been lost. Sansovino died in 1570 .
359. After such artists as San Micheli and Sansorino, it would have seemed to an ordinary mind difficult to have invented new forms, or rather so to have modified the old ones as to be original. Andrea Palladio, however, not only knew how to be original, but to leave his works as models for the countries of Europe, in which the style which bears his name his had no rival; so true is it, in all the arts, that there is allways room to be found for a man on whom nature has bestowed the faculty of secing, feeling, and thinking for himself. In the case of the arehitect something more than genius is necessary : it is requisite that circumstances should exist by which his art may be developed, or, in other words, that what he is cap:able of producing may at the time be suitable to the wants of society. Such circumstances existed for a long period in Italy, where, up to the time at which we are arrived, the rich and great had been contending with the govermments whick should be the greate:t patrons of the art. Hence sprung the multitude of extraordinary works in the country named, whicln still point out the greatness in art at which it had arrived, when it was one of the really necessary arts. Neither in the Venetian states, nor at the time when he rose into reputation, which was about the middle of the sixteenth century, had Palladio that opportunity of signalising himself whieh had occurred to many former masters. Venice had risen into power and wealth by its arms and commerce; was the natural protectrix of the art ; and although the works she required were not on seales of the grandest dimensions, yet those which her citizens required kept pace in luxury with the increasing wealth of the families by whom they were refuured. This was the career open to the genius of Palladio. Architecture in these states was not ealled upon to furnish churches of colossal dimensions, nor palaees for sovereigns, nor immense public monuments left for posterity to finish. The political state of the country, very luckily for his talents, furnished a numerous class of citizens who contended which should procure for himself the aid of this great man in rearing a villa or palace, and which might serve the
double purpone of a present dwelling for, and a future memorial of, his family, - a passion that covered the banks of the Brenta with editices which, of their class, form a complete school of civil architecture.
353. The taste of lalladio was tempered by the care he bestowed on accommodating exterior beauty to interior convenience, and by suiting the art to the wants of peroons with moderate means, through the mediun of greatness without great dimensions, and rielness of effect without great outlay. In the imitation, or rather appropriation, of the architeeture of the ancients, none of his predecessors of any of the schools had so luckily hit on that just mediun of exactness "ithout pedantry, of severity without harshness, of liberty without licentiousness, which have since made the architecture of ancient Greece popular, and so modified it as to be practicable and convenient in all conntries. We here speak, of cource, of the elements, and not the combinations, of Greck art, and of it changed by a passage through an intermediate state during the existence of the Roman empirc. No architect can consider himself thoroughly educated who has not studied the works of Palladio. "De fiait," says De Quincy, in his Life of this architect, "il n'est p.int d'architecte qui, après avoir formé ou rétormé son style sur les grands modèles de l'art des anciens, et des premiers maitres de l'Italie moderne, ne se croie pas obligé d’aller encore étudier dans la patrie et les œuvres de Palladio, un genre d'applications plus usuelles, et plus en rapport avec l'état de nos mours; c'est-a-dire, le secret d'accommoder tour-ì-tour, et nos besoins aux plaisirs d'une belle architectare, et l'agrément de celle-ci aux sujétions que de nouveaux besoins: lui imposent." It was from the peeuliar properties of P'alladio's taste and style, suited a. they are to more moderate fortunes, that they found in Engl:and a secona native country (if such an expression may be allowed), where Inigo Jones, Wren, Gibhs, Taylor, Chambers, and many others, have naturalised the phans, fidçades, distribution, and details which were originally planted in the provinces of the Venetian republic. Indeed, the style of Palladio could not be preventell from spreading through Europe, as a mean between the severe use of ancient forms and the licentious style of those who reject all rules whatever. The buildings by him exhihit great good sense, simple means of accomplishing the end, a satisfactory agreement between the demands of necessity and pleasure, and such an harmony between them that it is hard to determine which has subnitted to the other. The interior distribution of his palaces and villas in respect of plan would, without considerable modification, be but ill stited to modern habits. We give, in fig. 174. (ste uext paye), a plan and elevation of the Villa Capra, one of his most celebrated works of that class. Convenience changes as the mode of life varies; indeed, except in a private buikding of large extent, the large quadrangular court of the houses of Italy is here unknown. Palladio's plans, however, were convenient to those for whom they were executed ; and in that way they must be judged. With his eyes constantly turned to the practice and detail ol the ancients, he accuuired a bold, simple, and agreeable style ; and, his churches excepted, the beauties of the master are to be sought in his façades, and the quadrangles of his palaees. Pedestals, either with panels or raisings, were always avoided by him; his architraves were rarely sculptured; and the upper ornaments of his entablatures were always carefully centred above each other. His doors, windows, and niches are composed with great simplicity; and pediments, when used, are unbroken. In the members of his cornices he never lost sight of the character of the order employed, and was extremely particular in duly adjusting its profiles. He, however, did not scruple to vary the proportions of an order according to the nature of the building to which it was applied; and in the proportions of his churches and apartment, he seems to have delighted, as afterwards did sir Christopher Wren, in arithmetical, geonetrial, and harmonic proportions. Though extremely partial to the use of the lonic order, yot the others were not unfrequently ased by him. His Corinthian capital is not to be praised; it is profiled very clumsily, and ouglit not to be followed. The domes which he erected are amost invariably hemispherical. It is not to be supposed that his buildings are perfect, though they approach periection; but it is more than probable that many of the abuses we see in them arose eithor from want of sufficient superintendence, the number he designed bemg very great, or that they were introduced after his death. This, we think, may be sately assmmed, because the instructions in his work on arehitecture are very peremptory on the subject of abuses. So well based upon the practice of the ancients does the style of our master appear to be, that it is, with but few modifications, suited to all nations, and just such as the ancients themselves would have adopted. "Les fermes," observes Le Grand in his parallèle, "que dirigeait Palladio et quill courrait de tuiles on dun chaume rustique, l'emportent de beancoup sur les palais somptueux de Borromini, ou sur les riches et bizarses productions de Guarino (iuarini." Certain, indeed, it is that simplicity, unity, and style are more powerful means of producing grandeur, than great volume or large masses unskilfully handled. A tine instance of this is seea in the façalle of the Thiene palace at Vicenza, fig. 175. (See next paye)
354. The number of palaces and villas with which Palladio enriched the Venetian and V Vicentine territories is almost incredible: the variety of plan and clevation in them seems as inexhanstible as their number. To the buildings above referred to may be adiled the

Fig. :7.5.
(arità at Venice. which is a lovely specimen of his style. 1His grandest church is that Del Redentore at Venice. Generally in the façades of his churches there are abuses, whereof it is scarcely credible he would have been guilty: such are the two half pediments in the church we have just mentioned. The theatre built upon the ancient model for the Olympic Acadeny at Vicenza gained great reputation for him. Palladio died in 1580.
355. The last architect of the Venctian school who obtained celebrity was Vineenzo Scamozzi. The son of an architect, and born in a country which had become the nursery of the art, his powers were exhibited at an carly age. Like l'alladio and other great masters, he selected for his principal guides the antiquities of the Eternal City, and the grecepts of Vitruvius, whose work at that period was considered of high importance, as in truth it really was. There is no doubt that Scamozai was much indebted to the works of Palladio, although he affected occasionally to decry them; but, in opposition to De Quincy, we think that his style is more founded on that of San Micheli or Sansovino. This is, however, of little importance ; for his natural talents were of a very high order. At a very early period of his career, so great was his reputation that he was employed by the canons of San Salvadore in opening the lantern to the cupola of their chureh; a task in which it appears that he acquitted himself with great ability. lor the upper order of the Procurazie Nuove at Venice he has often been unjustly reproached, because he did not confine himself to two stories, so as to complete the design of Sansovino. The design of Scamozzi, had it been continued in the Piazza San Marco, would have placed in the back ground every other piazza in Europe. The two lower stories of the Procurazie Nuove are similar in design to the Library of S. Marco; and it is greatly to be regretted that Scamozzi was so much otherwise occupied that he had not the opportunity of watehing the whole of its execution, which :would have extended to thisty arcales, whose whole length would have been 426 feet. Scamozzi only superintended the first thirteeen; the three built by Sansovino excepted, the rest were trusted to the care of builders rather than artists, and, from the little attention bestowed upon preserving the profiles, exhibit a negligence which indieates a decline in the arts at Venice. Scamozzi is placed in the first rank as an architect by his design for the cathedral at Saltzburg, whither he was invited by the archbishop of the see. 'This church, which was not completed till after his death in 1616, is 454 ft . long, and 329 ft . wide, being in the form of a Latin cross on the plan, over whose centre a cupola rises. The distribution of the interior is with a nave and two side aisles; the former whereef is 64 ft . wide, and 107 ft . ligh. Scamozzi's employment was very extended, and his country has to lament it ; for fewer commissions would have insured greater perfection in their execution, which, in those that exist, is often unwortly of the name of the master. Scamozzi published a work on the art, which will be found in our list of authors at the end of this work. He died in 1616.
356. Besides Giovamida I'onte and Alessandro Vittoria, the Venetian school contains the names of few more than those we have named : they appear to bave commanded the whole of the employ of the states and neighbourhood of Venice for a period of ahout 110 years, ending in 1616 . When, however, it no longer continued to grow and flomish in its native sjil, its scions, grafted throughout Europe, spreading their branches in every country, prospered wherever they appeared. On the former of the two arehitects just ramed, a few ouservations are necessary. He died in 1597, at the age of eighty-five years. Principally occupied in the repar.tion and re-establishment of the buildings of the city that had fallen into decay, he was nevertheless engaged on some considerable works; among which was the great hall of the arsenal at Venice, 986 feet long, and the more celebrated work of the Rialto Bridge, whence he obtained the sobriquet Da Ponte, and for the execution whereof he competed with Palladio and Scamozzi. The spain of the single arch of which the work consists is about 72 ft ., and the thickness of the arch stones about 4 ft .4 in . It is segmental, and the height from the level of the water is about 22 ft .9 in . The width of the bridge is equal to the span of the arch, and this width is divided longitudinally into five divisions, that is, into three streets or passages, and two rows of shops. The middle street or passage is 21 ft .8 in . wide, and the two side ones near 11 ft . The number of shops on it is twenty-four. The last work of Da Ponte was the construction of the prisons away from the ducal palace. 'This edifice is a quadrilateral building, with a portico of seven areades A story rises out of it piercel by seven great windows decorated with pediments, and it is joined to the palace by the bridge so well known under the name of Il Ponte dei Sospiri. 'He work was not carried to completion during Giovanni's life, but was tinished by his nephew Contino. In his church on the Grand Canal. constructed for the uuns of Santa Croce, therr is little inerit except that of solidity; indeed, he does not appear to lave possessed much taste, as may be inferred from the two ranks of columns in the hatl of the arsenal above mentioned, which cannot be said to belong to any of the species ol' columns usually employed. The solid character of the great prison is appropriate, and more in consonance with the rules of the art.

Sect. XVII.

FRENCH ARCHITECTURE.
3.57. The architecture of Europe from the middle of the sixteenth century was founded on that of Italy. Of its value, the French and the Englibh seem to have a stronger perception than the rest of the nations. We shall therefore now consider the arehitecture of France: that of England from a much carlier date will be separately considered in the succeeding chapter. lhilibert Delorme was among the first of the architects of France who promoted a taste for good arehitecture; and though in some respects he may have been surpassed by other artists of his time, in others, whether connected with theory or practice, he has left his rivals a great distance behind him. Although he might not have had the purity of detail of Jean Bullant, nor the richness of invention and execution of P'. Leseot, he has aequired by his talent in construction a reputation which has survived his buildings. The Queen Catherine of Medicis having resolved upon the construction of a palace at Patis, whieh should far surpass all that had previously loeen done in France, resolved upon placing it on a spot then occupied by some tile kilns ('Tuileries) in the faubourg St. Honoré, and committed the design and erection to Delorme. It is, however, contended by some that Jean Bullant was joined with him in the commission. If that was really the ease, it is probable that the labours of the latter were confined to details of ornament and execution, rather than to the general design and disposition. What, if it was so, belonged to eaels is not now to be discovered; but the genius of Delorme has survived all the revolutions the celebrated building in question has modergone. Catherine seems not to have been satisfied with the works; for she appears to have begun another palace on the site of the Hotel Soissons, that of the present Halle an Bleds, and to have entrusted this to the care of Jean Bullant. That of the Tuileries was in the end continued by Henri I V.; enlarged by Louis XIII. on the same line, after the designs of Du Cerceau,with two main bodies and two composite pavilions; all which were in the time of louis XIV. afterwards brought together by the designs of L.eveau and Dorbay. In the centre pavilion ald that now remains of Delorme's work is the lower order of lonic columns. This morsel of Delorme exhibits a good lonic protile in the order, and is one of his best works. Generally speaking, the profiles of this master, which Chambrai has admitted into his Purallele, make one acknowledge the justice of that a:athor's observation, that he had " un peu trop viu les plus belles choses de lome, avec des yeux encore préoccupés du stỵle Gothique. Le talent de cet arelitecte consistait principalement dans la conduite dun bitiment, et de vaia il itait plus consommé en la comaissance et la coupe des pierres que dans la composition des ordres; aussi en a-t-il écrit plus utilement et bien phus au long." Delorme was the anthor of two works on architecture: one, Un Tranti complitede l' Art de Bâtir, on arehitecture generally; the other, Nouvelles Inventions pour bien bâtir et à petits foais. The last relates more especially to a practice in earpentry, which, on the Continent, bas been put into execution with great suceess, its principle beng still constanty applied. The method of carpentry invented by Delorme, and which still goes in Framee by his name, consists ir substituting for the ordinary system of framing and rafters, eurved ribs, in two thicknesses, of any sort of timber, three or four feet long, and one loost wide, of an inch in thickness, and which are comected in section and tie according to the form of the curve, whether pointed, semicircular, or segmental. These arches, in order to be strong and solid, should he fixed at their feet on plates of timber framed together, lying very level on the external walls; and the planks which are to form the principal curve are to be placed accurately upright on their ends, in which situation they may be kept by braces morticed into them at conremient distances, and retained in their places by wedges, for it is essential to the strongth of this species of carpentry that it should be kept in a vertical position. In this comatry the species of carpentry just mentioned has never been practised to the extent it deserves. Delorme died in 1570 . With him was cotemprary Jean Bullant, whose name has been just mentioned, and who, whilst San Gallo was occupied on the Palazzo Farnese, was raising the Chateau d'Econen, in which the prelude to good taste is manifest, and in whose details are exhibited the work of an arehitect very far advanced above his time, and capable of raising the art to a much higher pitch of excellence than it enjoyed, had not the habits of the nation restramed him in his useful course. A considerable portion of the laçade of the Tuileries towards the Carousel is suppected to have been the work of Bullant; but the chicteau of Ecouen, built, or rather begun, about 1540 , for the constable Montmorency, was almost the first step to the entablishment of pure arehitecture in lirance, and its architect may fairly be named the Inigo Jones of the French
358. By the wars in Italy under Charles VIII., Louis XII., and Francis I., the French had become intimately acquainted with the architecture of Italy, and the taste of the monareh last named induced him to bring from that country some of their most celebrated artists; so that in France there was almost a colony of them. Among them, fortunately
for the quicker working of good taste, was the eelebrated Vignola, who resided in France many years; a circumstance which may, with some probability, account for the high esteem in which that great master's profiles have always been held, and indeed in which they are still held there, though, generally speaking, the lirench have invariably been more attached in their practice to the Venetian than to the Roman school. Serlio, another Italian architect of note, was employed in the conntry by Francis, and actually died at Fontainebleau. At the period whereof we are now treating there appears to have been a number of able artists; for to Delorme and Bullant must be added Lescot, who, with Jean Gougeon as his sculptor, was many years employed upon the building usually called the Vieur Lourre, to distinguish it from the subsequent additions which have quadrupled the original project of Lescot. To judge of the works of the French architects of this period, a relative, and not an abstract view, must be taken of them; relative, we mean, to the gencral cultivation of the arts when any individual artist appears. In this respeet Lescot's works at the Louvre are entitled to the greatect praise ; and from the examples he as well as Bullant and Gougeon afliorded, it might have been expected that pure architecture would have proceeded without check until it reached a point as high as that to wheh it had been carried in Italy. Such was not, however, to be the case. Mary de Medicis, during her regency, having determined on building the Luxembourg palace, was anxious to have it designed in the style of the palaces of Florence, her native eity. Jacques de Brosse, her architect, was therefore compelled to adopt the character required : his prototype seems to have been the Pitti palace, and his version of it is a failure. The gigantic palaces of Florence well enough bear out against the rustic and embossed work employed upon them ; but when their scale is reduced, the employment of massive parts requires great caution. The palace, however, of the Luxembourg became a model for the fashion of the day, and producel an intermediate style, which lasted many years in France, and arrested the arrival at perfertion whereof the above work of Bullant and others had opened a fair prospect. De Brosse was an able artist, and his design for the façade of St. Gervais of three orders is, under the circumstances, entitled to our praise. This architect acquired much honour by the aqueduct of Arcueil, the completion whereof, in 1624, it is supposed he did not long survive.
359. Under Louis XIV. the art remained for the most part in the intermediate state just noticed; and yet that monareh and his minister Colbert lost no opportunity of emtellishing the kinglom with its productions. He employed Bernini to make desigus for the palace of the Lourre; and for that purpose induced the artist to visit France, where he was received with the lighest respect. He left a design for a façade of the building in question, which, though in a corrupt style, exhibits nevertheless marks of grandeur and magnificence which would have been worthy of the monarch. Bernini, disgusted, as he alleged, with the workmen of Paris, departed from the country without leaving any example of his architectural powers. That he did so France has no reason to lament, since it grave Perrault the opportunity of ornamenting the capital with one of the most splendid monuments of the art which Europe can boast. To Perrault is the credit due of having given an impulse to French architecture it has never lost, and of having changel the heary style of his time into the light and agreeable forms of the Venetian school. The beauties of the façade of the Louvre (fig.176.) are so many and great that its defects are forgotten. The

Fis. 176.
HAJV YACADE ARD MABE IIAN OF JOUVRE.
proportions are so exquinite, that the eye camot rest on the coupled columns and the arch of the prineipal gate rising into the story of the colonnade. The original profession of Perranlt was that of medicine, which, however, he only excreised for the benefit of his friends and the poor: hence the design he made with others in competition for the above work having been successful, he was associated for its execution with Louis le Veau, the king's principal arehitect. From the variety of sciences in which Perrault excelled, it is mot probable that the assistance of a practical architect was actually necessary; indeed the four volumes which he published under the title Essuis de Physique, and the collection of machines for raising and removing great weights, which he also published, show that he was, without assistance, quite competent to the charge which was committed to him with others. He built the observatory at Paris, possessing an originality of character which Milizia says is very conformable to its purpose. But however suitable it may have been considered at the time of its erection, and it camot be denied there is a fine masculine character about it, it is for its purpose in the present age altogether ill adapted for the objects of astronomy. Perrault died in 1688 . Cotemporary with him was Le Mercier, the architect of the church de l'Oratoire, in the Rue St. IIonoré. Le Mercier died, however, in 1660 ; eight and twenty years, therefore, before the decease of Perrault. Among the architects whose practice was exceedingly extended was Jules Hardouin Mansart, the architect of Versailles, and the especial favourite of Louis XIV. IIe was principally employed between the years 1675 and his death in 1703. His ability, as Milizia observes, was not egual to the size of his edifices; though it is hardly fair for that author to have made such an observation on the architeet of the cupola of the Invalides at Paris. Of this church and dome De Quincy has most truly stated, that though nothing that can be called classie is to be noticed about it, yet it contains nothing in dissonance with the principles of the art. It is a whole in which richness and elegance are combined; in which lightness and solidity are well balanced; in which unity is not injured by variety; and whose general effect silences the critic, however he may be disposed to find liult. In Versailles, the taste which we have above noticed as introluced by De Brosse is prevalent ; but the interior of the chapel displays to great advantage the great genius of Mansart, and shows that he wav not incapable of the mott refined elegance.
360. Jacques Ange Gabriel was the relation and worthy pupil of Mansart. The colonnades to the Garde Menble in the Place Louis XV. (now the Place de la Concorde) exhibit a style which, with the exception only of Perrault's façade of the Louvre, not all the patronage of Louis XII. was capable of eliciting. To Gabriel almost, if not perhaps as much as to Perrault, the nation is under a delt of gratitude for the confirmation of goot taste in France. He has been accused of pirating the Louvre; but reflection and comparison will show that there is no real ground for such an accusation. The difference between the two works is extremely wide. The basement of Perrault is a wall pierced with windows; that of Gabriel is an areade: in the upper stories the columns are not coupled, which is the case at the Loure. From these circumstances alone the character of the two works is so different, that it is quite umnecessary to enter into other detail. Architecture in France at this period, the commencement of the eightecuth century, was in a palmy state, and has never before or since risen to higher excellence; though the French are still, from the superior method of cultivating the art there, and the great encouragement it receives, the first architects in Europe. The great extent of the llace Louis XV. (744 ft . long, and 522 broad) is injurious to the effect of the Garde Meuble, which, as the reader will recollect, is rather two palaces than one. Its basement is perhaps, speaking without reference to the vast area in front of it, too highl, and the intercolumniations too wide, for the order (Corinthian) employed; but it is ea, ier to find tault than to do equally well; and we cannot leave the subject withont a declaration that we never pass away from its beauties without a wish to return and contemplate their extreme elegance. They are to us of that class to which Cicero's expression may be well applied : "pernoctant nobiscum, peregrinatotur." Gabriel died in 1742. Antoine, the architect of the Mint at Paris, was another of the choice spirits of the period: he continued the refined style whereof we are speaking; and though the age of Louis X V . was not destined to witness the erection of such stupendous edifices as that of Louis le Grand, it displayed a parer and far better taste. This arehitect was the first who employed in his country the Grecian Doric, which had then becomeknown, though not perfeetly, by the work of Le Roy. Antoine used it at L'Hospice de la Charité; and De Quincy cites it as a circmmstance which called forth the approbation of people of taste, and observes that the attempt wou:d have attracted more followers, if, instead of exciting the emulation of architects in the study of it and its judicious application to monuments, to which the character of the order is suitable, fashion had not applied it to the most vulgar and insignificant purposes. Antoine lived into the present century, having died in 1801, at the agge of 68 .

361 . Louis X V., during a dangerous illuess at Metz, is reported to have made a vow which led to the erection of the celebrated churelı of St. Genevicue, or, as it has since beell called, the Pantheon; the largest modern church in France, and second to none in simplicity,
elegance, and variety. A nother cause may, however, wih as much probability, be assigned : the inadequacy of accommodation for the religious wants of the population, and especially of that appertaining to the patroness Saint of Paris. Many projects had been presented

for the purpose, but that of Souflot received the preference. This talented artist, who wars born in 1713, at Srancy near Auserre, after passing some time in Italy, had been settled at I, vons, and there met with considerable and deserved employment. In that city the great hobpital had decervelly hrought him into notiee, for his knowledge in providing against the miseries of mankind, not less than had his beatiful theatre for providing for its pleasures. The plan (fig. 177.) of the lantheon (so it is now nsually called) is a species of Greek eross. The interior is divided transversely into two equal parts on each side, and a central one moch larger, by ioblated columns, instead of the plans previonsly in use of areades decorated with pilasters. It is however, strictly, in its internal as well as external character, to be classed as belonging to the Venetian school. Its west front and transverse section are given in fig. 178. 'Ihe light effeet, whech is so staiking in the interior, prodnced by the employment of columns instead of the old system of areades, is extremely pleasing, thongh, as has often been truly urged, they have no offee to perform. Objections, moreover, have been taken to the wide intercolumbiations of the portieo, and to some other parts, which bere it is mmecessary to particmlarise. It is, notwithatanding all that has been written againat it, most ecrainly entitled to take the lourth place of the notern great charehes in linope; which are, Sinta Maria del Fiore at Plorence, St. Peter's at Rome, St. Panl's at London, and then the churd in question. Its greatest lault is instability about the piers of the eupola, - the old fanlt, from whieh not one is altogcther free, and one which gave Souflut so much momsiness that it is said to have hastened his death. This falure was alterwards rectified by bis echebated pupil Rondelet, who, with consummate skill, imparted perlect and lasting seeurity to the edifiec.

36\%. We ought perhaps before to have mentioned the name of Servandomi, as eminently intuencing, in his day, the taste of Paris, which, as the world knows, is that of lirance. i L'lowentime by birth, and a selolar of the eelebrated l'amini, he, in 1731 , exhilited a model For the façade of St. Sulpice; and after a year's probation before the public, it was adopted. On an extended front of 196 ft . he suceeeded in imparting to it, as a whole, an air of great majesty, and of giving to the chureh a porch of vast extent withont injury to the general elleet. Servandoni was very extensively employed: his style was that of the Venetian school ; and his death oceurred in 1766 .
363. To write an history of the modern arehitecture of franee, and at the same time to do its professors justice, would reguire a much larger volume than that mader one pen: we proless to rive no more than a bird's-eye view of it, so as to bring the reader gemerally acquainted with its progress; and it is not withont much regret that we propose closing our account of it in the person of Jacoues Gondouin, who died at l'aris in 1818, at the age of eighty-one; an architect whose veneration for the works of J'alladio was so mbounded, that for the study of them exclusively he performed a sceond journey into laly : a strange infatnation in a man of great aequirements, if the opinions of some of our anonymons crities are of any value. When Gondonin was employed, the heary style of Louis X IV. had passed away, and the suitable and elegant style of the Venetian school had been adopted. The papils of Blondel, amone whom be was eminent, were stimulated by the patronage of the whole eapital; and even in the present day, so far capable are its inhabitants of appreciating the merits of an arehiteet, regret as we may to record it, that it is from that eiremm stance alone likely tomaintain its superiority over all others in Fiorope. The most celebrated work of Gondouin is the Ecole de Medecine, whose amphitheatre for lectures, capable of holding 1200 persons, is a model for all buildings of its elass, without at all entering on the great merits of the other parts of the luilding. Jle was one of those upon whom the cffects of the Firench Revolution fell with particalar foree, though, upon the re-establishment of order, he in some measure recovered his station in society. He was entrusted with the erection of the colum in the Place Vendome, but merely as respected its preparation for the sculpture.
364. In Paris is to be found some of the most beatilinl street arbitecture in Europer. That of Rome and florence is ceatainly of a very high elass, and exhibits some examples "hich will probably never be equalted. These, moreover, have asociations attached to them which spread a charm over their existence of which it is not easy to divest one's sedf: and which, perhajs, contain some of the ingredients which enter into our high admiration of them. But, on a great and general scale, the most beanilul street arehitecture in Emrope is to be fund in Paris; and so great in this respect do we consider that city, that we are certain the education of an arehitect is lar fiom complete if he he not intimately acpuainted with the examples it aflords. In that, as in most of the eities of Finroper the requirements of the shopkeeper interfere with the tirst priseiples of the art; but in this the violation of the rules of sombl buitding, so as to connect them with his accommodation, are less felt by the critical observer than elsewhere. The spirit which seems to actuate the Irench nation is to produce works which may properly be called monumental; in this eountry, the govermment has never applied itself to a single work worthy of that epithet. 'The prineipal care of an lenglish minister seems to be that of keeping his place as lone as the mation will endure him. Commere and polities are the only sulajeets which shell a personage
seems to think worthy his attention, and the sciences have only been patronised by the govermment in proportion to their bearing on those two absorbing points. liut we shall perhaps revert to this in the following chapter.

Secr. XVIII.

GKRMAN ARCHILECTURE.
36.5. No country exhibits more early, beautiful, or interesting specinens of Romanesque and pointed arehitecture, than Germany: The Rhine, and the southern parts of it which were moder the sway of the Romans, are those, as we have already olserved, in which these are principally to be lomed. Their history, however, hats, sufficiently fer general purposes, been traced umber the sections of liszantine or Romanesque and Pointed Archutecture. The revival of the arts in Italy, as it didin other mations, here equally brought in the styles of the Italian schools, which, as elsewhere throughout Linrope, have lasted to the present period; and will eertainly endure until some general change in the habits of its different nations renders necessary or justifies some other style as a worthy suceessor to them. On this to speculate were a waste of time; though theie be some, and those men of takent, who contemplate a millenimm of arehitecture, by making every thing in styde dependent on the new materials (cast-iron for instance) which it is now the practice to employ, and often, it must be conceded, most usefully. Whilst the pointed style lasted in Europe, Italy was oceasionally indebted to the Germans for an arehitect. Thns, notwithstanding the denial of Milizia, Lapo, a German arehitect, was employed in the early stages of construction of Santa Maria del löore; and it is well authenticated that Kamolia a German, Ammex of Friburg, and Ulrie of Llm, were employed on the cathedral at Milan. Franchetti (Storia e Dessrrizione del Dnomo di Milmn, 4to. Milan, 1891) asserts, that the first of these was engaged on it about 1391, the period of the golden age of pointed architecture in Germany; and the reputation of the Germans in this respect was at that time so great, that John and Simon of Cologne were actually carried into Spain for the purpose of designing and earrying into execution the cathedral at Burgos. It is at this period diflicult to assign the canse of the nation so completely dropping astern, to use a nautical phrase, in the line arts, and more particularly architecture. It was most probably the result of their political condition, and the consequent relative position they oceupied in the alfairs of Europes. But, whatever the eanse, it is, in fact, most certain, that from the revival of the arts in Italy until near the end of the 18 the eentury, Germany furnishes the names of few, if any, arehitects who are known beyond the limits of the country. Italy during the time in question seems to have repaid the nation for the carly assistance reecived from them. At Fulda and Vienna, Carlo Fontana was extensively engaged; Guarini on the chureh of Simta Amma at Iragne; Scamozzi on the cathedral at Salzburg; Audrew Pozzo, who died at Viema in 1709, was there employed on several of the churches: Martinelli of Lucea was another of the number that were solicited to decorate the country with their works. Fïsehers, indeed, was a native ; but his works, and especially his palace at Schönbrum, hegun in 1696 for the Emperor Joreph, though not altogether without merit, is but a repetition of the extravagances of the seloob of Borromini ; and equally so was the palace built by the same artist for 1'rince Eugene at Viema, in 1711. (Essai dArchitcture IIistorique, Leipsig, 1725.) Pictro Cart, who built the bridge at Nuremberg, Nemman, loott, and Losangler of Prussia, are the only mative architects of the period reeorded by Milizia.
366. But it was not only from Italy that the Germans drew their archteets: France contributed a supply to the combtry in the persons of Blondel, who was there much employed towards the end of the 17 th century; Rolert de Cotte and Bolliand in the first part of that !ollowing. It is therefore, from what has been stated, impossible to give any independent accombt of the architecture of Germany. The Germans had none. Whoso were their architects, they were the followers of a style whieh contemporaneously existed in Framee and Italy even down to the bizarreries of that which prevailed in the time of Louis XV.; and it is a very curious fact, that whilst Germany was seeking the aid of arehitects from France and Italy, England could boast of professors of the art whose fame will endure while printing remains to spread knowledge amongst mankind. During the fast century, Germany appears to have risen in this respect from its slumber, and to have produced some men of eonsiderable architeetural abilities. Of these was Carl Gotthard Langhans who was born in 1732, and built the celebrated Brandenburg gate at Berlin, which, though formed much on the model of the Propylea at Athens, and therefore on the seore of originality not entitied to that praise which has been so urisparingly extansted mon it, proves that a vast change harl begma in Germany as respected matters of taste in ar-
elaitecture．Copies prove sad poverty of imagination on the part of the artist copying；and all，therefore，that ean be said in favour of such an expedient as that under consideration is，that better forms being submitted in this example to the Germans，it ereated a dawn of taste to which they lad long been strangers．The inaecurate work of Le Roy，whieh had preceded that ol Stuart and Revett on the antiquities of Athens，was the means through which Langhans wrought and tried his suceessfut experiment．In France，as we have already observet，Antoine had tried the employment of the Grecian Doric at Paris，but without the impression produced by Langhans．This arelitect died at Berlin in 1808， and is，perhaps，entitled to he considered as the father of good arehitecture in Germany， where he met the lighest patronage and encouragement．Knoblesdorff，who died in 1753． had，it must be allowed，prepared in some measure the change which was effected；bui neither he nor his successor are known in the world of art beyond the contines of their own country．The names of Boumann，Goutard，Naumann，and others of mueh merit oceur to us；but the examples whieh they have left are not of the elass that justify sperimens for presentation to the reader in a general work of this mature．None of them rise so high as to be put in competition with the examples of the French sehool；and from the cireumstanee of the principal works of Germany at Munich，Berlin，\＆e．having been， exceuted by artists still living，we feel preeluded here from allusion to them；beeause，if we were to enter on an exanination of them，we must detail their defects as well as their beauties．An extraordinary species of bigotry bas laid hold on some in relation to them， which time will temper；and the world，as it always does，will ultimately eome to a right judgment of the rank they are entitled to oceupy as works of art．In the other branches of the arts the Germans are ising fist；but there is withal an affeetation of the works of the middle afes in their productions，which，inpressed as they are with great beauties， are not sufficiently pure to prognostieate the establishment of schools whieh will sweep all brere them，as did tho of Italy．

Sect．入1ス．
SPANLSH AND PORIUGUESE ABCHIJECTUKE．
s．67．What has been said in the preceding section on the architecture of Germany is equally applicable to that of Spain and Portugal，whose architeets were educated．if not in the schools of Italy，yet on the prineiples that guided them．Still，the pre－eminence in architecture on the revival of the arts must be given to these countries over the con－ temporaneons buiddings erected in Germany，and more especially to those of Spain． Under Ferdinaad and 1sabella，both greatly attached to the fine arts，the pointed style gave way to the architecture then in esteem in Italy；and Juan de Olotaiga，a native of Biseay，is，we believe，entitled to the merit of iaving first introduced it about 1400 in the design for the cathedral of Huesea in Araøon．Pedro de Gumiel is supposed to have been the architect of Sinta Engracia at Zarıgossa，1476－1517，but is known as the artist who designed the college of S．Ildef，nso at A！cala．a splendid building in a mixed and impure slyle，commenced March 14，1498．In this the orders were employed．The edifice consists of three courts the firt Doric，with an arcade and two orders above，in the lower whereof the Doric was repeated，and the upper was Louic；the second court has thirti－two Composite columns，with arcade，；and the third is designed with thirty－ six Ionie columns，heyond which is the theatre．The ehurch is of the lonic order，and contains the monmmerit of Cardinal Ximene，the founder，considered one of the finest in Spain．The names of Juan，Alonso，and Fra Juan d＇Escobedo contimue in their works the history of the art in Spain，wherein a style between the pomted and Italian prevaile：t during the gre ter part of the reign of Charles V．Juan Gil de Hontanon，at the end of the 15 th century，appear，in Spain as an architect of much celebrity．He made a devign for the eat＇ledral at Salamanca，which was submittod to the juigment of four of the then most eminent architects of the country－Alunso de Covarrubias，the architect of the church at Poledo；Mae tro Filippo of that of Seville；with Juan di Badajoz of that of Burgos．This cathedral at Sulamanca is 378 ft ．long，and has a nare and two serites of aisles on each side．The nave is 130 ft ．high，and 50 ft ．wide．Rodrigo Gil de Hontanon， －on of the above－named arehiteet，had the execution of this chureh，whieh was commeneed in 1513．In min de Hontanon commenced 1592－25 the cathedral of Segovia，very similar to that of Salananea，exeept that it is more simple，and in a purer style．It is equal in stre and grandeur to those of Toledo and Seville．Between 1560 and 1577 it was contimued ly Rodrigo Gil；then carried on by Franciseo Campo Agnero， who died in 1660 ；to whom suceeeded F．Bialero，who died in 1678．Re．pecting llontanon，Don Antonio l＇onz obeerves，in the loth volume of his Travels in Spuin， that he must have been a clever architect，and wall acquainted with th：Greek and

Roman styles which in his time were begiming to revive; but that, like many other artists. he was obliged in some measure to humour the taste of those who employed him: he Hherefore adopted the Gothic style, without the ornaments and details. The efforts of the " chitects of t is period were not confined altogether to chureh building; for in 15.52 P'edro de Uria constructed a bridge at Almaraz over the Tagus, which may vie with the most extraordinary works of that class. Two large pointed arches form the bridge, which is $5 \mathrm{si} \% \mathrm{ft}$. long, 2.5 lt . wide, and 134 it . high. The opening of one of the arches is 150 ft ., that of the other 119 ft . The piers are lofty towers, that in the centre standing on a high rock. An inseription gives the date of erection $15 j^{2} 9$, and imports that it was constructed at the expense of the city of Placentia.
368. Alonso de Covarrubias, the archntect of the church of Toledo, seems to have use 1 in it a Gothic sort of style, thongh when he flourished the Roman orders had become known and used. This Alonso was in considerable employ, as was his assistant, Diego Siloe, who built the church at Granada, with the monastery and church of San Girolano in that city. This cathedral has a nave and two aisles; and in it the Corinthian order, though defective in height, is used. The cupola is well designed. 13otll Siloe and his master loaded their buildings with sculptures to excess, from a seeming notion that beauty and richness were the same or inseparable. Alonzo Berruguette was another architect of the 16 th century who was deservedly emploved. He went to Italy in 1.500 , there to pursue his studies in the arts of painting and sculpture as well as architecture, and was at Florence when Michael Angelo and Leonardo da Virci exhibited their cartoons. Ite was the architeet of Charles V.; and it is supposed that he designed the palace at Madrid, begun by Henry 11., continued by Ilenry III., and splendidly relmilt by Charles V., but no longer in existence. Berruguette erceted the gate of San Martino, which is the principal one at Toledo. It is of the Doric order, with the royal arms on the exterior, and a statue of Santa Leocadia in the interior. There are great simplicity and elegance in the composition of this work. The palace of Alcala, the residence of the archbishop of Toledo, is attributed to him; a building not wanting in magniticence, though defective in its detail. A great portion of the cathedral of Cuenga is said to be by lerruguite; but not the façade, which was crected in 1699 by Josef de Arroyo, ana afterwards continued by Luis Arriagi. There is cmsiderable effe, t about the chister, which is well and ingenionsly decorated. This architect, it is thought, had sume, art in the Pardo, which was rebuilt in 1.547; where are still allowed to remain,--motwithatanding the additions by Philip 11. of the miserable easternand western façades-the portiener of Lomic columns, with their low stone arches. Though the windows are greally too far apatt, and too sm:ll in the lower story, the stairs d ficult of ascent, yet, upon the whole, the editice is not ill arranged or executed. At the period whereof we hero speak there was a prodigious passion among the Spaniards for large screens and altars in the churches; in thes: the taste of Berruguette was most conspicuous. In the use of the orders, which he fully understood, he was remarkably fond of employing them over one another. The cathedral as Seville was primcipally rebuilt by Fernan Ruiz, who was much engaged in the city, and evperially on enlarging or raising the "ell known tower called "La (iiralda." This simpular difiee "as legen in the lhth century, the original idea of it being given by the archatict Gelver, a native of Seville, to whom the invention of algehra is antibuted; and also the design of two other similar towers, one in Morocco, and the other at R.Lata. The tower of "hich we are now speaking was at first 2.50 ft . high, and 50 ft . wide, and was winhout diminution as it rose. The walls are 8 ft . thick of squarid stones from the level of the pavement; the rest for 87 ft , is of brick. In the centre of this tower is a smaller one, the interval between the two tower, being 23 ft , which serves for the ascentone so conrenient that two persons abreast can mount it ou horseback. The central tower dues no: dimninish; but as the edtice rises in height the walls gather over, so as to allow the passage of only one person. Upon the Moors of Seville negotiating their surrender, one of the conditions of it was, that this tower should not be destroyed; to which Dun Alfonso, the eldest son of the hing, answered, that if a portion of it were toucbed, not a man in Seville should survive. In the earthquake of 139.5 it was partially injured, and remained in the state of mistortune that then occurred until 1568 , when, by the authorities, Ferman Ruiz received the commission to raise it 100 ft . higher. This beight he divided into three parts, crowning it with a small cupola or lantern : the tirst division of his addition is of equal thickness with the tower on a plinth, whence six pilasters rise on earch façale, between which are five windows, over which is an entablature surmounted by balustrades; the eecond division is lower, with the same ornament; and the third is ortagoval with pilasters, over which the cupola rises, crowned witla a bronze statue of Faith, vulgarly called "La Giralda." Ruiz by this work augmented his fame; and notw thstanding the carthquakes which have since occurred, it has, lortunately enough, betn preserved. We have, howevr, to apologise to our readers for this, which is anecdote, and nut qui'e in order to be placed here, becanse partly connected with a period we have long since left. Pietorially speaking, the tower of "La Giralda" is a splendid object, and the
npology was, perhaps, unnecessary. The age of Charles V. in Spain was Augustan for its arelifecture. By his mandate the palace was raised at Granada, a work of Machuea, another ar hitect of this period. The principal façade is rustie, with three large gates, and dight Doric columos on pedes'als seulptured with historical bassi-rilievi The sceond stury is lomiz with eight columns, over which are pilasters. The internal vestibule is on a circular plan, witi a portico and gallery on colums of the same order. Milizia, from whom we have extracted all our notices on the arehitecture of Spain ins this age, regrets that the arehes spring from the columns. 'I hough we cannot commend such a practice, we should be sorry, in certain cases, to see a veto put upon it, because the practice is oerasionally compatible with fine effect.
369. Towards the end of the sixteenth century appears in Spain an artist, by name Domingo Teotocopuli, by birth a Grecian, and a disciple of Tiziano V eclli. He became, under his master. a good painter; but is known in sipain rather as a cel brated arehitect in his day. At Madrid, and in Toledo, he excented many works of merit; but his grand work was the ehurch and monastery of the Bernardine monks of San Dumingo di Silos, in which he employed his talents in arehitecture, painting. and seulpture, the whole being from his band.
370. Garzia d’Emere and Bartulumé di Bustamante, the later cspecially, would require an estended notice in the history of the art in Spain, if our limits perinitted us to enter on their merits. The latter was the architcet of the hospital of San Juan Bautistia, founded by its archbishop in 1545 , near Tobledo. We should continue the account if buildings exinted from whiel features different from the conteraporancous works in the rent of Europe could be extraeted; but the faet is, that the progress of the art has alreally heen told in othur countries, and its suceess in spain would be but a repetition in minor degree of what has already been said. Still we consider some notice must be taken of Juan B+utista of 'Toledo, who died in 1567, an architect and seulptor of surpa sing merit : and as he was the architect who gave the designs ior the Eseurial, we slall not apolugise for transcribing the aceount of him given by Milizia.
371. Having studied at Rome, he was invited to Naples by Don Pedro di Toledo, then viceroy there, who employed him as arehitect to the Emperor Charlis V. in many important works in that city., whence he was called by Philip II. to become architect of all the royal works in Spain, and especially of the Eseurial, which that monach was anxious to erect in the most magnificent style. For this pmorpose he left Naples, and in 1563 commenced, upon his own design, the Eseurial, which he continued 10 superintend till his death in 1567. In this griat undertaking he was suceceled by Juan de Ilerrera, his pupil, who finished it. 'Those, therefore, says the author whom we quote, that attribute this work to Luis de Fox, to Bramante, to Vignola. and rether arehiteets who may have given designs for it, are unaequainced with the sulbject. The wonders related of the Eseurial, as to the number of its doors and windows, are not tales to be here recoumed: and the attempt, indeed, at exaggeration is vastly silly, beeaure it is on so grand a scale that the s mple truth imparts quite suffieient knowledge for conveying an idea of its splendour. The motives of Philip II. in founding this structure were twofold.-first, the injunction of his predecessor Charles V., who was desirous of constructing a tomblor the royal family of Spain ; and seeondly, of ereeting an edifice of colossal dimensions to commemorate the fanous victory of S. Quintin, achieved on the festival of San Lorenzo, the saint to whose interposition the king attributed his suecess. The situation elosen to reeeive it was beautulul. It is at the distance of a few miles from Madrid, at the foot of the Carpentani mountains, by which the two Castiles are divided. The plan of the edifice is said to resemble a gridiron, the instrument of martyrdom of San Lorenzo, of which the handle is the projection in the eastern façade ; we conless, however, we have some difficulty in tracing the resemblance. It is divided in,ternally into fifteen courts, vary ing considerably in size; many of them are decorated with porticoes and gallerics, and contain in all upwards of eighy fountains. The materials are granite very well wrought; the roofs partly covered with lead and artly with slane. The cupcla of the chureh is of sone. 'Ibe fiour angles of the "a ain plan are distinguished by towers raing four stories, besides those in the roofs, above the general tront; besides which there are four others Hanking the culata. Parts of the bmiding are in mueh better taste than others; but such an enormous pile of buildng camot be otherwise than imposing, more especially, too, if there tee anything like symmetry and regularity in the parts. Towards the west the prineipal façade is $i 40$ leet long and 60 leet in height. The towers at the angles just mentioned rise to the height of 200 fieet. This façade, like the others, has five sturies of winduws, which neeessarily of themselves, from the why in which they are arranged, have the effeet of cutting it up into minute divisions. The central compartment of it is 140 feet in lengils, and consists of two order, of half columns; the lower has eight semi-columns, which are Dorie standing on a plinth, and in the central intercolumniation is the door; the other intercolumbiations are filled with niches and windows in three stories. The upper order consists of four lunic colun.ns on pedestal, and is surmomed by a pediment. This upper
order has two storics of nictues in its intercolumniations. in the upper central one whercof is placed the statue of San Lorenzo. The two minor doors in this façade are also made features in the design. The façade towards the east has the projecting handle of the gridiron to whieh we have alluded, in which part is contained the palace; and westward of it the great chapel or church, with its cupola rising above the mass, to complete the composition. Towards the sonth the length is 580 ft ., similar to the length on the north. On entering from the central gate of the western façade, the monastery is divided fron the college by a large vestibule, from which three large arched openings lead into the king's court : this is 230 ft . long, and 136 ft . wide, surrounded by buildings of five stories, and ornamented with pilasters. At the eastern end of this court is the entrance to the church, over whose vestibule or pronaos are the libraries. To it a flight of seven steps crosses the whole width of the court ; and from the landing rises a Doric arcaded porch of five openings, three whereof belong to the central compartment and lead to the church, the other two leading to the monastery and the college. Behind the porch the façade of the church rises, and is flanked by two towers, which respectively belong to the monastery and college, and are ornamented above the general height of the buildinges of the court with two orders of pilasters, heing terminated by small cupolas. The interior of the chureh is Doric, and is in plan a Greek cross. The nave is 53 ft . and the aisles are 30 ft . wide. Its whole length is 364 ft ., its width 230 , and height 170 . From the intersection of the nave and transepts the enpola rises, 66 ft . in dianeter, and 330 ft . in height from the pavement to the cross. Its exterior is composed with a square tambur or drum, if it may be so called, from which the order rises. The choir is only 30 ft . high, and its length but 60 ft . In point of taste and dimensions, the church is inferior to several in other parts of Europe. The presbytery, we should have stated, is raised, so as to form almost another chureh, and seemingly withont relation to the principal one. The staircase which leads to the lantheon, and which possesses considerable magnificence, is placed between the church and the antesacristy: we are not aware why this name has been given to the sepulehre of the kings of Spain. It is nearly under the high altar. The chamber appropriated to the reception of the kings is 36 ft . dianeter, and 38 ft . in height, richly encrusted with various manbles and metals, and ornamented with sixteen double Corinthian pilasters on pedestals, arranged octagonally ; and between them are recesses, with the sarcophagi, amounting to twenty-six, that is, four in each of six sides, and two over the entrance which faces the altar of the Resurrection. This is a fair specimen of the style which prevailed in Spain under the reigns of Philip IV. and Charles II. The college, the seminary, and the royal palace occupy the rest of the biilding. In 1773, many additions were made to the buildings about the Esenrial for the lnfants Don Antonio and Don Gabriele, by Villaneuva, an Italian architect, and by them the palace was much improved. Juan de IIe-rera, who died in $15 y 7$, besides his employment at the building just clescribed, contributed greatly to the advancement of the art by the execution of the many commissions with which he wasentrusted. The bridge of Segovia, at Madrid. is by him; as is the royal pleasure-house at Aranjuez, begun under Philip II. and finished by Charles 1II.,-a work which. though far from pure, exhibis great architectural ability. His successor at the Espurial was Francesco de Mora, by whom, at Madrid, is the Palice de los Consejos, the most splendid edifice which that capital can boast Instend of a central doorway, it has two at its flanks, of the Doric order, with appropriate decorations. In the begiuning of the seventeenth contury, the great square of Madrid was erected after the designs of Juan Gomez de Mora, and is admirable for i's grandeur and svmmetry. This architect built at Alca!a the church and college of the Jesuits, which, Mulizia says, is a magnificent and well-proportioned edifice. It is of two orders, and the material employed in the façade is granite. The rojal convent of the Augustin:s, at Madrid. is also attributed to him.
372. Early in the eigheenth century Felipe lvara, or Juvara, a native of Messina, had very great employ, we misht almost ay throushout Europe. He became the pupil of Fontana, and aiterwards, on his visiting Spain, seem; to have established a school there. He built the façade of the royal palace of S. Ildefomo, looking towards the gaidens. I ara died in 173.5, at Madrid, whither he had been invited hy Philip V. to rebuild the palace, which had been consumed by fire. The work was afterwards entrusted to Sacehetti, a pupil of Ivara. It is on a very large scale, ard was most solidly constructed.
373. We have thought it nerescary to give the above succinct account of the arehitecture of Spain, which did not, however, produce, after the revival of the arts in Europe, any work 4 , except in respcet of dimensions, comparable with those of Italy. The abuses in them are almost universally carried to an extent scarcely credible; it is, therefore, useless to refer the reader or student to them as models. It almost seems as if from laly pure irchitectare had not had time to spread itself before it became tinctured wibl the corrupions of Burromini ; which, not only in S_{i} ain and Portugh, but throughout Germany, and ren France, were diffused with incredible rapidity. Llaguno and Cean-Bermudez, Nisticius de los Arquitectos, §̧̣c, de España, 4 vols. 4to., Madrid, 1829. G. E. Street, Some 4ccount of Gothic Arciitecture in Spin, 8io.. 1865.

Seccr. XX.

RUSSIAN ARCHITECTURE.

374. We seareely know whether we are justified in making a short section with this heading, inasmuch as there is not known to us, up to the end of the eighteenth century, the name of a single Russian architect. English, French, Italian, and German artists have been employed in the decoration of the city of Petersburg, though we helieve that the nation is now begiming to produce persons capable of conducting their public worhs. Russia has received all its improvement from abroad, and has used every exertion to communicate it to an uncivilised people.
375. The ecelesiastical architecture of Russia is of course coeval with the introduction of Christianity into the country, which was not earlier than the time of Vladimir the Great, althongh the Princess Olga had been baptized at Constantinople as early as the year 964. Vladimir, to display his zeal in belalf of Christianity, had a church, supposed to be the first built by him, erected at Cherson ; a year after which the church of St. Basil, which, as well as the first named, was of timber, was erected under his command. 'This prince also huilt a church at kief, where, it is said, there were already at the time 500 churches. After Vladimir, Prince Yaroslaf appears to have bestowed great attention on the erection of ecelesiastical edifiecs. At Kief be founded a church, dedicated to St. Sophia, and at Novogorod another to the same saint: these partly exist in the present day. liy him also were reared the convents of St. George and St. Irene. The celebrated convent of Petchorsky, at Kief, was erected in 1075 , subsequent to which period the lussian metropolitans continued subject to those of (Constantinople till the capture of that eity by Mahomet the Second. Between this last capital and Kief the bonds of amity of their rulers were drawn closer by many intermarriages; but in the year 1124 a fire desolated the latter city, which must have risen into great importance, inasmuch as 600 churches and monasteries were destroyed in the conflagration. Afterwaros, again, in the civil war under Yisaslaf, Kief was taken and fired; a calamity to which it was again subject at the same period that Constamtinople was taken by the Venetians. After this Kicf never again recovered its ancient magnificence. In 1154, at which period Mosenw is first mentioned in history, it was but an insignificant village. It received great additions under Danill of Moscow; and in 1304, under John Danielowitz, it became the capital of the empire. On the 4th of August, 1326, the first stone was laid of a church in the Kremlin there in honour of the Assumption of the Virgin. The palace of the Kremlin was a timber structure until the reign of Denaetri Donskoi, when it was reconstructed of stone. On the capture of Constantinople by Mabmet the Second, the Russian church ceased to be dependent on that of Constantinople. The palace of the Kremlin, known by the name of the granite palace, rose in 1487; and, in twelve years afterwards, the Belvedere palace was raised. Ivan IV., whose sway was of extended duration, was a great patron of the arts; his decease took place circa 1584. Ne renewed the laws relative to the paintings in the new churches, whence arises their so close resemblance to each other that it is difficult to judge of the epochs of their execution. The celebrated clock tower Ivan Valiki, at the Kremlin, was erected by the Czar Boris, in 1600, at which time Moscow contained 400 churches, whereof 35 stood in the Kremlin alone. After the time of Peter the Great, a change of style was introduced, (1696-1725).
376. The Church of the Assumption above mentioned, as respects the plan, is an ollong square divided; the vaulting whereof is supported by six columns in the interior. Thongh at the first glance it be not perceived, the arrangement of the cupolas soon points to the form of a Greek cross. In the earlier churches the plan was a square, with a porch in front of it; but, in the Church of the Assumption, the porch is a portion of the church, the arches of the cupolas being placed in the same way as if the chureh were of the ancient form. The six columns just mentioned divide the church into four parts, - from cast to west, and then from north to south. At the eastern sides are three apsides, divided by the wilth of a column, the middle one being of larger dimensions than the other two; an arrangement which prevails in most of the Greek churches. The apsides contain altars, which are frequent, except in the small chapels. The altar in the Greek church is not exposed to public view ; it is concealed or covered by the iconostasis (image-bearer), a very large screen, which, from occupying the whole width of the church, divides it into two parts. This sereen has a central principal and two side smaller doors; behind which latter, on each side, stands a sceond and smaller iconostasis, of the width only of the smaller apsis, but whose plan with three doors and an altar behind is similar to the great one. This was the distribution in the early churches; but, in the more modern ones, there are, at nearly the extremity of the edifice, three distinct iconostases. The place for the choristers is on each side in front of the iconostasis, between its principal and side doors. The principal cupoia rises in front of the iconostasis; and, in cathedral churches, at the foot of the apsis on the left a canopy is placed for the emperor, epposite whereto is one for the metropolitan.

There is generally one principal and four subordinate cupolas round it, which stand on the fiour feet of the Greck cross. The iconostanis is a prineipal object in every clurelh. It is usually in fonr or five horizontal compartments, each containing an unepual number of pictures of saints painted on tablets or long square panels, whose places are fixed with great precision. In the first story, if we may so call it, are the thee doors; the centre one, being in two foldings, is decorated with the subject of the Annunciation, accompanied with the heads of the four Evangelists or their emblems. To the right of the door is a pieture of Christ, and of the Madonna on the left. To the right of the Christ is the saint or festival of the church, after which the doors are inserted. Above the doors, on the left hand, is placed a Greek cross; on the right hand the cross of Moses, - as symbols of the Ohd and New 'Testaments. The paintings are all on a ground of gold. In the middle of the second story is Christ on a throne; on the right Saint John the Baptist; on the left the Madonua without Child; then, on each side, two archangels and six apostles. In the third story or horizontal compartment, the Madonna is introduced with the Infant on her knees, surrounded on each side by the prophets. In the fourth story is painted God the Father on a throne, with the Infant Jesus, surrombled on each side by patriarchs of the church. Oceasionally a fifth story appears, upon which is painted the history or lassion of our Saviour. Paintings on a gold ground abound in the other parts of the church. The exteriors of these churches are extremely simple; cornices or other horizontal crownings are not to found, but the coverings follow the cylindrical forms of the arches to which they are the extraloses, and are variously painted. The IRussian churches built in the eleventh century, which from the number of their cupolas resemble, and indeed were imitated from those of the East, give a peculiar eflect to the architecture. The forms of these eupolas are varied, but they generally stand on an octagonal tambour; some are hemispherical, others in eurves ot contrary flexure, and a number of other figures.
577. The type of the Russian chureh, which is on plan a Greek eross, is to be found in Santa Sophia at Constantinople. After the disputes between the Iconoclasts and leonolaters, which, at the close of the seventh century, ended in the separation of the Easters and Western churehes, sculpture of statues disappeared from the Greek church, statues of angels excepted. Again, at this period, the altars on the side of the principal one were established, not, as in the Catholie churches, at the extremities of the transepts; their place is always in a miche or apsis. This arrangement is found in the churches of the eleventh, twelith, and thirteenth centuries, at Bari, 'Trani, Malfetta, Otranto, \&c., while the Greek worship existed; mand a similar disposition is even seen at l'alermo and other places where the worship has been Catholic. In the Catholie churches a sacristy, for the use of the priests in robing, \&e., is always provided on the side of the chureh; in the Greek chureh, however, the priests robe themselves behind the iconostasis on the left of the altar, another altar being placed on the right for the consecration of the elements; and this arrangement exists in the present day. The Greek church has no gynaceum, or separate place for the women. - l'or the above we are indebted to the researehes of M. Hallmam, an ingenious architect of Hanover.
378. It is in Saint l'etershurg principally that we are to look for edifices which deserve mention. The foundation of the city was laid in 1703, by the Czar Peter, when he constructed a fort on an island in the Neva for defence against the Swedes. Buildings, both public and private, were soon erected; and the nobility and merchants being induced to settle there, the place quickly assumed the appearance of a considerable city. In the reigns of Catherine the Second and Alexander it reached a degree of great magnificence, from which It has not deelined, but has rather advanced. Magnitude, rather than beauty of form, marks the public buildings of the city. The church of our Laty of Kazan is of great dimensions: for which, and its fifty-six granite columns with bronze capitals, it has obtained more celebrity than it will acquire for the beauty of its composition. Some of the palaces in the city are of colossal dimensions; that of Michailoff, built by Paul, is said to have cost ten millions of rubles. It was under the reign of Peter the Great that the great change took place in the national character of Russian chureh architecture by the introduction of the classical orders. The bulbous cupola, though at this period not entirely laid aside, fell into comparative disuse, being replaced by a green painted dome of which the Italian form was the model. The tasteless custom of painting the exteriors of buildings with bright and incongruous colours was retained; and, though well enough suited to the barbaric structures of the Mnscovite ezars, it ill aceorled with the purer style of Italy. It is umecessary further to detain the reader by any observations on the churches of the modern capital. In point of style or of history, they possess little or no interest for an English reader. To those who wish to become better aequainted with the architecture of Russia, we recommend a reference to Geissler's Thblean. Pittoresques des Matrrs, §̧e. His Russes, Tartares, Monyoles, (et aut es Nations de l'Empire Finsse; to Lyall's Character' of the Rustians, \&c., 4to, IKO3; and Ricard de Montferrand's L'Eglise de s. Isaac, fol. 1845. 'The essyy by the late M. Hallmann above noticed, was printed in the Trunsactions of the Institute of British Architects, 1842.

CIIAP. 11.

ARCIIITECTURE OF BRITAIN.

Sect. I.

EAHLY HOUSES AND ARCHITECTUKE OF TllE BRITONS.

379. On the invasion of Britain by Julius Casar, in the year 55 в. c., the inhabitants dwelt in houses resembling those of Gaul; and in Kent, and other southern parts of the island, their houses were more substantial and convenient than those in the north. Caves or earth houses seem to have been their original shelter ; to which had preceded the wicker enclosure, whose sides were incrusted with clay. These were thatehed with straw. The wooden houses of the ancient Gauls and Britons were circular, with high tapering roots, at whose summit was an aperture for the admission of light and emission of smoke. These, where the edifices were grander than ordinary, were placed upon foundations of stone. There is no instruction to be derived from pursuing this subject further. That the arts at the period in question scarcely existed, is quite certain; and Caractacus may, when carried prisoner to Rome, have well expressed surprise that the liomans, who had such magnificent palaces of their own, should ensy the wretehed cabins of the Britons.
380. If the Britons were so uninformed in architecture as to be satisfied with such structures for their dwellings as we have named, it will hardly be contended that they were the builders of so stupendous a fabric as Stonehenge. On this subject we have already stated our opinion in Chap. II. From the distant period at which we believe this and similar edifices to have been erected up to that of which we are speaking many centuries must have elapsed, during which the meehanical knowledge which was employed in their erection might have been lost, and indeed must have been, from the condition of the inhabitants, of which mention has heen made.
381. The Romans, after their invasion of the island, soon formed settlements and planted colonies; and it is not difficult to imagine the change which took place in its architecture. The first Roman colony was at Camalodmum. This, when it was afterwards destroyed by the l3ritons in the great revolt under Boadicea, appears to have heen a large and wellbuilt town, adomed with statues, temples, theatres, and other public edifices. (Tacit. Annal. lib. xiv. c. 32.) In the account given of the prodigies said to have happened at this place, and to have amounced its approading fall, it is mentioned that the statue of Victory fell down without any visible violerce ; in the hall of public business, the confased murmurs of strangers were perceived, and dismal howlings were heard in the theatre. At Camalodunum the temple of Claudius was large enough to contain the whole garrison, who, after the destruction of the town, took refuge in it; and so strong was it, that they were enabled to hold out therein against the whole British army for a period of two days. London, however, exhibited a more striking example of the rapid progress of Roman arehitecture in Britain. At the time of the first Roman invasion it was little more than a British town or enclosed forest; and there, seems to be ground for supposing that at the time of the second invasion, under Claudius, it was not much improved. But when, about sixteen years afterwards, it came into the possession of the Romans, it became a rich, populous, and beautiful city. Not only did the Romans raise a vast number of solid and magnificent structures for their own accommodation, but they tanght the arts to the Britons, and thus civilised them. Agricola, of all the Roman governors, took means for that purpose. That they might become less and less attached to a roaming and unsettled life, and accustomed to a more agreeable mode of living, he took all opportumities of rendering them assistance in erecting houses and temples, and other public buildings. He did all in his power to excite an emulation amongst them; so that at last they were not content without structures for ornament and pleasure, such as baths, porticoes, galleries, banqueting honses, \&e. From this time (A. D. 80) up "to the middle of the fourth century," says Henry (Hist. of England), " architecture, and all the arts immediately connected with it, greatly flourished in this island; and the same taste for erecting solid, convenient, and beautifil buildings which had long prevailed in Italy, was introduced into Britain. Every Roman colony and free city (of which there was a great number in this country) was a little Rome, encompassed with strong walls, adorned with temples, palaces, courts, halls, basilice, baths, markets, aqueducts, and many other fine buildings both for use and ornament The country every where abounded with well-built villages, towns, forts, and stations; and the whoie was defended by that high and strong wall, with its many towers and eastles, which reached from the month of the river Tyne on the east to the Solvay liuth on the west.

This spirit of building, which was introduced and encouraged by the Romans, so much improved the taste and increased the number of the British builders, that in the third century this island was famous for the great number and exeellence of its arehitects and artiticers. When the Emperor Constantius, father of Constantine the Great, rebuilt the city of Autun in Gaul, A. n. 296, he was chiefly furnished with workmen from Britain, which (says liumenius) very much abounded with the best artificers. It was about the end of the third century that in Britain, as well as all the other provinces of the Western empire, arehiteeture began to decline. It may have been that the building of Constantinople drew off the best artists; or that the time left for the peaeeful culture of the arts may have been broken in upon by the irruptions of invaders from the north. According to the Venerable 13ede (IIst. Eccles., lib. i. c. 19.2 , , the Britons had become so ignorant of the art before the final departure of the Romans that they, from want of masons, repaired the wall between the Forth and Clyde with sods instead of stone. Henry observes, however, on this, that "we eamot lay much stress on this testimony; because it does not refer to the provincial Britons, but to those who lived beyond the Wall of Severus, where the Roman arts never much prevailed; and becanse the true reason of their repairing that wall with turf, and not with stone, was that it had been originally built in that manner. Besides, we are told by the same writer, in the same place, that the provincial Britons, some time after this, with the assistance of one Roman legion, built a wall of solid stone, 8 ft . thick and 12 ft . high, from sea to sea."
382. The departure of the Romans, and that of the fine arts which they had introdnced, were occurrences of almost the same date. We must, however, reeollect that arehitecture was beginning to decline at Rome itself before the departure in question. The inhabitants of the country who remained after the liomans were gone had not the skill nor courage to defend the works with

Fiz. 179.
roman wabi, hetcksthr.
(7 ft .6 ins. to Roman Ruad, and 5 ft .6 ins. more to bottom of giers.) which the Romans had provided them ; and their towns and cities, therefore, were seized by invaders, who plundered and destroyed them, throwing down the noble struetures with which the art and industry of the liomans had adorned the country. The vestiges of Roman arehitecture still remaining in Britain are pretty mmerous; but searcely any of them are of sufficient interest to be considered as studies of Roman arehitecture. Even in its best days, nobody would study the works of art in the colonies in preference to those in the parent state. We have here (fiy. 179.)
inserted a representation of a small portion of the Roman wall at Leieester, as an example inserted a representation of a small portion of the Roman wall at Leiester, as an example
of the construetion. Temples, baths, and villas of the time have, moreover, been brought to light not unfrequently.
383. The arrival of the Saxons in this country, A. b. 449, soon extinguished the very little that remained of the arts in the island. This people were totally ignorant of art ; like the other nations of Gerinany, they had been aecustomed to live in wretched hovels formed out of the carth, or built of wood, and covered with reeds, straw, or the branches of trees. It was not, indeed, until 200 years after their arrival that stone was employed by them for their buildings. Their eathedrals were built of timber. The Venerable Bede says there was a time when not a stone chureh existed in all the land; the eustom being to build them of wood. Finan, the second bishop of Lindisfarne, or Holy Island, built a chureh in that island, A. D. 652, for a cathedral, which yet was not of stone, but of wood, and eovered with reeds; and so it continued till Eadbert, the suceessor of St. Cuthbert, and seventh bishop of Lindisfarne, took away the reeds, and covered it all over, both roof and wall:, with sheets of lead. Of similar materials was the original cathedral at York, a clureh of stone being a very rare production, and ustally dignified with some special historical record. Bede, for instance, says of Paulinus, the first bishop of York, that he built a chureh of stone in the city of Lincoln, whose walls were standing when he wrote, though the soof had fallen down. Seotland, at the begimning of the eighth century, does not seem to have had a single chureh of stone. Naitan, king of the Picts, in his letter to Ceolfrel, abbot of Weremouth, A. 1). 710, intreats that some masons may be sent him to build a chureh of stone in his king dom, in imitation of the Romans.
38.I. We here think it necessary to notice that we have thought proper, under this chapter, to preserve the periods, or rather styles of the periods of arehitecture, according to their ordinary arrangement in English works, namely, the Anglo-Saxon and Norman, in dintinet sections. It is a matter of little importance to the reader how he acguires his knowledge, oo that his author do not umecessarily prolong the açuisition of it. Though, therefore, the Anglo-Sixon and Norman architecture are neither of them anything inore than Romanesque or Byzantine, to which we lave appropriated rather a long section, we have here separated them into two distinct periods.
385. About the end of the seventh century masonry, as well as some other arts connected with it, was once more restored to England, by the exertions of Wilfred, bishop of York, and afterwards of Hexham, and of Benedict Biscop, the founder of the abbey of Weremouth. The former, who was an mdefatigable builder, and one of the most munificent prelates of the seventh century, erected edifices, which were the admirarion of the age, at Ripon, York, and Hexham. The cathedral of the latter place obtained great celebrity. Eddlus, speaking of it (Vitm Wilfridi), says, that Wilfrid "having oltained a plot of ground at the place from Queen Etheldreda, he there founded a very magnificent church, and dedicated it to the blessed apostle St. Andrew. The plan of this holy structure appears to have been inspired by the spirit of God; a genius, therefore, superior to mine is wanting to deseribe it properly. Large and strong were the subterraneous buildings, and consthueted of the finest polished stones. How magnificent is the supersuructure, with its lolity roof resting on many pillars, its long and lolty walls, its sublime towers, and winding stars! To sam all up, there is not on this side of the Alps so great and beautiful a work." Biscop was a zealous cotemporary and companion of Wilfiid, and had also a great love for the arts. He travelled into Italy no less than six times, chiefy for the purpose of collecting books and works of art, and of endeavouring to induce workmen to come over to England. An estate of some extent having been obtained by him from Eegfrid, king of Northumberland, near the mouth of the river Were, he founded a monastery there in 674. Relative to this monastery of Weremouth, thus writes Bede: - "About a year after laying the foundations, Benedict passed over into France, and there collected a number of masons, whom he brought over with him to build the church of his monastery of stone, "fter the Roman manner, whereof he was a vast admirer. Such was his love for the apostle Peter, to whom the church was to be dedicated, that he stimulated the workmen so as to have mass celebrated in it but a little more than a year from its foundation. When the work was well advanced, he sent agents into France for the purpose of procuring, if possible, glass manufacturers, who at that time were not to be found in England, and of bringing them over to glaze the windows of his monastery and chureh. His agents were successful, having induced several artisins to accompany them. These not only exeented the work assigned to them by Benediet, but gave instructions to the English in the art of making glass for winlows, lamps, and other uses."
386. The Bishop Wilfrid, as we learn from William of Malmesbury, with the assistance of the artificers that had been brought over, effected great reparations in the cathedral at York, which was in a decayed and rumous state. Ile restored the roof, and covered it with lead, cleansed and whited the walls, and put glass into the windows; for, before be had introduced the glass makers, the windows of private dwellings as well as churches were filled with linen cloth, or with wooden lattices. It will be observed that the improvements we here mention were introdaced by the bishops Wilfrid and Biscop, towards the end of the seventh century ; but, from our ancient historiams, it would appear that, in the cighth and ninth centuries, stone buildings were rarely met with, and, when erected, were olpeects of great admiration. The historian IIenry observes, that "when Alfred, towards the end of the ninth century, formed the design of rebuilding his ruined eitics, churches, and monasteries, and of adorning his buildings with more magnifient structures, be was ubliged to bring many of his artificers from foreign countries. Of these (as we are told by his friend Asser) he had an almost innumerable multitude, collected from diflerent nations; many of them the most excellent in their several arts. Nor is it the least praise of this illustrious prince, that he was the greatest builder and the best architect of the age in which he flourished." His historian, who was an cyewitness of his works, speaks in the following strain of admiration of the number of his buildings, "What shall I say of the towns and eities which he repaired, and of others which he bilt from the foundation?" Henry contimes, - "Some of his buildings were also magnificent for that age, and of a new and siugular construction; particularly the monastery of AEthelingay. The chureh, however, was built only of wood; and it seems probable that Alfred's buildings were, in general, more remarkable for their number and utility than for their grandeur; for there is suffieient evidence that, long after his time, almost all the honses in England, and the far greatest part of the monasteries and churches, were very mean buildings, constructed of wood and covered with thatel. Edgar the I'eaceable, who flourished after the middle of the tenth century, observed (see William Miths. lib. ii. p. 32.), that, at his accession to the throne all the monasteries of England were in a remous condition, and eonsisted only
of rotten hoards." The taste, however, of the Anglo-Saxons was not indulged in mag. nilicent buildings; and the incursions of the Danes, who destroyed wherever they came, together with the unsettled state of the country, may account for their revenues being expended on mean and inconvenient houses.
387. Under the circumstances mentioned, it may be safely inferred that the art was not in a very flourishing state in the other parts of the island. Indeed, the ancient Britons, after retiring to the mountains of Wales, appear to have lost it altogether; and, as the 1Ionourable Daines Barrington (Archaologia) has thought, it is very probable that few, if any, stone buildings existed in Wales previons to the time of Edward 1. The ehief palace, called the White Palace, of the kings of Wales, was constructed with white wands, whose bark was peeled oll; whence its nane was derived; and the price or penalty, by the laws of the country, for destroying the king's hall or palace, with its adjacent dormitory, kitchen, chapel, gramary, bakehouse, storehouse, stable, and doghouse, was five pounds and eighty pence, equal, in quantity of silver, to sixteen pounds of our money, or 160 . The castles appear also to have been built of timber; for the vassals, upon whom fell the labour of building them, were required to bring with them no other tool than an axe.
388. Neither to the arts of building appear to have been better understood in Scotland at the former part of the period whereof we are speaking. The church built at Lindisfarne by its second bishop, Finan, in 652, was of wood, -more Scotorun; and it has already been mentioned that, for the stone church which Naitan, king of the Piets, built in 710 , he was under the neeessity of procuring his masons from Northumberland. In Scotland, there are still to be seen some stone buildings of very high antiquity, which Dr. Henry seems inelined to attribute to this period; we, however, are inclined to place them in an age far anterior, later (but not much so) than Stonehenge. We have never seen them, and therefore form our opinion from the description given in Gordon's Itinerarium Septentrionale. These buildings are all circular, though of two different kinds, so different from each other that they seem to be the works of different ages and of dilferent nations. The four prineipal ones are in a valley, called Glenbeg. Of a different period, too, we consider the circular towers whieh are found as well in Scotland as in Ireland. It is true that in both commeries these are found in the neighbourhood of churches; but that does not the more convince us that they were connected with them.
389. 1)ucarel, in his Norman Antiquitios, enumerates some of the churches in England which belong to the ages anterior to the Norman conquest.

Among them are those of Stukely in Buckinghamshire, Barfreston (fig. 180.) in Kent, and Avington in Berkshire. Other examples may be cited as at Walthan Abbey; the transept arches at Southwell, Notinghamshire; the nave of the abbey church at St. Alban's, Herts; tower at Clapham, Beds, \&c. The Anglo-Saxon ara, though it, perhaps, properly comprised the time between A. D. 600 to A. D. 1066 ; that is from the conversion of the Saxons to the Norman conquest, is not known with any thing ajproaching to certainty, from the reign of Edgar in 980 to the lastnamed event ; immediately previous to which Edward the Confessor had, during his lifetime, completed Westminster Abbey in a style then prevalent in Normandy, and with a magnificence far exceeding any other then extant. No less than eighteen of the larger monasteries, all of them benedictine, had been foundea by the Saxon kings in
thefr suceessive seigns; and it is evilent that the charches attached to them were the most decorated parts, as requected their architeeture. The six principal of these were, St. German's, in Cornwall; Colchester, in Essex ; 'Tewkesbury, in Gluncestershire ; St. Frideswide and St. Alban's, already mentioned; and Glas. tombury, in Somersetslire. King selects the western purtion of Tewkesbury as the grandest in England for eflect and extent. The characteristics of Anglo-Saxion Archifecture are detailed in the following pardsraph.
390. Arches. - Always scmicircular, often plain; sometimes decorated with a varicty of mouldings on the sofite as well as on the face, the former being often entirely ocenpied by them. They are funnd double, triple, or quadruple, each springing from two columns, and generally cased with a

Fig. 182. ARCH, LON:ENYUAI. CHURCH, Ely.
without any buttresses externally. - Almost always open timbering. diflerent moulding, which is frequently double, thus making six or eight concentric circles of them; and as each of them projects beyond that under it, a moulding is placed under then, generally the same as that used upon the face. (See fig. 181.) Column. Single, cylindrical, hexagonal or octagonal, on spuare plinths; very few diameters in height. Shafts often ornamented with spiral or fluted carving, with lozenge, herring-bone, zigzag, or hatched work. (Fïy. 18\%.) Cupitals. - Indented with fissures of different lengths and forms, and in different directions. The divisions thus formed are varionsly sloped off, or hollowed out towards the top. (See the two examples, fig. 183., from the conventual chureh at Liy.) Oecasionally the capitals have rude imitations of some member of a Grecian order, as in the erypt at Lastringham in Yorkshire, where volutes are used. (Fig. 184.) In their ornaments much variety is displayed, but the opposite ones are mostly alike. Wiudows. - Semicircular-headed, extremely narrow in proportion to their height, being sometimes not more than six or eight inches wide to a height of more than three feet, and splayed or bevelled oft on the inside through the whole thickness of the wall. Walls.- Of very great thickness, and Nasomry of solid construction. Ceilings and Roofs. In erypts, as at York, Winchester, and a few other

places, vaulting is to be found. Ornaments, except in capitals, in arches and on shafts of columns are very sparingly employed. (See Norman Ornanents also, in the following section on Nurman Architecture, par. 397.) Pluns, - Rectangular and parallelogrammic; being usually divided into a body and chancel, separated by an ornamented arch The chancel sometimes of egral, and sometimes of less breadth than
the nave, and terminated towards the east in a semicircle. In larger churches, there is a nave and two side aisles, the latter being divided from the fomer by ranks of columns; but no transepts appear till towards the latter part of the period. "W' ether," observes Mr. Millers. in his account of Ely Cathedral, whose system we adopt, "their churches were ever higher than one tier of arches and a range of windows kiove (as at Ely), may be questioned. Richard, prior of Hexham, speaks of three stories, which implies another tier of arches; but if he is rightly so understood, this seems an exreption from a general rule, for the church at Hexham is spoken of by all writers who mention it, as the glory of Saxon churches in the seventh century. Alterwards, about 970 , a considerable change took place; transepts came into general use, with a syuare tower at the intersection, rising but little above the roof, and chiefly ustd as a lantern to give light to that part of the church. Towers were also erected at the west end: the use of them coincides with the introduction of bells, at least of large and heavy ones." The churches of this period were of small dimensions, and the comparative sizes of the Saxon and the Norman elurehes which followed is almost a criterion of their age.
391. King (Munimenta Autiqua, vol. iv. p. 240.) gives three aras of the Saxon sty'e, From Egbert, 598, to the Norman conquest. It has been questioncd by antiquaries whether any Saxon remains actually exist in this comntry; bur, admitting their arguments, which are founded on reterences to records-no mean authorities,-it inust be recollected that, on their own showing, some of these trench so clase upon the period of the Conquest as to show that the Saxon style might have prevailed in them, for the general change of style in any art is not effected in a day. If we look for examples coeval with the Savons themselves, and without controversy to be attributed to them, they will, perhaps, be fiomed only in crypts and baptismal fonts; for many churches were rebult by the Nomars, who left these parts untouched. The principal characteri-tics of the style now called Anglo-Saxon, are a debased copy of Roman details, comprising long and shert ma-onry, the ahsence of buttresses, semicirenlar and triangular arehes, rude balustres in the window openings, bammer dressed work and unchiselled sculptures. Also the occasonal use of a rude round staircase to the west of the tower. A list of portions of abont one hundred and forty buildings is given by Godwin, in English Archaonloyist's Handbonk, 1867. The cistles of Roman or Saxon foundation were, Richborongh, in Kent; Castletown, in Derbyshire ; Porchester, in Itampshire; Pevensey, in Sussex ; Castor, in Nortulk; Burgh, in Suffilk; Chesturford, in Essex; Corfe, Dorset; Exeter Castle gateway; Dover, in Kent; and Beeston, in Cesehine. (See also Proportion in Architecture, Book I11.)

Sect. II.

NOKMAN ARCHITECTURE.

392. From the landing of William in 1066, arehitecture received an impulse, indicated in various styles, which lasted till the time of the 'ludors; when, as we shall hereafter see, it gave way to one altugether different. That called the Norman style, which continued from 1066 to nearly 1200, comprised the reigns of William I., Willian 11., Henry I., Stephen, Henry 1I., and Richard I. The twelfth eentury exhibited a rage for building in Britain more violent than has been sinee seen. The vast and general improvements that were introduced into fabries and churehes in the lirst years of this century are thus deseribed by a contemporary writer (Orderic. Vitul. Hist. Eccles., lib. x. p. 788.) : "The cathedrals, and abundance of churehes, newly built in all parts of the country, the great number of splendid cloisters and monasteries, and other residences for monks, that were there raised, sufficiently prove the happiness of England under the reign of Henry 1. l'eace and prosperity were enjoyed by the religious of all orders, who lent their whole power to inerease the magnificence and splendour of divine worship. The ardent zeal of the faithful prompted them to rebuild their houses, and especially their churches, in a more suitable mamer. Thus the ancient edifices raised in the days of Edgar, Edward, and other Christian kings, were taken down, and others of greater magnitude, beauty, and more elegant workmanship, were reared in their stead to the glory of God." As an example of the fervour with which these objects were carried into effect, we cite the following instance, quoting from Dr. Henry, upon whom we have drawn, and shall draw, rather largely. "When Jollred, albot of Croyland, resolved to rebuild the chureh of his monastery in a most magnificent manner (A.D. 1106), he obtained from the arehbishops of Canterbury and York a bull dispensing with the third part of all penances for sin to those who contributed any thing towards the building of that church. This bull was directed not only to the king and puople of England, but to the kings of France and Scotland, and to all other kings, earls, barons, archbinups, bishops, abbots, priors, rectors, preshyters, and clerhs, and to all true believers in Christ, rich and poor, in all Christian hingdoms. 'To make the best use of
this bull, he sent two of his most eloquent monks to proclaim it over all France and Flanders ; two other monks into Scotland ; two into Denmark and Norway ; two into Wales, Cornwall, and Ireland; and others into dillerent parts of England. 1By this means (says the historian) the wonderful benefits granted to the contributors to the building of this shurch were published to the very ends of the earth; and great heaps of treasure, and masses of yellow metal, flowed in from all countries upon the venerable abbot Joffred, and encouraged him to lay the foundations of his church. LIaving spent about four years in collecting mountains of different kinds of marble from quarries, both at home and abroad, together with great quantities of lime, iron, brass, and other materials for building, he fixed a day for the great ceremony of laying the foundation, which he contrived to make a very elfectual mean of raising the superstructure; for on the long-expected day, the feast of the holy virgins lelicitas and lerpetua, an immense multitude of earls, barons, and knights, with their ladies and families, of abbots, priors, monks, nuns, clerks, and persons of all ranks, arrived at Croyland to assist at this ceremony. The pious abbot Joffred began by saying certain prayers, and shedding a flood of tears on the foundation. Then each of the earls, barons, knights, with their ladies, sons, and daughters, the abhots, clerks, and others, laid a stone, and upon it deposited a sum of money, a grant of lands, tithes, or patronages, or a promise of stone, lime, wood, labour, or carriages for building the chureh. After this the albot entertained the whole company, amounting to five thousand persons, to dimer. To this entertaimment they were well entitled; for the money and grants of different kinds which they had deposited on the foundation stones were alone sufficient to have raised a very noble labric." This spirit extended throughout the island; for, in Scotland, David I. raised thirteen ableys and priories, some of them on a scale of considerable magnificence, besides several cathedrals and other churehes.
393. The common people of the country, and the burgesses in the towns, were not much better lodged than in the previous age ; their condition, indecd, was not improved. In London, towards the end of the twelfth century, the houses were still built of timber, and covered with reeds or straw. The palaces, however, or rather castles, of the AngloNorman kings, nobility, and prelates, were on a very superior construction. William of Mamesbury says that the Anglo-Saxon nobility squandered their ample means in low and mean dwe!lings; but that the French and Norman barons lived at less expense, though dwelling in large and magnifieent palaces. 'The fact is, that among these latter the rage for erecting fortified castles was quite as great as that of erecting ceclesiastical buildings among the prelates. The system became necessary, and was induced as well by the previous habits of the country they had left, as by their situation in the island. Surrounded by vassals whom they held in subjection, and whom they depressed and plundered in every way, they were so detested by them that deep fosses and lofty walls were necessary for their security. The Conqueror himself, aware that the want of fortified places had no less assisted his conquest than it might his expulsion, resolved to guard against such a contingency by the strong eastles which he placed within the royal demesnes. Matthew laris observes that William excelled all his predecessors in the erection of castles, in executing which he harassed his subjects and vassals. So much was the practice a matter of course, that the moment one of the nobility had the grant of an estate from the crown, a castle was built upon it for his defence and revidence; and this spirit was not likely to be diminished by the disputes relative to the sucecssion in the following reigns. William Rufus, according to the statement of Henry Kinighton, was as much addicted to the erection of royal castles and palaces as his father, as the castles of Dover, Windsor, Norwich, and others sufliciently prove; and it is certain that no monareh before lim erected so many and noble edifices. IIenry I. followed in his taste; but in the reign of Stephen, 1135 to 1154, says the author of the Sazon Chronicle, every one who had the ability built a castle, and the whole kingdom was covered with them, no fewer than 1115 having been raised from their foundations in the short space of nineteen years; so that the expression is by no means stronger than is justified by the fact.
394. It will be proper here to give the reader some concise general de-cription of these structures, which served for residence and defence. The situation chosen for a eastle was twually on an eminence near a river. Its figure on the plan was often of great extent, and irregular in form; and it was surrounded by a deep and broad ditch, called the fesse, which could be fille. with water. An outwork, called a barbican, wheh was a strong and lolty wall, with turrets upon it, and designed for the defence of the great gate and drawbridge, was placed before the latter. Within the ditech, towards the main building, was placed its wall, about 8 or 10 ft . thick, and from 20 to 30 ft . high, with a parapet and embrasures, called cremels, on the top. At proper intervals above the wall square towers were raised, two or three stories in height, wherein were lodged sonne of the principal ollicers of the proprietor of the castle, besides their service for other purposes; and, on the mide, were apartments for the common servants or retainers, granaries, storehouses, and other necessary offices. On the top of the wall, and on the flat roofs of the towers, the defenders were placed in the event of a siege; and thence they discharged arrows, darts,
and stones on their assailants. The great grate was placed in some part of the wall fanked with a tower on each side, with rooms over the entrance, which was closed with massive oak folding doors, frequently plated with iron, and an iron grate, or porteullis, which, by machinery, was lowered from above. Within this exterior wall, or hallium, was, in the more extensive castles, the outer ballium, which was a large open space or court, wherein a chureh or elapel was usually placed. Within the onter ballium was another diteh, with wall, gate, and towers, inclosing the inner balliun or court, in which was erected the large tower, or keep. It was a large fabric, some four or five stories high, whose enormonsly thiek walls were piereed with very small apertures, serving barely as windows to the ghoomy aparments mpon which they opened. Tins great tower was tle dwelling of the owner of the eastle; and in it was also lodged the constable, or governor. It was provided with muderground dismal apartments for the confinement of prisoners, whence the whole building received the appellation of dungeon. In the keep was also the great hall, in which the friends and retainers of the owner were entertained. At one end of the great halls of eastles, palaces, and monasteries, a low platform was raised a little above the rest of the Hoor, ealled the duis, on which stood the principal table whereat persons of higher rank were placed. The varieties which occurred in the arrangement and distribution of eastles were, of course, many, as circumstances varied; but the most magnificent were erected nearly on the plan we have just deseribed, as may be gathered as well from their ruins as from an account by Matthew Paris of the taking of Bedford Castle by IIenry III., A.p. 1224. 'This castle, we learn from him, was taken by four assaults. In the first was taken the barhiean; in the second, the outer ballium; in the third attack, the miners threw down the wall by the old tower, where, through a chink, at great risk, they possessed themselves of the inner ballium ; on the fourth assant, the miners fired the tower, which thereby became so injured and split that the enemy thereon surrendered. 'The keeps of which we have spoken are sueh extraordinary edifices, that we think it right to place before the reader, the following table of some of the principal ous of the Norman ara, as given in DaldaWay's Discourves upon Architecture.

395. Gundulph is said to have introdueed the architectural nonaments of the Norman styie into the interior as well as on the exterior of castles. 'The use ol battenents, lvepr-
holes, and open gitleries, or machicolations, was eartainly, as our anthor abowe quoted re. marks, known to the Romans.

> Terges contra, defendere saxis
> 'erquats densi teia intorquere fenestras.

AEn. 1. ix. 533.
The architects and artificers by whom the Norman works were planned and exeented were men of great science and skill, and the names of several have most deservedly obtained a place in listory. Gervase of Canterbury records that Willian of Sens, the architect of Archbishop Lanfranc in building his eathedral, was an artist of great talents; and that he not only made a complete model of the cathedral upon which he was employed, but of all the details of sculpture necessary for its execution, besides inventing machines for loading and unloading the vessels, and conveying the heavy materials, many whereof were hrought from Normandy. Of Walter of Coventry, another architect of the age, Natthew Paris speaks in the highest terms, saying that "so excellent an architect had never yet appeared, and probably never would appear in the world." Dr. Henry on this very properly observes, " 'Ihat this encomium was undoubtedly too high; but it is impossible to view the remans of many magniticent fabrics, both sacred and civil, that were erected in this period, without admiring the genius of the architects by whom they were planned, and the dexterity of the workmen by whom they were executel." (See par. 321 et seg.)
396. Of the twenty-two English cathedrals, fifteen retain parts of Norman erertion, whose dates are pretty well ascertained; and by them the Norman manner was progressively brought to perfection in England. We staboin the following enmmeration of Normm bishops, who were either patrons of the art, or are suppesed to hiave practised it themselves.

A. 1).	Bislırp.	Works.
1059 to 1089	Aldred, Bishop of Woreester.	St. l'oter's, Gloucester.
1077 to 1107	Gunduljh, of Rochester.	Rochester, Canterbury, and Peterborough.
1086 to 1108	Maurice, of London.	Oid St. Pdul's Cathedral.
1093 to 1133	Willian de Carilepho.	Cathedral of Durham, but completed by Ranulph Flambard.
1080 to 1100	Lanfranc, of Canterbury.	
11177 to 1140	lioger, of Salisbury.	Cathedral at Old Sarum.
1115101125	Vrmuli, of liochester.	Completed Gundulf's works at Rochester.
1123 to 1147 1129 to 1169	Alexander, of Lincoln.	Rebuilt his cathedral.
1158 to 1131	Henry of Blois, Bishop of thinchester. l3oger, Archbishop of York.	Conventual churches of St. Cross and Rumsey, in Ilampshire.

Of Norman architecture the princi乡al citaracternstics are subjoined in the following subscetion. (See also Book III., chap. iii.)
397. Arehes.-Generally semicircular, as in the nave of Gloucester, here given (fig. 185.).

Fig. 1sju. arch vhom naye of gholcenter

Of larger opening than the Saxon, and their ornaments less minute ; often bounded by a single moulding, though sometinues by more than one ; occasionally without any moulding at all; the soffitt always plain. In the second story, two smatler equal arehes under one larger, with a column of moderate size, or even comparatively slender, between them. In the third story (see fig. 186.), generally three together, the centre one higher and broader than the others, and opened for a window; but the whole three only occupy a space equal to that of the lower arch. Arches of entrance are profusely decorated (fiy. 187., from Ely) with mouldings, foliage, wreaths, masks, figures of men and animals in relief, and all the fancies of the wildest imagination, in which every thing that is extravagant, grotesque, ludierous, may, even grossly indecent, is to be found. Before the end of the period - and we may almost say early in it - it exhibits examples of pointel arches. 'They are, however, sparingly introduced: one or more tiers appear in the upper stories of a building, whilst all the lower ones are circular.

Fig. 186. threrestorifs of a noraian cathedhat..

Sometimes they are iniso-
duced ilternately, sometimes we find one capricionsly insertel between several round ones these are, for the most part, obtasely pointed, though oceasionally they are the reverse.

They are always wide, stand on heary columns, or are decorated with monldings, or both. The approaches to the pointed style were not strongly marked, but they were indicated; for the pointed style camot be pronounced to have commenced until the sharp-pointed areh sprung from a slender column graced with a eapital of earved foliage, and this it is not safe to place earlier than the reigu of John. The areh which rises more than a semicircle does not very often oecur ; but it must be mentioned as exhibit. ing one of the varicties of the period. Columns. - These are of very large diameter re'ative to their heights and intervals. Their shafts are eireular, hex:genal, and sometimes octagonal, on the plan; Hluted, to. zenged, reticulated, and otherwise seulptured. Sometimes they are square on the plath, and then accompanied hy portions of columns or pilanters applied to them. Sometimes four columns are comneted together, with or without angular pieces. They are much higher in proportion to their diameters than the Saxom columns heretofore described; and though their eapitals are not unfrequently quite plain, they are more commonly decorated with a species of volute, or with plants, flowers, leaves, shells, aminals, \&c. The bases stand on a strong plinth, adapted on its plan to receive the combined and varied forms of the columns. Hindous, are stiil narrow, and semicireular-headed ; but they are higher, and often in groups of two or three together. Ccilings, usually, if not always, of timber, except in crypts, in which they are vaulted with stone, with groins mostly plain, yet sometimes ornamented on the edge, but mi.. versally without tracery. The White 'Tower of London, however, exhihits an example of a centre aisle covered with vaulting. Our belief is, and in it we are corroborated by the Rev. Mr. Dallaway, whose judgment we hold in no small esteem, that there is no instance of a genuine Anglo-Norman building whieh was intended to be covered with a stone roof or ceiling. This is not ouly indicated by the detail, but by the circumstance of the walls being insufficient (thick as they are) in solidity to resist the thrust. leterborough, Ely, St. P'eter's, Northampton, Steyning, lomsey, \&e. are calculated and constructed to rective wooden roofs only. Walls, are of extraordinary thickness, with but few buttresses, and those of small projection; flat, broad, and usually without ornament. Ornaments.-Among these must be first named the ranges of arches and pilasters which had nothing to support, already ineidentally mentioned, and which were intented to fill up woid spaees, internally as well as externally, for the purpose of breaking up large masses of surface; they are very common on the inside of north and south walls. sometimes intersecting each other so as to produce those compartments that are alleged to have given rise to the pointed arch. The mouldings of the Saxon period eontinued much in use, and we ought, perhaps, to have given some of them, as belonging to the preceding section; and, indeed, should have so done, if, in the Norman style, they had not inereased in number and variety, and had not also been employed in profusion about the ornamental arches just named, especially in conspicuous places on the outside, as in the west front especially. The most usual omaments (fig. 188.) were, 1. The cherron, or zigzag moulding; 2. The embutled frette;

Fis. $1 s 8$.

$$
\text { youmax orxamexts. (Sue names of Mouldings, p. } 228 . \text {) }
$$

3. The triangular frette; 4. The nail head; 5. The billet; 6. The cable; 7. The hatcherl, 8. The lozenge; 9. The wazy; 10. The pellet moulding; 11. The nelule. The torm was used, as was also the cavetto, which were both of Grecian extraction. The chief of these ornaments, perlaps all, were used in the Saxon age, besides others which were occasionally employed, and which to designate by name would be diffieult; such, for instance, as the corbel-table (12), which ronsists of small ranges of arelies, resting on consoles sometimes decorated with carved beads, often introduced along the whole building immediately below the eaves or battlement. Sometimes carved heads are observed in the spandrels of arelies, and are al-o used as eapitals of the ornamental pilasters, or as corbels, to support what is called the can.py, or exterior semicircle of moulding on arehes of entranee, or above the kevstones of those arches. There are instances of whole figures over doors in mezzo-rilievo which Nillers observes was the nearest approach the Normans seem to have made to a statue. Pians. - The churehes of this period are always with transepts, and a tower at the intersection, loftier than heretofore, but without spires over them. There are rising from them stories of arches, one above the other; and the eastern ends are semicircular. Though much of the Saxon style is retained, there is, from the larger dimensions of the edilices of this period, a much more impressive air of magnificence than had before appeared. Millers very truly says, that the churches were "in all dimensions much ampler, with a general air of cumbrous massive grandeur. The Normans were fond of stateliness and magnificence; and though they retained the other characteristics of the Saxon style, by this amplification of dimensions they made such a striking change as might justly be entitled to the denomination which it received at its first introduction among our Saxon ancestors, of a new style of architecture." The criterion between the Saxon and Norman styles, of enlarged dimensions, is too vague to guide the reader in a determination of the age of buildings of this period; for it is only in large edifices, such as cathedral and conventual churehes, with their transepts, uaves, side aisles, and arehes in tier above tier, that this can be perceptible. There are many parish churehes of this age, whose simplicity of form and small dimensions have been mistaken for Saxon buildings; and which, from not possessing any of the grander Norman features, have been assigned to an earlier age. The distinction aseertainable from heights of columns, - namely, taking the height of the Norman column at from four to six diameters, and that of the Saxon at only two, - will, we fear, be insuffieient to decide the question in eases of doubt; but it must be admitted this is one of the means which, in some measure, would lead us to an approxinate judgment of the matter, and a careful observation and comparison of specimens would make it more definite. We shall here merely add, that the first Norman architects, by the lengthened vista of the nave, uninterrupted by any choir seteen, produced a subline and imposing effect by the simple grandeur and amplitude of dimensions in their churehes.
4. Examples.-Lxamples of Norman architecture in English catheiral churches are to be found at Ely, in the western towers and nave; at Bristol, in the elder Larly Chapel, and Chapter House; at Centerbury in the choir, and the round part ealled Becket's Crown; at Noruich.
in the nave and choir; at ITereford, in the transept tower and choir; at Wells, in the nave and choir; at Chester, in the Chapter Honse; at Chichester, in the presbytery ; at Peterbormigh, in the transept. In the conventual churches, for examples we may refer the reader to Llantony, near Mommoutlr; the nave and west front of Fonntains, Yorkshire; the nave and chapel of St. Joseph, at Glastonbury ; the west front at Selby, in Yorkshire; many parts at St. Alban's; the choir at Wenloch, in Shropshire ; Cartmell, in Lancashire ; Furness; West Find, at Byland, with the wheel window, and the south transept; parts of Boltom, in Yorkshire ; part of Brinhbourn, in Northumberland ; part of Edmondsbury, in Suffolk; and St. John's Church, at Chester. For examples of parochial churches, Melton, Sulfolk; Sotterton and Sheaforth, Lincolnshire; Chris'church, Hampshire; Sherlourn Minster, Dorset; Winchelsert, Steyning, and New Shoreham, Sussex ; chancel of St. Peter's, Oxford; Earl's Burton Tiner, Northamptonshire ; West Wulton Tower, Norfolk; Iffley, Oxfordshire; Castle Rising, Norfolk; St. Margaret's Porch, at York; St. L'eter's Church, Northampton; besides several round or polygonal bell-towers, both in Suffolk and Norfolk, -may be referred to. Examples of military Norman architecture, from 1070 to 1270, were at Launceston, Cornwall; Arundel, Sussex ; Windsmr, in Berks (rebuilt); Toucr of Lomdon; the stquare keeps of H: lingham, Essex ; Caerphilly, Glamorgan ; Carisbrook, Isle of Wight; Porchester, Hants (1160); Guillford, Surrey; Bamborough, Northumberland; Kenilworth, Warwickshire; lichmond, Yorkshire; Curdiff, Glamorganshire; Canterbury, Kent; O.rfirl (1071); Newcastle, Northumberland (1120); Gishorough, Yorhshire (1120); Ca tle Rising, Noralk; Middlcham, Yorkshire ; Cockermouth, Cumberland ; Durham (1153) ; Lincoln (1086) ; Berkeley, Gloucestershire (1153); Lancaster; Orfirl, Sulfolk, polygomal (1120); I.whlow, Salop (1120); Kemaworth, enlarged (1220); Warkworth, Northumberland, sfuare, wit! the angles cut off; Denbigh; Beeston, Cheshire; Hawarden, Pembrokeshire.

Sect. III.
EARLY ENGLISH ARCILTECTHRE.
399. The next period of architecture in Britain which comes under our consideration, following, as we consider it, the sensible classification of the Rev. Mr. Millers, is that which he has denominated the enrly limglish style, whose duration was from about 1200 to 1300; extending, therefore, through the reigns of John, Ilenry III., and Edward I., during which the building of churches and monasteries was still considered one of the most eflectual means of oltaining the pardon of sin, and consequently the favour of Heaven. In the thirteenth and fourteenth centuries, the churehes built in Britain were almost imnumerable.
400. We have already noticed (chap. ii. sect. xv.) the introduction of the pointed arch into architecture; a feature which completely changed, from all that previously existed, the cha:racter of the edifices to which it was applied. If any service could be rendered to the history of the art, or if the solution of the problem, "who were its inventors?" could throw any useful light on the maners and customs of the people that first adopted it, we should be the last to relinquish the investigation. The question has firnished employment to many literary iller:, but the laiour they have bestowed on the subject has not thrown any light on it ; and excepting the late Mr. Whitington and the late Prof. Willis, of Cambidge, on whose valuable enquiries we cannot sufficiently enlarge, they might have becn more usefully engaged. This statement must necessarily be modified in consequence of the pullications of the lea ned labours of Mr. Fergusson, of which we have so largely availed oursclves in the above-named section; besides thuse of Thomas Rickman, of Mr. Sharpe, and of other ardent enquirers on this and kindred subjects.
401. During the reign of Henry III. alone, no less a number than 157 abbeys, priories, and other religious houses were founded in England. Several of our cathedrals and conventual churehes in a great part belong to this peetiod, in which the lancet or sharp-pointed arch first appeared in the buildings of this country, though on the Continent it was used nearly a century earlier. The great wealth of the clergy, added to the zeal of the laity, furnished ample funds for the erection of the magnilicent structures projected; but it was with extreme difficulty that workmen could be procured to execute them. With the popes it was, of course, an object that churehes should be erected and convents endowed. On the subject of the employment of Freemasons we have already expressed our views (par. 30s, et seg.), therefore we cannot coincide with Wren, Pasentulia, in stating that they ranged from one nation to another, their government was regular, and they made a camp of liuts; a surveyor governed in elief; every tenth man was called a warden, and over. looked each mine. "Those who l.ave scen the account in records of the charge of the falrics of some of our eathedrals, near 400 years old, cannot but have a great esteem for their ceonomy, and admire how soon they erected such lofty structures." It was in the
course of this period that sculpture was first made extensively available for architecturai decoration. The eathedral, eonsentual, and other churches built in Britain, began to be ornamented o:3 the outside with statnes of various dimencions in basso and alto rilievo. Thee were not cytual in execution to those of France. which have also had the additional good fortule to have been better preserved, from their exposure to seasons less inclement and to an atmospliere unimpregnated with the smoke of coal.
402. Great improvements seem to have taken place in the castles of the time; they still continued to serve for the dwelling and defence of the prelates and barons of the country The plans of them were generally similar to those already described; but it must still be conceded that the inhabitants and owners of them sacrificed their convenience to their cenrity, which seems to have been the chief concern in the construction of their castles, whose apartments were gloomy, whose bed-chambers were few and sinall, whose passages were narrew and intricate, and their stairs steep and dark. 'The plan, howeser, as

Fig. 189
cabrinaroz castle. Mir. Dallaway ohserves, "which allowed of enlarged dimensions, and greater regularity and beanty in the architecture of the towers, owes its introduction into Engiand to King Edward I. We may, indeed comider his reign as the epoct of the grand style of accommodation and marnificence combined in castle architecture. When engaged in the Crusades, he surveyed with satisfaction the superior form and strength of the castles in the Ievant and in the IIoly Land." Of the fise eastles crected by him in Wales, Caernarvon (fiy. 189.) , Conway (fig. 190 , showing the suspension bridge, and the railway bridge beyond it), Harlech, and Beamaris still retain traecs of their ancient magnificence; but that of Aberystwith has scarcely a fuature left. Caernarvon Castle

Fig. 190, consisted of two distinct parts: one military, and suited to the reception of: garrison; the other palatial. The ground plan was ohborg. unequally divided into:a lower and an mper ward. Ot the towers, which are all polygoual, the largest, from some tradition called the Eagle Tower. has threesmall angular turrets rising from it; the others having but one of the same description. "The enclosing walls," contimes Mr. Dallaway, "are seven feet thick, with alures and parapets pierced frequently with aillet holes. A great singularity is observable in the extreme leight both of the great entrance gate and that which is called the Queen's. Leland observes of the porteullises at Pembroke, that they were composed e.r solido ferro. In confirmation of the opinion that the roval fonnder adopted the form of such gates of entrance from the East, similar ones are almost universal in the castles, mosunes, and palates of the Saracens, which he had so freguently seen cluring the Crusades. The tower of entrance from the town of Caernarvon is still perfect, and is the most handsome structure of that age in the kingdom. It is at least 100 ft . high; and the gateway, of very remarkable depth, is formed by a succession of ribbed arches, sharply pointed. The grooves for three portcullises may be discovered : and above then are circular perforations, through which missile weapons and molten lead might be diselarged upon the assailants. In the lower or palatial division of the eastle stand a large polygonal tower of four stories, which was appropriated to Qucen Eleanor, and in which her ill-fated son was born, and another which was occupied by the king, of a circular shape externally, but square towards the court. The aparments in the last mentioned are larger, and lighted by windows with square heads, and intersected with carved mullions. There is a singular contrivance in the battlements, cach of which had an excavation for the archers to stand in, pointing their arrows through the slits; and, a curious stratagem, the carved figures of soldiers with, hehets, apparently looking over the parapet. This device is repeated at Chepstow." The ornamental character of the arehitecture at Carenarvon and Conway is rather ceelesiastical, or conventual, than military. At Conwaly, as has been well observed by an anonymons antior, "what is
called the Queen's Oriel is remarkable for the fancy, luxuriance, and elegance of the workmathishp. Nor is the contrivance of the little terraced garden below, considering the
 cular, as are their turrets, with a cingle slender one rising from each; and machicolations, not seen at Caernarvon, are introduced. The greater part of the castles of Wales and Scotland for the defence of the

Fig. 192. trapoil and cinqumpil. neads. marches were built those he had erected, though varying dim. and situation, according to the means of defence proposed to be secured to their founders and possessors. We may here observe, that in the castle at Conway Vdward I. erceted a hall 129 ft . by 31 , and 22 ft . high, which is formed to suit the curvature of the rock; and that from that period no residence of consequence, either for the nobility or feadal lords, was erected without one, varying, however, of course, in their minuter parts, according to circumstances, and in degree of magnificence.
404. Caer-Plailly Castle, in Glamorganshire (fiy. 191.), was another in the reign of Edward I. On the subjugation of the formercountry, and its partition into lordships among Edward's followers, many castles were reared upon the general plan of

Fig. 191.

plas op colvess history of the times, a matter of small curiosity, where, though all the surrounding country were hostile, fiesh air might be safely enjoyed; and the commanding view of the singularly beantiful landseape around, from both that little herbary or garden, and the bay window or oriel, is so managed as to leave no doubt of its purpose."
403. The model of Conway Castle has little resemblance to that we have just left. It resembles rather the fortresses of the last Greek emperors. or of the chicftains of the north of Italy. The towers are mostly cir. cular, as are their turrets, with a

Fig. 193. CUHLMNS OF WFSTMMSTER AJHHL.
of the eastles of this period. It was the strong-hold of the De Spencers in the reign of the second Edward. Its vallations and remains are very extensive. 'lhe hall was much larger than that at Conway.
405. The characteristics of this style are, that the arches are sharply (lancet) pointed, and lofty in proportion to their span. In the upper tiers

Fin. 19\%. capital of cotams. two or more are comprehended under one, finished in trefoil or cinquefoil heads (fig. 192.) instead of points, the separating columns being very slender. Columas on which the arches rest (fig. 193.) are very slender in proportion to their height, and usually consist of a central shaft surrounded by several smaller ones (fig, 194.). The base takes the general form of the eluster, and the capital (fiy. 195.) is frequently decorated with foliage very elegantly composed. The windows are long, narrow, and lancet shaped, whence some writers have called this style the Lancet Gothic. They are divided ben one plain mullion,
or in upper tiers by two at most, finished at the top with some simple ornament, as a lozenge or a trefoil. They have commonly small marble shalts on each side, both intermally and extornally; two, three, or more together at the east or west end, and tier above tier. Roo/s are high pitehed and the eeilings vaulted, exhibiting the first exanples of arehes with cross springers only, which in a short period diverged into many more, rining from the eapitals of the eolumns, and almost overspreading the whole surface of the vauling. The longitudinal borizontal line which reigned alosg the apex of the vanlt was decorated with bosses of flowers, figures, and other fancies. Walls much redueed in thickness from those of the preceding period: they are, however, externally strengthened with buttresses, which, as it were, lean against them for the purpose of counteracting the thrust exerted by the stone vaults which form the eeilings, and which the walls and piers by their own gravity conld not resist. The buttresses are moreover aided in their office by the pinnacles, adorned with crockets at thein angles, and crowned with finial flowers, by which they are surmounted. The ornaments now become numerous, but they are simple and elegant. The mouldings are not so much varied as in the Normin style, and are generally, perhaps universally, formed of some combination of leaves and flowers, used not only in the circumference of arches, especially of windows, but the columns or pilasters are completely laid down with them. Trefoils, quatrefoils, einquefoils, roses, mullets, bosses, patera, \&c. in the spandrils, or above the keystones of the arches and elsewhere. The ornamental pinnacles on shrines, tombs, \&c. are extremely high and acute, sometimes with and sometimes without niehes under them. In east and west fronts the niches are filled with statues of the size of life and larger, and are crowned with trefoil, S.c. heads, or extremely acute pediments, formed by the meeting of two straight lines instead of arcs. All these ornaments are more sparingly introduced into large entire edifices than in smaller buildings or added parts. The plans are generally similar to those of the second period, but that important feature the tower now begins to rise to a great height, and lanterns and lofty spires are frequent accompaniments to the structure. It will naturally oceur to the reader, that in the transition from the second to the third style, the architeets left one extreme for another, though it has been contended that the latter has its germ in the former. However that may be, the period of which we are now speaking was undoubtedly the parent of the sneceeding styles, and that by uc very foreed or unnatural relationship. (See liook III. Chap, 3.)
406. The principal examples of the early Engiish style in the cathedral churches of England are to be seen at Oxford, in the chapter-house. Lincoln, in the nave and arches beyond the transept. Fork, in the north and south transept. At Durham, in the additional transept. Wells, the tower and the whole western front. Carlisle, the choir. Ely, the presbytery. Horcester, the transept and eheir. Sulisbury, the whole cathedral ; the only ummixed example. At Rochester, the choir and transept. "It is well worthy of observation," says Mr. Dallaway, " that though the gromnd plans of saered edifices are, generally speaking, similar and systematie, yet in no single instance which occurs to my memory do we find an exact and unvaried copy of any huilding whieh preeeded it in any part of the structure. A striking analogy or resemblance may oceur, but that rarely."
407. The examples of conventual architecture of this period, to which we beg to refir the reader, are those of Lanercost, in Cumberland; Rivaulx, Yorkshire; Hestminster Abhey. At Fountains, the ehoir and east end; Tinterne Abley, in Monnouthshire : Netley, Ilampshire; Whithy, in Yorkshire; Iralle Crucis, in Denbighshire; Ripon Minster and the south transept of Beverley Minster, in Yorkshire; Milton Abbey, Dorsetshire; part of the nave of St. Al!an's; T'ynemouth and Brinkbourn, Northumberland; Vale Royal, in Cheshire; and the eastern façade of Howden, in Yorkshire.
408. Among the examples of parochial churehes in this style are Grantham, in Lineolnshire, whose tower is 180 ft . high ; Attellorough, in Norfolk; Higham Ferrars, in Northamptonshire ; St. Michael, Coventry ; T'ruro, in Cornwall; Witney, in Oxfordshire; Stratford upon Avon, in Warwickshire; St. Peter Mancroft, Norwieh; Boston, Lineolnshire, remarkable for its lantern tower rising 262 ft . from the ground, and perhaps almost belonging to the suceceding period; St. Mury, Edmund's Bury, Suffolk; Maidstone, in Kient; and Ludlou, in Shropshire.

Sect. IV.

409. The fourth period in the architecture of Britain is that which Mr. Miilers calls the Ornamented English Style, which begins about 1300 and lasts till 1460, and comprises, therefore, the latter portion of the reign of Edward I., and the reigns of Edward II.. Edward III., Riehard II., Henry IV., Henry V., and IIenry VI.
410. This ara has by Dallaway and others heen subdivided into two parts, viz. first
from 1300 to 1400 , which they call that of the Transition Style or pure Gothic, and from 1400 to 1460 , called the Decorated Gothic; but the change between the latest examples of the first and the earliest of the last is marked by such nice and almost imperceptible distinctions, that it is next to impossible to mark their boundaries with precision; and we have therefore preferred adhering, as we have in the other ages of the art, to the arrangement adopted by Mr. Millers. In the early part of the period the change, or rather progress, was extremely slow, and marked by little variation, and, indeed, until 1400, the style can scarcely be said to have been perfected; but after that time, it rapidly attained all the improvement whereof it was susceptible, and so proceeded till about 1460 ; atter which, as we shall hereafter see, it assumed an exuberance of ornament, beyond whieh as it was impossible to advance, it was in a predicament from which no change could be effected but by its total abandonment.
411. Notwithstanding the wars of the rival houses of York and I.ancaster, which occupied a considerable portion of the interval whercof we are speaking, and deluged, as the reader will recollect, our land with the blood of the bravest of men, the art did not appear to sulfer ; a circumstance apparently extraordinary, but satisfactorily accounted for by the zeal of both the contending parties for the religion they in common professed. True it is that the taste for founding and building monasteries and churches was not so universal as in the period last described; the decline, however, of that taste might in some measure have arisen not only from the unhappy state of the country just alluded to, but also from the doubts raised in the minds of many persons of all ranks by Wickliffe and his followers as to the merit attached to those pious and expensive works. "It cannot," says Henry, "be denied that the style of saered architecture commonly called Gothic continued to be greatly improved. and in the course of this period was brought to the highest perfection." To accomut in some measure for this, it must be recollected that during the civil wars the superior ecclesiastics were confined to their cloisters, as few of them had taken an active part in the dispute which agitated the realm ; and, indeed, some of the finest structures now remaining were reared from the accumulation of wealth amassed by instigating the noble and affluent to contribute to churehes built under their own inspection. The choir at Gloucester, a most beautiful example, was completed during these turbulent times by Abbot Sebroke, together with the arcade that supports the magnificent tower of that cathedral.
412. During this period the efforts of painting and sculpture were superadded to those of arelitecture; and to these must be joined the enchanting effects produced by expanded windows glowing with the richest colours that stained glass could bestow on them. To enter into a history of the rise, progress, and perfection of this art, would here be out of place. A separate work would be required to trace it from its introduction in this country as connected with our art in the reign of Henry III., to that point when it reached its zenith in the fifteenth century. Dallaway observes, with much truth, that it is a vulgar error to suppose the art was ever lost, inasmuch as we had eminent professors of it in the reign of Charles I.
413. In military architecture, from the reign of Edward III. to the close of the contention between the houses of York and Lancaster, many improvements were effected. Within that period a great number of the castellated edifices of which the country could boast were erected or renewed. Their style is marked by turrets and hanging galleries over the salient angles and gateways, of great variety in design. In the fortress at Amberley, in Sussex, built by Willian Rede, Bishop of Chichester, alrout 1370. and one of the ablest geometricians of the age, the ground plan is nearly a parallelogram with four large towers at the angles, not projecting externally, but inserted into the side walls. Of this æra is also, at Swansea Castle, the lofty perforated parapet or arcade, through which the water was conveyed from the roof. Upon this plan Henry Gower, Bishop of St. David's, in 1335 , improved, in his magnificent castellated palace at Llanphey Conrt.
414. From the circumstance of the eircuit of many of the castles encompassing several acres of ground, the base court was proportionably spacious; hence the halls and other state apartments were lighted by windows, smaller, but similar in form to those used in churches. The rest of the apartments were unavoidably incommodious, defence being the chief consideration. In the castles and palaces of the period, the lalls, which formed a principal feature in them, require some notice. The earliest whereof mention is made was that built by William Rufus in his palace at Westminster. Hugh Lupus erected one at Chester, and one was executed for Robert Consul at Bristol. Others we find erected by Henry I. at Woodstock and Beaumont in Oxford; probably of rude construction, and divided into two aisles by piers of arcades or timber posts. In the following century, when castles began to be constantly inhabited, and space became requisite for holding the numerous feudal dependents on various occasions, the size of the hall was of course increased, and internal architecture and characteristic ornaments were applied to it. At the upper end, where the high table was placed, the floor was clevated, forming a huut pus or duis, a little above the general level of the floor. The example afforded by Edward 111. at

Windsor was followed during his own and the succeeding reign. The halls of Westminster and Eltham were rebuilt by Richard II.; Kenilworth by John of Gaunt; Darting1on, in Devonsinire, by Holland Duke of Exeter. Crosby Hall, in London, was finished by the Duke of Gloucester, afterwards Richard IJI. We here subjoin the dimensions of some of the principal halls in castles and palaces before the end of the fifteenth century, ranged in order of their size, as partly revised :-

			Length in feet.	Breadth in feet.	Height in feet.
Westminster (1397)	-	- -	238.9	67 to 68	90
Durham Castle -	-	- 3\%, now	180	50	36
London, Guildhall -	-	- -	153	50	60 (Wren's rool')
Conway (roof laid on stone	ribs)	- -	129	31	22
İristol (divided by upright	beams	of timber	108	50	-
Eltham Palace -	-	- -	$101 \cdot 3$	36.3	54
Cinester -	-	- -	99	4.5	-
Rahy Castle	-	- -	SO	36	-
Kenilworth Castle (1300)	-	- -	88.8	45	32:3 walis
Swansea - -	-	- -	88	30	-
Leicester Castle Hall (oak p	pillars)	- -	78	51	24
Spofforth	-	- -	76	36	-
Dartinzton (1476)	-	- -	70	40	44
Caerolilly -	-	- -	\%0	30	17 walls
Crosby Place (1456-70)	-	- -	69	17	$38 \cdot 6$
Mayfield Hall (stone ribs)	-	- -	68	38	-
Goodrich Castle -	-	- -	65	28	-
Warwick Castle	-	- -	62	35	2.5
Berkeley Castle -	-	- -	61	32	-
Second one at Swansea	-	- -	58	33	-

415. Generally, in respect of plan, the internal arrangement of these halls was very similar. The high table, as we have observed, was elesated on a platform above the level of the floor, and was reserved for the lord and his family, with the superior guests. Round the walls separate tables and benches were distributed for the officers of the houschold and dependents. The centre was occupied by the great open fire-place, directly over which in the roof was placed a turret, denominated a louvre, for conveying away the smoke. At Holton Castle we find the chimness in the walls; but, perlaps, those at Conway and Kenilworth are earlier proof of the alteration. The roofs with which some of these halls are spanned exhibit mechanical and arti,tic skill of the first order. The thrust, by the simplest means, is thrown comparatively low down in the best examples, so as to lessen the horizontal effect against the walls, and thus dispense with considerable solidity in the buttresses. Fig. 196. is a section of the celebrated Hall of Westminster, hy which uur obsersation will be better understood. These roofs were framed of oak or chesnut. Whether, when of the latter, it was imported from Portugal and Castile, is a question that has been discussed, but not determined, by antiquaries. Large stone corbels and projecting consoles were attached to the side walls, and were disposed in bays called serereys between each window. Upon their ends, demi-angels were generally carvech, slasping a large escochion to their breasts. Near to the high table, a projecting or bay window, termed an oriel, was introduced. It was fully glazed, frequently containing stained glass of the arms of the family and its alliances. Here was the standing cupboard which contained the plain and parcel-gilt plate. The rere-dos was a sort of framed canopy hung with tapestry, and fixed behind the sovereign or chieftain. The walls were generally lined to about a third of their height with panelled oak or strained suits of tapestry. It was during this æra that privy chambers, parlours, and bowers found their way into the castle. Adjoining to, or nearly connected with the hall, a spacious room, generally with a bay window, looking on to the quadrangle, was planned as a receiving-room for the guests, as well befure dinner as after. This was decorated with the richest tapestry and cushions embroidered by the ladies, and was distinguished by the name of the presence or pricychamber. The females of the family had another similar apartment, in which their time was passed in domestic occupations and amusements. This last room was called my lady's bover or parlour, and here she received her visitors. Bay windows were- never used in outer walls, and seldom others, excepting those of the narrowest shape.
416. The dawn of improvement in our domestic architecture opened in the latter part of theperiod, during which also brick came very much into use in England as a building material. " Michael de la Pole," as we learn from Leland's Itinerary, " marchant of Hull, came into such high favour with King Richard II, that he got many privileges for the towne. And in hys tyme the toune was wonderfully augmented yn building, and was enclosyd with ditehes. and the waul begun; and in continuance endid, and made all of brike, as most part of the houses at that time was. In the waul be four principal gates of brike." Afte:

Fig． 196.
SECTION OF WEATXINSTER 1：ALL
chumeratang twenty－five towers，＂MI．de la Pole，＂we find from Leland，＂buildid a goodlie house of brike，against the west end of St．Marse＇s churche，lyke a palace，with goodly orcharde and garden at large，also three houses besides，every on of which hath a tower of brik．＂（Itin．vol．i．p．57．）This was the first instance of so large an application of brick in England．

417．One of the mast important parts of the castle was the great gateway of entrance， in which were combined，at the same time，the chief elements of architectural beanty and military defence．It usually occupied the central part of the screen wall，which had the aupect whenee the castle could be most conveniently approached．Two or more lofty towers flanked either side，the whole being deeply corbelled；a mode of building bronglit by the Arabs into Europe，and afterwards adopted by the Lombards and Nornans．The corbel is a projecting stone．the back part whereof，which lies in the wall，being balanced by the superincumbent mass，it is capable of supporting a parapet projecting beyond the face of the wall rising from the horizontal course laid immediately on the corbels，between which the said horizontal course was pierced for the purpose of enabling the besieged to drop missiles or molten metal on the heads of the assailants．The corbel is often carsed with the head of a giant or monster，which thus seems attached to the walls．In John of Gaunt＇s entrance gateway at Lancaster，the areh is defended by overhanging corbels with piereed apertures between them．and on either side are two light watch－towers crested with battlements．

418．Of the military architecture of this time，a perfect idea may le obtained from the two remarkahle towers of Warwick Castle（fig．197．），which were erected（in 1395）by Tho：nas de Beauchamp Earl of Warwick．The taller one rises 105 ft ．above its base，and is 38 ft ．diameter，having five stories，which are separated from cach other ty groined ceilings．In the interior，the walls of the state chambers were painted；a prac－ tiee introduced into lingland in the begrining of the thirteenth century；and they were

Fig. 197.
warwick castle.
sometimes lined with wainscot of curious carved boisserie on the panels, which afterwards beeame more adorned, and were hung with tapestry. At Warwick was a memorable suit of arras whereon were represented the achievements of the famous Guy Earl of Warwick.
419. The period of which we are treating was as celebrated for its bridge as for its military architecture. and exhibits as one of its examples that famed curiosity the triangularly formed bridge of Croyland in Lincolnshire, erected over the confluence of three streams. Bridge architecture was in many instances

Fig. 198. ArCh OV YORK minster. so necessarily connected with the construction of a fortress, that it may almost, in this age, be taken as a branch of military architecture.
420. This style exhibits Arches, less acute and more open (fig. 198. from York IInster), the forms varying. Columus. - The central and detached shafts now worked together into one, from experience of the weakness of those of the previous style, exceedingly various in their combinations. The ITindows are larger, divided by mullions into several lights spreading and dividing at top into leaves, flowers, fans, wheels, and fancilul forms of endless variety. 'These marks are constant, but in the proportionate breadth there is much variation, for after having expanded in the reigns of Edward I. and II., they grew narrower again in proportion to their height in that of Edward III. and also sharper. 'The head was then formed of lines just perceptibly curved, sometines even by two straight lines, sometimes just curved a little above the haunches, and then rectilinear to the apex. Eastern and western windows very lofty and ample, and splendidly decorated with painted glass. Roof or Cciling. - The vaulting more decorated. The principal ribs spread from their imposts ruming over the vault like tracery, or rather with transoms divided into many angular compartments, and ornamented at the angles with heads, orbs, historical or legendary pictures, Sc., elaborately coloured and gilded. Ornaments. - More various and laboured, but not so elegant and graceful in character, as in the preceding style. Niches and tabernacles with statnes in great abundance. Tiers of small ornamental arches are frequent. The pinnacles are neither so lofty nor tapering, but are more richly decorated with leaves, croekets, \&c. Sculpture is introduced in much profusion, and is frequently painted and gilt. Sereens, stalls, doors, nannelled eeilings, and other ornaments, in carved and painted wood. (See Eook III. Chap. 3.)
421. The principal examples of the ornamented English style in cathedral churehes, are at Exeter, the nave and choir. Lichfield, uniformly. At Lincoln, the additions to the central tower. At Horcester, the nave. York, nave, choir, and wostern front. At Canterbury, trausept. At Gloucester, transept and cloisters begun. Noruich, the spire and tower. Salisbury, spire and additions. Bristol, the nave and choir. Chichester, the spire and choir. Ely, Our Lady's Chapel and the central louvre. Hereford, the ehapter-house and cloisters, now destroyed. In the later part of the period, the choir at Gloucester ; the nave at Canterbur!! Bishup lleekington's additions at Wells, and from the upper transept to the great east window at Lincoln. In conventual churches, for the earlier part of the period, the western façade of Houden (1320.). Chapel of Merton Co'leqe, Oxford. Gisborne Priory, Yorkshire. Chapel ut New College, Oxford. St. Stephen's Chapel, Westminster. The additions to the pediments of the choir at Kirkstall, Yorkshire. St. Mary's in York. Kirkham in Vorkshire, and the choir of Sellny, in the same county. For the later part of
the period, at Tewkestury, the choir. At E'ly Cuthedral, St. Mary's Chupel. C'imphut figcade in Lincolnshive. Beeverley Minster in Yorkshire. Clatpel of Magdulen College, Ostord. Eton College Chapel, Bucks. Chapel on the Firidge at Wakefield in Yorkshire, built by Edward IV. in memory of his father Edward Duke of York; and the Betuchemp, Cheqjel It Warwick. In parochial churches, for the early part of the period, examples may be ruferred to at Grantham, Lincolnshire. Attellorough, Norfolk. Higham Ferrers. Northamptonshire. St. Michael, Coventry. Truro, Comwall. Witney, Oxfordshire. Stratforch-"pon-Avon, Warwickshire. St. Peicr Matucroft, Norwich. Boston, Lincolnshire; its remarkable lantern tower, which is 262 ft . high, was begun in 1309 , and was in progress of execution during the whole reign of Edward 111. The expense of it having been chiefly defrayed by the merehants of the Hanse Towns. St. Mary, Edmunas Bury, Suffolk. Huidstone, Kent ; and Ludlow, Salop. For the later part of the period, St. Mirry Overy, Southwark. Thusted and Saffron Halden, Essex. Lowth and Stamforl, Lincolnshire. Camplen, Gloucestershire. St. Mary Redcliff and the tower of St. Stephen, Bristol. Tumanton and Churton Mendip, Somersetshire. Lavenham, Suffolk. Manchester College. st. Mary's, Oxford. Whittlesea, Cambridgeshire. Wahefield, Yorkshire. Doncaster, Yorkshire. Newurk-upon-Trent. Heckington, Lincolnshire. Mould Gresford and Wrexham in Plintshire. Meltom Mowhray, Leicestershire. Octanyular towers of St. Murgaret's. Norwich, and All Saints, York.

Ster. V'.

Fl.OR1D ENG.S.tsh OR TR1HOK STVB.F.
4:2!. "There is," as Dr. Ilenry observes, "a certain perfection in art to which fuman genius may aspire with saccess, but beyond which, it is the apprelension of many, that improvement degenerates into false taste and fantastic refinement. The rude simplicit! of Savon arehitecture was (ultimately) supplanted by the magnificence of the ornamental Gothic; but magnificence itself is at last exhausted, and it terminated during the present period in a style, which some, with an allusion to literature, denominate 'the llorid.' It is a style censurable as too ornamental, departing from the grandeur peculiar to the Gothic, without acquiring proportional elegance; yet its intrieate and redundant deeorations are well calculated to rivet the eye, and annaze, perhaps bewilder. the mind." The period of the style is from 1460, to the dissolution of the religious houses in 1537, and comprehends, therefore, the reigns of Edward IV. and V., Richard III., IIenrys VII. and VIII.
423. The eeclesiastical buildings of this ara are few. Somersetshire, a county devoted to the cause of the House of Lancaster, from the gratitude or policy of IIenry V'II., boasts perhaps more churches than any other county in the florid style; still they are very few, and the superb chapel which that monarch erected at Westminster is the best specimen that can be adduced for giving the reader a proper and correct idea of the Florid or Tudor style. 'There is doubtless an abundanee of examples in oratories, porehes, and small chapels, sepulchral sacella and the like; but beyond them we could cite very few entire sacred buildings; and thoe will be hereafter appended to this section as in the preceding ones. In civil, or rather domestic arehitecture, the case was far different : a very great change took place; and we shall endeavour to place a succinet aceount of it from the Rev. Mr. Dallaway's work, to which we have already been much indebted. The fifteenth century exhibits to us a number of vast mansions of the noble and opulent, wherein the chatracteristic style of the immediately preceding castles was not entirely abandoned, but superseded and mised up with a new and peculiar one. The houseloold books of the nobility which have come to our knowledge, indicate a multitudinous set of servants and retainers, for the reception of whom a great area of ground must have been covered, and in which provision, by the number of apartments, was made for a noble display of horpitality. This circumstance, of course, induced a gorgeous style peculiar to the earlier Tindor ara, of mont of whose splendid mansions no memorial now exists but in the records of the times. But for the purpose of bringing a view of the whole subject under the eye of the reader, a brief recapitulation will here be necessary. The first palace of the Norman kings was the Tower of London, which was a strictly military residence. At Westminster was a palace of William Rufus, to whom Westminster Hall owes its original foundation. At Oxford a palace was built by Henry I., and at that place he kept his Christmas in 1115, as in 1229 and 1267 Henry III. did in the vieinity at Woodstock. It was at this phace that Henry II. built a house of retirement, which has furnished the shbject of some well-known legends. Henry III, is said to have refounded the palace at Wentminster, which was much enlarged by Edward III. This, from the time of Rufus, its founder, to the reign of Richard II., to whom it owed its completion in the state apartments, with its magnificent hatl and bijou of a chapel (St. Stephen's), had attained a greater extent than any contem-
porary palace in Europe. Edward 1 II., besides erecting his suburban palace at Kemington had re-edified and greatly extended Windsor Castle as a halbitable tortification. Henry 1 V . inherited John of Gannts castle of Kenilworth and the Savoy in London, to both of which he made great additions. His gallant and victorious son was too much occupied with his military atliairs to pay much attention to such matters; but many of his commanders, by the exorbitant ransoms they exacted of their liench prisoners, were enabled to construct mansions of vast extent in those counties where their revenues commanded miluenee. Of these, as signal examples, may be eited Hampton Court in Herefordshire by Sir Rowland Lenthal ; and Ampthill, Bedfordshire, by Sir John Cornwal Lord Fanhope At Greenwich, a palace of great beauty, in the early part of the reign of Henry VI., was built by the regent llumphrey Duke of Gloucester, which, from its superiority over others, was by its founder called Placentin or Plaisance. This was completed by Ldward I V., and is now remembered as the birthplace of Queen Elizabeth. The Lord Treasurer Cromwell expended a large sum on his residence at 'Tattershall in Lineolnshire, and at Wingfield Manor in Derbyshire, as did Lord Say and Sele, and Lord Bofeler, respeetively, at Sudley in Gloucestershire, and Hurstmonceaux in Sussex, all of which are now either destroyed or only in ruins. Additions were made by Edward IV. to Nottingham Castle, and by his brother Richard 11I. to Warwick Castle and that of Middleburg in Yorkshire.
424. Upon the establishment of the Tudor dynasty, Henry VII., on the ruins of a former palace at Shene in Surrey, which after the repairs he bestowed upon it was destroyed by fire, built a palace, whereto he gave the name of Richmond, in allusion to his former title, a name which was afterwards given to the beautiful town on the Thames, in its vicinity. 'The dimensions of the state apartments in this splendid building, whereof not a vestige now rema:ns, are to be found in the Survey of 1649 , when it was offered for sale by the Commissioners of Parliament. They abounded with bay windows of eapricious formation, with rectangular and semicircular projections, producing a pieturesque effect ; and to add to its fantastic appearance, there were many octangular towers, surmounted with eupolas of the same plan, whose mitres as they rose were fringed with rich erockets. They were bulbous in their general form, thus bearing a resemblance in contour to the royal erown of the period.
425. The Tudor style, in domestic arehitecture, is thus divided by Mr. Dallaway. " 1 . That just alluded to ; 2. The variations under Henry V11. ; 3. The Elizabethan style" (which will form a separate section), "as it admitted of Italian ormament in the designs of John of l'adua and his followers, until the time of Inigo Jones.
426. 'The re: Fn of Henry V11I. supplies numberless instances of the gorgeous expene to which the nohility and gentry proceeded in the productions of our art. 'The example set by the monareh himself was witnessed in no less than two royal mansions, each large enough to contain his numerous retinue. The following are the palaces that were built or repaired by Ilemry VIll.: -

1. Beaulieit, or Newhall, Essex.
2. Hunsdon, Herts, originally built by Sir John Oldhall, temp. Edw. IV
3. Ampthi!1, Bedfordshire.
4. Nons:ich, Surrey.
5. York Place, Whitehall, Westminster.
6. Piridewelt and Blackfriars, London, for the reception of the emperor Charles V.
7. St. James's, Westminster.
8. Kimbolton, Huntingdomshire, the jointure of the divorced Queen Catharine of Arragon.
9. Sheriff Hutton, Yorkshire, given for the residence of Henry Duke of Richmond, the king's natural son.
10. King's Langley, Herts.

It was natural that the courtiers of such a monarch should vie with each other in erecting sumptuous houses in the provinces where they were seated. Wolsey, besides the progress he had made, at the time of his fall, in his colleges at Christehureh, Oxford, and lpswich, had completed Hampton Court, and rebuilt the episeopal residences of York House (afterwards Whitehall), and Esher in Surrey. Ddward Stafford, Duke of Buekingham, in his palace at Thombury, Gloucestershire, almost rivalled the cardinal, and perlaps might have done so entirely if he had not been hurried to the seaffold before his mansion was completed. Grimsthorpe, in Lincolnshire, rose under the orders of the Duke of Sulfolk (Charles Brandon). The Duke of Norfolk and his accomplished son, the Earl of Surrey, were, as appears from the descriptions of Keminghall, Norfolk, and Mount Surrey, near Norwich. magnificent in the mansions they required for their occupation. We shall merely add the following list (which might, if it were neeessary, be much augmented) of some other mansions of note. They are - 1. lladdon Ilall, Derbyshire. 2. Cowdray, Sussex, destroyed by fire in 1793. 3. Hewer Castle, Kent. 4. Gosfiełd Hall, Essex, perfect. 5. Hengreave 1Iall, Suffolk, perfect, and whereof a beautiful work hats been published by John Gage, Esq. (now Rookwode), a deseendant of its aneient possessors. 6. Layer Marney, Essex, now in ruins. 7. Raglan Castle, Monmonthshire, in ruins. 8. Hunsdon House, Herts, rebuilt. 9. South Wingfield, Derlyshire, dilapidated. 10. Hill IIall, Essex, built by Sir Thomas Smyth, in 1542. 11. Wolterton (see fig. 199.)
in East Barsham, Norfolk, in ruins. 12. Harlaxton, Lineohshire, perfect. I3. Westwood, Woreesterstine, perfect.

427. In a very curious tract, entitled, "A Dyetorie or Regiment of Ifealth," by Andrew loorde, of Physike Doctor, 8vo., first printed in 1547, the following direetions are given how a man should build his house or mansion; from which it appears that there were certain leading points for the guidance of the architect, founded, of course, they were on the habits of the time. "Make," says our friend Andrew, "the hall of such fashion that the parlor be annexed to the head of the hall, and the buttyre and pantrye at the lower ende thereof; the cellar under the pantrye sett somewhat at a base; the kechyn sett somewhat at a base from the buttrye and pantrye; coming with an entrie within, by the wall of the buttrie; the pastric honse and the larder amexed to the keehyn. Then divyde the logginges by the eirenit of the quadrivial courte, and let the gatehouse be opposite, or agrainst the hall doore; not direetly, but the hall doore standyng abase of the gatehouse, in the middle of the front enteringe into the place. Let the preve chamber be annexed to the great chamber of estate, with other chambers necessary for the buildinge; so that many of the chanbers may lave a prospecte into the ehapell." Some of the principal innovations in the early 'ludor style, were the introduction of gatehouses, bay windows, and quadrangular areas, matters rather incompatible with buildings constructed for defence. The materials of these palaces and mansions were of freestone and brick, according to the facility with which from the situation they could be procured. Sometimes, indeed olten, these materials were mixed. Moulded brickwork and terra cotta were introduced for ornamental parts by Trevigi and IIolbein towards the end of the period, or, perhaps strietly speaking, at the end of it. The brickwork was oceasionally plastered and pointed as at Nonsuch. At Layer Marney and other places, bricks of two colours highly glazed were used for variegating the surface, and were formed into lozenges. The chimney shatts seem to have exhausted invention in the twisted and diapered patterns into which they were wrought, and decorated with heads and eapitals and cognizanees of the founders. The gateways were prominent features in these edifices, and the most expensive ornaments were las ished on them. That at Whitehall, designed by Holbein, was eonstrueted with diflerently coloured glazed bricks. over which were appended four large cireular medallions of husts, still preserved at Ilatield Peveril. Herts. This gateway contained several apartments, among whieh not the least remarkable was the study wherein Holloin chiefly received his sitters. The gatoways at Ilampton Court and Woolterton were very smilar to this.
428. We will here digress a little on the bay window which, as generally understood. was simply a projecting window between two buttresses (whence its name, as occupying a bay of the building), and almost miversally placed at the end of the room. It was invented about a century before tile Tudor age, in which it usually eonsisted on the phan of right angles intersected by circles, as in the buildings at Windsor by llenry Vill., and at Thornbury Castle. When placed at the end of a great hall, it extended in height from the flowr to the veiling, and was very simple and regnlar in its form. In a MS at the Herald's College relating to an entertaiment given at Richmond by Henry V'II., the following passage oseurs, and may be taken as deseriptive of one of the purposes to which it was applied. "Agaynst that hin graee had supped: the hall was dressed and goodlie to be seene, and a rich copboord sett therenp in a baye window of IX or X stages and hannees of hight, furnissed and fultilled with plate of gold, siluer, and regilte." Carsed wainseoting in
panels, generally of oak, lined the lower part of the halls with greater unity of design and execution than heretofore; and it now found its way into parlours and preence clambers with every variety of eyphers, cognizances, chimeras, and mottoes, which in the castles of Prance about the age of liancis 1. were called Boisseries. Of these some curious specimens still remain in the hatl and chambers of the dilapidated mansion of the Lords de Las Ware at Italmacre in Sultolk. The area or court was quadrangular, and besides the great stairease near the hall, there were generally hexangular towers containing others: indeed, ney were usually to be found in each angle of the great court, rising above the parapets, imparting a pleasant and picturespue effect to the mass of building, and grouping well with the lofty and onamented chimneys of which we have above spoken.
429. It is melancholy to reflect upon the dis-

Fig. 200 . tUDOR AROB, ST. GHORGR'S cHAPKI. appearance of these mansions which were once the ornaments of the provinces, and now one by one falling fist away by the joint operation of what is ealled repair and by deeay. Most of their remains have been removed to raise or to be incorporated with other buildings for which they might have well been spared.
430. The characteristics of the style are urches, miversally flat, and wide in proportion to their height (fis, 200.). Windows, much more open than in the last period, flatter at the top, and divided in the upper part ly transoms, which are almost constantly crowned with embattled work in miniature. The ceilings or valtings spread out into such a variety of parts, that the whole surface appears covered with a web of delicate sculpture or embroidery thrown over it ; and fiom diflerent intersections of this ribbed work, clusters of pendant ornaments hang down, as Mr. Millers observes, like "stalactites in caverns." 'The All"ing buttresses are equally ornamented, and the extermal surfaces of the walls are one mass of delicate sculpture. The ornaments, as may be deduced from the above particulars, are lavish and profuse in the highest degree. Fretwork, figures of men and animals, niches and tabernacles, accompanied with canopies, pedestals, and traceries of the most exquisite workmanship, carried this style to the summit of splendour; and all these combined, had, perhaps, no small share in producing the extinction it was doomed to undergo. (See Book III. Chap. 3.)
431. Scotland boasts of many fine specimens of ecclesiastical architecture. ithe abieys of Melrose and Kelso, foundel by David 1., as well of those of Dryburgh and Jedbugh. all in Roxburghshire, prove that the art advanced to as great perfeetion north of the Tweed, as it did in England. Roslin chapel, erected by Sir Willianı St. Clair, for richness and variety of ornamental earvings camot be exceeded; its plan is withont parallel in any other specimen of the fifreenth century. Holyrood chapel was finished in 1440 by James I I., and is a beautiful example; the fying butresses are more ornamented than any even in England.
432. Examples of the Plorid Gothic or Tudor style are to be seen at the eathedrat churches-of Gloncester, in the chapel of Our Lady; at Oxfurd, in the roof of the choir; at Ely, in Alcock's chapel; at leterburough, in Our Lady's chapel, and at Herefird, in the north porch. In conventual churches, at Wirulsor, St. George's chapel ; at Cambridye, King's Collcge chapel; at Westminter, King IIenry VII.'s chapel; at Great Malvern, in Worcestershire. the tower and choir; at Christ Church, Oxford, the roof of the choir, and at Eveshom Abbey, in Worestershire, the campanile and gateway.
433. For paroebial churches. we are unab e to refer the reader to a complete speeimen. in all its parts, of the Tudor style. The pulpit and sereen at Dartmouth in Devonsliire, are worthy of notice, and Edyngdon Chureh, Wilt,, for its transitional features.
434. This section will be elosed hy a tabular view of the promoterc, dates of erection, and dimensions, of the different cathedrals of England, arranged from the best modern authorities, such as The Cuthedrals of Eugland, by John Brition; Worcester and Lincoln, by C. Wild; Carlisle, by R. W. Billings; Canterbury, by W. Woolnoth; which are the hest architectural illustrations of these structurss; P'of. Willis's Architectural History of C'anterbury Cathealral, 1845, must be referred to by all students; while Muray's Hundlon,ks to the E'nglish ened Weloh Cathedruls, besides he carelul historical intormation contained in
them, are profusely illustrated with woodcuts of exterior and interior v:ews, timins, sbrines, and other interesting details. The Journals of the two Archæolorical S.ecieties also contain carefully prepared accounts of many of these structures. (All inside dimensions.)

Bristol-Conventual Ciurch, Augustintan (Holy Trinity).

Dates and Founders.	Nave.	Choir.	Aisles.	Transepts.	Tower.
Abbots. 1142-70 Robert Fitzharding 1306 7 Edinund Knowle, 1341 f John Snow and obhers $14815\}$ John Newland 1.515) 1515-26 Robert Elliot	L. B. H. \qquad Destroyed 16 cent \qquad	$\begin{array}{ccc} \hline \text { L. } & \text { B. } & \text { H. } \\ \left.\begin{array}{cc} 73 & \\ 100 & 73 \\ 31 & 43 \\ - & - \\ - & \end{array} \right\rvert\, \end{array}$	L. B. H \qquad \qquad \qquad	L. B. H. \qquad s. $118-4.3$ N. groined s. Vault.	L. B. H. $30 \frac{1}{2} 29122$

See foumded 1541. The chapter house and vestibule, $1155-70$, is now $42 \mathrm{fc}, \mathrm{by}$ 25 ft . The Filler Lady chawel dates $1196-1215$, and the roof, $1283-94$. The stalls were pur up by 16 . Elliot. The internal length is 173 ft . the breadih 118 ft . The chapter house robuilt 1833 by Mr. Pope; 1853 , chotr rearranged and sedilia restored by T. S. Pope; tower arches rebuilt about 1865 hy J. Foster; nave building 1875 by G. E. Street, K.A.

Canterlbury-Cathedral. Church, Benenictine (Christ Chureh).

D. tes and Founders.	Nave.	Chuir	Aisles.	Transepts.	Towers.
$\left.\begin{array}{c} 1070 \text { Archb. Lanfranc } \\ 1093 \\ \text { to } \\ 1109 \end{array}\right\} \begin{aligned} & \text { Archb. Anselm with } \\ & \text { Ernulph \| priors - } \\ & \text { Conrad I } \end{aligned}$	L. $13 . \mathrm{H}$. The second	L. B. H. Anderypt. d ehureh (de and erypt	L. 13. 11. stroyed by 163×836	$\begin{aligned} & \text { L. B. H. } \\ & \text { fire, } 1174 \text {) } \end{aligned}$	L. B. H.
1123-36 Archb. W. Corboyl	Restored	d the chureh	after a fir	, 1130.	
11754 , Archb. Richard		1893871 and retrochoir.	and aisles.	$\begin{aligned} & 148 \frac{1}{2} 31 \frac{1}{2} 70 \frac{1}{2} 7 \\ & \text { Upyer. } \end{aligned}$	
1304 Henry de Estrid, p	--	Stoneenclosu	elaft.high.		
$\left.\begin{array}{c} 1376 \\ 10 \\ 1411 \end{array}\right\} \begin{aligned} & \text { S. Sudbury, } \\ & \text { W. Courtenay and } \\ & \text { T. Arundel, Aıchls. } \\ & \text { 'T. Chillenden, prior } \end{aligned}$	2217278	\mid	-	Lower $127 \frac{1}{2} 3378$	"Chichele" s w. 157
1449-68 T. Goldstone I. prior	-	Lady chape!			
1472 W. Selling, prior					
1500 W. Morton, Archb.				-	C Completd
1492 'T. Goldstone II , prior	--	-	-	-	$3535 \pm 33 \frac{1}{2}$
1840 - -	-			-	$\begin{gathered} \text { N W, re- } \\ \text { built }-1.57 \end{gathered}$

Ser founded 6\%. The original Norman structure of Archbishop Lanfranc, 1070-86, was rebuilt alter the canomsation of Thomas à Brekrt. The architects of the new choir were William of Sens, $1175-78$, and William the Engli-hman, 1179.84 The chapter lootse, dating 1264 and 1391-1411, is 87 it. long by 35 ft . wide and $5 \geq \mathrm{ft}$. bigh The clobsters are 134 tt square. This cathedral forms a double cross, and has a lofty cypt. At the eastern end and projecting beyond the general line of the plan is the "coroma "or " liecket's crown," of the shape of about three tourth, of a circle. The internal length is 514 it, and ureadth 144 it .6 in . Restorations $18 \leq 0-48$ by G. Austin, and later by H. G. Anstin.

CARLISLE-Cathenral Church, Augustinian Canons (S. Mary).

Dates and Founders.	Nave.	Choir.	Aisles.	Transepts.	Towers.
Bishops.	L. B. H.	L. E. H.	L. B. H.	L. B. H.	L. B. 11
$\left.\begin{array}{l} 1052 \\ 1130 \end{array}\right\} \quad=\quad\{$		disles and arcade of choir.	Ineluded	South.	Piers of centre.
$\left.\begin{array}{l}1353 \\ 1369\end{array}\right\}$ Gilbert de Welton			$13414 \frac{1}{4}$ -	$113 \frac{1}{2} 2242$	
1395 Thomas de Appleby 1400-19 William Stıickland	-	Completed.			$\begin{aligned} & \text { R(limit } \\ & \text { aboveroof } \end{aligned}$

[^0]Chester - Conventual. Church, Benemictine (S. Werburgh).

See funded 1541. The ehapter house was built, eir. 1128, by Earl Ranulf. The refectors, now the King's Sclaol; other remains of the monastery. The mernal lengtis 348 ft .6 in . and breadth 130 ft . RestoraLiun of the choir, 1844, by R. C. Hussey ; 1855, Lady chapel; 1868, by Sir G. G. Scott.

CHICHESTER - Cathedral Church, Secular Canons (S. Peter).

See founded 707. The ehurch founded by bishop Seffrid 11, upon that of bishop Ralph. There are four aisles to the nave. The external lengih is 411 ft . 3 in . ; internal leanh 340 ft . and breadth 129 ft . Restorations 1847.56 by R C. Carpenter; since 1859 by W. Slater. The central tower fell March 21, 1861, and rebuilt by Sir G. G. Scott, and W. Slater.
durhail - Cathenral Church, Benentctine (S. Cuthbert).

Dates and Founders.	Nave.	Choir.	Aisles.	Trinsept.	Towers.
Bishops. 1093-5 William de Carileph $1099\}$ Ralph Flambard $\left.\begin{array}{l}1230 \\ 1237\end{array}\right\}$ Richard le Poore $\left.\begin{array}{l}1456 \\ 1480\end{array}\right\}$ \qquad	L. B. H. $20 . \frac{1}{12}^{\frac{1}{2}} \begin{array}{ll} 74 & \\ 3-\frac{1}{2} \end{array}$	L. B. 11 . Rebuilt and aisles. 175777	L. B. 11 . Included.		L. B. 11 . W. - 14: C. rebuilt

[^1] end of the ehoir. This eathedral is rem.rkable from the pillars of its nave, which are eurioush striat.d. The Gallee or Lady chapel, at the west end, begun by Hugh de l'udsey ($1153-95)$, 48 ft . by 76 ft .6 in , and fintshed by Bishop Langley (14 6-37). The chapter bouse dates $1130-43$. ' I'he elvisters preetrd by Bishop' skirlaw, $138 x-1405-37$, are about 146 ft . square: the dormitory is now the new library. The internal length is 420 It . and Lreadth 172 ft . Repairs were made $1778-1800$ by James Wyatt, and suce 1×59 by Sir G. G. Scott.

ELI-Cathedral Church, Benemictine (S. Etheldreda and S. Peter).

Dates and Founders.	Nave.	Choir.	Aisles.	Transepts	Tower.
	I. B. HI.	L. B. H.	L. B. H1.	L. B. II.	L. B. II.
$\left.i 082 \begin{array}{c}\text { Simeon, albot, } \\ \text { foundations }\end{array}\right\}$		-	-	-	
1107 Richard, abbot		-	-	$178 \frac{1}{2} 73-$	S. W. Trans
	$203{ }_{30}^{75 \frac{1}{2}} 73$	-	-		
$\left.\begin{array}{l}1174 \\ 1189\end{array}\right\}$ Geoffry Riddell, bishop,	-	-	-	-	C. of Wiront $=-215$
1229-54 Hugly de Norwood, $\}$	-	$123_{34 \frac{1}{2}}^{74 \frac{1}{1}} 70$	-	-	
1322-28 - -	-	-	-	- $\{$	
1328-42 Simon Montacnte, bishop			-		Lanterin.
1321.49 John Wisbeach, prior	-	Lady charel	-		30 30142 Inside Outside 1-0
1337 John de Hotham, bishop	-	W. portion	-	-	Outside 1;0

See frunded 1108. The octagon tower and choir stalls were desigued by Alan de Walsingham, a monk, $1322-42$; and perhaps the Lady chapel 1321-49, which is without aisles, and is internally 100 ft . long, 46 it . wide, and 60 ft . high to its vaulting. The Gahlee chapel, at the western end, by Bishop Eustace, 1198-1215, is 40 ft . long. The chantries, are Bishop Alcock's 1486-1500, and Bishop West's 1515-53. The exterior length is 565 ft . frum the west front to the east face of buttresses; the internal length is 517 ft . and breadth 178 ft .6 in . Restorations frumi 1830 by John Bacon, clerk of the works; and 1852 by Sir G. G. Scott.

EXETER - Cathenrai. Churcit, Beneditine (S. Peter).

Dates and Founders.	Nave.	Choir.	Aisles. Transepts.	Towers.
Bishops.	L. B. H.	L. B. H	L. I3. II. L. B. H.	L. B. H.
$\left.\begin{array}{l}1107 \\ 1136\end{array}\right\}$ William Warelwast	-	-	- -	2224145 to transepts.
1258 (280 Walter Bronescomb	$-\{$	$\begin{aligned} & \text { I.ady chapel } \\ & \text { and } \\ & \text { completed. } \end{aligned}$		
$\left.\begin{array}{l}1280 \\ 1291\end{array}\right\}$ Peter Quivil	-		$-\left\{\begin{array}{c} 139296 \times \\ \text { formed.ut } \\ \text { of the } \\ \text { tower: } \end{array}\right.$	
$\left.\begin{array}{l}1308 \\ 1326\end{array}\right\}$ Walter de Stapeldon	—	$\begin{gathered} \text { commenced } \\ 121 \quad 7266 \\ 34 \end{gathered}$	1321435	
$\left.\begin{array}{l}1327 \\ 1309\end{array}\right\}$ John Grand'son	$140 \quad \begin{aligned} & 72 \\ & 34 \end{aligned} 6.5$	-	$14314 \quad 35 \quad \square$	

See founded 1050. The general plan of the church is that designed by Bishop Quivil. The west front is celetrated for the display of a series of statues of kings, warriors, sdints, and apostles, guardians as it were of the entrance, arranged in three rows. The lower part of the chapter house dates from about Bishop Brewer's time ($1224-44$) ; the upper part is by B6hop Lucy ($1420-55$) ; the ceiling richly decorated by Bishop Bothe ($1465-78$). The cloisters, which are only perfect on one side, are by Bishop Brantyngham, 137(L24. The "Fabric Rolls" of this Cathedral are interesting records. The internal length is 378 ft .5 in . and the breadth 139 ft . The Lady chapel was restored, 1822, by John Kendall.

GI, OUCESTER - Church of Benemictines. Mitred Abrey (S. Peter).

D.te, and Founders.	Nave.	Choir.	Aisles.	Transepts.	Tower.
Abbots.	L. B. H	L. 13. H	L. B. 11.	L. B. II.	L. B. 11.
1088 1100 Serlo					
$\left.\begin{array}{l} 1100 \\ 1242 \end{array}\right\} \text { Serlo }$		\longrightarrow	W. 1802139	-	
1318 J Thokey		-	S. $180 \div 4$	-	
1329-37 J. Wygemore	-	-	-	S. 533578	
1837 Adam de Stanton and 1351\} - Horton	W - $\{$	Upper part 1.35 35×6 and stalls.	-	W. $53 \quad 35 \quad 78$	
1420-37 - Norwent	$\begin{aligned} & \text { W frontand } \\ & \text { two bays. } \end{aligned}$	-	-	-	
1450-57 - Seabroke	-	-	-	--	26 35176 10 leads.

See founded 1541. The chaptar house (Norman) is 72 ft . long, 31 ft . wide, and 3 ft . 6 in . high. The Lady chapel wis commenced ly Abbot llanley, 14.57-72, and finished by Abbnt W. Farley, 147-98. The closters are the most perfect and heatiful of any in England, and are unusually placed. beling on the north side. They were eommenced by Abhut Horton, i351-77, and completed by Abbot Froncester, 1381-1112: in then is a monh's lavatory, and the "carols." The interial length is 40 fft . and hrearith 11 ft . Restorations wete commenced 1853 by F.S. Waller, who published a work on the cathedral in 1856.

Hereford - Catmenrat. Church, Secular Canons (The Vitgin and S. Ethelbert)

See founded 680. The Lady chapel is 93 ft . by $3 \mid \mathrm{ft}$. The octagonal chapter house, 1330 , with a cent ral pillar, 40 ft . diam., was taken down by Bish p Egertnn, 1724-46. Th great west tower, 130 ft . high, fell 1786 , and destroyed a great portion of the nave and aisles, which were then shortened about 15 ft . The liongth between the exterual faces of the butresses 14344 ft . ; the internal length 325 ft ., the tireadth 10 ft . at les-er transepts and 117 ft . at larger ones. Resturations 1786 by James Wyatt; from 181) by L. N. Cottingham aud his son; from 1858 by Sir G. G. Scott.

Lichfield - Cathenral Church, Sechiar Canons (The Virgin and S. Ched).

	Id Fou	Nave.	Choir.	Aisles.	Transepts	Tawer.
Cir.		L. B. H.	L. B. 11.	1.. B. H.	L. B. H.	L. 13. 11.
1200	-	-	Lower part 3 W. bays.			-
1290				-	S 14928.	W. Spires
1240	-		—	$-\quad$	N. - -	- - 195
1250	-	$13964 \frac{1}{2} 60$	-	-		C. Spire
1275		W. front 78 - -	N. aisle $12 \frac{1}{2}$	S aisle 130		$\begin{aligned} & --111 \frac{1}{4} \\ & \text { and } 188 \\ & =294 \frac{1}{-1} \end{aligned}$
132.5	-	\cdots	1372867	Included		

[^2]London - Ofd Cathenral Church (St. Paur.).

Sce founded 604. The chapter house was built 1332 , and was octangular, 32 ft .6 in . diam., and placed in the cloisters, 91 ft . square, erected by Henry de Wingham, 1260. Inigo Jones commenced the restorations 1633 , and added in $1 * 36$ the beautiful Corinthian portico at the western end. The Church was burnt 1t66, and was taken down 1675. Dugdale's History of St. Paul's has numerous plates by Hollar. The external length was about 590 ft . and of the transepts 290 ft . ; the breadth across the nave 104 ft . ; these dimensions are obtained from Longman's Three Cuthedrals of St. Piul, 8vo., 1873. The lengths in the above table are approximate only, arising chiefly from the error of 690 ft . as given by Dugd ble for the length. The dimensions of the present edifice are given in paragraphs 470-174.

LINCOLN - Cathedral Church (S. Mary).

See founded 634. The plan is a double or Lorraine cross. The architect of S. Hugh's work is said to be Geoffry de Noiers. The chapter house, cir. 13 th century, is a decagon with a central pillar, 60 ft diam. and 40 ft . high. The central spire was blown down in 1547 ; the others were removed in 1808. The Galilee porch on W. side of the S.W. transept is later than S. Hugh's work. The façade is decorated with statues and sculpture, like Wells and Exeter. The cloisters were built by Bishop sutton and are rery slight. There is a curions "stone beam "over the vaulting and between the west towers. Total internal length 482 ft. and breadth 222 ft . at west transepts. The west frout was restored about 1862.

Manchester - Collegiate Church (The Virgin, S. Denis of France, and S. George of England).

Parish church; made collegiate 1422 ; see founded 1847. Lady chapel 16 ft . square. St. John B3ptist or Derby chapel, cir. $1500,80 \mathrm{ft}$. by 26 ft ., and the chapter house 22 ft . by 13 ft .6 in ., having an unequal apsidal end, are both by Bishop Stanley. Jesus' chapel, by Bexwith, a merchant, 1506 , is 35 ft . by 25 ft . The Trafford chavel, 1506 , is 27 ft . by 21 ft .6 in . ; St. George's chapel, adjoining the la-t, 1508 , is $25 \mathrm{ft}^{2} \mathrm{by}$. 27 ft .6 in . ; and the Bibby porch, 1520 , is 13 ft . square. The strangewass chapel, 1508 , is 68 ft . by 22 ft . The Oldham chapel, 1518 , is 15 ft . by 12 tt . The internal length, 215 ft . and breadth 112 ft .; externally, 232 ft . and 130 ft . Restored and portions rebuilt by J. P. Holden. Tower rebuilt by him, but not a copy, The later restorations have be en carried on by J. S. Crowther.

Nold

See founded f30 and again 673. Before 1272 the cathedral was so dilaphlated as to render it necessary to be rebult. The cloisters commenced by Bishop Walpole in 1247 , were completed by Bishop Alnwick itt 1430 ; they are the most snacious in England, being about 176 ft . square and 14 ft .9 in . wide. The Lady chapel was destroyed. The external length is $41+\mathrm{ft} .6 \mathrm{in}$. and breadth 191 it ; the internal length is 4 Cd 4 ft . and breath 180 ft . The length from the west door to apse is 383 ft .7 in .

OXFORD-PimRy Cifurcil of Augustinian Canons
 (S. Frideswide, or Christ Church).

	ates and Founders.	Nave	Choir.	A isles.	Transept	Tower and Spire.
1150-80	Canutus, prior	$\begin{array}{lll} \text { L. } & \text { B. } & \text { II. } \\ 58 & 53 & 41 \frac{1}{2} \\ 522 \frac{1}{2} & \end{array}$	$\begin{array}{ccc} \text { L. } & \text { B. } & 11 \\ 68 & 53 & 37 \frac{1}{2} \end{array}$	L. B 11. Included.	$\begin{aligned} & \text { L. B. H } \\ & 1022143 . \frac{1}{2} \end{aligned}$	L. B. HI
1250			Lady Chapel.	-		In-ile -20 0
1925	-	Latin chapel	-	-	-	
1528	Cardinal Wolsey	Rnof.	Rinf of Chuir.		- 1	

See founded 1545. It is the smallest cathedral in Eugland. The chapter house (Early English), oblong in form, 54 ft . k y 21 ft ., may be compared with those of Lincoln, Salistury, and Chester, belong nif to far wealthier communities. Wolsey destroyed the west front and the greater tart of the nave 'I hree sides of tha small cloister (54 fc . wide) remain linternal length 154 ft . (it was 202 fc . when complete) and breadth 102 ft . lnterior res:orations, 1856 , liy R. W. Billing.

Peterborough - Conventual Church, Benedictine (SS. Peter, Paul, and Andrew).

Dates and Founders.	Nave.	Choir.	Aisles.	Transepts.	Towers.
Abbots.	L. B. H.				
1118 John of Seez and $1133\}$ Martin of Bec	\simeq	1197978	-	F. aisles	
1155 William de Water- $1177\}$ ville	Portion	-	$-\{$	$\left\|\begin{array}{ccc} \text { Transepts } \\ 185 & 57 & 71 \end{array}\right\|$	C. Lower part
$\left.\begin{array}{l}1177 \\ 1193\end{array}\right\}$ Benedict	2 26 ${ }_{33}^{79} 73 \frac{1}{8}$	-	2261371	w. trans.	
1200-37 -	w. front	Remain of Lady chapel	-		Lantern of
1370	w. porch	_	-	-	C Tower 124 W.spires I53
$\begin{aligned} & 1438\} \text { - Ashton \& Robert } \\ & 1528\} \text { Kirton } \end{aligned}$	-	-	-	E. aisle or new building	

See founded 1545 . The three arches forming the west front, 153 ft . lung. are 73 ft . high in the opening and $"$ as a portico, it is the finest and grandest in Europe: "Fergusson. There are olly the remains of the rlulsters, 132 ft . wille. The ex'ernal length 480 ft . and 203 ft . wide. The internil length is 426 ft . and the breadth (Ri) ft. Paley. Licmarh, son the Arch. of Peterborough Cathedral, 18.59 . It was under restoration by Edward Blore from 1832 ; anil from 1859 by G. G. Scoit, li.A., to hi, death, I473. Tue central tower was rebuilt by John L. Pearson, R.A., I885-6.

RIPON-Colfarate Churcir (by James I.); (S. Wilfrid).

Dates and Founders.	Nare.	Choir.	Aisles.	Transepts.	Towers.
$\begin{array}{ll}\text { 1154-81 } & \text { Wilfrid } \\ \text { Roger, Archb. of York }\end{array}$	$\begin{gathered} \text { L. B. H. } \\ \text { Crypt. } \\ 169 \frac{1}{2} 8788 \end{gathered}$	$\text { L. B. } 11 .$	$\begin{aligned} & \text { L. B. H. } \\ & \text { Included. } \end{aligned}$	$\begin{aligned} & \text { L. B. IH. } \\ & \text { 132 } 36 \mathrm{~N} \text { - } \\ & 33 \mathrm{~s}- \end{aligned}$	L. B. H. (Spires now removed were 110 tt. higher.)
1215-55 Walter Gray 1288-1300 \qquad	w. front?	E. part.		--	
$\text { 1317-40 }\left\{\begin{array}{c} \text { William de Melton, } \\ \text { Archb. of York } \end{array}\right.$	——	$\begin{array}{llll}101 & 67 & 79 \\ \text { Choir screen }\end{array}$	Included.	\longrightarrow	
$1454-59$		Choir screen 2 bays or: S. side.	-	上. side S. transept.	F. and S. sides of C. rebuilt.
1500-20		—	——	——	
1660		Ronf restd	--	-	

See founded $18: 6$. The chapter house, $34 \mathrm{ft} .8 \mathrm{in} ., 29 \mathrm{ft}$. wide, by 18 ft .8 in . high, with an apsidal end, by Archb. Roger, but the two central pillars and valting are later. The crypt under it is perhaps the original church of Archb. Thomas of Bayenx, $1070-1100$. The Lady chapel, 1422 , is over it, a most unusual prition; it is now the library. Melton extended the church eastward to twice its former length. Great east window, 2.5 ft. by 51 feet high, dates at the end of 44 th century. The crypt under the centre tower is 11 ft .5 in . by 7 ft .8 in , and 9 ft .4 in . high: it is dedicated to the Iloly Irinity. The internal length is 270 ft .5 in . and breadth 132 ft . In 1829 the nave was new roafed and ceiled; and from 1868 the choir groined in woud and other restorations by Sir G. G. Scott.

Rochester-Cathedral Church, Benemictine (S. Andrew).

Ditt's and Founder	Nave	Choir	Aisles.	ts.	Tower.
Biohops. $1077-80$ Gundulf, commenced 1130 John 1200	I. B. H. $128 \frac{655^{6}}{28} 5$ w. front New roof - $\{$	L. B. H. \qquad \qquad New rouf 110275 $2^{4 \frac{1}{8}}$ 44 Lady chpl$\qquad$$\qquad$	L. B. H. \qquad \qquad \qquad Inclisded. Chapel St. M.irv.	L. B. 11 . $\begin{aligned} & = \\ & \text { L. } 92 \frac{44}{29}= \\ & W^{2} .12^{\prime} \frac{1}{4} 29= \end{aligned}$ \qquad	I. 13. H. Nortl! ! 5 now 40 \qquad \qquad Centra] $-\quad-156$

See founded 604. The cript (Early English) is one of the best of the class. The walls of "Gundult's tower," 24 ft . square and 96 ft high, are 6 ft . thick, the entrance is supposed to have been from the top Of Bishop Ernusf's work 1114-24, the west front (perhaps), dormitory, refectory, and chapter house alone remain: the door to the litter is of Decorated work and remarkable. The chapel of St. Mary is 45 ft. by 30 ft . The internal length is 313 ft .6 in . and breadth 122 ft .3 in . Restorations $1825-30$, by L. N. Cottingham, and of late years by Sir G. G. Scott.

SAlisbury--Catuedrar. Church, Secular Canons (S. Mayy)

1)ates and Fonnders.	Nave.	Choir.	Aives.	Transepts.	Tower.
Bishops.	L. B. 11.	L. H. H.	L. B. H.	L. B. H.	L. B. H.
$\left.\begin{array}{l}1217 \\ 1228\end{array}\right\}$ Richard Poore (1220) $\{$	$194_{38 \frac{1}{2}}^{78} 84$	- -8	-	-	$\begin{aligned} & -\quad-207 \\ & \text { out. } 50 \frac{1}{2}- \end{aligned}$
1229-46 Rohert Bingham		1407884	- 16! 38	F. 11541	
1246-56 William of York	-	-	-	E. 1454481	
12j6-62 Giles of Bridport	-	-	-	W. 2065781	
1330-75 Robert de Wyvil	-	-	--	-	Spire -403

See fonnded 705. This is the most uniform of the cathedrals; the original plan given by Bishop Poore was carried out by his successors. Elias de Dereham was clenk of the wonks for the first twenty years, and Ruhertus for the following twenty. The great regularity of the masoury is a distinctive peeuliarity of Farly English work. According to the account rendered to Heriry III., it appeared that 40.00 inarks (22 , $66 n / .13 s, 4 d$.) had up 101258 been expended on the fahric. The chapter house is an octagon 58 ft . diam. and 53 ft high, with a central shaft; this with the cloisters, 182 ft . square, were eommunced by Bishop Walter de la Wyle ($1263-70$, and completed by Bishop R. de Wickhampton ($1270-44$). The latter were restored $1850-56$, by Mr. Clatton for Bishop Denison. The sculptures in the former were painted, 1899 , むc., by Mr. Hudson, and have been explained by W. Burges. 'he stone spire is described in 13 3, (h. iv. The external length is 480 ft ., the breadit 230 ft . The internal length is 450 ft , and breadth 206 ft . 'The west front is 112 ft long. Sir C. W'ren effected some repairs. Restorations, 1782-91, by James Wyatt.

Welles-Cathfobai. Church (S. Andrew).

See founded $\subseteq 09$, and with Bath 1050. Thnugh one of the smallest cathedrals, it is a very extraordinaty example. Its western façude is decorated with six rows of sculpture in a very perfect state, and somewhat similar to Exeter and Lincoln. The subjects are angels, sul jects from the Old and New Testaments, kings, hi-hops, and warriors, amounting to over 300: they have been explained by C. R. Cockerell, in his Iconography. The original plan sefms to have been caried out to its completion. The chapel or room under the clapter house and the curious staircase, were completed about $1 \% 86$, by Bishop Burnell; and the chapter house, octagon, 52 ft .6 in . Whe and 42 ft . high, with a central pillar, by Bishop William de la March, 1293-1302; see figs. 1275-7. The east walk of the cloisters, 163 ft ., and library, date $1407-24$; the west 166 ft . and part of the south, dite 1443.64 , and completed for 130 ft . more, soon after by Thomas Henry, Treasurer. The support of the central tower is assisted by an inverted arch as at Salisbury. The internal length is 385 ft . and the breadth 135 ft . The west front is $147 \frac{1}{2} \mathrm{ft}$. long. Restorations, 1842 , by C. R. Cuckerell, and later by B. Ferrey.

Winchester-Cathenral. Church, Benedictine (S. Mary).

[^3]WORCESTER--Cathenral Church, Benemictine (S. Mary).

Dates and Founders.	Nive. Chair.	Aisles.	Transepts.	'ouer.
Bishnps. 1804 S. Wulfstan $\left.\begin{array}{c}\text { Begun } \\ 1224\end{array}\right\}$ William de Blois 1281 T. Cohham and Henry $\left.\begin{array}{l}1327 \\ 1377\end{array}\right\} \quad$ Wakefield 1372 W. de Lynn 1375 Henry Wakefield	 Nave vaulting and alterations at W, end.	L. B. H. E. $12025-$ included Included. \qquad \qquad	I. B. 11. $\text { W. } 1283266 \frac{1}{2}$	L. B. H. $=44 \quad 166$

See founded 680. The chapter house is circular (sometimes called a decagon) 55 ft . diam., 45 ft . ligh, with a plain central pillar. The cloisrers (lerpendicular) about 120 ft . square, were erected in the time of Bishop Lynn. They were restored 186f. The refectory, now the King's School, 120 ft . by 38 ft ., is still perlect. The external length is 405 ft ; the internal lengtla 388 ft . and the breadeh 128 ft . Iestorations since 1857 by R. E. Perkins.

YORK-Cathenral. Cuurch, Secular Canons (S. Peter the Apostle).

See founded 622 or 626 . The octagonal chapter honse, 57 ft . diam. and 67 ft .10 in . high, was, perhaps, erected at the same lime as the nave; it has no central pillar. The choir and crypts were rebuilt ons a larger scale, 1154-81, by Archb. Roger; some parts are earier. The aisles surrounding the church in every part are of similar dimensions and were built at same time. The open central towet is 188 ft . high from the floor. The Rose window in the S . transept is the finest in Fngland, it is 22 ft .6 in . diam. The five lancet lights, dating 1250 , in the N . transept are each 5 ft . $\mathbf{7 \mathrm { in } . \text { wide and } 5 4 \mathrm { ft } \text { . high. The church was consecrated }}$ July 3, 1472. The "Fabric Rolls" of this cathedral are valuable records of building operations. The eiternal length is 518 ft . The internal length is 486 ft . and 1 he breadth 223 ft . The choir reof was burnt 1829 , and restored by Sir R. Smirke; the nave roof burnt 1840 , and restored by S. Smirke. The S. Transeplt
was restored 1875 , by G. E. Street.

Westainster-Ibbey Church, Benfictine (S. Peter).

See founded 1540, annulled in 1550. The flying buttresses of Henry VII's chapel are among the most cautifully decorated in England. The triforia of the church are lighted from a range of windows xternally, each consisting of three circles, inscribed within a triangle. The chapter house, an octagou f 58 ft in diameter, is of the same date as the choir; the two sides of the cloister, which is 135 ft . by 41 ft ., date as the western part of the nave. Portions of the "Fabric Rolls" have been printed in Scott, rleanings, 8vo., $1863,2 n 1$ edition. The total length interna'ly is given as 489 ft . and 511 ft .6 in . These limensions are from Neale's History, those "corrected " in Ackermann's History are smaller. The outside f the chapel was restored 1809-22 by Thomas Gayfere, masori, under James W yatt, R.A. ; the building renerally by Edward Blore, and by Sir G. G. Scott, R.A., I818-62. Later by J. L. Pearson, R.A.
B. ATll-Abhey Chuthen, Dfnfmotinf (SS. Meter and Vaul).

Dates and Fomuders.	Nave.	Choir.	Aisles.	Transepts.	C. Tower.
1195 (Bishop Oliver King, but 1.50:3 f not roofed	1. B. 1 . $143 \begin{array}{ll}74 \\ 301 \\ 21\end{array}$ 天	$\begin{array}{cc} \hline \text { L. B. } 11 . \\ i 5 & -76 \end{array}$	L. B. H.	L. B. II. 12\%	L. 13. 1 I . 4030168
1572) Bishop Peter Chapran, to Bishop Montague, and 1616 others 1.53.5 Prior Birde's chapel		General	Repairs, 心.		

See founded 970 , and with Wells 1050 . Considered to be the last bilding in the lernendieular perion of great magnitude. Edward Leycestre, master of the works, suceceded 1537 by John Nulton, freemasom It lins 52 large sized w indows. its internal length is 218 ft . and breatth if ft . Interior remolelled 1 s 35 by G. P. Manners, and restored $1868-\mathbf{i l}$ by Sir G. G. Scott, R.A.
S. Alban'S-Abbfy Cuurcu, Benfmictine (S. Albai).

Dates and Founders.	Niare,	Choir.	Aisles. Narc.	Transepts.	C. Tower.
1077 I Abhot Paul (east part of $1078\}$ nave)	L. B. 11 . 2752375	$\begin{array}{\|ccc} \text { L. } & \text { B. } & \text { H. } \\ 70 & 75 & 65 \frac{1}{2} \end{array}$	$\begin{array}{ccc} \text { L. } & \text { B. } 11 . \\ 2: 5 \frac{1}{3} & 15 & - \end{array}$	$\begin{array}{lll} \hline \text { L. } & \text { B. } & \text { II. } \\ 135 \frac{1}{2} & 32 & 61 \\ \hline 62 \end{array}$	$\begin{array}{ccc} \hline \text { L. } & \text { B. } & 11 . \\ 45 & 47 & - \\ \text { outs. } & 143 \frac{1}{2} \\ \text { ins. } & 102 \end{array}$
1195 Abbot John de Cella to 1235 \} \& W. de Trumpington $\{$ 1260 cir. Joln de Herttord	3π. portals and wr. end of nave. \qquad	Snnctuary. $93 \frac{1}{4}$ 35			
1290 cir. Roger de Nortone 1308 John de Marynes 1396 f llugh de Eversdone		$\left\|\begin{array}{rrr} 3 & \text { Lady cha } \\ 56 & 23 & 31 \frac{1}{2} \end{array}\right\|$	$\left\|\begin{array}{rll} 44 & 77 & 24 \end{array}\right\|$	chapel.	

Founded 793. See founded 1577. Abbot John de Whethamstede, 1420-40 and 1451-64, altered the ground story windows north side of nave and choir, added the large windows in mave and transepts, and the watching loft. The internal length is $520 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. Outside length, 550 ft . from plinth of buttres of east wall of Lady chapel to plinth of west porch. liestoration was commenced 1870 to the tower, \&c. by Sir G. G. Scott (died 1878). The west front and part of south transept were pulled own and rebuil 1s8t-i by direction of Sir E. Becket Denison, now Lord Grimthorpe.

Truro-Cathedral Church (S. Mary)

Dates and Founders.	Nave.	Choir.	Aisles.	Transepts.	Tower.
$\begin{gathered} \text { May } 20,1879, \\ \text { to } \\ \text { Nov. } 1,1887 . \int \begin{array}{c} \text { Bishop Renson } \\ \text { and } \end{array} \\ \text { Bishop Wilkinson } \end{gathered}$	L. B, H $1300_{29}^{56} 70$	L. B. 1I. $112{ }_{29}^{56} \pi 0$	L. B. H. Nave. $95 \stackrel{27}{133} 30$ Choir. $112{\underset{27}{2 \frac{3}{2}}}_{28}$	L. B. 11 . 1102770 Choir. -.22 70	L. R. 1 . 1515 3030 ou C. to be 225 W. 24205 Cloek tower - - 135

See founded 1884. Sonth of sonth choir aisle is a second aisle 7 ft . wide, and south of this is the ol aisle of the parish church (Early English and Decorated periods). This is 76 ft . long, 17 ft . wide, and 29 ft. high. A western tower has been added to this aisle, and forms a feature in comection with th south transept. The extemal length is 284 ft ., 73 ft , across the nave and nisles, and 117 ft , across tran scpits, The interunl length is 276 ft , by 110 ft . The arehitect is Johm I . Prarson, $1 . \mathrm{A}$. At present, Nov 18s\%, are erected only the choir, the great transepts and aisles, the east transept, the baptistery, two nave bays up to the triforium, the elock tower at south transept, and the central tower, including the tirs stage of the lantern with temporary roof.

SoUTHWEll-Colleglate Church, Secular Canons (S. Mary the Virgin).

[^4]
NEWCASTLE-ON-TYNE-

LIVERPOOL-

Secr. VI.
EI.IZABETHAN ARCHITECTURE OR LATE TUDOR STYLE.

436. The revival of the arts in I aly has furnished the subjeet of Chap. II Seet. X V'I. It commenced, as we hatve there s.en, with its anthor Brunellesehi, who died in 1444; and it was not till nearly a cuntury afterwards that its influence began to be felt in this country. The accession of Queen Elizabeth took place in 1558.
437. Whilst the art here, though always, as respected its advaneing state, mneh behind that of the Continent, was patronised by the elergy, it flourished vigorously; but when that body was scattered by the dissolntion of the religious houses, no one remained to foster it ; and though Henry VIII. delighted in spectacle, and a gorgeous display of his wealth, he was far too great a sensualist to be capable of being trained to refinement in the arts. There is in England no general pervading love of the arts, as among all classes on the Continent. The Elizabetian, or as some have, perhaps more properly, called it, the last Tudor style, is an imperfectly understood adaptation of Italian forms to the habits of its day in this country. It is full of redundant and unmeaning ornament, creating a restless feeling in the mind of the spectator, whi h, in the einque-cento work, the renaissance of Italy, was in some degree atoned for liy excellence of design, by exquisite execution of the subjeet, and by a refinement in the forms which some of the first artists the world ever saw gave to its productions. In Italy, the orders almost instantaneously rose in their
proper proportions, soor. leaving nothing to be desircd; but in England they were for a long time engrafted on Gothie plans and forms.
438. The work of Andrew Borde has been before mentioned; but the earliest publication in England relative to practical arehitecture was, "The first and chiefe Ground, of Architecture used in all the ancient and famous Monyments with a farther and more ample Discourse uppon the same than ha, hitherto been set forthe by any other. By John Shute, paynter and archi ecte." "Printed by John Marshe, fol., 1563 ." This John Shute had been sent by Dudley, Duke of Northumberland. to Italy, probably with the intention of afterwards emplosing hin upon the works which he was projecting. His work, though republished in 1579 and 1584 , is now so rare that only two copies are known to exist, one of which is in the library of the Koyal Institute of British Arehitests, and the other in the Bodleian Library at Oxford. From this and many other circumstances, it is easy to discover that domestic architecture under Elizabeth had assumed a more scientific character. Indeed, there is ample evidence that no building was now undertaken without the previous arrangement of a digentid and regulated p'an; for early in the reign of this sovereign the treatises of Lomazzo and many others were translated into English; and in the construction of the palatial houses of the aristocracy, the architects had begun to act upon a system. The principal deviation from the plans of the earlier Tudor houses was in the bay windows, parapets, and porticoes, whereof the two latter were intensely carved with all the forms that the most fantastic and grotesque imagination could st?pply. The exteriors of these porticoes were covered with carred entablatures, figures, and armorial bearings and devices. The galleries were lofty, wide, and generally more than a hundred feet in length; and the staireases were spacious and magnitieent, often oceupying a considerable portion of the mansion. Elizabeth herself does not appear to have set, during the passion of the period for arehitecture, any example to her suljeets. She might have thought her father had done sufficient in building palaces; but, however, be that as it may, she encouraged the nobles of her eourt in great expenditure on their residenees. With the exeeption of the royal gallery at Windsor, she herself did actually nothing; whilst on Kenilworth alone, Lord Leicester is supposed to have expended no less a sum than $60,000 l$, an almost royal sum of money.
439. Before proceeding further, it becomes our duty here to notice a peculiar construction which prevailed in the large manor houses of the provinces, and more espeeially in the counties of Salop, Chester, and Stafford, the memory of many whereof, thongh several are still to be seen, is chicfly preserved in engravings; - we allude to those of timber framework in places where the supply of stone or brick, or both, was scanty. The earved pendants, and the barge-boards of the roofs and gables, which had, however, made their appearance at a rather earlier period, were executed in oak or chesnut with much beauty of design, and often with a singulariy pleasing effect. 'The timbered style reached its zenith in the reign of Elizabeth, and is thus illustrated in Ilarrison's deseription of Fingland: - " Of the curiousnesse of these piles I speake not, sith our workmen are grown generallie to such an excellence of devise in the frames now made, that they farre passe the finest of the olde." And, again: " lt is a worlde to see how divers men being bent to buildinge, and having a delectable riew in spending of their goodes by that trade, doo dailie imagine new devises of their owne to guide their workmen withall, and those more cirious and excellent than the former." (p 336.) The fashion was no less prevalent in cities and towns than in the country; for in them we find that timber-framed houses abounded, and that they also were highly ornamented with carvings, and exhibited in their street fronts an exuberance of extremely grotespue figures performing the office of corbels. The fashion was imported from the Continent, which supplies mumberless examples, especially in the cities of Rouen, Bruges, Ulm, Louvain, Antwerp, Brussels, Nuremburg, and Strasburg, very far surpassing any that this country can boast. We have, however, suffieient r.mains of them in England to prove that the wealthy burgess affected an ornamental display in the exterior of his dwelling, rivalling that of the aristocracy, and wanting neither elegance nor elaborate finishing, whilst it was productive of a highly pieturesque effect in the street arehitecture of the day. "This manner," says Dallaway, "was certainly much better suited to the painter's eye than to comfortable habitation; for the houses were lofty enough to admit of many stories and subdivisions, and being generally piaced in narrow streets were full of low and gloomy apartments, overhanging each other, notwithstanding that they had fronts, which with the projecting windows and the interstices were filled for nearly the whole space with glass." Fig. 201 is a representation of Moreton Old Hall, Cheshire, built eirca 1550-59, partly rebuilt 1602.
440. A better ide, of the arehitecture of this age cannot be obtained than by a notice of the principal architects who have furnished materials for the foreguing observations; for this purpose we shall refer to Walpole's Ancedotes A lolio book of drawings, belonging to the Farl of Warwick in the time of Walpole, enabled him to bring to the knowledge of the world, and prepetuate the memory of, an artist of nom mean powers, whose name, till that author's time, was almost buried in oblivion, and of
whom little is still known, though his work contains memoranda relating to many of the principal edifices erected during the reigrs of Elizabeth, and James, her successur.

Fig. 201.
timber-framed houte, Moreton U.d Hall, chestitire.
His name was John Thorpe; and at the sale of the library of the Ilon. Charles Greville in 1810, the MS. in question came into the possession of the late Sir John Soane, Professor of Architecture to the Royal Academy. It is a folio, consisting ot 280 pages, wherein the plans, often without a scale, are nevertheless accurately executed. Several of the subjects were merely designs for proposed mansions. The elevations are neatly drawn and shadowed. The general form of the plans is that of three sides of a quadrangle, the portico in the centre being an open arcade finished by a turreted cupola. When the quadrangles are perfect, they are, for convenience, surrounded by an open c.nridor. The windows, especially in the principal front. are large and lofty, and mostly alternated with bows or projecting divisions, and always so at the flanks. Great efforts were made by Thorpe to groul, the chimneys, which were embellishod with Roman Doric columns, and other conceits. Portions of the volume have been engraved by Mr. C. J. Richardson in the first part of his Architectural Remains of the Reigns of Elizabeth and James I., fol. 1838-40. Amongst the contents of Thorpe's volume (which has been collated for this edition, 1866), are:-Outlines of a "jambe mould," " muniell." "rayle mo. for otayre," "corbell table," paapets, \&c. ; and the five Orders, with rules for drawing them.

Page 19, 20. Plan and elevation, "Buckhurst bowse, Sussex." Built, 1565, by Thomas Sackville, Eall of Dorset, Lord High Treasurer to Queen Elizabeth. The front extends 230 ft . The courtyard is 100 ft . by 80 ft , and the hall 80 it . by 50 ft .
24. "直 a tront or a garden syde for a noble man," dated 1600
$37,38,50$. "The way how to drawe any ground plot into the order of peespective," with descriptions, the front being parallel with the spectator.
39, 40. l'lan, with a courtyand in front. "Sr Geo. Moores howse."
44. Plan, "Camons. my La: Lakes howse."

4s. P'lan. "Copthall, 16 fo. 8 ynch. This cort should be 83 (or 88) fo. square." Built for Sir Thomas Heneage. The gallery was 168 ft . long, 22 ft . high, and 22 ft . wide.
49. Elevation. "Woollerton. Sir Fraunc. Willoughby," Nottinghamshire, which has the inscription, "Inchnate, 1.580-1583." Mr. Dallaway notices that the tomb of Robert Smithson, in Wollaton chureh, calls him "architector and surveyor unto the most worthy house of Wollaton, with divers others of great account. Ob. 1614.' which would appear to invalidate Thorpe's claim: Suithson was probably Thorpe's pupil and successor. The property now belongs to Lord Mildleton. (See fig. 203.)
54. I’lan, rough. "Sr Jo. Bagnall." A gallery 60 ft . long.

57, 55. Two plans. "Burghley juxta Stamford." Built, 1578-80, for William Cecil, Lord Treasurer. (See 105.)
67, 68. Two plans. "Thornton Colledg, Sr Vineent Shynners." A gallery 113 ft . lons, and 25 ft. wide.
69. Plan of IIenry VII.'s Clapel. "Capella ista II. 7 mi impensis $14,000 \mathrm{lb}$. adiecit ipse Ao 1502."
77, 78, I'lan. Chateau de Madrid. Bois de Boulogne, near Paris, now pulled down.
88, 89, I'lan and elevation. Old Somerset House.
93. Plan. "Sr Walter Coap at Kensington, ptected p me J. 'T." IIolland Ilouse, finished in 1607, and added to by Inigo Jones and N. Stone.
94. I'lan. "Sr George Cojpin," Hurtfordshire, cir. 1608 (?)
109. Plan. "A London honse, La Darby, channell row" (?)

105, 106. Plan. "Duke of Buckinghan at Burghly," or Burley-on-the-Mill. (See 57.)
113, 114. Plan. "Wymbleton. An howse standing on the edge of an hie hill." Built,
1588 , for SirTho. Cecil. Fuller says it was "a daring strueture, nearly equal toNonesuch."
$123,124,127,128$. Plans. "Queene mother's howse, fabor St. Jarmins, alla Paree, altered p Jo. Thorpe."
136. Plan. "London howse of 3 bredthes of ordy tenemts." Supposed design for Sir Fulke Greville's (Lord Brooke) house, near Gray's Inn.
139, 140. Plan. "Kerby whereof I layd ye first stone, Lo 1570," Noithamptonshire, for Lord Chancellor Hatton.
150. Plan. "lichmt. Lodge, Sticles" (?). (Robert Stickles")
151. Plan. "Sr Peival Hart," Lullingstone, Kınt.

Fig. 202.
LONGFORII CASTILE.
155-158. Plan and elevation. "Longford Castle, Wiltshire (fig. 202). Λ diagran of the 'Iinity is drawn in the middle of the triangular court. Built for Sir 'lhomas Gorges and his wife, the Marehioness I owager of Northampton, in 1591 ; now the Earl of IRadnor's. 'The plan differs from that given (1766) in Britton's Arch. Autiq.
153. Plan. "Mounsier Jammet in Paris, his howse, 1600.
164. Plan. "Gyddye Mall, 84 fo. square," Essex. Altered for Sir Anthony Coke.

167, 168. Plan. "St. Jarmin's howse, V leagues from Paris, Ao 1600 ."
203, 204. Plan. "Audley end;" and later, "Audley End in Essex, seat of Lord Suffolk." now the propeity of Lord Braybrooke. Thorpe's part was eompleted about 1616.
215, 216. Three plans. Greek cross. Lyveden, eo. Northam. (?). Built by Sir T. Treshan.
225. 'l'wo plans. "Mr. Tayler at Potter's barr, 1596."
232. Plan, II shape, with a eourtyard, "94 fo. square," and a gatehouse. "This plot drawne after 8 fo. 8 inche, p Jo. Thorpe," (? his own drawing).
234. Two elevations. "Heddington Jo Chenyes," (? Toddington, co Bedford).

239, 240. Two plans. "Sr Walt. Covert, Sussex," at Slaugham, near Horsham.
267, 272. Two plans. "Ampthill old howse, enlardged p J. Thorpe." "Duke of Bedford "(?). It was the residenee of Queen Catherine, finst wife of IIenry VIII.
265, 266. Plan and elevation. "for Mr. Willm Powell," or Howell; of timber.
Amongst the general designs, whieh are chiefly plans, are, page 2l, "Sir Jo. Damuers, Chelsey;" 28, "Sr Wm. Rułden"(?); 31, "Mr. Johnson ye Druggyst;" 43, "Sir Walter Rawley _Sir James;" 45, "Sir Tho. Dorrell, Lincolne shire ; "46, and half elevation, "Godstone ; " 59, tivo plans, "Sr George Sct. Poole;" 62, a long-fronted house at "Higate; " 65, "Sr James (?) Clifton's howse;" 121, " Mr. Keyes; " 132, "Mr. Denman;" 147, 148, and elevation, "Sr William Haseridge;" 176, "Mr. Panton;" 18؛, " Holdenby banquetg at 16 fo; " 185, "Mr. Folte" (?) ; 187, "Mr. W. Fitwilliams; " 199, Sr Men. Nevile; " 201 , 202, "Jo. Clanricard; " 205 , " Sr Tho. Holt, 12 pte;" and 2543 , "LIAtfield lodge." 275-278, has a gallery 160 lt . long and about 25 ft . wide ; 146
is designed within a circle; and 161, on a triangie with a hexagon interior conrt; 1.55 is also a triangular plan, as named. Many of these designs might probably be identified, but it would entail much labour.
441. Watpole, upon Thorpe's Compositions, observes, that the taste of this master's mansions was that " bastard style which intervened between Gothic and Greeian arehitecture, or which, perhaps, was the style that had been invented for the houses of the nobility when they first ventured, on the settlement of the kingdom after the termination of the quarrel between the Roses, to abandon their fortified dungeons, and consult convenience and magnificence." The same author continues, "Thorpe's ornaments on the balustrades, porches, and outsides of windows are barbarous and ungraeeful, and some of his vast windows advance outwards in a sharp angle; but there is judgment in his disposition of apartments and offices, and he allots more ample space for halls, staireases, and chambers of state. He appears, also, to have resided at l'aris, and even seems to have been employed there." Among the designs he made is that of a whimsical edifice, designed for himself, forming ou the plan the initial letters of his name $\sqrt{[\sqrt{2}}$, whieh are joined by a corridor, the [being the situation of the offices, and the being skilfully distributed into large and small apartments. The epigraph to the design is as follows:-(pages 30 and 50)

> "Thes 2 I.etters I and T inyued together as you see Is ment a dwelhng howse for mee John TuonPE."

Walpole truly observes of this volume, that "it is a very valuable record of the magnifi eence of our aneestors, and preserves memorials of many sumptuons buildings of which ub other monmment remains." We ought, perhaps, to have suffered our aecount of 'Thorpe to have been preceded by those of others. but the conspicnous rank he holds in the list of English arehitects of this period induced us to place him before another, for a little time his predecessor in the works of the country. We allude to the name of liobert Adams, who translated Ubaldini's aceount of the defeat of the Spanish Armada from the Italian into Latin; a feat which we fear but few architeets of the present day would easily accomplish, suel is the fall of education for artists, notwithstanding all the boasts of mareh of intellect. 'This translation appeared in 4to., 1589. He was surveyor of the queen's buiddings, and appears to have been a man of considerable ability. His place of sepulture was in an aisle on the north side of the old ehureh at Greenwieh, with this inseription, " Egregio Viro, Roberto Adams, operum regiorum supervisori architeetura, peritissimo, ob. 1595. Simon Basil, operationum regiarum contrarotukator, hoe posuit mommentum 1601."

442. Bernard Adamsand Lawrence Bradshaw were also eminent among the arehitects of the period under our consideration; but we must notice more particularly Gerard Chrismas, who was associated with Bernard Jansen in the erection of Northampton, afterwards Suffolk, and now Northumberland House, not strictly belonging in time, though in style, to the reign of Elizabeth. Both of these architects are eonsidered to have been much employed. In the balustrade and on the street front were the letters H. N. and C. A., which to doubt stood for Henrie. Howard. Northampton. Comes Edifieavit. Yct C. A. has been supposed to denote "Chrismas Ædificavit." Such letters were repeated, a practice then much in vogue, for there are many examples of inseriptions of letters enclosed within the balustrade, as if within lines, and pierced so that the sky seen through them renders them distinct from almost every point of view. Bernard Jansen was probably the arehitect first employed at the splendid mansion of Audley Inn in Essex, fir Thomas lloward, Earl of Suffolk; and, besides the association with Chrismas above mentioned, was joined with Moses Glover in compteting Northumberland House. and was probably the architect who finished Sion House in Middlesex, for Henry Earl of Northumberland, who had at the time expended 90001 . in the work.

44:3. Robert and Huntiligdon Smithson, father and son, were engaged on Wollaton Hall (fig. 203. at the foot of the preceding page), in Nottinghamshire, as also at Bolsover in Derbyshire. The former died in 1614, at the age of seventy-mine, and the latter in 1648 , but very possibly John Thorpe was eonsulted in this splendid work, for among his designs, as the reader will recolleet, are some for Wollaton.
444. Thomas Holt, a native of York, was the architeet of the public schools at Oxford

Fig, 201.
(fig 204.), of which the hint might have been taken from the Canpanile of Santa Chiara at Naples, and of the quadrangles of Merton and Wadham colleges. Ite was the first in this country who introduced the classical orders in series above eaeh other. He evidently borrowed the practice from Philibert Delorme, who had done the same thing at the Chateau d'Anct, near Paris, one of the vietim edifices of the Revolution. We apprehend any argument to prove the absurdity of such conceits is unnceessary.
445. Many of the grandest works of what is termed the Elizalbethan, or, in truth, the
last Tudor style, were not completed before the middle of the reign of James I. ; so that it may be said to have been practised until the days of Inigo Jones, in whose early works it may be traced. "This fashion," says Dallaway, " of building enormous houses was ex. tended to that period, and even to the civil war. Audley Inn, Hatfield, Chariton, Wins, and particularly Wollaton, are those in which the hest architecture of that age may be seen. Others of the nobility, deserting their baronial residences, indulged themselves in a rivalship in point of extent and grandeur of their country-houses, which was, of course, followed by opulent merchants, the founders of new families Sir Baptist Hickes, the king's mercer (afterwards emobled), built Campden House, Gloucestershire, which was scarcely inferior to llatfield, afterwards burnt down. There is scarcely a county in England which cannot boast of having once contained similar edifices; a very few are stil. inhabited; others may be traced by their ruins, or remembered by the oldest villagers, who can confirm the tradition; and the sites, at least, of others are pointed out by descriptions as having existed within the memory of man."
446. The following is a list of some of the principal palatial houses finished before 1600 . Others of the reign of Elizabeth's successors will hereafter be noticed. Of so many of them are the names of the architects undetermined, though many are assigned to those we have already mentioned, that we shall not attempt to assign a column to the artists in question, for fear of misleading our readers.

Name.	Date.	County.	Founder.	Present State.
Catletge	1560	Cambridige -	I cord North -	Taken down
Basiog house	1560	Hants	Marquis of Winton	In ruins
Kelston	1587-92	Sumerset	Sir J. Harington	Rebuilt
Gorbambury	1565-68	Herts	Sir N. Bacon	In ruins
- uckhurst	1560-67	Sussex	Lord Buckhurst	Destroyed
Knowle -	157.0	Kent	Lord Buckhurst	Perfect
P'enshurst -	1570-85	Kent	Sir H. Sydney	Perfect
Kenilworth	1571-75	Warwick	Earl of Leicester	In ruins
Ilunston-	1.575	Warwick:	Lord Hunsdon	Rebuit
Wansteal -	1576	Essex	Earl of Leicester	Destroyed
Burleigh -	157.5-80	Lincoln	Lord Burleigh	Perfect
()sterley	1577	Middlesex	Sir Thomas Gresham	Rebuilt
Longleat -	1567-78	Wilts	Sir J. Thynne	Perfect
Stoke Pogis	580)	Bucks	Earl of Huntingdon	Rebuilt
Toddington	1580	Beds	Lord Cheyney	Destroyed
Theobalds	1570-0	Herts	Lord Burleigh	Destroyed
Wimbledon	1588	Surrey	Sir T. Cecil	Rebuilt
Westwood	1590	Worcester	Sir J. Packington -	Perfect
Hardwick Hall -	1590-97	Derby	Countess of Shrewsbury	In ruins

447. Relative to Osterley, in the above table, a eurions anecdote has been preserved by Fuller, in his Worthies of Middlesex. Queen Elizabeth, when visiting its magnificent :nerchant, the owner, observed to him that the court ought to have been divided by a wall. He immediately collected so many artificers, that before the queen had risen the next morning, says the historian, a wall had been actually erected.
448. Many of these houses possessed terraces of imposing grandeur, which were connected by broad or double flights of steps, with balustrades, whereof, if we may judge from Winstanley's print of Wimbledon, the seat of Sir Edward Cecil, it was a very fine example. The following extracts from the parliamentary survey of it in 1649 will convey some notion of its extent. "The seite of this manor-house being placed on the side slipp of a rising grownde, renders it to stand of that height, that betwixt the basis of the brick wall of the lower court, and the hall door of the sayd manor-house, there are five several ascents, consisting of three score and ten stepps, which are distinguished in a very graceful manner. The platforms were composed of llanders brick, and the stepps of freestone, very well wronglit. On the ground floor was a room called the stone gallery, 108 foot long, pillarel and arched with gray marble." The ceiling of the hall "was of fret or parge work, in the middle whereof was fixed one well-wrouglit landskip, and round the same, in convenient distances, seven other pictures in trames, as ornaments to the whole roome; the floor was of black and white marble."
449. As we have above observed, the Elizabethan style is a mixture of Gothic and Italian. It is characterised by orlers very inaceurately and rudely profiled; by arcades whose openings are often extravagantly wide, their height not unfrequently running up into the entablature. The columns on the piers are almost miversally on pedestals, and are often banded in courses of circular or sepmare blocks at intervals of their height; when square, they are comstantly decorated with prismatic raisings, in innitation of precious stones, a species of
ornament which is of very frequent recurrence. Nothing like mbroken entablatures appear ; all is frittered away into small parts, especially in serolls for the reeeption of inorriptions, which, at their extremities, are voluted and curled up, like so many picees of

Fig. 205.
quegn elizaberm's monument. Among the best examples are of Thomas Rateliffe Earl of Sussex at Boreliam in Essex, to cost 1500l., and of his countess in Westminster Abbey ; of Robert Dutley Earl of Leicester at Warwick; and of Henry Carey Lord Hunsdon in Westminster Abbey.
450. It seems droll in this age, when throughout Europe the principles of good taste in arehitecture are so well understood, that fashion, induced by the cupidity and ignorance of upholsterers and decorators, - the curses of the art, - should again sanction an adoption of the barbarous forms and unmeaning puerilities which it might be supposed Jones and Wren had, by their example, consigned to a merited oblivion. We fear our warning voice will do little to suppress the rage till its cycle is completed. We have, in the prelongation of the subject, sacrificed our own feelings to the rage in the present day for designs of this class, and have assigned to it a far longer description than it deserves. The wretehed cockney imitations of it perpetrated for retired shopkeepers in the insignificant villas of the suburbs of the metropolis, and occasionally for the amusement of country gentlemen a little more distant, as well as the use of what is called Gothic, appear to us in no other light than mockeries of a style which is repudiated by the manmers of the nineteenth century. 'The style called Elizabethan we consider quite as inworthy of imitation as would be the arloption in the present day of the model of the ships of war, with their unwieldly and topheavy poops, which encountered the Armada, in preference to the beautiful and compact form of a well-moulded modern frigate.

Sect. Vil.

JAMES 1. TO ANNE.

4.51. The first of the reigns that heads this section has, in some measure, been anticipated in our notice of Elizabethan architecture, which it was impossible to keep altogether distinet
from the following reign. The angular and eirenlar bay windows now disappeared entirely, and were supplanted by large square ones, of very large dimensions in their height, nnequally divided by transoms, and placed in lengthened rows, so as to form leading features in the several stories of the building. Battlements were now entirely omitted. and the general effeet of the pile became one of massive solidity, broken by a square turret loftier than those at the angles. The houses built in the reign of James I. are deficient in the pieturesque beauty found in those of his predeeessors. Many of them were finished loy the arehitects named in the last section, and they were on a larger seale than even those of the age of Elizabeth. Audley Inn in 1616, Hatfield in 1611, and Charlton Ilouse in Wiltshire for Sir Henry Knevett, were, perhaps, the best speeimens. The house at Campden, Gloueestershire, built by Sir Baptist Hiekes, and whicin was burned down during the eivil wars, consisted of four fronts, the principal one being towards the garden, upon the ground terrace; at eaeh angle was a lateral projection of some feet, with spacious bay windows; in the centre a portico, with a series of the columns of the five orders (as in the sehools at Oxford), and an open corridor. The parapet was finished with pediments of a eapricious taste, and the chimneys were twisted pillars with Corinthian eapitals. A very eapacious dome issued from the roof, which was regularly illuminated for the direction of travellers during the night. This immense building was enriched with friezes and entablatures, most profusely seulptured; it is reported to have been erected at the expense of $29,000 \mathrm{l}$, and to have oceupied, with its offices, a site of eight aeres."
452. The use of the orders beeame more general. In Glamorganshire, at Beaupré Castle (1600), whieh has a front and poreh of the Doric order, we find a eomposition including that just named, the lonie and the Corinthian, wherein the eapitals and columns are acenrately designed and exeeuted. The following table exhibits some of the prineipal houses of the period: -

House.	Date.	County.	Founder.	Present State.	Archite
Holland House	1607	Middle	Sir Walter Cope	Perf	J. Thor
Bramshill -	1607-12	Hants	Edward Lord Zouche	do.	Unce
Castle Ashby	1625-35	Northmptn.	Herbert Lord Compton	do.	
Summer Hill	1624	Kent	Earl of Clamricarde	do.	J. Tharpe (?
Charlton	1615 (?)	Wilts	Sir Henry Kuevet	estor	Uncertain
Hatfield	1607-12	Herts	Robert Earl of Salisbury	Perfect	
Longford Castle -	1591	Wilts	Sir T. Gorges	do.	do.
Temple Newsham	!612-19	Yorkshire	Sir Arthur Ingram	do.	do.
Charlton, Great	1607-12	Ken	Sir Adam Newto	do.	
Bo	607-18	Derby	di	Dilapidated	$\{$ Smithson
Audley Inn	6	Essex	Earl of Suffol	Perfect	B. Jansen
Wollaton	$-\left\{\begin{array}{l} 1580 \\ 1588 \end{array}\right\}$	Nots	Sir Francis Willoughby	do.	$\left\{\begin{array}{c} \text { J. Thorpe (?). } \\ \text { R. and Il. } \\ \text { Smithson } \end{array}\right.$

453. Under James, the pride and magnificence of the aristoeracy was as equally displayed in the sumptuous monuments erected to the memory of the departed as in their stately palaces; and we can seareely point to a county in England whose parish churehes do not attest the fact by the gorgeous tombs that exist in villages where the mansions of those thus commemorated have not long since passed from the memory of man. A year's rental of an estate, and that frequently under testamentary direction, was often squandered in the sepulehral monument of the deceased lord of a manor.
454. In the reign of James I. properly commences the eareer of Inigo Jones, to which we hasten with delight, as indicating the dawn of true arehiteeture (for the Gothic had irretrievably passed away) in England. It resembles the arrival of a traveller at an oasis in the desert, after a parching and toilsome journey. "Jones, if a table of fame," says Walpole, " like that in the Tatler, were to be formed for men of real and indisputable genius in every country, would save England from the disgrace of not having her representative among the arts. She adopted Holbein and Vandyck, she borrowed llubens, she produced Inigo J. nes. Vitruvius drew up his grammar, Palladio showed him the practiee, Rome displayed a theatre worthy his emulation, and King Charles was ready to encourage, employ, and reward his talents. This is the history of Inigo Jones as a genius." Generally speaking, we are not admirers of Walpole, who often saerificed truth to faney, and the character of an artist to a prettily-turned period; hence we are disinelined to coneur in his critieisms without many qualifications; but in this case he has so well expressed our own
feelings, that we regret we camot add force to the observations in which we so fully coneur.
455. Inigo Jones was the son of a clothworker, and was born about 1572. From the most probable accounts he appears to have been apprenticed to a joiner, in which state he was, from some accounts, discovered by the Earl of Arundel, from others by Wiilian Earl of l'embroke, and by one or other of these noblemen sent to Italy, rather, however, according to Walpole, to study the art of painting, than that of architecture, for the former of which, the anthor named says, Nature appears not to have fitted him, inasmuch as "he dropped the pencil, and conceived Whitehall." But our own belief is, that though he might have afterwards been patronised by both the noblemen alove mentioned, he owed this part of his education to neither of them ; for, considering that at his first visit to Italy, before 160.5 , Lord Pembroke was but just of age, and that Lord Arundel was somewhat younger, there is no great probability that either of them thus assisted him in his studies on the Continent.
456. Of his employment as an architect nothing can be traced previous to the risit of James I. to the University of Oxford, in 1605, at which time he was thirty-three years old; and then, according to Leland (Collectunea, App. vol. vi. p. 647.), "They" the University) "hired one Mr. Jones, a great traveller, who undertook to further them with rare devices, but performed little to what was expected. He had for his pains. I have constantly heard, 50 l .;" from which it is certain that his earliest visit to Italy was before 1605. At Venice he became acquainted with the works of Palladio; and there, as Walpole observes, " learned how beautifully taste may be exerted on a less theatre thar the capital of an empire." In this city his reputation was so great, that Christian IV. appointed him his architect, though of the buildings erected by hiim in Demmark we know nothing. In this country's capital, however, he was found by James, and by his Queen (Anne) was removed from Copenhagen to Scotland, in the quality of her architect. By Prince Henry he was employed in the same capacity, and about this time had the grant in reversion of surveyor general of the works. On the untimely and lamented death of that prince, he once more visited Italy, where he perfected his taste and ripened his judgment It appears more than probable that it was previous to his second journey that he designed those of his buildings that partake of a bastard style. These buildings, however, are such as could, under the circumstances, have been designed only by a great master in a state of transition from one style to another; such, for instance, are the north and south sides of the quadrangle at St. John's College, Oxford, in which he seems to have copied all the faults of the worst examples of his great master Palladio; still the composition is so pieturesque, that, though reluctantly, we cannot avoid admiring it. In the garden front of

the same college (fig. ミ06.), notwithstanding its impurity, there is a breadth and grandeur which subdue criticism, and raise our admiration; and we by no means subscribe to Horace iValpole's dictum, that "Inigo's designs of that period have a littleness of parts and a weight of ornament." Previous to his second return to England, the surveyor's place had fallen in, and finding the office in debt, he prevailed, as Walpole observes, with an air of

Roinan disinterestedness, and showing that arehitecture was not the only thing he had learned in Rome, on the comptroller and paymaster of the office, to give up, as he did, all the profits of the office till the arrears were cleared.
457. By the Fredera, vol. xviii. p. 99., we find that there was issued to him, in conjunction with the Earl of Arundel and others, a commission to prevent the building on new foundations within two miles of London and the palace of Westminster ; and in 1620 he was, if possible, more uselessly employed by James I. in guessing, for it was no more, who were the builders of Stonehenge. For this last, the necessary preliminary information had not even dawnel, although Walpole, in his usual off-hand manner, loses not, in alluding to it, the opportunity of displaying his own dreadful ignorance on the subject. (See Chap. II. Sect. 11., where this monument has been examined.) In the year last named, Jones was one of the commissioners for the repair of old St. Paul's, though the repairs were not commenced till 1633, in which year Laud, then Bishop of London, laid the first stone, and lnigo Jones the fourth. Our architect was now too much disinelined to Gothic to bend his genius to

anything in the shape of a restoration; and though the Roman portico which he placed before the chureh was magnificent, the application of Roman to Gothic arehitecture of course ruined the cathedral. The reader will find a representation of this portico in Dugdale's St. I'turl's. Abstractedly considered, it was a fine composition ; and its dimensions, of a teugth of 200 ft ., a depth of 50 ft ., and a height of 40 ft ., were calculated to give it an imposing ellect.
4.58. The l3anqueting House at Whitehall, which we have pride in quoting as one of the most magnificent works in Europe, has generally been supposed to have been erected in the reign of Charles I.; but there is sufficient reason for assigning the period of its execution to the preceding reign. It was begun in 1619, and finished in two years. The designs for the palace of Whitelall, whereof fig. 207. at the foot of the preceding page, exhibits a block plan, on which the banqueting-house (at A), it will be seen, forms a very inconsiderable portion, would, had they heen executed, have formed, beyond all comparison, the linest in the world. In magnitude it would have exceeded even the palace of Diocletian. The form, as will be observed, was an oblong square, and consisted of seven courts, whereof six were quadrangular. The central one was larger than the other two chief divisions; and these were again subdivided into three courts, the centre one of which, on the north side, had two galleries with arcades, and that on the sonth a circular Persian court, as it was called, whose diameter was 210 ft . Surrounded on the ground floor by an open areade, the piers between the arches were decorated with figures of Persians, with what propriety it is useless to discuss; and the upper story was ornamented between each window with caryatides, bearing Corinthiai capitals on their heads, surmounted by an entablature of that order, and the whole was finished by a balustrade. Towards Westininster, the front extended 1152 ft .; and that towards the park, in which the length of the bangueting-house is included, would have been 720 ft . With the exception of Westminster Hall, the banqueting-house (now used as a chapel) was, until of late years, the langest room in England, its length being 115 ft ., breadth 60 ft ., and height 55 ft .
459. In 1652, Jones was employed on Somerset House, to the garden front whereof lie executed (fig. 208.) a façade of singular beauty, lost to the world by its demolition on the

Fig. 208.
WATER FRONT OF OLD SUMERSET HOUSE.
rebuilding of the edifice for its present purposes. On the ascent of Charles I. to the throne, our architect seems to have been very much employed. As surveyor of the public buildings, his stipend was $8 s .4 d$. a day, besides an allowance of 461 . per amum for houserent, a clerk, and incidental expenses.
460. In the passion for masques which prevailed during the reign of Charles I., Jones was a principal contributor to their splendour. They had been introduced into this country by Ame of Denmark; and Walpole gives a list of thirteen to which be furnished the setnes and machinery.
461. They who have seen Wilton can appreciate Inigo's merit for having introduced into England, in the seats of our aristocracy, a style vying with that of the villas of Italy. Some disagreement appears to have arisen hetween him and Philip Earl of Pembroke, which here it would be irrelevant to dwell on; we will merely mention that in the llarleian library existed an edition of Jones's Stonehenge, which had formerly belonged to the nobleman in question; and that its margins are filled by the former
pussessor with notes, not on the substance of the work itself, but on its author, and anything else that could be injurious. Ile calls him "Iniquity Jones," and says he had 16,000 . a year for keeping the king's houses in repair. The censures were undeserved; and the aceusations, unwarranted by facts, are extremely discreditable to the memory of Earl lhilip.

462. The works of Jones. were exceedingly numerous; many, however, are assigned to him which were the productions of his scholars. Such buildings as the Queen's house at Greenwieh (much altered, and, indeed. spoiled, of late years, for the purpose of turning it into a public naval sehool); Coleshill, in Berkshire, built in 1650; Shaftes. bury House, in Aldersgate Street ; the square, as planned, and Church of St. Paul, Covent Garden ; and many other works, are strong proofs of the advancement of architecture during his eareer. York Stairs (fig. 209.), another of his examples, exhibits a pureness and propriety of character which appears to have been afterwards majpreciated by his successors, with Wren at their head, whose mention by the sile of Jones is only justified by the scientific and constructive skill he possessed.
463. Jones was a follower of the Venetian sehool, which we have described in a previons section. Ilis respect for Palladio is evinced by the circumstance of a copy of that great master's works heing his companion on his travels throngh Italy. It is filled with his autograph notes, and is now deposited in the library of Worcester College, Oxford. Lord Burlington had a Vitrivius noted by him in a similar mamer. It is curious to see the amateurs and pscudo-cricics of the present day decry these two authors, whom Jones, a genius of the first order, thought his best instructors. 'The class in question are, however, no longer considered worthy of being listened to on matters of the art; and the public taste is, in this respect, turning once more into the proper channel. Palladian architeeture, thus introduced by Jones, would have reached a splendour under Charles l. perhaps equal to that which Italy ean boast, had not its progress been cheeked by public calanities, in which it was the lot of the artist to share the misfortunes of his royal master. In adlition to leing the favourite of the king, he was a loman Catholic; and for this (as it was thers curiously called) delinquency, he had to pay 5451, in the year 1646. He died, aged 79 years, at Somerset House on the 21 st of June, 1652 ; and left 4,200\%. in legacies, and 100\%. for a monument, so that he did not die in poverty as unailly stated.
464. The plans of houses introduced from Italy by this mater were not, perlaps, altogether suited to the climate or habits of the English. One of his greatest faults was that of aiming at magnificence under circounstances in which it could not be attained. Thus, his rooms were often sacrificed to the show and effect resulting from a hall or a stairease, or hoth; sometimes, to gain the appearance of a vista of apartments, they were made too small or the scale of the house. His distribution of windows is purely Italian, and the piers between them consequently too large, so that the light is occasionally insufficient in puantity. The habits of Italy, which enabled Palladio to raise his principal floor, and to have the farm offices and those for the vintage in the same range of building as the nansion, impart an air of great magnificence to the Italian villa. Jones saw that this urangement was not required for English convenience, and therefore avoided the Palladian bractice ; "but," says Mitford, "the architects who followed him were dazzled, or dazzled heir employers. To tack the wings to the centre with a colonnade became a phrase to express the purpose of plan of the most elegant effect ; and the effeet, provided the compination be harmonious, will be elegant ; but the arrangement is very adverse to general onvenience, and especially in the moderate scale of most general use. Where grcat plendour is the object, convenience must yield to it. Magnificence must be paid tor in onvenience as well as money." Webb and Carter were the pupils of Jonce. The former vill furnish us presently with a few remarks. During the time of the Commonvealth, the istory of architecture in this comfry is a complete blank. We know of no public work f consequence that was designed or excented in the interregum. On the restoration of
the monarchy, however, the art began to revive; but it was much tinctured with the contemporary French style, which Lord Burlington, on its reappearance many years afterwards, had the merit of reforming, and of bringing back the public taste to the purity which Jones had introduced: but this we shall have to notice hereafter.
465. John Webb was nephew as well as scholar of Inigo. Jones, whose only danghter he married. He built a large seat for the Bromley family at Horseheath, in Cambridgeshire ; and added a portico to the Vine, in Hampshire, for (halloner Chute, the Speaker to Richard Cromwell's parliament. Ambresbury, in Wiltshire (fig. 210.), was only exeented

Fig. 210.
AMBRESBURY. (Before its aiterations in 1853.)
by him from the designs of his master, as also the east side of the court of Greenwich Hospital. Captain William Winde, a native of Bergen-op-Zoom, and pupil to Sir Balthaza Gerbier, was, soon after the Restoration, in considerable employ as an architect. He bui Cliefden House, Bucks, which was destroyed by fire in 1795 ; the Duke of Newcastie's, it Lincoln's Inn Fields; Combe Abbey, Warwickshire, for Lord Craven; and for the sane peer he finishod Hempsted Marshall, which had been begun by his master. But the chie and best work of Winde was Buckingham House, in St. James's Park, on whose site now stands a palace, larger, indeed, but unworthy to be its successor. It is known from prints and not a few of our readers will probably recollect the building itself. It was erceted fon John Sheffield, Duke of Buckingham; and on its frieze was the inscription "sie sim 1.atantur lares." The arrears in the payments for thic house, according to an anecdute in Walpole, were so distressing, that when it was nearly finished, "Winde had enticed his Grace to mount upon the leads to enjoy the grand prospect. When there, he coolly locked? the trap-door, and threw the key to the ground, addressing his astonished patron, 'I am a ruined man, and unless I have your word of honour that the debts shall he paid, I will instantly throw nyself over.' 'And what is to become of me,' said the duke? 'You shall come along with me.' The promise was given, and the trap-door opened (upon a sign made) by a workman in the secret, and who was a party to the plot." We do not vouch for the truth of the tale.
466. An arehitect of the name of Marsh is said, by Vertue, to have designed the additional buildings at Bolsover, as also to have done some considerable works at Nottinghan Castle : and Salmon, in his account of Essex, mentions a Doetor Morecroft, who died in 1677, as the architect of the manor-house of Fitzwalters. Of the works of the French taste about the middle of the period under discussion, a better notion camot be obtained than from Montague House, late the British Museuin (fig. 211.), the work of a Frenchman here whose example had followers; indeed, Wren himself, in some of his works, has caught the vices of the French school of the day, thongh he was a follower of the Venctian and Roman schools. The fire which destroyed London in 1666 , a few years after the death of Jones, broaght into notice the talents of Sir Christopher Wren, whose career was opened under

Fig. 211.
BRITIH MUREVM.
the reign of Charles II. "The length of his life enriched the reigns of several princes and disgraced the last of them." (At the advanced age of 86 he was removed hy George I. from the office of Surveyor General.) "A variety of knowledge proclaims the universality, a multiplicity of works the abundance, St. Paul's the greatness, of Sir Christopher's genius. The noblest temple, the largest palace, the most stupendous hospital, in such a kingdom as Britain, are all works of the same hand. He restored London and recorded its fall." Λ s the boast of England is the Cathedral Church of St. Paul, it will be necessary to dwell a little on a description of it.
467. The larger portion of this eathedral stands on part of the site of the old one, as st:own by the amexed diagram (fig. 212.), which also exhibits their comparative sizes. It is

Fig. 212.
PLAN OF OLD AKD NEGV ET, PALEBM
eopied from a drawing by Sir Christopher in the library of All Souls College at Oxford. The instructions to the surveyor, according to the compiler of the l'arentalia, were - " to contrive a fabric of moderate bulk, but of good proportion; a convenient quire, with a vestibule and porticoes, and a dome conspicuous above the houses:" and in conformity with them, a design was made which, from various eauses, does not appear to have given satisfaction; whereon the compiler observes, that "he endeavoured to gratify the taste of the connoisseurs and criticks with something coloss and beautiful, with a design antique and well studied, conformable to the best style of the Greek and Roman architecture." The model made from this desicu st'll exists. This however was not approved, and "the surveyor then turned his thoughts to a cathedral form, so altered as to reconcile as near as possible the Gothic to a better manner of architecture." A design was approved by the king, who issued his warrant under privy seal 14th May, 1675, for the execution of the "orks. This deign (engraved for the first time in Longman's The Three Cathedrals, 187.3) was wholly departed from by Wren, in execution.
468. Much trouble was experienced in removing the immense ruins of the old church, for the de, truction whereof recourse was liad to many expedients. On the north side, the fom dations are flaced upon a stratum of hard pot earth about 6 fect in thickness, but not more
than 4 ft . thick on the south side; and upon this stratum, from the experience of the 0 church having firmly rested, the architect wiscly Jetermined to place the new one. It work was commenced on the western side, driving eastward to the extremity of the sitc at which, on the northern side, a pit was discovered whence the hard pot earth ha been extracted, and the vacuity so made filled up with loose rubbish. 'The length of th hole in the direction of the foundation was not more than 6 or 7 ft ., and from the fear piles, if driven, becoming rotten, the surveyor determined to excavate through the san and to build up from the stratum solid for a depth of 40 ft . The pit sunk here was 18 wide; in this he built up a pier, 10 ft . square, till it rose to within 1.5 ft . of the prese surface. At this level he introduced an areh from the pier to the main foundation, and , this arch the north-eastern quoin of the choir is founded.
469. On the 21 st of June, 1675 , the first stone was haid; and, within ten years, the wai of the choir and its side aisles, and the north and south circular porticoes, were finished; th piers of the dome also were brought up to the same height. The son of the architect la the last stone in 1710. This was the highest stone on the top of the lantern. Thus th whole edifice was finished in thirty-five years, under the remarkable circumstances of havil only one architect, one master mason (Mr. Strong), and the see being oceupied the who time by one bishop, Doctor Henry Compton. 'The master builder's name was Jennings.
470. The plan of St. Panl's is a Latin cross, and bears a general resemblance to that St. Peter's. A rectangular parallelogram, 480 ft . from east to west (measuring from th top of the steps of the western portico to the exterior of the castern wall of the choir), crossed by another parallelogram, whose extremities form the transepts, 250 ft . in lengt from north to south. At the eastern end of the first parallelogram is a hemieylindrie reeess, containing the altar, and extending 20 ft . further eastward; so that the whole lengt is 500 ft ., exclusive of the Hight of steps. At the north and south ends of the transep are porticoes, segmental on the plan, and projecting 20 ft . The centre of the intersectic of the paraltelograms is 280 ft . from the western front. The width of each parallelogran is 125 ft . At the western end of the edifice, on the north and south extremities, are towe whose western faces are in the same plane as the general front, but whose northern an southern faces respectively projeet abont 27 ft . from the walls of the aisles of the nave ; that the whole width of the western front is about 180 ft . In the re-entering angles o each side, between the towers and the main buitding, are two chapels, each 50 ft . long an 20 ft . broad, open to the aisles of the nave at their western end Externally two orde reign round the building. The lower one Corinthian, standing on a basement 10 ft . abov the level of the ground, on the western side, where a flight of steps extending the who breadth of the front, exclusive of the towers, leads to the level of the church. The heigh of this order, inchuding the entablature, is 50 ft ; and that of the second order, which composite, is one fifth less, or 40 ft ; making the total height 100 ft . from the ground to tl top of the second entahlature. The portico of the western front is formed with the $t w$ orders above mentioned, the lower story consisting of twelve coupled columns, and tl upper one of eight; which last is surmounted by a pediment, whose tympanum is seul tured with the subject of the Conversion of St. Panl, in pretty high relief. Half of th western elevation, and the half transverse seetion, is given in fig 213 . At the northel and southern ends of the transepts the lower order is continued into porticoes of six fints columns, standing, in plan, on the segment of a circle, and crowned with a semi-dome abu ting against the ends of the transepts.
471. The porch of the western front is 50 ft . long and 20 ft . wide: the great doorwa being in the centre of it, leads to a vestibule 50 ft . square, at whose angles are four pic connected at top by semicircular arches, under which are placed detached coupled colums in front of the piers. 'The body of the church is divided into a nave and two side aisle decorated with pilasters supporting semicircular arehes; and on each side of the poreh an vestibule is a passage which leads directly to the eorresponding aisles. The choir is similar disposed, with its central division and side aisles.
472. The entrances from the transepts lead into vestibules 25 ft . deep, and the who breadth of the transept in length, each communieating with the centre by a central passat and its aisles formed-between two massive piers and the walls at the intersections of ti transepts with the choir and nave. The eight piers are joined by arches springing fro one to the other so as to form an octagon at their springing points, and the angles betwee the arehes, instead of rising vertically, sail over as they rise and form pendentires, whic lead, at their top, into a circle on the plan. Above this a wall rises in the form of a trut eated cone, which, at the height of 168 ft . from the pavement, terminates in a horizont: cornice, from which the interior dome springs. Its diameter is 100 ft ., and it is 60 ft . height, in the form of a paraboloid. Its thickness is 18 in ., and it is constructed of brich work. From the haunehes of this dome, 200 ft . above the pavement of the church, anoth cone of brickwork commences, 85 ft . high, and 94 ft . dianeter at the bottom. This con is piereed with apertures, as well for the purpose of diminishing its weight as for distr buting light between it and the outer dome. At the top it is gathered into a dome, in tl

form of a hyperboloid, pierced near the vertex with an aperture 12 ft . in diameter. Tlee top of this cone is 28.5 ft . from the pavement, and carries a lantern 55 ft . high, terminating in a dome, whereon a ball and cross is raised. The last-named cone is provided with eorbels, sufficient in number to receive the hammer beams of the external dome, which is of oak, and its base 220 ft . from the pavement, its summit being level with the top of the cone. In form, it is nearly hemispherical, and generated by radii 57 ft . in length, whose entres are in a horizontal diameter, passing through its base. The cone and the interior dome are restrained in their lateral thrust on the supports by four tiers of strong ison chains, placed in grooves prepared for their reception, and run with lead. The lowest of these is inserted in the masonry round their common base, and the other three at different heights on the exterior of the conc. Externally the intervals of the columns and pilasters are occupied by windows and niches, with horizontal and semicircular heads, and crowned with pediments. In the lower order, excepting modillions under the corona, the entablature is quite plain, and there are also console modillions in the upper order. The edifice, in three directions, is terminated with pediment roofs; and at the extremities, on each of those faces, are acroteria, supporting statues 25 ft . above the roof of the edifice. Over the intersection of the nave and transepts for the external work, and for a height of 25 ft . above the roof of the chareh, a cylindrical wall rises, whose diameter is 146 ft . Between it and the lower conical sall is a space, but at intervals they are comected by cross walls. This cylinder is quite plain, but perforated by two courses of rectangular apertures. On it stands a peristyle of thirty columns of the Corinthian order, 40 ft . high, including bases and capitals, with a plain entablature crowned by a balustrade. In this peristyle, every fourth intercolumniation is filled up solid, with a niche, and comection is provided between it and the wall of the lower cone. Vertically over the base of that cone, above the peristyle, rises another cylindrical wall, appearing above the balustrade. It is ornamented with pilasters, between which are a tier of rectangular windows above, and one of blanks below. On this wall the external dome is posited. As will be seen by reference to the section, the hantern which we have before notined receives no support from it. It is mere y wramental, differing entirely in that respect from the dome of st. Peter's.
473. The towers in the western front are 220 ft . high, terminating in open lanterns, covered with domes formed by curves of contrary flexure, and not very purcly composed, thongh perhaps in character with the general ficgade. The total height to the top of the eross from the pavement ontside is 401 ft ., but usually stated as 365 ft .
474. The interior of the nave and choir are each designed with three arches longitudinally springing from piers, strengthened, as well as decorated, on their inner faces, by an entablature, whose cornice reigns throughout the nave and chureh. Above this entablature, and breaking with it over each pilaster, is a tall attic from projections on which spring semicircular arches which are formed into arcs doubleaur. Between the last, pendentives are formed, terminated by horizontal cornices. Small cupolas, of less height than their semi-dianeter, are formed abore these cornices. In the upright plane space on the walls above the main areles of the nave, choir, and transepts, a clerestory is obtained over the Attic order, whose form is generated by the rising of the pendentives. The inner dume is plastered on the under side, and painted by Sir James Thornhill, with subjects relating to the history of St. l'anl
475. For external clegance, we know no church in Europe which exhibits a cupola comparable with that of St. Paul's, though in its connection with the ehurch by an order higher than that below it there is a violation of the laws of the art. The cost of the chureh was 736,7521 ., exclusive of the stone and iron enclosures ronnd it, which cost 11,2021 . more; in all 747,954/. About nine-tenths of that sum were raised by a tax on eoals imported into London. As compared with St. Peter's, we subjoin a few of the principal dimensions of the two churehes.

Direction of Measure.	st. Peter's in English Feet.	St. Paul's in Enghsh Feet.	Excess of the former in Fect.
Length withis	669	500	169
Breadth at entrance	226	100	126
Principal façade	395	180	215
Breadth at the cross	442	223	219
Cupula, clear diameter	139	108	3 f
Cupola, height of, with lantern	432	330	102
Chureh in height -	146	110	36

476. If we suppose sections to be made through the transepts of the four principal churehes of Europe, we have their relative sizes in the following ratio : -

St. Peter's, Rome -	-	-	-	-	-1.0000
Santa Maria del Fiore, at Florence	-	-	-	-	.5358
St. Paul's, London					
St. Genevieve (Pantheon), Paris	-	-	-	-	-

477. Notwithstanding its imposing effect as a whole, and the exhibition in its construetion of a mechanical skill of the very highest order; notwithstanding, also, the abstract beauty of the greater mumber of its parts, it is our duty to ohserve that many egregious abuses are displayed in the fabric of St. Paul's, the first and greatest whereof is the great waste of interior effect as compared with the total section employed. If we suppose, as before, sections from north to south to be made through the transepts of the form principal churches, the following table will exhibit the proportion of their elcar internal to their external areas: -

St. Peter's, Rome -	-	-	-	$-8,325: 10,000$
Santa Nlaria del Fiore, Florence	-	-	-	$-8,8.55: 10,000$
St. Paul's, London	-	-	-	$-6,865$
St. Genevieve (Pantheon), Paris	-	-	-	$-6,746: 10,000$

Whence it is seen how highly in this respect the Duomo of Florence ranks above the others. 'Ihe defect of St. l'aul's in this respect is mainly induced by the false dome; and though we may admire the ingenuity that provided for carrying a stone lantern on the top of a truncated cone, deceitfully appearing, as it does, to stand on the dome from which it rises, we cannot help regretting that it afforded the opportunity of giving the building a cupola, liable to the early attack of time, and perhaps that, more to be dreaded, of fire.
478. In the skill required for raising a building on a minimum of foundation, Sir Christopher Wren appears to have surpassed, at least, those who preceded him. In similarly or nearly so formed buildings, some criterion of the comparative skill employed in their construction may be drawn from comparing the ratio between the area of the whole plan, and that of the sum of the areas of the horizontal sections of the whole of the piers, walls, and pillars, which serve to support the superincumbent mass. The similarity of thr. four churches already compared affords, therefore, a criterion of their respective merits in this respect. We hardly need say that one of the first qualifications of an arehitect is to produce the greatest effect lyy the smallest means. The subjoined table is placed before the reader as a comparison of the four churches in reference to the point in question.

Church.	Whole Area in Enghsh Feet.	Area of Points of support.	Ratio.	
St. Peter's at Rome	-	$\Omega 27,069$	59,308	$1: 0.261$
Sta. Maria del Fiore, Florence	84,802	17,030	$1: 0.201$	
St. I'aul's, London -	84,025	14,311	$1: 0.170$	
St. Genevieve (I'antheon), 1'aris	60,287	9,269	$1: 0.154$	

The merit, therefore, shown in the construction of the above edifices will be nearly as 15 . $17,20,26$, or inversely proportional to the numbers in the last column.
479. We must here mention one of the most unpardonable defects, or rather abues. which this church exhibits, and which must be learnt from reference to fig. 214. 'Theren is

Fig. 214
BT. PAIII'S. SECTION WITH BUTTRESSEG.
given a transverse section of the nave and its side aisles. From this it will be seen that the enormous expense of the second or upper order all round the chureh was incurred for no other purpose than that of concealing the flying buttresses that are used to counteract the thrusts of the vaults of the nave, choir, and transepts, - an abuse that admits of no apology.
It is an architectural fraud. We do not think it necessary to descend into minor defects and abuses, such as vaulting the church from an Attic order, the multiplicity of breaks, and want of repose; the general disappearance of tie and connection, the piercing, as practised, the piers of the cupola, and mitering the archivolts of its great arches, and the like, because we think all these are more than counterbalanced by the beauties of the edifice. We cannot, however, leave the subject without observing that not the least of its merits is its freedom from any material settlement tending to bring on premature dilapidation. Its chief failures are over the easternmost arch of the nave, and in the north transept, for the renedy whereof (the latter) the architect left written instructions. There are also some unimportant failures in the haunches of most of the flying buttresses, which are scarcely worth notice.
480. The wretchedly naken appearance of the interior of this cathedral is a disgrace neither to the architect nor to the country, but to the clergy, Terrick, bishop of London, and Potter, archbishop of Canterbury, who refused to sanction its decoration with pietures, gratuitously proffered by artists of the highest reputation; and this after the cupela itself had been decorated. 'Ihe colotir of the seulpture is of no use in heightening the eflect of the interior.
481. The Prorentulia contains a description of the maner in which the walls of the old
eathedral were destroyed, and those of the present one raised; which should be read by all those engaged in the practice of architecture.
482. Wren, having lived to see the completion of St. Paul's, was, as before stated, displaced from the office of surveyor of Crown buildings to make room for an incompetent pretemder, named Benson. Pope, in the Dunciad, has left a record of the job, in the lines-

While W rell with sorrow to the grave disents,
Gay dies unpensioned wht a hundred friends.
Wren died at the age of 91 years, and was buried under the falmric, "with four words," says Walpole, "that comprehended his merit and his fame."

"SI QUERAS MONUMENTUM CIRCUMSPICE."

483. It will be impossible, consistently with our space, to deseribe the works of Sir Christopher Wren. One upon which his fame is as justly founded as upon St. l'aul's itself, is St. Stephen's Church in Wallbrook, in which, on a plot of ground $80 \frac{1}{2} \mathrm{ft}$. by $59 \frac{1}{2} \mathrm{ft}$., he has contrived a structure whose elegance is not surpassed by any one we know to have been raised under similar restrictions. The chureh in question is divided longitudinally into five aisles by four ranks of Corinthian columms standing on pedestals; the places of four columns near the centre being unoccupied; the surrounding central columns form the angles of an octagon, 45 ft . diameter, on which arches are turned, and above which, by means of pendentives, the circular base of a dome is formed, which is in the shape of a segment of a sphere, with a lantern thereon. The ceiling of the middle aisle from east to west is vaulted in groins. The rest of the ceiling is horizontal. The interior of St. Jamess, Westminster, is another beautiful example of the master, though recently underrated by an ignorant critic.
484. One of the peculiarities remarkable about Wren's period is the investment of the form of the Gothic spire with a clothing of ltalian architecture, by which the modern steeple was produced If any example could reconcile us to such a practice, it maght be found in that of Bow Church, another of Wren's works, which rises to the height of 197 ft . from the ground, the sides of the shuare from which it rises being 32 ft . 6 i::. There are in the leading proportions of this tower and spire, some extraordinary examples iu relative heights as compared with widths sesquialterally, which would almost lead one to suppose that, in this respect, our architect was somewhat super-titions.
485. In St. Dunstan in the Fast, Wren attempted Gothie, and it is the least offensive of his productions in that style. It. is an elegant compusition, but wants the claim to originality. St. Nicholas, Newcastle, and the IIigh Church, Edinburgh, are its prototypes.
486. The Monoment of London is original, notwithstanding columns of this sort had heen previously erected. Its total expense was $8856 l$., and it was commenced in 1671 , completed in 1677 . The height is 202 ft . ; hence it is loftier than any of the historical columus of the ancients. The pedestal is about 21 ft . square, standing on a plinth 6 ft . wider. The lower diameter of the column on the upper part of the base is 15 ft ., and the shaft incloses a staircase of black marble, consisting of 84.5 steps. It was fluted after the work was carried up. The quantity of lortland stone whereof it is composed is 28,196 cubic fect. The Antomine column at Rome is $163 \frac{1}{2}$, and that of Trajan 132 ft . high. That erected by Arcadius at Constantinople, when perfect, was of the same height as that last mentioned. The structure of which we are speaking loses much by its situation, which has neither been improved nor deteriorated by the streets consegnent on the rebuilding of London Bridge : and though it cannot compete with the 'Irajan column in point of intrinsic beauty, it is, nevertheless, an exquisite and well-proportioned work, and seems mach better calculated with propriety to record the object of its erection, than the other is to be the monument of a hero. In these days, it is singular to see that no other mode than the erection of a column could be found to record the glorious actions of a Nelson. Such was the poverty of taste that marked the decision of the committee to whom that object was most improperly entrusted.
487. Among the works of Wren not to be passed without notice is the Library of Trinity College, Cambridge. It is one of his finest productions, and one with which he himself was well satisfied. It consists of two orders; a Doric arcade below, open to a basement supported by columns, which has a flat ceiling, exceedingly convenient as an ambulatory, and itself simple and well proportioned. The prineipal story is decorated with threequarter columns of the Ionic order, well proportioned. From their volutes, festoons are pendent, and the key-stones of the windows are carved into cherubs' heads, \&.c. 'I'his is the elevation towards Nevill's Court ; that towards the garden has three Doric doors below. but above is without columns or pilasters in the upper stories. Without ornament, it is not the less gracefnl and imposing. The interior, as a single room, is designed with great grandeur and propriety.
488. We cannct turther in detail continue an acconnt of the works of this extraordinary architect, but shall now proceed to submit a list of his principal works, together with a catalogue of those of his principal churches whose estimates exceeded the cost of 50002

Churehes: -

			Time of erection	Cost.		
Allhallows the Great -	-	-	- 1697	5,641\%.	9 s .	914
Allhallows, Lombard Street	-	-	- 169.1	8,058	1.5	6
St. Andrew Wardrobe	-	-	- 1692	7,060	16	11
St. Andrew, Holborn	-	-	- 1687	9,000	0	0
St. Antholin	-	-	- 1682	5,685	5	10
St. Bride -	-	-	- 1680	11,4:30	5	11
Christ Chureh, Newgate Street	-	-	- 1687	11,778	9	\oint
St. Clement Dane's	-	-	- 1680-82	8,786	17	0
St. Dionis Baekchurelı	-	-	- 1674-84	5,737	10	8
St. Edmund the King	-	-	- 1690	5,207	11	0
St. Lawrence Jewry	-	-	- 1677	11,870	1	9
St. James, Garlick IIill	-	-	- 1683	3,357	10	8
St. James, Westminster	-	-	circt 1689	8,500	0	0
St. Miehael Royal -	-	-	- 1694	7.555	7	9
St. Martin's, Ludgate	-	-	- 1684	5,378	9	7
St. Margaret, Lothbury	-	-	- 1690	5,340	8	1
St. Mary, Somerset	-	-	- 169.5	6,579	18	1
St. Mary, Aldermanbury	-	-	- 1677	5,237	3	6
St. Mary le Bow	-	-	- 1673	8,071	18	1
-_-_ The steeple	-	-	- 1680	1,388	8	7
St. Nieholas, Coleabbey	-	-	- 1677	5,042	6	11
St. Olave Jewry -	-	-	- 1673	5,580	4	10
St. Peter, Cornhill - -	-	-	- 1681	5,647	8	9
St. Swithin's, Camon Street	-	-	- 1679	4,687	4	6
St. Magnus, London Bridge	-	-	- 1676	9,579	18	10

489. We must here elose our account of Wren. 'Those of our readers who desire further information on the life and works of this truly great man will do well to consult the P'trentaliu, or Memoirs of the Family of the Wrens, eompiled by his son, and published by his grandson Stephen Wren. Fol. Lond. 1750.
490. Among the architects of Wren's time, there was a triad of aınateurs who would have done honour to any nation as professors of the art. The lirst of these was Henry Aldrich, I). D., Dean of Christ Chureh, Onford, who died in 1710 . He was attaehed to the Venetian school, as we may see in the three sides of l'eekwater quadrangle, and the garden front of Corpus Christi College, a façade which for correct taste is not surpassed by any edifice in Oxford. The second of these amateurs was. Dr. Clarke, one of the Lords of the Admiralty in the reign of Queen Anne. This distinguis!ned anateur sat for Oxford in fifteen sessions. The Library of Woreester College, to which he bequeathed his valuable architectural collection of books and MSS., was from his design. He built the library at Christ Clurch. 'Fhe third was Sir James Burrough, Jaster of Cains College, Canbridge; by whom, in 1703, the chapel of Clare Hall in that University was beautifully designed and exeented.
491. We now approach the works of a man who, whatever some have thought of them, has a stronger claim on our notice as an inventor than any of his predecessors. It must be anticipated that we allude to Sir John Vanbrugh. Upon no other artist has Walpole delivered criticisms more unworthy of himself, nor is there any one of whose gemius he had less eapacity to appreciate the powers. The singular inind of Vambrugh was distracted by control: his buildings are the result of a combination of forms and anticipation of effects, originating solely from himself; eflects which none belore had seen wor
comtemplated. As a wit, he was inferior to none that levelled its shafts at him, and hence his novel compositions in architecture became among the professed critics of the day so much the more an object of derision, as, in their puny notions, his only assailable point. Attackell from party feeling, the public allowed itself to be biassed by epigrans and smart verses from the pens of P'ope and Swift ; and when the former, in his fourth epistle, in allusion to Vambrugh's works, exelaims, -
" I o ! what huge teaps of littleness around: The whole a habuured quarry above ground," -
he little thought he was leaving to posterity a record of his consmmmate ignorance of art, and of his total insensibility to grandeur, in all that relates to composition in arehitecture.
492. The opinion of Sir Joshua Reynods first enlightened the public upon the thitherto condemned works of this extraordinary architect. "I pretend," says Reynolds, in his fifth discourse, "to no skill in architecture. I judge now of the art merely as a painter. When 1 speak of Vanbrugh, 1 speak of him merely on our art. To speak, then, of Vanbrugh in the language of a painter, he had originality of invention, he understood light and shadow, and had great skill in composition. To support his principal object, he produced his sceond and third groups of masses : he perfectly understood in his art what is most difficult in ours, the conduct of the backgrounds by which the design and invention is (are) set off to the greatest advantage. What the background is in painting is the real ground upon which the building is erected; and as no arehitect took greater care that his work should not appear crude and hard, - that is, that it did not abruptly start out of the ground, without expectation or preparation, - this is the tribute which a painter owes to an architect who composes like a painter." The testimony of Mr. Dayne Knight, a person of a taste highly refined and cultivated, in his Principles of Tuste, is another enlogium on the works of this master. And again we have the concurrence therein of another able writer on these subjects, who, though frequently at variance in opinion with Mr. Knight, thus expresses himself in his Essay on the Picturesque, vol. ii. p. 211.: "Sir J. Reynolds is, I believe, the first who has done justice to the arehitecture of Vanbrugh, by showing it was not a mere fantastic style, without any other olject than that of singularity, but that he worked on the principles of painting, and that he has produced the most painter-like effects. It is very probable that the ridicule thrown on Vanbrngh's buildings, by some of the wittiest men of the age he lived in, may have in no slight degree prevented his excellencies from being attended to; for what has been the subject of ridicule will seldom become the objeet of study or imitation. It appears to me, that at Blenheim, Vanbrugh conceived and executed a very bold and difficult design, that of uniting in one building the beauty and magnificence of the Greeian arehitecture, the pricturesqueness of the Gothic, and the massive grandeur of a eastle; and that, in spite of many faults, for which he was very justly reproached, he has formed, in a style truly his own, and a well-combined whole, a mansion worthy of a great prince and warrior. "His first point appears to have been massiveness, as the foundation of grandeur: then, to prevent the mass from being a lump, he has mate

various bold projections of various heights, which seem as foregrounds to the main building; and, lastly, having been probably struck with a variety of outline against the sky in many Gothic and other ancient buildings, he has raised on the top of that part where the slanting roof begins in any house of the Italian style, a number of decorations of varions characters. These, if not new in themselves, have, at least, heen applied and combined by him in a new and peculiar mamer, and the union of them gives a surprising splendour and magnificence, as well as varicty, to the summit of that princely edifice. The study, therefore, not the imitation, might be extremely serviceable to artists of genius and discernment."
493. Vanbrugh's prineipal work was Blenheim (whereof we give, in figs. 215. and 216 .,

Fig. 216.
RLEVATION OV RI.KNHEIM.
the plan and principal elevation), a monument of the victories of Marlborough raised by a grateful nation. Its length on the north front from one wing to the other is 348 ft . The internal dimensions of the library are 130 by 8.2 ft . The hall is perhaps small compared with the apartments to which it leads, being only 53 ft . by 44 . and 60 ft . high.
494. The execution of his design for Castle Howard, in Yorkshire, was commenced in 1702, and, with the exception of the west wing, was completed by him. The design possesses much greater simplicity than that of Blenheim There is a portico in the centre, and a cupola of considerable height and magnitude. The galleries, or wings are thanked by pavilions. The living apartments are small; but for the comfort and convenience of the house, as an halitation, many imprevements have been made since the time of Vanbrugh
495. At Eastbury, in Dorsetshire, he built a spacious mansion for Mr. Doddington. The front of it, with the offices, extended 370 ft . We regret to say that it was taken down by the first Earl Temple, about the middle of the last century.
496. King's Weston, near Bristol, erected for the Honourable Edward Southwell. A beautifus feature in the honse is the grouping of the chimneys, in which practice no artint has surpassed, nor perhaps equalled, him. 'This house is not, however, at favourable specimen of our architect's powers.
497. In the front which he executed to Grimsthorpe, in Lincolnshire, he indulged himself in an imitation of Blenheim and Castle Howard. The hall here is of noble dimensions, being 110 ft . in length, and 40 ft . in height, surmounted by a cupola.
498. Charles Howard, the third Earl of Carliske, Deputy Earl Aarshal in 1703, appointed Vanbrugh, Clarenceux king of arms, over the heads of all the heralds, who remonstrated, without effect, against the appointment. The cause of such an extraordinary promotion is supposed to have had its origin in the Earl's satisfaction with the works at Castle Iloward. It was, however, altogether unjustifiable, for Vanbrugh was, from all acconats, totally ig. norant of heraldry. He held the situations of surveyor of the works at Greenwich Ilospital, comptroller general of the works, and surveyor of the gardens and waters. 'Though perlaps out of place in a history of architecture, we camot resist the opportunity of mentioning that our artist was a dramatist of genius. The Relapse, The J'rovoked Wife, The Confederacy, and Esop, according to Walpole, will outlast his edifices. He died at Whitehall, Narch 96. 1726. Vanbrugh ean hardly be said to have left a legitimate follower; he formed no school. Archer, indeed, attempted to follow him, and seems the only one of his time that could appreciate the merit of his master. But he was too far behind him to justify our pausing in the history of the progress of British architecture to say more than that his best works are Heythrop, and a temple at Wrest. St. Philip's Church at Birmingham is also by him. "A chef d'ouvre of his absurdity,"says Dallaway, "was the church of St. John's, Westminster, with four helfries," a building which has not inaptly been likened to an elephant on his back, with his four legs sprawling in the air.

Sect. Vili.
GFOMGE 1.
499. Though the example of Wren was highly beneficial to his art, he does not seem to have been anxious to propagate his doctrines by preeepts, for he had but one pupil who deserves a lengethened notice. That pupil was Nicholas Hawksmoor, who, at the age of righteen, became the diseiple of Sir Christopher, "under whom," says Walpole, "during life, and on his own account after his master's death, he was concerned in erecting many public edities. Lad he erected no other than the church of St. Mary Woohnoth, Lombird Street, his name would have deserved with gratitude the remembrance of all lovers of the art. This chureh has recently (on the opening of King William Street) been unfortumately disfigured on its southern side by some incompetent bungler on whom the patronage of the churet warden lucklessly fell. Such is the fate of our public buildings in this comntry. The skill displayed ly Hawksmoor in the distribution and design of St. Mary Woolnoth is not more than

Fig. 217. rivalled by the best productions of his master and instructor. We here give, in figs. 217. and 218., a halis section, elevation, and plan of it. It was commenced in 1716, and finished in 1719. Not until lately was it seen to advantage. Lombard Street, in which one side still stands, was narrow, and its northern elevation, the only one till lately properly seen, required, from its as. pect, the boldest form of detail to give it expression, because of its heing constantly in shade, and therefore experiencing no play of light exsept such as is reflected. This is composed with three large semicirenlar rusticated niches, each standing on a loliy suticated pedestal, relieved with blank recesses, which are repeated in the intervals below between the niches. The whole rests on a basement. whose openings, of course,

Fig. 218.
PLAN OF ST. MARY WOOLNOTIU. correspond to those above. The niehes in the recesses are decorated with Doric columns on pedestals, and the top of the entalature of the order is level with the spriaging of each miche head ruming through on each side, so as to form an impost. The front is crowned with a block cornice, continued round the building, and the central part of the northern front is surmounted by a balustrade. We are not prepared to maintain that the whole of the details are in the purest taste; but the masses are so extremely pieturesfue, and so adapted to the circumstances of the aspect and situation, that their faults are forgotten. Not so the interior, which needs no apology. It is a combination of proportions, whose beauty cannot be surpassed in any similar example. The plan is nearly a square, whose north-west and south west angles are trincated at angles of forty-five degrees, for the introduction of stairs. The leading lines are an inseribed square whose sides are equal to two thirds of the internal width, the remaining sixth on each side being assigned to the intercolumniations between the columns and the pilasters on the internal walls. The columns, twelve in number, are placed within the sides of the inseribed square, and at the angles are conpled at intervals of one diameter. The order is Corinthian; the columns are fluted, and crowned by an enriched entablature one quarter of their height. The space thus enclosed by the columns continues in a clerestory above, pierced on the four sides by semicireular windows, whose diameters are equal to one of the wide intercolumnations below. The height of this, including its entablature, is one half that of the lower order; thus, with its pedestal, making the total height of the central part of the
churcle, equal to its extreme width. A sesquialteral proportion is thus obtained in section as well as plan. 'The eastern end is recessed square lor an altar piece, and arched with a sfmicircular ceiling enriched with caissons. The galleries are admirably contrived, and in a) way interfere with the general effect, nor destroy the elegance and simplicity of the lesign. The ceilings throughout are horizontal, and planned in compartments, whose parts are enriched. As regards construction, there is a very umecessary expenditure of materials, the ratio of the superficies to the points of support being 1:0.263. Hawksmoor was not so happy in the chureh of St. George's, Bloomsbury, in which he hat, really made King George I. the head of the church by placing him on the top of the steeple, which we must, with Walpole, term a master-stroke of absurdity. But many parts of the building are highly deserving the attention of the student; and if the commissioners for new churehers in these days had been eontent with ferer churehes constructed solidly, like this, instead of many of the pasteboard monstrosities they lave sanetioned, the country, instead of regretting they ever existed, which will at no very remote period be the case, would have owed them a deep del, of gratitude. The only gratification we have on this point is, that a century, and even less, will close the existence of a large portion of them. Hawksmoor was deputy surveyor of Chelsea College and clerk of the works at Greenwich, and in that post was continued by William, Anne, and George I., at Kensington, Whitehall, and St. James's. Under the last named he was first surveyor of all the new churehes and of Westminster Abbey, from the death of Sir Christopher Wren. He was the architect of the churches of Christ Church, Spitalfields, St. George, Middlesex, and St. Anne, Limehouse; rebuilt some part of All Souls, Oxford, particularly the new quadrangle completed in 1734, and was sole architect of the new quadrangle at Queen's. At Blenhein and Castle Howard he was associated with Vanbrugh, and at the last-named place was employed on the mansoleum. Among his private works was Easton Neston. in Northamptonshire, and the restoration to perpendicularity, by means of some ingenious machinery, of the western front of Beverley Minster. He gave a design for the Radeliffe Library at Oxford, and of a stately front for Brazenose. His death oceurred on the 25th of March, 1736, at the age of seventy-five.
500. Those acquainted with the condition of the comery will be prepared to expect that the arts were nut much patronised ly George 1. The works executed during his reign were rather the result of the momentum that bad been imparted previous to his accession than of his care for them ; and it is a consolation that the examples left by lnigo Jones had an efleet that has in this conntry never been entirely obliterated, though in the time of George 1II., such was the result of fashionable patronage and misguided taste, that the Adanses had nearly consummated a revolution. That reign, however, involved this country in so many disasters that we are not surprised at such an episode.
501. Attor the death of IIawksmoor, succeeded to public patronage the favourite architect of a perio! extending from 1720 to his death in 1754, whose name was Janes Gibbs, a native of Aberdeen, where he first drew breath in 1683. Though he had no claims to the rank of exalted genius, he ought not to have been the object of the flippant criticism of Walpole, whose qualifications and judgment were not of such an order as to make him more than at pleasant gossip. He cerranty had not sufhicient discernment properly to estimate the talent displayed in Gibls's works. Every critic knows how easily phrases may be turned and antitheses poimed against an artist whom he is determined to set at nought ; of which we have before had an instance in the case of Sir John Vanbrugh; and we shall not here further dilate upon the practice. We will merely olserve, that on the applearance of ar y work of art the majority of the contemporary arti-ts are usually its liest judgee, and that in ninety-nine cases out of a hundred the public afterwards sanction their decision; and we will add, in the words of old Hooker, that "the most certaine token of evident goodnesse is, if the generall perswavion of all men doe so account it;" and again, "although wee know not the canse, yet this much wee may know, that some necessarie canse there is, whensuever the judgement of all m n generally or for the most part rume one and the same way." We do not, therefore, think it useful in respect of an artist of any comiderable talent to repeat a criticiom more injurions to the writer than to him of whon it was written.
502. The chureh of St. Martin's in the Fields is the most esteemed work of our architect. It was finished in 1726, as appears from the inscription on the frieze, at the cost of 3:3,017\%. 9s. 3d. Thie length of it, including the portico, is twice its width, one third whereof, westward, is occupied by the portico and vestibule. The portico is hexastyle, of the Corinthian order, and surmounted by a pediment, in whose tympanum the royal arms ane sculptured. The intereolumiations are of two diameters and a half, and the projection of the portico of two. Its sides are Hanked by ante in their junction with the main building. one diameter and a half distant from the receiving pilaster. The north and sonth elevatiens are in two stories, separated by a fascia, with rusticated windows in each. Between the windows the walls are decorated with pilasters of the same dimensions as the columns of the portico. four diameters apart; but at the east and west ends these elevations are marked by insulated colums coupled with antax. The flan!s are commected with the
prevailing lines in the portico by columns placed on the walls, recessed for the purpose and coupled with antee, whereby a play of light is produced, which imparts great ellect to the other parts. The interior is divided ints three unequal portions by a range on each side of four Corinthian columns, and two pilasters placed on pedestals, raised te the height of the pewing. From their insulated entablatures rises an elliptical ceiling, covering what may be called the mave. This ceiling is formed by ares doubleaux, hetween which the vault is transversely pierced in the spaces above the intercolumniations by semicircular arches springing from the top of the entablature of each column. Over what inay be called the aisles, from the entablatures of the columns, semi-circular arches are turned and received northward and southward on consoles attached to the walls, and by their junction with the longitudinal arches from column to column pendentives are evolved, and thereby are generated small tlat domes over the galleries. The altar is recessed from the nave in a large niche formed ly two quadrants of circles, whose radius is less than one fourth of the whole width of the niche. It is vaulted semi-elliptically. Galleries are introduced on the north, south, and west sides of the church. On the two former sides they extend from the walls to the columus, against which the continuity of their mouldings is broken. The interior is highly decorated, perhaps a little too theatrically for the sombre habits of this country; but its effect is, on the whole, extremely light and heautiful. I'he tower and spire are, as in all the English clumehes of the Italian style, a sad blemish; but the taste of the day compelled their use, and we regret that the clergy still persist in considering them requisites. The length from the front upper step to the east wall (inclusive) is 159 ft .6 in ., and the breadth from north to south 79 ft .4 in . The total area of the church is $12,669 \mathrm{ft}$., whereof the points of support occupy 2803 ft . The ratio, therefore, of the former to the latter is a $1: 0 \cdot 220$, from which we may infer that the editice exhibits no very extraordinary constructive skill. The span of the roof (fig. 696.), which is of the common king-post form, is 38 ft . Gibbs, unlike Wren, does not appear to have been guided in his leading proportions of this work by a series of ratios. The only point in which we perceive an approximation to such a system is in the length from the plinths of the columns of the portico, being just double the width of the charch measured at the same level. The portico is well designed, and hitherto has not been equalled in London.
503. In the church of St Nary le Strand, Gibbs was not so suceesstul. There is no portion of its space on which the eye rests with pleasure. It is cut up into littlenesses, which, though not individually offensive, destroy all repose or notion of mass in the fabric. He built the new church at Derly, and executed some works at King's College, ('ambridge, which last were not calculated to raise his reputation; but in the senate house of that university, he was more successful. In the Radelifle Library at Oxford, his fame was maintained. It was completed in 1747, and thercon he was complimented with the degree of Master of Arts. This library is on the plam circular in general form, and rises in the centre of an oblong spluare, 370 ft . long, by 110 in width. Its cupola is 100 ft . in diameter, and 140 ft . high. It possesses no features of striking beauty, and yet is a most valuable addition to the distant view of Oxford, from whatever point of view it is seen. The interior is pleasing, and the disposition good. The books are arranged in two circular gilleries, round a large central area. A description of this celebrated building was pulblished with plans and sections, fol. 1747. Gibbs was the architect also of St. Bartholomew's Hospital. In 1728 , he published a large tolio volume of designs, including several of his works.

504. Some works of considerable importanee were erected during the reign of George \mathbf{I}., by a countryman of the last-named arehitect, Colin Camplell, who is, however, more esteemed for three vohmes he published of the principal buildings in England, under the name of the 'Iitrucius Britumicus. Of this work Lord Burlington was the original projector and patron. Afterwards, in 1767 and 1771, it was continued in two volunies, under the superintendence of Wolfe and Gandon, two architeets of considerable reputation. Campell's talents were not of a very high order, though Mereworth, in Kent, an imitation of the Villa Capra, built for Mildmay Earl of Westmorland, and Wansted House, in Essex, built in 1715, and pulled down in 1815, the latter especially, entitle him to be considered an artist of merit. looreigners, whilst this last was in existence, always preferred it to any other of the great mansions of the comntry. Gilpin says of it, "Of all great houses, it best answers the united purposes of grandeur and convenience. The plan is simple and magnificent. The front extends $£ 60 \mathrm{ft}$. A hall and saloon oecupy the body of the honse, forming the centre of each front. From these run two sets of chambers. Nothing ean exceed their convenience. They communicate in one grand suite, and yet each, lyy the addition of a back stair. becomes a separate apartment. It is difticult to say whether we are better pleased with the grandenr and elegance withont, or with the simplicity and contrivance within. Dimensions: Great hall, 51 ft . by 36 ; ball room, 75 by 27 ; saloom, 30 ft . square." As the buitling no longer exists, we give, in figs, 219. and 220., a

Fig. 220
ETRVATION OF WANSTEAD HOUSE.
ground plan and clevation of it. The towers at the angles were never executed. Campbell was surveyor of the works of Greenwich Hospital, and died in 1734.
50.5. The ehurch at Greenwich, and a very large mansion at Black heath for Sir Gregory l'age, in the latter whereof much is said to have been borrowed from Honghton, but which has many years since disappeared, were, about 1718, ereeted by John James, of whom very little more is known than these works, and, in London, the churches of St. George, Hanover Styuare, and St. Luke's, Middlesex, the latter whereof has a fluted obelisk for a steeple. We ought, besides, to mention that he is gencrally stated to have been employed ly the Duke of Chandos, at Canons, in Middlesex. another building no longer in existence, and showing the frail tenure upon which an architect's reputation and fame is held. At the latter place, however, it may be questioned whether the remark strietly applies, in smuch as the arehitect, whoever he may have been, appears to have set taste and expense equally at defiance.

Sect. IX.

GFORGE II.
506. We do not altogether agree with Walpole in the observation that arehitecture resmed all her rights during this reign, though there is no doubt that the splendid (for the time) publications of Palladio, Jones, and examples of the antique recalled the taste of artists and their patrons the public. Men of genius were doubtless fomd to support the arts by their practice, and some high-minded patrons to encourage them in their labours. "Before," observes Walpole, "the glorious close of a reign that earried our arms and victories beyond where Roman cagles ever flew, ardour for the arts had led our travellers to explore whatever beauties of Greeian or Latin skill still subsisted in provinces once subjected to Rome, and the fine additions, in consequence of those researehes, have estabhished the throne of arehitecture in 13ritain while itself languishes in Rome."
507. Among the earliest of the architects of this reign was Thomas Ripley, a native of Yorkshire at whom Pope snecrs in the lines -

Ripley, it must le confessed, failed at the Admiralty, which was afterwards veiled by Mr. Adtum's beautiful skreen since cruelly "cheated of its fair proportions" by the late architect t: that loard, in order to make two coach entrances, which might, with the exercise of a little ingenuity, have been managed without defacing the design. It is difficult, now, to decide the exact share that lipley had in the house for Lord Orford, at Houghton, for which Campbetl appears to have furnished the original design. Walpole, whom we may presume to have known something about the matter, says they were much improved by Ripley. He published them in two volumes, folio, 1755-60. It is to be regretted that scarccly a single line of Pope, in matters of taste relative to the artists of his day, is of the smallest worth, so much did party and politics direct the shafts of the poet's malice. The plain truth is, that Ripley was the rival of Kent, the favourite of Lord Burlington, whose patronage it was absolutely necessary to enjoy before he could ensure the smiles of Pope. Ripley was comptroller of the loard of Works, and died in 1758.
508. Henry Herbert, Earl of Pembroke, an amateur of this reign, cannot pass unnoticed in the History of its Architecture. He much improved Wilton, where he built the l'alladian Bridge; and it is highly honourable to his memory that, owing to his exertions, the Ifualifications of Labelye for building Westminster Bridge were acknowledged in opposition to Hawksmoor and Batty langley, the latter of whom was an ignorant pretender. Of this bridge Earl Henry laid the first stone in 1739, and the last in 1747. His works, besides those at Wilton, were, the new lodge in Richmond Park, the Countess of Suffolk's house at Marble Hill, Twickenham, and the Water House at Lord Orford's Park at Houghton. He died in 1751.
509. Before advancing our history another step, we have to notice another nobleman, whom to enrol among the number of her artists is an honour to England; and in speaking of Richard Boyle, the third Earl of Burlington and fourth Earl of Ossory, we so entirely agree in Walpole's eulogy of him, that we shall not apologise for transeribing it from that author's pages:- "Never was protection and great wealth more generously and judiciously dillused than by this great person, who had every quality of a genius and an artist, except envy. Though his own designs were more chaste and classic than Kent's. he entertained him in his house till his death, and was more studious to exteml his friend's fame than his own." Again, he continues, "Nor was his munificence confined to himself and his own houses and gardens. He spent great sums in contributing to public works, and was known to chuse that the expense should fall on himself, rather than that his country should be deprived of some beautiful edifices. His enthusiasm for the works of Inigo Jones was so active that he repaired the church of Covent Garden, because it was the production of that great master, and purchased a gateway at Beaufort Gardens, in Chelsea, and transported the identical stones to Chiswick with religious attachment. With the same zeal for pure architecture, he assisted Kent in publishing the designs for Whitehall, and gave a beautiful edition of the Antique Baths, from the Drawings of Palladio,' whose papers he procured with great cost. Besides his works on his own estate, at Lonsborough, in Yorkshire, he new-fronted his house in Piccadilly, built by his father, and added the great colonnade within the court." This liberal-minded nobleman gave the credit of this design to Kent, though, as Kent did not return from Italy before 1729, it is certain that architect could have had little to do with it. His villa at Chiswick, now that of the Duke of Devonshire, was an original design, and not, as is generally supposed, an imitation of Palladio's Villa Capra at Vicenza. It was, however, too much in the Italian taste to be suitable to an English climate or to English comforts; hence its great exterual beauty extracted from Lord Chesterfield the well-known verses -

> "Possessed of one great house of state, Without one roonn tos sleep or eat, How well you build let flatt'ry tell, And all nankind how ill you dwell."

Lord Hervey also sported his little wit upon this little bigou, which its subsequent additions have not much improved, saying "that it was too small to inhabit, and too large to hang one's watch in."
510. The dormitory of Westminster School, ruined by a late dean, and the Assembly Rooms at York, are beautiful exumples of the great powers of Lord Burlington; but the house for Lord Harrington at Petersham, the Duke of Richmond's at Whitelall (pulled down), and General Wade's house in Great Burlington Street were not well planned, the latter especially, on which it was said by Lord Chenterfield, on account of its beautiful fromt, that "as the general could not live in it to his ease, he had better take a house ovel against it, and look at it." The Earl of Burlington was born in 1695, and died in 1753.

511 . William Kent, a native of Yorkhire, where he was born in 1685, if he did not advance the art, was at least far from retarding or checking any progress it seemed likely
to make. Kent was a painter as wdll as an arehitect, thongh as the former very inferior to the later; and to these accomplishmen's mut be added those of a gardener, for he was the father of modern picturesque gardening. Kent's greatest, and, out of many, also his best work, was Holkham, in Norfolk, for the Earl of Leicester. The designs were puls. lished in 1761, by Matthew Brettingham, who had heen engaged on the building, apparenly as resident architect, as explained in the edition of 1773 . The nothe hatl of this building, terminated by a vast tlight of steps, produces an effect unequalled by anything similar to it in England. During, and, indeed, previous to, Kent's cuming so mueh into employment, a great passion seems to have existed with the architeets for ill shaped, and, perhaps, almost grotesque, urns and globes, on every part where there was a restingplace fur them. Kent not unfiequently disfigured his ivorks in this way, but more especially so at the begiming of his career. The pile of building in Marearet Street (part of which has been removed for additions to the new parliament houses), now containing the law courts, a house at Fsher for Mr. Pelham, the Horse Guards, and other buildings, which it is needless here to particularise, were erected under the designs of Kent, upon whom unbounded liberality and patronage were bestowed by Lord Burlingt.nn during the iife of this artist, which terminated in 1748.
512. About 1733 appeared, we believe, the last of the stone churches with steeples, which the practice of Wren had made commorr in this country; this was the church of St. Giles's in the Fields, erected by Ilenry Fliteroft. The interior is deeorated with Ionic columns resting on stone piers. The exterior has a rusticated basement, the windows of the galleries have semicircular heads, and the whole is surmounted by a modillion cornice. The steeple is 165 feet high, consisting of a square tower, the upper part decorated with Doric pilasters; above, it is formed into an octagon on the plan, the sides being ornamented with three quarter lonic columns supporting a balustrade and vases. Above this rises an octangular spire. Besides this, Fliteroft erected the church of St. Olave, Sonthwark, and the almost entire rebuilding of Woburn Abbey was from the designs and superintendence of that master, who died in 1769.
513. During the reign under our consideration, the city of Bath may be said to have Nhost arisen from the designs of Wood, who built Prior Park for Mr. Allen, the friend of l'ope, and Buckland was erected by hin for Sir John Throekmorton. Wood died in 1754, To him and to his scholars Bath is indebted for the designs of Queen Square, the Parades, the Cireus, the Creseent, the New Assembly Room, Sc. The buildings of this eity possess various degrees of merit, but nothing so extraordinary as to call for more than the mere notiee of them. We are by no means, for instance, disposed to agree with Mitford, who reckons the crescent of Bath among "the finest modern buildings at this day existing in the world!"

Sect. X.

GEORGE 111.
514 . Though the works of the arehitects about to follow, belong partially to the preeeding reign, they are oally properly to be noticed under that of George III. Without a lengthened account of them, we commence with the mention of the name of Carr of York, who was much employed in the northern counties, where he built several noble residenees, particularly that for Mr. Lascelles, afterwards Lord Harewood, and a mausoleum in Yorkshire for the late Marquis of Rockingham. Paine was engaged at Worksop Manor, Wardour Castle, and Thorndon; and Hiorne, whose county sessions-house and prison at Warwick exhibit considerable genius, was a promising artist, prematurely cut off. His talent was not confined to the Italian style, as may be learnt from reference to the church at Tetbury in Gloucestershire, and a triangular tower in the Duke of Norfolk's park at Arundel.
515. At anearly part of the reign of George 11I., arehitecture was cultivated and practised here with great suecess by Robert Taylor, afterwards knighted. His best compositions were designed with a breadth and intimate knowletge of the art, that prove him to have been abundantly aequainted with its principles. That he was not always successful, the wings of the Bank, now removed, were a proof. Of his works sufficient would remain to corroborate our opinion, if only what is now the Peliean Office in Lombard Street existed. We believe it was originally built for Sir Charles Asgill, and ruined by the directors of the Pelican when they took to the place. There are, however, also to attest the ability of Sir Robent Taylor, Sir Charles Asgill's villa at Richmond, and his own house in Spring Gardens. After his visit to Italy he commenced his practice in sculpture, in which braneh of the arts he has left monuments in Westminster Abbey and elsewhere; but he afterwards devoted himself to architecture alone. Anong his works were a dwelling house for Sir P. Taylor,
near Portsoown IIIl, a honse in I'iceadilly for the Duke of Graftom, a mansion in Iterts for Lord Howe; Stone Buildings, Lincoln's Lme Bly Ilouse, Dover Street, a very elever composition; Sir Joln Boyd's at Danson, near Shooter's Itill; the beautiful lridge at Henley on Thames, and lord Grimstone's at Gorhambury. Iie had for some time a seat at the Board of Works, was surveyor to the Admiraty, the Bank, and other publie bodies. Ifis reputation was unbounded, and met with reward from the public. Sir Robert Taylor died in 1788 at the age of serenty-four.
516. Cotemporary with the last-maned artist, was one to whom the nation is indebted for first bringing it to an intimate açuaintance with the works of Greece, to which he first led the way. The reader will, of course, anticipate us in the name of Janes Stuart, who began his eareer as a painter. After some time passed in Greece, he, in conjunction with Nicholas Revett, about the year 1762, published the well-known Antiqnities of Athens, from which he acquired the soubrignet of Atheniun. The public taste was purified by a corrected knowledge of the buiddings of Greece, especially in respect of the form, composition, and arrangement of ornament; but we doult whether misehief was not for a time induced by it, from the absurd attempt, alterwards, to adapt, without discrimination, the pure Greek porticoes of the temples of Grece to public and private buildings in this country, often with buildings with which they have no more natural relation than the interior arrangement of a churels has with that of a theatre. 'The architects of our own time seem, however, at last to be aware of the impossibility of applying with sucess the forms of Crecian temples to Linglish habitations; and a better system has been returned to, that of applying to every object a character suitable to the purposes of its destination. We consider Stuart's best work the house, in St. James's Square, which he built for Lord Anson. Among other works, he executed Belvedere, in Kent, for Lord Eardley; a house for Mrs. Montague, in Portman Square : the ehapel and infirmary of Greenwieh Itospital; and some parts of the interior of Lord Spencer's house, in St. James's Place. Stuart died in 1788, at the age of seventy-five. Ilis collaboratem, Revett, shared with him a portion of the patronage of the public. He survived him till 1804, when he died at the advanced age of eighty-two gears. He was employed on the eastern and western porticocs of Lord De Spencer's house at West Wyemie, and on some temples. For Sir Lionel IIyde he !uilt the ehureh of Ayot St. Lawrence, Herts, the front wleereto is a Doric portico crowned with a low Grecian pediment, and on each side an lonic colomade comects the centre with an elegant cenotaph. He also built a portico to the eastern fiont of Standlinch, in Wilshire, for Mr. Dawkins.
517. The chasteness and purity which the two last-named architects had, with some sucecss, endeavoured to introduce into the luildings of England, and in which their real had enlinted many artists, had to contend against the opposite and vicious taste of Robert Adam, a fashionable architect, whore eye had been ruined by the cormptions of the worst period of Roman ait. It can be scarecly helieved, the ornaments of Diocletian's palace at Spatatro should have loaded our dwelings contemporameouly with the use among the more refined few of the exquisite exemplars of Grecee, and even of Rome, in its better days. Yet such is the fact; the depraved compositions of Adam were not only tolerated, but had their admirers. It is not to be supposed that the works of a man who was content to draw his supplies from so vitiated a source will here require a lengthened notice. Yet had he his haply moments; and that we may do him strict justice, we not only mention, but

Fing 221.
present to the reader, in figs. 221. and 222., the ground plan and elevation of Kedlestone, in Derbyshire, which he erected for Lord Scarsdale. The detail of this is, indeed, not exactly what it ought to have been; but the whole is magnificently conceived, and worthy of any master. Adam died at the age of nincty-four, in 1792 ; and, besides the Adelphi, in the Strand, which he erected on speculation, he was engaged at Luton Park, in Bedfordshire, for the Earl of Bute; at Caenwood, near Hampstead, for Lord Mansfield; at Shelburne House, in Berkeley Square, now Lord Lansdownes, well plamed, but ill designed. a meagre alfair; the disgraceful gateway at Sion, near Brentlord; and on part of the Register Office at Edinburgh. None, howerer, would now do ceedit to a mere tyro in the art execpt the first named.

518. Irevious to the accession of George I1I. it had been considered by his tutors necessary to complete his education by the study requisite to give him some acquaintance with the art. We venerate the memory of that monarch as an honest good man, but are compelled to say that the experiment of inoculating him with a taste for it was unsuceessfitl, for during his reign all the bizareries introllueed by Adam reeeived no eheck, and seeing that Adam and Bute were both from the north, we are rather surprised that his education was not in this respect committed to the former instead of Sir William Chambers, whom, as one of the first architects of the day, it is ineumbent upon us now to introdace, We believe that whatever was done to forward the arts, owes a large portion of its effect to that celebrated man; and it is probable, with the worthy motives that actuated the monarch, and the direction of his taste by that individual, much more would have been accomplished, but for the heavy and disastrous wars which occurred during his reign, and the load of debt with which it became burthened. The works of Chambers are found in almost every part of England, and even extended to Ireland; but we intend here chiefly to restriet ourselves to a short account of Somerset House, his largest work, in which, thot.gh there be many faults, so well did he understand his art, that it is a matter of no ordinary difficuity, and indeed requires hypereriticism, to find anything oflensive to good taste in the detail.
519. This work was commenced in 1776 , and stands on an area of 500 ft . in depth, and 800 ft . in width. The general interior distribution consists of a quadrangular court, 343 ft . in length, and 210 ft . in width, with a street or wide way ruming from north to south, on its eastern and western sides. The general termination towards the river is a terrace, 50 ft . wide, whose level is 50 ft . above that of the river, and this occupies the whole length of the façade in that direction. The front towards the Strand is only 135 ft. long. It is composed with a rustic basement, supporting ten Corinthian columns on pedestals, crowned by an attic. extending over the three central intercolumniations, flanked by a balustrade on each side. The order embraces two stories. Nine large arches are assigned to the basement, whereof the three central ones are open for the purpose of affording an entrance to the great court. On each side of them, these arehes are occupied by windur's of the Doric order, decorated with pilasters, entablatures, and pediments. The key stones are carved in alto-relievo, with nine colossal masks, representing the ocean, and the eight prineipal rivers of Great Britain. The three open arches of entrance before mentioned lead to a vestibule, which comneets the Strand with the large quadrangular court, and serves also as the access to those parts of the building, till lately occupied by the Royal Academy, (1836) and on the castern side (lately to the Royal Society and) to the Society of Antiquaries, the entrances thereto are within the vestibule. This is decorated with, columns of the Doric order, whose entablature supports a vaulted ceiling. We insert a reduced woodeut (fig. 223) of Malton's view of this " magnificent Doric areade leading to the great court. which conveys to the spectator a more ample idea than words can possibly furnish, of this piece of grand and pieturesque scenery." The front of this pile of

Imililing towards the quadrangle, is 200 ft . in extent, heing much more than the length of that towards the Strand; the style, however, of its decoration is correspondent with it, the principal variation being in the use of pilasters instead of columns, and in the doors and windows. The front next the Thames is ornamented in a similar manner to that already described. It was originally intended that the extent of the terrace should have bees. $1,10 \mathrm{Jt}$. This last is supported by a lofty areade, decorated towards the ends with coupled liuscan columns, whose cornice is continued along the whole terrace. The edifce was at the time the sulject of much severe criticism, and particularly from the pen of a silly engraver of the name of Williams, under the name of Antony l'asquin; but the consures lie passed on it, the author being as innocent of the slightest knowledge of the art as most of the writing architectural critics of the present day, were without foundation, and have lorg since been forgotten. At the time, however, they received a judicious reply from the pen

Fig. 293.
entrance vestibule, sumeliset hulse. of the late Mr. John B. Papworth, which deservedly found a jlace in our edition of the work by Sir W. Chambers, yet to be noticed.
590. Malton, in his Londun and Westminster, fol. 1792-7, gives several carefully drawn views of this noble edifice, the design of which he describes as being at that time (1796), "far from complete, and little progress has been made in the building since the commencement of the present war; the exigencies of government having diverted to other uses the sum of $25,0 \mathrm{CO}$. which for several years had been an. nually voted for its continuance." Since that period the river frontage has been completed at the east end, by the additions in 1831, under Sir I. Smirke, for King's College : while new offices were skilfully added on the western side, during the years 1852-56, by James Pennethorne.
591. In the year 1759, Sir W. Chambers published a Treatise on the Decorative Part of Civil Arehitecture, in folio ; a second edition appeared in 1768; and a third, with some additional plates, in 1791. Two others have since been published, in 182.5. This work, as far as it goes, still continues to be a sort of text-book for the student; and much of it has been adopted for that portion of this volume. entitled "Practice of Arehitecture" Chanbers held the office of surveyor-general in the Buard of Works, and to him much is owing tor the assistance he rendeted in establishing the Royal Academy of Aits, in 1768, to which institution l.e was theasurer. He died in 1796 . He had many pupils, several of whom we shall tame.
522. Robert Mylne, the deseendant of a race of master masons and architects in Seotland. designed Blackfriars Bridge, having been the successful competitor, a preference he obtained while yet unknown and abroad. It was built between the years 1760 and 1768 , at an expense of $152,840 l$., a sum which was said to be somewhat less than his estimate. He was roted an amnal salary of 3002 . and a percentage on the money laid out; but to obtain his commission of 5 per cent. he had a long struggle with the city authorities. his claims not being allowed until 1776. This bridge was pulled down in 1865. At the time when the designs were under consideration, a long controversy arose on the questions of the t.sste exhibited, and safety in employing elliptic, in place of semicircular, arches, which had been up to that time used in England for bridges. He was surveyor to the dean and chapter of St. Paul's, London, and is said to have phaced in that building, orer the entrance to the
choir, the memorial tablet with the celebrated inscription (pur. 482) to the memory of Wren, lately removed. He was appointed, in 1762, engineer to the New River Company; and dying in 1811, was buried in the crypt of the catbedral, near to the grave of Sir C. Wren.
523. George D.nce, heing nominated, in 1733. by the corporation of the city of London, to the office of clark of the City Works, and appointed thereto in December 17:35, designed 'tt. Luke's (hureh, Old-Street; St. Leonard's Church, Shoreditel, a bold example of the Doric order; and the Mansion House, or othicial residence of the Lord Mayor for the time being, during the years 1739-53, at a cost of about $42,639 \mathrm{l}$. This editice has received many alterations, including the removal of the lofty attics in front and rear, which lias tended muen to deprive the struature of a large share of dignity. Its confined and low situation gives the building an appearance of heaniness, it would be free from this, if placed on an eleated spot, or in an area proportionate to its magnitude. It is substantially buitt of Portland stone, the material used in most of the erections of this period. The finely designed sculpture in the pediment, above the six columns of the Corinthian order, was well executed by Mr., alterwards Sir Rotert, 'laylor. Many other buildings in and about the city are attributed to Dance, who died in 1768 , and was succeeded in office hy his son George Dance, another of the first four architct members of the Royal Academy It designed Newgate prison, with the Sessons 1lcuse, \& c. It was completed in 1778, at a cost of upwards of $130,00 c l$. ; besid s kei.gg subsequen'ly repaind under his directions,

after the riots of 1780, when it suffered gratly from fire. This edifice (fig. 224.) has become a chief example of the theory of the observation to "apply to every object a chatracter suitable to the purposes of its destination" (paye 224.). The walls, which are constructed of P'ortland stone, without apertures, or any other ornaments than rough rustic work and niches, are 50 ft . in height. The principal front is 300 ft . in length. Dance also designed St. Luke's Hospital for Lunatics, Old Strect, built in the ycars 1782-1781, at a cost of about $40,000 \mathrm{l}$. It is of brick, with a few plain stone dressings, three stories in height; the spaces between the centre and ends are formed into long galleries-for the females on the western side, for the males on the eastern. The simple grandent of the design of the façade, the length of which is 493 ft ., produces a very agrecable effect of propriety upon the mind. He rearranged the south front of Guildhall in a style of architecture neitlier Gothic nor Grecian, the capabilities of which his pupil, John, afterwards Sir John, Soane, largely availed himself in atter life. He also designed the elegant council chamber attached; together with many country residences for the wealthy citizens and others; and dying in 1825, was buried in the erypt of St. Paul's. Upon the resignation ly him of his city appoiatment in 1816, he was succeeded therein by his other prpil, Willian Mountague.
524. Henry Holland, in 1763, designed Claremont Honse, near Esher, for Lord Clive; formed, 1788-90, Carlton House into a palace for the Prince of Wales, afterwards George IV.; designed, in 1791, Drury Lane Theatre; the façade of the East India House, Leadenhall Street; the original 'Pavilion' at Brighton, about 1800; improvements at Woburn Abbey for the Duke of Bedford; and 1785, the restibule, with its charming purtico in the Grecian style, to Nelbourne, now Dover House, Whitehall. for the Doke of York. The fiy. 225 is from Nalton's work already mentioned, and is given not only for the intrinsic merit of the design, but because lithle else now remains, with Claremont, to demonstrate the talents of this fashionable architect of his day. He was the chief introducer of the so-called Grcco-Roman style. Holland died in 1806.
525. With these arehiteets should be mentioned Isaac Ware, " of His Majesty's Board of Works," who published, besides other werks, a Complete Body of Architecture, folio, 1756. This volume, relating to Italian design only, contains much sound information, and is more complete than Sir W. Chambers's publication, but it is not treated so artistically. He designed Chestrrield House, May Fair. Willey Revelcy, a pupil of Chambers, followed the steps of Stuart, and visited Athens and the Levant. He was the editor of the third volume of the Autiquities of Athens, and died prematurely in 1799. He built the new church at Southampton, and offered some beautiful designs for the new baths at Bath, which, how ever, were not adopted. Joseph Bonomi, a na ive of Rome, an associate of the Royal Academy, amongst many large structures composed chiefly in the Grecian style, designed the gallery at Towney Hall, Lancashire, for the collection now in the British Muscum; 1790.
a small ehurch at Paekington, Warwickshire, solidly vaulted throughout; Eastwell Ilouse, Kent; the mansoleum in Bliekling Park, Norfolk, to the memory of John, second Eal of Buckinghain; Longford Hall, Shropshire, exhibiting perhaps the earliest adaptation of a porico projecting sufficiently to admit carriages; additions

Fig. 225.
melboltine, xow dover house, Whitehama. circular court at each end frum one or whit a subterraeoul pass
 name of Bonomi appears in the best novels of hisperiod as the arehitect consulted in matters concerning a country residence. He died in 1508.

FIg. 226.
plan of hoseneatif, dembatitonsmire.
526. Of this period also are the works of James Gandon, a pupil of Sir W. Chambers. His name was first brought before the public, by the publication with John Wolfe of a continuation of (amphell's Vitruvius Britannicu". 2 vols fol. 1767 and 1771. The design. by him, for the county-hall and prison at Nottingham, is contained therein. He carried , fl the first gold medal given for architecture by the Royal Aeadeny, at its fommation in 1768. Ia 1769 he obtained the third premium for a design for the R yal Exchange in Dublin; and in 1776 one of the premiums for the new Bethkehem Hospital, London; both in competition. At the instance of Lord Carlow, afterwards Lord Portarlington, he made plansfor
the new ducks, stores, and Custom- I Iouse at Dublin. and proceeded there in 1781 to carry out the works. This building was not completel until 1791; it has a front of 37.5 Ft . in lengtl, extending along the quay of the river Liffey, and is 209 ft . in depth. Standing in a fine open place, its adnirable desi mand good execution cause it to rank as equal to other works of a like nature, and to be esteemed as a noble pile that would do eredit to any city in the world He was well assisted in the decorative works by a young seulptor named Edward Smith The great difficulties he experienced during its erection, both from the nature of the soil, as well as from the workpeople, is well deseriked in the memoir of him

Fig. 227.
VEW OF KOSEVEATH, DUAHALITONSHHEE
prepared by his son, a d published by the late T. J. Mulvany, in 1946. To the IIonses of l'arliament in Dublin he added the side or east portico, with an entrance for the Lords. wh, arreed to Gand m's desire to have Corinthian colums to this portico, the additional proportion in height of which was to make up lor the great fall in the ground from the front, where the lonic is used. This portico entrance he joined with the front by a circular wall withe t columus, so that the two orders should not clash; the present three quarter Lonic columns to this circular wall o.1 the one side, and those to the arehway on the other side, are the additions by a later hand whea the building was adapted for the Bank of Ireland, which has possessed it since 1802 . Gandom subsequently added the western portico for the Commons' House. A much larger work by him was the ellifice for the Four (Law) (ourts. The foundation stone was laid March :3, 1786, and was lirst used at the end of 1796 , hut the whole was not eompleted until 1802. The frontage extends along the river quay, and includes. on the east side, the Offices of Records, designed in 1776 hy Thmas (bo ley. whom Gandon succeeded. The whole extent of gron, ind was but $432 \mathrm{ft}, 294 \mathrm{ft}$. of which being occupied by the offices, left but 140 ft . square for the plan of the Courts, and this had subsequently to be lessened in dep'h by the portico being set back, to applase the ire of a Right Honourable gentleman whose opinion had heen overlosked. This eentre huilding consists of a moderate-sized central hall, 64 ft . in diameter, with a dome which forms exteriorly a marked feature of the design, and one of the most conspienons objects in the city. This central hall gives aceess to the four courts. For the same city, he designed Carlisle Bridge and the Inas of Court, but resigned the eontrol over the latter elifice to his pupil, H. A. Baker. He retired in 1808 to his comatry honse near Lacam, and died there as late as 1823 , in the eighty second year of his age.
527. Janses Wyatt, born about 1743 or 1746, aceompanied, at an early age, Lord Bag it to Rome, and applied himself to the study of the ancient monnments in that city and at Veaice. After al absence of six years, returning to London, he was employed to design the Pantheon Theatre in Oxfod Street, consisting of rooms for public assemblies. Ac. This was opeaed in January 1779, and its completion (fiy. 228, which slows the interior as arranged f.r the Ilandel festival, in May 1784), spreading his fame both far and wide, he was eagerly somglit after to superintend numerous public and private buildings in Great Britain and Ireland Walpole, writing to Mam, in 1771, says of it:--" The new winter Ranelagh in Oxford Roall is almost tinished It a nazed me, mystilf. I magine Balhee in all its glary! The pillars are of artificial giallo antico. The ceilings, even of the passages, are of the most beautiful stneens in the best taste of grotespue. The ceilings of the ball roms and the panels painted like Raphael's loggias in the Vatican. A dome like the Pantheon glazed. It is to cost filty homsand poinds." Part only of the Oxford Street fromt, with the side entrance in Poland street, now exist of this work, for the interi,s was gutted by fire soon afier its erection Fig. 780 shows the framing of a dome nearly the same as that for this editice. The drawings he hronght home the knowledge he possessed of the arts in general, and his polished ma mers, secured lor him a host of patrons, and he becane the
ehief arehitect of the day. Those crities, amateur or otherwise, who do not ehoose to make allowances for the state of the knowledge of the arts at the jeriod under notice. hold Wyatt up to the exeeration of the present generation, for his alterations and restorations of our ancientbuildings let,

Fig. 228. INTEIHOR OF THE IANTHEON, LONHEN.
 upon the peeuliarities of Ardbraecan House, n ar Navan, in Ireland, designed for the Bishop of Meath, as affording the moderate aceommodation for a small family, or all the requirements of anl lrish ordination, where hospitality has to be afforded to all eomers.
528. Jares W yatt was among the earliest arelitects to employ every style of arehiteeture in his designs, yielding all indisiduality to the passing whins of clients. Among his other buildings asually noticed are Lee Priory, Kent; and Castle Coote, in lreland, for Viseount Belnont, whieh for grandeur of elfeet and judicions arrangement, deserves mach commen-
 dation. The apartments are upon a moderate seale and well disposed, and the whole designed after a Greek model, in whieh style he also designed Bowden Park. Wiltshire, for Barnard Dickenson, Esif. (fiys. 299 and 930). Another of his large works is Ashridge, situate in the counties of Buekingłam and Mertford, for the Earl of Bridgewater; it is a very extensive and lighly decorated mansion designed in the mediaval eastellated style. Fonthill Abbey, Wiltshire, for W. Beek. ford, Esy., was also another of his edifiees in the same style. The exterior n easurerrents are $2^{-} 0 \mathrm{ft}$. from east to west, ano 312 ft . from north to south; the centre tower being 276 ft . high from the floor to the top of the pinnaeles. His restorations of our mediaval buildings ineluded that of I'enry VIIth's charel at Westminster Abbey, Thomas Gayfere being the intelligent master mason employed. As so many of his later works belong to the present century, no more will be said here of this influential arehitect, exeept that he succeeded Sir W. Chan bers as surveyor-geneıal to the Board of Works; that for one year he filled the presidential chair of the Royal Academy ; and that, as before stated, he died in 1813, aged sixty-seven, in consequence of the overturning of his chariot near Marlborongh.
529. This arehitect must conclude our general view of the history of art in this country to the end of the reign of George 111

CHAP. IV.

POINTED ARCHITECTURE.

530. The listury of the pointed styles on the contineat of Europe is a matter which nay be treated in varions ways; but the limit within which this portion of our labour is restricted, in order to render it concordant with the space allotted to other subjects, chliges the choice of the headings France, Belgium, Germany, S_{1} rain, and Italy, with as near an auproach to a chronological arrangement of the buildings that will serve for examples, as the looseness of annalists and the differences in chronicles will permit. This sequence will give the reader a general view of the subject, which will enable him to understand the irregularity of the progress of pointed art in those countries in comparison with the gradual transition and uniform character which are so generally observable in England; and wiil prepare him for his own particular study of the characteristics of the schools; these are as numerous as the provinces, almost as numerous as the cities, in the countries to which we refer. He may observe in the following notices several examples of difficulties as to dates; the periods assigned to our examples have been determined hy authors who, being natises, may be supposed to have given as mueh time and lear.ing to the chronology. as English critics have dedicated to the style, of the respective countries.

France.

531. The schools of pointed architecture were confined to certain purtions of the comntry. They arose in the lle de-France, Ctampagne, Picardy, Burgmindy and Bourbon, Maine at.al Anjou, and Normandy, here named in the order in which. befure the middle of the $13 \mathrm{~h}_{1}$ century, the new style was adopted. This did not develope itself intil a late period in Bretagne, where a character, which corresponds (in the opinion of M. Viollet le Duc) as much to that of England as to that of Maine and Normandy, was always preserved. The style of the royal domain hardly penetrated into Guienne before 13:0; and even its efficial appearance after 1247 at Carcassonne did not procure for it an influence in Auvergne and Povence; they can hardly be said to have ever adopted Gothic architecture. Indeed, the latter district did not helong to France until 1481, and almost passed at or:ce from degenemated romanesque traditions to remaissance art, exhibiting scarcely any wark of the influence of northern Gothic.
532. With regard to ecelesiastical arehitecture in the south of France, it may be said that the buildin s having arches that are positively pointed, date principally in the 14 th and two subsequent centuries, as the cathedrals at Alby and Rhodez, the bell-tower at Mende, and the fiont of the church of St. Maurice at Viense. In the sonth, where the climate resembles that of Italy in not requiring high-pitched roofs, the pointed arch seems a foreig. element; it is there in body.but not in spirit. The architecture is just as bef, re; the pillars are few and thick; the capitals are square, and have large leaves or scrolls; the ornaments are either barbarous or are imitated from classic works; the towers are few and massive; and the fronts always have a pediment of steeper rake than any antique exampte can show, under which is a doorway having a round areh, or else one so slightly pointed that the point is only detected by a careful eye.
533. Until the middle of the 12th centuny (a few cases earlier may be exceptional), the semicircular arch appears to lave been almost exclusively employed; but immediately afterwards, the style romano-nicul or style roman de transition, exhibits the pointed arch, crocket capitals, and groined vaulting with diagonal ribs, on a crowd of civil and ecclesiastical buildings. There are purely romanesque cherches, where the small ofenings have semicircular heads; the four great arches carrying the pendentives of the ceitial lantern or dome, as has already been noticed (μ ar. 307.), being pointed. In the centre of Fiance there are churches that are altogether romanesque in plan, in style of decotation, and in furm of pillars, that have none but pointed openings, proving that a thoronghly defined architectural system had been sluwly constituted, which the arehitects of the 18th century inerely rendered m re homogeneous and more perfect; these buildings are remanesque, if style depends upon plan, capitals, and form of mouldirgs; they are p. inted, if it depends upon the torm of the arch.
534. Amongst the structures which date in the 12th century may be ramed St. Pierre-lez-Bitry, with three circular winduws in its apse; St. Martin at Cuise, having a squarcended choir like Nôtre Dame at Conchy; and St. Etienne near Pierrefonds; the cathedral at Tulle; St. Julien at Brioude; St. Nectaire, St. Symphorien, and St Genès at Thiers; St. Nazaire at Carcassonne; with the churches at Mozat. Noirlac, and St. Amand, all being situate in Auvergne; St. Martin at Laon; St. I'ierre at L'Issant; St. Yierre at Soissins; and the churches at Braine and Concy-le Chateau. Buildings in

Which the pointed areh seems perfectly secondary to its rival, are the portal of the cathedral at Baycux and the churehes at Conehy, Civray, Senlis, and Vézelay, with those of St. Remi at leims, and of Nôtre l)ame at Chartres, Noyon, and Poitiers.
5.35. The churches which have domical coverings deserve a short notice They are t'ie cathedral at Cahors, St. Front (figs. 159 and 160), and St. Etienne de la Cité, bsth at Periguenx, the cathedral at Puy, and the churelies at Sonillae (fig. 1.5.s.), Angouleme, Le Roulet, and Loches, with the fourtcen-sided church at Rieux-Mérinville.
536. A Fiench eritic of considerable repute thinks that necessity, facility, and solidity i.) construction, and a gift of varying the decoration, alone prompted the use of the pointed areh in the south-cast of France, where are buildings showing that arch in their lower poitions, while the upper parts have semicireular work of the same age. It theref re appars that if the architects in the southern provinces were the first to make the pointed ardh, they were also the last to adopt the systematie and absolute use of it ; and the usual classitications of the pointed styles cannot serve as perfect indexes to the peri d of the employment of the subdivisions that have been made, although it might have been supposed that the spirit of methodical order which has eminently distinguished the French nation sinet 1790 would have shown itself in an analysis of the architecture of their comntry The Eomité Historique des Arts et Monuments, has issicd the following table as in some sort wathoritative:-
F.RST PEHIOD

Architecture with the round arch.

Eleventh, and first half of the $\left\{S t_{j}\right.$ le Romun. twelfth, ecntury . SECOND PERIOD.

Architecture with the $\}$ Second half of the twelth ecntury $\quad\left\{\begin{array}{l}\text { Style Romano-ogiral or }\end{array}\right.$ round and pointed areh. Second half of the twelthe entury Roman de transit on. THARD PERLOD.

Architecture with pointed arches.	Thirteenth century	Style ogiral primai.e or en lancette
	Fourteenth century	Style oyical secondai"e or rajonnant.
	lifteenth axd carly part of sixteenth century, till 1480 (De Caumont) pure, alterwards transition	Style agi:al tertiaire or flumboyunt.

537. But this list is not universally used, and in reading the works of any French anthor on mediaval architecture, it is necessary to ascertain whether he has followed it, or the table proponnded by M. De Camment as here given (with Mr. Ioynter's parallel of English leriods):-

In France.
IRomanesque 9.50 to 10.53
「iansition 1050 to 1150

Primary (Gothique) 1150 to 1250

Secondary (rayonnant) -
First Epoch 1250 to 1300
Second Eproch 1:300 to 1400
Tertiary (famboyant) -
First Epoch 1400 to 1460

Second Epoch 1460 to . . .
For the chêteun, M. de Camont also proposed the subjoined classification:-

1st class. Fifth to teath centary : Primitive Roman.
2nd " Tenth and eleventh centuries: First second ary.
Srd ," End of elewenth and twelfth century: First tert ary.
4th ", Thirteenth century: Primitive poisted.

In England.

$\left.\begin{array}{l|l}\text { A.1. } \\ 1000\end{array}\right\}$ Anglo-Sixon 970 to 1066
1100 Norman 1066 to 1189
Transition 1189 to 1199
1200) Early EnglishFirst Epoch (lancet) 1199 to 12.15 Second Ejoch 1945 to 1:307
1300
Decorated English 1307 to 1.377
1400 Perpendicular English or Tiudor 1503 1377 to te inth ceatury: Secondary and tertiary pointed.
6th ", Second half of liftee.th and sixteenth century: Quaternary pointed.
538. Before entering into the eonsideration of the style ngwal, it will be desirable t, explain that ogive, also written angire designated originally a diagonal band in groined vaulting formed by the intersection either of barrel vaults or of keel vaults, to both of which the terms voute en croisce dogiess, or coute dogices, were applicable. As eguivalent
to a pointed arch, ogive is merely the popular contrmation of an error committed by the ignorance of some writers in the present century.
539. Heavy roofs, laving few ribs with geat width of plain intrados, and carried by

Fin. EJi, NOTLE Dase, lealis masses of walling, with small openings, are characteristic of Romanesque work. Its successor was exactly the reverse: the subdivision of roofing into a collection of light ribs with no marked intrados, the growth of the engaged or disengaged pillars into the lines of the vaulting, and the carriage of the weight of the ribs by buttresses that form the resisting points of walls which are merely trames to windows, are distinctive features of the Gothic architecture of the $131 h_{\text {century, with }}$ the addition of the pointed arch which had previously been employed in ways that tended to the divelopement of the style oyival primaire As an example of the transitional character of the style in this period. the two bays, fig 231. from the cathedral in laris, and fig. 239. from the chureh of the abbey at St. Denis, may be compared as having been exechted respectively at the beginning and end of the period. The sculptors do not seem to have studied nature thyond extibiting the costume of their period; and if they chuse models at all for the r foliage, these were firmishell by indigenous plants. The great attention paid in the 11 th century to ancient literatare is clearly responsible for the contaurs and other fibulous creatures then used for
 ornament. In like manner, the devo- Fig. 2je. st. menis. tion of the 12 th century to the sciences is expressed by the zodiacal signs and emblems of the seasons seulptured on the portals and choirs of churches built in that and the suceeding century. The door-
 ways at Aniens, Autun, A vallon, Nôtre Dame in Paris, St. Denis, and Vézclay, with the choir of the chureh at Issoire, supply curious examplis of this new branch of decoration. This conti. nuation of details, originally belonging to the 12th century, suggests the remark that the edifices constructed by the Gothic school, at the commencement of the 13th century, do nut possess features so distinct as to furnish always a means of distinguishing them from those belonging to the period of transition-a remark which may be applied to the two examples of domestic archirecture at Candebec,
5.6. Out of the large number of masterpieces in architecture in the 18th century may be selected the cathedrals at Lisieux, Leon, and Narbonne, exccuted in the early part of that period; Bordeaus and Chalons-sur-Suone belong to the year 1250; and Coutances dates in the last half of that century. Great part of the cathedrals at Bourges, Dijon, Laon, Nantes, Nevers, Senlis, and Sens; the choir and aisles at Auxere; the choir and chapels, with the upper fart of the nave, at Bayeux; the nave and cloir at Séez; the churehes at Oursemp, St. Denis, St. Jean aux-Bois, and St. Maximin; those of St. l'ierre at Avalon, and of St. Victor at Marseilles ; the Ste. Chapelle at Paris; the choir of the chureh at St. Nazaire at Careasomne; the nave and most of the choir of that of St. l'ierre at Lisieux ; the chapels, aisles, and choir of that of St. Julien \&t Mans; the choir of that of St. Nicaise at Rouen; and the Hotel-Dieu at Lourres, were constructed in the eourse of this period.
541. The eathedrals which are usnally taken as affording standards of the style are Chartres, Beanvais, Reims, I'aris,

Fig. 234.
PLAN OF HEIMS CATHEDISAL, transepts, is 190 ft . The width of the transepts is 98 ft , and the towers, 2 fof ft . from the ground, are still imperfect, because their open spires have never been erected 1.ios, and kon, of wish Reims is perhaps more consistent than Amiens. They are universilly considered to be two of the finest examples of the style in the: world. The furmer, which wa:s begun 1212, but not quite finished till 1430, is in the form of a Latin cross on the plan (fiy. 234.) ; its length from east to west is 492 ft . and its breadth, measured to the extremities of the arms of the

Fig. 255.
CATHEDHAL AT REIMS.

Fig 256.
542. The eathedral of Amiens, begun 1920 by Robert de Luzarehes, bute ntinued and

FYg. 237.
Fian of amiens cathemila. completed, 1269, by Thomas and liegnault de Cormont, except the west front that was not finished Intil the end of the 14 th century, is 444 ft . long and 84 ft . wide (fig. 237.) and 141 ft high in the bave. It was commenced within two years of the cathedral at Salisbury. Of the two, Amiens (fig.236.) is in a more per'ect and advanced state of art than Salisbary, for the French were befire us in adding to the simple bealu- ties of the former period many graees not adopted by us until the latter.
543. The :tyle ogiral secoudaire is considered by some architects to be that in which pointed art arrived at perfection ; for they deem that an increase of elegatice compensates for a loss of severity: but with the latter the purity of the preceding period seems to be wanting. Nevertheless this style rayomant has no absolute character; it is ralher, as ohserved by M. Schayes, a system of transition presersing the elements of the style of the 133 century, but modifying them by greater amonnt of ornament. and by more expansion and boldness in the curve of the arch, for the are en tiers point is the true arch of the time. This decoration, this arch, and the tracery of the windows, chiefly mark the style : and in regard to the fatter point, figs. 231 and 232 show the difference between the works of the two periods. The sculptoss of the 14 th century were more skilful than their predecessors; their carving

tig. 258 . ST. OLEN, AT hoven shows more delicaey and finish, while their statues are no longer ideali. ties: an important tendency of the period was an attempt at portrait busts, in some cases resulting in an approach to natural simplicity, although the attitude might be stiff and constrained, as was the case in almost all mediæval sculpture. The statues assume greater length in the body, and are dressed in ample drapery, cast with some affectation, but still having falling folds slighty bent.
544. The comparison which was recommended between fiys. 931 and 2:32, may be paralleled with adsantage by placing before the reader, fig 2:38. a fair example of the second period, in the choir of St. Onen at Ronen, and fig. 239, an equally modest work of the third epoch from the church of St. Maclou, in the sare city.
545. Foreign armies and civil wars caused the usual buildings of the 14th century to be fortified houses and city gateways rather than ecclesiastical stuctures. One church, however, that of St. Ouen, at Rouen, 1318 39, (figs. 238 and 240), exhibits the style in its choir and chapels more perfectly than the cathedrals at Clermont. Ferrand, Metz,

Fig. 2J9. ST. M.LCLOU, AT hOULN.
and Perpignan. Other good exan ples are the transepts at Bayeux, the cliapels at Narbonne, and the chapter-house with the cloister at Noyon; besides the churches of the Dominicans and of St. Didier at Avignon; that of St. Jacpues at Compiègne, and of St. Nizier at Lyon ; the cloister of St. Jean-

Fig. 20. remodelled by M. Violi(t-le-Duc). des-Vignes at Soissons; tlee palace at Avignon; the hotel-de-ville at St. Oiner ; the towers of St. Victor at Marseille, and of St. Sernin at 'loulouse; and the front of the church of St. Martin at laon.
546. The third period, the sty $l e$ oyir al tertiaire, fleuri, or flambnyant, as it was termed by M. Auguste le Prévost, used ihe equilateral arch during the 15 th and part of the 16 th century; but more commonly one, in some cases stilted, with the radii less than the width of the opening (oyice surbaissée or ogire eltu:e): the elliptic arch (arc en anse de panier); the ogee arch (arc en acrolude); and its reverse (are en doucine), are not uncommon. The pointed areh seems erushed by its canopies and finials; and the system of false-bearing is carried to so great an extent that the buildings might have been intended to defy the laws of equilibrium. There is great skill shown in the coupe des pierres. and in working them as decoration with extreme delicacy into petrified leaves of the thistle and curled cabbage, or into imitations of
pmbroidery. Covered with ewsped arches, niches, pianacles, and tracery, the buildinge of the time would be easily ree gnised aven if they were not warked by the wavy or broken lines of the arehes; the mon/ares primatigues or pear-shaped boltels, projectireg arrises, and deep hollows, which firm the monldings; and the boldly designed corbelling, pendentives, and raulting so flat that it resembles a ceiling resting upon extremely thin pillars. In fiy. 241 we illustrate one of the compartments of the sacristy of the ehare!s at (audehee, which conviys a fair notion of the peenliarity of the style. Ilaring this period the sculptors lost much of the simplicity noticed in the preceding contury; they evidently copied the lising model for at least the head a d laads, with great truth and sometines with hap: iness in expressing sentiment, but they clothed it in heary drapery cast with pretension. The grotesque and monstrous figures almost excel the statues, and seem to have some analogy with those which appear in the bassi-rilievi of the 11 the century. Such were the last efforts of the pointed style, whieh owed its principal eharacter to its tendeney towards verticality, and finished by seeking horizontality.
547. Amongst the most remarkable works of the 15 th century may be mentioned the transepts $1400-39$, and the nave $1464-91$, obviously modelled upon the previous ehoir, of St. Onen at Rouen; the upper part and spire of the north-west tower at Chartres; the central tower, transepts, and chapels at Eireux ; Limoges; the northern entrance at Sens; the eharehes at Notre-Dame de-l'Épine, St. Quentin, St. Riquier, Than. St. Wulfran at Abbeville; the Celestinians, and St. Pierre at Avignon; St Jean at Caen ; St. Antoine at Compiegne; Ste. Catherine at Honfleur ; St. Germain l'Auxerrois at Paris; St. Vineent at Ronen; and St. lierre at S inlis, the choir and apse of St. 'Trophime at Arles: the greater part of St. Martin at Avignon; some pure portions (others, fig. 242, showing the dying (truggles of the style) of St. Jacques at Dieppe; the choir and transepts of St. Remi, at Reims; the pretty Bourbon chapel in the eathedral at Lyon; the salledes cheraliers at Mont St. Michel ; and the tower of St. Jean at Elbeuf.
548. Among the examples of the style, between the years 1420 and $I .531$, are the Hôtel des Ainbassa deurs at Dijon, abont 1420 ; and the Fontaine de la Croix at Rouen, between 1422 and 1461, lately restored with the great st success in all its delicate details of ornament and tracery; as well as that whieh, elected about 1512 opposite the eathedral at Clermont, in Auvergne, was much injured by its renewal iin 1799. The palace at Dijon dates about 1467 ; and in that city are the monuments of the Dukes of Burgundy, Philippe-le-Hardi and Jean-sans-Peur, which were in the chureh of the Chartreuse. That of the

 last-named was executed by Juan de Huerta, assisted by other artists, about 1475. They are hoth of the period and are perfect keys to the style that prevailed at the time. At Nanes, the capital of Lorraine, still remains a portion of the ancient palace of its powerful Hukes. A representation of its portail is given in fig. 243. What remains within serves as barracks for the garrison. 'The date of it is about 1476 . The Porte du Cailhau at Bordeanx, 1494, in memory of the battle of Fornovo, shares the fate of the Hotel de Ville at St. Quentin, with its known date of 1495-1509, in not attracting so much notice as a very peculiar instance of a castle in miniature buibt by Gerard de Nollent about the end of the 15 th century at Caen with four fronts, which from the statues of Neptune and Herenles placed on the battlements, is commonly called the chateau de la gendarmerie. At Orleans, the IIotel de Ville, finjhed in 1498 , is now used as a museum. The Chatteau de Blois, with four facades of diflerent design, the eastern work dating about 1498-1515, is too well known to need here any further remark. Ten miles from Caen is situate the Chateau de Fontaine le Henri ; the greater portion is of this period. A part of the west tront in given, fig. 244, as a characteristic specimen of the residences of the noblesse during
the latter fart of the 1.5 th centuily, at which period it evidently was erected. The well known Hôtel de Cluny at Paris, possessing portions of an earlier diate, had the works resumad in 1990 by Jacques d’Amboise, Ablé of Cluny, and alterwads bishop of Clemont. This buildirg now contails the works of art firmerly belonging to M. de Sicmmerard. Near St. Amand is the Chattean de Meillant, mueh resembling the last named cdifice, but more ornarented
5.49. During the last yars of the 1.ith century. the campaigns in Italy I. y the fremeh made
 them acquainted with the new style the imitation of the antique. At tirst, some mouldings and s.me decorations only were copied. Thus several portions of the eathedral at Otleans exhibit the es. sential features of decaded pointed architecture; and while Bultant designed in the Italian style the châtean at Ecouen, he maintained in the appendent chapel the Gothic taste, as being eminently veclesiastical, as he did in the parish chureh at the same place. In the 16 th century new churches were rare: sumptuons palaces and pleasure-houses were the chicf works, in which great saloons beca ne the chief objects; and the middle class also introduced luxury into their dwellings. a As the main object was the expression of wealthy ease, not a character of grave magnifieence, the functions of the architert were assumed by the seulptor; and at the same moment sculpture, no longer arelisectural, alike commened its decalence in Framee. The chief ceelesiastical works of the period were the additions of fronts, or restorations; those done at the commeacement of the epooh form a sort of transition between the style flenri and the 1 talian renaissance empl yed towards the end of the reign of Fraccis I. In this category may be ranged the ehurelues of St. Patrice, St. Golard. St. Andréde la-Cité. St. Nic. las. St. Sever, and the great portal of the eathedal at Rouen. the church at Brou; and the churehes of St. Etieme-du- Mont and of St Ens-

ST. JACQUES, MEILE.
 tache at Paris. The latter has the
feneral forms of a Gothic building with renaissance details, and as its side entrance was eonstructud at the same time as the fine flamboyant side entrance to the eathedral at Beanvais, it is cliar that the architectural revolution was not simultaneously effective in all parts of the country.
550. As specimens of eivil architecture of the period, may be named the town halls at St. Quentin, Compiègne, and Noyon ; with two of the finest examples of the art of this period, the Palais de Justice and the Hotel de Bourgtheroulde, at Rouen. The first was begun in 1499 and finished in 1.508. The plot on which this beantiful work stands, includins the court-yard, is about threefiths of an English aere, and the arrangement of its plan is given, that is, of the ancient part of the luilding, in fig. 245. It is thus deseribed by Dawson Turner:-"The palace forms three sides of a quadrangle" (two of them only are ancient). " The fourtl is occupied I y an embattled wall and an elaborate gateway. The building was erected about the beginning of the sixteenth century; and with all its faults " (we are not aware what they are) "it is a fine adaptation of Gothic architecture to civil purpeses." "The windows in the body of the building take flattencd elliptic
Fig. 244. cuâteau de fontaine le hentio, nealr caen,
heals, and they are divided by one mullion and one transom. The mouldings are highly

wrought, and enriched with foliage. The lucarne" (dormer) "windows are of a different design, and form the most characteristic feature of the front; they are pointed, and enriched with
mulions and tracery, and are placed within triple canopies of nearly the same form, flanked by square pillars, terminating in tall crocketed pinnacles, some of them fronted with open arehes, crowned with statues. The roof, as is usual in French and Flemish buildings of this date, is of a very high pitch, and harmonises well with the proportons of the building. An oriel. or rather tower, of enriched workmanship projeets into the court, and varies the elevations" (an object the designer never once thought ahout, inasmuch as in all medieval buildings, the first consideration was convenience, and then the skill to make convenience qgreeable to the cye-an invaluable rule to the architect). "On the left hand side of the court, a wide flight of steps leads to the Salle des Procureurs" (maked A on the plan), "a place originally designed as an exchange for the merchants of the city " (sed quare), "who had previously been in the habit of assembling for that purpose in the Cathedral." Its dimensions are 135 ft . long, by 57 ft . 3 in. wide. The room B is now the Cour d'Assices; the ceiling is of oak, and is arranged in compartments with a profusion of carving and gilt ornaments. The original bosses of the ceiling are gone, as are also the doors which were emriched with sculpture, and the original chimney-piece. Round the room are gnomie sentences, admonishing the judges, jurors, witnesses, and suiters of their duties." The basement story of the salle is, or used to be, occupied as a prison. The southern and eastern ficcades of this elegant edifice have lately (1855) been restored under the direction of M. Gre'goire, who probably superintended the internal decorations.
5.51. Fig. 246 is a portion of the south front of the building. The ellipse seems almost to have superseded the pointed areh in the leading forms, over which the erocketed labels or drips, in curves of contrary flexure, flow with surprising elegance. It is only in the lucarnes we find the pointed arch; and there it is almost subdued by the surrounding accessories. The connection of the lucames with tie turrets of the façale by means of fying buttresses is most beautiful, and no less ingenious in the contrivance: their height from

Fig. 246.
elevation of the south fiont, halais de justice, fouen, the ground to the top of the finials, is 78 ft .6 in. The octangular turrets at the end of the salle next the liue St. L.o, contain a very pretty example of penetration over the heads of the pointed arch. In the story ahove the basement, as also in the lucarnes, the soffites of the windows are rounded at the angles,or, as the tirench call it, have coussinets arrondis, as usual in the style, those in the principal story being, besides, slightly scommental. In the tracery of the parapet it is singular to find the quatrefoils centered thronghout with what is called the Tudor rose. The arehes rising above the parapet, which are crocketed and of contrary flexure, have statues substituted for finials. The richness of the ornamentation of the whole is such that we know no other example, except that of the Hotel de Bourgtheroulde in the same city that can vie with it. The woodrut, fig. 247, is a section of the sulle. The roof presents little for remark. It is bold and simple, and seems scarcely in harmony with the rest of the place. It is impossible to form an aderquate notion of this splendid monument from the figures here given, owing to the necessary smatlness of the stale. Those who are desirous of thoronglily understanding its details will be gratified hy refer-
ring to the plates of it in Britton's Normady. ring to the plates of it in Britton's Normandy.
55%. There is no city where the style of the period whercof we are treating can lee better studied than Ronen. It possesses, both in secular as well as celesiastical architre:ure,
all that the student can desire. The Jotel de Bonrgtherould, in the Place de la Pucelle, is ahout the same age as the I'alais de Justice we have just describud, or perhaps three or four years later in the finish.

Iig. 217. SECTION OF HALL, lALAIS DE JUSTICE, NOUEN. ing. In some respects it is more elabsate in the ornaments and the abundance of sculpture. 'The entire front is divided into bays by slend. r buttresses or pilasters, the spaees between them being filled with bassirilievi; every inch of space, ind eed, in the building has been ornamented. This buidding stall remains in a most degraded eondition.

Belfium.

553. The table of styles given at the commencement of the preceding section applies to the procreess of art in this portion of the history. The first appearance of the pointed arch isfixed in the first quarter of the 12th century, by Sclayes, L'Archifecture en Belgique, 1850-53, who notices that the semicircular arch did not disappear until the middle of the 13th, and that only ecclesiastical edifices can be adduced as examples of the style de transition. 'Ihe choir aisles were continued round the chevet, in the charches of Ste. Gudule at Bruxelles, St. Quentin at 'Tournai, and l'amcle at Audenaerde, while Nôtre Dame de la Chapelle at Bruxelles exhibits annulated ribs to the vanlting. The division of the doorway by a post is due to this period; as are gargoyles in decoration; and the introduetion, in lianders, of bilckwork.
554. The ehief structures are the tower of St. Pierre at Ypres; St. Sauveur at Bruges, 1116-27, the earliest piece of mediaval brickwork in Belgium; St. Nicolas, and St. Jaequex, at Gand or Ghent ; the abby ehureh at Aftighem, 1122-44; and the Chapelle du SaintSang at l3ruges, 1150 , despite the de-

Fig. 248.
 e, 1218-24, which rescmibles the church of the Apostles at Cologne, and is the first instance of a true eup.ola in 13 l gium ; the chureh at Lissewerhe, about 1250; and the Abbey at Villers, which, ahhough in ruins, is a perfect type of the style in the choir and transepts. and moreover retains more of the dependent original buildings than any other establishment in the countiy; the brewery dates 1197, and the chureh about 1225 ; the triforium range of windows to the choir are superposed circles, an idea repeated in the end walls of the tansepts; the three-aisled nave has a third triforimm and is the most perfect type of the early part of the style offical mimaire existing in bselgiom, except that of Ste. Pamele; the Hying buttresses are remarkable works; the eloister belongs to the 14 th and 15 th eemturies. The clevet, $12=0$, of Ste. Gudule, and
the contemporaneous choir, with the transepts of Notre Dame de la Chape lle at Bruselles; the Madeleine, ahout 1950, at Tonmai; the choir, 1221, of St. Martin at Ypres, remarkable for the branches of fuhage along the strings; the crypt, 1228, of St. Bavon at Gand, which was the last (except one hereatter notieed) that was constructed in the kingdom; Ste. Pramele, built 1235-9, by A. de Bincho, at Audenaende, whieh is sad to be "le type le plus curienx qu'il soit possible de trouver de ee style; " and St. Jacipues at Tournai, whieh has one triforium over another, and exhibits in the tower a pointed trefoiled arch with columns to support the eusps; are also transitional.
555. The chapel of the castle at Yianden, was about 50 ft . long and :if ft. wide; its phan was a decagon with one side opening to the eastle and ancther to a pentagonal choor; divided into three portions by columns engaged in square piers; the centre was a hexagomal pit over the duageor:s so that the prisomers could hear prayers withont leaving their eells; it is now in ruins.
5.7. To the style oyical prinaiue beleng the choir and lower part of the nave of the eathedral of St. I'aul at Liége; the cheir and chief part of the transepts of Ste. Gudute at Bruxelles, 12.50-80; great part of Notre Dame at Tongres; the chureh (fig . 249 , width between the piers is 53 ft .) of the Dominicans ar Gand, 1240-75, with a single nave covered by wooden ceiling (fiy. 250 .), on curves of 60 ft . radius; (both cuts from the Gentlemetis Mayazine for 1862), that of the Dominicans at Louvain, 1230-50, ar later ; the three-aisled naves and the transepts of St . Martin at Ypres, 1254-66, with one of the few rose windows, existing in Belgium, over the porch to the south transept; the choir of St. Léonard at Leau; Nôtre Dame at Dinant; Ste. Walburge at Fornes; the abbey and hopital called La Byloque at

Fig. 2A9, CHIRCH OF THE DOMNはCANS, GANL. Gand, "with an oaken roof not ceiled where spiders have never come," and with a remarkable brick gable to the refectory; the brick tower of Nôtre Dame at Bruges, 1230-97, said to have been about 420 ft . high, including the spire, till 1818 , when 50 ft . were removed; the choir of the eathedral at Tommai, 197 ft long, 121 ft . wide, a:d 108 ft . (inside) in height, remarkable for its stilted arches and for the means adopted to strengthon the reilliars; as well as the choir of St. Bavon at Gand, begun 1275 and not finished in the 13 th eentury, with its opposite cl. arsturies eennected by ion ties. In the Netherlands there are a great number of large churches which have a singular identity of appearance in the interior, and at the same time a manilest peculiarity of character. This apperars to be due to the employment of plain, well-proporioned cylindreal shafts fir their piers; the style in other respects being an elegant Gorlic. 'The prine:pal examples are Nôtre Dame, and the cothedral at Malines; St. Panl at Liége; Nôtre Dame des Victuires, La Chapelle, a..d Ste Gudule, at Bruxelles; St. Jatcyues, and the Duminicans, at Antwerp; St. Michel at Gand; ard Fumes near bruges.
558. The stylengitul eromduie was chiefly enployed by the ecelsiastics in finishing structures or in commencing others conceived on sis large a scale that their supenstiucture belongs to a later period. The chief edifices of the style are the five-ailed chureh of St. Jean at liois-le-due, curious for the revoltin: obseenity of the lage staturs to the but-

Fig. 250. CHURCH OF THE DOMNICANS, GAND. tresses of the choir-it was commensed 1280, but evidently was finished in the latter half of the 15 th century; the five-aisled choir of St. Sulpice at Diest ; the chureh of the GrandBéruinage at Louvain, commenced 1305, notieed for the manner in which the twelse pillars that dwide it into three aisles have been strengthened by iron bars; the contemporaneous church of the Benginaze at Jiest; the ehureh at Acrsehot, buile 1331-7 by J. Pickart ; and, finest of al!, Nồre Dame at Iluy, begun 1211, witha sphadid rose window.

To these may be added the eathedral at Saint Rombaut, hegun about 1345-50; the nave mod southern aisle of Ste. Gudule at Bruxelles; the front of the cathedral at Tournai ; and Ste. Croix at I iége, the oaly church in Belgium, since the destruction of that at Lubes, that has the three aisles of equal height, and from which the arehitcet is reported to have Hed rather than superintend the striking of the centering to the vaulting, which in the nave is eorbelled out from the pillars.
559. Some of the finest structures belonging to the style ogical testicise are; great part of Nôtre Dame at Hal, 1941-1409; the porch and towers, co npleted 14:39, to St. Martin at Courtrai, 1390-1439; Ste. Walburge at Andenaerde, rebuilt, exeept the choir, 1414-1515, with a tower 295 ft . high, by J. van den Eecken; Nôre Dame at Anvers, the only fiveaisled church (except that at Saint-Hnbert) in the country, which is really seven-aisled in plan in the nave (the choir belongs to the preceding century, and the completion of the tower, commenced 1422-3, by J. Appelmans, with the cupola and the Lady-ehapel, to the Sirst half of the 16th century); St Gommaire at Lierre, b.gun 1425, and not less than 250 feet long, with a high tower, finished 1455, but altered 1702; the porch and tower of St. Martin at Ypres, 1434, by M. Utenhove; the chevet of the cathedral at Saint-Rombaut, with 320 ft . of its tower, 1452-1513, which was to have been 6CO ft. high, aecording to the preserved design; Ste. Wandru at Mons, which was building 1450 (with aisles 1525, and nave 1580-9, by J. de Thuin and his son), and is supposed to have been designed by the arehitect of St. Pierre at Louvain, which was building 1433 with later nave, the design and stone model for the intended colossal triple-towered facade is prescrved in the town-hall; St. Michel at Gand, 1440-1515; Nôtre Dame at Malines about 1475-15.50; the contemporaneons Notre Dame du S.blon at Bruxelles; the upper church at Anderlicht, 1470-82; St. Jacques at Anvers, 1429-1560, with a tower, 1491, hy T. de Coffermaker ; and the tower, 272 ft . high, of St. Bavon, 1461-1534, by J. Stassins, with that of St. Nicolas, 1406, by T. de Steenhoukebelde, both at Gand.
560. As works of the 15 th century must be named, the great entrance and its two towers, with other portions, to Ste. Gudule at Bruxelles; the tower and eastern part of Nôtre Dame at Tongres; the biick tower of St. Jcan at Bois-le-duc; and the tower of the ehurch at Acrschot, said to have carried a spire 488 ft . high, that was replaced, 1575. by the present spire, which attains abont 320 ft . In the same styie are the five-aisled abbey church (see Nôtre Dame at Antwerp) at Saint Hubert, about 1.526-64; the brick spire, 1524, of Nôtre Dame at Bruges, which is said to have been 422 ft . high, but lessened, 1818, by 50 ft .; the upper part of the nave, the chapels, and the vanlting of the cathedral of St. Pitul at Liege, 1528-9; the nave of St. Bavon at Gand, $\mathbf{1 5 3 3} \mathbf{3}-53$, with an iron riiling as triforium, and having the clarstories tied together by iron bars; St. Jacques at Liége, 1513-18, the best specimen of the style; with its rivals. St. Martin in the same city, finished, 1542, by P'. de Rickel ; the hriek church at Hoogstracten, 1534-46; and the church of the Dominicans at Anvers, 1540-71. The cloisters of St. Paul, St. Barthétemi, and St. Jean-en-Isle at Liége are rather later than that of St. Servais at Maestricht.
561. In the 13th century commences that long series of splendid civil edifices which Belgium possesses in greater number than any other country of its size-viz., the belfrys, the markets, the town-halls, and the club-houses. The most remarkahle of the beffrois are at Tournai (the oldest). Gand (the oripinal drawing is preserved) 1315-37, Ypres, Bruges, Lierre (1369-1411). Nieuport (1480), and Alost (1487). The enormous halle, now hôtel de ville, at Y:res, was commenced 12c0, but not completed till 1230 in the right wing, 1285 in the left wing, and 1342 at the back; the water halle at Bruges was destroyed 1789, but another, which was attached to it, remains, with a tower, 1284-91, ly the priest Simon de Genève; the halle-aux-draps at Louvain was commenced, 1317, ly J. Sevens, A. Hare, and G. Raes (srppesed officers), and was given, 1424, to the University that, 16:0, added the second story. The halle, now boucherie, at Diest. lates 1346, and the balle aux draps at Gand, 1424, the last in the pointed style. The boucherie at Ypres belongs to the 13th century; that at Anvers 1.501-9.
562. The hotel-de ville at Alost has the right flank, built in the year 1200, remaining : that at Bruges, commenced 1377, wi h its rich ceiling, 1398, was the only edifice of its class raised during the 14th century; that at Bruxelles was begun on the left or east side. 1401-2, ly J. van Thienen, the tower was completed, 1448-55, ly J. van Ruyshrozk, the right side was commeneed 14.51 ; that at Louvain was ereetd 1448-59, hy M. de Layens, and is unparalleled in any city; that at Mons was built 1458; the old part of that at Gand was begun, 1481, by F. Polleyt; that at Audenaerde was erected, 1527-30, by H. van Pede, and 1528 a painter and a sculptor were sent from that town to copy, for the use of the architect, the two chimney-pieces and the parapet of that at Conrtrai, built 1526-7 ; and even that at Lean deserves attention. We refer our readers to the end of Book III. for some further remarks on these very important buildings.
563. The maison des pois:omiers and the maison des butzliers at Gand date in the first part of the 16 th century. The poorter's logie (now ecole des beaux-arts) at Bruges was erected at the end of the $!5$ th century, or a litule later. 'i'he matison du roi at Bruselles,
rebuilt 1514-23, by A. D and R. van Mansdale, D. de Wagemaker, L. van Bendeglem, and II. van Pede, was much injured, 169.5; and the Hotel diu Franc at Bruges dites 1521-3. The steen (prison) at Anvers was builu 1590. The episcopal palace at Liége dates 1508-40.
564. According to a tradition preserved at Ypres, the timber of which the wooden houses of the 15 th and 16 th centuries was built, was procured from Norway; some of these dwellings remain in Anvers and Ypres. Two stone houses of the 13th century exist at Gand, and a couple more dating 1250-1300 at Ypres. One of the 14 th is in the Place du Vendredi at Gand, and many briek dwel. lings of the 15 th and 16 th may still he seen at Anvers, Ath, Bruges, Gand Malines, Tournai (fig. 251.) Ypres, \&c. The Porte de Hal at Bruxelles, 1381 ; the Porte de Diest at Lourain (1526) ; the Pont du Broel at Courtrai; the Pont des Trous at Tournai (129.-1300), with the keeps of the chatteaux at Siellem and Terheyden close the list of remarkable works of ancient pointed art in this country, with notice of the Chapelle de la Vierge attached, 1649, to the southern or right side of Ste. Gudule at Brussels to balance the chapel, built 1533-7, on the left side.

Germany.

565. In accordance with the opinion now usually adopted, that Gothic art was received into the north of Europe from France, but that it was altered during the process of naturalisation, the usual division of the styles aceords with th.t nsed in France. But the periods do not altogether match, inasmuch as while examples of pure first-pointed work occur in the cathedrals at Paris and elsewhere, 1163-1219, the German instances are, like those of Belgium, not earlier than 1225. It is hardly possible, however, to refute the

Fig. 251 hotse at toulivat. doemmentary evid nee for some buildings being very much in advance of contemporaneous structores in England and France as to style. '1 his seems to be admitted by Dr. Whewell, whose valuable Architectural Notes on German churches, 1842, third edition, condenses into a few lines the account of the chicf peenliarities of detail in the two classes which he oliserved in that country. He first suggested the fact that English and German arehitcets, begiming from the same point-the Romanesque, and arriving at the same result--the com, le e Guthic, or decorated period, with geometrical tracery, made the transition each throngh a separate style; one of these being decidedly Gothic; the other, which he calls carly German, rather Romanesque than Gothic. They have in common their slender shafts, elustered and banded, their pointed arches, and their mode of vaulting ; l:ut we do not commonly find, in the interior of the thansition churches of Germany, the circular cluster of shalts, the arehes monlded into a broad and deep mass of small rolls with deep, hollows between, the circular abacus with its romeded upper ed e, the simple lancet-headed windows, tall and narrow, and the peculiar line of open flowers which is used so profusedly in all early English work. Nor do we observe, on the outside, the dripstone to the window, the moulded or shafted window-sides or jambs, the projecting buttress with its ehamfered edge and triangular head, or the pyramidal pinnacles of our early cathedrals. Vaulting shafts spring foom a corbel, or more usally, from an end hocked into the wall; the arch is often a square-edged opening with no mouldings, though sometmes a rebated edge, sometimes a roll, is seen ; the triforiun is, in a large district, incant for use as a gallery by the bachelors; the fan-shaped window, a foided horse-shoe arch; and arch mouldings with three bands, or two bands and a roll at the apex. The difference between early English and tarly German work is less obvious. The resemblance obtains not only in the general forms of the members and parts, but in the details also-the canopies, bases, profiles of mouldings, \&c. The latter style, however, has double planes of tracery-i.e, two frames of tracery, one behind the other, in the same opening. After this gencral coincidence, the style's seem again to diverge, the later Gothic of Germany being quite different from the contemporaneous or corresponding styles of England, France, and the Netherla:ds; these again apparently being independent of cach other. Nevertheless, a German author wou!d inscribe at the head of this section the following table:-

Early	-	Frueligermani cher styl		-	Thirteenth century.
Decorated	-	Ausycbi detyermumischer styl	-	-	Fourteenth contury.
Late	-	Sluctyermanischer styl	-		Fifteentin century an

[^5]1227-44, said to resemble in plan the charel at Braine near Sinssons; the elooir of St, Afra at Mussen, 12:55; and the nave of St. Elizabeth at Marburg. 1253-83, which pro-

Fig. 252. SECTION OF TIE CHUHCH OF SAINT ELIZALLEH, MALEUHG, bably was the lirst instance of the practice of erecting the nave and aisles uniform in height that is so common in Germany (fig. 2.52) The churelt of the Minorites at Cologne was consecerateri 1260, and is said to have been built at overtimes ly the workmen of the cathedral.
567. The eathedral at Cologne, began 1248, is held to owe much of the plan to that at Amiens, and of the decoration to the Ste. Chapelle at Paris. The abbey of Alten. Lurg is said to be indehted for its style to Cologne cathedral; the choir at Meissen to that at Namburg, and Calmar to Strasburg; the churches :. Gruenberg, Nienburg an der Saale, and Wetter, with St. Mary at Frankenbergand at Marburg to that of St. Eliz beth at Marburg. In the 14th century. the five-aished chureh at Kuttenherg was indebted to l'rague cathedral ; the choir of the church of St. Mary at Bamberg to Cologae cathedral, and (for windows) to the church at Oppenheim; and \mathbf{t} ue churches of St. Mary at Rostock and Wismar to Schwerin cathedral. In the 15 th century the church at Stei r horrowed from Vienna cathedral; St. Mary at Bernipurg fiom St. Nicholas at Zerbst and St. Maurice at Halle; Friberg cathedral and St. May yat Zwickan from St. Nicholas at Zerlst; and the church at Elten from St. A'gond at Emmerich. These cases of imitation may be deserving of attention.
568. The general character of the work of the first period is very much that of the French buildings of the style: but where the German work is phain, it is much phamer than the lrench; and where decorated, mich richer, Its reminiscences of romanespue art are more obvious in the profiles of mouldings, while the carved work in capitals is almost an exaggeration of the crispmess of the lrench work.
569. Amongst the remarkable buildings erected in the 19th century may be named the old parish churelh at

Fing 0,53. I'lan of Cathemhat., halbelistadt
of the west front older than the rest of the edifice, which dates $1 \because 35-1491$; its section (fig. 254.) is here given as being an instance of clegant proportions that enforce admiration. The beantiful church at Oppenheim, dedicated to St. Catherine, is a Latin cross on its plan. The chancel is five sides of an octagon. As in many of the churches of Germany, it has a second chancel for the canons at the western extremity, terminating in three sides of an oettogon. The entrances are on the north and south sides of the transepts. From a MS. chroniche of the chuch, gnoted by Moller, it is aseertaned that the
nave and eastern chaned were begnin in 1262, and finished in 1317. The western ch:ancel, now a ruin, was consecrated 1439 . The total length of the chureh, inchuding the two chancels, is 268 ft .; whereof the western chancel, whose breadth is 46 ft ., oceupies 9.2 ft . The nave is 102 ft . in length, and its hreadth 86 , that ireadh comprising the two side aisles which are separated from the nave by clustered columus; the aisles have small chapels. The transept is $10 \div \mathrm{ft}$. long, a: d 31 it. broad. In the western front. at the extremity of the nave, are two towers, standing o:i square bases, eaeh of four storys, a.d crowned by an oetagonal spire. Over the intersection of the transepts with the nave stands an oetagonal tower. 'This building was erected for Richard of Cerawall, emperor of Germany, and has litely been restored. The ehurch at Wimplim-im-Thal, $1262-78$, is rewoded as built by a Parisian "opere francigeno;" the choir of Meissen cathedral 1274 ; the simple church of the Dominicans at Ratisbon 1274-7\%; and the choir of the eathedral in the same city, 1275-80.
570. The western portal of Strasburg cathedral was begun 1277 by Erwin von

Fig. 254. SELHUN OF CATHLDRAL, HALBLLSTADT, Steinbach, an architect before mentionel ($p a r$. 322^{2}) who died 1318 , learing unfinishod part of the second story, which was complited hy his son Joham, who died $1.3: 39$; the third stony is an addition. The cathedral was carried on under other architeets till 1439, since which nothing has been done towards its completion. Among the examples of pointed architecture this is the most stupendous. There is a similarity of stele butween it and the cathedrals of Paris and Reims, except that the ormments are more minute. The plan is a Latin cross, whose eastern end terminates interiorly in a semicircle, inut on the exterior in a straight lize. The langth of the church is $3 \because 4 \mathrm{ft}$., that of the transept 1.50 ft ; the height of the vault of the nave is 98 lt . The nave has one aisle on each side of it. On the north-west angle of the cdifice, rises the spire, whose height has heen very varionsly represented; the correct height is 466 ft , being greater than that of any church in Europe exeept that of St. Nicholas at Hamburgh. which is $4: 2 \mathrm{ft}$. To a eertain height the tower is square and solid, being formed b : one of the vertical divisions of the western façade. Above the solid part, the tower rises to a ecrtain height octangul.uly, open on all sides, and flanked by four sets of open spiral staircases, which are contmued to the line whenee the principal tower rises emically in seven stories or steps. crowned at the summit with a species of lantern. John Hiiltz, sen., Heckler, and John Hiultz, jun. continued this fine tower, which was only finished in 1439. In the interior of the churelt, near one of the large piers of the transept, is a statue of the arehitect Erwin, in the attitude of leaning over the halustrades of the upper corridor, and looking at the opposite piers. The minster at Freiburg-imBreisgan, is remarkable as being almost the only large Gothie church in Germany which is finished, and thas escaped destruction. It was begun 1152, as appears in the romanesfue transepts with their external turrets; the nave, west frumt, the tower 350 it. high, skilfully changed from spuare to octagon, with open spire, and rich porch helow it, date 1 $1036-72$; the choir (see fiy. 25.5.) belongs to the year 1513. The transition, which in France dates 1250, is seell in the west front, 1287 , of the cathedral at Agram , where the choir dates 1:505-19, with a later nave.
571. In the second period elegance and richness were songht; the latter was obtained, but the former

 was lost in a mamer which may easiest be expressed in the statement that everghing berms to lee an aedlition as an affer thonght Decoration is spread on the work: "ithess the
crockets and eapitals which are only single leaves glued to their places instead of the freely growing foliage of the previous peniod.
$57 \because$. In the $14 t h$ eentury oceurred the construction of the mave at Meissen cathedral, I 3 12-12; the tower and choir of St. Elizabeth at Kachan, 1321; St. Mary at lrenziau,

1325-40; the ehurch at Friedeherg, 1328; St. Lambert at Muenster, 1335-75; the choir in St. Mary at Wismar, 1339-54; the five-aisied ehoir in Prague cathedral, 1343-85; the

Fig. © 57
SOUTII ELEVATION OF COLOGNE CATLLDLAL
probate had resolved on the ereetion of a new chureh, so that in the year fullowing the destruction of the old edifice, measures had been so far taken, that the first stone
of the new fabric was laid with great solemnity on the 14th of August, being the eve of the Assumption of the Blessed Virgin. Collections were made throughout Europe for carrying on the works, and the wealth of Colorne itself scems to have favoured the hope that its founder had expressed of their continuation. 'The misfortunes of the times soon, however, hegan to banith the flattering expectation, that the works would be continmed to the completion of the building. The archbishops of Cologne dissipated their treasures in umprofitable wars, and ultimately abandoned the city altog ther, for a residence at Bonn. The works do not, however, appear to have heen interrupted, though they proceeded but slowly. On the 27 th of September, in the year 1322, seventy-four years after the first stone had been laid, the choir was consecraterl. The works were not long contimed with activity, for about 1870 the zeal of the faitiful was very much damped by finding that great abuses had erept intc the dispesal of the funds. The nave and sonthern tower continued rising, though slowly. In 1437, the latter had been raised to the third story, and the bells were moved to it. In the beginning of the 16 th century, the nave was brought up to the height of the capitals of the aisles, and the rambing of the north aisle was commenced; the northern tower was carried on to the corresponding lieight; and everything seemed to indicate a steady prosecution of the work, though the age was fast approaching in which the style was to t:e forgoten. The windaws in the north aisle were decorated, though not in strict accordanee with the style, yet with some of the finest speeimens of painted glass that Europe can boast, a work executed under the patronage of the archbishop Hermann von Hesse, of the chapter, of the eity, and of many noble families who are, by their armorial bearings, recorded in these windows. But with these worhs the further progress of the building was entirely stopped, about 1509. Fig. 257 exlibits the sonth elevation of the cathedral, in which the darker parts show the executed work. If the reader reflect on the dimensions of this church, whose length is upwards of 500 ft ., and width with the aisles 280 ft .; the length of whose transepts is 290 ft . and more ; that the roofs are more than 20 Jf . high, and the towers when tinished would have been more than 500 ft . on bases 100 ft . wide; he may easily imagine, that, notwithstanding all the industry and activity of a very large number of workmen, the works of a structure planned on so gigantic a seale, could not proceed otherwise than slowly. especially as the stone is all wrought. The stone of which it is built is from two places on the Rhine, Koenigswinter and Unckel-Bruch, opposite the Seven Mountains, from boh of which the transport was facilitated by the water carriage afforled by the Rhine. The foundations of the southern tower are known to be laid at least 44 ft . below the surface.
574. 'To King Frederick William III. is due the merit of reseuing it from the state of a ruined fragment. Doring his reign nearly $50,000 \mathrm{l}$. were laid out upon it, chiefly in repairs ; and in that of his successor, Frederick William IV., 225,000l, more than half of which was contributed by the King, the rest by publie subseription. In 1842 he laid the foundatior of the transept. The choir is now finished. The late architect, Zwirner, estimated the cost of completing the whole at $7: 50,000 \mathrm{l}$. In September, 1848, the mave. aisles, and transapts were consecrated and thrown open ; the magaiticent south portal was finished 1859, at a cost of 100,0 onol. The north portal, more simple in detail. is also completed; both are fiom Zwirner's designs. The iron central spire and iron roof of the nave were added $1866-62$, and the whole, except the towers, nearly fimished 1865 . The faulty stone, from the Drachenfels, on the exterior, has been replaced by another of a sounder texture, of soleanic arigin, brought from Andernach and Treves. The height of the towers when finished will be 5332 ft ., equal to the length of the church. whone brealth, $2: 31 \mathrm{ft}$, corresponds with that of the gable at the west end. The ct:oir is 161 ft . higl. 575. The cathedral at Chm (.fily. 258.) is another of the many celebrated cathedrals of Germany: it was commenced in 1377, and continued. the tower excepted, to 1494 . It is about $4!6 \mathrm{ft}$. long, 166 ft . wide, and, including the thickness of the vaulting. 141 ft . high. The piety of the citizens of Ulm moved them to the erection of this structure, towards which they would not accept any contribution from foreign princes or cities; neither would they accept any remission of taxes nor indulgences from the prope. The whole height of the tower is 316 ft .9 in . ; it was stopped 1492 because the two pillars under it, on the side next the
 lody of the chureh, gave way. Llad it been finished according to the original design (still in existence), it would have been 491 ft . The exterior length is 455 ft .; interior, 391 ft . The nave and choir are partlv built of brick. The nave is 146 ft . high, and has twelve
austered columms bearing laneet pier-arelies, withont a triforimm, flanked by double aistes on slender slatits. The main support of the roof is derived from hage external buttresses. This building does not preserve the regularity of form for which the eathedral at Cologne is eomspicuous, but the composition, as a whore, is exceedingly beautiful.
576. Ratishon cathedral is another tine work, of alsout the same period (fig. 259). It wa: begun by Andreas Egl, 1275, but left unlinished in the begiming of the 16 th century. The west fiont is in the alecorated style of the 1.5 th centmry, with a triangular portal throwing out a pier in front so as to lom a double archway.

Fig. 209. The ehureh is 333 ft long, and 120 ft , high. The transeptal plan is only seen in the clearstory. At Vienna, the cathedral of St. Stephen's exhibits an ther exquisite example of the style.
577. The history of the collegiate church of St. Victor at Xanten has bcen tolerably clearly written. It is a five-aisled edifice without transepts, with a romanespue tower dated 1213. 'Tlu choir was commenced 1263 , the sacristy in 1356 , by J. von Mainz, who designed, 1:368-70, the east part of the north aisle. The buttresses and waulting were added 1417-37: a cessation of the work then oceurred till 1487, although we find the names of the master-masons 'T. Moer, 'arehilapicida,' 1455 ; II. Blankenbyl, 1470-4; and G. von Lohmar, 1483-7, as busy upon the nave; its windows were completed 1487 ; the south side 1492 ; its vaulting 1.500 ; its buttresses 1508 ; the great window between the towers 1519 , and the north tower, 1525 , were designed by Joham von Langeberg of Cologne, 1492-1522; the sacristy and the chapter-house were designed, 1528, by Gerwin from Wesel ; and the chapter-house with cloisters was completed, 1550, by H. Maess.
578. In the third period there seemed to be a natural and at first healthy revulsion; but it ended in being spiky, a term which is more justifiable than prismatic. Svery thing that could be curved was bent or twisted; the most tortuous forms of the flamboyant systemare common with truncated ends forming stump tracery; interpenetration abounds; and as a dast resource of invention, dead branches intertwined take the places of mouldings and of

Fig. 260. Chohi of minstef,
FREHEURG-IM-BREISGAU. foliage. So that in the decline and fall of Gemman pointed art, there was as markedly national a character as in that of the French or the English contemporaneous forms.
579. Amongst the structures of the 15 th century (excepting St. Mary at Esslingen, which will be hereafter mentioned) were St. Catherine at Brandenburg, I401, by II. Brunsbergh, with nave and aisles of equal height; the choir of St. Mary at Coblentz, 1404-31, by Jonarn von Spey; the chureh of St. John at Werfen, 1412; that at Weissenfels, commenced 1415 by Johann Reinhard; the elsoir of St. Reinold at Dortmund. 1421-50. by Rozier ; St. Mary at Ingoldstadt, 1425, with nave and aistes of equal height, by H. Schnellmeier and C. Glaetzel; St. Laurence at Nuremberg, enlarged 1403 , with a choir and aisles of equal height., 1439 or 1459-77, by C. Heinzehnamn of Uhin, and Johann Bauer of Ochsenfint, on the plans of C. Roritzer of Latisbon; St. Nicolas at Zerbst, 144ii-81. with a nave and aisles of equal height, and with a chevet having nine sides externally, by Johann Kuemelke and his sen Matthias; the south-west tower of St. Elizabeth at Breslan, 1452-86, with a wooden spire ereeted in the latter year, by F. Frobel, 'zimmermann;' the ehureh of the hospital at Cues before 1458 ; the nave and choir of the ehureh at Freiburg an der Unstrut, 1499, by I'. von Weissenfels; the nave of the chureh of St. Ulric and St. Atra at Augshurg, 1467-99; the brick cathedralat Munich, with mave and aisles of equal height, 1468-91, by G. Gankoflen; the choir of the minster (fig. 260) at Freiburg im- Breisgan, 1471-1513, by Joham Niesenberger; and the cathedral at lreiberg, 1484-1500.
length, and a tower 283 ft . high, is extremely eurions, because so many of its architeets were e.ugaged at other places. The names are preservei of doham Felber, $1427-35$, of L'lm. who built the outer church at Waiblingen, completed 1488; C. Heinzelmann of Ulm, likewise engaged at Waibli.gen as well as at Landau, and, 1459-77, with Johaun Bauer won Ochsenfurt at the choir of St. Lamrence at Nuremherg, designed by C. Roritzer; N. Wiseller and his son of the same name, $1451-57$. both of whom were engaged at the ehureh of St. George at Diakelshuehl, 1450 as well as at Augshurg and Rothenhurg; C. Hoeflich and Joham von Salzdorf, 14.57; W. Kreglinger, of Wurtzburg; and S. Weyrer, who tinished. 1495-1505, the vaulting.
581. This passage from one building to another seems to bave commenced i:a Germany during the 14 th and 1.5 th centuries. We tind 13. Engelberger at Heilhrom, 148). Chm 1494, and Augsburg 1502-12; 11. Bruasbergh, of Stettin, 1401, at Brandenburg, Danzig, and Prenzlau; l'aul von Brandenburg at lsandenlurg, 1484. and Neuruppin, 1488 ; 1'. Arler at (olin, 1360, and l'rague, 1385 ; 11. Bceblinger at Esslingen, 1482, Frankfurt, 1483, and Chin 1492 ; Joham, 1430, at Landshut, Hall, Salzhirg, Oetting and Straubing. It is remarkable that in nearly half the cases (and the rest are douttinl) where the name of an architect is recorded, he seems to have ceme from another town to that in which the building he designed is erected.
582. Fig. 261 is a house attached to the rath-huus at Miinster, and much resembling it

Fig. 201.
house at munster. in style; the house dates late in the listh eentury, or early in that of the 16 h . We give a house in the Alt-markt-platz at Colog.ie (fiy. 262.) for its very late date in appearance, but being entirely free from any trace of transition from llth century work in detail, it is easily attributed to the early part of the leth century.
583. Amongst the struetures erected about the year 1500 may be named st. Anne at Annaberg, 14991525 ; St. Katherine at Esslingen, by M. Boeblinger, who finished the ehureh of St. Mary (left 1482, by his father Johann) ; the latter building was stopped 1321, and recommenced 1406 ; it has the vaulting-riles of the three equally high naves carried uninterruptedly to the ground; the tower, commenced 1440 , is considered to be the finest in Germany; the choir of St. Ulrich and St. A fra at Augbburg begun 1501 ; the tower of St. Kilian at IIeilbronn, $1507-29$, by Joham Scheiner; tlie chareh at Pirna, 1502-46; the church with nave and aisles of equal lieight at Luedinghausen, 1507-58; the alterations and vauling of the romanesque church at St. Matthias near Treves. 1513 , by J. von Wittlich; the parish church at schmee-
 berg. 1516-40; the nave and poreh of the cathedral at Merseburg, 1.500-40; the chureh at Anspach with three western towers. 1530-50: St. Mary at Halle an der Saate, completed 1530-54. by N. Iloffinann, with four towers belonging to two earlier churehes on the site; and the vaulting of the nate and relectory at Oliva, 1582-93, by Piper. The charch at lrendenstadt. 1601-8; and St, George at Coblentz 1618, are speeimens of the zopfstil, as the German Gothicists designate work of the 17 th century, whatever may be its parentage.

Suain.
584. The medieval atchitecture of $S_{\text {pain }}$ and Portugal will only be divided hecanse the political division exists, It will be necessary to remember that the districts of Aagon

Asturias, Biscay, and North Galieia were never conquered l,y the Moors; that the cities of Burgos, Leon. Sa:tiago, Segovia, Tarragma, Toledo, and Zamora, were freed from them in the 11th ceatury; Lerida and Zaragoza in the lyth; Suville and Valencia in the middle of the 15th; and Granada on the End January. I492 ; that much French i.. Anence existed ; and that the romanesque buildings of Span show a large reminiscence of the churehes in Northern Italy. Bat the remarkable similarity between Germany and Spain, in the progress of Guilic art, camot be attributed to the employment of one or two foreigners. As in Germany, the late romanesque style was retained longer than in Fiance; and in b th countries the phase which is termed lancet or early pointed in England and France did not constitute the transition from their romanesque into their decided and welldeveloped ecometrical Gothic.
585. Stone was the usual material employed for ecelesiastical buildings in the really Guthic or even renassatuce style. The romanesque and the neo-classic builders employed granite or some of the semi-marbles which the country thronghout possesses; where the Moresque traditions of art prevailed, rubble work with brick binding courses and quoins are seen : and the distiactive feature of Spanish brickwork consists in the formation of patterns by recesses and projections in total negligence of terra-cotta or moulded bricks. The diapering of some plastering should be noticed. Few examples of dumestic architecture of any importance occur. The window with two or more arches carried on shafts, und forming the ajimez or uximez of modern builders, is almost universal.
586. Referring to the classification of structures by centuries for examples of the larger works of eivil architecture, we regret that little attentioia has been given to the sery interesting class of military buildings, whether fortified houses, peel towers, or small castles, which have escaped demolition. The destruction caused by the generals of Napoleon 1. has been fullowed by the results of the Carlist war of succession, and of the suppression of the monastic establishments; but Spain still possesses one characteristic in construction in the great width of many of the naves. Thus, the chureh of the dominicans at Palma is 95 ft . wide elear sjan between the walls ; the cathedral at Gerona 73 ft . ; that at Coria 70 ft .8 ins. ; that at Toulouse 63 lt ., while the churehes of lerpignan and Zamora are cioft. The width between the centres of the columns of the nave at Palma cathedral is 71 ft .; Manresa collegiate church and Valladolid cathedral (classic) 60 ft ; while Milan cathedral, one of the largest out of Spain, is but 63 ft .
547. Some pure examples of romanesque art date after 1175 , such as a church at Benevento and the cathedral at Lugo ; but the period of transition to pointed art must be placed much earlier. Thus the cathedral and St. Vicente at Avila, oecupying in ercetion

Fig 263. Cathedral, tabliagona. nearly the whole of the 12 th century; the old cathedral, cloister, and chapter-house at Salamanea about 1100-1175; the cathedral at Zamora 1125-75; that at Tudela ten years later; and the cistercian abbey at Veruela 1146-51, lead to such works as the cathedral (except the choir, 1103-23) at Siguenza ; the cistercian mumery of Sta. Maria el Real de las Hnelgas, near Burge's, 1180-7; and the eastern portion of the eathedral at Lugo. The cathedral at Tarragona has a positively romanespue apse (perhaps $1130-50$), while the rest of the building is catly pointed, and may date 1175-1250. The west front(fig.263) is partly middle pointed work. The central portion, dating in style late in the 14 th century, although commenced about 1:278, stands between the original ends of the aisles, apparently executed as above mentioned. The incomplete false gable might countenanee the idea that a foreigner, possilly a German, bad heen employed ; but in 137 ; Bernardo de Vallfagona was the architect directing native sculptors.
588. The cathedrals, commenced, perhaps, 1220 at Burgos, 1227 at Toledo, and 1235 at Leon, are in the advanced pointed style of the 13 th century, while the eathedral and cloisters at Lerida, $1203-78$, might belong, like the earliest parts of the eathedral at Valencia, 1262 , to the previous period. It will not perhaps be ever possible to find documents that will contradict the assertion that the present system of placing the officiating choir in fixed stalls in the nave of the cathedrals was introduced at a late date; but these who hold that it was a very carly system may appeal to the plans of the eathedrals, at Tude'a, 1135; Toledo, 1227; and Bareclona, 1298. The plans of those at Lerida and 'Tarragona are very similar to that at Tudela (fig. 264, part of the plan given in Mr Street's Gothic Arch. in S_{l} ain), whieh allords a good example of a building arranged accord-
ing to Sp anisn peculiarities：if the cajilla mayor or chancel ever contained the choir，the transept must have been blocked up．

589．Amongst the works erected during the 13th century，there are so many which exhibit fomanesque work that this period might be said to be merely transitional，as illustrated in the church of S．Pedro at Olite；the large chureh of the cistereian monastery of Sta．Maria de Val de Dios， 1218，near Villaviciosa；and the bridge 1230，repaired 1449 at Orense in two sections，that nearest the eity having three arches，each 36 ft ． 8 ins．span ； the other，121：，it． 6 ins．long， and 16 ft .6 ins．wide，having seven arches，one of them being 82 ft .8 ins．wide，and another 143 ft .6 ins．span，and 124 ft ． 6 ins．high．Other works to be noticed are the cathedral， commenced 1199，but con－ tinued very slowly until 1258， at Leon ；it is dated 1230－40 by Mr．Street，in his work ahove mentioned，who motices that its construction，in a first－ pointed style．was continued un：til 1303，that it failed，and that the outside or jambs．lights of the elearstory and triforimm were filled with masonry，and that the south transept was destroyed for reconstruction about 1860 ：the fine cathedral， 1248－84，at Badajoz；and

Fig．26\％．Man of cathedral，tudela． the parish church（not at catlu dral）at Figueras near Gerona．

590．The succeeding great division of Gothic art is muel more distinctly marked and mure uniform thronghout Spain，whilst at the same time it is even less national and peculiar．There are very considerable remains of 14th century wooks，though，perhaps，no one grand and entire example．They are all extremely simiar in style，and more allied in feeling and detail to German middle－pointed than to French．＇Two features deserve record－first，the reproduction of the oetagonal steeple，which was a most favourite type of the romanesque builders；and secondly，the introduction of that grand innovation upon old precedents，the great unbroken naves groined in stone and lighted fiom windows high up in the walls．

591．As an example of the difficulty of classifying the buildings，it may be observed that while the date of 1400 is usually given to the church at Huesea，ascrited to Juan de Olotzaga，it is probable that his name might be attached only to the great portal that is romanesque，and cannot weii be dated later than 1290－1300．It is pretty clear that it is almost all a work of the 14 th，century．The unusually good example of middle－pointed work afforded by the cloisters to the cathedral at Burgos should date 1 1 80－1850 accord－ ing to Mr．Street，rather than 1379－90，which is the period at which they are said to have been executed．The same author states that the round arches on clustered shafts of the porch or cloister on the south side of the church of S ．Vicente at Avila might be sup－ posed to be not later than the 13 th century，were it not that a carcful comparison of the detail with other known detail proves pretty clearly that they cannot be carlier than about the imiddle of the 14 th century．

592．To the first half of the 14 th century are due the west front of the cathedral at Tarragona；the cloisters of the abhey at Veruela；the cast end，131\％－46（decidedly late midale－pointed details）of the carbedral at Gerona；the hieronymite monastery of San Bartoloné，1：330，at Lupiana by Diego Maıtinez，now private property；and the church of San Justo and San Pastor，1345，at Barcelona，which is an unbroken chamber 138 ft ．by 82 ft .9 in．，and 69 ft ．high．The widening． $1298-1329$ ，of the cathedral，built 1058，at Ba celona，seems to have becn berun in a first－pointed style，and to have been con－ tinued ly Jayme Fabre，1318－88，i．1 a second－pointed style；the vaulting was finished 14．18，
593．Among the works dating in the middle of the 14 th century，earlier or later，is the church of Sta．Maria de los Reyes，commonly called Sta：Maria del l＇ino，at Bareclona， which some date 1329－1413，but others 1380－1413．This latter date is possibly that of its tower ly．Guillermo Abiell；the chureh Mr．Street considers must have been consecrated
in 1353 , not 1453 as stated ly Parcerisa. We may also notice at liarcelona the chureh of Sta. Maria del Mar, begun 1398, and tinished $1: 383$ aceording to Parcerisa, but $148: 3$ ace reling to another anthority; the two-storied eloister of the collemiate church of Sia. Ama; and the erypt or panteon of Sta. Eulalia, 1339, in the cathedral.

594 . During the latter half of the 14 th century, mention is made of the chapter honse, 1358, and north transept and cimborio, $1350-1400$, to the catlaedral, and the gate called the purfa de Sermanos, 1349-81, at Yalencia; the casa comsi-turial, 1369-78, with a new south fiont, 18:32, at Barcelona; the collegiate chureh of Sta Maria de la Seo, 1s98-1416, with another chureh apparently of the same date, but rather later detail, dedicated to Sta. Maria del Cammen, and 47 ft . wide, at Manresa; and the tower, called El Micalete, of the cathedral at Valencia. The tower is here mentioned as having heen designed, 1391, and carried up to some height, by Juan Franc and N. Amoros before 1414, when Pedio B.laguer was sent to Lerida, Narbonne, and other places to find the inost suitable termination that had yet been designed; it seems to have been completed $[428$, and perhajps should be considered as helonging to the next century; as well as the celebrated hieronymite monastery, dated 1389-1413, now a barack and parish ehuch at Guadalape near Logrosan, by Juan Almso ; the cathedral, 1353-1462, but altered 1521, at Mureia; and the eathedral, commenced 1397 at l'amplona, whese geometrical traceries oceur between flamboyant ones, all having somewhat of late middle-pointed character, though the date and the detail class them with the third pointed style.
595. To the first half of the 15 th century may be ascribed the cloisters, 1390-1448, of the cathedral at Barcelona; the university, or rather les escuelos, 1415-33, at Salamanca, by Al. Rod. Carpintero ; the domitican church of San Pablo, 1415-35. at Burgos. by Juan Rodriguez, now a cavalry barrack; the areaded putio or court-yard, 1436 , thee stories in height, of the casa de la Diputgcion at Bancelona, modernised 1597-1690); the nave, 1417-58, or later, of the cathedral at Gerona by Guillermo Bolfiy (with details of late 14th century eharacter) ; the hala dels draps, $1+44$, afterwards Palacio de la Reina and the residence of the captains-general at Barcelona (the four fronts modernised, 1844); and the towers and spires, $1442-56$, by Juan de Colonia, to the eathedral at Burgos. Io llie century itsell belong great parts of the eahedral at Seville, (fig. 265.), commenced 1401,

Fig. 263. cathedtial, seville.
and attributed either to Alfonso Martinez, architect to the chapter in 1386, or to Pedro Garcia, who held that post 1421. In 1462, Juan Norman was directing the works; but in 1472 , they had progressed so slowly that he was superammated, and his place was supplicd by three other artists. Their disputes were referred to an umpire, Jimon, who became sole architect till 1502. The cimborio was completed 1507, and fell 1511 , but was replaced by the present termination, 1519. The works by Diego de Riaño, 1522, will be mentioned at the end of this notice. The capilla real was completed about 1560 , and the chapter-house about $15^{\circ} 0$
596. To the latter half of tlie 15 th century are due the erection of the casa de moneda. 14.55, at Segovia; the Castillo de la Mota, 1440-79, at Medina del Campo, by Fernando de Cureño; the ehnreh, 1442-88, attributed to Juan and Simon de Colonia, to the dominican monastery of San Pablo at Valladolid; the cathedral, begun 1442, at l'laseneia, whose capilla mayor, 1498, was designed by Juan de Alava; the Carthusian nunnery, 14.54-88, at Miratlores, near Burgos, said to have heen designed hy Juan de Colonia; the eloisters,

1472, of the monastery at Lupiana; the hieronymite monastery of Sta. Maria del Parral at Segovia, commenced about 14.59 by Juan Gallego, and finished 147.5, but the tribune ol the corr) puiled down because too low, and rebuilt 1494 by Juan de Ruerga; the francisean monnstery of San Juan de los Reyes, finished 1476, and next in architectural importance to the ea bellral at Toledo; the greater part of the cathedral commenced 1471 at Astorga, in the very latest kind of Gothie, with much of the detail, especially on the exterior, renaissance in claracter; parts of the cathedral at Burgos, about 1487, such as the range of chapels at the eastern end of the cloisters and of the chureh, inclusive of the tomb of the cons:able Pedro Fernandez de Velaseo, which is quite flamboyant, and probably exeented hy Simon de Colonia; and the cusa del Ayuntamiento, 1496, at I'alencia; with that, 1499, at Vall idolid.
597. Transitional work is olservable in the palace, 1461, of Diego Hurtado de Mendoza, duque del Infantado, at Guadalajara ; the Doric columns on the ground floor of the twostoried patio seem to have been inserted 1570; another transitional bulding is the dominican eollege of San Gregorio, 1488-96, at Valladolid, by Macias Carpintero, which has been firruished with sashed windows to render it suitable for the residence of the governor of the provinee. The octagonal cimborio, 1505-20, of the eathedral at Zaragozat has detail that is very renaiss mee in character; the cathedral, commenced 1513 at Salamanea by the celebrated architect Juan Gil de Hontañon, is a splendid example of florid Gothic with it leaning to renaissance work; the first service was performed 1560: and the same tendency is seen in the colegio mayor de Santiago el Zabedeo or del Arzubispo, 1591, at Salamanca, and its chapel by Pedro de Ibarra, which are Gothic, with details verging in elaracter upon its cloister by liarra, which is entirely ren issance.
598. For works of the 16 th century, it will only be necessary to notice the bridge calld the puente del Obispo, and the church of San Andres now the Colcgiata, 1500, at Baeza; the iylesia magistral de San Justo y San Pastor, 1497-1509, at Alcala de Henares, liy Pedro Gumiel; the torro nueva or beliry in the plaza de San Felipe, 1504, at Zaragoza, designed 275 ft . high (made 295 in 1749) by Gabriel Gombao and Juan Sariña, with the Jew Inee de Gali, and the Afoors Ezmel Ballabar and Momferriz, erected by Gomlao, who, intentionally, alter the first 9 ft . from the ground, g ive it so much inelination for 100 ft . as to make it incline 8 ft .9 ins. to the south, the rest being moright ; the chapel and two of the fiour cloisters, 1504, to the hospital general at Santiago, by Henrique de Egas; the eloister finished, 1.507 , of the cathedral at Siguenza; the cloisters, 1.509, of the cathedral at Badajoz; the chureh of San Benito 1499-15!4, at Valladolid, by Juan de Arandia; the vaulting, completed 1515 , to the eathedral at Huesea; the cathedral commenced at Segovia, 1522, by Juan Gil de IIontañon (who died 1531), and continued, partly under his son Rodrigo, till 1593, which, as may be imagined, is consequently the last really Gotlic work in the comntry; the church (of the latest Gothic), begun 1524, to the donsinican monastery of San Esteban at Salamanca, by Juan de Alava, who succeeded Juan Gil at Salamanci, 1531-37; the removal, 1524, of the cloisters of the old cathedral to the site of the new one at Segovia, by Juan de Campero; the viaduet, 322 ft . long. and 138 ft . high, with five arches, 1523-38, to the dominien monastery and chureh of Sin Pablo, of the same date, at Cuenca, by Franciseo de Luna; and the Gothic parish church, 1515-55, at Tudela de Duero.
599. The next change to be indicated would be the expiration of the renaissance style during the periol in which some of the preceding examples were executed. But the well authentieated date, 1576 , of the church of Sta. Maria Madalen.ı at Valladolid, by Rodrigo Gil de Ilontanon, who became maestro mayor, 1538, of the cathedral at Salamanca, and, 1560. of that at Segovia, and died 1577, requires the remark that it does not look so late; and thus beeomes a most useful warning to the student, who may gather another from the remarkable practice, 1530, of Diego de Rianno, arehitect to the cathedral at Seville, who in that year designed and exseuted the Gothic sucristia de los calices, the plateresque or remaissance sacristia mayor, and the medern Italian chapter house.

Portus, ul.

600. For the reasons given in describing the pointerl arehitecture of Spain, its history in Portugal will require only one introductory sentence. 'lo the rage for rebuilding which was prevalent in that country, and the earthquake of 17.55 , must be added the destruction (:ansed by the generals of Napoleon 1, as reasons why comparatively few are left of those Gothic buildings which arose in the north of Portugal after Lisbon was taken, 1147, from the Moors, and in the sonth after the conquest, 1223-66, of Algarve. I'assing over the remains of pointed arehes, which indicate that the country was generally possessed by the Moors, 713-1095, and transitional structures such as the church at San Pedro de Rates, 1095-111!, with its hipped central tower, the eistercian monastery with mamy additions. begun 1122 and conseerated 1169, at 'Taronca, the arehitect will find a few buildings belonging to the 13th century or rather earlier, sueh as the bridge at Bareello; the choisters and original parts of the metlernised eathedral at Oporto; the chureh of San Franciseo, and part of that of Sta. Mar.a de Marvila at Santarem; and the carliest eloister of the
'lemplars, with the chureh of Nussa Senhora dos Olivaes at Thomar: the latter nas a detached romaneque tower and windows, filled with pierced slabs of stone.
601. Works which positively belong to the 13 th century are the church of San Pedro at Celorico, about 12:30; the parallel triapsal church of San Francisco, 1258-80, at Oporto, with its choir-gallery oceupying the two western bays of the nave; the walls and towers with castle and church at Freixo d'Espada a Cinta, 1279-132.5; the castle at Beja, 12791328 , which has three (two being vaulted) octagonal stories in a square tower, 120 ft . in height; and the remarkable choir of the church at Thomar, with its altar under an octagonal canopy, and an aisle of sixteen sides, erected before 1279. But above all these is the well known chureh of the monastery at Alcobaça, which, after its neighbour at Batalha, is usually regarded as the most interesting building in Portugal.
602. The original church built at Alcobaça, in memory of the capture of Santarem, was erected 1147-51, and rebuilt 1578-80; but the celebrated ehureh of the eistercian mon:istery dates 1148-1222, and is said to resemble so much the church of the abbey at lontigny as to be manifestly the work of a lrench arehitect. In this church, which is 560 ft . long, and at least 64 ft . high, there is neither trifurium nor clearstory: the pier-arches are remarkable, therefore, for their height, as also are the aisles, which are as lofty as the nave. The transepts are also aisled; and the presbytery or apse, the Portuguese charola, is semicircular. with nine chajels, but was modernised about 1770 by W. Elsden, an Englishman. To the east of this is the sacristy, 1495-15\%1, which is about 80 it. long and 38 fi . wide. The western front with two towers was altered in the loth century ; but the original doorway of seven orders remains. The bonfires placed by the french in 1810 , round the piars of the ehureh, caused the bases to be reduced to lime fur a depth of 6 or 8 ins. The manner in which the restoration of this structure was directed, since 1850 , has been commended. In a chapel attached to the south side of the western tramsipt are the tombs of Affonso II. (ob. 1223), and Affonso III. (ob). 1279), with their queens; but those of Pedro I. (ob, 1367) and Jgnez de Castro, with straight sided arches, are among the finest specimens of thit period. The monastery, almost destroyed 1810 , and now principally used as a barrack, was 620 ft . in width, by 750 ft . i.s depth, and contained five cloisters; the guest-honse was at the north-west end; there were seven dormitories. The kitchen was 100 ft . long, by 22 it . wide, and 63 ft . in height to the vaulting; the fireplace, which stood in the centre, was 28 ft . long and 11 ft . wide, with a pramidal chimney supported by eight east-iron colnmms.
603. The list of works executed during the 34 th century is even shorter. It includes, besides the choisters of the dominican monastery at Guimar tens, the fecade of the modern cathedral at Lamego, the magnificent ruins of the castle at Ourem, and (for they may be added here) the triangular castle at Obidos, 1279-1325, the castle at Almeida, 1279-1521, the cistercian nunnery at Odivellas, 1305, the castles at Arrayolos and Estremos, 1306-8, the remarkable fortified tower and church of the formerly doable benedictine monastery at Leça do Balio, 1336; the restorations to the cathedral at Lisbon, including the capella mor or choir, rbuilt 1344-57, and the westem front 1367-83; the ehurch of San Francisco (styled the most beautiful in Portugal) at Abrantes; and the chureh of Nossa Senhora da Oliveira at Guimaraens, commenced 1387 by João Oare, having a detached tower with a low spire.

Fir 26.

604. To these may be added the work that is usually taken as a type of Portuguese pointed arehitecture, the dominican monastery at Isatalba, fomded in memory of the battle of Aljubarrota, 1383. It was commenced 1388 , and contimed till 1515. 'The original
the talents of A. Domingues, who died before 1402. It is 266 ft . long, and 90 ft . high, with no triforium ; the pier arches are 65 ft . high, and the aisles rise to the same height; the plan may be called cruciform parallel pentapsal. The material is not white marble as generally reported, but the local calcareous sandstone, which externally bas obtained from the weather a picturesque yellow tinge, but when broken displays its original grey colour. The manner in which the restoration since 1840 was directed has been praised.

605 . The capelda do fundudrr (fig. 267.), or of King John (t. on the plan, fig. 268.), attributed to D. Hacket, or Ouguet. is 66 ft . square, with a central richly vaulted lantern 40 ft . in diameter, resting on eighit arches; its spire was destroyed in 1745 . The tomb of the founder and of his wife, Philippa of Lancaster, which occupies the centre, is less rich than the four canopied recessed tombs of their younger children, 1442-60, on the south side. The small cloister (since part of a barrack) and the elegant chapter-house are ascribed to 1438-81, and may have been desiggned by M. Vasquez, who died before 1448,

or to F. d'Evora, who died after 1473. The chapter-house (o) opens to the great cloister (a) that is considered to have no rival in Europe fur richness and variety, or extravagance of the foliage, tracery, and mullions; these are even exceeded by the three-staged enclosure (s) for the fountain. The cloister is 180 ft . square, and dates $1495-1521$; it must be ascribed to the elder M. Fernandez, who died 1515, leaving untinished the cayella de Jazigo (r), which would have paralleled perhaps internally, the chapel of Henry Vil. at Westminster, in purpose, locality, position, completeness of style, and luxuriance of decoration. The chapel is an octagon, with seven oratories, having six-sided closets (QQ) between them and the entrance (κ) to the $v e s t i b u l e:$ its completion might perhaps bave been assured if the king had not found his architect, the younger M. Fernaudez, occupied in erccting the clearstory over the entrance doorway (κ) with balustrade and semicircular arches. The works were stopped till another flamboyant architect could be found ; they bave not yet been resumed. A small spire, at the west-corner of the north transept (c), which was destroyed by lightning about 1830 , has been rebuilt.
606. "Such is the history and arrangement of this essentially Gothic building, but altogether unlike any particular stage of the northern Gothic. in fuet it commingles the features of all its varieties. The pillars are clustered, of the very best early Gothic section, with floriated capitals, but with square bases and abaci. It is a confusion of Gothic forms of tll ages and countries; and $y \in t$, if we except the square abaci, every feature is pure, and most of them good, in their respective styles; and after all there is no such real inconsistency between any two styles of Gothic as to render their mixture offensive to any but a
technical cye. To deny the church of Batalha to be beautiful, because it confuses forms which in France or England belong to different centuries, wonld be the merest pedantry; no one but the driest archæologian would quarrel with a building for a skilful application of some incongruous feature, though it might historically belong to some other age or country. At the same time, this very confusion shows a lack of original genius, and proves Batalha to be, what antiquarians are fond of calling modern churches, imitation Gothic. It is not the spontaneous effort of native skill, but the mere result of eclecticism." These remarks, taken verbatim from Mr. Frceman, have an important bearing on those sections of this work which are devoted to Italian and Sicilian pointed architecture.
607. If the tower of Don Duarte at Viseu, and the Villa do Infante at Sagres can be placed early in the 15 th century, they hardly redeem that age from the charge of exhibiting no structure of importance except Batalha. Even the flamboyant church, 150 ft . long with embattled tower, at Caminha, 1448-1516, and the similar clothing of the romanesque cathedral at Braza, may be referred to that style of King Manoel, 1495-1521: to which must be ascribed the sacristy at Alcolaça; the royal chateau at Almeirim; the fort of San Vicente, and the monastic buildings at Belem; the restoration of the hieronymite monastery of La Peña at Cintra; the church of San Francisco at Evora; the rich façade of the church called the Conceiçao Velha, by J. Jotassi, with the restorations and additions to the church of Santa Maria de Marvilla at Santarem; the octagonal stone spire (rare in Portugal) to the church of San Joāo Battista at Thomar; the church, 1506 , with renaissance additions at Alcantara; and the chureh, chapter-bonse, and cloister of Santa Cruz (ascribed to a French arehitect), with part of the university and the bridge at Coimbra. The chapel of Santa Caterina with the palace, 1521-57, and the additions, 1495-1578, to the church at Coimbra exhibiting the richest flamboyant style merging into the renaissance work; the magnificent dominican monastery at Amarante, 1540 , and the modest cathedral at Miranda do Douro. 1545, and Montalegre, 1554, might close the list of structures belonging to the imitation, or rather the adaptation of Guthic architecture, which does not appear to have been more successful in Portugal than in the rest of Southern Europe.

Italy.
608. An attempt has been made to divide the pointed architecture of Italy into welldefined schools: the Venetian is supposed to carry its character in its name, and to influence the district between St. Mark's and Brescia; the Lombard is styled a pursuit of the exuberant variety of French and German Gothic; the 'Tuscan is chatacterised as having two phases, the earlier simple, and the later extremely beautiful; and the Genoese is called a direct imitation of Arabian art. Besides this unsatisfactory view, each great monastic order is said to have professed a particular variety, of course differently treated according to each district. To these the singular style peculiar to the Riviera (e.g., the cathedral at Vintimiglia) has to be added. We should prefer to this another system which sees only two schools, one being native simplicity, the other extreme decoration brought from Germany, if there appeared any grounds for believing in this division of a style which, in its early period, is, like the early German, not very detinite, and which had no phase resembling the perpendicular or the flamboyant. As a philosophical inquiry into the details of the edifices called Gothic, in Italy, the lahours of Professor Willis have not yet heen superseded; but we gather, from various pages of Mr. Street's work, Brick and Marble Architecture in Italy in the Middle Ages, the foliowing list of Italian Gothic details:-
609. This consists of the trefuiled arcade used as an ornament for strings, for flat and raking corbel tables, and under sills; the great projection of the sills; the marble shats with square capitals, instead of moulded mullions; the rows of tufts of drooping foliage (somewhat resembling French and German work) in the capitals; the classical character of the carving; the traceried transoms; the combination of geonetrical tracery as well as of trefoiled ogee arches with the semicircular arch; the use of the keystone, frequently slightly decorated, to pointed arches; the square-headed panel hy which the arches are surrounded; the use of iron ties inslead of the buttress; the rarity of the dripstone in brickwork; the peculiar crockets and finials of canopies; the masses of wall scarcely, if at all, broken ; the buttresses reduced to pilasters; the single galle to nave and aisles of the churches; the deep cornices without parapets; the low relief of tracery and carving; the squareness, with flatness, of mouldings; the employment of porches entirely mknown across the Alps; the use of the glass in wooden frames behind the stone work; the simplicity of groining; and the great width of pier arches.
610. It may be said that in Venice, as generally throughont the north of Italy, the pointed arch was first used in construction, and some time later, and very generally, in a modified form for decoration also, yet in that city it is rarely used, constructionaliy, except in churches; and even when employed the ogee arch was, from a very early date, preferred wherever the pure pointed arch was not indispensable. This fact is seen in fig. 269, which shows the palace called the Ca Contarini Fasan, situated on the grand ranal opposite the church of S'a. Maria della Salute; it is considered to give the ouly specinen in Venice of a traceried bolcony.
611. If there be no discrepancy between their dates and their details, the lroltto at. Como, 121.5, and the monastic buildings of San Andrea, with the hospital at Vercelli, founded 1219-24, by Cardinal Guala Jacopo Bicchieri, must be considered to commence the Gothic lmildings in ltaly. At Como, however, round arches are seen over pointed ones. At Vercelli, the exterior of the church is romanesque brick work with s one dressings, while the interior is decidedly a specimen of early pointed art. Some writers assume that the design was furnished by the firstabbot, Tommaso Gallo, and suppose that he was a Frenchman (yallus), taken to Vercelli by the Cardinal, who, having been legate in Eugiand, 1216-18, and leaving that country with 12.000 marks, is supposed to have obtained the design there br fore he negotiated at the Gerinan court in the course of his return to Italy; others say that he sent a model Irom England.
612. The chureh of San Francesco at Assisi was erected $1228-3$. by a German architect named Jacobus: the aisles being added soon atterwards by F. da Campello. This structure has attained the character of being the most jeefect specimen of Gothic art in Italy, and therefore far superior to Sta. Chiara, erected 1253 by Campello in the same city. It is one of the most singular churches in Europe, as, in possessing a crypt discovered in 1818, and enlarged, 1820 by Brizi, it forms a soit of three-storied church. The middle church was built 1228-32; the upper church, a magnificent work, built $123:-53$, is now oniy used on a few capitular and ferial occasions the low-pitched roof was placed 1447-70, and the massive buttresses were added 1480 by Pintelli, to prevent the threatened fall of this valuable example of early art.
613. Much uncertainty exists in the early dates

Fig 269.
hoUSE at VENICE. given to the broletto at Monza, 1152-92; the broletto at Brescia, the end of the 12th century; the church to San Francesco, 1225, at Ccai (or Cmeo); the fair example of pointed art, San Francesco at 'Terni, begun 1218, but nut completed until 1265; and the yellow brick church of San Antonio at Padua, 1231, with its attempts at domes by N. Pisano. But in the middle of the 13th century were commenced, by himself or by his school, the brick churches of Santi Giovanni e l'aolo, of the Madonna del Orto, and of Sta. Maria Gloriosa de' Frari (the finest of its class) at Venice. The churches of Sta. Caterina, finished 1272, by G. Agnelli; and of San Francesco at Pisa; the imposing splecimen of Italian Gothic furnished by the cathedral at Arezzo, contained in the design, 1256, of Jacopo or Lapo, 1275-90, by Margaritone (not Marchione) ; the western front of the church of San Salvatore at Pistoia, 1270; the churches of San Domenico, $1250-94$, by Maglione, and of San Francesco (apparently called by Pıofessor Willis the Servi), 1286-94, at Arezzo ; the transepts, 1288-1342, by B. Bragerio and G de Camperio to the cathedral at Cremona, with the upper part, 1284, of its campanile; the foro de' Mereanti, 1294, at Bologna; the churches of San Domenico, 1284-1380, and of San Francesco, 1294, at Pistoia; the church of San Francesco, 1295, and the façade, $1284-90$, as well as portions of the cathedral at Siena (which is remarkable for having the baptistery under the choir), date between 1270 and 1300 .
614. The style of domestic arelitecture of the 13th century is sten in many honses at Bracciano, at Corneto, at Fraseati, at Galera, and at Lucea; also the building called La Quarquonia at Pistoia, with two houses of similar date, nearly opposite; and in the third cloister of

Flg. 2\%0. HOUSE AT VHIERBU. the monastery of Sta. Scolastica at Subiaco. The house in fig. 270, known at Viterbo as the "palazzetto," belongs to the 12th century, and is here given for comparion with later examples. The sketel of a house belonging to the 13 th, or perhaps even to the 12 th
contury, at Pisa (fiy. 271), exhibits the local peculiarity of three stories, composed really or in appearance, by three piers and two arches. This is common. A fourth stor? sometimes shows its windows under the arches; but generally is an independent additioi

Fig. 275.
elevation of the cathenbal, onvieto,

Fig. 271. hoUSE AT PISA.
to the design. At the level of eac floor are put-log holes for th wooden cantilevers of the balconie: perhaps more properly the tetto or pent-house roofs, which will b noticed in the examples from Sa Gimignano. The palazzo Buonsig nori at the end of the via di Sa Pietro at Siena belongs to th brickwork of the 13th century the façade is about 56 ft . long, an consists, on each upper floor, seven bays, four of which are give in fig 272. A fountain in th piazza Carlano at Viterbo migl serve as a type of several othel designed in this century.
615. To the end of the 131 and early part of the 14 th cente ries belongs the cathedral at O , vieto, one of the most interestin examples of Italian Gothic, and a instance of the use, internally well as externally, of alternat courses of colour, which in th case is produced by black basalti lava and yellowisls-grey limeston Although the first stone was lai 1290 for the execu:ion of a desig hy L. Maitani, who had just corr pleted the front of the duumo Siena and built this cathedral (f is 273.) before his death, 1330, th works were in hand till the end the 16 th century. A list of thirt three architeets has been preserved The building is 278 ft . long b 103 ft . wide. and 115 ft . high t the plain ceiling, made 1828, whic rests on piers 62 fr . high. Thes piers are fronted by statues of th apostles, 9 it .6 in . high, on pedesta that are 5 ft .6 in . high above th
before the enoir. The windows have coloured glass in the upper parts, but diaphanous alabaster below it.
616. To the same period belong the church of Sta. Maria sopra Minerva, at Rcme, the only pointed editice which we can name in that metropolis; and the principal examples of pointed art in Florence. such as the church of Sta. Maria Novella, 1278-1357; the church of Sta. Crnce, 1294, used 1820, but not consecrated till 1442; the cathedral, 1294, consecrated 1436, with the campanile, designed 1332, by Giotto; the church of San Ercolano, by Bevignate, 1297-1335, at Perugia, with that of Sta. Giuliana, 1292, outside that city; the octagonal baptistery called San Giovanni Rotondo, 1337, and portions of tie chureh of San Francesco, 1294, at Pistoia; and the (then altered) brick and stone church of San Fermo Maggiore, at Verona. In the first half of the 14 th century, the Italian attists exhibited their ideas of Gothic work in the chapel of Sta. Maria dell.Arena, 1303, at Padua; the alterations, 1308-20, of the interior of the cathedral at Lucea; the cathedral, 1312, at Prato, which has the effect of a northern late pointed structure ; the fine cathedral, 1325-48, and the church of San Secondo, at Asti; and the church of San Martino, 1332, at Pisa, which is a fair specimen oe common late Italian Gothic.
617. The large number of tombs and monuments of this and the next period, with pointed arches, renders difficult any choice of single examples among them ; those of the Scaligeri, at Verona, especially that of Mastino II., 1351, contaia a history in themselves.
618. To the latter half of the $14 \mathrm{th}^{2}$ century may be attributed the marble front, in grey and yellow courses, by Matteo da Campione, (a very fine example) hefore 1396 to the brick cathedral with particularly good detail, more than usually Gothic, built 1290-1390, at Monza; the palazzo della comunita, 129:-158.5; and the palazzo pretorio, 1357-77, at l'istoia, which have been highly praised as fine specimens of very perfect Italian Gothic; the cathedral, 1315-141.5, at Sarzana; and 1340 to 1369-1423, the upper portion or sala del consiglio of the ducal palsee at Venice, although another anthority considers that the work of this period was the loggia towards the canal and twelve columns on the piazzetta.
619. The general design of the existing cathedral at Milan is also of this period, although extreme doubt exists as to the date of the commencement of the work. But the statements are clear that the capitals of the great piers were being prepared, 1394-5, and that the piers themselves were being erected 1401. The records of the wardens of the church are deficient until 1357; in that year an official paper speaks of the building which "multis retro temporibus initiata est et quæ nume fabricatur." Chronicles and an inscription concur in fixing March 15, 1386, as the date of commencement; but Simone da Orsengo, probably an eye-witness of the facts to which he is evidence, stated that the work was begun May 23, 1885, but was destroyed, and that the existing structure was commenced May 7, 1387. He was employed as one of the architects at least as early as Decenber 6, in that year. So that the date, 1336-87, usually given, as in the previous editions of this book, is possibly the period of attempts to begin the work, and explains the phrase "multis temporibus." The cathedral has been much praised as an example of northern art modifying itself to suit the southern clinate under the hands of a German or, at all events, of a foreigner rather than of a native; but facts seem to destroy this imputed credit. The official list of the "ingegneri," as the chief artists who laboured at the duomo were called, shows the earliest employment of foreigners in the case of Nicolas Bonaventure, of Paris, from July 6, 138\%, till his dismissal, July 31, 1:391; and the same evidence seems to divide the merit of the earliest direction of the works between Marco and Jacopo, both of Campione, a village between the lakes of Lugano and Como. The first name in the records of 1387 is that of Marco, supposed to be the Marco da Frisone who was buried July 8, 1890, with great honours; Jacopo occurs March 20, 1388, having apparently been engaged from 1378 as one of the architects to the church of the Certosa, near I'avia; he died 1398.
620. The official notes of the disputes that were constantly arising between the contemporaneous "ingegneri-generali" and their subordinates, and the foreign artists, even record the fact that the Italian combatants disagreed on the great question of proportioning the bulding by the foreign system of squares, or by the native theory of triangles. If there be any merit in a work that was so clearly the offspring of many minds, much of it must be due to the wardens, who seem to have ordered the execution of little that was not recommended by the majority of their artists, or, in case of an equal division, by an um; ire of reputation from some other city. From 1430, the names of Filippo Bruncllesco and six or seven other artists precede the notice, 1483, of Johann von Grïtz, who appears to have boen invited for the purpose of constructing the central tiburio or lartern. As usual, the foreigner's work was condenmed; and April 19, 1490, Giovanni Antonio Omodeo (Heinriel) von Gmuinden, employed so early as from Dec. 11, 1391, to May 31. 1392, was confused with Omodeo by M. Millin, whence the repute of Heinrich as "Zamodia"), began his long rule over the other artists, which lasted until August 27, 1522, ly executing the present work. It is needlicss to give the names of tis colleagues and successors intil the appointment of Carlo Amati, 1806. under whom the completion of the works, inchading the three pointed windors of the front, was resumed and of his suceensor I'. Pestagalli, 1s13.
621. The cathedral (fig. 274,) is constructed of white marble. The plan is a Latin cross, the transepts extending but little beyond the walls of the chureh. From west to cast
 its length is 490 ft . and its extreme breadth 29.5 ft . The length of the fiveaisled nave is 279 ft . and its width 197 ft . The transepts are three-aisled. The eastern end of the chureh is terminated by three sides of a nonagon. The architecture of the doors and windows of the western front is of the Italian or Roman style, atid was executed about 1658. for the fir: three bays of the nave were an addition in tront of the original façade, and were not vaulted until 1651-69. About 1790 the wardens determined to make the front Gotlic, keeping the dwors and windows by Ricchini, from designs by Pellegrini, on accoment of the richness of their workmanship; its apex is 170 ft . from the pavement. The central buttresses are 195 ft ligh. The central tower, $1762-72$, by F. Croce, rises to the hi: ight of 400 ft ., being in general form similar to those which appear in the western façade. All the turrets, buttresses, and pinnacles are surmounted with statues. The roof is covered entirely with
 blocks of marble fitted tugether with great exactness.
622. The only town in Italy which has preserved so many as twelve of the medieval domestic towers of great height, is Sin Gimignano ; it possesses, also, several houses that were erected in the 13 th and 14 th centuries. The casa Buonaccorsi, with a single opening on the ground-floor, is a corner honse and is attribu:ted to the earlier puriod; the casa Boni is next to it, and belongs t) the liter time; they are shown in fig. 275, which is too smatl to express the bandings of red and white brickwork, and the stucco border to the extrados of each areb; the penthouse roof's, here restored, were suppressed in the 14th century. The village of Coccaglio, between Bergano and Brescia, is said to contain some valuable remains of domestic architecture. The Venetian palaces of this and the following century have been so elficiently illustrated of late years, that it becomes unnecessary to describe their appearance.
623. Many architects have been engaged upon the marble cathedral at Como; from 1396, when L. de' Spazi was employed, down to the last century. The cupola or dome was completed about 1732, by Juvara. The three doors are in the riehest Lombard style, and hence the rest of the facade (.fg. 276.) has been called early ltalian Gothic; but it was designed, 1460, by Lucelino da Milano, and completed between 1487 and 1526 by T. Rodaio, of Maroggio, whose design for other parts was altered, perhap,s not improved, by C. Solaro. The other sides of the exterior are renaissance work by Rodario, who added the canopies for the statues of the two Plinys, in the west front. The transepts and choir internally are renaissance : but the nave and aisles are Italian Gothic.

624 Amongst the structures produced in the 15 th century, may be named the chureh af Sta. Maria della Gravie, 1399-1406, about six miles from Mantua; the beautiful cathedral, 14.50. at Prat:; ; the equally fine church of Sta. Anastasia, at Verona, which has been called the nohlest of the distinctively Italian pointed churches in the north of Italy; that of San Bernardino, 1452, also at Verona; and the cathedral, 1467, at Vicenza. The chureh of San Agostino, at Bergamo; the highly interesting, because perfectly untonclecd, eastle at

Bracciano; the façade and cortile of the palace of Cardinal Vitellesshi, now the hôtel palazzaccio, at Corneto; the west front of the church of Sta. Maria in Strada, a most elaborate work in brick and terra-cotta, and the chureh of the dominicans, at Monza; all bilong to the last period of Italian Gothic. The nave of the church of Sta. Maria delle Grazie, at Milan, is pointed, and date. i 1455, while the transepts and choir are thirty years later, and are renaissance work. The ehurch of S:a. Maria Maggiore, at Città del Castello, belongs to the 15 th , but was finished in the 16 th, century. The chureln of San Agostino, at Ancona, is transitional; like that at Montenegro, 1450; and that of the Madonna di Monte Luce, at Perugia. The last idea of Gothic art absorbed by the new style, is seen in the Colleone chapel, 1475 ; and in the chureh of Sta Maria Maggiore, at Bergamo, where the sacristy, 1430, offers one of the earliest dated examples of the modern style. There is scarcely a street in Città della Pieve without numerous cases of pointed doorways and windows walled up

Flz. 276.
elevation of cathedral, cosio. to suit the return to what are commonly, but incorrectly, called classical notions.
625. Such are the chief structures in the northern half of Italy, of which a critie so highly esteemed as Irufessor Willis does not hesitate to affirm that, "there is in fact no genuine Gothic building." The same author observes that, " it is curious enough that in the Neapolitan territory, in Naples especially, many specimens or rather fragments, of good Gothic buildings are to be found which were executed moder the Angevine dynasty, 12661435; with this exception I do not believe that a single unmixed Gothic church is to be found in Italy." Others follow his judgment, and accept, as specinsens of imitative Gothic art, edifices which they themselves describe as impure and heterogeneons, and impressed with the stamp of classical, romanesque, byzantine, and saracenc influences. To this praise of the churches may be added that of two or three palazzi at Naples; the campaniliat Amalfi, and Veletri ; the castles at Andria, Castellamare, and Teano, some houses of the 14 th and 15 th centuries, at Aquila, Popoli, and Solmone, with the aqueduct at the latter place; and the monastery of Sta. Catherina, at Gatatino.
626. The cathedral at Trani must be regarded as falling within the ban under which the structures termed "Gothic," in Sicily, are regarded by the purist in archæology. The pointed byzantine style, which is called Siculo-Norman, lasted until 1282 ; it was transitional in the sense of receiving greater enrichment of a Greek character, intil the end of the 14 th century; and although further change began in the 15 th century, taste did not take any ducided direction until the establishment of remaissance art. Mi: Gally Kuight, who investigated the indications presented in the great work published by Messrs. Hittorff and Zanth, says that "various novelties were attempted ; sometimes the forms were circular, sometimes square, and sometines elliptic. Amongst other novelties, the pointed style of the north was introduced, with its projecting mouldings and a little of its tracery; but later in Sicily than anywhere else ; and though something of its true spirit is caught in the reconstructions of Maniares, in Syraeuse, yet in Sicily, it always appears an exotic." These facts seem, to Mr. Freeman, to prove incontestibly that the pointed style of Sicily, of that portion of western Christendom in which the systematic use of the pointed areh first occurred, is not Gothic even in the sense of being the most distant transition. A few churches and palaces at Palermo, Syracuse, and Taormina, of the 14 th century; and in the same cities, with Girgenti and Messina, of the 15 th century, would be nearly all that could be named as important examples before the renaissance was employed. The date, 1592 , however, appears to be that of the elliptic arches, groined roof, and flamboyant parapet at the entrance to the church of Sta. Maria della Catena, at Palermo.

627-873. We here, with rugret, leave the subject, because we have already trespassed. beyond the limits preseribed.

BOOK II.

THEORY OF ARCHITECTURE.

CHAP. I.

MATHEMATICS AND MECHANICS OF CONSTRUCTION.

Sect. I.

GEOMETRY.

874 Geometry is that science which treats of the relations and properties of the boundaries of either body or space. We do not consider it would be useful here to notice the history of the science; neither is it necessary to enter into the reasons which have induced us to adopt the system of Rossignol, from whom we extract this section, otherwise than to state that we hove to conduct the student by a simpler and more intelligible method to those results with which he must be acquainted.

The limits of body or space are surfaces, and the boundaries of surfaces are lines, and the terminations of lines are points. Bounded spaces are usually called solids, whether occupied by lody or not; the subject, therefore, is naturallv divided into three parts.-lines, surfaces, and solids: and these have two arieties, dependent on their being straiglit or curved.
875. Geometrical inquiry is conducted in the form of propositions, problems, and demonstrations, being always the result of comparing equal parts or measures. Now, the parts compared may be either lines or angles, or looth; bence, the nature of each method should be separately considered, and then the united power of both employed to facilitate the demonstration of propositions. But the reader must first understand these Definitions.

1. A solid is that which has length, breadth, and thickness. A slab of marble, for instance, is a solid, since it is long, broad, and thick.
2. A surface is that which has length and breadth, without thickness. A leaf of paper, though not in strictness, inasmuch as it has thickness, may convey the idea of a surface.
3. A line is that which has length, but neither breadth nor thickness. As in the ease of a surface, it is difficult to convey the strict notion of a line, yet an infinitely thin line, as a hair, may convey the idea of a line : a thread drawn tight, a straight line.
4. A point is that which has neither length, breadth, nor thickness.
5. If a line be carried aloout a point A, so that its other extremity passes from 13 to C, from C to D, \&c. (fig. 223.), the point B, in its revolution, will describe a curve BCDFGLB. This curve line is called the circumference of a circle. The circle is the space enclosed by this circumference. The point A, which, in the formation of the circle is at rest, is called the centre. The right lines $\mathrm{AC}, \mathrm{AD}, \mathrm{AF}$, \&.c. drawn from the centre to the circumference, are called radii. A diameter is a right line which passes through the centre, and is terminated both ways by the circumference. The line DAL, for example, is a diameter. An

Fig. 223. $a r c$ is a part of a circumference, as FG.
6. The circumference of a circle is divided into 360 equal parts, called degrees; each degree is divided into 60 parts, called minutes, and each minute into 60 parts, called seconds.
7. Two right lines drawn from the same point, and diverging from each other. form an opening which is called an angle. An angle is commonly expressed by three letters, and it is usual to place in the middle that letter which marks the point whence the lines diverge; thus, we say the angle BAC or DAF (fig. 224.): and not the angle ABC or ACB.
8. The magnitude of an angle does not depend on the lines by which it is formed, but upon their distance from each other. How far socver the lines AB, AC are continued, the angle remains the same. One angle is greater than another when the lines of equal length by which it is

Fig. 224.

Fig. 225. iormed are more distant. Thus the angle BAL (fig. 223.) is greater than the angle CAB, because the lines AB, AL are more distant from each other or include a greater are than the lines AC, AB. If the legs of a pair of compasses be a little separated, an angle is formed; if they be opened wider, the angle becomes greater; if they be brought nearer, the angle becomes less.
9. If the print of a pair of compasses he applied to the point G (fig. 225.), and a circumference NIRB be described, the arc NR contained within the two lines GL, GMI will measure the magnitude of the angle LGM. If the are N R , for example, be an are of 40 degrees, the angle LGM is an angle of 40 degrees.
10. There are three kinds of angles (fig. 226.) : a right angle (I), which is an angle of 90 degrees; an obtuse angle (II), which contains more than 90 degrees; and an acute angle (III), which contains less than 90 degrees.
11. One line is perpendicular to another when the two angles it makes with that other line are equal: thus, the line CD (fig.
 227.) is perpendicular to the line $A B$, if the angles CDA, CDB contain an equal number of degrees.
12. Two lines are parallel when all perpendiculars drawn from one to the other are equal ; thus, the lines FG, A B (fig. 228.) are parallel, if all the perpendiculars $c d, c d, \mathcal{S} c$. are equal.
13. A triungle is a surface enclosed by three right lines, called sides (fig. 229.). An equilateral triangle (1) is that which has three sides equal; an isosceles triangle has only two of its sides equal (II) ; a sculene triangle (1II) has its three sides unequal.

Fig. 227.

Fig. 228.
14. A quudriluteral figure is a surface enelosed by four right lines, whieh are called its sides.
15. A parallelogram is a quadrilateral figure, which has its epposite sides parallel; thms.

Fig. 229.

Fig. 230.
if the side $B C$ (fig. 230.) is parallel to the side $A D$, and tlie side $A B$ to the side DC , the quadrilateral figure ABCD is called a parallelogram.
16. A rectangle is a quadrilateral figure all the angles D whereof are right angles, as ABCD (fig. 231.).
17. A square is a quadrilateral figure whose sides are all equal and its angles right angles (fig. 232.).
18. A trapezium is any quadrilateral figure not a parallelogram.

Fig. 231.

Fig. 232.
19. Those figures are equal which enclose an equal space; thus, a circle and a triangle are equal, if the space included within the circumference of the circle be equal to that contained in the triangle.
20. Those figures are identical which are equal in all their parts; that is, which have all their angles equal and their sides equal, and enclose equal spaces, as BAC, EDG (fig. 233.). It is manifest that two figures are identical which, being placed one upon the other, perfectly coincide, for in that case they must be equal in all their parts. It must be observed, that a line merely so expressed always denotes a right

Fig. 233. line.
Axion. Two right lines cannot enelose a space; that category requires at least three lines.

RIGHT LINFS AND RECTILINEAL FIGURES.

876. Proposition I. The radii of the same circle are all equal.

The revolution of the line AB about the point A (fig. 234.) being necessary (Defin. 5.) to form the circle BCDFGL B , when in revolving the point B is upon the point C, the whole line A B must be upon the line AC ; otherwise two right lines would enclose a space, which is impossible: wherefore the radius AC is equal to the radius $A B$. In like manner it may be proved that the $\operatorname{rad}: A B, A F, A G, \& c$. are all equal to $A B$, and are therefore equal among themselves.
877. I'ror. 11. On a given line to describe an cquilutcral tri. angle.

Fig.284.

Let AB (fig. 2:3.5.) be the given line upon which it is required to describe a triangle whose three sides shall be equal.

From the point λ, with the radius AB , describe the circhinference BCD, and from the point B , with the radius BA, describe the circumference ACF ; and from the point C , where these two circumferences cut each other, draw the two right lines CA, CB. Then ACB is an equilateral triangle.

For the line AC is equal to the line AB , because these two lines are radii of the same circle BCD ; and the line BC is
 equal to the line AB, because these two lines (Prop. 1.) are radii of the same circle ACF . Wherefore the lines AC and BC , being each equal to the fine AB , are equal to one another, and all the three sides of the triangle ACB are equal; that is, the triangle is equilateral.
878. P'kor. III. Triangles which have two sides and the angle subtended or containcd by them equal are identical.

In the two triangles BAC, FDG (fig. 236.), if the side DF be equal to the side AB, and the side DG equal to the side AC, and also the angle at D equal to the angle at A , the two triangles are identical.

Suppose the triangle FDG placed upon the triangle BAC in such manner that the side 1)F fall exactly upon the side equal co it, AB. Since the angle D is equal to the angle A, the side DG must fall upon the side equal to it, AC; also the point F will be found upon the point B , and the point G upon the point C: consequently the line FG must fall wholly upon the line BC, otherwise two right lines would enclose a space, which is impossible. Wherefore the three sides of the triangle FDG coincide

Fig. 236. in all points with the three sides of the triangle BAC, and the two triangles have their sides and angles equal, and enclose an equal space; that is (Defin. 20.), they are identical.
879. Pror. IV. In an isosceles triangle the angles at the base are equal.

Let the triangle BAC (fig. 237.) have its sides A B, AC equal, the angles B and C at the base are also equal. Conceive the angle A to be bisected by the right line $A D$.

In the triangles $\mathrm{BAD}, \mathrm{DAC}$ the sides AB, AC are, by supposition, equal ; the side AD is common to the two triangles, and the angles at A are supposed equal. These two triangles, therefore, have two sides, and the angle contained by them equal. Hence, they are identical (Prop. 3), or have all their parts equal: whence the angles \mathbf{B} and \mathbf{C} must be equal. 880. Pkop. V. Triangles which have their three sides equal are identical.

In the two triangles $\mathrm{ACB}, \mathrm{FDG}$ ($f i g$. 238 .), let the side AC be equal to the side FD , the side Cl 3 equal to the side DG, and the side AB to the side FG; these two triangles are identical.

Let the two triangles be so joined that the side FG shall coincide with the side AB (fig. 239.), and draw the right line CD. Since in the triangle CAD the side $A C$ is equal to the side $A D$,

Fig. 258.

Fig. 239. the triangle is isoceles; whence (Defin. 13.) the angles n and n at the base are equal.

Since in the triangle CBD the side BC is equal to the side BD , the triangle is isosceles; whence (Defin. 13.) the angles r and s at the base are equal.

Because the angle m is equal to the angle n, and the angle r equal to the angle s, the whole angle \mathbf{C} is equal to the whole angle D.

Lastly, because in the two triangles ACB, ADB the side AC is equal to the side AD and the side CB equal to the side DlB , also the angle C equal to the angle D , these two triangles have two sides, and the contained angle equal, and are therefore (Prop.3.) identical.
881. Prop. VI. To divide a right line into two equal parts.

Let the right line which it is required to divide into two equal

Fig. 210. parts be AB (fig. 240.). Upon AB draw (Prop. 2.) the equilateral triangle ADB , and on the other side of the same line

A 13 draw the equilateral triangle AFB , draw also the right line $\mathrm{DF} ; \mathrm{AC}$ is equal to Cll
In the two larger triangles $\mathrm{DAF}, \mathrm{DBF}$ the sides DA, DB are equal, because they are the sides of an equilateral triangle; the sides AF, BF are equal for the same reason ; and the side DF is common to the two triangles. These two triargles, then, bave their sides equal, and consequently (Prop. 5.) are identical, or have all their parts equal; wherefore the two angles at D are equal.

Again, in the two smaller triangles ADC, CDIB the side DA is made equal to the side DB , and the side DC is common to the two triangles; also the tw's angles at 1) are equal Thus these two triangles have two sides and the contained angle equal; they are therefore (Prop. 3.) identical, and AC is equal to CB ; that is, AB is bisected.
882. Pwop. VII. From a given point out of a right line to draw a perpondicular to that line.

Let C (fig. 241.) be the point from which it is required to draw a perpendicular to the right line $A B$.
From the point C describe an arc of a circle which shall cut the line AB in two points F and G. Then bisect the line $\mathrm{F} G$, and to D , the point of division, draw the line CD : this line is perpendicular to the line AB. Draw the lines CF, CG.
In the triangles FCD , DCG the sides Cr, CG are equal, because (Prop. 1.) they are radii of the same circle; the sides FI) DG are equal, because FG is bisected; and the side CD is com-

Fig. 211. mon. These two triangles, then. baving the three sides equal, are identical (Prop. 5.). Whence (Defin. 20.) the angle CD 4 is equal to the angle CDB, and consequently (Defin. 11.) the line CD is perpendicular to the line AB .
883. Pror. VIlI. From a given point in a right line to raise a perpendicalur upon that line.

From the point C (fiy. 242.), let it be required to raise a rerpendicular upon the right line AB .

In $A B$ take at pleasure $C F$ equal to $C G$; upon the line $I^{\circ} \mathrm{G}$ describe an equilateral triangle FD) G, and draw the line (1); this line will be perpendicular to AB.

In the triangles $\operatorname{EDC}, \mathrm{CDG}$ the sides DF, DG are equal, becanse they are the sides of an equilateral triangle; the sides FC, CG are equal by construction; and the side DC is common. These two triangles, then, having the three sides equal, are (Prop. 5.) identical. Therefore (Defin. 20.) the angle DCA is equal to the angle DCB, and consequently (Defin. 11.) the line CD is perpendicular to the line AB.
884. Pror. IN. The diameter of a circle dicides the circumference into two equal purts.

Let ADBLA (fig 243.) be a circle; the diameter AC13 biscets the circumference, that is, the are ALB is equal to the are ADB.

Conceive the circle to be divided, and the lower segment ACBLA to be placed upon the upper ACBDA; all the points of the are ALB will fall exactly upon the are AD13; and consequently these two ares will be equal.

For if the point L, for instance, does not fall upon the are ADB , it must fall either above this are, as at G, or below it, as at F. If it fall on G, the radius CL will be greater than the radius CD ; if it falls on F , the radius CL will be less than the radius CD , which is (Prop. 1.) impossible. The point L, then, must fall upon

Fig. 243. the are ADB. In like manner it may be proved that all the other points of the are AL. 3 must fall upon the are ADB: those two ares are therefore equal.
885. Pror. X. A right line uhich meets another right line forms with it two angles, which toyether, are equal to two right angles.

The line FC (fig. 244.) meeting the line D A, and forming with it the two angles, DCF, ACF, these two angles are together equal to two right angles.

From the point C as a centre describe at pleasure a circumference NGLAIN.

The line NCL, being a diameter, divides the circumference (Prop. 9) into two equal parts. The are NGL is therefore

Fig. 244. half the circumference, which contains (Defin.6.) 180, or twice 90 degrees. Therefore the angles DCF, A(F. which, taken together, are measured by the are NGL, are twice 90 degrees. that is (Defin. 10.), are equal to two right angles.
886. Prop. X1. A line diawn perpendicularly to another right line makes right ongles rith it.

If the line C1) (fig. 24.5.) be perpendicular to the line $\Lambda \mathrm{B}$, the angle CDA is a right angle, and also the angle CDB.

For the line CD , meeting the line AB , forms with it two angles, which are together (Prop. 10.) equal to two right angles; and these two angles are equal, because CD is perpendicular to AB. Wherefore each angle is a right angle.
887. Prop. XII. If two lines cut each other, the veriical or opposite angles are equal.

Let the lines A D, B F , ($f y$. $\because 46$.) ent each

Fig. 245.

Fig. 216. other at the point C ; the angles $\mathrm{ACB}, \mathrm{FCD}$, which are called vertical or opposite angles, are equal.

From the point C, as a centre, describe at pleasure a circumference NGLMN.
Since the line NCL is a diameter, the are NGL is (1'rop. 9) balf the circumference; therefore the ares NGL. GLAI are equal. From these $t w o$ ares take away the common part GL, there will remain the are NG equal to the are LM. Consequently the angles $\mathrm{ACB}, \mathrm{FCD}$, which are measured by these two arcs, are also equal.
888. Pror. XIII. If a line be perpendicular to one of turo parallel lines, it is elso perpendicular to the other.

Let AB, CD (fig. 247.) be two parallel lines if the line FG makes right angles with C1), it will also make right angles with $A B$.

Take at pleasure GC equal to G1) ; at the points C and D) raise the perpendienlars CA, DB, and draw the lines GA, GB.

In the two triangles ACG, BDG, because the line AB is parallel to the line CD, the perpendiculars CA, DB are necessarily equal, as appears from the definition of parallel lines (1)efin. 12.); the lines CG, DG are equal by construction; and the angles C and D are right angles. The two triangles $\mathrm{ACG}, 13 \mathrm{DG}$ have then two sides and the contained angle equal, they are therefore

Fig 247. (Prop. 3.) identicel. Whence the side GA is equal to the side G13, and the angle m equal to the angle n.

Again, in the triangles AGF, FGB the side GA is equal to the side G 13 , as has been proved, and the side GF is common. Moreover, the angle r is equal to the angle s; for if from the two right angles FGC, FGD be taken away the equal angles m and n, there will remain the equal angles r and s. The triangles AGF, FGB have then two sides and the contained angle equal ; they are therefore (Prop. 3.) identical. Wherefore the angles GFA, GFB are equal, and consequently are right angles.
889. Prop. X IV. If one line be perpendicular to two other lines, these two lines are parallel.

Let the line FG (fig. 248.) make right angles with the lines AB and CD; these two lines are parallel.

If the line AB be not parallel to the line CD , another line, as NH, may be drawn through the point F, parallel to the line

Fig. 218. CD. But this is impossible; for if the line NH were parallel to the line CD, the line FG making right angles with CD would also (Prop. 13.) make right angles with NH; which cannot be, because, by supposition, it makes right angles with AB.
890. Pror. XV. The opposite sides of a rectangle are parallel.

In the rectangle ABCD (fig. 249.) the side BC is parallel to the side AD , and the side AB parallel to the side DC. Produce each of the sides both ways.

The line $A B$ is perpendicular to the two lines $B C, A D$; the two lines BC, AD are therefore (I'rop. 14.) parallel. In like manner, the line AD is perpendicular to the two lines AB, DC; the two lines AB, DC are therefore (Prop. 14.) parallel.
891. Prop. XVI. The opposite sides of a rectangle are cqual.

Fig. 219.

In the rectangle ABCD (see fig. 249.) the side AB is equal to the side DC, and the side BC equal to the side AD. For, since the side DC is parallel to the side AD, the perpendiculars AB, DC are (Defin. 12.) equal; and since the side $\mathrm{A} i \mathrm{i}$ is parallel to the side DC , the perpendiculars BC, AD are equal.
892. Pror. XVII. A right line falling upon parallel lines makes the alternate angles eqtal.

Let the line FG (f fy. 250.) cut the parailels AB, GD; the angles AFG, FGD, which are called alternate angles, are equal. From the point G draw GL perpendicular to the line AB , and from the point F draw FM perpendicular to the line GD.

Since the line GL is perpendicular to ΛB, it is also (Prop. 13.) perpendicular to the
parallel line GD Whence the quadrilateral figure GLIM is a rectangle, its four angles being right angles.

In the triangles GLF, FIIG the sides LF, GM are efual, because they are opposite sides of the same rectangle; the sides LG, FM are equal for the same reason; and the side FG is common. The two triangles GLF, FMG have then the three sides equal, and consequently (Prop. 5.) are identical. Wherefore the angle LFG opposite to the side LG is equal to the angle FGM opposite to the side FM.

Remark. In identical triangles the equal

Fig. 250. angles are always opposite to efual sides, as loy this proposition appears.
893. Proor. XVlll. If one right line falling upon two others makes the alternate angles equal, these tuo lines are parallel.
Let the alternate angles AFG, FGD (fig. 251.) be equal; the lines AD, GD are parallel.

If the line AB is not parallel to the line GD, another line, as NH, may be drawn through the point F parallel to GD. But this is impossible; for if the line NH were parallel to the line GD, the angle FGD would be (Prop. 17.) equal to the angle NFG, since these two angles would be alternate angles between two parallel lines; which camot be, because, by supposition, the angle FGI) is equal to the angle AFG.
$89+$. Prop. XIX. If one right line fulls upon two parallel right lines, it makes the interior angle equal to the exterior.

Let the line FG (fig. 252.) mect the parallel lines BA, DC, the interior argle r is equal to the exterior angle z. Produce the lines BA, DC.

The angle r (Prop. 17.) is equal to the angle s, because these are alternate angles, made by a right line falling upon two parallel lines, and the angles s and z are (Prop. 12.) equal, be-

Fig. 2:2. cause they are vertical or opposite angles; therefore the angle r is equal to the angle z.
895. Pror. XX. If one right line falling upon two other right lines makes the internal angle equal to the external, those two lines are parallel.

Let the internal angle r (fig. 253.) be equal to the external angle z, the lines BA, DC are parallel.

The angle r is equal to the angle z by supposition, and the angle z (Prop. 19.) is equal to the angle s, because they are opposite angles. The alternate angles δ, s are therefore equal, and consequently (Prop. 18.) the lines BA, DC are parallel.
896. Pror. АХ I. Through a given point to draw a line parallel to a given line.

Let G be the point through which it is required to draw a line

Fig. 253. parallel to the given line MF.

From any point G (.fig. 254.) describe, at pleasure, the arc FN; from the point F, in which the arc FN cuts the line Ml: with the distance GFi describe the are GM meeting the line MF in M; then make FL, equal to GM, and draw the line GL; this line is parallel to the line MF.

Draw the line GF.
The ares GM FL are equal is construction ; therefure the alternate angles r, s, which are measured by these ares (Defin. 9.), are equal ; and consequently (Prop. 18.) the lines GL, MF are parallel.

Pis. 251.

$\mathrm{r}_{\mathrm{ig}} 255$.
897. Prop. XXII. The three augles of a triangle taken together are equal to tio right angles.

In the triangle BAC (fig. 255.), the three angles $\mathrm{B}, \mathrm{A}, \mathrm{C}$ are together equal to two right angles.

Produce the side $B C$ both ways; through the point A draw a line $F G$ parallel to $B C$; and from the point A, as a eentre, deseribe any circumference LMN.

The angle B (Prop. 17.) is equal to the angle x, beeause these are alternate angles made by a right line falling upon two parallel lines. For the same reason the angle C is equal tu the angle $\%$.

Because LAN is a diameter, the are LMN is half the cirenmference; therefore the three angles x, A, y, which are measured by this are, are together equal to two right angles

But the angle x is equal to the alternate angle B, and the angle y to the alternate angle C.

Therefore, substituting 13 for x, and C for y, the three angles $13, A, C$ are together equal to two right angles.

Corollary. Hence, if two angles of any triangle be known, the third is also found; since the third angle is that which the other two taken together want of two right angles.
898. Prop. XXIII. If two triangles have two angles cqual, they have also the thid angle equal.

In the two triangles BAC, FDG (fig. 256.), if the angle B is equal to the angle F , and the angle A equal to the angle D , the angle C will also be equal to the angle G.

Since the angle C (Corol. to Prop. 22.) is that which the angles B and A together want of two right angles; and since the angle G is that which F and D together want of two right angles; the angles B and A being equal to the angles F and D, the angle C must be equal to the angle G.

Fig. 256.
899. I'rop. XXIV. The exterior angle of any triangle is equal to the two interior and opposite angles taken together.

In the triangle BAC (.fig. 257.) produce one of the sides BC; the angle ACD , which is called exterior, is equal to the two interior and opposite angles B and A taken together.

The line AC meeting the line BD) forms with it two angles, which are together (Prop. 10.) equal to two right angles; the angle $A C B$ is therefore that which the angle $A C D$ wants of two riglit angles. Hut the angle ACB is (Corol. to Prop. 22.) also that whieh the angles 13 and A together want of two right angles. Wherefore the angle ACD is equal to the two angles 13 and A taken together.

Fig. 257.
900. Pror. XXV. Triangles which have two angles and the side uhich lies between them equal arc illentical.

In the two triangles $\mathrm{BAC}, \mathrm{FD}$) (f ig. 2.5%.) , if the angle F is equal to the angle B , the angle G equal to the angle C, and the side $F G$ equal to the side ISC, these two triangles are identical.

Conceive the triangle FDG placed upon the triangle BAC in such a manner that the side FG shall fall exactly upon the equal side $13 C$. Since the angle F is equal to the angle B, the side FD must fall upon the side $B A$; and ${ }^{\circ}$ since the angle G is equal to the angle C, the side GI) must fall upon the side CA. Thus the three sides of the triangle FDG will be exactly placed upon the three sides of the triangle I AC ; and consequently the two triangles (1'rop. 5.) are identical.

Fig. 258.
901. 1'rop. XXVI. If two angles of a triangle are equal, the sides opposite to those angles are also equal.

Conceire the angle $A(f y .2 .59$.) to be bisected by the line A D.

In the triangles $B A D, D A C$ the angle B is equal to the angle C by supposition, and the angles at A are also equal. These two triangles have their two angles equal ; the third angle will therefore (Prop. 23.) be equal; whence the angles at D are equal. Moreover, the side AD is common to the two triangles. These two triangles, therefore, having two angles and the side

Fig. 2:59. which lies between them equal, are (1'rop.25.) identical. Wherefore the side AII is equal to the side AC.
902. Prop. XXVII. The opposite sides of a parallelogram are equal.

In the parallelogram ABCD (fig. 269.), the side Al B is equal to the side DC , and the side BC equal to the side AD .

Draw the line 13D, which is called the diagonal.
Because BC is parallel to $A D$, the alternate angles m and n are equal. In like manner, because $A B$ is parallel to $D C$, the alternate angles r and s are equal. Also, the side BD is common to the two triangles BAD, BCD. These two triangles have then two angles and the side which lies between them eifual, and are therefore (Prop. 3.) identical. Wherefore the side $A B$ op-

Fig. 20.0 . posite to the angle n is (I'rop. 26.) equal to the side DC opposite to the angle m; and the side BC opposite to the angle s is equal to the side AD opposite to the eymal angle r

Corolary. Ifence, the diagonal biseets the parallelogram; for the triangles BAD, BCD , having the three sides equal, are identical.
903. Prop. XXVIII. Parallelograms which are between the same parallels, and hure the same base, are equal.

Let the two parallelograms ABCD, AFGD (fig. 261.), be between the same paraliels $B G, A M$, and upon the same base $A D$; the space enclosed within the parallelogram ABCD is equal to the space enclosed within the parallelogram AFGD.

In the two triangles BAF, CDG the side BA of the former triangle is equal to the side CD of the latter, because they are opposite sides of the same parallelogram. For the same reason, the side FA is equal to the side G1). Moreover, BC is equal to AD, because they are opposite sides of the same parallelogram. For the same reason, AD is equal to $\mathrm{FG} . \mathrm{BC}$ is therefore

Fif. 261. equal to FG. If to both these CF be added, BF will be equal to CG. Whence the two triangles BAF, CDG, having the three sides equal, are (Prop. 5.) identical, and consequently have equal surfaees.

If from these two equal surfaces be taken the small triangle CLF, whieh is common, there will remain the trapezium ABCL, equal to the trapezium LFFGD. To these two trapezia add the triangle ALD, and the parallelogram $A B C D$ will be equal to the parallelogram AFGI).
904. Pror. XXIX. If a triangle and a parallelogram are upon the same base, and between the same parallels, the triangle is equal to half the parallelogram.
i.et the parallelogram ABCD (fig. 262.) and the triangle $\Lambda F D$ be upon the same base A1), and between the same paratlels BG, AL; the triangle AFD is half the parallelogram ABCD. Draw DG parallel to AF.

Because the parallelogram AFGD is bisected by the diagonal FD (Prop. 27. Corol.), the triangle AFD is half the parallelogram AFGD. But the parallelogram AFGD is equal to

Fig. 262. the parallelogram ABCD , because these two parallelograms are upon the same base, and between the same parallels; therefore the triangle AFD is equal to half the parallelogram ABCD.
905. Prop. XXX. Parallelograms which are between the same parallels, and hare equal bases, are equal.

Let the two parallelograms ABCD, LFGM (fig. 263.) be between the same parallels BG, AM, and have the equal bases A D, LM ; these two parallelograms are equal.

Draw the lines AF, DG.
Because AD is equal to LM, and LM to FG, AD is equal to FG; and they are parallel by construction. Also AF and DG are parallel ; for if DG be not parallel to AF, another line may be drawn parallel to it; whenee FG will become

Fig. 263. greater or less than AD. AF and DG are therefore parallel, and AFGD a parallelogram.

Now the parallelogram ABCD is (Prop. 28.) equal to the parallelogram AFGD, because these two parallelograms are between the same parallels, and have the same base AD. And the parallelogram AFGD is equal to the parallelogram LFGM, beeause these two parallelograms are between the same parallels, and have the same base FG. The parallelogram ABCD is therefore equal to the parallelogram LFGM.
906. Prop. XXXI. Triangles which are between the same parallels, und have equal bascs, are equal.

Let the two triangles ABD, LFMI (see fig. to preceding Proposition) be between the same parallels BG, AM, and upon the equal bases AD, LMI ; these two triangles are equal.

Draw DC parallel to AB, and MG parallel to LF.
The two parallelograms ABCD, LFGM are equal (1'rop. 30.), beeause they are between the same parallels, and have equal bases. But the triangle ABD is (1'rop. 29.) one half of the parallelogram ABCD, and the triangle LFM is one half of the parallelogram LFGM; these two triangles are therefore equal.
907. Prop. XXXII. In a right-angled triangle, the square of the hypotenuse, or sile subtending the right angle, is equal to the squares of the sides which contain the right anyle.

In the triangle BAC (fig. 264.), let the angle A be a right angle. Upon the hypotenuse BC describe the square BDFC ; upon the side AB deseribe the square ALiAB, and upon the side AC the square ARNC ; the square 1 BDFC is equal to the two squares ALAB. ARNC taken together.

Draw the right lines MC, AD, and draw AG parallel to BD).

Because the square or parallelogram MLAB and the triangle MCB are between the same parallels LC, MB. and nave the same base MB, the triangle MCB is (Prop. 29.) equal to hali the square ALNB.

Again, beeause the rectangle or parallelogram DGPB and the triangle D.Ab are between the same parallels GA and DB , and have the same base DB, the triangle DAB is (Prop. 29.) equal to half the rectangle DGBP.

Further. since the side $\operatorname{II} B$ of the triangle IIBC and the side AB of the triangle ABD are sides of the same square, they are (Defin. 17.) equal. Also, since the side BC of the

F:s. $2=4$. first triangle and the side BD of the second triangle are sides of the same square, they are equal. And because the angle MBC of the first triangle is composed of a right angle and the angle x, and the angle $A B D$ of the second triangle is composed of a right angle and the same angle x, therefore these two angles. contained between the equal sides IIB, BC and AB, BD, are equal. Wherefore the two triangles MDC, ABD. having two sides and the contained angle equal, are (Prop. S.) identical, and consequently equal.

But the triangle 11 BC (is half the square MLAB and the triangle ABD is half the rectangle BDGP : the square and the rectangle are therefore equal.

In the same manner it may be demonstrated that the square $A R N C$ and the rectangle CFGP are equal. Wheretore it follows that the whole square BDFC is equal to the two squares lILAB, AlNCC taken together.

CIRCLES.
MOS. Derisitiove - 1. A right line (rio. Prop. SS. AB) terminated both wars br the circumterence of a circle is called a chord.
?. A line (fig. I'rop. So. AB) which meets the circumference in one point only is called a tangent; and the point T is called the point of contact.
3. An angle (rig. Prop. S3. A BD) which has its vertex in the eircumference of a cirele is called an anole in the circle.
4. A part of a circle contined between two radii (Fig. Prop. St. ACDFA) is called a sectur.
5. A part of a circle (.rig. Prop. 35. AGBD.A) terminated by a chord is called a segment of a circle.

Let there be three given point- A. B. D (rig. ©65.). through which it is required to dram the circumference of a circle. Draw the right lines AB, BD, and bisect them : from the points of the dirision F, G. raise the perpendiculans BC, GC: and at the point C with the radius C.A deceribe the circumference of a circle: this eircumference will pass through the points B and D. Draw the lines CA. CB, CD.

In the triangles CFA. CFB the side FA is equal to the side FB hy cunstruction, the side FC is common, and the two angles at F are right angles. These two triangles then, have two sides and the angle
 contained by them equal : they are therefore (Prop. S.) identical. Consequently the side CB is equal to the side C.A.

For the same reason, the triangles CGB, CGD are also identical. Wherefore the side CD is equal to the side CB . and consequently equal to CA .

And since the right lines CB, CD are equal to the right line C.A. it is manifest (Prop. 1.) that the circumlerence which pases through the point A must also pass through the wint D.
910. Psop. NXIIV. Ïg radies lisect a chond, it is perpendioniar to that chord.

If the radius CF (riy. 566) bieect the chord $A B$, the angles
DDA. CDB are righ: arglex Draw the radii CA, CB.
In the triangles CDA. CDF the sides CA, CB, being radii. are equal (Prop. 1.). the sides AD. DB are equal by suppasition, and the side CD is common. These tro triangles, haring the three sides equal. are therefore (Prop. 5.) identical. Wheretore the angles CDA. CDB are eniual. and consequently (Prop. 10) are right angles

Cosclarr. The two angles at C are also (Prop. 5.) equal.
Hence it appeans that any angle A CB may be bisected by deecribing

Fis ses from its rettex C as the centre with any radius $A C$ an arc $A F B$: bisecting the choni of that arc $A \mathrm{~B}$: and then drawing from the point of division D the right line CD : for it may then the shown as in the propusition that the sriangler $A C D, D C B$ are identical, and consenuently the angles at C equal.

911．Pкop．XXXV．To find the centre of a circle．
Let the circle of which it is required to find the centre be IGBK゙．Draw any chora i B （fig．26\％．）；bisect it，and from the point of disi－ sion D raise a perpendicular $F G$ ：this line will pass through the centre，and consequently，if it be hisccted，the point of division will be the centre．

If the centre of the circle be not in the line FG，it must be somewhere out of it：for in－ stance，at the point L．But this is impusible． for if the puint L were the centre，the right line L．I would be a radius ：and since this lime hisects

F：ニン：

Fis．259． the chord $A B$ ，it is（Prop．St．）perpendicular to $A B$ ；which cannot be，since $C D$ is per－ pendicular to $A B$ ．

912．Prop．XXXVI．To find the centre of an arc of a circle．
Let $A B D F$ be the are of which it is required to find the centre．Draw any two chords AB．DF（fig．26S）；bisect them，and from the points of division raise the perpendiculars IIC．LC ；the point C ，in which these two perpendiculars cut each other，is the centre of the are．

For（Prop．S5．）the perpendicular MC and the perpendicular LC both pass throurh the centre of the same circle：this centre must therefore be the point C ，which is the ouly point common to the two perpendiculars

918．Pkop．XXXVII．If three equal lines meet in the same point reithin a circle，and are terminated，they ure radii of that circle．

The lines CA，CB．CD（fig．269．），drawn from the same point C within a circle and terminated by it．being equal．the point C is the centre of the circle．Draw the lines $A \mathrm{~B}, \mathrm{BD}$ ：bisect them． and let the points of division be F, G ；and draw the lines CF ． CG．

In the triangles CFA，CFB，the sides CA，CB are equal by supposition，the sides $F A, F B$ are equal by construction，and the side CF is common．These two triangles，then，liave the
 three sides equal ；they are therefore（Prop． 5. ．）identical．Wherefore the two angles at F are equal，and the line FC（Defin．11．）is perpendicular to the chord AB．And since this perpendicular bisects the chord $A \mathrm{~B}$ ．it must（Prop．35．）pass through the centre of the circle．In like manner，it may be demonstrated that the line GC also pasees through the centre－Wherefore the point \dot{C} is the centre of the circle，and $\mathrm{CA}, \mathrm{CB}, \mathrm{CD}$ are radii．

914．Prop．XXXVIII．If the radius of a circle be perpendiculur to a chord，the radius bisect＇s lusth the churd und the arc of the chord．

Let the radius CF be perpendicular to the chord $A \mathrm{~A}$（rig．2－0．）；the right line $A D$ is equal to the right line DB ，and the are AF equal to the are FB． Draw the riglit liues CA, CB ．

In the large triangle ACB ，the side CA（Prop．1．）is equal to the side CD，because they are radii of the same circle．The angle A is（Prop．4．）therefore equal to the angle B ．The angles at D are right angles，and therefore equal ；and the angles at C are conse－ quentl．（l＇rop．23．）equal．Also the side CA is equal to the side CB ，and the side CD is common．These two triangles，then．having two sides and the angle contained by them equal，are（l＇rop．S．）
 identical，whence the side AD is equal to the side DB ．Again，since the angles ACl＇， BCF are equal，the arcs AB, BF ，which measure these angles，are also equal．The chord AB and the are AFB are therefore bisected by the radius $\mathrm{C} F$ ．
915．Prop．XXXIX．A right line perpendicular to the extremity of a radins is a tungent to the circle．

Let the line $A B$（fig．271．）pass through the estremity of the radius CT in such a manner that the angles CT．A．CTB shall be right angles：this line AB touches the circumference in only one point T ．If $A B$ touch the circumference in any other point，let it be D ，and draw the line CD ．

In the right－angled triangle CTD the square of the hypothe－ ruse CD is equal to the two squares of CT and TD taken torether． The square of $C D$ is therefore greater than the square of CT，and

Fig． 271. consequently the line CD is greater than the line CT．which is a radius．Therefore the point D is out of the circumference．And in like manner it may be simwn that every point in the line $A B$ is out of the circumference，except $T ; A B$ is there－ fore a tangent to the circle．

Curollary．It fullows，therefure，that a perpendicular is the shortest line that car be
drawn from any point to a given line; smee the perpendicular CT is shorter than any wh lane which ean be drawn from the point C to the line A 13 .

9!6. Puor. X I.. If a right line be drawn touching a circumfe.ence, a radius drawn to 1 point of contact will le perpendicular to the tangent.

Let the line AB (fig. 272.) touch the cireumference of a circle in a point ' T , the radius C T ' is perpendicular to the tangent A 13 . For all other lines drawn from the point C to the line Al3 must pass out of the cirele to arrive at this line. The line CT is therefore the shortest which can be drawn from the point C to the line AB, and conserguently (Corol. to Prop. 39.) is perpendicular to the line $A 13$.
917. Prop. XLI. The angle formed by a tangent and chord is

Fig. 202. measured by half the arc of that chord.

Let BTA (fig. 273.) be a tangent and TD a chord drawn from the point of contact T the angle ATD is measured by half the are TFD, and the angle BTD is measured I half the are TGD. Draw the radius CT to the point of contact, and the radius CF perpendicular to the ehord TD.

The radius CF being perpendicular to the chord TD (Prop. 38.) bisects the are TFD. TF' is therefore half the are 'TFD.

In the triangle CAL the angle Mbeing a right angle, the two remaining angles are (Prop. 22.) equal to a right angle. Wherefore the angle C is that which the angle L wants of a right angle. On the other side, since the radius CT is perpendicular to the tangent 13.1, the angle ATD is also that which the angle L wants of a right angle. The angle ATD is therefore equal to the angle \mathbf{C}. But the argle \mathbf{C} measured by the are TF, consequently the angle ATD is also measured by the are T which is half of TFD. The angle BTD must therefore be measured by half the are TGl since these two halves of ares make up half the circumference.
918. Prop. XLII. An angle at the circumference of a circle is measured by half the urc by which it is subtenderl.

Let CTD (fig. 274.) be the angle at the circumference; it has for its measure half the are CFD by which it is subtended.

Suppose a tangent passing through the point T.
The three angles at T are measured by half the circumference (Prop. 22.), but the angle AT1) is measured (Prop. 41.) by half
 the are TD, and the angle BTC by half the are TC; consequently the angle CTD must be measured by half the are CFD, since these three halves ares make up half the circumference.
919. Pror. XL1II. The angle at the centre of a circle is double of the angle at the ri cumference.

Let the angle at the circumfurence $\Delta \mathrm{Dl}$; (fig. 275.) and the angle at the centre ACB be both subtended by the same are $A 13$, the angle ACB is d:uble of the angle ADB .

For the angle $A C B$ is measured by the are $A B$, and the angle $\mathrm{A} 1) \mathrm{B}$ is (Prop, 42.) measured by half the same are AB; the angle ACB is therefore double of the angle ADB.
920. Prop. XLIV. Upan a given line, to describe a segment of a circle containing a given angle.

Let AB (fig. 276.) be the given line and G the given angle, it is required to draw su a circumference of a circle through the points A and B that the angle D shall be equal the angle G

For this purpose draw the lines $A L, B L$ in such manner that the angles A and B shall be equal to the angle G : at the extremities of LA, LB raise the perpendiculars AC, BC; and from the point C in which these two perpendiculars cut each other, with the radius CA or CB describe the circumference ADB ; the angle 1) will be equal to the angle $($.

The angle LAB, formed by the tangent $A L$ and the chord AB, is (Prop. 41.) measured by half the are AFB; and the angle D at the circumference is also measured (Prop. 42.) by half the are AFB ; the angle D is therefore equal to the angle

LAB. But the angle LAB is made equal to the angle G; the angle D is therefore equ: to the angle G.
921. Pror. XLV. In every triangle the greater side is oppasite to the greater anylc, an the greater angle to the greater side.

In the triangle ABC (fig. 277.), if the side AB be greater than the side AC, tle angl

C opposite to the side AB will be greater than the angle B opposite to the side AC . Draw the ci:cumference of a circle through the three points Λ, C, B.

Since the chord $A B$ is greater than the chord $A C$, it is manifest that the are ADB is greater than the are AFC; and consequently the angle at the circumference C , which is measured (I'rop. 42.) by half the are ADB, is greater than the angle at the circumference 13 , which is measured by half the are AFC.

Again, if the angle \mathbf{C} is greater than the angle 13 , the side AB opposite to the angle C will be greater than the side AC opposite to the angle 13 .

Fig. 277.

The angle C is measured (Prop. 42.) by half the are AD13, and the angle 13 by half the arc AFC. But the angle C is greater than the angle 13 ; the are ADB is therefore greater than the are AFC , and consequently the chord AB is greater than the chord AC .
922. Pror. XIVI. Two parallel chords intercept equal arcs.

If the two chords AB, CD (fig. 278.) are parallel, the ares AC, BD are equal. Draw the right line BC .

Because the lines AB, CD are parallel, the alternate angles $\mathrm{A} B \mathrm{C}, \mathrm{BCD}$ are (Prop. 17.) equal. But the angle at the circumference BCD is measured (Prop. 42.) by half the are AC; and the angle at the circumference $13 C D$ is measured by half the are BD ; the ares AC, BD are therefore equal.
923. Prof. XLVII. If a tangent and chorel be parallel to each other, they interctpt equal ares.

Let the tangent FG (fg. 279.) be parallel

Fig. 2:8.

Fig. 2;9. to the chord AB; the are TA will be equal to the are TB. Draw the right line TA.

Because the lines FG, AB are parallel, the alternate angles FTA, TAB are (Prop. 17.) equal. But the angle FTA, formed by a tangent and a chord, is measured (Prop. 41.) by half the arc TA, and the angle at the circumference TAB is measured (Prop. 42.) by half the are TB. The halves of the ares TA, TB, and consequently the ares themselves, are therefore equal.
924. Prop. XLVIII. The angle formed ly the intersection of two chords is measured by hulf the two ares intercepted by the two chords.

Let the two chords AD, DF (fig. 280.) eut each other at the point C, the angle FCB or ACD is measured by half the two ares FB, AD. Draw $A G$ parallel to DF.

Because the lines AG, DF are parallel, the interior and exterior angles GAB, FCl3 are (l'rop. 19.) equal. But the angle at the circumference GAB is measured (l'rop. 49.) by half the are GFB. The angle FCB is therefore also measured by half the are GFB.

Because the chords AG, DF are par:llel, the ares GF, AD are (Prop. 46.) equal: AD may therefore be substituted in the room

Fig. \&SO. of GF; wherefore the angle FCB is measured by half the ares AD, FB.
925. Pror. XLIX. The angle formed by two secants is measured ly half the difference of the tuo intercepted ares.

Let the angle CAB (fig. 281.) be formed by the two secants $\mathrm{AC}, \mathrm{Alb}$, this angle is measured by half the difference of the two arcs GD, CB, intercepted by the two secants. Draw DF parallel to AC.

Because the lines AC, DF are parallel, the interior and exterior angles CAB, FDI are (l'rop. 19.) equal. But the angle FDl3 is measured (Prop. 42.) hy half the are FB; the angle GAB is therefore also measured by half the are FB.

Because the chords GC, DF are parallel, the arcs GD, CF are (Prop. 46.) equal ; the arc FB is therefore the difference of the arc GD and the arc CFB. Where the angle A has for its mea-

Fig. 281. sure half the difference of the ares GD, CF13.
926. Prop. L. The angle furmed 'y tuo tangents is measured by half the difference of 1 , , two intercepted arcs.

Let the angle CAB (fig. 282.) be formed by the two tangents AC, Al; this angle is measured by half the difference of the two ares GLID, GFD. Draw DF parallel to AC

Beozuse the lines AC, DF are parallel, the interior and exterior angles CAB, FDB are (Projo 19.) equal. But the angle FDl3, formed by the tangent 1) 13 and the chord DF, is measured (Prop. 41.) by half the are FD. Therefore the angle CA B is also measured by half the are FD.

Becrise the tangent AC and the chord 1)F are parallel, the intercepted arcs GFi GI) are (Prop. 47.) cqual. The are FD is therefore the difference between the are GLD and the are GFD. Therefore the angle CAB, which is measured by half the are FI), is also measured by half the difference of the ares GLD, GFD.

Fig. 24.5.

Corollary. In the same why it may be demonstrated that the angle formed by a tange ATC (fig. 283.) and a secant ADB is measured by half the difference of the two int cepted ares.
927. Prop. LI. To raise a perpendicular at the extremity of a giren line.

At the extremity A (fig. 284.) of the given line AB let it be repuired to raise a \dot{j} pendicular.

From any point C taken above the line AB describe a circumference passing through the point A and cutting the line $A B$ in any other point, as G. Draw the diameter DG and the right line AD; this line AD will be perpendicular to the line AB.

The angle DAG at the circumference is measured (Prop. 42.) by half the are DFG, which is half the circumference, because D('G is a dian:ter. The angle DAG is therefore measured by one fourth

Flg. 2Q1. part of the circumference, and consequently (Defin. 10.) is a right angle, whence the 1 AD is (Prop. 11.) perpendicular to the line AB.

Corollary. Hence it follows that the angle at the circumference which is subtem by a diameter must be a right angle.
928. Prop. L1I. From any point withont a circle to draw a tangent to that circle.

From the point Λ (fig. 285.) let it be required to draw a tangent to the circle DTB.

Draw from the centre C any right line CA ; biscet this right line, and from the point of division B, as a centre, deseribe the are CTA. Lastly, from the point A, and through the point T , in which the two ares cut each other, dra:v the r:ght line AT; this right line AT will be a tangent to the circle DTB. Draw the radius CT.

The angle CTA at the circumference, being subtended by

the dianeter CA, is (Corol. to Prop. 51.) a right angle ; therefore the line TA is perpen cular to the extremity of the radius C'T, and consequently (1'rop. 40.) is a tangent to circle DTB.

SURFACES.

929. Definitions.-1. A mathematical point has neither length, breadth, nor thicnue The physical point, now for consideration, has a supposed length and breadth excet ingly small.
930. A physical line is a series of physical points, and consequently its breadth is equal that of the physical points whereof it is composed.
931. Since physical lines are composed of points, as numbers are composed of units, poi may be called the units of lines.
932. As to multiply one number by another is to take or tepeat the first number as ma times as there are units in the second ; so to multiply ome line by another is to take repeat the tirst line as many times as there are units, that is, physical points, in second.
933. 1'rop. LIII. The surface of a rectangle is cpual to the product of its tuo sides.

Let the rectangle be ABCD (fig. 286.). If the physical line $A B$ be multiplied by the physcal line $A D$, the product will be the surface ABCD .

If as many physical lines equal to AB as there are physical points in the line AD be raised perpendicularly upon AD, these lines $\Lambda 13, a b, \& \cdot c$, will fill up the whole surface of the rectangle ABCD . Wherefore the surface
 $A B C D$ is equal to the line $A B$ taken as many times as there are physical points in the is AD ; that is, (Defin. 4.) equal to the line AB multiplied by the lime AD).
931. Prop. LI V. The surface of a triangle is cqual to half the product of its altitule and bn

If from the vertex of any angle A (fig. 287.) of the triangle $\mathrm{B} A \mathrm{C}$ be drawn AD , pe
pendicular to the opposite side 13C, this perpendicular is called the height, and the side BC, the buse of the triangle. Now the surface of the triangle is equal to half t l:e product of the height AD and the base BC .
Produce BC both ways; through the point A draw FG parallel to BC , and raise the two perpendiculars BF, CG.

Because the rectangle BFGC and the triangle BAC are between the same parallels, and have the same bases, the triangle is (Prop. 29.) balf the rectangle. But the surface of the rectangle is equal (Prop. 5.\%) to the product of BF and BC. Wherefore the surface of the triangle is equall to half the product of BF and BC, that is, of DA and GC.

Fig. 287.
932. Prop. LV. To measure the surface of any rectilineal figure.

Let ABCDFA (fig.288.) be the rectilineal figure, whereof it is required to find the surface.

Divide the whole figure into triangles by drawing the lines CA, CF. Then, drawing a perpendicular from the point B to the side CA, multiply these two lines; the half of their product will (Prop. 54.) give the surface of the triangle $\Lambda \mathrm{BC}$ C. In the same mamer let the surfaces of the remaining triangles ACF, FCD be found. These three surfaces added together will give the whole surface of the figure ABCDFA.
933. Pnop. LVI. The area of a circle is equal to half the produrt of its radius und circumference.

If the radius of the circle C (fig. 289.) be multiplied by

Fig. 288. its circumference, the half of the product will give the surface of the circle.
'Two physical points being manifestly not sufficient to make a curve line, this must require at least three. If, therefore, all the physical points of a circumference be taken two by two, these will compose a great number of small right lines. From the extremities L, 11 of one of these small right lines if two radii LC MC be drawn, a small triangle LCAI will be formed, the surface of vhich will be equal to half the product of its height; that is, the radius and its base.

To find the surface of all the small triangles whereof the circle is composed, multiply the height, that is, the radius, by all the bases, that is, by the circumferenee, and take the half of the product; whence the area or surface of the circle will be equal to half the product of the radius and

Fig. 289. circumference.
934. I'rop. LVII. To draw a triangle equal to a giren circle.

Let it be required to form a triangle the surface of which shall be equal to that of the circle AGFDA (fig. 290.).

At the extremity of any radius CA of the circle, raise a perpendicular AB equal to the cireumference A GFD, and draw the right line CB. The surfate of the triangle BCA will be equal to that of the eirele AGFDA.

Fig. 290.

The surface of the circle is equal (Prop. 56.) to half the product of the radius CA and the circumference, or the line AB. The surface of the triangle is also equal (I'rop. 54.) to half the product of its height CA , or radius, and its base BA , or circumfernce. Therefose the surface of the triangle is equal to that of the circle.

PROPORTION.
935. Definitions. - 1. The ratio of one quantity to another is the number of times whieh the first contains the second; thus the ratio of 12 to 3 is four, because 12 contains 3 four times; or, more universally, ratio is the comparative magnitude of une quantity with respect to another.
2. Four quantities are proportional, or in geometrical proportion, or two quantities are said to have the same ratio with two others, when the first contains or is contained in the second, exactly the same number of times which the third contains or is contained in the fourth ; thus, the four numbers $6,3,8,4$ are proportionals, hecause 6 contains 3 as many times as 8 contains 4 , and 3 is contained in 6 as many times as 4 is contained in 8, that is, twice; which is thus expressed : 6 is to 3 as 8 to 4 ; or 3 is to 6 as 4 to 8 .
936. Pror. LVIII Paralieloyrams which are betwcen the same parallels are to one ant
other as their bases.

Let the two parallelograms ABCD, FGLM (fig. 291.) be between the same parallels BL, A M, the surface of the parallelogram ABCD contans the surf.ee of the parallelogram FGLM as many times exactly as the base AD contains the b:se FM. Suppose, for example, that the base AD is triple of the lase INA ; in this case the surface ABCD will also be triple of the surface FGLAM.

Divide the base AI) into three parts, each of whieh is equal to the base FM, and draw from the points of divi-
 sion the lines NP, RS parallel to the side Al3.

The parallelograms ABPN, FGLM being between the same parallels and having equal bases, the parallelogram ABPN is (1'rop. 30.) equal to the parallelogram FGLM. For the same reason, the parallelograms NPSR, RSCD are also equal to the parallelogram FGLM. The parallelugram ABCD is therefore composel of three parallelograms, each of which is equal to the parallelogram FGLM. Consequently the parallelogram ABCD is triple of the parallelogram FGLM.
93. 1'ror. LIX. T'riangles uhich are between the same parallels are to one another as their 4 ses.

Let the two triangles ABC, DFG (fig. 292.) be between the same parallels LF, A G, the surface of the triangle ABC contains the surface of the triangle DFG as many times as the base AC contains the base DG. Suppose, for example, that the base AC is triple of the base DG, in this case the surfuee ABC will be triple of the surface DFG.

Divide the base AC into three equal parts, AN, NR, RC, each of which is equal to the base DG, and draw the right lines BN, BR.

The triangles ABN, DFG being between the same parallels and having equal bases, the triangle ABN is (Prop.31.) equal to the triangle DFG. For the same reason, the triangles NBR, RBC are each equal to the triangle DFG. The triangle ABC is therefore composed of three triangles, each of which is equal to the triangle DFG. Wherefore the triangle ABC is triple of the triangle DFG.
938. l'ror. LX. If a line be drawn in a triangle paralicl to one of its sides, it will cut the other two sides proportionally.

In the triangle BAC (fig. 293.), if the line DF be parallel to the side BC, it will cut the other two sides in such manner that the segment AD) will be to the segment DB as the segment AF is to the segment FC . Suppose, for insance, the segment $\Lambda \mathrm{F}$) to be triple of the segment DB, the sogment AF will be triple of the segment FC. Draw the diagonals DC, FB.
'The triangles AFD, DFB are between the same parallels, as will be easily conceived by supposing a line drawn through the point F parallel to the side A13. These two triangles are therefore to one another (Prop. 59.) as their bases; and since the base AD is triple of the base DB, the triangle AFD will be triple of the triangle D FB.

Fig 293.

Again, the triangles BFD, FDC are between the same parallels DF, BC, and upon the same base DF. These two triangles are therefore (1'rop.31.) equal; and since the triangle AFD is triple of the triangle DFB, it will also be tiple of the triangle FDC.

Lastly, the triangles ADF, FDC are between the same parallels, as will be easily conceived by supposing a line drawn through the point 1 parallel to the side AC . These two triangles are therefore to one another (Prop. 59.) as their bases; and since the triangle ADF is triple of the triangle FDC, the base AF will be triple of the base FC.
939. 1'кор. LX1. Equiangular triangles have their homoloyous sides proportional.

In the two triangles ABC, CDFF (fig. 294.), if the angle A be equal to the angle C, the angle B equal to the angle D, and the angle C equal to the angle \mathcal{F}; the side AC , for example, opposite to the angle B is to the side CF opposite to the angle D as the side A13 opposite to the angle C is to the side CD opposite to the angle 1%. l'lace the two triangles so that the sides AC , CF shall form one right line, and produce the sides AB, FD till they meet in G.

The interior and exterior angles GAF, DCF being equal, the A lines GA, DC are (Prop. 20.) parallel. In like manner, the alter-

Fig. 291. nate angies GFA, BCA on the same sides being equal, the lines GF, 13C are (I'rop. 20.) paraliel. Wherefore the quadrilateral figure BGDC is a parallelogram, and consequently its opposite sides are equal. In the triangle GAF the line BC, being parallel to the side

FG, cuts (Prop. 60.) the other two sides proportionally; that is, AC is to CF as AB is to $B G$, or its equal CD).
940. Pror. LXII. Triangles the sides of uhich are proportional are equianyular.

In the two triangles BAC, FDG (fig. 295.), if the side AB is to the side DF as the side BC C is to the side FG and as the side AC to the side DG, these two triangles have their angles equal.

Let the side $A B$ be supposed triple of the side DF; the side AC must be triple of the side DG, and the side 13C triple of the side FG.

If the triangle FDDG be not equiangular with the triangle BAC , another triangle may be formed equiangular with it ; for example, FLG. But this is impossible;

Fig. 295. for if the two triangles BAC, FLG were equiangular, their sides would be (Prop. 61.) proportional; and 13 C being triple of FG, AB would be triple of LF. IBut AB is triple of DF ; whence I/F would be equal to DF. For the same reason, L.G would be equal to DG. Thus, the two triangles FLG, FDG, having their three sides equal, would be (Prop.5.) identical; which is absurd, sinee their angles are unequal.
941. Pror. LXIII. Triangles which have an angle in one equal to an angle in the other, and the sides about thicse angles proportional, are equiangular.

If in the two triangles BAC, NMP (fig. 296.) the angle A be equal to the angle M. and the side $A B$ be to the side $M N$ as the side $A C$ is to the side MP, the two triangles are equiangular.

If Als be triple of MN, AC must be triple of MP. Now, if the angle MNP, for example, is not equal to the angle ABC, another angle may be made, as MINR, which shall be equal to it. But this is impossible; for the two triangles BAC, NMR, having two angles equal, would be equiangular, and consequently (Prop. 61.) would have their sides proportional; wherefore, AB being triple of MN, AC would be triple of MR, which

Fig. 296. eannot be, since $\Lambda \mathrm{C}$ is triple of Ml '.
942. 1'rop. LXIV. A right line which bisects any angle of a triangle dirides the side opposite to the bisected angle into turo scgments, which are proportionc.' to the turo other silles.

In the triangle BAC, let the angle BAC be bisected by the right line AD, making the angle r equal to the angle s. The segment BD is to the segment IDC as the side BA to the side AC.
l'roduce the side BA, and draw CF parallel to DA.
The lines DA, CF being parallel, the interior and exterior angles -, F are (Prop. 19.) equal, and the alternate angles s, C are (I'rop. 17.) also equal. And since the angle r is equal to the angle s, the angle F will also be equal to the angle C ; and consequently the side $A \mathrm{~F}$ is equal to the side AC.

In the triangle BFC, the line AD being parallel to the side FC; 13D (I'rop. 60.) will be to D) C as BA is to AF , or its equal AC.
943. Prop. LXV. To find a fonrth proportional to three given lines.

Fig. 2!17.

Let the three lines be A, B, C (fig. 298.), it is required to find a fourth line D), such that the line A shall be to the line B as the line C is to A t.ie line 1).

Form any angle RFG, make FXI equal to the line A, MG equal to the line 1 , and $F \mathbf{N}$ equal to the line C ; draw the right line MN, and through the point G draw GL parallel to MN ; NL will be the fourth proportional required.

In the triangle FLG the line NM, being parallel to the side LG, euts the other two sides (I'rop. 60.) propor-
 tionally. Wherefore FM is to MG as FN is to NL ; that is, A is to B as C is to D . 944. Prop. LXVI. To find a third proportional to tao given lines.

Let the two lines be A, B (fig. 299.), it is required to find a third line C, sueh that the line A shall be to the line B as the line B is to the line \mathbf{C}.

Form any angle LFG, make FM equal to the line A, MG equal to the line 13 , and FN equal to the line 1; ; draw the right line MN, and through the point G draw GL parallel to MN ; NL will be the third proportional

Fin. 299. required

In the triangle FLG the line NM, being parallel to the side LG, euts the other twe
sides (Prop. 60.) proportionally. Wherefore FM is to MG as FN is to NL; that is, A is to 13 as 1 ' is to C .
915. Pror. LXVII. If four lines be proportional, the rectungle or product of the extremes is equal to the rectangle or product of the means.

Let the line A be to the line B as the line C is to the line D (fig. 300.) ; the rectangle formed by the lines I and D is equal to the rectangles formed by the lines B and C .

Let the four lines meet in a common point. forming at that point four right angles; and draw the lines parallel to them to complete the rectangles x, y, z.

If the line A be triple of the line B, the line C will be triple of the line D .

Fig. 300.

The rectangles or parallelograms x, z being between the same parallels, are to one another as their bases. Since the base A is triple of the base B, the rectangle x is triple of the rectangle z. In like manner, the reetangles or parallelograms y, z, being between the same parallels, are to one another as their bases: since the base C is triple of the base D , the rectangle y is therefore triple of the rectangle z. Wherefore, the rectangle x being triple of the rectangle z, and the rectangle y being triple of the same rectangle z, these two rectangles x and y are equal to one another.
946. Prop. LXVIII. Four lines which have the rectangle or product of the extremes equal to the restangle or product of the means are proportional.

Let the four lines $A, B, C, D(f g .301$.$) be such that the rectangle of A$ and D is equal to the rectangle of B and C, the line Λ will be to the line B as the line C to the line D .

Let the four lines meet in a common point, forming at that point four right angles, and complete the rectangles x, y, z.

If the line A be triple of the line B, the line C will be triple of the line D.

The rectangles x and z, being between the same parallels,

Fig. 501. are to one another as their bases: since the base A is triple of the base I, the rectangle x will be therefore triple of the rectangle z. And the rectangle y is, by supposition, equal to the rectangle x; the rectangle y is therefore also triple of the rectangle \approx.

Put the rectangles y, z, being between the same parallels, are to one another as their bases. IIence, since the rectangle y is triple of the rectangle z, the base C is also triple of the base D.
947. Prop. LXIX. If four lines be proportional, they are also proportional alternately.

If the line A is to the line B as the line C to the line D (fig. 302 .), they will be in proportion alternately; that is, the line A will be to the line C as the line B to the line D.

Beeause the line A is to the line B as the line C is to the line D : the rectangle of the extremes A and D is equal to the rectangle of the means B and C ; whence it follows (Irop. 68.) that the line X is to the
\qquad
\qquad line C as the line B is to the line D.

Otherwise, - Suppose the line A to be triple of the line B, the line C will be triple of the line D. Hence, instead of saying Λ is to B as C to D, we may say three times B is to B as three times I) is to D. Now it is manifest that three times B is to three times D as B is to D. Therefore the line A (which is equal to three times B) is to the line C (which is equal to three times D) as the line B is to the line D .
948. I'Rop. LXX. If four lines be proportional, theiy will be proportional by composition.

Let the line A be to the line B as the line C is to the line D (fig. 303.), they will be proportional hy composition ; that is, the line A joined to the line B will be to the line B as the line C joined to the line D is to the line D.

If the line A contain the line B, for example, three times, and the line C contain the line D three times; the line A joined to the line B will contain the line B four times, and the line C joined to the line D will contain the line D four times. Therefore the line Λ joined to the line

Fis. 305. I) is to the line B as the line C joined to the line I) is to the line D .
949. Prop. LXXI. If four lines be proportional, they will be also proportionsl by division.

If the line A is to the line B as the line C is to the line D (fig. 304.), they will be proportional by divisiom; that is, the line Λ wanting the line B is to the line B as the line C wanting the line D is to the line I .

If the line A contain the line 13 , for example, three times, and the line C contain the line D three times, the line A wanting the line B will con-
-
D

Fig. 301.
tain the line B only twiee; and the line C wanting the line D will also contain the ine 1 ,
twice. Therefore the line A wanting the line B is to the line B as the line C : vanting the line D is to the line D .
950. Prop. LXXII. If three lines be proportional, the first is to the third as the square of the first is to the square of the second.

If the line CD is to the line $c d$ as the line $e d$ is to a third line x (fig. 305.), the line CD is to the line x as the square of the line CD) is to the square of the line ed. Take CF equal to the line x, and draw the perpendicular Fl3.

Since the line CD is to the line ed as the line ed is to the line CF, the rectangle of the extremes CF, CD, or CL is equal (I'rop. 67.) to the reetangle of the means, that is, to the square of cel.

Again, the square of CD and the restangle of the lines Cl, CL, being between the same parallels, are to one another (Prop. 58.) as their bases. Therefore CD is tc CF , or x, as the square of CD is
 to the rectangle of CF and CL, or to its equal the square of cd .
951. Prop. LiXXIII. If two ehords in a circle eut each other, the rectangle of the segments of one is equal to the rectangle of the segments of the other
Let the two chords A13, C1) (fig. 306.) in the circle cut each other in the peint F , the rectangle of AF, FB is equal to the rectangle of CF, FD. Draw the two right lines AC, D13. Because in the triangles CAF, BDF the angles at the eircumference A and D are both measured (Prop. 42.) by half the are Cl , they are equal. Because the angles C and 13 are both measured (Prop. 42.) by half the are AD, these angles are also equal. And the angles at F are equal, because they are vertical. These two triangles are therefore equiangular, and coasequently (Prop. 61.) their sides are proportional. Wherefore the side AF opposite to the angle C is to the side FD opposite to the
 angle B as the side CF opposite to the angle A is to the side FB opposite to the angle D. Therefore (Prop. 69.) the rectangle of the extremes $A F, F B$ is equal to the rectangle of the means CF, FD.
952. Pror. LXXIV. To find a mean proportional between tro given limes.

Let there be two lines A, C (fig. 307.), it is required to find a third line ll, such that the line A shall be to the line B as the line B is to the line C .

Place the lines A and C in such manner that they slall form one right line DGL, and bisect this right line in the point F. From the point F , as a centre, describe the circumference of a circle DMLN ; then, at the point G, where the two lines are joined, raise the perpendicular GM; GMI is the mean proportional sought between the lines A and C.
 Produce MG to N.

Because the chords DL, MN cut each other at the point G, the rectangle of the segments DG, GL is (Prop. 73.) equal to the rectangle of the segments MG, GN.

Because the radius FL is perpendienlar to the chord MN, FLL (Prop. 38.) bisects MN ; therefore GN is equal to GM.

Lastly, because the rectangle of the extremes DG, GL is equal to the rectangle of the means GM, GN, or its equal GM, DG is to GM as GM is to GL. Therefore GM is a mean proportional between DG and GI., that is, between the lines A and C.
973. Pkor. LAXV. The bases and aititudes of equal triangles are in reciprocal or incerse aio.
Let the two triangles ABC, DFG (fig. 308.) be equal; the base AC will be to the base 1) G, as the perpendicular FM to the perpendicular B1, that is, the tases and altitudes are in reciproeal or inverse ratio.

The triangle ABC (Prop. 54.) is half the product or reetangle of the base AC and the altitude BL. Again, the triangle DFG is (Prop. 54.) half the product or rectangle of the base DG and the altitude FM. The two triangles being equal, the two rectangles, which are double of the triangles, will therefore also be equal.

Again, beeause the rectangle of the extremes AC, BL is equal to the rectangle of the means DG, FM ; AC (Prop.

Fin. 308. 68.) is to DG as FMI is to BL.
954. Pror. LXXV1. Triangles the buses und attitudes whereof are in reiprocal or inverse ratio are equal.

In the two triangles $\Lambda B C$, DFG (fiy. 309.), if the base ΛC be to the base D (as the pervendicular F'M to the perpendicular BL, the surfaces of the two triangles are equal.

Because AC is to DG as FM is to BL L , the product or rectangle of the extremes AC, BI is (Irop. 67.) equal to the product or rectatigle of the means DG, FM. The halver ('orol. to l'rop. 27.) of these two rectangles, namely, triangles $\mathrm{ABC}, \mathrm{DFG}$, are therefore equal.
955. Prop. IXXVII. Two sccants drawn from the same point to a cirele are in the inverse ratio of the parts utheh lie out of the eircle.

Let the two secants be CA, CB ($\mathrm{fig}_{\mathrm{y}}$ 310.); CA is to CB as CD is to CF. Draw the right lines $1 \mathrm{FB}, \mathrm{DA}$.

In the triangles CDA, CFB the angles at the circumference Λ and 13 , being hoth

Fig. 30%.
 m sasured (Irop. 42.) by half the are F1), are equal, and the angle \dot{C} is common to the two triangles. These two triangles are theref're (I'rop. 23.) equiangular and (I'rop. 61.) have their sides proportional. Wherefore the side CA of the first triangle is to the side ClB of the second triangle as ihe side C1) of the first triangle is t, the side CF of the second triangle.
956. P'rop. IXXVIII. The tungent to a circle is a mean proportional between the sceant and the part of the secant which lies out of the circle.

In the circle AB1), CB (fig. 311.) being secant, and CA tangent, CB is to CA as CA is t, (I). Draw the right lines AB, AD).

The triangles CAB, CDA have the angle C common to both. Also the angle 13 is measured (I'rop. 42.) by half the are $\Lambda F D$; and the angle CAD formed by the tangent AC and the chord AD) is measured (Irop. 41.) by half the same are AFI. The two triangles CAB, CDA, having their two angles equal, are (I'rop. 23.), equiangular, and consequently (Prop.61.) have their sides proportional. Hence the side ('13 of the greater triangle opposite to the angle CAI' is to the side CA of the smaller triangle opposite to the angle 1) as the side (CA of the greater triangle opposite to the angle B is to the side CD of the s:maller triangle opposite to the angle A.

Comondiny. From this proposition is suggested a new method of

Fig. 511. finding a mean proportional between two given lines.

Take C13 equal to one of the given lines, and CI) equal to the other ; bisect D13; from the point of division, as a centre, describe the circumference 1)A13; and draw the tangent C.A. This tangent is a mean proportional between Cl and CD , as appears from the proposition.
957. Prop. LXXIX. To cat a given line in extrene and mean ratio.
L.et it he required to divide the line CA (fiy. 31\%.) in extreme and mean ratio: t at is, to divide it in steh a manoer that the whole line $s^{\prime}:$ all be t, the greater part as the greater part is $t o$ the less.

At the extrenity A of the line CA raise a perpendicular AG equal to half the line CA ; from the point G , as a centre, with the radius GA, describe the circumfrence ADI); daw the line (CB through the centre, and take CF equal to CD; the line CA will be divided at the point F in extreme and mean ratio.

Because (1'rop. 78.) CB is to CA as CA is to CD, by division, (Irop. 71) CB wanting CA or its equal I)B is to CA, as (A wanting

Fig 312. CD) or its cq:al CF is to CD) ; that is, CD or CF is to CA as FA is to (1) or CF; or, inversely, $\mathrm{C} \Lambda$ is to CF as CF is to FA , or the line AC is cut in extreme and mean ratio.

SIMILAR FIGURES.

958. Deminitions. - 1. Figures are similer which are composed of an equal number of physical points disposed in the same manner. Thus, the figures A BCDF, abedf (fig. 313.) are similar, if every point of the first figure las its corresponding point placed in the same manner in the second.
Hence it follows, that if the first figure is, for example, three times greater than the second, the points of which it is composed are three times greater than those of the second figure.

Fig. 313
2. In similar figures, those lines are said to be homologous winch are esmposed of an equal number of corresponding points.
959. Prop. LXXX. In similar figures the homologous sides are proportional.

Let the similar figures be ABCDF , abcdf ($f i g .314$.) , and the homologous lines $\mathbf{C A}, c a$, CP, $c f ; \mathrm{CA}$ is to CF as $c a$ to $c f$.

Sinee the lines CA, ca are homologous, they are composed of an equal number of eorresponding points; as are also the homologous lines CF, cf. If, for instanee, the line CA is eomposed of 40 equal points, and the line CF of 30 , the line $c a$ will neeessarily be eomposed of 40 points, and the line cf of 30 ; and it is manifest that 40 is to 30 as 40 to 30 .
 Therefore CA is to CF as $c a$ to $c f$.
960. Prop. LXXXI. The cireumfercuces of circles are as their radii.

The eireumference DCB (fig. S15.) is to the radius AB as the cireumference deb is to the radius $a b$.

All eireles are similar figures, that is, are composed of an equal number of points disposed in the same mamer. They have therefore (l'rop. 80.) their homologous lines proportional. Therefore the circumferenee DCD is to the radius A I as the cireumferenee $d c b$ is to the radius $a b$.
961. 1'rop. LXXXII. Similar figures are to cach other as the squares of their homologous sides.

Let the two similar figures be A, a (fig. 316.) Upon the

homologous sides $C D, c d$ form the square, B, b. The surface A is to the surface a as the square 13 is to the square b.

Since the figures A, a are similar, they are eomposed of an equal number of correspondiug points; and sinee the homologous sides CD, $c d$ are eomposed of an equal number of points, the squares drawn upon these lines $1, b$ are aiso eomposed of an equal number of points.

If it be supposed that the surface A is composed of 1000 points and the square 13 of 400 points, the surface A will be also eomposed of 1000 points and the square b of 400 . Now it is manifest that 1000 is to 400 as 1000 to 400 . Wherefore the surface A is to the square B as the surface a is to the square b; and, alternately (Prop. 69.), the sur-

Fig. 316. face A is to the surficee a as the square 13 to the square b.

Conoliskr. It follows that if any three similar figures be formed upon the three sides of a right angled triangle, the figure upon the hypothenuse will be equal to the other two taken together; for these three figures will be as the squares of their sides; therefore, sinee the square of the hypothenuse is equal to the two squares of the other sides, the figure formed upon the hypothenuse will also be equal to the two other similar figures formed upon the otler sides.
962. Prop. LXXXIII. Circles are to each other as the squares of their radii.

Let two eircles DCB, dcb (fig. 317.) be drawn.
The surface contained within the cireumference $\mathbf{D C B}$ is to the surface eontained within the eireumference $d c h$ as the square formed upon the radius $A B$ to the square formed upon the radius $a b$.

The two cireles, being similar figures, are eomposed of an equal number of corresponding points, and the radii AI3, ab being composed of an equal number of points, the squares of these radii will also be composed of an equal number of points.

Suppose, for example, that the greater circle DCB is composed of 800 points, and the square of the greater radius $A B$ of 300 points, the smaller circle deb will also be compored oc 800 points, and the square of the smaller radius of 300 . Now it is manifest that 800 is to 300 as 800 to 300 . Therefore the greater eircle DCB is to the square of its radius A1; as the smaller eircle $d c b$ is to the square of its radius $a b$; and, alternately, the greater eircle is to the lesser eirele as the greater square is to the lesser square.
963. Pkop. LXXXIV. Similar trianyles are equiangular.

If the two triangles A BC, abc ($f i g .318$.) be composed of an equal number of points disposed in the same manner, they are equiangular.

For. since the triangles $\triangle B C$, uhic are similar figares, they have their sides (Prop. 80.) proportional ; they are therefore (Prop. 62.) equiangular.
964. Irop. LXXXV. Equiangular triangles are similar

If the triangles $\mathrm{ABC}, a b c$ are equiangular, they are also similar. See fig. 318.

If the triangle $\Lambda B C$ were not similar to the triangle $a b c$,
 another triangle might be formed uron the line AC ; for example, ADC , which should be similar to the triangle $a b c$. Now, the triangle $A D C$, being similar to the tridugle abe.
will also (Prop, 84.) be equiangular to abc; which is impessible, since the triangle ABC is supposed equiangular to abc.
96.5. Prop. LXXXXI. If four lines are proportional, their squarcs are also proportional.

If the line $A 13$ be to the line AC as the line AD) is to the line AF (fiy. 319 ,), the spuare of the line Al 3 will be to the sipuare of the line AC as the square of the line AD is to the square of the line AF .

With the lines AB and AD form an angle BAD; with the lines AC and AF form another angle CAF equall to the angle 13AD, and draw the right lines 13), CF.

Because $A B$ is to $A C$ as $A D$ to $A F$, and the contained argles are equal, the two triangles $\mathrm{BAD}, \mathrm{CAF}$

Fig. 319. have their sides about equal angles proportional ; they are therefore (Prop. 63.) equitngular, and consequently (Prop. 85.) similar: whence they are to one another (1'rop. 82.) ise the squares of their homologous sides. If, then, the triangle BAD be a third part of the triangle CAF, the square of the side $A B$ will be a third part of the square of the side $A C$, and the square of the side $A D$ will be a third part of the square of the side $A l$. Wherefore these four squares will be proportional.
966. Prop. LAXXVII. Similar rectilineal fignes may be divided into an cqual number of similar triangles.

Let the similar figures be ABCDF , abcaff, and draw the homolugons lines $\mathrm{CA}, \mathrm{ca}, \mathrm{CF}$, of ; these two figures will be divided into an equal number of ssmilar triangles.

The triangles BCA , bca (fig. 320.), being composed of an equal number of corresponding points, are similar. The triangles ACF , acf and the triangles FCD, fel are also, for the same reason, similar. Wherefore the similar figures A IBCD F, abcdf are divided into an equal number of similar triangles.

967. Pror. LXXXVIII. Similar figures are equiangular.

The similar figures ABCDF, abcdf' (see fig. preced. I'rop.) have their angles equal. Draw the homologous lines CA, cu, CF, off. The triangles BCA, bect are similar, and contsequently equiangular. Therefore the angle 1) is equal to the angle b, the angle BAC to the angle bac, and the angle 13CA to the angle bca. The triangles ACF, acf FCD , frid are also equiangular, because they are similar. Therefore all the angles of the similar tigures A BCDF, abclff are equal.

96s. Prop. LXXXIX. Equiangular figures the sides of which are proportional are similar.

If the figures ABCDF, abedf (fiy. 321.) have their angles equal and their sides proportional, they are similar. Draw the right lines CA, ca, CF, $c f$.

The triangles CBA, cba, lave two sides proportional and the contained angle equal ; they are therefore (Prop.63.) equiangular, and consequently (Prop. 85.) similar. The lines CA, ca are therefore (I'rop. 80.) proportional.

The triangles CAF, caf have two sides proportional and the contained angle equal; for if from the equal angles

Fig. 321. BAF , baf be taken the equal angles BAC , bac, there will remain the equal angles CAF , caf. These two triangles are therefore equiangular, and consequently similar. In the same manner it may be proved that the triangles CFD, cfl are similar.

The two figures ABCDF F abedf are then composed of an equal number of similar triangles; that is, they are composed of an equal number of points disposed in the sance manner, or are similar.

PLANES.

969. Definitions. - 1. A plane is a surface, such that if a right line applied to it tonch it in two points it will touch it in every other point. The surface of a fluid at rest, or of a well-polished table, niay be considered as a plane.
970. A right line is perpendicular to a plane if it make right angles with all lines which can be drawn from any point in that plane. Thus BA (fig. 322.) is perpendicular to the plane MLG FI'N, because it makes right angles with the lines AM, AL, $A G$, \&e. drawn from the point A.
3 Let 1 B (fiy. 323.) be the common intursection of two planes.

Fig. 32\%

If two right lines LD1, FG be drawn, in these two planes, perpendicular to the line A 13 , these will form four angles at the point C, which are ealled the inclinations of th.e two planes, or the angles formed by the two planes.
4 If the line AB (fig. 324.) revolve about itself, without changing its place, the line AC , which makes an acute angle with AB , will

Fig. 323.

Fig. 5E4. describe in the revolution a concave surface LAC; and the line AD, which makes an obtuse angle with A B , will describe in the revolution a convex surface $\mathrm{M} \boldsymbol{\mathrm { JI }}$).
5. But the line AF (fig. Defin. 2.), which makes a right angle with Alb, will describe in the revolution a surface which will be neither concave nor convex, but plane : and the line AB will be perpendicular to the plane MLG FPN, beeause it will make right angles with the lines $A M, A L, A G, \& c$. drawn from the point A in that plane.
6. Two planes are parallel when all perpendiculars drawn from one to the other are equal. Sce fig. 395., wherein AB, CD are epmal between the surfaces Lil, FG.
970. Pror. XC. A perpendicular is the shortest line which can be draun from any point to a plane.

From the point IS (fig. 326.), let the right line BA be drawn perpendicular to the ptane DF; any other line, as BC, will be longer than the line BA. Upon the plane draw the right line AC.

Because the line BA is perpendicular to the plane DF, the angle BAC is a right angle. The square of BC is therefore (1'rop. 39.) equal to the squares of BA and AC taken together. Consequently the square of BC is greater than the square of BA , and the line BC longer than the line 13 A.
971. Pror. XCI. A perpendicular measures the distance of any point from a plane.

The distance of one point from another is measured by a right line, because it is the shortest line which ean be drawn from one point to another. So the distance from a point to a line is measured by a perpendicular, because this line is the shortest which can be drawn from the point to the line. In like mamer, the distance from a point to a plane must be measured hy a perpendicular drawa from that point to the plane, because this is the shortest line which can be drawn from the point to the plane.
972. Pror. XCII. The common intersection of tuo planes is a right line.

Let the two planes ALBMAA, AFBGA (fyy. 397.) intersect each other; the line which is common to both is a right line. Draw a right line from the point A to the point 13 .

Becanse the right line $A B$ tonches the two planes in the points A and B , it will touch them (Defin. 1.) in all other points; this line therefore, is common to the two planes. Wherefore the common intersection of the two planes is a right line.
973. Drop. XCIII. If three points, not in a right line, are common to tuo planes, these tuo planes are one and the same phane.

Let two planes be supposed to be placed upon one another, in such

Fig. 327. mamer that the three points Λ, B, (shall be common to the two planes; all their other points will also be common, and the two planes will be one and the same plane. The point D , for example, is common to both planes. Draw the right lines AB, CD.

Becauce the right line AB (fig. 328.) touches the two planes in the points A and B, it wili wach them (D.fin. 1.) in every other point; it will therefore touch it.em in the point F. The point F is therefore common to the two planes.

Again, because the right line CD touches the two planes in the points C and F , it will touch them in the point D ; therefore the point D is ronmon to the two planes. The same may be shown concerning every other point. Wherefore the two planes coincide
 in all points, or are one and the same plane.

974 . Poop. XCIV. If a riyht line be perpendicular to two right lines, whech cut each other, it uill be perpendicular to the plare of these right lines.

Let the line AB (fig. 329.) make right angles wht the lines AC, A D, it will be perpen dieular to the plane which passes through these iines.
If the line AB were not perpendicular to the FDCG, another plane might be made to pass through the point A, to which the $A B$ would be perpendieular. But this is impossible; for, since the angles BAC, B.AD are right angles, this other plane (1)efin. 2.) must pass through the points (C, D; it would therefore (Irop. 93.) be the same with the plane FDCG, since these two planes would have three common points A, C, D.
975. Pror. XCV. From a given point in a plane to raise a perpen-

Fig. 329. diculur to that plane.

Let it be required to raise a perpendicular from the point $\mathrm{A}($ fy. 330 .) in the phane L.MI.
Form a rectangle CDFG, divide it into two rectangles, having a common section $A B$, and place these rectangles upon the plane LMI in such a nanner that the bases of the two rectangles AC, AG slall be in the plane LM, and form any angle with each othr; the line AB shall be perpendicular to the plane LAI. The line AB makes right angles with the two lines AC, AG, which, by supposition, are in the plane LMI; it is therefore (Prp. 91.) perpendicular to the plane L.A.

Fig. 3.50 .
976. Prop. XCV1. If two p'anes cut cach other ut right angles, and a right line lie drawn in one of the planes perpendien'ar to their common intersection, it will be perpendicular to the other plune.

Let the two planes AFBG, ALBMI (fig. 331.), cut each other at right angles; if the line LC be perpendicular to their common intersection, it is alse perpendicular to the plane AFBG. Draw CG perpendicular to AB.

Because the lines CL, CG are perpendicular to the common in. tersection AB, the angle LCG (Defia. 3.) is the angle of inclination of the two planes. Since the wo planes cut each other perpendicularly, the angle of inclination LCG is therefore a right angle.

And because the line LC is perpendicular to the two lines C.I, CG in the plane ABFG, it is (Prop. 94.) perpendicular to the plane \triangle FBG.
977. Prop. XCVII. If one plane meet another plane, it makcs

Fig. 3.1. angles with that other planc, which are together equal to turo right angies.

Let the plane ALBMI (fig. 332.) meet the plane AFBG; these planes will make with cach other two angles, which will together be equal to two right angles. Through any point C draw the lines FG, Lal perpendicular to the line AB. The line CL makes with the line FG two angles together equal to two right angles. But these two angles are (Defin. 3.) the angles of inclination of the two planes. Therefore the two planes make angles with each other, which are together equal to two right angles.

Conomany. It may be demonstrated in the same manner that planes which intersect each other have their vertical angles equal, that parallel planes have their alternate angles equal, $\& c$.
978. Pror. XCVIII. If two planes be parallel to cueh other, a right line, which is perpendicular to oue of the planes, will be also perpenticalar to the other.

Let the two planes LM, FG (fig. 333.) be parallel. If the line BA be perpendicular to the plane FG, it will also be perpendicular to the plane LIN. From any point C in the plane LAI draw CD perpendicular to the plane FG, and draw BC, AD.

Because the lines $1 B A, C D$ are perpendicular to the plane FG , the angles A, D are right angles.

Because the planes LMI, FG are parallel, the perpendiculars AB, \mathbf{F} DC (Defin. 6.) are equal; whence it follows that the lines BC, AD are parallel.

The line BA, bcing at right angles to the line AD, will also (Prop. 13.) be at right angles to the parallel line BC. The line BA is therefore perpendicular to the line BC.

In the same manner it may be demonstrated that the line $B A$ is at right angles to all other lines which can be drawn from the point B in the plane LM. Wherefore (Defia. 2.) the line B_{A} is perpendicular to the plane LM.
979. Definitions. - 1. A solid, as we have before observed, is that which has length, breadth, and thickness.
2. A polyhedron is a solid terminated by plane surfaces.
3. A prisin is a solid terminated by two identica plane bases parallel to each other, and by surfaces which are parallelugrains. (Fig. 334.)
4. A parallelopiped is a prism the bases of which are parallelograms. (Fig. 335.)
5. A cube is a solid terminated by six square surfaces: a dic, for example, is a cube. (Fig. 336.)
6. If right lines be raised from every point in the perimeter of

Fis. 331.

Fig. 3.5. any rectilineal figure, and meet in one common point, these lines together with the rectilineal figure inelose a solid which is called a pyramid. (Fig. 337.)
7. A cylinder is a solid termmated by two planes, which are equal and paraliel eircles, and by a convex surface; or it is a solid formed by the revolution of a parallelogram about one of its sides. (Fiy. 3.38.)
S. If right lines be raised from every point

Fig. 356.

Fig. 337.

Fig. 33\%. in the circumference of a circle, and meet in one common point, these lines t ugcther with the circle inclose a solid, which is called a cone. (Fig. 339.)
9. A semicirele revolving about its diameter forms a solid, which is called a sphere. (Fig. 340.)
10. If from the vertex of a solid a perpendicular be let fall upon the opposite plane, this perpendicular is called the altitute of the solid. In the pyramids ACD, Acd (f fy. 341.), AB, ab are their respective altitudes.

Fig. 530.

Fig. 510.

Fig. 311.
11. Solids are said to be equal, if they inclose an equal space: thus a cone and a pyramid are equal solids if the space inclosed within the cone be equal to the space inclosed within the pyramid.
12. Similur solids are such as consist of an equal number of physical points disposed in the same manner.
Thus (in the fg. Defin. 10.) the larger pyramid ACD and the small.r pyramid Acd are smilar solids if every point in the larger pyramid has a point eorresponding to it in the smaller pyramid. A hundred nuaket balls, and the same number of camon balls, disposed in the same manner, form two similar solids
980. Prop. XCIX. The solid content of a cube is equal to the product of one of its sides twice multiplied by ilself.

Let the lines $A \mathrm{~B}, \mathrm{AD}$ (.fig. 342.) be equal. Let the line AD, drawn perpendicular to Al?, be supposed to move through the whole length of AB; when it arrives at BC , and coincides with it, it will have formed the square DABC, and will have been multiplied by the line AB.

Next let the line $A F$ be drawn equal to $A D$, and perpendicular to the plane DABC; suppose the plane DABC to move perpendicularly through the whole length of the line AF, when it arrives at the plane MFGL, and coincides with it, it will have formed the cube AFLC, and will have been multiplied by the line AF.

Flg. 342.

Hence it appears, that to form the cube $\Lambda F L C$, it is necessary, first, to multiply the side $A D$ by the side $A B$ equal to $A D$; and then to multiply the product, that is, the square of $A C$, by the side $A F$ equal to $A D$; that is, it is neeessary to multiply $A D$ by $A D$, and to multiply the produet again by AI)

9太1. Prop. C. Similur solids have their homologous lines proportional.

Let the two solids A, a (fig. 34:3.) be similar; and let their homologous lines, be $A B, a b, B G, b g ; A B$ will be to $B G$ at $a b$ to $b g$.

Because the solids Λ, a are similar, every point in the solid
 A has a point corresponding to it , and disposed in the same
manner, in the solid a. Thus, if the line AB is composed of 20 physical points, and the line BG of 10 , the line $a b$ will be composed of 20 correspondinge points, and the line big of 10 . Now it is evident that 20 is to 10 as 20 is to 10 : therefore $A B$ is to $13(\mathrm{a}$ as ab to bg . 982. I'rop. CI. S゙milar solids are equiangular.

Let the solids (see fig. to preced. Prop.) A, a be similar ; their corresponding angles are equal.

Because the solids A, a are similar, the surfaces BAl, baf are composed of an equal number of points disposed in the same manner. These surfaces are therefore similar figures, and consequently (Prop. 88.) equiangular. The angles 13, A, l' are therefore equal to the angles b, a, f. In the same manner it may be demonstrated that the other correspondent angles are equal.
983. Prop. CII. Solids which have their angles equal and their sides proportiona? are similar.

If the solids A, a ($f i g . S 44$.) have their angles equal and their sides proportional, th.ey are similar.

For if the solids A, a were not similar, another solid might be formed upon the line Bl' similar to the solid a. Jut this is impossible; for, in order to form this other solid, some angle or some side of the solid A must be increased or diminished; and then this new solid would not have all its angles equal and all its sides proportional to those of the solid a, that is (Prop. 100, 101.), would not be similar.
984. Pror. CIII. Similar solids are to one another as the cubes

Fig. 341. of their homologous sides.

Let A, a (see fig. to preced. Prop.) be two similar solids, the solid A contains the solid a as many times as the cube formed upon the side BF contains the cube formed upon the side $b f$.

Becanse the solid Λ is similar to the solid a, every point in the solid A has its corresponding point in the solid a. From whence it follows, that if the side lB F is composed, for example, of 50 points, the side bf will also be composed of 50 points : and consequently the enbes formed upon the sides Bl', bf will be composed of an equal number of points.

Let it then be supposed that the solid A is composed of 4000 points, and the cube of the side BF of 5000 points; the solid A must be composed of 4000 points, and the cube of the side $b f$ of 5000 points. Now it is evident that 4000 is to 5000 as 4000 to 5000 . Wherefore the solid A is to the cube of $B F$ as the solid a to the cube of $b f$; and, alternately, the solid A is to the solid a as the eube of $1 ; \mathrm{F}$ to the cube of $b f$.

Conollars. It may be demonstrated in the same manuer that the spheres A, a (fig. 345.), which are similar solids, are to one another as the cubes of their radii AB , : 6.
985. Prop. CIV. The solid content of a perpendicular prism is equal to the product of its base and height.

The solid content of the perpendienlar prism ABCD (fig. 346.) is equal to the

Fig. 315

Fis. 346. product of its base AD, and height AB.

If the lower base $A D$ be supposed to move perpendicularly along the height $A B$ till it coincides with the upper base BC, it will have formed the prism ABCD. Now the base AD will have been repeated as many times as there are physical points in the height $A B$. Therefore the solid content of the prism ABCD is equal to the product of the base multiplied by the height.

Corollary. In the same mamer it may be demonstrated that the soidd content of the perpendicular cylinder $\triangle B C D$ is equal to the product of its base $A D$ and height $A B$.
986. Pnor. CV. The solid content of an inclined prism is equal to the product of its base and height.

Let the inclined prism be CP (fig. 347.), it is equal to the product of its base P P and its height CD.

Conceive the base NB of the perpendieular prism $\mathrm{N} A$, and the base RP of the inclined prism PC, to move on in the same time parallel to themselves; when they have reached the points A and C, each of them will have been taken over again the same number of times. But the base NB will have been taken over again (Prop. 104.) as many times as there are physical points in the height CD. The base RI' will therefore lave heen taken over again as many times as there are physical points in CD.

Fig. 347. (onsequently the solid content of the inclined prism CP is equal to the product of its Ease RP and the height CD.
987. 1' kor . CVI. In a puramid, a sertion purallet to the lase is simitar to the base.

Let the section ch be parallel to the base ('1) (.fig. 348.) ; this section is a figure similar to the base. Draw AB perpendicular to the base CD; draw also $\mathrm{BC}, b c, \mathrm{BE}, b c$.

Because the planes cd CD are parallel ; AB, being perpendicular to the plane CD, will also (Prop. 98.) be perpendicular to the plane odt: whence the triangles $\mathrm{Abc}, \mathrm{ABC}$, having the angles $b, \mathrm{~B}$ right angles, and the angle A common, are equiangular. Therefore (Prop. 61.) $\mathrm{A} b$ is to $A B$ as $b c$ to $B C$, and as $A c$ to $A C$.

In like manner it may be proved that $A b$ is to $A B$ as be to BE, and as Ae to AE. Consequently if $\mathrm{A} b$ be one third part of AB, be will be one third part of BC , be the same of BE, Ac of AC , and Ae_{e}
 of $A \mathrm{E}$.

Again, in the two triangles $\boldsymbol{c A}, \mathrm{CAE}$, there are about the angle Λ, common to both, two sides proportional; they are therefore (Prop. 63.) equiangular, and consequently (Prop. 61.) have their other sides proportional. Thercfore ce will be proportional to CE.

The two triangles cbe, CBE, having their sides proportional, are therefore (Prop. 89.) similar. The same may be demonstrated concerning all the other tiangles which form tho planes $c d$, CD. Therefore the section $c d$ is similar to the base CD.

Remark. If the perpendicular AB fall out of the base; by drawing lines from the points $b, \mathrm{~B}$, it may be demonstrated in the same manner that the section is similar to the base.
988. Prop. CVII. In a pyramid, sections parallel to the base are to one another as the squares of their heights.

Let CD erl (fig. 349.) be parallel sections. From the vertex A draw a perpendicular AB to the plane CD : the plane cd is to the plane CD as the square of the height $A b$ is to the square of the height AB. Draw IBC, b.

The line AB, being perpendicular to the plane CD, will also (Prop. 98.) be perpendicular to the parallel plane $c d$: whence the angle $\mathrm{A} b c$ is a right angle, and also the angle ABC. Moreover, the angle at A is common to the two triangles $\mathrm{A} b c$, ABC; these two triangles, theretore, are equiangular. Therefore (Prop. 61.) the side $c \cdot b$ is to the side $C B$ as the side $A b$ is to the side $A B$; and consequently the square of $c b$ is to the square of CB as the square of $A b$ to the square of $A B$.

The planes $c d$, CD, being (Prou. 106.) similar figures, are to one another (1'rop. 82.) as the squares of the homologons lines cb, CB;

Fig. 319. they are therefore also as the squares of the heights $\mathrm{A} b, \mathrm{Alb}$.

Corollary. In the same manner it may be demonstrated that in a cone the sections parallel to the base are to one another as the squares of the heights or perpendicular distances from the vertex.
989. Рког. CVIII. Pyramids of the same height are to one anothcr as their bases.

Let A, F (fig. 350.) be two pyramids. If the perpendicular AB be equal to the perpendicular FG, the pyramid A is to the pyramid F as the base CD to the base LMI. Supposing, for example, the base CD to be triple of the base LAI, the pyramid A will be triple of the pyramid F.

Two sections $c d, l m$, being taken at equal heights $\mathrm{A} b, \mathrm{~F} g$, the section $c d$ is (Prop. 107.) to the base CD as the square of the height $A b$ to the square of the height AB; and the section l_{m} is to the base LMI as the square of the
 height Fg to the square of the height FO . And because the beights are eqral, AB to FG, and Λb to $\mathrm{F} q$, the section $e d$ is to the base CD) as the section m to the base LM ; and, alternately, the section cd is to the section $/ m$ as the base CD is to the base LM. But the base CD is triple of the base LM, therefore the section cd is also triple of the section lm .

Because the heights AF, FG are equal, it is manifest tha the two pyramids are composed of an equal number of physical surfaces placed one upon mother. Now it may he demonstrated in the same manner that every surface or section of the pyramid A is triple of the corresponding surface or section of the pyramid F . 'Therefore the whole pyramid A is triple of the whole pyramid F .

Corollary. Pyramids of the same height and equal bases are equal, since they are to one another as their basis.
990. Pкor. CIX. A pyramid whuse buse is that of a cube and uhose vertex is at the centrw of the eube is rqual to a thiril ?art of the product of its height and luse.

Let the cube AN and the pyramid C (.fig. 35I.) bave the same base AD, and let the vertex of the pyramid be at the centre of the cube C; this pyramid is equal to a third part of the product of its height and base.

Conceive right lines drawn from the centre of the cule to its pight angles A, B, D, F, N, G, L, M, the eube will be divided into six equal pyramids, each of which has one surface of the cube for its base, and half the height of the cube for its height; for example, the pyramid CAlBDF.

Three of these pyramids will therefore be equal to half the

Fig. 351. cube. Now the solid content of half the cube is (1'rop. 99.) equal to the product of the base and half the height. Each pyramid, therefore, will be equal to one third part of the protuct of the base, and half the height of the cube; that is, the whole height of the pyramid.
991. Pror. CX. The solid content of a pyramid is equal to a third part of the pronluct of its height and base.

Let R1'S (fig. 359.) be a pyramid, its solid content is equal to a third part of the product of its height and its base liS.

Form a cube the height of which BL is double of the height of the pyramid RIPS. A pyramid the base of which is that of this cube and the vertex of which is \mathbf{C}, the centre of the cube, will be equal to a third part of the product of its base and height.

The pyramids C and I ' have the same height ; they are therefore (Corol. to Prop. 108.) to one another as their bases. If the base AFD1B is double of the base RS, the pyramid C will there-

Fig. 352. fure be double of the pyramid P.

But the pyramid C is equal to a third part of the product of its height and base. The pyramid P will therefore be equal to a third part of the product of the same height, and half the base AFDB, or, which is the same thing, the whole base RS.
992. Pıop. CXI. The solid conient of a cone is equal to the third part of the product of its height and base.

For the base of a cone may be considered as a polygon composed of exceedingly smatl sides, and consequently the cone may be considered as a pyramid having a great number of exceedingly small surfaces; whence its solid contents will be equal (Prop. 110.) to one third part of the product of its height and base.
993. P'rop. CXII. The solid comtent of a cone is a third part of the solid content of a cylinder described alout it.

Let the cone BAC and the cylinder BDFC (fig. 353.) have the same height ant base, the cone is a third part of the cylinder.

For the cylinder is equal to the product of its height and base, and the cone is equal to a third part of this product. Therefore the cone is a third part of the cylinder.
994. Prop. CXIII. The solid content of a sphere is equal to a third part of the product of its radius and surface.
'T'wo points not being sufficient to make a curve line, three points will not be sufficient to make a curve surface. If, therefore, all the physical

Fig. 353. points which compose the surface of the sphere C (fig. 354 .) be taken three by three, the whole surface will be divided into exceedingly small plane surfaces; and radii being drawn to each of these points, the sphere will he divided into small pyramids, which have their vertex at the centre, and have plane hases.

The solid contents of all these small pyramids will be equal (Prop. 110.) to a third part of the product of the height and bases. Therefore the solid content of the whole sphere will be equal to a third part of the product of the height and all the bases, that is, of its radius and surface.
995. 1'rop. CXIV. The surface of a sphere is equal to four of its great pircles.

Fig. 354.

If a plane bisect a sphere, the section will pass through the centre, and it is called is great circle of the sphere.

Let A13CD (fig. 355.) be a square; describe the fourth part of the circmmference of a circle BLD; draw the diagonal AC, through G, the right line FM, parallel to $A D$, and the right line AL.

In the triangle $A B C$, on account of the equal sides $A B, B C$, the angles A and C are (1'rop. 4.) equal ; therefore, since the angle B is a right angle, the angles A and C are each half' a right angle. Again, in the triangle AFG, because the angle F is a right angle, and the angle A half a right angle, the angle G is also half a right angle ; therefore (Prop. 26.) AF is equal to F G.

Fic. 3b5

The radius $\Lambda \mathrm{L}$ is equal to the radius AD) but AD is equal to FM ; therefore AL is equal to FM.

In the rectangular triangle A FL the square of the hypothenuse AL is equal (Prop. 32.) to the two squares of AF and FL taken together. Instead of AL put its equal FMI, and instead of Al put its equal FG; and the square of FM will be equal to the two sipuares of FG and FL taken together.

Conceive the square $A B C D$ to revolve about the line $A B$. In the revolution the square will describe a cylinder, the quadrant a hemisphere, and the triangle ABC an inverted cone the vertex whereof will be in Λ. Also the line l'M will form a circular section of a cylinder, the line FL will form a eircular section of a hemisphere, and the line FG a circular section of a eone.

These circular sections, or circles, are to eaeh other (Prop. 83.) as the squares of their radii ; therefore, since the square of the radius FM is equal to the squares of the radii liL and FG, the eireular seetion of the eylinder will be equal to the eircular sections of the hemisphere and cone.

In the same manner it may be demonstrated that all the other seetions or circular surfaces whereof the eylinder is composed are equal to the corresponding sections or surfaces of the hemisphere and cone. Therefore the cylinder is equal to the hemisphere and cone taken together: but the cone (1'rop.112.) is equal to a third part of the eylinder; the hemisphere is therefore equal to the remaining two thirds of the cylinder; and consequently the hemisphere is double of the cone. The cone BSC (fig. 356.) is (Prop. 111.) equal to a third part of the product of the radius and base 13C, whieh is a great circle of the sphere: the hemisphere ALD is therefore equal to a third part of the produet of the radius and two of its great circles; and consequently the whole sphere is equal to a third part of the produet of the radius and four of its great circles.

Lastly, since the sphere is equal (Prop. 113.) to a third part of

Fig. 356. the product of the radius and surface of the sphere, and also to a third part of the product of the radius and four of its great circles, the surface of the sphere is equal to four of its great eircles.

Sect. II.

PRACTICAL GEOMETRY.

996. Praetical Geometry is the art of accurately delineating on a plane surface any plane figure. It is the most simple species of geometrical drawing, and the most generally useful; for the surfaces of buildings and other objeets are more frequently plane than curved, and they must be drawn with truth, and of the required proportions, before they can be properly executed, unless in cases where the extreme simplieity of the form renders it improbable that mistakes should arise. It has been defined as the art whieh directs the mechanical processes for finding the position of points, lines, surfaces, and planes, with the deseription of such figures on diagrams as ean be intelligibly understood by definition, aecording to given dimensions and positions of lines, points, \&.e.

No part of a building or drawing can be laid down or understood without the assistance of practical geometry, nor ean any mechanical employment in the building department be condueted without some assistance from this branch of the scienee. Cases frequently occur requiring a knowledge of very complex problems, as in masonry, carpentry, and joinery ; but these will be given in other parts of this work.

The demonstration of most of the following problems will be found in the preceding section; we therefore refer the reader back to it for definitions, and for the proof of those enunciations which will follow.

HROBLEMS.

997. Probiem I. To bisect a line AB; that is, to divide at into two equal parts.

Frorn the two centres A and B (fig. 357.) with any equal radii deseribe ares of circles iuterseeting each other in C and D, and draw the line CD. This will bisect the given line in the point E.
998. Рroв. II. To bisect an angle BAC.

From the centre A (fig. 358.) with any radius describe an are cutting off the equal Lines AD, AE; and from the two centres D, E, with the same radius deseribe ares mtresecting in F , then draw AF , and it will bisect the angle A , as required.
999. Гnob. III. At a given point C in a line A13 to erect a perpendicular.

From the given point C (.fig. 359.) with any radius cut off any equa parts (1), (F. of the given line; and from the two centres D and E with any one radius deseribe ares intersecting in F. Then join CF , and it will be the perpendicular required.

Otherwise - When the given point C is near the end of the line.

From any point D (fig. 360.) assumed above the line as a centre, through the given point C describe a circle eutting the given line at E , and through E and the centre D draw the diameter EDF;

Fig. ェif.

Pig. 359. then join CF, and it will be the perpendieular required.
1000. Prob. IV. From a given point A to let fall a perpendicular on a line BC.

From the given point A (fig.361.) as a centre with any eonvenient radius deseribe an are eutting the given line at two points D and E; and from the two centres D and E with any radius deseribe two ares intersceting at F ; then draw AF, and it will be the perpendicular to $B C$ reguired.

Otherwise - When the given point is nearly opposite the end of the line.

From any point D in the given line $B C$ (fig. 362.) as a centre, describe the are of a eirele through the given point A cutting BC in E ; and from the centre E with the

ris. 350 .

Fig osn
radius $E A$ deseribe another are eutting the former in F; then draw AGF, which will be the perpendicular to BC required.
1001. Prob. V. At a given point A, in a line AI3, to make an angle cqual to a given angle C .

From the eentres \mathbf{A} and \mathbf{C} (n.g. 363.) with any radius describe the ares DE, FG; then with F as a centre, and radius DE, describe an are eutting $F G$ in G; through G draw the line $A G$, which will form the angle required.
1009. Рвов. VI. Through a given point

Fig. 35\%.

Fig. 3 fi3.

Case I.
Take any point d in AB (fig. 364.); upon d and C , with the distance Cd , describe two ares, $e \mathrm{C}$ and $d f$, cutting AB in e and d. Make $d f$ equal to $e \mathrm{C}$; and through f draw $\mathrm{C} f$, and it will be the line required.

Fig. 364.

Case II.

Whem the parallel is to be drawn at a given distance from A 13
From any two points c and d in the line AB, with a radius equal to the given distance deseribe the ares e and f; draw the line $C B$ to touch those ares without cutting them, and i_{i} will be parallel to $A B$, as required.
ion3. Рвов. VII. To divide a line AB into any proposed number of equal parts.
Draw any other line AC (fig. 365.), forming any angle with the given line $A B$; on the latter set off as many of any equal parts $A \mathrm{D}, \mathrm{DE}, \mathrm{EF}, \mathrm{FC}$ as those into which the line AB is to be divided; join BC , and parallel thereto draw the other lines FG, EH, DI; then these will divide AB, as required.
1004. Prob. VIII. To find a third proportional to two otloer lii,es AB, AC.

Fig. 565.

Let the two given lines be placel to form any angle at A (fig. 366.), and in AB take A D equal to $A C$; join $B C$, and daw DE parallel to it; then $A E$ will the the third proportional sought.
1005. Рков. CX . To find a fourth propurtional to three linito A P, AC, AD.

Let tiro of the lines $A \mathrm{H}$, AC (fig. S67.), be so placed as to form any angle at A, and set out $\mathrm{A} \dot{\mathrm{D}}$ on AB ; join BC, and parallel to it draw DE ; then AE will be the fourth proportional required.
1006. Pros. X. To find a mean proportional between tuo lines AB, DC.

Place A13, BC (fig. 368.)
 joined together in one straight line AC , which bisect in the point O; then wit?, the centre O and radius OA or OC describe the semicircle ADC, to meet which erect the perpendicular BD , which will be the mean proportional between $A B$ and $B C$, sought.
1007. Рков. XI. To find the centre of a circle.
Draw any chard AB

(fig. 369.), and biseet perpendicularly with the line CD, which bisceted in O will be the centre required.
1008. Proe. XIL. To describe the circumference of a circle through three points A, B, C.

From the middle point B (fig. 370.) draw the chords BA, BC to the two other points, and bisect these chords perpendicularly by lines meeting in O, which will be the centre; from the centre O , with the distance of any one of the points, as OA , describe a circle, and it will pass through the two other points ${ }_{\beta}$ B, C, as required.
1009. Pros. XIII. To draw a tangent to a circle througlt a given point A.

When the given point A (fig. 371 I.) is in the circumterence of the circle, join A and the centre \mathbf{O}, and perpendicular thereio draw BAC, which will be the tangent required.

If the given point A (fig. 372.) be out of

Fig. 371.

Fig. 3:0.

Fig. 368.

Fig. 569.

Fig. 372. the circle, draw AO to the centre O, on which, as a diameter, describe a semicircle cutting the given circumference in \mathbf{D}, through which draw BADC, which will be the tangent required.
1010. Риoв. XIV. To draw an equilateral triangle on a given line AB.

From the centres A and B (fig. 373.) with the distance AB describe ares inter. secting in C ; draw AC, BC, and ABC will be the equilateral triangle.
1011. Рков. XV. To make a triangle with three given lines $\mathrm{AB}, \mathrm{AC}, 1 \mathrm{C}$.

Fig. 373.

Fiд. 371.

With the centre A and distance AC (fig. 374.) describe an are; with the centre B and distance BC describe another are cutting the former in C; draw AC, BC, and ABC will be the triangle required.
1012. Prob. XVI. To make a square on a given line AB .

Raise AD, BC (fig. 375.) each perpendicular and equal to AB , and join DC ; then $\mathrm{A} B C D$ will be the square sought.
1013. Prob. XVII. To inscribe a circle in a given triangle ABC.

Bisect the angles at A and B with the two

l'ig. 375.

Fig. 376. lines AD, BD (fig. 376.); from the intersection D, which will the the centre of the circle, draw the perpendiculars DE, DF, DG, and they will be the radii of the circle re quired.

1014 Риов. XVIII. To describe a circle about a firon triangle ABC.

Bisect any two sides with two of the perpendiculars DE, DF, DG (fig. 377.), and J; will be the centre of the circle.
1015. Prob. XiX. To inscribe an equilateral triangle in a giren circle.

Through the centre C draw any diameter A B (fig. 378.); from the point B as a centre, with the radius BC of the given circle, describe an are DCE; join AD, AE, DE, and AIDE is the equilateral triangle sought.
1016. Prob. XX. To inscribe a square in a given circle. (Half A B, BC, fc. furms an ortaym.)

Fig. 3 : $\%$

Fig. 3:8.

Draw two diameters AC, BD (fig. 379.) cressing at right angles in the centre E ; then join the four extremities A, B, C, D with right lines, and these will form the inseribed square ABCD.
1017. Prob. XXI. To describe a square about a giren circle.

Draw two diameters AC, BD crossing at right angles in the centre E (fig. 380.) ; then through the four extremities of these draw FG, IH parallel to AC, and FI, GI parallel to BD, and they will form the square FGHI.

Fig. 3:9.

Fig. 3 SO
1018. Pros. XXII. To inscribe a circle in a given square.

Bisect the two sides FG, FI in the points B and A (s"e fig. 380.) ; then through these two points draw AC paallel to FG or 1H, and BD parallel to Fl or GH. Then the point of intersection E will be the centre, and the four lines EA, EB, LC, ED radii of the inscribed circle.
1019. Рков. XXIII. To cut a given line in extreme and mean rutio.

Let AB be the given line to be divided in extreme and mean ratio (fig.381.); that is, so that the whole line may be to the groater part as the greater part is to the less part.

Draw BC perpendicular to AB, and equal to half $A B$; join $A C$, and with the centre C and distance CB describe the circle BDF; then with A as a centre and distance AD) desc ibe the are 1) E. Then AB will be divided in E in extreme and mean ratio, or so that AB is to AE as AE is to El3.
1020. Prob. XXIV. To inscribe an isosceles triangle in a given circle that shall have each of the
 angles at the base double the angle at the vertex.

Draw any diameter AB of the given circle (fig. 389.), and divide the radius CIB in the point D in extreme and mean ratio (hy the last problem); from the point B apply the chords BE, BF, each equal to the greater part CD; then join AE, AF, EF ; and AEF will be triangle required.
1021. Pros. XXV. To inscribe a regular pentugon in a given circle. (Half A D, g'c. i; a decagon.)

Inscribe the isosceles triangle A13 (fig. 383.) having each of the angles $\mathrm{ABC}, \mathrm{ACB}$ double the angle BAC (Prob. 24.) ; then bisect the two ares AD $13, \mathrm{AEC}$, in the points D, E; and draw the chords AD, DB, AE, EC; then ADBCE will

Fig. 383.

Fig. 384. be the inscribed regular pentagon required.
1022. Prob. XXVI. To inscribe a regular licragon in a circle. (IInlf AB, Şe. forms a dodecajon.)

Apply the radius of the given circle $A O$ as a chord (fig. 384.) quite round the circumference, and it will form the points thereon of the regular hexagon ABCDEF.
1023. Prob. XXVII. To describe a regular pentagon or hexagon about a circle.

In the given circle inscribe a regular polygon of the same name or number of sides as A BCDE (fig. 385.) by one of the foregoing prollems; then to all its angular points draw (Prob. 13.) tangents, and these will by their intersections form the

Fig. 3S'。

His. 360. circumscribing polygon required.
1024. Prob. XXVIII. To inscribe a circle in a remular polygm.
lisect ang two sides of the polygon by the perpendiculas $G O$, $\mathcal{F O}$ ($f i g .3$. 6 .) and their intersection O will be the centre of the inscribed circle, and OG or $O \mathrm{~F}$ will be the radins.
1025. Prgr. XXIX. To describe a circle uliout a reyvlar polycon.

Bisect any two of the angles C and I) with the lines CO, DO (fig. 387.), then their intersection O will be the centre of the circu:nscribing circle; and OC or OD will be the radius.
1026. 1'rob. XXX. To make a triangle equal to a given quadrilateral ABCD .

Draw the diagonal AC (fig. 388.), and parallel to it DE, meeting BA produced at E, and join CE; then will the triangle CEB be equal to the given quadrilateral ABCD.

Fig. 38.

Fig. 5 ss.

1027. Риов. XXXI. To moke a triungle equal to a given pentagon ABCDE.

Draw DA and DB, and also EF, CG parallel to them (fig. 389.), meeting AB pro. duced at F and G; then draw DF and I) G, so shall the triangle DFG be equal to the given pentagon ABCDE .
1028. Риов. XXX11. To make a rectangle equal to a given triungle ABC.

Biseet the base AB in D (fiy 390.), then raise DE and BF perpendicular to $\mathrm{A} B$, and meeting CF parallel to AB at E and F . Then DF will be the rectangle equal to

Fis. 359.

Fig. 390. the given triangle $A B C$.

1029. Pıoв. XXXII. To make a square equal to a givest rectangle ABCD.

Produce one side AB till BE be equal to the other side BC (fig.391.). On A E as a diameter describe a circle meeting BC produced at F, then will $B F$ be the side of the square BFGH equal to the given rectangle BD , as required.
1030. Риов. XXXIV. To draw a catenury, с C d (fig. 392.)

A catenary is a curve formed by a flexible

Fig. 391.

Fig. 392. cord or chain suspended hy its two extremities. Let e, d, in the line A B (fig. 392.) be the two points of suspension, atd fiom them let the cord or chain be hung so as to touch the point C the given depth. From this the curve may be traced on the paper.
1031. Рков. XXXV. To draw a cyclid.

Any points b (fig. 393.) in the circumerence of a circle rolled along a right line AB till such point is again in contact with the said line, generate a cycloid. Let BC be the circle. Then AB is equal to the semi-cireumference of such circle, and any chords at whose extremities b, lines $a b, a b$, equal to the lengths of ares they cut off, drawn parallel to $A \mathrm{~B}$, will furnish the necessary points for forming the curve.
1032. Рвов XXXVI. To draw a diayonal sale.

Let it be of feet, tenths and hundredth parts of a foot. Set off on Al; (fig. 394.) as many times as necessary, the number of feet by equal distances. Divide AG into ten equal parts. On AB raise the perpendiculars BD, GG, and AC , and set off on AC ten equal divisions of any conveniont length, through which draw horizontal lines. Thea, from the point G in DC to the first tenth part from G to A in B.I draw a diagonal, and parallel thereto the other diagonals reguired. 'The intersections of these diagonals with the horizontal lines give hundredth paits of a foot, inasmuch as each tenth is divided by the diago-

Fig. 391 nals into ten equal parts in deseending.

Se:t. III.

PIANE TRIGONOMETRY.

1033. Plame Trigonometry is that branch of mathematics whose olject is the investigation and calculation of the sides and angles of plane triangles. It is of the greatest noportance to the architect in almost every part of his practice; but the elements will be sufficient for his use, without pursuing it into those more abstruse subdivisions which are essential in the more abstract relations which connect it with geodisic operations.
1034. We have already observed that every circle is supposed to be divided into 360 equal parts, called degrees, and that each degree is subdivided into 60 minutes, these minutes each into 60 seconds, and so on. Hence a semicirele contains 180 degrees, and a quadrant 90 degrees.
1035. The measure of an angle is that are of a circle contained between those two lines which form the angle, the angular point being the centre, and such angle is estimated by the number of degrees contained in the are. Thus, a right angle whose measure is a quadrant or quarter of the circle is one of 90 degrees (Prop. 22. Geometry); and the sum of the three angles of every triangle, or two right angles, is equal to 180 degrees. Hence in a riglit-angled triangle, one of the acute angles being taken from 90 degrees, the other acute angle is known; and the sum of two angles in a triangle taken from 180 degrees leaves the third angle; or either angle taken from 180 degrees leaves the sum of the other two angles.
$103 f$. It is usual to mark the figure which denotes degrees with a small ${ }^{\circ}$: thus, 60° means 60 degrees; minutes are marked thus ': hence, 45^{\prime} means 45 minutes; seconds are marked thus ", 49 " meaning 49 seconds ; and an additional comma is superadded for thirds, and so on. Thus, $58^{\circ} 14^{\prime} 25^{\prime \prime}$ is read 58 degrees, 14 minutes, 25 seconds.
1036. The complement of an are is the quantity it wants of 90 degrees. Thus, AD (fig. 395.) being a quadrant, ID D is the complement of the arc $A B$, and, reciprocally, AB is the complement of BD. Hence, if an arc AB contain 50 degrees, its complement 131) will be 40 .
1037. The supplement of an are is that which it wants of 180 degrees. Thus, ADE being a semicircle, BDE is the supplement of the arc AD, which are, reciprocally, is the supplement of BIDE. Thus, if AB be an arc of 50 degrees, then its supplement BDE will be 130 degrees.
1038. The line drawn from one extremity of an are perpendicular to a diameter passing through its other extremity is called a sine or right sine. Thus, BF is the sine of the arc AB , or of the

Fif. 305. arc BDE. Hence the sine (BF) is half the chord (BG) of the double are (BAG).
1040. That part of the diameter intercepted between the are and its sine is called the rersed sine of an arc. Thus, AF is the versed sine of the arc AB, and EF the versed sine of the are EDB.
1041. The tangent of an are is a line which touches one end of the are, continued from: thence to meet a line drawn from the centre, through the other extremity, which last line is called the secant of the arc. Thus, AII is the tangent and CH the secant of the are A13. So EI is the tangent and CI the secant of the supplemental are BDE. The latter tangent and secant are equal to the former; but, from being drawn in a direction opposite or contrary to the former, they are denominated negative.
1042. The cosine of an are is the right sine of the complement of that arc. Thus BF, the sime of A13, is the cosine of BD .
1043. The cotangent of an arc is the tangent of that arc's complement. Thus AH, which is the tangent of AB , is the cotangent of BD .
1044. The cosecant of an are is the secant of its complement. Thus CFI, which is the secant of AB , is the cosecant of BI).
1045. From the above definitions follow some remarkable properties.
I. That an are and its supplement have the same sine, tangent, and secant; but the two latter, that is, the tangent and the secant, are accounted negative when the arc exceeds a quadrant, or 90 degrees. II. When the are is 0 , or nothing, the secant then becomes the radius CA, which is the least it can be. As the are increases from 0 , the sines, tangents, and secants all increase, till the are becomes a whole quadrant AD; and then the sine is the greatest it can be, being equal to the radins of the circle; under which circumstance the tangent and secant are infinite. III. In every arc AB, the versed sine AF, and the cosine BK or CF, are together equal to the radius of the circle. The radius CA, the tangent AH , and the secant CH , form a right-ang ed triangle CAH. Again, the radius, sine, and cosine form another right-angled triangle CBF or CBK. So also the radius,
cotangent, and cosecant form a right-angled triangle CDL. All these right-angled triangles are similar to each other.
1046. The sine, tangent. or secant of an angle is the sine, tangent, or secant of the are by which the angle is measured, or of the degrees, \&c. in the same are or angle. The method of constructing the seales of chords, sines, tangents, and secants engraved on mathematical instruments is shown in the annexed figure.
1047. A trigonometrical canon (fig. 396.) is a table wherein is given the length of the sine, tangent, and secant to every degree and minute of the quadrant, compared with the radius, which is expressed by unity or 1 with any number of eiphers. The logarithms, moreover, of these sines, tangents, and secants, are tabulated, so that trigonometrial calculations are performed by only addition and subtraction. 'Tables of this soit are published separately, and we suppose the reader to be providod with them.
1048. Problem I. To compute the natural sine and cosine of a given arc.

The semiperiphery of a circle whose radius is 1 is known to be $3 \cdot 141592653589793$, \&c.: we have then the following proportion: -

As the number of degrees or minntes in the semicircle
Is to the degrees or minutes in the proposed are,
So is $3 \cdot 14159265$, \&c. to the length of the said arc.

Now the length of the are being denoted by the letter a, and its sine and cosine by s and c, these two will be expressed by the two following series, viz. -

$$
\begin{aligned}
s & =a-\frac{a^{3}}{2 \cdot 3}+\frac{a^{5}}{2 \cdot 3 \cdot 4 \cdot 5}-\frac{a^{i}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}+\delta \mathrm{c} . \\
& =a-\frac{a^{3}}{6}+\frac{a^{5}}{120}-\frac{a^{-}}{5040}+\delta \mathrm{c} . \\
c & =1-\frac{a^{2}}{2}+\frac{a^{4}}{2 \cdot 3 \cdot 4}-\frac{a^{6}}{2 \cdot 34 \cdot 5 \cdot 5}+\delta \mathrm{c} . \\
& =1-\frac{a^{2}}{2}+\frac{a^{4}}{24}-\frac{a^{6}}{720}+\delta \mathrm{c} .
\end{aligned}
$$

Example 1. Let it be required to find the sine and cosine of one minute. The number of minutes in 180 degrees being 10800 , it will be, first, as $10800: 1:: 3 \cdot 14159265$, $\mathbf{~ c c}$. : (H022908s8208665 $=$ the length of an are of one minute. Hence, in this case,-

$$
\begin{aligned}
a & =\cdot 0002908882 \\
\text { and } \frac{1}{6} a^{3} & =00000000004
\end{aligned}
$$

The difference is $s=0.02908882$, the sine of one minute.
Also from 1 .
take $\frac{1}{2} \alpha^{2}=0 \cdot 0000000423079$, \&e.
leaves $c=9999999577$, the cosine of one minute.
Example 2. For the sine and cosine of 5 degrees:-
Here $180^{\circ}: 5^{\circ}: .3 \cdot 14159265$, \&c. : $\cdot 08726646=a$, the length of 5 degrees.

$$
\begin{aligned}
\text { Hence } a & =08726646 \\
-\frac{1}{6} a^{3} & =00011076 \\
+\frac{1}{\mathrm{~T} 20} a^{5} & =00000004
\end{aligned}
$$

These collected give $s=08715574$, the sine of 5 degrees.
And for the cosine $1=1$.

$$
\begin{aligned}
&-12 a^{2}=00380771 \\
&+\frac{1}{24} a^{i}=00000241 \\
& \hline
\end{aligned}
$$

These collected give $c=\cdot 99619470$, the cosine of 5 degrees.
In the same way we find the sines and cosines of other ares may be computed. The greater the arc the slower the series will converge ; so that more terms must be taken to make the calculation exact. Having, however, the sine, the cosine may be found from it by the property of the right-angled triangle $\mathbf{C B F}$, viz. the cosine $\mathbf{C F}=\sqrt{\mathrm{CB}^{2}-\mathrm{BF}^{-}}$, or $c=\sqrt{ } 1-5$. . There are other methods of constructing tables, but we think it unnecessary to mention them; our sole object being here merely to give a notion of the mode by which such tables are formed.
1049. Prob. II. To compute the tangents and secants.
llaving, by the foregoing problem, found the sines and cosines, the tangents and secants are easily found from the principles of similar triangles. In the are $\Lambda \mathrm{I}$ (ffig. .955.), where IB F is the sine, CF or BK the cosine, $A I I$ the tangent, CII the seant, I) L the cotangent, and CL , the cosecant, the radius being CA or CB or CD ; the three similar triangles CF B , CAH, CIIL, give the following propertions : -

1. CF: $\mathrm{FB}:: \mathrm{CA}: A H$, by which we find that the tangent is a fourth proportional to the cosine, sine, and radius.
2. $\mathrm{CF}: \mathrm{CB}:: \mathrm{CA}: \mathrm{CH}$, by which we find that the secant is a third proportional to the cosine and radius.
III. BF: FC::CD: DL, by whieh we find that the cotangent is a fourth proportional to the sine, cosine, and radius.
IV. $B F: B C:: C D: C L$, by which we find that the eosceant is a third proportional to the sine and radius.
Observation 1. There are therefore three methods of resolving triangles, or the eases of trigonometry; viz. geometrical construction, arithnetical computation, and instrumental operation. The method of carrying out the first and the last does not need explanation: the method is obvions. The second method, from its superior aceuracy in practice, is that whereof we propose to treat in this place.

Observation 2. Every triangle has six parts, viz. three sides and three angles. And in all cases of trigonometry, three parts must be given to find the other three. And of the three parts so given, one at least must be a side; because, with the same angles, the sides may be greater or less in any proportion.

Observation 3. All the cases in trigonometry are comprised in three varieties only; viz.

1st. When a side and its opposite angle are given. 2d. When two sides and the con. tained angle are given. 3d. When the three sides are given.
More than these three varieties there cannot possibly be; and for each of them we shan give a separate theorem.
1050. Theorem I. When a side and its opposite angle are two of the given parts.
'Then - the sides of the triangle have the same proportion to ach other as the sines of their opposite angles have. 'That is,

As any one side
Is to the sine of its opposite angle,
So is any other side
'To the sine of its opposite angle.
For let ABC (fig. 397.) be the proposed triangle, having AB the greatest side, and BC the least. 'Take AD as a radius equal to BC, and let fall the perpendiculars DE, CF, which will evidently be the sines of the angles A and B, to the radius $A D$ or BC. Now the triangles $\mathrm{ADE}, \mathrm{ACF}$ are equiangular ; they therefore have their like sides proportional, namely, $A C: C F:: A D$ or $B C: 1) E$, that is, the sine $A C$ is to the sine of its opposite angle B as the side $B C$ is to the

Fig. 397. sine of its opposite angle A.

Note 1. In practice, when an angle is sought, the proportion is to be begun with a side opposite a given angle; and to find a side, we must begin with the angle opposite the given side.

Note 2. By the above rule, an angle, when found, is ambiguous; that is, it is not certan whether it be acute or obtuse, unless it come out a right angle, or its magnitude be sueh as to remove the ambiguity; inasmuch as the sine answers to two angles, which are supplements to each other; and hence the geometrical construction forms two triangles with the same parts, as in an example which will follow: and if there be no restriction or limitation inslnded in the question, cither result may be adopted. 'The degrees in a table auswerinf t : the sine is the acute angle; but if the angle be obtuse, the degrees must be subtracted from 180 degrees, and the remainder will be the obtuse angle. When a given angle is obtuse, or is one of 90 degrees, no ambiguity ean ocenr, because neither of the other angles can then be obtuse, and the giometrical construction will only form one triangle.

Example 1. In the plane triangle ABC,

$$
\text { BC } \quad 2: 32 \text { fect, }
$$

$\begin{array}{ll} \\ \angle A & 37 \\ 20\end{array}$
Required the other parts.
First, to the angles at C and B (.tig. 39s.)

Figesigs

It is to be observed here that the second and third logarithms are added (that is, the numbers are multiplied), and from the sum the first logarithm is subtracted (that is, division by the first number), which leaves the remainder 9.955127 , which, by the table of sines, is found to be that of the angle $115^{\circ} 36^{\prime}$, or $64^{\circ} 24^{\prime}$.
'To find the side AC.

As sine $\angle A$	37°	20^{\prime}			1.og. $9 \cdot 782796$
To opp. side BC	$=232$				$2 \cdot 365488$
So sine L B	$=\left\{\begin{array}{r}27 \\ -8\end{array}\right.$	04	-	-	$9 \cdot 658037$
To oppe side AC	$=178$ $=17404$	16	-	-	9.990829 $2 \cdot 240729$
Or	374.56		-		2.573521

Example 2. In the plane triangle ABC,

| Let AB | $=365$ yards, |
| :--- | :--- | :--- |
| $\angle \mathrm{A}$ | $=57^{\circ} 122^{\prime}$ |
| $\angle \mathrm{B}$ | $=24 \quad 45$ |

Herein two argles are given, whose sum is $81^{\circ} 57^{\prime}$. 'Therefore $180^{\circ}-81^{\circ} 57^{\prime}=\angle \mathrm{C}$.

As sine $\angle \mathrm{C}$	$=98^{\circ}$	3^{\prime}	-	- Log. $9 \cdot 9956993$
Is to AB	$=365$			
So sine $\angle \mathrm{B}$	$=24^{\circ} 45^{\prime}$	-	-	$2 \cdot 5622929$
To side AC	$=154: 33$		-	$=2 \cdot 6218612$

To find the side BC.

As sine $\angle \mathrm{B}$	$=24^{\circ} 45^{\prime}$	-	- Log. $9 \cdot 6218612$	
Is to AC	$=154 \cdot 33$	-	-154548	
So sin. $\angle \mathrm{A}$	$=57^{\circ} 12^{\prime}$	-	-	$9 \cdot 9245721$
To side BC	$=309.86$	-	-	$=2 \cdot 4911657$

1051. Theorem II. When two sides and their contained angie are given.

The given angle is first to be subtracted from 180° or two right angles, and the remainder will be the sum of the other two angles. Divide this remainder by 2 , which will give the half sum of the said unknown angles; and using the following ratio, we have -

As the sum of the two given sides
Is to their difference,
So is the tangent of half the sum of their opposite angles
'To the tangent of half the difference of the same angles.
Now the half sum of any two quantities increased by their half difference gives the greater, and diminished by it gives the less. If, therefore, the half difference of the angles above found be added to their half sum, it will give the greater angle, and subtracting it will leave the lesser angle. All the angles thus become known, and the unknown side is then found by the former theorem.

For let ABC (fig. 399.) be the proposed triangle, having the two given sides AC, BC, including the given angle C . With the centre C and radius E CA , the less of these two sides, describe a semicircle, meeting the other side of BC produced in E , and the naknown side AB in G. Join AE, CG, and draw DF parallel to AE. Now 13 E is the sum of the given sides AC, CB, or of EC, CB; and Bi) is the difference of these given sides. The external angle $\triangle C E$ is equal to the sum of the two internal or given angles CAB, CBA ; but the angle ADE at the circumference is equal

rig. 3.99. to half the angle $A C E$ at the centre; wherefore the same angle $A D E$ is equal to half the sum of the given angles CAI, CBA. Also the external angle $A G C$ of the triangle BGC is equal to the sum of the two internal angles GCB, GBC, or the angle GCB is equal to the difference of the two angles $\Lambda \mathrm{GC}$, GBC; but the angle CAB is equal to the said angle AGC , these being opposite to the equal sides AC , CG ; and the angle DAB at the eircumference is equal to half the angle DCG at the centre. Therefore the angle DAB is equal to half the difference of the two given angles $\mathrm{CAB}, \mathrm{CBA}$, of which it has beren shown that $A D E$ or $C D A$ is the half sum.

Now the angle DAE in a semicircle, is a right angle, or AE is perpendicular to AD; ant DF, parallel to AE, is also perpendicular to AD: therefore AE is the tangent of CDA the half sum; and DF, the tangent of DAB, the half difference of the angles to the same radius AD, by the definition of a tangent. But the tangents AL: DF being parallel, it will be as $\mathrm{BE}: \mathrm{BD}:: \mathrm{AE}: \mathrm{DF}$; that is, as the sum of the sides is to the difference of the sides, so is the tangent of half the sum of the opposite angles to the tangent of half their difference.

It is to be observed, that in the third term of the proportion the cotangent of half the given angle may be used instead of the tangent of the half sum of the unknown angles.

Example. In the plane triangle ABC (fig. 400.),

$$
\text { Let } \begin{aligned}
A \mathrm{~B} & =34.5 \mathrm{ft} \\
\Lambda \mathrm{C} & =174 \cdot 07 \mathrm{ft} . \\
\angle \mathrm{A} & =37^{\circ} 20^{\prime} .
\end{aligned}
$$

Now, the side AB beiug		From	$180^{\circ} 00$
The side AC	174.07	Take LA	3720
Their sum is	519.07	Sum of C and B	14240
Their difference	$170 \cdot 93$	Half sum of do.	7120
As the sum of the sides	$\mathrm{AB}, \mathrm{AC}=519.07$	- Log.	2715226
To difference of sides	$A B, A C=170.93$	- -	2-232818
So tung, half sum $\angle s$ C	and $B=71^{\circ} 20^{\prime}$	- -	10.471298
To tang. half diff. $\angle s$ C	and B $=4416^{\prime}$	- -	9.988890
These added, giv	$e \angle C \quad=11536^{\prime}$		

By the former theorem : -			

1052. Theonem 111. When the three sides of a triangle are given.

Let fall a perpendicular from the greatest angle on the opposite side, or base, dividing it into two segments, and the whole triangle into two right-angled triangles, the proportion will be-

> As the base or sum of the segments
> Is to the sum of the other two sides,
> So is the difference of those sides
> To the difference of the segments of the base.

Then take half the difference of these segments, and add it to the half sum, or the half base, for the greater segment; and for the lesser segment subtract it.

Thus, in each of the two right-angled triangles there will be known two sides and the ungle opposite to one of them, whence, by the first theorem, the other angles will be found.

For the rectangle under the sum and difference of the two sides is equal to the rectangle conder the sum and difference of the two segments. Therefore, forming the sides of these rectangles into a proportion, their sums and differences will be found proportional.

Example. In the plane triangle A1BC (fig. 401.),
Let $\mathrm{AB}=345 \mathrm{ft}$.

$$
\begin{aligned}
& \mathrm{AC}=232 \mathrm{ft} . \\
& \mathrm{BC}=174 \cdot 07 .
\end{aligned}
$$

Letting fall the perpendicular Cl^{\prime},

$$
\begin{aligned}
& \text { Base AB:AC+BC::AC-BC:AP-BP; } \\
& \text { That is, } 345: \quad 406 \cdot 07:: \quad 57 \cdot 93: \quad 68 \cdot 18=\mathrm{AP}-\mathrm{BP} \text {; } \\
& \text { Its half is } \\
& 34.09 \\
& \text { The half base is } 172 \cdot 50 \\
& \text { The sum of these is } 206.59=\mathrm{AP} \\
& \text { And their difference } 138 \cdot 41=\mathrm{BP}
\end{aligned}
$$

Fis. 4ut.

In an, in the triangle APC right-angled at P,

As the side AC	$=232$	- Log. $2 \cdot 365488$	
To ine opp. $\angle P$	$=90^{\circ}$	-	10.000000
So is side AP	$=206.59$	-	$2.315!09$
To sine opp. $\angle A C P$	$=62^{\circ} 56^{\prime}-$	9.949621	
Which subtracted from	$=900$		
Leaves $\angle A$		2704	

Again, in the triangle $B P C$, right-ancole:l at Γ°.

As the side BC	$=174.07$	-	Log. $2 \cdot 140724$
'To sine opp. $\angle \mathrm{I}$ '	$=90^{\circ} 00^{\prime}$		10.000000
So is side BP	$=138.41$	-	2-141136
To sine opp \angle BCP	$=52^{\circ} 40^{\prime}$		$9 \cdot 900412$
Which taken from	$90 \quad 00$		
Leaves the $\angle \mathrm{B}$	37 20)		
Also the angle ACP	$=6256$		
Added to the angle $\mathrm{BCP}^{\text {P }}$	$=5240$		
Gives the whole angle ACB	$=115 \quad 36$		

So that the three angles are as follow, viz. L A $274^{\prime} ; \angle \mathrm{B} 37^{\circ} 20^{\circ} ; \angle \mathrm{C} 11.5^{\circ} 36$.
1053. Tneorfa IV. If the triangle be right-anglid, any unknown part may be fornd by tha fillowing proportion: -

> As radius
> ls to either leg of the triangle,
> So is tangent of its adjacent angle
> To the other leg;
> And so is secant of the same angle
> To the hypothenuse.

For $A B$ being the given leg in the right-angled triangle $A B C$, from the centre A with any assumed radius A D) describe an are DE, and draw DF perpendicular to AB , or parallel to BC . Now, from the definitions, $D F$ is the tangent and $A F$ the secant of the arc $D E$, or of the angle A, which is measured by that are to the radius Al). 'Thon, beeanse of the parallels BC, DF, we have AD:AB::DF:BC, and : AF : AC, which is the same as the theorem expresses in words.

Note. Radius is equal to the sine of 90 , or the tangent of 45°, and is expressed by 1 in a table of natural sines, or by 10 in logarithmic sines.

Fig. 40\%.

Example 1. In the right-angled triangle A i $B C$,

Note. There is another mode for right-angled triangles, whic! is as follows: -
A $B C$ being such a triangle, make a leg $A B$ tadius; or, in other words, from the centre. A with distance AB describe an are $13 F$. It is evident that the other leg BC will represent the tangent and the hypothenuse $A C$ the secant of the are 13 F or of the angle A.

In like manner, if $B C$ be taken for radius, the other leg $A B$ represents the tangent, and the hypothenuse AC the secant of the are $\mathrm{B} \cdot \mathrm{G}$ or angle C.

If the hypothennse be made radius, then each leg will represent the sine of its opposite angle; namely, the leg A13 the sine of the are $A E$ or angle C, and the leg $B C$ the sine of the are $C D$ or

Fig. 10 . angle A.

Then the general rule for all such cases is, that the sides of the triangle bear to each other the same proportion as the parts which they represent. This method is called makirs every side radius.
1054. If two siden of a right-angled triangle are given to find the third side, that may be found ing the property of the squares of the sides (Geom. Prop.s2.; viz. That the square of the bypothenuse or longest side is equal to both the squares of the two other sides together). Thus, if the longest side be sought, it is equal to the square root of the sum of the squares of the two shorter sides; and to find one of the shorter sides, subtract ene square from the other, and extract the square root of the remainder.
1055. The application of the foregoing theorems in the cases of measuring heights and dist ances will be obvious. It is, however, to be observed, that where we have to find the length of inaceensible lines, we must employ a line or base whieh can be measured, and, by means of angles, which will be furnished by the use of instruments, caculate the length, of the ot!ier lines.

Secr. IV.

CONIC SECTIONS.

1056. The conic sections, in geometry, are those lines formed by the intersections of a planwith the surface of a cone, and which assume diferent forms and aequire different propertics aecording to the several directions of such plame in respect of the axis of the cone. Their species are five in number.
1057. Demintions.-1. A plane passing through the vertex of a cone meeting the plane of the base or of the base produced is called the directing plane. The plane VRX (fig. 404.) is the directing plame,
1058. The tine in which the directing plane meets the plane of the base or the plane of the base produced is called the direcarix. The line RX is the directix.
1059. If a cone be cut by a plane parallel to the directing plane, the section is called a conic section, as AMB or AllI (fig. 405.)
1060. If the plane of a conic section be cut by another plane at right angles passing along the axis of the cone, the common section of the two planes is called the

Firs. 401.

Fig. 415. line of the axis.
5. The point or points in which the line of the axis is cut by the conic surface is or are called the vertex or vertiecs of the conic section. Thus the points A and 13 (.figs. 404. and 405.) are both vertices, as is the point A or vertex (fig. 406.).
o. If the line of the axis be cut in two points by the conic surface, or by the surfaces of the two opposite cones, the portion of the line thos intercepted is called the primary axis. The line AB (figs. 404. and 405.) and AII (fig. 406.) is called the primary axis.
7. If a straight line be drawn in a conie section perpendicular to the line of the axis so as to meet the curve, sueh straight line is called an ordinate, as PMI in the above figures.
8. The alscissa of an ordinate is that portion of the line of axis contained between the vertex and an ordinate to that line of

Fig. 406. axis. Thus in figs. 404, 405, and 406. the parts $A 1$ ', 131 ' of the line of axis are the abseissas AP 13 P .
9 If the primary axis be bisected, the bisecting point is called the centre of the conic section.
10. If the directrix fall without the base of the cone, the section made by the cutting plane is called an ellipse. 'Thus, in fig. 404., the section AMB' is an ellipse. It is evident that, since the plane of section will cut every straight line drawn from the vertex of the cone to any point in the circumference of the base, every straight line drawn within the figure will be limited by the conic surface. Hence the axis, the ordinates, and abscissas will be terminated by the curve.
11. If the directrix fall within the base of the cone, the section made by the cutting plane is called an hyperbola. Hence it is evident, that since the directing plane passes alike through both cones, the plane of section will cut each of them, and therefore two sections will be formed. And as every straight line on the surface of the cone and on the same side of the directing plane cannot meet the cutting plane, neither figure can be enclosed.
12. If the directrix touch the curve forming the base of the cone, the section made by the catting plane is a parabola

OF TIIE ELLIPSIS.

1058. The primary axis of an ellipsis is called the major axis, as AB (fiy. 407.); and a straight line DE drawa through its centre perpendicular to it, and terminated at each extremity by the curve, is called the minor axis.
1059. Λ straight line $V Q$ drawn throngle the centre and terminated at each extremity by the curve is called a diameter. Ilence the: two axes are also diameters.

Fig. 807.
1060. The extrenities of a diameter which terminate in the curve are ealled the vertices of that diameter. Thus the points V and Q are the vertices of the dianeter V Q.
1051. A straight line drawn from any point of a diameter parallel to a tangent at either extremity of the diameter to meet the curves is called an ordinate to the two abscissas. Thus Pil, being parallel to a tangent at \mathbf{V}, is an ordinate to the two abscissas VI', $\mathrm{P}^{\prime} \mathrm{Q}$.
1052. If a diameter be drawn through the centre parallel to a tangent at the extremity of another diameter, these two diameters are called conjugate diameters. 'ihns VQ and RS are conjugate diameters.
1063. A third proportional to any diameter and its conjugate is called the parameter or latus reetum.
106.1. The points in the axis where the ordinate is equal to the semi-parameter are ealled the foci.
106.5. Theorem I. In the ellipsis the squares of the ordinates of an axis are to each wher as the rectangles of their abscissas.

Let AVB (fic. 408.) be a plane passing through the axis of the cone, and ALB another section of the cone perpendieular to the plane of the former ; Al the axis of the elliptic section, and PN, III ordinates perpendicalar to it ; then it will be

$$
P I^{2}: H I 2:: A P \times P B: A I I \times H D
$$

For through the ordinates PM, HI draw the eircular sections KML, MIN parallel to the base of the cone, having KL, MN for their diameters, to which PM, III are ordinates as well as to the axis of the ellipse. Now, in the similar triangles AlL, AHN,

$$
\begin{aligned}
& \text { AP : PL::AH: HN, } \\
& \text { BP : PK::BH: HM. }
\end{aligned}
$$

And in Bl'K, BHM,

Taking the reetangles of the corresponding terms,

$$
\mathrm{AP} \times \mathrm{BP}: \mathrm{PL} \times \mathrm{PK}:: \mathrm{AH} \times \mathrm{BH}: \mathrm{HN} \times \mathrm{H} \mathrm{M} .
$$

By the property of the circle,

$$
\begin{aligned}
& \mathrm{PL} \times \mathrm{PK}=\mathrm{PM}^{2} \text { and } \mathrm{HN} \times \mathrm{INM}_{\mathrm{I}}=\mathrm{IH} \text {. Therefore, } \\
& \text { AP } \times \text { BP: } \mathrm{P}^{2}: ~: ~ A H \times 11 B: ~ I I P \text {, or }
\end{aligned}
$$

Coroll. 1. If C be the centre of the figure, $\mathrm{AP} \times \mathrm{PB}=\mathrm{CA}^{\circ}-\mathrm{CP}$, and $\mathrm{AH} \times \mathrm{HB}=$ CA2-CH2.

Theretore $1^{2} 1^{2}: 11^{2}: \mathrm{CA}^{2}-\mathrm{CP} 2: \mathrm{CA}^{2}-\mathrm{CHI}$. For $\mathrm{AP}=\mathrm{CA}-\mathrm{CP}^{2}$, and $\mathrm{P}^{2} \mathrm{~B}=$ $\mathrm{CA}+\mathrm{CP}^{\prime}$: consequently $\mathrm{AP} \times \mathrm{PB}=\left(\mathrm{CA}-\mathrm{CP}^{\prime}\right)\left(\mathrm{CA}+\mathrm{CP}^{3}\right)=\mathrm{CA}^{2}-\mathrm{CP}^{2}$; and in the same manner it is evident that $\mathrm{AH} \times \mathrm{HB}=(\mathrm{CA}+\mathrm{CH})\left(\mathrm{CA}-\mathrm{CH}^{2}=\mathrm{CA}^{2}-\mathrm{CH}^{2}\right.$.

Coroll. 2. If the point P coincide with the middle point C of the semi-major axis, PM will become equal to CE, and CP will vanish; we shall therefore have

$$
\begin{gathered}
\text { PM }: ~ H I^{2}:: \mathrm{CA}^{2}-\mathrm{CP}^{2}: \mathrm{CA}^{2}-\mathrm{CH}^{2} \\
\text { Now } \mathrm{CE}^{2}: \mathrm{HI}^{2}: \mathrm{CA}^{2}: \mathrm{CA}^{2}-\mathrm{CH}^{2} \text {, or } \mathrm{CA}^{2} \times \mathrm{HI}^{2}=\mathrm{CE}^{2}\left(\mathrm{CA}^{2}-\mathrm{CH}^{2}\right) .
\end{gathered}
$$

1066. Theorem II. In every ellipsis the square of the major aris is to the square of the minor axis as the roctungle of the abscissas is to the square of their ordinate.

Let AB (fig. 409.) be the major axis, DE the minor axis, C the centre, P'M and III ordinates to the axis $A B$; then will

$$
\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{AP} \times \mathrm{PB}: \text { PAI }
$$

For since by Theor. I., PMe: HIO: AP, PB: AH $\times 11 \mathrm{D}$; and if A the point II be in the centre, then AH and 11 B become each erpual to CA , and 111 becomes equal to CE; therefore

$$
\begin{array}{r}
\mathrm{PMI}^{2}: \mathrm{CE}^{2}:: A \mathrm{I}^{\prime} \times \mathrm{I}^{\prime} \mathrm{B}: \mathrm{CA}^{2} ; \\
\text { And, alternately, } \mathrm{CA}^{2}: \mathrm{CE}^{2}:: A \mathrm{I}^{\prime} \times \mathrm{P}^{\prime} \mathrm{B}:: \mathrm{I}^{\prime} \mathrm{MI}^{2} .
\end{array}
$$

Coroll. 1. Hence, if we divide the two first terms of the analogy by AC, it will be $\mathrm{CA}: \frac{\mathrm{C} \mathrm{I}^{2}}{\mathrm{CA}}:: \mathrm{AP} \times \mathrm{PB}: \mathrm{PN}^{2}$. But by the definition of paramcter, AB:DE::DE: parameter, or CA: $\mathrm{CE}:: 2 \mathrm{CE}:$ parameter $={ }_{\mathrm{C}}^{\mathrm{C}} \mathrm{CE}^{2}$. Therefore $\frac{2 \mathrm{CE}^{2}}{\mathrm{CA}}$ is the parameter, which let us call I'; then

$$
A B: P:: A P \times P B: P M{ }^{2}
$$

Coroll 2. Hence $\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CA}^{2}-\mathrm{CP}^{2}: \mathrm{PM}^{2}$. For $\mathrm{CA}^{2}-\mathrm{CP}^{2}=(\mathrm{CA}-\mathrm{CP})$ $\left(\mathrm{CA}+\mathrm{Cl}^{2}\right)=\left(\mathrm{Al}^{\prime} \times \mathrm{P}^{\prime} \mathrm{B}^{3}\right)$.

1067. Tueorem III. In every ellipsis, the square of the minor axis is to the square of the muijor axis as the difference of the squares of half the minor wis aml the distance of an ordinate from the centre on the minor axis to the sqiarre of that ordinute.

Draw MQ (fig. 410.) parallel to AB, meeting CE in Q ; then will

$$
\mathrm{CE}^{2}: \mathrm{CA}^{2}:: \mathrm{CE}^{2}-\mathrm{CQ}^{2}: \mathrm{Q}^{2} \mathrm{I}^{2} ;
$$

For by Cor. $\dot{\text { g }}$. Theor. II., CA ${ }^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}: \mathrm{CE}^{2}:$ PM2; There:ore, by division, $\mathrm{CA}^{2}: \mathrm{CP}^{2}:$: $\mathrm{CE}^{2}: \mathrm{CE}^{2}-\mathrm{PM}$.
Therefore, since $\mathrm{CQ}=\mathrm{P}^{2} \mathrm{I}$ and $\mathrm{CP}=\mathrm{QM} ; \mathrm{CA}^{2}: \mathrm{Q}^{2}:: \mathrm{CE}^{2}: \mathrm{CE}^{2}-\mathrm{CQ}^{2}$.
Coroll. 1. If a eircle be described on each axis as a diameter, one being inseribed within the ellipse, and the other cireumseribed ahout it, then an ordinate in the circle will be to the corresponding ordinate in the elliysis as the axis belonging to this ordinate is to the axis belonging to the other; that is,

$$
\begin{aligned}
& \text { CA : CE::PG: PM, } \\
& \text { and CE : CA: }: p g: p \text { M; } \\
& \text { and since } C A^{2}: C E 2: A P \times P B: P M \text {, } \\
& \text { and because } \mathrm{AP} \times \mathrm{PB}=\mathrm{PG}^{2} ; \mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{P}^{2}: \mathrm{PM}^{2} \text {, } \\
& \text { or CA : CE:: PG: PA. }
\end{aligned}
$$

Fig. 112.

In the same manner it may be shown that CE: CA::pg :pM, or, alternately, CA : CE::pMI:pg; therefcre, by equality, PG:PM::pМI:pg, or PG:Cp::CP:pg: therefore $\mathrm{C} g \mathrm{G}$ is a continued straight line.

Coroll. 2. Hence, also, as the ellipsis and circle are made up of the same number of corresponding ordinates, which are all in the same proportion as the two axes. it follows that the area of the whole circle and of the ellipsis, as also of any like parts of them, are in the same ratio, or as the square of the diameter to the rectangle of the two axes; that is, the area of the two circles and of the ellipsis are as the square of each axis and the rectangle of the two; and therefore the ellipsis is a mean proportional between the two cireles.

Coroll. 3. Draw MQ parallel to GC, meeting ED) in Q; then will $Q M=C G=C A$; and let 12 be the point where QN ents AB; then, becanse QNGC is a parallelogram, Q\I is equal to $\mathrm{CG}=\mathrm{CE}$; and therefore, since $Q M$ is equal to CA , half the major ax is and RMM $=$ CE, half the minor asis QR is the difference of the two semi-axes, and hence we have a method of descriting the elliphis. This is the principle of the trammel, so well knuwn among wotkmen.

If we coneeive it to move in the line $D E$, and the point R in the line $A B$, while the point M is carried from A, towards E, B, D, until it return to A, the point M will in its progress describe the curve of an ellipsis.
1068. Theorem IV. The square of the distance of the fori from the centre of an ellipsis is equal to the difference of the square of the semi-axes.

Let AB (fig. 412.) be the major axis, C the centre, F the focus, and FG the semi-parameter; then will $\mathrm{CE}^{2}=\mathrm{CA}^{2}-\mathrm{CP}^{2}$. For draw CE perpendicular to AB, and join FE. By Cor. 2. Th. II., CA2 : $\mathrm{CE}^{2}: \mathrm{CA}^{2}-$ CF- : FG^{2}, and the parameter FG is a third pioportional to CA , CE ; therefore $\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CE}^{2}: \mathrm{FG}^{2}$, and as in the two ana. logies the first, second, and fourth terms are identical, the third terms are equal ; consequently

Fig. 412.

$$
\text { Coroll. 1. Hence } \mathrm{CF}^{2}=\mathrm{CA}^{\circ}-\mathrm{CE}^{2} \text {. }
$$

Coroll. 2. The two semi-axes and the distance of the focus from the centre are the sides of a right-angled triangle CFE, and the distance FE from the focus to the extremity of the minor axis is equal to CA or CB , or to half the major axis.

Coroil. 3. The minor axis CE is a mean proportional between the two segments of the axis on each side of the fens. For $\mathrm{CF}^{2}=\mathrm{CA}^{2}-\mathrm{CF}^{2}=(\mathrm{CA}+\mathrm{CF}) \times(\mathrm{CA}-\mathrm{CF})$.
1069. Thforem V. In an ellipsis, the sum of the lines drou'n from the foci to any point in the curve is equal to the major aris.

Let the points $\mathbf{F}, f(f i g .413$.) be the two foei, and M a point in the curve ; join FM and $f M$, then will $\mathrm{AB}=2 \mathrm{CA}=\mathrm{F} 3 \mathrm{i}+f \mathrm{l}$.

By Cor. 2. Tı. II., CA ${ }^{2}: \mathrm{CE}^{2}: \mathrm{CA}^{2}-\mathrm{Cl}^{2}: \mathrm{PM}^{2}$,
But by Th. IV., $\quad \mathrm{CE}^{2}=\mathrm{CA}^{2}-\mathrm{CF}^{2}$;
Therefore $\quad \mathrm{CA}^{2}: \mathrm{CA}^{2}-\mathrm{CF}^{2}:: \mathrm{CA}^{2}-\mathrm{CP}^{2}: \mathrm{P}^{2} \mathrm{I}^{2}$;

And by taking the rectangle of the extremes and means, and dividing the "quation by CA2, the result is-

$$
\begin{aligned}
& \qquad \mathrm{P}^{2}=\mathrm{CA}^{2}-\mathrm{CP}^{2}-\mathrm{CF}^{2}+\frac{\mathrm{CF}^{2} \cdot \mathrm{CP}^{2}}{\mathrm{CA}^{2}} \\
& \text { And because } \mathrm{FP} \mathrm{P}^{2}=(\mathrm{CF}-\mathrm{CP})^{2}=\mathrm{CF}^{2}-2 \mathrm{CF}^{2} \cdot \mathrm{CP}+\mathrm{CP}^{2} \text {, } \\
& \text { And since } \quad \mathrm{F} \mathrm{M}^{2}=\mathrm{P}^{2}+\mathrm{FP} . \\
& \text { Therefore } \quad \mathrm{F} \mathrm{I}^{2}=\mathrm{C} A^{2}-2 \mathrm{CF} \cdot \mathrm{CP}+\frac{\mathrm{CF}^{2} \cdot \mathrm{CP}^{2}}{\mathrm{CA}^{2}}
\end{aligned}
$$

Extracting the root from each number, $\mathrm{FM}=\mathrm{CA}-\frac{\mathrm{CF} \cdot \mathrm{CP}}{\mathrm{CA}}$.
In the same manner it may be shown that $F M=C A+\frac{C F . C P}{C A^{2}}$; therefore the sam of these is $\mathrm{FM}+j^{\prime} \mathrm{M}=2 \mathrm{CA}$.

Coroll. 1. A line drawn from a focus to a point in the curve is called a radius vector, and the difference between either radius vector and half the major axis is equal to half the difference between the radius vectors. For, since

$$
\begin{aligned}
& f \mathrm{I}=\mathrm{CA}-\frac{\mathrm{CF} \cdot \mathrm{CP}}{\mathrm{CA}} \text {; therefore, by transposition, } \\
& \frac{\mathrm{CF} \cdot \mathrm{CP}}{\mathrm{CA}}=\mathrm{CA}-f \mathrm{I}
\end{aligned}
$$

Coroli. 2. Because $\frac{\mathrm{CF} . \mathrm{CP}}{\mathrm{CA}}$ is a fourth proportional to $\mathrm{CA}, \mathrm{CF}, \mathrm{CP}$; therefore CA : CF::CP : CA-f II .

Coroll. 3. Hence the difference between the major axis and one of the radius vectors gives the other radius vector. For, since $\mathrm{FM}+\mathrm{M} f=2 \mathrm{CA}$;

$$
\text { Therefore } F M=2 C A-M f \text {. }
$$

Coroll. 4. Hence is derived the common method of describing an ellipsis mechanically, by a thread or by points, thus:- Find the foci Ff ($f f g$. 414.), and in the axis AB assume any point G; then with the radius $A G$ from the point F as a centre describe two ares H, H, one on each side of the axis; and with the same radius from the point f describe two other arcs h, h, one on each side of the major axis Again, with the distance GB from the point f describe two ares, one on each side of the axis, intersecting the ares HH in the points HH; and with the same radius from the point f describe two other ares, one on each side of

Fig. 414. the axis, intersecting the ares described at h, h in the point h, h. In this manner we may find as many points as we please; and a sufficient number being found, the curve will be formed by tracing it through all the points so determined.
1070. Thforem VI. The square of half the major axis is to the square of half the minor axis as the difference of the squares of the distances of any tuo ordinates from the centre to the difference of the squares of the ordinates themselces.

Let P. 11 and HI (fig.415.) be ordinates to the major axis AB; draw MN parallel to $A B$, meeting HI in the point N; then will $\mathrm{PM}=\mathrm{HN}$, and $\mathrm{MN}=\mathrm{PH}$, and the property to be demonstrated is thus expressed -

Fig. 415.

$$
\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CP}^{2}-\mathrm{CH}^{2}: \mathrm{HJ}^{2}-\mathrm{HN}^{2} .
$$

Or by producing HI to meet the curve in the point K , and making $\mathrm{C} Q=\mathrm{CP}$, the property to be proved will be
$\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{PH} \times \mathrm{HQ}: \mathrm{KN}$.
By Cor. 2. Theor. II. $\left\{\begin{array}{l}\mathrm{CA}^{2}: \mathrm{CE}^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}: \mathrm{PM}^{2}, \\ \mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CA}^{2}-\mathrm{CH}^{2}: \mathrm{HI} \text { 。 }\end{array}\right.$
Therefore $\mathrm{CA}^{2}-\mathrm{CH}^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}:: \mathrm{HII}^{2}: \mathrm{PM} \mathrm{Cl}^{2}$ or HN^{2};
But, by division,
Alternately, $\mathrm{CA}^{2}-\mathrm{CH}^{2}: \mathrm{CP}^{2}-\mathrm{CH}^{2}:: \mathrm{HI}^{2}: \mathrm{HI}^{2}-\mathrm{HN}^{2}$.

And, since we have above, $\mathrm{CA}^{2}-\mathrm{CH}^{2}: \mathrm{HI}^{2}:: \mathrm{CA}^{2}: \mathrm{CE}^{2}$,

- Therefore, by equality, $\mathrm{CA}^{2}: \mathrm{CE}^{2}: \mathrm{CP2}^{2}-\mathrm{CH}^{2}: \mathrm{HI}^{2}-\mathrm{HN}$;

But since $\left.\quad \mathrm{CP}^{3}-\mathrm{CH}^{2}=(\mathrm{CP}-\mathrm{CH})^{\prime} \mathrm{CP}+\mathrm{CH}\right)=\mathrm{PH} \times \mathrm{QH}$,
And since $\quad \mathrm{HI}^{2}-\mathrm{HN}^{2}=(1 \mathrm{H}-\mathrm{HN})(\mathrm{HI}+\mathrm{HN})=\mathrm{NI} \times \mathrm{KN}$,
Therefore $\quad \mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{P}^{\prime} \mathrm{H} \times \mathrm{HQ}: \mathrm{NI} \times \mathrm{NK}$.
Coroll. 1. IIence half the major axis is to half the minor axis, or the major axis is to the minor axis. as the difference of the squares of any two ordinates from the centre is to the rectangle of the two parts of the double ordinate, which is the greatest made of the sum and difference of the two semiordinates. For $\mathrm{KN}=\mathrm{HK}+\mathrm{HN}=\mathrm{HI}+\mathrm{HN}$, which is the sum of the two ordinates, and $\mathrm{NI}=\mathrm{HI}-\mathrm{HN}$, which is the difference of the two ordinatis.
(Coroll. 2. Hence, because $\mathrm{CP}^{2}-\mathrm{CH}^{2}=(\mathrm{CP}-\mathrm{CH})(\mathrm{CP}+\mathrm{CH})$, and since $\mathrm{HI}^{2}-\mathrm{HIN}^{2}=$ (III-IIN)(HI + IIN), and because $\mathrm{CP}-\mathrm{CH}=\mathrm{PH}$ and $\mathrm{HI}-\mathrm{HN}=\mathrm{NI}$; therefore CA: CE22: (CP + CII)PII: (II + IIN)N.
1071. Theorem VII. In the ellipsis, half the majar axis is a mean proportional heturen the distance of the contre and an ordinate, and the distance between the centre ard the interscction of a tangent to the vertex of that ordinate.

To the major axis draw the ordinates PM (fig. 416.) and III, and the minor axis CE. Draw MN perpendicular to III. Through the two points I, M. draw MT, IT, meeting the major axis produced in 'T; then will CT : CA::CA: CI'. For,

By Cor. 1. Theor. YI., CE ${ }^{2}$: CA $2::(\mathrm{IH}+\mathrm{HN}) \mathrm{IN}:(\mathrm{PC}+\mathrm{CH}) \mathrm{HP}$;
13y Cor. 2. Th. II., CE2 : CA2:: PAI $: \mathrm{CA}^{2}-\mathrm{CP}^{2}$;
Therefore, by equality, $\mathrm{PN}^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}::(\mathrm{HH}+\mathrm{HN}) \mathrm{IN}:(\mathrm{PC}+\mathrm{CH}) \mathrm{HIP}$.
By similar triangles, INM, MPT; $1 N: N M$ or PH:: PM: PT or CT-CP.
Therefore, taking the rectangles of the extremes and means of the two last equations, and throwing out the common factors, they will be converted to the equation

$$
\mathrm{PM}(C T-C P)(C P+C H)=\left(C A^{2}-\mathrm{CP}^{2}\right)(1 \mathrm{H}+\mathrm{IIN}) .
$$

But when HI and PM coincide, HI and HN will become equal to PMI, and CII will become equal to CP ; therefore, substituting in the equation 2 CP for $\mathrm{CP}+\mathrm{PH}$, and $\varrho \mathrm{P} M$ for IH + INN, and throwing out the common factors and the common terms, we have

$$
\begin{gathered}
\text { CT }: C P=\mathrm{CA}^{2} \\
\text { or } \mathrm{CT}: \mathrm{CA}:: \mathrm{CA}: \mathrm{CP} .
\end{gathered}
$$

Coroll. 1. Since CT is always a third proportional to CP and CA, if the points P, A, B remain fixed, the point T will be the same; and therefore the tangents which are drawn from the point M, which is the intersection of $P Q$ and the curve, will meet in the point T in every ellipsis described on the same axis Al3.

Coroll. 2. When the outer ellipsis AQB, by enlarging, becomes a circle, draw QT perpendicular to CQ, and joining TM, then TM will be a tangent to the ellipsis at M.

Coroll. 3. Hence, if it were required to draw a tangent from a given point T in the prolongation of the major axis to the ellipsis AEB, it will be found thus: - On AB descrike the semicircle AQB. Draw a tangent TQ to the circle, and draw the ordinate PQ intersecting the curve AEB of the ellipsis in the point M; join TM ; then TM is the tangent required. This method of drawing a tangent is extremely useful in practice.
1072. Throrem VIII. Four perpendiculars to the major axis intercepted by it and a tangent will be proportionals when the first and lust have one of their extremities in the rertices, the second in the point of contact, and the third in the centre.

Let the four perpendiculars be AD, PM, CE, BF , of which AD and BF have their extremities in the vertices A and B , the second in the point of contact M, and the third in the centre C ; then will

T	
By division,	TC-AC: CA-C1': TC : AC or
That is,	TA: AP: TC : CB.
ly composition,	TA: TA + AP: $\mathrm{TC}^{\text {P }}$: TC+ Cl :
Therefore	TA: TP: TC: TB.

But by the similar triangles TAD, TPM, TCE, and TBF, the sides TA, TP, TC, and TB are proportionals to the four perpendiculars AD, PM, CE, and BF ; therefore

$$
A D: P M:: C E: B F
$$

Coroll. 1. If AM and CF be joined, the triangles TAMI and TCF will be similar.
For by similar triangles, the sides TD, TA, TE, TF are in the same proportion as the sides 'TA, TI', TC, TB.

$$
\begin{aligned}
& \text { Therefore TD: TMI::TE : TF; } \\
& \text { Alternately, TD: TE::TM : TF: but TAD is similaı to TCE; } \\
& \text { ITence TD: TE::TA:TC; } \\
& \text { Therefore, by equality, TA: TM::TC : TF. }
\end{aligned}
$$

Coroll. 2. The triangles APM and CBF are similar ;

For
By division,
That is,
Alternately,
Consequently,
Th: TP: TB::PM:BF
Therefore, by equality, $\Delta \mathrm{P}: 1 \mathrm{M}:: \mathrm{CD}: \mathrm{BF}$.

> For, since AP:PM::CB:BF, and, by the similar triangles AII, a $B P$, $A I^{\prime}: P 1:: A B: 1 B F^{\prime} ;$
'Therefore 1 ' $11: \mathrm{P} 1:: \mathrm{CB}: \mathrm{AB}$.
But C B is the half of AB ; therefore, also, PI is the half of PM.
1075. 'lheorem IX. If tuo lines be draun from the foci of an ellipse to any point in the curve, these two lines will make equal angles with a tangent passing through that point.

Let TMI (fig. 418.) be a tangent touching the curve at the point M, and let F, f be the two foci ; join FMI, f M, then will the angle FMIT be equal to the angle f MR. For draw the ordinate PM, and draw $f R$ parallel to IPM, then will the triangles 'TFM and If li be similar; and by Cor. Theor. VIl.,

CA: CP: : C'T' CA;
I3y Cor. 2. Theor. V., CA: CP::CF:CA-FM ;
Therefore, by equality, \quad CT: CF::CA: CA-FM.
By division and composition, $\mathrm{C} T-\mathrm{CF}: \mathrm{C} T+\mathrm{CF}:: \mathrm{F} I: 2 \mathrm{CA}-\mathrm{F} \mathrm{I}$; That is, TV': T'f:: FM : f M.
By the similar triangles TFM, $\Gamma f R$; TF : Tf::FM: f R.
It therefore appears that $f M$ is equal to $f[$, therefore the angle $f M R$ is equal to thr angle f RM : but becanse FMI and f R are parallel lines, the angle FM'T is equal to the angle f RII ; therefore the angle FMT is equal to the angle f MR.

Coroll. 1. Hence a line drawn perpendicular to a tangent through the point of contact will hisect the angle FMI f, or the opposite angle DMG. For let MN be perpendicular to the tangent ' $\mathrm{Y} R$. Then, because the angle NMT and NMR are right angles, they are equal to one another; and since the angles FMT and $f M R$ are also equal to one another, the remaining angles NMF and NMI f are equal to one another. Again, because the opposite angles FMN and IMG are equal to one another, and the opposite angle $f M N$ and IMI) are equal to one another ; therefore the straight line MI, whieh is the line MN produced, will also bisect the angle DMG.

Coroll. 2. The tangent will bisect the angle formed by one of the radius vectors, and the prolongation of the other. For prolong FMI to G. Then, beeause the angles RMN and RMI are right angles, they are equal to one another; and beeause the angles NM f and IMD are equal to one another, the remaining angles $R M G$ and $R M f$ are equal to one another.

Scholium. Hence we have an easy method of drawing a tangent to any given point II in the curve, or of drawing a perpendienlar through a given point in the curve, which is the usual mode of drawing the joints for masonic arehes. Thus, in order to draw the line IMI perpendicular to the curve : produce FM to G, and f M to D, and draw MI bisecting the angle IMIG; then IMI will be perpendicular to the tangent TR, and conse puently to the curve.

As in optics the angle of incidence is always found equal to the angle of reflection. it appears that the foundation of that law follows from this theorem ; for rays of light issuing from one focus, and meeting the curve in any point, will be reflected into lines drawn from these points to the other focus: thus the ray $f M$ is reflected into MF: and this is the reason why the points $\mathrm{F} f$ are called foci, or burning points. In like manner, a sound in one focus is reflected in the other focus.
1074. 'Tuforem X. Every parallelogram which has its sides parallel to twe conjugate diameters rend circumscribes an ellipsis is equal to the rectangle of the two axes.

Let CMI and CI (fig. 419.) be two semi conjugate diameters. Complete the parallelogram C1DN1. Produce CA and MD to meet in T, and let AT meet DI in t. Draw IH and PM ordinates to the axis, and draw half the minor axis CE. Produce DM to K , and draw CK perpendicular to DK : then will the parallelogram CIDMI he equal to the rectangle, whose sides are CA and CE ; or four times the

Fig. 419. rectangle CIDM will be equal to the rectangle made of the two ases $A B$ and $G 1$. .

By Cor. Theor. VII.,
Therefore
By the similar triangles $\mathrm{C} t$, TCMI,
By equality, therefore,
Jy the similar triangles CIII, TMP,
Therefore, by equality,
Consequently
But by Theor. VII.,
Therefore, since (' $\mathrm{I}=\mathrm{Cl}$ ' P ' I ,
$\{\mathrm{CA}: \mathrm{CT}:: \mathrm{CP}: \mathrm{CA}$,
$\{\mathrm{Ct}: \mathrm{CA}:: \mathrm{CA}: \mathrm{CH}$;
Ct: С「:: CP: CII.
Ct : CT:: CI : T入;
CI: 'TM: : CP: CII.
CI : TM:: CII: PT;
CII: PT:: СР: CH.
$\mathrm{CP} \times \mathrm{P}^{\prime} \mathrm{T}=\mathrm{CH}$.
$\mathrm{CP} \times \mathrm{Cl}^{\prime}=\mathrm{CA}^{2}$;
$\mathrm{CP}^{2}+\mathrm{CP}^{\prime} \cdot \mathrm{P}^{\prime}=\mathrm{CA}^{2}$,

And, by transposition,
Henee, by equality, Or, by transposition,
But by Cor. 2. 'Theor. I.,
And substituting CP for its equal $\mathrm{CA}^{2}-\mathrm{CHI}$, we have

Therefore

But again, by Theor. V11.,
By equality, therefore,
But by the similar triangles HIC, KCT,
Therefore
Consequently
$\mathrm{CP} \cdot \mathrm{PT}=\mathrm{CA}^{2}-\mathrm{CP} \mathrm{P}^{2} ;$
$\mathrm{CH}^{2}=\mathrm{CA}^{2}-\mathrm{Cl}^{2} 2$,
$\mathrm{CP}^{2}=\mathrm{CA}^{2}-\mathrm{Cll}^{2}$.
$\mathrm{CA}^{2} \times \mathrm{HI}^{2}=\mathrm{CL}^{2}\left(\mathrm{CA}^{2}-\mathrm{CH}^{2}\right)$,
$\}$
$C \mathrm{~A}^{2} \times \mathrm{HI}^{2}=\mathrm{CE}^{2} \times \mathrm{CP}^{2} ;$
CA: CP::CE: III.
CA: CP: C': CA:
CE: HI: : CT: C^A.
III: CI::CK: CT ;
CE: Cl::CK:CA:
$\mathrm{CE} \times \mathrm{CA}=\mathrm{CI} \times \mathrm{CK}$.

The ellipsis is of so frequent oceurrence in architectural works, that an acquaintance with all the properties of the eurve, and the modes of deseribing it, is of great importance to the architeet. Exeepting the circle, which may be called an ellipsis in which the two foei coineide, it is the most generally employed eurve in arehitecture.
1075. Problea I. To describe an ellipais.

Let two pins at E and F (fig. 420.) be fixed in a plane within a string whose ends are made fast at \mathbf{C}. If the point \mathbf{C} be drawn equally tight while it is moved forward in the plane till it returns to the place from whieh it commeneed, it will deseribe an ellipsis.
1076. Prob. II. The two diameters Al3 and ED of an ellipse being given in position and magnitude, to describe the curve throrgh points.

Let the two diameters eut eaeh other at

Fig. 420 .

Fig. 421. C (fig. 421.). Draw AF and $13 G$ parallel to ED. Divide AC and AF eaeh into the same number of equal parts, and draw lines, as in the figure, through the points of division; viz. those from the line $A F$ to the point D, and the lines through $A C$ to the point E; then through the points of intersection of the corresponding lines draw the eurve $A D$, and in the same manner find the eurse BD ; then ADB will be the semi-ellipsis.

It is evident that the same method also extends to a circle by making CD equal to CA : (fig. 422.) ; and it appears that the two lines forming any point of the curve to be drawn will make a right angle with each other. For these lines terminate at the extremities of the diameter ED, and the point of concourse being in the curse, the angle made by them must be a right angle; that is, the angle EAD, or $\mathrm{E} h \mathrm{D}$, or $\mathrm{E} i \mathrm{D}$. or EhD. is a right angle: and from this property we have the following method of drawing the segment of a circle through points found in the eurve.

Fig. 422.

Thus, let AB be the chord, and CD be the versed sine of an are of a circle, to deseribe the arc. Through D draw HI (fig. 423.) parallel to AI; join AD and DB; draw AH perpendicular to AD , and BI perpendieular to BD ; divide AC and HD each into the same number of equal parts, and join the corresponding points; divide $A F^{*}$ into the same number of equal parts, and through the points of division draw lines to D , and through the corresponding points where these lines mect the former draw a curve
 AD . In the same manner the other half BD may be drawn.
1077. Pres. 111. A diameter KH of an ellipsis leing given, and an ordinatc DL, to find the limits of the other conjugate diameter.

Biseet KH in l (fig. 424.), through I draw EA parallel to DL, and draw DC and KB perpendicular to EA ; from the point L with the distance K describe an are eutting EA at F ; join LF , and produce LI to C ; make 1 E and 1 A each equal to L C ; then will EA be a diameter conjugate to KH.
1078. Риов. IV. A diameter KH and an ordinate DL of an ellipsis being given, to describe the curce. (fig. 424.)

Find the limits E and A of the other conjugate diameter by the preeding construction. Produce KB to q, and make $\mathrm{K} q$ equal to

Fig. 421. 1 A or 1 E , and through the centre 1 of the curve and the point q, draw the straight line DIN. Then, suppose the strairht line $K 13 q$ to be an inflexible rod, having the point B marked upon it. Move the rod round, so that the point q on the rod may be in the line MN, while the point 13 is in the line $l: A$: then, at any instant of the motion, the place
of the point K on the plane whereon the figure is to be drawn may be marked; the points thus found will be in the curve. Instead of a rod, is slip of paper may be used, and in some eases a rod with adjustible points to slide in a cross groove, and a sliding head for a pencil is convenis, nt ; and such an instrument is called a trammel.

When the diameters KH and EA (fig. 425.) are at right angles to each other, the straight line K / coincides with the diameter $\mathrm{K} H$, and consequently the line MN, on which the point q of the inflexible line K_{q} moves, will also fall upon the diameter KH. Therefore in this case nothing more is required to find the limits of the other diameter, than to take the half diameters $1 \mathrm{~K}, \mathrm{KH}$ of the given diameters, and from the extremity L with that distance deseribe an are entting the unlimited diameter in the point F ; then drawing

Fig. 425. LF , and producing it to q, and making IE and IA each equal to $q \mathrm{~L}, \mathrm{EA}$ will be thr other diameter; and since the two diameters are at right angles to each other, they are the two axes given in position and magnitude, and thus the curve may be described as before.

A method of describing the curve from any two conjugate diameters is occasionally of considerable use, and particularly so in perspective. For, in every representation of a circle in perspective, a diameter and a double ordinate may be determined by making one of the diameters of the original circle perpendicular to the plane of the picture and the other parallel to it; and then the representation of the diameter of the original circle, which is perpendicular to the intersecting line, will be a diameter of the ellipsis, which is the representation of that circle; and the representation of the diameter of the circle which is parallel to the intersecting line will become a double ordinate to the diameter of the ellipsis which is the perspective representation of the circle.
1079. Рros. V. Through two given points A and B to describe an ellipsis, the centre C being given in position and the greater axis being given in magnitude only.

About the centre C (fig. 426.) with a radius equal to half the greater axis describe a circle IEDG; join AC and BC ; draw AD perpendicular to AC , and BE perpendicular to BC , rutting the circumference in the points D and E ; draw also 13F parallel to AC , and find BF , which is a fourth proportional to AD, AC, and BE ; through the point F and the centre C draw FG to cut the circle in II and G, and GH is the manjor axis of the ellipsis. By drawing an ordinate $\mathrm{B} q$, the curve may be described by the preceding problem, having the axis GHI and
 the ordinate $\mathrm{B} q$.
1080. Prob. VI. Through a given pint in the major ais of a given ellipsis to describe mother similar ellipsis wiich shall have the same centre and its major axis on the same straight line u s that of the given ellipsis.

Let ACBD (fig. 427.) be the given ellipsis, having AB for its major axis and CD for its minor axis, which are both given in position and magnitude. It is required to draw a similar ellipsis through the point G in the major axis AG. Draw BK perpendicular and CK parallel to AB , and join KE. Again, draw GL perpendicular to AB cutting EK at L , and draw LH parallel to AB cutting CD in H . On the axis CD make EI equal to EH, and on the axis AB make EF equal to EG. Then, having the major axis ΛB, and
 the minor avis FG, the ellipsis FIGII may be described, and when drawn, it will be similar to the given ellipsis ADBC.
1081. Ров. VII. Through any given pint p, within the curve of a given ellipsis to describe another ellipsis which shall be similar and concentric to the given one.

Let C (fig. 428.) be its centre. Draw the straight line $\mathrm{Cp}_{p} \mathrm{P}$, cutting the curve of the given ellipsis in P. In such curve take any other number of points $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \& \mathrm{c}$., and join $\mathrm{QC}, \mathrm{RC}, \mathrm{SC}$, \& c. ; join PQ and draw $p q$ parallel thereto cutting $q \mathrm{C}$ at q : join PR and draw $p r$ parallel to PR , cutting RC at r; join PS and draw $p s$ parallel to PS cutting SC in s. The whole being completed, and the curve p, s, t, u drawn through the points $p, q, r, s, \& c$., the figure will be similar and coneentric to the given ellipse $\mathrm{P}, \mathrm{S}, \mathrm{T}, \mathrm{U}$; or when the points at the extremities for one half of the curve have been

Fig. 12S drawn, the other half may be found by producing the diameter to the opposite side, and making the part produced equal to the other part.
1082. Pros. V1II. Abent a given rectungle ABCD to describe an cilipsis which shail hare its major and minor axes respectively paralle to the sides of the ratangle and its centre i in the points of intersection of the turo diagonals.

Biseet the sides A 1) and AB (fig. 429.) of the rectangle respectively at L and 0
throush L draw GII parallel to $A B$ cutting the opposite side BC of the rectangle in M , and throngh the point O draw KI parallel to ADO BC cutting the opposite side DC in N. In NK or NK produced, make NQ equal to NC, and join CQ; draw QR parallel to GH cutting CB or CB produced $: n \mathrm{R}$; make EII and EG each equal to QC , as also EI and EK each equal to PC ; then will Gll be the major axis and KI the minor axis of the ellipsis required.

The demonstration of this method, in which the line QK has
 nothing to do with the construction, is as follows : -

By the similar triangles CPM and CQR, we have CP : CM::CQ: CR.
But because MP is equal to $M C=E N$, and since $C R$ is equal to $R Q=E M$,
And, by construction, since $P C$ is equal to $E I$ or $E K$, and $Q C$ is equal to $E G$ or EII, EI : EN::EH:EM, or, alternately, EI: EH::EN:EM. But EN is equal to MC, and EM equal to NC; Whence EI: EH::MC:CN.
But since the wholes are as the halves, we shall have $\mathrm{KI}: \mathrm{GH}:: \mathrm{BC}: \mathrm{CD}$.
This problem is useful in its application to architecture about domes and pendentives, as well as in the construction of spheroidal ceilings and other details.

of THE HyPERBOLA.

1083. The direction of a plane cutting a cone, which produces the form called the byperbola, has been already described; its most useful properties will form the subject of the following theorems, which we shall preface with a few definitions:-
1084. The primary axis of an hyperbola is called the transverse axis.
1085. A straight line drawn through the centre of an hyperbola and terminated at each extremity by the opposite curves is called a diameter.
1086. The extremities of a diameter terminated by the two opposite curves are called the vertices of that diameter.
1087. A straight line drawn from any point of a diameter to meet the curve parallel to a tangent at the extremity of that diameter is called an ordinatc to the two abscissas.
1088. A straight line which is bisected at right angles by the transverse axis in its centre, and which is a fourth proportional to the mean of the two abscissas, their ordinate, and the transverse axis, is called the comjugute axis.
1089. A straight line which is a third proportional to the transverse and conjugate axis is called the latus rectum or purameter.
1090. The two points in the transverse axis cut by ordinates which are equal to the semi-parameter are cal ed the foci.
1091. 'Theorem I. In the hyperbola the squares of the ordinates of the transverse axis are to each other as the rectangles of their abscissas.

Let QVN (fiy. 430.) be a section of the cone passing along the axis VD, the line of section of the directing plane, H13 the line of axis of the cutting plane, the directing and cutting plane being perpendicular to the plane QVN. Let the cone be cut by two planes perpendicular to the axis passing through the two points P, H, meeting the plane of section in the lines PM, HI, which are ordinates to the circles and to the figure of the section, of the same time.
By the similar triangles APL and AHN, AP:PL::AH:HN; And by the similar triangles $B P K$ and $B H Q, B P: P K:: B H: H Q$. Therefore, taking the rectangles of the corresponding terms, $\mathrm{AP} \times \mathrm{BP}: \mathrm{PL} \times \mathrm{PK}:: \mathrm{AI} \times$ 13H: HN×HQ.
But in the circle, $P L \times P K=P^{2}$, and $H N \times H Q=H I^{2}$; Therefore $A P \times B P: \mathrm{P}^{\prime} \mathrm{M}^{2}:: \mathrm{AH} \times \mathrm{BII}: \mathrm{HI}$, Or, alternately, PM2: HI : : AP: PB: AII: BH.
1085. Tineonem 1I. In the hyperiola, as the square of the transverse axis is to the square of the comjugate aris, so is the rectangle of the abseissas to thie square of their ordinate.
I.et AB (fig. 431.) be the transverse axis, GE the conjugate axis, C being the centre of the opposite curves; also let HI and PM be ordinates as before; ther will

	AB2: GEe: $\mathrm{PA} \times \mathrm{PB}$: PM?
Or	CA2 : CE2: PA \times PB: PM ${ }^{\text {P }}$.
Ity Theor. 1.,	$\mathrm{PA} \times \mathrm{PB}: \mathrm{HA} \times \mathrm{HB}: \mathrm{P}^{2} \mathrm{I}^{2}: 11{ }^{2}$;
Alternately,	$\mathrm{PA} \times \mathrm{PB}: P \mathrm{I}^{2}:: \mathrm{HA} \times \mathrm{HB} 3: 1 \mathrm{ll}$.
Hint	$11 \mathrm{~A} \times \mathrm{HB}: \mathrm{HI}^{2}:: \mathrm{ABB}^{2}: \mathrm{GE}^{2}$;
Therefore	A B^{2} : ($\mathrm{E}^{\prime \prime}:: \mathrm{l}^{\prime} \Lambda \times \mathrm{L}^{\prime} \mathrm{B}: \Gamma \mathrm{N}^{2}$.

Fig. 430.

Izy Theor. 1., $\mathrm{PA} \times \mathrm{PB}: \mathrm{HA} \times \mathrm{HB}:: \mathrm{P}^{\prime} \mathrm{Il}^{2}: \mathrm{HI}^{2}$;
Alternately, $\mathrm{PA} \times \mathrm{PB}: \mathrm{PN2}:: \mathrm{HA} \times \mathrm{HB}:: 1 \mathrm{H} \%$.
Therefore $\quad \Lambda B^{2}:\left(E^{\prime}:: D^{\prime} \Lambda \times L^{\prime} B: \Gamma I^{2}\right.$.

Curoll. Hence $\mathrm{AB}^{2}: \mathrm{GE}^{2}:: \mathrm{CP}^{2}-\mathrm{CA}^{2}: \mathrm{l}^{\prime} \mathrm{NH}^{2}$ (fig. 439.). For let the cutting plane of the opposite hyperbola intersect two circles paralicl to the base in 111 and $P M$, and let the cone be cut by another plane parallel to the biase, passing through the centre C of the transverse axis, and let $m n$ be the diameter of the circle made by such plane.

> Then ACm, APK are similar, and AC:Cm::AP:PK. \quad BC:Cn: BP:PL. And as BCa, BPL are similar,

Th, refore, taking the rectangles of the corresponding terms,

$$
\mathrm{BC} \times \mathrm{AC}: \mathrm{C} n \times \mathrm{Cm}:: \mathrm{BP} \times \mathrm{AP}: \mathrm{PL} \times \mathrm{PK} .
$$

Hut $\quad \mathrm{BC}=\mathrm{AC} ; \mathrm{C} m \times \mathrm{C} n=\mathrm{C} t^{2}$; and $\mathrm{PL} \times \mathrm{PK}=\mathrm{PM}$.
Therefore $\mathrm{AC}^{2}: \mathrm{C}^{2}:: \mathrm{Al} \times \mathrm{BP}^{1}: \mathrm{PA}^{2}$.
Though $\mathrm{C} t$ is not in the same plane, it is what is usually called the semi-conjugate axis, and it agrees with what has been demonstrated in the first part of this proposition.
1086. Theorem III. In the hyperbola, the square of the semi-

Fig. 432 comjugate axis is to the square of the semi-transcerse axis as the sum of the squares of the semi-conjugate axis and of the ordinate parallel to it is to the squarc of the nhscissas.

Let AB (fig. 433.) be the transverse axis, GE the conjugate, C the centre of the figure, and PM an ordinate, then will

$$
\mathrm{GE}^{2}: A B^{2}:: \mathrm{CE}^{2}+P \mathrm{H}^{2}: C P^{2} .
$$

For, by Theor. II., CE ${ }^{2}$: $\mathrm{CA}^{2}:: \mathrm{PM}^{2}: \mathrm{CP}^{2}-\mathrm{CA}^{2}$, And, by composition, $\mathrm{CE}^{2}: \mathrm{CA}^{2}:: \mathrm{CE}^{2}+\mathrm{PM}^{2}: \mathrm{CP}^{2}$.
This demonstration may be also applied to what are called conjngate hyperbolas.
1087. Theorem IV. In the hyperbola, the square of the distauce of the focus from the centre is equal to the sum of the squares of the semi-axes.

Let AB (fig. 434.) be the transverse axis, CE the semi-conjugate. In A B, produced within the curve each way, let F be one focus; and f the other, and let FG be the semi-parameter then $\mathrm{CF}^{2}=\mathrm{CA}^{2}+\mathrm{CE}^{2}$.

For, by Theor. I.,
$\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{FA} \times \mathrm{FB}: \mathrm{FG}^{2}$;
But, by property of parameter, $\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CE}^{2}: \mathrm{FG}^{2}$.

Therefore

$\mathrm{CE}^{2}=\mathrm{AF} \times \mathrm{FB}=\mathrm{CF}-\mathrm{CA}$;
And, by transposition,
$\mathrm{CF}^{2}=\mathrm{CA}^{2}+\mathrm{CE}$.

Coroli. 1. The two semi-axes, and the distance of the focus from the centre, are the sides of a right-angled triangle CEA, of which the distance AE is the distance of the focus from the centre.

Coroll. 2. The conjugate axis CE is a mean proportional netween FA and FB , or between $f \mathrm{~B}$ and $f \mathrm{~A}$, for $\mathrm{CE}^{2}=$ $\left(\mathrm{F}^{2}-\mathrm{CA}=(\mathrm{CF}+\mathrm{CA}) \times(\mathrm{CF}-\mathrm{CA})=\mathrm{BF} \times \mathrm{AF}\right.$.
1088. Theorem V. The difference of the radius vectors is equal to the transverse axis. (fig. 435.)
'That is, $\quad \mathrm{AM}-\mathrm{FM}=\mathrm{AB}=2 \mathrm{CA}=2 \mathrm{CB}$.
For $\quad \mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CP}^{2}-\mathrm{CA}^{2}: \mathrm{PN}^{2}$;
And $\quad \mathrm{CE}^{2}=\mathrm{CF}^{2}-\mathrm{CA}^{2}$.
Therefore $\mathrm{CA}^{2}: C F^{2}-\mathrm{CA}^{2}:: \mathrm{Cl}^{2}-\mathrm{CA}^{2}: \mathrm{P}^{2} \mathrm{P}^{2}$.
And by taking the rectangle of the extremes and means, and dividing by CA²,

$$
\mathrm{P} \mathrm{II}^{2}=\frac{\mathrm{CF}^{2} \times \mathrm{CP}^{2}}{\mathrm{CA}^{2}}-\mathrm{CF}^{2}-\mathrm{CP}^{2}+\mathrm{CA}^{2}
$$

But $\quad \mathrm{FP}^{2}=(\mathrm{CP}-\mathrm{CF})^{2}=\mathrm{CP}^{2}=2 \mathrm{CP}^{2} \times \mathrm{CF}+\mathrm{CF}^{2}$,
And $\quad \mathrm{FM}^{2}=\mathrm{P} \mathrm{I}^{2}+\mathrm{FP}^{2}$.

Fig. 434.

Fig. 4.55

Therefore $\mathrm{FM} \mathrm{N}^{2}=\frac{\mathrm{CF}^{2} \times \mathrm{CP}^{2}}{\mathrm{CA}^{2}}-2 \mathrm{CP} \times \mathrm{CF}+\mathrm{CA}^{2}$.
Now each side of this equation is a complete square.
Therefore, extracting the root of each number,
In the same manner we find

$$
\begin{aligned}
& \mathrm{FM}={ }^{\mathrm{CF}>\mathrm{CP}}-\mathrm{CA} . \\
& f \mathrm{CA}=\frac{\mathrm{CF} \times \mathrm{C} \cdot \mathrm{P}}{\mathrm{CA}}+\mathrm{CA} ;
\end{aligned}
$$

And, subtracting the upper equation from the lower, $f M-F M=2 \mathrm{C} \boldsymbol{A}$.
Coroll. 1. Hence is derived the common method of describing the hyperbolic curve mechanically. Thus: - In the transverse axis A13 produced (fig. 435.), take the foci \mathbf{k}, f, and any point 1 in the straght line $A B$ so proctuced. 'Thes, with the radii AF, BI, and the
centre \mathbf{F}, f, describe arcs intersecting eaeh other ; c.ll the points of intersection \mathbf{E}, then \mathbf{E} will be a point in the curve; with the same distances another point on the other side of the axis may be found. In like manner, by taking any other points I, we may find two more points, one on eaeh side of the axis, and thus contimue till a suffieient number of points be found to deseribe the curve by hand. By the same proeess, we may also deseribe the opposite hyperbolas.

Coroll. 2. Bceause $\frac{\mathrm{CF} \times \mathrm{CP}}{\mathrm{CA}}$ is a fourth proportional to $\mathrm{CA}, \mathrm{CF} \mathrm{CP}$, CA: CF::CP: CA + FM.
2089. Theorerl VI. As the square of the semi-transverse axis is to the square of the semi-conjugate, so is the difference of the squares of any two obscissas to the difference of the squares of their ordinates.

By Theor. II.,

$$
\begin{array}{ll}
\text { By Theor, II., } & \left\{\begin{array}{l}
\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CP}^{2}-\mathrm{CA}^{2}: \mathrm{PH}^{2}(\text { fig. } 436 .), \\
\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CH}^{2}-\mathrm{CA}^{2}: \mathrm{HIL}^{2} .
\end{array}\right. \\
\begin{array}{l}
\text { Therefore, by } \\
\text { equality, }
\end{array} & \mathrm{CH}^{2}-\mathrm{CA}^{2}: \mathrm{CP}^{2}-\mathrm{CA}^{2}: \mathrm{HI}^{2}: \mathrm{PM}^{2} \text { or }
\end{array},
$$

Therefore, by equality,
And, by division,

Fig. $4 . \hat{7} \%$ But

Coroll. I. If IH be produced to K , and CQ be made equal to CP , then will $\mathrm{CH}^{2}-$ $\mathrm{CP}^{2}=(\mathrm{CH}+\mathrm{CP})(\mathrm{CH}-\mathrm{CP})=(\mathrm{CP}+\mathrm{CH}) \mathrm{P}^{2} \mathrm{H}$; and $\mathrm{HI}^{2}-\mathrm{HN}^{2}=(\mathrm{HI}+\mathrm{HN})(\mathrm{HI}-$ $\mathrm{HN})=(\mathrm{III}+\mathrm{HN}) \mathrm{NI}$. Therefore the analogy resulting becomes

$$
\mathrm{CA}^{2}: \mathrm{CE}^{2}::(\mathrm{CP}+\mathrm{CH}) \mathrm{PH}:(\mathrm{HI}+\mathrm{HN}) \mathrm{NI} .
$$

So that the square of the transverse axis is to the square of the conjugate, or the square of the semi-transverse is to the square of the semi-conjugate, as the reetangle of the sum and difference of the two ordinates from the centre is to the rectangle of the sum and difference of these ordinates.
1090. Theorem VII. If a tangent and an ordinate be draun from any point in an hyperbola to meet the transvcrse axis, the semi-transverse axis will be a mean proportional between the distances of the tuo intersections from the centre.

For (fig.437.) CE2 : CA $2::(\mathrm{IH}+\mathrm{HN}) \mathrm{IN}::(\mathrm{PC}+\mathrm{CH}) \mathrm{HP}^{2}$, And by Theor. I., $\mathrm{CE}^{2}: \mathrm{CA}^{2}:: \mathrm{PM}^{2}: \mathrm{CP}^{2}-\mathrm{CA}^{2}$;
By equality, $\quad P M^{2}: \mathrm{CP}^{2}-\mathrm{CA}^{2}::(\mathrm{IH}+\mathrm{HN}) \mathrm{IN}:(\mathrm{PC}+$ CH)HP;
And by similar triangles INM, MPT, IN : NM or PII:: PM : PT or $\mathrm{CP}-\mathrm{CT}$.
Therefore, taking the rectangles of the extremes and means of the two last equations, and neglecting the common factors, it will be PM(CP $\left.-\mathrm{CT}^{\prime}\right)(\mathrm{CP}+\mathrm{CH})=\left(\mathrm{CP}^{2}-\mathrm{CA}^{2}\right)(\mathrm{IHI}+\mathrm{HN})$; but when H H and PM eoineide, 1 H and HN each become equal to PM, and CH equal to CP: therefore in the equation substitute 2CP for $C P+C H$, and $2 P^{\prime} M$ for $\mathbf{1 H}+\mathrm{HN}$, and neglecting the common factors and common terms, the result is $\mathrm{C} \Gamma . \mathrm{CP}=\mathrm{CA}^{2}$, or $\mathrm{CT}: \mathrm{CA}:: \mathrm{CA}: \mathrm{CP}$.

Coroll. Sinee CT is always a third proportional to CP, CA ; suppose

Fig. 4.37. the points P and A to remain constant, the point T will also remain constant; therefore all the tangents will meet in the point T which are drawn from the extremity of the ordinate M of every hyperbola deseribed on the same axis AB.

1(191. Theorem VIII. Four perpendiculars to the transverse aris intercepted by it and a tangent, will be proportionals when the first and last l.ave one of their extremities in each vertex, the second in the point of contact, and the third in the centre.

Let the four perpendiculars be AD, PM, CE, BF (fig. 438.), whereof AD and BF have their extremities in the vertices A and B, and the seeond in the point of contact M of the tangent and the curve, and the third in the centre C.

Then will	AD: PM: CE: BF.
For, by Theor.	CT : CA: CA : CP ,
And, by division,	CA-CT: CP-CA:: СT: CA or CB;
That is,	AT: AP: С С': CI ;
I3y composition,	
'Therefore	

Fis. 458.

But by the similar triangles TAD, TPM, TCE, and TBF, the sides AT, PJ, CT, and BT are proportional to the four perpendiculars AD, PM, CE, BF .

> Therefore AD : PM::CE : BF.
1092. Theorem IX. The tuo rudius vectors meeting the curve in the same point will muke rqual angles with a tangent passing through that point. (Fig. 439.)

For, by Theor. VII.,
By Cor. 2. Theor. V.,
liy equality,
CT:CF: CA: CA + FM ;
By division and composition, $\mathrm{CF}-\mathrm{CT}: \mathrm{CF}+\mathrm{CT}:: \mathrm{FM}: 2 \mathrm{CA}$ +FM ;
That is, FT : $f^{\prime} \mathrm{T}:: \mathrm{FM}: f \mathrm{R}$;
And by the similar triangles TFM, T $f 1$, $\mathrm{FT}: f^{\mathrm{T}}:: \mathrm{FM}: f \mathrm{R}$. Therefore $f \mathrm{R}$ is equal to $f M$; consequently the angle $f \mathrm{R} M$ is equal to the angle $f M \mathrm{R}$: and because $f \mathrm{R}$ is parallel to $f \mathrm{M}$, the angle FMT is equal to the angle f RII; therefore the angle FMI' is equal to the angle f RM.
1093. Рковьем I. To describe an hyperbola by means of the end of a ruler moveable on a pin F (fig 440.) fixed in a planc, with one end of a string fixed to a point E in the same plane, and the other extremity of the string fastened to the nther end C of the ruler, the point C of the ruler being moved towards G in that plane.

While the ruler is moving, a point D being made to slide

Fig. 439. along the edge of the ruler, kept close to the string so as to keep each of the parts C D, D E of the string stretched, the point \mathbf{D} will describe the curve of an hyperbola.

- If the end of the ruler at F (fiy. 441.) be made moveable abont the point E , and the string be fixed in F and to the end C of the ruler, as before, another curve may be described in the same manner, which is called the opposite hyperbola: the points \mathbf{E} and F , about which the ruler is made to revolve, are the foci.

There are ma'y occasions in which the use of this conic section oceurs in architectural details. For instance, the profiles of many of the Grecian mouldings are hyperbolic ; and in conical roofs the forms are by intersections such that the student should be well acquainted with the methods of describing it.
1094. Prob. II. Given the diameter AB, the abscissa BC, and the double ordinate DE in position and mugnitude, to describe the hyperbola. (Fig. 442.)

Fig. 440 .

Through B draw FG parallel to DE, and draw DF and EG parallel to AB.
Divide DF and DC eacls into the same number of equal parts, and from the points of division in BF draw lines to B, also from the points of division in DC draw straight lines to A; then through the points of intersection found by the lines drawn through the corresponding points draw the curve D13. In like manner the curve EIS may be drawn so that DIBE will form the curve on each side of the diameter. AB. If the point A be considered as the vertex, the opposite hyperbola HAI may be described in the same manner, and thus the two curves formed by cutting the opposite cones by the same plane will be found. By the theorists, the hyperbola has been considered a proper figure of equilibrium for an arch whose office is to support a load which is greatest at the middle of the areh, and diminishes towards the

Fig. 442. abutments. This, however, is matter of consideration for another part of this work.

OF THE PARABOLA.

1095. Definitions.-1. The parameter of the axis of a parabola is a third proportional to the abscissa and its ordinate.
1096. The focus is that point in the axis where the ordinate is equal to the semi-paranneter.
1097. The diameter is a line within the curve terminated thereby, and is parallel to the axis.
1098. An ödinate to any diameter is a line contained by the curve and that diameter paral. Iel to a tangent at the extremity of the diameter.

10ng. Theorem 1. In the parabolu, the abscissas are proportional to the squares of their ordinates.

Let QVN (fig. 443.) be a section of the cone passing along the axis, and let the directrix RX pass through the point Q perpendicular to $Q N$, and let the prabalic section be \triangle DI meeting the base QIND of the cone in the line DI, and the diameter QN in the point H ; also let KMI, be a section of the cone prarallel to the base QIN intersceting the plane VQN in the line KL, and the section ADI in PM. Let I' he the point of concourse of the three planes QVN, KML, AHI, and let If be the point of concourse of the three planes QVN, KML, AHE; then, because the planes VRX and ADI are parallel, and the plane VQN is perpendicular to the plane VRX, the plane ADI is also perpendicular to the plane VQN. Again, because the plane QIN is perpendicular to the plane QVN, and the plane KML is parallel to the plane QIN, the plane KMI, is perpendicular to the plane QVN; therefore the common sections I'M and HI are perpendicular to the plane VQN ; and because the plane KML is pa-
 rallel to the plane QIN; and these two planes are intersected by the plane QVN, their common sections KL, and QN are parallel. Also, since PMi and III are each perpendicular to the plane $Q V N$, and since $K L$ is the common section of the plames $Q V N, K M L$, and $Q N$ in the common section of the planes $Q V N, Q 1 N$; thereforn 1'M and HI are perpendicular respectively to KL and QN.
Consequently AP:AH:: PMI: III?

For, by the similar triangles $A P L, A H N, A P: A H:: D^{\prime} L: I N$, ()r

AP:AH::Kl $\times \mathrm{P}^{\prime} \mathrm{L}: \mathrm{KP} \times \mathrm{IIN}$.
But, by the circle
And, by the circle
'I'herefore
$\mathrm{KMI}, \quad \mathrm{KP} \times \mathrm{PL}_{1}=\mathrm{P}^{2}$,

Therefore, by substitution.

$$
K l^{\prime} \times I I N=\Pi I ?
$$

AP: AlI:: PM : Ill?
Coroll. By the defmition of the parameter, which we shall call P,

$$
\begin{aligned}
& A P: P M:: P M: P^{P}=\frac{P^{2}}{P A} \\
& \text { And } P \times A P=P M, \text { or } P \times A H=H[9 . \\
& \text { Therefore } P: P M:: P H: A P \text { or } P: H I:: H I: A I I
\end{aligned}
$$

109\%. Thatorem II. As the parameter of the axis is to the sum of any fuo ordinates, so ithe difference of these ordinates to the difference of their abscissas.

$$
\begin{aligned}
& \text { That is, P:III+PM::HI-PM:AII-AP. } \\
& \text { For since by Cor. 'Iheor. I. }\left\{\begin{array}{l}
\mathrm{P}=\frac{\mathrm{P} \mathrm{H}^{2}}{A P}, \\
\mathrm{P}=\frac{I 1 I^{2}}{A M} ;
\end{array}\right.
\end{aligned}
$$

Multiplying the first of these equations by $A P$ and the second by $A 11$,

$$
\text { they become }\left\{\begin{array}{l}
\mathrm{I} \times A P=P N \\
\mathrm{I} \times A I \mathrm{P}=\mathrm{H}=
\end{array}\right.
$$

Subtract the corresponding numbers of the first equation, and $I\left(A I I-A I^{\prime}\right)=I I I^{2}-I^{\prime} M^{2}$. But the difference of two sguares is equal to a rectangle under the sum and difference of hieir sides.

$$
\begin{array}{ll}
\text { And } & H I^{2}-P M I=(H I+P M)(H I-P M) \\
\text { Therefore } \quad P(A M-A P)=(H I+P N)(H I-P M) . \\
\text { Conseguently } P: H I+P^{\prime} M:: I I-P M: A H-A I ;
\end{array}
$$

Or, hy drawing $K M$ parallel to $A H$, we have $G K=P M+I I I$, and $K I=H I-P M$; and since $\mathrm{PH}=\mathrm{AH}-\mathrm{AP} ; \mathrm{P}: \mathrm{GK}:: \mathrm{KI}: \mathrm{PH}$, or KM .
Coroll. Hence, because

$$
\begin{aligned}
& \mathrm{I} \times \mathrm{KM}=\mathrm{GK} \times \mathrm{KI} ; \\
& \mathrm{HI} \mathrm{I}^{2}=\mathrm{P} \times \mathrm{AH} ;
\end{aligned}
$$

Therefore, by multiplication, $\mathrm{KM} \times \mathrm{HI}^{2}=\mathrm{GK} \times \mathrm{KI} \times \mathrm{AH}$, or AH: KM: : HI ${ }^{2}: ~ G K \times K I$.
So that any diameter $M \mathrm{~K}$ is as the rectangle of the segments GK , Ii I of the double ordinate GI. From this a simple method has been wsed of finding points in the curve, so as to deseribe it.
1098. Theurem III. The distance between the vertex of the curve and

Fig. 115. The focus is equal to one fourth of the parameter.

Let L.G (.fig. 445.) be a double ordinate passing through the focus, then I.G is the prameter. For by the definition of parameter $A \mathrm{~F}: F \mathrm{FG}: \mathrm{FG}: \mathrm{F}=2 \mathrm{FG}$

Therefore $\quad 2 A V^{\prime}=F G=\frac{1}{2} \mathrm{LG}$;
Conseguently $A \mathrm{~F}=\frac{1}{4} \mathrm{I} . \mathrm{C}$.
1099. Tineorem IV. The radias vector is equal to the sum of the distances betucen tive focus and the vertex, and between the ordinate und the vertex. (Fig. 446.)
That is,
For
'Therefore
But, by Cor. Theor. II.,
Therefore, by addition,

$$
\begin{aligned}
& \mathrm{FM}=\mathrm{AP}+\mathrm{AF} . \\
& \mathrm{F} P=A \mathrm{P}-\mathrm{AF} \text {; } \\
& \mathrm{FP}^{2}=A P^{2}-2 A P \times A F+A F^{2} . \\
& \mathrm{PM}=\mathrm{P}^{3} \times \mathrm{AP}=4 \mathrm{AF} \times \mathrm{AP} . \\
& \mathrm{FP}^{2}+\mathrm{P}^{2} \mathrm{M}^{2}=\mathrm{AP}+2 \mathrm{AF} \times \mathrm{AP} \\
& +A F^{2} \text {. } \\
& A G=A F, F M=G P \text {. }
\end{aligned}
$$

Fig. 410°

But by the right-angled tringles, $\mathrm{FP}^{2}+\mathrm{P}^{2} \mathrm{M}^{2}=\mathrm{FM}^{2}$;
And therefore $\quad \mathrm{FM}^{2}=\mathrm{AP}^{2}+2 \mathrm{AF} \times \mathrm{AP}+\mathrm{AF}^{2}$.
Hence, extracting the roots, $\quad \mathrm{FM}=\mathrm{AP}+\mathrm{AF}=2 \mathrm{AF}+\mathrm{FP}$;
Or by making
Coroll. 1. If throngh the point G (fig. 447.) the line $G Q$ be drawn perpendicular t the axis, it is ealled the directrix of the parabola.

By the property shown in this theorem, it appears that if any line QM be drawn parallel to the axis, and if FM be joined, the straight line FM is equal to QM ; for QM is equal to GP.

Coroll. 2. Hence, also, the curve is easily described by points. Take AG equal to AF, (fig. 447.), and draw a number of lines M, M perpendicular to the axis AP; then with the (listances G1', GI', Sc. as radii, and from F^{\prime} as a centre, describe ares on each side of $A 1$ ', cutting the lines MM, MM, \&c. at MM, \&c.; then through all the points M, M, M, \&e. draw a curve, which will be a parabola.
1100. Theorem V. If a tangent be draun from the vertex of an ordinate to meet the axis moduced, the subtangent PT (fig. 448.) will he equal to twice the distance of the ordinate

Fig. 417.

Fih. 448. from the vertex.

If M'T be a tangent at M, the extremity of the ordinate PM; then the sub-tangent P'I is equal to twice AP. For draw MK parallel to AII,

Then, by Theor. II,	KM: KI::GK::P;
And as MK1, 'PM are similar,	KM:KI::PT:PM.
Therefore, by equality,	P:PM::GK:P';
And by Cor. Theor. I.,	$1: P M:: P M: A P$,
Therefore, by equality,	AP:PT::PM:GK.

But when the ordinates HI and PM coincide, MT will become a tangent, and $G K$ will become equal to twice PM.

$$
\begin{gathered}
\text { Therefore } \mathrm{AP}: \mathrm{PT}:: \mathrm{PM}: 2 \mathrm{PM} \text {, or } \\
\mathrm{PT}=2 A \mathrm{P} .
\end{gathered}
$$

From this property is obtained an easy and accurate method of drawing a tangent so any point of the curve of a parabola. Thus, let it be required to draw a tangent to any point M in the curve. 'roduce PA to 'I' (fig. 449.), and draw MP perpendicular to PT, meeting AP in the point P. Make AT equal to $A \mathrm{I}$, and join M'T, which will be the tangent required.
1101. Theonem VI. The radius vector is equal to the distance between the focns and the intersection of a tangent at the rertex of an ordinate and the axis prom duced.

Fig. 419.

Fig. 150.

Produce PA to T (fig. 450.) , and let M'T be a tangent at M ; then will $\mathrm{FH}=\mathrm{F} \mathbf{M}$.

For	$\mathrm{FT}=\mathrm{AF}+\mathrm{Al} ;$
But, by last theorem,	$\mathrm{Al}^{\prime}=\mathrm{A}^{\prime} \mathrm{l}^{\prime}$;
Therefore	$\mathrm{F} \mathrm{C}=\mathrm{AF}+\mathrm{AP}$.
But, by Theorem	$\mathrm{FH}=\mathrm{AF}+\mathrm{A}$
Therefore, by equa	$\mathrm{N}=\mathrm{F}^{\prime} \mathrm{C}$.

Coroll. 1. If MN be drawn perpendicular to M'T to meet the axis in N , then will $\mathrm{FN}=\mathrm{FM}=\mathrm{FT}$. For draw FH perpendicular to M'1', and it also biseets M'r, because $\mathrm{F}^{\prime} \mathrm{M}=\mathrm{F} \mathrm{T}$; and since II ' and MN are parallel, and M'T is bisected in $1 I$, the line $\mathrm{T} N$ will also be bisected in F . It therefore follows that $\mathrm{FN}=\mathrm{FM}=\mathrm{FT}$.

Coroll. 2. The subuormal I'N is a constant quantity, and it is equal to half the parameter, or to 2AF. For since TMN is a right angle,

Therefore
$2 \Lambda \mathrm{P}$ or TP: IM: PN: PN.
But, by the detinition of parameter, $\Lambda \mathrm{P}: ~ \mathrm{P} M:: \mathrm{J} M: \mathrm{I}$;
Therefore
$\Gamma^{\prime} N=\frac{1}{2} l^{\prime}$

Corull. 3. The tangent of the vertex AII is a mean proportional between AF and AP. For since FHT is a right angle, therefore AH is a mean proportional between AF and AT; and since AT=AP, AII is a mean proportional between AF and AP. Also FII is a mean proportional between FA and FT; or between FA and FM.

Coroll. 4. The tangent makes equal angles with FM and the axis AP, as well as with FC and CL .
1102. Theorem VII. A line parallel to the axis, intercepted by a double ordinate and a tangent at the vertex of that ordinate, will be divided by the curve in the same ratio as the line itself divides the double ordinate.

Let QM (fig. 451.) be the double ordinate, MT the tangent, AP the axis, GK the intercepted line divided by the curve in the point I; then will GI: IK::MK: KQ.

For by similar triangles MKG, MPT; MK: KG:: PM : P'T, or 2AP;

By the definition of parameter,
Therefore, by equality,
And again, by equality,
And by division,

P: PM::PM: 2AP;
P: MK: PM: KG;
PM: MK::2AP: KG;
MK: KQ::GI: IK.

Fig. 45 I.

110\%. Problem I. To describe a parabola.
If a thread, equal in length to the leg BC (fig .452 .) of a right angle or square, be fixed to the end C , and the other end of the thread be fixed to a point F in a plane, then if the square be moved in that plane so that the leg AB may slide along the straight line GH, and the point D be always kept close to the edge BC of the square, and the two parts FD and DC of the string kept stretched, the point D will describe a curve on the plane, which will be a parabola.

Fig. 4.52.
1104. Рков. II. Given the double ordinate DE and the abscissa BC in position and magnitude, to describe a parabola.
Through B (figs. 453,454 .) draw FG parallel to DE, and DF and EG parallel to CD
 Divide DC and DF each into the same number of equal parts. From the points of
 division in DF draw lines to B. Through the points of division in DC draw lines parallel to BC, and through the points of intersection of the corresponding lines draw a curve, and complete the other half in the same manner; then will DBE be the complete curve of the parabola. The less 13 C is in proportion to CD, the nearer the curve will approach to the are of a circle, as in fig. 422.; and hence we may describe the curve for diminishing the shaft of a column, or draw a flat segment of a circle.
1105. Р'вob. III. The same parts being given, to describe the parabola by the interscction of straight lines.

Produce CB to F (fig. 455.), and make BF equal to BC. Join FD and FE. Divide DF and FE in the same proportion, or into the same number of equal parts. Let the divisions be numbered from D to F , and from F to E , and join every two corresponding points by a straight line ; then the intersection of all the straight lines will form the parabola required.

Fig. 455.
lio6. Prob. IV. To draw a straight line from a given point in the curve of a parabola, ulich shall be a tangent to the curve at that point.

Let DC (.fig. 456.) be the double ordinate, $c 13$ the abscissa to the parabolic curve DBC, and let it be required to draw a tangent from the point e in the curve. Draw ef parallel to DC, cutting

Fig. 456. BC in f : produce $c \mathrm{~B}$ to g, and make $\mathrm{B} g$ equal to $\mathrm{B} f$, and join $g e$, then will $g e$ be the tangent required. In the same manner DiI will be found to be a tangent at D. If eK be drawn perpendicular to the tangent $g e$, then will CK be also perpendicular to the eurve, and in the proper direction for a joint in the masonry of a parabolic areh.
1107. The uses of the parabolic curve in arehitecture are many. The theorists say that it is the curve of equilibrium for an areh which has to sustain a load uniformly diffused over its length, and that therefore it should be ineluded in the depth of lintels and flat arehes; and that it is nearly the best form for suspension and other bridges, and for roofs. It is also considered the best form for beams of equal strength. It may be here also remarked, that it is the curve described by a projectile, and that it is the form in which a jet of water is delivered from an orifice made in the side of a reservoir. So is it the best curve for the reflection of light to be thrown to a distance. In construction it occurs in the intersection of conic surfaces by planes parallel to the side of the cone, and is a form of great beauty tor the potiles of mouldmgs, m which manner it was much used in Greeian buildings.

GENERAL METHOD OF DETERMINING AND DESCRIBING THE SPECIES OF CONIC SECTIONS.
1108. In a conic seetion, let there be given the abecissa AB (fic. 457.) , an ordinate BC. and a tangent CD to the eurve at the extremity of the ordinate to determine the species of the conic section, and to describe the figure.

Draw A D parallel to BC , and join AC (Nos. 1, and 2.). Bisect AC in E, and produce DE and AB , so as to meet in F when DE is not parallel to AB ; then in the case where DE will meet $A B$ or $A B$ produced in F , the point F will be the centre of an ellipsis or hyperbola. In this case produce AF to G , and make FG equal to FA ; then if the ordinate BC and the centre be upon the same side of the apex A, the curve to which the given parts belong is an ellipsis; but if they be on different sides of it, the curve is an hyperbola. When the line DE (No.

Fig. 459.
3.) is parallel to AB , the figure is a parabola.
1109. In a conie section, the abseissa AB (fig. 458.), an ordinate BC, and a point D in the curve being given, to determine the species of the curve, and thence to describe it.

Draw CG parallel to AB (Nos. 1. and 2.), and AG parallel to BC. Join AD, and produce it to mect CG in e. Divide the ordinate CB in f in the same proportion as CG is divided, then will $\mathrm{C} f: f \mathrm{~B}:: \mathrm{C} e: e \mathrm{G}$. Join $\mathrm{D} f$, and produce it or $f \mathrm{D}$ to meet Al or BA in h; then if the points D and h fall upon opposite sides of the ordinate BC, the eurve is an ellipsis; but if D and h fall upon the same side of the ordinate 13C, the curve will be an hyperbola. If Df (No.3.) be parallel to AB , the curve will be a parabola. In the case of the ellipsis and hyperbola, $\mathrm{A} h$ is a diameter; and therefore we have a diameter and ordinate to describe the curve.

Sect V'.

DESCKIPTIVE GEOMETRV.

1110. The term Descriptive Geometry, first used by Monge and other French geometers to express that part of the science of geometry which consists in the application of geometrical rules to the representation of the figures and the various relations of the forms of bodies, according to certain conventional methods, differs from common perspective by the desigu or representation being so made that the exact distance between the different points of the body represented can always be found; and thus the mathematical relations arising from its form and position may be deduced from the representation. Among the English writers on practical architecture, it has usually received the name of projection, from the circumstance of the different points and lines of the body being projected on the plane of representation; for, in descriptive geometry, points in space are represented by their orthographical projection on two planes at right angles to each other, called the planes of projection, one of which planes is usually supposed to be horizontal, in which ease the other is vertical, the projeetions being ealled horizontal or vertical, according as they are on one or other of these planes.
1111. In this system, a point in space is represented by drawing a perpendicular from it tu each of the planes of projection; the pont whereon the perpendicular falls is the
projection of the proposed point. Thes, as points in space are the boundaries of lines, so their projections similarly form lines, by whose means their projection is obtained; and by the projections of points lying in curves of any description, the projections of those curves are obtained.
1112. For obvious reasons, surfaces caunot be similarly represented; but if we suppose the surface to be represented, covered by a system of lines, according to some determinate law, then these lines projected on each of the two planes will, by their boundaries, enable as to project the surface in a rigorous and satisfactory manner.
1113. There are, however, some surfaces which may be more simply represented; for a plane is completely defined by the straight lines in which it intersects the two planes of projection, which lines are ealled the traces of the plane. So a sphere is completely defined i,y the two projections of its centre and the great circle which limits the projections of its points. So also a cylinder is defined by its intersection (or trace) with one of the planes of projection and by the two projections of one of its ends; and a cone by its intersection with one of the planes of projection and the two projections of its summit.

111 \%. Monge, before mentioned, Hachette, Valléc, and Leroi, are the most systematic writers on this subject, whose immediate application to architecture, and to the mechanical arts, and most especially to engineering, is very extensive ; in consequence, indeed, of which it is considered of so much importance in France, as to form one of the prineipal departments of study in the Polytechnic School of Paris. A sufficient general idea of it for the architectural student may be obtained in a small work of Le Croix, entitled, Complément des Elemens de Geometrie. In the following pages, and oceasionally in other parts of this work, we shall detail all those points of it which are connected more immediately with our subject, inasmuch as we do not thunk it neeessary to involve the reader in a mass of scientific matter connected therewith, which we are certain he would never find necessary in the practice of the art whereon we are engaged.
1115. In order to compreiend the method of tracing geometrically the projections of all sorts of ohjects, we must observe,-I. That the visible faces only of solids are to be expressed. II. That the surfaces which enelose solids are of two sorts, rectilinear and curved. These, however, may be divided into three elasses, - 1 st. Those included by plane surfaces, as prisms, pyramids, and, generally, similar sorts of figures used in building. 2d. Those included by surfaces whereof some are plane and others with a simple curvature, as eylinders, cones, or parts of them, and the voussoirs of arehes. 3d. Solids enclosed by one or several surfaces of double flexure, as the sphere, spheroids, and the voussoirs of arches on circular planes.
1116. First cluss, or solids with plane surfuces. - The plane surfaces by whieh these solids are bounded form at their junction edges or arrisses, which may be represented hy right lines.
1117. And it is useful to observe in respect of solids that there are three sorts of angles formed by them. First, those arising from the meeting of the lines which bound the faces of a solid. Second, those whieh result from the concurrence of several faces whose edges unite and form the summit of an angle: thus a solid angle is composed of as many plane angles as there are planes uniting at the point, recollecting however that their number must be at least three. Third, the angles of the planes, which is that formed by two of the faces of a so'id. A cube enclosed by six square equal planes comprises twelve rectilineal edges or arrisses and eight solid angles.
1118. Pyramids are solids standing on any polygonal bases, their planes or faces being triangular and meeting in a point at the top, where they form a solid angle.
1119. l'risms, like pyramids, may be placed on all sorts of polygonal bases, but they rise on every side of the base in parallelograms instead of triangles, thus having throughout similar form and thickness.
1120. Though, strictly speaking, pyramids and prisms are polyhedrons, the latter term is only applied to those solids whose faces forming polygons may each be considered as the base of a separate pyramid.
1121. In all solids with plane surfaces the arrisses terminate in solid angles formed by several of these su:faces, which unite with one another; whence, in order to find the projection of the right lines which represent those arrisses, all that we require to know is the position of the solid anglos where they meet; and as a solid angle is generally composed of several plane angles, a single solid angle will determine the extremity of all the arrisses by which it is formed.
1122. Second class: solids terminated by plane and curved surfaces. - Some of these, as cones for instance, exhibit merely a point and two surfaces, one curved and the other flat. The meeting of these surfaces forms a circulat or elliptical arris common to both. The projection of an entire cone requires several points for the curvature which forms its base, but a single point only is necessary to determine its summit. This solid may be considered as a pyramid with an elliptic or circular base; and to facilitate its projection a polygon is iuseribed in the ellipsis or circle, which serves as its base.
1123. If the cone is tioncated or cut off, polygons may in like manner be inscribed in the curves which produce the sections.
1124. Cylinders may be considered as prisms whose bases are formed by circles, ellipses, or other curves, and their projections may be obtained in a similar manner : that is, by inseriling polygons in the curves which form their bases.
1125. Third class: solids whose surfaces have a double curvature.-A solid of this sort may be enclosed in a single surface, as a sphere or spheroid.
1126. As these bodies present neither angles nor lines, they can only be represented by the apparent curve which seems to bound their superficies. This curve may be determined by angents parallel to a line drawn from the centre of the solid perpendicularly to the plane of projection.
1127. If these solids are truncated or cut by planes, we must, after having traced the curves which represent them entire, inscribe polygons in each curve produced by the sections, in order to proceed as directed for cones and cylinders.
1128. To obtain a clear notion of the combination of several pieces, as, for instance, of a vault, we must imagine the bodies themselves amibilated, and that nothing remains but the arrisses or edges which form the extremes of the surfaces of the voussoirs. The whole assemblage of material lines which would result from this consideration being considered transparent would project upon a plane perpendicular to the rays of light, traces defiuing all these edges that we have supposed material, some foreshortened, and others of the same size. These will form the outlines of the vault, whence follow the subjoined remarks.
I. That in order, on a plane, to obtain the projection of a right line representing the arris of any solid body, we must on such plane let fall verticals from each of its extremities.
II. That if the arris be parallel to the plane of the drawing, the line which represents its projection is the same size as the original.
III. That if it be oblique, its representation will be shorter than the original line.
IV. That perpendiculars by means of which the projection is made being parallel to each other, the line projected cannot be longer than the line it represents.
V. That in order to represent an arris or edge perpendicular to the plane of projection, a mere point marks it because it coincides in the length with the perpendiculars of projection.
VI. That the measure of the obliquity of an arris or edge will be found by verticals let fall from its extremities.
1129. In conducting all the operations relative to projections, they are referable to two planes, whereof one is horizontal and the other vertical.

PROJECTION OF RIGHT LINES.
1130. The projection of a line AB (fig. 459.) perpendieular to a horizontal plane is ex-

pressed on such plane by a point K , and by the lines $a b$, $a^{\prime} b^{\prime}$, equal to the original on vertical planes, whatever their direction.
1131. An inclined line CD (fig. 460.) is represented on an horizontal or a vertical plane by $c d$, $c^{\prime} d{ }^{\prime}$, shorter than the line itself, except on a vertical plane, parallel to its projection, on the horizontal plane $\mathrm{c}^{\prime \prime} \mathrm{d}^{\prime \prime}$, where it is equal to the original CD.
1132. An inclined line EF (fig. 461.) moveable on its extremity E, may, by preserving the same inclination in respect of the plane on which it lies, have its projection successively in all the radii of the circle Ef, determined by the perpendicular let fall from the point $\mathbb{F}_{\text {. }}$.
1133. Two lines GH, 1 K (fig. 462.), whereof one is parallel to an horizontal plane and the other inclined, may have the same projection m, n, upon such plane. Upon a vertica!
plane perpendicular to $m n$, the projection of the line G II will be a point g; and that of the inclined line IK, the vertical $i k$, which measures the inclination of that line. Lastly, on a vertical plane parallel to $m n$, the projection $i^{\prime} k^{\prime}$ and $g^{\prime} l^{\prime}$ will be parallel and equal to the original lines.

PROJECTICN OF SURFACES.

1134. What has been said in respect of right lines projected on vertical and horizontal planes may be applied to plane surfaces; thus, from the surface ABC1) (fig. 463.), parallel to an horizontal plane, results the projection abcd of the same size and form. An inclined surface EFGH may have, though longer, the same projection as the level one ABCD , if the lines of projection AE, BF, DH, CG are in the same direction.
1135. The level surface ABCD would have for projection on vertical planes the right lines $a b, b{ }^{\prime} c^{\prime}$, because that surface is in the same plane as the lines of projection.
1136. The inclined surface EFGH will give on vertical planes the foreshortened figure hgef of that surface; and upon the other the simple line $f q$, which shows the profile of its inclination, because this plane is parallel to the side of the inclined sur-

Fig. 463. face.
projection of curved lines.
1137. Curved lines not having their points in the same direction occupy a space which brings them under the laws of those of surfaces. The projection of a curve on a plane parallel to the surface in which it lies (fig. 464.) is similar to the curve.

1138. If the plane of projection be not parallel, a foreshortened curve is the result, on account of its obliquity to the surface (fig. 465.).
1139. If the curve be perpendicular to the plane of projection, we shall have a line representing the profile of the surface in which it is comprised; that is to say, a right line if the surface lie in the same plane (fig. 466.), and a curved line if the surface be curved (fig. 467.).
1140. In order to describe the projection of the curved line ABC (fig. 467.), if the surface in which it lies is curved, and it is not perpendicular to the plane of projection, a polygon must be inscribed in the curve, and from each of the angles of such polygon a perpendicular must be let fall, and parallels made to the chords which subtend the ares. But it is to be observed, that this line having a double flexure, we must further inscribe a polygon in the curvature which forms the plane abc of the surface wherein the curved line lies.
1141. The combination and developement of all the parts which compose the curved surfaces of vaults being susceptinle of representation upon vertical and horizontal planes by right or curve lines terminating their surfaces, if what has been above stated be thoroughly understood, it will not be difficult to trace their projections for practical purposes. whatever their situation and direction in vaults or other surtaces.

PROIECTION OF SOLIDS.

1149. The projections of a cube ABCDEFGH placed parallel to two planes, one norizontal and the other vertical, are squares whose sides represent faces perpendicular to these planes (fig. 468.), which are represented by corresponding small letters.

Fig. 46 S .
Fig. 469.
1143. If we suppose the cube to move on an ax:s, so that two of its opposite faces remain perpendicular to the planes (fig. 469.), its projection on eaeh will be a rectangle, whose length will vary in proportion to the difference between the side and the diagonal of the square. The motion of the opposite arrisses will, on the contrary, produce a reetangle whose width will be constant in all the dimensions contained of the image of the perfect square to the exaet period when the two arrisses unite in a single right line.
1144. A cylinder (fig. 470.) stands perpendicularly on an horizontal plane, and on such

Fig. 470.
Fig. 4il.
plane its projection ADBC is shown, being thereon represented by a eircle, and upon a vertical plane by the reetangle gcdl.

Fig. 172.

1145. The projection of an inclined cylinder (fig. 471.) is shown on a vertical anu horizontal plane.
1146. In fig. 472. we have the representation of a cube doubly inclined, so that the diagonal from the angle B to the angle G is upright. The projection produced by this position upon an horizontal plane is a regular hexagon acbefg, and upon a vertical plane the rectangle Begc whose diagonal $\mathrm{B} g$ is upright; but as the effect of perspective changes the effect of the cube and its projections, it is represented geometrically in fig. 473.
1147. In figures 474. and 475. a pyramid and cone are represented with their projections on horizontal and vertical planes.
1148. Fig. 476. represents a ball or sphere with its projections upon two planes, one

Fig. 171.
Fig. 4i5.

Fig. 476.
vertical and the other horizontal, wherein is to be remarked the perfeetion of this solic, seeing that its projection on a plane is always a circle whenever the plane is parallel to the circular base formed by the contact of the tangents.

DEVELOPEMENT OF SOLIDS WHIOSE SURFACES ARE PIANE.

1149. We have already observed that solids are only distinguished by their apparent faces, and that in those which have plane surfaces, their faces unite so as to form solid angles. We have also observed that at least three plane angles are neeessary to form a solid angle; whence it is manifest that the most simple of all the solids is a pyramid with a triangular base, which is formed by four triangles, whereof three are united in the angles at its apex. (Fig. 477.)

1i50. The developement of this solid is obtained by placing on the sides of the base,

the three triangles whose faces are inclined (fig. 478.); by which we obtain a figure composed of four triangles. To cut this out in paper, for instance, or any other flexible material, after bending it on the lines $a b, b c, a c$, which form the triangle at the base, the three triangles are turned up so as to unite in the summit.

DEVELOPEMENT OF REGUTAR POLYMEDRONS.

1151. The solid just described formed of four equal equilateral triangles, as we have seen, is the simplest of the five regular polyhedrons, and is called a tetruhedron, from its being composed of four similar faces. The others are -

The hexuhedrom, or cube whose faces are six in number ;
The octakedrom, whose faces are eight equilateral triangles;
The dodecrherdron, whose faces are twelve regular pentagons;
The icosahedron, consisting of twenty equilateral triangles.
These five regular polyhedrons are represented by the figures 477. 479, 48 3, 4S1, and 482; and their developement by the figures $478.483,484,485$. and 486 .

1152. The surfaces of these developements are so arranged as to be capable of being united by moving them on the lines by which they are joined.
1153. It is here proper to remark, that the equilateral triangle, the square, and the pentagon, are the only figures which will form regular polyhedrons whose angles and sides are equal; but by cutting in a regular method the solid angles of these polyhedrons, others regularly symmetrical may be formed whose sides will be formed of two similar figures. Thus, by cutting in a regular way the angles of a tetrahedron, we obtain a polyhedron of eight faces, composed of four hexagous and four equilateral triangles. Sinilarly operating on the cube, we shall have six octagons, connected by eight equilateral triangles, forming a polyhedron of fourteen faces.
1154. The same operation being performed on the octahedron also gives a figure of fourteen faces, whereof eight are octagons and six are squares.
1155. The dodecahedron so cut produces twelve pentagons united by twenty hexagons, and having thirty-two sides. This last, from some points of view, so approacbes the figure of the sphere, that, at a little distance, it looks almost spherical.

DEVELOPEMENT OF PYRAMIDS AND PRISMS.
1156. The other solids whose surfaces are plane, whereof mention has already been made, are pyramids and prisms, partaking of the tetrahedron and cube; of the former, inasmuch as their sides above the base are formed by triangles which approach each other so as together to form the solid angle which is the summit of the pyramid; of the latter, because their faces, which rise above the base, are formed by rectangles or parallelograms which preserve the same distance from each other, but differ, from their rising on a polygonal base and being undetermined as to height.
1157. This species may be regular or irregular, they may have their axes perpendicular or inclined, they may be truncated or cut in a direction either parallel or inclined to their bases.

1158 The developement of a pyramid or right prism, whose base and height are given, is not attended with difficulty. The operation is by raising on each side of the base a triangle equal in height to the inclined face, as in the pyramidal figures 487. ard 488., ard a rectangle equal to the perpendicular height if it be a prism.

DEVELOPEAENT OF AN OBLIQUE PVRAMID.

1159. If the pyramid be oblique, as in fig. 489., wherein the length of the sides of each triangle can only be represented by foreshortening them in a vertical or horizontal projection, a third operation is necessary, and that is founded on a principle common to all projections; viz. that the length of an inclined line projerterl or foreshortemed on a plane, depends upon the difference of the perpendicnlar eiongation of its extremities from the \boldsymbol{p}^{\prime} lane,
whence in all cases a rectungular triangle, whose vertical and horizontal projections give two sides, tl:e third, which is the hypothenuse, joining them, will express the length of the foreshur tened line

1160. In the application of this rule to the oblique pyramid of fig. 489., the position of the point P (fig. 490.) must be shown on the plan or horizontal projection answering to the apex of the pyramid, and from this point perpendicular to the face CD on the same side the perpendicular PG must be drawn. Then from the point \mathbf{P} as a centre describe the ares $B b, C$, which will transfer upon $P^{\prime} G$ the horizontal projections of the inclined arrisses AP, EP P, and DP; and raising the perpendicular PS equal to the height of the apex P ' of the pyramid above the plane of projection, draw the lines $\mathrm{S} a, \mathrm{~S} b, \mathrm{Sc}$, which will give the real lengths of all the edges or arrisses of the pyranid.
1161. We may then obtain the triangles which form the developement of this pyramid, by describing from C as a centre with the radius Sc , the are $i g$, and from the point D another are intersecting the other in F. Drawing the lines CF, DF, the triangles CFD will be the developement of the side DC. To obtain that answering to BC, from the points F and C with $\mathrm{S} b$ and Bc as radii, describe ares intersecting in B^{\prime} and draw $\mathrm{B}^{\mathrm{F}} \mathrm{F}$ and CB^{\prime} : the triangle FCB^{\prime} will be the developement of the face answering to the side $\mathbf{B c}$.
1162. We shall find the triangle FA'B, by using the lengtlis SA and BA to find the points B^{\prime} and F , which will determine the triangle corresponding to the face $\mathrm{A} B$, and lastly the triangles FDE ' and FE ' $\mathrm{A}^{\prime \prime}$ corresponding to the faces DE, AE by using the lengths Sb, DE and SA, AE. The whole developement $\mathrm{AEDE}^{\prime} \mathrm{A}^{\prime \prime} \mathrm{F}, \mathrm{A}^{\prime} \mathrm{B}, \mathrm{CBA}$ being bent on the lines B FcF, CD, DF, and EF will form the inclined figure represented in fig. 489.
1163. If this pyramid be truncated by the plane $m n$, parallel to the base, the contour resulting from the section may be traced on the developement by producing P'm from F to a, and drawing the lines $a b, b c, c d$, de and $e a^{\prime \prime}$ parallel to $\mathrm{A}^{\prime} \mathrm{B}^{\prime}, \mathrm{B} \mathrm{C}, \mathrm{CD}, \mathrm{DE} \mathrm{E}^{\prime}$ and $\mathrm{E}^{\prime} \mathrm{A}^{\prime \prime}$.
1164. But if the plane of the section be perpendicular to the axis, as mo, from the point F with a radius equal to Po describe an are of a circle, in which inscribe the polygon $a b^{\prime \prime} c^{\prime} d^{\prime} e^{\prime \prime} a^{\prime \prime}$. Then the polygon oqm $q^{\prime} o^{\prime}$ is the plane of the section induced by the line mo.

DEVELOPEMENT OF RIGHT AND OBLIQUE PRISMS.

1165. In a right prism, the faces being all perpendicular to the bases which terninate the solid, the developements are rectangles, consisting of all these faces joined together and encloset by two parallel right lines equal to the contours of the bases.
1166. When a prism is inclined, the faces form different angles with the lines of the contours of the bases, whence results a developement whose extremities are terminated by lines for:ning portions of polygons.
1167. We must first begin by tracing the profile of the prism parallel to its degree of inclination (fig. 491.). Having drawn the line Cc , which represents the inclined axis of the prism in the direction of its length, and the lines $\mathrm{AD}, b d$, to show the surfaces by which it is terminated, deseribe on such axis the polygon which forms the plane of the prism h, i, k, l, m perpendicular to the axis. Iroducing the sides $h l, h n$ parallel to the axis to mect the lines AD, ld, they will give the four arrisses of the prism, answering to the angles h, n, h, l; and the line $\mathrm{C} c$ which loses itself in the axis will give the arrisses $i m$.
1168. It must be observed, that in this profile the sides of the polygon h, i, k, l, m give the width of the faces round the prism, and the lines $\mathrm{A} b, \mathrm{C} c, \mathrm{D} d$ their length. From this protile follows the horizontal projection (fig. 492.) wherein the lengthened polygons repre.
sent the bases of the prism. In order to obtain the developenent of this inelined prism, so that being bent up it may form the figure, from the middle of C, fig. 491. a perpendicular $0, p, q$ must be raised, produced to l, l, fig. 493 ; on this line must be transferred the widths of the faces shown by the polygon h, i, k, l, m, n, of fig. 491. in $l, k, i, h, n, m, l^{\prime}$, fig. 493.: through these points parallel to the axis, lines are to be drawn, upon which q D of fig. 491. must be laid from l to E , from k to D , and from l^{\prime} to $\mathbf{E}^{\prime}, f i g .493 . ; p \mathbf{C}$, fig. 491., must be laid from i to C , and from m to F in fig. 493.
oA, fig. 491., is to be laid from h to 13 and from n to A, fig. 493., which will give the contour of the developement of the upper part by drawing the lines ED, DCB, BA, AFE', fig. 492.
To obtain the contour of the base, $q d$ of fig. 491. must be transferred from l to q, from k to d and from l^{\prime} to $e^{\prime}, f i g .493$.
$p c$ from fig. 491. from i to c and from m to f (fig. 493.) ; lastly, ob of fig. 491. nust be transferred from h to b and from n to a (fig. 493.) and drawing the lines $c d$, $b c d, b a$, and afé, the contour will be obtained.
1169. The developement wi 1 be completed by drawing on the faces $\mathrm{B} A$ and $b a$, elongated polygons similar to ABCDEF and abcdef' of fig. 491. and of the same size.

DEVELOPEMENT OF RIGHT AND OBLIQUE CYLINDERS.

1170. Cylinders may be considered as prisms whose bases are formed by polygons of an infinite number of sides. Thus, graphically, the developement of a right cylinder is obtained, by a rectangle of the same height, having in its other direction the circumference of the cincle which serves as its base measured by a greater or less number of equal parts.
1171. But if the cylinder is oblique (fig. 494.), we must take the same measures as for

the prism, and consider the inclination of it. Having deseribed centrally on its axis the circle or ellipsis which forms its perpendicular thickness in respect of the axis, the circumference should be divided into an even number of equal parts, as, for instance, twelve, begimning from the diameter and drawing irom the points of division the parallels to the axis HA, bi, ek, dl, em, fm, GO, which will give the projection of the bases and the general developement.
1172. For the projection of the bases on an horizontal plane, it is necessary that from the points where the parallels meet the line of the base HO, indefinite perpendiculars should be let fall, and after having drawin the line $\mathrm{H}^{\prime} \mathrm{O}^{\prime}$, parallel to HO, upon these perpendiculars above und below the parallel must be transferred the size of the ordinates of
the circle or ellipsis traced on the axis of the cylinder, that is, $p 1$ and $p 10$ to $i^{\prime} 1$, and $i^{\prime} 10: q 2$ and $q 9$ in $k^{\prime 2}$ and $k^{\prime} q$, \&e. In order to avoid unnecessary repetition, the figs. 494 , 49.5, 496. are similarly figured, and will by inspection indicate the corresponding lines.
1173. In the last figure the line $\mathrm{E}^{\prime} \mathrm{E}^{\prime}$ is the approximate developement of the circumference of the circles which follow the section DE perpendicular to the axis of the cylinder, divided into 12 equal parts, fig. 494 . For which purpose there have been transferred upon this line on each side of the point D, six of the divisions of the cirele, and through these points have been drawn an equal number of indefinite parallels to the lines traced upon the cylinder in fig. 494. : then taking the point D^{\prime} as correspondent to 1 , the length of these lines is determined by transferring to each of them their relative dimensions, measured from DE in AG for the superior surface of the cylinder, and from DE to HO for the base.
1174. In respeet of the two elliptical surfaces which terminate this solid, what has been above stated, on the manner of describing a curve by means of ordinates, will render further explanation on that point needless.

developement of right and oblique cones.

1175. The reasoning which has been used in respect of cylinders and prisms, is applicable to cones and pyramids.
1176. In right pyramids, with regular and symmetrical bases, the edges or arrisses from the base to the apex are equal, and the sides of the polygon on which they stand being equal, their developement must be composed of similar isosceles triangles, which in them union will form thronghout, part of a regular polygon, inseribed in a circle whose inelined sides will be the radii. Thus, in considering the base of the cone A B (fig. 497.) as a

Fis 4

regular polygon of an infinite number of sides, its developement becomes a sector of a circle $\mathrm{A}^{\prime \prime} 13^{\prime \prime} \mathrm{B}^{\prime \prime \prime} \mathrm{C}^{\prime \prime}$ (jig. 498.) whose radius is equal to the side AC of the cone, and the are equal to the circumference of the circle which is its base.
1177. Upon this may be traced the developement of the curves which would result from the cone eut aecording to the lines DI, EF, and GH, which are the ellipsis, the parabola, and the hyperbola. For this purpose the circumference of the base of the cone must be divided into equal parts; from each point lines must be drawn to the centre C , representing in this case the apex of the cone. Having transferred, by means of parallels, to FF , the divisions of the semi-circumference AFB of the plan, upon the line $A^{\prime} B^{\prime}$, forming the base of the vertical projection of the cone (fig. 497.) to the points $1^{\prime} 2^{\prime}, \mathrm{F}^{\prime}$ ', and 4^{\prime}, whieh, because of the uniformity of the curvature of the circle will also reprcsent the divisions on the plan marked $8,7 \mathrm{~F}^{\prime}, 6$, and 5 ; from the summit C^{\prime} in the elevation of the cone, the lines $\mathrm{C}^{\prime} 1^{\prime}, \mathrm{C}^{\prime} 2^{\prime}, \mathrm{C}^{\prime} \mathrm{F}^{\prime}, \mathrm{C}^{\prime} 3^{\prime}, \mathrm{C}^{\prime} 4^{\prime}$ are to be drawn, eutting the plans DI, EF', and GH of the ellipse, of the parabola, and of the hyperbola; then by the assistance of these intersections their figures may be drawn on the plan, the first in $\mathrm{D}^{\prime} p^{\prime} \mathrm{I}^{\prime} p^{\prime \prime}$; the second in $\mathrm{FE}^{\prime} \mathrm{F}^{\prime}$; the third in $\mathrm{H}^{\prime} \mathrm{GH}^{\prime \prime}$.
1178. To obtain the points of the circumference of the ellipse upon the developement (fig. 498.), from the points n, o, p, q, r of the line DI (fig. 497.), draw parallels to the base for the purpose of transferring their heights upon $\mathrm{C}^{\prime} \mathbf{B}^{\prime}$ at the points $1,2,3,4,5$. Then transfer $\mathrm{C}^{\prime} \mathrm{D}$ upon the developement, in $\mathrm{C}^{\prime \prime} n^{\prime \prime \prime}, \mathrm{C}^{\prime \prime} 0^{\prime \prime \prime}, \mathrm{C}^{\prime \prime} p^{\prime \prime \prime}, \mathrm{C}^{\prime \prime} q^{\prime \prime \prime}, \mathrm{C}^{\prime \prime} r^{\prime \prime \prime}$; and in the same order below, $\mathrm{C}^{\prime \prime} n^{\prime \prime \prime \prime}, \mathrm{C}^{\prime \prime} 0^{\prime \prime \prime \prime}, \mathrm{C}^{\prime \prime} p^{\prime \prime \prime \prime}, \mathrm{C}^{\prime} q^{\prime \prime \prime \prime}, \mathrm{C}^{\prime \prime} r^{\prime \prime \prime \prime}$; and CI froms $\mathrm{C}^{\prime \prime}$ in $\mathrm{I}^{\prime \prime}$ and $\mathrm{I}^{\prime \prime \prime}$. The
curve passing through these points will be the developement of the cire amference of the ellipse indicated in fig. 497. by the right line 1) I, which is its great axis.
1179. For the parabola (fig. 499.) on the side $\mathrm{C}^{\prime} \mathrm{A}^{\prime}$ (fig. 497.), draw $b g$ and $a h$; then traisfer C E on the developement in $\mathrm{C}^{\prime \prime} \mathrm{E}^{\prime \prime} ; \mathrm{C} g$ from $\mathrm{C}^{\prime \prime}$ to $b^{\prime \prime \prime}$ and $b^{\prime \prime \prime \prime} ; \mathrm{C}^{\prime} h$, from $\mathrm{C}^{\prime \prime}$ to $a^{\prime \prime \prime}$ and $a^{\prime \prime \prime \prime}$; and through the points $\mathrm{F}^{\prime \prime}, a^{\prime \prime \prime}, i^{\prime \prime \prime}, \mathrm{E}^{\prime \prime \prime}, b^{\prime \prime \prime \prime}, a^{\prime \prime \prime \prime}, \mathrm{F}^{\prime \prime}$, trace a curve, which will be the developement of the parabola shown in fig. 497. by the line EF.
11 So. For the hyperbola, having drawn through the points m and i, the parallels me, if, transfer $\mathrm{C}^{\prime} \mathrm{G}$ from $\mathrm{C}^{\prime \prime}$ to $\mathrm{G}^{\prime \prime}$, and from $\mathrm{C}^{\prime \prime}$ to $\mathrm{G}^{\prime \prime \prime}$ of the developement, $\mathrm{C} e$ from $\mathrm{C}^{\prime \prime}$ to $\mathrm{m}^{\prime \prime}$ and $m^{\prime \prime \prime \prime}, \mathrm{C}^{\prime} f$ from $\mathrm{C}^{\prime \prime}$ to $i^{\prime \prime \prime}$ and $i^{\prime \prime \prime \prime}$; and after having transferred $3 \mathrm{H}^{\prime}$ and $611^{\prime \prime}$ of the plan to the circumference of the developement, from 3 to $11^{\prime \prime \prime}$, and from 6 to $11^{\prime \prime \prime \prime}$, by the aid of the points $\mathrm{II}^{\prime \prime \prime}, i^{\prime \prime}, m^{\prime \prime \prime}, \mathrm{G}^{\prime \prime}$ and $\mathrm{H}^{\prime \prime \prime \prime}, i^{\prime \prime \prime \prime}, m^{\prime \prime \prime \prime}, \mathrm{G}^{\prime \prime \prime}$, draw two curves, of which cach will be the developement of one half of the hyperbola represented by the right lines GH and $\mathrm{HI}^{\prime} \mathrm{H}^{\prime \prime}$, fiys. 497. and 500., and by fig. 501 .
1181. The mode of finding the developement of an oblique cone, shown in figs. 502, 503,

504, 505. differs, as follows, from the preceding. 1. From the position of the apex C upun the plan 503., determined by a vertical let fall from such apex in fig. 509. 2. Because the line DI of this figure, being parallel to the base, gives for the plan a circle instead of an ellipsis. 3. Because in finding the lengthened extent of the right lines drawn from the apex of the cone to the circumference of the base, divided into equal parts, fig. 504. is introduced to bring them together in order to avoid confusion, these lines being all of a different size on account of the obliquity of the conc. In this figure the line CC^{\prime} shows the perpendicular height of the apex of the cone above the plan; so that by transfer ring from each side the projections of these lines taken on the plan from the point C to the circumference, we shall have $\mathrm{CA}^{\prime \prime}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{CF}^{\prime \prime}, \mathrm{C} 3, \mathrm{C} 4, \mathrm{Cl}^{\prime}$, on one side, and $\mathrm{CA}{ }^{\prime}, \mathrm{C} 8, \mathrm{C} 7, \mathrm{CF}, \mathrm{C} 6, \mathrm{C} 5$, and $\mathrm{CB}^{\prime \prime}$ on the other ; lastly, from the point C drawing lines to all these points, they will give the edges or arrisses of the inseribed pyramid, by which the developement in fig. 505 . is obtained. Having obtained the point $\mathrm{C}^{\prime \prime}$ representing the apex, a line is to be drawn through it equal to $\mathrm{CA}^{\prime \prime}$ (fig. 504.) ; then with one of the divisions of the base taken on the plan, suel as Al, it must be laid from the point A of the developement of the section; then taking $\mathrm{C}^{\prime} 1$ of fig. 504., describe from the point $\mathrm{C}^{\prime \prime}$ another are which will cross the former, and will determine the point 1 of the developement. Continuing the operations with the constant length A1 and the different lengths $\mathrm{C} 2, \mathrm{CF}, \mathrm{C}: 3, \mathcal{\&} \mathrm{c}$., taken from fig. 504. and transferred to $\mathbf{C}^{\prime \prime} 2, \mathbf{C}^{\prime \prime} \mathbf{F}, \mathrm{C}^{\prime \prime} 3$, \& c. of the developement, the necessary points will be obtained for tracing the curve $\mathrm{B}^{\prime \prime} \mathrm{AB}^{\prime \prime \prime}$, representing the contour of the oblique base of the conc.
1182. We obtail the developement of the circle shown by the line DI of fig. 502. parallel to that of the base AB, by drawing another line I'I) D'I' (fiy. 504.) at the same distance from the summit \mathbf{C}, cutting all the oblique lines that have served for the preceding developement; and on one side, $\mathrm{CD}^{\prime}, \mathrm{C} n, \mathrm{C} 0, \mathrm{C}_{p}, \mathrm{C} q, \mathrm{C} r, \mathrm{CI}^{\prime \prime}$, must be carried to fig. 50.5 , from $\mathrm{C}^{\prime \prime}$ to $\mathrm{D}^{\prime \prime}, n, o, p, q, r$, and on the other from $\mathrm{C}^{\prime \prime \prime}$ to n, o, p, q, r, and $\mathrm{I}^{\prime \prime \prime \prime}$, on fig. 505. The curve line passirg through these points will be the developement of this circle.
1183. To trace upon the developement the parabola and hyperbola shown by the lines EF, G3 of fig. 502., from the points Eba, Gmi draw parallels to the base Λ B , which, transferred to fig. 501., will indicate upon corresponding lines the real distance of these points from the apex C, which are to be laid in fig. 505 . from $\mathrm{C}^{\prime \prime}$ to E, b, a, b and a for
the parabola; and from $\mathrm{C}^{\prime \prime}$ to G, m, i on one side, and on the otl. ar to G, m, i, for the hyperbola. Each of these is represented in figs. 506. and 507.

DEVELOPEMENT OF BODIES OR SOLIDS WHOSE SURFACES HAVE A DOUBIE CURVATURE.

1184. The developement of the sphere and other bodies whose surface has a double flexure would be impossible, unless we considered them as consisting of a great number of plane faces or of simple curvatures, as the cylinder and the cone. Thus a sphere or spheroid may be considered, -I. As a polyhedron of a great number of plane faces formed by truncated pyramids whose base is a polygon, as fig. 508. II. By truncated cones, forming zones, as in fig. 509. III. By parts of cylinders cut in gores, forming fat sides that diminish in width, shown by fig. 510 .
1185. In reducing the sphere or spheroid to a polyhedron with flat faces, the developement may be accomplished in two ways, which differ only by the manner in which the faces are developed.
1186. The most simple method of dividing the sphere to reduce it to a polyhedron is that of parallel circles crossed by others perpendicular to them, and intersecting in two opposite points, as in the common geographical globes. If, instead of the circle, the polygons are supposed of the same number of sides, a polyhedron will be the result, similar to that represented by fig. 508., whose half A D 13 shows the geometrical elevation, and AEB the plan of it.

1187. For the developement, produce $\mathrm{A} 1,12,23$, so as to meet the produced axis CP in order to obtain the summits $\mathrm{P}, \not, r, \mathrm{D}$ of the truncated pyramids which form the semi-polyhedron ADB; then from the points $\mathrm{P}^{\prime}, q, r$, with the radii PA, P1, $q 1, q 2, r 2, r 3$ and 1):3, describe the indefinite ares $\mathrm{A} 13^{\prime}, 1 b^{\prime}, 1 b^{\prime \prime}, 2 f^{\prime}, 2 f^{\prime \prime}, 3 g^{\prime}$, and $3 g$, upon which, after having transferred the divisions of the demi-polygons AEB, $1 e 6^{\prime \prime \prime}, 2 e^{\prime} 5^{\prime \prime \prime}, 3 e^{\prime \prime}, 4^{\prime \prime}$, from all the transferred points, as $A, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9,13^{\prime}$, for each truncated pyramid draw lines to the summits PqrD, and other lines which will form inscribed polygons in each of the arcs AB', $1 l^{\prime}, 1 b^{\prime}, \& c$. These lines will represent for each band or zone the faces of the truncated pyramids whereof they are part.
1188. We may arrive at the same developement by raising upon the middle of each side of the polygon AEB indefinite perpendiculars, upon which must be laid the height of the faces of the elevation in $1,2,3,4$; through which points draw parallels to the base, upon which transfer the widtlis of each of the faces taken on the plan, whereby trapezia will be formed, and triangles similar to those found in the first developement, but ranged in another manner. This last developement, which is called in gores, is more suitable for geographical globes; the other method, for the formation of the centres, moulds, and the like, of spherical vaults.
1189. The developement of the sphere by conic zones (fig. 509) is obtained by the same prozess as that by truncated pyramids, the only difference being, that the developement of the arrisses $\dot{A} B^{\prime}, 1 b^{\prime}, 2 f^{\prime}, 3 g$, are ares of circles described from the summits of cones, instead of being polygons.
1190. The developement of the sphere reduced to portions of cylinders cut in gores (fig. 510.) is conducted in the second manner, but instead of joining with lines the points h, i, k, d, (fig. 508.) they must be united by a curve. This last method is useful in drawing the caissons or pannels in spherical or spheroidal vaults.
treated of in the preceding sections, and we have now to speak of the third, which must not be confounded with plane angles. Of these last, we have explained that they are formed by the lines or arrisses which bound the faces of a solid; but the angles of planes, whereof we are about to speak, are those formed by the meeting of two surfaces joining in an edge.
1191. The inclination of one plane ALDE to another ALCB (fig.511.) is measured by two perpendiculars FG, FH raised upon each of these planes from the same point F of the line or arris AL formed by their union.
1192. It is to be observed, that this angle is the greatest of all those formed by lines drawn from the point F upon these two planes; for the lines FG, FH being perpendicular to AL, common to both the planes, they will be the shortest that can be drawn from the point F to the sides ED, BC, which we suppose parallel to AL; thus their distance GH will be thronghout the same, whilst the lines FI, FK will be so much the longer as they extend beyond

Fig. 511. the perpendiculars FG, FH, and we shall always have KI equal to GH, and consequently the angle IFK so much smatler than GFH as it is more distant.
1194. Thus, let a rectangular surface be folded perpendicularly to one of its sides so that the contours of the parts separated by the fold may fall exactly on each other. If we raise one of them, so as to move it on the fold as on a hinge, and so as to make it form all degrees of angles, we shall see that each of the central extremities of the moveable part is always in a plane perpendicular to the part that is fixed.
1195. This property of lines moving in a perpendicular plane, furnishes a simple method of finding the angles of planes of all sorts of solids whose vertical and horizontal projections or whose developements are known.
1196. Thus, in order to find the angles formed by the tetrabedron or pyramid on a triangular base (fig. 47\%.), we must for the angles of the base with the sides, let fall from the angles $A B C$ perpendiculars to the sides $a c, c b$, and $a b$, which meet at the centre of the base in D. It is manifest from what has just been said on this subject, that if the three triangles are made to move, their angles at the summit $\mathrm{A}, \mathrm{B}, \mathrm{C}$ will not be the vertical planes shown by the lines $\mathrm{AD}, \mathrm{DB}, \mathrm{DC}$, and that they will meet at the extremity of the vertical, passing through the intersection of these planes at the point D . Thus we obtain for each side a rectangular triangle, wherein two sides are known, namely, for the side cb, the hypothenuse ed, and the side eD. Thus raising from the point 1) an indefinite perpendicular, if from the point e with $\epsilon \mathrm{B}$ for a radius an are is described cutting the perpendicular in d, and the line de be drawn, the angle $d e \mathrm{D}$ will be that sought, and will be the same for the three sides if the polyhedron be regular ; otherwise, if it is not, the operation must be repeated for each.
1197. These angles may be oltained with great accuracy by taking $d e$, or its equal $e \mathrm{~B}$, for the whole sine; then $d e: e \mathrm{D}::$ sine : sine $19^{\circ} 28^{\prime}$, whose complement $70^{\circ} 32^{\prime}$ will, if the polyhedron be regular, be the angle sought. In this case, all the sides being equal, and each being capable of serving as base, the angles throughout are equal. In respect of the cube (figs. 479. and 483.) whose faces are composed of equal squares, and whose angles are all right angles, it is evident that no other angles can enter into their combination with each other.
1198. To obtain the angle formed by the faces of the octahedron (fig. 480.) from the points C and D: with a distance equal to a vertical dropped upon the base of one of the triangles of its developement (fig. 484.), describe ares crossing cach other in F; and the angle CFD will be equal to that formed by the faces of the polyhedron, and will be found by trigonometry to be $70^{\circ} 32^{\prime}$. In the dodecahedron (fig. 481.), the angle formed by the faces will be found by drawing upon its projection the lines DA, and producing the side B to E , determined by an are made from the point D with a radius equal to BA . The angle sought will be found to be 108 degrees.
1199. For the icosahedron (fig. 482.), draw the parallels $\mathrm{A} a, \mathrm{~B} b, \mathrm{C} c$, and after having made $b c$ parallel and equal to BC , with a radius equal thereto, describe an are cutting in a the parallel drawn from the point A; the angle $a b c$ will be equal to that formed by the sides of the polygon, which by trigonometry is found to be 108 degrees, as in the dodeca l.edron.
1200. For the pyramid with a quadrangular base (fig. 487.) the angle of each face with the base is equal to PAB or PBA, because this figure, which represents its vertical projection, is in a plane parallel to that within which will be found the perpendiculars dropped from the summit on the lateral faces of the base.
1201. In order to obtain the angles which the inclined sides form with one another, draw upon the developement (fig. 488.) the line ED, which, because the triangles PEC, $\mathrm{P}^{\prime} \mathrm{CD}$ are equal and isoceles, will be perpendicular to the line PC, representing one of the arrisses which are formed. Then from the point D) with a radius equal to Dl, and
from the point C with a radins equal to the diagonal $A D$ (of the square representing the square of the base) deseribe ares intersecting each other. The angle FinG will be the angle sought. We may suppose it taken along the line BC traced in fig. 487.
1202. In order to obtain the angles formed by the faces of an oblique pyramid (fig. 489.), through some point q of the axis draw the perpendieular mo, showing the base oqmq'o' of the right pyramid $m p o$, whose developement is shown in fig. 490., by the portion of the bolygron $a, b^{\prime}, c^{\prime \prime}, e^{\prime \prime}, d^{\prime \prime}, a^{\prime} \mathrm{F}$.
1203. By means of this base and the part developed, proceeding as we have already explained for the right pyramid, we shall find the angles formed by the meeting of the faces, and they will difler but little from those of the little polygon $a q m q^{\prime} J^{\prime}$.
1204. In respect to the angles formed by the faces inclined to the base, that of the face answering to the side De of the base is expressed by the angle ADP of the verticai projection, fig. 489.
1205. As to the other faces, for instance, that which corresponds to the side AE of the base ($f i g .490$.), through any point g draw of perpendicular to it, meeting the line A F , showing the projection of one of the sides of the inclined face; upon the developement of this face, expressed by $A^{\prime \prime} \mathrm{E}^{\prime} \mathrm{F}$, raise at the same distance from the point E^{\prime} another perpendicular $g^{\prime} m^{\prime}$, which will give the prolongation of the line shown on the base by Af. If we transfer $A^{\prime \prime} m$ of the developement upon $A m$, which expresses the inclination of the arris represented by this line, we shall have the perpendicular height $m f$ of the point m above the base, which, being transferred from $\mathrm{fm}^{\prime \prime}$ upon a perpendicular to $g f$, we shall have the two sides of a triangle whose hypothenuse $g m^{\prime \prime}$ will give $m^{\prime \prime} g f$, the angle sought.
1206. In the oblique prisin (fig. 491.), the angles of the faces are indicated by the plane of the section perpendietar to the axis, represented by the polygon hilhmn.
1207. Those of the sides perpendicular to the plan of the inclination of the axis are expressed by the angles $\mathrm{D} d b$, A $b d$ of the profile in the figure last named.
1208. In order to obtain the angles formed with the other sides, for instance $\mathrm{Cc} \mathrm{D} d$ and $\mathrm{C} c \mathrm{~A} b$, draw the perpendiculars $c s b t$, whose projection in plan are indicated by $s^{\prime \prime} c^{\prime}$ and $b t^{\prime}$, then upon $f c$, drawn aside, raise a perpendicular $c^{\prime \prime} c^{\prime \prime \prime}$ equal to $c s$ of the profile, fig. 491. Through the point $c^{\prime \prime \prime}$ draw a line parallel to $f c$, upon whieh, having transferred $c^{\prime} s^{\prime}$ of the projection in plan (fig. 492.), draw the lypothenuse $s^{\prime \prime} c^{\prime \prime}$, and it will give the angle $s^{\prime \prime} e^{\prime \prime} f$ formed by the face $\mathrm{Cc} \mathrm{D} d$ with the inferior base.
1209. To obtain the angles of the face CcAb, raise upon $\mathrm{F} b^{\prime \prime}$, drawn on one side, a perpendicular $b^{\prime \prime} t^{\prime \prime \prime}$, equal to $b t$ (fig. 492.), and drawing as before a parallel to $b^{\prime \prime}$ through the point $t^{\prime \prime \prime}$, transfer $b t^{\prime}$ of fig. 492. to $t^{\prime \prime \prime} t^{\prime \prime}$; and drawing $t^{\prime \prime} b^{\prime \prime}$, the angle $t^{\prime} b^{\prime \prime} F^{\prime}$ is that required.
1210. As the bases of this prism are parallel, these faces necessarily form the same angles with the superior base.
1211. An acquaintance with the angles of planes is of the greatest utility in the preparation of stone, as will be seen in chap. iii, and a thorough acquaintarce with it will well repay the architectural student for the labour he may bestow on the subject.

Sect. VI.

mensuration.

1212. The area of a plane figure is the measure of its surface or of the space contaned within its extremities or boundaries, without regard to thickness. This area, or the content of the plane figure, is estimated by the mumber of small squares it contains, the sides of each whereof may be an inch, a foot, a yard, or any other fixed quantity. Hence the arca is said to consist of so many square inches, feet, yards, \&c., as the case may be.
1213. 'Thus if the rectangle to be measured be ABCD (fig. 512 .), and the small square E, whose side we will suppose to be one inch, be the measuring unit proposed; then, as often as such small square is contained in the rectangle, so many square inches are said to be contained in the rectangle. Here it will be seen by inspection that the number is 12 ; that the side DC or AB , which is 4 times the length of the measuring unit, multiplied by the number of times 3 , which the length of the measuring unit is contained in $A D$ or $B C$, will give 12 for the product.
1214. Problem I. To find the area of a parallelogram, whether it be a square, a rectangle, a rhombus, or a rhomboid.

Multiply the length by the perpendicular breadtla or leeight, and the product will be the area.

Examsle 1. Required the area of a parallelogram whose length is 12.25 feet, and height $8: 5$ feet.
$12.25 \times 8.5=104.125$ feet, or 104 feet $1 \frac{1}{2}$ inches.
Example 2. Required the content of a piece of land in the form of a rhombus whose length is 6.2 chains, and perpendicular height $5 \cdot 45$.

Recollecting that 10 square chains are egual to a square acre, we have,
$6 \cdot 20 \times 5 \cdot 45=33 \cdot 79$ and $\frac{3379}{10}=3 \cdot 379$ acres, which are equal to 3 acres, 1 rood, $20 \frac{64}{100}$ perches.
Example 3. Required the number of square yards in a rhomboid whose length is $\mathbf{8 7}$ feet, and breadth 5 feet 3 inches ($=5.25$ feet).

Recollecting that 9 square feet are equal to 1 square yard, then we have

$$
37 \times 5 \cdot 25=194 \cdot 25, \text { and } \frac{194 \cdot 25}{9}=21 \cdot 584 \text { yards }
$$

1215. Probiem II. To find the area of a triangle.

Rule 1. Multiply the base by the perpendicular height, and take half the product for the area. Or multiply either of these dimensions by half the other. The truth of this rule is evident, beeause all triangles are equal to one half of a parallelogram of equal base and altitude. (See Geometry, 90t.)
Example 1. To find the area of a triangle whose base is 625 feet, and its perpendicular height 520 feet. Here,

$$
625 \times 260=162500 \text { feet, the area of the triangle. }
$$

Rule 2. When two sides and their contained angle are given : multiply the two given sides together, and take half their product ; then say, as radius is to the sine of the given angle, so is half that product to the area of the trimgle. Or multiply that half produet by the natural sine of the said angle for the area. This rule is founded on proofs which will be found in Sect. 111., on which it is unnecessary here to say more.
Example. Required the area of a triangle whose sides are 30 and 40 fect respectively, and their contained angles $28^{\circ} 57^{\prime}$.

By natural numbers: -
First, $\frac{1}{2} \times 40 \times 30=600$.
'Then, $1: 600:: \cdot 484046\left(\sin .28^{\circ} 57\right.$ '):290•4276.
By logarithms : -
Sin. $28^{\circ} 57^{\prime}=9 \cdot 684887$
Log. of $600=2 \cdot 778151$
$\overline{2 \cdot 463038}=290 \cdot 4276$, as above.
Rule 3. When the three sides are given, take half the sum of the three sides added together. Then subtract each side severally from such half sum, by which three remainders will be obtained. Multiply such half sum and the three remainders together, and extract the square root of the last product, which is the area of the triangle. This rule is founded on one of the theorems in Trigonometry to be found in the section relating to that subject.
Example. Required the area of a triangle whose three sides are 20,30, and 40.
$20+30+40=90$, whose half sum is 45 .
$45-20=25$, first remainder ; $45-50=15$, second remainder ; $45-40=5$, third remainder.
Then, $45 \times 25 \times 15 \times 5=84375$, whose root is $290 \cdot 4737$, area required.
121b. Prcelem III. To find the area of a trapeznid.
Add together the parallel sides, multiply their sum by the perpendicular breadth or dis-
tance between them, and half the product is the area. (See Geometry, 932.)
Example 1. Required the area of a trapezoid whose parallel sides are 750 and 122.5 and their vertical distance from each other 1540.
$1225+750 \times 770=1520750$, the area.
Example 2. Required the area of any quadrangular figure (fig. 513.) wherein

AP is 110 feet,
AQ 745 feet.
AB 1110 feet
CP 352 feret
DQ 595 feet.

Fig. ${ }^{2} 13$.

Therefose, $\mathrm{QB}=\mathrm{AB}-\Lambda Q=1110-74 \dot{5}=365$, And $\quad \mathrm{I}^{\prime} \mathrm{Q}=\mathrm{AB}-\mathrm{AI}^{\prime}-\mathrm{QB}=1110-110-365=635$.

$$
\begin{aligned}
\text { For PCDQ, } 505+952 \times 635 \div 2 & =300672 \cdot 5 \\
\text { For the triangle } \Lambda C P, 176 \times 110 & =19360 \\
\text { For the triangle DQB, } \frac{365 \times 595}{2} & =108587 \cdot 5 \\
\text { Area } & =428620 \cdot 0 \text { feet. }
\end{aligned}
$$

1217. Problem IV. To find the area of any trapezium.

Divide the trapezium into two triangles by a diagonal; then find the areas of the two triangles, and their sum is the area.
Observation. If two perpendiculars be let fall on the diagonal from the other two opposite angles, then add these two perpendiculars together, and multiply that sum by the diagonal. Half the product is the area of the trapezium.

Example. Required the area o" a trapezium whose diagonal is 42 , and the two perpendiculars or it 16 and 18 .

Here, $16+18=34$, whose half $=17$; Then, $42 \times 17=714$, the area.

1218. Prollem V. To find the area of an irregular polygon.

Druw diagonals dividing the proposed polygon into trapezia and triangles. Tiien having found the areas of all these separately, their sum will be the content required of the whole polygon.
Example. Required the content of the irregular figure ABCDEFGA (fig. 514.), wherein the following diagonals and prrpendiculars are given.

$$
\begin{aligned}
& \mathrm{AC}=55, \mathrm{GC}=44, \mathrm{~B} n=18, \mathrm{E} p=8 \\
& \mathrm{FD}=52, \mathrm{G} m=13, \mathrm{GO}=12, \mathrm{D}_{q}=23 . \\
& \text { And } 55 \times 9=495 \\
& 55 \times 6 \cdot 5=357 \cdot 5 \\
& 44 \times 11 \cdot 5=506 \\
& 52 \times 6=312 \\
& 52 \times 4==208
\end{aligned}
$$

$1878 \cdot 5$, area required.

Fig. 514.
1219. Problem VI. To find the area of a regular polygon.

Rule 1. Multiply the perimeter of the polygon, or sum of its sides, by the perpendien lar drawn from its centre on one of its sides, and take half the product of the area; which is in fact resolving the polygon into so many triangles.
Example. Required the area of the regular pentagon ABCDE (fig. 515.), whose side AB or BC, \&c. is 25 ft ., and perpendicular OP 17.2 ft .
Here $-\frac{25 \times 5}{2}=62 \cdot 5=$ half the perimeter, and $62.5 \times 17 \cdot 2=1075$ square feet area required.
Rule 2. Square the side of the polygon, and multiply the square by the tabular area or multiplier set against its name in the

Fig. 515. following table, and the product will be the area. This rule is founded on the property, that like polygons, being similar figures, are to one another as the stuuares of their like sides. Now the multipliers of the table are the respective areas of the respective polygons to a side $=1$; whence tle rule is evident. In the table, the apothem of a regular polygon is the line $U P$,

TABLE OF POLyGONs. (See also Glossary, s. v. Polygon.)

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { sides } \end{gathered}$	Name of Polygon.	Angle OBP. degrs.	Angle of centre.		Length of Side. Rad $=1$	$\left\|\begin{array}{l} \text { Length } \\ \text { of Rad. } \\ \text { Apt. }=\mathrm{I} \end{array}\right\|$	Length of Radius. Side $=1$	Multipliers.
3	Trigon or Equ. Tri.	30	120	-5000	$1 \cdot 732051$	$2 \cdot 0000$	-577350,	$0 \cdot 4330127$
4	Tetragon	45	90	7071	$1 \cdot 414214$	1-4142	$\cdot 7071068$	$1 \cdot 000000$.
5	Pentagon	54	72	-8090	$1 \cdot 175570$	$1 \cdot 2360$	-8506508	$1 \cdot 7204774$
6	Hexagon	60	60	-8660	$1 \cdot 000000$	$1 \cdot 1547$	$1 \cdot 0000000$	$2 \cdot 5980762$
7	Heptagon	$64 \frac{2}{7}$	$51 \cdot 25 \frac{5}{7}$	-9010	-867767	$1 \cdot 1095$	$1 \cdot 1593824$	3•63391-24
8	Octagon	$67 \frac{1}{2}$	45	-9239	$\cdot 765367$	$1 \cdot 0823$	1-3065628	4-8284271
9	Nomagon	70	40	-9397	- 684040	$1 \cdot 0642$	1-4619022	$6 \cdot 1818242$
10	Decagon	72	36	.9511	-618034	$1 \cdot 0515$	$1 \cdot 6180340$	$7 \cdot 6942088$
11	Undecagon	73.7	$32 \cdot 43 \frac{7}{11}$	-9595	$\cdot 563465$	$1 \cdot 0422$	$1 \cdot 7747324$	$9 \cdot 3656399$
12	Dodecagon -	75	30	$\cdot 9659$	$\cdot 517638$	1.0352	1.9318517	11.1951524

Example. Required the area of an octagon whose side is 20 feet.

> Here $20^{2}=400$, and the tabular area 4.8284271 ;
> Therefore $4.8284271 \times 400=1931: 37084$ feet, area required.
1220. Problem VII. To find the diameter and circumference of any circle, either from the nther.

Rule 1. As 7 is to 22 , or as 1 is to $8 \cdot 1416$, so is the diamcter to the circumference. Or as 22 is to 7 , so is the circumference to the diameter.
Example. Required the circumference of a circle whose diameter is 9 .
Here $7: 22:: 9: 28 \frac{2}{7}$; or, $\frac{22 \times 9}{7}=28 \frac{2}{7}$, the circumference required.
Required the diameter of a circle whose circumference is 36 .
Here $22: 7:: 36: 11 \frac{10}{22}$; or, $\frac{36 \times 7}{22}=11 \frac{10}{22}$, the diameter required.

1221. Problem VIII. To find the length of any arc of a circle.

Rule 1. Multiply the decimal 01745 by the number of degrees in the given are, and that by the radius of the circle; then the last product will be the length of the arc. This rule is founded on the circumference of a circle being 6.2831854 when the diameter is 2 , or 3.1415927 when the diameter is 1 . The length of the whole circumference then being divided into 360 degrees, we have $360^{\circ}: 6.2831854$ $:: 1^{\circ}:{ }^{\circ} 01745$.
Example. Required the length of an arc of 30 degrees, the radius being 9 feet.
Here $01745 \times 30 \times 9=4.7115$, the length of the arc.
Rule 2. From 8 times the chord of half the are subtract the chord of the whole arc, and one third of the remainder will be the length of the are nearly.
Example. Required the length of an are DCE (fig. 516.) whose chord DE is 48, and versed sine 18.
Here, to find DC, we have $24^{2}+18^{2}=576+324=900$, and $\sqrt{ } 900=30=$ DC.
Whence $\frac{30 \times 8-48}{3}=\frac{240-48}{3}=\frac{192}{3}=64$, the length of the arc required.
1222. Problem IX. To find the area of a circle.

Rule 1. Multiply half the circumference by half the diameter. Or multiply the whole circumference by the whole

Fig. 516. diameter, and take $\frac{1}{4}$ of the product.
Rule 2. Square the diameter, and multiply such square by 7854.
Rule 3. Square the circumference, and multiply that square by the decimal 07958.
Example. Required the area of a circle whose diameter is 10, and its circumference $31 \cdot 416$.

By rulc 1., $\frac{31 \cdot 416 \times 10}{4}=78.54$.
By rule 2., $10^{2} \times 7854=100 \times 7854=78 \cdot 54$.
By rule 3., $31416 \times 31 \cdot 416 \times 07958=78 \cdot 54$.
So that loy the three rules the area is 78.54 .
1223. Problem X. To find the area of a circular ring, or of the space included between the circunferences of tuo circles, the one being contained within the other.

Rule. The difference between the areas of the two circles will be the area of the ring. Or, multiply the sum of the diameters by their difference, and this product again by 7854 , and it will give the area required.
Example. The diameters of two concentric cireles being 10 and 6, required the area of the ring contained between their circumferences.

Here $10+6=16$, the sum, and $10-6=4$, the difference.
Therefore $7854 \times 16 \times 4=7854 \times 64=50 \cdot 2656$, the area required.

1224. Problem XI. To find the area of the sector of a circle.

Rule 1. Multiply the radius, or half the diameter, by half the are of the sector for the area. Or multiply the whole diameter by the whole are of the sector, and take of the product. This rule is founded on the same basis as that to Problem IX.
Rule 2. As 360 is to the degrees in the are of the sector, so is the area of the whole circle to the area of the sector. This is manifest, because it is proportional to the length of the arc.
Example. Required the area of a circular sector whose are contains 18 degrees, the diameter being 3 feet.
By the first rule, $3.1416 \times 3=9.4248$, the circumference.
$360: 18:: 9 \cdot 4248: 47124$, the length of the are.
$\cdot 47124 \times 3 \div 4=1 \cdot 41372 \div 4=\cdot 35343$, the area of the sector.

By the se:ond rule, $\cdot 7854 \times 3^{2}=7 \cdot 0686$, area of the whole circle.
$860: 18:: 7 \cdot 0686:-35343$, the area of the sector.
1295. Probiem XII. To find the area of a segment of a circle.

Rule 1. Find the area of the sector having the same are with the segment by the last problem. Then find the area of the triangle formed by the chord of the segment and the two radii of the sector. Take the sum of these two for the answer when the segment is greater than a semicircle, and their difference when less than a semicircle.
Example. Required the area of the segment ACBDA (fig. 517.), its chord AB being 12, and the radius AE or CE 10 .
As $\mathrm{AE}: \sin . \angle \mathrm{D} 90^{\circ}:: \mathrm{AD}: \sin .36^{\circ}: 52 \frac{1}{3}=36.87$ degrees in the are AC.
Their double 73.74 degrees in are ACB.
Now, $\cdot 7854 \times 400=31 \cdot 16$, the area of the whole circle.
Therefore, $360: 73 \cdot 74:: 314 \cdot 16: 64 \cdot 3504$, area of the sector ACBE.
Again, $\sqrt{ } \mathrm{AE}^{2}-\mathrm{AD}^{2}=\sqrt{100-36}=\sqrt{ } 64=8=\mathrm{DE}$.
Therefore, $\mathrm{AD} \times \mathrm{DE}=6 \times 8=48$, the area of the triangle AEB.
Henee the sector ACBE ($64 \cdot 350$), Jess triangle AEB (48)

Fig. 317. $=16.3504$, area of segment ACBDA.
Rule 2. Divide the height of the segment by the diameter, and find the quotient in the column of heights in the following table. Take out the corresponding area in the next column on the right hand, and multiply it by the square of the circle's diameter for the area of the segment. This rule is founded on the principle of similar plane figures being to one another as the squares of their like lineal dimensions. The segments in the table are those of a circle whose diameter is 1 . In the first column is contained the versed sines divided by the diameter. Hence the area of the similar segment taken from the table and multiplied by the square of the diameter gives the area of the segment to such diameter. When the quotient is not found exactly in the table, a proportion is used between the next less and greater area.
Example. As before, let the chord AB be 12, and the radius 10 or diameter 20.
Having found as above $\mathrm{DE}=8$: then $\mathrm{CE}-\mathrm{DE}=\mathrm{CD}=10-8=2$. Hence by the rule $\mathrm{CD} \div \mathrm{CF}=2 \div 20=\cdot 1$, the tabular height; this being found in the first column of the table, the corresponding tabular area is 040875 ; then $040875 \times 20^{2}=040875 \times 400=16.340$, the area nearly the same as before.

Aheas of the Segments of a Circle whose Diameter, Unity, is ejpposed to ee divided into 1000 equal Parts.

Hght	Ar	Ilght.	Area Seg.	Hght.	Area Seg.	Hght.	Area Seg.	IIgh	Area Se	ght.	Area Seg.
1	-000042	. 022	-004322	-043	$\cdot 011734$	-064	. 021168	.085	-032186	$\cdot 106$	22
-002	$\cdot 000119$	-023	-004618	-044	$\cdot 012142$	-065	-021659	-086	-032745	$\cdot 107$	O45139
-003	-000219	-024	-004921	-045	$\cdot 012554$	-066	-022154	087	-033307	$\cdot 108$	045759
-004	-000337	-025	-005230	. 046	-012971	- 067	-022652	-088	-033872	-109	046381
-005	-000470	-026	-005.546	-047	$\cdot 013392$	-068	$\cdot 023154$	-089	-034441	$\cdot 110$	$\cdot 047005$
-006	-000618	-027	$\cdot 005867$	$\cdot 048$	$\cdot 013818$	-069	-023659	-090	-035011	-111	-047632
-007	-000779	-028	-006194	. 049	-O1 4247	-070	-024168	-091	-035585	$\cdot 112$	-048-62
-008	$\cdot 000951$	- 029	$\cdot 006527$	-050	-O1 4681	-071	- 024680	-092	-036162	$\cdot 113$	-048894
-009	-001135	-030	-006865	$\cdot \mathrm{O} 1$	-015119	- 072	-025195	-093	$\cdot 036741$	$\cdot 114$	-049528
-010	-001329	-031	-007209	-052	-O15561	-073	-025714	-094	-037323	-115	$\cdot 050165$
011	-001533	-032	-007558	-053	-016007	- 074	$\cdot 026236$	-095	-037909	$\cdot 116$	-050804
-012	$\cdot 001746$	-033	-007913	-054	-016457	-075	-026761	-096	$\cdot 038496$	-117	. 051446
-013	-001968	-034	-008273	-055	- 016911	-076	-027289	-097	-039087	-118	-052090
. 014	-002199	-035	-008638	-056	-017369	-077	$\cdot 027821$	-098	-039680	$\cdot 119$	-052736
-015	.002438	-036	-009008	-057	-017831	-078	-298356	-099	$\cdot 040276$	$\cdot 120$	-053385
-016	-002685	. 037	-009383	-058	-018296	-079	O28894	-100	-040875	$\cdot 121$	-054036
$\cdot 017$	-002940	-038	-009763	-059	-018766	-080	-029-135	$\cdot 101$	$\cdot 0.11476$	-122	. 054689
-018	-003202	-039	.010148	-060	-019239	.081	-029979	-102	-042080	-123	. 055345
-019	-003471	-040	-010537	-061	-019716	-082	-030526	-103	-042687	$\cdot 124$	- 056003
-020	-003748	. 041	-010931	-062	-020196	-083	031076	-104	-043296	$\cdot 125$. 056663
-021	-00403	-042	O1133	- 06	$\cdot 0206$	- 18	. 031	-105	. 04390	12	.057326

						Hg					
-128	- 05			-2						0	
	- 05			-255							
	-	-1		-256							
	-	-1		-257		$\cdot 319$		381		-443	335822
		-1		-258							
$\cdot 133$	-	-1		-2							
	-	$\cdot 1$		O		-322			-277748	446	
	-	$\cdot 1$									
	-	$\cdot 1$	-111024	-2		-324	-220404	386	27	- 448	-340793
	-06	- 2		-263	$\cdot 1$						
	-06	- 2						-388	-28		
	O6	202	-113426	-	-16666	$\cdot 327$	'223215	9	-2	451	-343777
$\cdot 141$	- 0	-2	$\cdot 1$				-225093		-284568	453	345768
	- 0	. 2				330			-285544		-34676
	-06	$\cdot 2$									
	-	. 2	- 11746	-270	-17108	-332	-227915	- 394	-287498	456	
	- 0	. 2									
		. 2	$\cdot 1$						-289453		
	0	- 2	$\cdot 1$. 273	-17375		$\cdot 230745$	-397	-290432		$\cdot 351745$
	- 07				-17464				291411		
	- ${ }^{\prime}$	-21	-12152	-2	-1755	-337	-232634	-399	-2	461	-353739
	- 0	$\cdot 21$	$\cdot 1$	- 2	-17643	-338		-400			-354736
	-07	- 2									
		- 2					-235473	$\cdot 4$	295330		
	-07	\cdots						-403	-296311		
								-404			
	- 0	2					-338318	-405	-298273	467	
	-07	- 2	-127285				-239268		'299255		
							-240218			-469	9
		- 2					-241169	-408	301220	470	362717
	-08										-
	-										
	-08	- 2					24402	-411			
	- 0						-245934		-306140		
	-08	22	-133945	-2			-246889		$\cdot 307125$	476	
	-08480										
	- 0							-416			
		-23		-2	-191	- 355	隹		310081		371704
			-1				71				
	-087	232					-251673	-419	- 312054		
					-19450						-374702
	-089										
	-()90	-2	(1)				25455		0		
	-090										
	-						25647		-316992		
	-		,				-257483		- 317981		
	-										
	-093		-14494		-		-		-319959		
	-094										
	-0953	242	硣		-				-321938		
	. 096	2	-147512						- 322928	-492	
	-0969	- 2	83		-20460						-
	-097	-	- 149230	.	-055	-	-		-32490		
	-098	2	-		206		-2651 44				-387699
	-099221	247	5095	-	-2		266111		-		
	-09	2	1816		2083.		-37078		-327882	-497	:389699
	$\cdot 1$	-24	-152680	2	-20929			-436	8874		-350699
-187	-10	$25)$	-153546	$\cdot 313$	210154	-375	-269013	437	- 32986	-499	
188	$\cdot 10233$	251		$\cdot 314$	211082	3	-6998	-438		0	
-189	103	25	-155280								

1226. Problem XlII. To find the area of an ellipsis.

Rule. Multiply the longest and shortest diameter together, and their product by $\cdot 78.54$, which will give the area required. This rule is founded on Theorem 3. Cor 2. in Conie Sections. (1098, 1100.)
Example. Required the area of an ellipse whose two axes are 70 and 50 .
Here $70 \times 50 \times 7854=2748 \cdot 9$.

1227. Problem XIV. To find the area of any elliptic segment.

Intule. Find the area of a circular segment having the same height and the same vertical axis or diameter; then, as the said vertical axis is to the other axis (parallel to the base of the segment), so is the area of the circular segment first found to the area of the elliptic segment sought. This rule is founded on the theorem alluded to in the previous problem. Or, divide the height of the segment by the vert:cal axis of the ellipse; and find in the table of circular segments appended to Prob. 12. (1224.) the circular segment which has the above quotient for its versed sine ; then multiply together this segment and the two axes of the ellipse for the area.
Example. Required the area of an elliptic segment whose height is 20 , the vertical axis being 70 , and the parallel axis 50 .

Here $20 \div 70=2857142$, the quotient or versed sine to which in the table answers the segment ${ }^{285714 .}$
Then $285714 \times 70 \times 50=648.342$, the area required.
1228. Problem XV. To find the area of a parabola or its segment.

Liule. Multiply the base by the perpendicular height, and take two thirds of the product for the area. This rule is founded on the properties of the curve already described in conic sections, by which it is known that every parabola is $\frac{2}{3}$ of its circumseribing parallelogram. (See 1097.)
Example. Required the area of a parabola whose height is 2 and its base 12.
Here $2 \times 12=24$, and $\frac{2}{3}$ of $24=16$ is the area required.

MENSURATION OF SOLIDS.

1229. The measure of every solid body is the capacity or content of that body, considered under the threefold dimensions of length, breadth, and thickness, and the measure of a solid is called its solidity, capacity, or content. Solids are measured by units which are cubes, whose sides are inches, feet, yards, \&e. Whence the solidity of a body is said to be of so many cubic inches, feet, yards, \&ic. as will occupy its capacity or space, or another of equal magnitude.
1230. The smallest solid measure in use with the architect is the cubic inch, from whieh other cubes are taken by cubing the linear proportions, thus, -

> 1728 cubic inches $=1$ culic foot ;
> 27 cubic feet $=1$ cubic yard.
1231. Problem I. To find the superficies of a prism.

Multiply the perimeter of one end of the prism by its height, and the product will be the surface of its sides. To this, if wanted, add the area of the two ends of the prism. Or, compute the areas of the sides and ends separately, and add them together.
Example 1. Required the surface of a cube whose sides are 20 feet.
Here we have six sides; therefore $20 \times 20 \times 6=2400$ feet, the area required.
Example 2. Required the surface of a triangular prism whose length is 20 feet and each side of its end or base 18 inches.

Here we have, for the area of the base,
$1 \cdot 5^{2}-75^{2}=(2 \cdot 25-\cdot 5625=) 1 \cdot 6875^{2}$ for the perpendicular of triangle of base;
and $\sqrt{1 \cdot 6875}=1 \cdot 299$, which multiplied by $1 \cdot 5=1 \cdot 948$ gives the area of the two bases;
then, $3 \times 20 \times 1 \cdot 5+1 \cdot 948=91 \cdot 948$ is the area required.
Example 3. Required the convex surface of a round prism or cylinder whose length is 20 feet and the diameter of whose base is 2 feet.

Here, $2 \times 3.1416=6.2832$,
and $3 \cdot 1416 \times 20=195 \cdot 664$, the convex surface required.

1232. Proalem II. To find the surfuce of a pyramid or cone.

Rule. Multiply the perimeter of the hase by the length of the slant side, and half the product will be the surface of the sides or the sum of the areas of all the sides, or of the areas of the triangles whereof it consists. To this sum add the area of the end or base.
Example 1. Required the surface of the slant sides of a triangular pyramid whose slant height is 20 feet and each side of the base 3 feet.

Here, 20×3 (the perimeter) $\times 3 \div 2=90$ feet, the surface required.

Example 2. Required the convex surface of a cone or circular pyramid whose slant height is 50 feet and the diameter of its base $8 \frac{1}{2}$ feet.

Here, $8.5 \times 3 \cdot 1416 \times 50 \div 2=667 \cdot 5$, the convex surface required.
1233. Problem III. To find the surface of the frustum of a pyramid or come, being the lower purt where the top is cut off by a plane parallel to the base.

Rule. Add together the perimeters of the two ends and multiply their sum by the s'ant height. One half of the product is the surface sought. This is manifest, because the sides of the solid are trapezoids, having the opposite sides parallel.
Example 1. Required the surface of the frustum of a square pyramid whose slant height is 10 feet, each side of the base being 3 feet 4 inches and each side of the top 2 feet 2 inches.
Here, 3 feet 4 inches $\times 4=13$ fect 4 inches, and 2 feet 2 inches $\times 4=8$ feet 8 inches; and 13 feet 4 inches +8 feet 8 inches $=22$. Then $22 \div 2 \times 10=110$ feet, the surface required.
Example 2. Required the convex surface of the frustum of a cone whose slant height is $12 \frac{1}{2}$ feet and the circumference of the two ends 6 and 8.4 fect.
Here, $6+8 \cdot 4=14.4$; and $14.4 \times 12.5 \div 2=180 \div 2=90$, the consex surface required.
1234. Problem IV. To find the solid content of any prism or cylinder.

Rule. Find the area of the base according to its figure, and multiply it by the length of the prism or eylinder for the solid content. This rule is founded on Prop. 99. (Gcometry, 980.). Let the rectangular parallelopipedon be the solid to be measured, the small cube 1' (fig. 51 s.) being the measuring unit, its side being I inch, I foot, \&e. Let also the length and breadth of the base ABCD, and also let the height AII, be divided into spaces equal to the side of the base of the cube P ; for instance, here, in the length 3 and in the breadth 2 , making 3 times 2 or 6 squares in the base AC each equal to the base of the cube P . It is manifest that the parallefopipedon will contain the cube P as many times as the base AC contains the base of the enbe, repeated as often as the height AII contains the height of the cube. Or, in other words, the contents of a parallelopipedon is found by multiplying the area of the base by the altitude of the solid. And because all prisms and cylinders are equal to parallelopipedons of equal bases and altitudes, the rule is general for all such solids whatever the figure of their base.
Lxample 1. Required the solid content of a cube whose side is 24 inches.

$$
\text { Here, } 24 \times 24 \times 24=13824 \text { cubic inches. }
$$

Example 2. Required the solidity of a triangular prism whose length is 10 feet and the three sides of its triangular end are 3,4 , and 5 feet.
Here, because (Prop. 32. Geometry, 907.) $3^{2}+4^{2}=5^{2}$, it follows that the angle contained by the sides 3 and 4 is a right angle. Therefore ${ }_{-2 \times 4}^{-2} \times 10=60$ cubic feet, the content required.
Lxample 3. Required the content of a cylinder whose length is 20 feet and its diameter 5 feet 6 inches.

Here, $5 \cdot 5 \times 5 \cdot 5 \times \cdot 7854=23 \cdot 75835$, area of base;
and $23 \cdot 75835 \times 20=47 \cdot 5167$, content of cylinder required.
1235. Problem V. To find the content of any pyrumid or cone.

Rule. Find the area of the base and multiply that area by the perpendicular height. One third of the product is the content. This rule is founded on Prop. 110 (Geometry, 99I.)
Example 1. Required the solidity of the stuare pyramid, the sides of whose base are 30, and its perpendicular height 25.

$$
\text { Here, } \frac{30 \times 30}{3} \times 25=7500, \text { content required. }
$$

Example 2. Required the content of a triangular pyramid whose perpendicular height is 30 and each side of the base 3 .

Here, $\frac{3+3+3}{2}=\frac{9}{2}=4 \cdot 5$, half sum of the sides:
and $4 \cdot 5-3=1 \cdot 5$, one of the three equal remainders. (See Trigonometry, 1059.) but $\sqrt{ } 4.5 \times \overline{1.5 \times 1.5 \times 1.5 \times 30 \div 3}=3.397117 \times 10$, or 38.97117 , the solidity required.
Example 3. Required the content of a pentagonal pramid whose height is 12 seet and each side of its base 2 fect.

Ifere, 1.7204774 (tabular area, Prob. 6. 1218.) $\times 4($ square of side $)=5.8819096$ area of base ; and $6.8819096 \times 12=82.5829159$.
Then $\frac{82.5829152}{3}=27.527638 \mathrm{I}$, content required.

Example 4．Required the content of a cone whose height is $10 \frac{1}{2}$ feet and the circum－ ference of its base 9 feet．
Here， 07958 （Prob．9．1222．）$\times 81=6.44598$ area of base，
And $3 \cdot 5$ being $\frac{1}{3}$ of $10 \frac{1}{2}$ feet， $6 \cdot 44598 \times 3 \cdot 5=22 \cdot 56093$ is the content required．
1036．Problem VI．To find the solidity of the frustum of a cone or pyramid．
Add together the areas of the ends and the mean proportional between them．Then taking one third of that sum for a mean area and multiplying it by the per－ pendicular height or length of the frustum，we shall have its content．This rule depends upon Prop．110．Geometry，991．）．
It may be otherwise expressed when the ends of the frustum are circles or regular polygons In respect of the last，square one side of each polygon，and also multiply one side by the other；add the three products together，and multiply their sum by the tabular area for the polygon．Take one third of the product for the mean area，which multiply by the length，and we have the product required．When the ease of the frustum of a cone is to be treated，the ends being circles，square the diameter or the circumference at each end，and multiply the same two dimensions together．Take the sum of the three pro－ ducts，and multiply it by the proper tabular number，that is，by 785 ，when the diameters are used，and 07958 when the circumferences are used，and，taking one third of the pro－ fuct，multiply it by the length for the content requircd．

Example 1．Required the content of the frustum of a pyramid the sides of whose greater ends are 15 inches，and those of the lesser ends 6 inches，and its altitude 24 feet．

I lere，$\cdot 5 \times 5=\cdot 25$ ，area of the lesser end，
and $1 \cdot 25 \times 1 \cdot 25=1.562 \mathrm{~J}$ ，area of the greater end：
The mean proportional therefore $\sqrt{ } \cdot 25 \times 1 \cdot 5625=625$ ．
Again，,$\frac{25+6 \cdot 625+15625}{3}=\frac{2 \cdot 4375}{3}=8125$ ，mean area，
and 8125×24（altitude）$=19.5$ feet，content required．
Example 2．Required the content of a conic frustum whose altitude is 18 feet，its greatest diameter 8 ，and its least dianneter 4 ．

Here， 64 （area gr．diam．）+16 （less．diam．$)+(8 \times 4)=112$ ，sum of the products； and $\frac{7 \times 54 \times 112 \times 18}{3}=597.7888$ ，content required．
Example 3．Required the content of a pentagonal frustum whose height is 5 feet， each side of the base 18 inches，and each side of the upper end 6 inches．

Here， $1 \cdot 5^{2}+1 \cdot 5^{2}+(1 \cdot 5 \times \cdot 5)=2 \cdot 5625$ ，sum of the products；
but，$\frac{1.7204 i 74 \text {（tab．area）} \times 2.5625(\text { sum of products）} \times 5}{3}=9.31925$ ，content requred．
1237．Problem VII．To find the surface of a syhere or any segment of one．
Rule 1．Multiply the circumference of the sphere ly its dianneter，and the product will be the surface thereof．This and the rules in the following problems depend on Props．113．and 114．（Geometry，994，995．），to which the reader is referrid．
Rule 2. Square the diameter，and multiply that square by 3.1416 for the surface．
Rule 3．Syuare the circumferene，then either multiply that square by the decinal -3183 ，or divide it by $3 \cdot 1416$ for the surface．
Remark．For the surface of a segment or frustum，multiply the whole circumference of the sphere by the height of the part required．
Example 1．Required the convex superficies of a sphere whose diameter is 7 and circumference 22.

Here， $22 \times 7=154$ ，the superficies required．
Example 2．Required the supertieies of a sphere whose diameter is 24 inches． Here， $24 \times 24 \times 3.1416=1809.5616$ is the superficies required．
Example 3．Required the convex superficies of a segment of a sphere whose axis is 42 inches and the height of the segment 9 inches．

Here， $1: 3 \cdot 1416:: 42: 131 \cdot 9472$ ，the circumference of the sphere； but $131 \cdot 9472 \times 9=1187 \cdot 5248$ ，the superficies required．
Example 4．Required the convex surface of a spherical zone whose breadth or height is 2 feet and which forms part of a sphere whose diameter is $12 \frac{1}{2}$ feet．

Here， $1: 3 \cdot 1416:: 12 \cdot 5: 39 \cdot 27$ ，the circumference of the sphere whereof the zone is a part ； and $39 \cdot 27 \times 2=78 \cdot 54$ ，the area required．
1थらs．Problem Vili．To find the solidity of a sphore or globe．
Rule 1．Multiply the surface by the diameter，and rake one sixth of the product for the content．
Rule 2．Take the cube of the diameter and multiply it by the decinal 5230° fur the content．
Exampl2．Required the content of a sphere whose axis is 12.
Here $12 \times 12 \times 12 \times 5236=904 \cdot 7808$ ，coutent required．

1239. Problem IX. To find the solidity of a spherical segment.

Rule 1. From thrice the diameter of the sphere subtract double the height of the segment, and multiply the remainder by the square of the height. This product multiplied by $\breve{5} 236$ will give the content.
Rule 2. 'To thrice the square of the radius add the square of its height, multiply the sum thus found by the height, and the product thereof hy 5236 for the content.
Example 1. Required the solidity of a segment of a sphere whose height is 9 , the diameter of its base being 20 .
Here, 3 times the square of the radius of the base $=300$;
and the square of its height $=81$, and $300+81=381$;
but $381 \times 9=3429$, which multiplied by $\cdot 5236=1795^{\circ} \cdot 4244$, the solidity required.
Example 2. Required the solidity of a spherical segment whose height is 2 feet and the diameter of the sphere 8 feet.

Here, $8 \times 3-4=20$, which multiplied by $4=80$;
and $80 \times 5236=41 \cdot 888$, the solidity required.
It is manifest that the difference between two segments in which the zone of a sphere is included will give the solidity of the zone. That is, where for instance the zone is ineluded in a segment lying above the diameter, first consider the whole as the segment of a sphere terminated by the vertex and find its solidity; from which subtract the upper part or segment between the upper surface of the zone and the vertex of the sphere, and the difference is the solidity of the zone.

The general rule to find the solidity of a frustum or zone of a sphere is: to the sum of the squares of the radii of the two ends add one third of the square of their distance, or the breadth of the zone, and this sum multiplied by the said breadth, and that product agmin by 1.5708 , is the solidity.

Sect. Vil.

```
MECHANICS AND STATICS.
```

1240. It is our intention in this section to address ourselves to the consideration of mechanies and staties as applicable more immediately to architecture. The former is the science of forces, and the effects they produce when applied to machines in the motion of bodies. The latter is the seience of weight, especially when considered in a state of equilibrium.
1241. The centre of motion is a fixed point about which a body moves, the axis being the fixed line about which it moves.
1242. The centre of gravity is a certain point, upon which a body being freely suspended, such body will rest in any pos tion.
1243. So that weight and power, when opposed to oach other, signify the body to be rooved, and the body that moves it, or the patient and agent. The power is the agent which moves or endeavours to move the patient or weight, whilst by the word equilibrium is meant an equality of action or foree between two or more powers or weights acting against each other, and which by destroying each othen's effects cause it to remain at rest.

PARALLELOGRAM OF FORCES.
1244. If a body D suspended by a thread is drawn out of its vertical direction by an horizontal thread DE (fiy. 519.), sueh power neither increases nor diminishes the effort

1绍51リ.

Fir. $3: n$.

of the weight of the body; but it may be easily imagined that the first thread, by being in the direction A1), will, besides the weight itself; have to sustain the eflort of the power that draws it out of the vertical AB .
124.5. If the direction of the borizontal foree be prolonged till it meets the verticals which would be in the first thread if it were not drawn away by the second, we shall have triangle $A 1 D B$, whose sides will express the proportion of the weight to the forces of the two threads in the case of equilibrium being established; that is, supposing $A B$ to express the weight, $A D$ will express the effort of the thread attached to the point A, and $B D$ that of the horizontal power which pulls the body away from the vertical $A B$.
1246. These different forces may also be found by transferring to the vertical DII (fig.519.) any length of line 1) F to represent the weight of the body. If from the point F the parallek FI, FG be drawn in the direetion of the threads, their forees will be indicated by the lines $1 D, D G$, so that the three sides of the triangle $D G F$, similar to the triangle ADl3, will express the moportion of the weight to the two forees applied to the threads.
1947. Suppose the weight to be 30 lhs : if from a scale of equal parts we set up 30 of those parts from D to $\mathrm{F}^{(f i g .} 519$.), we shall find DG equal to 21 , or the pounds of foree of the horizontal line DE , and 35 for the oblique power 1 D .

I 248 . If the weight, instead of 30 lb ., were 100 , we should find the value of the forces D G and I D by the proportions of $30: 21:: 100: x$ where x expresses the force DG. 'The value resulting from this proportion is $x=\frac{21 \times 10}{30}=70$. The second proportion $30: 35:: 100: y$, where y represents the effort 1 D , whose value will be $y=\frac{35 \times 10}{30}=116 \cdot 666$.
1249. If the angle $A D H$ formed by $A D$ and $D 11$ be known, the same results may be obtained by taking $D F$ for the radius, in whieh case $I F=D G$ becomes the tangent, in this instance, of 35 degrees, and ID the secant; whence

DF: DI: IF: : radius: tang. $35:$ sec. 35.
If ID be taken for the radius, we have

$$
\text { ID: IF: FD:: radius : tang. } 35: \text { sin. } 35
$$

1250. We have liere to observe, that in conducting the operation above mentioned a figure DIFG has been formed, which is ealled the parallelogram of the forces, beeause the diagonal DF always expresses a compounded force, which will place in eopuilibrio the two others FI, FG, represented by the two contiguous sides IF, FG.
1251. Instead of two forces which draw, we may suppose two others which act by push1 g from E to D (fig. 522.) and from A to D . If we take the vertical DF to express the weight, and we draw as before the parallels $F G$ and $F I$ in the E direetion of the forces, the sides $G D$ and D I of the parallelogram DGFI (fig. 519.) will express the forees with whieh the powers act relatively to $D F$ to support the body: thus $F I=G I$ the weight and two powers which support it will, in case of equilibrium, be represented by the three sides of a rectangular triangle DII ; so that if the weight be designated by II, the power which pushes from G to D by I, and that which acts from I to D by P , we shall have the proportion $\mathrm{H}: \mathrm{E}: \mathrm{P}::$ DF: FI: ID, wherein, if we take DF for radius, it will be as radius is to the tangent of the angle FIDI and to its secant.

Fig. 522. As a body in suspension is drawn away from the vertical line in which it hangs by a power higher than the body (fig. 520.), it follows that the oblique forces AB and BC each support, independent of any lateral efforts, a part of the weight of the body. In order to lind the proportion of these parts to the total weight, take any distance BD on a vertical raised from the centre of the body 13 to express the weight, and complete the parallelogram DEBF, whose sides EB, BF will express the oblique forces of the powers A and C. These lines, being considered as the diagonals of the rectangular parallelograms LEEID, BHEN, may each be resolved into two forces, whereof one of them, vertical, sustains the body, and the other, horizontal, draws it away from the verticals AO, CQ. Hence I 13 will express the vertical force, or that part of the weight sustained by the power ElB, and Ill that sustained by the other power BF: as these two forees act in the same direction, when added together their sum will represent the weight DB. In short, IB being equal to $H \mathrm{D}$, it follows that $\mathrm{BII}+\mathrm{BI}=\mathrm{BI}+1 \mathrm{D}$.
1252. As to the horizontal forces indicated by the lines LB and BM, as they are equal and opposite they destroy one another.
1253. It follows, from what has been said, that all oblique forces may be resolved into two others, one of which shall be vertical and the other horizontal, by taking their direction for the diagonal of a rectangular parallelogram.
1254. In respeet of their ratio and value, those may be easily found by means of a scale if the diagram be drawn with accuracy; or by trigonometry, if we know the angles
$A B D, D B C$, which $A B$ and $B C$ form with the vertical $B D$, by taking suceessively for radius the diagonals BD, BE, and BF .
1255. In the accompanying diagram, the weight, instead of being suspended by strings acting by tension, is sustained by forces which are supposed to act by pushing. But as this arrangement makes no alteration in the system of forces, we may apply to this figure all that has been said with respect to the preceding one. The only difference is, that the parallelogram of the forces is below the weight instead of being above it. Thus ID $+1 B=13 \mathrm{D}$ expresses the sum of the vertical forces which support the weight, and MB and BL the horizontal forces which counteract each other.
1256. In the two preceding figures the direction of the forces which act by tension or compression in supporting the weight form an acute angle. In those represented in fig. 521, and the figure at the side (524.), these directions make an obtuse angle; whence it fullows that in fig. 521. the force C which draws the weight out of the vertical A L, instead of tending to support the weight B, increases its effect by its tendency to act in the same direction. In order to ascertain the amount of this effect upon BD in figs. 521. and 524., which represents the vertical action of the weight, describe the parallelogram BADF , for the purpose of determining the oblique forces BA, BF, and then take these sides for the diagouals of the two rectangles LAIB, BHFM, whose sides BI, BH will express the vertical forces, and LB, BM the horizontal ones.
1257. It must be observed that in fig. 521. the force $A B$ acting upwards renders its vertical effect greater than the weight of a quantity ID, which serves as a compensation to the part 13 H , that the other force BF adds to the weight by drawing downwards. Similarly, the rertical effect of the force BE (fig. 524.) exceeds the expression BD of the weight by a quantity DI,

Fig. 523.

Fig. 521. to counterpoise the effect BH of the other power BF , which acts downwards; so that in both cases we have $B D$ only for the vertical effect of the weight. As to the horizontal effects LB and BAI, they being equal and in opposite directions in both figures, of course counteract each other.
1258. For the same reason that a force can be resolved into two others, those two others may be resolved into one, by making that one the diagonal of a parallelogram whose forces are represented by two contiguous sides. It is clear, then, that whatever the number of forees which affect any point, they may be reduced into a single one. It is only necessary to discover the results of the forces two by two and to combine these results similarly two by two, till we come to the principal ones, which may be ultimately reduced to one, as we have seen above. By such a process we shall find that PY (fig. 525.) is the result of the forces PA, Pl, PC, PD, which affect the point P.

Fig. 525.
1259. 'This method of resolving forces is often of great utility in the science of building, for the purpose of providing a force to resist several others acting in different directions but meeting in one point.

OF THE PROPERTIES OF THE LEVER.

1260. The lever is an inflexible rod, bar, or beam serving to raise weights, whilst it is supported at a point by a fulcrum, or prop, which is the centre of motion. To render the denonstrations relative to it easier and simpler, it is supposed to be void of gravity or weight. The different positions in which the power applied to it, and the weight to be affected, may be applied in respect of the fulcrum, have given rise to the distinction of three sorts of levers.
I. That represented in fig. 526., in which the fulerum O is between the power applied P and the weight Q.
II. That represented in fiy 597 ., in which the weight Q is placed between the fulcrun

O and the power P, wherein it is to be remarked that the weight and the power act in contrary direetions.

III. That represented in fig. 528., wherein the power P is placed between the weight and the fulerum, in which case the power and the weight act in contrary directions.
1261. In considering the fulcrum of t.ese three sorts of levers, we must notice, as a third species of power introduced for creating an equilibriun between the others, ist, That in which the directions of the weight and of the powers concur in the point R (fig. 529.). 2d, That in which they are parallel.
1262. In the first case, if from the point R (figs. 529. and 530.) we draw parallel to these directions Om Rn, the ratio of these three forces, that is, the power, the weight, and the fulcrum, will be as the three sides of the triangle $O m R$, or its equal $O_{n} R$; thins we shall have P $: \mathrm{Q}: \mathrm{R}:: m \mathrm{R}: \mathrm{R} n: \mathrm{OR}$; and as the sides of a triangle are as the sines of their opposite angles, by
 taking OlR as the radius we shall have

$$
\mathrm{P}: \mathrm{Q}:: \sin . \mathrm{OR} n: \sin . \mathrm{OR} m
$$

And if from the point O two perpendiculars be let fall, $\mathrm{O} d \mathrm{O} f$, on the directions RQ, RP,

$$
\text { Sin. ORn }: \sin . \mathrm{OR} m:: \mathrm{O} d: \mathrm{O} f
$$

from which two proportions we obtain

$$
\mathrm{P}: \mathrm{Q}:: \mathrm{Od}: \mathrm{Of} ; \text { whence } \mathrm{P} \times \mathrm{O} f=\mathrm{Q} \times \mathrm{O} d \text {. }
$$

This last expression gives equal products, which are called the momenta, moments, or quantities of motion of the force in respect of the fulcrum 0 . This property is the same for the straight as for the angular levers (figs. 529. and 530.). As this proportion exists, however large the angles $m R O$ and $O R n$ of the directions RQ, RP in respect to RO, it follows that when it lecomes nothing, these directions become parallel without the proportion being changed; whence is derived the following general theorem, found in all works on meehanies: - If two forces applied to a straight or angular lever are in equilibrio, they are in an inverse ratio to the perpendiculars let fall from the fulcrum on their lines of direction: or in other words, In order that two forces applied to a straight or angular lever may be in equilibrio, their momenta in respect of the fulcram must be equal.
1263. Since, in order to place the lever in equilibrio, it is sufficient to obtain equal momenta, it follows that if we could go on increasing or diminishing the force, we might place it at any distance we please from the fulcrum, or load it without destroying the equilibrium. This results from the formula $\mathrm{P} \times \mathrm{O} f=\mathrm{Q} \times \mathrm{O} d$, whence we have $\mathrm{O} f=\frac{\mathrm{Q} \times \mathrm{Od}}{\mathrm{P}}$. Hence the distance $\mathrm{O} f$ is easily found, to which by applying the known force l^{\prime}, it may counterpoise the weight Q applied at the distance $\mathrm{O} d$. In respect of the other points, we have only to know the perpendiculars $\mathrm{O} f$ and $\mathrm{O} d$, for $\mathrm{O} a$ and $O t$, which are the arms of the real levers, are deduced from the triangles $\mathrm{O} f b$, $\mathrm{O} d a$, to which they belong.
1264. Suppose two levers (figs. 531, 532.), whereof

Fig. 332.
one is straight and the other angular, and that the weight Q is 100 pounds, the am 1$) E$ of the lever 6 feet; its momentum wili be 600 . Then if we wish to ascertain at what distance Of a weight of 60 pounds must be placed so that it may be in equilibrio with the first, we shall have

$$
\mathrm{O} f=\frac{Q \times \mathrm{O}^{2} d}{\mathrm{P}}={ }_{601}^{6,0}=10 \text { feet, the distance sought. }
$$

1265. Reciprocally, to find the effeet of a force P plaeed at the point C of the other arm of the lever at a known distance from the fulcrum, and marked $O f$, in order to counterpoise Q placed at the distance $O f$, we have the formula $\mathrm{P}=\frac{\mathrm{Q} \times \mathrm{Od}}{\mathrm{Of}}$; and if we apply this formula to the numbers taken in the preceding example, the question will be, to find a foree which plateed at the distance of 10 feet from the fulerum may be in equilibrio with a weight of 100 pounds at the end of the arm of a lever of 6 feet. We must in using the formula divide 600 by 10 , and the guotient 60 will indieate the effeet with which the force ought to act. If, instead of placing it in C , it is at $\mathrm{B}, 12$ feet from the fulerum, the force would be $\frac{600}{12}$, whieh gives 50 ; and lastly, if we have to place it at a point 15 feet from the fulcrum, the force would be $\frac{600}{15}=40$. Thus, in changing the situation of the force to a point more or less distant from the fulcrum, we must divide the momentum of the weight whieh is to be supported by the distance from the fulerum taken perpendicularly to its. direction.

OF THE CENTRE OF GRAVITY.

1266. The centre of gravity of a body is a certain point within it on which the body, if freely suspended, will rest in any position; whist in other positions it will descend to the lowest place to which it can get. Not only do whole bodies tend by their weight to assume a verticaldirection, but also all the parts whereof they consist ; so that if we suspend any body, whatever be its form, ly means of a string, it will assume such a position that the thread produced to the internal part of the body will form an axis round which all the parts will remain in equilibrium. Every time that the point of suspension of a body is changed, the direction of the thread produced exhibits a new axis of equilibrimn. But it is to be remarked, that all these axes intersect each other in the same point situate in the centre of the mass of the body, supposing it composed of homogeneous parts but sometimes out of the mass of the body, as in the ease of bodies much curved, this point is the centre of gravity.
1267. It is therefore easy to perecive that for a body to be in a state of rest its centre of gravity must be supported by a vertical foree equal to the resultant of all the forees that affeet it, but acting in a contrary direetion. So in figs. 520. and 523., the weight supported by the forees AB and BC which draw or push, will be equally supported by a verteal force represented by the diagonal DB of the parallelogram which expresses the resultant of the forees.
1268. An accuaintance with the method of finding centres of gravity is indispensable in estimating the resistances, strains, and degree of stability of any prart of an edifice. There arise eases in which we may cast aside all consideration of the form of a body, especially too when it acts by weight, and suppose the whole figure collected in the centre of gravity. We may also, for the sake of simplifying operations, substitute a force for a weight.

OF THE CENTRE OF GKAVITY OF I.lNES.

1269. A straight line may be conceived to be composed of an infinite number of poms, equally heavy, ranged in the same direction. After this definition, it is evident that if it be suspended by the middle, the two parts, being composed of the same number of equal points placed at equal distances from the point of suspension, will he necessarily in equilibrium ; whence it follows that the centre of gravity of a right line is in the middle of its length.
1270. The points in a curve line not being in the same direction, the eentre of its volume cannot be the same as its centre of gravity; that is to say, that a curve suspended by the middle cannot be supported in equilibrio but in two opposite situations; one when the branches of the curve are downwarls, and the other when they are upwards, so that the curve may be in a vertical plane.
1271. If the curve is the arc of a circle ADB (fig. 533.), it is easy to see that from the uniformity of its curvature, its centre of gravity will be found in the right line DC drawn from the centre C to the middle D ; moreover, if we draw the chord AB , the eentre of gravity will be found between

Fig. 533. the points D and E .
1272. Let us suppose that through all the points of the line DE parallels to the chord AB be drawn, terminated on each side by the eurve ; and let us imagine that each of these
lines at its extremities bears corresponding points of the curve; then the line DF, will be loaded with all these weights; and as the portions of the curve which answer to each parallel AB go on increasing as they approach D, the centre of gravity G will be nearer the poist I) than to the point E.
1273. To determine the position of this point upon the radius $C D$ which divides the are into two equal parts, we must use the following proportion : the length of the arc ABD is to the chord AB , as the radius CD is to the fourth term x, whose value is $\frac{\mathrm{AB} \times \mathrm{CD}}{\mathrm{ABD}}$. That is, in order to obtain upon the radius DC the distance CG of the centre of gravity from the centre of the are of the circle, the chord AB must be multiplied by the radius CD and divided by the length of the are ABD.
1274. When the circumference of the circle is entire, the axes of equilibrium being diameters, it is manifest that their intersection gives the centre of the curve as the centre of gravity. It is the same with all entire and symmetrical curves which have a centre, and with all combinations of right lines which form regular and symmetrical polverons.

OF THE CENTRE OF GRAVITY OF SURFACES.

1275. In order that a centre of gravity may be assigned to a surface, we must, as in the case of lines, imagine them to be material, that is, consisting of solid, homogeneous, and heavy particles.
1276. In all plane smooth surfaces, the centre of gra-

Fig. 534. D vity is the same as that of the volume of space; thus the centre of gravity G (figs. $534,535,536$.), of a square of a reetangle, or of a parallelogram, is determined by the intersections of its diagonals AD, BC.

The centre of gravity of a regular polygon, composed of an equal or unequal number of sides, is the same as that of a circle within which it may be inscribed.
1277. In order to find the centre of gravity of any triangle, bisect each of the sides, and from the points of bisection draw lines to the opposite angles; the point of intersection with each other of these lines will be the centre of gravity sought; for in the supposi-

Fig. 535.

Fig. 536. tion that the surface of the triangle is composed of lines parallel to its sides, the lines AE, BF , and CD (fig. 537.) will be the axes of equilibrium, whose intersection at G gives the centre of gravity.
We shall moreover find that this point is at one third of the distance from the base of each of the axes; so that, in fact, it is only necessary to draw a line from the point of bisection of one of the sides to the opposite angle, and to divide it into three equal parts, whereof that nearest the base determines the centre of gravity of

Fig. 537.

Fig. 538. the triangle.
1278. To find the centre of gravity of any irregular rectilinear surface, such as the pentagon, fig. 538., let it be divided into the three triangles, $\mathrm{AED}, \mathrm{ABC}, \mathrm{ADC}$ 'fig. 538.), and by the preceding rule determine their centres of gravity $\mathrm{F}, \mathrm{G}, \mathrm{H}$. Then draw the two lines NO, OP, which form a right angle surrounding the polygon. Multiply the area of each triangle by the distance of its centre of gravity on the line ON, indicated by Ff, $\mathrm{G} y, \mathrm{H} h$, and divide the sum of these products by the entire area of the pentagon, and this will give a mean distance through which an indefinite line IK parallel to ON is to be drawn. Conducting a similar operation in respect of the line OP, we obtain a new mean distance for drawing another line LQ parallel to OP; which will intersect the first in the point M, the centre of gravity of the pentagon.

The centre of gravity of a sector of a circle AEBC (fig. 539.) must be upon the radius CE which divides the are into two equal parts. To determine from the centre C , at
what distance the point G is to be placed, we must multiply twice the radius CE by the chord AB , and divide the product by thrice the length of the are AEB. The quotient is the distance CG from the centre C of the circle of the centre of gravity of the sector.
1279. To find the centre of gravity of the crown portion of an arch DAEBF (fig. 540.) comprised between two concentric axes, we must -

1. Find the centre of gravity of the greater sector AEBC , and that of the smaller one DFG.
2. Multiply the area of each

Fig. 533.

Fig. 510. of these sectors by the distance of their respective centres of gravity from the common centre c.
3. Subtract the smaller product from the greater, and divide the remainder by the area of DAEBF; the quotient will give the distance of the centre of gravity G from the centre C.
1280. To determine the centre of gravity of the segment AEB; subtract the product of the area of the triangle ABC (fiy. 541.) multiplied by the distance of its centre of gravity from the centre C, from the product of the area of the sector, by the distance of its centre of gravity from the same point C , and divide the remainder by the area AEB ; the quotient expresses the distance of the centre of gravity G of the segment from the centre C, which is to be set out on the radius, and which divides the segment into two equal parts.

- It would, from want of space, be inconivenient to give the strict demonstrations of the above rules; nor, indeed, is it absolutely

Fig. 541. necessary for the architectural student. Those who wish to pursue the subject au fond, will, of course, consult more abstruse works on the matter. We will merely observe, that whatever the figure whose centre of gravity is sought, it is only neeessary to divide it into triangles, sectors, or segments, and proceed as above described for the pentagon, fig. 538.

OF THE CENTRE OF GRAVITY OF SOLIDS.

1281. It is supposed in the following conșiderations, that solids are composed of homogeneous particles whose weight in every part is uniform. They are here arranged under two heads, regular and irregular:
1282. Regular solids are considered as composed of elements of the same figure as their base, placed one upon the other, so that all their centres of gravity are in a vertical line, which we shall call the right axis. Thus parallelopipeds, prisms, eylinders, pyramids, cones, conoids, spheres, and spheroids have a right axis, whereon their centre of gravity is found.
1283. In parallelopipeds, prisms, eylinders, spheres, spheroids, the centre of gravicy is in the middle of the right axis, because of the similarity and symmetry of their parts equally distant from that point.
1284. In pyramids and cones (figs. 542, 543.), which diminish gradually from the base to the apex, the centre of gravity is at the distance of one fourth of the axis from the base.
1285. In paraboloids, which diminish less on account of their curvature, the centre of gravity is at the height of one third the axis above the base.

To find the centre of a pyramid or of a truncated cone (figs. 542, 543.), we must first multiply the cube of the entire cone or pyramid by the distance of its centre of gravity from the vertex. 2. Subtract from this product that of the part MSR which is cut off, by the distance of its centre of gravity from the apex. 3. Divide this remainder by the cube of the truncated pyramid or cone;

Fig. 542.

Fig. 513 the quotient will be the distance of the centre of gravity G of the part of the truncated cone or pyranid from its apex.
1286. The centre of gravity of a lemisphere is at the distance of three eighths of the radius from the centre.
1287. The centre of gravity of the segment of a sphere (fig. 544.) is found by the following proportion: as thrice the radius less the thickness of the segment is to the diameter less three quarters the thickness of the segment, so is that thickness to a fourth term which expresses the distance from the vertex to the centre of gravity, set off on the radius which serves as the axis.
1288. Thus, making $r=$ the radins, $e=$ the thickness of the segment, and $x=$ the distance sought, we have, according to La

Fis. 34. Caille, -

$$
3 r-e: 2 r-\frac{3 e}{4}:: e: x, \text { whence } x=\frac{8 r e-3 e^{2}}{12 r-1 e^{0}}
$$

Suppose the radius to be 7 feet, the thickness of the segment 3 feet, we shall have -
$x=\frac{8 \times 7 \times 3-3 \times 9}{12 \times 7-3 \times 4}$, which gives $x=1+\frac{\epsilon_{9}}{72}=1+\frac{23}{23}$, equal the distance
of the centre of gravity from its vertex on the radius.
1289. To find the centre of gravity of the zone of a sphere (fig. 515.), the same sort of operation is gone through as for truncated cones and pyramids; that is, after having found the centre of gravity of the segment cut off, and that in which the zone is comprised, multiply the cube of each by the distance of its centre of gravity from the apex A, and subtracting the smaller from the larger product, divide the remainder by the cube of the zone. Thus, supposing, as before, the radius $\mathrm{AC}=7$, the thickness of the zone $=2$, and that of the segment cut off $=1 \frac{1}{2}$, we shall find the distance from the vertex of the centre of gravity of this last by the formula $x=\frac{8 r-3 e e}{4(3 r-c)}$, which in this case gives $x=$ $\frac{4 \times 2 \times 7 \times 1 \frac{1}{2}-3 \times 2 \frac{1}{4}}{4\left(21-1 \frac{1}{2}\right)}$; and pursuing the investigation, we have $x=\frac{103}{101}$,

Fig. 315. which will be the distance of the centre of gravity from the vertex A. That of the centre of gravity of the segment in which the zone is comprised will, according to the same formula, be $x=\frac{8 \times 7 \times 3 \frac{1}{2}-3 \times 12 \frac{1}{4}}{43 \times 7-3}$, which gives $x=2+\frac{11}{40}$ for the distance of the centre of gravity from the same point A.
1290. The methods of finding the solidities of the bodies involved in the above inves tigation are to be found in the preceding section, on Mensuration.

OF THE CENTRE OF GRAVITY UF IRREGULAR SOLIDS.

1291. As all species of solids, whatever their form, are susceptible of division inte pyramids, as we have seen in the preceding observations, it follows that their centres of gravity may be found by following out the instructions already given. Instead of two lines at right angles to each other, let us suppose two vertical planes NA C, CEF (fig. 546.) , between which the solid G is placed. Carrying to each of those planes the momenta of their pyramids, that is, the products of ineir solidity, and the distances of their centres of gravity, divide the sum of these products for each plane by the whole solidity of the body, the quotient will express the distance of two other planes 13 KL , DHM, parallel to those first named. Their intersection will give a line IP, or an axis of equilibrium, upon which the centre of gravity of the solid will

Fig. 516. be found. To determine the point G, imagine a third plane NOJ perpendictilar to the preceding ones, that is, horizontal ; upon which let the solid be supposed to stand. In respect of this plane let the momenta of the pyramids be found by also multiplying their solidity by the distance of their centres of gravity. Lastly, dividing the sum of these products by the solidity of the entire body, the quotient gives on the axis the distance I'G of this third plane from the centre of gravity of the irregular solid.

Mechanically, where two of the surfaces of a body are parallel, the mode of finding the centre of gravity is simple. Thus, if the body be hung up by any point A (figs. 547,548 .), and a plumb line AB be suspended from the same point, it will pass through

Fig. 547.

Fig ssm.
the centre of gravity, because that centre is not in the lowest point till it fall in the plumb line. Mark the line AB upon it; then hang the body up by any other point D, with a plumb line DE, which will also pass through the centre of gravity, for the same reason as before. Therefore the centre of gravity will be at C, where the lines cross each other.
1292. We have, perhaps, pursued this subject a little further than its practical utility in architecture renders necessary; but cases may occur in which the student will find our extended observations of service.

OF THE INCLINED PIANE.

1293. That a solid may remain in a perfect state of rest, the plane on which it stands must be perpendicular to the direction of its gravity ; that is, level or horizontal, and the vertical let fall from its centre of gravity must not fall out of its base.
1294. When the plane is not horizontal, solids placed on it tend to slide down or to overturn.
1295. As the surfaces of bodies are more or less rough, when the direction of the centre of gravity does not fall without their base, they slide down a plane in proportion to their roughness and the plane's inclination.
1296. Thus a cube of hard freestone, whose surfaces are nicely wrought, does not slide down a plane whose inclination is less than thirty degrees; and with polished marbles the inclination is not more than fifteen degrees.
1297. When a solid is placed on an inclined plane, if the direction of the centre of gravity falls without its base, it overturns if its surfaces are right surfaces, and if its surface is convex it rolls down the plane.
1298. A body with plane surfaces may remain at rest after having once overturned if the surface upon which it falls is sufficiently extended to prevent its centre of gravity falling within the base, and the inclination be not so great as to allow of its sliding on.

- 1299. Solids whose surfaces are curved can only stand upon a perfectly horizontal plane, because one of the species, as the sphere, rests only on a point, and the other, as cylinders and cones, upon a line : so that for their continuing at rest, it is necessary that the rertical let fall from their centre of gravity should pass through the point of contact with and be perpendicular to the plane. Hence, the moment the plane ceases to be horizontal the direction of the centre of gravity falls out of the point or line of contact which serves as the base of the solid, and the body will begin to roll; and when the plane on which they thus roll is of any extent they roll with an accelerated velocity, equal to that which they would acguire in falling directly from the vertical height of the inclined plane from the point whence they first began to roll.

1300. To find the force which is necessary to support a convex body upon an inclined plane, we must consider the point of contact F^{\prime} (figs. 549,550 .) as the fulerum of an an-

Fig. 543.

Fig. 550.
gular lever, whose arms are expressed by the perpendiculars drawn from the fulcrum to the direction of the force CP and the weight CD, which in the case of fig. 549. , where the foree which draws the body is parallel to the plane,

$$
P: N:: F C: F D
$$

Now as the rectangular triangle CFD is always similar to the triangle OSH, which forms the plane inclined by the vertical SO and the horizontal line OH, the proportion will stand as follows: -

$$
P: N:: O S: S H .
$$

In tne first, case, to obtain an equilibrium, the force must be to the weight of the body cts ths height OS of the inclined plane to its length SII.
1301. In the case where the force is horizontal (fig. 550.) we have, similarly, -

$$
\mathrm{P}: \mathrm{N}:: \mathrm{FA}: \mathrm{FD}
$$

$$
\text { and } P: N:: O S: O H \text {. }
$$

In this last case, then, the force must be to the weight of the solid in proportion to the height

OS of the inclined plane to its base (OII. In the first cave the prersure of the solid on the plane is expressed by OII, and in the second by SII: henee we haw -

$$
\begin{array}{r}
\mathrm{P}: \mathrm{N}: \mathrm{F}:: O \mathrm{O}: \mathrm{SII}: O H, \\
\text { and } \mathrm{P}: \mathrm{N}: \mathrm{F}:: \mathrm{OS}: \mathrm{SH}: O H .
\end{array}
$$

In the first case it must be observed, that the effect of the force being parallel to the inclined plane, it neither increases nor diminishes the pressure upon that plane; and this is the most favourable case for keeping a body in equilibrio on an inclined plane. In the second case, the direction forming an acute angle with the plane uselessly augments the load or weight. Whilst the direction of the force forms an obtuse angle with the inclination of the plane, by sustaining a portion of the weight, it diminishes the load on the plane, but requires a greater force.
1302. The force necessary to sustain upon an inclined plane a body whose base is formed by a plane surface depends, as we have already observed, on the roughess of the surfaces, as well of the inclined plane as of the base of the body; and it is only to be discovered by experiment.
1303. Of all the means that have been employed to estimate the value of the resistance, knewn under the name of friction, the simplest, and that which seems to give the truest results, is to consider the inclination of the plane upon which a body, the direction of whose centre of gravity does not fall out of the base, remains in equilibrio, as a horizontal plane; after which the degrees of inclination may begin to be reckoned, by which we find that a body which does not begin to slide till the plane's inelination exceeds 30 degrees, being placed on an inclined plane of 45 , will not require a greater force to sustain it than a convex body of the same weight on an inclined plane of 15 degrees.
1304. All that has been said on the force necessary to retain a body upon an inclined plane, is applicable to solids supported by two planes, considering that the second acts as a force to counterpoise the first, in a direction perpendicular to the second plane.
1305. When the directions of three forces, $P G, Q G, G R$, meet in the same point G (fig. 551.), it follows, from the preceding observations on the parallelegram of forees, that to be in equilibrium their proportion will be expressed by the three sides of a triangle formed by perpendiculars to their directions; whence it follows, that if through the centre of gravity G of a solid, supported by two planes or by some other point of its vertical direction, lines be drawn perpendicular to the directions of the forces, if equilibrium exist, so will the following proportion, viz. $P: Q: R:: 13: \mathrm{BC}$: AC.

1:306. Lastly, considering that in all sorts of triangles the sides will between each other be as the sines of their opposite angles, we shall have $\mathrm{P}: \mathrm{Q}: 1::$ sin. $B C A: \sin . B A C:$ sin. ABC; and as the angle BCA is
 equal to the angle CAD, and CBA to BAE, we shall have $P: Q: R::$ sin. $C A D$: \sin. BAC : \sin. BAE; that is, that the weight is represented by the sine of the angle formed by the two inclined planes, and that the pressures upon each of these planes are reciprocally proportional to the sines of the angles which they form with the horizon.

THE WHEEL AND AXI.E.
1307. The wheel and axle, sometimes called the axis in peritrochio, is a machine consisting of a cylinder C and a wheel 13 (fig. 552.) having the same axis. at the two extremities of which are pivots on which the wheel turns. The power is applied at the circumference of the wheel, generally in the direction of a tangent by means of a cord wrapped about the cylinder in order to overcome the resistance or elevate the weight. Here the cord by which the power P acts is applied at the circumference of the wheel, while that of the weight W is applied round the axle or another small wheel attached to the larger, and having the same axis or centre C. Thus BA is a lever moveable about the point C, the power P always acting at the distance BC , and the weight W at the distance CA. Therefore P:W::CA:CB, That is, the weight and power will be in equilibrio when the power P is to the weight W reciprocally as the radii of the circles where they act, or as the radius of the axle CA, where the weight langs, to the radius of the wheel CB, where the power ects; or, as before, P : W::CA: CB.

Fig. 352.
1308. If the wheel be put in motion, the spaces moved through being as the ciremm
ferences, or as the radii, the velocity of W will be to the velocity of P as CA to CB ; that is, the weight is moved as much stower as it is heavier than the power: Hence, what is gained in power is lost in time; a property common to machines and engines of every class.
1309. If the power do not act at right angle;s to the radius C13, but obliquely, draw CD perpendicular to the direction of the power, then, from the nature of the lever, P:W::CA:CD.
1310. It is to the mechanieal power of the wheel and axle that belong all turning or wheel machines of different radii; thus, in the roller turning on the axis or spindle CE (fig. 553.) by the handle CBD, the power applied at B is to the weight W on the roller, as the radius of the roller is to the radius CB of the handle. The same rule applies to all cranes, capstans, windlasses, \&e. ; the power always being to the weight as is the radius or lever at which the weight acts to that at which the power acts; so that they are always in the reciproeal ratio of their velocities. To the same principle are referable the gimlet and auger for boring holes.
1311. The above observations imply that the cords sustaining the weights are of no sensible thickness. If they are of eonsiderable thickness, or if there be several folds of them over one an-

Fig. 533. other on the roller or barrel, we must measure to the middle of the outermost rope for the radius of the roller, or to the radius of the roller must be added half the thiekness of the cord where there is but one fold.

1312 The power of the wheel and axle possesses considerable advantages in point ot conveninge over the simple lever. A weight ean be raised but a little way by a simple lever, whereas by the continued turning of the wheel and axle a weight may be raised to any height and from any depth.
131.3. By increasing the number of wheels, moreover, the power may be increased to any cxtent, making the less always turn greater wheels, by means of what is called tooth und pinion work, wherein the teeth of one circumference work in the rounds or pinions of another to turn the wheel. In case, here, of an equilibrium, the power is to the weight as the continual product of the radii of all the axles to that of all the wheels. So if the power P (fig. 554.) turn the wheel Q, and this turn the small wheel or axle R , and this turn the wheel S , and this turn the axle T, and this turn the wheel V , and this turn the axle X , which raises the weight W; then P: W::CB. DE. FG: AC. BD. EF. And in

Fig. 5.54. the same proportion is the velocity of W slower than that of P. Thus, if each wheel be to its axle as 10 to 1 , then $\mathrm{P}: W^{\prime}:: 1^{3}: 10^{3}$, or as 1 to 1000 . Hence a power of one pound will balance a weight of 1000 pounds; but when put in motion, the power will move 1000 times faster than the weight.
1314. We do not think it neecssary to give examples of the different machines for raising weigits used in the construction of buildings: they are not many, and will be hereater named and described.

OF THE JULLEY.

1315. A pulley is a small wheel, usually made of wood or brass, turning about a metal axis, and enclosed in a frame, or case, calied its block, which admits of a rope to pass frecly over the circumference of the pulley, wherein there is usually a concave groove to prevent the rope slipping out of its place. The pulley is said to be fixed or moveable as its block is fixed or rises and falls with the weight. An assemblage of several pulleys is called a system of pulleys, of which some are in a fixed block and the rest in a moveable one.
1316. If a power sustain a weight by means of a fixed pulley. the power and weight are
equal. For if throngh the centre C (fig. 555.) of the pulley we draw the horizontal diameter A13; then will AB represent a lever of the first kind, its prop being the fixed centre C, from which the points Λ and B, where the power and weight act, being equally distant, the power P ' is consequently equal to the weight W.
1317. Hence, if the pulley be put in motion, the power P will descend as fast as the weight W ascends: so that the power is not inereased by the use of the fixed pulley, even though the rope go over several of them. It is, nevertheless, of great service in the raising of weights, both by changing the direction of the force, for the convenience of acting, and by enabling a person to raise a weight to any height without moving from his place, and also by permitting a great number of persons to exert, at the same time, their force on the rope at P, which they could not do to the weight itself, as is evident in raising the weight, or monkey, as it is called, of a pile-driver, also on many other occasions.
1318. When a pulley is moveable the power necessary to sustain a

Fig. 555. weight is equal to the half of such weight. For in this case AB (fig. 556.) may be con-

sidered as a lever of the second kind, the weight being at C, the power acting at A, and the prop or fixed point at B. Then, because $P: W:: C B: A B$ and $C B=A B$, we have $\mathrm{P}=\frac{1}{2} \mathrm{~W}$ or $\mathrm{W}=2 \mathrm{P}$.
1319. From which it is manifest that when the pulley is put in motion the velocity of the power is double that of the weight, inasmuch as the point P descends twice as fast as the point C and the weight W rises. It is, moreover, evident that the fixed pulley F makes no difference in the point P, but merely changes the motion of it in an opposite direction.
1320. We may hence ascertain the effect of a combination or system of any number of fixed and moveable pulleys, and we shall thereby find that every cord going over a moveable pulley doubles the powers, for each end of the rope bears an equal share of the weight, whilst each rope fixed to a pulley only increases the power by unity. In fig. 557. $\mathrm{P}=\frac{1}{6} \mathrm{~W}$, and in fig. 558., $\mathrm{P}=\frac{1}{2} \psi=\frac{w+w+w}{6}$.

> OF TIIE WEDGE.
1321. The wedge is a body in the form of a half rectangular prism, in practice usually of wood or metal. AF or BG (fig. 559.) is the breadth of its back, CE its height, CG, CB its sides, and its end, GBC, is the terminating surface of two equally inclined planes GCE, BCE.
1392. When a wedge is in equilibrio, the power acting on the back is to the force acting at right angles to either side as the breadth of the back AB (fig. 560.) is to the length of the side AC or BC. For three forces which sustain each other in equilibrio are as the corresponding sides of a triangle drawn perpendicular to the directions in which they act. But $A B$ is perpendietilar to the foree

Fig. 559.

Fig. stic.
acting on the back to drive the wedge forward, and the sides AC, HC are perpendicular to the forces acting on them, the three forces are therefore as $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}$. Thus, the force on the back, its effect perpendicularly to AC , and its effect parallel to AB , are as the three lines AB, AC, and DC , which are perpendicular to them. Hence the thinner the wedge the greater its effect to split any body or to overcome a resistance against the sides of the wedge.
1323. We are, however, to recollect that the resistance or the forces in question are relative to one side only of the wedge ; for if those against both sides are to be reekoned, we can take only half the back AD, or else we must take double the line AC or DC. In the wedge the friction is very great, and at least equal to the force to be overcome, inasmuch as it retains any position to which it is driven, whence the resistance is doubied by the friction. But on the other hand, the wedge has considerable advantage over all the other powers, because of the force of the blow with which the back is struck, a force vastly greater than the dead weight or pressure employed in other machines. On this account it is capable of producing effects vastly superior to those of any other power, such as splitting rocks, raising the largest and heaviest bodies by the simple blow of a mallet; objects which could never be accomplished by any simple pressure whereof in practice application could be marle.

of the scerw.

139\%. The serew is a cord wound in a spiral direction round the periphery of a cylinder and is therefore a species of inclined plane, whose length is to its height as the circumference of the cylinder is to the distance between two consecutive threads of the screw. It is one of the six mechanical powers used in pressing or spueezing bodies clone, and is oceasionally used in raising weights.

1:325. The serew, then, being an inclined plane or half wedge, the force of a power applied in turning it round is to the force with which it presse, upwards or downwards, without estimating friction, as the distance between two threads is to the circumference where the power is applied. For considering it as an inclined plane whose height is the distance between two threads, and its base the circumference of the screw ; the foree in the horizontal direction being to that in the vertical one as the lines perpendiculan to them, natmely, as the height of the plane or distance between two threads, is to the base of the plane or circumference of the screw ; the power, therefore, is to the pressure as the distance of two threads is to the circumference. But in the application of the screw a handle or lever is used, by means whereol the gain in power is increased in the proportion of the radius of the serew to the radius of the power, that is, the length of the handle, or as their eircumferences. Consequently the power is to the pressure as the distance of the threads is to the circumference described by the power. The screw being put in motion, the power is then to the weight which would keep it in equilibrio as the velocity of the latter is to that of the former; and hence their momenta are equal, and produced by inultiplying eael weight or power by its own velocity.
1326. Thus it is a general property of all the mechanical powers, that the momentum of a power is equal to that of the weight which would keep it in equilibrio, or that each of them is proportional to its velocity.
1327. From the foregoing observations, we may be easily led to compute the force exerted by any machine whose action is exerted through the means of the screw. In fig. 561., representing a press driven by a screw whose threads are each one quarter of an inch apart, let it be turned by a handle or lever 4 feet long from A to 13. Then supposing the natural force of a man, by which he can lift, pull, or draw, to be 150 pounds, and that it be required to ascertain with what force the serew will press on the board at D when the man turns with his whole force the handle at A and B; we have A13, the diameter of the power, 4 feet or 48 inches; its circumference, therefore, 48×3.1416, or $150 \frac{4}{3}$ nearly; and the distance of tite threads being one quarter of an inch, the power is to the pressure as 1 to $603 \frac{1}{5}$. But the power is equal to 150

Fig. 561. pounds; therefore, as $1: 603 \frac{1}{3}:: 150: 90480$, and the pressure therefore at D is equal to a weight of 90480 pounds, independent of friction.
1328. In the endless screw AB (fig. 562.), turned by a handle AC of 20 inches radius, the threads of the screw are at a distance of half an inch; and the serew turns a toothed wheel E whose pinion L acts in turning upon another wheel F , and the pinion ME of this last wheel acts upon a third wheel G, to the pinion or barrel whereof is hung the weight W . If we would know what weight can be raised through the means of this combination by a mian working the handle C, supposing the diameters of the wheels to be 18 inches, and those of the pinions and barrel 2 inelhes, the teeth and pinions being all similar in size; we
have $20 \times 3 \cdot 1416 \times 2=125 \cdot 664$, the circumference of the power; and $125 \cdot 664$ to $\frac{1}{2}$, or $251 \cdot 328$ to 1 , is the force of the serew alone. Again, $18: 2$ or $9: 1$, being the proportion of the wheels to the pinions, and there being three of them, $9^{3}: 1$ or $729: 1$ is the power gained by the wheels.
1329. Consequently 251.328×729 to 1 , or $183218 \frac{1}{9}$ to 1 nearly, is the ratio of the power to the weight arising from the joint advantage of the screw and the wheels. The power, however, is 150 pounds; therefore $150 \times 183218 \frac{1}{9}$ or 27489716 pounds is the weight the man can sustain, equal to 12269 tons.
1330. It must be observed, that the power has to overcome not only the weight, but at the same time the friction undergone by the screw, which in some cases is so great as to be equal to the weight itself; for it is sometimes sufficient to sustain the weight when the power is taken off.

Fig. 562.

1:331. 'Though in a preceding page we lave slightly touched on the effect of friction, it is to be kept in mind that the foregoing observations and rules have assumed the mechanical powers to be without weight and friction. This is far from the fact ; and, however theoretically true all that has hitherto been advanced, very great allowances must be made in practice when power is applied to mechanical purposes, in which a great portion of their effect is lost by friction, inertia, \&c. The word friction, properly meaning the act of one body rubbing on another, is in mechanies used to denote the degree of retardation or obstruction to motion which arises from one surface rubbing against another. A heavy body placed upon another is not in a state of equilibrium between all the forces which act upon it, otherwise it could be moved by the application of the smallest force in a direction parallel to the plane. This want of equilibrium results from unbalanced foree oceasioned by the friction on a level surface. Now if a new force of equal magnitude be applied to counterpoise such unbalanced force, the body will obey the smallest impulse in such direction, and the force thus employed will exactly measure the retarding force of friction. It has been well observed, that friction destroys, but never generates motion; being therein unlike gravity or the other forces, which, though they may retard motion in one direction, always accelerate it in the opposite. Thus the law of friction violates the law of continuity, and cannot be accurately expressed by any geometrical line, nor by any algebraie formula. The author (Playfair, Outlines of Natural Philosophy) just quoted, continues: " Though friction destroys motion and generates none, it is of essential use in mechanics. It is the cause of stability in the structure of machines, and it is necessary to the exertion of the force of animals. A nail or screw or a bolt could give no firmness to the parts of a machine, or of any other structure, without friction. A nimals could not walk, or exert their force anyhow, without the support which it affords. Nothing could have any stability, but in the lowest possible situation; and an arch, which could sustain the greatest load when properly distributed, might be thrown down by the weight of a single ounce, if not placed with mathematical exactness at the very point which it ought to oceupy."
1332. Many authors have applied themselves to the subject of friction, bit the most satisfactory results have attended the investigations of the celebrated Coulomb in its appication to practical meehanies; and it is to that athor we are indebted for the few following succinct observations.
I. In the friction of wood upon wood in the direction of the fibres after remaining in contact for one or two minutes, the following mean results were obtained : -

$$
\begin{aligned}
& \text { Oak against oak }-\frac{1}{2.34}=\text { friction in parts of the weight. } \\
& \text { Oak against fir }-\frac{1}{150}=\text { ditto. } \\
& \text { Fir against fir }-\frac{1}{1.78}=\text { ditto. } \\
& \text { Elm against elm }-1 \frac{218}{}=\text { ditto. }
\end{aligned}
$$

When oak rubbed upon oak, and the surfaces in contact were reduced to the smallest pos sible dimensions, the friction was $\frac{1}{1} \cdot \frac{1}{2 \cdot 12} \cdot \frac{1}{2 \cdot 0^{\circ}}$

13:33. When the friction was across the grain, or at right angles to the direction of the fibres, oak against oak was $\frac{1}{3 \cdot 70}$. The ratos above given are constant quantities, and not dependent upon the velocities, excepting in the case of elm, when the pressures are very small, for then the friction is sensibly increased by the velocity.
1334. (II.) Friction is found to inerease with the time of contact. It was ascertained that when wood moved upon wood in the direction of the fibres, the frietion gradually inereased, and reached its maximum in 8 or 10 seconds. When across tise grain of the wood, it took a longer time to reach its maximum.
1335. (III.) For illustration of the friction of metals upon metals after a certain time of rest, the subjoined experiments were made with two flat wlers of iron, 4 feet long and 2 inches wide, attached to the fixed plank of the apparatus used for the investigation. Four other rulers, two of iron and two of brass, 15 inches long and 18 lines wide, were also used. The angles of each of the rulers were rounded off, and the rubbing surfaces of the rulers were 45 square inches.

With iron upon iron and a pressure of 53 lbs , the friction in parts of the pressure was $\frac{1}{5.5}$ $453 \mathrm{ll} \mathrm{se} . \quad-\quad-\quad \frac{1}{5} \mathrm{r}^{\circ}$
With iron upon brass and a pressure of 52 lbs., the friction in parts of the pressure was $\frac{1}{4 \cdot 2^{\circ}}$ - - $\quad 452 \mathrm{lbs}, \quad-\quad \frac{1}{4 \cdot 1}$.
1336. In these experiments each set gives nearly the same result, though the second pressures are nearly nine times the first; from which we learn that, in metals, friction is independent of the extent of the rubbing surfaces. Coulomb, moreover, found that the friction is independent of the velocitics. The ratio of 4 to 1 between the pressure of friction, in the ease of iron moving upon brass, is only to be considered accurate when the surfaces are new and very large. When they are very small the ratio varies from 4 to 1 to 6 to 1 ; but this last ratio is not reached unless the friction has been continued more than an hour, when the iron and brass have taken the highest polish whereof they are susceptible, free of all scratches.
1337. IV. In the friction of oak upon oak, when greased with tallow, which was renewed at every experiment, some days were required for obtaining, when the surfaces were considerable, the maximum of friction or adhesion. It was nearly similar to that without grease, sometimes rather greater. For iron or copper with tallow, during rest, the inerease is not so considerable as with oak. At first the friction was $\frac{1}{1 T}$ of the weight, besides a small force of a pound for every 30 square inches independent of the weight. The friction after some time changes to $\frac{1}{10}$ or $\frac{1}{9}$. Olive oil alters the condition of the friction to $\frac{1}{6}$, and old soft grease to about $\frac{1}{9}$.
1338. V. In the case of friction of bodies, oak upon oak for instance, in motion in the direction of its fibres, the friction was nearly constant in all degrees of velocity, though with large surfaces it appeared to inerease with the velocities; but when the touching surfaces were very small compared with the pressures, the friction diminished or the velocities inereased. For a pressure of 100 to 4000 pounds on a square foot, the friction is about $\frac{1}{9 \cdot 5}$, besides for each square foot a resistance of $1 \frac{2}{3}$ pounds, exclusive of pressure inereasing a little with the velocity, occasioned perhaps by a down on the surface. If the surface be very small the friction is lessened. When the narrow surface was cross-grained, the frietion was invariably $\frac{1}{10}$. In the case of oak on fir, the friction was $\frac{1}{6.3}$; of fir on fir, $\frac{1}{6}$; of clm on elm, $\frac{1}{10}$, but varying according to the extent of surface; for iron or copper on wood, $\frac{1}{13}$, which was at first doubled by increasing the velocity to a foot in a second, but on a continuance of the operation for some hours it again diminished. For iron on iron, $\frac{1}{3.55}$; on copper, $\frac{1}{4.15}$; after long attrition, $\frac{1}{6}$ in all velocities. Upon the whole, in the case of rasst machines, $\frac{1}{8}$ of the pressure may be considered a fair estimate of the friction.
1839. In the experiments to ascertain the friction of axles, Coulomb used a simple pulley, where the friction of the axis and that of the rigidity of the rope produce a joint resistance. With guaiacum moving upon iron, the friction was $\frac{1}{5 \cdot 4}$ or $\frac{1}{6 \cdot 4}$ of the weight in all velocitie; exclusive of the rigidity of the rope; the mean was $\frac{1}{6 \cdot 1}$, or, with a small weight, a littie greater. In the cases of axles of iron on copper, $\frac{1}{15}$ or $\frac{1}{11 \cdot 5}$ the velocity is small ; the friction being always somewhat less than for plane surfaces. With grease, the friction was about $\frac{1}{7.5^{\circ}}$ With an axis of green oak or clm, and a pulley of guaiacum, the friction with tallow W.is $\frac{1}{26}$; withont, $\frac{1}{17}$; with a pulley of elin, the quantities in question became $\frac{1}{33}$ and $\frac{1}{20}$. Au axis of box with a pulley of guaiacum gave $\frac{1}{23}$ and $\frac{1}{17}$; with an elm pulley, $\frac{1}{29}$ and $\frac{1}{2 \pi}$. An axis of iron and a pulley of guaiaem gave, with tallow, $\frac{1}{20}$. The velocity had hut small
eflect on the rigidity of ropes, exeept in slighty increasing the resistanee when the pressure was small.
1340. The frietion and rigidity of ropes was supposed by Amontons and Desarpuliers to vary as the diameter as the curvature and as the tension. By Coulomb the power of the diameter expressing the rigidity was found generally to be 1.7 or $1 \cdot 8$, never less than $1 \cdot 1$, and that a constant quantity must be supposed as added to the weight. Wet ropes, if small, are more flexible than such as are dry, and tarred ones stifler by about one sixth, and in cold weather somewhat more. After rest, the stiffness of ropes increases. A rope of three strands, each having two yarns $12 \frac{1}{2}$ lines in circumference, whose weight was 125 grains, being bent upon an axis 4 inches in diameter, required a constant force of one pound (French) and $\frac{1}{54.3}$ of the weight to overcome its rigidity. The same rope tarred, required one fifth of a pound and one fifticth of the weight. When the strands were of fine yarns, the circumference 20 lines, and the weight 347 grains, the rigidity was equal to half a jound and $\frac{1}{2: \cdot 1}$ of the weight to move $i t$. With strands of 10 yarns, and a cireumference of 28 lines, and a weight of 680 grains to 6 inehes, the rigidity of the untarred rope was 2 lbs. and $\frac{1}{13} 33$ of the weight, and the tarred rope of $3: 3 \mathrm{lbs}$ and $\frac{1}{10.34}$ of the weight. Experi. ments whieh confirmed the above were made on a roller moving on a lorizontal plane, while a rope was coiled completely round it, whence an allowance must be made for the friction of the roller on the plane, which varies as its weight and inversely as its diameter. With a roller of guaiaeum or lignum vitæ, $3 \cdot 6$ inehes in diameter, moving on oak, it was $\frac{1}{100}$ of the weight ; for a roller of elm, $\frac{2}{3}$ more.
1341. This subjeet has, we eonecive, been pursued as far as is necessary for the arehitect; seeing that his further investigation of it, should necessity arise, may be aceomplished by reference to the works of Amontons, Bulfinger, Parent, Euler, Bossut, and Coulomb, upon whom we have drawn for the information here given. We shall therefore conclude these remarks by subjoining some of the practical results which experiments on animal power afford, extraeted from the celebrated Dr. Thomas Young's Natural Philosophy, vol. ii.
1342. In comparing the values of the foree of moving powers, it is usual to assume an unit, whieh is considered as the mean effect of the labour of an active man working to the greatest advantage; this on a moderate ealeulation will be found sulficient to raise 10 lbs . to the height of 10 feet in one second for 10 hours in a day; or 100 lbs .1 foot in a second, that is 36,000 feet in a day, or $3,600,000$ lbs. 1 foot in a day. The following exhibits a tabular view of the immediate force of men, without deduction for friction. Such a day's work is the measuring unit in the third column of the table.

Operative.	Force.	Continuance.	Day's Work.
A man weighing 133 lbs . French ascended 62 feet French by steps in 34 seconds, but was completely exhausted. Amontons. - A sawyer made 200 strokes of 18 Frenel inehes each in 145 seconds, with a force of 25 lbs . Firencl. He could not have eontinued more than 3 minutes. Amontons. A man ean raise 60 Freneh lbs. 1 Freneh foot in I second for 8 hours a day. Bernouilli. A man of ordinary strength can turn a winch with a force of 30 lbs ., and with a velueity of 3.2 feet in 1 second for 10 hours a day. Desaguliers. Two men working at a windlass, with handles at right angles, can raise 70 lbs . more easily than 1 can raise 30 lbs . Desaguliers. - A man ean exert a force of 40 lbs. for a whole day with the assistance of a fly, when the motion is pretty quick, at about 4 or 5 feet in a second. Desaguliers. But it appears doubtful whether the force is 40 or 20 lbs. For a short time, a man may exert a force of 80 lbs . with a fly when the motion is pretty quick. Desuguliers. A man going up stairs ascends 14 metres (35.43 feet) in 1 minute. Coulomb.	2.8 6.0 0.69 1.05 1.22 2.00 3.00 1.182	34 see. 145 sec. 8 hours 10 hours - 1 1 sec. 1 min.	0.552 1.05 1.42 2.00

Oferative.	Force.	Continua: ce.	Day's Work.
A man going up stairs for a day raises 205 kilogramines ($451 \cdot 64 \mathrm{lbs}$. averd.) to the heiglst of a kilometre (3280.91 feet). Coulomb.	-	-	0.412
With a spade a man does $\frac{19}{20}$ as much as in ascending stairs. Couloml.	-	-	0.391
With a winch a man does $\frac{5}{8}$ as much as in aseending stairs. Coulomb.	-	-	0`258
A man carrying wood up stairs raises, together with his own weight, 109 kilogrammes ($240 \cdot 14 \mathrm{lbs}$.			
averd.) to 1 kilometre ($3280 \cdot 91$ feet). Coulumb.	-	-	$0 \cdot 219$
seconds. Coulomb. - - - .	5.22	20 sec.	
For half an hour 100 French ponnds may be raised 1 foot French per second. Coulomb.	$1 \cdot 152$	30 min .	
By Mr. Buchanan's comparison, the force exerted in turning a winch being assmmed equal to the unit, the force in pumping will be	$0 \cdot 61$		
In ringing - - - -	$1 \cdot 36$		
In rowing - - - -	$1 \cdot 43$		

- 1343. Coulomb's maximum of effect is, when a man weighing 70 kilorramanes (154.21 lbs avoirdupois), carries a weight of 53 (116.76 lbs avoirdupois,) up stairs. Eut this appears too great a load.

1344. Porters carry from 200 to 300 lbs , at the rate of 3 miles an hour. Chairmen walk 4 miles an hour with a load of 150 lbs . each; and in Turkey there are found porters who, it is said, by stooping forwards, carry from 700 to 900 lbs. very low on their backs.
1345. The most advantageous weight for a man of common strength to carry horizontally, is 111 pounds; or, if he return unladen, 135. With wheelbarrows, men will do half as mueh more work, as with hods. Conlomb.

The following table exlibits the performance of men by machines.

Opelative.	Force.	Continuance.	Day's Wow.
A man raised by means of a rope and pulley 2.5 lbs . French, 220 French feet in 145 seconds. Amontons.	$0 \cdot 436$	145 sec .	
A man can raise by a qood common pump, 1 hogshead of water 10 feet bigh in a minute for a whole day. Desaguliens.	$0 \cdot 875$	-	$0 \cdot 875$
By the mercurial pump, or another good pump, a man may raise a hogslead 18 or 20 feet in a minute for 1 or 2 minutes	161	2 min.	
In pile driving, $55 \frac{1}{3}$ French lbs. were raised 1 French foot in 1 second, for 5 hours a day, by a rope drawn horizontally. Coulomb.	0.64	5 hours	$0 \cdot 82$
Robison says that a feeble old man raised 7 cubic feet of water $11 \frac{1}{2}$ feet in 1 minute for 8 or 10 hours a day, by walking backwards and forwards on a lever	0.837	9 hours	0-7.33
A young man, the last-named author says, weighing $13 \doteqdot \mathrm{lbs}$., and carrying 30 lbs ., raised $9 \frac{1}{4}$ cubic feet $11 \frac{1}{7}$ feet high for 10 hours a day, without fatigue	1-106	10 hours	1-106

1346. In respect of the force of horses, we do not think it necessary to do more than observe that the best way of applying their force is in an horizontal direction, that in which a man acts least to advantage. For instance, a man weighing 140 lbs , and drawing a boat along by means of a rope over his shoulders, carnot draw above 27 lbs ; whereas a horse employed for the same purpose can exert seven times that force.
1347. Generally, a horse can draw no more up a steep hill than three men can carry,
that is, from 450 to 750 pounds; but a horse can drav 2000 pounds up a steep hill which is but short. The most aisadvantageous mode of applying a horses foree is to make him carry or draw up hill; for if it be steep, he is not more than equal to three men, each of whom would elimb up faster with a burden of 100 pounds weight than a horse that is loaded with 300 pounds. And this arises from the different construction of what may be called the two living machines.
1348. Desaguliers observes, that the best and most effectual aetion of a man is that exerted in rowing, in which he not only acts with more muscles at onee for overeoning resistance than in any other application of his strength, but that, as he pulls backwards, his body assists by way of lever.
1349. There are eases in which the architect has to avail himself of the use of horse power; as, for instance, in pugmills for tempering mortar, and oceasionally when the stones employed in a building may be more conveniently raised by such means. For effectually using the strength of the animal, the track or diameter of a walk for a horse should not be less than 25 to 30 fect. A steam horse-power is reckoned as equal to three actual horses' power, and a living horse is equal to seven men.
1350. We close this section hy observing that some horses have carrisd 650 or 700 Hb ., and that for seven or eight mile, without resting, as their ordinary work; and, according to Desaguliers (Experiment. Philos. vol i), a horse at Stourbridge corried ll cwt. of ircin, or 1232 lus., for eight miles.

Sect. Vilif.
PIERS AND VAUITS.
Authors on equilibrium of arches.
1351. The construction of arehes may be considered in a threefold respect. I. As respects their form. II. As respects the mode in which their parts are constructed. III. As respects the thrust they exert.
13.52. In the first eategory is involved the mode of tracing the right lines and curves whereof their surfaces are composed, which has been partially treated in Section V. on Deseriptive Geometry, and will be further discuss ${ }^{\circ}$ d in future pages of this work. The other two points will form the subject of the present section.
1353. The investigation of the equilibrium of arehes by laws of statics does not appear to have at all entered into the thoughts of the ancient architects. Experience, imitation, and a sort of mechanical intuition seem to have been their guides. They appear to have preferred positive solidity to nice balanee, and the examples they have left are rather the result of art than of science. Vitruvius, who speaks of all the ingredients necessary to form a perfect architect, does not allude to the assistance which may be afforded in the construction of edifices by a knowledge of the resolution of forces, nor of the aid that may be derived from the study of such a science as Descriptive Geometry, though of the latter it seems searcely possible the ancients could have been ignorant, seeing how much it must have been (practically, at least) employed in the construction of such vast buildings as the Coliseum, and other similarly curved structures, as respects their plan.
1354. The Gothic arehiteets seem, and indeed must have been, guided by some rules which enabled them to counterpoise the thrusts of the main arches of their cathedrals with such extraordinary dexterity as to exeite our amazement at their boldness. But they have left us no preeepts nor clue to ascertain by what means they reached such lseights of skill as their works exhibit. We shall hereafter offer our conjectures on the leading principle which seens as well to have guided them in their works as the ancients in their earliest, and perhaps latest, specimens of columnar arehitecture.
135.5. Parent and De la Hire scem to have been, at the latter end of the seventeenth century, the first mathematicians who considered an arch as an assemblage of wedge-formed stones, capable of sliding down each other's surfaces, which they considered in a state of the highest polish. In this hypothesis M. de la Hire has proved, in his Trcatise on Mechanics, printed in 1695, that in order that a semicircular areh, whose joints tend to the centre, may be able to stand, the weights of the voussoirs or arch stones whereof it is composed must be to each other as the differences of the tangents of the angles which form each voussoir ; but as these tangents increase in a very great ratio, it follows that those which form the springings must be infinitely heavy, in order to resist the effeets of the superior vonssoirs. Now, according to this hypothesis, not only would the construction of a semicireular arch be an impossibility, but also all those which are greater or less than a semicircle, whose centre is level with or in a line paral!el with the tops of the piers; so that those only would he practicable whose centres were formed by curves forming angles with the piers, such as the parabola, the hyperbola, and the eatenary. And we may here remark, that in parabolic and hyperbolic arches, the voussoir forming the keystoncs should be heavier or
greater in height, and that from it the weight or size of the voussoirs should diminish from the keystone to the springing; the catenary being the only curve to which an hoizontal extrados, or upper side, can be properly horizontal. In the Memoirs of the Academy of Sciences, 1729, M. Conplet published a memoir on the thrusts of arches, wherein he adopts the hypothesis of polished voussoirs; but, finding the theory would not be applicable to the materials whereof arches are usually composed, he printed a sceond memoir in 1730, wherein the materials are so grained that they cannot slide. But in this last he was as far from the truth as in his first.
1856. M. Danisy, a member of the Academy of Montpellier, liking neither of these hypotheses, endeavoured from experiments to deduce a theory. He made several mociels whose extradosses were equal i.1 thickness, and divided into equal voussoirs, with piers sufficiently thick to resist the thusts. To ascertain the places at which the failure would take place where the piers were too weak, he loaded them with different weights From many experiments, in 1732, he found a practical rule for the walls or piers of a cylindrical arch so as to resist the thrust.
1357. Derand had found one which appears in his L'Architecture des Voutes, 1643, but it seems to have been empirical. It was nevertheless adopted by Blondel and Deschalles, and afterwards by M. de la Rue. Gautier, in his Dissertation sur Tépuisseur des Culées des Ponts, \&c. 1727, adopts one which seems to have had no better foundation in science than Derand's.
1358. At the end of a theoretical and practical treatise on stereotomy by M. Frezier, that author subjoined an appendix on the thrust of arches, which was an extract of what had theretofore been published by MMI de la Hire, Couplet, Bernouilli, and Danisy, with the applications of the rules to all sorts of arches. He seems to have been the first who considerably extended the view of the subject.
1359. Coulomb and Bossut occupied themselves on the subject. The first, in 1773, presented to the French Academy of Sciences a memoir on several architectural problems, amongst which is one on the equilibrium of arches. The last-mentioned author printed, in the Memoirs (1774 and 1776) of the same academy, two memoirs on the theory of cylindrical arches and of domed vaulting, wherein are some matters relating to the cupola of the lantheon at Paris, whose stability was then a matter of doubt.
1360. In Italy, Lorgua of Verona considers the subject in his Saggi di Statica Mecanica applicati alle Arti; and in 1785, Mascheroni of Bergamo published, in relation to this branch of arehitecture, a work entitled Nuove Ricerche delle Volte, wherein he treats of cupolas on circular, polygonal, and elliptical bases.
1361. We ought, perhaps, not to omit a memoir by Bouguer in the Transactions of the French Academy of 1754, Sur les Lignes Courbes propres a former les Voutes en Dome, wherein he adduces an analogy between cylindrical and dome vaulting; the one being supposed to be formed by the movement of a catenarian curve parallel to itself, and the other by the revolution of the same curve about its axis.
1362. In this country, the equilibration of the arch, as given by Belidor and others on the Continent, seems to have prevailed, though little was done or known on the subject. Emerson seems to have been the earliest attracted to the subject, and in his Treatise on Mechanics, 1743, appears to have been the first who thought, after the Doctors Hooke and Gregory, of investigating the form of the extrados from the nature of the curve, in which he was followed by Hutton, who added nothing to the stock of knowledge; an accusation which the writer of this has no hesitation of laying at hisown door, as having been the author of a Treatise on the Equilibrium of Arches, which has passed through two editions; but who, after much reflection, is now convineed, that, for the practical architect, no theory wherein the extrados is merely made to depend on the form of the intrados can ever be satisfactory or useful. It is on this account that in the following pages he has been induced to follow the doctrines of Rondelet, as much more satisfactory than any others with which he is ac!uainted.
1363. The formulx of Rondelet were all verified by models, and the whole reasoning is conducted upon knowlelge which is to be obtained by acquaintance with the mathematical and mechanical portions of the preceding pages. It moreover requires no decp acyuaintance with the more abstruse learning requisite for following the subject as treated by later authors.

OBSERVATIONS ON FKICTION.

1364. I. In order that the stone parallelopiped ABCD (fig. 563.) ruy be made to slide upon the horizontal plane FG, the power which draws or pushes it parallel to tliis plane, must not be liigher than the length of its base AB ; for if it acts from a higher point, such as C , the parallelopiped will be overturned instead of sliding along it.
1365. As the effects of the powers \mathbf{P} and M are in the inverse ratio of the neigits at which they act, it follows that a parallelopiped will slide whenever the foree which is necessary to overturn it is greater than

Figt, :656
that necessary to make it slide, and, reciprocally, it will be overtv aed when less force is necessary to produce that effect than to make it slide.
1366. I1. When the parallelopiped is placed on an inchned plane, it will slide so long as the vertical QS drawn from its centre of gravity does not fall without the base AB. Hence, to ascertain whether a parallelopiped ABCD with a rectangular base (fig. 564.) will slide down or overturn; from the point B we must raise the perpendientar BE : if it pass out of the centre of gravity, it will slide; if, on the contrary, the liae BE passes within, it will overturn.
1367. If the surfaces of stones were infinitely smooth, as they are supposed to be in the application of the principles of

Fig. 56.4. mechanies, they would begin to slide the moment the plane upon which they are placed ceases to be perfectly horizontal; but as their surfaces are full of little inequalities which catch one another in their positions, Rondelet found, by repeated experiments, that even those whose surfaces are wrought in the best manner do not begin to slide upon the best worked planes of similar stone to the solids until such planes are inclined at angles varying from 28 to 36 degrees. This difficulty of moving one stone upon another increases as the roughness of their surfaces, and, till a certain point, as their weight: for it is manifest, 1st, That the rougher their surfaces, the greater are the inequalities which catch one another. 2 d . That the greater their weight, the greater is the effort necessary to disengage them; but as these inequalities are susceptible of being broken up or bruised, the maximmm of force wanting to overcome the friction must be equal to that which produces this effect, whatever the weight of the stone. 3d. That this proportion is rather as the hardness than the weight of the stone.
1368. In experiments on the sliding of hard stones of diflerent sizes which weighed from 2 to 60 lbs ., our anthor found that the friction which was more than half the weight for the smaller was reduced to a third for the larger. He remarked that after each experiment made with the larger stones a sort of dust was disengaged by the friction. In soft stones this dust facilitated the sliding.
1369. These circumstances, which would have considerable influence on stones of a great weight, were of little importance in the experiments which will he cited, the object being to verify upon hard stones, whose mass was small, the result of operations which the theory was expected to confirm. By many experiments very carefuliy made upon hard freestone well wrought and squared, it was found, 1 st, That they did not begin to slide upon a plane of the same material equally well wrought until it was inclinea a little more than 30 degrecs. 2d. That to drag upon such stone a parallelopiped of the same material, a little more than half its weight was required. Thus, to drag upon a level plane a parallelopiped 6 in. long, 4 in . wide, and 2 in . thick, weighing 4 lbs .11 oz ., (the measures and weigits are French, es throughout*), it was necessary to employ a weight equal to 2 lbs . 7 oz. and 4 drs. 3d. That the size of the rubbing surface is of no consequence, since exactly the same force is necessary to move this parallelopiped upon a face of two in. wide as upon one of 4 .
1970. Taking then into consideration that by the principles of mechanics it is proved, that to raise a perfectly smooth body, or one which is round upon an homogeneous plane inclined at an angle of 30 degrees, a power must be employed parallel to the plane which acts with a force rather greater than half its weight, we inay conclude that it requires as much force to drag a parallelopiped of freestone upon an horizontal plane of the same material as to cause the motion up an inclined plane of 30 degrees of a round or infinitely polished body.
1371. From these considerations in applying the principles of mechanics to arches composed of freestone well wrought, a plane inclined at 30 degrees might be considered as one upon which the voussoirs would be sustained, or, in other words, equivalent to an horizontal plane.
1372. We shall here submit another experiment, which tends to establish such an hypothesis. If a parallelopiped C (fig. 565.) of this stone be placed between two others, BD, RS, whose masses are each double, upon a plane of the same stone, the parallelopiped C is sustained by the friction alone of the vertical surfaces that touch it. This effect is a consequence of our hypothesis; for, the inequalities of the surfaces of bodies being stopped by one another, the parallelopiped \mathbf{C}, before it can fall, must push aside the two others, BD, RS, by making them slide along the horizontal

Fis. 365. plane of the same material, and for that purpose a foree must be employed equal to doubse the weight sustained.

* The Paris pound = 7561 Troy grains.

Ounce $=472 \cdot 5625$.
Dram or gros $=590703$.
Grail $=0 \cdot 8 \cdot 20.1$.
Afad as the Fuglish avoirdupois pound $=7000$ Trov grains, it contains 8538 l'aris grams The Parts foot of 12 inches $=12.7977$ English inclus.

The Pais hine - one-lixplith of the fout.
1373. If to this experiment the principles of mechamies be applied, considering the plane of 30 degrees metination as a horizontal plane, the verticai faces ED FR may be considered as inclined planes of 60 degrees. On this hypothesis it maty be demonstrated by mechanies, that to sustain a body between two planes forming an angle of 60 degrees (fig. 566.), the resistance of each of these planes must be to half the weight sustained as IID is to DG, as the radius is to the sine of 30 degrees, or
 a) 1 is to 2.

EQUILIBRIUA OF ARCIIFS.

1374. The resistance of each parallelopiped represented by the prism ABDE (.fy. 565.) being equal to half their weight, it follows that the weight to be sutained by the two prims should equal one quarter of the two parallelopipeds taken together, or the half of one, which is confirmed ly the experiment. This agreement between theory and practice detirmined Rondelet to apply the hypothesis to models of vanles composed of voussoirs and wedges dismited, made of freestone, with the utmost exactness, the joints and surfaces nicely wrought, as the parallelopipeds in the preceding example.
1375. The first model was of a semicircular arch 9 inches diameter, comprised between two concentric semi-circumferences of circles 21 lines apart. It was divided into 9 equal voussoirs. This arch was 17 lines Wey, and was carried on piers 2 inches and 7 lines thick. It was found, by gradually diminishing the piers, which were at first 2 inches and 10 lines thick, that the thickness first named was the least which could be assigned to resist the thrust of the voussoirs.
1376. The model in question is represented in fig. 567., whereon we have to observe, - 1st. 'That the first voussoir, 1, being placed on a level joint, not only sustains itself, but is able to resint by friction an effort equal to one half of its weight. 2d. That the second voussoir, M, being upon a joint inclined 20 degrees, will also, through friction, sustain itself; and that, moreover, these two voussoirs would resist, previous to giving way on the joint AB, an horizontal effort equal to one half of their weight. 3d. That the third voussoir, N, standing om a joint inclined at 40 degrees, would slide if it were not retained by a power PN acting in an opposite direction. 4th. That taking, according to our hypothesis, an inclined plane of 30 degrees, whereon the stones would remain in equilibrium as an horizontal one, the inclined point of 40 degrees may be considered as an inclined plane of

Fig. 567. 10 degrees, supposing the surfaces infinitely smooth. 5th. That the effort of the horizontal power which holds this voussoir in equilibrium upon its joints will be to its weight as the sine of 10 degrees is to its cosine, as we have, in the section on Mechanies, previously shown. (1255 et seq.)
1377. The model of the vault whereon we are speaking being but 9 inches, or 108 lines in diameter, by 21 lines for the depth of the vonssoirs, that is, the width between the two coneentric circumferences, its entire superficies will be 4257 square lines, which, divided by 9 , gives for cach voussoir 473 spuare lines. Then, letting the weight of each voussoir be expressed by its superficies, and calling P the horizontal power, we have

$$
\begin{aligned}
\mathrm{P}^{\prime}: 47 \%:: \sin 10^{\prime}: \operatorname{cosin} .10 \\
\text { Or, } \mathrm{P}^{\prime}: 473:: 17365: 98481 ; \text { which gives } \mathrm{P}=83 \frac{4}{10} .
\end{aligned}
$$

The fourth voussoir, being placed upon a bed inclined at 60 degrees, will be considered as standing on a plane inclined only at 30 degrees, which gives, calling Q the horizontal power which keeps it on its joint, -

$$
\begin{gathered}
Q: 473:: \sin .30^{\circ}: \operatorname{cosin} .30^{\circ} \\
\text { Or, }\left(\mathbb{Q}: 473:: 50000: 86603=273 \frac{3}{10} .\right.
\end{gathered}
$$

1378. The half-keystones, being placed on a joint inclined 80 degrees, are to be considered as standing on an inclined plane of 50 , the area of the half key which represents its weight being $236 \frac{1}{2}$. If we call R the horizontal power which sustains it on its joint, we shall have the proportion

$$
\begin{array}{rl}
\text { R }: 2: 2 \frac{1}{2}:: \sin .50: \text { cosin. } 50 ; \\
\text { or, } R & 2: 36 \frac{1}{2}:: 76604: 64279 ; \text { which gives } R=2819.9
\end{array}
$$

1379. Wishing to ascertain if the sum of these horizontal efforts, which were necessary to keep on the ir joints the two voussoirs N, O, and the half-keystone, was capable of thrusting away the first voussoir upon its horizontal joint AB, the half arch was laid duwn upon a level plate of the same stone without piers, and it was proved that to make it give "ay an horizental effort of more than 16 ounces was required, whilst only 10 were neces-
sary to sustain the half-keystone and the two vonssoirs N, O. The two halves of the arches united bore a weight of 5 lbs. 2 oz . before the first voussoirs gave way.
1380. To find the effect of each of these voussoirs when the arch is raised upon its piers, let fall from the centres of gravity $\mathrm{N}, \mathrm{O}, \mathrm{S}$ of these voussoirs the perpendiculars $\mathrm{N} n, \mathrm{O} o, \mathrm{~S} s$, in order to ohtain the arms of the levers of the powers P, Q, R, which keep them in their places, tending at the same time to overturn upon the fulcrum T the pier which earries the half areh, and we have their eflort -

$$
\mathrm{P} \times \mathrm{N} n+\mathrm{Q} \times \mathrm{O} o+\mathrm{R} \times \mathrm{S} s
$$

The lieight of the pier being 195 lines, we have

$$
\begin{gathered}
\begin{array}{c}
\mathrm{N} n=244 \cdot 94 \\
\mathrm{O} o=256 \cdot 26
\end{array} \\
\text { and } \mathrm{S} s=260 \cdot 50, \text { whence we have } \\
\text { The effort } \mathrm{P} \times \mathrm{N} n=83 \cdot 4 \times 244 \cdot 94, \text { which gives } 20427 \cdot 996 \\
\mathrm{Q} \times \mathrm{O} s=273 \cdot 3 \times 256 \cdot 26 \ldots . \ldots .70035 \cdot 858 \\
\mathrm{R} \times \mathrm{S} s=281 \cdot 9 \times 260 \cdot 50 \ldots . \ldots .73434 \cdot 950 \\
\text { Total effort in respect of the fulcrum, } \frac{163898 \cdot 804}{}
\end{gathered}
$$

1381. The pier resists this effort, 1 st, by its weight or area multiplied by the arm of the lever determined by the distance $\mathrm{T} u$ from the fulcrum T to the perpendicular let fall from the centre of gravity G upon the base of the pier. 2d. By the weight of the half arch multiplied by the arm of its lever VY determined by the vertical LY let fall from the centre of gravity L, and whish becomes in respect of the common fulerum $T=T t$ or VB-BY, in order to distinguish BY, which indicates the distance of the centre of gravity of the half anch (and which is supposed known because it may be found by the rules given in 1275. et seq.) from the width VB that the pier ought to have to resist the effort of the half arch sought. In order to find it, let 1 ', the cffort of the areh above found, be 163898 -804.

$$
\begin{array}{ll}
\text { Let the height of the pier } & =a \\
\text { The width sought } & =x \\
\text { The weight of the laalf areh } & =b \\
\text { The part BY of its arm of lever } & =c
\end{array}
$$

1382. The area of the pier which represents its weight multiplied by the arm of the lever will be $a x \times \frac{x}{2}=\frac{a x^{2}}{2}$. That of the half arch multiplied by its arm of lever will he shown hy VB +BY , where $x+c$ will be $b x+b c$, whence the equation $\mathrm{P}=\frac{a x^{2}}{2}+b x+b c$, which we have to solve.

Now first we have

$$
\frac{a x^{2}}{2}+b x=\mathrm{P}-b c .
$$

$\left.\begin{array}{l}\text { Multiplying all the terms loy } \frac{2}{a} \\ \text { to eliminate } x^{2} \text {, we have }\end{array}\right\} x^{2}+\frac{2 h x}{a}+\frac{2 p-2 b c}{a}$, an expression in which x is raised to the second power; but as $x^{2}+\frac{2 h x}{a}$ is not a perfect square, that is to say, it wants the square of half the known quantity $\frac{2 b}{a}$ which multiplies the second term; by adding this square, which is $\frac{b^{2}}{a^{2}}$, to each side of the equation, we have $x^{2}+\frac{2 h, r}{a}+\frac{b^{2}}{a^{2}}=\frac{2 p-2 b c}{a}+\frac{b^{2}}{a^{2}}$. The first member by this means having become a perfect square whose root is $a+\frac{b}{a}$, we shall have $x+\frac{b}{a}+\sqrt{\frac{2 p-2 b c}{a}+\frac{b^{2}}{a^{2}}}$, which becomes, by transferring $\frac{b}{a}$ to the other side of the equation, $x=\sqrt{\frac{2 p-2 b c}{a}+\frac{b^{3}}{a^{2}}}-\frac{b}{a}$, in which x being only in the first member of the eqnation, its value is determined from the known quantities on the other side. Substituting, then, the values of the known quantities, we have

$$
x=\sqrt{\frac{163808.804 \times 2-2128 \times 2 \times 12 \frac{1}{2}}{195}+\frac{2128}{19.5} \times \frac{2128}{195}}-\frac{2128}{195},
$$

which gives $x=28 \frac{1}{4}$ lines instead of 2 inches and 5 lines, which was assigned to the piers that they might a little exceed equilibrium in their stability.

Proof of the above Method by another Method of estimating Friction.

1383. A proof of the truth of the hypothesis in the preceding section is to be found in the method proposed by Bossut in his Trentise on Mechanics.

Let the voussoir N (fig. 568.) standing on an inclined plane be sustained by a power Q acting horizontally. From the

Fig. 668.
centre of gravity let fall the vertical $N n$, which may be taken to express the weight of the voussoir. This weight may be resolved into two forees, whereof one, Ne , is parallel to the joint, and the other $N a$ is perpendicular to it. In the same manner the power Q expressed by QN in its direction may be resolved into two forces, whereof $N f$ will be parallel to the joint and the other $\mathrm{N} d$ perpendicular to it. Producing the line from the joint HG, drawing the horizontal line GI and letting fall the vertical HI, consider the line IIG as an inclined plane whose height is HI and base IG. Then the loree Nc with which the voussoir will descend will be to the weight as the leight III of the inelined plane is to its length HG . Calling p the weight of the voussoir, we then have $N c=p \times \frac{1 I G}{1 I}$, and the force $N a$ which presses against the plane as the base of the plane IG is to its length, which gives the force $\mathrm{N} a=p \times \frac{\mathrm{IG}}{11 \mathrm{G}}$.
1384. Considering, in the same way, the two forees of the power Q whieh retain the roussoir on the inclined plane, we shall find the parallel foree $N f=Q \times \frac{I G}{G}$, and the perpendieular force $\mathrm{N} d=\mathrm{Q} \times \frac{11 I}{1 I G}$. The force resulting from the two forces $\mathrm{N} a, \mathrm{~N} d$, which press against the joint, will be expressed by $p \times{ }_{I_{G G}}^{I G}+Q \times \frac{I I}{G I I}$; and as the roussoir only begins to slide upon a plane whose inelination is greater than 30 degrees, the friction will be to the pressure as the sine of 30 degrees is to its eosine, or nearly as 500 is to 866 , or $\frac{100}{860}$ of its expression. Calling this ratio n, we shall, to express the friction, have

$$
\left(p \times \frac{\mathrm{IG}}{\mathrm{GH}}+\mathrm{Q} \times \frac{\mathrm{IG}}{\mathrm{GH}}\right) \times n .
$$

As the friction prevents the vousoir sliding on its joint, in a state of equilibrium, we shall have the foree $\mathrm{N} f$ equal to the force $\mathrm{N} c$, less the friction; from which results the equation:-

$$
\mathrm{Q} \times \frac{\mathrm{IG}}{\mathrm{HG}}=p \times \frac{\mathrm{HI}}{\mathrm{HG}}-\left(p \times \frac{\mathrm{IG}}{\mathrm{GH}}-\mathrm{Q} \times \frac{\mathrm{III}}{\mathrm{HG}}\right) \times n .
$$

Nll the terms of which equation having the common divisor $H \mathrm{G}$, it becomes -

$$
\mathrm{Q} \times \mathrm{IG}=p \times \mathrm{HI}-(p \times \mathrm{IG}-\mathrm{Q} \times \mathrm{I} \mathrm{I}) \times n
$$

and, bringing the quantities multiplied by Q to the same side of the equation, we have

$$
\begin{aligned}
& \mathrm{Q} \times \mathrm{IG}+(\mathrm{Q} \times \mathrm{II}) \times n=p \times \mathrm{HI}-(p \times \mathrm{IG}) \times n ; \text { which becomes } \\
& \mathrm{Q} \times(\mathrm{IG}+n \times \mathrm{IH}=p \times(\mathrm{HI}-n \times \mathrm{I} \mathrm{G}) ; \text { whence results } \\
& \mathrm{Q}=p \times \mathrm{HI}-n \times \mathrm{IG}, \text { which is the formula for eaeh voussoir, substituting the } \\
& \quad \text { values for the expression. }
\end{aligned}
$$

1385. Thus for the third voussoir N (fig. 567.) placed on an inelined plane of 40 degrees, HI which represents the sine of the inclination will be 643 , and its cosine represented by IG, 766 , the expression of the friction n will be $\frac{500}{866}$, or $\frac{15}{26}$ nearly. The weight of the voussoir expressed by its area will be 473 , which several values being substituted in the formula, we have

$$
\mathrm{Q}=473 \times \frac{643-\frac{15}{26} \times 766}{766+\frac{15}{26} \times 643}
$$

which gives $Q=83 \cdot 6$, the expression of the horizontal foree P, which will keep the voussor N in equilibrium on its joint instead of $83 \cdot 4$, whieh was the result of the operation in the preceding subsection.
1386. The same formula $Q=p \times \underset{1 G+n \times I H}{\text { HI }-n \times I G}$ gives for the voussoir M on an inclined joint of 60 degrees, whose sine HI is 866 and cosine IG $500, \mathrm{Q}=473 \times \frac{886-\frac{15}{26} \times 500}{500+\frac{15}{26} \times 866}=273 \cdot 4$; instead of $273 \cdot 3$, which was the result of the operation in the preceding seetion.
1387. For the half-keystone, the sine III, being of 80 degrees, will be expressed by 985 , and its cosine IG by 174 ; the half-keystone by $236 \frac{1}{2}$, and the friction by $\frac{15}{26}$.

The formula now will be $Q=236 \frac{1}{2} \times \frac{985-\frac{15}{16} \times 174}{174+\frac{15}{16} \times 985}$, which gives $Q=282.2$, instead of $281 \frac{9}{10}$ found by the other method. These slight differenees may arise from suppressing the two last figures of the sines, and some remainders of fractions which have been neglected. Multiplying these values of the powers which keep the voussoirs in equilibrium upon their beds by the several arms of the levers, as in the preceding calculations. their energy will be as follows: -

For the voussoir $\mathrm{N}, \quad 83.6 \times 244.94=20476.98$

$$
\begin{aligned}
& \text { - O, } 273 \cdot 4 \times 256 \cdot 26=70061 \cdot 48 \\
& -\quad \text { S, } 282 \cdot 2 \times 260 \cdot 50=73313 \cdot 10
\end{aligned}
$$

For the total force in respect of the fulerum $\mathrm{T}=163851 \cdot 56$.
Which is the value of p, and being substituted for it in the formula $x=\sqrt{\frac{2 p-2 b}{a}+\frac{b}{a} a^{\text {i }}-{ }_{a}^{b}}$
as well as the values of the other letters, which are the same as in the preceding example, we have

$$
x=\sqrt{\frac{16385156 \times 2-2128 \times 2 \times 125}{195}+\frac{21 / 28}{195} \times{ }_{195}^{2129}-\frac{2129}{14.5}=28 \cdot 16 \text { lines } .}
$$

for the thickness of the piers, instead of 28 lines found by the preceding operation.

Application of the Principles in the Model of a straight Arch.

1388. The second model to which the application of the preeeding methods was made was a straight arch of the same surt ($f i z .569$.), whose opening between the piers was 9 inches. The arch was 21 lines high and 18 lines thick. It was divided into 9 wedges, whose joints were concentric. To determine the section of the joints, the diagonal FG was drawn on the face of the half arch, and from its extremity F touching the pier, the perpendicular FO meeting O in the vertical, passing through the middle of the opening of the piers, all the sections meeting in this point O. Each of the sections of the piers which support the areh forms an angle of $21^{\circ} 1.5^{\prime}$ with the vertical, and of 68° 45^{\prime} with the horizon.
1389. In considering each of the wedges of the half arch as in the preceding method, it will be found that in order to retain the voussoir A on the joint 1 F (of the pier) which forms with the horizontal line NF an angle of $68^{\circ} 45^{\prime}$, we have

For the horizontal foree	-	-	-	217.50
second B	-	-	-	9.54 .33
third C	-	-	-	998.75
fourth D	-	-	-	3.5466
half-keystone	-	-	-	212.83
		Total	-	1398.07

The height of the piers being 195 lines to the underside of the areh, and 216 to the top of the extralos, it follows that the arm of the lever, which is the same for all the wedgen, is $206 \frac{1}{3}$, from which we derive for the thrust p of the formula,

$$
\begin{aligned}
x & =\sqrt{\frac{2 p-2 b c}{a}+\frac{b^{2}}{a^{2}}-\frac{a}{b}} \\
& =1338.07 \times 206.33=276084 ;
\end{aligned}
$$

b which expresses the area of the half arch $=1219 \frac{1}{2} ; c$ which expresses the distance of its centre of gravity from the vertical $F^{\circ} n=24$, and the height of the pier $a=216$. Now, substituting these values in the formula, we shall have

$$
a=\sqrt{\frac{276084 \times 2-2139 \times 21}{216}+\frac{1219 \frac{1}{6} \times 2191}{216 \times 216}-\frac{12191}{216}}=42 \frac{1}{2} \text { lines. }
$$

Experiment gives 44 lines for the least width of the piers upon which the model will stand. But it is right to observe that from the impossibility of the joints being perpendieular to the intrados, the forces of the wedges press in a false direction on cach other, as will be seen by the lines $\mathrm{F} a, \mathbf{l}, 2 e, 3 g$, perpendicular to the joints against which the forces are directed, so that such an arch will only stand when the perfendicular FG does not fall within the thickness of the areh; and, indeed, this sort of arch is only secure when it comprises an are whose thickness is equal to the section npon the piers 1 F , as shown in fig. 570.

Observations on the Way in which Stones forming an Arch act to support one another.

1390. Let the semicircular arch AIICDNB (fig. 571.) consist of an infinite number of voussoirs acting without friction, and only kept in their places by their mutual forces acting on each other. It will fillow -
1391. That the first vonssoir, represented by the line AB, having its joints seusibly parallel and horizontal, will act with its whole weight joints sensibly parallel and horizontat, will act with
in the vertical direction $1 E$ to strenghen the pier.

1392. That the vertica: voussoir CD, whieh represents the keystone, having also its joints sensibly parallel, will act with its whole weight horizontally to overturn the semi-arches and piers which carry them.
1393. That all the other vonssoirs between these two extremes will act with the compomed forces $\mathrm{G} n, n m, m l, \mathrm{~K} l, \mathrm{~K} h, l i g, g f, f \mathrm{~T}$, which may each be resolved into two others, whereof one is vertical and the other hiorizontal: thus the compond force K / h is but the result of the vertical force 4 h , and the horizontal force 4 K .
1394. That the vertical force of each vonssoir diminishes from T to G, where, for the keystone C), it becomes nothing, whilst the horizontal forces continually increase in an inverse ratio; so that the voussoir HN, which is in the middle, has its vertical and horizontal forces equal.
1395. That in semi-circular arches whose extradosses are of equal height from their intradosses, the circumference passing through the centre of gravity of the voussoirs may represent the sum of all the compound forces with which the voussoirs act upon one another in sustaining themselves, acting only by their gravity.
1396. That if from the points ' T ' and G the vertical TF and horizontal GF be drawn meeting in the point \mathbf{F}, the line 'TF will represent the sum of the vertical force:" which assist the stability of the pier, and FG the sum of the horizontal forces which tend to overthoow it.
1397. That if through the point K the horizontal line IKL be drawn between the parallels FT and CO, the part I K will represent the sum of the horizontal forces of the lower part AIINB of the vault, and KI those of the npper part II(I)N.
1398. The lower voussoirs between T and K being comnterpoised by their vertical forces, the part of the arch AHNB will have a tendency to fall inwards, turning on the point B, whilst the voussoirs between K and G being counterpoised by their horizontal forces, the part IICDN of the arch will re-act upon the lower part ly its tendency to turn upon the point A.
1399. The horizontal forces of the upper part of the arch shown by KL acting from L , towards \mathbf{K}, and those of the lower part shown by IK opposite in direction to the former, that is, from I to K , being directly opposed, would comterpoise each other if they were elfual, and the areh would have no thrust; but as they are always unerual, it is the difference of the forces which occasions the thrust, and which acts in the direction of the strongest power.
1400. If we imagine the width BO of a semi-arch constantly to diminish, its height remaining the same, the sum of the hori\%ontal forces will diminish in the same ratio, so that when the points 13 and O are common, the horizontal force being annihilated, nothing remains but the vertical toree, which would act only on the pier, and tead to its stability, thrust vanishing, because, instead of an arch, it would, in fact, be nothing more than a continued pier.
1401. If, on the contrary, the height OD diminishes, the width $13 O$ remaining the same, the curve 13 and D would, at last, vanish into the right line BO , and the areh would become a straight one. In this case, the vertical forces which give stability to the pier being destroyed, all that remains for sustaining the arch are the horizontal forecs which will act with the whole weight of the arch; whence this species of arches must be such as exert most thrust, and circular arches hold a middle place between those which have no thrust, and flat arches, whose thrust is infinite, if the stones whereof they are formed could slide freely on one another, and their joints were perpendicular to their lower surfaces, as in other arches.
1402. The inconveniences which result from making the joints of flat arches concentric have been belore noticed. If the stones could slide freely on one another, as they only act in a false direction, their forces could never cither balance or destroy one another.
1403. A vast number of experiments made by liondelet, upon fifty-four molels of arehes of different forms and extradosses, divided into an equal and unequal number of voussoirs, showed that the voussoirs acted rather as levers than as wedges, or as bodies tending to slide upon one another.
1404. As long as the piers are too weak to resist the thrnst of the voussoirs, many of them unite as one mass, tending to overturn them on a point opposite to the parts where the joints open.
1405. Arches whose voussoirs are of even number exert more thrnst than those which are of unequal number, that is, which have a keystone.
1406. In those divided into uneven numbers and of mequal size, the larger the keystone the less is their thrust, so that the case of the greatest thrust is when a joint is made at the vertex, as in the ease of arches whose roussoirs are divided into egual mumbers.
1407. A semicircular areh divided into four equal parts has more thrust than one divided into nine equal voussoirs.
1408. Arehes ineluding more than a semicirele have less thrust than those of a similar span, the intradosses and extradosses being of similar forms.
1409. Thrust does not increase as the theckness of an arch inereases; so that, cateris purilus, an arch of double the thickness has not double the thrust.
1410. A semicircular areh whose extrados is equally distant throughout from, or, in other words, concentric with, the intrados, when divided into four equal parts, will only stand when its depth is less than the eighteenth part of its diameter, even supposing the abutments immoveable.
1411. Whenever, in an arch of voussoirs of equal depth, a right line can be drawn from its outer fulerum to the centre of the extrados of the keystone (fig. 572.), fracture does not occur in the middle of the haunches if the piers are of the same thick ness as the lower part of the arch.
1412. Arehes whose thickness or depth diminishes as they rise to the vertex have less thrust than those whose thickness is equal throughout.
1413. Semicircular and segmental arehes whose extrados is an horizontal line have less thrust than others.
1414. As long as the piers in the models were too weak to resist the thrust, it was possible to keep them in their places by a weight equal to double the difference between the thrust and resistance of one pier, acting by a string suspended passing through the joints in the middle of the haunehes, or by a weight equal to that difference placed above each middle joint of the arches, as in fig. 572.

From these experiments and many others, a formula has been deduced to determine the thickness of piers of eylindrical arches of all species whose voussoirs are of equal depth, whatever their forms; and to this we shall now introduce the reader.

Fig. 57\%.

Method.

1691. Having deseribed the mean circumference G.iT (figs. 573,574 .), fiom the points G and T draw the tangents to the curve meeting in the point F. From this point draw the secan. FO cutting it in the point K . This point is the place of the greatest effort, and of the consequent failure, it the thickness of the piers is too weak to resist the thrust.
1692. Through the point K, between the parallels TF and GO , draw the horizontal line IKL, which will represent the sum of the horizontal forees as will the vertical TF express the vertical forces; the mean circumference GKT will express the compound forces.
1693. The arches having an equal thickness throughout, the part IK of the horizontal line multiplied by the thickness of the areh will express the horizontal effeet of the lower part of either areh, and KL multiplied by the same thickness will express that of the upper part. These two forces

Fig. 573.
(See 1394, et seq.) acting in opposite directions will partly destroy each other; thus transferring IK from K to m, the difference $m \mathrm{I}$, multiplied by the thickness of the vault will be the expression of the thrust. This force acting at the point K in the horizontal direction KH, the arm of the lever is determined by the perpendicular PII raised from the fulcrum P ' of the lever to the direction of the thrust, so that its effort will be expressed by $m \mathrm{~L} \times \mathrm{AB} \times$ PII.

This will be resisted -

1. By ats weight represented by the surface $\mathrm{EP} \times \mathrm{PR}$ multiplied by the arm of the lever PS, determined by a vertical let fall from the eentre of gravity Q, which gives for the resistance of the pier the expression $\mathrm{EP} \times \mathrm{PR} \times \mathrm{PS}$.
2. By the sum of the vertical efforts of the upper part of each areh, represented by MK AB acting at the point K , the arm of their lever in respect of the fulcrum P ' of the pier being K H.
3. By the sum of the vertical efforts of the lower part represented by IT multiplied by AB acting on the point T has for the arm of its lever TE. Hence, if equilibriun exist,

But as in this equation neither PR ($=\mathrm{BE}$) nor PS nor Kll nor TE is known, we must resort to an algebraic equation for greater convenience, in which

Thus the first equation becomes $p u+p d=\frac{a x^{2}}{2}+m(c \times x)+n(x-\varepsilon)$,
Or $p u \times p d=\frac{a x^{2}}{2}+m x+m c+n x-n e$.
Transf. rring the unknown quantities to the second side of the equation, we shat: have $\frac{a x^{2}}{2}+m x+n x+=p a+p d+n e-m c$.
Multiply all the terms by 2 , and divide by a, in order to get rid of x^{2}, and we have $x^{2}+\frac{2(m+n) x}{a}=2 p+\frac{2 p d+2 n c-2 m c}{a} ;$
Making $m+n=b$, and adding to each member $\frac{b^{2}}{a^{2}}$ for the purpose of extractitig the root of the first member,
We have $x^{2}+\frac{2 h x}{a^{2}}+\frac{b^{2}}{a^{2}}=2 p+\frac{2 p d+2 n c-2 m c}{a}+\frac{b^{2}}{a^{2}}$.
Extracting the root, $x+\frac{b}{a}=\sqrt{2 p+\frac{2 p d+2 n c-2 m c}{a}+\frac{b^{2}}{a^{2}}}$;
And lastly, $x=\sqrt{2 p+\frac{2 p d+2 n c-2 m e}{a}+\frac{b^{2}}{a^{3}}}-\frac{b}{a}$.
1394. This last equation is a formula for finding the thiekness of all sorts of arches whose voussoirs are of equal depth, which we will now apply to fig. 573 . The model was 36 inches and 3 lines in span. The arch consisted of two coneentrie cireles, and it was divided into four equal parts, a vertical joint being in the middle, the two others being inelined at angles of 45 degrees. The piers whereon it was placed were 40 inches and 4 lines high, and on a very exact measurement the values were as follow: -

Substituting these values in the formula $x=\sqrt{2 p+\frac{2 n d+2 n e-2 m e}{a}+\frac{b^{2}}{a^{3}}}-\frac{b}{a}$, we have $x=\sqrt{48 \cdot 762+\frac{676621+124824-73 \cdot 282}{40333}+2 \cdot 128}-1 \cdot 459$;
which gives $x=5 \cdot 8$, or 5 inches $9 \frac{1}{2}$ lines for the thickness of the piers to resist the thrust of the arch, supposing it to be perfectly executed. But, from the imperfection of the excention of the model, it was found that the piers required for resisting the thrust a thiekness of 6 inches and 3 lines.
1395. When the piers of the model were made 71 inehes thick the areh on its central joint was found capable of supporting a weight of three pounds, being equal to an addition of 8 superficial inches beyond that of the upper parts of the arch which are the cause of the thrust, and this makes the value of $2 p$ in the formula 56.762 instead of 48.762 , and changes the equation to $x=\sqrt{56 \cdot 762+\frac{787629+124 \cdot 8 \cdot 8-86458}{40 \cdot 333}+2 \cdot 430}-1 \cdot 55$; from which we should obtain $x=7.366$ inches, or 7 inches $3 \frac{1}{3}$ lines, exhibiting a singular agreement between theory and practice. Rondelet gives another mothod of investigating the preeeding problem, of which we do not think it neeessary to say more than that it agrees with that just exhibited so singularly that the result is the same. It is dependent on the places of the centres of gravity, and therefore not so readily applicable in practice as that which has been just given.

Second Expcriment.

1396. Fig. 567., in a preceding page, is the model of an areh in freestone, whieh has been before considered. It is divided into nine equal vonssoirs, whose depth to the extrados is 21 lines. and whose interior dianeter is 9 inches.
1397. Having drawn the lines incretofore deseribed, we shail find $m L \times A B$ expressed in the formula by

$=26.7 \times 21$, whieh gives	- -	-	$5 \mathrm{5} 0 \cdot 70$
And for ${ }^{2} p$	- -		1151.40
$\mathbf{E I I}=\mathbf{T I}=\mathbf{K L}=\mathrm{KV}$, exp	by d, will be		$45 \cdot 60$

Hence $9 p l$
$2 n e$, which is twice the vertical effort of the lower part of the arch, multiplied by $\frac{1}{2}$ A13, will be $456 \times 21 \times 21$, which gives
$5113 \cdot 584$
20109.60
$6667 \cdot 92$
6.44

And all these values being substituted in the formula, will give

$$
x=\sqrt{1121 \cdot 40+\frac{5113584+20109 \cdot 6-6667 \cdot 92}{195}+48 \cdot 163}-694=28 \cdot 62 \text { lines, }
$$

instead of $28 \frac{1}{4}$, before found.

Geometrical Application of the foregoing.

1398. Let the mean curve TKG of the arch (whatever its form) be traced as in firs. 573,574 ., the secant lo perpendicularly to the curve of the arch, and through the point K, where the secant cuts the mean curre, having drawn the horizontal line 1 KL , and raised from the point B a vertical line meeting the horizontal $I K L$, in the point i, make $\mathrm{K} m$ equal to $i \mathrm{~K}$, and set the part $m \mathrm{~L}$ from B to h, and then the double thackness of the arch from B to n. Let lin be divided into two equal parts at the pont d, from which as a centre with a radius equal to half $h \prime$, describe the semi-circumference of a circle which will cut in E the horizontal line BA prolonged. The part BE will indicate the thickness to be given to the piers of the arches to enable them to resist the thrust.
1399. The truth of the method above given depends upon the graphie solution of tic following problem: To find the side BE of a square which shall be equal to a given surface $m \mathrm{~L} \times 2 e$; an expression which is equivalent to $2 p$, and we have already seen that $x=\Omega^{\prime} 2 p$ was a limit near enough; hence we may conclode that the thickness BE obtained by the geometricai method will be sufficiently near in all cases.

Experiments on surmounted Arches.

1400. The interior curve of fig. 574 . is that of a semi-ellipsis 81 lines high; it is divided into four parts by an upright joint in the crown and two others towards the middle of the hamehes determined by the secant FO , perpendicolar to the interior part of the curve. llaving traced the mean circomference $\mathrm{GK}^{-1} \mathrm{~T}$, the horizontal 1 KL , and the vertical Bi , we shall find

KL	-	-	-	-	-
1 K	-	-	-	-	36_{3}^{3}
$i \mathrm{~K}$	-	-	-	-	-
1 N	-	171			
$\mathrm{MK}=d$	-	-	-	-	$66{ }_{2}^{1}$
	-	-	-	-	19

The effect of the thrust indicated by $\mathrm{KL}-j \mathrm{~K}=m \mathrm{~L}$, will be $19 \frac{1}{2} \times 9$, which gives for the expression p of the formula -
$175 \cdot 5$

$2 p$ therefore

$351^{\circ} 0$
d being $66.5,2 p d$ will be 351×66.5, which gives - 23341.5
m, which is KM $\times \mathrm{AB}$, will be 19×9, which gives - 171.0
c, that is, $i K$, being $17 \frac{1}{4}$ lines, we have $2 m e=171 \times 17 \frac{1}{4} \times 2$, which gives
$5899 \cdot 50$
The height of the piers a - - 120.00
b, which expresses the sum of the vertical efforts $m+n$. will be equal to $\mathrm{MK}+\mathrm{I} \times \mathrm{AB}$ or $19+66 \frac{1}{2} \times 9$, which gives - 769.50
Hence $\frac{b}{a}=\frac{769 \cdot 5}{120}$, which gives - - 6.41

 We have the ecuation $x=\sqrt{351+\frac{23341 \cdot 5-5899 \cdot 5}{120}+41 \cdot 1 I-6.41}=16 \cdot 77$
lines. or a little more than 163 lines. The model of this areh would not however stand on piers less than 17 lines thick.

In taking the root of double the thrust the result is $18 \frac{3}{3}$ lines, as it is also by the geoanetrical method.

Application to the Pointed Arch.

1401. The model which fig. 575. represents was of the same height and width as the last, and the voussoirs were all of equal thickine:s. Having laid down all the lines on the figure as before, we shall tind $i \mathrm{~K}$ of the formula to be

$$
x=\sqrt{2 p+\frac{2 p d-2 m c}{a}+\frac{b^{2}}{a^{c}}}-\frac{b}{a} \text { wherein }
$$

The height of the pier, represented by a, being 120 , we have $\frac{2 p d-2 m c}{a}=\frac{15876-8220}{120}=6 \quad 8$; b, or $\mathrm{FT} \times \mathrm{AB}$, will be $86 \times 9=774$; whence $\frac{b}{a}=\frac{774}{720}=6 \cdot 45$, and $\frac{b^{2}}{a^{2}}=41 \cdot 60$. Substituting these values in the formula

$$
x=\sqrt{25} 2+63 \cdot 8+41 \cdot 6-6.45=12 \cdot 46 \text { lines for the thickness of the pier. }
$$

In taking the square root of double the thrust the thickness comes out $15 \% 88$ lines, as it does by the geometrical method. Experiments showed that the least thickness of piers upon which the model would stand was 14 lines.

Application to a surmounted Catenarcan Arch.

1402. The lines are all as in the preceding examples ($f i y, 576$.). The whole areh aets on the pier in the direetion F'T, which is resolved into the two fores $\mathrm{T} f$ and $\mathrm{T} m$, and the formula, as before, is

$$
x=\sqrt{2 p+\frac{b^{2}}{a^{2}}}-\frac{b}{a} ;
$$

thus having found $\mathrm{B} m=221$, we have the value of $p=221 \times 9=201$; and $2 p=402$.
1403. This model was of the same dimensions as the preceding: t, which represents $\mathrm{T} f \times \mathrm{AB}$, will be $769.5 ; \frac{6 a^{2}}{a^{2}}$ will be $6 \cdot 41$, and $\frac{b}{a}=\frac{769 \cdot 5}{120}=41 \cdot 11$. These values substituted in the formula give

$$
x=\sqrt{402+41 \cdot 11}-6 \cdot 41=14 \cdot 64 \text { lines. }
$$

1404. Experiment determined that the pier ought not to be less than 16 lines, and the geometrical method made it $20 \cdot 05$.

The foilowing table shows the experiments on six different models.

Fig. 576

Form oi Arch.	Thuckness of the licres.		
	By the formula.	By experiment.	Gcometrically.
ted	Lines. $12 \cdot 46$	Lines. $14 \cdot 00$	Lines. $15 \cdot 88$
The eatenary -	14.64	15.00	20.05
The eyeloid	14.66	15.00	17×4
The parabolic -	15.85	16.50	$21 \cdot 50$
The elliptic -	16.77	17.00	$18 \cdot 75$
The cassinoid	19.62	21.00	$20 \cdot 79$

This tabie shows that, in practice, for surmounted arches, the limit $x=\sqrt{2 p}$, or the thickness obtained for the construction by graphical means is more than suffieient, since it gives results greater than those that the experiments require, exeepting only in the cassinoid; hut even in the case of that eurve the graphical construction comes nearer to experiment than the result of the first formula.
1405. It is moreover to be observed, that the pointed is the most advantageous form for surmounted arches composed of ares of circles. We have had oceasion to speak, in our First Book, of the boldness and elegance exhibited in this species of arehes by the arehitects of the twelfth and thirteenth centuries; we shall merely add in this place that where roofs are required to be fire-proof, there is no form so advantageously capable of adoption as the pointed arch, nor one in which solidity and economy are so much united.
1406. Next to the pointed arch for such purpose comes the eatenary (the graphiaal method of describing which will be found under its head, in the Glossary at the end of the work), and this is more especially useful when we consider that the voussoirs may all be of equal thickness.

Application of the Method to surbased Arches, or those whose Rise is less than the Ili'f Span.

1407. For the purpose of arriving at just conclusions relative to surbased arehes, three models were made of the same thicknesses and diameters, with a rise of 35 lines, and in form elliptical, cassinoidal, and cyeloidal. We however do not think it necessary, from the similarity of applieation of the rules, to, give more than one example, which is that of a semi-cllipse (fig. 577.), in which, as before, the formula is

$$
x=\sqrt{2 p+\frac{2 p d-2 m c}{a}+\frac{b^{2}}{a^{2}}}-\frac{b}{a} .
$$

The lines described in the foregoing examples being drawn, we have

$$
\begin{aligned}
\mathrm{K} \mathrm{~L} & =45.5 \\
i \mathrm{~K} & =8.5 .
\end{aligned}
$$

IT, represented by d in the formula, $\quad-\quad=24.84$
$\mathrm{MK} \quad-\quad-\quad=\quad 14.66$
$m \mathrm{~L} \times \mathrm{AB}$ representing the thrust (37×9) gives the value of p
$2 p$ iherefore $-=\quad 666.00$
TI, represented by d, being $24 \cdot 84$, we have $2 p d$

Fig. 577.
A,
m, which is $\mathrm{KM} \times \mathrm{AB}$, will be 14.66×9, which gives c, representing $i \mathrm{~K}$, being 8.5 , $2 \mathrm{mc} \quad-\quad-\quad-=2242.94$ b, which expresses the sum of the vertical efforts $m+u(39.5 \times 9)-=355.50$ a, being always $120, \frac{b}{a}=\frac{355 \cdot 5}{120}$ is $\quad-\quad$ - $\quad-\quad-\quad 2 \cdot 96$ Lastly, $\frac{b^{2}}{a^{2}}-\quad-\quad-=8 \cdot 76$
Substituting these values in the formula, we have

$$
x=\sqrt{666+\frac{16543 \cdot 4 \cdot 2242 \cdot 94}{120}+8 \cdot 76}-2 \cdot 96=25 \cdot 22 \text { lines, or a little less than } 25 \frac{1}{4} \text { lines. }
$$

1408. In the model it was found that a thickness of 26 lines was necessary for the pier, and the lower voussoirs were comnected with it by a cementing medimm. Without which precaution the thickness of a pier required was little more than one tenth of the opening. 'Taking the square root of double the thrust, that is, of 666 , we have 25.81 , about the same dimension that the graphical construction gives. The experiments, as well as the application of the rules, require the following remarks for the use of the practical arehitect.
1409. I. The eassinoid, of the three curves just mentioned, is that which includes the greatest area, but it causes the greatest thrust. When the distance between the intrados and the extrados is epual in all parts, it will only stand, supposing the piers immoveable, as long as its thiekness is less than one ninth part of the opening
1410. II. The eycloid, whieh ineludes the smallest area, exerts the least thrust, but it ean be useftilly employed only when the proportion of the width to the height is as 22 to 7 in surbased arehes, and in surmounted arches as 14 to 11 . The smallest thickness with which these arches can be exceuted, so as to be eapable of standing of themselves, is a little more than one eighteenth of the opening, as in the case of semicireular arches.
1411. III. The ellipsis, whose curvature is a mean between the first and second, serves equally well for all conditions of height, though it exerts more thrust than the last-mentioned and less than the eassinoid.
1412. It is here necessary to remark, that too thin an areh, whose voussoirs are equal in depth, may fall, even supposing the abutments immoveable, and especially when surbased;
because, when once the parts are displaced, the force of the superior parts may lift up the lower parts without disturbing the abutments.

Raking Arclies.

1413. Let ACA^{\prime} (fig. 578.) be the model of a raking arch of the same diameter and thickness as the preceding example, the voussoirs of equal thickness, and the piers of different heights, the lowest being 10 inches or 120 lines in height, and the other $14 \frac{1}{2}$ inches or 174 lines. The tangent at the summit is supposed parallel to the raking lines that connect the springing.
1414. This arch being composed of two different ones, the mean circumference on each must be traced, and each has its separate set of lines, as in the preceding examples; the horizontal line KL of the smaller areh is produced to meet the mean circumference of the other in S , and the interior line of its pier in g.
1415. The part KLS represents the horizontal force of the part of the arch KGS, common to the two semi-arches; so that if a joint be supposed at S, the part LK represents the eflort acting against the lower part of the smaller arch, and LS that against the lower part of the larger arch. These parts resist the respective efforts as follows: the small arch with the force represented by $i \mathrm{~K}$, and the

Fig. 57s. greater one with the force represented by $g \mathrm{~S}$. But as $g \mathrm{~S}$ is greater than LS, transfer LS from g to f to obtain the difference f S, which will show how much LS must be increased to resist the effort of the larger half arch; that is, the effort of the smaller one should be equal to $\mathrm{L} f$; but as this last requires for sustaining itself that the larger one should act against it with an effort equal to KL, this will be the difference of the opposite effort, which causes the thrust against the lower part of the smaller arch and the pier from whence it springs. Hence, transferring $f \mathrm{~L}$ from L to q, taking the half of iq and transferring it from L to h, the part $h \mathrm{~K}$ multiplied by the thickness $A B$ will be the expression for the thrust represented by p in the formula

$$
x=\sqrt{2 p+\frac{2 p d-0 m c}{a}+\frac{b^{2}}{a^{2}}-\frac{b}{a} . . . ~}
$$

Having found $h \mathrm{~K}=30 \frac{1}{2}$ and $\mathrm{AB}=9$, we have for the value of $p 30 \frac{1}{2} \times 9=274 \frac{1}{2}$, and for that of $2 p-549, d$ which represents IT, being $29 \frac{1}{2}, 2 p d=16195 \frac{1}{2}$. In $2 m c$; m, which repre sents $1 \mathrm{KK} \times \mathrm{AB}$, will be $12 \frac{1}{3} \times 9=111$, and $2 m=222$.

$$
c \text {, which represents } i \mathrm{~K} \text {, being } 8 \text {, we have } 2 m c=222 \times 8=1776 \text {. }
$$

The lieight of the pier represented by a being 174, we have

$$
Q_{a}{ }_{a d-}^{2 m c}=\frac{161951-1766}{174}-\quad-\quad-\quad-\quad-=82.81
$$

The vertical effort represented by b, or T $\mathrm{T} \times \mathrm{AB}$, will be $41 \frac{1}{3} \times 9=375$,

$$
\begin{array}{lllll}
\text { and }{ }_{a}^{b}=\frac{375}{174} \text { becomes } & - & - & - & - \\
& & =9 \cdot 15 \\
& \text { and } \\
a^{\overline{2}} & - & - & - & =4 \cdot 64
\end{array}
$$

Substituting these values in the formula, we have
$x=\sqrt{549+82 \cdot 81+4} \cdot 64-2 \cdot 16=23 \cdot 08$ for the thickness of the greater pier from
which the smaller semi-arch springs.

For the half of the greater arch, having produced the horizontal line IK'L', make $\mathrm{K}^{\prime} r$ equal to VL^{\prime}, and bisect $r \mathrm{~L}^{\prime}$ in t; the line $\mathrm{K}^{\prime} t$ represents the effort of the smaller against the greater arch, which resists it with a force shown by $i^{\prime} \mathrm{K}^{\prime}$; thus making $\mathrm{K}^{\prime} q^{\prime}$ equal to $i^{\prime} \mathrm{K}$, the effort of the thrust will be indicated by $q^{\prime} t \times \mathrm{AB}$, whose value p in the formula will be

$$
\begin{aligned}
& 20 \times 9=180 \text {, and } 2 p \quad-\quad-\quad-\quad-=360 \\
& d \text {, which is TI, being } 69 \frac{2}{3}, 2 p d \text { will } \quad-\quad-=25080 \\
& \text { In } 2 m c, m \text { being } 26 \times 9=234 \text {, and } c \text { being } 29 \frac{1}{\frac{1}{1}}, 2 m c=10842 \\
& a \text {, the height of the smaller pier - - }=120 \\
& \text { We have } \frac{i p d-2 m c}{a}=\frac{25080-111842}{1.20} \text {, which becomes } \quad-=118.65 \\
& b \text {, which is } \mathrm{TF} \times \mathrm{AB} \text {, will be } 9 . \overline{2} \frac{2}{3} \times 9 \quad-\quad=861 \\
& \frac{b}{a}=\frac{801}{120}=7 \cdot 175 \text {, and } \frac{b 2}{a^{2}} \quad-\quad-\quad-\quad 51 \cdot 48
\end{aligned}
$$

Substituting these values in the formula, we have

Takiner the square root of double the thrust, we should have for the larger pier 23.44 lines, and for the smaller one 19 lines. la the geometrical operation, for the larger pier make line equal to $h \mathrm{~K}$ and B / n equal to 2 AB ; then upon $u n$ as a diameter deseribe a semicirele cutting the horizontal line 13 A produced in E . BE will be the thickness of the pier, and will be found to be $23 \frac{1}{2}$ lines. For the smaller pier make $13^{\prime} u^{\prime}$ equal to $q^{\prime} t$ and $1^{\prime} n^{\prime}$ equal to $2 A^{\prime} B$. Then the semicircumference described upon $u n$ as a diameter will give 19 lines for the thickness.
1416. By the experiments on the model 22 lines was found to be the thickness necessary for the larger pier, and 18 lines for the smaller one.

Arch with a level Extrudos.

1417. The model of arch fig. 579. is of the same opening as the last, but with a level extrados, serving as the floor of an upper story. The thickness of the keystone is 9 lines. To find the place of fracture or of' the greatest effort; having raised from the point B the vertical $[3 F$ till it meets the line of the extrados, draw the secant $\mathcal{F O}$ eutting the interior circumference at the point K , and through this point draw the horizontal IKL and the vertical $11 \mathrm{~K} \|$

The part CDKF will be that which causes the therset, and its effort is represented by

KL , whieh will be found						
$\mathrm{FH}=1 \mathrm{~K}$, which is c in the formula, will be $\quad-\quad=18.86$						
The arch or circumfer	en	of		-		38.08
'The arch K B	-	-	-	-		$46 \cdot 57$
The asch DKB		-	-	-		84.85
KH, represented by d,		-	-	-		\bigcirc
The vertical IIK.I -		-	-			

The height of the pier, represented by a in the formula, $=183$

Fig. 579.

The area of the upper voussoir FKCI $=667 \cdot 44$; but as the load of the hannches is borne by the inferior voussoir, we must subtract the triangle $F K H=\frac{18 \cdot 26 \times 22}{2}=207 \cdot 46$. The remainder 459.98 multiplied by KL and divided by the are KD , that is, $\frac{459.98 \times 35.14}{35 \cdot 28}=$ 422.24 , represents the effort of the upper part.
1418. That of the lower part, represented by $\frac{\mathrm{FBKII} \times I \mathrm{~K}}{\mathrm{~KB}}$, is $\frac{651.07 \times 1 \times 86}{46.57}$, which becomes 263.67. The difference of the two efforts $=158.57$ will express the thrust or p of the formula, and we have $2 p=317 \cdot 14$.
1419. The piers being supposed to be continued up to the line EC of the extrados will be greater than the arm of the lever of the thrust which acts at the point K. Thus the expression of the arm of the lever, instead of heing $a+d$, as in the preceding examples, will be $a-d$, and the sign of $\frac{2 p d}{a}$ must be changed. In numbers, $\frac{317 \cdot 14 \times 22}{183}=38 \cdot 12$; therefore, in the formula, $+\frac{2 p d}{a}$ becomes $-38 \cdot 12$.
1420. In the preceding examples, $2 m \mathrm{~m}$, which represented double the vertical effort of the superior voussoir multiplied by the arm of its lever, becomes nothing, because it is comprised in the addition made to the lower voussoir; so that the formula now is

$$
x=\sqrt{2 p-\frac{2}{a} d+\frac{b^{2}}{a^{2}}-\frac{b}{a}}
$$

b, then, which always expresses the vertical effort of the half atrch, is therefore

$$
\underset{84.85}{1111 \cdot 05 \times 63}=824 \cdot 94 ; \text { and for } \frac{b}{a} \text { we have } \frac{82+\cdot 94}{183}=4 \cdot 5, \text { and } \frac{b^{2}}{a^{2}}=20 \cdot 25
$$

Substituting these values in the last fermula, we shall have

$$
x=\sqrt{319 \cdot 1} \overline{4-38 \cdot 12+20 \cdot 25}-4 \cdot 5=12 \cdot 88 \text { lines. }
$$

Experiment gives 14 lines as the least thickness that can be relied on.
To find the thickness by the geometrical method, make $\mathrm{K} m$ erpual to IK and $\mathrm{B} h$ equal to $m \mathrm{~L}, \mathrm{~B} n$ to double CD, and upon $n h$ as a diameter describe the semicircumference cutting the horizontal line $O B$ produced in A : then $B A=17 \frac{1}{f}$ lines is the thickness sought.
1421. Rondelet proves the preceding results by using the centres of gravity, and makes the result of the operation $12 \cdot 74$ instead of 12.80 , as first found. But the diffienlty of finding the centres of gravity of the different parts is troublesome; and with such a eoneurrence of results we do not think it necessary to enter into the detail of the operation.

A different Application of the preceding Example.

1422 . The model (fig. 580.) is an areh similar to that of the preeeding example, having a story above it formed by two walls, whose height is 100 , and the whole covered by a timber roof. The object of the investigation is to ascertain what ehange may be made in the thickness of the piers which are strengthened in their resistance by the additional weight upon them.
1423. The simplest method of proceeding is to consider the upper walls as prolongations of the piers.
1424. In the model the walls were made of plaster, and their weight was thus reduced to $\frac{3}{7}$ of what they would have been if of the stone used for the models hitherto deseribed. The roof weighed 12 ounces. We shall therefore have that 100 , which in stone would lave represented the weight of the walls, from the difference in weight of the plaster, reduced to 75 . In respect of the roof, which weighed 12 ounces, having found by experiment that it was equal to an area of 576 lines of the stone, both being reduced to equal thicknesses, we have 12 ounces, equal to an area of 13.82 whose half 6.91 must be added to that of the vertical efforts represented by b in $\frac{b}{a}$ and $\frac{b^{2}}{u^{2}}$. Changing these terms into $\frac{h}{a}$ and $\frac{h^{2}}{a^{2}}$, the formula beconses

$$
x=\sqrt{2 p-\frac{2 p}{a}+\frac{h^{2}}{a^{2}}}-\frac{n}{a}
$$

The height of the piers or a in the formula $=183+75=258$.
p does not change its value, therefore $2 p$ (as in the preceding

Fig. 580. example) $=265 \cdot 86$.
\qquad
d, the difference between the height of the pier and the arm of the lever, will $=75$.

$$
\begin{aligned}
& \quad \text { Hence, } \frac{2 p d}{a}=\frac{505 \cdot 05 \times 75}{258}=77 \cdot 99 \\
& h, \text { becomes } 750 \cdot 69+691=1441 \cdot 69 . \\
& \text { And } \frac{h}{4}=\frac{141 \cdot 69}{-258}=5: 58 . \\
& \text { Again, } \frac{h^{2}}{n_{2}}=31: 22
\end{aligned}
$$

Substituting these values in the formula, we shall have

$$
x=\sqrt{265 \cdot 86-77 \cdot 28}+31 \cdot 22-5 \cdot 58=9 \cdot 15
$$

In the model a thickness of 11 lines was found sufficient to resist the thrust, and taking the root of double the thrust the result is 13 lines.
1425. By the geometrical method, given in the last, taking from the result $17 \frac{1}{4}$ lines, there found, the value of ${ }_{i}{ }^{\prime}$, that is, $5 \cdot 58$, the remainder 11_{3}^{2} lines is the thickness sought.
1426. It may be here observed, that in carrying up the walls above, if they are set back from the vertical BF in $h f$, the model required their thickness to be only 6 lines, because this species of false bearing, if indeed it can be so called, increases the resistance of the piers.

This was a practice constantly resorted to in Gothic architecture, as well as that of springing pointed arehes from corbels, for the purpose of avoiding extra thickness in the wails or piers.

> Anotion Applicution of the Princip'es to a differently constructed Arch.
1427. The model (fig. 581.) represents an arch of 11 voussoirs whereof 10 are with crossettes or elbows, which give them a bearing on the adjoining horizontal courses; the eleventh being the keystone. The opening is 9 inches or 108 lines, as in the preceding examples.
1428. Haring drawn the lines $B \mathrm{~F}, \mathrm{FC}$, the secant FO , and the horizontal line 1 KL , independent of the live courses above the line FC of the extrados, we hav:

$$
\begin{aligned}
\mathrm{KL} & =30 \cdot 73 \\
\mathrm{JF} & =23 \cdot 27 \\
0 \mathrm{C}=\mathrm{BF} & =78 \cdot 00 \\
\text { The arc KD } & =32 \cdot 70 \\
\text { The are } \mathrm{KB} & =52 \cdot 15 \\
\mathrm{KG} & =33 \cdot 59 \\
a \text {, the height of the pier, } & =198 \cdot 00 .
\end{aligned}
$$

The area KFCl of the upper part of the areh will be $1223 \cdot 10$, from which subtracting that of the triangle FKG, which is $590 \cdot 89$, the remainder 832.28 being multiplied hy 30.73 and divided by 32.7 makes the effort of this part 782.44 .
1429. The area of the lower part is $697 \cdot 95$, to which adding the triangle $\mathrm{FKG}=3.90 \cdot 82$, we have 10: $5 \cdot 77$, which multiplied by $23 \cdot 27$ and divided by $52 \cdot 15$, gives $485 \cdot 82$ for its eflint. The cxpression of the thrust, represented by p in the formula,

$$
\begin{aligned}
& x=\sqrt{2 p-\frac{2 p d}{a}+\frac{b^{2}}{a^{2}}}-\frac{b}{a} \text {, being equal to the difference of these two efforts, } \\
& \text { will be } 296 \cdot 62 \text {, and twice } p-\quad-\quad=593 \cdot 24 \\
& d . \text { representing K G, being }-\quad-\quad=33 \cdot 59 \\
& w=\text { have } 2 p d=19926 \cdot 93, \text { and } \begin{array}{c}
2 p d \\
a
\end{array}
\end{aligned}
$$

b, representing the sum of the efforts of the semi arch, will be $\frac{1921 \times 78}{85}=1762 \cdot 03$

$$
\frac{b}{a}=\frac{1762 \cdot 8}{198}=8.9 \text { and } \frac{b^{2}}{a^{2}} \quad-\quad-\quad=\quad=79.21
$$

Substituting these values in the formula, we have the equation

$$
x=\sqrt{593 \cdot 24-100 \cdot 64+79 \cdot 21}-8 \cdot 9=15 \cdot 01
$$

By taking double the square root of the thrust the result is 23.91 , a thickness evidently too great, because the sum of the vertical efforts, which are therein negleeted, is considerable.
1430. The geometrical method gives 19 lines. The least thickness of the piers from actual experiment was 16 lines.
1431. Rondelet gives a proof of the method by means of the centres of gravity, as is some of the preceding examples, from which he obtains a result of only 13.26 for the thick. ness of the piers.

Consideration of an Arch whose Voussoirs increase towards the Springing.

1432. The model (fig. 582.) has an extrados of segmental form not concentric with its intrados. so that its thickness increases from the crown to the springing. The opening is the same as before, namely, 9 inches. or 108 lines. The thickness at the vertex is 4 lines, towards the middle of the haunches $7 \frac{1}{2}$ lines, and at the springing $14 \frac{1}{2}$ lines. 'The centre of the line of the extrados is one sixth part of the chord A O below the centre of the intrados; so that

$$
\text { The radius } \begin{array}{r}
\mathrm{IN}=68 \cdot 05 \\
\mathrm{~K} \mathrm{I}=38 \cdot 18 \\
\mathrm{IK}=15 \cdot 82
\end{array}
$$

(See 1390 , olus. 29, and 1441). The are $\mathrm{BK}=\mathrm{KC}=42.43$
1433. The area KHDC of the upper part of the arch is 2.58 .75 , that of the lower part BAHK 486.5 ; hence the effort of the upper part is represented by the expression $\frac{25 \times 75 \times 38 \cdot 18}{42.43}=232 \cdot 47$.
1434. The half segment $A B e$ being supposed to be united to the pier; BeHK, whose area is 178 , is the only part that can balance the

Fig. 58と upper effort; its expression will be $\frac{178 \times 15 \cdot 82}{42^{\prime} \cdot 3}=66 \cdot 24$ 'The difference of the two efforts 166.23 will be the expression of the thrust represented by p in the formula

$$
x=\sqrt{2 p+\frac{2 n d-2 m c}{a}+\frac{b^{2}}{a^{2}}}-\frac{b}{a}
$$

$$
\begin{aligned}
& \text { Thus } 2 p- \\
& \text { - }=332.46 \\
& 1 \mathrm{~B}=\mathrm{KL} \text {, indicated by } d \text {, }-=38.18 \\
& \text { Which makes the value of } 2 p d \quad \text { - } \quad-\quad=1269392 \\
& \text { The vertical effort of the upper part indicated by } m=\frac{258 * 35 \times 1: 82}{42.43}=9630 \\
& \text { and for } 2 \mathrm{fm}=192 \mathrm{fi} \\
& \text { The value of } \mathrm{c} \text { being } 15.82 \text {, we have } 2 \mathrm{mc} \text { - - - Yu/t } \dot{\mathrm{x}}
\end{aligned}
$$

'The hiight of the piers being still 120, we have

These values being substituted in the formula, will give

$$
x=\sqrt{332} \cdot 46+80 \cdot 39+15 \cdot 56-3 \cdot 95=16 \cdot 74 \text { liiies. }
$$

1435. The smallest thickness of pier that would support the areh in the model was $17 \frac{1}{2}$ lines.
1436. With the geometrical method, instead of the double of CD, make B h double the mean thickness HK, and $B n$ equal to $m \mathrm{~L}$, and on $n h$ as a diameter deseribe the semicircumference cutting OB produced in E ; then $\mathrm{EB}=18 \frac{1}{3}$ lines will be the thickness songht.
1437. If the pier is continued up to the point e where the thickness of the arch is disengaged from the pier, the height of the pier represented in the formula by a will be $15 \mathrm{I} \cdot 5$ instead of 120 , and the difference b, instead of being $\frac{745}{85} \frac{26 \times 54}{}$, will be only $\frac{43675 \times 54}{85} 5$ $=277 \cdot 46$.
1438. d, expressed by I, will be $6 \cdot 5$, all the other values remaining the same as in the preceding article, the equation is

$$
x=\sqrt{332 \cdot 46-5 \cdot 71+4}-2=1621
$$

1439. Using the method by means of the centres of gravity, Rondelet found the result for the thickness of the piers to be $15 \% \%$. So that there is no great variation in the different results.
1440. In the preceding examples arches have been considered rather as areades standing on piers than as vaults supported by walls of a certain length. We are now about to consider them in this last respect, and as serving to cover the space enclosed by the walls.

In respect of eylindrical arches supported by parallel walls, it is manifest that the resistance they present has no relation to their length; for if we suppose the length of the vault divided into an infinite mmber of pieces, as C, D, E, \&c. (fig. 584 . No. 2.), we shall find for each of these pieces the same thickness of pier, so that all the piers together would form a wall of the same thickness. For this reason the surfaces only of the arches and piers have been hitherto considered, that is, as profiles or sections of an arch of any given length. Consequently it may be said that the thickness of wall found for the protle in the section of an arch would serve for the arch continued in length infinitely, supposing such walls is lated and not terminated or rather filled by other walls at their ends. When eylindrical walls are terminated by walls at their extremitics, after the manner of gable ends, it is not diffieult to imagine that the less distant these walls are the more they add stability to those of the arch. In this ease may be applied a rule which we shall hereafter mention more at length under the following section on Walls.
1441. If in any of the examples (fig. 582. for instance) PR be produced indefimtely to the right, and trom R on the line so produced the length of the wall supporting the arch le set out, and if from the extremity of such line another be drawn, as TB produced through B, indefinitely towards a, and $B a$ be made equal to the thickness of the pier first found, a vertical line let fall from a will determine the thickness sought. When arches are connected with these cross walls, the effect of the thrust may be much diminished if they are not very distant. If there be any openings in the walls, double the length of them must be added to that of wall as well as of any that may be introduced in the gable wall.
1442. Fig. 583. represents the mode in which an areh fails when the piers are not of sufficient strength to resist the thrust : they open on the lower part of the summit at DM and on the upper part of the baunches at HN ; from which we may infer that the thrust of an arch may be destroyed by cramping the under side of the voussoirs near the summit and the upper side of those towards the middle of the haunches; and this method is greatly preferable to chains or iron bars on the extrados, becanse these have no effect in prevent.ng a failure on the moderside. Chains at the springing will not prevent tailure in arches whose voussoirs are of epra! depth lout that too small, inamuch as there is no comteraction from them against the bulging

that takes place at the haunches, like a hoop loaded when its ends are fixed. The most advantageous position for a chain to oppose the effort of an areh is to tet it pass through the point K where the efforts meet. PC is the tangent before failure, and O the centre; I being the inner point of the pier.

OF COMPOUND VAULTING.

1443. H. Frezier, in speaking of the thrust of this sort of arches, proposes, in order to find the thickness of the piers which will support them, to find by the ordinary manner the thickness suitable to each part of the cylindrical arch BN, BK (No. 3. fig. 584.) hy which the groin is formed, making BE the thickness suitable to the arch 13 N , and BF that which the arch BK requires; the pier 13EHF would thus be able to resist the thrust of the quarter arch OKBN. Aecording to this method we should find the bay of a groined areh 9 inches opening would not require piers more than 21 lines square and 120 lines high; but experience proves that a similar areh will scarcely stand with piers 44 lines square, the area of whose bases are four times greater than that proposed by M. Frezier.

Method for groinel Vuntting.

1444. The model in this ease see the last figure) is 9 inches in the opening, voussoirs equally thick, being 9 lines, standing upon four piers 10 inches or 120 lines high.
1445. The groin is formed by two ey-

Fig. 584. lindrical arehes of the same diameter crossing at right angles, as represented in No. 3. or the figure. The four portions of the vault being similar, the calculation for one pier will be sufficient.
1446. On the profile No. 1. of the figure describe the mean circumference TK G, draw the tangents FT and FG, and the secant FO and the horizontal line IKL. Draw the vertical Bi, and NG and KI on the plan (No. 3.) equal to KL
1447. In the foregoing examples for arches and eylindrical vaulting there has been no necessity to consider more than the surface of the profiles, which are constantly the same throughout their length; but the species of vault of which we are now treating being composed of triangular gores whose profile changes at every point, we shall be obliged to use the cubes instead of the areas of squares, and to substitute surfaces for lines. 'Thus in viewing the triangular part KBO , the sum of the horizontal efforts of the upper part of this portion of the vault, represented in the profite by $K L$, will be represented in plan by the trapeziun KII.O.
1448. The sum of those of the lower part $i K$ in the profile is represented in plan by BIL. The thrust is expressed by the difference of the area of the trapezium and of the triangle multiplied by the thickness of the vault; thus, K B and KO of the plan being 54, the superficies of the triangle EK O will be $54 \times 27=1458$; the part $B \mathrm{~K}$ of the plan being equal to $I L$, and $B t$ to 2 K of the profile $=12 \frac{9}{1}$, the area of the triangle $B I L$, indieating the sum of the horizontal efforts of the upper part, will be $12 \frac{9}{17} \times 6 \frac{9}{29}=79 \frac{13}{16}$.
1449. We obtain the area of the trapezium KILO by subtracting that of the small triangle BIL from the greater triangle BKO , that is, $79 \frac{13}{\frac{1}{4}}$ from 1458 ; the remainder $1378 \frac{1}{14}$ gives the horizontal effort of the upper part ; lastly, subtracting $79 \frac{13}{14}$ from $1378 \frac{1}{1}$, the remainder $129 \circ \frac{2}{15}$ will be the expression of the thrust whose value is found by multiplying $1298 \frac{2}{14}$ by $9=11683 \frac{2}{7}$, which is the p of the formula.

$$
x=\sqrt{2 p+\frac{2 p d-2 m c}{a}+\frac{b^{2}}{a^{2}}}-\frac{b}{a}
$$

Letting a always stand for the height, and d for TI of the profile, the arm of the lever of the thrust will, as before, be $a+d$, and its algebraic expression be $p a+p d$.
1450. The pier resists this effort by its cube multiplied by the arm of its lever. If the lines K 13 and OB of the triangle BKO, (which represents the profection of that part of the vault for which we are ealeulating) be produeed, it will be seen th.at the base of the pier to resist the thrust will be represented by the opposite triangle $13 I\left[\begin{array}{l}h \\ \end{array}\right.$, which is rectangrular and isosceles ; therefore, letting x represent its side $B \mathrm{~F}$, the area of the triangle will be expressed by $\frac{x^{2}}{2}$, the
height of the pier being a, its cube will be $\frac{a x^{2}}{2}$. The arm of the lever of this pier will be determined by the distance of the vertical let fall from its centre of gravity on the line $H \mathrm{~F}=\frac{x}{3}$, which gives for the pier's resistance $\frac{a x^{3}}{6}$.
1451. This resistance will be increased by the vertical effort of each part of the vault multiplied by the arm of its lever.

That of the upper part will be expressed by its cube multiplied by the vertical K M, and the product divided by the mean are KG .

The cube of this part will be equal to the mean area; that is, the are KG multiplied by the thickness of the vault.
1452. To obtain the mean area, multiply KG less KM by the length GO taken on the plan. The length of the are KG being 46 and $\mathrm{KM} 17 \frac{1}{7}$, we shail have $\mathrm{KG}-\mathrm{KM}=28 \frac{6}{7}$: GO bcing 54 , the mean area will be $28 \frac{6}{7} \times 54=1558$. This area multiplied by 9 , the thickness of the vault, makes the cube of the upper part 140244 , which multiplied by $\mathrm{KM}=17 \frac{1}{7}$ and divided by the are $\mathrm{KG}=46$, makes $5226 \frac{1}{1}$ the value of the vertical effort of the part of the arch m in the formula; and the arm of its lever is $I \mathrm{~K}+i I I$.
1453. IK being $=c$ and $i H=x$, its expression will be $m x+m c$.

The vertical effort of the lower pait will be represented by its cube multiplied by TI, and the product divided by the length of the are 'T'K.

This cube will be found by multiplying the mean area by the thickness of the vault. The area being equal to the are TK-TI $\times G O$, that is, $46-41 \frac{5}{17} \times 54=2505$ for the mean area and $2.50 \frac{5}{7} \times 9=2256 \frac{3}{7}$ for the cube of the lower part of the vault. This cube multiplied by TI and divided by the are TK gives $\frac{2256}{6} \times 41 \frac{5}{4}=2028 \frac{2}{3}$ for the value of the vertical effort of the part n of the formula. And it is to be observed, that this effort acting against the point B , the $\operatorname{arm} \mathrm{BF}$ of the lever will be \boldsymbol{x} and its expression $n x$.
1454. Bringing together all these algebraic values we obtain the equation $p a+p d=\frac{a x^{3}}{6}$ $+m x+m c+n x$; and making $m+n$, which multiplies $x=b$, we have $p a+p d=\frac{a r^{3}}{6}+b x+$ $m c$. Transferring $m c$ to the other side of the equation, we have $p a+p d-m c=\frac{a x^{3}}{6}+b x$. Lastly, multiplying all the terms of the equation by ${ }_{a}^{6}$ for the purpose of eliminating x^{s}, we shall have instead of the preceding formula $6 p+\frac{6 p d-6 m c}{a}=x^{3}+\frac{6 b x}{a}$, which is an equation of the third degree, whose second term is wanting. For more easily resolving this equation, let us find the value of $6 p+\frac{6 p d-6 m c}{a}$ and that of $\frac{6 \prime}{a}$, by which x is multiplied in the sreond part of the equation.

p being $11683 \frac{2}{7}, 6 p$ will be	-	-	-		=	$70069{ }_{7}^{5}$
d being $41 \frac{5}{\text { T } i}$, $6 p d$ will be	-				$=$	28991243
m being $5226 \frac{3}{3}, 6 m \mathrm{c}$	-	-	-		=	$537593 \frac{1}{7}$

Chus $\frac{6 p d-6 m c}{a}=\frac{2361537_{7}^{2}}{120^{-\frac{1}{7}}=19679} \frac{5}{T}$, and $6 p+\frac{6 p d-6 m c}{a}=89779 \frac{1}{4}$, which we will call $\%$ for the purpose of simplifying the remainder of the calculation.
b, which represents $m+n$, will be $5226 \frac{3}{5}+2038_{3}^{2}=7255 \frac{2}{3}$, and $\frac{6 b}{a}={ }_{120}^{43: 34}=3693$; this we will eall f; so that instead of the equation $6 p+\frac{6 p d-6 m e}{a}=x^{3}+\frac{6 b r}{a}$, we have $g=x^{3}+f x$, which is thus to be resolved (Bossut, Élémens d'Algélire) : : -

$$
x=\sqrt[3]{\frac{g}{2}+\sqrt[2]{g_{4}^{2}+\frac{f 3}{27}}}+\sqrt[3]{g}-\sqrt{2} \frac{g^{2}}{4}+\frac{f 3}{2}
$$

Substituting in this formula the values of y and f, we have
$x=\sqrt[3]{44889}+\sqrt[2]{2015073623+1767902}+\sqrt[3]{448894-2} 2015073623+1767902$
$=\sqrt[3]{44889 \frac{1}{7}+449099_{7}^{2}}+\sqrt[3]{44889 \frac{1}{7}-44909}$, from which extracting the cube roots, we have $x=443-23=4$: for the length BF of one of the sides of the triangular pier BAF ; the other FA may be determined by the production of the diagonal or line of groin OB .

The part of the pier answering to the part of the vaut 13 NO is determined by drawing from the points B and A the parallels $13 M$ and $M A$ to $F A$ and FB. These two triangles will form a square base, each of whose sides will be 42 lines, answering to one quarter of the vault K 1 BNO : thus, to resist the thrust of the vanlt, four piers, each 42 lines thick, are necessary.
1455. T'le above result corresponds in a singular manner with the experiments which were made by Rondelet, from which he deduced a thickness of $43 \frac{1}{2}$ lines. In his invertigation of the evample by means of the centres of gravity $40 \cdot 53$ lines was the result. Our imits prevent further eonsideration by otherexamples: we will merely theretore observe, that
the method above given secms to be a safe guide to the architect. In the case of oblong arches, the results must be obtained for each side.
1456. In the case of gromings compoed of many bays, the chief care necessary is in the extenal piers, which will require espectally to be of sufficient thickness. Those in the midlle, being counterbalanced all round, have only to bear the weights of their respective arehes, for which purpose they must have a proportional area and be of such stone as the weight will not crush. But it ought to be recollected that in good construction the area of the points of support should be so distributed as to establish for each a sufficient strength, because a single weak point will often endanger the whole fabric.

145\%. In practice, a readier method will be wanting than that which has been just dis-. cussed; we therefore subjoin one which agrees well enongh with theory and experiment. and it is as follows. Let ABCD (fig. 585. No. I.) be the space to be covered by a

groined vault supported in the centre by the pier E. Dividing each side into two equal parts, draw the lines HI, FG crossing each other in the centre E, and the diagonals AE, EB, EC, ED and HF, HG, IF, IG crossing each other in the points $\mathrm{K}, \mathrm{K}^{\prime}, \mathrm{K}^{\prime \prime}, \mathrm{K}^{\prime \prime \prime}$. in No. 2. draw the pier its half height to the level of the springing, which half heiglit transfer from K to L, and divide EL into twelve parts. One of these parts will be a half diagonal of the pier. For the intermediate piers H, F, I, G, after finding the diagonals of the half piers, produce them outwards to double their projection within, so that altogether their thickness may be once and a half their width. For the angular piers this methot will give an area of base $1 \frac{1}{2}$ times greater, which will enable them to resist the thrust they bave to sustain.
1458. When the width of the space to be vatited is to be divided inte three bays, and th it of the middle is required to be raised above those of the other two, as in the ease of churches with side aisles, the bases of the points of support may be determined in two ways. That most used, which is borrowed from the Gothic examples, is to give to the arcas of the bases of the points of support merely the extent necessary to bear the load they
are to receive, by throwing the strain of the thrust upon the external piers by means of tlying buttressis, and giving to their points of support a position and surface of base capable of etlectual resistance.
14.59. The most simple method derived from the prineiples of the theory for the first case is as follows:-

Having laid down the plam of the two bays which fall upon the same pier (fig. 586 . No. 1.), take one half of the sum of the two semi-diagonals AD, AE, to which add one

Fin. 5×6.
half of the height of the point of support and taking a twelfth part of the whole ats a radius, describe a circle as A, No. 1, it will show the surface of the base of the point of st-pport. If it be not circular it must be circumscribed with the form that may be required, so as rather to increase than diminish its solidity. For the exterior point of support B, let a reetangle be formed, having for its width the side of a square inscibed in the preceding circle, and in length double.
1460. Above the roofs of the sides a flying buttress may be carried up, whose pier may be raised on that below, set back one sisth from the exterior face and sloped as much on the interior. The line of summit or tangent of this flying buttress, which should be of the single are of a circle, witl be determined by the chord of the are of the upper part of the vault produced indefinitely. To find the centre, draw the ehord Gil (No. 2.), on the midthe of which raise a perpendicular, which will cut the horizontal line GF in the point I, wheh will be the centre of the are. These rabing arehes may be comected by
other return arebes, which may bear a floor above with a support, upon which a passage round the building may be made, and this may be eoneealed by an attic order outside
1461. In the second case, the base of a pier must be fonnd capable of resisting the effort of the great middle vault of the nave, by taking as the height of its pier the distance from its springing from the upper side of the side vanlts No. 2., and laying the half of this height from 13 to II on the plan No. 3. Then having divided IH into twelve equal parts, make 1 A equal to cose of them and $A F$ equal to $t w n$. The rectangle made upon the diagonal FI shows the area of the interior pier, to which are to be added, to the right and left, pro. jections to receive the alches of the sides. The length $F D$ is to be divided into six equal parts, whereof two are for the projection of the pilaster or interior half column, upon which the entablature is proilled, three for the thickness of the wall, and one for the pilaster on the side aisles, whose prolongation will form a counterfort above the lower sides.
1462. For the external pier B, as before, one half the height to the springing must be transferred from EG , and $\frac{1}{12}$ of BG from B to L ; lastly, $\frac{2}{12}$ from B to K : the rectangle. formed upon the diagonal KL is equal to the area of the pier. We must add, as for that in front, the projections to receive the arehes or windows, as shown in No. 2.
1463. As long as the intervals between the piers are filled in with a wall, if that be placed flush with the outside, the piers will form pilasters inwards (see fig. 585.), as ihef, whose projection ef is equal to one half of the face he; this wall ought to have a thiekness equal to he; but if it is brought to the inner line of the face of the piers they need be only two thirds of the thichness; so that the piers will form comnterforts on the exterior. In conclusion, knowing the effort of the thrust, the caleulations will not be attended with difficulty in providing agaiast it by adequate means of resistance.
on the model of a coven vault.
1464. The model (fig. 587. Nos. 1. and 2.) is square on the plan, each of its sides is 9 inehes internal measure, enclosed by a wall 10 inches high :o the springing of the vault. The vault is semieireular in form, the voussoirs throughout 9 lines thick, and it is composed of seventeell parts above the line of gieatest effort (see 1391.), as shown in Nos. 1. and 2 . in the plan and seetion. On one of the sides of the fir-t is supposed to be traced the mean circumference TKG, the tangents FI, FG, the secant FO, the horizontal line 1 KL , and the verticals Bi and MK . We may now therefore consider this vault as four triangular picces of eylindrical arehes, each resting throughout the length of their base on one of the "alls which forms the sides of the square. As the portions of arches or vaults are equal, it is only necessary to take one of them for an example.
1465. In the last example, cubes are taken instead of the surfaces, and surfaces instead of lines. 'Thus expressing the length of the wall by f, its height by a, and its thickness by x; the arm of the lever being always $\frac{x}{2}$, its resistance is expressed by afx $\frac{x}{2}$.

Fin. 38 :.

The equation is $p a+p d=\underset{2}{: f x^{2}}+(m+u) x-n e+m c$; and making $m+n=l$,
$\frac{a f x^{2}}{2}+b x=p t+p t+n e-m$.

$$
\text { Whence } x=\sqrt{\frac{2 p}{j}+\frac{2 \mu d+2 n e}{}-2 m c}+\frac{b^{2}}{a^{2} f^{2}}-\frac{b}{a f}
$$

1466. If, however, we stlppose the effort to take place at the point B, a supposition istherto mate in the formula, we have $e=n$, and the value of x becomes

$$
x=\sqrt{2} f+\frac{2 \mu d-2 m c}{a f}+\frac{b^{2}}{a^{2} j^{2}}-b
$$

1467. The horizontal effort of the upper part, represented by the line $K L$, will be expressed by the triangle $e \mathrm{E} d$ of the plan; that of the lower part $i \mathrm{~K}$ in the section will be expressed by the trapezium $e \mathrm{BCd}$ on the plan.
1468. The plan of the vault being square, the base erd will be double $\mathrm{E} g=\mathrm{KL}$ of the section ; and the area of the triangle $e \mathrm{E} d$ equal to the square of $\mathrm{KL}=41 \frac{5}{14} \times 41 \frac{5}{14}=1710 \frac{2}{7}$.
1469. E a of the plan being equal to the square of 54 less the square of $41 \frac{5}{5}$, that is, $1206 \frac{2}{7}$, the superior effort being 1710_{7}^{2} their difference is 504 , which being multiplied br the thickness of the vault, or 9 , is 4536 for the expression of the thrust represented by p in the formula, and for that of

$$
2 p=9072 \text { and } \frac{2 p}{f}=84,
$$

d, whieh represents TI, being $41 \frac{5}{11}, 2 p d=375192$.
1470. 'To obtain the vertical effort of the upper part of the arch represented by m, its cube must be multiplied by KM, and the product divided by the are KG .
1471. The cube of this part is equal to the eurved surface passing through the middle of its thickness multiplied by the thickness. The mean area is equal to the product of the length $n q$ taken on the plan multiplied by KM.
$u q$ being 117 , and KM $17 \frac{1}{7}$, the product expressing such mean area is $2005 \frac{5}{7}$, which multiplied by 9 makes the cube $18051 \frac{1}{9}$. This cube again multiplied by $K M=17 \frac{1}{9}$, and divided by the length of are $\mathrm{KG}=46$, gives 6727 for the value of m, and for 2 m 13454 ; c being $12 \frac{9}{19}, 2 m c=170100 \frac{5}{7}$.

$$
2 p d-2 m c=\begin{gathered}
375192-170100 \frac{5}{7}=15.82 \\
a f \quad 120 \times 108
\end{gathered}
$$

3 representing the vertical effort of the half vault, will be expressed by the cube multiplied by $\mathrm{B} f=58 \frac{1}{2}$, and divided by the mean circumference $\mathrm{TKG}=92$.
1472. To obtain the cube, the mean superficies, that is, $n q \times \mathrm{Bf}$ or $117 \times 58 \frac{1}{2}$, is to be multiplied by the thickness $\mathrm{AB}=9$, which gives $6844 \frac{1}{2} \times 9=61600 \frac{1}{2}$.

This cube multiplied by $\mathrm{B} f=58 \frac{1}{2}$ and divided by the mean circumference TKG $=92$, that is, $61600 \frac{1}{2} \times \frac{58 \frac{1}{2}}{92}=39169 \cdot 88$, for the value of b, and for that of ${ }_{a}^{b}, \frac{3416988}{1 \sim 0 \times 108}=3.02$ and $\frac{b^{2}}{a^{2}}=9 \cdot 12$. Substituting these values in the formula,

$$
x=\sqrt{ } \quad \overline{\left(\begin{array}{c}
2 p \\
f
\end{array}+\frac{2 p d-2 m c}{a f}+\frac{b b}{a^{2} j^{2}}\right)}-\frac{b}{u f^{0}}
$$

$$
\text { Hence } x=\sqrt{ } 84+15 \cdot 82+9 \cdot 12-3 \cdot 02=7 \cdot 41
$$

that is, a little less than $7 \frac{1}{2}$ lines for the thickness of the walls, which is less than that of the vault; and shows that by griviag the walls the same thickness as the vault, all the requisite solidity will be obtained. This is proved by experiments, for in the model the vault was borne equally well on walls of 9 lines in thickness divided into 8 parts, as upon 12 Doric cohmms whose diameter was 9 lines, four being placed at the angles and eight others under the lower part of the vault.
1473. To find the thichiess of these walls by the geometrieal method: Take the difference between the area of the triangle BEC and that of the triangle Eed, which divide by the length BC .

Thus, the area of the greater triangle being $\frac{108 \times 54}{2}=2916$; that of the smaller one, $829^{8} \times 411^{\frac{5}{4}}=1710 \cdot 4$; their difference, $1205 \cdot 6$ divided by $108=11 \cdot 16$, which transfer to the profile from B to h, and make Bn equal to the thickness of the vault. Upon $n \%$, as a diameter, deseribe a semieircle, which at its intersection with the horizontal line BE will determine the thiekness of the vault, and be found to be 10 lines.
1474. The small thrust of this species of vaulting occurs on account of the upper part, which eauses it, diminishing in volume in proportion as the horizontal effort becomes more considerable, and because the triangular form of its parts and their position give, it the advantage of having the iarger sides for bases; whilst, in groined vanlting, the triangular parts resting only on an angle, the weight increases as the horizontal efforts.
1475. Moreover, as the retarin sides mutually sustain each other, a half vault, or even a fuarter vault, on a spuare base, would stand if the walis were 10 lines thick, proving that
the opposite parts, acting little more than against each other, the thrust becomes ahmost nothing.
1.176. By the method of the centres of gravity, Rondelet found a result less than that above given; but that arose from neglecting some points in the caleulation which it was diffienlt to introduce for general practice.
1477. It is obvious that in the above application great allowance must be made when the apartment to be vaulted is not sfuare: that is, its advantages diminish as the two opposite sides become longer than the width, and when the length is twice the width, or even much less, the thrusts must be calculated on the principle of eylindrical vaulting; and as in this species of vaulting the greatest effort occurs in or towards the middle of the sides, opening for doors and windows should there be avoided.

Application of the Metiod to Spherical (or dmical) V'ulting.
1478. The models (.fig. 558. Nos. 1. and 2. and fig. 550. Nos. 1. and 2.) were of the

fatme opening as the last mentioned. They are cut into eight equal parts by vertical planes crossing each other in the axis; each of these parts is subdivided by a joint at 4.5 degrees, altogether forming sixteen pieces. The vault stands on a circular wall of the bame thickness divided into eight parts corresponding to those of the vault. All the parts are so arranged as to form continued joints without any bond, in order to give the experiment the most disadvantageous result. Yet it stood firmly, and was even capable of bearing a weight on the top.
1479. If for these eight pieces of circular wall we substitute eight columns of ejual height, as in No. 1. fig. 589., so that the vertical joints fall over the middle of each column; the vault will still stand, although the enbe of these columns, as well as their weight, oceupies only one ninth part of the circular wall for which they are substituted.

From this it is evident that spherical vaults, i.e., domes, have less thrusts than coved vaults.
1480. Applying the method of the preceding examples, describe the mean circumference (fig. 588. Nos. 1. and 2.), draw the tangents TF, GF, the secant FO , the horizontal line 1 KL , and the verticals KM and $13 i$; lastly, calculating for one eighth of the vault, take the sector O/m to express the horizontal effort indicated by K L , and the part $\mathrm{H} / \mathrm{LII} m$ to express the horizontal effort of the lower part.
1481. The difference of these areas multiplied by the thickness of the vauit will be the expression of the thrust p of the formula.
1482. The radius 0 m of the sector being $41 \frac{5}{14}$ and its length 321_{20}, its area will be 67233°
1483. The area of $h \mathrm{HAL} m$ will be equal to the difference of the two sectors OIIM and $O h m$, whereof the first is equal to the product of half $O M=27$ by the are $I M=423$, or $1145 \frac{1}{7}$, the second $=672 \frac{3}{56}$; whence the difference $=473 \frac{29}{50}$.
1484. The thrust, being equal to the difference between $6723{ }_{30}^{3}$ and $4,33_{06}^{29}$, will be $198 \frac{15}{26} \times 9$; theretore $\mu=786_{23}^{23}$.
1485. f, representing the developement of one eighth part of the circular wall, will be $42 \frac{1}{2}$, whence $\frac{p}{f}=42$. $\quad d$, the difference between the arm of the lever and the height of the pier, being $41 \frac{5}{1}$, we shall have $p d=73897 \frac{4}{7}$.
1486. To obtain the value of me we must first find that of m, which represents the rertical effort of the upper part of the vault, and is equal to the cube of this part multiplied by $K M$ and divided by the arc $K G$. This cube is equal to the difference of the cube of the sector of a sphere in which it is comprised with that which forms its interior capacity. We will merely reeall here to the reader's recollection from a previous page, that the cube of thes sector of a sphere is equal to the product of the superficies of the sphere whereof it forms a part by one third of the radius, and that this superficies is equal to the product of the circumference of a great circle by the line which measures its depth. Thus the area of the great sector OlRCr (fig. 588. No. 1.) is equal to the product of the great circle, whercof $A a$ is the diameter $=126$, by $C S=18 \frac{5}{11}$, which is 7308 , and its cube 7305 $\times \Omega 1=153468$.
1487. The area of the small sector OND_{n} will be equal to the product of the great circle, whereof $\mathrm{B} b$ is the diameter $=108$ by $V \mathrm{D}=15{ }_{7} 9$, which gives $5369 \frac{77}{7}$, and its cube by $5369 \frac{27}{77} \times 18=96648 \frac{24}{77}$. Deducting this last cube from that of the great sector already found $=1.53468$, the remainder 56819 will be the cube of the upper part of the vanlt forming the cap, whose eighth part 71023 will be the cube sought, which multiplied by $\mathrm{KM}=17_{2}^{1}$ and divided by the are $\mathrm{KG}=46$, gives $2646 \frac{2}{3}$ for the value of m in the formula; c, which represents $i \mathrm{~K}$, being $12 \frac{9}{11}$, we have

$$
\begin{aligned}
& m c=33+61 \frac{3}{7} ; p d-m c \text { will be } 73897 \frac{4}{7}-33461 \frac{3}{7}=40436 \frac{1}{7} \\
& \text { and for } \frac{p l-m c}{a^{-}}, \quad 40436 \frac{1}{7}=7.92 .
\end{aligned}
$$

1488. In the preceding application to the model of the coved vault, the walls being straight, the distance of their centre of gravity from the point of support was equal to half their thickness; in this, the wall being circular, its centre of gravity is so much more distant from the point of support as it takes in more or less a greater part of the ciremmference of the circle. By taking it only the eighth part, the centre of gravity falls without the thickness of the walls, by a quantity which we shall call e, so that the arm of the lever, instead of being ${ }_{2}^{x}$, will be $e+x$, which changes the preceding formula to

$$
a f x(e+x)+b x=p a+p d-m c
$$

arranging with reference to x, this becomes

$$
a f x^{2}+(e a f+b) x=p a+p d-m c
$$

whence we obtain $x^{2}+\left(e+\frac{b}{a f}\right) x=\frac{p a+p d-m c}{a f}$, and making $e+\frac{a f}{b}=2 h$, we shall have

$$
x=\sqrt{-p+\frac{n d-m}{f_{f}}+h^{2}-h .}
$$

b expresses the vertical effort of an cighth part of the vault equal to its cube, multiplied by the vertical 13 , and divided by the mean circumference TKG. This cube is equal to an eighth of the sphere, whereof $\mathrm{A} u$ is the diameter, less that of the eighth part of a sphere whese diameter is $\mathbf{B} b$.

143:7. The diameter Aa being 126, the eighth of the circumference of a great circle will be $49 \frac{1}{2}$, which, multiplied by the vertical axis, which in this case is equal to the radius or 63, gives for the area of one eighth part of the sphere $3118 \frac{1}{2}$, and for its cube $3118 \frac{1}{2} \times 21$ $=65688 \frac{1}{2}$.
1490. The diameter $\mathrm{B} b$ being 108 , an (ighth part of the circumference of the great circle will be 423 , which, multiplied by the radius 54 , gives for the area $2291 \frac{1}{7}$, and for its cube $2291 \frac{1}{7} \times 18=41240_{7}^{4}$; taking the smaller of these cubes from the greater, the difference $24447 \frac{13}{1}$ will be that of this eighth part of the vault, which must be multiplied by $B f=$ $58 \frac{1}{2}$, and the product $1430203_{\frac{2}{23}}^{23}$, divided by the mean are $\Gamma \mathrm{TK} G=91 \frac{6}{7}$; the ${ }^{\text {protient }} 15558$ expresses the vertical effort of the eighth part of the vatilt, represented by b in the formula. whence $\frac{b}{a f}=\frac{15 \cdot n / 58}{5110}=3 \cdot 0.5$.
e being 2.51 , we shall have for the value of $h 2 \cdot 78$ and $h^{2}=7.72$.
Sulstituting the values thus found in the formula

$$
x=\sqrt{p} \frac{p}{f}+\frac{p l-m c}{a f}+\xi^{2}-h
$$

we have $x=\sqrt{ } / 42+7 \cdot 92+7 \cdot 72-2 \cdot 78=\sqrt{ } 57 \cdot 64-2 \cdot 78=4 \cdot 72$.
By using the method of the centres of gravity, Rondelet found the result rather less than that just found.

1+91. The result of all these caleulations induces the following facts:- I. That for a
spmicircular cylindrical vault, whose length is equal to its diameter, the area of the two parallel walls is 4698 . Il. That that of the four square piers supporting a groined areh is 70.56. III. 'That of the four walls of the coved vault, the area should be $3425 \frac{2}{3}$. IV. That that of the spherical vault is $12: 38 \frac{1}{6}$.
1492. In respect of the opening of these vaults, which is the same for all the examples, t. k ing the area of the cireular wall for the spherical vanlt at 1 ,

> That of the walls of the coved vault will be a little less than 3 .
> That of the cylindrical vault
> That of the groined areh

But if we look to the space that each of these vaults occupies in respect of walls and points of support, we shall find that in equal areas the walls of the cylindrical vault will be $\frac{2}{7}$ of such space.

Those of the coved vaulting less than - - $\frac{1}{4}$ of such space.
The piers of the groined arch a little more than
The circular wall for spherical vault a little more than $\frac{2}{17}$ -
So that, if we suppose the space occupied by each of these vaults to be 400 ,
The walls of the cylindrical vaulting will be 115
Chose for the cored vault - - 91
The piers for the groined arch - 60
The circular wall for the spherical vault - 48
Which figures therefore show the relative proportions of the points of support necessary in each case.
1493. It is a remarkable circumstance that by the formula the coved and spherical vaults give to the walls a less thickness than that of the arch. But although experiment has verified the formula, we cannot be supposed to recommend that they should be made of less thickness in practice; but we see that, if of the same thickness, considerable openings may be used in them. Irregular as well as regular compound vaults being only an assemblage of the parts of more simple ones, if what has already been said be well understood, and the examples given have been worked out by the student, he will not be mueh at a loss in determining the efforts of all sorts of vaults.

On the ablesive Power of Mortah and Plaster upon Stones and Buicks.
1494. The power of mortar and plaster will of course be in proportion the surface of the joints, compared with the manses of stone, briek, or rubble. Thus a voussoir of wrought stone, one foot cube, may be conneeted with the adjoining voussoirs by four joints, each of 1 foot area, in all 4 feet. But if instead of this voussoir three pieces of rough stone or rubble be substituted instead of 4 feet area of joints, we shall have 8. Lastly, if bricks be employed instead of rubble, we shall want 27 to form the same mass, whiel gives for the developement of the joints 13 feet. Thus, representing the force which comects the voussoirs in wrought stone by 4, that representing the joints of the rough stones will be 8, and that for bricks 13: whence we may infer that arehes built with rough stones will have less thrust than those in wrought stone, and those in brieks more than three times less. From experiments made by Rondelet, he found that at the end of six months some species of mortar showed a eapability of uniting bricks with sufficient force to overcome the efforts of thrust in a vault segmental to ${ }_{3}^{2}$ of a semicircle, 15 feet diameter and 4 inches thick, the extrados being 4 inches concentrically above the intrados. Plaster united a vaulted arch of 18 feet opening, of the same form and thickness. This force is, moreover, greater in arches whose voussoirs increase from the keystone to the springing, and that in proportion to the thickness at the haunches, where fracture takes place; so that whatever the diameter and form of the areh, the strength of good mortar at the end of six months, if the arches are well constructed, is capable of suppressing the thrust as long as the thickness, taken at the middle of the haunches, is stronger than the tenth part of those laid in mortar, and one twelfth of those laid in plaster. Here we have to observe, that arches laid in plaster, as long as they are kept dry and sheltered from the changes of the sea son, preserve their strength, but, on the contrary, they lose all their stability in seven or eight years, whilst those cemented in mortar endure for ages.
1495. The small quantity of mortar or of plaster used in vaults constructed of wrought stone, in which the joints are often little more than run, ought to make an architect catutious of depending merely on the cementing medium for uniting the voussoirs. There are other means which he may employ in cases of doubt, such as doucels and cremps, means which were much employed by the Romans in their construction; and these are far better than the chains aind ties of iron introduced by the moderns.

1495a. Rondelet fas stated that hard stones laid dry, commenced slipping at an argle of 30°; and with mortar fresh laid, at angles of 34° and 36°; with soft stoncs, on mortar fieshlaid, at 45°, when the centre of gravity did not fall without the base. In

Barlow's editon of Tredgold's work. from 34° to 36°, is repeated. G. Rennie, in some sareful experiments at London Bridge, found that dressed voussoirs commenced sliding, without mortar, at an angle of $33^{\circ} 30^{\prime}$; and, with mor ar fresh land, at $\because 5^{\circ} 30^{\prime}$.
1496. Well may it be said that the thrust of an arch is the constant dread if an architect; but it depends entirely on the method employed in the construction. It is only dangerous where the precautions indieated in the foregoing examples have had no attention paid to them. It has been seen that the least fracture in too thin an arch of equally deep voussoirs may eause its ruin; and we shall bere add, that this defect is more dangerons in areles wherein the number of joints is many, such as those constructed in brick; for when they are laid in mortar they are too often rather heaped together than well fitted to each other.
1497. Whatever materials are used in the construction of vaults, the great objest is to prevent separation, which, if it occur, must be immediately met by measures for making the resistance of the lower parts capable of counterbalaneing the effort of the upper parts. Those fractures which occur in cylindrical arches are the most dangerons, because they take place in straight lines which run along parallel to the walls bearing them. To avoid the consequences of such failures, it is well to fill up the haunches to the height where the fracture is usually to be found, as in $\mathrm{K}, \mathrm{K}^{\prime}, \mathrm{K}^{\prime \prime}, \mathrm{K}^{\prime \prime \prime}$ (fig. 590.) and diminish the thickness towards the key.
1498. Rondelet found, and so indeed did Couplet before him, that the least thiekness which an areh of equal voussoirs ought to have, to be capable of standing, was one fiftieth part of the radius. But as the brieks and stone employed in the construction of arehes are never so perfectly formed as the theory supposes, the least thickness whieh can be used for eylindrical arehes from 9 to 15 feet radius is $4 \frac{1}{2}$ inches at the vertex if the lower course be laid with a course of briek on edge or two eourses flatwise, and 5 inches when the material used is not a very hard stone, increasing the thickness from the keystone to the point where the extrados leaves the walls or piers. But if the haunehes are filled up to the point N (fig. 590.), it will be found that for the pointed arch in the figure the thickness need not be more than the $\frac{1}{13}$ of the radius, and for the semicireular areh, $\frac{1}{6 \cdot 5}$. For arehes whose height is less than their opening or that are segmental the thickness should be $\frac{1}{5}$ part of the versed sine; a praetiee also applicable to Gothic vanlts and semicireular cylindrieal arehes, to whieh for vaults cemented with plaster one line should be added for eaeh foot in length, or $\frac{1}{1+}$ part of the chord sultended by the ex-
 trados. With vaults exceuted in mortar $\frac{1}{95}$ may be added, the thickness of the arch increasing till it reaehes the point N , where the areh becomes detached from the haunches, and where it should be once and a half the thiekness of the key. It was in this way the arehes throughout the Pantheon at Paris were regulated, and a verg similar sort of expedient is practised in the dome of the Pantheon at Rome. A like diminution at the keystone may be used in groined, coved, and spherical vaults.
1499. For vaultings of large openings, londelet (and we fully concur with him) thinks wrought stone peeferable to brick or rubble stone, because it has the advantage of being liable to less settlement and stands more independent of any cementitious medium employed. It is indeed teue that this cannot connect wrought stone so powerfully as it does ruble ; but in the former we can employ cramps and dowells at the joints, which are useful in doubtful eases to prevent derangement of the parts. In many Roman ruins the surgaces of the voussoirs were embossed and hollowed at the joints, for the purpose of preventing their sliding upon each other; and expedients of the same nature are frequently fomal it Gothic ruins.

1499a. The figure 590. is one that has been found to perplex students, as it is lerein given without mueh explimation of it. In Rondelet's work it is engraved for the purpose of elucidating certain tables of thicknesses of the keystones, the parts KN , and the piers, for ready reference in designing arehed constructions. As a proper undersfanding of the above system is of immense importance to the effective carrying out of buikdings, we append an explanation from Rundelet, hut in a much abridgedi form.

1499b. Ilaving laid down the half of the curve required, draw B 4, forming an angle of 4.5° with the vertical 136 ; plate on this line from 13 to 4 the thickness shown in the table (in his work) for a cylindrical vault Y , of the diameter and tnickness required, and describe the quarter circie 1, 4, 6; draw the chord $\mathrm{C}^{\prime \prime} \mathrm{B}$, prolonged to meet the circle at 4 ; then through the point in which it (the chord) will l.e ent. as 4 ; draw a line parallel to B 6 ; then $4 c$ will represent the thickness required for the wall of the vault. For instance, if in the segmental vault X , its chord $\mathrm{C}^{\prime} 13$, be prolonged, it will cht the circle at 3 ; throngh 3 draw the vertical $s h$, and it will be the thickness to be given to the wall for such a vault. When the thickness at the key, and towards the middle of the extrados, is required cither stronger or weaker than those indicated in the tables, then, if the portion of the extradossed line be of an equal thickness. take the square root of the double thickness of this portion, multiplied by $m \mathrm{~L}$; place it from B to 4, and describe the quarter of the circle 1, 4, 6 . which will determine, by the length of the chord prolonged beyond the point: B, the thickness of the wall pier.

1499c. Take a vault of 30 ft . span; the extrados being half on a level and hatf of an equal thickiness, which it is intended to make only 6 in. thick at the key. instead of 10 in , as indicated in the tables. The radius heing 15 ft , we have $\mathrm{KL}=\frac{15 \times i 0}{99}=10 \cdot 6$, and $i \mathrm{~K}=$ $15-10 \cdot 6=4 \cdot 4$, which gives $m \mathrm{~L}=6 \cdot 2$, which multiplied by 1 foot, or double the tinickness of the keystone, will give $6 \cdot 2$, the square foot of whic! is $2 \cdot 49$, or a trifle under 2 ft . 6 in., instead of 2 ft .8 in. and 9 lines, marked in the tables. This measure of $2 \frac{49}{160} \mathrm{ft}$., or 2 ft .6 in ., is to be placed from I , to 4 ,

FIg. 3004. and the quarter circle and chord line drawn according to the rise of the arch.

1499 d. The geometrical method of drawing it will be to place the double of the thickness of the vault from B to μ, and $m \mathrm{~L}$, from B to h, and describing on $n h$, as a diameter, a semicircle wheh shall cut the horizontal BO, giving the thickness to be placed from B to 4 on the chord line; the remainder of the operation will be as ahove described.

1499e. If the thickness CD and KN of an extrados fortion of a vault, be not the same as indicated in the tables, the sum of the thicknesses intended to be given is to be placed from B to n, and $m \mathrm{~L}$ from B to h, and then the process goes on as above described. The letters also refer to the preceding diagrams.

1499f. These observations, however, do not apply to fig 590 ., for it will be observed that the arches therein shown are not of equal thickness. On drawing out these arches, aceording to the directions given (1436 , and $f i g$. 582 .) , for an extrados which increases towards the springing (fiy. 590a), we find that the chord lines are not properly drawn; that the thicknesses of the walls vary ; and that the two arches W and \mathbf{X}, which are less in height than the semicircular arch Y , are treated in the same manner as Y, instead of the line BF heing drawn as a tangent to the curve as directed (1398, and fig. 573.); this would have caused the walls to be of a less thickness the more the arch was depressed, and therefore would evidently have been wrong in principle.

Constructio: of Domes.

1499g. From the Remarks on Theatres, 1809, ly Samuel Ware, we extract the portion relating to the now little strulied stbject of construetion of domes. "It may with propriety be anked," he writes, "and it is a question of much importance, what are the properties in the construction of a dome, by which its vaulting may lave that extreme tenuity, by which its lateral thrust becomes so extremely sinall in comparison with cylindrical vaulting, while the stone furthest from the supports may be of extraordinary gravity, compared with any other part of the vanlting, or it and any part below it contignous may be wholly omitted, and yet the equilibrium of the dome be not affected."

1499h. "In analysing a dome, it will be found that it is nothing more than rib-vaulting carricd to its maximum, that it consists of as many ribs as there are vertical sections to be made in the dome, or is composed wholly of ribs abutting egainst each other, in direct opposition, by which the force of each is destroyed. In the ceilings of King's College Chapel, Cambridge, and Henry VII.'s Chapel, London, this most admirable invention is exemplified. The author ventures an hypothesis, that, in an equilitrated dome, the thickness of the vaulting will decrease from the vertex to the springing, and assighis the following reason theoretically, and the Gothic vaulting practically, in contirmation.

1499i. "The parts of a circular wall compose a horizontal arch; but the whole gravity of each part is resisted by the bed on which it iests, therefore the parts cannot be in mutual opposition ; and, although the paits are posited like those of an arch, a circular wall has not the properties of one. In a semi-spherical dome the first course answers this description, no part gravitating in the direction of its radius. When the beds are oblique on which the parts of the wall rest, each course may then be called an oblique areh, as it then assumes the property of an arch, hy having a double action, the one at right angles to, or on the bed, and the other in the direction of the radius; and if this arch be of equal thick ness throughont, and has an equal inclination to the horizon, it will be an arch of equilibration. All the courses in a dome are oblique arches of equilibration, of various inclinations, between the horizontal line at the springing, and the perpendicular at its vertex.
1499. "A dome is comprised of as many vertical arches as there are diameters, and as many oblique arches as there are chords. The actions of the parts of a vertical arch are eccentric, an oblique arch concentric; conseguently they will be in opposition, and the greater force will lose power equal to that of the hss. An oblique arch hears the same relation to a dome as a vonssoir does to an arch; when the vertical arehes are not in equilibration, the action is upon the whole oblique areh, not upon the ronssoirs separately; although a whole course or oblique arch (which must be the case, or no part of it, admitting that each course in itself is similar and equal thronghout) be thrust outwards by the inequilibration of the vertical arches; the incumbent oblique arches will descend perpendicularly, keeping the same congruity of their own parts.

1499h. "As the voussoirs of each oblique arch are in equilibration, no one can approach nearer to the centre of the dome than another, unless the other voussoirs squeeze or crush, which, in investigations of subjects of this nature, are always assumed perfectly rigid; therefure, in their po-ition in the dome, they have obtained their concentration. Hence we obtain the essential distinction between an arch and a dome, that no part of the latter can fall inwardly. Since no part of a dome can fall inwards, it resembles an arch resting on the centre on which it has been constructed, and the resistance which the vertical arch meets with from that centre is similar to the opposition of the oblique arehes to the vertical arches. If this deduction be just, the mechanician will be able to describe the extrados of equilibration to a dome and its abutment wall, with the same facility as he may to an arch and its abutment piers."
14992. Pasley has likewise stated that "as soon as any course is completed all round, the stones or bricks composing it form a circular areh like that of a cone, which cannot by any means fall inwards. Hence there is an important difference between the dome and the common arch, which latter cannot stand at all without its centering, unless the whole curve be completed, and when finished, the crown or upper segment tends to overset the haunches or lower segments. The dome, on the contrary, is perfectly strong, and is a complete arch without its upper seginent; and thus, as the pressure acts differently, there is less strain upon the haunches and abutments of a dome, than on those of a common arch of the sa ne curve. Hence a sufficient dome may be constructed with much thinner materials than would be proper for a common arch of the same section. The dome of St. Paul's Cathedral uffers a tine specimen of this kind of work." It has been described in par. 472.

1499 m . The Pantheon, at l'aris, has a dome formed of three portions. The first, or interior one, is a regular hemisphere of about $66 \mathrm{ft} .9 \frac{1}{2} \mathrm{in}$. span, with a circular opening at top of about 31 ft . $4 \frac{1}{4} \mathrm{in}$. in diameter. It is built of ent stones, varying from $18 \frac{1}{2} \mathrm{in}$. thick at bottom, to $10 \frac{1}{2}$ in. at top. Thus the thickness is only about $\frac{1}{43}$ rd part of the span. The intermediate dome is a catenarian curve having a span of about 70 ft . with a rise of 50 ft ; and it has to support considerable weight at top. It has four large openings in its sides to give light, about 37 ft . high by 31 ft , wide, arelled at top in a somewhat parabolic form. The outer dome has an external diameter of 78 ft . Its height is not stated, but it appears to be a moderately pointed Gothic arch had it been continued, without forming an opening at top for the sides of a lantern, which it was intended to support. The thickness of the stone at bottom is about 28 in . and 14 in . at top. A great part of the surface is only half the above thickness, as the dome is laid out internally in piers, supporting three tiers of arched recesses, or niches, of less substance, and showing like the panels in joiners' work. (See figs. 177 and 178.)

1499n. Partington, in the British Cyclopodia, 1835, expresses the opinion that "the weigit of the dome may foree out its lower parts, if it rises in a direction too nearly ver-
tical ; and supposing its form to be spherical, ami its thickness equal, it will reguire to the confined by a hoop or chain as soon as the span becomes eleven fourteenths of the whole diameter. But if the thickness of the dome be diminished as it rises, it will not require to be bound so high. Thus, if the increase of thickness in descending begins at about 30° from the summit, and be continued unil at about 60°, the dome becomes little more than twice as thick as at first, the equilibrium will be so far secure. At this distance it would be proper to employ either a chain or some external pressure to prove the stability, since the weight itself would require to be increased without limit, if it were the only source of pressure on the lower parts. The dome of the lantheon, at Rome, is ncarly circular, and its lower parts are so much. thicker than its upper parts, as to afford a sufficient resistance to their pressure; they are supported by walls of great thickness, and furnished with many projections, which answer the purpose of abutments and butiresses."
1499n. Keeping to the theory of the dome, we must avoid noticing its history, beyond pointing out the papers which have of late years treated on the subject. These are pul)lished in the Transactions of the Royal lnstitute of British Architects. The first was by J. lergusson, On the Architectural Splendour of the City of Beejapore, November 1851: the discussion in December following, when J. W. Papworth detail d bis interesting and novel theory, to be presently noticed; and two pavers by T. H. Lewis, Some Remarks om Domes, June 18.57; and On the Construction of Domes, May 1859. in which, however. great care must be taken by the reader to separate the arch from the doms constructions, as in our opinion they are treated therein as of one primeiple. The quention of a Gothic dome was much discussed without a solution in the journals of the period named. Domes and pendentives are illustrated in Fergusson's Ha wdbook of Architesture. The very interesting paper On the Muhhematical Therry of Domes. by E. 13. Denison, Q C., read at the Institute on 6th February, 1871, should be consulted by all students on this difficult subject; as well as the papers by E. W. 'Iarn, M.A., printed in the Cocil Eingincer and Archutect's Jourmil of March 1868 and February 1870.

1499p. On the occasion referred to, Mr. l'apworth asserted t!at a dome was not an arch, and that domes were not governed by the same laws as vaults. He then entered into calculations on the causes of the stability of domes, showing that in domes of great thicknes s the upper half of each gore was only about one-third in weight of the lower half, and aaduced the possilility of loading the crown to a certain extent. Ho produced a series of drawings of domes, constructed upon principles which ought theoretically, if they were arches, to lead to their failure, but which had nevertheless proved perfectly sond; his views being fortified by Mr. Fergusson's concurrence as to the absence of examples of failure where the bases were stable. He then alluded to the following arguments of others, and explained his reasons for not agreeing with them. Such as, that the dome of the Pantheon, at Rome, had been built on the principle of a bridge, i.e. of an arch; that it was impossibie to plan a large dome without great thickness of walls, i.e. greater than sufficient to bear the weight and its consequences; that it was necessary for the exterior of a dome to stand Hush with the wall of the building to which it belonged; that it was dosirable to append heavy corbelling to the inside of the wall to counteract the thrust of the

Figs. $500 b$ and $590 c$. dome, with special reference to some circular tambours, of which he exhibit d sketches; to the supposed unnecessarily great weight on the top of some examples: and to the supposed beauty of principle extribited in the dome of Sta. Maria, at Florence, which be characterised as a piece of octagonal vaulting and not a dome. He also explained that domes which had failed had not been supported on a stable foundation; that he saw great beanty in the idea of forming an ye in so large a dome as that of the Gol Goomuz, at Beejapore, where the centre of the curve on cach side of the section was in the edge of the eye; that the outer face of the springing of the dume might he within the inside of the square enclosing wall of the building ; that if the principles of vaulting were applied, the wagon-headed section of the Gol Goommz dome would not be expected, theoretically, to stand; and concluded by some observations in explitnation of his illustrations, as to the requisite thickness of domes. All writers, so far as be had seen, considered the dome as a case of vaulting on principles deduced from their experiments on arches, which was a mode repudiated by him.

1499 q . The eauses of the stability of domes, as thus put forward for the first time, hy Mr. Papworth, are the following :-Let the plan (fig. 590b.). of a semicircular dome be divided, say, into twelve or more equal parts, and the section (fig. 590c.), say, into nine or more. Give a thickness
l:y an inner li:e for stone or brickwork. Then it will be at once perceived that the lower biock K has to support a mass L of less dimensions as to horizontal length; that the bluck La supports a still less mass M ; that M supports a much less mass \mathbf{N}; and that N ;upports a mass of but a small length in comparison with K , whilst in breadth it dimi. aislies from a few feet to nothing at the ajex. If the dimensions of a dome were worked out, say of 50 ft . internal diameter, and of 4 ft . in thickness, it would be found that the bluek K would be about $+13 \frac{1}{2} \mathrm{ft}$. cube; L $363 \frac{1}{2} \mathrm{ft}$. cube; M $274 \frac{1}{2} \mathrm{ft}$. cube; $\mathrm{N} 146 \frac{1}{2} \mathrm{ft}$. sube; and the half block $\mathrm{O} 22 \frac{1}{2} \mathrm{ft}$. cube. The fact has to be remembered, that all domes are built in courses of stones which are bonded one into the other, forming eircular rings; and that even if a dome be cut down into four quarters, each quarter will stand of itself.

1499r. Rankine, Appled Mechanirs, 1858, points out that the tendency of a dome to) spread at its base is resisted by the stability of a cylindrical wall, or of a series of muttresses surrounding the base of the domes, or by the tenacity of a metal houp encirelins the base of the dome. The conditions of stability of a dome are ascertained by him in the following manner. Let fig. 59:d. represent a vertieal section of a dome springing fiom a cylindrical wall BB. The shell of the dome is stipposerl to be thin as compared with its external and internal dimensions. Let the centre of the crown of the dome, O, he taken as origin of coordinates; let x be the depth of any circular joint in the shell, weh :s CC ; and y the radins of that jo nt Leet $;$ be the angle of inclination of the shell at C tor the horizon, and $d s$ the length of an elementary are of the vertical section of the dome, such as
 (D), whose vertieal height is $d x$, and the difference of its lower and upper radii $d y$; so that $\frac{d y}{d x}=\operatorname{cotan} i ; \frac{d s}{d x}=\operatorname{cosec} i$. Let P_{x} be the weight of the part of the dome alove the circular joint $C C$. Then the total thrust in the direction of a set of tangents to the dome, radiating obliquely downwards all round the joint CC , is $\mathrm{P}_{x} \cdot \frac{d s}{d x}=\mathrm{P}_{x}$ eosec i; and thetotal horizontal component of that radiating thrust is $\mathrm{P}^{x \cdot} \frac{d y}{d x}=\mathrm{P}_{x} \cdot \operatorname{cotan} i$. Let p_{y} denote the intensity of that horizontal radiating thrust, per unit of periphery of the joint CC; then because the periphery of that joint is $2 \pi y(=6.2832 y)$, we have $p_{y}=\frac{1^{\prime} x \operatorname{cotan} i}{2 \pi y}$.

1499s. If there he an inward radiating pressure upon a ring. of a given intensity per unit of are, there is a thrust exerted all round that ring, whose amonit is the product of that intensity into the radius of the ring. The same proposition is true, sulstituting an ontrard for an inward r.diating pressure, and a tension all round the ring for a thrust. If, therefore, the horizontal radiating pressure of the dome at the joint CC be resisted by the tenacity of a hoop, the tension at each point of that hoop, being denoted by $\mathrm{P} y$, is given by the equation $\mathrm{P}_{y}=y p_{y} y=\frac{\mathrm{P}_{z} \operatorname{cotan} i}{2 \pi}$. Now conceive the hoop to be removed to the circular joint DD, distant by the are $d s$ from CC, and let its tension in this new position be $\mathrm{P}_{y,}-d \mathrm{P}_{y}$. The difference, $d \mathrm{P}_{y}$, when the tension of the hoop at CC is the greater, represents a thrust which must be exerted all round the ring of brickwork CC DD, and whose intensity per unit of length of the are CD is $\eta z=\frac{d \mathrm{P}_{y}}{d s}=\frac{1}{2 \pi} \cdot \frac{d}{d s}\left(\mathrm{P}_{x}\right.$ cotan i.)

1499t. Every ring of brickwork for which p_{z} is either nothing or positive, is stable, indeprndently of the tenacity of cement; for in each such ring there is no tension in any direction. When $p z$ becomes negative, that is, when P_{y} has passed its maximum and begins to diminish, there is tension horizontally round each ring of brickwork, whieh, in order to secure the stability of the dome, must be resisted by the tenacity of cement, or of external hoops, or by the assistance of ahmonments. Sueh is the condition of the stability of a dome. The inclination t, the horizon of the surface of the dome at the joint where $\mathrm{J}_{z}=0$. and below which that quantity becomes negative, is the angle of rupture of the dome; and the borizontal component of its thrust at that joint, is its total horizontal thrust against the abutinent, hoop or hoops, by which it is prevented from spreading. A dome may have a circular ofening in its crown. Oval-arched openings may also be made at lower points, provided at such points there is no tension; and the ratio of the horizontal to the inclined axis of any such opening should be fixed by the equation

$$
\frac{\text { horizontal } . \text { xis }}{\text { inclimed aris }}=c=\sqrt{p_{y} \sec i} .
$$

Kamkine concludes with examples of "spherical," and "truncated conical," domes.
$1499 u$. Cones.-These are used in tile-kilns, glass-houses, and such like. A building in the shape of a hollow cone forms everywhere a species of circular arch, which may be constructed without centering or support, provided the joints be made to radiate towards the centre. The courses should be laid perpendicular to the sides of the proposed cone. A
rod of variable length, turning on a pivot, mist le stretchel all round from time to thme, !!on a moveable centre, rising as the work proceed's, in order to regulate the internal outline. Such is the strength of this form that the highest kilns are seldom built more than one brick thick, althongh this dimension would be altogether insufficient for a common wall of the same height. It is, probably, tais principle which bas conduced to the existence of the Round 'Towers of Ireland. That of Kilkenny, for example, 100 ft . in height, wats milt on, or very near. the surface, for at 2 ft . below it , wood coffins with skeletons were found partly under the walls, thus affording in unstable foundation.

Ponnted Aach Vauling.

1499 r. We now proced to enter into a diew of the general forms of groining in pointed architecture, observing, by the way, that the groins at the arrises, up to the twelfth century, were seldom moulded with more than a simple torus or some fillets. In the twelfth

Fig. 590 c . century, however, the torns is doubled, and the doubling parted by a fillet. Towards the end of the twelfth century, three tori often occur; and at the beginning of the thirteenth, the moulded arrises become similar to the moulded archivolts of the arches, both in their form and arrangement. In France, until the middle of the fifteenth century, the arrises of the groins only were moulded; bot in this c.untry the practice took place much earlier, for, instead of simple groining, the introduction of a number of subdivisions in the soffits of arehes had become common. In fig. 590e. is given a plan of the soffit of a vault of this kind, in winich A is an are doubleau (by which is muderstood an are supposited below another at certain intervals, and concentric with the latter); B is an upper areh, called by the French antiquaries formeret; C, the wall arch, or formeret dn mur; D is a diagonal rib, or croisée d'ogire; E, intermediate rib or tierceran; FF, summit ribs or liernes; G, the key or boss, clef de voute. Mr. Willis has used the French terms here given, and as we have no simple terms to express them in English, it may be convenient to adopt the practice.
$1499 w$. The ilis furmed by the intersections of the groins perform the office of supporting the vaulting which lies upon them, they in their turn
 being borne by the pillars. Thus, in the simple groin ($\mathrm{fig} .590 f$.), the arches AA, and diagonal rib C , carry the vaulting BB , a rebate being formed at the lover pait of the ribs on which the vaulting lies. This figure exhibits the simplest form of groining in any species of vaulting, the intersecting arches being of equal height. The contrivance in its earliest state was ingenious, and the study attractive, and we cannot be surprised at Dr. Rolison observing, in respect of the artists of the thirteenth and two following centuries, that " an art so multifarions, and so much out of the road of ordinary thought, conld not but become an object of fond stady to the architects most eminent for ingenuity and invention: becoming thus the dupes of their own ingenuity, they were fond of displaying it where not necessary." This ohservation would be fully verified had we room for showing the reader the infinite number of devices that ingenuity has created: he will, however, from the few elementary ones that we do give, be enabled to see the germs of countless others.

1499x. Ware, in his Tracts on I'aults: and Bridges, 1822-a work which, notwithstanding the quaint method in which the subject is trcated, contains extremely valuable matter, - has made some remarks which we must introduce at length, or justice would not be done to them. "In the vaulting," be says, "of the aisles of Durham and Canterbury cathedrals are to be ohserved the ares doublean, and groined ribs in round-headed vaults. In the naves of the same huildings is the same character of rauling, except that the arch of the vault is pointed. Some vanlts of his hind are to be dintinguished from others by the
positing of the stones of the vault hetween the ribs, which, instead of being parallel to each sikle of the plan, as in Roman groined vaults, take a mean direction between the groined rib and the ribs of the arches orer the sides; whence they meet at the vertex at an acute angle, and are received by stones running along the vertex, cut in the form of a ratchet. The advantage of this method consists in requiring less centering. and originates in the position of the ribs at the springing." "From these beginnings vaulting b "gan to assume those practical advantages which the joint adaptation of the pointed arch and ribs was calcul ted to produce." "The second step differed from the first, inasmuch as at the vertex of the vault a continued keystone or ridge projects below the surface of the vanlt, and forms a feature similar to the ribs. But here it was necessary that the rige should be a stone of great length, or having artificially that property, because its suspension by a thimer vault than itself would be unsafe, unless assisted by the rib arches over the diagonals and side, a distance equal to balf the width of the vault. To obviate this objection, other ribs were introduced at intervals, which may be conceived to be groined ribs over various oblongs, one side continually decreasing. This practice had a further advantage, as the pancls or vaults between the ribs might become proportionally thinner as the principal supports increased. It is now that the apparent magic hardiness of pointed vaulting and the bigh embowered roof began to display itself; from slender colımns to streti h shades as broad as those of the oak's thick branches, and, in the levity of the panel to the rib, to imitate that of the leaf to the hranch." "On comparing rib-pointed vaulting with Roman vaulting, it will be invariably found that the rib itself is thinner than the uniform thickness of the Roman vault under similar circumstances; and that the panel, which is the principal part of the vault in superficial quantity, sometimes does not exceed one ninth part of the rib in thickness. The Gothic architects, it has been expressively said, have given to stone an apparent flexibility equal to the most ductile metals, and have made it forget its nature, weaning it from its fondness to descend to the centre."

1499y. In the second example (fig. 590 g .), another rib, $a b$, is introduced, which on plan produces the form of a star of four points. The forms of these thus inserted ribs result from curves of the lines on the plan in the space to be vaulted. As many radii are drawn

from the angles of the plan as there are ribs intended. until they mutually intersect each other. The eurvatures of the ribs will he elongated as they recede from the primitiof arch, till they reach the centre on the place where the groins cross, and where of course the elongat denve is a maximum The rils thus form, when they are of the same curvature, portions of an inverted conoid.

1499z. In the nest example (fiy. 590\%.), the primitive arehes are mequal in height, the arch A being higher than B The plan remains the same as in that immediately preceding; but from the inequality of height, $a d$, $c b$, must be joined by curved lines, determined on one side by the point a where $\boldsymbol{e} a$ interscets the longer arch. A curved summit rib, as well longitudinally as transversely, may oceur with equal or unequal heights of primitice arches (as in fig. 59.)i.) ; but the stellar form on the plan still remains, though differe.tly noditied, with the same, or a less or greater, number of ribs on the plan (fig. 590k.). By truncating, as it were, the summit ribs, level or otherwise, with the tops of the primitive arches, and introducing en the plan a polygon or a circle touching quadrants inseribed in

F:g. 5901. the square, we obtain, by means of the rising conoidal quadrants, figures which pertorm the office of a heystone. In this, as we have ahove olserved. the construction of the work is totally different from rib vaulting, inasmuci as each course, in rising, supports the next, after the manner of a dome, and is not dependent on ribs for carrying the filling-in picees. Hence the distinction hetween fanwork and radiating rib work so judiciously made by Mr. Willis.

1499aa. The sixth example (fig. 590l.) has primitive arches of different heights, forming an irregular star on plan, that is to say, the points are of different angles. The figure will scarcely need explanation after what has been already said in relation to the subject.

1499bb. A polygonal space may be vaulted in three different ways. First, by a central column serving for the reception of the ribs of the vault, the solumn or pillar performing in such case the office of a wall, as in the chapter-houses of Worcester, Salisbury, Wells, and Lincoln. This mode evidently admits of the largest space being covered, on account of the subdivision of the whole area by means of the central pillar. The second mode is by a pendent for the reception of the arches, as in the Lady Chapel at Caudebec, (given in the section Masonrv). This mode is necessarily restricted in practice to small spans, on account of the limits attached to the power of materials; albeit in theory its range is as extensive as the former. The last method is by at

Fig. 590 m .

Ftg. 590 n
mace vaulting the space from wall to wall, as in fiy. 590 m ., like the vaulting to the kitchen of the monastery of Durham Cath dral, or. fiy. 590n., similar to the chapter-house at York, of which, the upper part being of wood, Ware quaintly observes, "The people of Y'orkshire fondly admire and justly boast of their eathedral and chapter-house. The principle of vaulting at the chapter-house may be admired and imagined in stone; not so the vault of the nave; it is manifestly one of those sham productions which cheat where there is no merit in deceiving." The principle, as Ware justly observes, is perfectly misonic, and might be easily carried out with stone ribs and panel stones, it being nothing more than an extension of that exhibited in the third example of simple groining (fig. 590f.) above given; and the same remark apolies to the Durham kitchen.

1499cc We propose to offer explanations of the nature of the vaulting at King's College Chapel at Cambridge, and the silly story rclated by Walpole of Sir Christopher Wren, saying, "that if any man would show him wnere to place the first stome he would
engage to build another" (vault like it). The vault of the chapel in question is divided into oblong severies, whose shorter sides are placed longitudinally (fig. 5900.) It must be evident that the curves of the inverted quadrants must intersect each other urevious to the whole guadrant of the circle heing completed. Hence these intersece ions firm a curved summit line lowest against the windows or smatler sides of the oblong. This summit line of the vaulting of the building in the direction of its length forms a series of curves, though from the angle under which it is seen it is searcely pereeptible. Mr. Ware says, "It is observable, in the construction of this vault, that the principle of using freestone for the ribs, and tufa for the panels, has not been followed; but the whole vault has been got out of the same

Fig. 590 . description of stone, and with an uniform face, and the panels worked afterwards, and reduced to a tenuity hardly credible except from measurement. The artists of this building might be trusted in the decoration of a vault with what is now ealled tracery; they knew how to render it the chief supnort. and what was the supertinous stone to be taken away: every part has a place, not only proper, but necessary; and in the ribs which adorn the vault we may in vain look for false positions. This is the ocular music which afforls universsl pleasure."

1499 d d. We now return to the consideration of two more modes of simple vaulting. In England, the summit rits of the vault are almost always found running longitudinally and transversely in the various examples. In Germany the summit ribs are more frequently omitted than introduced. Thus in the example fig. 590l, the scheme is merely a square dagonally placed within the severy, subdivided into four parts and connected with the basepoints of the groins by ribs not parallel to the alternate sides of the inserted square. This, however, sometimes occurs in English buildings, as in the monument of A rehbishop Stratford, at Canterbury Cath edral; though in that the central portion is not domical. It is to be remarked that the intersecting arehes are not of equal height, otherwise the arrangement could not occur.

1499ee. In the example fig. $590 p$, the arrangement completely assumes what Mr. Willis calls the stellat form. Here in the soffit a star of six points is the figure on which the projection depend, the points radiating from the angles of an hexagon, and thus forming a cluster of lowenges whose middle longitudinal sides produce another longitudinal lozenge to connect the centres of the pattern. The longitudinal arches are, as in the preceding figure. lower than the transverse arches. Mr. Willis says, "the prineipal distinction between these and our own finvaulting is the substitution of lozenge-headed compartments in the fans, for the English horizontal transom rib. We have also lozenge-headed compartments in our early vaulting, but they are never so symmetically arranged in stars throughout."
$1499 f f$. From tie simple lines or prineiples above

Fig. $540 p$. given, it is easy to pereeive through what numberless ramifications of form they may be carried. Another form is that called hexpartite vaulting, where the ribs spring from the angles, and two whers from a slaft placed in the middle of each long side, thus making six divisions. This is a step beyond the quadripartite groining shown in fig. 590f. Examples of hexpartite vaulting are scarce in England, hut it may be seen in the chapel of St. Blaise in Westminster Abbey, the chorr of Canterbury Cathedral, and in many parts of 1.incoln Miaster.

1499yg. It weuld be difficult to find a system of vaulting more unlike any English example than that in Anjou generally, of which the Hospital at Angers is a fair specimen. It is always excessively domical in it sections, buth longitudinal and transverse; and has eight ribs, the cells being filled in with stones exactly parallel with the centre or ridge of cach cell : the ribs are edge-roll mouldings.

1499hh. Be-ides the books named atove. Prof. Willis On Vnulting, and by T. Eagles, 1874, both read at the Roval lastitute of British Arehitects, the Dictionnaire by Vi..llet-le-Duc, the Lectures by Sir G. G. Scott, R.A., and the paper by W. H. Wood, in Builder for 1883 , xliv., 55, should be referred to. A very complete outline of the subject has been print d by Prof. Babeock, of the Cornell Lisiver ity, Ithaca, New York, for his courses of lectures.

Sect. IX.

WALIS AND PIEKS.

1500. The mickness whieh is to be assigned to walls and points of support, that their stability may be insured, depends on the weight they have to sustain, and on their formation with proper materials; still more on the proportion which their bases bear to their heights. The erushing of stone and brick, by mere superimposed weight, is of extremely rare occurrence in practice, even with soft stone and with bad brieks. The result of sume few experiments that have been made as to the resistance of some of our bricks and stones to a crushing force, hy George Rennie, in 1818, are here subjoined. Some later experiinents made by the Commissioners mentioned in Book II. chap. ii., and appended to their Report on Stone, \&e., in 1839; with a few others; as well as some important trials made in 1864 by a committee of the Institute of British Architects, given in Transaclions, 1863-64, are likewise added.

Table of Crushing Force of Materials, by George Rennie (Pliil. Trans. 1818).

1501. The ahove experiments lose mush of their practical value from our knowledge that the interior partieles in granulated substanees are protected from yielding by the lateral resistance of the exterior ones; but to what extent it is impossible to estimate, beeause so much depends on the internal structure of the body. We are, however. thus far informed, that, taking into aecount the weight with which a point of support is loaded, its thickness ought to be regulated in an inverse ratio to the erushing weight of the naterial employed. In Gothie structures we often see, for instance, in chapter houses
with a central columm, a prodizious weight superimposed It is needless to say that, in such instances, the strongest material was necessary, and we always find it so employed. So in the columns, or rather pillars, of the naves in such edifices, the greatest care was usually taken to select the hardest stone. Generally speaking, the thickness of walls and piers should be propotioned rather to their height than to the weight they are to bear; hence often the employment of a better material, though more costly, is in truth the most economical.
1502.

Table of the Weight required to Crush Cubes of Stone.

1502a. In the above list B stands for Bramah, and C for the Commissioners' Report, \&c. It is of very great importance to notice that the size of the cubes experimented upon by the latter, was only two inches; those by Rennie were only one and a half inch cubes. A set of experiments on l'ortland stone, of the weight sustained up to the point of fracture, i.e. the crushing weight, by accurately cut cubes of two inch faces placed
between perfectly smooth lead surfaces, ware earried out with the well-known American mechanical testing machine, by Mr. Abel (Builder, 1863, p. 860) : -

War Department Quariy, Vern Hill					14,795.8	lhs.
inmos hay Quarry, Whit-bed			.		$14.591 \cdot 8$	\cdots
Admuralty Quarry, Rough Whit-bed					14,387.7	"
, " Whit-bed	-	-	-	-	13,979.5	"
Base-bed	-	-	-		13,77.50	"
New . Maggott Quarry, Whit-bed					$12.857 \cdot 1$	"
Old Maggott Quarry, LI Whit-bed					$12,24 \pm \cdot 8$	"
" , " I T Base-bed	-		-	-	$12.857 \cdot 1$	"
L. I Base-bed	-	-			8,163*2	"
Indep ndent Quarry, Whit-bed -			-		11,632 6	.,
Waycroft Quarry, Base-bed -	-	-	-	-	11,836.7	"

He also observes that "no definite conelusion can be drawn from the comparative properties of the specimens of stone from one and the same locality, quarried at diflerent periods of time, regarding the influence exerted by exposure, after quarrying, upon the guality of the stone. On the whole, the evidence may be considered as a little in favour of the opinion that an improvement in the strength of the stone is effected, to some extent, by scasoning."

150 26 . A very instructive set of experiments on the strength of Portland stone (brown bed), a material now so greatly employed in Luilding, was made by a committee of the Institute, above-mentioned.

Table of the Strengtio of Cubes of Portland Stone.

Height.	Base.	Cracked.	Crushed.	On square it.ch.	Remarks.
Inches. 2	Inches.	Tons.	Tons.	Tous.	
	2×2	-	$3 \cdot 2$	0.8	At once.
	2×2	40	6.0	1.5	
	4×2	- -	$20 \cdot 2$	2.5	At once.
	26	21.0	23.5	1.7	
	4×4	$8 \cdot 0$	41.0	$2 \cdot 5$	Across the bed.
	6×6	$64 \cdot 0$	86.0	$2 \cdot 4$,	
4	2×2	-	$3 \cdot 0$	0.75	
	4×2	-	$17 \cdot 0$	212	
	4×4	2575	29.25	1 -89	
	4×4	24.25	28.75	1.85	
	4×6	31.0	$45 \cdot 0$	$1 \cdot 87$	${ }^{\text {a }}$ Very slight, external.
	6×6	$48.0{ }^{\text {a }}$	$82 \cdot 0^{\text {b }}$	$2 \cdot 27$	b Not crushed.
6	2×2	$2 \cdot 8$	$3 \cdot 4$	0.85	
	6×2	- -	$10 \cdot 0$	$0 \cdot 83$	
	4×4	18.0	$20 \cdot 45$	$1 \cdot 27$ \}	At right angles to the bed.
	6×4	$28 \cdot 0$	$32 \cdot 0$	$1: 33\}$	
	6×6	$64.0{ }^{\text {c }}$	$70 \cdot 0$	$1 \cdot 94$	c Very slightly.
	6×6	55°	68.75	$1 \cdot 90$	

1502c. C. II. Smith has (bserved (Transactions of the In titute of British Architects, 1860, page 174.), that "the stone which possesses the least cohesive strength, or that which will ernsh with less pressure than any other, is nevertheless strong enough, when well fixed in a building, for almost all practical purposes. No arehitectural members have to sustain greater pressure in proportion to their size, than mullions of large Gothic windows. The tracery in the great north window of Westminster Hall is now executed in Bath stone, which is remarkable for having the least cohesive strength of all the specimens described as expermented upon in the Report on Stone, S.e. Some of the mullions of that window are less than nine inches wide and more than forty feet higl. sustaining not only their own weight, but also that of the whole of the tracery beneath the arch. The eastern window of Carlisle Cathedral, built with a filable red sandstone, is fifty feet high, the mullions are smaller, and the tracery much heavier than in that at Westminster, yet in neither of these examples are there any symptoms of crushing. The cohesive strength of stones is never more severely tested than during their conversion by workmen from the rough state to being fixed in their final situation in a building. During these operations, iron levers, jacks, lewises, and various other implements are applied. frequently with but, little regard for the meehanical violence which a stone will salely bear ; and it may, there-
fore, he considered a useful pract cail rule, that, however soft a stone inay be, if it resist the liability of damage until out of the mason' hands, there can be little doubt of its possessing sufticient cohesive strength for any kind of architectural work. If the foundation be msufficient, or any part of the edifice give way, so as to cause an unfair or unequal presdure, a soft stone will, of eourse, yield sooner than a hard one."

1502d. "Unfortunately," writes Warr, Dynamic", 1851, " those experimental results which we possess were obtained without attention to the fact that the specimens should be of a certain height to show a proper compressive strength. The bulk of the examples ar: with cubes, a fault excusable with those experimenters who made their work public hefore those peculiarities were well known, but the same cannot be said of the investigations conducted by the Commissioners; these experiments, executed with singular minuteness on some points, would have been useful, from their variety and specification of the localitis, but they were made on (2 -inch) cubes, at a period when the laws of fracture were as puble as at present, and are therefore of limited value."

1502e. Modgkinson (Phil. Trans., 1840, p. 385), found that in small columns of one inch to one and three-quarters inch square, and from one to forty inches long, a great falling off occurred when the height was greater than twelve times the side of the base. Thus, when the length was-

12	im			ret	-	-	138
	"	"	"	"	-		little less
24	"	"	"	"	-	-	96
30	"	"	"	"	-	-	75
40		"	",	"			52

He also found that with pillars shorker than thirty times the thickness, fracture occurred hy one of the ends f.iiling, and as the longer columns deflected more than the shorter, they presented less of the base to resist the pressure, and therefore more readily gave way. Thus the practical view from these experiments points out an increase of area at the ends as being most economical, and that in proportion to the middle as 13,766 to 9,595 nearly. From the experments it would appear that the Grecian columns, which seldom had their length more than about t on times the diametar, were nearly of the form capalle of bearing the greatest weight when their shafts were uniform; and that columns, tapering from the bottom to the top, were only capable of bearing weights due to the smallest part of their section, though the larger end might serve to prevent lateral thrust. This last remark apphes, too, to the Egyptian columns, the strength of the column being only that of the smallest part of the section. (British Association for the Advancement of Science, 15% Report, 1845, p. 27.)

1502f. It might be asked, how does this apply to those small shafts or colonettes so freely used with piers in pointed architecture, and which are generally in height upwards of thirty times their diameter. We would refer the student to the paragraph $1502 c$., respecting the mullions in windows, and to the circumstance that the small shafts are not pinned-in to the work, but are left free, so that they only apparently carry the weight imposed on their capitals. Where no attention has bien paid to this necessary precaution, in modern work, the shaft has lractured when of solt, or shaky, stone.

1502g. Table of the Stnengun of Shafts 12 inches long, 3 inches diameter,
(Leing experiments made by a committee of the Institute, as above-mentioned.)

Materials.	Cracked.	Crushed.	On square inch.	Remarks.
Portland stone :	Tons.	Tons.	Tons.	All yielded vertically.
Worked	$7 \cdot 3$	$10 \cdot 25$	1.48	Bedded in leather.
Rough tooled -		$8 \cdot 57$	1.00	Belded in plaster.
Devoushire marbles :				
Ipplepen, mottled red	92	$10 \cdot 7$	1:37	[with vein.
Poltesen, grey green	$4 \cdot 3$	$4 \cdot 3$	$0 \cdot 60$	Went across and not
Ditto - - -	- -	60	$0 \cdot 84$	Went at once.
Sicnal Staff red andunck $\{$	-	33.5	$4 \cdot 73$	Went into fragments.
Signal Staff, red and hack	$20 \cdot 0$	22.5	$3 \cdot 18$	Ditto.
	12.75	16.25	$2 \cdot 9$	
Cadgewitl, green and b'ack	16.92	17.62	$2 \cdot 49$	

1502h. Fairbairn, in a paper read at the Manchester Philosophical Socicty, and given in rol. xiv. of the I'roceedings; and also in his Usefal Informution, \&e, 2nd Series, has detailed the following results of his researches:-

1502i. He further shows that the resistance of strong sandstone to crushing in a directhon parallel to the layers, is only six-sevenths of the resistance to erushing in a direction perpenclicular to the layers. The hardest stones alone give way to crushing at once, without previous warning. All others begin to erack or split under a load less than that which finally crushes them. in a proportion which ranges from a fraction little less than unity in the harder stones, down to ahout one half in the softest. The mode in which stone gives way to a crushing load is in general by shearing. The factor of safety in structures of stone should not be less than eight. in order to provide for variations in t e strength of the material, as well as for other contingencies. In some structures which have stood it is less; but there can be no doubt that these err on the side of boldness, as urged by Rankine, Civil Engineering, page 361.
$1502 k$.
Table of the Weights Required to Crusi Bricks.

Experiments by T. Cubitt.			Yielded to.		Crushed liy.		Remarks.
Good place bricks	-	-				tons	ledded on plaster.
Ditto - -	-	-	16	"	$29 \frac{1}{2}$		Ditto.
Two common stocks	-	-	10	"	$\left\{\begin{array}{l}16 \\ 16 \frac{1}{2}\end{array}\right.$		No plaster.
Good stock -	-	-	30	"	$3{ }^{+}$		
Superior "ashed stock	-	-	36		$44 \frac{1}{2}$		
Ordmary place brick	-	-		"			
Ditto - -	-	-	3	"	6		
Common ditto -	-	-	--		5 to $2 \frac{1}{2}$		

A brick made by Beale's machine being placed on bearers seven inches apart, was broken in the middle by the weight of $2,625 \mathrm{lbs}$. A common hand-made brick was broken by 645 lbs . The hollow or frog formed in the underside of a brick necessarily lessens its resisting power. Young (Nat. Phil.) states that the cohesive strength of a square inch of brick is 300 lbs ., but the quality is not stated. Other experiments give the following strength of bricks :-

1502l. Brickwork.-Brick piers 9 inches square, \simeq fect 3 inches high, made of good sound Cowley stucks, set in cement, and proved two days afterwards:-

$$
\begin{array}{llll}
& & \begin{array}{c}
\text { Cracked at } \\
\text { Brick flat, compressed quarter of an incls }
\end{array} & \begin{array}{l}
\text { Broke at } \\
30 \text { tons }
\end{array} \\
\text { Brick on edge, did not compress - } & - & - & -39,0
\end{array}
$$

1502 m . IIr. L. Clarke's experiments for the wosks at the Britannia and Conway fubular bridges, on brickwork in cubes, showed that-
9 inches, cemented, No. 1 or best quality, set between deal boards, weighing 54 lbs., crushed with 19 tons 18 cwt .
2 qrs. 22 lbs. $\quad-\quad=5 . \quad=\quad . \quad$ lbs. per square inch.
9 inches, No. 1 , set in cement, weighing 53 lhs, erushed with
22 tons 3 cwt 0 qrs. 17 lus. $\quad-\quad=619.7 \mathrm{lbs}$

9 inches, No. 3, set in cement, weighing 52 lbs , crushed with
16 tons 8 cwt 2 qrs. 8 lbs . $\quad-\quad 4543 \mathrm{lbs}$. per square inch.
$9 \frac{1}{4}$ inches, No. 4, set in cenent, weighing $55 \frac{1}{2} \mathrm{lh}$. , crushed with
21 tons $14 \mathrm{cwt} 1 \mathrm{qr} .17 \mathrm{lbs} . \quad-\quad=568.5 \mathrm{~ms}$.
9 inches, No. 4 , set between boards, weighing $54 \frac{1}{4} \mathrm{lhs}$. erushed
with 15 tons 2 ewt. 0 qrs. $12 \mathrm{lbs} . \quad=417.0 \mathrm{lbs}$.
Mean - \quad - $\quad=521.0 \mathrm{lhs}$.
The three last cubes continued to support the weight, although cracked in all directions; they fell to pieces when the load was removed. All began to show irregular erachs a considerable time before it gave way. The average weight supported by these bricks was $33 \cdot 5$ tons per square foot, equal to a column 583.69 feet high of such brickwork. (Fair. biirn, Application, \&c., page 192)
$1502 n$. To crush a mass of solid brickwork I font square, requires $300,000 \mathrm{lbs}$ avoirdupois, or 184 tons $7 \frac{1}{2}$ cwt.

1502o. Besides compresion, stone is subject to detrusion and a transverse strain, as when used in a lintel. Of these strengths in stone little is officially known, but we are perfectly aware of the danger of using any kind of stone for beams where there is much chance of serious or of irregular pressures. Its weakness in respect to this strain is manifest from all experimental evidence concerning it. Gauthey states the value of a constant S, for hard limestone $=78 \mathrm{lbs} ;$ for soft limestone $=69 \mathrm{lbs} . \quad$ Hodgkinson, taking the power of resisting a crushing force as $=1000$, notices-

			strin			
Black marble	-	-	-	-	-	-
str.in.						
Italian marble	-	-	-	-	-	-

Common bricks, $\mathrm{S}=64 \mathrm{lhs}$. (Barlow.)
1502p. The danger above noticed is so great, that it becomes essentially necessary in all rough rubble work to insert over an opening either an iron or timber lintel, or a brick or stone arch, to carry the superincumbent weight, and thus prevent any pressure upon the stone. This must be done more especially when beans or lintels of soft stone are used; the harder stones, as Portland, may in ashlar work support themselves without much danger. In rubble masonry, the stone arch may be shown without hesitation in the face of the work; and also in domestic architecture, the brick arch may exhibit itself in the facework if thonght desirable. Portland stone has been constantly used to extend over a comparatively wide opening. All blocks set upon it should have a elear bed along the middle of its length. Thus cills to windows shonld always be set with clear beds, or, as the new work settles, they are certain to be broken. Lintels over even small openings worked in Bath or some of the softer stones, are very likely to crack across by very slight settlements, especiatly when supported m their length by a mullion or small pier. as is often introduced. We need hardly add that where impact or collision is likely to occur, no lintel of stone should be used.
$1.502 q$. Marble mantles may sometimes be seen to have become bent hy their own weight. Beams of marble have been employed in Grecian temples as much as 18 feet in the clear in the pro ylaa at Athens; and marble beams 2 feet wide and 13 inches decp were hollowed out, leaving $4 \frac{3}{8}$ inches thickness at the sides and $3 \frac{1}{2}$ inches at the bott m ; these beams were about 15 fiet in the clear in the north portico of the temple at Basse near 1higaleia.
$1502 r$. The cohesive power of stone is seldom tested. The subject of crushing weights, or the compression of timber and metals, will be treated in a subsequent section ($1631 e$. et seq.) ; and the strength of some other materials will be given in the chapter Materials.

Of the Stability of Walls.

1503. In the construction of edifices there are thre degrees of stahility assignable to walls. I. One of undoubted stability; II. A mean b.tween the last; and the III. The least thickness which they ought to possess.
1504. The first case is that in which from many examples we find the thickness equal to one eighth part of the height: a mean stability is ohtained when the thickness is one tenth part of the height; and the minimum of stability when one twelth of its height. We are however, to recollect that in most buildings one wall becomes connected with another, so that stability may be obtained by considering them otherwise than as inderendent walls.
1505. That some idca m:y be formed of the difference between a wall entirely isolated and one connected with one or two others at riglit angles, we hrre give figs. 591, 592, and 593. It is obvions that in the first case (fig. 591.) a wall acted upon by the horizontal force MN, will have no resistance but from the breadth of its base; that in the second

Fig. 591
Fig. 592.
Sase (fiy. 592.) the wall GF is opposed to the force MN. so that only the triangle of it 111F: can be detached; lastly, in fig. 593. the force MN would only be effective against

Fig. 593
the trangle CGH, which would, of eourse, be greater in proportion to the increased distance of the walls CD, HI.
1506. In the first case, the unequal settlement of the soil or of the construction may produce the effect of the force MN. The wall will fall on the occurrence of an horizontal disunion between the parts.
1507. In the second case the disunion must take place obliquely, which will require a greater effort of the power MN.
1508. In the third case, in order to overturn the wall, there must be three fractures threugh the effort of MN, requiring a much more considerable forec than in the second case.
1509. We may easily conceive that the resistance of a wall standing between two others will be greater or less as the walls CD, HI are more or less distant ; so that, in an extreme approximation to one another, the fracture would be impossible, and, in the opposite case, the int. rmediate wall approaches the case of an isolated wall.

1510 Walls enclosing a space are in the preceding predicament, because they mutually tend to sustain one another at their extremities; hence their thickness should increase as their length increases.
1.511. The result of a vast number of experiments by Rondelet, whose work we are still using, will be detailed in the following observations and calculations.
1512. Let ABCD (fiy. 594.) be the face of one of the walls for enclosing a rectangular

space, EliGII (fig. 595.). Draw the diagonal BD. and abont If make Bd equal to one pighth part of the height, if great stability be required; for a mean stability, the ninth or tenth part ; and, for a light stability, the eleventh or twelfth part. If through the point d a parallel to $A B$ be drawn, the interval will give the thickness to be assigned to the great walls EF, GH, whose length is equal to $\Lambda \mathrm{D}$.
1513. The thickness of the walls EG, FH is obtained by making $A D^{\prime}$ equal to their length, and, having drawn the diagonal as before, pursuing the same operation.
1514. When the walls are of the same height but of diflerent lengths, as in fig. 596 .,

Fig. 596.

Fig 597.
the operation may be abridged by describing on the point B (fig. 597.) as a centre with a radius equal to one eighth, one tenth, or one twelfth, or such other part of the height as may be considered necessary for a solid, mean, or lighter construction, then transferring their lengths, EF, FG, GH, and HE from A to $\mathrm{D}, \mathrm{D}^{\prime}, \mathrm{D}^{\prime \prime}$, and $\mathrm{D}^{\prime \prime \prime}$; and having made the rectangles $A C, A C^{\prime}, A C^{\prime \prime}$, and $A C^{\prime \prime \prime}$, draw from the common point B the diagonals $13 \mathrm{D}, \mathrm{BD}, \mathrm{BD}^{\prime \prime}$, and $\mathrm{BD}^{\prime \prime \prime}$, cutting the small circle described on the point I 3 in diflerent points, through which parallels to $A B$ are to be drawn, and they will give the thickness of each in proportion to its length.
1515. In figs. 598. to 602 . are given the operations for finding the thicknesses of wails

enclosing polygonal areas supposed to be of the same height; thus $A D$ represents the side of tl:e hexagon (fig. 602.); AD^{\prime} that of the pentagon (fig. 601.) ; $\mathrm{AI} \mathrm{I}^{\prime \prime}$ the side of the square (fig. 599.) ; and $\mathrm{AD}^{\prime \prime \prime}$ that of the equilateral triangle (fig. 600.).
1516. It is manifest that, hy this method, we increase the thicknesses of the walls in proportion to their heights and lengths ; for one or the other, or both, cannot increase or diminish without the same happening to the diagonal.
1517. It is obvious that it is casy to calculate 10 numbers the results thus geometrically of tained by the simple rule of three; for, knowing the three sides of the tian ge $\triangle \mathrm{Bl}$).
similar to the smaller triangle $\mathrm{B} d c$, we have $\mathrm{BD}: \mathrm{B} d:: \Lambda \mathrm{D}: \mathrm{ed}$. Thus, suppose the length of wall represented by $A D=28$ feet, and its height $A B=12$ feet, we slall have the length of the diagonal $=30$ feet $5 \frac{1}{2}$ inches; and, taking the ninth part of $A B$, or 16 inehes, as the thickness to be transferred on the diagonal from 13 to d, we have 30 ft . 6 in .: $16 \mathrm{in} .:: 28 \mathrm{ft} .: 14 \mathrm{in} .: 8$ lines $(e d)$. The calculation may also be made trigonometrically; into which there is no necessity to enter, inasmuch as the rules for obtaining the result mav be referred to in the section "Trigonometry," and from thence here applied.

Method of enclosing a given Area in any regular Polygon.

1518. It is manifest that a polygon may be divided by lines from the centre to ats angles into as many triangles as it has sides. In fig. 601., on one of these triangles let fall from C (which is the vertex of each triangle) a perpendieular CD on the base or side AB which is supposed horizontal. The area of this triangle is equal to the product of $D B$ (half AB) by CD , or to the rectangle DCFB . Making $\mathrm{DB}=x, \mathrm{CD}=y$, and the area given $=p$ w shall have,

For the equilateral triangle, $x \times y \times 3=p$, or $x y=\frac{p}{3}$;
For the square, $x y \times 4=p$, or $x y=\frac{p}{4}$;
For the pentagon, $x y \times 5=p$, or $x y=\frac{p}{5}$;
For the hexagon, $x y \times 6=p$, or $x y=\frac{p}{6}$.
Each of these equations containing two unknown quantities, it becomes necessary to ascertain the proportion of x to y, which is as the sines of the angles opposite to the sides DB and CD.
1519. In the equilateral triangle this proportion is as the sine of 60 degrees to the sine of 30 degrees; that is, using a table of sines, as $86603: 50000$, or $8 \frac{2}{3}: 5$, or $26: 15$, whence

$$
x: y:: 26: 15, \text { and } 15 x=26 y ; \text { whence } y=\frac{15 x}{26^{\circ}}
$$

Substituting this value in the equation $x y=\frac{p}{3}$, we have

$$
\frac{15 x^{2}}{26}=\frac{p}{3}, \text { which becomes } x^{2}=\frac{26 p}{45}, \text { and } x=\sqrt{26 p} 4 .
$$

Supposing the area given to be 3600 , we shall therefore have

$$
x=\sqrt{\frac{3500 \times 26}{45}}=45 \cdot 6, \text { and the side } \mathrm{AB}=91 \cdot 2 .
$$

For the pentagon, $x: y:: \sin .36^{\circ}: \sin .54^{\circ}$, or as $58779: 80902$, whence

$$
y=\frac{80902 x}{58799}
$$

Substituting this value in the equation $x y=\frac{p}{5}$, we have

$$
\frac{80902 s^{2}}{58779}=\frac{3600}{5}, \text { and } x=\sqrt{\frac{58779 \times 720}{80902}} ;
$$

which makes $x=22.87$, and the side $\mathrm{AB}=45.74$.
For the hexagon, $x: y:: \sin .30^{\circ}: \sin .60^{\circ}$, or as $50000: 86603:: 5: 8 \frac{2}{3}$, whenee the value of $y=\frac{2 f_{i} x}{15}$. This value, substituted in the equation $x y=\frac{p}{6}$, will give $\frac{266^{2} 2}{15}=600$; whence $c^{2}=\frac{600 \times 15}{26}$; lastly, therefore, $x=\vee 346 \cdot 15=18 \cdot 61$, and the side $A B=37 \cdot 22$.

Geometrically.

1520. Suppose the case that of a pentagon (fig. 601.) one of whose equal triangles is ACB. Let fall the perpendicular CD, which divides it into two equal parts; whence its area is equal to the rectangle CDBF .
1521. Upon the side $A B$, prolonged, if necessary, make $D E$ equal to $C D$, and from the middle of 13 E as a centre describe the semi-circumference cutting CD in G , and GD will be the side of a square of the same area as the rectangle CDBF. The sades of similar figures (Geometry, 961.) being as the square roots of their areas; find the square root of the given area and make $\mathrm{D} g$ equal to it. From the point g draw farallels to GE and GB, which will determine on AB the points \boldsymbol{e} and b, and give on one side $\mathrm{D} b$ equal to one half of the side of the polygon sought; and. on the other, the radius De of the circumference in which it is inscribed. This is manisest because of the similar triangles EGB and eyl, from which BD: DE :: bl) : De.

1E22. From the truth that the sides of similar fgures are to each other as the square roots of their areas we arrive at a simple method of reducing any figure to a given area. lorm an angle of reduction (fig. 603.) one of whose sides is equal to the square root of the greater area, and the chord of the are, which determines the size of the angle ergual
to the square root of the smaller area. Let, for instance, the larger area $=1156$, and that of the smaller, to which the figure is to be reduced, $=529$. Draw an indefinite line, on which make $\mathrm{AB}=34$, the square root of 1156 . Lastly, from the point A, as a centre, having described an indefinite are, with a length equal to the square root 23 of 529 , set out 13%; through g draw Ag, which will be the angle of reduction $g \mathrm{AB}$, by means of which the figure may be reduced, transferring all the measures of the larger area to the line AD, with which ares are

Fig. Sez. to be described whose chords will be the sides sought.
1.523. If it be not required to reduce but to deseribe a figure whose area and form ars given, we must make a large diagram of any area larger than that sought, and then reduce it.
1524. The circle, as we bave already observed in a previous subsection (933.), being but a polygon of an infinite number of sides, it would follow that a cirealar enclosure would be st:ble with an insinitely small thickness of wall. This property may be easily demonstrated by a very simple experiment. Take, for instance, a sheet of paper, which would not easily be made to stand while extended to its full length, but the moment it is bent into the form of a cylinder it aequires a stability, though its thickness be not a thousandth part of its height.
1525. But as walls must have a certain thickness to aequire stability, inasmuch as they are composed of particles suseeptible of separation, we may consider a circular enclosure as a regular polyron of twelve sides, and determine its thickness by the preceding proeess. Or, to render the operation more simple, find the thickness of a straight wall whose length is equal to one half the radius.
1526. Suppose, for example, a circular space of 56 ft . diameter and 18 ft . high, and the thickness of the wall be required. Deseribe the rectangle ABCD) (fig. 594.), whowe base is equal to half the radius, that is, 14 ft ., and whose height Al 1s 18 ft . ; then, drawing the diagonal BD, make $B d$ equal to the ninth part of the height, that is, 2 lt . Through d draw ad parallel to the base, and its length will represent the thickness sought, which is $14 \frac{3}{\frac{3}{2}}$ inches.
1527. By calculation. Add the square of the height to that of half the radins, that is, of $18=324$, and of $14=196(=520)$. Then extract the square root of 520 , which will be found $=22 \cdot 8$, and this will he the value of the diagonal BD. Then we have the following proportion : $22 \cdot 8: 14:: 2 \mathrm{ft}$. (19 the height) $: 14 \cdot 74$.
1528. The exterior wall of the church of St. Stefuno Rotondo at Rome (Temple of Clandius) ineloses a site 198 feet dianeter. The wall, which is contructed of rubble masonry faced with bricks, is 2 ft .4 il . (Freneh) thick, and $22 \frac{1}{2} \mathrm{ft}$. high. In ap,plying to it the preceding rule, we shall find the diagonal of the rectangle, whose base would be the side of a polygon, equal to half the radius and $22 \frac{1}{2} \mathrm{ft}$. high, would be $\sqrt{ } 49 \frac{1}{2} \times 49 \frac{1}{2}+22 \frac{1}{2} \times 22 \frac{1}{2}=54 \frac{37}{100}$. Then, using the proportion $54 \cdot 37: 49 \cdot 5:: \frac{29 \frac{1}{2}}{9}: 2 \mathrm{ft}$. 3 in . and 4 lines the thickness sought, instead of 2 ft .4 in ., the aetual thickness. We may as well mention in this place that a circle eneloses the greatest quantity of area with the least quantity of walling; and of polygons, those with a greater number of sides more than those with a lesser: the proportion of the wall in the circle being 31416 to an area of 78540000 ; whilst in a square, for the same area, a length of wall equal to 35448 would be required. As the square falls away to a flat parallelogram, say one whose sides are half as great, and the others double the length of those of the square, or $177 \Omega 4$ by 4431 , in which the area will be about 78540000 , as before; we have in such a ease a length of walling $=44310$.

On the Thickness of Walls in Euildings not vaulted.

1529. The walls of a building are usually comected and stiffened by the timbers of the roof, supposing that to be well constructel. Some of the larger edifices, such as the ancient hasilice at Rome, have no other covering but the roof; others have only a simple ceiling under the roof; whereas, in palaces and other habitations, there are sometimes two or more floors introduced in the roof.
1530. We will begin with those edifices covered with merely a roof of carpentry, which are, after mere walls of enclosure, the most simple.
1531. Among edifices of this speeies, there are some with continueit points of support, such as those wherein the walls are comected and mutually support each other ; others in which the points of support are nut comnected with each other, such as piers, columns, and pilasters, united only by areades which spring from them.
1532. When the carpentry forming the roof of an edifice is of great extent, instead o! being injurious to the stability of the walls or points of support, it is useful in keeping thetu together.
1533. Many edifices exist wherein the walls and points of support would not stand without the aid of the caipentry of the roofs that cover them.
1534. The old basilica of St. Pholo, fuori le murà at Rome was divided into five nave: formed by four ranks of columns connected by areades, which carried the walls whereon tho roof rested; the centre nave $73 \frac{1}{2} \mathrm{ft}$. (l'renels) wide, and 93 ft .10 in . high. The walls of it are erected on columns 31 ft . 9 in . high, and their thickness is a little less than 3 ft ., that is, only $\frac{1}{32}$ part of their height.
1535. At Hadrian's Villa the most lofty walls, still standing, were but sixteen times their thickness in height, and 51 ft .9 in . long. The walls were the enelosures of large halls with only a single story, but assisted at their ends by cross walls. And we may therefore conclude that if the walls of the basilica above mentioned were not kept in their places by the earpentry of the great roof they would not be safe. It is curions that this supposition, under the theory, was proved by the fire which destroyed the chnreh of St. Paolo in 1823. The walls which form the mave of the church of Santa Sabina are raised on columns altogether 52 ft . high; they are 145 ft . long, and somewhat less than 2 ft ., that is, $\frac{1}{26}$ part of their height, in thickness. They are, thereiore, not in a condition of stability without the aid of the roof. In comparing, however, the thickness of these walls with the height only of the side aisles, in the basitiea of St. Paolo the thickness is $\frac{1}{17}$, and at Santa Sabina $\frac{1}{13}$. In the cther basilice or churches with columns, the least thickness of wall is $\frac{1}{2 z}$ of greater proportion uncomected with the nave, as at Santa Maria Maggiore, Santa Maria in Trastevere, St. Chrysogono, St. l'ietro in Vincolo, in Rome; St. Lorenzo and St. Spirito, in Florence; St. Filippo Neri, at Naples; St. Giuseppe and St. Dominico, at Palermo.
1536. We must take into account, moreover, that the thickness of walls depends as much on the manner in which they are constructed, as on their height and the weight with which they are loaded. A wall of rough or squared stone 12 inches thick, wherein all the stones run right through the walls in one piece, is sometimes stronger than one of 18 or 20 inches in thiekness, in which the depth of the stones is not more than half or a third of the thick. ness, and the inner part filled in with rubble in a bad careless way. We are also to recollect that stability more than strength is ofttimes the safeguard of a building; for it is certain that a wall of hard stone 4 inches thick would be stronger than would be necessary to bear a load equal to four or tive stories, where a thickness of 18 inches is used; and yet it is manifest that such a wall would be very unstable, because of the narrowness of the base.
1537. From an examination which Rondelet made of 280 buildings in France and Italy, ancient as well as modern, he fomen that in those covered with roofs of two inclined sides and constructed in framed carpentry, with and without ceilings, and so trussed as not to act at all horizontally upon the walls, the least thickness in brick or rough stones was $\frac{1}{23}$ of the width in the clear.
1538. In private houses, divided into several stories ly floors, it was observed, generally, that the exterior walls ran from 15 to 24 inches, party walls 16 to 20 inches, and partition walls 12 to 18 inches.
1.539. In buildings on a larger seale, exterior walls 2 to 3 feet thick, party walls 20 to 24 inches, partition walls 15 to 20 inches.
1539. In palaces and buildings of great importance, whose ground floors are vaulted, the exterior walls varied from 4 to 9 feet, and the partition walls from 2 to 6 feet. In many of the examples which underwent examination, the thicknesses of the walls and points of support were not always well proportioned to their position, to the space they enclosed, nor to the loads they bore. In some, great voids oceur, and considerable loads were supplied with but slender walls and points of support ; and in others, very thick walls enclosed very small spaces, and strong points of support had but little to carry.
1540. For the purpose of establishing some method which in a sure and simple mamer would determine the thickness of walls in louidings whiels are not arched, we have considered, says Rondelet, that the tie-beams of the trusses of carpentry whereof the roofs are composed, being always placed in the direction of the width, as well as the girders and leading timbers of floors, serve rather to steady and connect the opposite walls; but, considering the elasticity and flexibility of timber, it is foum that they strain the walls which support them in proportion to the widths of the spaces enclosel, whence it becomes olten the better plan to determine the thickness of the walls from the width and height of the apartments requisite. Hence the following rules.

First Rule.

1542. In buildings covered with a simple roof, if the walls are insulated throughout, their height up to the under side of the tie-beams of the trusses, being as shown in fig. 604 . Having drawn the diagonal BD and thereon made $13 b$ and $\mathrm{D} l$, equal to the twelfth part of the height Al3, then through the points b and d, draw lines parallel to BA and 1 C , which will bound the thickness of the walls required.
1.543. If the height AB and widtin AD be known, the thickaess Ac may be calculated,
sceing that $B D=\sqrt{A B^{2}+\overline{A D}}$; knowing the value of $B D$, we have that of $c A$ by the proportion $B D: A D:: 1 B b: c A=\frac{A D \times B b}{B D}$.

First Example.

1544. Supposing the width $A D=24 \mathrm{ft}$., and the height $A B=32$, we shall have

$$
\sqrt{\mathrm{AB}^{2}+\mathrm{AD}}=\sqrt{24 \times 24+32 \times 32} ; \text { whence }
$$

$$
\mathrm{BD}=\sqrt{576+1024}=\sqrt{1600}=40 \mathrm{ft} .
$$

$13 b$, which is the twelfth part of AB, or of $32 \mathrm{ft} .=2 \mathrm{ft} .8 \mathrm{in}$. ; the thickness of the wall expressed by $\frac{\mathrm{AD} \times \mathrm{B} b}{\mathrm{BD}}$, will be $\frac{24 \times \frac{2}{3}}{40}=1 \frac{3}{5} \mathrm{ft}$, or 1 ft .7 in .2 lines, for the thickness sought.
1545. If the walls supporting the roof were stiffened by extra means, such as lower roofs at an intermediate height, as in churches with a nave and side aisles, we may make lie in the diagonal BD) (fig. 605.) equal to one twelfth of the height above the springing of the side roofs, and ef a twenty-fourth part of that height below it, and draw through the point f a line

Fig. 604. parallel to AB, which will determine the thiekness $A f^{\prime}$ sought; or, which amounts to the same thing, add together the total height AB of the interior, and that of E B above the point of support, E , whereof take the twenty-fourth part, which will be equal to $\mathrm{B} e+e f$.

Second Example.
1546. Fig. 605. is a section of St. Paolo fuorì le murà, near Rome, as it was in 1816.

The interior height to the under side of the tie-beams is 93 ft .10 in . (French), whereof 26 ft .2 in . is the exterior height above the roofs of the side aisles. These two dimensions together make 120 ft ., whose twenty-fourth part is 5 ft ., to which, on the diagonal BD) make $B f$ equal; then from the point f letting fall a vertical line, the horizontal line Be will determine the thickness, which will be 3 ft ., the width of the nave being 73 ft .6 in . In figures, as follows: -

$$
\mathrm{BD}=\sqrt{93 \mathrm{ft} .10 \mathrm{in} . \times 93 \mathrm{ft} .10 \mathrm{in} .+73 \mathrm{ft} .6} \mathrm{in.} \mathrm{\times 73ft.6in.}=\sqrt{14207}=119 \mathrm{ft} .2 \mathrm{in} .
$$

1547. For the thickness, $e \mathrm{~B}$, as before, $\mathrm{BD}: \mathrm{AD}:: \mathrm{Bf}: \mathrm{Af} ;$ whence, $\mathrm{A} f^{\prime}=\frac{\mathrm{AD}}{\mathrm{BD}} \mathrm{Bj}$ $\frac{73 \frac{1}{2} \times 5}{19 \mathrm{f} .2 \mathrm{in} .}=3 \mathrm{ft}$. 1 in ., instead of 2 ft . II in. 9 lines, the actual thickness of the walls.
1.549. The same calculation being applied to the walls of the nave of Santa Sabina
(Rome), whose height of nave is 51 ft .2 in , and width 42 ft .2 in ., with a height (f 16 ft . of wall above the side aisles, gives 21 in . 4 lines, and they are actually a little less tha: 24 in .
1548. In the church of Santa Maria Margiore, the width is $5 \div \mathrm{ft} .7 \frac{1}{2} \mathrm{in}$., and 56 ft .6 in . and 4 lines ligh, to the ceiling under the roof. 'The height of the wall above the sic'e aisles is 19 ft .8 m ., and the calculation requires the thekness of the walls to be $26 \frac{1}{4} \mathrm{in}$. instead of $28 \frac{1}{i n}$., their actual thickness.
1549. In the ehurch of St. Lorenzo, at Florence, the internal width of the nave is 37 ft .9 in ., and the height 69 ft . to the wooden ceiling; from the side aisles the wall is 18 ft . high. The result of the calculation is 21 in ., and the actual execution 21 in . and 6 lines.
15.51. The church of Santo Spirito, in the same city, which has a wooden ceiling sus. pended to the trusses of the roof, is 76 ft . high and 37 ft .4 in . wide in the nave the walls rise 19 ft . above the side aisles. From an application of the rule the thickness should be 21 in. 3 lines, and their thickness is $22 \frac{1}{2} \mathrm{in}$.
15.52. In the chureh of St. I'hilippo Neri, at Naples, the calculation requires a thickness of 21 in ., their actual thickness being $22 \frac{1}{2} \mathrm{in}$.
1550. In the churches here cited, the extemal walls are much thicker; which was ne. cessary, from the lower roofs being applied as leantoes, and henee having a tendency, in case of defective framing of them, to thrust out the extermal walls. Thus, in the church of St. Paolo, the walls are 7 ft . thick, their height 40 ft . 3 ft .4 in . only being the thickness required by the rule. A resistance is thus given capable of assisting the walls of the aisles, which are raised on isolated columns, and one which they require.
1551. In the church of Santa Sabina, the exterior wall, which is 26 ft . high, is, as the rule indicates, 26 in . thick ; but the nave is flanked with a single aisle only on each side, and the walls of the nave are thicker in proportion to the height, and are not so high. For at St. Paolo the thickness of the walls is only $\frac{1}{2}$ of the interior width, whilst at Santa Sabina it is $\frac{1}{2}$. At Sim Lorenzo and San Spirito the introduction of the side ehapels allords great assistance to the external walls.

Srconn Rule.

For the Thickness of Walls of Houses of more thrm one Story.
1555. As in the preceding case, the rules which Rondelet gives are the result of observations on a vast number of buildings that have been executed, so that the method proposed is founded on practice as well as on theory.
1556. In ordinary houses, wherein the height of the floors rarely exceeds 12 to 15 ft ., in order to apportion the proper thickness to the interior or partition walls, we must he guided by the widths of the spaces they scparate, and the number of floors they hase to carry. With reppect to the extemal walls, their thickness will depend on the depth and height of the building. 'Thus a single house. as the phrase is, that is, only one set of apartments in depth, requires thicker external walls than a double house, that is, more than one apartmont in depth, of the same sort and height ; because the stability is in the inverse ratio of the width.
1557. Let us take the first of the two cases (fig. 606.), whose depth is 24 ft . and height

Fig. f,06.
to the under side of the roof 36 ft . Add to 24 ft . the hall' of the height, 18 , and take $\frac{1}{2}$ part of the sum 42 , that is, 21 in ., for the least thickness of each of the external walls above the set-nff on the ground floor. For a mean stability add an inch, and for one still more solid add two inches.
1558. In the case of a double house (fig. 607.) with a depth of 42 ft , and of the same height as the preceding example, add half the height to the width of the building; that is, g1 to 18 , and $\frac{1}{24}$ of the sum $=19 \frac{1}{2}$ is the thickness of the walls. To determine the thickness of the partition walls, add to their distance from each other the height of the story, and take $\frac{1}{36}$ of the sum. Thus, to find the thickness of the wall IK, which divides the space I.M into two parts and is 32 ft ., add the height of the story, which we will take at 10 ft , making in all 42 ft ., and take $\frac{1}{36}$ or 14 in . Half an inch may be added for each story abore the ground floor. Thus, where three stories oceur above the ground floor, the thickness in
the lower one would be $15 \frac{1}{2}$ in., a thickness which is well caleulated for brieks and stone, whose hardness is of a mean description.
1559. For the wall $A B$, which divides the space between the external walls, equal to 3.5 ft ., add to it the height, which is 10 ft ., and $\frac{1}{6}$ of 4.5 , the smm of the two; that is, 15 in . is the thickness required for the wall, if only to be carried up a single story; but if through more, then add half an inch, as before, for each story above the ground floor. For the spaces NO, PQ, RS, in this and the preceding figure, the repetition of the operation will give their thicknesses.

1560 . To illustra'e what has been said, fig. 609. is introduced to the reader, being

Fig. 607. the plan of a house in the liue d'Enfer, near the Luxembourg, known as the Hotel Vendorre,

Fig. 608.
bult hy Ie Blond. It is given hy N'Aviler in his Cours. d'Architecture. The louilding is 46 ft dieep on the right side and 47 ft . in the middle, and is 33 ft . high from the parement to the entablature. Hence, to obtain the thickness of the walls on the line FF, take the sum of the height and width $=\frac{47+33}{2}=40 \mathrm{ft}$., whose twenty-fourth part is 20 in . The building being one of solidity, let 2 in . be added, and we oltain 22 in . instead of 2 ft , which is their actual thickness. For the thickness of the interior wall, which crosses the buitding in the direction of its length, the space between the exterior walts being 42 ft . and the height of each story 14 ft ., the thichness of this wall should be ${ }^{42+14} 36=18 \mathrm{in} .8$ lines, instead of 18 in ., which the arehitect assigned to it.
1561. By the same mode of operation, we shall find that the thickness of the wall R , separating the salon, which is 22 ft . wide, from the dining-room, which is 18 ft . wide and 14 ft . high, should be 18 in . and 6 lines instead of 18 inches ; but as the exterior walls, which are of wrought stone, are 2 ft . thick, and their stability greater than the rule requires, the interior will be found to have the requisite stability without any addition to their thickness.
1.569. We shall conclude the observations under this head, by reference to a house built by Palladio for the brothers Mocenigo, of Venice, to be found in his works, and here given (.fiy. 609.). Most of the buildings of this master are vaulted below ; but the one in question is not in that predicament. The width and height of the prineipal rooms is 16 ft ., and they are separated by others only 8 ft . wide, so that the width which each wall separates is $2.5 \frac{1}{\mathrm{ft}}$., and their thiekness consequently slould be ${ }^{25 \frac{1}{2}+16} 36=13 \mathrm{in}$. 10 lines. The walls, as executed,

Fig. 609.
are 14 in. in thickness. The exterior walls being 24 ft . high, and the depth of the building 46 ft . Their thickness by the rule should be $15 \frac{1}{2} \mathrm{in}$. : :hey are 18 in .

On passing the Metropolitan Building Act in 1855 , previous to which the thicknesses of walls depended on buildings falling within certain clasees or rates, we had the satisfaction of advising the Govermment to adopt the thieknesses of walls now directed to be used. These are based upon rules deduced from sections 1512 et seq. Inasmuch, however, as it was thought that builders might be liable to mistakes in extracting the square root of the sum of the squares of the heiohts and lengths of walls, tahles were inserted in the Act to meet all cases.

Generaliy the formula $t=\frac{h}{d /}$ will be a uceful guide in adjusting the thickness of walls, in which $t=$ thickness, h and l respectively the height and length, d the diagonal formed by the hejght and length, and n a constant determised by the nature of the building. In the tables for dwelling-houses, the constant multiplier (n) used was 22 ; for warehouses, Ω. And but for the iuterference in committee of the present Right Hon. Member for Oxfordshire (Mr. Henley), for what scientific reasons it is difficult to say, the constant maltiplier for publie buildings would have been 18 .

When h is less than $\frac{l}{2}$, the constants are $2 \%, 23$, and 20 respectively.

Of the Stability of Piers or Points of Suphort.

1563. Let ABCD (fig. 610.) be a pier with a square base whose resistance is required in respect of a power at M acting to overturn it horizontally in the direction MA, or obliquely in that of NA upon the point D. Considering the solid reduced to a plane passing through \mathcal{G}, the centre of gravity of the pier, and the point 1), that upon which the power is supposed to canse it to turn, let fall from G the veltical cutting the hase in I, to which we will suppose the weight of the pier suspended, and then supposing the pier removed, we only have to consider the angular lever BDI or HIDI, whose arms are determined by perpendiculars drawn from the futerum D, in one direction vertical with the weight, and in the other perpendicular to the direction of the power acting upon the pier, according to the

Fig. 610. theory of the lever explained in a previous section.
1564. The direction of the weight IR being always represented by a vertical let fall from the centre of gravity, the arm of its lever II never changes, whatever the direction of the power and the height at which it is applied, whilst the arm of the lever of the power varies as its position and direction. That there may be equilibrium between the effort of the power and the resistance of the pier, in the first case, when the power M acts in an horizontal direction, we have $M: R:: I D: D B$, whence $M \times D B=R \times I D$ and $M=1 R \times 11$. If the direction of the power be oblique, as NA in the ease of an equilibrium, $\mathrm{N}: \mathrm{R}:: \mathrm{ID}$: DH; hence $\mathrm{N} \times \mathrm{DH}=\mathrm{R} \times \| \mathrm{D}$ and $\mathrm{N}=\frac{\mathrm{R} \times 1 \mathrm{D}}{\mathrm{DH}}$.
1565. Applying this in an example, let the height of the pier be 12 ft ., its width 4 ft ., and its thickness 1 ft . The weight K of the pier may be represented by its cube, and is therefore $12 \times 4 \times 1=48$. The arm of its lever ID will be 2 , and we will take the horizontal power M represented by DB at 12 ; with these values we shall have $\mathrm{M}: 48:: 2: 12$; hence $\mathrm{M} \times 12=48 \times 2$ and $\mathrm{M}=\frac{48 \times 2}{12}=8$.

That is, the effort of the horizontal power M should be equal to the weight of S eube feet of the materials whereof the pier is composed, to be in equilibrium.
1566. In respect of the oblique power which acts in the direction NA , supposing DH $=7 \dot{3}$, we have $\mathrm{N}: 48:: 2: 7 \frac{1}{3}$, whence $\mathrm{N} \times 7 \frac{1}{5}=48 \times 2$, therefore $\mathrm{N}=\frac{48 \times 2}{7 \frac{1}{3}}=13 \frac{1}{3}$, whilst the
expression of the horizontal power II was only 8 ft ; but it must be observed, that the arm of the lever is 12 , whilst that of the power N is but $7 \frac{1}{5} \mathrm{ft}$; but $13 \frac{1}{3} \times 7 \frac{1}{5}=8 \times 12=96$, which is also equal to the resistance of the pier expressed by $12 \times 4 \times 2=96$ It is moreover essential to observe, that, considering the power NA as the result of two others, Mil and $\mathrm{FA} A$, the first acting horizontally from M against A, tends to overthrow the pier ; whilst the second, acting vertically in the direction FA , partly modifies this effeet by increasing the resistance of the pier.
1567. Suppose the power NA to make an angle of 53 degrees with the vertical AF, and of 37 degrees with the horizontal line $A \mathrm{M}$; then

$$
\text { NA }: \text { FA }: \text { MA }:: \text { rad. }: \sin .37 \text { deg. }: \sin .53 \text { deg. }:: 6: 10: 8
$$

Hence, NA being found $=13 \frac{1}{3}$, we have $6: 10: 8:: 13 \frac{1}{3}: 8: 102$.
Whence it is evident that, from this resolution of the power $\mathrm{N} A$, the resistance of the pier is increased by the effort of the power $\mathrm{F} A=8$, which, acting on the point A in the direction FA , will make the arm of its lever $\mathrm{CD}=4$, whence its effort $=8 \times 4=32$.
1568. The resistance of the pier, being thus found $=96$, becomes by the effort of the power $\mathrm{FA}=96+32=128$.
1569. 'The effort of the horizontal power M being $10 \frac{2}{3}$, and the arm of its lever being always 12 , its effort 128 will be equal to the resistance of the pier, which proves that in this resolution we have, as before, the effort and the resistance equal. The application of this proposition is extremely useful in valuing exactly the effeets of parts of buildings which become stable by means of oblique and lateral thrusts.

15\%0. If it be required to know what should be the increased width of the pier to comterpoise the vertical effort FA, its expression must be divided ${ }^{1}$,y 11 , that is, 8×2, which gives 4 for this increased length, and for the expression of its resistance $(12+4) \times 4 \times 2$ $=128$, as above.
1571. If the effort of the power be known, and the thickness of a pier or wall wh se height is known be sought so as to resist it, let the power and parts of the pier be represented by different letters, as follows. Calling the power p, the height of the pier d, the thickness sought x; if the power p act in an horizontal direction at the extremity of the wall or pier, its expression will be $p \times d$. 'The resistance of the pier will be expressed by its area multiplied by its aren ol lever, that is, $d \times x \times \frac{x}{2}$; and supposing equilibrium, as the resistance must be equal to the thrust, we shall have the equation $p \times d=d \times x \times{ }_{2}^{x}$. Both sides of this equation being divisble by d, we have $p=x \times \frac{x}{2}$; and as the second term is divided by 2 , we obtain $2 p=x \times x$ or x^{2}; that is, a square whose are: $=2 p$, and of which x is the side or root, or $x=\sqrt{ } 2 p$, a formmata which in all cases expresses the thickness to be given to the pier CD to resist a power Maeting on its upper extremity in the horizonal direction MA.
1572. In this formula, the height of the pier need not be known to find the value of x, bocause this height, being common to the pier and the arm of the lever of the power, does not alter the result; for the cube of the pier, which represents its weight, inereases or diminishes in the same ratio as the lever. 'Thus, if' the height of the pier be 12,15 , or 24 ft , its thickness will nevertheless be the same.

Example. - If the horizontal power expressed by p in the formula $x=\sqrt{2 p}$ be 8 , we tave $x=\sqrt{16}=4$ for the thickness of the pier. Whilst the power acting at the extremity of the pier remains the same, the thickness is sufficient, whatever the height of the pier. Thus for a height of 12 ft . the effort of the power will be $8 \times 12=96$, and the resistance $12 \times 4 \times 2=96$. If the pier be 15 ft . high, its resistance will be $15 \times 4 \times 2=120$, and the effort of the power $8 \times 15=120$. Lastly, if the height be 24 ft ., the resistance will be $24 \times 4 \times 2=192$, and the effort of the power $8 \times 24=192$.
1573. If the point on which the horizontal force acts is lower than the wall or pier, the difference may be represented by f; and then $p \times(d-f)=d \times x \times{ }_{2}^{x}$;

Which becomes $2 p d-2 p f=d x^{2}$ and $2 p-\frac{2 p f}{d}=x^{2}$;

Suppose $p=9 . f=6$ and $d=12$,
the formula becomes $x=\sqrt{18-\frac{18 \times 6}{12}}=\sqrt{9}=3$, which is the thickness sought.
1574. When the power NA is oblique, the thickness may be equally well found by the arm of lever 1)II, by resolving it into two forces, as before. Thus, in the case of the obligue power $p=13 \frac{1}{3}$, calling f its arm of lever $7 \frac{1}{5}$, we shall have $p \times f=\frac{\pi}{2} x^{2}$, which will become $\frac{2 \mu f}{d}$ $=x^{2}$, whence $x=\sqrt{d}{ }_{d}^{2 f}$; in which, substituting the known values, we have $x=\sqrt{2 \times 13 \frac{1}{3} \times 7 \frac{1}{6}}$ whence $x=\sqrt{16}=4$, the thichness sought of the pier.
1575. In resolving the oblique effort NA into two forces, whereof one MA tends to overturn the pier by acting in an horizontal direction, and the other $f .1$ to strengthen it by aeting vertically, as before observed; let us represent the horizontal effort 11 A by p; its arm of lever, equal to the height of the pier, by d; the vertical effort f A by n; the arm of lever of the last-named effort, being the thickness sought, will be x; from which we have the equation

$$
p d=\frac{d x^{2}}{2}+n x, \text { or }{ }^{9} p=x^{2}+\frac{2 n x}{d}
$$

1576. As the second member of this equation is not a perfect square, let there be added to each side the term wanting, that is, the square ${ }^{n}{ }^{2}$, the half of the quantity $\frac{2 \pi}{4}$, which multiplied x in the second term, whence

$$
\frac{9}{-p}+\frac{n^{2}}{d^{2}}=x^{2}+\frac{2 n x}{d}+\frac{n}{d}
$$

1577. The second nember, by this addition, having become a square whose rost is $x+\frac{n}{d}$, we shall bave $x+\frac{n}{d}-\sqrt{2 p+\frac{n^{2}}{d^{2}}}$ and lastly $x=\sqrt{2 p+\frac{n^{2}}{d^{2}}-\frac{n}{d}}$ will be the general formulat for finding the thickness x.

Application of the Formula.

1578. Let $p=10 \frac{2}{3}, n=8, d=12$. Substituting these values in the formula, it will become

$$
x=\sqrt{10_{3}^{2} \times 2+} \frac{64}{17}-\frac{8}{12}=\sqrt{ } 21 \frac{1}{3}+\frac{4}{9}-\frac{2}{3}=\sqrt{ } 21+\frac{7}{9}-\frac{2}{3}=4 .
$$

1579. If, for proof, we wish to calculate the expression of the resistance, by placing in the equation of equilibrium $2 p d=d x_{\tilde{2}}^{x} \times n x$, the values of the quantities p, d, and x, above found, we slall have
$10 \frac{2}{3} \times 12=12 \times 4 \times 2+8=128$, as was previonsly found for FA.
1580. From the preceding rules, it appears that all the effects whose tendency is to destroy an edifice, arise from weight acting in an inverse ratio to the obstacles with which it meets. When heavy bodies are merely laid on one another, the result of their efforts is a simple pressure, capable of producing settlement or fracture of the parts acted upon.
1581. Foundations whose bases are spread over a much greater extent than the walls imposed upon them, are more susceptible of settlement than of erushing or fracture. But isolated points of support in the upper parts, which sometimes carry great weights on a small superficies, are susceptible both of settlement and crushing, whilst the weight they have to sustain is greater than the force of the materials whereof they are formed; which renders the knowledge of the strength of materials an object of consequence in construction. 'Till of late years it was not thought necessary to pay much attention to this branch of construction, because most species of stone are more than sufficiently hard for the greatest number of cases. Thus, the abundant thickness which the ancients generally gave to all the parts of their buildings, proves that with them this was not a subject of consideration; and the more remotely we go into antiquity, the more massive is the construction found to be. At last, experience taught the architect to make his buildings less heavy. Columns, which among the Fgyptians were only 5 or 6 diameters high, were carried to 9 dimeters by the Greeks in the Ionic and Corinthian orders. The lomans made their columns still higher, and imparted greater general lightness to their buildings. It was under the reign of Constantine, towards the end of the empire, that builders without taste carried their boldness in light construction to an extraordinary degree, as in the ancient basilica of St. Peter's at Rome and St. Paolo fuorì le murà. Later, however, churehes of a different character, and of still greater lightness, were introduced by the Gothic architeets.
1.582. The invention and general use of domes created a very great load upon the supporting piers; and the earlier architects, fearful of the mass to be carried, gave their piers an area of base much greater than was required by the load supported, and the nature of the stone used to support it. They, moreover, in this respect, did little more than imitate one another. The piers were constructed in form and dimensions suited rather to the arrangement and decoration of the building that was designed, than to a due apportionment of the size and weight to the load to be borne; so that their difference from one another is in every respect very considerable.
The piers bearing the dome of St. Peter's at Rome are loaded with a weight of 14.964 tons for every superficial foot of their horizontal section.
The piers bearing the dome of St. Paul's at London are loaded with a weight of 17.705 tons for every superficial foot of their horizontal section.
The piers bearing the dome of the Hospital of Invalids at Paris are loaded with a weight of 13.598 tons for every superficial foot of their horizontal section.
The piers bearing the dome of the Pantheon (St. Genevive) at Pars are loaded with a weight of 26.934 tons for every superficial foot of their horizontal section.
The columus of St. Paolo fuori le mura, near Rome, are loaded with a weight of 18.123 tons for every superticial foot of their horizontal section,

In the church of St. Méry, the piers of the tower are loaded with upwards of 27 tons to the superticial foot. With such a diserepaney, it is diffienlt to say, without a most perfuct knowledge of the stime employed, what should be the exact weight per fort. The dome of the Hoppital of the Invalids seems to extibit a maximum of pier in relation to the weight, and that of the Pantieon at Paris a minimum. 'The weakest sandtenes (used in building) will bear a compression of 120 tons per foot, while ordinary bulding stones tange from 140 to 500 tous per square foot; granites and traps 700 or 800 tons per square foot (Building Construction, 1879, part 3, p. 8). Stones in some form of arches. letaining walls, \&e., are more liable to be crushed by reason of the pressure be ing concentrated upon certain points; and walls wherein differcnt qualitits of stone are used are subjected to strains by reason of inferior stones decaying, leaving their duty to be taken by others of better quality. Settlements in a wall bring on strains not expected.

Ratio of the Points of Support in a Building to its total Superfictes.

1583. In the pages immediately preceding, we have, with Rondelet for our guiac, explained the principles whereon depend the stabilities of walls and points of support, with their application to different sorts of buildings. Not any point relating to construction is of more importance to the architect. Without a knowledge of it. and the mode of even generating new styles from it, he is nothing more than a pleasing draughtsman at the best, whose elevations and sections may be very captivating, but who must be content to take rank in about the same degree as the portrait painter does in comparison with him who paints history. We subjoin a table of great instruction, showing the ratio of the points of support to the total superficies covered in some of the principal buildings of Europe. It exhibits also the comparative sizes of the diflerent buildings named in it.
Table showing tife ratio of tue Walls and Ponets of Suppoit of the principal Edifices of Eurore to the total $\Lambda_{\text {rea when they occupy. }}$

Names of Edifices.	Total Area of the Building in English superficial feet.	Total Area of the Points of Support in Enulish superficiat feet.	Ratio in Thousandths of the Points of Support to the totat Area.
The Pantheon at Rome	34,328	7,954	$0 \cdot 232$
Temple of Peace at Rome	67,123	8,571	0.127
Great temple at Pæstum	15,353	2,649	$0 \cdot 172$
Ancient temple, Galuzzo, at Rome	9,206	2,167	$0 \cdot 235$
Temple of Concord, Girgenti, Sicily	6,849	1,330	0.194
Temple of Juno Lucina, Sicily	6,821	1,110	$0 \cdot 163$
Central building of the baths of Caracalla	275,503	48,911	$0 \cdot 176$
Central building of the baths of Diocletian	351,6:36	58,797	0.167
'Temple of Claudius at Rome, now chureh of S. Stefano	36,726	2,051	0.056
Mosifue of S. Sophia at Constantinople	103,260	22,567	$0 \cdot 217$
Basilica of S. Paolo fuore le murà (Rome), 1816	106,513	12,655	0.118
Duomo of S. Maria del fiore at Florence	84.802	17,030	$0 \cdot 201$
B:mmo of S . Maria del fiore at Milan	125,8.53	21,635	0.169
St. Peter's at Rome, as excented	227,069	59,308	$0 \cdot 261$
St. Peter's at liome, as projected ly Bramante	213,610	46,879	$0 \cdot 219$
Church of S. Vitale at Ravenna -	7,276	1,142	$0 \cdot 157$
Chureh of S. lietro a Vincola, Rome -	21,520	3,353	$0 \cdot 155$
Church of'S. Sabino - destroyed	15,139	1,543	$0 \cdot 100$
Church of S. Domenico, Palermo	34,144	4,988	$0 \cdot 146$
Church of S. Giuseppe, Palermo	26,046	3,611	0-139
Chureh of S. Filippo Neri, Naples	22,826	2,944	0.129
Church of St. I'aul's, London	84,025	14,311	$0 \cdot 170$
Clinrel of Notre Dame, Paris	67,343	8,784	O-140
Hotel of the Invalids, laris	29,003	7,790	$0 \cdot 268$
Church of S. Sulpice, Paris -	60,760	9,127	$0 \cdot 151$
Church of S. Geneviéve, Paris	60,287	9,269	$0 \cdot 154$

1583a. It will be manifest, that as these points of support are diminished in area, in respeet of the mass, so is a greater degree of skitl exlubited in the work. From the following table, it will be seen that, in seventeen celebrated mediaval editices, the ratio of their points of support to their whole areas varies from $\cdot 116$ to $\cdot 238$, nearly doulle. It is curious to observe the high rank borne in this table by Henry V'll.'s chapel ; generally, ahill seems to have increased with greater experience:-

TABIE OF POINTS OF SUPPORT.

Building.	Century.	Part of Century.	Ration of Points of Support to their whole areas.
1 Innry VII.'s Chitpel - -	16	Pirst	0.116
Fre:burg lom - -	13	Seeond	$0 \cdot 13.3$
Nòtre lame, Paris - -	13	Second	$0 \cdot 140$
King's College Chapel, Cambridse	15	Second	$0 \cdot 159$
Milan Duomo - -	14	Sceond	$0 \cdot 169$
York Cathedral - -	13	Sucond	0.174
W'astminster Abbey -	13	Second	$0 \cdot 178$
' e mule Clurch - -	1;	Steond	018.5
Sly Cathed!al - -	19	Second	$0 \cdot 1: 8$
Gloucester Cathedral	11	Second	$0 \cdot 188$
Salisbury Catholral -	$1: 3$	lirst	$0 \cdot 190$
Florence 1)nomo	1.5	First	O*201
Liacoln Cathedral -	119	Second	$0 \cdot 02$
Worcester Cathedral	1%	First	$0 \cdot 208$
Marburg Dom - -	14	Second	$0 \cdot 218$
Canterbury ('ithedral	19	Second	$0 \cdot 245$
Norwich Cathedral -	12	First	0.2488

15896. Led by Le Brun (Théorie de l'Architecture, \&e. fol. l'aris, 1807.), we were many years ago induced to inguire into the doctrine of voids and solids in the Greek and laman temples, and though we soon discosered that that author had committed manifest errors in his mode of applying his theory, there could be no donlt that if its principles were properly carried out, they wonth coincide with the best eximples both ancient and in dern. The study we have subsequently bestowed upon it has not, we regret, from various pressing oceupations, received from us alt the attention necessary to reduce the examples within sucls bounds as to make the matter subject to certain laws, though we thiak an approximation has b.en effected towards it.

1583 c . It is to be lamented that, among the many and able writers on Gothic architecture, details, more tham principles, seem to have occupitd their minds. The origin of the pointed areh seems to have entirely absorbed the attemion of a large proportion of them, whilst others have been mainly content wiht discussions on the peculiarities of style at the different periods, and watehing with anxity the periods of transition from one to another Foliage, mouldings, and the like, have liad charms for others; all, however, have neglected to bistow a thougit upon the grand system of equilibrium by which such stupendous edifices were poised, and out of which system a key is to be extracted to the detail that enters into them. It is, however, to be hoped that abler hands than ours will henceforth be stimulated to the work, such being abundant in the profession whereot we place ourselves as the bumblest of its members.
$158 \% \mathrm{~d}$. As on the horizontal projection or pian of a building, the ratio of the points of support have been ahove considered, so in the vertical projection or section of a building may the ratio of the solids to the voids be compared, as well as the ratio of the selids to the whole area. In fiy. $610 a$, the shaded
parts represent the solids, which therefore give boundaries of the voids. Worcester Cathedral is the example shown. In this mode of viewing a structure, as also in that of the points of support, there is a minimum to which art is confined, and in both eases for obvious reasons there are some dependent on the nature of the materials, and others on the laws of statics. Though there may be found some exceptions to the enunciation as a general rule, it may be safely assumed that in those buildings, as in the case of the points of support, wherein the ratios of the solids to the voids in section are the least, the at not only as respects construction, but also in point of magnificence in effect, is most atvantageously displayed. In every edifice like a cathedral, the greater the space over which the eye can range, whether horizontally or ventically, the more imposing is its effect on the s_{i} ectator, provided the solids be not so lessened as to induce a sensation of danger.

1583 e. The subjoincd table contains, with the exception of Nôtre Dame de Paris, the same buildings as those already cited. It will be seen that the ratios of the solids to the voids varies from 472 to $1 \cdot 118$, a little less than half to a little more than a whole. But if in their sections we compare the ratios of the solids to the whole area, there results a set of numbers varying from 321 to $\cdot 528$, and that nearly following the order of the ratios of the points of support.

TABLE OF VERTICAL SOLIUS AND vOIDS.

Building.		Century.	Part of Century.	Ratio of Solids to Area.	Ratio of Solids to Voids.
Salisbury Cathedral	-	13	First	0.321	0.172
Marburg 1)om -	-	14	Second	0.335	$0 \cdot 503$
Norwich Cathedral	-	12	First	0:376	$0 \cdot 603$
Woreester Cathedral	-	13	First	$0 \cdot 388$	0.633
Milan Duomo -	-	14	Second	0:393	$0 \cdot 648$
Temple Church -	-	13	Second	0.395	0648
Gloucester Cathedral	-	14	Second	0.403	0.674
King's College Chapel	-	15	Second	0.419	0.722
York Cathedral -	-	13	Second	0.421	0.729
Westminster Abbey	-	13	Second	0.440	0.980
Henry VIJ.'s Chapel	-	16	First	$0 \cdot 457$	0.648
Freiburg Dom -	-	13	Second	0.478	0.916
Canterbury Cathedra:	-	12	Second	0.496	0.90-4
Ely Cathedral -	-	12	Second	0.498	1.000
Lincoln Cathedral	-	12	Second	0.499	$1 \cdot 000$
Florence Duomo -	-	15	First	$0 \cdot 528$	1-118

Though the coincidence between the ratios of increase, in the points of support, does not run quite concurrently with the ratios of the solids and the areas in comparing the cathedrals of the different centuries, yet sufficient appears to show an intimate commection hetween them. Where the discrepancy occuss, the points of support seem inversely set out. Such, for instance, will be seen in Ely Cathedral, wherein, though the ratio of the solids to the voids in section is as high as 1 (or ratio of equality), that of the points of support is as low as $0 \cdot 182$, so that the space, or airiness, which is lost in the former, is compensated by the latter. Generally speaking, however, the points of support diminish as the ornament of the style increases. Thus, in Norwich Cathedral (the nave), of the carly part of the twelfth century, the ratio of the points of support is 0.238 , that of the solid's to the voidsbeing 0.603 ; while at Salisbury (latter part of the thirteenth century) the ratio of the points of support is only 0.190 , and that of the solids to the voids, 0.47 S .

From the foregoing examination, there can scarcely exist a doubt that the first and leading lines of these fabrics were based upon a geometrical calculation of extremely simple mature, but most rigidly adhered to. Thus, taking a single bay in the nave, say, from centre to centre, and ascertaining the area, that has only to be multiplied by the ratio, to give the superficies necessary for the points of support, which, as the tables indicate, were diminished as experience taught they might be. These matters then being adjusted, and falling as they might, the system of ornamentation was applied altogether subsidiary to the great and paramount consideration of stability.

1583f. A very ingenious writer and skilful architect (Mr. Sam. Wate), some years age, took great tronble to deduce the stability of the buildings in question, from the gener: 1 mass of the walls and vaulting containing within them some hidden catenarian eurve. If such were the case, which can hardly be admitted, in as much as a chain for such purpose might be made to hang in all of them, it is quite certain this property was unknown to those who erected them. Dr. Hooke was the first who gave the hint that the fignre of a fexible cord, or chain, susjended fiom two points, was a proper form for an arch.

Pressure of Eartit agalnst Wail.s.

1.584. It is not our intention to pursue this braneh of the practice of walling to any extent, the determination of the thichness of walls in this pre:icament being more useful, perhaps, to the engineer than to the architect. We shall therefore be contented with hut a concise mention of it, Rondelet has (with, as we consider, great judgment) adopted the theory of Belidor, in his Science des Inyenieurs, and we shall follow him. Without the slightest disrespeet to later authors, we know from our own practice that walls of rerétement may be built, with security, of much less thickness than either the theoriss of Belidor or, latterly, of modern writers require. We entirely lave out of the question the rules of Dr. Hutton in his Mathematics, as absurd and incomprehensible. (Dobson, Art of Building, 1849, preface, writes, " from negleeting to take into eensideration the friction of the earth against the back of the wall, the rules given by many writers are imapplieable to practice; " and to Gwilt's observation on Dr. Hutton he cays, " Dr. Hutton's formula are strietly correct, and only require the correction for friction to make the m agree with modern practice.") The fact is that, in carrying up walls to sustain a bank of earth, the earth must be carefully rammed down, layer by layer, as the wal! is earried up, so as to prevent the weight of the earth, in a triangular section pressing upon the wall, which is the fombation of all the theory on the subject If this precaution be taken, the thickness resulting from the following investigation will be more than sufficient.
1585. Earth left to itself takes a slope proportionate to its eonsistence; but for our purpose it will sufficiently exhibit the nature of the investigation, to consider the substance pressing against the wall as dry sand or pounded freestone, which will arrange itself in a slope of about 55_{2}^{10} with the vertical plane, and therefore of 342_{2}° with an horizontal plane, as Rondelet found to be the case when experimenting on the above materials in a box, one of whose sides was removable. Ordinarily, 45° is taken as the mean slope into which earths recently thrown up will arrange themselves.
1536. Belidor, in order to form an estimate for the thrust or pressure into which we are inguiring, divides the triangle EDF (fig.611.) representing the mass of earth which ereates the thrust, by parallels to its base ED, forming slices or seetions of equal thickness and similar form; whence it follows, that, taking the first triangle $a \mathrm{Fb}$ as unity, the second sliee will be 3 , the third 5 , the fourth 7 , and so on in a progression whose difference is 2 .
1587. Each of these scetions being supposed to slide upon an inelined plane parallel to ED, so as to act upon the faee F D , if we multiply them by the mean height at which they collectively act, the sum of the products will give the total

Fig. 611. effort tending to overturn the wall; but as this sum is equal to the prodget of the whole triangle by the height determined by a line drawn from its eentre of gravity parallel to the base, this last will be the method followed, as much less emplieated than that which Belidor adopts, independent of some of that authors suppositions not being rigoronsly correct.
1588. Thie box in which the experiment was tried by Rondelet was $16 \frac{1}{2}$ in. (Freneh) long, 12 in . wide, and $17 \frac{1}{2} \mathrm{in}$. high in the clear. As the slope which the pounded freestone took when unsupported in front formed an angle with the horizon of $34 \frac{1}{2}$, the height AE is $11 \frac{1}{3}$, so that the part acting against the front, or that side of the box where would be the wall, is represented by the triangle EDF.
1589. To find by ealculation the value of the foree, and the thiekness which should be given to the opposed side, we must first find the area of the criangle EDF $=\frac{16 \frac{1}{2} \times 1 \frac{1}{2}}{2}=93 \frac{1}{2}$; but as the specifie gravity (or equal mass) of the pounded stone is only $\frac{13}{13}$ of that of the stone or other species of wall which is to resist the efliort, it will be reduced to $78 \frac{1}{2} \times \frac{13}{15}=81$. This mass being supposed to slide upon the plane ED), its effort to its weight will be as AE is to ED:: $11 \frac{1}{3}: 20$, or $81 \times \frac{11 \frac{1}{3}}{20}=45 \cdot 9$, which must be considered as the oblique power q passing through the eentre of gravity of the mass, and acting at the extremity of the lever ik. 'To ascertain the length of the lever, upon whose length depends the thickness of the side which is unknown, we have the similar triangles qsr, qho. and kio, whose sides are proportional : whenee $q^{s}: s r:: q h: h o ;$ and as $k o=h k-h i$, we have $q r: q s:: h k-$ ho: ik.

$$
\text { Whence, } i k=\frac{(h k-h o) \times q^{s}}{q} \text {, }
$$

The three sides of the triangle $q^{s r}$ are known from the position of the angle q at the eentre of glavity of the great triangle EFD, whenee each of the sides of the small triangle is equal to cone third of those of the larger one, to which it is correspondent.

$$
\begin{aligned}
& \text { Thus, making the side } \begin{aligned}
a r & =a, \\
q s & =b, \\
r s & =c,
\end{aligned} \\
& \text { The unknown side } \begin{aligned}
s h & =x, \\
h h & =f, \\
& \text { The pressure } 45 \cdot 9 \text { found }
\end{aligned}=p, \\
& \text { The height D } \mathrm{F}=d,
\end{aligned}
$$

We have $b: c:: b+x: \frac{b c+c x}{b}=h o$, and $h k-k, o$ wil. be $f-\frac{b c+c x}{b}$.
To obtain $i k$, we have the proportion $a: b:: f-\frac{b c-c x}{b}: i k$.
Whence $i k=\frac{h i f-b c-c . r}{a}$; so that the pressure $p \times i k$ is represented by $p\left(\frac{b f-b c-c x}{a}\right)$, to whiels the resistance expressed by $\frac{d x^{2}}{2}$ must equilibrate.

Thus the equation becomes $\frac{d x^{2}}{\widetilde{\sim}}=p\left(\frac{b f-b c-c \cdot x}{a}\right)$, or $x^{2}+\frac{2 p c x}{u d}=\frac{2 p(l, f-b c)}{a d}$.
For easier solution, make $\frac{2 p b f-2 p b c}{a d}=2 m$, and $\frac{2 p c}{a d}=2 n$, and we have $x^{2}+2 n x=2 m$, an equation of the second degree, which makes $x=\sqrt{2} m+n^{2}-n$, which is a general formula for problems of this sort.

Returning to the values of the known quantities, in which

$$
\begin{aligned}
& u=6 \sigma_{3}^{2} \quad f=75 \\
& b=5 \frac{1}{2} \quad p=4-\frac{9}{10} \\
& c=5 \frac{3}{3} \quad d=11 \frac{1}{3} \\
& m=p b \times \frac{f-c}{a d} \text { becomes } m-4.5 .9 \times 5 \frac{1}{2} \times \frac{7 \frac{1}{3}-3 \frac{1}{7}}{6 \frac{2}{3}+11 \frac{1}{3}}=12.70 \text { and } 2 m=25.4 \\
& n=\frac{p c}{a d} \text { becomes } n=\frac{45 \cdot 9 \times 3 \cdot 75}{75 \cdot 55}=2 \cdot 28 \text { and } n^{2}=5 \cdot 20 \text {. }
\end{aligned}
$$

From the above, then, the formula $x=\sqrt{2 m+u^{2}}-n$ becomes $x=\sqrt{25 \cdot 4+5 \cdot 20-2 \cdot 28}=$ $3 \cdot 22$, a result which was confirmed by the experiment, inasmueh as a facing of the thickness of $3 \frac{1}{4}$ inches was found necessary to resist the pressure of pounded freestone. By Belidor's method, the thickness comes out $4 \frac{8}{10}$ inches; but it has been observed that its application is not strictly correct. In the foregoing experiment, the triangular part only of the material in the box was filled with the pounded stone, the lower part being supposed of material which could not commonicate pressure. But if the whole of the box had been filled with the same material, the requisite thickness would have been found to be $5 \frac{1}{4}$ inches to bear the pressure.
1590. In applying the preceding formula to this case, we must first find the area of the trapezium BEDF (fig. 612.), which will be found $195 \frac{1}{7}$; multiplying this by 13 , to reduce the retaining wall and the material to the same specific gravity, we have $169 \frac{1}{3}$. This mass being supposed to slide upon the inclined plane ED, its effort parallel to that plane will be $195 \frac{1}{3} \times \frac{11 \frac{1}{3}}{16}=$ $95 \cdot 76=p$. Having found in the last formula that $q s$ is represented by $b=6.93$, sr by $c=4 \cdot 76, q r$ by $a=8 \cdot 4 \mathrm{e}, f=$ $113, d==17 \cdot 5$; the thickness of the retaining wall becomes $=s h-x ; m=p b \times \frac{f-c}{a d}$ will be-

Fig. G12. come, substituting the values $95.76 \times 6.93 \times \frac{11.3-476}{240 \times 17.50}=29.52$ and $2 m=59.04 . \quad n=\frac{n c}{a d}$ becomes $\frac{9.76 \times 1.76}{8.40 \times 17.50}=3 \cdot 1$, and $n^{2}==$ $9 \cdot 61$. Substituting these valnes in the formula $x=\sqrt{\prime} 2 n+n^{2}-n$, we have $x=\sqrt{59 \cdot 04+9 \cdot 6!}$ $-3 \cdot 1=5 \cdot 2$, a result very confirmatory of the theory.
1591. In an experiment made on common dry earth, reduced to a powder, which took a slope of $46^{\circ} 50^{\prime}$, its specific gravity being only $\frac{j}{4}$ of that of the retaining side, it was found that the thickness necessary was 3 inches $\frac{6}{10}$.
1592. It is common, in practice, to strengthen walls for the retention of earth with piers at certain intervals. which are called counterforts, by which the wall acquires additional
strengtl; but after what we have said in the beginning of this article, on the dependence that is to be placed rather on well ramming down each layer of earth at the back of the wall, supposing it to be of ordinary thickness, we do not think it necessary to enter upon any calculation relative to their employment. It is clear their use tends to diminish the requisite thickness of the wall, and we would rather recommend the student to apply himself to the knowledge of what has been done, than to trust to calculation for stability, thongh we think the theory ought to be known by him.

Pressure or Force of Wind against Wati.s, \&c.

1592a. Air rushes into a void with the velocity a heavy body would acquire ly falling in a homogeneous atmosphere. Air is 840 times lighter than water. The atmophere supports water at 33 ft . ; homogeneous atmosphere, therefore, is $33 \times 840=27,790 \mathrm{ft}$. A heavy hody falling one foot acquires a velocity of eight feet per second. Velocities are as the square roots of their heights. Therefure to find the velocity corresponding to any given height, expressed in feet per second, multiply the square root of the height in feet by 8. For air we have $V=\sqrt{27,720}-166,493 \times 8=1332$ feet per seeond: this, therefore, is the velocity with which common air would rush into a void: or 79920 feet per minute: some say 80,880 feet. ('lelfurd's Memoraudum Book). Some authors say that the weight or pressure of the atmosphere is equal to the weig'st of a volume of water 34 ft . in height; or 14.7 lbs . per square inch at a mean temperature; for air and all (?) kinds of gases are rendered lighter by the application of heat, because the partieles of the mass are repelled from each other, or rarefied, and occupy a greater space.

1592b. The foree with which air strikes against a moring surface, or with which the wind strikes against a quiecent surface, is nearly as the square of the velocity. If β be the angle of incidence; δ the surface struck in square feet; and v the velocity of the wind in leet per second; then if f equals the force in pounds avoirdupois, either of the two folluwing approximations may be used, viz., $f=\frac{v^{2} \delta \sin ^{2} \beta}{449}$; or, $f=0022 S 8 v^{2} \delta \sin ^{2} \beta$. The first is the easiest in operation, requiring only two lines of short division, viz., by 40 and by 11. If the incidence be perpendicular, $\sin ^{2} \beta=1$, and the become $f=\frac{v^{2} \delta}{440}=002288 v^{2} \delta$. (Gregory). The foree or pressure per square foot in lbs., is as the square of the velocity multiplied by o J2288.
$1592 c$.
Impulse of tile Wind on a Square Fout.

Velocitr in Feet Per Sicond.	Impulse in lbs.	Velocity in Fept Per secund.	Impuise in lbs.	Velocity in Feet Per Seco d.	Imputse in lbs.
10	0.229	60	8-234	110	27.675
$14 \cdot 67$	0.492	66.01	$9 \cdot 963$	117.36	81.493
20	0.915	70	$11 \cdot 207$	120	$32 \cdot 926$
30	$2 \cdot 0.59$	73.35	$12 \cdot 300$	130	38.654
$36 \cdot 67$	3075	80	$14 \cdot 638$	140	44.830
40	$3 \cdot 660$	90	18.526	146.70	49.200
$44 \cdot 01$ 50	$\begin{aligned} & 44 \cdot 9 \\ & 5 \cdot 718 \end{aligned}$	100	22.872	150	$51 \cdot 462$

$159-d$. The resistance of a sphere is stated not to exceed one-fourth of that of its greatest cirele. 'Tredgold, Carpentry, and Iron, has minutely examined the effeet of the above forces, and the principle of forming the necessaly resistance to them in the construction of walls and roofs. See Hurricanes. Where the roofs of buildings, as in the comitry, are exposed to rude gusts and storms, it is necessary to increase the weight of the ridges, hips and flashings.
$1592 e$. The utmost power of the wind in England is said to he 90 miles per hour, or 40 lbs . per square foot. Tredgold takes the force at $57 \frac{3}{4} \mathrm{lhs}$. per square foot. Dr. Niehol, of the Glasgow Obsersatory, records 55 lbs . per square foot, or 382 lbs . per square ineh, as the greatest pressure of wind ever observed in Britain (Rankine, Civil Eng. 538). During the extremely heavy gale of January 16, 1866, the pressure in London was recorded as 33 lbs . per square foot; at Liverpool it was 30.4 lbs . The velocity of the wind on the south const of England, during January 11, when it uprooted old elm trees, averaged 65 miles an hour; later in the day it was 90 miles; the latter impetus is equal to the 40 lbs. per square foot, above mentioned.
$159 \div f$. Wind exercises a tendency to overthrow a building upon the external edge opposite to the line of its advance, equivalent to the surface of the face receiving the impulsion multiplied by the force of the wind, and by a lever which on the average may be taken to be equal to half the height of the building. To secure the stability of the latter, its
weight multiplied by a lever equal to half the base must exceed the sum of the elemems of the wind's action.

1592g. To determine the pressure of wind in pounds per square foot, equal to the stability of a square stalk, multiply the weight of the slalk in pounds. ly twice its width in feet at the bave, and divide the product by the square of its height in feet, and by the sum of its top and bott morealths in feet.

Let $w=$ weight of stalk in pounds $=90,000$
$p=$ pressure of wind in pounds per square foot equal to stability of staik
$h=$ height of stalk in feet $=50$ feet
$b=$ breadth of stalk at base in feet $=4$ feet
$r=$ breadth of stalk at top in feet $=2$ feet
Then $\frac{90,01011 \times 4 \times 2}{2,510(4 \times 2)}=p=48$ pounds per square foot. If the stalk be circular, then, to determine the pressiure of wind, proceed as before, but replace the breadths by the diameter. and multiply the result by ¢. Campin, Enyineers' l'ocket Remembrancer, 1863.

Sect. X.

BEAMS AND PILLARS.

1593. The woods used for the purposes of carpentry merit our attention from their importance for the purpose of constructing sulid and durable editices. They are ofton employed to carry great weights, and to resist great strains. Under these circumstances, their strength and dimensions should be propontioned to the strains they have to resist. For building purposes, oak and fir are the two sorts of timber in most common use. Stune has, doubtless, the advantage over wood: it resists the changes of moisture and dryness, and is less susceptible of alteration in the mass; hence it ensures a stability which belongs not to timber. The fragility of timber is, however, less than that of stone, and its facility of transport is far greater. The greatest inconvenience attending the use of timber, is its great suseeptibility of ignitoon. This has led to expedients for anolicr material, and it has become greatly superseded by iron.

15\%4. Oak is one of the best woods that can be employed in carpentry. It has all the requisite properies; such as size, strengih, and stiffness. Oaks are to be found eap able of furnishing pieces 60 to 80 ft . long, and 2 ft . square. In common practice, beams rarely exceed 36 to 40 ft . in length, by 2 ft . square.
1595. In regard to its durability, oak is preferable to all other trees that furnish equal lengths and scantlings: it is heavier, better resists the action of the air upon it, as well as that of moisture and immersion in the earth. It is a saying relating to the oak, that it grows for a century. lasts perfict tor a century, and takes a century to perish. When cut at a proper scason, used dry, and protected from the weather, it lasts from 500 to 600 years. Oak, like other trees, varies in weight, durability, strength, and density, aceording to the soil in which it grows. The last is always in an inverse proportion to the slowness of its growth ; trees which grow slowest being invariably the hardest a: d the heaviest.
1596. From the experiments made upon oak and other sorts of wood, it is found that their strength is proportional to their density and weight: that of two pieces of the same species of wood, of the same dimensions, the heavier is generally the stronger.
1597. The weight of wood will vary in the same tree; usually the heaviest portions are the lower ones, from which upwards a diminution of weight is found to occur. In fullgrown trees, however, this difference does not occur. The oak of lrance is heavier than that of England; the specific gravity of the former varying from 1000 to 1054, whilst the latter, in the experiments of Barlow, varics liom 770 to 920 . The weight, therf fore, of an English cube foot of French oak is about 58 English pounds. Timber may be said to be well seasened when it has lost about a sixth part of its we:ght.
1598. In carpentry, timber acts with an alsolute and with a relative strength. For instance, that called the alsolute strength is measured by the eff:rt that must be exerted to break a piece of wood by pulling it in the direction of the fibres. The relative strength of a piece of' wood depends upon its position. 'Thus a piece of wood placed horizontally on two points of support at its extremities, is easier hroken, and with a less effort, than if it was inclined or upright. It is found that a smaller effort is necessary to brak the piece as it increases in length, and that this effort docs not decrease strictly in the inverse rat:o of the length, when the thicknesses are equal For instance, a piece 8 it . long, and 6 in . square, placed horizontally, bears a little more than double of another, of the same depth and thichness, 16 ft . long, placed in the same way. In respect of the absolute foree, the difference does not vary in the same way with respect to the lengtlo. The following are experiments by Rondelet, to ascertain the absolute force, the specimen of oak being of 361 specific gravity, and a cube foot, therefore, weighing $49 \frac{1}{10} \mathrm{lbs}$.

Cohesive Force of I'ieces Iraurn in the Direction of their Length.

First experiment.
A sinall rod of oak 0.0888 in . ($=1$ French line) square, and 2.14
in. in length, broke with a weight of - . - . 115 lbs avoirdupois Another specimen of the same wood, and of similar dimensions,

```
    broke with - - - - - 10.5 星
```

Another specimen - - - - - $110 \frac{1}{10}$
The mean weight, therefore, was, in round numbers, 110 lbs .
A rod of the same wood as the former, $0 \cdot 177$ inch ($=2$ French lines)
square, and $2 \cdot 14$ inches long, broke with a weight of
Another specimen

- 4591 lus.avi ird pris

Another specimen - - - 418
The mean weight, therefore, was 436 lbs . for an area $\frac{35}{\frac{35}{0 j} \text { in. (}}=4 \mathrm{square}$ lines
French, or 110 lbs . for each, French line $=0.0588$ in. English).
1599. Without a recital of all the experiments, we will only add, that after inereasing the thickness and length of the rods in the several trials, the alsolute strength of oak was found to be 110 lbs . for every $\frac{888}{10000}$ of an inch area ($=1$ French line supericial).

The Strength of Wood in an upright Position.

1600. If timber were not flexible, a piece of wood placed upright as a post, should bear the weights last found, whatever its height; but experience shows that when a post is higher than six or seven times the width of its base, it bends minder a similar weight before crushing or compressing, and that a piece of the height of 100 diameters of its base is ineapable of bearing the smallest weight. The proportion in which the strength decreases as the height increases, is difficult to determine, on account of the different results of the experiments. Rondelet, however, found, after a great number, that when a piece of oak was too short to bend, the foree necessary to crush or compress it was about 49.72 lbs. for every $\frac{888}{10000}$ of a square inch of its base, and that for fir the weight was about 56.16 Hs . Cubes of each of these woods, on trial, lost height by compression, without disunion of the fibres; those of oak more than a third, and those of fir one half.
1601. A piece of fir or oak diminishes in strength the moment it begins to bend, so that the mean strength of oak, which is 47.52 lbs . for a eute $\frac{888}{10000}$ of an inch, is reduced to $2 \cdot 16 \mathrm{lbs}$. for a piece of the same wood, whose height is 72 times the width of its base. From many experiments, Rondelet deduced the following progression : -

a cub	heigh		tre	$=1$
	-	12,	-	= 5
-	-	$\bigcirc 4$,	-	$=\frac{1}{2}$
-	-	36,	-	$=\frac{1}{3}$
-	-	48,	-	=
-	--	60,	-	=
-	-	72,	-	$=\frac{1}{27}$

Thus, for a cube of oak, whose base is 1.066 in . area ($=1$ square in. French) placed upright, that is, with its fibres in a vertical direction, its mean strength is expressed by $144^{*} \times 47.52=6942 \mathrm{lbs}$. From a mean of these experiments, the result was (by experiment) in lbs. avoirdupois
For a rod of the same oak, whose section was of the same area by 12.792 in . high ($=12$ French in.) , the weight borne or mean strength is $144 \times \frac{47 \cdot 52 \times 5}{6}=5702 \mathrm{lls}$.
From a meau of three experiments, the result was - - - 5735
For a rod $25.584(=24$ Freneh $) \mathrm{in}$. high, the strength is $144 \times \frac{47 \cdot 52}{2}=3421 \mathrm{lbs} . \quad-3144$
For a $\operatorname{rod} 38.376\left(=36\right.$ Freneh) in. high, the strength is $144 \times \frac{47.52}{3}=2281 \mathrm{lbs} . \quad-2336$
For a $\operatorname{rod} 51 \cdot 160(=48$ French $)$ in. high, the strength is $144 \times \frac{47.52}{6}=1140 \mathrm{llss}$.
For a rod $63.960(=60$ French $) \mathrm{in}$. high, the strength is $144 \times \frac{47 \cdot 52}{12}=570 \mathrm{lbs}$.
For a rod $76.752(=72$ French $)$ in. high, the strength is $144 \times \frac{47.52}{24}=285 \mathrm{lbs}$.
For a cule of fir, whose sides are 1.066 in . area ($=1$ square in. French), placed as
before, with the fibres in a vertical direction, we have $144 \times 56 \cdot 16=8087 \mathrm{lbs}$. - 8089

For a square rod, whose base was 1.066 in . area ($=1$ square in. Freneli), 12.792 in.
high, we have $144 \times \frac{56 \cdot 16 \times 5}{6}=6739 \mathrm{lbs}$.

- 6863

For a $\operatorname{rod} 25.584$ ($=24$ French) in. high, $144 \times \frac{56^{\circ} 16}{2}=4043$ lbs. - 3703
For a $\operatorname{rod} 38.376$ ($=36$ Frenchs) in. high, $144 \times \frac{56 \cdot 16}{3}=2696$ lbs. - 288 !
Fol a rod $51 \cdot 160(=43$ French $)$ in. high, $144 \times \frac{56 \cdot 16}{6}=1348$ lbs.
For a rod $63: 960(=60$ French $)$ in. high, $144 \times \frac{55 \cdot 16}{12}=674$ lus.
For a $\operatorname{rod} 76 \cdot 752$ ($=72$ French) in. high, $144+\frac{56 \cdot 16}{24}=337 \mathrm{lbs}$.
The rule by Rondelet above given was that also adopted by MMI. Perronet, Lamblardie, and Girard. In the analytical treatise of the last-named, some experiments are shown, winich lead us to think it not very far from the truth. From the experiments, moreover, we learn, that the moment a post begins to bend, it loses strength, and that it is not prudent, in practice, to reduce its diameter or side to less than one tenth of its height.
1602. In calculating the resistance of a post after the rate of only 10.80 for every 1.066 superficial line English ($=1$ line super. French), which is much less than one quarter of the werght under whieh it would be erushed, we shall find that a square post whose sides are $1.066 \mathrm{ft} .(=1 \mathrm{ft}$. French) containing 22104.576 English lines ($=20736$ Freneh), would sustain a weight of 238729 lbs . or 106 tons. Fet as there may be a great many circumstances, in practice, which may double or triple the load, it is never safe to trust to a post the width of whose base is less than a tenth part of its height, to the extent of 5 lbs. per 1.066 line; in one whose height is fifteen times the width of the base, 4 lbs. for the same proportion; and when twenty times, not more than 3 lbs.

Horizontal Pieces of Timber.

1603. In all the experiments on timber lying horizontally, as respects its leugth, and supported at the ends, it is found that, in picees of equal depth, their strength diminishes in proportion to the bearing between the points of support. In pieces of equal length between the supports, the strength is as their width and the squares of their depths. We here continue M. Rondelet's experiments.
1604. A rod of oak $2 \cdot 132 \mathrm{in}$. (2 in . French) square, and $25 \cdot 584 \mathrm{in}$. (24in. French) long, broke under a weight of $2488 \cdot 32 \mathrm{lbs}$, whilst another of the same dimensions, but $19 \cdot 188 \mathrm{in}$. (18 in . French) bore 3353.40 ; whence it appears that the relative strength of these two rods was in the inverse ratio of their length. The proportion is $19 \cdot 188: 25 \cdot 584:: 2488 \cdot 32:$ $3317 \cdot 76$, instead of $3353 \cdot 40 \mathrm{lbs}$, the actual weight in the experiment.

1 f.05. In another rod of the same wood, $2 \cdot 132 \mathrm{in}$. wide and $3 \cdot 198$ deep, and 25.584 in . bearing, it broke with a weight of 5532 lbs . In the preceding first-mentioned experiment it was found that a rod of 2.132 in . square, with a bearing 25.584 in . bore 2488.32 lhs . Supposing the strength of the rods to be exaetly as the squares of their heights, we should have $4.54\left(2 \cdot 152^{2}\right): 10 \cdot 23\left(3 \cdot 198^{2}\right):: 2488 \cdot 32: 5598 \cdot 7 \mathrm{lbs}$; whieh the second rod should have borne, instead of 5532 lbs. There are numberless considerations which aecount for the diserepaney, but it is one too small to make us dissatisfied with the theory.
1606. In a third experiment on the same sort of wood, the dimension of $3 \cdot 198$ in. being laid flatwise, and the 2.132 in . depthwise, the bearing or distance between the supports being the same as before, it broke with a weight of 3575 lbs . : whence it follows that the strength of pieees of wood of the same depth is proportional to their width. Thus, comparing the picee $2 \cdot 132 \mathrm{in}$. square, which bore 2488 lbs , we ought to have $2 \cdot 132: 3 \cdot 198$ $:: 2488 \cdot 32: 3624 \cdot 48$, instead of 3573 lbs .
1607. From a great number of experiments and calculations inade for the purpose of finding the proportion of the absolute strength of oak, to that which it has when lying horizontally between two points of support, the most simple method is to multiply the area of the piece in section by half the absolute strength, and to divide the product by the number of times its depth is contained in the length between the points of support.
1608. Thus, in the experiments made by Belidor on rods of oak 3 French ($=3 \cdot 198$ Fnglish) ft. long, and 1 French ($=1.066 \mathrm{in}$. English) in. square, the mean weight under whieh they broke was 200.96 lbs. avoirdupois. Now, as the absolute strength of oak is from 98 to 110 lhs. for every ${ }^{888} \mathrm{idoven} \mathrm{in}$. $(=1$ French line $)$, the mean strength will be 104 and 52 lbs. for its half, and the rule will become (144 lines, being $=1$ lrench in.) $\frac{144 \times 52}{36(\mathrm{~F} . \mathrm{in} .)}=207.30 \mathrm{lbs}$, instead of $200 \cdot 96 \mathrm{lbs}$.
1609. Three other rods, 2 French in. square ($2 \cdot 132$ Eng.), and of the same length between the supports, broke with a mean weigint of 1711.8 lbs . By the rule $\frac{576(=144 \times 4) \times 52}{18}$ $=1658.88 \mathrm{lbs}$. avoirdupois. Without further mention of the experiments of Belidor, we
may observe, that those of Parent and others give results whiel confirm the rule. The experiments, however, of Buffon, having been made on a larger seale, show that the strength of pieces of timber of the same size, lying horizontally, does not diminish exaetly in the prportion of their length, as the theory whereon the rule is founded would indicate. It becomes, therefore, proper to modify it in some respects.
1610. Buffon's experiments show that a beam as long again as another of the same dimensions will not bear half the weight that the shorter one does. Thus -
A beam, $7 \cdot 462 \mathrm{ft}$. long, and $5 \cdot 330 \mathrm{in}$. square, broke with a
weight of - - - $\quad 12495^{\circ} 06 \mathrm{lbs}$ avoirdupois
Another, 14.924 ft . long, of the same dimensions, broke with a
weight of - - \quad - \quad - 5819.04
A third, $29 \cdot 848 \mathrm{ft}$. long, of the same dimensions, bore before breaking - - - \quad - 211244_{3}^{3}
13y the rule, the results should have been, for the 7.462 ft . beam $12495 \cdot 60$
for that of $14.924 \quad-\quad 6247.80$
for that of 29.848 - $\quad 3123.90$
Whenee it appears, that owing to the elasticity of the timber, the strength of the picees, instead of forming a deereasing geometrical progression, whose exponent is the same, forms one in whieh it is variable. The fores in question may be represented by the ordinates of a species of catemarian curve.
1611. In respect, then, of the diminution of the strength of wood, it is not only proportioned to the length and size, but is, moreover, modified in proportion to its absolnte or primitise foree and its flexibility ; so that timber exactly of the same quality would give results fellowing the same law, so as to form ordinates of a curve, exhibiting neither inflection nor undulation in its outline: thus in pieces whose seantlings and lengths form a regular progression, the defeets ean only be caused by a difference in their primitive strength; and as this strength varies in pieces taken from the same tree, it becomes impossible to establish a rule whose results shall always agree with experiment; but by taking a mean primitive strength, we may obtain results sufficiently accurate for practice. For this purpose, the rule that nearest agrees with experiment is -

1 st. To subtract from the primitive strength one third of the quantity which expresses the number of times that the depth is contained in the length of the pieee of timber.
2d. To multiply the remainder thus obtained by the square of the length.
3d. To divide the product by the number expressing the relation of the depth to the length.
Hence calling the primitive strength $\quad-\quad-\quad-\quad=a$

- the number of times that the depth is contained in the length
$=\quad b$
- \quad the depth of the picee
the length

The general formula will be, $\frac{a-\frac{b}{3} \times d^{2}}{b}=\frac{a d^{2}}{b}-\frac{d^{2}}{3}$.
1612. Suppose the primitive strength $a=64 \cdot 36$ for eaeh $1 \cdot 136$ square line ($=1$ lhe French), we shall find for a beam $5 \cdot 3.3 \mathrm{in}$. square, by $19 \cdot 188 \mathrm{ft}$. long, or $230 \cong 56$ inches, that the proportion of the depth to the length $={ }_{5 \cdot 300}^{234 \cdot 256}=43 \cdot 2=b$.
1613. The vertieal depth beirg $5 \cdot 330$ or 63.960 lines. \boldsymbol{a}^{2} will be $4089 \cdot 88$; substituting these values in the formula $\frac{a \times d-}{b}-\frac{d^{2}}{3}$, we have $\frac{6436 \times 408988}{43 \cdot 2}-\frac{4089 \cdot 88}{3}=4067 \cdot 99$, instead of $4120 \cdot 20$, the mean result of $t a 0$ beams of the same seantlings in the experiments of Buflon.
1614. Mr. Gwilt has stated that the world generally, the architeet and engineer especially, are indebted to Bulfon, from whom eertain tables have emathated, which were the result of laborious experiments and deserved much consideration. These several tables have been omitted in this edition of the Eneyelopædia, is having been supereded hy the more recent and scientific investigations in England of Robison, Young, Bevan, Iicmie, Tredgold, Barlow, Hudgkinson, Fairbairn, Laslett, with others, from some of whose treatises passages have been adopted herein. The results of their more modern investigations have been to benefit both the architict and engineer, by bringing the aid of mathematical investigations, to found upon their experiments safe and general rules for practice.

Of the Strength of Timbers in an Inclined Position.

1622. If we suppose the vertical picee AB (fiy. 613a.) to bee me inclined to the base. as 13 D , the action of a vertical foree at D will tend to eause the picee to bend, and thereby to lose mueh of its power of resistance to a force acting in the dircetion of its length. Suppose the radins AB or BD to represent the vert:cal force acting at D on the piese BD then, by the "resolution of forces," it can be ressived into two forces, one acting in the dirction of its length, and the other acting at rightangles to its lergth. The former will be represented by the line $\mathrm{D} f$, or the vertcal foree multiplied hy the sine of the angle D 3 C ; while the latter, at right ang'es to BD , will act at D , tending to bend the piece BD about its base B, and will be repiesented by the line $\mathrm{B} f$; or the vertical force multiplied by the cosime of the angle D1BC. The piece is supposed to be fixed firmly at 13 , and may be considered as a
 beam fixed at one end and strained at the other by the force represented by $13 f$ tending to break it ahout the end B. Whan the picee comes into the horizontal position, as $B \hat{C}$, the vortical force acting at C will cease to produce any strain in the direction of its length, and the transverse staain will be represented by the line BC or AB acting at C , and straining the piece about its fixed end B .
1623. Example. Let AB be a piece of Riga fir 20 fect long, the scantling being 10 inches by 6 inches. First take it in the upright position AB, then (frem par. 1631b) the breaking weight W in tons of an nak pillar when the load acts vertically down $A B$ is

$$
W=\frac{1 \cdot 8 b d^{3}}{4 d^{2}+5 t^{2}}=\frac{18 \times 6^{3}}{146+200}=11.24 \text { tons. }
$$

Aird the strength of a pillar of Riga fir being (par. 1631c.) five-sixths that of oak, we have $W=9.37$ tons for Riga fir.
1624. If we now place the piece in the horizontal position, as BC, the strain upon it from the load W, at C will be entirely transverse, and the breaking weight can be fommd from the formula ($1629 g$.) for a beam supported at both ends and loaded at the middle. But as the load is at one end in the present case and the beam fixed at the other, we take one fourth of the weight given in the above named formula, so that we have

$$
\mathrm{W}_{1}=\frac{3 \cdot 21}{4} \times \frac{b d^{3}}{l}=24 \cdot 08 \mathrm{cwts}=1 \cdot 204 \text { tous. }
$$

1625. Now let the piece be placed in the inclined position, BD , making 60° with the horizontal. A load F, acting vertically at D, will be resolved into two others at right angles to each other, one acting longitudinally and equal to $\mathrm{F} \times \sin 60^{\circ}$, and the other transversely at D and equal to $\mathrm{F} \times \cos 60^{\circ}$, or $\frac{1}{2} \mathrm{~F}$, which equals W_{1} in the formula abeve for a beam fixed at one end and loaded at the other. Therefore the breaking weight applied vertically at D will be $\mathrm{F}=2 \mathrm{~W}_{1}=2408$ tons.
1626. The breaking weight acting longitudinally is $\mathrm{F} \times \sin 60^{\circ}=\mathrm{W}=9.37$ tons, as found above. Therefore we have

$$
\mathrm{F}=\frac{\mathrm{W}}{\sin 65^{\circ}}=\frac{9.37}{8 \omega 6}=10.82 \text { tons. }
$$

1627. This value of F is, however, more than four times the value obtained for it when taking into consideration the transverse strain as found above, and we must take the smaller amount as the actual strength of the piece, which is therefore reduced in the proportion of 2.408 to 9.37 , in consequence of its inclination from the vertical.
1628. In Practical or Constructive Cafpentry, Chap. III. Sect. IV., Tables of scantlings tor timbers are given more immediately useful to the practical arehitect. But in consequence of the very large amount of information obtained since the first edition of this work, resulting from the investigations of scientific and practiral experimentalists, the following condensed summary of tlie new ideas on the strength of BEAMS, GIRDERS, and Pllalalis, both in timber and iron. are submitted for the consideration of the student.

16\$8u. The term beam is applied herein to large rctan凹ular sections; that of girder to large irregular shapes: and those of bur and irons to small rectangular and irregular forms. 1628b. Beams and girders are calculated for the following classes of buildings:-
I. Light workshops and factories, public halls, churches, and other buildings in which people only accumulate, with warehouses for light goods. For all these an allowance of $1 \frac{1}{2}^{\circ} \mathrm{cwt}$., or $168 \mathrm{ils}$. ., per square foot of flour surface will include the wei-ht of the juisting, the flooring, and the load upon it.
II. Storehouses for heavy goods, or factories in which heavy machinery and goods are placed, For these an allowance of $2 \frac{1}{2} \mathrm{cwt}$., or 280 lbs , per square foot of floor surface will inchade the same weights.
III. Ordinary dwelling houses. For these an allowance of $1 \frac{1}{4}$ ewt., or 140 lbs ., per square foot will include the same wrights.
IV. The weight of a floor of timber has been calculated at 35 to 40 lbs . per square foot; 20 lbs, is usually allowed. A single joisted floor without counter floor, from 1260 to 2000 lbs. per square. A framed floor with counter flooring, from 250° to 4000 lbs, per square. Barritt's system at 78 lbs. A half brick arch floor, 70 lbs. A one brick arch floor, 120 lbs . Though Tredgold allows 40 lbs per square foot for the weight of a ceiling, counter floor, and iron girders, with 120 lbs . per square foot more supposing the floor to be covered wish people at any time $=$ to 160 lhs ., as the least stress. yet a warchouse floor, as required at the docks, is there calculated at about 17 lbs . including girders, which, with about 9 lbs . for plastering, allows 26 lbs. per sup. foot.
V. Partitions, or any other additional weights brought upon the floor, must also be taken into consideration. This is calculated at from 1480 to 2000 lbs. per square.
VI. The weight of the load to be carried must always include that of the girder itsclf.

STRAINS ON BEAMS AND GIRDERS.

1628c. These we shall consider under the heads I. JRANSVERSE STRAIN (1628g.), which consists partly of the action of Tension as well as of Compression, each of them being dependent upon the Cohesion of the material. Under II. TENSION (163cc.), will be considered the neutral axis (1630c.), deflection of lieams (1630e.), with the modulus of elasticity (1630i.), impact or collision (1630o.), and the tensile strergth (1630p.). Under 111. COMPRESSION (1630 w .) is considened Deflection of pillars, and Detrusion (1631n.). The subject IV. TORSION (1631x.) closes this section.
$162{ }^{\circ} \mathrm{d}$. Timber is permanently injured if more than even $\frac{1}{4}$ of the breaking weight is placed on it. Buffon allowed $\frac{1}{10}$, whieh is now the custom, for the safe load. Fairbairn states that for bridges and warethouses, cast iron girders should not be loaded with more than $\frac{1}{5}$ or $\frac{1}{6}$ of the breaking weight in the middle. For ordinary purposes, $\frac{1}{3}$ for cast iron is allowed for the permanest load (Barlow). A little more than $\frac{1}{3}$ can be allowed for wrought iron beams, as that material, from its extensile capability, does not suddenly give way (Warr) ; but they should never be loaded with more than $\frac{1}{6}$ th (Fairbairn). Girders, especially those of cast iron, which are liable to be less strong than intended from irregularity in casting and cooling, should be proved befure use to a little more than the extent of the safe load; this proof, however, should never exceed the half of the breaking weight, as the metal world be thoroughly weakem. Tredgold observes that a load of $\frac{1}{5}$ ot the breaking weight causes deflection to increase with time, and finally to produce a permanent set. The Board of Trade limits the working strain to 5 tons, or $11,200 \mathrm{lbs}$. per square inch, on any part of a wrought irons structure.

1628e. Of all the circumstances tending to invalidate theoretieal calculations, the sun is about the worst. Mr. Clark writes, abont the Britamia tubular bridge: "Although the tubes offer so effectual a resistance to deflection by heavy weights and gales of wind, they are nevertheless extremely sensitive to changes of temperature, so much so that half an hour's sunshine has a much greater effect than is produced by the beaviest trains or the most violent storm. They are, in fact, in a state of perpetual motion, and after three months' clese observation, during whieh their motions were recorded by a self-registering instrument, they were observed never to lie at rest for an hour. The same may almost he said of the large bridges over the dock passages. Tive sun heats the top flange, whilst the wind, alter sweeping along the water, impinges on the bottom Hange, keeping it cool and causing it to contract, whilst the top flange is being expanded by the sun, so putting a camber on the lridge much exceeding the deflection caused by the heaviest working load. At the Mersey Docks the top flanges of the bridges are painted white, to assist in meeting the difficulty."

Transverse Stialn.

1628 g . The strength of beams in general is directly as the breadth, directly as the square of the depth, and inversely as the length; thus $\frac{\text { breadth } \times \text { depth }{ }^{2}}{\text { length }}$. But a certain supposed quantity must, however, be added to express the specific strength of any material, a quantity only obtained by experiments on that material. This supposed quantity is represented by S. We then obtain $\frac{\text { hreadth } \times \text { depth }{ }^{2} \times S}{\text { length }}=$ breaking weight. Therefore, in experiments, a simple transposition of the quantities evolves the value of S; thus $\frac{\text { length } \times \text { hreaking weight }}{\text { brosith } \times \text { lesth }{ }^{2}}=S$, which S then becomes a constant. As regatrds the usual form of a cast-ron girder, using C as a constant for a signification in a gir.ter, similar to that of S in a beam, the formula $\frac{\text { area of section } \times \text { denth } 2 \times 0}{\text { length }}=$ breaking weight. The values of S and C are only applicable to a beam or sirder of a similar sectional form to that from

Сhap. I.
which the value was derived, since this constant expresses the specific strength of that form of section.
1628\%. Another formula for estimating the strength of beams rests on the knowledge of the resistance (or r) offered by any material to fracture by a tensile or crishing force, and the depth of the neutral axis (or n) of this area in the beam; the latter, of course, cannot be calculated, except from experiment. The rule is $\frac{r \times \text { breadth } \times \text { depth }}{n \times \text { length }}=$ breaking weight. See Resistance, in Glossary.

1628i. Table of the Transterse Strength of Timber: 1 Inch Square, 1 Foot Long.

1628k. The results of Barlow, Nelson, Moore, Denison, and some others, are collected in the above table, which gives a mean of the whole (Warr); Barlow's values are aho noted separately, being those usually supplied in the Handbook); and obtained by Barlow's formula, $\frac{l \times 1 \mathrm{BW}}{4 a d^{2}}=\mathrm{S}$, from experiments on a projecting beam or arm; or from the formula $\frac{l \times \mathrm{BW}}{\| d^{2}}=\mathrm{S}$, when a beam supported at the ends is under trial. Λ measurable set is produced by a straining force very mueh less than that to which the material will be likely to be exposed in practice. Without having this principle in mind, the differences between the actual breaking weight and the permanent set weight of son e writers will be misunderstuod. The practical man, however, will use one hifd or some other proportion of these valucs, as noticed in par. 1628d. (See another Table, pur. 1630s).
1628l. Table of the Transverse Strength of Metal.s: 1 Ineh Square, 1 Foot Long.

1628m. Fairbairn's experiments on cast irons obtained from the principal iron-works, and made into bars 1 inch square and 5 feet long, proved that the longer beams are weaker than the shorter in a greater proportion than their respective lengths; that the strength does not inerease quite so rapidly as the square of the deptl; that the deflection of a beam is proportional to the force or load; and that a set occurs with a small portion of the breaking weight.

In 59 experiments, the strongest; Ponkey No. 3, cold blast	$\begin{aligned} & \text { Spec. Grav. } \\ & \int 7 \cdot 122 \end{aligned}$	Break. W't. 578 lbs.	Ulr. diffect 1.74, hard
In 59, experiments, the weakest; Plaskynaston, No. 2, hot blast	6.916	357 lbs.	$1 \cdot 36$, soft.

Mean value 440 lbs , affording for the specific strength, $\mathrm{S}=1980 \mathrm{lbs}$, or $=884$ tons. For the rule ineluding n, a comparison of two specimens gave $n=2 \cdot 63$.

1628n. Morries Stirling lias considerably strengtliened cu:t iron by adding a portion of malleable cast iron. Four experiments, by Hodgkinson, gave the following results :-

$$
\begin{aligned}
& \text { No. } 2 \text { quality (} 20 \text { per cent. serap), bars } 9 \mathrm{ft} \text {. long, } 2 \text { ins. square - } \mathrm{S}=2248
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\text { No. } 2 & \quad, & " & , \quad \text { bars } 4 \mathrm{ft} .6 \text { ins. long, } 1 \text { in. square } \\
\text { No. } 3 & \quad \mathrm{~S}=2803 \\
\mathrm{~S}
\end{array}
\end{aligned}
$$

His irons are also stronger under compression and tension.
Tensile power, No. 2-11.50 tons. | Compressive power, No. 2 - 54.62 tons. , "No. 3 - 10•47 " | " No. 3-64.41
16280. Hodgkinson also found the average breaking weiglat in pounds of a bar oî cast iron, 1 inch square and 4 feet 6 inches long between the supports, to be as follows:-

Average of 21 samples of hot llast iron

- 445.5714 pounds

Average of 21 samples of cold blast iron - - - 456.9090 pounds The superior transverse strength of cold blast iron equals nearly $2 \frac{1}{2}$ per cent. R. Stephenson experimented, in 1846 and 1847, on bars of different kinds of east iron, 1 inch square and 3 feet bearing. The results are given in the Civil Engineer, 1850, pp. 194-9.

Shares of Beams and Girders.

1628p. "Calculation affords the following slapes for iron beams, as being enalled to do the most work with the least expenditure of substance. Beams supported at one end: I.

If the load be terminal and the depth eonstant, the form of the beam in breadth should be wedge-shaped, the breadth increasing as the length of the beam (the latter measured from the loaded end). 1I. If the breadth be constant, the square of the depth must vary as the length, or the vertical section will be a parabola. H11. When both breadth and depth vary, the section should present a eubical parabola. IV. When the beam supports only its own weight, it should be a double parahola, that is, the upper as well as the lower surface should be of a parabolic form, the depth being as the square of the length. V. When a beam is loaded evenly along its surface, the upper surface being horizontal, the lower one should be a straight line meeting the upper surface at the outer end, and forming a triangular vertical section; the depth at the point of support heing determined by the length of the bean and the load to be sustained. VI. If an additional terminal load be added to such a beam, the under surface slould be of a hyperbolic eurvature. VII. And in a flanged beam, the lower flange should deseribe a paraholic curve (as in example IV.).

1628q. "Berms supported at both ends. I. A beam loaded at any one point, as seale beams and the like, should have a parabolic vertical section each way from the loaded point,

Fig. G13b. A. fig. 613b. II. In flanged beans, the lines may be nearly straight, and approaeh the straight lines more as the flanges are thinner. IlI. A bean loaded uniformly along the whole of its length, should have an elliptic outline for the upper surface, the lower one being straight. This form applies to girders for bridges and other purposes where the load may be spread. IV. With thin flanges, a beam so cireumstanced should be of a parabolic ligure. V. If a flanged beam have its upper and lower sides level, and be loaded uniformly from end to end, the sides of the lower flange should have a parabolic curvature." (Gregory.) VI. In the case of example III., Fairbairn observes that the greatest strength will be attained, while the breadth and depth is allowed to be diminished
 towards the ends. This diminution should take place in curved lines which are strietly parabolic. The most convenient way of doing this is by preserving a horizontal level in the bottom Hlange, diminishing its width, as well as the height of the girder, as fig. 613c. Thus the spaces $b b$ should be square on plan for the bearings on the wall, \&e., and equal to the width of the bottom flange at the centre ; the intermediate length l to be cursed to the form prestribed. The width of the bottom flange is to be reduced near the ends to one half of its size in the middle, and the total depth of the girder reduced at the ends in the same proportion. At the middle of the bearing, a flange may be cast on to connect the upper and lower flanges, and this will give additional stiffness to the girder.

1628r. Gregory further remarks on this subject: when the depth of the beam is uniform, and (VII.) the whole load is collected in one point (as A, fig. 613d.) the sides of the beam
 should be straight lines, the breadth at the ends, B, being half that where the load is applied.
VIII. When the load is uniformly distributed (fig. 613e.) the sides should be portions of a cirele, the ralius of which should equal the square of the length of the beam divided by twiee its breadth. When the breadth of the beam is uniform and (1X.) the load is collected in one point, the extended (under) side should be straight, the depth at the point where the load is applied twiee that at the ends, and the lines comecting them straight (fiy. 613b.) See example I. When the load is uniformly distributed, X. the extended (under) side should be straight, and the compressed (upper) side a portion of a cirele whose radins equals the square of half the length of the beam divided by its deptil. See examples III. and VI. When the transverse section of a beam is a similar figure throughout its whole length; XI. if the load be collected at one point, the depth at this point should be to the depth at its extremities as 3:2: the sides of the beam being all straight lines. XII. When the load is uniformly distributed, the depth in the centre should be to the depth at the end as $3: 1$, the sides of the beam being all straight lines.

Various Laws affecting Beams and Girbers.

1628s. The prineiples on which the rules subjoined are founded may be seen in Gregory, Mechanics, \&c. and Barlow, Strength of Muterials, but divested, certainly, of the refine-
ment of Dr. T. Young's Modulus of Elasticity, and some other matters, which we carnot help thinking unnecessary in a subject where, after exhausting all the niceties of the ques. tion, a large proportion of weight is considered too much for the constant load.

1628t. The transcerse strength is that power, in the case of a lieam, exerted in opposing a force acting in a direction perpendicular to its length. The following formule and rules apply to the various positions in which a bean or girder is placed.
I. If a beam be loose (or supported) at both ends, and the weight be applied in the midale
II. If a beam be loose at both ends, and the weight be applied uniformly along the same length, it will bear twice the load placed in the middle
1II. If a beam be loose at both ends, and the weight be applied at an intermediate point ; the spaces m with $n=l$ -
IV. If a beam be fixed at both ends, and the weight be applied in the middle, it will bear one half more than if both ends be loose (I.) -
V. If a bean be fixed at both ends, and the weight be applied uniformly along the same length, it will bear three times more than the load in the middle of No. 1, than if both ends be loose

Girder. $\frac{\mathrm{C} \pi d^{2}}{l}=\mathrm{W}$	$\begin{aligned} & \text { Beam. } \\ & \frac{\mathrm{S} d d^{2}}{l}=\mathrm{W} \end{aligned}$
$\frac{2 \mathrm{C} a d^{2}}{4}=\mathrm{W}$	$\frac{2 \mathrm{~S} b d^{2}}{l}=\mathrm{W}$
- -	
- or	$\left\{\begin{array}{l} \frac{1 \cdot 5 \mathrm{~S} l d^{2}}{l}=\mathrm{W} \\ \frac{3 \mathrm{~S} \mathrm{~S} d^{2}}{2 l}=\mathrm{W} \end{array}\right.$
- -	$\frac{3 S b d^{2}}{l}=W$
- -	$\frac{3 S b d^{2} l}{8 m n}=\mathrm{W}$
-	$\frac{\mathrm{S} L d^{2}}{4 l}=\mathrm{W}$

VIII. If a beam be fixed at one end only, and the weight be applied in the middle, it will bear half as much again as at the end.
IX. If a beam be fixed at one end, and the weight be applied miformly along its length, it will bear double the load at the end.
X . If a bean be fixed at one end only, it is as strong as one of equal breadth and depth, and twice the length which is fixed at both ends.
X I. If a beam be supported in the middle and loaded at each chd, it will bear the same weight. as when loose at both ends and loaded in the middle (as I.)
XII. If a beam be continued over three or four points and the load be uniformly distributed, it will suffice to take the part between any two points of support as a beam fixed at both ends.
Xiff. If some of the parts have a greater load than the others, it will be near enongh in practice to take the parts so loaded as supported at the ends only.
XIV. If a beam be inclined and supported at both ends, it has its breaking weight equal to that of the same beam when horizontal, multiplied by the length of the inclined beam and divided hy the horizontal distance.
Note.-In caleulating for the strength of a beam or of a girder, it is usial to rechon on the ends being loose, from the difficulty of fixing the cuds in a sufficient manner to warrant the rule in that case being followed: and when the ends are solidly embedded, they should penetrate the wall for a distance equal to at least three times the depth of the beam or girder (par. 1630m.) ; but this precaution is seldom carried out in practice.
i $628 u$. For the effect of running loads over bars, we must refer to I'rofessor Willis's experiments at Cambridge, given at the end of Barlow's Strcngth of Materials, \&c., 1851.

1628v. Two geometrical methods of firiding the best proportion of a beam to be cut out of a given cylinder have been propounded. The stiffest heam, says Tredgold, that can be cut out of a round tree, is that of which the depth is to the breadth as $\sqrt{3}$ to 1 , or nearly as 1.7820508 to 1 ; this is in general a good proportion for beams that have to sustain a considerable load. The refuired proportions are obtained by dividing a diameter as $a b$ in $f i \% .613 f$, , into two equal parts, $a c$ and $c b$, then drawing with a and b as centres two ares through c to cut the circle ine and f; the points telof being joined, the figure is that of the stiffest beam that can he cut out of a cylinder, to resist a perpendieular strain. It is al,o observed ly 'Tredgold
 that the strongest beam which can be cut out of a round tree is that of which the depth
is to the breadth as $\sqrt{2}$ is to 1 , or nearly as 1.4142136 to 1 ; or as 7 to 5 . Its two sides must be to the diameter of the tree as the $\sqrt{\frac{1}{3}}$ and $\sqrt{\frac{2}{3}}$ to 1 . Tl.e required proportions are obtained by dividing a diameter $a b$, fig. 613h., into three equal parts ac, $r d, d b$, and drawing the lines $c e$ and $d f$ at right-angles to $a b$; the points $a \in b f$ being joined, the figure is that of the strongest beam that can be cut out of a cylinder. The strength of a square beam, fig. 613 g ., cut from the same cylinder, is to the strength of the strongest beam nearly as 101 to 110 , although the square beam would contain more timber nearly in the ratio of 5 to 4.714 . The stiffest beam is to the strongest as 0.97877 to 1 , as regards power of bearing a load; but as 1.04382 to 1 as regards amount of deflection, in equal lengths between the supports.

1628u. Buffon, during his extensive series of experiments on oak timber, from 20 to 28 feet in length, and from 4 inches to 8 inches square in section, found that the heart-wood which was densest was also strongest, and the side on which the beam was laid also affected the strength; for when the annual layers were horizontal, and the strength 7, the layers laid vertically gave a strength of 8 . He also found that beams which had each supported, without breaking. a load of 9,000 lhs. during one day, broke at the end of five or six months with a weight of $6,000 \mathrm{lbs}$., that is to say, they were unable to earry for six months two-thirds of the weight they bore for one day.

Transverse Sections.

1628x. The transverse section of a cast iron girder previous to Hodgkinson's experiments. was that of Tredgold, consisting of equal flanges at top and bottom, as A, fig. 613i; and that of Lillie and Fairbairn, in 1825, with a single flange, as B; Hodgkinson deduced a section of greatest strength having areas of flanges as 6 to 1, as C. Taking this form as unity, the ratios will stand :-

For Hodgkinson and Fairbairn, as	-	-	-
For Hodgkinson and Tredgold, as	-	-	-74
For Fairbairn and Tredgold, as -	-	-	-619
-	$1: 820$		

(Fairbairn, Alplication, \&c. p. 25: Tredgold, Cast Iron, 1824, p. 55, describes the advantages of his own form of section.)

1628y. Hodgkinson's complete section for a cast iron girder is shown in fig. 613j. Its chief principle is, that the bottom flange must contain six times the area of the top flange. The several dimensions are taken thus:-I. For the depth, the total dimension I). II. For the bottom flange, the width B, and fur the two thicknesses, one is taken at the centre $b b$; the other b at the end.
1 ig . 615 i. III. For the top flange, the width T, and for the two thicknesses, one is taken at the centre t, the other t at the end. In this manner the dimensions of the flanges are

Fig. $615 j$. quite independent of the thickness of the rib. IV. For the rib the two dimensions r and $r r$ are measured as continued to the extreme top and bottom surfaces of the girder, with the same view of making these dimensions independent of those of the flanges, and promoting exactness in defining the entire section. Hodgkinson's complex rule for obtaining the weight a girder will carry, is $\left.\frac{2}{3 d \lambda}\right\}^{b} d^{3}-\left(b-b_{1}{ }^{3}\right) d_{1}{ }^{3}=\mathrm{W}$. Here $\mathrm{W}=$ tons, or b eaking weight; l feet, or length between supports; d whole depth ; d_{1} depth to battom flange; b breadth of bottom flange, and b_{1} thickness of vertical rib. The simp'er rule usually employed, as $\frac{a \times d \times C}{l \text { feet }}=W$ tons, or the breaking weight whicii sbould not be less than four times the permanent load distributed; and it gives a result less by 7 per cent. than the complex rule above described, therefore an excess of strength is oltained.

1628z. The proportions of the rib are undetermined. btat it is evident that they should bear some ratio to those of the flanges. It must be sufficiently rigid to prevent lateral we k ness. Moreover the very theory which maintains the minciple of the neutral axis (par. 1630c) also recognises the increase of the forces of compression and extension upward and downward from the neutral asis, and would therefore lead to the adoption of a rib tapered in both directions. In practice it is found desirable to taper the rib so as to meet each of the flanges with a thickness corresponding to that of the flange. for if any very great disproportion exists, the operation of casting the beam cannot be so perfectiy performed, from unequal shrinkage of the metal, and an imperfect casting or one having flaws in it, renders futile all calculations of strength.

1629 Hodgkinson gradually varied the form of section of girder in his experiments until the widths and depths of the flanges were as follows:-Top flange 2.33 inches wide, 0.31
inch deep; bottom flange 6.67 inches wide, 0.66 inch deep: the areas being 720 and 4.4 inches. The rib was 266 inch thick, and the total depth $5 \frac{1}{6}$ inches. The constant or C was found to be 514 for cwts., or 26 for tons. (Warr.)

1629a. It will searcely be within our province to deseribe all the forms of sections, and the results of the experiments made by Fairbairn in obtaining his box beam or plate girder in urought iron, but it is to be noted that all the cylindrical tubes broke by extension at the rivets before the tube could fail by compression. Fairbairn in his Application of Ca:t and Wrought Iron to Building Purposes, edit. 1857-8, p. 80, notices that although the plute girder be inferior in strength to the box lieam, it has nevertheless other valuable properties to recommend it. On comparing the strength of these separate beans, weight for weight, it will be found that the box beam is as $100: 93$. The plate beam is in some respects superior to the box beam; it is of more simple construction, less expensise, and more durable, from the eircumstance that the vertical plate is thicker than the side plates of the box beam. It is also easier of access to all its parts for the purposes of cleaning. \&c.

1629b. Fairbairn has formed a comparison between a wrought io ion and a cast iron g reder for a span of 30 feet. The plate girder, fiy. $61: 3 \mathrm{k}$, would be 31 leet 6 inches in length, and would be composed of plates 22 inches deep and $\frac{5}{16}$ ths thick; with angle iron $\frac{3}{8}$ ths thick, riveted on both sides at the bottom of the plate, and angle iron $\frac{1}{2}$ inch thick at the top, the width over the top being $7 \frac{1}{4}$ inches, and the bottom $5 \frac{1}{2}$ inches. The breaking weight of this beam, taking the constant at 75 , would be $\frac{a d \mathrm{C}}{l}=\mathrm{W}$; or $\frac{6 \times 22 \times-5}{360}$ $=27 \cdot 5$ tons in the middle, or 55 tons distributed equally over the surface. In the edition of $1857-8$, the angle irons are deseribed as 3 inches by 3 inches, $\frac{1}{2}$ inch thick for the bottom, and 4 inches by 4 inches, $\frac{1}{2}$ inch thick at the top; it would, therefore, be $8 \frac{1}{2}$ inches over at the top, and about $6 \frac{1}{2}$ inches at the bottom. Now a rast iron girder of the best form and strongest section and calculated

Fig. $615 k$. to support the same load, would weigh about 2 tons, the plate beam about 18 ewts., or less than one half. To sceure uniformity of strength in a rectangular box beam, the top is required to be about twice the sectional area of the bottom; hence resulted the use of cells in that portion.

1629c. Fig. 613l. is a plate beam having a single plate for the vertical web, while each of the flanges consists of a flat bar and a pair of angle irons riveted to each other and to the vertical web. Fig. 613 m . is a box bearm, in which there are two vertical webs. Fig. 613n. is a plite girder of greater dimensions than fig. 613l. ; the Hanges contain more than one layer of flat bars, and the web, which consists of plates with their largest dimensions vertical, is stiflened by vertical T iron ribs at the joints of those plates, as shown in the plan or horizontal section hittered A. The pieces should abut closely and truly against each other, having end surfites made exactly perpendicular to the axis of the

Fig. 6151.

Fib. 61 \quad m.

Fig. 61Jn. beam. The thickness of the web is seldom made less than $\frac{3}{8}$ this inch, and except for the largest beams, this is in general more than sufficient to resist the shearing stress. Above each of the points of support, the vertical ribs must be placed either closer or made larger, so that they may be jointly capable of safely bearing as pillars the entire slare of the load which rests on that point of support. A pair of vertical T iron ribs riveted back to back through the wel plates (as A, fig. 613n.) may be held to act as a pillar of cross-shaped section.

1629 d . The rib or web of a plate beam, as fig. $613 l$, having little or nothing to do with the pressure directly, has been replaced in some cases by simple upright struts or diagonal braces between the flanges, which in cast iron girders are in one casting, but experience has proved this not altogether politic, particularly in cast iron. Hodgkinson remarked that such beams were weaker than those with a solid rib. Rankine observes that transverse ribs or feathers on cast iron beams are to be avoided, as forming lodgments for air bubbles, and as tending to cause eracks in cooling. Open work in the vertical web is also to be avoided, partly for the same reasons, and partly because it too much diminishes the resistance to disturtion by the shearing action of the load.
$16: 9 e$. "Where the span renders it impracticable to roll a beam in one piece," Fairbairn, page 91 , notices that "convenient weights might be rolld into sections of the proper form -and being united by properly proportioned covcring plates at top and bottom, and to
the joints (par. $1630 y$.), and all the riveting be well exceuted, the beam will be equal in strength to one" of an entire length. "This construction may be carried to a cpan of 40 to 50 feet. In practice it is found necessary to contine the use of cells to spans excceding 100 or 150 feet: within these limits the same objects are most economically oltained hy the use of thicker plates" (page 215). "The more marly the bottom approximates to a sulid homogeneous mass, the better it is calculated to resist a tensile strain" (see pages 248 to 256 for full instructions as to riveting plates; and Kirkaldy, Experiments, sc., page 196, for comparison of strength). As the bending noment of the load on a girder dminishes from the maddle towards the ends, and the shearing force from the ends towans the middle, it follows that the transverse sections of the bottom plates may be diminished from the middle towards the cnds, and that of the vertical web from the ends towards the middle, so as to make the resistance to bending and shearing respectively vary according to the same law. Consequently, towards the centre of a girder for a large span, the bottom plate is usually increased by additional plates to secure the requisite strength in the sectional area, giving the underside of the plate a bellied form. C. Graham Smith, W'rought Iron Girder Work, deserves attentive perusal by the student. It is print.d in the British Arehitect, for June 1877, pages 582 to 385.

1629f: The results of various testings of a new manufacture of girder patented about 1866 by Messrs. Phillips are here recorded. A double weight in a cast iron girder is required to give equal strength with one of wrought iron. A riveted plate girder is not always adaptable for general purposes. The new system consists in riveting plates to the top and bottom flanges of rolled iron beams, and so strengthening
 them as to obtain results apparently disparaging to ordinary plate girders. The experiments noticed here in an abridged form were on a patent girder of 22 lbs per foot run, with a web plate, as A, fig. 61:30., and 20 feet bearing. as compared with a riveted plate girder of 9 in depth; it gave a breaking weight of 7 tons and a safe load of 4 tons; the formula for the breaking weight of an ordinary plate girder would give $3 \frac{1}{2}$ tons. When two of the 8 -inch rolled girders were riveted together with a plate on the top, as B, the metal being about 40 lbs . per foot run, the girder was found to resist 20 tons, even then not breaking, but becoming twisted. An ordinary riveted plate girder of 40 lbs , per foot run, with a web of 12 incles, with double angle irons of 3 inches by 3 inches and $\frac{1}{2}$ inch thick, would break with a strain of 9 tons. A simple wel plate girder, with angle irons top and bottom (fig. G13k.), gives $\mathrm{C}=60$; a plate on top and bottom in addition (fig 6131.) gives $\mathbf{C}=75$; and a box beam (fig. 613m.) gives $\mathbf{C}=80$. The rolled girders made by the Butterley Company give $\mathrm{C}=57$ to 88. The example A gives $\mathrm{C}=210$; and the example $\mathrm{I}, 300$. Other experiments are required fully to prove the superiority of the new system over the beams and girders of the old sections. The details of the above testings are given in the Builder, p. 148; Mechunics' Magazine, p. 129; Engineering, p. 139; \&c., all for the year 1866 .

Condition of Breaking Weight in the Middle.

Fig. 613p. VARIOUS FORMS IN USE FOR BEAAS, GIRDERS, AND IRONS.
Application to the manufacturer selected must be made for any special lengths and strengths of rolled iron joists and girders, riveted and compound, \&c. The former can be obtained from 3 inches deep ly $1 \frac{3}{4}$ inches up to 22 inches deep by 8 inches, being from 6 feet to 36 feet in length, with top and bottom flanges of usual proportions. The latter can be obtained of the same lengths. One manufacturer advertises the following makes.Rolled girders up to $19 \frac{3}{4}$ inches deep and to 38 feet long. Zore's patent girders up to 8 inches deep and to 34 feet long. Cbannel iron to 12 inches wide and to 32 feet long. Angle iron to $12 \frac{1}{2}$ urited inehes and to 30 feet long. Tee iron to 12 united inches and to 30 feet long. Fliteh and sandwich plates to 14 inches wide and to 36 feet long. Riveted girders made up from stock to all sections. Bulb tees up to 10 inches deep. Rounds to $6 \frac{1}{2}$ inches. Squares to 5 inches. Flats to 14 inches. Chequered plates up to 8 feet by 4 feet.

The opinion is gaining ground that most of the constants in use for calculating the strength of bean:s are too high. A comparison of Tredgold, Barlow, and Clark, will show
a difference of something approaching 100 per cent.: Tredgold the highest, Clark the lowest, and Barlow about midway. New sets of experiments are desirable, especially for large scantlings. From 1866 D. Kirkaldy has made a number of experiments on fullsize timbers, and of late years Mr. Lanza has made some at the Massachusetts Institute. His results show that the ordinary furmulæ require revision. For instance, a spruc beam 12 inches by 2 inches and 15 feet lone broke with a central load of 5894 lbs . Accoring to Tredgold's formula, it ought to have carried a load of 8928 lbs . before breaking. This result was corroborated by other tests, and the general conclusionarrived at is tha+, wheteas we have been accustomed to use as a constant in the familiar formula $W=\frac{c b d^{2}}{l} 4 \mathrm{ewt}$. for fir or pine beams (in fact, in one of his examples 530 lbs. is used), we ought really to use a constant of not more than $2 \frac{1}{2} \mathrm{cwt}$. The more thoroughly large size specimens, whether of wood or iron, are tested, the more will our knowledge of their strength be increased, and we shall be less dependent upon theories. (J. Slater, 1887). As an instance, put forward so long since as : 871-72 by Captain (now Colonel) Seddon from experiments by D. Kirkaldy on (1) white Rigatir, and (2) red Dantzic fir, vhere each piece was 20 feet long-

> White Riga fir was 13 inches square $=169$ square inches area.
> Ultimate stress $331,260 \mathrm{lbs} .=1960 \mathrm{lbs}$. per square inch.
> or $147 \cdot 88$ tons $=126^{\circ} 04$ tons per square foot.
> Gave way at knots 2 feet 9 inches from centre. Deflection ${ }^{\circ} 642$.
> Red Dantzic fir was $13 \cdot 5$ by $13 \cdot 2=178$ square inches area.
> Ultimate stress $309,120 \mathrm{lbs}=1742 \mathrm{lbs}$. per square inch.
> or $13 \% .00$ tons $=112.02$ tons per square foot.
> Gave way at knot 0.9 off centre. Deflection 548 only.
> Transuctions, Royal Institute of British Architects, 1871-72, pp. 156-164.

Strictly speaking, the law that the breaking weight depended on the variations of stress was known before 1849, when it was slown that cast iron bars broke with half the statical breaking weight when subjected to continued repetitions of load. Subsequently Sir W. Fairbairn carried out an experiment on a riveted girder subjected to continual loading and unloading for a period of two or three years. It broke with two-fifths of the statical breaking load, and after repairing, with one-third the statical breaking weight, afier over one miltion changes of load in each case. The statical breaking stress was not, as com monly assumed, the exact measure of the structural value of a material. (Prof. Unwin, in Builder, 1887, p. 741).

1629g. Problem 1.-To find the breaking weight of a beam, the load being in the middle and all the dimensions known. The ends loose or supported.

For A, Timber beams :-

$$
\frac{b d^{2} \mathrm{~S} \text { lbs. }}{d \text { leet }}=\mathrm{W} \text { lbs. } \left\lvert\, \frac{b d^{2} \mathrm{~S} \text { ewt. }}{l \text { feet }}=\mathrm{W}\right. \text { cwt. } \left\lvert\, \frac{b d^{2} S \text { tons }}{l \text { feet }}=\mathrm{W}\right. \text { tons. } \left\lvert\, \frac{a 4 d \mathrm{~S}}{l \text { ins. }}=\mathrm{W}\right. \text { lus. }
$$

Here S, in the first formula, represents the value of the breaking weight in pornds in the middle, taken from the preceding table: in the other two it would be deduced from it; thus, taking Riga fir $\frac{359 \mathrm{lbs} .}{112 \mathrm{lbs}}=3 \cdot 21$ for cwt ., and $\frac{3 \cdot 21}{20 \mathrm{cwt}}=\cdot 160$ for tons: b breadth in incles; d depth in inehes ; l distance between the points of support, in feet; a area of section, These letters will be continued in these problems, until other values are attached to them. W will always represent the breaking weight.

1629h. For \mathbf{B}, Wrought or cast iron rectangular beams:-

$$
\begin{array}{c|l|l}
\frac{b d^{2} \mathrm{~S} 1 \mathrm{bs}}{l}=\mathrm{W} l \mathrm{lbs} . & \frac{b d^{2} \mathrm{~S} \mathrm{cwt} .}{l}=\mathrm{W} \mathrm{cwts} . & \frac{b d^{2} \mathrm{~F}}{6 l}=\mathrm{W} \mathrm{lbs} .
\end{array}
$$

IIere F represents the weight in pounds borne by a rod 1 inch square, when the strain is as great as the rod will bear without destroying part of its elastic force, $=1.5,300$ for cast iron. From a mean of 265 experiments by Hodgkinson and Fairbairn, it appears (by Gregory) that a weight of 454.4 pounds in the middle of a bar of cast-irm, 1 ineh square and 4.5 feet bearing, produced fracture. Therefore, for a bar of any other dimensions, we have:-

$$
\frac{b d^{2} \mathrm{C}=2045}{l}=\mathrm{W} \text { lbs. } \quad \left\lvert\, \quad \frac{b d^{2} \mathrm{C}=18 \cdot 25}{l}=\mathrm{W}\right. \text { cwts. } \left\lvert\, \frac{b d^{2} \mathrm{C}=\cdot 912}{l}=\mathrm{W}\right. \text { tons. }
$$

1629i. For C, Cast iron girder (Tredgold's section). $\frac{b d^{2} \mathrm{~F}}{6 l} \times\left(1-q \times p^{3}\right)=\mathrm{W}$ lbs. Here q, difference between the breadth in the middle and the extreme breadth $=625$ as found to answer in practice; and p, depth of the narrow part in the middle $=\cdot 7$ as found to answer. When the middle part of the beam is omitted, except sufficient uprights to connect the top and bottom bars, then $\frac{b d^{2} F}{6 l} \times\left(1-p^{3}\right)=W$ lbs. Here

Сhap. I.
d whole depth; and p depth of part omitted. If the thickness of the web be about $\frac{1}{12}$ th . or $\frac{1}{1 \overline{0}}$ th of the depth of the beam, then--

$$
\begin{array}{l|l|l}
\frac{a d \mathrm{C}=514}{l \text { inches }}=\mathrm{W} \text { cwts. } \quad \left\lvert\, \quad \frac{a d \mathrm{C}=26}{l \text { inchts }}=\mathrm{W}\right. \text { tons. } \quad \left\lvert\, \frac{a d \mathrm{C}=2 \cdot 166}{l \text { feet }}=\mathrm{W}\right. \text { tons. }
\end{array}
$$

Here 514 cwts . may be used for side castings, or 536 cwts . for erect castings. The other quantities are obtained thus: $\frac{514 \mathrm{cwts}}{20 \text { for tons }}=25 \cdot 7$, called 26 tons; $\frac{536}{20}=26 \cdot 8$, called 27 tons. When l is used in feet, $\frac{26}{12}=2 \cdot 166: a$ represents area of bottom flange in inches.

1629k. Fur D, Cust iron girder (Hodgkinson's pattern) : -
$\frac{a d \mathrm{C}=514}{l \text { iucues }}=\mathrm{W}$ cwts. $\left\lvert\, \frac{a d \mathrm{C}=26}{l \text { inches }}=\mathrm{W}\right.$ tons. $\left\lvert\, \frac{a d \mathrm{C}=2 \cdot 14}{l \text { feet }}=\mathrm{W}\right.$ tons. $\left\lvert\, \frac{2 a d}{l \mathrm{ft} .}=\mathrm{W}\right.$ tons. $\left\lvert\, \frac{a d}{l \mathrm{ft.}}=\mathrm{P}\right.$ tons.
Here a and d as before; P permanent load distributed, or about one-fuurth of the breaking weight distributed; and multiplied by 2 when the ends are fixed $=$ one-half BW. From the experiments above quoted from Gregory, we obtain-

$$
\begin{array}{l|l|l}
\frac{a d 4852}{l}=\mathrm{W} \text { lbs. } & \frac{a d 43 \cdot 33}{l}=\mathrm{W} \text { cwts. } & \frac{a d 2 \cdot 166}{l}=\mathrm{W} \text { tons. }
\end{array}
$$

1629l. Gregory's work also states an arbitrary formula given by Mr. Dines, which he found to be tolerably correct in all cases where the length of the girder did not exceed 25 fret; its depth in the centre not greater than 20 inches; the breadth of the bottom flange not less than one-third, or more than half, the depth; the thickness of the metal nut less than $\frac{1}{16}$ th of the depth. Then-

$$
\begin{gathered}
\frac{1792}{l}\left[b d^{2}-\left(b-b_{2}\right) d_{2}^{2}\right]=\mathrm{W} \mathrm{lbs} . \quad \frac{16}{l}\left[b d^{2}-\left(b-b_{2}\right) d_{2}^{2}\right]=\mathrm{W} \mathrm{cwts} . \\
\frac{0.8}{l}\left[b d^{2}-\left(b-b_{2}\right) d_{2}^{2}\right]=\mathrm{W} \text { tons. }
\end{gathered}
$$

Here b entire breadth of bottom flange; b_{2} thickness of the vertical part; d depth of whole girder ; d_{2} depth without the lower flange, all in inches ; l length in feet.

1629m. Hurst, Handbook, notices that the area of the top flange should be $\frac{1}{3}$ of that of the Lottom flange when the load is on the top; and $\frac{2}{6}$ when the load is on the bottom flange; Molesworth, Formule, has $\frac{1}{2}$ for the latter; he notes that if the depth of the girder be $\frac{1}{12}$ of the spar, then a4 $17=\mathrm{W}$ tons, the weight being distributed. When the depth is $\frac{1}{10}$, $a 5=\mathrm{W}$ tons, the weight being distributed. The depth at the ends may equal $\frac{2, l}{3}$. Approximate rules for these girders have been given in the Pocket-book for 1865 , as $l \times \mathrm{P}=d \times a$, $\frac{d \times a}{l}=\mathrm{P}, \frac{l \times \mathrm{P}}{d}=a$. Here l feet; P tons distributed; d depth of girder; a area of bottom flange, both in inches.

1629n. For \mathbf{x}, Wrought iron tube or beam, or br, x-beam:-

$$
\frac{a d \mathrm{C}=80}{l \text { inches }}=\mathrm{W} \text { tons. } \left\lvert\, \frac{a d \mathrm{C}=6 \cdot 66}{l \text { feet }}=\mathrm{W}\right. \text { tons, when } d \text { is more than } \frac{l}{14}
$$

Here a area of the bottom flange; C coefficient determined for this particular form of tube. In the table given by Fairbairn (pp. 116-17), a area of the whole cross section, the constant $\mathrm{C}=17.8$ tons, for a tube having the top flange $=1.14$ thick, twice the area of the bottom one; the tube being $9 \cdot 6$ inches square, and 17.5 feet long between the supports. Such a beam deflected $1 \cdot 76$ inches with a breaking weight of $7,148 \mathrm{lbs}$.
16290. Hurst states it is usual to camber a riveted girder, so that on receiving the permatent load it may become nearly horizuntal. If the required rise or camber eqials e in the middle in inches, d being in inches and l in feet, we have $\frac{l^{2}}{l} \mathrm{~K}=e$. For girders uniformly loaded and of uniform section throughout the length, $\mathrm{K}=\cdot 018$. Wher the section is also made to vary so that the girder will he of equal strength throughout, $\mathrm{K}=001$. Molesworth notes the area of top flange as $a 1 \cdot 18$; Hurst says $a 1 \cdot 75$. If the depth of the girder be $\frac{1}{12}$ of the span, then $\mathrm{W}=12 \cdot 3 a$ tons; if $\frac{1}{10}$, then $\mathrm{W}=16 a$ tons. The rivets to be $\frac{3}{4}$ ineh and inch in diameter, placed 3 inches apart in the top and 4 inches apart in the bottom flange.

1629p. For \boldsymbol{F}, I'roughtitiron p'ate girder:-
$\frac{a d \mathrm{C}=1500}{l \text { inches }}=\mathrm{W}$ ewts.: area of the top flange being $\frac{1}{3}$ greater than the bottom flange, and the thickness of the weh about $\frac{1}{24}$ or $\frac{1}{30}$ of the depth of the beam. $\frac{a d \mathrm{C}}{l \text { inches }}=\mathrm{W}$ tons, in which case $\mathrm{C}=75$ for deep plates, as 22 inches; $\mathrm{cr}=60$ for less depth, as 7 inches. $\frac{a d \mathrm{C}=6 \cdot 25}{l \text { feet }}=\mathrm{W}$ tons, when d is more than $\frac{l}{14}$, and the area of the top flange is 1.75 of the bottom flange. Here a area of bottom flange in inches; some calculators deduct the rivet holes from its total width. For depths under 12 inehes, the width of the top flange should be half the depth; and when over 12 inches, one-third. With the latter proportion, leathers or stiffening pieces should be used to supply the deficieney in lateral stifthess oceasioned by the reduced width of flange (par. 16ะ9c.). The usual thickness of web for all depths uncer 3 feet is $\frac{3}{8}$ ineh. Fairbairn (Tubulur Bridges, p. 247) diseovered that the top flange should have an area double that of the lower one to give the strongest form of urought iron beam, a contrary principle to that obtained in cast iron.

1629q. To find the area of either of the flanges at the centre of a girder supported at both ends, the formula is $\frac{\mathrm{W} l}{8 s l}=\alpha$. Here W represents live and dead loads uniformly distributed in tons; l span in feet; d depth in inches; and s sa!e strain per square ineh of metal on the flange, in tons. Therefore, say $\frac{W}{8 \times s=5 \times 8 \cdot 30} 150 \times 1=100$. sect. area $=45$ square inches, excluding rivet holes in the bottom flange. This formula is tre equivalent of $\frac{W=\text { weight per foot run } \times l^{2}}{8, l}=a$. When the sectional area of the top flange is to bre greater than that of the bottom flange, multiply the latter area by 1%. The average sectional area of a theoretically proportioned flanged girder may be taken at $\frac{2}{3}$ rds of the central sectional area. To find the sectional areas of cither Hange at any point along the whole length of the girder, the formula is $\frac{\mathrm{W}: r}{2 s d}(l-x)=a$, excluding rivet holes in bottom Hange. Here W weight per foot run in tons; x lesser segment into which the span is divided; $l-x$ greater segment; s and d as before. To find the sectional area at any length of the web, the formula is $\frac{\mathrm{W} x}{s}=a$ square inches. Here x is the distance from the centre; W and s as before. The vertieal strain, at the centre of the beam, when one-half of the girder is fully loaded, is equal to $\frac{1}{8}$ of the fully loaded heam, that is $\frac{1}{8} W \times l$. At the ends or p. Hars, the vertical strain is greatest, and is equal to $\frac{1}{2} \mathrm{~W} \times l$. The strain at the centre, when the load is uniformly distributed, is obtained from the formula $\frac{\mathrm{W} l}{8 d}=s$. Here W distributed load in tuns; l length in feet; d depth in feet; s strain in tons of eompression in the top flange and tension in the bottom flange. Half the load collected at the centre of a girder being equal to the load distributed, the above formula hecomes $\frac{\mathrm{W} l}{4 d}=s$. At any other point, ratios of strain will be as the square of half the span to the square of the segments into which a given point divides the span. The approximate strain at the centre, per square inch, on any beam, may be obtained from the formula $\frac{\mathrm{W} l}{8 a}=s$. Here W distributed load in tons; l length in terms of the depth; a sectional area in square inches; and s strain in tons per square inch. To find the sectional area of a Hange for a plate girder lixel at one end and free at the other the formula is $\frac{\mathrm{W} x}{d s}=a$, exclusive of rivet holes in the top flange; W weight in tons at the end of the girder; x length in feet from loaded end to the point where the sectional areas are required; d depth in feet; s safe strain per square inchin tons. When the load is uniformly distributed, using the same notations as before, except that W in tons is the load per foot run, the formula is $\frac{\mathrm{W} x^{2}}{2 s d}=a$. (Enyineer's, Architect's, §c., Pucket-book, 1865.)

1629r. For G. Rolled irons or bars :-

$\frac{\operatorname{ad~} \mathrm{C}=6}{l \text { feet }}=\mathrm{W}$ tons. Here a area of bottom flange includes to above the upper part of

Fig. 613 q. the swelling for Hange, as $b e$ (fiq 613q.); or to the whole of the angle in plate girder \boldsymbol{F}. A railway har is often useful in country places; the intricate formule for the strength of the various parts will be found in Barlow; and in the Engineer's \&r., Puchet-book for 1861.

1629s. For EX, Tee irons, or Roliel T irons: $-\frac{a d \mathrm{C}=t}{l \text { feet }}=\mathrm{W}$ tons.

1629t. For I, Reversed Tee irons:-
When x is one-fourth of the table or flange $b c$, and the form as 5:12 of a rectangle, then $\frac{b d^{2} \mathrm{~F}}{6 \times 2 \cdot 4 l}=$ SW. It was stated in the Oldham Mill Report that this fo m of beam, which might be considered to support a weight of say 1000 lbs ., may be broken if reversed, that is, the flange placed uppermost, as T, with a weight of say 340 lbs . Hodgkincon experimented on two bars 4 fect 3 inches long, the flange 4 inches wide, rib $1 \frac{1}{10}$ inch deep, with a thickness of metal of about $\frac{1}{4}$ inch. One bar was tried with the flange mpermost, the other bar with the flange downwards. The former broke with $2 \frac{1}{2}$ ewt., the latter with 9 ewt. Experiments on thrse girders of this shape, the web being 2 inches high and $\frac{1}{4}$ inch thick, the flange 2 inches wide by $\frac{1}{4}$ inch thick, and 24 inches long, were made by Cooper of Drury Lanc. He stated that the gain in strength over a flitch $\square 2$ iuches by $\frac{1}{4}$ inch was 25 per cent.; the loss in stiffines being 30 per cent. The strength arising from the accumulation of the quantity submitted to tensile action bears out an adequate result, or 880 times its own weigit, instead of 40), as $\quad 2$ inches by $\frac{1}{2}$ inch, and $\square \square 2$ inches by $\frac{1}{4}$ inch each, placed $\frac{1}{2}$ inch apart, showing over them an increase of strength of nearly 50 per cert. In using this form of seetion, it makes no difference whether the load be placed wholly on the top of the vertical web, or on the lower flange; the result obtained in either case was the same.-Builder, 1845 , vol. iii. p. 593. The results of some other experiments on this uscful form of iren

Fig. 615r. are given in the Engineer's Pocket.book for 1861, p. 205. The formula $\frac{a d \mathrm{C}=6}{l \text { feet }}=\mathrm{V}$ tons is also applicable to the trough-shaped section, as N (fig. $613 r$.) , as to the inverted Tee or \perp shape M, taking the two verical ribs to be equivalent to one rib of the same depth and double the thickness. The thickness of the horizontal and vertical parts of these git ders should be equal, or nearly equal, so as to obtain as near an equality in cooling as possil le.

1629 u For \mathbf{x}. Mixed beaus ; Flitch berms and double flitch beams :-There beams are composed of an iron plate (cast or wrought) placed betwen two pieces of fir timber, fig. 613s., or of a plateplaced on each side of the solid timber beam, fig. 613t. These plates again may have a t.ble or Hange, as in the case of the single plate; or of a half flange, as in the case of the plates on each side of the beam. All these should be bolted, or otherwise secured together, to render them as homogeneous as nossible. Hurst gives the furmula $\frac{d^{3}}{l \text { reet }}(C l+30 t)=W$ in ewts. Here t breadth of the one, or

Frg. 613s.

Fig. $613 t$. two, uroughl iron fitches; b breadth of wood, both in inches; C, coefficient $=4$ teak, 3 oak, 2.5 fir, and 2.0 elm. Fairbairn considers that " the addition of the timber on each side of the plate gives increased stiffness, and renders it less liable to warp under strain. It is called a sandwich beam." He states this beam "to be weak, comparing the results with those of the simple plate girder; and its elasticity, although considerable, is nevertheless so imperfect as to render it inadmissible for the support of great loads, whether proceeding from a dead weight, or one in motion over its surface. With riveted angles or flages, the timbers on each side might have been useful in preventing lateral flexure, but they would not have contributed, in any great degree, to the vertical bearing powers of the beam." (Application, \&c., p. 284-5.) Rolled flat irons can now be obtained about 13 to 14 inehes deep, from $\frac{1}{2}$ inch to an inch in width, up to 30 feet in length, and for special cases somewhat longer.

1629v. The muthod of trussing a beam is explained in Carpentry (par. 2021, et seq.).
1629 w . The formulx for finding the strength for examples IV.and V., fig. 675., are $\frac{\mathrm{W} l}{8 d}=h$; and $\sqrt{ } \overline{l^{2}+\frac{W^{2}}{16}}=s$. Here l length in feet; d depth in feet-both mcasured from the points of intersection of the stay, tension rod, and top heam ; W load in tons uniformly distributed; h horizontal thrust on beam in tons ; and s strain on inclined pait of tension rol in tons. When the truss has more than one stay, h, l, and d will represent the same; and h_{1} tensile strain on the horizontal portion of the rod. The strain on the inclined tie rod will be $\frac{\mathrm{W}}{8 d} \sqrt{l^{2}+n^{2}} d^{2}=s ; n$ the number of times that the horizontal disiance between the pier and the nearest stay is contained in l. If any load be placed on the middle, the s'rain h will be doubled. If any load be placed $c n$ each of the stays, then l will represent the distance of each loaded stay from the nearest pier; d depth as before; h horizontal thrust on the part next the pier; s tension on each of the inclined ties. Then $\frac{\mathrm{W} l}{d}=h$; and $\sqrt{h^{2}+W^{2}}=s$. To resist the strains of the inclined tie rods with safety, allow an inch of sectional area in the tie rod for every 5 tons of strain. The stay, being in compression, should be calculated as a column capable of supporting the load if in the middle, or one half if distributed. The beam, though in compression, should be capable of supporting the
doad betwe in the stays, as a beam exposed to transverse strain, according to the rules before given. 'Tie rods, when exposed to great strains, are not generally of much value, because the iron str tehes.

1629x. Mr. Cubitt experimented on an equal flanged east iron girder, 27 feet long, 10 inches detp, and 4 inches broad across the flanges; the rods were 1 inch diameter. When the ends of the rods were placed above the beam, it was found to be weaker than having no rod at all. When the fastening was made at the upper end of the girder, and giving a distance to the rod of $6 \frac{1}{3}$ inches below the girder instead of an inch, an increased stitliness was obtained of above a ton (Warr, p. 259). Some experiments are recorded in the Builder, 1857, on two beams of Dantzic timber, each 28 feet long, 14 inches square, with and without a tie rod. Barlow records an expeiment (p. 158) on four beams, two being trussed similarly to the figure on plate xxxix. of Nicholson's Carpenters' New Guide. Mr. Cooper's experiments on trussed beams are given in the Builder, 184.5, p. 612. For Trellis girders, another mode of trussing a beam, Fiirbairn, p. 129, uses the same formula as for the plate girder FF, but writh the constant 60 . For this, the student is referred to the Application \&c. of Iron, enlarged edition, 1864.

Other conditions than that of the Hieight in the Mididle.

1629y. To find the ultimate strength of a leam (section \mathbf{A} or \boldsymbol{B}), when a weight

Iig. $613 \boldsymbol{u}$. is placed somewhere between the middle and the end. RuleMeltiply twice the length of the longer end, A, fig. 613u, by twice the length of the shorter end B, and divide the product by the whole length C, which will give the efficco tive length to be uscd as the divisor for the ealculation of strength under the conditions of the beam:-Thus say a beam is-
$\frac{2 \times 10) \times(: \times 5)}{17 \text { loug }}=15.33$ effective length; and $\frac{(\mathrm{S}=2518 \mathrm{cast} \text { iron }) \times 2 \times 6^{2}}{13.33}=13,762.64 \mathrm{lbs}$ weight.
Hurst puts it as, $\frac{\left(\frac{1}{2} /\right)^{2} \times \mathrm{W}}{\text { product of tivo lengthis trom each end. }}$.
16,29z. Barlow (p 39-40) bas stated a case where a beam has to support tro equal weights between the points of support, FF^{\prime}, as at D and E , Example I. fig. 613n, then since $\mathrm{IC}=i \mathrm{C}=\frac{1}{2} \mathrm{I}$, and $\mathrm{W}=\mathrm{W}^{1}$, the general expression becomes $\frac{(\mathrm{ID}+i \mathrm{Ci}, i \mathrm{C}, \mathrm{W}}{1 i}=$ $\frac{11+i E}{2} \times W=f$. And if we suppose fuither $\mathrm{ID}=i \mathrm{E}$, then it becomes simply $\mathrm{ID} . \mathrm{W}=f$.

Now, if both weights act at the centre, it appears from the preceding investigation, that $\frac{1}{4} \mathrm{I}$. (2W) $=\frac{1}{2} \mathrm{I} i . \mathrm{W}=\mathrm{IC} \cdot \mathrm{W}=f$. Whence the strain in the two cases will be to each other as ID to IC ;

Fig. $615 v$. and hence the following practical deduction:When a beam is loaded with a weight, and that weight is appended to an inflexible bar, or bearing, as DE, in Ex. 2, the strain upon the beam will vary as the distance ID, or as the difference between the length of the beam and the length of the bearing; for the bearing DE being inflexible, the strains will be exerted in the points D and F, exactly in the same manner as if the bearing was removed, and half the weight hung on at each of these points. This remark may be worth the consideration of practical men in various architectural constructions. He also puts the case of a beam, which, instead of being fixed at each end, merely rests on two props, and extends beyond them on each side equal to half the ir distance, as Ex. 3: if the weights W W' were suspended from these latter points, each equal to one-fourth of the weight W, then this would be double of that which would be necessary to produce the fracture in the common case; for, dividing the weight W into four equal parts, we may conceive two of these parts employed in producing the strain or fracture at E , and one of each of the other parts as acting in opposition to W and W , ind by these means tending to produce the fractures at F and F^{\prime}. 'This is the case Which has been erroneously confounded with a former one (fixed at each end), but the dis inetion between them is sufficiently obvious; because here the tension of the fibres, is: the places where the strains are excited, are all equal; whereas in the former the middle one was double of each of the other two.
1630. Experiments are recorded in the Civil Engineer Journal, 1849, xi, page 44, on paralcl bars of east iron, 4 feet $8 \frac{1}{2}$ inches long and 4 inches square, pliced on two
supports CC (fig 613w.). Weights were placed at each end at equal distances from the supports, and the weights being gradually increased, the bar broke simultaneonsly through at EE. On another trial, a bar broke only in one point F , being a little nearer to the middle. This was considered a sufficient proof that a portion of the metal miglst be removed from the middle of the bar without diminishing its lateral strength, and that by adding this metal about the points EE, the lateral strength

Fig. $613 w$. vould be increased.

Various Problems.

1630a. I. When a beam (as sections \boldsymbol{A} and \boldsymbol{B}), with the ends supported, is to be calculated to support a permanent weight in the middle, the formulæ for obtaining the breadth and depth are $\frac{l \text { feet } \mathrm{W} \mathrm{lbs}}{5 \div 3 d^{2}}=b$, and $\frac{l \mathrm{~W}}{\mathrm{~S} \div 3 b}=d^{2}$. W weight to be supported, S safe weight, or $\frac{1}{3}$ of the ultimate strength of an inch bar; b and d in inches.

1I. When a similar beam for obtaining the breadth and depth had the ends fixed, the formula for the breadth is $\frac{l \mathrm{~W}}{\mathrm{~s} 3 d^{2} 1 \cdot 5}=b$.
III. When a similar beam projects from a wall, and is loaded at the ends, the formula for the depth is $\frac{l \mathrm{~W}}{5 \div 3 h \cdot 25}=d^{2}$.
IV. When a similar beam has to support a load placed at some distance from the end (fig. 613u), the effective length must first be ob:ained by the rule, par. 1629y. Then the formula for the depth is $\frac{\text { Effect. } / \mathrm{W}}{5 \div-3 b}=d^{2}$.

To find the diagonal of a uniform square cast iron beam, to support a given strain in the direction of that diagonal, when the strain does not exceed the elastic force of the material (Tredgold):-

V . When the beain is supported at the ends, and loaded in the middle, the formula is
$l=312$ for cast iron $=\sqrt[3]{\text { diagonal in inches. }}$
VI. When a similar beam has not the strain in the middle of the length $\frac{W \times B \times A}{l 53}$ $=3 /$ diagonal in inches. Here a and e refer to fig. $613 u$.
1630b. To abtain dimensions, \&c. of beams and girders:-
I. To find the depth of a beam, the length, breadth, and weight being given. For \mathbf{A} and $\mathbf{B}, \sqrt[2]{\frac{\text { leet } W}{s b} \text { ths. }}=d$ inches. If no breadth or depth be given, let $n=$ any number, then $\sqrt[3]{\frac{n l \text { feet } W \mathrm{~W} \text { ths. }}{5}}=d$, and $b=n$th part of d.
For $\mathbf{C}, \sqrt[2]{\frac{\mathrm{W} \text { not exceeding the elastic force }}{(\times 50 \text { or } \mathrm{SW}) b(1-73 \times 625)}}=d$ inches. For $\mathbf{D}, \frac{l \mathrm{~W}}{-}=d$. For $\mathbf{E}, \frac{1}{16}=d$.
II. To find the breadeh of a bean, the depth. length, and weight being given. For \boldsymbol{A} and $\boldsymbol{B}, \frac{l \text { feet } \mathrm{W} \text { lbs. }}{s d^{2}}=b$ inches. For $\mathbf{D}, \frac{l \mathrm{~W}}{\mathrm{C} d^{2}}=b$.
The proportion between the breadth and depth which will afford the best result is $6: 10$ depth, in timber. The formula for the least breadth a beam for a given bearing should have, is $\frac{l \text { feet }}{\sqrt{d} \text { inchen } x \overline{0.6}}=$ breadth.
III. To find the length, the weight, depth, and breadth being given:For \mathbf{A} and $\mathbf{B}, \frac{\stackrel{4}{\mathrm{~s}} b d^{2}}{\mathrm{~W}}=l$.
1 V . To find the constant S , the length, depth, breadth and breaking weight per foot m length, inels square, being given, For \mathbf{A} and $\mathbf{3}, \frac{W \text { lis. } l \text { fret }}{b d^{2}}=S$.
V. To find the area of the bottom flange, the leng:h, load, and depth being given. For $\mathbf{D}, \frac{l \text { feet permanent load in tons distibuted }}{d \text { inches }}=a$ inches. For \boldsymbol{E}, tension $=2$ load + beam, or tension not more than 5 tons per square inch.
V1. To find the muliple of depth and areu of the botlom flange, the length and load being given. For \mathbf{D} girder, $l \mathrm{P}=d \times a$.
V11. To find the area of the top flange. For $\mathbf{\Xi}$ girder, botton $+\frac{1}{4}$.
V111. Tu find the area of the side plates. For $玉$ girder, $\frac{1}{2}$ area of bottom.

Tension, etc.

1630c. The neutral axis. A timber hean supported at the ends and pressed down in the middle by a weight, will have its lower fibres extended, while the upper fibres are
nushed together. Since there are thes two strains, there will be sone line or point in the depth which is labouring under neither the one nor the other; this is the neutral axis. The further the fibres are from the neutral line, the more they will resist deflection from the load. It might he inferred that the material should be placed so far above and below the nural line as other circumstances will allow, in order that they may be in a position th exercise the greatest power. The most simple application of these views is shown in Laves's girder (described in Carffitiv). "As cast iron resists fracture about six times more powerfully under compression than under tension, it is useless to give as much area of material in the upper or compressed, as in the lower or extended, flange of a cast iron beam." Hodgkinson (Experimental Researches, 1846, p. 484-94) states that the position. of the neutral axis in cast iron rectangular beams, at the time of fracture, is situated at about $\frac{1}{7}$ of the whole depth of the b am below its upper surface. The sectional area of the top Hange of a cast iron girder must be rather more than $\frac{1}{6}$ of the bottom flange, to keep the position of the neutral axis at $\frac{1}{7}$ of the depth. In sudden factures it was from $\frac{1}{5}$ to $\frac{1}{6}$ of the depth.

1630\%. Tredgold, Iron, 1st edit. 1822, p. 53, considered the line of neutral axis in this section to be in the middle of the depth. He notices the curious fact put forth by Du Hamel, who cut beams one-third, one-half, and two-thirds through, and found the w. ights to be borne-by the uncut beam 45 lbs ; ; and by those cut $51 \mathrm{lbs} .4 \times \mathrm{lbs}$. and 42 libs. respectively which would indicate that less than half the fibres were engaged in resisting extension, although it does not prove that two-thirds of the thickness contrit uted nothing to the strength, as Robison imagines. Barlow found that in a rectangular beam of fir, the neutral axis was about five-eighths of the depth. as shown by the section of tracture. Warr gives for cast iron, the value of n or neutral axis $2 \cdot 63 ; n=6$ when the line may come in the middle. Attention should be given to the highly valabie paper by the Astronomer Royal (I'rof. Airy), On the Strains in the Interior of Beams and Tubular Brilges, read in 186^{2} before the British Association at Cambridge. It is given in the Athenæum for October 11; and its further elucidation in the last edition (1864) of Fairbairn's Application of Cast lron, \&.c.

1830e. Deflection. The deflection of a beam supported at the ends and loaded in the middle, is dircetly as the cube of the length, inversely as the cube of the depth, and inversely as the breadth; therefore, $\frac{\text { loai } \times \text { lengit } h^{3}}{\text { breadth } \times \text { depth }}=$ deflection. Beams have been said to lear considerable deflection without any injury to the elasticity of the material. Buffor and Tredgold esnsidered the elasticity to remain perfect until one-third of the breaking weight is laid cn . Hodgkinson was perhaps the first who practically showed that in a cast iron bearn, a $\frac{1}{503}$ nd part of the breaking weight cansed a visible set alter that weight was removed; while another beam took a visible set with $\frac{1}{80}$ th part of its breaking weight. He found the $/$ e menent se! in cast iron heans to be as the square of the load anplied. He also found that cast ion beams hore two thirds, and even more, of their beaking weight for long periods, without any indication of failing. Gregory (Mechanics for Practicul Men, 4th edit. 1862) considers that, though the above rule may be correct for heams about 5 feet in length, it does not apply when they are much longer. Thomas Cubitt found ly his experiments that, when the length became ahout 20 feet, the set was only as the weight; and that with larger beams the set was still less. Fairbairn found the impropriety of adopting any rule founded on elastic limits, since it was evident that, while the elasticity of a bar is injured as soon as a weight was applied, the particles or fibres take up fresh positions until the antagonistic: furces in the heam are bronght nearly to equality, when one-third or two-thirds of the breaking weight will affect the subsequent deflection of the biam.

1630f. For a rectangular heam of cast iron supported at both ends and loaded in the middle to the extent of its elastic foree, $\frac{l^{2} \text { feet } 02}{d^{2} \text { inhes }}=$ deflection. For similar beams, loaded uniformly, mulityly ly 025 in place of 02 . (Tredgold). It has been stated that the ultimate strength of a girder of the usual proportions may be approximately a acertained from its deflection under proof, on the assumption that a load equal to half the breaking weight will cause a deflection of $4 \frac{1}{50}$ of its length (Dobson). The prop rtion of the greatest depth of a beam to the span is so regulated, that the propontion of the greatest deflection to the span shall not exceed a limit which experience has shown to be consistent with convenience. That proportion, from various examples, appears to be for the working

1630 g . Mr D nes, when superintending upwards of two hundred experiments for Mr. Cuhitt, on east-ir.ng girders (as seition D) whose dimensions are limited, found that when the load in the centre is tak n as $\frac{3}{3}$ ths of the breaking weight, the following formulæ may be used. (d depth in centre; l length in feet) $:-I$. When the top and botton flanges are
equal, and the girder parallel, or equal depth throughout, $\frac{R}{40 d}=$ deflection. II. When the flanges are not equal, and the girder is not parallel, $\frac{l^{2}}{5 \bar{d} d}=$ deflection. IlI. When the beam has no top Hinge, and the depth varies, $\frac{l^{2}}{30 d}=$ deflection (Gregory).

1630 h . The formule given by Hurst, Handbork, $\xi \mathrm{c}$. for finding deflection, whieh oecur under Siiffuess of be mis, are, i. When supported at the ends and loaded in the middle,
 11I. If the beam be fixed at one end and loaded at the other, the defleetion $=16$ times the product. IV. If fixed at one end and uniformly loaded, 6 times. V. If supported at both ${ }^{\text {ends }}$ and nuiformly load d, ${ }_{8}^{5}$ ths. VI. If fixed at both ends and loaded in the middle, $\frac{1}{5}$ th. V1I. If fixed at buth ends and unifurmly loaded, $\frac{3}{30}$ ths. He gives the following: -

Table of the Relative Stifegth of Bodies to Resist Deflection = C.

Wrought iron	-	. 067	Baltie oak	- $1 \cdot 120$	Ash	- 1.176
Cast iron -	-	-112	Yellow fir	- 1-1:0	Beceh	- 1.434
Teak	-	-8.51	Menel fir	- 1.008	Elm	- 1.904
English oak	-	1.344	Red pine -	- 1.232	Ilahogany	- $1 \cdot 300$
Canadian oak	-	$1 \cdot 008$	Yellow pine	- 1.254		

VIII. The deflection of a reetangular beam is to a eylindrical one, as 1 to 17 . IX. When the deflection is taken as $\frac{1}{70}$ th of an inch per foot in lingth (which is considered to be safe under a proof of $\frac{1}{3}$ of the breaking weight) then for a beam supported at both ends and loaded in the middle, $\frac{l^{2} \mathrm{~W} \mathrm{C}}{d^{3}}=b ; \sqrt[3]{\frac{l^{2} \mathrm{WC}}{b}}=d ; \frac{b d^{3} \mathrm{C}}{l^{2}}=\mathrm{W} ; \sqrt[2]{\overline{b a^{3}} \overline{\mathrm{C}}}=l ;{ }^{l^{2} \mathrm{~W}}=\mathrm{W}$; but $\frac{\mathrm{C}}{2}$ for $\frac{1}{20}$ or 2 C for $\frac{1}{85}$. XI. For eylinders, $\sqrt[4]{ } 1 \cdot \frac{7 l^{2}}{2} W \mathrm{C}=$ diameter. XI. For an uniform load take $\frac{5}{8}$ this, as before.

1630i. The modulus of elasticity, or resistanee of materials to stretehing, is the term given to the ratio of the force of restitution to the foree of compression. It is the measure of the elastie foree of any substance. By means of it, the comparative stiffiness of bodies may be ascertained. Thus from the following table it will be perceived that a piece of east iron is 10.7 times as stiff as a piece of oak of equal dimensions and bearing. Resilue"ce, or toughness of brdies, is strength and flexibility eombined; hence any material or body which bears the greatest load, and bends the mont at the time of fracture, is the tonghest. The modulns is estimated by supposing the material to present a square unit of surface, and by any weight or foree to be extended to double, or compressed into one-half the original length; sueh a weight will represent the modulus.
'Table of the Modulus of Elasticity ; with the portion of it (limiting the Cuhesion of the Materlal, or) which would Teak them Asunder Lengthwise.

Table of the Modusus of Elasticity, \&e.-matinzed.

$163 \mathrm{C} h$. Hence, the modulus of elasticity being known for any substance, the weight may be determined which a given bar, nearly straight, is capable of supporting. For instance, in fir, supposing its height $10,000,000$, a bar one inch square and 10 feet long may begin to bend with the weight of a bar of the same thickness, equal in length to $.8225 \times \frac{1}{120 \times 120} \times 10,000,000$ feet $=571$ feet, that is, with a weight of about $120 \mathrm{lbs} ;$ neg. lecting the effect of the weight of the bar itself. If we know the force required to crust: a bar or column, we may calculate what must be the proportion of its length to its depth, in order that it may begin to bend rather than be crushed. (Gregory, p. 382.)

1630l. For a reetangular beam supported at both ends and the weight applied in the middle, Gregory, p. 388, gives the formula $\frac{4 \% L^{\beta} \mathrm{W}}{\mathrm{Mb} d^{3}}=$ deflection in inches in the middle. Here II modulus of elasticity in pounds; l length in feet; W weight in pounds; b breadth and d depth both in inches. Fenwich, Michunics of Construction, gives the formula $\frac{4 \mathrm{~W} l^{3}}{11 b} d^{3}$ or $\frac{W^{\prime} l^{3}}{4 \times M I}=$ deffection. Hire l length is in inches; and I moment of inertia of the sectior, wnich for a rectangle, $=\frac{1}{12} b d^{3}$.

1630 m . As it may often be necessary to calculate the deflection for an arm from that of a beam, or vice versâ, we notice the stateınent made by Barlow, edit. 1837, that "the deflection of a beam fixed at one end in a wall and loaded at the other, is double that of a beam of twice the length, supported at both ends, and loaded in the middle with a double weight." But by his editor in 1851, the word duuble was altered to equal Certain experiments made by us on both the beam and the arm, tended t.) prove that the former was correct (Bualder, $1866, \mathrm{p} .124$) ; but seientific investigations show that mathematically the latter is correct;
but as they mainly depend upon the perfeet mamer in whieh the tail of the arm is secured, the former, or double deflection, is recommended to be ant:eipated in practice.
1630π. There is no such thing as permanent elasticity in any rigid material, and the ouly passible way of construeting a beam whieh will return to its original form after the laid is removed, is a compound or trussed beam, put together in such a way that the permanent alteration of one material counterbalanees that of the other. All beams, without exception, will settle in the course of time, even with the lightest load. Not only the load, lut the ehanges of temperature afford a permanent cause of this sett'ing. Facts on this point are difficult to obtain, as the experiments require to be extended over years, and on the same piece of material. Iron rods, one ineh square, whieh may earry 60,000 lbs. before tliey are torn, streteh permanently by a load of less than 20,000 llhs. The best wrought iron cannot bear more than one-sixth of its load, without being permanently altered. These data apply only where the material is permanently at rest; if motion or aecidental inerease of burden happens, the above rules and numbers are eonsiderably modified. As elasticity in material varies as mueh as its strength, and does not follow the same rules as coliesion, it is advisable to make experiments in eaeh particular ease where important structures are to depend upon thie smaliest quantity of material. (Overman).
16300. Impact or Collision. A second foree, after direet pressure, is that of impact, says Fairbairn, involving a proposition on whieh mathematieians are not agreed. For praetieal purposes, we may suppose a heavy case equal to $2,240 \mathrm{lbs}$. or one ton, falling from a beight of 6 feet upon the floor. According to the laws of gravity, a body falling from a state of rest oltains an inerease of velocity in a seeond of time equal to $3 \frac{4}{3}$ fiet and during that period falls through a spaee of $16 \frac{1}{10}$ feet. This aecelerated veloeity is as the square roons of the distances; and a falling hody having aequired a veloeity of 8.05 feet in the first foot of its ieseent, and 6 feet being the height from which a weight of one ton is supposed to fall, we have $\sqrt{6 \times 8} 8.05=2.449 \times 8.05=19.714$ for the veloeity in a descent of 6 feet. Then $19.714 \times 2.240=44.159 \mathrm{lbs}$. or nearly 20 tons, as the momentum with which the body impinges on the floor. In the present state of our knowledge, this momentum may probably be taken as the ineasure of the force of impact. - "On the effects of impaet, the deflections prodneed by the striking borly on wronght iron are nearly as the velocity of impaet, and those on east ion greater in proportion to the veloeity. The experiments and investigations made for the Commissioners on Railway Struetures are extremely valuable. Their results showed that "the power of resisting impact inereases with the permanent load upon the beam; the greater the weight at rest upon the lean, the greater must be the momentum of a striking body in order to break it. This is satisfactory, as it diminishes the risk from falling weights in warehouses: the more nearly the weight upon the floors approaches the point at whieh danger begins, the greater is their power of resisting sudden impaets. Comparing the mean results of the experiments on bars not londed, ". we find that the transverse is to the impaetive strength as $2685: 3744$, or as $1: 1.39$. Similarly, when the bar is loaded with 28 lbs . in the centre, the transverse is to the impactive strength as $2685: 4546$, or as $1: 169$; and when 391 lbs . is spread uniformly over the bar, the transverse is to the impactive strength as $2685: 5699$, or as $1: 2 \cdot 12$." (Fairbairn, p. 228).

1630p. Tensile strength is that power of resistance whiel bodies oppose to a st paration of their parts when force is applied to tear asmeler, in the dircetion of their lengths, the fibres or particles of which they are composed. Iredgold's assertions of the prineiples have been combated by Gregory, to whose work we must refer the student for the reasons he gives. If a piece of No. 10 iron wire bears a tension of 2.000 lbs . befure it breaks. ten wires will bear ten times $2,000 \mathrm{lbs}$. If the sections of 50 wires of this number, form the contents of one square inch, then it will bean a stress of $50 \times 2000 \mathrm{lbs}$. before it is torn asminder, provided the wires are so arranged that each will earry its full weight. But it does not follow that a bar of wrought iron of one square ineh will earry an equal weight. not even if the iron loe of the same quality. If a solid iron rod of one square inch will carry $50,000 \mathrm{ll} \mathrm{s}$., it does not follow that a rod of 10 square inehes in section will carry ten times as mueh. When welded together, the capacity for resistance appears to be weakened. This observation applies to ahmost every kind of material, and varies only in degree. The tables of cohesion are generally computed to the tearing of the materiai, but our caleulations should never go beyond the exesss of elasticity, for fear of injuring the material. (Oierman.)

1630\%. If the strain upon a rod or strut be greatest on any one side, that side must sustain the whole foree or break. This consideration is of great practical moment in estimating the value of all kinds of ties, as king and gueen posts, \&e. - (Tredgold).

16:30r. The formula for the strength of tie-rods, suspension bars. \&.e. is C tons \times area of s.etion in inches $=W$ tons-a quarter to be taken for safe weight-or Clls. \times area of iection in inehes $=W$ los. . C being obtained from one of the columns in Tables 1 and 11.

If the weight to be sustained be given, and the sectional dimensions of the bar be required. divide the weight given by one third or onequater of the eohesive strength, and the square root of the quotient will be the side of the square. If the seetion be rectangular, the quotient must be divided by the breadth.

Table I., of the Abolute Cohesive Power (or Buraking Weight) of Metais: Sectional area, 1 ineh square, 1 foot in length.

METALS. Rennle, 181%, and othera.	Cohesive Power.	Cohesive 1'ower.	METALS. Renvie, 1817, and others.	Cohesive lower.	Cohesive Power.
Bar Iron, Swedish - -	$\begin{aligned} & \text { lbs. } \\ & 6.5,00 \end{aligned}$	$\begin{gathered} \text { Tons. } \\ 25 \cdot 20 \end{gathered}$	Bars, Cast, Blistered, Rolled,	lbs.	Tons.
" ," " rolled -	72064		and Forged - $\}$	104,298	
, ,., - R	$\left\{\begin{array}{l}41,251 \\ 4 \times 433\end{array}\right.$		". . Shear, liolled, \}	118,468	
" ", Russian - - -	4×93.3 59,470	$2 \mathrm{i} \cdot 70$, , Bessemer's, Rnl-\}	118,468	
-, " Russian - - -	$\left\{\begin{array}{l}59,564 \\ 49,54\end{array}\right.$	2 \%	" Bessemer's, $\left.\begin{array}{c}\text { led and Forged } \\ \text { led }\end{array}\right\}$	111,450	
" " " - K	$\{59.096$		", "Bessemer's, Cast \}		
" ", English	55.872	27. 3	lisgots: H-	63,024	
" "Mean strength, \quad,	-63 620		," ," Bessemer's, Ham-	15?,912	
Lancashire, - R	$\{53,775$		"Spring, H:m- \}	72,525,	
" " Lameashire, -	(60.110		mered or Rolled	72, 2	
" " Löw Moor, - $\overline{\mathrm{R}}$	52.4! 50		Bars, liolled	9n, 0.47	
" " Low Anor, crosswise ..	\{ 60,075		", ",	93,1,00	
:3 " "\% crosswist "	tif,390		, Forged - -	89,724	
," "Welsh - -	16255		1'udilled Stcel:-		
,, "Staffordsbire, - $\boldsymbol{\pi}$	$\left\{\begin{array}{l}56,715 \\ 6:, 231\end{array}\right.$		Bars, Rolled and Forged -	$\left\{\begin{array}{l}6,768 \\ 71,484\end{array}\right.$	
,, "Lanarkshire, - P	$\{51.327$		" "	90, 00	
			" "1	2	
Billge 1ıon, Yorkshire, - R .. crosswise	4.9380 43.940		Plates:-Cast Steel	$\left\{\begin{array}{l}75,594 \\ 96,280\end{array}\right.$	
., "Staffordshire, IR -	47, 51010			\{ 64,082	
crosswise	44.385		rise	\{ 97,150	
$\left.\begin{array}{c}\text { Rivet Jron, Low Muor } \\ \text { and Staffordshire, }\end{array}\right\}$ R	59,740		" ', hard - -	162,90 $8.3,40$	
Busherl d Iron from Turnings	$55.87 \times$		Homogeneous Metal, First		
Scrap, Hrinmered - - -	53420		Quality - -	96,280	
Angle Iron, various Districts -	$\left\{\begin{array}{l}50,1156 \\ 61.260\end{array}\right.$		" S'crosswise -	97,150	
	(61.260		" Second Quality -	72, $40 \times$	
Strap , , -	$\left\{\begin{array}{l}5 \\ 5\end{array}\right.$		crussurise	73, 3×0	
Plates:- (Raukine			Pudlled Ster - -	$\left\{\begin{array}{l}10,532 \\ 102,503\end{array}\right.$	
Yorkshire	52.000			$\{67,0 \times 6$	
" Yorkshire	58.487		", ", crosswise	$\{8,365$	
, Bessemt'r, roll $\cdot \mathrm{d}$, M	70.1100		, Cast	93,'00	
" ${ }^{\text {, }}$ -	72,613		Irun, Cast - - -	17,62 2	7.87
, ${ }^{\text {, }}$, boiler - R	[68.319		, , - - -	19,488	
, Staffordshire -	$\{46,404$		" " - - -	19,0!6	
" Stafiordshire -	$\{56,496$		" " horizontal - C_{1}	18659	
	\{ 44,764		", ", vertical - G	19,488	
" " crosswise -	(51,25]		,' Carron, \o. 2, cold Bliat	16,983	Tate
, " BB, charcoal	45010		, Bessemer, - M	41,00	
" $"$ crusswise	41,420		" (sep also in lext) ${ }^{\text {lngot }}$ (R	4],242	
" $\because \quad$ BB -	\% 54.8220		Gun Hetal, hard - -	3¢,363	$16 \cdot 23$
	\{ 54×20		\because, Mnshets - R	103,4010	
" " ,"crosswise	(46,470		Copper, Wiought - -	33, 以い	$15 \cdot 08$
", Best - -	6,1,2*0		,* Cast - - -	19, 96	
" ", ", crosswise	$53, \times 20$		" Sheet - - R	:30,000	
", -, Common -	50, 823		, Bolts - - 12	36, 01	
". ", crusswise	$5: 8,825$, Wire - - R	60.000	
Lancashire	543,433		Brass, Yellow Cast - - -	17 ! 18	
* Lancasimire) 53.819		., Wire - - \quad -	49,000	
	\{ $3!, 514$		Zinc - - - \quad -	7 to 8,000	
" " crosswise	$\{48,488$		lin, Cast - - -	4,736	$2 \cdot 11$
, Dirham -	51,245		", " - R	4,600	
" Steel "ind crosswise	46,712		Riomuti. Cast - -	3,200	1.45
Steel and Steely 1ron:-		53.93	Lead, Cast - - - -	$1,4-4$ 3,300	081
Rars, cast - Blistered - -	131,256		Irun Wire, English, $\overline{1}-10$ thin,	3,300	
,. Blistered Shear	133,152 $127, f 132$	56.97	Irun Wire, English, !-10thin. dianeter-		$36^{\circ} 0$
Phites, average - - R	80.00		" " Telford -		$38 \cdot 4$
Bars, Cast, Rolled, and Forged	$\left\{\begin{array}{r}92,015 \\ 132.909\end{array}\right.$		" diameter 0 ,		$60^{\circ} 0$
" , ", -	130,000				

Tables I. and II. are derived chiefly from the summary in Rankine's Civil Engineering, p. 511, obtained from the expesiments of Clay, Fairbairn, Ilodgkinson, Mallet, Morin, Napier, Napier and Sons, Rennie, Telford, and Wilmot. Nost of the remainder are from Remine and other authorities.

1630s. English boiler-plates are staled to be of two classes: Yorkshire, and the manufateture of other distriets, elassed as Stallordshire.

Char. I.
Table II., of the Absolute Cohesive Power (oa Breabing Wfight) of the Timbehs usuahiy employed. Scelional area, 1 inch square, 1 foot in length. (Ste IG28i.)

1630t. The te'sile strength of cast iron was long very mu hoverrated when Tredold estimated it at 20 tons. Cap:ain Brown, however, put it at 7.26 tons; G. Rennic (1 hii Trens. 1818) obtained 855 and 8.66 tons; Barlow conjectured at least 10 tons from theoretical principles; Hodghinson made the following experiments more recently;

Name and Quality of Iron.	IIot Blast Iron.	Cold Blast Iron.
Carron, No. 2	Wifight, His. Mean. Tons cwt. 13,892	Weight, Hs. Meam. Tons cwt.
	12.993	16,772 $\}$
		16,594 $\int 16,683=79$
	16,840	13,984
No. 3	18,671) $17,755=718 \frac{1}{2}$	$14,417\} 14,200=67$
Devon (Scot.). No. 3	21,907 9 $915 \frac{\mathrm{I}}{2}$	
Butfery, No. 1 - -	13,434 60	17.465 (716
Cocd Talon(N.Wales) No. 2	16,279	19,610
	$17,074 \int 16,676=7 \quad 9$	$18,100 \int 18,355=8 \quad 4$
	Mean $74 \frac{3}{5}$	Mean 714
Low Nuor, (Yorkshire,) No. 3, bore $6 \frac{1}{2}$ tons.		
A mixture of irons, a mean of four experiments, gave 7 tons $7 \frac{3}{4}$ cwt.		

1630 . The mean of several experiments on the ultimate cohesive strength of a urought: iron bar, 1 inch square section, was:-

Mean $61.768 \mathrm{lbs}=27.575$ tons.
No. 3 experiments by Brunel, on hammered iron, gave $30 \cdot 4,3 \% \cdot 3$, and $30 \cdot 8$ tons respectively.
Suveral experiment, by Cubitt, gave

- 58,952 lbs. $=26$ tons 6.3 ewt.

He states that 25 tons for bars and 20 tons for plates, are the amounts generally assumed

1630r. The detailed experiments by Messrs. Clarke and Fairbairn, on the strength of sron plutes, are given in the work by the latter, and in the Engineers' Pocket Book for 1861 and 1865. Clarke assumes the ultimate tensile strength of wrought iron plates at 20 tons per square inch, and of bars at 24 tons, and that within this former limit, its extension may be taken at

The ultimate strength of plates drawn in direction of $\}$ experiment $1,19.66$ tons.

The ultimate extension was twice as great when the plate was broken in the direction of the fibre. The best scrap rivet iron, made by Messrs. Mare at their London works, broke on an average with 24 tons per square inch; the mean ultimate extension, which was uniform, was $\frac{1}{8}$ of the length. (See 1631 r.)

Compression, \&c.

1630w. Compression is the second of the forces under whieh Transverse strain is comprised. The following facts appear to be well established as to materials under a crushing force. I. The strength is as the transverse area or section. II. The plane of rupture in a erushed body is inclined at a constant angle to the base of the body. 111. The measure of eompression-strength is constant only within certain proportions of the height and diameter in any specimen. Hodgkinson found that twelve cylinders of teak wood furnished the following results:-

Crushing weight	-	-	$\frac{1}{2}$ inch diam. 2439 lbs.	inch diam. 10,171 lbs.	2 inch diam. 40,304 lbs
Proportion of weights			1 ,	$4 \cdot 17$	16.5

The areas being as the squares of the diameters an exact proportion would have been 1,4 , and 16 ; but some materials may possibly be found to have an increased apparent strength.

Table I, of Experiments on Timber Pillars, made by the Committee of the Institute of British Architeets, 1863-64.

Wood.	$\underset{\text { at }}{\substack{\text { Crushed }}}$	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { inch. } \end{aligned}$	Remaiks.
4 inch cube. Moulmein Teak -	$\begin{aligned} & \text { tons. } \\ & 50^{\circ} 8 \end{aligned}$	$\begin{aligned} & \text { tons. } \\ & 3 \cdot 17 \end{aligned}$	Crushed endways ; fibres torn
Archangel Deal - - -	$28 \cdot 8$	1-1]	apart.
Shafts, 12 ins. long, 3 ins. diam. Moulmein Teak -	$18 \cdot 25$	$2 \cdot 58$	$\left\{\begin{array}{c}\text { Lost } \frac{1}{8} \text { of its length. Point of } \\ \text { yielding } \frac{5}{12} \text { of its length. }\end{array}\right.$
", same piece with 6 ins. sawn off	18.7	$2 \cdot 64$	
Moulmein Teak - - -	$16 \cdot 0$	$2 \cdot 26$	Ditto.
,, same piece, ditto	$17 \cdot 75$	$2 \cdot 50$	
Deal, Archangel - -	19.1	$\stackrel{2}{70}$	\{ Lost $\frac{3}{10}$ of its length. Point of
" same piece, ditto	19.3	$2 \cdot 73$	\{ yielding ${ }_{1 / 2}^{5}$ of its length in both.
, Archangel - -	$16 \cdot .3$	$2 \cdot 30$	
", same piece, ditto	-19.4	$2 \cdot 74$	

Table II., of Compression of Timber.

Wood.	Crushing Strength.	Wood.	Crushing Strength.	Wood.	$\begin{aligned} & \text { Crushing } \\ & \text { Strength. } \end{aligned}$
$\underset{\text { whitite Deal }}{\text { Christiania }}-\}$	$\begin{aligned} & \text { los. } \\ & 6,000 \end{aligned}$	$\underset{\text { white Spruce }}{\text { American }}\}$	$\begin{aligned} & \text { Ths. } \\ & 6,844 \end{aligned}$	C	$\begin{aligned} & \text { Lbs. } \\ & 5,768 \end{aligned}$
English Oak	9,509	Walnut -	6,645	m	
Quebee Oak	5,982	Red Deal	6,167	Morra -	
$\left.\begin{array}{cc}\text { American } \\ \text { Oak - } & \text { - }\end{array}\right\}$	6,000	Yellow l'ine Elm -	5,375 10,381	Indian Teak or	12,100
American and Pine	5,430	Lareh Spranish Mahogany	$\begin{aligned} & 5,568 \\ & \mathrm{~S}, 198 \end{aligned}$		

Rondelet gives the power of Oak as $6,853 \mathrm{lbs}$., and of Fir as $8,089 \mathrm{lbs}$. (See par. 1601.),
Remie (inch cube, erushed) English oak, $3,860 \mathrm{lbs}$; a piece 4 inehes high, $5,147 \mathrm{lbs}$.
Film, 1,284 lbs.; White Deal, 1,928 lbs.; American Pine, 1,606 lbs.

Table 1II. of Compression of Timber. (Hodgkinson and others).

Wood.	Damp, 2 ins. high and inch diam.	Dry, Inch high generally.	Wood.	Damp, 2 ins. high and inch diam.	Dry. Inch high generaliy.
Alder	$\begin{gathered} \text { lbs. } \\ 6,831 \end{gathered}$	$\begin{aligned} & \text { lbs } \\ & 6,960 \end{aligned}$	Oak, Dantzic	libs.	$\begin{gathered} \text { lbs. } \\ 7,731 \end{gathered}$
Beech	7,733	9,363	" English	6,484	10,058
American Birch	- -	11,663	, Quebec	4,231	5,942
English Birch	3,297	6,402	Pine, litch -	6,790	6,750
Cedar -	5,674	[,863	, Yellow, full $\}$		
Red Deal	5,748	6,586	of turpentine $\}$	5,375	5,445
White Deal	6,781	7,293	, Red -	5,39.5	7,518
Elm	- -	10,331	Teak	-	12,101
Spruce Fir	6,499	6,819	Larch	3,201	5,568
Mahogany	8,198	8,198	Walnut	6,063	7,227

1630x. It is now a well ascertained ciremmstance that the crushing strength of a body varies according to its relative height and breadth. Hodgkinson remarks, "When bodies are cruslsed they give way by a wedge sliding off in an angle dependent on the nature of the material ; and in cust iron the height of this wedge is about $1 \frac{1}{2}$ of the diameter or thickness of the base of the widge." Gregrory puts the angle of this wedge at 34°. If the body to be erushed is shorter than would be sufficient to admit a wedge of the full leng h to slide off, then it would require more than its natural degree of force to crush it ; hecanse the wedge itself must either be crushed, or slide off in a direction of greater difficulty. If, on the other hand, the height of the body to be ernshed be mach greater than the lingth of the wedge, then the body will sustain some degree of flexure, and fracture will be facilitated in conseguence. Phl. Trans., 1840 , exxx. page 419 . Warr says, "lt is highly probable that none of Hodgkinson's values would agree witi the most carelul trial on any similar woods." See $1502 d$, et seq.
$1630 y$. The power of resistance to compression of cast-iron was heretofore very much overrated. It has now been well ascertained by experiment that a force of 93,000 lbs. upon an inch square will erush it ; and that it will bear 15,30 o lbs. upon an inch square without permanent alteration.

Table of the Compression of a Cast Iron Bar (as a pildar), 10 fect long and 1 inch square.

	Compression per Ton.	Total Compression.	Total Permanent Set.		Compression per Ton.	Total Compression.	Total Permanent Set.
Tons.	$\begin{aligned} & \text { Inch. } \\ & 020330 \end{aligned}$	$\begin{aligned} & 1 \mathrm{ch} . \\ & 020338 \end{aligned}$	Inch. -000510	Tons.	$\begin{aligned} & \text { Inch. } \\ & .029374 \end{aligned}$	Inch. .201373	$\begin{aligned} & \text { Inch. } \\ & 024254 \end{aligned}$
2	-0210:38	-042077	-0024.52	11	-022567	-248237	-032023
3	-021618	-064855	- $00+340$	13	-023014	-299187	-043318
5	-021594	-107872	-009188	15	-023539	353092	-0609. 5
7	-021950	-153654	-015243	17	.024805	-421695	-086298

1630z. Hodgkinson's experiments in 1851 on the ultimate strength of cast inon, the picees being placed in an iron box or frame, gave a mean in 81 trials of 107,750 lbs. per square inch, or 48 tons 2 cwt.; and the crushing force to the tensile, as 6.507 to 1 . Rennie's ealculations gave only 40 tons per square inch for the lowest estimate.

Tabie of the Cuushing of Cubes of Irun.

Materials.	Crushing Weiglt.		Materials.	Crushing welght.	
		Square inch.			Square inch.
A cube of $\frac{1}{8}$ inch side Suft cast iron	$\begin{gathered} \text { lbs. } \\ 1,439 \end{gathered}$	$\begin{gathered} \text { Ibs. } \\ 90,138 \end{gathered}$	Cubes of $\frac{1}{4}$ inch side	lbs. 9,773	$\begin{gathered} \text { lbs. } \\ 156,368 \end{gathered}$
ditto, 2 heights	2,116	135,424	Horizontal casting	10114	161.824
ditto, 3 or more	1,758	112,524	Vertical casting .	11,110	177,760
(Overman) Cubes of $\frac{1}{4}$ inch side :-			Directly cast, not cu larger piece	from a	$219,490$
Cast copper. . . .	7,318		Same iron, but twice	nel ed,	
Cast tin - .	966		once in the cupo	a, and	262,675
Cast lead .	483	(Rennic)	once in the rever furnace, and cast	$\left.\begin{array}{l} \text { eratory } \\ \text { cube } \end{array}\right\}$	(Remnic)

1631. Hodgkinson, "eonsidering the pillar as having two functions, one to support and! the other to resist flexure, it follows that when the material is incompressible (supposing such to exist), or when the pressure neeessary to break the pillar is very small on account of the greatness of its length compared wi h its lateral dimensions, then the strength of the whole ransverse section of the pillar will he employed in resisting flexure; when the breaking pressure is one hall of what would be reguired to erush the material, one-half only of the strength may be eonsidered as available for resistance to Hexure, whilst the other half is employed to resist erushing; and when, throngh the shortness of the pillar, the breaking prossure is so great as to be nearly equal to the crushing force, we may consider that no part of the strength of the pillar is applied to resist flexure." Thus he assumed that the real breating weight would be equal to the breaking weiglit as obtained for the long columns, multiplied by the force requisite to crush it without flexure; and divided by the same two quantities added together, minus the pressure which it would support as flexible, withont being weakened by crushing. The formula thas found for calculating the strength was we. w.
Ilere W heaking weight of long pillars, and c crushing force of the iron. (Warr abd Gregury.)

1631a. Euler, treating on the strength of pillars purely on theoretical grounde, showed that the strength variel as the fourth power of the diameter, and invernely as the square of the longth of the pillar. The strengeth of similar pillars increases as the square of their diameter; and as the area is as the square of the diamter, the strength increases as the area of the pillar (Warr.)

1631b. The strength of a pillar or a column, or the power of resistance to compressive force. is obtained by the law that the resistance to crushing is as the cube of the thickness multiplied by the width, and this divided by the square of the length. Therefore in columns of equal length and thickness, the resistance is as their width; and in equal lengths and widths, it is as the cube of the thickness. If the width and thickness be equal, or if the pillar be square, the resistance is inversely as the square of its length.

Ia. The formula for a rectangular pillar of oak, is $\frac{\mathrm{R} b d^{3}}{4 d^{2}+5 r^{2}}=\mathrm{W}$ lbs. $\mathrm{R}=3,960$.

Jb.

1 e.
$11 a$.
11%.
He.

$$
\text { cast iron, is } \frac{\mathrm{R} b d^{3}}{4 d^{2}+\cdot 1 \times l^{2}}=\mathrm{W} \text { lbs. } \mathrm{R}=1.5,300
$$

$$
\text { ,, wrought iron, is } \frac{R b d^{3}}{4 d^{2}+16 l^{2}}=\text { W lbs. } R=17,800 .
$$

$$
\text { solid cylinder of oak, is } \frac{\mathrm{R} d^{4}}{4 d^{2}+\cdot l^{2}}=\mathrm{W} \text { lbs. } \mathrm{I}=2,470 \text {. }
$$

$$
\text { " cast iron, is } \frac{\mathrm{R} d^{4}}{4 d+18 L^{2}}=\mathrm{W} \text { lbs. } \mathrm{R}=9,562 .
$$

, wrought iron, is $\frac{\mathrm{R} d^{4}}{4 d^{2}+16 l^{2}}=\mathrm{W}$ lbs. $\mathrm{I}=11.12 .5$.
Here l length in feet ; b breadth in inches; d diameter in inches; 12 resistance to compressive force; W breaking weight of the pillar or cylinder. (Tredgold, (ast Irom.)

1631c. The relative strengths of long columns of different materials, hut of the same dimensions, are as follows:-

1631d. Hodgkinson, Ca t Iron, 1846, states that there are general properties common to wrought iron, steel and wood. It appeared from experiments that long (solid) pillars break first at, or near to, the middle; this occurred in all cases. Pil'ars were, therefore, tried, having a middle diameter of from $1 \frac{1}{4}$ to 2 inches, the ends being 1 inch. The strength was not increased according to the increase of the middle diameter, but appeared to le from $\frac{1}{6.63}$ to $\frac{1}{80}$, or fiom one-seventh to one-eighth; they did not, however, fracture in the middle, as did those of uniform diametcr. He found that-

> | The sirength, as dependert on the diameter, was on the mean |
| :---: |
| length, |
| $", ~$ |

1. The formula given by him for long solid cylindical pillars (when l exceeds $30 d$) with flat ends and fixed, is $\frac{44^{16} \mathrm{t}^{1 / n s} d^{i-35}}{1^{1 \cdot 7}}=\mathrm{W}$ tons, or $(33.379 \mathrm{lbs}=14.901$ tons). The formula for ditto with rounded ends (or when l is less than $30 d$ and exeeeding $15 d$, is $\frac{14 \cdot 9 \text { tons } d^{3} \cdot 6}{l^{17}}=\mathrm{W}$ tons, or $(98,922 \mathrm{lbs}=44 \cdot 15$ tons $)$. I Iere d external diameter inches; l length feet; if of W to be taken for safe weight.
II. For short pillars, below 30 times their diameter in height with flat ends, or 15 times their daneter in pillars with romeded ends, the above formuix do not apply.
III. For solid columus, when the length is less than $3 C^{d}$, the formula is $\frac{49 \mathrm{Wa}}{\mathrm{W}+37 a}=\mathrm{W}^{1}$. Herw W1 erushing weight of thort column in tons ; a sec ional area of solid part of columns in inches. In hollow columns the thickness of metal should not be less than $\frac{d}{12}$. $\underset{W}{W}+\frac{3}{4} \bar{C}=W^{1}$ tons. Here W as found above for long columns; C crushing foree of material \times sectional ara of column; and $\cdot W^{\prime}$ crushing weight of short columis.

1631e. The formula for a rectangular pillar of oak, fixed at both ends -

$$
\begin{aligned}
& \frac{79^{9} 0 t}{1+} \frac{l^{2}}{250 h^{2}}=W \text { Ws. } \\
& \stackrel{l^{3}}{1+} \frac{l^{3}}{400 h^{2}}=W \text { bre. } \\
& \frac{36,(00 n \prime}{1+} \frac{r^{2}}{3,00 \cdot h^{2}}=W \text { hhs. }
\end{aligned}
$$

eylindrieal pillar of east iron, fixed at both ends
rectangular strut of wrought iron, fixed at both ends

A pillar romaled or joined at hoth ends $\frac{80.000 a}{1+4 \times 400 h^{2}}=$ W lbs.; or 36,00), or 7,200 , as the case may be. (Rankine, from Gordon, and Hodgkinson.)

16:3/y. In order to give lateral stiffiess to a Hat-ended pillar, its ends should be spread so as to form a capital and base, whose abutting surfaces should be "faced" in the lathe, or planed to make them exactly plane and perpendicular to the axis of the pillar. For thie same rearon, when a cast iron pillar consists of two or more lengths, the elads of those lengths should the made truly plane and penpendicular to the axis of the pillar thy the same proce ss, so that they may abut firmly and egtually against each other; and they should be fastened together by at last four bolts passing through projecting flanges. (Rankine.)

1631h. Hollsw Culnmns.- With an equal quantity of metal, a round column cast hollow is far stronger than one east solid. The best form for cast iron columns is to make the inner dianeter live-eighths of the size of the exterior diameter. The ring thus formed of the section of the evlumn increases in strength according to the thinness, bat the size of it must be kept within practical limits. If, in casting a hollow eolumn, the core is driven to one side, the culumn of course cannot be loaded to its full resistance; it will not carry more than the thinnest part of it is strong enough to bear. Hollow columns, therefore, require particular eare in casting them. Hodgkinson noticed in hollow pillars above 30 times as long as their diameter, that although the pillars were generally thicker on one side thar the other, yet in bending, the compressed was always the thimer side; and as east iron resists compression with above six times the force with which it sustains tension, no dunger resulted from this almost unavoidabie difference of thickness.
I. The formula given ly him for a hollow cyliader not less ti an 15 times its diameter in height, with round d ends, is $\frac{13 \cdot u \text { tuns }}{d^{3 \cdot \%} \cdot-d_{1} \cdot \sigma^{\circ}}=W$ tons.
II. For the same when not less than 30 times its height, with flat ends and fixed by dises.

111. When the length is equal to 20 dameters, the value of W is $=77,817 \mathrm{Jbs}$. or $34 \cdot 7$ tons.
Greg has adopted an arerage of d^{36} in both of these formu'r.
1V. For short piliars, below those lengths, the formule do not apply, as the strength of the column becomes modified in consequence of its being then partially crushod as well as bent.

stuncheons and Struts.

16S1i. Gordon's formula for the ulimate strength of urought iron struts of a solid rectangular section fixed at the ends, as deduced from Hodgkinson's experiments, is 3+, 0111
 rules have been given. But it may be, in many cases, more satisfactory to take into accuont the least "ralius of gyration" of the cross section: and for that purpose the formnla may be put in the following shape : ${ }^{36,011}+\frac{l^{2}}{36,0,0 r^{2}}={ }_{a}$. Here r^{2} is the mean of the
squares of the distances of the particles of the cross section from a neutral axis traversing its centre of gravity in that direction which makes r^{2} least. For hinged ends, take $\frac{1}{4}$, or 9,000 is to be substituted for 36,000 . The value of r^{2} for a solid rectangle, least dimen$\operatorname{sion}=b$, then $\frac{b_{1}^{2}}{\frac{2}{2}}$. For a thin square cell, side $=b$, then $\frac{b^{2}}{6}$. For a thin rectangular cell, breadth $=b$, deptl $=h$, the $\frac{12 h+b}{h \circ h+3 \bar{b}} \quad$. For a solid cylinder, diameter $=t$, then $\frac{b^{2}}{\frac{1}{2} \text {. }}$. For a thin cylindrical cell, diameter $=b$, then $\frac{b^{2}}{8}$. For an angle iron of equal ribs, breadth of each $=b$, then $\frac{b^{2}}{2-4}$. For an angle iron of unequal ribs, greater $=b$, lesser $=h$, then $\frac{b^{2} h^{2}}{12\left(b^{2}+h^{2}\right)^{2}}$. For a cross of equal arms $\frac{b^{2}}{24}$. For H iron, breadth of flanges $=b$, their joint area $=13$, area of web $=A$, then $\frac{b^{2 \cdot} \cdot A}{1.2} A+B^{3} . \quad$ (Rankine, who follows ont the subject further.)

1631 k . Stancheons of cast iron are recommended to be used in lieus of cast iron columus.

The form shown in fig. 613x. is generally considered as the best for use; the flanges which divide the length into three equal parts, are found to add considerally to the strength of the casting in resisting the tenderey of its load to produce deiection from the veatical position. Hodgkinsun's experiments show that while cast irom is the better material for a pillar whose length does not exceed 26 times the diameter, wrought iron is the better material when the length exceeds that limit. For pilars with hinged ends, about 13 times is the limit. but these results are rouglly appoximate only. In order to stillen urought irou s'ruts, they are made of various forms in cross scetion, such as angle iron, T iron, double T iron, chamel iron, \&e. The cross is a very conve.ient form as in eavt iron; it is generally huilt by riveting bars of simple forms together. Thus it may be made $n \boldsymbol{n}$ of \mathbf{T} irons riveted back to back, or four angle irons riveted back to back; or by one flat bar, two narrower flat bars, and four angle irons, all riveted together, as fig. $61: 3 y$., and as used for the strut diago: als of the Warren girders in the Crumlm viaduct. The stiffest form for a wrought iron strut is that of a cell or built tube,

Fig. 6I $3 y$.

Fig. 614a.

Fig. 6140. fig. $614 a$., which may be cylindrical. rectangular, or triangular, as $f i g .614 b$. When a wrought iron strut is considered as hinged at the end, that is generally effeeted by its abutting at each end against a cylindrical pin, by which it is connected with some other piece of the frame-work, in the manner already deseribed for tie-bars. To fix its ends in direction, as it seldom has large abutting faces, it is in general necessary to fasten it to the adjoining pieces of the structure by several bolts or rivets.

1631l. Cast iron, from its great resistance to crushing, is peculiarly well suited for struts, especially those of moderate length. The best form containing a given quantity of metal is that of a hollow cylinder (fiy. 614c.) ; the thickness of metal is seld m less than. 1 of the diameter. I. The formula for the cylinder has already been given; II. for a cast iron strut
 of sectional area. II I. For a hollow square (fig. 614e.) $d=$ diagonal, $\frac{80,000}{1+3 l^{3}}{ }_{800} d 2^{2}=\mathrm{W}$, as before. IV. For a hollow cylinder (fig. 614f.), $d=$ dianeter ${ }^{80,40} l^{2}+{ }_{400 d^{2}}=\mathrm{W}$, as before. These formule refer to struts fixed at both ends. V. When they are hinged at the ends, the second term of each division is to be made four times as great.

1631 m . With the ends lixed; 1. the formula for a hollow tube (fig. 614 c .) $a=3090$, then $16 s$ (or sectional area inches)
$1+\frac{l^{2} \text { inches }}{a \mathrm{D}^{2} \text { or (diam. inches) }}=\mathrm{W}$ tons.

Fig. 614c.

Fig. $614 d$.

Fig. 614 e.

FIg. $614 f$.
II. The formulx for a cross with equal arms (fig. 614d) $a=1000$.

11I. The formula for an angle with equal sides (fig. 614e) $a=1000$.
IV. When hinged at the ends, take $\frac{c}{4}$.

1631n. Detrusion, or shearing, denominates that kind of fracture, which would oceur in the use of shears if their edges were blunt; or when the puach of a punching machine
makes a hole in a plate. Fairbairn has deduced the following laws from his experiments : 1. That the ultimate resistance to shearing in any bolt or rivet, is proportional to the sectional arva of the bar torn asunder. 1I. That the ultimate resistance of any bar to a shearing strain is nearly the same as the ultimate resistance of the same bar to a direct longitudinal tensile strain.

Table of the Resistance of Matemals to Suearing and Distortion.

Miterials.		Resistance to Shearıng, per square inch.	Transverse Elasticity, or Resistance to Distortion, per square inch.
Brass wire, drawn	-	Its. avoirdupois.	lbs. avoir dupois. 5,330,000
Coppler -	-	- -	6,200,000
Cast iron -	-	27,700 to 32,500	2,850,000
Wrought iron	-	50,000	8,500,000 to 9,500,000
Pine, red -	-	500 to 800	62,000 to 116,000
Fir, Spruce -	-	600	-
Larch - -	-	970 to 1,700	-
Oak, English	-	2,300	82,000
Poplar -	*	1,800	-
Ash and Elm	-	1,400	76,003
Deal - -	-	592	
Cast iron -	-	73,000 \% Wharr.	Rankine.
Wrouglit iron	-	45,000 to 53,000	

16310. To find the length between the end of a beam and the foot of a strut or of a ralter, necessary to resist the thrust of the latter, so as to prevent the detrusion of the beam, the formula to be used is $\frac{4 h}{b \mathrm{~S}}=$ the length in inches. Here b the breadth of the beam in inches; h horizontal thrust in pounds; and S, the cohesive strength in pounds of a square inch of the material. Tredgold states that 4 is a sufficient value for a factor of safety in this case ; $S=600 \mathrm{lbs}$. per squate inch for fir, and 2300 lbs . for oak. The strap or bolt usually employed to bind the rafter and beam tugether, should be at as acute an angle as pussible, and holds the rafter in its place should the end of the beam give way.

1631p. Iron fastenings to juints. In forming eyes by welding, at the end of iron bars for chain links and other purposes, the bar is found to be weaker than in its plain form, In iron plate work, the joints are made by riveting on which the whole efficaey of the built-up plate work depends. laking the strength of the plain plate as 100 , a double-

riveted plate will be 70 ; and a single-riveted, 56 . Again, with single plate jointings having a top and bottom covering plate over the joint, and with half-inch rivets, as A, fig. 613x, the plates were torn asunder through the rivet-holes, with 24.41 tons in the square inch. With a double plate, having a single covering plate on the side of the joint, as B, the plates broke asunder by shearing off the rivets close to the plate, with 18.73 tons per square inch; but the rivets having been made larger, a similar strength to the previous experiment was realised. A plain plate broke with 22.78 tons mean value.
$1631 q$. Fairbairn recommends the flanges or double plates to be used as long as possible, and the joints to be earefully united by covering plates, chain-riceted, as C , with three or more rows of rivets according to the widths of the plates. Eight rivets are required in each of the lines, four on each side of the joints, to gise sufficient strength, and the area of the rivets collectively should be equal to the area of the jointed plates taken transversely through one line of the rivets, the arca of the parts punched out in that line being deductea These proportions give the required security to the joint, and afford nearly the same strength to a tensile strain as the solid flate; that is, if the covering plates be as muel thicker as will give the same area of scction tinough the rivet-holes as the unperforatec, double plate. (par. 1629e.)
$1631 r$. Rivets are made of the most tough and ductile iron. It is essentially necessary that the rivet should tightly fit its hole; and the longitudinal compression to which rivets are subjected during the formation of its head, whether by hand or machinery, tends to prodnce that result. The diameter of a rivet for plates less than half an inch thick, is
abont double the thiskness of the plate. For plates of half an inct: thick and upwands, about once and a half the thickness of the plate. The length of the rivet before clenching (which in effected whilst the rivet is red-hot). measuring from the head, equals the smm of the thickness of the plates to be connected, added to $\frac{2}{2}$ inches multiplied by the diameter of the rivet. A good rivet may be hent double whilst cold without showing any signs of fracture: and the head when hot should stand being hammertd down to less than $\frac{1}{8} \mathrm{in}$. in thickness without cracking at the edge. They should also stand liaving a punch if nearly thear own dameter driven right through the shank of the rivet when but, without cracking the iron round the hole. (C. G. Smith.)

1631s. Steel rivets, fully larger in diameter than those used in riveting iron plates of the same thickness, heing found to be greatly too small for riveting steel plates, the probability is suges sted that the proper proportion for iron rivets is not, as generally assumed, a diameter equal to the thickness of the two plates to be joined. The shearing strain of steel rivets is found to be about a fourth less than the tensile strain. (Kirkaldy).
$1631 t$ In the bridge over the Thames for the Charing Cross Railway, the holes were drilled and not punched. This is a point upon which engineers differ considerably; but nust firms punch the holes. At Fairlairn's works at Manchester, drilling holes was considered to be more expensive without adding to the strength. Mr. Parkes thinks that the punching injured the iron considerably, and thought Fairbairn's experiments went to show it. (Society of Engineers, Transactions, 1865).

1631u. Jins, keys, and uedyes are exposed, like rivets, to a shearing stress. The formula for finding their proper sectional area is the same. They must he held tightly in their aeats; and in order that a wedge or key may not slip out of its seat, its angle of obliquity ought not to exceed the angle of repose of iron upon iron, which, to provide for the contingency of the surfaces being greasy, may be taken at about 4°. (lankine).
1631%. If a bolt or screu has to withstand a shearing stress, its diameter is to be determined like that of a cylindrical pin. If it has to withstand tension, its diameter is to bo determined by having regard to its tenacity. In either case the effective diancter of the holt is its least diameter; that is, if it has a screw upon it, the diameter of the spindle inside the thread. The projection of the thread is usually one-halt' of the pitch ; and the pitch should not in general be greater than one-fifth of the effective diameter, and may be considerably less. In order that the resistance of a serew or serew-bolt to rupture, by stripping the thread, may be at least equal to its resistance to direct tearing asunder, the length of the nut should be at least one half of the effective diameter of the serew: and it is ofien in practice considerably greater; for example, once and a half that diameter. The head of a bolt is usually about twice the diameter of the spindle and of a thickness which is usually greater than $\frac{5}{8}$ ths of that diameter. (Rankine).

16:31w. Washers are flat plates of iron, placed at the sides of timbers to secure them against the crushing action of the head and nut of a bolt whilst being serewed up. For fir. the diameter of the washer is made abont $3 \frac{1}{2}$ times that of the bolt; and for oak, about $2 \frac{1}{2}$ times. When a bolt is placed oblique to the dircetion of the beam which it traverses, a noteh should be cut in the timber perpendicular to the bolt, to receive the pressure of the washer equally, or notched to receive a bevelled washer of cast iron, one side of which fits the wood, and the other fits the axis of the bolt.

Tousion.

1631x. Torston, or the resistance of bodies to being twisted, is found: I. When a body is fastened at one end and a force is applied at the other. II. When the force at one end is greater than at the other end. III. When the forces at the ends are in opposite directions, and are so applied as to twist the body. As this fact chiefly. if not entirely, concerns machinery in motion, we refer the student for more suecific details to Warr, Dynamics, p. 269, who gives a table of "modulus of torsion" of various timbers and metals, derived from experiments made by Bevan, in Phil Tians. 1429. p. 128. Approximate formulæ are given by Hurst:I. When the shaft is circular, $\sqrt[3]{\bar{W} l}=d$. And $\frac{C d^{3}}{l}=W$. II. When the shaft is square,
$\sqrt[3]{\frac{4 W}{} /}=s$. Here d diameter inches; W weight pounds permanently sustained by the shaft; I length of lever in feet, at the end of which W acts; s side in inches; and C , east steel 590 ; wrought iron 335; cast iron 330; gun metal 170; bıass 150; copper 135; lead 34.

1631y. In the Artizan fur 1857 and 1858 is an instructive Enquiry into the Strength of Beums and Girders, by S. Hughes, deserving attention. The chief authorities for the data eontained in that article, and also in this section, are quoted herein.

Сhap. I.
BEAMIS AND PILLARS.
447
163^{2}. Working Strength of Materlalq.

Sufe loads in lus. per square inch.

a, Stress parallel to the fibres; h, ditto perpendicular to the fibres.
The abore ralues of the safe load may be taken for structures subject to travelling loads. When subject to dead loads, these values may, in the case of iron and steel, be multiplied by $\frac{3}{2}$. G. S. Clarke, Graphic Strains, 4to, 188", p. 138.

1632a.
Table of Strength of various Timbers.
The primitire horizontal or transrerse strength of oak is taken at 1000 ; its supporting or primitive vertical strength at 807 ; and its cohesive cr absolute strength at $1821^{\text {; }}$ being deduced from piects $19 \cdot 188$ lines English square. The relative strengths of other woods are given :-

Species of Wood.	Primitive hor zontal Sirength.	Primitive vertical Strength.	Abso'ute cohesive Strength.	Species of Wood.	Pr:mitive horizontal Strength.	Primitive vertical Strength.	Absolute cuhesive Strength.
Acacia (yellow)	780	1228	1560	Fir	918	851	1250
Ash - -	1072	1112	1800	Oak	1000	817	1821
Beech	1032	986	2480	Pine-tree -	882	804	1141
Birch	853	861	1980	Poplar -	586	680	910
Cedar	627	720	1740	Service-tree	965	981	1642
Cherry-tree	961	986	1912	Sycamore-	909	968	1564
Chestnut	957	950	1944	lew-tree-	1037	1375	2287
Elm	1077	1075	1980	Walnut	900	753	1120

STEEL.

1633. Steel is now largely superseding wrought iron in all uses to which the latter material was usually applied. Nearly every section of L, T, and [. as well as rolleld joists I. are now made in steel to specification. Railway metals or rails have been made of steel for some years. Plates, sheets, and bars for every purpose of bridge girder, ronf, and boiler making, are now commonly in use, as also for cyliudrical and octan ular columns which hare to carry great weights; also for ship armour aud gun mounts. Steel is most useful when bulk and weight is a consideration ; the constructional cost, as a rule, can be brought down almost to that of iron; the price per ton is more, but less weight is required. The kind mostly used is called mild steel, containing about 0.18 per cent. of carbon, bearing a tensile stress 30 to 35 tons per square inch with the fibre, and 28 to 30 acro•s the fibre. Much higher results can be obtained for special purposes, but the manufacture for ordinary stru tural purposes cannot be fully relied upon beyond 30 tons tensile. The Commitrer of the British Asoociation adrised in maximum of

9 tons per square inch as working tensile stress, but Mr. Stoney considers 8 tons per inch ample. Many engincers are content with $7 \frac{1}{2}$ tons.

1633a. But Mr. Arch. D. Diawnay has found, from a large series of experiments upon the actual beams, \&c., that ordinary mild steel scarcely exceeds 7 tons per square inch, while many inferior makes have not exceeded 6 tons. For important works, the architect or engineer may specify certain results as leing required, and they can always get it, though, of course, at a special price. In many ways cast mild steel is superseding cast iron, especially in machinery, spur and other wheels, shaft, gearing, \&c. A saring of 40 per cent. is shown over the use of cast jron. Some makers anneal their castings, thus raising the modulus of rupture from 7 to 12 tons, and at the same time increasing the ductility. Steel castings are more liable to defects than cast iron. (See 1769.)
1634. In the paper read April, 1880, by A. B. W. Kennedy, M.I.C.E., at the Royal Institute of British Architects, On Mild Steel and its Application to Building Purposes, he mentions that out of the great number of qualities of mild steel which are made, there are two classes of special importance for constructive purposes. 1. The very mild steel accepted by three companies for shipbuilding purposes: the Admiralty limits for tenacity are 26 and 30 tons per square inch; Lioyd's limits are a ton higher; and the Liverpool Underwriters' a ton higher still, or 28 to 32 tons per square inch. The first two also require the ultimate extension of the piece before fracture to be not less than 20 per cent. in an 8 -inch length. Such steel requires practically no annoaling, and is not more injured by punching than wrought irun, and in many cases less. 2. The steel which has a tenacity of about 10 tons per square inch more than the former, or about 40 tons per square inch. It is much harder and considerably less ductile, and much less suitable for places where much work has to be done on it. But it can be obtained just as uniform in quality as the milder material, and its superior tenacity gives it greater adrantages where it can be used substantially in the form in which it leaves the rollingmill. It will extend 10 to 12 per cent. in 10 inches before fracture.

1634a. The tests commonly enforced are of three kinus. 1. The tenacity of the steel must lie between certain definite limits. 2. The samples tested must have a minimum percentage of extension, in a specified length, before fracture. 3. For "temper" test, sample strips heated to a low cherry-red, and cooled in water at 82° Fahrenheit, must stand doubling round a curve whose radius is not more than one and a half times the thickness of the strip. All the tests are made upon sample strips of from 0.5 to 1.0 square inches in sectional area, cut from the plate, bar, or angle iron, the strips being generally of the same thickness throughout, parallel for a length of 8 or 10 iuches in the centre, and being wide at the ends where held in the machine.
1635. Table of Safe Distribeted Loads on Rolled Iron Joists I, and on Stehl Joists I, at about a Quarter Breaking Weight.

	$\frac{\dot{y}}{\tilde{E}}$		Bearing in Feet.												
ค			6	8	10	12	14	16	18	20	22	24	26	28	30
ins	ins.	lbs.	tons.												
3	$1 \frac{3}{4}$	5	$0 \cdot 8$	0.6	05	$0 \cdot 4$									
3	3	10	19	$1 \cdot 4$	$1 \cdot 1$	1.0	0.8								
4	3	12	$3 \cdot 1$	25	$1 \cdot 9$	1.5	1.3	$1 \cdot 2$	$1 \cdot 1$						
5	$4 \frac{1}{2}$	23	$7 \cdot 6$	6.0	4.4	4.0	$3 \cdot 5$	$3 \cdot 0$	$2 \cdot 5$						
6	5	29	115	$8 \cdot 8$	6.8	5.9	4.9	$4 \cdot 3$	$3 \cdot 8$						
10	5	36	$24 \cdot 0$	18.0	14.8	12.0	106	$9 \cdot 0$	$8 \cdot 2$	73	6.7	6.2	57	$5 \cdot 3$	
16	6	62	618	450	35.0	$30 \cdot 0$	26.0	$23 \cdot 1$	$20 \cdot 6$	18.3	168	154			12.3
	Stee	L Jor	sts.	(Mor	eland.)								D.	awn	
5	3	10	$2 \cdot 7$	$1 \cdot 9$	1.5										
4	3	12	4.5	$3 \cdot 3$	$2 \cdot 7$	$2 \cdot 2$	19	1.7							
5	$4 \frac{1}{2}$	23	11.0	8.2	63	5%	$4 \cdot 6$	$4 \cdot 1$	36						
6	15	28	$16 \cdot 3$	$12 \cdot 3$	9.8	$8 \cdot 1$	$7 \cdot 1$	$6 \cdot 1$	5.5	$4 \cdot 9$	$4 \cdot 3$				
10	15	37	-	26\%	$21 \cdot 4$	18.0	153	13.4	11.8	10.7	97	$9 \cdot 0$	8.2	$7 \cdot 6$	
16	6	63	-	-	-	4.6	$38 \cdot 2$	34.1	$29 \cdot 8$	26.5	$21 \cdot 3$	$22 \cdot 3$	20.6	$19 \cdot 1$	17.8

This table affurds an approximate riew of the relative strength of joists of the two materials.- 1887.

CHAP. II.

MATERIALS USED IN BUILDING.

Sect. I.

STONE.

1636. It is almost superfluous to say that the choice of stone for a building intended to be durable is of the very highest importance. "In modern Europe," it has been observed, " and particularly in Great Britain, there is scarcely a public building, of recent date, which will be in existence a thousand years hence. Many of the most splendid works of modern architecture are hastening to decay in what may be justly called the infancy of their existence, if compared with the dates of public buildings that remain in Italy, in Greece, in Egypt, and the East."
1637. The various sorts of stone take their names either from the places where they are quarried or from the substances which principally enter into their composition. The term "Freestone," which is used in a very arbitrary way, is, as its name implies, that sort which can be wrought with the mallet and chisel, or cut with the saw, an operation which cannot he performed upon granite, whose bardness requires it to be dressed with pointed tools of different weights and sizes. It includes the two great general divisions of Limestone and Sandstone. The limestone of Portland is that which has for many years past been chiefly used in the metropolis. Latterly, other sorts have found their way in from the provinces; and though, from many circumstances, we do not think it likely that Portland stone, from its facility of transport and other causes, will be altogether superseded, there is no doubt that its use is on the wane from the introduction of provincial sorts.
1638. We shall proceed, after some preliminary observations, to give, from the Report addressed in 1839 to the Commissioners of Woods and Forests on the occasion of selecting the stone for building the new Houses of Parliament, a view of the principal sorts of stone found and used in the island. A new edition was printed in 1845.
1639. The qualities requisite for a building stone are hardness, tenacity, and compactness. It is not the hardest stone which has always the greatest tenacity or toughness, for limestone, though much softer, is not so easily broken as glass.
1640. The decay and destruction of stone are accelerated by nearly the same canses as those which destroy rocks themselves on the surface of the globe. Such causes are of two kinds : those of decomposition and those of disintegration. The former affects a chemical change in the stone iteelf, the latter a mechanical division and separation of the parts. The effects of the chemical and mechanical causes of the decomposition of stone in huildings are much modified, according to their situation, as in the town or country. In populous and smoky towns the state of the atmosphere accelerates decomposition more than in those placed in the open country. (par. 1667.)
1641. "As regards the sandstones that are usually employed for building purposes, and which are generally composed of either quartz or siliccous grains, cemented by siliceous, argillaceous, calcareous or other matter, their decomposition is effected according to the nature of the cementing substance, the grains being comparatively indestructible. With respect to limestones composed of carbonate of lime, or the carbonates of lime and magnesia, either nearly pure or mixed with variable proportions of foreign matter, their decomposition depends, under similar circumstances, upon the mode in which their component parts are aggregated, those which are most crystalline being found to be the most durable, while those which partake least of that character suffer most from exposure to atmospheric influences.
1642. "The varieties of limestones termed Oolites (or Roestones) being composed of oviform bodies cemented by calcareous matter of a varied character, will of necessity suffer unequal decomposition, unless such oviform bodies and the cement be equally coherent and of the same chemical composition. The limestones which are usually termed ' shelly,' from being chiefly formed of either broken or perfect fossil shells cemented by calcareous matter, suffer decomposition in at unequal manner, in consequence of the shells, which, being for the most part crystalline, offer the greatest amount of resistance to the decomposing effects of the atmosphere.
1643. "Sardstones, from the mode of their formations, are very frequently laminated,
more espectally when micaceous, the plates of mica being generally deposited in pianes parallel to their beds. Hence, if such stone be placed in buildings with the planes of lamination in a vertical position, it will decompose in flakes, according to the thickness of the laminx; whereas, if it be placed so that the places of lamiration be horizontal, that is, most commonly upon its natural bed, the amount of decomposition will be comparatively immaterial.
1644. "Limestones, such at least as are usually employed for building purposes, are not liable to the kind of lamination observable in sandstones; nevertheless, varietics exist, especially those commonly termed shelly, which have a coarse laminated structure, generally parallel to the planes of their beds, and therefore the same precaution in placing such stone in buildings so that the planes of lamination be horizontal, is as necessary as with the sardstones above noticed.
1645. "The chemical action of the atmosphere produces a change in the entire matter of the limestones, and in the cementing substance of the sandstones accoording to the amount of surface exposed to it. The mechanical action due to atmospheric causes oecasions either a removal or a disruption of the exposed particles, the former by means of powerful winds and driving rains, and the latter by the congelation of water forced into or absorbed ly the external portions of the stone. These effeets are reciprocal, ehemical action rendering the stone liable to be more easily affected by mechanical action, which latter, by constantly presenting new surfaces, accelerates the disintegrating effects of the former.
1646. "Buildings in this climate are generally found to suffer the greatest amount of decomposition on their southern, south-western, and western fronts, arising doubtless from the prevalence of winds and rains from those quarters; hence it is desirable that stones of great durability should at least be employed in fronts with such aspects.
1647. "Buildings situated in the country appear to possess a great advantage over those in populous and smoky towns, owing to lichens, with which they almost invariably become covered in such situations, and which, when firmly established over their entire surface, seem to exercise a protective influence against the ordinary causes of the decomposition of the stone upon which they grow.
1648. "As an instance of the difference in degree of durability in the same material subjected to the effects of the atnosphere in town and country, we may notice the several frusta of columns and other blocks of stone that were quarried at the time of the erection of St. Paul's Cathedral in London, and which are now lying in the island of Portland, near the quarries from whence they were obtained. These blocks are invariably found to be covered with lichens, and although they have been exposed to all the vicissitudes of a marine atmosphere for more than 150 years, they still exhibit, beneath the lichens, their original furms, even to the marks of the chisel employed upon them, whilst the stone which was taken from the same quarries (selected, no doubt, with equal, if not greater, care than the blocks alluded to) and placed in the cathedral itself, is, in those parts which are exposed to the south and south-west winds, found in some instances to be fast mouldering away. Colour is of more importance in the selection of a stone for a building to be situated in a populous and smoky town, than for one to be placed in an open country, where all edilices nisually become covered, as before stated, with lichens; for although in such towns those fronts which are not exposed to the prevailing winds and rains will soon become blackened*, the remainder of the building will constantly exhibit a tint depending upon the natural colour of the material employed.
1649. "Before we proceed to adduce a few examples of the present condition of the various buildings we have examined, we would wish to observe that those which are highly decorated, such as the churches of the Norman and pointed styles of architecture, afford a more severe test of the durability of any given stone, all other circumstances being equal, than the more simple and less decorated buildings, such as the castles of the fourteenth and fifteenth eenturies, inasmuch as the material employed in the former class of buildings is worked into more disadvantageous forms than in the latter, as regards exposure to the effeets of the weather; and we would further observe, that buildings in a state of ruin, from being deprived of their ordinary protection of rooting, glazing of windows, \&c., constitute an equally severe test of the durability of the stone employed in them.
16.50. "As examples of the degree of durability of various building stones in particular localities, the following may be enumerated. Of the sandstone buildings which we examined, we may notice the remains of Ecclestone Abbey, of the thirteenth century, near Jarnard Castle, constructed of a stone closely resembling that of the Stenton quarry in the sieinity, as exhibiting the moulding; and other decorations, even to the dog's-tooth ornament, in excellent condition. The eircular keep of Barmard, apparently also built of the same naterial, is in fine preservation. 'Tintern Abbey may also be noticed as a sandstone
edifiee that has to a considerable extent resisted decomposition ; for although it is decayed in some parts, it is nearly perfeet in others. Sume portions of Whitby Abbey are likewise in a perfect state, whilst others are fast yielding to the effects of the atmosphere. The older portions of Ripon Cathedral, constructed of sandstone, are in a fair state of preservation. Rivaulx Abbey is another good example of an ancient sandstone building in a fair condition. The Norman keep of Riehmond Castle in Yorkshire affords an instance of a moderately hard sandstone which has well resisted decomposition.
1650. "As examples of sandstone buildings of more recent date in a good state of preservation, we may mention Hardwicke Hall, Haddon Hall, and all the buildings of Craigleith Stone in Edinburgh and its vicinity. Of sandstone edifices in an advanced state of decomposition we may enumerate Durham Cathedral, the churches at Neweastle upon Tyne, Carlisle Cathedral, Kirkstall Abbey, and Fountains Abbey. The sandstone churches of Derby are also extremely decomposed; and the ehureh of St. Peter at Shaftesbury is in such a state of decay that some portions of the building are only prevented from falling by means of iron ties.
1651. "As an example of an edifice constructed of a calciferous variety of sandstone, we may notice Tisbury Church, which is in unequal condition, the mouldings and other enrichments being in a perfect state, whilst the ashler, apparently selected with less eare, is fast mouldering away.
1652. "The choir of Southwell Chureh, of the twelfth century, may be mentioned as affording an instance of the durability of a magnesio-calciferous sandstone, resembling that of Mansfield, after long exposure to the influences of the atmosphere.
1653. "Of buildings constructed of magnesian limestone we may mention the Norman portions of Southwell Church, built of stone similar to that of Bolsover Moor, and which are throughout in a perfeet state, the mouldings and carved enrichments being as sharp as when first executed. The keep of Koningsburgh Castle, built of a magnesian limestone from the vicinity, is also in a perfect state, although the joints of the masonry are open in consequence of the decomposition and disappearance of the mortar formerly within them. The church at Hemmingborough, of the fifteenth century, constructed of a material resembling the stone from Huddlestone, does not exhibit any appearance of decay. Tichhill Church, of the fifteenth century, built of a similar material, is in a fair state of preservation. Huddlestone Hall, of the sixteenth century, constructed of the stone of the immediate vicinity, is also in good condition. Roche Abbey, of the thirteenth century, in which stone from the immediate neighbourhood has been employed, exhibits generally a fair state of preservation, although some portions have yielded to the effects of the atmosphere.
1654. "As examples of magnesian limestone buildings in a more advanced state of decay, we may notice the churches at York, and a large portion of the Minster, Howden Chureh, Doncaster Old Church, and others in that part of the eountry, many of which are so much decomposed that the mouldings, carvings, and other architectural decorations are often entirely effaced.
1655. "We may here remark, that, as far as our observations extend, in proportion as the stone employed in magnesian limestone buildings is erystalline, so does it appear to have resisted the decomposing effects of the atmosphere; a conclusion in accordance with the opinion of Professor Daniell, who has stated to as that from the results of experiment:, he is of opinion 'the nearer the magnesian limestones approach to equivalent proportions of carbonate of lime and carbonate of magnesia, the more crystalline and better they are in every respect.'
1656. "Of buildings constructed of oolitic and other limestones, we may notice the church of Byland Abbey, of the twelfth century, especially the west front, built of stone from the immediate vieinity, as being in an almost perfeet state of preservation. Sandysfunt Castle, near Weymouth, constructed of Portland oolite in the time of Henry VIII., is an example of that material in excellent condition ; a few decomposed stones used in the interior (and which are exceptions to this fact) being from another oolite in the immediate vicinity of the castle. Bow and Arrow Castle, and the neighbouring ruins of a church of the fourteenth century, in the Island of Portland, also afford instances of the Portland oolite in perfeet condition. The new church in the island, built in 1766, of the variety of the Portland stone termed roach, is in an excellent state throughout, even to the preservation of the marks of the chisel.
16.58. "Nany buildings constructed of a material similar to the oolite of Ancaster, such as Newark and Grantham Churches, and other edifices in various parts of Lincolnshire, have scarcely yielded to the effects of atmospheric influences. Windrush Church, built of an oolite from the neighbouring guarry, is in exeellent condition, whilst the Abbey Church of Bath, constructed of the oolite in the vicinity of that city, has suffered much from decomposition; as is also the case with the cathedral, and the churehes of St. Nicholas and St. Michael in Gloucester, erected of a stone from the oolitic rocks of the neighbourhooci.
1657. "The churehes of Stamford, Ketton, Colley Weston, Kettering, and other places
in that part of the country, attest the durability of the Shelley oolite, termed Barnack Raf, with the excepticn of those portions of some of them for which the stone has been illselected. The excellent condition of those parts which remain of Glastonbury Abbey show the value of a shelly limestone similar to that of Doulting, whilst the stone employed in Wells Cathedral, apparently of the same kiad and not selected with equal care, is in parts decomposed. The mansion, the church, and the remains of the abbey at Montaeute, as also many other buildings in that vicinity, constructed of the limestone of Ham Hill, are in excellent condition. In Salisbury Cathedral, built of stone from Chilmark, we have evidence of the general durability of a siliciferous limestone; for, although the west front has somewhat yielded to the effects of the atmosphere, the excellent condition of the building generally is most striking.
1658. "In the public buildings of Oxford, we have a marked instance both of decom. position and durability in the materials employed : for whilst a shelly oolite, similar to that of Taynton, which is employed in the more ancient parts of the cathedral, in Merton College Chapel, \&e., and commonly for the plinths, string-courses, and exposed portions ot the other edifices in that city, is generally in a good state of preservation, a calcareous stone from Heddington, employed in nearly the whole of the colleges, churches, and other public buildings, is in such a deplorable state of decay, as in some instances to have caused all traces of architectural decoration to disappear, and the ashler itself to be in many places deeply disintegrated,
1659. "In Spofforth Castle we have a striking example of the unequal decomposition of two materials, a magnesian limestone and a sandstone; the former employed in the decorated parts, and the latter for the ashler or plain facing of the walls. Although the magnesian limestone las been equally exposed with the sandstone to the decomposing effects of the atmosphere, it has remained as perfect in form as when first employed, while the sandstone has suffered considerably from the effects of decomposition.
1660. "In Chepstow Castle, a magnesian limestone in fine preservation, and a red sandstone in an advanced state of decomposition. may be observed, both having been exposed to the same conditions as parts of the same archways; and in Bristol Cathedral there is a curious instance of the effeets arising from the intermixture of very different materials, a yellow limestone and a red sandstone, which have been indiscrininately employod both for the plain and decorated parts of the huilding; not only is the appearance in this case unsightly, but the arehitectural effeet of the edifice is also much impaired by the unequal decomposition of the two materials, the limestone having suffered much less from deeay than the sandstone.
1661. "Judging, therefore from the evidence afforded by buildings of various dates, there would appear to be many varieties of sandstone and limestone employed for building purposes which successfully resist the destructive effects of atmospheric influences; amongst these the sandstones of Stenton, Whithy, Tintern, Rivaulx, and Cragleith, the magnesio-calciferous sandstones of Mansfield, the caleiferous sandstone of Tisbury, the crystalline magnesian limestones, or Dolomites of Bolsover, Huddlestone and Roelie Abbey, the oolites of Byland, Portland, and Ancaster, the Shelly oolites and limestones of Barnack and Llam 1Iill, and the siliciferous limestone of Chilmark appear to be amongst the mest durable. To these, which may all be considered as desirable building materials, we are inclined to add the sandstones of Darley Dale, Humbie, Longannet, and Crowbank, the magnesian limestones of Robin Hood's Well, and the oolite of Ketton, although some of them may not have the evidence of ancient buildings in their favour." The Report upon which we have drawn so largely, and from which we shall extract still larger drafts, then proceeds to close by a preference to limestones on account "of their more general uniformity of tint, their comparatively homogencous structure, and the facility and economy of their conversion to building purposes," of which it prefers the erystalline; on which account, and its combination with a close approach to the equivalent proportions of carbonate of lime and carbonate of magnesia, for uniformity in structure, facility and economy in conversion, and for advantage of colour, the parties to the Report prefer the magnesian limestone or delomite of Bolsover Moor and its neighbourhood. The Report deserves every commendation; upon the whole it has been well done, and is the first scientific step the government of this country has ever taken in respect of practical architeeture. It, moreover, only eost the moderate sum of $£ 1,400$, ineluding the many collections of speeimens deposited in various institutions for reference.
1662. The following table presents a synoptical, and, to the architect, important view of the relative value, in every respect, of the principal species of stone which the various pr"vinces of England afford for building purposes. It is taken from the Report s, much quoted, the list of stones being cons derably alridged. We should direct attention to the faet that facilities of conveyance have gra atly modified the eost of each stone in Lor.don It will be well also to notice the valuable "Quarry Returns" of building and other stones, the produce of the United Kingdom of Great Britain and Ir. land, published in the Menoins uf the Geolngienl Survey of Great Britain, \&cc., and cdited by Rob.rt Hunt, being Part II. for 1858 , but published in 1860.

SANDSTONES.

$\left\lvert\, \begin{gathered}\text { Name of } \\ \text { Quarry, } \\ \text { Where situated }\end{gathered}\right.$	Proprietor of Quarry.	Component Parts of Stone.	Colour.					Where used.
Abercarne	Sir B. Hall,	Quartz and si-	Dark	lb. oz. 117 15	to	or	$\begin{array}{ll}\text { s. } & d \\ 1 & 5\end{array}$	Old churches
and Newbridge. near Newport, Nonmouthshire	Bart.	liceous grains, moderately fine, with argillo.siliceous cement ; micaceous, and with remains of fossil plants	bluish grey.		tons, in thick. nesars oi 5 leet.	$5 s$ per ton		and modern buildings in vicinity ; new Docks at New- port and Car- diff.
Ball Cros.	- -	Siliceous grains with argillosiliccous ce. ment ; occasionally micaceous, ferruginuus.	Ferruginous brown striped, and zoned In deeper tints.			- *		At Chatsworth and Bakewell.
Bareadoes, Tintern. Monmouthshire.	Ditke of Beaufort.	Fine and coarse qlartz, and other siliceous grains, with argillo-siliceous cement, ferruginous spots, and plates of mica.	Light greyish brown.	14612	$\begin{aligned} & \text { to } 10 \\ & \text { tons, } \\ & \text { thickest } \\ & \text { bed } 10 \text { to } \\ & 12 \mathrm{lt} . \end{aligned}$	d. to $1 s$.		Tintern Abbey.
Binnie, Uphall, and in Linlithyow shire.	Earl of Buchanan.	Fine quartz grains, with argillo-siliceous cement, micaccous, chiefly in planes of beds.	Brownish grey.	1401	Bands 14 to 18 ft . thick (3 in number).	s. $1 d . \operatorname{to}$ $2 s$. for largest blocks.	$\begin{aligned} & 2 \quad 9 \\ & \text { to }^{8} 8 \end{aligned}$	New club house in Prince's Street, Edinburgh, and numerous private houses there and in Glasgow.
Bolton's QUARRY, Aislaby, Yorkshire.	Messrs. Elgie and Lawson, as executors oif the late Mr. Noble, of York.	Moderately fine siliceous grains, with argillo-siliceous cement, plates of mica, and spots of carbon disseminated.	Warm light brewn.	$126 \quad 111$	$100 \mathrm{ft}$. cube ; top beds for house build- ing. bottom beds for docks. Beds 3 to 8 ft. thick.	ds to	$\begin{gathered} 1 \\ { }_{2}{ }^{9} 1 \end{gathered}$	Whitby Abbey, New University Library at Cambridge, Scarborouglı and Bridlington Piers, Sheerness and St. Katinırine's Docks, \&.
Baamley Fall, (Old Quarry), near Le'eds, Yurkshire.	Larl of Cardigan.	Quartz grains (often coarse), and decomposed felspar, with argillosiliceous cement. Mica rare. Small ferruginous spots disseminated.	Light lerruginous bruwn.	$142 \quad 3$	$\begin{aligned} & p \text { to } 12 \\ & \text { tons. } \end{aligned}$		-	In numerolis bridges, waterworks, \&c.
Calverley, Tunbridge Wells, Kent	John Ward, Esq., Hol. wood Park, Bromley, Kent.	Fine siliceous gralns, with a slightly calcareous cement.	Variegated browns.	1181	0 or 80 ft ., and upwards to 500 . Beds to $3 \frac{1}{3} \mathrm{ft}$.	d. to $6 d .$	$\begin{aligned} & 12 \\ & 144 \end{aligned}$	Upper part of new church at Tunbridge Wells ; Catholic Chapel. the Calverley Hatei, Market House, and Victoria National School, and about 110 houses, \&.c., at Tunbridge Wells and its vicinity.

SANDSTONES - continutd.

Name of Quarry, and where situated.	Proprietor of Quarty.	Component Parts of Stone.	Colour.					Where used.
				Ib. oz. 14514			s. d.	
$\begin{array}{\|c\|} \text { Caaigleith, } \\ \text { Craigleith } \\ \text { Hliil, near } \\ \text { Edinburgh. } \end{array}$	W. R. Ram-	$\text { , } \begin{gathered} \text { Fine quartz } \\ \text { grains, with a } \end{gathered}$	Whitish grey.		Any prac-	$9 d$. $2 s$. corl.	$1{ }_{\text {to }} 10 \mathrm{t}$	Used extensively in public
	of Barn-	siliceous ce-			length	accord-	378	sively in public buildings in
	ton.	ment, slightly			and	ing to		Edinumrgh;
		calcareous, oc-			breadth,	quality.		the College
		casional plates of mica.			from 6			(1580), Regis-
					ft.thick.			try (courts of law,
								Custom
								Ilouse, Royal
								National Mo-
								nument, and
								numerous
								churches, and now using for
								repairs ${ }_{\text {lor }}$
								Blackfriars
								Bridge.
Crawbank, Borrowstones, Linlithgowshire.	Duke of Hamilton.	Fine quartzose	Light fer-	1292	ft. thick	for	22	A Roman bridge
		grains, with	ruginous		6 ft .	blocks		(A. D. 140.),
		an argillo-si-	biown.		broad ;	of not		old church of
		liceous ce-			10 ft .	more		Kinneil, of the
		ment, some-			long.	than 5		twelfth cen-
		ginous ; disse-				ft.		tury.
		minated mica.						
Diffieli) Bank, Duffield, Derbyshire.	Mrs. Strathan.	Quartz grains of	Light	13214	50 ft .	1s. 1d.	- -	St. Mary's
						the		
		and decom-	with		beds	white		$\begin{aligned} & \text { Bridge, Re- } \\ & \text { porter Office, } \end{aligned}$
		posed felspar,	dark		about	stone,		Mechanics'
		with an ar-	brown		4 ft . ;	$9 d$. the		Lecture 11all.
		gillo-siliceous	and			brown		and Bishop
		cement, ferru-	purplish		depth	stone		Ryder's
		ginous spots,	tints.		brown,			Church now
		and occasion-			half			building
								Buflield
								chimney ${ }^{\text {Brand }}$
								shafts to
								Grammar
								School, Bir-
Duke'sQuar-	Duke of	Quartz grains, generally coarse, with decomposed felspar, and an argillo-siliceous cement; ferruginous spots.	Red, va-	1448	- -	7 d.	28	Penitentiary at Millbank, and the tilling in parts of Wa. terloo Bridge, London.
RIES, llolt Stanwell	Devon- shire.		$\begin{aligned} & \text { ried } \\ & \text { with } \end{aligned}$					
Bridge,			green,					
Derbyshire.			brown,					
			and					
			grey.					
Elland Edge, near Halifax, Yorkshire.	$-\quad-$	Fine quartz grains, with an argillo-siliceous cement, micaceous in planes of beds.	Light grey	1534				
			brown.					
Gatherley Moon, near Riclimond, Yorkshire.	John Warton, Esq. Gisborough.	Quartz grains of moderate size, and an argillosiliceous cement ; ferruginous spots and plates of mica.	Cream.	13513	$\begin{array}{r} 1 \text { to } 3 \text { tons, } \\ \text { a bed } 12 \\ \mathrm{ft} \text {. dcep. } \end{array}$	8d. for th: 12 ft. bed.	21	Aste Hall near Richmond,
								and Caterick
								bridges over
								the Swale; Purse Bridge
								Purse Bridge over
								Tever ; Skelton
								Castle, Dar-
								lington Town
								Hall, Lock-
								burn Hall,
								and numerous\|
								modern build-
								lngs.

SANDSTONES - cortinted.

SANDSTONES - continued.

Name of Quarry, and where situated	Proprietor of Quarty.	Component Parts of Stone.	Colour.					Where used.
				lb. oz. 160		s. d.	s.d.	
Munlochy, in Ross-shire.	JohnMatheson, Esq., of Bennetsfield.	Fine siliceons grains, with an argillo-siliceous cement ; micaceous.	Red and variegated.	1609	$\begin{aligned} & \text { Of large } \\ & \text { size ; } \\ & \text { beds } 2 \frac{1}{3} \\ & \text { to } \delta \text { ft. } \\ & \text { thick. } \end{aligned}$	$\begin{aligned} & 0 \\ & { }_{0}{ }^{\text {to }}{ }_{5 \frac{1}{2}} \end{aligned}$		Cathedral Church of Ross at Fortrose, A D. 1124: luverness Old Bridge, Cromwell Court, \&.
Mylnefield, or RingooDil: near 1) undee, in Perthshire.	James Mishe, Lisy.	Fine siliceous grains, with a calcareo-argil-lu-siliceous cement ; micaceous in planes of beds.	Purplish grey.	1600	Any praiticable size.	$\begin{array}{r} 0 \\ \text { to } \\ 5 \end{array}$	- -	Old steeple ot ${ }^{\prime}$ Dundee, 12th century, well preserved: Royal Asylum of Dundee. \&c.; Bell Rock I.ighthouse, Royal Asylum of Perth, Kinfauns Castle, Castle Huntley, \&c. \&c.
Pabk Spring, near I.eeds, Yorkshire.	Earl of Cardigall.	Flne quartz grains, and decomposed felspar, with au argillo-siliceous cement ; mica chiefly in planes of beds.	Light fer-ruginous brown.	$151 \quad 1$	0 to 12 ft . long: thickest bed 2 lt. 4 in.	07	$\begin{aligned} & 2 \quad 1 \frac{1}{1} \\ & 2^{2} 5 \end{aligned}$	Commercial buildings at Leeds, from the old quarry, which is of exactly similar stone to that of this quarry.
Pensiler, near Houghtom-le-spring, Durham.	Marquess of Londonderry.	Coarse quartz grains, with an argillo-siliceous cement ; plates of mica.	$\begin{aligned} & \text { Pale } \\ & \text { whitish } \\ & \text { brown. } \end{aligned}$	134	Any practicable size ; thickest bed 20 ft.	$0 \quad 8 \frac{3}{3}$	17	Pensher Chapel ; Scotch Church, Sunderland; Sunderland Pier, Seuham llarbour, Victoria Bridge, on the Wear, \&ic.
Pyotoykes, near Dundee, Forfarshire.	Alexander Clayhills, Esq, In-nergowrie.	Siliceous grains of moderate size, with a calcareo-argil-lo-siliceous cement; micaceous.	Purplish grey.	1628	Thickest bed 3 to 4 it.	$\begin{array}{cc}0 & 10 \\ \text { tu } \\ 1 & 2\end{array}$	$\begin{aligned} & 2 \quad 1 \\ & 2 \quad 5 \end{aligned}$	Extensively for the works at Dundee IIarbour, \&c.
Scotgate Head, Huddersfield, Yorkshire.	The freeholders of Ouley.	Quartz grains, of moderate size, with an argillo-siliceous cement ; mica in planes of beds, and occasional specks of carbon.	$\begin{aligned} & \text { Light } \\ & \text { greenlsh } \\ & \text { grey. } \end{aligned}$	1580	Thiekest bed 3 ft . 6 in.	08	12	$\left\lvert\, \begin{array}{cc} \text { York Castle: } \\ \text { Bath llutel, at } \\ \text { Huddersfield. } \end{array}\right.$
Stancliff, or Darley Dale, near Bakewell, Derbyshire.	A.H.1Ieath- cote, Esq-, Black- well.	Quartz gralns of moderate size, and decomposed felspar, with an argil-10-siliceous cement, ferruginous spots, and plates of mica.	Light fer-ruginous brown.	148	$\begin{aligned} & \text { Of very } \\ & \text { large } \\ & \text { size. } \end{aligned}$	15	33	Abbey \ln Darley Dale . Stancliff 1hall, Birmingham; Grammar School, Birmingharn ; and Nottinghain Railway Station Honses.
STFNTON, near Barnard Castle, Durhain.	Duke of Cleve- land.	Fine quartz grainz, and decomposed felspar. with an argillo-sili. ceous cement, ferruginous specks, and some plates of mica.	Ferruginons light brown.	142	5 to 20 ft . long, 2 ft . to 8 ft . in thickness.	0 \$1	15	

SANDSTONES - continued.

IIMESTONES.

Name of Quanry, and where situatid.	Proprietor of Quaz:	Component rarts of Stone.	Colour.					Where used.
Beer, nearAxminster,Devonshire.	Lord Rolle.	Chiefly carbonate of lime, friable, and with partial indurations.	$\begin{aligned} & \text { Light tint } \\ & \text { of } \\ & \text { brown. } \end{aligned}$	lb. oz.131 12	to 7 ft . long, 3 ft . wide, and 2 ft . thick.	$\begin{array}{cc}\text { s. } & \text { d. } \\ - & =\end{array}$	s.d.	In the chinrches of the vicinity; St. Peter's Church, Exeter, in exposed parts; Colyton Church, Charmouth, \&c.\&c.
Cillmark,	Earl of	Carbonate of	light	1537	10 cwt . to	16	410	Salisbury Ca
near Salis-bu-y, Wiltshire.	Pembroke.	lime, with a moderate proportion of silica, and occa. sional grains of silicate of iron.	green- ish brown.			$2^{\text {to }} 0$	$5^{\text {to }}$	dral, Wilton Abber, and many other ancient and modern buildings in the vi cinity.
Hopton Wood, ncar Wirksworth, Derbys.ire.	Philip Gall, Esq., Hapton llall, near Wirksworth.	Compact carbonate of lime, with encrinal fragments abundant.	Warm light grey.	1587	100 feet cube; bcds vary in thickness from 3 to 10 ft .	$4^{\text {to }} 0$	$\begin{aligned} & 410 \\ & 10 \\ & 510 \end{aligned}$	At Chatsworth,
								Belvoir Castle,
								Trentham
								Hall, Drayton
								Manor, Birminghant
								minghant
								School, dc

LIMESTONES - continucd.

MAGNESIAN LIMESTONES.

MAGNESIAN LIMESTONES - continucd.

OOLITIC STONES.

OOLITIC STONES - continuєd.

OOLITIC STONES - contmucd.

Of the Portland stnnes, It is to be observed generally, that the dirt hed is full of fossil roots, trunks, and branches of trees, in the position of their former growth. The top caj, is a white, hard, and closely compacted limestone. The skull cap is irregular in texture, anl is a well-compacted limestone. The roach beds are always incorporated with the freestone heds, that iovariably lie below them, and are full of cavities formed by the moulds of shells and the like. The top bed is the best stone, the bottom one ill cemented, and will not stand the weather. A middle or enrf bed occurs only in the southernmost quarries on the cast cliff : it is soft to the north, and hard to the south. The good workable stone in the east cliff quarries is generally less in depth than in the same bed in the west cliff quarries, but the cast cliff stone is harder, more especially to the sout'l of the islan l. The stone, even in the same quarries, varies considerably. That which contains flints will not stand the weather. The bottom bed on the west cliff is not a durable stone, though sold as a good stone in the London market. The best stone is in the wortheastern part of the islaud; the worst in the south-western part. The annual consumption of the whole of the quarries in the island is equal to an area of one acre of the good workable stone, or about 24,000 tons. The entire area unworked is about 2000 acres. There are 56 quarries in the jaland, and abnut 240 quz.rymen employed, of which number Messrs. Stewards employ usually about 13y. (See Subitection $1666 f$. et si q.)

OOLITIC STONES - continued.

Name of Quarry, and where situated.	Progrictor of Quarry.	Component Parts of Stone.	Colour.					Whare used.
				Ib. $9 z$. 13515		$s . d .$	$\text { s. } d$	
Tavnting, or Teinton, near Burfurd, Oxon.	Lord Dyne- vor.	Carbonate of lime, partly oolitic and friable, with very small fragments of shells, irregularly laminated.	Streaky brown.		Any practícable size. Thickest bed, alout 7 ft .	$\begin{aligned} & 010 \\ & \text { to } \\ & 1 \quad 0 \end{aligned}$		Blenhcim, Cornbury Park, Barrington Park, the interior of St. Paul's and many other churches in London and Oxford, and in variousbridges in Oxfordshire.
$\begin{aligned} & \text { Wass, neal } \\ & \text { Thirsk, } \\ & \text { lorkshire. } \end{aligned}$	Martin Stapleton, Esq.	Compact carbonate of lime, with oolitic grains and an argillo - calcareous cement ; carbon disseminated.	Brown.	$\begin{gathered} 141 \text { 11 } \\ \text { soft. } \\ 1628 \\ \text { hard. } \end{gathered}$	Beds variable, about 16 ia.	- -	-	West front and a large proportion of Bjiand Abbey.
Windrish, near Bur- ford, Glou- cestershire.	Lord Shelburne.	Fine oolitic grains, with cilcareous cement, and a few fragmetia of shells.	Eream.	1182 soft. 13515 hard.	to 40 ft . Thickest bed, 2 ft . 6 in.	08	27	Vindrush Church, Barrington House, and all the old buildings within many miles of the quarry.

1665. The following very useful enumeration of the stones used in buildings of the island, arranged under that head, and divided into the sorts of stone employed in them, we add, verbatim, from the Report which we have so much used. The heads are under Sandstone buildings, Limestone buildings, and Magnesian Limestone buildings.

SANDSTONE BUILDINGS.

Baкeweld, Derlyshire. The houses generally are of sandstone, and in fair condition. A new bank now erecting of sandstone from Bakewell Edge.
Bakemel. Church (14th century), of a sandstone of the vicinity, very much decomposed.
Barnard Castle, Durham (14th century). Circular keep, apparently of Stenton stone, in excellent condition. In modern works, the Joint Stock Bank and Market-house of Stenton stone, in good condition.
Belier New Church, Derbyshire. Built 10 years since, of sandstone from Ilungerhill, in an incipient state (in prarts) of decomposition.
Blandrord Parish Chureh, Dorsetshire (1769). Of a green siliceous fine-grained sandstone, the dressings being of a stone similar to the Portland oolite; the former much decomposed; the latter in very good condition. Town Hall, about 80 years old, of stone similar to the Portland oolite, in good condition.
Brancepeth Castle, Durham. Of ancient date, of sandstone of the vicinity; recently restored extensively ; older parts in various states of decomposition.
Bravea's, St., Castle, Glocestershire. In ruins (13th or 14 th century). Entrance gateway (the chief remains of the castle) built of red sandstone, decomposed.
Bristol Cathedral (13th and 14 th centuries). Built of red sandstone and a yellow limestone (magnesian?) strangely intermixed; the red sandstone in all cases decomposed, the limestone more rarely decayed; the tracery, \&e. of the windows, which are of the limestone, are in good condition ; but the pinnacles and other dressings, which are of the same material, are much decomposed. The east end of the cathedral is a remarkable instance of the decay and preservation of the two stones employed. Norman gateway, west of the cathedral (the upper part of the 15 th century) ; the Norman archway and its enrichments, which are of a very florid character, built of yellow limestone (magnesian?), in excellent condition.
Eyland Abbey (12th century). In part of a siticeous grit (principally in the interior), and in part (chiefly m the exterior) of a compact oolite, from the Wass quarries in the
vicinity. The west front, which is of the oolite, is in perfect condition, even in the dog's-teeth and other florid decorations of the doorways, \&.c. This building is covercd generally with lichens.
Caulasle. Ancient buildings: Cathedral (13th century), of red sandstone, in various stateg of decomposition. Modern buildings : Many of red sandstone, more or less in a state of decomposition.
Castle Howarn, Yorkshire. Built generally of a siliceous fine-grained sandstone from the park; generally in good condition, but in some parts, such as the parapets, cupolas, and chimney shafts, much decomposed. The pilasters of the north front from a quarry at Appleton; in good condition, except where subjected to alternations of wet and dry, as in the plinths, where there are signs of decomposition. The stables are of Appleton stone, and in good condition.
Chatsworth IIouse, Derbyshire. Original house built of Bell Crop sandstone from Bakewell Edge, not in very good condition, particularly in the lower parts of the building. In the recent additions the same stone is cmployed, together with that of Bailey Moor and Lindrop IIill.
Chefstow Castle, Monmouthshire (11th and 12th centuries, with additions of the 14th century). Of mountain limestone and old red sandstone; the former in good condition; the latter decomposed. Dressings of doors, windows, archways, and quoins are for the most part of magnesian limestone, in perfect condition; the remainder is of red sandstone, and is generally much decomposed. Chapel (of the 12th eentury); mouldings and earvings of the windows, $\mathcal{S c}$., which are of magnesian limestone, are in perfect condition.
Cuxwold Church, Yorkshire (15 th century). Generally of fine siliceous grit of the vicinity, and in part of a calcareous nature. Tower in good condition ; porch decomposed; lichens abundant on the north side.
Derry. St. Peter's Church (13th century), of the variegated coarse sandstone of the vicinity, similar to that of Little Eaton. The whole in bad condition; but the red stones less so than the grey or white. St. Almund's Church (of the 14th century), of a coarse sandstone of the vicinity, in a very decomposed state, to the obliteration of the mouldings and other details; it has lately been scraped and painted, to preserve it from further destruction. All Saints Church (tower of the 15 th century), of sandstone, similar to that of Duffield Bank, partly in fair condition, and partly much decomposed, particularly the great western entrance. The body of the church, built 110 years smee, of sandstone, in part decomposing. Modern buildings: Town Hall, of sandstone from Morley Moor, built a few years since, in very good condition.
Durham Cathedral. (11th and 12th centuries). Of a sandstone of the vicinity, elected indiceriminately, and in all stages of decomposition; few stones are quite perfect. Castle (of the 11 th century). Of similar stone, and in a similar state.
Easby Abbey, Yorkshire (13th and 14th centuries). Of sandstone of the vicinity; mouldings and carvings decomposed and in part obliterated. Walls built very rudely, and in various states of decomposition; some parts, however, maintain their original surface.
Lecleston Abbey, Yorkshire (13th century). Of stone similar to that of the Stenton quarry. The mouldings and other decorations, such even as the dog's-teeth enrichments, are in perfect condition.
Edinburgh. Ancient buildings: Holyrood Chapel (12th century), of sandstone from the vicinity, in part much decomposed; in other parts, such as the west door, almost perfect. The palace (built in the 16 th and 17 th centuries) of similar stone, generally in good condition, the older parts being slightly decomposed. The oldest part of the Tron Church (1641), of sandstone, much decomposed. A house on the Castle Hill (1591), of sandstone, only slightly decomposed.

Modern buildings, wholly erected of sandstones from the Cragleith, Red Hall, Humbie. and Bimie quarries, for the most from the first-mentioned quarry. None of them exhibit any appearance of decomposition, with the exception of ferruginous stains, which are produced upon some stones. Among the oldest is the Registry Office, which is of Cragleith stone, and built above sixty years since; it is in a perfect state.
Fountan's Abeey, Yorkshire (11th and 12th centuries, with additions of the 16 th century). Of coarse sandstone of the vicinity, generally in bad condition, particularly the west front, which is much decomposed. The nave and transept, which are the earliest portions of the building, are the best preserved.
Fountan's Hall, Yorkshire (1677). Of sandstone of the vicinity, and magnesian limestone in the dressings. The whole in fair condition.
Fonest of Dean, Gloncestershire. Park End new church, built fifteen years since, of sandstone, similar to that of Colford. No appearance of decomposition.

Glafgow. Ancient buildings: High Church (12th century), sandstone of the vicinity, generally very much decomposed, particularly on the south side Old quadrangle of the College (James II.), of sandstone, decomposed.
Modern buildings: IIunterian Museum (1804); superstructure said to be of stone from the President quarry; slight traces of decomposition on the south-west front. The basement of another sandstone, in a more advanced state of decomposition; other parts of the building are in an almost perfect state. The other buildings are generally erected of stone from the Giffncuch and other quarries in the immediate neighbourhood, except the new Exchange buildings, which are of stone from the Humbic quarry, thirty miles from Glasgow, recently erected, in which there are not any apparent symptoms of decomposition.
Gloucester Catimedral (Norman for the greater part, altered and eased in the 15 th century), built of a fine grained and ill-cemented oolite, a shelly oolite, and a red sandstone (north side) intermixed, of which the former constitutes the greater portion. The tower (15 th century), of shelly oolite, in perfect condition. The early turrets of the south transepts are also in good condition. The body of the building is much decomposed. The great cloister is built of the same materials as the cathedral. The moulded and decorated work is in good condition, the other parts are more or less decomposed. The small cloister is built of a fine oolite with a compact cement, and is in good condition. The New Bridge, of Whitchurch sandstone, parapets of Ruordean fine-grained sandstone, in good condition.
Iladoon Hall, Derbyshire (15 th and 16th centuries). Of a fine-grained sandstone, similar to that of Lindrop Hill. The dressings, parapets, chimney shafts, quoins, \&c.

- are wrought and rubbed; the remainder of the walls is of rough walling. The whole in fair condition.
Harrowgate. Cheltenbam Pump Room, of sandstone from Woodhouse, near Leeds. Built recently. In good condition. Swan Hotel and other modern buildings, of a coarse sandstone of the vicinity ; generally in good condition.
Hardwicke Hall, Derbyshire. (1597). Of a tine-grained sandstone, chiefly from a quarry in the hill on which the house is built, intermixed with a calciferous grit, similar to that of Mansfield; generally in good condition. The ashler is in parts decomposed, especially where it is set on edge.
Hownen Сhurch, Yorkshire (15 th century); partly of magnesian limestone, of a deep yellow colour, and partly of a coarse siliceous grit, of a ferruginous colour. Dressings and enrichments and the central tower are of the former stone; generally decomposed, particularly at the top of the tower. The other parts of the building, which are of the grit, are very much decomposed.
Kirkstall Abeey, Yorkshire (11th century). Of coarse sandstone of the vicinity, in various stages of decomposition according to the aspect. The east side is in fair condition; some of the zig-zag enrichments and early capitals and other enrichments of mouldings are in perfect condition. The windows of the chancel and tower (inserted in the 16 th century) of a yellow sandstone, are for the most part gone, and what remains is much decomposed.
Mansfield TownHall, Nottinghamshire, Built three years since, of magnesio-caleiferous sandstone from Mansfield : no appearance of decomposition.
Newcastle-upon-'Tyne. Ancient buildings: St. Nicholas' Church (14th century), of sandstone of the vicinity, similar to that of the Heddon Quarry, very much decomposed. Parts restored within the last century, with the same stone, now decomposing. The upper part of the tower and spire restored within the last five years, and painted to preserve the stone from decay. Other ancient buildings, of the same stone, more or less in a state of decomposition, according to the date of their erection.
Modern buildings, built within the last 25 years, of sandstone from the Felling and Church quarries at Gateshead and the Kenton quarry : parts already show symptoms of decomposition.
Pontefract Castle, Yorkshire (14th century). Built generally of a coarse grit, of a dark brown colour, occasionally mixed with an inferior magnesian limestone. The whole in a very decomposed state, more particularly the sandstone, in which all traces of the original surface are effaced. Fragments of magnesian limestone are embedded in several parts of the walls, with mouldings of the 12 th century, in perfect condition.
Raby Castle, Durham (14th century). Of sandstone of the vicinity : parts in a perfect state, others slightly decomposed.
Richmond Castle, Yorkshire (11th century). The keep, of sandstone, similar to that of Gatherly Moor, generally in good condition; mouldings and carvings in columns of window in a perfect state.
Rıpon, Yorkshire. An obelisk in the market-place (1781), of coarse sandstone, much decomposed in laminations parallel to the expospd faces.

Rhon Cathedral. Lower part, east end, and south-east angle (Norman), of coarse sandstone of the vicinity, in good condition. The west front, the transepts, and tower (of the 12 th and 13 th centuries), of the coarse sandstone of the vicinity, in fair condition. The mouldings, although generally decomposed, are not effaced. The dog's-teeth ornaments in most parts nearly perfect. The aisles of the naves, the clerestory, and the choir (of the 14 th and 15 th centuries), of coarse sandstone and magnesian limestone intermixed, not in goot condition; the latter stonc, on the south side, often in fair condition. The lower parts of the building generally, but particularly the west fronts, which are of coarse sandstone, are very much decomposed.
Rivaulx Abbey, Yorkshire (12th century). Of a sandstone at Hollands, one mile from the ruins; generally in excellent condition. West front slightly decomposed; south front remarkably perfect, even to the preservation of the original toohmarks.
Siaftesbury, Dorsetshire. St. Peter's Chureh (15 th century). Of a green siliceous sandstone, from quarries half a mile south of the church. The whole building much decomposed. The tower is bound together by iron, and is unsafe, owing to the inferior quality of the stone.
Sporforth Castle, Yorkshire (14 th century). Of coarse red sandstone; more or less, but generally much, decomposed. The oressings of the windows and doors, of a semicrystalline magnesian limestone, are in perfect state, the mouldings and enrichments being exquisitely sharp and beautiful.
Tintern Abeey (13 th century). Considerable remains of red and grey sandstones of the vicinity, in part laminated. In unequal condition, but for the most part in perfict condition ; covered with grey and green lichens.
Tisbuiv Cunber (13th and 14th centuries; the lower part of the tower of the 12th century). Of caleiferous limestone from Tisbury. The dressings are composed of stone throughout, in perfect condition. The ashlar variable; in part much decomposed; the undecomposed portions are covered with lichens. Tombstones in the churehyard generally in good condition, some being more than a century old. The houses of the village boilt generally of the Tisbury stone, and are in very good condition. The whole covered with lichens.
Wakefield Pakish Church, Yorkshire (tower and spire of the 16 th century). Of sandstone, much decomposed. The body of the chureh, of recent date, of sandstone strongly laminated, and generally decomposed between the laminx.
Whirny Abeey (13th century). Of stone similar to that of Aislaby Brow, in the vieinity; generally in good condition, with the exception of the west front, which is very moch decomposed. The stone used is of two colours, brown and white; the former, in all eases, more decomposed than the latter. The dog's-teetli and other enrichments in the east front are in good condition.

LIMESTONE BUILIINGS.

Bath. Abbey church (1576), built of an oolite in the vicinity. The tower is in fair condition. The body of the chureh, in the upper part of the south and west sides, much decomposed. The lower parts, formerly in contact with buildings, are in a more perfect state; the reliefs in the west front of Jacob's ladder are in parts nearly effaced. Queen's Square, north side, and the obelisk in the centre, built above 100 years since, of an oolite with shells, in fair condition. Circus (built about 1750), of an oolite in the vicinity, generally in fair condition, except those portions which have a west and southern aspect, where the most exposed parts are decomposed. Crescent (built above 50 years since), of an oolite of the vicinity, generally in tair condition, except in a few places, where the stone appears to be of inferior cquality.
Bhistol Catnedral (of the 13 th and 14 th centuries). Built of red sandstgaze and apparently a yellow limestone (magnesian?) strangely intermixed. The red sandstone in all cases decomposed ; the limestone more rarely decayed. The tracery, \&c. of the wiadows, which are of the limestone, are in good condition, but the pinnacles and dressings of the same material much decomposed. The east end of the cathedral is a remarhable instance of the decay and preservation of the two stones employed. Norman gateway, west of the cathedral (the upper part of the 15 th century), the Norman archway and its enrichments, which are of a very florid character, built of yellow limestone (magnesian?), in excellent condition.

- St. Mary Rencliffe (tower of the 12 th century ; body of the church of the 15 th century). Of oolitic limestone, from Dundry; very mueli decomposed.
Burleigh House (15 th century). Of a shelly oolite (Barnack rag), in excellent condition throughout. The late additions are of Ketton stone.
Exland Abbey, Yorkshire (12th century). In part of a siliceous grit (principally in the interior), and in part (chiefly on the exterior) of a compact oolite, from the Wias quarries in the vicinity. The west front, which is of the oolite, is in perfect condition,
even in the dog's-teeth and other florid decorations of the doorways, \&e. This building is generally covered with tichens.
Colley Weston Curbeh, Northamptonshire (14th century). Of a shelly oulite (Barnack rag), in perfect condition throughout.
Dorchester. St. Peter's Church (15 th eentury). Of laminated oolite, some w hat similar to that of Portland, and of a shelly limestonc, somewhat resembling that of Hamhill. The latter used in pinnaeles, parapets, and dressings. The whole in a decomposed state.
Glastonbury - Abley. Joseph of Arimathea's Chapel. Considerable ruins; Norman, of shelly limestone, similar to that of Doulting; generally in good condition; the rig-zag and other enrichments perfect; the capitals of the colnmns, corbels, \&c. are of blue lias, much decomposed, and in some cases have disappeared. The Church. Considerable remains of the choir, and a small portion of the nave (11th century), of shelly linestone, similar to that of Doulting, in good condition. St. Benedict's Parish Church (14th century). Of limestone, similar to that of Doulting, in good condition. St. John the Baptist's Parish Church (15th century). Of stone similar to that of Doulting, generally in fair condition.
G1.ocester - Cathedral, (Norman for the greater part, altered and cased in the 15 th eentury). Built of a fine-grained and ill-cemented oolite, a shelly oolite, and a red sandstone (north side) intermixed, the former eonstituting the greatest portion of the edifice. The tower (15th century), of shelly oolite, in perfect condition. The carly turrets of the south transept are also in good condition. The body of the building is much decomposed. The great cloister is built of the same materials as the cathedral. The moulded and decorated work is in grood condition ; the other parts are more or less decomposed. The great cloister is built of a fine oolite, with a compact eement, and is in good condition. St. Nicholus's Church (body Norman; tower and spire, 15 th century), of a shelly and inferior kind of oolite intermixed, and in unequal condition. St. Michael's Church (15th century), built of same stone as that of St. Nicholas, and in the same condition.
Grantinam Churci (13th century). Lofty tower and spire at the west end. Built of an oolite, similar to that of Ancaster, in good condition, more especially the tower, except as to some portions of the base mouldings.
Ketton Church, Rutlandshire. (West entrance door, Norman ; tower of the 12th or 13th century ; nave, aisles, and ehancel of the 14th century). Of a shelly oolite (Barnack rag), in good condition. Dog's-teeth, earved corbels, and other enrichments in a perfect state.
Kettering Churcit (14th and 15 th centuries). Of a shelly oolite, fine-grained, the greater portion resembling Barnack rag. The tower and spire in perfect condition. The body of the church in parts slightly decomposed.
Kıкнам Prory, Yorkshire (13th century). Inconsiderable remains. The westera front and great entrance slightly decomposed throughout; the portions which remain of the body of the church very perfeet, but many of the stones are much decomposed. The stone is very similar to that of the Hildenly quarry. The whole is covered with lichens.
Lincoln Cathenral (the minster generally of the 12 th and 13 th centuries). Of oolitie and calcareous stone of the vicinity; generally in fair condition, more especially the early portions of the west front. The ashler and plain dressings of the south front are, however, mueh decomposed. The mouldings and earvings of the cast front are in a perfect state. Roman Gate, of a ferruginous oolite, in fair condition. The Castle Gateway (13th century), of an oolitie limestone; ashler much decomposed, dressings perfeet.
Melton Old Church, Yorkshire (12th eentury). Light semi-compact limestone, similar to that of the Hildenly quarry; generally in good condition, partieularly the great west door (of the 11 th century), where the zig-zag and other enrichments are perfect. Some stones are mueh decomposed.
Montacute, Somersetshire - Parish Church (1.5th century). Of Hamhill stone, in perfect condition, covered with lichens. The Abbey (15 th century). Supposed abbot's house and gateway, of Hamhill stone, in good condition. Montacute House (17th century), of Hamhill stone, in excellent condition.
$\mathrm{Marrock}_{\text {Chunch, }}$ Somersetshire (15 th century). Of a shelly ferruginous brown limestone from Hamhill, in good condition, exeept the plinth and base mouldings, whivin are much decomposed. Covered with lichens.
Newark Church (15th century; the tower, in part, of the 12 th century). Of an oolite, sinnilar to that of Ancaster; generally in fair condition, with the exception of parts of the base mouldmgs. The building is covered with a grey lichen. The Castle (Norman, with additions in the 15 th century). Chiefly of sandstone of the vieinity ; in unequal condition. A large portion of the dressings of the windows. \&e are of endite.
probably from Ancaster. Towen Hall (50 or 60 years oldd). Built of the Aneaster oolitr; in good condition; in some blocks, however, there is an appearance of lamination, where decomposition has to a slight extent taken place.
Oxpord Cathembal, Norman (2th century). Chiefly of a shelly oolite, similar to that of Taynton; Norman work in good condition, the latter work mach decomposec Merton College Chapel (13th century). Of a shelly oolite, resembling Taynton stone; in grood condition generally. New College Cloisters ($1+\mathrm{th}$ century). Of a shelly oolite (Taynton), in good condition. The whole of the colleges, churches, and othe: public buildings of Oxford, erected within the last three centuries, are of oolitic limestone from Ileddington, about one mile and a half from the university, and are ail, more or less, in a deplorable state of decomposition. The plinth, string-courses, and such portions of the buildings as are much exposed to the action of the atmosphere, are mostly of a sheliy oolite from Taynton, fifteen miles from the university, and are universally in good condition.
L'aul's, st., Catheirali, London (finished about 1700). Built of l'ortland oolite, from the Grove quarries on the cast clitl: The building generally in good condition, especially the north and east fronts. The carvings of Howers, fruit, and other ornaments anc throughout nearly as perfect as when first executed, althongh much blackened; on the south and west fronts, larger portions of the stone may be observed of their natural colour than on the north and cast fronts, occasioned by a very slight decomposition of the surface. 'Ihe stone in the drum of the dome, and in the cupola above it, appears not to have been so well selected as the rest; nevertheless scarcely any appreciable decay has taken place in those parts.
Phekerng Church, Yorkshire (13th and 14th centuries). Oolite rack of the neighbourhood; very much decomposed; the windows, mullions, and buttress angles obliterated.
Pichering Castle (14th century). The walls of the oolite of the neighbourhood, and the Ifuoins of a siliceous grit. The whole in fair condition.
lontland, Dorsetshire - New Church (built 1766), of Portland oolite, fine roach; in a perfect state, still exhibiting the original tool marks. Wakeham Village, 'indor House, of Portland oolite, in excellent condition. Old Church, in ruins, near Bow and Arrow Castle (15th century), of Portland oolite, resembling top bed; in very good condition ; original chisel marks still appear on the north frout. Bow and Arrow Custle. Considerable remains of the keep, many eenturies old, of Poriland oolite; the ashlar resembles the top bed, and is in perfeet condition; the quoins and corbels of the machicolated parapet appear to be of the cap bed of I'orthand oolite, and are in good condition.
Salisbuiy Cathedral (13th century). Of siliciferous limestone from Chilmark yuarry. The entire building is in excellent condition, except the west fiont, wheh in parts is slightly decompesed. The building generatly cosered with tichens.
Saninthoot Castle, near Weymouth (temp. Hen. Vill.). Considerable remains of keep, chiefly of Portland oolite, partly of the top bed and partly of the fine roach; generally an excellent condition, with the exception of a few and apparently inferior stones. The inside ashlar of the walls is of large-gramed oolite, apparently from the immediate vicinity of the castle, much decomposed.
Somerton Church, Somersetshire (14th century). Built chiefly of blue lias; the quoins, buttresses, parapets, and other dressings of a coarse ferruginons shelly limestone, in various stages of decay. 'The parapet of the clerestory of a lighter-coluured stone, in good condition.
Stanrond-St. Mary's Clurch (13th century). Of a shelly oolite (Barnack rag), in tair condition. St. John's Church (14the century). Of similar stone, ill selected, and consequently decomposed in parts and in laminations, according to the direction of the beds of shells. St. Martin's Church (14th century). Of similar stone, in good condition. All Suints (lower part of the body of the church 13th century; the remainder 15 th century). Tower and spire in fine condition; body of the chureh decomposed. Standwell's Hotel, built twenty-four years since of an oolite similar to that of Ketton; in perlect condition. St. Michael's New Church. Built four years since; no appearance of decomposition.
Welli, The Cathejsal. West front (13th century), upper part of tower (14 th century), of sheily limestone, similar to that of Doulting, generally decomposed, but not to any great extent. North Hank (porch and transept 13 th century, the remainder of the 1 the century), of similar stone, in good condition, except lower part of tlank and went tower. The central tower (of the $14 t h$ century) in very good condition. South side of the cathedral gencrally in good condition. Chapter House (13th century, with additions of the 15 th century). The whole in good condition excepting the west front of the gateway, which is decomposed. Close gates (1.5 th century) much de-
composed, but especially on the soutin and sonth-west. The eloisters (15 th century) generally decomposed, particularly the mullions and tracery.
Whatminster Abpey (13 th century). Built of several varieties of stone, similar to that ot Gatton or Ryegate, which is much decomposed, and also of Caen stone, which is generally in bad condition; a considerable portion of the exterior, especially on the north side, has been restored at various periods, nevertheless abundant symptoms of decay are apparent. The cloisters, built of several kinds of stone, are in a very mouldering condition, exeept where they have been recently restored with bath and Portland stones. The west towers, erected in the beginning of the 18 th century with a shelly variety of l'ortland oolite, exhibit scarcely any appearance of decay. Ilenry the Seventh's Chapel, restored about twenty years since with Combe Down luathstone, is already in a state of decomposition.
W innrush Church (15 th century). Of an oolite from the immediate vicinity ; in excellent condition. A Norman door on the north side, enriched with the bird's-beak and other characteristic ormaments, is in perfect condition. Jombstones in the churchyard, very highly enriched and bearing the dates of 1681,1690 , apparently of Windrush stone, are in perfect condition.
Wyke Church, Dorsetshire (15 th century). Of oolite, similar to Portland, the whole in good condition, except the mullions, tracery, and dressings of doors and windows, which are constructed of a soft material, and are all decomposed. On the south side, the ashler is in part covered with rough-cast. The entire building is thickly covered with lichens.

MAGNESIAN LIMESTONE BUILDINGS.

Beverley, Yorkshire. The minster (12 th, 13 th, and 14 th centuries), of magnesian limestone from Bramham Moor, and an oolite from Newbold; the former, which is used in the west tower, central tower, and more ancient parts of the minster, generally in good condition; but in other parts of the building the same material is decomposed. The Newbold stone, chiefly employed on the east side, is altogether in a bad condition. Some of the pinnacles are of Oulton sandstone, and are in bad condition. The building is partly covered with lichens. St. Mary's Church (I4th century), now in course of restoration, of magnesian limestone and oolite, supposed to be from Bramham Moor and Newbold, respectively. The ancient parts are in a very crumbling state, even to the obliteration of many of the mouldings and enrichments.
Bolsover Castie, Derbyshire (1629). Mostly in ruins; of magnesian limestone of several varieties, and of a calcareous fine-grained sandstone. The dressings, which are generally of sandstone, are much decomposed, in some instances to the entire obliteration of the mouldings and other decorations, and to the destruction of the form of the columns, rustications, \&c. Nost of the string courses, a portion of the window dressings, and the ashler, which are of magnesian limestone, are generally in excellent condition.
Bolsover Church, Derbyshire (15th century). Of a magnesio-calciferous sandstone, more or less in a decomposed state throughout.
Cifepstow Castle, Monmouthshire (11 th and 12 th centuries, with additions of the 14 th century). Of mountain limestone and old red sandstone; the former in good condition, the latter decomposed. Dressings of door, window, arehway, and quoins are for the most part of magnesian limestone, and in perfect condition. The remainder is of red sandstone, and is generally much decomposed. Chapel (of the 12 th century), mouldings and carvings of windows, \&c., which are of magnesian limestone, in perfect condition
Doncaster (Old) Church (15 th century). Of an inferior magnesian limestone, generally much decomposed, more especially in the tower, and on the south and west sides; now under general and extensive repair.
Hexingborough Church, Yorkshire (15 th century). Of a white erystalline magnesian limestone. The entire building is in a perfect state, even the spire, where no traces of decay are apparent.
Hownen Church, Yorkshire (15 th century). Partly of magnesian limestone of a deep yellow colour, and partly of a coarse siliceous grit of a ferruginous colour. Dressings and enrichments, and the central tower, are of the former stone, generally decomposed, particularly at the top of the tower. The other parts of the editice, built of the grit, are very much decomposed.
Humblestone IIai.i, Yorkshire (15 th century). Of semi-crystalline magnesian limestone from the neighbouring quarry. In excellent condition, even to the entire preservation of the mouldings of the chapel window in the sonth-west front. The outer gate piers in the fence wall, also of magnesian limestone, very much decomposed.
KNareshorough Castle, Yorkshire (12th century). Magnesian limestone, carious in part;
gener: lly in very good condi-ion, except on the sonth and south-west portions of the circular turrets, where the surfice is much decomposed. The mouldings generally are in a perfeet state. The joints of the masonry, which is executed with the greatest care, are remarkably close. The stone of the keep, which is of a deep brown colour, and mueh resembles sandstone, is in good condition, especially on the south-west side.
Koningshorough Castle, Yorkshire (Norman). Coarse-grained and semi-erystalline magnesian limestone, foom the hill eastward of the castle; in perfeet condition. The rasonry is exceuted with great eare, the joints very close, but the mortar within them bas dis:!ppeared.
Ripen Cathenrar.. Lower part, east end, south-enst angle (Norman), of coarse sandstone from the vicinity, in good condition. The west front, the trarsepts, and tower (of the 12 th and 13 th centuries), of coarse sandsione of the vicinity, in fair condition. The mouldings, althongh generally decomposed, are not elfaced. The dog's-teeth ornament in most parts nearly perfect. The aisles of the nave, the clerestory, and the choir (of the 14 th and 15 th centuries), of coarse sandstone and magnesian limestone intermixed, not in good condition. 'The latter stone, on the south side, often in fair condition. The lower parts of the building generally, particularly the west fronts, which are of coarse sandstone, are much decomposed. An obelisk, in the marketplace (1781), of course sandstone, is much decomposed, and in laminations parallel to the exposed faces.
Robin IIoon's Wels, Yorkshire (1740). A rustieated building, of magnesian limestone, in perfect condition.
Roche Abbey, Yorkshire (12th century). Inconsiderable remains, of semi-erystalline magnesian limestone from the neighbouring guarry, generally in f.ir condition. The mouldings and decorated portions are perfect. Gate-house (12th eentury) generally decomposed, with the exception of the dressings and mouldings, which are perfeet.
Selay Church, Yorkshire (nave and lower part of the tower of the 11 th century; the west front and aisles of the $12 t \mathrm{th}$ century; and the choir with its aisles of the 14 th century). The Norman portion of the building, which is of grey inagnesian limestone, is in excellent condition, particularly the lower part. The early Enghish portions of the building are also of magnesian limestone, and in a partially decomposed state. The 1..ter portions of the building, which also are of magnestan limestone, are mueh decomposed and blackened.
Suethwelf Church, Notts (of the loth century). Of magnesian limestone, similar to that of Bolsover Moor, in perfect condition. The mouldings and enrichments of the doorway appear as perfect as if just completel. The choir, which is of the 12 th century, and built of a stone similar to that of Manstield, is generally in good condition.
Srofforth Castle, Yorkshire (14th century). Of coarse red sandstone, generally much decomposed. The dressings of the windows and doors, of a semi-erystalline magnesian limestone, are in a perfeet state, the mouldings and enriehments being eminently sharp and beautiful.
Stumey Park, Yorkshire. Banquetting house, about 100 years old, of yellowish magnesian limestone, in perfect condition.
Thorpe Abbey Viflage. The houses generally of this village are built of magnesian limestone from the vicinity; they are in excellent condition, and of a very pleasing colour.
Thoffe Salvin, near Worksop. Manor-house (15 th century), in ruins. Of a siliciferous magnesian limestone and a sandstone, in unequal condition ; the quoins and dressings are generally in a perfect state. Parish Church (15 th century), also of a silieiferous variety of magnesian limestone and a sandstone, in unequal but generally fair condition. A Norman doorway under the porch is well preserved.
Tiekhli Churci, Yorkshire, (15th century). Of magnesian limestone, in excellent condition. The lower part of the tower (of the 12 th century) also in fair condition.
Youk. Ancient Buildings: Cathedral (transepts, 13th century; tower, nave, \&e., 1 thl century). Of magnesian limestone, from Jackdaw Craig. West end and towers restored thirty years sinee; they are generally in fair condition, but some of the enriched gables and other decorations are obliterated. The transepts are in many places much decomposed, especialiy in the mouldings and enrichments. The central tower is generally in good condition, but several of the enriehed parts are decomposed. Si. Mary's Alliky (12th century), of magnesian limestone. West front of the church generally much decomposed ; the north flank in better condition, but in parts much decomposed. The gateway, which is of Norman origin, is in fair condition. Roman Multangul ir Tower. Built of small stones; such as are of magnesian limestone are in good condition. St. Denis's Church. Norman doorway, of magnerian
limestone ; south side highly enriched with zig-zag and other ornaments; the columns are gone; the parts which remain are in good condition. St. Margaret's Church (15th century), of magnesian limestone; east front much exposed, and in good condition. The porch is of Nurman date, and has been reconstructed; four bands of enrichment in the head, in tolerably fair condition, but many stones, particularly those of a decp yellow brown colour, are much decomposed. The other churches of York (which are of the 14 th and 15 th centuries) are built of magnesian limestone, and are generally in an extremely decomposed state; in many instances all architectural detail is obliterated. Mollern Buildings: The Museum, of Hackness sandstone, built rine years since, much decomposed wherever it is subject to the alternation of wet and dry, as at the bottom of the columus of the portico, phinth, \&e. The Castle (recently erected); the plinth of the boundary wall (which is of Bramleyfall sandstone) already exhibits traces of decomposition. Fork Savings Bank. Huddersfield stone (?), in good condition.
Wuksor Churcu (prineipally of the 1 3th century), of a siliciferous varicty of magnesian limestone and of a sandstone; in very megual condition. Some parts are very much decomposed, whilst others are in a perfect state.

Tabie of the Cuemical Analysts of Sinteen Spfetiens of Srone.

1666. In the above table the names of the quarries are inserted under the general divisions of the different species of stone, and the specimens were considered as fair average samples of the workable stone in such quarries. The experiments were conducted by Messrs. Daniel and Wheatstone. As a conclusion to the report, it may be satisfactory to name the actual stones used in the construction of the tirst portions (1840) of the Houses of Parliament. The foundation was laid with Penryn granite, rising to the level of the ground, therefore but little seen. Abwe it is Fog-tor granite from Dartmoor. A small portion only of the superstructure, to the top of the basement windows, was built with Bolsover Moor stone from near Chesterfield; alter which Anston stone was used for the remainder of the outside works. In the interior, Painswick and ('aen stones have been employed; St. Stephen's erypt is of Beer stone. It has been asserted that had Guvernment employed a supervision at the quarries to preve.it imperfect blocks being sent up to London, the present unsightly appearance of many parts of the building would not have resulted.

1666 In par. 1500-1.02 is' supplied tables of the crushing ueights of many of the stones hercin mentioned. Hereto is added a further table of the weights of a large number of building stones, taken trom the one prepared by the late C. II. Smith for R. Hunt's Mineral Stati:tics of the United Kingdem, gr. Part II for 1858, published 1860; it was alss given in the Tran:actions of the Institute of British Arehitects, 1859-60.
ligutit.
Tagle wfie Webitis of Buitbing Stones, (in Centineation).

16:Gc In the year 1858, the presont editor contributed to the Builler Jimrmal (pp. 6.32-3) a li-t of the Building Stones used externally in and near the Metropolis, with the nams sand dates of er ction of the buildings in which they had been use?. This list cannot be here inserted, but the following are among the stones named:-Anston, Aubigny, Bath, Bramley Fall, Broomhtl, Cadeby. Caen, Craigleith, Godstone, Great Barrineton, Harehill, Keutish rag. York haire stone. Kelton. Portland Prudbolme or Prudham, Reigate, Roche Abbey, Swanage or Purbeck, and Whitby (Egton Quarries) stone; hesides Granite, and Flint. The paper by E. J. Tarver, on The Architecture of London Struets, read May 10, 1887, at the Society of Arts, is also applicable.

166 d . The North Anston stone of York hlire, not mentioned in the preceding Report. belongs to the magnesian limestone formation. and is of a yellowish brown colonr. As cxamples of its use we point to the Museum of Practical Geology in Jermyn Street, Pall Mall, m the façades of which the e is scarcely a had stone to be seen. 'I his well conceived strueture was erected from the design of James Pennethorne during the years 1837 to 1848. At the New Hall and Library, Lincoln's Inm, designed 1843-45 by P. Hardwick, R.A., this stone is in a lamentabie state of decay, occasioned (as is reported in the discussion oa G. R. Burnell's paper. On Build ng Stones, §r., read at the Societr of Arts in 1860), hy the use of two particular beds, the blocks of which were in a state of decay be'ore they le't the quarry, and supposed to lave been selected by the builder as yielding him the best profit. The labour upon Anston stone is intermediate between Yorkshire and Portland stones: it can be ohtained of any required dimensions. The office of the Amicable Life Assurance Company, in Fleet Street, was erected 1843, with the Mansfield Woodhouse or lolsover stone, in the façade of which there is scarcely any trace of decay.

1666e. From the Mansfield quarries are now sent up the red Mansfield stone, the white Mansfield stone, and the yellow magnesian or Bolsover limestone The former is much introduced for colonnettes, short shalts, and bands in culoured coursed ashlar work. For similar decorative work, the following stones have heen used (186.5) at the new offices of the Crown Assurance Company in Fleet Street; namely, Portland stone in the piers and caps; Forest of Dean, red Mansfield, and blue Warwick, in other portions of the front; and Sicilian marble over the arches.

1666f. In consequence of the reintroduction of Portland stone of late years, we would refer, in addition to what has been stated on p. 467, as to the quarries of Portland stone, to the article Lithology, written liy the late C. H. Smith, and published in the Tran:actions of the Institute of British Architects, 1842. Also to a report, published in the Builder of 185.3, p. 859, by F. A. Abel, being the result of his examination into the comparative qualities and fieness for building purposes, of samples of stone from different quarries, and made under the direction of the Inspector General of Fortifications.

166 fg . These results "show that all the superior descriptions of 'whit hed' stone combine strength and compactness in a considerably higher degree than the varieties of - hase-bed' stone. Some kinds of the 'whit-bed' stone, however (i.e. thore from the New Maggot and Inmosthay quarries), thongh ranking with the best as regards strength, exliibit a greater degree of porosty. Again, other ' whit-bed' stones (from Old Maggot, Waycroft, and ladependent quarries) exhibit but little superiority, in point either of strength or compactuess, over the generality of the 'base-bed'stones, and are, indeed, inferior to the best 'base-bed 'variety."

1666h. "The 'base-hed' stones are, undoubtedly, more generally uniform in structure than those of the 'whit-bed; this being mainly due to the comparative freedom of the former from distinct petrifactions. Though such petrifactions were shown, by the results of experiments, to impart, in many instances, great additional strength to the stone, they frequently give rise hy their existence to cavities sometimes of censiderable size, which not only scrve to weaken those particular purtions of the stone, but may also, if they exist in proximity to exposed surfaces of a block of stone, promo'e its partial disintegration by the action of frost. Greater care is, therefore, unquestionably required in the selection of 'whit-ted' stone than need be employed in the case of all the better varisties of 'bassbed 'stone." 'The results of my experiments lead me to the following conclusions regarding the comparative merits of the various descriptions of Portland stone in question, for building purposes:-
"For External work, in the order of their merit:-I. Stone from War Department quarry, Vern Hill; and 'whit bed'stone, Aduiralty quarry.
II. 'Whit.bed' stone, New Maggot quarry' ; 'base bed' stone, Admiralty quarry (this may be considered quite equal in quality to 'whit-bed'stone); and 'whit-bed' stone, Inmosthay quarry (particularly adapted from its texture and uniformity forornamental work). III. 'Whit-bed'stone. Oldं Maggot quarry : a marked LI; and b marked IT and IE. The 'roach' stone, from War Department ipuarry, is an invaluable stone for external work in localities where any considerable strength and power of resisting mechanical wear are
required, as in connection with those portions of work which may become exposed to the continual abrasive action of water. The rough 'whit-bed ' stone frum Admiralty quary y, is also a highly valuable stone for work of a similar kind, where great strength is requred, and particularly where the numerous irregularities in the 'roach' stone may be oljectionalle.

For Internal work. the following rank hiehest, on account of mifiormity and comparative strength :-'lase-bed' stone, Old Maggot quarry, IT ; 'whit-hed' store, Iudependent quarry; 'lase-hed' stone, Waycruft quarly; and 'base-bed' stune, New Maggot quirry. The following are inferior to those ju-t named, buth in texture and uniformity :-'Whit-bed' stone, Wayeroft quarry ; 'base-bed' stone, Old Maggot quarry, IE ; and 'base-bed 'stone, Inmosthay quarry. The 'base-ked' stone, frum Old Maggot quarry, marked LI, and that from Independent quarry, are of luw quality, as compared with the remainder; and no reliance can be placed on the durabilty of the 'roach' stone from Independent quariy, judging from the specimens received."

1666i. Hopton Wood stone is oltained from quariies situated near Middleton and Wirksworth, in Derlyshire, in the mountain limestone districts of that part of the country. An analysis of it gives:-lime $5 \cdot 09$, maguesia $\cdot 17$, carbonic arid $44 \cdot 30$, water $\cdot 16$, organic natter $\cdot 05$, siliceous matter insoluble in acids $\cdot 15$, oxide of iron $\cdot 10$, alumina a trace, and silica soluble in acids a minute trace $=10002$. It is well adapted for paring purposes, owing to the closeness and evenuess of the grain ; these properties give this stone its principal recummeudation ; its durability does not depend, a pparently, upon any necessity fir placing it on its quarry bed. The late Mr. C. H. Smith las stated in the Builder, 1864, p. 912, that "these extensire quarries have been worked from time immemorinl ; the material is decidedly marble, for it is fine grained, cumpact in texture, and quite hard enough to take a brilliant polish. The colour is a pale brownish white, certainly as white as Sicilian marble, which approaches to a bluish grey. It is much hear er than Portland stoue, but lighter than Carrara marble. Blocks of very large dimensions may be obtained free from serious defects; and as it is an aqueons formation, hard, and well crystallised, there is no doubt of it standing weather extremely well. Both material and workmanship are less than those of Sicilian marble. A quantity of it was laid down about the year 1854, for foot-pavements, close to the Parliament Houses in Old Palace-yard, and part of Abingdon Street; and, though in coustant use, no symptoms of decay, or of the surface wearing away, are perceptible."
$1066 j$. Bath stone (noticed p. 46(1) is an oolite, obtained from several quarries in the neighbourhood of the city of Bath, in Somerretsbire. Its colour, a light cream, is more agreeable than the cold tone of Purtland stone; its textnre is similar, but as it is softer and more absorbent, precantions mast be observed in the manner of using it, and to prevent its rap'd decay. It may be sawn dry. Much depends on the bedding of the stone in the works. The Corshom Down stone is usually free from the bars and vents which are found in the Combe Down stone; it is a sound stone, blocks being ubtained of any morable dimensions; the beds vary from 1 foot to 4 feet in thickness. It is finer in texture and more regular in quality than any other description of Bath stone, and is well adapted both fur external and internal purposes, except plinths. Below the beds of good stone are two beds of a harder quality, called Corn Grit, which cannot well be used für any purpnse on which labour is required. It does well fur steps and landings. One of these beds runs 2 fect 9 inches deep; the other about 4 feet 6 inches. The blucks average 24 feet cube. Combe Doun stone, when well selected, is considered to te an excellent weather stone, fcr use in plinths, copings, and other work; but the blocks hare bars and vents, which are defects. The beds vary from 10 inches to 4 feet 6 inches in thickness, and are recasionally found up to 6 feet; in length from 5 to 6 feet; wi han average size of llock of about 15 feet cube. Box Ground stone is crarse in texture, but sound in quality, and a good weathrer stome; harder than Combe Down stone, and with less vents. The berts rary from 1 to 4 feet in thickne-s, with blocks of arerage size of 20 cubic feet. Farleigh Down stone is at s me distance. 'I he uppor or white beds vary in thickness trom 10 inches to 2 feet 6 inches. The lower or reddish beds are coarser in texturs, but are supposed to stand he weather better than the upper beds, which are more suitable for internal purposes. The average size or block is 14 feet.

1666k. The Monk's Park quarry stone is stated tu bedurable and reliable, with uniformity of colour and ereniess of texture. Bath stone, on the whole, is one of the most fragile of freestones, for when first quarried it is as suft as cheese, and although it hardens in the open air to some estent, yet it soon disintegrates, as it consists onlv of minute gl, bules cemented together by jellowish earthy calcaroous matter, and contains a considerable portion of broken shells. It has been said that for outside work the stone trom Murhill Down quarry and the weather bed of the Combe Down quarry ara the only two stones that will really stand the weather. This material has heen well described by writers in the Builder for the years 1845 and 1860, and the detailed mode of working at the quarries in 1862, p. 613. The weight of Bath stone is about 123 lls . per cube frot, aLd the crushing weight about 1800 to 2000 lbs . per inch superfecial. In an erperiment
in 1864, a 3 -inch culse of Box Bath stone crushed with 8 tons 7 ewts 0 qr. 16 lus., while the same of Corsham Bath stone crushed with 11 tons $11 \mathrm{cwt}$.1 qr .20 lbs . A $1 \frac{1}{2}$-inch cube Box Ground crushed with 1 ton 3 cwts 3 qrs. 12 lbs ., and anot her of Corsham with 1 ton 10 cwts. 2 qrs. $4 l \mathrm{~s}$. In some other experiments Box Grond stone was first fractured at an average of 46 tons 5 cwts. 2 qrs. 22 lbs . and rrushed at 54 toms; while Corsham was fractured at 73 tons 14 cwts. 1 qr. 4 lis.s, and crushed at 83 tons 2 cwts. 3 qrs. 12 llss.

1666l. The Bath Baynton quarries suppliet the stone for Queen Square, at Bath; it is the coarsest, hardest, and most expensive and most durable variety. The Combe Doun stone from the Bath Lodge Hill quarries is softer and finer grained, is said to bave been used between 1808 and 1822 in the restoration of King Henry VII's chapel at Westminster; while Farleigh Down stone from the Monckton Farleigh quarries is said to hare been used from 1821 to 1840 on the north side of Westminster Abbey, since renewed.

1666 m . Messrs. Pictor and Sons, Messrs. Randell, Saunders \& Co., Mr. Isaac Sumsion, the Corsharn Bath Stone Co., Messrs. R. J. Mar-h \& Co., Mr. S. R. Noble, and Messrs. Stones Brothers, have amalgamated the several Bath stone businesses into one, under the style of "The Bath Stone Firms, Limited," with the office at Bath. A rast quantity of Bath stone of the best quality is thrown away at the quarries because the pieces are not of sufficient size to make useful blocks. These would yield a large and reliable supply for ashlar, quoins, \&c., to serve as inside linings to walls with adrantage, as noncracking and non-peeling, absence of water trickling down the wall, uniform and mellow tint, and far better appearance than cement or plaster.

1666m. Ancaster stone from quarries near Grantham has been used locally for upwards of fire hundred years. It is an oolite (p. 459), a good-looking stone, easily worked, and, though soft when first quarried, becomes hard with exposure, and is very durable. Wollaton Hali in Nottinghamshire, and most of the ancient churches in Lincolnshire, are built of this stone.
16660. Hollington stone, a sandstone from near Ashbourne, in Staffurdshire (p. 455), or Rocester, near Uttoxeter. The three qualities are-fine, medium, and very coarse.

1666p. Little Casterton stone, an oolite, trom quarries near Stamford, Lincolnshire, is now used in lieu of the Barnack stone formerly obtaincd from quarries in Northamptonshire, long since abandoned. It is said to be of a compact character, to stand all weather, and to have been used in waterworks. It works freely with the saw. It is about 4 feet thick in the bed, and can lee raised in blocks of large size; in ashlar work it is not essential that it should be placed on its quarry bed. The colour is of a lightish brown, resembling Ketton and Bath stones.

1666q. Tisbury, in Wiltshire. The quarry gives a calciferous sandstone, close and fine grained, of a light greenish-brown colour; a good weather stone when placed on its bed; easily worked with the saw, or with sand and water, when in block, and carries a fine arris. The Chilmark and the Wardour quarries also give stones of the same qualities. Their chemical composition, specific grarity, and resistance to strains, are the same as those of Portland stone, in which they are placed geologically, but they have more grit. The Chilmark stone, a siliciferous limestone of the sime colour, was used for Salisbury Cathedral, $1220-58$ (p. 467). It is very non-absorbent, and weighs 153 lbs .7 oz . Thest stones have been used from 1864 in the restorations at Westminster Abbey. The houses at Tisbury, built generally of Tisbury stone, are in very good condition, the whole covered with lichens. The Chilmark stone does not absorb one thirty-sixth of its bulk, while a specimen of Caleby stone absorbed one quarter. The latter absorbed 519.8 grains, the former only 57.5 grains. This table shews its chemical analysis :

Name of Stone	Mineral designation	Silica	Carbonate of Lime	$\begin{gathered} \text { Carbonate } \\ \text { of } \\ \text { Magnesia } \end{gathered}$	Iron Alumina	Water and Loss
Chilmark	Limestone Siliciferous	10.4	$79 \cdot 0$	$3 \cdot 7$	$2 \cdot 0$	$4 \cdot 2$
Purtland -	Oolite -	$1 \cdot 20$	$95 \cdot 16$	120	0.50	$1 \cdot 94$
Bath Box	Oolite -	-	94.52	2.50	1-20	1.78
Mansfield	Sandstone .	$49 \cdot 4$	26.5	$16 \cdot 1$	$3 \cdot 2$	$4 \cdot 8$
Park Nook	Magnesian Limestone	-	$55 \cdot 7$	$41 \cdot 6$	$0 \cdot 4$	2.3

1666r. The "trough " or "hard" bed is of a close, even texture, of yellowish-brown colour, weighing 143 lbs , to the foot cube in its ordinary state. It will bear a tensile strain of 500 lbs . per square inch, and at crushing weight of 196 tons per foot super. The average bed is 3 fect, and it can be obtained of any reasonable length and breadth; the random rubble blocks average 16 cubic feet. The "Scott" or "Brown" bed is of a warmer colour, weighs 135. lbs. per foot cube, bears a tensile strain of 206 lhs . per square inch, and a crushing weight of 104 tons per foot super. The average thickness of the bed is 3 feet 6 inches to 4 feet. The random ruble blocks average 16 cubic feet. This bed is principally used for ashlar, mouldings, carving, balustrades, plinths, cornices, coping,
\&c. The "General bed" of the Garden quarry supplies a stone of a rich yellow tint and fine texture, applicable to the most elaborate designs, equal to Caen, and superinr to it in colour and durability. It will bear a tensile strain of 355 lbs . to the square inch, and a crushing weight of 100 tons per fuot super. Thickness of bed from 4 to 5 feet.

1666s. Ketton stone is an oolite, from quarries in Rutlandshire (p. 460). It is very similar to Barnack stone in colour, being a warm cream tint, but is harder and more difficult to work ; from some canse at the quarry it is more expensive. It bears a much greater crushing weight.

1666t. Robin Hood, Park Spring, Potter Newton, Bretton, and Hare Hill are among the Yorkshire stones now much used in sawn landings and slabs, and steps. Potter Newton and Hare Hill in bloeks, wih Portland and Bramley Fall.

1666u. Endon stone, from near Maeclesfield, is put forward as the best of its class, and as haring been quarried for nearly one hundred years. It is of a hard and fine texture, almost non-absorbent, liright in colour, and of great durability; it is sawn out of the solid rock, not being a laminated flag rock. It is used for bases, steps, hearths, landings, thresholds, \&c., wall courses, tombs, kerbs, setts and channel stone, and other purposes.

1666\%. Comcockle quarry, one of the oldest of the new red sandstone quarries in the south-west of Scotland, is situated about three miles from Nethercleugh station, on the Caledonian railway. It is obtained in any sized blocks up to 10 tons. The colour is a light red, and very uniform; slight black streaks occur here and there, which are a form of mica, but they disappear entirely after twelse to fourteen months' exposure. The beds are from 1 to 3 feet thick, with an occas onal one up to 4 feet 6 inches. The stone is considered locally to be the most durable of all the Dumfries red sandstones, and to keep its colour best. It contains a rery high percentage of silica, and stands frost well, as also the sea air, and is a free-working although a strong stone. Its crushing strain is $\cdot 2 \cdot 38$ tons per square inch. applied en a block of $1 \frac{1}{2}$ inch cule.

1666w. Prudham quarry is situated near the Fourstones station, on the Newcastle and Carlisle railway. The stone is of a light creamy-brown colour, rery strong and durable, and the crushing strain is 2.834 tons per square inch. It is well kin wn in the north of England and south of Scotland. It was used in the central station, post-office, and other buildings at Newcastle; the town-hall and corn-market at Hexham, and in other towns: also in London, at the Army and Navy Hotel ; St. James's Residential Chambers, Duke Street, Piccadilly; and at Winchester House, Old Broad Street (1886).
1666x. Scotgate Ash stone, al:o called Pateley Bridge strne, near Leeds, is a sandstone of the millstone grit series. The quarries afford every class of Yorkshire stone, so that it is stated a building of any size can be supplied entire, without going to several quarries for the stones required. Landings up to 130 feet superficial, suitable for hard wear; one (in 1876), being 17 feet 6 inches long by 7 feet wide, was supplied for a floor and cailing in a London bank. The crushing weight is over 700 tons per super. foot. It resists the strongest acids. The stone is similar to Elland Edge, Idlo Moor, Park Spring, and others. It was used at Fountains Abbey.

1666y. The Spinkwell and Cliff Wood quarries are situated at Bradford, and are nuw considered to le among the best of the Yorkshire quarries. These stones have been largely used in London and thronghout the kingdom, as at the town-halls at Manchester in 1868, at Bradfurd in 1870, at Wakefield, 1877, \&c. The crushing weight is 7,647 l1s. per cubic inch, as tested by Sir W. Fairlairn; Aberdeen granite being 7,770 lbs.; Portland stone being on bed $2,600 \mathrm{lbs}$. It. contains 885 per cent. of pure silex.
$1666 z$. There are several red-coloured stones now in use in London and elsewi:ere. The Red Corschill stone is obtained from quarries near Annan, Dumfriesshire. It is a fine grained mieaceous sandstone from the lower new red sandstone. It is of a rich red colour, even texture, and of great duralility ; some beds are a bright pink. Its crushing weight is 509 tons; that of Bramley Fall 265 tons. It was used for the Hand-in-Hand Insurance Office in 1873. The red Dumfrics stone differs from it. The edifices in that town are built of stone from Craig, which is of moderate hardness and durability; and also from Locharbriggs. Shawk stone is from quarries in Cumberland. It is red in colour and a fairly good sone, very similar in quality and texture to red Corsehill, but runs in very much smaller sized blocks, and in much thinner lifts. All up the ralley, there is a very large quantity of stone covered with a great depth of débris, which is stone of a coarser texture. It is loaded at Cwithwaite station, on the Maryport and Carlisle line. It has been used at the stores in the Haymarket. It is supposed to dry red, and not whiten on the surface as do some red stones. The red Mansfield stone (par. $1666 e$.) has hloeks which vary in beds from 1 to 7 feet thick, and has landings of very large dimensions. The detp bed, selected quality, is esteemed for durability, fineness of grain, and splendid co'our.

1666aa. The Minera stone, from Berwig quarries. Ninera, near Wiexham. They are situated at some distance from the outcrop of the Wrexlam coal field, close adjoining the carboniferous limestone. The stone differs in character very materially from the whole of the sandstones found in the Wrexham and liuabon coal ficlds, being much more
durable. It nearly resembles the Darley Dale stone in colour and appearanze, and is considered by many judges superior in every respect.

Analysis of this freestone, by II. K. Bamber, F.C.S. :

The beds run from 1 to δ feet in thickness, and bloeks of any size can be supplied. The stone costs considerably less to work than the best of the Yorkshire stones. It is n.uch less absorbent than any other stone, and is not affected by atmospheric changes, by damp, smoke, or chemical gases. It is rery strong, and capable of sustaining a greater crushing strain than most other stones. It was nsed largely at the Municipal Offices at Liverpool, by Mr. T. HF. Wyatt, as well as at Owens College at Manchester, l.y Mr. Alfred Waterhouse, R.A.; also the Nati nal Sife Deposit Company's premises in Lundon, by Mr. James Whichcord, who in 1876 wrote: "After seeing and testing varions sanples of sandstones, I decided upon adopting the Minera strine for its fire-resisting qualities; a block of it about 6 ins . cube was put into the middle of a furnace, where it remnined for about an hour ansi a half. It was then taken out quite perfect, and on being plunged into cold water it neither cracked nor calcined in the least degree. Its cost in London was about the same as Portland stone, and it wis quite as hard to work. The coarseness of the grain rendered it unsuited for small mouldings or delicate carving, but as solidity and boldness were required in this particular derign, no difficulty was found in adapting the detall to this conditiou." The wright is about 138 to 143 lbs . per cubic fuot. The Moss and Cefn quarries afford a softer cariety of the same stone.

16663b. The Mountain limestone is highly absorbent, but, according to Mr. E. Clark's experiments for the Britannia Bridge, it is of the extreme density of $13 \frac{1}{2}$ cubic feet to the ton, as great as the arerage density of granite. It resisted a crushing weight of 7,576 lbs. per super, inch, whilst granite resists about $8,000 \mathrm{lbs}$. As linceis, it has been used in stones 24 feet long, 10 feet wide, and 4 feet thick, which must have been perfeetly homogeneous in character or they would not have borno the shocks they were exposed to in the woikshops, or have carried the weight that was brought upon them. This stone yields with great ease to the plate saw, as it is compos.d of a pure carbonate of lime, is sub-crystalline, and without planes of bedding; granite cannot be sawn by the ordinary methods. There are several localities where the mountain limestone occurs in great abundance, and where the experience of eenturies as to its powers of resistance to the atmosphere, or to tidal action, can be brought forwird. It is met with in great masses in the hills that constitute the lower counties of England and Scotland ; it forms the range of the Derby hills, the Mendip, the hills round Plymouth, those of the Great Orme's Head, the mainland of Anglesea, the outcrop of the carbon ferous series of Ruabon, and many oth $+\mathbf{r}$ places in England. In Ireland this formation is largely worked, as at the Sheephouse quarries, Drogheda, by A. and N. Hammond. In Belgium it is universally used in all cases where it is desired to unite strengih with durability, as in docks, riser and canal works. The price of lathour upon this material must be at least half as much as that on granite. The late Mr. Burnell, in Practical Mechanics' Journal, 1865, notices that it was excluded from the Thames Embankment works, because it was considered objectionable on account of its being worked by the saw with sand; because it was feared that the planes of bedding would be distinctly marked, and would ensily yield under the influence of the weather; and on account of the action of the acids present in Thames water.
$1666 c c$. We do not purpose to enter into a description of quarrying stone; but would refer to the useful tre itise by Burgoyne, pullished among Wea'e's Elementary Treatises.

16f6dd. The Kentish rugstone is a limestone with a very small proportion of earthy matters, frequently suberystall ne, but ordinarily of a confused texture. When well chesen it is very hard and dense, and the labour upon it so expensive that it is very rarely used fur anything but rubble masonry in districts remote from the quarries. The custom has leen, therefore, to execute all the moulded or carved portions of the buildings in Caen or Bath stones, and even to carry up the quoins and jambs in those materials, whilst the iutervening spaces, or the wall, are filled in with the rag. The colour varies from a lightish green to a deep blue, and although the colour of the tro materials is at first very different, a few years' exposure causes them to harmonise in tint.

1666ce. The district in which ragstone is quarried extends abont thirty miles east and west through the central part of Kent, and averages from four to ten miles in breadth, comprising the towns of Serenoaks, Maidstone, Leinham, \&c. Reigate or firestone, and Tunbridge sandstone, are also affurded by the same formation, greensand. The ragstone is found in beds rarying from six inehes to three feet in thickness, alternated with fine eand known as Hassack, which in some beds becomes so consolidated as to form an occasional useful ausiliary to the ragstone, in buildings. The quality of the rag differs very greatly,
according to the place in which it is quarried; some quarries only yielding stone of a hard flinty nature, almost unfit for building, while the stoue uttained from others is almost as free working as Portland stone. The finest qualities are at present obtained from quarries situatod at Boughton, near Maidstone, where they have been worked for sereral centuries. A section of them is given by J. Whicheord, in his pamphlet on the subject, published in $18: 6$; wherein also are given the local names of the various beds.

1666 ff. Flint work. This matterial, as used for a description of rubble work, was formerly much employed in the counties of Cambridge, Norfork, Suffilk, Sussex, and Kent, where the chalk formation abounds, and is still used for the purpose in such localities. Flint is the name accorded to the nearly pure siliceous earth, which by the action of fire becomes opajue and white, and is harder than quartz, which it seratches. The colour is usually grey, of rarious shades, but is sometimes black, brown, red, and even yellow. Flint is fragile, with a perfect and large conchuidal fracture, and, being rarely laminated, it is broken with equal facility in almost every direction; the fragments are sharp. In the chalk formation it occurs in regular beds, consisting either of nodules or of flat tabular masses. At Brandon, in Suffolk, one of the places where flint forms an article of commerce, it is obtained from pits sunk in the chalk, which is within 6 feet of the surface. The first stratum is found in the clayoverlying the chalk; when this has been remored, a shaft is sunk 6 feet in depth; if no flist is there found, a tumel is driven for three feet horizontally, and another shaft is sunk; and so on alternately with tunnel and slaft till a depth of 40 feet is reached. The flint is found in floors about 8 feet below each other, and is obtained by tunnels being driven, sometimes a furlong in length, under each floor, and the flint bruken down by crowbars. The small tunnels in the shaft form tables, upon which men stand and hand up the flint to each other from below to the surface; no machinery or tackling is used.

1666 gg . Flint is split upon the workma'r's knee, by sharp blows from a hammer with an oblate face, and squared upon a steel stake let into a wood block, with a blunt axe formed by passing a handle through an old flat file about a foot long, the cutting edge being $1 \frac{3}{4}$ inches wide by $\frac{1}{12}$ of an inch thick. (See Specification).

French Building Stones.

1666h\%. Of these stenes imported into the London market, a few only will be mentioned. Aubig"y stone is stated to be obtained from quarries situated at St. Pierre Canivet, a short distance from Falaise, in Normandy. It is probably of the same uature as Caen stone, namely, oolitic, but much more crystalline in its structure, with sembtrausparent crystals, showing no appearance of ora; very fine grained; as hard or harder than Anston stone; nearly as heary as granite; and able to support a greater crushing weight than Caen stoue; when worked it requires to be sawn wet with sand. There art two workable beds, one averaging 24 inches, the other 15 inches. in thickness. G. R. Burnell (in his remarks on the works at Bayeux Cathedral, reid at the Institute of British Architects, 1861, p 257) stated that be "was convinced the use of Aubigny stene in London would be attended with danger. M. Flachat chose this stone because it yielded more satistactory results under the trials to which he exposed the rarious local stones, so far as their resistances to crushing weights were concerned; but his assistants expressly state, in their published accounts of the works at Bayeus, that the Aubigny stone yielded easily under the action of frost, if used exteriorly, as may be seen in the mediæval buildings in Falaise." Perhaps the only building erected with this stone in London is that part of the old Schomberg House, Nos. 81 and 82 Pall Mall, which was rebuilt in 1851.

1666ii. Caen stone is obtained from the great oolitic formation in Normandy, and has been imported into England trum a rery early period; but it firstaprears to be named in documents after the year 1300. There was a cessation of its use afier 1448 , when Normandy was lost to this country; and it is not until the commencement of the present century that its employment here was resumed. This stone is now generally oltained from ruarries sitnated at Allemaıne, a small village on the right bank of the Orne at the gates of Caen, or from those of St. Germain de Blancherbe, commonly called La Malacrerie, the commune immediately adjoining that city, on the left bank.
$1666 \mathrm{k} k$. The Caen stone of commerce is of a pale yellow colour and of a lose open grain which when freshly quarred soils the fingers like chalk, and is very friable. In many places it appears to have lost its oolitic chara.ter; and in others it is harder and more compact, being entirely formed of a species of lamellous spath, without any trace of oolites; the latter appearance is, however, principally to be obserred in the beds which are worked between Caen and Falaise; at Allemagne and La Maladrerie the former prevails. Neither of these tivo latter quarries appear to have been opened for any great length of time, th: stone used in the old city having been chiefly got on its site ; and it is remarkable that the portions of the public buildings which required stones of larger dimensions than could be obtained from the upper beds of the oolitic formation inmediately around the town were executed in the Crenilly, Raurille, or Fontaine Henri stones, never in the stone obtained from the beds now worked exclusively for both the French and the English markets, aud
which beds have leen rendered available with the adrance of mechanical science. The upper beds, called the bancs de bittes, which yielded the stone in olden times, is generally speaking of a harder character, of a finer grain, and presenting a more crystalline appearance than that oltained from the lower beds; but evin in these upper beds care is required in the selection, for the texture is far from uniform; while the small size of the stones is too often considered an objection to it, as the eight layers, between each of which occurs a bed of flint 2 inches in thickness, are of variable depth (between 11 inches and 26 inches), being about 18 inches on the averuge.

1666ll. The lower beds comprise the banc de chambrante, 16 inches thick; the banc de doux pieds un quart, about 30 inches English thick, yielding a gcod stone, distigured unfortunately by the fossils it contains; the bunc rouge, 22 inches thick, of very bad quality and stained by ochreous iron ore, besides being traversed by numernus vertical vents; then the gros banc, 40 inches thick, a rery good stone, but likewise disfigured by fossils; the bane de fond, usually from 18 inches to 30 inches thick, of a closer and finer grain than the last named; and then the banc de 81 centimètres, of very inferior quality, worked only for the immediate neighbourhood.
$1666 m m$. Experienc proves that Caen stone will not resist the dissolving power of water charged with carbonic acid gas; and as the rain water of our large towns contains a considerable quanity of that gas, it is not expedient to employ this stone in any sitnation where water is likely to lodge, or even to be taken up by c pillary action, unless, indeed, the projecting parts be protected by metal. In upright walling above the plinths, and in the sheltered portions of cornices, it can be employed when judiciously selected ; and in interual work, with safety and economy. The bedding of the stone should be observed. From the state of some buildings at Hâvre, it is considered that sea air is particularly destructive to this stone; and it is generally believed that the stone from La Maladrerie is inferior to that from Allemagne. In Caen itself, the plinths or basements of houses are executed in granite, or in Ranville, Cherence, or Creuilly stones, which are practically nou-alsorbent; and, moreover, the Creuilly stone is used in the best buildings for the exposed portions of the elevation. although, of course, "Caen stone" is funcl at the rery gates of the town.

1666 m . Nore lengthencd notices will be found in the accomnts given in the Bui'der, vols. vi. and vii., entering into the qualities of the stone, from personal surveys of the quarries. Wheu freshly quarried, this stone can be cut with the toothed saw, and carved with ordinary chisels, even more easily than Bath stone.

1666oo. The new façade of Buckingham Palace, erected in 1846-7, is perhaps the most remarkable failure of Caen stone. Mr. H. T. Hope's house, in Piccadilly, built 1849-50, has been considered one of the best specimeas of its employment in London, as it has stood well. The projections were protected by lead or by slates. The crushing weight of Caen stoue is about 2000 lbs , per inch superficial.
$1666 p p$. The Charente stone is a magvesian limestone of good quality, has been used in France from time immemorial almost exclusively, not only in the departments which produce it, but also on the sea coast, for Gorerument works, as lighthouses, harbours, fortifications, bridges, docks, \&c.; for churches, and other public and private edlifices; the chateau of the Emperor Napoleon III. at Biarritz, and other villas. Blocks of about 8 or 9 cubic feet to about 33 cubic feet are always in stock. The quarries are Crazannes, Montarneuf, St. Sarinien, and Ste. Merue, and the arerage resistance for the square centimètre (about • 155 square inch English measure) gave about 157 lbs., 152 lbs., 148 lbs ., and 130 lbs . avoirdupois respectively.
$1660 \mathrm{q} q$. Table of the Welghts per Cubic Foot Avoirdupors of some French Stones. Caen. Franc bane bed - 116 lbs .2 oz. Caen, Pieredetrente pouces 128 lbs .5 oz.

Banc de quatre pieds	118 " $0 \frac{1}{2}$ "	Ransille, near Citen - - 142
Gros Banc	122 " $0 \frac{1}{2}$,	Aubigny, near Fulaise - 150 , $6 \frac{1}{2}$,",
Pierre franche-	123 " 3 "	

DECAY OF STONE.

1667. In the paragraphs 1540 to 1648 hare already been quoted some of the causes of decay and decomposition in stones, as stated in the Report of the Commissioners, and after the lapse of nearly thirty years since its publication but few additional facts have been obtained on the subject. One of the most commendable essays relating to it is that by G. R. Burnell, read at the Society of Arts, in March, 1860, which is likewise useful for the discussion thereon by some of the members learned in chemistry. We quote a few of the paragraphs for further elucidating some important points.

1667 a. Atmospheric moisture, when absorbedinto building stones, acts upon them quite as much through the changes in its own rolume. Wheu the stone is placed in such a manner as that water can accumulate in any perceptible quantities between its rarious layers, and the position of those layers be such that the expansion of the water in freezing
cannot take place freely, the respective layers coataining the water will be violently de. atched from one another. This is a more important consideration in the case of the beddeng of stones, and it is unfortunare that the system of competition throws so great a temptation in the way of the practical builder as to render it a mere matter of chance whether this constructive law be observed or not, unless a costly system of supervision be organised, and thus the precautions often taken by the stone merchant to indicate the upper bed of the material he delivers, are defeated.

1667l. The chemical reactions which take place in building stones are mainly those arising from the oxygenation, or the hydration of the various ingredients of which those stones are composed. These reactions are indepudent of those resulting, in the interior of the country, from the agents directly presented by atmospheric moisture in the form of carbonic acid gas, sulphur, and ammonia; or upon the sea-shore, in the form of hydrochloric acid, or of common salt itself, in minute partieles. Thus, if the oxide of iron be preent in any notable proportions, it is likely to undergo changes of a nature to disturb the stability of the compound, and even the crystalline sulphates of lime are exposed to chemical decomposition, in comsequence of the liberation of the sulphurie acid gas they rontain. The other mineral salts, sueh as the silicates and the sulphates of iron, so often met with in building stones, are at times susceptible of very injurious decomposition; and the soda, potassa, or the organic matters the stones may contan, frequently give rise to the formation of new salts; mainly under the action of atmospheric moisture, it is true, but also under the influence of the partial decompositions which take place around them. It is to be observed, however, that the danger to building stones from this peculiar class of influences, is very small and very slow in its action, compared with the dangers arising from the mechanical disinte ration produced hy atmospheric causes: and that, with the exceptions of the actions of fiee carbonic acid upon the felspar of granites, the changes of state produced in limstones by the same agent. and the modifications of the abundant salts of iron in some peculiar stones, there is little practical necessity for dwelling upon this interesting but obscure branch of applied chemistry.

1667c. The attions capable of affecting the stability of the composition of ordinary building stones, by reason of the new forms of matter they suprinduce, may principally be considered to be those resulting from the absorption of the gases of the atmosphere, and especially the process known by the name of sultpetring, or more correctly, of nitritication. This process displays itself in the formation of minute crystals, efflorescing from the interior to the exterior of the stone, and it leads to the destruction of the exposed surfaces of the latter, through the gradual removal of the minute particles, in consequence of the disintegration produced by the expansive action of the crystals in process of formation.

1667d. It is supposed that the organic matter diffused through nearly all stratified deposits gives rise to the formation of eertain nitrates, such as the nitrate of lime and nitrate of soda, under the influences of damp, of air, and of light of certain descriptions -for nitritication certainly takes place most abundantly near damp ground, rising in a wall pari passu with the range of the capulary attractions of its miterials, and upon the morthern or shaded faces of the said walls. Not only does this mitrification throw off the minute and less adherent particles of the building materials themselves, whether they be of stone or brick, but it is also able to detach any protecting coat which may be put upon them, if the adhesion of that coat to the subjacent material should not be of a very energetic nature. Let the adhesion, however, be ever so energetic, if once the action of nitritication should have been established, it must run its course, and the amount of evil it is capable of producing will simply depend upon the quantity of organic matter originally contained in the materials, or susceptible of buing absorbed by them from the atmosphere.

1667 e. The secondary limestones which have not been affected by plutonic action, the loamy clays, some kinds of pit sand, sea sand, and some descriptions of natural cements, are particularly exposed to the danger of nitrification in damp situations. rendering it in vain to expect to be able to preserve any mural paintings, or even any sculpture of a delicate character.
$1667 f$. Practically, then, the great agent of destruction of building stones, in any of its modes of exhibition, is the damp, or the water supplied by the atmosphere, directly or indirectly; the efforts of those who seek to prevent this destruction must be dirceted to combating this primary source of evil. Fortunately the precautions to be observed for this purpose are very simple, and they only require a little common sense on the part of the builders charged with their application, to the materials at least, which have been long before the public. The first and foremost rule is never to employ a porous absorbent stone in the ground or in elevation; unless, in the former case, it be maintained constantly wet; or, in the sccond case, the absorption of moisture from the gronnd be prevented by the interposition of some impermeable material. Porous stones should not be used for the copings, parapets, window-sills, weather-beds of cornices. plinths, strings or other parts of a building where water may lodge. Care must also be taken to bed such ston's with mortars which are not exposed to develope in themselves, or are not likely to exctle
in the stones, the efllurescence of any of the nitrates of soda, potassa, or of lime. If porous stones be used, it will Le found that decay will conmence, and be most apparent in the, zone of alternate dryness :nd humidity, or, as the workmen say, " between wind and water." The stonework about that part should therefore be executed in sach a manner as to allow of its being easily replaced, if necessary; and in case the decay exhibits towards the iuterior (as it will do when the exterior surface is covered wh th coating imperrious to the air), care must be taken to isolate the decorative plastering or wall linings from the surfaces which are likely to be covered by efflorescence.

The effects of wind on stone. Wind is both a destrying and a preserving agent. Its action as a destroyer of building stone consists in blowing dust and dirty particles against the building; aloo into the cuttings, holez, and lines in exposed mouldings, filling them up, adding much to the disfiguration of ornamented work. A strong wind accompauied by rain, by blowing the rain hard against a buihling canses it to penetrate into the stone farther than it would otherwise do, and thus the chemical action of the water and the effects of frost on the stone are increased. The principal preservalive action of wind is in its drying out moisture from stone; and the acids, \&c., contained in the moistare have, therefore, less time to act on 1t. The action of the sun has much to do with the preservation of stone by drying it. Stone exposed to very different degrees of heat on its different faces is liable to crack from unequal expansion and contraction (Wray, (On Stune). In the paper on The Stones of Egypt, real at the Royal Institute of British Architects, Nor. 24, 1887, Mr. Brindley referred to their decay. Mr W. Topley stated that, under ordinary temperatures, water got into the pores of the rock, carrying in carbonic acid, which attacked felspar, or whatever the soluble constituents of the rock might be. The rock then broke down. In northern climates the water froze and the rocks broke off. In a dry climate . . . the great alterations of temperature acted so strongly in expanding and contracting rocks that they broke off as rapidly through heat as with intense cold. During. the night a cracking sound was often heard by travellers owing to the contraction of rocks which had been expanded by the heat during the day. The effect of a fire on some exceedingly durable building stones is very disastrous, and especially on those which were formed by heat.

1667 g . A committee appuinted by the First Commissioner of Public Works and Ruildings, on the 23rd March 1861, "to inquire into the decay of the stone of the New Palace of Westminster and into the best means of preserving the stone from further injury," reported on-I. The extent and position of the decay. II. The causes to which it is attrilutable, taking into consideration the composition of the stone, and the influence exerted upon it by moisture, and by the acids diffused in the London atmosphere. III. The lest means of preserving the stone from further injury. IV. The qualities of the stones to be recommended for future use in public buiidings to be erected in London." This report was ordered to be printed 1st August, 1861. It is also giveu in Adcock's Engineero' Pocketbook for 1862, p. 205-211.

PRESERVATION OF STONE.

1667h. Even when all the best precautions, as above detailed, have been taken, it is occasionally found necessary to protect the exposed surfaces of the soft and absorbeut, or hygromerric, stones, with some coating which shall prevent their absorbing the injurious atmosphere. This is done in various ways.

1667i. I. By Painting:-The objection to this process consists in the fact that, as the oil evaporates, the stone becomes again exposed, and even the absorbent powers of the stone itself contribure to this action ; thus this costly palliative has to be often repeated, to the destruction of any delicate moulded work.

1667j. II. By the injection of oleaginous, fatty, or waxy matters:-These, it must be evident, can only act mechanically by closing the pores of the stone, and therefore, unlers the surfaces be protected from the extremes of heat and cold, the heterogeneous materials thus affected musr be acted apon in very different manners. Experience has confirmed this theoretical inference, and it has been found in practice that the protecting coats of any of the materials alluded to are gradually detached from the stone, and that they require to le renewed quite as frequently as does oil painting itsulf.

1667k. III. By washing the face with a solution able to convert the material into an insoluble non-absorbent suhstance:-This is the process introduced by M. Kühlmann, in which the carbonates of lime are washed with a solution of an alkaline silicate, as silicate of soda, or potassa, or "water glass" as he called it, with a view to converting them into silicates of lime through the elective affinitics of the lime and the silica. In some cases this system has succeeded, and very great hardness, very great resisting powers, have been commu-
nicated to the stones operated upon. But, unfortunately, the action of the silicic acid is it rery slow one, and when the surfaces washed in the manner described are exposed to rain, it is by no means rare to find the solution carried away. Another objection is, that when the alkaline silicate acts upon the stone, the soda and potassa generally used are left free, and in efflorescing they are likely to carry away the finer details of the sculpture; at the same time, as they form to some extent deliquescent salts upon the face of the stone, they attract to it a dangerous amount of humidity. This process is only applicable to the preservation of the stones in which the carbonates of lime predominate.

1667l. IV. By filling in the pores of the stone with an insoluble material which should effectually exclude water:-This may be said to have been effected by the process patented by Mr. Ransome. The stone is first cleaned carefully from dust or other extraneous matters; then it is made to absorb as large a quantity as possible of the silicate of soda or potassa. When this solution has dried into the stone, a second wash is applied, consisting of the chluride of calcium or of baryti. The silicate of soda and the chloride of culcium are most frequently employed; and the effect of the respective applications is, that a duuble decomposition takes place in the washes, giving rise to the precipitation of a finely crystallised silicate of lime or of baryta in the pores of the stone, and an efflorescence of extremely soluble salts of the chlorides of soda or of potassa. The former romain in the pores, the latter are speelily washed away by rain. As the rate of coutraction and exiansion of the silicate of lime is, as nearly as may be, the same as that of the stone it is intended to protect, there is no danger of the precipitate being detached by this caluse. This process, in contradistinction to that of Kühlmann, is applicable to limestones, sandstones, bricks, plasters, and cements. It has even been suggested that it may be advantageously applied to chalk.

1667 m . It must not be forgotten, howerer, that it is as important to prevent a stone from decayıng as it is to afford a protection to it when that effect has commenced. If any internal decay or any organic decomposition, so to speak, be once allowed to establizh itself in a building stone, it will be impossible effectually to arrest its progress. Efforescence, for instance, will continue, howerer effectually the exposed surface of the stone may be closed by a mechanical or a chemical deposit, and thus even some of the results of Mr. Ransome's process appear equirocal. The student should make himself master of the attempts lately mude to discover a universal remedy for protecting the surfaces of rarious materials. The following inventions were described by the late Sir W. Tite, at the Royal Institute of British Architects, January 1861 :-I. Bethell's patent, 1838, parhaps nerer applied to stone. II. Hutchinson's, 1847, which has been chiefly applied to the Calverley stone of Tunbridge. III. Daine's, 1854. IV. Szerelmey's, 1857. V. Newton's, 1841. And VI. Ransome's, 1856. We consider it needless to notice here the inventions in detail. It is difficult to pronounce on their respective merits, but Ransome's perhaps promised the best results.
$1667 n$. Sylvester, in 1846, suggested the following very useful and simple recipe for protecting stone or brickwork from the absorption of water; it has been repeatedly tried, and answers well in exposed sitnations, but requires a fresh application about every three or fuur years. Mix $\frac{3}{4} \mathrm{lb}$. of mottled soap in a gallon of neariy boiling water, and apply it in a boiling state over the surface of the work, steadily and carefully, with a large flat brush, making no lather, and filling up the crusty surface of the work, either of brick or stone. This is to remain for twenty-four hours to become dry and hard. Then $\frac{1}{2} \mathrm{lb}$. of alum is to be mixed with four gallons of water and left standing for about twenty four hours, so that the alum may be completely dissolved ; this solution is to be applied in the same manner. Sir G. G. Scott has used for the internal work of Westminster Abbey a solution of shell-lac in spirits of wine, which, squirted into the stone work, appears to answer perfectly in securing the face from further decay arising from damp only. He also found it of some effect in the open air where defended from rain, but it failed when exposed to its action.

After cleaning down Bath stnne of the best quality, it generally may with advantage be wasled over with two coats of lime-water prepared as follows:-Fill a tub with water, and into it put some lime; stir it up well when slaked and let it settle. If any impurities should rise to the surface remore them, and when clear apply it with a clean brush to the stonework. This is an excellent preservative, and reinstates the skin or crust remored with the drag, without altering the colour of the stone. (Sumsion, of Bath).

Tabary's metakic cement has been in use in France during the last twenty-six years, urder the French government and the municipality of Paris, for restoring monuments. It is stated to be permancnt and to resist all attacks of acids in the atmosphere. The whole of the decayed stone need not be remored. It is carred and worked in situ. It costs less than stone. Restorations are more rapidly done than in ordinary stone. The colour of the original stone can be matched, and it can be used in all weathers. "This metallic cement is composed of a stone of Trachytic origin, reduced to powder, and the molecules
are reunited by an acid and softened without being decomposed. The cement is mixed with the acid, and the stone reconstructed to its original condition." The process has been used, 1887, at the Church for the Deaf and Dumb, in Oxford Street; the Church of S. Paul, London Docks; and the Infant Orphan Asylum, Wanstead, besides other places.

ARTIFICIAL STONE.

16670. The term is sometimes made to comprise not only Terra-Cotta, which is noticed in this work in the section Bmer, but also the many Concretes, whieh are described in the section Lime, \&c. Those mixtures or concreted masses having more aftinity to the original they profess to imitate are here describea.
$1667 p$. Austin's artificial stone was invented about fifty years since, during which period it has been well tested. It is used chiefly in the manuacture of statues, garden ornaments, climney shafts, and the like. This material is generally considered to be little else than ordinary cement, but it is plain there is much more ingenuity in the matter; at all events, it is evidently a concrete of sand and so on. cemented by lime; it is not burnt as is often suvoosed. and much of its ralue is no doubt due to the manipulation of the materials.

166iq. Ransome's sllicems stone was patented in 1844. Calcined flints ground to a fine powder were mixed with common soda (sub-carbonate of soda) rendered caustic, and water, the mixture being boiled under steam pressure; he thus obtained the silicate of soda in a liguid form. To one part of this wuter glass he added ten parts of sand, a little pounded fint, and a little clay; mixed the whole to a putty; made castings of the desired lorm under compression ; dried these, burnt the:n in a kiln to a bright red heat, and so made them into blocks of stone. The chemical question was this:- the alhali of the soluble silicate of soda combined with a portion of the natural silica or sand, and thus formed an insoluble silicate or glass, as a cement, wherewith the remainder of the sand became concreted together. A sandstone was produced, and technically one of a silicious type; but its connecting medium was not crystalline as in nature, but as an equivalent, professedly vitreous. This vitreous element, however, was always seen to be its biemish, and the manufacture is how discontinued for the following more recent invention by the same patentee.

1667r. During the experiments made for obtaining a liquid or liquids wherewith to wash the surface of stone after it has been worked, Ransome selected and applied the silicate of soda, and upon the saturated surface a solution of chloride of calcium. A double decomposition then follows, not slowly but instantly, and the silicate of soda and chloride of calcium, the one, an insoluble substance filling the pores of the stone, and the other, common salt to be washed out by the weather. Pieces of the putty out of which the previously described si icious stone was daily made, i.e. sand mixed up with silicate of soda, were dipped in chloride of calcium, out of which it came chang d to a hard and solid stone. This rather unexpected result led to the formation of an entirely new species of artificial stone, in a manner which was related ly Professor Kerr at a meeting of the Institute of British Architects in 1863, from whose account we have been quoting.

1667s. Ransome's Concrete stone is the name given to this new matcrial, invented in 1861. The process of nanufacture now followed is first to dissolve flints in caustic alkali at a temperature of 350° Fahr., leaving them in a boiler for twenty-four hours. The liquid then produced, consisting of silicate of soda, is drawn off, and is allowed to craporate until it becomes a thick matter like treacle. It is next mixed with clean pit sand ineorporated with five to ten per cent. of chalk in a pug mill, and in four to five minutes this mixture is formed into a stiff putty. It is then pressed into a mould and afterwards either saturated with, or immersed in, a sohution of chloride of calcium, which being rapidly imbibed, the formation of an insoluble silicate of lime and a soluble chloride of sodium or common salt results. This latter (about three per cent.) has to be removed by washing. to effice which it is placed in a hot-water bath for many hours. The employment of this new material as stone in building is gaining ground; for cast ornaments and mouldud work it has been longer used, and pobably it may yet be bronght to serve for the chisel of the carver.
$1667 t$. The committee of the Institute experimented on this material in 1864 . Fourincl cubes were made of equal parts of sand and coarse ballast, with a quarter part of clay ; on the third day a cube crushed with a weight of 935 tons; on the tenth day with 15.25 tons. With six parts of sand to one ol chalk, on the third day a cube crushed with 6 tons; at ten days old, $9 \cdot 40$ and $13 \cdot 2.5$ tons. Other samples, lowever, proved to bo weaker, as at eight and thirty-six weeks old, they crushed with 8.4 and 8.4 tons respectively, yet one of twenty eight weeks crushed with 14 tons, apparently depending on the depth of the induration which in the weaker s.mples was only from 1 to 3 inches. A block formed of five parts of sand to one of fine silex bore 30 tons when three weeks old, wihout showing the least. elfect; it had been previously tested up to 20 tons. It will be well
to contrast another sample formed of "all road scrapings from the neighbourhood of Ipswich" which at only three days old crushed with 28 tons; this was probably due to the silex cuntained in it. As another proof that its strength is entirely due to the complete induration of the material, a nine-inch brick made of four parts of sand, four of fine sand, and one of chalk, cracked when thirteen weeks old with 14 tons and crushed with $3 \overline{5}$ tons; this specimen was gradually filled with chloride of calcium being poured over it, and took fifteen minutes to saturate. Another at eight weeks with 4.2 and 30.0 tons; another with 20.15 and 38.8 tons; while a fourth cracked at 6 tons and crushed with 6.65 tons; these were sabed in the chloride of calcium, The tensile strength at twenty-eight weeks old varied as 47,74 and 67 lbs . per square inch; while two specimens made of road scrapings, only three days old, broke with 101 and 97 lbs . per square inch, a strength also, no doubt, due to the silex contained in it.

1667 u. A gallon of each solution is sufficient to produce a cubic foot of stone of the finer quality; but the cost of a block of coarser quality would be less than about half' what the other would be. To render this concrete stone perfectly non-absorbent, the surface of the stone, after it is formed into blocks, is treated a second time with a wash of the silicate of soda, and a second application of the solution of chloride of calcium. These solutions are also applied for the preservation of other stones, or of brickwork; the silicate being diluted with water in proportions according to the absorbent character of the material, which must be clean and thoroughly dry before being operated upon. Tinting solutions are also supplied for harmonising with the natural colour of the stones. About four gallons of each solution will be, under ordinary circumstances, sufficient for each 100 yards superficial of surface.

1667v. Experiments conducted by G. R. Burnell, and reported upon by Professor Ansted in a paper read at the British Association at Cambridge, 1862, showed that the transverse strength of a beam 4 inches square resting one inch at each end, with 16 inches clear span, sustained a weight of $2,122 \mathrm{lbs}$. or 132 lbs . per inclı superficial; whilst a similar bar of Portland stone broke with $759 \frac{1}{2}$ lbs., or nearly 42 lbs. per inch. The adhesive or tensile strength was proved by pieces of stone notched for the purpose, the sectional area at the weakest part being $5 \frac{1}{2}$ inches.

A 4 -inch cube of the patent stone sustained a weight of 30 tons, nearly 2 tons per ineh, before it was crushed.
1667μ. The following result of chemical tests of this artificial stone, as compared with natural ones, will be found instructive. They were made by Mr. E. Frankland at St. Bartholomew's Hospital in Deeember 1861. "The experiments were made in the following manner. The samples were cut as nearly as possible of the same size and shape, and were well brushed with a hard brush. Each sample was then thoroughly dried at 212°, weighed, partially immersed in water until saturated, and again weighed; the porosity or absorptive power of the stone was thus determined. It was then suspended for forty-eight hours in a very large volume of each of the following acid solutions, the alteration in weight after each inmersion being separately estimated. The sample was then boiled with water until all acid was removed, and again weighed. Finally, it was dried at 212°, brushed with a hard brush, and the total degradation or loss since the first brushing was ascertained. The following numbers were obtained."

Name of Stone.		Porosity. Wat $\sim \mathrm{r}$ absorbed by dry Stone. percenl.	Alteration in weight by immersion in dilute acid.						Loss by action of acid and bosiling in water. per cent.	Further loss by brushing.	Total degradztho: from all cauzes.
			of 1 per cent.		of 2 per cent		of 4 per cent.				
			Loss	Gain	Loss	Gain	Loss	Ga n			
Bath -	-	11.57	1.28		$2 \cdot 82$	-	$2 \cdot 05$	-	$5 \cdot 91$	-26	$6 \cdot 17$
Caell -	-	$9 \cdot 86$	$2 \cdot 13$	-	$4 \cdot 80$	-	${ }^{6} 7$	-	11.73	$1 \cdot 60$	13:33
Aubigny	-	$4 \cdot 15$	1•18	-	4.00	-	-	1.01	$3 \cdot 56$	-29	$3 \cdot 8.5$
Purtland	-	8.86	$1 \cdot 60$	-	$1 \cdot 10$	-	1.35	-	$3 \cdot 94$	-24	$4 \cdot 18$
Anston	-	6.09	3.52	-	$3 \cdot 39$	-	$3 \cdot 11$	-	$11 \cdot 11$	$\cdot 27$	11:38
Whitby	-	$8 \cdot 41$	$1 \cdot 07$	-	-	.53	none	none	$1 \cdot 25$	-18	$1 \cdot 43$
Ilare Hill -	-	$4 \cdot 31$	$\cdot 7.5$		-	-60	none	none	-98	-15	1.13
Park Sjring	-	$4 \cdot 15$	$\cdot 71$		-	-10	$\cdot 15$	-	-81	none	- 81
Ransome's -	-	$6 \cdot 53$	-	$\cdot 95$	none	none	none	none	$\cdot 63$	$\cdot 31$	$\cdot 94$

"Whilst Portland, Whitby, Hare Hill, and Park Spring stones (from the quarries, Farnley Wood, near Leeds) are thus pointed out as the natural stones best adapted to withstand the influeuces of town atmospheres, it is also indicated that Ransome's patent concrete stone will be found equal to the best of these, and there is nothing in the composition wirich would lead one to anticipate that it would suffer from exposure to the saline influences of the atmosphere upon the sea coast."

1667x. Bousfield's patent, 1856, consists of 80 or 85 parts of chalk and 15 or 20 of slaked lime, mixed together, moulded under pressure, and dried in the open air, when the blocks, says the patentee, "will be found to possess a degree of compactuess and firmness resembling stone, which increases indefinitely with ago, and if the ingredients are pure, will rival marble in whitoness and beauty." Barff"s patent for an artificial stone was obtained in 1861. He takes 1 part of an aqueous aluminate of potash, with 3 parts of an alkaline silicate, or water glass (silicite of potash, howerer, not of soda), which will in a few hours set into a sort of dull glass, an artificial felspar in fact, perfectly brittle and of uc very great tenacity, but altogether insolublo in water. With this silicate of alumina, while in a liquid state, he makes up sand or any dust (as pounded stone) into a prste moulding it into blocks, and drying them in the open air, until they hare set hard. Silicate of sola and potash aro extremely viscid, and anything mixed up or coaed by them is rin. dered therely impermeable ; to get another solution into such silicates, much less behind it to effect their decomposition, is considered impossible, the only alternative, therefore, is to put on the two solutions as one. Decompoition then setting in, mere dryness is all that is necessary to produce the material ; but if the silicate of potash and the aluminate of potash Le mixed up in a liquid, they remain liquid for any period within reason, and they may be mixed up with any materials selected, or washed over their surface. When put inte stone it hardens and produces an artificial stone, without heat or further process. A previous patent, dated 1860, deseribes that silicate of soda or silicate of potash may be combined with, or decomposed by, carbonate of lead, carbouate of zine, or other suitable material in. suluble in water, which will decompose or chemically unite with the said silicates; proportionate quantuties of chalk, sand, or other similar substance may also be incorprated with the compound, and thins enable it to be obtained at less cost, in accordance with the nature or description of the work to which it is intended to be applied. A piece of stone manufactured with carbonate of lead, powdered pumice stone, and silicate of soda, in proportions stated in the specification, produces a rcry hard stone, without the application of any heat

1667y. Fluo-silicic acid and silicate of potash are also applied to the surfaces oí stones,
1667z. The patent Victoria stonc has stood the test of twenty years as paving. The floor of the entrance-hall at the "Colinderies" in 1886 sustained the traffic also of the years 1884 and 1885, having had some five million people passing over it. In the course of 1886 it was laid on London Brilge, where the foot traffic is stated to exceed 80,000 passengers per day-the heariest traffic in the world. It bears a crushing weight of 8321 lbs . per cubic inch ; a tensile strain of from $79+\mathrm{lbs}$. to 1125 lbs . per square inch; its porusity is 7.6 per cent. in twenty-fuur hours, as against 17.0 for Bath, 13.5 for good Portland, or 8.0 for Park Spring stones. See also Paving.

The Leopold Foreign Rock Asphalte in one of the main corridors was also severely tested by traffic. It is manufactured of Groby granite crusbed until sufficiently small to fass through a certain sieve: it is then washed thoronghly to remove all earthy particles. This is mixed with Portland cement and well-burnt clinker, ground fine, and a metal-lined mould is filled with it. In a few days the slab has "set" into a hard concrete, and is then immersed for about ten days in silica fluid.

Hodges, Butler, and Dale manufacture an "Imperial stone" for conings, window s:lls, steps, coal-plate stones, silicated stone sewers, and water pipes, \&c.

Sect. II.

GRANITE.

1668. Among the primitive rocks of the glohe, whose period of creation is considered by geologists as antecedent to that of organic beings, is that of granite, whose use in archit acture seems to lid defiance to time itself. The term grauite appears to be a corruption of the Latin word geranites, used by Pliny to denote a particular speries of stone. Tournefort, the naturalist, in the Account of his Voyage to the Levaut in 1699, is the first of modern writers who uses the name. The word seems to have been applied ly antiquaries to every granular stone susceptible of use in architecture or sculpture, in which vague sense it was used by mineralugists until about fifty years since, when true granite was classed as a particular mountain rock. Its constituent parts are concretions of folsrar, quartz, and mica, intimately joined together, but without any basis or ground. These
parts are variable in quantity, so that sometimes one, sometimes the other, and frequently two of them, predominate over the third. The felspar is, however, gencrally in exces, as mica is the least cons derable ingredient of the rock. In some varieties the quartz i; wanting, in others the miea; but where these peeuliarities occur, the granites must be considered as varieties, not as distinet species.
1669. The constituent parts differ in their magnitude, alternating fiom large to small and very tine granular. The colour, moreover, is very variable, depending principally on the predominating ingredient-the felspar, the quartz, and the mica having usually a grey colour. The felspar is mostly white, inclining to grey and yellow, sometimes red, and even grey, seldom milk-white, and always translucent. The mica is usually grey, and sometimes nearly black. The felspar in granite has usually a vitreons lustre, and of perfectly foliated fracture; yet in some varieties it becomes quite earthy, with the loss of its hardness and lustre; in other words, it has passed into porcelain earth. The appearance in question is sometimes produced by the weathering of the felspar, and sometimes it appears to be in its original state. When pyrites are found in the veins which traverse, granite, the vicinous felspar and miea are converted into a species of steatitical matter by the action of the sulphuric acid formed during the decomposition of the prites. In Cornwall, there is a considerable portion of its granite in which earthy felspar is found. When felspar occurs in abnormal quantities, the granite becomes porphyritic, as the Devonshire granite, and that of St. Honorine (Calvados): the name being derived from the colour, which is purple. Schorl takes the place of the mica in some parts of Devonshire; and even the quartz is sometimes wanting, as is often the case in the elsans or courses laden with mineral matters in that district. When hornblende occurs instead of mica, the granite becomes syenite, as at Malvern, and at Syene, in Egypt; and when present with miea in about equal quantities, the material is called Syenitic granite. When mia a is present in such duantities as to cause the rock to assume a slaty cleavage, it is called gneiss.
1670. Granite is not decomposed by acids, and is only imperfeetly and slowly caleinable in a great heat. Those speeies which contain much white felspar, and only a small portion of quartz. like the greater part of the granites of Cornwall and Devonshire, are liable to decomposition muels sooner than many of the Scoteh granites, in which the quartz is more abundant, and equally disseminated. In the selection of the Cornish and Devon granites, those are to be preferred which are raised in the largest blocks and are easiest worked, which, for common purposes, answer well enough, such as for paving-stones and the like; but harder granite must be sought for than Devonshire or Cornwall produces, where the construction is of importance; for the masses in these counties are mostly in a condition of rapid disintegration and decay, which seems chicfly attributable to their containing a large portion of potassa. The Naval Hospital at Plymouth is built of a granite whose parts appear to have been well selected. It was erected between the years 1756 and 1764 , and, exeept in the columns of the colonnades, does not exhibit symptoms of dccay. In these, on their more exposed sides, the disintegration of the felspar has commenced, and lichens bave already attached their roots to some parts of the surfaces.

1670a. The eause of the decomposition of granite is a point yet unsolved by chemists. Some state that the felspar, being acted upon by the carbonic acid in rain water, becomes decomposed, and is then easily removed, leaving the mica and the quartz in relief without nay cementing material ; and that the decay of the felspar does not take place by any known rules, for the more crystalline it may be, more perfectly does it resist the decomposing aetion of atmospheric agents. Other seientifie men are of opinion that the felspars containing soda generally decompose, whereas those which contain potash do not decay.. It has also been considered that the kaolin or China clay was produced by the decomposition of the felspar with the granite; but it has been stated that so far as human olservation could go, China clay never was true granite, and that atmospheric decomposition aeting upon felspar, had never gone to the depth of 300 feet, at which depth finer China clay was found than nearer the surface: miles of country could be shown strewed witl felspar; the quartz was gone, but the felspar remained. We must leave the decision in far more able hands.
1671. Red granite, sometimes yellowish, and generally interspersed with hack mica, is found in Devonshire; at Mount Edgeombe there are tables of it equal to the finest oriental granite, and it is found also in other parts of England. For hardness, and in works where durability is indispensable, the granites from Mount Sorrel, in Leieestershire; Aberdeen and Dundee, in Scotland; and the Clieesewring of Cornwall, are to be preferred by the arelitect. These take an admirable polish, and are superior to all others which this island produces. The increasing demand of late years for this material, has caused many new quarries to be opened up in various localities. The red is generally harder than the grey sorts, and more difficult to work. The Peterhead, fiom the vieinity of Aberdeen, is perlaps the best, a:d it is, moreover, in appearance the most beantiful which Scotland affords; indeed, in point of beauty, it is only surpasssd by the oriental granites.

1671a. Dartmoor granite is, in general, coarse grained, varying muel in colour. The grey
sort is chicfly quarried and worked at Hay Tor on the east side, shipped at Teignmouth; und at King Tor and Rigmoor Down, on the west side, shipped at Plymouth. The Brown Willy district, worked at the Cheesewring quarries. near Liskeard; the granite is of a light grey colour, and was ucd in the piers of the new Westminster bridge. The granite of the eastern portion of the Henslarrow ditrict, near St. Austell, worked above Par, is of good quality; it is shipped from that port, and known as Lostwithiel granite; the western portion is remarkable for its liability to decomposition, and is worked for kaolin clay. The Carn Menelez district supplies the granite generally known as Cornish, shipped from Penryn and Purt Navis: blocks of several hundred tons are often raised, varying from 20 to 70 feet in length, and of proportionate breadth and thickness. The finest grain is obtained in the Carnseu quarries, near Penryn, fiom whence were got the stones for the lodges and piers at the British Museum, the plinths to the Royal Exchange, the pedestal for the statue of Lord Clive at Shrewsbury, and that for the statue of Carlo Alle"to at Turin. It was used, 1887, for the monolithic columns to Messr. Lloyd's new bar.ki ig premises in Lombard Street. The columns at the entrance of the royal mausoleum at Frognore are from Lamorna, south of Penzance; which, with Boswarvah and New Mill, to the west, have, with those at Penryn, supplied granite to most public works. Fremator granite, largely used at the steam dock-yard at Keyham, is white in colour, and being very close grained, it can be brought to a highly finished surface, and is said to be very durable.
16716. 1lay Tor granite company supplies a granite of a very fine grain, bard, of unquestionable durability, and generally of a beautiful blue or grey colour; it can be obtained in blocks of any size that is capable of being removed with existing machinery. The quarries have supplied the Nelson column and its pedestals; the granite plinth and steps of the Royal Exchange; the statue and pedestal of King Willian IV.; part of the river wall of the IIouses of Parliament; the plinth of the Sun Fire Office, \&c.; the large landings and steps of the terraces at the Crystal Palace; the graving docks at all HM. Dock yads, as well as the ashlar steps and landings for the royal mausoleum at Frugmore. Grey granite fiom Lundy island, off the coast of Devonshire, is supplied for the first section of the 'lhames embankment.

1671c. The l'ort Nant granite, in Carnarvon bay, near Port Dinllaen, has been used at Liverpool for pasing, for some years; for the tramway on Westminster bridge; for the Metropolitan drainage outfalls, and for the foundation works and pavement of the Thames embankment.

1671d. Granite is supplied from a comparatively limited extent in the north-eastern part of Aberdeenshire. The first or central portion is somewhat circular in form, having a diameter of ahout six miles, within which the rocks are of red granite of different varieties, typified by the fine warm coloured Stirling Hill stones; and secondiy, of an amnular space surrounding this nuclens, in which the grey and blue granites abound. Of these, the Cairngail is close grained, hard and dense, and as obdurate as any of the red granites. At Pitsligo is obtained a light coloured bluish-white stone, which when fresh from the quarry, is wrought with greater facility than even some of the Scuttish sandstones. It stands the weather well.

1671e. Rubislaw quarry was the hrst known quarry in Aberdeenshire, about two hundred and fifty years since, and furnished stones for paving London, and later for works at Portsmonth Docks and the Bell Rock Lighthouse. Since its introduction about 18ะ0, various quarries have supplied granite for works at Waterloo Bridge (the balustrading). Sheerness Docks, upper side of London Bridge, \&c. About 1822 Mr . A. Maedonald, of Aberdeen, reduced to practice the difficult problem of giving any required form to so stabhorn a material, and commmicating to its surface an enduring polish, which it is said, is retained under all atmospheric changes; nor does the material contract any stain with vegetation. The red granite quarries of Stirling Hill, ncar Peterhead, about thirty miles fiom Aberdeen, supplied the shaft of the Duke of York's column ; the pillars in Fishmongers' Hall; the columns in the king's library in the British Museum about 1830; the pedestals for the statues in the same building; the columns at St. George's Hall, Liverpool, 25 feet in length in one block; and is now used in numerous buildings in nearly all the cities in Great Britain.

1671 f . Grey or blue granite is supplied from the quarry of Rubislaw, but principally from Cairngall, which is more of a syenite than a granite, a clear blue finely-grained material, uscd for the finest work. This has been employed for portrait statues, as at Aberdeen, at Portsmouth, \&c. ; for the sarcophagus for the Duchess of Kent, and for that of the Prince Consort, both at Frogmore.

1671 g . Argyleshire has only within the last twenty years been opened up for granite. Furnace quarry, near Inverary, is more of a Syenitic or porphyritic character than that of true granite, and is remarkably hard, in fact harder than that of Aberdecn. It is used chiefly for paving the streets of Glasgow. Bonaw Island quarry, near Oban, gives an pxcellent large-grained grey granite; it has been used in the harbour works, the flight of steps at the Weot End Park, \&c., all at Glasgow, berng obtainable in large blocks. Bonaw

Canseway quarry, near the above, though fine grained, does not supply large blocks; it is used for paving stones. Ardslieal quarry, nortl-east of Oban, has a good grey granite for general purposes. It is easily quarried in layers of any required length or breadth, and varies in thickness from 6 inches up to $\dot{3}$ feet. It is said to be less noisy and more sale as a paving stone than the generality of granites employed for that pupose.

1671 h. The Ross of Mull quarries, in the island of the same name, supply granite of two sorts. red and pink, the felspar buing in the former of a brilliant red, and in the latter of a delicate pink, tint. In its phesical charaeter it resembles the Aberdeen gra:i:c It is now sent in large quantities to the polishing works at Aberdeen, and, moreover, these quarries ean supply larger blocks than can those of Peterlead. Both the red and pink varieties, after laving heen polished at Mr. Sim's works at Glasgow, were used in the Prinee Consort's mausoletim at Frogmore; at the Skerryore lighthouse; the Liverpool Doeks; the Londonderry Docks; the Glasgow Water Works, \&c.; and the pink granite in the foundations of the early work at the new Westminster Bridge: the Tormore or red grames being used for the cubb to the footways.

167ii. The only quarries in the south-west of Scotland are Kirkmabreck quarry, near Crectom, Wigtown Bay, which furnishes a silver grey granite, used for the obelisk sent by Mr. Sin to the Exhibition of 1862; and used for many years in the Liverpoul Docks. Blocks of any size are readily attainable. Dalbeattie quarry, near Dumfries, has a large grained grey granite, taking a high polish; there is a difficulty in getting large blocks free from black marks, but it is largely worked for general purposes, kerbing, \&c., and for ornamental purposes.
$1671 j$. The granites ot Ireland are in general a speckled grey, inclining to white, as those of Wieklow, Dublin, \&.c.; also greenish from hornblende, as Mourne, Newry, \&c.; reddish, as Galway. The granite of the Wicklow range is used more entensively than that of any other district in the island. It varies considerably even within a limited distance. Near Kingstown it is very bard, the çuartz predominating; this is only used for plain heavy work. For more ornamental purposes granite is bronght from Ballyknocken, or Gulden Hill, about twenty miles distant. It contains a larger proportion of felspar and less quartz than that of Kingstown, and is therefore more easily worked, and is of a lighter and more unifurm and handsome colour, though less durable. Granite of the Carlow portion of the same range is similar. Granite of Down is generally of a darker colour, and more finely crystallized; it is quarried at several praces, especially at Newry, from whence it is conveyed by water to several parts of the north of Ireland; it can be workud into fine mouldings, and is of a dark speckled edlour. Galway granite is commonly of a reddislı colour, containing large crystals of flesh-red felspar; occasionally it has a bluish tint. To the west of Chden blocks of a moderate thickness, but of great length ard width, can be ol, tained. Granite to the west of Mayo is simitar, but the greater part of it in that county is of a dark bluisli-grey colour, difficult to work and seldom used. In Donegal and Tyrone it is gneissose, and of the same character, and reddish. Cavan granite is similar to that of Down, and but little employed. In the counties of Kilkenny and Wexford it generally resembles that of the great Carlow range before noticed.

1671k. The Bagnalstown quarries. in Carlow, supply fuur different qualities of granite; I. For plain work, portions being soft, others hard; some fine-grained, and others coarse; and red, blue. grey, and brown in colour; all are obtained from the surface of the land. II. A fine grit, employed for ornamental work even in the Gothic style, is very durable, and of a very white colour. III. Not quite so fine, but much used for buildings and ornamental work, being very white in colour. It lies in horizontal beds of about 1 foot to 15 feet in thickness, and from 15 to 20 feet in length; some beds run 40 feet long. In the hall of the Oxford University Museum is a slab of it, about 10 feet long, 5 feet wids, and 7 inehes thick. IV. A very hard granite used fur street crossings in and near Cork, not slippery. All these granites are approved for terrace steps, from 6 to 15 feet in length; for floors in stores, porches and halls, as in damp weather it absorbs the moisture from the atmosphere.
1672. Granite used for piving purposes is imported for curbs and trams, from Guernsey, Jersey, Aberdeen, and Devonshire. For pitching and macadam, from Aberdeen; Mount Sorr ll, Markfield, and Grooby, all in Leicestershire ; Guernsey ; and a small quantity from Wales. Mount Sorrel granite is red in colour, and was employed for the altar steps in St. Paul's Cathedral. Granite from the Furnare quarries, at lnverary, as before noticed, is much used in the strcets at Glasgow. Markfield and Grooby granites are dark green. The granite from the island of Herm, near Guernsey, was used for the steps to the Duke of York's column, but the cost of working and difficulty of shipping it at the quarry, have led to much discontinuance of its use.

1672a. Aberdeen granite is most extensively employed for curbs, trams, and pitching; the latter in thin cubes about 9 inches in depth, 3 inches in thickness, and not exceeding 18 inches in length, fair dressed throughout, it being considered the best granite adapted for the traffic of London, as it is very durable and less slippery than most other granites,
such as that of Guernsey, for instance, which is therefore now seldom adopted. The Welsh granite has the same fault, for, with a large amount of traffic in dry weather, it becomes necessary to throw gravel over it. Guernsey macadam, broken to pass through a $2 \frac{1}{2}$ inch mesh at the largest, is found to be by far the best material for the purpose, one coat properly applied outlasting two of any other granite. The Devon granite being coarse in grain, is used only in cuibs for second-rate streets, while for pitehing it is not to he compared in price or quality with that of Aberdcen. Blue Bombay, and blue Port Philip granites, are hard and tough, and make good sceond-class roads; while grey Chiua granite is soft and friable, and only good for the foundation of a new road.

1672b. We are indebted for several of the details here given on this subject, to the article in the Dictionary of Architcture of the Arehitectural Publication Society. The Builder for 1866 has also entered on the merits of Scottish granites.

1672c.
Table of the Weights of Granites.

Secr. III.

MARBLE.

1673. With the architect and sculptor the name of marble is applied to all stones, hardur than gypsum, that are found in large masses, and are susceptible of a good polish. On this principle, under the head of marble, are included many varieties of limestone, porplyyry, and even granite and fine-grained basalts. But with mineralogits the word $\mathrm{i}_{\text {; }}$ used in a much more restricted sense, and is confined to such varieties of dolomite, swinestone, atd compact and granularly foliated limestone as are capable of receiving a good polish.
1674. The extcrnal characters are as follows: colours white, grey, red, yellow, and green. Has generally but one colour, though it is often spotted, dotted, striped, and veined. Occurs nassive, and in angulo-granular distinet conerctions. Internally it alternatcs from shining to glistening and glimmering; lustre intermediate between pearly and vitreous. Fracture foliated, but oftentimes inelining to splintery. Fragments indeterninate, angular, and rather blunt-edged. More or less translucent. Brittle, and easily frangible. Its chemical characters are, that it gencrally phosphoresees when pounded, or when thrown on glowing coals. It is infusible before the blow-pipe. Dissol, es with effervescence in acids.

Constituent parts,	Lime	-	-	-	$56 \cdot 50$
	Carbonic acid	-	-	-	$43 \cdot 0$
	Water -	-	-	-	0.50

1675. All the varicties may be burnt into quicklime; but it is found that in many of them the concretions exfoliate and separate during the volatilization of their carbonic acid, so that by the time that they become perfectly caustic, their cohesion is destroyed, and they fail into a kind of sand, which renders a common kiln inapplicable.
1676. The varietics of marble are almost infinite. Those employed by the ancients, as well as porphyry, are noticed in the Glossary. Besides the paper On Marbles read in 1887 by Mr, Brindley, and quoted hereatter, the book by G. H. Blagrove On Marble Decoration, $s_{v}, 1888$, and that b! A. Lee, Marble and Marble Workers, 8ro. 1888, are valuable contributions to the subject.
1677. The principal part of the supply to England of whitish tnarble is from Carrara, a small town or village of Tuscany, in Italy. The quarries at this place were celebrated from an early periodr and spots are still shown abcut them whence they dug the marble for the Pantheon. Masses of marble are sometimes procured there nine feet in length and from four to six in breadth. The quarries are the property of the principal iuhabitants of
the town, who carry on an extensive trade in the article; but the difficulty of ehoosing the marble has induced artists to sett e there for the execution of their works, and the conscquence is, that sculpture abounds and flourishes in the towa. The white or Statuary, Italian-veined, Dove-coloured, Parenazzo or purple veined, and Ravaccione (ealled Sicilian, supposed to have obtained its name from early shiploals of it having been reshipped or sent on from some port in Sicily, at which the vessel touched in its royage) marbles, are but very slight variations of the same substance; the Dore and "Sicilian" hive a little more cirbonaceous matter in their composition; but they are all procured from quarries in the immediate neighbourhood of Carrara. Serravezza, in Lucea, produces Statuary, Ravaccione, reined or Bianco chiaro, Mischio di Serravezza, Bardiglio, aud Bardiglio fiorito.

1677a. All varieties of Carrara marble have perishable qualities, which ought to preelude them from being ever applied to external purposes in this country. After exposure to the weather for thirty or forty years, disintegration through its entire mass, but mostly on or near the surface, evidently takes place; after the lapse of about a century, more or less, according to the quality of the marble, the entire substance falls into a kind of sparkling sand. The group of Queen Anne, \&c., in front of St. Paul's Cathedral, sculptured by Francis Bird in the beginning of the last century, had been painted long since, and was in 1887 entirely renewed. A mural monument by J. Nollekens, erecied about 1780 orer the centre door within the portico of Bloomsbury Church, fell on to the pavement during the winter of 1837-8, so thoronghly pulverised as to resemble a fall of snow rather than bits of marble. Milan Cathedral is built of the white marble of Monte Candoglio or Candido, on the Toce, a tributary of the Lago Maggiore, seleeted as better fitted to stand the atmosphere than Carrara marble, of which it is usualiy said-to ke built: the " 7,000 statucs " (1863) are most probably all of the latter material.

1677b. The Raraceione, or so called "Sicilian" marble, is expected to resist the action of an English atmosphere longer than Italian veined, or white Carrara marble. On examination, however, it will be fomd thatits chemical and mineralogical character scarcely differs from them, exeept in weight, hardness, and as containing a hittle more carbonaceous matter. The Marble Arch, erected 1825-7 in front of Buckingham Palace, was removed to its present site $1850-1$, when it was found necessary to rub the exposed surfaces with sand and stone, as they were in a state of disintegration. Perhaps the tomb by Sir F. Chantrey, executed about 1820, in the burial-ground of St. Johns Wood Chapel, is the oldest specimen in London, if not in England. The surface may now be abraded with the fingers like sand. This material has of late years beea extensively used in the cemeteries round London. But on a caretul inspection of stones of three years' date, it will be found that the polish is nearly gone; and even the paint of the lettering has entirely disappeared. Frequent changes of temperature also tend to destroy Carrara marble more rapidly than atmospheric influerces; thus the mantel of a chimneypiece is invariably disintegrated long before any other part. The late C. H. Smith, in the Builder of 1864 , strongly urged the employment of Hopton Wood stone (par. 1666i.) in lieu of it for all out-door works.

1677c. Massa Carrara quarries. The special produce now is-I. The ordinary marble called "Sicilian," having a white ground rarionsly marked with grey veins, spots, \&e.: it is good for interiors as it is easily worked. II. A very hard ordinary "Silician," of it bluish white with dark veins, adapted for steps and out-door work. When well polished it has great resisting power. It has been used for the principal staircase of the Merchant Venturers' schoul at Bristol, where the final polisb was omitted; and in some "flats" in Portland Place. III. A dark grey marble with black reins, called Bardiglio, which has been largely used as a building stone in Naples, and as altar steps in Sweden. IV. A marblos called Blanc P., a bluish white without reins, but not so listrous nor so pure a white as statuary marble. It is much used in Belgium, France, and Ireland, tor statues, tombs, and floral carvings; and is little known in London. The quarty which supplied the Blanc P. is stated to hare been worked out long since; but another marble so called is merely a superior class of "veined white;" a large quantity is used in London. Tyrolese marble possesses all the beauties of that obtained from the Carrara quarries, and is, moreorer, from its intense hardness, almost indestructible, and better adapted for exposure to the climate of this country.
1678. There is a beautiful epecies of yellow marble obtained from the quarries near Siena, in Italy, and known in England as Siena marble; but the quantity now imported is not very great, and what is introduced is very poor in colour. A goorl quality, both in cclour and vein, can, however, be procured at the quarries by special orders.

1678a. The marbles of Sieily, little, if at all, employed in this country, are enumerated as follows:-Marmo di Trapani, of a grey colour; M. di Castelnuovo, of a yellow colour ; M. di Segesta, of a yellow colour; M. di Taormica, of a red colour; M. di Pareo, of a yellow colour ; M. d' Ogliastro, of a red colour ; and M. di Castelaccio, of a grey colour. The two last-named marbles are readily obtainable in blocks 12 or 13 feet
long. Specimens of some, if not all of these, are ineluded in the fine collection of polished marbles made by the learned Corsi of Rome, an account of which he published : the collection was subsequently brought to England, and is believed to exist at Liverpool. Each specimen it contained is no less than 8 inches Italian long, 4 inches wide, and 2 inches thick, and highly polished on all sides.
1679. Many of the marbles of France and Belginm are extremely beautiful. They are chiefly used in this country for chimney pieces. The following is a list (including others) of those so worked, supplied from one of the Belgian workshops:-Rouge royal; Bleu Helge; Rouge Griotte; French red; Saint Anna; Noir Belge; Noir Belge, second quality; Breecia (Brêehe); Breceia and black; Breccia Romana; Breccia rose; Saint Gerard; Sieilian; Sicilian, white veined; Pavonazzo ; Statuary; Statuary, second quality ; Malachite; Vor de Mer; Black and green; Porphyry; Brocatello; Siena; Siena, second quality; Italian Griotte; Black and grold; Black and gold, second quality; Bardilla; and Sarracolin. Another marble, named Saint Mont Clarie, is a pure black.
1680. The marbles of Spain are likewise very fine, but are not exported. A specimen of the " Emperor's Red," of unusually fine quality, was presented to the Queen by the late Don Pedro, King of Portugal, for the royal mausoleum at Frogmore.
1681. The marbles of the British Islands deserve more notice from the English architeet than they have hitherto received. In England there are but few as yet quarried of granular foliated limestone, the greater number of varieties of them belonging to the floetz or secondary limestone. The most remarkable, and perhaps most beautiful, of the English marbles, is that of Anglesea, called Mona marble, and much resembling Verd antique. Its colours are greenish blark, leek green, and sometimes purple, inreguJarly blended with white, but they are not always seen together in the same piece. The white part is limestone, the green shades are said to be owing to serpentine and asbestus. The Isle of Man marbles are-I. Black flagstone (Posidonia selist) from Poolvastl, the quarries of which have been worked for upwards of two hundred years; and furnished the steps in St. Paul's Cathedral, presented by Bishop Thomas Wilson. 11. Grey marble (enerinital and shelly limestone) from Poolvash, used for tables and chimney ornaments. I1I. Black marble (lower earhoniferous) limestone, from Port St. Mary, extremely hard and durable, taking a good polish; raised in bloeks and flags of great size, and used for piers, floorings, and tombstones. I V. Pale marble (carbonifeoous limestone (from Scarle:t. Castle Rushen, nine hundred years old, and other glaces, are built with this most durable material. V. Spanish Head flagstone (clay schist), Port St. Mary ; is a durable material, and used for lintel and gate posts; it is slightly elastie when in thin flags, and can be raised in square slabs of 16 feet. VI. Peel freestone (old red sandstone), from Craig Millin; of this stone a large portion of Peel Cathedral was built in 1226. (Cu:mming. Isle of Man, §c.)

1681a. The ornamental marbles of Derbyshire are mostly confined to the 1 st, 2nd, and 3 rul elasses of limestones, which are separated from each other by the toadstone, an amygdaloidal trap rock. These marbles are usually distinguished by their colour, as white, grey, dove, blue, black, and russet ; or by physieal peculiarities, depending mostly on their fossil contents, as bird's-eye, dog-tooth or musele, entroehal, shelly, and Ireecia marbl.s. Quariies of blick marble are situated near Ashford, where machinery for cutting and polishing these marbles was first used in 1748 . The beds of black marble seldom exceed 7 or 8 inches; it is difficult to be obtained of any considerable surface free from "shakes," or small veins of white spar. It is also procured at Matlock and Monsaldah. A brown marble, in thin bands of various depths of colour, is called "rosewood," as it presents the appearance of it when polished. It is one of the hardest and most durable of the Derbyshire marbles. A red marble, resembling Rosso antico, is found chiefly near Newhaven, in lumps of no great size. These and other Derbyshire marbles are principally used for inlaying work, as vases, tables, $\&$ e., but chimney pieces, columns, $\&$ c., are now made at Ashford, Bakewell, Buekland Holiow, and at Derby. This Florentine work, as it is called, is remarkable for fineness of execution and beauty of design, and is almost confined to the county.

1681b. A beautiful greyish-black coralloid marble is also found in Derbyshire and in Wales. The corals it contaius are of the porous kind, of the most elegant species, lodged at all angles and in all directions, and are in general about one inch and a half long and three quarters of an inch broad. The other species of coralloid marble is equally beautiful and compact, fine, even texture, very hard, of a deep jet black, and capable of a very high polish. It is variegated with species similar to the above, but smaller, and of a less elegant texture; among these it has usually a great number of sea shells, both turbinated and bivalve, the coral and shells being of a pure snow white.

168ic. The North Devonshire marbles are abundant and diversified. There are varieties of black and white, from Bridest w , South Tawton, and Drewsteignton. Some of the Chmdley, Staverton, and Berry l'omeroy, marbles, have a black ground with large veins of calcareous spar traversing it in all directions. The variegat d marbles are gene-
rally reddish, brownish, and greyish, variously veined with white and yellow, and the colours are often intimately blended. The South Devonshire marbles, now chictly worked at St. Mary Church, Torquay, from the Babbacombe limestone, are called after the name of the estate or quarry fiom whence they are taken, such as the Petiton, Ogwell, Ashburtun, Babbacombe, \&c. The colours are red, grey, and variegated, of almost every tint. The sizes of the blucks vary from I to 10 tons; the ordinary lengt! runs from 4 to 5 fect; 7 to 8 fect is considered as a good length. At Ipplepen are reddish varietics that are extremely handsome. They are of different qualities, as compact, porcellanic, gramular, crystalline, shelly, magnesian, pozolanic or water, stinking or swine. The Bartons quarry at $I_{p p l e p e n, ~ b e l o n g i n g ~ t o ~ M r . ~ F i e l d, ~ o f ~ P a r l i a m e n t ~ S t r e e t, ~ i s ~ w o r k e d ~ a t ~}^{0} 80$ to 100 fiet in depih ; the lowest beds are about 8 feet thick, and of a mottled character, being dark rcd and white in colour; the deposit over it is streaky and lighter in colour. Blocks of 18 feet square are now conveyed to London. This quarry has iately supplied the monolithic polished shafts fur the forty columns (18 out of one block), each 12 feet 3 inches in length, and $18 \frac{1}{2}$ inches diameter on the fillet, with many others, for the new building of the National Prorincial Bank of England, in Bishopsgate Street. The bases are of Irisls black marble, and the caps of the cream-coloured Huddlestone stone. In the corridor of the new Freemasons' Hall are four columns, two being from the Bartons quarries, and two of Languedoc marble: eight others are placed in the coffee-room of the Charing Cross Hotel. The limestones of Plymouth are not so fine. They are of two sorts; one, an ash colour shaded with black veins; the other blackish grey and white, shaded in concentric spots interspersed with irregular red spots; or black with white veins about a guarter to an inch in width.

1681d. Serpentine, "beyond all question, the most beautiful of the ornamental stones of this country" (Hunt), is chicfly found in the sea-bound peninsula called the Lizard, the most southerly land in Great Britain. This rock, with another called dallage, constitute nearly half of the Lizard peninsula. Serpentine has evidently been under the influence of heat. At one spot it scems to shade off into the hornblende slate in which it is embedded; at another, it has every appearance of having been thrust up among the hornblende slate. Sir Henry de la Beche wrote, many years sinee, that serpentine ought to be employed for decorative purposes. He named Landewednack, Cadgwith, Kemnack, Cove, and Goosetilly Downs, as four sites whence beautilul specimens might be obtained, varying in colour, as, an olive green base striped with greenish-blue steatite veins; another specimen, very hard, with a reddish base studded with erystals of the mineral called diullage, which when eut through and polished, gives forth a beautiful metallic green ghtter, heightened still turther by the reddish tint of the mass in which it is embedded. To the Exhibition of 1851, Penzance sent fine specimens in all kinds of ornaments. The blocks are small, but sometimes they have been obtained 7 feet in length and 4 or 5 tons in weight; the largest was 8 feet long, 3 feet wide, and $2 \frac{1}{2}$ feet thick; from 2 to 3 feet long is the usual size. The best blocks are worth from 5 to 10 guineas per ton, according to their weight, the larger the size the higher is the value in an increasing proportion. Chemically, steatite and serpentine differ little from cach other, and as they are quarried in juxtaposition, specimens of both kinds are selected for use; but serpentine being much liarder and more richly coloured, is appropriated to the larger articles.

1681e. In the Builder of 1865, p. 877, it is stated that serpentine is not a marble, but a tale containing a tulerable quantity of chromate of iron. It is sometimes good for external ornamentation, but never when it has the white streaks so commonly seen in it. Ilunts Handlook to the 1851 Exhibition, gives the following analysis of serpentine obtained at the Lizard:-Mlagnesia, $38 \cdot 68$; silica, $42 \cdot 50$; lime and alumina, $2 \cdot 10$; oxide of iron, 150 ; oxide of manganese, 10 ; oxide of ehromium, 0.30 ; the colouring matter is probably a combination of chromium, iron, and manganese. In his Handbook to the 1862 Exhibition, it is called a hydrated silicitate of magnesia. composed of silica, $43 \cdot 64$; magnesia, $43 \cdot 35$; and water, $13.01=100$. Besides the supply from the Lizard, it is obtained in Anglesea, Portsoy in Banffihire, Unst and Fetlar in Scotland. The "green marble," or serpentine, of Connemara, is noticed among the lrish marbles. This material is sawn by steam power with sand and water; and when brought into the form required, it is ground, turned, rubbed, and polished until it presents a beautiful glossy surface, said to be capable of resisting grease and acids, which is not the case with marble in general.

1681 f . It is said that two brackets of old monuments in Westminster Abley; the panelbordering of the monument erected to the memory of Addison; the brackets of a chimneypiece at Hampton Court, are all carved in serpentine, and the present condition of these specimens shows the durability of it. "Equal to granite in durability," is the statement made in advertisements, but probably some further time must elapse before such a statement can be endorsed, though it may be allowed that it appears to stand atmospheric influences remarkably well. Experiments on the strength of serpentine have been noticed in par. 1502 g . Therein is mentioned a shaft of Poltesco grey-green Devonshire serpentine, one of the weakest examples, which went across and not with the vein: the latter running

In the line of the diameter. The green serpentine lias been used lately on the outside of some offices in Cornhill; and the red quality in 1853 in Leicester Square.

1681 g . Purbeck, Petworth, or Sussex marble, is the name of a material common to Derbyshire, Dorsetshire, the Isle of Wight, Kent, Surrey, and Sussex. It is found at Dinton, neir Aylesbury, and it oceurs at Boulogne and at Beauvais, in France. In some places, as in the most westerly quarries near Corfe Castle, and at the top of the Isle of Portlind, the Purbeck stone is so lighly coloured and fine-grained, that it is chiefly identified as belonging to the fresly water deposits by the fossils it contains. In general, the stone may be said to be fine grained in the quarries north and west; while in those approaching the east the pattern is larger, the shells well defined, and seareely any of them broken; the marble from this distriet is therefore handsomer, and more in request for ornamental purposes. Purbeck was well known for its quarries during the middle ages, when the marble was in great request for decorating the elustered shafts and sepulchral tombs, and for pavements, in churches. At the present time, there is scarcely sufficient demand to keep more than a few men at work, and this at Woody-hyde, near Corfe Castle, where the genuine material or I'urbeck marble can be obtained, and that quarry is a hole more than a quarry. It has been stated that, during the middle ages, this material was also obtained from quarries at I'arham Park, six miles north-east of Arundel, but there are now no traces of it left on the surface.

1681h. All varieties of Purbeek marble contain a large proportion of clay in their composition, which is one chief cause of their perishable nature. In the interior of buildings the moisture in the air will be condensed, and absorbed into the argillaceous portion of the marble. While this process is going on, the lustre of the polish is gradually diminished, the colour is altered, its hardness and cohesion destroyed, until the surface is completely changed to a dul! earthy appearance, and decay results, which will be facilitated in proportion to the amount of clay contained in a given mass. When, as in small columns, this materid is placed with the planes of lamination in a vertical position, there results another and a greater tendency to decay. The clustered columns in the Temple church, though renewed in 1840-42, had already lost much of their polish in 1853, a preliminary stage towards deeay. The large ancient columns supporting the elere-story at Westminster Abbey, have now seareely a trace left of their original surface. (C. H. Smith, Transactions, Institute of British Arehitects, 1853). As already stated, this sort of marble is obtained in Kent, where it is also known as Bethersden marble, and likewise as Lovelace marbie, obtained near Ashford. In the east and west sides of the new quadrangle of St. John's College, Oxford, are sixteen entire columus of "Bletchingden marble," which were put up in 1631-35. It may be seen in Hythe Church and in some of the nerghbouring churches, where it is often varnished in lieu of being polished. The Porbeck marble columns used in Lincoln Minster, in 1186-1200 are asserted to have been worked up by vinegar.
1682. Of the Scotch marbles the principal are the Tiisee, of which there are two varieties, red and whise. The Iona, whose colours are a greyish white and snow white, sometime intermixed with steatite, giving it a green or yellow colour in spots and known under the name of lona or lcolmkill pebbles. It does not take a high poli-h. The Skye marble, of grey ish hue, with occasionally various veins. The Assynt varicties of white, of grey, and dove colour. Glen- Tilt marble, white and grey, with occasionally yellow and green sjots. Marble of Balliculish, of a grey or white colour, and capable of being produced in considerable blocks. Boyne marble, grey or white, and taking a good polish. Blairgowrie, in Perthshire, of a pure white colour, fit, it is said, to be employed in statuary and for architectural purposes; and Glenavon, a white marble, said by Williams (Natural History of the Mineral Kinglom) to be a valuable marble, is not used, from the remoteness of its sttuation and the difficulty of access to it.
1683. Ireland is rich in marbles. The dark colonrs vary from jet black to dark dove colour, purple, blue, and grey; the light colours, from the pure snow white to the celined, cream coloured, pink, and light grey. The variegated consist of the serpentine, black and white veined, mottled, and those marked with fossil organic remains. The black marbles, whieh are those of most value in Irdand, are extensively met with, and belong to the lower limestone. The merchantable beds of the best quality, which have been extensively worked, are met with in the counties of Galway, Limerick, Carlow, and Kilkenny. It is also found in the counties of Mayo and Waterford. The best quarries are considered to be those close to the town of Galway, near the bank of Lough Corrib. It occurs in three beds, varying lrom about 9 to 12 inches in thickness. One is called the "London bed," as it supplies most of the black marble exported to London. Blocks are raised of an average size of about 5 to 10 fect in length, and 4 to 5 feet in width; others 20 feet in length ean be obtained. Some blocks 16 feet in length were sent over for a stairease for the Duke of Hamilton's seat in Scotland, who was also furnished with landings and solid balustrades worked t_{0} a tine polish. Angliham and Merlin Park quarries supply black marhle of the very finest description, receiving a high polish. Steps of it were supplied for the porticos at St. Paul's, the staircases at Marlborough House, Hampton Court, and Kensington Palace, under Sir C. Wren, eir. 1700. At Oughterard, the beds contain more
or less siliea, rendering them not so valuable. At Kilkenny, it abounds with shells, which secome more conspicuous as the marble dries Kilkemy marble was once extunsively employed in Ireland, but the black is now prelerred. The polish of black manble, while it is considerably affected by dampness, is much improved and preserved by being kept dry.
$1683 a$. Dark grey and dark mottled grey marbles are met with chiefly in King's county and in several parts of the county of Cork. Near Tullamore, marble is obtained in large blucks capable of receiving a fine polish, and is much used for chimney-pieces and ornamental works. The limestone around Cork produces easy working marble of a light grey or dove colour, and more or less mottled, receiving a good polish. In the primary distriets of Donegal, a light grey and bluish grey eoloured marble of close grain is found to a great extent; most of it, however, is hard to work from the quantity of silex it eontains. The same kind of a bluish tint is very frequent in Comemara. It is compact in texture, but does not always produce a satisfactory polish. White marble occurs in the western portion of county Donegal, differing much from that of Comemara. It is of comparatively casy conversion, and can be obtained in cubical blocks in great quantities; its very coarsely gramular texture, however, is prejudicial to it for many purposes; for boldly executcd works in seulpture, where the expense of carriage would be avoided, it might be advantageously employed for many purposes; but it will not vie with the marble of Carrara. The Comemara white marble is hard and fine, an. 1 the strongest yet found; it cannot, however, be procured in large blocks free from streaks, which pass through the blocks parallel with the beds. At Chery, near Dungannon, comty Tyrone, a very delicate cream coloured marble is ohtained, very compact in texture, receiving a high degree of polish, and blocks of great lengtlı can be procured. The coarsely crystalline and fossiliferous limestone at Ardbracean produces light coloured marble of easy conversion.

1683b. Of the variegated marbles, the Siena of the best quality is periaps the mast beautiful. It is obtained in several places in King's county; but the best, the veined or motted Siena, is found near the Seven Churches. It is susceptible of a high polish, and exhibits many bright and distinct colours. Narble of the s:me charater also prevails, having a dove coloured ground, varied or mottled with Siena colour. In the comnty of Armagh, a Siena, or rather a brownish red marble, is found, containing a great number of fossil shells; several varieties of colour, from a very light reddish brown to a rather dark red, are also met with, more or less marked with shells. At Pallaskenry in the county of Limerick, a dark red and motticd marble is atundant, and has been much used. A red coloured marble, of a compact but slaty texture, occurs in the eounty of Cork, extending from the city in a narrow seam, for a distance of several miles. It is hard to work and dull in colour: at one time it was extensively used.

1683c. The serpentine, or green marble, as it is usually called, of Connemara, in county Galway, is of a dull green colour. Blocks are raised of considerable size, from which slabs can be obtained, at Barnanoraun quarry, near that at Recess; and at Letternaphy quarry, near Cliiden; the latter being rather coarse in quality; while at Tievelaun quarry, near Recess, the marble is dark green, very sound, and free from slakes of any kind. Black and white marble, and that of a mottled character, occur near Cork, in the comenties of Waterford, Longford, and Kerry; some of the varieties are very fine; that obtained near Mitchelstown is well marked and receives a high polish. The limestone obtained near the Jeven Churches in King's county, when polished, produces a good marble of an even grey colour. It is strongly mottled with very numerous fossil organic remains. It is casily worked, and raised from the quarries in thin beds. This marble, in a polished state, has been used in the construction of one of the principal rains at the Seven Churches; some of the stones retain their polish to this time, while others exhitit decay. (Wilkinson, Genlugy, \&c. of Ireland, 1845). A fine purple marble is found at Loughlougner in county Tipperary, which is said to be beautiful when polished. Some of a purple colour, and purple and white intermixed with yellow spots, were to be procured in the islands near Dunkerron in the river Kenmare.

1683d.
Table of the Weighirs of Mabbies.

Its tenacity is stated at $6,000 \mathrm{llis}$ per square ineh, and its crushing weight is also put at 6,000 Ibs. per square inch. (H:mit.) ($1520 q$)

Sxcr. IV.

TlMBER.

1684. The information we propose here to lay before the reader relative to the different slecies of timber is extracted from Miller's Gardener's Dictionary, Rondelet's Art de Bàtir. Rees's Cyclopediu, and Hunter's edition of Evelyn's Sylva. To give any thing like the information that would satisfy the botanist would be out of place in an anchitectural work; and we therefore confine our observations to those which will be useful to the stadent.
1685. Олк. Of this most valuable timber for building purposes Vitruvius (lib. ii. cap. ix.) enumerates five species, which it would now be difficult to identify. That some species of the Quercus of the botanists are more valuable for building purposes than others no doubts exist. Evelyn seems to commend especially the Irish oak, because of its withstanding the efforts of the worm; but it is not easy to ascertain the particular species to which he alludes In the present day the Sussex oak is esteemed the most valuable; a value, according to some authors, derived from the nature of the soil and from good management in the culture, which is an object of no small importance.
1686. Generally, it has been usual to consider England as producing, without difference in quality, but one species of oak; but two sorts are well known to the English botanist, the Qucrcus Robur and the Quercus Sessiliflora. The former is found througl out the temperate parts of Europe, and is that most common in the southern parts of England. lts leaves are formed with iiregular sinuositics, and their footstalks are short, oceasionally almost without any at all. It atlains a very large size, and the wood is tolerably straightgrained and pretty free from knots, in many instances resembling the German species called wainscot. It is easily split for making laths for plasterers and slaters, and is beyond doubt the best soit for joist, rafters, and other purposes where stiff and straight-grained timber is a des'deratum. In the Quercus Sessiliflora, which, though found about Dulwich and Norwood, according to Miller, appears to be the common oak of Durham, and perhaps of the north of Eugland, the leaves have long footstalks, frequently an inch in length, and their sinuosities are not so deep, but are more regular than those of the Robur just described. The acorns are so close to the branches as to have scarcely any stalks. The wood is of a darker hue, and the grain is so smooth that it resembles chesnut. Than the Robur it possesses more elasticity, hardness, and weight, but in seasoning it is subject to warp and split; hence unfit for laths, which in the north of England are rarely of oak. There is no reason for supposing, as has been conjectured, that the oak of the Gothic roofs of the country is of this speeies, though we are aware of the great durability of the oak in the buildings in the northern part of the island.
1687. The specific gravity of the species first named, that is, the Quercus Robur, may be taken at about 800 , and the weight of a cube foot 50.45 lbs . That of the last-named at $\cdot 875$, and the weight of a cube foot at about 55.00 lbs . Their cohesive force and toughness are proportionable.
1688. The American species searcely claim a notice here, because their use in England is, from every circumstance, out of the question. Of the red oak of Canada (Quercus rubra), the only one of whieh the use could be contemplated, we merely observe, that it is a light, spongy, and far from durable wood, though, in the country, in many instances useful. Its growth is rapid, and it rises to the height of 90 or 100 feet.
1689. There is a species of oak imported fiom Norway, which has received the name of clapboard, and another imported from Holland, known under the name of Dutch wainscot, though grown in Germany, whence it is floated down the Rhine for exportation. The latter is destitute of the white streaks which cross the former, and is thereby distinguished from it. The use of these woods has latterly much diminished in England. They are both softer than common oak, and the clapboard far inferior to wainseot. They are more commonly used for fittings and fixtures, whereto they are well adapted. In damp situations, oak deeays gradually from its externai surface to the centre of the tree; the ring on the outside, which it aequired in the last year of the growth of the tree, decaying first; but if the tree be not felled till past its prime, its decay is reversed by its commencement at the centre. An oak rarely reaches its prime under the age of an hundred years; after that period, which is that of its greatest strength, it cannot be considered as fit for building purposes; and, indeed, it may be taken as a rule, that oak before ar riving at its maturity is stronger than that which has passed it.
1690. If the architect las the opportunity of selecting the timber whilst in a state of growth, he will, of course, choose healthy, vigorous, and flourishing trees. Those in which the trinks are most even are to be preferred. A mark of decay is detected in any swelling above the general surface of the wood. Dead branches, especially at the top of the tree, render it suspicious, thongh the root is the best index to its soundness. The notion of Alverti (De Re Adificatoria), of asing all the timber in the sime building fiom
the same forest, is a little too fanciful for these days. though we confess we have some mis givings in impugning an authority which, in most other respects, we are inclined to receive with the highest veneration.
1691. In felling not only the oak, but all other large trees, the great branches should be Girst cut off, so that the tree may not be injured or strained in its fall; and the trunk, moreover, must be sawed as close to the ground as possible. When felled, but not before, it is to be barked, trimmed of its branches, and left to season. Before, however, leaving it for this purpose, it is considered by workmen better to square it, which, it is thought, prevents its tendency to split. If to be employed for posts or bearing pieces, boring it has been employed with success; but it is needless to observe, that in pieces subject to transverse strains such a practice is not to be recommended.
1692. The pieces selected for building must be chosen with the straightest grain ; but there are pieces which are oceasionally employed, as for knees and braces, wherein a curvilinear direction of the fibres of the timber is extremely desirable. It may, however, be generally stated, that, in the case of two equal-sized and seasoned pieces, the heavier is the piece to be preferred.
1693. In oak, as in all other woods, the boughs and branches are never so good as the body of the tree; the great are stronger than the small limbs, and the wood of the heart stronger than all. When green, wood is not so strong as when thoroughly dry, which it rarely is till two or three years after it is felled. It is scarcely neeessary to say, that, containing much sap, it is not only weaker, but deeays sooner. It is weakened by knots, at which, in practice, it is found that fractures most frequently occur; and it is important to the architect to recollect that he should always rejcet cross-grained pieces.
1694. The great use of oak in this country is more for ship-building purposes than for architectural, its use, except in the provinces, being principally confined to pieces which are much liahle to compression, or where great stilfness is required, or in pieces like sills to windows and door-cases, where there is much alternation of dryness and damp. So carly as 1788, the consumption of oak for ship-building purposes was, in that year. upwards of 50,000 loads.
1695. When of good quality, it is more durable than any other wood which is procurable of a like size. In a dry state, it is ascertained to have lasted nearly a thousand years. The open-fibred porous oak of Lincolnshire, and some other places, is a bad sort. The best is that with the elosest grain and the smallest pores. The colour, as is well known, is a tine brown; that which partakes of a reddish hue is not so good as the other. The smell of it is peculiar ; it contains gallic acid, and it assumes a black purple colour when damp, by contact with iron. It warps and twists much in seasoning, and shrinks in width about one thirty-seventh part.
1696. Chestsut. One of the finest of the European timber trees, the Fagus castanea of botanists, was heretofore so common in this country, that Fitzstephen, in his description of London about the time of Henry II., mentions a fine forest of chesnuts as growing on the northern side of the eity. It is stated to have been used in the buildings of our ancestors, but it is very doubtful if it was so employed. The young tree vies with the oak in durability, from the small proportion of sapwood it contains. Of its durability, the roofs of Westminster Hall, that of King's Cullege, Cambridge, and that of Notre Dame, at Paris, are cited as examples, though the fact of the latter being of ehesnut is coubted by Rondelet, who says that Buffon and D'Aubenton thought it a species of cak, which is now well kiown to be the case in the roof first named.
1697. Chestnut, however, is not to be trusted like oak. As Evelyn observed, it is often well-looking outside, when decayed and rotten within. Belidor says it soon rots when the ends of timbers of it are closed round in a wall.
1698. It is, perhaps, from the circumstance of its colour so nearly resembling that of oak, that one timber has so often been mistaken for the other. The difference, however, is, that the pores of the sapwood of the oak are larger and more thickly set and easily distinguished, whilst those in the chesnut require magnifying powers to be distinguished. But a more decided difference is, that the chesnut has no large transverse septa. It is far easier to work than oak, and is not very susceptible of swelling and shrinkage. liron what has been mentioned above, it may be inferred that the wood, though tough and compact, is, when young, hardest and most flexible, the old wood being often shaky and brittle.
1699. Water pipes of this tree endure much longer than those of elm; and for tubs and vessels to hold water, it is superior to oak; for when once thoroughly seasoned, it will neither shrink nor swell, on which account it is used by the Italians for wine tuns and casks. It will thrive on most soils, but rather delights in a rich loamy land, succeeding well, also, on that which is gravelly, clayey, or sandy. Mixed soils are suitable to it, and it is found in the warmer mountainous situations of most parts of Europe.
1700. From the experiments, the cohesive force of a square inch of chesnat, when dry varies from 9570 to $12,000 \mathrm{lbs}$, and the weight of a cubic foot, when dry, is from 4S to 5.5 lbs .
1701. Bercu (Fugus Sylvatica). A beautiful tree, growing to a considerable height, and carrying a proportionable trunk. It flourishes most in a dry warm soil, and grurs moderately quick. The wood is hard, elose, has a dry even grain, and, like the elm, bars the drift of spikes. The sorts of beech are the brown or black, and the white beech. It is common throughout Enrope. In the southern parts of Buckinghamshire, where the soil is chalky, it is particularly abundant; and such is the case near Warbleton, in Sussex, on the southern range of chalk hills, where the beeches are very fine.
1702. Constantly immersed in water, the beech is very durable; such also is the case with it when constantly dry ; but mere damp is injurious to it, and it is very liable to injury by worms, though to these Duhamel considers it much less liable when water-seasoned, than when seasoned in the common way. To render it less liable to the worm, it has been recommended to fell it about a fortnight after Midsummer, to eut it immediately into planks, which are to be placed in water about ten days and then dried. Beech is little used in building, except for piles, in which situation, if constantly wet, they are very durable. From its uniform texture and hardness, it is a good material for tools and furniture, and of it, in boards and planks, large quantities are brought to London. It is without sensible taste and smell, easy to work, and susceptible of a very smooth surface. The white sort is the hardest, though the black is tougher, and, according to Evelyn, more durable. 'The weight of a cube foot varies from 43 to 53 pounds.
1703. Walnut (Juglens, quasi Jovis glans) is of several sorts. The Juglans Regia, or common walnut, was formerly mueh cultivated in this island, as well for the sake of its timber as of its fruit. On the former account the importation of mahogany has long since rendered its cultivation less common. It flourishes better in a thin limestone soil. than in one that is rich and deep, and, if raised for timber, should not be transplanted, but remain in the place where it is sown. For furniture, from its rich brown colour, it is by many persons preferred to mahogany. Its scarcity renders its employment rare for building purposes, though by the ancients it was so employed. One of its properties is, that it is less liable to be affected by worms than any other timber, celar only excepted; but from its brittle and cross-grained texture, it is not generally useful for the main timbers of a building.
1704. The heart-wood is of a greyish brown with dark brown pores, often veined with darker shades of the same colour, which are much heightened by oiling. The texture is not so uniform as that of mahogany, nor does it work so easily, but it may be brought to a smoother surface. The weight of a cubic foot is about 45 pounds.
1705. Cedan (l'inus Cedrus) is an evergreen cone-bearing tree, of which though several have been grown in this country, it is too scarce to be employed in building. Its durability is very great; such, indeed, that Pliny states cedar to have been found in the Temple of Apollo at Utica, which must have been 1200 years old. Its colour is a light rick: yellow brown, with the ammal rings distinet. It is resinous, and has a powerful smell. The taste is slightly bitter, and it is not subject to worms. It is very straight in the grain, works easily and splits readily. Weight of a cubic foot from 30 to 38 pounds.
1706. Fir (Pinus Sylvestris). The red or yellow fir is produced on the hills of Scotland; but the forests of Russia, Denmark, Norway, Lapland, and Sweden produce the finest timber of this species. It is imported, under the name of red wood, in logs and deals. From Norway the trees are never more than 18 inches diameter, whence there is much sapwood in them; but the heart is a stronger and more durable wood than is had from larger trees of other countries. From Riga a great deal of timber is received under the name of masts and spars: the former are usually 70 or 80 feet in length, and from 18 to 25 inches diameter; when of less diameter they take the latter name. Yellow deals and planks are imported from Stockholm, Frederickshall, Christiana, and various other parts of Sweden, Russia, Norway, and I'russia. Of the pine species the red or yellow fir is the most durable; and it was said by the celebrated Brindley, that red Riga deal, or pine wood, wonld endure as long as oak in all situations. In P'ontey's Forest Pruncr, on the authority of Dr. Smith, an instance is given of the durability of natural-grown Scotch fir. It is therein stated, that some was known to have been 300 years in the roof of an old castle, and that it was as fresh and full of sap as timber newly imported from Memel, and that part of it was actually wrought up into new furniture. It is to be observed, that forcign timber has an advantage too seldom allowed to that which is grown at home, the former being always in some degree seasoned before it arrives in this country, and therefore never used in so unseasoned a state as is usually the latter timber.
1707. From its great lightness and stiffiess it is superior to any other material for bears, girders, joists, ralters, and framing in general. In maval architecture it is used for masts and varions other parts of vessels. In joinery, both internal and external, it stands better, is nearly as durable as oak, and is much cheaper.
1708. There is great variety in the colours of the different sorts of this fir: it is generally of a red or honey yeilow of diflerent degrees of brightness, and consists in section of hard and soft circles alternately, one part of cach annual ring being soft and lioht coleured, the
other harder and dark coloured, and possessing a strong resinous taste and smel. When not abounding in resin it works easily. That from abroad shrinks in the log, from seasuning, about one thirtieth part of its width.
1709. The annual rings of the best sort of this timber do not exceed one tenth of an inch in thickness, their dark parts are of a bright red colour. 'That from Norway is the finest of the sort, to which the best Riga and Memel ate much inferior. The inferior timber of this kind, which is not so durable nor so capable of bearing strains, has thick annual rings, and abounds with a soft resinous matter, which is elammy and chokes the saw. Much of the timber of this sort is from Sweden, but it is inferior in strength and stiffiess. That whieh is produced in the colder climates is superior to that which is the product of warmer countries, the Norway timber being mueh harder than that of Riga. The weight of a eubie foot of this fir, when seasoned, varies from 29 to 40 pounds. That of English growth, seasoned, from 28 to 33.
1710. White Fin (Pinus alies), commonly called the spruce of Norway, whose forests produce it in abundance. This is the sort which in deals and planks is imported from Christiana, in which condition it is more esteemed than any other sort. The trees from which these are generally obtained are of 70 or 80 years' growth, and are usually eut into three lengths of about 12 feet each, which are sawn into deals and planks, eaeh length yielding three deals or planks. Their most usual thickness is 3 inches, and they are generally 9 inches wide. In this country they are sold by the hundred, which in the ease of white as well as yellow deals, contains 120 deals, he their thickness what it may, reduced to a standard one of an inch and a half, a width of 11 inches, and a length of 12 fiet. What is called whole deal is an ineh and a quarter thick, and slit deal is one half of that thickness. It unites better by means of glue than the yellow sort, is used much for interior work in joinery, and is very durable when in a dry state.
1711. The colour of the spruce fir is a yellow or rather brown white, the annual ring eonsisting of two parts, one hard, the other softer. The knots are tough, but it is not difficult to work. Besides the importation above named, there is a considerable guantity received from America. Of the Christiana fir a cubic foot weighs from 28 to 32 pounds when seasoned. That from America about 29 pounds; and the Norway spruce grown in Britain about 34 pounds. In seasoning it shrinks about a seventieth part, and aiter being purchased as dry deals at the timber yards, alout one ninetieth.
1712. Amenican Pines. The Pinus Strobus, or what is called the Weymouth or white pine, is a native of North America, imported in logs often more than 2 feet square and upwards of 30 feet in length. It is an useful timber, light and soft, stands the weather tolerably well, and is much used for masts. For joiners' work it is useful from its elean straight grain. But it should not be used for large timbers, inasmuch as it is not durable, and is moreover very susceptible of the dry rot. Its colour is a brown yellow, and it has a peculiar odour. The texture is very uniform, more so, indeed, than any other of the pine species, and the amual rings are not very distinet. It stands well enough when well seasoned. A cubic foot of it weighs ahout 29 pounds.
1713. The yellow pine, or linus variabilis, is imported into England, but it is not much used; it is the produce of the pine forests from New England to Georgia.
1714. The pitch pine (resinosa), remarkable for the quantity and fragrance of the resin it produces, is a native of Canada. It is brittle when dry, and, though heavy, not durable. It is of a much redder hue than the Scoteh pine, and from its glutinous property difficult to plane. The weight of a cubic foot is 41 pounds.
1715. The silver pine (picea) is common in the British plantations. This species oi timber is produced in abundanee, and is much used on the Continent both for carpentry and ship-building. It is light and stilf, and according to Wiebekin, lasts longer in air than in water A cubic foot weighs about $\because 6$ pounds.
1716. The Chester pine (pinaster) is occa-ionally cultivated in the British plantations. It is better suited to water than exposure to the air, and has a finer grain, but eontains less resin, than the pine or silver tir. A cubic foot weighs about 26 pounds.
1717. Larch (Pinus Larix). A timber tree only lately to any eonsiderable extent adopted in the plantations of Great Britain, among whose cultivators the Duke of Athol has been one of the most ardent and successful. It grows straight and rapidly, is said to be durable in all situations, and appears to have been known and appreciated by Vitruvius, who regretted the diffieulty of its transport to Rome, where, however, it was occasionally used. Wiebehin prefers it to the pine, pinaster, and fir, for the arehes of timber bridges. To flooring boards and stairs, where there is much wear, it is well suited and when oiled assumes a beautiful colour, such, indeed, that when used for internal joinery, a coat of varnish gives it a more beautiful appearance than it eonld receive from any paining. The American larches do not produce turpentine; but the timber has been considered iqual to the European sorts. It is of a honey ycllow colour, and more difficult to work than the Riga or Mamel timber, though, when obtnined, the surface is better. It bears the driving
 I" f1- pounts
17.12. Pophax. The Popuiza of bocx-istx wherot five speciex are provitis Ergland: the corumon whez zoglar, tire black, the aspen or crembling foplan, the atole or great

 = TEDNu or brown yihe. The ammal =-n whereof oce site is a lizle carker thau the

:-2 上is (imur) In Greas Rrizain Are species of this tee abound wherenf

 or ooth-bacicol elm, is an imierior sor, aid is ver! common in Susser.
1718. Ihe Cimm Mjetzer is the must oumion species is Ensope, and particuianly in
 Lared ein or wrea bazel Wiobout enumeravimg the coher raricries. whereof the Dusch

$\therefore: 22$ The oolov: of :he kear-wood is dazker tan that of cak, and of a redder broma
 bas a peruliar mell, :vist and warps rery much in drying, end shrinhs cocsiderably in buinla and lentij. Tbough çanculs to work, is beais the crivirg of bulis and rails beter that mat ohic: sots of timber. The weight of a cubic fost when ciry, varies form
 it vtumis cue forty-foutil part of ite wicth.
:-3. Itar Fracomos ezcelaiof This, the moat valuable of the geaus, is common
 is ture vaicabue i an the oid woud. Is is ravch af̈ecterl by the cifierence of the suils in

 * en fither in fit in, the worm spon thea is is; asd therefore recommends its buing
 - ne con face side of the anncal risg being cark in crolotor, whence the ammal nugs are Aneme The geceeral colocs: is Lrown, rewernbirg that of cali; bet it is roore seinoin
 prosationg brown, with a grseminh hese it has no pectliar taste or smell, is dificult w

 coserves- when the weight in m-ctu len than 4 ; prounds the timber is that of an old tree

152: Sr 23004 (Acer peoudo-plationu) uscaly casled the plane tree in the corthe:m

houses in this comtry floored with sycamore and wainscoted with poplar. It seems well enough ealculated for floors.
$17 \div 5$. Bnact. Betula alba, or common bireh, is a species of alder, to which artiele the reader is referred (1719). The American bireh, from Canada, is but little superier to the European bireh. 'The Russian birch, on aecount of its elean light colour and silvery grain, has been lor many years extensively employed for bedroom furniture.
1726. A description of fir (Wellingtmia gigantea) has been lately introduced from colony of Victoria, in Vancouver's Island, on the western side of North America. Itwis sent in logs, duals, and planks. Instead, however, of being only 14 to 16 inches square, and 60 feet long at the maximum, as in the ease of Baltic timber, one stiek of this timber. has been sent not less than 127 feet long, and abut 49 inches square at one third of the height measuring from the butt end, whieh end was about 50 incl:es square. It cortaned 1:307 eubie feet of timber; this is not an exeeptional size. A tree is reported to have been cut down lately, the cireumference of which was 90 feet, and its height 325 feet; the bark was in some places 4 feet thiek. The tree, sound and solid, contained 250,000 fuet of timber. It was supposed to be 3,100 years old. G. R. Burnell states the tenacity of this timber to be greater than, and its resistance to a crushing weight apparently superior 10 , Baltie timber: When loaded in tle eeltre to the point of instantaneous rupture, the Van. eouver's island weod bore weights which were to those borne by English cak as 13 to 12, and to lhose borne by the Baltic fir as $1: 3$ to 8 . Thre-ineh cubes of the three woods were suljected to weights of 45 tons eaeh, or 5 tons ($11,240 \mathrm{lbs}$.) on the inch superficial, when the permanent tlasticity of oak was not allected, that of the fir only slightly so, whilst the Baltie timber was permanently and perceptibly compressed.
17)6a. For joiner's work, the straightness, freedon from knots, deep warm colour, and beauty of the grain, places this timber above any other of the fir or pine woods; whilst its great r hardness would in staircasts, Heors, \&c., compensate for any slight increase in the price of labour for working it. It has been employed by Mr. Burnell in the joiner's work of an office in Linejln's Inn Fields. It seems to alfect iron somewhat as does oak.
1727. Mahogany (Swietenia Mahogoni) is a native of the West Indies ant the country round the Bay of Honduras. The tree is said to be of rapid growth; its trunk oft. n exceeds 40 feet in lengtl and 6 feet in diameter. Its Spanish name is caôba. Spanishe mahogany is imported from Cuba, Jamaica, Hispauiola, St. Domingo, and some other of the West India Islands and the Spanish Main. The best quality is considered to come from the sea-board on the south part of the island of San Domingo or Hayti. The logs are from 20 to 26 inches square, and about 10 feet in lengih. It is close grained, hard, sometimes strongly figured, and generally of a rich brown colour, darker than Honduras: but its pores frequently appear as if chalk had been rubbed into them. It takes a very high polish with hand labour; and French polishing brings out its flower with great lustre.

1727a. Hondurus mahogany is imported m logs of larger size than the above, that is, from 2 to 4 feet square, and fiom 12 to 18 feet in lengels; logs 40 teet in length have been obtained ; planks 6 to 7 feet wide are oceasionally imported; but 5 feet square and 15 fiet long are the more ordinary dimensions. It is so distinctly inferior to the Spanish quality, that no ordinary judge can possibly be mistaken in the normal amples. In weight it is lighter ; and it is of a straighter and more open or spongy giain, without mueh Hower, and therefore little sought after by cabinet makers. The worst kinds are those most filled with grey speeks, from which Spanish mahogany, except the Cuba, is comparatively frec.
17276. Spanish mahogany is in this country far too saluable to be used in common building. It sometimes sells for as much as 62 . per fiot cube, when good fir, of nearly equal value for such purposes, would only cost $2 s$. at the maximum. In Jamaica, maliogany has been frequently employed lor floors, joists, tafters, shingles, \&e.; and ships have been built of it ; for which last purpose, the circumstance of its allowing shot to be buried in it without splintering, makes it peculiarly suitable. Soon alter its introduction into this country in 1724, when a speeimen was sent to Dr. Gibbons by his brother, a West India captain, it was employed for doors, as at the Treasury, by W. Kent, in 17:33. The better qualities are resurved for small articles of cabinet-work and furniture, the best being entployed in the form of veneers, of which twenty-one euts are now got out of an iuch thickness. Solid work for more general purposes, such as handrails of stairs, sashes, sash-doors, and ordinary counting-house and oftice fittings, \&e, is worked out of Honduras mahogany, which is also employed as the groundwork for vencers of the finer quality.
$1727 c$. It is generally suld at per foot superficial, one inch thick; the common qualities at 5 s . to 5 s . 6 d . per cubie foot. It holds with glue better than any other wood. Cf Horduras mahogany, the quality called 'common southern' weighs about "26 lbs.; 'sliperior northern' about $42 \frac{1}{2} \mathrm{lbs}$.; 'good northern ' about 32 lbs ; and ' enmmon northern' about 36 lbs., per cubic foot. All these qualities are used in shipbuilding; the lightest, for furniture. Spanish mahogany weighs 48 lhs .6 oz ., the best from 50 lbs to 54 lbs . per cubie foot. All kinds of this timber are said to be very durable, and free from the attack of worms when hept constantly dry. They do not warp or clack under the influence of
the sun, but they do not resist alternations of great wetness and dryness. They shrink but little in drying, and twist and warp less than any other wood.

1727d. African mahogany (Suietenia or Khaya Senegalensis), from Gambia, is a more recent importation ; it twists mueh more than either of the above, and is decidedly inferior to them in all respects except hardness. Small quantities of malogany are also received from Jamaica and the other West India islands, but they are of a quality so inferior even. to the IIonduras variety, that they are practically unknown to timber merehants. Florida cedar and other varieties are frequently made to pass as mahogany in cheap works.
1728. Teak (Tectona grandis), has of late years formed a valuable timber for shipbuilding; and to a small extent in house, and even carriage, joinery. The best varieties are obtained from the ports of Rangoon or Monlmein (ealled Moulmein teak), and from the coast of Malabar (called East Indian teak). It is by no means rare to meet with sticks of perfectly straight teak 60 or 70 feet long, and about 24 to 30 inelies square. The wood is of a light brown colour, porous, very hard, tough, and when sound, of great strength and tenacity. It derives much ol its value from the aromatic oily substance with which it is mure or less saturated in the fresh state; but this does not prevent its attack by insects whilst in the forest, consequently the trees turn out to be very defective. The wood works well; takes a good polish, and though porous, it is very durable in exposed situations: it is considered that its oily properties render it less injurious to iron than oak. The tenacity of Moulmein teak is $15,000 \mathrm{lbs}$. per superficial inch. Some fine planks from Rangoon were nearly $3 \frac{1}{2}$ feet wide.

1728a. Monung saul (Shorea robusta), of Nepaul, in the East Indies, is in great repute for shipbuilding. It is a heavy, close-grained, light brown wood. This timber is considered to be the most valuable and extensively used of all the trees of India, but the val. of it is much diminished from the injudicions mode in which it is squared. The saul or sâl timber brought to Calculta is seldom more than 30 leet in length. In strength and tenacity it is coasiderably superior to the best teak, compared with which, Captain Baker's experiments prove that its strength is about as 1121 to 869 . Fiom Major H. Camphell's experiments, unseasoned saul broke with a weight of 1308 lhs ; seasoned saul with $1: 319$ lbs.; and teak wood with 1091 lhs. Considered as a building wood, it is somewhat apt to shrink unless very well seasoned, (Juror's Reports, 1851).

1728b. Monra (Mora excelsa), sometimes called Demerara locust, is sent from Demerara in South America. It is a valuable timber for shipbuilding.

1728c. Greenieart (Laurus chloroxylom, or Nectandra rodiai), imported from the Enslish colony of British Guiana, and Brazil, possesses the reputation of immunity from the attacks of marine boring worms; and for this reason it is now largely used in hydranlic works Mr. Burnellhas stated his conviction from what he saw, especially of two logs, in the West India Doeks in 1860, that this timber does suffer from the attaeks of land inseets; and he was at that time in possession of a piece of the timber from Victor Bay, Panama, which was completely riddled by the Teredo unvulis. A writer, commenting on this statement, says that "his experience proves that gre nheart is exempt from the therosion by the tered, but that a molluse is found alive in it when ariiving here from the West hadies. The worm is found in sizes from the lymexylon to the tere to, but it is of a different species, and seems not to live when this wood is used in such constructions as dock gates, in this country." The timber squares from 18 to 24 inches, but usually arrives about 16 inches spluare and 70 feet in length. It is a hard, heavy, fine, but not even-grained wood; it proves strong and durable in positions that are alternately wet and dry.

1728d. Among the other useful hard woods are:-I. The Peon, or Pion wood, an Indian wood of Travancore, East Indies, formerly imported to some extent. from 2 to 4 feet in cireumference and 80 feet in length; but latterly it has been regard. d with sueh disfavour that it is now hardly ever imported. 1I. The Kowre, a New Zealand wood. III. The Australian Red Cedar. IV. The Sabicuf, from Cuba, which was used for the steps of the stairs in the Great Exhibition building of 1851, and are now in the Crystal Pabace at Sydenham. It makes excellent beams and planks. A heavy specimen obtained of this wood was "a portion of a large beam, which hroke merely in falling from a truck!" V. The lron Bark, of Vaa Diemen's Land, Australia, is a very hard and eompact wood, with a specific gravity heavier than water. VI. Borneo wood, imported from Sarawak, was used in 1865 for the floors and staircase in a warehouse in Gresham Street West. It is of so peculiar a character that it broke nearly all the saws used to reduce it to battens: it is light brown in colour, with a texture very similar to teak. It may probably be the Bilian, or iron wood of that conntry, said to lee impervions to the attacks of the white ant. it has not been known to decay when immersed either in fresh or salt water. An engineer who had resided in Borneo for five years, states he had never seen a rotten piece of Bilian wood.

1728e. Besides the weights of varions woods given in the text (as marked *) the subjoincd list of the weight per foot cube in pounds avoirdupois, may be useful.

Table or tife Weights or Timbers.

1728f. The chief woods employed in shipbuilding and acknowledged as "first-rate" by the authorities at Lloyds, are eght in number These are. I. En"lish oak; 11. American live oak; Ill. African oak; IV. Morıng Saul; V. East Indian Tcak; Vı. Gieenheart; Vli. Morra; and Vlll. Iron Bark.
1729. In timber yards, deals are sold by the long hundred or six score; thus the "standard" of deals is reckoned as $120-12 \mathrm{it} . \times 1 \frac{1}{2} \mathrm{in} . \times 11 \mathrm{ins}$. , but varying lengths and thicknesscs are imported (Sce par. 2362 and 9563).

Names.		No.	Ft. long.	Ins. thk.	Wide.	Sup. ins.	Cube ft.
Petersburg deals		120	12	$1 \frac{1}{2}$	11	1980 of $1^{\prime \prime}$	165
". battens	-	120	12	$2 \frac{1}{2}$	7	- -	17.5
1)antzig deals	-	120	12	$1 \frac{1}{2}$	12	- -	180
Norway "	-	120	12	3	9	3240	27,
Sweden - -	-	120	14	3	9	- -	315
Baltic deek dials -	-	-	40	3			
Cloristiania standard	.	120	11	$1 \frac{1}{1}$	9	$1237 \frac{1}{2}$ of $1^{\prime \prime}$	103, $\frac{1}{8}$
Drammen	-	120	9	$2 \frac{1}{2}$	$6 \frac{1}{2}$		
Ditto -	-	120	13	$1 \frac{1}{4}$	$9{ }^{-}$	1462 of $1^{\prime \prime}$	1215
Quebec, long	-	103	12	$1 \frac{1}{2}$	11		
Jitto, short	-	120	10	3	11	27.50 of $1^{\prime \prime}$	2996
London and Dublin	-	120	12	3	9	3240 of $1^{\prime \prime}$	270

The messurements have been rcluced to one standard of 12 ft . long, 3 in. thick, and 9 in . wide. Two of the latest works for calculating deals according to this, the Petersburg standard hundred, are, J. Smith, Compunion to Hoppus; Handbook of Tables fir the use of 'TMmber Merchants, \S c., Loadon, 1860 ; and Grandy, T'mber Importers', \&c. Standurl Guide, 8 vo., London, 1865, to which latter work we are glad to refer the student, and from which we select the following extracts:-

1729, ". American l'orts.-At Quebec, there are three qualities of spruce deals, 1st, 2nd. and 3 rd. Irregular size scantlings are scarcely ever shipped from this port, the general run being batt.ns, 7×3; deals, 9×3; and planks, $11 \times 3,7 \times 2,9 \times 2$, and 11×2; general lungths from 8 to 14 feet. All under 8 feet are elassed as "ends." Ye.low pine battens, dials. and planks are shipped as 1st, 2nd, and 3rd qualities. Battens are not so valuable as deals and planks, some of the latter rumning 11 to 30 inches; the finer qualities bear a hish rate.
17296. St. John's deals rank afer those of Quebec in quality. Battens, deals, and planks run from 8 to 26 fuet; all lengths under 8 feet heing classed as ends. All dals are scarecly ever classed into 1st, 2nd, and Srd, but taken by the run; the sizes 7×3, 9×3, and 11×3, being the highest in priee. Irregular seantlings, such as $3 \times 3,4 \times 3$, $6 \times 3,5 \times 2 \frac{1}{2}, \& \mathbf{8}$., are less jer thousand.
1799. P'uguash, Miramichi, and other Lower Ports. Battens, deals, and planks are oltained as at St. John's. The dcal is a closer grain, hut coarser, and hence not so valuable. The lengths run from 8 to 14 feet, all under 8 feet being 'ends.' Scarcely any irregular scantlings are shipped from these ports. The square timber at the American ports is generally purchased by the eubic foot.

1729d. Baltic Ports. - Memel. Battens and deals are searce; planks form the bulk of the timber imported. They all run from 8 to 20 feet. They are generally sold by $i \underline{0}$ feet run of $11 \times 3,=1$ l'etershurg standard. Battens and deals run 7×3 and 9×3. Christiania. Battens and deals, and Drummen deals run $9 \times 3,7 \times 3$, or $7 \times 2 \frac{1}{2}$. Crown Memel. Square timber is generally sold by the 50 running feet, as 1 st middling, and 2nd middling. But "undersized" timber, that is, under 12 inches square, is sold by 50 cubic feet, or by 50 running feet. There are also "short lengths of undersized" timber.

1:29e. Home Trade. - At London, pine deals are sold by the Petersbuig, and spruce deals by the London, standard. Square timber is sold by the load, or 50 cube feet, or by the cube foot, calliper measurement. At Liverpoul and Bisistol, deals are sold by the l'etersburg standard; square timber by the load or foot, string measurement. At Glasgow, deals are sold by the cube foot; square timber by the cube foot, string measurement. At Dublin, deals are sold by the London or Dublin standard of $120,12 \times 9 \times 3$; square timber by the ton of 40 feet, string measurement."

1729f. These timbers are used in building for the undermentioned purposes :-
Joists and main timbers: The largest, of Dantzic, Memel or Riga, tir ; those of 10 or 12 mehes square, from Sweden; those of 8 inches square, trom Norway.

Partitions and minor timbers: American red wood or red pine, which not treing so strong as that from the Baltic, must be cut to a little larger size.
Sleepers, window sills, and sume parts of the rouf: Oak.
Framing : Norway and Christiania white deals; Christiania yellew deals are sappy; Swedish deals are bad, as they warp mueh.
Panelling: Christiania white pine; or American yellow pine.
Best ordinary floors: Drammen and Christiania white deals; American pitch pine; American deals are bad for floors, as they are a softer wood.
Ground Hoors: Stockholm and Getle yellow deals.
Warehouse floors, and Staireases: Arehangel and Onega p'anks, and American pitch pine. Best floors: Petersburgh, Onega, and Chistiania battens.
Interior finishings generally : Baltic red and white wood, and American red and yellow pine.
1729g. Menel timber is generally considered the most convenient for size, and is
superior in strength to the Swedish, or Norwegiam; Riga, the best in quality: Dantzie, when free from large knots, the strongest ; and the Swedish, the toughest, but weakest. Riga can always be depended upon, and although the dearest in price, is the cheapest in the end.
1730. We shall now place before the reader, observations on timber made by the celebrated Evelyn though perhaps at the risk of repetition in what follows after them.
1731. "Lay up your timbers very dry, in an arry place, yet out of the wind or sun, and not standing very upright, but lying along, one piece upon another, interposing some short blocks between them, to preserve them from a certain mouldiness which they usually contract while they sweat, and which frequentiy produces a kind of fungus, especially if there be any sappy parts remaining.
1732. "Some there are yet who keep their timber as moist as they can by submerging it in water, where they let it imbibe, to hinder the cleaving; and this is good in fir, both for the better stripping and seasoning ; yea, not only in fir, but other timber. Lay, therefore, your boards a fortnight in the water (if ruming the better, as at some mill-pond head); and there, setting them upright in the sun and wind, so as it may freely pass through them (especially during the heats of summer, which is the time of finishing buildings), turn them daily; and thus treated, even newly sawn boards will floor far better than many years' dry seasoming, as they call it. But, to prevent all possible aceidents, when you lay your floors, let the joints be shot, fitted, and tacked down only for the first year, nailing them for good and all the next; and by this means they will lie stamneh, close, and without shrinking in the least, as if they were all one piece. And upon this oceasion I am to add an observation, whieh may prove of no small use to builders, that if one take up deal boards that may have lain in the floor a hundred years, and shoot them [plane their edges] again, they will certainly shrink (toties quoties) without the former method. Amongst wheelwrights the water seasoning is of especial regard, and in such esteem amongst some, that I am assured the Venetians, for their provision in the arsenal, lay their oak some years in water before they employ it. Indeed, the Turks not only fell at all times of the year, without any regard to the season, but employ their timber green and unseasoned; so that though they have excellent oak, it decays in a short time, by this only neglect.
1733. "Lim felled ever so green, for sudden use, if plunged four or five days in water (especially salt water), obtains an admirable seasoning, and may immediately be used. I the oftener insist on this water seavoning, not only as a remedy against the worm, but for its efficacy against warping and distortions of timber, whether used within or exposed to the air. Some, again, commend burying in the earth; others in wheat; and there be seasonings of the fire, as for the scorching and hardening of piles, which are to stand either in the water or in the earth.
1734. "When wood is charred it becomes incorruptible; for which reason, when we wish to preserve piles from decay, they should be charred on their outside. Oak posts used in enclosures always decay about two inches above and below the surface. Charring that part would probably add several years to the duration of the wood, for that to most timber it contributes its duration. Thus do all the elements contribute to the art of seasoning.
1735. "Timber which is cleft is nothing so obnoxious to reft and cleave as what is hewn; nor that which is squared as what is round: and therefore, where use is to be made of huge and massy columns, let them be bored through from end to end. It is an excellent preservative from splitting, and not unphilosophical ; though to cure the accident painter's putty is recommended; also the rubbing them over with a wax cloth is good: or before it be converted the smearing the timber over with cow-dung, which prevents the effects both of sun and air upon it, it of necessity it must lie exposed. But, besides the former remedies, I find this for the closing of the chops and clefts of green timber, to anoint and supple it with the fat of powdered beef broth [we do not quite agree with our author here], with which it must be well soaked, and the chasms filled with sponges dipped into it. This to be twice done over.
1736. "We spake before of squaring ; and I would now recommend the quartering of such trees as will allow useful and competent seantlings to be of much more durableness and effect for strength, than where (as custom is and for want of observation) whole beams and timbers are applied in ships or houses, with slab and all about them, upon false suppositions of strength beyond these quarters.
1737. "Timber that you have occasion to lay in mortar, or which is in any part contiguous to lime, as doors, window cases, groundsils, and the extremities of beams, \&c., nave sumetimes been eapped with molten pitch, as a marvellous preserver of it from the burning and destructive effects of the lime; but it has since been found rather to heat and decay them, by hindering the transudation which those parts require; better supplied with loan, or strewings of brick-dust or pieces of boards; some leave a small hole for the air. But though lime be so destructive, whilst timber this lies dry, it seems they mingle it with hair to keep the worm out of shijps, which they sheathe for southern voyages, though it is held much to retard their course.
1798. "For all uses, that timber is esteemed the best which is the most ponderous, and which, lying long, makes the deepest impression in the earth, or in the water being floated; also what is without knots, yet firm and free from sap, which is that fatty, whiter, and softer part called by the ancients alloumen, which you are diligently to hew away. My Lord Bacon (Exper. 6.58.) recommends for trial of a sound or knotty piece of timber, to cause one to speak at one of the extremes to his companion listening at the other; for if it be knotty, the sound, says he, will come abrupt."

PRESERVATION OF TIMBER.

1739. The preservation of timber, when employed in a building, is the first and most important consideration. Wherever it is exposed to the alternations of dryness and moisture, the protection of its surface from either of those actions is the principal object, or, in other words, the application of some substance or medium to it which is imperviable to moisture; but all timber should be perfectly dry before the use of the medium. In Holland the application of a mixture of piteh and tar, whereon are strewn pounded shells, with a mixture of sea sand, is general; and with this, or small and sifted beaten seales from a blacksmith's forge, to their drawbridges, sluiees, and gates, and other works, they are admirably protected from the effects of the seasons. Semple, in his work on aquatic building, recommeuds, that "after your work is tried up, or even put together, lay it on the ground, with stones or brichs under it to about a foot high, and burn wood (which is the best firing for the purpose) under it, till you thoroughly heat, and even scorch it all over; then, whist the wood is hot, rul, it over plentifully with linseed oil and tar, in equal parts, and well hoiled together, and let it be kept boiling while you are using it; and this will immediately strike and sink (if the wood be tolerably seasoned) one inch or more into the wood, close all the pores, and make it become exceeding hard and durable, either under or over water." Somple evidently supposes the wood to have been previously well seasoned.
1740. Chapman (on the preservation of timber) recommends a mixture of sub sulphate of iron, which is obtained in the refuse of copperas pans, ground up, with some chuap oil, and made sufficiently fluid with coal-tar oil, wherein pitch has been infused and mixed.
1741. For common purposes, what is called sanding, that is, the strewing upon the painting of timber, before the paint dries, particles of fine sand, is very useful in the preservation of timber.
1742. Against worms we believe nothing to be more effeacious than the saturation of timber with any of the oils; a process which destroys the insect if already in the wood, with that of turpentine especially, and prevents the liability to attack from it. Evelyn recommends nitrie acid, that is, sulphur immersed in aquafortis and distilled, as an effeetual application. Corrosive sublimate, lately introduced under Kyan's patent, has long been known as an effectual remedy against the worm. Its poisonous qualities of course destroy all animal life with which it comes in contact; and we believe that our readers who are interested in preserving the timbers of their dwellings may use a solution of it without infringing the rights of the patentee. But the best remedy against rot and worms is a thorough introduction of air to the timbers of a building, and their lying as dry and as free from moisture as practicable. Air holes from the outside should be applied as much as possible, and the ends of timbers should not, if it can be avoided, be bedded up close all round them. This practice is, moreover, advisable in another respect, that of being able, without injury to a building, to splice the ends of the timbers should they become decayed, without iuvolving the rebuilding of the fabric; a facility of no mean consideration.
1743. The worm is so destructive to timber, both in and out of water, that we shall not apologise for closing this part of our observations with Smeaton's remarks upon a specics of worm which he found in Bridlington piers. "This worm appears as a small white soft substance, much like a margot ; so small as not to be seen distinctly without a magnifying glass, and even then a distinction of its parts is not casily made out. It does not attempt
to make its way through the wood longitudinally, or along the grain, as is the case with the common ship worm, but directly, or obliquely, inward. Neither does it appear to make its way by means of any hard tools or instruments, but rather by some species of dissolvent liquor furnished by the juices of the animal itself. The rate of progression is, that a three inch oak plank will be destroyed in eight years by action from the outside only." For resisting the effects of these worms, Smeaton recommends the piles to be squared, to be fitted as closely as possible together, and to fill all openings with tar and oakum, to make the face smooth, and cover it with sheathing.
1744. The destructive effects of the white ant are so little known here, that it is unnecessary to make further mention of them, than that in India they are the most inveterate enemies with which timber has to contend. From Young's Annals we extract the following eurious statement of experiments made upon inch and a half planks, from trees of thirty to forty-five years' growth, after an exposure of ten years to the weather.

Cedar was perfectly sound.
Lareh, sap quite decayed, but the heart, sound
Spruce fir, sound.
Silver fir, in decay.
Scoteh fir, mueh decayed.
Pinaster, in a perfeetly rotten state.
Whence we may be led to some inference of the value of different sorts of timber in resisting weather ; though we must not be altogether guided by the above table, inasmuch as it is well known that the soil on which timber is grown much increases or deteriorates its value, and that split timber is more durable and stronger than that which is sawn, from the circumstance of the fibres, on aceount of their continuity, resisting by means of their longitudinal strength ; whereas when severed by the saw, the resistance depends more on the lateral coliesion of the fibres. Hence whole trees are invariably stronger than specimens, unless these be particularly well selected, and of a straight and even grain; but in practice the results of experiments are on this account the more useful.

DECAY OF TIMBER.

1745. If timber, whatever its species, be well seasoned, and be not exposed to alternate dryness and moisture, its durability is great, though from time it is known to lose its elastic and cohesive powers, and to become brittle if constantly dry. On this account it is unfit, after a certain period, to be subjected to variable strains: however, in a quiescent state it might endure for centuries. Dryness will, if carried to excess, produce this category. The mere moisture it absorbs from the air in dry weathier is not sufficient to impair its durahility. So, also, timber continually exposed to moisture is found to retain for a very long period its pristine strength. Heat with moisture is extremely injurious to it, and is in most eases productive of rot, whereof two kinds are the curse of the builder, the $w_{t} t$ and the $d r y$ rot, though perhaps there be but little difference between the two. They appear to be produced by the same causes, excepting that the freedom of evaporation determines the former, and an imperfeet evaporation the latter. In both eases the timber is affected by a fungus-like parasite, beginning with a speeies of mildew; but how this fungus is generated is still a vexata questio; all we know is, that its vegetation is so rapid, that often before it has arrived at its height, a building is ruined. From our inquiries on the Continent, we believe the disease does not occur to the extent that it does in this country; a fact which we are inclined, perhaps erroneously, to attribute to the use of the timber of the country, instead of imported timber. Our opinion may be fanciful, but there are many grounds on which we think that is not altogether the ease. Our notion is, that our imported timber is infected with the seeds of decay long before its arrival here (we speak of fir more especially), and that the comparative warmth and moisture of the climate bring more effectually the causes of decay into action, especially where the situation is close and confined. Warmth is, doubtless, known to be a great agent in the dry rot, and most especially when moisture co-operates with it, for in warm cellars and other close and confined situations, where the vapour which feeds the disease is not altered by a constant change of air, the timbers are soon destroyed, and become perfectly decomposed.
1746. The lime, and more especially the damp brick work, whieh receive the timbers of a new building, are great causes of deeay to the ends of them; but we do not think that the regulations of the 19 Car. II. eap. 3., which directed the builders atter the tire of London, to bed the ends of their giders and joists in lom instead of mortar. would if followed out in the present day, be at all effective in preventing the decay incident to the ends of timbers. Timber, in a perfectly dry state, does not appear to be injured by dry lime; and inde.d, lime is knowis to be effectual in the protection of wood againt worms. Tin: er in contact with masonry is coastantly fomd to decay, when the other parts of the
beam have been sound. This will be entirely obviated ly inserting the wood in an iron shoe, or by piacing a thin piece of iron betwist the wood and the stone. Cases are known in which the iron shoe appeared to have proved a complete protection against dry rot and decay; a hard erust being fonmed on the timber in contact with the metal. The system of grouting must contribute to the early decay of weod bond; but at Manchester, where it was used very generally, it appeared to answer well, for the high temperature kept up in the buildings may cause the walls to dry very soon. Sea-sand, used for outside and inside purposes, in a spirit of economy, soon shows the result by inducing the appearance of rot in timber. Wood laid in sandy soil is well preserved, as was found to be the case in the specimens lately dug up at Birkenhead from depths varying from 8 feet to 39 feet; they were esnsidered to have been buried for centuries.
1747. Nothing is more injurious to the floors of a building than covering them with painted floorcloth, which entirely prevents the access of atmospheric air, whenee the dampness of the boards never evaporates; and it is well known that oak and fir posts have been lirought into premature decay by painting them betore their moisture had evaporated; whilst in the timber and pewing of old churches, which have never been painted, we ste them sound atter the lapse of centuries. Semple, in inis Treatise on Building in Water, notices an instance of some field gates made of the fir of the place, part whereof, near the mansion, were painted, and had become rotten, while those more distant from the mansion, which had never been painted, were quite sound.

1747a. According to Baron Liebig, the decay of wood takes place in the thrie fullowing modes:-I. The oxygen in the atmosphere combines with the hydrogen of the fibre, and the oxygen unites with the portion of carbon of the fibre, and eraporates as carbonic acid; this process is called decomposition. II. The actual deray of the wood which takes place when it is brought in contact with rotting substances. And III. The inner decomposition of the wood in itself, by losing its carbon forming carbonic acid gas, and the fibre under the infuence of the latter is changed into white dust; this is called putrefaction.
prevention of decay.
1748. After timber is felled, the best method of preventing decay is the immediate removal of it to a dry situation, where it should be stacked in such a manner as to secure a free circulation of air round it, but without exposure to the sun and wind, and it should be rough squared as soon as possible. When thoroughly seasoned before cutting it into scantlings it is less liable to warp and twist in drying. The ground about its place of deposit should be dry and perfectly drained, so that no vegetation may rise on it. Hence a timber yard should be sticwed with ashes, or the seales from a foundry or forge, which supply an admirable antidote to all vegetation. It is thought that the more gradually timber is seasoned the greater its durablity; and as a general rule, it may be stated, that it should not be used till a period of at least two years from its being felld d, and for joiners' work at least four years. Much, however, is dependent on the size of the pieces. By some, water seasoning has been recommended; by others the steaming and boiling it; smokedrying, charring. and seorching have als, been recommended. The latter is, perhaps, the lest for piles and other pieces that are to stand in the water or in the ground. It was practised by the ancients, and is still in use generally for the posts of park paling and the like.
1749. In Norway the deal planks are seasoned by laying them in salt water for three or four days, when newly sawed, and then drying them in the sun, a process which is considered to be attended with advantage; but it does not prevent their shrinking. Mr. Evelyn recommends the water seasoning for fir.

1749a. The effectual stasoning obtained by Davison and Symington's patent process of forcing heated air in a continued current through timber under pressure, effectually dries it, and coagulates the albumen. The timbers for the flooring of the Coal Exchange at London have been so treated, and show no signs of shrinkage. The wood was taken in its natural state, and in less than ten days it was thoroughly seasoned; in some cases from 10 to 48 per cent of moisture was taken out of it. The air when heated to about 110° or 120° is sent through the timber at a rate of about 48 miles per hour ; the heat being regulated according to the quality of the timber. Honduras mahogany exposed to a heat of 302°, would have the whole of the moisture taken from it in 48 hours. 'Ihis process, however, sometimes splits the timber. Out of a hundred specimens of wood experimented upon, rarying from one inch to twelve inches square, not one of them split : evell some openings which were visible before the process was applied, were found tobe closer after it. Perhaps 9 inches square is the limit to which the operation can be successfinly applied.
1750. Notwithstanding, however, all care in seasoning, when timber is employed in a damp situation it soon decays; and ore of the principal remedies against that is good drainage, without which no precautions will avail. It is most important to take care that earth should not lie in contact with the walls of a building. for the damp is quickly communicated, in that case, by their means to the ends of timbers, and rot soon fo!lows. No expedient to guard against this contingeney is so good as what are cailed air drains.
1751. When the careass of a building is complete, it should be left as long as possible to dry, and to allow to the t mbers what may be called a second seasoning. The modern practice of finishing buildings in the quickest possible period, has contributed more to dry rot than pe:haps any other cause; and for this the arehiteet has been blamed instead of his employer, whose object is generally to realize letting or to enjoy occopation of them as early as possible. After the walls and timbers of a building are once thoroughly dry, all means should be employed to exclude an aceession of moisture, and delay is then prejudicial.

1752 Among the many inventions to preserve wood from deeny, those of England have proved the most suceessful. In $17: 37$ a patent was granted to Mr. Emerson to prepare timber with hot oil. This was followed by various recommendations early in the present century ; those of later date consist of : - I. Kyan's process, 1832, who steeped the timber in a solution of bichloride of mercury, known as corrosive sublimate (par. 1742.) It appears to penetrate fir less than some other woods (Faraday). The wood thus treated becomes ot less specific gravity, less flexibility, and more brittle. I1. Sir William Burnett's patent of 1836, was for using the chloride of zinc. III. M. Bréant in 1837 suggested sulphate of iron, which was foond not to alter the qualities of the timber as did the corrosive sublimate. 1V. Margary's patent, 1837, is for steeping timber in a solution made of one pound of sulphate of copper with eight gallons of water. Wood impregnated with sulphate of copper (blue vitriol) will not last longer in sea water than any other wood. But wood so treated will last longer in the soil than if either tarred or charred. Its applieation for the prevention of rot is bencficial, and it might be used where not expostd to the action of water, on aceount of the solubility of the salts. The proportion of the sulphate should be oase pound to four gallons of water ; we have also met with the proportion of one pound to two gallons; perhaps the strongest is the best (pur. 1752b.) V. Payne, 1841, patented a system for using two solutions; first, sulphate of iron, which would form an oxide of iron in the cells; and secondly, carbonate of soda: some very good results were obtained, but the process must be done under pressure and with the greatest care.

1752a. VI. Bethell's patent, 1838, consistz in the injection of oil of tar, containing creasute and a crude solution of acetate of iron, cusmonly called pyrolignite of iron, after the air in the wood has been extracted. This process is effective to a great extent, and full particulars are given by G. R. Burnell iu his paper read betore the Society of Arts 1860, from whieh we have been quoting. It, however, ean only be recommended for rallways and other large works; the offensive smell and increased danger by fire should deter its use in house. building. In the best creasoting works, the oil is injeeted at a temperature of 120° and under a prissure of 150 lbs . on the square inch, so that ordinary fir timber absorbs 10 llss. weight of the creasote per cubic foot; the wood should be weighed to ascertain that it did absorb that quantity. For all engineering purposes, fir timber thus treated is far more durable than the best oak, teak, or other hard woods, and the cust of the operation is very small. Timber which has just been taken out of water contains so large a quantity that it resists the entrance of the oil ; unless time, therefore, be given for it to be first dried, it would necessarily be badly prepartd.

1752b. VII. Dorsett and Blithe, 1863, patented the injection of heated solutions of sulphate of coperer (par. 1752, I V.), a process said to have been adopted by French, Spanish, Italian, and other railway compranies. Amongst its adrantages, they state that wood so prepared is rendered to a great extent incombustible; and that for out-door purposes it has a clean yellowish surface, without odour, requires no painting, remaining unchanged for any length of time.
$1752 c$. Experience of the English processes shows that creasoting is the most generally successful; the application of the sulphate of copper is satisfactory in many cases; while the other processes, although no doubt of oceasion 11 value, have been practically abandoned. They all depend for their success upou the skilful and conscientious manuer in which the are applied; for as they involve chemical actions on a large scale, their efficiency must depend upon the observation of the minute practical precautions required to exclude auy disturbiug causes.

1752d. Carbolineum Aveuarius is said (1887) to be an efficient preservative of wood against all external and internal injurious infuene. s, driving the moisture out of it by making it impervious to danp, and is stated to be a preservative against the attack of white ants in hot cimatis. Being thin and liquid it soaks into the wuod readily. One gallon will cover from 30 to 50 square yards.
1753. It is no easy matter to cure the dry rot where it has once taken root. If it be found necessary to sulstitute new timbers for old onss, every partiele of the fungus, known as the Merulius lacrymuns, must be removed from the neighbourhood of such new timbers. After scraping it from the adjoining walls and timbers, perhaps no better application than one of the washes above mentioned can be employed. About 300° of heat would effect the same purpose, but this is diffieult in application. Coal tar has been found useful, but its odour, arising at a moderate degree of heat, is an objection to its use. A weak sohtion of vitriolic aeid with water will generally stop the rot if it have not gone too far. lyroligneous acid is recommended for preventing the spreading of the disease. The precautions indicated above for the prevention of decay, although not always successful, must be decmed preferable to the application of after remedies.

Sect. V.

IRON.

1754. Iron is a metal founa in almost all parts of the worla, and thougli not mentioned by Homer, and bence, we may suppose, in his time extremely scarce, it is now more abundant than any of the other metals, and is, at the same time, the most useful. Although, with the exception of tin, it is the lightest of all metals; yet it is, when pure, very malleable and extremely harc. Its malleability is increased by heat, whereas most other metals, as they are heated, become more brittle. It is the only known substance whereon the loadstone acts, and its specific gravity to water is as 7632 to 1000.
1755. The iron manufactured in Great Britain is obtained from three species of the ore. The Lansashire, which is very heavy, fibrous in texture, and of a dark purple colour inclining to black, and lodged in veins. The Bog ore, which has the appearance of a deep yellow clay, and is found in strata of from twelve to twenty inches in thickness. And lastly, Iron stones, of an irregular shape, frequently in beds of large extent, similar to other stony masses, and often intersected with seams of pit coal. It is principally from the argillaceous ore or clay iron-stone that iron is extracted in this country.
1756. After raising, the ores are selected and separated as much as possible from heterogeneous substances. They are then roasted in large heaps in the open air, for the purpose as well of freeing them from the arsenic and sulphur they contain as to render them friable or easy of reduction to a powder. The roasting is performed by means of bituminous coal, and the result is a substance full of fissures, friable, and a deprivation of all vitreous lustre. After this it is transferred to the crushing mill for complete pulverization, whence it is carried to the smelting furnace for conversion into iron. Herein it undergoes two separate processes: first, the reduction of the oxide to a metallic state; second, the separation of the earthy particles in the form of scoria. These operations are conducted by submitting the ore, ordinarily mixed with certain fluxes, to the action of carbon at a very high temperature, in what are called blast furnaces, which vary in beight from twelve to sixty feet, and are of the form of truncated cones, sometimes however of pyramids, terminating usually in cylindrical chimneys, whose internal diameter is from four to six feet. The interior of these furnaces is usually of a cylindrical form, whose internal diameter is from four to six feet. Their cavity is usually of a circular form, except at the crucible or hearth, where it becomes a right rectangular prism, oblong in a direction perpendicular to the blast orifices or tuyeres of the bellows. The sides of the crucible are most commonly formed of gritstone. The loshes, which are in the form of an inverted quadrangular pyramid approaching a prismatic shape, are placed ahove the crucible, and above them rises the conical hoay of the furnace, which is lined with fire-bricks, and, in ascending, is contracted similarly to the narrow end of an egg, until it terminates in the chinney. The furnace is of course constructed in the most solid manner, and strengthened by iron bands and bars. The bellows employed are mostly of a cylindrical form, and their pistons worked etther by water or steam. The blast holes, which are in the upper part of the crucible, and frequently placed on opposite sides, but so that the two opposite eurrents may not impinge nuon one another, are two in number. Openings are provided at the lower part of the crucible for the discharge of the metal and scoria, and are kept stopped by clay and sand upon the exterior when the furnace is in operation. The reduction is commenced by gradually heating up the furnace until capable of being entirely filled with fuel, and then, as its c.ntents begin to sink, alternate changes of ore, mingled with $f l u x$, and of charcoal and coke, are added. The blast is now let on, and the metal in the ore, parting with its oxygen, flows by degrees, subsiding to the bottom of the crucible, covered with a melted slay, which is occasionally let off by removing the clay from one or more, if necessary, apertures in the crucible; and on the bottom of the furnace becoming filled with the metal, which generally occurs after nine to twelve hours, the iron itself is discharged by one of these openings into a fosse of sand mixed with elay. When the iron has flowed out the aperture is again closed, and by this method the furnace is kept in constant action.
1757. Limestone of the best quality is employed as a flux to assist the fusion of the ore, which it accomplishes by vitrefying the earths wherewith it is mixed up with the oxide of iron. The iron when run out from the blast furnace in the state of cast iron is far from being in a pure state, having a coarse grain, and being brittle. In its conversion to bar iron, it undergoes one of the two following processes, as charcoal or coke may be e:nployed. In the former case a furnace much resembling a smith's bearth is used, having a sloping cavity sunk from ten to twelve inches below the blast pipe. After the cavity has been filled with charcoal and scoria, a pig of cast iron, well covered with hot fuel, is placed opposite the blast pipe. The blast being introduced, the pig of iron lying in the very bottest part soon begins to melt, and runs down into the cavity below, where, being out of the influence of the blast, it becomes solid, and is replaced in its former position, and the
ravity is again filled with charcoal. It is there again fused, and so on a third time. all these precesses being accomplished in three or four hours. The iron, thus again solid, is taken ont. and very slightly hammered, to free it from the attached scoria; after this it is returned to the finmace, in a corner whereol it is stackell, out of the action of the blast, and well covered with charcoal, where it remains gradually to cool until sufficiently compact to bear the tilt or trip hammer (to be shingled, to force out thee cinders), which is moved by machinery, and whose weight is from 600 to 1200 lhs. Thus it is beaten till the scorix are forced out. and the particles of iron welded together, when it is divided into several portions, which by repeated heating and hammering are drawn into bars, in which state it is ready for sale.
1758. There are various me:hods of procuring the hlast; the first, and most ancient, is by means of bellows; the latest, which has been found in the mining districts to be a contrivance of great importance, is the placing a series of vanes attached to an axis, which, by machinery, are made to revolve in a box with gieit rapidity. A pipe passing from the outside of the box to the furnace conveys the air to it as the vanes revolve, a new portion continually entering by a hole at the axis. The air thus driven through at its natural temperature constitutes a cold blast in contradistinction to air heated by artificial means or hot bla t. This latter system was discovered by J. B. Neilson, of Glasgow, about the year 1826; his patent expired in 184%. At the present day air is fureed into the furnaces at a temperature of 600°, and even of 800° Fahr., although at the commencement it was rarely used ahove 300°. The irons obtained from the former process are considered to be tougher and stronger than those obtained from thie latter process, and prescint a closer texture and a smaller crystallization than the latter irons. The Blaenavon, Coed Talon, Lowmoor, and Muirkirk irons are amongst the most esteemed varienies. Perhaps it may be laid down as a general principle that where pig-iron is remelte I with coke in the cupola furnace, for the purposes of the ironfounder, or refined with coke in the conversion of forge pig into bar iron, it is of little consequence whether the reduction of the ore has been effected with the hot or the cold blast; but where large castings have to be ron directly from the smelting furnace, the quality of the metal will, no doubt, suffer from the use of the hot blast.
1759. The proportion of pig or cast iron from a given quantity of ore varies as the difference in the metallic contents of different parcels of ore and other circumstances, but the quantity of bar obtained from pig iron is not valued at more than 20 per cent.
1760. The other process for manufacturing bar iron, which is that chiefly employed in this country, is conducted in reverberatory furnaces, usually called puddling furnaces. The operation begins with the fusion of the cast iron in refinery furnaces, like the one above described. When the iron is fully melted, a tap-hole is opened in the crucible, and the metal and slag flow out together into a fosse covered with clay well mixed with water, by which a coating is formed that prevents the metal from sticking to tne ground. The finer metal forms a slab about ten feet long, three feet broad, and from two to two and a half inches in thickness. For the purpose of slightly oxidizing it, and to make it brittle, it is much sprinkled over with cold water. In this part of the process it loses in weight from 12 to 17 per cent. After this, it is broken up into pieces, and placed on the hearth of a reverberatory furnace, in portions heaped up to its sides in piles which rise nearly to the roof, leaving a space open in the middle to give room for puddling the metal as it flows down in streams. When the heat of the furnace has brought it to a pasty state, the temperature is reduced, a little water being sometimes thrown on the melted mass. The semiliquid metal is stirred up by the workman with his puddle, during which it swells, and parts with a large quantity of oxide of iron, which burns with a blue flame, so that the mass appears ignited. As it refines, the metal becomes less fusible, or, as the workmen say, it begins to dry. The puddling goes on until the whole charge assumes the form of an incoherent sand, when the temperature is gradually increased to give it a red white heat, at which period the particles begin to agglutinate, and the charge, in technical language, works heavy. The refining is now considered finished, and the metal has only to be formed into balls, and condensed under the rolling cylinder. From this state it is brought into mill bar iron. After this last operation, several pieces are welded together, from which it acquires ductility, uniformity, and cohesion. A lateral welding of four pieces together now follows, and the mass passes through a series of cylinders as in the first case, and becomes Euglish bar-iron.
1761. The lamination of iron into slreets is by a refinery furnace, with a charcoal instead of a coke fire.
1762. Malleable iron is often obtained from the ores directly, by one fusion, if the metallic oxide be not too much mixed with foreign substances. It is a mode of working much,more economical than that above described, and from the circumstance of its having been long known and used in Catalonia, it is known by the name of the methorl of the Catatunian forge. The furnace employed is similar to the refiner's forge already described. The crucible is a kind of semicircular or oblong basin, cighteen inches in diameter, and
eight or ten in depth, excavated in an area, or small elevation of masonry, cight or ten feet long, by five or siy broad, and covered in with a chimney. 'The tuyere is placed five or six inches above the basin, inclining a little downwards, and the blast is received from a water blowing machine. The first step consists in expelling the water combined with the oxide, as well as the sulphur and arsenic when these are present. This, as usual, is done by roasting in the open air, after which it is reduced to a tolerably fine powder, and thrown at intervals by shovels-full upon the chareoal fire of the forge hearth, the sides and bottom of the basin being previously lined with brasques (coats of pounded charcoal). It gradually softens and unites into lumps more or less coberent, which finally melt and accumulate in the bottom of the crucible or basin. A thin slag is occasionally let off from the upper surface of the melted metal in the basin through holes which can be closed and opened at the discretion of the workman. The melted iron preserves a pasty condition owing to the heat communicated from above. When a mass sufficiently great has accumulated, it is re--aoved, put under the hammer, and forged at once. A lump, or bloom, of malleable iron is thus produced in the space of three or four hours. Four workmen are empluved at one forge, and by being relieved every six hours, they are enalled to make 86 cwt. of iron per week. In the Catalonian forge, 100 lbs . of iron are obtained from 300 lbs of ore (a mixture of sparry iron, or carbonate and hematite), and 310 lbs of charcoal, being a produce of 33 per cent.
1763. A visit to some of the iron districts is necessary fully to understand the processes we have above shortly described; but the founding of iron may be well enough observid in the metropolis, though not on so large a scale as in some of the provinces. A succinct decription, however, is given under the heading Foundry, Chap. 1I1. Sec. xi.
1764. We here subjoin a summary of the modern observations on iron (collected from various authorities) as given in Rankine's Civil E'nginerring. The metallic products of the iron manufacture are of three kinds: I. Malleable or wrought mon; II. Cast inon; and 11I. Stiel: both the latter being certain compounds of iron with carbon. Some investigators affirm that nitrogen is one of the essential constituents of steel, but this requires contirmation. The strength and other grod qualities of these products depend mainly on the absence of impurities, and esprecially of certain substances which are known to cause bittleness and weakness, of which the most important are sulphur, phosphorus, silicon, calcium, and magnesium. Sulphur, and (according to Mushet) calcium, and probably also magnesium, make iron what is termed red shurt, that is, brittle at high temperatures. Phosphorus and (according to Mushet) silicon make it cold short, that is, brittle at low temperatures. These are both serious inperfections, but the latter is the worst defect.
$1764 a$. Wrougit or malleable iron in its perfect condition is pure, or nearly pure, iron; its strength is in general greater or less according to the greater or less purity of the ore and fuel employed in its manulacture. Mallable iron is distinguished by the property of welding. Two pieces, if raised nearly to a white heat and pressed or hammered firmly together, adhering so as to form one picce. It is essential that the surfaces to be welded should be perfectly clean and free from ox de of iron, cinder, anl all foreign matter. Where several bars are to be faggoted or rolled into one, they require careful piling, so as to ensure the pressure exerted by the hammer or the rollers being transmitted through the whole mass; otherwise the finished bar or piece may show flaws marking the divisions between the bars of the pile. Wrought iron, although it is at first male more compact and strong by rehtating and hammering, or otherwise working it, soon reaches a maximum strength, after which all reheating and working rapidly makes it weaker. Good bar iron has in general attained its maximum strength, and therefore, in all operations of forging it, the desired size and figure ought to be given to it with the least possible amount of reheating and working. In large forgings, the tenacity is only about three fourths of that of the bars from which the forgings were made, and sometimes even less.

1764b. It is still a matter of dispute to what extent and under what circumstances wrought iron loses its fitrous structure and toughness, and becones crystalline and brittle. By some authorities it is asserted that all shocks and vibrations tend to produce that change; others maintain that only sharp shocks and vibrations do so; and others that no such change takes place; but that the same piece of iron which shows a fibrous fracture, if gradually broken by a steady load, will show a crystalline fracture, if suddenly broken ly a sharp blow. It is certain, at all events, that iron. whether cast or wrought, onght to be as little as possible exposed to sharp blows and rattling vibrations. Kirkaldy, Wromght Iron and Steel, 1863, p. 52, and in his conching observations (p.92), states firther, that "the appearance of iron may be changed from fibrous to crystalline by merely altering the shape of ine specimen so as to render it more liable to snap," and that "iron is less liable to snap the more it is worked and rolled. In the fibrous fractures the threads are drawn out, and are viewed externally, whilst in the erystalline fractures the threads are wapped across in clusters, atd are sicwed externally or sectionally, In the latter ea es
the fracture of the specimen is always at right angles to the length; in the former it is more or less irregular."

1764c. The continuity of the fibres near the surface should be as little interrupted as possible. For example projections formed out of a block by turning, rolling, and hammering, were broken off by blows with a 6 lb . hammer. with the first, fifth, and eighth blows respectively (Rankine, Proceedings of Irst. of Civil Engineers, 1843). In iron work which is to sustain shocks and vibrations abrupt variations of dimensions and angular figures must be aroided as much as possible, especially those with reentering angles; for et those points fractures are apt to commence. If two parts of a beam are to be of different thicknesses, they should be connected by means of curved surfaces.
$1764 d$. The fibres of wrought iron are always an indication of its strength, but in the application of such iron we are to be cautious. If the iron be impure in its elements, or has been badly worked, it may be very fibrous and also strong. but in exposing it to a welding heat it loses all its fibre, and is converted into lrittle granulated irou. This bappens frequently with puddled iron and sometimes with charcoal iron. It follows, therefore that iron which does not retain its fibre alter receiving a welding heat is not to be trusted. Only good charcoal iron should be used where strength is required, in case any smithing is to be done to the iron before it is put to use. Where iron is exposed to heat, the very purest and best kinds only should be used : with constant heat, even of low temperature, wrought iron, if not very pure, becomes gromulated. Very fibrous puddled iron may carry $80,000 \mathrm{lbs}$. per inch square, when newly made. but it may in a short time be converted into granular iron, and reduced to $20,000 \mathrm{lbs}$., and he inferior in strength to east iron. Where this change in the iron would be detrimental to the work steel should be substituted, as its strength is not impaired by any degree of heat beyond a red heat.

1764 e. The quality of iron for boiler plates must he attended to from the first stagus of its mmufacture from the ore, which should be of good qualit! : even then it may be spoíled in the furnaces. Abse all things, states Overman, (whom we are now qucting), hot blast ought to be excluded in these cases; it ought to be a criminal offence to employ hot blast iron for boiler plates. Iron may be tibrous, and when cold very tena. cious; but the test consists in beating it red hot and cooling it in cold water. If it continues te:acious it may be considered good; if not it is bad, and unatit for boiler plate.

1764f. Strength and toughness in bur iron are indicated by a fine, close, and uniforia fibrous structure, free from all appearance of crystallization, with a clear bluish grey colour, and a silky lustre on a tom surface where the fibres are shown. I'l te iron of the best kind consists of alternate layers of fibres erossing each other, and ought to be nearly of the sime tenacity in all directions. The breaking strain and contraction of area of puddled sleel platis. as in iron plates, are greater in the direction in which they are rolled; whereas in cast steel they are liss. (Kirkaldy)
1765. Cast inon is the product of the process of smelting iron ores. The total quantity of carbon in piy iron ranges from 2 to 5 per cent. of its weight. Different kiuds of 1 ig iron are produced from the same ore in the same furnace, under different circumstances as to temperature and quantity of fuel. A high temperature and a large quai.tity of fucl produce grey cast iron. which is further distirguished into Nos. 1, 2, and 3, and so on; No. 1 being that produced at the highest temperature. A low temperature and a deficiency of fuel produce white cast iron. Grey east iron is of different shades of 1 luish grey in colour, granular in texture, softer and more easily fusible than white cast iron, whel, latter is silvery white, either granular or erystalline, comparatively difficult to met,, brittle, and excessively hard. It appears that the differences between these kinds of irons depend on the proportions of carbon in them. Thus grey cast iron contains 1 per cent., and sometimes less, of carbon in chemical combination with the iron, and from 1 to 3 or 4 per cent. of carbon in the state of plumbago in meclanical mixture; while white cast iron is a homogeneous chemical compound of iron with from 2 to 4 per cent. of carbon. Of the different kinds of grey cast iron, No 1 comtins the greatest proportion of plumbago (which renders iron comparatively weak and pliable), No. 2 the next, and so on.

1765a. There are two kinds of w hite cast iron, the granular and the crystalline. The granular sort can be converted into grey cast iron by fusion and slow cooling. Grey cast iron can be converted into granular white cast iron by fusion and sudden cooling. This takes place most readily in the best iron. Crystalline uthile cant mon is harder and more brittle than granolar, and is not capable of conversion into grey cast iron by fusion ard slow cooling. It is said to contain more carbou than granular white cast iron, but the exact dillerence in their chemical conmosition is not yet known. Grey cast iron No. 1 is the most easily fisible, and produces the finest and most accurate castings; but it is delicient in hardness and strength.

1765b. The order of strength of cast iron among different kinds from the same ore and fuel is as follows:-Gramular white cast iron, grey cast iron No. 3, No. 2, and No. 1. Crystalline uhite cast iron is not introduced into this classification, because its extreme britsleness makes it unfit for use in engineering structures. Granular white cast iron alsu,
although stronger and harder than grey cast iron, is too brittle to be a safe waterial for the entire mass of any girder, or other large piece of a strueture. It is used to form a hard and impenctrable slin to a piece of grey cast iron by the proeess called chillum. This consists in lining the portion of the mould where a hardened surface is repuired with suitally shaped pieces of iron. The melted metal, on being run in, is coold dand solidified suldenly where it tonches the cold iron; and for a certain depth, from the chilled surface, varying from about $\frac{1}{8}$ to $\frac{1}{2}$ inch in different kinds of iron, it takes the white granuar eondition, while the remainder of the casting takes the grey condition. Even in castin, s which are not chilled by an iron lining to the mould, the outermost layer, being cuoled more rapidly than the interior, approaches more nearly to the w hite condinion, and forms a skin harder and stronger than the rest of the casting. The best kinds of cast iron for large structures are No. 2 and No. 3; because being stronger than No. 1, and sotter and more flexible than white cast iron, they combine strength and pliability in the mamur which is best suited for safely bearing loads that are in motion. A strong kind of cast ron called toughened cast iron, is produced by the process, invent d by Morries Stirling, of adding to the cast iron, and melting amongst it, from one-fourth to one-serenth of its weight of wrought iron scrap.
1766. Soft grey cast iron is the best sort; it yields easily to the file when the extmal crust is removed, and is slightly malleable in a cold state. It is, however, more subject to rust than the white cast iron, which sort is also less soluble in acids. Grey enst iron hi:s a granulated fracture with some metalle lustre. White cast iron in a recent fracture has a white and radiated appearance, indicating a crystalline structure.
1767. Cast iron, when at a certain degree of heat, may be cut like a picce of wood with a common saw. This discovery was announced in a letter from M. I)unford, director of the iron works at Montalaire, to M. d'Areet, and published in the Amnales de Chimie. The experiment was tried in 1813 by a gentleman of the Pnlusophical Society at Glaspow, who with the greatest ease cut a bar of east iron, previously heated to a cherty-red, with a common carpenter's saw, in the course of less than two minutes. The saw was not in the least injured by the operation.
1768. The security afforded by iron for supporting weight, and against fire, has, of late zears, very much increased the use of it, and may in many cases entirely supersede the employment of timber. Again, it is valuable from its being not liable to sudden decay, nor soon destroyed by wear and tear, and, above all, from its plasticity.

STEEL.

1769. Stec ${ }^{3}$, the hardest of the metals and the strongest of known sulstances. is a compund of iron with from 0.5 to 15 per cent. of its weight of carlion. These, according to most authoritics, as noticed by Rankine, are the only ensential constituents of stael. Impurities of diffirent kinds affict stecl imjuriously in the same way as with iron. A very small part of its weight, $\frac{1}{20}$ the of silicon cauces stecl to cool and solidify without bubbling or agitation; a larger proportion would make the steel brittle. Manganese improves the steel by inercasing its toughness, and making it easier to weld and forge.

1769a. The term stecly iron, or semi steel, may be arplied to compounds of iron with less than 0.5 per cent. of carbon. They are intermediate in hardness and other properiits between steel and malleable iron. In general, such componnds are the harder and the otronger, and also the more easily fusible, the more carbon they cont in ; those sorts which contain less carbon, though weaker, are more easily welded and forged, and from their greater pliability are the fitter for structures that are exposed to shocks.

1760b. Steel is distinguished by the property of tampering, that is to say, it can be hardened by sudden cooling from a high temperature, and softened by gradual cooling; and its degree of hardness or softness can be regulated with precision by suiably fixing that temperature. The clevation of temperature previous to the annealing or gradual cooling is produced by plunging steel into a bath of a fusible metallic alloy, ranging from 430° to 560° Fahr.
1770. Steel is made by various processes which have of late become very numerous. They may all be classed under two heads, viz., adding earbon to malleable iron, used in making steel for cutting tools and other fine purposes; the oth r abstracting carbon from cast iron, used for making great masses of sieel and steely iron rapidly and at a moderate expense. Among the processes are the following:-
1771. I. Blister steel is made by cementation, by embedding bars of the purest wroughic iron in a layer of charcoal and subjecting them for several days to a high temperature. Each bar absorbs carbon, and its surface becones converted into steel. Ccmentution may also he puformed by exposing the surface of the iron to a current of carburetted hydrogen gas at a
high temperature. Cementation is also applied to the surfaces of articles of malleable iron in order to give them a skin or coating of steel, and is called catehardening.
1779. HI. Sheur steel is made by breaking bars of blister steel into lengths, faggoting them, and rolling them out at a welding heat; repeating the process until a near approach to uniformity of composition and texture has been obtaincd. It is used for tools and cutting implements.
1773. II I. Cast steel is made by melting bars of blister steel with a small additional quantity of carbon (in the form of coal tar), and some manganese. It is the purest, most uniform, and strongest, steel, and is used for the finest cutting implements. Another process requiring a higher temperature, is to melt bars of the purest malleable iron with manganese and with the whole quantity of carbon required in order to form steel. 'The quality as to hardness is regulated by the proportion of carbon. A sort of semi steel or stzely iron, made ly this process and containing a small proportion of carbon only, is kuown as homogeneous melal.
1774. IV. Steel made by the air blast is produced from molten pig iron by Bessemer's process, wherein the molten pigiron, having been run into a suitable vessel or conterter, has jets of air blown into it throngh tubes as the liquid is poured in. The oxygen of the air combines with the silicon and the carbon of the pig iron, and in so doing produces enough of heat to keep the iron in a melted state till it is brought to the malleable condition; it is then run into large ingots, which are hammered and rolled in the usual way. About two haurs suthice to convert cold iron into pure steel.
1775. V. Puddled steel is made by puddling pig iron, and stopping the process at the instant when the proper quantity of carbon remains. The bloom is shingled and rolled like bar iron. V1. Granuluted steel, the invention of Capt. Uehatius, is made by rumning melted pig iron into a cistern of water over a wheel, which dasles it about so that it is found at the bottom of the cistern in the form of grains or lumps of about the size of a hazel nut.. These are imbedded in pulverized hematite on sparry iron ore, and exposed to a heat sufficient to cause part of the oxygen of the ore to combine with, and extract, the carbon from the superficial layer of each of the lumps of iron, each of which is reduced to the condition of malleable iron at the surface, while its heart continues in a state of cast iron. A small additional quantity of malleable iron is produced by the reduction of the ore. These ingiedients being melted together produce steel.
1776. Kirkaldy observes that "Steel invarially presents, when fractured slowly, a silky fibrous appearance. When fratured suddenly, the appearance is invariably granular; in which case also the fracture is always at right angles to the length. When the fracture is fibrous, the angle diverges always more or less fiom 90°. The gramlar appearance presented by steel suddenly fractured is nearly free of lustre, and unlike the brilliant erystalline appearance of iron suddenly fractured : the two combined in the same specimen are shown in iron bolts partly converted into steel. Steel which previously broke with a silky fibrous appearance is changed into gramular by being hardened. Steel is reduced in strength by being hardened in water, while the stiength is vastly increased by being hardened in oil. The increase of strength is greater the higher steel is heated (not being burned) and so treated."
1777. "In a highly converted or hard steel the increase in strength and in hardness is greater than in a less converted or solt stecl. Steel plates hardened in oil and joined together with rivets are fully equal in strength to an unjointed solt plate; or the loss of strength by riveting is more than counterbalanced by the incease in strength by lardening in oil. The most lighly converted steel does not, as some may suppose, possess the greatest density. In cast steel, the density is much greater than in puldied steel, which is evenless than in some of the superior descriptions of wrought irom."
1778. 'This subjeet may, perhaps, be considered of greater importance to the architect and engineer, if those experienced scientific men le right, who predict that the time is not far hence when there will be no such metals as cither wrought or cast iron; steel taking the place of both for all practical purposes. As one instance among many, it has been urged that the absolute strength of any east iron girger may be doubled by the judicious use of a vely few pounds of steel, costing but a triffe. (Sce 1632.)

Corrosion and Pieservation of Iron.

1779. Cast iron will often last for a long time without rusting, if the skin be not injured, which is coated with a film of the silicate of the protoxide of iron, produced by the action of the sand of the mould on the iron. Chilled surfaces of castings are without this protection, and therefore rust more rapidly. The corrosion of iron is more rapid when pattly wet and partly dry, than when wholly immersed in water or wholly exposed to the air. It is aceelerated by mpurities in water, and especially by the presence of decomposing organie matter, or of free acids. It-is also accelerated by the contact of the iron with any metal which is electro-negative relatively to the iron, or in other words, has less affinity for oxygen, or with the rust of iron itself. If two portions of a mass of iron are in different
conditions, so that one has less affinity for oxygen than the other, the contact of the former makes the latter oxidate more rapidly. In general, hard and crystalline iron is less oxidable than ductile and fibrons iron. Cast iron and steel decompose rapidly in warm or impure sea water. The purest and the most malleable irons are the most easily attacked by sea water, uhen used alone; for it is to he observed that the fine grained, crystalline, white and britile metal, which usually resists the action of air and water most suecessfully, is also the most easily altacked loy the dilute acids present in the woods so often used in comection with iron in ship building, or in timber structures in $s: a$ water. The most extreme care, and the greatest practical skill, are therefore required in the selection of the irons to be used in certain positions. To R. Mallet we are indebted for a valuable communication to the Institute of Civil Engineers in May 1840, On the Corrosion of Cast and Wrought Iron in Water, under protected and unprotected states : an abstract is given in the Civil Engineer Journal, iii. p. 424, from the Proeeedings of the Institute.

1779a. In the Reports of the British Association, 1843 and 1849, Mallet, On Corrocim of Iron, further states that iron kept constantly in a state of vibration oxidates less rapidly than that which is at rest. 'Thus the rails of a railway on which a constant traffic runs, do not rust so quiekly as those on which there may be no traffic.

1779b. Speneer, Iron, its actice and inactive states, read before the Liverpool Polytechnie Society, stated that "It required a mixture of air and water, or what is ustally termed dampness, to produce rust on iron-one without the other would not do it. Steel filings became rusty in water, because they absorbed the oxygen in the water; if a second quantity of filings be put in, they would not rust, as there was no more oxygen. A coating of carbon effectually prevents iron from oxidation, and it can protect it from a body so strong as even agqua-fortis itself. If the atqua-fortis be diluted with water, the protective power no longer exists. The slightest scratch or abrasion on the surface of the metal also prevented the action of the protecting influence. A piece of solid carbon also imparts a protective property to iron, little short of that given to it by platinum."

1779c. Sugar exercises a material influence on iron and other metals: Athencum, Sept. 1853 and May 1854.

1779d. The iron wire suspension bridges of France, whieh have fallen within the last few years, appear to have done so principally through the oxidation of the wires in the portion passing into the anchoring wells: this was notoriously the case with the bridge at Angers. The constant state of humidity prevailing in the we wells must so mer or later have rusted the wires, and although the precaution, recommended hy Vicat, of surrounding the cables with rich lime had been adopted, the viloration of the loridge had detached the cables from their supposed protecting case and the spaces between the wires allowed moisture from the exterior to permeate the interior of the cable; at Angus the cables were thus almost entircly rusted through. In such places it is better to employ har chains.

1779 e . Before painting iron work it is usual to give it a coat of boi'ed linseed oil, applied hot; it forms a kind of varnish, and is an excellent preparation, and should be done after the blue shales are removed. Lead paints, when of good quality and mixed with grood oil without spirits, are recommended. As it is diflicult to test loth oils and colours, ethers prefer iron oxide paints, esplecially as they are cheaper. Tar paints are used chicfly for iron work out of sight; it is cheap, and is said not to foul so readily as lead or wher finer paints. A good rough paint is to be made by heating coal tar and mising with it fincly sifted slaked lime, sty three-quarters of a pound of lime to a gallon of tar, and adding naplitia to render it of a convenient consisiency for laying on; it must not be alloned to get too hot, and is to be used hot. Where sandmg is possible, it adds to its durability.
1780. The following recommendations have been made for preserving iron. I. Boiliner the irou in coal tar, especially if the pieces have first been heated to the temperature of melting lead. 1I. Heating the piee to the temperature of meling lead and smeariong the ir surfaees whilst hot with cold linseed oil, which dries and forms a vanish. 'Lhis is recommended by Sincat n, and is a good preparation for painting upon.

1780a. 111. Painting with white lead in oil, which must be renewed from time to time. Mr. John Braithwaite has stated that his fa:her had used red lead for fifty years with grood result; white had was of no usc, as the acid used in the preparation of it produced swelling eflects. 1he had placed rods in a well 200 feet deep forly-five years since, havine painted them with pure red lead, and on taking the m up in l"Gs he found that their weight was preciscly the same. Red lead and one-third litharge made into paint with nut oil will hast longer than when mued with linsed oil. Iron heated and covered with mineral bitumen or asphaltum in the solid state had resisted a moist aten sphere for fifteen years; the natual asphaltum was the best, the liquid asphalte not answering so well; with all other marcrials the rust had penctrated benath. C. H. Smith, in a commmaieation to the Builder, 1864, p. 318, brought forward the advantages of lime whing as a preservative of iron from rust. In support of the use of lime, he notices that polished steel goods may be preserved by leating a litule powdered lime upon them; and that bricklayers dways stuear the r bright trowels even with damp mortar when leaving work.

1780l. IV. Coating with a metal, commonly called gulranizing. Zinc is efficient, provided it is not exposed to the acids capable of dissolving it; but it is dessroyed by sulphuric aci 1 in the air of places where much coal is burnt; and by moriatic acid in the neighbourhood of the sea. All attempts to use galvanized iron for roofs in large towns or smoky districts have failed. The use of this material will be noticed in the section on Zisc. Timned iron does not now answer so well even as good zinc. It is known that during the modiaval period, iron nail-heads, anchors, dogs, and such like articles were tinned oter, no doubt to prevent oxidation; and tinned iron is grealy used for the covering of houses in America. In St. Petersburg and in Moscow iron is mostly used, but it requires painting. The coppering of iron has failed unless it was done in so expensive a manner as not to be practicable in any extended employment of it. A coating of lead, or of leal and antimuny, is wanted to iron, so as to combine the stiffiness and cheapness of iron with the durability of lead. Messrs. Morewo d have recently intoduced metal plates covered with a unilorm coating of lead. These plates are supposed to possess all the advantages of sheet lead, and they can be rendered serviceable at a considerably reduced cost (Hont, Hundlook, 1862). Enamelled iron is a late invention, and one tending to be vory serviceable. (See also par. 2264.)

178 Cc . Professor Barff's recently (1877) discovered method of coating iron with magnetic or black oxide is effected by subjecting it to steam at a high temperature of about 1,200 degrees of Fahr. for six or seven hours. It is said that iron so treated will revist a rasp, and bear any amount of exposure to the weather withont showng any signs of corrosion. Difficulties which have hitherto stood in the way of the adegrate working of the prccess have since (1882), we are informed, been removed, and this preservative process will no doubt be largely adopted, as adequate apparatus has been provided.

Sect. V’.

LEAD.

1781. Lead, the heaviest of the metals except gold and quicksilver, is found in most parts of the world. It is of a bluish white when lirst broken, is less ductile, elastic, and sonorous than any of the other metals: its specific gravity is from 11,300 to 11,479 , and a cubic fout, therefore, weighs about 710 lbs . It is soluble in all acids and alkaline solutions, fusible before ignition, and easily calcined. The ore, which is easily reduced to the metallie state by fusion with charcoal, is found mineralised with sulphur, with a slight mixture of silver and antimony, in diaphanous primatical crystals, generally hexagonal, white, yellowish, or greenish, in Somersethire, atout the Mendip Hills. Abont Bristol, and in Cumberland, it takes the form of a white, grey, or yellowish spar, without the least metallic appearance: in some places it is in a state of white powder or native ceruse; and in Alonmouthshire it has been found native, or in a metallie state.

178:. Exposure to air and water does not produce much alteration in lead, though it quickly tarnishes and acquires a white rust, fy which the internal pats are defended from corrosion. P'ure water, however, does not alter it ; hunce the white crust on the inside of lead pipes throngh which water flows must probably be owing to some saline particles in the water. Lead will form an union with most other metals : one exception, liowerer. is iron. Next to tin, it is the most fusible of metals. It is run from the furnace into moulds; the main form is called a sow, the smaller ones piess: from these it is run into sheets, pipes, \&e.
1783. Sheet lead is of two soits, cast and milled. The thicker sort of the form r, or the common east sheet lead, is manafactured by casting it on a long tabie formerly made of wood but now of cast iron, (with a rising edge all round it) from 16 to 29 feet in length, and 6 feet in width, which is covered with tine pressed sand beaten and smoothed down with a strike and smoother's plane. The pig lead is melted in a largy vessel, near this tahle, and is ladled into a pan of the shape of a concave triangular prism, whose length is equal to the width of a sheet, from which pan it is poured on to the table or mould. Between the surface of the sand and the strike, which rides upon the edges of the table, a space is left which determines the thickness of the sheet. The strike bears away the superfluous liquid lead before it has time to cool, as it moves hy hand along the edges of the taible nefore mentioned. When lead is required to be cast thin, a linen cloth is stretelad on an appropriate table over a woollen one; in which case the heat of the lead, hefore spreading it on the cloth, must be less than wiil fire paper, or the eloth would be burm, Tbe strike must for the purpose he passed over it with considerable rapidity.
178.7. In manufacturing milled lead, it is usinal first to cast it into sheets from 8 to 10 feet long aceo:ling to cireanstances, but the width is regulated by the length of the rollers
through which it is to be passed in milling; the thickness varies from 2 to \mathbf{j} inches. By a mechameal action it is made to pass througl rollers whose distance from each other is graduatly lessened until the sheet is reduced to the required thickness. For a long time a great prejudice prevailed against milled sheet lead; but it is now generally considered that, for the prevention of leakage, milled is far superior to cast lead, wherein pin holes, which have naturally formed themselves in the casting, often induce the most serious consequences. The sheets rolled ont are about 30 feet long and 6 feet 6 inches in width. The lead from the mines of Walter Beaumont, M.P., in Northumberland, when manufactured for the market is known as "W.B. lead," and is considered the best in quality. Lead melts at a temperature of about 612° to 630° Fahr. The tenacity of shect lead is $3,300 \mathrm{lhs}$; and the modulus of elasticity $720,000 \mathrm{lbs}$.
1785. In distilled water which has been freed and kept from the contact of the air, lead undergoes no change; but if the lead be exposed to air and water, it is oxidized and converted into a carbonate with considerable rapidity. This carbonate has the appearance of shining brilliant seales. The presence of saline matter in the water very much retards the oxidation of the lead. So small a quantity as a $30,000 \mathrm{~h}$ part of the phosphate of soda or iolide of potassium in distilled water, prevents lead from being much corroded, the small deposit which is formed preventing the further corrosion of the metal.

1785a. The danger of using water from leaden pipes or cisterns was known even to the Romans: The rarity of any fatal results shows that the risk has been much overiated. This is sufficiently explained by the protecting power of the insoluble salts of lead, formed by the action of the ingredients of the water on the lead, hindering the subsequent supplies of wat er from coming in contact with the metal. Distilled waters and waters which are remarkably pure dissolve lead, and become impregnated with it. The more impure the water, such as Thames water, the more it will form a protecting incrustation. A new cistern shonld be allowed to form this coating. by the water standing in it for some time without being renewed. To expedite the action a little phosphate of soda, or iodide of potassium, or a few drops of sulphuric acid may be added. The lid or cover of cisterns should not be of lead, as the vapour condensing in it possesses all the solvent power of distilled water. Water which has flowed over leaden roofs, more particularly in towns, carrics with it from the surface some soluble salt. The holes with which lead is often riddled are caused by the larva of an insect, the Callidium bajulus, in the stomach of which lead is often found (Kirly and Spence, Entomology, i. p. 235). A pipe conveying water impregnated with sulphur salts, has after a time been coated with a sulphate or sulphide, and this sulphide being perfectly insoluble in pure water, and equally so in water not too excessively charged with foreign matters to be potable, renders the leaden vehicle perfectly harmless. Dr. Schwarz, a chemist of Breslau, has stated that by passing a hot solution of sulphide of potassium through leaden pipes, the face is transmuted from the metallic state to that of a suphide in a few minutes, at a cost too insigniticant to mention. It is said that water in the mines of galena, the sulphide of leal, can be drank with impunity.

17s6. Wetterstedt's patent marine metul for rooting and other purposes is the invention of a mative of Germany, introduced into England in 1897 ly Messrs. Young, Dowson, and Co., and manufactured by Messrs. Jolinson, both of Limehonse. It is composed of lead and antimony, and is adapted to all purposes to which lead is usually put. Its advantages are its malleability, its great tenacity, elasticity and durability, and resistance to acids, oxidation, and the action of the sun and atmosphere. It does not lose in weight. It is manufactured in sheets:-I. 9 feet lyy 3 feet, at 3 lbs. and 2 liss. per s.fuare foot; 11. 8 feet by 2 leet 9 inches at $1 \frac{1}{2} \mathrm{lbs}$. and 1 lb . per squarefout; and 111 . 8 feet by 2 feet 6 inches, at 8 onnces per spuare foot. No. I. sizes are employed for flats, large roots, covering to stairs, and sinall sloping and curb roofs. No. II. sizes for verandahs. No. IIl. for lining damp walls; it should be fixed with wrought copper nails. The roof of the Royal Polytechnic Institution was covered with this patent metal in 1838 ; it is still in a perfect condition. In price it is somewhat under that of lead per cwt., but a much less weight per foot superlicial than of that material is used. The putent metallic canras, is a combination of Wetterstedt's patent metal No. 111 ., with canvas of various sabstances and strength, as calico, japanned cloth, wooll n, \&e., varying aceording to the purpones to which it is to he applied. By this combination, sufficient strength is given to a metal weighing only eight ounces per foot to enable it to be used as a perfeetly waterproof and secure covering. When used to damp walls, the calico is phaced outside, forming a good suiface for papering, painting, \&e. The cement with which the combination is effected is stated to be elastic and inpervious to damp, and a thorough disinfectant.

Sect TII.

COPPER.

1787. Copper, among the first of the metals employed by the early nations of the world, is neither scarce nor difficult to work and extract from its ore. When pure it is of a pale red colour ; a cubic foot of cast copper will weigh 537 lbs. in sheet 549 lbs ., and when lammered 556 lbs .; the weight of a bar 1 font long and 1 inch square varies from 3.63 lbs . to 3.81 lbs ; ; all the weights depending upon the copper being more or less hammered. Its elasticity and hariness are very considerable, and it is so malleable that it may be hammered into fine leares. It is also very tenacious, a wire of a tenth of an inch in diameter being capab!e of snstaining 360 liss. The tenacity of cast copper is $19,00^{\prime}$); in sheet, 30,000 ; in boits, 36.000 ; and in wire, 60 (00 . The medulus of elasticity or resistance to stretching being 17,0000100 . The transverse elasticity or resistance to distortion is $6,200,000 \mathrm{lbs}$. Copper is diminished to about two-thirds by a temperature of 600° Fahr.
1788. The sixteen copper smeling works at Swansea and Neath are supplied with ore from Cornwall, Devonshire, Ireland, and from some foreign and colonial sources. There are six smelting estiablishments at Liverpool and St. Helens, which oltain their ore from th, Cumberland mines, from Alderley Edge, and such ores as arrive at the phrt of Liverpool. The single works at Cheadle pruduce a very fine copper, which is used in the manufacture of brass "ire ; the ore is selected carefully from different mines somewhat widely seattered. 'The Moma smelting works obtain the ores from the Mona and Pary's mines in Anglesea and from those in North Wales. The "once famous " mines in Pary's mountain formerly yielded the yellow sulphuretted ore of copper, to an annual amount of from 40,000 to 80,000 tons. This ore usually contains from one and a half to twentyfive per cent. of copper, and is partly dug in what are called packages, and partly blasted by gunpowder, and then broken into small pieces previons to its being roasted. This operation is performed in kilns, whose shape has a resemblance to lime-kilns, in which expedients are used for remoring the ore as it is roasted, and adding fresh ore. The kilus are arched level with the upper surface of the ore, and adjoining and communicating with the kiln is the flow of a condensing chamber to receive the eulphurenus vapours generated in the kiln, which fall down in the form of the finest flowers of sulphur. Several hundred tons at one time are put into the kiln, and for completing the operation six months are required. The ore is reduced to one fourth of its previous quantity by roasting, and is then washed and pressed to remove the impurities. The richer ores are then dried, and removed for smelting and refining in reverberatory furnaces, from which it is at length produced in short bars or pigs. The water which filters through the fissures is often highly impregnated with sulphate of copper, and this water is pumped up into rectangular pits about thirty feet long, twelve broad, and two deep, to mix with that in which the roasted ore has been washed; and in it are immersed pieces of iron, which, combining with the sulphuric acid, precipitate the copper in the form of a redcoloured powder slightly oxidated. The precipitate thus obtained very frequently gives above 50 per cent. of pure copper, and is even more profitablo to the worker than the metal produced from the crude ore.

1788a. In the process of copper smelting the specimens produced are-I. Calcined ore, or copper ore after the extraction of the sulphur. II. Coarse metal, obtained by the second process of smelting, producing about 40 per cent. of copper. III. Calcined coarse metal, for extracting the sulphur from II. IV. Metal "brych," producing about 65 per cent. of copper. V. Close regule, producing about 70 per cent. VI. Spongy regnle, producing about 80 per cent. VII. Blister copper, producing about 95 per cent. VIII. Select ingot, the fine metal as prepared for market. IX. Tough ingot, ready for market. X. Tough cake, hammered out by hand. XI. Tough bar copper, as prepared for tho manufacture of wire.
1789. Sheet copper was formerly much used for its lightness to cover roofs and flats; but it is almost superseded now by the use of zinc, which is much cheaper, and at times nearly as durable ; and, moreover, it is not so liable to be corrugated by the action of the sun. The low price of copper (1887) has again brought it into the market as it competitor with other metals for roofing purposes. It is only about one-fifth the weight of lead, and not so readily acted upon by fire. Zinc, however, is only about one-third
the usual price of copper ; the cost of labour is nearly the same. The duralility of copper may be taken to be three or four times that of zinc. It requires to loe laid by skilled workmen.

1789a. Copper is reduced to shect by being passed through large rollers, by which it can be rendered very thin. The thickness gencrally used is from 12 to 18 oz . to the foot superficial. Exposed to the air its lustre is soon gone; it assumes a tarnish of a dull brown colour, gradually de epening by time into one of bronze ; and, lastly, it takes a green rust or calx, called patina by the autiquaries, which, unlike the rust of iron, does not injure and corrode the internal parts, confining itself to the surface, and rather preserving than destroying the metal. Hence one of the most important applications of eopper is in cramps for stone work, especially when they are exposed to the air, when its cost, which is about six or eight times that of iron fastenings, can be affiorded. Copper nails for fastening slates in roofing are recommended in licu of even zine nails.

1789b. It may be here well to obserre, that if water is collected from roofs for culinary purposes, copper must not be used about them, neither should any reservir's for collecing and holding it be made of that metal, as on the surface is formed a film of verdigris, which is poisonous.

Brass.

1790. Alloyed with zinc, it forms brass for the handles of doors, shutters, locks, drawers, and the furniture generally of joinery. The usual proportion is oue part of zinc to three of copper; it is then more fusible, and is of a fine yellow colour, less liable to tarnish from the action of the air, aud so malleable and ductile that it can be beaten into very thin leaves and drawn into very fine wire. The extremes of the proportions of zinc used in it are from 12 to 25 per cent. of the whole. Even with the last, if well mamufactured, it is quite malleable, although zinc by itself scarcely yields to the hammer. The appearance of brass is frequontly given to other metals by washing them over with a yellow lacquer or varnish. Cast brass weighs 525 lls . per culic foot.

1790a. Delta metal is an alloy, an improved brass, hard, durable, and strong as mild steel, posscssing a bcantuful fine colour. Wheu melted it prolucts sound castings of fine grain; it can be forged and rolled hot and cold, and takes a very high polish. It is being used for all kinds of machinery, house, door, and harness fittings, stail plates, \&c. To test the action of acids on wrught iron, steel, and delta metal, rolled bars of each were immersed for six and a half mouths in acid water; the weights when put in were l-i805 lis., 1.2125 llus., and 1.2787 lhs. respectively. After that period they were found to be 06393 lLs., 0.6614 llss , and $1 \cdot 2633$ lbs. respectively; showiug a loss of $46 \cdot 3,45 \cdot 45$, and $1 \cdot 2$ per cent. respectively. This Delta metal is said to be now extensively used for underground machinery in mines.

Bronze or Bell-metal.

1791. Copper with $t i n$ (which last melts at 426° Fahr. and resists oxidation better than any of the more common metals) in the proportion of one-tenth to onefifth of the whole furms a composition called branee or bell-metal, used in the fuundery of statues, bells, cannons, \&c. When tin forms nemly one-third of the alloy, a beautiful white close-grained brittle metal is formed, susceptible of a very high polish, which is used for the specula of reflecting telescopes. Bionze weighs 513 lbs . per cubic foot.

Sect, VIII.

ZINC.

1792. Zinc is found in all quarters of the globe. In Great Britain it is abundant, though therein never found in a native state. It usually contains an admixture of lead and sulpur. When rurificd from these, it is of a light blue colour, between lead and tin,
inclining to blue. The ore, afier being hand-dressed to free it from forcign matter, is first calcined, by whieh the sulphur of the calamine and the acid of the blende are expelled The product is then washed to separate the lighter matter, and the heavy part which remains, being ground in a mill, is mixed with one e ghth of its weight of charecal, or with one third of its bulk of powdered coal. This mixture is placed in pots, resembling oil jars, to be smelted. A tube passes through the botton of each, the upper end being terminated by an open mouth near the top of the pot, and the lower end going through the floor of the furnace into water. By the intense heat of a furnace the ore is reduced, the zinc is volatilized, escaning through the tule into the water, wherein it falls in globules, which are afterwards melted and cast into moulds. Thus procured, however, it is not pure, as it almost invariably contains iron, manganese, arsenic, and copper. In order to free it irom these, it is again melted and stirred up with sulphur and fat, the former whereof combines with the heterogeneons metals, leaving the zinc nearly pure, and the latter preventing the metal from being oxidated. At the Vieille Montagne Zine Company's Works, the pots are placed in the furnaces at six o'clock every morning; at six o'clock in the evening the smelting is complete; the metal is then drawn out and run into metal moulds. after which it passes into the rolling house, and is again melted and recast in a motal monld to produce ingots of the proper size and weight for the required gauge of the sheets to be rolled; this second melting is also desirable to obtain proper purity.
1793. Under rollers at a high temperature, zinc may be extended into plates of great tenuity and elasticity, or drawn into wire. These rollers are from 2 feet 8 inches to 6 feet in lengtl, and the original thickness of the plate suljected to them is about 1 inch. A wire, one tentl of an inch dia:neter, will support 26 pounds. If zinc be hammered at a temperature of 300°, its malleability is much incteased, and it becomes capable of much irending. Its fracture is thin, fibrous. and of a grain similar to steel. It can be drawn into wire $\frac{1}{2010}$ th of an inch in diameter, which is nearly as tenacious as that of silver. The specific gravity is somewhat below $7 \cdot 0$, but hammering increases it to 7%. When heated, it enters into fusion at a heat of about 680° or $70^{\circ} 0^{\circ}$: at a higher temperature it evaporates; and if access of air be not permitted, it may be distilled over, by whieh process it is rendered purer than before, although then not perfectly pure. When heated red hot, with access of arr it takes fire, burns with an exceedingly beautiful greenish or bluish flame, and is at the same time converted iato the only oxide of zinc with which we are acquainted, consisting of $23^{\circ} 53$ parts of oxygen combined with 100 of metal.
1794. Zine, though subject to oxidize, has this peeuliarity, that the oxide does not seale off as that of iron, but forms a permanent coating on the metal, impervious to the action of the atmosphere, and rendering the use of paint wholly unnecessary. Dr. von Petenkoffer, however, has stated that zine is oxidized to the extent of 130 grains per square foot in twenty-seven years, about two-fifths of the oxide being removed by the moisture of the atmosphere. Its expansion and contraction are greater than those of any other metal: thus, supposing 1.0030 to represent the expansion, 1.0019 is that of copper, and 1.0028 that of lead; hut the thicker the zinc, the less its contraction and expansion. The tenacity of zinc is from 7.000 to 8,000 . The weight of a cubic foot varies from 424 lls . to 449 lbs . The tenacity of zine to lead is as 16.616 to 3.328 , and to copper as 16.616 to 22.570 ; hence a given substance of zine is equal to five times the same sulstance in lead, and about threefourths of cop, er.
1795. On the first introduction of zine into this country as a material, the trades with which it was likely to interlere used every exertion to prevent its employment; and, indeed. the workmen who were engaged in laying it, being chiefly tinmen, were incompetent to the task of so covering roofs as to secure them from the effects of the weather. Hence, for a considerable period after its first employment, great reluctance was manifested by architec:s in its introduction. A demand for it has, however, gradually increased of late, and the comparatively high prices of lead and copper will not entirely account for the disparity of consumption. The Vieille Montagne Zinc Mining Company, about the year 1861, took steps to improve the quality of the zinc for use in this country, the mode of laying zinc roofs, and for the prevention of the us: of thin gauges of sheets which are unfit lor the purpose. Their zinc possesses a reputation for its purity and excellence. The result of this care, and the better understanding of the merits of the material, has caused it to be now extensively used for parposes which are noticed in the following chapter.

1795a. A slicet of pure zinc, as stated by J. Edmeston in his Report min Zine, will be of an even colour, without black spots or blotches; it will be very ductile, bending readily lackwards and forwards in the hand: and it will not easily break. If impure. it will be the opposite of all this. If there be any iron in it, it will be worthless; if it contain any lead, it will still, though to a less extent, contain the germs of destruction within itself.

1795l. Commonzine is destroyed by the sulphuric acid in the atmosphere where much coal is burned; and by muriatic acid in the neighbourhood of the sea. Cement does not injure zine; but lime, and calcarcons waters destroy it; and zine pipes to flues over wood tires are destroyed l:y them.
1796. Galvanizen Iron is a designation misapplied to that iron which may have received a coating of zine ; it should t.e called zinked iron. The metal is first eleaned perfectly by the joint action of dilute acid and friction, and then plunged into a bath of melted zine, covered with sal ammoniac, and stirred until the iron is sufficiently coated with zine. No galvanie action whatever oecurs between the metals; it is simply a coating. This process, it is stated, was invented in France by Maloin, in 1742, but not patented antil 1836 by Sorel. The efficacy of the process depends upon the skill employed in removing every trace of the scales of the hydrous oxide of iron, and in its further treatment. The coating must not become loosened, or any hole he made through it, as moisture obtaining aceess to the iron will rapidly extend, and the scales of the oxide of iron will foree up the slight zinc covering, when the iron will be gradually destroyed, unless it be at once painted. When well exeeuted it may perhaps be durable for a lengthened period, but when badly prepared it is not so valuable as iron well painted (par. 1779b.). At the llouses of Patiament, where the iron roofing plates were galvanized, it was found necessary from 1860 to commence coating them with paint or some other material.

1796 a The other process, which might be properly called zinked-tinned iron, is thus per-formed:-The sheets of iron are pickled, scoured, and cleamed, as for ordinary tinning. A wooden bath is half filled with a solution-the proportion of 2 quarts of muriate of tin with 100 quarts of water. Over the bottom of the bath is spread a thin layer of finely granulated zine, then a eleaned plate, aad so on al-ernately; the zine and iron and the Hluid constitute a weak galvanie battery, a d the tin is deposited from the solution so as to coat the iron, in about two hours, with a dull uniform layer of metal. The iron in this state is then passed through a bath containing fluid zine covered with sal ammoniae mixed with an earthy matter, to lessen the volatilization of the sal ammoniae, which becomes as fluid as treacle. Two iron rollers are driven by maehinery to earry the plates through the fluid at any velocity previously determined; the plates thus take up a very regular and smooth layer of zinc, which owing to the presence of the tin beneath, assumes its natural erystalline character. This is said to be the process adopted by Messrs. Morewood and Rugers, whose patents date in 1846 and 1850. It is asserted that iron thus prepared does not warp or buckle; that the plate is not affected by the beat of the zine, whereas thin sheet iron, kept in molten zinc for a few minutes, becomes so brittle that it will not bear folding or grooving; that the plate is equally covered with zine, whereas by the duping process the lower half receives more than the upper: and that zine is not contaminated by iron as when dipped, the contamination increasing with each dipping until the zinc in the bath becomes so injured as to be worthless, it leing well known that the alloy of zine and iron is more oxidizable than zine alone, or than zine and tin. Professor Brande has stated that in common timed plate, the combination is such that the oxidization of the iron is aceelerated by the tin, so that the iron is the protecting, and the tin the protected, metal, but in this case the reverse effeet ensues, the iron is the protected metal, and the zine the protector.

1796b. Time has proved that galvanized iron las corroded after seren years in a roofgutter; and the state of most of the roofs to railway sheds and stations and such like places, proves that at least some sorts of galvanized iron will decay; the difficulty always is to ascertain what deseription of coating the iron has undergone. Galvanized iron bolts do not act upon oak cither in sea or in fresh water, when care has been taken not to remove the zine in driving them.

1796c. Galvanized iron is said to be nearly the same cost as zine, and to be less than one quarter as liable to expansion or contraction : to be equally as durable as lead; less in first cost, and not to require boarding; to be not quite one-third the price of copper, and to be equally as durable; and as compared with plain iron, the cost is increased about two-thirds, but that it increases the strength and durability of the iron.
1797. The soldering used is composed of spirits of salts killed by putting about three ounces of zine to a pint oir spirit; care must be taken that this solder soaks well between the laps.

Sect. IX.

SLATE.
1798. Slate is a species of argillaceous stone, and is an abunaant and most uscful mineral. This material is so soft, that the human nail will slightly scrateh it, and is of a bright lamellated texture. Its constituent parts are argill, carth, silex, magnesia, lime, and iron; of the two first and the last in considerable proportion. The building slate is the schistus tegularis
1799. Mica slate is a species of gaciss, distinguislable by containing little or no felspar, so that it consists chicfly of quartz and mica. It has a laminated or slaty structure. with the silky lustre of mica; it is a tough material in directions parallel to its layers, but is more perishable than gneiss. In thin layers it may be used for roofing purposes. Chlorite sla'e is also laminated, solt, and easily eut, but more opaque than tale, and is sometimes used for roofing purposes. It has a green or greenish grey colour and silky lustie. Hornblende slate is hard, tough, durable, and impervious to water, and is used for flagstones. Grauzacke slate is a laminated claystone, containing sand and sometimes fragments of mica and other minerals. It is used for roofing and Hag stones. All these descriptions of slate are inferior to the ordinary clay slate.
1800. Slate quarries usually lie near the surface ; and, independent of the splitting grain, along which they can be cleft exceedingly thin, they are mosily divided into stacks, by breakings, cracks, and fissures. Slate is separated from its bed, like other stones, by me:ms of gunpowder, and the mass is then divided into scantlings by wedges, and, if necessary, sawn to its respective sizes by machinery. The blue, green, purple, and darker kinds are most susceptible of thin cleavage, the lighter-col ured slates being coarser. The instruments used in quarrying and splitting slates, are slate hnives, axes, bars, and wedges.
1801. The tenacity of slate is from 9,600 to 12,800 . The modulus of elasticity varies from $13,000,000$ to $16,000,000$. The resistance to rupture is 5000 . The weight of a cubic foot is from 175 lbs . to 181 lbs . The transverse strength of Welsh slate is greater than any other mineral product of the stone kind. For such qualities as strength, space, and cleanliness, no other rraterial is so cheap as slate.
1802. The slates used about London are brought ehiefly from Bangor in Cannarvonshire. The slate quarries of North Wales are the most important in this country. The chief works are situated as follows, and belong respectively to the geological formations named :-

l'enrhyn, Bangor Llanberis, Dinorwic Ffestiuiog, Port Madoc : Lower Silurian.	Llangollen, Llangollen : Upper Silurian. Machynleth, Aberdovey, Lower Silurian. Royal Slate, Bangor : Cambrian.

The large quarries at Penrhyn near Bangor, belonging to Colonel Pennant, and from which the best Bangor slates are obtaised, are worked in successive terraces; the slate is ohtained in immense masses by blasting, therefore the waste is enormous, but being got rid of without difficulty, the price is kept moderate. These quarries have been variously estimated as yielding from $30,000 \mathrm{l}$. to $40,000 \mathrm{l}$. worth of slates per annum. Many smaller ones have lately been opened near Bangor, all supplying "best Bangor" slates, without affecting the produce of the well-established works at that place. The Llangollen quarries are remarkable for the size of the slates they can obtain.
1803. The Delabole quarries in Cornwall have been worked for a considerable period; these slates are shipped from Tintagel and Boscastle. This grey-blue slate, confincd till lately to the western counties, is now obtained in London; the Wellington College at Sandhurst, Berkshire, is roofed with them. The Tavistock slates from Devonshire were at one period in considerable demand. One of the most esteemed slates is of a pale bluegreen, brought from Kendal in Westmoreland, and called Westmoreland slate. There are quarries in the neighbourhood of Ulverstone, in Lancashire; and the Cumberland seagreen slate works are at Maryport.
1804. The extended use of this material for paving, shelving, cisterns, \&e., has caused numerous companies to be formed for the working of old, and of many new. quarries, chiefly in North and South Wales. Amongst the companies putting forth peculiarities of slate, are the Dorothea West, Green, Blue, and Red, Slate Company, situate in Carnarvonshire, which supplied the pale green slates for the Charing Cross Railnay Hotel, the London Bridge Hotel, and the Star and Garter Hotel at Riehmond. 'The Llanfiair Green and Blue Slate Company is also to be noticed.
1805. The slates of Scotland are not in much repute. The Balalulish quarries in the north of Scotland are very extensive, as between five and seven milhons of rooting slates are quarried annually. The weight of this number would be about 10,000 tons, and the quantity of rubbish being generally five or six times as much as the slates, some 50,000 or 60,000 tons of reluse have to be disposed of, which in this case are thrown directly into the sea, securing an immense saving of expense.
1806. The more important slate quarries in lreland are in the southern division of the country, viz., Killaloe, county Tipperary; Valentia, county Kerry; Bendulf, near Glandore Harbour, county Cork; and near Ashford Bridge, county Wicklow. The ehief one is at Curraghbally, situate about six miles from Killaloc. The colour of the slates is a dull bluish grey, preferred by many to the decided blue of the Bangor quarries; they are greatly used in the west of Ireland, where they have superseded the Welsh slates. The colour of the Valentia slates is rather greener than those above mentioned. They are generally thicker and more uneven on the surlace, and so are better suited for the exposed
aspects of buildings in the western counties. 'This quarry has more capabilities for sawn Gags and slabs, of which a large amount is now exported to England for cis'erns, baths, urinals \&e. The Bandufl quarry is nearly given up. The slates fiom Ashford Bridge both i, colour and quality closely resemble the Bangor slates. (Wilkinson, Geoloyy, \&c. of Ireland, 184.5.)
1807. A line sonnd texture is the most desirable among the properties of a slate; for the expense of slating being greatly increased by the loarding whereon it is placed, if the slate alisorls and retains much moisture, the boarding will soon become rotten. But a good slate is very durable. Its goodness may readily be judged ly striking it as a piece of pottery is struck; a sonorous. clear bell-like sound is a sign of excellence; but many pieces of the slate should be tried before a conclusion can be arrived at. It is thought to be a good sign, if, in hewing, it shatters before the edge of the zar. The colour, also, is some guide, the light blue sort imbibing and retaining moisture in a far less degree than the deep black-blue sort. The feel of a slate is some indication of its goodness: a good one has a liard and rough feel, whilst an open absorbent slate feels smooth and greasy. The best method however, of testing the quality of slates is by the use of water, in two ways. The first is, to set the pieces to be tried edgewise in a tul) of water, the water reaching above half way up the height of the pieces: if they draw water, and become wet to the top in six or eight hours' time, they are spongy and bad; and as the water reaches less $u p$ them, so are the pieces better. The other method is, to weigh the pieces of slate, and note their weights. Let them then remain for twelse hours in water, and take them out, wiping them dry. Those that on re-weighing are much heavier than they were previous to their immers:on should be rejected. Where the character of a slate quarry is not previously known, experiments of these sorts should never be omitted.
1808. The following comparison of the advantages of slates over tiles is given by R. Watson, former Bissop of Llandaif. That sort of slate, other circumstances being the same, is esteemed the best which imbibes the leist water; for water not only increases the weight of the covering, but in frosty weather, heing converted into ice, swells and shivers the slate. This effect of frost is very sensible in tiled houses, but is searcely felt in those which are slated, for good slates imbibe but little water; though tiles, when well glazed, are rendered in some measure similar to slate in this respeet The bishop took a piece of Westmoreland slate and a piece of common tile and weighed each of them carefully. The surface of each was ahout thirty square inches. Both the pieces were immersed in water about ten minutes, then taken out and weighed as soon as they had ceased to drip. The tile had imbibed about a seventh part of its weighit of water, and the slate had not imhibed a two-humdredth part of its weight; indeed. the weting of the slate was merely superficial. He placed both the wet pieces before the fire; in a quarter of an hour the slate was perfectly dry, and of the same weight as before it was put into the water; but the tile had lost oaly about twelve grains it had imbibed, which was, as near as could be expected, the very same quantity that had been spread over its surface; for it was the quantity which had been imbibed hy the slate, the surface of which was equal to that of the tile. The tile was left to dry in a room heated to sixty degrees, and it did not lose all the water it load imhibed iu less than six days.
1809. Irofessor Ansted states that the best slates are those which are most crystalline, and which, when breathed upon, give out a faint argillaceous odour ; when this was given out strongly, then the slates wou!d readily decompose.
1810. The largest slab of slate, perhaps, ever as yet obtained, was the one sent by the Llangollen Slate Company to the International Exhilition of 1862. It was 20 feet long, 10 feet wide, and weighed $4 \frac{1}{2}$ tons; the thickness, however, was not named. The Welsh Slate Company, whose quarries are at Festiniog, in Merionethshire, sent several slabs averaging 14 feet by 7 or 8 feet. All the slate from this neighbourhood possesses the remarkalhe quality of splitting with great facility, and with wonderful accuracy of strface, into thin laminæ or sheets. Some of these thinly divided sheets are obtained 5 to 10 feet long from 6 to 12 inches wide, and not more than the sixteenth of an ineh in thickness. They are so elastic as to bend like a veneer of wood. (Hunt, Hundbook, 1862.)

Sect. X.
BRICK AND Tll.E.
1811. A brick is a factitious sort of stone, manufactured from argillaceous or clayey earth, well tempered and squeezed into a mould. When so formed, bricks are stacked to dry in the sun, and finally burnt to a proper degree of hardness in a clamp or kiln. The use of bricks is of the highest antiquity. They are frequently mentioned in the historical
boxks of the Old Testament; but whether they were merely sum-dried or burnt in a kilia serms uncertain. We are inclined to doubt the burning of them at a very remote periool. It will immediately occur to the reader that the making of bricks was one of the tasks inposed upon the İsraelites during their servitude in Egypt. Though the oldest remains in Egypt are of stone, Pococke describes a pyramid of unburnt bricks, which are composed of a black sandy earth, intermixed with pebbles and shells, the sediment deposited by the overflowing of the Nile. 'This species of bricks is still common in Egypt and many other parts of the Last. Fy the ancient Greeks and Romans, both burnt and umburnt bricks were used; the method of making the latter whereof is thus deseribed by Vitruvius, in the third chapter of his second book: "I shall first," says that author, " treat of brieks, and the earth of which they ought to be made. Gravelly, pebbly, and sandy clay are untit for that purpose; for if made of either of these sorts of earth, they are not only too ponderous, but walls built of them, when exposed to the rain, moulder away, and are soon decomposed; and the straw, also, with which they are mixed, will not sutficiently bind the earth together, beeanse of its rough quality. They shouli be made of earth, of a red or white chalky, or a strong sandy nature. These sorts of earth are ductile and cohesive, and not being heavy, bricks made of them are more easily handled in earrying up the work. The proper seasons for brick-making are the spring and autumn, because they then dry more equably. Those made in the summer solstice are defective, because the heat of the sun soon imparts to their external surfaces an appearance of sufficient dryness, whilst the internal parts of them are in a very different state; hence, when thoroughly dry, they shrink and break those parts which first dried ; and thus broken, their strength is gone. Those are best which have been made at least two years; for in a period less than that, they will not dry thoroughly. When plastering is laid and set hard on bricks which are not perfectly dry, the bricks, which will naturally shrink, and conscquently oceupy a less space than the plastering, will thus leave the latter to stand of itself. From its being extremely thin, and not eapable of supporting itself, it soon breaks to pieces; and in its failure, involves sometimes even that of the wall. It is not, therefore, without reason that the inkabitants of Utica allow no bricks to be used in their buildings which are not at least five years old, and also approved by a magistrate.
1819. "There are three sorts of brieks: the first is that which the Greeks call Didoron ($\delta \iota \overline{\jmath \omega \rho o \nu})$, being the sort we use; that is one foot long and half a foot wide. The other two sorts are used in Grecian buildings; one is called Pentadoron, the other Tetradoron. By the word doron, the Greeks inean a palm, because the word $\delta \bar{\omega} p u \boldsymbol{\nu}$ signifies a gitt which can be borne in the palm of the hand. That sort, therefore, which is five palms each way, is called I'entadoron; that of four palms, Tetradoron. The former of these two sorts is used in public buildings, the latter in private ones. Each sort has half bricks made to suit it, so that when a wall is executed, the course on one of the faces of the wall shows sides of whole bricks, the other face of half bricks; and being worked to the line on cach face, the bricks on each bed bond alternately over the course below." Vitruvius concludes the chapter with the mention of the bricks made at Calentum in Spain, at Marseilles in France, and litane in Asia, which are specifically lighter than water.
1813. It is to be regretted that plastering with cement, a practice which is more to the interest of the brickmaker and bricklayer than to the consmmer, has become so prevalent in this country. These tradesmen thus get rid of their worst bricks, which are hidden by a coat of plaster; the building soon decaying when the heart of the wall is bad. Colour seems to be the objectionable quality about this material, the commonplace arehitect forgetting that form is much more essential to beauty than colour. In the times of Johes and Wren, red brick was beautifully wrought into architectural forms, of which a few examples still remain in the metropolis : and by Palladio, bricks were occasionally used for colums without smearing them over with plaster.
1814. In England, the best carth for making bricks is a clayey loam, neither abounding with too much sand, which renders them brittle, nor with too large a portion of argillaceous matter, which causes them to shrink and crack in drying. It should be dug at the least a year before it is wrought, that by exposure to the atmosphere it may part with all extrancous matter which it possessed when first dug. The general practice is, however, to dig it in the autumn, and allow it to remain throngh the winter to mellow and pulverize, by which the operation of tempering is greatly facilitated. Upon this operation the quality of the brick mainly depends, and great attention should be bestowed upon performing this part of the process in a proper manner. This branch of the manufacture was formerly executed by throwing the clay into shallow pits, and subjecting it to be troddra by men and oxen; a method which has been advantageously superseded by a clay or pugnill, with a horse track.
1815. As soon as the clay has been thoroughly tempered by one of the methods above named, it is taken to the moulder's bench, where it is cut by the moulder's assistant, generally a woman or a lad, into picees rather larger than the mould, which are passed on to the moulder, who throws it with seme force into the mould, which has been previously
dipped in sand. He presses it down, so that it may fill the whole of the cavity, striking ofl the s!uperfluous clay with a flat wooden anle. The newly-formed brick is then turned out of the mould on to a thin board, somewhat larger than a brick, and it is removed by a boy to a latticed wheelbarrow, and conveyed, covered with fine dry sand, to the hach. A handy moulder, working fifteen hours, will mould 5000 bricks. In the hacks, which are eight courses in height, the bricks are arranged diago.ally above each other, with a passage between each for the circulation of air round them. The time required for drying in the hacks will of coorse depend on the fineness of the weather ; it is but a few days if the season be propitious; and they are tien turned and reset wider apart, after which, in ahout six or eight days, they are ready for the clamp or kiln. If the weather be rainy, the bricks in the hack must be covered with wheat or rye straw; and as they ought to be thoroughly dry before removing to the clamp or kiln, a few are generaly selected from differemt parts, and broken, to aseertain if the operation of drying has been well performed. The moisture arising from bricks when burning is very injurious to their soundness.
1816. The quantity of clay necessary to make 1000 bricks will be somewhere about 54 cube feet, which allows about 5 feet for shrinkage in drying and burning; for $1000 \times 8 \frac{1}{2}$ in. $\times 2 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in} .=4923^{\prime \prime} 4^{\prime \prime \prime}$. The cost of making 1000 bricks, in the neighbourhood of London, is nearly as follows :-

1817. In the brickfields about London, bricks are mostly burnt in what are called clamps. These are generally oblong in form, and their foundations are made with the driest of the bricks from the hacks, or with common worthless bricks, called place bricks. The bricks for burning are then arranged, tier over tier, to the height assigned to the clamp, according to the quantity to be burnt, and a layer of breeze or cinders, two or three inches deep, is placed between each course of bricks, and the whole, when built up, covercd with a thick stratum of breeze. On the western face of the clamp a vertical fireplace is formed, about 3 feet in height, from which flues are driven out by arehing the bricks over, so as to leave a space about one brick wide. The flues run in a straight direction through the clamp, and are filled with a mixture of coals, breeze, and wood, closely pressed together. If the bricks are required to be burnt quickly, the flues should not be more than 6 feet apart; but if time do not press, the flues need not be nearer than 9 feet to each othir, and the clamp is allowed to burn slowly. It is possible, if required, to burn a clamp in a period of from 20 to 30 days, according to the dryness of the weather. The practice of steeping bicks in water after they have been burnt, and then again burning then, has been found to have the effect of eonsiderably improving their quality.
1818. A new mode of burning lricks in clamps has been patented by Robert White at Erith, wherein the advantages are stated to be that, 1st, nearly all the bricks are burnt into stocks, and the yield of inferior bricks is reduced from 35 to about 10 per cent. of the total make ; and, endly, the Lrichs are so much improved in colour and soundness as to give them a considerable additional value in the market over common stocks.
1819. The kiins which are used for burning bricks are usually 13 feet long, by 10 feet 6 inches in width, and 12 feet in height. The walls are one brick and a half thick, and incline inwards as they rise. A kiln is generally built to contain 20,000 bricks at each burning. The fireplace consists of three arches, which have holes at top for distributing heat to the bricks. Th ese are placed on a lattice-like floor, and first undergo a gentle action of the fire for two or three days, in order to dry them thoroughly. As soon as they thus become ready for burning, the mouth of the fireplace is dammed up with what is called a shinlog (which consists of pieces of brick piled against each other, and closed with wet brick earth), leaving about it sufficient room to introduce a faggot. The kiln is then supplied with brushwood, furze, heath, faggots, \&c., and the fire is kindled and kept up until the arches assume a white appearance, and flames appear throngh the top of the kilh. The fire is then slackened, and the kiln gradually cooled. This process of alternately raising and slacking the heat of the kiln is repeated till the bricks are thoroughly burnt, which is usually accomplished in about eight and forty hours.
1820. The malm or marl stock, which is of a bright yellowish uniform colour and texture, is not always to be had, especially in the London districts; in consequence of which, several years ago, it was discovered that chatk mixed in certain portions with loam, and treated in the usual manner, proved an excellent substitute for it. It not only was found to improve the colour, but to impart soundness to the brick; and the practice is now gencrally adopted about London. At Emsworth in Lampshire, and also at Southampton,
coze, or sludge, from the sea-shore, containing moch saline matter, is used for a similar purpose: these bricks, however, have not the rich brimstone colour of the London malm stock, nor the regular stone-eoloured hue of the Ipswich or Suffolk loricks.
1821. The finest marl stocks, which are technically called firsts, or cutters, are principally used for arches of doorways and windows, quoins, \&c., for which purposes they are rubbed and cut to their proper dimensions and form. There is also a red cutting brick, whose texture is similar to the malm cutter, which must not be confounded with the red stock. The next best, which are chiefly used for principal fronts, are called seconds; they are not quite so uniform in colour, nor so bright as the last, but are, nevertheless, a handsome and durable brick.
1822. Stocks are red and grey, both sorts being equal in texture. The red sort are burnt in kilns. The grey stocks are less uniform in their colour than seconds, and are of rather an inferior quality. They are used for common fronts, and walls.
1823. Place brieks, or peckings, sometimes also called sandel, or samel bricks, are those which, having been outermost or furthest from the fire in the clamp, or kiln, have not received sufficient heat to burn them thoroughly. They are consequently soft, uueven in texture, and of a red colour. These should never be used in a building where durability is required. The name was formerly applied to the second quality of bricks, and these are still so called in Ireland, being used for inside walls: the Irish harder burnt brick, haring a semi-glazed surface, is called firebrick, and is used for exterior work where expense is not an object; of course it lasts much longer than the other sorts.
1824. Burrs and clinkers are such bricks as have been violently burnt, or masses of several bricks run together in the clamp or kiln.
1825. Compass bricks are circular on the plan, and are chiefly employed for steyning, or walling round wells.
1826. Concuve or hollow bricks are made like common bricks, but hollowed on one side in the direction of their length, and are adapted to the construction of drains and watercoures. Other hollow and pierecd brieks of several shapes and sizes are supplied by various manufacturers. A beaded brick, drilled with holes, for garden walls, to aroid the necessity of nailing in training trees, are made at Stony Stratford, in Northamptonshire.
1827. Firebricks, so cilled from their capability of resisting the most violent action of the fire, are of a dark red colour, and of a very close texture; they are made about 9 inches long, $4 \frac{1}{2}$ inches broad, and $1 \frac{1}{2}$ inches thick. The loam of which they are male is yellow, harsh to the touch, and contains a considerable portion of sand. Their quality renders them highly serviceable in furnaces and ovens. The greater part of those used about London was formerly brought from Hedgerly, a village near Windsor, whence they obtained the name of Windsor bricks. This sort of brick is also made in various parts of Wales, whence they are called Welsh lumps; also at Neweastle; at Poole in Dorsetshire; at the Hurlford works, near Glasgow; and at Stourbridge; the latter supplies chiefly the London market, but the material is one of the dearest. Fire clay, and flue linings for furnaces, are extensively used. The Dinas brick, manufactured by the Ynisymudu Company, near Swansea, stands a heat that will melt tbe Stourbridge brick.
1828. Paving bricks are for the purpose which their name implies, and their dimensions are the same as those of the foregoing sort.
1829. Dutch clinkers and Flemish bricks vary little in quality; they are exceeding'y hard, and are used for the paving of stables. yards, \&e., though they are by some objee. .d to, as being too hot for the horses' feet. The furmer are 6 inches long, 3 inches broat, and 1 inch thick, and are often laid on edge in rarious fanciful forms, as the herringbone, \&e. The adamantine clinker is noticed in the next chapter. Tebbutt's patent "safety" brick is used for stables, yards, lavatories, and such places, as it gives a good foothold and a dry walking surfaee.
1830. South Staffordshire supplies a blue vitrified sewerage and paving brick (as used on Char ng-cross suspension bridge, 1856, and on Chelsea new bridge), and a channeled stable brick. It is stated that the Tipton blue brick, when used for facings, lets in the wet most thoroughly, either through the brick or through the mortar joints, so that walls of this material should be built hollow. The construction of the work was questioned, as 9 and 14 inch walls bare been erected with these bricks with success. As they are scarcely ahlsorbent, mortar does not thoroughly adhere to them; this want of adhesion might be remedied by well soaking the bricks before using them. Bluc brichs of various forms aro also used for paving, copings, channels, gutters, border tiles, plinths, \&c.
1831. Amongst the many qualities and varieties of bricks now in use in the metropolis, the folloring may be enumeratel in addition to those already mentioned. The Cowley, Essex, and Kent brichs. From Cowley are sent stocks, best yellow and white cutters, yellow and whito seconds, pariours. pickings, \&c. The Aylesford and Burham works, near Maidstone, on the river Medway, formerly the property of the late Thomas Cubitt, produce gault bricks of grood quality. Pickuell's patent white brick is souud, has a
uniformity of colour, resists frost and the action of acids much longer than others. They are manufactured at Hull.

1831a. The Suffolk bricks, called white Suffolks, are of two or more qualities, expressly made for facings, and are expensive; the best are rarcly to be obtaiued in London, being suld in the locality of their manufacture. They have a disagreeable cold line, rendered still more dull after a few years' wear in the snoky atmosphere even of a provincial town. They are not so well burnt as those whieh are somewhat of a light pink or salmon tint. These latter are to be bought at the kiln at about $17 s$. per thousind, and by some persons are thought to make better brickwork than those which fatch 60 s , or more per thousand in Londow. The works supply superior white and red (kiluburnt) Suffolk facings, splays, door-jambs, coping bricks, stable clinkers, \&c.; dark red facings, rubbers, sp'ays, paving bricks, \&c.; bright yellow malm facinzs, and cutters of best quality. Mean quality, and pale malm seconds, pickings. paviours, \&c. A dark-coloured brick from Huntingdon is of a finer colour, uniform, much smoother than ordinary, and equal to those made in Kent.

1831b. Beart's patent bricks are made at Arsley, near Hitchin, on the Great Northern Railway, of the following qualities, ranged according to price:-White rubbers; hand made moulded solid brick, equal to the best Suffolks; No. 1 best selceted white facing brick (pierced); and ordinary; these two are of uniform colour, hard and well burnt, and used extensively for facings; No. 2 mingled, red and pink, vary from the above only in colour, and are equal in every respect to the best made stock bricks. These bricks are marle from the Gault clay, one of the suberetaceous formations interposed between the chalk and the wealden deposits, or between the chalk and the upper oulite. The composition raries, for although it is of a tolcrably uniform dark blue colour, it sometimes contains large quantities (comparatively) of the hydrous oxide of iron; and in others it contains much of the bicarbonate of lime, in combination. The former burn in the kiln into a deep red brick or tile of rather inferior quality ; the latter are used for the pierced hard white bricks above described. It is stated that these bricks are required to be burnt with great care, for if the calcination of the lime should take place under such conditions as to leave the lime in a canstic state, it will slack on exposure to the weather, or when moisture is applied to it. There is some difference of opinion as to whether mortar can be made to adhere to the smooth hard fice of these bricks to make sound and strong work.

1831c. The red lrickis derive their colour from the nature of the soil whereof they are composed, which is generally very pure. The best of them are used for cut ing-bricks, and are called red rubbers. In old buildings they are frequently found set in lime putty, and often carved into ornaments over arches, windows, doorways, \&c. The Fareham reds are noted bricks. The Rowlands Castle (Hampshire) brick, tile and terra-cotta works supply reds in colour and appearance similar to Fareham. They are very hard and strong. At a me:n pressure of $76,867 \mathrm{lbs}$, or 686 cwts ., they cracked slightly, and with 140,617 lbs., or 1255 cwts., they cracked gencrally; giving 141.9 and 259.5 tons per square foot. The Thurstonland brick, from near Huddersfield, is made from a deep bed of shale, producing when burnt a rich red colour; each brick undergoes a pressure of 14 tons, is well bornt, and being of a vitreous nature is impervious to atmospheric and other destructive influences. Mouided bricks can le made. They have been used at some of the London Board Schools, and largely at Blackburn and Sheffield. The crushing strain is over 399 tons per square foot, and the brick contains 65 per cent. of silica.

1831d. Black brickis are oltained from Cow bridge, in Soutlı Wales; these were used at All Saints' Chureh, Margaret Street, and cost $£ 4$ per thousand. The Ballingdon or Ewell deep black rubbing and building bricks, probably so rendered by manganese, are soft in make and dead-looking in colour. The same factory, and Chalfont, supply dark, and bright, red rubbers; with black headers. glazed and unglazed. Red and black bricks are sent from Burgess Hill, Sussex; and from Maidenhead, in Berkshire.

1831e. Bricks are now made glazed white and also many other plain colours; others with patterns on the face as borders and for clecorative purposes. The white glized bricks are used in lieu of tiles for the reflection of light; others for securing perfect cleanliness of wall surface; and for obtaining quiet and neutral tones of colour tor the walls of wards of hospitals, and uther similar purposes.
1832. By the 17 th Geo. III. cap. 42 , all bricks made for sale were directed, when lurnt, to be not less than $8 \frac{1}{2}$ inches long, $2 \frac{1}{2}$ inches thick, and 4 irches wide. This statute, which was enacted for the purpose of levying a duty, is now no longer in force, and the manufacturer is at liberty to make bricks and tiles of whatever size and form may be best suited to the work for which they are used. This Act having been rescinded, has led to the introluction of moulded and ormamental bricks to a rast extent, which will probably be still further extended as brickmaking machines become more u-eful and certain in their operations. The paten's for them are now very numerous: some of them are stated to make uI to 20,000 per day, as may be required. The size of the brick, however, has beel retained, and habit will, no doubt, continue it in favour, especially for repairs.

1832a. Bricks laid in the summer season shonld be well saturated with water presious to laying; and if the work be left for a day only, the walls should be as carefully covered up as in the winter, for in hot weather the mortar sets too rapidly, and hence the necessary coliesion is destroyed; an evil much aggravated by the dust constantly hanging about the bricks, more especially at that season of the year. (See 1900d.)
1833. A valuable paper, On the Transversic Strength of Bri.ks, was delivered by Mr. W. Hawkes at the Institute of British Architects, January, 1861. He stated that he had always tested bricks by their transverse power in preference to the crushing weight, which was but seldom called in question, as it tells nothing if the bricks will resist from 30 to 100 tons dead weight. It would often be useful to know if in a 9 inch wall we could distribute a weight, say of 13 tons, orer an opening 90 inches wide, having only 40 inches depth, supposing that the lricks be of moderate strength and the mortar be as strong as the bricks. The pressure and weights were applied in each case in the centre of the brick.

1833a. He expermented on Dutch clinlicrs (made at Moor, ncar Gouda, in Sonth Holland, from the slime deposited on the banks of the river Yssel; and formerly from that of Haarlem Meer; the clay or slime is washed to get rid of the earthy matter before being moulded ; the colour is lightish yellow brown) : Tipton blue bricks; Birmingham, hand and machine made; Leeds, ditto; Biilgewater; Colchester; Oxford; and London, \&c.; with tiles of various kinds. As, however, these experiments were made to a calculated standard size of 7 inches long, $4 \cdot 5$ inches wide, and 3 inches thick, the results are not generally useful for a work of this description. But we give the few actual weights borne by certain brieks. Thus the 9 Leicester bricks carried at the ordinary size, 1,462 lhs., 1, $392 \mathrm{lbs} ., 1,252 \mathrm{lbs}$., 1,132 lbs., 1,052 lbs., $1,002 \mathrm{lbs} ., 902 \mathrm{lbs}$., and 892 lbs . The 9 from Rugby carried 1,222 lbs., 1,022 lbs., 1,012 lbs., 862 lbs., 822 lbs.. $552 \mathrm{lbs} ., 422 \mathrm{lbs}$, and 362 lbs. The 7 London bricks carried $\mathrm{I}, 142 \mathrm{lbs} ., 1,042 \mathrm{lbs}$., $952 \mathrm{lbs} ., 662 \mathrm{lbs} ., 652 \mathrm{lbs}$, 422 lbs., all being stocks; the last, a place brick, carried 270 lbs . The 7 London bricks (second set) carried $970 \mathrm{lbs} ., 690 \mathrm{lbs} .580 \mathrm{lbs},. 400 \mathrm{lbs} .$, all steckis; and 650 lbs ., 490 lbs., 340 lbs., all place ; the frog was not allowed for in the calculation.
18336. The following are the ascertained weights of hricks of the sizes stated:-

1833e. Brickwork expands with great heat. Mr. Hawkes's experiments, already noticed, on a furnace chimney, 54 feet 7 inches in height, showed that the result of six trials was an elongation of $1 \cdot 425$ inches. The great heat of the furnace chimney for melting iron is never reached in house flues, but since the introduction of hot air cockles and hot water furnaces, particularly the high-pressure, the heat of these flues is increasel tivefold compared with fines from open firejlaces. An irun bar might perhaps be heated to redness in some of the furnace flues. In another chimney, at Thames Bank, in a height of 80 feet, the brickwork shuwed an expansion at times of $\frac{5}{8}$ of an inch.

1833d. Burnt Clay Ballast. Thisis now extensively used for forming the foundations of the new formed roads round the metropolis, and for footpaths in the suburlan gardens. The clay obtained in making the excavations for the new houses is run to a convenient lucality adjacent; a log of old timber is fixed upright in the ground; a horizontal flue 6 or 8 feot long is furmed with Lricks on edge, with an opening on the top near the log. Shavings are laid round the post and in the flue. outside of which pieces of timber are piled in a conical form obout 8 feet wide and 5 feet high; and then coated with about half a ton of coal, which is corered with the newly excavated clay to a convenient thickness. The shavings are then lighted, it the wind suit; and in a short time the top of the heap falls in, lumps of coal are then thrown in, and on them more lumps of clay. The object to be attained is to have a mass of red hot fire in the middle of the heap. For a heap of about 100 solid yards of clay, about 11 loids of breeze or ashes and 4 tons of slack or fire coal will be needed. The heap, once fairly alight, is corered with clay. The tendency of the fire being to burn upwards, the fireman, with a long rake, drags the outer surface downards every time the burning heap is fed; this is done by scattering the slack over it with a shovel to quicken the fire, and the breeze is then laid on to retain it; while a fresh layer of clay is sobsequently put on all over the heap. When this clay is nearly burnt through, the operation is repeated. When there is in gentle smoke all over the heap the fire is going on properly; if too little, an iron rod is pushed in to stir it up;
if too much, shields must be put up to lreak the wind. The general form of the heap, which is cone-shaped at starting, becomes of a flattened circular t'p in course of leing worked. It should not be made too high, as that inereases the labour of wheeling the cliy. When all the clay is used, such portions as are not sufficiently burnt are rakerl off and thrown up to the top to the greater heat: the heap is then trimmed off and left to cool. When well burnt, the ballast may be worth the trouble; when badly done, as is usually the case, it is not much better than rubbish, in fact not nearly so good as the usual dry brick rubbish of which roads should be made. When well burnt, ground fine, and mixed with an equal portion of sand, and a less than the ordinary proportion of good lime, it makes a mortar which will set as hard as cement. The ballast may also be sifted thruogh a 65 or 70 wire sieve, and the fine stuff, hard and clean, used for mortar or for the plasterer ; the coarse and the rough for concrete, in addition to gravel. When used as core for a road, it should be at once corered with the Cowley or other gravel, or the clay bencath it rises up with traffic, and much min will soon render the road as bat as though the soil had not been covered; in fact it turns into mud, and the scamping builder finds it pays to mix his bad lime in the roadway dirt, and to use the mixture for mortar.

1833 . Coke brefse or breeze is akin to the above in the use now made of it. It is extensively used for mortar; ground in a mill, in lieu of sand or burnt ballast, it is said to set harder, being cleaner and sharper than sand, and requires less lime or cement. It is employed in artificial stonework, in concrete, and in paring. In ballast burning it burns the clay harder, and is cheaper than small coal. For roads and pathways it is clean, nit picking up in wet weather, and is good for surface drainage. In some places it may be cheaper than sand or ballast.

TILES.
1834. Tiles, which in their constituent parts partake much of the nature of bricks, are plates of clay baked in a kiln, and used instead of slates, or other covering of the roofs of hunses. The clay whereof tiles are formed will always make good bricks, though the converse does not hold, from the toughness required on account of their being so much thimer than bricks. The common kinls are made of a blue clay, found in many parts about London, and mostly deeper seated than brick carth. The best season for digging it is in September and October, and itshould then lie exposed during the winter. It may, howerer, be turned up in January, and worked in February; and, as in brick, so in tilemaking, the more care bestowed on beating and tempering the clay, the better will be the tiles. In 1477, 17 th Edward IV., e. 4, it was enacted that clay should be dug before November, and be stirred and turned betore Marel. Tiles are burnt in a kiln constructed on the same principles as the brick-kiln, but with the addition of a cone, having an opening at top round the chanber of the kiln. They require much care in burning. If the fire be too slack, they will not burn sufficiently hard; and if too riolent, they glaze, and suffer in form.
1835. Plain or crown tiles are such as have a rectangular form and plane surface. They were made $10 \frac{1}{2}$ inches long, $6 \frac{1}{4}$ inenes broad, and $\frac{5}{8}$ of and inch thick, by the statute. They are manufactured with two holes in them, through which, by means of oak pins, they hang upon the laths. In using all coverings of this species, one tile laps orer another, or is placed orer the upper part of the one immediately below; that part of the tile which then appears uncovered is called the gauge of the tiling. Terro-melallic tiles for roofs, with two projections at the back to catch on the laths in lieu of pags, are now in use. Terrometallic Staffordshire goods in red, blue, and buff colours ; also blue and red, phain, capped and rolled ridge tiles in 18 inch lengths. Broseley roofing tiles in various colours and patterns. The best pressed roofing tiles are of superior manufacture and quality, of rery hard metal, impervious to moisture, and will not allow of vegetation growing on them. The Kenningtun and Naccolt tile yards, Ashford, Kent, supply a dark brown tile, about $9 \frac{1}{2}$ inches ly 6 inches, of which 1,400 go to a ton; the timbering of a roof is not more than for slates. It was there that the abbots of Battel manufactured tiles for their own use and for sale. On stripping old roofs these tiles have been found sound and were used again; the heart of oak laths had perished from age. Italian tiles, which were made about 1840, by Brown, of Surbiton, differ somewhat from their first prototype, as, instead of being flat, they are slightly curved, fit easily one into the other, with a horizontal indentation across the upper part, to prevent the wind drifting the rain over the tile head; they have either wide or narrow vertical rolls. Such tile: are usefully employed in picturesque buildings in the country. Taylor's new roofing tiles have a plane surface and a slight turned up edge at the sides, a lump on the surface near the upper edge prevents the upper tile slipping ; a cover tile is of a similar size and form; these tiles were used about 1872 at the new railway station in Liverpool Strect. They are recommended as being half the weight of ordinary plain tiling, each tile weighing under 4 lls., and as light as slating; they may be laid to as flat a pitch as slaters; and that 180 will cover a square of rooting.
1835. Ridly cref' and hip tiles are formed cylindrically, to cover the ridges of houses.

They should be 13 in . long, and girt about 16 inches on the outside. Weight about 5 lbs . Redge tiles, plain, and with cresting, are now introduced in red, blue, Llack, and green ware. Plain, flanged, rolled top, and ornamental gruoved ridging tiles, are commonly seen.
1837. Gutter tiles are about the same weight and dmrnsions as ridge tiles, though differing in form, and are for the valleys of a roof. They are now rarely used, ther place laring been supplied by lead, and lately ly zinc in common work.
1838. Pua or Flemish tilos have a rectangular outline, with a surface both convex and coneave, thus did. They have no holes for pins, as plain tiles have, but are lung on to the laths liva knot of their own earth on their underside, nearest the ridge, formed when making. They are often glazed, and should be $14 \frac{1}{2}$ inches long and $10 \frac{1}{2}$ inches broad. The Bridgewater double roll tiles are shown in fig. $61+a$. Three stubs are formed on the back to catch the lath. They lap orer two inches, and afford good rentilation for farm buildings, with good protection from rain and snow. Pbillips' patent lock jaw roofins

fig. $614 a$. tiles, with single grip and double grip, are ornamental, and stated to be wind, rain, and snow proof. The grap consists of each tile locking on to its neighbour by one or two rounded grooves or bearls.
1839. The fullowing are the weights of the undermentioned sizes of tiles used for rarious purposes:-

Paring tiles at per 100 .

-		
	$9 \times 2 \frac{1}{\frac{1}{3}}=$	13
	$9 \times 1 \frac{3}{4}=$	$9 \quad 2$
	$9 \times 1 \frac{1}{4}=$	73
	$9 \times 1 \frac{1}{2}=$	s. each
$12 \times$	$12 \times 1 \frac{1}{2}=16$,
$12 \times$	$12 \times 2=22$	"
14	$14 \times 23=35 \frac{1}{2}$	"
$16 \times$	$16 \times 2 \frac{3}{8}=44$	"
$18 \times$	$18 \times 2 \frac{1}{2}=64 \frac{1}{2}$	"
	$21) \times 2 \frac{5}{2}=84$	
$22 \times$	$\times 22 \times 2 \frac{7}{8}=104$	
$24 \times$	$\times 24 \times 3=133$	
dge tiles 18 in., $\} 15$		
10 to 14 cats. per 100. rolled, 18 to 24 in .		

Malt kiln ti'es
$12 \times 12 \times 2=16 \mathrm{lbs}$. each.
Horhouse flue tiles
$12 \times 12 \times=13$
Plain tiles \quad Its, "ewts.

$$
\begin{aligned}
& 11 \frac{1}{4} \times 6 \frac{1}{2} \times \frac{1}{2}= \\
& 10 \frac{1}{2} \times 66^{\frac{1}{2}} \times \frac{5}{8}=2 \cdot 51=22 \frac{1}{4} \\
& 11 \times 7 \times \frac{5}{8}=2 \cdot 90=26 \frac{1}{4}
\end{aligned}
$$

Pint tiles
$13 \frac{1}{2} \times 9 \frac{1}{2} \times \frac{1}{2}=5 \cdot 25=47$
Bridgewater double roll tiles
$16 \frac{1}{2} \times 14 \times \frac{1}{2} 10 \frac{5}{8}=8.80$
Paring tiles, squales
$6 \times 6 \times 1=2 \cdot 16=19\}$
$93 \times 9 \frac{3}{4} \times 1=570=50$
$11 \frac{3}{1} \times 1 \frac{3}{4} \times 1 \frac{1}{2}=12 \cdot 42=111$
Ditto, hexagons

$$
\begin{aligned}
& 6 \times 6 \times \frac{7}{8}=1 \cdot 63=14 \frac{1}{3} \\
& 6 \times 6 \times 1=1 \cdot 86=16 \frac{1}{2}
\end{aligned}
$$

1839a. White glazed tiles of Dutch and English manufacture are used for lining the walls of baths, larders, dairies, butchers' and other shops, kitchen ranges, areas for reflected light, and other such like purposes. For walls of entrance lobbies and similar places, glazed tiles are stamped with a pattern, giving a decorative appenrance. Mathematical tiles are employed for covering the vertical surfaces on the outside of walls, in imitation of brickwork, and to prevent wet being absorbed.

1839b. Ornamental Pavements. The use of hardened clay for pavement is of the highest antiquity. Our own country furnishes numerous examples of the varieties employed by the Romans. The tiles are usually made of the clay found in the immediate neighbourhood in which they hare been used; and ornamented, sometimes with colour, but more frequently with merely an impressed or raised design. During the Medieval age, encaustic and other tiles were largely employed. Many varieties of plain and ornamental tiles are now made in the Potteries, as at Broseley; also at Pcole, in Dorsetshire. The coarser kiuds, for streets and doorways, have a red or a baff colour, and are prepared from the Staffordshire clay, which is fuund associatell with coal. By nixing metallic osides with the finer clays, blue and other colours are produced. The manufacture consists in bringinir the clay into a state of fine powder, containing a certain amount of moisture; the mass is then placed in a mould of iron which it. completely fills, when the ram of an hydranlie press, exactly fitting the mould, gives a pressure of from 150 to 200 tons, compressing the clay into a comparatively rery small space ; on being removed from the mould it is polished or smoothed off on the surface, and then it is ready for being baked in the kiin. The enctustic or rariegated tile is composed, in the body, of ordinary red or buff elay; it is pressed in a mould under a common screw press, the mould not only producing the outer furm of the tile, but also certain impressions on the face of the clay, about a quarter of an inch in depth. It is then taken out of the mould, and allowed to require a certain state of dryness. Devonshise or Cornish elay, culuured, is then poured over the whole surface, filling the impressins, in the state of a very thick slip; when this bas been dried to a certaiu extent, the slip is seruped until the face of the common clay or body is seen, the im-
pressed spaces only being filled with the coloured matter. A layer of elay is also applied to the lack, and is sometimes pierced with holes to present the bending of the tiles in the process of baking.

1839c. The Tesseree are manufactured by a similar process. In Lambeth, clay being properly prepared and stained of the desirel colour, as black, red, blue, \&c., is made inte long narrow iibbons, by means of a squeezing machine. These riblous are cut into squares, which are placed one on another, 15 or 20 high, preriously oiled to prevent adhesion. These piles are then placed upon a frame sliding in two perpendicular grooves, with fine steel wires stretched tightly across, so that by pressing the frame downwards the wires subdivide the slices into the square, oblong, triangular, or other shaped tessere required; these are then dried and baked in the ordinary way. Messrs. Minton manufacture their tesseree by pressure as for making tiles.

1839d. The mode of forming tesseræ into mosaic paving slabs is as follows:-The tesseræ are laid face downwards on a perfe.tly flat slate, in the pattern or design required. The size and shape of the slab is given by strips of wood or slate fastened round the tesseræ. Purtland cement is poured on the backs of the tesseræ, and two layers of common red tiles are added in cement; thus forming a flat and strong slab, which is fitted for laying down as 1arement. (Hunt, Handbook, 1851.) The better tilew, and the larger tesseræ fur pavements, are laid separately on a carvfully prepared foundation of fine concrete, and then set in fine sand. The durability of a tesselate! pavement consists greatly in the solidity of tha fundation given to it. With a floor suljected to vibratious such a work will go to pieces. The encaustic tiles with raised patterns should only be used as wall liniugs, as at Grauadit, and never for parements, as is sometimes dune.

1839e. Stoneware is a dense and highly vitrified material, impervious to the action of acids, and of peculiar strength. Until ab int 1836, when the duty was taken off, this material was chiefly used for common spirit bottles, oil jars, \&c. The clay used is fund near the coast in Devonshire and Dorsetshire. It is dug in square lumps of about 40 lbs . each, ard transported in ships to London. After being perfectly dried it is ground to a powler, mixed with water, and, after leing allowed to become of uniform consistency, the mass is passed through pug mills, and taken to the workmen. For making large articles, portions of the burnt material, finely ground, are mixed with the new clay; also some white sand found in the neighbourhood of Woolwich and Reigate.

1839f. Almost all round articles are formed by the potter, on wheels turning with the required rapidity. The potter's wheel was known in Fgypt some 2,500 years अ.c., and it remains practically the same. It was worked by hand; then by the feet, keeping a steadier constant motion; larger articles caused the d!se to be attached to a large fly wheel, worked by an assistant, who was directed by the potter; lastly came the addition of steam and the conical drum, enabling the potter to regulate the speed required. For articles of other shapes, the composition in a soft and plastic state is laid in plaster of Paris monlds; the poreus plaster gradually absorbs the moisture from the clay, and when sufficiently firm it is remored. Sume thousand articles are frequently malle from one mould before it is destroyed. When thoroughly dry, the ware is placed in ovens or kilns, and exposed to a gratcally increasing heat, so intense as to become, before finishing, quite white ; salt is then thrown in, and, being decomposed, the fumes act chemically on the surface of the ware, and fuse the particles together, giring the glaze su well known. Stoncuare differs from all other kinds of glazed carthenware in this important respect. that the glazing is the actual material itself finsed together; in cther kinds of ware it is a composition in whicn the article is dipped while in what the potters call the biscuit, or half-burnt, state. (Hunt, Handbook, 1851.)

TERRA-COTTA.

1839g. Terra-cotta, that is, burnt earth, embraces every kind of pottery, but the term has now come to be applied exclusively to that class of ware used in building, and is more or less ornamental and of a higher class than the ordinary, or even the better mike of bricks, demanding more care in the choice and manipulation of the clay, and much harder firing, hence it is more durable. The best terra-cotta is a species of stoneware, which does not after years of use show signs of decay from contact with acids and alkalies.

1839h. Terra-cotta, like stone, may be good, bad, or indifferent in quility, hut good terra-cotta will hold its own against good stone as a sound building material. Bad terracotta is that which is imperfectly burnt, and when it is "slack burnt," as it is termed, the material will go back to clay again. Flower-pots are common terra-cotta, and often throw off a scale of red earth each time the plant is watered. A well burnt sto k brick is also terra-cotta; and where is the ordinary stone which is equally durable with it? Good terra-cotta is easily t.sted; when struck wilh steel it should emit sparks and merely show a black line, and riug like a bell. It should be free from fire cracks, have true lines,
its surfaces be not chipped or rubbed after burning, and each piece should be properly chambered with cross- pieces.

1839i. The clays best suited for terra-cotta are found in the tertiary beds, or those occurring above the chalk, and corresponding with the lower Bagshot sands of the London district. Also those in the oolite and lias tormations. It is procurable at Tamworth in Staffordshire; Watcombe in Dorsetshire; Poole in Dorsetshive; Everton in Surrey; Ruabon in Nortil Walts; in Cornwall, and in Northamptonshire. The clay slould be as free from iron and limestone as possible, and should be cleansed from all impurities. Natural terra-cotta c ay contains 60 to 65 parts of silica to about 28 parts of alumina. The Roman material consisted usually of the following ingredients: Siica, 7145 ; alumina, $2 \cdot 25$; protoxide of iron, 12 ; protoxide of manganese, 017 ; lime, 8.14 ; soda, 16.62 ; magnesia, a trace. Sand is an essential ingredient, and should be free from iron. The chief materials constituting the paste are clay, sand, flint, glass, and phosphate of lime.
$1839 k$. All clays require careful preparation before use, and their after characteristics are often as mucli determined by this as by anything; the same clay being difterent under different treatment. 1st. Kneading, or pugging, which consists of well mixing the clay and reducing it to a perfect consistency throughout; this is now done by a pug-mili. Most clays are too fat, and require an alloy to make them more workable; their shrinking is too great, and they are liable to twist and warp in draing and burning, so that ruugh stuft or burned clay grouid fine is added in proper quantities to prevent this, and it gires the potter more efrtain command orer the clay. When mixed it is raised in a dry state into the misers, water is alded, and it is then passed through the pug-mills, when it is ready for use. Sometimes the clay is rendered more homogeneons by being struck continuously with an iron bar, to assimilate the parts and to expel any air, which on being expanded by the heat of the kiln would shatter the work. 2nd. A ball of this clay is supplied to the potcer, who proceeds to form the article by hand; or it is pressed into a mould, which is of plaster, when repetitions are required. Care is necessary to have an equal thickness throughout, to prevent unequal shrinkage. This thickness is not nuch more than one inch. It hen required of a greater thickness, the thocks are furmed hollow with cross webs to strengthen them. When necessary these cavities may be filled with concrete; this filling also prevents the accumiation of moisture, to which the blocks would be liable were they left open. 3rd. The article so formed in the rough is remored to be dried. Drying is evaporating the water, which must be done very gradually and evenly or there would be a liability to crack and twist. When nearly as hard as a piece of soap it is placed on a lathe and smoothed or poli-hed with an iron tool. If any part is required to be attached to it the part is moulded, and the clay moistened at the point of junction, and the two luted with a very little soft clay. The work is now ready to be burnt. 4th. Burning is a process of the utmost importance, as on it depends the lasting qualities of the material. A chemical action goes on in the firing which changes the whole nature of the clay; it never admits of being worked up again, as in its original state. To accomplish burning successfuliy requires much experience, skill, and patience. It is now removed to a kihn or reverberatory furnace, and carefully packed in fire-clay troughs called srggars, or placed one over the other. When the kiln is full the doorway is bricked up. and the fires are lighted in the furnace holes around the kiln. Large articles have to be fired very slowly for four or five days, then for about forty-eight hours fired sharply until a heat is attained sufficieat to bake the ware, and to flux the ingredients of which the body is formed into a vitreous mass without melting the whole. The intensity usually necessary is stated to be that at which soft iron would melt. The atticles have to be protected from the coal flame by the seggars, or by being coated with paper and clay, or by a muffe throughout the kiln, as the flame is apt to crack many clays openly exposed to it, and the vapour of coal is sure to discolour the ware, generally turning it a foxy red. A kiln of large goods takes about a week to cool.

1839l. Of late years terra-cotta has been uscd extensivcly for the facings and dressings of a building in the place of stone. It is generally made of hollow blocks, formed with webs inside so as to give strength to the sides and keep the work true while drying, whereas when required to bond with brickwork it must he at least $4 \frac{1}{2}$ neches thick.

1839 m . The following result of experim+nts made by Mr. Blash£eld fur Mr. Charles Barry, were given in a paper by him on Dulwich Culige, read at the Royal Institute of British Architects, session June, 1868.

A block of Portland stone about 6 inches cube, bore a crushing weight
equal to per foot super.
292 tons
A block of Bath stoae, equal to per foot super. - . . - 104
A stock brick " \quad, - - 82 ",
A solid block of Terra-cotta, equal to "per foot super. - - - 523 ",
A hollow block, slightly made and unfilled - - - - 80
The same, but filled with concrete - . . . - . 163
A hollow block, unfilled, but made with thicker walls - - - 186 ",

1839n. The shrinkage of terra-cotta clay in burning is very uncertain; it is one-eighth to one-twelfih. To obriate the risk of wurping, large picces should only be used where absolutely necessary. Blocks may average from 1 to 3 feet cube; never more than 4 feet; the block is usually from 12 ins. to 16 ins. long, by 6 ins. to 15 ins. high; $4 \frac{1}{2}$ ins. to 9 ins. on the bed; if hollow, from 1 to 2 ins. thick. Larger blocks should hare a division or web of terra-cotta across them. Joints should be joggled, stopped ends made solid, beds even, and samples should show extreme limit of coiour and evenness. In the old Continental and English examples, brick dimensions are as much as possible adhered to. Large blocks require corresponding extension of timo to be allowed in their manufacture.
18390. As regards economy it compares favourably with good stone, while it is much more durable, stronger, and cheaper; for the use of the mould allows, where there is great repetition of parts, of most elaborate work, produced at a cost less than that of stone; as much as one-third is saved. The cost of the raw material of terra-cottia is only half the cost of Portland cement, and not one-fourth the cost of good stone. Mouldings having a girth of two feet can be bought at two shillings and sixpence per lineal foot; tracery for parapets, 4 inches thick, at three shillings per foot superficial.

1839 p . Its lightness is a source of economy in comparison with stone, by which a saring is effected in carriage and lifting; the filling of the blocks can be done on the site with the broken bricks lying about. In a district where stone abounds, the saving in cost would not be so adrantageous. In London it would be on an average, say 20 per ct int. less than Bath stone, and 40 per cent. less than Portland stone. Tho subject will be furiher treated in the next book.

Sect. XI.

LMME, SAND, WATER, MORTAR, CONCRETE, AND CEMENT.
1840. Lime has not been found in a native state; it is always united to an acid, as to the carbonic in chalk. By subjecting chalk or limestone to a red heat it is frced from the acid, and the lime is loft in a state of purity, and is then called caustic or quicklime, which dissolves in 680 times its weight of water. It is not our intention here to enter into any account of either of the theories relative to the formation of lime, facts being of more importance to the architcet in its employment than the refined fancies of the scientific chemist. The calcareous minerals are mostly distinguished by their effervescing with, and dissolving in, an acid, as also by their being easily scratched or cut with a knife. In respect of the lime obtaiued from chalk, Dr. Higgins (in his work on calcareons cements, Lond. 1780) says, "It should ke observed, that the difference between chalk lime and the lime obtained from the various limestoves, chie "y consists in the greater retentiou or expulsion of the carbonic acid gas contained in them."
1841. An account of the stone from which lime may be obtained in the different count ies of England would unnecessarily extend this article; we shall, therefore, after olserving that the use of marble for burning to lime would be too expensive, state the varieties of limestone as, 1 , the compact ; 2 , the foliated; 3 , the fibrons; and 4 , the peastone. The compact limestones are of rarious colours, in hues inclining to grey, yellow, blue, red, and green, and to a smoky sort of colour besides. It is usually found massive, often compounded with extraneous fossils, particularly shells. Its internal appearance is dull, the texture is compact, the fracture small, fine, and splintery; fragments indeterminately angular, more or less sharp-edged; semi-hard, snmetimes soft, brittle, and easily frangible. Specific gravity varies from 2.500 to 2.700 , and it is composed of lime, carbonic acid, and water, mostly with a portion of argyl and oxide of iron, and sometimes of inflammable matter.
1842. The foliated limestones are such as calcareous spar, statuary marble, \&c.; the fibrous limestones, such as satin spar; and the peastone, another species of spar. It may Le remarked, that the rarious sorts of marble, chalk, and limestone may be divided into those which are nearly pure carbonate of lime, and those containing in addition from onetwentieth to one-twelfth of clay and oxide of iron. "Though the best limestones are not such as contain the greatest quantity of clay, yet," cibserces Mr. Smeaton, " none have proved good for water building, but what, on examination of the stone, contained clay; and though," lie continues. "I am very far from laying down this at an absolute criterion, yet I have never found any limestone containing clay in any considerable quantity, but what was good for water works, the proportion of clayey matter, being burnt, acting strongly as a cement; and limes of this kind all agree in one more property, that of leing of a dead frosted surfaee on breaking, without much appearance of shining particles."
1843. Among the strongest limes, such as will set under water, those most in use in the met ropolis are called grey stone limes, and are procured from Dorking, Merstham, and the ricinity of Guildford in Surrey. The Durking and other limes of that part are burnt from
a chalk formation so extremely hard that it is quarried even for the purposes of masonry. Those of Merstham particularly are obtained from an indurated chalk marl (clay and chalk) which is so hard that it partakes of the nature of stone.
$1843 x$. The known property of the blue lias formation for setting under water renders it an invaluable material in the lands of the architect. In the neighbourhood of Bath it is called Bath brown lime, and when prepared for cementing with metallic cement, is said to be wind slaked; that is, after burning, it is plaeed in roofed sleds open at the sides, and the atmosphere is thus introduced to act upon it. The colour of the lias, previous to burning, is blue; after it has passed the kiln, it is of a rich brown colour.
18436. It is extrmely difficult to give any quantitative analysis of the blue lias. Every layer in a quarry will be fuund to differ more or less decidedly from those above or below it. The beds extracted for burning into lume may he said to consist prineipaly of earbonate of lime (perhaps as much as 9 .) per cent.) in combination with silicate of almmina, some oxide of iron, potash. and a small quantity of sand, in mechanical mixture; but the ingredients insoluble in nitrous acid, such as silicate of alumina and sand, waty in every imaginable proportion between 5 and 18 , or at times 20 , per cent. The best blue lias lime is obtained from the beds of ealcareous marl whieh contain about 16 per cent. of silicate of alumina; such as is brought from Aberthaw in South Wales, Watchet in Somersetshire, and Barrow, in Lecestershire : the limes from Whithy, in Yorkshire, and from Lyme Regis, in Dorsetshire, are nearly equal to them. 'The principal ohjection to this lime as used in London is founded upon the large proportion of uiderburnt or unburnt stone or core left in it. The weight of an imperial bushel of Aberthaw lime of a supeior quality is 8.5 lbs .

1843 c. The magnesian limestone of Sunderland lies north-west of the red sandstone. In the vicinity of South Shields. in the connty of Durham, the formation becomes extensive, and is to be traecd to the Tees below Winston Bridge. The Whitby quarry near Callercoats has been described in the 4th volume of the Genlugical Transactions. The Sunderland limestone is of a bronze colour, and from containing inflamnable matter, does not require somelh fucl to convert it into lime. The naturally hydraulic limestone of Arden, found near Glasgow, in Scotland, has been largely used in the local dock works, in the proportion, for concrete, ot one part of ground lime, one part of iron mine dust, one part of sand, and four and a half parts of gravel and quarry chips. Pure hydranlic lime, as it is ealled, inanufactured (in Flintshire) from the hest Halkin Mountain limestone, is much used i.1 the dock works at Liverpool and Birkenhead.

1843d Ifyd anlic limes have heen thus elassed :-If they harden under water in periods varying from fifteen to twenty days after immerion, they are siightly hydraulic; if from six to eight days, simply hydraulic; if trom one to four days, eminently hydraulic. Hydraulic worksfrequently burst from the shki, g of the lime which has not been properly prepared for its office. It should be all hydrated before placing, and this requires more time than the slaking of ordinary lime; the heat developed is much less than in any other lime.
1844. Before limestone is burnt it seems to possess no external character by which a distinction can be made between the simple and the argillo-ferruginous limestones; whatever the colour of the former, they become white when burnt, whilst the latter patake more or less of a slight ochrey tint. Brown lime is the most esteemed for all sorts of eements, whi'st for common purposes the white sorts, which are more abundant, are sutficiently useful. In England, the lumestones in colour generally incline to a red or blue, and those which are found firm, weighty, and uniform in texture are to be preferred. Masses broken from large roeks and beds on the sides of hilis, and those when newest taken and deepest dug, are most to be valued.
1845. The process of analysing limestones is so eminently useful to all concerned in building, that we eannot refrain from transeribing the method used by Smeaton in his own words. "I took about the quantity of five pennyweights (or a guinea's weight) of the limestone to be tried, bruised to a coarse powder. upon which 1 poured common aquafortis, but not somuch at a time as to occasion the elferveseence to overtop the glass vessel in which the linestone was put, and added fresh aquafortis after the effervescence of the furmer quantity had ceased, till no further ebullition appeared by any addition of the acid. This done, and the whole being left to settle, the liguor will generally acquire a tinge of sore tramparent colour; and if from the solution little or no sediment drops, it may be accomited a pure limesione (which is generally the case with white chalk and several others), as containi.gg no uncalcareous matter in its composition. When this is well s.ttled, pour off the water, and repeatedly add water in the same way, stirring it, and letting it settle till it becomes tasteless. After this, let the mud be well stirred into the wrater, and without giving it time to settle, pour off the mudly water into another vessel. and if there be any sand or gritty matter left behind (as will fiequently be the ease), this collected lyy itself will ascertain the quantity and species of sabulous matter that entered i:to the texture of the limestone. Letting, now, the muddy liquor settle, and pouring off
the water till no more can be got without an a linixture of mud, leave the rest to dry, which, when of the consistence of clay, or paste, is to be made into a ball, and dried for further examination."
1846. There are many sorts of kilus for buraing limestone, varying in form with the fucl employed, and the combination of the process itself with some other, such, for instance, as making coke, and some:imes bricks. The limestone, however, is generally burnt in kilns whose plans are circular and section resembling an inverted truncated cone; of late mare frequently made spheroidal The heat is in cither case obtained from a fireplace under the limestone, which rests on hars, that can, when the kiln is a perperual one. egrg. formed, or a draw kiln, he remored to let out the lime as it is burat, whose deficiency, on extraction, is supplied liy fresln stone at the top of the kiln. Sod kilus ane sometimes used for lime burning. These are formed by excavating the earth in a conical form, and then bilding up the sides as the carth may require. In ming these the limes'one is laid in with alternate layers of fuel to the top of the kiln, ard the top being coverded with sods, so as to prevent the heat fromescaping, the fire is lighted a a the process effected The lime is not remored till it is thoroughly cool. This mole is a tedious ope ation, and, becanse of the quantity of fuel consumed, far from economical. In the conmon lime-kiln, the fire is sever suffercd to go down, but as the well-burnt lime is removed, fresh lime is supplied. There is a specie; of kiln called a flame-kiln, in which the calcination is effected with peat. In this kiln the process of burning bricks is carried on at the same time. The loss of limestone by burning is about four-ninths of its weight, shrinking, however, but litile. When completely burnt, it falls freely, in s'aking, into powder, and then occupies about double its previous bulk.
1847. Lime burners have made the important observation, that the quantity of stone calcined and the quantity of fuel expended depend on the quality of the fuel. Hence the kiln is constructed with reference to the fuel, rather than to the nature of the stone to be calcined. Limestone, taking an average time, requires burning about sixty hours to reduce it to lime, when the heat is strong and well regulated: but of course no general rule can be laid down, as diff rent species will require different peri ds of time. The principal object to be accomplish d is the expulsion of the carbonic acid gas which ente s into its composition.
1848. The lime generally most esteemed is that which heats most in slaking, and slakes the quickest, falling into a fine powder. If there tie among it coarse unslakable lumps called core, that will not pass through the sercen, either the stone las not been sufficiently burnt, or it originally contained extrameous matter; this not only indicates defect in qualiy, but hat it will be, as they more or less abound, more costly in use. Lime in slaking absorhs a mean of 2.5 times its volume; and 225 its weight of water. The hydraulic limes absorb less water than the pure limes, and only increase in bulk from 1.75 t.) 25 times their original volume. Slaked lime is a hivdrate of lime.
1849. From the experiments of Mr. Smeaton and of Dr. Higgins, it is sufficiently provcal that, when chalk or stone lime is equally fresla when used, the cementitions properties of both are nearly, if not quite, equal ; but from the circumstance of quicklime absorting carbonic acid more or less in proportion as its texture is solid or spongy, so it gradually parts with its cementing nature, becoming at length altogether unfit for the purposes of mortar. Thus, though each of the sorts may be equally good, if properly burnt and quite fresh from the kiln, yet from the chalk lime so much more easily and rapidly taking in the carbonic acid than stone lime dous, it is not so fit for general use; and, indeed, now the metropolis is so well supplied with the harder chalk and stone limes, there is no excuse for its use, and it should in sound building be altogether banishell.
1850. The following table, from Smeaton, contains a list of the limestones he examined on the occasion of building the Eddystone Lighthouse:-

Species of Stone.	Proportioli of Clity.	$\begin{aligned} & \text { Colour of the } \\ & \text { Clay. } \end{aligned}$	Reduction of Weight by Lurning.	Colour of Brick made of such Clay.
Aberthaw, on the coast of Gla-	${ }^{\frac{3}{23}}$	Lead colutir	4 to 3	Grey stock brick.
Watchet, small sea-port in Somersetshire -	${ }^{\frac{3}{25}}$	Do.	4 to 3	$\left\{\begin{array}{c} \text { Light colour, red- } \\ \text { dish hue. } \end{array}\right.$
Barrow, Leicestershire -	$\stackrel{3}{11}$	Do.	3 to 2	Grey stock brick.
Long Benningtou, a village in Lincolnshire	${ }^{3} \frac{3}{}$	Do.	- -	Dirty bluc.
Sussex Church, near Lewes in Sussex -	${ }^{3} 18$	Ash colur	3 to 2	Ash colour.
Dorking, Surrey - -	$\frac{1}{17}$	Do.		
$\left.\begin{array}{l}\text { Berryton grey lime, near P'eters- } \\ \text { field, Ilants }\end{array}\right\}$	$\frac{1}{12}$	Do.		
Guilford, Surrey - -	$\frac{2}{19}$	Do.		
Sutton, Lancashire	\%	Brown		

1851. Sann should by all means, if possible, be procured from a running elear stream, in preference to that obtained from pits It is eleaner and not so connected with clayey or muddy partic'es. About the metropolis it is the practice to use (and an almiable material it is) the sand of the Thames procured from aloove London Bridge. This sand has acquired a deserved reputation among the architects and builders of the capital. It contains, however, a vast porion of heterogeneors matter, such as calcareous fossil, quatzone, and flint sands, particles of coal alluvium, and much iron. The sharp drift sand of the Thamts, therefore, before mixing with the lime, shonld be well screened an d wasted.
1852. If pit sand only can be procured, it should be repeatedly wushed to fre it from the earthy and clayey particles it contains, until it becomes bright in colour, and feels gritty under the fingers. Smeaton has stated that elay, even in very small quantities, materially interferes with the hardening of mortar, and disposes it to p rish in a few years. Whel the arch.t et is obl:ged to use sea sand, it must be we 1 washed in fresh water until the salt is entirely remove: 1 ; otherw se the cement for which it is used will never dry. So small a quintiry as 3 per cent. of salt canses great ineonreniences. Whenever the weather is dry, the walls show an efflorescence on the inside or oursile. This, when there is damp in the atmosphere, will collect no os ${ }^{*}$ ure, causing the wall to look wet, and will throw off any paper placed on i t. In one case, where a builder in i ciminately employed sea sand fir outside and inside purposes, the saline property soon intro need the rot to all adjoining timber. There is still (1887) mueh disersity of opilion as to the adviability of using sea sand. The washing is of primars importance ; it is to re best effecte: liy using an iron ppz of abont threc-quarters of an inch diameter aud two feet long, joimed on to an inlia-rubber piцe attached to the water main. This pipe is to stand in the centre of the tub; fill the tub with the sand, then turn on the water, which passirg to the buttom of the tab, rises through the sand cansing any salt to rise with it; if allowed to run, the inb ovelflows, and the salt is soon all carried off. The :and should be washed as soon as it is taken from the beacb. (E. C. Morgan.)

1852u. It will be well to notice here that Professor Wilson, of the Edinburgh Laboratory, made in 1848 a report on the use of sea sand in mortar in a house, No. 10 Randolpth Crescent, which was said to be damp from the use of it. On analysis he found that the mortar containell only $1-10,000$ th part of its weight of the ehloride of magnesium, a highly deliqueseent attracting substance. But he considered that the seiting of the mortar meelanically enveloped and locked up within its mass the substance in question; and further, that it might chemically combine with the lime of the mortar to form a comp,und not readily to be dissolved in water. It was also thought that in consequence of a chemical action taking place between the lime in the mortar and the chlorine derived from the sea water contain d in the sand, chloride of calcium (muriate of lime) would be produced. and this being a deliquescent substance, would attract moisture and render the walls damp. The anount, however, of chlorine in specimens of sea sands, was found to vary from a 2,174 th to a 549 th part of their weights; the mean amount was a 1,204 th pait. The quantity in the mortar was so minute that it could not sensibly produce the efficts of damp. The mechanical envelopment of the chloride of calcium in the mortar would also shut up this deliquescent substance from moisture, and conduce to diyness. A further substance in sea sand, is chloride of sodium (common salt), and if the chlorine of this be transferred to the lime to form chloride of calcium, the sodium will becone converted into carbonate of soda. These substances may ev exist in the mortar, but as soon as they are separated from it, and diffised through the stone, or brought to it; surface, the carbonate of soda will convert the chloride of calcium into carbonate of lime (chalk) and become itself cilloride of sodium (common salt). A co:isideration of these facts led the analyst to affirm that the apprehension that chloride of calcium, as derived from sea sand, would render the house dimp, was altogether chimerical. On an analysis of some of the pit sands in the neighbourbood, he found that one of them contained almost the same quantity of chli,rine as in the sea sand. although no charge was made against it. It does not admit of doubt, he reported, that, other things being equal, sea-sand mortar will dry more quickly and keep more thoroughly dry than will pit-saind mortar; this sand, it must be noticed, contained about 13 fer cent. of earthy matter, and was therefore not so pure as the sea sand.

1852b. Although all the professional publications of late years have described the bad effects likely to result from the use of unwashed pit sand, builders in the outskirts of the metropolis have taken to use roal sweepings in lieu of sand, and this even without having washed it to free it from those impurities not only detimental to its making good mortar, but also to the building itself, as it may be the cause of introducing the dry rot. Lately we have noticed a ease in the professional journals where the lime, such as it was, was " mixed with a large proportion of garden monld and mod, the bricks being of an inferior quality and insufficient strength." We have already noticed the use of road dirt (par. 1839i.) In another case "the composition with which the portions of bricks were held together consisted of soap lees with a few small limestones and dirt." The interests of the poorer classes should be better protected.

1852c. Metallic sand for cement was introduced about 184.3. It was sold in coarse or fine powder as required, to be mixed up with blue lias lime for joining bricks and stone, for concretes, for face work, or for moulded work. 1 measure of the sand, 1 of lime, and 6 of gravel were the proportions used in the foundations of the new Houses of Parliament, and at the great tunnels of the Birmingham railway. It has also been used for malt-house
stceping troughs, and floors; for the latter purpose it can be polished. For exterior lacings, as stuceo, it was used at 57 Coleman Street; and at the $\Lambda 1 f r e d$ Insurance Office, Lothbury: the latter building liss lately (1866) been pulled down. The marine turret at Herne Bay was also coated wish it.
1853. Water. Dr. Higgins recommends the use of lime-water for the composition of mortar. This, in practice, would be impossib'e The water used, however, fur the ineorporation of the lime with the sand should be soft and pure. Mortar and concrete lave both been recommended to be made up with hot water; with the latter especially, when it is desirable that it should s.t immediately : concrete thas made has been found exceedingly hard. Its employment with mortar dates from before 1520. It is probable that water charged with iron, as at Tunbridge Wells; a solution of ehalk, as in Hertfordshire; sulphuretted hydrogen, as at Harrowgate ; and salts. as at Epsom and elsewhere; may all affect lime when combined with it. Sineaton stated that he could not diseover any difference in the strength of mortar, whether it were made with se:1, or with fresh, water.
1854. In forming Mortar frum lime, it must, when slaked, be passed through a sieve leaving only a fine powder, an operation usually performed with a quarter inch wire sereen set at a considerable inclination to the horiz,n, against which the lime is throwin with a shovel after slaking. That which passes through is fit for use; the core falling on that side of the sereen against which the lime is thrown, being entirely rejected for the purpose in question, though it is an excellent material for filling in the sides of foundations under wood floors where they would otherwise be next the carth, and the like. The sifted or sercened lime is next to be added to the sand, whose quantity will vary as the quality of the line, of whieh we shall presently speak. In making mortar, there is no point so important, as respeets the manufacture itself, as the well tempering and beating up the lime with the sa .d after the water is added to them. In proportion, too, as this is effictually done, will a small proportion of lime suffice to make a good mortar. The best mode of tempering mortar is by means of a pug-mill with a horse-track similar to the clay mills used fir making bricks. But if such camnot be had, the mortar should be turned over repeatedly, and beaten with wooden beaters, until it he thoroughly mised. That this process should be carefully performed, will appear of the more importance when it is considered that it thereby admits a greater proportion of sand, which is not only a cheaper material, but the presence of it renders a less quantity of water necessary, and the mortar will consequently set sooner: the work, too, will setile less; for as lime will slirink in drying, while the sand mixcl with it continues to occupy the same bulk, it follows that the thickness of the mortar beds will be less variable.
1855. Vitrusius recommends that mortar should be beaten wih wooden staves by a number of men before being used. Sineaton reckoned it a fair day's work for a labouser to mix and beat up two or three hods of mortar for use. The pug-mill does this now in two or three minntes. Pliny expressly states that "in ancient specifications for buildings it was provided that no slaked lime less than three years old should be used by the contraetor." Covent Garden Theatre was built in 1808-9 with lime while still hot from the hiln: when the walls were demolished a few years since, the mortar was found to be hard and solid. It was so usel at Tothill Fiedds prison. At the new Ruyal Exchange, the lime was to be thoroughly and frestly burnt to be kept in an enclosed shed, and no more mortar to be made than was sufficient for each day's consmmption.
1856. In most of the public works exceuted in Geat Britain of late years, the proportion of lime to sand is as 1 to 3 ; and when the former is made from good limestone, the sand is by no means too much in proportion. Dr. Higgins, in his experiments, has gone so far as to recommend 7 parts of sand to 1 of lime, whieh, for mortar, is perhaps carrying the point to the extreme. It may be taken as an axiom, that no more lime is necessary than will surround the particles of sand. C. H. Smith has stated, (Builder, 1865, p. 41), that if each particle of sand be covered with lime about the thickness of an ordinary coat of paint, he should be disposed to consider such an amount as very near the perfeetion of quantity. A superabundance of lime or sand, no matter how good it may be, is, under any circumstances, objectionable.
18.57. Various opinions have long been entertained by chemists and others respecting the effect of sand and lime upon each other in the formation of mortar. The general impression is, that the slaked lime and sand in contact have a chemieal athnity for each other ; that the lime decomposes the surface of the sand, and the atoms or molecules interpenetrate each other, forming a sort of silicate of lime. This is an extremely ingenious theory, says C. H. Smith, but it has never been proved. It has been stated, he also adds, that the hardening of mortar arises from the prestnce of carbon and oxygen formed into carbonic acid, whieh is absorbed by the lime; but the soulce from whence the carbon is obtained is at present a mystery. Oxygen is abundant in the composition of water and atmosphere, and that quicklime has an astonishing affinity for it, is evinced by the practice of dusting steel goods with it when not in use, to prevent their rusting; or that of placing a small lump of it in any bnx or case containing sucli goods. Bricklayers
smear their trowels with the mortar before leaving off work; and in the Purentulia, it is noticed that "in taking out cramps from stonework at least 400 years old, which were so bedded in mortar that all air was perfectly excluded, the iron appeared as fresh as from the forge."
18.58. Various additions are made to mortar, in order to increase its hardhess and tenacity; such as coal and wood ashes, forge seales, roasted iron ore, puzzinolana, and the like. The property of hardening under water or when exeluded from the air, conferred upon a paste of lime, is effected by the presence of certain forcign substanees, as silicon, alumira, iron, \&c., when their aggregate presence amounts to one tenth of the whole. Ariificial hydraulic limes do not attain, even under favourable circumstances, the same degree of hardness and power of resistance to compression as the natural limes of the same class.

1858a. As Burnell, in Limes, Cements, \S c., 1857, p. 71, says-" It is often a matter of importance to know the power of resistance of mortars; but as they differ within a very larg? range, it is not easy to state it very precisely. The best experiments, however, show that we may safely calculate upon a resistance of 14 lbs . per inch superficial for its cohcsive furce; of 42 Hs . to a crushing force; and of $5 \frac{1}{4} \mathrm{lls}$. to a foree tending to make the particles slide upon one another. It would not be safe to expose new works to greater efforts than those which could be included within the above limits." In the construelion of a wall, whether of brick or rougl stone, it should be clearly understood that there is an important distinction between mele drying and the ultimate process of induration. The mortar may become sufficiently set, dry, and solid, in a few days or weeks, to enable the wall to buar a very considerable weight and pressure; but it does not aequire the maximum degree of hardness till after the lapse of many years and even of centurics. All cements and limes tend to reassume a state of carbonization similar to that in which they existed in the stones from whence they were extracted; they only do so to a very imperfeet degree. The saying that lime at a hundred years is but a child, is perfectly true. Cements on the ementrary harden very rapidly, but we have no instances of their acquiring the strength of the original stone.
1859. The cendre de Tournay is used in the Low Countries. This is an article proeured fiom the lime-kilns bordering the Seheldt. The lime of this district contains a considerable portion of clay mixed with iron; and the pit-coal with which it is burnt contains a large quantity of an argillaceous sehist, impregnated with iron. After the lime is taken out of the kilns, there remains the cendre, alout one fourth of which consists of burnt lime-dust, and three fourths of coal-ashes. This material is sprinkled with water to slake the lime, and well mixcd together, and put into a proper vessel and covered over with wet earth. ln_{n} this state it is kept for a considerable time; and when taken out. and strongly beaten u_{0}, for half aul hour with an iron pestle in a wooden mortar or trough, it is reduced to a soft pasty consistence; it is then spread out for several days in a shady place, and the operatio: of beating repeated: the oftener this is done the better, except it should become ummangeable from being too much dried. In a few minutes, this cement, when applied to brick or stone, adheres so firmly that water may be immediately poured over it; and if kept dry twenty-four hours, it alterwards receives no injury even from the most tiolent action of a flowing stream.
18.59a. In London, a mortar made of lime with sea-coal ashes from a smith's forge mixed with the iron scales, and called llue mortar, is used for covering parts of buildings much exposed to the weather; and if prepared with similar labour and attention, it might, in a great degree, possess the valuable properties of the mortar of the Seheldt, just mintioned.

1859b. Common ashes mortar is made by mixing two bushels of newly slaked lime and three bushels of wood ashes, which, when cold, must be well beaten, in which state it is usually kept for a considerable time, and indeed it inproves by keeping if beaten two or three times previous to using it. This mixture is superior to terras mortar in resisting the alternate effects of dryniss and moisture, but not comparable with it under water.

1859c. Brick and tile and burut clay ballast, each well burnt and ground to a powder, combined with rich line, possesses hydraulic energy. Pulverised silica burned with rich lime produces liydraulic lime of excellent quality. In some experiments made by MM. Chatonoy and Rivot, this lime hardened under water in fiom three to four days, and acquired in twenty-two months a hardness superior to Portland cement. The weight of the powdered lime never exceeded fuur times, and was never less than one half that of the powd red silica. Brick-dust mortar used to be considered in some eases better than mortar made of terras, for unless the terras was always wet it was not thought better than common mortar made of lime and sand; 2 bushels of hot lime, i.e., fresh slaked lime, added to 1 bushel of birick-dust nade from red stock bricks, was to be well beaten and worked up before using, with but litele water: the longer it was beaten the better it became. The dry brick rublish of uid walling broken down and sifted, was considered better than sand, as hess saind is required, and it might be safely used in frosty weather. A tract on Old Charing Cross, mentions that it was "so cemented with mortar made of purest lime,
callis sand, white of eggs, and the strongest wort, that it defied ail tammers and hatelets whatsoever." The mortar ased in bishop Gundulph's werks at Malling and Rochest. r is described by B. Ferrey as consisting of a sort of tuta fomd only in the clills at Dover, which appears to have been exclusively used in his works.

1859d. Sligg is applied to the vitritied earths left in furnaces, either for glass or iron. Scoria are the lighter, more porous, and less vitrified earths arising from the puddling and refining of iron. The cinders used are the carthy residues derived from the combustion of coal. When ground into powder, the two former, which contain a large proportion of the mineral oxides, make very good mortars if mixed with midding or perfectly hydraulic limes. Cinders appear to render the rich limes moderately liydraulic when properly mixed. They require a large quantity of water to render perfect the crystallization of the hydrate of lime. All these mortars may be usefully employed for works out of water.

1859e. The stones whercof the Dutch terras is made are found in the neighbourhood of Liege, and also, we believe, at Andernach on the Rhine, from the size of a pea to that of a middle-sized turnip. From their being brought down the rivers to Holland the cenent has been called Dutch; the only operation they undergo in that country is the reduction of them to a coarse powder by means of mills. 'They are beaten by iron-headed stampers on an iron bed till they will pass through a sieve whose wires are about one eighth of an inch apart. This cement is sent from Holland in casks. Trass, tirras, or tarras, is a blueblack trap. It is oltained from pits of extinct volemoes, and has nearly all the distinguishing elements of puzzuolana. resembling it in composition, and in the reguirements of its manipulation, having to be pulerised and addıd to rich lime to develope its hydraulic properties.

1859f. The Puzzuolana, or terra Puteolana of the Italians, which, as well as the last-named cement, has been almost if not quite superseded by the introduction of the Roman cement, is brought from Civita Vecehia. Its name is however derived from Puzzuoli, where it is principally fornd, though produced in other parts of Italy, in the neighbourhood of extinct volcanoes. It suddenly hardens when mixed with one third of its weight of lime and water, forming a cement more durable under water than any other. Bergman found 100 parts of it to contain 55 to 60 parts of siliceous carth, 20 of argillaceous, 5 or 6 of calcareous, and from 15 to 20 of iron; this last constituent is considered to be the cause of its property of hardening under water. The iron decomposes the water of the mortar, and thus in a very short time a new compound is formed. According to Vitruvius, when used for buildings in the water, 2 parts of puzzuolana were mixed with 1 of mortar. Artilieial puzzuolana may be made by slightly calcining clay, and driving off the water of combination at a temperature of $1,200^{\circ}$.

1859g. Subsequently to the use of this material from Puzzuoli, a similar material has been found near Edinburgh; and in the Vivarais, a site of extinct voleanic action in the centre of France. Its aspect and colour, however, vary very ruch even in the same locality. Berthier gives the following analysis of two of these materials:-

						Puzzuolana from Civita Vecchia.					Terras from Atidernach.	
Silica	-	-	-	-	-	-	-	$\cdot 445$	-	-	-	. 570
Alumina		-	-	-	-	-	-	$\cdot 150$	-	-	-	-120
Lime	-	-	-	-	-	-	-	-088	-	-	-	-026
Magnesia		-	-	-	-	-	-	-047	-	-	-	010
Oxide of state o	$\begin{aligned} & \text { Iro } \\ & \text { f ma } \end{aligned}$	(m)	$\begin{aligned} & \text { slight } \\ & \mathrm{n}) \end{aligned}$)	-	-	-	-190	-	-	-	-050
Potash			-	-	-	-	-	-014	-	-		$\cdot 070$
Soda	-	-	-	-	-	-	-	. 040	-	-	-	. 010
Water	-	-	-	-	-	-	-	-092	-	-	-	. 096
								0.996				0.959

1859h. In the use of llue lias lime for mortar, workmen ignorant of its qualities invariably spoil it. In important works the lime should be supplied in an unground state, to prevent the core being mingled with the good lime. In slaking, the lumps should be broken into pieces of about the size of a nutmeg; then immersed upon a sieve in water, and kept therein until air bubbles frecly rise to the surface: the lime so wetted is to be left in a heap, and covered with damp sand, for twenty-four bours. At the expiration of that time it should be screened and mixed with sand and the least possible quantity oi water. When slaked, it does not sensibly increase in bulk, unlike the ordinary chalk or stone lime of the neighbourhood of London. The best descriptions of blue lias lime will not bear more than $1 \frac{1}{2}$ parts of sand to 1 of lime. Wood, of Batl, in his work on Cottayes, 1788, has stated that "blue lias lime mixed with coal ashes in the manner prescribed by M. Loriot, will make the hardest cement l ever saw, as I have found by various experiments; it will hold water, resist frost, harden in a few hours in water, and will bear a very
good polish. Coach or carriage ways are laid or pitched with bluc lias, which wears very well, though it will not bear the frost."

1859i. A very useful hydraulic mortar for executing sea-walling, consists of 1 part of chalk line, or of Halkin lime, with one part of puzzuolana from Civita Veechia, and 1! parts of sand; but the value of this mixture depends upon the influence exereised by the puzzuolana on the setting of the lime. A mixture of the natural ealeareous cements, or of Portland cement with sand, is another good mortar. The presence of sulphate of lime in any composition intended to resist the action of sea water would be fatal, as it erystalliees at a different rate of rapidity, and it is more easily soluble than the carbonate of lime. French authoritics lay particular stress on the following qualities for the formation of good hydraulic mortar: I. It is essential that the materials should be perfectly pulverised before mixing, so that the combination may be as perfeet as possible. I1. Sufficient free lime must be present to allow the carbonic acid in the water to combine with it, and furm a protective coating of earbonate. 11I. Long soaking of the miterials is advisable, in order that the chemical combinations necessary for the ultimate stability of the mortar may take place before it is actually used.

1859k. Mr. Smeaton diseovered. by a course of experiments, that the seales (grey oxide of iron) that fly off under the forge hammer from rud hot iron, pulverised, sifted, and mixed with lime, form an admirable cerment, equal to puzzuolana. He found, in pursuing his experiments, that roasted iron ore produced an effeetive water cement, by using a greater proportion of it than either terras or puzzuolana. Equal quantities of iron scales and argillaceous lime, with half the quantiy of eaeh of these of sand, produced a cement in every respect equal to terras mortar. If pure earbonate of lime be used, equal parts of each of the ingredients ought to be incorporated. We do not think it neeessary there to give a;y aceount either of Loriot's cement, or that proposed hy Semple: neither are tobe depended on : indeed the first, as a water cement, is of inferior utility, and very little better than eommon mortar dried before the admission of water upon it.
1860. Grout, or liquid mortar, is nothing more than e. mmon mortar mixed with a suffieient quantity of water to make it fluid enough to penetrate the interstices and irregularities of the interior of brick walls, which common mortar will not reach. The mortar whercof it is made will bear 4 of sand to 1 of lime, but it should be thoroughly beaten. It may be kept a little longer, wherely its quick setting will be facilitated.
1861. Concrete is a compound of ballast, or stone chippings, and lime mixed together. It is so called from the speedy concretion that takes place between these partieles. If, however, gullets or small stone chippings are used, sand in a large proportion to the lime must be used. The use of conerete was well known at an early period; it is mentioned by De Lorme in his work published in 1568; and it is by no means, therefore, a discovery of modern days. Wherever the soll is soft, and unequal for the reception of the foundations of a building, the introduction of concrete under them is an almost infallible remedy against settlement. The Thames hallast, commonly used for concrete, is a mixture of sand and small stones. With this, and lime in the proportion of never less than 4 to 1 , and never properly exceeding 9 to 1 , of stone lime, or such as is known to set hard in water, a mixture is made. The lime is generally used in powder, and the whole being shovelled together, it is wheeled in barrows to a stage over the spot where it is to be used, and let fall into the trench dug out for the reception of the foundation. The greater the height the concrete is made to fall, the sounder and stronger it beeomes. It must always be recollected that no more lime is neeessary than with the thinnest coat to surround the particles of the ballast, and that therefore the size of the pebbles or stones should influence the quantity of the lime. As the ground is more or less to be trusted the thickness of the conerete must be regulated; when used on the best ground, a foot in thickness will be suffeicint; while on the worst, as many as four feet or more may be required. The upper surface being levelled, it is usual to lay on it a tier of Yorkshire stone landings, for the reeeption of the briek-work or mason's work : in some cases, alter earrying the wall a certain height, a seeond tier of landings has heen introdueed. When the soil is watery, no water should be put to the eonerete, but the ballast and lime merely mixed and tumbled in. The usual practice of making conerete as al:ove stated, is objected to by many practitioners, who reeommend that the lirench method of making léton should be followed in lieu of it.
1862. In forming concrete, the stones or pebbles used should never exceed the size of a hen's egg, of whieh 2 parts may be combined with 1 part of the smaller substances used; this makes it about equal to Thames ballast. It has been caleulated, that as the lime absorbs the water, and with the sand tills up the interstices of the larger material, it the proportion of the lime be about one cighth of the ballast, then $3 \frac{3}{4}$ eubic feet of ground lime, and 30 eubic feet of ballast, with a suffieient quantity of water to effeet the admixture (and this is generally rather less than a gallon to a cubic foot of ballast, or than equal measures of water and lime), will be required to make 27 cubic feet of concrete; that is, there is a loss of bulk equal to all the lime, and of about 10 per cent. of the ballast. But some experiments made in 1857-8, in which the present editor assisted, showed that the same measure
which gare a cubic yard of ballast, held precisely the same ballast with the addition of one-sixth in bulk of ground stone lime made with it into concrete, besides about fourteen pails of water; and likewise tended to disprove the assertion that concrete swells in setting. This cubic yard of concrete weighed 27 cwt . In estimating, allowance must be made for the loss of material.

1862a. Expansion taking place in concrete made of unground lime, during its slaking, has been taken advantage of by G. L. Taylor in the underpinning of some walls at Chatham, as detailed in the Transactions of the Institute of British Architects, 1835. This expansion has been found to arerage about $\frac{3}{3}$ of an inch for each foot in height, and the size thus gained the c merete never loses. Care must be taken when using it for floors and for the spandrel of arches, to allow sufficient space, and to lay it in such a way that this increase may take place without thrusting out the walls, as has occasionally happened. In old malthouses in the West of England, with concrete floors 5 to 6 inches thick, stone walls 2 feet 6 inches to 3 feet thick have bulged out 3 or 4 inches on each side by the expansi n of the concrete, as also noticed in the Transactions of the above named society, 1854, p. 74 . When ground lime is used the assertion that concrete swells is very questionable, as s'ated in the previous paragraph. The Metropolitan Board of Works, under the Met. Man. and Building Acts Amend. Act, 1878, sec. 16, requires the cement " to be Portland cement, or other cement of equil quality, mixed with clean sharp sand or grit in the proportions of one of cement to four of sand or grit." Concretc for walis to be "of Portland cement and of clean Thames or pit ballast, or gravel, or broken brick or stone, or furnace clinkers, with clean sand in the following proportions: viz., 1 of Portland cement, 2 of clean sand, and 3 of the coarse material, which is to be broken up sufficiently small to pass through a 2 -inch ring. The proportions of the materials to be strictly observed, and to be ascertained by careful admeasurement; and the mixing, either by machine or hand, to be most carefully done with clean water, and if mixed by hand, the material to be turned over dry beforo the water is adde.1."

1862b. For water works required to set rapidly, an excellent concrete may be made by a mixture, the proportions of which wero found by Treussart as follows:-30 parts of hydraulic lime, rery energetic, measured in bulk, and before being slaked; 30 parts of terras of Andernach; 30 parts of sand; 20 parts of gravel; and 40 parts of broken stone, a harl limestone. These proportions diminish one-fifth in volume after manipulation; the mortar is made first. When the Italian puzzuolana is used, the proportions should be 33 parts of lime as before; 45 parts of puzzuolana; 22 parts of sand; and 60 parts of broken stone and gravel. The first of these concretes should be employed immediately it is made; the second requires to be exposed about twelve hours before it it is put in place. When burnt clay or pounded bricks are used, 30 parts will suffice, but this mortar must not be used in sea water. If only rich, instead of hydraulic, limes be used, the quantity of the natural or artificial puzzuolanas must be increased, and that of the stones and gravel be decreased. (Burnell, Limes, foc.) See par. 1864 c.

1862 c . Afier many experiments, M. Kublmann recommends a cement composed of 30 parts of rich lime, 50 of sand, 15 of uncalcined clay, and 5 of powdered silicate of potash, as having all the requisite hydraulic properties, especially for cisterns intended for spring water. In marine constuctions care should be taken to add an excess of silicate to those p rtions of cement which are exposed to the immediate contact of the sea.
$1862 d$. The object to be aimed at in making hydraulic concrete, is to give such a sufficiency of mortar as will produce the aggregation of the whole mass of rough rubble materials. In Portland cement conerete, for instance, the proportions for the mortar may be 1 of cement to 3 of sand, and this mortar may then be mixed with 6 parts of ballast or shingle. In llue lias lime concrete, the proportions may be 1 of unground lime to 2 or $2 \frac{1}{2}$ of sancl, and this mortar may be mixed with 3 or 4 parts of ballast; and it must le understood in all cases that the mortar must be made first, and that it then should be thoroughly incorporated with the ballast or shingle. This concrete as used at the recent extension of the London Docks by Mr. Rendtl, consisted of 1 part of blue lias lime with 6 parts of gravel and sand. The proporti.ns for the blocks of the mole at Marseilles were 3 parts of Theil lime to 5 parts of sand mixed up into mortar, and then added to 2 parts of Lroken stone. At the Metropolitan Main Drainage works, the proportion of 1 of Purtland cement to $5 \frac{1}{2}$ of ballast for sewers, and 1 of cement to 8 of ballast and sand for backing walls and other works except sewers. The usual proportions are 1 to 6 . A report was delivered to the Aberdeen Harbour Board on the damage caus d by the chemical action of the sea-water on the (Portland?) cuncrete entrance works of the graring dock. The surface had softened from the foundation up to the bottom of the ashlar lining, three feet above low water. The concrcte behind four courses of the ashlar, between high and low water, was also softened, lozsening the bond. The softened concrete under the water had been remored, and the face of the wall rekuilt up to lowwater level with Roman cement concrete in bags plastered with Roman cement. The pressure on the foundations amounts at low water ts 5 lbs . on the square inch of surface, and at high water to 11 lbs ; this causel a current of sea-water through the porous
structure of concrete of theoretical velocity from 1500 to 2250 feet per minute, which continually washed the decomposed cement into the dock, and hronght new particles of concrete and sea-water into contact. (British Architect, July 29, 1887; and Arclitect, March 9, 1888, p. 16 of Supplement.)

1862e. Béton, or coucrete, as made in France, is invariably composed as follows:I. The mixture of lime and sand, either by hand or by a pug-mill, as for ordinary mortar. Great importance is attached to the choice of the lime and to the mode of slaking it; and if a sufficiently good one cannot be obtained, artificial puzzuolamas are introduced. The mode of slaking is prcscribed in the specification according to the nature of the lime, instead of being left to the choice of the workmen. II The mortar so prepared is then well mixed by rakes with brokell stones or ballast in such proportions as shall insure its filling up the intervals between them; the volume having been ascertained by immersing the stones in a known quantity of water. These spaces are equal to about 0.38 to 0.46 of the cubical contents of the ressel; but in practice, about one fourth more mortar is added than necessary to ensure solidification of the mass, especially when the beton is intended to resist water pressure. III. The material is then wheeled to its situation, and rammed down carefully until the mortar legins to work up to the surface.

1862f. In an English patent, 1859, No. 2757, M. Coignet, of Paris, argues that the tenacity of mortar is not produced, as hitherto supposed, by the formation of silicate of lime and alumina, but by the crystallisation of lime. His concrete, called Béton Aggloméré, consists of about 180 parts of sand, 44 of lime produced by slaking, 33 of Portland cement, and 20 of water, combined ly a process of two main operations: I. A complete consolidation of the materials with little water; and II., the steady but not violent compression of the consolidation in moulds. The cement is mixed with the sand and lime, and sprinkled whilst mixing with a little water. This mixture is thrown into a machine, formed like an endless screw enclosed in a cylinder, at the rate of two shovelfuls foliowed by about a quart of water, until the cylinder is full. The screw, turned by two men, delirers the mixture through a series of holes in the bottom of the cylinder ; but on a large scale, a machine is used of 10 to 15 horse-power. This mixture, after is delivery from the machine, is put by degrees into moulds, and each layer is rammed in by workmen. He found by experience that the purer the lime the quicker was the crystallisation; and that, although pure bydrate of lime will take-carbonic acid, silicate of lime and alumina will not take it, hecause silicic acid took the place which carbonic acid did with the pure lime ; and frankly admitted that his first experiments in 1855, in marine works, had not entirely succeeled, but claimed perfect success for those at Marseilles since 1859, and for those executing (1864) in Paris and elsewhere.

1862 g . The resistance of beton and concrete should never be regarded as being superior to those given for limes, if the superstructure be commenced upon them immediately. In both cases the resistances are found to increase with comparative rapidity during the first six or seren months.

CEMENT.

1863. Among those cements used in England, Parker's, also called Roman and Sheppey cement, was discovered in 1796 by Mr. James Parker, of Northfleet. It was manufactured principally from stone found in the Isle of Sheppey, and at Harwich, being septaria from the London clay, and properly classed among the limestones indigenous to this country. It consists of ovate or flattish masses of argillaceous limestone, arranged in nearly horizontal layers, chiefly imbedded in the clay of the cliffs. It was found at first on the beach, but as it became scarcer it was sought for by dredging out at sea. The substance, being coated with a calcareous spar or sulphate of barytes, forms tho basis of the cement. About 1810-15 it was found porsible to use this material in the depth of winter, but with infarior manufacture this is impossible. In 1840 it was stated that "the genuine Sheppey cement is now almost only a name," arising from the nodules first found having nearly disappeared in consequence of the great consumption of the cement. If this cement be of extremely good quality, 2 parts of sand to 1 ot the cement may be used. The cement itself is a fine impalpable powder ; yet when we:ted it becomes coarse, and, unless mixed with great care, it will not take a good suface. When mixed with the sand and water, it sets very rapidly ; it is necessary, therefore, to a ooid mixing much at a time, or a portion will be lost. The colour of this cement, when fimished, is an un-plea-ant dark brown, hence it has received the namie of "black cement." The surface requires frequent colouring for appearance. It is impervious to water almost the moment it is used; herce it becomes highly serviceable on the backs of arches under streets, tor the lining of cisterns, and for carrying up in it, or coating with it, damp walls on basement stories. It will nut resist fire so well ; and it should therefore never be emploged for setting grates, orens, coppers, or furnaces. This, with many other hydraulic cements, has leeen eelipsed by Portland ecment.
1864. Atkinson's cement is a good material, preferable in colour to the last named, but, as we think, inferior in quality. It takes a much longer time to set than Parker's cement,
thin which it absorls more moisture. It answers well enough in dry situations. Vicat formed a factitious Roman cement ; but its efficary was doubtful, though it had, for want of a better substitute, been much employed at Paris.

1864a. Portland cement, the latest (ibbout 1843) of all these cements, is made from limestone and clay. The mud of the river Medway, corresponding to the argillocalcareous stone of Romas cement, is mixed with chalk and ashes from former makings, and caleined at a heat amounting almost to that of vitrification. A larger quantity of s:and may be mixed with it than with Roman cement, to which it is superior in colour and hardness of setting. The heariest, considered the best in quality, weighs 110 lbs. to 112 lbs . per striked bushel.
$1864 b$. The distinguishing peculiarities which should render Portland cement a permament substitute for Roman cement have been explained by a London manufacturer of both materials (Builder, 1863, p. 761). It may be condensed into the statement:-That the stone from which Roman cement is made, though composed of lime and the silicate of alumina, yet the proportion of the latter preponderates t such an extent as to prevent a perfect amalgamation of the ingredients in burning. The result is a cement loose in its texture, because containing incrt foreign matter, which is retentive of moisture, and consequently attackable by frost and vegetable growth. In Portland cement the case is otherwise. The dose of lime to clay is in the ascertained correct proportion of two to one, and with this conditiou there is the power thoronghly to combine the ingredients by burning, and thus to give a density and compactness to the product which, in enabling it to resist water, frost, and other decomposing agencies, are the elements of its durability and of its superiority to the natural cements. Carelessness, or want of proper knowledge in its manufacture ; an improper mixture of the ingredients; an imperfect calcination; its bad manipulation; and unfair handling when used as a cement, are all likely to result in disastrous effects on being used. When employed as a mortar or as a concrete, it has seldom been known to fail.

1864c. It is usual for the manafacturer to grind the cement after burning it. It is then placed in well-closed casks, which should not exceed 6 cwt . each, when the cemeut may Le preserved for some time; but by contact with the atmosphere it is said to abs rb humidity and carbonic acid, and thus becomes deteriorated. It should be ground very fine. For the sieve in sifting it, the French engineers required 185 meshes to the square of 4 inches on a side. One-third of the volume of the cement for the quantity of water is the best proportion, and the more that the cement is beaten up, the harder it becomes. The best cement will harden in about five or six minutes, and under water in about an hour; when mixed with sand it takes ablittle longer. When mixed with set-water, and used in sea-water with a large quantity of sand, it may take even twenty-four hours before setting. (See pars. $1862 b, c$, and d.)
$1864 d$. The resistance to rupture of pure cement after 20 days' exposure to the air is about 54 lbs. per inch square ; if sand be added in the proportion of $\frac{1}{2}$ to 1 of cement, it falls to 37 lbs . ; and if it be in equal proportions, it falls to 27 lbs . The permanent load in any large works should never be more than one sixth of that required to produce rupture: and if small materials be employed, only one-fifteenth should be ealculated upon.

1864e. In testug Poriland cement the Admiralty, at the Chatham Dockyard extension
 moulds. which, when set, would be placed in water and tested at the end of seven clear days. Etch must bear without breaking a weight of 650 lh s. upon the test-lilock of $1 \frac{1}{2}$ inches square in section. In 1878 the Metropolian Board of Works required the cement to be of the best quality, ground so fine that it will pass through a sieve of fifty meshes to the lineal inch. It must have a specific gravity of not less than $3 \cdot 1$, and weigh as delivered 114 lbs. or more to the imperial striked bushel. When brought upun the works it is to be put into dry sheds or Luildings, which the contract r is to provile for the purpose, having wooden floors and all necessary subdivisions. The cement is to be emptied eut upon this floor, every fifty bu-hel= being kept separate, and is not to be used until it has been tested by samples taken out of every tenth sack. The samples to be gauged neat, in moulds, put into water $2 t$ hours after the briquettes have been made, and remain till tested, to bear without breaking a weight of 400 lbs . per square inch 7 d iys, and 600 lhs . 28 days after they have been made. The first to be considered as preliminary, and the second as decisive. Mr. Juhn Grant's, C.E., specification is of a more extended character, and includes the quality of sand. The briquettes with three of sand to bear a weight of 150 lbs . per square iuch after 28 days.
$1864 f$. With cement at 112 lbs . per bushel, a culic foot weighs 87.13 lbs ., a cubic yard $2,352 \cdot 6 \mathrm{lbs}$., and a ton occupies a space of 25.7 cubic feet.
$1864 g$. With this cement, the ordinary proportions for walls may be 1 to 12 of gravel for common, and 1 to 6 of slag and saud for facing: concrete. A cuivic yard of concrete takes about $1 \frac{1}{6}$ yard, or $31 \frac{1}{2}$ culic f ret, of loose grarel, exclusive of the cement, as made in a gauge or measuring-box. One-twelfth of $31 \frac{1}{2}$ culic feet, or a little more than $2 \frac{1}{2}$ feet cube, goes to cach gange, ind is easily calculated and prepared ; or 218 lbs . by weight, if the cement weiohs 112 lbs per bushel. Fur making good soild concrete, there should be
sufficient sand to fill up the interstices between the stones; one-third of the entire bulk, or one-half of the shingle, is required fur the sand-a point not so oftengattended to as it should be. Plenty of water is adrocated for the mixing; and for making a good face against a wood shutter it is essential that the concrete should be wet.

1864h. Concrete construetions are described inder Bricklaying.
1864i. Strength of hintels of various compositions, each 6 inches deep, $4 \frac{1}{2}$ inches wide, and 3 feet 6 inches long, 28 days after manufacture; 3 feet clear space, and loaded gradually in the middle (see par. 1903x):

Brown Portland stone	-	-	-	-	-	-	broke with	1905 lbs		
White ditto										
Burnt clay ballast concrete	-	-	-	-	-	-	$"$	$1+20$	$"$	
Coke breeze	-	-	-	-	-	$"$	$1+13$	$"$		
Pit gravel ballast	-	-	-	-	-	-	-	$"$,	1119	$"$,

These three were composed of 1 of cement, 4 of core, 1 piece of hoop iron $1 \frac{1}{2}$ inches by $\frac{1}{16}$ thick in middle.

$$
\begin{array}{lllllllll}
\text { Box ground Bath stone } & - & - & - & - & - & - & \text { broke with } & 476 \mathrm{lbs} . \\
\text { Corsham Down ditto - } & - & - & - & - & - & - & , & 357
\end{array}
$$

1864j. A natural cement deposit, of very large extent, has been worked at Barrington, Cambridgeshire, where it is found from 13 feet to 21 feet in thickness, immediately under the surface. It is considered as giving the material for the best quality of cement aud lime, and it can be manufactured at about half the cost of the usmal system (1887).
1865. Hamelin's mastic cement, though patented of late years, is an invention of P. Loriot, a ceutnry old; the medium for mixing the pounded brick-dnst, limestone, and sand, is oil instead of water. It is much more difficult to use than the other cements, and requires great experience and care. A coat of it should never exceed one quarter of an inch in thickness; hence it is totally unfit for working mouldings in the solid. In the metropolis it is generally used in a very thin coat over a rough coat of Roman cement, in which case it is rarely more than an eighth of an inch thick. Thus used, it presents a beartiful surface, is durable, but it requires to be painted as often as do the other cements.
1866. Keenc's cement is oltained by soaking plaster in alum water after a first calcination ; it is then kiln-burnt a sccond time and ground. It is in reality only a plaster, and is capable of being worked to a very hard and beautiful surface. Martin's patent fireproof and ornamental cement is a plaster of somewhat similar make, and equally goodlooking. It is manafactured in three qualaties, coarse, fine, an 1 superfine. It is eaid to be used with greater facility by workmen than any other cement yet produced, requiring ooly about an hour to set, which is less by one-half the time of vther cements. It appears to be ehiefly prepared at Derby. Parian cement (K-ating's patent) is also composed of gypsum, but mixed with borax (borate of soda) in powder, and the mixtore calcined and ground. A fine quality produces a hard scagliola imitation of marble. When applied to old brick or plastered work, as in repairs, these cements may be papered or painted upon in about 18 or 24 hours after exeeution. But on uew work time most bo given for any efflorescelce, or damp, to disenceage itself

1866a. John's patent pernancnt stucco wash, stucco sement, and stucco paint, were introduced about $18+3$. As a paint it is cheap, durable, agreable in colour, and finis es without a gloss. It gives out no deleterious exhalations or odour in drying, and it is stated that as the oil cannot evaporate (?), but is $\mathrm{h}-\mathrm{ld}$ in intimate and indissoluble union with the other materials, there can be no decay, an objection to which oil mastic is so liable. It requires no driers or turpentine, and is applicable both for outside and inside work. Tho cement, which is stated not to deteriurate with ige, is packed in casks, and requires to lee mixed with 3 parts of gond, sharf, clean sand to make a stuceo, its application for which is the same as for any uther stue?o. It adheres well to glass, iron, slate and tiles in roofing, wood, old plaster, or Ruman cement. When stt it is hard, and inpervious to wet and damp. One coat of its own paint, which it will rake after twenty-funr hours, is snfficient. Mouldings may be rna in it, and castings made.

1866b. A cement which will withstand a moist climate, is stated to be composed of one bushel of lime with 15 gallons of water and half a bushel of fine gravel sand, mixed wit $3 \frac{1}{2} \mathrm{lbs}$ of copperas dissolved in hot water, and kept sirred while bring incorporated and in use. Sufficient should be made for the day during which it is to be used, as the colour is not eas ly matched. The Bristol Purimachos eement is new, and is stated to be an effectual fire-resisting mar+rial, uniting readily with a metal, brick, stone, or like surfate, and forming a permanent joint, impervious to air, gas, smoke, \&c. It renews burnt-ont parts of fire-brick without any taking down and rebnilding. It repairs cracked and huled iron boilers, ovens. stoves, pipes, \&c. Used as a wash, it imparts a smooth glazed surface to the interior of retorts of gas works. It may for many purposes bo used instead of white or red lead in making joints subject to the action of fire. Other similar materials will be noticed s. v. Plasterer.

1866: Gypsum, beter known as Plaster of Puris, is a sulphate of lime It is found it Alst, n, in Cumberland ; at Shotover 11H1, Oxfordshire ; at Or-ton, near Grantam; in Notingham-hire, in lerhyshire. and in Cheshire; in France, in the neighbourfond of Paris, chiefly at Montmartre ; and in the departments of the Saone, Loire, of the IRone, and of many others; and in 「uscany, Savoy, Span and Switzerland; in some parts of the 13ritish Colonies of North America, wherefrom it is exported prineipally to the United States. The stone is brohen into small blocks, and burnt in a walled space with openings in the tiled roof to let out the stea:n. Alter its water of crystallization is driven off, it becomes pulverulent and like tlour. On fresh water being added, it eombines with the normal quantity of water, and reassumes the form of a bydiate, recovering its original density and strength to a very great degree. A heat of about 200° eentigrade is sufficient. The London mannfacturers adopt a kind of oven for burning the stone, which prevents the smoke from injuring the plaster. In France it has been proposed to throw a jet of steam heated above 400° Fahr. over the stone, which is broken very mueh smaller than usnal: this jet takes u_{j}) all the water present, and leaves the plaster in the state of a pure anliydrons sulphate of lime. 'It e plaster obtaned from Paris is considered the best of all in quality, probally arising from the fact that the stone is the hardest. Gypsum swells in setting in contradistinction to the cemens, which generally shrink. The specific giavity of pure gypsum may be takea at $2 \cdot 3-2$; and its constituent parts to be sulphurie acid 46 , lime 32, and water 21. (See Glossalis, s. v.)
1867. The best bituminous cements are olstained from the natural asphalte, which is found in large quantities on the shores of the Dead Sea; in Albania; in Trini:ad; at Lolisann, and Bekellorom, in the department of the Bas lhin; in the department of the Puy de Dome; at Gangeac in that of the Landes, \&c. The asphalte which is found in inexhausible quantities at Pyrimont Seyssel, in the Jura Mountains, in the department of the Aire in France, was introduced into England about 1838, ut der Claridge's patent. The principal ingrediont in its composition is a bituminous limestone, of a ieh brown colour. After it has been reduecd to a fine powder, a certain portion of grit is mixed with it ; it is then placed in cauldrons heated by strong fires with a suffieient quantity of mine al tar to prevent the asphalte from ealcining. The whole mass is thoronghly incorporated ano reduced to a mastir, in which state it is run into moulds to form blocks, each l foot 6 mehes square, 6 inches in depth, and weighing 125 lbs.

1867a. The mastic is of three qualities, line, gritted, and coarse gritted. The first, being without any admixture of grit, is used for magazine flocrs, and as a coment for making, in special cases, very close joints in brickwork. II. The fine gritted is used for covering terraces, roots and arches, lining of tanks, and as a cement for brickwork, and for rumning the joints of stones. 11I. The coarse gritted is used for pasing and flooring, and where great strength of work is desirable, such as gun-shed floors, tun-room floors, a.d margins of stahle floors ; while in gateways for iseavy carriage traffic, small picees of granite ehippings are introduced. These mastics, and more particulariy the first two, heing ductile and readily yielding to any change that may take place on the surlaces upon which they are laid, require a proper foundation to be prepared.
18676. When reguired for use, an iron cauldron having been prepared, 2 lbs. of mineral tar are put in and then 56 lbs of asphalte broken into pieces of not more than 1 lb . in weight. These are mixed together until the asphalte becomes soft. After a quarter of an hour the stirring is repeated, and another 56 lbs. of asphalte added, and so on until a proportion of 11211 s . of asphalte to each 1 lb . of tar, under ordinary cireumstances, fills the cauldron and the whole is thoroughly melted. When fit for use the asphalte will emit jets of light smoke, and freely drop from the stirrer.

1867c. It will be well to note that it is stated asphalte never flames, but merely passes moto a state of fusion. At the fire at Hanbong in 1842 , it was remarked that when asphalted roofs fell in, " the asphalte, in which a sort of rubble is mixed up, was found to have resisted the effects of the heat, and, like a mass of dirt, served rather to smother the flames than to give them inereased vitality." A like result is recorded of a fire that took place at the Bazar Bordelais, at Bordeaux. in 18:35; of another in Stangate, London, in 18.55; and experiments wore made by order of the authorities of the British Museum before this material was allowed to be applied to the smow gutters of the dome of the new Reading Room and other roofs, with a satisfactory result. Notice is not generally taken of the fart that if in works, asphalte or tar be used in places where it may be affected by heat, a smell arises whieh is very prejudicial to the comfort of the occopiers of the building.

1867\%. The term asphalte has also been given to several compositions formed by the admixture of chalk, lime. gas tar, and other sulnstances for cheapness. The conl tars, and vegetable pitch, although not so good as the bitumens, are fairly good substitutes in many cases, as in roating vanlts, or walls exposed to the dampness of earth. 'The proportions in which to mix powdered calcareous stone must be regulated by practice, as also the heat, that the stone be not converted into quicklime, perhaps from 6 to 7 of the pitch in volume t () 1 of limestone will suffice; and it is recommended to use these in greater theckness than the asphalte, being about hall an inch for the latter meterial.

Sect. Xif

GLASS.

1858. Glass is a combination of silex with fixed alkali, generally soda. The mixture when calcined receives the name of frit, which after the removal of all its impurities, is conveyed to the furnace and melted in large pots or crucibles till the whole mass becones beautifully clear, and the dross rises to the top. After being formed into the figures required, it is anncaled or tempered by being placed in an appropriate furnace. The fineness depends on the purity and proportion of the ingredients. An extremely fine erystal glass is oltained from 16 jarts of quartz, 8 of pure potash, 6 of calcined borax, 3 of tlake white, and 1 of nitre. The specific gravity of glass is alout 2600; of Fresch plates, 2840: of English flint glass, 3320 . Glass is extremely elastic, and less dilatable by heat than metallic substances.

1868a. Jour pieces of the common sort of glass being cut from one strip, each piece was 5 inches wide, 6 inches long, and 4 inches thick. In the trial of strung th they were calculated out at a standard size, and gave 17.208 lbs ., $15,435 \mathrm{lbs}$., $14,931 \mathrm{lbs}$, and $11,385 \mathrm{lbs}$; the mean being $14,931 \mathrm{lbs}$. This great dilference is the more singu'ar from the circumstance of all the pieces being cut from the same plate. The weight of the slass at a size of $9.0 \times 4.5 \times 3$, all in inches, would be 11.1211 s . Sheet glass is stated to be stronger than 1. lute or croun glass, but less flexible. The empressive strength of glass is about $12 \frac{1}{4}$ to $:$. s per square inch. 'The resistance of glass to a crushing force is about 12 times its resstance to extension.
1869. Pliny gives the following account of the discovery of manuractu ing elass, which was well known in Aristotle's time, 350 b. c. "A merchant vessel. laden with nitre or fossil alkali, being driven on the coast of Palestine, near the river Belus, the crew aceidentilly supported the kettles on which they dried their provisions on pieces of the fossil alkali; the sand about it was ritrified by its union with the alkali, and produced glass." Theugh, according to Bede, artifieers skilled in making glass were brought into England in 674 , glass windows were not generally used here till 1180 , and were for a considerable time esteemed marks of great magnificence.
1870. The manufacture of window glass during the last thirty years has undergrane entire alteration, especially since the abolition of the excise duty in 1845 . There are now three special kinds of glass used for glazing purposes, and several varieties of them:

1870a. I. Crown glass, which is blown into large globes and opened ont into circular flat tables. II. Sheet glass, which is blown into long cylinders or m...ffs; then split duwn and flattened. III. Plute glass, which is either cast on iron tables for large purposese and polished; or for smaller squares, blown into a cyliader and polished
1871. Croun gla-s, the commonest wiadow glass, differs from flist glass in its containing no lead or any metallic oxide except manganese, and sometimes oxide of cobalt, in minute portions, for correcting the colurr, and not as a flux. It is compourded of sand, alkali, either potash or soda, the regetable ashes that contain the alkali, and generally a small portion of lime. To facilitate fusion, a small dose of arse., ic is frequintly added. Zatfre or oxide of cobalt, in the proportion of 1 ounce for 1000 pounds, is added to correct the colour: but when the sand, alkali, and lime are very fine, and no wther ingredients are used, zaffre is not required Its manulacture is conducted differently fiom that of fintglass articles, the object being to phoduce a large flat thin plate, which is altrwards by the glazier's dianond cut into the requisite shape. It is blown in circular plates, valyi...g fiom 3 fiee 6 inches to 4 and 5 feet diameter: the !rocess is as follows:- 'I he workman, having a sufficient mass of melted metal on his blowfipe, rolls it on an iron plate, and then, swinging it backwards and forwards, causes it hy its own gravity to form into a globe, which is made and bronght to the requited thinness by blowing with a fan of breath, which persons accustomed to the work know how to manage. The hollow glole is then opened by holding it to the fire, which expanding the air confined within it (the hole of the blowpipe being stopped), bursts it at the weakest part, and while still soft it is opened out into a flat plate by centrifugal firce; and beins disengaged from the r.d. a thick knob is lelt in its centre. It is then placed in a firnace, or in a certain part of the furnace to undergo the process of amealing. When the table is cut for nse, the centre part in which the krob remains is called linol-glass, and is ustd only for the very commonest purposes. Tables are now made of such a size that squares may be procured 38 inclies by 24 inches as extra sizes.

1871a. The qualities of crown glass in common use are called liest, seconds, thirds, and fourths or coarse; with 1 wo still coarser. The last is of a very green hue, and only used for inferior buildings. They were sold by the crate, at the same prics. thedifference being made up by varying the number of the tables contained in it. Thus a crate of best crown glass contained twelve talles; of seconds, a crate contained filteen; and of thirds, eighteen tabies. They are now sold (by Messrs. Harticy) in crates of eightem tables of the us aal
thiekness averaging 53 inches; and in crates of twedse tables of extra thickness averaging 52 inches. Flattened slahs of the stme qualities are sold in crates of thirty-six shals of the usual thickness, and in crates of twer.t-fose olabs of extra thickness, eac! averaging $2 \cdot$ inches, $2 \cdot \frac{3}{3}$ inches, and $21 \frac{1}{2}$ inches. 'The fittened slab is also made as 'obscured' 'glass. The sizes of both qualities vary from 'quarries'; under 9 hy 7 ; up to, above $4 \frac{1}{2}$ feet, and not ahove 5 feet supcrlicial. 'Taking the usual thickness of

Best	as	co	extra thickness	150
Suconds	"	9.	.,	185
Thirds	"	65	"	110
Fouths	"	50	"	85
CCand CCC	,			

1872. Shert glass has been manufactured in Fngland with great improvements since 1832 to 1838 hy Messrs. Chance and Hartley, with the co-operation of M. Bontemps, of Paris. Though infer:or in colour, this glass is in other points generally superior to that of the foreign maufacture. It is composed of the same or similar materials to the ahove, in well ase rtained proportions, and with sulphate of soda to give whiteness. In the mmufacture of sheet glass a sufficient quantity of the metal is colleeted at the extremity of a blowpipe, and then lengthened ly swinging and blowing, till it acquires the form of a hollow evlinder, which is then detached, the neek being ent off with a thread of hot glass; and one side of the cylinder is cut down lengthwise with a heated irun or diamond. It is then taken to the llattening kiln, where the heat causes it gradually to open nearly flat on a bid called largre, where it is rubbed down by means of a block of wood called a polissirir, and then becomes flutened sheet. Afier this operation it is placed in the annealing oven to, cool gradually. This ojeration is referred to by the monk Theophilus, who wrote about the end of the twelfts eeatury or later, as in use in his time. The method was also employed by the Venetians especially for colour d glass, a it secured uniformity. But on the cecsation for its demand, the employment of the cylinders was entircly superseded in France, England, and the North of Germany, for the rotary principle.
$1872 a$ The great advantage of sicet glass is that of affording plates of lirger dimensions. and not only of a coiding the waste arising from the circular form of the croun tables, but also from the knob or bull's eye in the centre. The surface, however, is much less brillime than that of crown glass, and is more wavy and undulated. Messrs. Chance, in 1838, intruduced a thicker quality of sheet glass, which was at the s.me time of a better surface, and since then its use has become general.

18i2b. In 1840 the same firm introduced a new variety of window glass under the name of fatent phate, which they obtained fiom a thick sheet glass by a new process of grinding and polishing. They made plates of several desrees of thickness, and of sizes containing from 8 to 12 feet superficial. The surface of the glass obtained by this process, though not perfectly true, is wery neally so; and in brilliancy it is unsurpassed even liy cast plate. For glazing sashes it has nearly superseded crown and shect glass. But for squares of somewhat large dimensions, it may be calculated whether pla'e glass wili not be as cheap or cheaper.

1872c. As will be perceived hy the above short account of the mode of manufacture of sliect glass, its size is almost only limited by the strength of the workman. It is chiefly sold in crates as manufactured, in sheets of not less in width than 28 inches, and not less than 9 feet superficial area ; with a limit of width not exceeding 45 inehes, and a limit of length not execeding 75 inclies; hut these extremes of width and length cannot be comlimed in the same sheet. Thus in glass of 15 ounces to the foot, the dimen-ions 55 l ly 36 inches, or $12 \frac{1}{2}$ feet in area, is the largest plate. In 21 ounce glass, 75 by 45 inches, or 18 feet area : in 26 ounce glass, 75 by 45 inches, or 17 fect area : in 32 ounce glass, 6.5 by 44 inches, or 15 feet area : in 36 ounce glans, 60 by 42 inches, or $19 \frac{1}{2}$ fect area : and in 42 onnce gla s, 5.5 by 38 inches, or 11 feet area. The four first weightsare made in qualities of best, seconds, third, and fourths; and the two first have two qualities A and B for pictures. There is no fourth quality to the two last named wights. All these sorts are cut into squares for glazing.

1872d. Fluted siect glass of 15 ounce and 21 ounce is usually supplied in crates not above 43 inches long; but it is made up to 50 inches in length. Obscured shet gluss is supplied in all substances.
1873. Patent plate glass, already describd (par. $1572 l$.) is rade in thrce qualities, B or best, C or second, and CC or third, quality. Each of these are of four kinds known as No. 1 , which is of an average thickness of $\frac{1}{6}$ th of an inch, and is of an average weight of 13 ounces to the foot; No. 2 is $\frac{1}{\frac{1}{2}}$ th thiek, and 17 ounces; No. 3 is $\frac{1}{1 n}$ th, and 21 onmees; and No. 4 is $\frac{1}{9}$ th, or 24 ounces to the foot. No. 4 lb is thus the very best quality made; the prices fur the size required vary but about one or two pennies pur foot in each kind; and from threepence to sevenpence in each quality. They are manuactured in sizes from 4 to 13 feet in area, not above 50 inches long, or 36 inches wide.
1874. German shet, or Belyien sheet glass, as it is sometimes called, was formerly in mueh demand in England; and is still used for cheapness. Its appeatance is more wavy
and speckled than the Fnglish manufacture. Crystal white sheet glass, for glazing pistures ar.d prints, is improrted from Florence in cases of 103, 200 and 300 feet, in first, second and third qualities, and appears superior to other glass in whiteness, but it has the defect of 'sweating.' Similar named glass for such purposes made by Messrs. Chance, appears to us to be very green, and therefore detrimental to prints and pictures; but on the other hand it d ees not sweat.
1875. Plate glass is so called from its being cast in large sheets or plates. Its constituent parts are white sand, cleansed wth purified pearl-ashes, and borax. If the metal should appear yellow, it is rendered pellucid by the addition, in equal small quantities, of mang.nese and arsenic. It is cast on a large horizontal table, and all excrescences are pressed out by passing a large roller over the metal. To polish it, it is laid on a large horizontal block of freestone, perfectly smooth, and then a smalier piece of glass, fastencd to a plank of wood. is passed over the other till it has received a due degree of polis'l. For the purpose of facilitating the process, water and sand are used, as in the polishin:s os marble; and lastly, Tripoli, smalt. emery, and putty, to give it lustre; but to afford the finishing polish the powder of smalt is ust d. Evecpt in the very largest plates, the workmen polisit their glass by means of a plauk thaving four wooden handles to move it, ant to this plank a plate of glass is cemented.
1876. Fur the unsilvered polished plate glas for mirrors there are two qualities, sceond and be,t. The Paris factory supplied in 1865 two looking glasses for the Mayor's room in the Town Ha'l at Liverpool, each 15 feet by to feet. I', /ishealplate glass is manufactured for general glazing purposes up to about 80 fuet superficial, of two qualities, usual and best. The usual thickness is a quarter of an inch: higher prices are charged for glass selected to be cut above $\frac{3}{16}$ this, $\frac{3}{16}$ this.. and ${ }_{8}^{3}$ ths. thic k; while for above ${ }_{8}^{3}$ ths. thick, special prices are charged. The best quality is declared to be of the very purest colour, free from specks, and not sulject to dampness or sweating.
1877. Rough plate glass, cast, is used for roofing, in skylights, windows, \&c., in plates fiom not above 20 inches long, to alove 120 inches long, in thicknesses of $1, \frac{3}{6}, \frac{1}{2}, \frac{3}{4}$, inch, $1 \frac{1}{4}$, and $1 \underline{1}$ inch; but these thicknesses have certain limited lengths. The widths are the same as for plate glass. This glass is not ground or polished, but rough from the table, and showing the table marks on its underside.
1878. The patent rough plate glass, which is also cast, must not be confounded with the alove. It is extensively used for ridge and furrow roofs, conservatories, manufactories, skylights, work'shops, and other places where "obscured" glass is refuired to intercept the vision without diminishing the light. Blinds are unnecessary, and when it is used in greenhouses, no scorching of the plants occurs. The quality known as $\frac{1}{8}$ th. of an inch thick, weighing about 2 lts , or 32 ounces to the foot, is usually provided for these purposes, and is no more, weight for weight, than common crown glass. When greater strength is required, $\frac{3}{16}$ this, and $\frac{1}{7}$ inch thick is said to be cheaper and of a finer quality than she common rough plate; but we demur to this statement, as of late years the manufacture appears to have decreased in strength from the greater use of sand for cheapness; in moveable window frames in warehouses, a lamentable quatity of broken squares is to be seen almost liefore the floors are occupied.

1878a. This glass is mide of two kinds; I. Pla n, which is merely marked by the fine grain of the casting table, and is that above noticed; and 11. Fluted, of two sorts, No 1, large pattern, having $8 \frac{1}{2}$ flutes to the inch; and No. 2, small pattern, having 12 flutes to the inch. Buth the plain and the fluted kinds are made $\frac{1}{8}$ th. $\frac{3}{6}$ this. $\frac{1}{4} \frac{3}{8}$ ths. and $\frac{1}{2}$ inch in thickness. The width is about sfeet, and the length usually not above 70 inchies; but. 75, 90 , and 100 inches long. are also made. When a cliar glass and mueh non-transparency are required, No. 2 fluted is the best.
1879. Quarry glass is also made in this material; Nu. 1 being 6 inches by $4 \frac{1}{8}$ th inches from point to point ; No 2 being 3 inches by $2 \frac{1}{10}$ inch. A st cined ornamented palent quarry rough plute is made for churches, chipels, schools, \&e. A patent diumond romyh plate glass is als, manufactured. A patent ruugh plate, and sheet, perforuted glass, polished or unpolished, for entilation, can be obtained in sizes, which require considcration in arranging, on accome of the length of the slits or perforations. It is usually made in columns $1 \frac{1}{2}$ inches wide, and $2 \frac{1}{2}$ inches apart; the space between each slit vartically being $1 \frac{1}{2}$ inches. Larger sizes, or the columns wider apart, can be obtained from varisus manulacturers, or to order.
1880. Many other applications of glass will be noticed in the ensuing chapter. We must here state that the details gien in this section are founded upon the price list issued by Miessrs. Hartley, of Sunderland, and would state our regret that the manulacturers have not decmed it advisable for their own intereste, to provide some place in London, and in other large towns, where the arehitect can call and compare the qualities of glass supplied under his specitication with standards there placed. It was comparativels ewsy in former years to judge of good glass; now it is almost impossible.

CHAP. III.
LSE OF MATERIALS, OR PRACTICAI BUILDING.

Sect. I.

FOUNDATIONS AND DRAINS.

1881. Is the prerious chapier, the principal matcrials used in building have been enunesated; this chapter will explain how those materials may be most adrantageonsly employed; bnt we shall nct, in the rarious branches of practical building, again tuach on the materi ils themselves, which hare been already sufficicntly deseriled. The most important of a. 1 considerations-a due regard to the foundations on which a building is to stand-will be first entered upon. The advice of Vitruvius may stili be followed. In England, the recent introfuction of concrete has superseded the use of wood under walls in the earth; and piles are now quite exploded, except sometimes for the piers of bridges and other situations in which they can constantly be kept wet.
1882. The best soils fur receiving the foundations of a building are rock, grarel, or close-pressed strong sandy earth; "but," says L. B. Alberti, " we must never trust too lastily to any ground, though it may resist the pick-axe, for it may be in 3. plain, and be intiru, the consequence of which miyht be the rain of the whole work. I hare seen a tnwer at Mestre, a place belonging to the Venetians, which, in a few years after it was built, made its way through the ground it stood upon; this, as the fact evinced, was a loose weak soil, and buried itself in errth up to the very battlements. For this reason, they are very much to be blamed who, not being provided by nature with a soil fit to support the weight of an edifice, and lighting upon the ruins or remains of some old structure, do not take the pains to examine the goodness of the foundation, but inconsiderately raise great piles of building upon it, and out of the avarice of saring a little expense, throw away all the money they lay out in the wurk. It is, therefore, excellent advice, the first thing you do, to dig wells, for several reasons, and especially in order to get acquainted with the strata of the earth, whether sound pnough to bear the superstructure, or likely to gire way." It is imporsat, previous to liying the foundations, to drain them completely, if possible, not only from tho rain and other water that wonld lie about, but from the land water which is, as it were, pent up in the surrounding soil. In soft, loose, and boggy ground, the use of concrete will be found very great; and in these suils, moreover, the wilth and depth it should be thrown in shonid, as well as the lower coarses of the foundation, be proportioned inversely to the badness of the soil. Clay of the plastic kind is a lad foundation, on account of the continual changes, from heat and moisture, to which it is subject, and which often cause it so to expand and contract as to produce rery alarming suttlements in a building. The best remtdy against this inconvenience is to tie the walls together by means of chain plates, buried in the centre of the footings, and on the top of the landings that rest on the concrete; these plates to be, of course, connected at the returning angles, so as to encompass the whole building. In these cases, the clay must be ex atvated to make room for the concrete. This will be found an effectual remedy in clay snils.
1883. By the Metropolitan Building Act, no building can be erected upon any site which shall have leen filled up or covered with impure matter enumerat d in the Act; it must be removed first, and any holes, if not used for Lasements, must be filled in with hard brick or dry rul bish. Gene:ally, if the soil be a sound gravel, it will want little more than ramming with lieary rammers; aud if the building be not very heary, not even that.
1884. Where vaults and cellars are practised, the whole of the soil mast, of coarse, le excavated; but where they are not required, trenches are lug to receive the walls, which, in both cases, must be proportiontd in strength to the weight of the iutended superstructure and its height. In general terms, we may direct the depth of foundations to be a sisth part of the height of the building, and the thickuess of the walls twice that of those that are raised upon them. Care must be takeu that that which is to receire the footings of the walls be equable; otherwise, where external and internal walls are connected together, the former, being the heaviest, may settle more than the latter, thereby causing fractures, which, though not perhaps, dangerous, are extremely disagreeable in appearance. The lower courses, which are called the fuotings of the wall, are often laid dry ; and. perhaps, at all events, a sparing use of mortar in a spot loil led with the greatest pressure shonld be preferred. If the footings be of stone, very particular attention should be bestowed on placing the stone in the courses in the same direction or bed as it lay in the quarry, to prevent it splitting. The ahore mentioned Act requires that the foundations of the walls of every house or building shall be formed of a bed of concrete not less than

9 inches thick, and projecting at least 4 inches on each side of the lowest course of footings of such walls. If the site be upon a natural bed of gravel, concrete is not then required.
1885. In foundations where, from columns or small piers pressing upon particular parts, there would be a lialility, from uneven bearing, to partial failnre, it has been the practice, from a very farly periol, to turn inverted arches (sie fig. 615) to catch on their springing the weight to be provided against by which means such weight is equally dis ributed throughout the length of the foundiation. "Standing thus," says our master Albrrti, "they (the columns or weights) will be less apt to force their way intu the earth in any one place, the we ght

Fig. 6 6. being counterpoised and throwa equally on both sides on the props of the arches. And how apt columns are to drive into the ground by means of the great pressure of the weight laid on them, is manifest from that corner of the noble temple of Verpasian that stands to the north-west; fur, being desirous to leave the public way, which was interrupted by that angle, a free and op-n passage underneath, they broke the arra of their platform, and turned an areh against the wall, leaving that corner as a sort of pilaster on the other side of the passage, and fo tifying it as well as possible with stont work, and with the assistance of a buttress. Yet this, at last, by the vast weight of so great a building. and the giving way of the earth, became ruinous." When inverted arches are proposed to be used, they should be shown in the drawings.

1885a. A method of forming foundations has lately come into rogue for bridges and other hydraulic constructions by the use of cylnenders, or other shaped air tight cases. In India the system of founding large masses of masonry on cylindrical piers buitt in the interior of wouden curbs, has prevailed for a long period. The method of constructing the piers is the same as that used in England in sinking the steining for ordinary wells ; and when sunk the interior is filled up with concrete or ruble masonry. Some of the iron bridges lately erected over the river Thames and elsewhere have been placed on foundations formed by cast iron cylinders filled in with concrete. Further details must be sunght in works devoted to Civil Engineering, as the system will seldom be applicable in strictiy architectural constructions.
1886. Air-drain. It is most important, when the walls are raised in the fuundations, and lought up a little above the level of the earth, to take care that the earth, most
especially if moist, should not lie against them; for if walls, before they are dry and stetted, imbibe moisture, they rarely ever part with it, and thence gradually impart ret to the timbers throughout the house. It is, then, most important to have a second thin wall outside the basement walls, so as to leare between it and them a cavity for the eirculation of the air, such carity being technically called an air-drain. In moist and louse soils it is essential for the durnbility of the building, as well as for the health of those who are to dwell in it. The Hygeian rock building compasition, by W. White, of Aluergavemny has leen largely used for preventing damp passing through ia wihl. A wall mav be built with haif-bricks wn the flat and set in this composition, filling the middle joint of half an inch, and an inch or so of each bed. This is stated to be much stronger than an 18 -inch wall built in the ordinary way. A brik flat with a brick on cilge, as for cottages, or for econony, is quite damp-pro f, and equal in strength :o a 14 -inch wall built with mortar only. No skill is required; an intelligent labourer can use it.

1886a. It is important that the air-drain or dry area should commence at least as low as the foundations of the building; in very
 wet situations it should be provided with pipes to carry off the superabundant moisture, and be independent of the maia drain of the building. Eren when providecl, the usual precautions to prevent damp arising in the main walls must not be neglected. The air-
drain, which should never be less than 8 inches wide, more if possible, is commonly covered with a half-brick arch, or with stone, slate, or tile, below the surface of the ground. This entirely does away with the benefit anticipated by its formation, because the suiface drainage descends and injures the main wall, even when cemented above the corering; this covering should come some inches above ground. Unless care be taken it often degenerates into a hole for dirt and vermin. A good arrangement is to make a dry area, or a space wide enough to be easily cleared out, and to which a cat or dog can have access, and to corer it with stone with moveable gratings at convenient distances ; the expense will not be much greater, while the result will be very effective. The moxt secure arrangement, howerer, is to form an open are all ruund the building. The waut of such a precaution in the houses in the suburbs of towns renders a large majority of tho e having basements neariy uniuhabitable from the disagreeable consequences of lamp walls. (See also fig. $615 h$.)

18S6h. Danip coirses. This simple provision to prevent wet, which is likely to get into walls, from rising in them by capillary attraction, is too oten neglected, especially in cheap work for the present saving of a pound or two; but at the ultimate expenditure of many pounds. The simplest plan has generally been to work three courses of the brickwork alove the footings and below the ground floor, in cement. Messrs. smith of Darnick s'ate that a coating of cement, done in a rery substantial manner, did not appear to have the smallest effect, as the wall was as damp above it as below. For smald cottages they found an effective plan was to build all the parts of the wall underground quite $d r y$, and not to use any mortar until clear of the earth. This left the walls quite dry above. The next method is to bed a course of sound whole slate slalis, $\frac{1}{4}$ inch thick, in cement. When the soil is very damp, two or even three courses of crdinary slates may be laid in and well bonded, not only in the main walls, but in all cross partitions and dwarf walls. For some rason, probably that of the slates and cement haring stparated or crushed with the weight of the wails, allowing the damp to pass through, this method has fallen into d'suse. As Portland cement will adhere to sla'e, prolably, in solid works, if used instead of Roman cement, the result would be more satisfan tory.
$1856 c$. Sheet zine bedded in loam has been fonnd to decay. In extensire works, finegritted asphalte, applicd in a hot state, is introluced as a layer, about half an inch in thicknes.. This material is stated, in the Appendix to the Report of the Fine Ar's Commissioners, to have kept out the effects of damp, which would hive shown themselves, as the foundations of the building referred to were always in water about 20 inches beluw the lerel of the ground floor. The brickwork s ould be dry and protected from rain during the operation, to prevent the asphalite beemming honeycombod. In bullings already erected, the walls can be underpinned to ittroduce the marerial At the Nerr Palace at Westminster the joints are ouly hatr filled w.th nortar, the asplatte filling the remainder when poured orer the bricks. The bricks for the next course, having been beated at a coke fire, were placed on the asphalte in its fluid state, and the joints half flushed up. The outer courses, however, should be first laid fur sh irt distinces, that they may set before the middle is filled in. In rubble masonry, it will he necessary to fill up all inequalities on the surface with fine zoncrete; when this has set sufficiently, the asphalte is to le laid as described for brick work. Gas tar mixed with lime is sid to be impervious to wet.

1886 d . Two centuries ago, thin sheet lead was laid on the top course of a wall to prevent damp coming down it from the guters; of late years, a layer of 4 lb . milled lead

Fig. $615 b$.

Fig. 615 c.

Fig. 615d.

Fig. 615 e.
has been proposed to prevent it rising; no doubt the best and most efficacious remedy, but the cost would be gre ter than nsually allowed. But the best invention, haring price also in its farour, is the damp-proof course, formed of brown stoneware, perforated throughout its entire width with a half air space, which remains open after the mortar beds are laid, on each side of the slab. In an executed work, a course of bricks can be cut out and the stoneware le inserted. This is one of the many building inventions of Mr. John Taylor, junior. Fig. $615 \mathrm{5b}$. shows one for an 18 -inch wall; other sizes as well as angle blocks are provided. Etch foot superficial is stated to le cqual to the support of 25 tons or 600 feet of vertical brickwork. Jemnings has patented eartheuware s'eeper blocks, "non-con fuetors of damp atd a cherp sabstitute for brick slecper walls;" they
are also nseful for carrying stone paring: figs. 615ce, 61.0d., and 615e. describe them-s-lves. Fig. 615 f . shows the section of a sleeper-wall in brickwork, carrying stone paring on one side and timber joist on the other. There are four courses of brickwork, on which is laid the timber sleeper, 4 inches by 3 inches, to carry the juist.

188首e. Fig. 615b. is also useful for admitting air into the space under a floor, and then dispenses with the common cast-iron air-brick usually fixed for such a purpose. Air gratings are of a largen size. The following arrangement, shown in Figs. 615 g . and 61 5h., has been carried out where it was thought a lvisable to provide for the admission of a harge quantity of fresh air at times into the borly of the bulding. Funnels or pipes were in-erted in the side walls under the florr, say 1 ft . 9 im . diameter. An area protects the tront, to which a small weeping draiu is put to carry off any rain water, and is pro-

Fig. 615f. tected at the top by a grating to prevent animals getting in. On the inside is a plate or slide, which can be let down through the floor, paring, or boards into a groove, to rezulate the quantity of air or to shat it off. The fresh air ascends throngh gratings, or by other menus, in the floor, into the hall.

1886f. A preventive against the rise of damp in the inside of the building is to cover the whole ared within the walls with a layer of concrete, about 4 to 6 inches thick. By a byelaw of the Metropolitan Board of Works, the site of every honse or building shall be corered with a layer of good concrete at lea-t 6 inches thick, and smoothed on the upper surface, unless the site thereof be gravel, sand, or natural rirgin soil. But as concrete, especially if of a coarse character, is of a honey-comb charmeter, even when fixed or set, being full of little carities, there is some danger in placing it in wet soils, for it will often weep, and if cut, water will be seen to ooze through it. Also, when placed under a basement floor to keep out damp, water will invariably find its way through if there be any pressure, as from springa. To prerent rapours rising from decomposed matter in the soil, a good practice, even in dry localities, is to cover the soil, befure the floor boards are laid, with a layer of two

SECTION. Fig. 6:5h. inches of unslaked lime, which on slaking with damp, or damp air, will destroy any vegetation that may have been left on the surface.

SEWERAGE AND DRAINAGE.

18S7. Before a brick or stone of any bulding be laid, the architect neglects his duty if he has not provided for perfect drainage in the lowest pats oit the structure. This should not be by the aid of a stagnant tank, called a cesspool, if it can pussibly le aroided. although there are some locatities where such a tank must be formed, and then the solid conten's can possibly be made useful for manuring purposes, the surplus watel being drained off, possibly into some running stream at a distance from the building, whose exhalations shall not be blown by any prevalent winds of the spot back upon the place where they were generated in a different form. The durability of the structure is quite as mucl involved in good drainage as is the health of the fimily whose dwelling-plame the house is to become. London, with its suburbs, is now probally the best drained capital in Europe. The lines of sewers forming the Main Drainage scheme have relieved the nolle river of nearly all the sewage matter which had been carried into it. Every strect and alley has its public sewer, and nearly every lic use has its separate drain into the sewer. No new sewer en now be made in London without the previous approval if the Metropolitan Board of Works; and no Irain can be laid into as sewer without, the previous approral of the vestry or distrect bovard, which has to apply to the Metropolitan Board of Works for their sanction in both cases. Many towns in Eugland lave now their Board of Health superrising the drainage of the streets and houses, pursuant to "The Public Health Act, 1848," and " The Local Gorernment Act, 1858."

1887a. Sruers are provided for carrying away foul water brought into them by the drains. Ordinary strect sewers are built of hard bricks set in cement, and are now generally egreshaped in section, being about 3 feet 3 inches wide at the top, and 2 feet

9 inches at the bottom, of the sides, which are formed by curres of a large radius, and 5 feet high in the clear. Smaller sewers are 2 feet 9 inches and 2 feot 3 inches wide, and 4 teet 6 inches clear height; and 2 feet 6 inches wide, and 4 feet clear height. The

Fig. $615 i$. smaller end is placed downwards. The difference of friction or impediment in farour of a curved bottom is great, much power of the flow of water being lost by the use of a flator flatly curved bottom. This part of the sewer is called the invert, and is often formed of stoneware, the core being filled in with coarse cement; thus the foul liquid does not percolate through them into the soil. The figure (615i.) shows Jennings' compound invert blocks, laid and jointed in Portland cement; the loricks at the angles set in llue lias lime. Smaller sewers are now made of large circular glazel stoneware pipes, and in a few exceptional intances of irou; and even rock concrite tules, from 15 inches to 36 inches diamter, are made at Poole. The joints of these pipes are made watertight. These ordinary sewers pass into larger ones called " main sewers," all gradually inclined from the hisher to the lower levels, joining one another either with curves or acute angles, sc that the flow of one current shall not impede that of another; and they gradually become larger an 1 lirger, according to the requirements of the town, nutil they end in one or more outfall sewers dischargiug into a river, or to reservoirs fur a system of irrigation or for other purpose.

1887 b . The accumulation of foul deposits in sewers is caused by the want of sufficient fall or sufficient flushing with water, and so occasions foul air, or gas as it is wrongly called. Hence it is essential that the sewers should be well rentilated, in order that the foul air shall not escape or pass up the datins of the houses. This ventilation in a line of sewer is effectad by a shaft carriel up from the crown of the sewer to the surface of the street, where it is finished by a grating. Where there are plenty of these ventilating shafts, it is considered that no nuisance is produced by the bad air as a general rule, because the purer air is suposed to be continually passing into and out of the sewer through them, thus diluting the foul air. If a nuisance from foul air is complained of, it would show that something was wrong with that pirt of the sewer, or that another ventilator was wanted in the distance betwcen the two already in position. Instead of these, it has a'so been proposed to ventilate sewers by means of pipes carried up houves and ending ab ve the roufs, but this systom is considered to be inefficient unless the pipes are of large size. The head of a system of sewers, or the end or hoad of a sewer, as to a court of houses, נequires both a flushing apparatus to oceasionally cleanse the sewer, and a pipe ventilator or venthlating shaft carried up to carry off the foul air which there collects. Other sistems have leen suggested. Various attempts lave been made to create strong upeast draughts by furnace chimners, cowls, or other artificial means, but these attempts have never been more than locally-and then only partially - snecessiul.

1887c. Whilst on the subject of sewerage, it may be well to refer to the new system of raising the sewage from a low to a higher level tiy means of Shone's hydro-pncumatic sewage fjector. This suscessful system, as carried out at the Houses of Pariament, is described in the Thansactinns of the Royal Institu'e of British Architects, 1887, iii., new series, and in British Architect for Jannary 28, 1887, p. 69. The work was perfurmed thus: in the bottom of the old main brick sewer, about 1000 feet long, passing from north to south unter the Houses, a 12 -ineh cast-iron drain was embedced in concrete, with a fall of albout 1 in 212. This received all the sewage of, and rain falling on, the Houses and grounds, and was discharged into a receiver at the both su of a sewage manhole. From the side of the receiver a 12 -inch cast-mron inlet pipe is carried horizontally juto the adjuining fjector chamber, in which are three cast iron ejectors, one being capable of disclarging 480 gallons, and the other two 335 gallons each, per minute. The sewage is conveyed into them by a 6 -inch cast-iron pipe. From the borrom of each ejector a 6 -inch east-iron pipe passes vertically upwands into a 12 -inch cast-iron horizontal outlet pipe, which is carried through a dan buitt in the old main sewer, and discharges beyond it int, the old outlet communicating with the Low Level Sewer, and abore the normal flow of sewage therein.

1887d. Compressed air is used for ejecting the sewage, \&c., from the ejectors by Atkinson's differential gas engines-four of them, eath of 4 horse-power. Usuaily one only is emplosed. There is an automatic arangement for conducting the air, and ball valves for admitting and expelling the sewage. The compressed air in the ejectur is discharged by a pipe leading into the ventilating shaft passing up the clock tuwer. The
amount of sewage ejected in $d r y$ weather is found to a serage no more than 40 gallons per minute, so that a 6 -mel pipe would carry away all the sewage produced in the Houses. Fresh air is admitted into the subway and chamber, \&c. There is also is 9 -inch main 7ranch drain under the basement along the west side of the Houses, which is also ventilated. The total cost of the works, including the fuur gas engines, the three compressed air receivers, the piping, and the three ejectors, has been a little over 11,500 .

Drains.

1888a. Into the pullic sewers are carried the drains from the houses. These drains were formerly made of brick, and called "gun-barrel drains" from their circular shape. In course of time they got out of order from decay, rats working their way through, and other causes, so that foel matters saiked through iuto the soil, which thus became saturated, and foul air ascended into the honse. Such drains have been discarded since the introduction, about 1845, of pipes into the sewerage and drainage system. These pipes are made of ritrified stoneware, and are very different to the glazed or unglazerl e.rrthenwaro pipes sometimes substituted for cheapness. The sewage soon corrodes this glazing, which being remored, the half-burnt earthenware sucks in the foul water and decays. Nor is it cearly so strong as the stoneware pipes ; these are also supplied with covers for occasional inspection. Pipes are also made specially, 3 feet long and of a thickness equal to one-tenth of the diameter, with Stanford's patent jonts, iy J. Cliff and Sons, near Leeds. Messrs. Donlton manufacture a patent self-adjusting juint, securing several adrantages.
18886. The main drain necessary for the service of the largest house (we suppose the case of one in the country), if the fall be even but moderate, requires no large dimensions. When we see a small river draining considerable tracts of country, often in section only $8, .9$, or 10 feet superficial, it m y easily be conceived that the surplus water from, and raiu falling on, a mansion is a quantity, even in pressing times, that exacts no large area of discharge to free the place from damp. There are few cases in which the greatest mansion would demand more than a 12 -inch or 9 -inch pipe, with branches of 6 -inch and 4 -inch pipe; which, with $3 \frac{1}{2}$-inch lead pipes for soil pipes, if properly connected and laid, will suffice for all purposes.

1888c. One object in draiuing a house, a mansion, a village, or a town is to make the drains and sewers so that the sewage in them shall never stagnate at any part, but be coistantly flowing with a self-cleansing velocity; and so that the air in them shall never stagnate at any part, but be always flowing, by fresh air passing into their lowest parts, anl ly foul air discharging from their lighest parts into the stratum of the atmosphere abore that in which we live and breathe.
$18 \leftarrow=3 d$. There are several systems of draining a country mansion. Near to the main outlet is fixed a la ge interceping trap, to be rentilated. Intu this panses, by drains on all sidts of it, all the water by the rain-water pipes from the roofs, the soil by those from the water closets, and from the pantry and scullery sinks, as well as any surface water from trapped gratings. The waste pipe from the scullery siuk should, prrviously to passing into the drain, be connected with a grease trap (see Phominery). Some of the min-water pipes may act as inlets of fresh air and also as ventilators to the drain; but oceasionally, and' especially near traps, other pipes for inlets of fresh air may be provided to provent what is called "syphoning." These ventilating pipes are to be of the same diameter as the drain, as required ly some authorities, or as the soil pipe as by others, to be carried up to the top of any gable or roof of the house, and to some feet aloove and clear of the chimney pots, so as to prevent foul air from passing down them by down dranghts; the top is sumetimes open, but they usually have a cap or exhaust ventilator.

1888e. The rain or surface water from houses in the country, or on open land, should be carried away into the matural streams by glazed stoneware or fireclay pipes, embedded in concrete if the soil require it, and of daweters rarying from 3 to 24 inches or more, laid with a proper fall. Where a luilding has to be erected on soil whieh holds water, the site should be drained by the use of agricultural pipes, these being d seh rixed into an open gully leading to the main drain, to a stream, or otherwse where convenient.
$1088 f$. Town druinage consists of the comparatively clean surface and subsoil water; and of soiled and used water containing crganic matters called sewane. The combination of these two waters was established in London towards the end of the last an l the commencement of this century, at the time that water suplly by pipes to houses became general. This was discharged into the cesspools, and thence ly orerflow drains into ditches, watercourses, and sewtrs, open and curered, and thence into natural streams and rivers. The two systems of drainage should, say many persons, be kept separate by the provision of one set of drains for receiring the clean water and dscharging it into the natural streams; and of a second set for recejving the dirty water and sewage and correying it by seifecleansing drains, as fast as it is produced, to prepared agricultural lami. This system was recommended ly Mr. John Phillips abonat 1849 ; but it has not fomm many adrocates, chiefly as it appers to fail from the water in the first portion being
removed from the second portion, and thens there is not sufficient to carry off the sedimentary matter, which would be done when the two systems are combined.

1888 g . The position and size of the drains having been stttled, the fall has to Le arranged. It has been proved beyond a doubt that natters easily carried away by the increased velocity gained by using a small drain, remain as an obstruction in a largo drain. A velocity of 2 feet per second is tha least which will keep sewers clear of all ordinary obstructions; while house drains and small pipes require a relocity of 3 feet per second to keep them clear (Hurst). A fall of from 2 inches or 3 inches in 10 feet will be found quite sufficient for all practical purposes. i fill of 1 in 30 is considered by many to be a grood fall, and not always to be obtained. Pipes half full, with a velocity of 3 feet per seco d require the fullowing falls: -4 iuch pipes, 1 in $100 ; 6$ inch, 1 in $150 ; 9$ inch, 1 in 225 ; 12 inch, 1 in $300 ; 15$ in h, 1 in $350 ; 18$ inch, 1 in $450 ; 24$ inch, 1 in $600 ; 30$ inch, 1 in 700 . With as relucity of 2 feet fer ser ond, 4 inch pipes require a fall of 1 in $200 ; 6$ inch, 1 in $300 ; 9$ inch, 1 in $450 ; 1^{2} 2$ neh, 1 in $600 ; 15$ inch, 1 in $700 ; 18$ inch, 1 in $900 ; 24$ inch, 1 in $1200 ; 30$ inch. 1 in 1400 (Sears).

1888 . Hence also the adrantage of flushing a drain. One person has urged that his ten-romed house and outbuildings haro not, in the course of many ytars, ever been inconvenienced by the use of a 3 -inch drain, whilst other houses of similar size, having 6 -inch and even 9 -inclı drains, have been seriously affected. Much depends on the fall, and on the careful lajing of the pipes, and something on the quantity of water used for household purposes. Where a water closet is placed at or near the head of a drain, a stoppage of its pipe often occurs; while grease from the kitehen sink incrusting in the pipe, for want of uccasiomal lushing with bot water, is another frequent cause. Sewers also occasionally require assistance by flushing them from their head. One of the best arrangements proposed is that of an iron tilting ci-tern, to hold about 9 gallons, inserted in a brick pit at the head of a pipe sewer. This cistern, with its brass bearings and plates, brickwork, stone cover, and water tap, costs aloout nine pounds, and if owe wore placed at the head of each pipe sewer in a town, and all were turned off at the same time, a material assistance in keeping the main line also clear, would be found. The " self-acting syphon flush tank" is now much nsed for such purposes. Rugers Field's patent consists of two concentric tubes, the outer one being closed at the top and steadred by radial ribs projecting from the inner tube. The ennular space hetween the tubes constitutes the ascending or shorter leg. and the inner tube the descending or longer log, of the syphon (Builder, 1879, xxxvii. 1,002). There is another arrangement patented by him, combined with a grease intercepter. (See Wathr Waste Preventer.) A somewhat similar one is put forward as "Adams' patent flushing syphon." Anether by Banner, as in The Sanitarian's Companion.

1888i. The house drain should be effectually cut off from aërial connection with the common sewer, or any other house drain; also, the house should we cut off from aërial connection with all soil and waste pipes; and all these external pipes and the houso drain should be so formed and so connected that they shall at all times be freely Hushed with fresh air, and all contribute to their mutual purification. "House drains," writes Mr. IIontyman, "as usu, lly laid at prestnt are not ventilated. A 4 -inch drain, as recommended by Sir Robert Rawlinson (Trans, of Sanit. Inst., vol. vi., p. 72) and others, cannot be rentilated by merely learing openings at each end of it. The friction in such a pipe would neutralise a considerable amount of energy, atd there is no energy. The morement of the air is sometimes in one direction, sometimes in the other, and the quantity which gains admission is just ahout sufficient to promote fermentarion and the propagation of organisms, and to allow the escape of abominably polluted air at either end, or into the house if it hare the chance. My adrice is to increase the size of the drain, to confine the sewage in a narrow channel, and to keep the whole clean. I am not prepared to say that even a well-ventilated house drain would be superior to one absolutely without rentilation, from which atmospheric air is entirely excluded; lut it appears to me to be indisputable that there must be either thorough rentilation or none, and that in this case the astual via media is the very worst course that can possibly br adopted."

1888k. A system has lately (1887) been patented by Mr. H. R. Newton, architect, whercby he shows the absolute necessity for the total enclosure of sewage from air in all ways, to prevent exhalations arising, and to absolutely control the method for their suppression. He points out the injurinus influence of forcing air into fouled water in ary way, or of allowing fuuled water to have any contact with air; drains and sewers, he maintains, should be always full, instead of empty.

1888l. Various arrangements are adrertised for obtaining access to drains for inspection without the necessity for breaking into them. or for clearing stoppages. At the end of the drain next the sewer (and perhaps at other places) shonld be formed a manhole or "inspection" chamber, having a syphon trap in it, or between it and the sewer. It may be formed of lricks in cement, sometimes set on a concrete bel, and is usually 3 feet 6 inches by 2 feet 6 inches in the clear, and finished with an air-tight cover, as by a

Yorkshire stone set in cement. The depth of the drain determines the depth of the chamber, which must he larger if very deep. At the bottom of it is in open channel about 9 inches deep, so that it glance whether the sewage is In the end next the sewer an at the drain between the $t: p$ ing, if necessary. The cap to times be securely fixed and
 can be ascertained at a flowing properly or not. eye-hole is fixed, to get and the sewer, for cleanthis eye e-hole must at all seal led.

FIG. 615k.
A, Inspection chamber at the back of the house. B, Ditto, or manhole, in the front of the house. $\mathrm{c}, \mathrm{c}, \mathrm{c}$, the drain running from the sewer at the end 11 , through B , wherein is shown a syphon trap, with a pipe \mathbf{D} through which the drain can be cleansed, if necessary. This chamber B is ventilated by a pipe No. I. to let foul air out or fresh air in. The pipe No. II, is a ventilation pipe to the house drain, and also to a soil pipe, No. III. E and F are trapped gullies or gratings in the yards or gardens. Into a would also be carried the drain from the grease trap. This figure is obtained from Catherine M. Buckton's Our Divellings, Healthy and Unhealthy, 8vo., Longmans, 1885, p. 65.

1888 m . Fig. 615l. is a plan and section of the interior of an ordinary town house, showing the position of each sanitary apparatus, as urged by officials and li others. The figure is from Buckiton's Our Dwellings,1885,p.62. Plan: w , back kitchen ; F , front kitchen ; a, front yard or area; n, yard or garden ; d, steps down to the basement; x, the drain, taking the trapped gully in garden, passing through the inspection chamber b, which takes the drain from the water closet soil pipe, and from a, the grease trap, with its rent pipe No. IV: from e, the sink in the scullery. No. II. is the rent pipe to the house drain, and No. III. the vent pipe to the soil pipe. In the front area, g, is the inspection chamber r, through which passes the drain x, having s, the trap to sparate it from the sewer, and into this chamber runs the trapped gully ; No. I. is the rent pipe from it. Section: a and b are two water closets, the plans are given at the side; and as a sanitary arrangement there should be a lobby, lighted and ventilated, between the water closet and the staircase, somewhat as shown on plan $\mathrm{B} ; y$, slop sink, with syphon trap passing on to the head of a pipe into
 the drain. The other letters apply to the above description also.

Iron Drains.

1888n. The "Newman" complete system of Cast Iron Drainage, of which the first introducers and sole manuficturers are the North British Plumbing Company. A paper is published by them, On the use of Cast Iron for Honse Drains, by W. D. Scott Moncrieff, C.E., read at the National Health Scciety's Exhibition, 1883. The advantages of cast iron are put thus: 1, its superior strength and capacity to resist fracture; 2, the greater lengths in which it can be manufactured, and the corresponding reduction in the number of joints ; 3, the greater facilities for making the joints secure by means of lead run in, sulphur, "xi ised iron filings, red lead and yarn, \&c. The points to be considered in adopting cast iron are : 1 , the arailable means for preserving it ; 2, the determination of the capacity and weight of the pipes; 3 , the character of the comnections best snited to the material; 4, the nature of the joints ; 5, the comparative cost. The preserving methods besides paint are: 1, the coating with a preparation of tar, known as Dr. Angus Smith's composition; and 2, the Bower-Barff process, consisting of coating the surlaces of the iron with magnetic oxide after a very careful cleansing, and then painting to protect the surface from being injured too deeply at any time, for if scratched, oxidatiun quickly follows. They can also be glazed inside. At each end of the drain a manhole can be formed, so that the drain could be swept clean fromend to end by a sweep's machine. Some objections have been raised to iron drains, more especially that of the iron cracking, as it is well known irun rain-water pipes will crack, even when protected from the atmosphere.
18880. The pipes in 6 to 9 feet lengths, with inspection corers, curred junctions, are to be laid on concrete, or on a dwarf wall, or on iron bearers, and in a trench or subway under the passage, so that the whole length can be open to inspection at any time. Five-inch pipes are usualiy adopted, $\frac{3}{8}$ ths of an inch thick, giving atout 120 lbs . as the weight of a 6 feet length. When the soil pipe is connected to the iron soil drain, a copper ferrule should be wiped on to the end of the suil pipe, the latter being threaded and caulked as for the ordinary iron joint. The joints may also be serew joints. The company also furnish the necessary house drain terminal, manhole covers, flush tank with nnnular syphon, rain-water flushing head, grease trap, water-waste preventer cistern, mica nonreturn valve, soil-pipe cowl, improved valre closets, air ventiator and tubes, Winser's channel pipes and bends, straight and taper, in lest enamelled stoneware ; white enamelled sinks for kitchen and seullery; caulking sleeve of brass, for securing lead pipes in iron sockets, with oakum and lead; and many others of similar modern appliances.

Testing a Drain.

$1888 p$. There are several methods of ascertaining if the pipes are properly laid, as well as for finding the place of an escape of smell into the house. 1. By the peppermint test, relying upon smell. This is applied by pouring down the ventilating or other accessible pipe outside the house, about two ouncts of sirong (essence or) peppermint, quiekly followed by about two quarts of hot water, the orifice of the pipe being instantly plugged up to prevent the escape into the atmosphere of the scent. If perceived in any room, or closet, or sink, there exists the oril. 2. By the smoke test, relying upon sight chiefly, the invention (1883) of Mr. C. Innes, C.E. Straw may be placed in the drain, say at the inspection shaft (if there be one), then saturaled with petroleum, and lighted, wish care on account of the flare. Then the drain must be covered over so that the smeke shall ascend the drain, esc ping at the ventilating pipe, if there be no crack or defect by which also to escape. A p:nhole in an iron pipe has thus been detected when the previous test failed to point out the exact spot. Pain's "smoke rockets" burn from ten to fifteen minutes, and emit a dense volume of smoke. "The Banner patent drain grenade" or "drain ferret" is made of thin glisss, and charged with powerful pungent and volatile chemicals. When the grenade is dropped down any pipe it breaks, and the eflect producd by its contents is distributed only as intended. When drains to bo tested by the smell or smoke test pass through a house, care must be taken to close all openings; and when applied outside, the openings should be clused, to prevent any smell f ntering frcm the outsile.
$1889 q$. In places where the drain is deep and has been laid in clay with rubbish over, and perhaps finished by concrete with a coat of cement over, or tile, or other paving, if the ground be probed with an iron or steel rod to the bottum of the trench, it has been found that smoke was ac ually issuing fom the drain; and it also showed the state of the ground, the point of the probe indicating the nature of the soil at the bottom of the trench. A third test is the waier test to the main drain of ia house. The pipes have to be stopped up at both ends in order to be filled with water, and some upright part formed, or selected, for the purpose of observing if the drain hold the watir, or the reverse. The ends of the branche's into it having been also stopped up, the water may then be turned on, and the pipes filled to a part marked on the npright pipe. It is thon to be carcfully watched to ascertain if the water falls
below the mark; should it do so, it at once proves that there is a leak somewhere. (James Stewart, senr.)

18 s 8 . Among other general and special recommendations (Woodward, in R.I.B.A. Transactions, with additions), are the following:-

1. Constant superrision during the laying of drains, to secure good workmanship both in the laying and jointing.
2. Drains are best laid when the carcase is completed and the roof put on. They are not required sooner, and they are then less likely to bo disturbed. If left for a later time they may probably be hurried over.
3. Wherever possible, drains should be laid ontside the house. When inside, their direction should be indicated on the floor by is sufficient with of the floor material being laid so as to be easily taken up at any time to ubtain complete access to the dratins.
4. All old drains and eesepools, and all soil which has been in contact with or saturated by any of them, should be entirely removed from the premises.
5. Junetions should always be made by a gentle curve or bend with the length of the p:pe, and nerer at a right angle.
6. A regular and mifurm tall should be secures ; a too great fall may rapidly carry away the liquid while the soil remains.
7. The pipes should, if the soil be soft, be laid in a bed of concrete or on well-tempered clay puddle, and formed to suit the curve of the pipe.
8. The joints of all pipes should be well soeketed, and the pipes should hare a full bearing on the bed, not leirg allowed to bear only on the joint, so that chanuels should Le formed in the benl, or be cut out for the sockets to rest in.
9. The joints should be carefully cemented or clayed in all round; not the least particle of cement or elay should rematin on the inside of the pipes, as on hatrdening it forms an obstruction and the nucleus for stopping the drain.
10. All traps should be earthenware syphon traps, wich inlt ts and covers, with ready access for cleaning out. Greasa traps for scullery sinks should be ready of access fur periodically remuring the grease, which otherwise passes into the drain and assists in turming an obstruction. These traps should be ventilated.
11. As Hushing plays an important pat in all systems of drainage, the waste water from sinks, baths, rain-water pipes, \&c., should pass down the house drain. Lately, in some systems, these have been kept distinct from the soil drains; but as very little water accompanies the one emptying of a water closet apparatus, there is much danger of solt remaiuing, an eril which is avoided by the flushing obtained from the other sourees.
12. At the junction of pipes a shaft or inspection chamber should be formed, with a proper cover, to allow of access to the pipes, and by which rods may be passed up and duwn the drain in case of a stoppage.
13. Betore the drain enters the sewer, and outside the house, a similar slaft should be built, with a stone or iron corer weil cemented down, and a syphon trap fixed on the sewer side of the shaft, with a rentilating pipe carried $u p$ welt above the rout of the huane.
14. All overflows, wastes, and rain-water pipes should discharge orer an open gully trap, and nut be connected direct into the drain. Where practicable, gully traps shuuld be fixed outside a building.
15. Air inlets shuuld be fixed as far as possible from windows and doors.
16. If the dram has but a slight fall the use of a flushing tank is indispensable.

1888s. The importance of sanitary inspections may be shown in the necessity of some modifications to the existing drainage of a house. The fullowing remarks and suggestions will be useful to the investigator:--"It cannot be too strongly impressed on the public mind, that to make a house fairly safe from dangerous inrouds of sewer gas (or smell), as it is termed, is not by any means a gigantic undrtaking. In the case of a new house, an arehitect of ordinary professional capacity is quite alive to the modern idean of samitation, and he will no doubt see that, so far as lis client permits him, all that is proper to be done is thoroughly carried out. The difficulties become arparent when lie has to deal with an old house, th:e drains of which he knows nothing about; but even here the task of securing safety from poison from the sewer is not such a rery hard one. Take, for example, an ordinary strcet house. The water closet apparatus is of the ohd kind, perlaps set in an apartment in the centre of the house, without any communjat jou with the open air. The sink waste is directly connected with the drain, supposed to be protected by an old bell-trap, which is of little use. The ci-tern has the old standing waste pipe, inlso directly connected with the drain, and serves the sink as weil as the water closets. The rain-water pipes are also directly conneced with the drains, which run under the kitchen floor or basement passage, aud uninterruptedly onwards to the old ir in flap trap (at the sewer), which, if it exists, or is in right action, is the only opposing force to direct contact with the main sewer in frunt.

1888\%. "Nuw this is, apparently, a very alarming state of things, to be remedied only (so:ne would say) by the remeval of pipes, cisterns, and apparatus throughout the house, isvolving prrhaps the dislocation of everything in it, and the substitution of the net-
work of arrangements of modern sanitation. If the elient be willing to carry out these elaborate notions, there can be no objection to his having them; but for the larger class the following will, in ordinary cases, be sufficient to arrest danger; first supposing that the water closets, sinks, and cisterns, are in a proper state of repair, and that the draius or other pipes are all clear.

1888 u. "Take up the paring of the front area where the main drain runs through to the sewer. Cut out a length or so of the drain, and build, in 9 inch brickwork, a shaft 3 tect by 2 feet. Render it inside in Portland cement. At the bottom let iu a half drain pipe, and at the sewer side fix a syphon trap. Cunnect with the shaft two 4 -inch drain pipes, one on either side of the shaft; or carry up a 4 -inch galvanze iron pipe a short distance to form inlets. If a rain-water pipe be near at hand, the joints may be caulked, and it may be connected with the shaft by one of the pipes; carry it well up abore the roof, and treat it as the outlet rentilator. If a rain-water pipe is not near at hand, carry up from the shaft, and well above the roof, a separate 4 -inch galvanized iron ventilating pipe. Cuver the shaft with a York stone, or iron cover, ald the drain jub is done. As regards the water supply, the cistern should be well cleaned out periodically, say once a month, and there will not be much to fear in that direction."-Woodward, Loudinn as it is and as it might be, read at Royal Institute of British Architects, and printed in Transactions, new series, vol. ii. p. 46.

Suct. II.

BRICELAYING AND TILING.

1880. Bricklaying, or the art of building with bricks, or of uniting them by cement or mortar into varions forms, includes, in the metropolis, and mostly in the prorinces, the business of walling, tiling, and pariag with bricks or tiles, and somerimes plastering ; but this last is rarely, if ever, undertaken by the-London bricklayer; though in the country the trades of bricklaying and plastering are usually united, and not unfrequentis that of masonry also. The materials used have been described in a previous part of the work, to which the reader is referred (1811. et seq.).

shoring.

1889a. It is advisible that the student should be acquainted with the mechanical princ,ples involved in the construction of shores, and the nature of the furces which are lrought into play. G. H. Blagrove, in Shoring and its Application, 1887, writes: "Though the student has to learn the priuciples of Shoring, the practising arehiteet has to apply them, often in the utmost haste, to prevent the most disastrous consequences, and oceasionally surrounded with the most perplexing difficulties. Viollet-leDuc says: 'Nuthing enhances the respect of workmen for the architect like his being ready to shore properly . . . and wothing is more satisfying to the eye than a system of shoring well combined and well executed.'" The author divides his book iuto Raking, Flying and Dead Shoring, Needling, Centreing, Timbering for Excarations, Underpinning, and Straightening Walls. In Raking Shores is explained the danger of using timber uncecessarily heasy for the purpose, and the danger of the rertical sinking of a wall, causing the shores to separate it; also the advantage of shoring agaiust the floors, and the proper precautions to be taken for shoring, of a more permanent and efficient kind than the rongh and ready shoring so often resorted to. In the case of Flying Shores there is the risk of their sagging, though this may generally be obviated by using trusses, pirticularly when the flying stores are in more than one height. Little has to be said about "deed shores," but the rough way in which they are often put in is detrimental to the building. In the elhapter on Needling the necessary precaut:ous are carefully stated, but the proper calculation of the strength of the needles is not urged. The deviers which have be n put in practice at times to save expense, riz., the iron frames which enable the bressummer to be rolled in lengthwise, the case where the bressummer has to be enclosed in the frames, then got in para lel and rolled end on to its place, and where it is only put in parallel, are aloo explained. Two derices are not noticed : one where the middle of a wall has to be remured, but where an arch can be turned; the arch form is marked in chalk on both sides of the wall, holes beginuing at the skewbacks are successively cut to the shape of the arch by men working on both sides, and the segments are then built in and wedged up, until the whole arcin is turned without using needling, and, when the cement has set, the brickwork below is cut away. The other is executed thus: narrow irou girders, not exceeding one-fourth of the thickness of the wall, are cut in, and fised on both sides, then York stone is pinnel in ou the top of
them, conneating the two girders, which are also bolted together. The brickwork helow is then remored. This system will in most cases supersede all others. Careful adri e is given for shoring up defective arehes and raults; and a French plan of supporting centreing on wood by pistons fitted into ron cylinders filled with sand; ly this means the cen reing can be accurately slackened by letting out the sand. The familiar methods of Timbering Excavations are given. Where the parth will not s'and, sheet piling is recommended, 4 fc . wide, but 4 ft .6 in . is generally cons dered to be the least width in which men can conreniently excarate. In Underpinning, the author points out the difficulties of shoring when the defects have arisen from, the ground being too soft; he shows the shoring necessary for crushed piers and columns, and adrerts to the morements occasioned by underpinning, on parts apparently too distant to be affected by them. Descriptions are given of the methods employed in straightening walls, as at Armagh Cathedral, Beverley Minster, and St. Albans abbey. (G. Aitshison, in R.I.B.A. Procecdings. The Mechanics of Shoring, in Euilding News, Sept. 14, 1877, p. 249.)
1890. The tools used by the bricklayer, who has always an atten lant labourer to supply him with bricks, mortar, \&c., are-1. A brick trowel, for taking up and spreading the mortar, and also for cutting the bricks to any required length. 2. A hammer, for cutting holes and chases in brickwork. 3. The plumb rule, being it thin rule, 6 or 7 inches wide, with a line and plummet swinging in the middle of it, in order to ascertain that the walls are carried up perpendicularly. 4. The level, which is about 10 or 12 feet long, with a rertical rule attached to it, in which a line and plummet are suspended, the use of which is to try the level of the walls at various stages of the building as it procee.ds, and particularly at the window sills and wall plates. 5. The large square, for setting out right angles. 6. The rod, for measuring lengths, usually \mathfrak{j} or 10 feet long. 7. The jointing rule, about 8. or 10 feet loug, as one or two bri klayers are to use it, and 4 inches broad, with which they run or mark the centre of each joint of the brickwork. 8. The juinter, which is of iron, shaped like the letter S. 9. The compasses, for traversing ar ches and vaults. 10. The raker, a piece of iron having two knees or angles, dividing it into three parts at right angles to each other, the two end parts being pointed and equally long, and standing upon contrary sides of the middle part. Its use is to rake out decayed mortar from the joints of old walls for the purpose of replacing it with new mortar, or, as it is called, pointing them. 11. The hod, which is a wooden trough shut close across at one extremity and open at the other. The sides consist of two boards at right angles to each other; from where they meet a handle projects at right angles to their union. It is used by the labourer for eonvesing bricks and mortar to the bricklayer; for which purpose, when he has the latter office to perform, he strews dry sand on its inside, to prevent the mortar from sticking. 12. The line pins, which are or iron, for fastening and stretching the line at proper intervals of the wall, that each course may be kept straight in the face and level on the bed. The pins have a line attached to them of 60 ft to each pin. 13. The rammer, used f ir trying the ground, as well as for beating it solid to the utmost degree of compression. 13. The irun crow and pick axe, for breaking and cutting thrungh walls or moving heary weights. 14. The grinding stone, for sharpening axes, hammers, and other tools. The following ten articles relate enti ely to the preparation and cutting of gauged arehes. 15. The banker, which is a bench from 6 to 12 ft . long, according to the number of workmen who are to work at it. It is 2 ft .6 inches to 3 ft . wide, and avout 2 ft .8 in . high. Its use is for preparing the bricks for rubbed arches, and tor other gauged work. 16. The camber slip, a piece of wood, usually about half an inch thick, with at least one curved edge, rising about 1 inch in 6 feet, for drawing the sofite line of straight arches. When the other edge is cursed, it rises about half that of the other, that is, about half an inch in 6 feet, for the purpose of drawing the upper line of the arch, so as to prevent it becoming hollow by the settling of the arch. The upper edge is not always cambered, many preferring it straight. The slip being sufficiently long, it answers the width of mauy openings; and when the bricklayer hats drawn his areh, he delivers it to the carpenter to prepare the centre for it. 17. The rubbing stone. This is of a cylindrical form, about 20 inches diameter, but may be less. It 13 tixed at one end of the banker, upon a bed of mortar. After the lricks for the gauged work have been rough-shaped by the axe, they are rubbed smosth on the rubling stone. The headers and stret.hers, in return, which are not axerl, are called rublied returns and rubled headers and stretchers. 18. The bedding stone, which is a straight piece of marble 18 or 20 inches in length, of any thickness, and about 8 or 10 inches wide. It is used to try the rubbed side of a brick, which must be first squared to prore whether its surface be straight, so as to fit it upon the leading siew back, or leading end of the arch. 19. The square, for trying the bedding of the bricks, and squaring the sofites acruss the breadth of the bricks. 20. Tho bevel, for drawing the sofite line ou the face of the bricks. 21. The mould, for forming the face and back of the brick, in order to reduce it in thickness to its proper taper, one edge of the mould being brought close to the bed of the brick when squared. The mould han a notch for every course of the arch. 22. The scribe, a spike or large nail, ground to a sharp point, to mark the bricks on the face and lack by the tapering elges of the mould, it the
purpose of cutting them. 23. The tin saw, used for eutting the sofite lines about one eighth of :an inch deep, first by the edge of the level on the faee of the briek, then by the edge of the square on the bed of the br ck, in order to enter the brick axe, and to keep the brick from spaltiog. The saw is also used for entting the sofite through its breadth in the direction of the tapering lines, drawn upon t e face and back edge of the briek; but the cutting is always made deeper on the face and laek of the brick than in the middle of its thiekness, for the above-mentioned purpose of entering the axe. The saw is also used fur cutting the false joints of headers and stretehers. 24. The lrick axe, for axing off the sofites of bricks tou the saw cuttings, and the sides to the lines drawn by the seribes. The bricks being always rulbed smooth after axing, the more truly they are axed the less labour will be rrquisite in rubbing them. 25. The templet. This is used for taking the length of the stretcher and width of the header. 26. The chopping block, for reducing the bricks to their intended size and form by axing them. It is marle of any piere of wood that comes to hand, from 6 to 8 inches square, and generally suppurted upon two 14 -inch brick piers, if only t wo men work at it; but if fuur men, the chopping block must be lengt hened and supported by three piers, and so ou according to the number empl yed at it. It is about 2 ft .3 in . in height. 27. The float-stone, which is used for rubbing curved work to a smooth surface, such as the eylindrical backs and spherical heads of niches, to take out the axe marks. It is, before application to them, mate of a furm reversed to the surface whereon it is applied, so as to coincide with it as nearly as possille in finishing.

Bonding.

1891. Before adrerting to the bond, as it is technically called, of brick walling, which is the form of connection of the bricks with each other, it must be observed that in working walls not more than 4 or 5 feet should be brought up at a time; fur as, in setting, the mortar shriuks and a general subsidence takes place, the part first brought up, if too large in quantity, will have come to its be ring before the adjacent parts are brought up, and thus fissure, in the work and unequal settlements will take place. In carrying up any partieular part above another, it should always be regularly sloped baek to receive the adjoining parts to the right and to the left. On no account should any part of a wall le carried higher than one seaffula, except for some very urgent object.
1892. Previous to the re:gn of William and Mary (1689-1702), brick buildings in England were constructed in what is called English bond; and sulsequent to the reign in question, when, in building as in many other cases, Dutch fashions were introduced, much to the injury of our honses' strength, the workmen have become s) infatuated with what is ealled Flemish bond, that it is difficult to drive them out of it. To the introrution of the latter has been attributed (in many cases with justice) the splitting of walls into two thicknesses; to prevent which, expedients have been adopted which would be altogether unnecessary if a return to the general use of English bond could be cstdblished.
1893. In ch 1 p. i. sect. ix. of this bouk (1503. ct seq.) we have spoken generally on walls; our observations here, therefore, in respect of them, will be confined to brick walls and their bond.
1894. English bond is that disposition of bricks in a wall in which (expect at the quoins) the courses are altercately compoed of headers and stretchers. In brick walling, and indeorl in stone walling also, a couree means the horizontal layer of bricks or stones of whieh the wall is composed, being contained between two faces parallel to the horizon, and terminated on each side by the vertical face of the wall. The mass furmed by brick or stones in an arch are also termed courses, but r ceive the name of encentric courses. The term header is applied to a brick or stone whose small head or end is seen in the external face of the wall; and that of stretchir to a brick or stone whose length is parallel to the face of the wall. English bond is to be understood as a continuation either of header or stretcher, continued throughout in the same course or horizontal layer, and hence described as consisting of alternate layers of headers and stretehers (fig. 616.), the former sorring to bind the wall together in a transerse direction or width wise and thus prevent its splitting, whilst the latter binds it lengthwise, or in a longitudinal direction. None but the English boad prevents the former occurrense, as work executed in this way when so undermined as to caus a fracture, separates, but rarely breaks through the solid brick, as if the wall were eomposed of onte entire piece.
1895. The ancient Roman trickwork was executed on this

Fig. 616.
prineiple; and its extraordinary durability is as much to be attributed to that sort of work being used for bonding it together, as to its extraordinary thickness.
1896. In this, as well as Flemish bond, to which we shall presently come, it will be ohserved, that the length of a briek being but 9 inches, and its width $4 \frac{1}{2}$ inches, in ortier to break the joints (that is, that one joint may not come over another), it becomes necessary near the angles to interpose a quarter brick or bat, a, called a queen closer, in order to preterve the continuily of the bond in the heading course. The bond, however, may equally be preserved by a three-quarter bat at the angle in the stretehing eourse, in which case this last bat is called a king closer. In each case an horizontal lap of two inches and a half is left for the next header. The figure above given is that of a two-brick or 18 -inch wall, but the student will have no difficulty in drawing, on due consideration of it, a diagram of the bond for any other thickness of wall; recollecting, first, that each course is formed either of headers or stretchers. Secondly, that every brick in the same course and on the same face of the wall must be laid in the same direction, and that in no instance is a brick to be placed with its whole length against the side of another, but in such way that the end of one may reach to the middle of the others that lie contiguous to it, except ng in the outside of the stretching course, where three-quarter bricks, or king elosers, will of course be necessary at the ends, to prevent a continued upright joint in the face of the work. Thirdly, that a wall crossing at right angles with another will have all the bricks of the same level course in the same parallel direction, whereby the angles will be completely bonded. We shall elose these observations with a recommendation to the young architect, founded on our own experience, on no account, in any building where soundness of work is a desideratum, to permit any other than English bond to be executed under his superintendence.
1897. Flemish bond is that wherein the same course consists alternately of headers and stretchers, which, inappearance, some may faney superior to that just deseribed. Sueh is not our opinion. We think that the sembiance of strength has mueh to do with that of beanty in arehitecture. But there is in the sufferance of Flemish bond a vice by which strength is altogether lost sight of, which we shall now describe. It was formerly, though now partially, the practice to face the front walls of houses with guaged or rubbed bricks, or with at least a superior species of brick, as the malin stoek; in the former eases, the bricks being reduced in thickness, and laid with a flat thin joint frequently, what the workmen call a putty j joint, for the external face, the outer and inner work of the same courses in the same wall, not corresponding in height, could not be bonded together except where occasionally the courses fell even, where a header was introduced from the outside to tie or bond the front to the internal work. Hence, as the work would not admit of this, except occasionally, from the want of correspondence between the interior and exterior courses, the headers would be introduced only where such correspondence took place, which would only oceur in a beight of several courses. Thus a wall two brieks in thickness, if faced on both sides, was very little indeed better than three thin walls, the two outer half a brick thick, and the middle one a brick or 9 inehes thick. Bricklayers having little regard for their character will, if not prevented by the architect, not only practise this expedient, but will also, unless vigilantly watehed, when a better sort of brick is used for the facing, cut the headers in half to effeet a paltry saving of the bizter material. In walls of one briek and a half in thickness, the strength of the wall is not diminished by the use of Flemish bond so mueh as in those of greater thickness, as may be seen by the diagram (fig. 617.). Many expedients have been invented to obviate the inconveniences of Flemish bond; but we think it rather useful to omit them, lest we should be considered as parties to a toleration of its use, for the continuation whereof no substantial reason can be assigned. As we nave before observed, all that can be alleged in its favour is a

Fig. 617 faney in respect of its appearance: but were the English mode exceuted with the same attention and neatness bestowed on the Flemish method, we should say it was equally beautiful; and therefore we shall thus close onr notice of it.
1898. The two principal matters to be considered in brick walling are, first, that the wall be as strong as possible in the direction of its length. Secondly, that it be so connected in its transverse direction that it should not be capable of separating in thicknesses. To produce the first, independent of the extraneous aid of bond timbers, plates, $\delta \cdot c$., it is clear that the method which affords the greatest quantity of longitudinal bond is to be preferred, as in the transverse direction is that which gives the greatest quantity of bond in direction of the thickness. We will, to exemplify this, take a piece of walling 4 bricks long, 4 bricks high, and 2 brieks thick, of English bond: in this will occur 32 stretehers, 24 headers, and 16 half headers to treak the joint, or prevent one joint falling over another. Now, in an erfual piece of walling constructed in Flemish bond, there will oceur only 20
stretchers and 42 header; ; from which the great superiority of English bond may be at once inferred.
1899. Bond Timber should be used in pieces as long as circumstances will admit. In walls where the thickness will allow of it, some prefer that the timber should be laid in the centre, so that when it decays no material damage is done. Also that in case of fire, the bond timber is not affected by it. If' so placed, when dressings of wood are required, wooden plugs must be provided to which to secure them. When a fire occurs and the bond is next the inside face, it is burnt out, and the strength of a thin wall, say 9 or 14 inches thiek, is seriously affected thereby. Two or three tiers in the height of the room are usually employed.

1899a. However nseful timber may be in bonding thin walls whilst the brick work is yet green, it has for some years been entirely superseded by hoop iron bond. This consists of narrow and thin stips of iron (sce Sminery) laid between two courses of bricks. The iron should be tarred and sa ded, the former as a preservative from rust, the latter to afford a firmer hold to the mortar. Some authorities go so far as to state that hoop iron bond, unless it is set in a cement course, is not so efficient as wood bond. A tier of bond is placed in each three feet of height, one strip of iron to each half brick. In extensive works, or in special cases, two, three, or more, tiers are recommended. In addition to the use of concrete on clay soils, it may be occasionally useful to build all the footings for four or six courses in height of brickwork in cement, each course well bonded with hoop iron, laid both longitudinally and diagonally; it is perhaps better than a course of Yorkstire stone (par. 1882.) as the bond is continuous. During the execution of the works, the iron is continued through all openings as with wood bond; the latter is cut away when requisite, but the former should be turned down arainst the brick work. The laps at a junction should be carefully made to secure the continuity of the tie. An addition to the plain band of iron has been introduced, and T'yerman's jatent notched hoop iron bond has been extensively unployed. It consists in forming a slight noteh at intervals of 11_{4}^{3} inches on both sides alternately, and turning it up in succession, in contrary directions, forming a triangular piece, wherely a better key is obtained upon the bricks and mortar.
1903. Murtar joints. The propriety of using mortar beds as thin as possible, has heen inculeated in this work, and most specifications state that four courses of brick work formed of the ordinary sized bricks are not to rise more than $11 \frac{3}{3}$; sometimes 12 inches is named. as the joints should not exceed $\frac{3}{8}$ ths of an inch. When good mortar is used that sets rapidly, the joint might be thicker than thus allowed. In Roman and most Eastern work, the joint was usua!ly 1 and $1 \frac{1}{\mid}$ inches thick, and where the mortar has heen good, such buildings so executed are sound after centuries of wear. "In modern practice, in all masonry and brickwork where strength is required rather than ornament, thick beds and joints of good mortar will be useful. Thin bricks or tils will also be better than thick bricks, as the material will be better burned, and consequently more enduring. More good mortar can also be used, which in such work gives strength." Such is the practical opinion of R. Ravlinson (Builder, xxi. page 152), who declares that "the proportion of mortar to rubble stonework should the about 1 to 3 , that is, in 4 cubic yards of rubble wall there should not be less than 1 cubic yard of mortar. In brickwak (ordinary bricks) the proportion will be 1 tor 4. If thin bricks be used, or if very small stone be ued for rublle-work, the proportions may be as 1 to 1." It has leeen urged that the peculiarity of carly Norman masonry, even of the perivd of bishop; Gundulph, is that of very thick beds of mortar. Mr. Rawlinson fiuther aulds, "As a general rule, buildings whether of marble, limestone, sandstone, or of brick work alone, or of brick and terracotta combined, which are ornamental in character, must all have thin joints and beds. Thick beds and joints of mortar would destroy the harmony of design liy deteriorating the appearance of labour b:stowed on the rich materials in such buildings."
190° a. The fine joints of rubbed brickwork are formed by lime putty, being mortar reduced to the consisteney of cream; the bricks are dipped into it to take up a coating, and then driven elose upon each other. Ashlar work is usually set in a putty formed of line, white lead, and a small quantity of very fine sand.

1900b. The surfaces of many of the machine-made bricks are so hard as to prevent the mortar sticking, unless first coated with sand. Many walls on being pulled down have shown that the moriar had had no hold upon the bricks; a key had only been formed between two bricks by the holes at their ends. A wall, though built in first-rate work, was ea-ily shaken to pieces, even after it had been built four or five years. Bricks, especially in hot weather, should he soaked in water (par. 1832a.); and even some of the courses of bricks should he spriukled with water, to prevent the briek absorbing all moisture from the mortar before the lime has had time to crystallise. The walls, however, take longer to dry ; as is also the case when grouting (par. 1860.) is employed. An in.tere,ting communication fiom Norway has been printed in the Journals of January, 1888, explaining how brickwoll. is carried on there in the winter; "such walls dry quicker than those raised in summer." The description is too long to be here futther adverted to.

1900c. The mortar or cement should be such as will quickly set, to prevent the superincumbent weight pressing the joints closer, and thereby causing settlements, which even with the greatest care, often take place uncqually. As o ten as it is conjectured, from the nature of the soil, or from the fundation being partly new and partly old, that the work will not come to its bearing equally, it is better to carry up the suspected parts separately, and to leave at their ends what are called toothings, ty which junctions may be made when the weaker parts have come to their regular sound bearing.

1900d. The thickness of walls has furnished the suljeet of previous pages: we shall therefore only add, that too much eare cannot be bestowed on strengthening all angles as much as possible, and well connecting the return of one wall into another; that piers or pilasters are exceedingly useful in strengthening walls, inasmuch as they act by increasing the hase whereon the whole stands; and, lastly, that in carrying up walls to any considerable height, it is usual to diminish their thickness by sets off as they rise. In houses. above the ground floor, the sets off are usually made on the inside, having the outside in one fire; but, if it be possible, it is better to set off equally from both faces, becauss of the better balance afforded.

190ce. Joints in brickwork are finished on the face in several ways. The most common are the 'struck joint,' which is merely tinishing the joint by drawing the point of the trowel along it : or 'jointed,' as done ly a tool called a jointer (par. 1890, art. 8), so as to leave a line impressed on the mortar : or 'flush joint,' in which ease the joint is drawn at top and botto n with the trowel when the brick is laid, and afterwards when the mortar is partially set, the middle of the joint is flushed flat with the 'jointer;' this is sometimes called a 'high joi:t.'
1901. A bricklayer, with the assistance of one lalourer can, if he be so inclined, lay in one day about 10 .oo bricks in common walling; but the trades unions now prevent liim from lising more than about one-third that number. Occasionally, for a higher remuneration some non-union man may be found to lay near the former number, and then be would complete a rod of brick work in four days and a half, its area being $272 \frac{1}{4}$ feet superficial of the thickness of one brick and a half. When, however, there are many apertures or other interruptions to his work, he will be proportionably longer over it. The weight of a rod of brickwork is about 13 tons. Generally it may be taken as consisting of from 4300 to 4500 stock bricks, allowing for waste according to the quality of the bricks. 27 bushels of chalk lime, and 3 single loads of drift sand, or 18 bushels of stone lime and $3 \frac{1}{2}$ single loads of sand. In cement, of 36 bushels, and the same quantity of sharp sand. A tod of brickwork laid dry contains 5970 bricks. A cubie jard contains 384 bricks, and requires alout $6 \frac{1}{2}$ cubic feet of sand and $2 \frac{1}{2}$ of lime. A ton of bricks contains about 373 on an average. 330 well burnt bricks weigh gencrally about 20 cwt ., so that a cubic foot weighs about 125 lbs.
1902. Brick-nogging is a method of constructing a wall or partition with a row of posts or quarters 3 feet apart, whose intervals a.e filled up with occasional plates of wood with brickwork between. It is rarely more than the width of a brick in thickness, and the bricks and timbers on the f ees are flush. It should never be used where thickness can te oitained for a nine-inch wall. A half brick nogged partition will equire about 500 bricks; a whole brick-nogged partition about 1000 bricks; and with brick on edge about 340 .

1902a. A half-bick partition built in mortar is now adopted in many of the model lodging houses, sometimes with an oceasional hoop iron bond. These are built four, five, and six stories in height, the joists of the floors steadying them as they are carried up. Of course the apartments in such places a:e small in all their dimensions, being about 12 feet long, 9 feet wide, and from 9 to 9 feet 6 inches in height. A half-brick wall of greater dimensions may be built in cement, and when the floor joists are laid upon it, it becomes very steadr, strong, and little likely to be injured by a fire. Thin slabs of stone have been used as partitions in small houses near a quarry. Tiles in cement with wood plugs inserted for the dressings, make a sound partition, and when plastered direct upon the tiles, it takes up much less room than a one-brick wall.

150 26 . Many varieties of hullow brichs are made for a similar purpose. The "patent bonded hollow bricks or rebated tiles" (fig.617a.) of Hertslet and Co., were employed in 1846-7, by Henry Roberts in the model lodging house in George Street, St. Giles's; as also in the so-called Prince Albert's model houses, erected in Hyde Park in 1851, and removed to Kennington Park. A is a bond stone; B conerete, C floor boards, and 1) a tie rod. When used for partitions, or for roof and floor arches, these hollow bricks are fireproof, deaden sound more effectually, and are considerably ligher, than solid brickwork. Such bricks as a lining to stone or flint walis, supersede the neecssity for battening. They are also well adapted for cottage gloors. Hullow bricks can be made by any good tile machine,

Fig. 61 ia.
in the same manner as ordinary drain-pipes. They are more compressed, require less drying, and are generally better burned than ordinary bricks. An interesting and complete paper on the subject, with illustrations on the English and French systems of making hollow bricks, is given in the Building News for 1858.

1902c. Hollow walls, formed of ordinary stock bricks, were employed for two-story cottages carly in this century. Three methods are usually adopted in the construction of a wall. I. All the bricks placed on edge, as fig. 617b, the stretchers and headers breaking joints, and the headers forming the bond. Many persons consider that this arrangemen.t produces a disagrecable appearance on the outside face. II. All the brickslaid flatways, but the stretchers are salwu in half, so as to leave a space of $4 \frac{1}{2} \mathrm{ins}$. between them; and in laying the headers, as fiy. 617c. care must be taken only to fill up

Fig. 617c.

Fig. 6176. with mortar the joints over the half brick on edge, so as to leave the middle of the joint open. III. To lay all the bricks flat in the usual English bond, leaving a space of about 2 inches between each face, and to make up the thickness thus caused. viz. 11 or $11 \frac{1}{2}$ inches, by a bat to each header. This may be varied by using a less number of headers, and placing two or three stretchers together, according to the strength of the work required. At Southampton, and perhaps elsewhere, headers are not used, the two faces being bonded together by hoop-ron cramps (fig .617 d .), with forked ends, $\frac{13}{16}$ ths by $\frac{1}{10}$ th inch, tailing int, the fro3s of thebrick (fiy. 617e.), and having a bend in the middle of its length partly as a strut to the inside, and partly to prevent any moisture

Fig. 617/.
 running along it to the inside face. A cast iron cramp (fiy. 617f.) is also made, $\frac{1}{2}$ inch by ${ }^{3}$ ths in. thick. Jennings has adopted bonding bricks of stoneware for hollow walls. Fig. 617 g . shows the application of the three sizes; A is $13 \frac{1}{2}$ inches long, to be usel in garden walls and other places where an uniform face is not required; B is $11 \frac{1}{4}$ inches long,

Fig. 617 g.

Fig. 617h.
where but one uniform face is required (the brick is shown to a larger size in fig. 617 h .) the end of the bond brick being faced with a closure of the same material as the wall; and \mathbf{C} is a brick 9 inches long, when both faces are to be uniform, closures being used at both ends of it. A 16 inch hollow wall cin be built with a 9 inch inside wall, a 2 inch space, and a $4 \frac{1}{2}$ inch wall outside, and so on. Sueb a wall is of very common erection in North America, and it is found to stand very well for country villas of good dimensions.
$1902 d$. Mueh diversity of opinion exists as to whether the space so left should be ventilated by air gratings just above the ground, and also by others under the coping, to obtain a current of air and secure dryness if water be blown through the onter brickwork. In exposed situations, especially on the sea-coast, if hollow walls are not built, either the wall has to be slated on the outside; or it has to be battened on the inside, even when cemented on the outside, to prevent damp showing on the interior surface. Hollow cement blocks have lately been introduced in France, and are said to be cheap, as durable as stone, ventilation easily secured, and provide for the ready formation of shafts for warm air or for flues. The blocks have a resistance of 430 lbs . to the square inch, and are adapted to walls about 20 ineches thick as well as to partitions of less width.

1902e. Mr. Taylor has adopted an arrangement of an interior face of common bricks B, with an exterior facing llock of a better manufactured brick A, in the shape of the letter

L, leaving a cavity of 2 or mure inches between them, (fig. 617i).
1903. Groined arches. A groin is the angular curve formed by the intersection of two semi cylinders or arches. The eentering for raising the more simple groins that occur in using brick arches, Lelongs to the section Carpentry. The turning a simple arch on a centre only requires care to keep the courses as close as possible, and to use very little mortar on the inner part of the joints. In executing a brick groin, the difficulty arises from the peculiar mode of making proper bond, at the intersection of the two circles as they gradually rise to the crown, where they form an exact point. At the intersection of these angles, the inner rib should

Fig. 617 i . be perfectly straight and perpendicular to a diagonal line drawn on the plan. After the centres are set, the application of the brick to the ang'e will immediately show in what direction it is to be cut. With respect to the sides, they are turned as for common cylindric vaults. Mr. George Tappen, an architect of great practical skill, introduced a method of constructing groins riving from octangular piers, which liad the alvantage of not only imparting strength to the angle, which in the common groin is extremely delicient, but of increasing the space for the stowage or removal of goods. and further, of strengthening the angles of the groin in this construction by earrsing the hand round the diagonals (fig. 617 k .) of equal breadth, and thus affording better bond to the bricks.

1903a. The Metropolitan Building Act, 1855, requires that under a public way, an $a r c h$, if it be employed, of a span of not more than 10 feet, is to he at least $8 \frac{1}{2}$ inches thick; when not exceeding 1.5 feet, it must be 13 inches at least; and beyond that width the thickness requires special appro-

Fig. $617 k$. bation. If of iron construction or other incombustible material, it must be built in a man ner approved ty the district surveyor. An arch orer a public way must be formed in the above manner, but a span not exceeding 9 feet must he $8 \frac{1}{2}$ inches thick at least. A like special approval is required if the arch or flour be of iron.

FIREPROOF AlLCHES, FLOORS, AND ROOFS.

1903b. Light arched flut floors, composed of bricks cemented with gypsum or plaster, have been in common use in Roussillon from time immemorial. Rondelet is of opinion that the segment of a circle is a better form for such arches than the low semi-ellipse. He describes apartments of 18 feet by 25 feet, as used at the War Office at Versailles, covered with brick arches of which the rise was only $\frac{1}{1}$ th part of the span and in five stories. The coach-houses and stablus of the Marshal de Belle Isle at Bisy near Vernon, were arched in an elliptical form, having a rise of ${ }_{5}^{1}$ th of their span, which was 32 feet $9 \frac{3}{3}$ inches. They were not finished until a year after the walls and roof had been completed. The walls were built of rubble-work having chains of cut stone at intervals of about 16 feet. They were 2 feet $8 \frac{1}{4}$ inches thick, being about equal to $\frac{1}{12}$ th part of the span. These arches were formed of a double thickness of bricks laid flat, and in plaster, built in succession, with the vertical joints broken. The haunches were filled up with rubble stone in plaster. The springing was formed by notches in the wall, above which the regular courses of stone projected inwards as gathering courses. Above all, a third course of flat bricks was laid horizontally, forming a pavement. Rondelet considers that arches of small and light materials cemented by gypsum become as it were one body, and exert little or no lateral pressure upon the abutments excepting at lirst, because that cement has a tendency to swell in setting. Rondelet relates that a stone of 4000 lbs . or 5000 lbs . weight was dropped upon one of these arches from a height of 4 or 5 feet, which made a large hole through the arch, without doing any further injury. If mortar be used the parts must be thicker, and the centering left, until the work has set. Portland and Roman cement might be better than gypsum for work in England. Rondelet also states that it is better to use coved arches springing from the four walls, than a common areh springing from two opposite walls only.

1903c. The arch brick flocirs, used in the dwellings for work men at Birkenhead, by the architect, C. E. Lang, were 7 fect in span, worked in lalf-brick except at the springing and the skew-backs, with a few three quarter and other parts of bricks inserted, so as to form a toothing or vertical bond with the concrete with which the spandrels were filled. The six or seven courses at the crown were wedged in with slate while the mortar was wet, and in no instance did the least subsidence take place at the crown, ahthough subjected to very severe trials, such as that of men jumping from the walls upon the arehes. The span of 7 feet is perhaps the limit of a batf-brick areh turned in mortar with the ordinary rongh brick. The arches rise about one inch to every fuot in span. Tiles were laid in mortar on the concrete, which mace the thickness of the floor at the crown of the arch 5_{4}^{3} inches. There were altogether about 1200 arches of this kind turned, and without the slightest accident. This explains the nsual method of forming hreproof floors, by turning brick arehes between iron girders, which are in large spans tied tugether at the springing by iron tie rods; a suhject which has been so often considered and discussed, and nowhere more so than at the lustitute of Arelituets, as detailed in their Transuctions.

1903d. The Denutt arch. A fireproof system, patented by Messrs. Dennett, of Nottingham, and used since about 1855. They execute a groin, dome, or circular ceiling of any length, widh, or height, without tie rods or internediate supports, at much less cost than can be done hy any other fireproof material: circular ceilings of 36 feet diameter, with coffers in them, or any amount of decoration, ean be executed on the soffits, and the upper surface can be finished sinooth in itself, or with stone, wood, tiles cement, or asphalte, and a current of air ensured underneath. Very few iron girders are required. For fluors, aithough in an arched shape, it is in reality a beam, as a complete floor can be turned from wall to wall, resting on a projection of brickwork, and the material be left without any abutment. Its durability equals stone; and its strength is equal to lrickwork. The floors are bad conductors of heat; leave no harbour for vermin; ventilating pipts may be laid in them, and also flues. The material (a concrete of broken stone or brick conbedded in gypsum ealcined at a red heat) ean be be used for a sound-proof construction, when laid in the old method between wood joists, as at St. Thoma,'s Ho-pital.

1903e. Three courses of plain tiles laid in cement and well bonded have been for many years employed for slightly curved roofs to form terraces; roofs for eellars under paving; as roofs over small back buildings, and for similar purposes. Where the walls are well backed up, tie rods may not be necessary. It has been asserted that the tiles should not be covered with the cement. Portland or other cements laid on brick arclies, or on tile, or on a flat concrete roof supported by iroa joists; also asphalted roofs; all generally crack and let in wet, especially where there is any traffic on them, or their foundations are not perfectly stable. At Austin and Seeley's artificial stone works, New Road, flat roofs, floors and steps are formed in their material. The terrace roofing is formed of plain tiles in three cousses, rendered on the top to the thickness in all of about 4 inches, carried over by arches shightly cambered, springing from small brick piers, and tied by light iron rods, which forn their ehord line. These flats lave an immense weight upon them, and are cast in one piece, as it were, there being no perceptible joint; they are completely water-tight, and ean be easily cleaned.

1903f. Light arehes may likewise be formed by placing thin iron plates between joisting of iron or wood, bending them to a slight eurve, and filling in above them with eonerite to form solid work. Mallet's buckled wrought iron plates, are usually made in square or oblong shapes, having a slight convexity in the middle, and a flat rim round the edge, called the fillet. These plates are considered the best form yet devised for the iron covering of a platform, and are usable for the above purpuses. 'They are often placed so that the convex part is compressed, and the flat fillet stretched; when they give way under an cexcessive load, it is usually by the crushing or crippling of the convex part. The safe loads given in the tables published ly the inventor, for a plate 3 feet square, $\frac{1}{3}$ inch thick, and with 1.75 inch of curvature, are 4.5 tons for a steady load, and 3 tons for a moving load. The square form, support d and fastened at all the four edges, is the most favourable to strength. The buckled plates used by Mr. Page for the platform of new Westminster bridge measure 84 inches by 36 inches, with a curvature of $3 \frac{1}{2}$ inehes, and thickness of $\frac{1}{4}$ inch; they bear 17 tons on the centre without giving way (Rankine, Cicil Engineering).

1903g. In India, where all buildings of any importance have flut roofs, the long established practice is to form them of tiles, mostly 12 inches square and $i \frac{1}{2}$ inches thiek; in Calcutta they are generally 18 inches square and 2 inches thick. These tiles are made with great care: they are burnt the same as pottery, and are used both for roofing and for flooring. In roofing a room of 20 feet span, it is first covered with teak beams 12 inches deep ly $8 \frac{1}{2}$ inehes broad, placed 3 feet apart, which carry lurgahs or joists, 3 inehes square, fixed 1 foot apart, and on these the tiles are placed in two layers carefully jointed with each other. Above them is laid 6 inches of concrete, formed of broken bricks and lime, spread eveuly and beaten down to 4 inclies, and beaten until the mass is dry; linally it is plastered, and rubbed or polished. If well made and of good materials, it is impervious to wet, and will last as long as the timber under it.

190: k. A foor, or even a flat roof, patented by Bunnett in 1858, is formed of hollow bricks, having the two sides each composed of two parellel inclines, and each about half the d'pth of the block, connected by a horizontill or nearly horizontal plane, and the two inclines on one side are parallel with those nin the opposite side. Throngh these bricks tie rods are passed, and secured at each end to wall plates formed of angle iron ; the whole is then screwed up, when the bricks form a slight curved arch in section, and trom the in clined sides they orer and underlap one another and mutually gise and receive supfort from the neighbouring blocks. This invention has beencarried to 21 feet span with a rise of about $2 \frac{3}{4}$ inches, and about 13 feet wide. Other arches have been constructed for the purpose of testing its bearing powers. One of the latter, 15 feet beween the bearing walls, and 2 feet 3 inches wide, was loaded with 4 tons 10 lbs . (or 267 lbs . to the square foot), and was quite elastic. The detlection was about $\frac{9}{15}$ ths of an inch. The lricks are put together with Portland cement and sand. Each trick is $10 \frac{3}{8}$ inches long, by $9 \frac{3}{8}$ inches wide, and 6 inches thick, and weighs 21 lbs .100 square feet comprise :-

1903i. Pots and jars and hollow bricks have all been used in arched work to reduce its weight. Sr John Soane employed jars in the dome of the Rotunda at the Bank of England, which is about 65 feet in diameter. In floors of arelied work either iron ties must be used to prevent the walls being foreed out, or iron girders employed, thus snbdivi ling the length, and the work arched across the length, i.e. between each girder. The Builder of 18 ± 9 records the use of hollow bricks in the raulting of St. George's Hall, at Liverpool ; and Daly's Revue Générale for the same year, the nse of such bricks in walls.

1903k. The Indians about Nagpore build their stone vaults in a peculiar method, which might be followed with advantage in some cases in this country. At the springing, stones of in considerable depth are used, having the intrados cut to the form of the curve; six courses are laid, the upper one having a groure 5 iaches wide and 2 deep. Then stones of a smaller depth are laid, each haring a groore cut in one face, 2 inches in depth and 4 inches in breadth, with a corresponding projection in their other face, the groore being on the upper side to receire the projection formed in the next course. About eight courses haring been laid, it then becomes necessary to prevent the work from falling inwards. At every 10 fett in length two strong rods are placed horizontally across the chasm, and the ends are furced into the groores. From these courses as from a new baso similar grooved stones to those already described are continued, the length of ach course contracting until the key course is inserted. When this last course is completed, the rods are siwn across at either end of the finished vault, and the work continued. When the arch or vault is of considerable span, a series of bases may be adopted, each at higher p,ints than the other, until one part is keyed. A slight scaffolding supports the workman, but no frame or centreing is used.
19032. In view of a fire, and for the preservation of property and life, fireproof floors should be more constantly insisted upon to replace the common wood floors, which (as has been described) usually "consist of one inch of boards and one inch of plastering to separate each story in a dwelling." Even these can be improved by some modern inventions. An American (Wight) method is by fixing flat interlocking fireclay tiles, carried by iron clips serewed to the underside of the joists, the underside of these tiles being grooved to formed a key fur the plaster. A space of 2 inches is thus left between the plaster and the wooden joists, and as the tiles themselves will stand almost any heat that can be bronght to bear on them, the joists are absolutely protected; on the upper side fine concrete or pugging might be used. This system can be affixed to existing floors by simply hacking off the lath and plaster, and it is probably quite new in this country. (J. Slater, New Inventions, in Royal Inst. of Briti-h Archite ts, Transactions, 1887.)

1903 m . In the so-called "flats" and suites of offices, the floors are now generally formed of fireproof construction. There are many modern systems. The core or material used to fill in between the wrought-iron joists, which are placed 2 feet to 3 feet apart, is generally determined by local circumstances, or the patent of the inventor of the system. These are, metallic concrete, coke breeze, pit or river ballast, broken stone, broken brick, well-burnt clay ballast, granite chippings, pumice, pots, \&c., all generally set in cement. This preparation is covered by an asphaltic, granitic, or metallic surface. Lastly, the upper surface is finished with a floor of boards nailed to small wood joists or sleepers resting on the concrete; blocks are also used for fixing them.

1903n. Archibald D. Dawnay's fireproof flooring is stated to be the simplest, cheapest, and strongest ever introduced; suitable for all buildings to 40 feet span without columns, being composed only of steel or iron joists embedded in a high class con-
crete, finished flat on both sides, forming a solid block of one thickness, absolutely indestructible.
19030. Homan and Rodgers' flat brick fireproof floors. They are constructed with hard burnt bricks, jointed in cement, and bonded on the upper face with tough eonerete. The depth of the finished floor is 6 to 9 inches. "By the method of laying, the ironwork is protected from the aetion of fire. The briek soffit forms a key for the plaster; no laths or counterceiling are necessary, but, where desired, wood blocks can be fixed in the soffit to receive the ordinary lath and plastered ceiling, then making the most perfect sound-resisting fireproof floor known. The concrete being tough instead of friahle, the boarded finish may be nailed down without the use of sleeper joists; but, sinca serious failures show that wood embedded in concrete, asphatte, or piteh, is liable to decay, it is recommended to use an inch strip as a sleeper fillet, which will also provide ventilation and space for gas and water pipes." The flon is stated to have no thrust.

1903 . Lindsay and Co.'s patent system, wherein a steel decking is introduced, and also their patent trussed concrete flooring. The steel flooring is manufactured of two different strengths, varying from 4 inches to 14 inches in depth, and suitable for spans of from 15 teet to 50 feet clear. It is stated as perfectly and equally distributing the floor loads to the surrounding walls, and as acting as a complete tie to the building; not affected by settlements of the walls; and is 30 per cent. lighter than ordinary arched floors. The trussed fireproof flooring is laid with pumice concrete, enclosing small joists joined by steel truss rods twisted together every 18 inches; or formed as an arch underneath between girders to 14 feet span. A slab of this concrete, 2 feet span and $4 \frac{1}{2}$ inches thick, was loaded to 22 cwt on the foot without injury. For a space of 30 feet the depth of the decking is only 5 in . to support a load of $1 \frac{1}{2} \mathrm{cwt}$. per foot snper. Brick partitions can be placed on this deeking and concrete in any position, independent of walls or girders underneath. This flooring has been largely used in the National Liberal Club, by R. W. Edis, architect. The top table is made thicker than the sides, and the sectional strength is thereby greatly iccreased, and the various sections are riveted together at a point which is very close indeed to the neutral axis. Tha concrete is called "pumice concrete," as it is very light and tough; considered to be a good material for constructing roofs, domes, \&c.

1903q. The "Doulton-Peto" patent fireproof flooring, in principle consists of a series of hollow blocks of stoneware placed between rolled iron joists, making a flat ceiling, which may be plastered or not. The iron girders are fixed in the ordinary way, but not so close together as nsual. The tile next to the side of the girder is specially shaped to set

against and beneath it, so as to isolate it completely. The fig. 617l. shows tiles made for a flat ceiling, and set in cement; if no ceiling, then the under side is made

Fig. 617 m . smooth to receive whitewash, \&c. The tiles for ordinary floors are 6 inches high and about 1 foot thick. The floor is stated to be one-third lighter than conerete or brickwork. A flat roof can also be formed with them. Where an arch is desired between each girdcr, another form of springer (fig .617 m). has been adopted. It has stood the test of upwards of 6 cwt. to the foot dead weight on material only, and with an arch of 6 feet span and quite flat. On an arch of 8 feet span a cask of graphite weighing 7 cwt . has been rolled and rocked, the vibration doing no injury. A fire has been lighted beneath, making it red hot in parts, and while in that state a hose has been turned on with a considerable prossure of water without the least effect. It has also been tested with unevenly distributed weights, and with ribration and concussion, all which it has successfully withstood. This flooring has been used throughout at the London Pavilion, where it was found very adrantageous from its lightness, the speed with which it was constructed, ard its cleanliness. A large building of four stories at Messrs. Doultur's factory has been similarly constructed by
that firm; the under side of the flooring has not been plastered. (Builder, Dec. 19, 1885, p. 877. Transactions of the Royai Institute of British Arehiteets, 1886, p. 130.)

1903r. Bunnett's patent floor consists of hollow bricks laid in the form of a flat areb, resting on angle irons tied together by tension rods. Each brick is so arranged as to reeeive support from six adjoining bricks. M(asurcs' patent floor consists of iron joists with iron fillets 9 inches apart, at right angles to the joists, and resting on their lower flanges, and cement concrete filled in, embedding joists and fillets. Hyatt's patent dovetailed corrugated iron sheets are used for fire-resisting iron and conerete floors, ecilings, and partitious, giring great strength eombined with lightness. Partitions can be made of Portland cement, conerete, and iron, only two inches thick, the iron being completely protected. The Wight fireproofing Company of Ameriea has introduced many novelties (Builder, 1887, p. 704). Porous terra-cotta is made in Ameriea by mixing sawdust with the clay; having been burnt it was perfectly fireproof, and although spongy, unless dipped in water it was not absorbent, but was rather a dry material, besides being one of the best nonconducters of heat and sound. It weighed about half that of ordinary briek. it was used to line outside walls to keep them perfeetly dry; also as fixing bloeks, beeause the nails could be driven into it more easily than into deals. It makes a good firepro f ronf by placing sheets of it on the flanges of \perp iron; it came a little above the edge, and the slates or tiles eould be nailed directly on this. Fireproof flooring bricks were made of terra-cotta, and were a great saring in strength of materials.

1903s. A concrete floor to the rarious stories of a building has often been formed, but not always with success. A system is explained in the Builder for April 3, 1886, which should be well studied. Concrete slabs, the largest of which is 21 feet by 12 feet 6 inches, of an average thickness of 13 iuches, sustained the great luads and rudely impactive forces of a wholesale provision trade, in a warehouse at Sunderland, erected by Mr. Frank Caws, whose deseription, though concise, is ton long to be here inserted.
$1603 t$. If properly mixed, care taken in laying, and thorough cleansing of all broken materials used, then the results may be satisfactory. To reeeive stone paving and for tramways, conerete is laid in suecessive layers of cement and gravel in proper prop rtions, not too moist, for the requisite thickness, well beaten down with iron beaters. For a floor finish, a thiek layer of about an inch of the cement and gravel finished off with a smoother, care being taken not to work up too fine a surface. The proportions to be used are 1 part of Portland cement, 4 of gravel, and 6 of broken stone, the latter to pass through a $2 \frac{1}{2}$-inch ring. Concrete flat floors are cheaper and equally as strong as arehed floore, and should be at least frcm 5 to 6 inches thick, Such a floor will earry a sife load of about 5 ewt. per superficial foot. One tested went further. It was made of 1 of cement, 3 of gravel, and 3 of well-washed broken stones to pass a $1 \frac{1}{2}$-inch ring, the finishing layer being of cement and gravel. The Portland cement should be tested, for its proper strength is of importance. (John Garthwaite, of Liverpool, 1885.)

1903u. Fur town luildings these various patents afford the means for obtaining fat roofs, which hare many adrantages for the inhabitants, as affording a promenade. They hare to be thoroughly well constructed. Two of the latest constructions are at the new City police station, Cloak Lane, Cannou Street, haring a superficial area of 2600 feet, formed of iron joists, earrying conerate cutered by a layer of one inch of the finest Pyri-mont-Seyssel asphalte, the skirtings being of the same material; a thin layer of very fine and clean pebbles from the sea shore were applied to the surface while hot. The other roof is to the Army and Nary Auxiliary Supply Association in Francis Street, Westminster, having a superfices of about 12,000 square feet, and is of the same construction.

CONCRETE BUILDING.

1903v. The Metropolitan Board of Works hare approved of sueh structures, and have made the following regulations to be observed in their formation:-
I. The conerete to be used to be composed of Portland cement and of clean Thames ballast, or gravel, or erushed smiths' elinkers, or brick burrs, or small broken stones, or any hard and durable substance; and eaeh to be passed through a screen having a mesh not exceeding 2 inehes in diameter. Sund to be in, or added to, such materials in the proportion of one to two. All sueh materials to le perfectly clean, and free from all greasy, loamy, or elayey matter.
II. These materials and eement to be mixed in the proportion of not more than 8 parts of material as aforesaid, by measure, to one part by measure of the best Portland cement.
III. In making the concrete, a box 2 feet by 4 feet by 2 feet, or other like proportions, is to be used for the materials other than the cement, and another box, eapable of holding one sack or half a cask containing 2 bushels, is to be used for the cement. The cement and the materials are to be turned over at least three times, and thoroughly mixed together with water.
IV. The walls of the buildings to be carried up all round in regular layers with concrete thus composed, and gronted with cement in the proportion of 1 of cement
to 2 of clean sharp sand after each layer, until the walls are completed in height. The grout to be made as mortar first, and then thinned with water to the necessary consistence.
V. The concrete to be well and thoroughly bound together, so as to secure the complete adhesion of the materials and work during its progress.
VI. The thickness of walls to be equal, at the least, to the thicknesses for brickwork prescribed in the Building Act.
VII. Suitable cores to be used fur flues, and also for recesses. Flues to be formed with stoneware or fireclay pipes, not less than half an inch in thickness, unless properly pargeted.
VIII. Deor aud window frames to be boilt into the walls.

IN. The portions of the party walls and chimney stacks abore the roofs of buildings to be rendered externally with Portland cement.
X. The rules of the Metropolitan Building Aet, 1855, as to the use of timber in walls, and other rules of that Act, so far as they may be applicable to concrete buildings, are to be observed.
1003 w . This concession was made after many attempts to obtain it, by Philip Brannon, by Tall, Drake, and others. Mr. Wonnacot read a paper in 1871, On the Use of Portland Cement Concrete as a Bullding Material, which enters fully into the merits and demerits of this construction. It was supplemented by another paper, Remarks on Concrete Building, by A. W. Blomfield, who summarises the whole thus: The chief advuntages are, I. Cheapness; II. Strength and durability; III. Rapidity of construction; IV. Economy of space. The chief drawbacks are: I. Its liability to failure, from the use of improper materials, or from the want of knowledge and proper care, or from the wilful misuse of good materials; II. The limits which the material and method of construction impose on architectural design and decoration.

1903x. J. Tall advertises concrete construction for cottaçes; door and window frames. Drake and Co., concrete building apparatus; doretailed self-fixing building slabs; mar!le and granite facing bricks; fireproof floors, doors, staircases, wall tiles, \&c.; window heads, copings, terminals, steps; marble concrete laths. W. H. Lascelles has, panelled slabs and concrete backings screwed to stud work; walls built of Potter's patent cement slabs; plain and moulded concrete forms of all varieties in building and ornamentation, as window sills, door jambs, gables; concreto ceilings; and chimneypieces. The Eurka Corcrete Company has steps, sills, strings, balusters, fireproof floors, mantelpieces, thresholds; copings ; a concrete door of four panels, hung in position and fitted with leck. -Faija's concrete, harlened by his new patent process. J. Wright and. Co. have made au "improved concrete lintel," haring a curved upper surface and a T iron passing throngh it lengthways; with their fixing block inserted to receive the sash or door frame. See also par. $1864 i$; and Artificial Stone.

1903y. In 1887 Mr. W. Simpson read a paper before the Royal Institute of British Architects entitjed Mud Architccture, relating many methods of construction of similar materials in various countries; further interesting references were made in the cliscussion and correspondence of that year.

1903aa. Concrete and cement brocks. Blocks formed of Roman cement, puzzuolana, lime, and sand, were soon suggested for such a parpose. Those made without the cement were found to be lrnger in setting, but erentually became the strongest. Tc these combinations potsherds were added, as Pliny relates was in use in the time of the Romans; inereased toughness resulted. The late Mr. Walker, engineer, possessed specimens of Dutch terras, which had been used in Woolwich dockyard in the reign of George III. These were of very great lardness; in fact, gunpowder had to be used in breaking up the dock where it had leen employed. For concrete and mortar for the river wall of the Houses of Parliament he used two measures of sand, 1 of puzzuolana, and 1 of lime. Mr. Leo used Portland cement, Portland stone chippings, sand, and shingle, in blocks in cubes of 16 feet and upwards, made in moulds, for the breakwater at Dover. Mr. Blashfield had made experiments for that work with Lancashire terras mixed with broken tiles and sand; but it was not deemed equal in hardness to the Portland cement concrete blocks.

1903bb. Atkinson's or Mulgrave cement was used by jts patentee for concrete blo:ks of shingle, sand, and cement, used as ashlar stone in the case of a house at the corner of Mount Street, Grosvenor Square, still standing in a substantial condition. Concrete in small blocks, known as Ranger's patent artificial stone, has been used to a limited extent in the construction of domestic buildings. It was employed in the additions to the College of Surgeons, Lincoln's Inn Fields, 1835-6; a guard-house in St. James's Park; the Imperial Assurance Office, in Pall Mall; and in a row of houses in the Western Road, at Brightun, partly in blocks and partly in moulds as pisé work. This process is not continued, probably from the mortar not being properly mixed in the first instance, and the concrete being exposed too soon to the action of the weather, for it dries unerenly, and cracks in all directions.

1903cc. Bucku ll's Granitic Breccia stone was patented about 1858 to compete with brickwork in price, its strength and duratility being greater, and its bulk and weight eonsiderably less. It was imperineable to wet and never regetated, so that for pavements ard linings for tanks it appears to have answered well ; but for some reason, not ascertained, the manufacture of it was lately given up. It could have been manufactured in a single piece, of a weight rarying from 1 cwt . to 60 tons or more; also in slabs from 5 feet to 100 feet superficial; and to any contour. Wheeble's Reading Abbry patent concrete stone, formed with Bridgewater stone lime, when made into a brick, was found to be equal in streugth to a common stock. Some specimens never attained the strength of concrete except in a case where large gravel or flint was the chief ingredient. Messrs. Bodimor's patent compressed stone bricke, compounded chiefly of 1 part of hydraulic lime and 7 of siliceous sand, well mixed, are subjected to great pressure in moulds. Upon removal, the bricks are piled up in the open air, when induration commences, and the material is, converted into stone. They appear to be ready for use after six weeks' to two months' exposure, and experiments show a steady progressive increase in strength as they adrance in age. When eleren days old they crushed at 3.7% tons; at twenty-two weeks from $5 \cdot 4$ to 6.95 tons; and at sixty-three weeks a pressure of upwards of 8 tons was reaehed without effect.

1903 dd . Coignet's Béton Aggloméré has Leen employed in France in the construction of a church in the park of Vésinet, near St. Germain, from the designs of M. Boilean, and into the construction of which he has also introduced cast and wrought iron. The beton is formed with all the mouldings of Gorhic architecture both externally and internally. It was built similar to pisé work, though it is also applicable for blocks, like stone, in which manner he has lately executed some bridges of 140 feet span. The rery hard frosts of January, 1865, had not appeared to have had any effeet on the beton at the church, which Was being executed at the time, and is described in the Builder for Norember, 136.t; views are also given in the volume for 1865 . It is stated that such strnctures cost only about one-half or perbaps one-third of the expense of a stone building, with greater decoration.

1903ce. The system of building with concrete blocks at Sandown, Ventnor, and other places in the Isle of Wight, is weli adapted for constructing walls to ensure dryness. The l, loeks are about 18 inches wide by 12 inches high, and are of two thicknesses, those fur the outer wall being 4 or 5 inches, and for the inner about 3 or $3 \frac{1}{2}$ inches thick. These are tied together by pieces of iron, leaving a spaee of about 3 inches between them. This furms what looks, to those accustomed to the 2 feet thick solid walls of Scotch houses, a flimsy wall, but it appears to be sufficiently strong for carrying another story over the ground floor; and with a few openings above and below for the admission of air into the space between the walls, forms a structure which, in a sanitary point of view, may be considered perfect. Some would prefer to have the inner wall of brickwork.

1903ff. Table of the Resistance to Thrusting Stress of Nine 2 -inch Cubes of Concrete, bedded between Pine three-eightus of an inch Thick. By D. Kirkaldy, fur W. H. Lascelles, May, 1881.

Cracked silighty.				Remarks.
	Stress.	$\begin{gathered} \text { Per } \\ \text { sq. inch. } \end{gathered}$	$\begin{gathered} \text { Per } \\ \text { \&q. foot. } \end{gathered}$	Builder, x1. p. 619.
1	$\begin{gathered} \text { lbs. } \\ 19,162 \end{gathered}$	$\begin{gathered} \text { lbs. } \\ \mathbf{4 , 7 9 0} \end{gathered}$	tons. $308 \cdot 0$	Neat cement, made Dec. 15, 1880.
2	18,628	4,657	$299 \cdot 4$	Ditto.
3	16,298	4,074	2619	Neat cement, made March 8, 1881.
4	12,982	3,245	$208 \cdot 6$	3 of cement to 10 of ground material, made Jan. 18, 1881.
5	12,248	3,062	196.9	Ditto.
6	8,488	2,122	$136 \cdot 4$	1 of cement to 4 of ground material, made Jan. 1, 1881.
7	8,023	2,005	129.0	Ditto.
8	5,838	1,459	93.8	1 of cement to 4 of ground material, made Jan. 1, 1881.
9	5,796	1,449	$93 \cdot 1$	Ditto.

1903 gg . The use of concrete has extended from the foundations of buildings, backings of wharfs, retaining walls, and abutments of arches, to the employment of it for the backing of raults to produce a level surface; for the substance of fireproof floors; for the base of floors, pavements, and roads; for the walls, floors, \&c. of houscs, bridges, and moles; and various other purposes.
1904. Many ornamental brick cornices. may be formed by but little cutting, and clanging the position of the bricks employed, and several, indeed, without cutting, by clamfering only. Of late years the machines for making bricks have permitted the extensive use of moulded bricks of different forms, which have entirely superseded the more artistic advantages of cut brickwork to required outlines or ornamental details.
1905. Niches may be formed in brickwork. They constitute the most difficult part of the bricklayer's practice. The centre will be described under the section Carpentur. The difficulty in formirg them arises from the thinness to which the bricks must be reduced at tho inner circle, as they cannot extend beyond the thickness of one brick at the crown or top, it being the usual as well as much the neatest method to make all the courses standing.

1905a. Flues. It has been an established rule to build flues 14 inches by 9 inches, 14 inches square, or larger, for kitehen fireplaces, because it suited the size of the bricks and bonding, contained a sufficient amount of superficial area, and afforded a space for a boy sweeper to ascend them. Since then circular pipe flues, 8, 9, 10, 12 inches diameter, or oblong pipes with rounded corners, have been adopted by many, the inside being smooth. These are easily swept, and no lodgments of soot and brick rubbish take plice. An objection has been made, if the pipes be glazed, that during a storm, or other concussion, the soot falls down into the room if the register flap be not shut. These pipes make good work at the gatherings. It is almost an invariable rule to make the flue tho same size throughout; there is also the theory that the flue should be made larger at the top, and also smaller at the top, similar to a factory shaft. Also that a tall-boy is useless, for the top should only be finished by a terminal of a few inches, just sufficient to divide the rushing currents and allow them to pass between each pot. The fireplace should be covered over at the usual springing line by a slab of stone, or concrete, or iron plate, with an aperture in the centre of the size of the intended flue. On this the brickwork is carried up. Abore it, in the breast, has been formed a chamber with sloping sides, to counteract any down draught.

1905b. A brick flue is pargeted inside to render it smoke proof, that the velocity of the draught should be assisted or improved, and to prevent as far as possible the lodgment and accumulation of soot. The parget, which is a mortar made of a mixture of lime and cow-dung, should be sparingly applied, but sufficient to fill up open joints and all irregularities in the brickwork. If applied thick, it shrinks and cracks, and falls off, and assists in making a chimney smoke. It is now recommended to use the ordinary mortar for this purpose, the brickwork being kept as smooth inside as possible, by careful pointing, as it has been found more successful for a number of years.

1905e. Pating. When neither slate, granite, Yorkshire or other stone, flint, nor shells, are used for paving, recourse is had to bricks, tiles, and asphalte. A yard superficial of brick paving requires 32 to 36 stocks laid flat; 48 to 52 laid on edge; 36 paving bricks laid flat, 82 on edge; 140 Dutch clinkers on edge; 9 twelve-inch tiles; and 13 ten-inch tiles. Brick paring is laid flat in sand; jointed in mortar; jointed in cement; and laid on edge, in the same manner. Tile paving is generally laid in sand or mortar (par. 2282). Besides the ordinary brick, some others have been introduced, especially for stables and yards, such as the Terro-metallic grooved bricks, and Towers and Williamson's Adamantine cluker paring bricks for stables and yards; it is stated to be superior to the old Dutch clinker in shape, colour, density, and wear (par. 1829). Tebbutt's patent safety brick for stables and yards, \&c., is considered to ensure perfect foothold, drainage, easy cleaning, saving in labour and straw, to form a durable floor, and to have a good appearance. Each brick is 5 inches by 10 inches by $2 \frac{1}{2}$ inches; and the gutter brick is of the same size. Homan's Quartz, Granite and Ferrolithic stone paring, for streets, public buildings, breweries, warehouses, stables, schools, \&c. Bennett's improved Granitic stone, for pavements, \&c. (1887), is said to be fire, damp, and vermin proof; the surface, thougli hard and indestructible, is not slippery, it does not absorb moisture, it is laid from $1 \frac{1}{3}$ to 3 inches in thickness, is unaffected by the weather, and hardens by time. Macleod's Metallic conerete is proof against fire, vermin, damp and frost, not slippery, and can be used for paving, wall linings, roofing, \&c. It is rery hard, and has been used in stabling, breweries, workshops, \&c., from before 187C. Stuart's Granolithic and impenetrablo pavement (1869), is very largely employed in this country and abroad. Wiikes' patent metallic piving and Eurela eoncrete is used at the war office, the firebrigade stations, and police stations. W. B. Wilkinson \& Co. patent a specular gramitic concrete pavement, which is formed in 10 -inch squares of $1 \frac{1}{4}$ inch thickne-s, groud perfectly flat, presenting a spotted appearance of red and different shades of grey colours. It may be laid on ordinary mortar, can be used for outside purposes, and is stated to cost less than tiles.

1905 d . Ordinary tile paving is made of about $8,9,10,11$, or 12 inch tiles, of a hard and well burnt clay. The 11 -inch tiles used in the footpaths, which are each 14 feet 6 inches wide, of new Westminster bridge, were made by Blashfield, and were laid diagon-
ally (par. 1839). The Staffordshire paving tiles, in blue, red, and buff, are very durable, and for general purposes as effective as the more expensive qualities for inlaid purposes.

1905e. Floors and paths are often finished with a face of $\frac{3}{4}$ inch, 1 inch, or $1 \frac{1}{4}$ inch of Portland cement. They are considered to be best laid with the cement and sand thoroughly mixed and just wetted sufficient so that a handful pressed by the hand will not fall to pieces when the hand is opened. This laid down, and water brought through it by the hand float, stands well. Plasterers do not like to use it so stiff. To repair any worn places the old cement should be thoroughly wetted before the new work is applied.

1905f. Here may be mentioned the use of encaustic or inlaid tiles for paring; of mosaic tiles and of tessere for mosaic work, whether for parements or for wall decoration; the Roman mosaic parement; the Venetion marble mosaic tiles; Italian marble mosaic and marble mosaic granite. There is also a patent uood mosaic, made of small blocks of wood, end grain, and prepared in tiles to partern 6 inches square.

1905 g . To clean dirt off tiles, dilate muriatic acid, i.e. spirits of salts, may be used, but it must all be wiped off, and after washing, the moisture must be wiped off with a clean dry cloth.

1905h. Asphalte has now taken the place of most other sorts of manufactured pavements of the same character. A solid foundation is prepared by a bed of concrete of hydraulic lime and gravel, with a layer of finer concrete over it, to fill up the vacuities. When dry, the asphalte is put on, of a thickness for private purposes of about $\frac{3}{5}$ ths of an inch; for public purposes, from one to two inches: it should be applied as hot as possible. A small quantity of pure quiek lime is added to the asphalte when in ebullition, to prevent it melting by t e heat of the sun. This material has been much used for threshing floors of barns, for malt-houses, armouries, tun rooms (sometimes from 2 to $2 \frac{1}{2}$ inches thick), dissecting-rooms, dog-kennels, exercising yarcls, mills of many kinds, granaries, verandahs, and numer us factories and buildings. For carriage traffic, the asphalte is embedded with small Guernsey granite chippings. This material is not suitable for any floor where oil, tallow, or other greasy matter is employed. The Polonceau and Seyssel Asphalte Company indent the surface into small squares, affording a foothold for horses in a stable; this is also considered useful for flat roofs and paring generally. The granite rock and Seyssel asphaltes, for floors, paving, \&e., are considered a certain preventive of damp and vermin. The Val de Travers compresserl and mastic asphalte, for rcadways, \&c., roofs, basements, stables, warehouses, breweries, reservoirs, slaughter-houses, markets, laundries, lavatories, \&c. The Limmer Asphalte Paring Company, and the Société Française des Asphalte, are also engaged in paring the thoronghfares of London and elsewhere. Wright's marble tar pavement for yards, playgrounds, \&c. has been used for the platforms of the Windsor and the Waterloo stations, and in the middle part of the quadrangle of Somerset Huse.

Tiling.

1906. The tiler's tools are-the lathing hammer, with two gauge marks on it, one at 7 inches, the other at $7 \frac{1}{2}$ inches. The lathing staff, of iron, in the form of a cross, to stay the cross laths and clinch the nails. The tiling trowel, to take up the mortar and lay it on the tiles: it differs from the brick trowel, in being longer and narrower The bosse, made of wood, with an iron hook, to hang on the laths or on a ladder, for holding the mortar and tiles. The striker, a piece of lath about 10 inches long, for separating and taking away the superfluous mortar at the feet of the tiles. The broom, to sweep the tiling after it is struck.
1907. Tiling is the operation of laying the tiles on a roof for the cosering of the building, and is effected with either plain or pau tiles; the former is the most secure description. Plain tiles are laid at different gauges (see par. 2301). 210 plain tiles laid flat will cover a square of tiling, which can be laid in a day by a man and his assistant. As old tiles are of a much better consisteney than those now made, it may be desirable to re-use the best of them with new tiles to fill in; in which case the old ones are laid with the best effect in courses, say three or four rows of new and two of old tiles; or laid in a diapered pattern, according to the quantity. Pan tiles are generally pointed in mortar, which if it be not very strong will not stick; in consequence of this, tiled roofs require fresh pointing every few years, especially in exposed situations. A practice has oltained of late years, when plain tiles are set in mortar, not to peg more than about one tile in ten; this should not be permitted, as with the decay of the mortar the tiles slip down. An ancient cu:tom prevail-d, to bed the tiles in hay or moss, and when the roof is of the full pitch this suffic.s without mortar; they may even then be laid dry. But with any less pith, some precaution must be used to keep out drifting snow, and such wet as may be blown up between the tiles lifted by the force of the wind. In lieu of oak pegre, extra large flat headed wrought nails, made of pare zine or of zine and copper, have been nsed, and it has the advantage of allowing a tile to be replaced from the inside of the roof, by lifting up the others to place in the tile and drop in the nails in a few seconds. The utility of the mortar is questioned in the Duilder fur 1865.

1907a. Pan tiling is laid to a 10 inch gauge; and 180 pan tiles will cover a square. From the frequent repairs necessary to tiled roofs, slating has become the most useful corering, and is generally employed, except for the most common buildings. See par. 2301, in Seecifications.

1007b. Weather tiles were fixed either by nailing them to battens or boards, which rotted after about 20 years. Then nailing them to the mortar joints was bad, as a gauge of 3 inches was too small, 4 inches being the ordinary gauge for tiles. Mr. Ii. Nevill got blocks made $1 \frac{1}{2}$ inches thick; and generally for the top story of buildings, to run in the inside of the wall two carriers and stretchers and a course of headers. Thus a comrse was obtained for each course of tiles. Weather tiling ought to be headed between the two tiles, and if they could get close to the wall the little space between the wall and the hading might be filled with cement. The bricks might be used on edge, thus giving a $4 \frac{1}{2}$ inch height, when the tile could be fixed to the joint. Where the 4 inch gange wonld not work, the tiler punched out a small hole at the side of the tile, when this gange was oltained and the mail driven through the side of the tile: 3 inch French nails were preferable. (E. T. Hall.)

1907e. The bricklayer has often to provile temporary coverings to bnildings whilst his other operations are being performed. The commonest method is that of merely nailing old boards laid weather-board fashion to any slope that may be desirable. The next is the use of tarpaulins supported by open boarding, and secured to posts or scatfolding rigged up for the purpose; this must be efficiently done, as in case of high winds the whole may be carried away. Felt is also used for temporary roofs, for which purpose, likewise, Messrs. Rigg and Co. have a new material composel of cancas covered with a waterproofing substance having vegetable oil as a basis, and consequently not liable to the desiccating action of the rays of the sun.

1907 d . As the bricklayer has to provide for the removal of water refuse, so he has to ${ }^{-}$ provide for the deposit of dust, ashes, and rubbish, by a dust. bia. This was formorly, and is still in many places, built of brick with a wood cover, and is generally more than a nuisance. With the modern arrangements for the periodical removal of dust by the parish or other local authority, the dust-bin need be no orher than a galranised iron receptacle for such ashes or articles as cannot be dried and burnt up in the kitchen or other fire (seo Specifications). Burton's Combination Dust-bins are of galvanized iron, and constructed of such a size and shape as to stand side by side, each being removed and emptied serarately. They form two, four, six, or eight in a compartment, each being 22 inches high, 21 inches wide, and $1 \pm$ inches from front to back, or about $3 \frac{1}{2}$ cubic feet, a gufficient load for one man. When necessary, they can hare a wood covtr or be enclosed in wood or brick. An improved dust-bin is explained in Builder, 1885, xlviii., p. 779.
$1907 e$. The difficulty and expense of removing this refuse has caused the invention of a refuse destruet,, on Fryer's principle. One is described lately as having twelve cells, each capable of destroying seven tons of house refuse every twenty-four hours. The smoke from these will pass through a furnace heated to 1500 or 2000 degrees Fahr. before pasing into a shaft 180 feet high. The waste heat from the furnaces will be utilised for a 30 horse-power engine for grinding the clinkers into powder for making concrete slabs. No fuel is required, as the "ashes" provide it. Leeds claims to be the first town to have adopted this invention. Mr. C. Jones, of Ealing, added a maffe furnace between the destructor furnaces and the main shaft, which effectually destroys the offensive properties of the gases and dust from the furnaces.

Terra-Cutta.

1908. The more modern uise of this materid includes the Persian and Moorish tiles, \&c., its use by the ltalians during the thirteenth, fourteenth and fifteenth centuries, as at the cities of Milan, Paria, Padua, Verona, Pisa, Bologna, Brescia, Perugia, Venice, \&c.; also in North Germany ; many places presenting examples of colour decoration.

1908a. In England specimens of terri-cotta and moulded brickwork appar at Granby Church, Nottinghamshre, where at the east end is a window of considerable size, of Perpendicular date; the whole of the jambs and tracery are composed of contemporary moulded terra-cotta. Layer Marney Hall, Essex, dating 1500-25, supposed of foreign manufacture; Wolterton Maner Honse, Norfolk, circ. 1500 ; the tomb of John Young in the Rolls Chapel, London, 1516 ; medallions at Mampton Court Palace, commenced 1515, perhaps foreign; Sutton Place, Surrey, 1529; Eastlury Manor House, near Ilford, 1575; and other places. Generally it died ont with the Tudor family. At the end of the sixreenth century nearly all pottery (except Oriental) had been what is termed soft, and although much of it was coated with a hard and durable enamel not easily injured, yet the body could be generally scratched with a knife. In the seventeenth century stoneware was sought after, and works for its manufacture were established at Stratferd-leBuw. Elers, from Nuremberg, settled at Burslem.

1908b. The first great adrance was made ly Coade, and, later, Seeley, of Lambeth, who
begran about 1762 to make statues, bassi-rilievi, \&c. About 1825 Rossi made the statues, c_{1} pitals, antefixæ, and other Grecian ornaments for St. Pancras Church, London, for the Inwoods; and Bubb executed in terra-cotta the frieze of the opera-house in the Haymarket, as also the pedimental sculpture and statues of Cumberland Terrace, Regent's Park. The terra-cotta made by Coade and Seeley was chiefly from the Poole clay, combined with tlint and sand. It has withstood heat and frost, and is more perfect than the stonework or cement work around it of the same date, which in some cases has had to be painted to preserve it. Their well-tried ingredients and proportions of clay and siliceous materials, and the degree of ritrification, the essential to the durability of terra-cotta, were adopted by Mr. Pulham. One of the greatest revirals in pottery connected with architecture tork place about 1833, when Mr. Wright, of Shelton, obtained a patent for making inJaid tiles, a patent bought by Mr. Herbert Minton, who improved upon it. The churches at Lererbridge, and at Platt, in Lancashire, by the late Mr. Edmund Sharpe, in 1815, were important examples of the reviral of the use of terra-cotta.

1908c. At Buckingham Palace, near the stables, were placed, about 1836, sereral large rases made by Mr. Blashfield; these are in perfect preservation, while the stone coping on which they are placed is decayed. He also turned out some of the best work ever made in this material, as at Dulwich College, 1866, and at Lady Marriane Alford's house at Kuightsbridge. The façade of the Science Schools, in Exhibition Road, South Kensington, is a large and florid example. The Natural History Museum at South Kensington, by Mr. Alfred Waterhouse, R.A., is of terra-cotta inside and outside. Mr. R. W. Elis has used it at the Constitutional Club in Northumberland Avenue; and many other buildings of late years show its use. Among those in progress are the new Law Courts at Birmingham, which hare been specially designed for its use by Messrs. Webb and Bell.

1908d. In works of art, as in sculpture, the artist has only to model in the clay, as he is obliged to do before he commences to carre out the marble; the clay is at once burned, and all the after labour on the marble or stone is saved. Still it is attended with some risk, for an accident may happen in the burning, and then the modelling has to be redone. Large works should be done in conjunction with the potter, who would supply the proper clay, and see that the thicknesses throughout were as even as possible. The largest piece of sculpture ever executel in terra-cotta was the group of America at the Albert Memorial, executed in 1876 by Mr. John Bill. It consists of five figures, each 10 feet high, with a buffalo of like proportion; it is now at the Smithsonian Institute, Washington. Other similar, or ornamental, work can be fiuished up at once in clay by the artist, and burned, and are thus nerer repeated, in the sense of moulded work. Vases, 12 to 15 feet circumference, are made as true on the upper edge as rubbed stone. They have cost less than if they had been moulded and cast in compo or cement, and they have the sharpness of the best carved stone.

1908e. In 1880 it was alleged that English architects had not given to the architectural treatment of terra-cottia the degree of attention and experiment which it deserves. Sir G. G. Seott, in Gothic Architecture, Sccular and Domestic, 1857, wrote: "Terra-cottia seems the natural accompaniment of brick, but it should not be usel as an artificial stone. It is the highest development of brick, and shouid be used as such. By a judicious use of brick, moulded as well as plain, cncaustic tiles, and terra-cotta, we might develop a variety of constructive decoration peculiarly our own."

1908 8 . A writer puts the use of terra-cotta and stone as follows:-"It is argued that it is improper, inartistic, and uneconomical to use terra-cotta constructively so as to imitate stonework, but it is eminently suited for surface decoration and architectural ornamentation, and when so used is capable of high artistic treatment at a moderato cost. Stone is a natural material, and when fixed every part of it does duty constructively. Terra-cntta is an artificial substance; it is but a shell or case, which generally has to be filled up with concrete or brickwork in walling, or with an iron core fur a column, or with a girder for a lintel, before it can be used constructively. Terra-cotta used to imitate stonework is inartistic, for stone is worked with the greatest nicety, and fixed with perfect accuracy. With terra-cotta it is not possible, at its best, to secure perfect jointings or straight arrises; there is a monotony of texture in all its plain surfaces, as well as a general inability in the material to acquire additional charm under the influense of the mellowing touch of time. It is not economieal to employ terra-cotta in a way to imitate stone constructively. The rough stone is brought to the works, squared, and fixed. The terra-cotta, however, arrives at the works in the form of a hollow body, to be added to before it can be worked in. Stone is easily corrected if it be fuand inaccurate ; whereas for terra-cotta, clipping, cutting, and rasping has to be resorted to, to rectify twisted lines and other inaccuracies; or gaps in a building left for a time until defectire or deficient blocks have been manufactured. As it is sent to the works so, probably, the material is fixed generally."

1908g. "Terra-cotta, as a superior sort of brick, has to be designed accordingly. and visel in string courses, cornices, and such like places, where ordinary bricks so fixed are lable to be affected by the weather ; and when manufactured in small pieces, for repeti-
tion work, it will come more true, will hare a better appearance than when in large blocks, and these will fultill all constru,tive requirements; while, as it can be highly deeorated at a trifling expense, it can compete favourably with stone similarly used. Without donlt, it is best adiapted, both as regards form and colour, for a purely dearative material. It is true there is a great difficulty in combining stone and terra-cotta in the same building effectively; but brick and terra-cotta go well together, and when used legitimately afford the happiest results. Ancient examples show its proper use, but not that 23 a counterfeiter of stone."-(W. Henman in Briti-h Architect, 1887, p. 105).

1908h. For building purposes the great advantage of terra-cotta is the close and absolutely impervious character of the material. Whether the great advantage claimed for it as being impervinus to the action of a London atmosphere, of the 1 reseut day, is well founded or not, will have to be settled by the test of time, but theoretically it should stand better than any stone under the same conditions.

1908i. Anuther writer remarks as follows: "What are the special characteristics of arehitectural treatment which terra-cotta demands in order to produce a satisfactory architectural and artistic result with the capabilities and pesuliar ciaracter of the material? There are two points: 1. The size of the picces is limited, and the material, while incapable of the high finish and precision attainable in stone detail, and still more in marble, poseesses, before it goes into the kiln, absulute plasticity; it can be modelled by the hand with great ease and rapidity, and with much variety. Large projections are unsuitable; they cannot be carried out in a pure terra-cotta style, or without assistance, open or concealed, from other materials. Nothing should be attempted in terra-cotta architecture whieh is not capable of being honestly executed in the material, without the aid of concealed supports and ties. 2. The designer has before him a material capable of endless variety of treatment, and the chief value of which consists in its artistic treatment. If a considerable amount of repeated ornament is required to be eeonomically produced, it can le obtained by a mould more easily than in most materials; and this continuous ornament can le produced by hand with constantly varying detail. The architect or designer may, in fact, be the actual worker of the ornanentation. With this, if s oneware be used, may be a considerable variety of colur, which is not only indestructible, but is susceptible of being cleansed, an important point in the midst of a town atmosphere.

1908j. "The first really architectural use of terra-cot ta was in the clay plains of North Italy, and it is from the productions of the archite ts of this district that much of the inspiration of the modern terra-cotta designer in architecture has been. or should be, drawn. The earlier specimens are of great simplicity, cousisting of the simple moulded brick eornice in two or three projectirg rolls one over the other. Later came a gradual elaboration of orbament, espeeially in cornices, in panels, and on the face of pilasters. At the Certosa, at Pavia, the richness is earried in some parts to its greatest possible extent, and is a good example of the constructive ornamental details, but the whole is too overloaded. On the other hand, in the Church of the Carmine, at Pavia, the "rnament is for the most part confined to the cornices and horizontill strings, and is designed so as to bring out some of the best capab.lities of the material. The cornice has a flat outline, and a slight projeetion as compared with its vertical measurement. The main divisions of a Classic cornice are kept in view, while in this is a reminiscence of corona, bedmould, and frieze; the effect which cannot be got by projection is songht by increased depth and by richness of surface ornament. The twisted rope-like string below what may be called the frieze, is easily carved out in a plastic material ; it is easy to mould; the same may be said of the ornament above it. Uther cornices may be found exhibiting a like treatment.
1908%. "Tue consideration of the difference which would have to be made in ormamental detail in transferring it from marble or stone to terra-cott , or painted and glazed stoneware, suggests another influence in the nature of the material which must also affect the ornament executed. Howerer well mixed and burned may be the clay, the shrinkage and twisting in the kiln render it impossible to trust terra-cotta to give the precise, clear, and sharp symmetry of, say, Greek detail. It may be supposed that the manuficturers of the North Italian artists devised the twists to, as it were, soften the resulting twist of their more immature material, as compared with the modern manufacture, and also in order to aroid the hard straight lines and altempts at symmetrical detail, and to impart such a degree of irregu'arity in line that accidental irregularities in the manufacture would be the less obserrable." The writer in the Builder goes on to design, and to explain the modifications he has made in, Greek details, to bring them within the proper scope of terra-cotta, and concludes:

1908/. "Another point in regard to the general treatment of the walling of terracotta buildings is that in many of the Cinque-Cento terra-cotta buildings there is an ent re absence of any attempt to obtain a completely homugeneous wall surface. The surfaee is as varied and broken up in this respect as that of a brick building, thus rath $\cdot \boldsymbol{r}$ proving again that it is the material for raried and picturesque effect rather than fur
symmetrical finish and neatness. It has an appearance of surface treatment about it, which is much more in harmony with the feeling of the Renaissance than of Gothic architecture, in which we look for the appearance of great mass and solidity, rather than of elegant surface ormament. This terra-cotta may offer to architects wishing to carry out a Classic type of design with great modifications, a material admirably suited to the conditions of modern city architecture." (Builder, 1880, vol. xxxix. p. 195, 230.)

1908 m . Large and fine works of art, as busts, bassi-rilievi, ornament, \&c., have to be modelled and moulded in the usual way by the artist or sculptor. He gradually forms the clay into a rough outline, hoilow, in a cellnlar way, propping his model true until jt is quite fimished and dry and ready for burning. This is an original terratcotta. The trouble is great, but is fully compensated by the result. No moulded copy presents such vigour, freshness, and grace. When, also, only one or two pieces are required, as in decoration, they are formed ty hand-working on the clay itself, as in the case of sculpture above described. The more widely the knowledge of pottery is diffused, the more certain the architectural potter is to succeed in developing the use of argillaceous and vitreous substances, in the construction of monumental and sylvan works of art. It will be a new branch of work for the genius of the architect; it will improve and advance the study of modelling in all its ramifications; and it will give refinement and taste to the labours of the poorest brickmaker.

1908n. Cornices of great size have been made, and even portions of the shaft of a column 5 feet long. Terra-cotta steps have been adrocated, but Messrs. Doulton have refused to make them; they have lately patented a tread (called the Sicilian tread) of great density, which may be used also as a nosing to stone or conerete steps. At South Kensington a flight of steps after two years' wear is still as perfect as when first fixed. Window sills, label monldings, jambs, water tables, cupings, sinks, fire hearths (with massive rounded edge to serve as a fender), stove backs, chimney shafts, \&e., could be more elegantly and cheaply wrought in clay than in any other material.
19080. Of late years terra-cotta has been used extensively for the facings and dressings of a building in the place of stone It is generally made of hollow blocks, furmed with webs inside so as to give strength to the sides and keep the work true while drying, whereas, when required to bond with brickwork it must be at least $4 \frac{1}{2}$ inches thick. When extra strength is needed, these hollow spares are filled with lime concrete, or Roman cement, as Portland cement is liable to swell and burst the terra-cotta. It is able to bear a very heary erushing weight. A bluck of about 1 font cube, without cross webs or filling, at 40 tons splintered at the edges; and at 100 tons it became generally broken, but not crushed, as on being tied with string it remained in shape.

1908p. The putting together of the material requires great care and consideration. The pieces may be flanged and rebated so as to hold together almost without the assistance of mortar. As the onter surface should be almost proof against any ordinary tools, alterations cannot be made as the work proceeds, and the desigu in detail must bo matured before the work be commenced.

1908q. The disadvantages in the use of terra-cotta are neither numerous nor insuperable. Besides the difficuily of getting the blocks true, which is a matter minly fur the manufacturer, the architect has to desigu his work so as to be suitable to the material. The great difficulty is on the score of the extra time required to prepare the necessary drawings, one set for the builder, and another set made to the shrinkage seale for the maunfacturer. These last are now often made by the manufacturer from the full-sized drawings supplied to him. Mr. Charles Barry writes: "Perhaps the most embarrassing of the disadrantages is the arrangement necessary to have the terra cotta blocks made and ready on the grounl before the rest of the work is begun, in order to work in where wated as the bricklayers progress. At times this is founl impossible, and anoying delays in the gencral work take place, for which clients are apt to blame their architect. The lesson, of course, to be learned from this is to caretully mature the design at the outset, instead of contenting ourselves with a mere skstch of what is intended, with the hope and intention of working in parts as time goes on and the work proceeds."

1908 r . In good jobs it is recommended that the fixing should be done by or under the supervision of one or more persons experienced in the material, and the proper use of suitable cements-Portland cement will split a block in pieces-especially where most strength is required, as considerable additional strength may be gained, which is only acquired by practice. An expert will be more likely to make it work together for guod line and fit, by setting and homouring, as the pieces are apt to be taken as they come; and this is especially necessary where small pieces are adopted for simplicity of execution, cheapuess, and expedition ; time is an object for large pieces to dry, burn, and cool gradually, all essential to good work, and to escape from twisting, hair cracks, \&e.

1908s. Terra-cotta resists the action of fire. It is used as a protection to ironwork, jron columns, \&c., and can be treated artistically. Heat which would destroy stone merely burus the dirt from this material, giving it the appearance of having just left the kiln. At a large fire at Messrs. Duulton's factory the stone sills of the windows
and copings of the walls were destroyed, while the dressings of the windows, which were of their terra-cotta, were perfectly sound and looking all the brighter for the buraing.

Colours in Terra-cotta.

1098t. One advantage of the material is the delightful random rariety of tone of cclour which is often to be obtained. The colour varies, giving an appearance of depth to the work and producing very pleasing effects, at times. This variety is generdly produced by the flash of the fire. The natural colours are buff, red, and blue, more or less intensified by the amount of heat to which they are subjected. Other colours can be obtained by the admixture of foreign matter. The red terra-cotta of Ruabon is made from a natural red-coloured clay when burnt, very hard and non-p.rous, with a clean, smooth surface. The buff terra-cotta is a good and sound material, burns hard, and keeps its colour. The pink terra-cotta, a new colour, is made from pure clays, and is without any stain, very hard and durable. By a little additional cost and the operation of a second firing, a soft dull glaze can be put on all terra-cotta brieks, mouldings, and ornaments, so that façades executed in this way could be washed clan by water from a fire engine.

19\|8u. The aid of terra-cotta to polychromatic effect is capable of being developed in a very elaborate manner. Variety may be obtained in the unglazed ware by what is called "slipping," or mising two clays of different tones together in water to produce a third or intermediate tone. In gluzed terra-cotta the material can be painted in a great variety of colours, which are then fixed, and at the same time rend red more brilliant in effect. This ware is formed by throwing salt into the fire when the ware is at a white heat, which is decomposed in the form of vapour, the soda suspended in it incorporates itself with the surface of the ware, forming the glaze. Various mineral colours are used, and the main colour is inflinenced by the fuel: the blue colour of the ancient Rhenish productions is considered to be due to the use of woad. It has been stated (Archoolog a, iii. 112, and Proccedings, xi.) that at Gatacre Old Honse, near Bridgenorth, "a glazing seems to have been applied to the stone of which the house is built, by some unknown process, after the building was finished, as it covered the joints as well as the stones."

1908v. The intense heat to which glazed ware is subjected, and the consequent difficulty of kerping its true shape, makes its use in this form very difficult. It is comparatively easy in all thrown ware, whicb, from its circular form, shrinks evenly in all its parts. The liability in all moulded work to warp and twist requires inceasing care in all its preparatory stages. That it is not impossible may be ascertained from the saltglazed stoneware in the restibule of the "Palsgrave," opposite the Law Courts in the Strand. This greater risk seems to necessitate th tt "its use must be in small pieces, and in such places where absolute Hatness of surfase is not indispensable; but under these conditions it may be applied with admirable effect to heighten mouldings, or to panel terra-cotta pilasters, or as bases and capitals, especially as shafts to ornamental columns, and as nosses."

1908w. The paper read by the late J. M. Blashfield before the Northampton Architectural Society, Sept. 6, 1859, on Ancient and Modern Pottery; and that by Mr. James Doulton, read Λ_{ℓ} ril, 1886, at Carpenters' Hall, on Terra-cotta, have also been freely quoted from in the above account.

Sect. III.

MASONRY.

1909. Masonry is the science of praparing and combining stones so as to tooth, indent, or lie on each other, and becrme masses of walling and arching for the purposes of building. The tools of the mason vary as the quality of the stone upon which they are to act. About the metropolis the ralue of stone is considerable ; and it is accordingly cut into slips and seantlings by a saw moved horizontally backwards and forwards by a labourer. In those parts where stone is abundant it is divided into smaller scantlings by means of wedges. The principal tools of the mason are the mallet and chisels, the latter being formed of irun, except at the steel end, and the cutting edge being the vertical angle. The end of the chisel struck by the mallet is a small portion of a spherical surface, and projects on all sides leyond the adjoining part or hand hold, which increases in magnitude towards the middle of the tool, to the entering or cutting edge. The other tools of the mason are a level, a plumb-rule, a square, a bevel, with straight and circular rules of divers sorts, for trying surfaces in the progressive states of the work.
1910. In London, the tools used to work the face of a stone are, successively, the puint, the inch tool, the bouster (the oparation of working with which is called boasting, as that
with the point is called pointing), and the broad tool. The use of the point leaves the stone in narrow furrows, with rough ridges between them, which are cut away by the inch tool, and the whole made smooth ly the boaster. The point is from $\frac{1}{8}$ to $\frac{3}{8}$ of an ineh broad, the boaster is 2 inches wide, and the broad tool $3 \frac{1}{2}$ inches at the cuting edge, which in use is always kept perpendicular to the same side of the stone. It performs two sorts of operations. Thus, imagine the impression made by the whole breadth of the tool at the eutting edge, to be called a cavity ; in one operation, the successive eavities follow one another in the same straight line, until the bradth or length of the stone is exhausted; successive equidistant parallel lines are then repeated in the same manner, until the tool has passed over the whole surface. This operation produces a sort of fluted surface, and is ealled stroking. In the other operation, each successive eavity is repeated in new equidistant lines throughout the length or brealth of the stone; then a new series of eavities is repeated thronghout the length and breadth of the stone; and thus until its whole length or breadih is gone through. This operation is called tonling. The tools for working the cylindiceal and conical parts of mouldings are of all sizes. from $\frac{1}{8}$ of an inch upwards. Thoe for working convex mouldings are not less than half an inch broad, except the space be too confined to admit of such breadtli.
1911. A stone is taken out of winding prineipally with points, and finistied with the inch tool. In London, the squared stone used for faeing buildings is usually stroked, tooled, or rutbed.
1912. In those parts of the combtry where the stone saved by the operation of sawing is not enough to eompensate for the labour, the operatio. is altogether performed with the mallet and chisel.
1913. When stones, previous to the operation of hewing, are very msshapely, a stone are, jedding axe, scabbling-hammer, or cuvil, is used to, bring the stone nearly to a shape; one end of the jedding axe is flat, and is used for knocking off the most protuberant angular parts, when less than right angles; the other end is pointed for reducing the different surfaces to nearly the intended form.
1914. In Scotland, besides the above described sorts of work, there are s me other kinds, termed drovtd, broached, and striped. Droving is the same as that called random tooling in England, or boasting in London. The ellisel for broaching is called a punch, and is the same as that called a point in England. Broached work is first drovel and then broached, as the work eannot at once be regularly done with the punch. Siriped work must also be first droved and then striped. If broaching is performed withont droving, which is semetimes done it is never so regular, and the surface is fall of inequalities. Of the three kinds of surfaces olitained, the droved is the cheapest.
1915. It is, however, to be observed, that the workmen will not take the same pains to drove the face of a stone which is to be afterwards broaehed, as in that of wheh the droving is to remain the final finish. When the surface of stone is required to be perfeetly smooth, it is accomplished by rubbing with sand or gritstone, and it is called rubbed work.

1915a. Some useful practical remarks for obtaining the face to stone in medizval work, is given in Denison's Lectures on Church Building, 1856. p. 216 . "The mode of working nouldings depends a good deal upon the kind of stone used. In that fiom Steetly near Worksop, employed almost exclusively outside the new chureh at Doneaster, and in the Ancaster stone, used for pieces of window tracery and mullions too large for the blocks that can be got from Stcetly, and in the Brodsworth stone, the mouldings are all completed with a drag. I do not use the word 'finished,' because that mean.s going over the work to put a particular kind of surface upon it after it is really completed. On the other hand, the Crookhill stone, of whieh all the pillars and a few other parts are made, would utterly defy any sueb small tooth-eomb work, as a drag; nothing under a chisel with a heavy hammer will touch it. Again, some stone from Hudllestone is too tough ana cheese-like for dragging, and the mouldings in it are completed by shaving them with a chisel, something like wood earving. The efleet of that is very good, because a ehisel run along in that way will always make a rather undulating surface, though smooth enough to the touch, even to please the finger of a clerk of the works. In some real Norman arehes, which had been covered with plaster for centuries, the mouldings showed that the drag or thol had never been al'owed to make the inarks direetly across; generally they are oblique and sometimes parallel to the direction of the moulding. Worked in this way, the stones will be sure to show themselves distinctly, and the effect of the mortar staining the stones for a litile distance from the joints, produces anything but a bad effeet. Tuekpointing, to rather rough masonry especially, i.e., making prominent joints in mortar, with the edges eut quite straight and square, is another chance of spoiling work. After a few years this generally splits off," and the building may look at last as it should have done at first. The mortar should be finished within the face of the stone. The stone work at S. Alban's Albey is dessribed by Mr. Neale, as finished by the a.e by the Normans; chistlied during the Transition period; bolster tooled during the Early English; claw tuoled during the Decorated, and the mouldings scraped; while during the Perpendicular period it is finlly scraped.
19156. Grey granite, or moorstone as it is called in Cornwall, is got out in blocks by splitting it with a number of wedges applied to notches poolcd in the surface of the stone, about four inches apart. The pool holes are sunk with the point of a pich, much in the same way as other hard quarry stones are split. The harder the moorstone the nearer it can be split to the scantling required. Generally speaking, granite has no planes of stratification, and it works or cleaves equally well in every direction; but in the porphyritic varieties there is a rough kind of arrangement of the crystals; and in gneiss there is a species of layer, formed by plates of the mica, which is plainly discernible. When brought to near the size required, it is first scaluled by a hammer with a cutting face $4 \frac{1}{2}$ inches long by $1 \frac{1}{2}$ inches wide, weighing 22 lbs.; then brought to a picked face with a pick or pointed hammer weighing 20 lbs., formed by two acute angled triangles, joined base to base by a parallelo. gram between them thins $<0>$; and if to be finely wrought or fine picked, it is further dressed with a similar pointed hammer, reducing the roughmess to a minimun. The finer finish or fine axed face is produced by a hammer or axe with a sharp edge on both sides, weighing 9 lbs . for fine work the "patent axe" is also used, which is a hammer formed of several parallel blades screwed together, capable of being taken to pieces when required to be sharpened. Polishing can then be done by machinery, the granite being rubbed by iron rubbers with fine sand and water, and finished with other materials.

1915 c . Aberdeen red granite possesses the property common to all granites, that of a distinct plane of cleavage, which, though not perceptible to the eye, is at once recognisable under the hammer of the workman, and of course can be wrought with much greater precision and effect with the bed, than transversely to it. This bed bears no traceable relation to the natural joints of the rocks, which are indefinite in their directions; and still less so to their stratification. The grey granites are but slightly affected with cleavage, being capable of being blocked with the hammer with about equal faeility in every direction. The local varieties of worked granite differ somewhat from those used in England, and are, I. Hammer-blocked, as in foundations, plinths, \&c. II. Scappled blocks, squared with the heavy pick, as in docks and heavy engincering works. Il I. Picked, a better finish than No. II. IV. Close picked, the bed and arrists made fair, and the outer surfaces made as fine as the pick will make them; used in ashlar work, \&c. V. Single axed, a finer finish than No. IV., and used in quoins, rebates, cornices, \&c., in house building. And VI. Fine ared, the finest finish before polishing, given to dressed granite by means of the patent axe, used in the best work in house building, eemetcry menorials, and as a finish to contrast with polished work.

WALLING.

1916. In stone walling the bedding joints are usually horizontal, and this should always, indeed, be so when the top of the wall is terminated horizontally. In building bridges, and in the masonry of fence walls upon inclined surfaces, the bedding joints may follow the general direction of the work.

1916 at. liootings of stone walls should be built with stones as large as may be, siphared and of equal thicknesses in the same course, and care should be had to place the broadest bed downwards. The vertical joints of an upper course are never to be allowed to fall over those below, that is, they must be made, as it is called, to break joints. If the walls of the superstructure be thin, the stones composing the foundations may be disposed so that their length may reach across each course from one side of the wall to the other. When the walls are thick, and there is diffienlty in procuring stones long enough to reach across the foundations, every second stone in the course may be a whole stone in breadth, and each interval may consist of two stones of equal breadth, that is, placing header and stretcher alternately. If those stones camot conveniontly be had, from one side of the wall lay a header and stretcher alternately, and trom the other side another series of stones in the same manner, so that the length of each header may be two thirds, and the breadth of each stretcher oae third of the breadth of the wall, and so that the back of each header may come in contact with the back of an opposite stretcher, and the side of that header may come in contact with the side of the header adjoining the said stretcher. In foundations of some breadth, for which stones cannot be procured of a length equal to two thards the breadth of the foundation, the works should be built so that the upright joints of any course may fall on the middle of the length of the stones in the course below, and so that the back of each stone in any course may fall on the solid of a stone or stones in the lower course.
1917. The foundation should consist of several courses, each decreasing in breadth as they rise by sets off on eaeh side of 3 or 4 inches in ordinary cases. The number of courses is necessarily regulated by the weight of the wall and by the size of the stones whereof these foundations or footings are composed.
1918. Walls are most commonly built with an ashlar facing, and backed with brick or subble-work. In London, where stone is dear, the backing is generally of brick-work, which does not occur in the north and other parts, where stone is cheap and comnon. Walls faced with ashlar, and backed with brick or uncoursed rubble, are liable to become
convex on the ontside from the greater number of joints, and, consequently, from the greater quantity of mortar plaecd in each joint, as the slorinking of the mortar will be in proportion to the quantity; and therefore such a wall is inferior to one whercin the facing and backing are of the same kind, and built with equal care, even supposing both sides to be of uncoursed rubble, than which there is no worse description of walling. Where a wall consists of an ashlar facing outside, and the inside is coursed rubble, the courses at the back should be as high as possible, and the beds should contain very little inortar. In Seotland, where there is abundaner of stone, and where the ashlar fices are exceedingly well executed, they generally back with uncoursed rubble ; in the north of England, where they are not quite so particular with their ashlar facings, they are much more particular in coursing the backings. Coursed rubble and brick baekings admit of an casy introduction of bond timber. In good masonry, however, wooden bonds should not be continued in length; and they often weaken the masomry when used in great quantity, making the wall liable to bend where they are inserted. Indeed, it is better to introduec only such small pieces, and with the fibres of the wood perpendicular to the face of the wall, as are required for the fastenings of battens and dressings.
1919. In ashlar facing, the stones usually rise from 28 to 30 inches in length, 12 inenes in height, and 8 or 9 inches in thiekness. Although the upper and lower beds of an ashlar, as well as the vertieal joints, should be at right angles to the face of the stone, and the face and vertical joints at right angles to the beds in an ashlar facing; yet, when the stones run nearly of the same thickness, it is of some advantage, in respect of bond, that the back of the stone be inclined to the face, and that all the backs thus inclined should run in the same direction; because a small degree of lap is thus obtained in the setting of the next course, whereas, if the backs are parallel to the front, no lap can take place when the stones run of an equal depth in the thiekness of the wall. It is, moreover, advantageous to select the stones so that a thicker one and a thinner one may follow each other alternately. The disposition of the stones in the next superior course should follow the same order as in the inferior course, and every vertical joint should fall as nearly as possible in the middle of the stone below.
1920. In every course of ashlar facing in which the backing is brick or rubble, bond, or, as they are called in the country, through stones should be introduced, their number being proportioned to the length of the course; every one of which stones, if a superior course, should fall in thic middle between every two like stones in the course below. And this disposition should be strictly attended to in all long courses. Some masons, in carrying up their work, to show that they have introduced a sufficient number of bond stones into their work, choose their bond stones of greater length than the thickness of the wall, and knoek or cut off their ends afterwards. But this is a bad practice, as the wall is liable to be shaken by the force used in reducing, by chiselling or otherwise cutting away the projecting part, and sometimes with the chance even of splitting the bond stone itself.
1921. In piers, where the jambs are coursed with ashlar in front, every alternate jamb, stone should go through the wall, with its bed perfectly level. If the jamb stones are of one entire height, as is often the case when arehitraves are wrought upon them, and also upon the lintel crowning them, of the stones at the cads of the courses of the pier which are to adjoin the architrave jamb, every alternate stone should be a bond stone; and if the piers be very narrow between the apertures, no other bond stones will be necessary in sueh short courses. When the piers are wide, the number of bond stones is to be proportioned to the space. Bond stones, too, must be partienlarly attended to in long courses above and below windows. They should have their sides parallel, and of course perpendicular to eaeh other, and their horizontal dimension in the face of the work should never be less than the vertical one. The vertical joints, after receding about three quarters of an inch from the face of the work with a close joint, should widen gradually to the back, so as to form hollow wedge-like figures for the reception of mortar and packing. The adjoining stones should have their beds and vertical joints filled with oil-putty, from the face to abont three-quarters of an inch inwards, and the remaining part of the beds with well-prepared mortar. Putty cement is very durable, and will remain prominent when many stones are in a state of dilapidation, through the action of the atmosphere upon them. The use of the oil-putty is at first disagreeable, from the oil spreading over the surface of the contiguous stones; but after a time this unpleasant look disappears, and the work seems as though of one piece.
1922. All the stones of an ashlar facing onght to be laid on their natural beds. From inattention to this circumstance, the stones often flush at the joints; and, indeed, such a position of the lamina much sooner admits the destructive action of the air to take place. Methods of building in eement and concrete blocks, are noticed in the previous scetion.

1922a. Rubble-work. A wall consisting of unhern stone is called a rubble wall, whether or not mortar is used. This species of work is of two kinds, coursed and uncoursed. In the former, the stoncs are gauged and dressed by the hammer, and thrown into different heaps, tach
containing stones of the same thickness. The masonry is then laid in horizontal courses, but not always confined to the same thickness. The uncoursed rubble wall is formed by laying the stones in the wall as they eme to hand, without ganging or sorting, being prepared only by knocking off the sharp angles with the thick end of the scabbling hammer.

1922b. Apparently, wherever there was any difficulty in obtaining stone, the medirval builders employed the worst of all methorls of construction in walling, viz., conerete or ribble-work between the two faces of squared stone. In the carly period of mediaval art, flint or rough rubble, with "short and long work" to the quoins, seems to lave been very general; this "short and long work" was also used in faced walls; in both cases the short work consists of stone upon its bed, and alternates with the long work or stone upright: the short work ought to serve as bond throughout the walls. In the 1 th century the use of rubble in conjunction with worked stone became treguent. The chief defect, frequently considered one of the merits, of this system, consists in the omission of sufficient bond both in piers and walls; the occurrence of joints in angles is too frequent; in fact, any expedient seemed better than the trouble of making a back-joint.

1922c. Kentisi Ragstone. This material, now so extensively employed for medixual work in the metropolis and suburbs. is never used internally, as it sweats, that is, the condensed moisture from the atmosphere is not absorbed, and will show itself even through two coats of plastering. Hassock stone, however, which is the sandstone separating the beds of the ragstone, the sand being sufficiently agglatinated to allow of its being raised in blocks, must never be used exterually. It is easily worked, and makes a good lining for ragstone walls, as it does not sweat. It shonld be ronghly squared, for if not done, the crumbling nature of the stone would endanger the security of the work, should it be exposed to any unequal pressure : it must not be placed where it would be exposed to very great pressure, as in arches, jambs, \&c. Hassock may be procured in London at from 6s. to 7s. per cord (3 fect cube), in ronghly squared picees; while rough rag is about 5 s. per ton, and rag headers about 12 s .6 d . jer ton.
$192 \circlearrowright d$. Sunk and moulded work in so hard a material is to be avoided, and so much wrought surface would cause deeay. In using ragstone ashlar, it must be laid upon its natural hed, otherwise rapid decay will almost certainly follow, arising from the thinness of the strata, for blocks of a large size can seldom be entirely freed from hassock; and even what appears to the eye as hlue stone, retains for a considerable distance inward the perishng nature of its enveloping crust. A block of ragstone, if the face be worked, will present in damp weather an appearance precisely similar to the heart and sap of timber. In the ease of copings, \&c., where one hed is exposed, the stone should be skiffled (or finobled) as much as possible from the upper side, so as to expose only the soundest portion of the stone to the action of the atmosphere. In some situations, as mullions, door and window jambs, an unsightly appearance would be produced by too exact an attention to the beds of the stone, as the ashlar is generally too small to range with more than one course of headers. In these cases the old masons seem to have departed from their usual rule, and to have set the blocks on end, so as to embrace two or three cuurses; but as the depth of the block required to work an ordinary jamb or mullion is not very great, it is not difficuit to get the whole thickness required out of the heart of the stone.
$1922 e$. Stone of the smaller layings are generally worked into headers; it is common to work one side of the stone to a rough face with parallel sides, without paying much attention to the beds and joints, which often recede at an acute angle with the face, so as to bring the stones, when laid, to a closcr joint. Such stones, however, must be properly pinmed in behind, and carefully bonded with the work at back. IIeaders are generally knocked out to six, seven, eiglit, or nine inch gange for the height; the length and tail being determined by the size of the stone: on the face they do not vary much from the square form. Formerly headers were set on their natural bed, therefore it is not unusual to find stones in an old wall entirely gone from this cause.

1922f. In the Whitelands bridge bed, a very free working stone of a bluish colour can be got 12 feet long with eertainty, and the Horsebridge bed yields a good stone to a length of 15 feet. The white rag, the lowest of the beds in the quarry, tumbles to picces on exposure to the air (Whichcord, Kentish Ragstone, 1846).

1922g. In its mechanical properties, ragstone possesses some of the qualities of granite, though in an inferior degree. In respect to resistance to pressure, it stands next to granite in the list of Brtish stones; but when loaded for a transverse strain, the numerous vents to which even the best layings are liable, renders it untrustworthy for lintels, or in a suspended position, withont much precaution. In the former case of lintels and architraves, three stones, arch jointed, gives the requisite security.

1922h. Wimstrone, a material, in one form or another, found almost over all Scotland, makes a very durable arch for bridge work, when well built with good mortar, the stone being in its nature weather proof. In the neighbourhood of Edinburgh, whinstone arches bave been erceted since about 1770 , the greatest span being about 60 feet. 'The Messrso

Smith, of Darnich, stated, in the Transactions of the Institute of British Architects, that they had erected bridges with semi elliptical arches of the spans of 51 feet, and of $62 \frac{1}{2}$ feet, of whinstone faced with hewn stone. A bridge, almost entirely of whinstone, having an areh $63 \frac{1}{2}$ feet span, the depth of the masonry being $2 \frac{1}{2}$ feet on the average, was erceted in 1833; while another, 76 feet 4 inches span, at Falshope, was entirely of whinstane, with a rise of about 18 feet. It sunk about seven inches when the centre was struck, but no brokell stone was olserved. The depth of the areh, riquiring three breadths of stone to make it up, was 3 feet ; their average thickness was $3 \frac{1}{2}$ inehes; but it varied from $1 \frac{1}{2}$ to 6 inches. The stones were laid as elose as possible, and in crossing the bond the work was made firm, but the stones were not dressed straight upon the beds. Its cost was 3601. exelusive of the digging for the foundations.

192si. The most annoying part in the building of rubble arches, is the slowness of the setting or drying of the mortar, as until the mortar is able to bear considerable resistance the arch is extremely supple, and easily bent out of its proper curve when the centre is struek. This bridge stood five weeks before that meavure was considered advisable. Cement would perhaps be best lor large rubble arehes, and even if expensice, the whole eost would be cheaper thin a bridge of hewn stone. With cement, almost any kind of stone, even the refuse of a slate quarry, migl.t be worked into an ateh of almost any extent.
1922k. Funtwonk-In the ehalk districts, the homses of the fifteenth century are frequently faced with flints, eut and trimmed, and arranged with great skill and effect. One of the best examples is a house in St. Andrew's, at Norwieh, next the cemptery, a fragment of the decorated period of Gothic arehiteeture, in which the Alint work is so delicately finished that a penknife can seareely be inserted in the interstices.
$1922 l$. As flint itself is practically imperishable, and as flintwork becomes, when perfeetly set, a mass of conerete, it produces substantial work, if great care be taken in its manipulation. But flint walls frequently faul, by bulging while they are in course of construetion, and splitting when they are old. On any sufficient natural cause, as the giving way of the foundation, they are riven into immense masses; henee a flint building gets out of repair less readily than a stone one, but if it suffer at all, it is very apt to beeome a complete ruin.
$1922 m$. Flint walls intended for durability should not lee less than two feet in thiekness, built slowly and solidly, flushed up with stiff strong mortar compounded of quick-setting stone lime and coarse sharp sand free from loam. As flint is a non-absorbent, bricks and tiles are olten worked into the middle of the walls to assist in the induration of the mortar; but for the sake of economy, lumps of hard chalk, pebbles, and flat-bedded stones are frequently used as the prineipal components of the core or middle of the watl. The work must be kept as dry as possible during its ereetion, as well as subsefuently ; frost is found soon to level the work while saturated with water.

1922n. Flint wails are strengthened by lacing eourses, formed of bricks three or four eourses deep, not generally showing outside. At Cambridge, Brandon, and elsewhere, they do show, and are used every two or three feet. The object is not only to get a continuous bond, but to bring the work to a level bed. and again start fair. When round flints are split, and the thicker portion is kept, as usual, at the face of the wall, driving rains are readily conducted by the inelination of the upper bed of each course to the middle of the wall, and by keeping it damp conduce to its decay; but as flints are seldom split at right angles to their axis, they can be so laid in the work as to be flush on the face as well as level, and the lower bed must be firmly pinned up with fragments. It is desirable that cavities for drainage, with exit holes at the plinth level, be formed in the middle of the wall by building in rods of wood or iron vertically, and drawing them up as the work progresses. The face is sometimes finished by inserting in the mortar joints guilets, or the sharp fraetured bits of flint, when the work is called galleted or garreted (Dictionary of Architecture).
1922. Amongst examples of a systematic parsimony of labour and material in mediaval art, may be no ieed the characteristic tables or courses, where each projection
 is taken out of a separate course of stone or out of the smallest stone adjoining to it. The base (fig. 618.) and the capital (fig. 618a.) of a sbaft are kept so sinall as to be got out of single blocks; the astragal belongs to the eapital, and not, as in Roman work, to the shaft; the bell is in one stone, the abacus in another (fiy. 618d.) ; each order of an arch is an independent range of stones; the hoodmould is self-existent ; the sills are not dished, and the buttresses are touthed rather than bonded. In two eases, however, the use of large stones prevailed, viz., in shafts of the 13 th century (in France, $1160-$ 1230), which are leng rods of stone 6,4, or 3 inches in diameter and ineapahic of Leaing any great weight, muless banded or bonded to the nearest reat or
pillar, and in the springing stones of vaulting, which are worked with level beds. (See par. $2002 f$.) The horizontal courses at the bottom of the arch are also seen in the construction of large horse-shoe arches. With the 13th century, also came the decided distinetion between decoration and mere construction, which employed stone vertically, not only for shafts of columns, hut for mullions and tracery of windows and dwarf walls, such tracery being eut out of slabs and contined by grooves or similar means.
1923. Where walls or insulated pillars of very small dimensions are to be earried up, every stone should be carefully bedded level, and be without coneavity in the middle. If the beds should be concave, as soon as the superimposed weight comes to be borne by the pier or pillar, the joints will in all probability begin to flush; and it is, moreover, better, if it be possible, to make every course in the masonry of such a pier or pillar in one stone.

comemins.

1924. When large columns are obtained in a singl. bloek, their effeet, from that circumstance alone, is very striking; but as this is not very often to be aceomplished, the next point is to have as few and as small joints as possible; and the different stones, moreover, ought to be selected with the view, as much as possible, of concealing the joints, by having the bloeks as much of the same colour as possible. It will immediately, of course, occur to the reader that vertical joints in columns are inadmissible, though in many of the great edifices at Paris sueh do occur, much to their detriment.
1925. The stones for an intended column being procured, and the order in whieh they are to be placed upon one another having been determined, we must correctly asceriain the exact diameter for the two ends of each of them. To effect this, draw an elevation of the column proposed to its full size, divide it by lines parallel to the base into as many heights as the column is intended to contain stones, taking care that none of the heights execed the lengths the stones will produce; the working of the stones to the diameters thus obtained then becomes easy. The ends of each stone must first be wrought so as to form exactly true and parallel planes. The two beds of a stone being thus formed, find their centres, and describe a circle on each of them; divide these circles into the same number of equal parts, whieh may, for example, amount to six or eight; draw lines across each end of the stone, so that they will pass through the centre and through the opposite divisions of the same end. The extremities of these lines are to regulate the progress of the chisel alung the surface of the stone; and, therefore, when those of one end have been drawn, those of the other must be made in the same plane or opposite to them respectively. The eylindrical part of the stones must be wrought with the assistance of a straight-edge; but for the swell of a column, a diminishing rule, that is, one made concave to the line of the column, must be employed. This diminishing rule will also serve to plumb the stones in setting them. If it be made the whole length of the column, the heights into which the devation of the column is divided should be marhed upon it, so that it may be applicd to give each stone its proper curvature. But as the use of a very long diminishing rule is inconvenient when the stones are in many and short lengths, rules or rods may be employed eorresponding in length to the different height.

1925a. The method of setting the blocks or frustra by the ancients, was to dish out the beds to obtain a truly fine joint. In the Parthenon, an outer space of 7 inches in width all round the drum, was lel't a perfectly level and smooth bed for actual contact. The next space, of 1 foot in width, was very slightly tooled or seratehed over. The next, 9 inches in width, was made still lower by being tooled over very roughly. The remaining portion round the centre was left smooth, but was made as low as the surface of the sceond space. A square hole, worked at the quarry, in the eentre of the shaft, was filled with a cube of hard wood, in which was a hole to receive the half of a circular pin, also of wood, suggesting the idea that when the marble frustra were set, they were rubbel against each other. The first drum, at the temple of Hercules at Agrigentum, when placed on the stylobate, was turned round until it hat been well ground down. (Civil Engineer, \&.c. vii. p. 241.) The practice of late years, for large columns, has been to place a plate of thin lead between the beds of stone, so as to secure an equal bearing and prevent the edges flushing, any space being filled
Fig. 6186. in with putty or cement. At Paris, in many of the porticoes, the columns have very deep thin rusties (fig. 618b.), which would effectually prevent any broken edges from being observed. The effect is peeuliar, especially in strong sunlight. The height of the face of the stone is 385 of a metre; the height of the channel, including the rounded a rises, is 40 , and the depth of the channel is 85 .

1925b. Besides the usual mode of drawing a volute, described in par. 2576, we insert a method recommended by Mr. Gwilt for adoption. A general method of inseriling a spiral in a rectangular quadriliteral, A B C D:-Multiply the given height by the given
breadth, and divide the product by the sum of the height and breadth. Then subtract the quotient from the height. 'The re-
 mainder is the radius of the first quarter revolution of the spiral: The formula is $h-{ }_{h+b}^{h \times b}=r(=\mathrm{BE}, b a$ or $\mathrm{F} a)$. Subtract the radius $a F$ so found from the height BD and the remainder FD will be the radius of the second quarter of the revolution, and is to be set from F to b. The difference $a b$ between $a \mathrm{~F}$ and $b \mathrm{~F}$ will form one side of the quadrilateral abcd. Subtract the radius $\mathrm{F} b$ from the width CD and the remainder GC will give $b d$ the other side of the quadrilateral abcd (which points will be the centres for the portions of the firstrevolution), and will be a figure similar to, or of the same proportions as, the given quadrilateral ABCD. Then $d \mathrm{G}$ will be the radius of the third quarter of the revolution and $H \frac{c}{}$ the radius of the fourth quarter. In the quadrilateral or parallelogram a^{3} cd, draw the diagonals $a d$, $b c$, and draw $b \mathrm{H}$, cutting the diagonal $a d$ in e, then will e be a point for the formation on the diagonals of another parallelogram efyh, whose angles (as in that first made) will be the centres for the radii of the second revolution. By again drawing $\mathrm{H} f$ to cut the diagonal ad, another parallelogram may be formed, and so on to bring out the spiral. $\quad \mathbf{X}$ is the centre part to a larger scale (Builder, xviii. p. 364).

1925c. From the nature of the formula it is evident that when $h: b$ is but by a trifte in a greater ratio than $1 \cdot 61: 1$ the first radius will be greater than the breadth of the quadrilateral, and the spiral cannot be described within the figure. Also that when h and b are equal, the spiral vanisies, for the formula becomes $h-h_{2}^{h^{2}}$ and the first radius is equal to half the side of the circumscribing square. Hence a circle is inscribed. Also that as the height and breadth approach equality the number of revolutions increases. In the diagram the height is taken at 27 equal parts and the breadth at 23 of such parts. Upon trial it will be found that the exact proportion of the height to the breadth to bring out a spiral within the given quadrilateral lies between $1 \cdot 61: 1$ and $1 \cdot 62: 1$.
$192: d$. When a pier was to stand upon the head of a pillar, the early medixval huilders avoided an error which their ancestors often committed. Instead of turning the arches and filling up the space at the springing until there was a clean base for the pier (fig. 618/l.), they built some courses of the arch-stones in single blocks excecling the width of the pillar. When these had risen so high that the base of the pier would not interfere with the
 modern folly (fig. 618f.) was unknown to them. A similar system dic-

Fig. 61Sh. tates the construction of a corbelled foundation for any work standing free from the general thickness of the wall. In early pointed work the intrados of an areh (as A in figs. 618 g . and 618 h .) was plumb with the face of the square block B , forming part of the capital ; and equally the front of a shaft over a capital is plumb with the same square block.

1925e. Joggling. Lintels or flat arches, stone architraves, chimney mantels, and such like, when formed of small stones, are secured by joggling the joints of adjacent stones so as to form a continuous beam, the strength depending upon the solidity of the abutments, The gauged arches formed of eut brieks and used as heads to openings, are similar in
eflcet, but as they have neither joggles nor dowels, they are now sometimes assisted, especially in uncertain foundations, by placing under them a thin flat bar of wrought iron. Bartholomew, in his Specifications, 1840, gives somse ancient specimens from Roman sepulchres, the three lower courses being prevented from sliding by a wedge-shaped joggle formed on the top bed of one stone, and a corresponding hole cut in the lower bed of the next stone, to receive it. Fig. 618i. is perbaps the earliest instance of a similar contrivance, and shows the oversailing portions (French crossettes). It is taken from

Diocletian's palace at Spalato, a building often referred to as exhibiting the germs of several of the peculiar ornaments afterwards prevalent in the Romanesque and Norman styles of art (par. 198). The same principle is seen in a semicircular arch of eleven voussoirs in the lower story of the reputed tomb of Theodoric at Ravenna; in a chimmey. piece at Conishorough Castle, Yorkshire; and at the gate of the Alhambra. Murphy's Butalha, gives, in plate 2, two instances of the same kind of construction. With domble set-ofts, an example is found in the upper part of Theodorie's tomb. Fig. 618k., showing the introduction of tenons of a circular form, is the transom of the Norman west doorway of Rochester Cathedral. Fig. 618l. having three tenons to each stone, is from the mantel of a fireplace in Edlingham Castle, Northumberland.
192.5f. Serlio, in his Opere d'Architettara, in Book iv. clap. v., shows two excellent modes for relieving the weight from a lintei over an opening, figs. 618 m . and 618 n . Fig. 618o. is the mode adopted by Mylne, it erecting Blackfriats Bridge, where eath joggle consists of a cube foot of a hard stone. During the repairs of this structure in 183.3, the decayed or broken stones were cut out, and new blocks inserted by the ingenious arrangenent shown in fig. 618p. A represents the new block let in, in two parts. 13 is first fixed, having a hole cut to receise a pluge C, whieh is placed in a hole Fig. 618 m . Fig. $618 n$. in the half D; on this block leeing inserted in place, the plug C drops half its length into the hole in 13 and secures the portion I). Chammels were also eut through the blocks, through which wires were placed attached to the plag to insure its sliding into its place. These were cemented up subsequently. In small works, copper plugs, or dowels would be more proper than the large hlocks shown in fig. 618o., as they require the removal of less of the substance of the areh stones as necessary for admitting joggles. Cubes, and dowels, of slate are now very much employed.

1925g. Another method much practised consists in joining, by an elbow to cach voussoir, a portion of the neighbouring liorizontal course of the work. This arrangement will be understood at once by reference to figs. 956 and 957 ; but, however good it may appear at first sight, it is liable to split at the junction of the horizontal portion with the radial parts, if any irregular settlement takes place. The rustic channels of arcades wrought in this form have, however, a good effect.
$1925 h$. From Viollet le Due, Dictionnaire, we chatain the use of the crossettes as exemplified in a chimneypiece (fig. 618q.). Fig. 618r. is the lintel to the door on the north side of the Chureh of St.

Fig. 618p. Blackfratis Bmoge. Fig. 618\% Etienne at Beauvais; and,fig. 618s. that of the Chureh of Villers Saint Panl. Fig 618t. shows the system deseribed by Rondelet, in plate 27 of his valuable publication, for obtaining the requisite proportion of strength in such flat arches, as they are ealled. Whoever may be interested in the method of supporting and tying together by rods and hars, the stones of architraves, as formerly practised by the eminent architects of Franos, must be referred to the publications of Kondelet, Patte. D'Aviler, Blondel, and cthers of that period; in fact, the system is strll introduced in the modern publications on construction, in the French sehool of architecture.

Fig. 618q.
secured. During the restorations at Cologne Cathedral, the

1925\%. To tic in ashlermg to the brick wall, cramps are used, either of cast iron, wrought iron, copper, or bronze. The two latter are of course the best; the two former exfoliating by air and damp, and splitting the stone, unless perfectly

Fig. GlC

Fig. $61 \mathrm{~S}_{\mathrm{t}}$. cornice (above the 55 fect high windows) is 3 feet 7 inches high, and in order to connect the stones, iron hooks were put hot into the holes, whieh were then filled up and surrounded with asplalte. By this proceeding the iron is for ever preserved from oxidation; it has proved itself the best system, because the applications of mortar, gypsum, sulphur and lead, have all failed. On the exterior, bronze surrounded with lead has been used, which bas hitherto proved satisfactory. Cramps are also now set in Portland cement.

STAIRS.

1926. Nothing to perplex will occur in carrying up stairs which are supported by a wall at both ends, because the inner ends of the steps may either terminate in a solid newel, or he tailed into a wall surrounding an open newel. Where elegance is not required, and where the newel does not exceed $\mathscr{2}$ feet 6 inches, the ends of the steps may be conveniently supported by a solid pillar; but when the newel is thicker, a thin wall surrounding the newel would be cheaper. In stairs to basement stories, where geometrical stairs are used alove, the steps next to the newel are generally supported upon a dwarf wall.
1927. In geometrical stairs, the outer end of each step is fixed in the wall, and one of the edges of every step supported by the edge of the step, below, and formed with joggleal joints, so that no step can descend in the inclined direction of the plane nor in a vertical direction ; the sally of every joint forms an exterior obtuse angle on the lower part of the upper step, called a back rebate, and that on the upper part of the lower step of course an interior one, and the joint formed of these sallies is called a joggle, which may be level from the face of the risers to about one inch within the joint. Thus the plane of the tread of each step is continued one inch within the surface of each riser; the lower part of the joint is a narrow surface, perpendicular to the inclined direction or soffit of the stair at the end next to the newel.
1928. With most sorts of stone the thickness of every step at the thinnest place need not exceed 2 inches for steps of 4 feet in length; that is, measuring from the interior angle of every step perpendicular to the rake. The thickness of steps at the interior angle should be proportioned to their length; but allowing that the thickness of the steps at each of the interior angles is sufficient at 2 inches, then will the thickness of them at the interior angles be half the number of inches that the length of the steps is in feet; for instance, a step 5 feet long would be $2 \frac{1}{2}$ inches at that place.
1929. The stone platforms of geometrical stairs, that is, the landings, half pares, and quarter paces, are constructed of one or more stones, as they can be procured of suthicient size. When the platform consists of two or more stones, the first of them is laid on the last step that is set, and one end tailed in and wedged into the wall; the next stone is joggled or rebated into the one just set, and the end also fixed into the wall, as that and the preceding steps also are; and every stone in succession, till the platform is completed. When another flight of steps is required, the last or uppermost platform becomes the spring stone for the first step of it, whose joint is to be joggled, as well as that of each succeeding step, similarly to those of the first flight. The principle upon which stone geometrical stairs are constructed is, that every body must be supported by three points placed out oi a straiglit line; and therefore, that if two edges of a body in different directions be secured to another body, the two bodies will be immoveable in respect to each other. This last case occurs in the geometrical staircase, one end of each stair stone being tailed into the
wall so as to be ineapable of tilting, and another edge resting either on the ground itself, or on the edge of the preceding stair stone or platform, as the ease may be. The stomes which form a platform are generally of the same thickness as those forming the stcps.

ON THE SCIENTIFIC OPERATIONS OF STONE CUTTING.

1930. The operations by which the forms of stones are determined, so as to combine them properly in the various parts of an edifice, are founded on strietly geometrical prineiples, and require the greatest care and exactness in execution. It is only by a thorongh know. ledge of the nature of these operations that the master mason is able to cut and earve the parts which, when joined together, compose the graceful arch, the light tracery of the Gothic vault, or the gracefui and magnificent dome. The method of simple walling, and its general prineiples, have been given in this book, chap. i. sect. x. In what follows we propose to confine ourselves, 1st, to the leading operations neeessary to set out the simple arch or vault, and the groins formed by it; 2d, to the forms produced by vaults with plain and curved surfaces intersecting; 3d, and lastly, to dome vaulting; giving such examples as will so initiate the student that he may, we trust, have little, if any, diffieulty in resolving any case that may occur, and reminding him that if he well understand the section already submitted to him on Deseriptive Geometry, his labour will be m.tch abridged, not only in what immediately follows, but in that section which treats herealter on Carpentry.
1931. I. Of the Construction of Arches and shiple Vaults, and the Groins pormed by their Intersection. In arches and simple vaults we have to ascertain the exact form of the arch in all its parts, and the direction of its joints; both which points are dependent on the geometrical properties of the curve used for the arch.
1932. To find the joints of a flat arch without using the centre of the circle of which the arch is a part. Divide the arch AB (fig. 619.) into as many equal parts as there are intended to be arch stones, at the points $1,2,3$, \&e. From A, with any convenient radius, deseribe an are at a, and from 2 , with the same radius, describe amother are, crossing the first at a, and join $a l$;

Fig. 619. then 1 is the first joint from A. To lind the joint passing through 2 ; with the same radins as lefore, from the joints 1 and 3 as centres, describe ares eutting each other at b, and draw $2 b$; then $2 b$ is the second joint. In the samie manner all the other joints between A and B will be found. To find the shew bacis, or abutting joints AC and DB; with a radius equal to $1 a$, from the centre A deseribe an anc at \mathbf{C}; from the centre 1 , with the radius $\mathbf{A} a$, describe an are cutting the former at \mathbf{C}, and draw the line $A C$, which will be the springing bed of the areh. In the same manner the joint BD may be found.
1933. The joints of any arch may be drawn with considerable aecuracy by setting off at equal distances a point in the curve on each side of the place for the joint, and from these points, as centres, with any radius, ares to intersect, through whose intersections lines being drawn, will give the directions of the joints.
1934. To draw an ellipticul arch to any two dimensions ly circular ares. Draw the straight line AB (fig. 620.). Bisect AB in C by the perpendicular $\mathrm{D} g$, make CA and CB each

Fig. 620.

Fig. 6\%). equal to half the span of the arch, and make CD equal to the height, and Aj parallel and equal to CD. In Cy make $\mathrm{C} / 2$ equal to CD. Divide $A j$ and AC each into two equal parts. Through 1 in AC draw $k n$, and through 1 in Aj draw 1 D , cutting $k n$ at n. Disect $n \mathrm{D}$) by the perpendicular $l g$, and from g with the radius $g n$ or $g \mathrm{D}$ deseribe the are $n \mathrm{D} i \mathrm{~h}_{\text {h }}$. Draw $g h$ parallel to AB , and join $h \mathrm{~B}$, and produce $h \mathrm{~B}$ to meet the are $n \mathrm{D} h$ in i. Join $g i$ eutting A 13 in f and make Ce equal to $\mathrm{C} f$. Join $g e$, and produce it to meet the are $n \mathrm{D} h$ in n. From f with the radius $f i$ describe the are $i B$, and from e with the radius $e A$ describe the are $\mathrm{A} m \mathrm{n}$. Then $\mathrm{AmD} \mathrm{D} i \mathrm{~B}$ is the areh required.
1935. An elliptical arch ADB (fig 521.) tring given, to drau the joints for a given mumber
of arch stones. Find the centres e, f, g in the same manner as if the arch were to be drawn; join $g e$ and produce it to meet the arch; also join g, f and produce it to meet the are in i. Divide the elliptical curve ADB into as many equal parts as the number of arch stones. Firon the centre e draw lines through the points of division in the curve between A and where ge meets the curve and from the centre g draw lines through all the intermediate points between $g e$ and $g f$, and lastly draw lines from f through all the intermediate points between i and l, and the parts of the lines thus drawn on the outside of the curve will be the joints of the arch stones.
1936. In very large arches it will be desirable to find five centres, as in fig. 622., and these will be obtained by finding two intermediate points in cach half of the curve instead of one; then bisecting each pair of adjacent points by a perpendicular, we shall have the centres e, h, g, i, f, to be used for drawing the joints in the same mamer as in

Fis. 622. the preceding figure.
1937. The above methods are sufficient for ordinary purposes; but where strict accuracy is required, the following method is mathematically true. Suppose any joint, as $g k$, is required to be drawn (fig. 623.), and that the point D is the middle of the areh and the point C the middle of the springing line; then with the distance CA or CB, from the point D describe an are at e and another at f to cut AB at e and f. Draw eg and $f g$; produce eg to i and $f y$ to h, bisect hgi by the straight line $g k$, which will be the joint required. In the same mamer, by drawing

Fig. 623. lines from e and f to each point of division, and bisecting the angle, lines for the other joints may be drawn.
1938. To draw a Gothic arch to any given dimensions (fig. 624.). Draw the straight line

Fig. 624. (CI is made equal to BC)
AB equal in length to the span of the arch. Biseet $A B$ in C by the perpendicular DI. and draw A G and BII parallel to DI. Nake CDergual to the height of the arch, and the angles CDG and CD$) \mathrm{H}$ each equal to half the vertical angle; make CF equal to the difference between CD and AG and join FA and FB. Divide AG and AF (ach ints the same number of equal parts, counting each from the point A. Through the points 1. 2, 3, 4 in AF draw $\mathrm{I} a, \mathrm{I} b, \mathrm{I} c, \mathrm{I} d$, and through the points $\mathrm{I}, 2,3,4$ in $\mathrm{A} G$ draw 11), 2I), $S \mathrm{D}, 4 \mathrm{D}$ eutting $\mathbf{I} a, I b, I c, I, l$ at the points a, b, c, d, then through the points AabedD draw a eurve; which will be haif of the Gothic areh required. (Other methods. par. 1943a., et seq.) 1939. To draw the joints of the arch stones of a Gothic arch (.tig. 6บ5.). Having formed the angles CDG and CDIl as before, make At equal to AG and draw D l perpendicular to DG. In D $/$ make $1 \mathrm{D} /$ equal to $\mathrm{A} i$ and join $\%$. Bisect $i k$ by a perpendicular meeting 1)/ in $/$. Produce $l i$ to p. Divide the curve into as many equal parts as the areh stones are to be in number. 'Then i will be the eertre of the joints which pass through all the
points between A and p, and l will be the centre for drawing the joints of the areh stones which pass through all the points between p and D.
1940. The reason for the foregoing rule is obvious; for the joints are merely made to radiate to the centres of the ares of circles whereof the arches themselves are formed; as in subsections 1934, 1935, they were drawn to the centres of the approximating circles wherefrom the elliptical curves were struck.
1941. To describe a parabolic carve fir a pointed or Goihic arch by means of a series of lines touching the curve, the dimensions of the arch and the angles it forms at the crown being given. Draw the straight line AB (fig. 626.) and draw CD perpendicular to $A B$. Make ('l) equal to the height of the arch, CA and Cl each equal to half the span. Make the angles CDe and CDf each equal to half the vertical angle. Divide $A e$ and $e \mathrm{D}$ each into the same number of equal parts, and through the corresponding points of division draw lines which will form one half of the arch: the other half DB may be found in the same manner.
1942. To draw the joints of the arch stones to the abore sort of arch. Draw the chords A1), DB for each half of the arch (fig. 627.) ; divide the arch into as many equal parts as there are to be arch stones. Let it now be required to draw a joint to any point h : bisect A i) in k, and join eh cutting the curve in l. Draw $h g$ parallel to $A k$, cutting $e k$ in g, and in el make $l i$ equal to $l g$. Join hi and draw hm perpendicular to $h i$. Then $h m$ is the joint required. In the same manner all the remaining

Fig. 626. joints will be found.

Fig. 627.
1943. To describe a rampant pointed arch, whose span, perpeudicular height, and the hroght of the ramp are given. Draw the straight line AB ($f i g .697$.) , and make $\mathrm{A} B$ equal to the span of the areli. Draw BC perpendicular to $A B$, and make $B C$ equal to the height of the ramp. Bisect AC in I , and draw DE perpendicular to AB . Jake DE equal to the height of the arch; draw Af and $\mathrm{C} g$ parallel to DE, and make $A f$ and $\mathrm{C} g$ equal to about two thirds of DE. Join $f \mathrm{E}$ and $\mathrm{E} g$. Divide $\mathrm{A} f$ and $f \mathrm{E}$ each into the same number of equal parts, and through each two corresponding points of division draw a straight line. All the lines thus drawn will give one half of the curve. The other half may be

Fis. 628. drawn in the same manner. To find the joints of the areh-stones to this sort of arch, proceed as for a plain arch in the last example, as shown by fig. 629.

1913a. Besides the rule given in par. 1938, To draw a Gothic arch to any given dimen. sions, the following plan has been put forward for finding the curves of arches and ribs. The fundamental rule that the curves should spring from the line of the impost has been abandoned by many; one centre was to be taken a little above this lise, another a little below it, and so on. The following rule furnishes a principle which gives the centres of
what is a further requisite, an independent projection for each rib. The author insits that these curves were always elliptical. If the arch to be drawn be less in height than the half width, let AB, (fig. 629a.) be the half width; BC the height; join AC; draw lines from 13 a:d A perpendicular to AC , and the points E and D are those required. Then EC will be the smaller radius, and EC added to AD will be the longer radius. For arches whose height is greater than their half width ($f i g .629 b$.), draw CF and BE perpendicular to AC, then EC will be the smaller radius; and EC added to CF will be tho longer radius. The author of this theory is Thos. L'Aker, as read at the Liverpool Arch. Society, 16th October, 1850, and printed in the Civil Enyincer, vol. xiii. p. 365. See par. 2002 d.
19436. Althongh the term arc en tiers point is still used in France for an arch enclosing an equilateral triangle, as it was in the time of De lorme, that arehitect, in his work entitled Nourelles Inventions pour bien bastir, published in 1578, showed that the arc en tiers point was obtained by division of the space into three equal portions, of which two gave the radius. The are en quatre points was obtained by division into four, three of them giving the radius. This medixval mode of determining some of the shapes of pointed arches, was noticed by Professor Willis in his elucidation of Wilars de Honecort's Sketch-book, 18.59 , p. 138-40. He is disposed to call the equilateral arch, the arch of two points; mentions arches of six points; and instances cases with a radius of five-sevenths and a radius of five-eightlis, besides the occurrence of a centre placed to the extent of half the span outside the springing point. 'The same anthority observes that the true method was forgotten soon after the disuse of medizval art, as Viola Zanini, in his book Della Architetturu, publishicd 1629, defines the terzo acuto as the arch on an equilateral triangle, th.e quirto acuto as the arch on a square with the diameter for radius, and the quinto acuto on a pentagon : these last are respectively rather higher and lower than the true arch of four points. The term point is hele used as meaming a division, and not a puncture.

Fig. 629 c.

1943e. The Pro'essor has also explained, p. 141, that to know the extia length of a voussoir at the top of an arch of $2,3,4$, or 5 points, the radius may be prolonged through the point P^{\prime} (fig. 629c.) of the arch to any extent S; then I'S being divided into twenty-four parts, a line from S may be drawn parallel with the springing line to T , and respectively 12, 6,8 , or 9 of those parts in length; which will give a point V, so that P V will be the line of the central joint.

1943d. The construction of ogee arches is very simple; but as will presently be slown, the rule is open to judicious variation. The general principle is to draw the line of the nose Z, (fig. 629d.) of the hoodmould ; to take a point upon that line; to draw from the springing a line through that point to the centre line, to accept the place where the centre line is cut as the height of the ogee, and to find in the usual manner the centre for the upper part of the ogec. The following directions are chiefly taken from Viollet le Due, Dict.

1943e. To draw an ogee arch of one point (fig. 629d.). Bisect the span in D, draw the
 centre line CD, describe the are AG, bisect AG in E, and through E from A draw a line cutting the centre line in H; through H draw FK parallel to the springing line, and through E from 1) draw a line cutting FK at M, which will be the centre for the upper pait of the ogee arch. In some cases, as in the figures $629 e, f$, and h, the three points KMN form an equilateral triangle.

1643f. To druw an ogee arch of tuo prints (fig. 629e.). Bisect the span AB, diaw the centre line, and describe the arcs AGB; then divide GB into five parts G1,\&e., and proceed as iefore.

1943y. To draw an ogee arch of three points (fig. 629f.). Repeat the above operations, olserving to divide the span AB into three parts, AE, EF, FB, and to divide GB into four parts, G1, \&e. It will be observed that in fig. 629g. (from Pugin), AB is divided into three parts, and the centres E with F serve to deseribe the ares on their own sides of the centre line; that the distances AI , II, and IB are equal, and that EII is equal to EI.

1943h. To draw an ogee arch of four points (fig. 629h.). Bisect the span, draw the centre line, fix the four points, and describe the ares AG, GB; then divide $G B$ into finur parts, and proceed as above indicated. But a difference is tanght by an illustration adduced by Viollet le Due, to show another feature of medixval art. In fig. 629i, it will be observed that the areh G.A is divided into fire portions, and that the line AH is drawn through the second diaision. The line F - produced, cuts the horizontal line JH in M ; or 2 H may be bisected, and a perpendicular obtained meets in the point M, for the ogee line 2 H . A centre N has been assumed for the line RR; and also another centre, O, for the line PP, hoth lines being drawn each way from I; from which arrangement it results that the lines A21I, R1R, and P11', are not parallel for their whole longths. In some cases the line of work must be the centre of a lillet or of a boltel. It should be nuticed that some very
 good decorated work of the middle of the lith century, uses five-eighths of the space for the radius, and finds the centre of the ogee curve upon a line drawn trom that eentral point of radius at an angle of 45° with the horizontal springing line.

1943i. To draw a cusped ogee arch (fiq. 6-9k.). Proceed as above described for an areh of one point as far as the construction of the horizontal line $\mathbf{J K}$. Then from the centre F througll E draw a line, and thereon make IU equal to IS, being so much of IF as is intercepted by the centre line of the pointed areh; and then on the horizontal line JK make WII equal to IS: thus are obtained the two centres for the cusp. But Viollet le Duc appears to prefer another mode, which very slightly differs in result. He draws SI produced at an angle of 45° with the base line; on this he marks ($G^{\prime} \mathrm{U}$, which is the half of a semicirele, equal to GA, fixing $1 U$, and continuing the process as in the former method.
1944. II. Of the Construction of intersecting Vaults on Groins. The forms of vaults may be so adapted to one another that the lines of intersection shall be in planes,
 and these planes the diagonals of the plan of the intersecting part of the vaults; if, however, they be not so adapted, the lines of interseetion will te curved on the phan, and these eurves it is necessary to ascertain in making both the moulds and the centerings tor executing the work.
1945. To determine the form of a vault to intersect with a gire: one in the plane of the diagonul. and also to find the dingomal rib fur the rentering. I.et the given vault be ElF (.fig. 630.) and AC and BD the diagonals, crossing in f. Draw f petpendicular to EF, cuting EF in c. In the are 1 F take any number of points a^{h}, and draw $a q, u$ parallel to If, cutting EF in d, e, and the diagonaliC in g, h. Draw f_{p}, $g q$. h_{r} parallel to LEF, cutting the base GH at m, n, o. Make $m p, n \eta$, or, each respectively equal to $c l$, drf, eb. Draw $f l^{\prime}$, $g k, h l$, perpendicular to AC , and make $f^{\prime} \mathrm{I}^{\prime}, g k, h l$ respectively equal to $\mathrm{cI}, d a, e b$. Mahe

Fig. 6.30.

Fig. 6.51.
$f g^{\prime}, f h^{\prime}$ each respectively equal to $f g$, $f^{\prime} h$. Draw $g^{\prime} k^{\prime}, k^{\prime} 7$ parallel to $f^{\prime} I^{\prime}$. Make $g^{\prime} k^{\prime}$ equal to $, / k, h l$ equal to $h l$; also make $m n^{\prime}, m m^{\prime} o^{\prime}$ each respectively equal to $m n, m o$. Draw the ares $p q r, p^{\prime} q^{\prime} r$, as also $\mathrm{I}^{\prime} k l, \mathrm{I}^{\prime} k l^{\prime}$; then, through the points thus found, draw the curves upon their bases AC and GH, and that on GII is the form of the intersecting vaults, and that on AC is the form of the angle rib. If the form of the given arch be that of a semicircle EIF (fig. 631.), let ABCD be the angular points of the plan, AC and I)B the diagonals, cutting each other at M. Draw MK parallel to G D, or CH eutting GII in N. Draw ML perpendieular to AC, and make ML equal to the radius of the semicircle. Then, with the transverse axis AC, and semi-conjugate axis MLL, deseribe a semi-collipse, which will be one of the angle rils, as required. Also make NK equal to the said radius; then with the lesser axis and the semi-greater axis NK describe the semi-ellipse GKII, which is the form of the other vault.
1946. The same racthod applies in fig. 632., where the narrow opening is a semi-cirele

Fig. 6.52.

Fig. 6.33.
and the wide one, consequently, a semi-ellipse, having its minor axis vertical and its major axis horizoital.
1947. When two circular-arched vaults of different heights intersect, to detcrmine the plan of the arrisses in which the arches meet. Let ABC (fig. 633.) be the arch of the main vanlt, and DEF that of the lesser vault; ACLO the plan of the main vault, and DPQF that of the lesser vault; and let the two vaults intersect eaeh other at the points 14 KNM . Also, let E be the middle point of the lesser semi-circular are DEF. Produce HD to v, and in the arch DE, take any number of points $r s$, and draw $r b$, $s a$, El parallel to DH. Draw $r t, s u$, Ev paralle to DF, eutting D v at the points $t u v$, and produce HC to G. In CG make $\mathrm{C} w, \mathrm{C} x$, CG respectively equal to $\mathrm{D} t, \mathrm{D} u, \mathrm{D} v$, and draw $u z, x y, \mathrm{~GB}$ parallel to AC , cutting the semi-cirele ABC in the points $z y \mathrm{~B}$. From the points 1 byz draw BI, $y a, z b$, parallel to CL. Then through the points Iab draw a curve, whieh will be one half of the plan of the arris. The other half will be found in ti:e same manner.
1948. The method of traeing the plan of the groins is the same (see fig. 634.) when the vaults intersect olliquely.
1949. To fino the plan of the intersections of two arches of the same height, and either of the sume or different species. Let the sections of the two arehes be ABC and DEF (fig. 6.35.), the anes AB, BC being equal to each other, and the anes DE , E F equal to each other ;

Fig. 634.

Fig. 635.
and let $\mathrm{H}, \mathrm{K}, \mathrm{N}, \mathrm{M}$ be the points where the two arches intersect each other on the plan. Divide either of the arcs BC or DE into parts, equal or uncqual; as, for example, in the are DE take any number of points r, s at pleasure, and draw ra, sb, EI perpendicnlar to D1 . Produce IID to v, and draw $r t, s u$, Ev, parallel to DF, cutting $\mathrm{D} v$ in t, u, v. Produce HC to G , and make $\mathrm{C} w, \mathrm{C} x$ respectively equal to $\mathrm{D} t, \mathrm{D} u$; and as the arches are equal in height, CG will be equal to Dv. Draw $w y, x z, \mathrm{~GB}$, parallel to AC , cutting the are BC in the points y, z, and touching it in B. Draw $y a, z b$ and BI parallel to $H \mathrm{~K}$, and through the points HabI draw the curve HabI, which will he half the plan of the groin as required. The other half IN and the other groin MK will be found in the same manner.
1950. To find the plan of the groins produced by the intersection of a cylindric and a conic vault, the angle of position of the axis, the diameter of the cylinder, and the plan of the conic vault being given. Let A B (fig. 636.) be the axis of the cylinder, CD that of the cone, C being the apex, and D the point through which the base passes. Through any point A in AB draw EF perpendicular to AB , and make AE and AF each equal to the radius of the cylinder, and draw EH and FI parallel to AB. Through D draw KM perpendicular to CD, and make DK and DM each equal to half the diameter of the cylinder. Join KC and MC, entting EH and FI in the points N, O, P, Q. Divide the semicircles FGE and KLM into parts, whereof the corresponding ones are equal to one another. From the points of division in the semicirele EGF draw lines parallel to AB ; and through the corresponding points in the semicircle KLM draw lines perpendicular to the diameter KMI, cutting KM. From the points of section draw lines to the apex C of the cone, cutting the former drawn through the points in the semicircumference FGE. Through each set of corresponding points draw a curve, and the two curves will represent the arrisses of the groin on the plan. If in an octagonal ground vault the octagonal range be cylinders, and the cross vaults, which tend to the centre, diminish to a line of the height of the vanlt, the following construction applies: - Let EFGHI (fig. 637.) be the exterior side of the vault, which is both equilateral and equiangular, and let JKLMN be the line of the exterior surface of the inner wall; so that the lines EJ, FK, GL, IHM, IN, which pass through every two corresponding angles, may tend to the centre O of the groin vault. Let the sections of the given ribs be PQR and STU, so that P'R of the rib PQR may stand at right angles to the sides EF and JK and the sic'e SU of the rib STU on the middle of the side FG. Divide the two bases Plk and SU in the same proportion, and through the joints of division in SU draw lines from the centre O of the ground vault to mect the curve S'TU ; and

through the proints of division in the base PR of the cross rib PQR draw lines parallel to Lif, to terminate in the line FK, and in the semicircle PQR. From the points where these lines meet $\mathbf{F K}$, draw perpendiculars on one side of FK, and make the heights of these perpendiculars respectively equal to the ordinates of the are PQR; and through the ends of these perpendiculars draw a curve FVK, which will be the angle rib. From the points of meeting in the line FK draw lines parallel to FG, and through the points of division in SU draw lines to the centre O, intersecting tlie former lines drawn from the points of division in FK; through the corresponding points of intersection draw the curves SBI, and KBU, which will form the plan of the angle.
1951. In single groins the centres are made for the widest avenue, and are covered over with boards (fig. 638.), so that the top of the boarls may form the surface required for

furung the arch upon the intersections; or the angles are found by the following practical method. The groins meet in the points I, C (fig. 639.), upon the boarding of the two groins. Place the straight edge of a board upon the point I, so as to range over the line GH on the plan Then set up another straight edge upon the point H, so as to be vertical, and the straight vertical edge will meet the horizontal edge; then apply a third straight edge to each of the other two straight edges, so that it may also come in contaet with the boarding. After this draw a line along this third straight edge upon the boarding as far as may be found convenient ; shift the moveable or third straight edge, and apply it in the same manner to another adjoining portion of the surface of the boarding. Proceed in the same manner until the whole line be completed on the surface. By this means, the necessity of laying down lines for the covering is avoided. The lines being thus drawn, ribs for the cross vaults are fixed on the top of the boarding; so that, making proper allowance for the thickness of the same, its surface, when fixed, may form the true surface of the other cross vault. The ribs fixed upon the boarding to form the cross vaults are called juck ribs.
1952. The mode of constrncting the curves by lines is shown for a rectangular groin in fig 640., in which A is the plan, 13 the elevation. Here, to find the pliant moulds for forming the groins on the surface of the boarding, and working the arch-stones, describe a semicircle on one of its sides, and divide it into any convenient number of equal parts. Draw lines perpendicular to the base or diameter, the semicircle being supposed to be within the piers; the ordinates will cut the diagonals : but if it be laid down on the outside, the ordinates must be produced until they cut the diagonals. From the points where the ordinates cut the curve, draw lines parallel to the other side of the groin, and produce the side on which the diameter of the semicircle is placed, and extend the semicircular are with its divisions upon any convenient part of the line thas produced. Thwough the points of division draw perpendieulars, so as to intersect with the former parallel lines; then through the points of intersection draw the curve, as shown at C , which will be the mould required.
1953. Sometimes several vaults meet in one common centre, as in fig. 641., which exhibits the plan of an equiangular and equilateral groined vault, constructed of semicircular arches.

Fig. 68.

Fig. 611.
1954. Where the piers supporting groins (fig. 642.) are made octangular, the angles of the groins should be cut off or arched as ribs, by which they are rendered much stronger than when they are square. In stone groins, where the arch is cut off, there is no advantage in point of strength, and rather a defect in poiut of appearance, to the groined angles.
1955. Arches intersecting a coved ceiling are similar to groins. Such arches are called lunettes, and are generally practised for semicircularheaded windows piercing the coves in the ceiling: fig. 643. exhihits a plan and section of such arches.
1956. A dome is a solid, which may be conceived to be generated by the figure of the b see diminishing as it rises, till it beeomes a point at the summit; and when a dome has a polygonal base, the arches are plain arches, and the construction is similar to that of a groin. A domed ceiling of this kind upon a rectangular plan is shown in plan B ($f i g .644$.); the sections A A being elliptical in the top, and with lunette windows. C shows the geometrical construction.

Fig. 612

Fig. 614.
1957. When wches intersect an inclined rant, and the projections of the arrisses cross sach other at right angles, and the angle of elevition of one of the semicircular rertical ribs of the ascending rovenue or opening is given to olitain the geometrical construction; so that the cross arches may be cylindrical surfuces.
Draw the straight line $A 13$ (.fig. 645.) to represent the axis of the inclined vault, and draw CD perpendicular to AB. I'roduce CD) to e a.ad h; make $A C$ and $A D$ each equal to the radius which forms the edges of the ribs; draw $h \mathrm{~N}$ parallel to AB , and make the angle $\mathrm{N} h o$ equal to the inclination of the axis represented by its plan AB. In the line ho take any point p, and draw $q r$ parallel and $p s$ perpendicular to $h \mathrm{~N}$. Make ps equal to AC or AD , and through s draw Lt parallel to ho. Draw $p^{m u}$ perpendicular to L t, entting it in u. Produce $p u$ to v. S.t the circumference of the inclined vault from u to r, divided into the equal parts $u, 1$, 1,$2 ; 2,3 ; 3 v$, at the points $1,2,3$. Divide each of the quadrants $q s, s r$, into the same number of equal parts at the points $1,2,3$, and through these points and in $u v$ draw $1 a$, $2 \ell, 3 c$ parallel to $v t$, and through the points $1,2,3$, in the curve $q s$, draw iL, $1 a, 2 b, \Omega e$, parallel to $p u$. 'Through all the points

Fig. C4\% L, a, b, c draw the curve Labcr, and this will be the pliable mould for forming the angle or groin over the plan, and for working the areh stones. Draw $\mathrm{D} k$ parallel to Az . Let E : divide the eircumference CED into the two equal parts EC, FD ; divide the ares DE, EC into the same number of equal parts as $u v$ at the points $1,2,3$, and draw $1 u, 2 x, 3 y, E \cdot$, parallel to AB ; also through the points $1,2,3$ in the quadrant $q u$ draw $g k, 1 u, 2 r, 3 y, u z$, perpendicular to $y \mathrm{~N}$; then through the points k, u, x, y, z, draw a curve, which will be the flan of the groin whereof the stretch-out is Labco. In the same manner the other half of the plan will be found, as also the whole of the other parts.

19:8. The furm of an arch crossing an inclined groined vault at right angles. and the phen of the diagonal ribs leing given; to find the arch of the level vault. Let $\mathrm{A} \mathrm{B}, \mathrm{BC}(f i g .646$.) be the plan of the axis of the vaults. Through any point A in AB draw D F perpendicular to A 13, and make AD and AF each equal to the horizontal breadth of the vault. Draw DG and FHI parallel to AB ; draw also any line LK parallel to AB, eutting $13 C$ in C , and make the angle KII, equal to the inelination of the axis represented by its plane AB. Nake CM and CK equal to the breadth of the level vaults; draw KG and MN parallel to BC, and let MN cut DG in N, and FH in 1'. Daw the diagonals I 'G and NH. Produce $G K$ to cut IL in L, and NM to eut 11 , in Q. In the curve DEF ${ }^{\text {a }}$ take any number of points u, is \therefore ant draw ad, be, of parallel to AB, eutting DF in the points p, q, r, and the diagonal Gl' in d, e, f, and the diagonal IIN in the points $d^{\prime}, e^{\prime}, f^{\prime}$. Produce BA to E, draw dl , em, fin, Bo parallel to BC, cutting QL. in the points g, h, i, k; make $g l, h m, i n$, tio equal respectively to $\mathrm{pu}, q^{h}, r c, A \mathrm{~F}$; then through the points l, m, n, o, draw the curve QoL. Draw HlR perpendienlar to NH, and make HR equal to KL, and join NR; then will IIR be the line of ramp for

Fiv 516. the diagonal rib over its plim 11 N . Perpendicular to IIN, draw $d v, e^{\prime} w, f y$, , 3 G eutting the line of ramp RN in the points s, t, u, v. Dake $s r, t w, u y, v \mathrm{G}$ respectively equal to $p u, q^{h}, r c$, AE. Then through all the points v, u, y draw a curve, which will be the angle rib standing over IIN, and which will also serve for the angle rib standing aver GI'. All the groined vaults continued in the same range may be constructed by the same moulds.
1959. To make the working drumings for a semacircular arch with a straight fuce, and to describe the moulds for the romssoirs. This simple case will serve as a rule for those following; hence the explanation should be perfectly understood, as all the other eases difler
from it only according to the different kinds of arches to be constructed; such as the bevellers arch, that in a battering or sloping wall, and that on a circular wall.
1960. Dran two lines (fiy. 647.) perpendicular to and crossiug each other, as 13A, G1) From the point E, as a centre, describe the sofite curve AC13, and the extrados or upper curve FGH. Divide each of these ares into two equal parts, as the dotted are alc. Draw LM parallel to AB , and make the distance $A^{\prime} \mathrm{L}$ equal to the thickness of the wall wherein the arel is to be constructed. Draw the outer and inuer lines of the plan F'K, A L, B'M, IIN parallel to CD. Divide the are ACB into the proper number of equal parts for the arch stones or voussoirs, suppose five, by the joint lines 1 , 2, 3, 4; from the point E draw the joints $1-5,2-6,3-7,4-8$; then from every point where the joints cut the ares ACB, FGH, \&e. draw the perpendiculars cutting the line KN , as $8 d, c \mathrm{M}, 4 f, 7 g, h i, 3 k, 2 l, m m, 60$, $p, a \mathrm{~L}$, and 5 s . Divide the sofite of each voussoir AI, 1-2, 2-3, \&c. into two equal parts t, u, v, u, from which also let fall the perpendiculars $t \mathrm{Y}, u \mathrm{X}$, $v \mathrm{~V}, w^{\prime} \mathrm{T}$.
1961. To draw the moulds of the sofite below NK. Draw the line OP parallel to the line KN; prolong ED to Z and make the distance $Q Z$ equal to ED. Through Z draw RS parallel to OP, and on cach side of QZ lay ofl the distances $\mathrm{C} 3,3 v, v 4,4 u$, and $w \mathrm{~B}$ respectively on $\mathrm{Q} x, x y, y a, a l$, and $b \mathrm{P}$.

Fig. 647. On the other side lay off $\mathrm{C} 2,2 u, u 1$, It and $t \mathrm{~A}$ on $\mathrm{Qc}, c d, d e, e f$, and $f \mathrm{O}$. Through the points O, e, c, x, , let fall on RS the perpendiculars OR, ea', $c d^{\prime}, u c^{\prime}, a d$, , 'S, and through the points f, d, y, b let fall the perpendiculars from the middle shectings $f e^{\prime}, d f^{\prime}, y g^{\prime}, b h^{\prime}$; the distances of the dark lines give the breadth of the sofite of each stone in the sofite curve.
1962. To draw the moulds of the joints: lay off the distance 1-5 on eg, ch, xi, ak, and through the points ghin draw the lines $g q, h l, i m, k p$, parallel to QZ. To find the middle of the joint divide the distances eq, ch, $x i, \alpha n$, each into two equal parts, as in $k^{\prime}, m^{\prime}, g^{\prime}, s$, through which draw the lines $k^{\prime} t, m^{\prime} n^{\prime}, q^{\prime} r^{\prime}$, st parallel to QZ.
1963. The elevation is a section of a hollow eylinder, of which the coneave or interior surface forms the intrados of the arch, and the convex or exterior surface the extrados, and of which the cutting plane of the section is perpendicular to the common axis of the eylinder.
1954. The angles of the stone are found from the angle which the are of this section makes with any joint, and the curving of the solite of the stone is found by a ruler or mould, the ellge of which is made to the curve. The ends of the sofite are found by its developement.
1965. When the stones are shaped according to the moulds, and joined together in consecutive order, the whole mass, thus united, will form the solid arch as required.
1966. These separate operations being properly attended to, every difficulty will be removed, and no confusion will arise during the process, which can, in any degree, tend to perplex the delineator.
1967. To find the bevels and monlds fir the joints and sofites of an elliptical arch catting obliquely through a straight wall, the joints radiating to the centre of the opening. Draw the axis EN of the arch (fig. 648. , and therein take any point 1;, through which draw AB perpendicular to EN; make EA and EB each egual to half the space of the extratios or centre line of the arch; also make EC and EI) each equal to half the span of the inner areh. Produce the diameter NE to G;

Fig. 618.
make EF egual to the height of the inner arch and EG equal to the height of the muer arell. On the major axis AB , and semi-minor axis EG, deseribe the semi-ellipsis AGB, which is the extrados of the areh. Also, on CD as the major axis, and EF the semi. minor axis, describe the semi-e!lipsis CFD.

196s. Nake the angle ABII equal to the angle which the wall makes with the right section of the arch, and let BH cut the axis in K. Draw ML at such a distance from BII that they may comprehend between them the thickness of the wall, and let ML, cut the axis in \mathbf{N}. The intrados of the areh on the one side of the wall is Ol'R, and the extrados is LQM ; they are both ellipses respectively of the same height as the intrados and extrados of the right areh, but with the axes OKi and LM.
1969. To find the berel of the angle of the arch stomes corresponding to the joint ab tending to the centre E . Deserihe the are be from E with the radius E b cutting $\mathrm{A} B$ in c. Draw by parallel to EN cutting BHI in g, and draw cel parallel, and g f perpendicular, to EN , and join K d: then Ekd is the angle or bevel required (fig. 648.)
1970. The sofite of the arch is drawn according to the general prineiples of developement
1971. To make the working dracinys for an arch in a sloping z"all, as, for instance, un aren in a terrace wall. To draw the elevation; from any convenient point o in the line AB (.fig. 649.), describe the are of the intrados s? ' ' f ' and the are of the extrados AQB: di- $/$ vide each of these ares into odd numbers of equal parts (for the arch stones in this example five), and draw the joints $k q$, , h, , k, ek. For the plan of the are of the intrados draw $A R$ prependieular to $A B$, and draw the line of slope or batter AS. In the are of the intrados take any number of points bed, \&e. and draw the lines $b b, c c$, intersecting A l in the points $1,2, \&$. . and meeting the line of batter AS in the points bc. Draw (I) parallel to $A B$, and at any convenient distance from it draw aubece perpendicular to CD, intersecting it in the points e, l, m, n. \&e. Find the points $b^{\prime}, c^{\prime}, d$ in the straight lines $b c, m u$, $n x$, such that the distance of those points from the line ED may be respectively equal to the intervals $1 b, 1 c$, \&c. between the perpendicular AR and the line of batter AS, and draw the curve $a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime}$, which will the the plan of the are of the intrados. In the same manner the curve EghikD may be described; which being done, the plan of the are of the extrados will be obtained.
1972. T', find the moulds of the sofites anel beds. Draw any straight line Ill in a separate place, and extend the are of the intrados abcdef upon the line HI from II to I;

Fig. 649. divide it into the same number of parts that the are $a l^{\prime}$ ' f of the intrados is divided into (in this instance five), and mark the points of division $l^{\prime}, m^{\prime}, n^{\prime}, c^{\prime}$. Transfer the distances $e a^{\prime}, l b^{\prime}, m c^{\prime}$ between the line C1) and the plan of the are of the intrados, to the perpendiculars $n^{\prime \prime} a^{\prime \prime}, l^{\prime \prime} b^{\prime \prime}, m^{\prime} c^{\prime \prime}, n^{\prime \prime} l^{\prime \prime}, c^{\prime \prime} e^{\prime \prime}$, and through the points $a^{\prime \prime} b^{\prime \prime} c^{\prime \prime} d^{\prime \prime} e^{\prime \prime} f$ " draw a curve, which will be the developement of the are of the intrados. I'roduce the lines $l^{\prime \prime} b^{\prime \prime}, m^{\prime} c^{\prime \prime}, n^{\prime \prime} l^{\prime \prime}$, to $v^{\prime \prime}, w^{\prime \prime}, x^{\prime \prime}$, and transfer the distances $b c, c^{\prime} u$, $d^{\prime} x$ from the plan to the sofite on the lines $b^{\prime \prime} v^{\prime \prime}, c^{\prime} w^{\prime \prime}, d^{\prime \prime} x^{\prime \prime}$. Draw $g a^{\prime}, h b^{\prime}, i c^{\prime \prime}, k l^{\prime \prime}$ perpendicular to HI ; transfer the distances $g^{\prime} a, h^{\prime} b, i^{\prime} c$ from the plan to the sofite upon $g u^{\prime \prime}, h b^{\prime \prime}$, $i c^{\prime \prime}$, and join $a^{\prime \prime} v^{\prime \prime}, b^{\prime \prime} w^{\prime \prime}, x^{\prime \prime} c^{\prime \prime}$, which wiil complete the moulds of the joints.
1973. To make the draurings for an oblique arch by an abridged methenl. The following method is said to be abridged, because, by one very short operation the monlds of the sofites and joints are found within the plan of the areh ABDC (fig. 650.). Divide A13 in E into two equal parts. and draw EF parallel to AG. From the point A draw AG perpendieular to AC; prolong DB to G; divide AC into two equal parts in the point 11. From II, as a centre, describe the are AFG, which divide into vonssoirs, and draw the joints from the centre II. Draw lines from each sofite parallel to EF, and below the line CI): the moulds for the sofites are comprised between the parallels of the hey, and those of the joints are traced on the sides of the plan, as follows : -
1974. To, find the moudds of the sofites. Through the point Q draw QN parallel to Gill. To find on RS the point N, through the point K draw K L also parallel to (ill. To find on (QT the point 31 , and on RS the point L , dran the front line of the second solite

MN, and the front tine of the first lL. The bick of tl is sheeting sofite is found by the same operation below the plan. The mould of the key is formed by two lines RS, QT, and the front and back lines of the plan AB, CD ; the two moulds of the sofites NMTS and LiXV serve to trace the two stones on each side, observing only that the lower arrisses of the sotite on the side AC become those of the top on the side BD ; or that the under arriss of one side may be that on the other side by reversing the mould, which will have the same effect.
1975. To find the moulds of the beds or joints. Prolong NQ to meet DG, to find the point P, and through it and the point E draw the front of the second joint P.2; prolong LM to GD to find O , through which and the point E draw the front of the joint O3. Proceed in the same manner to find the backs of the other joints, which are sufficient also to trace the stones by reversing them. It is not absolutely necessary to cut out the moulds of the sofites and joints, but the angles may be taken by bevels and applied to stones. The heads are prepared, as usual, with the moulds of the heads of the straight are. It must be observed, that in this arch the face or

Fig. 650. front differs from a straight arch, being formed by different sections of a cylinder.
1976. To find the monlds for an oblhue arch, wherenf the front slopes and the rear are per. penticular to the axis. Let $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{GH}$ (fig. 651.) be the plan of the imposts. From the point a, as a centre, describe the ares ACB, DRI, which divide into five or more equal parts for the arch stones. Draw the joint lines from the centre, and the perpendiculars from the joints below the line AB. Fron the summits of the perpendiculars, draw lines paraliel to AB, to terminate in the perpendicular DF: From the point D, as a centre, describe ares from the points which terminate in DF, to mect the line of slope DE in the points m, l, k, E. Draw the lines $m r, l s, k t$, EF parallel to AB, meeting the perpendicular DF in the points rotN; tranfer the distances $r m, t k, u \mathrm{P}$ from n to b^{\prime}, from o to c^{\prime}, from ' a^{\prime} to s^{\prime}, and through the points $A^{\prime} b^{\prime} c^{\prime} d e^{\prime} e^{\prime} B^{\prime}$ daaw the curve. Find the extrados or outer line Dfghi in a mamer simatar to that in which the inner curve has beenfound. Draw the points $b^{\prime} f^{\prime \prime}$, $c^{\prime} q^{\prime}$,

Fig. 651. $d^{\prime} h$, e^{\prime} i. Prolong AII and BG to K and L, and draw the lines $b^{\prime} b, c^{\prime} c$, $l^{\prime} d$ parallel to AK.
1977. To make the struight arches. Draw KL perpendicular to $\mathrm{A}^{\prime} \mathrm{K}$, and prodnce K L to f^{\prime} and g^{\prime}. Transfir the distances between the points m, l, k, E, and the line QD to the ordinates of the lower are from b to v, from c to w, from d to x, and from e to y, and draw the curve $\mathrm{X} v w_{x y} \mathrm{~L}$. Also find the outer curve in the same mamer, and draw VT at right angles to AH.
1978. To find the moulds of the sofites. Draw the line WX (fig. 652.) in any convenient surface, and lay the breadths of sotite, not from the are ABC as before, but from those of the right are $\mathrm{K} v w \cdot \mathrm{r} y \mathrm{~L}$, that is, tran fer the distance $\mathrm{K} v$, $u \cdot w, w x, x y, y \mathrm{~L}$, to the line WX upon Wa, $a b, b c$, cal, and $i \mathbf{X}$. Through the points Wabed \mathbf{X}, draw the lines $d y$, ei, $f k$, $g l$, $h m, y z$, pervendicular to

Fif 0.5%

WX. Transfer the distances $1 \Lambda, 2 b^{\prime}, 3 e^{\prime}, 4 d^{\prime}, 5 e^{\prime}$ upon the perpendiculars to $W \mathrm{X}:$ that is, from a to e, from b to f, from c to g, from d to h, and from \boldsymbol{X} to y, and join $d e, e f ; f g, y i t$, $k y$. In the same manner draw the line yiklmz, which will complete the sufites.
1979. To find the moulds of the joints. Transfer the distances $v \beta, w \gamma, x \delta, y \in$, to the line XW from a to α, from b to β, from c to γ, and from d to δ, and through the points, $\alpha, \beta, \gamma, \delta$ draw the fines $n r$, os, $p t$, δu perpendicular to WX. Find the points n, o, p, q, as also, r, s, t, u, ats
 must be observed that the boundaries, or extrados and intrados, 1)RI, ACB of the ring of the arch, do not stand in a plane perpendicular to the plan, but are supposed to be the lines which are drawn on the wall itself; and this is the reason why ares are described between the perpendiculars DF and the line of slope DE. It must also be observed, that the voussoirs of this arch must be cut by the moulds of the heads of the straight arch, and the moulds of the sofite must be applied on the voussoirs before the sofite is hollowed. Thus, let the first vonssoir on the right hand be cut by the head monld on that face of the stone intended for the sofite; apply the first sofite mould, and its upper bed the first joint mould, and on its under bed the plan of the impost. Then eut the two heads according to these monlds, and hollow the sofite square to its arrisses using for this purpose the curved bevel.
1980. To find the mon'ds for executing a scmicircular-headed areh in a mass of masonry, of which one of itss faces is a battering plane ujon an oblique plan, and the other opposite face a portion of a cylindric surface. Describe the intrados and extrados of the elevation ; draw the joints and describe the plan a'b'c'd'e f^{\prime} of the intrados (fig. 653.), and the plan $\mathrm{E} g^{\prime} h i^{\prime} k k^{\prime} \mathrm{D}$ of the extrados. Draw IBR perpendicular to AB , and draw BS', the portion of the cylindric surface. From the are BS draw the plan a' $a^{\prime} m^{\prime} n^{\prime} o f^{\prime \prime}$ of the intrados upon the line TU, and the plan ' $\Gamma p q^{\prime} r^{\prime} \mathrm{S}^{\mathrm{U}}$ of the extrados in the same manner from the are BS , as the plan of the plane face was drawn from the line of slope AS.
1981. To find the plan of umy joint, as that for the line or joint $c h$ in the elevation. lisect ch in v, draw $\mathrm{em}, ~ r w^{\prime}$, and $h q^{\prime}$ perpendicular to AB , intersecting the lam VD in the points quc. From the points $c \cdot h$, in the joint ch, draw ec, $v u, h h$, meeting the line AS in the points cuh, and intersecting the line AR in the points $1,3,2$ by three intervals, $1 \mathrm{f}, 3 r$,

Fig. 6:is. $2 h$. Find the phaces hec of the three points hec on the elevation. In the same manner find the places $q^{\prime} u^{\prime} m m^{\prime}$ of the three corresponding points; then will $c^{\prime} v h^{\prime} q w^{\prime} m^{\prime}$ be the plan of the joint required. The plans of the other joints will be found in the same manner.
1982. To find the joint mould itself. Draw the line III (fig. 654.) equal in length to the developement of the intrados, and let He be the developement of the arc ac; draw $\mathrm{cm}^{\prime \prime}$ perpendicular to HI. Draw any line WX in the plan parallel to VD, intersecting the lines $c^{\prime} m^{\prime}, v^{\prime} w^{\prime}, h^{\prime} q^{\prime}$, in the points $1,2,3$. Draw $W^{\prime} \mathrm{X}^{\prime}$ in the developement or sofite parallel to HI, and at the same distance from HI that WX is from V1) in the plan, and let WX intersect the line $c^{\prime \prime} m^{\prime \prime}$ in 1. Make the distances $1-2,2-3$ respectively equal to $c v, r h$, in the joint $c h$ in the elevation, and through the points 1, 2,3, just found,

Fig. 6.54. draw VW, $h^{\prime \prime} q^{\prime \prime}$, parallel to $\mathrm{C}^{\prime} m^{\prime \prime}$. From the plan transfer the distances $2 v^{\prime}, 2 u^{\prime}, 3 h^{\prime}, 3 q^{\prime \prime}$ to the sofite from 2 to V , and from 2 to W ; also from $s h^{\prime \prime}$ and from 3 to g the points $c r p^{\prime \prime}$ will be in a straight line, because they correspond to the straight face of the wall, and the points $m^{\prime \prime}, w, q^{\prime \prime}$ will be in a curve, becanse they correspond to the cylindrie surfare. Draw, therefore, the straight line $c^{\prime \prime} h^{\prime \prime}$, and draw the curve line $m^{\prime \prime} e^{\prime \prime} \eta^{\prime \prime}$, which will be a portion of an ellipsis, differing in its curvature lint in a very small degree from that of a circle drawn through the same three points. However, if more exaetness be rerguined, we may find as
many points in the joints of the surface of the wall and in the cylindrie surface as we please; there " " m " $p^{\prime \prime} h^{\prime \prime}$ is the joint required, which serves for the upper and under beds of the two stones that unite together in that joint.

1943 . Find all the other joint moulds $b^{\prime \prime} l^{\prime \prime} p^{\prime \prime} g^{\prime}, l^{\prime} n^{\prime \prime} v^{\prime \prime} t^{\prime \prime}, e^{\prime \prime} o^{\prime \prime} s^{\prime \prime} k^{\prime \prime}$, in the same manner, abel tind the points $a^{\prime \prime} f^{\prime \prime}$ in the developement. Through the points $a^{\prime \prime} b^{\prime \prime} c^{\prime \prime} d$ ' $e^{\prime \prime} f^{\prime \prime}$ draw a curve line by hand, or by a ruler bent to the points, and this will be the front curve of the so ite. lind the points $k^{\prime} p^{\prime \prime}$ in the developement corresponding to the points a^{\prime} and f on the plan, and through the points corresponding to the points a and f on the plan, and the points $k l^{\prime \prime} m^{\prime \prime} n^{\prime \prime} o^{\prime \prime} p^{\prime \prime}$, draw another curve, which witl be the developement of the other side of the sofite. The developements of each of the parts of the sofite and of the two adjacent joint moulds give the three moulds for working one stone and the adjacent joints of the stone on each side of it. The angle which each of these joints makes with the softite is fonnd by making a bevel with one of its elges, circular for the intrados of the are of the elevation, and the other to coincide with the joint line adjacent.
1984. To find the mundds for executing "yateway in the quoin of a sloping wall. Let A BCD (fig.655.) be the plan of the angle in which the arch is to be constructed, whereof AB is the span. Draw the centre line EL, to which draw the perpendicular FG . Prolong the line CA to F , and DB to G ; then from the point L , as a centre, describe the sofite FIIG and its extrados. Divide these ares into equal parts for the arch stones, and from the divisions let fall perpendiculars, and also from the middle of the sofites to EC, ED. From the summits of the perpendiculars draw lines parallel to FG terminated by the lines of slope Sut off the slope at the different heights $a_{1}, a_{2}, a 3, a 4$ respectively at right angles to the lines on the plan, on $d 1, b 2, d: 3, b t$, $\mathbf{K} 5$; also on the opposite side lay $a 2, a 4$ on $d 2, b 4$; then on one side draw the curve $A b b \mathrm{~K}$, and on the other, to abridge the work, join $\mathrm{B} b, b b, b \mathrm{~K}$. Again, for the outer curve, or extrados, set off $c 1, c \mathcal{2}$, " G on $d i, d 2$, N 3 . On both sides draw the curve Mado on the one side, and to abridge the labour, draw the straight lines ()., , $d, 1, d \mathrm{~N}$.
1945. To find the moulds of the sufites. Draw the line 1'Q (fig. 656.), on which lay the are of the sofite FllG in the nsual

Fig. fi:5. mamer, making the points $1,2,3$, which correspond to the points dividing such arc into equal parts; then on the lines of the sofite lay the distances FA, $f b, g b, h b, \mathrm{LK}$, on PR, $1 k, 2 l, 3 m, 4 m, Q S$, and trace the front curve of the solite $\mathrm{R} / \mathrm{k} / \mathrm{mn} \mathrm{S}$. Also repeat the same on the other side where there is only a straight line drawn from one sofite curve to another.
1986. To find the buck curve of the sofite. Lay the distances eo, $f_{p}, g q, k r$, LE on P'T, $10,2 t, 3 u, 4 c, \mathrm{QU}$, and trace the curve Totur U .
1987. To find the moulds of the leds or juints. The

Fig. 656. sofite lines to which the beds belong are $2 t$ and $4 v$. Draw the straight lines $c b$, fil parallel to QU , respectively distant from $2 t, 4 v$ by the breadth Gl of the joint, and let the lines be, $f d$ meet $\mathrm{P}(\mathrm{Q}$ in e and f; make era equal to $g d$, and $a b$ equal to $d w$, and join $a l, b t$; make $f c$ equal to $h d$, and $c d$ equal to $d x$, and join $n c, r d$. 'To trace the stones by moulds, prepare the voussoirs with the head of the moulds of the straight arch FHG. The sofite should be hollowed in each voussoir by its particular mould: the rest is done as usual ; but it must be observed, that if the sofite moulds are made with straight lines in front and near the sofite, it must not be hollowed till the last. The voussoirs may be worked by bevels, preparing the stones by the phans ACVM, BDWO, as for common imposts. Although the arch in each front lie not absolutely neecssary here, we shall give the method of constructing it. Let the line mn be drawn apart, on which lay the distances L5, L4, L $2, \mathrm{~L} A$ on the lines $n s, n q, n o, n m$ square to mm. Draw the perpendiculars op, gr, st, on which lay the heights of the joints of the straight arch taken on the line of slope; that is, lay 19 , on op, $140119 r$, I5 on st, ind
draw the line $n t$, which is the slope. Then draw the chirve mprt, and from the point u draw the joint lines $p v$ and $r \mathbf{X}$. The centre of this gate is represented (in the upper part of the diagram) with voussoirs, and the keystone placed behind to show the mitre of the centre. The sofite moulds serve for curving the ends of the stone where the intrados meets the surface of the two walis. It must, however, be observed, that, previous to the application of the sotite mould, the concave surface of the intrados must be formed by a mould with a convex edge, and then the solte mould or monlds of developement must be bent into the hollow, so that the two parallel edges may coincide with the corresponding edges of the stone. The angles which the intrados makes with the joints are taken from the elevation of the face of the areh. This elevation is no more than a section of the arch perpendicular to the axis of the cylinder which forms the intrados.
1985. To construct a semicircular-headed arch in a round tower or circnlar acall. Let A1BDC (fig. 657.) be the plan of the tower. Bisect the are AB, and through the point of bisection draw EF parallel to the jamb line AC or BD. Through any point a in EF draw GH perpendicular to EF. Produce the lines CA and D) to meet GH in the points G, H, and GH will be bisected in a. From a, as a centre, and with the radins $a G$ or $a \mathrm{H}$, deseribe the semicircular are GFH. Also describe the are of the extrados and divide the ares each into five equal parts, and let fall the perpendiculars of the joint lines, and those of the middles of the sofite curves to the inside circular line CED of the tower. Having extended the ares of the intrados curve on the line 1 K , and having drawn the lines of the sofites and those in the middle of each sheet as befure directed, lay olf the distances between the right line GII and the circular outside line $A b B$, viz GA on IX and on $\mathrm{K} Z, c d$ on $e f, \mathrm{Vg}$ on $h i, \mathrm{~S} h$ on $l m, \mathrm{M} n$ on $o p, a b$ on $q r$; then trace the front curve on the sofite $\mathbf{X r} \mathrm{Z}$. To find the tear curve, lay GC on IY, $c \mathrm{C}$ on $\mathrm{eS}, \& \mathrm{c}$., by which the rear curve will be obtained.
1989. We do not consider it necessary to pursue the construction of the moulds, the operations being very similar to those already given in the previous examples.

Fig. 657.
1990. To find the moulds for an oblique scmicircular arch in a circulur tower. The construction of this differs from the preceding only in the bevel or ollliquity of the tower; hence it reguires no particular description ; only observing, that the bevel causes the monld to be longer on one side than on the other (sce fig. 6.5\%.), as is evident from the plan; therefore the distances taken between the right line AB and the cireutar line of the tower CDE, being unequal, must be transposed each on its particular line of the monld and joint to which it cor responds in the solite, that is, the distance AC must be laid on FG, BE on HI, and so of the rest. To work the stones, dress the beds, then apply the proper moulds and cut the head and tail circular as before. Trace the breadth of the solite on the upper bed, then hollow the sofite, and eut the joints by the bevel.
1991. To construct on oblique arch in a round sloping tower intersecting a semicircular areh within it. This is nearly the same as the two preeeding cases. On one side draw the line of slope (fig. 659.) A13, and on the other the are CD. Draw parallels from the divisions of the sofites and their middles, as in the figure, in order to cut the line of slope and are. To work for the slope, set off all the retreats comprised between the perpendieulars AH and the line of slope AB on the perpendiculars of the sofite, square to the front line of the tower F 19 G , as follows: Transler the retreat $9-10$ on 19-20 by placing the com-

FH. Ci5s. passes so that the line $19-20$ would pass though the centre of the tower, and the point 20 fall on the centre of the gate $\mathbf{O}-75$, and $7-6$ on $17-18$, and on $21-22$ in the same mamer (only terminated by the lines
from the sufite instead of the centre line of the arch), set also $5-6$ on $15-16$, and on 23-24, 3-1 on 13-14 and on 25-26, and lastly 1-2 on 11-12 and on 27-28, and through these points trace the sofite $28-20$ -11. The extrados is found in like mamer, nod the middlles of the joints $47,49,53$; which done, draw the plan of the joints $14-47-35$, 18-19-37, 22-51-39, and 26-53-11.
1992. To find the curve of the plan which serminutes the tuils of the moulds. Set the projections of the huttress of the semicircular arc at right angles to the inside line of the tower ; viz. 64-65 on 74-75; 62-63 on $79-73$ and on $76-77 ; 60-61$ on $70-71$, and on $78-79,58-59$ on 68-69. and on 80-81; $56-57$ on $66-67$ and on $82-83$; then trace by hand the curve 83-75-66. The curves of the extrados and joints are found in the same manner.

Fis. G59.
1993. To find the moulds of the sofite. Draw the line of direction $94-84$ (fg g .660 .) as before, below which set off the distances I-11 or 84-85, K-1 2 on 86-87, L-14 on $88-89, \mathrm{M}-16$ on $90-91, \mathrm{~N}-18$ on $99-93, \mathrm{O}-20$ on $94-95$, and then trace the front of the sofite moulds $85-95-99$. 'lo find the rear, set $1-66$ on $84-33, \mathrm{~K}-67$ on 86-36, L-69 on 88-100, M-71 on $90-98, \mathrm{~N}-$ 73 on $92-97,0-75$ on $94-96$, and trace the rear curve of the mould 101-96-33.
1994. To find the moulds of the joints. Transfer I'-19 on $31-54, \mathrm{Q}-37$ on 32-48. I- 47 on $42-52$, li-35 on 43-40, and through these points trace the liront joint or bed moulds $93-54-48$, 89-92-40.

Fig. 660. To find the rear, make $31-50$ equal to PV, 32-38 equal to QX, 42-46 equal to IT, and 43-34 equal to RS; which done, trace the curve lines $97-50-38$ and $100-46-34$. The two other joints are found by the same method. We do not consider it necessary further to multiply examples of the kind here given : the latter sort, especially, 1 arely oceur in practice; and if they should, all that will be necessary to master the operations will be the application of a little thought and study.
1995. III. Of Dome V'aulting. In whatever direction a hemispherical dome is cut, the section A is always the same. 13 represents one half (see fig. 661.) of the same in the plane of projection. The construction is sometimes such that the plan is only a semicircle, as B , as in the termination of the choir of a church: in which case the lrench call it a cul-de-four ; with us it is called a semi-dome.
1996. Through the extremities of the joints, and through the middle of each sofite of the section A, let fall on the line $a h$, perpendieulars, whereof all the distances $d c$ from the centre c will be the radii of the ares, which will serve for the developement of the sofites, of the joints, and for the construction of the arch stones. The method which follows, thougin it will not perhaps give the sofites and joints strictly aceurate, will do so sufficiently for all practical purposes. Upon the developement C make SC equal to the are $M D \mathrm{DGC}$, then set out to the right of the points of divivion the parts S'I: equal to st on the plan B; then raise through the points 'I
 upon the line $S($: perpendiculars equal
to the correspondents e, t, d of the plan B , and draw the eurve ESD through the points so fonud.
1997. The sofites are terminated by four curves, whereas the joints have two right sides, as DI, Et, and DO, EO, and two cursed sides, as II, DE, and OO, DE; the widths DI, DO of the joints are equal to DI, GE of the section; in one direction they are eurved only one way, but as respeets their sobtes they are so in every way. The heights of the voussoirs are given by the section A, their bases on the plan B Thus G, I, in the voussoir next the keystone, being the most opposite points, the base of it on the plan will be compriserd between the two ares dte, which answer to the perpendiculars let fall from G and I . The base of the first voussoir, aecording to the first method, will be equal to the surface comprised between the are aof and the are dse, whieh answers to the perpendicular let fall from the point D.
1998. EF and GH are the diameters of the upper and lower bases of a truncated cone, whose lower surface is hollowed out spherically. After working the voussoirs, so as to make their bases such as we have just indieated, they must be worked to solite moulds for giving them the hemispherical form of the section; after which the angles of the moulds are joined by ares parallel to the arrisses of each stone, or by applying a general mould of the form of the section, that is, circular, of the radius of the dome.
1999. For the pendentives formed in an hemispherical dome. The piers D and E are supposed those of half the dome pierced by the pendentives. If we suppose the face or elevation B (fig. 662.) to make one quarter of a revolution about the point A , we obtain the elevations B and C. Through the points of division on the elevation C draw to the are AD right lines perpendicular to CA. On the extremities of these lines upon CA, and from C, as centre, deseribe ares in the plan F, by which the plan of the projection on F is obtained, whose intersections with the right lines drawn from 13 will give the joints and faers for the level beds. The lines IIV, FE, ED are right lines. The spaces GAEF, FHIK are pieces of cylindrical vaulting, so that the only difficulty is in joining to each of their voussoirs their correspondent parts in ELAHHEE.
2000. The elevation B gives the height of the voussoirs;

Fig. 669.
their bases, as seen in the preeeding example, will be OPQRNO, GSTUVKFG. The length of the keystone will be X Y , and $u-\mathrm{A}$ will be half its width.
2001. The part F2R is the plan of the springing stones of the pendentive in the elevation A. The remaining parts of the constrnction are sufficiently shown by the lines of the diagram, which will be understood by the student if he has previously made himself acquainted with the previous portions of this section.
2002. We should willingly have prolonged this part of our labours, if space had permitted us to do so without saerificing other and important objects. If the subject be one in which more than the ordinary practice of the architect is ealled upon to put into execution, we refer him to Simonin, Coupe des Pierres, Paris, 1792, and Rondelet's Art de Bâtir, which we have used with much freedom, and in which many more interesting details will be found than we have thought it absolutely necessary here to introduce, though we belicve we have left no important point in masonry untouched. We cannot elose this section without paying our tribute of respect to the masons of this country, who are among the most intelligent of the operative builders employed in it. A very great portion of them are from the north of the island, and possess an astuteness and intelligence which far exceeds that of the other classes of artisans. We must not, however, altogether do this at the expense of those employed in earpentry, which will form the subject of our next section, among whom there will be found much skill and intelligence, when the architect takes the proper means of drawing it out; and we here advise him never to be ashaned of such meats.

2002a. IV. Of Calssons in Cybinmbical and IIemispierical. Vaultino. - The method of setting out the caissons or sunken panels in cylindrical vaults and domes, is a process required almost in every building of importance, and imparis great beanty to the effect of the interior when properly introduced: it is, indeed, one of the e'ements in composing them, and must therefore be well u..derstood before the student can succeed in developing lis ideas.

20021 . In setting out the ribs of cylindrical vanlting, the vertical ones are supposed as falling on supports below the springing; but if sueb supports fall too wide apart, the eaissons themselves will be too wide, and the space must be divided into a greater number; in which case, if practicable, an odd number is to be preferred, taking care that the caissons are not tho much reduced in width. This, however, is only for the purpose of ascertaining roughly how many caissons may he used in the circuit of the vault; and it is to be remenbered that they must be of an odd number, because a tier of caissons should always extend along the crown of the vault. Fig. 662a. is an example of a cylindrical vault wherein the

Fig. 662 α.

Fig. 662b.
number of caissons is five. A is one half of its transverse section, and B a small portion of the longitudinal section. The width of the ribs between the eaissons is one third of them; hence, if the number of caissons, as in the example, be five, the arch must be divided into twenty-one parts, one of which parts will be the width of a rib, and three will be given to the width of a caisson. As we have just observed, a caisson is always placed in the centre; we shall therefore have the half-arch $=1 \frac{1}{2}+1+3+1+3+1=10 \frac{1}{2}$ and $10 \frac{1}{2} \times 2=21$. Tha vertical lengths of the sides of the caissons thus lound will regulate the horizontal lengths of their sides, inasmuch as they should be mide square. If the eaissons in the vatult be seven in numher, as in fig. 662b., the sofite or periphery must be then divided into twentynine parts; if their nu nber be nine, into thirty-seven parts; and so on, increasing by eight each step in the progression. The caissons may be single or double sumk, or more, according to the richness reguired ; their centres may be moreover decorated with flenrons, and their margins moulded with open enrichments. Where the apartment is very highly ornamented, the ribs themselves are sunk on their fare, and decorated with frets, guilloches, and the like, as mentioned for ceilings in Book iii., c. i., s. xxiv. Durand, in his Conr:s d Architecture, regulates the width of the caissons entirely by the interaxes of the columns of the building; but this practice is inconvenient, beeanse the s'ace may in reality be so, yreat as to make the caissons extremely heary, which is, in lact, the case in the examples be gives.
$2002 c$. In the case of dome or hemispherical vaulting, the first point for consideration is the number of caissons in each horizontal tier of then; and the student must recollect that allowing. as before, one third of the width of a caisson as the width of a rib, the number of parts into which the horizontal periphery (whereof $e^{\prime} e^{\prime}$ on the plan A is one quarter, and its projected representation at ee on the section B) is to be diviled (fig. 662c.) must be multiples of 4 , otherwise caissons will not fall centrally on the two axes of the plan. 'Thus,

A dome laving 16 caissons in one horizontal tier must be divided into 64 parts.

	20 ditto	-	-	-	-	-	80 ditto.
-	24 ditto	-	-	-	-	-	96 ditto.
-	28 ditto	-	-	-	-	-	112 ditto.
	32 ditto	-	-	-	-	-	128 ditto.

and so on inereasing by 16 for each term in the progression. In the figure, the number of caissons is sixteen. The scmi-plan is divided into thirty two parts, three whereof are given to each caisson, and one and a half to each half-caisson on the horizontal axis of the plan. From the divisions thas obtained lines are carried up to the section $a b, a b, c d, c d$. As the projected representations of the great circles of a sphere are ellipses, if from b, b, d, d, we construct a series of semi-ellipses whose transverse diameters are equal
to the semi-diameter of the sphere, and their conjugate axes determined fiom the points of intersection b, b, d, d, we shall have the vertical sides of the caissons. The next part of the process is to ascertain the ratio of dinimution in the heights of the tiers of caissons as they rise towards the vertex, so that they may continue square in ascending. Upon a vertical line C^{\prime}. whose length is equal to the developed length of the line of dome eff, or in other words. whuse length is equal to one quarter of the length of a great circle of the sphere, to the right and left of C set out at g and g the half width of the caisson obtained from the plan, and make \lg, $\lg g$ equal to one third of the caisson fur the width of the ribs on each side. Draw lines to the vertex of the development from $h h$ and $g g$. A diagon.l hi being then drawn, the horizontal line ik will determine the lower edge of the next caisson upwards. Proceed in this way for the next from l and so on. The heights of the caissons thus obtained, being transferred to the section on the quadrant ef, wall give the proportionate diminution thereon of the caissons as they rise. They are discontinued, and the dome is left plain, when they lecome so small as to lose their effect from below, and indeed they could not beyond a certain limit be executed.

Fig. $6 \mathbf{u} 2 e$.

2022d. V. Of Gothic Vaulting.-Professor Willis, in his valuable essay On the raults of the Middle Aues, printed in the Transactions of the Institute of British Architects, 1842 , states that every rib should spring as a separate and independent arch, and that the elliptic curves produced by the method of obtaining the form by ordinates from those of the transverse ribs, are totally at variance with the characteristic furms of the Gothic style. De Lorme first taught this method, and others followed him, but it was never intended by them to be applied to Gothic rib-vaulting. This author shows, (ch. viii.) that every riii is perfectly independent of the other in its curvature; each rib consists of a single are of a circle whose centre is upon the impost lecel, and they camot be therefore connected by projections. They all furm pointed arches of different proportions, with the exception of the diagonal arch, which is very nearly a semicircle. "This," says Willis, " may have been the geauine French method, but in our English examples the centres are commonly placed without respect to the impost level, and the general forms of the vault are different from those which are produced in this manner." Dérand, writing later than De Lorme, says, "that in this style the ribs are always made ares of circles, elliptical or other curves being inadmissihle" (p. 177). Willis, later, however, allows certain ribs in a vault to be "semi four-centred arehes," the others being ares of circles. (See 1943a.)

200:e. "In the early stage of r:l-vaulting," remarks l'rofessor Willis, "the ribs consist of independent and separate voussoirs down to the level course from which they spring. The separate stones were roughly jointed at the back, instead of being each got out of a single stone, as in later structures. The back of these ribs is concentric with the suffite. The transverse rib of the north-east transept of Canterbury Cathedral consists of about one hundred richly-moulded stones, but the workmanship is exceedingly rude"

2002f. "The rough construction of the spandril, in the early instances, was followed at once by a more artificial structure, bespeaking a great advance in the art of masonry; and it remained with very slight change to the very latest period of rib-vaulting. This system is shown in fig. $66 \underline{2} d$. The junction of the solid mass L to N with the clearstory wall, is bounded by parallel vertical lines D, and this mass is always built of solid masonry bonded into the wall and forming part of it ; the French name for this block of masonry is tas de charge. It is from the level of N that the real rib and panel work of the vault begins, for separate ribs are erected upon the surface of this solid, and
cumbected by vanlts of a light material. The decorative construetion, however, of the vault, exhibits the rib and pand from the abaens L , upwards. The point N is commonly at about

Fig. Gf? d. half the vertical height of the arch, and is not necessarily guided by the inpost of any clearsiory itb adjoining. M is the general position where the mouldings of the several ribs run clear of one another at the divergence of the ribs. The solid part LII is built of horizontal courses of masonry, gencrally each of a single stone and its level beds cot the curved monldings obliquely in fiont."

2002g. Moller, Memorials, \&e., translation 1836, p. 154, notices that, at Cologne, the lower part of the vaulting of the cathedral is fermed by horizontal courses of stone projecting from the wall, consequently the actual span of the vaulting is proportionally diminished, while, on the other hand, the abut. ment is in the same degree strengthened. Still more deserving of attention is the manner in which the essential parts are so linked together as to be rendered incapable of thrusting or giving way, and therefo e of necessity remainirg in their original position. Price, in his work on Salisbury Cathedral, 1753, p. 25, quaintly remarks: "And here 1 beg leave to make a conjecture, that is, that all the springing stones of the vaultings were inserted into the walls at the time of their being erected, and so left till the whole ehurch was roofed and covered in; and then being defended fro n rains, \&c., they fixed their principal ribs and groins, and turned over the vaultings, as having the weight of the superstructure to act instead of a buttment."

2002 h. "Above M," continues Professor Whlis, " the ribs are each built separately of voussoirs, having their beds properly inclined to meet the axis of curvature of the rib. and these ribs are backed and united by solid masonry which connects them with the wall, and which, appearing between the rib, seems to be a portion of the light vaulting surface, really employed higher up. From the upper surface N, each rib A is still luilt as from M to N with voussuirs, but upon these ribs rests the light thin vault or panel-work."

200 i. "It is remarkable that the courses of the vaults are not laid level, but are in most cases made to incline downwards upon the diagonal rib. The reason for it is not easy to explain, but it is very common, especially in the earlier examples. These courses, in the transepts at Westminster Abbey, are of a light coloured stone, probably elalk, interrupted at regular intervals by a course of a darker stone; and the ridge, which has no rib, is also formed entirely of this darker stone, laid in a serrated manner. These dark courses are rather broader than the light oacs, and there are four or five courses of the light between each of the dark. The susface of the panel between each rib is also made slightly concave or domical (probably to preserve the effect of being level, as seen from below it), and may theretore have been laid withont any centreing, since each course wonld support itself. 'Thes? peculiarities may all be found with some variations in other vaults of the same age."

2CO2k. "The architect of Leon cathedral," remarks Mr. Strect in his work on Gothic Architecture in Spain, p. 110, "filled in the whole of the vaults with a very linht tufa, obtained from the mountains to the north of Leon; so at least I was assured by the superintendent of the works at the cathedral. Some of the material I saw was no doubt tufa ; but some of it scemed to me to be an exceedingly light kind of eoncrete. The vaulting of Salisbury Cathedral is similarly eonstructed. I do not know whether at Beauvais the same expedient was adopted to lessen the weight." Both at Beauvais and Leon the construction in every part was too light.

209\%l. Over the vaulis was commonly laid a thick irregular course of rubblework, which again is also often covered with a kind of concrete. The vaults of the western compartments of Westminster, and of the south transept and tower of Hereford, are left hare on the upper surface. and these vaults, instead of heing built with small brick-like stones, are composed of long thin'slabs. 'The ribs themselves are, in some later examples, formed of a few long bar-shaped voussoins instead of the small and munerous pieces of the eurlier examples. Thus, in the transept at Westminster, L to N consists of 13 or 14 stones; but at the west end of the nave of 6 only.

2002 m . Price notices (p. 24) that at Salisbury, "The groins and principal ribs ure of Chilmark stone, but the shell, or vaulting between them, is of hewn stone and chalk mixed, $m \mathrm{t} \cdot \mathrm{p}$ of which is laid a coat of mortar and rubble of a consistence, probably ground in a kind of mill, and poured on hot, while the lime was bubhling; beeause by this; the whole is so cemented tonether, as to become all of one entire substance. This composition is
very remarkable, somewhat resembling the pumice-stone, being porous aad light, by which it contributes prodigionsly to the strength of the whole, and at the same time the least in weight of any contifance that perhaps was ever used."
2002n. "The early moulded , ibs are formed as fig. 662f. from St. Saviour's Chureh, Southwark, the vaulting or panel-work resting only on their baeks; but the rils of later date are rebated for the reception of this work, as shown in fiy. 662e."
20020. As early as 1225-50, the square plans for vaults were superseded by oblong ones, which allowed the cross-rib, the groinrib, and the wall-rib to arri eat nearly one level. In the new systen the groin-ribs were portions of eireles, and the cross-ribs were struck with the same radius; but these vaults were soon considered to be weak, and the cross-ribs were heightened while the groin-ribs were either stilted or (subsequently) sharper pointed.
$2002 p$. As soon as medieval builders admitted the principle that the strength

Fig. 6et? of areh-stones, like that of beams, is more dependent on the depth than on the width, they redued the widt! as mech as they could in order not to require a large alracus to the capital. The next step was to resolve all thrusts upon that support into a foree acting directly upon it; and consequently to endeavour to make the various pressures, which the pillar has to bear, combine in a point in a stone that should be fully as large in plan as the abacus, and perhaps rest upon others of the same eharacter.

2002 q. The operation of deciding the form and place of this stone is very simple alter the size of the areh-stones has been determined. Supposing that the work is, as in a cloister, hounded by a wall, and without wall-ribs, there will only be a eross-rib and two croin-ribs to be beeded. A line AB (fig. 662g.) showing the face of the wall is to be eut in O by another line CD representing the centre of the eross-rib; and the plan of the areh-stones for that rib is to be projeeted by the aid of these lincs. It gives at the wall a centre O , and in its length OE on the rentral line a radius with whieh a semicircle may be described (as shown by the dotted line); a couple of parallel lines, FG and HK, will now show the thiekness of the cross-rit. To proceed with a groin rib, a line from O must be laid down at the correct angle made by the groin with the wall; and the plan of the groinrib) must be so projected that, with this line for an inside line, the front of the areh-stone shall touch the semicircle. A couple of parallel lines MN and 1 ' Q will now show the thickness of the groin-rib; and the plan of the abacus of the pillar may le designed, even so as to allow of wallribs it they should be intended.
$2003 r$. The use of the semicircle is not an indispensable, lout is a natually concmient step, beecuse the equal quantities so taken by it from all the spans of the ribs leaves undisturbed in general result all calculations founded upon lines drawn from
 mathematical points that are taken as centres in a plan made to a small scale; but the plans of the groin-ribs may be placed anym!ere upon their respective contre-tines
so fong as the intersection of junction of the neighbonring lines of the widthe of the rils is secured at some point. This intersection is not an alsolute necessity, but it is the means of reducing the size of the abacus; and the point of junction S is that beyond which (working from the wall) the two ribs will be distinct. Taking this point S as fixing a line for the springing, the elevations of the two arches are to be drawn on the intersecting lines; then lines Sla and ST drawn perpendicular to the spingings, will cut the ex. trados of each arch at points which decide the level of the top bed of the horizontal work. the mass of work between this bed and the capital will be divided into a convenient number of courses, and the jlans of the beds thus fixed are easily drawn from the elevations of the arches; when it will he seen that, if the groin-ribs are less in depth than the crossribs, the former will give a good starting-place tor the material which is 10 form the spandrils of the vanlts. In a similar manner, the intersections o" any mumber of ribs may be found, and the tertiary and scondary ribs may be sucesssively suppressed in favour of the primary primeipal ones. Viollet le Ine, Dictionnaire,
 s.v. Constuction, p. 96. Irof. Willis gives the following illustration (fig. 662h.) shouing the method of setting out mouldings for vaulting, belonging to the perpendicular period; it is taken trom one of the spanirils of a complex vault which formerly covered the extreme north-western compartment of the nave of Canterbury Cathedral, the lower storey of the so-called Lanfanc's tower. The numher of ribs being seven required two stones in cach of its upper courses at least : fiy. $66 \geq h$. being only a portion if the spandill. contains but four of them. It also shows that the stone had heen scored, then rejected, and another set of lines drawn, and actually cmployed. A B, AC, are the rejected centres, and I) a portion of the first eutline. EF, E G, EH, and EI are the true lines drawn, each parallel to its own rib. The average thickness of the courses is about 10 inches.

2002: The key-stone or buss-stone was adopted by the mulimal architeets as a necessary appendage to gruin-ribs, because the solidity of the vaulting depends greatly upon the pressure exerted by the key, which must consequently le heavier than any of the archstones; it will necessarily be an extremely large stone, allowing a great part of its mass to

Fig. 662i. be cut away by the sculptor in order to diminish its apparent heaviness. This stone should generally be nearly circular in plan ; for if the ribs diverge enough to leave any large space hetween them, a fracture is almost certain. In cases of such divergence, it is best to design the seulpture so that a mass may occupy the space This remark, of course, does not apply whire there are only two groin-ribs mesting at right angles; but it governs the amount to which the groin rib should be allowed to be worked in the key-stone. No part of the boss ought to be sunk within a horizontal line connecting the intrados of one rih, with that of another; and it is generally desirable that, whother or not the ribs be back-jointed for the filling of the groining, as fig. 669 f., the key-stone should have a projection or ta 1 sufficient 10 stand above the hack of the filling. "Wivery boss-stone," says Profissor Willis, "had its upper surface made horizontal, on which were drawn the lines fron, the axis of the boss in the dircetion of the respective ribs." The principles here indicated are illustrated in fiy. 662i.

200:t. In the construction of groined vanting it has been considered best to fix the keystone on the centreing, befure laying the arch-stones, for the sake of the guidance which it affords in the work; the inconveniences of working a boss in its place, and of set!ing it it already worked, were obviated i.a the 13 th century by leaving its breast smooth, so that a wooden hoss, carved at leisure, might be fastened to it with hooks. In the 15 th century such a loss was not unfrequently of stone instead of wood
$2002 u$. A striking feature of the Flamboyant style is the frequent use of perdents in the vaulted roofs of the period. These, however, are not confind to the Continent, for the Tudor period in this country exhibits many splendid instances of their employment, none, perhaps, more gorgeous, or more interesting as regards its construction, than the Chapel of Henry the Seventh. Some of the vaious exmples that exist have beenscientifically invastigated liy l'rofessor Willis, in his paper On the Coustruction of the Vaults. of the Middle_ Ages, already quoted ; and we therefore now proceed merely to indicate the principles upon which the fairy like system of not only suspending vast bosses from the ceiling was conducted. but that by which these bosses or pendents hecane in their turn the pringers for supporting other vaults as in the beautiful litule Lady Chapel at Caudebuc in Nomandy, and many other examples. A plan is given in the section on Punciples of Prorortion.

EOOQv. This chapel is hexagoal on plan, about 23 fect in span, or from side to sidu.

Fiig．662k．shows the mode by which，from the key－stone of an arch appreaching a sem！－ circular form，and suspended or elongated beyond its ordinary depth，support is given wr the springing of the vaults of the different bays．On this practice Philibert De Lorme observes，＂Les ouviiers ne font seulement une clef au droict de la croisée d＇ogives，mais

sussi plusieurs quand ils veulent rendre plus riches leurs voûtes，comine aux clefs où s＇assem－ blent les tiercerons et liernes，et lieux où ils ont mis quelquefois des rempants，qui vont d＇une branche à l＇autre，et tombent sur les elefs suspendues，les unes étant circulaires，les alitres en façon de soufflet，avee des guymberges，mouchettes，elaire－voyes，fenillages，crestes de choux et plusieurs bestions et animaux ：qui étoient trouvés fort beaux du temps quion faisoit telles sortes de voûtes，pour lors appelées des ouvriers（ainsi que nous avons dict） roûtes à la mode françoise．＂
$2002 w$ ．We have shown above the mode of suspending the pendent in a polygonal building．The fig．662l．，by a little consideration，will explain the mode of suspending pendents not centrically situate，as in the case of the ceiling of Henry the Seventh＇s Chapect， whose date runs coincident with the Flamboyant period．The figure is a transverse section and plan of the vaulting of the building，in which one of the main arches，on which the whole construction depends，springs just below A ，and reaches its summit at B ．The voussoirs or arch－stones whereof it consists are marked in their order．The dutted interval from a to b is not to be considered as an iaterruption of the formation of the arch by the pendent，but may be supposed an imaginary line passing through it，or rather through the arch－stone or voussoir C，whose general foun is uarked by the bounding letters cdefba；so that，in fact，the pendent is nothing more，as in the case of the Lady Chapel at Caudebee，than a voussoir，a large part whereof hangs down below the face of the vaulting．The woussoirs are out of blocks about 3 feet 6 inches deep；but a considerable portion of the solid below the soffite of the arch is ent away to form the tobes of the cinquefoils．The areh D serves，by its connection with the walls，to stiffen and give weight to the arch where it would be most required，that is，towards the springing．The pendent or coussoir E ，on the same block witi C，being thus established in its place，serves at，or towards its foot，as a springer for the ribs of a fanwork tracery shown on the plan，whose ribs are，in fact，ribs of a dome，and in construction do not differ from it．Their section is shadowed somewhat lighter than th． pendent voussoir．The fanwork round each affords the means of introducing another pendent at its meeting at F in the plan．（This pendent is slown at F in the two sections given in Prisciples of Profortion．）The fin vault is very properly distinguished by Piof．Willis from what he calls the stellur vault，which is formed of ribs that may be，and indeed freguently are，of different curvature，and the rays of the star of dillerent lengths； whereas the fan vault eonsists of rils of the same currature and height，a d de summit of the fan is bounded（see the fig．）by a horizontal cireular rib，instend of the ends of lozenges forming the points of the star．＂The effect of the fan is that of a solid of revolu－ tion，upon whose surface panels are sunk．：the effeet of the star is that of a grouv of branching ribs．＂It is manifest that the constructive details of these two sorts of vaulting are vastly different．In the one，the dependence is upon rilis which support，by rebates on them，the filling in panels；while in the other the principle is similar to that of dome－ voulting．This will be immediately perceived by reference to the plan G ，in whieh the courses are marked，as also in the part of the section marked H．The phan I shows the tracery of the soffite of the vault．The author above quoted observes，＂The construction of these fan vaults is in all examples so nearly the same，that they seem to have proceeded from the same workshop；and it is remarkable that，at least as far as I know，there are no

Continental examples of them; whereas, of the previous vaults, there are guite as many on the Continent as in England. In France, indeed, the lierne" (ribbed) "vaults are not

Fig. 662 .
hendy the seventh's chafel, westminster.
very numerous; they are confined to small chapels, and their patterns are in general simple. But in Germany and in the Netherlands there is an ahundance of them, distinguished, certamly, from ours by local peculiarities, but nevertheless of similar mechanical constructior, and requiring the same geometrical methods."
$2002 x$. The introduction of fan vaulting seems to have occurred in the beginning of the 15 th century. The first instance wherein the span was considerable is the Dean's Chapel attached to the north-west transept of Canterbury Cathedral. In St. George's Chapel at Windsor, the aisle and central compartment only have fan vaults, the principal vault not being fanwork. The chief works of this kind, of known date (about 1500), are Henry the Seventh's Chapel at Westminster, King's College Chapel at Cambridge, the central tower of Canterbury, and Bath Abbey church. (See Principies of Proportion) In the church of St. Etienne du Mont at Paris, we find a cmarkable example of the style of the renaissance contending with the expiring flamboyant style. In short, the whole of the interior is a mass of interesting incongruities. The chureh is cruciform, and at the intersection of the cross is a pendent key-stone, most elaborately wrought, and more than 13 feet deep. It is obvious, in respect of these pendents, that there is no mechanical difference between their pendency and their being insistent, as lanterns are, on domes.

Sect. IIIa.

USE OF MARBLE

20c2aa. The Greek term "marble," to flash, gleam, sparkle, is well applied to the white marbles of the Greeks, which differed materially from those of Carrara, in Italy. The Greek and Roman marbles are noticed in the Glossary. The Byzantine interiors exhibit fine examples of durable applied marble decoration, about one inch thick, showing no desire to appear anything different. The walls were covered with oblong panels in liers of rich marbles opened ont, framed with narrow white mouldings and bands of different colcur, continuous horizontal lines of colour on white being introduced between these panels; the whole surmounted by a marble mosaic frieze, with a cornice displaying small, sharp, tr:angular shadows, as at Constantinople and St. Mark's at Venice. At Palermo the panels were framed with bands of mosiaic work.
2002bb. The marble pavements of Greek temples were probably the eurliest, and were usually of thick, large slabs. They perfected the tesselated mosaic parements. The Romans gained the knowledge from them, became proficient, and used them throughout their extensive empire. Although under half an inch square, the mosaic is one inch thick, made to last. Some of the grandest parements are the simplest, as those of the Basiliea Julia at Rome, of Santa Sophia, and the one under the central dome of St. Mark's. That of the Basilica Julia las been lately discorered, and is very perfect in part. The plan is a rectangle of about two squares, the eentre space being divided into three squares and four broad bands. The squares consist of large slabs of Giallo antice, with a broad border of Pavonazzetto, the bands being rectangular slabs of rieh Africano and l'orta Santa. The central slab is surrounded for abont fifty feet with large slabs of Greck white marble.
2002 co. The Opus Alexandrinum parements, as at St. Mark's and at West minster Abbey, were usually composed of few colours-red and green porpliyries with white Palambino for the mosaics, the bands being Greek white marble, and made out of old materials: a great rariety of geometrical patterns. Some of the most beautiful examples are at Palermo. The Palambino was a limestone of pot-like texture. The great pavement in Siena Cathedral, one of the finest Italian Renaissance works, consists of pictorial suljects in dark green marble and mastic iuserted into thiek slabs of white marble. These hare not worn well, and are kept covered. The filled-in lace-like patterns used as borders round the monuments at Sta Croce, at Florence, are in a better condition, the fillings being in smaller qu intities. These fillings might be of lead set in a white ground, and would look well. Black and white marlle parements in squares were introdnced about the time of Torregiano, and were largely used, as at King's College Chapel, Cambridge; the Beauchamp Chapel at Warwick; and in mansions generally. The white squares came from Italy, and the black from Belgiam; and are still used in that country.

2002 dd . The retiring grey marbles, as Petworth, Purbeck, or Frosterley, were used hy the mediæval builders in England, and the colour was most useful in contrast with the stone. The altars and tombs of the Italian Renaissance were executed in white marble, with only one colour introduced for the columns, pilasters, frieze, pediment, and panels of the bise. A variety of marble work of late date, seen at Palermo and Naples, consists of inlaid floral arabesque, of orange, red, and brown marbles, with black inserted into white. It is gaudy, being deficient in repose. Similar work is seen in the monumerts at Agra, in India.

2002ee. English Alabaster, if selected free from earthy veins and used where wet would not run over it, though only for interior work, may be better than many stones, and it would keep its colour. Of all building materials it is about the least porons or absorbent. It has been used for monumental work from a very early period, and much delicite work has been executed in it. The inner areh moulding of the west doorway of Tntbury Church, earved into birds' beaks, of the Norman period, is in ordinary alabaster, and remains in good preservation. This material cane into general use about the fourteenth century in Derbyshire, and exteusively so during the Elizabethan period. Great Britain and Irelan il (see Marble, 1681 et seq.) contain many varieties of well-known coloured marbles, little used, even at the present day.

2002ff. Memorial slabs of incised marble preceded brasses, and were far superin to them. The Euglish Renaissance produced marble work in chimneypieces equal, if not superior to anything on the Continent. The designs and the marbles were equally good.
$2002 \mathrm{~g} g$. The Onyx marbles of Algeria, Mexico, and California, of the same nature as Oriental alabaster, can be cut and ground thin enough for window purpnses. At Tarragonat Cathedral and at Orvieto are examples of orange-yellow Oriental alabaster. In the eant windows of San Miniato are slahs of intique Paronazzetto, with red-purple markings, nearly two inches thick (far. 61.5).

2002hh. Carrara and Sieilian marbles are nsed for steps and floors, wall linings, jumbs, lintels, columns, capitals and bases, entablatures, altar rails, fonts, pulpiis, sepulchral momorials, and many other purposes. If consistent details were used, it might prolably be employed for public and other buidings (par. $1677 a$).

2002ii A new and beatiful white marble, called Heqqe marb'e, from near Brötö, in Norway, is stated to te a pure caleium earbonate, hard, with a few small reins or spots, of nearly uniform whiteness, and taking a ligh polish. The price in London is about one half that of similar marbles. A green and a red marble are sent from Greece. Verde Antico and Verde di Corsiea are composed of limestone, caleareous spar, serpentine, and asliestes.
$2002 k \%$. The British Mus-um, the South Kensington Museum, the University at Oxford, and the Geological Mrseum in Piceadilly all contain fille collections of coloured marlles, ancient and modern -some wrongly named. The most instructive collection is in the museum of the Lourre. (W. Brindley, Marble: its uses as suggested by the past, read December, 1886, at the Royal Institute of British Architects)

Mouldings.

2002ll. A marble to stand exposure to the weather should be close, hard, and vitreous-looking. Plenty could be seleeted. The mouldings used in the palaces of the Cresurs and other important buildings in Rome were usually very simple, and mostly consisted of flat hollows and rounds, with small fillets proanced out of a chamfer (fig. 662 m .). They looked well, and cost less than many modern ones, which are designed forgetful of masons' methods of work. Mouldings needed to be drawn specially to suit the colour of the marble.

2002 mm . Marble linings, whenerer possible, should be fixed hollow the bick, and a few small places left open in the joints until the solid walls are dry ; the hollow allowing the slab to keep warmer than the solid wall, thus aroiding condensation. Good well slaked lime mortar is the lest for bedding. Cements are to be a coided. Plaster of Paris should be mixed with a little lime putty, to assist adhesion and prevent swelling. It must le remembered that marbies ahsorb water ly capillary attraction, and are commonly permeable to gases. They absorb water irom the mortur, which coming to the exterior surface becomes deposited at the mouths of the pores and gives the surface ai brownish discolouration. If the interior surface be coated with asphaltum the disculouration will gradually disappear.

Polishing.

$2002 n n$. As to polishing marble : properly polished chimney pieces of foreign mauufaeture, and toilet tables, are rarely found, as acids are used to proure a 1 apid and cheap, though imperfect and fugitive, result. At the Carrara quarries the marble is first rubled smooth with fine sand, then with pumieestone, then with two or three stones of rariable hard-
 ness. finishing off with lead, which gives the last and brightest polich. Water and friction do the work. (E. C. Rolins.) Marble steps should never be polished, as if properly done they are very slippery and dangerous. In Belgiam, ouly the face of the riser and rather more than balt the nosing, stopping just where the foot pitches, is polished. This from below las the appearance of a empletely polished stair, while at the sime time there is no danger from slipping. (C. H. Brodie.) Polished marbles and stone rarely go well together in the same work; but some marbles-greys, reds, aud cippolinos-lnok well dull-polished, and then would go better with stone. White marble as used by the Tuscan carvers was not polished.

These full-size illustrations (fig. 662 m .) have been taken, by permission, from among the specimens of old marbles in the collection of Mr. W. Brindley.

Sect. IV.

CARPENTRY.

2003. Carpentry is the scienee of framing or letting into each other an asscmblage of picces of timber, as are those of a roof, floor, centre, \&e. It is distinguished from joinery in being effeeted solely by the use of the are, the adze, the saw, and the chisel, which are the earpenter's tools; whereas joinery requires the use of the plane. See 2102, et seq.

2004 . Though neeessaily of high antiquity, the very scanty information which Pliny and Vitruvius have left us on the subject would merely show that the seience was known by the aneients. The roofs of Egypt present us with no more than flat coverings of massy stone; a pediment roof, therefore, would seem to have been among the first efforts of constructive carpentry; and upon the pitch which this, then and sinee. has received in different countries, we shall hereafter have to speak. The Greeks appear to have used carpentry in the construction of their floors and some other purposes; but in a country alounding with stone and marble, it is not likely that wood was much used in the interiors of their buildings, unless where lightness, as in doors, for instance, required its empl yment. With the Romans it was much more commonly used; and from all that can be gathered, we may coasider them as the fathers of the seience.
2005. Among the moderns it has been very successfully cultivated: and. with very few exceptions, we may almost assert that the works of Palladio, Serlio, De Lorme, Sir Christopher Wren. Perronet, and a few others, exhibit sjecimens which have seare ty been surpassed in later times, notwithstanding the seientifie form it has assumed in the present age.
2006. To the meehanieal principles of earpentry we have, in Chap. 1. Seet X. of this book, directed the attention of the student; and to the seetion now under our pen we should have added the words Descriptive and Practical to Carpentry, but that mues of what could have been said on that head has already been anticipated in the section on Descriptive Geometry. Ifence, in what follows, that whieh comes under suel pred cament will be only given in particular cases, for the purpose of saving time and trouble to the reader in the applieation of its prineiples to them. We must, here, also reand the reader, that under the section Beame, \&e., and 'inher, have been deseribed the different sorts of timber used for building purposes, their strengths, and the strains to which they are subjeet and which they are eapable of resisting; and that therefore this section is confined simply to putting pieees of timber together, so as to form the assemblage of timbers under which we have commenced by defining the science. 'To do that properly requires great skill and mueh thought. Considerable waste, and consequent expense to the arehiteet's employer, result from that ignoranee which assigns to the seantlings of timber larger dimensions than are absolutely neeessary for the offiee of each pieee; insuffieient seantlings will bring the arehitect into trouble and responsibility; and the improper conneetion of the pieces will be equally ruinous to his reputation. The principles of practical carpentry are, nevertheless, simple; and though to form new combinations and hazard bold and untried experiments in practice will require all the skill and seience of a talented artist, the ordinary routine of earpentering is to be learnt by a little application and a due exereise of common sense.
2007. After these observations, we must introduce the student to the first operation which in practice may arise. It is not every where that timber can be ohtained in sufficient lengths to streteh aeross the void be has to eover; and it will in such eases be necessary for him to know how one pieee of timber may be so joined to another, for the purpose of lengthening it, that the two pieces, when joined, may be as nearly as possible equal in strength to one whole pieee of timber of the same dimensions and length. This operation is of great serviee to the builder, and is teelnically called scarfing. To perform it, the joints are indented, and bolts are passed through the pieees within the length of the indents, such bolts being confined above and below by means of nuts and serews. In fig. 6 \%o, four ways are extibited of accomplishing the object in question. A and Bare the methods usually employed for joining together plates, lintels,

Fig. 66is. and ties, in which bolts are rarely neeessary; but if sueh a method is used for scarfing beams, bolts must be employed. The stronger forms, which only should be used for beams, shown in C and D, are not only in that respect sach as should, on that account, be used for beams, but are exeented without loss of length in the pieces of timber. 'The length of the joints of the searting may be increased at pleasure; the diagrams are merely given to show the mode of doing what was required. With fir, however, when bolts are used, about four times
the depth of the timber is a nsual length for a searf. Scarfing requires great aceuracy in execution; for if the indents do not bear equally, the greater part of the strength will be lost: thence it is improper to use very complicated forms for the indents.
2008. Pieces of timber are framed into and joined to one another, by the aid of montices and tenons, and by iron straps and bolts; and on the proper placing of these depends the soundness of the work. If a piece of framing is to stand perpendicularly, as in the case of partitions, without pressure from cither side, the mortice and tenon should be in the centre of the wood. But in the case of framing floors, in which the pressure is on the mpper surface, and entirely on one side, the mortices and temore ought to be nearest the side on which the pressure is, by which the timber will not be so much weakened; and hence it is the constant practice to cut the mortices and tenons as in fiys. 66t, 665. By the method shown in the last-named figure, the tenon obtains more strength from an additional bearing below, which is further inereased by the inclined butment above, ealled a tusk.

2009. The method of framing wall plates together at an angle, for the reception of the hip rafter on the dragon beam, and the angle ties for retaining the wall plates in their places, is shown in fig. 666., wherein AB is the mortice cut for the tenon of the hip rafter

Fig. кия6.

Fig. 6fs.

Fig. 669.
shown in fig. 667. Fig. 668. is one of the wall plates, showing the halving to receive the other plate, and the cutting necessary for dovetailing the angular tic. Fig. 669. shows the method of cutting the mortices and tenons of principal and hip rafters ; another method being given in fig 670 ., and to be preferred where a greater resistance to thrust is sought, beeause by it a double butting is obtained on the tie beam. lnasmuch, however, as in this last case the beam is cut across the grain to receive the rafter, the part left standing to receive the heel of the rafter may be easily split away ; to obviate which, the socket may he eut, as at Λ, parallel to the grain of the wood. col is the iron strap for seeuring the rafter's foot to the tie beam, and keeping it

Fig. 670. in its place. A plan of the upper part of the tie beam is given at B , sbowing the socket and mortiee of the seetion A in the last figure. C exhibits the mode in which a principal ratter is strapped to a tie-beam, with the joryling.
2010. The most approved method of furming butments (fig. 671.) for the struts or braces, ait, which are joggled into the king-post, is to make their ends, which act against the joggle, perpendicular to the sides of the brace; they will thus be kept firmly on their hutments, and have no tendency to slide. C is a section of the king-post and tie beam, showing the mode of wedging and tightening the strap, with a single wedge, in order to draw the tie beam close to the king-post. D is a section of the same parts to a larger scale, and with the introduction of a donble wedge, which is easier to drive than a single one, beeause there
 is less action upon the cross grain of the wood.
2011. Straps in carpentry should be sparingly used. Professor Robison has very properly observed, that "a skifful earpenter never employs many straps, considering them as auxiliarles foreign to his art." The most important uses of them are, that of suspending the tie beam to the king-post, and of seeuring the feet of the \quad rineipal rafters to the tie beams in roofs.
2012. Bolts are sometimes used for the last-named office, with wrashers and haids and sesew nutw in which ease the washers, nuts, and heads should be well painted, though
even then they are liable to rust. Wherevar the iron work used for sccuring a system of framing is exposed to the humidity of the atmosphere, it should be rendered durable by frequent painting. Price (BritishCurpenter, 1759) observes thus: "There is one particular that had likel to have escaped my notice, concerning the placing of iron straps on any truss, thereby meaning to help its strength, which is by turning the end sifuare (as shown at E, fig. 671.). This method embraces the timber in sueh a mamer, to make it like a dovetail, which cannot draw from its place; another observation is, to bolt on your straps with square bolts, for this reason: if yon use a round bolt, it must follow the auger, and camnot be helped; by this helping the auger-hole, that is, taking off the comers of the wood, you may draw a strap exceeding close, and at the same time it embraces the grain of the wood in a much firmer maner than a romad pin ean possibly do." The example given by Price, however, for turning square the strap, is injurious to the rafter, which must be partially cut to admit of it.

FLOOHS.

2013. The assemblage of timbers in a building, used for supporting the flooring boards and ceiling of a room, is, in carpentry, called naked flooring, whereof there are three different sorts, viz. single flooring, double flooring, and double-framed flouring. But before entering on the particulars of either of the sorts, we will make some general observations on the construction of floors, which require the architect's attention. Finst, the wall plates, that is, the timbers which lie on the walls to reecive the ends of the girders or joists, should be sufficiently strong and of sufficient length to throw the weight upon the piers. Secondly, if it can be avoided, girders should not lie with their ends over openings, as doors or windows; but when they do, the strength of the wall plates must be increased. To avoid the occurrence in question, it was formerly very much the practice in this country, and indeed is still partially so, to lay girders obliquely across rooms, so as to avoid openings and chimneys, the latter whereof must indeed be always attended to. J'moms. Wall plates and templets must be proportionately larger as their length and the weight of the floor increases. Their seantlings will, in this respect, vary to $4 \frac{1}{2}$ by 3 inches, up to $7 \frac{1}{2}$ by 5 inches. Fourtily. The timbers should always be kept rather ligher, say half to three Iuarters of an inch higher, in the middle than at the sides of a room, when first framed, so that the natural shrinking and the settlement which oecurs in all buildings, may not ultimately appear after the building is finished. Lastly, when the ends of joists or girders are supported by excernal walls whicse height is great, the middles of such timbers ought not at first to rest upon any partition wail that does not rise higher than the floor, but a space should, says Vitruvius (lib. 7. c. 1.), be rather left between them, though, when all hat settled, they may be brought to a bearing upon it. Neglect of this prectution will induce unequal settlements, and, besides causing the floor to be thrown out of a level, will most probably fracture the corners of the rooms below.
2014. Single Flooring is constructed with, only one series of juists (as shown in fig. 679.). In this way of framing a floor, if a girder is used, it should be laid as nearly as possible over the centre of the apartment. A single floor containing the same quantity of timber as a dlouble floor is much stronger ; but the ceiling of the former is liable

Fig. 672. to crack, and camot be got to so good a surface when finished. Hence, where the bearings are long, it is mueh better to use double flooring.
2015. The scantlings of fir joists for single flooring are exhibited in the subjoined table, and are founded on our own practice. The weight of a square varies from 11 to 18 cwt .

Length in Feet. Width in Inches.	Depth in lnches.	
6	2	6
8	$\vdots!$	7
10	$2!$	$7!$
19	$2!$	8
14	$2!$	9
18	$2!$	12
20	$2!$	12

These scantlings may be varied if wanted, accerding ti: the laws laill down in the gection Beams. l'hlears, © © 0 ; 1622. et sel.
2016. In fig. 672 . AA A are the joints, and 13 the nuor boats. The laths for the ceiling are nailed to the under side of the joists . I.I.1.

2n17. In most heers, on account of the intervention of flues, chimney openings, and occasionally other causes, it will so happen that the ends of the joists camot have a bearing on the wall. In such cases a piece of timber called a trimmer is framed into two of the nearest joists (then called trimming joiss) that have a bearing on the wall. Into the trimmer, which is parallel to the wall, the ends of the joists thus intercepted from tailing into the wall are mortised. The operation is called trimming. The scantlings of trimmers and trimming joists may be the same as those hereafter given for binding joists; or if to the wilth of the common joists an eighth of an inch be added for each joist supported by the trimmer, the depth being the same, the seantling will generally be sufficient.
2018. When the bearing of a single joist floor exceeds 8 feet, a row of strutting pieces should be introduced between the joists, by which they will be prevented from horizontal twisting, and the floor will be stiffened. If the bearing be more than 12 feet, two rows of stiffening picees or struts should be introduced, and so on for each increase of 4 feet in bearing. They should he put in, in continued rows, and be well fitted. Beyond a bearing of 15 feet it is not advisable to use single flooring, neither ought it in any ease to be used where it is required to prevent the passage of sound.
2019. A donile floor consists in its thickness of three tiers of timbers, which are called linding joists (these perform the office of girders), bridging joists, and ceiling joists. From an inspection of fig. 67.3. the construction will be easily understood. AA are the binding joists, which are the principal support of the floor on the upper side, whereon Bli, the bridging joists are notehed; which is
 the best method, though sometimes they are framed between with whased mortices. The binders, of course, ron from wall to wall; and as for earrying the floor, the bridging joists, as their name imports, are bridged on to them; so the lower tier of timbers, called the ceiling joist,s, are cither notehed to them, or are what is called pulley mortised into them ; that is, a chase D is cut in the binder long enough to allow tenons of the ceiling joists C being obliguely introduced into them, and driven up to their places. The seantlings of timbers used in this method are the same as those for domble-framed flooring of which, indeed, it is but a species.

20:0. The double-framed floor differs only from the last-named by the binding joists, instead of going from wall to wall, being framed into large pisces of timber called girders (as shown in fig. 674.), wherein A is the girder, 13 a binding joist, C a bridging joist, Da ceiling joist, E the pulley mortice for the ceiling joist

Fig. 671.
D, and F is the floor. The great aavantages of this sort of flooring are, that it prevents the passage of sound between the stories, and enables the arehitect to make a solid ceiling.
2021. As in a double-framed floor the girders are the chief supports, it is exceedingly important that they should be sound and free from shakes. The distances between one girder and another, or the wall, should not exeeed 10 feet, and their seantlings as n the following table: -

Girders of the length of 10 feet should be 9 inches deep, 7 inches wide.

12	-	10	8
14	-	11	9
16	-	12	10
18	-	19	11
240	-	13	11
22	-	14	19
24	-	15	13
26	-	16	12
24	-	16	12
30	-	16	14

2021 a. Girders or beams whose bearing exceeds 24 feet are difficult to be procured of sufficient depth, in whieh case an expedient is put in requisition to strengthen a less depth. The prineiples it involves are explained under the head of roofs, namely, those of trussing them (2031, et seq.), an operation that converts the beam within its own thickness into a piece of framework, for the purpose of preventing the bending, or, as it is techmically called, its sagging, which produces an injurious horizontal thrust on the walls. 'lhis operation is represented in fig. 675 , in two different ways. No. III represents the plan.

Fig. ${ }^{175}$.
The beam is cut into two halses in the direction of its depth and length, between and into which the truss is inserted, as shown. It is better that the truss posts A , and abutment pieces B , should be of wrought iron; the struts C may be of oak, or some stiffer wood than the beam itself. In I. and 11., the whole, or nearly the whole of the timber, is in a state of tension.

20-1 b. 'This operation is further developed by trussing the beam below itself, an arrangement eonsidered to be saler and stronger than that above deseribed. No. IV. has a wrought iron tension rod, with a stay in the centre, which takes the whoie of the tension,
 whilst the timber is thrown e.tirely into eumpression. No. V. is the same with 1 V . two stays. By these systems a beam, ralter, purlin,
 Se., which will barely support its own weight safely, may be made to carry a load of many tons without sens.hle deflection. The tension rod is useful in proportion to its distance from the bean (evidently within certain limits). If it be immedately under, or concealed within the under edge, it beeomes nearly useless, especially in a cast iron beam with a wrought iron rod, where the beam is much less extensible than the rod. In sueh a case, the beam would break and fall before the rod has been brought into action. Ihe respective size or sectional area of the rod and beam is regulated by the respective strength of the materials, as it is useless to apply a rod capable of sustaining double the tensile force that the beam eim resist of erushing foree, and vire versâ; it is merely adding weight (Warr, Dynamies, jage 259.). The fliteh girder is deseribed in par. 1699 u.
$20 \cong 1 c$. The resistance of beains of soft wood may be eonsiderably increased by strengthenir: the centre of gravity. Du Hamel, Force des Bois, took twenty-four stieks, eut from young willuws, of equal strength. Each stick was 3 feet (Freach) long, and $1 \frac{1}{2}$ inch squane. Six of these broke in the middle with an average weight of 566.48 lbs . In two other pieces he made a cut across it $\frac{1}{3}$ inch deep in the centre, and filled it out with a piece of oak; these brohe with an average weight of $594 \cdot 7.3 \mathrm{lbs}$. Two more were cut $\frac{1}{3}$ incll deep, and treated in the same manner; they broke with 535 lbs. Five were cut ${ }_{4}^{\frac{2}{3}}$ inch deep, and broke with 579.78 lbs. All the trinls showed that the pieee of harder wood increased the strength of the beam.
z021d. Laves's girder is a simple and effective contrivance for strengthening a beam. The piece of timber having been eut nearly from end to end (fig. 675a.), is bound at each termination with
 an iron strap. Bloeks are driven in the ent so as to separate
the severed picces to several inehes distance in the middle of the length, thereby throwin:
the material farther above and below the ncutral axis. A solid berm, 40 feet long, $9 \frac{1}{4}$ inches deep, and $7 \frac{1}{4}$ inches wice, deflected $5 \frac{1}{4}$ inches with a load of $1,700 \mathrm{lbs}$. When a similar heam had been ent to 36 inches of each end, making the upper part 5 inches deep and the lower part $4 \frac{1}{4}$ inches, and separated by blocks until the parts were as wide asunder as half the depth of the beam, the bean suffered a less deflection by $1 \frac{3}{t}$ inch. A sreater strength was obtained by separating the parts to the whole depth of the beam, when it deflected 3 inches less than the solid beam; and when separated to $1 \frac{1}{2}$ times the depth, it deflected 4 inches less than the solid beam. 'l'he greatest strength is obtained by giving a section to the upper and lower parts proportional to the power of the material to resist tension and compression (Civil Enyinter for 1840, page 161, being a paper read at the Institute of British Architects).

2C21e. Floors are now largely made of firproof materials, as referred to in the section jericklayer. The introduction of rolled inon joists and girders has enabled the arehiect us construct his floors of larger span, by supporting the timber joists between them. By using riveted steel girclers a saving is made in the cost of construction.
2022. We now return to the subject of binding joists, which ought not ta be more than G feet apart. The depth, if necessary, for accommodating them to the thickness of the floor, may be varied from the following table by the rules given under section Beams, \&.c.

Binding joists of the length of

6 feet should be 6 inehes deep, 4 inches wide.	14 feet should be 10 irehes deep, 6 inches wide.					
8	-	7	-	$4 \frac{1}{2}$	16	-
10	-	8	-	5	11	-
12	-	9	-	$5 \frac{1}{2}$	$6 \frac{1}{2}$	
12	20	-	13	-	7	

The scantlings of bridging joists are similar to those already given for single flooring. These, as well as ceiling joists, whove ceantlings are subjoined, should not be more than 12 inches apart, and they require to be scarcely thicker than is necessary to bear the nails of the laths fixed to them, for which 2 inches is quite sufficient.

Ceiling joists of the length of

4 feet should be $2 \frac{1}{2}$				
6	-	$3 \frac{1}{2}$	-	10
8				

The weight of a square of framed flooring with counter flooring varies from 22 to 36 ewt.
2023. Though, perhaps, more curions than useful, we should not perfurm our duty to the student, were we to omit a method of constructing floors with short timbers, where long (nes are not to be procured. Suppose it be required to floor the room ABCD ($f i g .676$.)

Fig. 676.

Eig. 677.

Let four joists, as in the figure, be morrised and tenoned at alich, as there shown. N, w it is evident that these j :ists will mutually support each ether, for each is supported at one end by the wall, and at the other by the middle of the next joist. Fig. 677. shows another mode of accomplishing the same object; and many other forms would immediately suggest themselves to the experienced arelitect. The expedient is of ancient erigin, inasmuch as our old master (so we delight to call him, notwithstanding the new lights that modern crities have found to guide them). Serlio, has described the expedient without any difference. In the fourth volume of Rondelet (Art de Bâtir), an author to whom we are under infinite obligations, is described a foor executed at Amsterdan for a room 60 feet square, of exceedingly singular construction, inasmuch as it is withont joists at all. Each side of the room is provided with very strong wall plates, whose angles are secured with iron straps, and are rebated to receive the flooring. which comsists of three thicknesses of $1 \frac{1}{2}$ inch boards Of these thicknesses, the first is laid diagonally across the epening, its ends resting on the rebates of the wall plates, ano rising about $2 \frac{1}{2}$ inches towards the centre of the room. The next (second) thickness is haid diagonally at right angles to the first thickness, and the two ane well nailed together. In the third thickness,
the boards are laid down parallel to one of the sides of the room, and form the upper side of the floor, being, however, well nailed to those below. The whole of them are groove: and tongued together, forming a solid floor $4 \frac{1}{2}$ inches thick. In this example is an instance well worthy the study of the architect, as respects a scientific connection of parts. and the great adrantage of a well-disposed bond. The floor in question is, in fact, a thin plate, well supported round the edges, the strengths of the plates being directly as the squares of their thicknesses, equally strong to bear a weight in the middle, whatever thir bearing; though if the load be uniformly distributed, the strength will be inversely as the area of the space.

20:3a. 'The flooring of the Middle Ages, as used for upper rooms, were constructed with large square timbers resting on wood plates, which formed the cornice to the rooms; sometimes they had stone cornices under then. Oecasionally the under sides of the joists were covered with boarding, and this was divided into panels by small ribs, with bosses at the intersections, carved with foliage, or with shields of arms, or other ornaments. An example of the 15 th century exists at Wingham, in Kent; Parker, Dom. Arch. iii. 127. These were usually coloured in distemper. The ceiling of the nave and of the eastern part of St. Alban's Abbey church is a remarkable example of a fine flat ceiling of carly date, as is also that in the tower of the ehurch at St. Cross, in Hampshire, anal that of the lilirary, 15 th eentury (and formerly in the chapel) of Merton Cullege, Oxford. In England, in the 13th century, the ceilings (which were of wood) were frequently painted the same as on the wainseot, in green and gold, and were sometimes also decorated with historical subjects and with gilded bosses.

2023b. The joists that came upon a beam were placed upon it, and, being cut, were pinned into corresponding blucks. It the beam took two sets of joists, the blocks might be made long enough to connect the ends of the two sets. But by the 14th century the system of girders, binders, and joists was perfected; boarding one inch and a half thick, rebated on both ed_es, was laid with the wider tace downward, and connected by rebated battens, fixed upon stup-moulded joists, and these were dovetailed for half their depth into moulded binders, that were do cetailed three-fifths of their de, th into moulded girders, the backs of all being flush for the boarding, which reeeived the motar and tile floor.

2023c. Whether in cak or fir, this latier system was apparently never enriched with painting, but moulded and carved; indeed the inevitable towel decoration makes its appearance in panels formed by moulded strutting. These panels are let into r.b tes on the back of the struts and joists and binders, so as to leave a space between the panels and the flush floor, receiving the plaster or the tiles upon plastering. Another effective practice was to rebate the backs of the joists sufficiently deep to allow the apparent ceiling to consist of short pieces of board that were decorated on the two edges, laid elose together, forming a pattern of cireles, diamonds, foils, \&e. cut in open work, with a ground formed by laying a plank over the whole length between the joists; over this came the finishei one, or three coated floor. In the 15 th and 16 th centurics, pendentives hanging by keys to timber ceiling-joists, between binders, formed an entirely new arrangement of decotation, which rivalled in its complexity of drops and coffers the most elaborate works of Saracenic ecilings. In the time of Henry Vili, the ceilings were commonly of plaster, wiha a great variety of patterns stamped in them. The ceiling of the chapel of the Savoy Palace in the Strand is a ich example of panelling only.

2023d. Some of the timber houses built in Troyes at the commencement of the 15 th century afford good specmens of the manner in which the construction of the floors was rendered onamental. The studs of the framing carry the usual head-picee, which is moulded; and on this are notelied down the ceiling joists, which have their ends cut as cantilevers: upon these rests a board, or plank, having its edge mould d, which is kept in place by the chantlates at the leet of the ralters. At other times the sill is separated from the joists; because they rest upon stanchions, upon which are planted brackets carrying the ends of the joists: between the ends, which are grooved, there is a piece of carred woodwoik, so that the ends of the joists, in conjunction with a moulded plate resting upon them and receiving the tie beams or ceiling joists, form a sort of corbel-table. (Fig. 701l)

2023e. Another method of forming a floor, with its ceiling, into decorated construction, is due to the 15 th century. This consisted in cutting balks of timber diagonally and laying them with the angles downward elose together. The ends were nothed into the giders or binders, leaving flush backs. If not sightly enough, triangular fillets were put in between them; and the sharp angle might even be taken from off the aris or under edge of the balks. Floors were also composed of brick segment arehes (the bricks being set herring-bone) between balhs of timber laid with one corner upwards, so as to form a skew-back for the arches.

2023f. For these few remarks we are indebted to Viollet le Due's admirable Dictionnaire. As the systems therein shown will scarcely be adopted in England in general practice, the student will do well to refer to the work should he require any illustrations. A very
siggestive late example, richly moulded and carved, as it existed before 1843 at Fontaine. I:lean, when it aplears to have been rensed and somewhat altered, is given in that work among many others.
-2023g. Trmber groined ceilings are to be met with in the choir and lady chapel at St. Albans'; in Wamington Chuch, Northamptonsliire, of the Early English period; in the cloisters at Lineoln and Ciloscester; in the towers at Exeter; in the lantern at Peterborough; the lantern at Ely, and the choir at Winchester, eathedrals; in the choir at Selby Abbey Chureh, Yoskshire ; in the nave of Boston Chureh, Lincolnshire, where it unfortmately occupies 22 feet of height; the ehapel of St. Mary's College. Winchester; and the entire rooting of York Minster. The vaults spring from stone-work carried up as ligh as required to free the ribs from the wall; there is no special mark of division at the point where the stonework ceas d and the woodwork commenced. The boarding was let into a groove in the sides of the ribs, or laid on a relate 'The eastern part of the chancel of the 13th century chureh at Uffington, in berkshire, is evidently groined or prepared for groining in this way, for whilst the walls and buttresses were insufficient to resist the thrust of a vault even filled in with chalk, the stone springers exist. "There seems to be no grood reason," continues Mr. Street, from whose lecture on Woodwork we are quoting, "why this kind of ceiling should be condemmed, as it has heen by some writers, as though it were unreal, or in any way a sham. It is nothing of the kind, alad no attenut was made to make the wood look like stone. The boarding was frepurntly feather-edged, and grooved and tongued, and thus obriously of wood. (Fig. 780f.) It may be introduced in buildings not calculated to resist the thrust of a stone vault; and it may be carricd far up into the roof and above the top of the walls, which in stone vaults is always, within a l.ttle, the limits of internal height attaimable."

PARTITIONS.
2094. The framework of timber used for dividing the internal parts of a house into rooms is called a purtition or quartered partition. It is commonly lathed and plastered; when the spaces between the timbers or quarters are bricked up, it is called a bricknogi,ed purtitoon. 'The weight of a square of common partition is rarely less than from 13 to 18 ewt. ; hence it becomes necessary to take care that partitions should not be set upen the lloor, without taking due precaution to relieve it of the weight, either by struts, braces, or the formation of a truss in it. When a partition ocenrs in an upper story, under a strongly trussed roof, it may be often advantagcously suspended from the roof, and its weight thes taken off from the floor below. If it hase a solid bearing throughout its length, it requires nothing but strats between the quarters; but these are not absolutely reguired. The seantlings of the timbers of a quarter partition should vary according to the extent of bearing. Where that does not exceed 20 feet, 4 by 3 inches will be sufficient; and where it is as much as 40 feet, the quarters should not be under 6 by 4 inches, that is, supposing it to bear only its own weight. When it has to bear more, the scantling must, of course, be increased accordingly.
2025. Fig. 678. represents a design for a trussed partition, with a doorway in the centre

of it: in which $h /$ is the head, and AA the sill; de, dc the doorposts; gg the interte, Ad, Ad the braces; $f d$, fd struts. Fig. 679. shows a method of trussing a partition in which the doors are at the sides. It is obvious that additional strength may also be gained, when wanted, by introducing a truss between the intertie and head of a partition. The angle of inclination of braces should be about 40° with the horizon.
2026. The framed timbers which support the steps of a stairease are called the carriage. They generally consist of two pieces inclined to the pitch of the stairs, calied the rough strinys. When geometrical stairs consist of two alternate flights with a half-pace between them, the carriage of the half-pace is constructed with a heam parallel to the risers of the
steps, whose ionsts are framed into the bean for the support of the flooring. This beam is eailed the apron piece, and that which sustains the rongh strings at the upper end is callea? the pitchinf piece. The joists of the half-pace are sometimes tumed into the pitcuing piece, and sometimes bridge over it ; but the steps of both flights are always supported by string pieces, as before. The upper ends of the string picees at the landing rest upon an horizontal piece of timber, called, as above, an apron piece. The seantlings of the strings, of course, vary with the length of the inelined part. The depth given to joists of similar length will be more than sulficient.

noors.

20-7. The first obvious consideration in constructing a roof is the slope to be given to it, which depends on the climate against which it is to serve as a protection, and on the materials to be employed in covering it. In hot countries, rain more rarely falls than in temprate ones; but when it comes, it deseends very abundantly, which, added to the temperature of the air, makes it unnecessary to give a great slope to the roof, from which the water inmediately runs, and the air dries it almost at the instant of the rain's cessation. In cold countries the rain is more searching, the air is more impregnated with moisture, and stow often lies for a long time on a roof; cireumstances which require a greater proportional slope to be given to it. Again, roofs covered with lead, zine, or copper, do not repmire so great a slope as those covered "ith tiles or slates. (Bee Roorns, in Glossary.)
2029. Though among arehitects there does not appear to have been any fixed principle by which the slope should be determined, we find that in different elimates suitable slopes have been adopted for similar materials. Thus in the southern parts of ' Carope we find the roof very flat; whilst as we proceed into its northern parts the roof acquires a very considerable elevation. We shall here transler to our pages the notice of this subjeet in the Encyclopedie Metholique, which we consider extremely important and interesting, inasmuch as it shows that necessity was the parent of beanty in the inchation of the roofs of the ancients; and in the times of the madle ages it had some influence even in the production and developement of the lancet arch.
2029. The researeles and observations made respecting the roofs of a great many ancient and modern buildings, situate in different countries, satisfy us that the slopes of roofs which have lasted best are always proportioned to the temperature of the chimate. Before entering into the consideration of any law for determining the slope of a roof, it will be proper to comprehend the meaning of the word climate as here introducel, which we shall use in the same way as it is understood by geographers. Aecording to them, the climates of the globe are comprised under belts or bands, of unequal size, parallel to the equator. (ff them there are twenty-four between the equator and the polar circle, each of half an hour ; that is, the length of the longest day of a place situated at the begiming of the climate is always shorter by balf an hour than that of the place situated at the extremity of the same climate, or at the beginning of the succeeding one, proceeding from the elpator towards the polar circle. This difference in the length of the day, cansed by the greater or less obliquity of the tropic with the horizon, is one reason of the different degrees of temperature of countries corresponding to the different elimates. We are not, however, to assume that the temperature will be exactly the same for all places muder the same climate, since there are many circumstances which tend to make a place more or less damp, in which cases the slope of the roof should rather have a relation to a more northern spot. In the roofs of the Continent covered with the hollow tile, as in the south of France for instance, less slope is required than with the Roman tiles (see the word line in Glowsary), which are in sections altersately that and circular; and these, again, require less slepe than the common phain tile or slate. From the observations that have been mate, we find that the slope of roofs covered with hollow thle, thus, of the south of France, should be after the rate of three degrees for every climate, berinning from the equator and proceeding northward, and that when the Roman tile is used, an addition of three degrees should be made t, such inclination; an addition of six degrees, if eovered with slates; and of eight degrees, if covered with plain tiles. According to this law, the table which wit be presently subjuined las been conturetel, and a comparison of it with ancient buildings gives a remarhalle com roboration of its value. Thus, at Ahens, tituated about the middle of the sixth dimate, the slope of a pediment would be about 16_{2}°; and that of the Parthenon is actually about 16°; that of the temple of Erecthens, $15 \frac{10}{20}$; of Thesens, 155°. In Rome, which is abont one third o the way up the seventh climate, the Roman tile requisen an usclination of 22°. The actual shope of the pediment of Septimins Severus is 223°; those of the temples of Concord and Mars Ultor, 233°; of Fortuna Virilis and the Pantheon, 24^{n}; and, of more modern date, the shope of the roof of St. Paolo fuorì le murà was 23^{0}.
2030. We shall now give the reader the table above mentioned. This ingenions thoory is tahen exception tu by 1'. Watchouse in his Essay on Pediments, \&e., iss6.

City.	Country.	Climate.	Length of Day. Day.	Covered with			
				Hollow Tiles.	$\begin{aligned} & \text { Koman } \\ & \text { Tiles. } \end{aligned}$	Slates.	in Til
Carthagena -	Spain	' 1.	h. m.	deg. min.	deg. min. $19 \quad 12$	$\text { deg. } \min \text {. }$ 22	12
Palermo	I taly	-	1448	1648	1948	2248	$24 \quad 48$
Lislon	Portugal		$14 \quad 50$	17 00	$20 \quad 00$	$23 \quad 00$	2500
Toledo	Spain -		$14 \quad 58$	$17 \quad 48$	$=0 \quad 48$	$23 \quad 48$	2548
Madrid	Spain		1500	18 co	2100	$24 \quad 00$	2600
Naples	Italy	II.	15	$18 \quad 12$	$21 \quad 12$	$24 \quad 12$	$26 \quad 12$
$\begin{aligned} & \text { Constanti- } \\ & \text { nople } \end{aligned}$	Turkey			$18 \quad 24$	$21 \quad 24$	$24 \quad 24$	$26 \quad 24$
13arcelona	Spain		15	$18 \quad 48$	2148	2448	$26 \quad 48$
Rome	Italy		$15 \quad 10$	1900	2200	$25 \quad 00$	$27 \quad 00$
l'au -	France	-	$15 \quad 20$	$20 \quad 00$	2300	$26 \quad 00$	$28 \quad 00$
1 - 1 orence	Italy		$15 \quad 22$	$20 \quad 12$	2312	$26 \quad 12$	28 12
Avignon	France		$15 \quad 24$	$20 \quad 24$	$23 \quad 24$	$26 \quad 24$	$28 \quad 24$
Genoa -	Italy	-	$15 \quad 28$	20) 48	2348	$26 \quad 48$	2848
Bologna	Italy		$15 \quad 28$	$20 \quad 48$	$23 \quad 48$	$26 \quad 48$	$28 \quad 48$
Bordeaux	France		$15 \quad 30$	$21 \quad 00$	24 CO	$27 \quad 00$	29 00
Piacenza	1taly	VIII	$15 \quad 32$	$21 \quad 12$	$24 \quad 12$	$27 \quad 12$	$29 \quad 12$
'T'urin and Venice	Italy		$15 \quad 34$	$21 \quad 24$		$27 \quad 24$	$29 \quad 24$
Milan -	Italy	-	$15 \quad 36$	$\begin{array}{ll}21 & 36\end{array}$	$24 \quad 36$	$27 \quad 36$	2936
Lyons -	France	-	1540	2200	2500	$28 \quad 00$	$30 \quad 00$
Geneva	Switzerland		$15 \quad 44$	$22 \quad 24$	$25 \quad 24$	$28 \quad 24$	$30 \quad 2.4$
Dijon -	France	-	$15 \quad 52$	23 12	$26 \quad 12$	$29 \quad 12$	12
Zarich -	Switzerland	-	$15 \quad 54$	$23 \quad 24$	$26 \quad 24$	$29 \quad 24$	24
Munich	Germany	-	$15 \quad 58$	$\begin{array}{ll}23 & 48\end{array}$	$26 \quad 48$	$29 \quad 48$	3148
Vienna	Germany	-	1600	$24 \quad 00$	27 O)	So 00	$32 \quad 00$
Strasbourg	France	IX.	16	$24 \quad 12$	$27 \quad 12$	$30 \quad 12$	12
P'aris	rance	-	16	$\underline{9} 4 \quad 36$	$27 \quad 36$	$30 \quad 36$	36
Ratishon	Germany	-	16	$24 \quad 48$	$27 \quad 48$	$30 \quad 48$	3248
Rheims	France		$16 \quad 10$	2500	$28 \quad 00$	$31 \quad 00$	$33 \quad 00$
Nuremberg -	Germany	-	$16 \quad 12$	2.519	$28 \quad 12$	$31 \quad 12$	3312
Manheim	Germany	-	$16 \quad 12$	$25 \quad 12$	$28 \quad 12$	$31 \quad 12$	$33 \quad 12$
Havre -	France		$16 \quad 12$	$25 \quad 12$	$28 \quad 12$	$31 \quad 12$	3312
Mayence	Germany	-	$16 \quad 18$	$25 \quad 48$	$28 \quad 48$	3148	$33 \quad 48$
Frank fort (Maine) -	Germany		1618	$25 \quad 48$	$28 \quad 48$	3148	3348
Cracow -	Poland		$16 \quad 20$	$26 \quad 00$	2900	3200	$34 \quad 00$
Valenciemes	France		1622	2612	$29 \quad 12$	$32 \quad 12$	3412
Brussels	Belgium		$16 \quad 26$	$26 \quad 36$	$29 \quad 36$	$32 \quad 36$	$34 \quad 36$
Cologne	Germany	-	$16 \quad 28$	$26 \quad 48$	$29 \quad 48$	$32 \quad 48$	3448
Antwerp	Belgium	-	1630	$\bigcirc 700$	$30 \quad 00$	$53 \quad 00$	3500
London -	England	X.	$16 \quad 34$	$27 \quad 24$	$30 \quad 24$	$33 \quad 24$	$35 \quad 24$
The Hague -	Holland		$16 \quad 40$	$28 \quad 00$	31 00	$34 \quad 00$	$36 \quad 00$
Warsaw	Poland	-	$16 \quad 42$	28	$31 \quad 12$	3 ± 12	$36 \quad 12$
Berlin -	Germany	-	$16 \quad 46$	$28 \quad 36$	3136	$34 \quad 36$	$36 \quad 36$
11 amburg	Germany	-	$16 \quad 58$	$29 \quad 48$	3248	3548	$37 \quad 48$
Dresden	Germany	-	17 00	$30 \quad 00$	3300	$36 \quad 00$	3800
Dantzic	Poland	XI.	178	$30 \quad 48$	338	$36 \quad 48$	$\begin{array}{ll}38 & 48\end{array}$
Moscow	Russia	-	$17 \quad 22$	$32 \quad 12$	3.519	$38 \quad 12$	$40 \quad 12$
Copenhagen	Deumark		$\begin{array}{ll}17 & 28\end{array}$	$32 \quad 48$	$\begin{array}{ll}35 & 48\end{array}$	3848	$40 \quad 48$
Edinburgh -	Scotland	X1I.	$17 \quad 32$	$33 \quad 12$	$36 \quad 12$	$39 \quad 12$	$41 \quad 12$
Stockholm -	Sweden	XIII.	1830	3900	$42 \quad 00$	$45 \quad 00$	$47 \quad 00$
Petersturgh	Russia -	XlV.	1844	$40 \quad 24$	$43 \quad 24$	$46 \quad 24$	$48 \quad 24$
Bergen	Norway	-	1844	$40 \quad 24$	$43 \quad 24$	$46 \quad 24$	$48 \quad 24$

" There is no article," says Ware in his Body of Architecture, " in the whole compass of the architect's employment that is more important or more worthy of a distinct consideration than the roof. The great caution is," continues our author "that the roof be neither too massy nor too slight. Both extremes are to be avoided, for in architecture every extreme is to be shunned, but of the two the overweight of roof is more to be regarded than too much slightness. This part is intended not only to cover the building, but
to press upon the walis, and by that baring to mite and bold all together. This it wil. not be massy enough to perlorm if too little timber be employed. so that the extreme is to be shumed. But in practice the great and common error is on the other side; and he will do the most acceptable service to his profession, who shall show how to retrench and execute the same roof with a smaller quantity of timber; he will by this take off an unnecessary load from the walls, and a large and useless expense to the owner."

20:31. We shall now proeeed to a popular view of the strains exerted by the timbers of roofs, referring the ruader back to the section on Beams, Phasass, \&e., for a more extended and scientific view of them. Suppose (fig. 680.) , in the simplest form of roof, the rafters (shown by dotted lines) A B, CB to pitch upon the walls $A a$, C. Let the rafters be supposed to the comnected together at B as by a hinge, as also similarly conneeted with the walls at A and C. Now if the effective weight of the walls be not sufficient to resist the thrusts of the rafters, as respects the height, thickness, and situation of the centre of gravity of stuch walls, taken as sol d masses and moveable on the points X and Y, it is manifest th:e rafters by their own gravity will deseend, and the walls will spread and le thrown out of an uright, as in ab and $c d$. and the rafters will take the places shown in the figure. It has already been shown (par. 1622)

1is d80. that the hoizontal thrust of a pair of rafters thus meeting each other. is proportional to the length of a line drawn perpendicuialy from the rafter's foot until it intersects a vertical line drawn from its apex. As the roof therefore becomes flatter, the length of the perpendicular increases. Hence, if AB and BC be the rafters, and their weights be represented by their lengths, the weight or power of thrust exerted by the rafter AB in the direction of its length will be represented by I3O, and the horizontal thrust by $A O ; \Lambda O$ being perpendieular to AB. To secure, then, the walls in their perpendicularity, which the thrust of the rafters tends to derange, a system of framing becomes necessary. Thus, in fig. 681., a beam AC, which from the office it performs of tying or confining the feet of the rafters is called a tie beam, is introduced across the opening. and into this beam the rafters are framed. If the tie is introduced above the level of the walls, it is called a collar beam, as ac. It is manifest that these beams exert their power in the same way that a string would, that is, that the principal

Fig. GSt. strain which they have to perform is in the direction of their lengh, and hence, that for such especial purpose, if they be prevented from sagging or bending, a small size or scantling will be sufficient, for we have already seen that the cohesive power of timber is very great in the direction of its length. To take care that the tie beam thus introduced should be strained only in the direction for which it is used, we are now led to another expedient. The beam by its own gravity, especially in a large opening, would have a tendency to sag or bend in the middle, and the more so if its scantling be simply proportioned to its office of a tie. To prevent this a fresh tie is introduced called a kingpost DB (fig. 68\%.), by which the beam is tied or slung up to the apex of

Fig. 6nt. the principal rafters; and this combination of a pair of rafters, a tie bean and a kingpost, is called a truss, and is the most important of the assemblages which the carpenter produces. When the rafters are of such length that they would be liable of themselves to sag down, supports $a a$ are introduced at the points where such failures would oceur, and these supports are called struts, because their office is to strut up the rafter, which they should do as nearly as the case will admit in a direction perpendicular to the slope of the rafters.

20:32. It is elear that out of this last case a frexhl system of trusses may arise as in fig. 683., for from those points procured by the struts against the rafters new rods may
be slung for increasing the stilliness of the tie beam ad infinitum in theory, but not in practice, because the compressibility of the fibres of timber is considerable in lines perpendicular to their direction, and the contraction and expansion of metal places a limit to its use. This compression of tim-
 ber deserves great attention on the part of the architect. We may lay down as a mole in respect to it that the more the weights or pressures act in the direction of the tibres, the less will be the compression.
2033. To exemplify this, fig. 684. shows in No. 1. the prineipal rafters of a rool butting in an ordinary roof, against the shoulders AB, CD) of the kingpost, whose fibres, being vertical, are compressed by the pressure against it, on each side of the rafters, whereby they approach each other, causing the whole figure of the roof to suffer

Fig. 681. a change. For by the action of compression and its consequence the kingpost must descend, and with it, consequently, the tie beam which is slung up to it. To remedy the inconvenience in roofs constructed of fir. the kingpost is often made of oak, which is less compressible, a practice which should be ohserved in all roofs of consequence. But cast iron kingposts are the best substitnte where the expense can be justified. In No. 2. the end is accomplished much more coonomically by honsing the rafters in the head of the kingpost at the angle in which the rafters meet, by which the fibres of the rafters butt against each other, bringing the compression nearer to that which takes place in a post according as the rafters are less inclined to each other, and the beam is then literally suspended from the vertical planes of the rafters at their junction.
2034. When a roof (fig. 685.) is trussed by two upright suspending posts, which become necessary in increased spans, such posts, AI3, CD, are called queenposts, and the picce between them, BD , is called a collar, which acts as a straining piece to prevent the heads of the queen-posts moving out ol their places towards each other. It
 will on mere inspection be seen that this roof has three points of support, I, E, and D; for by means of the struts AE, EC, a new suspending point is gained from E for sustaining the tie bean between the points A and C. It is also to be observed that the collar or straining piece BD performs in this assemblage an office exactly the reverse of that which it does in fig. 681.
2035. The Mansard roof, so called from its inventor's name, and with us called a Curb, roof, frequently used for the purpose of keeping down the height of a building, and at the same time of obtaining sleeping or other rooms in it, is shown in figs. 686 and 687. It may be considered as primarily consisting of four pieces of timber connected by hinges at the points ABCDE . If these be inverted, they will arrange themselves hy their gravity in such a manner that when returned to their first position they remain in a state of equili. brium, which, however, in practice is but a tottering one, and requires additional expedients to prevent the whole assemblage thrusting out the nalls; and, moreover, to prevent the upper rafters from acting by their thrust to displace the lower ones. To obtain these ends the first object is to introduce the tie

「is 686.
Tig 687.

AE; and, secondly, the tie B1. It is to be understood that means are to be used, when needed from their length, to prevent these beans from hending, similar to those already directed in the cases of simple trusses. $\quad F i g .686$ is an example sclected from Kralit, (Art. de la Charpente, fol. 1805), having an arched ceiling to give additional height to
some large or fublic room. This form of roof has been frequently adopted in the palaces of France and Germany. Fig. 687 is a king-post Mansard roof, allording a wide space over the tie beam available as an apartment. Fig. 698 is an example of the principles adopted for a much wider spanned roof.

2035a. We have thus far endeavoured to explian in the simplest way the conduct to be pursued for obtaining stability in the construction of a roof; but before we proceed to the scantlings of the timbers to be employed, the reader must be informed that the trussts to roofing, with whose nature he has now become aequainted, are placed only at certain intervals (which should not exceed 10 feet) apart, and are thus made to bear the common rafters and the weight of the covering, as well as to perform the office of suspending the tie beam by which the walls are kept together. Hence the rafters so framed in a truss are called principal rafters; and by the means of a purline A (fig. 688.), which lies horizontally throughout the roof's length on the principal rafters, they are made to hear all the superincumbent load. The purlines are in tarious ways made fast to the principal rafters, and upon it the common rafters are usually notched down. Their bearings are thus lessened, and less seantlings suffice for them. They are received at their feet on a piece of timber (13 in the figure), which runs longitndinally along the sides of the huilding. This piece of timber is called a pole plate, from being the uppermost plate in a building; at their summits they abut against a ridge piece 1 . When it roof slopes each way, the space enclosed between the intersection of the slopes is called a hip (fig. (689.) ; and the longest rafters in it, which are those at the angles, are

Fiz giss.

Fig. ©SS. ealled hiprafters, and the shorter oncs are named jack rafiers, as $A, \Lambda, \Lambda, \&$ e.
2036. We have, at the beginning of this section (2007.), observed, that the use made of bolts must be always in a direction as nearly as possible connter to the straill which the pieces exert; the method, therefore, of introducing them will, on due consideration, be sufficiently obvious.

Before proceeding to lay hefore the reader some few examples of roofs suitable to different spans, as well as of some of magnitude which have been exceuted, it may be as well to complete this portion of our labour, by giving some information on the seantings, of timber for roofing, in which a medium, founded on our own practice, is introduced between ignorant overloading, and fanciful theory.
2037. For roofs whose spans are between 20 and 30 feet, no more than a truss with a king-post and struts will be necessary, in which case the seantlings heremder given will be sufficient.

For a span of 20 feet, the tie beam to be 9 in . by 4 in ; the king-post, 4 in . by 4 in , , principal rafter, 4 in . by 4 in .; struts, 4 in . by 3 in .
For a span of 25 feet, the tic lream to be 10 in . by 5 in . ; the king-posts, 5 in . by 5 in .; primeipal rafter, 5 in . by 4 in ; struts, 5 in . by 3 in .
For a span of 30 feet, the tie beam to be 11 in . by 6 in.; the king-post, 6 in. by 6 in., principal rafter, 6 in . by 4 in ; struts, 6 in . by 3 in .
2038. For roofs whose spans are between 30 and 45 feet, a truss with two queen-posts and struts will be required, and a straining piece between the queen-posts. Thus -

For a span of 35 feet, the tie beams to be 11 in . by 4 in ; queen-posts 4 in . by $4 \mathrm{in}$. ; principals, 5 in . by 4 in . ; straining piece, 7 in . hy 4 in ; ; struts, 4 in . by 2 inr.
For a span of 40 fect, the tic beams to be 12 in . by 5 in . ; queen posts, 5 in . by 5 in ; principals, 5 in . hy 5 in .; straining piece, 7 in . by 5 in . ; struts, 5 in . by $2 \frac{1}{2} \mathrm{in}$.
For a span of 45 feet, the tie beams to be 13 in . by 6 in ; queen-posts, 6 in. by 6 in ; principals, 6 in . by 5 in .; straining piece, 7 in . by 6 in . ; struts, 5 in . by 3 in .
2039. For roofs whose spans are between 45 and 60 feet. two queen-posts are required, and a straining picee between them; struts from the larger to the smaller queen-posts, and utruts again from the latter.

Jor a span of 50 feet, tie beams, 13 in . by 8 in .; queen-posts, 8 in . br 8 in ; small queebs, 8 in . by 4 in ; principals, 8 in . by 6 in .; straining piece, 9 in by 6 in.: struts, 5 in. by 3 in .
For a span of 55 feet, tie beams, 14 in . by 9 in ; queen-posts, 9 in . by 8 in ; small queens, 9 in. by 4 in .; principals, 8 in . by 7 in .; straining-piece, 10 in . by 6 in .; struts, $5 \frac{1}{2} \mathrm{in}$. by 3 in .
For a span of 60 feet, tie beams, 15 in . by 10 in .; queen-posts, 10 in . by 8 in ; small queens, 10 in . by 4 in . ; principals, 8 in . by $8 \mathrm{in}$. ; straining piece, 11 in . by $6 \mathrm{in}$. ; struts, 6 in. by 3 in.
2040. The scantlings of purlins are regulated principally by their bearing; and though we have subjoined scantlings for bearings of 12 feet, such should be a voided by not allowing the distances between the trusses to exceed 10 feet. Thus-for a bearing of 6 feet, the scantling should be 6 by 4 ; for 8 feet, 7 by 5 ; for 10 feet, 8 by 6 ; for 12 feet, 9 by 7.

For common rafters the scantlings are as follow; 12 feet should be the maximum of the bearing. For a bearing of 8 feet the scantling should be 4 by $2 \frac{1}{2}$; for 10 feet, 5 by $2 \frac{1}{2}$; for 12 feet, 6 by $2 \frac{1}{2}$.

2040 . To determine the size of a rafter for a roof to support the covering of slate, the distan e between the supports being 6 feet, and the weight of a superficial foo ${ }^{\circ}$, incluling the stress of the wind, being 56 lbs ; the deflection not to exceed $\frac{1}{40}$ th of an inch for each foot in length; the formulia becomes:- 56 lbs. $\times 6$ feet $=336 \mathrm{lbs}$, and $\frac{336 \mathrm{lhs}, \times 40 \times 6^{3}}{\mathrm{E}=3072 \times 6}=157 \cdot 5$, of which take $\frac{5}{6}$ ths for uniform load $=98 \cdot 44$. If the breadth be mado $2 \frac{1}{2}$ inches, then $\frac{98 \cdot 44}{2 \cdot 5}=39 \cdot 3$, and the cube root of $39 \cdot 3$ is $3 \cdot 4$ inches, the de t th required. These are the rules giren by Barlow (page 179), who, in the several editions of his work on Strength of Materials, put the "reduced tabular value" for Riga fir, $\mathrm{E}=96$, and 32 times E became 3072 ; and for English oak, $\mathrm{E}=105$. In the edition of 1851 , this has been altered to $\mathrm{E}=192$, and 16 times $\mathrm{E}=3072$ also, for fir ; or for oak $\mathrm{E}=210$. The reason of this change has been explained in Beams and Pillabs, par. 1630 m .

20403 . Another element in the calculation for timbers above-named, is the weights of the differunt materials used in covering buildings; these are stated to be as fullows. (Flat fireproof roofs have been considered s.v. Bricklayer):-

",	pantiling ${ }^{\text {and sh }}$	about	720	w.G.	pu		6.5 6.50	$\ddot{ }$		sq. ft. ${ }^{\text {a }}$
"	plain tiling	,	$14 \frac{1}{2}$	",	"		1780	",		20
"	stone slating	"	-	"	"		2380	"	$\frac{2}{7}$	
"	slating, a mean	"	$6 \frac{1}{2}$	"	"					5 to 11
"	" ${ }_{\text {common }}^{\text {comar }}$,		"	"		00 to 900	"		
"	jeail large	",		"	"		1120 700			
"	zinlu, 15 ounce	"		",	"		-			25 to 1.63
",	sopper iron, 16 w	G., and		"			100			
"	" $\frac{1}{10}$ th	ick					- 3			
"	corri	grated								
"			and ha	-			5			
"	cast iron plates,	thick					15			

The weights of iron roof coverings are given by G. S. Clarke, Graphic Statics, 1880, p. 137, from Unwin, Wrought Iron Bridges and Roofs. The column of fractions shows what the height of the roof, in parts of the span, is usually made. As the timbers elnployed are of course less in dimension as the weight decreases, it follows that a much less quantity of timber is requisite where the metals can be employed. On flats it will be necessary to consider the weight of the number of persons who may be probably standing on it at a time. The force of the wind has been considered in par. 1592a. When the rise or pitch is $\frac{1}{6}$ th of the span, the angle furmed is $18^{\circ} 25^{\prime \prime} ; \frac{1}{4}$ is $26^{〔} 35^{\prime \prime} ; \frac{1}{3}$ is $33^{\circ}+2^{r}$; $\frac{1}{2}$ is $45^{\circ} ; \frac{2}{3}$ is $53^{\circ} ; \frac{3}{4}$ is $56^{\circ} 20^{\prime \prime}$; when equilateral, 60°; a whole pitch is $63^{\circ} 30^{\prime \prime}$.
2041. By a study of the roofs which follow as examples, the architect will be led to other expedients and modifications of the forms submitted to his notice, as circumstances may call forth his ingenuity and talents. We have, we trust, already said enough to lead him on. Where economy must be consulted, the roof shown in fig. 690 may be used; it is only fit for a smail building, and the span of such a one should not exceed 25 feet. The left end of the collar beam exhibits what is calle 1 the carpenter's boast, but it partakes somewhat of the rule joint, being worked out to a centre. But in roofs above 25 feet span it is not
 well to omit the king-post and tie beam, though, if particular strains are to be prorided
against, even in such small spans the struts should not be omitted, and the form shown in fig. 691. should be adopte.l, which will answer for spans at least up to 35 feet. In this and

Fig. 691.

Fig. 692.
other cases of larger span, it is often desirable that the common rafters should not stand above the principals, and then the purlines are framed by mortices and tenons into the principals, as shown at A, fig. 692., wherein the line be shows the underside of the common ralters notched on to the purlines. This is a usual practice in Gothic roofs.
2042. lirom 35 to 45 feet, the tie beam should be suspended from at least three points, or it will be unnecessarily heavy; and this suspension of the tie beam, so that it may be -eally a tie unsuseeptible of alteration in form, is the true cause of this introduction of king and qucen ports, as before explained. Inderd, as.a general rule, it is well that the distance between such points of support for a tie be.m should r:ot exceed

Fig. 694.
Fig. 695.

13 to 15 feet, without expedients being used to prevent intermediate sagging. Fig. 693. is a queen-post roof of a span of 43 feet, over the railway workshops at Worcester, showing the initroduction of skylights. The trusses are placed 1.5 feet apait. The principai rafters are 8 by 8 ; tie beam, 12 by 8 ; queen-post, 8 by 6 ; struts, $4 \frac{1}{2}$ by $4 \frac{1}{2}$; straining beam, 9 by 8 ; common rafters, $4 \frac{1}{2}$ by ${ }^{2}$; purlines, in t wo flitches each (trused with stirrup pieces and iron ties), 9 by 3. The tie bcams are carried on iron shoes. Fig. 694. is a queen-post truss for a span of 50 feet, which leaves a considerable space free in the middle. The tie beam will probably be scarfed, which will be hest made between a and b. The straining sill c, strapped to the tie beam, will add materially to its strength.
2043. For spans above 60 feet we bave not given scantlings of timber in the preceding tables; but such do not greatly increase beyond 60 feet with practicable spans, and enough has been already said to make the reader acquainted with that part of the subject. Fig. 695. is the truss of the parish church of Elgin, designed by A. Simpson, of Aberdeen. The trusses are placed 6 feet 6 inches from centre to centre. The tie beamis in two flitches, each 13 by $5 \frac{1}{2}$; princijal rafters. 11 inches deep at lower end, 8 inches at top, and 6 inches thick; collar beam, 7 by $5 \frac{1}{2}$; kingpost struts. 5 by $5 \frac{1}{2}$; struts, 5 by $4 \frac{1}{2}$; horizontal rafters, $4 \frac{1}{2}$ by $2 \frac{1}{2}$. placed 13 inches apart, and covered with inck grooved and tongued deal, and 7 lbs. lead. This is similar to the Italian system intimated in Specifications, par. 2り85. The tie beams have cast iron shors at cach end, with abutments formed for the ralters, and secured with $\frac{7}{8}$ inch diameter bolts with unts and washers. The wrought iron suspending rods are inch square, and have abutment pieces for the rafters and struts.

2043a. Fiy. 695a, is the truss of a roof for a span of 45 ft ., with cast irou shoes as abutments for the timbers acting as struts. The end of the tie beam has a cast iron shoe, which also takes the foot of the principal ratter. The sole plate of the shoe is prolonged inwards, to admit of its being secured by bolts to the tie beam. The head of the principal rafter a, and the end of the straining beam $a b$, are inserted into a cast iron socket, shown in detail in fig. A. The suspension rod passes through the solid part of the socket; it has a head at its upper end, and at its lower end it is screwed and secured by a nut. On the side of the socket is cast a rest, c, for the side of the purline. To avoid eutting the princinal
ratters, the other purline at B is also earried in a cast iron rest bolted to the raltur. The cemre suspending rod passes throngh a cast iron soeket, whieh scrves as an abutment to the main struts. Similar abutments are provided for the lower end of the struts. Fig. 695ℓ.

for a span of 4.5 feet, has also wroug't iroan suspension rods. A roof of this description, .54 feet $\mathrm{sp}_{\text {fan }}$ and 212 feet long, is erveted at the passengers shed of the Croydon railway station. The figure E is a section through a cast iron scket taking the heads of the principals, and through which passes a wrought iron king bolt, shown in position at Jl .
2044. In all the cases given, the roof is supposed to receive no support from any but the external walls, and the trusses to be in most eases not mure than 10 feet apart.
2045. The reader who desires to b. come acquainted with other examples, is recommended to the works by Krafft, Art de la Charpente, and Charpenterie; Rondelet. L'Art de Bûtir, and its continuation hy Blout ; Emy, Art de le Churpenterie; Tredgold. Carzenty; Newland, Carpenter's and Joiner's Assistant, to which work we are indebted for the above new examples and The Doctrines of Carpentry Exp'ained-of a Raiff, by Licut.-Col. Waddington, in the Papers of the Corts of Royal Engineers, 1849, x. 71-15\%.

Qut6 Fig. 69j. represents a roof designed by J. Gibbs, From the centres of columns the

Fig. 606.
ST. MABTIN'S.IN-THE-FILLDS, WESTMINSTER。
middle aisle is 39 ft .11 in . The roof is well contrived and framed; but the timbers ate stronger than they need have been. The seantlings are as follow :-A, principal rafter, 13 in . by 10 at bottom, and 11 in . by 10 at top; B, straining brace, 14 in . hy 10 at bottom, and 11 in . ly 10 at top; C, king-post. 9 in . by 9; D, strut, 7 in . by $7 \frac{1}{2} ;$ E, queen-post, 8 in. by $9 \frac{1}{3}$; F, strut, 7 in. by 7 ; G, tie-bam, 14 in . ly $9 \frac{1}{2} ; \mathbf{H}$, post over the column, 14 in . by $9 \frac{1}{2}: 1$, brace, 7 in . by 7 ; K, braee, 7 in . by 7 ; L, post. 8 in . by 9 ; M, lamner beain, 14 in . by $9 \frac{1}{2} ; \mathrm{N}$, brace, 8 in . by 8 ; P, post in the wall; QQQ, purline rafiers, 4 in . by 6.
2047. Fig. 697. is the section of a roof by James Stuart, about 178.5. The span is 51 ft ., and as a variation from the general forms of roofs, it is worth the student's attention. The

Fig. 697.
greenwicit hospital
seantling of the timbers are subjoined. The distance between the trusses is about 7 ft . All the joints are well secured with iron straps. AA, tie-heam, whose whole length is 57 ft., 51 ti. clear between the walls. 14 in. by 12 ins ; D, an iron king-post, 2 in, oquare; Ce:
quen posts, 9 in . by 12; DDDD, struts, 9 in. by 7; E, straining beam, 10 in . by 7; F, straining piece, 6 in . by 7; GG, GG, principal ratters, 10 in . by 7; hhhh, \&c. purline rafters for boarding upon instead of rafters; 1I, a camber beam, supporting the platform.
2048. Fig. 693. exhibits the roof of the old Drury Lane 'Theatre, which was built in

Fig. 698.
1793. It possesses great merit, from the simplicity of its composition and the accommudation afforded in the middle space for the carpenters and painters. By dividing the breadth of the building into three parts, the roof was kept low, and the seantlings mueb reduced in size. The span is $80 \mathrm{ft} .3 \frac{1}{2} \mathrm{in}$., the trusses were 15 ft apart, and the whole 1 ength of the roof was 200 ft . It was destroyed by tire on the 94 th of lebruary, 1809 . The seantlings of the timbers were as follow : - A, heans, 12 in. by $7 ; \mathrm{B}$, prineipal rafters, 7 in. thick; C, king-posts, 12 in. by 7; D, struts, 5 in. by 7; E, purlines, 9 in . by 5 ; r , ridge picces, $1 \frac{1}{2}$ in. thick; G, pole plates, 5 in . by 5 ; H, gutter plates framed into beams, 12 in. by 6 , 1. common rafters, 5 in . and 4 in . by $2 \frac{1}{2}$; K, beams, 15 in . by 12 ; L, posts, 15 in . by 12 . M, principal braces, 14 in . by 12 ; N, struts, 8 in . by 12 ; O , oak trusses to the middle bearing of beams, $5 \frac{1}{2} \mathrm{~m}$. by $4 \frac{1}{2}: \mathrm{P}$, straining teams, 12 in . by 12.

20t9. The last example we shall present is of the method in which the external dome of St. Paul's is framed (fig. 699.). The internal dome A a is of briekwork, two brieks thick, having, at every five feet, an it rises, a course consisting of brieks eighteen inches long, which serves to bind the whole thickness together. This dome was turned upon a centre, which rested upon the projection at its springing, without any support from below, and was afterwards left for the use of the painter. It was banded together with iron at the springing. Exterior to the brick dome (which has indeed, nothing immediately to do with the subject) is a cone of brickwork $13 B b, 1$ foot 6 inches in thickness, plastered and painted, part whereof is seen from the pavement under the enpola through the opening a. On this cone $B 13 b$ is supported the timber work which carries the external dome, whose hammer beans CC, ID D, EE, FF are tied into the corbels G, H, I, K with iron cranps, which are well bedded into the corbels with lead, and bolted to the hammer beams. The stairs which lead to the Golden Gallery on the top of the dome are carried between the trusses of the roof. The dome is boarded from the base upwards, hence the ribs are fixed horizontally at near distances to each other. The scantling of the curve rib of the truss is 10 in . by $11 \frac{1}{2}$ at the bottom, and 6 in. by 6 at the top. The sides of the dome are segments of circles, whose entres are not marked in the figure ; and which, if continued, would
 meet at top, and form a pointed areh. Above the dome rises a lantern of Portland stone, ahout ?I feet in diameter, and 64 feet high, standing on the cone. The whole of this construction is manifest from the figure, whieh exhibits the iuner and outer domes with the cone between them. The combination is altegether an admirable example of the mathematical skill and judgment of Sir C. Wren.
2050. The largest timber roof perhaps ever projected, was over a riding house at Moscow, in 1790, for Paul I. Emperor of Russia, the representation of which may be seen in Kraft. Recueil de Charpente. The span is 235 feet, and the slope with the horizon about 19^{0}. The external dimensions of the building were 1920 feet long by 310 feet wide. It was lighted by a lantern at top, and had an interior gallery rome the building for spectators. Cresy, in his Civil Engineering, states that this roof wa ; never erected.
2051. We slall close this part of the section with a diagram (fig. 700.) of the roof of

Fig. 700.
the basilica of S. Paolo fuorì le mrrà, executed in the fifteenth century. The trusses are louble, each consisting of two similar frames, nearly 15 inehes apart, at intervals from each wher of ahout 10 feet 6 inches. The principal rafters alut on a short-king post k. Between the trusses a piece of timber S is placed and sustained by a strong key of wood passing through it and the short king-posts. This piece sustains the beams by means of another strong key at a. The tie beams are in two lengths, and searfed together, the searf being held together by three iron straps. The seantlings of the timbers are as follow : beans $t, 22 \frac{1}{2} \mathrm{in}$. full by nearly 1.5 in ; principal rafters $p, 21 \frac{3}{7} \mathrm{in}$. by nearly $15 \mathrm{in}$. ; auxiliary rafters b, full 133 in . by full $13 \frac{1}{1} \mathrm{in}$. ; straining beam c, near 15 in . by full 123 in .; purlines $d, 8 \frac{1}{2} \mathrm{in}$. square and 5 ft .7 in . apart; common rafters, full $5 \frac{1}{4} \mathrm{in}$. by $4 \frac{1}{4} \mathrm{in}$, and $8 \frac{1}{2} \mathrm{in}$. apart. The roof, which is constructed of fir, is nearly 78 ft .6 in . span, and is covered with the Roman tile, the exact dimensions and form whereof will be found, under the heal Thes, in the Glossary appended to this work. The roof is ingenionsly and well contrived, aul, with a different covering, would suit other elimates. It was consumed by fire in the month of July, 1823. (275.)

Philibert Delorme, in his work entitled "Nouvelles Inventions pour bien bâtir a pefits Frais," l'aris, 1561 , gives a mode of constructing domes without horizontal cross ties, when the springing of each rib is well secured at the foot. It is a very simple method, and of great use in domes, even of large diameter, the principle being that of making the several ribs in two or more thicknesses, which are cut to the curve in lengths not so great as to weaken the timber, and seeuring these well together by bolts or keys, and observing especially to break the joints of the several thicknesses. This method was adopted in the large Halle aux bleds at Paris, which was many years since destroyed by fire, and has been replaced by an iron-ribbed dome. The fig. 701. will explain the construction; and, if necessary, an iron
 hoop passed round at different heights will add mueh to the strength.
2052. The seantlings of the ribs, as given by Delorme, are as under : -

> For domes of 24 feet diameter, the ribs to be 8 inn . deep, and 1 in . thiek. 36 feet diameter, 60 feet diameter, 90 feet diameter, 108 feet diameter,

For small spans of about 24 to 30 ft ., the ineh plank is about 4 ft . long by about 8 in . wide. The feet of the ribs are tenoned into the wall plates; the shoulders of the tenon:s leing abont one inch. The ties A, placed about 2 feet distant, are 4 in . by 1 in .; they are sometimes shown passing through the planks pinned with keys 1 in. thick and $1 \frac{1}{2} \mathrm{in}$. wide, and of a length nearly the width of the plank; this method tends materially to weaken the sibs; that shown in the cut is a hetter mode. The wall plates, 10 or 12 inches wide and 8 or 9 inches thiek, have mortices 2 inches wide, 3 inches deep and 6 inches long, sumk at 2 feet apart, to receive the ends of the ribs. In a roof where the span was $6+$ feet, the scantling was increased to 13 inches wide and $1 \frac{1}{2}$ inches thick. The ties were alternately double and single, and were 3 inches hy $1 \frac{1}{2}$; and each rib was double tenoned into the wall plate. This system, with many modifications, was extensively adopted in the
construction of the nave and side erections of the building for the Exhibition of 1862 ; and also for some of the passages, \&c., of the Hortieultural Society, where they still exist, and deserve examination. It is also adopted for temporary sheds of large spans.

2052a. This work by De Lorme deserves the study of every one that seeks to be an architect, tho igls in these unfortunate days for the art the reward of study and rading is very doubtful.

2052b. Since the feriod of De Lorme, another system, arising ont of it, has heen extinsively adopted for large buildings. Colonel Emy, having been called upon in 1819 to design a roof of fo feet span, succeeded in composing one in whieh, while timbers of a greater length inight be used, the necessary solidity, with the lightness and economy of the system of De Lorme. might be combined. This he earried out in $18 \cdot 25$ and 1826. The workmanship is less than in De Lorme's roofs, as the wood is all in straight pieces, and is within the power of the ordinary carpenter. An areht is composed of a series of long and thin planks, laid floways, the flexibility of which permits them to be easily and quickly bent without the aid of heat; and their rigidity, properly regulated, maintains the form given and destroys the thrust. Fiy. $701 a$ is a portion of the base of one are, which will illustrate the system. 'The details are best learnt fiom Emy's own work, as it would refuire much space to to justice to them. The vertical pieces A are $7 \frac{3}{4}$ inches thick, and placed about 4 inches from the wall. The three first radial pieces B are prolonged beyond the uprights, and enter ruces-es in the wall to steady the fames. The plates C, breaking joint well with one another, compose the arc, and are 1_{8}^{3} inch thick, $5 \frac{1}{10}$ inches broad, and absut 40 feet long. bolted together, the bolts being driven tightly into accurately made holes, and are further firmly tied together by ironstraps; the bolts are $\frac{7}{70}$ inch diameter, and about 2 ficet 6 in. apart ; the principal rafters are $5 \frac{1}{4} \mathrm{in}$. thick; the trusses are placed 9 feet 10 in. apart.

205:c. Upon an experiment that was made by Eny to test the strength and thrust of this arelh, he found it necessary to add a supplementary plate to a part of the extralos, and two plates to a part
 of the intrados. The following is the proportion of the number of plates and their wicth. which he adopted as a rule:-

These supplementary plates were of oak, and of the same thickness as the others. These roofs are also given with sufficient detail in Newlands' work above-mentioned.

2059d. Menleval Roofs.-In the south of France the few Romanesque roofs did not differ from the common king-post roof, exeept in two points, viz., that the tie-beam and the king-post were stop-chamfered; and the strain of the purlines upon the principal rafter was counteracted by a nearly upright strut from the tie-beam. This system left the principal rafter with a false bearing, if the walls were not extremely thick in proportion to the width of the apartment which they enclosed. As a remedy, the late Romanespue builders tenoned the purline into the prineipals, and, moreover, laid it with its wid. r side to the rafters, in order that the backs of the common rafters should be flum with those of the principal rafters (similarly to fig. 692.). The next step was to put proper struts from the foot of the king-post. At the present day the purline is placed on edge for economy of material.

Fig. $701 b$.

2052f: In the north of France there was difficulty in roofing over the vaulting: either the main walls had to be carried as high as the ridge-rib, or else the frame of the roof had to be similar in principle to that shawn in fig. 701b. Experienec proved that the
latter scheme resulted in letting the prineipal rafters draw the tenons of the braces and sa destroy all idea of a tie connecting the two walis; hence the medizval builders were obliged to raise the walls sufficiently high to allow the tie-beams to pass over the back of the ridge-ril, as would be the case at A. This was expensive, and, moreover, it was scarenly practicable where the walls were hittle thicker than was necessary for the backing to the furmerets of the vaulting over the arehes of windows. It is to these facts, rather than to any influence of elimate, that may be attributed the adoption of the high-pitched roof, a system which required neither great widh of focting nor large scantling of timber, for the purlines were discarded, and the weight was distibuted among the rafters and trusses of each bay. The details of such a roof are simple. Two plates A (fig. 701c.) are placed with their widest sides on the wall, and are strutted between from

Fig. 701 c . the feet of the trusses to the centre of the bay. Upon these plates, tassels or short hammers B. are cocked down at intervals between the tie-beams, whieh are cocked down and dove-tailcd, to take not only the feet of the common rafters, but also the nearly upright stud or ashlar rafter \mathbf{F}, which serves to give a wider base to the principal and to the rafter. All these vertical pieces are doubletenoned and pinned into the other portions of the work.
$205 \because g$. The racking motion to which large roofs are liable, soon slowed that this was not the manner in which to make them secure. The pulines had been disearded, but the need of their service remained, the necessity was obviated liy erecting a sort of trussed partition under the ridge. If the king-post was not carried by the tie-beam, the whole roof depended upon the strengith of the head of the king-post, into which the ridge was tenoned, and the manner in whic. it was connected with the ends of the principal rafters. It therefore appears to be inore probable that the king-post was supposed to be carried by the tie-beam; indeed, examples oceur of trussed partitions (fig. zold.) to ridges, suppoited by king-ports A, which stand upon tie-beams that ride in queen-stirrups, B, where the stirrups are hung from the principal ralters at three quarters of the height of the roof. Care has been given to this detail of the practice, because it seems to have

Auxure, covers a whe is 30 frou the at Auxerre, covers a ball which is 30 fect wide; the trusses are placed 19 feet ajart from centre to centre. The seantlings are as follows: - King-josts, 5 by 5 , and principal rafters $=\frac{1}{2}$ by $4 \frac{3}{4}$; the common rafters, 5 by $4 \frac{3}{4}$. are shown in fig. $701 f$, and are trussed in a different manner; they are placed nearly 9 feet apart. The roof appars to be boarded on the inside to the circular form.
20.52i. Although Viollet le Due is of opinion that the tie-beams to the fine cradle roof, 57 fuet 3 inches span, constructed at the beginning of the 16 th century, over the great hall of the l'alais de Justice, at Rouen (fig. 247), have been cut away, it may not be maiair to suggest that the work might have stood as well if, in its construction, it had resembled the older and fine roof of the château at Sully-sur-Loire, whiel he so well illustrates, but which want of space prevents our also doing. The student has, perhaps, no cause fir regret, as its construction call scarecly be recommended for imitation in the present day. It is about 36 feet span.
$2052 k$. The absence of a ridige roll and the position of the rilge-piece in the majority
of medieval roofs deserve notice, As soon as the purines were diearded, it seems that builders relicd upon the king-post to carry a ridgr-piece upon whiels rested the ends of the rafters; these were halved and spiked together above it. Excepting in a few eases the ridge-piece was rather a purline at the top of the roo: than an abutment. Mueh of the bolt and strap work appled in the sisible rames of roofs is not always the most judicious as regards the conversion of construction into decoration. For example, if it were ealeula'ed that a tie-beam would sag, instead of inereasing its scantling, or of trussing it, the medixial carpenter would very probably hang it up to his truss, as in figs. 701g. and 701h. At a later periorl (say the 14 th century) with some spikes. Fig. 701k. illnstrates the method of forming the junetion of post, hean, and strut in a roof; and fig. 701l. that of beams and posts in the timber traming of houses.

Fig. 701e.
Fig. 701 f:

20592 . It will be at once perceived, by fig. 70:c., that the hammer-beam $13 B^{\prime}$ takes the place of the tie-beam, the middle part of whieh may lave bren cut away. The tinted portion slows the foot of the rafters in a eradle roof; and the lighter portion the position and form of the hammer-beam, the outer end of which is tenoned and pinned on to the wall

Fig. 701 g .

Fig. 701 .

Fig. 701 .

Fig. 701 k .
plates A, and the inner and supported by a eurved brace C, whieh starts from the bottom of the will piece D , the whole being pinned tog ther at the ends. Sometimes a c bel receives the foot of the wall pieee and brace. Thus the whole length of the hammer hean may be said to have a solid bearing equal to supporting the roof rising above it, by the ashlar rafter or strut E , and at the same time forming a part of that structure. When the whole is put together securely, it has been considered alnoot impossible for hammerheam rool's to spread, as from the stiffening a tion of the braces, it would require a very heavy toree to pish out the walls. But " the absence of that eurved brace whiel distinguishes the Westminster example, makes these ro fs mueh more likely to exert a thrust upon the walls, and, accordingly, it is notorions that in very many cases this has occured. In the fine example at Croxton, the strain was so great as absolutely to bieak short off the perfectly sound heart of cak pin*, nearly an inch in diameter, with which it was held together; and it is to be feared that many of the finest of these examples are similarly in a dangerous condition." So writes Mr. Street, in his English Wooduork, read at the Institute of British Arehitects in 1865, a paner which should not be neglected by the student. 'The principle of the construction of t 'ese roofs has perhaj's not yet been satistactorily elucidated.

2052m. The timher roofs in England may be divided into five classes:-I. F.oofs with tic beams ; II. Rools w.th trused rafters, or sing'e framed roots; 111. Roofs with braces with or without collars; 1 V . Roofs framed with hammer beams; and V. Aisle roo's. The first are more general and better treated in France. The others are more peculiar to Fingland, in which country claborate examples of these forms are to be found, especially on the hammer-beam system.

2052n. Pitch. - Thene roo's are for the most part acutely pitched, though this was ly no means their invariable elaracterintic. An angle of 90° was perlaps the ordinary elevation of Norman roots, and in the early En;llish period, though gencrally acutely pointed, zoofs are nevertheless found of an equilateral pitch or angle of 60°, though this is of rare occurrence. In this and the succeeding style, examples are found of so low a pitel as to equal the flattest specinemis of the perpeldicular period. The roof, of the decorated
style, over the larger south aisle of St. Mar.in's Churel, Leieester, has a span of 21 feet, with a rise of only 4 feet. (See par. 2040b.).
20590. I. The tie-beam bears the whole weirlat of a low pitehed roof. The roof over the south chapel of Kiddington Church, Oxfordshire, is of rather a steeper piteh than that at Leieester. The under side of the bean is well moulded, and is conneeted with the wall-pieces by moulded eurved braces forming a very ohtusely pointed arch; the purlines rest directly on the beam, and the ridge is supported on it Iv a post, and by short curved braces, the whole of the space above the tie-beam bring fivied up so as to gire it the appearance of a solid triangular shaped heam. The naves of Raunds and of Higham Ferrers Chunches, Northamptonshire, the latter of decoated date, and of Wimmington Chureh, Bedfordshire, present good and differing examples. The tie-beam is rarely left perfectly horizontal ; the collar-beams and even the hammer-beams will be found to incline upwards. Tie-beams were sometimes employed quite independently of the other timbers, heing simply laid across the building from wall to wall, notehed down, and pinned to the wall plates. They were never entirely disearded. as they are to be met with in each of the four usually accepted divisions of the style. At Southfleet Church, Kent, the tie-beam is beautifully moulded; whereas, at Northfleet, it is left in almost its natural roughness, while the roof itelf, whieh is one of the trussed rafter kind, is panelled, and has moulded ribs with carved bosses at the intersections.
$2052 p$. An example of a strongly eambered tie-leam, with an ornamented king-post, is seen in Swardestone Clurch, Nortelk, and it is by no means uncommon in the counties of Kent and Sussex. The tie-beam of the roof over the aisle of Not th Walsham Chureh, Norfolk (fig. 701m.), passes through the nave wall, the end forming a corbel for the wall pieces of the nave roof: This roof also presents a practice which became almost universal in roefs of later date, viz., an intermediate truss between the ticbeams, in consequence of
Fig. 701 m .
 the extreme width between the main trusses, to support the ridge and purlines, by the adoption of double rafteis on each side, strongly mited and framed together, springing from a small hammer-
 beam over the apex of the arches. In rocfs of high pitel, various endeavours were made to retain the arehed shape in conjunction with the tiebeam. At Pulham Chureh, Norfolk, and Morton Church, Leicestershire, the beam divides the areh into two. with a lad result.

2052q. 11. Simgle-framerl roofs sometimes have only diagonal braces connecting the rafters. These occur generally where the span is small, as over a poreh. In wider spans, even without tie-beams, each pair of rafters was framed witl a collar-b.am, and was stiffened by braces crossing at tim:s above the collar, and at others the braces being tenoned into its under side; when the latter was the case, a second Fig, 701 m wimbotsham, nobfolik. collar was generaly introduced above the first. Such roofs were very frequently boarded monderneath, forming thus a polyonal barrel vault, and moulded ribs were applied, dividing the boarding into panels, with earved bosses at the intersections. The above details will be found combined in the examples of the decorated period from the nave of Wimbotsham Church. Norfolk (fig. $701 n$). The angle of the roof is 78°. The span is 21 feet 9 inches; the rafters and collars are $4 \frac{1}{2}$ inches ly 4 inches. The former are placed 1 foot 9 inches apart between the eentres. The nave roof of Reedham Church, Norfolk, 31 feet span, is framed on the same principle. The hall at Sully-sur-Loire is a fine example.

2052r. 111. Roofs constructed with brices may be divided into two elasses: I. Those with collar beams and braces; and II. Those without collar-beams. An example of the former is seen in the roof of the nave at Pulham Church (fig 701o.), which is formed at an angle of 105°, with a span of 20 feet 5 inches. Wall picees A, are used, pinned into
the underside of the principal rafters, deseending low down on the wall; the arched brace springs directly from this to the collar-beam, uniting them both with the principal. It is held that it would be impossible for this roof to spread until it had broken the curved braces. The varioustimbersare all effectively moulded. The priucipal rafters, 12 inches by 10 inches; common ralters, 6 inches by $8 \frac{1}{2}$ inches; collar-beam, 14 inches by $8 \frac{1}{2}$ inches; ridge piece, 8 iuches by 8 inches; purline, 8 inches by $6 \frac{1}{2}$ inches; wall piece, 10
 inehes by $8 \frac{1}{2}$ inehes. Width hetween centres of trusses, 6 feet 2 inches; and depth of cornice 3 feet 2 inches. Of elass II. is the roof over the nave of Starston Church, Norfolk (fig. 701 p). The angle formed is 100°. At the apex of the roof is a strut 13 , about 9 inches square, which hangs down 2 feet; its four sides are morticed, two to receive the ends of the braces where they are pinned, thus preventing the possibility of its dropping; and the other two on the opposite sides, to receive the arched ridge braces, as shown at \mathbf{C}. This arrangement tends to prevent the roof either spreading outwards, or rocking from east to west. The span is 21 feet 10 in . The prineipal ralters are 10 in . by 9 in ; common rafters, 6 in . by 4 in .; wall piece, 10 in . by $7 \frac{1}{2} \mathrm{in}$.; purline, $6 \frac{1}{2} \mathrm{in}$. by $5 \frac{1}{2} \mathrm{in}$. ; and cornice, 11 in . by 10 in .
20.52s. IV. Hammer-berem ronfs are always double-fiamed roofs, the ratters being supported by a skeleton framing of purlines and ridge, resting on, or framed into, the principal trusses. Among the many varieties of this description of roof may be noticed:-(1) Those with collar-beams and no struts, the collars, prineipals, and hammer-beams being united with curved braees; (2) Those in which the collar-beam is omitted, the curved braces being carried up almost to the ridge, and framed at the apex of the arch into a strut, which receives also the upper ends of the principals; (3) Those with no collars or struts, the whole of the truss being connected together and stiffened with curved braces only; in this instance the arched braces are formed of three pieces of timber, one on either side of the roof, tenoned into the hammer-beam and principal, and reaching up as far as the purline, the centre piece forming the apex of the arch, being tenoned into each principal, itself acting as a brace, and to a certain extent as a collar beam; and (4) Those having hammer-beams, collars, and struts, connected together with curved braces. (See par. 2052l.)

2052t. An example of the first sort is the rool' of Capel St. Mary's Chureh, Suffolk (fig. 701 q .). The angle formed is 87°, and it is very seldom that a hammer-beam roof has a steeper pitch. The span is 18 feet 3 inches. The principal rafter is 10 inches by

Fig. TOIq. CAFEL ST. MAKY, SUFFOLK, 8 inches; common rafter, 6 inches by 3 inches; hammer-beam, 10 inelics by 8 inches; collarbeam, 10 inches by 8 inches; purlins, 6 inches ly 5 inches; ridge piece, 6 inches by 6 inehes. The trusses are 6 feet apart from centre to centre. The second sort is shown in fig. 701r, the nave roof of Trunch Church, Norfolk. The intermediate trusses are the same, except that instead of the long wall-piece and brace, the wall-piece is stopped at the crown of the arch of the clearstory window, and a very depressed brace conneets it with the hammerbeam. The spandrils are filled in with perforated tracery. The span is 19 feet. The prineipal rafter is 10 inches by 9 inches; common rafter, 6 inches by 4 inehes; hammer-bean, 10 inehes by 10 inches; purline, 8 inches by 5 inches; ridge piece, 10 inches by 10 inches. The trusses are 5 feet 6 inches apart. The third sort is shown in fig. 701 s., from the nave of Wymondham Church, Norfolk. The hammer-beams project rather more than a quarter the width of the nave, and are carved into figures; the intermediate trusses have also similar figures, but made subordinate to those of the main trusses. At the intersections of the purlines and ridge braces are large carved flowers standing out in bold relief. Of the
fourth sort, the menst noted examples are those of Westminster Hall, 68 feet span (fig. 196.) ; Hampton Court, 40 feet spaa: ; Eltl am Palace, 36 feet 3 inches; Beddington Hall;

Fig. 701s wymontham, vonfole.

Son:th Wraxhall, 19 feet 9 inches; Croydon, 37 feet 9 inches, \&c. It will be well to notice, what is not usually known, or shown, in the sections of the Westminster roof, that the main purlines over the strut, are upheld with the collar-beam by an intermediate ratter of great strength. Mr. S. Smirke has observed (Aichoologia, xxvi. page 417-18), that "this roof is the common collar-locam roof, and of extremely simple construction; the whole pressure is carried by the straight lines of the principal rafter, and (curved) brace, alove alluded to, dircetly into the solid wall, where it ought to be." The examples of lesser importance, as regards span, are not all of the same elegance as that of Westminster, which, at the same time that it is the lurgest and best, is also the earliest (1397) of the series. Some exanples present double hammerbeams, forming a sort of corbelling over up to the ridge or to the collar-beam. Fig. 7011., from Knapton Church, Norfolk, is 32 feet span, and is a fair specimen of such roofs. The wall is 2 feet 10 inches i: thickness. For all these examplis, we are indelted t: the excellent publication by Brandon; Mediaverl Roofs, to which work we must refer the reader for de-

Fig. TO1t. KNAITON, NOLFOLK. tails of decoration and painting, as the above figmes are only here introduced to show the principles of construetion displayed in such roofs.

C052u. In fig. $701 u$, we give the modern roof, of 31 feet 2 inches span, over the nave of Bickerstaffe Church, Yorkshire, designed by Sydney Smirke, R. A., as a good specimen of the adaptation of modern science to mediæval structures. The collar-beam is double, each 9 in . by 3 in ., through which the king-post is tenoned and strapped. The purlines are 7 in . by 4 in , the lrace, 9 in . by 7 in .; and the corbels are 11 in . wide, being also tailed in 11 in .

Fic: 701 u. bickeltstarfe, VOHKSHHE,

2052v. V. Aisle, or Lean-ts, roufs, may be described as usually consisting of strong timbers, answering the purpose of principal ratiers, laid at cach end on plates, the lower plate resting on the extcrnal wall, the upper one either supported on corbels projecting from the nave wall, or inserted therein. Wall-picees are tenoned into the upper and lower extremities of the principals, and curved braces springing from the feet of these meet in the centre of the principal, forming a perfect arch, having the spandrils generally filled in with tracery. A purline is usually framed into the principal, and on this and the plates the common ratters are supported (see also fig. 701\%). In aisle roofs the whole of the timbers, even to the common rafters, were frequently found more richly moulded than those of the nave, possibly from being nearer the eyc of the spectator.
2053. The following instructions relative to the lines necessary to be found in the framing of roofs are from l'rice's British Carpenter; and although published nealy 100 years. few
be a plan to be inclosed with a hipped roof, whose height or slope is $\mathbf{C b}$. Divide the plan lengthwise into two iqual parts by the line $e f$, which produce indetinitely at both ends. Make ag equal $e a$, and $d k$ equal to $d f ;$ and through k and g, parallel to ab or cd , draw lines indefinitely mo, p. With the distance de or Ce, cither of which is equal to the length of the common ralters, set off $q e$, as also from h tg p, from i to o, and from f to n; from k to m, and from g to l. Make $t s$ equal to Cb ,

Fはg. 002 . and ab equal to $t a$, which points join ; then either a 號 as represents the length of the hip rafter, and joining the several lines aqh, bpoc, end, and dma, they will be the skirts of the roof.
20.54. To lind the back of the hip. Join $g e$, and from r as a centre describe an :nc touching the hip us. and eutting at in u. Then join $g u$ and $u e$, and gue is the back of the hip rafter required.
2055. Fig. 703. represents, in abed, the plan of a building whose sides are bevel to ench other. Having drawn the eentral line ef indefinitely, bisect the angle rug by the line ae, meeting ef in e. Frome make eg equal to re, and $r g$ perpendicutar to ea; then, if e a be made equal to en, ra or aq, it will be the length of the hip rafter from the angle a. Through e and f, perpendicular to the sides $d b, c a$, draw the lines $n p, m q$ indefinitely; and from a, as a centre with the radius $a q$, describe all are of a circle, cutting $m q$ in q, and ${ }^{(r}$ (perpendicular to bat) produced in l. By the same kind of operation oc will be

Fis. 70.5. found, as also the other parts of the skirts of the roof. 'The lines $n t, t f v$, and $v p$ are introduced merely to show the trouble that occurs when the beams are laid bevel. The angle of the back of the hip rafter, rug, is found as before, by means of u as a centre, and an are of a circle touching uq. The backs of the otber hips may be found in the same mamer.
2056. Fig. 704 ., from Price's Carpentry, is the plan of a house with the method of placing the timbers for the roof with the upper part of the elevation above, which, after a perusal of the preceding pages, cannot fail of being understood. The plan F is to be prepared for a roof, either with hips and vallies, or with hips only. The open spaces at G and II are over the staircases: in case they cannot be lighted from the sides, they may be left to be finished at discretion. The chimney flues are shown at 1 KLINO . Then, having laid down the places of the openings, place the timbers so as to lie on the piers, and as far as possible from the flues; and let them be so comected together as to embrace every part of the plan, and not liable to be separated by the weight and thrust of the roof. P'is a trussed timber partition, to diseharge the weight of the roof over a salon below.
2057. Q is the upper part of the front, and R a pediment, over the small breañ, whose height gives that of the blank pedestal or parapet S . Suppose T to represent one half of the roof coming to a point or ridge, so as to span the whole at once, "which," as Price truly observes, "was the good old way, as we are shown by Serlio, Palladio," \&c., or suppose the roof to be as the other side U shows $i t$, so as to have a flat or sky-light over the lobby F , its balustrade being W ; or we may suppose X to represent the roof as spanning the whole at three times. If \dot{X} be used, the valley and hip slould he framed as at Y ; if as I', the principal rafters must be framed as at Z, in order to bring part of the weight of the roof and covering on the partition walls. The remainder needs not further explanation.

REES FOR GROINS, ETC.
ת058. We shall now proceed to the method of forming the ribs for groined atches niches, \&c. The method of finding the shape of these is the same, whether for sustaining plastering or supporting the boarding of centres for brick or stone work, except that, for plaster, the inner edge of the rib is cut to the form, and, in centering, the outer edge. Groins, as we have already seen, may be of equal or unequal height, and in either case the angle rib may be straight or curved; and these conditions produce the varicties we are about to consider.
2059. To describe the parts of a groin where the arches are circulur and of unequal height, commonly called Welsh (inoins. We here suppose the groin to be right-angled. Let AB (fig. 705.) be the width of the greater arch. Draw BD at right angles to A B, and in the straight line BD make CD equal to the width of the lesser areh. Draw DF and CE perpendicular to BD and EF parallel to BD. On AB describe the semicirele BghiA, and on EF describe the semicircle EqroF. l'roduce AB to p, and FE, to m, cutting $A p$ in y. Through the centre x of the semi-

Fig. 70.5
circle EqrsF draw $t s$ perpendicular to BD , cutting the circumference of the semicircle in s. Draw sp parallel to BD. From the centre y, with the distance $y p$, describe the quadrant pm. Draw mi parallel to AB, cutting the semicircle described upon Al3 in the point i. In the are $B i$ take any number of intermediate points g, h, and through the points $g h i$ Iraw it, hu, gv, parallei to BC. Also through the points ghi draw $g h, h l$, im parallel to AB , cutting FE produced in k and l. From the centre y deseribe the ares $k n, l o$, cutting AB produeed in mo. Draw nq, or, parallel to BD, cutting the lesser semicircular are in the points q, r. Through the points q, r, s draw $q v, r u$, st parallel to AB ; then through the points $t u v$ draw the curve tuec, which will be the plan of the intersection of the two cylinders. The other end of the figure exhibits the construction of the framing of carpentry, and the method in which the ribs are disposed.
2050. To deseribe the sides of a groin when the arehes are of equal height and designed to meet in the plane of the diagonals. Let af and al (fig. 706.) be the axes of the two vaults, meeting each other in a, perpendieular to αf. Draw AB cutting of in w, and perpendieular to $z l$, draw BG cutting $a l$ in b. Make $w \mathrm{~A}$ and $w \mathrm{~B}$ each equal to half the width of the greatest vault, and make $b \mathrm{~B}$ and $b \mathrm{G}$ each equal to half the width of the lesser vault. Draw AH and BE parallel to $a f$, and draw BII and DF parallel to $a f$, forming the parallelogram DEHF. Draw the diagonals LID, FE. On the base AB describe the eurve 13cdefA, aecording to the given height $u f$ of the required form, which must serve to regulate the form of the other ribs. Through any points cde in the are Bcdef: draw the straight lines c q, $d r$, es cutting the diagonal HD at q, r, s. Draw $q h, r i$, $s h$ parallel to al eutting the chord BG at the points x, y, z, b. Make $x h, y i, z k, b l$ each respectively equal to $t c, u d$, ve, uff. and through the points Ghikl to B, draw the curve Ghiki B. Draw $q^{m}, r n$, so, $a p$ perpendicular to HD. Make $q m, r n, s o, a p$ respectively equal to $t c, u d, r e, u f$, and through the points $\mathrm{D}, m, n, o, p, 1 \mathrm{I}$ draw a curve, which will be the angle rib of the groin to stand over HD ; and if the groined vault be rightangled, all the diagonals wiil be equal, and consequently all the

Fig. 70% diagonal ribs may be made by a single mould.
2061. The upper part of the above figure shows the method of placing the ribs in the con. struetion of a groined ceiling for plaster. Every pair of opposite piers is spanned by a prineipal rib to fix the joists of the ceiling to.
2062. The preceding method is not always adopted, and another is sometimes employed in which the diagonal ribs are filled in with short ribs of the same eurva. ture (sce fig. 707.) as those of the arches over the piers.
2063. The manner of finding the seetion of an aperture of a given height cutting a given arch at right angles of a greater height than the aperture is represented in fig. 708.
2064. When the angle ribs for a square dome are to be fomid, the process is the same as for a groin formed by equal arches crossing each other at right angles, the

Fig. 707.

Fig ios. inints for the laths being inserted as in fig. 707.; but the gencral construction for the angle ribs of a polygonal dome of any number of sides is the same as to determine the angle rib) for a cove, which will afterwards be given.
205.5. When a circular-headed window is ahove the level of a plane gallery ceiling, in a church for example, the eylindrical form of the window is continued till it interseets the plane of the ceiling. To find the form of the curb or pieces of wood employed for completing the arris, let $d p$ (fig. 709.) be the breadth of the window in the plane of the ceiling. Bisect $d p$ in h, and draw $h 4$ perpendicular to $d p$. Make $h 4$ equal to the distance the curb extends fiom the wall. Produce $4 h$ to B. Make
$h 13$ equal to the height of the window above the ceiling, and through the three points $d, \mathrm{~B}, p$ describe the semicircle ABC for the head of the window. Divide $h \mathrm{~B}$ into any number of equal parts, as 4 at the points $h . l, v$; and $h 4$ into the same number of equal parts at the points $1,2,3$. Through the points $k l v$ draw the lines $e t, f u, g w$ parallel to d_{p}, and through the points $1,2,3$ draw the lines $m g$, $n r$. os. Make $1 m, 2 n, 30$ respectively equal to $k e, i f, r g$; as also $1 q, 2 r, 3 s$ equal to $k t$, $l u, v w$; that is, equal to $k e, l f, v g$. Then through the points dmno4, and also through pqrs4, draw a curve which will form the curb required. In the section \mathbf{X} of the figure, AC shows the ceiling line, whereof the length is equal to $k 4$, and $A B$ is the perpendicular height of the window; henee BC is the slope.
2066. The construction of a niche, which is a portion of a spherical surface, and stands on a plan formed by the segment of a circle, is simple enough ; for the ribs of a niche are all of the same curvature as the plan, and fixed (fig. 710.) in planes passing through an axis corresponding to the centre of the sphere and perpendicular to the plane of the wall. If the plan of the niche be a

Fig. 710. semieirele (fig. 711.) the ribs may be disposed in vertical planes.
2067. In the construction of a niche where the ribs are disposed in planes perpendicular to the horizon or plan, and perpendicular to the face of the wall, if the niches be spherieal all their ribs are sections of the sphere, and are portions of the circumferences of different circles. If we complete the whole circle of the plan (fig.712.), and produee the plan of any rib to the opposite side of the eircumference, we shall have the diameter of the circle for that rib, and, consequently, the radius to describe it.
2068. Of forming the boards to cover domes, groins, f.c. The principles of determining the developement of the surface of any regular solid have already been given in considerable detail. In this place we have to apply them practically to carpentry. The boards may be applied either in the form of gores or in portions of conic surfaces; the latter

Firg. 713.

Fig. 712. is generally the more economical method.
2069. To deserite a gore that shall be the form of a board for a dome circular on the phim. Draw the plan of the dome ABD (fio. 713.), and its diameter BD and Ae a radius perpendicular thereto. If the sections of the dome abont to be described be semicircular, then the curve of the vertical section will coincide with that of the plan. Let us suppose the quadrant AB to be half of the vertical section, which may be conceived to be raised on the line $A e$ as its base, so as to be in a vertical plane, then the are AB will come into the surface of the dome. Make Ai equal to half the width of a board and join ei. Divide the are AB into any number of equal parts, and through the points of division draw the lines $1 i, 9 j, 3 k, 4 l$, cutting $A e$ in the points efgh and $e i$ in the points $i j k l$. Produce the line $e A$ to s, and apply the arcs $\mathrm{Al}, 12,23,34$ to $\mathrm{Am}, \mathrm{mo}, o q$ in the straight line As. Through the points mnoq draw the straight lines $t n, u p, v r$, and make $m n, o p, q r$, as also $m t, o u, q r$, respectively equal to $e i, f j, g k$; then through the points inpr to s, and also through the points x tuv to s, draw two curves from the points x and i so as to meet each other in s; and the curves thus drawn will include one of the gores of the dome, which will be a monld for drawing the boards for covering the surface.
2070. In polygonal domes the curves of the gore will bound the ends of the boards; as, lor example, in the oetagonal dome

(fig. 714.), the plan being A BCDEFGII. Let i be the centre of the circle in which the octagon may be inseribed. Draw the half diagonal $i A, i B, i C$ perpendicular to any side AB of the plan. Draw the straight line $i h$, cutting AB in h. Let hlm Z be the outline of one of the ribs of the dome, which is here supposed to be the quadrant of a circle. Divide the are $h Z$ into any number of equal parts from k at the points $1 m n$, and through these points draw $l x, m y, n z$, cutting $B i$ at the points $x y z$, and $i h$ at the points 1, 2, 3. Extend the arcs $h l, l m, m n$, on the line $l n$, from h to o, from c to p, from p to q, and through the points opq draw the straight lines $i u, s r, t w$ perpendicular to $h n$. Make ${ }^{2 n}, p v, q^{w}$, as also or, $p s, q^{t}$, respectively equal to $1 x, 2 y, 3 z$; then through the points Arst draw a curve, and through the points uvw draw another curve, meeting the former one in the point n. Thits will be formed the gore or covering of one side of the octagonal dome.
2071. When the plan of the base is a rectangle, as fig. 715., draw the plan ABCD and the diagonals AC and 13 D , cutting each other in E. Through E draw El perpendicular to Al3 cutting AB in F, and through E draw EJ per-

Fig. 715. pendicular to $13 C$, eutting BC in G . Let the height of the dome be equal to half its breadth, and the section over the straight line EFF it quadrant of a circle; then from the centre E describe the are FH, its base being EF, and with the straight line EG as half the major axis of an ellipsis, and EF the minor axis, describe the quadrant GF of an ellipsis. Produce EF to I, and EG to J. Divide the arc of a quadrant Fill from F into any number of erfual parts, and extend the parts on the line FI to k / m, throngh which draw the lines $k q, l r$, ms, \&ec. perpendicular to FI. Through the points $1,2,3$, \&ec draw wt, cu, $y v, \& \mathrm{c}$., cutting AE at w, x, y, and FE at t, u, v. Make $k^{\prime} n^{\prime}, l^{\prime} o^{\prime}, m^{\prime} p^{\prime}$, also $k q, l r, m s$, respectively equal to $t w, u x, v y$, and through the points $n^{\prime} o^{\prime} p^{\prime}$ draw a curve, also through the points q rs draw another curve meeting the former in I; then these two curves with the line $A B$ will form the gore or boundary of the building of two sides of the dome. Also in the elliptical are GF, take any mumber of points $1,2,3$, and draw the lines $1 w^{\prime}, 2 x^{\prime}$, $3 y^{\prime}$, parallel to BC, cutting EC in the points $w^{\prime} x^{\prime} y^{\prime}$, and GE in the points t^{\prime}, u^{\prime}, v^{\prime}. Extend the ares G1, 12, 23 from $\mathrm{G} k^{\prime}, k^{\prime} l^{\prime}, l^{\prime} m^{\prime}$, upon the straight line GJ, and through the points k^{\prime} ' m^{\prime} draw the lines $n^{\prime} q^{\prime}$, $o^{\prime} r^{\prime}, p^{\prime} s^{\prime}$. Make $k^{\prime} n^{\prime}$, lo',

Fig. 716. $m^{\prime} p^{\prime}$, also $k^{\prime} q^{\prime}, l^{\prime} r^{\prime}, m s^{\prime}$ respectively equal to $t^{\prime} w^{\prime}, u^{\prime} x^{\prime}, v^{\prime} y^{\prime}$, and through the points $l^{\prime} n^{\prime} o^{\prime} p{ }^{\prime}$ draw the curve BJ, and through the points $\mathrm{Cq}^{\prime} \mathrm{r}^{\prime} \mathbf{s}^{\prime}$ draw the curve CJ ; then BJC will be the gure required, to which the boards for the other two sides of the dome must be formed.
2072. A general method of deseribing the board or half gore of any polygonal or circular dome is shown in fil, 716 . Let DE be half either of the breadth of a board or of one of the sides of a polygon, EF the perpendicular drawn from the centre. Draw the straight line AB parallel to EF, and draw EA and FB perpendicular to EF; then upon the base AB describe the rib AC of the vertical section of the dome. Divide the curve AC into the equidistant ares A1,12, 23, and through the points of division draw the lines $1 g, 2 h, 3 i$ perpendicular to A B cutting EF at ghi and DF at $k l m$. Produce FE to V and extend the ares A1, 12, 23 upon the straight line EV from E successively to the points opq. Through the points opq draw the lines or, p / s, $q t$ parallel to ED. Make or, $p s$, qt respectively equal to $\% k$, hl, im ; then through the points $r s t$ draw a curve, and DEV will be the half are or half mould of the boarding.

Fig. 717
2073. T'o eover a hemispherical dome by hoards moulded to portions of conic surfuces. Draw a vertical section of the dome ABC (fig. 717.) and divide the circumference into equal ares $\mathrm{C} d$, $d e$, ef. Through the centre E draw EB perpendicutar to AC. Draw the chords C C , de, ef, and produce all these chords till they meet the line EB, which they will producedi in a convenient space; but those chords that are next to the bottom AC will require a distance too remote from AC ; and for the present confining our attention to those chords whieh, when produced, would meet the line EB at a convenient distance from AC, let of meet the axis EB produced in g, and from the point g as a centre with the distances $g e$ and $o f$ describe the arcs $e l h$ and $f i$. Then efih is the form of the board, so that its breadth is everywhere comprehended between the two concentric circles eh and $f i$, and when the boards are bent their edges fall on horizontal planes.
2074. We will here shortly repeat a method which has previously been given of describing an arc of a circle independent of its centre, as connected with this part of the subject, and useful in cutting out the boards of a dome where the centre is inaccessible or too distant for convenience. Let AB (fig. 718.) be the chord of the are and CD its height in the mudlle. In this case $A B$ will be bisected at C by the perpendicular CD. Draw the half chord AD, and perpendicular thereto draw AE, and through the point D draw EF parallel to AB; also draw AG and BH perpendicular to the chord AB cutting EF in the points G and H . Divide AC and ED each into the same number of equal parts, and draw lines through the corresponding points of division; these lines will converge, and if produced with the lines EA and F1B, would all meet in one point. Divide AG into the same number of equal parts as the lines AC, ED, and from the points of division draw lines to the point 1) to intersect the former. A curve drawn through the points of intersection will form the are of a circle. The other part DB is found in the same mamer ; and this is a convenient method, because any portion of a

Fig. 718. circle may be deseribed within the width of a board.
2075. To find the relation between the height and the chord of the are. Let abc, \&c. (fig. 719.) be the middle points of the boards in the are, and from a draw a line parallel to the base to meet the opposite curve; also from these poiats draw lines to the opposite extremity of the hase; then each parallel is the base, as $f a$, and the distances eg intersected between it, and the point where the oblique line from its extremity cuts the middle vertical is the height of the segment.
2076. It is, however, more convenient to describe the curvature of the board ty a continued motion, which may be done as follows. Let AB (fig. 720.) be the chord of the are. Bisect $A B$ at C by the perpendicular CD, and make CD equal to the height of the segment. Draw DE parallel to AB , and make DE a little larger than AD; then form an instrument ADE with laths or slips of wood, and make it fast by a cross slip of wood GH. By moving the whole instrument, so that the two edges DA and DE may slide on two pins A and D , the angular point D) of the instrument will deseribe the segment of a circle, and if the pin be taken out of A and put in the point B , the other portion DIB of the segment ADB will be

Fis. 320 deseribed in the same manner.
2077. The covering of an elliptical dome is formed by considering each part a portion of the surface of a cone. A BC ($f i g .721$.) is a vertical section through the greater axis of the base; the other vertical section through the axis at right angles being a semicircle ; the joints of the boards therefore fall in the circumference of vertical circles.
2078. In the same manner the cover-

Fig. : 21.

Fig. 没。 ing of an amular vault whose section is semicircular is found, being on the same principles as now shown for a horizontal dome, which will be evident from an inspection of fig. 72n.

ERACKETLNG.
2079. The pieces of wood which sustain the laths of cornices, coves, and the like, are called brackets, and they take in form the general outlines as nearly as possitle of the forms to which they are to be finished.

20so. A cornice bracket of any form being given, to make another similar one, or one that thall have the same proportions in all its parts. Let ABCDEF (fig. 723.) be the given bracket. Draw lines from the angular points CDE , and let $\mathrm{A} b$ be the projection of the required bracket. The lines $A C, A D$, AE, being drawn, draw be parallel to the edge BC, eutting AC in c ; draw $c d$ parallel to CD , eutting AD in d. Draw de parallel to DE, entting AE in e, and draw ef parallel to EF, eutting AF in f. Then Abculef is the bracket required.
2081. To form an angle bracket to support the plastering of a moulded cornice. Let fig. 724. X be the plan of the bracket. Draw the straight line AE equal to the projection $a b$ of the bracket on the plan X, and Aa perpenaicular to AE, to which make it equal. Join Ex, and on AE describe the given form AFGHIKLE of the bracket which stands perpendieular to the line of concourse of the wall and the ceiling. From the angular points $\mathrm{FGH} H \mathrm{KL}$, draw the lines $\mathrm{F} a, \mathrm{G} b, \mathrm{I}_{c}, \mathrm{II}_{c}, \mathrm{~K} d$, $\mathrm{L} d$, cutting AE in the points BCD , and $a \mathrm{E}$ in the points a, b, c, d. Draw $a f, b g, c i, d k$, perpendieular to $a \mathrm{E}$. Make af. $\lg . c h, c i, d l, d l$, each respectively equal to AF, BG, CII, C1, DL, DK. Join $f g, g h, h i, i k, k l, l \mathrm{E}$. Then afyhilal E is the angle bracket required.
2082. An angle bracket for a cove (fig. 725.) may be described in exactly the same manner.
2083. When eove brackets

Fig. 725. have different projections, the method of deseribing the angle one is shown in fig. 726. Let $A B, 1 ; C$ be the wall lines. Draw any line $G D$ perpendieular to AB and HF perpendicular to BC. Make GI) equal to the projection of the bracket from the wall represented by the line AB, and make HF equal to the projection of the bracket from the wail represented by BC. Then, as one of the brackets must be given, we shall suppose the braeket GAD described upon GD. Draw DE parallel to AB, and FE parallel to BC, and join BE. In the curve ΛD take any number of points Q, S, and draw $Q P$, SR cutting GD in P, R and BE in p, r. From the points p, r draw the lines $p q, r s$ parallel to BC , eutting HF in the points p, r. Draw $p q$, $r s$ perpendicular to BE. Make $p q, r s$ also $p q, r s$ respectively equal to $\mathrm{PQ}, \mathrm{RS}, \mathcal{E} \mathrm{c}$. Ba and $H C$ equal to $G A$, then through the points aqs, \&c. draw a eurve which forms the bracket for the angle. Also through the points C, q, s draw another curve, and this will form the cove bracket.
2084. The angle bracket of a cornice or cove may be formed by the method shown in X and Y (fig. i27.), whether the angle of the room or apartment be acute or obtuse, external or internal. Let ABC be the angle. Bisect it by the line BE. Draw GF perpendicular to 13C, and make GF equal to the projection of the bracket, GC equal to its height, and FC the curve of the given bracket or rib. In the curve FC , take any number of points PQ , and parallel to BC draw the lines Pr, Qs, cutting BE in the points r, s, and GF in the points R, S. Draw $r p, s q$ perpendicular to BE, and make the ordinates $r p$, $s q$ respeetively equal to $\mathrm{R} P, S Q$ and through all the points $p q$, draw a curve, which will be the bracket as required.
2085. When the angle is a right angle, it may be drawn as at fig. 728., whieh is an ornamental bracket for the string of a stair, and traced in the same manner as that on a rightangled triangle.

Fig. 724.

Fig 727
2086. In coved ceilings, the cores meeting at an angle are of different breadths, and the plan of the angle is a curve to construct the brackets. Let ABC (fig. 729.) represent the angle formed by the walls of the room, and let Bdefg be the plan of the bracket in the angle of a curvilinear form. Draw HM, and thereon deseribe the bracket HOPQ intended for that side, and in the curve HOQ take any number of points NOP, and draw the lines NR, OS, P' T perpendicular to $A B$, cutting it in the points R, S, T. Let MQ be the height of the bracket, and draw QA perpendienlar to $13 A$, and through the points NOPQ draw the straight lines $\mathrm{N} d$, Oe, I'f, cutting HM at IKLM. Draw him perpenaicular to BC. Make $h r, h s$, $h t$, ha respectively equal to HIR , HS, IIT, HA, and draw $r n, s o, t p, a q$ perpendicular to BC ; also from the points defg draw the lines $d n, e o, f p, g q$, and throngh the points hnopq draw a curve, which will form the other bracket required.
2087. Whether brackets occur in external or internal angles, the method of describing them is the sume, and when the brackets from the two adjacent walls have the same projection, one of them must be given to find the angle bracket. When the brackets from these walls have unequal but given projections, then the form of one of the brackets must be given in form to find the angle bracket.
2058. To form a bracket for a moulded cornice. On the drawing of sucl cornice, draw straight lines, so as to leave sufficient thickness for the lath and plaster, which should in no case be less than three-fourths of an inch. Thus the general form of the bracketing will be obtained.

Fig. 728.

Fig. 729.

DOMES.
2099. We have, in a foregone page, mentioned a method of constructing domes with ribs in thicknesses. We here present to the reader two designs for dome-framing, wherein there is a cavity of framed work between the inner and outer domes; with moderate spans, however, simple framing is all that is required. Fig. 730. A is a design for a domical roof. 13 exhibits the method of framing the curb for it to stand upon, the section of the curb being slown upon fig. A. The design here given is nearly the same as that used for the dome of the Pantheon in Oxford Street, which was destroyed by fire. C is another design for a domical roof, which is narrow at the bottom part of the framing, for the purpose of gaining room within the dome.

PENDENTIVES.

2090. If a hemisphere, or other portion of a sphere, be intersected (fig. 731.) by

Fig. 731.
cylindrical or eylindroidal arehes, vaults au are formed, which are cailed pendentives. The termination of these at top will be a circle, whereon may be placed a dome, or an upright drum story, which, if ne-
 cessary, may be terminated by a dome.

The reader will immediately perceive that many varieties may be formed. Our object here is merely to show how the earpenter is to proceed in making his cradling, as it is called, when pendentives are to be formed in wood.
2091. To cove the ceiling of a square room with conical pendentives. Let ABC (fig. 732.) be half the plan of the room, and DFE the half plan of the curb, at whose top the ribs are all fixed. The hyperbolical arches agb, bhe on each of the four sides are of equal height. The straight ribs $b f, i k, l m$, \&c. are shown on the plan by FB, IK, LM, \&e. The method of finding the hyperbolical curves $a g b, b h c$ will be explained in the following figure.

Fig. 732.

Fig. 733.
2092. To find the springing lines of the preceding pendentives, the section in one of the vcrical diagonal planes being given. Bisect the diagonal LK (fig. 733.) at the point N by the perpendicular NW, which make equal to the beight of the cone, and draw the sides LW and KW. Bisect the side MK of the square at a, and on N , with the radius Na, describe an are $a \mathrm{~A}$, cutting the diagonal LK at A . Then take any points $\mathrm{B}, \mathrm{C}, \mathrm{D}$, between A and K , and with the several radii $\mathrm{NI}, \mathrm{NC}, \mathrm{ND}$, deseribe the ares $\mathrm{B} b, \mathrm{C} c$, and $\mathrm{D} d$, cutting KM at the points d, c, and b. From the points A, B, C, and D, draw $A E, B F, C G$, and DII perpendicular to the diagonal KL, cutting the side WK of the section of the cone at E, F, G, H. At the points abcd erect perpendiculars $a e, b f, c g$, and $d h$ to the side MIL, making each equal to their corresponding distances $\mathrm{AE}, \mathrm{BF}, \mathrm{CG}$, and DH, which will be one half of the curve for that side from which the other may be traced. The dark parts show the feet of the ribs.
2093. Fig. 734. shows the method of coving a square room with spherical pendentives, which a few words will sufficiently describe. C.D, DE are two sides of the plan; AFB is half the plan of the curl. In the elevation above is shown the method of fixing the ribs (which, in projection, are portions of ellipses) on two sides of the plan. $a b$ is the elevation of the curb AFB; cfl and $d g e$ are ribs on each side of the plan supporting the vertical ribs that form the spherical surface, which vertical ribs support the curb afb. On afb may, if necessary, be placed a lantern or skylight; or, if light be not wanted, a flat ceiling or a dome may be placed. This pendentive is to be finished with plaster; hence the ribs must not be farther apart than about 12 inches.
2094. For finding (fig. 735.) the intersection of the ribs of a spandrel dome, whose section is the segment of a circle, and whose plan is a square $A B C D$. Let DEFI3 be the

Fig. 734. section on the plane of the diagonal. First plan one quarter of the ribs, as at UC, TN, SL, RI, and QG, this last being parallel to DC or AB, the sides of the square; on V, with the radii VG, VI, VL, VN, and VC, deseribe the ares GPg, Iti, Lul, Nvn, \&c. cut-
ting the base $D B$ of the angular rib in g, i, l, and n. Draw $g h, i k, l m$, and no, each perpendicular to DB, cutting the diagonal rib at h, k, m, and o. Then making the distances GH, IK, I.M, and NO equal to the corresponding distances $g h, i k, l m$, and no, through the points $\mathrm{H}, \mathrm{K}, \mathrm{M}, \mathrm{O}$ draw a curve which will be the under edge of that for the bottom of the ribs QG, Rl, SL, TN, and UC, shown complete on each side of the square plan. If each of the circular segments on each side of the square plan be turned up at right angles to the plan ABCD , the ribs will then stand in their true position.

BRIDGES.

2095. We shall in this work confine ourselves to the simplest forms of timber bridges, which, as well as those of

Fie. 735. stone, will be found fully treated of in the Encyclopedia of Engineering, by Mr. Cresy, which forns one of the series. As they mostly depend on the principle of the truss, where the span is large, and this combination of timbers we have already explaned; so in stona bridges the principle of construction of the arch is the chief matter for consideration, and to that a large portion of this work has been devoted; hence, on the part of the arehitect, we do not resign his pretension to employment in such works, for which, indeed, as respects design, his general education fits him better than that of the engineer.
2096. The bridge over the Brenta, near Bassano, by Palladio, is an example of a wooden bridge (fig. 736.), which is not only elegant as a composition, but one which is economical

Fig. 736.
and might be employed with advantage where it is desirable that the piers should occupy a small space, and the river is not subject to great floods. The same great arehitect, in his celebrated Trcatise on Architecture, has given several designs for timber bridges, the principles of whose construction have only been carried out further in many modern instances He was the earliest to adopt a species of construction by which numerous piers were rendered unnecessary, and thus to avoid the consequences of the shock of heavy bodies against the piers in the time of floods. Of this sort was the bridge he threw over the rapid torrent of the Cismone (fig. 737.) whose span was IO8 feet.
2097. Palladio has given a design for a timber bridge (fig. 738.) which is remarkable as having been the earliest that has come to our knowledge, wherein the arrangement is in what may be called framed voussoirs, like the arch stones of a bridge, a principle in later days carried out to a great extent, and with success, in iron as well as timber bridges.

Fig. ${ }^{3} 37$.

Fig. 738.
2098. We shall conclude our section on practical carpentry with a method of constructing timber bridges proposed by Price in his Treatise on Carpentry, and oue not dissimilar in principle to the method of Philibert de Lorme, before mentioned. The bridge (fig. 739.) is supposed to consist of two principal ribs ik. The width of the place is spamned at once by an arch rising one sixth part of its extent. Its curve is divided into five parts, " which," says Price," I purpose to be of good seasoned English oak plank, of 3 inches thick and 12 broad. Their joint or meeting tends to the centre of the arch. Within this rib is another, cut out of plank as before, of 3 inches thiek and 9 broad, in such sort as to break the joints of the other. In each of these ribs are made four mortices, of 4 inches broad and 3 ligh, and in the middle of the said 9 -inch plank. These
 mortices are best set out with a templet, on which the said mortices have been truly divided and adjusted. Lastly, put each principal rib up in its place, driving loose keys into some of the mortices to hold the said two thicknesses together ; while other help is ready to drive in the joists, which should have a shonlder inward, and a mortice in them outward; through which keys being drove kecp the whole together. On theee joists lay your planks, gravel, \&e.; so is your bridge compleat, and suitable to a river, \&e. of 36 feet wide."
2099. "In case the river, \&c. be 40 or 50 feet wide, the stuff should be larger and more partieularly framed, as is shown in part of the plan enlarged, as I. These planks ought to be 4 inches thick and 16 wide; and the inner ones, that break the joints, 4 inches thick and 12 broad; in each of these are six mortices, four of which are 4 inches wide and 2 high ; through these are drove keys which keep the ribs the better together; the other two mortices are 6 inches wide and 4 high; into these are framed the joists of 6 inches by 12; the tenons of these joists are morticed to receive the posts, which serve as keys, as shown in the section K , and the small keys as in L; ail which inspection will explain. That of M is a method whereby to make a good butment in case the ground be not solid, and is by driving two piles perpendicularly and two sloping, the heads of both being eut off so as to be embraced by the sill or resting plate, which will appear by the pricked lines drawn from the plan I and the letters of reference." Price concludes: "All that I conceive necessary to be said further is, that the whole being performed without iron, it is therefore capable of being painted on every part, by which means the timber may be preserved; for though in some respects iron is indispensably necessary, yet, if in such cases where things are or may be often moved, the iron will rust and scale, so as that the parts will become loose in process of time, which, as I said before, if made of sound timber, will always keep tight and firm together. It may not be amiss to observe, that whereas some may imagine this arch of timber is liable to give way, when a weight comes on any particular part, and rise where there is no weight, such objectors may be satisfied that no part can yield or give way till the said six keys are broke short off at once, which no weight can possibly do."

Sect. V.
JOINERY.
2100. Joinery is that part of the science of architecture which consists in framing or goining together wood for the external and internal finishings of houses, such as the linings of walls and rough timbers, the putting together of doors, windows, stairs, and the like.

It requires, therefore, more aceurate and nieer workmansiip than carpentry, being of a decorative nature and near the eye. Hence the surfaces must be smonth and nicely wrought, and the joints must be made with great preeision. The smoothing of the wood is called planing, and the wood used is called stuff, which consists of rectangular prisms roughly brought into shape by the saw, such prisms being ealled battens, boards, and planks, according to their breadth and thiekness.
2101. We shall give but a succinet account of the joiner's tools; an acquaintance with their forms and uses being sooner learnt by mere inspection over a joiner's bench than by the most elaborate description.

TOOLS.
2102. The first is the bench, whose medium height is about 2 feet 8 inches, its length about 10 or 12 feet, and its width about 2 feet 6 inches. One side is provided with a vertical board, called the side board, pierced with holes ranged at different heights in diagonal directions, which admit of pins for holding up the object to be planed, which is supported at the other end of it by a screw and screw check, together called the bench screu, acting like a vice. The planes used by the joiner are the jack plane, which is used for taking off the roughest and most prominent parts of the stuff, and reducing it nearly to its intended form. Its stoch, that is, the wooden part, is about 17 inches long, 3 inches high, and $3 \frac{1}{2}$ inches broad. The trying plane, whose use is nearly the same as that last deseribed, but used after it, the operation being performed with it by taking the shaving the whole length of the stuff, whieh is ealled trying up, whereas with the jaek plane the workman stops at every arm's length. The long plane, whieh is used when a picee of stuff is to be tried up very straight. It is longer and broader than the trying plane, its length being 26 inches, its breadth $3 \frac{5}{8}$ inches, and depth $3 \frac{1}{8}$ inches. The jointer, which is still longer, being 2 feet 6 inehes long, and is principally used for obtaining very straight edges, an operation commonly ealled shooting. With this the shaving is taken the whole length in finishing the joint or edge. The smoothing plane, whieh, as its name imports, is the last employed for giving the utmost degree of smoothness to the surface of the wood, and is ehiefly used for eleaning off finished work. It is only $7 \frac{1}{2}$ inehes long, 3 inches broad, and 2_{9}^{3} inehes in depth. The foregoing are teehnically called bench planes.
2103. The compass plane which in size and shape is similar to the smoothing plane, exeept that its under surface or sole is convex, its use being to form a coneave cylindrical surface. Compass planes are therefore of various sizes as oceasion may require. The forkstaff plane resembles the smoothing plane in size and shape, except that the sole is part of a coneave eylindric surface, whose axis is parallel to the length of the plane. The form is obviously connected with its application, and, like the last named, it is of course of various sizes. The straight block is employed for shooting short joints and mitres, instead of the jointer, which would be unwieldy : its length is 12 inches, its breadth $3 \frac{1}{6}$ inches, and depth $2 \frac{3}{7}$ inches.
2104. There is a species of planes called rebate planes, the first whereof is simply called the rebate plune, heing, as its name imports, chiefly used for making rebates, which are receding planes formed for the reception of some other board or body, so that its edge may coincide with that side of the rebate next to the edge of the rebated piece. The length of the rebate plane is about $9 \frac{1}{2}$ inches, its depth about $3 \frac{1}{2}$ inehes, and its thickness varies decording to the width of the rebate to be made, say from $1 \frac{3}{4}$ to $\frac{1}{2}$ inch. Rebate planes vary from beneh planes in having no tote or handle rising out of the stoek, and from their having no orifice for the diseharge of the shavings, which are diseharged on one side or other according to the use of the plane. Of the sinking rebating planes there are two sorts, the moving fillister and the sash fillister, whereof, referring the reader to the tool itself, a sight of which he ean have no difficulty in proeuring, the first is for sinking the edge of the stuff next to the workman, and the other for sinking the opposite edge, whence it is manifest that these planes have their cutting edges on the under side. Without enumerating many other sorts which are in use, we shall mention merely the plough, a plane used for sinking a eavity in a surface not elose to the edge of it, so as to leave an excavation or hollow, consisting of three straight surfaces forming two internal right angles with each other, and the two vertical sides two external right angles with the upper surface of the stuff. The ehamel thus eut is called a groove, and the operation is ealled grooving or plowing. This species will vary aceording to the width from the edge; but it is generally about $7 \frac{3}{8}$ inches long, $3 \frac{5}{5}$ inehes deep.
2105. Moulding planes are for forming mouldings, whieh, of course, will vary according to the designs of the architect. They are generally about $9 \frac{3}{6}$ inelies long, and $3_{\frac{3}{8}}^{3}$ inches deep. When mouldings are very eomplex, they are generally wrought by hand; but when a plane is formed for them they are said to be stuck, and the operation is called sticking.
2106. The bead plane is used very frequently in joinery, its use being for sticking mouldings whose seetion is semicireular; when the bead is stuek on the edge of a picce of stull' to form a semi-cylindrie surface to the whole thickness, the edge is said to be
beaded or rounded. When a bead is stuck so that it does not on the section merely fall in with its square returns, but leaves a space ") thus, between the junctions at the sides, it is said to be quirked. The beads or planes vary from very small sizes up to the ${ }_{\frac{3}{4}}^{3}$ inch and $\frac{7}{8}$ bead. They may however be larger, and are sometimes stuck double and triple. The snipebill plane is one for forming the quirk, whereof we have spoken; but we do not think a detailed description of it necessary, more than we do of those which are made for striking hollows and rounds.
2107. The stock and lit is the next tool to be mentioned. Its use is for boring wood, and the iron, which varies as the size of the bore required, is made in a curve on its edge of contrary flexure so as to discharge the wood taken out. It fits into what is called the stock, which has a double curved arm working on spindles, the end opposite to the bit being pressed by the body, whose weight against the whole instrument is the power wherehy the operation is performed. The bit is also called a pin, or gouge bit. It is an impurtant tool, and much used. (See Auger in Glossary.)
2108. Countersinks are bits for widening the upper part of a hole in wood or iron for the head of a screw or pin, and are formed with a conical head. Rimers are bits for widening holes, and are of pyramidal form whose vertical angle is about $3 \frac{1}{2}$ degrees. The holn is first pierced by means of a drill or punch, and the rimer then cuts or scrapes off the interior surface of the hole, as it sinks downwards, by pressing on the head of the stock. According to the metal on which they are to be used they are differently formed.
2109. The taper shell bit is conical both within and without. Its horizontal section is a crescent, the cutting edge being the meeting of the interior and exterior conic surfaces. Its use is for widening holes in wood. Besides the above bits, there are some which are provided with a screw-driver for sinking small screws into wood with more rapidity than the unassisted hand will accomplish.
2110. The $b r a d$ awl, the smallest boring tool, the gimlet, and the screw driver, are so well known, that it would be waste of space to do more than mention them, the commones: of instruments in the science of construction.
2111. The variety of chisels is great. They are well known to be edge tools for cutting wood by pressure on it, or by percussion with a mallet on its handle. The firmer chisel is a tool used by the carpenter as well as the joiner for cutting away superfluous wood by thin chips. Those are best which are made of cast steel. If much superfluous wood is to be cut away, a strong chisel, with an iron back and steel face, is first used with the aid of the mallet, and then a slighter one with a very fine edge. The first is the firmer first mentioned, and the last is called a paring chisel, in the use whereof the force employed is from the shoulder or hand.
2112. The mortice chisel, whose use is for cutting out rectangular prismatic cavities in stuff is made of considerable strength. The cavity it so cuts out is called a mortice, and the piece which fits into it a tenon, whence the name of the tool. This chisel is one acted on only by the percussion of the mallet.
2113. The gouge is used for cutting concave forms in stuff. It is, in fact, a chisel whose iron is convex.
2114. The drawing knife is an oblique-ended chisel, or old knife, for drawing in the ends of tenons by making a deep incision with the sharp edge, guided by that of the tongue of a square, for which purpose a small part is cut out in the form of a triangular prism. The use of this excavation is to enter the saw and keep it close to the shoulder, and thus make the end of the rail quite smooth, for by this means the saw will not get out of its course.
2115. There are many species of the saw, which is a thin plate of steel, whose edge is indented with teeth for cutting by reciprocally changing the dircction of its motion. The varieties are-the ripping saw, which is used for dividing or splitting wood in the direction of the fibres; its teeth are large, the measure being usually to the number of eight in 3 inches, such teeth standing perpendicularly to the line which ranges with the points: the length of the plate or blade of this saw is about 28 inches. The half ripper is used also for dividing wood in the direction of the fibres: the plate of this saw is as long as of that last described, but it has only three teeth in an inch. The hand saw, whose plate is 26 inches long, contains fifteen teeth in 4 inches; it is used for cross cutting, as in the direction of the fibres; for which purposes the teeth recline more than in the two former saws. The panel saw has about six teeth in an inch, the length of its plate being the same as the last; but in this and the hand saw thinner than in the ripping saw: it is used for cutting very thin wood, either with or across the fibres. The tenon saw is most used for cuttiwg wood transverse to the fibres, as the shoulders of tenons. The plate of a tenon saw is from 14 to 19 inches long, having eight to ten teeth in an inch. This saw not being intended to cut through the whole breadth of the wood, and the plate being too thin to make a straight kerf, or to keep it from buckling, it has a thick piece of iron fixed on the edge opposite to the teeth, called the back. From the opening for the fingers through the
handle of this and the foregoing saws being enelosed all round, it is called a double handlr. The sash saw is used for forming the tenons of sashes; its plate is 11 inehes in length, having about thirteen teeth to the inch. It is sometimes backed with iron, but more frequently with brass. The dovetail saw is used for cutting the dovetails of drawers and the like ; its plate is backed with brass, it contains fifteen teeth in about one inch, and is about 9 inches long. The handles of this and the last saw are only single. The compass saw, for cutting wood into curved surfaces, is narrow, thicker on the cutting edge as the teeth have no set, and is without a back; the plate, near the handle, is about an inch broad, and about a quarter of an inch at the other extremity, having about five teeth to the inch; the handle is single. The keyhole, or turning saw, in its plate resembles the compass saw, but the handle is long, and perforated from end to end for inserting the plate at any distance within the handle; there is a pad in the lower part of the handle, through which is inserted a serew for fastening the plate therein. $\Lambda \mathrm{s}$ its name implies, it is used for turning out quick curves, as keyholes, and is therefore frequently called a keyhole saw.
2116. The teeth of all saws, except turning and keyhole saws, are bent alternately on the contrary sides of the plate, so that all the teeth on the same side are alike bent throughout the length of the plate, for the purposes of clearing the sides of the cut made in tho wood by it. The saw is a tool of great importance in every case where wood is to be divided, for by its means it can be divided into slips or scantlings with no more waste than a small slice of the wood, whose breadth is equal to the depth of the piece to be cut through, and the thickness of it equal to no more than the distance of the teeth between their extreme points on the alternate sides of the saw measured on a line perpendicular to them; whereas, by any other means, such as the axe for instance, large pieces of timber could only be reduced in size by cutting away the superfluous stuff, which would be no less a waste of labour than of the material used; and even then it would bave to be reduced to a plane surface.
2117. Joiners use the hatchet, which is a small axe, for cutting away the superfluous wood from the edge of a piece of stuff when the part to be eut away is too sinall to be sawed.
2118. The square consists of two rectangular prismatic pieces of wood, or one of wool, and the other, which is the thimest, of metal, fixed together, each at one of their extremities, so as to form a right angle both internally and externally ; the interior right angle is therefore called the inner square, and the exterior one the outer square. Squares are, for different applications, made of different dimensions. Some are employed in trying up wood, and some for setting out work; the former is called a trying square, and the latter a setting out square. To prove a square it is only necessary to reverse the blade after having drawn a line on the surface to which it is applied: if the line of the blade on reversal do not coineide with that first drawn, the square is incorrect.
2119. The berel consists, like the square, of a blade and handle; but the tongue is moveable on a joint, so that it may be set to any angle. When it is required to try up many pieces of stuff to a particular angle, an immoveable bevel ought to be made for the purpose; for unless very great care be taken in laying down the moveable bevel, it will be likely to shift.
2120. The gauge is an instrument used for drawing or marking a line on a piece of stuff to a width parallel to the edge. It consists generally of a square piece with a mortice in it, through which runs a sliding bar at right angles, called the stem, furnished with a sharp point or tooth at one extremity, projecting a little from the surface; so that when the side of the gauge next to the end which has the point is applied upon the vertieal surface of the wood, with the toothed side of the stem upon the horizontal surface, and pushed and drawn alternately by the workman from and towards him, the tooth makes an incision from the surface into the wood at a parallel distance from the upper edge of the vertical side on the right hand. This line marks precisely the intersection of the plane which divides the superfluous stuff from that which is to be used. When it is required to cut a mortice in a piece of wood, the gauge has two teeth in it, and is called a mortice guuge, one tooth being stationary at the end of the stem, and the other moveable in a mortice between the fixed tooth and the head; so that the distances of the teeth from each other, and of each from the head, may be set at pleasure, as the thickness of the tenon may require.
2121. The side hook is a rectangular prismatic piece of wood, with a projecting knob at the ends of its opposite sides. The use of the side hook is to hold a board fast, its fibres being in the direetion of the length of the bench, while the workman is cutting across the fibres with a saw or grooving plane, or in traversing the wood, which is planing it in a direction perpendieular to the fibres.
2122. The mitre $b>x$ consists of three boards, two, called the sides, being fixed at right angles to a third, called the hottom. The bottom and top of the sides are all parallel; the sides of equal height, and cut with a saw in two directions of straight surfaces at right angles to each other and to the bottom. forming an angle of 45 degrees with the sides. The mitre box is used for eutting a piece of tried un stuff to an angle of 45 degrees with two
of its surfaces; or at least to one of the arrisses, and perpendieular to the other two sides, or at least to one of them, obliquely to the filbres.
2123. The struight edge is a slip of wood made perfectly straight on the edge, in order to make other edges straight, or to plane the face of a board straight. It is made of different lengths, according to the required magnitude of the work. Its use is obvious, as its applization will show whether there is a coineidence between the straight cdge and the surface which it is applied. When joiners wish to ascertain whether the whole surface of a piece of wood lies in the same plane, they use two slips, each straightened on one edge, with the opposite edge parallel, and both pieces of the same breadth between the parallel edges; whence each piece has two straight edges or two parallel planes. To find, therefore, whether a board is twisted, one of the slips is plaeed across one end and the other across the other end of the board, with one of the straight edges of each upon the surface. The joiner then looks in a longitudinal direction over the upper edges of the two slips, until his eye and the said two edges are in one plane; or otherwise the intersection of the plane passing through the eye and the upper edge of the nearest slip will intersect the upper edge of the farthest slip. If it happen as in the former case, the ends of the wood under the slips are in the same plane; but should it happen as in the latter, they are not. In the last case, the surface is said to wind; and when the surface is so reduced as for every two lines to be in one plane, it is said to be out of winding, which is the same as to say it is a perfect plane. From the use of these slips, they are denominated winding sticks.
2124. The mitre square, an instrument so called because it bisects the right angle or initres the square, is an immoveable bevel, for the purpose of striking an angle of 4.5 degrees with one side or edge of a piece of stuff upon the adjoining side or edge of the said piece of stuff. It consists of a broad thin board, let or tongued into a piece on the edge called the fence or handle, which projects equally on each side of the blade, whereof one of the eidges is made to contain an angle of 45 degrees with the nearest edge of the handle, or of that in which the blade is inserted. The inside of the handle is called the guide. The handle may be about an inch thick, 2 inches broad: the blade about $\frac{3}{1}$ to $\frac{1}{4}$ of an inch thick, and about 7 or eight inehes broad. The arris of a piece of stuff is the edge formed by two planes.

NACHNERT.

2124a. In many of the operations of the joiner, where numerous copies of the same thing have to be produced, aceuracy is ensured by introducing the principle of the guide, either to direct the tool over the work, or the work over the tool. The mitre box, shoot blocks, and the various kinds of fences and stops, are examples. The principle of the guide is also applied to simple sawing and planing, and to grooving, tonguing, morticing, tenoning, and shaping. 'The circulur saw was introduced about the end of the last century into England, and attempts to construct a planing machine were made about 1776 and 1791 (G. L. Molesworth, On the Conversion of Wood by Machinery, read at the Institute of Civil Engineers, November 17, 1857). When Sir S. Benthan was in Russia previous to 1790, he had made considerable progress in contriving machinery for shaping wood, such as all the parts of a higily finished sash window ; another for preparing all the parts of a wheel, so that the joiner or wheelwright in that case had only to put the several pieces together. In 1802 Bramah patented machinery for producing straight, parallel, and curvilinear surfaces on wood. In 1807 Bruntl's famous bloek machinery was set in motion in Portsmouth doekyard. Thomson's machinery for sawing, ganging, grooving, and tonguing floor boards was in operation in 1826; and, in 1827, Muir of Glasgow patented a machine for working floor boards, which has since served as a model for others. This machine has approaehed perfection in that of MaeDowall of Johnstone. A raek circular saw bench, for round or square timber, quickly eonverts a \log or balk into square timber.

2124b. For the ordinaly workshop, where the trade is limited and much varied, the simpler American machincs are more suitable. The saw bench oecupies little space and can be applied in plain and bevel sawing, and ripping, mitring, tenoning, rebating, \&ec. It is only 3 feet 2 inches long. 2 feet 2 inches wide, and 3 feet $6 \frac{1}{2}$ inches high; the saw is 8 inches in diameter and makes $15 \frac{1}{2}$ revolutions for each turn of the handle. A crank may be acted on by a treadle when the stuff is thin. but in ordinary cases the machise requires two operators. We eannot satisfactorily deserbe the details, without illustrations, of the many operations which this handy bench aids in performing with accuacy and dispatch. In Furness's patent wood working machine for planing, moulding, morticing, sawing, squaring, tenoning, boring, rebating, and grooving, the stuff is opelated up n by cutters, held by horizontal arms fixed to a vertical shaft, in which it resembles the Bramah's maehine of 1802 , but it is much simpler and less expensive. Worssam's "general joiner" for the same purposes will, it is said, with a 2 horse-power, do the work of at least fifteen skilled joiners. Perin's patent French bund saw bludes are made from $\frac{1}{16}$ th of an inch to 8 inches in width and up to 50 feet in length.

2124c. In maehines with revolving cutters the general opinion is, that the greater the speed of the cutting tool the better will be the quality of the work. The practical limit,
however, appears to be between 2,500 and 3,500 revolutions per minute. A higher velocity heats the bearings, destroys the balance, and causes injurious vibrations. To produce a good result the travel of the work should be very slow relatively to the travel of the cutters. In some of the planing machines the cutters revolve with a velacity of 7,000 feet per minute, while the work advances at the rate of only 30 feet, but as a general rule the work travels about $\frac{1}{20}$ th of an inch for each stroke of the cutters. To withstand this high velocity the framing of the machine requires to be perfectly constructed, the bearings made of a hard alloy, and precautions taken for obviating the wear of them. Niwlands' work gives illustrations and detailed descriptions of some of the machinery.
$2124 d$. Mention mnst be made of Jordan's patent wood and stone carving machine, invented about 1843 , and worked by Pratt in 1845 to 1850 on a large scale. It roughed ont the material according to the design, leaving but little labour to be received from the hands of the carver. Nonlded work has also been obtained by applying red-bot iron moulds to the wood, and so charring off the superfluous wood. This system is probably cheap, but the work is flat and spirjıless. Carved panels for doors, consisting of a thin veneer of wood on a layer of pulp, the whole pressed in moulds, is put forward by the Decurative Wood Company, and has a good appearance.

2124 . The introduction from New York, Sweden, and other places, of prepared flooring, ready-made doors and machine worked mouldings, out of well seasoned pine, is of great adrantace for cheap houses in the neighbourhood of large centres of population.
2125. In joiners' work executed during the 13 th, 14 th, and 15 th centuries, the wood has neither warped, split, nor shrunk in the tenons and at other join:s. This excellence is ascribed to the practice of seasoning the wood for at least six years afier it was sawn, by first leaving it in damp places or even in water, and then stacking it in open piles under cover, when it was often turned and sometimes smoked; after such treatment the wood, when worked, has a tendency to acquire the appearance of Florentine bronze.
$2125 a$. As very old timber is likely to show shakes and to be worm-eaten, the mediaval joiners felled vak from two to three hundred years old; i.e, timber which, at a yard from the ground, measured from 66 or 72 to 120 or 126
 inches in girt without the albumen, and commenced its conversion by marking it with one diameter crossing another at right angles. The cuts on these lines having been made, the quarters were sawn in various ways, regard being had, as much as possible, to the texture of the wood. An unseasoned \log of oak splits as shown at A, fig. 739a. because the inner concentric circles are harder and more compact than the outer ones; therefore the latter, being the most extensive in surface as well as the most porons, contain a greater quantity of moisture, and slrink more than the inner ones in drying, thus causing splits or shakes leading to the centre. If timber be converted without regard to this result of dryness, the stuff will not only split, but will be so affected by changes of weather as to twist. If the cuts be made in lines converging, or even tending to the centre, the stuff may shrink in width but will neither split nor warp. Although oak is formed like other exogenous trees by a succession of layers, these are united and solidified in this particular wood by the medullary rays which form a sort of natural dowel.

2125b. The best method of converting oak for the use of the juiner is shown at B, fig. 739a., in which there is no waste, as the triangular portions form feather-edged laths for tiling and other purposes. The next best method is that at C; that at D is inferior; but the most economical method, where thickness is required, as for planks or for moulded work, is that marked E. The resemblance to a watered silk, which is sometimes called the feather, or flower, or curl, or pattern, of wainseot, is due to the medullary rays, which show most when the saw follows the chink-grain as in B ; in C and D the silky appearance does not exist, as most of the rays are cut across; very slight examination will show which course has been followed, especially in the case of the quarter-grain stulf produced by the method E. It is probable that the cross-cuts will follow the line of a layer, called the felt-grain, in the plan marked 13, which is that adopted in IIolland on timber furnished in great part from Champagne (whe.ice, simply, the superiority of Dutch wainscot), and in all cases of split oak for lathing and for park paling. (Viollet-le-Duc).
$2125 c$. The wood principally used for joinery is of three sorts, pine, and white and yellow deal ; the two first for panelling, and the last for framing. Of late years much American wood has been used, both for panels and frames. It works easily, is soft, free from knots, but more liable to warp than white deal. But joinery is not of course limited to the use of a particular sort of wood. When the exporter cuts a log, the first thing done is to get one good deal or more for the London market; the residue is then converted to supply other makets. Many deals 3 inches thick are sent to France, perhaps as large a proportion as those of 2 inch and $1 \frac{1}{4}$ inch, but they are not of so good a deseription as thuse sent to London. France is the great mart fur all deals that will not suit the London
market. The following are the modes which have been and are at present practised to obtain deals for both markets. In 739b. (the mode practised until the French market improved), are ohtained an English deal, $\mathrm{A}, 9 \mathrm{in}$. by 3 in , and two battens, $B, 7 \mathrm{in}$. by $2 \frac{1}{2} \mathrm{in}$., making 62 feet superficial. In 739 c ., the old mode of cutting, gave two English deals, C, 9 in. by $2 \frac{1}{2}$ in., and two English battens, $D, 7$ in. by $2 \frac{1}{2}$ in., making 80 feet superficial. In 739d., the present mode of cutting, gives two

Fig. 7596.

Fig. 739.

Fig. 739d. English deals, E, 9 in. hy 3 in., and two French deals, F, 9 in. by $1 \frac{1}{9}$ in., making $76 \frac{1}{\frac{1}{2}}$ feet superficial. This communication has been obligingly furnished by Mr. T. A. Britton, as obtained at the Docks.

2125d. Glue is a material extensively used in joinery; see Glossary.

MoULDINGS.

2126. When the edge of a piece of wood is reduced to a cylindrical form, it is said to be rounded, which is the simplest kind of moulded work. (Fig. 740.) When a portion of the arris is made semicylindrical, so that the surlace of the cylindrical part is flush both with the face and the edge of the wood, with a groove or sinking made in the face only, the cylindrical part is called a bead, and the sinking a quirk; the whole combination (fig. 741.) being called a quirked lead.
2127. If a quirk is also formed on the other or returning face, so as to make the rounded part at the angle three fourtlis of a cylinder, the moulding (see fig. 742.) is called a bead and doulle quirk.

2128. If two semicylindrical mouldings both rise from a plane parallel to the face, and one comes close to the edge of the piece and the other has a quirk on the further side, and its surface flush with the lace of the wood, as in fig. 743., the combination is called a double bead or double bead and quirk, wherein the head next to the edge of the stuff is much smaller than the other.
2129. Mouldings are usually separated from one another, and often terminated by two narrow planes at right angles (fig. 744.) to each other: these are called fillets, and show two sides of a rectangular prism. The different pieces of the combination of mouldings are called members. A semicylindrical moulding, rising from a plane parallel to the face, and terminated on the edge by a fillat (fig.745.), is called a torus. In the figure there are two semicylindrical mouldings, whence that is called a double torus. The reader must observe that the distinction between torus mouldings and beads in joinery is, that the outer edge of the former always terminates with a fillet, whether the torus be single or double; whereas a bead never has a fillet on the outer edge. A repetition of equal semicylindrical mouldings, springing from a plane or cylindrical surface, is called reeds. In joinery, the cima recta, and cima reversa, are called respectively the ogee and ogce reverse. The ovolo $\{$, so named from its egg-like form, and the quarter round, the fourth part of a cylindrical surface, are the remaining of the principal mouldings used in joinery. When the margin of any framing terminates on the edges next to the panel, with one or more mouldings, which buth advance before and retire from the face of the framing to the pauelling, the mouldings thus introduced are called bolection mouldings. Their combination is shown further on. (See fig. 759.) Greek, Roman, and Italian mouldings are also shown in 2531. and 2532.; and mediæval mouldings are treated in Practice of Arciitecture.
2130. We shall now more particularly address ourselves to the sulject of doors and their mouldings. The mot inferior sort of door used in building is the common ledged door, in which live or six or seven vertical boards are held together usually by three horizontal pieces called ledges, to which the vertical ones are nailed. Sometimes there is an outer framing, consisting of the top rail and the two outside stiles, but still baving ledges as
before; these are called framed and ledged doors. A door. properly made, is formed by framing and fitting pieces of stuff together of the same thickness; those which are horizontal (fig. 746.) AAAA being called rail and those which are vertical BBBB being called stiles. These form a skeleton into which pancls, usually of a less thickness, are fitted. And this, indeed, is the general practice in all systems of framed joinery. In

Fig. 746 doors. the upper rails are called top rails; the next in descending, friese rails; the next, which are usually wider than the two first, are called the lock or middle rails; and the lowest, from their situation, are called bottom rails. The stiles on the flanks are called outsile stiles, and those in the middle are called middle stiles. The panels are also named from their situations on the door; thus CC, being the uppermost, are called frieze pantls; the next DD are called middle panels, and EE bottom panels. The rails and stiles are wedged together, being previously morticed and tenoned into each other. The student should, however, to obtain a clear comprehension of the method adopted, see a door put together at the bench. The varieties and forms of doors are dependent upon the will of the architect, from whom the design of the whole emanates; it will be, therefore, here sufficient to mention the three sorts, viz. the common door, just described; the jib dorr, which is mide with the same finishings and appearance as the room in which it is placed, so as not to have the appearance of a door; and, lastly, folding doors, which open from the centre of the doorway, and are used for making a wider commulication between two apartments than a common door will permit, or, in other words, to lay two rooms into one.
2130a. A patent sofety and escape door, applicable for all positions, has been produced to supply the demand of the authorities that all doors in publie buildings be made to open outwards. This invention consists of a door within a door, one opening inward, the other ontward; the inner door being so constructed that on a rush it yields to the pressure. Sufficient fittings are provided to afford security as well. Messrs Chubb have moduced a door, having a superimposed spring panel on the inside of the door, in which the lock is embedded. While a smart knock, or even a slight pressure, on this pavel canses the double doors to fly open outward, it is impossible to open the door from the outside without a key.
2131. Though the panelling of framed work is generally sunk witnin the face of the framing, it is for outside work sometimes made flush. In the best flush work, the panels are surrounded with a bead formed on the edge of the framing. and the work is called lead and flush. In the commoner kind of flush framing, the head is run unly on the two edres of the panel in the direction of the fibres, and is called bead and butt.
2132. The different denominations of framed doors, according to their mouldings and panels and framed work in general, are shown in section of panel and frame. Fig. :47. represents the commonest door; it is technically deseribed, first mentioning the mum er

Fig. 747.

Fig. 7 is.

Fig. 74.

Fig. 7.50.

Fig. 751.
of panels intended in it, as a door square and flut panel both sides. The number of panels will not be repeated in the following explanations of the figures. (See Spectifications,)
2134. Fig. 748. represents the rail and panel of a door, with a quirked ovoso and a fillet on one side, but having no mouldings on the other. The panel flat on both sides, it is described as a door with quirked ovolo, fillet and flat with square back.
2135. Fig. 749. only differs from the last in having a bead instead of a fillet, and is deseribed as quirked ovolo, bead and flut panel with square back.
2135. Fig. 750., with an additional fillet on the framing, is described as quirked orolo, bead fillet und flut panel with square back. The back, in the foregoing and following cases. is described as square, because of its baving no mouldings on the framing, and of the panel being a straight surface on one side of the door.
2157. In fig. 751. the framing is formed with a quirked ogee, and a quirked bead on one side and square on the other, the surface of the panel being straight on both sides, and the door is described as quirked ogee, quirked bead and flat punel with square bach.
2138. Fig. 752. only differs from the last in the bead being raised above the lower part of the ogee and a fillet It is described as quirked ogee, cocked bend and flut panel with
cquare buck. square buck.
2139. Fig. 753. is described as a door with cere, cocked beud, flut panel and square back.

Fig. ${ }^{2} 52$.

Fig. 753.

tig. 754.

Fig. 735.

2140 Fig. 754. is a combination by which much strength is imparted to the door, and it is therefore much used for external doors. It is, however, often used in the interior of houses, and is described, quirked orolo, bead fillet and raised purel on front and squarc back. It is from the raising of the panel that the additional streng.h is aequired.
2141. Fig. 755. resembles the last in general appearance, the difference being in the ovolo on the raised panel. It is described, quirked ovolo, bead and raised panel, with ovo'o or the ruised panel and square back. When an external door has raised panels, they are always placed towards the exterior.

Fig. 736.

Fig. 757.

Fig. 70 s .

Fig. 739.
2142. In fig. 756. there are more mouldings than in the ! ist on the raised panel. It is described, quirked ogee, raised panel with ovolo and fillet on the rising and astragal on the thut of panel in frout and square back.
214.3. Fig. 757. is described, quirked orolo, bead fillet and flat panel on both sides. This deseription of doors is used where a handsome appearance is to be equally preserved on both sides of the door, as between rooms, or between halls or principal passages and rooms.
2144. Fig. 758. is a combination used, as all bead butt and bead flush work is, where strength is required. The form here given is described, bead and fush frout and quirked oyee, raised panel with ovolo on the rising, grooved on flat panel on back.

2145 . The series of mouldings are, as we have before mentioned, called bolection mouldings (fig. 759.), and are laid in after the door is framed square and put together. They project beyond the framing on each side. When bradded on through the sides of the quirks, the heads of the brads will be entirely conccaled; but it is to be observed that, in driving the leralls, they must not be directed towards the panels, but into the solid of the framing. 'The form of these bolection mouldings is of course varied according to the pleasure of the architect.
乡145a. Meriaval Duors, of a simple sort, were formed
 of planks placed upright, grooved or feather-tongued at the edges, and generally secured
together by plain band-hinges, or more or less ormamented, or with seroll work. These planks are further nailed to a skeleton framing. Fig. 759a. gives a sketel of the hack of the door at Bidborough Chureh, Kent, with its planking at A; and B is a section of the same at Staplelurst Chureh, Kent ; the place for the nails is only indicated. These examples were supplied to the Dictionary of Architecture by Professor Lewis. Larger doors were made up of frames and rails, strutted or braced, on the same prineiple as the modern ledged doors and coach-house gates. Viollet le Duc's Dictionnaire has many examples of this mode of framing, all the timbers being stop-chamfered, and the planks bolted through the braces.
214.5 . The head of a door enriched with panelling; the door, with the planks carved with panelling, running ornament, and niches with figures; an early English door, with two foliated band hinges; of the
 same period with three hinges; of the decorated period, the panelled and enriched headed door at Holbeach Chureh, Lincolnshire, of which the construction (a framing of square panels, A A) is shown in fig. 7596., rising from a plain plank $14 \frac{1}{2}$ inches high; with other examples, are all given in Brandon, Analysis, etc. together with one of the perpendicular period, wherein the face has panelled planks, and square panel framing at back.

2145c. The framework is sometimes placed externally and ornamented, as in fig. 759c., from the west door of the Chureh of San Pietro; and fig. 759d., from a door in a courtyard opposite that of Sta. Maria Auticä, both at Verona. The sizes are $9 \frac{1}{2}$ inehes and 12

Fig. 759c. inches respectively, from centre to centre of panels. These cuts are taken from the plates of the Dictionrry. The very elaborate moulded and carved door from the Norman portion (12th century) of the Palazzo Reale, at Palermo, is given in the illustrations of the Dictionary of Architecture, from careful measurements by the lateJ.M. Lockyer. In the doors of cedar or deal, but covered with paint, at the chapels of St. Martin and St. Giles at Notre Dame le Puy (cir. 1043-53.),
 , Mo the suljects, inscriptions, and borders are all obtained simply ly sinking the groumd 8.16ths of an inch. Gates of the same description are said to exist in the churches of
 Chamaliès and Lavoûte-Chilhac in the same district. The wood doors, having iron plates beaten up into a pattern secured with large brass nails, at Huesea Cathedral, date about 1400-1405, the ela of the erection of the west entrance. (Street.)

SHUTTERS.

2146. Shutters, which are the doors of window openings, are framed upon the same principles as duors themselves; but their backs are very often fluhth. In the better sort of buildings they are folded into recesses calted boxings, whereof we shall give a figure below as an example of the ordinary method; but as the extent and different forms of windows vary, the ingenuity of the architect will be often required to contrive his shutters within a very small space. Into minutice we cannot enter in a work of this nature; however, in all their shapes, they are dependent on the leading principles given.
2147. Fig. 760. is a plan of the shutters, architrave, sash-frame, and part of the sash of common shutters. The cavity which forms the boxing into which the sashes fold is formed ly the ground B (upon which the architrave A is nailed), the back lining F of the boxing, and the inside lining G of the sash-frame, whereof H is the inside lead. L is the outside lining of the sash-frame, M the back lining of it, and K the
lower sash. The vacant space J, hetween the pulley piece I and M, is a eavity which contuias the weights for balaneing the sashes; N shows the plan of one of them. 'Ihe shutters, w!en stretehed out in their different folds, are supposed to eover one half of the window, another series being supposed to be placed on the other side of it. The fiont shutler CCC is hung by hinges at a to the inside lining G of the sash-frame. The inner shuters DDI) and EE are ealled the buck flups, the fommer of which is hinged on to the front shutter at b, and the latter is hinged on to DDD at c. It will be immediately seen that these thee will thus altogether turn upon the linges at a and cover, in one straight line, from buth sides, the whole of the liglit of the window. When the boxes are seanty, the hinge, catled a back fap hinge, may be placed as shown in \mathbf{X} attached to the figure.
2148. In ordinary eases, this example will sufficiently exhibit the method to be adopted. When it is not applicable, the architect must apply himself to the work pro re muta, in which, with very little attention, he will not find insurmountabie diffieulty.

2148 . The boxings of a window are further described in the Glossaky and Addendum. Besides the lifting shutters commonly used in houses of a lower rate, which in their con-
 struction is simply a repetition of the sasloframe, we must notice brietly the many revolving shulters for inside and outside purposes, whether of iron, steel, or wood, laths. The latter were tirst made at I^{1} sswieh, some twenty years since, and were wound up and down by a winch and upright rod working a toothed wheel. They were soon afterwards made of iron, also worked by machinery. Within the last few years, their great concenience las led to many improvements, and the greater use of wood; instead of machinery, counterbalance weights were introduced. Later, they were "eonstrueted of laths of wood rebated together, having numerous morticts, through which pass a series of tempered steel bands, causing the shater to be

Fig. 766. . self-colling." Lron laths "ere also used. Lately, they "are male of steel, in one sheet, withont either chains, links or rivets, or pins; the steel being corrugated transversely gives them the appearance of laths, and enables them to be coiled into a small space." We avail ourselves of some illustrations issued ly Clark and Co., showing the adaptability of this shitter to various places, as windows, shops, doors, fireplaces, \&e. Fig. 760a. shows the head and fout of an ordinary house window. At A, it is fitted with the shuttor inside, and to pull down. At B, it is fitted also inside, and to lift up, the coil being placed in a boxing forming a step on the floor. When ile position of the joists admit of so doing, the coil may be placed in the flooring, as at C ; and oceasionally it may he more convenient to phace it even muder the ceiling, at D. Fig. 760%, is the plan of a window frame, showing the groove, a, for the shutter, whieh is 1 inch deep by ${ }_{5}$ ths wide.
2) 48b. A great improvement in securing the common shop shutters wihout a shatter-bar is one of the early inventions introduced ly Jennings; these shutler shoes are so much ailvertised with illusirations that further notice of them herein is needless.

hingelng.

2149. A very essential consideration in the neatness and beauty of joiners' work, is the fornation of the joints on which are placed the hinges of doors and shutters. They ought to be so continued as to preserve the uniformity of the door or shutter on both sides, and as much as possible to be close enough to exclude a rush of air between the edges of the bodies to be linged together, which, in this cold climate, is essential. In these joints, both angles of one of the bodies is usually beaded, to conceal the open space, which would otherwise be seen; and for preserving the appearance of the work, the hinges are made of such a curvature towards the eye, as to seem, when painted, a part ot the bead itself on that side where the knuckle is placed, so that when liung the whole may appear to be one bead.
2150. The section of a doar style, and part of the hanging style at the joint, are represented in A and 13 (.fig. 761.), wherein the centre of the head on each side is in the line of the straight part of the joint from the opposite side. In this figure, C is the centre of the bead, AG part of the joint in a line with its edge. Joining AC, draw A 13 perpendicular

is the face of the door or hanging style. This is a joint suitable for many purposes, and may be made with common hinges. If crooked, it will assist in excluding the current of air, a point of no mean importance.
2151. In fig. 762. A and B exhibit a plane joint, beaded similarly on both sides. In this case, the plane of the joint is a tangent to the cylindrical surfaces of the two beads; and as the margin on each side is alike, no check to the rush of cold air is afforded. The linge, moreover, is sueh that it camot be made in the usual manner, but must be formed as at C.

21.5. Fig. 763. A and B represent a hinging wherein the plane of the joint from one side is directed to the axis of the bead on the other. The principle in it is the same as that in fig. 761 ., and it may therefore be hinged with common hinges, as shown in C , in which the two parts are conjoined. The methods shown in this and fig. 761. are useful in cases wherein a part of the margin is concealed on one side of the door.
2152. Fig. 764. A and B exhibit the beads of similar size on each side, and exactly opposite to each other, the joint being broken by indenting a part terminated by a plane directed to the axis of the two opposite beads. The hinges are required merely of the common form, the arrangement is strong, and the apartment rendered comfortable by their use. In C the parts are shown as hinged together.
2153. In fig. 765 . the beads are on both sides, but not on the same piece, as in the last figure. The appearance is uniform, but the bead, which projects the whole of its thickness, is weakened. The junction is seen in the representation at C .

Fig. ics.

Fig. 766.

Fig. 767.
2155. Fig. 766. is a method that has been adopted for concealing the hinges of shutters. A is the inner bead of the sash-frame, B the inside lining, C the style of the shutter. For the form of the joint, let af be the face of the shutter, perpendicular to ar the face of the inside lining. Let the angle f a r be bisected by the straight line $a a$, and in the centre take c. Draw $d d$ perpendicular to $a a$, cutting it in c, which is the centre of the hinge. From c, as a centre, deseribe the arc $a m$, which must be hollowed out from the inside lining of the sash through the height of the shutter. In order to make room for the opening and shutting of the hinge, the internal right angle of the shutter must be cut out of its edge to the breadth of the hinges. The toils of the hinge are here for the purpose of strengthening them, represented of different lengths.
2156. In fig. 767. the hinges, which are for a door, are concealed, as the door allows it in the thickness of the wood, the ends of the hinges being of equal lengths.
2157. Fig. 768. shows the common method of hingeing shutters, a mode wherein the whole thickness of the hinge is let into the thickness of the shutter, the inside lining being assumed as too thin to afford sufficient hold for the screws employed to fasten them.
2158. Fiy. 769. exhibits the hanging of a door with the centres concealed. Let ad be the side of the jamb in contact with the edge of

Fig. TCs.

Fig. 769. the door ; bisect it in b, and draw $b c$ perpendicular to $a d$, make $l e$ equal to $b a$ or $l d$, and juin $a c$ and $c d$; from c, as a centre, deseribe the are aed, which will show the portion to be hollowed out of the jamb. 'The centres are fixed to the upper and under parts of the door, and the former is to be so constructed as to allow its being taken out of the socket to unhang the door when required.
2159. Shutters are usually hung in the way represented in fig. 770., wherein the centre
of the knuckle of the hinge is exactly opposite to the perpendicular part of the rebate. The dotted lines exhibit the flap when folded back.
2160. When the axis of the knuckle cannot be dis-

posed so as to fall opposite to the joint, the hinge is to be placed as shown in fig. $7: 1$. Thus, $a b$ being the distance of the edge of the flap from that of the shutter, bisect it in c, which will be the point opposite whereto the centre of the hinge is to be placed. This arrangement is necessary, both when the shutters are not square at the ends, and when the boxing is restricted in space; the prineiple being to place the centre of the knuckle of the hinge at half the distance of the edge of the flap from the rebate on the edge of the shutter. In fig. 772. the two parts are shown hinged together.
2161. When a door has attached to it any projection, and, when open, it is requisite to bring it parallel to its place when shut, the knuckle of the hinge (fig. 773.) must project at least as far as the projection in question. An inspection of the diagram, wherein the dotted tines show the situation of the door when folded back, will sufficiently convey the mode of conducting this expedient.
2162. Fig. 774. is the representation of what is called a rule joint, whish is used when the picee to be hung is not required to open to more than a right angle. In this case, the centre of the hinge is necessarily in the centre of the arc. In $f i g$. 775. the expedient shows the method turned to a right angle.

Fig. $7: 9$.

Fig. 773.
2163. The various methods of hingeing to suit every possible case would occupy a very large space, were we to enter into them; and even after

Fig. 771. exhausting all the cases that we may have imagined, others would arise to which no example given might be applicable; we therefore leave this portion of the subject of joinery, under an impression that the principles have been sufficiently developed to enable the student to pursue from them the application to any case that

Fig. 7 \%5. he may be called upon to put in practice.

SASH-FRAMES AND SASHES.
2164. In fig. 760. the connection between the shutters and sash-frame has been fully explained; we may now, therefore, proceed to the detail of a common sash-frame with its sashes, supposing them to be hung so as to be balanced by weights, suspended by sashlines running over pulleys, capable of balancing those of the sashes themselves. On the case of French sashes, which open like doors, we do not think it necessary to dilate. They are, in fact, nothing more than glazed doors; and the principal olyject for attainment in their construction, is to prevent the rain from penetrating into the apartments they serve, as well where they meet in the middle as at their sills, which is a sulject requiring much care and attention.
2165. In fig. 776. is slown the construction of a sash-frame, and the method of putting together the several parts, wherein R is the elevation of the frame, of which ABCD is the outer edge. The thinner lines at EF, GH, FG, are grooves whose distances from the edges of the sash-frame LII and KI are equal to the depth of the boxing, together with threeeighths of an inch more that is allowed for margin between the face of the shutter, when, in the boxing, and the edges ML and KI of the sash-frame next to the bead. S is a borizontal section of the sides, whereon is shown also the plan of the sill. T is a vertical section of the sill and top, in which is shown the elevation of the pully style n and n, and the pullies let into the pully piece. U is the horizontal section of the sides, slowing also a plan of the head of the sash.frame. V the elevation of the outer side of the sash-frame; the outside lining being removed for the purpose of showing the work within the sash-frame. In this $f g$ is the parting strip fastened by a pin; ed one of the weights connected to the sash by means of a line going over the prilley c, the other end being fixed to the edge of the sash.

The weight $d e$ is made equal to one lalf the weight of the sash. W is the head of the sash-frame before put together, and \mathbf{X} shows the elge of W. I is the edge of the bottom, exhibiting the manner of putting the styles in 1t, and Z is the plan of Y. Fig. 777 . Nos. 1. and 2., are sections of the sills of sash-frames, with sections of the under rail of the sash, showing the best method of constructing them, in order to present rain from driving under the sash-rail. In each of these, A is the section of the bottom rail, B a section of the bead tongued into the sill, C a section of the sill. Fig. 778. exhibits sections of the meeting rails of the upper and lower sashes, with side elevations of the upright bars; C is the rebate for the glass, D a square, E and F an astragal and hollow moulding, G a fillet. The smaller letters mark the same parts of the under sash. Fig. 779 . is the section of an upright har with the plans of two horizontal bars, showing the franking or mamner in which they are put together to keep the upright bars as strong as possible. The thickness of the tenon in

PLx. 776.

Fig 7 :

Fis. 78.

Fís. 7 so.
general is about one sixteenth of an inch to the edge of the hollow of the astragal, and close to the rebate on the other side. hh is a dowel to keep the horizontal bars still firmer together. In this diagram the letters refer to the same parts as in the preceding figure; and it is also to be observed, that no rebate is made for the glass on the inside mecting rail, a groove being made to answer that purpose. Fig. 780, exhibits four sections of sash bars. But their forms, as in the case of mouldings, rgenerally depends on the taste of the architect.
$2165 a$. Severai patents have been taken out, of late years, for hanging sashes so that they may he removed from the frames for cleaning or repairing without taking down the inside beads, an operation which always results in at last

Fig. 719. damaging them in a few years. They are not always satisfactory. Gurman's sasle pocket and fittings, and Gribbons' sash mountings, were introduced abont 18.58. Other inventions have been made for langing them so that the upper and lower sashes shall open with the same action. William M[•Adum's "Imperishable material applied to sash and otber pulleys, economical sash weights, and unproved methods of banging windows," comprises a material for pulleys of vitrified stoncware, proof against the action of the weather.

For window weights be substitutes a cheap material manufaetured out of various kinds of refuse; and suggests an improvement in the mode of hanging windows whereby one weight ean be made to answer the same purposes as two appiied in the usual way. R. Adams has a patent anti-accident reversible and sliding window, for eleaning, ventilation, \&e, whereby the outside of the sashes can be safely revolved, or reclined into the room for cleaning, \&c., thus removing all danger to the cleaner. Meakin has a new patent standard sliding sash, for eleaning. For sash lines, see par. 2260.
$2165 b$. The French casement window, or sash door as it is called when it opens down to the ground, is a feature commonly introduced even in English town houses. Its most ordinary form for small apertures is that of two leaves opening inwards or outwards, meeting in the centre of the opening; one leaf being sceured to the frame by a bolt at top and buttom, and the other, when elosed, is fastened to the first by a handle, fixed on the second leaf and turning over a staple fixed on the first. When the casement is high, this
 second leaf may require a bolt also at top and bottom to prevent the wind bending it (when inwards), and so admitting cold air and wet. When placed towards an exposed quarter

Fig. 780 b.

2

Fig. 780 c.
and subject to driving rains, it beeomes neeessary to take extra precautions to prevent the wet being blown through the joints at the bottom and the sides. 'To effeet this object, the stiles, rails, and frames are beaded and sunk in various manuers; some are shown in figs. 780 a. and 780 ., sills and bottom rails. For the latter, a water bar is now much used.

2165c. The next improvement is perhaps that of affixing to the leaf which is first opened an upright bar, which turns, and on being elosed, fits against the other leaf, and by a hook
to the sill and lintel. 1 is a plan of the two casements, and 2 a plan of the head and sill.

2165 d . The best arrangement is that of the Espagnolette boll, which is made of brass, and acts in the same manner as that of the bar above mentioned. There are several other contrivances of a sinilar kind to efficet the object, but the above at top and bottom effeetually fastens both leares. A similar method is shown in fig. 780 c ., adopted at Pisa, as given in the Papcrs of the Royal Enrineers, x. 187. The upright square reeded bar 1 , is moved to or from the sashl, as the window is required to be opened or shut; the top and bottom of the bar being rounded, as slown at E , so as to slide into two segmental plates F , secured
nre those in most general use. There is also a late invention for toming the bolt into a plate, and setting it in a groove in the edye of the meeting stile, a corresponding groove being formed in the other stile to receive its half of the plate when inoved forward by the handle in closing the casement. 'Phis, at the same time, forms a weather bar. (See pur. '2259.)

2165e. The fig. 780 a is a section of an ordinary arrangement in France for a casement. A is the plan, taken across the middle of the height, near the handle; and B the plan of the hooks at top and bottom of the rod. working into a staple lixed in the head and in the sill, with the movement of the rod by its handle. 'The round and hollow joint in the middle of the casement necessitates the two leaves being closed together and pressed into the frame when shutting the leaves, thus securing all the joints from admitting air or water.
$2165 f$. Fig. 780d. is a plan of the elaborate but usual French casement, as lately put up to the stone-fronted houses in the Rue de la Victoire, at Paris. It is given by Daly, in the Revue Generale de l'Architcture of 1858. A shows the casments when shut; B the shutters closed in the boxings; and $b b$ the shutters when opened ont. C the persiennes or outside blinds shut against the stone reveals; the ordinary mode is for them to shut on the face of the wall, which spoils the architecture of the façade ; cc the same when closed; D the espagnolette bolt; E the outside architrave; and F the inside architrave.

GROUNDS.

2166. Grounds are formed of pieces of wood forming skeleton frames, and attached to walls, around windows, doors, or other openings, for the facility of fixing architraves or other monldings unon them. For doorways the fiont and back grounds were connected by a third, specified as dovetailed backing. They are disused in common work, the grounds being the wrought woodwork carrying the mouldings, forming a single or duuble faced architrave, and having the jamb space filled by a single or a double rebated and beaded jamb lining. The grounds served as screeds for the plastering. for which purpose the edge was chamfered, rehated, or grooved. Grounds or norrow grumds were those to which the bases and surbases of rooms were fastened; slips of wood now receive the skirtings of rooms. All these appliances were secured to word brchs, which themelves have given way to plugs or wedges. Wright and Co's patent improvea fixing blocks for linings to walls, and floors, are substitutes for wood as a fixing. They take and retain nails equal to wood; they do not shrink, split, or decay, or become loose; whilst the crushing weight is fully equal to good average brick or stone. They are built into reveals as bricks, wiblout destroying the bund. When required for skirtings, for boarding, and such like, the brick is made $\frac{3}{4}$ inch wider, offering for the plastering a better key than that obtained when using the wood ground. They are usetul also in other cases. In all cases the grounds ought to be fixed vertical on the face and erlge, and be fixed firm and solid in every part; for otherwise the inside work cannot be well finished, as in plastered rooms the plaster is worked to them.
2167. In fixing window grounds, the sash-frame must be first carefully placed so as to stand perfectly vertical ; and then the face of the ground must stand quite parallel to the face of the sash-frame, and project about three quarters of an ineh from the face of the naked brick work, so as to leave a sufficient space for the thickness of the plaster. The edge of the ground should be in the same plane with the edge of the sash-frame, or, as the workmen term it, "out of winding." The edge of the arehitrave, when finished. in ordinary cases, will stand about three-cighths of an inch within the inner edge of the sash-frame, so that a perpendicular line down to the middle of the grounds would stand exactly opposite to a perpendicular line down to the mildle of the sash-frame.

YLOORS OR FLOOR BOARDS.

2168. In the laying of fleors, the first care to be taken is that they be perfectly level, which, owing to the nature of the materials whereof they are constructed, is a diffieult task. The chief sorts of floors may.be divided into those which are folded, that is, when the boards are laid in divisions, whose side vertical joints are not continuous, but in bays of three, four, five, or more boards in a bay or fold; and those which are struight juint, in which the s.le joints of the boards are continuous throughout their direetion.

As soon as the windows are fixed, the floors of a building may be laid. The boards are to be placed on their best face, and put to season till the sap is quite exhausted, when they may be planed smooth, and their edges shot and squared. The opposite edges are brought to a breadth by drawing a line on the face parallel to the other edge with a flooring guage, after which the common guage is used to bring them to a thickness, and they are rebated down on the back to the lines drawn by the guage.
2169. The next operation is, to try the joints, which, if not level, must be brought so, either by furing up if they be hollow, or by adzing down if they are convex, the former being more generally the case.
2170. The boards used for flooring are battens, or deals of greater breadth, whose qualitics are of three sorts. The best is that free from knots, shakes, sapwood, or cross-grained stuff, selected so as to match well with one another. The second best is free of shakes and sapwood, and in it only small sound knots are permitted. The third, or most common sort, are such as are left after taking away the best and second best.
2171. The joints of flooring-boards are either quite square, p!oughed and tongued, rebated, or dowelled; and in fixing them they are nailed on one or both edges, when the joints are plain and square without dowels. When they are dowelled, they may be nailed on one or both sides; but in the best dowelled work the outer edge only is n niled, by driving the brad through the edge of the board obliquely, without piercing its surface. which, when the work is cleaned off, appears without blemish.
2172. In laying the floor-boards, they are sometimes laid one after the other, or one is first laid, then the fourth, at an interval of something less than the united breadth of the second and third together. The two intermediate boards are then laid in their pleces with one edge on the edge of the first hoard and the other upon that of the fourth board, the two middle edges resting against each other, rising to a ridge at the joint. In order to force these boards into their places, two or three workmen jump upon the ridge till they have brought the under sides of the boards close to the joints; they are then fixed in their places with brads. This method is that first mentioned under this head, and in it the boards are said to be folderl. We have here mentioned only two boards, but four boards are most commonly folded at a time, and the mode is always resorted to when a suspicion exists that the boards are not sufficiently seasoned, or they are known not to be so. The headings of these folds are either square, splayed, or ploughed and tongued. If a heading occurs in the length of the floor, it should be invariably made to fall over a joist, and one heading should not meet another.

2173 . In dowelled floors, the dowels should be placed over the middle of the interjoist rather than orer the joists, so that the edge of one board may be prevented from passing that of the other. When the boards are only bradded upon one edge, the brads are concealed by driving them in a sianting direction through the outer edge of every successive board, without piercing the upper surface. In adzing the under sides of floor-boards orer each joist, great care should be taken to chip away the stuff straight, and also to avoid taking away more of the stuff than is necessary, in which case the soundness of the floor will not be compromised.
$2173 a$. The practice of joining the edges of boards by means of rebates, or of tongued grooves, does not appear to have existed before the 15th century. Preriously to that period, the use of ledges dovetailed to the whole or part of their depth into chases, of dovetailed wooden cramps, or of wood or iron pins or dowels, was general. In the cathedral at Messina the boarding under the tiling is in two thicknesses that cross each other; and, in the cradle roofs, it

Fig. :80e.

Fig. $750 f$. Was usual to groove and tongue the wainscoting, and also to cover those joints with moulded fillets, as shown in the examples in fig. $780 e$. The thickness of this wainscoting, which was oak split, not sawn, was only three-eighths of an inch (barely more or less), and it was frequently put together in the mauner shown in fig. isof.
$2173 b$. The nailing of floors is not satisfactory in appearance. S. Putney has designed the Pavodilos solid wood flooring to remedy the disadvantages of an ordinary nailed floor, and to obviate the necessity for a parquet floor orer it. By a mode of interlocking throughout the sides of each board, a perfectly smooth, air-tight, and dust-proof surface is oltained, free from nail holes and indentations (f f .780 g). This floor is laid upon the joists direct, and edgo-nailed to it in the shoulder. Another method is adopted by

Fig. $7^{87} \mathrm{~g}$.

Iig. 780 h .
S. Jennings, the boards being solid, rabbeted, and tongued, and edge-nailed, forming dust-proof joints, with a fair surface (f fig. 780h).

2173 c. Woodblock flooring. A warm, solid, durable, non-slippery floor, free from foul ar, vermin, and damp, being laid on a concrete bed, js that inrented about 1856 by Mr. W. White, F.R.I B.A., and called woodblock flooring. It consists of oblong blocks, placed
diagonally on concrete, being prepared from first or second yellow deals, which are Burnetized and seasoned. This invention has produced other systems. W. Duffy's patent immoveable acme, being pioned at the end and sides. Lowe's improved system, the blocks being seeured to the bed of concrete by a composition. S. Jennings's prepared paraffined flooring, which has been laid in several large hospitals and infirmaries, for which places it appears well suited, as also in houses. Geary's patent premier system, wherein the blocks are keyed down and cannot get loose. In Gary and Walker's improved patent Invincible system, each block forming the flooring is firmly keyed to the substructure ly means of metal keys dovetailed into the under side of the blocks; the other end of the keys being embedded in a matrix, acting not only as a damp-proof course and agdinst dry rot, but also as a floating to the concrete foundation in place of the usmal cement surface. Another is Aightingale and Co.'s bevelled principle of woodblock flooring. Ebncr's patent hydrofuge flonr is formed of, firet, a cement bed in which are set small iron channels; second, a bed of mastic which runs into the channels and into grooves formed in the bottom of the wocd blecks or parquet; it is considered to be a fireproof, damp-proof, noiseless, and warm floor.

2173d. It is stated that in Western Australia both the woods called Jarrah and Karri are used for paring, and from exhaustive tests it is considered that Karri is the superior wood for most purposes, and paving in particular. This refers to paving for roadways, a subject of bigh importance, and mpon which opinions are much divided. It, howerer, does not come within the province of the joiner, and scarcely within the scope of this work. The engineer to the Corporation of the City of London reported (1888) that about forly years since many of the principal thoroughfares of the City were pared with wood, \ldots. most of which proved unsatisfactory; in 1853 only eight streets remained so paved. Since 1873 (December) the granite in nearly the whole of the main thoroughfares in the City has been replaced by tither asphalte or wood, but mainly asplaalte. Of the latter there are now 23,579 lineal yards, or about 13 miles ; and of the former, 10,598 lineal yards, or about 6 miles. The parishes in the metropolis differ in their opinions, some entirely condemning wood for asphalte, others using wood ouly, and one, at least, keeping to granite as cheapest in all ways.

2173e. Parquetry, \&c. Floors of principal rooms of the better class of houses are now being finished with parquetry. It is composed of different pieces of some four or five coloured and hard woods, arranged in regular geometrical figures, for the whole of a room, corridor, or gallery; or applied as borders round carpets, to treads and risers of stairs and landings ; and even as dadoes, panellings, friezes, \&c. Parquetry is kept clean by swceping and periodical waxing. It is usually made solid, one inch thick, grooved, tongued, and keyed at the back and corners. When the woods are applied only as a reneer, they are liable to warp and separate by heat. Turpin's thin parquet floor is $\frac{5}{16}$ in. thick, prepared on deal back laminations to wear equal to iuch solid parquet; it can be used for veneering an old existing deal floor, and is susceptible of removal at pleasure.

2173f. Wood carpet parquetry is three-eighths of an inch thick, firmly nailed down with small barbed wire brads on to the top of the old floor; it is stated to be of a durable nature and texture, bearing constant traffic. It may likewise be used for wainscotings, and walls and ceilings. Ebner's parquetry is attached firmly to basement floors without any under flooring, as abore explained. "Wood tapestry (Huwarl's patent) for covering walls, ceilings, and other surfaces with real wood at a less cest than painting and graining," dates from about 1865.

2173g. Marquetry, or the inlaying of coloured woods, became very general at the latt-r end of the 16th century. Oak was inlaid with ebony ornaments in the panels and stiles of wainscoting; and the framing of doors, windows, and shutters was sometimes made of dark-coloured woods, the panels being of light colours, inlaid with ornaments, profiles of heads, \&c. This process is applied greatly to furniture, where it is imitated by paint. A new method has been introduced, of applying a printed pattern to the prepared wood, as in the Tunbridge ware, and then varnishing it as usual. "Ornamental pyrographic woodwork," for patuels and in cabinet work, being a process for burning-in ornament upon wood, is now in operation.

FRAMING.

2174. In fig. 781. aro shown several methods for framing angles in dadoes, skirtings, troughs, and other objects, whereof A exhibits the method of mitring a dado on exterior angles in an apartment. In fixing this together, brads may be driven from each side. B is a mothod of framing used for troughs or other rectaugular wooden vessels. C is a method of putting a dado or skirting together at any interior angle of a room. This mode
is also employcd for water-trunks, or troughs. In D is shown the manner of fixing and tinishing two pieces of framing together, with a bead at their mecting, by which the joint is concealed. It is used only in common finishings. In those of a better sort the angle is kept entire, and only a three-eighth bead used at the joint. It is of great importance in all joiner's work to preserve the sharpness of the angles of the work, and many prefer to employ the method shown in F , without any bead at the joint. In this the joint is made as close as possible, and is well glued together. If additional strength be required, blockings may be glued in the interior angle, which will make it quite firm. The method. by a simple mitre at E , is not so good as at A , because it has no abutment.
2175. When it is required to glue up large work, those edges which are to receive the glue should be well warmed at a fire, and then, while warin, and the glue as hot as possible, they should be united, inasmuch as glue never holds well when it is chilled or cold.
$2175 a$. In studying mediæval framing, much attention

Fig. 781. should be given to the modes in which the junction of pieces was effected ; there are two which are chiefly important. The first is a characteristic in the work of the carpenter as well as of the joiner, viz., the shoulder, either solid or applied (figs. 701k, and 70!l.). In the first case, it is not economical of material, which was a great point of consideration ; and therefore it is rarely scen except on short pieces, such as the posts of doorways : but as an applied means of strength it is ahmost as common in good work as a corbel in masonry. The second is the use of the mortice and tenon with trenails; and the extreme care which was given to this part of the work is scarcely to he expected in these days of speed and cheapness. It may be predicted that no truly mediæval work will now he ever reproduced except in the fancy-work of the cabinet-maker and the smith.

2175b. Another peculiarity is the use of stops to all chamfers and mouldings at points of junction of framing : it is not until the last phase of pointed art, that the stop of the moulding of a stile is worked in the rail, or that the corner of a panel is rounded : it is only in the dawn of the renaissmee that the four-panel quirk ogee fromt and square back can be portion of a specification for a door; for a mitre-joint is eminently not a feature of medieval joinery. The juxtaposition, even accidentally. of two stop-chamfered edges, suggests a means of enriching work, whether in open or close panels. The avoidance of work against the grain, and of large hollows, is also mentioned as a characteristic of joiner's work in pointed art; but this disappears in the course of the 15 th century. The medieral joiner, depending sometimes upon halving his work together, more frequently thought time less valuable than material, and did not repent a profusion of morticing and tenoning, to which he added the trouble of fastening with wooden trenails or iron pins. As large an amount of rebating and of grooving, however, was done in framing by the joiner as could be expected by those who were accustomed to the back-jointed and the grooved work of the mason.
$2175 r$. Perhaps the most defective part of the joinery of the middle ages is that which consisted in planting one thickness upon another. The contrivances in glueing and dovetailing were not of themselves sufficient; and recourse was obliged to be had to nails. The absence of screws and nails, except where nail heads could be made decoration, is another characteristic of medixval joinery. It was not until the beginning of the Itth century that the transition from planted work to panel work can be said to have appeared in any strength. At the end of that century, an architect might have specified a door as nine.panelled, beaded three edyes, chamfered bottom, and raised panel both sides; but his heads would have been stuck in the solid, and not applied : during the whole of the 14 th century planted work was commonly introduced, as in screens, elosets, and shutters, where perhaps a sham buttress serves to conceal the wide joint made by the work in consequence of the inaccurate finish of the hingeing. A curious method, which must have been laborious before the introduction of the plane, of attaching the planted work, consisted in ruming in the ground a chase wide enough to take the whole breadth of the planted stuff. and then to run a couple of grooves in that chase ; of course the back of tie planted stull had to be worked to match, with two tongues to enter the grooves.
217.5d. The size of the materials was restricted. Three inch stuff for the thickness of rails and stiles, with a not much wider face; inch and a half stuff for mouldings to he planted; panels not more than eight inches wide, and three-quarters of an inch thick; may be quoted as usual dimensions for joiners work. The observance of this restriction constitutes an essential characteristic of medirval work.

STAIRS.
2176. Stairs and their handrails are among the most important objects of the joiner's shill. The choice of situation, sufficiency of light, and easy aseent, are matters for the exereise of the areliteet's best talent.
2177. There are some leading prineiples which are common to all staircases, of whatsoever materials they may be constructed. Thus it is a maxim that a broad step should be of less beight than one which is narrower ; and the reason is sufficiently obvious, beeausf in striding, what a man loses in breadth he can more easily apply in raising himself by his feet. Now, as in common pratice it is found that the convenient rise of a step 12 inches in width is $5 \frac{1}{2}$ inches, it may be assumed as some guide for the regulation of other dimensions. Thus $12 \times 5 \frac{1}{2}=66$, whieh would be a constant numerator for the proportion. Suppose, for instance, a step 10 inehes in breadth, then $\frac{66}{10}=6_{5}^{3}$ inches would be the height ; and this agress very nearly with the common practice. The breadth of steps in the commonest staircase may be taken at 10 inches at a medium. In the best staireases the breadth of the step should not be less than 12 inches, neither should it be more than 18 inches. (See 2814.)
2178. Having adjusted the proportions of the steps, the next consideration is to ascertain the number of risers whieh will be necessary to pass from one floor to another. If the height divided by the rise of each step should not give an exact number of risers, it is better to add one rather than diminish the number.

2178 α. An easy mode of proportioning steps and risers may be obtained by the annexed method. Sn, down two sets of numbers, eaeh in arithnetical progression; the first set showing the width of the steps, ascending by inches, the other showing the height of the riser, deseending by half-inches. It will readily be seen that each of these steps and risers are sueh as may suitably pair together. (Newland, Curpenter's and Joiner's Assistant, 1860, p.197.) It is seldom, however, that the proportion of the step and riser is exactly a matter of choice-the space allotted to the stairs usually determines this proportion; but the above will be found a useful standard. In first-class buildings the number of steps is considered in the plan, which it is the business of the architect to arrange in aceordance with the style of the edifice.
2179. The width of the better sorts of staireases should not be less than 4 feet, to allow of two persons freely passing each other; but the want of spaee in town houses often obliges the architect to submit to less in what is ealled the going of the stair.

Treads. inches.	Risers. inches.
5	9
6	$8 \frac{1}{2}$
7	8
8	$7 \frac{1}{2}$
9	7
10	$6 \frac{1}{2}$
11	6
12	$5 \frac{1}{2}$
13	5
14	$-\frac{1}{2}$

2180. The parts of every step in a stairease are one parallel to the horizon, which is called the tread of the 'tep, terminated on the edge by a mouldet or rounded nosing, and the other perpendicular to the horizon, which is called the riser of the step. Where great traffic exists, the treads of stairs wear down at the nosing. This is often protected by a brass edging, and by lining it with lead. Hawksley's patent treads have come largely into use, not only at railway stations, but in warehouses and other buildings where there is much traffic on the stairs and landings.

2180a. A curious instance of economy of material is given in fig. 781a., which shows the mode of getting six steps out of round timber 30 inehes in diameter, being a saving of about ten per cent. upon the attempt to eut up square timber. Such solid steps were housed into the carriage; A showing the under side of it in relation to the step B. In straight flights the system of carrying solid newels from bottom to top of the stairease is one whieh has since been repeated successtully in iron eonstruction. The inganuity of the mediæval joiner in this subject is seen best treated in Viollet le Due's dietionary. (See pur. 2185.)
2181. Stairs have many varieties of structure, dependent on the character, situation, and destination of the building. We shall now, therefore, describe the method of earrying up

Fig. 781a. doy-legged, bracket, and geometrical stairs.
2182. A Dog-legged Staircase is one which has no opening or well-hole, and in which the rail and balusters of the progressive and returning flights fall in the same vertical planes. The steps in it are fixed to strings, newel, and earriages, the ends of the steps of the inferior kind terminating only upon the side of the string without any housing. Y and Z in fig. 782, are the plan and elevation of a stairease of this kind; AB is the lower newel whereof the part BC is turned. On the plan, a is the seat of this newel. DE and FG in Y are the lower and upper string boards liramed into newels, KL is a joist framed into the trimmer I. The lines on the plan represent the faces of the steps in the elevation without
which is as follows: - In the upper ramp, for exmomple, produce the top of the rail HM to I' ; draw MN vertical, and produce the straight part ON of the pitch of the rail to meet it in N , making NO equal to NM. Draw OP at a right angle to ON. From P , as a centre, describe the are MO, and then the other contrary curve, which will complete the ramp required. The story rod RS is in the tixing of all staircases a necessary instrument; for in fixing the steps and other work by a common measuring rule, bit by bit, the chances are that an excess or defect will occur, to make the staircase faulty ; which cannot be the case if the story rod is applied to every riser, and such riscr be regulated thereby.
2183. A Bracket Staircase is one which has an opening or well, with strings and newels, and is supported by landings and carriages. The brackets are mitred to the end of each riser, and fixed to the string board, which is usually moulded like an architrave. In this sort of staircase the same methods are to be observed in respect of dimensions and laying off the plan and section as in a doglegged staircase. Nothing is to be done without the story rod just described, which must be constantly applied in making and setting up the stairs. The method of forming the ramps and knecs has been touched upon in the preceding article, and the few particulars we intend to give respecting scrolls and handrailing will be reserved for a subsequent page. In bracket stairs the internal angle of the

Fig. 2×2. steps is open to the end, and not closed by the string, as in common dog-legged stairs; the neatness also of the workmanship is as much attended to as in geometrical stairs. The balusters should be nicely dovetailed into the ends of the steps by twos, and the face of each front baluster is to be in a plane with the front face of the riser, and all the balusters being equally divided, the face of the middle one must of course stand in the middle of the face of the riser of the preceding step. The treads and riscrs are previously all glued up and blocked together, and when put in their places the under side of the step is nailed or screwed into the under edge of the riscr, and then rough bracketed to the strings, as in a dog-legged staircase, in which the pitching picecs and rough strings are similar.
2184. A Geometrtcal Staircase is one whose opening is down its centre, or, as it is called, an open newel, in which each step is supported by one end being fixed in the wall or partition, the other end of every step in the ascent having an auxiliary support from that immediately below it, beginning from the lowest one, which, of course, rests on the floor. The steps of a geometrical staircase should, when fixed, have a light and clean appearance, and, for strength's sake, the treads and risers, when placed in position, should not be less than $1 \frac{1}{8}$ inch thick, supposing the going of the stair or length of the step to be 4 feet. For every 6 inches in length of the step an eighth of an inch should be added. The risers should be dovetailed into the cover, and in putting up the steps, the treads are serewed up from below to the under edges of the risers. The holes for sinking the heads of the screws ought to be bored with a centre bit and fitted closely in with wood well matehed, so that the screws may be entirely concealed, and appear as a uniform surface without blemish. Brackets are mitred to the risers and the nosings are continued romd; but this practice induces an apparent defect, from the brackets, instead of giving support, being themselves unsupported, and actually depending on the steps, being indeed of no other use than merely tying together the risers and treads of the internal angles of the steps; and from the internal angles being hollow, except at the ends, which terminate by the wall at one extremity, and by the bracket at the other, there is an appearance of incomplete finish. The cavetto or hollow is carried all round the front of the slip, returned at the end, and again at the end of the bracket, thence along the inside of it, and then along the internal angle at the back of the riser.
2185. The ancient mode, however, was the best, in which the wooden was an imitation of the method of constructing geometrical stairs in stone, which will be found under Masonry, in the previous Section 11I.; that is to say, the making of the steps themselves solid, and in section of the form of a bracket throughout their length. This is a more expensive method, but it is a solid and good one, and is still practised on the Continent, especially in France. (See a'so par. 21804.)
2186. In fiy. 783. \mathcal{X} is the plan and Y the elevation, or rather section, of a geometrisal staircase. A1B in X is what is called the cur-tail step (emred like the tail of a cur dog) which must be the first step fised. CCC are the flyers supported from below by rough earriages, and partly from the string board DllEF in Y. The ends next the wall are sometimes housed into a noteh board, and the steps then are made of thick wood and no cariages used. GGG are winders fixed to bearers and pitching picces, when carriages are used to support the flyers. The winders are sometimes made of strong stuff firmly wedged into the wall,

Fig. 784. the steps screwed together, and the other ends of the steps fixed to the string DEHF. In all cases of wooden geometrical stairs their strength may be greatly augmented by a flat bar of wrought iron coinciding with the under side and screwed to the string immediately below the steps. HIK in Y is the wall line of
 the sofite of the winding part of the stairs, and LAIN part of the rail supported by two balusters upon every step. Where the space of the going of the stairs is confined, the French have long since mtroduced, as in fiy. 784., the practiee of placing the balusters outside the steps, which aflords more room for persons ascending and descending.

HANDKAILS AND CUR-TAIL STEP.

2187. The upper part of the fence formed by capping the balusters of stairs is called the b,andrail, whose use, as its name imports, is for a support to the hand in the astent and descent of stairs. The hand, for support to the body, should glide easily over it without any strain, whence it is evident, that to be properly formed, it must necessarily follow the general line of the steps, and be quite smooth and free from inequalities. It must be obvious to the reader who has thus far followed us throughout the diflerent previous portions of our labours, that the chief prineiple of handrailing will be dependent on the methods of finding sections of eylinders, cylindroids, or prisms, according to three given points in or out of the surface, or, in other words, the section made by a plane throug! three given points in space. The cylinder, cylindroid, and prism are hollow, and of the same thickness as the breadth of the rail, or the horizontal dimension of its seetion; and their bases, their planes or projections on the floor. Thus is formed the handrail of a staircase of a portion of a cylinder, cylindroid, or prism whose base is the plane of the stair, for over this the handrail must stand, and is therefore contained between the vertical surface of the cylinder, cylindroid, or prism. As the handrail is prepared in portons each whereof' stands over a quadrant of the circle, ellipse, or prism of the base whieh forms the plane, such a portion may be supposed to be contained between two parallel planes, so that the portion of the handrail may be thus supposed to be contained between the cylindrical, cylindroidal, or prismatic surfaces and the two parallel planes. The partsto be joined together for forming the rail must be so prepared that in their place all the sections made by a vertical plane passing through the imaginary solid may be rectangular: this is denominated squaring the rail, and is all that can be done by geometrical rulcs. But handrails not being usually made of these portions of hollow cylinders or cylindroids, but of plank or thicknesses of wood, our attention is naturally drawn to the consideration of the mode in which portions of them may be formed from planks of sufficient thickness. The faces of the planks being planes, they may be supposed to be contained hetween two parallel planes, that is, the two faces of the plank. Such figures, therefore, are to be drawn on the sides of the plank as to leave the surfaces formed between the opposite figures, portions of the cylindrical, eylindroidal, or other surfaces required, when the superfluous parts are cutaway. A mould made in the form of these figures, which is no more than a section of them, is ealled the fuce mould.
2188. The vertical, cylindrical, or cylindroidal surfaces being adjusted, the upper and lower surfaces must be next loraed : and this is acemplis'ied by bending another moud
round the cylindrical or cylindroidal surfaces, generally to the convex side, and drawing lines on the surface round the edge of such monld. The superfluous wood is then cut away from top to bottom, so that if the piece were set in its place, and a straight-edge applied on the surfaces so formed, and parallel to the horizon directed to the axis of the weil-hole, it would coincide with the surface. The mould so applied on the convex side for forming the top and bottom of the piece, is called the falling mould. For the purpose of finding these moulds it is necessary to lay down the plan of the steps and rail ; next, the falling mould, which is regulated by the heights of the steps; and lastly, the face mould, which is regulated by the falling mould, and furnishes the three heights alluded to.
2189. Fig. 785. ex!ihits two of the most usual forms of handrails. The upper part, A and B of the figure, are sections of the rail and mitre cap of a dog. legged stairease. Vertical lines are let fall from the section of the rail A, to the mitre in B ; from thence, in ares of cireles, to the straight line passing through the centre of the cap at right angles to the former straight lines; then perpendiculars are set off and made equal in length to those in A. A curve being traced through the points gives the form of the cap. C is called a toad's buck rail, and is used for a superior deseription of staircases.
2190. Fig.786. slows the method of drawing the scioll for terminating the handrail at the bottom of a geometrical stairease. Let $A B$ be the given breadth; draw AE perpendicular to AB, and divide it into eleven cqual parts, and make AE, equal to one of them. Join BE, bisect ABin Cand BE in F. Make CD equal to CF and draw DG perpendicular to AB . From F , with the radius FE or FB, describe an

Fig. 785.

Fis. 7 sf . arc cutting DG at G. Draw GH perpendicular to BE cutting BE at O. Draw the diagonals DOK and 10 L perpendicular to DOK. Braw 1 K parallel to 13 A ; KL parallel to II, and so on to meet the diagonals. From D) as a centre, with the distance DB, describe the arc BG. From I as a centre, with the distance lG, deseribe the arc GE. From K as a

onntre, with the distance KE, describe the are EH. From L as a centre, with the distance LH, describe the arc HP. Proceed in the same manner and complete the remaining three quarters, which will finish the outside of the scroll. Make BR equal to the breadth of the rail; namely, about two inches and a quarter. Then with the centre D and distance

DR describe the are RS, with the centre I and distance IS describe the are ST, and with the centre K and distance K ' d describe the arc TU , and the scroll will be completed.
2191. Fig. 787. gives the construction of the cur-tail step, or that which lies under the scroll, abed is the veneer that covers the riser ; efgh, the nosing of the cover or horizontal part of the step; ikl the face of the string board, and mo the projection of the nosing.
2192. In fig. 788 is shown the cover board for the cur-tail step, abcd and efyh in dotted lines represent the plan of the scroll ; opqr.s, the nosing of the cur-tail step; t, u, v, s, the nosings and ends of the risers. The circle 1, 2, 3, \&.c. is described from the centre of the scroll, and divided into equal pats equal to the distances of the balusters from centre to centre, and lines are drawn to the centre of the scroll in order to ascertain the middle of the balusters. by giving a regular gradation to the spaces. The whole of the spiral lines ln this and the previous figure are drawn from the same centres as the scroll.

BENCHES.
2192a. "It must be confessed," says Denison, in his Lectures on Church Building, 1856, page 242, "that our ancestors did not offer much temptation to people to come to church by the comforts they provided for them when they got there. Nothing, indeed, can be better for sitting in than some of the old stalls, such as those in King's College Chapel, where the back has a slope of one to four; but most of the common old church seats are frightfully uncomfortable-the back of the seat ought to be inclined, especially when it rises as ligh as the shoulders. It is not of so much consequence when the seat backs are low, but even in them it is better to have a little inelination, about one in eight ; and above all things, the top rail ought not to project. The seats onght never to be less than 13 inches wide with a sloping back, or 14 inches with an upright one, and they will be all the better if they are an inch or two more. Nothing under 2 feet 10 inches at the very least will allow proper room for sitting, standing, and kneeling, especially if there are any divisions under the seats to prevent people from kiching their acighbours' hats, or appropriating their hassocks. Where it is necessary to save room in every possible way, it is not a bad plan to make the division under the seat only come down to 3 or 4 inches from the fluor; and never in any case ought there to be (what there often is) a thick rail or bar of wood lying along the floor and taking off an inch or more from the space for the fiet. The book boards are best not sloping, which is of no use, but flat and narrow, just wide enough to lay a book upon shut, and to put the arms upon iir knerling. As regards the difficulty of tinding a good place and proper height for the pulpit and reading desk, I know of no better advice to give upon the subject than to try various places before you fiually fix upon any one, unless the construction of the church is such that there is one place marked out by nature (as we may say) as the proper one."
2192b. Examples of benches and bench ends are represented in so many publications that it is deemed unnecessary to give any illustration. Some cappings to benelses, and edges to divisions, are shown in the section Wood Moulmings in Book III. Those shown in Brandon's Analysis, and Bury's Woodwork, give the following dimensions:-

Name of Church.	Height.	Width.	Seat.	Opening.	
Comberton, Cambridge -	2. 9	3. 4	1. 0	1. 6	
Bentley, Suffolk - -	2. 5	2. 10	0. $11 \frac{1}{2}$	1. 6	
Great Waltham, Essex, 14-0 -	3. 1	2. 6	1. 2	i. 1	
Bishops Lydeard, Somerset	2. $10 \frac{1}{4}$		0. 11	$\left\{\begin{array}{l}1.0 \\ 1.4\end{array}\right.$	
Westonzoyland, Somerset	3. 3	2. $9 \frac{1}{2}$	-	1. 7	$\left\{\begin{array}{c}\text { end } \\ 1.4\end{array}\right.$
Atherington, Devon -	3. 9	-	-. $11 \frac{1}{2}$	-	
Ickleton, Cambridge -	2. $4 \frac{1}{2}$	-	0. $10 \frac{1}{2}$	-	1. 10
Stalls, Bridgewater, Somerset -	-	-	O. $11 \frac{1}{2}$	eentre to centre	$\}_{\substack{\text { sitting } \\ 2.3}}^{\text {a }}$
" Wantage, Berks -	-	3. 5	-	1. $4 \frac{1}{2}$	1. 10

The rules of the Incorporated Society for Promoting the Building of Churches state, that "the distance from the back of one seat to that of the next must depend in great measure on the height of the backs. Where the funds and space will admit, convenience will be best consulted by adopting a clear width of 3 feet; but a width of not less than 2 feet 8 inches from centre to centre will be allowed if the back of the seat is not more than 2 feet 8 inches in height. If a greater height be adopted, the distance from back to back must be increased one inch at least for every additional inch in height; but under no eircumstances must it exceed 3 feet. There must not be any projecting capping on the top of the hacks. Facilities for kneeling in all cases to be provided. The width of the seat boards for adults to be not less than 18 inches. 20 inches in length must be allowed for each adult, and 14 inehes for a child. Children's seats must be at least 26 inches from
back to front, and must have back ヶ." Her Majesty's Commissioners for building rew churches allow 20 inches by 34 inches for each sitting; free seats 20 inches by 27 inches, and 14 inches for children. Benches for fiee sittings are to be 3 feet, 4 feet 6 inehes, or 6 feet long. The allowance made for each sitting in St. Paul's Cathedral is, as nearly as possible, 20 inches by 33 inches. From 4 to .5 square feet of floor is not too much space to be calculated for each person, allowing for gangways, communion table, \&e.

2192c. Cloisters, porches, canopies, over-doors, stall-work, lych-gates, windows, staircases, bell-wheels and carriages, luffer or louvre boards, fencing, sereens, pulpits, desks. lecterns, chests, tables, cum multis aliis, are amongst the many other productions of the joiner, being far too numerons to be described in detail herein.

FORMATION OF BODIES BY JOINING THEM WITH GLUE.
2193. The way in which bodies are glued up together for different purposes will the given below, and with them will close this section.
2194. Fig. 789. shows at A a section of two boards glued up edge to edge. At B the face of the same is seen. C shows the section of two boards glued edge to edge, each piece being grooved, and a tongue inserted at their junction. By similar means a board may be increased to any width, be the pieces whereof it is composed ever so narrow. D shows two boards fixed at right angles, the edge of one being glued on the side of the other. A block for the purpose of strengthening the joint is fitted and glued to the interior side.

2195. Fig. 790. A is a section of two boards to be joined at an oblique angle. They are mitred and glued together with a block at the angle. B shows the inner sides of the boards so fixed. It is by repeating this operation that columns are glued up.
2196. Fig. 791. A is the section of an arehitrave. The moulding is usually, if not always, glued to the board; the vertical line therefore, showing the extreme boundary of the moulded part, is the seetion of the piece to be glued, B is the face of the architrave, \mathbf{C} and D a section and front of it before it is moulded, E a section of it with the button and nail to show the way in which the two parts are glued together, and F shows the back of the architrave with the buttons which are used for the purpose of bringing the two sur-

Fig. 791.
faces to be glued together in contact, till after they are set and fully held together, heing knocked off when the glue has become hard, and then the moulding shown at A and B is stuck.
2197. Fig. 792. exliibits the method of gluing up a solid niche in wood where A is the elevation. The work is performed in the same way as if it were stone or brick, except that the joints are all parallel to the plane of the base, because of the difficulty of making a joint with curved surfaces, which would necessarily be the case if they all tended to the centre of the sphere. B and C are the two bottom

Fig. 792.

Fig. 793.

Fig. 794. courses, where the vertical joints are matue to break, as seen in the elevation A.
2198. In fig. 793. is exhibited the node in which vencers are glued together for the
a hoard. Their ends are perpendieular, and a cavity is left between them sufficient to recive the veneers and wedges. In A the thin part in the form of an are shows the veneers as in the state of glneing, the wedges being on the convex side. \mathbf{B} is a section of the board and hracket. The work when putting cogether should be dry and warm, and the glue should be hot. When this last has set hard, the wedges must be slackened, and the veneers, which now form a solid, taken out.
2199. Fig. 794. is a strong method of forming a concave surface by laying the veneer upon a cylinder, and baeking it with blocks in the form of bricks, which are glued to the eonvex side of the veneers and to each other. The fibres of the blocks are to be as nearly as possible parallel to the fibres of the veneers. A is the section of the eylinder veneer and bloeks, and B shows the convex side of the blocks.
2200. Fig. 795. is another mode of glueing veneers together with cross pieces serewed to a eylinder, the veneers being placed between the former and the latter.

Fig. 795.

Fig. 796.

Fig. 797.
2201. In fig. 796 . 1s shown the method of glueing up eolumns in pieces, which here are eight in number, each being glued to the other after the manner of fig. 790 . The workman should be careful to keep the joints out of the flutes, when the columns are to be fluted, by whieh the substance will be more likely to prevent the joints giving way. A is a section of the column at top, and 13 at the bottom. After glueing together, the octagons and mitres should he correctly laid down for the true formation of the joints. In 13 are shown two bevels, one for trying the mitres, and the other for trying the work when put together.
2202. Fig. 797. is the mode of glueing up the base of a colnmn. lt is formed in three courses, the pieces in each of which are mede to break joint over one another. The horizontal joints of the courses must be so adjusted as to fall at the junction of two mouldings, forming a

Fig. 798. re-entering angle. After the glne is set quite hard, the rough base is sent to the turner, by whom it is reduced into the required profile. The fibres of the
 wood should lie horizontally, in whieh direction the work
will stand muel better than when they are vertical. A is the plan of the base inverted, and B is the elevation.
2203. The formation of a modern Ionic capital is given in fig. 798., wherein \mathbf{A} is the plan inverted, showing the method of placing the blocks; and B is the elevation.
2204. Fig. 799. is the method of glueing up for the leaves of the Corinthian capital, A is the plan inverted, and B is the elevation. The abacus is glued up in the same mannet as in the preceding example.

Fir. 800.

Fig. sot.

Fis. Stis.
2205. Fig. 800. exhibits the mode of forming a cylindrical surface without veneers, by means of equidistant parallel grooves, A is the elevation, and B the plan.
2206. Fig. 801. exhibits the method of covering a conic body. It is, in fact, no more than covering the frustum of a cone, and is accomplished by two concentric ares terminated at the ends by the radii. The radius of the one are is the whole slant side of the cone, that of the other is the slant side of the part cut off. In this case, the grooves are directed to the centre, and filled in with slips of wood glued as before. The plan is shown by the circle ABC. The are HI must be equal to the circumference ABC .
2207. Fig. 802. shows the same thing for a smaller segment.
2208. Fig. 803. shows the manner of glueing up a globe or sphere by the same method. A is the lace of the piece; B the edge showing the depth of the grooves; C shows the mould for forming the piece to the true curvature; and D the faces of two pieces put together.

Fig. scs.

Sfet. VI.

SLATING.

2209. An account of the miterials used by the slater has been detailed in Chap. II. Sect.IX. The tools used by this artificer are the seuntle, which is a gauge by which slates are regulated to their proper length; the trowel; the hammer ; the zax, an instrument for cutting the slates; a small handpiek; and a hod and a board for mortar. The zax is an instrument made of tempere 1 iron, about 16 inches long and 2 inches wite, like a large knife bent a little at one end, with a wooden handle at the other, an 1 having a projecting piece of iron on its back, drawn to a sharp point, to make holes in the slates for the nai's, the other side being used to chip and cut the slates to their required size, as when le ught from the quarry they are not sufficiently square and cleaned for the slaters use. The places for the nail holes are marked usually on the slate where they have to le punched, with a gauge, and then the iron of the $z a x$ is struck through tho slate. Each slate has two holes; large slates require three. A better mode of obtaining the place for the holes is to mark a plank with two small pieces of wood across it, at the distance required; the position is thus shown at once.
2210. Slating is laid in inclined courses, beginning from the eaves and working upwards, the courses nearest the ridge of the roof being less in width than those below. The lap of one slate over another is called its bond, and it is the distance between the nail of the under slate and the lower end of the upper slate. The bed of a slate is its under side, and the upper side is called its back. The part of each cour-e which is exposed to the weather is called its gunge, bare, or margin. The slates are mailed to close or open boarding, lying on the back of the rafters, with nails, which should be of copper or zinc If iron nails are used they should be well painted. The operation of cutting or paring the side and bottom edges of the slates is called trimaing them; but the head of the slate is nezer cut. In that part the holes were formerly pierced by which the nails pass to the boarding. This boarting (or sarking, as it is called in the north of Great Britain) is usually $\frac{3}{4}$ inch to $1 \frac{1}{4}$ inches thick, \mathbf{r} ugh, of equal thickness, and well secared to the common rafters. A good practice obtains of bedding slates in mortar, on boarding, which gires them a sound bearing, especially if the roof will have to stand much wear from persons passing along the gutters, or over the ridge, for repairs or other purposes.
$2210 a$. Another method of forming a roof, as lately employed by some architects, consists in slating on boards fixed to purlin-rafters, without any common rafters, as shown in figs. 635r. and 697. The purlins are placed somewhat closer than when rafters are used; the boards are $1 \frac{1}{4}$ inches thick, usually placed diagonally. It makes very sound work, and saves height, where that may le an olject. Another method, as noticed in parr. 2285a., is to n il the boarding on to common rafters laid as purlins, as shown in figs. 695 and 696.

2?103. The common method of slating is to nail the slates to laths or battens, as in tiling, but a house so done is more lialle to be affected with the various changes from heat to cold than by the other system. These laths are cut to boards of $20,25,30$ or 36 . Thus a board $12 \times 9 \times 3$, cut 3 deep and 4 flat, equals 1 board 20 . If cut 4 deep and 4 flat, equals 1 hoard 25 . If cut 4 deep and 5 flat, equals 1 board 30 . If cut 5 decp and 5 fiat, equals 1 board 36. Slating laid on battens, at places on the sea coast, and as usual in work in Ireland, is either wholly "rendered" with lime and hair on the under side, or only the under edges and laths are thus secured. Without this precaution the slates rattle, and the driving winds get under them, tending to strip the roofs. Rendering properly done, lasts as long as the slates exist in a perfect state.

22,0c. Oren or ventilated slating. which is nearly equally as waterproof as the usual method of slating, will save one third of the quantity per square.

2210d. Felt. Slate is also laid on felt, on $\frac{3}{4}$-inch boarding. Croggon's patent asphalte roofing felt is impervious to rain, snow, and frost, and is a non-conductor. From itsanticorrosive properties, it is of service when placed between iron and wood and between metals. It is manufactured of any required ltnglh, by 32 inches wide. There is some risk of dry rot occurring, hoxever, hy using it thins; the better plan is to lay the felt on boards, and then to batten for the slates orer the felt, so as to leare an air space bet ween the felt and the slates. Its general weight is abont 42 lbs . per square. Patent asphaltic roofing felt is about $\frac{3}{16}$ in. think; slaters' or sarking fe!t is about $\frac{1}{8} \mathrm{i} 1$. thick, as is also inodorous felt. Fibrous asphalie or foundation felt is suggested for preventing damp rising when placed above the footings of a wall; but it has some disadrantages. Nonconducting dry hair felt, in sheets 34 itehes ly 20 inches, is also obtainable in long lengths.

Rnofing felt is specially prepared for hot climates, Noir-condueting felt is formed pntirely of hair, and is used fur corering boilers. sieam pipes, \&c., for the purpose of preventing the radiation of beat. When applied to boilers, a cement of 2 parts of white lead, $1 \frac{1}{2}$ parts of red lead, 4 parts of whiting, is mixed with boiled linseed oil; after being spread over the felt, the whole is patted down on the boiler, and in a short time the felt firmly adheres. No cement is needed for steam-pipes, the felt being wrapped round and secured by twine. Sheets of this felt are made 32 inches by 20 inches; and of the followirg weights:-No. 1, 16 oz .; No. 2, 24 oz .; No $3,32 \mathrm{oz}$; No $4,40 \mathrm{oz}$.; No. 5,48 oz. This dry hair or inodorous felt is also useful for deadening sound, by cutting it into 2 or $2 \frac{1}{2}$ inch strips, and laying it on the joists under the floor boards; also as lining to walls and floors; and for lining iron houses to equalise the temperature.
$2210 e$. Felt is also applied for forming roofs of temporary buildings. It has been suggested for permanent buildings, but to that employment of it we must withhold our approval. The rafters may be about 2 inches by $1 \frac{1}{4}$ inches, placed 20 to 24 inches apart, laid at a pitch of 2 or 3 inches to the foot, and corered with $\frac{1}{2}$-inch boarding. The felt is to be stretched tight, overlapping 1 inch at the joints, nailed with two-penny fine clout nails, first heated and cooled in grease, about $1 \frac{1}{2}$ inches apart; copper nails are preferable. The whole roof is thell to have a good coating of hot coal tar and lime, in the proportion of 2 gallons of the former to 6 pounds of the latter, well boiled together, put on with a commou tar mop, aud while it is soft some coarse sharp sand sifted over ic. The gutters are made of two folds, cemented together with the boiling mixture. The coating to the roof must be renewed every fourth or fifth year, according to the climate. The felt is found to last better, if it be not made to adhere by any misture to the boarding.
$2210 f$: Felt for sheds, or occasional purposes, may be put up without boarding ; the rafters in this case would not exceed 3 inches by $1 \frac{1}{4}$ inches, placed at a distance of 30 inches apart. To prevent the felt bagging, battens, or slighter rafters, of about 2 inches by 1 inch, are placed between the others. To such roofs the felt must be laid from eares to eares, nailing through the overlap into the main rafter. The pitch of this roof should be about 6 inches to the foot. The "ventilated" slating will bear an economical contrast, provided the smaller size of slates be used, and is more durable.

2210 g . Another modern material for roofing is Willesden paper and canvas. Two-ply paper is used for underlining slates, tiles, leaky roofs; for interior lining; fixing against damp walls, under floors, and for interior decorations. It is waterproof, and does not smell. 100 square feet of it equals $16 \frac{2}{ \pm} \mathrm{lbs}$. The 1 -ply paper is used for underlining, fixing against damp walls, waterproof wrapping, packing, stencil paper, \&c. The canvas is water-repellant and rot-proof. The serim is waterproof, and useful for shading greenhouses, ferneries, \&c., and for fixing to damp walls to protect ornamental wall-papers.

2210 h . Slating is sometimes laid lozengewise, but it is much less durable than when laid in the usual method. It is introduced for the sake of ornamental effect. The ends of the slates are als, rounded, or cut angleways to in point, or the angles only cut off; or, if the slates be of a sinall size, they are set angleways orer courses with square ends. These are all shown in an excellent article in Violltt-le-Duc's Dietionnaire, s.v. Ardoise. Slating is also made to have a decorative effect by forming zigzag patterns with red coloured slates among blue slates; or a few courses of the one above a larger number of the other.
2210i. James Wyatt, RA., arranged a system for forming roofs with slate slabs without boarding or battens. In this the slates were all reduced to widths equal to the distance between centre and centre of the rafters. On the backs of these last they are screwed by two or three strong inch-and-half screws at each of their ends. Orer tho junctions of the slates, on the backs of the rafters, fillets of slates about two and a half or three inches wide, bedded in putty, are screwed down, to prevent the entrance of rain. The handsome regular appearance of this sort of slating gained it, at first much celebrity; but it was soon abandoned, on account of the disorder it is liable to sustain frum the slightest partial settlement of the building, as well as from the constant dislodgment of the putty, upon which greatly depended its being impervious to rain.
2211. Subjoined is a succinct account of the different sorts of slates brought to the London market, and enumerated in the order of their goodness and ralue.

2211a. Westmoreland slates. These are from 3 feet 6 inches to 1 foot in length, and from 2 feet 6 inches to 1 foot in breadth. They should be nailed with not less than sixpenny and eight-penny copper or zine nails (iron nails should nerer be used); and a ton in weight of sized slates will usually corer it out two squarts and a quarter. The weight of the coarsest Westmoreland is to that of common tiling as 36 to 54 .

2211b. Wclsh rags are next in goodness, and are nearly of the same sizes as those last
mentioned; but a ton of these will cover only from one square and a quarter to one square and three-quarters. Prmment green, Eureka unfading green, Whitland Abley green, Westmoreland green, best blue Bangor, best red Bangor, Eureka red, Old rein Portmadoc, are among those now supplied.

2211c. Table of the Names and uscal Sizes of Slates,
with the squarcs a thousind (1200) will cover according to their size, and the gauge at which they are laid, as stated in rarions works.

* Denotes best Welsh rooting sizes.

During last century, when building works were executed with more regard to durability, a thousand duchesses were said to cover 9 squares; countesses, 6 squares; ladies, 3 squares; and doubles, 2 to $2 \frac{1}{4}$ squares.

2211d. Slates are now split so thin, that in specifications it is desirable to state the weight per square of the slating required. The scientific journals noticed (1865) that at the Rhiwboyfdir Slate Company's quarries, sheets of slate 8 feet long and $\frac{1}{32}$ nd part of an inch were obtained, the width being generally 16 inches. The grain must, of course, be very fine to permit of so thin a clearage.

2211e. The strength of slate 1 inch thick is considered equal to that of Portland stone 5 inches thick. A foot superficial weighs from $11 \frac{1}{4}$ to 14 lbs . Slates of the usual thickness will not bear much heat before cracking: the thick \mathbf{r} the slate the more readily dors it crack with heat; and they will fly at once if cold water be poured suddenly upon them when in a heated state.
$2211 f$. The Tavistock slates were sold by the thousand of ten hundred, which quantity covered about three squares and forty feet.

2211g. Horsham slate, obtained in Sussex, is a limestone, and is found to have no limit
to its durability; but being very heary, proper preparation is needed for it, as timbers of much greater scantling than usual are required.

2211 h . French slates, formerly used in London to some extent, are very light, and must therefore only be used on boards; otherwise the wind would act upon them. In France they are bedded in plaster on the boarding.

2211 . The ridge, hips, and valleys of a slated roof were formerly always covered with lead. The ralleys are still usually so formed, but slate has been introduced for the two former. The pieces require to be cut truly square, screwed to the boarding, and the juints and heads secured with putty or white lead. For hips and ridges, slate roll ribbing is often employed (fig. 803a.). Shorter slates, A, are first nailed to each side of the ridgepiece, C , or of the hip rafter, to form the saddle, and then the slate roll B is put on and secured by serews through the top. This roll is made also with rebated joints, but it is obviated by the roll b eaking joint with the saddle. The roll, as shown in the figure, is sometimes attaehed to one side of the saddle, which must be maue according to the pitch of the roof. The 3 -inch diameter roll has

Fig. $803 a$. a 7 -inch width of saddle, or wing, on each side; the $2 \frac{1}{2}$-inch a 6 -inch; and the 2 -inch a $5 \frac{1}{2}$-inch saddle. There are 175,225 , and 320 feet in a ton of the ribbing ; and 400,560 , and $70^{\prime \prime}$ feet of the ribbing.
2211%. The edges of the slates next a wall, either at the head or sides of a roof, have to be protected. This, in the best work, is effected by lead flishings (par, 2214.). In the former case, it is laid on the head of the slate for about 5 to 7 inches, and then turned up against the wall for about the same height, and secured by holdfasts; it may also be either turned over into a course of bricks, and the brickwork continued up, or the turned up edge is protected by a lapping of lead inserted in the brickwork. This lapping, in commoner work, is replaced by cement. At the edge of the ronf against a wall, lead is likewise placed in a similar manner ; but as the lapping cannot be laid in a straight joint, it is cut in a zigzag form, called "stepping," to each course of bricks. Of late years this lead flashing is entirely replaced by filleling of lime and hair plaster; of ganged stuff, being lime and cement mixed; or of cement and sand. But as these materials crack and fall away in a few years, the filleting has to be looked to periodically or whenerer damp makes its appearance. Zinc also takes its place, but is not so effective, as it is more difficult to dress it to the surface of the slates.
2.211. In exposed situations, where filleting cannot be trusted, and lead is too expensive, various contrivances have been made for preventing the cntrance of wet. One of these consists in forming a small gutter between two rafters, lining it with lead, tnrning one side of the lead under the slates, and turning up the other side against the wall, and cementing over it. Another good method is to cement a row of tiles against the wall above the slates, and when dry to curer the tiles and wall with cement, tucking it well into all the crevices.

2211 m . The mediæval method of easing the line of tiling at the foot of the franing deserves some notice; thus, as shown in fig. 701e., it appears that the use of chantlates, A, frees the tie-beams, tassels, and other timber, except plates, from all contaet with the masonry; and. as a matter of course, from any consequent tendency to rot. This method seems more adrantageons than that of beam-filling, which is altogether prevalent at the present time, in order to keep out draughts, but it requires care in closing the work. Tiling has been already described in the section Bricklaying.
$2211 n$. In many ehurches with open roofs, the solid rafters, without any under panelling or boarding, may be seen covered with rough slabs of boarding, having large fissures through which the lead is visible. Great inconvenience is often felt in roofs so constructed, during the autumn and winter months, when, upon sudden alteration of temperature, condensation takes place under the lead, and the drops of water fall in almost a shower. This defeet has been the cause for ceiling many open roofs. A space of two inches left between the inner boarding and the outer covering has been found to be sufficient to obriate this discomfort. Felt (par. 2210d.) is also sometimes used, to assist in remedying the evil.
22110. In Pembrokeshire, slate is used for everything. For posts and rails of the same scantling as if for wood. The walls of buildings are of square blocks, rough casted. A range of stabling might be erected of rough blocks, with the do ir and window-frames of worked slate. A prejudice exists against the use of squared blocks without plastering them, on the gronnd that they admit damp. It was found that if there was the smallest
perforation in the slate, or if, as was often the case from the want of absorption, the joints were not perfectly elose, the damp is driven through. The defect, might, perhaps, be obriated by laying every bloek with the b d slightly inclining outwards.
$22 \mathrm{I} p$. Slai, of slate, sawn, self-faced, and planed are now extensively manutactured at all the large quarries. They are usually in $\frac{1}{2} . \frac{3}{4}, 1,1 \frac{1}{4}, 1 \frac{1}{2}, 1 \frac{3}{4}, 2,2 \frac{1}{2}$, and 3 inch thicknesses. A quarter of an inch is required for each face planed fr,m the rough and they are sanded in addition afterwards. The best quality Bangor slabs ean be o'tained in sizes varying from 4 to 6 feet long, or from 2 to 3 feet wide; and trom 6 to 8 feet long, or from 3 to 3 feet 6 inches wide. The second quality slabs, quarry planed, are under 6 feet long or 3 feet wide.
2211q. The purposes for which slate slabs are now used are multifarious. Amongst them are: cisterns (Plumbery) from $\frac{3}{4}$ inch to 2 inches thick; sinks of inch slate, 4 inches deep inside, either boltel thgether as cisterns, or with flush ends, planed both sides, and screwed; troughs; filters; laths, 2 feet wide, 2 fret high, 4 feet 9 inches at bottom and 5 feet 9 inches at top, all ontside dimensions, of plain slate, sanded iuside, or enamelled self-colour inside, or enamelled Siena marble inside, and so on ; urinal back and divisions, plain or enamelled, fitted with angular earthenware basins, flat back basin, hollow back cradle basin, square basin, or with slate apron only; linings to damp walls; panels of doors; table tops; billiard tables; shelving to dairies and pantries; fitings for wine bins, with permanent or with movable shelves and ledges; steps; and landings.

2211 r. Enamel'ed slate.--Slate, as just shown, has a surface of paint put upon it, for utility as well as appearance. This ean be either plain, or marbles and granites can be represented to great perfection. Several coats of paint are applied, and polishod, and dried in a kiln at a great heat. The Kingston Enamelled Slate Company base their reputation on all their enamel work being imperishable. First, the slate has to be finely surfaced to receive the body colour, after which it is placed in a proper stove and burnt or baked in three times, the process being repeated each time, and rubbed down with pumice het ween eacl, then a coat of enamel is placed thereon; finally, it is subjected to a high polish obtaine! by hanl friction. It is claimed that by this process a near resemblance to marble and granite is gained; that the depth of body of enamel procured renders it imperishable; and that it has an extremely high polish of the surface when fiuished. Cheap work is not lasting.

2211s. Thatching is an admirable covering for securing warmth in winter, and coolness in summer; but it is subject to injury by birds, and to rink from fire. It was much used for ehurches in Norfolk and Suffolk (fig. 701n.). The thateher requires a common stable fork, to toss up the straw together before being made intn bundles; a thatcher's fork, to carry the straw from the heap up to the roof; a thatcher.s rake, to comb down the straw straight and smooth; a linife, or eaves' knife, to cut and trim the straw to a straight line; a kirife to point the trigs; a half glove of leather, to protect the hand when driving in the smaller twigs or spars; a long flat needle; a pair of leathern gaiters to come up above the knees, used when kneeling on the rafters; and a gritstone to sharpen the knives. Wheat straw lasts from 15 to 20 years; and oat straw about 8 years. Reed thatching, as done in the West of England, is the truss after the ears have been cut off, leaving the elean, sound pipe straw, of which a thickness of 3 inches is laid on the common thatching with spurs only. The materials required are straw or reeds, laths, nails, withes and rods. A load of straw, laid on about 12 to 16 inches in thickness, will do a square and a half; a loundle of oak laths, $1 \frac{1}{4}$ inches wide, and from $\frac{1}{4}$ to $\frac{3}{8}$ ths thick, nailed about 8 inches apart, 1 square; a hundred of withes, 3 squares; a pound of rope yarn, 1 square; 100 of rods. 3 squares; and $2 \frac{1}{2}$ hundred of nails, 1 square. The fish-house at Meare, Somersetshire, of about the middle of the 14 th century, still retains its thatched roof. Probably thatched roofs were ornamented by a species of cresting, for in some parts of the country the withes or willow twigs that bind the thatch are sometimes arranged on the tops of ricks and cottages in an interlacing manner, terminating with a spike with a rudely formed cock. Viollet-le-Duc alludes to the custom of forming the ridge in mod, in which plants and grasses were iuserted to prevent the earth being dissolved and washed awiy ly the rain.

Sect. Vil.

I'LUMBERY.

2212. The plumher has but few working toole, for the facility with which the metal in which lie works is wrought does not render a variety necessary. The principal are-a heavg iron hammer, with a short but thick handle. Two or three different sized wooden matets, and a dressing and fatting tool, which is made of beech wood, usually about 18 inches long and $2 \frac{1}{2}$ inches square, planed smooth on one side, and rounded on the other or upper side. It is tapered and rounded at one of its eads for convenient grasping by the workman. Its use is to stretch and flaten the sheet had, and dress it into the shape required for the various purposes whereto it is to be appli.d, by the use of its flat and round sides as wanted. The jack and trying planes similar to those nsed by carpenters, for planing sta aight the edges of their sheet lead when a regular and correct line is recpuisite. They also use a line and roller called a chalk line, for lining out the lead into different widths. Their cutting tools are chisel; and gouges. of different sizes, and cutting knires. The latter are for cutting the sheet lead into strips and pices to the division marked by the chalk line. 'They use also files of different sizes for making cistern heads to pipes, for pumpwork, \&e. For the purposes of soldering, they have a variety of different sized grozim, irous, which are commonly about 12 inches long, tapered at both ends, the handle end being turned guite round to allow of its being held tirmly in the hand whilst in use. The opposite end is spherical, or more usually spindle-shaped, and proportioned to the differint situations for which they are required. The grozing iron is heated to redness when in use. The iron ladles are of three or four sizes, and used for the purpose of melting lead or solder. The plumber's measuring rule is 2 feet long, in three parts, each of 8 inches. Two of the l.gs are of box wood, and the third of steel, wheh is attached to one of the box legs by a pivot whereon it turns, and shuts into the other legs in a growve. The steel leg is useful for passing into places which the plumber has to examine, into which anything thicher would not eacily enter, and it is often used also for removing oxide or other extraneous matter from the surface of the heated metal. The plumber moreover is provided with centre bits of all sizes, and a stock to work them in, for perforating lead or wood where pipis are to be inserted, as well as with compasses, for striking out circular portions of lead Scales and weights are also in constant requisition, as nothing done by the plumber is chargeable till the lead is weighed.
2213. The method most commonly adopted in laying sheet lead for terraces or flats, is to place it on a surface as even as possible, either of boarding or plastering. If boards are employed, they should be sufficiently thick to prevent warping or twisting, which, if it occur soon, causes the lead to erack or to become unsightly. As sheets of lead are not more tlian about 6 feet in width, when the area to be covered with them is large, joints become neeessary, which are contrived in varions ways to prevent the wet from penetrating. To do this, the lest method is that of forming rolls, which are pieces of wood about 2 inches square extending in the direction of the joint, planed and rounded on their upper side. These being fastened under the joints of the lead between the edges of the two sheets which meet together, one is dressed up over the roll on the inside, and the other over both of them on the outside, whereby all entry of the water is prevented. No fastening is required other than the adherence of the lead by close hammering together and down on the flat: indeed, any fastening would be injurious, as by it the lead would not have free play in its expansion and contraction from heat and cold. When rolls are used, the rule shonld be specially enforced of turning the open sides or laps from the soutli-west, west, or south, wherever practicable, so as to ensure the lap from being forced up hy the wind, and thereby the water consequently blown in. If rolls are not employed, which from their projection are in some cases found inconvenient, seams are substituted for them; but they are by no means equal to the roll either for neatness or security. They are formed by merely bending up the two edges of the leat, and then over one another, and then dressing them down close to the flat throughout their length. Though some solder the joints, it is a bad practice, and no good plumber will do it, for the same reason as that just given in respect of fastenings in flats. A lead flut, as well as a gutter, should be laid with a fall to keep it dry. A quarter of an inch in a foot is sufficient inclination for lead, if the shects be 20 feet long, so that in this case they will be 5 inches at one end higher than at the other. This giving a current, as it is called, is usually provided for by the carpenter previous to laying the lead.
2214. Round the extreme edges of flats and gutters where leal is used, are fixed pieces of milled lead which are called flashings. When the lead work is bounded by a wall of
brick or stone work, the flashings are passed on one edge into and between a joint of the work, and the edges of the flat or gutter being bent up, the other edge of the flashing is dressed over it. If there be no joint into which the flashing can be inserted, it is fastened on that side with wall hooks (par. 2211k.). Drips in Hats and gutters are used when the length of the gutter or flat is greater than the length of the sheet of lead, or sometimes for convenience, or to avoid joining lead by soldering it. Some architects place them every 6 or 8 feet, which however good in a box or parallel gutter, it raises an ordinary gutter too much, and canses great width of lead at the head. They are formed by raising one part ahove another, and dressing the lead round, as has been deseribed for rolls. No sheet should be laid in greater length than 10 or 12 feet without a drip, to allow of expansion and contraction. Small cisterns are often sunk in gutters to collect the water before passing off' into the head of the down pipe. The cistern has usually over it a perforated lead rose, to prevent dirt, leaves, \&c. passing down with the water.
221.5. The work of the plomber is estimated by its weight and the time employed in fixing it.
$2215 a$. The thickness of shcet lead varies from 5 to 12 lbs . in weight to the superficial foot, and is used in covering large buildings, in flats or slopes, for gntters, the hips, ridges, and valleys of roofs, the lining of cisterns, \&c. Thus \%lb. lead is commonly used for roofs, flats, and gutters; it is the least thickness in which bossing can be properly done. 8lb lead is a better quality for all these purposes. 6lb. lead is used for hips and ridges; this is the thinnest quality for such purposes. 5lb. lead is used for flashings. It is said that 16 lh . lead was used on the earlier mediæval churches. The following thicknesses, obtained from Hurst, Surteyors' H shellook, may be compared with the Birmingham Wire Gauge given in por. 2954, Sect. x.

Table I. of the Tinceness and Weight of Lead, per Supehficial Fuot.

Thickness or Deeimal of an Inch -	$\stackrel{\frac{1}{16}}{0625}$	$\begin{gathered} \frac{1}{8} \\ \cdot 1_{2} \end{gathered}$	$\begin{array}{\|c\|c} \frac{3}{16} & \frac{1}{4} \\ \cdot 1875 & 25 \end{array}$	$\begin{gathered} \frac{5}{16} \\ -3125 \end{gathered}$	- $3{ }^{\frac{3}{8}} 5$		$\frac{1}{2}$
Pounds - -	3.708	$7 \cdot 417$	11-125 14.833	15.542	$22 \cdot 250$	25.958	29667
Thichness or Derenal of an Inch.	$\begin{gathered} \stackrel{96}{86} .52 \end{gathered}$	$\begin{gathered} \frac{5}{8} \\ \cdot 625 \end{gathered}$	$\begin{array}{\|c\|c} \frac{11}{16} & -\frac{3}{4} \\ -6875 & \cdot \frac{7}{5} \end{array}$	$\begin{gathered} \stackrel{13}{16} \\ .8125 \end{gathered}$	$\begin{gathered} \frac{7}{8} \\ 875 \end{gathered}$	$\begin{gathered} \frac{15}{16} \\ \cdot 9375 \end{gathered}$	luch. 10
P'muds -	$3 \cdot 375$	$37 \cdot 083$	4079244.500	48208	51.917	$55 \cdot 625$	$59: 333$

Table 11. of the Weigit and Thickness of Lead, per Foot Supenficial.

Wrijht in Pounis.	Thickness in inches.	Weight in Puunds.	Thickness in inches.	Wrisht in Pounas.	Thickress i, inuhes.
1	0017	6	0101	11	$0 \cdot 186$
2	0.034	7	0.118	12	0203
3	$0 \cdot 031$	8	$0 \cdot 135$		
4	0 O68	9	$0 \cdot 1.52$		
5	0'0) 5	10	0169		

22156. Lead is generally cast about 7 feet wide and about 33 feet in length, but its width and length depend upon the margin which is cut off after casting, as the scum, Sc., is driven to those parts. This may reduce it about 6 inches in width and 18 to 24 incles in length. Lead is now cast to the above-named weights, and also " bare," according to the directions of the contractor. The arehitect, to do justice to his employer, should carcfully ascertain for himself the weight and size of the sheet of lead from which the piece is cut. It is usually marked or painted upon it. A small piece is not a true test either for weight or gang ', and the edge is sometimes cut on a bias. The best direction is that it should weigh over the weight specified.

2上16. A hundred weight of sheet lead will usually cover on a platform, roof, gutter, \&e. at $4 \mathrm{lbs}=28 \mathrm{ft} . ; 5 \mathrm{lbs} .=22 \mathrm{ft} .5$ ins. $; 6 \mathrm{lhs}=18 \mathrm{ft} .8$ ins. $; 7 \mathrm{lbs}=16 \mathrm{ft} ; 8 \mathrm{lbs}=14 \mathrm{ft}$; $9 \mathrm{lhs}=12 \mathrm{ft} .6 \mathrm{ins}$. ; and $12 \mathrm{lbs} .=9 \mathrm{ft}$. Old lead weighed for recanting has generally a deduction made of 6 lbs. per cwt. for waste, \&c.
2217. Lead is used to fasten iron cramps, posts, and bars into masonry ly filling up the eavities between them. Sheets of thin lead are sometimes placed between the drums of colimms (par. 1925a.), as well as in the bed joints of wrought stone arehes, to distribute
the pressure between the stones. Lead work treated ornamentally for ridges, and hips of roofs, knobs, vanes, \&c., as during the mediæral period, is superseded in the present day by cast and wrought iron, and by zine work. (Builder, 1856, p. 410.) The skill of the plumber is brought to action in, among other things, eaves and other gutters, flashings and valleys, hips to flats or platforms, hatches, windows, and domes; also rainwater pipes, waste and soil pipes, water-closets, baths, cisterns for hot and cold water, basins or laratories, calinet stands, sinks, urinals, pumps, the hydraulic rum, syphon and other traps, \&c. Many of these will be f,und treated herein, and more in detail in Buchan, Plumting, 8vo., 1876. This section includes many articles which should perhaps have come under Bricklayer and Founder, but would have caused repetition.

WATER SUPPLY.

2218. Water is obtaiced by rarious means. The aqueducts of the Romans hare been previously described. In England, the chief means of supply, according to locality, is (1) by pumps from springs and wells; (2) by water companies; and (3) by the hydraulic ram.
2218a. Modern sanitation has put down surface wells in towns and cities. It has been found that the quantity of saline and organic matter in two gallons of water from certain wells in London ranged from 2663 grains to 129.73 ; while that of the New River water had but $17 \cdot 16$ grains. Solid matter in these wells ranged from 50 to 100 grains, and some to 130 . As most of these waters were bright and sparkling, and had a cool and agreeable taste, they were much sought after for drinking purposes; but the coolness and br:skness are dangerous, for they are both derived from organic decty. According to Dr. Letheby, the dead and decomposing matters accumulated in the soil are partially changed by a wonderful power of oxidation, and thus converted into carbonic acid and nitre. This, although frequently drunk without any apparent injury to health, yet the products of such corrnption admitted into the human body must cause insidious mischirf, while, if the impurities of the soil pass unchanged into the water, quick and certain injury must result.
$2218 b$. As the plumber finds and fixes the pumps for the supply of water to a dwelling in some localities, a description of the three sorts commonly used, namely, the lifting, the common, and the force pump, will be here given.

2218c. Fig. 804, is a diagram of a lifting mump. ABCD is a short cylinder submerged in the well or other reservoir, whence the water is to be raised. In this cylinder a valve is placed at x, above which the pipe or tube CE is carried upwards as high as is requisite for the dolivery of the water. In the cylinder AD a water-tight piston, $c d$, moves vertically, being worked by rod or framework, m, n; to this piston is fixed a valve at v, opening upwards. On the descent of the piston the pressure against the water opens the valve v, and the cylinder between the two valves is fil'ed with the water. When the piston is then raised, the water between the valres being pressed upwards against the valve x, opens it, and is driven intn the tube CE, from which, on the renewed descent of the piston, its return is intercepted by the valve x. The water follows the piston in its ascent by the hydrestatic pressure of the water on the reservoir outside the cylinder; and on the next descent of the piston the water will again pars through the valve v, and will be driven through the valre x on its nest ascent. In raising the piston a force is required sufficient to support the entire column of water from the ralve v to the surface of the water in the tube CE. To estimate this, the weight of a column of water is taken, whose base is equal to the area of a section of the piston, and whose height is equal to that of the surface of the water above the valve v in the tube CE. Hence, after each stroke of the pump, the pressure on the piston and the force necessary to raise it will

Fig. 8.4. be increased by the weight of a column of water whose base is the horizontal section of the piston, and its height equal to the increase which the eleration of the column in CE receives from the water driven through the valve x. W IV is the level of the water in the well.

2218d. The common household pump, or, as it is usually called, suction pump (fig. 805.), is nothing more than a large syringe connected with a tube whose lower extremity is planged in the well from which the water is to be raised into the cistern MN, and delivered by its gravity at the nozzle e. The tube SO is called a suction pipe; its end in the well is at 0 , which, for the purpnse of preventing the ascent of solid impurities, that might choke the pipe and impede its action, is pierced with holes like a strainer. At the upper end of this suction pipe is placed the valve x in the flange CD, opening upwards. At this place the tube is connected with another, BC, which
acts as a great syringe, and in which works a piston $c d$, worked by the piston rod ab, having a valve at v, also opening upwards. The piston is worked alternately upwards

Fig. 805. and downwards in common pumps by a lever called the brake, but it may be workod in many ways. In the figure, W is the level of the water. At the commencement of pumping, as soon as the syringe ABCD exbausts the air by the upward and downward action of the piston $c d$, the pressure of the air in SO being diminished and rendered less than that on the surface, the water in the well will rise in SO by the atmospheric pressure. The valve x should on no account be more than 28 feet above the level of the water in the well. The cistern MN at the top is placed for the purpose of affording an unintermittent discharge of the water by holding more than the whole accumulation of water, which is contrived to be greater than the spout or nozzle will discharge.
2218c. The forcing pump (fig. 805a.) is a combination of the common suction and lifting pumps. CEFD is a suction pipe descending into the well, and at its top is the valve V, opening upwards. The pump barrel, ABCD, has a solid piston $c d$, whose rod is $a b$, without any valve. From the side of the barrel, just above the suction ralve V, a curved pipe proceeds, communicating with an upright cylinder or force pipe, GH, carried to such height as the water is intended to be raised. At the bottom of this cylinder is placed the valre V^{\prime}, opening upwar's. At the commencement of working, the suction pipe CDEF and the chamber between the piston and valves are filled with air. When the piston descends to the ralve V , the air enclosed in the latter chamber becomes condensed, and opening, therefire, the valve V^{\prime}, a part of it escapes through it. On raising the piston the air below it becomes partially exhausted, and that in the suction pipe, opening the valve V by its greater pressure, expands into the upper chamber. A part of this is expelled when the piston next descends, by means of the valve V^{\prime}. This

Fig. ${ }^{8} 5$ a. action is similar to that of an air pump or exhausting syringe. When by the repetition of this action the air is sufficiently exhausted, the atmospheric pressure upon the water in the well causes the water to rise there rom through the suction pipe and the valve V, into the chamber between the piston and the valves. When the piston next descends it presses on the surface of the water, and the ralve V closing prevents the return of the water into the suction pipe, while the pressure of the piston, being transmirted by the water to the valve V^{\prime}, of ens 1t, and as the piston descends, the water passes into the force pipe GH, and so on. By repeating the action the quantity of witter in the force pipe increases, receiving equal additions at each descent of the piston. This force pipe may be perpendieular, oblique, or horizontal; for in each case the water will be propelled through it. A column of water suspended 34 feet in height in the force pipe will press on the base of the piston with a foree of about 15 lbs . fur each square inch; and the pressure at other heights will be proportional to this. Thus the force necessary to urge the piston downwards may always be calculated. The ralve V^{\prime} is closed in drawing up the piston, and it then relieves the piston from the weight of the incumbent column. If the valve V is opened, the piston is subject to the same pressure as in the suction pump (fig. 805.), and this is equal to the wright of a column of water raised above the level of the water in the well. When the he ght of the force pipe is equal to the length of the suction pipe, the piston will be pressed upwards and downwards with equal forces; but when the height of the force pipe is greater or less than the length of the suction pipe, the downward pressure must be greater or less, in the same proportion, than the force which draws the piston up.
$2218 f$. The supply of water by the force pipe through the valve V^{\prime} is evidently intermittent. being suspended during the ascent of the piston; hence the flow from the point of discharge will be subject to the same intermission if means be not taken to counteract such effect. A cistern at the top of the force pipe as already shown for the suction pump, would answer the purpose; but it is found more convenient to uss an appratus elled an air vessei (fig. $505 b$.), in which immediately above the valve V^{\prime} a short tube commmicates with it strong close vessel MN, of sufficient capacity, through the top whercof the force pipe GH passes, and descends to near the bottom. When the pump
is in action the water is fo:ced into this air ressel MN, and when its urface, as nt $w w$, rises above the mouth H of the force pipe, the air in the ressel MN is coufined above the water; and as the water is gradually forced in, the air, being conipressed, acts with increased elastic furce on the surface of the water. This pressure forces a columin of water up the pipe $H G$, and maintains it at an elevation proportional to the elastic force of the condensed air. When the air in the ressel MN is reduced to half its original bulk, it will act on the surface of the water $w w$ with double the atmospheric pressure; meanwhile, the water in the force pipe being subject to merely once the atmospheric pressure, there is an umresisted farce upwards equal to the atmospherie pressure which sustains the column of water in the tube, and a column 34 feet high will thus be sustained. It the air is reduced to one-third of its original bulk, the height of the column sustaine 1 will be 68 feet, and so on. If the force pipe G were mado to terminate in a ball pierced with small holes, so as to form a jet d'cau, the elastic pressure of the air on the surface would cause the water to spout from the hol s.

Fig. $805 b$.

2218 g . In the formation of all $\mathrm{p} . \mathrm{mps}$ the parts should be nicely fitter, and as air-tight as possible, otherwise, in using thrm, much of the power employed will be lost. All expedients which tend to this great, desideratum are of value. The joint CD, figs. 805 and 80 a, is especially liable to leak if not well fitted. The rariety of pumps now made is very great, althongh they are all formed on the principles first explained. The architect had best select the manufacturer, and learn of him the make and powers of the article required for the proposed purpose. Nearly one hundred varieties are shown in Messrs. Tylor and Sons' 1llustrated Catalogue for 1885, 14 th edition. They consist of a pumpinc apparatus for fublic thoroughfares, with cast iron cased well-engine frames, with fly wheel and with one or two handles; pillar well-engine frame and single or double cranks; the same with wheel and pinion to decrease labour; rotary action, fised on plink; horse wheel frame, for horse power, and others applied to steam power ; pumps for artesian wells ; lift-pump; ribrating standard lift-pump; and rotary action lift-pump, all on planks, \&e.

2218 h . The Pulsometer is a patent pump, of great service for foundation and sinking work of all kinds, and for general pumping work; skilled attention is stated not to le required, and it will pump thick gritty water. Norton's Abyssinian and artesian tulie welis and pumps are of much service for large and pure water supplies from shallow or deep sources; they are also called driven tube wells.

2218i. The Aqueous Works and Diamond Rock Boring Company, Limited, by their method of using black diamonds (cr carbonate), are able to bore through hard strata, such as granite ; they drive a tube for a well say 25 feet deep ; or to a depth say of 1144 feet, having a bore hole $9 \frac{1}{4}$ inch diameter; or in the case of minerals even to a depth of 1906 feet, as at Battle in Sussex.
$2218 k$. As to water supplied by a company, it will only be needful to refer to the quantity, and to the two systems: I. the ordinary pressure; and II. the non-intermittent or constant supply. A Parliamentary return issued about Midsummer, 1866, states that, the New River Company supply was equal to $209 \cdot 5$ gallons per house per day; or, taking each tenement to hold tive persons, it was equal to 41.9 gatlons per individual per day. I'he daily supply of water to the metropolis in 1865 by all the companies was nearly 93 millions of gallons, or at the rate of rather more than 200 gallons per honse, or over 30 gallons per head. In 1887 the metropolis was supplied by eight companies. The East London supplics a population of $1,180,000$ persons; the New River Company, 1,125,000; the Southwark and Vauxlall, 800,000; the Lambeth, West Middlesex, Grand Junction, and Kent, 500,000 each; and the Chelsea, 260,000 . The daily total supplied is $179,600,000$ gallons, for a population of $5,3 \cdot 0,000$, being an average of rather over 33 gallons per head, and ranging over 725,912 houses.

2218l. It may be useful to note that the non-intermittent system, or constant supply, has been adopted at Manchester, Nottingham, Derly, Durham, Leeds, Dundee, Glasgow, Ipswich, Chatham near Rochester, Wolverhampton, Bristol, \&c. ; the two last are described in Cresy's Encyclopedia of Civil Engincering. At all these places the result appears to be satisfactory in every way, buth to the water compunies and to the consumers. At Hitchin the average daily consumption was 235 gallons per house ; at Croydon, at one time 500 ; Whiteharen, 250 , or 50 per person; York abont 200 ; Exeter, 120 ; while at Bristol, Rugby, Sandgate, and Barnard Castle, the waste was so great the supply became inadequate. Nottingham had only 20 gallons per person, and Durham 20 to 25 . In America, New York has 90 gallons per person ; Buston not less than $5{ }^{5}$. In 1884 it was stated that, taking the daily consumption of water in London at 29 gallons per head, in Paris it was less, while at Berlin it was but 20. At Detroit,

Miehigan, it was 100 ; while at Chicago and Washington it was 119 and 155 gallons respectively.

2219 . The third mode of obtaining a supply of water is by the hydraulic ram. It is more arailable in the country on account of the noise caused by the continual clicking of the valve. It is a simple self-acting machine for raising water into a cistern or tank, where a fall of water can be secured fiom a stream, or other source. Once set in motion, it will continue to work as long as it is supplied with water, or until the wearing of the iron valve disables it. A fall of only 5 feet to the ram will enable it to supply a tank 60 fect higher than the source and 2,000 yards distant. Much of our present information on the subject of supply of water was known to the Romans, and is carefully described by Vitruvius in Book VIII, of his work.

Water Closets.

2220. It is unnecessary to describe at length the machinery of a water closet. The principle on which the usual apparatus is formed is that of a head of water in a cistern placed abore it, which by means of a lever attached to a valve in the cistern allows a body of water to rush down and wash the basin, whose valve, or pan, is opened for the
 discharge of the soil at the same monsent that the water is let down from the cistern (par. 2222a. describes the cistern). Bramah's patent was among the first; Underhay's among the latest, which does away with wires and cranks, the supply pipe being constantly filled with water. The student will obtain by the inspection of a closet a far better notion than words or diagrams will convey. The apparatus of a water closet has also been made self-acting, either by opening the door of the closet, or by lifing or depressing the seat of the apparatus. For the more modern flush clcsets it is generally necessary to pull a chain, which allows a certain quantity of water to flow from the cistern by a valve, or from a water-waste preventer (par. $2223 f$.), into the pan, and so wash out the fuul water.

2220a. Notwithstanding the many forms of water closet apparatus, nearly all of them may be classed under four heads. I. The old pan apparatus (Fig. 806.), where the water is retained in a pan, which is dis-

Fig. 866a. charged on drawing up a handle, into and through a " container," and thence by a short pipe into a trap, called from its shape a D trap. This form was considered to be so objectionable from the occasional deposit in the container, that under par. 69 of the Bye-laws as to New Streets and Buildings, issued by the Local Government Board, "he shall not construct or fix under such pan, basin, or receptacle, any container or any other similar fitting;" and "he shall not construct or fix in or in connection with the water closet apparatus any trap of the kind known as a D trap." The "Banner system" has introduced an ordinary pan closet improved, and also a patent closet with a pan, both without traps.

2220 b . II. The valve apparatus (fig. so6a.), is now generally fixed in the houses of the better classes. On lifting the handle a valve or flap is let down into the pipe, when the soil descends through it at once into a syphon trap. The water is, however, only kept in the basin by the closeress of the fit of the valre and its seating, or bottom of the basin. Any slight corrosion, grit, hair, soapy slops, or paper, not washed through, causes the valve to fail to close properly; the water then escapes, the basin is left in a state unfit for use, and smells arise which the valre is intended to prevent. Hayward Tyler and Co. make valse closets with copper bellows or brass regulators. Adams's improved elastic valre closet, with brass or bellows regulator. Warner's patent ralve closets. Stilder's improved valve closet, with patent orerflow trap
and rentilating junction combined; also his patent Siamese trapless closet; and his patent London side outlet ralve closet. Bamner's Nestor, Elastic, Simplex, Safety, and Twin basin valve closets. Buchan's (Edinburgh) patent sanitary c.oset, "wherely no sewer smell can pass into the room, even when the handle is pulled up. When the closet valve is lifted, the water falls in full volume direct into the soil pipe, pressing all the gas beiore it, and causing a syphonage that sonds the whole contents in one body to the drain. There being no trap under the valve, the soil pipes are scoured and kept clein."
$2220 c$. III. This class comprises the hopper water closet, or flushing basin (fig. 806b), which is simply a basin or pan tinished with a syphon trip at the bottom, without any further apparatus than that which admits the water to flush or wash it out. These pans require the addition of a pail or two of water poured down oceasionally to help the clearing of dirt and paper. They are popular for servants' clusets and for cottage and common use, but require occasional cleaning out. One of the most simple pans is that called by Messrs. Doulton the enamelled

F1g. 0106. stoncware eloset pan, figure D , which, with pan and syphon trap complete, is sold at 3s. 9 d. each. This class includes Adams's hopper pattern closet, with flushing apparatus; Warner's patent cottage basin and trap ; Stidder's household closet ; and others.

2220 d . IV. includes a series of more modern contrivances, invented for the purpose of obviating certain defects in the others. They are called the wash-out basia or closet (fig. 806c.) ; but many still retain the chief defect in the carrying down of the discharge into another receptacle, or trap, below, or at the side, only partially out of sight, and not always with a sufficient flushing power each time it is used, especially where only a small "preventer" is allowed. Among the many paterts of these closet pans, are Bostell's Excelsior; Woodward's Excelsior; Winn's complete sanitary closet; Twyford's National ; Sharpe's patent pan basin; Winns free flushing basin and trap; Woodwaid and Rowley's wash-out closet ; Adams's washout pattern closet, with flushing apparatus; Stidder's Tor-
 rent water closet ; Banner's patent wash-out closet (fig. 80Cc.), \&c.

2220c. The Mcrits and Demerits of Various Kinds of Water Closets in General Use, by D. Emptage, is printed in the Sanitary Record of October 15, 1883, p. 187. The figures abore of these closets are obtained from Dr. Corfield's Laws of Health, 8 ro., 1887.

2220f. A protest has been often made against the continuation of the general mode of fitting up a water closet with a seat, lid, and riser, cr enclosure, which ton often proves to be all fair without but foul within. Probally not one of them when $t \cdot k e n \cdot d o w n$ but would disclose a state of things, as regards cleanliness, as foul as any drain; especially so, when the closet has been used for disposing of bedroom slops in contravention of all orders. The lead safe gathers the orerflow which will occur, as the servant cannot hold up the handle at the same time as she empties the pail; and unless it has a fall to the waste pipe (if there be onc), it lies there to dry up and annoy the house with the foul smell. Otten this waste pipe passes into the trap or into the soil pipe, making matters worse. Hence the admirable arrangement put forward by Doulton and Co., in the Lambeth Combination closet, which bas the basin and trap made in one piece of stoneware decorated, so that the customary riser is unnecessary; it stands on a finished wood or tiled floor; the seat being made to lift up, it forms a slnp sink. The Desideratum closet ; Gildea's closet, are others. Twyford's special water closet basins, which comprise the Unitas, the National patent side outlet closet and trap; while the Alliance front ontlet closet and trip is a rariation of the former one. The Crown sanitary closet basin and trap is a cheap and simple apparatus. The Farnley sanitary closets comprise the Irinal, Unaiversal, National, aud Simplex, cach in one piece, with or without trap and rentilator. Warner's improved London open water closets, combining in an elegant form a water closet, slop sink, and urinal, well trapped abore the floor line. Shanks's patent Tubal and Citizen water closet with hinged seat, \&c. Shanks and Co.'s patent system of combined closets and cisterns, where the closet is in one piece of enamelled stoneware, haring a very large inlet horn made with the closet. On it is seated a single or double valve cistern, having a correspondingly large outlet valve, which from its size gives a tlush compensating for the lack of the usual height, and washes out and replenishes the basin fully. Banner's Holborn combination water closet. All these require an inch-and-aquarter pipe from the cistern, or two gallon syphon cistern or water-waste preventer, for tlushing purposes.

TRAPS.
$2220 g$. Traps to water closet pans consist of the old-fashioned and now condemned \bigcirc trap (fig. 806d.), with its dip pipe near one side of it; the σ trap; and the ∞ or
 syphon trap. These two last are now generally used. Hellyer makes a patent cast lead V dip trap, or "anti-D " trap as it was termed, of about 8 lb . sheet lead. It is as self-cleansing as all syphons, and leaves no corners for lodgment of dirt. This has an air pipe on the top of the "out-go" portion of the trap, which may be a useful addition.

2220 h . The traps themselves must be rentilated to prevent syphonage ; they may be unsealed by the momentum of any discharge passiug through the trap itself, and by the passage of a considerable quantity of water through a pipe with which the trap is connected. The passage of this water causes a momentary vacuum, by means of which the water is sucked out of the trap.

2220i. The question has been raised, why should the water closet be trapped if the soil pipe be kept ventilated and trapped? There must always be some portion of the refuse matter adhering to the inside of the pipe, even if there be good and constant flushing ; henee the advisability of trapping it.

2220;. The importance of good stench traps to drains is not to be overrated. The usual iron bell trap, as supplied to a sink, or let into a parement, is sufficient as long as the bell remains perfect. Tye and Andrews manufacture a good new patent sink trap; Cottam has also a cast iron trap or "effluvium interc ptor." Deard and Dent have patented a cast lead pipe trap of 2 and 4 inches diameter, and claim for it that it is of pure and solid lead, without solder or seam of any kind; as clear inside and out as any pipe made by hydraulic pressure; of a perfectly regular substance throughout; and that, being composed of one metal, it is not subject to expansion, nor liable to be affected by the gases, which tend to destroy the ordinary trap. Jeunings's "Du Bois" drawn lead traps and lends are made by hydraulic pressure, in the same manner as ordinary lead pipes, from $1_{4}^{\frac{1}{4}}$ to $4 \frac{1}{2}$ inches diameter; the inside becomes accessible for cleaning ty a screw tap at the botiom of the bend. All these traps only continue effective as long as water remains either in the cup or at the syphon bend, a fact which is either not known to, or forgotten by, very many housekeepers, who complain of the bad smells from the drains in summer time, or after some days of dry weather. Nany of such syphons are now manufactured for varions purposes in glazed stoneware, which are readily cleaned. Stiff has several "sewer air excluding traps," as the Interceptor trap, and the Weaver ventilating trap. Buchan's patent stoneware drain trap is one of the most useful of the sort. He

Fig. $806 e$. adopted first a trap with a slope down moto the syphon, Lut found that a fall was better; hence the fig. 806e., having a fall of 2 inches for a 4 inch trap, $2 \frac{1}{2}$ inches for 6 inches fully, and 4 inches for 9 inches fully. Doulton and Co.'s safety sanitary trap (Henman's patent, 1885) is for connecting a water closet pan with the soil pipe; no untrapped joint within a building. Adams's special disconnecting traps. Smeaton, Son and Co.'s interceptor trap. Binner's main drain traps, as the K.xcello, and the Cerus. Bolding's air shaift or disconnecting trap, with inlet at top and inlet for easy access to drain for clearing stoppages ; his soil pipe intercepting trap; and his "disconnector" for 6 -inch and 4 -inch stoneware drains. Daries's disconnecting receiver and trap for house drains is stated to gire: i. Thorough disconnection from the sewer. 2. Thorough ventilation f drains. 3. Simplicity in planning house drains. 4. Easy access to drains and traps in case of stoppage. 5. Convenience of fixing in any position, irrespective of sewer. 6. A barrier agaiust rats coming up from the sewer. It is made by J. C. Edwards, of Ruabon.

2220k. Gully traps, for taking off water from vards and from rain-w ter pipas, are provided of soneware as well as of iron. Such as Bolding and Son's simplex gully trap, for various purposes; salt glazed and galvanized iron grates, square and round, some with raking inlets. Bellman's patent gully receives and disconnects one rain-water pipe and three waste pipes; it avoids splashing, rentilates the pipes and drain, forms a gully or drain from a yard or puth, and is easy of access for cleaning out; the ordinary 0 or $\boldsymbol{\omega}$ trap can le used with it, and placed at any angle to meet the drain. Adams's patent street gully and yard traps. Banner's gully trap.

2220l. A scouring trap is a late invention; it appears to possess some adrantages in affording a good scouring wash-out and dip to the drain. Daries's receiver̈, \&c., above described, is for a somewhat similar purpose.

2220 m . When drain traps are left for some time they should be flushed out and left full of fresh water, into which should be placed some ordinary calcium chloride, a byproduct of a chemical process, and rery cheap. This is exceedingly liydroseopic, having a great affinity for water. Thus the traps would remain full of water for any length of time. (Prof. Babcock of Cornell University, U.S.A.)
$2220 n$. A grease trap to catch the melted fat, \&c., from the kitchen sinks, is considered a desirable addition, as it tends to prevent the greaso from passing into and stopping the drain. There are sereral raricties, chiefly of stoneware. Those readily cleaned ont by hand are perhaps the best; buckets, used in some, can scarcely be considered satisfactory. Emptying the usual grease trap is one of those many works in connection with a household that almost amounts to emptying a cesspool, as it is usually left and becomes foul; this trap is to be avoided if possible. It is recommended to be rentilated ($\mathrm{fg} .80{ }^{\circ} \mathrm{c}$.) . The best of the number is the patent of Mr. Farrow, the first one introduced as a special fixture. Hellyer's, Buchan's, Stiff's, Doulton's, with others, are to be procured. One has been derised by Mr. J. Honeyman, architect, consisting of a shallow box encased with cold water, and covered with a movable grating resting about half an inch or more below the level to which the water would rise. The cold water would bo frequently replaced from the service to the sink. The greasy water would adhere to the sides. and be forced up through tha grating for removal, and the box, being in sight, wonld be cleaned out as required. Smeaton, Son \& Co.'s grease trap; Adams's grease trap only ; and his combination grease trap and flush tank; Durrans' patent glazed stoneware guily and fat trap, by J. C. Edwards of Ruabon, is a cast iron box dropping into the water, and removable for cleansing purposes, giving free access to the drain pipe.
22200. The self-cleaning Trough cleset, as Adams's patent, is largely used in schools, factories, barracks, workhouses, and other such institutions where a number of persons are collected or employed. It is automatic, having a Field's self-acting flushing cistern. A bout fire or more closets, or stalls, are formed over the stoneware trongh that communicites with the drain. The trough is also made of iron, and is also arranged to be discharged on land and disposed of by irrigation. These troughs require occasional inspection and good water supply.

2220p. Reference has been made (pars. 1887h. and 1888h.) to flushing requirements. To these may be added, Adams's patent automatic flush tank, "giring an instant start with drop by drop supply"; his patent improved automatic flushing syphon; his syphon cistern for closet, urinal, \&c. ; his flushing valves and penstocks for drains and sewerz; Stidder's patent syphon water flusher; Doulton and Co.'s automatic flush tank; and cthers by Jennings and Co.
2221. Urinals are made of slate for public use, of rarious forms and arrangements. A water supply from a self-acting flushing cistern, holding from 10 to 20 gallons, arranged. for a discharge according to use ; about every quarter of an hour is considered sufficient to free a much frequented urinal from all nuisance. Sometimes water is turned on for a time at several hours of the day. White pottery urinals for private use are of all varieties and shapes. The orerflow pipe supplied to some is not always a desirable addition. Donlton and Co.'s improved urinal and lavatory; Adams's patent lavatory ranges for sehools, \&c.; and urinal and closet erections. Jenning's urinal crections for two or more persons. Stidder's school lavatory and slop sink, as used in the London and other Boarl schools. Mounted laratories for domestic use, by Warner and other manufacturers above mentioned.
2222. The use of Earth closcts as one of the safeguards against smells from sewers has made no headway for large populations, and is beset with practical difficulties. In the Midland and Lancashire towns the pail or tub system has leen much more largely introduced as a substitute for the water closet, and it has, from a landlord's point of view, many attractions. The first cost, as conupared with that of a water closet, is small, and the landlord is, in most towns, relieved afterwards of all future cost and maintenance. Whereas in the case of water closets in cottage property there is undoubtedly great difficulty in keeping them in good working order, especially during frots. There are, however, manyobjections to the pail system, especially that it appears to be it costly appendage to the water-carriage system, inasmuch as the remaining liquid refuse has still to the dealt with by the modern systems of precipitation or irrigation, at practically the same cost as would have been the case if the water-carriage system had been adopted in its entirety by the muncipal authorities.
$2222 a$. The deposits are at once deodorised by a small quantity of coal ashes or carth, which absorbs the ammonia and other fertilising properties, tor removal to the garden or field. It may be considered more serviceable where there is a deficient water supply or a want of proper drainage, and in country, rather than in town, localities. Moule's patent was the first inrented. Morrell's patent cinder sifting ash closet, and Hcap's patent dry closet, are other inventions. 'The carth may, with proper drying, be used
over and over again for years. Ashes, fine and dry, may be used, to oltain which there is the modern nutomatic cinder sifter. They are not considered preferable to the watercarriage system, where obtainable.

Tanks and Filters.

2222b. Having obtained the source of a water-supply, a tank for a collection for a farra, or a cistern for the supply of a house, are requisite. The former may also be required to retain the rain water froin the wood, lead, or zine gutters of the buildings; water from eopper gutters is poisonous. The tank is usually formed of brick or stone bult in centent, and cemented inside, and when of a small size it is domed over, with a man-hole for access. If of large size, iron girders supporting slate or stone slabs will form a fat covering to it. These should be well jointed to prevent dirt falling in. Pain ing the cement with a solution of silicate of putash is said to prevent the soft rain wattr becoming hard in a new tank. Such a sistem as the fullowing would be tound rery serviceable on many farms having c'ay lands.
$2222 c$. In Venice, the rain water is collected from the rcofs and led into the courtyarl, where it undergoes a regular system of filtration $\mathrm{l} \in$ fore it. reaches the tank, whence it is raised by buekets. The coustuction to effect this consists of -I. A water-tight enclosure. II. A well of dry lrickwork in the centre of, III. A wall of sand, filing up the remainder of the enclosure round the well, and serving partially as a reservir, and partially as a filter; care being taken that no water enters the well but what pas-es through the sand. The system is shown in the Allvemeine Bauzeitung for 1836, pl. 556 ; and in the Transactions of the Institute of British Architects, 1842, p. 187.
$2222 d$. Another and more simple method is described in the Building Nows, 1862, p. 127. A large hole is dug about 9 feet deep; the sides are supported by an oakrn framework of a square truncated pyranid, the wide base being turned upwid. A coating of compact clay, 1 foot thick, is applied on the frame with great care, to stop the progress of the roots of plants, as also to prevent the pressure of the water. A large circular stone, partly hollowed out like the bottom of a kettle, is placed therein with the earity upwards, and on this as a foundation a cyliuder of nell baked bricks is constructed, having no insterstices except a number of holes in the bottom row. The large vacant space left between the sides of the pyramid and the cylinder is filled with well seoned sea sand. At the four comers of the pramid a stone trough is placer, covered with a stone lid pierced with holes; they communicate with each other by means of a small channel made of bricks resting on the sand, and the whole is then paved orer. The rain water is led from the roof to these four sink stomes, and, penetrating into the sand through the channels, filters down and passes into the filter itself by the small holes leff, in the bottom row of bricks. These cisterns get filled about five times a year, and the distribution of water is at the rate of about 312 gallons per head.
$2222 e$. The arerage annual rainfall is 31 inches. Where rain water has to be depended upon, at separator has been iuvented by Roberts, which " prevents the first portion of the x:iinfall passing into the storage tank. It cants and stores the water when the roof has been washed by the first rain."
$2222 f$. The Rivers Pollution Cummissioners put the sereral waters derived from rarinus sources in the following order, having regard to their hardness:-I. Rain water (softest). II. Upland surface water. III. Suiface water from cultirated land. IV. Polluted river water. V. Spring water. VI. Deep well water. VII. Shallow well water (hardeet). They consider water at or lelow six degrees of hardness to be soft, and above that number of degrees to le hard.

2222q. Filters are used for purifying water for towns, or purposes for which large quantities are required. They are usnally furmed in England of several layers of saud and gravel, gradually increasing in the volume of its particles in descending; and in the lowest course of gravel perforated tiles are laid, through which the water flows into the reservoirs. The water is supplied on the top, so as to stand at a depth of from 4 to 6 feet over the sand and other filtering media. At the Lambeth Water Works these media c nsist of: I. A layer of sand 3 feet thick. II. A layer of clean sea-shells 6 inches thick. III. Fine gravel 6 inches thick. IV. Coarser gravel 6 inches thick. V. Very coarse screenod and washed ballast 6 inches thick ; and VI. Pierced tiles covering the drains. At the Southwark Water Works the filtering media are rather thicker. At Hull the sand is 2 feet thick, and the gravel 16 inches tuick. At York the sand is 4 feet thiek, and the gravel 4 feet thick. At Paisley the sand is 2 feet thick, and the gravel only 6 inches; but the upper part of the sand is mixed with animal charcoal. Local conditions must regulate the pruportion of these materials, fir the thickness of the sand must be mereised according to the impurity of the water. When the water is at all turbid, it is advisable to make settling reserroirs by the side of the filtering basins, to collect the impurities
in the first instance. The usual yield of filtered water from a basin established under the preceding conditions, is about 80 to 100 gallons per foot superficial per day.
$222 \cdot h$. Dr. Clarke's approved process for softening water is stated to be by adding an equal quantity of lime in solution to the pure lime of the bicarbonate contained in the water. The solution of lime combines with one-half of the carbonic acid and forms chalk, at the same time reducing the bicarbonate to chalk also. Chalk being insoluble, settles to the bottom. The Consumers' Economic Water Softening and Purifying Company (Limited) has been formed for the use of Atkins's patents, to adopt the recommendations of the Royal Commission on the Pollution of Rivers; and though several towns of small or moderate size had carried out those recommendations by adopting one or other of the systems then arailable, it was considered impracticable for any large town to do so. At the Southampton Water Works, the largest works of this sort are now (1888) completed. and many other towns are contemplating the introduction of the system.

2222i. In some places both the chemical and mechanical impurities may be eliminated from water by diviling the tank by a cross wall of a filtering stone. Such a stone will filter about 60 gallons per foot superficial per day. Chemically, this could be effected by cansing the water to pass through a diaphragm or cross wall, composed of two slabs of filtering stone, placed at a small distance from one anotber, and filled in with animal charcoal or with magnetic oxide of iron. The latter material appears to be the best fur such water as is collected from roofs, because it parts with its oxygen with great rapidity to the rain water, and is susceptible of rapid revisification ; it is also cheaper than charcoal. A double wall thus formed ought to pass 100 gallons per foot superficial per day. A few drops of permanganate of potash, put into water tasting and smelling of decaying organic matter, will render it in a few minutes clear and sweet. A small quantity of alum terds to render water very pure, by freeing it from matters held in suspension. Ransome's patent siliceous stone is the best material of the kind ordinarily obtainable in Eng'ar.d. Filters of porous sandstone, as made at Halifax, are recommended as effectire and durable. A paper on the subject of filtration, read at the Institute of British Architects, $18.50-51$, by Mr. G. R. Burnell, and given in the Builder, ix. 404, deserves attention. Housthold filters, whether for occasional use or for a system of domestic filtration of water as it fows from the cistern, is now often a subject of consideration for a tenant and landlord. Among these are Lipscombe's; Maignen's patent Filtre Rapide, with his patent procfss for softening water by means of the patent Anti-calcaire; the patent Porous Carbon Company's material ; Halliday's patent high-pressure self-cleansing filter, which can be attached to the main or supply pupe; the Chamberland-Pasteur filter; Compound charcoal filter; Atkius's patent cistern fiter, a pure charcoal block filter; the Queen, which can be fixed to any tap; the patent Moulded carbon block and louse charcoal thorough self-cleansing rapid water filter; the Grant revolving ball water filter, also attached to the tap on a main or service pipe, and is rapid and self-cleaning ; aud others.

Cistern and Supply for daily use.

2223. The amount of water used varies very much in different communities, but where the allowance is scanty discase of various kinds is enconraged by the absence of attention to the cleanliness of persons and of things, the want of sufficient water to flush the drains, \&ec. About 10 gallons a head per day are required for domestic purposes, including bathing, and about as much more for flushing purposes; the arerage amount required for trade purposes is generally roughly put down at an average of 20 to 30 gallons a head per day. Many towns hare a less supply. Where there are large public baths, or mannfactories requiring much water, or even a large number of animais, 30 gallons or more are required. Rome had probably from about 170 gallons to 300 gallons per head per day, but authorities vary. An imperial gallon per man per day appears to be the allowance on bourd a ressel. In stables, each horse should bo prorided with 16 galons, four of which is consumed with his food. Each four-wheeled carriage takes about 16 gallons. Each two-wheeled carriare about 9 gallons. To wash a paved court or passage, a gallon of water may be provided for each superficial yard. The arailable rainfall from roofs in England is estimuted at 18 inches per annum ; and if the source of supply be only rainf.ull, a tank capable of holding 4 months' collection should be provided. (Hurst, Surveyor,' Handbook.) One cube foot of cistern will hold nearly $6 \frac{2}{4}$ gallons of water; and a cube foot of water weighs 62.321 lbs ; a gallon weighs 10 lbs ; a cylnder inch, 02842 lbs ; and a cylinder foot, $49 \cdot \mathrm{l}$ bs.; 35 cubic feet of water equal 1 ton. The supply for each man, woman, and child in a house is reckoned at 15 gallons per day, though it is considered no one really uses much more than 6 gailons; or about 12 gallons, as calculated by Sir \mathbb{W}. Clay, by a family in London.

2223r. The cistern for a house was originally placed outside, and made entirely of lead, the front of it being frequently decorated with devices, either cast with it, or secured by
paleing, i.e., the soldering on of embossed figures. Lead cisterns are still in use, but they arc cased with wood, and placed were most wanted for the supply. No cistern shonld be put where the sun can act upon it, as regetation in the water sometimes ensues. (1785a).
22233. A cistern is usually made of $1 \frac{1}{4}$ or 2 inch memel fir, lined with 6 lb . lead. A corer should altrays be provided. This metal lining is now much superseded by one of zinc, on account of the deleterious effects arising by the action of pure water on the iead; but zinc can only be trusted as a temporary resource. Slate is a better material for all cullections of water or other liquids in general use. Care must be taken that a porous quality be not supplied; and it should not ke placed where mild damp air will meet it and condense on its cold surface, and so run down in drops. As it is very unyielding to the expansion of ice, its position in the house in that respect is an important consideration, and in case the joints become leaky from that or any other cause. Cisterns are supplied with water by a main service or feed pipe sufficiently large to allow of its filling during the time the water is turned on. The flow of water is regulated by a ball cock. The water supply to each bath, water closet, \&c., is suggested to be controlled by a stopcock of a bore equal to the pipe. Ball cocks to be supplied with a stop cock to each, in case of repair. The cistern to have a proper standing waste for cleansing purposes only, as well as the ordinary half or three-quarter warning pipe, which must be provided, according to some wattr companies' rules. The fig. $615 k$. shows a system of water supply, where c is the cistern in the roof Z, which is often placed orer, but quite separated from, the water closet A. m, water pipe, cased ; y, slop sink, having a tap from the main n. X, flushing tank; the cistern c, in B, also supplies the syphon flushing cistern in the servants' water closet d. The dotied line o shows the line of water pipe from the cisteru c in the garden, supplying the kitchen boiler.

2223 c. The eistern to supply a water closet should properly be distinct from that for domestic purposes; and when the furmer is placel in a confined spot, necessitating small-

Fig. scff. ness of dimensions, one of an upright form is essential to provide the head of water for flushing the basin, Fig. $806 f$. shows an apparatus fitted to a lead cistern for supplying water

Fig. 8.7.

Fig. 80: a.
ball valse pulled down by the wire B , and thus lifting, by the wire C , the ralre D , which admits the water into the lead serrice-box E , soldered into the Lottom, F , of the cistern. The air-pipe G lets out the air from the box forced into it by the pressure of the water rushing through the down pipe 1 . A waste pipe for emptying the cistern, or for carrying off the surplus water when being orer filled, must always be provided. When a cistern supplies the house, a service pipe is required fiom it, the outlet haring a rose. For a slate cistern, a brass flange (fig. 807.), fitted with screws and nuts, is soldered to the lead service-box, and then secured to the slate. A " round closet ralve with union, fly-nut," and air-pipe (fig. 807a.) is oceasionally used in lieu of the above contrivances; or a spindle valve with union, fly-nut and air-pipe.
$2223 d$. Iron tanks and cisterns made of plate iron riveted, plain or galvanized, are foreacd to any shape or size; as also of a small size in stoneware. A question has arisen as to zine and zinc-oated iron fur eisterns. Soft water, such as rain water, dissolves zine more easily than hard water. Water containing earbonic acid is specially able to dissolve it. The French Government have prohibited the use of galvanized iron tanks on board men-of-war. Professor IIeatol analysed spring water, with a further analysis after it had passed through half a mile of galvanized iron pipe, and found it had taken up 641 grains of zinc carbonate per gallon. 1ir. Venable states that where spring water passed through 200 yards of such pipes it tork up 429 grains of zine carbonate per gallon (John Smeaton). To stop leaks in iron cisterus, mix litharge and red lead; if to diy quickly, gold size mixed with boiled linseed oil. Extra hard carriage rarnish is useful for inside purposes only, well rubbed into the crack.
$2223 e$. With the constant supply system, now being generally introduced, serrice cisterns are said to be unnecess rry; but it will be advisable to have one, and especially near
any office requiring a gool supply of water, as the service is occasionally ent off for two or three days during repairs or cleaning of the mains. Some lower-class houses are said to have a 6 -inch zinc-lined trugh insteal of the usual cistern; hence frequent stoppage of drains occur from want of flushing power, as depth of water is essential for it.

Water-waste Preventer.

$2223 f$. In some towns the water company insists upon a small cistern being placed in the water closet, or to a urinal, to prevent waste of water, as it is stated. There are various patents, worked by a syphon or other action. They are each regulated for a supply or flush of about a couple of gallons of water at a time. Such are Purnell's syphon ; Winu's Acme ; the Pcckham (No. 2) improved pmeumatic syphon cistern for fixing in a cistern, his no valves, rubbers, washers, \&c., the action is noiseless, and the connection is by an air pipe of $\frac{1}{16}$ inch bore, worked by a push knob; the Invicta; the Pecrless; the Syphon; the Double valve; the York; Trott's patent; Crapper's syphon; Bolding and Sou's syphon, their Simplex after-flush, which is not syphon action, is a simple apparatus; the registered double syphon; Tylor and Sons' improved patent model wastc-not cistorn valve, for fixing in a cistern under water; Smeaton's new water-waste preventing ralve; Humpherson's syphon cistern; Bean's direct-acting valveless cistern; Bostell's cistern. Most of the patents are noisy in action, and all are of questionable utility fur the purpose, often getting out of order and wasting water rather than preserving it, besides preventing that useful flush of water which aids in keeping the drains clear.

Pipes.

.2223g. The pipes used for the purposes of building are proportioned to their uses. Those, for instance, called soil pipes, for carrying away the soil from a water closet, or those for cunreying water from roofs, called rain-water pipes, and thoso occasionally from sinks, are, of course, of larger diameter than those called scrvice pipes, which are merely, as their name implies, for laying on water to a house, those of somewhat larger diameter being called main servicc or supply pipes: the serrice pass from the mains to the cistern.
2223%. From the cisterns pipes are required to convey the water to the sereral places it is des ined to supply. Those of lead are either cast round or soldered. In casting, a mould is made of briss, wherein down the middle a core of iron is loosely supported, at such a distance from the mould all round as is equal to the contemplated thickness of the pipe. When this is set the core is remored, and the cylinder opened so as to withdraw the pipe, which is much thicker than is needed, and must be lengthened, while its substance is reduced, by drawing it through a succession of holes in steel plates, diminishing gradually in diameter, similarly to the method employed in drawing iron rods. This machinery became gradually improved in its construction, so that it was of rare occurrence to meet with an imperfect pipe. Lately the manufacture of lead pipes has been further improvel by casting them under hydraulic power. A quantity of lead is placed in a box, and forced through the mould at a certain rate, which gives the metal time to cool, so that it is pressed out gradually in a complete state, and wound round a wheel ready fur use, its length beng made within the limits of carriage. When pipes are made ly soldering, a core of wood is provided, round which the sheet lead is rolled, and the edges are bronght together and joined with solder. A solid drawn lead pipe with a distinct inside lining of block $\tan \frac{1}{18}$ th of an inch thick was made, but it was found expensive, and the labour involved in fixing it prevented its ready adoption; also a solid drawn square or rectangular fall pipe; both by Hanson, Dale \& Co., of Huddersineh. Hellyer has made a square drawn lead pipe for outside of houses. Glass lined pipes are later. Glas pipes for conveying distilled water are used in laboratories.

2223i. Cuncussion in water pipes is caused by the weight of water being shut off and stopped in its flow while turning off the end tip suddenly. If it be turned slowly this does not take place. The noise may be obviated by continuing the pipe (or a smaller one) over the tap, and inserting the end into the pipe. Either the water rebounds into the supply or the curred piece of pipe contains air, which serves as a buffer. The same arrangement answers for gas pipes where the last jet sometimes has a quivering flame; or the pipe (in either case) can be carried into anothe pipe near to it, so as to obtain a circuit.

Soil Iipes.

2223\%. The most important point in connection with the water closet is the soil pipe. Great care is necessary in fixing it. It should be hung on tack: of lead at least one pound heavier than that from which the pipe is made, at least nine inches long, to take three courses of brieks, and three tacks to each ten feet length of soil
pipe. Often in the course of three or four years the soil pipes start crawling down, owing to the fixings being scamped. It should not be nailed tou clescly. Pipes tron slop sinks are often branched into the soil pipe, and require the same treatment, also care to prevent syphonage, Its trip should the as close to the fixture as possible, so as to avoid a length of pipe, which might become fink on the near side of the trap, and so become a nuisance of itself. Banuer's soil pipe traps are either for the soil pipe at the end, or the soil pipe in the centre, each trap having a fresh
 air or rain-water pipe inlet, and an inspection hoie. Doulton and Co. manufacture vertical soil pipes, or patent safety house drainage pipes,

B

being left open; a syrton trap under the fixture is usef..l,
though not often put A 2 or $2 \frac{1}{2}$ inch lead pipe may not be found too large. Sufes are provided under the old water closet apparatus, and under a lath, for which 4 lb . lead is enough. The waste pipes from these should also be carried outside, the end provided with a mica or brass flap valve to prevent an in-lraught.

2223 m . The fresh air inlet pipe is consideret by many as preferable if kept smaller than the rentilating pipe. The soil pipe, if it have considerable fall, must have a provision made fur the partial vacuum which the column of water in descending tends to create causing syphonage of the traps. This pipe being open at the top is not sufficient to remedy the evil; a separate vertical ventilating pipe is the only effectual remedy, into which, from all the horizontal branches, are secured rentilating branches. This vertical pipe may be about 3 inches in diameter, with 2 inch or $2 \frac{1}{2}$ inch branches at least, carried from the soil pipe into the other vertical pipe. The fig. 807c. shows how the trap under a water closet may be rentilated, where closets are placed one ahore another to prevent syphonge. A is the soil pipe; B the ventilating pipe, or ventilating pipe from the grease or other trap; and P , ventilating pipe from branch pipe to soil pipe. The separate air shaft to the \bar{O} trap might perlaps be better dispensed with by carrying the small pipe through the wall to the open air, and using a mica valve; thus fresh air would be constantly brought in. Mica valves are considered by some to decay. (E. T. Hall.)
$2223 n$. Solder is a mixture of two parts of lead with one part of tin. In soldering, portions of the lead must first be scraped, and when finished they are then done over with a black paint. This solder is used also for tin plates and zinc work. There is a new process for connecting lead pipes without solder, called a cold metal double cone machanical lead pipe joint. By means of a small piece of a double coned full-bore tube, assisted by a tubular hexagonal-headed screw and nut, the joint is firmly and securely made, and easily taken apart when required. A new system of jointing, which is readily applicable to every kind of joint required for lead pipes, is adopted at Manchester, whereby the joints are not merely soldered, but welded. A lining pipe is used somewhat similar to the above mentioned process. A clean bore is obtained, no lodgment of solcer inside, and a sightly external finish instead of the ugly bulb by the common method, Stidder fatents a closet arm joint with india-rubber cones.
22230. Table I. of tie Weight of Luad Pipes per Foot Lineal, as now usuali, Made.

Dore in Inches.	Thickness of metal in parts of an inch. [Hurst.					
	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{3}{1}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$
$\frac{3}{16}$ lus.	$\cdot 243$	-607	$1 \cdot 092$	1699	$2 \cdot 427$	3277
$\frac{1}{4}$ ",	-303	$\cdot 728$	$1 \cdot 273$	1942	$2 \cdot 730$	$3 \cdot 641$
¢ ${ }^{\text {¢ }}$	-364	-850	1456	$2 \cdot 184$	3.034	4004
$\frac{3}{8}$,	-425	-971	16.38	$2 \cdot 427$	$3 \cdot 337$	4369
$\frac{7}{16}$,	-485	1.092	1.820	$2 \cdot 670$	$3 \cdot 640$	4.733
16 $\frac{1}{2}$	-546	1.214	$2 \cdot 013$	2913	$39+4$	5.097
$\frac{9}{16}$,	-607	$1 \cdot 335$	2.184	$3 \cdot 155$	$4 \cdot 248$	5460
${ }^{\frac{5}{8}}$ "	-667	1520	$2 \cdot 366$	3.398	4.551	5.825
$\frac{12}{16}$,	-728	1.578	$2 \cdot 548$	$3 \cdot 641$	$4 \cdot 853$	6.189
	-789	1.699	$2 \cdot 731$	3.873	5157	6.5 .53
$\frac{13}{16}$,	-851	1.820	2.913	$4 \cdot 126$	$5 \cdot 461$	6917
$\frac{7}{8}$ ",	-910	1.942	3095	$4 \cdot 368$	5764	$7 \cdot 281$
$\frac{15}{16}$,	$\cdot 971$	2063	$3 \cdot 276$	$4 \cdot 611$	$6 \cdot(1) 7$	$7 \cdot 646$
1 "	1.032	$2 \cdot 184$	$3 \cdot 457$	$4 \cdot 8.9$	6.371	$8 \cdot 009$
$1 \frac{1}{4}$ ",	$1 \cdot 27 \pm$	$2 \cdot 670$	$4 \cdot 186$	6.825	$7 \cdot 585$	$9 \cdot 466$
$1 \frac{1}{2}$	1.517	$3 \cdot 155$	$4 \cdot 915$	6.796	8.796	$10 \cdot 923$
. $1 \frac{3}{4}$ "	1.760	3641	$5 \cdot 642$	7.768	$10 \cdot 013$	$12 \cdot 375$
2 "	$2 \cdot 001$	$4 \cdot 127$	6.372	$8 \cdot 73$ t	$11 \cdot 223$	18.833
$2 \frac{1}{4}$ ",	$2 \cdot 245$	$4 \cdot 607$	7096	$9 \cdot 707$	12.436	15290
$2 \frac{1}{3}$ "	$2 \cdot 499$	$5 \cdot 100$	$7 \cdot 8: 9$	10683	13654	16.762
$2 \frac{3}{4}$ ",	$2 \cdot 7 \cdot 9$	5.583	8.554	$11 \cdot 650$	14869	18.204
3 "	2.971	6.066	9.286	$12 \cdot 492$	16.080	19660

Table II, of the Weight of Lead Pipes in their Lengtrs, as variously Cast.

Bore in Inches.	Length in feet.	Weight of length in pounds of various makers.										
		Common. Per foot.			Middling. Per foot.				Strong. Per foot			
$\frac{1}{2}$	15	15	16	1.07	17			0	22		26	0
$\frac{5}{8}$	15	17	-		20		-	-	24			
$\frac{3}{4}$	15	24	24	$1 \cdot 6$	28	27	28	1.8	32	30	30	$2 \cdot 0$
1	15	30	30	$2 \cdot 0$	42		40	26	50	46	42	$2 \cdot 8$
$1 \frac{1}{4}$	12	36	36	3.0	42		44	3.7	52		53	$4 \cdot 4$
$1 \frac{1}{3}$	12	48	48	$4 \cdot 0$	56		56	4.7	64	70	66	$5 \cdot 6$
$1{ }^{\frac{3}{4}}$	12	76	-	-	84		\bigcirc	-	96			
2	10	50	56	$5 \cdot 0$			70	$6 \cdot 0$			83	$7 \cdot 0$
$2 \frac{1}{2}$	10	-	70	7.0			86	$8 \cdot 6$			100	10.0

2223p. Earthenware pipes, like iron mains, are employed underground. At the beginning of this century, machinery was invented for forming stone pipes, which were used for some time, but did not supersede those in use formed of timber. Near Lincoln have been found circular earthe ware tiles, 6 inches diameter and 22 inches long, set in a thick casing of cement, so as to exclude air entirely, and to strengthen and protect the piping, which conseyed the water for about a mile and a half. It is always necessary to have some outlets for letting off the air which accumulates in any length of such tubing. When water is first allowed to enter a long length of new piping, a quantity of very fine sand or dust should be put into it to fill up any cracks or spaces left in the joints. This is also recommended to be done for new iron boilers, iron water tanks, \&c., as it tends to make the joints watertight. A well-made stoneware pipe of 4 inches diameter will bear a pressure of from 75 to 100 lbs . per square inch.

2223q. Iron water pipes for the service of a house are objectionable in case of their bursting in winter, but this is remedied by placing a stop-cock at the entrance of the pipe
into a house, to shut off the supply for repairs, or in anticipation of a frost. Some wrought iron pipes are lined and coatrd with hydritulic mortar ; others are enamelled in the interior. These latter have been found, buth for gas and water purposes, absolutely incorrodible; in the former case preventing the great loss from leakage, and in the latter case convejing the water in perfect purity. Fur a high service hot water supply, a galranized wrought iron hot water cistern, with man hole screwed down, is supplied. It is usually 2 feet 6 inches long, 2 fett wide, and 18 inches deep. Cast iron pipes are naturally rery porous; so much so, that water when very forcibly compressed, as ly an hydraulic maehine, will make its way through the thick cast iron eylinder in a sort of perspiration on the exter al surface. Oxidation, to a certain extent, will close the pores of the metal, and prevert this escape of water or of gas; and it is recommended that all new gas pipes be provel with a solntion of sal ammoniac, whieh being forced into the body of the metal effectually oxidises it, and to a great extent eures the evil. Patent welded wrought iron tubes and fittings, and malleable iron fittings, are made for gas, or low pressure steam, and cast irun pipos for water, of from $\frac{1}{8}$ to 4 inch bores: such pipes are also made for high pressure steam or water, and proved to a pressure of 200 lbs . per square inch. The ordinary gas pipe is proved to 75 lbs . on the square inch.

2223r. Gutta Percha. On account of the injurious effects of water on lead cisterns and piping, this material has been recommended as a substitute for it in loth cases, since its general introduction about 1849. But it is uncertain whether the material can be guaranteed as a lining; and some soils appear to affect it when buried underground. It is alss attaeked by a fungus. Experiments made at the Birmingham Water Works, on the strength of gutta percha, showed, that tubes made $\frac{3}{4}$ inch diameter and $\frac{1}{8}$ inch thick, attached to the iron main, and subjected for two months to a pressure of 200 feet head of water, were not in the slightest degree deteriorated. They were afterwards subjected to a proof of 337 lbs. per square inch. The material being slightly elastic, the tubes expanded, but recovered their former size on the pressure being withdrawn. At Stirling, $1 \frac{1}{2}$ inch tuling lore a pressure of about 450 feet, without the slightest injury, whilst the same pressure upon strong leather hose scattered the rivets in all directions. A vulcanistd fibre is a new sulstitute for leather, rubber, gutta percha, \&c., for packing hot or culd water taps, valves, washers, \&c.

2223s. Pipes to cisterns are supplied with ball cocks and valres, both romd way and square way, of various forms and sizes, too numerous to be here described. The " Brockley "patent ball valve, of Wood Brothers of Brockley, is an improvement consisting of the usual ball turning on a pirot fixed to the serew. "The spherical form of the seating, and the eup into which it works, have been designed to prevent the collection of gric. The rubber envelope at the end of the seating fitting intu the opening thrungh which the water flows is specially made, and is durable as there is no cutting edge to destioy it; they only require to be stretched on." For sinks, or the usual supply taps, bib-eocks having a "T key," or a "spanner" or other key, are required; these are of different makes, and often produce a recoil. "Screw-downs" or "ralves" are used where the high pressure system is adopted, the " T key" then screws down the valve. A "stop-coek" or "valve" is used to shut off the water in a length of pipe, as the service from the main pipo, as above noticed, and likewise for reducing the pressure of the water on the "serewdown " valves in a constant service. This system is described in Cresy, Encyclopadia, pages 1655-57. Stidder's patent hydraulic ball valve is intended to resist the highest possible pressure; the greater the pressure the more secure from leakage.

2223t. Lavatories are fitted up with an apparatus for supplying the basin with hot and cold water, and for taking off the waste. Baths are supplied from a boiler either placed at the back of a kitchen range, or set in the fireplace of the bath room, or of an adjoining chamber. They are also heated by a gas boiler called "Geiser," or other name, fixed close to or on the bath, having a flow and return pipe; or by ranges of lights uuder the bath itself. A five-feet bath is said to be heated to 100° in half an hour by gas, at a small cost. A bath gencrally contains about 60 gallons of water, and requires about 20 gallons of boiling water to heat it. Ewart's lightning geyser gives a hot bath in five minutes. Shanks's new instantaneous gas water heater. Doulton and Co.'s Lambeth putent water heater.
$2223 u$. The bath itself is sometimes formed of marble, east iron enamelled, opalized glass, glazed earthenware, and glazed po celain tiles (Rufford's), the weight of which is 7 ewt. The Farnley poreclain bath, of fireclay and enamelled, is reduced in weight to $4 \frac{1}{2} \mathrm{cwt}$. ; they are made of four shapes, from 60 inches to 74 inches in length. Zine, lead, copper, galranized irou, and slato all require a conting of light-coloured paint, so as to render oasily appareut any want of purity of the water. A patent stamped tinned steel bath is desigaed to obriate the disadrantages of cast iron; it does not chill the water,
and is light and durable. If not painted, all metal baths require considerable friction to appear clean. The difficulty of making a bath with joints that shall not leak is self-evident. Tylor's pattern-book gives several descriptions of their baths (par. 2228a.). Shanks and Co. have approved baths and fittings.
$2223 v$. With water raised to a high level geat power is gained for rarious purposes, domestic and otherwise. The hydraulic lift, lately introduced into banks and hotels, is the saving of nuch trouble and time. The general details for hotels were deseribed by J. Whicheord, in a paper read at the Institute of British Architects, in 1864. Waygood and Co. are manufacturers of the more modern lifts, cranes, and hoisting machinery of all deseriptions by hydraulic and hand power. The American Elevator Company are makers of the "Standard" hydraulie elevators fixed in varions public edifices, hotels, \&c. A small lift, to be worked by hand, is readily arranged fur raising a scutcle of coals, ov other package, from the bottom to the top of a building. Other manufacturers are Clark, Bunnett and Co. ; the Hydraulic Engineering Company, Limited (of Chester); Goddard and Stewart; S. Chatwood, 1878, balaneed hydraulic lifts; and Attwood and Cu.'s lifts and hoists for goods and passengers, worked by gas, steam, hydraulic, or hand : makers of the ABC self-sustanning lifu for houses, clubs, \&c. Water applied to a turbine is capable of producing a small motive power, useful for organ blowing, turning a fan to effect ventilation, and other such purposes, without wasting the water so euployed.
$2223 w$. It will be useful to note the non-compressibility of water. It is often necessary, before re-melting cast iron, to reduce the large masses into smaller pieces. This by the ordinary methor is both troublesome and difficult. A simple and ingenious mode of producing the required fracture has been recently employed in France. It consists in drilling a hole in the mass of cast iron for about one-third of its thickness, and filling the hole with water, then closing it with a steel plug, fitting very accurately, and letting the ram of a pile-driver fall on the plug. The first blow separates the cast iron into two pieces.

COPPER

2424 . Many of the uses to which copper is put have already been noticed in the paragrapis 1787 to 1791 . The nave of Chartres Cathedral was roofed in 1836-41 with iron ribs eovered with copper plates; in 1853 the latter had so much oxidised as to require remoral. It is said that if strips of the best zine, about 8 inches by 2 inches, be serewed on cach course of copper, gatranic action would prevent the oxidation of the latter material. Iron cramps encased and brazed in copper, or gun-metal cramps, in lieu of iron merely, the exfoliation of which bursts and demolishes stonework, is a precaution now generally adopted in good work. In the Indies, copper gutters decay after twenty years' use, mot, lasting longer than shingles, the heat and moisture of the climate converting the metal into red oxide of copper; iron nails decay there very fast from the same cause.
$222 \pm a$.
Table I. of Thichness of Cupper Sheets

Number of wire gauge Weight of one toot super. in pounds - $\}$	$\begin{gathered} 1 \\ 1+5 \end{gathered}$	2 139	$\begin{gathered} 3 \\ 1275 \end{gathered}$	$\begin{gathered} 4 \\ 11 \cdot 6 \end{gathered}$	$\begin{gathered} 5 \\ 10 \cdot 1 \end{gathered}$	$9 \cdot 4$	7 8.7	79	9 7 7	$\begin{aligned} & 10 \\ & 65 \end{aligned}$
Number of wire gauge Weight of one foot ? super. in pounds - J	11 $5 \cdot 8$	12 $5 \cdot 08$	$\begin{gathered} 13 \\ 4 \cdot 34 \end{gathered}$	14 $3 \cdot 6$	15 $3 \cdot 27$	16 2.9	17 $2 \cdot 62$	18 $2 \cdot 15$	19 197	20 178
Number of wire gauge Weight of one foot) super. in pounds - S	21 $1 \cdot 62$	22 145	23 $1 \cdot 3$	24 $1 / 16$	25 1.04	26 0.92	27 083	28 0.74	$\begin{gathered} 29 \\ 064 \\ \text { Moles } \end{gathered}$	30 0.58 ortl.

No. 1 is equal to $\frac{5}{16}$ the of an inch thick; No. $4=\frac{1}{4} ;$ No. $7=\frac{3}{16}$; No. $11=\frac{1}{8} ;$ No. $16=\frac{2}{10}$; and No. $22=\frac{1}{32}$. Nos. 22 to 28 , or 18 to 12 onnces per foot superficial, were used furmerly fur gutters. As the plates of copper are made of a uniform size, 4 feet lung hy 2 fect wide, the weight det ermines the thickness: thus, 70 lb . plates are $\frac{3}{10}$ ths thick ; $46 \frac{1}{2} \mathrm{lbs}=$ $\frac{1}{8} ; 23 \mathrm{lbs}=\frac{1}{16} ; 11 \frac{1}{2} \mathrm{lbs}=\frac{1}{32} ; 6 \mathrm{lbs} .=\frac{1}{6 \frac{1}{4}}$ of an inch.

2224l. Table II. of the Weight of a tineal Foot of Round and Square Copper, in I'oulids.

- The table given in Hurst's Handbook, page 82, is a slight increase on the above; from that work, page 85 , the following table has been derived.

2224c. Table III. of the Weight of Copper, per superficial Fogt, in Pounde.

Thicknss -	$\frac{1}{16}$	$\frac{1}{8}$	3 18	$\frac{1}{4}$	$\frac{5}{16}$	${ }^{\frac{3}{8}}$	7	2
Weight - - -	$2 \cdot 891$	5.781	8.672	11.563	14.453	$17 \cdot 344$	20-234	23.125
Thickness - -	$\frac{9}{16}$	$\frac{5}{8}$	117	$\frac{3}{4}$	$\frac{13}{16}$	${ }_{8}^{7}$	语	1
Weight - - - .	26.016	28.906	31-797	$34 \cdot 688$	37.578	$40 \cdot 469$	43359	46.250

2224d. Solder for copper, iron, and brass, is composed of an alloy of zinc and copper ; for pewter an alloy of tin, lead, and bismutb. Copper is a metal too soft to use very much in decoration, but it goes well with brass, in inlay, incrustation, or bands. A timed copper bowl where the ground is cut away snd the pattern left is a good example of work.

2224e. Wetterstedt's patent metal shnuld be laid by a good plumber. The flats are formed with rolls and drips similar in every respeet to lead, but the latter should be formed with a gradual descent. The rolls need not le more than 1 to $1 \frac{1}{4}$ inch diameter, tapered at the ends, and brought close up to the edge of the drip. Circular and sloping roofs may he laid either with rolls or welts. the ends of the sheets being joined by a welt or overlap of 6 inches. The metal should be laid free, and nails avoided as much as possille, but if used they should be of wrought copper. Soldering is to be avoided, but to secure the metal as against an upright face, a solder dot over a screw is the best means to adopt.

22थ4f. Muntz's metal is used as a coating for iron vessels under water; to prevent galvanic aetion a band of vitreous sheathing is attached for some distance below and above the water line. This sheathing consists of small plates of iron covered with a preparation of glass, and is intended to be an anti-fouling as well as a protective agent.

ZINC.

2224 g . The common sheets in general use are $12,14,16,18$, and 20 ounces to the fout superficial; and as 18 thicknesses of 16 ounces to the foot are lalf an inch thick, the following show the thicknesses of the different weights:-

Plates or sheets of 10 ounces to the foot are 0.01736 inch thick.

12	-	0.02083	$"$
14	-	0.02430	$"$
16	-	0.02777	$"={ }_{36}^{?}$ of an inch.
18	-	0.03125	$"$
20	$0.0: 3472$	$"$	

It is employed for water-cisterns and baths, rain-water pipes-in short, for almost all purposes where lead has been hitherto employed. Latterly it has been formed into sashbars for skylights and ornamental sashes; for which purposes, strength exeepted, it is superior to iron, as not being liable to rust, and loosen the putty and glass. It is, in every respect, equal to copper, and not more than one-third the cost of it. The discovery of the electro process was said to have introduced the application of zinc to cast and wrought iron, so as to prevent its oxidation or rust, but such has not been the case (see galvanized and zinked Iron).

2224h. Ahout 186I, the Vieille Montagne Zinc Mining Company took steps to improve the mode of laying zine roofs, and to prevent the use of thin ganges of sineet zine, which are unfit for the purpose. This Company recommend that for roofs and flats on boards no gavge thinner than No. 13 be used : a medium thickness, No. 14, for roofs, fats, and gratters: for best work and for roofs withont boards, Nos 15 or 16. The Company is Ireparing thicker zinc, Nos. 17 and 18, principally for gutters. Steel cut gauges notched for roohng numbers only, are supplied whereby to test the thickness. The weinht of No. 13 gauge is 19 oz . 10 drs. ; No. $1+$ is 21 oz. 13 drs; No. 15 is 24 oz ; and No. 16 is 26 oz 3 drs ., per square foot.

2224i. Good zinc, properly laid, has been proved by long experience in France, Felgimm, Germany, and laly, to be a secure, durable, and economical covering. No detrimentel efficets from any particular climate are to be feared, so that care be taken to acopt the proper mode of laying, and to select the proper gauges, of the best quality of zinc. Even good zinc badly laid will prove a failure. Screws or embossed holes on the surface of good zine work are not required. As the prescribed mode for laying zinc, illustrated by diagrams, can be obtained on application to the agents of Devaux's Vieille Montagne Zinc Company, and to the agents for the supply of the lmproved roofing zinc, we do not consider it necessary to describe it here in detail.

2224k. Stamped ornumental zine, for dormers, Mansard roofs, vanes, finials, moulding, and enrichments, has been used on the Continent for many years with good effect. In London it is hardly known, but has been employed lately at the Charing Cross Hotel; at the Langham Hotel; and at No. 114 Piceadilly. I'he steeple of Ripple Chureh, Kent; the Victoria Railway Station, Pinnlico; and many other public and private buildings throughout the kingdom, now show the employment of this useful material.

2224l. Perforated zinc for various sizes of perforations or in patterns, is extensively em. ployed in filling up squares in sashes, or panels in partitions, to assist ventilation by breaking the force of the current of air.

Zinc has been noticed in paragraphs 1792 to 1797.

BRASS.

2224 m . Brass is a metal which has been adopted very widely in the last thirty years, in art progress, for the decoration of public buildings, churches, and houses. The feeling of softuess, which the special smootbness and polish of brass calls for in design, roquires much study ; the rounded contours, with great delicacy in the cutves, and fine detail, some of it almust imperceptible, is what the skilled turner knows how to give to the work. Candlesticks, chandeliers, dishes, fire-irons, fenders, dcs s, balustrades in sereens to ehoirs and chapels, as in Belgium and Holland (the last havinc a very ich and Lcautiful effect); fonts, desk rails. lecterns, sepulchral brasses, arrangements for lighting, are among the many purposes for which this material is employed. Inferior brass turns nearly black by the smoke of town and chemical vapours, but good brass only requires moderate care to keep it louking well.

Table of the Weight of a superficlal Foot of a Plate of Brass, in Puends. (Molesworth, Formula.)

This material has been described in paragraph 1790.

Sect. VIII.

GLAZING.

2225. Glazing, or the business of the glazier, consists in fitting glass in sashes, frames, and casements, either in putty or lad. It may be classed under the heads of sasinork, meadwork, and fretwork. Glass, as a material, has been already described in Chap. II. Sect. XII. of this book.
2226. The tools necessary for sAshwork are-a diamond, polished to a cutting point, and set in brass in an iron socket, to receive a wooden handle, by which it is held in a cutting direction. The top of the handle goes between the root of the forefinger and middle finger, and the under part between the point of the forefinger and thumb. In general, there is a notch ou the side of the socket, which should be held next the lath. Some diamonds have more cuts than one. Plough diamonds have a square nut on the end of the socket next the glass, which, on running the nut square on the side of the lath, keeps it in the cutting direction. Glass benders have their plongh diamonds without long handles, as they cannot make use of a lath in cutting, but direct them by the point of their middle finger. The ranging lath should be long enough to extend beyond the boundary of the table of glass. lianging of glass is the cutting it in breadths, and is best done by one uninterrupted cut from one end to the other. A short lath is used for stripping the square to suit the rebate of the sash, as in ranging they are generally cut full. A square, for the more accurate cutting at the right angles from the range. Tho carpenter's chisel is used in paring away some of the rebate of the sash when the glass does not lie so flat as to allow a proper breadth for front putty. The glazing lenife is used for laying iu the putty on the relates, for bedding in the glass, and finishing the front puity. A bradding hammer is made with a head in the form of a small parallelopiped, with a socket for the handle, using it at an obtuse angle from the middle of one of its sides. Thie square edges of the head drive the brads in a horizontal direction, and with this tool there is less liability to accident than with any other. Some use the basil of the chisel for the purpose. Brass points are censidered the best for bradding; small cut brads are also used. All new works should be lradded, to prevent the glass being moved out of its bed. The duster is a large brush for brushing the putties, and taking the oil from the glass. The sash tool is used wet, for taking the oil from the inside atter the back putties are cleared off. The hacking knife is for cleaning out the old putty from the rebates where squares are to be stopped in. The use of the glazier's rule needs no explanation: it is 2 feet long, doubling in four different pieces.
$2226 a$. The putty in which the glazier beds the glass is of four sorts. Soft putty, which is composed of tlour, whiting, and raw linseed oil ; hard putty, composed of whiting and boiled linseed oil; harder putty, the same ingredients as the last, with the addition of a small quantity of turpentine for nore quickly drying it ; hardest putty, composed of oil, red or white lead, and sand. The first of these putties is the most durable, because it forms an oleaginous coat on the surface, but it requires a long time for drying. The lard sorts are apt to crack if not soon well painted, and the hardest of them renders it difficult to replace a pane when broken; hence it is altogether unfit for hothouse and greenhouse work. Probably the best manner of fixiug glass and glazed frames in stone mullions is with a misture of Bath stone dust and linseed oil, made up similarly to putty. Its elasticity allows of any slight settlement if the work be new, and it is more of a waterproof cement than Portland, as it is not nearly so liable to crack: that cement, without a large proportion of sand, vill almost invariably burst glass or stone after a few months; and it also stains freestones, Corsham Down stone especially, giving it the appearance of having been burnt. (Builder, 1864, p. 796.)

2226b. To remore glass from old sashes, a mixture of 3 parts of American potash with 1 part of unslaked lime, laid on both sides with a stick, and allowed to remain for twentyfour hours, will soften the putty enough to cut out easily. This mixture will also take off piint, and even tar.

2226c. Many systems of glazing large roofs have been introduced of late years, each supposed to be an improvement upon the other, and recommended by the designers fur billiard-rooms, picture-galleries, dining-rooms, concert-halls, yards, large span roofs, \&c.
Braby's patent glazing; glass set free, allowing expansion and contraction, and precluding breakage.
Brown's patent system of glass and iron roofing. No putty, zine, galranised iron, castiron, india-rubber, felt, asbestos, or orher perishable material.
Causley's system of glazing without putty, 1881.

Crewe's dry glazing; simple and cheap.
Drummond's patent roof-glazing; sash-bars in iron, steel, zine, or wood.
Grover \& Co.'s simplex glazing. No iron, zine, or putty. Lead strips on wood-bars, \&c.
Helliwell's patent perfection system of imperishable glass roofing. No putty used.
Jeffrey's patent system of glazing, guaranteed air and water tight.
Johnson Brothers \& Co's patent impcrishable glazing.
Mackenzie's patents, by the British Patent Glazing Company (Limited). No zine used; a lead cushion orer an iron bar.
Mellowes and Darby's eclipse glazing ; tin-lead bar, V section.
Jendle's Acme glazing.
Rendle \& Burrow's indestructille glazing. Wood sash-bar, the glass covered on it by a wood capping.
Shelley's patent standard system of glazing, using glass up to 10 feet in length, with his patent bars placed two feet apart.
The Pennycook patent universal system of glazing without putty.
Each system must be examined for its peculiarity.
2226d. The Transparent Wire Wove Roofing Company (Limited) has mannfactured a substitute for glass, made in sheets 10 ft . by 4 ft ., at $6 \frac{1}{2} d$. per foot. Much is said in farour of it, and for many purposes it may work in usefully as a temporary material.
2226 c. The diminution of light by passing through rarious sorts of glass has been given thus: British polished plate, 13 per cent.; rough cast plate, 30 ; rolled tluted plate, 4 flutes to the inch, $53 ; 32 \mathrm{oz}$. sheet, 22 ; common window glass, about 10 ; groun 1 glass, trom 30 to 60 ; opal globes, from 50 to 60 ; green, purple, and ruby glass, 82 to 89 ; and purvelain transparency, over $97 \frac{1}{2}$. Light decreases in the ratio of the square of its distance from its sources.
2227. Leadwork for fixed lights is used in ecrlesiastical buildings, often in inferior offices, and frequently in country buildings. Frames made with crosstars receive theso lights, which are fastened to saddle bars. Where openings are wanted, a casement is introduced of wood or iron. Sometimes a sliding frame is used, particularly for houso windows. Plain, painted, and stained lead lights have of late years been largely introduced in the so-called "Queen Anne" designs, and adapted for blind or transum, fanlight, door panel, or window.
2228. The glazicr's vice is for preparing the leaden slips called cames with groores, \&c., to fit them fur the reveption of glass. The German rices are the best, and turn out a variety of lead in different sizes. There are moulds belonging to these rices in which bars of lead are cast; in this form the mill receives them, and turns them out with two sides parallel to each other, and about $\frac{3}{8}$ of an inch broad, and a partition connecting the two sides together, about $\frac{1}{6}$ of an inch wide, forming on each side a groove near $\frac{3}{16}$ by $\frac{1}{8}$ of an inch, and 6 feet long. The setting board is that on which the ridge of the light is worked, and divided into squares, and struck out witl! a chalk line, or drawn with a lath, which serve to guide the workman. One side and end is squared with a projecting bead or fillet. The latterkin is a piece of hard wood pointed, and so formed as to clear the groove of the lead, and widen it, for the more readily receiving the glass. The setting limife is a blade with a round end, loaded with lead at the buttom of the blade, and having a long square handle. The square end of the bandle serves to force the squares home tight in the lead; being loaded with lead, it is of greater weight, and also cuts off the ends of the lead with greater ease, as in the course ot working these lights the lead is always longer than is necessary till trimmed.
2229. The resin box contains powdered resin, which is put on all the joints previous to soldering. Clips are for holding the irons. All the intersections are soldered on both sides except the outside joints of the outer side, that is, where they come to the outer edge. These lights should be cemented, which is done by thin paint being run along the lead bars, and the chasm filled with dry whiting. After it has stood a short time, a small quantity of dry red or white lead is dusted orer it, which will enabie it to resist tho weather well.
2229a. Fretwork is the ornamental pait of leadlight work, and consists in working ground or stained glass into different patterns and deviees, as may be seen in the old stained glass windows. The le rds used until the middle of the serenteenth century are nearly of one uniform width, and are much narrower in the leuf than the common modern leads. That this was the case, ean be proved not only by the existence of the original leads, themselves, liut more satisfactorily perhaps by the black lines drawn upon the glass, with which the glass painters
 were accustomed somotimes to proluce the effect of leads without unnecessarily cutting
the glass. A in fi.y. 8 cicl. represents an ancient learl of the usual widh; B its section, consisting of the leaf, a and b, and the core c. C is the section of a German lead of the early part of the 14th centery. D) is a piece of modern fret lead of the ordinary width, and which is now considered (1547) as being very narrow; and E its section. The process of compressing the lead between rollers to the proper dimension "makes them more rigid than the old leads. It is the practice at the present day to surround each glazing panel with a broad lead, that is, a lead three-quarters of an inch broad in the leaf, to strengthen the work (page 27.). Leads somewhat narrower than these were very extensively employed. An entire window at Stowting Church, Kent, probably of the early part of the reign of Edward IV., w s leaded with leads as F. The other lead, G, is of the early part of the reign of Iferry VI., and is from Mells Church, Somersetshire, where similar lead is commonly used. This mode of strengthening the lead without increasing its width was not contined to the d. corated period. Both these specimens bad all the appearance of being cast in a mould. One of the faces in cack is narrower than the others; these were placed outside, and the differen e probably arose from decomposition of the metal. A still narrower lead may he cccasionally met with in heraldry and other minute mosaic work of the 15 th and 16 th centuries. It is hardly necessary to olserve that the greater the number of leads employed, the weaker individually may they be made (page 259-61.). The width of the leads must he proportionate to that of the lines usually painted on the glass, for the leaden onstines will easily be detected if they are much stronger than the painted ones. The effect of the increa-ed width of modern leads, E, although so trifling, is very percentible.
22996. Saddle bars in ancient windows will be found to be usually placed from 8 to 9 inches apart, which seems to be the most agrecable distance, though one of 6 inches docs not appear too little in some cases. The great object is to avoid, as much as possible, causing the light to appear as if it were divided into a number of square compartments, by mahing the height too nearly the width of the glas. Amongst the advantages resulting from the use of saddle bars at short intervals, is the opportunity it affords the glazier of carrying a horizontal lead across the light immediately in front of each saddle bar, the opacity of which hides the lead. This method of concealing lead work was carried to such perfection during the first half of the 16 th century, that a person ignorant of it would find it difficult to conceive how some of the works of that period were constructed.

2229c. Iron standa'ds or stancheons, in ancient windows put through the saddle lars, slould be retained in pattern windows, which they improve, and do not appear to be out of place in picture windows whenerer they do not happen to pass immediately behind the head ot the principal figure. They seem also on the "hole to improve the etfect of the architecture from without. (Winston, Inquiry int, Style in Glass Painting, Svo. 1847.)

2229 d. It is stated that at Cologne Cathedral the glass is strong; the different pieces are joined together with lead. and soldered with tin, both inside and outside, which gives the whole great strength. The panes are fastened upon iron franes, which are again fastened upon rods. In the interior the panes are screwed upon iron bars, half an inch thick, which are let into the masonry.
2230. In London a large portion of the glazier's lusiness consists in cleaning windowe.
2231. Glazed partitions formed of wood, or of iron frames with the lower fanels filled in with slate, are now very usual in warehouses, banks. and counting-houses. If sound be desired not to pass through such fittings, they must be glazed with extra thick glass; but double sheets or squares, placed about half an inch or more apart, and carefully puttied, is best. This method will also conduce to the warmith of the room. Double windows to the fronts of houses are common fittings to effect both the above purposes.

2231a. Glass has been introduced for a variety of building purposes. Thus, Lloyd and Summerfield's patent crystal window burs, for windows, shop fronts, and cases, are not uncommon. They are fitted with arched heads and spandrils of glass, having patterns, silvered or gilt, on a coloured ground. Glass tiles and slates are a useful auxiliary to a roof where a small modicum of light is required. Lockhead's perforated glass ventilator can either be set in the sash, or fixed outside of it in a frame for the whole width of the opening, air being admitted by moving the sash. For the like purpose are such inventions as Moore's louvre ventilators in a sash pane; Boyle's draughtless window ventilators, being a fine gauze of wire set in a pane of glass, and used with or without a glass cover; and the circular glass "revolving" ventilator. Glass buluster's and handruils; pilasters for chimneypieces; door handles, knohs, and plates; mirror frames; trays for dairies; cut crystal and opal letters; Pratt's patent proer ss of gilding by precipitation (1886), are among other usefu! inventions in this material. See Pavement Lights, par 22251.
$2231 b$. Coloured or stained glass. We can on'! here name the varietic: There are three modes of colouring glass: I. Pot metal glass, in which the colour is mixed up with the millen mass. II Flashed, covered, or coated glas, formed by uniting a thin layer of coloured glass with another layer, either of a different col ur or colourless. III. Painted glase, the white substance being painted on, and then the colour or pigment burnt in. The colouring it aterials are in all cases metallic substances. Such are the methods by which all coloured glass windows are produced.

2231c. For ornamental purposes, besides coloured glass, glass may have a ground suiface, which is obtained by grinding it with a stone, or by the use of fluoric acid. Embossed ylass, which permits the application of devices, according to the fancy of the designer or intention of the manuracturer, is effected by covering the square of glass with a varnish, except where the derice is intended. An acid is then poured on which eats away the uneovered glass for a small depth. The varnish is then cleaned off, and the general surface is ground as usual. Its imitation is oltained by covering the plate with a varnish, a lace or stencil pattern placed on it, then dusted over with a colouring matter in the state of fine powder, and the plate thus treated sufficiently heated to vitrify and fix the dusted varnish to the glass. Mesurs. Chance, and other manufacturers, sell various enamell d stencilled patterns, as white enameil d, enamelle I and flucherd, embassed rep eated pattern. stained enamelled, and donlle etched glass, self shudowed glass, , atent polychromatic ylass, printed oluss, strmped in colon s, and many other kinds, all which are better scen at the factories than described.

2231d. The compresive strength of glass, that is, its resistance to a force tending to crush it, is about $12 \frac{1}{7}$ tons per square inch. This is nearly equal to one quarter the stre. gth of east iron. Glass has three times the specific gravity of iron. In the form of bars, a favourable shape for developing a highly tensile strength, one ton per square inch of area is the highest amount to be assumed for it.

2231e. Mosaic work. This durable manner of decoration in glass, requires a short no ice. The Roman mosaic is composed of pieces of enamelled glass, thus rendered opaque, sometimes called sm,llo and sometimes paste, made of all kinds of colours and of every diffurent hue For large pictures they take the form of small cakes. For small works they are produced as threads, varying in thickness from that of a piece of string to the finest cotton thread. The Venetiun mosaic picturs are formed of pieces of very irregular shapes and sizes, of all colours and tones of colours; the ground tint almost invariably prevailing is gold. The manner of execution is always large and coarse, and rarely approaehes any neatness of joint or regularity of bedding. Opus Grecanicum consists in the insertion, into grooves cut in white marlle to a depth of about half an inch, of small eubes of these coloured and gilded smalto, and in the arrangement of these forms in such geome'rical combination as to compose the most elaborate patterns. It was customary to combine the bands of this mosaic work with large slahs of Serpentine, Porphyry, Pavonazetto, and other raluable marbles and to use it in the decoration of ambones, cancelli, \&c.; its use externally was comparatively rare. The hexagon, triangle, square, and octagon, form the usual bases of most of the specimens of this ingenious art to be found in Italy. Patterns of accumulating intricacy are sten at Palermo, and at Monreale. Illustra:ions in colour are given in the useful work on Mosairs. by M. D. Wyatt.

2231f. Coloured enamels are made of a vitreous paste (or glass), to this are added other minerai substances, which, when properly prepared and tused together, im; art to the paste its density and extreme hardness. and also its colour; the better the manufacture, the more satisfactory the appearance and the greater the durability of the mosaic work. In an imperfect manufacture, the mosaic is liable to be injured by damp, smoke, and all atmospheric changes; when well produced, they eam be made to give precisely the same ellect as the painting.

2231 g . Gull and silcer enamels were introduecd: these are made of the precious metals, $\mathrm{b}:$ it in such thin slieets that their use is comparatively inexpensive. The process is a difficult one, for, to produce true gold and silver enamels, great knowledge and expcrience ate necessary. On a ground of thick glass or enamel, aecurding as it is desir d to render the gold enamel transparent or opapue, or to impart to it a waim or varicgated colour, there is laid a leaf of gold or silver, which is attached irincipally by the action of tire; then a film of the purest glass is spread over it, and this may either be perfectly colourless or of any tint that may be required. When well manufactured, these thin layens, after being fised, become perfectly united with each other, and form a homogeneous body, and the metal is for ever protected against all possibility of injury from any cause except actual violence.

2231h. Stevens has produced a new kind of glass mosaic, exeented at ahont one third the price of the ancient manufacture of this kind. The glass is stained or gilt, and the method is adapted for many purposes. Messrs. Rust are working in gold, silver, and enamel mosaies of their own invention ; and Dr. Salviati employs his "indestrustible system of Venctian enamel-mosaic, in works, in a comparatively inexpensive and expeditious manner." At the Wolsey tomb-house, at Windsor, the entire ceiling, consisting of 2,100 fuet, was decorated in the space of ten months, including the tine of the transit of the musaies from Venice; and was executed, with the scaflolding, at the price of $4,72.5 l$. It was also employed at St. Paul's Cathodral, for the figure of the prophet 1 -aiah, covering 950 feet. which was executed and tixed in two months, at the price of 600 . (Lecture read at Lueds, by A. Salviati, 1865.)

2231i. The emments used are of three sorts. The first, for large tessere in forming floors, is composed of pitch, mused witl a black earth. The seconcl, tor stones of a mid-
dling dimension, is made of tufa and oil. The third, for the more delicate mosaies of pieces of glass, is made of white of lime, pounded bricks, gum andragan, and the white of eggs. The ancients are said to have used 1 part of slaked lime and 3 parts of pounded marble, made up with water and white of egg. But as this is considered to harden two quickly, a mixture of 1 part of slaked lime, and 3 parts of powdered travertine stone, mixed ip with linseed oil, and kept stirred every day, is used, adding oil as it dries. The mass is ready sooner in warm weather than in cold, varying from 20 to 30 days, when it is like a smooth ointment. For the larger works, Keene's, Portland, or other similar eements might be used.

Sect. IX.

PLASTERING.

2232. In the finishing of our dwellings, the decoration owes much of its effeet to the labours of the platerer: it is in his department to lay the ceilings, and to sive, hy means of plaster, a smooth coat to the walls, so as to hide the irregularities left by the bricklayer and mason, and make them sightly and agreeable. He culso, in the better sort of huildings, furnishes plain and deeorated mouldings for the eornices and ceilings; and in the external parts, where stone is expensive or not to be procurcd, covers the exterior walls with stucco or other composition imitative of stone.
2233. The plasterer's tools are-a spade or shovel of the usual description; a rake with two or tbree prongs bent downwards from the line of the handle, for mixing the hair and mortar together ; stopping and picking out tools; rules called straight edyes; wood modt is ; and trowels of two sorts and various sizes, namely, the laying and smonthing tools, consisting of flat pieces of hardened iron, about 10 inches long, and $2 \frac{1}{2}$ inches wide, very thin, and ground to a semicircular shape at one end, but square at the other. Near the square end on the back of the plate a small iron rod is rivetted, with two legs, whercof one is fixed to the plate, and a round wooden liandle is adapted to the other. All the lirst coats of plastering are laid on with this tool, as is also the last, or setting, as it is technically called. The other sorts of trowels are of three or more sizes, and are used for ganging the fine stu, f and plaster for cornices, mouldings, \&c. The length of these trowels is, the largest abont 7 inches in length on the plate, and the smallest 2 or 3 inches : they are of polished steel, converging gradually to a point, with bandles of mahogany adapted to the hed or broad end with a deep brass ferrule.
2234. The stopping and pieking out tools are of polished steel, of various sizes, about 7 or 8 inches long and half an inch broad, flattened at both ends, and somewhat rounded. They are used for modelling and finishing mitres and returns to comices, as also for filling up and finishing ornaments at their joinings. There is also used a small instrument, which is a piece of thin fir 6 or 7 inehes square, called a hawh, with a handle vertical to it, for holding small quantities of plaster.

22:5. The composition used by the plasterer is a groundwork of lime and hair, on which, for the finish, a coating of finer material is laid. The sorts of it are various; as, for instance, white lime and hair mortar on bare walls; the same on laths as for partitions and plain eeilings ; for renewing the insides of walls; roughcasting on laths; plastering on brickwork with finishing mortar, in imitation of stone work, and the like upon laths. For cornices and the decorations of mouldings, the material is plaster of Paris, one which facilitates the giving by easts the required form and finish to the superior parts of his work. The plasterer uses it also for mixing with lime and hair, where the work is reguired to dry and set hard in a short time. For inside work, the lime and hair, or coarse stuff, is prepared, like common mortar, with sand; but in the mixing, hair of the bullock, obtained from the tanners' yards, is added to it, and worked in with the rake, so as to distribute it over the mass as equally as possible.
2236. What is called fine stuff is made of pure lime, slaked with a small quantity of water, and afterwards, without the addition of any other material, saturated with water, and in a semi-fluid state placed in a tub to remain until the water has evaporated. In some cases, for better binding the work, a small quantity of hair is worked into the composition. For interior work, the fine stuff is mixed with one part of very fine washed sand to three parts of fine stuff, and is then used for trowelled or bastard stucco, which makes a proper surface for receiving painting.
2237. What is called gauge stuff is composed of tine stuff and plaster of Paris, in proporions according to the rapidity with which the work is wanted to be finished. About four-filths of fine stuff to one of the last is sufficient, if time can be allowed for the setting. This composition is chicfly used for cornices and mouldings, run with a wooden mould. We may here mention that it is of the utmost importance, in plasterers' work, that the dime should be most thoronghly slaked, or the consequence will be blisters thrown out upon the work alter it is tinished. Many plasterers keep their stufls a considerable
period before they are wanted to be used in the building, by which the chance of bistering is much lessened.
2238. When a wall is to be plastered, it is called rendering; in other cases the first operation, as in ceilings, partitions, \&e., is luthing, nailing the laths to the joists, quarters, or battens. If the laths are oaken, wrought iron nails must be used for nailing them, but cast iron nails may be employed if the laths are of fir. The lath is made in three and four fuot lengths, and, according to its thickness, is called single, something less than a quarter of an inch thick, lath and half, or double. The first is the thimest and cheapest, the sccond is about one-third thicker than the single lath, and the double lath is twice the thickness. When the plasterer laths ceilings, both lengths of laths should be used, by which, in nailing, he will have the opportunity of breaking the joints, which will not only help in improving the general key, (or plastering insinuated behind the lath, which spreads there beyond the distance that the laths are apart,) but will strengthen the ceiling generally. The thimest laths may be used in partitions, because in a vertical position the strain of the plaster upon them is not so great; but for eeilings the strongest laths should be employed. In lathing, the ends of the laths should not be lapped upon each other where they terminate upon a quarter or batten, which is often done to save a row of nails and the trouble of cutting them, for such a practice leaves only a quarter of an inch for the thickness of the plaster; and if the laths are very crooked, which is frequently the case. sufficient space will not be left to straighten the plaster. (2246b.)
2239. After lathing, the next operation is laying, more commonly called plastering. It is the first coat on laths, when the plaster has two coats or set work, and is not scratched with the seratcher, but the surface is roughed by swecping it with a broom. On brickwork it is also the first coat, and is called rendering. The mere laying or rendering is the most economical sort of plastering, and does for inferior rooms or cottages.
2240. What is called pricking up is the first coat of three-coat work upon laths. The material used for it is coarse stuff, being only the preparation for a more perfect kind of work. After the coat is laid on, it is scored in diagonal directions with a scratcher (the end of a lath), to give it a key or tie for the coat that is to follow it.
2241. Lath layed or plastered and set is only two-coat work, as mentioned under laying, the setting being the guage or mixture of putty and plaster, or, in common work, of fine stuff, with which, when very dry, a little sand is used; and here it may be as well to mention, that setting may be either a second coat upon laying or rendering, or a third coat upon floating, which will be hereafter described. The term finishing is applied to the third coat when of stucco, but setting for paper. The setting is spread with the smoothing trowel, which the workman uses with his right hand, while in his left he uses a large Hat-formed brush of hog's bristles. As he lays on the putty or set with the trowel, he draws the brush, full of water, backwards and forwards over its sutface, thus producing a tolerably fair face for the work.
9242. Work which consists of three coats is called fluated: it takes its name from an hostrument called a foat, which is an implement or rule moved in every dircetion on the plaster while it is soft, for giving a perfectly plane surface to the second coat of work. Floats are of three sorts : the hand flout, which is a short rule, that a man by himself may use ; the quirk float, which is used on or in angles; and the Derby, which is of such a length as to require two men to use it. Previous to floating, which is, in fact, the operation of making the surface of the work a perfect plane, such surface is subdivided in several bays, which are formed by vertical styles of plastering, (three, four, five, or even ten feet apart,) formed with great aceuracy by means of the plumb rule, all in the same plane. These styles are called screeds, and being carefully set out to the coat that is applied between them, the plaster or floating laid on between them is brouglit to the proper surface by working the float up and down on the screeds, so as to bring the surface all to the same plane, which operation is termed filling out, and is applicable as well to ceilings as to walls. This branch of plastering requires the best sort of workmen, and great eare in the execution.
2243. Bastard stucco is of three coats, the first whereof is roughing in or rendering, the second is floating, as in trowelled stucco, which will be next described; but the finishing coat contains a small quantity of hair or white sand. This work is not hand floated, and the trowelling is done with less labour than what is denominated trowelled stucco.
2244. Trowelled stucco, which is the best sort of plastering for the rereption of paint, is formed on a floated coat of work, and such floating should be as dry as possible before the stuceo is applied. In the last process, the plasterer uses the hand float, which is made of a piece of half-inch deal, about nine inches long and three inches wide, planed smooth, with its lower edges a little rounded off, and having a handle on the upper surface. The ground to be stuccoed being made as smocth as po-sible, the stucco is spread upon it to the extent of four or five fect square, and, moistening it continually with a brush as he proceeds, the workman trowels its surface with the float, alternately sprinkling and rubbing the face of the stucco, till the whole is reduced to a fine even surface. Thus, by small portions at a
time, he procecds till the whole is completed. The water applied to it has the effeet of hardening the face of the stucco, which, when finished, becomes as smooth as glass.
2245. From what has been said, the reader will perecive that mere laying or plastering on laths, or rendering on walls, is the most common kind of work, and consints of one coat only; that adding to this a setting coat, it is brought to a better surface, and is two-coat woik; and that three-coat work undergoes the intermediate process of floating, between the rendering or pricking up and the setting.

2245a. This plain plastered surface has received an improvement in a method of stamping or incising it, while wet, the invention, in 1857, of Mr. Benj. Ferrey, architect. ' It is well known that the external rough-casting on old timber houses was stamped or wrought in small devices, known by the term pargetting; but it never assumed the importance of extensive wall decorations. The plan now proposed is to impress the common stucco with geometrical or other forms, and applied according to taste, either under string courses, around arches, in spandrils, soffites, or in large masses of diapering; and texts may be imprinted on the plaster instead of tieing simply painted on the walls. If colour be desired, it can be effected by mixing the desired colour with the coat forming the groundwork, then by laying the stencilled pattern against it, and filling in the sold portions of the device with the ordinary stucco or plaster." The process does not pretend to do more than enliven wall surfaces, but for this purpose it is very effective. Whippingham Church, in the Isle of Wight, is decorated in this manner, with devices in different colours.
2246. Ceilings are ste in two different ways; the best work is where the setting coat is composed of plaster and lime putty, communly called gange stuff (2237). Common ceiliags are fermed with plaster without hair, as in the finishing coat tor walls set for paper. The deflection of $\frac{1}{40}$ th of an inch for each foot in length is not injurious to ecilings; indeed. the usual allowance for settlement is about twice that yuantity. Ceilings have been found to settle about four times as much without causing cracks, and have been raised back again without injury. (Barlow, p. 179.)

2246a. In Dublin, the designations in plasterers' work are different to those we have named above. Work to ceilings is described as "Lath scratched, floated, and coated, while to walls it is described as "scratched, floated, and coated" Shimming, to plasterers work, is a very thin coat of white (i.e. lime) put on float work to smoothe.a it, and to leave a clean face; coated is the term for better work of the same character.
2246 b . Llitchin's fireproof plaster appeared about 1877; it is valued for its simplicity, econnmy, and facility in working. The filrous slab plastering is always dry and ready for fixing. The slabs on a wire base protect ceilings, walls, and woodwork from fire. Casings on wire base protect iron and wood girder, columns and such like. Pugging slabs are used for prevention of sound. Wilkiuson and Co's fibrous plaster slabi are intended for lining walls and ceiliags, and for fixing under slaing; also to paritions and under floor-boards for deadening sciund.

2246 c . Johnson's patent rolled firepronf wire lathing is now occasionally used as a sulstitute for wood laths. It is a foundation for fire-resisting plater. His woren wire ams iron fireproof partition wall is intended to supersede the ordnary stud and brick pattitions, and is applicable to roofs. Metul luths, of thin sheet iron, by Edwards's patent, are for use in fire-resisting ceilings, partitions, and doors. Wirework, in place of luthing, for forming ceilings and other plaster surfaces, patented in 1841 by L. Leconte, had been previously adopted in the buiding of the Pantechnicon, near Belurave Square.

2246d. Nickson and Waddingham have patented a slate gromed fir plaster, by using, instead of laths, those slates which do nut turn out in the quarries sufficiently wide for sized roofing slates; an immense number of them being necessarily thrown aside daily, although of the best quality. The slates are fixed $\frac{1}{4} \mathrm{in}$. apart; the pla,ter to be $\frac{3}{4} \mathrm{in}$. thick, of well haired stuff, which keys itself between the slates; they run from 12 to 7 in , ong and upwards. The system was worked about 1862 at Manchester
2247. Pugging is plaster laid on boards, fitted in between the joists of a flocr to prevent the passage of sound between two stories, and is executed with a coarse stuff made of lime and hay chopped into lengths of about 2 inches. Silicate cotton or slag wool, nailed in slabs to the under side of the joists of a floor, or against the studs of a partition, acts as a nonconductor of heat or cold; it is also fireproof, sound-proof, vermin-proof, and frost-proof. One ton of it, one inch thick, covers 1,800 square feet. This material is now greatly used; also for protecting exposed iron work. Asbestos millboard is another material greatly employed for lining partitions, to deaden sound passing through; as weli as for fireproof purposes.
2248. The following materials are required for 100 yards of render set; viz. $1 \frac{1}{2}$ hundied of lime, 1 double load of river sand, and 4 bushels of hair; for the labour, ! plasterer 3 days, 1 labourer 3 days, 1 boy 3 days; and upon this, 20 per cent. profit is usually allowed. For 130 yards of lath plaster and set -1 load of laths, 10,000 nails, $2 \frac{1}{2}$ hundred of lime, $1 \frac{1}{2}$ double load of river sand, 7 bushels of hair; for the labour, 1 plasterer

6 days, I lal:ourer 6 days, 1 boy 6 days; and upon this, as before, 20 per cent. is ustally allowed.

1 cubic yard of chalk lime, 2 vards of sand, and 3 bushels of hair, will cover 75 yards of render set on brick work ; 70 yards on lath ; or 65 yards plaster; or sender two coats aud set on brick; and 60 yards on lath. Fioated work requires about the same as two coats and set. A bundle of laths and 500 nails will cover about $4 \frac{1}{2}$ yards superficial. Two hundred laths, 4 feet long, are required for a square. A bundle of laths contains 500 feet nominally.
2249. In the country, for the exterior coating of dwellings and outbuilaings, a species of plastering is used called roughcast It is cheaper than stucco or Roman cement, and therefore suitable to such purposes. In the process of executing it, the wall is first pricked up with a coat of lime and hair, on which, when tolerably well set, a second coat is laid on of the same materials as the first, but as smooth as possible. As fast as the workman finishes this surface, another follows him with a pailful of the rougheast, with which he bespatters the new plastering, so that the whole dries together. The rongheast is a composition of small gravel, finely washed, to free it from all earthy 1 articles, and mixed with pure lime and water in a state of semi-fluid consistency. It is thrown from the pail upon the wall, with a wooden float, about 5 or 6 inches long, and as n any wide, formed of half-inch deal, and fitted with a round deal handle. With this tool, while the wasterer throws on the rougheast with his right hand, in bis left he holds a conmon whitewasher's brush dipped in the rougheast, with which he brushes and colours the mortar and the roughcast alrealy spread, to give them, when finished, an uniform colour and appearance.

9249a. Gypsum or plaster of Puris is largely used in France for the construction of walls, both internally and externally, as well as for rendering them afterwards. We adopt the following method of working it, as explained by G. R. Burnell: "The coarser hinds of plaster are used for rendering; the finer qualities for ceilings, cornices, and decorative works. For walls, the plaster must be ganged stiff for the first coats, and more fluid for the setting coat. For cornices worked ont in the solid, the core is made of stiffly gauged plaster, which is floated with finer material, and lastly finished off with plaster laid on by hand, about the consistence of cream. Practice only can ascertain the precise degree of stiffness to be given, as every burning yields a different quality of plaster. When walls are to be rendered, they require to be first jointed, and then wetted with a broom. I'he surface is then covered with a coat of thinly gauged stulf, laid on with a broom, or at least worked with a trowel in such a manner as to leave sufficient hold for the next coat. This is ganged stiff, and is laid on with a trowel; it is floated with a rule, but the face is finished with a hand trowel; the surfaces, however, are never so even, or the angles so square and true, as in the usual plasterers' work adopted in England. The ceilings are lathed about 3 to $3 \frac{1}{2}$ inches from centre to centre, and the plater poured in from above on to a sort of flat centering, leaving about an inch for the thickness of plaster; the ceiling coat is added after the centering is removed. The better descriptions are made with laths 4 inches from centre to centre, the space between ceiling and floor filled up with light work, and the under and upper surfaces rendered to receive the ceiling and tiles."
$2249 b$. With gypsum, only about $\frac{3}{8}$ ths of the evaporation arises as from ordinary plastering. A series of experiments made in 1850, proved that the cost of ordinary works need not exceed in any sensible proportion, if at all, those usually called "render set;" and that they are strictly the same as "render float and set." A room was begun and finished in thirty hours, whilst a common lime and hair rendering coat would have required, properly speaking, about a month. French plaster must never be used in any position where moisture is likely to affect it for any length of time. It is very hygrometric, and soon decays if kept moist. If it be used as mortar, as in brick-mogged partitions, to be covered over immediately, a space for its expansion must be allowed. In France, a small space is left between the wall and partitions; this is filled in by the plastering coat. The same observation applies to floors with plaster pugging, and even to cornices with a large body of that material, the mitres and returns being executed some time after the straight mouldings.
2250. In forming the coves and cornices which are applied below the ceilings of rooms, it is of the greatest importance to make them as light as po-sihle, for the plaster whereof they are formed is heavy, and ought not to depend merely on its adhesion to the vertical and horizontal surfaces to which it is attached. Hence, when comices run of large dimen-
sions, bracketing, as has already been described in the section Joinery (2079, et scq.), must be provided, of the general form of the cornice or cove, or other work, and on this the plastering is to be formell. On this, when roughed out, the work is run with wooden moulds, having zinc or copper edges, so as to give the general outline of the cornice. If enrichments are used in it, they are east in plaster of Paris, and afterwards fixed with that material in the spaces left for them to occupy. These enriehments are prerionsly modelled, and from the model a matrix is formed, as for all other plaster casting. Great nicety is required in all the operations relative to the moulding and fixing of cornices, and must especially that the ornaments be firmly fixed by screws or other means, that they may not be detached from their places by partial settlements of the building, and cause accidents to the occupiers of the rooms where they are used.

2250a. Sclenitic lime was the invention, about 1856, of General Scott, R.E., who observed that limestone eapable of conversion by burning into a hydraulic lime, might: be able to furnish a good cement by simply allowing a small portion of sulphuric acid gas $t^{\text {t }}$ pass into the kiln during the kuruing of the lime. The process, since about 1870, is explained as consisting of carefully mixing with the water used in the preparation of the mortar a small quantity of plaster of Paris or gypsum, or green vitriol. The lime may then be ground in an ordinary mortar-mill with the mixture into a creamy paste for three or four minutes; the sand, burnt clay, or other ingredients may then be added, and the whole thoroughly ground for ten minutes or more. The lime is a good buff in colour. With double the usual quantity of sand the tensile strength of the mortar is increased fourfold. It sets rapidly and well, and as "stuff" in plastering it effects a cousiderable saving in time orer that usually made from lime. "Selenitic mortar siares half the lime, is four times as strong, and sets in a quarter of the time of common mortar."

2250\%. A rendering plaster, for superseding the use of lime and hair mortar in the plastering of walls and ceilings, bas been brought forward by A. G. Barham, of Bridgwater. It is stated to be very tough and strong, not liable to crack or swell, and is applied without hair, direct to brick walls or lathwork. The surface dries and hardens rapidly, and it cin be painted or papered at onee, as there is nothing in the plaster to injure either of the processes. When dry it is of itself a good grey in colour. For ontside stuceo it is also stated to be a safe material, and is likewise free from regetation and colouring.

2250 c. Adamant cement has last year (1887) been introduced into this country, at Birmingham, from Syracuse, New York, by a company. It is a wall plaster and cement. and is manufactured in three qualities, No. 1, 2, and Chromolith. The two first are used as for ordinary plastering, and the third in p'ace of the superior Parian cement, at a less cost. As all the bright mineral and regetable pigments can be used with it, floorings, mosaies, and mantels are produced; also tiles, marble slabs, terra-cotta, and other artieles of a similar charaeter. It is very hard; costs but little more than lime plaster; the room p'astered one day can be used the next; ; easily applied, even to iron lath or wire work; is impervious to wind or weather; smooth to work over for painting, absorts but little oil, the colours do not change, requires no sizing, and from a samtary point of riew is of great ralue. It is also considered to have fireproof qualities.

2250 d . Stucco is a species of plastering which is sometimes subsequently worked to resemble marble. There are two sorts of stucco, those made of limes, and those made of plaster. The former are often classed under the name of cements, but their disagreeable colour prevents their being used for ornamental decoration. They serve, however, to form the foundations for the better class whenever humidity is to be feared. The latter are generally made of lime, mixed with caleareous powder, chalk, plaster, and oth $ค$ s substanees, in such a manner as to obtain in a short time a solid surffee, which may be coloured, painted, and polished with such perfection as to allow of its being used instead of more expensive materials.

22500 ., The Italians usually execute their stuccoes in three coats. The first is very coarse, to form the renderirg. The second is much finer, and contains a larger proportion of lime, bringing the work up to a very even close grain. The last is made of rich lime, which las been slaked and run through a rery fine sieve; it is allowed to stand from four to five months, in order that every particle may be reduced to a hydrate. If the lime cannot be kept for so great a length of time, the slaking may be assisted by beating it up very frequently. When great perfection is required, pounded white Carrara marble is mingled with it ; gypsum and alabaster are used for enclosed situations. Colours are obtained by mixing with the lime such metallic oxides, \&e., as the case may require. The excellence of the work consists in the eare with which the effeets of the natural marbles are imitated.
$2250 f$. When plaster is used instead of lime, it is gauged with lukewarm water, in which size or gum has been dissolved, so as to fill up the pores, to give more consistency, and to render it susceptille of receiving a better polish. Any colours used should be previously dissolved in the size water. When the whole of the stucco is perfectly dry, the surface is
then rubbed with grit stone and polished up with rubbers, much in the same way as real m.rble. The thickness of a coat of stucco varies from one-sixth to one-eighth of an inch.

2250 g . Stucco work, as it is called, and as executed daily in Ireland for outside work, consists of their roche lime, slaked for three or four months previously, as above described, mised with sand, and worked up with the trowel. It stands the weather as perfectly as Roman cement. The term is also given to the interior moulded and cast work.
$2250 h$. There are practically five mortars now in use. 1. Ordinary grey stone lime mortar; 2. The same selenised; 3. Lias lime mortar; 4. The same selenised; and 5. Portland cement mortar. The four last take a rapid set. If after a few days set they become expanded and disintegrated by frost, it is doubtful if, when thawed, they will reassume a pasty condition and set again. The first derelops heat in slaking, and can be used hot, and will therefore take longer to freeze, but then as it sets slower it remains longer open to the attack of frost. The building journals in the first month of 1888 printed a communication from Norway explaining how bricklaying was done there in frosty weather. It has been suggested by Mr J. Woodley that, after all, the secret lies in 'dry slaking' the lime, and following it up in small quantities at a time, thus keeping up a continuous supply of mortar in a hot state. This method is to lay out a portion of unslaked lime, and to sprinkle upon it just so much, and no m re, water as is sufficient to set the action called 'slaking' in motion: it is not to be rmi then to add the stipulated proportion of sand, which should be spread orer the lime in such a manner as to effectually prevent the escape of the generated heat and steam. Ordinarily, this should be repeated again and again until the whole consigument of lime is absorbed in one hoap, which should be sheltered from the weather, and when required for use passed through the usual 'sand-screen' or sieve to remore the core. . But if desired to be used warm, it can he slaked and made up in small quantities as required; hence hot mortar. In winter time the bricks should be protected from excessire saturation by rain or snow; in summer time it is difficult to get them wetted at all by the builder.

2250i. The plastering of a house has occasionally to be dried artificially. Ligny's patent drying process is used: 1. Fur damp walls and plaster in new houses, so that they may be papered, painted, and occupied as quickly as possible without risk to health, and that at a cost of fiom thirty shillings a room, according to degree of dampness: 2. For old buildings and basements where the damp arises from contact with wet soil; also for drying thin walls much exposed to the weather and through which wet penetrates.
$2250 k$. Scagliola work is an imitation of real marble. Its manufacture has generally been assumed as a mystery. It is a species of plaster or stucco inrented at Carpi, in the state of Modena. by Guido Sassi, between 1600 and 1649. It is sometimes called mischia, from the mixture of colours introduced in it. It was not, however, till the middle of the eighteenth century that the art of making scagliola was brought to perfection. The following is the method of making columns and pilasters:-A wooden crad!e, composed of thin strips of deal or otber wood, is made to represent the column designed, but about $2 \frac{1}{2}$ inches less in diameter than the shaft is intended to be when finished. This cradle is lathed round, as for common plastering, and then covered with a prieking-up coat of lime and hair. When this is quite dry, the scaglio'a artist commences his operations, and, by imitating the rarest and most precious marbles, produces a work which cannot be, except,hy fracture or sound, discosered to le counterfeit. The purest gypsum wnich can be obtained is broken into small pieces, and calcined. As soon as the largest fragments lcse their brilliancy, the fire is withdrawn; the calcined powder is passed through a very fine sieve, and mixed up with a solution of Flanders glue, isinglass, etc. In this solution the colours are diffused that are required to be imitated in the marble; but if the work is to be of varions colours, each colour is separately prepared, and they are afterwards mingled and combined nearly in the same manner that a painter mixes the primitive colours on his palette to compose his different tints. When the powdered gypsum is prepared and mingled for the work, it is laid on the shaft of the column or other surface orer the pricked-up coat of lime and hair, and it is then foatce with proper moulds of wood, the artist during the floating using the colours necessary for the imitation, by whicl means they become mingled and incorporated with the surface. The process of polishing follows; and this is done by rubbing the surface with pumicestone in one of his hauds, while with the other he cleans it with a wet stone. It is then polished with tripoli and charcoal and fine and soft linen; and after going over it with a piece of felt dipper in a mixture of cil and tripoli, he finishes with application of pure vil. Scagliola work is so easily put up in a building, and requires so small an amount of time and expeuse for renovation and repair, compared with repainting and
varnisling, that those who are induced to go to the expense of plastering the walls with mastie, to be ready for immediate painting, marbling, and high polishing, might be justified in expending a further sum and adopt scagliola at once. For the walls of the staircase in the building formerly called Crockford's Club House, St. James's Street, the scagliola was prepared upon slabs of slate half an inch thick, sawn on the sur face with cuts about one-eighth of an inch deep, to form a key for the plaster groundwork. When the slats were fit for polishing they were secured with battens fixed to the wall The sragliola to the staircases at the Reform Club llouse is worked upon the walls; they are richly panelied, moulded and inlaid. The fluted columns, in the same builing, to the gallery a d skylight of the saloon are done upon stone. The three-quarter columns in the drawing and cotlice rooms were cart in three lengths, and each backed with tiles bedded in coarse plaster. Some black and gold columns, worked in Keene's cement on stone, and two twis ed columns in plaster, are placed in Wilton Chureh, Wiltshire. When Parian ce:nent is used, the groundwork is formed of wet cement of the coarse quality, ti.e veneer being of the same thickness as common scagliola; but one hali of the quantity of colonrs will produce the same depth of colouring as in the common scagliola. For polishing, the same process is t, be followed as for walls, as described in par. 2251 i .

2250l. Scag!iola floors exist at Siois House, Isleworth; at the entrance hall at the Athenxum Club House, London; and at Crewe Hall, Cheshire. Many other examples of the employment of scagliola work will be found named in an excellient article in the Builder for 1863, p. 840, one of the best on the subject; and another in Febrnary 1845. A very infarior initation of scagliola is too often to be seen.

225 m . A material has been lately prepared at the Patent Marble Works, for similar purposes. It is manuf.ctured in slabs from $\frac{3}{4}$ to I inch thick, of any size, for lining, an I for moulded work. The prices are stated to be under those of enamelled slate. Marezzo marbie, made of cement, has been introduced since 1868. The entrance ball at the Suciety of Arts, London, has been lined with it.
2251. In the present time, the use of ornaments made of carton pierre, a species of papier maché, has been reintroduced for cornices, flowers, and other decoratious. The basis of it is paper reduced to a pulp, which, having other ingredients mixed with it, is pressed into moulds, and thus ornaments are formed of it. They have not a'l the delicacy of the plaster cast, and there is the want of that nicety which a good cornice workman in plaster exhihits; but their lightness, and the security wihh which they can be fixed with screws, render them often preferable to plaster ornaments. The "Critic" newspaper in 1863 s ated that in Bergen, in Prussia, there is a chureh capable of holding 1,000 persons, constructed entircly, statues and all, of papier maché. P'robably, however, the material is that used to a very great extent in Norway and Sweden for forming the roofs of houses, and said to be incombustible. It appears to be in many respects similar to the Fibrous slab. the manufacture of which, by Bielefeld, was discontinued a few years since, after :nuch success; though the dust penetrated through it, showing the marks of the joists. as in I laster work. The ceiling of the reading room at the British Museum was lined with it. Another material, supersedinif carton-pierre and papier maché, is Desachy's Filrous plaster, which is formed of a thin coat of plaster of l'aris, run upon a backing of coarse canvas. It is of great lightness, not inflammable, and is ready to he painted immediately after it is made. It is adapted for the speedy and economical production of any coffered or circular work; and for wagon-headed ceilings, as but little bracketing is necessary, it being fixed to the joists direct; for flited or ornamented columns, panelled dadoes, \&c., for the lining of walls and ceilings, and for all purposes of ornamental plaster work. Mr. Owen Jones has extensively used this material for his interior dicorations. (2246b.)

CEMENTS.

2251 a. We have already adverted to the cements used in plastering. Roman, Blue Lias, and Porland cements are the principal ones for the outside coating of buildings, and the process of laying them on is so similar to that of other plasterers' work, that it wi!! not be necessary to say much respecting them. The best mode, perhaps, of using these natural cements is to employ them purely in works under water, or where a great crushing weight is to be brought upon them at once. For foundations in damp situations, where rapidity of execution is desired, the mixture may he 2 paris of sand to 3 of cement; and also for cornices or coatings exposed to the weather. For upright faces, the proportion is of 3 parts of sand to 1 of cement. Care must be tahen that no lis uures are formed such as will almit water, as the action of frost will destroy it. The brickwork in mortar, to be co /ered, should be thoroughly dry, or the expansion of the water will throw off the cement; the brichwork itself must, however, be wetted before a coat is applied. to prevent the absorption of the moisture before the coat sets, or it will noc harden. With slow setting cements, it is too often the cistom to allow the filling out, and even plain fites, to become
partially set, when the adhesion of the next quantity will be found imperfect ano unsound. All work requires to be finished off at once for a guod result. Dirty sand causes the cement to be crumbly. Ciment once set, or even partially so, should not be worked up in a fresh mixture, or it will form rotten work. Like lime in the setting coat in plastering, cement fa ings and mouldings are not so liable to show fire-cracks on the face if a small quantity of sand be mixed up with it.
$2 \because 51 b$. In using Portlund cement, plasterers should use thicker screeds, and finish their work in one coat with the screed-rule, instead of working all the water used in gaugirg 10 the surface with the iand-float and trowel, spoiling the thinner coat uhilst they lay it on. This cement has an advantage over other;, that it can, with good management, be wooked in winter, while othreements cannot be so used without great risk of the frost inijuring them bef,se they are diy. More cement added to make a coat set quicker, causes it to crack and burst. This cement i, best when used of a uniform thickness of $\frac{3}{4}$ ths of an inch, any dubbing out being done with pieces of brick and Roman cenment. A proportion of l'ortland cement mised in the usual plastering coat affords a quicker drying material for finishing with Portland or with Martins cement. The coarse quality of Martin's cement may take the place of plaster, a.d all the delays consequent on its use.

2251c. Lime puity should never be put in the finishing coat of Portland cement; it is done to make the ce.nent fat, and to save labour in trowelli.g the face up to a smooth surfaee; the lime takes weeks to get hard, the ce:nent takes days only, hence the two cannot agree. Labour to the cement and clean wavlied sand is all that is required.

2251d. For iuterior cmbellishments, the cements known as Martin's. Keene's, ana Parian, are largely adopted. Martin's cement is marufactured in three qualities, coarse fine, and superfine. The coarse quality presents a whitish speckled surface, and is supplied in red, ligist red, and grey, colours. 'The fine is whiter ; the superfine is a cream colour. It is said to cover 20 jer eent more surface, at half an inch in thiekness, at a less cost than an equal quantity of any other cement for internal use, and to be 35 per cent. cheaper than such cements. For walls. 1 part of coarse cement is used with $1 \frac{1}{2}$ of elean dry sharp sand, for the under coat of balf an inch thick. finished with $\frac{1}{8}$ inch thick of pure cement. It is of a fircproof charaeter, and preserves to some extent the building from damp : the cement is supposed to continue to indurate with age, and therefore to be very durable. When adopted for floors, skirtings, and other finishings, whether plain or ornamental, in lieu of wood, the cost is stated to be less than similar work executed in that material, while in appearance it is very much superior, as it takes a fine polish. It can be painted upon within twenty hours after having been worked on old briekwork, and in twelve hours when on lathed work; but all three qualities are as well without paint. Plaster of Paris must not be mixed with it, or Roman or Portland cement used as an undereoat.
2251e. Keene's cement is said to show on its face the lines of any woodwork which it may be carried across. If required, it ean be painted upon in twenty-four hours after the coat on old brickwork is completed. Skirtings, flooring, and internal stucco are worked in this material, on account of its superior hardness. This cement will mix with any of the metallic oxides, \&c., to produce a coloured cement.

2251f. Parian cement (Keating's patent), for internal stucco, has been used throughout the Westminster palace. It does not efforesee, takes paint or paper in forty-eight hours, and makes a very hard and beantiful seagliola. It sets in four or five hours. It must not be treated as common plastering, by being hand-floated up with water, as for all purposes as little water as possible is to be used with it. This material must not come in contact with green lime, or with limewater in any of the operations. On brickwork, it is first floated about $\frac{1}{2} \mathrm{in}$. thick, with equal parts of clean washed sharp sand, and the surface slightly dragged. The next day a setting coat, $\frac{3}{16} \mathrm{in}$. thick. of net cement, may be worked, laid down with a beech float and stightly trowelled. If intended to le painted or papered, the first coat of paint should be applied from twenty to twenty-four hours after. The paint is to be mixed, for the first coat, only one-fourth oil and three-fourths turpentine, and with a very small portion of red lead and gold size. The succeeding coats of paint are to be mixed in the usual manner. On lathing, the laths may be closer than usual; the first cont of equal parts of elean washed sharp sand and cement, broomed while soft, and floated the next day with cement as before; the setting coat to be followed up next day, and finished as described for briek work. The three coats will be ${ }_{3}{ }^{3} \mathrm{in}$. in thickness.

2251g. Damp walls require a first coat of Portland cement $\frac{3}{3}$ in. thick ; when dry, a coat of $\frac{1}{2}$ part of Parian cement mixed with $\frac{1}{4}$ part of washed sand, gauged very stiff, rubbed in hard, and dragged before it sets. When hard, a floating coat without sand is to be applied; to be set as before on the following day, and painted on the sueceeding morning, withont fail.

2251h. For flours, the cement mixed with $\frac{1}{3}$ part of Bath stone dust, $\frac{3}{8}$ in. thick, is to be laid on a solid bottom of Portland concrete, in one body $\frac{3}{3} \mathrm{in}$. thick. On common plastering, where the ordinary time is allow fod for finishing the works, the plaster is to he laid fair, and dragged and left to dry ; the cement to be mixed with an equal part of washed sharp sand and floated $\frac{1}{2}$ in. thick. The next day a thin coat of cement having $\frac{1}{8}$ of sand is laid down and trowelled as before. If required to be papered, it must first bave two coats of
paint. In patching, when required to be painted or distempered on immediately, the edge of the old plastering is to have first a coat of paint.

2251i. For polished work on walls, the floating coat is mixed with equal parts of sharp saud and cement. The setting coat is $\frac{1}{4} \mathrm{in}$. in thichness, of fine net cement, rubbed down with grit stones and water; the grit is to be then well washed off, and when the water is gone, a stopping of tine cement mased up stitf in a pan is to be applied a:d well rubbed in. This is then to be scraped off with a wood scraper, and the stopping repeated until a proper face is obtained, leaving a scum on the face to be taken off by the next grinding, which should be done with finer grit stones. 'The stopping is to be repeated and finally finished with snake stone, putty powder, and clean cloths. Three or four weeks' time is reguired before a good polish can be obtained. it being essental that each successive stopping of fine cement should be allowed several days to harden betore the surface is again scraped.
2251 k . For casting work, the cement is to be mixed stiff and dulbed in the moulds with a brush, and then left until thoroughly set. Such are the instructions for all thise several processes issucd ly Messrs. Frane.s, the manufacturers of this cement, which was apphed to the walls of the wards, corridors, and staireases of Midulesex Hospital, in 1849, from its non-absorbing qualities.
22517. A very good speeimen of plain decorative work is to be seen in the boohingoffice of the London, Clatham, and Dover Railway Company, at the Victoria Stanon. The walls, piers, \&e., were executed in this cement, then painted in flat tints, and var nished and polished several times.
22.51 m . Cement floors may be made in an economical manner, by first forming a bed of concrete to prevent damp rising, then placing on it a coat $1 \frac{1}{2}$ in. thack of Atkinsen's cement, mixed with three of clean fine sand; or in Roman cement; or in Portland cement, with four of sand, floated in by a rule on screeds, care being taken to prevent the joints setting. If the cement set slow, it may be trow lled down while soft, but not when it is setting, or the face will be injured. If th:e cement sets very quick, a rough key is to be formed. and then covered with fine mortar $\frac{1}{8}$ in. thick, trowelling it gently before it begins to set. $1 f$ rising damps be not anticipated, the floor may be first paved with clean hard brickbats in licu of concrete, and covered an inch thick with good cement.
22.11n. Portland cement floors have answered perfectly in several instanees, but it is an uneertain material; therefore, where the floors were not to be cocerel, or where a slight defect was of consequence, it has been considered better to ose other cements, such as Keene's, as employed at the Metropolitan Convaleseent Asylum, Walton-on-Thames. A good tloor for common purposes is made of a concrete formed of f parts of cluan gravel to 1 of ground lias lime: this is generally impervious to damp and vermin.
22510. The bituminous cements are used for paving, and for covering the extrados of arches to prevent the percolation of water through them. In all new coinstructions, there are always movements which crack the coatings executed in limes and catural cements, which are also subject to unequal shrinkage, producing crevices; and from these united causes, it is very rare to find such coatings impermeable. The bituminous cements are more elastic; it may liappen that snall crevices, so to speak, soder themselves, and if any serious repairs are required they are much easier to be executed than in those works executed with limes. When asphalte is to be us d, it is placed in a quantity of nearly boiling mineral pitch to secure its melting. Colonel Emy found the fullowing proportions as the best for the asphalte of Gangeae, and it may le taken for the others of this class of cements, when used as a coating for arches:-
$2 \frac{1}{8}$ pints (wine measure) of pure mineral pitch.
11 lbs. avoirdupois of litumen or asphalte.
17 pints of powdered stone dust, wood ashes, or minion.
It is advisable to lay this mixture upon a bed of concrete or mortar; and as much as possible in slabs of 2 feet 6 inches to 3 feet in width. It should be evenly spread and compressed with a trowel, well rubbed, and reduced to a uniform close surface. When all the bubbles have been expelled, a tine sand is sprinkled over the surface, and worked in with the trowel, observing never to fill the crevices formed by the air-bubbles with sand, but ouly with asphalte. The thickness for coating any arehes is not more than from three fiftis to half-an-incl. The quantity of cement thus employed to cover a yad sfluare is about $4 \frac{1}{2}$ Jls.
.2252. It is scarcely within the branch of the plasterer's practice, but as we shall have no other place for adverting to it, we may as well here mention what are called "eomposition." ornaments, seldom used in cornices, but principally for the decoration of chimneyglasses, frames, and to woodwork generally. The composition is very strong when dry, of a brownish colour, consisting of about 2 pounds of powdered whiting, 1 pound of giue in solution, and half a pound of linsced oil mixed togetiner in a coiper, heated and stirred with a spatula till the whole is incorporated. After heating it is laid upon a stone covered with powdered whiting, and beaten to a tough and firm consistence, when it is laid by for use, covered with wet cloths to keep it fresh. This composition is then put into moulds and pressed. Later inventions have nearly caused its disuse in architectural decoration.

Sect. X.

SMITHERY AND IRONMONGERY.

22.53. Smithery is the art of uniting several lumps of irgn into one lump or mass, and forming them into any desired slape. The operations necessary for this are primarily performed in the forge, and on the anvil with the hammer; but for finishing, many other implements and tools are necessary. These, however, we do not think nseful to partienlarise, a course we have pursued in the other trades, because the expedients introduced by the engineer and machinist have of late years, except in rough work, superseded many of them. It is now, for instance, easier to ple ee iron to a perfect surface than it was a few years ago to file or hammer to what was then always an imperfect one. Formerly a man would be occupied as many minutes in drilling a hole as by nachines it now takes seconds to perform.
$\because 254$. We have, in a previous section, given all the particulars relating to the produce of the metal from the ore; in this section we propose little more than to enmmerate the different objeets which the smith and ironmonger furnish in the construction of buildings; and introductory to that it will be eonvenient to subjoin tables of the weights of round and bar iron, and also of the weights of 1 foot of close hammered bar iron of different thicknesses; remembering that a cube foot of close hammered iron weighs about 495 lbs ., of common wrought iron about 480 lbs , and of cast iron 450 lbs ., whence may be derived the weight of other solids whose cubic contents are known.

Table showing the Welght of one Foot in lengtil of a square Iron Bar.

Side of Square nches. meche	Weight in lbs. avoirdupois.	Side of Square in inches	Weight in lbs avolddupois.
$\frac{1}{7}$	$0 \cdot 1875$	21	$15 \cdot 0625$
$\frac{3}{8}$	$0 \cdot 4687$	21	16.8740
$\frac{1}{2}$	$0 \cdot 8125$	$\bigcirc \frac{1}{5}$	18.8125
$\frac{5}{8}$	1-2812	$2 \frac{1}{2}$	$20 \cdot 8123$
$\frac{3}{1}$	1.8740	25	29.9687
$\frac{7}{8}$	$2 \cdot 5625$	ε^{3}	$2.5 \cdot 1875$
1	3:3125	27	$27 \cdot 7500$
118	$4 \cdot 2187$	3	$30 \cdot 0000$
11	5-1875	31	$32 \cdot 5312$
13	$6 \cdot 3125$	31	$35 \cdot 1875$
$1 \frac{1}{2}$	$7 \cdot 5000$	33	37.9687
15	$8 \cdot 8123$	31	$40 \cdot 7819$
13	$10 \cdot 1875$	$3{ }^{3}$	43:7812
17	$11 \cdot 7187$	33	$46 \cdot 8740$
2	13.3125	37	$50 \cdot(1520$
		4	53.3125

Table showing the $W_{\text {eight }}$ of ong Foot in length of a round Ihon Bar.

Dianeter in inches.	Weight in lbs. avoirdupois.	Dameter in inches.	Weight in lbs avoirdupois.
1	0.1.562	$2 \frac{1}{5}$	$11 \cdot 8125$
8	0:3750	21	13.2500
$\frac{1}{2}$	0.6562	23	$14.75 \% 0$
$\frac{5}{8}$	$1 \cdot 0000$	21	$16: 34: 37$
3	$1 \cdot 4687$	28	18.0000
7	$2 \cdot 0000$	23	19.7812
1	$2 \cdot 5937$	27	$21 \cdot 6250$
11	3.3195	3	$25 \cdot 5625$
11	$4 \cdot 0937$	$3 \frac{1}{8}$	$25 \cdot 56 \leq 5$
13	$4 \cdot 9375$	31	$27 \cdot 6562$
$1 \frac{1}{2}$	5.937t	$3{ }_{8}^{3}$	$29 \cdot 8125$
$1 \frac{5}{8}$	$6 \cdot 90.52$	$3 \frac{1}{2}$	$32 \cdot 0625$
13	$8 \cdot 0000$	$3 \frac{5}{8}$	34.4062
17	$9 \cdot 1875$	$3 \frac{3}{1}$	$36 \cdot 8125$
2	$10 \cdot 4607$	37	$39 \cdot 3116$
		4	$41 \cdot 8740$

Thise tables give a little less weight than some others now in use. To convert into weight of other metals, inultiply the numbers, for cast iron ly 9.3 ; for stecl by 1.01 ; for copper by 1.15 ; for brass by 1.09 ; for lead by 1.48 ; and for zine by 92 .

Table I. of the Weigut of Iloof Iron, according to the customary width and thickness, by the Birm:ngham Wire Gauge, per 100 feet lengths (Hurst).

Mark. No.	Width in Inches.	Wright in Pounds.	$\begin{aligned} & \text { Mark. } \\ & \text { No. } \end{aligned}$	Wilth in luches.	Wright in Pounds.
11	$2 \frac{3}{4}$	115.78	15	$1 \frac{1}{2}$	$36 \cdot 37$
11 (i)	3	126*30	1.5	$1 \frac{3}{8}$	$33 \cdot 34$
12	$2 \frac{1}{2}$	91-78	16 (16)	$1 \frac{1}{1}$	26.52
12	8	73.42	17	$1 \frac{1}{8}$	$20 \cdot 84$
13	$2 \frac{1}{4}$	$71 \cdot 29$	18	1	$16 \cdot 17$
13	2	$63: 32$	19	$\frac{7}{8}$	12.38
14	3)	$47 \cdot 15$	20	3	$8 \cdot 84$
$\dagger 4$	1.	$40 \cdot 11$	21	\%	6.95

Table 1I. of the Weight and Thickness of a superficial Foot of Sheet lron, by the Birmingham Wire Gauge:-

$\begin{aligned} & \text { M.rfk. } \\ & \text { Nos. }^{2} . \end{aligned}$	D.eimals of anl Inch Thick.	Pomods Wetght.	$\begin{aligned} & \text { Mark. } \\ & \text { No. } \end{aligned}$	Decinals of an Iuch Thick	Pour.ds Weight.	$\begin{gathered} \text { Mark. } \\ \text { Nu. } \end{gathered}$	Decimals of an Inch Thick.	Pounds Weight.
00000 ($\frac{1}{2}$)	-500	20°	10	-137	$5 \cdot 62$	24	-022	1.00
0000	-450	18.	11 ($\frac{1}{8}$)	-125	500	25	-(20)	0.90
$000\left(\frac{7}{16}\right)$	-4375	$17 \cdot 50$	12	-109	4.38	26 (61	-018	$0 \cdot 80$
$00\left(\frac{3}{8}\right)$. 375	1.5	13	-094	$3 \cdot 7.5$		-016	0.74
0	-340	$13 \cdot 60$	14	-080	$3 \cdot 12$	29	-014	$0 \cdot 64$
1 ($\frac{5}{16}$)	-3195	$12 \cdot 50$	15	-079	$2 \cdot 82$	29	-013	0.56
$2{ }^{\text {a }}$	-284	1200	$16\binom{1}{16}$	-06:5	$2 \cdot 50$	30	-012	$0 \cdot 50$
3	261	$11 \cdot 00$		-0. 5	$\underline{2} \cdot 18$: $1\binom{1}{125}$	-010	$0 \cdot 40$
$3-4$ ($\frac{1}{4}$)	-250	10.00	18	-048	1*6	32^{20}	-009	0.36
5	-292	8.74	19	-012	1:\%	33	-008	0.32
6	$\because 09$	$8 \cdot 12$	20	-03.5	$1 \cdot 54$. 34	- 007	0-28
7 ($\frac{3}{16}$)	-187.5	7-50	91 ($\frac{1}{32}$)	-0312	$1 \cdot 40$	35	-005	$0 \div 0$
8	-166	$6 \cdot 86$	24	-029	$1 \cdot 2.5$	36	-00 4	$0 \cdot 16$
9	$\cdot 158$	$6 \cdot 24$	2.3	-025	1-12			

Table lil. of the Weight of a Superficial Foot of Plate Iron in Pounis.

Thickness, parts of an Inch	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{3}{16}$	\%	$1{ }^{3}$	${ }_{8}^{3}$	${ }^{7}$	$\frac{1}{2}$
Weight in pounds -	2.526	5059	7:578	$10 \cdot 104$)	$5 \cdot 1$	$17 \cdot 682$	20.208
Thickness, parts of an Inctur	$\stackrel{9}{16}$	5	116	${ }^{3}$	13	8	- 15	1

Tahle IV. of the Whght of Ordinary Angee Inon in Pounds per Lineal Foot.

Breadtı in inclies				$1 \frac{1}{4}$	$1 \frac{1}{2}$		$1 \frac{3}{4}$	2	$2 \frac{1}{4}$	$2 \frac{1}{2}$			3		$3 \frac{1}{2}$
Weight per pound	-	-		1.8		7	$3 \cdot 31$	$5 \cdot 9$	5.0	$6 \cdot 5$	8.		104		14.0

Table V. of Weight of lkon Bolts and Nuts. (Mulholland, in Builder, iv. 22.)

Diameter of 13olt, inch.	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	${ }^{7}$	1	$1 \frac{1}{8}$	$1 \frac{1}{4}$	$1 \frac{3}{8}$	$1 \frac{1}{2}$	$1 \frac{5}{8}$
Weight per foot of round lron, pounds \}	\because	$\bullet 4$	$\cdot 7$	1.0	$1 \cdot 5$	20	2.7	3.4	42	5.0	6.0	7.0
$\left.\begin{array}{l}\text { Weizht per incls of } \\ \text { round Iron }\end{array}\right\}$	016	. 033	-058	. 083	-125	166	$\cdot 295$	283	-350	$\cdot 416$. 500	.583
$\left.\begin{array}{c}\text { Weight either of } \\ \text { Mead or Nut }\end{array}\right\}$. 021	-062	-145	$\because 26$	$\cdot 468$	-729	$1^{1.125}$	1.72	$2 \cdot 187$	$\left.\right\|^{2.86}$	${ }^{3 \cdot 75}$	474

2254a. Bolts are now often made with square heads, so that these being let into the timber, the stem cannot turn while the nut is being screwed up. Machinery has been breught to b-ar for the manufacture of bolts, rivets. spikes, and other like articles; "the metions are so arranged that no attention is required beyond entering the bars into the fecd rolls and cleaning the pieces of the ends of the iron out of the dies."

Ta'le showing the Weight of closc-lammerd flat Bar Iron, from One Inch wide and an Eighti of an Inch thick to Twelfe Inches wide and Une Inch thick.

Inclies, mid thei breadthoreadu.	Thickness in Parts of an It.cle, and Weight in Pounds avoirdupois.							
	$\frac{1}{8}$	t	\% ${ }^{\text {a }}$	$\frac{1}{2}$	\%	:	\%	1
1	$04!9$	0.859	$1 \cdot 289$	1.718	2148	2578	$3 \cdot 0 \cdot 7$	3437
$1 \frac{1}{8}$	0.484	$0 \because 68$	1.503	1.937	2-422	$2 \cdot 905$	3.383	38 n 8
$1 \frac{1}{4}$	0539	1.078	1.639	$2 \cdot 148$	$\stackrel{2}{682}$	$3 \cdot 226$	5.758	4.305
13	0.593	$1 \cdot 187$	1.773	$2 \cdot 368$	2953	3547	4-133	4726
$1 \frac{1}{2}$	$0 \cdot 648$	1.289	1.937	$2 \cdot 579$	3.218	3.867	$4 \cdot 508$	$5 \cdot 156$
$1{ }^{2}$	$0 \cdot 695$	1:398	$2 \cdot 103$	$2 \cdot 789$	3492	$4 \cdot 187$	4890	5.55
$1 \frac{3}{4}$	11.750	1:500	22.51	3.008	3.758	$\pm .508$	$5 \because 66$	6016
$1 \frac{1}{8}$	0801	$1 \cdot 619$	$2+14$	$3 \cdot 218$	4281	4835	5.641	6.445
2	08 8.9	1.699	2.578	3437	$4 \cdot 297$	5•15i	6016	6×74
$2 \frac{1}{8}$	0.913	1.828	2.742	3.3 .56	$4 \cdot 562$	$5 \cdot 46$	6391	7\%305
$2{ }_{4}^{\frac{1}{4}}$	0.948	1.937	$2 \cdot 897$	3867	$4 \cdot 835$	5•805	6766	7.734
23	1.023	2039	3062	$4 \cdot 148$	5•101	$6 \cdot 125$	$7 \cdot 148$	S 161
$2{ }^{2}$	$1 \cdot 069$	$2 \cdot 148$	3218	$4 \cdot 297$	5375	6.445	$7 \cdot 547$	$8 \cdot 594$
$2{ }^{2}$	1.12.5	$2 \cdot 250$	3383	4.516	$56+1$	$6 \cdot 7 \mathrm{6} 6$	$7 \cdot 897$	$9 \cdot 023$
$2 \frac{3}{1}$	1.179	$2 \cdot 366$	3:500	4.726	$5 \cdot 905$	$7 \cdot 093$	$8 \cdot 273$	$9 \cdot 443$
$2 \frac{7}{8}$	1234	$2 \cdot 468$	$3 \cdot 721$	$4 \cdot 937$	6180	7. 414	8.648	$9 \cdot 882$
3	1-289	$2 \% 78$	$3 \cdot 867$	5.1.6	6.445	7-734	$9 \cdot 023$	10312
$3 \frac{1}{8}$	$1 \cdot 344$	$2 \cdots 87$	$4 \cdot 1031$	$5 \cdot 375$	6.734	8.035	$9 \cdot 398$	11.742
$3 \frac{1}{4}$	1.398	2.789	$4 \cdot 187$	5609	6.484	8.375	9.773	11.172
$3 \frac{3}{8}$	$1 \cdot 443$	$2 \cdot 905$	4.335	$5 \cdot 80{ }^{\circ}$	$7 \cdot 20$	8.703	$10 \cdot 156$	11.601
$3 \frac{1}{3}$	1.500	$3 \cdot 007$	4.508	$6 \cdot 016$	$7 \cdot 516$	9.039	10503	12.031
$3{ }^{3}$	1.562	$3 \cdot 117$	$4 \cdot 672$	$6 \cdot 226$	7.789	$9 \cdot 344$	10915	$12 \cdot 461$
$3 \frac{1}{1}$	1.609	$3 \cdot 218$	4.860	6.445	$8 \cdot 062$	9.664	11.281	12.890
$3 \frac{7}{8}$	1.630	$3 \cdots 28$	$5 \cdot 000$	6.656	$8 \cdot 328$	9.992	11.656	13320
8	1718	$3 \cdot 137$	$5 \cdot 1515$	6.874	8.593	10312	12031	13.750
8	$3 \cdot 436$	6.874	$10 \cdot 312$	13.748	17.186	$20 \cdot 624$	$24 \cdot 062$	$27 \cdot 400$
12	5156	10.312	$15 \cdot 469$	24605	2b.781	$30 \cdot 937$	3 b 019 t	41250
If of Cast Iron.								
12	4.835	9.664	14.500	19.326	24.172	29.000	$33 \cdot 536$	38672

2255. For the carcase of a building the articles furnished by the smrt are, wrought iron columns with caps and bases for the support of great superineumbent weights. Wrought iron columns were used in England as early as 1860 by Sir W. Fairbairn, together with wrought iron ginders, and brick arches for fireproof work. When columns are beyond a certain length in proportion to their diameter they fail by bending, and not ly crushong; also wrought iron is much stronger to resist tension than east iron; and as it is an undoubted fact that comections can be made to wrought iron much better than to cast, we have here a combination of advantages where long columns have to be used which cannot but be appreciated. The use of stecl for constructional purposes is increasing rapidly, as it is so much more reliable than iron. Messrs, Lindsay roll many sactions of steel which can very easily be formed into columns by riveting. A column made of a series of steel troughs, 16 inches diameter externally, would bear a safe load of 115 tons if 30 feet long, and the weight would be 74 lbs. per foot only. A cast irons column 16 inches in diameter, 30 feet long, with $1 \frac{1}{2}$ inches of metal. would (roughly) in weight be 220 lls . per foot run, and safe luad 100 tons (J. Slater). Combination columns of stecl carl be made to 6 feet diameter; these, having a centra! concrete filling and outer ring of bricks in cement, can be designed to sustain a load up to 2,000 tons. They are made from 13 inches to 48 inches in diameter, and are stated to be not more expensire than cast iron culumns, and far superior. Cast iron columns and stanchions were preferred both for ceonomy and stiffness, as was also that matcrial for girders, bcams, joists, and bressummers, until the introduction of plate iron and rolled iron (all which have benu treated in previous sections). Iron columns can be rendered fircproof by encasing them with fireclay blochs, groored and secured by iron plates with claws, which fit on the rivet heads. For round columns a metal band is hrought round the column, hooked tozether, and dropped into the groove of the blocks. In tither case a heary bed of mortar is next appled, and then another course of blucks is bedded over the band or plate. Thea it is

 2月ำ.

 -Tom r aty

 Enuotio

 Tin的

 －inz iva i－uming ！

 －

Yy 5 유․

さますが

 $\because こ \mathrm{~K}$

可动

our prorince, except to notice them. With this subject is connected the raricties of revolving shutters in iron, wood, or steel, and with or without machinery; and made to lift up, or down, or to more sideways. A revolving safety shutter in one sheet of stepl is probably the last insention; it requires no machinery. Where the old method of putting up shutters exists, Jennings's shop-shutter shots secure them as they are each put up, without the necessity of any shutter bar.

2255 g . Wrought iron wine bins, and new registered iron bins, adafted for small quantities of wine, placed in a closet in a sitting or other room, and with or without doors, will be found a useful addition in small houses.

ORNAMENTAL METAL WORK.

$225 \mathrm{j} h$. The ornamental portion of smith's work has been largely introduced, of late years especially, in wrought iron shaped by hand into various devices and patterns, muro especially according to the several periods of mediæval architecture. The taste is chiefly developed in gates, railings, altar and staircase standards, screens, grilles and gratings, tombs, hinge fronts, the band finishing either in a fleur de lis or trident, rearhing to about three-fourths of the width of the door, and of $\frac{3}{8}$ ths iron; or in snne scroltwork, which curls and scrolls over the entire face of the door ; shutter hinges, common door hinges; gable crosses, terminals, vanes, and hipknobs; ridge crestings; drop handles with plates, closing rings and plates; lock plates and escutcheons, knockers, keys, latches and bolts, bell pulls, levers and plate pulls; umbrella stauds; scrapers; fenders ant fire-irons; dog-grates; lecterns and book rests; candlesticks. gas, lamp, and candle pendants and brackets, desk lights, and standards ; coronæ lucis, lanterns, and pillars. It is almost unnecessary to add that many of these articles are to be had in polished brass, and that many of them are imitated in cast iron. Wrought and cast iron, as in panelled work to gates, are sometimes employed together, the wronght parts enclosing the panels.
$2255 i$. As iron has now neither the tenacity nor the ductility which it gained by the old process of being repeatedly forged, the modern smith can scarcely hope to emulate the fine works which were produced in mediæval times, unless the iron be made for the purpose. It is not easy to repeat the mediæval operations of slotting a bar, so as to get the eyes at equal distances, without a machine; or of fastening hot (or, as in later times, cold) clips; or of cutting slits into a bar from the edge, and then curling the splintered parts; yet these were common work for the smith in the 12th century. It is equally difficult to produce the twisted work which was easy to the mediral smith, whose chief care in the 13th and 14th centuries was bestowed in welding, stamping, and chiselling ; the file was scarcely ever used. In welding he was careful to fire the two parts separately, getting the upper one to a white heat, the lower part to a red heat, and hammering the joint lightly at first, but harder as the iron grew colder. He disguised the moeven state of the upper part by punching on it separate dots, or else close ones, forming a sort of incised line.
$2255 j$. In very large specimens of ancient work, some parts are additions entirely welded, others are additions confined at the ends by bands, which are welded across the ground work. To imitate work of the 13 th century, such as a grille, requires a drawing at full size, and a matrix for each leaf or bud, with an anvil cut to each section which a bar or a band is to assume; this last serms, with regard to the bar, to have been overlooked by M. Viollet-le-Duc. Then, when a bar has keen rounded (if needful), and the end stamped, the curl is giren, and the smith has a stalk with a frot. Two of these must be applied to the drawing to have the point of junction marked, and the feet are to be welded together. If the sprigs then made are to be combined into brunches, the larger stem is to be prepared; and, if moulded on the face, this was passed between the hammer and the cut anvil by a process equivalent to rolling the bar. After the sprigs are welded with the branch, the poverty of the joint is perhaps to be masked; usually the mask was a moulded band, to which an ornament, e.g. a cup of foliage, was sometimes added; but frequently the band was superseded by a stamped button. After the feet of the branches are welded to the trunk or main stem, bands are laid over the junction, are welded, and are finished with the chisel. The whole has to be riveted to the framework. The sizo and weight of the pieces at the last times of welding were difficulties that were partly obviated after 1250 ly omitting the welded bands.

2255 k . These operations were superseded by the introduction of sheet iron, in England before 1300, in Germany before 1400, and in France soon afterwards, which was cut and bossed to a remarkable extent, sometimes stamped, and frequently welded, but later was riveted. In work of the 15 th century the bars are neither stamped nor chazed, and the sheets are riveted mstead of being welded; but later they are either planted or housed. Finally, the medirval sm:th re urned to the slots, mortises, and
short bars of the earlier periods, and used clips which were closed cold with rirets of soft iron.
225.5l. The use of metal work in decoration, hoth as fixed in buildings, and in usefut movable articles, is most ancient ; the use of bronze is recorded extensively in Greece and Rome. The metal so used has been mostly lost to us. Except gold, this is the most enduring metal, and is susceptible of the finest work which the modeller can bestow upon it, and the chaser can enlarge on it. Its tenacity, too, enables cast work to have thick and thin places, such as cast iron, and to some extent cast brass, will not allow without cracking. The statue of Colleoni at Venice, by Verocehio, is a fine example, together with its band of bronze ornament round the pedestal. The gates and enclosure of the tomb of Henry VII.'s chapel in Westminster Abbey should be studied for the art as well as for their curious construction. Bronze is a metal which is beautiful if left in its own golden tone, and in changing from this tone it never becomes ugly. It can be gilt. an 1 will take rarious patinas, the green, brown, and black; and when used with marble of contrasting colours, produces effects which cannot be had so well in any other way. J. S. Garlner, Mf.mumental Use of Bronze, in Journals of February and March, 1888, which describes the cire perdue process of casting.

2255 m . Wrought iron has special qualities of strength, tenacity, durability, and relative cheapness. It has lately come more and more into use. Hinges, screens, railings, grilles, knockers, door handles, dogs, fenders, filtings for lights, fire irons.
$2255 n$. Polished iron is to be seen, but is not generally suitable for use in this damp climate, but the fine grey polish it takes is very harmonious with rooms richly furnished.

22550 . Steel was much used in the latter part of the 18th century; it has mather a cold and severe tone, but where it can be kept clean it may bo used with excellent effect.
225.5p. For external work, black or painted wrought iron must be used. The present manufacture of iron is not farourable to durability ; the old mode of smelting by chareoal made a finer, close and ductile iron, and less liable to rust; and perhaps the at mo-phere in the great cities and towns is not favourable to the duration of wrought iron work. For fine work the best iron should be used, especially when the work is intricate and needs many welds. The French work of Louis XIV's time is very stately, rich, and well balanced in design, with firm leading lines and graceful foliage and garlands. In Lonis XV.'s time the curves became bolder and looser, as in all art of that time, as in the eight screens in the Grand Place at Nancy. In Louis XVI's time the work became elegant and rather stiff. Soon after, fine ironwork died out. The German work is comparatively clumsy, and the endless scrolls with sprays going out at strange tangents, and passing through the scrolls in gratuitously difficult ways, the scrolls ending in flowers of the shape of cocoons, and with antenne springing from them, so as to renind one of great insects, are not very beautiful, if clever from the ironworker's point of 'view. In later times ironwork thronghout Europe seems to hare been greatly affected by the French taste of the time. In Eugland, the very noble work of Huntington Shaw, now at the South Kensington Museum, having been removed from Hampton Court Palace, is different from any other work, though it has its points of resemblance with French ironwork. This and the gates and grilles in St. Paul's Cathedral are some of the best ironwork in England. The construction is good, and the ornament is so applied as to enrich the construction without hiding it, and to make a good composition of open and solid work, well contrasted and varied in the screens almost infinitely. There is a largeness of style in these screens and in the St. Paul's work, probably impressed upon it by Sir C. Wren. The later work at the Adelphi has a very good contrast of free and rigid lines.
$2255 q$. There is no reason why the men now living should not do work as good as the old men did. There is still skill, patience, and dexterity in the country, and English work from the 12th to the 18th century can be well compared with work of other countries, so we need not he ashamed to compare that of the 19th century. The design must be suitable to the material. (H. Longden.)
$2255 r$. The chief artucles furnished by the ironmonger are for the joiner's use, and, except in particular cases, are kept in store by that tradesman fur immediate supply.
2257. They consist in screws made in brass, copper and iron, whose common sizes are from three-quarters of an inch up to 4 inches in length. They are sold by the dozen. Self. boring wood screws, the thread being made at a particular angle, are supplied in lengths of $\frac{1}{2}, \frac{5}{8} . \frac{3}{4}, 1,1 \frac{1}{4}, 1 \frac{1}{2}, 1 \frac{3}{4}, 2,2 \frac{1}{2}, 3,3 \frac{1}{2}$, and 4 inches.
$2257 a$. Nails ard now both wrought, eut, and cast, and made of iron, copper, and zinc. They are called by a rariety of names, according to their special uses. The principal are here enumerated, Back nai's, whose shanks are flat so as to hold fast but not open the
wood. Clamp nails are for fastening clamps. Clasp nails, or hrads, are those with flatted heads, so that they may clasp the wood. They also render the wood smooth, so as to admit of a plane going over it. The sorts of most common use in building are known by the names of ten-penny, twenty-penny, and two-shilling nails. Clench nails are such as are used by boat and barge buildtrs, sometimes with bores or nuts, but often without. They are made with clasp heads for fine work, or with the head beat flat on two sides. Clout naiis, used for nailing clouts on axle-trees, are flat headed, and ironwork is usually nailed on with them. Deck nails, for fastening decks in ships and flcors nailed with planks. Dog or jobent nails, for fastening the hinges of doors, \&c. Flat points are of two sorts, long and short; the former much used in shipping, and useful where it is necessary to hold fast and draw without requiring to be clenched; the latter are furnished with points to drive into hard wood. Lad nails, used for nailing lead, leather, and canvas to hard wood, are the same as clout nails dipped in lead or solder. Port nails, for nailing hinges to the ports of ships. Ribbing nails, used for fastening the ribbing to keep the ribs of ships in their place while the ship is building. Rose nails are drawn square in the shank. Rother nails, chiefly used for fastening rother irons to ships. Scupper nails, much in use for fastening leather and canvas to wood. Sharp nails, much used in the West Indies, and made with sharp points and flat shanks. Sheathing nails, for fastening sheathing boards to ships; their length is usually three times the thickness of the board. Square nails are of the same shape as sharp nails; chiefly used for hard wood. Brads are long and slender nails without heads, used for thin deal work to avoid splitting. To these may be added tacks, the smallent sort of which serve to fasten paper to wood; the middling for medium work; and the larger size, which are much used by upholsterers. These are known lyy the name of white tacks, two-penny, three-penny, and four-penny tacks. Cut nails are now much used.

2257b. Nails of Crown quality comprise "cut elasp of inch, $1 \frac{1}{2}, 2,2 \frac{1}{2}$, and 3 to 6 inches long. Flonr brads of $2 \frac{1}{4}$ and $2 \frac{1}{2}$ inches long. Cut lath of $\frac{7}{8}$ and 1 inch. Joiners' brarls of $1,1 \frac{1}{4}, 1 \frac{1}{2}, 1 \frac{3}{4}$, and 2 inches. Steel flat point rose for clenching, $1 \frac{1}{2}, 1 \frac{3}{4}, 2,2 \frac{1}{4}, 2 \frac{1}{2}, 2 \frac{3}{4}$,
 inches long. Slate nails, $1 \frac{1}{4}$ or $1 \frac{1}{2}$ inches, of zine, wire, malleable, galvanized." Spikes of 5, 6, and 7 inch lengths. See Glossary, adyesion.

2257 c. Weight of Flooring Brads rer 1,000 (rarely exceeding 900 Nails).

Wrought.		Patent Cut.		Thickness of fluors.
Lengtb.	Weight.	Length.	Weight.	
2 inch.	8 lb .	2 inch.	8 lb .	$\frac{3}{4}$ inch.
$2 \frac{1}{4}$ "	10 "	21 "	10 "	Inch.
	12 ",	$2{ }_{2}{ }^{2}$,	12 ",	Inch.
$2^{3}{ }^{3}$	16 "	$2 \frac{3}{4}$ ",	15 ",	1_{4}^{1} inch.
	20 "	3 ,"	18 "	$1 \frac{1}{2}$ "

22.57d. Tacks are tinned over; and all nails can be galvanized to prevent their rusting. Nails for ornamental purposes, and likewise screws, are made with brass heads, and the latter also with gilt heads.
2258. Butt hinges, whose name is probably derived from butting close surface to surface when closed, are used for hanging doors and shutters, and made of wrought and cast iron and brass, the former varying in size from $1 \frac{1}{4}$ to 4 inches in length; the latter from 1 inch to 4 inches. These, as well as all other hinges, are in size necessarily proportioned to the magnitude and consequent weight of the shutters or doors they are to carry; and it is to be observed that, for the well-hanging of a door or shutter, the size of the hinge should be rather on the outside of enough than under the mark. There is a species of hinge used for doors called the rising joint hinge, a contrivance in which the pirot, haring on it a short portion of a spiral thread, and the part to which the door is fixed having a correspondent mass, the door in opening rises, and clears the carpet or other impediment usually placed on the floor. The projecting brass butt is used when the shutter or door is required to clear some projection, and thus, when opened, to lie completely back in a plane parallel to its direction when shut. All hinges are sold by the pair, including the necessary screws.
$2258 a$. Besides these hinges there are cross garnets, whose form is like the letter \vdash sidewise. These are only used on the commonest external doors, and are made from 10 to 12 inches, varying in their dimensions by differences of two inches. H hinges are of the shape of the letter H, showing their form as well as the origin of their name; and in their sizes range from 4 to 12 inches by differences of an inch. H hinges (H and L conjoined), whose form is implied by their name, and whose sizes are l'rom 4 to 14 inches,
proceed by inches. Parliament hinges are to allow a shutter to open back upon a wall, and are made of cast and wrought iron, frum $3 \frac{1}{2}$ to $\tilde{0}$ inches, proced ding in size by half inches.
2258h. Redmund's patent linges consist of, iron rising butts; or in brass with moulded burnishel knuckles and concealed joints; iron and brass projecting butts with moulded buruished knuckles, flaps, and concealed joints, in three sizes of proportional strength, from $1 \frac{1}{4}$ to $4 \frac{1}{2}$ inches projection ; pew hinges, in iron and hrass, projecting $1,1 \frac{1}{2}$, and 2 inches. Rising spring hinges in iron; and not rising spring hinges, in brass, uron, and patent malleable iron, and of single and double action; these are made flush, the knuckle being made to suit the bead of the architrave; rising swing binges, which rise and act each way ; gate hinges of many descriptions, \&c.
$22 \overline{5} 8 c$. Coliinge's patent spherical hinges run from 2 to 6 inches, in plain brass, orn:1mental brass, and cast iron. The gate or strap hinge, from 1 foot 6 inches to 3 feet 6 inchos, in steps of 3 inches. Improred gate springs, with hardened joints. Spring hinges, and also to open both ways, are made light, strong, and extra strong, for $1 \frac{1}{2}, 2,2 \frac{1}{4}$, and $2 \frac{1}{2}$ inch doors, in iron and lirass.
22.58d. Among other useful hinges are swing centres, double action, to open both ways, known as Smith's patent, Redmund's and Gerish's, chiefly for 2 and $2 \frac{1}{2}$ inch doors. Hat's iron rod door springs, frum 15 to 42 inches, called No. 1, No. 2, No. 3 and No. 4 qualities, also brass mounted. Circular door springs. Rising and not rising door back springs; spiral door springs; and patent climax door springs for single and double action doors, must also be noted for closing doors.
2259. Rough rod bolts are those in which there is no continued barrel for the bult, and are for the most common service. Their sizes begin with a length of 3 inches, and proceed by inches up to a length of 10 inches; such, at least, are their common sizes. Bright rod bolts run of the same sizes as the last; and, as the name indicstes, the bolt is polished and finished, so as to make them a better fastening, as far as appearance is conconcerned. The spring plate bolt is contrived with a spring to keep the bolt up to its work, but one which so soon gets out of order that we wonder it is now manufactured or used. It is made of lengths from 3 to 8 inches, by variations of an inch in size. Barrelled bolts are those in which the whole length of the bolt is enclosed in a continued cylindrical barrel, and are superior to all others in use, as well as the most finished in their appearance. The common sizes are from 6 to 12 inches, varying by steps of an inch. All the bolts above mentioned are sold per piece by the ironmonger, as are these called flush bol/s, a name given to such as are let into the surface to which they are applied, so as to stand flush with it. They are mostly made of brass, and are of two different thicknesses, viz. half and three-quarter inch. Their lengths vary from $2 \frac{1}{2}$ to 12 inches, and occasionally, as circumstances may require, as in book-case doors and French sashes, to a greater lengt h. But for French easements, what is called the Espagnolette holt, a contrivance whose origin is French, though much improved in its manufacture here, is now more generally in use. Smith's patent weather-tight casement fastenings for French windows, consist of a plate formed in the elge of one door, which when shut is forced half its width into a groove in the other door. This acts in lieu of the E-pagnolette bolt abore mentioned. Smith's patent water bar for easements opening outwards has been mentioned in pars. 2165 . and 2255 d. Jackson's patent mortise bolt appears to be a late improvement upon the round or the flush bolt. Elliott's patent perfict simplex metal weather bar is adapted for all sorts of casements and doors opening inwards. It is made in zinc, brass, and iren.
2260. Pulleys, for hanging sashes and shutters, are made of iron and of brass, and with brass sheares and brass axles. Their sizes are from one inch and a half to two inches and a half in diameter. M'Adam's pulleys for window sashes, of porcelain or ritreous material, are consicered to be exempt from damp and rust through which eords may become rotten. He adds to them a method of hanging doub'e sashes with a single weight on each side of the window. Johnson's patent axle pulley for sashes, whereby tho wheel, axle, and lushes can be removed for oiling and cleaning; the two last being envered in, are protect.d from dust and damp; and the wheels cannot get fixed as in ordinary pulleys. Adams' patent reversible and sliding window, by which the glass ean be cleaned from the inside. Solid-frame oilable sash pulleys. Austin's imperial patent sa-h and blind lines are made of flax in fonr qualities, and his new imperial patent flax sash line for heary weights. l'atent liraided sash line with a twisted copper wire centre, known as the "patent golden cagle sash line." A common description is marle from jute, but it is very inferior to flax. Henry's patent sash line fastener is easily fitted and the cord readily adjusted. Newall's patent copper wive cord and wire strand are extensively used fur window sash line, hothouses, lightning couductors, picture cord, clock sord, tent rofes, clothes lines, \&e ; the advantages, as reported, being that they are cheaper, much more durable, equally flexible, and one-sixth part the bulk. Newall's patent improved iron wire rope we do not detinil.

Table I. of Netrall's Copper Curds.

Number		-	$0 \quad 1$	13	$1 \frac{1}{2}$	13	2	3	4	5	6	7	8	9	10
Liameter, inch		-	$\frac{3}{8}$				$\frac{1}{7}$	$\frac{1}{8}$							
Breaking strain, lbs. Working load, in lbs.			Lightning Conductor.	For Window Sash Line, Hothouse, \&c.960 690 480 300 180 125							Picture Cord, \&c.				
		-								45			128	130	300
			336			112	75	45	31	11	22	30	128	50	80

Brass axle pulleys and hothouse pulleys are supplied to suit.
Table II. of Iron Cords-Galfanized and Plain.

Wire strand, 4 and 6 wire, of No. $3,4,5,6$, and 7 qualities; galvanized and ungalvauized.
2261. The tarieties of locks, their contrirances for security, and their construction, are so many, that to describe them minutely would require almost a work of itself. All that the architect has to deal with, for common purposes in building, we shall mention. For fastening places where particular security is requisite, as strong closets for plate or cash, some of the patented locks should be used, and we mist leare this matter for inquiry in the hands of the architect. Erery patentee says his invention is the best. We nerertheless beliere, notwithstanding the boasts of all the inventors, that no lock has appeared which an expert locksmith acquainted with its construction will not be able to pick. The locks in common use are stock locks, whose box is usually of wood, and whose sizes vary from 7 to 10 inches. Dcad locks, whose sizes are from 4 to 7 inches, and so called from the key shooting the bolt home dcad, without a spring. Cupboard locks, of $3,3 \frac{1}{2}$, and 4 inches in size. Iron rim locks, whose box or case is made of iron, and which are fitted on to one of the sides of a door, and whose sizes are from 6 to 8 inches. Of those made of the last-named size, there are some, as also of 9 inches, which are used for external doors, called iron rim drawback locks. Fior the doors of all well-finished apartments mortise locks are used. These take their name from being mortised into the thickness of the door, and being thus hidden. Gerish's patent cylindrical mortise lock, Barron's patent locks, Bramah's patent locks, Hodges' patent lock furniture, Kaye's patent automatic lock and door opener, or push and puill lock, an I Chubb's pitent locks. Hobbs's patent locks "are made for all purposes, from the smallest cabinet to the largest fortress gate." Hill's patent revcrsible rim lock has four "hands" in one lock, doing away with the necessity of considering which way the door is to open. Tucker's new patent flush bolt spring lock, self-locking dead lock, and railway carriage flush bolt spring lock; they lock themselves when closing or closed. Biggs' patent tubular reversible murtise lock; the machine-made lock, 6 inches long and one inch diameter; the foreplate and striking plate are 3 inch by 1 inch, with rounded ends. To these either plain or fancy furniture, that is, knobs and csoutcheons, are affixed. Longbottom's patent adjustable lock furniture, simple and reliable.

2261 . Pitt's patent sclf-adjusting spindle, with his new patent mount and spind'e, and Ager's patent adjusting spindle, all command a large sale. They are all fitted with knobs and plates, from china, plain white and buff, to gold lines, gold bands, flowers, \&e., and in hard woods, as ebony, maple, satin, rose, mahogany, wainscot, and walnut; the knobs in many slapes: also with plain and fancy brass, brass and china combined, and buffalo horn furniture. Also with glass farniture, crystal and amber of rarying shapes and cutting, wit's green, black, and opal cut octagons. Above and below them fingor plates are genera!ly directed to be fixed, to prevent the door being soiled in the places where it is mostly caught.
2262. The different suits of latches in use are the thumb latch, which receives its name from the thumb being placed on the lever to raise its latch; the Norfolk-latch, which is sunk, and requires a pressure on the lever to raise the latch; the Suffolk-latch; the fourinch bow latch, with brass knobs; the brass pulpit latch; the mortise latch; and Gothic latches.

2262a. Wishaw's registered improved "telekouphonon," for speaking pipes, consists of a whistle month-piece of irory, wood, or metal, with an indicator attached to point out from which one or two or more tubes the whistle proceeds. These pipes are now arranged for one or more mouthpices. Electric bells are named in the next section. The ordinary crank system of bell hanging is noticed in Specifications, 2202.
2263. Besides the articles already mentioned, the ironmonger furnishes holdfasts, wallhooks, door springs of various sorts, door chains and barrels of brass and iron, thumbsereus, shutter fastenings, shutter bars, sash fastenings, of wkich there are row many varieties against burgliry, adjustable silent door springe, brass turn buckles, closet knobs, brass flush rings, iron drawer handles, brass flush draw handles, brass roll.rs, bars with latchets, shelf brackets, sash weights, with numerous other articles.
$2263 a$. Bults, straps, and other exposed iron work are preserred from the action of moisture on them by the following misture:-To two quarts of bniling oil add half a pound of litharge, putting in small quantities at a time, and cautiously. Let it simmer over the fire two or three hours; then strain it, and add a quarter of a pound of fincly-pounded resin and a pound of white lead, keeping it at a gentle heat till the whole is well incorporated. It is to be used hot. A composition of oil and resin and finely levigated brickdust is found useful in preserring iron from rust. It is to be mised, and used as a paint of the usual consistence (see par. 1779 c . et seq.). Wrought iron ornamental work exposed to the weather has been cased with copper and gilt, as much for decoration as for preservation. The surface of iron may be decorated and highly vitrified, the colours being burnt in. Thus the iron can be sbaped to elaborate designs and artistically treated; being easily cleaned, it is a permanent material for walls, ceilings, and other parts of a building. See the Barff-Power process, \&c. for protection of iron, $1780 c$.
2263b. Mr. T. Fletcher, of Wirrington, has lately (1887), by the use of compressed oxygen and coal gas, with a $\frac{1}{2}$-in. gas supply, brazed a joint of a 2 -in. wrought iron pipo in about one minute. He then tried welding, a process not possible with ordinary coal gas and air, and found that a good weld was obtained on an iron wire $\frac{1}{8}$ in. diam., with a very small blowpipe, having an air jet about $\frac{1}{32}$ diam. Larger articles, as boiler plates, he thinks could be dono perfectly with little trouble and no handling. By this proccss he fused a large hole in a plate $\frac{1}{4}$ in. thick wrought iron by an apparatus which could be carried up a ladder by one man.

GAS FITTER.

2264. The work of this artizan may be placed under the head of this section, although his trade is now kept distinct. Gas is required by the Companies' Acts of Parliament to have a lighting power of 16 spern candles when consumed at the rate of 5 cubic feet per hour. As regards purity, the gas must be entirely frce from sulphuretted hydrogen, and the maximum quantities of sulphur and ammonia allowed are fixed from time to time for London by the gas referees (1885). The pressure of gas usually during the day varies from $1 \frac{1}{2}$ inches to about 3 incles at nigLt. This causes the burners to flare and hiss. To regulate this pressure rarious contrivances have been invented. Carnaby's is for the turning off of any number of lights ly working the handle of a dial in the master's room or office. The Stott, Ticc, Oakley, and other gas economiscrs are automatic, having valves that rise and fall according as the pressure is larger or smaller; they are said to sare from 20 to 40 per cent. of gas without diminution of light. A ready plan of regulating the supply is to put the tap to the meter at such a point, by trial, as will supply the lights in ordinary uso. In large establishments this has been done by a man, specially instructed, who alters it according to the lighting up or putting out of the lights. A great saring has been thus effected. The varions formule for calculating the velocity and the pressure of ffluent gas are to be found in Clegg, Treatisc on Gas Lighting. The most economical working pressure is cquivalent to the weight of a column of water on the outlet, of about 1 inch . The formula for calculating the quantity discharged is $q=1350 a^{2} \sqrt{\frac{h d}{s l}}$; in which $q=$ the quantity sought in cubic feet per hour; d, the diameter of the pipe; h, the working pressure in inches; l, the length of the pipe in y ands; and s, the specific gravity of the gas compared with atmospheric air as unity.

Tanle of the Delivery per Hour througil Fipfs of the Diameters named.

Size. diam.	Thickness,	Length.	Weight.	Delivery.	Size. diam.	Thickness.	Length.	Weight.	Delivery.
ins.				cubic ft.	ins.	inch.	feet.	cwt. ${ }^{\text {qr. }}$ l bs .	cubic ft.
${ }^{2} 8$	wrought			90 160	5	$13-32 \mathrm{nds}$ $7-16 \mathrm{ths}$	9	$\begin{array}{rrr}1 & 3 & 24 \\ 2 & 2 & 2\end{array}$	12,500 $1 \times, 000$
${ }^{3}$	iroll.			250	7	13 -3211ds	9	$3{ }^{3}$	24,500
				380	8	1-half	9	$\begin{array}{lll}3 & 3 & 5\end{array}$	32,460
$1)$	inch.	feet.	cwt. qr. liss.	500	9	17-3211ds	9	42	40,500
2	5-16ths	6	$0{ }_{0}^{0} 1024$	2,040	10	9-16ths	9	51	50,000
3	11.32nds	${ }_{6}^{6}$	$\begin{array}{lll}1 & 0 & 3\end{array}$	4.500	12	5 -8ths	9	70	22,000
4	3-8ths	9	1124	8,000					

For cost of laying, see Lockwood's I'rice Book, 1887, art. Gas Fitter.

2264a. The main distribution of gas is effectod through cast iron pipes with sockets and spigot ends, whenerer the diameter exceeds 2 inches. Wrought irun welded tubing for gas is made from 3 in . diameter, $1 \frac{1}{2} \mathrm{in}$., and then down by each $\frac{1}{4} \mathrm{in}$. to $\frac{1}{2}$ in., then $\frac{3}{8} \frac{1}{4}$, and $\frac{1}{8} \mathrm{in}$. diameter, in lengths of from 4 to 12 feet, from 2 to 4 feet, and shorter pieces under' 2 feet; thgether with all their connecting pieces, cucks, taps, screws, \&c. A $\frac{1}{4}$ iuch pipe is used for 2 lights, $\frac{3}{8}$ inch for 6 , $\frac{1}{2}$ inch fir $12, \frac{3}{4}$ inch for $2 \tilde{\text { a }}$, 1 inch for 50 , $1 \frac{1}{4}$ incles for $70,1 \frac{1}{2}$ inches for 120 , and 2 inches for 200 lights. In the details of houso fittings, wrought iron pipes are used when the diameter is, and exceeds, half an meh; $\frac{3}{4} \mathrm{in}$. is the least size recommended to be used, even for supplying upper rooms. For pipes of small diamcters, and for abrupt bends, block tin and composition pipes are tixed. For occasional use, flesible pipes are employed, such as those made of guttapcreha, canutchouc, with or withcut it wire coil inside, and caoutchouc coated with varnish. This last is the safest of the flexible pipos; the other, though safer when used with a wire core, is not impermeable to gas, though a coat of linseed wil may render it s. The first-named is not only permeable, but causes an unpleasant smell, and is liable to contraction at any junctions with metal work, allowing of the escape of gas. There has lately been patented one furmed of two layers of rubber, with pure soft tinfoil, vulcanised, between; perfectly gas-ight under any pressure and free from smell, and very flexible. The braided or cloth-sovered tube has not come into general use. Brass pipes are generally uscd for the gasalier.

2264b. Under no circumstances whatever should either iron or composition pipes be let into the plastering, as is too constantly done, or into solid brick or stone work; for the salts in the latter are liable to affect the pipes in a serious manner, and the contraction and expansion of their materials may injure the joints; whilst it must always be difficult to trace a leakage. When placed in a partition, any gas escaping fills all the spaces between the studs, and between the joists of the floors, so that when it comes in contact with a light the whole ignites, and the force of the explosion may cause the entire destruction of the house. The police regulations of Paris require that gas-pipes in houses should be visible throughout their length, excepting when they travers? floors, partitions, \&c., when the pipe conreying the gas is required to be enclosed in a larger one, projecting beyond the floor or partition, so as to ensure ventilation round it. Cupper pipes should never be used, on account of the action of the gas on the metal. Gas pipes should le laid with a slight fall, on account of the condensation of the gas, and a draw-off tap is required to cmpty it. Gas by itself will no more explode than air, and on issuing into the air it will, if at once ignited, burn quietly, as at a gas burner. When gas is previously mixed with air, the mixture, on ignition, explodes with terrific force.

2264e. The form of burner which yields the best economical results is the argnd; the lat's-wing is the next best; and the fish-tail the worst. A number of small burners dispersed will gire a better light than collections of them. The argaud burner, with 15 holes, will burn about $5 \frac{1}{2}$ to 8 feet per hour, according to the pressure; ordinary street lamps, haring the bat's-wing, burn 3 to 8 feet per hour, and are usually contracted for at the rate of $5 \frac{1}{2}$ feet. Bronner's burners afford a steady light, and each is made to consume as many feet per hour as may be required. The number of new burners lave been much increased. Bray's hare a large sale ; Sugg's are of rarious sorts for private use and in public thoroughfares and edifices. His burners for public lamps affording 20 candlepower consume 5 cnbje feet per hour ; 35 candles, 8 feet; 50 ca'udles, 12 feet; and 60 eandles, 15 fect. The former are two burners, and the latter thr e burners. The Heron's duplex has two small burners impinging upon one another and so affording a clearcr light. $3 t$ of Dray's burners burnt 230 feet of gas, 34 of the duplex for one hour burnt 167. Hart's economising burner dates from abont 1859. Peeble's necdle governor burners save 20 to 40 per cent. of gas. Many of these lights are now supplied with "noncorrosive " burners made of soapstone. One of the latest inventions (1887) is Welsbach's system of the incandescent light; it consists of a prepared "mantle" placed orer a Bunsen buruer. It is stated that it doubles the illuminating power of the gis; gives a steady, brilliant light; and sares 50 to 70 per cent. of gas; there is greatly diminished heat, no dirt, and no smoke ; the light rivals the clectric light. Another is the Clamond iucandescent gas light, supplied by the Æolus Company ; each gives a 40 candle-power light on a consumption of 6 feet of gas per hour. The Chandler patent regenerative gas light has no burner, the gas issuing from a frec, open pipe. By the action of the air supply and the slape of the burner opening the flame assumes the form of an incandescent sphere, like a ball of fire, brilliant and white. It is adapted for burning. 2 to 60 cubic feet per hour. A matchless self-lighting gas burner is in use. It is stated that 60 gas burners produce 2 gallons of water per hour by the combustion, hence part of tho damage caused to the walls, works cf art, \&c.
$2261 d$. The ordinary lights are stated to require 4 cnlic feet of gas per hour, but this is much too large ; $2 \frac{1}{2}$ and 3 will be found to gire sufficient light if the burner is fairly near the person ; the high lights of a gasalier are either inefficient or wastcful for reading

2264e. For lighting large rooms the solar or sun-light arrangement is agreeable, and it is fitted to promote the rentilation of the room. It is very costly, not only in its first establishment, partly from the nccessity of securing the burners and pipes from setting fire to the surrounding timbers, but also in the subsequent consumption of gas. In rooms of moderate height, the heat to the occupants is objectionable. The Wenham lamp is somewhat similar, but haring a globe under, is better adapted to a small room. Benham's (formerly Rickett's) ventilating lamps are also fixtures. The reflecting and ventilating Clapton light is economical in gas and suitable for public places. The patent Albo-carbon light is said to save 30 to 50 per cent. of gas, by the gas passing through a white composition, which, on being melted by the heat obtained from the burner, gives off a vapour which is taken up by the gas, thus giving increased brilliancy to the light.
$2264 f$. As illustrations of the mode of lighting public buildings may be cited: I. The concert room at Liverpool, designed and executed by Mr. A. King; it is effected principally by carrying a pipe in the core of the ceiling, which pipe is pierced with numerous holes for fish-tail burners. II. St. James's IIall, London, and the great hall of the Reform Club, which are admirable illustrations of the use of the stellar and of the solar lights. III. The new theatre du Chatelet, at Paris, where the lighting is effected by 1,300 burners placed above a vault of ground glass, and under a large enamelled reflector ; the glass vault forms, in fact, the ceiling of the body of the house, so that the burners themselves are entirely hid. This arringement was also employed for a few years at the picture gallery in Suffo k Street, London. And IV. The varions passages and rooms of the Houses of Parliament, which are lighted and ventilated under Faraday's principle.
$2264 g$. Table of Comparison of Light-Producing Materials, by Dr. M. Tidy, in Handbook of Modorn Chemistry.

Light-producing Material equal to 12 standard Sperm Candles, each burning 120 Grains per Hour.	Cubic Feet oxygen Cunsumed.	$\begin{aligned} & \text { Cubie Feet } \\ & \text { Air } \\ & \text { Consumcd. } \end{aligned}$	Cubic Feet Carbonie Acid Produced.	Cubic Feet Air Vitiated.	Heat=lbs. of Water raised 10 deg . Fahr.
Cannel Gas	$3 \cdot 30$	16.50	$2 \cdot 01$	217.50	1950
Common Gas -	$5 \cdot 45$	17.25	321	348.25	$278 \cdot 6$
Sperm Oil	4.75	23.75	3:33	356.75	$233 \cdot 5$
Benzole -	$4 \cdot 46$	22.30	$3 \cdot 54$	$376 \cdot 30$	2326
Paraffin -	6.81	$34 \cdot 05$	$4 \cdot 50$	48.4 .05	$361 \cdot 9$
Sperm Candles	$7 \cdot 57$	37.85	$5 \cdot 77$	$614 \cdot 85$	$351 \cdot 7$
Wax -	8.41	$42 \cdot 05$	$5 \cdot 40$	$632 \cdot 25$	$383 \cdot 1$
Tallow - -	$12 \cdot 00$	$60 \cdot(1)$	$8 \cdot 73$	933.00	$505 \cdot 4$
Electric Light -	None	None	None	None	$13 \cdot 8$

A table, prepared by Mr. V. B. Lewes, showing the amonnt of oxygen remored, the carbonic acid gas and water vapour generated, by variousilluminants to give a light equal to 32 candle-power, is priuted in the Proceedings of the Royal Institute of British Architects, for April 12, 1888.

2264h. A notice was issued in January, 1862, from the London Fire Engine Establishment, stating that, "It appears absolutely necessary that some steps should be trken to caution owners of property, particularly in large wharves and warehouses, as to the position and protection of the dangerous gas lights. These remarks may not le considered unnecessary when it is remembered that in many of the most valuable buildings in the metropolis morable gas brackets are placed within 20 inches of the cciling without the slightest protection whatever. It may be laid down as a rule that the jet on the outer arm of the bracket should never be less than 36 inches from the ceiling over it, and that it should be protected on the top by a hanging shade, and on the sides by stops on the swirel joints, which should prevent the brackets moving beyond a safe distance. Attention might, perhaps, also be called to the very common and dangerous practice of nailing tin or iron on the adjoining timbers. This has long proved to be no protection, and it has the disadrantage of allowing the timber to be cliarred completely through lefore it is known." In some places gas lights are used within 15 inches of the ceiling, and when the glass shade has been broken and not replaced, the heat has been known to ignite the floor timbers over the plastering.

2264i. It will not be necessary here to do more than mention the use of gas in the kitchen for boiling water, or for baking and roasting (the apparatus for cach, or for such purposes, are now supplied in London by the gas companies at a rent); the baths heated ly gas, so readily adaptable in places where a coal store cannot be used; or the several gas stowts for warming buildings and rooms, \&e. Sce $2270 e$.
$2264 j$. The urgency of efficient ventilation when gas is burnt in a room habitually is a sulpject of immediate importance. It is principally to the neglect of this precaution that the bulk of the injurious effects said to attend the use of gas may indced be attributed.

In tho case of libraries, the destruction of book-lindings may be assigned more justly to the heat than to the chemical action of the products of combustion. No doukt the bisulphide of carbon, which is present in even the most carefully purified gases, must give rise to the formation of minute quantities of sulphurous acid: and this, in its turn, must le destructive to some descriptions of leather-especially Russian (as noticed in the Builder, vi. 89), but a rapid removal of the products of combustion would almost entirely obviate this effect. It seems, howerer, that the excessire dryness and the heat of the air in the upper part of rooms where gas is burnt may occasion the injury quite as much as the chemical reactions supposed to take place; the books which suffer most being always those placed abore the level of the lamps. Under any circumstances, ventilation should take place close to the plane of the ceilings. Even when provision is made for ventilation over gas burners, a stratum of heated air is often allowed to stagnate over the openings, close under the line of the ceiling; and the area of the openings is rarely sufficient to alluw the escape of the decomposed gases. Again, if any sulphurous acid should be produced, it will be found also to tarnish the colours of tapestry and hangings, and to turn imitation gold; hence none but the best leaf-gold should be employed in roonis where gas is burnt. The injury caused by the use of such gas as is supplied in London, Paris, Bruxelles, \&c., is rery small compared with the brilliance of the light; and the gas of Liverpool, Edinburgh, Manchester, and some other places having, bulk for bulk, s higher illuminating power than that of London, is even less injurious. Mr. Spencer has r-ported that the quantity of gas leaking from London gas pipes is not less than 9 per cent, or between six and seven million cubic feet per anuum, which causes the stinking black earth of the London street snbsoil. No such leakage occurs at Liverpool or Manchester, where the joints of the pipes are bored, turned, and fitted to each other, like ground stoppers in glaiss bottles; whereas in London the pipes are jointed with tow and lead, so that after expansion and contraction in summer and winter the perfection of the joints is destroyed. The gas then, acting upon the subsoil. forms sulphuretted carbon, which corrodes not only the gas pipes, but the water mains also, and converts them in ten years almost entirely into a sort of plumbago, although in pure London subsoil they last a century.

ELECTRIC APPLIANCES.

$2264 k$. For the important subject of Lightning Conductors, reference should be made to 1. Anderson, Their History, Nature, and Mode of Application, of which the thrd edition, revised, rearranged, and enlarged, was published in 1887: "The numerous accidents to buildings fitted with conductors sufficiently indicate the indispensable necessity for occasional inspection. The chief causes that detri.et from their efficacy aro original defects of capacity, conductivity, and fitting, faulty earth conne tions, accidental injury and mechanical derangements, oxidation of joints and of earth contacts, and alterations in the conductire capacity of the ground in consequence of improved drainage." The efficiency of a conductor is in proportion to the sectional area of the metal. Tapes are made $\frac{1}{10}$ th of an iuch thick, being inch, $1 \frac{1}{2}$ inches, and 2 inches wide ; $\frac{1}{12}$ th of an inch thick, being $\frac{5}{8}$ ths of an inch wide; $\frac{1}{8}$ th of au inch thick, being $\frac{3}{4}$ ths of an inch, inch, and $1 \frac{1}{2}$ iuches wide. The conductors should not be less than $\frac{1}{8}$ th of an inch thick and $\frac{3}{4}$ ths of an inch wide, weighing 6 oz per foot, as recommended by the Lightning Rod Cunference, 1882. The upper terminal should be in the form of a sharp point, or a cluster of sharp points. As this point may become blunted, an allay of 835 parts silver and 165 parts of copper is therefure used for it, at Yaris. The earth termination should bo taken some depth, and into moist ground or water, and have a large area of contact. When this is not to be oltained, a copper plate at least 9 feet square should be carefully riveted to the end of the tape and be buried in a well, packed with cinders or coke. Professor Fleming has pointed out that the ultimate safety of a conductor lies in the proper periodical testing of the earth connection of the conuuctor.
$2264 l$. Electricizy for lighting purposes can be obtained by chemical action, as by an arrangement of a voltaic battery, and the combination of cells is termed a "primary battery." A steady light is stated to be maintained at a cost not much in excess of that from a "dynamo " machine. Such a battery may suffice for a small country house, but a large number of lamps will require a battery of great bulk; hence it is more economical to produce electricity mechanically, by couvarting the energy of the prime mutor into electric force by the use of the dynamo machine. This mutire power is oltained by steam, water, or gas, according to circumstances. The engine house would contain the dynamns for generating the electric current. The current is then taken to a "switch board," which is a simple apparatus on which all connections are made with suitable arrangements, so that either une or more machines can be made to deliver into the same conductor. On this board is an instrument for measuring the strength of the current, so fixed that it can be read by the attendant by turning the handle of a switch. From this board the mains go towards the lamps, starting as a cable, which ramifies into
smaller mains and branches until each incandescent lamp is reached. It is of supreme importance in electric lighting that the current should always be uniform at all times in each indiridual part of the work, and be unaffected by changes in other parts. The compound shunt machine has been devised to effect this arrangement.

2264 m . A source of danger to property is in the mains and lranch wires conducting the current to the lamps; they must he of sufficient proportion, and of a material whose resistance is uniform. Copper wire is used because it can be obtained in a purer state than any other available metal, and Lext to silver it is the best conductor of electricity. Great aftention is required to the connectors and joints, and the connections made with linding screws; besides causing resistance in the circuit, bad centact between a wire and a terminal will produce heat. A faulty junction may also upset the calculations made for the current to be taken by an otherwise efficient cable; solder alone must not be relie 1 upon, as it may become softened by the current; it must be mechanically perfect. A "short circuit" is the current taking the shorter path, where, having no work to do, it causes fire. The only preventive is a "cut out" or a "safety fuse," described as "a piece of easily fusible metal, which would be melted if the current attains any undue magnitude, and would thus cause the circuit to be broken." From are lights pieces of incandescent carbon are apt to drop; more fires hare occurred from this cause than any other. Electricity, haring no smell to betray a leak, shows when it is escaping by the diminished appearance of the lights, caused by the dirersion of the system.
$2264 n$. Eren if the cost of electric lighting be higher than ohat of a private gas supply, the extra cost of it for those rooms where the presercation of works of art, books, and dccorations has to be considered would be amply returned. The property of not vitiating or heating the air will be the salient one which, when fully appreciated, must banish gas and oil from the houses of those who consider sanitary excellence the principal feature of a beautiful house. (K. Hedges, in Transactions of Royal Institute of British Architects, 1883-4, p. 143). The Electric Ligh:ing Act was passed August 18, 1852. The MaximWeston Electric Company (Limited) supply (Nov. 1887) the new "Watt" system of lighting. They claim that they can now obtain six arc lamps of 150 candle-power in place of one, as heretofore, from one electrical horse-power. The Pilsen-Joel are lamp is of 1,000 to 10,000 candle-power ; the ineandescence or glow lamps are of $5,10,16,20$, 30 , to 100 candle-power, for lighting rooms, \&c. To popularise the electric light is the only way to make it pay-it must be cheap and efficient. By cheapness is to le understood, either a smali first cost and a correspondingly small cost for maintenance, as in the case of a battery placed in the house, or a moderate charge for the supply of the current, as in the case of a central distributing station. The lamps must be adaptable to the present gas fittings, and the cost of the light must be but little, if at all, in excess of that of the gas of the district. Though the advantages of this light are great in a hygienic and domestic point of riew, the public would, in the main, continue to use the present methods of illumination rather than adopt any new system which entailed extra cost, however satisfied they might be that positive advantages were to be gained by it. (P. F. Mersey, On Primary Batteries, Nov. 1887.) The Phœenix Fire Office rules for fixing, \&c., an installation are those now generally required to be carried out by the fire offices.
22640. Although electricity has not ousted gas from the field, as it was at one time thought it would do, it has yet made more progress than many people imagine, and 1.0 architect would design a public hall without fitting it with incandescent lamps. These do not give off as much heat as gas, nor do they contaminate the atmosphere. The insertion of "storage batteries" as a sort of buffer between the machine and the lights, and as a means of avoiding the risk of a break-down of the engine, has done much to render electric lighting more generally available; and cousiderable improvements have been made in these "storage batteries" during the last few years. The battery of the Union Electrical Power Light Company, of fifteen cells, will run twelve ten-caudle incandescent lamps, and occupies a few feet only. A small primary battery and lamp combined is invented, so that an electric lamp can be placed on the table ; this can be recharged by simply pouring into the cell containing the plates the necessary liquid. These lamps will run for about three hours-say a dinner time.
$2264 p$. A method of clectric lighting for small areas, where the trouble and expense of fixing up and working engines and dynamos constitute a serious objection, has been introduced by Messrs. Woodhouse and Rawsen, in which no machinery is required. The whole apparatus is contained in a space of some 5 feet by 6 feet, by 8 feet in height, with a perfect absence of smell, noise, or dirt. The light is generated by an "Upward" battery. The cost for the equipment of an installation to run eleven lamps (10 candle-power each) for two hours, or six for four hours, is $56 l$.; while fifteen lights for three hours, or eight for six hours, is $84 l$., and soon. The House to House Electric Light Supply Co. is taking active steps to promote this means of illumination.

2:64q. There is a new clectric gas lighting system, by which gas is lighted, turned on, and extinguished at any distance by simply pressing a button, as in ordinary electric bells; and at the same time the battery may lue used for ringing electric bells.

2264 r. Bells. The principle, as applied to all the different methodo of construction, is that the completion of the circuit of the electric current rings the bell, the medium of communicalion from the distant points being wire of various descriptions, carefully insulated. The mechanism is coufined to the push (the reverse of the crank system, which has the pull) and to the bell itself, which is struck by a hammer attached to a small and light maguet. The wires are fixed. Oue bell will answer the purpnse for any number of rooms. The battery whence the electric power is supplied is, for an ordinary house, a snall six-cell battery, about twelve inches long, nine inches wide, and six inches deep. The positive poles of the six cells are all connected with each other, and also the negative poles, each to brass knobs on the outside of the box. From tho positire pole of the battery a wire passes, which is connected with eich room, and from each room a wire passes to the indicator. This is a tablet with openings, upou which are inseribed numbers tor, or names of, the rooms. The push, a light irory knob, completes the elictric circle; on being set in action by it, the current travels through the wire to the indicator, and then by the movement of a balanced magnet the number or name appears, and by a light magnet n ttache:I to a spring it rings the bell, which can be made to ring until the magnet is released by the hand, or a button, which also returns the name or number to its place. The wires are insulated by gutta-percha or india-rubber and coils of cotton or silk, which, if exposed, can be made of a colour to match the paper or paint of the room. The bell pushes and other furniture can be carried out in any decorative character.

2264s. The electric bell system can be adopted for protection against thieres and fire. For the former, every external door and window may be connected with a battery so that, when the circle is complete, the opening of the door or window will ring the bell. In the daytime a switch is used to disconnect the communication, so that the doors and windows may be opened without ringing the alarum. For the latter, or fire, a thermometer, hermetically seaied, into which a platinum wire is fixed, is regulated to any point indic n ting danger, say 100° of heat, and connected with the battery. Should the mercury rise to that point, the contact of it with the platinum completes the circuit, the bell rings and sounds the alarum. For the sick bed, the invalid has only to give a slight pressure to a knob at the end of a silk cord, laid close to the pillow, instead of having to overcome the stiffness and weight of the old crank and wire system.

226 tt . Moseley's patent electric bells are fixed on the system of the battery not being in use when the bell is not ringing.
$2264 u$. The best time to commence fixing the bells is stated to be when the first coat of plaster is laid on the walls, and before the floor boards are nailed down. The joints and connections between the compo tubing and the bells should be carefully soldered, and the iron wall boxes fixed flush with the finished wall, with the screw boles in front perfectly vurtical. The fixings required are press buttons or pushes, lever action pulls, or bell ropes, for rooms used in the day. Bed-head pulls, flexible cords, or pushes, for the bedrooms. Pull-out pulls or pushes for front door or entrances. The tubing is $\frac{1}{8}$-inch bore composition, let into the plaster, \&c., and protected thercin by wood, or ly larger zinc bell fubing. The pulls may be either the "sunk" pattern, or the "raised" pattern, which is fixed on the face of a wall or partition.

We can only here refer to the later inrcition of the "telephone."

Sect. XI.

FOUNDERY.

2265. The rery general use of cast iron by the architect indnces us to give a snceinct account of the common operations of foundery, or the art of casting metal into different forms. To gain a proper knowledge of the operaticns, the student should attend a few castings at the foundery itself, which will be more useful to him than all the description we could detail of it; howerer, we give a few particulars not noriced in the prerious section on Iron. Some of the articles cast are noticed in par. 2255 k .

2265a. Those manufacturers who will attend to the gond quality of the irons they sell can generally command their own price. Thus, the Low Moor and the Rowling bar irons continue in possession of the market at nominally high prices, whilst the ordinary irons are hardly saleable at remuneratire ones. The Welsh iron, known as the SC brands, or the Staffordshire mitre iron, are of at least equal quality to the abore, and there are others as gond.

2265 h . Staffordshire, Shrupshire, and Derbyshire afford the bist irons for castings. The Scotch iron is much esteemed for hollow wares. and has a beantifully smonth surface, which may be noticed in the stores and other articles cast bythe Carron Company. The Welsh pig iron is principally used for conversion into bar iron. Almost all iruns are improved 1 y admixture with others, and therefore, where supericr castings are required, they
should not be run direct from the smelting furnace, but the metal should be remelted in in cupola furnace, which gives the opportunity of suiting the quality of the iron to its intended use. Thus, for delicate ornamental work a solt and very fluid iron will be required, whilst for girders and castings exposed to cross strain the metal will require to be harder and more tenacious. For bed plates and castings, which have merely to sustain a compressing force, the chief point to be attended to is the hardness of the metal. Various mixtures of different qualities of iron have been recommended as materials for large castings (see Fairbairn's Application of Iron, fo. 6.5). Most engineers are agreed in considering that the best course for an engineer to take, iu order to obtain iron of a certain strength for a proposed structure, is not to specify to the fuunder any particular mixture, but to specify a certaiu minimum strength which the iron should exert when tested by experiment.

2265 c. As noticed in a prerious chapter, the ores are smelted by cold and hot air blasts. The latter iron makes very fine castings, but is deficient in tenacity, and requires great care in its application to the purposes of machinery, and for girder castings, by employing it as sec, nd runnings from the cupola, and mixing third-class pig iron with the first. On account of some defects in it, hot blast iron should be excluded from all such works as girder bridges, machinery castings, \&c., and from the preparation of bar iron where great strength in the metal is required. It appears that there are no means of detecting hot or cold blast irons in pig eastings. Whenever great strength is required, air furnaces instead of cupolas should be used, and where it is not connected with toe great an expense, loam instead of green sand should be used for moulding.

226 d. Table of the Weight of Cast Iron fer Foot Superficial. (Hurst.)
The weight of a culic frot is put at 456 lbs and 460 lbs .

Thickness in inches	$\frac{1}{18}$	$\frac{1}{8}$	$\frac{3}{16}$	4	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{18}$	$\frac{1}{3}$
Weight in pounds	234	$4 \cdot 68$	7.03	$9 \cdot 37$	11.72	14.06	16.40	$18 \cdot 75$
Thickness in inches	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	1
Weight in pounds	21.09	$23 \cdot 44$	25.78	$28 \cdot 12$	$30 \cdot 47$	32.81	$35 \cdot 16$	37.00

22602e. Cullinson's Mansfield moulding sand las a wide reputation among the modellers of the finest brass and iron castings, arising, no doubt, partly from its exquisite filleness of grain, but more particularly from its clay-like adhesireness and plaster quality, combined with a total freedom from any coarse or gritty particles. It is fcund under a deep deposit of coarse sand, ordinarily known as building saud, and within a short distance of the wellknown white and red Mansfield stone quarries, in Nottinghamshire. The Isle of Wight satuds are also uscd for the purpose. The sand usually employed in casting is of a soft yellow and clammy nature, over which, in the mould, charcoal is strewed. Upon the sand properly prepared, the wood or metal models of what is intended to be cist are applied to the mould, and pressed so as to leave their impression upon the sand. Canals are provided for the metal, when melted, to rm through. After the frame is finished, the patterns are taken out by loosening them all round, that the sand may not give way. The other half of the mould is then worked with the same patterns, in a similar frome, but having pius which, entering into holes that corruspond to it in the other, cause the two cavities of the pattern exactly to fall on each other. The frame thus moulded comes now under the care ot the melter, who prepares it for the reception of the metal.

2265 f . In making patterns for cast iron, an allowance is always made of about one-eighth of an inch per fuot for the contraction of the metal in cooling. And it may be also requisite that the patterns should be slightly bevelled, that they may be drawn out of the sand without injuring the impression; for this purpo-e, $\frac{1}{16}$ of an inch in 6 inches is sufficient.

2265 g . All castings should be kept as nearly as possible of the same bulk, in order that the cooling may take place equably. It is of importance to prevent air-bubbles in castings, and the more time there is allowed for cooling the better, because, when rapidly cooled, the iron does not become so tough as when gradually cooled. It is important in any casting to lave the metal as uniform as possible, and not of different sorts, for different sorts will shrink differently, and thus will be caused an unequal tension anong the parts of the metal, which will impair its strength; and, beyoud this, an unevenness is produced by such mixture on the surface of the casting, for different sorts can never be perfectly blended tugether.
$226.5 h$. Castings should show on the outer surface a smooth, clear, and continuubs skin, with regular faces and sharp angles. When broken, the surface of fracture should be of a light lluish-grey colour, and close-grained texture, with considerable metallic lustre; both colvur and texture should be uniform, except that near the skin the colour may be somewhat lighter and the grain closer; if the fractured surface is mottled, either with patclics of darker or lighter iron, or with crystalline patches, the casting will be uusafe; and it
will be still more unsafe if it contains air-bubbles. The iron should be soft enough to be slightly indented by a blow of a hammer on an edge of a casting. Castings are tested for air-bubbles by ringing them with a hammer all over the surface. Iron becomes more compact and sound by being cast under pressure; and hence cannon, pipes, columns, \&e., are stronger when cast in a vertical than in a horizontal position, and stronger still when provided with a head or additional length, whose weight serves to compress the mass of jron in the mould below it. The air-bubbles ascend and collect in the head, which is broken off when the casting is cool. Care should be taken not to cut or remove the skin of a piece of cast iron at those points where the stress is intense. The most certain test of the goodness of a piece of cast iron is by striking the edge with a hammer : if a slight impression be made it denotes some degree of malleability, the iron is of a gond quality, prorided it be uniform; if fragments fly off, and no sensible indentation be made, the iron will be hard and brittle. The difference between good and bad iron is shown mainly ly the lreaking; good iron breaks like a piece of good fir timber; bad iron will break iike a carrot, it snaps in two.

2265i. Malleable cast iron is made by embedding the castings to be made malleable in the powder of red hæmatite. They are then raised to a bright red heat, which occupies about twenty-four hours, maintained at that heat for a period varying from three to five days, according to the size of the casting, and allowed to cool, which occupies about twenty-four hours more. The oxygen of the hæmatite extracts part of the carbon from the cast iron, which is thus converted into a sort of soft steel : and its tenacity, according to experiments by Messrs. A. More and Son, becomes more than $48,000 \mathrm{lls}$. per square inch. (Rankine.) Steel is noticed in Buok II. Chap. II.

2265 k . For resisting fire, as in fireplaces, good strong cast iron is the best material. The quality of breadth of design can be got by cast work better than by wrought work, and each requires its own system of de-ign. The street railing or sereen to All Saints' Chureh, Margaret Street, is considered a good specimen. It can be covered with fine delicate ornamentation, as done by Mr. Philip Webl. The backs of old fireplaces are generally fine specimens of cast work. There are also cast iron fire-dogs.
2266. The foundery of statues, which is among the most difficult of its branches, belongs exclusively to the sculptor, and is usually carried on in bronze. The execution of the bronze castings, made by the firm of Barbedienne of Paris, is attributed mainly, after the skill of the modeller, to the fineness of the sand, which can only be obtained at Fontenay-aux-Roses, in France. When new it is yellow in colour, but on account of its cost it is mixed in well-ascertained propertions with the old sand, which has beccme black, the mixture forming a good combination for the mould; other sands are considered to have two much silex in them, whereas the Fontenay sand has exactly the proportion necessary for the fineness of the work.

TESTING AND MACHINERY.

2266a. Ironmasters are, to some extent, arerse to testing. A writer has been adrised to exhibit his knowledge of the subject by simply specifying " best merchantable iron," and if from inspection it was not found to be good it could be tested. Testing is about the only maans at the disposal of an engineer to obtain really what he wants. Work tests mean, tapping plates with a bammer to ascertain if they are solid, in which case each tap will produce a ringing sound; also breaking the corner off a plate here and there, of course befure the plates are "worked"; and examining the punchings front the iron, for the purpose of forming some idea of its quality. Those from Low Moor and some of the Staffordshire brands will stand the punch without the slightest sign of cracking, whilst hard, brittle iron will break up in all directions on the convex sido of the punching. (iood ordinary iron, such as ought to be used in girder work, will only show slight cracks, all running with the fibre of the iron. (C. G. Smith, Wrought Iron Girder Work, 1877.)

2266b. Granting that it is advisable to carry ont tests, and that these tests should be realities and not mere forms, it is certainly advisable that some method of testing should be substituted for the present plan of testing girders whole. At present, a certain perrentage of the rolled joists or uther girders for a building are specified to be tested up to loads equiralent to those given in "Shaw's Tables," which correspond to a maximum stress of 6 tons per square inch in the material, and should return to their original forms without permanent set; and this deflection test is the only one carricd out. But it is not easy to measure a small permanent deflection, say $\frac{1}{10}$ of an inch, with certainty on a 30 -foot joist with such means as are commonly used in the yard, and so it cannot be very rigidly enforced under ordinary circumstances. But it affords no clue to the properties of the material used. It would be much more satisfactory, and probably not more expensive or troublesome, if the tests specified were made more like those adopted by the Registry societies. The temper test, for the architect's purpose, might be onitted. The ultimate extension test is an indication-a rough indication-of the difficulty of the metal ; we ought to know the maximun extension before the material begins to give way
locally. This, howerer, is somewhat more difficult to measure. It would be sufficient to specify that one ont of, say, every ten joists or angles should be supplied 18 inches more than the ordered length, the extria piece cut off, and two strips cut from it (one from the web, and one from the flange in the case of the joist) tested for tenacity and extension. The limits fixed might be, according to circumstances, either 28 to 32 tons tenacity per square inch, and 20 per cent. extension in 10 inches; or 38 to 42 tons tenacity and 12 per cent. extension. The tests are made by preference at the manufacturer's yard, in the presence of the inspector, deubtful or special cases being sent to some independent. testing machine. In cases of large orders not less tban 2 per cent. of the number of plates, \&c., hare to be tested in this way. (A. B. W. Kennedy.)
$2266 c$. To test a stanchion, or other cast iron work, especially if painted, it should be examined carefully all over by a good-sized hammer, having a sharp point at one end, such as a scaffolder's axe. Ply the point or edge of the hammer to any scaly-looking or white spots, and follow it on. Some founders are clever at filling up faults with a soft metal, and t he defects are generally on the face that lies uppermost in the mould. One fault may be found that would jeopardise the stability of a building. To test the same fur strength can only be done by a scientific apparatus now provided at many éstablishments for the purpose.
$2266 d$. Testing Stone. The weight necessary to crush a stone varies with the state of echesion and hardness of the particles composing it. (See par. 1500 et seq .) The full particulars of the quarry and bed of each stone tested should be stated. It is almost useless to experiment upon cubes of one inch, as was necessarily done before the pewerful machines of the present day were invented; 4 -inch or 6 -inch cubes are the least sizes, especially where large shells appear. Munch care and skill are also requisite in the manner of testing. The cubes should all be carefully dressed by rubling down the faces, which should be strictly parallel, perhaps made so in a steel frame. They should all be placed on or against their natural bed. The Bath stones tested by Messrs Poole are stated to have been placed between parallel iron plates, and the pressure communicated to the cubes, having a shect of lead at the top and bottom, and between the upper or movable plate and the upper lead plate was a conical heap of fine sand, which was carefully pressed by the upper plate, so as to ensure an equal pressure on every particle of the upper and lower beds of the stone. Sometimes the stone is bedded with pieces of pine, from $\frac{1}{4}$ to $\frac{1}{2}$ inch thick. Leather has likewise been used (Builder, 1886, p. 561) ; also millLoird. Prof. Henry (of the American Association of Science, 1855) experimented on blocks of $1 \frac{1}{2}$-inch cube between thin plates of lead. It was found that while one of these cubes would sustain $30,000 \mathrm{lbs}$., it would sustain $60,000 \mathrm{ll} \mathrm{s}$. without the lead plates. When the blocks were rendered perfectly parallel by a machine, the marble chosen for the Capitol, from a quarry at Lee, Massachusetts, would sustain about $25,000 \mathrm{lbs}$. to the square inch. Barlow states that the crushing strength of Portland stone ranges from about $1,38+\mathrm{lbs}$. to 4.000 lbs . per square inch; the Institute experiments gire $2,576 \mathrm{lbs}$. for 2 -inch cubes, $4,099 \mathrm{lbs}$. for 4 -inch cubes, and $4,300 \mathrm{lbs}$. for 6 -inch cules, proving the adrantage of testing large sizes. Rennie gives 3,720 lus., followed by Molesworth; while Hurst gives 2,022 lus.

2266e. Testing ecment has been describel in par. 1864e. The machines commonly used are those by Mr. Adie and Mr. Michele (Builder, xlviii. p. 283); by the former, briquettes of $1 \frac{1}{2}$ inch square can be tested. Reid and Bailey's is described in Builder, 1877, xxxp. p. 1015 ; Arnold's in Builder for October 22, 1887, p. 579.

2266f. The hydraulic press is generally used for testing. This is a closed ressel, with its upper surface level, completely filled with water; two openings are made in it, which are replaced by pistons of areas 1 and 10) square inches. If a weight of 1 lb . be placed on the smaller piston, a pressure of 1 ll . will be felt everywhere in the interior of the fluid, and the pressure on the larger piston will be 10 lbs . Thus a force of 1 lb . acting on the area 1 square inch, produces a pressure of 10 lbs . on the area 10 square inches.

2266 g . Messrs. W. H. Bailey \& Co., of Salford, manufacture testing machines, as Thurston's for torsion; Bramalis lyydraulic, for cement, tensile, crushing and transverse, and for yarn and oil; testers for tensile, torsion, and compression, and other purposes, as paper, wire, cloth, \&c.; also test pumps for steam boilers, kitchen boilers, high pressure, gas fittings, water works, \&c.; Professor Thurston's patent testers for materials of construction; and Tangye's patent hydraulic boiler prover. There are many wellknown American testing nachines.

The fillowing persons und institutions hare set up testing machinery for public use or for instruction:-
$2266 h$. D. Kirkaldy, established 1866, for testing and experimenting on the strength of various kinds of metals and their alloys, stones, artificial stones, bricks, concretes, cements, timbers, \&c. The powerful machinery is adapted for any kind of strainnamely, pulling, crushing, thrusting, bending, twisting, shearing, punching, bulging, and buckling, from 10 ibs. to $1,000,000 \mathrm{lbs}$. To entire manufactured articles, and timbers of full size, any amount of proof strain desired can be applicd, or their ultimate broaking
strength can be ascertained. The delicacy and accuracy of the machine is proved by its ability to test cement, canvas, and wire up to the greatest strains required for practical purposes. The capabilities for sizes are as follows :-Pulling stress, any length up to 300 inches. Crusling stiess, any length up to 250 inches for columns, \&c. For testing bricks, six of a sort are required for average results. For stones, three or four 6 -inch cubes, accurately ground ; concrete, usually 12 -inch cubes. For cement, half a bushel is required, and it is suitably made up at the works for testing under pulling or thrusting stress. Bending stress, any span up to 300 inches. For comparing the strengths of fullsized timber or iron joists, 10 feet span is recommended as a good standard. The fine museums at Messrs. Kirkaldys works are open to architects and others taking an interest in the subject; and the results of the many experiments on full-sized work of every variety of material used in building or engineering operations, since January, 1866, will be seen. An apparatus of simple construction is engrived in his Results-into the Comparative Tensile Strength, \&e., of Wrought Iron and Strel, 8ro. 1862.

2266i. King's Collcye, Strand. The plant for mechanical testing consists of tro machines. Oue is a Kirkaldy machine, 23 ffet long, taking test pieces up to 4 feet in length; it exerts a strain of 50,000 lbs., and is constructed to make tensile, transrerse, compression, and torrion tests. The other is a Thurston autumatic recording machine. A description of the first machine is given in Engineer, October 5 and 12, 1883.

2266j. City of London and Guilds Central Institution, South Kensington. The machine is a 100 -tons machine, and will take in ordinary tension specimens up to 4 feet 6 inches iu length. It will take in 6 feet 6 inches in specimens with eyes. It has compression and transverse shackles and autographic diagram apparatus. It takes in about 3 feet specimens for compression, but will be altered for 4 feet. The Engincer, July 25, 1884, shows a nearly similar one. Prof. W. C. Unwin, Machines for Testing Matcrials, especially Iron and Sterl, in Journal of the Society of Arts, July 8, 1887. Also, The Testing of Materials of Construction, 8vo.. 1888.

2266 k . W. Harry Stanger las opened a chemical laboratory and testing works at Broadway, Westminster. There is a 50 -ton machine by Buckton \& Co. (Limited), with Wickstead's patert apparatus for measuring and autographically recording stresses in tension, deflection, compression, and torsion, from $\frac{1}{100}$ th of a ton up to 50 tons. Also other machines and apparatus for various purposes.

2266l. Messrs. Shaw, Hcad \&f Co., Queen's Wharf, Dankside, have a testing machine for girders. It is shown and described in Builder, 1869, xxvii. 1020.

Sect. XII.

PAINTING, GILUING, PAPER-HANGING, DECORATING, ETC.

2267. Painting is the art of corering the surfaces of wood, iron, and other materials with a mucilaginous substance, which, acquiring hardness by exposure to the air, protects the material t, which it is applied from the effects of the weather. House painting was deseribed ly the editor at the Institute of British Architects, Transactions, Nov. 1857.
2268. The requisite tools of the painter are-brushes of hog's bristles, of various sizes suitable to the work; a scraping or pallet knife; earthen pots to hold the colours; a tin can for turpentine; a grinding stone and muller, \&c. The stone should be hard and closegrained, about 18 inches in diameter, and of sufficient weight to keep it steady. The knots, especially of fir, in painting new work, will destroy its good effect if they be not first properly killed, as the painters term it. The best way of effecting this is by laying upon those kuots which retain any turpentine a considerable sulstance of lime immediately after it is slaked. This is done with a stopping knife, and the process dries and burns ont the turpentine which the knots contain. When the lime has remained on about four and twenty hours, it is to be scraped off, and the knots must be painted over with what is called size Linotting, a composition of red and white lead ground very fine with water on a stone, and mised with strong duuble glue size, and used warm. If doubts exist of their still remaining unkilled, they may be then painted over with red and white lead ground very fine in linseed oil, and mixed with a portion of that oil, taking care to rub them down with sand paper each time after corering them, when dry; so that they may not appear more raised than the other parts. When the knotting is completed, the priming colour is laid on. The priming colour is composed of white and a little red lead mixed thin with linseed oil. One pound of it will cover from 18 to 20 yards. When the primer is quite dry, if the work is intended to be finished white, mix white lead and a very small portion of red with linseed oil, adding a little quantity of spirits of turpentine for second colouring the work. Of this second primer, one p und will cover about 10 to 12 square yards. The work should now
remain for some days to harden; and before laying on the third enat it should be rubbed down with fine sand paper, and stopped with oil putty wherever it may be necessary. If the knots still show through, they should be covered with silver leaf, laid on with japanned gold size. The third coat is white lead mixed with linseed oil and turpentine in equal portions, and a pound will corer about 8 sruare yards. If the work is not to be fini-hed white, the other requisite colour will of conrse be wixed with the white lead, as in the case of four coats being used. When the work is to be finished with four enats, the finishing coat should be of good old white lead as the basis, thinned with bleached linseed oil and spirits of turpentine; one of oil to two of turpentine. If the work is to be finished dead white, the very best old lead must be used, and thinned entirely with spirits of turpentine.
2269. When stucco is to be painted, it will require one more coat tlan wood-work; the last coat being mixed, if the work is as usually executed, with half spirits of turpentine and balf oil, for the reception of the finishing coat of all thrpentine or flatting. If the work be not flatted, the finishing coat should be with one part cil and two of turpentine. It would be impossible to enter into the details which are to le observed in painting walls of fancy colours; all that can be said on this point in instruction to the architect is, that when fancy colours, as they are called, which in these days a painter construes as anything but white and a tinge of ochre or umber, each coat must incline, as it is laid on, more and more to the colour which the work is intended to bear when finished.
2270. In repainting old work, it should be well rubbel! down with dry pumice stone, and then carefully dusted off, and when requisite, the cracks and openines must be well stopped with oil putty. After this, a mixture of white with a very smill portion of red lead, with equal parts of oil and turpentine, is used to paint the work, which the painters technically call second colouring old work. Alter this, the work being dry, a mixture of old white lead, adding a small portion of blue black in a medium of half bleached oil and half turpentine, is used for finishing, or, if flatting be intended, tho former preparation will be suitable for receiving dead white or any fancy colour. The same process will serve for stuccoed walls, observing that, if more coats be required, the mixture of half oil and half turpentine is proper. To remove old paint, see 2275.

2271 . In respect to outside work, the use of turpentine is to be aroided, for turpentine is more susceptible of water than oil, and thence not so well calculated to preserve work exposed to the weather. Oil, however, having from its nature a natural tendency to discolour white, that is necessarily finished with a portion of half oil and half turpentine; but in dark colours this is not necessary, and in such cases, boiled oil, with a little turpentine, is the best, or indeed biled oil only.
$\geq 271 a$. When linseed oil is clarified and cleansed by means of sulphuric acid, much of the cohesion in the regetable property of the oil is destroyed, preventing its forming that perfect pellicle which it invariably does upon exposure to the atmosphere during drying. White lead should be ground with linseed oil in its pure state; this oil is now largely adulterated with oils of resin and pine, as those oils are very much cheaper. Oils are thus clarified that the lead, when ground, may appear at once as white as possible; whereas, if ground in pure linseed oil which has had the refuse cast down liy means of irory black or powdered litharge, it will at first have a yellow tinge, which is only to be got rid of by time; and hence arises the valne of old ground white lead. (Builder, xir.).
$2271 b$. The blackness which in the winter frequently shows itself upon exterior painted work probably arises from the outer skin of the oil having been renderd porous by the sulphuric acid, and the foul, or hydrogen, gas readily fastens itself to the unprotected lead, for which it has an affinity, and hence results the mottled appearance of such work.

2271 c. The best linseed oil is obtained from good Baltic and Bombay linseed. crushed. Mineral turpentine is sometimes used as an adulteration of that article; the paint made with it dries, and then softens, becoming sticky even under a coat of sugar of lead and varnish. Woodwork prepared with bad linseed oil for being stained, prevents the varnish from drying : good size is all that is required. To distinguish the good and bad qualities, states a writer in the Buider, xxi. p. 919, pure vegetable turpentine, upon exposure to the air, always loses in bulk by eraporation, but gains in weight by absorption of oxygen, which makes it more binding in its properties. This peculiarity none of the mineral substitutes possess; on the contrary, the mineral is so extremely rolatile that, upon exposure, the spirit all flies off, learing the oil without anything to assist it to harden, and of course increases the evil of the lad oil, instead of counteracting it. The use of rarnish in white lead work cannot be sufficiently reprehended, on account of the ultimate defect of tho work.

2271d. Nut oil has been stated to be more durable, and to stand the weather much longer than any other oil in paint.
2272. White lead, which is the principal basis of all stone colours, is carbonate of lead, generally containing hydrated oxide of lad, which is sometimes combined in the proportion of one atom of hydrated oxide to two of carbonate of lead. It is usually made either by precipitation, as when carbonic acid or a carbonate is used to decompose a soluble salt, or a subsalt of lead; or by exposing plates of cast lead to the joint action of the vapour of
acetic acid air and carbonic acid. It is by the latter process only that the resulting carbonate of lead is oltained of that degreo of density, opacity, and perfect freedom from crystalline texture which fits it for paint. The last, called the Dutch process, was introducel into England about 1780. White lead is often largely adulterated with sulphate of baryıa, which may be detected by insolubility in dilute nitric acid, whereas pure white lead is entirely dissolved by it. Fine lead is now made from slag lead, which is treated with nitrate of soda, thus oxidising all impurities except copper. The same effect is accom, plisl ed by calcining the lead in an improving furnace, especially when the lead contains much antimony. The copper is next remored by a process not yet pullished, and finally the lead is crystallised by Pattinson's process. The resulting metal is remarkable for its fine crystalline surface and bold columnar fracture. Lead containing even only $2 \frac{1}{4}$ ounces of copper per ton communicates a pink tint to the corrosions of white lead, which it is important to remove.
$2272 a$. The ill effects on the constitution of persons engaged both in the manufacture and use of the article hare recently (since the publication of the first edition of this work) induced the French chemists to find some less deleterious substitute for it, and MI. de Ruolz has discorered two substances which fulfil the required conditions-riz., combination with oil, good colour, property of concealing, \&c. The first is an arsenical compound (product) hitherto little known, which M. de Ruolz does not describe, because, although inoffensive, it may be made, by very simple chemical reaction, to retake its poisonous qualities, and be employed criminally. The second, which he considers well adapted for use, is the oxide of antimony, and possesses the following properties: its colour is a very pure white, rivalling the finest silrer white ; it is very easily ground, and forms with oil an unctuous and cohesive mixture, comparatively with the white lead of Holland as 46 to 22 ; mixed with other paints it gives much clearer and softer tones than white lead. It may be obtamed directly from the natural sulphuret of antimony, and at one third of the cost of ordinary white paint. (See Literary Gazette, Nov. 25, 1843.) If the finishing colour is white, nothing but white lead should be employed.

2272b. A new process of making white lead is that of H. J. B. and II. B. Condy, who claim the following advantages: I. White lead of the finest colour and body can be made within seven drys, instead of four to fire months, as required by the ordinary process. II. Old lead or any description of metallic lead can be used, all impurities being removed by their process, instead of buying "refined pig lead" for the ordinary process. III. The present uncertainty in composition is corrected by the new process, which is identical time after time; the corering properties are better. IV. The colour is preserved in impure atmosphere. V. The absence of danger to workpeople, since nearly all the operations are effected by machinery, instead of being handled at each stage in the ordinary mode.

2272 c. The other metallic white paint used is Inbbuck's patent zinc white, known for its intense whiteness, its resistance to sulphurous and other deteriorating cuses, and its harmless qualities to the painter and the inmates of the house under decoration. It is requisite that the oil used should be as white as possible, that the bru-hes and pots should not have bcen used for white lead, or else hare been cleaned with spirits; and that driers and colours with a lead basis should not be mixed with it. Zinc white possesses less body than white lead, and great care is requisite that the colour when ground in oil is of *ufficient consistence to be laid on a flat surface without showing through; for in that state any oil in excess will form a slight glutinous coating on the surface, retaining every particle of dust brought in contact with it, until it has evaporated. Proper drying oils will cause zinc white to dry as quickly as the other colour. With these precautions, a few trials will enable any painter who is willing to work zine white to overcome the difficulties which appear at first to condemn the invention. It is asserted that in consequence of the great durability of the colour of this material, a house painted with it may be washed for a succession of three, four. or even five years; and that after each successive washing the surface will be found as clear and bright as when fresh painted. The effect, in appear:nce, of this paint is perhaps better when it is applied as a finish to a coat ot pure white load; generally it looks better on new work than on old, as some specimens prove that it was then apt to turn black. An American discovery consists in subjecting the oxide of zinc, in its dry state, to the combined action of friction and pressure, by which means its bulk is greatly reduced, and it is enabled to be ground with a reduced quantity of oil, while a greater body is given to the paint. Hubbuck states that 2 cwt. of his paint, with 6 gallons of oil, covers as much surface as 3 cwt. of white lead and 12 gallons of oil ; and that it is cheaper also than white lead.
$2272 d$. Lead colours are formed by a mixture of white lead with lamp black; all colours, however, that are called fancy colours have white lead for their basis, chocolates, black, brown, and wainscot only excepted. The fancy colours are drabs, French greys, peach blossom, lilac, light greens, patent greens, blues, vermilion, lake, \&c.
2273. There is a process used by painters tormed cleur-coleing, which is executed with white lead ground in water, and mixed with sizc. This is used instead of a coat of paint ;
but it has not sufficient body uscfully to answer the end for which it is usually employed. It prevents the oil paint sinking into the wood; it scales off, and in damp situations its coluur almost immediately cbanges. The only occasions wherein it is useful are where the work is greasy and smoky, in which the use of it prepares better for the reception of paint. It should however, never be employed upon joiner's work or cornices to ceilings, where much enrichment is found; for, of all things, it destroys the sharpness and beauty of the ornaments. Painters are rery fond of using it; but their endeavours to persuade the architect should alrays be resisted, except in cases of absolute necessity, namely, that in which a fair appearance cannot otherwise be given to the work. The old work should be well cleaned and dried, and then the mixture abore stated applied. For finishing, the white lead is mixed in half linseed oil and half turpentine, and used as stiff as possible; Whe black, or sonie colour, and a little drier, are requisite.

2273 a. Various prepared paints are employed. One of the oldest is Carson's Anticorrosion paint, used for out-door work only, such as farm buildings, implements, fencing, \&c., all kinds of iron work, brick, stone, compo, \&c. It is stated to be lower in price, and to last twice as lung as the best white lead. The powder, in which state it is supplied, is composed of ground glass bottles, scoriæ from lead works, burnt orster shells, and the required matter for the colour that may be chosen. 112 lbs . of this paint requires 7 gallons of raw linseed oil and 1 gallon of turpentine ; to be mixed over-night; 2 coats are required on paint, 3 on new work; 3 or 4 on brick, cumpo, \&c. ; everything to be well scraped first, and the paint rubbed in well. It is thus more laborious to put on than common paint; it wears out the brushes in a rery short time, and as it lasts so long, painters will seldom use it. The apparance of a surface painted with it is rough, resembling that of uarubbed cast iron or freestono. It will blunt the edges of carpenters' tools when being sawn or cut through.
22736. Oxide of iron paint, of various colours, is a ferruginons paint, for iron and wood, made at Matlock. Messrs. Peacock and Buchan have successfully applied their improved coating composition to many iron ressels and life boats, for many years, and it is found to preserve the plates, keep the iron cleaner, and to stand the sea air and salt water much Letter than most, if not all, other paints. The Pure Carbon paint protects iron from rust, and is raluable for all outside work. When tar is used as a paint, about a pint of spirits of turpentine is put to a gallon of tar as driers, or a larger quantity if it be required to dry quickly. The addition of yellow ochre will change the black to several shades of brown.
$2273 c$. The Bideford and mineral black paint has been exchusively used in H. M. dockyards, \&c., for the last forty years. "Its superiority is observable in the preservation of wood, iron, and canvas; it covers the work well, dries quick and hard, is more durable, and does not blister like other blacks, and has a body inferior only to white lead." The Torbay iron paints, made at Brixham, in Devonshire, have been much used in dockyards, \&c., for coating materials under water, or in a position to be affected by damp. Their peculiar characteristics are, great covering properties, 62 lbs effectually cuating as large a surface as 112 lbs . of lead paint; economy, durability, protection of iron from corrosion, arresting oxidation at auy stage, and resistance to sulphurous and other gases. (Hunt, Handbook, 1862. Builder, xx. 527.)
$2273 d$. The Iron minium paint, by A. de Cartier, manufactured at Auderghem, near Bruxelles, is a pure oxide of iron mixed with about one-fourth its weight of siliceons clay, and not containing any acids. It is now extensively used in this and other countries for painting the ironwork of slips, gis-holders, \&c., superseding red lead and other pigments for such purposes. It is said to be solid, durable, cheap, and, above all, to preserve iron from oxidation, and of hardening wood. It is a dark brown in colour, but mixes easily with other colours, such as llack, yellow, green, \&ic. To test its purity, it is said to be sufficient to dilute it with a small quantity of sater, spreading it on paper, when, if pure, the edges of the paper will preserve the special tint of the iron minium. If a change of tint is perceired, an adulteration has been effected.
$2273 e$. Warner's Silicate of iron paint is sold prepared in genuine boiled linseed oil, of a great variety of colours, for painting iron work. It is said to stand extreme heat and dimp, and not to be affected by the strongest acid, sea-water, sulpburetted hydrogen, or ammonia; and to be equally well adapted for iron or wood. It adheres so tenaciously, that sheet iron may be bent until it breaks, without the paint coning off. The powder, when boiled up with tar, is a very cheap preservative for iron or wood.

2273 f . When visiting Paris in 1860 , the present editor was much struck with the appearance of the margins of the stairs at the hotel. On examination, they proved to be corered with a thickish coat of a hard componnd, haring rather a glossy surface, and somewhat of a light orange tinge. A water-closet whieh had been out of order on one morning was not only repaired, but the seat and riser, the floor, and the wall to a height of three feet, covered with this mixture, and ready for use by the next day. The tiled floor of the manuscript room at the library of St. Génériève, which had been covered with the same mixture, was then in various stages of obliteration according to the traffic. The
attendant there spoke very highly in farour of its cleanliness. It is believed to be composed of 10 lbs . of purified yellow wax, 10 lbs . of linseed oil, 8 lbs . of spirits of turpentine, and 5 lbs . of common resin. The wax is dissolred separately in the linseed oil, and the resin in the spirits of turpentine by heat, and are subsequently intimately mixed, when they form a pasty compound. In this condition it is used as priming, being nearly colourless after application. Pigments ground up in oil in the usual way are added in the proportion of one-thitd of the vehiele, and then spirits of turpentine added in quantity sufficient to produce the desired amount of liquidity. So soon as the tarpentine has evaporated, the coat of paint will support rubbing, if not too hard, withont damage, but it takes sume time to become completely hard. It is put on in one coat, without apparently any of the smell or inconveniences attending the ordinary process of painting.

2273g. Among the modern inventions the following are noticed. Albissima paint, which is brilliant and pure, non-poisonous, without smell, and unchanged by gases. The Sanitary Paint Company mannfactures non-poisonous silieate and other hygienic paints and colours for all purposes. The Silicate Paint Company manufactures the patent Charlton white, for use in place of white lead, zinc, \& . ., and other materials. Price's chez-lui is a hard drying enamel for metals. The granitic paint and the silicate zopissa composition is stated to be a cure for damp walls. Morse's "perfect oil paint" is put forward for inside and outside work, old and new; and as damp-proof and weather-proof. Magnetic oxide of iron paints of all colonrs; a cure for damp walls.

2273 h . Paint done upon recently set Portland cement will not stand. The work must be finished in Portland cement compo, and faced with at least half an inch of Keene's cement or, better still, Martin's cement, followed at once with paint having plenty of boiled oil in it; the paint must be put on before the cement is thoronghly set, or the face becomes greasy and will not take the paint. In ordinary work, the stucco or cement must be dry, which may take six or twelve months to effect, or the paint will go in llisters, and colours will fy. Pure red lead and good boiled oil should always be the first or priming coat.

2273i. The Indestructible Paint Company protected in 1880 the obelisk called Cleopatra's Needle, fixed on the Thames Embankment, with Browning's patent preservative solution, which appears to have prevented the stone absorbing damp. (See also Presfrtatton of Stone.)

2273i. Fireproof paints. These are modern insentions. Astrops patent Cyanite is stated to be non-poisonous; a colourless or colonred priming fur paint or rarnish, or alone as a staining frr wood. It is greatly recommended for painting timber as well as for textile fabries, to resist the action of fire. (Builder, Sept. 15, 1883.) The Ashestos paint does not contan any oil, ana wood coated with it has resisted fire. Griffith's Pyricue paints and liquids were used in 1887, in the Royal Jubilee Exhibition buildings at Old Trafford, near Manchester, under the recomineudation of Professor Watson Snith. Sir Samuel Blane's fireproof paint has been used at the new thẹatre in the Strand, built, 1887, for Edward Terry.

Distemper.

2274. The use of distemper is older than that of oil and varnish. Whitewashing is a kind of distemper, especially when size is used with it. Common distemper colour for ualls is Spanish white, or whiting, broken into water, to whieh is added strong size whilst warm, and then allowed to cool, when it should appear a thin jelly ; two coats are generally necessary. The old work should be first washed by a brush with water. This process in old publications is called, "painting in water colours." It is much used for ceilings, and always requires two, and sometimes three, coats, to give it a uniform appearance. It is not generally known that walls which have been distempered cannot afterwards be limewhited, in consequence of the lime when lail on whiting turning yellow; oil colours, however, can be applied, and then whitelead is used as the vehicle. Papered rooms culoured in this manner, especially over flock papers, look well, as the raised pattern can be seen through the coats of colour. Rooms may be distempered and dry again in a day, with little dirt. When wood is covered with distemper, it is liable to swell with the damp. Rooms that are to be afterwards varnished are prepared in two ways: I. By applying the intended distemper colour, and then covering it with as many coats of varuish, coloured or uncoloured, as may be required; but if the wood be not dry, the colour becomes hardened and flakes off. If. The colour is ground and mixed up with varnish, which produces a better result. If the last coat of varnish be applied colourless, it then furms a glazing to the under tints, and its brilliancy will be greater. The ase of size here, again, produces a considerable saving of varnish. For new plaster work a coating of size is desirable.

2274 a. Morse's patent Calcarium distemper, or washable non-poisonous water colours in cold water, does not require to be washed off previous to re-doing; colours for inside or outside work, but not on outside painted walls; white for ceilings. It will not rub off; is stated to be one-fourth the cost of lead paint; that onc hundredweight will
twice corer 200 to 300 square yards of inside work, and from 100 to 200 square yards of outside work.

2274b. Mander Brothers' non-poisonous colours for distemper. They recommerd one pound of first-rate glue to be dissolved in water over the fire, adding more water to make a bucketful of size of about $2 \frac{1}{4}$ gallons. A preparatire coat, made of whiting slacked in cold water, ad ling the proper proportion of colour ; then reduce four ounces of soft soap in a little warmed size, and mix thoroughly in the colour, adding it to each bucketful of stuff. Then thin down the whole with jelly size until it is fit for use. This coat should be mode much thinner (with size) than the finishing coat, and it should be laid on erenly with a flat brush and allowed to dry. For the finishing coat, make the colour as for the preparative coat, but with rather less size and more colour, and omit the soft soap. The walls shculd always he properly dry before being coloured, unless made with Parian cement, otherwise they will not dry of a uniform colour. Manders supply about one hundred fine colours for varions purposes.
$2274 c$. Duresco is a new washable distemper.
2274d. Distemper and fresco painting are subjects we do not to treat in this section, as they would come under "Decorative Painting," a higher branch of artistie skill.
2275. Some colours dry badly, black especially, and in damp weather they require a drier, as it is called, which may be made from equal parts of copperas and litharge, ground very fine, and added according to circumstances. Drying oil is made as follows:-To 1 gallon of linseed oil put 1 lb . of red lead, 1 lb . of umber, and 1 lb . of litharge, and boil them together for two or three hours. Great care must be taken that the oil does not boil over, on account of the danger to which the premises would be therehy exposed. Thus, in a pot capable of holding fifteen gallons it would not be prudent to boil more than one-third of that quantity. To remove old paint, rarnish, \&c., the Electric paint remorer. as well as the Egyptian clay, ara said to be rery pfficacious. The Wellingten automatic torch for burning off paint, and for plumbers' work, as soldering, is a useful instrument.

2275a. Painter's putty is made of whiting and linseed oil, well beaten together.

Initations.

2276. Graining (or combing, as it is termed in some late specifications) and marbling, or the initation of real woods and marbles, is done by the painter. Mahogany grained in 1798 is the earliest notice the writer on the sulject in the Architectural Publication Society's Dictionary had found ; grained wainscot appeared in 1815 . Imitation wainscot is obtained by giving the painted work a coat in oil of a brownish tone, the colour being thicker than usual; this is then scratehed orer by combs of bone, with blunt points, and of various degrees of coarseness, learing the ground visible. The cross white veins or champs are next taken out with the corners of a piece of soft leather doubled up. The next process, which in cheap work is omitted or carelessly done, is over veining; this is effected with a wide flat brush, the hairs of which are long and slender, dipped in transparent colour, when the hairs stick together in a sort of lock; the cross veins of the woods are dexterousiy imitated with this tool, and show the other veins below. Other expedients have been made to imitate knots, rems, mottles, \&c., of rarious woods. The littlo dark spots with a lighter shade round them in maple wood are imitated by dexterous touches with the tips of the fingers on the wat pigment. Almost every other wood. as weii as wainseot, is imitated in distemper, for which small beer and water, mixed with Vandyke brown and burnt sienna, according to the tint required, is found to be sufficiently glutinous withcut the aid of size, to prevent it smearing during the application of the coat of copal rarnish which follows soon afterwards. Graining operations are always dune after the wood has been painted; in best work, indeed, the coats are thicker than usual, to affird a good ground for the combing. Taken with the subsequent varnishing, grained work is considered to be more lasting than painted work. Certain tools have been inrented for performing this work; the grain has been imitated by machinery; and grained papers have been printed from the grain of the wood itself. To save the delay consequent on painting and all its annoyances, the editor of this edition explained, in 18578 , his system of graining on the wood itself, whereby only a preparatory sizing is necessary; the result is that scarcely any smell of paint is perceived; a greater brilliancy in effect is attained; and the woodwork may be left to dry until the last moment.

2276a. Marbling is painting on a prepared painted surface, an imitation of the material as exact as the talent of the painter will admit, and requires no detailed explanation.
2276b. Varnishing, a subsequent operation to both of the abore processes, requircs much care and the use of good material, the best copal varnish, to bring out the colours of the work. Many qualities of rarnish are manufactured, as:-finest copal, for imitation wcods, \&c.; copal oak, for grained interior work; mahogany rarnish. being darker in colour; fine hard-drying oak varnish. drying in about 8 hours, and used for seats in churches, \&c.; dark hard drying o. k rarnish, used atter deal has been stained; paper rarmish, for paper-
hangings, \&c. Where expense is not an olject, two or three coats are applied, especially to marbling, each coat being well rubbed down to obtain an even surface and a high degree of polish. To restore the gloss of varnished graining, of marbling, or of rarnished paper, the whole must be well cleaued, then sized afresh, and revarnished. But the original colour of the work can never be fully reproduced, as the rarnish darkens by time. Brunswick black rarnish, a quick drying jet black, is used for grates, irou work, \&c. Copal cabinet varnish, and a white, and a brown, hard varnish, and French polish, are used for cabinet-makers' work. A water flatting varnish renders paperhangings washable without imparting a gloss. These varnishes are all as made by Mander Brothers, Wclverhampton.
$2276 c$. To clean varnished work, soap and water applied carefully with a sponge, and the use of warm woollen cloths to dry the work, is very effieacious. The steps of wooden staireases, painted, grained, and rarnished, lant a very long time, and neither dust nor dirt adhere so easily to such work as to paint. Rral woods, espeeially wainscot, are prepared for receiring coats of varnish, by being first sized to prevent the rise of the grain which ensues when the slightest quantity of water touches it. When to be polished, they are well smudged over a short time previou:ly with Russian tallow. A preparation called Lethicium js said to remove paint from wood in twenty minutes, doing away with the recessity for burning it off. A hypo-nitro kali has been introduced for the same purpuse.

2276 d . Sand paper, glass paper, emery paper, and emery cloth, of various deyree of fimeness, are employed to rub down work to a surface. It is made by the pulverised material being placed in fine sieres, and by a gentle motion distributing it by hand over the paper or eloth prepared for its reception.
22 i6e. Stuins, as substitutes for paint, the tints resembling oak, mahogany, rosewond. walnut, and satinwood, cause the natural grain of the deal on which they are applied io appear. The wood is then sized and varnished ; their durability is stated to be at least three times that of paint in interior work, and only at half the cost. This is Strphen's p eparation. Naylor's stain is said not to require sizing, and to stand exposure to the weather. Swinburn's Transparent staining and anti-dry-rot fuids are chemically prepared, and show the natural grain and feathery appearance of the wood. When sized and the proper rarnish used, they are said not to fade or blister by exposme to the weather.
2276%. Nunder Brothers supply pernanent wood stains in dry powder, which aro instantly solnble in boiling water and perfectly fast in daylight; they are prorided in boxes of $1 \mathrm{oz} ., 2 \mathrm{oz}$, , $4 \mathrm{oz} ., 8 \mathrm{oz}$, and 16 oz . A pale copal varnish, or a dark hand-drying oak varnish, should fullow in two coats, put on in a warmish room, free from dust. Kullio? ith is a new patent priming and stain; it is considered to be best used as a first coat of paint to woed, to impart durability to all oil colours, and that the paint does not blisttr. It is very useful to prepare walls for paperhangings.
2277. In the outside work and stairs, the process of sanding is frequently adopted. It is performed with fine sand thrown on the last coat of paint while wet. Cement work is generally coloured with its own cement mixed up with water. Roman cement, or black cement, as it is sometimes called, must have a wash or two ; and while Porthand cement is dechared not to require any colouring, eertain it is that in London not many years pass over before its dirty look urges a colouring or painting process. The proeess of painting the artificial cements, such as Parian, \&c., is noticed in pars. $2251 f$, and $2273 h$.

Gilding.

2277a. Gilfing is of two kinds, burnished, and mat or dead, gilding. The former is seldom ustd in architectural decoration. The latter is dune in oil-size on woodwork; in water-size on plastering. The gold leaf of various thicknesses, but generally about $\frac{1}{2} \frac{1}{2 \overline{0} \overline{0}}$ of an inch, is called "single," " double," and "thirds," and of tints, is furnished in books of 25 leaves, each leaf teing $3 \frac{1}{8}$ by 3 inches, or in the boek 18 inches and $\frac{6}{8}$ of an ineh stiperficial, covering about 1 foot of plain work. It should not be too thin nor have too muel alloy. Giiding on metal is effected by first giving it a coat of paint or some orher substance to prevent oxidation. Guld, absolntely pure and of extra thickness, was applied to the ironwork of the grat tower at Westminster; and donble gold leaf. pure, was used in the reading room of the British Museum. It has been stated, that if just before commeneing to gild, each leaf of the book be slightly rubbed over with wax, sufficieat only to cause the adhesion of the gold, that gilding in the open air, even in windy weather, may be done without the loss of a leaf, as the stickiness of the gold-s.ze will overeome that of the wax, and no part be blown away, as is generally the case.

2277b. A gold paint, patented by H. Bessemer, is now much used, which, by the highly improved manufacture of bronze powder, is greatly reduced in price in England, although very much is still purchased from the German dealers. As an impalpable metallic powder, its application to plaster, wood. \&c., is effected by using a camel's hair brush, which is dipped into a little of the powder and rubbed up in a small portion of transparent gummy varnish, by whieh it adheres to the surface. For all outdoor works it rrquires to be rarnished over for better preservation.

Paperkanging.

2277 c. With painting is often comnected the practice of paperhanging by the same artificer. The various sorts of paper used for lining walls may be described as fullows: Block printed by hand, a process now seldom done. Machine printed, of great variety. Flocks, the pattern being formed by a wool ground to a fine powder and fixed to the paper by a sticky oil. Raised flocks; fatent embossed flocks; imitation leather, of which the new Coriacene is an example. Woollams and Co. were the original makers of non-arsenical papers. They are also manufacturers of patent embossed flock papers, embossed imitation leather paper, and raised flock papers for painting over. Arsenical green in printed papers is considered injurious to health, from its flaking off in light particles, and floating in the air, when it is taken into the lungs while breathing. This colour may be at once detected by placing a few drous of ammonia on it, whereby the green will be changed into a deep blue.

2277 d. The methods of manufacluring marlle, granite, and wainscot wall papers, is well described in the Builder for 1860, p. 912, and which need not be here entered upon.

2277 e. It may be mentioned that papers are printed 12 yards in length, such a length being called a piece, and 1 foot 8 inches wide; hence 1 vard in length contains 5 feet superficial; therefore, any number of superficial feet divided by 60 (the length $36 \times 1 \mathrm{ft}$. 8 ins.) will give the number of pieces wanted for the work; 1 piece in 7 or 8 is allowed fur cutting and waste to common papers, and any odd yards are allowed as a piece. French papers contain about $4 \frac{1}{2}$ yards superficial per piece, being of rarious widths. In best papers this allowance for waste is not enough. Borders are 12 yards or 36 feet in eich leogth, each being technically a dozen. A ream of printed paper of 20 quires of 24 sheets to the quire, is equal to 28 pieces of paper, or each piece contsins 17 sheets. Satin papers should be hung orer a lining paper. The paperhanger has to provide and hang materials required for covering damp walls.
$2277 f$. Walls of rooms should aluays be stripped before the new paper be put up, a process usually attempted to be sbirked, even when charged in the estimate. In bad common plasterer's work the setting coat often comes off in parts with the paper and has to be repaired. The walls are commonly prepared fur papering by a coat of clearcole, or similar material, and for better work by rubling down, \&c.
2277. Paperhangers' paste is made of flour, a little alum, and single size.

2277h. Testorium is stated to be a sanitary decoration for walls; it is a fine textured calico painted, with the patterns printed thereon. The dado filling is made in 22, 27, 30, 36 , and 45 inches widths. The filling 22 inches wide is either in plain oil colours, or colours varnished, so tbat it can be wished with soap and water. The material is applied in the usnal way as a paper; it checks the ioroads of damp into a room. LincrustuWalton, formerly known as Muralis, the Sunbury wall decoration, is impermenble to moisture, and has other adrantages. Muraline is one among the many uashable papers. A Sanicary paper is made of non-alsorbent materials, and being printed under a great pressure, the colouring is pressed into, and thoroughly ine rporated with, the fibre of the paper. These papers are well adapted for sick rooms, and can be washed with cold water. The Duro-textlle is of this character, and is made 24 inches wide. W. Conke \& Co.'s golden lustre silk paper hangings are stated to be free from all impurities.

Other Decorative Appliances and Processes.

2277i. Distemper and Fresco painting. Sgraffito, an ancient Italian process for external and internal plaster work. Pargetry, or modelling in wet plaster, as carried out in the half-timbered buildings of the 16 th and 17 th centuries. Modelled fibrous plaster work, for ceilings, \&c. Marble mosaic floors. Tilc paving. Artistic joinery in dados, doors, panelling, \&e, in all woods. Chimueypieces in marble and wood. Real wood veneering in lieu of painting and paperhanging. Xylatechnigraphy, a new and permanent process for decorating woodwork in lieu of painting or graining. Radeke's compressed woorl pulp. Stainod glass and leaded lights. Embossed and painted modern lea'her, and Spanish leather, for walls, screens, \&c. Tapestry, imitation painted or printed, for wall hangings, st uffs for curtains, furniture coverings, \&c. Pyrographic woodwork(par. 2173g.). Marquetry (par. 2173 g .). Colour decoraton, applied to walls, continually fails. Mr. Heaton has invented Cloisonne mosaic, a material that will take colours on the principlo of cloisonné work, which could be applied in panels 6 feet by 3 feet. It is a metal lining, filled in with a coloured material, and washable.

Sect. XIII.

VENTILATION OF BUILDINGS.

2278. Though this and the following section can scarcely be said to come legitimately under the heading of this chapter, the subjects are so intimately connected with each of the sections, and have been reterred to occasionally in their description; and as, moreover, the architect is expected to inake himself fully aequainted with these suljects, this place, then, appears to be suitable for the consideration of them.
$2278 a$. Whether ventilation be left to chance, or whether any special apparatus be erected for the purpose, foul or vitiated air must be got rid of; while fresh air, adapted to the purposes of respiration, most be admitted in sufficient quantity, that is, at the rate of alout 4 cubie fett per minute for each indiridual in the apartment. The foree or impetus of the incoming air ought slightly to compress the air of the room and assist the efflux of the vitiated air; and this, in its turn, ought to be so heated as to have a certain amount of ascensional power. Mechanical meaus are sometimes necessary to expel or withdraw the air, such as fanners, bellows, pumps, \&c.; lut fur general purposes it is more consenient, as well as economical, to trust to the natural method of getting rid of vitiated air; that is, by making certain rentilating tubes or opeuings at the highest point of the room, towards wheh the hot air tends to fluw.

22786 . Some authors have divided artificial ventilation into two branches, called plenum and racuum. Ky the first, fresh air is forced into the interior of a bulding, and the riliated air is allowed to escape by openings contrived for the purposo. By the second, vitiated air is drawn out of the building, and fresh air finds an entrance through channels adapted to the purpose.
$2278 c$. As the relocity of a falling body in a second of time is known to be eight times the square root of the height of the deseent, in decimals of a foot, so the velocity of discharge per second, through rent tubes or chimneys, may be briefly stated as equal to eight times the square root of the difference in height of any two columns of air, in decimals of a foot. This number, reduced one-fourch for friction, and the remainder multipied by 60 , will give the true velocity of efflux per minute. The area of the tube in feet or decimals of a foot, multiplied by this last number, will give the number of cubie feet of air discharged per minute. The height of a column of heated air must be calculated from the floor of the room to the top of the tube where it discharges into the open air. Where several vent tubes are employed, they must all be of the same vertical height, or the highest vent will prevent the efficient action of the lower ones, so that there might be a smaller discharge through two tubes than through one only.
$2 \div 78 d$. li'hen sereral openings are made above the level of the floor of a room, the highest one may be the only one capable of acting as an abduction tube, the other lower openings often serring as induction tubes, discharging cold air into the room instead of taking it out, and, in doing so, it may lower the temperature of the hot ritiated air and prevent it from escaping, thus not only causing the bad air to be breathy over again, but filling the room with unpleasant draughts. But if the highest alduction tube be too small to carry off the requisite qu nitity of hot air, the tube next below it in eleration at any part of the room will act as an abduction tube. If the lower openings (to be provided with sliding valves) for the admission of fresh air be too small in proportion to these for the escape of hot air, a current of cold air will descend thrungh one part of the hot air tube, and the hot air will ascend through another part of the same tube. In order that ventilating tubes or openings may be effective, the lower opening for the admission of fresh air must bo at least as large as the upper ones, and larger if possible. Tredgold recommended that the lower should be about double the area of the upper openings, and to so subdivided as to break the current. (Tomlinson, Warming and Ventilation, fo., 1850.)

2278 e. It must be noted that all noxious gases do not rise, and therefore that in a few exceptional cases ventilation must be effected at the floor level. Taking atmospheric air at $6 v^{\circ}$ Fahr., and under a pressure equal to 30 inches of mercury as 1,000 , then hydrogen gas equals 6,926 ; nitrogenous miasma, about 975 ; olefiant gas, 978 ; sulphuretted hydrogen gas, 1,178; carbonic oxide, 957 ; and sulphurous aciel, when anhydrous, 3,000 . On the contrary, carburetted hydrogen gas, or marsh miasma, is as light as 555 ; and common coal gas ranges between 514 and 420 . Thus above or below the temperature of 60° the conditions of the diffusion of gases rary in a marked manner, and it is on this account that the finu air of sewers, \&c., exereises a more extended action lateraliy in hot weather, when it is nble to diffuse itself more easily through an attennated atmosphere, than in cold weather, when the greater density of the at mosphere, and the comparatively higher temperature of
the gares giren off from the reseptacles mentioned, enable the foul air to rise vertically with greater ease than to spread laterally. In a room, the carbonic acid emitted by the lights and by the breath of its occupants being of greater specific gravity than atmospher ic air, would, at the ordinary temperature of the air, tend to accumulate in its lower strata; but the temperature of the products of respiration and of combustion is usa lly so much in execss of that of the air, that they are enabled to rese through it, and to accumulate in the apper portions of the enclosed room matil some change in their temperature takes place. The foul state of the air in the lower portions of a pubic building on the day following a crowded meeting may be due to the change of temperature during the night, and the retention, by closed dours and windows, of the air so rendered impure. In $186 \overline{5}$ General Morin read a paper to the Paris Academy of Sciences, again urging as a fundamental principle the exploded practice of drawing off ritiated air from the stratum nearest the floor, pure air being admitted near to the ceiling.

2278 f : Our limited space will not permit us to do more than very briefly rotice the chief principal methods of rentilation; the application of any one of them must be left to the ingenuity of the architect. He will find that all public buillings, and even all privato houses, from the highest to the lowest class, must be spontaneously rentilated, for if any tronble be entailed, it will be neglected. The means for ventilation must be cheap. easily procurable, always in place, self-acting, and not liable to get out of order. Such an invention is the Arnott rentilator, when placed as chse to the celling as practicable, forming a direct communication between the room and the chimney. The chimney has been made the means of securing a rentilation by a separate and rarified air channel. Thus, besides a mere channel left in the wall adjoining a flue, Doulton's patent combined smoke and air flues, of terra-cotta, for 12, 10, and 8 -inch chimneys, are effective. Boyd's patent flue plates are similar in principle. Chowne's patentair-syphon, consisting of an iurerted syphon tube, acts upon the principle of the air moring up the longer leg, and of entcring and descending in the shorter leg, without the necessity for the application of artificial heat to the longer leg. This, howerer, does not appear to be always proved in practice, for whether the current in the longer leg be ascending or descending, depends chiefly upon differences of temperature within and without a building; but as the brickwork of chimneys often gets heated by the ricinity of the kitchen flue, or even by the sun shiting upon it during the day, an ascending current is more likely to be sustained than a descending one, sinco brickwork will retain its heat for some hours.

2278 g . The system adopted by Dr. Reid, at the House of Commons, was that of admitting air into a clumber underground, where it was (and is still) purified by being washed while passing through a stream of water, and then through canvas, whereby other impurities are extracted. It then rises to the floor of the apartment, which is pierced with many thousand holes, and passing through them is then further distributed by moans of a hair-cloth, ascending towards the ceiling at about the rate of one foot per minute. This air is, in cold weather, warmed below; and in warm weather it is cooled with ice. Tre object is to keep the air in all seasons at a uniform temperature of 64°. The air is often cooler in the House than that outside it. From the ceiling it is carried rapidly away along a tumnel to feed the great furnace which creates this current of ventilation. The complaint is made that it carries with it from the floor the fine dust brought in by the members' fret, which, being inhaled, sometimes affects those in the House. The method adopted by Dr. Reid to warm and ventilate St. George's Hall, at Liverpool, is detailed in the Civil Engineer for 1864, page 136. The system employed from 1736 to about 1S17 at the old House of Commons, which was effectirely ventilated, was by a fan placed over it for extracting the heated air, its rate of working being dependent upon an attendant, who received his directions from a person within the Hoase. The common revolving windguard placed at the top of a chimney to induce a suction, whereby the smoke may be drawn out, is of the same system ; as is also Howarth's patent revolving Archimedean screw ventilator. One of the latest systems of effecting the regularity of working such fans or screws is by the aid of the high service watcr supply; a flow of water impinging upon the blades of a wheel turns the extracting fan, and the water is conveyed to a lower reservoir, to be used for domestic or other purposes.
$2278 h$. The opposite system, that of air being forced into apartments by mechanical means, such as the fan driven by steam power, is practised with gredt success at the Refurm Club House, the Gencral Post Office, and many other buildings, public and private, and especially in factories. The fan is regulated to a velocity of between 80 and 100 feet per second. Dr. Van Hecke's system of warming and ventilating, as arranged at the new French hospitals, is effected by means of a $3 \frac{1}{2}$ horse-power engine, working a fan, which drives the external air through long subterraneous channels into four warming apparatuses, whence it ascends into flues, which conduct it into all the wards, passing through regulating air gratings in the walls. In each ward are two or more escape flues carrying the vitiated air abore the roofs.

2278i. The Blackman air propeller, for rentilating, cooling, and drying, has giren good
results. One of 14 inches diameter, revolving 1,000 to 1,500 revolutions per minute, moved 1,500 to 2,500 cubic feet of air per minute. One of 24 inches dianeter, revolving 500 to 900 per minute, mored 3,000 to 6,000 cubic feet of air. Another of 48 inches diameter, revolving 300 to 600 per minute, moved 13,500 to 30,000 cubic feet of air per minute.
$22: 8 \mathrm{k}$. The Boyle system of rentilation of workhouses and hospitals (1882), by selfacting air pump ventilator (perfected Oct. 1887) and the air inlet brackets, is used at St. George's Hospital for the extraction of the foul air and admission of fresh air, which is effected without draught, and is put forth as " the simplest, cheapest, and most efficient system of rentilation that is at present in existence."
$2278 l$. Another system prevails to some extent. The ventilation is combined with the method of warming, be it a church or other room devoted to a public purpose. Thes is effected by means of flues for extracting the air in the building being connected with the furnace of the apparatus. Such is the principle adopted by Messrs. Haden and Co., of Trowbridge. It has been in practice with success at the Royal Polytechnic Institution, London, for ventilating the large theatre since its erection in 1838. After the fire is once lighted, all its communications with the outer air are closed, and that of the extraeting flue opened, whieh then supplies the fire with air hrought down from the upper part of the theatre. Fresh air is admitted to the theatre only through the ordinary doors and openings.

2278 m . As regards rentilation by windows, or the natural method, as it is called, as no system of making a sash working upon a horizontal axis, such as French casements, can wisely dispense with stay-bars, even when made to open and shut by means of a wheel and axle, our attention may be confined to lights hung on pulleys, or on hinges, or on centres. The first of these three clases is the common lifting sasli. Wind-boards at top and bottom to prerent the effects of direct currents have been suggested; and machinery has been fitted to open both sashes simultaneously, so as to ensure the desired circulation of air through apertures at pleasure, or that shall not be altered without a ley. This improrement has lately been successfully managed by the "patent counterhalance rack slips," which also do away with the use of lines, pulleys, and weights. In double windows, however, as in the lavatories at Middlesex Hospital, a roller has bern placed between the two pairs of sashes, which more reciprocally, like the double bucket action; so that when the imner top sash is lowered the outer bottom one is raised, and the reverse; and the extension of this idra to the lights of water closets has been adrocated. It has also been suggested that, in the usual windows, the horns of the upper sash styles should appear above the top rail, so that the window could never be tightly shut; but the benefit from this plan is confined to periods at which the window is not closed by shutters or by roller-blinds. The same objection applies to the use of such perforated glass and other contrivances as are mentioned in par.2231a. It is stated that no draught is felt by the use of these inventions, as the air passing through the perforations is diffusect equally and imperceptibly. We must notice that it will we found that the air is always passing into the apartment, and that when the wind blows towards the glass, the extra supply of air sent in is undoubtedly felt by the occupants, but somelimes not appreciated by them. Another method consists in the admittance of air either by a space left between the top bead (the horns, as before, stopping the sash from going home) and the head of the opening, or by such a space over the outer bead, to communi: cate with the box formed by the inside lining and the architrave or other dressing, the latter being either pierced with holes or detached slightly from its grounds. Anuther method much practised is to make the inside bead to the lower sash of a greater height than usual, say about two inches; thus when the sash is raised a litlle and clears the meeting bar, fresh air will be admitted at the meeting bar and not admitted at the lower part. Old sashes may be so treated; even a bar of wood about three inches high, lined with baize, its lengih being the width between the sash revtals, can be put on the sill when the sash is raised, and the sash shut down upon it. This admits fresh air at the meeting bar sufficient to rentilate the room without draught.
$2278 n$. Of the second elass is the common hopper to a window, framed with or without side lights. In this are included all greenhonse sashes that are hung from the top, which may be made to open simultaneonsly by means of ratcheted stay-bars dropping into toothed wheels fixed on a continuous axis, worked by a wheel against an endless screw. When double windows are used, as in rery cold climates, or when it is desirable to shut out noises, the upper portions of them should lie made to open by the action of opening the inner window. This scheme has been adopted in the hospital of the Wieden suburb, and also in the Imperial stables, at Vienna, with success; its action is not described, but the outer window is presumed to be fixed, the heads of it forming a hopper, which is opened or shut by lowering or raising the inner window.
22780. To the rhird class belogg nearly all the modern English patents for window ventilation, which consist of one or mure planes working like a jalousie lath uron a hori-
zontal axis. Of the two principal adaptions of the system to an entire window, Hurwod's, shown in fig. S08a., and worked by an endless screw, is the simplest; there is another arrangement of this kind by Mackrory, where the action is similar to that of a carriage window; the sash runs in a groare, and being turned by means of a toothed pirot working against an endless screw, it can be kept at any desired height. The method indicated by fig. 808., adopted at Middlesex Hospital, seems more simple and more pconomical. By turning the handle to the points in the plans A, B, and C, the glazed lourres are simultaneously opened or shut to those limits.
$2278 p$. Ventil,tion is effected on the principle of the extracting valve, as adrocated by Dr. Arnott, which is a plate of metal hinged to the lower edge of a metal box next to the room, and on the other open to its chimney. The draught of the flue tends to carry away the air of the ro m, when the currrent is upward; should it he downward, a silk or mica flap is driven against

Fig. 809.

Fig. $808 a$. the plate, tending to prevent the ingress of smoke. Howerer useful this contrimance may be, its risult in cubical consumption of ar is necessarily small. A cowl with vertical, or horizontal, or slanting jalousied sides has also been employed,

Fig. sosb. with or without an Archimedean screw, at the tup of a flue, to exhanst the air of a room. The simplest means of the admission of air to a room is a hole in frent of which, on the inside, should be a board inclined to throw up the current of fresh air, as fig. 808b. Another well known invention is Sheringham's inlet ventilator. An opening is made in an external wall for the introduction of air, and a metal box inserted, which is a sort of hopper, having at its mouth a valve, so hung as to direct the current of air towards the ceiling, whereby no dranght is felt by the necupants of the apartment. Somewhat similar is Hart's rentilator, the f.ce being of perforated zinc. Such articles are also made with a box to coutain charcoal as a purifier of the air before it is admitted. Looker's patent rentilator, consisting of a tubular piece of pottery fixed in the wall, into which on the inside is placed another tube, perforated all round with small holes, the inner end being closed altogether. This second tube is pushed in or out, according to the quantity of air required.
$2278 q$. Amongst the earliest of other and 1_{1} ter systems is Watson's double-current rentilator, consisting of a tube divided by a diaphragm, and rising from the ceiling to the external air ; it was intended that the air should circulate, as shown in fig. 808c., by an

Fig. sose. ascending and a descending current. It has been said that this result only occurs in rooms that are perfecily closed, and that the two tubes generally serve as exhausters; but our own experience is more favourable to the effrctive working of this invention. Somewhat simildr to this is fig. 808. , called the Shaftesbury ventilator, which appears to have been applied in small tenements with success, probably for the sery reason that the rooms in such cases are generally kept as close as possible; for it has been necessary to conceal the opening at the ceiling by an ornamental rose, and to put at G an air grate with large openings. At times,

Fig. 808d.

Fig. 808e.
however, the rush of cold air is very great through this tube into the room ; to remeny this, the end G. may be connected with a horizont 11 tube or box about 3 feet long, and somewhat larger than the tube H; each end of this box is open, but filled with very fine wire gauze; the result then has generally proved satisfactory. A modification of
the preceding invention is adopted by McKinucl. Two concentric tubes are so fixed

Fig. 808 . th.at the inner one is longer than its envelope. This apparatus, shown in fig. 808?., nearly answers its purpose, according to certain authorities, and certainly gives, in some cases, a result that would be satisfactory if its regularity were not affected by atmospheric influences. The openngs require to be cuvered, so as to prevent the admission of rain. A square turret, diagonally divided, as shown in fig. 808f., is knowa as Muir's rentilator. 'The inventor calculates upon ntilising the slightest current of air, as he supposes that when it arrives at one of the sides it will enter, descend, and force an equal quantity of foul air to discharge itself at the other sides. The report of MM. Elondel and Ser upon the London Hospitals in 1862, states broadly that none of these methods gires a satisfactory solntion of the question.

2278r. Honeymuis diaphragm vestilator, 1886, is prepared fur use for open timber ruofs and fur ceiled apartments. Air pressing in on one side shuts a valve on the windward side of a midtle diaphragnt, passes through an orifice in it, creating an upward current in an air trunk, which draws out the foul air in the room through other valves on the lee side. When there is no wind, the valves on both sides of the diaphragm open
 freely for the exit of the heated air.

22788 . The system of Mr. Tobin (of Leeds) for providing access of fresh air into a room is now extensively used, and sometimes utder other names. It was promulgated by him about 1874, and although the principle is of an earlier date, it is to his endeavours that it has become recognised as a nost valuable ausiliary. The principle is that of a tube carried up from the tloor against the inside of an external wall to a height of about 7 feet. Fig. 808 g . shows a section of the tube on this principle, from Dr. Corfield's Laws of Heulth, p. 41. The bottom of the tube is made to communicate with the outer air and the top is left open. This tube may be made of planed deal or metal. The top is by some manufacturess corered by a piece of coarsely perforated zinc to prevent articles dropping down the tube. Others put in a coarse canvas bag to filter the air as it passes through into the room. A regulating valve is also sometimes provided, but this is best aroided, as when once shut it is not always opened again. A "deflecting shield" is often added to the top to prevent the wall decorations from being marked by the dust often in the air passing in. Inlet brackets are also made, which are short tubes placed high up, hut their efficacy may be doubted. They are also called "rertical tubes" and "air inlets" by some manufacturers. E. H. Shorland, of Manchester, claims to have used "vertical pipes for ventilation" long before they were introduced by Tobin. The opening on the outside of the wall should be protected by a grating: a patent automatic air washer, for washing the air by a spray, is adapted by some to this system, as also the introduction of gas lights for warming the air.

Table of Cubic Feet of Air Discharged per Minute through a Ventilator, having an Area of One Square Foot. (Hood.)

Height of Ve.tilator; in Feet.	Difference between					
	5	10	15	20	25	30
10	116	164	200	235	260	284
15	142	202	245	284	318	324
20	164	232	285	330	368	404
25	184	260	318	368	410	450
30	201	284	347	403	450	493
35	218	306	367	486	486	531
40	235	329	403	465	518	570
45	248	348	427	493	551	605
50	260	367	450	518	579	635

The openings for the inlet of fresh air must be smaller than those for the escape of the heated air, otherwise there mill probably te a descencing current of cold air in the same
tube with the ascending current of hot air. It is now proved that all inlets should admit the air in an upward direction.
$2278 t$. The EElus waterspray ventilator is patented to supply a constant circulation of pure air entirely under control. It is adapted for all public edifices, as well as houses, stables, \&c., and for use in hot climates. Ice can be used to cool the fresh air, and a ${ }^{\circ}+\mathrm{s}$ furnace can be attached to warm it. The air passing throngh the apparatus is cleansed from dust and all inpurities. The consumption of water is stated to be small, and the total cost of ventilating and warming a large apatment for nine hours does not exceed sixpence. The company has also an exhaust roof ventilator, a waterproof downcast shaft ship rentilater, anautomatic invisible roof ventilator, a chmmey cowl, anda rentilating stove.

2278 u. F. H. Smith, patentee of the antomatic syphonic aspirator system of ventilation, which produces rentilation without draught by supplying air to the room by ducts at the floor level. The exit for the ritiated air is placed in the ceiling, and consists of two tubes, a large and a small one, parallel to each other, between the floor joists. In the case or top rooms the two tubes may be concentrical. The larger tube carries off the foul air, while the smaller one forms an induction tube for coll air, its outer extremity being open to the outcr air, the inner one opening under the rim of the foul air tabe. The principle was applied to the hot "island room" of the fountains of 1884 Exhibition, reducing the temperature from 110° to abont 70°. The Eon ventilators, extractor, and chimney cowl are stated to be the cheapest and most effective used with the eon inlet. The Acme system of rentilation (Liverpool) is an exhaust and blower type, dependent on mechanical action for its motre power. The action of the ventilator produces a partial racuum at each stroke, and with the graduated pipes fresh air is brought into rooms without draughts, and may be warmed as it enters. The system has beeu applied at the new County Sessions Courts, at the Town Hall and Council Chamber, and at the Conservative Club, all at Liverpool. Its application at the former building is described, with an illustration, in the British Architect of December 2, 1887. Westmorland's patent improved automatic ventilator combines an iron breast trimmer and fireproof hearth bearer (1885), to carry the air from a ceiling up into a smoke flue. The ventilating and warmit.g arrangements of the new portion of Eton College (1888, A. W. Blomfield, architect) have beeu carried out by J. Weeks \& Co., by air passing orer hot water coils, and the foul air carried off by ducts at the ceiling of the passages to a shaft having a series of gas jets to secure an updraught.

2278u. Where gas lights are much used in apartments or buildings, it is desirable to carry off the products of combustion and heated air by a tube placed over the light, whereby its heat assists the escape of the impure air. An ordinary gas-burner is calculated to vitiate, to the same degree, three times the quantity of air that a man does in the same time. This plan was first effected by Professor Faraday. The improred ventilating sun-burner, with its self-acting valre for preventing a down draught, as manufactured by Strole and Co.; Rickets's ventilating globe-light; and others, all tend to produce the desired result.
Table of Quantity of Air Required per IIour to make up for Vitiated Air by Forms of Artificial Illumination.

Illuminator.		Consumption of Illuminating Material	Air Required.
Gas jet	- - -	$4 \frac{1}{2}$ cubic feet	750 culic feet
Gas jet -	- -	$5 \frac{1}{4}$ "	830
Tallow candle	- -	$\frac{3}{8}$ of an ounce	124
Wax candle -	- -	$\frac{3}{4}$	257
Oil lamp -	- - -	$\stackrel{4}{5}$	276 "
Petrolenm lamp	, slit burner -	$1 \frac{1}{4}$ ounce	502
"	ruand burner	$1 \frac{3}{4}$ "	544

2278w. The Commissioners for Barracks and Hospitals, in tieir Report, 1855, p. 65, \&c., state that for such establishments the different systems adopted in the Parisian hospitals appear to be too expensire and too complicated. Those which they approve consist of induction, and of flues for exhaustion, each of two sorts. Induction.-I. Openings with an air-brick in the face of the wall, and a wooden hopper near the ceiling, placed at an angle of 45°, corered with zinc pierced with holes from $\frac{1}{6}$ to $\frac{1}{8}$ inch in diameter. A plate of zine or galvanized iron, hung at the bottom and worked by a string, regulates at pleasure the admission of air, the size of the opening being calculated at an inch square for each 60 cubic feet of space in the room, where there is not a special prorision for fresh air to pass round the store; when there is such prorision, the size for the opening may be one half less. II. Openings with an air-brick in the face of the
wall, and a trunk or tube leading the air to a case behind the store, so that warm air may rise in a tube to a luffer-loarded opening at the ceiling, the size of the tube being calculated at an inch square for ench 100 cubic feet of space in the room.

2:78.r. E. haustion.-I. Flues of the warming apparatus extrant the bottom layers of air in the room. The experiments made between 4.30 and 6.30 Am . in April, 185̊, showed that the volume of air extractell was on the arerage 9,000 to 10.000 cubic feet by each flue, the rapidity being at the rate of 5 to $5 \frac{1}{2}$ feet; by which numbers the section of the flue rould be $0 \cdot 446$ English feet. II. Tubes from the ceiling to the roof, the size of the opening being calculated at an itch square for each 50 cubic feet for an upper story, and for each 5 cubic feet for the story below it, and for each 60 cubic feet fur the lower story. The rapidity of the current is regulatel by the difference between the internal and external air, by currents, \&c. When the temperatures are equal the current is feeble, when the reverse occurs it is strong. The rolume extracted (under the above conditions) was 8,500 to 9,000 cubic feet, the rapidity being at the rate of 3 to $3 \frac{1}{2}$ feet. So that the greatest effect by the combined systems only takes 8,000 to 10,000 culic feet by each flue on the average, and this irregular result is sometimes annulled; moreover, ith currents may reverse the action of the fines, and enter by the exhausting tubes.

2278 . Other systems. - In the new buildings at Guy's Iospital, as also at the Lunatic Asylum at Derby, Sylvester's method was carried out. Here the air arrives hy a large inducting flue, capped by a cowl which ut:lises the action of currents of wind; the air passes undergrousd in contact with hot-water pipes, rises in flues, and enters the room at the ceiling; it escapes by exhaustion holes in the skirting of the opposite walls, and rises to the roof by flues continued by plate iron tubes to an exhausting flue, which surrounds the smoke flue of the warming apparatus. The inventor calculated for about 4,000 cubic feet per bed per hour, and stated that in the winter about 4,300 had been oltained generally, but that once about 2,200 only were gained.
$2278 z$. The methods of rentilation adopted in France are required to produce effects absolutely free from perceptible currents of air. The report produced by MM. Blondel and Ser, before noticed, mention Duvoir-Leblanc's system, in one portion of the hospital Lar,boisière, as drawing away about 2,500 cubic feet per bed per hour, half of which is supplied by the doors and windows; and the method of MM. Thomas and Laurens, which gives 3,200 cube feet per bed per hour, and is not found always sufficient to remore every trace of odour. They consider that Dr. Van Hecke's system, used at the Baujon and Necker hospitals, leaves much to be desired. They require 3,500 cubic feet per bed per hour; and perceire that in order to obtain anything like such a result, recourse has necessarily been had to large exhausting flues, or to mechanical means, such as the fan.

Table of Air Required per Hour for Each Prrson.

$$
\text { Prepared by Herr ron Fragstein of Berlin (Builder, xliv. 1883, } 56 \text {). }
$$

Drawing rooms

 cubic feet.School rooms and libraries
700 to 1,000
Sick rooms, ordinary 450 to 500
Sick reone, 2,100 to 2,500
Each person is considered, in England, to require from 3 to 5 cubic feet of air per minute, equal to 180 to 300 culic feet per hour. At Finsbury Technical College alout 11 cubic feet of air per minute is provided in the class rooms, asd 50 cubic feet per minute in the chemical laboratories and draught closets.

Shect. NIV.

WARMING OF BUILDINGS.

2279. Ieat, as required in architsctural structures, results from raising the temperature of the air by means of various contrirances so arranged as to take adrantage of the laws which govern the transmission of heat. A body capable of affording heat gives out caloric by two methods; these are radiation and conduction. Radiation is diffused through the air at anmense velocity without materially raising its temperature, iut immediately warming solid botier exposed to its influence, which in turn give out the aequired heat slowly; the redder the fire, the warmer is the radiant heat. When the air in a large apartment is to be raised in temperature, the method of heating by contact is employed; this is effected by volumes of air coning in contact with a heated surface, and, becoming raised in temperature, are put in motion, and communicate the heat they receive to surrounding bodies.
$2270 a$. In order to obtain full adrantrige of heating surfaces, their area must le pro-
portioned to the cubic feet of air required to be warmed. A small surface, if raised to a very great temperature, will heat a large quantity of air if means are taken to pass it rapidly from contact with the heated surfuce. It is better, in all respects, to have a large surface maintained at a mild temperature with a gradual change of air. In general, if the temperature of the heated body is above that of boiling water, i.e. 212°, the air in contact is rendered unhealthy. Ventilation very greatly assists the endeavours to warm successfully a room or luilding.
2279b. The method ot warming classed under radiation and conduction may be further a rranged under the following heads:-I. Open fires, including grates and stove grates of erery sort, haring orlinary flues or chimneys; this is warming by radiation. Warming by cunduction is effected by, II. Close fires, as furnaces, cokles, \&c., and the Cabin, Arnott, Vesta, Gill, Chunk, Dumpy, Nott or American, laundry or ironing, caloric, ventilating, \&c. stoves; and by Gas, as the atmopyre, asbestos, calorifere, cylinder, and gas heating apparatus; having metal or brick flues continued some distance from them for the purpose of heating. III. Hot water on the low temperature system, with pipes alout 3 or 4 inches in diameter. IV. Hot water on the high temperature system, with pipes about 1 inch in diameter. And V. Steam, both on the high and low pressure systems.
$2279 c$. The principle of erecting one chimney to serve for all the fire-places of a heuse is liable to very unsatisfactory results, unless such a system be carried out as that exhibited at Osmaston Manor, near Derby, by its architect, H. J. Stevens, and described at the Institute of British Architects in 1851. All the rooms in Fair Oak House, Isle of Wight, are warmed by means of one shaft in the middle of the house, heated by a large open fire in the basement. Around this shaft is a thin enclosing case of brickwork, in cement, learing a space between to receive the cool air, which is then warmed by the leated shaft, and is admitted into the several apartments through perforated cornices, the supply being regulated by a valve. Obstacles presented themselves which rendered it necessary to adopt the cornice and not the floor as the place for the admission of the warm air. The arrangements are stated to have met with a decided success; the plan and details are giren in Builder, 1860, p. 329. In a series of small dwellings where the one shaft system was tried, its complete failure necessitated the new formation of all the fireplaces and flues.

2279 d . I. It scarcely enters within the provine of this work to describe the best form for an open grate. The point has been takrnup of late years by manufacturers, and very mary excellent forms adopted. The result is that iron at the back and sides has been greatly discarded, and fire-lumps substituted, whereby greater heat is thrown out with the same quantity of fuel. The fire-lump grates for cottages, bedrooms, schools. \&c., have had a large sale. But it has also been found that too large a surface of the fire-lump tends to consume the coal ton quickly, consequently it is now chiefly confined to the back of the grate. A length of bar equal to about 1 inch for each foot of lergth of room, and the height of the front half an inch for each foot of breadth of the room, are dimensions found to produce gnod proportions for arerage purposes. The depth of the part in which the fuel is placed has been greatly decreased, abuut 9 inches being ordinarily sufficient at the bottom, and enlarging upwards at the back, so as to present a good heating surfare in the front, and at the top, of the fuel. The height that the lowest bar should be from the he irth is a matter of greater uncertainty; we adrocate that it should be as near to 12 inches as possible, in preference to the 6 inches which the grates are now usually made. We have had grates raised from the latter to the former height with greatly increased results. Advantage has lieen taken of the fire-clay stoves, since the period of their invention by Count Rumford, to enmbine the back and sides with air flues of the same material, which, lecoming heated, impart their heat to the cold air supplied from the outside, admitting warm fresh air to the apartment. These stores were first adopted by Cundy. Numer us forms of slow-combustion grates have been introduced of late years. The Carron, Musarave's, and Barnard, B'shop \& Co.'s Norwich store, are among many others if that description. The registered Economiser grate and fire-brick back, manufactured by Nelson and Sons, of Leeds, on the principles adrocated by T. P. Teale, in Economy of Coal in House Firss, has a door to the ash-wit to close the draught; the sides and back of the fire are of fire-brick, while above the fire the back slopes forward and over it to near the mantel, when it again slopes back to the back of the chimney; all this being in firebrick and channelled where above the fire. It is considered to give perfect combustion of fuel, with c mplete radiation and proiection of the heat produced, the form of back ensuring the greatest possible consumption of smoke. It can be readily fixed by any bricklayer. The Marlborough grate (Garland's patent), with adjustable canopy acting in place of a register door, fire-brick sides and back on the same principle with Economiser; when the fire is not used, the canopy can be let down to shut up the flue opening, like a register. Radiation of heat has been materially assisted by Sylvester's arrangement of the ends of the fire bars prujecting into the room forming a hot hearth; and also by Joyce. Dr. Aruott's smokeconsuming grate, and the application of a solid bottom to a grate, producing "the Builder's fire," are pints of consideration for the householder rather
than for the architect. The Galton rentilating air stove is largely used in hospitals and infirmaries. The Manchester grate, manufactured by E. H. Shorland, of Manchester, for houses, schools, hospitals, asylums, \&c., is used by the Bank of England at its branch establishments. It is called a patent first class smoke consuming and warm air generating grate. Heat is not ouly giren off by radiation, but warm air can be supplied to rooms above or adjoining the one in which the grate is fixed; in 1882 it was stated to possess nearly 80 per cent. more heat-giving properties, and to be nearly 100 per cent. better as a smoke consuming grate, than others tested at the time. The Wharncliffe patent warm ar rentilating grate. Grundy's patent warm air rentilating fire grate, in which the heating surface is stated to le greater than any other. Reere, Ratcliffe \& Co.'s Cosy grate is the only open freplace in which the products of combastion are filtered through a red-hot wasteless purfier, and therefore is a smoke consuming economical grate.

2279 e. II. The varieties of close stoves are very numerous, but the principle upon which they depend for their efficiency is in all cases nearly the same. This may be stated to be the heating of metal plates by the combustion of fuel in actual contact with them. The quantity of heating surface in the room wherein the stove is placed can be materially increased, and nearly the full effects of the beated products from the fuel obtained, by lengthening the smoke flue; but the longer the thue the less is the draught of the fire, which is further lessewed by its becoming choked with soot; thus a 3 -inch pipe attached to a small store, burning coal and in constant use, has been found so completely filled up with soot in the course of a week that a stick half an inch in diameter could searcely be passed through the hole left in the centre. The now common American cooking-stoves are on this principle. The principle of the Arnott stove is that of consuming the peculiar fuel recommencled for its use very slowly, and the detention of the heat in the stove. The additior of a descending flue to some of these stoves is an advantage when it is desired to place the store in the middle of a shop or warehouse. Frankhn's calorifere, or the vase stove, haring a descending flue, was formerly much used. When this system has leen adapted to flues carried uncler a stone floor (after the Chinese fashion), it has heen found to warm most efficiently an effice and principal staircase with a mere handful of fire, at a cost of about 30s., while by another apparatus the cost was 18l. (Beaumont, Hints for preventing Damage by Fire, 1835.) This is an elaboration of the common method of warming greenhouses by the brick or smoke flue, through which the smoke aud flane travels from the furnace. A tire-clay casing for the fuel is also combined with some of them. Haden's apparatus has been mentionel (par. 2278'.) for warming large buildings; and equally efficient is that by Grumly, which is also much used for churches and large buildings. The Tortoise store is a late production for a small room.

Gas stoces are of vatious sorts. There are many of iron make, which render the air unwholesome. Wessel's patent heat dissemin.ter (abont 1850), made of copper, has prored of value eren in rooms kept closed. Ritchie \& Co.'s Lux-calor new patent apparatus for heating and ventilating large buildings by gas, requires no flue, and has no snoke nor smell; the principal parts are made of copper. It was much used in the Bank of England. S. Clark \& Cu.'s patent Syphon stove is a condensing gas heating, similar in princifle.

2279 f . The high tempe ature stores, such as the cokles, the Sirutt or Belper stere, the Sylsester's, and others, all used for warming extensive spaces, consist of large metal plates or surfaces of brick or stone, heated in or by a furnace or fire, the air to be warmed being caused to impinge upon er pass between them, and then carried along in tules to the several rooms or floors where the heat is required. The hot air pipe furnace is used for the same purposes, whereby the flame and smoke passes along tho inside of the tubes. In Davison and Symington's furvace for obtaining heated curreuts of air for manufacturing purposes, the cold or fresh air is diven by a fan at a great relocity through the pipes, which are placed in contact with the flames. Any cessation of the blower may be expected to cause material injury to the pipes.

2279 g . A writer explaining the common A merican system of warming houses by het air, says that the whole comfurt of the result depends upon how the atmospheric air is heated. The rariuus plans are effected by a furnace, from the dome of which pipes are ceiled and twisted about so as to gain the utmost possible radiating surface, avd the air is bronght in contact with them as it passes through the chamber. To get cheaply a great amount of heat, tue castings are made very thin, the air chambers and bot air pipes small; whereby the result is, that a bot desiccated poisonous air is discharged into the room, injurious to the lungs, and causing headaches. Where the air chamber, however, is large, the furnace rery wide and shallow, and its dome high, with the radiating surface largely extended, and the external cold air shaft spacious, this mode of heating is excellent. No apparatus of its kind ever surpassed the old Boston furnace, first invented by Chilson, and since so greatly improved by his successor in New York. In the "Boynton furnace," as it is called, the shaft bringing in the cold air is rery large. frequently 4 feet wide and 2 feet or more deep, and the air chamber and tin pipes therefrom are also of considerable size. In the air-chamber a small jet of water is kept playing to restore the nataral moisture to the air. Anthracite coal is used, a ton of which, for an ordinary ho'se,
would be a sufficient supply for nearly three weeks. No other fires. except that of the kitchen range, is usually seen in houses possessing this apparatus. (Builder, xxiii. 582.)

Ihe heating of houses by warm air, and the substitution of gas for general heating and cooking purposes, adrocated by a method adopted by Mr. A. E. Fletcher, was considered in the Journals of Jan. 1888. A brick chamber in the basement contains a stove in which coke is burnt; air is brought in from the outside, and theu conveyed by means of pipes to the entrance-hall and ground-floor rooms, thus warming the whole house, with the result of a considerable economy of fuel. Then asbestos gas fires were used in the rooms, and gas cooking ranges in the kiichen, with great avantages of less dust, cleaning grates, lighting fires, \&c. This is not all new (see par. $2279 g$). Many persons hare for years found the advantage of the hall and staircase being warmed, if not carried to too great a heat, but only as an auxiliary to open fires, and the upper floor kept ventilated. Gas fires are not to be depended upon as successful. Gas cooking stoves are useful in many cases, but much depends ou the domestic eren then.

2279 h . III. The circulation of hot water in pipes is cansed by the unequal density of the fluid, arising from the difference of temperature in the ascending and descending columns of water connected with the heating reservoir; and its relocity is gorerned by the height of the columns; Bramah, in appendix to Tredgold, Heating. A boiler (the "conical" boiler is considsted the best form by some manufacturers, while others prefer the "saddle-back") heats the water, which, as it becomes warmed, rises and passes out through the flow pipes; these are laid at a very slight inclination, to assist the current. When the water has arrived at its furthest extent, it enters what are termed the return pipes, on its way back to the boiler, which it enters at the lowest part, to be re-heated, to rise, flow, and return as long as a fire is kept up. A rough calculation has been made that for every 50 feet of 4 -inch pipe 1 square foot of boiler surface is required. The self supplying cistern and its expansion box must be placed somewhat above the highest lerel at which the hot water is desired to rise, yet not so high that the pressure in the pipes will affect their joints. It shonld be covered, and have a pipe to allow the rapour or steam produced by over-heating to escape into the external atmosphere. With this, the low temperature system, the heat of 212°, or that of boiling water, cannot be exceeded. Jeffrey's patent Radiator, for hot water or steam, in single or doable loops or coils, is ornamental.

2279i. IV. The high temperature system was introduced by Perkins, and is frequently calied by his name. Water is placed in a coil and range of piping of small diameter, hermetically closed, so as to prevent all communication with the external atmosphere. A coil, being at least one-sixth of the whole piping, is heated by the action of the fire in immediate contact with it, by which means the temperature of the water in it can be raised easily to 300° or 400°; but then the same objection applies to the air warmed by pipes so heated as to that from high temperature stoves. As water expands with heat, allowance has to be made by the addition, at the highest point, of a larger tube to receire the surplus, which raries from 10 to 12 feet per cent.; one-tenth of the space of piping may thus be allowed for expansion. After the pipes are fixed, they are rery caretully filled with water, so as to expel all air, through a filling tube situated at the botrom of the expansion tube, and when sufficiently full they are hermetically closed. The danger to be chiefly apprehended from this apparatus is that, if leakage takes place, the loss of water canses red-hot vapour to be formed, with the possibility of setting fire to any wood to which it may be attached. There is now no doubt but that wood, suljected to a constant current of greatly heated air, becomes very liable to combustion.
2279%. When heating surfaces of great extent are required to be obtained by the application of hot water or of steam, Walker's system will probally be found to be the must effectual yet introduced. It must be sufficient here to describe it as consisting of a number of small iron blocks, each block having square perforations passing through it for the current of air from the top to the bottom, of tery thin metal. The blocks are enclosed in a correspondirg perforated iron box, leaving 1 inch for water or steam all round each block, which heats the metal forming the llocks By this very compact arrangement 160 feet of heating surface may be obtained in a box measuring not more than 2 feet cube.

2279l. The rules for finding the area of hot water pipes for any sized apartment are in all respects essentially the same as will be given for steam, excepting the mean temperature of the pipes: for steam-pipes 200° is given; but 140° to 150° may be taken as that of low temperature hot-water pipes. From data obtained by Hood, Practical Treatise, 3 rd edit., 1850, it appears that water in a pipe of 4 inches diameter loses 851 of a degree of heat per minute, when the excess of its temperature orer that of the surrounding air is 125°; and also that, under the same condition, one foot of such a pipe will heat 222 cubic fect of air one degree in the same time; whence he deduces the following rule:Multiply 125 by the difference between the maximum proposed temptrature of the room and that of the external air, and divide this product by the difference letween the temperature of the pipes and that proposed for the room ; then the quotient is to be multiplied by the number of cubic feet of air to be warmed per minute; and the product,
divided by 222, will give the number of $f t e t$, in length of pipe of 4 inches diameter, required to produce the same effect this length is to be multiplied by 1.33 or by 2 , for equivalent lengths of pipes respectively 3 and 2 inches in diameter.

2279 m . In making arrangements for heating by steam, we need not describe the construction of the furnace and boiler, or of the chimney matters which are perhaps better arranged by the engineer fitt ng up the apparatus, as steam for warming purposes is rarely adopted except where waste steam can be brounht into use, as in factories and workshops using steam power. The thicker the metal of the pipes the better for greenhouses and such like places; for buildings, the thinner the better, consistent with strength ; sily about $\frac{3}{8}$ ths of an inch in thickness. Provision must be made fur the expansion of pipes, both for steam and water, of about one-eighth of an inch for every 10 feet of length. The pipes should be placed near the floor, and as close as possible to the apertures for the admission of fresh air. The pipes should be laid with an inclination to the boiler, so that condensed water from the steam shall be returnel to it; and they should be carried at once to the highest part of the building and des zend to the lowest.
$2279 n$. To form some idea of the r-quisite area of piping for any desired buildings, the quantity of culic feet of air required per minute must first be ascertained. In order to ascertain this, attertion must be given to the loss of heat by rentilation, and the direct, influence of cold external walls, glass windows, \&c. From the first cause there will be a loss of heat proportioned to the quantity of the air withdrawn per minute: if 4 cubic fret are supplied to each individual per minute, then "there will be for each individurl 4 cubic foet of air conveying off a quantity of heat equal to the difference between the heat of the external air and that of the roon." Thus, if the heat of the room be 70° and that of the external air 50°, then the withdrawal of 4 cubic feet of air per minute must lead off a quantity of heat equal to the differeuces between 70° and 50°, or 20°. From the second cause there will also be a loss, as heat is transmitted very quickly through glass; the quantity of air cooled in a given time being simply proportional to the surface of the glass exposed to the external aic, and, consequently, will be constant, whatever rariation of temperature may take place. The rule given by Tredgold, $\S 67$, is as follows:- "If the area of the surtace of glass be multiplied by 1%, the product will be the number of cubic feet of air per minute which will be cooled from the temperature of the room to that of the external air;" and to this loss will also be added that arising from each door and window (independently of vecasionally opening and shutting the former); this was calculated by the same author, § 65 , to be equivalent to $i 1$ cubic feet per minute, the difference of temperature between the internal and external atmnsphere being 60°.

22790 . From a combination of these circumstances, assistel by various experiments, Tredgold, $\S 68$, deduced the following rule :-If the number of people the room is intended to contain be multiplied by 4 (or the quantity of air allowed per minute), and added to 11 times the number of external windows and doors (as 11 cubic feet of air is passed through each per minute on an average). added to $1 \frac{1}{2}$ times the area in feet of the glass exposed to the external air, the sum obtained will be the quantity, in cubic feet, to be warmed per minute. The next operation is to find the area or surface of piping which will warm this quantity of air. The mean temperature of a steam pipe at the ordi-- nary pressure is 200°. The temperature of the air supplying ventilation is to be known at the extreme case of cold, which for the day may be taken at 30°, but for the night may be assumed in this country at zero of Fahrenheit's thermometer; the temperature to be maintained at the same season of co'd is also to be settled. Then, Tı edgold, \& 44 , gives the following rule:-Multiply the cubic feet per minute of air to be heated, to supply the ventilation and loss of heat, by the difference between the temperature the room is to be kept at and that of the external air, in degrees of the thermometer, and divide the product by $2 \cdot I$ times the difference between 200 and the temperature of the room. This quotient will gire the quantity of surface of cast iron steam pipe that will be sufficient to maintuin the room at the required temperature. According to Dr. Arnott. I foot of superficies of heating surface is required for every 6 feet of glass; the same for every 120 feet of wall, roof, and ceiling; and an equivalent quantity for every 6 cubic feet of air withdrawn from the apartment by ventilation per minute. (Tomlinson, p. 124.)
$2279 p$. "The Metropolitan Building Act, 1855," requires that:-I. The floor under every oven or stove used for the purpose of trade or manufacture, and the floor around the same for the space of 18 inches, shall be formed of materials of an incombustille and non-ronducting nature; II. No pipe for conveying smoke, heated air, steam, or hot water, shall be fixed against any building on the face next to any street, alley, mews, or public way; (III. A pipe for conreying hot water, or steam, at low pressures is now not required to be kept clear of combustible materials) ; IV. No pipe for conveying hot water slall be placed nearer than three inches to any combustible material ; and V. No pipe for conseying smoke or other products of combustion shall be fixed nearer than nine inches to any cumbustible material ; with a penalty not exceeding 20l. for non-compliance.

Sect. XV.

SPECIFICATIONS.

2280. The importance of an accurate specification or description of the materials and work to be used and performed in the execution of a building, is almost as great as the preparation of the designs for it. The frequent cost of works above the estimated sum, and its freeclom from extra charges on winding up the accounts, will mainly depend on the clearness, fuluess, and accuracy of the specifications; though it is but justice to the architect to state that extras arise almost as often from the caprice or change of mind of his employer during the progress of the work, as from the neglect of the architect, in making the specification. A specification should be made in all cases of new designs, additions, or alterations in reference to designs, which, the more they are given in working drawings by the architect, the better will it be for his employer, no less than for the artificer.

2280 a. When the drawings have been brought to suit the client's tastes and requircments, the architect commences to prepare the working plans and details. Before the:e are completed, he should take up the specification. The primary and main objcct of a specification, is to gire, fully and clearly, all necessary and useful written explanations an I instructions for the execution of the work, and for making due preparations for the effecting of a definite and clear bargain between the person or company accepting an offer and the contractor offering to execute the work.

2286b. To write out a document fultilling all these requirements, going into every particular, and describing fully and accurately each different part of the work, must naturally cause a lengthened document. But a line mast be drawn between running to ain almost absurd length and being too brief. The former may occasionally cause the specification to be neglected, as the builder or his foreman has seldom the time to refer often to it. The rotation of the various paragraphs is a very important matter. It was formerly, and is now, much the custom to divide the specification into trades, which system arose when separate contracts were taken for different branches of the work; but at the present day, when it is so general to have one contractor to carry out the entire work, it has occasionally been attenpted to wriie a specification in a form more quickly aud easisly consulted than by referring to paragraphs in sereral trades respecting some one single portion of the work.

2280 c. Some architects hare written the main portion of the details on the drawings themselves, detaching them from the general and specific work, particulars, and conditions; but the drawings are not always at hand to refer to, if there be no "office" on the building.

2280d. In many large towns it has become the custom to relegate this important part of an architect's busine:s, especially of a young one, to a "quintity surveyor." By doing this, he loses that grasp of construetion and of details which the preparation of a specification, as of quantities, so grcatly helps. The man who originally draws the working plans can with much greater facility write out the specification for the execution of the fame than the man who, so to say, has first to learn his lesson. It should bear the inıpress of the artistic feelings of the designer, which the quantity surveyor can nerer give it. Lach item is usually taken separately, and shuydd be clearly described; simple larguage should le used, without abbreviations; all such words as preper, properly, sufficient, with others, should be aroided; involved sentences, bad punctuation, and falty grammar should not appear, and each sentence should bear but one meaning; but, regarding the haste with which specifications have to be drawn up, these are sometimes unavoidab'e. Sketches made in the margin, of difficult bits of construction, as well as of ornamental details, may be copiously used, especially if the detail drawings are not fully prepared.

2280e. Specifications are now usually lithographed, which sares much trouble and ri:k in examining each copy that may be required.
$2280 f$. It is advisable that the agreement with the artificer or contractor should le drawn up ly the client's solicitor, who, no doubt, will seek the assistance of the architect.

2280 g. It is impossible to frame a set of directions which shall be applicable in all cases of buildings. Sumething like a list or skeleton of the component parts of buildings are given in the following pagee, from which the architect may select such as are suitabie to the particular case whereon he may he engaged. This is not carried into the repairs and alteratiors of houses, because, with difference of application, the same system can be carried forward in such cases without difficulty. Chapter III., Use of Materials, or Practical Bulding, may be consulted fir many other details.

2280 h . The following pages have been rewritten, condensed, and added to as necessary. A large amount of information as to the manner in which materials are used and put tugether is contained therein. There are several books on the subject, one of which, Pewtner's Compreliensice Specifitr, 8vo. 1870, should be on the student's shelf.

2280i. Among the Acts of Parlimment, \&c.. to which the attention of the architest and of the builder has to be directed, are the following. Towns and several other places, and the London p rishes, \&c., hare their own local Acts and bye-laws.

Motropolitan Building Act, 1855, 18 \& 19 Vict., c. 122. Amendment, 1860, 23 \& 24 Vict., c. 52. Amendment, 1869,32 \& 33 Vict., c. 82.

Metropolis Management Act, 1855 , c. 120 . Amendment, 1862.
Merropolis Management and Building Acts Amendment Act, 1S78, 41 \& 42 Vict., c. 32. Amendment Act, 1882,45 Vict, c. 14.

Metropolitan Board of Works, Bye-Laws, after 1878.
Public Health Act. 1875, e. 55.
Knight's Annotated Model Bye-Laws of the Local Government Board, 8ro., 1883, is useful.

GENERALLY.

$2280 k$. The contractor to supply all requisites; to provide all materials, new and of the best quality ; to execute and complete in the best and most workmanlike manner all the works set forth in the specification and drawings, to the satisfaction of the architect ; to give notices to, and pay fees and charges of all local authorities and officers, as district surveyor, paring board, for hoarding, water, gas, and such like (the rights as to advertising on hoardings to be reserved, or not to be allowed as on some estates, and as to the gravel and sand that may be fomen on the site); to provide a watchman; to insure from fire in the names of the builder and the client; to proride and maintain on the site an offiee for the clerk of the works, furnished, and for the custody of the drawings and papers ; to affurd access for the architect, his repre entative, elerk of the works, and the client, to the premises; to remove all dirt and rubbish; to sweep out and scour all floors, and clean ull glass, and to deliver up the building and premises in a satistactory state at the conclusion of the works, or at a specified time (it is not rery clear when a house is "completed ") ; as to the use and possession of the documents, and of making copies; to keep on the building a foreman of the works; to carry on the works, and to complete the same; as to unfit workmanship and materials, and works not in accordance with the directions; as to day bills; all disputes to be settled by the arehitect, or arbitrator agreed to before signing the contract; sum to be allowed for contingent works; as to sureties, time of payments, *c. Besides the above, it would be well to refer to the "Heads of Conditions of Builders" Contracts," sanctioned by the Royal Institute of British Architects, 1882.

EXCAVATOR.

2281. To take down any old buildings and impediments that may be on the site of the new works. If any old materials are to be nsed again, he is to clean, sort, and stack them for re-using in such parts of the premises as may be directed. The rubbish, as well from these as from any superfluous earth that may come ont of the basement and foundations, if not wanted for any purposes, he is to cart away, either wholly, or to such part of the premises as he may be directed, as well as all rublish that may accumnlate in executing the works. To rescrve any clay dug out, and to thoroughly burn it with small coal into ballast, as directed.
To strip the surface soil to a certain depth. To dig out for basement story (where one is to be), for the foundations, areas, drains, floors, ard all other works requisite. To beat down to a solid consistence the ground forming the beds of the trenches for receiring the foundations and walls, and after they are in, he is to fill in and ram down the ground; to level, and to do such other rough groundwork as may be necessary for forming the sectional ground lines shown upon the drawings. To prepare for concrete in foundations. To cover over the ground under pared or tiled flocrs (except where the tiles are laid on joists) with broken bricks well rammed and grouted with liquid mortar. This layer is to be made of suffi.jent thickness to receive 6 inches of concrete, which is to be properly rammed and corered with a layer of 2 inches of fine concrete, finished with a level surface. In basements no earth is to be lett nearel than 9 inches to any floor or other timbers, such cavities being by the specification to be filled in with dry lime core. If water cannot be supplied by any public company, a well may have to be provided, as in next section. To leare the ground free from all useless soil or materials.
Roadway and Paths. Remore the top soil from the intended lines of the roads; spread over the site a stratum of coarse stone ballast, or of brick rubbish, 12 inehes deep; corer the same with coarse gravel, spread, beaten, and rolled down until hard and solid, forming the width with a curre to each side, and rising . . . inches in the middle. The Paths to bare a stratum of coarse stone ballast (or burnt brick ballast where such is to be oltained), or of brick rublish, 4 inches deep; cover the same with 3 inches of fine red gravel, well beaten down and rolled over until solid, and to be formed to a curre rising . . . inches in the centre.

2281a. Excavator.

To bale out or pump out and remove all soil and water which may be necessary for laying the foudations, whether arising from springs, drans, cesspools, tain, or otherwise, and to be answerable for all accidental damage that may occur whilst the foundations and walls are carrying up; as also, when buildings adjoin, for all damage that may occur to neighbouring buildings.

BRICKLAYER.

2282. The brickwork is to be executed with the rery best hard well-burnt grey stocks (or kiln-burnt red stock bricks, or such others as may be directed), to be laid in flat joints, and so that every four courses shall not exceed $11 \frac{1}{2}$ inches in height.
When better bricks are used for facing external walls, they are to be specified (as best marle stocks, second marle stocks, Suffolk white bricks, as the case may br), in which case it must be specified that no headers of the facing are to be cut off, except where absulately necessary to form good bond. Fronts so faced are to bo either carried up with a neat flat parallel ruled joint, or to be afterwards tuck-joint pointed if a finished face is wanted, though the latter is not altogether a sound practice. In old work the joints have to be raked out, the brickwork washed, stained, and tuck-joint pointed. No place or samile bricks to be allowed in any part of the work.
The mortar is to be compounded of well-burnt stone lime and sharp clean grit or drift sand (if the work be of importance), to be ground in a pug-mill, or otherwise to be well tempered and beaten with wooden beaters, and to be in the proportion of one heaped bushel of lime to two of sand. (The use of sea sand is sometimes to be avoided; and road scrapings, unless very well washed and screened.)
When the earth foundations are Lad, concrete should be provided; it is to be formed in the proportion of six parts of Thames or other unscreened clean ballast, and one part of fresh-burnt Dorking (or other) stone lime, beater to powder on the premises, and unslaked. They are to be thoroughly mixed in small quantities at a time, the lime at mixing being slaked with as small a quantity of water as possible. The concrete, after mixing, is sometimes stated to be dropped from a stage, but this is a bad practice. The thickness may vary from 4 feet to 18 inches in height, according to the quality of the earth or soil, and the width about six inches on each side wider than the wall.
Lamp course. The brick or stone walls and partitions to be corered with a continuous layer of asphalte at least $\frac{1}{4}$ inch thick, poured on while hot, at above the level of the outside ground as finishe 1 . A continuous layer of 5 lb . milled lead has been used. Taylor's patent ritrified stoneware, of $1,1 \frac{1}{2}$, or 3 inches thick. A course of Bangor slates in cement 3 inches lower than the general level of the ground floor (and where else as needed). See par. 1886b, et scq. for methods of obviating the rise of damp.
English bond is preferred by many to Flemish bond; for good work, the brickwork should be specified to be flushed up at every course with mortar. No bats to be allowed except for closures; and for sonnd work every fourth course to be grouted with liquid mortar, and in the foundations every course, or at least every second courso. The walls, chimneys, their shafts, piers, and other works, to becarried up of the height and thicknesses and in the manner shown and figured on the several plans and drawings, together with all brickwork requisite fur the completion of the house. When the work is within a district under bye-laws of a local board, and not required to be of special solidity, it will be well to describe that the thicknesse: of the walls, their heights above the roofs, and other matters, shall be conformable to the regulations.
Work to appear without a stone or plaster facing requires rubbcd and gauged arches for all the external openings in the principal fronts, of 9 inches in depth (or more according to their span), accurately cut, and set closely in front, in back, and on their sofites. To the other openings the arches will be plain arches, closely set; those which appear externally to be tuck-pointed on their outside faces. Orer all lintels, in external walls, should ise provided uncut accurately formed arches.
When fascius are formed of brick, their projections must be named; also all cornices formed by arrangements of bricks; but a drawing slould, for the latter, appear on the drawing or specification.
Any moulded bricks are to be carefully made in accordance with the detail drawings, and to be trimmed up before they are placed in the kiln. They are to be made a little thicker than the other bricks, so that the beds and joints may be rubbed true before they are laid; they are to be set in fine mortar, and (before the scaffolding is struck), they are to be rasped, rubbed with gritstone, and the arrises to be made as straight and true as stonework.

2282a. Bielcklayfr.
Work into the exterior and interior faces of the walls (if required), crosses, diapers, zigzags, or other patterns ; and form banls, string-courses, \&e., with white, black, red, or other bricks, as shown on the elevations, \&c. The red and black bricks are to be laid in blue-black or other mortar, or the joints to be raked out and pointed with the same.
Shafts of chimneys carried up above the roof, out of the common way, must be referred to drawings; otherwise what relates to them and their fues is described as follows:-Turn, parget, with cow-dung mortar (or point the inside of all flues witi a flat mortar joint), and core the chimney flues, and finish the shafts with salient courses 6 inches (or more) in height, with double plaintile creesing thereto; for each flue provide and fix a large-sized chimney-pot (of cement, plain or moulded; or of earthenware, or ornamented, as may be necessary) ; the upper courses of the shafts abore the creesing to be laid in cement.
Parapets not coped with stone or cement are finished with double plaintile creesing, and a brick on edge on top, or as shown on drawing, all laid usnally in cement.
Where weather is to be provided agaiust, as in upper courses and clsewhere, the laying in cement must be described.
Turn trimwers of tinch brickwork to all the fire-places for receiring tle stone, marble, or cement hearths throughout the building, except where, as in basement stories, the hearths lie on fender walls, or on the ground.
Tilc-arch or flat. The to be covered with 3 courses of plain tiles set in cement, the tiles to be first well soaked in water.
To basement stories, or the story on the ground, describe piers 9 inches square, or continucd walls 9 inches thick, to carry the sleepers whereon the juists of the flow or the courses of paring stone are to lie; the cavity, if small, may be illed with dry lime core. Where the piers or sleeper walls are high, arches may be formed in them to sive material, afford ventilation, and sometimes access throughout the carity.
Build 9 inch sleeper walls to support ends of joists of wood floars abutting upon paved floors (as in a church), and build half-brick honeycomb sleeper walls on one brick footings, 4 feet apart, under all wool floors in bisement, or on ground floor when not excarated under.
Foundations to piers of arches to be in brickwork of hard bricks, laid in cement, and every comrse throughout the foundations to be well grouted.
Bed in mortar all bond timber, wall or other plates, lintels, wood, bricks, templets, stone, or other work connected with the brickwork. All the door and window frames to be bedded in and pointed round with lime and hair mortar. Execute all requisite beam-filling.
When the building is faced with stone, or stone tressings are used ; to the above must be added-back up and fill in solid with brickwork all the stone work ard iron work that is set in the brickwork.
If cornices, fascias, \&c., are to be run in cement, then-prepare and fix brickwork, and such Yorkshire stone slabs and other materials as may be necessary for forming the severul external cornices, pediments, strings, sills, aud dressings to openings, in cement, as shown on the drawings.
Brek relieving arches that are visible are to be formed of three or four courses of red and black bricks, altermately or otherwise, as shown, or as the architect may hereafter direct.
Turn arches in cement (if wanted) for carrying entrance or other steps. Provide all brickwork for stone steps. Turn vaults of lrickwork (describe thickness not less than 9 iuches) over the intended cellars, according to the drawing, and properly sut all groins of intersections. The spandrels to be filled in with solid brickwork up to the level of the internal crown of the vaulting, the whole grouted with liquid mortar. When the centering is struck, the sofites of the raultings are to be evenly and farly cleaned off, and pointel.
Construct round the building a dry drain or area, as shown on the drawings. Ram down the ground at the back thereof as the work is carricd up, and provide such stays of stone, slate, or iron wall-ties from the building as may be necessary for maintaining such wall in its place, and as will not carry the damp to the main wall. Such dry area may probably require a drain if the soil be very wet.
Drains for draining the premises, as shown on the plans, to fall into a main sewer (or cesspool, as the case may be). The principal drains to be 1 ft .6 in . and the smaller ones 12 inch, 9 inch, 6 inch, and 4 inch diameter, as the case may require, of glazed socketed stoneware pipes (state manufacturer), at depths as figured on the drawings. Provide all necessary bends and junctions. All the pipes to be jointed in cement, and the drains to be proper'y connected with the sewer (or cess-

2282b. Brickiayer.
pool). The outlet of the drain to have al galvanized iron flap to shut flush all round. The feet of all rain-water and waste pipes are to be brought on to the grating of a syphon trap, or to be let into it under the grating, as may be preferred. The lead soil pipes to be carried into syphon traps. The main drain is to be ventilated by a lead pipe carried up above the roof and clear of all openings and chimneys; and at or near its connection with the sewer should be placed an "interceptor" with a syphon trap, for the purpose of readily cleaning out the drain if it become stopped. This chamber should also be ventilated in like manner to prevent foul air ascending the drain.
When foul water cannot be carried off to a public sewer or running stream, cesspoo's must be formed to receive it, and made water-tight, if possible, or allow absorption by the earth. They are usually 3 feet 6 inches to 5 feet clear diameter, circular on plan, steened round with hard stocks, in half a brick thick, laid dry till within 18 inches of the top, which 18 inches are to be laid in cement. If the waterclosets be far apart, each may have to be provided with a cesspool, and apart from the building. Cesspools (and also wells) are sometimes doned over in brickwork, with an eye or opening for access, a circular stone being let into the opening; or the cesspool be corored with a Yorkshire stone slab.
Well:, when above 6 feet in diameter, to be steened one brick thick; and when less than that size, in balf a brick, laid flat, pared at bottom, and domed over as for cesspool.
Exceute walls for carrying the columns of the portico as shown on the plan, all piers or cross walls for receiving the landings, and brickwork to receive the steps. If the portico be of large size, describe discharging arches above the architrave in the space over intercolumniations, and from return columns to main walls. If a pediment, back up with brickwork behind the tympanum of pediment quite up to under side of raking cornice of pediment.
For fence walls, their footings, thicknesses, heights, and lengths are to be mentioned, and of what bricks they are to be bult. If anything peculiar in their form, a drawing should be given.
Bricknogged partitions are described as with grey stock bricks laid flat in mortar, or on edge, filled in between the timber quarlers, ties, \&c.
Strong closets for plate or deeds require a description of thickness of walls and brick urch and paving, and usually 4 -inch walls brought up for holding the requisite numbe: of slate or iron shelves. A fireproof (and perhaps burglar-proof) door may be required to be named; and if the room be large, an inner grated door may be useful. The same of wine cellars, whose bin walls and s'ate shelving must be mentionerl.
When the bnilding is to be heated with hot air or hot water. then :- build furnace room where shown on plan, with flues as necessary; or, build channels for bot water pipes under flonrs; the channels to be 2 feet Ligh by 12 inches wide in the clear, resting upon 3 iaches of concrete and a donble course of Bangor duchess slates to form chanmel floors; the sides to be half a brick thick in mortar.
Paving with bricks is described to be either of stocks, paving bricks, malm paviors, or clinkers, which may be laid flat, or on edge, in sand, mortar. or cement, and either straight-coursed or herring-bone. Pacing $u^{\text {i }}$ th tiles is usually in mortar; the tiles either $6,8,10$ or 12 inches square.
All splays, ramps, and chases to be cut where want the the tormer to be rubbed where necessary, and the latter to be pargetted.
Brick olens (one 10 feet wide and 8 feet 6 inches deep will bake twelve bushels of lread, and one 8 feet wide and 7 feet deep will bake eight bushels, and so in proportion) are to be constructed with Welsh lumps or fire-bricks for fire-place, domed over, and hooped with iron hoops. The bricklayer is to provide the bars, plate door, bar to the archway of door, and other ironwork, and to carry up a proper flue from the fire. This is often a separate trade.
An Iron oven, cupable of baking two bushels of bread, to be set in proper brickwork.
Coppers and stewing stoves to be set neatly in brickwork, the latter in gauged brickwork with tile top, and flues carried up therefrom. Set the kitchen range (or kitchener) according to its requirements; and set all fire-grates at back and sides well backed up with brickwork in cement, and cemented at top to prevent soct getting down behind the grate.
Colunns to porticoes, or fronts, which are to be coated with cement must be described of such diameters as the drawings require, with entablature, \&c., as the case may be, carried up in cement.
For stables, besides what may he applicable from the furegoing directions, two air$f l l e s$ are to be constructed to each stall and loose box, 9 inches square, and carried
2.28. Brickititer.
up orer the racks within the thickness of the brickwork, communicating at their tops with the external air, and secured from the penetration of the rain.
Dung-pit walls, whose dimensinns depend on the size of ti;e stables.
Dust-hin, to contain 30 feet cube, to be of half-brick walls in cement. The deal top, and corer hinged with water.joint hinges. and with deal slides and door in front, to be providel by the carpenter. Morrell's patent cinder-siftung ash closet is adapted for outdoor nse. The "galvanzed iron dust-bin," which is easily emptied in towns, has much superseded the old wood or brick dust-bin, with its inconveniences and smelts. They are non-absorbent, and are made $24 \times 20 \times 37$ ins. high at back; also $27 \times 20 \times 37$; also $30 \times 20 \times 37$ (see also $1907 d$). DIIst shoots are now used in artizans' dwellings; one is so arranged as to prevent the passage of foul odours into the building should the hopper be left open.
In cases of underpinning, the bricklayer is to cat all holes for the needles, and to remove the old work, and to bring up the new work in cement on concrete foundation; and, finally, drive in the cast iron wedges for bringing the wa rk to a solid bearing.
Hollow ualls for exposed situations. The external walls above the plinth line are to be bnilt with a hollow carity in the middle of about 3 inches, having courses of bonders or throngh stones not more than 1 foot apart in height, and of raricus widthes, but never more than 2 feet 6 incbes apart. At the level of the top of the plinth a course of thick slates. or of thin stones, is to be worked on the walls, closely belded in strong mortar under all the roids or flues thus furmed, and a small aperture, 9 inches by 6 inches, is to be made for the admission of air and to carry off any moisture that may hare been driven in ; openings into each of these flues are also to be made between the joists of the different floors for ventilation. Other methods of building such walls are described in Chap. III. Sect. II. par. $1902 c$.
Fence wall. The site to be enclosed with a 9 -inch stock brick wall in mortar, \ldots feet high, with brick footings 6 inches high, with two $2 \frac{1}{2}$-inch set-offs on each side of the wall, laid on concrete 9 inches thick and 2 feet 6 inches wide, the bottom being . . feet below the fimished surface of the ground. The top of the wall to have a brick on edge course set in cement (or other coping, to be specified).
Proride (according to the extent of the job) a certain number of rods of lrickwork, at a price per rod to be named, fur such extras as may be ordered in writing by the architect; if the whole or any part thereof should not be wanted, a deduction to be made on settling the accounts.
To build all the waths level, except otherwise directed; to be answer:able for all damage that may occur to the wurk, ly settlements or otherwise, during the time of building, and to rebuid or make good the same as the architect shall direct; and, further, to perform all such jobling work as shall be neessary for completely finishing the building. To provide good sound and ss:fficient scaffolding, which is to remain for, and to be altered for, the mason, carpenter, and other artificers that may have ocension to nse the same. A specimen brick of erery description, splayed, moulded, for facing, \&c., to be submitted to the architect for his approval lefore the commencement of the work.

ST. ITER.

2283. To cover the roofs with the best strong Westmorelanl, best Bangor, Taristock, or other slate and size to be named, each securely fixed with two best strong copper nails. To be properly bonded, especially at the eares and heading courses, with slates cut to keep the bond unifurm; the bands ard diapers to be formed of Carnarron or Westmoreland green, or other coloured slates; or courses to be laid of slates cut to a rotched pattern. No slates to lie laid lengthwise. A little latitude may be allowed as to the exact size of the slate to be used. By specifying sizes, other than Countesses and Duchesses, there would frequently be less deliy and less expense in covering.
If ronfs are covered with tiles, cither pan or flain, the description for the former will be either laid dry, or bedderl in lime or hair, or pointed outside or inside, or on both sides; or if glazed pantiling, to be so described, laid to a 10 -juch gange on stout fir laths, with hip, ridge, and valley tilec, filleting, cutting to splays, beam filling, painted T nails, hip hooks, \&c. Plain tiling is. described to be of gond sound tiles, laid to a close gauge on heart of oak double laths, combiner with ornamental tiles, to form patterns, as shown; every tile to be pegged with a gond Euglish-oak peg, and baid in mortar to a 3-iuch lap. The hip and ridge tiles to be set in cement, with T nails dipped in melted hot pitch, in all the joints. Strong, similarly pitched, wrought iron hip hooks. lilletings of cement, with strong cast

2183a. Slatik.
iren nails for forming a key driven into the walls or other brickwork at intervals close enough to secure the same. Cover the ridyes with socketed roll Staffordshire ridge tiles set in cement; the tiles to be groosed for cresting (if any). Cover the hips with proper lapping hip tiles or rolled hip tiles. Provide ornamental tile cresting (if any), and fix same on ridges where shown on elevations.
Fillets (other than lead flashing) against the brickwork, where requisite, of ganged stuff or cement, formed on nuils driven at imervals to form a hold. Fillets of brick or stone may be built up with the wall, level or raking; and if they should be preferred, they must be described in the bricklayer's or mason's works.
If the slating be required to be roudered air-tight, it must be described to be pointed on the inside with lime and hair mortar ; but this pointing, from the expansion and contraction arising from heat and cold, may soon fill out. The slater to be answerable for twelve months for his work.
All the slating is to be rendered up perfect on completing the building, and all jobbing work to be performed that may become necessary as the work is carried on.
Provide slates to form damp-proof course in walls; and for the bottoms of hot water pipe channels (if any).
Slate slabs are now much used for sinks, cisterns, steps, skirtings, sills, covering to bay windows, mouldings. doorsteps, linings, chimmey-pieces, trusses, laratories, nosing to steps, \&e.; they must be described.

Mison.

2284. The stone to be used in a building generally depends of course on the place where it is to be built, unless, without regard to expense, the employer determines on the use of any particular sort. Chap. II. Section II. furnishes the means of describing the best of its sort. In London, Portland stone is most used. Gramite or other hard stone is used where great strains and pressures oceur, or where use and wear, and the action of the weather, indicate its employment.
Haring described the sort of stone selected to be of the best quality, free from all vents, shakes, \&c., the next direction is, that it shall be throughout lail in the direction of its natural bed in the quarry; and if the whole building is of stone, many of the following particulars will be unnecessary. Where the building is only faced with stone, then the . . fronts (describing them) are to be faced with Portland (or other) stone, ashlaring in courses to fall in with the courses of brickwork; the stretchers of such ashlaring being $4 \frac{1}{2}$ inches deep ant the headers 0 inches, with bond stones running through the whole thickness of the wall in the proportion of $\frac{1}{16}$ of the face, to be introduced where the piers allow. No quoins to show a thickness of less than 12 inches. The whole to be cramped with guumetal cramps, the mason finding the same and properly ranaing them with lead.
Where the building is of brick with stone dressings, then-To provide and set a Portland stone (or other stone or granite) plinth all round (or part, as the caso may be) the building, . . . fret . . .inches high and $8 \frac{1}{2}$ thick, in stones not less than 3 feet in length, the vertical joints to be crimped with ' l cramps not less than 12 inches long. Describe whether joints are to be cluse or channelled, and whether ashlar is to be rusticked (rockworked). To provide and tix at the angles of the building, as shown upon the drawings, solid quoins of Port'and (or other) stone [describe whether close, chamfered, or chamelled joints, and whether rusticked] of the length and height shown.
Kentish Rag. The Kentish rag to be of the best quality, from the quarries at Boughton, sound and free from hassock, laid in random courses, galleted and pointed with dark mortar. A sufficient number of bond stones to be built in, one through stone (at least) to each yard superficial.
Bath Stone. To be the best Bath stone from Sumsion's, Pictor's, or Randall aml Saunders's Combe Down quarries (ino Farleigh Down stone to be used), to le land on its natural bed in all cases, and cleaned off when set. All plinths, lases, and other work for a height of 4 fcet above the gromid level to be of Box Ground stone.
Random walling of local stome. The stone fur the walls generally is to l,e brought from . . . (state the quarry), that for the foundations (muless brickwork is usel for them) to be of large size ; all those in the visible surface of the walls are 11 be carefully hammered, scabbled, or sawn (as the quality of the stone and nat ure of the work may require). All stone used in the main walls of the building to be of gond scantling, and no very thin stone will be allowed in any part.
Walls with concrete cores. The external face to be built up in courses of hammerel, scabbled, or sawn stone. The interual face to be built up in sawn (or other) ashlar-, or in rough brickwork, in English bond, or rubble if it is to be plastered. The
boty of the walls to be filled in with strong concrete, composed of 1 part of ground stone lime and 0 parts of clean sharp gravel, filling in interstices. At every 2 feet 6 inches in height a double course of brieks is to be set in mortar, and at every 8 feet 6 inches in height a bonding through stone, from 10 inches to 1 foot 3 inches deep, is to be fixed. Small stone chippings may le mixed with the gravel forming the concrete.
Regularity in the quoin stones is not desired, but they may be worked and set in any reasonable scantling so as best to bond in, and harmonise with, the intermediate rubble. The upper beds of the stones to be laid with a slight inclination outwards, and as close as their nature will allow. Every precaution is to be taken to avoid risk of the settling of the work from imperfect beds and open joints. The work is to be carried up regularly all round the building. In the carse of a church with a tower, the walls of the latter are to be specified to be built up rery slowly and without bring londed into those of the chureh, lut are to have slip joints or chases worked in them for ferming the connection; this is in all cases to be so free as to allow for the settlement of the masonry withont injury to the work in the church walls; with this exception, no part of any wall is at any time to be raised more than three feet higher than another, during the progress of the works.
The walls of the tower of a church are to built quite solid, and inre ted arches are to be turned under all the large apertures therein. All flat headed apertures are to be corered with York (or other) lintels, of thickness proportionate to the width of the opening.
A cornice and blocking course, seantling . . . by . . . , monlded, to be provided according to the drawings, the bed to be sucls that the weight of cach block of stone in the projecting part slaill not be equal to that on the bed by one-fourth of its cubic contents. The same to be exccuted according to the drawings; to hare proper sunk water joints, and to be channelled and plugged with lead at all ihe joints.
String-courses to be ... inches by ... inches, throated and berelled on the upper face, and the joints plugged with lead.
Blocking course, as shown on the drawings, . . . inches high, . . . thick on the bed, and ... on the top, plugged with lead at all the juints, with solid block at the quoins, returned at least 24 inches.
The quoins, jambs, string-coursts, hoodmoulds, buttress weatherings, copings, and dressings generally, to be strietly worked according to detail drawings, and to we dragged, chopped, tooled, or rubbed (according to the quality of the stone) so as to be truly worked in erery particular.
All the tracery and mouldings to be set out full size, and cut and set to the right jointing, as approved by the architect or the clerk of the works.
Face the walls of . . . with Minton's glazed (or other) tiles, value per yard superficial, to be secured with cramps of stont copper wire inserted in holes in edges of the tiles.
All the paving tiles to be of the best quality, free from blemishes; to be set in Roman cement, and to have all cement removed from their face after the work is fimished; the edges of the tiles to be rubbed, where necessary, to ensure neatness, and care is to be taken that the tiles are not injured by the workmen after they are laid.
The base mouldings of the tower, jambs, and arches of the windows and doors throughout the building, and whatsoerer parts are tinted . . . upon the elerations, are to be of tooled or dragged masonry.
The plinths, eaves, string courses, and the labels over the windows a:d doors, are to be of Ketton (or other suitable) stone, finished with is dragged or tovled face.
The coping of the gables to be of Bramley Fall (or other stone that is not porous), worked as shown, and the apices of the (here enumerate which) gables to we surmounted by crosses worked in Ketton or other stone, according to drawing, set with copper dowels.
Balustrades to be provided of the heights and sizes shown on the drawings. The balusters to be wrought out of one stone, allowing at least one inch of joggle at their ends into the plinth and impost. All the vertical joints to be well plugged with lead; the imposts to be cramped with cast iron (or bell metal), and the whole to be securely fixed. The half balustris to be worked out of the same lilock of stone as their adjoining pedestal.
Columns and pilasters, with their pedestals, capitals, bases, plinths, \&e., and entablature, to be fixed as shown on the drawings. The columrs and pilasters to be monoliths, or not to be in courses of more than . . . blocks of stone. The architrares to be joggled from those resting on the columns or pilasters themselves, and these as well as the frieze and cornice to break joint orer the architrave. Tho archi-

2284b. Mason.
centre to centre of column, with relurn architrares in like mauner. The whole of the entablature (as well as the pediment, if any) to be executed with all requisite joggles and eramps (and if a petiment, the apex to be in one s'one). The pilasters (it any) to be bonded not less than . . . inches into the wall, against which they are placed in every other course. The sofites of the portico to be, as shown on the plan and sections, formed into panels and ornamented. Provide and let intu the top of the arehitrave good and sufficient chain bars, with stubs on the other side for letting into every stone composing the arehitrave.
The caps and bases to piers to be in large stones. The caps and bases to dwarf shafts (if any), and the corbels under wall picces or other roof timbers, to be well pinned into walls, and sunk and dowelled to receive shafts or timbers.
If a portico is shown, to provide and fix of solid . . . stone . . . steps round the portico, seantling . . . by . . . , properly back-jointed and worked all over; and within the portico to provide and fix a complete landing of stone, at least 4 inehes thick (or less, if a small portico), in slabs, as shown. The joints of the steps and landings aro to le joggled and run with lead. If the portico be very large, it is not necessary to make the frieze solid, but concealed arehes should be turned in the space from column to column to support the superincumbent weight of the eornice and pediment. If the colnmms are fluted, it must be mentioned. When a pediment, the tympanum may be described to be faced with a-hiaring.
To construct and fix dressings and sills to the external windows and doors, as shown on the drawings, with all such throated, sunk, moulded, carred, rebated, and other work as may be necessary.
To deseribe sills generally:-
Sills to . . . windows of . . . stone, $9 \frac{1}{2}$ by 6 inches. To . . . windows monldel and of . . . stone, 14 by 8 inehes. To . . . windows of Alerdeen granite, finely tooled, 14 by 9 inches. To . . . windows of . . . stone, 9 by 5 inches. All sills are to be properly sunk, weathered, and throated, and at each end to be 4 ineles lngger than the opening.
The tower and spire to be earefully carried nut in accordance with detailed drawings. The spire to spring from squinch arehes or from the solid broaches (or as the case may be), and gradually reduced towards the top, eallh stone to be wrought and eut to its through bed and ineliuation of its plane, the parts (as shown) to be in solid ashlar and carefully tai ed and booded. The bands, mouldings, cornices, strings, \&e., to be worked as shown, and continued round ; the storm !ights to be furmed with solid sills, heads, $\mathbb{E} \cdot \mathrm{c}$; the vane to drop through the finial and to be stcurely fixed. The windows of the tower and the storm lights of the spire to be grooved for lourres of wood or lates (or to be filled in with thin slabs of stone with ornamental piereings).
Turn relieving arches over all arches of nave, chancel, \&e., formel of different coloured stones, arranged as direrted, and form bands, diapers, crosses, \&e., of same where shown. The stones for parti-coluured work to be Pennant, Caen, Temple Quiting, Red Forest of Dean, Silver Grey Forest of Dean, Red Mansfield, Whinstone, or Bline Warwickshire stone (or local stene, if of suitable colour).
Provide shafts where shown of Derbyshive, Devonshire, Purbeck, or other marble, or of alabaster, serpentine, Aberdeen or Peterhead granite (or other material as may be selected), to be well polished, and to be snnk, dorrelle.l, and seenred into caps and bases. Shafts in angles of doorways (if any) to te of any suitable dark stone (if necessary) to contrast with the jamb.
All ornamruts, earving, enrichment of eapitals, of columns and pilasters, and of such as may be shown in the entablat ure, is to be execuited in an artist-like good style. Models from the working drawings are to le made at the contractor's expensc. and the whole to be executed to the satisfaction of the arehitect. The Orler may, however, be described if the working drawings are not sufficiently made out.
Plinths and base mouldings to the portico, as shown on the drawings, to le worked out of (describe stone) . . . stone of . . . by . . . scartling.
Finish the chimenty shafts with mouldings as shown in the drawngs, or with sunk moulded and throated eopings, . . . inches wide and . . . inches theck.
Danip course. All the walls to have lorkshire stone 3 inches thick and 4 inehes on eaeh side wider than the several lowest footings, in slais of one length across the width of the footing. This was an old custom.
Ba'conies to a house:-A balcony landing of Portland stone, . . . inches thick, moulded on the edges and the pieres carefully joggled together, and run with lead, to be prorided with holes cut therein for the iron railing. The said balcony is to be tailed into the wall, and securely pinned up.
Steps to the doorways must be described as to scantlings. All external steps shuuld be weathered.

22S4c. Mason.
For a bach staircase, carry up and construct a staircase from the basement to the princ:pal floor, with solid Yorkshire quarry steps 13 inehes wide and $6 \frac{1}{2}$ inches high, properly back-jointed and pinned into the brickwork; cut holes for the iron baiustrades. N.B. This sort of stairease of Portlaud will serve also for back stairs of upper flights. That from the basement may also be made of granite street curl, 12 by 7 or 8 inches. A staircase may, for cheapness, be made of lorkshire stone paring 3 inches thiek, wrought with filir tooled edges, and securely pinned into the brickwork.
Principal stairs to be of Portland stone (as may be), to exten from principal to ... floor, with steps and square (or semicireular, as may le) landings, entirely of solid stone, taile! 9 inches into the brickwork, with moulded nosings and returned nosings, and also at the back. The sofites to be moulded to the shapes of the ends of the steps. The landings to be 6 inches thick, with moulded nosings and joggled joints, run with lead, to be inserted at least 4 inches in the walls, but such as tail into the walls, as steps, must go at least 9 inches into the walls. When the under sides of the steps of the geometrical staircase are not moulded, the nosings are returned so as to fall beyond the upright line of the succeeding tread; in this case the sofite or string is plain wrought.
The stcps to the sanctuary and chancel of a church to be of rubbed Portland, Red Mansfield, Robin Hood, Craigleith, or other hard stone, or of marble, in lengths of not less than 10 feet, very earefully set and bedded, pinned, joggle jointed, and run and plugged with lead, and back-jointed to receive tile paring.
Pave the entrance hall and principal staicease, together with (any passage, \&c.), with the best . . . marble, and border according to the pattern drawn. The back staircase (and such other parts as require it) to be paved with Portland stone 2 inches thick, laid in squares, and with a border 8 inches square.
Where story posts are used in a front, it is well to place along the front two pieces of parallel square Aberdeen or other good granite curb, 12 jnches by 9 inches, cut out to receive the bases of the columns and story posts.
Pave the scullery, larder, pantry, passages, loblies (and other such places as may require mention), with rubled Yorkshire stone $2 \frac{1}{2}$ inches thick, laid in regular courses with close rubbed joints
Pave the bottom of the air drain with Yorkshire paving.
Fards may be paved with $2 \frac{1}{2}$-inch Jorkshire paring, or such other as the place affurds, as in common use. The same to basement stories.
Pave (if a church) the entrance passage, porches, \&c., where coloured on plan, with Minton's (or other) encaustic tiles, one third (or more or less) being figured, combined with chocolate and black tiles, value . . . per yarl superficial, mantrfacturers' prices. Pave the chancel (usually with richer tiles) with tiles value . . . per yard superficial.
The tiled floor (when laid on joists): Spike fillets to joists at 3 inches below their upper surfaces; fill in between the same with inch rough boarding. The vacuity to be filled up with pugging of concrete flush with the upper surface, finished with a layer inch thick of Roman cement smoothly floated to receive the tiles.
Dairy to be pared with . . . stone (or marble) in regular courses, . . . inches thick. Provide a shelf or dresser round the said dairy of veined marble (or slate) 1 inch thick, and a skirting round it 6 inches high. The dresser to go into the wall 1 inch, and to be supported on veined marble piers 4 inches square.
To fit up the wine cellar with bins, as per drawing, with 2 -inch Yorkslaire stone shelves (some prefer slate), fairly tooled, supported on half-brick uprights, all set in cement. A cellular hexagonal brick has been patented by King and Smith, of Weedon, to be used to form the wall of a rault ; each is hollow and open at the inner extremity, so that each brick becomes the receptacle for a bottle. They are made of three different sizes.
To provide and fix a warm bath of veined marble; rendered waterproof by being properly set in Dutch tarras, and plugged and cramped with copper at the joints, with all requisite finishing. A marble step round two sides of the bath. Cut all holes necessary for laying on the water. A bath, if a fixture, nay be similarly made of slate, which is of course much cheaper.
Where iron girders are used, describe pieces of granite street curb, or 3-in. Yorkshire stone, as corbels or plates, each long and wide, to receire the ends of the iron girders.
Where chimneys project without support from below, corbels must be described proportioned to the weight they have to carry. The best c.nrbel, howerer, is the gradual projection of the work by inverted steps, which, if there be height to hide them, should always bo the morle of excention.

2284d. Mason.
Cellar doorways should have in each of them three pieces of Portland or other such stone 18 in . wide, 18 in . long, and 9 in . high, cut out to receive the hinges and also the rim of the lock.
The commonest chimey-pieces that can lee described are of 1_{4}^{1}-inch Bath stone, jambs, mantels, and shelres, 6 inches wide; with slabs of 2 -inch Portland stone, 20 inches wide, and 6 inches or a foot wider on each side than the width of the opening. Those of butler's and housekeeper's rooms would be of a better quality.
A kitchen chimney is described as jambs and mantel (in one piece) of 2 -inch Po:tland stone 10 (or 12) inches wide, with a slab of $2 \frac{1}{2}$-inch rubbed Yorkshire stone, it used with a wood floor; but sometimes the whole width of that side of the kitchen is pared.
Where marble ehimney-picces are to be placed, they are descriked to be provided of a given value of such marble as may be determined, or working drawings and workmanship may be referred to. It must always le provided in the specification that the slabs are included, and that the price is, or is not. to include the carriage and fixing. Marble, wood, and iron chimney-pieces, with grates, fenders, tite borders and hearths, \&e. en suite.
All fire-places should hare back hearths of $2 \frac{1}{2}$-inch rubbed Yorkshire stone. Front hearths of stone, or of Portland cement, or of marble.
Sinks of rubbed Portland or other stone, 7 inches thirk (describing the size required), sunk $3 \frac{1}{2}$ ins. deep, with holes cut for the grating and socket-pipe, and fixed with all requisite brick or stone bearers or supports, complete. A sink of earthenware is now to be obtained. An improved patent combined sink and wash-up tub is specially adapted for kitchens, sculleries, cottages, artizans' dwellings, \&c. It is made of galranized or enamelled iron. Houseminds' slop sinks in earthenware or in plain or enamelled slate are made, to suit any position.
Sink stones to drains to be prorided where shown on the plan.
Flint work. Flint walling is of the following descriptions:-Rough, or as the flitus are dug; random, or broken without any regard to regularity; split, so that they are true on the face and oval in form; or, split and squared, by which nteat and square work is produced. The walling is to be built in the soundest manner with . . . flints (state which of the four descriptions is to te usel). laid in mortar empounded of quick-setting stone lime and coarse slarp sand, free from loam ; bricks, tiles, pebbles, \&c., may be bedded in the centre or core of the wall. The long flints to be selected and laid as through stones, and the string-courses, \&c., to Le laid entirely through the thickness of the wall, so as to gire additional bond. The work to be kept as dry as possible during the constraction, to be protected ly boards in wet weather, and to le corered in as soon as possible after completion. Ni, grouting to be used. "If the walling is faced with half-tlints, care is to be taken in laying them to keep their upper surfaces as level as possible, to prevent sain driving into the centre of the wall; firmly pin up the lower bed with fragments.
The joints of the masonry generally are to be where exhibited on the drawings, and the work is to be left perfectly cleaned off, all necessary joggles, joints, rebates, moulded, sunk, weathered ard throated works, groores, chases, holes, back joints, and fair edges, that may be necessary in any part of the work, and all jobbing, though not particularly nentioned under the several heads, is to be performed that may be requisite for the execution of the buidding, and all the work is to be well cleaned off before delivering it up. The whole of the work is to be warvanted perfect, and any damage that nuay occur to it by reason of frost or settlement within two years after the completion of the buiding is to be repaired, under the architect's direction, at the sole expense of the contractor.
All mortar is to be of the same quality as that described in the laricklayer's work.
All eramps to be of copper; iron cramps not to be allowed (see par. 2286). Leanl joggles, and slab slate dowels set in cement, to be inserted in the joints where directed. The contractor is to provide lead to run the cramps and joints.
In stublis, granite should be provided to receive the heel-posts if cast iron be not employed, and at the piers of gates, hinge and spur stones, the latter, of granite, if to be had, should be described. The caps and bases of the last can le noted only with reference to the drawings of ihem. The paving of stab'cs and their courts is described thas: Prepare the ground for paring (stating where) with good and sufficient hard materials, and pave it with Alerdeen granite javing, properly dressel and sorted, 8 inches deep and 5 inches wide at the top and buttom thereof. The whole to be laid with good currents upon a layer 4 inches at least in thickness of gool rough gravel, the joints of the surface to lie run with stone lime and river fand gronting. It is to be well rammed, and the contractor is to relay, at his own

228te. Mason.
expense, all such parts as may sink within eighteen months of the work being completed.
Tu provide and fix under the contract cubic feet of stone, including plain work and setting thereto, also superficial feet of $2 \frac{1}{2}$-ineh Yorkshire paring, laid in regular courses ; and in case the whole or any part of either or both should not be wanted, the quantity not used or directed shall be deducted from the amount of the consideration of the contract after the rate of per foot of cubic stone and per foot superficial for the Yorkshire paring, inzluding the workmanship and fixing thereof.
Where the work is within the metropolitan district, or within a town, a sufficient hoarding must be erected for enclosing the premises during the execution of the works, which is to be removed and carried away when they are complete. So, also, all shoring is to be provided, if the works be alterations, or the adjoining buildings may be injured by carrying them into effect. The shoring is to be performed in a sife, scientific, and workmanlike manner, of the sereral fronts, floors, or otherwise, as the case may be.
For a stone building:-To proride, fix, maintain, alter as occasion may require, and finally remove, the necessary double square fir framed scaffolding, travelling cranes and other implements, and utensils and plant necessary for the performance of the whole of the works; and perform all the requisite sawing, lifting, hoisting, cetting, and other labour that may be necessary for the carrying out of the whole of the works.

Carphnter and Joiner.

2285. To provide all materials requisite for completion of the buildings. The oak is to be of English growth and perfectly sound ; the timber is to be of the best Dantzic, Riga, or Memel yellow fir. No American, Swedis?, or Scoteh fir to be used in any part of the building. All the floors and joiner's work are, except where otherwise directed, to be of the best yellow Christiana deals. The timbors and deals are to be cut square, entirely free from sapwood, shakes, large knots, black outsides, and all other defects. If any part or parts of the joiner's work should shrink or fly within . . . months from the finishing and fixing the same, the contractor is to take down, make g orl, and refix the same, together with all works that may be affected thereby, at his own expense.
Proride and fix cubic feet of Baltic yellow fir timber, with all labour thereto, bryond the quantity necessary for the work herein described, to be used in such additional works as may be directed by the architect; and if the whole or any part thereof should not be ordered, the same shall be deducted from the amount of the consideration of the contract, after the rate of per foot cube. All additional fir, if any should be ordered, is to be taken at the like price of per foot cule.
No joists, rafters, or quarters are in any case, unless particularly so directed, to be more than 12 inches clear distance from one another.
Proride and fix, ease, and trike all centering and turning pieces for the raults, arehes, trimmers, and other works. Provide all temporary shores that may he necessary. Proride and fix all necessary templets, linings, blocks, stops, casings, beads, springing fillets, angle staffs, grounds, linings, backings, furrings, cappings, and other finishings incident to carpenter's and joiner's works, tong ther with all necessiry grooving, rebating, framing, tonguing, housing, beading, mitring, framing, and other workmanship necessary fir completing the works.
Provide aasing for all the stone dressings, to secure and protect the same from injury during the execution of the works; any accident arising from negleet in this respect is to be made good at the expense of the carpenter.
Bond timber, 4 inches ly $2 \frac{1}{2}$ inches all around the walls, except where intercepted by the chimneys, to le lapped together, where joints occur, at least 6 inches, and to be properly spiked together. One tier is generally enough for basement story. Two tier's in the other floors, unless very lofty. One tier in the upper story. These are now dispensed with, hoop iron bond being used, and party walls may be so bonded, if thought proper, for a greater security against fire.
All wood, or patent, bricks to which the finishings are to be fixed.
All lintels, and filling in lintels necessary to the several openings; each to le 4 inches high, of the width of the brickwork, and 16 inches longer than the opening. Two small lintels will do if the width of the sofite be considerable, and arches, as directed in the l,rieklayer's work be turned.
For ground or, rather. l asement floors, walls are brought up for receiving ouk sleepcrs 5 by 3 inches, on which tir joists $4 \frac{1}{2}$ by $2 \frac{1}{2}$ are generally the scantlings cmployed

2285a. Carpenter and Joner.
For other floors.-Wall plates, 6 inches by 4 inches; girders; joists according to the kind of floor; trimmers and trimming joists; all which, with their requisite scantlings, will be found in Practical Carpentry, (2013 et seq.)
Cradling to the girders and such pirts as myy be necessary to form panels and coffers on the under side for the ceiling, if such be practised. State if the girders are to be trussed. Cock down all girders on the wall plates. Pin bridging joists to binders with $\frac{3}{4}$-inch sak pins.
Wall plates to roofs should be at least 6 inches ly 6 inches. The different timbers of the several sorts of roofs are described in Yractical Carpentry, and scantlings given. (2027, et scq.) Ceiling joists to be described. Hips and ridges rounded for lead ought to be 10 inches by 2 inches.
The trusses of ronfs are to be framed as shown, and of timbers of the scantlings respectırely figured (or as here specified). They are to be mortised, tenoned, arched, notched, moulded, chamfered, and stopped, as shown on the detail drawings; and to be bolted and strapped with wrought iron straps, forged with ornamental ends; all bolts to have washers and nuts, nutched as shown.
The curved rils (if any) to be put together in (three) thicknesses, so as to break joint, to be wrought all over, and the joints to be tongued. These (three) thicknesses are to be screwed close together with long screws, and bolted with $\frac{1}{2}$-inch bolts between each joint. The centre thickness to be tenoned into the timbers on which it abuts. Tongue a bold 3 -inch bead to underside of same.
The hammer-beams (if any) are to be engged down upon the wall plates, and framed to the ribs, and bolted, as shown. The principals are to be notehed and tenoned to the hammer-beams, and well spiked to ribs, and tenoned together and pinned at top. The collars (if any) are to be firnly tenoned into and spiked to principals. The purlins are to be notehed down and housed into the principals on each side, and spiked. The king-post, or queen-posts, are to be framed in the usual manner.
All the timbers of the roofs exposed to view are to be wrought, and the angles monlded, or chamfered, or stop cbamfered.
All roofs (if exposed to view) to be boarded above the rafters with $\frac{7}{8}$-inch wrought matched V jointed boarding, laid diagonally, and securely nailed to rafters and corered with (asphalted) felt (or specify, to lath on the top of rafters and plaster letween the same). Lay battens 3 inches by 1 inch over the boarding or laths, on the back of every rafter, and on the battens lay 3 inch by 1 inch slating battens (or double oak tiling laths if the roof be tiled), fixed to a proper gauge for the sized slates required.
Where close boarding is used, it should not be less than $\frac{3}{4}$ to an inch thick. If battens for slating, they should be $2 \frac{1}{2}$ inches wide; the first should be nailed with eightpenny nails. Provide lear boards. On many accounts the Italian method of laying the rafters horizontally as so many purlins is to be preferred. For the boarding not lying lengthwise towards the gable, any wet that may find its way on to it from defective slates or lead, is not apt to lcdge against and rot the edges.
Flats.-Wall plates usually 6 by 6 . Trimmers and trimming joists against chimneys, and where skylights occur. $1 \frac{1}{2}$-inch yellow deal boarding, listed, free from sapwood, laid with a current of $1 \frac{1}{2}$ inch to 10 fect lineal, with $2 \frac{1}{2}$ drips to heading joints, of lead rolls to longitudinal joints, and inch yellow deal risers not less than 4 inches wide next the gutter.
Gutters to the roof, or roofs, are to be as shown on the plan, with inch yellow deal bottoms on strong fir bearers, and laid with a current of $1 \frac{1}{2}$ inches to every 10 feet; $2 \frac{1}{2}$ rebated drips, and at the sides to have $\frac{3}{4}$-inch deal lear boards, 9 inches wide. Gutter boards are rarely more than $1 \frac{1}{4}$ inches thick. Gutter platis, if any, to be described, but they should never be used withont support from below.
Trim for trap doors, size as shown, if any, leading to the inside of the roof Dormers thereto on to roof, with all necessary framing.
Cheeks, doors, beaded stops and linings, and ironmongery. Boarding for slating or lead to top and cheeks, as the case may be.
Dormers may be similarly described for windows in the roof.
Quartered partitions, where shown on the plan, with heads and sills 4 inches by 4 inches. Ties above the doors 4 inches by 5 inches. Posts 4 inches by $3 \frac{1}{2}$ iuches. Braces or struts 3 inches square. Quarters 4 inches by 2 inches, and three tiers of interties, 1 inch by $2 \frac{1}{2}$ inches. In cases where partitions are to be trussed for carrying either their own or some additional weight, reference must be made to drawings.
Battening to external walls, usually from $\frac{3}{4}$ juch to $1 \frac{1}{4}$ inch thick; their widths $2 \frac{1}{4}$ inches. fixed from 7 to 12 inches apart. If bond timber is not used to nail them to, plugs, or fixings, to bo let into the wall.

208:\%. CARpenter and Joinhir.

Liracketing and cradling is usually, for cornices, coves, \&e., $1 \frac{1}{4}$ inch thick; for entablatures, circular sofites, and waggon-headed ceilings, $1 \frac{1}{2}$ to 2 inches thick.
All biarers to he fixed and provided as shall be necessary.
Weather boariling, $\frac{3}{4}$-inch or 6 boards to a 3 -inch yellow deal. wrought or wrought and beaded; or 1 -inch or 4 boards to a 3 -inch deal. Louvre or Luffer boarding of I-ineh deal, wrought two sides and splayed.
Warchonse posts must be described with their relation to the weight they are to carry (see Beams and Pillars, 1635, et seq.), the caps 3 feet long, with splayed ends, so that the posts may not press into the girders; and iron dowels should pass through the girders to catch the bases of the posts in the floor above. Fir story posts are usually about 9 inches square.
Huter trunks are made from 4 to 6 inches or more square, of $\frac{3}{4}$-inch to $1 \frac{1}{4}$-inch deal; to be pitched and fixed complete, with hopper heads and shoes, wall hooks, hold-fasts, \&c.
Par\% paling is of the fullowing varieties: 4 -feet oak cleft pales, 2 arris rails and oak posts; 5 -feet oak cleft pales, \&c.; and 6 feet oak cleft pales, 3 arris rails and oak pusts. Described ouk plank at the bottom, and oak capping at top, if required.
Floors.
$\frac{3}{4}$-inch white (or yellow) deal, rough, wirh edges shot. These may be of lattens
$\frac{3}{4}$-inch white (or yellow) deal, wrought, and laid folding. $\}$ tor better tloors.
1-inch white (or yellow) deal, rough, with edges shot.
1-inch white (or yelluw) deal, wrought, and laid folding.
1-inch white deal, wrought, and laidstraight joint and splayed headings. f tens.
$1 \frac{1}{4}$-inch w hite (or yelluw) dral, rough, with edges shot.
$\left.\begin{array}{l}1 \frac{1}{4} \text { inch white (or yellow) deal, wronght. and laid folding. } \\ 1 \frac{1}{4} \text {-inch white (or yellow) deal, wrought, straight joint, and splayed }\end{array}\right\}$ Also of battens.
$1 \frac{1}{4}$-inch white (or yellow) deal, wrought, st raight. joint, and splayed \int
headings.
$1 \frac{1}{2}$-inch white (or yellow) deal battens, edge nailed, and tongued headings.
$1 \frac{1}{4}$-inch yellow deal batten (or cloan batten), dowelled with vak dowels, with mitred and glued borders.
Warchouse floors.
$1 \frac{1}{2}$-inch yellow deal, rongh, edges sbot. $1 \frac{1}{2}$-inch yellow deal, wrought, and laid folding. $]_{2}^{l}$-inch ycllow deal, wrought, and straight joint and splayed headings. 2-inch yellow deal, rough, edges shor, and 2 -inch yellow deal, wrought, and lain folding. 2-inch yellow deal, wrought, and laid straight joint, and splayed headings
All these last may be ploughed, rebated, and feather-tongued.
Put to floors (or to the whole, if devired) sound boarding of $\frac{3}{4}$-inch rough deal fixed upon fillets, to receive the pugging. (See 2287c.)
Floors of inlaid or parquetry work to be specially described according to drawings.
In churches, the floors under the seats are usually of wood, and require rebated and chamfered oak maryins, 6 inches by 4 inches, laid flatwise, where they abut upon paved floors. These magins are to he mortised or dowelled to receive leneh ends, and the wood floors to be kept 3 inches above the tile floors on which they abut. See wood bock fluors.
Stirtings.- $\frac{1}{2}$-inch (or $\frac{3}{4}$-inch) deal square. $\frac{3}{4}$-inch (or 1 -inch) doyl torus. 1 -inch (or $1 \frac{1}{4}$-inch h) deal square; or 1 -irch deal square skirting, rebated and backed jlinth, with fillet maled to floor. $1 \frac{1}{4}$-inch deal torus; or $1 \frac{1}{4}$-inch deal torus skirting, rebated and backed plinth, with fillet nanled to floor. If any of these, as to stairs, are raking, and to be seribed to steps, they must be so described, aud if ramped or scribed to monlded nosings, or circular on plan.
Dado, nailed to ground: $\frac{3}{4}$, l-inch, find $1 \frac{1}{4}$-inch deal keyed. $1 \frac{1}{4}$ inch deal keyed, ploughed and tongued, or feather-tongued, if required. Mention if they are to be scribed to steps, circular on plan, and wreathed, or ramped. Dadoes are now made of framed wainscot, in panels, \&c., accoiding to drawings.
Wainscoting, with fascia and skirting.-1-inch deal, square frumed; and perhaps dwarf. $1 \frac{1}{4}$-inch deal, square framed; and perhaps dwarf. $1 \frac{1}{1}$-inch deal, bead butt (or monlded), or bead flush. The number of panels high to be specified. State if any to lis made raking, or to have a beaded or moulded capping.
Partitions of deal for the division of rooms.
1 -inch deal board, aud braced with $\frac{1}{2}$-inch panels.
$1 \frac{1}{4}$-inch deal, braced with $\frac{3}{4}$-inch panels.
These are seldom made.
$1 \frac{1}{2}-$ inch deal, rough, and ledged edges shot.
$1 \frac{1}{2}$-inch deal, wrought both sides, and ploughed ; cr tongued and beaded.
$1 \frac{1}{4}$-inch, or $1 \frac{1}{2}$-inch, square framed.
$1 \frac{1}{2}$ inch, bead butr, moulded and :quare ; or bead flush and square or moulded both sides.

228jc. Carpenter and Joiner.
2-inch, square framed; or bead butt or moulded and square ; or bead flush and square ; or moulded both sides; or moulded and bend flush; or bead flush and bead butt; or bead flush on both sides.
Grounds.-Those of $\frac{3}{4}$-inch deal, of 1 -inch deal, of $1 \frac{1}{4}$-inch deal, of $1 \frac{1}{2}$-inch deal, and whether circular ; also 1 -inch, $1 \frac{1}{4}$-ineh, and $1 \frac{1}{2}$-inch skeleton grounds (par. 2166).
Door cases are usnally aboat $\overline{5}$ by $\overline{0}$ inches for basements; shonld be of oak in preference to fir. They fit, or are fixed, into the brickwork, and should be tenoned (the tenon being pitched or set in white lead) into a stone step or threshold; any wood sill soon rots.
Door linings.-These are either plain, the commoner sort ; or framed, for better work. l-inch deal, single rebated; or double rebated (that is, so that the door may hang on either side)
1 i-inch deal, single rebated ; or double rebated.
$1 \frac{1}{2}$-inch deal, single rebated; or double rebated.
Lither of the foregoing may be leaded on the edge.
Framed door linings and sofites for doors are-
$1 \frac{1}{4}$-inch, square framed in one panel and double rebated: and bead butt or moulded: and bead flush.
$1 \frac{1}{2}$-iuch, square framed in one panel and double rebated: and bead butt or moulded : and bead flush. If the pancls in the linings are to be raised, to correspond with panels of doors, they must be so describea.
Framed back linings are-1-inch deal, two panel square; and bead butt. 1-inch deal, three pauel square ; and bead bntt. 1 -inch deal, fiur panel square; and bead butt. If there be more panels, or they are splayed on the plan. or if bead flush, or of a greater thickness, they must be so specified.
Window backs, elbows, and sofites.-1-inch deal, keyed; or framed square.
$1 \frac{1}{4}$-inch deal, framed square ; or monlded or head butt; or bead flush.
1_{4}^{1}-inch deal, square framed sofite, with one edge circular. . Applicable to bay win$1 \frac{1}{4}$-inch deal, square framed sofite, with two edges circular. $\}$ dows.
$1 \frac{1}{4}$-inch ceal, square framed sofite, mouided, or bead butt.
$1 \frac{1}{2}$-inch deal, framed square; or moulded ; or tead butt: or bead fluin. If any of these are splayed, fancy moulded, and with eappings. or are circular on the plan, they must be so specified.
Shutter boxings. - 1 -inch deal, splayell boxings; 1-inch deal, proper boxings; $1 \frac{1}{4}$-inch deal, splayed boxings; $1 \frac{1}{4}$-inch deal, proper boxings; $1 \frac{1}{4}$-inch deal, buxings with circular head; 1-inch (or $1 \frac{1}{4}$-inch) deal, boxings for sliding shutters, with pulley pieces, beads, fillets, and grooves, complete. These, if to be doulle hung, must be so described.
Shutters to windows. $-\frac{3}{4}$-inch deal, ledged or clamped; and may be in two heights. 1-inch deal, clamped; and in two leights; or clamped in two heights, one panel, bead butt, and square; or one panel, bead flush, and square; or bead butt. These may be described of $1 \frac{1}{4}$-inch deal and of $1 \frac{1}{2}$-inch deall, but the back flaps need not be more than ore inch. The additional panels in height projecting mouldings (if any), and any other rariations, must be mentioned.
Shutters, sliding, hung with lines and weighte.-1-inch (or $1 \frac{1}{4}$-inch) deal, t wo pan+ls
 deal, bead butt and moulded (or beal flush and bead lyutt). If of $1 \frac{1}{2}$-inch deal, if more panels in height, if circular on the plan, and if patent or other lines are to be used for the hanging, they must be mentioned.
Outside shutters. - $1 \frac{1}{4}$-inch deal, three panels, bead butt and square; or tead flush and square. $\mathrm{J}_{\frac{1}{4}}$-inch deall, three panels, bead flush and bead butt ; or bead flush on both sides. $1 \frac{1}{2}$-inch deal, three panels, bead butt and square ; or bead flush and square; or be ad flush and bead butt. These may be circular on plan, or contain more than three panels in height.
Staircases. -1 -inch jellow deal, steps, risers, and carriages. 1_{4}^{1}-inch deal, steps, inch ristrs, and carriages. 1_{4}^{1}-inch deal, steps and risers glued up and blocked to close string moulded nosings, and two fir carriages. $1 \frac{1}{4}$-inch deal, steps and risers mitred to cut string, and doretailed to balusters. $1 \frac{1}{4}$.inch deal, steps to winders, mitred to cut string, and dovetailed to balusters, one end circular ; or both ends circular. The risers may be tongued to the steps; or feather jointed; or of clean deal. $1 \frac{1}{2}$-inch deal, wrought steps, risers, and strong earriages. 2 -inch deal, wrought steps, risers, and strong carriages. $1 \frac{1}{4}-\mathrm{inch} 0 \mathrm{Ok}$, treads and risers mitred to string and dovetailed with fir carriage (with solid quarter ends to steps if required), also curtailed step and riser (2187, et seq.), returned monlded and mitred nosings, circular (if necessary), with cut plain (and circular) brackets.
Housings to ends of steps and winders, and the same to moulded nosings and circular ends, are to be specified.

2285d. Cakpentele and Joiner.
String hoards to staireascs to receive the ceilings of stairs (calltd strings). -1 -inch deal, framed; or framed, rebated, and beaded. $1 \frac{1}{4}$-inch deal, framed string board; or sunk and bealed. $1 \frac{1}{4}$-inch deal, framed string board, sunk, beaded, and moulded; and mitred to risers. $1 \frac{1}{2}$-inch deal, wreathed outside, string glued upright, rebated, and beaded; and sunk; and moulded. The string may be glued up in thicknesses; and also plain or moulded circular cuttings or ramps. 1-inch (or $1 \frac{1}{4}$-inch; or $1 \frac{1}{2}$-inch ; or 2 -inch) deal, plain wall string; and these may be moulded.
The principal stairease to have $1 \frac{1}{4}$-inch pitch pine (or other) treads, with rounded nosing and hollow moulding under same, and inch risers, glued and blocked to fir carriages; the ends of the steps to be housed into $1 \frac{1}{4}$-inch wall strings, and 2 -inch outer string boards, sunk and staff beaded, and tinished at the top with a boldly moulded capping, framed at the bottom and corners into 6 inch square newels, with moulded finials, bases, and pendents, as drawing. Boldly moulded oak handrail, 4 inches wide and 6 inches deep, with $1 \frac{1}{2}$-inch square oak balusters, stop chamfered.
The landings to be formed by joists resting upon boldly monlded stopped beams, es shown on sections.
Handrails to staircaies.- $1 \frac{1}{4}$-inch (or $1 \frac{1}{2}$ inch; or 2 inch) deal, plain wreathed. These may be moulded; as deal moulded $2 \frac{1}{2}$-inch handrail ; or $2 \frac{1}{2}$-inch handrail, ramped (or circular where required) ; or $2 \frac{1}{2}$-inch handrail, wreathed and twisted. Spanish (or Honduras) mahogany (or wainscot) moulded handrail. To be described with all necessary ramps, circular and twist, or with scroll and t wist to the curtail step. Mention if grooved for balusters, circular, or sunk for iron cores, mitred and turned caps.
Balusters and newels.--Deal square framed newels; or chamfered. Single and double turnings to nevels to be mentioned, as also pendent drops, when used. Deal square bar balusters; or doretailed. Turned balusters, according to drawing. or selected from manufacturers' patterns. Planceer rounded on booh edges; or moulded. Fix all necessary iron balusters and stays.
Sash frames are of great variety. Deal cased frame for $1 \frac{1}{2}$-inch sashes, oak (or deal) sunk sill with brass (or other) pulleys for single hanging. Ditto, for double banging. Dito, ditto, with circular head. Ditto, circular on plan (and with circular head). Deal cased frames for 2-inch sashes, oak (or deal) sunk sills with brass pulleys for single hanging. Ditto, for double banging (and circular on head and plan, or either). Deal cased frames for 2-inch sashes, oak (or deal) sunk sills with wainscot (or fleal) pulley pieces and beads, brass axle pulleys prepared to hang double; and if circular on head and plan (or cither). Weal cased frames for 2-inch sashes, oak sunk sills, mahogany pulley pieces and beads with brass axlo pulleys, prepared to hang double. Ditto, for $2 \frac{1}{2}$-inch sashes; and if circular on head and plan (or either).
Venctian frames.- Deal cased frames for $1 \frac{1}{2}$-inch sashes, oak sunk sills, prepared to hang single (or double). And if circular on plan and head (or ejther). The above serves for 2 -inch and $2 \frac{1}{2}$-inch sashes; and if wainseot or mahogany.
Casement frames for French casements.-Fir solid wrought, frames for $1 \frac{1}{2}$-inch (or 2 -inch) casements, oak bunk sills (plain or circular on the plan, as the case may be). Ditto, with wainscot or mahegany stiles and beads, to correspond with tho sashes. Ditto, for $2 \frac{1}{2}$ inch sashes.
Fanlight frames over doors.- $1 \frac{1}{2}$-inch deal frames, square framed. Ditto, semicircular head. 2 -inch deal, square framed. Ditto, semicircular head, If elliptical, so describe them.
Sashes.- $1 \frac{1}{2}$-inch deal ovolo (with circular head or circular on plan). 2 -inch deal ovolo (ditto). 2 -inch deal astragal and hollow (ditto). $2 \frac{1}{2}$-inch deal astragal and hollow (ditto). These may be moulded according to drawing. The above may be of wainscot, Honduras or Spanish mahogany ; aloo to be hung single or double, with patent lines and iron (or lead) weights, and sasli-fastenings (patent to be named) complete.
French easements.-2-inch deal ovolo casements. They may hare marginal lights. or be circular on plan, or both; or if with astragal and hollow. The same of $2 \frac{1}{2}$-inch, with the same modifications. The above may be of wainscot, Honduras or Spanish mahogany. The hanging is commonly with 4 -inch iron, or brass, butt hinges; the species of fastening at a price from five to twenty shillings. When Espagnolette fastenings are used, they must be particularly specified.
Shop-fronts vary so much that their thicknesses will only be noticed. They range frims $1 \frac{1}{2}$ to $2 \frac{1}{2}$ inches; the forms of their horizontal sections must be stated, or to be executed according to the drawings. Metal bars are now largely used.

228ije. Carpenter and Joner.
For revolving wood or iron shutters, the particulars of the manufacturers had best be obtained.
Stall-hoard, and other shop-fittings, \&c., of the like nature, are to be described with reference to the drawings, or to the manufacturer.
The ceilings of the principal rooms:-after they are plastered, to be divided into square panels about . . . feet square, by nailing thereon hollowed tillets $2 \frac{1}{2}$ inches by 1 inch (or more), neatly scribed at intersections, with staff beads 1 inch (or more) diameter, nailed along the centre of the sime, mitred at intersections, and conreyed round walls as a cornice. Care to be taken in laying the joists so that they may form nailing points for these panel ribs.
Friezes and cradling for cornices should be referred to drawings, specifying their height.
Skylights.-The common sort are, $1 \frac{1}{2}$-inch deal orolo skylight (and hipped, and with cross bars). 2 -inch deal ditto (ditto). $2 \frac{1}{2}$-inch ditto (ditto). If astragal and hollow moulded; or if of oak, to be specified. Small skylights are often made of copper or zine.
Kerbs for skylights.-11 $\frac{1}{2}$ inch kerbs to (circular) skylights in two thicknesses, berelled and chamfered. 2 -inch ditto. $2 \frac{1}{2}$-inch ditto. These may be elliptical.
Cwach-house doors and gates.-2-inch deal, framed and braced, filled in with 2 -inch deal, and ploughed, tongued, and beader. Ditto, filled in with battens. $2 \frac{1}{2}$-inch deal, framed and braced, filled in with 1 -inch deal, ploughed, tongued, and beaded. Ditto, filled in with battens. These are sometimes filled in with whole deal.
2 -inch deal bead butt and square gates, in eight panels; and bead flush and square;
and bead flush on both sides. These gates may have more panels; or be framed with a wicket. A sum may be provided for the hanging of gates, and their hinges and fastenings may be inserted at from 10l. to 15l., or even $20 l$.
Doors.-For out-houses and the like: $\frac{3}{4}$-inch ledged wrought deal door; ditto, ploughed, tongued, and beaded. 1 -inch wrought deal ledged, ditto. 1 -ineh ploughed, tongued, and beaded. $1 \frac{1}{4}$-inch wrought deal ledged, ditto. 1_{1}^{1}-inch ploughed, tongued, and beaded. $1 \frac{1}{2}$-inch and 2 -inch deal ledged donrs are similarly described. These doors may be liung with $H L$ or cross garnet hinges; and have bolts, locks, latehes, and other fastenings, as may be described. External doors with 4 -inch cast or wrought butt hinges, and internal doors with cast or wrought iron $3 \frac{1}{2}$-inch butts. Water-joint hinges are usetul for light ontside flap-doors.
For a dwelling house : the principal entrance door to we of deal $1 \frac{1}{2}$ inches thick, framed flush, with V joints inside ; the exterior to be cased with $\frac{3}{4}$-inch oak boards, with monlded fillets orer the joints, the same to return round the head, and to die at bottom on an oak rail, 9 inches deep, sometimes having sunk quatrefoils, \&c. The door to be hung on wrought iron ornamental hinges to hooks let :nto the jambs (or screwed to frames); an 8 -inch rim lock and ornamental drop handle, escutcheon, and key-plate, and two 8 -inch barrel bolts
The back, or side entrance, door to be 1_{4}^{1}-inch, framed, ledged, and braced, covered with $\frac{3}{4}$-inch wrought oak boarding with chamfered joints, nailed on with rose nails driven through and clenehed; hung on hinges and fastened with lock and bolts, similar to those specified for front entrance.
The internal doors may be of the following varieties:- $1 \frac{1}{2}$-inch four-panelled, with hollow on the room side, and $\frac{3}{4}$-inch diagonal V boarding next the hall or passage ; to be hung with Heur-de-lis or ornamental wrought iron hinges, made to clasp the door si as to show on both sides, and fastened with wrought iron latches and ornamental drop rings. $1 \frac{1}{2}$-inch four-panelled, square framed, stop chamfered, filled in with upright or diagonal V-jointed boarding, and hung on hinges as previously specified.
1 -inch deal 1 -panel square door. 1 -inch deal 1 -panel square door, fulding. These are rarely used.
1_{4}^{1}-inch, 2 panels, square; and bead butt and square; and bead flush and square; and moulded and square; and bead butt on both sides; and bead butt and bead flush; and bead butt and moulded ; and bead flush on both sides; and bead flush and moulded; and moulded on both sides. When bung folding, to be so specified.
$1 \frac{1}{2}$-inch deal, 2 panels, square, follows in the same order.
2 -inch deal follows in the same order.
$2 \frac{1}{2}$-inch deal follows in the same order.
$1 \frac{1}{2}$-inch deal, 4 panels, follows in the same order.
2 inch deal, 4 panels, follows in the same order.
$2 \frac{1}{2}$ inch deal, 4 panels, follows in the same order.
$1 \frac{1}{2}$-inch deal, 6 panels, follows in the same order ; and so on.

22Siff. Cahpenter and Joiner.
If the pantls of $1 \frac{1}{2}$-inch doors are raised, or if donble marginal drors, so describe them. All the above must be specified as to be hung fulding, if the nature of the work so requires.
Wainscot doors. - $1 \frac{1}{2}$-inch wainseot, 2 pancls, square; and bead flush and square ; and moulded and square ; and bead flush on both sides; and bead flush and mouldel. 2 -inch wainscot, 2 panels; $2 \frac{1}{2}$-inch wainscot, 2 panels; follow in the same order. $1 \frac{1}{2}$-inch wainscot, 4 panels, follow in the same order, and may be moulded on both sides; also 2 -inch wainscot, 4 panels; and $2 \frac{1}{2}$-inch wainscot, 4 panels; also 2 -inch wainseot, 6 panels; also $2 \frac{1}{2}$-inch wainseot, 6 panels; and so on.
Wuinseot sash doors.-2-inch wainseat, with diminished stiles, lower panel moulded, bead flush, with astragal and hollow sash; or ditto, with astragal and hollow sash, monlded on both sides; or $2 \frac{1}{2}$-inch wainscot sash doors, diminished stiles, lower panels moulded, and bead flush, with astragal and hollow sash; or ditto, with astragal and hollow sash, moulded on both sides. These may be hung folding, double margined, or moulded on the raising.
Mahogany doors, or best Spanish mahngany if required (of course now veneered)2 -inch Honduras mahogany, 2 panels, moulded and square; or moulded on both sides. 2-inch Honduras mahogany, 4 panels, moulded and square ; or moulded on both sides. 2-inch Honduras mahogany, 6 panels, moulded and square ; or moulded on both sides. $2 \frac{1}{2}$-inch Honduras mahogany, 4 panels, moulded and square ; or moulded on both sides. $2 \frac{1}{2}$-inch Honduras mahogany, 6 paneis, moulded and square; or moulded on both sides. These may be hung folding; with projecting mouldings ; or with double margins.
Mahogany sash doors.-2-inch Honduras mahogany, astragal and hullow, bottom panel moulded and square; or bottom panel monlded on both sides; or $2 \frac{1}{2}$-inch Honduras mahogany, astragal and hollow, lottom panel moulded and syare; or botrom panel moulded on both sides. These may be hung folding; or with double margin ; or diminished stiles.
Enternal doors.-2-inch wrought, ledged, framed, and lraced, folding (or other) doors, with stop chamfered, arched heads, stiles, rails, and bracts, curered on the outside with $\frac{3}{4}$-inch wronght, tongued, and V jointed oak boarding, hung to solid oak frame (or on binge-hooks let into stone jambs), with strong, heavy, wrought iron medieval hinges, and fastened with lest rim dead lock cased with oak, and a heary wrought iron latch, with bold ornamental drop handle and plate, key-plate, \&c., all wrought according to detail drawing (or a price to be stated for each article). The frames to be of oak, 6 inches by 4 inches, wrought, double rebated, stop chamfered, groored, \&c., tenoned into stone steps, and to have extra strung hooks on plates screwed to same.
2-inch deal, 4 panels, the lower panels bead butt and squire, and the upper panels equare both sides; or the upper panels bead lutt on the backs; or the upper panels bead flush on the back. The panels may have raisfd mouldings.
$2 \frac{1}{2}$-inch deal, 4 panels, the lower panels bead butt and square, upper panels square on both sides; or bead butt on the back ; or bead flush on the back ; with perhaps raised mouldings.
a-inch deal, 6 panels, lower panels bead hutt and square, upper panels square both sides; or bead butt on the back ; with perhaps raised mouldings.
$2 \frac{1}{2}$-inch deal, 6 panels, the lower panels bead butt and square, and the upper panels square both sides; or lead butt on the back; or bead flush on the back; with perhaps raised monldines, double margined, \&c. Deseribe any of these external doors, if to be hung folding, or with circular or curved heads.
Sash doors.- $1 \frac{1}{2}$-inch deal, 2 panels, square, diminished stiles, and orolo sash ; and bead butt and square, diminished stiles, and ovolo sash; and beat flush and square, diminished stiles, and ovolo sash; and moulded and square, diminished stiles, and ovolu sash; and moulded and lead butt, diminisherl stiles, and ovolo sash ; and moulded and head flush, diminished stiles, and ovolo sash ; and moulded on both sides, diminished stiles, and ovolo sash.
2 -inch deal, 2 panels, square, diminished stiles, and orolo sash, in the same order. $2 \frac{1}{2}$-inch deal, 2 panels, square, diminished stiles, and ovolo sash, in the same order All these may be hung folding, or with marginal lights.
In describing joiner's work, specify the ironmongery to be used; that is, the hinges, locks, fastenings, and furniture. There is now great variety.
Common framed 4 -panel doors are usually hung with $3 \frac{1}{2}$-inch butts and 7 -inch iron rim stock locks. Better doors are hung with 4 -inch iron or brass butts, mortise locks and brass knob furniture. Folding doors, if heavy, should have $4 \frac{2}{2}$ or 5 -inch brass butts, and if necessary io clear monldings, they should be hung with projecting brass butts, be provided with flush and other bolts, and mortise locks and

2285g. Carpenter and Joner.
furniture. Doors of dining, drawing, and other rooms, where they are required to clear the carpet by rising as they open, should have 4 or $4 \frac{1}{2}$-inch rising juint butts. Closet doors have usually $3 \frac{1}{2}$-inen butts, with brass tumbler locks and keys. External doors require larger locks, which are usually iron rim locks, or patent locks and keys; also 10 or 12 -inch bright rod bolts, chains, staples, \&c. Shutters have butts, which fur the back flaps are of a less size, and spring bar fastenings. Brass or other china kuots to the front flaps. Doors, mouldings, and joinery are now to be obtained of American and Swedish manufacture, as well as English.
Moulded architraves to doors and windows, are described by their wilth and mouldiugs, or referred to drawings.
Columns and pilasters.- $1 \frac{1}{4}$-inch (or $1 \frac{1}{2}$-inch) deal diminished columns, inches diameter. Pilasters similarly specitied. Both one and the other to be glued up and blocked. If fluted, to be mentioned; as also any necking groores to columns. Caps and bases according to the Order, or to drawing, carved, or of papier-máché, as the expense will allow.
Entablatures got out of deal, as to drawing. To be ghed mp, blocked, and fixed with all necessary brackets and grounds.
Water-closet, fitted up with 1-inch clean deal (wainseot or mahogany), seat with hole cut therein, riser (panelled and moulded) and clamped flap (not always considered a necessity), square (or beaded) skirtings, with all requisite bearers and pipecasing. Prinies are described as to seats and risers the same as water-closets, but sometimes have a lid to cover the hole instead of a flap.
Cistcrns, internal and external, must have their cases proportioned in thickness to their sizes. Thus one about 3 or 3 feet 6 inches long, and 2 feet $:$ inches deep, will be $1 \frac{1}{4}$-inch deal dovetailed, with requisite bearers, and a cover of $\frac{3}{4}$-inch deal with a wood handle. For a good-sized external cistern, provide and fix a wrought and dovetailed 2 -inch deal cisteru case, . . . feet long, . . . feet wide, and . . . feet deep in the clear. Provide and fix all necessary bearers for the same, with all other requisite fittings, and a $\frac{3}{4}$-inch deal strongly ledged cover, with saddle-back fillets and water channels at each joint. Each water-clo-et to have a cistern case of 2 -inch deal, to contain 36 cubic feet of water, fixed with strong bearers, ledged cover of $\frac{3}{4}$-inch yellow deal tongued and beaded. All these cisterns are supposed to be lined with lead, or zinc.
Sinks.- For a wooden one lined with lead, $1 \frac{1}{2}$-ineh dovetailed sink, enclosed with 1_{4}^{2}-inch deal square-íramed front (and pernaps sides), and top or door hung with 3 -inch butts, with deal or lead skirtings, and other necessary ironmongery. A proper drainer to be fixed at one side.
Plate-rack for scullery to be provided over the sink, and of the same length.
Bath to be fitted up with riser, frame, and clamped flap (of the best Spanish mahogany), rrovided and fixed with all requisite bearers and other fittiugs and appurtenances. The flap to be moulded (in front), and hung with $3 \frac{1}{2}$-inch brass butt hinges, and the riser panelled and moulded as shown in the drawings, or to follow the windows and doors.
Dresser.-For a good house :-2-inch deal, with cross-tongued top 10 feet long and 2 feet 9 inches wide, supported on strong framed legs and bearers. 1-inch deal pot-board and beartrs. Six $1 \frac{1}{4}$-inch sunk shelves, whose widths are to arerage 7 inches. Back of the shelves to be of 1 -inch deal, wrought, beaded. grooved and cross-tongued. 1 -inch deal top, 14 inches wide, with moulded cornice. Five drawers with bottoms and doretailed rims of $\frac{3}{4}$-inch deal. The fronts to be of 1-inch deal, beaded. A pair of brass (or black) drop handles and a good patent tumbler lock to each drawer; together with all slides, runners, bearers, and other requisite appurtenances. To be fixed complete. Others from 6 to 7 feet long.
Dresser top for scullery, $1 \frac{1}{2}$-inch clean deal, 2 feet 6 inches wide, and 6 feet long, cross-tongued, and fixed upon strong wrought and framed legs and bearers.
Cupboard fronts to correspond with the doors of their respective rooms, hung on ornamental S. H. or other simi'ir hinges, fastened with small tumbler locks, wrought iron key plates, and small twisted or other drop, or fancy, handles. The fittings to closets depend upon the rooms in which they occur; as the attics, bedrooms, nursery, sitting room, kitehen, houseke ${ }^{\circ}$ per's room, store room, butler's pantry, cook's room, \&c.
Dwarf closets.-These vary. 1-inch deal, square framed and moulded in front to follow other doors. The top to have $1 \frac{1}{2}$-inch mahogany top. moulded in front, and 3 -inch skirtings. One shelf, same depth as closet. The doors to be hung (folding) with $2 \frac{1}{2}$-inch butte, a bolt inside, a brass knob outside, and tumbler locks.

2285h. Carpenter and Jonner.

Pipe casings, wrought and framed, to be provided where necessary, to hide lead aud other pipes of all descriptions the fronts to be made to unscrew for coming at the pipes when necessary.
Larder fittings.-Dresser top of clean deal, $1 \frac{1}{2}$ inch thick, 2 feet 6 inches wide, and . . . feet long, to be feather-tongued and fixed on strong framed legs and rails. Two meat rails, 6 feet long, of wrought fir, $3 \frac{1}{2}$ by 2 inches, suspended from wrought iron stirrups. A haaging shelf, 6 feet long, 10 inches wide, and $1 \frac{1}{4}$ inch thick, suspended from wrouglit iron stirrups.
Laundry.-To be fitted up with $1 \frac{1}{2}$-inch clean white deal washing troughs, wrought two sides, and splayed and put together with white lead (as shown on drawing). $1 \frac{1}{4}$-inch deal ironing looard, wrought both sides and clamped, hung with hinges to a proper hanging stile. Provide two clothes racks, hung with pulless and ropes to the ceiling to raise and lower the same.
Dust-hin. See Bricklayer.
Airis gutters to eaves should always be of zine, or iron for better use, not of wood.
Stable fittings, where the old class of work is required:-
Mangers, 9 c. -2 -inch deal bottoms and $1 \frac{1}{2}$-inch deal sides. Wrought oak mangerrails, 4 by 3 inches. Wrought, rebated, and rounded oak manger post, 6 by 4 inches, wrought and framed with bearers thereto. Oak heel-posts, wrought, 6 by 5 inches, and groove for partitions. Oak top rails, 5 by 4 inches, grooverl and rounded at the top. Oak bottom rails, wrought, 4 by 4 inches, gronved and arris romded off. $1 \frac{1}{2}$-inch deal partitions, wrought on both sides, ploughed, tongued, and beaded. $1 \frac{1}{4}$-inch deal rails on each side, board wide, and the arrises rounded off.
Fronts to hay-rucks.-Onk standard, 4 by 4 inches, wrought and framed into oak bearer under the manger. 1_{4}^{1}-inch deal fronts, framed for the reception of cast iron hay-racks, well secured. Fix fir bearers and 1 -inch deal partitions at each end of hay-racks, with fir arris rails 3 itches apart at the bottom of each rack.
Dressings over stalls connected with heel-posts. 1 -inch deal frieze, wrought joints. feather-tongued, and backings thereto, segmental sofites and keystone in centre of arches. Impust mouldings at the springings and moulded cornice to girt about 10 inches.
Line the walls to the height of 5 feet with 1 -ineh yellow dea', wrought, ploughed, tongued, and beaded, with a $\frac{5}{8}$-inch beaded capping thereon.
Stable fittings have now become an almost distinct trade.
Oak fencing. -The site to be enclosed with an English oak frnce, having oak posts
5 inches square, 6 (or more) feet long, the lower end tarred and fixed in the ground
2 feet, and wall ramined round with dry ballast or brick rublish, fixed 9 (or 10) feet apart, and framed with two tiers (or three) of oak arris rails secured with oak pegs. The whole covered with oak cleft $1^{\text {rales }} 4(5$, or 6$)$ feet high, nailed with galvanized iron nails. The bottom to be finished with $1 \frac{1}{2}$-inch oak plank 12 inches wide, tenonel to posts. The top of pales to be corered with inch oak capping 2 inches wide, secured with galvanized iron nails. Sometimes the fence frouting the public way is varnished, with two or more coats.
Tar.-Cuver the . . . with cne (or two) coats of good Stockholm tar.
Churches.-To give general directions for the specification of a church would be impossible. The principles of its timbering may be cullected from what has preceded. The old style of pewing, planned as drawings, of deal square-rramed partitions two panels high; $1 \frac{1}{2}$-inch framed doors and enclosures one or two panels high, with stiles, mumions, and top rails 3 inches wide, and bottom rails 6 inches wide. The panels of the doors and enclosures should not be more than a board in width, and the framework round them chamfered. The doors are hung with 3 -inch butt hinges, and should have l.rass knob pulpit latches. Capping to the whole of the pewing, groored and mouldtd according to drawing. New fittings are, $1 \frac{1}{2}$-inch wrought and rounded seats. 12 inches wide, with proper bearers and $1 \frac{1}{4}$-inch cut brackets not more than 3 fret apart. Seats rounded next the pew doors. Flap-seats in the galleries to have strong joints. All the pews to have $\frac{3}{4}$-inch book boards 6 imenes wide, with $\frac{1}{2}$-inch rounded capping bearers, and $\frac{1}{2}$-inch cut lrackets theremerer, not more than 2 feet 6 inches apart, and the ends rounded next the pew doors. If there le an organ, its enclosure would eorrespond with the pews, or be specially designed for it. Free seats of $1 \frac{1}{4}$-inch deal, as shown in the drtwings; the seats to be 11 inches wide, rounded in front; backs framed with stiles, munnions, and rails, $3 \frac{1}{2}$ inches wide, and the standards, ends, an lbarers, according to the drawings. Childienis seats to be of $1 \frac{1}{4}$-inch deal, with brackets same thickness, not more than 2 feet 6 inches

2285i. Carpheter and Joner.
apart; at least 8 inches wile, ard the flap seats, where they occur, to be hung with strong butts. Pulpits and reading desks are usually of $1 \frac{1}{4}$-inch deal, framed according to drawings, with 1_{1}^{1}-inch doors, hung with brass hinges and pulpit latches. Whole deal floors on bearers, 1 -inch book boards, cappings and bearers. 1 -inch clean deal or wainscot steps and risers, moulded returned nosings, $1 \frac{1}{4}$-inch, beaded, sunk and cut string boards, strong bracketed carriages. 1-inch square framed sofite under pulpit floor and stairs, mah gatyy or wainscot moulded handrail, with eaps turned and mitred; square bar balusters with one in ten of iron ; turned newels to block steps; seats of $1 \frac{1}{4}$-inch $d+a l, 13$ inehes wide, and proper bearers thereto, together with all appurtenances and requisite fittings for executing the drawings. This exploded manner of fitting up a place for religious worship is well delineated in T. L. Walker, Architectural Practi.e, 8ro., Lundon, 3rd edit., 1841. The details may be occasionally useful.
For more modern work may be specified:- The whole of the seating throughout to be forned as detail drawings, of good, well-seasoned English oak (or otherwise), to be wrought, chamfered, and stopped, or moulded and eut, as shown or required; to be carefully framed and put together. The licnch ends to be (at least) 3 inches thick, tenoned and pinned to the chamfered oak sill. The backs to have solid moulded oak capping. The seats to be $1 \frac{1}{4}$ inehes thick, and the book boards to le 2 inches thick (fixed flat or sloping), edges chamfered ; all to be well housed and cut into bench ends. Fix cut brackets, unt more than 4 feet apart, under the seats; and cut brackets, not more than 3 feet apart, under the book boards. All the seats to be kept clear of the piers (if any). See par. 2192a.
The carpenter and joiner is to provide and include all such joubing work, in following or precediag the other artificers engaged on the works ind their appurtenances, as may le requisite fur the completion thereof in every reapect.

Founder, Smith, and Ironmonger

2286. Cast iron girders and colunns. Reference mnst be had to Chap. I. Sect. X. (1628e et seq.), wherein will be found the method of determining their scantlings; all girders to be previously tested before fixing, by weighting at the foundry.
Cast iron cradles, when used for operings, must be described for the particular occasions as they oecur.
Chimney bars.- To kitchen chimney two wrought iron cradle bars, each 2 inches wide and $\frac{3}{4}$ inch thick, long enough to extend to the outside of the chimney jambs, and turned up and down (or cock-d down and up) at each end. The other openings to have each a wrought iron chimney bur 3 inckes wide and $\frac{1}{2}$ inch thick.
Straps, stirrup irons, nuts, bolts, screws, and washers, together with all other wrought iron work for the roofs and partitions, to be provided as may be requisite, and the smith is to deliver to and assist the carpenter in fixing or attaching the same. Where the quantity is uncertain, a given weight beyond the above general direction shou'd be provided in the contract, such part thereof as may not be wanted to be deducted from the accounts after the rate of . . per cwt. To provide for the carpenter's and joiner's works, and use, and fix thereto, all requisite spikes, nilils, screws, and other proper iromongery, and all requisite brass work, all to be of the very best quality.
Cramps of cast, and wrought, iron, or copper (pir. 2284d), as may lie directed, for the mason; the formpre to be used where the works are exposed to the air.
Wrought iron door for stroug room or opening in a party wall (it may le folding) to be of the best qualiry (name the manufacturer) with h'nges and proper fasteninge, of the ralue of . . . pounds, without fixing.
Cast irou sashes as necessary.
Wedgcs for underpinning must be described with reference to the shickness of walls they are to catch ; each pair must le at least as long as the wall is thick.
Balusters to a back stone staircase and landings. - Wronght iron balusters, $\frac{3}{4}$ inch square, with turned wrought iron newel equal to $1 \frac{1}{2}$ inch oiameter, with rounded haudrail of wrougl tiron $1 \frac{1}{2}$ by $\frac{1}{2}$ inch. The balusters and newel are to be riveted into the handrail at top, and at the bottom let into the stonework, and run wish lead.
Balusters to a principal stairease.-Ornamental cast iron talusters, as shown on the drawings, or to pattern by a manufacturer, with top rail of wrought iron $1_{4}^{\frac{1}{4}}$ by $\frac{1}{2}$ an ineh, let into and firmly screwed to the mahogany (or wainscot) handrail. The lalu ters and newels are to be riveted into the iron rail, and at the bottom they are to $b=$ let into tle top or side of the stonework, and run with lead.
Bahusters of wrought iron for strengthening the prineipal stairease when of wood. Every tenth baluster to be of wrought iron, well secured.
Knocker. - Provide and fix . . . iron, or brase, knocker for . . . door (specify a price).

2286a. Fuender, Smith, bnd Ironsonger.
Air bricks of cast iron, single or double, and fixed in the brickwork of the outside walls, fur the ventilation of the floors; also air gratings, . . . in number, 9 inches square.
Area grotings.-Of cast iron, with bars $1 \frac{1}{2}$ inch $b y \frac{3}{4}$ of an inch, and not more than $1 \frac{1}{2}$ inch apart. Frames $1 \frac{1}{2}$ inch by 1 inch, and with strong flanges to let into the surrounding strnework, and properly fixed.
Window gluards, of wrought iron to the windows of . . . , and . . . lars, to be 1 inch square and 4 inches apart, with framework of iron of the same substance, and let well into and securely fixed to the brickwork in cement.
Coal plates of cast iron, with proper fastenings, to be prorided to the coal shoot. Hayward's patent self-locking plate is one of the new patents.
Cast iron ornamental railing, to the windows, or to the balcony in front of the house, as the case may be, according to the drawings, or selected from a manufacturer.
Traps of cast iron, or stoneware, to all commurications of surface water with drains, to be of appropriate size, with all gully gratings that may be necessary.
Drains to roads or paths to be of unglazed earthenware pipes, in 2 -feet lengths, of a . . . inch bore, laid to a fall of . . . inches in each 100 feet into . . . , with all necessary bends, junctions, \&c. Iron gully trap or glazed stoneware trap, or traps, jointed as drains.
The Kitchener apparatus for cooking must be specially named ; aud in large mansions many modern conveuiences are required to be specified. The Carron Company have issued (1887) a book of appliances of rarions sizes.
Copper.-A copper, . . . inches diameter (or cubical quantity), of copper, or of galvanized iron, with all requisite bars and iron work.
Stable fittings.-No. . . . cast iron hay-racks, 3 feet wide and 2 feet high in the clear. $1 \frac{1}{4}$-inch round staves, about 3 inches apart, the frames $1 \frac{1}{4}$ by $\frac{3}{4}$ of an inch, with the arris rounded off next the staves. Fix two manger rings in each stall.
Cast iron coping to the walls of the dung-pit $\frac{7}{8}$ of an inch thick, and returned on each side 4 inches down at the least.
Cast iron gratings to stable yards are usually described as of the weight of 1 ewt .
Church and Chapel work. The founder's, smith's, and ironmonger's work is so dependent on the design, that no general instructions can be given.
Cast iron saddlc bais to the windows $\frac{5}{8}$ by $1 \frac{1}{4}$ inch (or $\frac{1}{2}$-inch square), 12 inehes longer than the clear width of each window, with lead lights, laid into and worked up with the brickwork, at the height shown on the drawings, to be fixed on an average 12 inches apart.
Each window to hare wrought iron framework for a hopper casement, to be fitted up complete, with patent lines, brass pulleys, and all other requisite appurtennces. Or the hoppers may rest on the sill, and be hinged next to it, so that when closed the exterior glazing may be flush, and to be fitted with opening racks and fastenings.
To outside of windows, where necessary, fix 1 -inch square stanchions, not more than 6 inches apart, with ornamental heads forged to drawing, let into (frames or) stone sill at bottom, and passed through saddle bars with mortises formed thereon.
For church windows with tracery heads, provide and build in across the springing of the arch of all windows of 3 lights and upwards, wrought iron bars 2 inches by $\frac{1}{2}$-inch, corked, and well torned up 2 feet trom jambs, on each side; these bars to be well galvanized, and fixed with play for expansion or strain, in notehes through the mullions.
All straps, bolts, nuts, and washers for the rarious roofs. Where visible, the straps are to be worked to detail drawings; and the washers and nuts to be notched and stamped as directed.
Wrought (or cast) iron vanes, crosses, ridge cresting. guards to areas, balconies, \&c., according to drawings; all to be securely fixed; the ranes and gable crosses to have stems as long as possible, and to be leadel into the stone or screwed to the roof timbers, as the case may be.
Ornamental wrought iron hinges, latches, key-p’ates, closing rings, \&e., on doors, all to be strictly worked according to detail drawings.
Ornamental grating of cast irou to paitern, to cover hot water pipe channels in floors.
Cast iron rain-water pipe.-To be $2 \frac{1}{2}, 3,3 \frac{1}{2}, 4,4 \frac{1}{2} .5$ or 6 inches diameter, fixed from the roof into the drain, with proper heal and shoe, ears or bands, \&c., complete.
Eaves gutter.-All overhanging eaves to have a 4 -inch east iron eares gutter, winh all necessary angle pieces, valley pans to internal angles, swau-necks, and socktt pipes cast on the gutter to lead into heads of rain-water pipes. The gutters to be fixed on strong wrought iron brackets serewed to the feet of the rafters, and the

2286 b. Folnder, Smith, and Ironnonger.
juints to be screwed tugether and bedded in red leal putty. Rectangular rainwater down pipes are frequently used, with ornamental ears or bands.
Newal!'s (or other) copper wire lightning conductor, with point, prop rly secured, to . . . (the highest portion of the building), and brought duwn with all requisite insalators; the end to be carried into the earth for a depth of 3 feet from the surface ; and all to be carrfully fixed. See par: $226+\%$.

Plasterer.

2287. Lath, pluster, float, and set all the ceilings, also the strings of staircases, and the quartered partitions on attic stories.
Render, float, and set all brickwork in attic stories.
All sides of the kitchen offices and office passages to be plastered with best floated rough stucco, lathed where requisite.
All the remainder of the sides of the interior throughout is io be executed with the very best floated stucco, lathed where requisite. Stnceo of offices (or office buildings, if any) to be finished with rough surfaces; all the rest of the stucco to be trowelled quite smosth.
All the arched, groined, panelled, and coffered work, and the bands and architraves, to be executed in gauged stuff, in the best and most accurate manner.
To run cornices in plaster round the several rooms, lobbies, passages, and other parts of the building, with enrichments thereto to be accurately modelled in accordance with the drawings (the enrichments may be of papier-mâché). An ornamented rose or flower to the centre of the ceiling of each room on the ground (and one-p itir) floor, securely fixed. Those of papier-mâché can be easily screwed to the ceiiing joists.
Skirtings to basement or ground story (or both) are to be run in cement round all the rooms, lobbies, passages, \&c., 10 inches high, $1 \frac{1}{4}$ inch thick, whited when soft, and finally washed of stone colour (or painted).
All necessary beuds, quirks, and arrises; all internal and external reveals to be stuccoel ; dubbing out where the work may require it, so as to bring out all extro thicknesses and projections; and counter-lathing the work over large timbers ant elsewhere, to be done as may be necessary. Enrishments to be carefully trimmed and finished off, and where heary leares or embossed work may require it, to be screwed with strong copper screws.
Lathing throughout to be lath-and-half heart of fir laths, free from sap.
If the walls of a church are to be plastered, the stone jambs to windows and doors are usually specified to project one inch beyond the face of wall, so as to form a stop for plaster, and afterwards cleaned off and left flush.
Lath for, and plas'er to, the spaces between the rafters (unless the boarding is intended to be left visible).
To stuces in the very best manner with cement, jointed to imitate masonry, the whole (or part, if such be the case) of the exterior of the building, with columns, pilasters, plinths, entablatures, strings, mouldings, labels, jambs, reveals, chimneys, chimney moulds, decorations, enrichments, and appurtenances of every kind. as shown on the drawings and profiles. Such work to be subject to further instructions from the architect; to be roughly coloured as each portion is executed, and finally coloured with weather-proof colouring, fixed with proper ingredients.
Decorative chimney pots, of cement, and of the value of . . . to be provided for each flue.
Pugging.-To fill in upon the sound boarding between the joists, where ss provided, with good lime and hair pugging mortar, laid throughout at least 1 inch in thickness. Par. 2247.
Roughcasting.-For the mode of describing this, see Plastering, Sect. IX. (2249.)
Martin's cement, if used for walls and partitions, is to be laid in Martin's coarse cement and clean washed dry sand, 1 of cement to $1 \frac{1}{2}$ of sand, floated and set with pure Martin's fine cement $\frac{1}{8}$ inch thick. A skirting to be 9 inches high, dubbed out with tiles in cement, and run as abore described, finished on the top with a . . . moulding, . . . inches in girt, mitrod at angles. Reveals to be run in pure Martin's fine cement. For floors, equal parts of coarse cement and sand, beaten down and keyed $\frac{3}{4}$ thick, and finished with a coat of pure Martin's cement, and brought to a fine surface.
Keene's patent cement.-Brickwork to be rendered with . . . cement and clean sharp sand, in proportion of 9 to 1, and to be laid and set with Keene's patent fine marble cement, highly polished. Paring to be formed of 3 inches of concrete, laid with Keene's patent coarse marble cement 1_{1}^{1} ins. thick. Skirting will be the s.tme as for Martin's cement.
l'arian cemont. - To be laid with co trse quality Parian coment and clean sharp sand in equal proportions, and set wi h fine white Parian, highly polished.
Portland cement. - Rendering to walls, in proportion of 1 of cement to 3 of clean sharp grey sand Dritw and jointed to form blocks (sta'e sizy). For rough wurk the proportion may be 1 of cement to 9 of sand.

Plember.

2288. The flats and gutters to be laid with milled lead of $6(7 \mathrm{or} 8)$ lbs. to the foot superficial. Where against walls, to be turned up 7 inches ; where against slopes, as rafters, to turn up 10 inches. Rolls not to exered 27 inches apart.
Flashings of milled lead to the walls of 4 (or 5) lbs. to the foot, to be worked in the wall, and to turn down over gutters and flats. Where flashings adjoin the slofes of a ro f, they should be described to be formed stepwise into the brickwork, and of an averago width of 12 inches.
Hips and ridges to be covered with milled lead 6 lbs. to the foot, and at least 18 inches wide, well secured with lear-headed nails.
Eaves gutterz-To put round the eares at the curb plate 4 -inch iron (or zinc) guttering, fixed complete with bands and brackets, wilh iron (or zinc) down pipes, . . . inches diameter, with neat heads and appropriate shoes, and let into the gutter, syphon trap, or drain.
To fix ... stasks of rain-water pipes (if to le of lead) from the gutters to the drains, of (5) inches bore, turned up from milled lead of 8 lbs. to the foot superficial, and sccurely fixed with ornamental cistern heads, as shall be approsed ly the architect, and 2 -inch strong overflow discharging pipes. Similar description for conveying water from the roof or flat of a porticu.
lioses pierced with holes of sufficient size to be provided of $10-\mathrm{ll}$. lead to rain-water cesspools, and pipe heads.
No pipes but of lead or zine should be usel against stone buildings. Cist iron pipes should only be used to offices.
Domes should be corered with lead from 6 to 8 lbs . to the foot superficial, according to their size, and must be well secured with proper seams or rolls thereto.
Tops and sides of dormers to be corered with $6-1 \mathrm{lb}$. milled lead, turned down all round full 8 inches. A flashing of $5 \cdot \mathrm{lb}$. milled lead, 30 inches wide, to be fixed over the sill of the dormer door or window, as the case may be.
Aprons of 6-llo. milled lead, and 10 inches wide, should be described to sky-lights.
Eirternal mouldings of wood may be covered with 6-lb. milled lead, to turn up 6 inches, and to have thashings of $4-\mathrm{lb}$. milled lead let into the brickwork, and to be turned down 5 inches.
In London, it is usual to specify that the water supply should be laid on fur the service of the house in following manner (regulating cisterus are required by some companies) :-Lay on water from the main of the Company with :3-inch strong east lead pipe to the cistern of the upper water-closet, with ball-cock complete. Similarly to lower water-closet and to such other cisterns as are provided, with ball-cocks, \&c. complete, and to pay all official fees.
Line the sink in the scullery, and in the butler's pantry (and other small ones, if any) with 6 -lb. milled lead, and fix thereto a 2 -inch waste pipe, with brass bell trap complete, to be carried outside on to cr under a grating, and so into the drains. (Another to each for hot water.)
Line the kitchen cistern with milled lead, bottom 9 lbs. and sides 6 lbs. to the fout, with all soldering thereto. To proride to the same a $1 \frac{1}{4}$-ineh waste pipe. Line the kitchen sink with lead of 8 lbs . to the foot, to turn well orer the woodwork and to have a 2 -inch strong waste pipe to lead into tho drain, with brass bell grate complete. A $\frac{3}{4}$ inch service pipe and brass cock t, be provided from the cistern for supplying water to the sink. (Another for hot water).
Water-closets to be constructed and fitted up in every respect complete, with . . . basin, and the very best patent valve apparatus. Soil pipe of $4 \frac{1}{2}$-inch bore out of 8-lb. lead, to lead into drain with strong. . . trap; lead service box, 10 inches by 7 , and 6 inches deep, of $10-\mathrm{lb}$. milled lead; 5 -lb. lead safe under pan, with 2-inch swan-necked waste pipe. 1 -inch supply pipe to the basin, and all other pipes, wires, cranks, handles, and other proper fitments. The cistern is to be lined, bottom with $8-\mathrm{lb}$. cast lead, and sides with $5-\mathrm{lb}$. milled lead. $1 \frac{1}{4}-\mathrm{inch}$ waste pipe, to be carried outsile, with washer and waste complete. (See par. 2220 for modern contrivances).
Inferior water-closets to he provided with stoneware syphon pan, with water laid on, and in all respects to be fitted complete, to modern requirements.

2:88a. Plumber.
Provide all stench-traps, syphon-traps, and other similar contrivances as may be named, where the pipes are to communicate with the drains.
Cold bath.-A . . . feet . . . inches bath, if of copper of 16 ounces to the foot superficial, tinned on the inside, and painted in japan to imitate marble, or as may be directed. Lay on the water with st:ong $1 \frac{1}{4}$-inch lead pipe, with briss cock, and fix $2 \frac{1}{2}$-inch strong lead waste pipe, with brass washer and plug, thereto.
If the hot bath be not of marble (as before statel, see Miason), the following clauses will describe the several positions and varieties of the boilers by which a supply of hot water is oltained in the present day:-
I. Provide a Tylor and Sons' 5 feet 2 inch taper oral-end copper (or galvanized tioner iron) bath, white marbled inside, with coppor pipes, mounted in wood cradle. with $1 \frac{1}{4}$-inch deal framing, panelled, with French polished IIonduras mahogany top. Three of Tylf.r and Sons' inch roundway bath taps. S. B.. with socket keys and handsome levers, hot, cold, waste. A 'Tylor and Sons' patent bath boiler, with stove front to fit opening of fireplace, with dors and damper (no setting required). Inch lead pipe from cold water cistern to boiler, $\frac{3}{4}$-inch lead pipe to relieve boiler up to and turned orer top of cistern (or any convenient outl-t). Inch lead pipe for hot, cold, waste, and overflow pipes to bath. Lead safe with waste moder cocks, and leave the work perfect ; as estimated, at $397.0 s .9 d$, exclusive of carringe and any bricklayer's, plasterer's, or carpenter's work, cutting away for pipes and making good, fixing bath framing, and graining and varuishing it. A gilsanized tinned iron bath is $6 l$. less.
II. Tylor and Sons' 22 -gallon copper chimney boiler, with wrought iron band, with bolis and nuts to carry ditto, and stove front to fill up opening in fireplace, with sliding blower, revolving damper, soot door, and bars; as estimated, at $38 l$. 0 s. 9 d .
III. Tylor and Sons' copper saddle boiler with unions, a stove front to sult ditte, with sliding blower, revolving damper, so t door, and bars. A galvanized wrought irou cistern, close top, with manhole serewed down, to be fixed with two lines of inch wrought iron pipe from boiler to het cistern. inch ditto to supply cold water to hot cistern, $\frac{3}{4}$-inch ditto to ruliere hot cistern, inch hot, cold, waste, and overflow pipes to bath, \&c.; as estimated, at 47l. $4 s .3 d$.
IV. Provide a 5 -feet (larger or smaller, as deemed necessary) strorg lest make improved kitchen range, with strong wrought iron back boiler with close top, wrought iron oven, and line fireplace with panelled covings. A galranized wrought iron hot water eistern, \&c. ; as es'imated, at 61l. $3 s .9 d$.
V. The range fitted with two boilers, one for the bath, the other for domestic use; where a fire is kept sufficiently large to work two boilers, they are recommended. Estimate 4l. extra to No. IV.
VI. A range with partially closed fire instead of one with open fire. 4l. $15 s$. extra to No. IV.
VII. Tylor and Sons' 22 -gallon copper dome-top boiler, with f rnare iron work, doors, bars, and damper, and continue as No.I. This boiler may be fixed in the basement, and will supply a hot bath in any apartment below the level of the cold water cistern. As estimated, 43l. 15s. 3 d .
Note. In I., the bath and boiler may be fixed in the sime or separate apartments ; open or close fire at pleasure. All the estimates are framed presuming on in cold water cistern and a rain-water pipe, or a drain, being within 10 feet of the room. In III., the hot water eistem is placel over the fireplace in the room. In IV., the hot cistern is supposed to be 25 feet above the boiler. In VII., the cold cistern is supposed to be 25 feet abore boiler. The waste pipe from the bath to the drain should always have as great a fall as possible and never be laid to so small a fall as allowed by placing it within the depth of the floor.

Common pumps are generally described as 3 -inch pumps, with neat cast iron cases, fixed complete, with proper lead suction pipe to bring sufficient supply of water from well into the cistern, and all other appurtenances. The manufacturer's stock to be seen if others be required. Where water is not laid on, as in London, fix a $3 \frac{1}{2}$-inch lifting engine pump, with brass barrel ; and provide from the well. feet of $1 \frac{1}{2}$-inch strong suction pipe; with service pipes to the cisterns, and all cocks and joints that may be necessary.
Provide all copper and zinc nails that may be wiluted fur laying the metal works.
Provide in the contract . . . cwt. extra of milled (or other) lead, including labour and all proper materials as may be wanted and directed by the architect; and if the same or any part thereof should not be used, a deduction to be made for the same on making up the accounts, after the rate of . . . per cwt. for such portion thereof as shall not have bcen used.

GLazirl?

2289. All the windows to be glazed with best crown glass ; the offiecs with second crown glass. To glaze all the front windows with best sheet glass; or with best Hattened sheet ; or with patent plate; or with British plate ; as the case may be, and accordirg to the wtight srecified. For varieties of glass, and glass for other purposes, see Chap. II. Sect. XII., par. 1870 et siq. The architect of en names the manuactory or firm from which the glass is to be procured, to ensure the proper quality being supplied.
All the glazing is to be properly bedded, stoppod in, sprigged, and back-puttied, the convex side out wards (of crown and sheet glass), to be free from specks, blisters, or other blemish ; and to be left whole and clean, on the works being rendered up as complete.
Glaze all the windows (of the church) and tracery heads (if any) with quarries and borders in strong church lead $\frac{3}{8}$ inch wide. The lead to be secured to the saddle lars and stanchions with strong, copper wire, soldered to lead, and securely t wisted round the saddle; the glazing to be properly cemented, to be let into the grooves of stonework, and neatly pointed with lime and stone dust.
The glass to be Powell's quarries, or Hartley's patent rough cathedral glass, $\frac{1}{8}$ inch thick. The quarries to be of one tint, and the borders of another tint (as fur instance, green and yellow).
Slylights and windows, in exposed situations, where much light is not required, may be glazed with Hartlcy's rough plate glass, $\frac{1}{4}$ inch thick, or less.
Water-closet and similar windows (where privacy is desired), with Hartley's patent rough plate glass, $\frac{1}{8}$ inch thick ; with fluted glass; or with diapered; or with embossed glass.
Enumerate any windows to be glazed with ribbed, enamelled, embossed, or stained g!ass.
Provision to be made in window sills and skylights (where practicable) for conreying condensed water to the exterior of the building.

Painter.

2290. Knot (with silver leaf in best work), pumice down, and smooth, stop, and otherwise properly prepare all the wood and other works intended to be painted.
Paint four times (or till they bear out), with the best oil and colour, all the internal and external wood and iron works, all the stueco, and all other works that are usually painted. The plain painting to be of tints of brown, drab, or stone colour, as may be directed.
The walls of the prineipal staircase, lobbies, and entrance-hall are to be carefully executed imitations of marbles, as directed by the architect, jointed like masonry, in blocks of sizes as directed, and twice varnished with the best copal.
The doors, shutters, dadoes, skirtings, boxings, architra ves, and other dressings on the ground and one-pair floors (and others, if required), are to be grained in addition wainscot (or other wood, as may be specified), in an artist-like manner, and sized and varnished twice with best copal varnish.
Some of the mouldings of doors and shutters may be gilt.
All the wrought woodwork (except the floors, and the work executed in oak) to be stained with . . . stain, once coated with linseed oil, and twice varnished with the best copal varnish. Or, if the deal has been picked, it may be left plain, and only varnished. Or, if selected with much care, the deal and pine may be polished. Inside oak work is best left to obtain an effect by use, but where immediately desirable, it may be once or twice oiled.
Pick out the ornamental ironwork on doors, roofs, screens, \&c., in black or dark blue. A pattern or diaper is sometimes done in gold leaf upon it.
'To flat extra, of such tints as may be directed, all the rest of the stucco work and wood work on the priacipal and one-pair floors.
Distemper the ceilings (or as follows):-
The ceilings and cornices on ground and one-pair floor to be painted four times in oil, and flatted and picked in with such extra colours as may be directed.
The ceilings (and perhaps the cornices and centre flowers also) on the two principal floors to be distempered. All the rest of the ceilings, strings, and mouldings are to be whitened.
The sides of the rooms in the attic (as the case may be) story, as well as the lobbies, closets, palssages, \&c., are to be finished of such tints as the architect may direct.
Stables and coach-house walls, larders, and sculleries, cellars, including vaulting under sides of floors where open, to be lime-whited.

2290c: Painter.
Sashes to be finished on the ontside of . . . collour.
To a church: Stop with coloured stopping, twiee oil with linseed oil, and twice varnish with best copal varnish, the exterior doors and frames.
Stop with stained stopping, and knot with coloured knotting, the wrought woodwork of roofs; brush the whele twice with boiled oil, and once rarnish the same. Pick out the chamfers and mouldings in roofs with vermilion, cobalt blue, chocolate, pale yellow, and white, in two oils, and stencil patterns thereon, aecording to drawing.
Deal seats, or benches, are to be knotted with stained knotting, stained with stain (approved by the architeet), and twice varnished with tackless varnish.
To l'rench polish in the best manner the handrail of the staircase, the mahogany work of the bath and water-eloset, and other parts (if any).
All paint and rarnish to be of the best quality; sizing and mineral turpectine will not we allowed.

Paperilanger.

2291. To prepare and bring to a proper face all the walls and surfaces intended for papering. All the papers are to be approved by the architect, or by his client.
To hang with figured paper, ralue . . . per yard (or per piece) the rooms (to be described) on the . . . floor, with borders (as may be desired).
The remainder of the rooms to be hung with paper, . . . per yard (with or without borders).
Where satin paper is to be put up, or any of the more expensire descriptions, then to underline (or line the walls) with lining paper, joints rubbed down, and hang with ... paper of : . shillings per piece, the rooms on the . . . floor. Borders also, if thought desirable, must be specified.
The entrance passage or hall, staircase, and landings, up to . . . to be papered with Siena marble (or other) paper, ralue . . . per yard, hung in blocks, or hung horizontally and lined to size blocks with brown lines (or black pencil), twice sized, and rarnished (once or twice) with best copal.
A $\frac{3}{4}$-inch gilt . . . moulding to be fixed with needle points round the dressings, and along the top and bottom of the . . . room (or rooms).

Bellhanger.

2292. Bells to be put from the following places . . . to the several positions marked for them. A 14-oz. bell and . . . oz. copper wire, brass cranks, and . . . spring lever and rose.
The pulls in the principal rooms to be bronze or iron lever pulls of mediæral character, and rery strong ; the wire of strong copper ; the cranks to be best horn cranks. Floor boards over bell wires to be screwed (not nailed) down, for ready removel.
l'ut $\frac{3}{4}$-inch zinc tubing for the concealment and casing of the wires to the belis, secured by round fine galvanized iron hooks. The bells to be hing and furnished with strong brass T-plate back and spring lever carriages. To be hung on a $\frac{3}{4}$-inch wrought and beaded deal board, secured to wood bricks (or strong wedges) by serews.
The front (and side) entrance door (or yard, or gate) to have bold pendant medieval wrought iron pull, according to detail drawing, or to be selected.
It is usual to mark the place, both up and down stairs, where the bells are to be hung. Where many bells are fixed together on a bell board they are sometines described to be so tuned as to form a misical scale. They are also to be numbered; sometimes the names of the several rooms from whence the bells are pulled are painted on the board under the bell.
The electric, and the pneumatic, bell system will somewhat depend on the patentee selected. The following specification for a twelve-roomed house is taken from Henry F. Joel and Company's Illustrated Catalogue, No. 3 :-
To providing and fitting the following system of bells :-
Ground floor. Front entrance. One ornamental Lironze pull, marked "Visitors," fixed ly the side of the door, to ring and indicate in kitchen.
Tradesmen's entrance. One plain bronzed pull, fixed by side of the door, to ring on a separate bell in kitchen.
Dining-room. Two black and gold porcelain pushes (or walnut wood), fixed one on each side of the fireplace, to ring and indicate in kitchen.
Drawing-room. Two ivory and gold pattern porcelain pushes (or polished brass), ditto, ditto.
Library. Two black and gold line porcelain pushes (or oak wood), ditto, ditto.
Hall. One black and gold line porcelain push (or oak wood) to ring on "Call" bell in (or outside) the serrants' bedroom. Also one 3 -way pneumatic

2292a. Bellhanger.
switch to change the front entrance bell at night, so as to ring on "Call" bell in (or catside) the servants' bedroom.
First floor. Best bedroom. One bed-head pull, fixed ly the side of the bed, t. ring and indicate in the kitchen. One bed-head pull, fixed on the other side of the bed, to ring a "Chattering call" bell in servants' bedroom (same bell as used for the hall).
Dressing-room. One irory and gold line porcelain push, fixed by the side of the fireplace (or by the side of the door), to ring and indicate in the kitchen.
${ }^{-T w o}$ other bedrooms. In each room, one plain ivory porcelain push, fixed by the side of the fireplace, to ring and indicate in kitchen.
Bath-room. One plain ivory porcelain push, to ring and indicate in kitchen.
Second floor. Two bedrooms. One plain irory porcelain push in each, to ring and indicate in kitehen.
In all eighteen be!ls, the switch being taken as one lell.

Gasfittra.

2293. The gas to be laid on from the . . company's main to the . . . with $\frac{1}{8}$ (or to 3) inch patent strong galvanized wrought iron welded tubing of the . . . diameter, jointed in iron crment, with all necessary bends, elbows, tees, crosses, junctions, stopped ends, diminishing sockets, and nipples, and other necessary joints for the rendering of the whole perfect and complete. The whole to be secured by iron barrel clips or hooks, as the case may require, secured by strong screws. The gas tubing to be stent $\frac{1}{4}\left(\frac{3}{8}, \frac{1}{2}\right.$, or $\left.\frac{3}{4}\right)$ inch composition pipes, soldered at joints and secured by fine hooks, furnished with the requisite galranized iren (or brass) bends, \&c., jointed in iron cement. This tubing is often laid in iron.
stop cock to be supplied. A meter of . . . value to be provided and fixed on 1-inch wrought clean deal shelf, supported on a pair of plain iron brackets (or one of cut deal).
Gasaliers, pendants, hall lamp, standard, brackets, sun-light, and such like, must depend on the client and the manufacturers.
Each of the principal rooms to have a peadant coronia (or other gasalier) of . . . lights, value . . s. each, fitted with balance weights and a ball and socket joint (or fitted with the patent balance around the pipe). Bronzed (or brass) bracket burners (swing or armed) in passages (or where else required), value . . s. each, complete, to approval.
Church lights are of (wrought iron, brenze, or) brass standards, coronæ, brackets, \&c., according to their situations, for gas or for candles (specify ralue of each).
All lights to be fitted with argand, fivh-tail, batswing (or other burners. Ground glass, or figured glass globes, where stated, are sometimes included by the architect. For other details sce pir. 2264 a et seq.

Zinc-morker.

2294. Roofs and flats.-To be laid with No. . . . or . . . oz. malleable Vieille Montagne (or other) zine, with 6 in . laps and $1 \frac{1}{2}$-uch rolls, turned up 5 inches all round against walls and lights, finished with flashings 6 inches wide, inserted 1 inch into joint of the brickwork, and secured by galranized iron wall hooks. Cesspools to be formed at the head of rain-water pipes, and the zinc lappel over. The whole to be laid with slotted fastenings lapped and soldered at angles. The trap to be corered, lapied ever edge, soldered at joints, and secured by zine nails. Or-the flats to be corered by "Braby," London, with their No. g.uge V.M. roofing zine, square roll caps, and patent holding-down clips. All ridge plates and stopped ends are to he formed in the solid metal, not grooved in. Stretching of sheets, or soldering, to form stop ends must be particuiarly avoided.
Guiters to be laid with No. . . . or . . . oz. malleable zinc, with 6 -inch laps at drips, turned up under slates for 11 inches on each side and 5 inches against the walls, finished with fashings 6 inches wide, inserted 1 inch into the wall, and secured ly galvanized iron holdfasts. Cesspools to be formed, \&c., as above described.
Eaves gutter.--To be of 2 (to 5) inch, No. . . . or . . . oz. zinc, fixed upon galranized iron brackets, furnished with nozzle pieces, cut splash boards, and angles, and to be soldered at the jeints. Care to be taken that one end shall be left free to allow the whole to expand and contract.
Ruin-water pipe.-To be of 2 (to 5) inch, No. . . or . . . oz. zinc, with square heads, fixed with socket joints and $4 \frac{1}{2}$-inch strong galvanized iron nails, with the plates turned over.
Lining to cistern.-To be of No. . . . or . . . oz. malleable zinc, lapped 2 inches at joints and angles and turned down orer clge, sceured by strong zinc nails 4 incbes apart, and to be sollered at angles.

2294a. Zinc-worker.
Chimney cowls, rentilating shafts, louver ventilator, perforated zinc, skylight frames, fanlights, \&e. For other details see par. 2224g.

2294b. The following proposed Sanitary Specification for a Suburban Villa, by "Hygiene," published in the Journal of the Clerks of Works Association, for November 1884, is deemed of sufficient importance to be here reprinted as a guide:-

Dig trenches the required depths for all drains as shown on plan; fill in after the drains are laid, and well consolidate the same. Where the drains cross the newlymade ground they must be bedded on a layer of Portland cement concrete 6 inche; thick. the bottom of the trench being preriously well rammed. Cart away any superfluous earth.
The pipes are to be the best salt-glazed socketed drain pipes, free from fire flaws or orher defects, straight, and well burnt. No square junctions will be allowed. All drain pipes to be jointed in neat Portland cement, and carefully wiped inside.
Every ficility must be afforded to the architect, or his representative, for inspection during the laying of the pipes. The drains are to be tested in lengths as the work proce eds, in any manner the architect may approve. The builder must procure an intelligent bricklayer, or other man to le approved by the architect, to lay the drains and build the inspection chamber.
Lay in the soil pipes in positions as shown in red lines on plan, with a continuous and even fall of not less than 2 inches in 10 feet. All soil pipes are to be 6 inches diameter, and waste pipe branches, \&c., 4 inches, as shown.
Pay all fees to local board for comnections to sower, and provide and fix a 6 -inch galvanized iron flap pipe for inlet to same.
Fix one of Doulton's No. 39 (see list) or other approved interceptor trap just within the boundary fence, in position as marked on plan; carry up from same a 6 -inch diameter vertical pipe, provide and fix a 4 -inch junction in the tirst length abore trap; seal the top of pipe and cover over 6 inches below tha ground line with 12 inch by 12 iuch by $2 \frac{1}{2}$ inch York stone.
Carry 4 -inch pipes from junction to a convenient p'ace behitd the shrubbery; bring to surface with an easy bend, fix on top a 4 -inch square junction pipe, the top to be about 12 inches above the ground. Seal the top with a di c plate, and provide and fix a galvanized iron grating in the junction opening.
Build inspcction chamber, as shown, near to the corner of house, with Portland cement concrete bottom, well-burnt stock bricks, and Portland cement sides. Provide a ch:nnel pipe and a curved junction channel pipe, and fix in chamber as shown; furm sloping sides with concrete, and finish with neat Portland cement perfectly smooth, and to the required form. Cover over the top with $2 \frac{1}{2}$-inch York stone cover, 4 inches under ground.
Provide and fix in yard $11 \frac{1}{2}$-inch square trapped gully and dished iron grating, with two 4 -inch inlets and 6 -inch outlets (prime cost 78 , , see tig. 19, Doulton's list). Contimue drain to inspection chamber, and connect through the side of chamber abore the sloping sides.
Continue from the inlets to gully 4 -inch branch drains to the two rain-water stack pipes, and finish with an easy bend to receive the rain-a ater pipe.
Proride and fix an 8 -inch by 8 -inch trapped gally, withinlet on two sides for bath and laratory wastes, and connect from gully to soil drain, as shown.
Continue the 6 -inch seil drain from inspection clamber to side of house, as shown; insert a junction, and put an easy bend at end of each branch to receive the soil pipes from the water-closets.
Proride and fix Weaver's or other approved grease trap (prime cest 25s) outside scullery wall, to take waste from sink, and continue to the drain with 4 -inch pipes.
Proride and fix in yard at the front of coach-house a $11 \frac{1}{3}$. inch square trapped gully, as before described, comect drains from stables, and connect, as shown, to inspection chamber.
Provide and fix 8 -inch by 8 -inch trapped gully at foot of rici-water pipe in front of nouse, and continue a 4-inch drain to soil drain.
Nute.-If local board will not allow storm-water in the soil drain, a 6 . inch stormwater drain must be laid to take all rain-water from roofs and surface of ground.
Connect with a 4 -inch branch from rain-water pipe at end of stable, and to join the c-inch drain from stable just below the gully. This drain must not have any trap in it, as it is required to ventilate this branch.
If any deviation be made from the course marked on the drain plan, the same must be carefully noted and marked on the plan, and then returned to the architect's office.
Internal Fittings.-Provide and fix in best water-closet, first floor, one of Jennings's ornamental Queen's ware combination "Pedestal" closets, automatic flushing tank,
ormamental chain and handle, and a mahogany circular hinged flap seat. Prime cost ralue, $7 / .7 s$. , exclusive of fixing. (These closets do not require any enclusure.)
Provide and fix in lower water-closet one of Donlton's stoneware (ornamental) combination closets, and all as before specified for fittings to first fllor (prime cost, 4/. 9 s .8 d , exclusive of fixing).
The soil pipe trom water-closet, first floor, is to be 4 -inch lead pipe, and to pass through and down the face of external wall, and to connect to branch of soil drain. The soil pipe from the lower water-closet to be as last described, and connect to the branch of soil drain provided for same. Continue the lead soil pipe from first Hloor water-closet to 8 feet above the eaves to roof, the full size of t inches. Put a fixed cone on top.
Provide and fix a 3 -inch lead waste-pipe from bath through wall and into a 3 -inel cast iron pipe down face of wall, and connect to gully provided for same.
I'rovide and fix a lavatory cabinet-stand complete (No. 21, Doulton's list, prime cost, $\because 2.2 s$.) ; carry a 2 -inch lead waste pipe, and connect to gully prorided for same; fix under this laratory a Beard and Dent's 2-ineh trap and inspection cap. Lay on water from the down service pipe with a $\frac{3}{4}$-inch branch pipe and a $\frac{1}{2}$-inch silver-plated urn tap.
Provide and fix in maids' water-closet, and also in man servants' water-closet. one of Doulton's Lambe'h flush-out closets, with syphon flushing cistern, handle and chain, all complete.
Connect the flushing cisterns throughout with $\frac{1}{2}$-inch stout lead pipe, and from cistern to water-closets with $1 \frac{1}{2}$-inch lead pipe.
Provide and fix in scullery a Doulton's vitrified buff-glazed stoneware sink, best quality, size 3 ft .6 in . by 2 ft . (prime cost value, 1 l .) ; provide and fix a $2-\mathrm{in}$. eartlenware waste pipe, and connect to grease trap outside scullery wall. (Housemaid's slop sinks are not required, the combination closets being available for slops.)
The work must be thoroughly well done ; the best materials are to be used ; and all to be finished to the entire satisfaction of the architect or his representative.

Sect. NYI.

MEASURING AND Estimating.

2295. The practice of measuring is dependent on rules already given under Mensuration, in Sect. VI. Chap. I. of this book (1212 et seq.), in which are described the methods of ascertaining the superficial and solid contents of any figure. The application of them to architecture, in the practice of measuring and estimating the different parts of a building, forms the subject of this section.
2296. For the purposes of measuring, a 10 -feet rod, and a pair of 5 -feet rods, all divided into feet, inches, and half-inches, and a 2 -feet rule divided into inches and eighths and twelfths or tenths of inches, are required. If a tape, say of 50,66 , or 100 feet, we used, it should be carefully checked by a standard, and by the 10 -feet rod.

2297 . The mode of "squaring dimensions," as usually practised by duodecimals, will be now explained. They are a series of denominations beginning with feet, and then inches and parts of an ineh; they form a series of fractions. Feet and inches are marked with their initial letters, but twelfths, or tenths, or seconds by a double accent, thus $2^{\prime \prime}$.
$2297 a$. To multiply duodecimals together, write down the two dimensions to be multiplied in such a way that the place of feet may stand under the last place of the multiplicand ; begin with the right-hand denomination of the multiplier, and multiply it by every denomination of the multiplicand, throwing the twelve out of every product, and carrying as many units as there are twelves to the next. Placing the remainders, if any, under the multiplier, so that the like parts in the product may be under like parts of the multiplicand; proceed with every successire figure of the multiplier towards the left, in the same manner, always placing the first figure of the product under the multiplier. Then the sum of these partial products will be the whole product. In duodecimals there will be as many deneminations below feet as in both the factors taken together.

Example 1.-Multiply 7 ft .5 in . by 3 ft . 4 in.

$$
\begin{gathered}
7: 5 \\
\frac{3: 4}{2: 5: 8} \\
\hline 22: 3 \\
\hline 24: 8: 8
\end{gathered}
$$

Example 2.-Multiply $24 \mathrm{ft} .8 \mathrm{in} .8^{\prime}$ by 3 ft .7 in.

$24: 8: 8^{\prime}$
$3: 7$
$14: 5: 0: 8$
$74: 2: 0$
$88: 7: 0: 8$

2297b. In example I. there is only one place of duodecimals in each factor; there are therefure two places in the product. In the scoond example there are two places of duodecimals in the multiplicand and one in the multiplier, which make, together, three; there are therefore three denominations in the product. This method of placing the denominations of the factors gives the correct places of the product at once; since like parts of the product stand under like parts of the multiplicand. It also shows the affinity between duodecimals, decimals, and every series or scale of denominations whereof any number divided by the radix of the scale makes one of the next towards the left hand. The consideration is, moreover, useful in discovering readily the kind of product arising from the multiplication of any two single denominations together.
$2297 c$. When the number of feet runs rery high in the factors, it will be better to write down the product of each multiplication, without casting out the twelve, and add together those of each denomination leginning on the right, and divide by 12 , to carry to the next higher place, then add these, and $: 0$ on, as often as there are places in the whole product.

Example.-Multiply 262 ft . $5 \mathrm{in} .1 \mathrm{y} 54 \mathrm{ft} 8 \mathrm{in}$. 262 : 5

	$51: 8$
	2099 : 4
1048	: 20
13100	250
197	$=2369$
	12
14345	

Thus, under inches, the products being set down and added, they amount to 2369 , which, divided by twelve, gives 197 to carry to the place of feet, and 5 remainder. Then adding the feet together with the quantity carried, it gives the whole number of feet; while the operation is extremely simple and free from the troubles of either side operations or useless stress on the memory.

2297d. The division of the foot into 12 parts renders the application of the rules of practice very valuable in the computation of duodecimals. The rractical rule is to set down the two dimensions one under the other, that is, feet under feet and inches under inches, and multiply each term in the multiplicand by the feet in the multiplier, beginuing at the lowtst; and, if the numbers be large, put down the inches without carrying 1 for every 12 from inches to feet. Then, instead of multiplying by the inches, take such aliquot parts of the multiplicand as the inches are of a foot; after which ard the lines tagether, carrying 1 for every 12 inches.

Example I.-Multiply 7 ft .5 in. by 3 ft .4 in . $4 \mathrm{in} .=\frac{1}{3} \quad 7: 5$	Example 2.-Multiply 262 ft , i^{2} in. $8=\frac{2}{3} \quad \text { by } 54 \mathrm{ft} .8 \text { in. }$
$\begin{array}{ll} 4 \mathrm{in} .=\frac{1}{3} & 7: 5 \\ & 3: 4 \end{array}$	$\begin{array}{lrl} 8=\frac{2}{3} & 262: & 5 \\ & 54 & 8 \end{array}$
22:3	1048:270
2:5:8	1310
$24: 8: 8$	87: $5: 8$
	$\overline{23=\frac{281}{12}}: 4$
	$\overline{14345: 504}$

Example I. -Multiply 7 ft .5 in.
$4 \mathrm{in} .=\frac{1}{3} \quad 7: i$
3:4
2: : 3
$24: 8: 8$

Example 2.-Multiply 262 ft . $\mathrm{J}_{\mathrm{in}} \mathrm{in}$.

The same examples have been used to show the relative advantages of the two methods.
2297c. Thus far we hare treated of the squaring of dimensions to obtain the superficies of work. To learn the solidity of certain materials, such as timber, stone, and some others, the dimensions have to be cubed. The process is similar to the above, and is continued a further step. One example will suffice to explain the method, and we will take the figures given in the arove system.

Example. What is the cube of a block of stone, 7 ft .5 in. wide, 3 ft .4 in . thick, and 12 ft . long?

: 5	2297 f . The abridgment of the labours of practical men is
3:4	always a matter of importance-being identical with the saring
	of time which is lost in calculation, and which with the are
2:5:8	tect is of the utmost importance, when it is recollected wh
	muhifarions duties he has to discharge. Hence the following table of squares, cubes, and roots of numbers, up to 1000 , will
$24: 8: 8$ super. 12	table of squares, cubes, and roots of numbers, up to 1000 , will be most acceptable to him. The first column of the Table shows
8:0	
the	the fifth its cube root. Thus loukira to the
first column,	re is found to be 3721 , its cube 226981 , i's square root
	$3 \cdot 936497$. Again, taking the

N	Square.	Cube.	Square Root.	Cube Root.	No.	Square.	Cube.	Square Root.	Cube İoct.
1	1	1	1.0	0	6.1	4096	202141	$8 \because$	40
2	4	8	$1 \cdot 4142136$	1-259921	$6: 5$	4225	274625	$8 \cdot 0622.577$	-020726
3	9	27	$1 \cdot 7320508$	$1 \cdot 442250$	66	4356	287496	8-1240384	-041240
4	16	64	2%	1-587401	67	4489	300763	8-1853528	$4 \cdot 061548$
5	25	125	$2 \cdot 2360680$	1-709976	68	4624	314432	8-2462113	$4 \cdot 081656$
6	36	216	$2 \cdot 4494897$	$1 \cdot 817121$	69	4761	328509	3-306623'	4.101566
7	49	343	$2 \cdot 6457513$	$1 \cdot 912933$	70	4900	343000	$3 \cdot 3666003$	4-121285
8.	64	512	$2 \cdot 8284271$	$2 \cdot 0$	71	5041	357911	8.4251498	4.140818
9	81	729	$3 \cdot 0$	$\underline{9} \cdot 080084$	72	5184	373248	$8 \cdot 4852814$	4-160168
10	100	1000	$3 \cdot 1622777$	$2 \cdot 154435$	73	5329	389017	$8 \cdot 5440037$	$4 \cdot 179339$
11	121	1331	3-3166248	$2 \cdot 223980$	74	5476	405294	$8 \cdot 6023253$	$4 \cdot 198336$
12	144	1728	$3 \cdot 4641016$	2.289428	75	5625	421875	$8 \cdot 6602.540$	-21716:3
13	169	2197	$3 \cdot 6055513$	$2 \cdot 351335$	76	5776	438976	8-7177979	4-235824
14	196	2744	$\bigcirc \cdot 7416574$	$2 \cdot 410142$	77	5929	456533	8-7749644	4-254321
15	225	3375	$3 \cdot 8729833$	$2 \cdot 466212$	78	6084	474552	$8 \cdot 8317609$	$4 \cdot 272659$
16	256	4096	$4 \cdot 0$	2.519842	79	62.41	493039	8-8881944	$4-290841$
17	289	4913	4-1231056	2.571282	80	6400	512000	$8 \cdot 94+2719$	-308870
18	324	5832	$4 \cdot 2426407$	$2 \cdot 620741$	81	6561	. 531441	$9 \cdot 0$	$4 \cdot 326749$
19	361	6859	4-3588989	$2 \cdot 668402$	82	6794	5.51368	$9 \cdot 0553851$	$4 \cdot 344481$
20	400	8000	$4 \cdot 4721360$	$2 \cdot 714418$	83	6889	571787	9-1104336	$4 \cdot 362071$
21	441	9261	$4 \cdot 582.5757$	$2 \cdot 758923$	84	70.56	592704	9-1651514	$4 \cdot 379519$
22	484	10648	$4 \cdot 6904158$	$2 \cdot 802039$	8.5	722.5	614125	9.2195445	4-3968:30
23	529	12167	$4 \cdot 7958315$	$2 \cdot 843867$	86	7396	6.36056	$9 \cdot 2736185$	$4 \cdot 41400.5$
24	576	13824	4.8989795	2.884499	87	7569	658503	$9 \cdot 3273791$	$4 \cdot 431047$
25	625	15625	$5 \cdot 0$	$2 \cdot 924018$	88	7744	681472	9:3808315	4.447960
26	676	17576	5.0990195	2962496	89	7921	704969	$9 ` \mathfrak{C 3 3 9 8 1 1}$	$4 \cdot 464745$
27	729	19683	5-1961524	30	90	8100	729000	9-4868330	$4 \cdot 481405$
28	784	21952	5-2915026	$3 \cdot \mathrm{C} 36589$	91	8281	753571	9-5393920	$4 \cdot 497942$
29	841	24389	5-3851648	$3 \cdot 072317$	92	8464	778688	9•5916630	$4 \cdot 514357$
30	900	27000	$5 \cdot 4772256$	$3 \cdot 107232$	93	8649	804357	$9 \cdot 6436508$	$4 \cdot 530655$
31	961	29791	5.5677644	3•141381	94	8836	830384	9•6953597	$4 \cdot 546836$
32	1024	32768	56568542	3•174802	95	902.5	8.57375	$9 \cdot 7467943$	$4 \cdot 562903$
33	1089	35937	$5 \cdot 7445626$	3.2075.34	96	9216	884736	9•7979590	4-578857
34	1156	39304	$5 \cdot 8309519$	$3 \cdot 239612$	97	3409	912673	9•8.188578	$4 \cdot 591701$
35	1225	42875	$5 \cdot 9160798$	$3 \cdot 271066$	98	9604	941192	$9 \cdot 8994949$	$4 \cdot 610436$
36	1296	46656	$6 \cdot 0$	3:301927	99	9801	970299	$9 \cdot 9498744$	$4 \cdot 626065$
37	1369	50653	$6 \cdot 0827625$	3:332222	100	10000	1000000	100	$4 \cdot 641.589$
38	1444	54872	$6 \cdot 1644140$	$3 \cdot 361975$	101	10201	1030301	$10 \cdot 0498756$	$4 \cdot 657010$
39	1521	59319	$6 \cdot 2449980$	$3 \cdot 391211$	102	10404	1061208	$10 \cdot 099.5049$	$4 \cdot 672330$
40	1600	64000	$6 \cdot 3245553$	$3 \cdot 419952$	103	10609	1092727	$10 \cdot 148891$	-687548
41	1681	68921	$6 \cdot 4031242$	$3 \cdot 448217$	104	10816	1124864	$10 \cdot 198039$	-702669
42	1764	74088	$6 \cdot 4807407$	$3 \cdot 476027$	105	11025	1157625	$10 \cdot 2 \cdot 169508$	-717694
4.3	1849	79507	$6 \cdot 5574385$	$3 \cdot 503398$	106	11236	1191016	$10 \cdot 2956301$	4-732624
44	1936	85 i 84	$6 \cdot 6332496$	$3 \cdot 530348$	107	11449	1225043	10:3440801	$4 \cdot 747459$
45	2025	91125	$6 \cdot 7082039$	$3 \cdot 556893$	108	11664	1259712	$10 \cdot 5923048$	$4 \cdot 762203$
46	2116	97336	6.7823300	$3 \cdot 583048$	109	11881	1295029	$10 \cdot 4403065$	4-76856
47	2209	103823	$6 \cdot 8556546$	$3 \cdot 608826$	110	12100	1331000	$10 \cdot 4880885$	4.791420
48	2304	110592\|	$6 \cdot 9282032$	$3 \cdot 634941$	1111	12321	1367631	$10 \cdot 5356538$	$4 \cdot 805896$
49	2401	117649	7.0	3-659306	112	12544	1404928	$10 \cdot 5830052$	$4 \cdot 820284$
50	2.500	125000	$7 \cdot 0710678$	$3 \cdot 684031$	113	12769	1442897	$10 \cdot 63014.58$	$4 \cdot 834588$
51	2601	132651	7-1414284	$3 \cdot 708430$	114	12996	1481544	$10 \cdot 6770783$	$4 \cdot 848808$
52	2704	140608	$7 \cdot 2111026$	$3 \cdot 732511$	115	13225	1520875	$10 \cdot 7238053$	4-862944
53	2809	148877	72801099	$3 \cdot 756286$	116	13456	1560896	$10 \cdot 7703296$	4.876999
. 51	2916	157464	7:3484692	$3 \cdot 779763$	117	13689	1601613	$10 \cdot 8166538$	$4 \cdot 890973$
55	3025	166375	$7 \cdot 4161985$	$3 \cdot 802953$	118	13924	1643032	$10 \cdot 8627805$	$4 \cdot 904868$
56	3136	175616	$7 \cdot 4833148$	3-825862	119	14161	1685159	$10 \cdot 9087121$	4-918685
57	3249	185193	7-5498344	$3 \cdot 848501$	120	14400	1728000	109544512	$4 \cdot 932424$
58	3364	195112	$7 \cdot 6157731$	$3 \cdot 870877$	121	14641	1771561	11.0	4-94608?
59	3481	205379	$7 \cdot 6811457$	3.892996	122	14884	1815848	$11 \cdot 0453610$	$4 \cdot 959675$
60	3600	216000	77459667	3.914867	123	15129	1860867	$11 \cdot 0905365$	$4 \cdot 973190$
61	3721	226981	$7 \cdot 8102497$	$3 \cdot 936497$	124	15376	1906624	$11 \cdot 1355287$	$4 \cdot 986631$
62,	3844	238328	$7 \cdot 8740079$	$3 \cdot 957892$	125	15625	1953125	$11 \cdot 1803399$	$5 \cdot 0$
631	3969	2.50047	7.9372 .539	$3 \cdot 9790.57$	126	1.5876	2000376	$11 \cdot 2249722$	$5 \cdot 13298$

No.	Square.	Cube.	Square Root.	CubeRout.	No.	Square.	Cube.	Square Root.	CubeRoot.
12	16129	2048383			19	36100	6859000	$13 \cdot 7840488$	
12	16384	2097152	$11 \cdot 3137085$	5.039684	191	36481	6967871	$13 \cdot 8202750$	5
129	16641	$\bigcirc 14668$	-3578167	$5 \cdot 052774$	192	36864	7077888	13.8564065	98
130	16900	2197000	$1 \cdot 4017543$	5-065797	193	37249	7189057	13	
131	17161	2248091	$11 \cdot 4455231$	5.078753	194	37636	7301384		0
132	17424	2299968	11-4891	$5 \cdot 091643$	195	38025	7414875	$13 \cdot 9642400$	0
133	17689	2352637	$1 \cdot 5325626$	-104469	196	38416	7529536	14	5.808786
13	17956	2406104	$11 \cdot 5758369$	$5 \cdot 117230$	197	38509	76.5373	4.03	648
135	18225	246037.5	$11 \cdot 6189500$	5-129928	198	39294	7762392		76
136	18496	2515456	$11 \cdot 6619038$	5•142563	199	39601	7880599	14	2
1.37	18769	9571353	1-7046999	$5 \cdot 155137$	200	40020	8000000	$14 \cdot 142135$	35
138	19044	262807	$1 \cdot 7473444$	$5 \cdot 167649$	201	40401	8120601	14-1774463	65
139	19321	2685619	$1 \cdot 7898261$	$5 \cdot 180101$	202	40804	8242408	$14 \cdot 2126704$	64
140	19600	2744000	$11 \cdot 8321596$	5•192494	203	41209	8365427	14	O
141	19881	2803221	11-8743421	5-204828	204	41616	8489664	$14 \cdot 2828569$	65
142	20164	2863288	11.9163753	$5 \cdot 21710.3$	205	42025	8615125	$14 \cdot 3178211$	$5 \cdot 896368$
14	20449	2924207	258960-	5•299321	206	42436	8741816	$14 \cdot 3527001$	$5 \cdot 905941$
14	207:36	2985984	$2 \cdot 0$	$5 \cdot 241482$	207	42849	8869743	$14 \cdot 3874946$	81
14	21025	3048625	$12 \cdot 0+1.5946$	$5 \cdot 2.53588$	208	43564	8998912	$14 \cdot 4222051$	5•924991
146	21316	3112136	-083	5-26.5637	209	43681	9123329	$14 \cdot 4568323$	-934473
1	21609	3176523	$12 \cdot 1243557$	5-277632	210	44100	9261000	$14 \cdot 4913767$	11
148	21904	3241792	$12 \cdot 165525$	5-289572	211	44521	9393931	$14 \cdot 5258390$	-953341
119	22201	3.307949	$2 \cdot 206555$	5.301459	212	449.14	9528128	$14 \cdot 5602198$	$5 \cdot 962731$
150	22500	3375000	$12 \cdot 2474487$	5-313293	213	45369	9663597	14.5945195	$5 \cdot 972091$
151	22801	3442951	$12 \cdot 2882057$	5.325074	214	45796	9800344	$14 \cdot 6287.888$	$5 \cdot 981426$
152	23104	3511808	$2 \cdot 328828$	$5 \cdot 336803$	215	46295	9938375	$14 \cdot 6628783$	$5 \cdot 990727$
153	23409	3581577	$12 \cdot 3693169$	$5: 348481$	216	466556	10077696	$14 \cdot 6969385$	$6 \cdot 0$
154	23716	3652264	12*409673	$5 \cdot 360108$	217	47089	10218313	$14 \cdot 7309199$	$6 \cdot 009244$
155	24025	372387	4498996	$5 \cdot 371685$	218	47504	10360232	$14 \cdot 7648231$	$6 \cdot 01836: 3$
156	24336	3796416	$2 \cdot 4899960$	5.383213	219	47961	10503459	14	50
157	24649	3869893	$2 \cdot E 299641$	5.394690	220	48400	10648000	$14 \cdot 8323970$	-036811
158	24964	$39+4312$	$2 \cdot 5698051$	5.406120	221	48841	10793561	14.8660687	$6 \cdot 045943$
159	25281	4019679	$2 \cdot 609520$	$5 \cdot 417501$	222	49284	10941048	$14 \cdot 9996644$	O-15
160	25600	4096000	$2 \cdot 6491106$	$5 \cdot 428835$	223	49729	11089567	14.9331845	$6 \cdot 064126$
161	25921	4173281	$2 \cdot 6885775$	$5 \cdot 440122$	224	50176	11239424	$14 \cdot 9666295$	6.073177
162	26244	4251528	12.7279221	$5 \cdot 451362$	225	50625	11390625	15.0	$6 \cdot 082201$
163	26569	4330747	$12 \cdot 7671453$	$5 \cdot 462556$	226	51076	11543176	$1.5 \cdot 0332964$	6.091199
164	26896	4410944	12.8062485	$5 \cdot 473703$	227	51.529	11697083	$15 \cdot 0665192$	$6 \cdot 100170$
165	27225	4492125	$2 \cdot 8452326$	$5 \cdot 484806$	228	51984	118523.52	$15 \cdot 0996689$	15
166	27556	457429		195865	229	52441	12008989	$15 \cdot 1327460$	$6 \cdot 1180.32$
167	27889	4657463	$12 \cdot 9228480$	5.506879	230	52900	12167000	$15 \cdot 1657509$	$6 \cdot 126925$
169	28224	4741632	12.9614814	5.517848	231	53361	12326391	$15 \cdot 1986842$	135792
163	28561	4826809	$13 \cdot 0$	5.528775	232	53824	12487168	$15 \cdot 2315462$	6-114634
170	28900	4913000	$3 \cdot 0384048$	5.539658	-33	54289	12649337	15.2643375	6.153449
171	29241	5000211	13.0766968	5.550499	234	54756	12812304	$15 \cdot 297058$	-162239
172	29584	5088448	$13 \cdot 114877$	5.5611298	235	55225	12977875	15:329709	-17100.5
173	29929	5177717	$13 \cdot 1529$	$5 \cdot 572054$	236	55696	13144256	$15 \cdot 3622915$	$\cdot 179747$
174	30276	5268024	$13 \cdot 1909060$	5.582770	237	56169	13312053	$15 \cdot 3948043$	6-188463
175	30625	5359375	$13 \cdot 2287566$	5-59?445	298	56644	13481272	$15 \cdot 4272486$	$6 \cdot 197154$
176	30976	545177	3-2664-92	$5 \cdot 601079$	239	57121	13651919	$15 \cdot 4596248$	205821
177	31329	55452:33	$13 \cdot 3041347$	5.6146.73	$\because 40$	57600	13824000	$15 \cdot 491933$	464
178	31684	5639752	$13: 3416641$	$5 \cdot 625226$	241	56081	13997521	$15 \cdot 5241747$	223083
179	32041	. 5735339	$3 \cdot 3790882$	5•635741	242	58504	14172488	$15 \cdot 556349$	-231678
180	32400	5832000	$13 \cdot 416407$	$5 \cdot 646216$	243	59049	14348907	$15 \cdot 5884573$	$6 \cdot 240251$
181	32761	5929741	$13 \cdot 453624$	5•656652	244	59536	14526784	$15 \cdot 6204934$	$6 \cdot 248800$
182	33124	6028568	;13-490737	-667051	245	60025	14706125	156524758	6. 257324
183	33489	6128487	$13 \cdot 5277$	5-677411	246	60516	14886936	$15 \cdot 6843871$	6•265826
184	338.56	6229501	$13 \cdot 5646600$	$5 \cdot 687734$	247	61009	15069223	$15 \cdot 7162336$	6.274304
185	34225	6331625	$13 \cdot 601470$	5•698019	248	61504	1525	$5 \cdot 7480157$	
185	34596	6434856	$13 \cdot 6381817$	$5 \cdot 708267$	949	62001	1543824	15.7797338	6.291194
187	34969	6539203	$13 \cdot 6747943$	$5 \cdot 718479$	250	62500	15625000	$15 \cdot 8113883$	6•299604
188	55344	6644679	$13 \cdot 711309$	5•728654	251	63001	1581325	1584.9795	6.30-992
189	35721	6751269	13.	5.738794	252	63501	16003008	$15 \cdot 874507$	6:316359

No.	Square	Cube	Square Root.	Cube lioot
253	64009	16194277	15.9059737	6.324704
5	64516	16387064	$15 \cdot 9373775$	6-333025
55	65025	16581375	$15 \cdot 9687194$	6-341.325
56	65536	16777216	16.0	6.349602
257	66049	16974593	$16 \cdot 0312195$	6-357859
258	66564	17173512	$16 \cdot 0623784$	6
259	67081	17373979	16.0954769	6-3743
玉60	67600	17576000	16-1245155	6:38250
261	68121	17779581	$16 \cdot 1554944$	6:39067
262	68644	17984728	$16 \cdot 1864141$	6.3988
263	69169	18191447	16-2172747	6-4069
264	69696	18399744	16.2480768	$6 \cdot 415068$
265	70225	18609625	16.2788206	6.423157
266	70756	18821096	$16: 3$	

$19248316301846 \cdot 6$

 19248832 16:3707055 6.447305 $1946510916 \cdot 40121956 \cdot 455314$ $1968300016 \cdot 43167676 \cdot 463304$ 19902511116-46207766-471274 $20125648|16 \cdot 4924225| 6 \cdot 479224$ $2034641716 \cdot 52271166 \cdot 487153$ $20570824 \mid 16 \cdot 5529454,6 \cdot 495064$ $2079687516 \cdot 58312406 \cdot 502956$ $2102457616 \cdot 6132477 \mid 6 \cdot 510829$ $21253933 \mid 16 \cdot 64331706 \cdot 518684$ $2148495216 \cdot 67333206 \cdot 526519$ $21717639|6 \cdot 7032931| 6 \cdot 534335$ $2195200016 \cdot 7332005 \mid 6 \cdot 542132$ $22188041 \quad 16 \cdot 7630546 \quad 6 \cdot 549911$ $22425768 \mid 16 \cdot 7928556$ 6.557672 $2266.5187|16 \cdot 8226038| 6 \cdot 565415$ $23149125 \quad 16 \cdot 88194306 \cdot 580844$ $23393656 \quad 16.9115345$ 6.588531 $2363990316 \cdot 94107436 \cdot 596202$ $23887872|16 \cdot 970.5627| 6 \cdot 603854$ $2413756917 \cdot 0$
6.611488 $24385000 \cdot 17 \cdot 02958646 \cdot 619106$ 24642171 17 -0587221 6.626705 $2489708817 \cdot 08800756634287$ 25153757 17•117242866641851 $2541218417 \cdot 14642826 \cdot 649399$ 25672375 17•17556406.656930 25934336 17`046505 $6 \cdot 664443$ $2619807317 \cdot 2336879$, 6.671940 26463592 17 $26967655^{\prime} 6 \cdot 679419$ $2673089917 \cdot 29161656 \cdot 686882$ $2700000017 \cdot 32050816 \cdot 694328$ 27270901 17•3493516 6•701758 27543608 17•3781472 $6 \cdot 709172$ $2781812717 \cdot 40689526 \cdot 716569$ $2809446417 \cdot 43559586 \cdot 723950$ 28372625 17•4642492, 6731316 $2865961617 \cdot 4928.5576 \cdot 738665$ 28934443 17-5214155' $6 \cdot 74$ 5997 2921811217•54992886.753313 29503629 17•5783958 6.760614 29791000 ' $17 \cdot 60681696 \cdot 767899$ 30080231 $17 \cdot 63519216 \cdot 775168$ 30371328 17•6635217 6.782422 $3066429717 \cdot 69180606 \cdot 789661$ $3095914417 \cdot 7200451 \mid 6 \cdot 796884$ $3125587517 \cdot 74823936 \cdot 804091$

31699856
317100489
318101124
319101761
320102400
321103041

322103684 323104329 324104976 325.105625 326106276 327,106929 528107584 329, 108241 330108900 331 1C9561 332110224 333110889 334111556 335112225 $3: 6112896$ 337113569 338114244 339114921 340115600 341116281 342116964 343117649 344115336 34.5119025 346119716 347120409 348 121104 349 121801 350122500 351123201 352123904 353124609 354125316 355126025 356126736 357127449 358128164 359128881 360129600 | 361 | 130321 |
| :--- | :--- | :--- | 362131044 363131769 864132496 365133225 366 153956 367134689 368135424 369136161 370136900 371137641 372138384

 374139876 375140625 376141376 377142129 :378 142884

$3155449617 \cdot 7763888$ 6•811284| 31855013 17•8044938 $6 \cdot 818461$ $92157432 \quad 17 \cdot 832 \overline{5} .545 \mid 6 \cdot 825624$ $3246175917 \cdot 86057116 \cdot 83277$. $3276800017 \cdot 8885438 \mid 6 \cdot 839903$ 33076161 17.9164729 6.847021. $33386248 \quad 17 \cdot 94435846 \cdot 854124$ $3369826717 \cdot 9722008 \mid 6 \cdot 861211$ | 34012224 | 18.0 | 6.868284 |
| :--- | :--- | :--- | $3432812518 \cdot 0277564 / 6.875343$ $3464597618 \cdot 05547016 \cdot 882388$ 3496578318.0831413 6.889419| $3528755218 \cdot 11077036 \cdot 896435$ $3561128918 \cdot 13835716 \cdot 903436$ $3593700018 \cdot 16590216 \cdot 910423$ 36264691 18•1934054 6.917396 $3659136818 \cdot 22086726 \cdot 92 \cdot 1355$ $3692603718 \cdot 24828766 \cdot 931500$ $3725970418 \cdot 27566696 \cdot 938232$ 37595375'18:3030052 6•945149 $3793305618 \cdot 33050286 \cdot 95 \div 053$ $38272753 \quad 18 \cdot 3575598 \mid 6 \cdot 958943$ 38614472 18•3847763 $6 \cdot 965819$ $38958219,18 \cdot 41195266 \cdot 972682$ 39304000 18-4390889 6.979532 S9651821 184661853 6.986369 40001688 18•4932420|6.993191 $4035360718 \cdot 52025927^{\circ} 0$ $4070758418 \cdot 54723707 \cdot 006796$ 41063625 18:5741756 7•013579 $4142173618 \cdot 60107527 \cdot 020349$ 41781923 18•62793607•027106 $4214419218 \cdot 65475817 \cdot 033850$ 42508549 $18 \cdot 6815417 / 7 \cdot 040581$ 42875000 18•70828697•047208 43243551 18•7349940 $7 \cdot 054003$ 43614208 18•76166307.060696

 $4436186418 \cdot 81488777 \cdot 074043$ $44738875 \quad 18 \cdot 8414437 \quad 7.080698$ $45118016 \quad 18 \cdot 86796237 \cdot 087341$ $4549929318 \cdot 89444367 \cdot 093970$ $4588271218 \cdot 92088797 \cdot 100588$ 46268279 18•9479953 7•107193 $4665600018 \cdot 9736660 \quad 7 \cdot 113786$ | 47045881 | $19 \cdot 0$ | $7 \cdot 120367$ |
| :--- | :--- | :--- | 47437928 19•0262976 7-126935 47832147 (19•0525589 $7 \cdot 133492$ $482.28544 \mid 19 \cdot 07878407 \cdot 140037$ 48627125 19•1049732|7•146569 $4902789619 \cdot 1311265$ 7•153090 49430863 19•1572441 7•159599 $4983603219 \cdot 18332617$ 7166095 $5024340919 \cdot 2093727 / 7 \cdot 172580$ $5065300019 \cdot 2353841 / 7 \cdot 179054$ $5106481119 \cdot 2613603$ 7•185516 $51478848 \mid 19 \div 287301577191966$ 51895117 19•3132079 7•198405 52313624 19•3390796 7•204832 $5273437519 \cdot 36491677 \cdot 211247$ $53157376 / 19 \cdot 39071947 \cdot 217652$ $53582633 \mid 19 \cdot 4164878$ 7•224045 $54010152 \mid 19 \cdot 4422921 / 7-280427$

No. ${ }^{\text {Square. }}$

379143641 380144400 381145161 382145924 383146689 384147456 385143225 386148996 387149769 388150544 389151321 390152100 3911.52881 399153664 393154449 394155956 395156025 396156816 397157609 :398 158404 399159201 400.160000 401160801 402131604 403162409 404163216
405 I 64025 406 I 64836 407165649 408166464 409167281 410 I 68100 411168921 412169744 413170569 414171396 415172225
416173056 417173889 418174794 4I9 17556 I 420 I76400 421 177241 422178084 423178929 424179776 425180625 1426181476 427182329 428183184 42918404 I 430184900
431 185761
432186624 433187489 434188356
435189225
436130096 437190969 |438 191844 1439 192721 440193600 441194481

Cube.	Square lloot.	Cube Root
54439939	$19 \cdot 467922.3$	$7 \cdot 236797$

543939 $5487200019 \cdot 4935887 / 7 \cdot 243156$ $55306341 \quad 19 \cdot 51922137 \cdot 249.504$ 55742968 19•5448203 $7 \cdot 255841$ $5618188719 \cdot 57038587 \cdot 262167$ $5662310419 \cdot 59591797 \cdot 268482$ $5706662519 \cdot 62141697 \cdot 274786$ \begin{tabular}{ll|l|l|l|l|}
57512456 \& $19 \cdot 6468827$ \& $7 \cdot 281079$

57960603 \& $19 \cdot 6723156$ \& $7 \cdot 287362$
\end{tabular} $5841107219 \cdot 6977156 \quad 7 \cdot 293633$ $5886386919 \cdot 72308297 \cdot 299893$ $5931900019 \cdot 74841777 \cdot 306143$ 59776471 19•77371997•312383 $6023628819 \div 79898997 \cdot 31861$ I $6069845719 \cdot 82422767 \cdot 394829$ $61162984 \mid 19 \cdot 84943327 \cdot 331037$ $6162987519 \cdot 87460697 \cdot 337234$ $6209913619 \cdot 89974877 \cdot 343420$ $6257077319 \cdot 9248588 \quad 7 \cdot 349596$ $63044792[19 \cdot 94993737 \cdot 355762$ $6352119919 \cdot 97498447 \cdot 361917$ $64000000-20 \cdot 0$ $6448 \mathrm{I} 2 \mathrm{OI} 20 \cdot 0249844 / 7 \cdot 374198$ $6496480820 \cdot 0499377 / 7 \cdot 380322$ 65450827 20•0748599 $7 \cdot 386437$ $659.3926420 \cdot 09975 \mathrm{I} 2$ 7.392542 66430125 20•1 $2461187 \cdot 398636$ $66923416 \mid 20 \cdot 14944177 \cdot 404720$ $6741914320 \cdot 17424107 \cdot 410794$ $6791731220 \cdot 19900997 \cdot 416859$ $6841799920 \cdot 2937484 / 7 \cdot 422914$ $6892100020 \cdot 2484567 / 7 \cdot 428958$ $694265: 3120 \cdot 2731349.7 \cdot 434993$ 69934528 20.2977831 $7 \cdot 441018$ $7044499720 \cdot 32240147 \cdot 447033$ 70951944 20.3469899 7.453039 $7147337520 \cdot 37154887 \cdot 459036$ ${ }^{\prime} 7199129620 \cdot 3960781 \quad 7 \cdot 465022$ $7251171320 \cdot 42057797 \cdot 470999$ $7: 303463220 \cdot 44504837 \cdot 476966$ $7356005920 \cdot 46948957 \cdot 482924$ $7408800020 \cdot 49390157 \cdot 488872$ 746 I $8+6120 \cdot 51828457 \cdot 494810$ $7515144820 \cdot 5426: 3867 \cdot 500740$ $7568696720 \cdot 56696387 \cdot 506660$ $76225024 \mid 20 \cdot 59126037 \cdot 512571$ $7676562520 \cdot 61552817 \cdot 518473$ $7790877620 \cdot 63976747 \cdot 524365$ $77854483 \quad 20 \cdot 6639783 \quad 7 \cdot 530248$ $7840275220 \cdot 68816097 \cdot 536121$ $7895358920 \cdot 71231527 \cdot 541986$ $7950700020 \cdot 73644147 \cdot 54784 \mathrm{I}$ $80062991 \quad 20 \div 6053957 \cdot 553688$ $80621568-0 \cdot 7846097 / 7 \cdot 559525$ $81182737 \mid 20 \cdot 8086520,7 \cdot 5653.53$ $8174650420 \cdot 8326667,7 \cdot 571173$ $8231287520 \cdot 85665367 \cdot 576984$ $8288185620 \cdot 8806130 \cdot 7 \cdot 582786$ 334534E3 $20 \cdot 90454507 \cdot 588579$ $8402767220 \cdot 92844957 \cdot 594363$ $8460451920 \cdot 95232687 \cdot 600138$ 851840002097617707605905 85766121210

No. Square.

442195364
443196249
444197136
445198025
446198916
447 I 99809
448200704
449201601
450202500
451 203401
452204304
459205209
454206116
455207025
456207936
45720×849
458209764
459210681
460211600
461212521
462213444
463214369
464215296
465216225 466217156 1O1194696 21 $58703317 \cdot 752860$ 467 218089 $10184756321 \cdot 6101828$ 7•758402 $468219024 \mid 0250323221 \cdot 6333077 / 7 \cdot 763936$ $46921996110316170921 \cdot 65640787 \cdot 769462$ $470220900 \mid 0382300021 \cdot 67948347 \cdot 774980$ $471221841104487111 / 21 \cdot 70253447 \cdot 780490$ $472222784 \mid 0515404821 \cdot 72556107 \cdot 785992$ $47322372910582381721 \cdot 74856327 \cdot 791487$ $474224676|0649642421 \cdot 7715411| 7 \cdot 796974$ $47522562510717187521 \cdot 79449477 \cdot 802453$ $47622657610785017621 \cdot 81742427 \cdot 807925$ $47722752910853133321 \cdot 8403297.7 \cdot 813989$ $47822848410921535221 \cdot 8632111781884.5$ $47922944110990223921 \cdot 88606867 \cdot 824294$ $480,23040011059200021 \cdot 90890237 \cdot 829735$ 481231361 111284641 21-9317122 $7 \cdot 835168$ $48223232411198016821 \cdot 95449847 \cdot 840594$ $48323328911267858721 \cdot 97726107 \cdot 846013$ $48423425611337990422 \cdot 0$
$7 \cdot 851424$ $48523522511408412522 \cdot 02271557 \cdot 856828$ $48623619611479125622 \cdot 04540777 \cdot 862224$ $487237169 \mid 11550130322 \cdot 06807657 \cdot 867613$ $485|238144| 1621427222 \cdot 0907220 \quad 7 \cdot 872994 \mid$ $489239121|16930169| 22 \cdot 1133444 / 7 \cdot 878368$ $490|240100| 1764900022 \cdot 13594367 \cdot 8 \$ 3734$ $431|241081| 1837077122 \cdot 15851987 \cdot 889094$ $492|242064| 19095488,22 \cdot 18107307 \cdot 894446$ $492 \cdot 2430491198231.5722 \cdot 20360397 \cdot 899791$ $434244036120553784,22 \cdot 22611087 \cdot 905129$ $49.5245025121287375,22 \cdot 24859557 \cdot 910460$ $496246016 \mid 12202393622 \cdot 27105757 \cdot 915784$ $497|24700912276347322 \cdot 49349687 \cdot 921100|$ $49824800412350599222 \cdot 31591367 \cdot 926408$ $49924900112425149922 \cdot 33830797 \cdot 931710$ $500,25000012500000022 \cdot 36007987 \cdot 937005$ 501 2bl001 $12575150122 \cdot 38: 302937 \cdot 94229.3$ 502 252004 126506008 22•4053565 7-94757. $50325300912726352722 \cdot 42766157 \cdot 952847$ $50425401612802406422 \cdot 44994437 \cdot 958114$

No.	Square.	Cube.	Square Root.	Cube Koot.

8.087579 $53028090014887700023 \cdot 02172898 \cdot 092672$ $53128195114972129123 \cdot 0434372,8 \cdot 097758$ $53228302415056876823 \cdot 06512528 \cdot 102838$ $53328408915141943723 \cdot 0867928 \mid 8 \cdot 107912$ $53428515615227330423 \cdot 10844008 \cdot 112980$ |535 $28622515313037523 \cdot 13006708 \cdot 118041$ $53528729615399065623 \cdot 1516738 \mid 8 \cdot 123096$ $53728836915485415323 \cdot 1732605$ 8•128144 $53828944415572087223 \cdot 19482708 \cdot 133186$ $53929052115659081923 \cdot 21637358 \cdot 138223$ $54029160015746400023 \cdot 23790018 \cdot 143253$ $541292681158340421 \quad 23 \cdot 25940678 \cdot 148276$ $54229376415922008823 \cdot 2808935$ 8•153293 543294849 I 60103007 23 3 3023604 8-1 58304 $54429593616098918423: 3235076$ 8•163309
 $546298116162771336 \cdot 23 \cdot 36664298 \cdot 173302$ $54729920916366732323 \cdot 38803118 \cdot 178289$ $54830030416456659223 \cdot 40939988 \cdot 183269$ $54930140116546914923 \cdot 43074908 \cdot 188244$ $550302500166375000 \quad 23 \cdot 4520788 \quad 8 \cdot 193212$ $\begin{array}{llll}551 & 303601,167284151 & 23 \cdot 4733892 & 8 \cdot 198175\end{array}$ $552304704168196608 \quad 23 \cdot 49468028 \cdot 203131$ 553 305809 169112377 23•51 59520 $8 \cdot 208082$ $55430691617003146423 \cdot 5372046$ 8-213027 $555308025170953875 \cdot 23 \cdot 5584380 \quad 8 \cdot 217965$ $55630913617187961623 \cdot 57965228 \cdot 222898$ $55731024917280869323 \cdot 60084748 \cdot 227825$ $55831136417374111223 \cdot 62202368 \cdot 232746$ 559 $31248117467687923 \cdot 64318088 \times 237661$ $56031360017561600023 \cdot 66431918$ 8.242570 561314721 176558481 $23 \cdot 68543868 \cdot 247474$ $56231584417750439823 \cdot 70653928 \times 252371$ $56331696917845354723 \cdot 72762108 \cdot 257263$ $56431809617940614423 \cdot 74868428 \cdot 262149$ $56531922518036212523 \cdot 76972868 \cdot 267029$ $56632035618132149623 \cdot 79075458 \cdot 271903$ 567,32148918228426323•81176188.276772

No.	Square.	Cube.	Square Root.
	Cube Root.		

$56832262418325043223 \cdot 83275068 \cdot 281635$ $569323761 \quad 18422000923 \cdot 85372098 \cdot 286493$ $570324900185193000 \quad 23 \cdot 8746728$ 8-291344 $57132604118616941123 \cdot 89560638 \cdot 296190$ $572327184187149248 \quad 23 \cdot 9165215 \quad 8 \cdot 301030$ $573,328329,18813251723 \cdot 93741848: 305865$
 $57533062519010937523 \cdot 97915768 \cdot 315517$
 $57733292919210003324 \cdot 02082438 \cdot 325147$ $578334084193100552 \cdot 24 \cdot 04163068 \cdot 329954$ $57933524119410453924 \cdot 0624188 \mid 8 \cdot 334755$ $580336400195112000,24 \cdot 0831892$ 8:339551 $58133756119612294124 \cdot 10394168 \cdot 344341$
 583339889198155287 24-1453929 $8 \cdot 353904$ $58434105619917670424 \cdot 16609198: 358678$ $58534222320020162524 \cdot 18677328: 363446$ $586343396201230056 \quad 24 \cdot 20743698: 36820$! $587344569202262003 \quad 24 \cdot 22808298 \cdot 372965$ 588345744203297472 24-2487113 8-377718 589346921204336469 24-2693222 $\cdot 8 \cdot 382465$ $59034810020537900024 \cdot 2899156 \mid 8 \cdot 387206$
 $59235046420747468824 \cdot 33105018: 396673$ 593351649208527857 24 •351.5913 $8 \cdot 401398$ $59435283620958458424: 37211528 \cdot 406118$ $59535402521064487524 \cdot 39262188 \cdot 410832$ $59635521621170873624 \cdot 41311128 \cdot 415541$ $5971356409212776173 \cdot 24 \cdot 43358348 \cdot 420245$ $59835760421384719224 \cdot 45403858 \cdot 424944$ $59935880121492179924 \cdot 4744765$ 8•4296:8 $60036000021600000024 \cdot 49489748 \cdot 434327$ $60136120121708180124 \cdot 5153013$ 8•439009 $60236240421816720824 \cdot 53568838 \cdot 443687$ $60336360921925622724 \cdot 55605838 \cdot 448360$ $60436481622034886424 \cdot 5764115 \quad 8 \cdot 453027$ $605366025221445125 \cdot 24 \cdot 5967478 \quad 8 \cdot 457689$ $60636723622254501624 \cdot 61706738 \cdot 462347$ $607368449223648543 \cdot 24 \cdot 63737008 \cdot 466999$ 608 :369664 224755712 24-6576560 8-471647 609370881 225866529,24-6779254 8•476289 $61037210022698100024 \cdot 69817818 \cdot 480926$ $611373321228099131 \quad 24 \cdot 71841428 \cdot 485557$ $61237454422922092824 \cdot 73863388 \cdot 490184$ 613375769 230346397 $24 \cdot 75883688 \cdot 494806$ $61437699623147554424 \cdot 77902348 \cdot 499423$ 615378225 2326 $08375,24 \cdot 7991935,8 \cdot 504034$ $616379456 \quad 23374489624 \cdot 8193473,8 \cdot 508641$ $61738068923488511324 \cdot 83948478 \cdot 513243$ $61838192423602903224 \cdot 8596058$ 8•517840 $61938316123717665924 \cdot 8797106,5 \cdot 522432$ $62038440023832800024 \cdot 8997992$ '8•527018 621385641 239483061 $24 \cdot 91987168 \cdot 531600$ 622386884240641848 , 24•9399278 8•536177 $62338812924180436724 \cdot 95996798 \cdot 540749$ $62438937624297062424 \cdot 97999208 \cdot 545317$ $62539062524414062525 \cdot 0 \quad 8 \cdot 549879$ $62639187624531437625 \cdot 01999208 \cdot 554437$ $62739312924649188325 \cdot 03996818 \cdot 558990$ $62839438424767315225 \cdot 05992828 \cdot 563537$ $62939564124885818925 \cdot 07987248 \cdot 568080$ $630 ' 396900$ 25004:000.25.0998008 8.572618

No.	Square	Cube.	Square Root.	Cube Root.	No.	Square.	Cube.	Square Root.	Cube lio
				- 577159		481636	495538	26.3438797	$8 \cdot 853508$

$63239942425243596825 \cdot 13961028 \cdot 581680$ $63340068925363613725 \cdot 15949138 \cdot 586204$ $63440195625484010425 \cdot 17935668 \cdot 590723$ $63540322525604787525 \cdot 19920638 \cdot 595238$ $63640449625725945625 \cdot 21904048 \cdot 599747$ $63740576925847485325 \cdot 23885898 \cdot 604252$ $638407044259694072 \quad 25 \cdot 25866198 \cdot 608752$ $63940832126091711925 \cdot 27844938 \cdot 613248$ $64040960026214400025 \cdot 29822138 \cdot 617738$ 641410881263374721 25:3179778 $8 \cdot 629224$ $64241216426460928825 \cdot 33771898 \cdot 626706$ $64341344926584770725 \cdot 35744478 \cdot 631183$ $64441473626708998425 \cdot 37715518 \cdot 635655$ $64541602526833612525 \cdot 39685028 \cdot 640122$
 $64741860927084002325 \cdot 43619478 \cdot 649043$ $64841990427209779225 \cdot 45584418 \cdot 653497$ $64942120127335944925 \cdot 47547848 \cdot 657946$ $65042250027462500025 \cdot 49500768 \cdot 662301$ $65142380127589445125 \cdot 51470168 \cdot 666831$ $65242510427716780825 \cdot 5: 3429078 \cdot 671266$ $65342640927844507725 \cdot 5538647 / 8 \cdot 675697$ $65442771627972626425 \cdot 57342378 \cdot 680123$ 655429025 281011375 25-5929678 $8 \cdot 684545$ 656430336 282300416 $25 \cdot 61249698 \cdot 689963$ $657,43164928359339325 \cdot 63201128 \cdot 693376$ $658432964284890312 \mid 25 \cdot 65151078 \cdot 697784$ $65943428128619117925 \cdot 67099538 \cdot 702188$ $66043560028749600025 \cdot 69046528 \cdot 706587$ 661436921 288804781 $25 \cdot 709920 ; 8 \cdot 710982$ |662438244 290117528 25•7203607.8•715373 $663439569291434247 \mid 25 \cdot 74878648 \cdot 719759$ $664440896292754944 \mid 25 \cdot 76819758.724141$ $66544222529407962525 \cdot 78759398 \cdot 728518$ 666443556 $295408296|25 \cdot 8069758| 8 \cdot 732891$ $667444889296740963|25 \cdot 8263431| 8 \cdot 737260$ $66844622429807763225 \cdot 84569608 \cdot 741624$ $66944756129941830925 \cdot 8650343 \cdot 8 \cdot 745984$ $67044890030076: 300025 \cdot 88435828 \cdot 750340$ $671450241302111711|25 \cdot 9036677| 8 \cdot 754691$
 $673452929304821217|25 \cdot 9422435| 8 \cdot 763380$ $67445427630618202425 \cdot 96151008 \cdot 767719$ 675455625 307546875 $25 \cdot 9807621 \mid 8 \cdot 772053$ $67645697630891577626 \cdot 0$

 $68046240031443200026 \cdot 07680968 \cdot 793659$

 683466489318611987 26•1342687 $8 \cdot 806572$ $68446785632001350426 \cdot 153: 39378 \cdot 810868$ 685469225321419125 26•1725047 8•815159
 $68747196932424270326 \cdot 21068488 \cdot 823730$
 $68947472132708276926 \cdot 24880958 \cdot 832285$ $69047610032850900026 \cdot 267851118 \cdot 836556$ $691477481329939371 \quad 26 \cdot 28687898 \cdot 840822$ $692478861331379888 \quad 26 \cdot 30589298 \cdot 845085$ $693480249,332812557 \quad 26 \cdot 3248932 / 8 \cdot 849344$

$69648441639715353626 \cdot 38181198 \cdot 862095$
$69748580933860887326 \cdot 40075768 \cdot 866337$
 $69948860134153209926 \cdot 43860818 \cdot 874809$ $70049000034300000026 \cdot 45751318 \cdot 879040$ 701491401 344472101 $26 \cdot 47640468 \cdot 883266$ $702492804345948408 \quad 26 \cdot 49528268 \cdot 887488$ $703494209347428927,26 \cdot 51414728 \cdot 891706$ $70449561634891366426 \cdot 53299838 \cdot 895920$
 $70649843635189581626 \cdot 57066058 \cdot 904336$ $70749984935339394326 \cdot 58947168 \cdot 908538$ $70850126135489491226 \cdot 60826948 \cdot 912736$ 709502681356400829 26•6270539 8-916931 $710504100357911000 \quad 26 \cdot 64582528 \cdot 121121$ $7115055213594 \Omega .5431 \mid 26 \cdot 66458333$ 8-925307 $712506944360944128 \quad 26 \cdot 68332818 \cdot 929490$ 713508.369 362467097 $26 \cdot 70205988 \cdot 933668$ $714509796363994344 \quad 26 \cdot 72077848 \cdot 937843$ $715511225365525875 \quad 26 \cdot 73948398 \cdot 942014$ $71651265636706169626 \cdot 75817638 \cdot 946180$ $717514089|36860181326 \cdot 7768557| 8 \cdot 950343$ $71851552437014623226 \cdot 79552208 \cdot 954502$ $719.51696137169495926 \cdot 81417548 \cdot 958658$ $720518400373248000 \quad 26 \cdot 83281578962809$

 $724524176: 37950342426 \cdot 9072481 / 8 \cdot 979376$ $725525625 \quad 381078125 \quad 26 \cdot 92582408 \cdot 983508$ | 726 | 527076 | 382657176 | $26 \cdot 9443872$ | $8 \cdot 987637$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 727528529 384240583 26.9629375 $8 \cdot 991762$

 $72953144138742048927 \cdot 0 \quad 9 \cdot 0$ $73053290038901700027 \cdot 01851229.004113$
 $732535824392229168 \quad 27 \cdot 05549859 \cdot 012328$ $733537289,39383283727 \cdot 07397279 \cdot 016430$ $734538756395446904|27 \cdot 0924344| 9 \cdot 020529$ $735540225397065375 \quad 27 \cdot 1108834 \mid 9 \cdot 024623$
 $73754316940031555327 \cdot 147743919 \cdot 032802$ 738544644401947272 27•1661554 $9 \cdot 036885$ $739546121403583419 \cdot 27 \cdot 18455449 \cdot 040965$ $740547600405224000 \quad 27 \cdot 20294109 \cdot 045041$ $74154908140686902127 \cdot 22131529.049114$ $742550564408518488,27 \cdot 23967699 \cdot 053183$ $74355204941017240727 \cdot 25802639 \cdot 057248$ 7445535364118307842727636349 •061309 745555025413493625 27•2946881 $9 \cdot 065367$ $74655651641516093627 \div 31500069 \cdot 069422$ $74755800941683272327 \cdot 3313007{ }^{9} \cdot 073472$ $748559504418508992 \quad 27 \cdot 34958879 \cdot 077519$ $74956100142018974927 \cdot 36786449081563$ $750562500421875000 \quad 27 \cdot 3861279 \cdot 9 \cdot 085603$ $751504001423564751 \quad 27 \cdot 40437928 \cdot 085639$ $75256550442525900827 \cdot 42261849 \cdot 093672$ $75356700942695777727 \cdot 4408455 \quad 9 \cdot 097701$ $75456851642866106427 \cdot 45906049 \cdot 101796$ $755570025430368875 \quad 27 \cdot 47726331 \cdot 105 \cdot 48$ $75657153645208121627 \cdot 49545 \cdot 4,9 \cdot 109{ }^{\circ} 66_{6}$

No.	Square.	Cube.	Square Root.
	Cube Root.		
757			

$75757304943379809327 \cdot 51363309 \cdot 113781$ $75857456443551951227 \cdot 53179989 \cdot 117799$ $75957608143724547927 \cdot 54995469 \cdot 121801$ $76057760043897600027 \cdot 5680975$ 9•125805 $76157912144071108127 \cdot 5862284$ 9•129806 $76258064444245072827 \cdot 6043475$ 9•133803 $76358216944419494727 \cdot 62245469 \cdot 137797$ $76458369644594374427 \cdot 6405499$ 9•141788 $76558542544769712527 \cdot 658633419 \cdot 145774$ $76658675644945509627 \cdot 67670509 \cdot 149757$ 767588289 451217663 27•6947648 9•153737 768 589824 452984832 27•712s129 9•157713 $76959136145475660927 \cdot 7308492$ 9•161686 $77059290045653300027 \cdot 74887399 \cdot 165656$ $77159444145831401127 \cdot 76688689 \cdot 169622$ $77259598446009964827 \cdot 7848880$ 9•173585 $77359752946188991727 \cdot 80287759 \cdot 177544$ $77459907646368482427 \cdot 8 \Sigma 08555$ 9•181500 7'75 $60062546548437527 \cdot 89882189 \cdot 185452$ 776 6UQ176467288576 27•8567766 9•189401 $77760372946909743327 \cdot 87471979 \cdot 193347$ $77860528447091095227 \cdot 8926514$ 9•197289 $77960684147272913927 \cdot 91057159 \cdot 201228$ $78060840047455200027 \cdot 92848019$ 9051 64 $78160996147637954127 \cdot 94637729 \cdot 209096$ $782611524478211768,27 \cdot 96426299 \cdot 213025$ $78361308948004868727 \cdot 98213729 \cdot 216950$ 78461465648189030428.0 9.220872 $78561622548373602528 \cdot 01785159.224791$ $786617796485587656,28 \cdot 03569159 \cdot 228706$ $78761936948744340328 \cdot 053.20319 \cdot 232618$ $788620944489303872 \quad 28 \cdot 07133779 \cdot 237527$ $78962252149116906928 \cdot 08914389 \cdot 240433$ $79062410049303900028 \cdot 10693869 \cdot 244335$ 791 '625681 $49491367128 \cdot 12472229 \cdot 248234$ $79262726449679308828 \cdot 14249469 \cdot 252130$ 793628849 498677257 28•1602557 9-256022 794 630436 500566184,28•1780056 9•259911 $79563202550245987528 \cdot 19574449 \cdot 263797$ $79663361650435833628 \cdot 2134720$ 9.267679 7797635209506261573 28•2311884 9•271559 798636804 508169592 28.2488938 9.275435 $79963840151008239928 \cdot 2665881$ 9.279308 S00 640000 512000000 28•284271ヶ9•283177 801 641601 51 3922401 $28: 30194349 \cdot 287044$ $80264.320451584950828 \cdot 31960459 \cdot 290907$ $803644809517781627128: 3372546$ 9•294767 804646416519718464 28:3548938 9•298623 $80564802552166012528: 3725919$ 9•302477 $80664963652360661628: 39013919 \cdot 306327$ $80765124952555794328 \cdot 40774549 \cdot 310175$ $80865286152751411228 \cdot 42534089 \cdot 314019$ 809 65-1481 529475129,28•4429253 9•317859 $81065610053144100028 \cdot 46049899 \cdot 321697$ 811 657721 533411731 28•47806179.325532 $81265934453538732828 \cdot 495613719 \cdot 329363$ $81366096953736779728 \cdot 51315499 \cdot 333191$ $81466 \div 59653935314428 \cdot 53068529 \cdot 337016$ $815664225 \quad 54131337528 \cdot 54820189 \cdot 340838$ $816665856543338496 \quad 28 \cdot 565713719 \cdot 344657$ $81766748954533851328 \cdot 58321199 \cdot 348473$ $818,669124 \quad 54734343228 \cdot 60069933 \cdot 952285$ |819670761 549353259 28•6181760 9•356095

| No. | Square. | Cube. | $\frac{\text { Square Root. }}{\text { Cube Root. }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 820 | $\frac{\text { C72400 }}{551368000}$ | $28 \cdot 6356491$ | $9 \cdot 359901$ | $821674041553387661 \quad 28 \cdot 65309769 \cdot 363704$ $82267568455541224828 \cdot 67054249 \cdot 367505$ 823 677:329557441767 28•6879766 9•371302 824 678976 $55947622428 \cdot 70540029 \cdot 375096$ $82568062556151562528 \cdot 72281329 \cdot 378887$ $82668227656355997628 \cdot 7402157 \quad 9 \cdot 382675$ $82768392956560928328 \cdot 7576077$ 9•386460 $82868558456766355228 \cdot 7749891 \quad 9 \cdot 390241$ $82968724156972278928 \cdot 7923601 \quad 9 \cdot 394020$ $83068890057178700028 \cdot 8097206 \cdot 9 \cdot 397796$ $83169056157385619128 \cdot 8270706 \quad 9 \cdot 401569$ $832692224575930368 \quad 28 \cdot 8444102 \quad 9 \cdot 405338$ 833693889 578009537, 28•8617394 9•409105 $83469555658009370428 \cdot 8790582 \quad 9 \cdot 412869$ $83569722558218287528 \cdot 89636669 \cdot 416630$ $83669889658427705628 \cdot 91366469 \cdot 420387$ $83770056958637625328 \cdot 93095239 \cdot 424141$ $83870224458848047228 \cdot 9482297 \quad 9 \cdot 427893$ $83970392159058971928 \cdot 9654967$ 9•431642 $34070560059270400028 \cdot 98275359 \cdot 435388$ 84170728159482332129.0

9-439130 $842708964596947688 \quad 29 \cdot 017236319442870$ $84371064959907710729 \cdot 034462319 \cdot 446607$ $84471233660121158429 \cdot 05167819 \cdot 450341$ $845714025603351125 \mid 29 \cdot 06888379 \cdot 454071$ $84671571760549573629 \cdot 0860791 \quad 9 \cdot 457799$ $84771740960764542329 \cdot 1032644$ 9•461524 848 719104609800192 29•1204396 9•465247 $84972080161196004929 \cdot 13760469 \cdot 468966$ $85072250061412500029 \cdot 15475959 \cdot 472682$ 851724201616295051 29•1719043 9•476395 $852725904618470208 \quad 29 \cdot 18903909 \cdot 480106$ 853727609620650477 29•2061637 9•483813 $854729316622835864129 \cdot 22327849 \cdot 487518$ 855731025625026375 29•2403830 9•491219 856732736 627222016 29•2574777 9•494918 $85773444962942279329 \cdot 27456239 \cdot 498614$ 858736164 631 $62871229 \cdot 29163709 \cdot 502307$ $85973788163383977929 \cdot 30870189 \cdot 505998$ $86073960063605600029 \cdot 32575669 \cdot 509685$ $86174132163827738129 \cdot 34280159 \cdot 513369$ $86274304464050392829 \cdot 35983659 \cdot 5170.51$ $86374476964273564729 \cdot 37686169 \cdot 590730$ $864746496644972544 \cdot 29 \cdot 39387699 \cdot 524406$ $86574822564721462529 \cdot 41088239 \cdot 528079$ $866749956649461896 \quad 29 \cdot 42787799 \cdot 531749$ $86775168965171436329 \cdot 44486379 \cdot 535417$ $86875342465397203229 \cdot 46183979 \cdot 539081$ $86975516165623490929 \cdot 47880599 \cdot 542743$ $87075690065850300029 \cdot 49576249 \cdot 546402$ 871758641660776311 29•5127091'9•550058 $87276038466305484829 \cdot 52964619 \cdot 553712$ $87376212966533861729 \cdot 5465734.9 \cdot 557363$ $87476387666762762429 \cdot 56349109 \cdot 561010$ $87576562566992187529 \cdot 58039899 \cdot 564655$ $87676737667229137629 \cdot 59729729.568297$ $877769129,67452613329 \cdot 61418589 \cdot 571937$ 878770884676836152 29•6310648 9•575574 $87977264167915143929 \cdot 64793259 \cdot 579208$ 880774400 (681 $47200029 \cdot 66479399 \cdot 582839$ 881776161 ,643797841 $29 \cdot 68164429 \cdot 586468$ 882,777924, म̌र6.128968 29.6984848 9.590093|

No. Square.	Cube.	Square Root. Cube Root.			
883	779689 688465387	$29 \cdot 7153159$	9.593716	88478145669080710429773213759.597337 $88578322569315412529 \cdot 74894969 \cdot 600954$ $886784996695506456 \quad 29 \cdot 76575219 \cdot 604569$ $88778676969786410329 \cdot 78254529 \cdot 608181$ $8887885 \cdot 44$ 700227072 29•7993289 9•611791 '889790321 $702.59536929 \cdot 81610309 \cdot 615397$ 890792100704969000 29•8328678 9•619001 $89179388170734797129 \cdot 84962319 \cdot 622603$ $892795664709732288 \quad 29 \cdot 8663690 \quad 9 \cdot 6266^{\circ} 91$ 893797449712121957 29•8831056 9•629، 97 $89479923671451698429 \cdot 8998328$ 9•633390 895801025716917375 29.9165506 9•636981 $896802816719323136 \cdot 29 \cdot 93325919 \cdot 640569$ 897804609721734273 29•949958.3 9•6•14154 898806404724150792 29•9666481 9•647736 $89980820172657269929 \cdot 98332879 \cdot 651316$ $90081000072900000030 \cdot 0 \quad 9 \cdot 654893$ 901 $81180173143270130 \cdot 01666209 \cdot 658468$ $9028136047338708083003331489 \cdot 662040$ 90381540973631432.7 30 $04995849 \cdot 665609$ $90481721673876326430 \cdot 06659289 \cdot 669176$ $905819025741217625 \cdot 30 \cdot 08321799 \cdot 672740$ $90682083674367741630 \cdot 09983399 \cdot 676301$ $90782264974614264330 \cdot 11644079 \cdot 679860$ 908824464748613312 30•1330383 9•683416 $90982628175108942930 \cdot 14962699 \cdot 686970$ $91082810075357100030 \cdot 16620639 \cdot 690521$ $911829921756058031 \quad 30 \cdot 18277659 \cdot 694069$ $912831744758550528 \quad 30 \cdot 19933779 \cdot 697615$ $91983356976104849730 \div 21588999 \cdot 701158$ $914835 \div 9676355194430 \cdot 23243299 \cdot 704698$ $91583722576606087530 \cdot 24896699 \cdot 708236$ $916839056768575296 \cdot 30 \cdot 26549199 \cdot 711772$ $91784088977109521330 \cdot 28200799 \cdot 715305$ $91884272477362063230 \times 29851489 \cdot 718835$ $91984456177615155930 \cdot 31501289 \cdot 722363$ $92084640077868800030 \div 33150189 \cdot 725888$ $92184824178122996130 \cdot 34798189 \cdot 729410$ $922850084783777448 \quad 30 \cdot 3644529$ 9•732930 923851929786330467 30•3809151 9•736448 924853776788889024	30•3973583 9•739963 $925855625791453125 \quad 30 \cdot 4138127$ 9•743475 $926857476794022776.50 \cdot 4302481 \quad 9 \cdot 746985$ $92785932979659798330 \cdot 4466747$ 9•750493 $92886118479917875230 \cdot 46309249 \cdot 753998$ $92986304180176508930 \cdot 479501$ S $9 \cdot 757500$ $930864900804357000 \times 30 \cdot 49590149 \cdot 761000$ 931866761806954491 30•5122926 9•764497 932868624 809557568 $20 \cdot 52867509 \cdot 767992$ $93387048981216623730 \cdot 5450487$ 9.771484 $93487235681478050430 \cdot 56141369 \cdot 774974$ $93587422581740037530 \cdot 57776979 \cdot 778461$ $93687609682002585630 \cdot 59411719.789946$ $93787796982265695330 \cdot 61045579 \cdot 785428$ $93887984482529367230 \cdot 62678579 \cdot 788908$ 939881721 827.036019/30•6431069 9.792386 $940883600830584000 \quad 30 \cdot 65941949795861$ 941 $885481833237621 \mid 30 \cdot 67572339.799333$

No.

$$
94
$$

94
88736
94388949
944891136
945893025
$946 \quad 894916$
$947 \quad 896809$
$948 \quad 89870$
949900601
950902500
951. 904401

952906304
953 90820
954910116
955.912025

956 913936
957915849
$958 \quad 917764$
959. 919684
$960 \quad 921600$
961923521
$962 \quad 925444$
963927369
964929296
965. 931225

966 933156
957: 935089
968937024
$969 \quad 938961$
$970 \quad 940900$
971942841
$972 \quad 944784$
973946729
974948676
975950625
976952576
$977 \quad 954529$

979958441
980960400

| 981 | 962361 |
| :--- | :--- | :--- |

983966289
984968256
$985 \quad 970225$
986 972196
$947 \quad 974169$
$988 \quad 976144$
$989 \quad 978121$
993 980100
991982081
992' 984064
993986049
994988036
$995 \quad 990025$
996992016
$997 \quad 994009$
$998 \quad 996004$
999 99400 990199281 -5911380

$999 \quad 99800199700299931 \cdot 6069613$ | 835896888 | $30 \cdot 6920185$ | $9 \cdot 802803$ |
| :--- | :--- | :--- |
| 838561807 | $30 \cdot 7083051$ | $9 \cdot 806271$ | $84123238430 \cdot 7245830 \quad 9 \cdot 809756$ $\begin{array}{llll}843908625 & 30 \cdot 7408523 & 9 \cdot 813198\end{array}$ $84659053630 \cdot 7571130 \quad 9 \cdot 816659$ | 849278123 | $30 \cdot 7733651$ | $9 \cdot 820117$ |
| :--- | :--- | :--- | $851971392 \quad 30 \cdot 7896086 \quad 9 \cdot 823572$ $\begin{array}{llll}854670349 & 30 \cdot 8058436 & 9 \cdot 82702.5\end{array}$ $857375000 \quad 30 \cdot 8220700 \quad 9 \cdot 830475$ $\begin{array}{llll}860085351 & 30 \cdot 8382879 & 9 \cdot 833923\end{array}$ $86280140830 \cdot 8544972,9 \cdot 837369$ $\begin{array}{lll}86552317730 \cdot 8706981 & 9 \cdot 840812\end{array}$ $\begin{array}{llll}86825066430 \cdot 8868904 & 9 \cdot 844253\end{array}$ $\begin{array}{llll}870983875 & 30 \cdot 9030743 & 9 \cdot 847692\end{array}$ $\begin{array}{llll}87372281630 \cdot 9192497 & 9 \cdot 851128\end{array}$

 $87921791230 \cdot 9515751 \mid 9 \cdot 857992$ $88197407930 \cdot 9677251 \quad \Omega \cdot 861421$ $88473600030 \cdot 9838668 \quad 9 \cdot 864848$ | $88750368131 \cdot 0$ | $9 \cdot 868272$ |
| :--- | :--- | :--- | 890277128 31•0161248 9.871694 $89305634731 \cdot 032241319 \cdot 875113$

 $89863212531 \cdot 0644491 \quad 9 \cdot 881945$
 $904231063,31 \cdot 0966236|9 \cdot 888767|$ $90703923231 \cdot 1126984 \mid 9 \cdot 8921$ \% 4 $90985320931 \cdot 1287648 \quad 9 \cdot 895580$ $91267300031 \cdot 1448290 \quad 9 \cdot 898983$
 $91833004831 \cdot 1769145$ $92116731731 \cdot 1929479$ 92401042431 -2089731 92685937531 -2249900 92971417631 :22409987 $932574833 \quad 31-2569992$ $93544135231 \times 2729915$ 93831373931 2889757 $94119200131 \cdot 3049517$ 94407614131 •3209195 $946956168 \quad 31 \cdot 3368792$ $94986208731 \cdot 3528308$ $95276390431 \cdot 3687743$ $95567162531 \cdot 3847097$ 958585256 31-4006369 $951504803 \cdot 31 \cdot 4165561$ $96443027231 \cdot 4324673$ $96736166931 \cdot 4483704$ $97029900031 \cdot 4642654$ $97324227131 \cdot 4801525$ $976191488 \quad 31 \cdot 4960315$ 979146657 31-5119025 $98210778431 \cdot 5277655$ $98507487531 \cdot 5436206$ $98804793631 \cdot 5594677$ $9910269731 \cdot 5153068$ $10001000000100000000031 \cdot 6227767 / 10 \cdot 0$

9•905781
$9 \cdot 909177$ 9.912571 9.915962 9.91E251 9-922738 $9 \cdot 926122$ 9.929504 $9 \cdot 932883$ $9 \cdot 936261$ $9 \cdot 939636$ $9 \cdot 943009$ $9 \cdot 940379$ $9 \cdot 949747$ $9 \cdot 953113$ 9.956477 $9 \cdot 959839$ 9•96:3198 $9 \cdot 966554$ 9-969909 9.973262 9.976612 $9 \cdot 979959$ $9 \cdot 983304$ 9•986648 $9 \cdot 989990$ $9 \cdot 993328$ $9 \cdot 996665$

2297h. A power is that number which is obtained by multiplying a number several times by itself. A square is the number muliplied by itself; a cube, twice by itself. The square is called the second power; and the cube the third; when multiplied again by itself it becomes the fourth power (commonly called the bi-quadrate); and so on :-

Power.		of No. 2.	Of No. 3.	Number	4th Power.	5th Power.
1.		2	3	1	1	1
II.		square 4	or square 9	2	16	32
III.	or	cube 8	or cube 27	3	81	243
IV.		16	81	4	2.6	1,024
V .		32	243	5	625	3,125
VI.		64	729	6	1.296	7.776
VII.		128	2.187	7	2.401	16,807
VIli.		2.53	6.561	8	4,096	32,768
IX.		512	19,683	9	6.561	59,049
X.		1,024	59,049	10	10,100	100,000

2.297i. We shall now at once proceed to the general principles on which the measurement and estimation of work in the several artificers' departments are conducted; premising that the Manchester Society of Architects have issued a revise / edition (July 1886) of their recommendalions as to the method of taking out quantities and measuring up work, which may possibly be of use and interest to many students. It is reprinted in the British Architect for September 3, 1886, p. 233.
2298. Excavator. Digging is performed by the solid yarl of 27 cubic feet (that is, 3 feet $\times 3$ feet $\times 3$ feet $=27$ feet). Where the ground is soft in consistence, and nothing more is necessary beyond cutting with a spade, a man may throw up a cubic yard per hour, or ten cubic yards in a day; but if of firmer quality, hacking becomes necessary, and an additional man will be required to perform the same work; if very strong gravel, more assistance will be required. If, therefore, the wages of a labourer were $2 s .6 d$. per day. the price of a yard would be $3 d$ for cutting only, without profit to the contractor; $6 d$. for cutting and hacking, and 9 d . if two hackers be necessary. In sandy ground, where wheeling becomes necessary, three men will remove 30 cubic yards in a day to the distance of 20 yards, tro for filling and one for wheeling. But to remore the same quantity in a day to a greater distance, an additional man for every 20 yards will be required.
2290. The quantity of excaration is the length multiplied into the depth and width. In the cases of trenches dug for the reception of walis, and sloped to prevent the earth f_{1} lling in, a mean width is to be taken. Thus, supp se an excaration 24 feet long. 4 feet wide at top, and 2 feet at the bottom (average width therefore 3 feet), and 5 feet deep, we have for the quantity of earth $\frac{24 \times 3 \times 5}{27}=13.33$ cube yards.
2300. Brickwork. In measuring and estimating the value of brickwork, the following points must be remembered. A rod of brickwork is a mass $16 \frac{1}{2}$ feet square; hence the quantity of superficial feet which it contains is $272 \frac{1}{4}$ feet $\left(16.5 \times 16^{\circ} 5\right)$; but the $\frac{1}{4}$ of the foot is too trifling to make it worth while to embarrass calculations with it, and consequently 272 feet is universally taken as the superficial standard content of a rod. Its standard thickness is one brick and a half (or $13 \frac{1}{2}$ inches). Hence it follows, that a cubic rod of brick work would the 272 feet $\times 13 \frac{1}{2}$ inches $=306$ feet cube. The allowance for the number of bricks is taken as between 4000 and 4500 ; much depending on the closeness of the joints and the nature of the work. In walling, a reduced foot is generally taken as requiring 17 bricks; a foot superficial in Flemish bond, laid in malm facing, about 8 bricks; and a toot superfieial of gauged arches, 10 bricks. In paving, a yard requires 82 paring brieks, or 48 stock bricks, or 144 Dutch clinkers laid on edge, or 36 bricks laid flat.
2301. Tiling is measured by the square of 100 superficial feet; a square will require 800 at a 6 nch guage, 700 at a 7 -inch gange, and 600 at an 8 -inch gauge. The gauge necessarily regulates the distance of the laths, and, at the same lime must be dependent on the slope of the roof, which, if flat, should not be less than 6 inches, as for instance, above the kerb in a kerb roof; and not more than 8 inches in any case. A square of plain tiling requires abont on an average a bundle of laths, two bushels of lime, and five of sand, and at least a peek of oak pins. The laths are sold in bundles of 3,4 , and 5 -feet lengths. A bundle of the 3 -feet contains eight score, the 4 -feet six score, and the 5 -feet five seore to the bundle. The nails used are fourpenny; they are purchased by the long hundred, that is, of six score, and, in day work, are charged by the bricklayer 5 -score to the hundred. The name of nails, as fourpenny, fivepenny, \&c., means $4 d ., 5 d$, \&c. per 100. The number of nails required for a bundle of 5 -feet laths is 500 , for 6 -feet laths is 600 .
2302. A square cf pantiling requires 180 tiles laid at a 10 -inch gauge and a bundle of 12 laths 10 feet long. (See Table 2321.)
2303. In lime measure, a "hundred" is 100 pecks, or 25 striked bushels (a measure).

と304. In sand measure, 18 heaped bushels, or 21 striked bushels, equal to 1 yard cube, is a single load, and about 24 cubic feet 1 ton.

2305 . In mortar 27 cubic feet make 1 load, which on common oceasions contains half a hundred of line with a proportional quantity of sand. Eleven hundred and thirty-four cubic inches make a hod of mortar ; that is, a mass 9 inches wide, 9 inches high, and 14 inches long. Two hods of mortar are nearly equal to half a bustiel. The following measures and weights it may be also useful to re-nember:-
$23_{\overline{2}}$ cubic feet of sand $=1$ ton ; hence 1 cubic foot weighs $95^{\circ} 3 \mathrm{lbs}$.
$17 \frac{1}{2}$ cubic feet of clay $=1$ ton; hence 1 cubic foot weighs about 130 lbs.

18 cubic feet of common earth $=1$ ton; hence 1 eubic foot weighs nearly 124 lbs .

306 cobic feet of brickwork $=13$ tons; hence 1 cubic foot is equal to full 95 lbs.
2306. In the measurement of bitckwork, from the surface being 272 feet and the standard thickness $1 \frac{1}{2}$ brick, it will be immediately seen that nothing more is requisite than, having ascertained the thickness of each part of the work, to reduce it to the standard thickness above stated, and this will be found sufficiently easy in almost all cases. Where, however, this cannot be done, we can always ascertain with sufficient accuracy the cubic contents in feet of any mass of brickwork; aad dividing by 306 we have the number of rods.
2307. We here present an illastration in a wall of the most common occurrence (fig. $808 h$), which we vill suppose 20 feet long withoot reference to any wall which mignt return from it, and thus diminsh its length in measuring therewit! a returning wall. The following is the method of entering and caleulating the dimensions.

Fig. sish.

Therefore the total is $963 \cdot 4$ superfieial feet $1 \frac{1}{2}$ briek thick, and $\frac{963}{272}=3$ rods, 147 feet. 2308. Upon this principle the measuring and estimation of brickwork is conducted, and having the price and quantity of bricks in a rod, and the lime, sand, and labour, which will presently be given, we may come to a pretty accurate knowledge of its value. But there are other articles which will require our attention, to which we shall presently advert. Before proceeding, however, we may as well observe that the above result of 3 rods 147 feet might have been similarly obtained by cubing the mass of briek work and dividing the whole mass by 306, but with much more lakour.
2509. In measuring walls faced with bricks of a superior quality, the area of such facing must be measured, or allowance extra is made in the price per rod of the brickwork.
2310. All apertures and recesses from any of the faces are deducted.
2311. Ganged arches.are sometimes deducted and charged separately, sometimes not; but whether deducted or not does not signify, as the extra price must be allowed in the latter case and the whole price in the former. Rubbed and ganged arches, of whatever form, are measured and charged by the superficial foot.
2312. The angles of groins, outside and inside splays, bird's mouths, bull's noses, are measured by the lineal or ruming foct; but cuttings are measured by the foot superficial. Chimneys are measured solid to allow for the trouble of forming and pargetting the flues. The opening at bottom, however, is to be deducted.

231 3. Quarters in bricknogging are measured in, as are all sills, stone strings, and timber inserted in walls. Two inehes are also allowed in the height of brickwork for bedding plates if no brick work be over them.
2314. Ovens, coppers, \&c. are measured as solid work, deducting only the ash holes; but all fire stone, Welsh lumps, tiles, \&c., though measured alone, are not to be deducted out of the brickwork. Pointing, colouring, $\mathcal{E c}$. to fronts, is measured by the foot superficial. Plantile creesing by the foot lineal.

To estrmate the value of a rod of brickwork, the method is as under : -

2315. In measuring and estimating all sorts of artificers' works, the method usually adopted for saving labour in making out the account is to arrange in separate columns cach sort of work, and then to add them up and carry the total to the bill. In brickwork, where walls are of different thicknesses, these with their deductions are arranged in separate columns, and then all are reduced to the standard thickness.
2316. The common measure for tiling is a square of 10 feet, containing therefore 100 feet superficial. Claims are made for the eaves to the extent of 6 inches; but in pantiling this ought not to be allowed, as a claim not founded in justice, though custon is pleaded for it.
2317. The following table shows the number of bricks necessary for constructing any number of superficial feet of walling from 1 to 90,000 , and from half a brick to $2 \frac{1}{2}$ bricks thick; and thence, by addition only, to any thickness or number required, at the rate of 4.500 bricks to a reduced rod. Thus, if it be required to find the number of bricks wanted to build a piece of work containing 756 feet super. of walling $1 \frac{1}{2}$ brick thick, we find by inspection for 700 feet 11.580 bricks; for 50 feet, 827 bricks; and for 6 feet, 99 bricks; in all, $11580+827+99=12506$.

Table showing the requisite Quantity of Bricks for a given Superficies of Waline.

Area of Wall in Feet.	No. of Bricks to Thicknesses of				
	$\frac{1}{8}$ Brick.	1 Brick.	$1 \frac{1}{2}$ Brick.	2 Bricks.	$2{ }_{3}^{2}$ Bricks.
1	5	11	16	29	27
2	11	22	33	44	5.5
3	16	33	49	66	82
4	22	44	66	88	110
5	27	55	82	110	137
6	33	66	99	132	165
7	:38	77	115	1.54	193
8	44	88	132	176	220
9	49	99	148	198	248
10	5.5	110	16.5	220	275
20	110	220	350	441	551
30	16.5	3330	496	Ufi	827

Area of Wall in Feet.	No. of Bricks to Thicknesses of				
	$\frac{1}{2}$ Brick.	1 Brick.	112 Brick.	2 Bricks.	21 $\frac{1}{2}$ Bricks.
40	220	441	661	882	1102
50	275	551	827	1102	1378
60	330	661	992	1323	1654
70	386	772	1158	1544	1930
80	441	882	1323	1764	2205
90	496	992	1488	1985	2481
100	551	1102	1654	2205	2757
200	1102	2205	3.308	4411	5514
300	1654	3308	4963	6617	8272
400	2205	4411	6617	8323	11029
500	2757	5514	8272	11029	13786
600	3308	6617	9926	13235	16544
700	3860	7720	11580	15441	19301
800	4411	8823	13235	17647	22058
900	4963	9926	14889	19852	24816
1000	5514	11029	16544	22058	25753
2000	11029	22058	33088	44117	55147
3000	16544	33088	49632	66176	82720
4000	22058	41117	66176	88235	110294
5000	27573	55147	82720	110294	137867
6000	33088	66176	99264	132352	165441
7000	38602	77205	115803	154411	193014
8000	44117	88235	132352	176470	220588
9000	49632	99264	148896	198529	248161
10000	55147	110294	165441	220588	275735
20000	110294	220588	330882	441176	551470
30000	165441	3330882	$496: 323$	661764	827205
40000	220588	441176	661764	882952	1102940
50000	275735	551470	827205	1102949	1378675
60000	330882	661764	992646	1323528	1654410
70000	386029	7720.53	1168087	1544116	1930145
80000	441175	8823.52	1323528	1704704	2205050
90000	496323	992646	1468969	1985292	2481615

2318. The next table which we submit for use exhibits the number of reduced feet to superficial feet from 1 to 10,000 , the thicknesses being from $\frac{1}{2}$ to $2 \frac{1}{2}$ bricks.

Area of Wall in superficial Feet.	Reduced Quantity in				
	$\frac{1}{2}$ Brick,	1 Brick.	$1 \frac{1}{2}$ Brick.	2 Bricks.	${ }_{2}^{1 \frac{1}{2}}$ Bricks.
	Rods. qrs. ft. in.	Rods. qrs. ft. in.	Rods. qrs. ft. in.	Rods. qrs. ft. in.	Rods. qrs. ft in.
1	$\begin{array}{llll}0 & 0 & 0 & 4\end{array}$	0	$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 1 & 4\end{array}$	$\begin{array}{lllll}0 & 0 & 1 & 8\end{array}$
2	0 0 00008	$\begin{array}{llll}0 & 0 & 1 & 4\end{array}$	0 0 0020	$\begin{array}{llll}0 & 0 & 2 & 8\end{array}$	$\begin{array}{lllll}0 & 0 & 3 & 4\end{array}$
3	0 0 0110	0	0	0	0
4	$\begin{array}{llll}0 & 0 & 1 & 4\end{array}$	$\begin{array}{lllll}0 & 0 & 2 & 8\end{array}$	0		0
5	$\begin{array}{llll}0 & 0 & 1 & 8\end{array}$	0	0 0 05050	$\begin{array}{llll}0 & 0 & 6 & 8\end{array}$	$\begin{array}{llll}0 & 0 & 8 & 4\end{array}$
6	0	0	0 0 066	0	$0 \quad 0 \quad 100$
7	$\begin{array}{lllll}0 & 0 & 2 & 4\end{array}$	$\begin{array}{llll}0 & 0 & 4 & 8\end{array}$	$\begin{array}{llll}0 & 0 & 7 & 0\end{array}$	$\begin{array}{lllll}0 & 0 & 9 & 4\end{array}$	0
8	$\begin{array}{llll}0 & 0 & 2 & 8\end{array}$	$\begin{array}{llll}0 & 0 & 5 & 4\end{array}$	0 0 00880	0	$\begin{array}{lllll}0 & 0 & 13 & 4\end{array}$
9	0 0 0030	0 0 006	$\begin{array}{llll}0 & 0 & 9 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 12 & 0\end{array}$	00150
10	$\begin{array}{llll}0 & 0 & 3 & 4\end{array}$	$\begin{array}{llll}0 & 0 & 6 & 8\end{array}$	$0 \quad 0100$	0	$\begin{array}{lllll}0 & 0 & 16 & 8\end{array}$
11	$\begin{array}{llll}0 & 0 & 3 & 8\end{array}$	$\begin{array}{llll}0 & 0 & 7 & 4\end{array}$	0 O 1110	0	$\begin{array}{lllll}0 & 0 & 18 & 4\end{array}$
12	0	$0 \begin{array}{llll}0 & 0 & 8 & 0\end{array}$	$0 \quad 0120$	$0 \quad 0160$	$0 \quad 0200$
13	0	$0 \begin{array}{llll}0 & 0 & 8 & 8\end{array}$	0	0	0 0 018
14	0	$\begin{array}{llll}0 & 0 & 9 & 4\end{array}$	$0 \quad 0140$	$0 \quad 0188$	000234
15	0	$0 \quad 0100$	$\begin{array}{lllll}0 & 0 & 15 & 0\end{array}$	$0 \quad 0200$	$0 \quad 0250$
16	$\begin{array}{llll}0 & 0 & 5 & 4\end{array}$	0 O 010108	$\begin{array}{llll}0 & 0 & 16 & 0\end{array}$	0	$0 \quad 0268$
17	$\begin{array}{llll}0 & 0 & 5 & 8\end{array}$	0 0 111 4	$0 \quad 0170$	$0 \quad 0228$	$0 \quad 0284$

	Reduced Quantity in				
	t Brick.	Bric	ick.	2 Bricks.	23, Bricks.
	Rods. qrs. ft. in.	Rods. qrs. ft. in.	Rods. qrs. ft. in.	Rods. qrs. ft. in.	Rods. qrs. ft. in.
18	$\begin{array}{lllll}0 & 0 & 6 & 0\end{array}$	$\begin{array}{lllll}0 & 0 & 12 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 18 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 24 & 0\end{array}$	$\begin{array}{lllll}0 & 0 & 30 & 8\end{array}$
19	$\begin{array}{llll}0 & 0 & 6 & 4\end{array}$	$\begin{array}{lllll}0 & 0 & 12 & 8\end{array}$	$\begin{array}{lllll}0 & 0 & 19 & 0\end{array}$	0 025	$\bigcirc 00318$
20	$\begin{array}{llll}0 & 0 & 6 & 8\end{array}$	$\begin{array}{llll}0 & 0 & 13 & 4\end{array}$	0 0 200	- 00268	$\begin{array}{llll}0 & 0 & 33 & 4\end{array}$
21	$\begin{array}{llll}0 & 0 & 7 & 0\end{array}$	0 0 01414	$\begin{array}{llll}0 & 0 & 21 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 28 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 35 & 0\end{array}$
22	$\begin{array}{llll}0 & 0 & 7 & 4\end{array}$		$\begin{array}{llll}0 & 0 & 22 & 0\end{array}$	$0 \quad 029$	0 0 036
23	0 0 7	0 O 0154	$\begin{array}{lllll}0 & 0 & 23 & 0\end{array}$	- 030	0 0038
24	$\begin{array}{lllll}0 & 0 & 8 & 0\end{array}$	0 O 01616	$\begin{array}{lllll}0 & 0 & 24 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 32 & 0\end{array}$	0 0 40 0
2.5	0 0 0	$\begin{array}{llllllllllllllll}0 & 0 & 16 & 8\end{array}$	$\begin{array}{llllll}0 & 0 & 25 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 33 & 4\end{array}$	$\begin{array}{lllll}0 & 0 & 41 & 8\end{array}$
26	0 0 08	$\begin{array}{llll}0 & 0 & 17\end{array}$	$\begin{array}{llll}0 & 0 & 26 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 34 & 8\end{array}$	$\bigcirc 00430$
97	$\begin{array}{llll}0 & 0 & 9 & 0\end{array}$	- 00180	000270	0 0396	$0 \quad 045$
28	$\begin{array}{llll}0 & 0 & 9 & 4\end{array}$	0 O 018	$\begin{array}{llll}0 & 0 & 28 & 0\end{array}$	0 0 037	O 046
29	0 00	$0 \quad 019$	$\begin{array}{llll}0 & 0 & 29 & 0\end{array}$	$0 \quad 038$	0 O 048
30	$0 \quad 0100$	- 0200	0 0 0330	$0 \quad 040$	0 0 50
31	0 0 10	0 00208	$0 \begin{array}{llll}0 & 0 & 31 & 0\end{array}$	$0 \quad 041$	$0 \quad 051$
32	0 0 10	$0 \quad 021$	$\begin{array}{llll}0 & 0 & 32 & 0\end{array}$	0 O) 42	0 O 53
$3: 3$	011	$\begin{array}{llll}0 & 0 & 22 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 33 & 0\end{array}$	O 0044 o	$0 \quad 055$
34	011	$\begin{array}{llll}0 & 0 & 22 & 8\end{array}$	0	$0 \quad 045$	$0 \quad 056$
35	0 0 011	0 0 023	c 00350	$0 \quad 046$	$\begin{array}{lllll}0 & 0 & 58 & 4\end{array}$
36	- 012120	$\begin{array}{llll}0 & 0 & 24 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 36 & 0\end{array}$	O 048	0 0 60 0
37	0 12	$0 \quad 024$	$\begin{array}{llll}0 & 0 & 37 & 0\end{array}$	$0 \quad 049$	0 0 06618
38	012	O 025	0 0 0388	- 050	$0 \quad 063$
39	0130	- 026	$\begin{array}{llll}0 & 0 & 39 & 0\end{array}$	0 0 05	$\bigcirc 0650$
40	013	0 026	0 0 0400	$0 \quad 053$	$\begin{array}{llll}0 & 0 & 66\end{array}$
41	$\begin{array}{llllll}0 & 0 & 13 & 8\end{array}$	$0 \quad 027$	0 0 04110	0	010
42	$\begin{array}{llll}0 & 0 & 14 & 0\end{array}$	0 0 028	0 0 0420	0	$\begin{array}{llll}0 & 1 & 2 & 0\end{array}$
43	0 O 114	$0 \quad 028$	0	$0 \quad 057$	$\begin{array}{lllll}0 & 1 & 3 & 8\end{array}$
44	$0 \quad 014$	- 029	0	- 058	015
45	0 015150	0 0 30	0 00450	0 0 0600	$\begin{array}{llll}0 & 1 & 7 & 0\end{array}$
46	$0 \quad 015$	0 O 30	$\begin{array}{lllll}0 & 0 & 46 & 0\end{array}$	0 O 061	$\begin{array}{lllll}0 & 1 & 8 & 8\end{array}$
47	0 O 015	$0 \quad 031$	$\begin{array}{llllll}0 & 0 & 47 & 0\end{array}$	0 O 62	$\begin{array}{lllll}0 & 1 & 10 & 4\end{array}$
48	0	0 0 032	0 O 048	0 0 064 0	$\begin{array}{llll}0 & 1 & 12 & 0\end{array}$
49	$0 \quad 016$	0 0 032	$\begin{array}{lll}0 & 0 & 49\end{array}$	O 065	$\begin{array}{lllll}0 & 1 & 13 & 8\end{array}$
50	$\begin{array}{llllll}0 & 0 & 1 & 6 & 8\end{array}$	$0 \quad 033$	0 0 050	- 06668	$\begin{array}{lllll}0 & 1 & 15 & 4\end{array}$
60	$\begin{array}{llll}0 & 0 & 20 & 0 \\ 0 & 0 & \end{array}$	0 0040	$\begin{array}{llll}0 & 0 & 60 & 0\end{array}$	- 1120	$\begin{array}{llll}0 & 1 & 32 & 0\end{array}$
70	$\begin{array}{llll}0 & 0 & 23 & 4\end{array}$	$\begin{array}{llll}0 & 0 & 46 & 8\end{array}$	0 - 12	254	$\begin{array}{lllll}0 & 1 & 48 & 8\end{array}$
80	$\begin{array}{llll}0 & 0 & 26 & 8\end{array}$	$\begin{array}{llll}0 & 0 & 53 & 4\end{array}$	O 112	0 O 138	65
90	0 0 0.80	0 0 060	0 O 1220	$\begin{array}{lll}0 & 1 & 59\end{array}$	$\begin{array}{llll}0 & 2 & 14 & 0\end{array}$
100	$0 \quad 033$	$\begin{array}{llll}0 & 0 & 66 & 8\end{array}$	$\begin{array}{llll}0 & 1 & 32 & 0\end{array}$	0165	$0 \quad 230$
200	$0 \quad 066$	- 1654	O 26.4	0 362	061
300	$\begin{array}{llll}0 & 1 & 32\end{array}$	02640	10280	160 0	3240
400	$\begin{array}{llll}0 & 1 & 65 & 4\end{array}$	- 3628	11600	357	2154
500	0 2308	$\begin{array}{llll}1 & 0 & 61 & 4\end{array}$	13240	2154	$\begin{array}{lll}3 & 0 & 17\end{array}$
600	02640	11600	2 O 560	$2{ }_{2} 3520$	3248
700	0 0 3294	$\begin{array}{llll}1 & 2 & 58 \\ 1 & 8\end{array}$	$22^{2} 200$	$\begin{array}{llll}3 & 1 & 49\end{array}$	$\begin{array}{lllll}4 & 1 & 10 & 8\end{array}$
800	- 3628	$1 \begin{array}{llll}1 & 3 & 57 & 4\end{array}$	2352	3 3 4688	$4{ }^{4} 3414$
900	10280	2 O	$\begin{array}{llll}3 & 1 & 16 & 0\end{array}$	$\begin{array}{llll}4 & 1 & 44 & 0\end{array}$	$\begin{array}{lllll}5 & 2 & 4 & 0\end{array}$
1000	0614	$\begin{array}{llll}2 & 1 & 54 & 8\end{array}$	3 248	4341	$6 \quad 0348$
2000	$2 \begin{array}{llll}2 & 1 & 54 & 8\end{array}$	3414	1280	3148	$\begin{array}{llll}12 & 1 & 1 & 4\end{array}$
3000	3 2 48	1280	11080	$\begin{array}{llll}14 & 2 & 46 & 0\end{array}$	$\begin{array}{llll}18 & 1 & 36 & 0\end{array}$
4000	3414	3148	$\begin{array}{llll}14 & 2 & 56 & 0\end{array}$	$19 \quad 229$	$\begin{array}{llll}24 & 2 & 2 & 8\end{array}$
5000	0 348	$\begin{array}{llll}12 & 1 & 1 & 4\end{array}$	$\begin{array}{llll}18 & 1 & 36 & 0\end{array}$	$\begin{array}{lllll}24 & 2 & 2 & 8\end{array}$	$\begin{array}{llll}30 & 2 & 37 & 4\end{array}$
6000	1280	$\begin{array}{llll}14 & 2 & 56 & 0\end{array}$	220160	291144	$\begin{array}{lllll}36 & 3 & 4 & 0\end{array}$
7000	221	$17 \begin{array}{llll}17 & 0 & 42 & 8\end{array}$	$25 \quad 264 \quad 0$	$\begin{array}{llll}34 & 1 & 17\end{array}$	$42 \begin{array}{lll}42 & 38\end{array}$
8000	314	$19 \quad 229$	291144	$\begin{array}{llll}39 & 0 & 58 & 8\end{array}$	49
9000	1108	220016	33 0 $24 \quad 0$	$44 \quad 0 \quad 32 \quad 0$	55040
10000	12	242828	363 \& 0	$49 \quad 0 \quad 5$	$\begin{array}{llll}61 & 1 & 6 & 8\end{array}$

2319. The following table exhibits the value of a rod of brickwork (allowing 4500 bricks to a rod) at the prices from 30s. to 60s. per thousand for the brieks, and for labour, mortar, and seaffolding the several sums of $3 l .5 s ., 3 l .10 s ., 3 l .15 s ., 4 l ., 4 l .5 s$. , and $4 l .10 s$. per rod.

Bricks per Thousand.	Labour, Mortar, \& c, per Rod, $3 i, 5 s$. Rod, 3 l . 5 s .	Labour, Mor tar, \&c. per Rod, 3/. Ios.	$\begin{aligned} & \text { Labour, Mor- } \\ & \text { tar, \&c. } \mathrm{per} \\ & \text { Rod, } 3 l .15 s . \end{aligned}$	$\begin{array}{\|l} \text { Labour, Mor- } \\ \text { tar, \&c. per } \\ \text { Rod, } 4 \ell . \end{array}$	Labour, Mortar, \&c. per Rod, $4 l .5 s$. rod, 4i. 5 s .	Labour, Mor tar, \&c. per Rod, 41.10 s od, 41. 10s
30	Ecc.	$\begin{array}{lll} \pm & s . \\ 10 & 5 & \\ 10\end{array}$	lllcr	$\begin{array}{ccc} \mathbf{t} & s . & d . \\ 10 & 15 \end{array}$	$\begin{array}{ccc} t & s . & d . \\ 11 & 0 & 0 \end{array}$	$\begin{array}{ccc} x_{11}^{f} & s . & d . \\ 11 & 5 & 0 \end{array}$
30	$\begin{array}{llll}10 & 0 & 0\end{array}$	$\begin{array}{lll}10 & 5 & 0\end{array}$	10100			
32	$10 \quad 9 \quad 0$	10140	1019	1140	11	1114
34	10180	1130	1180	11130	1118	1230
36	1170	11120	11170	$12 \quad 20$	127	12120
38	11160	1210	1260	12110	12160	13
40	1250	12100	12150	1300	$13 \quad 5$	13100
42	12140	1219 0	1340	$13 \quad 90$	1314	1319
44	$13 \quad 30$	13	1313	13180	14380	14
46	13120	1317	$14 \quad 2$	1470	14120	$14 \begin{array}{lll}14 & 17\end{array}$
48	1410	146	14110	14160	1510	15 ¢ 0
50	14100	1415	150	$15 \quad 50$	15100	1515
52	14190	154	$15 \quad 9 \quad 0$	15140	1519	$\begin{array}{llll}16 & 4 & 0\end{array}$
54	1580	15130	15180	1630	16880	16150
56	15170	$16 \quad 20$	1670	16120	1617	$17 \quad 20$
58	$16 \quad 50$	16110	16160	$17 \quad 10$	176	17110
60	16150	$17 \quad 0 \quad 0$	$17 \quad 5$	1710	1715	18

2320. The following is a table of the decimal parts of a rod of reduced brickwork.

Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.
1	-00367	41	$\cdot 15073$	81	-29779	121	-44485	161	-59191
4	$\cdot 00735$	42	-15441	82	-30147	122	-44852	162	-593.59
3	-01102	43	$\cdot 15809$	83	-30515	123	-45220	163	-59926
4	-(1470	44	$\cdot 16176$	84	-30882	$1 \because 4$	-45588	164	-60294
5	-01838	45	-16544	85	-3125	125	-45956	165	-60662
6	-02206	46	-16912	86	-31617	126	-46323	166	-61029
7	-02573	47	-17279	87	31985	127	-46691	167	-61397
8	-02941	48	$\cdot 17647$	88	32353	128	-47059	168	-61765
9	-03309	49	-18015	89	-32720	129	-47426	169	-62132
10	-03676	50	-18382	90	-33088	130	-47794	170	-625
11	-04044	51	-1875	91	-33456	131	-48162	171	-62867
12	-04412	52	-19117	92	-33823	132	-48529	172	-63235
13	-04779	53	-19485	93	34191	13:3	-48897	173	-63604
14	-05147	54	-19852	94	-34559	134	-49265	174	-63971
15	-05515	55	'20221	95	-34926	195	-49632	175	-64338
16	-05882	56	-20588	96	-35294	136	-5	176	-64706
17	0625	57	-20956	97	-35662	137	-50637	177	-65073
18	-06617	58	-21323	98	-36029	138	-5073.5	178	-65441
19	-06985	59	'21691	99	-36:397	139	-51102	179	-65809
20	-073.53	60	-22059	100	-36765	140	-51470	180	-66176
21	-07721	61	-22426	101	37132	141	-51838	181	$\cdot 66544$
22	-08088	62	-22794	102	:375	142	-52206	182	-66912
23	-08456	63	-23162	103	-37867	143	- 52573	183	-67279
24	-08823	64	-23529	104	-:8235	144	-52941	184	$\cdot 67647$
25	-09191	65	-23897	105	-38604	145	-53309	185	-68015
26	-09559	66	-24265	106	-38970	146	-53676	186	-68382
27	-09926	67	-24632	107	-39338	147	-54044	187	-6875
28	-10294	68	-25	108	-39706	148	-54412	188	$\cdot 69117$
99	-10662	69	-25367	109	-40073	149	-54779	189	-69485
30	-11029	70	-2573;	110	$\cdot 40441$	150	-55147	190	$\cdot 69853$
31	$\cdot 11397$	71	-26103	111	-40809	151	-5551 5	191	-70221
32	$\cdot 11765$	72	-26470	112	$\cdot 41176$	152	-55882	192	-70588
33	-12132	73	-26838	113	-41544	153	-5625	193,	$\cdot 70956$
34	-125	74	-27206	114	-41912	154	-56617	194	-71323
35	$\cdot 12867$	75	-27573	115	-42273	155	-56985	195	-71691
36	-13235	76	-27941	116	-42647	156	-57353	196	$\cdot 72059$
37	-13604	77	-28309	117	-43015	157	- 57721	197	$\cdot 72426$
98	-13970	78	-28676	118	-43382	158	-58088	198	$\cdot 72794$
39	-14338	79	-29044	119	$\cdot 4375$	159	- 58456	199	73162
40	-14706	80	'29412	120	-44117	160	. 58823	200	$\cdot 73529$

Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.
201	-73897	216	$\cdot 79412$	231	-84996	245	$\cdot 90073$	259	-9522]
202	$\cdot 74265$	217	$\cdot 79779$	232	-85294	246	-90441	260	- 50588
203	$\checkmark 74632$	218	-80147	233	-85662	247	-90809	261	-95956
204	$\cdot 75$	219	-80515	234	-86029	248	-91176	262	$\cdot 96323$
205	$\cdot 75367$	220	80852	235	-86397	249	$\cdot 91544$	263	$\cdot 96691$
206	$\cdot 75735$	221	-8125	236	-86765	250	-91912	264	-97059
207	-76103	222	-81617	237	-87132	251	-92279	265	-97426
208	-76470	223	-81985	238	-875	2.52	-92647	266	-97794
209	$\cdot 76838$	224	-82353	239	-87867	253	-93015	267	-98162
210	$\cdot 77206$	225	-82721	240	-88235	254	-93382	268	$\cdot 98529$
211	$\cdot 77573$	226	-83088	241	-88604	255	-9375	269	-98897
212	-77941	227	-83456	242	-88970	2.56	-94117	270	. 99265
213	$\cdot 78309$	228	-83823	243	-89338	257	-94485	271	-99632
214	-78676	229	-84191	244	-89706	258	-94853	272	$1 \cdot 00000$
215	$\cdot 79044$	230	-84559						

2321. The subjoined table shows the number of plaintiles or pantiles required to cover any area from 1 to 10,000 feet.

Fect superficial.	Plaintiles.			Pantiles.		
	Gauges.			Gauges.		
	6 inches.	$6 \frac{1}{2}$ inches.	7 inches.	11 inclies.	12 inches.	13 inches.
1	$7 \frac{1}{2}$	7	$6{ }_{2}^{1}$	$1 \frac{2}{3}$	$1 \frac{1}{2}$	$1 \frac{1}{3}$
2	15	14	13	$3 \frac{1}{3}$	3	$2 \frac{2}{3}$
3	$22 \frac{1}{2}$	21	1912	5	$4 \frac{1}{2}$	4
4	30	28	26	$6 \frac{2}{3}$	6	$5 \frac{1}{3}$
5	$37 \frac{1}{2}$	35	$32 \frac{1}{2}$	$8 \frac{1}{3}$	$7 \frac{1}{2}$	$6 \frac{2}{3}$
6	45	42	39	10	9	8
7	$52 \frac{1}{2}$	49	$45 \frac{1}{2}$	113	$10!$	$9!$
8	60	56	52	$13 \frac{1}{3}$	12	10_{3}^{2}
9	$67 \frac{1}{2}$	63	$58 \frac{1}{2}$	15	$13 \frac{1}{2}$	12
10	75	70	65	$16 \frac{2}{3}$	15	$13 \frac{1}{3}$
20	150	140	130	331	30	$26 \frac{2}{3}$
30	22.5	210	195	50	45	40
40	300	280	260	66_{3}^{2}	60	$53 \frac{1}{3}$
50	375	350	325	$83 \frac{1}{3}$	75	66^{2}
60	450	420	390	100	90	80
70	525	490	455	$116 \frac{2}{3}$	105	$93 \frac{1}{3}$
80	600	560	520	$133 \frac{1}{3}$	120	$106 \frac{2}{3}$
90	675	630	585	150	135	120
100	750	700	650	$166{ }_{3}^{2}$	150	$13.3 \frac{1}{3}$
200	1500	1400	1300	3331	300	$266{ }^{2}$
300	2250	2100	1950	500	450	400
400	3000	2800	2600	666_{3}^{2}	600	$5333 \frac{1}{3}$
500	3750	3500	3250	$833 \frac{1}{3}$	750	$666{ }_{3}^{2}$
600	4500	4200	3900	1000	900	800
700	5250	4900	4550	$1166{ }_{3}^{2}$	1050	$933 \frac{1}{3}$
800	6000	5600	5200	$1533 \frac{1}{3}$	1200	10663
900	6750	6300	5850	1500	1350	1200
1000	7500	7000	6500	16662	1500	13331
2000	15000	14000	13000	$3333 \frac{1}{3}$	3000	$2666{ }^{2}$
3000	22500	21000	19500	5000	4500	4000
4000	30000	28000	26000	$6666{ }_{3}^{2}$	6000	$5333 \frac{1}{3}$
5000	37500	35000	32500	$8333 \frac{1}{3}$	7500	$6666 \frac{2}{3}$
6000	45000	42000	39000	10000	9000	8000
7000	52500	49000	45500	11666_{3}^{2}	10500	9333 ${ }^{\frac{1}{3}}$
8000	60000	56000	52000	$133331 \frac{1}{3}$	19000	$10666 \frac{1}{3}$
9000	67500	63000	58500	15000	13500	12000
10000	75000	70000	6.5000	: $6666{ }_{3}^{2}$	15000	$133331 \frac{1}{3}$

The use of the foregoing tables it can searcely be necessary to explain, They are such as to indicate, on inspection, their value; and we slall therefore leave them without further comment for their application.
2329. When work is performed by the day, or the materials used are to be numbered, as ofttimes necessarily occurs, fire bricks, red rubbers, best marle stocks for cutters, second best ditto, pickings, common bricks, place bricks, paving bricks, kiln-burnt bricks, and Dutch clinkers are charged by the thousand.
2323. Red rubbers, kiln and fire-burnt bricks, are also charged by the bundrel. Foot tiles and ten inch tiles are charged either by the thousand or hundred.
2324. Sunk foot tiles and ten-inch tiles with tive holes, now never used in the south of England, are charged by the piece.
2395. Pantiles, plaintiles, and nine-inch tiles are charged by the thousand.
2326. Oven and Welsh oven tiles, Welsh fire lumps, fire bricks, and chimney pots are also sold by the piece.
2327. Sand, clay, and loam are charged by the load; lime sometimes by the hundred weight: but the hundred of 100 pecks is the more usual measure in and about the metropolis. Dutch terras is charged by the bushel, which is alsor sometimes the measure of lime. Portland and other cements are similarly charged. Plaster by the bag.
2:398. Pantile and plaintile laths are charged by the bunde or load; hair and mortar by the load; hip hooks and T tiles by the piece.

2929 Neither here, nor in the following pages, is it intended to convey to the reader more than the principles on which an estimate is fuunded. The prices of materials are in a state of eonstant fluctuation; something approaeling a constaut value, from the known performance of a good workman, was given in the previons editions from the computations of Peter Nicholson, but tl ey are now omitted. Wood working machinery has also altered the values very materially.

CARPENTRY AND JOINERY.

2330. The works of the Canpenten are the preparation of piles, sleepers, and planking, and other large timbers, formerly much, but now rarely, used in foundations; the centering on which vaults are turned; wall phates, lintels, and bond timbers; naked flooring, quarter partitions, roofing, battening to walls, ribbed ceilings for the formation of vaulting, coves, and the like in lath and plaster, posts, \&c.
2331. In large measures, where the quantity of materials and workmanship is uniform, the articles are usually measured by the square of 100 feet. Piles should be measured by the foot cube, and the driving by the foot run according to the quality of the ground into which they are driven. Sleepers and planking are neasured and estimated by the foot, yard, or the square.
2332. Plain centering is measured by the square; but the ribs and boarding, being different qualities of work, should be taken separately. girting round the arel, and multiplying by the length. The dimensions are oitained hy Where groins occur, besides the measurement as above, the angles must be measured by the foot run, that is, the ribs and boards are to be measured and valued separately, according to the exact superficial contents of each, and the angles by the linear foot, for the labour in fitting the ribs and hoards, and vaste of wood.

2:333. Wiall plates, bond timbers, and lintels are measured by the cubic foot, and go under the denomination of fir in bond.
2334. In the measurement and valuation of naked flooring, we may take it either by the square or the cube foot. To form an idea of its value, it is to be observed, that in equal cubic quantities of small and large timbers the latter will have more superficies than the former, whence the saving is not in proportion to the solid conitents; and the value, therefore, of the workmanshn, will not be as the cubic quantity. The trouble of moving timbers increases with their weight, hence a greater expenditure of time; which, though not in an exact ratio with the solid quantity, will not be vastly different, their sections not varying considerably in their dimensions. As the value of the saving upon a cube foot is comparatively small to that of the work performed by the carpenter, the whole cost of labour and materials may be ascertained with sufficient accuracy when the work is uniform.
2335. When girders occur in naked flooring, the uniformity of the work is thereby interrupted by the mortices and tenons which become necessary; thus the amount arising from the cubic quantity of the girders would not be sufficient at the same rate per foot as is put on the otlier parts, not only because of the difference of the size, but because of the mortices which are cut for the reception of the tenons of the binding joists. Hence. for valuing the labour and materials, the whole should be measured and valued by the cubie quantity, and an adilitional rate must be put upon every solid foot of the girders; or, if the binding joists be not inserted in the girders at the usual distances, a lixed price must be put upon esery mortice and tenon in proportion to their siz', The binding joists are
not unfrequently pulley or chase-mortised for the reception of the ceiling joists; sometimes they are notched to receive the bridging joists on them, and they should therefore be classed by themselves at a larger price per foot cube, or at an additional price for the workmanship, beyoud common joisting. All these matters must be in proportion to the description of the work, whether the ceiling joists be put in with pulley mortises and tenons, or the bridgings notched or adzed down.
2336. Partitions may be measured and estimated by the cube foot; but the sills, top pieces, and door heads should be measured by themselves, according to their cubic contents, at a larger price; because not only the uniform solidity, but the uniform quantity, of the workmanship is interrupted by them. The braces in trussed partitions are to be taken by the foot cube at a larger price than the common quartering, on account of the trouble of fitting the ends of the uprights upon their upper and lower sides, and of forming the abutments at the ends.
2337. All the timbers of roofing are to be measured by the cubic foot, and classed according to the difficulty of execution, or the waste that occurs in performing the work. Common rafters, as respects labour, are rated much the same as joists or quarters; purlins, which require trouble in fitting, are worth more, berause on them are notehed down the common rafters. The different parts of a truss should, to come accurately at the true value, be separately taken, and the joggles also separately considered, including the tenons at the ends of the struts; mortising tie beams and principals, forming the tenons of the truss posts; mortising and tenoning the ends of the lie beams and principals; also the work to the feet of common or bridging rafters. The iron strapping is paid for according to the number of the bolts.
2338. The battening of walls are measured ly the square, according to the dimensions and distances of the battening.
2339. Ribbed ceilings are taken by the cubic quantity of timber they contain, making due allowance for the waste of stuff, which is often considerable. The price of their labour is to be orlered by the nature of the work, and the cubic quantity they contain.
2340. Trimmers and trimming joists are so priced as to include the mortises and tenons they contain, and also the tenons at the extremities of the trimmers. But to specify all the methods required of ascertaining the value of each species of carpenters work would ie impossible, with any respect to our limits. They must be learned by observation; all we have to do is with the prin iples on which measuring and estimating is conducted.
2341. When the carcass of the building is completed, before laying the floors or lathing the work for receiving the plastering, the timbers should be measured, so that the scantlings may be examined and proved correct, according to the specification; and in this, as a general rule, it is to be remembered that all pieces having tenons are measured to their extremities, and that such timbers as girders and binding joists lie at least 9 inches at their ends into the walls, or $\frac{1}{3}$ of the wall's thickness, where it exceeds 27 inches. In the measurement of bond timber and wall plates, the laps must be-added to the net lengths. If a necessity occur for cutting parallel pieces out of truss posts (such as king or queeupasts), when such pieces exceed 2 feet 6 iuches in length, and $2 \frac{1}{2}$ inches in thickness, they are considered as pieces fit for use, deductiug 6 inches as waste from their lengths.
2342. The boarding of a roof is measured by the square, and estimated according to its thickness, and the quality of boards and the manner in which they are jointed.
2343. Where the measurement is for labour and materials, the best way is, first, to find the cubical contents of a piece of carpentry, and value it by the cubic foot, including the prime cost, carting, sawing, waste, and carpenter's profit, and then to add the price of the labour, properly measured, as if the journeyman were to be paid. It is out of the question to give a notion of any fixed ralue, because it must necessarily vary, as do materials and labour. The only true method of forming a proper estimate is dependent on the price of timber and deals, for which general tables may be formed.
2344. A load of fir timber contains 50 cube fret: if, then, the price of a load is known in the timber merchant's yard, the approximate value of a cube foot is found as under; say, if taken at $4 l .10 \mathrm{~s}$. per load, then -

2345. Now, ${ }_{50}^{66.189 .6 \pi}=2.77$ shiilings, or 2 shillings and 9 pence and nearly 1 farthing por foot cube.

2346-50. It is only in this way that the value of work can be arrived at; it is much to be regretted that from no species of labour of the carpenter have been formed tables capable of furnishing such a set of constants as would, by application to the rate of a journeyman's wages, form factors, or, in other words, furnish data for a perpetual pricebook. As we have before linted, the best of the price-books that have ever been published are useless as guides to the value of work. The merhod of lumping work by the square is as much as possible to be avoided, unless the surfaces be of a perfectly uniform description of workmanship; as, fur instance, in hipped roofs, the principal trouble is at the hips, in fitting the jack rafters, which are fixed at equal distances thereou; hence such a price may be fixed for the cubic quantity of hips and valleys as will pay not only for them, but also for the trouble of cutting and fixing the jack rafters. Such parts, indeed, as these should be separately classified; but the analysis of such a sulject requires investigation of enormous labour ; and as it must depend on the information derived from the practical carpenter, is, we fear, not likely to be soon, if ever, accomplished.
2351. The works of the Joiner consist in the preparation of boarding, which is measured and estimated by the foot superticial. Of this there are many rarieties; as, eiges shot; edges shot, ploughed, and tongued; wrought on one side and edges shot; the same on both sides and edges shot; wrought on both sides and ploughed and tonguel. Buards keyed and clamped; mortise clamped, and mortise and mitre clamped. The value per foot increases according to the thickness of the stuff. When longitudinal joints are glued, an addition per foot is made; and if feather-tongued, still more.

235\%. The measurement and estimation of floors is by the square, the price varying as the surface is wrought or plain; the method of connecting the longitudinal and heading joints, and also on the thickness of the stuff; as well as on the circumstance of the boards leing laid one after another or fulded; or whether laid with boards, battens, wainscot, or other wood. Skirtings are measured by the foot super, according to their position, as whether level, raking, or ramping. Also on the manner of finishing them, as whether plain, torus, rebated, scribed to floors or steps, or whether straight or circular on the plan.
2353. The value of every species of framing must depend on the thickness of the stuff employed, whether it is plain or moulded; and if the latter, whether the mouldings be struck on the solid, or laid in ; whether mitred or scribed, and upon the number of panels in a given beight and breadth, and also on the form of the plan.
2354. Wainsrotings, window-linings, as backs and elbows; door linings, such as jamlis and sufites, with their framed grounds; back linings, partilions, doors, shatters, and the like, are all measured and valued by the foot super. 'I he same mode is applied to sashes and their frames, either together or separately.
2355. Skylights, the prices whereof depend on their plans and elerations, are also measured by the font super.
2356. The ralue of dado, whieh varies as the plan is straight or circular or being level or inclined, is measured by the foot super.
2357. In the measurement of staircases, the risers, treads, carriages, and brackets are, after being classed together, neasured by the foot super, and the string board is sometimes included. The ralue raries as the steps may be flyers or winders, or from the risers being mitred into the string board, the treads dovetailed for balusters and the no sings retur::ed, or whether the bottom edges of the risers are tongued into the step. The curtail step is ralned by itself, and returned nosings are sometimes valued at the piece; and if they are circular on the plan, they are charged at double the price of straight ones. The handrail, whose valne depends upon the materials and diameter of the well hole, or whether ramped, swan-neeked, level, circular, or wreathed; whether got ont of the solid, or in thicknesses glued up together, is measured by the foot run. The scroll is charged by itself, as is the making and fixing each joint screw, and 3 inches of the straight part at each end of the wreath is measured in. The deal balusters, as also the iron ones and the iron columns to curtail, housings to steps and risers, common cut brackets, square and circular on the plan, together witn the preparing and fixing, are valued all by the piece. Extrit sinking in the rail for iron balusters is valued by the foot run, the price depending on the rail, as being straight, circular, wreathed, or rampod. The string board is meanured by the foot super, and its value is greater or less as it is mon'ded, straight, or wreathed, or according to the method in which the wreathed string is constructed by being properly backed upon a cylinder.

2\%58. The shafts of columns are measured by the foot super., their value depending upon the aiameter, or whether it be straight or curved on the side, and upon its being properly glued and blocked. If the columns be fluted, the flutes are taken in linear measure, the price depending on the size of the flutes, whose headings at top and bottom are charged by the piece. Pilasters, straight or curved in the height, are similarly measured, and the price taken by the foot super. In the caps and bases of pilasters, besides the mould'ngs, the mitres are charged so much each, according to the size.
2959. Mouldings, as in double-face architraves. base and surbase, or straight ones struck by the hand, are valued by the foot super. Base, surbase, and straight mouldings wrought by band, are generally fixed at the same rate per foot, being something more than doublefaced arelitraves. When the head of an arehitrave stands in a circular wall, its value is four times that of the perpendicular parts as well on accomut of the extra time required to fit it to the cercular plan as of the greater difficulty in forming the mitres. So all horizontal mouldings on a circular plan are three or four times the value of those on a straight plan, the trouble being increased as the radius of the circle upon which they are formed diminishes. The housings of monldings are valued by the piece. The value of mouldings much depends on the number of their quirks. for each whereof the price increases. It will aho, of course, depend on the materials of wincls they are formed, on their running figure. and whether raking or curved.
2360. Among the articles which are to be measured by the lineal foot are beads, fillets, bead or ogee capping, square angle staffs, inch ogees, inch quirk ogee, ovolo and bead. astrag is and reeds on doors or shutters, small reeds, each in reeded mouldings, struck ly land up to half an inch, single cornice or architrave, grooved space to let in reeds and grooves. And it must be observed, that in grooving, stops are paid extra; if wrought by hand, still more; and yet more if circular. Besides the foregoing, narrow grounds to shirting, the same rebated or framed to chimneys, are measured by the foot run. Rule joints, cantilevers, trusses, and cut brackets for shelves are charged by the piece. Water trunks are value accorling to their size by the foot run, their hopper heads and shoes being valued by the piece. Moulded weather caps and joints by the piece. Scatfolding, where extra, must be allowed for.
2361. Flooring boards are prepared according to their length, not so much each; the standard width is 9 inches; if they are wider, the rate is increased, each board listing at so much per list. Battens are prepared in the same way, but at a different rate.
23362. The following memoranda are useful in estimating: -

1 hundred (120) 12 -feet- 3 -inch deals, 9 inches wide (each deal containing, therefore, 2 feet 3 inches cube), equal 5_{5}^{2} loads of timber.
1 hundred (120) 12 -feet- $2 \frac{1}{2}$-inch deals, 9 inches wide (each deal containing, therefore, 1 foot 10 inches cube), equal $4 \frac{1}{2}$ loads of timber.
1 hundred (1.20) 12 -feet $-1 \frac{1}{2}$-inch deals equal 1 reduced hundred.
1 load of $1 \frac{1}{2}$-inclr plank, or deals, is 400 feet superficial.
1 load of Q-inch plank, or deals, is 300 feet superficial.
And so on in proportionl.
Twenty-four 10 -feet boards, at a 5 -inch guage, will finish one square.
Twenty 10 -feet boards, at 6 . inch guage, will finish one square.
Serenteen 10 -feet boards, at a 7 -inch guage, will finish one square.
lifteen 10 -feet boards, at an 8 -ineli guage, will finish one square.
Thirteen 10 -feet boards, and 2 lt .6 in . super, at a 9 -inch guage, will finish one square.
Twelve 10 -feet boards, and 2 ft .6 in super, at a 10 -inch guage, will finish one square.
Twenty 12 -feet bourds, at a 5 -incor guage, will finish one square.
Sixteen 12 -feet boards, at a 6 -inch guage, will fini-h one square.
Fourteen 12-feet boards, at a 7 -inch guage, will finish one syuare.
Twelve 12 -feet hoards and 4 feet super., at an 8 -inch guage, will finish one square.
Eleven 12 -feet boards, and 1 foot super., at a 9 -inch guage, wil! finislo one spuare.
Ten 12 -feet boards, and 1 foot super., at a 10 -inch guage, will finish one square.
Battens are 6 inches wide.
Deals are 9 inches wide.
Ilanks are 11 inches wide.
Feather-edged deals are equal to 3 -inch yellow deals; if white, equal to slit deal.
A reduced deal is $1 \frac{1}{2}$-inch think, 11 inches wide, and 12 feet long.
2363. It may here be useful to advert to the mode of reducing deals to the standard of what is called a reduced deal, which evidently contains 1 ft .4 in .6 parts cule; for 12 it . $\times 11 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in} .=1: 4 \cdot 46$, or in decimals, $12 \mathrm{ft} . \times 91666 \mathrm{ft} . \times 125 \mathrm{ft}=1 \cdot 375$ cube tit. nearly. Hence the divisor 1.375 will serve as a constant for reducing deals of different lengths and thicknesses. Thus let it be required to find how many reduced deals there are in one 14 leet long, 10 inches wide, and $2 \frac{1}{2}$ mehes tinck. Here $14 \mathrm{ft} . \times 8333 \mathrm{ft}$. (or 10 in .) $\times \cdot 20833\left(\right.$ or $2 \frac{1}{2} \mathrm{in}$. $)=2 \cdot 43042$ cube feet, and $\frac{2 \cdot 43042}{1 \cdot 373}=1 \cdot 767$ reduced deal.
2364. The table which is now suljoined exhibits the prices of deals and parts thereot calculated from $30 l$. to 95%, per hundred, a range of value out of which it can rarely happen that examples will occur, though it has fallen within our own experience during the late war to see the price of deals at a very extraordinary height. This, however, is not likely to happen again. The elements on which it is based are -

First. Price of deals, each being 12 feet long, three inches thick, 10 inehes wide. Then from $\frac{302}{120}$. we have the prime cost of each deal Second. Profit on prime cost, 15 per cent.
Third. Planing both sides and waste, the former a constant depending on the price of labour (say 5s. per day used in the table), and the latter a variable, increasing with the cost price of the material
0.8333
$6 s .7 l l$ as in the table for a 12 feet deal $=\overline{65833}$
In the third element a constant (the planing) being involved and a nariable (the waste) increasing with the cost of the material, the latter was eliminated by experiment and found equal to 9166 shilling for every 10 l . upwards of the price per hundred of the deals.

The width of the raming foot is 9 inches. For instance at 451 . per cent, the cost of a foot super. $(=144 \mathrm{in})=.1 \cdot 25 \mathrm{~s} .=1 \mathrm{~s} .3 \mathrm{~d}$. and of a foot run 9375 shilling $=11 \frac{1}{2} d . \therefore \frac{(1 \cdot 2 ;}{1 \%}$ $=9$ inches This table is applicable purely to joinery.

		10 feet long.	12 feet lons each	$\begin{aligned} & \text { 11 fiet et } \\ & \text { lonk. } \\ & \text { each. } \end{aligned}$	Per foot run.	Fer font suluer.			10 f.et long tach.	12 feet lonh.	11 feet pory	$\begin{gathered} \text { Per foot } \\ \text { unno } \end{gathered}$	Fer foct sujer.
- \%				$\begin{array}{ll} s . & 1 \\ 1 & 1 \\ 2 & 1 \\ 2 & \frac{1}{4} \\ 2 & 10 \frac{1}{4} \\ 3 & 6 \\ 4 & 6 \frac{1}{2} \\ 4 & 1 \frac{1}{4} \\ 5 & 4 \\ 6 & 7 \frac{1}{1} \\ 7 & 8 \frac{1}{4} \end{array}$	$\begin{array}{ll} 0 & d . \\ 0 & 2 \\ 0 & 2 \frac{1}{4} \\ 0 & 3 \\ 0 & 3 \frac{1}{2} \\ 0 & 4 \frac{1}{2} \\ 0 & 5 \frac{1}{4} \\ 0 & 6 \frac{\pi}{4} \\ 0 & -\frac{1}{2} \end{array}$	$\begin{array}{ll} s . & d . \\ 0 & \frac{21}{3} \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \frac{3}{3} \\ 0 & 4 \frac{3}{7} \\ 0 & 5 \frac{1}{2} \\ 0 & 7 \\ 0 & 8 \frac{3}{4} \\ 0 & 10 \end{array}$	管		$\begin{array}{ll} s & d \\ 2 & 7 \frac{1}{4} \\ 3 & 1 \frac{3}{3} \\ 3 & 11 \frac{1}{4} \\ 5 & 6 \frac{3}{4} \\ 6 & 0 \\ 7 & 9 \frac{\pi}{4} \\ 9 & 9 \\ 11 & 6 \frac{3}{4} \end{array}$	$\begin{array}{cc} s . & d \\ 3 & 1 \frac{1}{12} \\ 3 & 1: \frac{1}{2} \\ 4 & 11 \\ 6 & 6 \frac{\pi}{2} \\ 7 & : \frac{1}{2} \\ 9 & 4 \frac{1}{2} \\ 11 & 8 \frac{1}{4} \\ 13 & 16 \frac{1}{2} \end{array}$	$\begin{array}{rr} s . & d . \\ 3 & 7 \frac{3}{4} \\ 4 & 5 \\ 5 & 1 \frac{3}{4} \\ 7 & 0 . \frac{3}{4} \\ 8 & 5 \\ 10 & 1 \frac{1}{4} \\ 13 & 5 \frac{1}{4} \\ 16 & 2 \frac{1}{4} \end{array}$	$\begin{array}{ll} s . & d \\ 0 & 3 \frac{1}{2} \\ 0 & 4 \\ 0 & 4 \frac{1}{2} \\ 0 & 5 \\ 0 & 7 \\ 0 & 7 \\ 0 & \\ 0 \frac{1}{4} \\ 0 & 11 \\ 1 & 1 \frac{1}{2} \\ 1 & 4 \end{array}$	
${ }_{\text {¢ }}^{\text {¢ }}$	$\begin{aligned} & \frac{1}{\frac{1}{2}} \\ & 1^{4} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & 2 \frac{1}{2} \\ & 3 \end{aligned}$	$\begin{array}{ll} 1 & 6 \frac{0}{3} \\ 1 & 10 \frac{1}{2} \\ 2 & 4 \\ 2 & 40 \frac{1}{2} \\ 3 & 10 \\ 4 & 5 \\ 4 & 23 \\ 5 & 3 \\ 6 & 4 \frac{3}{3} \\ 6 & 4 \frac{3}{4} \end{array}$	$\begin{array}{lll} 1 & 10 \frac{1}{2} \\ 2 & 0 & \frac{2}{2} \\ 2 & 0 \frac{1}{1} \\ 3 & 5 & \frac{1}{2} \\ 4 & 1 \\ 5 & 2 \\ 6 & 2 & 5 \frac{3}{2} \\ 7 & 7 \frac{1}{2} \end{array}$	$\begin{array}{ll} 2 & 2 \frac{2}{2} \\ 2 & 7 \\ 3 & 7 \\ 3 & 3 \frac{1}{4} \\ 4 & 0 \frac{1}{2} \\ 4 & 9 \\ 6 & 0 \frac{1}{4} \\ 7 & 06 \frac{1}{2} \\ 8 & 10 \frac{1}{3} \end{array}$	$\begin{array}{ll} 0 & 2 \frac{2}{2} \\ 0 & 2 \frac{2}{2} \\ 0 & 3 \frac{1}{4} \\ 0 & 4 \\ 0 & 4 \frac{3}{4} \\ 0 & 0 \\ 0 & 7 \frac{1}{2} \\ 0 & 9 \end{array}$	$\begin{array}{ll} 0 & 3 \\ 0 & 3 \frac{2}{2} \\ 0 & 4 \frac{2}{2} \\ 0 & 5 \\ 0 & 5 \frac{2}{2} \\ 0 & 1, \frac{1}{4} \\ 0 & 8 \\ 0 & 10 \\ 0 & 11 \\ \hline & 1 \frac{3}{4} \end{array}$	${ }_{8}^{8}$	$\begin{aligned} & \frac{1}{\frac{1}{3}} \\ & 1^{4} \\ & 1 \frac{1}{1} \\ & 1 \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{2 \frac{1}{2}}{3} \end{aligned}$	$\begin{array}{rr} 2 & 9 \frac{1}{4} \\ 3 & 4 \frac{1}{4} \\ 4 & 4 \frac{1}{2} \\ 5 & 5 \\ 6 & 5 \frac{3}{4} \\ 8 & 5 \frac{3}{4} \\ 12 & 65^{\frac{1}{4}} \end{array}$	$\begin{array}{rl} 3 & 4 \\ 4 & 0 \frac{1}{2} \\ 5 & 3 \\ 6 & 6 \\ 7 & 8 \frac{3}{3} \\ 10 & 2 \frac{1}{4} \\ 12 & \aleph^{8} \\ 14 & 11 \end{array}$	$\begin{array}{cc} 3 & 10 \frac{3}{3} \\ 4 & \times \frac{1}{2} \\ 6 & 1 \frac{1}{3} \\ 7 & 7 \\ 9 & 0 \\ 11 & 10 \frac{1}{2} \\ 14 & 9 \frac{1}{2} \\ 17 & 5 \end{array}$	$\begin{array}{ll} 0 & 3 \frac{3}{3} \\ 0 & 4 \\ 0 & 4 \\ 0 & 6 \\ 0 & 6 \frac{1}{2} \\ 0 & 6 \\ 0 & 11 \\ 0 & 11 \\ 1 & 2 \frac{3}{2} \\ 1 & 5 \end{array}$	
\%	$\begin{aligned} & \frac{1}{3} \\ & 1^{\frac{3}{4}} \\ & 1 \frac{1}{4} \\ & 1 \frac{1}{2} \\ & 22^{2 \frac{1}{2}} \end{aligned}$		$\begin{array}{cc} 2 & 1 \\ 2 & 5 \frac{1}{3} \\ 3 & 2 \\ 3 & 10^{3} \\ 4 & 6 \frac{1}{4} \\ 5 & 11^{\frac{1}{7}} \\ 7 & 5 \\ 8 & 8 \end{array}$	$\begin{array}{rrr} 2 & 5 \frac{2}{3} \\ 2 & 10 \frac{1}{4} \\ 3 & 8 \frac{1}{2} \\ 4 & 6 \frac{1}{2} \\ 5 & 4 \frac{1}{2} \\ 6 & 11 \frac{3}{8} \\ 8 & 8 \\ 10 & 1 \frac{1}{4} \end{array}$	$\begin{array}{ll} 0 & 2 \frac{1}{2} \\ 0 & 3 \\ 0 & 3 \\ 0 & : 3 \frac{3}{3} \\ 0 & 4 \frac{1}{4} \\ 0 & 5 \frac{1}{2} \\ 0 & 7 \\ 0 & 8 \\ 0 & 80 \end{array}$		\%	$\begin{aligned} & \frac{1}{\frac{2}{2}} \\ & 1^{\frac{1}{4}} \\ & 1 \frac{1}{4} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{2 \pi}{2} \end{aligned}$		$\left\|\begin{array}{cc} 3 & \left(\frac{1}{3}\right. \\ 4 & 3 \frac{3}{3} \\ 5 & 7 \frac{1}{2} \\ 6 & 1 \frac{3}{7} \\ 8 & 3 \\ 10 & 1 \\ 13 & \frac{3}{7} \\ 15 & 11^{\frac{3}{2}} \end{array}\right\|$		$\begin{array}{lc} 0 & 4 \\ 0 & 5 \\ 0 & 6 \frac{1}{4} \\ 0 & x \\ 0 & 9 \frac{1}{4} \\ 1 & 0 \\ 1 & 0 \frac{3}{4} \\ 1 & 6 \frac{3}{4} \end{array}$	
*		$\begin{array}{ccc}1 & 11 \\ 2 & 3 \\ 2 & 3 \\ 3 & 1 \\ 3 & 7 \frac{1}{1} \\ 4 & 3 \\ 4 & 3 \frac{1}{3} \\ 5 & 7 \\ 6 & 71 \\ 8 & 1 \\ 8 & 1\end{array}$	2 $3 \frac{1}{2}$ 2 9 3 $6 \frac{1}{4}$ 4 4 5 $1 \frac{1}{4}$ 6 $7 \frac{2}{3}$ 8 $3 \frac{1}{2}$ 9 $8 \frac{1}{2}$	$\begin{array}{cc} 2 & 8 \\ 9 & 2 \frac{1}{2} \\ 4 & 1 \frac{12}{4} \\ 5 & 00 \frac{1}{4} \\ 5 & 1 \frac{1}{7} \\ 8 & 11 \\ 9 & 8 \\ 11 & 4 \end{array}$	$\begin{array}{ll} 0 & 2 \frac{3}{4} \\ 0 & 3 \frac{3}{4} \\ 0 & 4 \\ 0 & 5 \\ 0 & 6 \\ 0 & 7 \frac{3}{3} \\ 0 & y \frac{1}{4} \\ 0 & 11 \frac{1}{4} \end{array}$	$\begin{array}{cc} 0 & 3 \frac{1}{2} \\ 0 & 4 \frac{1}{2} \\ 0 & 5 \frac{1}{2} \\ 0 & 6 \frac{2}{2} \\ 0 & 8 \\ 0 & 10 \frac{1}{2} \\ 1 & \frac{1}{4} \\ 1 & 3 \end{array}$	\%	$\begin{aligned} & \frac{1}{4} \\ & \frac{1}{4} \\ & 1^{4} \\ & 1 \frac{2}{4} \\ & 1 \frac{1}{2} \\ & 2 \\ & 2 \frac{2}{4} \\ & 3 \end{aligned}$	$\begin{array}{cc} 3 & 1 \frac{1}{3} \\ 3 & 10^{2} \\ 4 & 11 \\ 6 & 1 \frac{1}{3} \\ 7 & 3 \frac{3}{3} \\ 9 & 7 \frac{1}{2} \\ 13 & 1 \frac{12}{2} \\ 14 & 2 \end{array}$				
\%	$\left\{\begin{array}{l} \frac{1}{\frac{2}{4}} \\ 1^{\frac{1}{4}} \\ 1 \frac{2}{1} \\ 2^{\frac{1}{2}} \\ 2 \frac{1}{2} \\ x^{2} \end{array}\right.$	$\begin{array}{ll} 2 & 1 \frac{1}{2} \\ 2 & 6 \\ 3 & 6 \\ 3 & 2 \frac{1}{2} \\ 3 & 11 \frac{1}{2} \\ 4 & 8 \frac{1}{2} \\ 65 & 2 \frac{1}{2} \\ 7 & 6 \\ 8 & 1 \frac{1}{4} \end{array}$	$\begin{array}{cc} 2 & 6 \\ 3 & 0 \\ 3 & 0 \\ 3 & 0 \frac{1}{4} \\ 4 & 9 \\ 5 & 7 \frac{3}{7} \\ 7 & 5 \\ 9 & 2 \\ 10 & 9 \end{array}$	$\begin{array}{rl} 2 & 11 \\ 3 & 6 \\ 4 & 6 \\ 5 & 6 \frac{1}{2} \\ 6 & 7 \\ 8 & 7 \frac{1}{4} \\ 10 & 8 \\ 12 & 6 \frac{1}{2} \end{array}$	$\begin{array}{lll} 0 & 3 \\ 0 & 3 \frac{1}{2} \\ 0 & 1 \frac{1}{2} \\ 0 & 5 \frac{1}{2} \\ 0 & 6 \frac{1}{2} \\ 0 & 8 \frac{2}{2} \\ 0 & 11 \frac{1}{4} \\ 1 & 0 \frac{1}{2} \end{array}$	$\begin{array}{cc}0 & 4 \\ 0 & 4 \frac{3}{3} \\ 0 & 1 \\ 0 & 7 \frac{1}{3} \\ 0 & 8 \\ 0 & 8 \frac{1}{3} \\ 0 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & 4 \frac{1}{2} \\ & \end{array}$	$\stackrel{\dot{8}}{\substack{4 \\ 4 \\ \hline}}$	$\begin{aligned} & \frac{2}{2} \\ & 1_{\frac{1}{4}}^{3} \\ & 1 \frac{1}{1} \\ & 1 \frac{1}{4} \\ & 2 \\ & \frac{21}{9} \\ & 3 \end{aligned}$	$\begin{array}{rc} 3 & 4 \\ 4 & 0 \frac{1}{4} \\ 5 & 3 \frac{1}{4} \\ 6 & 6 \\ 7 & 9 \\ 10 & 2 \\ 12 & 8 \\ 14 & 11 \frac{1}{2} \end{array}$	$\begin{array}{rl} 3 & 11 \frac{1}{2} \\ 4 & 10 \\ 6 & 3 \\ 7 & 3, \\ 7 & 9, \\ 9 & 3 \frac{1}{2} \\ 12 & 3 \\ 15 & 2 \frac{1}{2} \\ 18 & 0 \frac{1}{2} \end{array}$	$\begin{array}{cc} 4 & 8 \\ 5 & 7 \frac{3}{3} \\ 7 & 4 \frac{1}{2} \\ 9 & 1 \\ 10 & 10 \\ 14 & 3 \\ 18 & 0 \\ 21 & 0 \frac{1}{2} \end{array}$		
\%	$\begin{aligned} & 1 \frac{1}{2} \\ & 1 \frac{1}{2} \\ & 2 \\ & 2 \\ & 2 \frac{1}{2} \\ & 3 \end{aligned}$		$\begin{array}{rrr} 2 & 8 \frac{1}{3} \\ 3 & 3 \frac{1}{4} \\ + & 2 \frac{1}{2} \\ 5 & 2 \frac{1}{2} \\ 6 & 24 \\ 8 & 1 \\ 10 & 1 \\ 10 & 9 \frac{1}{2} \end{array}$	$\begin{array}{rl} 3 & 3 \\ 3 & 93 \\ 4 & 9 \frac{3}{7} \\ 6 & 1 \frac{1}{1} \\ 7 & 1 \frac{1}{2} \\ 9 & 5 \frac{1}{2} \\ 11 & 8 \frac{1}{2} \\ 13 & 9^{2} \end{array}$	$\begin{array}{ll} 0 & 3 \frac{1}{3} \\ 0 & 3 \\ 0 & 5 \\ 0 & 5 \\ 0 & 6 \\ 0 & 7 \frac{1}{4} \\ 0 & 9 \frac{1}{4} \\ 0 & 1 \\ 1 & 1 \frac{1}{3} \\ 1 & 1 \frac{3}{7} \end{array}$	$\begin{array}{lll} 0 & 4 \frac{1}{4} \\ 0 & 5 \\ 0 & 6 \frac{1}{2} \\ 0 & 8 \\ 0 & 9 \frac{1}{2} \\ 1 & 0 \frac{1}{2} \\ 1 & 3 \frac{1}{2} \\ 1 & 6 \frac{1}{3} \end{array}$	¢	$\begin{aligned} & \frac{1}{\frac{1}{3}} \\ & 1^{4} \\ & 1 \frac{1}{4} \\ & 1 \frac{1}{2} \\ & 2^{2 \frac{1}{2}} \\ & 3^{2} \end{aligned}$		$\begin{array}{cc} 4 & 2 \\ 5 & 1 \\ 6 & 73 \\ 8 & 7 \frac{3}{3} \\ 9 & 9 \frac{3}{3} \\ 12 & 11^{4} \\ 16 & 0 \frac{3}{4} \\ 19 & 1 \end{array}$	$\begin{array}{rl} 4 & 10 \frac{1}{2} \\ 5 & 11 \frac{1}{4} \\ 7 & 9 \\ 9 & 7 \frac{1}{2} \\ 11 & 5 \frac{1}{2} \\ 15 & 0 \frac{3}{4} \\ 18 & 9 \\ 22 & 3 \end{array}$	$\begin{array}{cc} 0 & 4 \frac{3}{2} \\ 0 & 5 \\ 0 & 5 \frac{3}{2} \\ 0 & 6 \\ 0 & 6 \frac{3}{3} \\ 0 & 11 \frac{1}{2} \\ 1 & 3 \\ 1 & 6 \\ & 6 \frac{1}{2} \\ & 10 \end{array}$	$\begin{array}{ccc}0 & 6 \frac{1}{4} \\ 10 & 7 \frac{3}{1} \\ 0 & 10 \frac{1}{4} \\ 1 & 1 \\ 1 & 3 \\ 1 & 3 \frac{1}{4} \\ 1 & 8 \\ 2 & 1 \\ 2 & 1 \frac{3}{4} \\ 2 & 3\end{array}$
\%	(${ }^{\frac{1}{2}}$		$\begin{array}{ccc}2 & 11 \\ 3 & 6 \frac{1}{4} \\ 4 & 7 \\ 5 & 7 \\ 6 & 8 \frac{3}{4} \\ 8 & 8 \\ 8 & 9 \\ 10 & 11 \\ 12 & 10\end{array}$	3 5 4 $1 \frac{1}{2}$ 5 $4 \frac{1}{4}$ 6 7 7 $\frac{3}{7}$ 10 $9 \frac{3}{3}$ 10 $2 \frac{1}{3}$ 12 11 $11 \frac{1}{4}$ 1	$\begin{array}{lll} 0 & 3 \frac{1}{2} \\ 0 & 4 \\ 0 & 5 \frac{1}{2} \\ 0 & 6 \frac{1}{3} \\ 0 & 7 \frac{3}{4} \\ 0 & 10 \frac{1}{2} \\ 1 & 01 \\ 1 & 2 \frac{1}{2} \end{array}$	$\begin{array}{ll}0 & 4 \frac{1}{2} \\ 0 & 5 \frac{1}{2} \\ 0 & 7 \\ 0 & 8 \frac{3}{3} \\ 0 & 10 \frac{1}{4} \\ 1 & 1 \\ 1 & 4 \frac{2}{2} \\ 1 & i \frac{7}{4}\end{array}$	呇	$\begin{aligned} & \frac{1}{2} \\ & 1^{\frac{1}{4}} \\ & 1 \frac{1}{1} \\ & 1 \frac{1}{2} \\ & 22_{2 \frac{1}{2}}^{2} \end{aligned}$		$\begin{array}{rr} 4 & 4 \frac{1}{2} \\ 5 & 4 \frac{1}{4} \\ 7 & 0 \\ 8 & 8 \\ 10 & 4 \\ 13 & 7 \frac{3}{2} \\ 16 & 10 \\ 20 & 1 \frac{1}{4} \end{array}$	$\begin{array}{rl} 5 & 1 \frac{1}{4} \\ 6 & 3 \\ 8 & 2 \\ 10 & 1 \frac{1}{4} \\ 12 & 0 \frac{0}{3} \\ 15 & 10^{3} \\ 19 & 9 \frac{1}{3} \\ 23 & 5 \frac{3}{2} \end{array}$	$\begin{array}{cc} 0 & 5 \\ 0 & 6 \frac{1}{2} \\ 0 & 8 \\ 0 & 10 \\ 1 & 0 \\ 1 & 0 \\ 1 & 3 \frac{3}{2} \\ 1 & 6 \frac{2}{2} \\ 1 & 10 \frac{1}{2} \end{array}$	$\begin{array}{cc}0 & 8 \\ 0 & 8 \\ 0 & \frac{3}{3} \\ 0 & 16 \\ 1 & \frac{1}{2} \\ 1 & 1 \frac{1}{4} \\ 1 & 4 \\ 1 & 9 \\ 2 & 27 \\ 2 & 6\end{array}$

2365-9. The above table almost explains itself, but one example will be taken for illustrating its use, premising that if deals are at a price between, abore, or below that stated in the first column, the rules of arithmetic must be applied for the intermediate prices. Suppose deals, then, to be at 45l. per hundred; an inspection of the table shows that the value of $1 \frac{1}{2}$-inch deal is $8 d$. per foot super., or $6 d$. run; that a 12 -foot ded 2 inches thick is worth $6 s .8 \frac{1}{4} d$.; and that a foot run of 3 -inch deal 11 inches wide, which is the standard width, is worth $11 \frac{1}{4} d$. The preceding table, which is applicable purely to joinery, is all that can be here given in general terms as to the prices of work.

2370 . Slater. The work of the slater is measured and estimated by the square of 100 feet superficial. The different sorts of slate, and how much a given quantity of each will corer, have been described in Chap. II. Sect. IX. (1798 et seq.). To measure slating, in addition to the net measure of the work, 6 inches are allowed for all the eaves, and 4 iuches by their length for hips; such allowance being made in the first-named case because the slates are there double, and in the latter case for the waste in cutting away the sides of the slates to fit. When rags or imperial slates are used, an addition allowauce of 9 inches is made for the eares, because those slates run larger than the other sorts.
2371. Mason. Solid works, such as pilasters, cornices, coping, stringings, and others, should be first measured to ascertain the cubic quantity of stone they contain as going from the banker to the building; and on this, additional work, as plain work, sunk work, moulded or circular work, must be measured in superficial feet and separately valued. It is usual to allow a plain face to each joint, but no more than one should be taken to a 3 -feet length. In staircases the flyers should be taken where splayed on the back, their full length and width by three-fifths of the depth of the riser, to allow for waste in getting two of the steps from the same block of stone. The measurement for the winders seems to be most properly conducted by ascertaining the net cubic enntents of them, and then making the allowance for waste. Indeed this is a more proper and satisfastory mode for the flyers. The top of the treads are then taken on the superfieies as plain work, and the fronts and ends of the risers as moulded work. In an open st:airase, the under side of the flyers is measured as plain work; the under side of the winders as circular plain work; the rebates, cuttings out, pinnings in, \&c., as they are found. Cylindrical work, such as of columns, after the cube quantity is ascertained, is measured as equal to plain work twice taken. In Portland dressings to chimneys, wherever edges appear, it is cu-tomary to add an inch to the dimensions for extra labour; to marble, $\frac{3}{4}$ of an inch; or to take the running dimensions of the edges.

2372-3. Paring slabs and stores under 2 ins. thick are taken by superficial measure. Cornices are measured by obtaining their girt, and multiplying by their length for the quantity of moulded work in them.
2374. Fnunder. The proper mode of estimating cast iron is by the ton or cwt. Moulds for the castings, when out of the common course, are charged extra. Very often, too, cast iron pipes and gutters are, according to their sizes, charged by the yard. Wr rought iron beams and girders, of various shapes, are charged for by the ton. (See 1765 ct siq.) For ornamental castings patterns hare to be made ; these are usually paid for in addition, and are often expensive.
2375. Smith and Ironmonger. Wrought iron for chimney bars, iron ties, screw bolts, balusters with straps, area gratings, handrails and balusters, hook-and-eye linges, brackets for shelres, chains for posts, wrought iron columns with caps and bases, fancy iron railing, casements, shutter-bars, and the like, are charged by the pound, at vaious prices, according to the nature of the work. In the iromonger's department nails and brads are charged by the hundred, though sold by weight, seldom exceeding 903 to the 1000 . Screws, which take their uames from their length, are charged by the dozen. Cast, and also wrought butts and screws, cast and wrought baek flaps, butts and screws, side or H hinges, with screws, by the pair. All sorts of bolts with screws, of which the round part of the bolt determines the length, by the inch. H hinges and cross garnet hinges by the pair. Other hinges and screws by the piece. Locks by the piece. Pulleys according to their diameters. On all ironmongery 20 per cent. is charged on the prime cost. Wrought iron ornamental work is ch:rged for according to the time and skill. (See 2253 et seq.)
2376. Plasterer. The work of the plasterer is measured, genprally, by the yarlsuperficial. The usual way of measuring stucco work to partitions and walls is, to take the height from the upper edge of the ground to half way up the cornice, the extra price of the stucco making good for the deficiency of floated work under it. In ceilings and other work, the surface under the cornice is often taken, because there is no deficiency but in the setting, and that
is compensated for ly the labour in making good. Cornices are measured by the foot supcrficial, and estimated accordiug to the quantity of mouldings and onrichments they contain. Where there are more than fur angles in a room, each cxtra one is charged at the price per foot run extra of the cornice. Stucco reveals are charged per foot run, and according to their width of 4 or 9 inches or more. Quirks, arrises, and leads by the fout run, as are margins to raised panels, small plain mouldings, \&c. Enriched mouldings are measured by the foot run, and with flowers to ceilings, pateras, \&ce, must be considared with reference to the size and quantity of ornament; modelling may have to be charged if under 60 ft et run. For some of these, papier-mâché and other materials (see 2251), which are much lighter than plaster, are coming now into general use, and from the ease and security with which they are fixed, often supersede the use of plast-r ornaments. Scaffulding is charged for when the "hawk" cannot be served from the floor.
2377. Plumber. The work of this artificer is charged by the cwt., to which is added the labour of laying the lead. The superficies of the lead is measured, then multiplied by the weight, as 5 lb . lead, 6 lb . lead, \&c., and brought into cwts . Water pipes, rainwater pipes, and funnel pipes are charged by the foot run, according to their diameter; s, also are socket fipes for sinks, joints being separately paid for. Common lead pumps, with iron work, including bucket, sucker, \&c., at so much each; the same with hydraulic and other pumps, according to their diameters. In the same manner ave charged waterclosets, basinz, air traps, washers and plugs, spindle valves, stop-cocks, ball-cocks, \&e. (See 2212 et seq.) By the increase of manufacturers of sanitary appliances these are now priced at per article.

- 2378. Glazier. The work of the glazier is measured and estimated by the superficial foot, according to the speciality as well as the quality of the glass used; it is always measured between the rebates. (See 2225 et seq.) Stained and painted glass are usually taken at agreed prices.

2379. Painter. In the measurement and estimation of painting, the superficial quantity is taken, allowing all edges, smkings. and girths as they appear. When work is cut in on both eliges it is taken by the foot run. The quantity of feet is reduced to yards, by which painting is charged for in large quantities. In taking iron railing, the two sides are measured as flat work; but if it be full of ornament, once and a half, or twice, is taken for each side. Sash frames are taken each, and sash squares by the dozen. On gilding we have alrcady spoken in Sect. XII. (2277 et seq.) Cornices, reveals to windows and doors, strings, window sills, water trunks and gutters, handrails, newels, \&c , are taken by the foot run. Many small articles by the piece. Plain and enriched cornices by the foot run, according to the quantity of work in them. Work done from a ladder is paid for extra. The price of painter's work greatly depends on the purity of the materials employed, as oil, turpentine, \&c., as well as on the quality and the number of times over that the work is painted; the labour is usually considered as one-third of the price charged. Scarcely any trade raries so greatly. Imitations of woods and marbles are charged according to the artistic treatment and the labour enployed on them, and the quality of the rarnish used.
2380. Paperhancer. In common papers the price used to be settled according to the colours or quantity of blocks used in printing the pattern. Now the price appears to depend on the sale, or fashion, of the pattern, or on the manufacturer's pleasure. Until lately the old prices were charged, with a large discount, but now the price marked by some of the leading firms is sulject only to the ordinary discount to the trade. Embossed and other papers are of higher prices. These, as well as lining paper, are cbarged by the picce, containing 63 feet super. The hanging is charged separate, and borders, dadoes, gilt mouldings, \&c. by the yard run. (See $2 \cdot 27 \%$ c.)

CHAP. IV.

MEDIUM OF EXPRESSION.

Sect. I.

DRAWING IN GENERAL.

2381. Under this section it is not our intention to enter into the refinements of the art, but merely to make the attempt of directing the student to the first priuciples of a faithful representation of ordinary and familiar objects, with all their imperfections; or, in other words, of transferring to a plane surface what the artist aetually sees or conceives in his mind. This power is of vital importance to the architect, and without it he is unworthy the name.
2382. The usual mode of teaching drawing now in use is, as we conceive, among the most absurd and extravagant methods of imparting instruction that ean be well conceived. The learner is usually first put to copying drawings or prints, on which he is occupied for a considerable time. Much more would he learn, and much more quiekly, by following the course which the following lines will preseribe. Outline is the foundation of all drawing; the alphabet of graphic art. As soon as the student has attained the use of the peneil and the pen in drawing purely geometrical figures, he is prepared to receive the rudiments of perspective. As shown in the following section, the representations of all geometrical solids is dependent upon mechanieal means; and these may, if it be desirable, be shadowed truly by the methods given in Seet. III.; but what is now called free-hand drawing is the matter fur our present consideration.
2383. Uutline, as we have stated above, is the foundation of all drawing, the alphabet of graplic art. Every representation of an objeet, or series of objects, however complicated, is in reality but a set of outlines composed of straight or eurved lines. The knowledge, or rather the power of forming these lines, is essential to the student, and in the same manner that he was obliged to form pothooks and hangers before he proceeded to ellipses when he was taught to write, he should begin his stady of free-hand drawing by practising himself in the production of straight lines, proceeding to segments, and then to curves of contrary flexure. It is a good plan to compare the copy with the pattern; and, inasmuch as all formal diagrams that are set as patterns should be perfeet, it is desirable that the standards for straight lines, segments, and contrary flexures should be drawn by the teacher himself from rulers; these rulers can be subsequently applied to the copies, and are sometimes the only evidence upon which to make a mutinous pupil conseious of his errors. The student onght not to proceed to the elliptical and oval forms until the hand, first turning one way, can draw a tolerably correct cirele; and then, turning in the other direction, ean make another equally good. The next step will be to acquire the power of drawing spiral lines in one direetion, and of repeating them in another; which will be followed by that of drawing lines either parallel or slowly approximating.

2383a. After this, the student is sufficiently advanced to attempt to repeat all these stages with copies of a size larger or less than the patterns; and he will be ready to learn the mechanical use of chalk. This braneh of his tuition needs only such examples as the prints, whieh have been prepared for that purpose, of purely geometrical forms: in this stage the rudiments of shadow are implanted, and the use of the brush may be aequired.

2383b. The student will then be ready to learn the mode of obtaining local colour, and of blending his materials so as to obtain tints and shades of the different colours. The next steps would be to draw in ehalk, in ink, or in colour, the simplest arehitectural ornnments, sueh as a chevron or an ovolo; and to proceed through a course of architectural foliage fiom prints. The result of such training is usually a confidence in the eye; and, what is sometimes highly important, a judgment so sound as to be able to reproduce any part of a suljeet that may have been destroyed.
2.385c. Aptitude of the pupil must be a consideration, but in general a year of steady application may be sufficient so to imbue the mind with the grammar of arehitectural ornamont, as to enahle the hand to represent it; after which the sturdent ought to be capable of inventing for himself. Indeed, it is only by such a course that originality in designing ornament can be obtained. The study of natural foliage, first as seen, and then as conventionahzed, may be earried out at the same time.

2:383d. It is very remarkable that all the inferences are false, which usually are derived from the assertion that he who can draw the human figure will be able to draw any other object that is stbmitted to him for representation. The few men who can faullessly draw the human figure as they see it, may doubtlessly have eyes keen enough and hands true enough to repeat the minutest details so accurately that any comparison of a particular detail with the original shall be creditable to them; but these men have spent years in obtaining, besides delicacy of handling, that knowledge of anatomy which reminds them at every stroke of the pencil that such a muscle is in such a place, that here it overlaps another, that there it dies into a bone, and that consequently they have to mark the curves and angles which occur, for instance, six or seven times between the elbow and the wrist, and to determine how many can be omitted if the seale be less than that of lifc.
2384. The majority of men who can draw the figure tolerably well can draw nothing else equally correctly : for the reason that tlieir attention has been given to the mechanism ot the human form solely ; the representation, by our best portrait-painters, of the accessories which they introduce into their pictures, especially of architectural details, is almost without an exception ludicrously inaccurate. Every person who has tried to apply his power of representing geometric forms to the task of copyil:g in chalk from a mask, must be aware of the enormous facility which he acquires by previously studying the usual methods ot expressing the totality of the eye, the car, the nose, and the lips. In a similar manner, the artist who wishes to give the effect of a suite of mouldings, or of a carved ornament, requires to know previously all the parts which compose the work. In other words, some men can pretend to sketch distant rocks and yet miss the very features by which the outlines intimate the geological character.
2385. Such are the reasons which have for many years led to the conviction that the architect's course of drawing should leave the figure alone until he has made one or more studies from carving in eath style of art that opportunity presents to him; this is affirmed to be the only method of obtaining a satisfactory apprec:ation of the minute characteristies which sometimes constitute the differences between styles; and the only method of making a royal road to the object, which some teachers pretend is the easiest, but is truly the most difficult, in art. Having aequired the power of accurate representation of ornament, which involves dexterity in the use of his materials, the student may commence his operations with the figure.
2386. The method proposed in the following pages is old, at least in principle, yet it has been of late years published as new in Paris, by M. Jupuis. ("De l' Enseignement du Dessin sous le point de vue industriel," 1836.) The principles of the work, however, are perhaps better expressed and arranged, in some respects, than we might have presented them to the reader : and we shall not, therefore, apologise for the free use we make of it, premising, however, that in respect to the whole figure and the application of the method to landscapes, what follows is not found in the work of M. Dupuis.
2387. Between the ancient mode of teaching the student (we will take the head, for instance, shown in fig. 809. as the first roughing of the leading lines of that which in fig. 812. has reached its completion) and the method practised by M. Dupuis, the only difference is this, that M. D., instead of letting the stadent form the rough outline at once from the finished bust, roughing out on paper the principal masses, provides a series of models roughly bossed out in their different stages, which he makes the student draw. The system is ingenious; but as the greatest artists have been made without the modification in question, we do not think it material; at all events, the principles are the same. M. Dupuis, for this purpose, has a series of sixteell models, the first of cach four of the series are quite sufficient to show the old as well as his own practice. Thus, in

Fig. 809.

Fig. 810. fig. 809, the general mass of the oval of the head is given, in which it is seen that the profile is indicated by an obtuse angle, whose extreme point corresponds with the lower part of the nose, and the lines at one extremity terminate with the roots or commencement of the hair, and at the other with the lower jaw. The form of the rest of the head is the result of combining the most projecting points of it by curved lines, in short, of supposing a rough mass, out of which the sculptor might actually, in marble or other material, Form the head.

2:388. The next step is exhibited in fig. 810., with the four principal divisions: the occipital to the beginning of the hair, the forchead to the line of the eyes, the projection of the nose, and the inferior part of the face, with some indieation of the mouth.

2389 In fig. 8 i 1 . it will be scen that another step is gaincd. The eyes (here only one appears, but we speak with reference to the s.b.bject. being less in profle), the mouth, the eliin, and the ear are more cleanly marked out, with some sort of expression of the whele work, but still without details, though sufficiently indicating that little more is necessary to bring the rude sketch of fig. 809. to a resumblance.
2390. In fiy. 812 . this is oltained; but still, necording to the degree to whieh an artist considers finishing necessary, to be further pursued and carried through to make a perfect drawing; all that is here intended being to show the principles upon which the matter is conducted, and upon which we shall presently have further observations to make. It will be observed, that on the shatowing and finishing in this way the

Fig. 811.

Fig. 812. drawings the student may make we set no value: when he can draw, if those matters be of importance to him, they will not be difficult of acquisition.

239 Ca. Having accomplished the art of drawing, with tolerable correctness, the figure, the architeet will have little difficulty in drawing the most complex productions of nature. The principles are precisely the same; but we wish here to impress upon him the necessity of recurring to nature herself for his ornaments: a practice which will always impart a freshness and novelty to them which even imitation of the antique will not impart.
2391. The port erayon, whether carrying chalk or a black lead pencil of moderate weight and size, say full seven inches long, is the best instrument to put into the hands of the begimmer. The first object he must consider in roughing the subject, as in fig. 809., is the relation the height of the whole hears to its width ; and this determined, he must proceed to get the general contour, without regard to any internal divisions, and thus proceed by subdivisions, bearing the relative proportions to each other of the model, comparing them with one another and with the whole. We will now show how the port crayon assists in this operation. Let the pupil be supposed seated before the model, at such a distance from it that at a single look, without changing the position of his bead upwards, downwards, or sideways, his eye takes in the whole of it. The strietest attention to this point is necessary, for diffieulties immediately present themselves if he is too near, as well as it he is too far from it. And here let it be ohserved that the visual rays (see fig. 813.) upon every objuct

Fig. 813.
may be compared to the legs of a pair of compasses, which open wider as we approach the objeet and elose as we recede from it. This is a law of perspective well known, and whieh the student may easily prove by experiment, keeping the head of the compasses near his eye, and opening the legs to take in, in looking along them, any dimension of an object. He will soon find that as be approaches such object he must open the legs wider in order to comprise within them the given dimension. Hence every diameter or dimension, separately considered, is comprised in the divergence of the visual rays. It is ou this account that, being at a proper distance, any moveable measure which with a free motion of his body he can interpose upon some one of the points of the distance between his eye and the model, may, though much less than the model itself, take in the whole field of view, reach the extremities of the dimension, and consequently become of great assistance in certain mathematical measures. For by applying such a measure to one division only of the model, we shall obtain, as it were, an integer for finding a great many others into which the model may be subdivided.
2392. Thus, taking fig. 809., which is profile, and supposing the width at the neck unity, if this is twice and a half contained in the general height of the bust, we have immediately the proporticns of one to two and a half, which may be immediately set out on the mper or canvas. This is not all ; the integer or unity obtained by the diameter of the
neek serves also for measuring the horizontal diameter of the head. and also of the bust; whence new proportions may be obtained. So much for the first casting of the general form. Now, in the entire bust, as respects the head only, suppose we wish to obtain the proportions of the principal divisions, - for example, from the base of the bust to the base of the chin, - we may establish another integer to measure other parts; as, if from the point of view, the distance from the base of the bust to the base of the chin is the same as from the last to the summit of the head, the learner would have nothing more to do in that respect than to divide the whole height into two equal parts. On the same principle, passing from divisions to subdivisions, the distance between the base of the chin and the point whence the nose hegins to project, may be found a measure for the height of the nose, and from thence to the top of the cranium. We are here merely showing the method of obtaining different integers for measuring the different parts mentioned; others will in practice occur continually, after a very little practice. We do not suppose our readers will believe that we propose to teach drawing by mathematical rules; we now only speak of obtaning points from which undulating and varying lines are to spring and return, and which nons but a fine and sensitive eye will be able to express. lhut to return to the port crayon, which is the moveable measure or compasses whereto we have alluded, and requires only skilful handling to perform the offices of compasses, square, plumb rule, and level. ly interposing it (see fig. 813.) on the divergence of the visual rays between the eye and the object, we may estimate the relative proportions; since in the field of view the learner may apply it to the whole or any of the parts, and make any one a measure for another. For this purpose he must hold it, as shown in the figure, steadily and at arm's length. Any portion of it that is cut by the visual rays between any two parts of the object, becomes the integer for the measurement of other parts whereof we have been speaking. This in the drawing will be increased according as the size is greater or less than the portion of the port crayon intercepting the visual rays. This process may be easily accomplished by making, upon one and the same line of the visual ray, the extreme point of the port crayon to touch one of the extremities of the proportion sought upon the model, so that they may exactly correspond. Then at the same time fixing the thumb or fore-finger where the visual ray from the other extremity is intercepted, we shall find any equal length by moving the port crayon with the thumb and fore-finger fixed to any other part we want, as to size, to compare with the first, or by using the same expedient to other parts, other integers may t.e found. The different integers, indeed, which may be thus obtained is intinite. The port crayon will also serve the purpose of a plumb bob by laying hold of it by the chalk, and holding it just only so tight letween the fingers as to prevent its falling, so that its own gravity makes it assume a vertical direction. Doing so, if it then be held up to intercept the visual rays, we may discover the proportion in which a line swells whose directon approaches the vertical, as also the quantity one part projects before another in the model; and comparing this again with the integer, obtain new points for starting from. Again, jy holding it before the eye in an horizontal direction, we shall obtain the different parts of the model that lie before the eye in the same horizontal line. By degrees we shall thus soon find the eye become familiarised with the model it contemplates; judgment in arranging the parts supervenes; the hand hecomes bold and unhesitating, and the leading forms are quickly transferred to the paper or canvas to be subdivided to such extent as is required by the degree of finish intended to be bestowed upon the drawing.
2393. The process that we have considered more with relation to the bust is equally applicable to the whole figure. In fig. 814. we have more particularly shown by the dotted lines the horizontal and vertical use of the port crayon; but the previous adjustment of some measure of unity for proportioning the great divisions to each other is also applied to it as already stated. In the figure, EE is the line of the horizon, or that level with the eye; it will be

Fig. 814.
seen passing through the knee of that leg upon which the principal weight of the body is thrown.
2394. Though our object in this section is to give only a notion of the way of transferring to paper or canvas such objects as present themselves, we think it proper to hint at a few general matters which the student will do well to consider, and these relate to the balance and motion of the human figure. Geometry and arithmetic were with the painters of antiquity of such importance that Pamphilus the master of Apelies deelared, without them art could not be perfected. Vitruvius particularly tells us the same thing, and, as follows, gives the proportions of the human figure:-"From the chin to the top of the forehead, or to the roots of the hair, is a tenth part of the height of the whole hody; from the chin to the crown of the head is an eighth part of the whole height; and from the nape of the neck to the crown of the head, the same. From the upper part of the breast to the roots of the hair, a sixth; to the crown of the head, a fourth. A third part of the height of the face is equal to that from the chin to the under side of the nostrils, and thence to the middle of the eyebrows the same : from the last to the roots of the hair, where the forehead ends. the remaining third part. The length of the foot is a sixth part of the height of the body ; the fore-arm, a fourth part ; the width of the breast a fourth part. Similarly," continues our author, "have the other members their due proportions, by attention to which the ancient painters and seulptors obtained so much reputation. Just so, the parts of temples should correspond with each other and with the whole. The navel is naturally placed in the centre of the human body; and if a man lie with his face upwards, and his hands and feet extended, and from his navel as the centre, a circle be described, it will touch his fingers and toes. It is not alone by a circle that the human body is thus circumseribed, as may be seen (fig. 815.) by placing it within a spuare. For, measuring from the feet to the crown of the head, and then across the arms fully extended, we find the latter measure equal to the former; so that the lines at right angles to each other, enclosing the figure, will form a square."

Fig. 815.
2395. "How well," says Flaxman (Lectures on Sculpture), "the ancients understood the Dalance of the figure, is proved by the two books of Archimedes on that subject; besides, it is impossible to see the numerous figures, springing, jumping, dancing, and falling, in the Hereulaneum paintings, on the painted vases, and the antique basso-rilievos, without being assured that the painters and sculptors must have employed geometrical figures to determine the degrees of curvature in the body, and angular or rectilinear extent of the limbs, and to fix the centre of gravity." Leonardo da Vinci has illustrated the subject in his Trattato di Pittura, a perusal of which cannot fail of being highly beneficial to the student.
2396. As in all other bodies, the centre of gravity of the human figure is that point from which, if suspended, the figure would remain at rest when turned round upon it. Flaxman, hy some strange mistake, has described the erntre of gravity as "an imaginary straight line, which falls from the gullet between the ankles to the ground, when it (the figure) is perfectly upright, equally poised on both feet, with the hands hanging down on each side." (Fig. 816.). The fact is, that the centre of gravity is found to be in a line so drawn, or rather removed backwards from it, in a vertical plane returning from that line.
2397. Motion implies change of position; for instance, in fig. 817., the weight of the figure is thrown on one leg, hence a line passing through the centre of gravity falls from

Fig. s 16.

Flg. 817. the gullet on one leg, on which side also the shoulder becomes lowered, and that on the opposite side raised; the hip and knee sinking below those on the side supporting the weight. In fig. 818 . the dotted lines terminated by the letters ABCD represent lines of motion, as also the extent of such motion. The same are also shown in fig. 819., wherein A shows the inclination of the head to the breast; \mathbf{B} the extreme bend of the back over the legs, without changing their position; C tbat of the back bent backwards, the legs
remaining in the same position. If the back be bent as far as D, the thighs and legs will project as far as E .
2398. Referring back to fig. 817. for comparison, as the commencement of motion, with fig. 820., we shall immediately see that the preparation for ruming consists in throwing the balance beyond the standing foot; and that when the centre of gravity, which is now about to take place, falls out of the common base, the hinder leg must be out, and off the ground, to

Fig. 819. balance the fore part of the figure, which would otherwise fall.

2399 . In preparing to strike (fig. 821.), the figure is thrown back at the beginning of

Fig. 820.

Fig. 821.
the action to give force to the blow: the dotted line shows the extent of the springing forward, in which the action is ended by the fall of the blow upon the object.
2400. In fig. 822., bearing a weight, the combined centres of gravity of the figure and

Fig. St2.

Fig. 823.

Fig. ši.
the weight to be borne must be found; and through it the line falls between the fect, if the whole weight rests equally on both, or on the supporting foot, if the weight is thrown upon one. Flaxman, who was a finer artist than a geometrician, has, in his lectures, fallen into another mistake on this head, by saying the centre of gravity is the centre of the incumbent weight, which is absurd; because the figure has not only to balance the weight itself, but also its own weight.
2401. In leaping (fig. 823.), the body and thighs are drawn together to prepare for the spring; the muscles of the leg draw up the heel, and the figure rests on the ball of the foot; the arms are thrown back to be ready immediately for swinging forward, and thus assisting in the impulse. When the figure alights, the arms, at the instant of alighting, will be found raised above the head; and a line dropped from the centre of gravity will be found to fall near the heels.
2402. In leaning (fig. 824.), if on more than one point, the greatest weight is ahnut that point on which the figure chiefly rests.
2403. Fig. 825. is a flying, and fig.826. a falling figure, hoth whereof being in motion through the air rest on no point. In the first it will be observed that the heaviest portion of the figure is bounded by lines inelined upwards; as in falling the heaviest portion of it has a downward direction We have thought these elements would be useful, as exhibiting those leading prineiples without the comprehension whereof no motion or action

Fis. 825. ean be well expressed. "Every ehange," says Flaxman, " of position or action in the human figure will present the diligent student with some new application of principles, and some valuable example for his imitation."
2404. We shall elose this section with the application of the principles detailed in the management of the port crayon to the drawing of landscrpes. The subject of fiys. 827.

Fig. 827.

Fig. $8: 3$.
and 828. is from a spot a little way out of Rome, the tower of Ciecilia Metella being seen in the distance.
2404a. In f g. 826. the masses are ronghed in from the oljects themselves; and the principal mass abonld on the left side is first very carefully drawn by itself, being, as respects leading lines and thicknesses, corrected until the eye is satistied of the truth of its general form. The eye is as high as \mathbf{E} mal \mathbf{E}, which therefore show the height of the horizontal line, and are also, in fawt, the vanishing points for the will on the right-hand side of the picture, and the house on the same side a little beyond it. Ilohling the port crayon level, and taking on it with the thumb or forefinger the distance 01, we shall find that twice that measure in 2 and 3 will give the junction of the wall with the pier; and that a line continued horizontally from d cuts the top of the plinth of the gate pier. The picture happens to he divided iuto two rymal parts by a vertical line drawn throngh the break in the city wall in the distance. dl, continned upwards, ditermines one side of the house on the right-hand side of the road, and from a point at a break in the foreground intersects the projecting wall at r : a vertical line determines the left side of the tower. The remaining horizontal lines, it will be seen, determine other points and lines; and thus it is manifest that the whole arrangement has been accomplished by making the mass abenld a measure or unit for ascertainmg the size and relative position of the other parts. In fig. 828. the detail is filled in, and brought to a higher state of tinish.
$2404 h$. There is a mechanical method of obtaining the exact relative sizes of objects, and their positions In making drawings from nature or casts, which we will endeavour to explain. If the draftsman take a pair of pretty large sized compasses, and, fastening a piece of string at the joint end of them, hold the puints open bcfore his eye, so as to take in the extent of space his drawne is monded to oceupy; then tie a knot In the string to keep it between his teeth, so that the compasses poln's may be kept in any plame always equally distant from the eye; he may, for the various par's of his drawing, by opening or clising the compasses, have their exact relative heights, widths, and fositions, to be at once transferred to the dirauing.

Sect. II.
PERSPECTIVE.
2405. A perspective delineation is the linear representation of any object or ohjects, as it or they appear to the eye, and is such a figure of an object as may be supposed to be made ly a plane making a section of the body or prramid of visual rays directed from the eye to the different parts of the object. A delineation so made, being properly coloured and shadowed, will convey a lively idea of the real object, and at the same time indicate its position and distance from the eye of the observer.
2406. Definitions. - 1. An original object or oljects is or are an object or number of objects proposed to be delineated : for instance, a house, a ship, a man, or all or any of them together. In fig. 829. the house ABCDFHK is the original object.

Fig. 829.
2. Original lines are any lines that are the boundaries of original objects, or of planes in those objects. The lines AB, BC, CD are original lines, being partly the boundaries of the original object ABCDFIIK.
3. The ground plane is that upon which the oljects to be drawn are placed, and is
always considered a boundless level plane. The plane \mathbf{X} in the figure is the ground plane, upon which is phaced the object \triangle BCDFIIK.
4 The point of view or point of sight is the fixed place of the eye of the observer, viewing the object or objects to be delineated: E in the figure is suel point.
5. The station point is a point on the ground plane, perpendicularly under the point of sight or eye of the olserver, and expresses on the plan the station whence the view is taken. S is the station point in the figure, being a point on the ground plane vertieally under the eye of the observer at E .
6. The plane of delincation or the picture is the canvas or paper whereon it is intended to draw any objeet or number of objects. Thus, in the figure, the plane GIKL is the plane of delineation; but, in the extensive sense of the word, the plane of delineation is considered a boundless plane, however eircumseribed may be the delineation made thereon.
7. The horizontal line or the horizon is a line on the plane of delineation in every part level with the eye of the observer or point of view. VZ is the horizontal line on the p lane of delineation GIKL. It is supposed to be obtained by the intersection of a plane passing through the eye of the observer, parallel to the ground plane, produced till it tonches the plane of delineation.
8. The centre of the picture is a point perpendicularly opposite the eye of the observer, or point of view, and is consequently always somewhere in the horizontal line. () in the horizontal line VZ is the centre of the pieture, being perpendicularly opposite to the eye at E.
9. The rertical line is a line drawn through the centre of the pieture perpendieular to the horizon. In the figure PR is the vertieal line. It is here worthy of notiee that the vertical line determines how mueh of the view lies to the right and how mueh to the left of the eye of the artist.
10. The distance of the picture is a direet line from the eye to the eentre of the pieture. EO is the distance of the picture, or plane of delineation, GIKL.
11. The ground line is that where the ground plane interseets the plane of delineation, as GL in the figure.
12. An intersecting point is one made on the plane of delineation, by producing a line in an original object till it touches the plane of delineation. 'Thus, \mathbf{T} is the intersecting point of the original line BA.
13. An intersectiug line is one made on the phane of delineation, by producing any plane in an original object till it touches the plane of delineation, or where, if produced, it would touch it. Thus WT is the intersecting line of the original plane A BCDN, being the line, where that plane, if produced, would touch the plane of delineation.
14. A vanishing point is that point on the plane of delineation to whieh two or more lines will converge, when they are the perspective representations of two or more parallel lines in an original objeet, whose seat is inelined to the plane of delineation. The point V in the figure is the vanis'ing point of the line Al3, being found by the line EV, drawn from the eye of the spectator parallel to it, and produced till it touches the plane of delineation in the point V. For a similar reason, V is the vanishing point of the line CN ; it is also the vanishing point for any other line parallel to the line CN, as BA; all parallel lines having the same vanishing point. The point Z is the vanishing point of the line AK , being obtained by a line drawn from the eye parallel to the line AK, and produced till it tonches the plane of delineation. The point Z, moreover, is the vanishing point of the original lines DF and NH. And it is to be recollected by the student, that there will be as many different vanishing points of lines in the delineation of an original object as there are different directions of lines in that original object. The point Y is the vanishing point of the parallel original lines DN and FH, being fonnd by the line EY being drawn from the eye parallel to them till it tonehes the plane of delineation. So also Q is the vanishing point of the line CD. In the process of perspective delineations, as we shall presently see, the plan of the object being drawn, the places of the various vanishing points are found on the gromd line, whenee they are transferred to the horizontal line by means of perpendiculars raised from them.
15. A vanishing line is one supposed to be made on the pieture by a plane passing through the eye of the observer parallel to any original plane produced till it touehes the pieture. The line VZ is the vanishing line of an horizontal plane, and of all horizontal planes, being found by the intersection of a plane passing horizontally through the eye, or parallel to an horizontal plane. The vertical line YVM is the vanishing line of the original vertieal plane, ABCDN being the line where a plane passing the eye of the spectator parallel to that plane would touch the plane of delineation. There will be as many different vanishing lines on the plane of delineation as there are different positions of planes in the object or objects; and
all parallel planes will have the same vanishing line. Similarly, all lines lying in the same plane will have their vanishing points in the vabishing line of that phane. All planes or lines 111 an original object which are situated parallel to the plane of delineation can have no vanishing lines or vanishing points on the plane of delineation.
16. A visual ray is an imaginary right line, drawn from the eye to any point of observation. EA and EY, \&c. are visual rays, being right lines drawn from the eye to the points A and Y. Hence a number of visual rays directed to every part of an object will form a pyramid of rays, whereof the eye is the apex, and the objeet the base.
17. A perspective delineation, then, is the section of a pyramid of rays producing a perspective projection, and is most commonly considered as being made between the object and the eye. But the section of rays may be taken when they are extended beyond the object ; in which case such a section is called a projected perspective representation of the object.
2407. It will then be seen that a knowledge of perspective is, as Addison has said, a knowledge of " the science by which things are ranged in pieture, according to their appearance in their real situation."
2403. The situation of the objects being given with the plan and position of the plane of delineation and the height and distance of the eye of the observer, the delineation of such objects is truly determinable ly rule. The meehanical operations necessary for this purpose form the subject of what follows. It is however necessary, before proceeding to lay them before the reader, to premise that he must thoroughly study and understarit the preceding definitions before he can proceed with profit to himself, and we recommend a repeated perusal of them until that be effectually aecomplished.
2409. Example I. In fig. 830., No. 1., we have the plan of the original object

EBADCF, whereof $\triangle B C D$ is a cube, and BCEF a double cube, that is, twice the height of ClBAD. GL is the plan of the gromand line; S, the station point. 'Through S draw XY parallel to the plame of delineation GL, and draw SG and SL, respectively parallel to the sides E.A and AD) of the united cubes ABCD and BCLE ; and these produced to meet
the plane of delineation will determine the vanishing points (Def. 14.) of the horizontal lines AE and AD, and of all other horizontal lines parallel to them. Draw the line SO perpendicular to GL, which line being the direction of the eye perpendicular tu the plane of the ficture determines the point thereon to which the eye shonld be directly opposite to view it when completed, showing also how much of the object is on one side, and how much on the other of the point of view. We have now to draw the vistal rays SA, SB, SE, SF, SC, SD, cutting the plane of the picture or delisation in b, x, w, c, and d; the point A of the nearest cube touching, itself, the picture at that point. The preparation on tise pian is now completed.
2410. The picture (No. 2.) or plane of delineation is to be prepared as follows : - First draw the ground line GL, and to such ground line transfer, by dropping verticals, the points Kxbrec A and d. Above, and parallel to GL, at such convenient height as may be necessary to show more or less of the upper surfaces of the cubes or otherwise, as desired, draw the horizontal line VZ; mark on such horizontal line the point O, to which the eye is supposed to be perpendicularly opposite for viewing the delineation when completed. All the other preparations are obtained from the plan, and may be obtained as follows: ... First set off on the horizontal line VZ the points V and Z, which are the vanishing points of the sides $A E$ and $A D$ respectively. As A, the nearest angle of the olject, tonches the plane of delineation, it is manifest that a line vertically drawn from that point will be of the same height as the object itself, that is, as the figures are cubes, equal to AB or AD in the plan No. I. Take, therefore, AB No. 2. of the height required, and draw the lines 13 V and AV, also AZ and BZ, which being crossed by verticals carried up from xbwed will determine the points $k e$ and i at the bottom, and in f and h at the top, and $p q$ and r in the part where the cube is double the height. Drawing $h \mathrm{~V}$ it is intersected by the verticals from the visual rays at c and w, eutting in g and n. The line $\mathbf{K K}$ forms another line of heights, if desired, for finding the height F_{q}; indeed, by continuing any line BC (No. I.) to K , intersecting the picture, a line of height may be obtained. The representation of the cube marked A will be understood without diliculty, if what has preceded be well comprehended. As by Definition 15. we have seen that all planes or lines in an original objeet situated parallel to the plane of delineation have no vanishing lines or points in the plane of delineation, so two of the sides of the cube will be bounded by horizontal and vertical lines, inasmuch as those sides lie parallel to the plane of delineation. The vanishing points for the other lines will of course be fonnd in 0 , which passes throngh the picture at right angles to it from S , the station point.
2411. Example II. To find the representation of a quadrangular building, situated inclined to the picture, covered with a single spamed roof, having a gable at each end.
2412. Let the rectangle ABCD (No. 4.) (fiy. 831.) be the plan of the building, the line EF will be the place of the ridge of the roof extending from end to end. Let the line QL be the place of the plane of delineation, and let S be the station point.
2413. Find O the centre of the picture, also the points Q and L, the vanishing points of the lines AB and AD, and their parallels, ly lines drawn from S parallel to such lines, and intersecting the pieture. Produce the face of the buidding AD to 1 for an intersection with the picture, and draw the visual rays intersecting the gromen line of the picture in the points benf and d. These need not, however, be drawn beyond the plane of delineation.
$2-114$. l'repare the picture (No. 5.) by drawing the horizontal and gromed lines VZ and GR at any distance from each other at pleasure; tix upon the centre of the picture (), and draw the vertical line $\mathbf{O O}$; set off the distances of the va:ishing points OV and OZ , equal the distances o the vanishing points $O Q$ and $O L$ in No. 4. Draw the intersecting line 1L. (No.5.), and all the visual lines, through the points beaf and d, taken from their respective places and distances beaf and d (No. 4.), and proceed as follows: -
2415. On the intersecting line IL (No. 5.) set up the height IK equal to the height of the building BC or HG (Nos. 1. and 2.), and draw the lines $\mathrm{K} Z$ and $1 Z$, determining the plane gmop for the front of the building. Draw the lines $m \mathrm{~V}$ and $g \mathrm{~V}$, determining the end of the building ghim. It now remains to place the roof, which is readily done, but which, however, requires some circumspection in the process.
2416. Place the height of the roof XD (No.1.) on the intersecting line at IL (No. 5.), and draw LZ, which will give the height of the roof on the angular line of the building ghan at r; from which spot it may readily be transferred to its proper place in the visual line $e k$ by the line $r \mathrm{~V}$, which cuts the line $e k$ in the point k, the point required. Firm the point k draw the lines $k i$ and $k m$, completing the gable end of the building. Draw the ridge of the roof $k Z$, cutting the end visual line, in the point n; and lastly, ir iraw the line $n o$, completing the whole linear delineation of the building ghiknop. It is to be observed, that whatever original plane is produced to the picture to oltain an intersection, such intersection serves only to obtain heights in the direction of that plane; whence they may be transferred to other planes in contact with it, as in the present instance. The intersecting line 11 , (No 5.) is the intersecting line of the plane gmop; hence any original height set up

thereon ean only be transferred throughout the direction of that plane. Thus the height of the roof 1 L was transferred by the line LZ along that plane to its other extremity s; but the line r s is not the place of the ridge of the roof, which lies in the middle of the plane g hikm, proceeding from the point k; but any height on the angular line $g r$ is easily transferred along that plane by means of its horizontal ranishing point V, by which means the height of the roof was obitained by the line $r \mathrm{~V}$ at k. If, instead of the plane over the line A I) (No. 4.) being produced for an intersection, the plane of the middle of the house in the direction of the ridge of the roof had been drawn, and the height of the roof had been set up on that line, it would at one application he tramsferred to its proper place.
2417. Let the line FE (No. 4.) be produced to P^{\prime} for an intersection, set off the distance OP at OP (No. 5.) , and draw the interseeting line PR. On P'R set up the height of the ridge of the roof equal XI) (No. 1.), and draw the ridge line RZ, and it determines the exact ridge of the roof between the proper visual lines, and will be found to correspond exactly with the ridge obtained by the former process.
2418. The rool may, inowever, be found by another process, thus:-The slant lines of the roof have their vanishing points on the pieture as well as any other direction of lines in the same objeet. The line $k m$ (No. 5.) being in the vertical plane glikm, will have its vanishing points somewhere in the vanishing line of that plane. (Def. 15.) A vertical line drawn through the horizontal vanishing point V will be the vanishing line of the plane ghikm; therefore the vanishing point of the lines $k m, k i$, and of all lines parallel to them, will be somewhere in the vertical GVXQ.
2419. Two lines drawn from the eye parallel to any two lines in an object, finding their vanishing points, will make the same angle at the eye as the lines in the object make with each other; for the two li:es in the one instance are respectively parallel to the two lines in the other.
2420. The line $S Q$ is drawn from the station S parallel to the line $A B$ (No. 4.), and a line drawn from the station S, making the same angle with SQ as ED does with EC, (No. 1.), will find the vanishing point of the line ED, and this point must be evidently somewhere in a vertical line through the point Q . 'To obtain this point in practice, take the distance of the vamishing line it is in, that is, the length from S to Q in the compasses, and set off the same in the horizon (No. 5.) from V. to W. At the point Winake an angie VWX equal to the inclination of the roof, that is, equal to the angle CED (No. 1.), and
produce the line till it intersects the vertical line through the vanishing point V in the horizon in the point X . The point X will be the vanishing point of the line of the roof km (No. 5.), and of the line no, parallel to it. The slant lines of the roof km and no, already obtained, will, on application of a ruler, be found to tend to the point \mathbf{X}, as above stated.
2421. In the same way the line of the roof $k i$ (No. 5.) will also have its vanishing point, and in the same vertical line GVQ. It will be found to be as much below the horizontal vanishing point V as the point X is above it. (Def. 14.)
2422. Let the line AB (No. 6.) be the line of the horizon, and CD the vanishing line of a vertical plane, being the gable end of a house, and let the angle ABC be that of inelination, finding the vanishing point of the slant lines of a roof in one direction. Let the line BD be the line, finding the vanishing point of the slant lines in the other direction, having the same inclination to an horizontal line; then the angle ABD will be equal to the angle ABC, and the distance AD equal to the distance AC.
2423. Example III. To find the representation of a quadrangular building situated inclined to the picture, covered with a single hipped roof.
2424. Let the quadrangle G DIIK (No. 7.) be the plan of the building; the line MN vill represent the ridge of the roof. The former line QL may be the place of the plane of delineation, and it may be viewed from the same station S. The position and direction of the lines of this object being the same as those of the last example, the preparatory lines will also answer for this. We have then only to draw the visual rays MS, NS, CS, I'S, and KS, intersecting the picture in the points m, n, g, p, and k, and to produce the line DG for an intersecting point at R.
2425. Prepare the picture (No. 8.) ; let the line VZ be the borizon, GR the ground line, O the centre of the picture, and the points $m, n, g p$, and k coresponding with m, n, g, p and k. (No. 7.) Draw the visual line lines through those points and the intersecting point R, and proceed as follows: -
2426. On the intersecting line RE set up the height RT, equal the height of the object IIG (No.2.), and draw the lines TV and RV, cutting the visual lines of the front of the bulding in the points z and o, y and p, determining the plane ypoz for the representation of the plane of the front. From the angular points z and y draw the lines $z w$ and $y x$ to their vanishing point Z determining the plane $y z w \cdot x$ for the end of the building.
2427. On the interseeting line set up the height of the roof TE equal the height NK (No. 3.), and draw EV cutting the angular visual line of the building in the point e, from which point draw the line $e z$, eutting the visual line pa in the point a, the point of direction of the ridge of the roof. Draw the line $a \mathrm{~V}$, which, cutting the visual lines through the points m and n in the points t and v, determines the exact position of the ridge of the roof $t v$, which is the representation of OP (No. 3.), or of the ridge MN (No. 7.); draw the lines $t o, v z$, and $v w$, which will complete the whole representation reguired. In No. 8., if the lines $a z$ and $a w$ be drawn, they will form a gable end $y z a w, x$, of whieh the point a is the point of the gable, and will answer for the direction of the ridge, whether it be a gable end or a nipped roof, for in both cases it lies in the middle of the breadth of the house; wherefore the line $a \mathrm{~V}$ answers as well the edge of a hipped roof as of a gable end.
2428. In examining the plans (Nos. 4. and 7.) of the two buildings, it will be seen that they are placed at right angles to each other, and in eontact at the point D, so that the second example might have been easily accomplished from the first, without the aid of another intersection and other preparatory lines, than the additional visual rays from the angles, which the student will have surely no difficulty in earrying through, without the necessity of eneumbering these pages with the detail.
2499. Example IV. In fiy. 832. No. 1. is the general plan of a chureh similar to many country churches. ABCD is the main body of it EFGH its tower; 1 KLM and MLNO subordinate parts of the building, and abcd the porch. No. 2. is its geometrical elevation; the ends and measurements, AB and BC, answering to $I M$ and $M O$ in No. 1., and the points of the roofs D, E, and F. (No. 2.) answering to the lines of the ridges QR, TV, and PL, No. 1. To find the perspective representation of this building on the plane of delineation YZ, the station being at S , the following is, perhaps, the readiest process.
2430. Find the vanishing points Y and Z of the horizontal lines of the bnilding by the lines SY and SZ being drawn from the station parallel to them. O is the centre of the pieture. Draw the visual rays from the visible angles of the object in direction to the station S , to intersect the plane of delineation.
2431. When a complicated object, that is, one composed of many parts, is to be drawn, it requires, of course, a great number of visual rays for the precisc determination of those parts, and the whole together forms an apparently confused number of lines. The eye, bowever, which views them properly, does not perceive that confusion; and, if it perplex the student, different coloured inks, or of different shades of depth, may be used to particularise different parts. In the delineation of such an object as the present example, the most important consideration is the choice of a proper intersection; for though any int r-

seeton will do, that should be ehosen which unites most parts in its direction with the greatest exactness and the least trouble. In the case under consideration, none secms more eligille than the direction of the roof PLM, which produce to W.
2432. In the picture No. 3., GL is the ground line, GV the height of the horizon, the line VX being then the horizontal liue. O in the horizon is then the centre of the picture, from which, place the distances of the horizontal vanishing points OV and OX equal OY and OZ, No. 1. AB (No. 3.) is the intersecting line, and all the visual lines on the plane of delineation are drawn conformably to their intersections on the ground line in the plan. On the intersecting line the height $A C$ is made equal to the height $A G$ of the elevation No. 2.; and the lines $\mathrm{C} c$ and $\mathrm{A} a$, being drawn in direction to the vanishing point V , determine the height ac ; being the height of that part of the building on the visual line answering to the ray from the point M in the plan No. 1. Through the points a and c draw the lines $d e$ and $b f$ to their vanishing point \mathbf{X}, determining the plane $b d e f$, the representation of the plane AGHC, No. 2.; the visual lines $b d$ and $f e$ answering to the rays from the points I and \mathbf{O} in the plan. Draw the lines $d h$ and $b g$ tending to their ranishing point \mathbf{V}, to the ray from K in the plan completing the plane bghd. On the intersection make the height AD equal to the height of the roof NE of the elevation No. 2., and draw $\mathrm{D} i$ in direction to V . Through i draw the line $k l$ to the vanishing point X , touching the visual lines of the roofs in the points k and l. Draw the lines $k m, m h, k d, k c, l e$ and $l e$, which will complete the whole of the structure over the plan IKNO, No. 1.
2433. The height of the roofs of the low buildings is equal to the height of the upright walls of the body of the building, as shown by the line P'R in the elevation No. 2.; nence, the line mo, and the return line on, may be drawn to the visual lines corresponding with the intersections from the angles A and B of the plan From the angle g the line $g s$ may also be drawn, which will determine the lines $s r, r t$, and $t p$ of the poreh. Nake AE on the intersection equal to the height of the roof BF in the eievation, and draw the line EV determining the ridge of the roof between the two visual lines from the points P and L of the plan. Draw the lines of the gable end $v o$ and $r z$, the point z being obtained by the line om drawn to its vanishing point X , cutting the visual line from the angle D of the plan in the point z.
2434. Make AG and AF on the intersection equal to the heights of the tower BO and BMI of the elevation. and draw the lines GV and FV cutting the visual line from P in the plan, in the points a and b; through which points draw the lines ac and ef to their vanishing point \mathcal{X}; and the lines $c d$ and $e g$ to their vanishing point V ; the points g, e, and f being in the proper visual lines from the angles of the tower F, E, and II in the plan. The tower will be completed ly drawing the lines $d f, d e$, ae, and $a f$.
2435. This example elueidates the general practice of vanishing points, which are as well to be olntained of other pusitions of lines as horizontal ones. It is not always that the vanishing points of inelined lines are required, but they are often useful, and sometimes absolutely necessary. In the geometrical elevation No 2. the lines MO, PF, GD, IE are all parallel lines, as also are the lines OV, FR, EH, and DI, and though situated in different, yet they are in parallel planes, and will therefore have a common vanishing point. A line drawn perpendicularly to the horizon through the vanishing point X (fig. 3.), as LQ , will be the vanishing line of the plane of the end of the chureh over the line 10 of the plan, also of the end of the body AD, likewise of the side of the tower EH; and a line drawn through the point V (No.3.) perpendicularly to the horizon, as GM, will be the vanishing line of the planes over the lines (No. 1.) IK, AB, ab of the poreh, and FE of the tower, and all lines in those planes, or the boundaries of those planes, will have their vanishing points somewhere in those vanishing lines.
2436. To obtain the vanishing points of the inclined lines of the roofs and tower, take the distance of the vanishing point Z from the station S in the compasses, and apply it on the horizon from X to HI . At the point $I 1$ make an angle with the horizontal tine equal the angle of the rools $a \mathrm{I}^{\prime} c$ (No. 2.); the curve K1 and the distance of it from the centre H being equal to the eurve $a c$, and distance of it from its centre I^{\prime} ' then is the angle KHI equal to the angle of the roof $a \mathrm{Pc}$ (No.2.). Produce the line $H K$ to $Q ; Q$ will be the vanishing point of the line $e a$ of the tower, also of the parallel liness $o v, d k$, and $c l$, which, though obtained by a different process, will all be found, by application of a ruler, to tend truly to that point, as is shown by the dotted lines in the example. Proceeding in the same way with the distance of the vanishing point Y from the staton S, we obtain the vanishing point of the same inclination of lines in the other planes of the oljeet. Take the length SY in the compasses, and set it off on the horizon from V to N . At the point N make an angle INT on the horizon equal the angle KHI, that is, equal the angle of inclination of the roof ${ }^{\circ} \mathrm{P} c$ (No. 2.). The line NT' produced to M in the vanishing line GM will be the vanishing point of the line de of the top of the tower, also of the lines $w 3$ and $y 5$ of the porch (the inclination of the roof of the poreh being the same as the other roofs of the body of the chureh), as shown by the dotted lines in the example. The walls of the porch are obtained from the height $A P$ on the intersection, equal the height AT, No. $2_{W}, \mathrm{P} m$ being drawn to the vanishing point V , and $m n$ to \mathcal{X}, give the lines $n 5,53$, and 32. We may observe that the inelined lines $u f, l e$, k, and $v z$ have a common vanishing point, which, if required, may be obtained; it will be in the same vanishing line with the point Q, and as much helow the horizontal vanishing point X as the point Q is above it. to which point, were it obtained, the lines already drawn will be found exactly to tend. It is seldom absolutely necessary to have both those points; in this instance one only of them, the point Q, is obtained, whieh answers every end required of both; for, supposing it were left to that vanishing point for finding the inelined lines, the visual lines being drawn, and the heights of the upright walls being found, the line dhbeing drawn in direction to the v:mishing point Q determines one side of the gable end at the visual line in the middle ; the other is aceomplished by joining the points k and c together. So of the other gable, cl being drawn, $l e$ is also had by joining together the points l and e.
2437. To complete the whole, draw the line $x q$ on the tower from the point x to the angle of the tower, in direction to the vanishing point Q; then draw the lines $q h$ and $u h$ to t.leir proper visual lines and vanishing points V and Q. The putting on of the spire requires some consideration, and in it we must proceed with some thought and care. The base of it is intended to be a regular octagon. If the two external lines in the geometrical elevation of the spire be continued till they tonch the sides of the tower, as is done at K and L (No. 2.), and an oetagon be there constructed, extending the square of the tower, it will be the base of the spire. Set up the height of the spire BW (No. 2.) on the intersection (No, 3) at B; also the height of the base line KL at K , and draw the lines BV and RV ; the first, cutting the visual line throngh the centre of the tower in the point O, determines the height of the spire; the other, cutting the tower in the point u, determines its base. Through the point u draw a line round the lower, and find the points of the oetagon in the middle of each face of the tower, to whieh let lines be drawn from the top O, and the whole will be completed, as shown in the example.
2438. Thus have we gone throngh the process of finding the representation of rather a complieated object with as little confusion of lines as possible; but one thing suceceding another, and each being required to remain for the students observance, the whole unavoidably becomes intrieate. Indeed, it is not now so perfeetly exceuted but that
something remains for the student to complete, which must result from his own study or oceupy more spaee than all we have already written on it. We allude to the intersections that take place at the lodgment of the spire on the top of the tower, to elueidate whieh it is drawn to a larger scale at No. 4., the mere iuspection whereof will convey a full and, we hope, satisfactory idea of what we advert to. The student has been left to complete the base of the octagon, a process so simple that we cannot, if he retain what re has read, believe he will find difficulty in accomplishing, either by visual rays or otherwise. It is next to an impossibility to deseribe intricate matters like these so as to leave nothing for the exercise of the reader's judgment; for, however copious the instruction, there will always remain sufficient unexplained to keep his mind in action, and afford him the opportunity of exereising his own ingenuity.
24:39. Example V. Ju fig. 833. the objpets X and Y are plans of columns with bases

Fig. 833.
and capitals, whose general forms are shown at X and Y (No. 1.). IZ, as before, is the plane of the picture, S the station point. The pieture, as previously, is prepared with the vanishing points VZ, and the ground line GL. $O O$ is the central line of the pieture, and BA, BA are, it will be seen, lines of height.
2440. In the stuares \mathbf{X} and \mathbf{Y} the dotted lines show the diagonals and boundaries of squares inscribed in the circles, by which so many more lines are gained for obtaining the curves which the circles form in the perspective representations. The visual rays are drawn as in the preceding examples, and transferred to the picture, the process being, in fact, nothing more than making squares following the profiles, which, at the different heights, guide the formation of circles within and around them, of which the upper ones only, for preventing confusion, are shown in the perspective representation. In each series, the extreme width of the appearance of the eirele may be obtained by visual rays, as at b, b, b.
2441. At Z and z (Nos. 3. and 2.) are the plan and elevation of an arcade, from whieh it wall be seen that the principle of inseribing squares and diagonals is equally applicable to the vertical representation of circles. Presuming that we have sufficiently described the diagram to enable the student to proeeed in drawing the examples at large, we shall now submit an example of general application.
2442. Example VI. In fig. 834. YZ is the plane of delineation, and the plan of the building, with its projeetions, roof, and ehimneys, is shown in No. 1. In practice, this is geuerally made on a separate drawing board, to enable the draughtsman to make his perspective

vutline without injury from constantly working over the paper. Here the vanishing points are too distant to he shown on the diagram; but the reader, from the tendency of the several lines, will easily find where they lie. In the same manuer, he will find whereabont the station point is placed. BA, BA, BA, No. 2., are lines for the transference of the heights. The projection of the cornice is dotted round the leading lines of the building on the plan. The rest of the figure cannot fail of being understood and put in practice by the student who has made himself master of the precediug examples.
2443. We shall now turn to a point whereon much difference of opinion has prevailed, namely, the adjustment of what may generally be considered the best angle of vision, within which objects should be seen to obtain the most agreable representation of them. For as this angle is enlarged or decreased by viewing the objects at greater or less distances, their appearance will vary, and their delineation, in consequence, be affected thereby, and distortion of the objects will be the result.
2444. By the angle of vision or angle of view is understood the expansion of the lines proceeding from the eye, by the two extreme visual rays embracing the whole extent of the view, and this whether it consists of one object or of many. Let A (fig. 835.) represent the plan of a mansion; ket B be the outhouse contiguous to the mansion, and let the places of trees be at CCC and DDD. Let S be the station or point of view from which the whole is seen. Considering the mansion A as a lone object, the extreme visual rays Sa Sb form at the eye the angle $a \mathrm{Sb}$; then ${ }^{a} \mathrm{~S} b$ is the angle of view under which that object is seen, $S a$ and $S b$, being the two extreme visual rays embracing the whole extent of the object. Again, if the outhouse B be taken as a single object, then will the extreme visual rays $c \mathrm{~S}$ and $d \mathrm{~S}$ form, at the eye, the angle $c \mathrm{~S} d$, being the magnitude of the angle under which that object is seen. So of any object, the visual rays that embrace its whole extent form the angle of view under which it is said to be seen. It is then mani-

Fig. 835. fest that the angle of view will be either large or small, as the eye is near to or remote from the object. Suppose both the ohjects A and B are to be taken into the view, with the ad-
dition of the trees to their right and left. Let visual rays be drawn from the trees on botin sides to the station S. The angle CSD is the angle of view under which the whole extent is seen, and the rays CS and DS are denominated the extreme visual rays of the view.
2445. Objects may not only be placed too near the eye for comfortably viewing them, but they may be so nearly placed to the eye as to give it pain. The eye only contemplates a small portion at a time; it is only by its celerity and continual motion that it becomes perfeetly sensible of a whole and of the many forms whereof it is composed. But when an object, or many objects, widely extended, are placed too near, the traverses of the eye in viewing the whole become painful. Every one must have experienced that this is su, and why so we must leave to others to account for. When the cye is removed to an agreeable distance, the extent of the view to be delineated is at once seen without turning the head to one side or the other, so that all the objects are at once comprehended.
2446. In taking a view, the turning of the head is to be avoided. The view should on no account comprise a greater extent than can be taken by a coup d'oil, or than can be viewed by the traverse of the eye alone; and this necessarily confines the extent of that with which we have to deal, and brings the angle of view within certain limits. What the eye can contemplate without trouble it views with pleasure, and beyond a certain extent the eye becomes distracted.
2447. Smallness of object has no relation to the angle of view ; a die, or the smallest possible object, may be brought so near the eye as to give pain in looking at it, and a large extent of view may be contemplated with as mueh ease as a small one, by merely placing the larger one at a greater distance. If the place of the plane of delineation be at FG , then liSG will be the angle of view. If a section of the same risual rays be taken at HI, then HI will be the extent of the picture, and the angle IISI is the angle of view; but the angles FSG and HSI are the same, therefore the eye views both with equal satisfiaction: but in this case one must be placed. at the distance SO, and the other at the distance SP.
2448. The attempt to select an angle suitable to all the cases that may oecur, as the best angle of view, wouid he as vain as it would be absurd. Different subjects require different treatment. External subjects differ from internal ones ; and the last from each other, according to circumstances. Some authors on the subject have laid it down as a rule, that the greatest distance of the eye from the pieture should not exceed the width of the picture laterally, which makes the angle of view about 53 degrees; others have insisted that the distance should be less, requiring that the angle of view should not be smaller than 60 degrees; and others allow of a still larger angle. The elder Malton, and his son, to whom we are indebted for all that is valuable in this section, and whose (both of them) experience in the matter was very extended, advise that the angle of view should never exceed from 53 to 60 degrees; the former recommending an angle of 45 degrees as the best, beeause neither too large nor too small. The elder Malton advises to keep between the one and the other, that is, not to let the angle of view exeeed 60 degrees, nor be less than 45 , the first being likely to distort the objects, and the last rendering them too tame in the outline. We ean add, from our own experience, that the advice is sound; for though, under very particular circumstances, it may be necessary to use a larger angle of view than 60 degrees, such a case does not frequently occur. Much must always be left to the discretion of the artist in respeet to points which are to guide the angle of view he adopts. After a little experience, he will find that angle best suited to the circumstances under which his drawing is to exhibit the object or objects.
2449. Example VII. The principles upon which we delineate any of the interior parts of a building are in no wise different from those used for the representation of their external views, for it is of eourse immaterial whether we represent the external faces of their sides, or those which form their internal faees; the only difficulty which arises in making an internal view being that which arises from the inability, on account of the restrieted distance under which they are in reality viewed, of placing the station point at such a distance as to take in a sufficient quantity of the objects to be represented. A person placed in a room can of course only see the whole of one and part of another wall; in short, in every direction he cannot see comfortably more than, as we have above mentioned, forty, or, at the most, fifty, degrees of the objects around him. On this account, and for the purpose of showing more than in reality can be seen, it is customary, and perhaps justifiable, in order to give a more comprehensive view of the interior to be delineated, to place the station point of the speetator out of the room or plaee, supposing one or more of its sides to be removed. This is, in fact, a delusion, as is every view of an interior possessing any merit that has come under our notice. But for picturesque delineation, it is not only one which is necessary, but one without the practice whercof no satisfactory representation can be given of an interior whose dimensions are not very extended. The section whereon we are now engaged is not supposed to be a treatise on Perspective, but merely a concise developement of its principles so as to give the reader such a gencral knowledge of the subject as nay enable
him to pursue it, if he please, from the hiats it affords. With this apology for not proo ducing to him a more complicated, though not less useful subject, we proceed.
9450. Fig. 836. (No. 1.) represents the plan of a staircase one third the size used for the

Fig. 856.
purposes of the delineation ; YZ (No. 1.) is the plane of the picture, O is its centre. Ithm the data, therefore, there will be no difficulty of obtaining the vanishing points of the sides Ya and $a b$. The diagram is not encumbered with the visual rays necessary for the delineation, which we are to suppose drawn and transferred to their proper places on No. 3., wherein HH is the horizontal line. No. 2. is a longitudinal section of the stairease, wherein are shown the rising and descending steps, and the dotted line cl gives the seetion of the vaulted ceiling over the stairease. It will be immediately seen that the ends of the steps will be determined by visual lines, notwithstanding the ascent and descent of them, becanse either is determined by referring to any lines of height, which way be obtained from the plan and section, by which the portions seen of the flights will be immediately fonnd and
transferred to their respective places on the picture. With these observations we leave the diagram for the exercise, on a larger scale than here given, of the ingenuity of the student.
24.51. Example VIII. The last perspective example to be submitted is that of a cornice

Fig. 8.5%
(f.g. 837.), wherein the contrivance of the elder Malton is used for finding the places of the modillions and the other parts.
2452. Let EM, FN, GO (No. 1.) represent the angles of a building in perspective, LMNO being the lower horizontal line of the cornice, whose geometrical elevation and profile are shown in No. 2. Make MQ equal to $m q$ the depth of the cornice, supposing the edge EQ to be in the plane of projection; draw PQRS, \&c., the lines of the top of the cornice, to their respective vanishing points. Make $Q^{\prime} T, Q^{\prime} T^{\prime}$ in $R Q, P^{\prime} Q$, produced equal to the perspective projection of the cornice qt. Then place the depths of the various mouldings along MQ, and fix the lengths of their projections on the lines drawn to the vanishing points through those in EQ , an operation which may be much facilitated by drawing MT, M'T', by which, in many places, the points of the mouldings are at once determined, as in the case of the top and bottom of the fillets of the ovolo; and very often, if the drawing is not on a very large scale, mt and its perspective images MT, MT, \&e. will enable the eye to proportion the mouldings. Thus the perspective projections MQT, MQT' of the sections of the cornice by the planes of the sides EN, EL, supposed to be prolonged or extended. may be found; and it is manifest that lines through the points of these sections to the proper vanishing points will give the perspective forms of the cornice mouldings as they would appear.
2453. The lines found will by their intersections supply the mitre MQU ; but where the scale is large, it is better to obtain mitre sections at each principal angle of the buidding as shown by the lines MQU, NRX, \&e. The planes of the mitres form, of course, angles of forty-five degrees with the sides of the building itself, consequently the vanishing points of $Q U, R X$, \&e. may be found by bisecting perspectively the right angles found, or by drawing on the plan lines parallel to the diagonal lines or mitres from the station point to intersect the picture. If these, indeed, are iound in the first place, there would be no necessity to draw the square sections MQT, MQ' ${ }^{\prime}$, inasmuch as lines drawn from the mouldings intersecting the mitre sections to the vanishing points will at once form the perspective representation of the cornice. In practice, this is the usual mode of proceeding, because a skilful draughtsman can pretty well proportion by his eye most mouldings as seen in perspective; but where great accuracy is required, the method of proceeding by square sections is recommended, because, from the great foreshortening of the diagonal line. the smallest inacenracy of intersection on it will catuse very large errors in the mouldings.

When the diagonal sections alone are used, it is clear that the geometrical profile, No. 2., will not be the same as that formed by the oblique section of the cornice: this last must therefore be obtained from a plan and elevation of the mouldings as shown in No. 3.
24.54. Instead of finding the square section made by the plane FNGO at the angle OG, it may be drawn on the plane TQM, where it is more readily found by producing the lines whereby the section TQM was obtained; so the lines $\mathrm{T}^{\prime} \mathrm{T}^{\prime \prime}, \mathrm{MO}^{\prime \prime}$ are set out in persjective equal to the projection of the break of the building ON : moreover by the line $\mathbf{l}^{\prime \prime} \mathbf{O}^{\prime \prime}$ we in:y obtain the mouldings of the corniee on the face of the wall GH as produced
 or prolonged to $\mathrm{T}^{\prime \prime} \mathrm{O}^{\prime \prime}$, and conversely the cornice m perspective may be drawn from this imaginary section, if it be previously found. Where vanishing points are at an inconvenient distance in drawings, a mode may be adopted to obviate the inconvenience, the principle whereof is this. Let A (fig. 837 a) be the vanishing point, CDB a segment of a circle whose centre is A; then if $C B$ be bisected in $D, A D$ will be

Fig. 837, h. a vanishing line for such bisection; and if CD be bisected, and a ruler applied to join CD, it will, by the application of a square on CD , give the vanishing line for the new bisection. Fig. 837. b.
2455. Our next care is to find the vanishing point of the raking mouldings, which may be found from what has already been said, and a perspective section must be made of these mouldings by means of any vertieal plane where most convenient; but the best place is through the apex of the pediment, which, as it eould not, for want of room, be done in the present example, is taken through the line 00 , No 2. , passing through the extrome left angle of the tympannm of the pediment.
2456. As the monldings of the pediment (fir. 837.) here are of the same depth and projection as in the horizontal parts, they uill not, when inclined, comeide with the diagonal section of the horizontal cornice at OS; hence that section, if found in perspective at $O \mathrm{~S}$, cannut be used for drawing the perspective representation on the pediment cornice, except for the bead or fillet above the corona, which, from the consiruction of the pediment, will coincide at this mitre, as we may see in No. 2 ; whence it may also be seen that the point x does not coincide with t. X'x cannot, therefore, in the perspective represen ation, be drawn through X, the pint answering to t in the diagonal section NKX. $O^{\prime} O^{\prime}$ in the line ()ll is to le made in perspective equal to mo, no.2., and the whole depth oo, and those of the several mouldings on the oblique seetion, being set נון E E produced, they are to be transferred to OO^{\prime} by means of the vanishing points. The distance O^{\prime} I Is the perspective distance of the projection $q t$ of the cornice as before, and is most readily obtained from the section $O^{\prime \prime} T^{\prime \prime}$, which is transferred to the plane $O^{\prime} l$, and will be easily comprehended from the tigure: the quantity of projection of each raking moulding of the pediment is equal to that of the same moulding where horizontal. Thus the per-pective representation of an oblique section made by a plane passing throigh oc. No. $2 .$, is obtained, and the motildings are then drawn to the vanishing point through the various points, the line $1 X^{\prime}$ cutting ' $T^{\prime \prime} X$ in the point corresponding to x, No. 2 . As to the modillions, their representations are found with less confusion by planning them apart and using visual rays; but if no plan is used, the folluwing method, invented hy the elder Malton, may be adopted:-
2457. Draw BC. the line intersecting the plane of the sofite of the corona, Nos. 2. and 3., through the prope? point x in MQ at right angles to it, and draw ry to the vanishing point. Produce the line corresponding to A in No. 3. to A in $x y$, and transfer A to 1 in $B C$, so as to be proportional to it in respect of the whole extent. Then set off the proportional widths and intervals of the modilhons, as shown on Nos. 2. and 3. on BC, and transfer them br means of the same proportioning point by which z was transferred to 1 ; and from the points $2,34,5,6,8 c$. In $x y$ thus obtained, draw on the perspective of the sofite by the use of the vanishing point the lines representing the tops of the modillions corresponding to $2,3,4, \& c ., N o .2$. The cymatium round them and the inner angle of the sofite may he drawn by the eye, or where great aceuracy is rcquired,
the mitre or diagonil sections may be determined as for the principal monldings already desctibed. At the backs of the mndillions the verticals are to be determined either by means of visual rays from a jllan, or through the mediam of intersections of the perspective lines (f the upper parts of them on the sofite, which is as much as can be requisite for guiding usto a correct delineation. The same process is to be used for the modillions on the nther silies.

The following is an easy method for dividing vanlshing lines in perspective. Let $A B, C D$ be the perspective representation of two parallels, mo matter in what plane. It is required to divide the given portion of $A B$ on one of them so that its parts shall be the perspective representation of equal portions of the real line (or in any assigned ratio). Draw $B E$ parallel to $C D$ and equal to $A B$, and divide it into the required number of equal parts or of parts in the desired propor-

Fig. 837. tion beginning at E. Join AE, and produce it to meet CD in F. From F draw lines to each of the points of dlvision P'QliS of the line AF, and they will cut $A B$ in the requlred points of subdivision $p q r s$.

Sect. III.

2458. Seiography, or the doctrine of shadows, is a branch of the science of projection, ard some preparation has been made for its introduction here in Sect. Vi. Chap. I. (1110, el. seq.) on Descriptive Geometry, which, if well understood, will remove all difficulty in comprehending the subject of this section.
2459. The reader will understand that in this work, which is strictly architectural, the only source of light to be considered is the sun, whose rays, owing to his great distance, are apparently parallel and rectilineal. It is moreover to be premised, that such parts of any body as may be immediately opposed to the rays of light are teclinieally said to be in
light, and the remaining parts of such body are said to be in shade. But when one body stands on or before another, and intercepts the sun's rays from the latter, which is thoreby deprived of the action upon it of the rays of light, the part so deprived of the immediate action of the light is said to be in shadow. It seems hardly necessary to ol?serve, that the parts of any body nearest the source of light will be the brightest in appearance, whilst those furthest remored from it will, muless under the action of reflected light, be the darkest.
2460. It has been the practice, in architectural drawings, to represent the shadows of their objects at an angle of forty-five degrees with the horizon, as well on the elevations as on the plans. The practice has this great convenience, namely, that the breadth of the shadow cast will then actually measure the depth of each projecting member which casts it, and the shadowed elevation may be thus made to supply a plan of the external parts of the building Now, if in the elevation the shadows be cest at an angle of forty-five degrees, it will on a little consideration be manifest, that, being only projections of a more lengthened shadow (for those on the plan are at an angle of forty-five degrees), the actual shadow seen diagonally must be at such an angle as will make its projection equal to forty-five degrees upon the elevation; because all elevations, sections, and plans, being themselves nothing more than projections of the objects they represent, are determined by perpendicular, horizontal, or inclined parallel lines drawn from the pints which bound them to the plane of projection, and similarly, a shadow in vertical projection, which forms an angle of firty five degrees with the horizon, can only be the representation on such projection of an angle, whose neasure it is our business new to determine.
2461. In the cube ABCDEFGII (f fig. 838.) the line BD, forming an angle of forty-five degrees with the horizon, is a projection or representation of the diagonal BII on the vertical plane ABD ; and our object being to find the actual angle AHB , whereof the angle ADB is the projection, we have the following method. Let each side of the cube, for example,

Fig. 835. $=10$. Then (by 907.) $\mathrm{AD}^{2}+\mathrm{DH}^{2}=\mathrm{AH}^{2}$.

That is, $10 \times 10+10 \times 10=200=\mathrm{AH}^{2}$, consequently $A \mathrm{II}=14 \cdot 142100$.
As BAll is a right angle, we have by Trigonometry, using a table of logarithms, -

$$
\begin{array}{ll}
\text { As AH }(=14.14142100) \text { or Ar. Co. Log. } & 98494850 \\
\text { To tangent } 45 \\
\text { So AB }(=10.00000000) \text { log. } & . \\
\text { To tangent of angle FHB }=35^{\circ} 16^{\prime} & . \\
\end{array}
$$

The angle ABH is therefore $54^{\circ} 44^{\prime}$.
Hence it follows, that when shadows are projected on the flan as well as on the elevation, at an angle of forty-five degrees, the height of the sun which projects them must be $35^{\circ} 16^{\prime}$.
2462. It is of the utmost importance to the student to recollect this fact, becanse it will be hereafter seen that it will give him great facility in obviating difficulty where confusion of lines may lead him astray, being, in fact, not only a check, but an assistance in proving the accuracy of his work.
2463. We now proceed to submit to the student a series of examples, containing the most common cases of shadowing, and which, once well understood, will enable him to execute any other ease that may be presented to his notice.
2464. In fig. 839, we have on the left-hand side of the diagram the common astragal fillet and cavetto occurring in the Tuscan and other pilasters, above in elevation and below in plan. The right-hand part shows the same conrected with a wall, whereon a shadow is cast by the several parts. LL is a line showing the direetion of the light in projection at an angle of forty-five degrees. It will on experiment be found, by a continuation of the line, or by one parallel to it, to touch the side of the astragal at a, whence an horizontal line drawn along it will
 determine its line of shade. We here again repeat, to prevent misunderstanding, that in the matter we are now attempting to explain we are not dealing with reflected light, nor with the softening off of shadows apparent in convex objects, but are about to
determine the mere boundaries of shade and shadow of those under consideration. 'Ithe rest must be learned from observation, for the ciremmstanees under which they are seen must constantly vary. 'This, however, we think, we may safely state, that if the bound. aries of shade and shadow only be accurately given in a drawing (however complex), the satisfaction they will afford to the spectator will be sufficient, without further refinement. lut it is not to be understood from this that we discountenance the refinement of linish in architectural subjects; all that we mean to say is, that it is not necessary: 'Io return to the diagram : it is manifest that if the boundary ol' shade be at a from that point parallel to the direction of the light a line ab wilt determine the boundary of shadow on the fillet at b, and that from the lower edge of such tillet at f a line again parallel to the direction of the light will give at c the boundary of the shadow it casts upon the shaft S . As, in the foregoing explanation, a was the upper boundary of shade, so by producing the horizontal line which it gave to a on the right-hand side of the diagran we obtain there a corresponding point whence a line aa' parallel to the direction of the light is to be drawn indefinitely ; and on the plan a line $a \alpha$, also parallel to the direction of the light, cutting the wall WW whereon the shadow is east at a. From the point last found a vertical line from a, where the shadow euts the wall on the plan, cutting aa in a^{\prime}, will determine the point a^{\prime} in the shadow. The point c , by a line therefrom parallel to the direction of the light, will determine similarly the situation e' by obtaining its relative seat on the diagonal ed, which perhaps will be at once seen by taking the extreme point d of the projection of the astragal, and therofrom drawing dd' parallel to the direction of the light. From the line $d d$, drawn similarly parallel to the direction of the light, and eutting W W in d, we have the houndary of the shadow on the plan, and from that point a vertical dd being drawn, the boundary of shadow of the extreme projection of the astragal is thus obtained. The boundary of shadow of the fillet on the riglithand side at b, similarly by means of $b b$, and by the vertical $b \mathrm{~b}$ '. gives the boundary point of the shadow from b . 'The sume operation in respect of ec gives the boundary of shadow from e to e^{\prime} in the latter point. We have not described this process in a strictly mathematical manner, beeause our desire is rather to lead the student to think for himself a little in conducting it ; but we cannot suppose the matter will not be perfectly understood by him even on a simple inspection of the diagram.
246.5. In the diagram (fig. 840.) is represented a moulding of common oecurrence in arehitȩctural subjects, and, as before, the right-hand side is the appearance of its shadow on the wall $W \mathrm{~W} W$ on the plan. It will be immediately seen that L.L being the projected representation of the rays of light, the line aa determines the boundary of shadow on the ovolo, and that at b , the boundary of its shade, is also given by a line tonching that point parallel to the rays, or rather projected rays, of light. On the right-hand side of the figure oo', drawn indefinitely parallel to the direction of the light,

Iig. s:0. and determined by a vertical from $a^{\prime \prime}$, the intersection by $a^{\prime \prime} a^{\prime \prime}$ with the wall, will give $o^{\prime} a^{\prime \prime}$, the line of shadow of oa'. 'The line aa determines the shadow on the ovolo, and this continued to a^{\prime} horizontally gives also a like termination to $a^{\prime \prime}$ in the shadow ; b, the boun dary upwards of the ocolo's shade, is represented to the right by b', and to the right on the plan by l, whence by a vertical cutting the line $b^{\prime} b^{\prime \prime}$ in $\mathrm{b}^{\prime \prime}$, the boundary of shadow which b^{\prime} will east is obtained. ec on the plan is in projection the distance of the line of shade c^{\prime} from the wall whereon the shadow is cast, and its place in the shadow is at $\mathbf{c}^{\prime \prime}$, ee" $b^{\prime \prime}$ being the length of horizontal shadow produced by the circumstances.

In fig. 841., which, it will be seen, is a common fillet and cavetto, LL, is, as before, the disection of the

!ight, and aa gires the boundary of shadow, as well of the fillet's lower edge as of the lower edge of the cavetto itself. In respect of the right-hand side of the figure, $\mathrm{a}^{\prime} \boldsymbol{a}^{\prime}$ ' is a line showing in profile the extent of projection of the fillet before the wall line $W \mathrm{~W}$, and from a' a line drawn indefinitely parallel to the direction of the light, and terminated by the intersection of a vertical from a^{\prime} in $a^{\prime \prime}$, will give the point a^{\prime} in the sharlow. So is bh found through a vertical from b on the wall, by a line drawn parallel to the direction of the light from b on the plan. The several points being connected by lines, we gain the boundaries of the sladow, whercin a'a" is represented by $a^{\prime \prime} a^{\prime \prime}$.
2466. Fig. 842. exhithits a fillet and cyma reversa or ogee, wherein, as before, LL is the direction of the light at a similar angle to that used on the plan. From the lower edge of the fillet, parallel to the direction of the light, is obtained the point a om the ogee, and from b a similarly: parallel line gives the boundary of shadow in e. A line from o in direction of the light, drawn indefinitely, intercepted by a vertical line from d^{\prime}, its projection on the plan in d determines o'd, the houndary of the shadow of the fillet on the wall WW. ce" is the line of profile of the projecting boundary in elevation, of the shade of the ogee before the wall, whereon its shadow is terminated from c and $c^{\prime \prime \prime}$ by a vertical $c^{\prime \prime \prime} c^{\prime \prime \prime}$.
 bb', the boundary of shade of the ogee itself, is found in shadow by the line h b"' drawn indefinitely parallel to the direction of the light, and terminated by a vertical from b^{\prime}, the point on the wall correspondent to b on the plan, the place of the shade's point in the elevation. By the junction of the lines so found, we shall have the outline of the shades and shadows east. It is here to be observed, that the portion of light $a^{\prime} h^{\prime}$ which the monlding retains is represented in the shadow by $a^{\prime \prime} b^{\prime \prime \prime}$, all the other parts of its curved form being hidden, first by the projection of the fillet, and secondly by the line of shade bh", which aets in the same way as the fillet itself in producing the line aa', for the moment the light is intercepted, whether by a straight or curved profile, shadow must follow the shade of the moulding, whatever it be; and this is by the student to be especially observed.
2467. Fig. 843. exhibits the mode of obtaining the shadows and shade in the eyma recta. LL is the direction of the light, parallel whereto the line ab determines the line of horizontal shadow east by the lower edige of the fillet upon the cyma, and ed that of the under part of the cyma itself upon the fillet at d. $\mathbf{c c}^{\prime}$ is the upper boundary of the shade of the cyma, and e the point for determining the shadow of the lower fillet, the points abed corresponding with abcd on the plan. WW on the right hand is the face of the wall, whereto the lines $e^{\prime} e^{\prime \prime}$, $d^{\prime} d^{\prime \prime}, c^{\prime} c^{\prime \prime}, b b^{\prime \prime}$, and $a^{\prime} a^{\prime \prime}$ are drawn parallel to the direction of the light. From $e^{\prime \prime} d^{\prime} c^{\prime \prime} b^{\prime \prime} a^{\prime \prime}$ vertical being drawn, cutting the indefinite lines oo, a'a", \&c. parallel to the direction of the light in

Fis. 815. $t^{\prime \prime}, d^{\prime \prime \prime}, c^{\prime \prime}, b^{\prime \prime}$, and $a^{\prime \prime}$, we have the form of the shadow in elevation. 'The part from b^{\prime} to e^{\prime} of the eyma being in light, its shadow will be the curve $\mathrm{c} \mathrm{b}^{\prime \prime}$, wherein, if it be required on a large scale, any number of points may be taken to determine its form by means of correspondent points on the plan as for the parts alreally described.
2468. Fig. 844. is the plan and elevation of some steps, surrounded by a wall, and P in the plan is a square pillar standing in front of them. It will be seen that the line A 13
corresponds with ab on the plan, as do the points E, F, G, H with efgh, from which verticals determine them in the elevation. The projection of the plinth on the lower step is found by KI and a corresponding line and vertical, which, to prevent confusion, is not shown on the plan. The shadow of the square pillar ${ }^{1}$ ' is found in a similar mamner by the line CD corresponding to ed on the plan, the shadows on the steps being also determined by the points $\mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$, throngh the medium of verticals from $1, m, n, o$. The left-hand side of the shadow of the pillar is determined in a similar way by the line $p q$, and $Q R$ in the elevation is given by $q r$ in the plan, and is the line representing the back ps of the top of the pillar. It will be observed that we have not deseribed any of the preceding diagrams in a strict way, neither shall we do so in those that follow, presuming that the reader has, from the perusal of the section on Descriptive Geometry aequired sufficient knowledge to follow the several lines.
2469. The fig. 845. is a sort of skeleton plan and elevation of a modillion cornice, but deprived

of a corona, so as to slow the shadows of the modillions, independent of any commetion with other parts of the assemblage. FG, IIl, and Al3 parallel to the direction of the light determine, by means of verticals from d and i, the points of shadows from the correspondent points c , I , the points D, L, and I, whereof L is the point of sladow of M .
2470. In fig. 846. we approach a little nearer to the form of a modillion cornice. The tine EF determines the sliadow of the corona, and Al3 by means of the lines cd, lk, and the verticals dD, KK, the boundary of the side HL of the modillions. A line also drawn horizontally from B will give the under sides of their shadows. FG is a line representing the shadow of the corona.
2471. Fïg. 847, gives the finished modiltion, and the lines $\mathrm{Aa}, \mathrm{Bb}, \mathrm{Ce}, \mathrm{Dd}$ will determine, by horizontal lines drawn from them, the shadows which we are seeking. The auxiliary lines, to which no letters are attached, cannot fail of being understood; but if difficulty arise in comprehending then, it will be remored by planning the several points, and therefrom drawing on the plan, to meet what may be called the frieze, vertical lines to intercept those from the correspondent points in the elevation, and the operation will be facilitated, perhaps, by projecting the form of the curved lines (as seen in the figure) whereof
 the modillion is formed.
2472. Fig. 8.18. will searecly reguire a description. It is a geometrical elevation of the

Vis. sis.
Doric triglyph and frieze, with the usual accessories. AB gives the boundary of shadow on the femora of the triglyph, AC the boundary of shadow on the light sides of the glypha, and AI) of the shadow of the corona on the frieze.
0473. Fig. 849. is a skeleton representation

Fig. 819. of a threc-quarter column, forming part of an arcade. The abacus is the mere block of material AK. In the plan ab shows the length of the line of shadow $A B$ band is determined by the vertical bB. In the same way, CD is found i y ed and the rertical dD. KG is the representation of kg on the plan, and by a vertical from got the line GII is also determined; H giving also by the horizontal line FH , in which H is already found, the situation of shadow of the point \mathbb{L} o of the abacus, as also by a vertical from f. LAN N are places of the shadow of the column on the impost moulding of the arch, whereof two correspondent points are seen in 1 and n.
2474. The form of shatow of the console in fig. 850 . will be seen on inspection to have been fommel from the lines aa, ce, dd, \&c. on the elevation, corresponding with aa, ce, dd, \&ic. on the section, all which are parallel to the direction of the light, and sufficiently explain themselves.
247.5. Fig. 851. is the elevation and section of a hemispherical niche, wherein are shown the shadows cast thereon by the vertical wall in which

Fig. 850. it is placed. Through the centre O draw DD at right angles to the direction of the light, and from O draw OA parallel to the direction of the light: A will be found the point in the wall casting the longest shadow. Produce $A O$ indefi. nitely; and from a, the corresponding point in the section to A on the elevation, draw aa', parallel to it, which will cut the surface of the niche in a^{\prime}. Draw the horizontal line $a^{\prime} a^{\prime \prime}$ cutting AO produced in $a^{\prime \prime \prime}$, and $a^{\prime \prime}$ will represent in the shadow the point A in the circumference. Take any other

Fis. s.is. point B in the edge of the niche, and by means of a line drawn therefrom horizontally we have the correspondent point b of B in the section. From B draw in the direction of the light the line $\mathrm{Bb}^{\prime \prime \prime} \mathrm{b}^{\prime \prime}$, cutting DD on the diameter in $\mathrm{b}^{\prime \prime \prime}$; transfer the point $\mathrm{b}^{\prime \prime \prime}$ in the elevation to b in the section, and draw hb^{\prime} in the direction of the light indefinitely. Then with $\mathrm{Bb}^{\prime \prime \prime}$ as a radius from b as a centre, describe an are cutting bb^{\prime} in b^{\prime}; and fiom b^{\prime} draw the horizontal line $\mathrm{b}^{\prime} \mathrm{b}^{\prime \prime}$, cutting $\mathrm{Bb}^{\prime \prime \prime}$ produced in $\mathrm{b}^{\prime \prime}$, and $\mathrm{b}^{\prime \prime}$ will be the point in the shadow corresponding to B in the elevation. To avoid the confusion which
would follow the deseription of the remainder of the operation, we have not encumnered the diagram with more letters of reference; the lines showing, on inspection, similar applications of the process for all parts of the curve. The fact is, that the whole of the shadow may be completed by taking the line DD as the transverse axis of an ellipsis, and finding the semi-conjugate axis Oa by the means above described, for $\mathrm{Da}^{\prime \prime} \mathrm{D}$ is a semi-ellipsis in form, inasmuch as it is the projection of a section of a hemisphere. This example is applicable to the shadow of a cylindrical niche with a hemispherical head. The line $\mathrm{N} N$ shows the shadow of the portion of the head, and the remainder is obtained by the mere intersection of lines in the direction of the light from different points to the left of N , of which enough has been already given in the previous examples to make the application intelligible.
2476. Fig. 852. is the representation of a pediment wherein the section Λ is that of the

mouidings of the pediment at its apex. In the section, ab drawn from the projection a of the corona in the direction of the light, determines the point b therein, wherefrom the horizontal line intercepted by the line $a b$ in the elevation, also drawn parallel to the direction of the light, gives the point b in the elevation. A line from b, parallel to the inelined sides of the perdiment on the left, will give the shadow of the corona on the tympanmen on that side, and similarly the line of shadow from b on the right side. ced determines the line of shadow on the frieze, and B is the section of the shadow of the assemblage of mouldings on the right.
2477. In fig. 853. is given the plan, elevation, and section of a square recess, covered with a cylindrical head. The lines AA, B13, CC of the elevation are determined by aa, bb, and ec of the phan; and in the section c'c' is the representation of the line ee of the plan. D, the point at which the direction of the light begins to touch the eircular head, is d^{\prime} in the section.
2478. Fig. 854. is the elevation of an arch, below which isits planand the shadow cast by it on the plane upon which it stands. AA is shown by at on the plan, the corresponding points in the rear of the arch. being $a^{\prime} a^{\prime}$, and $a^{\prime \prime} a^{\prime \prime}$ the points in the shadow. In a similar way, by 1 Bb corresponding with $b b^{\prime}$ on the plan the points $b^{\prime \prime} b^{\prime \prime}$ are obtained in the shadow.
2479. Fig. 855. is the plan and elevation of the upper part of a house,

wherein the upper story is occupied by an attic in the centre, against which, on each flank, the sloping roof is terminated. aa on the plan in the dircetion of the light, produced to inters et the hip at b, gives, by a vertical to B on the elevation, the lirection BB of the shadow thereon; and BB cut by AA in the direction of the light, the length $\mathrm{B} \Lambda$ of the line of shadow, which may, by letting fall the vertical Aa, determine the length aa on the plam. Nie line of shadow ac is determined by letting fall a vertical from C, where the line of shalow is intereepted by the hip of the roof; and from e the shadow will be found on trial to return as shown in the diagram. E: and D on the elevation are fomm, as seen in previons examples, in ee, and d on the plan, and their shadows at $e^{\prime} c^{\prime}$ and d^{\prime}. 2480. What is called an attic base is given in plan and elevation by fig. S56. The method of obtaining the shadows thereof in plan and elevation is now to be explained. It is an example which constantly oecurs in arehitectural subjects, and shonld be well studied and understood. 'The operations requisite for obtaining a representation of the lines of shadow of the different mouldings in this example depend upon the principles developed in the preceding subsections. The lower portion of the figure exhibits the plan, and the middle portion the elevation of the attic base in question. The uppermost portion of it presents three sections of the mouldings of the base in question cut in three different places parallel to the direction of the light. 'This last portion of the figure is not absolutely necessary, inasmuch as the profiles in question might have been oltained upon the elevation; but we have preferred heeping it separate to prevent a confusion of subsidiary lines. There is moreover another advantage in thus separating the parts from each other, namely, that of immediately and more distinctly seeing the lines at each selected place, in which the rays of light separate the parts actually in light from those in shadow; and where the student is likely to meet with

Fing. s55.

Fig. 856. matters of perplesity, nothing should be left untried to save his time, and, what is often more important, his patience. The mode to be adopted is as follows:-

Make on the plan any number of sections $a^{\prime} a^{\prime} a^{\prime} a^{\prime}, b^{\prime} b^{\prime} b^{\prime} b^{\prime}$ in the direction of the light, and draw on the elevation the corresponding sections aaaa, $\langle\iota b b$. LL being the direction of the light, draw parallel thereto tangents to the curses of the convex mouldings, and the bounditries of their shades will be obtained, as will also those of their shadows, by continuing them from sueh boundaries till they cut the other parts in each section, as will be more especially seell at $c c$. It will be recollected that in our first mention of the projected representation of the line of light and shadow we found that it was an angle of $54 \cdot 44^{\prime}$ of the diagonal of a cuibe. This angle is set out in $x y z$ on the plan. We have therefore another mode of finding the bomataries of shade and shadow on the moulding, by developing the sections $a^{\prime} a^{\prime} u^{\prime} a^{\prime}, b^{\prime} b^{\prime} b^{\prime} b^{\prime}, \mathbb{S}$ e, as at $A, 1$, , and C, and drawing tangents $y z$ to the convex mouldings for
boundaries of shade thereon, and continuing them, or otherwise, for the other parts, as shown in the diagram.
2481. In fig. 857., which represents the capital of a column, a similar method is used to that last mentioned for obtaining the shades and shadows, by means of $a^{\prime} a^{\prime} a^{\prime} a^{\prime}$ and $b^{\prime} b^{\prime} b^{\prime} b^{\prime}$, which are shown on the elevation by aaaa and bubb. We apprehend this will be understood by little more than inspection of it.

It is obvious that the means here adopted for obtaining the lines of shadow are precisely similar to those used in the preceding example. In this, however, the sections of the capital parallel to the direction of the light are made on the elevation, and it will be seen that many of them are not required to obtain an accurate boundary of the lines of shadow sought; for after having obtained those points from which the longest shadow falls, and on the other side those where the line of shadow com-

Fig. Si7. mences, a curve line of an elliptical nature connects the points found. If the drawing to be made be on a large scale, it may then be worth the arehitect's while to increase the number of points wherefrom the shadow is to be projected, so as to produce the greatest possible accuracy in the representation.
2482. The shadows of an Ionie capital are given in fig. 8.38. The shadow of the volute on the column is obtained by any number of lines $A, A, B 1, C C, \& c$. from its different

Fig. 8.58.
parts and verticals from their corresponding ones $a \pi, b b, c e$, \&c. on the plan, and similarly the shadow of the capital on the wall. In this example, as in those immediately preceding, the employment of sectional lines parallel to the direction of the light is again manifest. The use of them is most especially seen in the example of the Corinthian capital which follows. As a general rule, it may be hinted to the student of sciography, that in the difficulties that may oceur, they will be most expeditiously and clearly resolved by the use of the sectional lines, whereon we have thought it proper so much to dilate.
2483. The Corinthian capital in fig. 859. will require little more than inspection to moderstand the construction of its seiography; and all that we think necessary to particularise are the developed projections $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathrm{F}$ of the abacus and the leaves, whereon the termination of the shadows at angles of $54^{\circ} 44^{\prime}$, as explained in fig. 856 ., give their respective depths on the elevation.

There is another method of arriving at the result here exhibited, by drawing sectional linus parallel to the direction of the light through the different parts and leaves of the

capital on its elevation, as in fig. 857 ., and such was the mode we were formerly in the labit of adopting. It however induces such a confusion of lines, that we have long since abandoned it, and have no hesitation in recommending the process here given as the hest and most likely to avoid confusion. It is of course unnecessary, in making drawings, to project more than the shadow of one capital, as in a portico, or elsewhere, similar capitals, similarly exposed to the light, will project similar shadows, so that the projection on one serves for the projection on all of them.
2484. For instruction upon the mode in which reflected light acts upon objects in shade and shadow, we must refer the learner to the contemplation of similar oljects in relief. The varieties of reflexes are almost infinite; and though general rules might be laid down, they would necessarily be so complicated, that they would rather puzzle than instruct, and mader this head we recommend the study of nature, which will be found the best instructress the student can procure.

Sbct. IV.

GENERAL PRINCIPLES OF COMPOSITION.

2485. The end of architecture, without whose aid no other art can exist, is not merely to please the cye, but so to provide against the changes of the seasons as to berviceable to man. Pleasure to the eye may, however, result from the useful, well combined with the beautiful modifications whereof it is susceptible. It is in combining thus that the genins of the architect is exhibited. The art of decorating a well-proportioned cdifice is a very secondary and comparatisely easy part of his work, though requiring, of course, the early cultivation of his taste and an intimate acquaintance with the parts, whereof this may be taught and that acquised; but the distribution and arrangement of the several portions on the plan, upon which every accessory is dependent, requires great knowledge and considerable experience. And in this is involved not only the general convenience and effect of the building. but what is of much consequence to the proprictor, the cost of the work. None but those practically conversant with the planning of a building would believe the saving that may be produced by proper distribution. In the case of many extcrnal breaks, for instance, much addition arises in the length of walls erclosing the cdifice, withont generally increasing the convenience of the interior, but always whea the elevation comes to be adapted to the plan, with the ecrtainty of breaking up the masses, and destroying the simplicity of the clfect. 'This is mentioned merely as an instance of simplicity of $\mathrm{i}^{\text {lan }}$ always producing simplicity of section and elevation.
2486. All ornament in architecture is non-essential, inasmuch as the pleasure received by the eye is not its end. To public and private utility, the welfare and comforts of individuals. which are the ends of the art. every other point must be sacrificed; and it is oily when these have been accomplished that we are to think of decoration. An aneedote is related of a certain nobleman, who, having boasted to a friend of the beauty of the façade of his house. which within was exceedingly ill contrived, was told that he thought tha peer would do well to take the house opposite, that he might be thus always able to look at it. Those who make the internal parts of an editice subservient to the project of a façade, and adjust their plan and section to the elevation, must be considered as making the end of less importance than the ornament of the building. Those who work in this mode produce little variety in their designs, which, numerous though they be, consist of but few different combinations, whilst those that result from the natural order of making the fuçade subservient to the internal parts, which the plan and section impose, are susceptible of infinite variety and decoration.
2487. It is not, however, to be supposed that we are, in what has been said, sanetioning the student's neglect of careful composition and adjustment of the façades. Upon the adaptation of the different fronts of the building to sort with the internal convenience, the greatest care should be bestowed. It is from these his reputation is likely to flow, because they are the parts most susceptible of comprehension by the public. The architect will, upon every sueceeding day's experience, find that the two objects are not incompatible; but if such a case, which is possible, arise, he had far better sacrifice the façade, considering first the comforts of those who are to inhabit the house, and then the gratitication of those who are only to look at it.
2488. Durand has well observed that compositions conducted on the above principles must please. "Has not nature," says that author, "attached pleasure to the satisfaction of our wants, and are our most lively pleasures other than the satisfaction of our most pressing wants? These wants are better satisfied in the interior distribution of a building than in the exterior." Who leaves the I'antheon without more satisfaction than he expected from the view of the portico, fine though it be? Again, faulty as are both St. Peter's and St. Paul's, will any one who understands the subject aver that he has received more pleasure from their respective façades than from their noble interiors? The pleasurahie sensations produced by both are entirely dependent on their interior distribution. But when we find that in the former of these buildings there is no mockery of a dome, the interior and exterior being as far dependent on each other as the circumstances of construction would permit, whilst the dome of the latter is worse than a mockery, the interior and exterior domes having nothing in common with each other, the last being no more than a timber leaded appurtenance to the fabric, Wren, with all his greatness, for great he was, shrinks into nothingness by the side of Michael Angelo, although the external form of the dome on London be more elegant than that of the Vatican. This is a strong but not a forced illustration of our opinions, the goed sense whereof must be lift for appreciation to our readers, who, we doubt not, on a little reflection, will concur with us.

2489 . In ninety-nine cases out of a hundred the student will find that a good distribution. of his plan leads him, with anything like ordinary tact, to the composition of good sections and good elevations, far better, indeed, than he could arrive at by pursuing an opposite course. In domestic Gothic architecture, this is notorions, for in that a regular distribution of the openings would often produce the tamest and least pieturesque effect. The Gothic architects placed windows internally where only they would be serviceable, letting them take their chance in the exterior. It is not to be understood, because suel would be rather outré, that this method will exactly suit the principles of composition in Italian architecture; but it is well known to practical men that a required opening in a particular place, instead of being a blemish, may be converted on many occasions into a beauty. Indeed, it is incontrovertibly true that distribution and disposition are the first objects that should eugage the architect's attention, even of him whose great aim is to strike the attention by oruament, which can never please unless its souree can be traced to the most convenient and economical distribntion of the leading parts. Theorists may be langhed at, but it does not move us, nor diminish our regret to see many architects without any other theory than that whereon, in an inverted position, their own wild fances are grafted. If what we have stated be true, and from the nature of things we cannot imagine a controversy can arise upon our observations, the talent of the architect is to be estimated, as Durand properly ab erves, accord:ng to his solution of the two following problems: -

First. For a given sum, as in private buildings, to erect the most convenient and suitable house for his employer.
Sceond. The requisites in a building being given, as in public buildings, to erect it at the smallest possible expense.
2490. An investigation of all the modes of accomplishing these desiderata can only be fully effected in a work of much larger extent than this; but we have, in the practical parts of our volume, so prepared the reader, that he will not generally be at a loss in respect of the construction of a building, whatever its nature or lestination

Sect. V.

DRAWINGS NECESSARY IN COMPOSITION.

2490a. For the thorough comprehension of a projected edifice, at least three drawings are necessary, the plan, the section, and the aleration. The first is a horizontal section of it, the second the vertical section, which shows the building as if it were cut in half, that half nearest the spectator being removed from its plan, so as to permit the inner parts to become visible, and the third is the geometrical appearance of the front represented as if viewed from an infinite distance, in which no consergence of the lines would be seen.

2490b. In making a design, it is always better to put the general idea together on a single sheet of paper. and consequently, in most cases, on a small scale. This, in afterwards making the drawings, is, as may be necessary, increased in size. The three parts being drawn tinder one another, as shown in fig. 895a., wherein the middle diagram is the plan, the lower one the section, and the upper one the elevation. By thus beginning on a single sheet, in which the whole is before the eye, the corresponding lites are more readily transferred from one part to another. Having drawn through the mildle of the paper the vertical AA, cut at right angles by the horizontal line BH , draw the required centres or axes of the walls CC and DD, and supposing the building is to be square, with the same opening of the compasses set out the axes of the return walls EE and FF. Having determined the thickness of the walls, one half may be set out on each side the axes, as in ee, $f f, c c$, and $d d$, and then the lincs showing the thicknesses of the walls may be drawn. The width of openings in the walls may be next set out, half on each side the axes BB and AA, first drawn towards $b b$ and $a \alpha$, and the lines drawn to their places. Having thus proceeded, we slall discover that not only has the plan been drawn, but at the same time a considerable portion of the section and elevation. 'To distinguish the voids from the solids, the latter should be coloured or hatched, and then the next step will be as follows:Parallel to the principal axis B B, draw the ground lines GG and GG. From these lines the heights of the building, its cornice and openings, may be set up in the section and elevation; and afterwards, the height of the roof and projection of the cornice having been determined, they may be set out and drawn. In the section, as in the plan, it is usual either to colour or hateh the solid parts, as we have done in the figure.
2490 c. Simple as the above process may be, it contains the whole elementary part of the mechanical process necessary for making a design. It might have been conducted on a more complicated mass, but had we done so, it would not have been so well understood, and we therefore deprecate any observations on the simpleness of our process by those who have been brought to know these things by practice and experience. We do not, however, feel we should discharge our duty before closing this section, without a censure on the attempt to convert drawings of geometrical elevations and sec-

Fig. 853a. tions into pieturesque representations, because sucb practice is not only injurious to the art, but is dishonest, and has a tendency to mislead the architect's employer; and we are sorry to say that it is not unfrequently done with such a view. We denounce it, and without hesitation aver that the casting of shadows on a design is only admissible for the purnose of showing the relative depths of projecting parts; and when so admitted, the medium should be confned to Indian ink or sepia, ald thrown in merely in masses, the apertures being just slightly filled in with the same solour.

Sect. VI.

WORKING DRAWINGS.
2491. Working drawings are those made of the parts at large for executing the works, which could not be well done from drawings on a small scale, wherein the small parts would not be either sufficiently defined, or could not be figured so as to enathe the workman to set out his work with accuracy. They are generally in outline, except the sectional parts, which are frequently tinted to bring the profiles more readily before the eye.
$2491 a$. It is obvious that though drawings made to a twelfth or a twenty-fourth part of sheir rual size may well enough supply the wants of the workman where there is no complication in the distribution and arrangement, and where there is a simple treatment of regular forms, of right angles and the like; yet in all cases wherein we have to deal with the minor details of architecture, and in construction, where the variety of forms used is infinite from the variety of the circumstances, nothing short of drawings of the full, or at the least of half, the size will safely guide the workman.

2491b. The art of making working drawings, which must have been well understood at all periods of the practice of architecture, involves a thorough knowledge of projection, or descriptive geometry, and consists in expressing by lines all that occurs for the development of every part of the details of a building, in plan, elevation, and profile, each part being placed for the use of the workman with clearness and precision. All the rules by which working drawings are wrought are dependent on the matter in this work already commumicated to the reader, excepting only those details of the olders, and some other matters, which will be found in Book III. But we shall here, nevertheless, briefly replace before him the leading principles whereon working drawings are to be prepared. And first, he is to recollect that solids are only represented by the faces opposite to the eye; secondly, that the surfaces by which solids are enclosed are of two sorts, that is, rectilincar or curvilinear. Those bodies in which these properties are combined may be divided into three sorts: 1. Those which are bounded by plane surfaces, such as prisms, pyramids, and generally all straight woik. 2. Those in which there is a mixture of staaight and curved lines, as cylinders, cones, or portions of them, voussoirs of vaulting, and the like; and 3. Those solids whercin a double flexure oecurs, as in the sphere, spheroid, and in many cases of voussoirs.

2491c. We should, however, unnecessarily use our limited space ly further entering on these matters, on which enough has been said in previous sections. The plain truth is, that working drawings are to be so made for the use of the artificer as to embody on a scale, to prevent any mintake, all the information which this work has already given on construction, and that which follows in the more refined view of architecture as a fine art.

2491 d . In works whose magnitude is not of the first elass, the drawing of every part, both in construction and in those which involve the work as one of art, should be given of the full size whereof it is proposed to be executed. Where the building is large, as also the parts, this may be dispensed with; but then it becomes (the detail being drawn on a smaller but fully intelligible seale) the duty of the architect to see that the drawings he furnishes are faithfully drawn out to the full size by the artificer on proper moulds. Often it is useful-never, indeed, otherwise-to offer "p, as it is called, small portions of mouldings on the different parts of a huilding. to ascertain what the effect may be likely to be at the heights fixed for their real places. In these matters he should leave no means untried to satisfy himself of the effect which his first drawings in small is likely to produce when executed.

2491e. We have presumed that the architect is so far educated as to have acquired a full knowledge of all that rules can teach, and that, strictly speaking, he has proportioned his work in conformity with them. Still, in real practice, there are constantly so many circumstan:es which concur in making it almost necessary to depart from established rules, such as surrounding buildings, where it is of importance to give predominance to a part for the purpose of making it a feature, that the expedient of trying a portion of the proposed detail in the place it is actually to occupy, is a matter that we would advise every arehitect to adopt a'ter he has made and studied the working drawings whereof we treat.
$2491 f$. We have not alluded to the matters of carpentry and joinery, in which it is often necessary to give the artificer information by means of working drawings; but the methods of trussing in carpentry, and of framing in joinery, often require working drawings. What has already been exhibited under those heads (2031, et seq.) will prevent his being left uninstrueted, and will, moreover, have afforded such information as to prepare him, by the exercise of his own ingenuity, for such cases as may not have been specially given in the examples herein contained. We therefore bere close our observations under this section by an intimation to the student, that the proper preparation of working drawings for the use of the artificer tests his acquaintance with the theory and practice of the art, and is of the utmost importance to the pocket of the employer, which it is his duty as a gentleman incessantly to protect.

IRACTICE OF ARCHITECTURE.

CHAP. I.

GRECIAN AND ITALIAN ARCHITECTURE.

Sect. I.

BEAUTY IN ARC'IITECTURE.

2192. The existence of architecture as a fine art is dependent on expression, or the faculty of representing, by means of lines, words, or other media, the inventions which the architect conceives suitable to the end proposed. That end is twofold; to be useful, and to connect the use with a pleasurable sensation in the spectator of the invention. In eloquence and poetry the end is to instruct, and such is the ohject of the higher and historical classes of painting; but architecture, though the elder of the arts, cannot claim the rank due to painting and poetry, albeit its end is so much more uscful and necessary to tnankind. In the sciences the end is utility and instruction, but in them the latter is not of that high moral importance, however useful, which allows them for a moment to come into competition with the great arts of painting, poetry, and eloquence. It will be seen that we here make no allusion to the lower branches of portrait and landscape painting, but to that great moral and religious end which fired the mind of Michael Angelo in the Sistine Chapel, and of Raffaelle Sanzio in the Stanze of the Vatican and in the Cartoons. Above the lower branches of painting just mentioned, the art whereof we treat occupies an exalted station. In it though the chief end is to produce an useful result, yet the expression on which it depends, in common with the other great arts, brings each within the scope of those laws which govern generally the fine arts whose object is beauty. Beauty, whatever difference of opinion may exist on the means necessary to produce it, is by all admitted to be the result of every perfection whereof an object is susceptible, such perfections being altogether dependent on the agreeable proportions subsistent between the several parts, and those between the several parts and the whole. The power or faculty of inventing is called genius. By it the mind is capable of conceiving and of expressing its conceptions. Taste, which is capable of being acquired, is the natural sensation of a mind refined by art. It guides genius in discerning, embracing, and producing beanty. Here we may for a moment pause to inquire what may be considered a standard of taste, and that camot be better done than in the words used on the subject by Hume (Essay xxiii.): "The great variety of tastes," says that author, " as well as of opinion, which prevails in the world, is too obvious not to have fallen under every one's observation. Men of the most confined knowledge are able to remark a difference of taste in the narrow circle of their acquaintance, even where the persons have been educated under the same government and have early imbibed the same prejudices. But those who can enlarge their view to contemplate distant nations and remote ages are still more surprised at the great inconsistence and contrariety. We are apt to call barbarous whatever departs widely fiom our own taste and apprehension, but soon find the epithet of reproach retorted on us, and the highest arrogance and self-conceit is at last startled on observing an equal assurance on all sides, and scruples, amidst such a contest of sentiment, to pronounce positively in its own favour." True as are the observations of this philosopher in respect of a standard of taste, we shall nevertheless attempt to guide the reader to some notion of a standard of taste in architecture.
2193. There has lately grown into use in the arts a silly pedantic term under the name of
 perception by means of the senses; said to be the science whereby the first principles in all the arts are derived, from the effect which certain combinations have on the mind as con : nected with nature and reason: it is, however, onc of the metaphysical and useless additions
to monenclature in the arts, in which the German writers abound, and in its application to architecture of least value; because in that art form is from construction so limited by necessity, that sentiment can seareely be said to be further comected with the art than is necessary for keeping the subordinate parts of the same character as the greater ones under which they are combined; and, further, for therely avoiding incongruities.
2194. It is well known that all a:i in redation to nature is subject to those laws by wheh nature herself is governed, and if we were certain that those rules of art which resulted from reason were neersarily and actually comected with sensation, there would be no difficulty in framing a code of laws whereon the principles of any art might be firmly founded. "Principles in alt", as well defined by Payne Knight, "are no other than the rains of ideas which arise in the mind of the artist out of a just and adeguate consideration of all those local, temporary, or aceidental cirenmstances upon which their propriety or impropriety, their congruity or ineongruity, wholly depend." By way of illustrating the observation just made, we will merely allude to that maxim in architecture which inculcates the propriety of placing openiags over openings and piers over piers, disallowing, in other words, the placing a pier over an opening without the exhibition of such preparation below as shall satioty the mind that security has been consulted. There can be no doubt that a departure fom the maxim creates an unpleasant sensation in the mind, which would seem to be immediately and intimately connected with the laws of reason; but there is great difficulry in satisfing one's self of the precise mamer in which this operates on the mind, withont a recurrence to the primitive types in arehitecture, and thence pursuing the inquiry. But in the other arts the types are found in nature herself, and hence in them no difficulty occurs in the establishnent of laws, because we have that same nature whereto reference may be made. We shall have to rethrn to this subject in the section on the Orders of Architecture, to which we must refer the reader, instead of pursuing the subject here.
2195. Throughout nature beanty seems to follow the adoption of forms suitable to the expression of the end. In the human furm there is no part, considered in respect to the end for which it was formed by the great Creator, that in the eye of the artist, or rather, in this ease the better judge, the anatomist, is not admirably calculated for the function it has to discharge; and without the accurate representation of those parts in diseharge of their several functions, no artist by means of mere expression, in the ordinary meaning of that word, can hope for celebrity. This arises from an inadequate representation having the ajpearance of incompetency to discharge the given functions; or, in other words, they appear unfit to answer the end.
2196. We are thus led to the consideration of fitness, which, after all, will he found to be the lasis of a!l proportion, if not proportion itself. Alison, in his Essay on Tiuste, says, "I apprehend that the beauty of proportion in forms is to be ascribed to this cause," (fitness) " and that certain proportions affect us with the emotion of beauty, not from any original eapacity in such qualities to excite this emotion, but from their being expressive to us of the fitness of the parts to the end designed." Hogarth, who well understood the subject, concurs with Alison in considering that the emotion of pleasure which proportion affords does not resemble the pleasure of sensation, but rather that feeling of satisfachon arising from means properly adapted to their end. In his Analysis of Beauty that great painter places the question in its best and truest light, when, speaking of chairs and tables, or other common objects of furniture, le considers them merely as fitted from their proportions to the end they have to serve. In the same mamer, says Alison, "the effect of disproportion seems to me to bear no resemblance to that immediate painful sensation which we feel from any disagreeable sound or smell, but to resemble that kind of dissatisfaction which we feel when means are unlitted to their end. Thus the disproportion of a chair or tabla does not affect us with a simple sensation of pain, but with a very observable emotion of dissatisfaction or discontent, from the unsuitableness of their construction for the purposes the objects are intended to serve. Of the truth of this every man must judge from his own experience." We cannot refrain from continuing our extracts from this most intelligent author. "The habit," he says, "which we have in a great many familiar cases of immediately conceiving this fitness from the mere appearance of the form, leads us to imagine, as it is expressed in common language, that we determine proportion by the eye, and this quality of fitness is so immediately expressed by the material form, that we are sensib.e of little difference between such judgments and a mere determination of sense; yet every man must have observed that in those cases where either the object is not familiar to us or the construction intricate our judgment is by no means speedy, and that we never discover the proportion until we previously discover the principle of the machine or the means by which the end is produced."
2197. The nature of the terms in which we converse shows the dependence of proportion on fitness, for it is the sign of the quality. The natural answer of a person asked why tle proportion of any building or machine pleased him, would be, because the object by sucb yroportion was fit or proper for its end. Indeed, proportion is but a synonyme of fitneos;
for if the form be well contrived, and the several parts be properly adjusted to their end, we immediately express our opinion that it is well proportioned.
2198. There is, however, between proportion and fitness, a distinction drawn by our author, which must he noticed. "Fitness expresses the relation of the whole of the means to the end ; proportion, the proper relation of a part or parts to their end." But the distinetion is too refined to be of importance in our eonsideration ; for the due proportion of parts is simply that partieular form and dimension which from experience has been found best suited to the olject in view. "Proportion," therefore continues Alison, "is to be considered as applicable only to forms compoced of parts, and to express the relation of propriety between any part or parts and the end they are destined to serve."
2199. Forms are suseeptitle of many divisions, and eonsequently proportions; but these are only subordinate to the great end of the whole. Thus, for insiance, in the eonstantly varying forms of fathon, say in a chair or table, the merely ornamental parts may bear no relation to the general fitness of the form, hat they must be so contrived as to avoid u:apleasant sensation, and not to interfere with the general fitness. If we do not understand the nature of its fitness, we cannot judge of the proportion properly. "No man," says Alison, "ever presumes to speak of the proportions of a machine of the use of which he is ignorant." When, however, we become acquainted with the use or purpose of a particular class of forms, we at the same time acquire a knowledge which brings under our view and aequaintance a larger cirele of agreeable proportions than the rest of the world understand; and those parts whieh by others are iegarded with indifference, we contempiate with pleasure, from our superior knowledge of their fitness for the end designed. The proportions of an object mus not in strength be carried beyond what
is reguired for fitncss, for in that ease they will degenerate into clumsiness, whilst elegance, on the contrary, is the result of the nicest adjustment of proportion.
2200. Fitness cannot exist in any architectural olject without equilibrium in all the parts as well as the whole. The most complete and perfect notion that ean be coneeived of stablity, which is the result of equilibrium, may be derived from the contemplation of an horizontal straight line; whilst, on the eontrary, of instability nothing seems more expressive than a vertical straight line. These being, then, assumed as the extremes of stability and instability, by carrying out the gradations between the two extremes, we may, extending in two parts the vertical line, obtain various forms, more or less expressive of stability as they approach or recede from the horizontal line. In fig. 860, we have, standing on the same base, the general form of the lofty Gothie spire; the pleasing, solid. and enduring form of the Fgyptian pyramid; and that of the flat Greeian pediment: which last, though in its inclination adjusted on different grounds, whieh have been examined in Book II Chap. III. subseet. 2027, et seq., is an eminent instance of stability.

The spire, from its height and small base, seems to possess but a tottering equilibrium compared with the others.
2501. Stability is obviously dependent on the laws of gravitation, on which, under the division of staties, not only the arehiteet, but the painter and seulptor, should bestow eonsiderable attention. We eannot for a moment suppose it will be disputed that at least one of the causes of the beauty of the pyramid is a satislactory impression on the mind of the state of rest or stability it possesses. Rest, repose, stability, balance. all meaning nearly the same thing, are then the very essential ingredients in fitness; and therefore, in architeetural subjects, instability, or the appearance of it, is fatal to beauty. Illustrations of this exist in the famous Asinelli and Garisendi towers at Bologna, and at Pisa in the celebrated leaning Campanile.
2502. It may be objected to what we have written, that fitness alone will not account for the pleasure which arises in the contemplation of what are called the orders of architecture, and Alison seems very much to doubt whether there be not some other eause of beauty. It will, however, be our husiness to show how the ancients, their iuventors, considered prineipally their fitness; and upon these grounds to show, moreover, how the proportions in aneient examples varied, and may be still further varied, without infringing upon the principles which guided them in the original invention. Payne Knight has well observed, "that the fundamental error of imitators in all the arts is, that they servilely copy the effects whieh they see produced, instead of supplying and adopting the prineiples whieh guided the original artists in producing them; wherefore they disregard all those local, temporary, or aecidental cireumstances upon which their propriety or impropriety, their congruity or incongruity, wholly depend." "Grecian temples, Gothic abbeys, and feudal eastles were all well adapted to their respective uses, circumstances, and situations; the distribution of the parts subservient to the purposes of the whole; and the ornaments and de orations suited to the character of the parts, and to the manners, hahits, and employments of the persons who were to oceupy them : but the house of an English noble-
man of the 18 th or 19 th century is neither a Grecian temple, a Gothic abbey, nor a feudal castle; and if the style of distribution or decoration of either be employed in it, sueh changes and medificati ns should be admitted as may adapt it to existing circumstances, otherwise the s ale of its exactitude beeomes that of its incongruity, and the deviation from prineiple proportioned to the fidelity of imitation." This is but another application of the principle of fitness which we have above considered, the chief foundation of beauty in the art. We have shown how it is dependent on stability as a main souree of fitness, and here subjoin some maxims which will lead the student to fitness in his designs, and prevent him from ruming astray, if he but bring himself to the belief that they are reasonable, and founded upon incontestable grounds, which we can assure him they are.
liirst. Let that whieh is the stronger part always bear the weaker.
Second. Let solidity be always real, and not bronght to appear so by artifice.
Third. Let nothing be introduced into a composition whose presence is not justified by necessity.
Fourth. Let unity and variety be so used as not to destroy each other.
Fifth. Let nothing be introduced that is not subordinate to the whole.
Sixth. Let symmetry and regularity so reign as to combine with order and solidity.
Seventh. Let the proportions be of the simplest sort.
Eighth. Let him recolleet that nothing is beautiful which has not some good and useful end.

If, after having made his design, he will scrupulously test it by these maxims seriatim, and will strike out what is discordant with the tenor of them, he will have overcome a few of the difficulties which attend the commencement of his career.
2503. We are not of the same opinion with those who, on a geometrical elevation of a building, draw lines from its apex, which, bounding the prineipal parts of the outline, find a pyramidal form, and thence infer beauty of general outline. If those who favour such a notion will but reflect for a moment, they must see that this cannot be a test of its effect, inasmuch as the construction of a geometrical elevation of any edifice supposes it to be viewed at an infinite distance, whereas, in fact, it is most generally viewed under angles which would puzsle the most learned arehitect, without full investigation, to diseover the primary lines which they assume to be the causes of its beauty. The obscurations and foreshortenings that take place are at points of view near the building itself; and, however judicious it may be to form the general masses in obedience to such a system, so as to produce an effect in the distance that may be in accordance with the principle, it would be extremely dangerous to lay the principle down as a law. The finest view of St. Paul's is perhaps a little east of Fetter Lane, on the northern side of Fleet Street; but it would puzzle any one to discover its pyramidal form from that point of view.
2504. The beauty of the proportions of architecture in the interiors of buildings is dependent on those which govern the exteriors. Mueh has heen said on proportions of rooms, which, hereafter, we shall have to notice: we mean the proportions of their length to their breadth and height. That these are important, we camnot deny; but whether the beauty of a room is altogether dependent on the due adjustment of these, we have some doubts; that is, under certain limits. We here address ourselves more particularly to that fitness which, in ornamenting a ceiling, for example, requires that the beams which appear below the general surface should invariably fall over piers, and that in this respect corresponding sides should be uniform. In the study of this point, Inigo Jones is the great English master who has left the student the most valuable examples of this braneh of the art.
2505. It may, perbaps, be useful to observe generally that the bare proportions of the interiors of apartments depend on the purposes for which they are intended, and according to these we seek immediately for the expression of their fitness. This point, therefore, involves on the part of the architect so general an aequaintance with the most refined habits of his employers, that we should be almost inclined to agree with Vitruvius on the multifarious qualifications necessary to consttute a good one. Certain it is that no instruetions he can receive for building a mansion will qualify him without an intimate acquaintance with the habits of the upper classes of society.
2506. We have already stated that it is hopeless to arrive at a fixed standard of taste. That considered worthy of the appellation will not be so considered in another. "The sable Africans," says Knight, quoting from Mungo Park, "view with pity and contempt the marked deformity of the Europeans, whose mouths are compressed, their noses pinched. their cheeks shrunk, their hair rendered lank and flimsy, their bodies lengthened and emaciated, and their skins unnaturally bleached by shade and seclusion, and the baneful influence of a humid clinate." In the countries of Europe, where some similarity of taste may be expected, the tyranny of fashion, no less than that of habit and circumstance, has, and always will have, its influence on the arts. Within the short space of even a few months we have seen what is called the renaissance style of architecture imported from France, drawing into its vortex all classes of persons; many of them among the higher
ranks, possessed of education to have patronised be'ter taste; and in architceture, and some other arts, no one solves the question of what is really right by saying that there have been errors in the tastes of different ages.
2507. The specimens of Greek sculpture, whose beanty is founded in nature herself, will throughout all time excite the admiration of the world; because in this case, the standard or type being nature, mankind generally may be supposed to be competent judges of the productions of the art. But it is very different in architecture, whose types in every style are, as respects their origin, uncertain; and when we are asked whether there be a real and permanent principle of beauty in the art, though we must immediately reply in the affirmative, we are at the same time constrained to refer it to the quality of titness. If this were not the case, how could we extend our admiration to the varions styles of Egyptian, Grecian, Roman, Gothic, and Italian architecture? These at first appear, compared with each other, so dissimilar, that it seems impossible to assign beauty to one without denying it to the rest. But on examination each will be found so fitted to its end, that such cause alone will be found to be the principal source of the pleasure that an educated mind receives from each style; and that thence it arises, rather than from any certain or definable combinations of forms, lines, or colours that are in themselves gratifying to the mind or agreeable to the organs of sensation. If this be true, what becomes of the doctrine of the German asthetical school, so vaunted of by self-constituted critics and reviewers, who pass their judgment ex calhedrâ on works they have never seen, and, strange to say, are tolerated for a moment by the public? The truth is, the public rarely give themselves the trouble to judge; and unless led, which is easily done by the few, do not undertake the trouble of judging for themselves. That the Egyptian pyramid, the Grecian and the Roman temple, the early Christian basilica, the Gothic cathedral, the Florentine palace, the Saracenic mosque, the pagoda of the East, are all beautiful objects, we apprehend none will dispute; but there is in none of them a common form or standard by which we can judge of their beauty: the only standard on which we can fall back is the great fitness of them, under their several circumstances, for the end proposed in their erection.
2508. We are thus unavoidably driven to the conclusion that beauty in its application to architecture changes the meaning of the word with every change of its application; for those forms which in one style are strictly beautiful on account of their litness, applied to another become disgusting and absurd. By way of illustrating this, let us only picture to ourselves a frieze of Grecian triglyphs separating the nave and clerestory of a Gothic cathedral. From what we have been taught to consider the type of the Doric frieze connected with its triglyphs an idea of fitness immediately arises in the mind; but we camot trace its fitness in a dissimilar situation, neither can we comment on such an incongruity better than in the oft-quoted lines of Horace: -

> " IJumano capiti cervicem pictor equinam
> Jungere si velit, et varias inducere plumas
> Undique collatis membris, ut turpiter atrum
> Desinet in piscem mulier formosa superné;
> Spectatum admissi risum teneatis amici?",

The influence of circumstances in every age has imparted to each style of architecture 1ts peculiar beauty and interest ; and until some extraordinary convulsion in society give the impetus to a new one, we are constrained to follow systems which deprive us of other novelty than those of changes which are within the spirit of the universally established laws of the art. Turn to the Gothic churches of the present day, - the little pets of the church commissioners and clergy. What objects of ineffable contempt the best of them are! The fact is, the religious circumstances of the comntry have so changed that they are wholly unsuitable in style to the Protestant worship. Had, with the scanty means afforded to the architects, such a model as St. Paul's, Covent Garden, been adopted, we might have seen a number of edifices in the country, though

$$
\begin{aligned}
& \text { "Facies non omnihus una } \\
& \text { Nec diversa tament," }
\end{aligned}
$$

that might have been an honour to the age in which we live, and suitable to the circumstances of the times.
2509. Unity and harmony in a work necessarily enter into that which is beautiful; and it will not therefore require any argument to show that from a mixture of styles in any building incongruity and unfitness, and consequently a want of unity and harmony, must be the result. Hence we cannot agree with those wise reviewers who advoeate the possibility of amalgamating the arch with the severe Grecian style. We leave them to their dreans, and trust that before we give them credence we may have some proof of their practical power in this respect.
2510. Symmetry is that quality which, as its name imports, from one part of an assemblage of parts enables us to arrive at a knowledge of the whole. It is a subordinate, but nevertheless a necessary, ingredient in beauty. It is necessary that parts performing the same office in a building should be strictly similar, or they would not ex vi termini be
symmetrical ; so, when relations are strictly established between certain parts, making one the measure of another, a disregard of the symmetry thus induced cannot fail of destroying beauty. But here again we have to say, that for want of attention to the similarity of the parts, or neglect of the established relations on which the whole is founded, they have lost their symmetry, and have thus become unfit for their purpose; so that thus again we return to fitness as the main foundation of beauty.
2511. Colour abstractedly considered has little to do with architectural beauty, which is founded, as is sculpture, on fine form. We are here speaking generally, and are not inclined to assert that the colour of a building in a landscape is unimportant to the general eflect of that landscape, or that the colours used on the walls of the interior of a building are messential considerations; but we do not hesitate to say that they are of minor consequence in relation to our art. We believe it would be difficult to paint (we mean not in the sense of the artist) the interior of the banqueting room at Whitehall, were it restored to its original destination, and divested of the ruinous accessories which from its original purpose have turned it from a banqueting room into a chapel, - we believe, we say, that it would be difficult to paint it so as to destroy its internal beauty. But as we intend to be short under this head, we shall quote a brochure touching on this subject published by us in 1837.
2512. One of the beanties tending to give effect to the edifices of Greece has been on the testimony of almost all travellers, the colour of the materials whereof they are composed. Dr. Clarke observes that a warm ochreous tint is diffused over all the buildings of the Acropolis, which he says is peculiar to the ruins of Athens. "Perhaps," says the author. "to this warm colour, so remarkably characterising the remains of ancient buildings at Athens, Plutarch alluded" (In Vitu Pericles) "in that beautiful passage eited by Chandler, where he affirmed that the structures of Pericles possessed a peculiar and unpralleted excellence of churacter; a certain fieshness bloomed upon them and preserved their faces uninjured, as if they possessed a never-fading spirit, and had a soul insensible to age." It is singular that recent discoveries have incontestably proved that this species of beanty at all events did not originally exist in them, inasmuch as it is now clearly ascertained that it was the practice of the Greeks to paint the whole of the inside and outside of their temples in party colours. It had been some time known that they were in the habit of painting and picking out the ornaments on particular parts of their buildings; but M. Schaubert, the architect of the King of Greece, found on examination that this fell far short of the extent to which this species of painting was carried, and M. Semper, another German architect, has fully corroborated the fact in his examination of the Temple of Theseus. The practice was doubtless imported into Greece from Egypt, and was not to be easily alandoned, seeing the difficulty of falling away from the habits of a people whence it seems certain the arts of Greece more immediately came. It is by no means uncommon for a person to be fully alive to all the beauties of form, without at the same time having a due feeling or perception of the beauty resulting from harmony in colouring. It is therefore not to be assumed that the Greeks, though given to a practice which we would now discourage, possessed not that taste in other respects which has worthily received the admiration of posterity. The practice of painting the inside and outside of huidings has received the name of polychromatic architecture, and we shall here leave it to the consideration of the student as a curious and interesting circumstance, but certainly without a belief that it could add a charm to the stupendous simplicity and beauty of such a building as the Parthenon.
2513. After all that we have said of fitness, it will be expected that in decoration it shall form a principal ingredient. Hy the term decoration we understand the combination of objects and ornaments that the necessity of variety introduces under various forms, to embellish, to enrich, and to explain the subjects whereon they are employed. The art of decoration, so as to add to the beauty of an object, is, in other words, that of carrying out the emotions already produced by the general form and parts of the object itself. By its means the several relations of the whole and the parts to each other are increased by new combinations; new images are presented to the mind whose effect is variety, one great source of pleasure. From these observations two general rules may be deduced in respect of decoration. First, that it must actually be or seem to be necessary. Second, that such objects must be employed in it as have relation to the end of the general olject of the design. We are not to suppose that all parts of a work are susceptible of ornament. Taste must be our guide in ascertaining where decoration is wanted, as well as the quantity requisite. The absence of it altogether is in many cases a mode of decoration. As in language its richness and the luxuriance of images do not suit all subjects, and simplicity in such cases is the best dress, so in the arts of design many subjects would be rather impoverished than enriched by decoration. We must therefore take into consideration the character of the building to be decorated, and then only apply such ornament as is necessary and suitable to that character. We may judge of its necessity if the absence of it causes 2 dissatisfaction from the void space left; of its suitableness, by its developing the eharacter. History has recorded the contempt with which that decorator was treated wno
ornamented the senate house with statues of wrestlers, and the gymnasium with statues of senators.
2514. By some the art of arehitecture itself has been considered nothing more than that of decorating the buildings which protection from the elements induces us to raise.
2515. The objects which architecture admits for deeoration result from the desire of produeing varicty, analogy, and allegory. We here follow Quatremère de Quincy. (Encuc. Method.) The first seems more general than the others, as being common among all nations that practise building. It is from this souree we have sueh a multitude of cutwork, embroidery, details, compartments, and colours, more or less minute, which are found in every speeies of architecture. It would be useless for the most philosophical mind to seek for the origin of these objects in any want arising out of the mere construction, or in any political or superstiticus custom. Systems of conjecture might be exhausted without arriving one point nearer the truth. Even in the most systematic of the different kinds of architecture, namely, that of the Greeks, we cannot avoid perceiving a great number of forms and details whose origin is derived from the love of variety, and that alone. In a eertain point of view, thus considered, an edifice is nothing more than a piece of furniture, a vase, an utensil, the ornaments on which are placed more for the prapose of pleasing the eye than any other. Such, for intanee, are the roses of eaissons in ceilings and sofites, the leaves romd the bell of the Cormthian capital, the Ionie volutes, and many others, besides universally the carving of mouldings themselves. These ornaments, drawn from the storehouse of nature, are on that account in themselves beatiful; but it is their transferenee to arehitecture, which in the nature of things ean have but a problematical and eomjectural origin, that seems to indicate a desire to vary the surface. Unless it was the desire of variety that induced them, we know not what could have done so.
2516 It has been well observed by the author we have jnst quoted, that though the art has been obliged to acknowledge that many of its decorations depend in thei: application on such forms as necessity imposes, and in the formation of them on enance, caprice, or whatever the love of variety may dictate, yet in the disposition of them there must reign an order and arrangement subordinate to that caprice, and that at this point commenees the difference between arehitecture as an art subservient to laws which are merely dependent on the pleasure imparted to the eye, and those whiels depend on the mere mechanical di-position of the building eonsidered as a piece of furniture. Arehitecture, of all the arts, is that which produces the fewest emotions of the minds of the many, because it is the least comprehensible in regard to the causes of its beauty. Its images act indirectly on our senses, and the impressions it seems to make appear reducible chiefly to magnitude, harmony, and variety, which after all are not qualities out of the reach of an architect of the most ordinary mind, and therefore not - at least the first and last - unattainable where economy does not interfere to prevent the result to be attained.
2517. Analogy, the scoond of the objeets by which decoration is admitted into arehitecture, seems to be resultant from the limited nature of all human inventions in the arts, and the power of being unable to invent except by imitation and alteration of the forms of objects pre-existe:i:. It is most difficult to diseard altogether what have been eonsidered types in arehitecture, and that difficulty has so prevailed as to limit those types to their most probable origin in the case of the orders.
2518. The reader will begin to pereeive that our analogy in decoration tends upon trees for columns, the ends of beams for triglyphs, and the like. Whatever truth there naay be in this analogy, it is now so established as to guide the rules of decoration that are in. volved in it; and it must be coneeded, that if we are desirous of imitating the peculiar art of any country, we have no hope of success but by following the forms which the construction in sueh conntry engenders; and we must admit that, as far as external cireumstances ean direet us, the arehitecture of Greece, which, modified, has beeome that of thie whole of Europe, and will become that of America, scems so founded on the nature of things, that, however we may loubt, it would not be prudent to lead the reader away from the consideration, and perhapss from a belief, that sueh is the truth. Without holdin,g ourselves bound by the analogy of the types of the tree and the cross beam, which appeat to have guided the architects of Grecee, we can without hesitation assert, that whenever those have been abandoned the art has fallen on the most flagrant vices; witness the horrors of the sehool of Borromini, where the beams are broken, pediments, which are the gables of roofs, are broken into fantastic forms, and none of the parts seem naturally conneeted with each other. The works of the school in question seem indeed so broken up, that the study of them would almost convince an impartial and competent judge that the converse of its praetice is sufficiently beautiful to establish the truth of the types whereon we have here and before expressed our seepticism. "Sitôt," says De Qumey, "que le génie decorateur s'est cru libre des entraves de l'analogie, tontes les formes caractéristiques se sont contournées, pervertés, et dénaturées, au point qu'il y a entr'elles et celle de la bonne architecture, plus de distance qu'entre celles ei et les types de la primitive construction."
:519. In the decoration of architecture, neither of the other two means cmployed are
more important than that ocular language which architecture occasionally employs in its ornaments. 13y its use architecture is almost converted into painting, and an edifice becomes a pieture, or a collection of pietures, through the aid of the sculptor. We shall refer to no other building than the Parthenon to prove the assertion. Here the history of the goddess is embodied in the forms of the building, and to the decoration thus introduced the subordinate parts of the sculpture, if it be not heresy so to call them, is kept so moder that we are almost inclined to cry out against their not having been principals in.stead of accessories. This is the true principle upon which buildings should be decorated to impress the mind of the spectator with the notion of beauty, and the principle which, carried out, no matter what the style be, will insure the architect his most ample reward, seputation. The matter that is supplied by allegory for decoration in architecture may be considered under three heads - attributes, figures, and paintings.
2520. The first takes in all those foliages, plants, flowers, and fruits, which from their constant use in sacrifices were at last transferred from the altar to the walls of the temple. The garlands, festoons, chaplets, and crowns which we find sculptured on temples seem to have had their origin from the religious ceremonies performed in them; as do the instruments of sacrifice, vases, the heads of the victims, patere, and all the other objects employed in the worship of the ancients. Thus, in architecture, these bave become conventional signs, indicating the destination of the buildings to which they are applied. From the particular application of some ornaments on temples we derive in the end a ianguage in the arts of imitation. It was thus that the eagle grasping in his talons the attribute of Jupiter, came to represent eternity and omnipotence; the myrtle and dove of Venus, the passion of love; the lyre and laurel of Apollo, to point to barmony and glory ; the spear and hehnet of Mars, to represent war. Palms and crowns became the emblems of victory, as did the olive the emblem of peace. In the same way the ears of corn of Ceres, the serpent of Esculapius, the bird of Minerva, and the cock of Mercury were equivalent to the expression of abundance, science, and vigilance. Instruments of the arts, sciences, in short, all objects useful to the end for which an edifice is erected, naturally become signs of that edifice; but applied otherwise become absurd. What, for instance, could be more ridiculous than placing ox sculls and festoons on the frieze of a Protestant church ? - and yet this has been done in our own days.
2521. Figures of men and animals come under the second head. The application of these may be seen to their highest perfection in the Parthenon, to which we have already alluded. They may be introduced in low, high, or full relief. In the last case their situation is usually that of a niche. We shall say no more on the subject of figures than that of course they must have relation to the end for which the edifice is erected, and if not in that respect perfectly intelligible are worse than useless.
2522. The walls of Pompeii fornish ancient examples of the decoration obtained by the aid of painting, as do the loggic of the Vatican and the ceilings of the Farnesina modern examples of it. Herein the moderns have far surpassed anything we know of the ancient application of painting. Sculpture, however, seems more naturally allied to arehitecture than painting, and, except in purely decorative painting on walls and ceilings, the introduction of it seems bounded within narrow limits. The rules as to fitness of the subjects introduced, applicable to the first two heads, are equally so under that of painting.

Sect. II.

THE ORDERS.

2523. An order in architecture is a certain assemblage of parts subject to unitorm established proportions, regulated by the otfice that each part has to perform. It may be compared to what organisation is in animal nature. As from the paw of a lion his dimensions may be deduced, so from a triglyph may be found the other parts of an example of the Doric order, and from given parts in other orders the whole configuration may be found. As the genus may be defined as consisting of essential and subservient parts, the first-named are the column and its entablature, which, as its name imports, is as it were the tabled work standing on the column. The subservient parts are the mouldings and detail into which the essential parts are subdivided, and which we shall hereafter separately consider. The species of orders are five in number, Tuscan, Doric, Ionic, Corinthian, and Composite, each of whose mass and ornaments are suited to its character and the expression it is intended to possess. These are the five orders of architecture, in the proper understanding and application whereof is laid the foundation of architecture as an art. The characters of strength, grace, and elegance, of lightness and of richness, are distinguishing features of the several orders, in which those characters ought to be found not only in the column employed, but should perrade the whole composition, whereof the
column is, as it were, the regulator. The mode of setting up, or, as it is technically termed, profiling an order, will he given in a subsequent part of this section. Here we shall merely observe that the entablature is suldivided into an architrave, which lies immediately upon the column, a frieze lying on the architrave, and a cornice, which is its uppermost subdivision. The height of these subdivisions together, that is, the whole height of the entablature, is one fourth that of the column according to the practice of the ancients, who in all sorts of entablatures seldom varied from that measure either in excess or defect. "Palladio, Scamozzi, Alberti, Barbaro, Cataneo, Delorme, and others," says Sir William Chambers, " of the modern arehiteets, have made their entablatures mueh lower in the Ionic, Composite, and Corinthian orders than in the Tusean or Doric. This, on some oceasions, may not only be excusable but highly proper; particularly where the intercolumniations are wide, as in a second or third order, in private houses, or inside decorations, where lightness should be preferred to dignity, and where expense, with every impediment to the conveniency of the fabric, are carefully to be avoided; but to set entirely aside a proportion which seems to have had the general approbation of the ancient artists is surely presuming too far."
2524. As rules in the fine arts which have obtained almost universal adoption are founded on nature or on reason, we may be pretty certain that they are not altogether empirical, albeit their origin may not be immediately apparent. The grounds on which such rules are founded will, however, in most cases become known by tracing them to first principles, which we shall here endeavour to do in respect of this very important relation of height between the column and its entablature. We were first led into this investigation by the perusal of a work by M. Lebrun, entitled Théorie de l'Architecture Grecque et Romaine deduite de l'analyse des Monumens antiques, fol. Paris, 1807; but our results differ very widely from those of Lebrun, as will be seen on reference to that work.
2525. One of the most obvious principles of proportion in respect of loads and supports, and one seemingly founded on nature herself, is, that a support should not be loaded with a greater mass or load than itself; or, in other words, that there should be an equality between weights and supports, or, in the case in point, between the columns and entablature. In respeet of the proportion of the voids below the entablature between the columns or supports, a great diversity of practice seems to have prevailed, inasmuch as we find them varying from $1 \cdot 03$ to $2 \cdot 18$, unity being the measure of the supports. Lebrun makes the areas of the supports, weights, and voids equal to one another, and in what may be termed the monumental examples of the Doric order, such as the Parthenon, $\&$ c., he seems borne out in the law he endeavours to establish; but in lighter examples, such as the temple (Ionic) of Bacehns at Teos, where the supports are to the voids as $1: 2.05$, and in the temple of Minerva Polias, where the ratio is as $1: 2 \cdot 18$, he is beyond all question incorrect: indeed there hardly seems a necessity for the limitation of the roids he preseribes, seeing that, without relation separately to the weight and support, stability would be obtained so long as the centre of gravity of the load fell within the external face of the support. If it be admitted that, as in the two examples above mentioned, the voids should be equal to the supports jointly, we have a key to the rule, and instead of being surprised at the apparently strange law of making the entablature one fourth of the height of the column, we shall find that no other than the result assumed can flow from the investigation.
2526. In fig. 861. let AB be the height of the column, and let the distance between the columns be one third of the height of the column=CD. Now if AB be subdivided into four equal parts at a, b, and c, and the horizontal lines $a d, b e$, and $c f$ be drawn; also, if C1) be divided horizontally into four equal parts, and lines be drawn perpendicularly upwards intersecting the former ones, the void will be divided into sixteen equal parallelograms, one half whereof are to be the measure of the two whole supports BC and DE; and DE being then made equal to one half of CD, it will be manifest, from inspection, that the two semi-supports will jointly be equal to eight of the parallelograms above mentioned, or one half of the void. We have now to place the entablature or weight AGIII upon the supports or columns, and equal to them in mass. Set up from A to F another row of parallelograms, each equal to those above mentioned, shown on the figure by AFKI. These will not he equal to the supports by two whole parallelograms, being in number only six instead of eight ; dividing, therefore, 8 , the number in the supports, by 6 , the number already obtained, we have $1 \cdot 333$, \&c., which is the height to be assigned to AG, so that the weight may exaetly equal the

Fig. SGI. supports, thus exceeding one quarter of the height of the support (or column) by $\frac{333}{}$ of such quarter, a coincidence sufficient to corroborate the reason on which the law is founded.
2.5-2. From an inspection of the figs. 861 , 862. 863 , it appears that when the void is one third the height of the supports in width, the supports wifl be 6 diameters in height; when one fourth of their height, they will be 8 diameters higls; also that the intercolumniation, ealled systylos or of two diameters, is constant by the arrangement. When the surface of the columns, as they appear to the eye, is equal to that of the entablature, and the voids are equal to the sum of those surfaces, the height of the eatablature will always be one third of that of the columms. Thus, let the diameter of the columns be $=1$, their height $=h$, their number $=n$. Then the surface of the columns is $n h$; that of the entablature the same. As the surface of the voids is double that of the columns, the width of the intercolumniations is double the width of the columns, that is, $2 n$ diameters, which, added to the n diameters of the columns, gives $3 n$ diameters for length of the entablature; therefore, the surface of this entablature is

Fis. 862 .

< : 1
Fig. S63. $n h$, and its length being $3 n$, its height must be $\frac{n h}{3 n}=\frac{h}{3}$ exactly.
2528. Trying the principle in another manner, let fig. 864. be the general form of a tetratyle temple wherein the columns are assumed at pleasure 8 diameters in height.

Fig. 861.

Fig. 865.

Then $4 \times 8=32$ the areas of the supports; and as to fulfil the conditions the three voids are equal to twice that area, or 64 , they must consequently be in the aggregate equal to 8 diameters, for ${ }_{8}^{64}=8$, and the whole extent will therefore be equal to 12 diameters of a support or column. To obtain the beight of the entablature so that its mass may equal that of the supports, as the measures are in diameters, we have only to divide 32 , the columns, by 12 , the whole extent of the facade, and we obtain two diameters and two thirds of a diameter for the height of the eutablature, making it a little more than one quarter of the heiglit of the column, and again nearly agreeing in terms of the diameter with many of the finest examples of antiquity. If a pediment be added, it is evident, the dotted lines AC, CB being bivected in a and b respectively, that the triangles $\mathrm{A} \mathbf{E} a, b \mathrm{FB}$ are respectively equal to $\mathrm{CD} a$ and $\mathrm{D} L \mathrm{C}$, and the loading or weight will not be changed.

25\%9. Similar results will be observed in fig. 865 ., where the height is ten diameters, the number of columns 6 , the whole therefore 150 , the supports being 60 . Here $\frac{60}{18}=3 \sqrt[3]{3}$ diameters will be the height of the entablature. This view of the law is further borne out by an analysis of the rules laid down by Vitruvius, book iii, chap. 2,; - rules which did not emanate from that author, but were the result of the practice of the time wherein he lived, and, within small fractions, strongly corroborative of the soundness of the hypothesis of the voids being equal to twice the supports. Speaking of the five species of temples, after specifying the different istercolumniations, alid recommending the eustylos as the most beautiful, he thus directs the formation of temples with that interval between the columns. " The rule for designing them is as follows: - The extent of the front being given, it is, if tetrastylos, to be divided into $11 \frac{1}{2}$ parts, not including the projections of the base and plinth at each end; if hexastylos, into 18 parts; if octastylos, into $24 \frac{1}{2}$ parts. One of either of these parts, according to the case, whether tetrastylos, hexastylos, or octastylos, will be a measure equal to the diameter of one of the columns." "The heights of the columns will be $8 \frac{1}{2}$ parts. Thus the intercolumniations and the heights of the columns will have proper proportion." In the same clapter he gives directions for setting out araostyle, diastyle, and systyle temples. The tetras ylos, he states, is $11 \frac{1}{2}$ parts wide and $8 \frac{1}{2}$ high; the area therefore of the whole front becomes $1 i \frac{1}{2} \times 8 \frac{1}{2}=97^{-3}$.

The four columns are $4 \times 8 \frac{1}{2}=34$, or very litte more than one third of the whole area; the remaining two thirds, speaking in romd numbers, being given to the intercolumnsor voids. The hexastylos (see fig. 865.) is 18 parts wide and $8 \frac{1}{2}$ ligh; the whole area therefore is $18 \times 8 \frac{1}{2}=153$. The six columns are $6 \times 8 \frac{1}{2}=51$, or exactly one third of the whole area; the voids or intercolumns occupying the remaining two thirds. The octastylos is $24 \frac{1}{2}$ parts wide and $8 \frac{1}{2}$ high. Then $24 \frac{1}{2} \times 8 \frac{1}{2}=208 \frac{1}{4}$. The eight columns are $8 \times 8 \frac{1}{2}=68$, being a trifle less than one third of the area, and the voids or intercolumns about donble, or the remaining two thirds. The average of the intercolumns in the first case will be $\frac{11 \frac{1}{3}-4}{3}=2 \frac{2}{2}$ diameters. In the second case $\frac{18-6}{5}=2 \frac{2}{6}$ dianeters. In the third case $\frac{24 \frac{1}{2}-8}{7}=2 \frac{305}{2000}$ diameters.
2530. A diserepancy between practice and theors, unless extremely wide, must not be allowed to interfere with prinelples, ald therefore no hesitation is felt in submisting a sinoptieal view of some of the most eplebrated examples of antiquity in whieh a comparison is exhibited between the vods and supports; certan it is that in every case the former exceed the latter, and that in the earlier examples of the Dorie order, the ratio between them nearly approaehed equality. In comparing, however, the supnorts with the welghts, there is every apparanee of that part of the theory beind strictly true; for in taking a mean of the six examples of the Dotie order, the supports are to the weights as $1: 1 \cdot 16$; in the five of the lonic order as 1:1.05; and in the four of the Corinthian order as $1: 1 \cdot 0$, a comeidence so remarkabe that it must be attributed to something more than aecident, and deserves much more extended consideration than it has hitherto received.

Building.	Order.	Numler of	Supports.	'eizhts.	Voids.
Temple of Jupiter Nemreus	Doric	${ }_{8}^{6}$	1.00 1.10	079	1.03
${ }_{\text {Temple at }}$		6	1×0	-14	
Temple of Minerva at Sunium		6	1.00	$1 \cdot 40$	$1 \cdot 17$
Temple of Thessus it Athens -		${ }_{6}^{6}$	$1 \cdot 10$	$1 \cdot 13$	1.21
Teinple of Jupiter Panheilenius	onic	6_{6}	100	1.4.5	
Temple of Fortuna Virilis at Rome.	Ionic	${ }_{4}^{6}$	1.00 1.00	$0 \div 9$ 1.15	$1 \cdot 1.24$
'rmple on the lyssus -		4	$1 \cdot 0$	096	1.72
Tenple of Bacehus at Tees		$\stackrel{8}{4}$	1.00	1.35 1.01	\% 218
Portie, of Sertimius Severus -	Coriuthian.	6	1.00	$0 ¢ 13$	1.37
Maison Carrée at Nismes		${ }_{6}^{6}$	$1 \cdot 0$	0	1.58
Temple at Jiekly		${ }_{6}$	1.00	0.90	$1 \cdot 69$
Pautheon at Rome	-	8	1.00	$1 \cdot 43$	1.84

If instead of taking the apparent bulk of a columi, that is, as a square pier, we take its real bulk, whieh is about three qualters $\left(\frac{3}{4}\right)$ that of a square pier of the same diameter and height; the height of the entablature will be one fourth of the height of the column ; for $\frac{3}{4}$ of $\frac{h}{3}=\frac{h}{4}$.

Ttere is a curious faet eomnected with the hypothesis which has been suggested that requires notice; it is relative to the area of the points of support for the edifice which the arrangement affords. In fig. Stifi the hatched squires represent the plans of quarter piers of columns in a series of intercolumniations every way, sueh intercolumniations being of two dimeters, or lour semidiamplers These, added to the quarter piers, make six semmdianeters, wh se square 36 is therefore the area to he eovered with the seight. The four quarter piers or columns $=4$, henee the points of support are - -4.0 of the area
 ratio is 0.168 , differing only 0.057 from the result here given; but if we select the following buildings the mean will be found to differ much less.

Fig. 566.

Temple of Peace - $\quad 0157$
S. Paolo fuuri le Murà - 011 x

MoUEDINGS.
2531. The subservient parts of an order, ealled mouldings, and common to all the Roman orders, are eight in number. They are-1. The ovolo, cchinus, or quarter round. (Fig. 867.) It is commonly found under the abacus of capitals; and is also almost always placed between the corona and dentils in the Corinthian cornice: its form gives it the appearance of seeming filted to support another member. It should be used only in situations above the level of the ey. \%. The talon, ogee, or reversed cyma (fig. 868.) is also, like the ovolo, a moulding fit for the support of another. S. The cyma, cyma recta, or cymatium (fiy. 869.) seems well contrived for a covering and to shelter other members; it is only used properly for crowning members, though in Palladio's Doric, and in other examples, it is found oreasionally in the bed mouldings under the eorona. 4. The torus (fig. 870.), like the astragal presently to be mentioned, is shaped like a rope, and seems intended to bind and strengthen the parts to which it is applied; while, 5. The scotic or trochilos (fig. 871.), placed between the fillets which always accompany the tori, is ussally below the eye; its f:se being to separate the tori, and to contrast and strengthen the effeet of other mouldings as well as to impart variety to the profile of the base. 6. The caretto, mouth, or hollou'

Fig. 873.
Fig. 874.
(fig. 872.) is chiefly used as a crowning moulding, like the cyma recta. In bases and eapitals it is never used. By workmen it is frequently called a casement. 7. The ustragal (fil, 873.) is nothing more than a small torus, and, like it, seems applied for the purpose of binding and strengthening. The astragal is also known by the names of head and baguette. 8. The fillt, listel, or annulet (fig. 874.) is used at all heights and in all situations. Its chief office is the separation of curved mouldings from one another.
-2532. In Grecian examples, the sections of mouldings are obtained by portions of an ellipse, parabola or hyperbola, all parts of a conic seetion, so that they give a greater delieacy of outline than do the Roman examples. "These latter," writes J. B. Papworth, in his edition (1826) of the work by Sir W. Chambers on Civil Architecture, "produced similar quantities of middle tint, light, and shadow ; the Greeks carefully avoided this sameness, and judiciously and tastefully made the shadows to prevail distinctly. IIence in all their works we find the result of a superior understanding of the principles and effeets of light and shade, which are opposed to eaeh other, and relieved with great skill; whereas, in the Roman style, being divided and loroken, they are certainly less beantiful and less capable of affording the clarms of reflected light than the vestiges of Grecian art,

Fig. 8746.

Fig. 8 Bj b.

Fig. $871 a$.

which by their wellstudied proportions merit respect and imitation." Sir William observes on these different mouldings that their inventors meant to express something by their different figures, and that the destinations above mentioned may be deduced not only from their figures, but from the practice of the ancients in their most esteemed works; the cyma and cavetto are constaritly wed as finishings, and never applied where strength is required; the ovolo and talon are always employed as supporters to the essential members of the composition, such as the modillions, dentils, and corona; the chief use of the torus and astragal is to fortify the tops and bottoms of columns, and sometimes of pedestals; and the scotia is employed only to separate the members of bases, for which purpose the fillet is likewise used not only in bases but in all kinds of profiles.
2533. The names of the Greek mouldings are the same as those already mentioned; and there is another (fig. 874b) called from its appearance a bird's-heak moulding, comprising the outline of the cchinns hollowed out below and then brought down with a curve into the fascia. It is chiefly used in the capital of an anta or pilaster, as in fig. 88\%, Fig. 867b. is a quirked ogee, having a separation from the fascia above to oltain a depth of shadow. Fig. 868b. is a quirked ovolo. Fig. 867a. is used in the cap of the Doric order. Fig. 869a., the cyma recta, used as the crowning member of a cornice, was often elegantly decorate 1 . Fig. 868c. is an ogee projecting further than the ordinary form. Fig. 874 c. is an outline of the base of the Choragic Monument of Lysiciates at Atlens, showng a combination of mouldings; three of the mouldings being inverted. Examples
of Greek eapitals are given on pages 906 and 907, in addition to those in Figs. 883 and 887 .
2534. The simplest method of deseribing the contours of mouldings in Roman or Italian architecture is to form them of quadrants of circles, as shown in Figs. 867 t, 874 . Where circumstances justify a variation, the ovolo, talon, cyma, scotia, and cavecto, may be either deserihed from the summits of equilateral triangles, or be emmposed of portions of the ellipsis, but the section of the torus and astragal is always semieircular.

ORNAMENTS OF MOULDINGS

2535. In ornamenting the profile of an order, repose requires that some mouldings should be left plain. If all were enriched, confusion instead of variety would result. Except for particular purposes, the square members are rarely carved. There are but few examples in the best age of the art in which the corona is cut; indeed at this moment the only one that oceurs to us wherein work is in fine style is that of the three columns in the Campo Vaceino. So where the ovolo ahove and talon below it are carved, the dentil band between them shonld be uneut. Seamozzi, in the third chapter of his sixth book, inculeates that ormments should be neither profuse nor abundant, neither are they to be too sparingly introduced. Thus they will be approved if applied with judgment and discretion. Above all things, they are to be of the most beautiful forms and of the exaetest proportions; ornaments in buildings, being like the jewels used for the decoration of princes and princesses and persons of high rank, must be placed only in proper situations. Neither must variety in ornaments be carried to excess. We have to recollect that, being only accessories, they must not obtrude upon but be kept subordinate to the main object. Thius ornaments applied to mouldings should be simple, uniform, and combining not more than two distinct forms in the same enrichment; and when two forms are used on the same moulding they should be cut equally deep, so that an uninterrupted appearance may be preserved. Mouldings of the same form and size on one and the same profile should be similar; and it is moreover a requisite of the greatest importance, so to distribute the eentres of the ornaments employed that the centre of one may fall exactly over the centres of those below, of which the columns of the Campo Vaceino form an example for imitation in this respect. Nothing is more offensive than, for example, to see the middle of an egg placed over the edge of a dentil, and in another part of the same moulding to see them come right, centre over centre, and the like negligent and careless distribution. This may always be avoided by making the larger parts regulate the smaller. Thus where there are modillions they must be made to govern the smaller ornaments above and below them, and these smaller ones should always be subdivided with a view to centring with the larger parts. The larger parts are dependent on the axes of the columns and their intercolumniations; but all these must be considered in profiling the order. It will of course be necessary to give the ornaments such forms as may be consistent with the claracter of the order they enrich. The enrichment of a frieze depends upon the destination of the building, and the ornaments may have relation to the rank, quality, and achievenents of the proprietor. We do not agree with Chambers in condemning the introduction of arms, crests, and cyphers, as an unbecoming vanity in the master of the fabric. These may otten be so introduced as to indicate the alliances of the family, and thus give a succinct history of its connections. In Gothic architecture we know the practice induced great beauty and variety. We have before observed, in Seet. I. of this Book (2520.), that the instruments and symbols of pagan worship are highly indecorous, not to say ludierous, on edifices devoted to the Christian religion.
2536. In earving ornaments they must be cut into the solid, and not carved as if they were applied on the solid, beeause the latter practice alters their figure and proportion. In faet, every moulding should be first eut with its contour plain, and then carved, the most prominent part of the ornament being the attual surface of the moulding before earving, observing that all external and re-entering angles are kept plain, or have only simple leaves with the central filament expressed on or in the angle. In the circular temple of Tivoli the prineiple of cutting the ornament out of the solid is earried out so far, that the leaves, as usual in most examples of the Corinthian order, instead of being mere appliquées to the bell of the capital, are aetually cut out of it.
2537. The degree of relicf whieh ornaments ought to have is dependent on their distance from the eye and the character of the composition: these matters will also regulate the degree of finish they ought to possess. There are some mouldings whose profile is indicative of bearing weight, as the ovolo and talon, which by being deeply cut, though themselves heavy in eharacter, are thereby suseeptible of having great lightness imparted to them, whilst such as the cyma and cavetto should not be ornanented deep in the solid. The imitation from nature of the objeets represented should be carefully observed, the result whereof will impart beauty and interest to the work on which such attention is bestowed.

CHARACTELS OF TIIE ORDERS.

2538. In the J"irst Book of this work, Sect. X I. (133, et seq.) we have considered the history of the five orders of arehitecture; we shall here offer some general observations upon them before proceeding to the detail of each separately. The orders and their several eharacters and qualities do not merely appear in the five species of columns into which they have been subdivided, but are distributed throughout the edifices to whieh they are applied, the column itself being the regulator of the whole composition. It is on this account the name of orders has been applied to the differently formed and ornamented supports, as columns, which have received the names of the Doric, Ionic, Corinthian, 'Tusean, and Composite orders, whereof the three first are of Grecian origin, and the two last, it is supposed, of Italian or lioman origin. Eaeh of these, by the nature of its proportions, and the character resulting from them, produces a leading quality, to which its dimensions, form, and ornaments correspond. But neither of the orders is so limited as to be confined within the expression of any single quality. Thus the strength indicated in the Doric order is eapable of being modified into many shades and degrees of that quality. We may satisfy ourselves of this in an instant by reference to the early compared with the later Doric column of the Greeks. Thus the columus of the temple at Corinth are only four diameters high, while those of the portico of Philip are six and a half.
2539. As the Dorie seems the expression of strength, simplicity, and their various modes, so the lonie, by the rise in height of its shaft and by the slenderness of its mass, as well as by the elegance of its eapital, indicates a quality intermediate between the grave solidity of the Dorie and the elegant delicaey of the Corinthian. Bounded on one side by strength, and by elegance on the other, in the two orders just named, the excess of clegance in the Corinthian order ends in luxury and richness, whereof the eharacter is imprinted on it.
2540. We cannot here refrain from giving, in the words of the excellent Sir Henry Wotton, a quaint and homely, but most admirable description of these five orders, from his Elements of Architecture. "First, the Tuscan is a plain massive rural pillar, resembling some sturdy, well-limbed lahourer, homely elad, in which kind of comparisons, Vitruvius himself seemetl to take pleasure." (Lib. iv. cap. 1.) . . . "The Dorique order is the gravest that hath been received into civil use, preserving, in comparison of those that follow, a more nusculine aspect and little trimmer than the Tuscan that went before, save a sober garnishment now and then of lions' heads in the cornice, and of triglyphs and metopes always in the frize." . . . "To discern him will be a piece rather of good heraldry then of architecture, for he is knowne by his place when he is in company, and by the peculiar ornament of his frize, before mentioned, when he is alone." . . . "The Ionique order doth represent a kind of feminine slendernesse ; yet, saith Vitruvius, not like a light housewife, but, in a decent dressing, hath much of the matrone." . . . "Best known by his trimmings, for the bodie of this columne is perpetually chanted, like a thick-pleighted gowne. The capitall dressed on each side, not much unlike women's wires, in a spiral wreathing, which they call the Ionian roluta." . . " The Corinthian is a columne lascivionsly deeked like a courtezan, and therefore in much partieipating (as all inventions do) of the place where they were first born, Corinth having beene, without controversie, one of the wantonest towns in the world." . . . "In short, as plainness did charaeterise the ''uscan, so, much delicacie and varietie the Corinthiun pillar, besides the height of his rank." . . ." The last is the compounded order, his name being a briefe of his nature: for this pillar is nothing in effeet but a mellic, or an amasse of all the precedent ornaments, making a new kinde by stealth, and though the most richly tricked, yet the poorest in this, that he is a borrower of his beantie." Each of the orders, says De Quiney, is, then, in the building to which it is applied, the governing principle of the forms, taste, and character of that system of moral order met with in Greeian arehitecture which alone seems to have suited the physical order of proportions with each part, so that what is agreeable, ornate, and rich is cepually found in the whole as in the parts.
2541. On the two Latin orders we do not think it recessary to say more than that they will be fully deseribed in following pages. The invenion of new orders must arise out of other expressions of those qualities which are already sufficiently well and beautifully expressed; henee we consider, with De Quiney, to attempt such a thing would be vain. Chambers thus expresses himself on this subjict, without the philosophy of De Quiney, yet with the feelings of a learned and experienced architect: "The ingennity of man has. hitherto, not been able to produce a sixth order, though large premiums have been offered. and numerous attenpts been made. by men of first-rate talents to accomplish it. Such is the fettered human imagination, such the scanty store of its ideas, that Dorie, lonic, and Corinthian have ever floated uppermost, and all that has ever been produced amounts to nothing more than different arrangements and combinations of their parts, with some trifling deviations, scarcely deserving notice; the whole tending generally more to diminish than to inerease the beaty of the ancient orders." Again: "'he suppression of parts of
the ancient orders, with a view to prodnce novelty, has of late years been praetised among us with full as little suceess; and thongh it is not wished to restrain sallies of imagination, nor to discourage genius from attempting to invent, yet it is apprehended that attempts to alter the primary forms invented by the ancients, and established by the concurring approbation of many ages, must ever be attended with dangerous eonsequences, must always be diffienlt, and seldom, if ever, suecessful. It is like eoining words, which, whatever may be their value, are at first but ill received, and must have the sanction of time to secure them a eurrent reception."
2542. In the progress of the five orders, from the Tuscan up to the Composite, taking seven diameters for the height of the Tusean column, and eleven for that of the Composite, if the entablature be taken of the same absolute height in all, and at the same time in height one quarter of that of the column, we shall have the height of the entablature in terms of the diameter of the column, as follows: -

> In the Tusean order $\quad \frac{1}{4}$ of $\frac{7}{1}=1 \frac{3}{4}$ entablature diameters high.
> In the Doric order . $\frac{1}{4}$ of $8=2$ entablature diameters high.
> In the Ionic order ${ }^{\frac{1}{4}}$ of $\frac{9}{1}=2 \frac{1}{4}$ entablature diameters high.
> In the Corinthian order $\frac{1}{4}$ of $10=2 \frac{1}{2}$ entablature diameters high.
> In the Composite order $\frac{1}{4}$ of $\frac{11}{1}=2 \frac{3}{4}$ entablature diameters high.

HEIGHT AND DIMINUTION OF COLUMNS.

2543. Vitruvius tells us that the ancients were aceustomed to assign to the Tusean column seven of its diameters for the height ; to the Dorie, eight; to the lonie, nine; and to the Corinthian and Composite, ten. Scamozzi, the leader of the moderns, adopts similar proportions. l3ut these are not to be considered as more than an approximation to the limits, nor as relating to the proportions between the heights and diancters of the ancient Doric examples, whereof in our First Book we have examined certain specimens. This work eannot be extended to a representation of the variety under which the orders have appeared in their various examples of each order. The works in which they are contained must be eonsulted for particulars of detail in this respect. Our intention is to give general information on the subject, and to follow, with few exeeptions, in that respect, the precepts of Vignola, as tending to the most generally pleasing results, and as being also those which have been adopted on the Continent for general instruction in the art.
2544. We have already spoken (2524, et seq.) of the general proportion of the height of the entablature to that of the column as one fourth, and, without returning to the discussion of the propriety of that proportion, will only here ineidentally mention that Scamozzi, Barbaro, Alberti, and Palladio have not assigned so great a height to their entablatures, chiefly it appears, hecause they seemed to consider the slenderness of the eolumns in the more delicate orders unsuited to the reception of heavy burdens. If, however, the reader will bear in recollection what has been said at the beginning of this section relative to the supports and weights, it will directly oceur to him that the practice these great masters sanctioned is not founded upon just deductions. Chambers seems to have had a glimpse of this theory, but without any notion of its developement, when he says, "It must be remembered that, though the height of an entablature in a delicate order is made the same as in a massive one, yet it will not, either in reality or in appearance, be equally heavy, for the quantity of matter in the Corinthian cornice A (fig. 875.) is considerably less than in the Tusean cornice B, and the increased number of parts composing the former of these will of course make it appear far lighter than the latter." He was, however, nearer the exaet truth where he speaks in a previous passage of the possibility of inereasing the intervals between the columns.
2545. The diminution or tapering form given to a column, whereof all the authors find the type, whether truly or not, in that of the trunk of a tree, in the ancient examples, sometimes commences from the foot of the shaft, sometimes from a quarter or one third of its height, in which ease the lower part is a perfect eylinder. Though the latter method has been mostly adopted by modern artists, the former seems more to have prevailed among the ancients. Ot the method of entasis, that is, of swelling columns as they rise, we have already spoken in the First Book (144.). A curve of diminution, if we may so term it, in which the lower pat does not much vary from the eylinder, but never much exeeeding its boundary for the height of one third upwards, is the best, and to something like that we now come. Blondel (Resolution des quatre principaux Problemes d'Achitecture) says, that the best and simplest instrument for the dimimation of columns is that invented by Nieomedes foc deneribing the first eonehoid, wheh, applied at the bottom of the shaft, gives, by continued motion, both the swelling and the diminution. Vignola had not strietly anticipated Blondel in this method, which, it is said, was that used for the cohmens in the Pantheon; but the old master had eome so near to it that we shall first describe Vignola's method, and then that proposed by Blondel. Vignola having already spohen of the common practice, says,

(Stampani's edit. Dei cinque Ordini d Architettura, Roma, 1770, eap. 7. p. 51.), "In respect of this second mode, it is my own discovery, and will be soon understood by the figure, though not so well known as the first named. The measures of the column having been fixed, namely, the lueight of the shaft and its upper and lower diameters, from C (fig. 876.), draw an indefinite line through D perpendicular to the axis of the colnmn. From A, the extreme point of the upper semi-diameter, to B, a point in the axis, set off CD the lower semidiameter. Through B from A draw the line ABE, eutting the indefinite line CD in E, and from the point of intersection E and through the axis of the column draw any number of rays, as EBa, whereon, from the axis towards the cireumference, setting off the interval CD, any number of points aaa may be found, and through them a curve being drawn gives the swell and diminution of the shaft.
2546. This method is so far defective as to require the eurve to be drawn by hand on the applieation of a flexible ruler through the points found. To remedy the defect, Blondel, who on investigation of the curve found it to be a eonehoid, applied the instrument of Nieomedes for the purpose, the deseription of which instrument here follows. The height of the sliaft and the upper and lower diameters of the eolumn having been determined, as also the length (fig. 876.) of the line CDE, take three rulers, FG, ID, and AH, of which let lGG and 1D be fastened together at right angles in G. From top to bottom let a dovetail groove be eut down the middle of FG, and at E on the ruler ID, whose length from the eentre of the groove in FG is the same as that of the point of intersection from the axis of the column, fix a pin. On the ruler A11 set off the distance AB equal to the lower semidiameter of the column CD, and at the other end of the ruler eut a slit through it from H to K , the length whereof must at least be equal to the difference in length between EB and ED, and its breadth sufficient to admit the pin fixed at E to pass through the slit, and allow the ruler to slide thereon. Now, the middle of the groove in the ruler FG being placed exactly over the axis of the column, the ruler All in moving along the groove will with its extremity A describe the eurve AauC, which eurve is the same as that produeed by Vignola's method, except that the operation is performed by the continued motion of the tuler AH. If the rulers be of an indefinite size, and the pins at E and B be made to move along their respective rulers, so as to be able to increase or diminish at pleasure the lengths AB and DE, the instrument will answer for drawing columns of any size.
2547. The diminution of the column as respects quantity is rarely in ancient examples less than one eighth of the lower diameter of the column, nor often more than one sixth, as will be seen in the subjoined examples. One sixth is the diminution recommended by Vitruvius, and followed by Vignola, in all his orders, execptt the Tusean. In the following table the first column contains the order ; the second, the example ; the third, the height of the column in English feet and decimal parts of a foot; the fourth column shows its diameter in similar terms; and the fifth the ratio of diminution. The dimensions are from Perrault, reduced here from French to English feet.

Otder.	Examples.			Height of Column in English Feet.	Diameter of Column in English Feet.	Ratio of Diminution.
Doric	Theatre of Marcellus	-	-	$22 \cdot 386$	3.198	0.200
-	Coliseum - -	-	-	$24 \cdot 384$	2.865	$0 \cdot 077$
Ionic	Temple of Concord, now of Saturn	\rightarrow	-	$38 \cdot 376$	$4 \cdot 485$	$0 \cdot 182$
-	Temple of Fortuna Virilis -	-	-	$24 \cdot 340$	3-109	O. 12.5
\cdots	Coliseum - -	-	-	24.518	$2 \cdot 309$	0.166
Corinthian	Temple of Peace - -	-	-	$52 \cdot 400$	$6 \cdot 041$	$0 \cdot 111$
-	Portico of Pantheon - -	-	-	38.998	4.7.6	$0 \cdot 105$
-	Altars of Pantheon -	-	-	$11 \cdot 548$	$1 \cdot 465$	0.133
-	Temple of Vesta -	-	-	29.226	3.109	$0 \cdot 111$
-	Temple of the Sybil at T : sli	-	-	$20 \cdot 254$	$2 \cdot 487$	0.133
-	Temple of Faustina -	-	-	$38 \cdot 376$	4.796	0.133
-	Temple of the Dioscuri	-	-	$39 \cdot 975$	4.840	0.111
-	Basilica of Antoninus -	-	-	39.442	4.752	$0 \cdot 106$
-	Arch of Constantine -	-	-	$23 \cdot 097$	$3 \cdot 435$	0.117
	Interior of Pantheon -			$2!1 \cdot 314$	$3 \cdot 642$	0.133
Composite	Portico of Septimius -	-	-	$39 \cdot 442$	$3 \cdot 632$	$0 \cdot 125$
Composite.	Baths of Diocletian -	-	-	$37 \cdot 310$	$3 \cdot 553$	0.200
-	Temple of Bacchus -	-	-	11.371	$1 \cdot 443$	$0 \cdot 111$
-	Arch of Titus - -	-	-	$17 \cdot 1556$	$2 \cdot 102$	0.117
-	Arch of Septimius Severus -	-	-	23.057	$2 \cdot 877$	$0 \cdot 117$

2543. The recommendation of Vitruvius (lib. iii. c. 2.) to give different degrees of duminution to columns of different heights has been combated by Perrault in his notes or the passage; and we are, with Chambers, of opinion that l'errault is right in his judgment, inasmuch as the proper point of view for a columu filty feet high (fig. 876. unshaded part) ought not to be at the same distance as for one of fif.een, the point being removed more distant as the column inereases in l.cight, and therefore the apparent relation between the upper and lower diameters would appear the same. For supposing A to be a point of view whase respective distance from each of the columns $f y$ FG, is equal to the respective ineights of each, the triangles $f \mathrm{Ag}$ FAG will lee similar; and $A f$, or $A h$, which is the name, will be to $\mathrm{A} g$, as AF , or its equal AH , is to AG : therefore, if $d e$ be in reality to $b c$ as DE is to BC , it will likewise be apparently so : for the angle $d \mathrm{~A} e$ will then be to the angle ${ }^{\circ} \mathrm{Ac}$, as the angle DAE is to the angle BAC; and if the real relations differ, the apparent ones will likewise differ. "When, therefore," observes Chambers, "a certain degree of diminution, which by experience is found pleasing, has been fixed upon, there will be no necessity fur changing it, whatever be the height of the column, provided the point of view is not limited; but in close places, where the spectator is not at liberty to choose a proper distance for his point of sight, the architect, if he inclines to be scrupulously aceurate, may vary; though it is, in reality, a matter of no importance, as the nearness of the olject will render the image thereof indistinct, and, consequently, any small alteration imperceptible." Our author afterwards adds: "1t must not, however, be imagined that the same general proportions will in all cases succeed. They are chiefly collected from the temples and other public structures of antiquity, and may by us be emp!oyed ial cl:urches, palaces, and other buildings of magnificence, where majesty and grandeur of manner shouid be extended to their utmost limits, and where, the composition being generally large, the parts require an extraordinary degree of boldness to make them distinctly perceptible from the proper general points of view."

SUBDIVISION OF ENTABLATURES.

2549. We have spoken of the entablature as the fourth part of the height of the column. In general terms, its subdivisions of arehitrave, frieze, and cornice are obtained by dividiug its height into ten equal parts, whereof three are given to the architrave, three to the frieze, and four to the cornice; except in the Roman Doric order, in which the whole height of the entablature is divided into eight parts, of which two are given to the architrave, three to the frieze, and three to the cornice. From these general proportions variations have been made by'different masters, but not so great as to call for partieular observation. They deviate but little from the examples of antiquity; and the ease with which they may be recollected render then singularly useful.

MODE OF MEASURING THE ORDERS,

2550. Several methods have been used fur forming the scale of equal parts, by which the orters are measured; but they are all fornded on the diameter of the column at the bottom of the shaft; for those that use the module or semi-diameter as the measuring unit (which a!! have done in the Doric order) must still recur to the diameter itself. The authors have also usually divided it into thirty parts, but all concur in measuring by an unit foundet: on the diameter, We shall follow the practice of Vignola in describing the orders, that master dividing the diameter into two equal parts, of which each is the unit of the scale for
profiling the order. The module for the two first orders, the Tuscan and Doric, is divided into twelve parts or minutes; and for the lonic, Corinthian, and Composite orders into eighteen parts, by which minute fractions are avoided.
2551. For drawing or profiling, as it is called, an order, the proper way is to set out the beight of the leading parts and their projections, and then proceed to the subdivisions of cach. As a general rule, we may mention that it is usual to make projections of cornices mearly or quite equal to their beights.

APPLICATION OF THE ORDELS.

2552. The application of the orders among the ancients was exceedingly extensive. Porticoes abounded about their cities; their temples were almost groves of columns, with which also were profusely decorated their theatres, baths, basilicæ, and other public buildings, as were no less the courts, vestibules, and halls of their private dwellings. The moderns have in a great measure imitated their example, and their use has very much exceeded the limits of propriety. The maxim of Horace, "Nee Deus intersit," has in no ease been more violated by architects than in the unnecessary introduction of the orders on the façades of their buildings. The test of titness being applied to their employment is the best that the young architect can adopt.

Sect. III

THE TUSCAN ORDER.
2.553. The reader, in fig. 877., has before him the geometrical representation of the Tusean order and its details. A shows the plan of the sofite of the cornice, and 13 is a plan of the capital. The example is from Vignola's profile, whereon we consider it proper to remark, in conformity with an opinion before expressed (2532, 2533.), that the ovolo which crowns the cornice is an improper moulding for the situation it occupies. The substitution for it of a fillet and cyma recta would have been much more suitable, and wonld have also been more pleasant in effect.
2554. "The Tuscan order," says Chambers, "admits of no ornaments of any kind; on the contrary, it is sometimes customary to represent on the shaft of its column rustic cinetures, as at the Palace Pitti in Florence, that of the Luxembourg in Paris, York Stairs in London, and many other buildings of note. This practice, though frequent, and to be found in the works of many celebrated architects, is not always excusable, and should be indulged with caution, as it hides the natural figure of the column, alters its proportions, and affects the simplicity of the whole composition. There are few examples of these bandages in the

Fig. 877. remains of antiquity, and in general it will be advisable to avoid them in all large designs, reserving the rustic work for the intercolumniations, where it may be employed with great propriety, to produce an opposition which will help to render the aspect of the whole composition distinet and striking." Our autl:or proceeds to observe, that "in smaller works, of which the parts being few are easily comprehended, they may be sometimes tolerated, sometimes even recommended, as they serve to diversify the forms, are productive of strong contrasts, and contibute very considerably to the masculine bold aspect of
the composition." Le Clere allows their propriety in the gates of citadels and prisons, and also considers them not out of place fior gates to gardens or parks, for grottoes, fountains, and baths. Delorme made abundant use of them in severai parts of the Thuilleries, covering them with arms, eyphers, and other errichnents. They are to be found in the detail of the Louvre, with vermieulated runtics. De Chambrai, who banishes the Tuscan order to the country, nevertheless admits that the Tusean column may be consecrated to the commemoration of great men and their glorious actions, instancing 'Trajan's eolumn, one of the proudest monuments of Roman splendour, as also the Antonine column.
2555. Having adjusted the size of the module with its subdivisions of twelve parts, so that the paper or other material on which the order is profiled may contain the whole of the order, it always being understood that the representation for practical purposes need not include the whole height of the shaft of the column, whose minutia of diminution may form the subjeet of a separate drawing, the first step is to draw a perpendicular line for the axis of the column. Parallel to the base lines are then to be drawn, according to the dimensions (parts of the module) given in the table subjoined; and the beginner, as well as the more practised man, is recommended not to set up these as they are given separately, but in every case to add the succeeding dimensions to those preceding rather than to set them off one by one, whieh, on a small seale, causes minute errors in reading off from the seale to beeome in the end large in amount. By the adoption also of such a practice the work corrects itself as it proceeds. As the heights are set up, the projection of each member from the axis of the colums is to be set off, and this should be always done on both sides at the same time, by which gulling of the paper from the point of the compasses, and errors in other respects, are avoided. The fiy. 878. is

but the detail on a larger scale of the general representation exhibited in that preseding The measures of each part are given in the following table.

Tabie of the Parts of the Tuscan Order.

2556. Vitruvius in this order forms the columns six diameters high, and makes their diminution one quarter of the diameter. He gives to the base and erpital each one module in height. No pedestal is given by him. Over the capital he places the architrave of timber in two thicknesses connected together by dovetailed dowels. He however leaves the height unsettled, merely saying that their height should be such as may be suitable to the grandeur of the work where they are used. He direets no frieze, but places over the architrave cantilevers or mutuli, projecting one fourth part of the height of the colnmn, including the base and capital. He fixes no measure for the cornice, neither does he give any directions respecting the intercolumniations of this order. The instructions are not so speeific as those which he lays down for the other orders, and there have been various interpretations of the text, which unfortunately cannot in any of the suppositions be tested
on ancient remains. The whole height, according to the measuring unit winch we have adopted from Vignol:, is 16 modules and 3 parts.
2557. Palladio makes the height of his Tuscan column 6 diameters, and diminishes the shalt one fourth of a diameter. The height of the base and capital are each half a diameter. He provides no pedestal, but, instead thereof, places the base of the column on a zoccolo, or lofiy plinth, whose height is equal to the diameter of the columm. He leaves the intercolumniation unsettled, merely huting that as the architraves are of timber, they, the intereolumiations may be wide. The whole height by him assigned to the order is 9 diameters and three quarters of the column. The whole height according to our scale is 19 modules and 6 parts.
2558. Serlio makes the column of the order 5 diameters exclusive of base and capital, each of which are half a diameter in height, and his diminution is one fuarter of the diameter. He gives half a diameter to the height of the architrave, and an equal height to the frieze and to the cornice. His pedestal is with a plinth and base, a die, and cymatium, the whole being a third of the height of the column. He gives no rules for the intercolumniations, though in book 4. he inserts a diagram wherein intercolumns appear, merely saying that they are equal to 3 diameters. The total height according to our measure is 19 modules and 3 parts.
2559. Scamozai makes the shaft of his colmmn 6 diameters, and diminishes it one fourth part of its diameter. The heights of the base and capital are each half a diameter. To the entablature he assigns for height one fourth of the height of the colum, including its base and capital, less half its diameter. Ihe places a sont of triglyph in the frieze, which arises from a misconception of the text of Vitruvius. The height of his pedestal is a fourth part of that of the column, with base and capital, less half a diameter. The whole height in our measure is 21 modules and 9 parts.

Sect. IV.
THE DOHLC ORDER.
2560. The Doric order of the moderns is of two sorts: mutular and denticular, the former is represented in fig. 879. A is a plan of the sofite of the corona; B, a plan of the

eapital ; and \mathbf{C}, a pian of the base. In the fricze the channclled projections are cailect trighyphs, and the spaces between them metoye, which should in breadth be equal to tiene
beizhe ohim is that of the friere. The shat is usually chunaelled with :wentr fivtes Oret the समelrnts are distriluted monels of mocillions and another peculiarity is the
 twelt ha
2501. Dariler, spesking of :he two Doric entablatares given by Vignola, admires the elegance of t ris compuezion anà searely knows which of them to select as the most beau:ful - The firs ${ }^{-}$or dentieular b bereafter inmediately subjoined, sars Chambers itlowing that author, - which is entirely antique. is the ligtisest and consequently properest for intrave decumation of oljectirnended ior pear inspection; the other, composed by Timola himself from rarious fingments of antiquity, being bolder, and consisting of layer parts seems better calculated ior outside works and places where the point cif stew is citber distan: or unliniteal Om polrgonal plans, bowerer, the mutule cornice mus be avoided. beczuse the soties of the angular mutules would form irregular and rery Cingstezable figures : neither shoulj is be emplored in concaves of small dimensions, fur the same reason: nor is places where fequent breaks are reqlisice it being extremels cificule, oten imposible to prevens the mutules from penetraing and mutilating each ther in rarious uns ghtir manners; and wherever this cornice is ased on a convex surface, the siJes of ibe mutules must be made parallel, for is would be bosh disegreable and unnatural to tee then lroacer, and consequentry heavier in fromt than where ther spring out of the musule bena." We have elerbere observed that there is rery great difficulty in cistributisg the parts of the Doric entablature on account of the intervals between the centres of the triglyphs which necescatily conime the componer so intercolumniations dirisible br three wodules. thus producing s,ace which are often ton wide or two narrow i.t bis plaposes

Q: 202 In fig. 860 . the entablavure of the mntular Doric order is given to a larger seate :23: Lhat of the procoling fegure; and $\begin{aligned} \text { a subioin as in the Tuseras order. - }\end{aligned}$

Taele of Parts of the Entarlatere of the Mettlaz Donec

3ucidinge whereof the Parts are composed				Feaghte of M ului ags is Parts ifa	Prgections ffom ixir Cuinn in $\mathrm{Pa}-3$
Cornice A, Is yarti	[Fillet of the corse a	-	-	1	S:
	C!ma - -	-	-	3	31
	Fillet - -	-	-	$\frac{1}{1}$	31
	Cuma retera -	-	-	1	34
	Curoma	-	-	3.	5
	Crma reversa	-	-	1	$=$
	Mutule	-	-	3	-
	Drip -	-	-	$\frac{1}{2}$	\because
	Guita of the mutule	-	-	\#	-
	Echinus of suarter	$\therefore 1$	-	2	12
	Fillet - -	-	-	$\frac{1}{2}$	1.
	Capital of the trigis:		-	2	11
Frieze 13 1s parts	$\{$ Trielsph	-	-	1.	1
	Metupe	-	-	$1 \sim$	10
	[Listel - -	-	-	2	12
Architrave C. 1: part~	Capital of the cuttre	-	-	-	115
	Gutie -	-	-	1	111
	First fascia	-	-	6	10^{1}
	L Second incia -	-	-	;	19

D is the plan of a triglyph to double the seale.
E is the plan of the round or square cutte.
F is the eleration of the triglyph and its gutta.
-563. To obviate the di"̈̈cultie meatiosed in 2351. relative to the triclsplother lave uften been ounitted and the entablature left plain as in :ae Colineum at liome- the colvonade of st. Peter's of the Vitican and in many orher builduger. This- sar, (hambern is an easy expedient; but as is rols the order of its pracipal characteristic dutinetuon the semedy is a deperate one, and should only be employed as a last resource

2564 . The Duric order was used by the ancients in temples dedieated to Minerva to Mars and to Hercules. In modern bulluings Eerlio (lib. is c. 6.) recommencis it in th orcheo dedieated to saints remarkable by their -wifering for the Ctristian taith. Le Clere sugetois its uef fr miliary buildings - It mas." say, Chambers, be employeci in the lurus of generals or other martial men in mausoleums erected so their memory, or in triumphal bridess and arches buil: to celebrate their victories"
S665. $A=$ the difference between the mutular and denticular Doric lies entirely in the entablature, we give in the fiviluwing table the whole of the detaik, of the order.

olwerting. that from the capizali downwar the measures awtoed to thum ane ehe same for each. Fig. SE1. represenz the eatablaturn of the dentierther Durie aid ise $\frac{1}{1}$ arts
whieh, with those of the eapital, base, and pedestal, are in fig. 882. given to a larget

Fig. ss2.
cale, as we have before represented the parts of the Tuscan order. The general table is abjoined : -

	Members comprsing the Order.			Heights in paris of a Module	Projections in Parts of a Medule from xis of Column Axis of Culumn
A, Cornice, 18 parts.	Entablatule.				
	Fillet of eorona	-	-	1	34
	Cavetto	-	-	3	31
	lillet -	-	-	$\frac{1}{2}$	26
	Cyma reversa -	-	-	$1 \frac{1}{2}$	30
	Corona -	-	-	4	$28 \frac{1}{2}$
	Drip -	-	-	$\frac{1}{2}$	27.1
	Fillet - - -	-	-	$\frac{1}{2}$	25
	Gutta under the corona Dentil	-	-	$\frac{1}{2}$	$2+\frac{1}{2}$
	Fillet - -	-	-	3	15
	Cyma reversa -	-	-	\bigcirc	121
	Capital of triglyph			2	11
B. Fricze,	\{ Triglyph	-	-	18	$10 \frac{1}{2}$
18 prarts.	\{ Metope	-	-	18	10

2566. Vitruvius, with more clearness than in the others, describes the Dorie order (buok iv. chap. iii.). lu order to set out its proportions, he tells us, though not giving a direct rule, that its pedestal is composed of three parts, the cymatium or cornice, the die, and the base; and that the base and cimatium are composed of many mouldings, whose individual proportions, however, he does not give. He assigns no particular base to the Doric order; but, nevertheless, places under half a diameter in height the attic base, whose members are the plinth, small fillet, scoti, and the upper turus with its superior and inferior fillets, together with the apophyge of the column. He gives to the projection of the base a fifth part, of the diameter of the column. 'The height of the shaft he makes of 6 diameters, and its diminution a sixth part of the diancter. 'The capital's height he makes equal to half a diameter, and divides it into three parts, one for the abacus and its cymatium. another for the echims and its fillets, the third for the hypotrachelium. To the architrave he assigns the height of one half diancter of the co!umn, and to the frieze 50 parts of the module smidiameter divided intu 30 parts), including the fascia, forming the eapital of the trinlyphs. His cornice consists of 30 parts of the module, and its projection 40 . The whole height which he gives to the order is, in the meavure here adopted, 17 modules and 20 parts.

2567 . D'alladio makes the Doric pedesta' rather less than $2 \frac{1}{2}$ diameters of the columa, dividing it into three parts, the base, die, and cymatium. To the die he assigns nearly a diameter and one third of the column. To the cymatium a little more than one third of the diameter. He uses the attic base to the order, but, for the sake of carrying off the water, turns the plinth into an inverted cavetto (guscio). ending in the projection of the -
eymatium of the perlestal. T'o the shaft of the column he assigns various proportions, elirecting that if aceompanied with pilasters, it should be of the height of $8 \frac{5}{1 / 2}$ diameters, and if entirely isolated, 7 or at most 8 diameters ligh. He cuts the shaft into 24 fintes, and diminishes it the tenth part of its diameter. The height of his eapital is half a diameter, and, l,ke the amotators on litruvius, he decorates the neek or fripze, as they both call it, with ruses, adding, however, other Howers, and making its projection a little more than a fifth part of the diameter. To the architrave, frieze, and cornice he gives a little more than one fourth part of the height of the column, so that the whole height of his order is in our measure 24 modules and a fraction above $2 \frac{1}{2}$ parts.
2568. Serlio makes the height of the pedestal of his column a little less than 3 diameters, with its base, die, and cymatium. The beight of the die is set up equal to the diagonal of a square, formed on the plinth of the column. The height of the eymatium, according to the strict text of Serlio, should not be less than that of the base; but he altogether omits any mention of its projection. His base is the attic base, to which he assigns a projection of a quarter of a diameter. The column is 6 diameters high, and has 20 tlutes. His capital differs only from that of Vitruvius in its projection, which is rather more. The architrave and frieze do not much differ from those already deseribed. 'The projection given to the cornice is equal to its height. The whole height in our measures amoments to 23 modules and 5 parts.
2569. The Doric order as described by Scamozzi is not very dissimilar to those already described. The pedestal is by him made \mathscr{O} diameters and a little more than a quarter, with a base, die, and eymatium, and the projection barely a quarter of the diameter of the column, to which he gives the attic base. His column is $7 \frac{1}{2}$ diameters high, and the dimimution a fifth part of the diameter. There are 26 flutes on the shaft, separated from each other by fillets, whose width is one third of the flute. This author gives three different sorts of capitals for the order : the first has three annulets; the second has only the lower annulet, the two upper ones being changed to an astragal; the third, instead of the two lower annulets, has a cyma reversa. Lastly, above the corona he plaees a cyma reversa, and in the other parts does not vary much from the preceding authors, especially in the frieze and architrave, exeept that in the last he uses two fascia. To the cornice he assigns the projection of five sixths of a diameter of the column. His whole entablature is a little less than one fourth the height of the column, including base and capital. The whole height of the order in our measures is 23 modules and 8 parts.
2.570. In fig. 883. the profile of the Greeian Doric from the Parthenon at Athens is given. Though very different to those we have already described of this order, the resemblance is still considerable. Its eharacter is altogether saced and monumental, and its application, if capable of application to modern purposes, can searesly be made to any edilice whose general character and forms are not of the severest and purest nature. 'lhe various absurd sithations in which the Greeian Doric has been introduced in this country, has brought it into disrepute; added to which, in this dark climate the closeness of the intercolumniations excludes light, which is so essential to the display of architecture under the cloudy skies with which we are constantly accompanied in high latitudes. 'The diameter of the columns in the original is 6 feet 2.7 inches.
2571. Lest we may be reproached with neglecting to submit to the student in this place (and the remark eçually applies to the following section on the Ionic orter) more examples of the Grecian Doric, we would here observe that this work is not to stand in place of a parallel of the orders. Nothing would have been easier than to have placed before him an abundance of examples; but they must be sought elsewhere,

Fig. $8 \$ 3$. masmuch as the nature of our labours requires general, not special, information in this reppet. We have not, however, refained in the first hook (142, et seq.) from entering anto details respecting the Grecian Doric, which we consider much more valuable to the reader than would be the exhibition of a seres of profies of its principal examples. We tave, moreover, at that place, suggested some criteria of their comparative antiguity. We do not think the nice copying of a profile into a modern work any other than a disgraeeful exhibition of the vant of ability in the man, we cannot call him artist, who adopts it, and shall be much better pleased to leave the student in coost, so that be may apply himself wro re maid to the matter which calls his genins into play. From what we have said on the orders in Sect. 11. of this Book, (259:3, et serg.), relative to the oider, and on moulding,
(2532 , et seq.), it must be quite clear that the varicty of every order, keeping to first principles, has not been yet exhansted, neither is it likely to be so.

Table of the Pabts of the Guecian Doric (Pabthenon).

2572. The minutiæ of the Grecian Doric, as we have just observed, camot be given in a general work of this nature. In its smaller refinements it requires plates on a much larger seale than this volume allows. 'The reader, therefore, must be referred to Stuart's Autiquities of Athens (original edition), and the pullications of the Dilettanti Soeiety, for finther information on the subject of the Grecian 1)oric. All that was here possible was to give a general idea of the order. In the figure, E is the section of the capitals of the inner colmms of the temple on a larger seale. DI) relate to the prineipal columns. F is a section of one of the ante or pilasters to double the scale of the capital. The centre intercolummation 4 modules $\frac{55}{100}$, from axis to axis of columas. The prineipal Grecian Dorie examples are - the Parshenon, the temple of Theseus, the propyleum and the portico of the Agora at Athere : the temple of Minerva at Sunium ; the temple at Corinth; of Jupiter Nemeus, between Argos and Corinth; temple of Apollo and portico of Philip in the inland of Delos; the temple of Jupiter I'anhellenius at Egina, and of Apollo Epicurius at Phigalia; the two temples at Solinus; that of Juno Lucina and Concord at Agrigentuns; the temple at Egesta, and the three temples at lastum. (See 142, et seg.)

Sect. V.

THE GONIC OLDER.
2573. Of the Ionic order there are many extant examples, both Grccian and Roman; and, except the debased later examples of the latter, there is not that wide difference between them that exists between the Grecian and Roman Doric. The lonic has been considered as deficient in appearance as compared with the other orders, on account of
the arregularity of its capital, which, on the return, presents difficulties in use. Theses difficulties are not obviated by the practice of the Greeks, who made an angular volute on each extremity of the principal façade, and then returned the face of the capital. With all our respect for Greek art, we think the expedient, though ingenious, a deformity; glbeit, in the ease of the type being a timber architrave, we must admit that the face of the capital should lie in the direction of the superincumbent beam.
2574. In the example given (fig. 884.) we have, as in the examples of the preceding

Fig. SS 1 .
orders, selected the profile of Vignola as the most elegant of the moderns; and the reader will here recollect that in the Ionie, Corinthian, and Composite orders, the module or semidianeter of the column is divided into 18 parts. In the figure, A is a plan of the sofite of the cornice, and B a plan of the capital. The method of tracing the volute will be given in a subsequent figure : previous to which, as in the orders already given, we subjoin a table, showing the heights and projections of the parts of the order.

	Members composing the Order.		Heights in Parts of a Module.	Projections from Axis of Columin in Parts of a Module.
A, cornice, 34 parts.	Entablatuke.			
	Fillet of cyma	-	11	46
	Cyma recta - Fillet -	-	5	41
	Cyma reversa	-	2	40_{2}^{1}
	Corona -	-	${ }_{6}$	38.1
	Fillet of the drip	-	1	291
	Ovolo -	-	4	281
	Astragal -	-	1	
	Fillet -	-	$1{ }^{\frac{1}{2}}$	$24{ }^{2}$
	Dentel tillet - Dentels -	-	${ }^{1 \frac{1}{2}}$	21
	lillet - -	-		20
	Cyma reversa -		4	191
B,	Fricze - -	-	27	15

The flutes in this order are separated by a listel.
2575. The letters to the leading divisions of the above table refer to the fig. 885 ., wherein the parts are drawn to a larger scale, and wherein l is the eye of the volute, presently to be described.

Fig. 885.
2576. Fig. 886. shows the method of drawing the volute, the centre of whose eyr, as it is called, is found by the intersection of an horizontal line from E, the bottym of the

echinus, with a vertical from 1), the extremity of the cyma reversa. On the point of intersection, with a radius equal to one part, describe a circle. Its vertical diameter is called the cathetus, and forms the diagonal of a square, whose sides are to be bisected, and through the points of bisection (see I, fig. 885.) the axes 1,3 and 2,4 are to be drawn, each being divided into 6 equal parts. The points thus found will serve for drawing the exterior part of the volute. Thus, placing the point of the compasses in the point 1 , with the radius 1 D , the quadrant DA is described. With the radius 2 A another quadrant may be described, and so on. Similarly, the subdivisions below the points used for the outer lines of the volute serve for the inner lines. The total height of the volute is 16 parts of a module, whereof 9 are above the horizontal from \mathbf{E}, and 7 below it.
2577. Vitruvius, according to some authors, has not given any fixed measures to the pedestal of this order. Daniel Barbaro, however, his commentator, seems to think otherwise; and, on this head, we shall therefore follow him. The height of the pedestal is made nearly a third part (including its base and cymatium) of the height of the column. To the base of the column he assigns half a diameter, and to the shaft itself nearly 8 diameters, its surface being cut into 24 flutes, separated by fillets from each other. His method of describing the volute is not now thoroughly understood; and it is, perhaps, of little importance to trouble ourselves to decypher his directions, seeing that the mode of forming it is derived from mathematical principles, as well understood now as in the days of the author. 'I'he architrave he leaves without any fixed dimensions, merely saying that it must be larger or smaller according to the height of the columns. He prescribes, however, that the architrave, frieze, and cornice should together be somewhat less than a sixth part of the height of the column, with its base and capital. The total height he makes the order, according to our measures, is 25 modules and nearlv 9 narts.

- 2578. Palladio gives to the pedestal 2 diameters and nearly two thirds of the height ot then column. Lle adopts the attic, though without rejecting the lonic base, and makes it half a diameter high, adding to it a small bead, which he comprises in the height of the shaft, which he makes 8 dianeters in height. To the architrave, fricze, and cornice, taken together, he assigns a little less than one fifth of the height of the column, including its base and capital, and makes the projection of the cornice equal to its height. The total height of the order, in our measures, is, according to him, 27 modules and nearly 8 parts.

2579. Serlio, in this order more than any of the others, varies from Vitruvius. To the pedestal he gives, including base, die, and cymatium, a little more than a third part of the height of the column, with its base and capital. To the shaft of the column he gives 7 diameters, and diminishes it a sixth part of its diameter. His capital is that of Vitruvius, as far as we can understand that master. His mode of constructing the volute differs from other authors. His directions are, that lhaving found the cathetus, which passes through the centre of the eye, it must be divided into eight parts, from the abacus downwards, one whereof is to be the size of the eye of the volute, four remain above the eye, and three below that part comprised below the eye. The cathetus is then divided into six parts, properly numbered by figures from 1 to 6 . With one point of the compasses in 1 , and the other extended to the fillet of the volute, he describes a semicircle, and so on with semicircles consecutively from 2 to 6 , which will ultimately fall into the eye of the volute. We camot speak in high terms of Serlio's method, and therefore have thought it umecessary to accompany the description with a figure. It is rather a clumsy method, and we fear, if exhibited in a figure, would not satisfy our readers of its elegance. The height of his architrave, frieze, and cornice together is a little less than a fourth part of the height of the column, including the base and capital. The whole height of his order, in our measures, is 25 modules and 6 parts.
2580. Scamozzi directs that the pedestal shall be with its base and cornice two diameters and a half of the column. He uses the attic base, and, like Palladio, gives an astragal above the upper torus. To the shaft of the column he assigns a height of little less than 8 diameters, and makes its diminution a sixtl, part of the diameter. He adopts the angular capital, something like the example of that in the temple of Fortuna Virilis. The height of his architrave, frieze, and cornice is a little less than a fifth part of the height of the column, with its base and capital. The total height of his order, in our measures, is 26 modules.
2581. The principal examples of the Grec:an Ionic are in the temples of Minerva l'olias, of Erecthens, and the aqueduct of Hadrian, at Athens; in then temple of Minerva Polias at Priene; of Bacchus at

Teos; of Apollo Didymarus at Miletus; and of the small temple on the Ilyssus, near Athens, whereof in fig. 887. the profile is given, and below, a talle of the heights and projections of the parts. It is to be observed, that in the Greeian Ionic volute the fillet of the spiral is continued along the face of the abaeus, whilst in the Roman examples it rises from behind the ovolo. Some of the Athenian examples exhibit a neek below the echinus, decorated with flowers and plants. The entablatures of the early lonic are usually very simple. The arehitrave has often only one fascia, the frieze is generally plain, and the cornice is composed of few parts. In Book I. Chap. II. (153, et seq.) we have already examined the parts of the Grecian Ionic, and thereto refer the reader.

Table of the Parts of the Grecian Ionic in the Temple on the Ilyssus.

Members composing the Order.				Heights in Parts of a Module and Decimals.	Projections in Parts of a Module from Axis of Column \qquad
Cornice, supposed height 18.33 parts.	Entablature.		-------	restored. restored. restored. 2.040	restored. restored.
	Fillet - -	-			
	Cyma recta -	-			
	Fillet -	-			restored.$34 \cdot 440$
	Echinus	-			
	Corona	-		6.2404.680	33.960
	Drip - -	-			$20 \cdot 520$
	Cyma reversa -	-		$2 \cdot 700$	
	Fillet - -	-		$0 \cdot 720$	
	Eehinus	-	-	1.260	$18 \cdot 360$
Architrave, 33.66 parts.	Frieze	-	-	$29 \cdot 901$	$17 \cdot 400$
	Fillet -	-		1.920	30:520
	Eehinus	-	-	2.5.0	$20 \cdot 100$
	Bead -	-	-	1.200	17880
	Fascia	-	-	$27 \cdot 600$	$17 \cdot 160$
Columin.					$19 \cdot 860$
Capital, 19:32 parts.	Echinus -	-	-	2.040	
	Fillets, or beads of volutes	-	-	1.050	
	Channel - -	-		7.320	
	Fillets, or beads of volutes	-		1.050	
	Channel -	-		0.600	
	Cathetus	-		- ${ }^{-}$	17.550
	Eehinus	-		4.650	$18 \cdot 960$
	Bead -	-	-	1.080 0.450	$17 \cdot 250$ $15 \cdot 720$
	Fillet - -	-		0.450 1.080	15.720
Base, $33 \cdot 27$ parts.	Shaft -	-		$17 \mathrm{mod} .7 \cdot 110$	$\begin{array}{ll} \text { \{above } & 15: 36 \\ \text { leelow } & 18: 000 \end{array}$
	\{ Apophyge	-		1.080	
	Fillet -	-		$0 \cdot 450$	$18 \cdot 960$
	Bead -	-		1.080	$19 \cdot 320$
	Horizontally fluted torus	-		$6 \cdot 120$	$\begin{aligned} & 22 \cdot 500 \\ & 22 \cdot 500 \end{aligned}$
	Fillet - - -	-		0.450	
	Seotia	-		6.000	$21 \cdot 840$2.640
	Fillet	-	-	$0 \cdot 450$	
	Torus	-	-	5.760	$24 \cdot 960$$26 \cdot 520$
	Plinth	-	-	$11 \cdot 880$	

The height from the top of the echinus to the centre of the eye of the volute is 1.5% parts. Total projection of the volute from axis of column, $27 \cdot 90$. The flutes are elliptieal on plan (fig. 887.), and the distance between axes of columns, 6 mod., 3.24 pts .

2581a. An Ionic capital from the celebrated Temple of Diana, at Ephesus, can now be seen at the British Museum, having been reeovered during the explorations made in 1872, by Mr. J. T. Wood. The shaft was 6 feet 1 in. diam., and a part of its Lase was found in situ.

Sect. VI.

THE CORINTIIAN OLDER.
2582. For the Corinthian order, we must seek examples rather in Rome than in any part of Greeee. The portico at Athens, and the arch of Uadrian at Athens, do not furnish us with specimens of art comparable with the three columns in the Campo Vaccino, belonging, as is generally suppesed, to the temple of Jupiter Stator. Those in the temple near Mylassa, and the Incantata, as it is called, at Salonica, do not satisfy the artist, as compared with the examples in the remains of the temple of Mars Ultor at Rome, the temple of Vesta at Tivoli, and others, for which the reader may refer to Descrodetz.
2583. The reader is again here reminded that the module or semidiameter is to be

Fig. sss.
divided into eighteen parts. In fig. 888. is a representation of the Corinthian order, whose measures are given in the following table :-

2584. Fig. 889, shows the details of the entablature, \&c. and also the profile and front of the Corinthian modillion to a larger scale. On the profile is shown the caisson or sumk panel on the sofite of the corona. The height is six parts, and the projection sixteen. As seen in the figure, a distance equal to three parts and a half is taken for the height of the smaller volute, and on this distance a scale of sixteen equal parts is made; the figure shows the dimensions to be given to the small squares, whose angles serve as centres to describe the curves. Having drawn the line AB, it is divided into four equal parts by lines perpendicular to it, which, meeting vertical lines from A and B, gire the points, which serve as centres for striking the curve of the modillions. The acanthus leaf which supports it, as well as the curves which form the profile of the roses in the caisson, are also struck by compasses.
2285. In fig. 890 ., which exhibits the method of drawing the Corinthian capital, one halt of the plan shows the capital in plan, and the other half of it laid down diagonally. Having drawn the axis of the plan correspondent to the axis of the elevation of the capital, with a radius equal to two modules, describe a circle, which divide into sixteen equal parts Their lines of division will each correspond to the centre of each leaf. The vase of the capital is determined by a circle whose radius is $14 \frac{1}{2}$ parts. The figure shows the circles which bound the leaves upwards on the vase.
2586. The elevation shows the heights whereon are carried the projections of the plan.

Fig. 890.
Above the leaves come the sixteen volutes, whereof the eight larger ones support the fom angles of the abacus, and the eight smaller ones support the flowers which decorate the middle of the abacus. The volutes seen in profile may be drawn geometrically with the compasses, but they are always more agreeable and easy when drawn by the eye with a hand which feels the contours.

The different parts of the capital are as follow: A, plan of the leaves and alacus; B, plan of the larger and smaller volutes; \mathbf{C}, the vase or body of the capital; D, the first tier of leaves; E, the second tier of leaves; F, the caulicolus; G, the larger volute; II, the smaller volute; I, the flower; K, the abacus; L, the lip of the vase.
2587. Vitruvius is scanty in the information he gives on the Corinthian order, and what he says respecting it relates more to the origin of the capital and the like than to the proportions of the detail. IIe makes the capital only 1 diameter high, and then forms upon the plan a diagonal 2 diameters long, by means whereof the four faces are equal according to the length of the are, whose curve will be the ninth part in length and its height the seventh part of the capital. He forms the order with a pedestal, with base and cornice, as Daniel Barbaro would have it. The whole height given to it in our measures is about 27 modules and 2 parts.
2588. Palladio uses the pedestal with its ordinary subdivisions, making it between a third and fourth part of the height of the column, including its base and capital. To the base he gives 1 module, the shaft of the column a little less than 8 diameters, and places twenty-four flutes upon it, which two thirds downwards are channelled, and on the other or lower third neatly fitted with convex pieces of segments of cylinders called cablings. He makes the eapital 1 diameter and a sixth in height, giving it two tiers of leaves, caulicoli, and abacus. To the architrave, frieze, and cornice he assigns a little le s
than a fifth part of the column, including the base and capital. The whole height given to the order by this author is about 27 modules and 10 parts of our measures.
2589. Serlio makes his pedestal pretty nearly as the rest. To the base of the column he assigns half a diameter for the height, when that is about level with the eye, but when much above it he directs all the members to be increased in height accordingly, as where one order is placed above another, he recommends the number of parts to be diminished. To the shaft of the column he gives a little more than 7 diameters, and to the capital the same height as that given by Vitruvius, whom, nevertheless, he considers in error, or rather that some error has erept inito the text, and that the abacus ought not to be included in the height. ${ }^{-}$The height of the architrave, frieze, and cornice he makes a little less than a fourth part of the column, including its base and capital. The whole of the order, according to him, is 28 modules and a little more than 1 part of our measures.
2590. Scamozzi gives to the pedestal of this order the height of 3 diameters and one third, composing it with the usual parts of base, die, and cornice; to the base of the column the same height and mouldings as Palladio. To the shaft of the column he assigns the height of 8 diameters and one third, and diminishes it on each side an eighth part of its thickness at bottom. The capital is of the same height as that by Palladio. The architrave, frieze, and cornice he directs to be a little less than a fifth part of the height of the column. By our measures the whole height of his order is 30 modules and 20 parts.

Sect. VII.
TILE CDMPOSITE ORIDER.
2591. The Composite order, as its name imports, is a compound of others, the Corinthian and lonic, and was received into the regular number of orders by the Romans. Philander, in his notes on Vitruvius, has described its proportions and character. Its capital consists, like the Corinthian, of two ranges of acanthus leaves distributed over the surface of a vase, but instead of the stalks or branches, the shoots appear small and as though flowering, adhering to the vase and ronnding with the capital towards its middle. A fillet terminates the vase upwards, and over the fillet an astragal is placed, and above that an echinus, from which the volutes roll themselves to meet the tops of the upper tier of leaves, on which they seem to rest. A large acanthus leaf is bent above the volutes, for the apparent purpose of sustaining the corner of the abacus, which is dissimilar to that of the Corinthian order, inasmuch as the flower is not supportel by a stalk seemingly fixed on the middle of each face of the abacus. The principal examples of

the order are at Rome, in the temple of Bacchus, the arches of Septimius Severus, of the Goldsmiths, and of Titus; also in the baths of Dioclesian.
2592. Fig. 891. (sce preceding page) is a representation of Vignola's profile of the order. Its measures are subjoined in the following table:-

	Members composing the Order.			Heights in Parts of a Module.	Projections from Axis in Parts of a Module.
A, Cornice, 36 parts.	Entablature.				
	Fillet of cornice	-	-	11	51
	Cyma recta -	-	-	5	51
	Fillet -	-	-		46
	Cyma reversa	-	-	2	$45 \frac{1}{2}$
	Bead -	-	-	1	$4.3{ }^{3}$
	Corona - -	-	-	5	43
	Cyma under the corona	-	-	112	41
	Fillet -	-	-	$1{ }^{2}$	33
	Cyma reversa	-	-	4	321
	Fillet of the dentils	-	-	$\frac{1}{1}$	28
	Dellils Fillet -	-	-	$7 \frac{1}{2}$	29
	Ovolo -	-	-	1	23
I3, Fricze, 27 parts.	Bead	-		1	
	Fillet -	.	-	$\frac{1}{2}$	161
	Congé -	-	-	3	15
	Upright face -	-	-	$17 \frac{1}{4}$	15
	Apophyge	-	-	7	22
C, Architrave, 27 parts.	Fillet	-	-	1	22
	Cavetto	-	-	2	$20 \frac{1}{2}$
	Ovolo	-	-	3	20
	Bead -	-	-	1	173
	First fasciaCyma reversa	-	-	10	17
		-	-	2	16_{3}^{2}
	Second fascia	-	-	8	15
Capital, 42 parts.	Columin.				
	Echinus and fillet	-	-	2	. $20 \frac{2}{3}$
	Lower member of abacus	-	-	4	diagonally $32 \frac{1}{2}$
	Bend of upper leaves ${ }^{-}$	-	-	12	diagonally 30
		-	-	. 3	24
	Bend of lower leaves	-	-	9 3	22 ${ }^{2}$
	Lower leaves -	-	-	9	-
$\begin{gathered} \text { Columu, } \\ 16 \text { mod. } 12 \text { parts. } \end{gathered}$	Astragal	-	-	2	$17 \frac{1}{2}$
	Fillet -	-	-	1	16.1
	Congé ${ }^{-}$	-	-	2	$1.5 \frac{1}{2}$
	Sluft \int Above	-	- 16 - mod. 12 parts. 15^{2}		
	Slaft $\left\{\begin{array}{l}\text { Belcw }\end{array}\right.$	-	-	$6 \mathrm{mod}$.	ts. 18
	Apophyge	-	-		20
	Fillet	-		11	20
E, Base of column, 18 parts.	Congé	-	-	2	20
	Fillet	-	-	112	20
	Torus	-	-	8	22
	Fillet	-	-	$\frac{1}{4}$	2012
	Scotia	-	-	11	20
	Fillet			$\frac{1}{4}$	214
	BeadFillet				213
					213
	Scotia -				20_{3}^{2}
	Fillet -TorusPraser		-	4^{1}	25
	Plinth	-		6	25

Chaf. I.

2593. The flutes in this order are separated by a fillet between them, and are, when used, twenty-four in number.

Fle R P 2.
2594. Fig. 892. (see preceding page) slows the parts of the entablature. lase. and pedestal to a larger scale, and fig. 893. gives, similarly, a more intelligible, because larger, represent-

Fis. 893.
ation of the mode of setting up the capital, which, as we have already observed, has only eight volutes. In this figure A is the plan, as viewed frontwise; B , that of the capital, viewed diagonally ; C , the vase or body of the capital ; D, the first tier of leaves; E , the second tier of the same; F, the volutes; G, the flower ; H, the abacus.
2595. Vitruvius has not given any instructions on this order; we are therefore obliged to hegin our parallel, as in the other orders, with -
2596. Palladio, whose examples of it are light and mueh decorated. To the pedestal's height this master assigns 3 diameters and three eighths of the column, adding to it a lower plinth of the height of half a diameter. He makes the base of the column half a diameter in height, and assigns to the shaft 8 diameters and a little more than one fourth, and cuts on it twenty-four flutes. The height of this capital is I diameter and a sixth, his volutes being very similar to those he prescribes for his Ionic. The arehitrave, frieze, and cornice he makes a little less than a fifth part of the height of the column. The whole height of his profile in our measures is 30 modules and 12 parts.
2597. Serlio seems to have founded his profile of this order upon the example in the Coliscum at Rome. He makes the height of the pedestal a little less than 4 dianeters of the column. To the shaft of the column he assigus 8 diameters and a half. To the height of the capital he gives 1 diameter, differing therein from his profile of the Corinthian order in the disposition of the volutes and leaves. His entablature, which is a little less in height than one fourth of the column, he divides into three equal parts for the
architrave, frieze, and cornice The total height of his profile in our measures is 32 modules and 9 parts, being much higher than that of Palladio.
2598. Scamozzi's profile greatly resembles that of Paliadio. His pedestal is 3 diameters, and the base of his column half a diameter in height. The shaft of his columı without base or capital, is 3 diameters and one twelfth high, and the capital 1 diametes and a sixth. The entablature is one fifth part of the column in height, and the whole of the profile in our measures is nearly 29 modules and 7 parts.

Sect. VIII.

PEDESTALS.
2599. We think it necessary to devote a small portion of our labour to the consideration of pedestals, on account of the great diflerence which exists in the examples of the orders, and this we shall place in a tabular form, previous to the general remarks it will be necessary to make.

Table showing the Heigit of Pedestals in ancient and modern Works.

		Plinth in Minutes.	Mouldings above Plinth in Minutes.	Die in Minutes.	Cornice in Minutes.	Total Height in Minutes.
Doric	S Palladio -	26	14	80	20	140
	$\{$ Scamozzi	30	15	684	$22 \frac{1}{2}$	1366
Ionic	$\left[\begin{array}{l}\text { Temple of Fortuna Vi- } \\ \text { rilis }\end{array}\right.$	44	193	93^{3}	$23 \frac{1}{4}$	180_{4}^{3}
	\{ Coliseum -	33.54	$9 \frac{1}{2}$	815	17	$141 \frac{1}{2}$
	Palladio	283	$14 \frac{1}{3}$	973	$21 \frac{1}{2}$	1621
	Scamozzi -	30	15	$82 \frac{1}{2}$	221	150
Corinthian	Arch of Constantine	$17 \frac{1}{2}$	29	153	$29!$	228
	Coliseum -	23	$11 \frac{1}{2}$	78	191	1313
	Palladio -	$23 \frac{1}{2}$	$14 \frac{1}{2}$	93	19	150
	Scamozzi -	30°	15	$1.32 \frac{1}{2}$	22 !	200
Composite	Arch of Titus -	55	30	141	29	255
	Areh of the Gold- smiths	46	2.51	$144 \frac{1}{2}$	251	241
	$\left\{\begin{array}{c}\text { Arch of Septimius Se- } \\ \text { verus }\end{array}\right.$	30	30_{6}^{5}	1401	295	1891
	Palladio -	33	17	133	17	$\because 00$
	Scamozzi - -	30	15	$112 \frac{1}{2}$	22!	180

2600. The minutes used in the above table are each equal to one sixtieth of the diameter of the shaft.
2601. Whether the pedestal is to be considered a component part of an order is of littleimportance. There are so many cases that arise in designing a building, in which it cannot be dispensed with, that we think it useful to connect it with the column and entablature, and have consequently done so in the examples already given of the several orders. Vitruvius, in the Doric, Corinthian, and Tuscan orders, makes no mention of pedestals, and in the lonic order he seems to consider them rather as a necessary part in the construction of a temple than as belonging to the order itself.
2602. A pedestal consists properly of three parts, the base, the die, and the cornice.
"Some authors," says Chambers, "are very averse to pedestals, and compare a column raised on a pedestal to a man mounted on stilts, imagining they were first introduced merely through necessity, and for want of columns of a sufficient lengtl. "It is indeed true," the continues, "that the ancients often made use of artifices to lengthen their columns, as appears by some that are in the baptistery of Constantine at Rome; the shafts of which, being too short for the building, were lengthened and joined to their bases by an undulated sweep, adorned with acanthus leaves; and the same expedient has been made use of in some fragments which were discovered a few years ago at Nismes, contiguous to the temple of Diana. Nevertheless, it doth not seem proper to comprehend pedestals in
the number of these artifices, since there are many occasions on which they are evidently necessary, and some in which the order, were it not so raised, would lose much of its beautiful appoarance. Thus, within our churches, if the columns supporting the vault were placed immediately on the ground, the seats would hide their bases and a good part of their shafts; and in the theatres of the ancients, if the columns of the scene had been placed immediately on the stage, the actors would have hid a considerable part of then from the audience; for which reason it was usual to raise them on very high pedestals, as was likewise necessary in their triumphal arches; and in most of their temples the columns were placed on a basement or continued pedestal (stylobata), that so the whole might be exposed to view, notwithstanding the crowds of people with which these places were frequently surrounded. And the same reason will authorise the same practice in our churches, theatres, courts of justice, or other public buildings where crowds frequently assemble. In interior decorations, where, generally speaking, grandeur of style is not to be aimed at, a pedestal diminishes the parts of the order, which otherwise might appear too clumsy; and has the farther advantage of placing the columns in a more favourable view, by raising their base nearer to the level of the spectator's eye. And in a second order of arcades there is no avoiding pedestals, as without them it is impossible to give the arches any tolerable proportion. Sometimes, too, the situation makes it necessary to employ pedestals, an instance of which there is in the Luxembourg at Paris; where, the body of the building standing on higher ground than the wings, the architect was obliged to raise the first order of the wings on a pedestal, to bring it upon a level with that of the body or corps de logis of the building, which stands immediately on the pavement."
2603. The dies of pedestals are occasionally decorated with tablets or with sunk panels whose margius are moulded; hut, generally speaking, such practices are to be avoided. In very large pedestals the surface may be thus broken, as in single monumental columns, which, at best, are but paltry substitutes for originality. Habit has reconciled us to view with pleasure the Trajan and Antonine columns, the monument of London, and the column of Napoleon in the Place Vendôme at Paris, in each of which the perdestals are ornamented in some way or other, so as to tell in some measure the story of the person in whose honour they were erected, or, as in the basso-relievo of the London column, the event which it records. But care must be taken when inseriptions are used to preserve a rigid adherence to truth, and not to perpetuate a lie, as was the case in the monument just named, against a most worthy portion of the people of the British empire.
2604. As respects the employment of pedestals, we should advise the student, except under very extraordinary circumstances, to avoid the use of them under columns which are placed at a distance from the main walls of an edifice, as, for example, in porches peristyles, or porticoes, - a vice most prevalent in the Elizabethan architecture, or rather the cinque-cento period, which the people of this day are attempting with all its absurdties to revive. Here we must again quote our author, Sir William Chambers, whose excellent work we have used above, and on which we shall continue to draw largely. "With regard," he says, "to the application of pedestals, it must be observed, that when columns are entirely detached, and at a considerable distance from the wall, as when they are employed to form porches, peristyles, or porticoes, they should never be piaced on detached pedestals, as they are in some of Scamozzi's designs, in the temple of Scisi (Assisi) mentioned by Palladio, and at Lord Archer's house, now Lowe's hotel, in Covent Garden; for then they indeed may be compared to men mounted on stilts, as they have a very weak and tottering appearance. In compositions of this kind, it is generally best to place the columns immediately on the pavement, which may be either raised on a continued solid basement, or be ascended to by a flight of fronting steps, as at St. Paul's, and at St. George's Bloomsbury; but if it be absolutely necessary to have a fence in the intercolumniations, as in the ease of bridges or other buildings on the water, or in a second order, the columns may then, in very large buildings, be raised on a continued plinth, as in the upper order of the western porch of St. Paul's, which in such case will be sufficiently high : and in smaller buildings, wherever it may not be convenient or proper to place the balustrade between the shafts, the columns may be placed on a continued pedestal, as they are in Palladio's designs for Signor Cornaro's house at Piombino, and at the villa Arsieri, near Vicenza, another beautiful building of the same master." The same author continues: "The base and cornice of these pedestals must run in a straight line on the outside throughout, but the dies are made no broader than the plinths of the columns, the intervals between them being filled with balusters, which is both really and apparently lighter than if the whole pedestal were a continued solid." The author quoted then proceeds to caution the student against-the employment of triangular, circular, and polygonal pedestals, and such as are swelled and have their die in the form of a baluster, or are surrounded by cinctures.

These extravagances were rife in the age of Louis XV., but notwithstanding the zeal of the jobbing upholsterers and decorators of the present day, who are the curse of all architectural art, we hope they will never be permanently revived in this country, though their introduction has already proceeded to a considerable extent

Sect. IX.

INTERCOLUMNIATIONS.

2605. An intercolnmaiation is the clear distance between two columns measured at the lower diameter of their shafts. This distance must depend principally on the order employed: in the Tuscan, for example, the nature of its composition allows a greater width between columns than would be admissible in the Corinthian order, independent of what has already been stated in Sect. II. (2524, et seq.) in respect of supports and loading; and this because of the enrichments of the several orders requiring that they should take their departures (to use a phrase borrowed from another science) from the axes of their respeetive columms. The ancient names (which are still preserved) of the different intercolumniations are deseribed by Vitruvius in his second and fourth books. They are - the pycnostyle, wherein the space between the columns is 1 diameter and a half, as its etymology from $\pi \cup \kappa \nu o s$ and $\sigma \tau u \lambda o s$ imports (thick in columns), an intercolumniation used only in the Ionic and Corinthian orders; the systyle ($\sigma v \sigma \tau v \lambda o s$, with columns a little more apart), wherein the interval between the columus is a little greater; the eustyle ($\epsilon v \sigma \tau v \lambda o s$, or wellcontrived interval), wherein the intercolumniation is of 2 diameters and a quarter; the diustyle ($\delta \iota a \sigma t u \lambda o s$, with a more extended interval between the columns), having an inter
 the interval is 4 diameters. In the Doric order the triglyphs necessarily regulate the intercolumniations, inasmuch as the triglyph should fall over the axis of the eolumn ; hence the intercolumniations in this order are either systyle monotriglyph (that is, with a single triglyph in the intercolumniation), or $1 \frac{1}{2}$ diameter; diastyle, or of $2 \frac{3}{4}$ diameters; or armostyle, which will make the interval 4 diameters, as will be immediately understood on reference to fig. 894.; wherein A is the sysytle monotriglyph intercolumniation of 3 modules; B , that of the diastyle, or 6 modules; and C , the aracostyle, or of 8 modules. The intercolumniation marked D) serves for

Fig. 891. the application of coupled columus, wherein the rule seems necessarily to be that the space between the columns may be inereased, so that the requisite number of supports according to the order and intercolumniation is preserved.

Fir. 895.
2606. The intervals of the Tuscan order are indicated in fig. 895., wherein A shows the intercolumniation called eustyle of $4 \frac{1}{2}$ modules; B, the diastyle of 6 modules; and C, the aricostyle of 8 . D, of 1 module, is the space of coupled columns.

The intercolumiations in this order are scarcely susceptible of rules cther than those we have indicated in our previous discussion on the orders generally in Sect. II. (2523, et seq.), wherein we have entered on the subject at such length that we refrain from saying more in this place. We may, however, observe, that the application of the principles there mentioned are so intimately connected with this section, that the separation of one from the other would destroy all our scheme for keeping the student in the right path. Hlereafter the principles in question will be applied to and tested on arcades.
2607. In fig. 896., of Ionic intercolumniations, A is the eustyle arrangement; B , that of the diastyle; C , that of the aræostyle; and D, that of coupled columns.
2603. Fig. 897. is a similar application of the intercolumniations to the Corinthian order, wherein also A exhibits the eustyle; B, the diastyle ; and C, the arrostyle intervals: D also showing the space used of 1 module for coupled columns.
2609. Sir William Chambers, for whose observations we have much respect, - and, indeed, to whose valuable labours we acknowledge ourselves much indelted, - seems to have had a distant glimpse of the doctrine of equal weights and supports, but knew not exactly how to justify his notions on the subject. He therefore avoids the main question by attributing the pyenostyle intercolummation rather to necessity than choice ; observing, that "as the architraves were composed of single stones or blocks of marble, extending from the axis of one column to that of another, it would have been difficult to find blocks of a sufficient length for diastyle intervals in large buildings." But this is a reason altogether unsatisfactory, inasmuch as we know that they were sufficiently

Fig. 896.

Fig. 89\%. masters of masonry to have conquered any such difficulty. We are much more inclined to agree with him when he says (always, however, reverting to the principle of equal supports and weights), "With regard to the areostyle and Tuscan intercolumniations, they are by much too wide either for beauty or strength, and can only be used in structures where the arelitraves are of wood, and where convenience and ceonomy take place of all other considerations: nor is the diastyle sufficiently solid in large compositions." These considerations, however, may be always safely referred to the doctrines laid down in Section 11. of this Chapter, already alluded to; and, indeed, that reference is justified by the instructions of Vitruvius in the second chapter of his third book, wherein he directs that the thickness of the column should be augmented in an enlarged intercolumniation: as, for example, supposing the diameter of a column in the pyenostyle species to be taken one tenth of the height, it should in an araostyle be one eighth; arguing, that if in an arxostyle the thickness of the columns exceed not a ninth or tenth part of their height, they appear too slender, and in the pyenostyle species the column at one eighth of its height is clumsy and unpleasant in appearance. Upon this passage Chambers observes, "that the intention of Vitruvius was good, but the means by which he attempts to compass it insufficient. His design was to strengthen the supports in proportion as the intervals between them were enlarged; yet according to the method proposed by him this cannot be effected, since one necessary consequence of augmenting the diameter of the column is enlarging the intercolumniation proportionably. Palladio and Scamozzi have however admitted this precept as literally just, and by their manner of applying it have been guilty of very considerable absurdity." We are not at all inclined to admit the truth of the opinion of Chambers; for, again reverting to the doctrine of the supports and loading, which was unknown to him, it is to be remembered that increase in the space of the intercolumniation immediately involves increase of weight in the load or entablature, and therefore seems to demand increase of diameter to the supports. Palladio and Scamozzi were not therefore guilty of the absurdity laid to their charge.
2610. Among the other reasons for our adopting the practice of Vignola is that he has observed so much uniformity in his intercolumniations, except of the Doric order, wherein the triglyphs prevent it, aware as we are that the prachice las by many able writers been much condemned. Chambers even says that his practice in this respect is "preferable to any other, as it answers perfectly the intention of Vitruvius, preserves the character of each order, and maintains in all of them an equal degree of real solidity."
2611. With the exception of the Doric order, wherein the most pelfect arrangement of the detail results from the interval produced by the ditriglyph, there can be no doubt that, abstractedly considered, the diastyle and enstyle intercolumniations are very convenient in use, and may be employed on most occasions, except, as just mentioned, in the Doric order.
2612. In setting out the intervals between columns especial care must be taken that the centres of modillions, dentils, and other ornaments in the entablature fall over the axes of the columns. It is on this account that Vignola gives about two diameters and a third to the intervals in all the orders except the Doric, instead of two diameters and a quarter, as required by Vitruvius; an alteration which removes the difficulty and greatly simplifies the rules.
2613. Cases from many circumstances often occur where greater intercolumniations than the custyle and diastyle are too narrow for use, and the moderns, headed by Perrault, have adopted an interval which that master has called areosystyle. This disposition is obtained without infringing on the law of weights and supports, to which we have already so often alluded. In it the columns are couplet, as shown in the preceding figures, the interval being formed by swo systyle intercolumniations, the column separating them being, as Chambers observes, "approached towards one of those at the extremities, sufficient room being only left between them for the projection of the capitals, so that the great space is $3 \frac{1}{2}$ diameters wide, and the small one only half a diameter." One of the finest examples of this practice is to be seen in the façade of the Louvre, (see fig. 176.) which in many respects must he considered as the finest of modern buildings. The objections of Blondel to the practice are not without some weight, but the principal one is the extra expense incurred by it; for certain it is that it requires nearly double the nomber of columns wanted in the diastyle, besides which it camot be denied that it causes considerable irregularities in the entablatures of the Doric, Corinthian, and Composite orders, which, however, are not apparent in the other two. It is, nevertheless, so useful in cases of difficulty which constantly arise, that we should be sorry to exclude the practice altogether, though we cannot recommend it for unlimited adoption.
2614. A great many expedients have been employed to obviate the irregularity of the modillions in the Corinthian and Composite orders, arising from the grouping of columus. We, on this head, agree with Chambers, whose instructions we subjoin in his own words: "The simplest and hest manner of proceeding is to observe a regular distribution in the entablature, without any alteration in its measures, begiming at the two extremities of the building, by which method the modilions will answer to the middle of every other column, and be so near the middle of the intermediate ones, that the difference will not easily be perceivable. The only inconvenience arising from this practice is, that the three central intercolumniations of the composition will be broader by one third of a module than is necessary for eleven modillions: but this is a very triffling difference, easily divided and rendered imperceptible if the extent be anything considerable." In the Doric order, the grouping of columns is not so easily managed, and therein our author recommends the expedient employed by Palladio, in the I'alazzo Chiericato, and in the Basilica at Vicenza. In the last-named, the coupled columns are only 21 minntes apart, thus making the space between the axes 2 modules and 21 minutes, that is, 6 minutes beyond the breadth of a refular metope, and 2 half-triglyphs. To conceal the excess, the triglyphs are 31 minutes broad, and their centres are carried 1 minute within the axis of the column, and the metope is 3 minutes broader than the others. These small differences are not perceptibie without a very eritical and close examination of the distribution. In this arrangement the attic base of Palladio should be employed, because of its small projection, and the larger intercolumniation must be aræostyle.
2615. Intercolumniations should be preserved of equal width in all peristyles, galleries, porticoes, and the like; but in loggias or porches, the middle interval may be wider than the others by a triglyph, a modillion or two, and a few dentils, that is, if there be no coupled columns at the angles nor groupings with pilasters, in which cases all the other intervals should be of the same dimensions. It has been observed by Blondel, that on oceasions where several rows of columns are used, as, for instance, in the curved colomades of the piazza of St. Peter's, the columns ought as much as possible to be in straight lines, because otherwise the arrangement can only be understood by viewing it from the centre of the figure employed. The observation is well worth the student's consideration, for the resulting effect of a departure from this rule, as Chambers has properly observed, is "nothing but confusion to the spectator's eye from every point of view." The same author condemns, and with justice, though in a smaller degree, the use of "engaged pilasters or half columns placed behind the detached columns of single, circular, oval, or polygonal peristyles, as may be seen in those of Burlington House. Wherefore," he says. "in buildings of that kind, it will perhaps be best to decorate the back wall of the peristyle with windows or niches only." We can hardly suppose it here necessary to caution the student against the use of intercolumniations without reference to the absolute
size of them : they must not be less than three feet even in small buildings, becanse, as Sir William Chambers seriously says, "there is not room for a fut person to pass between them."
2616. Before leaving the subject which has furnished the preceding remarks on intercolumniations, we most earnestly recommend to the student the re-perusal of Section I I. of this Book. The intervals between the columns have, in this section, been considered more with regard to the laws resulting from the distribution of the subordinate parts, than with relation to the weights and supports, which seem to have regulated the ancient practice: but this distribution should not prevent the application generally of the principle, which may without difficulty, as we know from our own experience, be so brought to bear upor, it as to produce the most satisfactory results. We may be perhaps aceused of bringing a fine art under meehanical laws, and reducing refinement to rules. We regret that we camot bind the professor by more stringent regulations. It is eertain that, having in this respeet carried the point to its utmost limit, there will still be ample opportunity left for him to snateh that grace, beyond the reach of art, with the neglect whereof the critics are wont so much to taunt the artist in every branch.

Sect. X.

ARCADES AND ARCHES.

2617. An areade, or series of arehes, is perhaps one of the most beautiful objects attached to the buildings of a city which architecture aflords. The utility, inoreover, of arcades in some climates, for shelter from rain and heat, is obvious; but in this dark clinate, the inconveniences resulting from the obstruction to light which they offer, seems to preclude their use in the cities of England. About public buildings, however, where the want of light is of no importance to the lower story, as in theatres, courts of law, churches, and places of public amusement, and in large country seats, their introduction is often the source of great beauty, when fitly placed.
2618. In a previous section ($25 \div 4$.) we lave spoken of Lebrun's theory of an equality between the weights and supports in decorative architecture: we shall here return to the subject, as applied to areades, though the analogy is not, perhaps, strictly in point, beeause of the dissimilarity of an arch to a straight lintel. In fiy. 898. the hatched part A E II FDCOB is the load, and ABGH, CDIK the supports. The line GK is divided into six parts, which serve as a scale to the diagram, the opening III being four of them, the height IBII six, NO two, and OM one. From the exact quadrature of the circle being unknown, it is impossible to measure with strict aceuracy the surlace BOC , which is necessary for finding by subtraction the surface AEMFDCOB ; but using the common

Fig. 898. method, we have

$$
\begin{aligned}
\mathrm{AD} \times \mathrm{AE}-\frac{13 \mathrm{C}^{2} \times-7854}{2} & =\text { to that surface; or, in figures, } \\
6 \times 3-\frac{4 \times 4 \times 7854}{2} & =11 \cdot 72
\end{aligned}
$$

Now the suports will be $I K \times I C \times 2$ (the two piers) $=$ the piers; or, in figures,

$$
1 \times 6 \times 2=12 \cdot 00
$$

That is, in the diagram the load is very nearly equal to the supports, and would have leen found quite so, if we could have more accurately measured the circle, or had with greater nicety constructed it. But we have here, where strict mathematical precision is not our object, a sufficient ground for the observations which follow, and which, if not founded on something more than speculation, form a series of very singular accidents. We have chosen to illustrate the matter by an investigation of the examples of areades by Vignola, becanse we have thought his orders and arcades of a higher finish than those of any other master; but testing the hypothesis, which we intend to carry out by examples from lalladio, Scamozzi, and the other great masters of our art, not contemplated by Lebrun, the small differences, instead of throwing a doubt upon, seem to confirm it.
2619. In fig. 898. we will now carry, therefore, the consideration of the weights and supports a step further than I ebrun, by comparing them with the void space they surround, that is, the opening HBOCI ; and here we have the rectangle $\mathrm{HBCI}=\mathrm{HB} \times I I$, that is, $6 \times 4=24$, and the semicircle $B O C$ equal, as above, to $\frac{4 \times 4 \times 7854}{2}=6.28$. Then $24+6 \cdot 28=30 \cdot 28$ is the area of the whele void, and the weight and surport being $11 \cdot 72+$
$19=23.72$, are a little more than two thirds the areas of the whole void; a proportion which, if we are to rely on the approval of ages in its application, will be found near the limits of what is beautiful.
2620. We shall now refer to the examples of Vignola alluded to ; but to save the repetition of figures in their numbers, as referred to, each case is supposed in what immediately follows as uncomnected with the entablatures which they exhibit, it being our intention to take those into separate consideration.

Fig. 859.

Fig. 900.
2621. Sappose the Tuscan example (fig. 899.) without an entablature, we have the

$$
\text { Supports, } 9.75 \times 3=\quad 29 \cdot 25
$$

The whole of rectangle above them, $4.2 .5 \times 9.5=40.375$

$$
\text { Less semi-arch, } \frac{6.5 \times 6.5 \times 7854}{2}=16.6
$$

23.775
53.025 solid parts.

The area of the void is $16.6+\overline{9.75 \times 6.5}=79.97$, whereof 53.025 , the portion of solid parts, is not widely different from two thirds.

In Viguola's Doric example, (fig. 900.), again without the entablature, we lhave

$$
\text { Supports, } 10.5 \times 3=31.50
$$

The whole rectangle above them, $5.5 \times 10.0=55.00$
Less semi-arch, $\frac{7 \times 7 \times 78.54}{2}=19 \cdot 24$
$35 \cdot 76$
$67 \cdot 26$ solid parts.
The area of the void is $19.24+\overline{10 \cdot 5 \times 7}=92.74$, whereof $67 \cdot 26$, the portion of solid parts, is not much different from two-thirds.

In the Ionic example (fig. 901.), still without considering the entablature, the following will result :-

Supports, $12.64 \times 2.66=$
$33 \cdot 61$
The whole rectangle above them, $10.88 \times 5.2=56.57$
Less semi-arch, $\frac{6.4 \times 6 \cdot 4 \times 7854}{2}=16.08$
$40 \cdot 49$
$74 \cdot 10$ solid parts.
The area of the void is $16.08+\overline{12 \cdot 64 \times 7 \cdot 1}=10.5 \cdot 82$, whereof $74 \cdot 10$, the portion of solid parts, differs little in annount frum two thirds of the void.

Fig. 901.

Fig. 902.

In the Corinthian example (fig. 902.), not taking into consideration the entablature, the following is the result:-

$$
\text { Supports, } 14 \cdot 11 \times 3 \cdot 55=\quad 5009
$$

The whole reetangle above them, $11 \cdot 33 \times 5 \cdot 88=66.62$
Less semi-areh, $\frac{7.76 \times 7 \cdot 76 \times \cdot \frac{7854}{2}}{2}=23.65$
$\square=32 \cdot 97$
83.06 solid parts.

The area of the void is $23 \cdot 65+\overline{14 \cdot 111 \times 7 \cdot 76}=133 \cdot 15$, whereof 83.06 , the portion of solid parts, is somewhat less than two thirds of the void.
2622. The result which flows from the above examination seems to be that, without respect to the entablature, the ratio of the solid part to that of the void is ahont $\sigma 666$. Bearing this in mind, we shall next investigate the ratio of the supports and weights, considering the entablature above the areade as a part of the composition; and still following Vignola, whose examples, as we have above stated, do not so much differ from those of other masters as to make it necessary to examine those of eath, we will begin with that architect's Tusean areade, without pedestals, exhibited in fig. 899, on the preceding page. In this example, from centre to centre of pier,

The whole area, in round numbe			-	-		$=166.2$
Area of semi-areh, ${ }^{6.5 \times 6.5 \times 2}{ }_{2}$			$=16.6$			
Rectaugle under it, 9.75×6.5			$=69 \cdot 3$			
				d,		$=79.9$
Entahlature, 9.5×3.5	-	-	-	-		$\begin{array}{r} 86.3 \\ -33 \cdot 2 \end{array}$
Leaves for the supporting parts						$53 \cdot 1$

In this example, therefore, the supporting parts are 53 , those supported 33 , and the voids 79. The ratio between the solid and void parts $=99$, and the ratio of the supports to the weights is $3_{33}^{3}=69$.

The distance between the axes of the columns is 9 modules and 6 parts; the height of the semi-areh, 3 modutes and 3 parts; and betwed the erown of it and the under side of the architrave is 1 module; the whole height, including entablature, being 17 mocules and a half.
2623. Following the same general method, we submit the Doric arcade (fig. 300.) without pedestal. Measuring, as before, from centre to centre of piers,

The whole area, in round numbers, 20.2×10	-	-
$7 \times 7 \times 7354$ Area of semi-areh 7×2020 2 - $=19.2$		
Rectangle under it, 10.5×7	-	$=73.5$

		Total roid, thercfore, $=92 \cdot 7$				
Entablature, 10×4.2	-	-	-	.	.	109.3 420
Leaves for the supporting parts	-	-		-	-	$67 \cdot 3$

In this example, therefore, the supporting parts are 67, those supported 42 , and the voids 92 . The ratio between the solid and void parts is 85 , and the ratio of the supports to the weights is $\frac{42}{67}=63$.

The distance between the axes of the columns is 10 modules, the height of the semi-arch is 3 modules and 6 parts, and between the crown of it and the underside of the architrave is 2 modules; the whole height, including the entablature, being 20 modules $3 \frac{1}{2}$ parts.
2624. The Ionic arcade, without pedestal, is shown in fig. 901. The measurements, as above, from centre to centre of pier,

The whole area, 22.64×10.88 in			-	-		$=246 \cdot 3$
Area of semi-arch, $\frac{6.4 \times 6.4 \times 7854}{}$	-		$=161$			
Rectangle under it, 12.64×7.1	-	-	$=89.7$			
			Total	$1, \text { th }$		$=105 \cdot 8$
						140.5
Entablature, 10.88×4.8	-	-	-	-		$52 \cdot 2$
Leaves for the supporting parts	-	-	-	-	-	$88 \cdot 3$

Hence, in the example, the supporting parts are 88 , those supported 52 , and the voids 10.5 ; so that the ratio of the voids to the solids, in this order, is 8 , and the ratio of the supports to the weights does not materially differ from the other orders, being $\frac{52}{8 .}=6$.

The distance between the axes of the columns is 10 modules 16 parts, the height of the semi-arch is $3 \frac{1}{2}$ modules 3 parts, and between the crown of it and the under side of the architrave is 2 modules; the whole height, including the entablature, being 22 modules 1:3 $\frac{1}{2}$ parts.
2625. Fig. 902. represents the Corinthian arcade without pedestal. The measurement, as before, is from centre to centre of pier.

In the Corinthian example, therefore, the supporting parts are 97 , those supported 58 , and the voids 133. The ratio between the solid and void parts $=8$, and the ratio of t supports to the weights ${ }_{97}^{58}=-59$. The distance between the axes of the columns is 11 modules and 6 parts, the height of the semi-arch is 3 modules 16 parts, and hetween the crown of it and the under side of the architrave is 2 modules $3 \frac{1}{2}$ parts; the whole height, including the entablature, being 25 modules $3 \frac{1}{2}$ parts.
2626. The laws laid down by Chambers for regulating areades are as follow : - "The void or aperture of arches should never be much more in height nor much less than double their width; the breadth of the pier should seldom ex veed two thirds, nor be less than one third of the width of the arch, according to the character of the composition, and the angular piers should be broader than the rest by one half, one third, or one fourth." ... "The height of the impost should not be more than one seventh, nor need it ever be less than one ninth of the width of the aperture, and the archivolt must not be more than one eighth nor less than one tenth thereof. The breadth of the console or mask, which serves as a key to the arch, should at the bottom be equal to that of the archivolt, and its sides must be drawn from the centre of the arch. The length thercof ought not to be less than one and a half of its bottom breadth, nor more than double."
2627. The ratios that have been deduced by comparing the void and solid parts, if there be any reason in the considerations had, show that this lave of making arches in arcades of the height of 2 diameters is not empirieal, the following being the results of the use of the ratios in the arcade without, and that with pedestal, of which we shall presently treat. Thus in the

2628. In the examples of the areades with pedestals, we shall again repeat the process by wheh the results are obtained, tirst merely stating them in round numbers. Fïg. 903 is a

Fig. 903
Tuscan areade from Vignola's example, as will be the following ones. In this the whole area is 306 , omitting fractions, the area of the void is 156 , that of the entablature 50 , and the supports 100. The ratio of the supported part (the entablature), therefore, is $\frac{50}{100}=\cdot 5$, and the supports and weights are very nearly equal to the void The height of the pedestal is almost 3 modules and 8 parts, the opening 9 modules 6 parts, and the width of the whole pier 4 modules and 3 parts.

The detail of the above result is as follows. -

It will be seen that we have taken the numbers in the preceaing paragraph without supplying strietly the decimal parts that arise from the multiplication and subtraction of the several portions compared. The coincidence of the hypothesis with the apparent law is nu less remarkable in this example than it will be found in those that follow; and, secptical as we at first were on the appearances which pointed to it, we cannot, after the examination here and hereafter given, do otherwise than express our conviction that, in carrying out the principles, no unpleasant combination can result.

2629. Fig. 904. exhibits the Doric arcade, whose whole area from centre to centre of columns is 374 . The area of the void is 189 , that of the entablature 62 , and of the supporting parts 112. The ratio of the entablature to the supports is therefore $\frac{62}{12}=55$, and that of the supports and weights to the voids 9 . The height of the pedestal is almost 5 modules and 4 parts, the opening 10 modules, and the width of a pier 4 modules and 9 parts.

As in the preceding example, we think it will be useful to detail the process by which the general results stated have been arrived at. It is curious and interesting to observe the similarity between the eases. It is scarcely possible to helieve that accident could have produced it. May not the freemasons of the middle ages have had some laws of this nature which guided their operations? But we will now proceed to the calculation.

Inerein, as before, the general result in the preceding paragraph has been given in round
numbers, that the mind of the reader may not he distracted from the general proportions. The detail again corroborates the hypothesis, as in the preceding subsection was pred.cated, sud the further we procoed, as will be presently seen, its truth becomes more manife,t.

2630. The Ionic areade with a pedestal is shown in fig. 905. The whole area is 448 between the axes of the columns; that of the void, 228. The entablature's area is 73, and the supporting parts 146. The ratio, therefore, of the load to the support is $\frac{73}{1 / 8}=\cdot 5$, and supports and weights are very nearly equal to the void. The height of the pedestal is 6 modules, the opening 11 modules, and the width of a pier 4 modules and 12 parts.

Once more returning to the detail on which the above proportions are based, and which in this as in the following example we think it hetter to supply, observing, as before, that the numbers above stated are given roundly, we shall have in the Ionic areade,

Whole area, 28.66×15.66		-				$=448 \cdot 81$
Area of semi arch, $\frac{11 \times 11 \times 755}{2}$		47.01				
Below it, 16.5×11		$=181.50$				
		Total				$=228 \cdot 51$
						220-30
Entablature, 15.66×4.7	-	-	-	-	-	$=73.50$
Leaves for supporting parts				-	-	$146 \cdot 80$

Whence it will be seen that the round numbers first given are shown to be sufficiently accurate for exemplification of the law, and that the further we examine the hypothesis the mere closely we find it connected with the theory of weights and loads that has occupied a very considerable portion of this Book, and which we hope may not have had the effect of exhausting the reader's patience. We trust we shall have his pardon for pursuing the course we have taken.

2631. Fig. 906. is an arcade with pedestals of the Corinthian order. Its total area is 528 , that of the void 284 , the area of the entablature 84 , and that of the supporting parts 159. Hence, the ratio of the load to the support is $\frac{84}{159}=52$, and the supports and weight are equal in area to the void within a very small fraction. The height of the pedestal is $6 \frac{1}{2}$ modules, the opening is 12 modules wide, and the width of a pier is 4 modules and 9 parts.

We here close the curious proofs of a law whose existence, we believe, has never been suspected by modern architects. It was clearly unknown to Rondelet, and but for the work of Lebrun already quoted, we might never have been led to the investigation of it. That author himself, as we believe, did not entertain any notion of it.

In the Corinthian arcade with pedestal we have

Thus, again, the law seems to be borne out, and to prove that the assumptions we lave been making are not those of empiricism.
2632. In fig. 907. are collected the imposts and arclivolts used in the arcades of the diffirent orders.

Fig. 907.
2533. We are not of the opinion of Sir William Chambers in respect of the arcades which Vignola has given ; that author had not, we think, critically examined their composition, and we confess we do not think his own examples are improvements on those of the master in question; but we are willing to admit that in the examples of areades with pedestals, they would have been much improved by assigning a greater height generally to the plinths of the pedestals, which are, doubtless, much too low, and might be well augmented by adding to them a portion of the dies of the pedestals.
2634. Great as is our admiration of Palladio, we do not think it necessary to say more relative to his arcades, than that he has given only designs of arches with pedestals, and that their height is from one and two thirds to two and a half of their width. His piers are generally 3_{4}^{3} modules, except in the Composite order, wherein they are $4 \frac{4}{5}$ modules.
2635. Seamozzi makes his Tuscan areh a little less than double its width, inereasing the height gradually to the Corinthian areh with pedestals to nearly twice and a half the width. He diminishes his piers as the delicacy of the order inereases, his Corinthian piers being only 3_{3}^{3} modules in width. We do not, however, think it necessary to dwell longer on this part of the subject, and shall close it by observing that the impost of the arch should not much vary from half a module in height, and that the width of the archivolt, which should touch the shaft of the column or pilaster in the geometrical clevation, at its springing, is necessarily preseribed by the width of pier left after setting out the column upon it. Where columns are used on piers, their projection must besuch that the most prominent member of the impost should be in a line with the axis of the column on the transverse section. In Ionic, Composite, and Corinthian arcades, however, it may project a little beyond the axis of the columns, to avoid the disagrecable mutilations which are otherwise rendered necessary in the capitals. Areades should project not less than their width from the front of the wall which bachs them." With regard to their interior decoration," says Clambers, " the portico may either have a flat ceiling or be arched in various manners. Where the ceiling is flat, there may be on the backs of the piers, pilasters of the same kind and dimensions with the columns on their fronts; facing which pilasters there must be others like them on the baek wall of the portico. Their projection as well as that of those against the back of the piers may be from one sixth to one quarter of their diameter. These pilasters may support a continued entablature, or one interrupted and ruming across the portico over every two pilasters to form colfers; or the architrave and frieze only may be continued, while the cornice alone is carried across the portico over the pilasters as before, and serves to form compartments in the ceiling, as is done in the vestibule of the Massini palace at Rome, and in the great stable of the King's mews, near Charing Cross," - no longer in existence, having been destroyed to make way on its site for the execrable mass of absurdity to which the government who sanctioned it have facetiously
given the name of National Gallery. Chambers thus continues:-"Where the portico is arehed, either with a semi-circular or elliptical vault, the backs of the piers and the inner wall of the portico may be decorated with pilasters, as is above deseribed, supporting a regular continued entablature, from a little above which the arch should take its spring, that no part of it may be hid by the projection of the cornice. The vault may be curiched with compartments of various regular figures, such as hexagons, octagons, squares, and the like, of which, and their decorations, several examples are given among the designs for ceilings." Of these we shall hereafter give figures in the proper place. "But when the vault is groined, or composed of flats, circular or domical coves, sustained on pendentives, the pilasters may be as broad as are the columns in front of the piers, but they must rise no higher than the top of the impost, the mouldings of which must finish and serve them instead of a capital, from whence the groins and pendentives are to spring, as alse the bands or arcs-doubleaux which divide the vault."
2636. In the examples of areades, we have followed those given by Chambers, as exlibiting a variety whieh may be instructive to the student, and at the same time afford hints for other combinations. Fig. 908. is one of the compositions of Serlio, and is ar.

Fig. 908.

Fig. 909.
expedient for arching in cases where columns have been provided, as in places where the use of old ones may be imposed on the architect. The larger aperture may be from $4 \frac{1}{2}$ to 5 diameters of the column in width, and in height double that dimension. The sinaller opening is not to exceed two thirds of the larger one, its height being determined by that of the columns. Chambers thinks, and we agree with him, that this sort of disposition might be considerably improved by adding an architrave cornice or an entablature to the column, by omitting the rustics and by surrounding the arches with archivolts. It is not to be inferred, because this example is given, that it is inserted as one to be follower! except under very peculiar circumstances. Where an arrangement of this kind is adopted, care must be used to secure the angles by artificial means.
2637. Fig. 909. is given from the cortile of the castle at Caprarola by Vignola, a structure which in the First Book of this work we have (346.) already mentioned. The height of the arches is somewhat more than twice their width. From the under side of the arch to the top of the cornice is one third of the height of the arch, the breadth of whose pier is equal to that of the arch, and the aperture in the pier about one third of its breadth.
2638. A composition of Bramante, executed in the garden of the Belvedere at liome, is given at fig. 910. The arch in height is somewhat more than twice its width, and the

Fig. 910.

breadth of the pier equal to the opening. By dividing the latter into twelve parts we have a measure whieh seems to have prevailed in the mind of the arehitect, inasmuch as two of them will measure the parts of the pier supporting the arehivolts, four the space for the two columns, two for the intervals between the niche and the columns, and four for the niche. Half the diameter of the arch measures the height of the pedestal ; the columns are of the height of ten diameters, and their entablature one quarter of the height of the columns. The impost and archivolt are each equal to half a diameter of the column.
2639. Fig. 911. is an example whose employment is not uncommon in the designs of Palladio, and was considered by our great eountryman Inigo Jones to be worthy of his imitation. The arch may be taken at about twiee its width, and the pier not less than me nor more than two thirds of the width of the aperture.

Fig. 912.

Fig. 913.
2640. The example in fig. 912. is from the hand of Vignola, and was exeented for one of the Borghese family at Mondragone, near Fraseati. In it the arch is a little more n height than twice its width, and the breadth of the pier columns supporting the arch ncludes a little less than the width of the arch itself. We are not quite satisfied in having rere produced it as an example, though, compared with the following one, we scarcely bnow whether we should not on some aceounts prefer it.
2641. The last example (fg. 913.) is one by that great master, Palladio, from the basilica it Vicenza. From the figure it is impossible to judge of its beauty in exceution, neither san any imitation of it, unles; under cireumstanees in every respeet similar, produce the ;ensation with which the building itself acts on the speetator; yet in the figure it appears neagre and nothing worth. We can therefore easily aceount for the conduet of the critics, as hey are ealled, who, never having seen this master's works, indulge in ignorant speeulations of the pictorial eflects which his compositions produce. Though not entirely agreeing with Chambers in his concluding observations on areades and arches, we may safely ransfer them to these pages. "The most beautiful proportion," he observes, "for comrositions of this kind is, that the aperture of the arch be in height twice its width; that he breadth of the pier do not exceed that of the areh, nor be mueh less; that the small order be in height two thirds of the large columns, whieh height being divided into nine sarts, eight of them must be for the height of the column, and the ninth for the height of he architrave cornice, two fifths of which should be for the architrave and three for the sornice. The breadth of the archivolt should be equal to the superior diameter of the imall columns, and the keystone at its bottom must never exceed the same breadth."

Sect. XI.
ORDERS ABOVE ORDEIS.
y642. Vitruvius, in the fifth ehapter of his book "On the Formm and Basiliea," in both which species of buildings it is well known that orders above orders were employed, thus nstructs his readers: - "The upper columns are to be made one fourth less than those delow" (quarta parte minores quam inferiores sunt constituende), "and that beeause the latter, veing loaded with a weight, ought to be the stronger ; because, also, we should follow the oractice of nature, which in straight-growing trees, like the fir, eypress, and pine, makes the thickness at the root greater than it is at top, and preserves a gradual diminution hroughout their height. Thus, following the example of nature, it is rightly ordered that podies which are uppermost should be less than those below, both in respeet of height and hickness." It is curious that the law thus given produces an exaetly similar result to that
laid dows. by Scanozzi, p. 2. lib. v. cap. ii., whereon we shall have more presel tly to speak. Galliani, Chambers, and others have considered the above-quoted passage of Vitruvius in connection with another in chap. vii. of the same book, which treats of the portico and other parts of the theatre, wherein the author states, after giving several to this question unimportant details, "The columns on this pedestal" (that of the upper order) "are one fonrth less in height" (quartâ parte minores altitudine sint) "than the lower columns." The reader will here observe the word altitudine is introduced, which does not appear in the passage first quoted ; and we beg him, moreover, to recolleet that the last quotation relates entirely to the scene of the ancient theatre, in which liberties were then taken with strict architectural proportion as mueh as they are in these later days. Those who think that because Vitruvius interlarded his work with a few fables, he is therefore an author not worth consulting, as ephemeral critics have done in respeet of that great master of the art, Palladio, may opine we have wasted time in this diseussion; but, adopting the old maxim of Horace, "Non ego paucis offendar maculis," we shall leave them to the exposure which, with the instructed arehitect, their own ignorance will ultimately inflict on them, and to the enjoyment of the felicity attendant on a slight knowledge of the subject a person is in the habit of handling.
2643. We will now place before the student our own reading and explanation of the passage of Vitruvius relative to the use of orders above orders, and attempt to show what we conceive to be its real meaning. In fig. 914. the diagram exlibits an Ionic placed above a Doric column : the entablature (which however does not belong to the consideration) being in both cases one fourth of the height of the column. Inasmuch as in our previous rules (following Vignola) it will be recollected that the module of the Doric order is subdivided into twelve, whilst that of the Ionic is subdivided into eighteen parts, we must, for the purpose of obtaining an uniformity of measures in both orders, reduce those of either to the other to obtain similar dimensions. Instead, therefore, of measuring the upper order by itself, which would not afford the comparison sought, we shall have to reduce its established measures to those of the lower one, or Doric, and this, as well as the measurement of the lower order itself, is taken in modules and deeimal parts of its semidiameter. Thus, the lower order being 2 modules at its bottom diameter and 1 G66 modules at its upper diameter, the mean, without deseending to extreme mathematical nicety, may be taken at 1.833 , which multiplied by the height, 18 modules $=32 \cdot 994$, the area of a seetion through the eentre of the column. Now if the upper columns are to be the same thickness at the bottom as the lower ones are at the top, that is, $1 \cdot 666$ module of the lower order, their upper diameters will be $1 \cdot 587$ (that is, five sixths of the lower diameter), and the mean will be $1: 526$, whieh, multiplied by 16, the height, $=24.416$ the area of a section down the centre of the column, and just one fourth less than that of the lower column. The investigation tends to show us that we should not lightly treat the laws laid down by Vitruvius and his followers at the revival of the arts, for we may be assured that in most cases the y are not empirical, but founded on proper principles. We eannot, however, leave this point without giving another reason, which is conclusive against Chambers's construction of the passage ; it is, that supposing the upper column's lower diameter to be the same or nearly so as the lower column's upper diameter,

Fig. 914. if the fourth part had relation to the height instead of the bulk, we should have had the absurdity in the illustration above given, of an Ionic column in the second order only six and three quarters dianeters high, whilst the lower or Duric is nine diameters in height.
2644. Seamozzi, we doubt not, thought as we have expressed ourselves on this subjeet, and we here translate the words he uses in the eleventh ehapter of his sixth book (seeond part). "Hence it is more satisfactory, and they succeed better and are more pleasing to the eye, when these columns (the upper ones) are made according to their proper diminution, so that the lower part of the upper column may be just the thickness of the upper part of the lower one, and so from one to the other, as may be seen in the Ionic order of the Theatre of Marcellus and other edifices; and this is the reason and natural eause that it is the same as though out of a long and single tree the shafts were cut out one after the other."

2645 . The laws of solidity seem to require that where more than one order is used, the strongest is to occupy the lower situation; thus the Doric is placed on the Tuscan, the Ionic on the Doric, the Corinthian on the Ionie, and the Composite on the Corinthian; though, with respect to the last, we find examples of importance wherein the reverse has been the case. Two tiers of columns should not be of the same order, neither should an intermediate order be omitted; such, for instance, as placing the Ionie on the Tuscan column, or the Corinthan on the Doric ; for by this practice many irregutaritics are introduced, especially in the details of the memiers.
2646. Frontwise the axes of the upper and lower columns must be in the same vert:cal plane, but viewed in flank this is not absolutely necessary; they should not, however, deviate tou much from it. In the theatre of Marcellus the axes of the upper columns are nearly a foot within those of the Doric below them; but circumstances reguired this, and there is no great ohjection to the practice if the solidity of the structure be not lessened by it. Chambers observes that the retraction shonld never be greater than at the theatre of Marcellus, where the front of the plinth in the second order is in a line with the top of the shalt in the first. When the columns are detached, they should be placed centrally over each other, so that the axes of the upper and under ones may form one continued line, by which means solidity is gained as well as a satisfactory result to the eye. As to the false bearings of the bases of the upper order on the profile, this is a matter neither really affectmg stability nor the appearance of the design.
2647. In England there are not many examples of orders above orders, while on the Continent the practice has not been uncommon; but it is always a matter of great diffieulty so to arrange them as to avoid irregularities where triglyphs and modiltions in the same design meet in the composition. We have used the figures of Chambers for our illustration here, because they are nearly coincident with the rules of Vitruvius and Seamozzi, and we shall now place them before the reader, observing that the irregularities alluded to are almost altogether avoided.

Fig. 915.

Fig. 916,
2648. Fig. 915. exhibits the Doric over the Tuscan order. The intervals A, B, and C are respectively $2 \frac{1}{6}, 4 \frac{1}{2}$, and $6 \frac{1}{3}$ modules ; and $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and $\mathrm{C}^{\prime}, 3,5 \frac{1}{2}$, and 8 modules of their order. The entablature of the lower order is $3 \frac{1}{2}$ modules, the column, ineluding base and capital, being 14 modules high; and the entablature of the upper order is 4 modules high, the column with its base and eapital being 16 modules in height.
2649. The distribution of the Doric and Ionic orders is given in fig. 916., wherein the intervals A, B, and C are respectively $3,5 \frac{1}{2}$, and 8 modules; $\mathrm{D}, 7$ module; and $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$, and D^{\prime} respectively $4,7,10$, and $1 \frac{1}{4}$ modules. 'The Doric order in this example is 20 modules high, whereof 4 are assigned to the entablature; the Ionic 22 modules high, whereof 4 belong to the entablature.
2650. In fig. 917. is represented the Corinthian above the Ionic order; the intervals $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are respectively $5,6,7$, and 1 modules, and those of $\mathrm{A}^{\prime}, 13^{\prime}, \mathrm{G}^{\prime} \mathrm{D}^{\prime}$ respectively $6 \cdot 4,7 \cdot 6,8 \cdot 8,1 \cdot 6$ modules; the lower order is $22 \frac{1}{2}$ modules high, 18 being given to the column with its base and capital ; and the upper or Corinthian order is $24 \frac{1}{2}$ modules high, whereof 20 belong to the height of the column, including its base and capital.
2651. The last (fig. 918.) is of the Corinthian order above and Composite below. In the lower order the intervals A, B, C, D are $4 \frac{2}{3}, 6,7$, and 1 modules respectively, and $\mathrm{A}^{\prime}, \mathrm{B}, \mathrm{C}^{\prime}$, and D^{\prime}, in the upper order, $6,7 \cdot 6,8 \cdot 8$, and $1 \cdot 6$ modules respectively. The whole height of the Corinthian order is 25 modules, whereof 5 are given to the entablature; the Composite order here is $24 \frac{1}{2}$ modules, of which 20 belong to the column, ineluding the base and eapital.

2652 . We insert the observations of chambers relative to the above four figures, which.

Fig. 917.

Fig. 918.
as we have adopted them, shall be in his own words. "Among the intercolumniations there are some in the second orders extremely wide, such as the Ionic interval over the Doric aræostyle; the Composite and Corinthian intervals over the Ionic and Composite areostyle, which, having a weak meagre appearance, and not being sufficiently solid, excepting in small buildings, are seldom to be suffered, and should seldom be introduced. The most eligible are the eustyle and diastyle for the first order, which produce nearly the diastyle and areostyle in the second." Speaking of the use of pedestals in orders above orders, the author thus proceeds: - "Many architects, among which number are Palladio and Scamozzi, place the second order of columns on a pedestal. In compositions consisting of two stories of arcades this cannot be avoided, but in colonnades it may and ought ; for the addition of the pedestal renders the upper ordonnance too predominant, and the projection of the pedestal's base is both disagreeable to the eye and much too heavy a load on the inferior entablature. Palladio, in the Barbarano palace at Vicenza, has placed the columns of the second story on a plinth only, and this disposition is best ; the height of the plinth being regulated by the point of view, and made sufficient to expose to sight the whole base of the column. In this case the balustrade must be without either pedestals or half balusters to support its extremities, because these would contract and alter the form of the column ; its rail or cap must be fixed to the shafts of the columns, and its hase made level with their bases; the upper torus and fillet of the columns being continued in the interval, and serving as mouldings to the base of the balustrade. The rail and balusters must not be clumsy; wherefore it is best to use double-hellied balusters, as Palladio has done in most of his buildings, and to give the rail a very little projection, that so it may not advance too far upon the surface of the column, and seem to cut into it. In large buildings the centre of the baluster may be in a line with the axis of the column; but in small ones it must be within it, for the reason just mentioned. The height of the balustrade is regulated in a great measure by its use, and cannot well be lower than three feet, nor should it be higher than three and a half or four feet. Nevertheless, it must necessarily bear some proportion to the rest of the architecture, and have nearly the same relation to the lower order, or whatever it immediately stands upon, as when a balustrade is placed thereon chiefly for ornament. Wherefore, if the parts are large, the height of the balustrade must be augmented, and if they are small it must be diminished; as is done in the Casino at Wilton, where it is only two feet four inches high, which was the largest dimension that could be given to it in so small a building. But that it might, notwithstanding its lowness, answer the intended purpose, the pavement of the portico is six inches lower than the bases of the columus, and on a level with the bottom of the plat-band that finishes the basement."

We must here leave this subject, recommending the student to an intimate acquaintance with the various examples that have been executed, and further advising him to test each of thr examples that may fall under his notice by the principles first adverted to in this section, as the ouly true means of arriving at a satisfactory result.

Sect. XII.

Arcadfs above arcades.

26653. As the disposition of one arcade upon another is, under certain regulations, subjeet to the same laws of voids and solids as the simple areade of one story, which has formed the subjec of a previous section, we shall no further enter into the rules of its combination than to offer a few general observations on the matter in question; and herein, even with the reproach of a want of originality, we shall draw largely on our much-quoted author, Chambers, whose language and figures we are about to use. So sound, indeed, is the doetrine of Chambers in this respect, and so well founded on what has been done by those whom we consider the greatest masters, that we should not be satistied without transferring his dieta to these pages, and that without any alteration.
26654. "The best," says Chambers, "and, indeed, the only good disposition for two stories of arcades, is to raise the inferior order on a plinth, and the superior one on a pedestal, as Sangallo has done at the Pallazzo Farnese; making both the ordonnanees of an equal height, as Palladio has done at the Basilica of Vieenza."
26655. "Seanozzi, in the thirteenth ehapter of his sixth book, says that the arches in the sccond story should not only be lower, but should also be narrower, than those in the first; supporting his loctrine by several specious arguments, and by the practice, as he says, of the ancient architects in various buildings mentioned by him. In most of these, however, the superior arches are so far from being narrower, that they are either equal to or wider than the inferior ones. In fact, his doctrine in this particular is very erroneous, entirely contrary to reason, and productive of several bad consequences; for if the upper arches be narrower than the lower ones, the piers must of course be broader, which is opposite to all rules of solidity whatever, and exceedingly unsightly. The extraordinary breadth of the pier on each side of the columns in the superior order is likewise a great deformity; even when the arches are of equal widths it is much too considerable. Palladio has, in the Curitù at Venice, and at the P'alazzo Thiene in Vicenza, made his upper arches wider than the lower ones, and I have not hesitated to follow his example; as by that means the weight of the solid in the superior order is somewhat diminished, the fronts of the upper piers bear a good proportion to their respective columns, and likewise to the rest of the composition."
26656. "In a second story of areades there is no avoiding pedestals. Palladio has, indeed, omitted then at the Carità, but his arches there are very ill proportioned. The extraordinary bulk and projection of these pedestals are, as before observed, a considerable defect; to remedy which in some measure they have been frequently employed without bases, as in the theatre of Marcellus, on the otitside of the Palazzo 'Thiene, and that of the Chicricato in Vicenza. This, however, helps the matter but little; and it will be best to make them always with bases of a moderate projection, observing at the same time to reduce the projection of the bases of the columns to ten minutes only, that the die may be no larger than is absolutely necessary; and in this case particular care must he taken not to break the entablature over each column of the inferior order, because the false bearing of the pedestal in the second order will by so doing be rendered far more striking, and in reality more defective, having then no other support than the projecting mouldings of the inlerior cornice. There is no occasion to raise the pedestals of the second order on a plinth, for as they come very forward on the cormice of the first order, and as the point of view must necessarily be distant, a very small part only of their bases will be hid from the eyc."
26657. "The balustrade must be level with the pedestals supporting the columns; its rail or cornice and base must be of equal dimensions, and of the same profile with theirs. It should be contained in the arel and set as far back as possible, that the form of the arch may appear distinct and aninterrupted from top to bottom; for which reason, likewise, the cornice of the pedestals must not return nor profile round the piers, which are to be contained in straight perpendieular lines from the imposts to the bases of the pedestals. The baek of the rail may either be made plain or sunk into a panel in torm of an open surbase, for so it will be most convenient to lean upon, and it should be in a line with or somewhat recessed within the backs of the piers. The back part of the balustrade may be adorned with the same mouldings as the bases of the piers, provided they liave not much projection; but if that should be considerable, it will be best to use only a plinth crowned with the two upper mouldings, that so the approach may remain the inore free."
26658. In $f_{i j}$. 919. is a Dorie nbove a Tuscan areade, from the example given ly Chambers, whereon, before giving the dimensions of the different parts, we shall merely observe of it that the voids or arcades themselses are in round numbers to the solids as 29.5 to 205 , being vastly greater. We are inclined to think that the voids in this ease are rather ton great in volume, and that, had they been reduced to one half their height exactly, the
proportions would have been somewhat more pleasing. It is true that a trifing irregularity would have been introduced into the triglyphs of the upper order, or rather the metope between them; but that might have been easily provided against by a very trifling alteration in the height of the frieze itself. This fault of making the voids too large pervades Chambers's examples, and but that we might have been thought too presuming we should have slightly altered the proportions, little being requisite to bring them under the laws which we have thought to be founded on reason and analogy. We have indeed throughout this work refrained from giving other than approved examples, preferring to confine ourselves to observations on them when we have not considered them faultless.
26659. In the figure the elear width of the lower areade is $7 \frac{2}{3}$, and its height $14 \frac{1}{2}$ modules. The width of each pier is 1 module. Of the upper areade the width is $9 \frac{1}{2}$, and the height $18 \cdot 233$ modules. The width of the piers is $1 \frac{1}{1}$ module each. The height of the plinth of the lower order is $1 \frac{1}{2}$ module, that of the column, including base and capital, $14 \frac{1}{2}$ modules, the entablature $3 \frac{1}{2}$. The height of the pedestal of the upper order is 3.733 modules, of the column with its base and capital 16, and of the entablature 3.733 modules. In the proportions between the voids and solids above taken the balustrade is not considered as a solid, beeause, in faet, it is nothing more than a railing for the protection of those using the upper story. As we have expressed our desire to give the examples of others rather than our own, we feel bound to recommend the student

Fig. 919. to set up the diagram in question, with the simple alteration of reducing the solids nearly to an equality with the voids, which may be done with sufficient aecuracy by assigning to the lower areade a module less in width than Chambers has done; and we venture to say that he will be surprised at the difference, as regards grace and elegance, which will result from the experiment. It is to be understood that no ehange is proposed in the other dimensions of the ordonnance, the width of piers, orders, entablatures, all remaining untouehed.
2660. In fig. 920. we give another example from Chambers, which, in our opinion, requires a reetification to bring it into proper form. Herein the Ionic is used above the Doric arcade, and the voids to the solids are as 3.33 to 2.98 , being much more than equal to them. In this, as in the former example, we should have preferred a greater equality between the solids and voids, though in that under consideration there is a nearer approximation to it.
2661. In the figure the clear width of the lower arch is $8 \frac{1}{2}$, and its height $16 \frac{1}{6}$ modules; the width of each pier is 1 module. Of the upper areade the width is $10 \frac{1}{2}$, and the height $20 \frac{1}{2}$ modules. The width of the piers is 11 module each. The height of the plinth of the lower order is $1 \frac{1}{2}$ module that of the column, including the base and capital, $16 \frac{1}{6}$ modules, and of the entablature 4 modules. The height of the pedestal of the upper order 4 modules, of the column, including base and capital, 18 modules, and of the entablature 4, and of the balustrade abore it $3 \frac{1}{\frac{1}{5}}$.
2662. The dimensions of the Ionie and Corinthian arcades in fig. 921 . are as follow: - Clear width of lower arch 9 modules, its height $18 \frac{1}{6}$ modules. 'The width of each pier is 1 module. Of the upper arcade the width of an areh $15 \frac{3}{3}$ modules, and its height 23 modules. The width of

the piers is $1 \frac{1}{3}$ module each. The beight of the plinth to the lower order is 12 module ; of the column, including base and capital, 18 modules; the entablature $4 \frac{1}{2}$ modules. The pedestal of the upper order is $4 \frac{1}{2}$ modules high; column, including base and capital, 20 modules; cutablature $4 \frac{1}{2}$ modules ; and, lastly, the balustrade is $3 \frac{3}{3}$ modules in height.
2663. Fig. 922. is an arrangement adopted by Palladio in his basilica at Vicenza, being the dimensions, or nearly, of the areades on the flanks. The intermediate ones are much wider. In the basilica, however, the entablature breaks round the columns of the orders. The width between the axes of the columns of the lower order is 15 of their modules. The areh is 15 modules high and 77_{6}^{5} wide. The order wherefron the areh springs is 10_{6}^{3} modules high; from axis to axis of the small columns in the lower arcade is 9 modules. The height of the plinth is $1 \frac{1}{2}$ module, of the principal columns, including bases and plinths, 161 modules, and of their entablature 4 modules. In the upper arcade the distance between the axes of the principal columns is 18 of their modules. Their pedestals are 4 modules high, the columns, including bases and capitals, 18 modules, and entablature 4 modules ligh. The width of the arch is $9 \frac{2}{2}$ modules, and its height 20_{6}^{5} modules. The height of the small columns is 11.733 modules high, including their entablature.
2664. The use of arcades above arcades seems from its nature almost confined to public buildings, as among the ancients to their theatres and amphitheatres. In the in-

Fig. 922. terior quadrangles or courts of palaces they have been much employed on the Continent, and in the magnificent design made by Inigo Jones for the palace at Whitehall are to be found some very fine examples.

Sect. XIII.

2665. When the order used for decorating the façade of a building is placed in the middle or second story, it is seated on a story called the busement. The proportion of its height to the rest must in a great measure depend on the use to which its apartments are to be appropriated. "In Italy," observes Chambers, "where their summer babitations are very frequently on that floor, the basements are sometimes very high. At the palace of Porti, in Vieenza, the height is equal to that of the order placed thereupon; and at the Thiene, in the same city, its height exceeds two thirds of that of the order, although it be almost of a sutticient elevation to contain two stories; but at the Villa Capra, and at the Loco Arsieri, both near Vicenza, the basement is only half the beight of the order; because in both these the ground floor consists of nothing but offices." It may hence be gathered that no absolute law can be laid down in reference to the height of a basement story. Yet we may state, generally, that a basement should not be higher than the order it is to support, for it would in that case detract from the prineipal part of the composition, and, in fact, would be likely to interfere with it. Besides which, the principal stairease then requires so many steps that space is wasted for their reception. "Neither," says Chambers, "should a basement he lower than balf the height of the order, if it is to contain apartments, and consequently have windows and entrances into it ; for whenever that is the case the rooms will be low, the windows and doors very ill formed, or not proportional to the rest of the composition, as is observable at Holkham : but if the only use of the basement be to raise the ground floor, it need not exceed three, four, or at the most five or six feet in height, and be in the form of a continued pedestal."
2666. Basement stories are decorated generally with rustic work of such various kinds, that we fear it would be here impossible to describe or represent their varieties. Many are capriciously rock-worked on their surface, others are plain, that is, with a smooth sur. face. The height of each course, including the joints, should on no account be less than one module of the order which the basement supports; their length may be from once and a balf to thrice their height. As respects the joints, these may be square or chamfered off. When square joints are used, they should not be wider than one eighth part of the
height of the rustic itself, nor narrower than one-tenth, their depth not exceeding their width. When the joints are chamfered, the chamfer should be at an angle of forty-five degrees, and the whole width of the joint from one third to one fourth of the height of the rustic.
2667. The courses are somstimes (uften on the Continent) laid without showing vertical joints; but, as Chambers says, this " has in general a bad appearance, and strikes as if the building were composed of boards rather than of stone. Palladio's method seems far preferable, who, in imitation of the ancients, always marked both the vertical and the horizontal joints; and whenever the former of these are regularly and artfully disposcd, the rustic work has a very beautiful appearance." We shall presently make a few remarks on the subject of rustics; but here, to contimue and finish that more immediately under consideration, have to add, that when a high basenent is used, it is not uncommon to crown it with a cornice, as may be secn in fig. 909. ; but the more common practice is to use a platband only (as in fig. 911 .), whose height should not be greater than that of a rustic exclusive of the joint. Of a similar height should be made the zoccolo or plinth; but this may, and ought, perhaps, to be somewhat higher. When arches occur in basements, the platband, which serves for the impost, should be as high as a course of rustics, exclusive of the joint ; and if the basement ive finished with a cornice, such basement should have a regularly moulded base at its foot ; the former to be about one thirteenth of the whole height of the bascment, and the base about one eighteenth, without the plinth.
2668. The Attic - which is used instead of a second order where limits are prescribed to the height of a building, examples whereof may be seen at Greenwich Hospital, and in the Valmarano palace, by the great Palladio, at Vicenza - should not exceed in height one-third of the order whereon they are placed, neither ought they to be less than one quarter. Bearing some resemblance to a pedestal, the base, die, and cornice whereof they are composed may be proportioned much in the same way as the respective divisions of their prototypes. They are sometimes continned without, and sometines with, breaks over the column or pilaster of the order which they crown. If they are formed with pilasters, such ought to be of the same width as the upper diameter of the order under them, never more. In projection they should be one quarter of their width at most. They may be decorated with sunk moulded panels if necessary; but this is a practice rather to be avoided, as is most especially that of using capitals to them - a practice much in vogue in France under Louis XV.
2669. We now return to the subject of the rock-worked rustic, whereof, above, some notice was promised. The practice, though oceasionally used by the Romans, seems to have had its chief origin in Florence, where, as we have in a fcrmer Book (329.) observed, each palace resembled rather a fortification than a private dwelling. Here it was used to excess; and if variety in the practice is the desire of the student, the buildings of that city will furnish him with an almost infinite number of examples. The introduction of it gives a boldness and an expression of solidity to the rustics of a basement which no other means afford. In the other parts of Italy it was sparingly applied, but with more taste. Vignola and Palladio seem to have treated it as an accident productive of great variety rather than as a means of decoration. The last-named arehitect has in the Palazzo Thicne carried it to the utmost extent whereof it is suseeptible. Yet, with this extreme extent of application, the design falls from his hands full of grace and feeling. To imitate it would be a dangerous experiment. De Brosse failed at the Luxembourg, and produced an example of clumsiness which in the Palazzo Pitti does not strike the spectator.
2670. Rustics and rockwork on columns are rarely justifiable except for the purpose of some particular picturesque effect which demands their prominence in the seene, or street view, as in the gateway at Burlington House in Piccadilly, -of which a good view, with the house itself, is to be seen in the "Builder" for 1854, p. 559. It was pulled down about 1867 .

Sect. XIV.

milaster.s.

2671. Pilasters, or square columns, were by the Romans termed anta, by the Greeks parastaic. This last word implies the placing one object standing against another, a sufficiently good definition of the word, inasmuch as in nincty-nine cases out of a hundred they are engaged in or backed against a wall, or, in other words, are portions of square columns projecting from a wall.
2672. It is usual to call a square column, when altogether disengaged from the wall, a pillar or pier; and we are inclined to think, notwithstanding the alleged type of trees, that the primitive supports of stone buildings were quite as likely to have been square
as round, and that the inconvenience attendant upon square angles may have led the earliest builders to round off the corners, and gradually to bring them to a circular plan. lsolated pillars are rarely found among the examples left us by the ancients; the little temple at Trevi furnishes, indeed, an example, but not of the best period of the art. The principal points to be attended to in their use are their projection, diminution, the mode of uniting the entablature over then with that of their columns, and their flutings and capitals.
2673. In respect of the projection of pilasters, Perrault says they should project one lalf, and not exceed that by more than a sixth, as in the frontispiece of Nero, unless circumstances require a different projection. The pilasters of the I'antheon project only a tenth part of their width; and sometimes, as in the forum of Nerva, they are only a fourteenth part. But when pilasters are to receive the imposts of arehes against their sides, they are made to project a fourth part of their diameter; and this is a convenient proportion, becanse in the Corinthian order the capital is not so much disfigured. Hence, when pilasters are made to form re-entering angles, they should project more than half their diameter. Many and various opinions have been formed on the propriety of diminishing pilasters. Perrault, with whom we incline to agree, thinks that when one face only projects, pilasters should not be diminished. Those at the flanks of the portico of the I'antheon are without diminution. But when pilasters are on the same line as columns, we want to lay the entablature from one to the other without any projection, in which case the pilaster must be diminished in the same degree as the column itself, speaking of the front face, leaving the sides undiminished, as in the temple of Antoninus and Fanstina. When the pilaster has two of its faces projecting froin the wall, being on the angle, and one of those faces answers to a column, such face is diminished similarly to the column, as in the portico of Septimius, where the face not corresponding to the column receives no diminution. There are, however, ancicnt examples where no diminution is practised, as in the interior of the Pantheon, where it is so small as not to be very apparent, being much less than that of the column, as is also the case in the temple of Mars Ultor, and in the arch of Constantine. In these cases, the custom of the ancients is sometimes to place the architrave plumb over the column, which brings it within the line of the pilaster. This may be seen in the temple of Mars Ultor, in the interior of the Pantheon, and in the portico of Septimius. Sometimes this excess is divided into two parts, one whereof goes to the excess of projection of the arehitrave above the column, and the other half to the deficiency of extent above the pilaster, as in the forum of Nerva. The whole matter is a problem of difficult solution, which Chambers has avoided, but which, with reference to the examples we have cited, will not be attended with difficulty to the student in his practice.
2674. We have above seen that pilasters, when used with columns, are subject to the form and conditions of the latter. As to their flutings we are left more at liberty. In the portico of the Pantheon we find the pilasters fluted and the colunns plain. This, however, may have been eaused by the difficulty of fluting the latter, which are of granite, whilst the pilasters are of marble. On the other hand, we sometimes find the columns fluted and the pilasters plain, as in the temple of Mars Ultor, and the portico of Septimius Severus. Generally, too, it may be observed that when pilasters project less than half their diameter, their return faces are not fluted. In respect of the number of the flutes, if the examples of the ancients were any guide, there could have been no fixed rule; for in the portico of the Pantheon, the arch of Septimius Severus, and that of Constantine, seven Rutes only are cut on the pilasters, whilst the flutes of the pilasters in the interior of the lantheon are nine in number. This, however, is to be observed, that the flutes must always be of an odd number, except in re-entering pilasters, wherein four are placed instead of three and a half, and five instead of four and a halt, when the whole pilaster would have uine. This is done to prevent the ill effect which would be produced in the capital by the bad falling of the leaves over the flutes.
2675. We shall hereatter give from Chambers some represeatations of pilaster capitals, which, except as regards their width, resemble those of the order they accompany. The practice of the ancients in this respect was very varied. Among the Greeks the form of the pilaster capital was altogether different from that of the column, seeming to bave no relationship to it whatever; but on this point the student must consult the works on Grecian antiquities, an example whereef will be found in fig. 883.
2676. A pilaster may be supposed to represent a column and to take its place under many circumstances; and, notwithstanding all that was said on the subject by the Abbé Laugier, many years ago, against the employment of pilasters altogether, we are decidedly of opinion that they are often useful and important aceessories in a building. It would be difficult to enumerate every situation wherein it is expedient to use pilasters rather than insulated or engaged columns. In internal apartments, where the space is restricted, a column appears heavy and oceupies too much room. The materials, morever, which can be obtained, often restrict the architect to the use of pilasters, over which the projections of the entahlature are not so great ; indeed, as the author in the Encycloperie Methonlique ob-
serves, a pilaster may be considered as a column in bas-relief, and is thus, from the diminishal quantity of labour and material in it, simpler and more economical in applieation. That in houses and palaces of the second class the decoration by pilasters is of great serviee may be amply shown by reference to the works of bramante, San Gallo, Palladio, and the other great masters of ltaly, no less than in this comntry to those of Jones, Wren, and Vanbrugh.
2677. In profiling the eapitals of Tuscan and Dorie pilasters there can of eourse arise no difficulty ; they follow the profiles of those over the columns themselves. In the capitals, however, of the other orders, some diffieulties oceur: these are thus noticed ly Chambers. " In the antique Ionic eapital, the extraordinary projection of the ovolo makes it neeessary either to bend it inwards considerably towards the extremities, that it may pass behind the volutes, or, instead of keeping the volutes flat in front, as they commonly are in the antique, to twist them outwards till they give room for the passage of the ovolo. Le Clere" (Traité d'Architccture) "thinks the latter of these expedients the best, and that the artifice may not be too striking, the projection of the ovolo may be considerably diminished, as in the annexed design " (fig. 923.), "which, as the moulding ean be seen in front only, will oceasion no disagreeable effect."
2678. "The same difficulty subsists with regard to the passage of the ovolo behind the angular Ionie volutes. Le Clere therefore advises to open or spread the volutes suffieiently to leave room for the ovolo to pass behind them, as in the design" (fig. 924.)" annexed; whieh may be easily done, if the projection of the ovolo is diminished. luigo Jones has in the Banqueting House made the two sides of the volutes parallel to eaeh other, aecording to Seamozzi's manner, and at the same time has continued the ovolo in a straight line under them, so that the volutes have an enormous projection ; which, added to the other faults of these eapitals, renders the whole composition unusually defective and en-

Fin. 92 2.

Fig. 124. ceedingly ugly."
2679. "What has been said with regard to the passage of the orolo behind the volutes in the Ionie order is likewise to be remembered in the Composite; and in the Corinthian the lip or edge of the vase or barket may be bent a little inwards towards its extremities, by which means it will easily pass behind the volutes. The leaves in the Corillthian and Composite eapitals must not project beyond the top of the shaft, as they do at San Carlo in the Corso at Rome, and at the Banqueting Ilouse, Whitehall; but the diameter of the eapital must be exaetly the same as that of the top of the shaft. And to make out the thickness of the small bottom leaves, their edges may be bent a trifle outwards, and the large angular leaves may be directed inwards in their approach towards them, as in the annexed design " (fig. 925.), " and as they are exeeuted in the chureh of the Roman eollege at Rome. When the small leaves have a considerable thiekness, though the diameter of the capital is exactly the same as that of the shaft, in each front of the Composite or Corinthian pilaster eapital, there must be two small leaves with one entire and two half large ones. They must be either of olive, aeanthus, parsley, or laurel, massed, divided, and wrought, in the same manner as those of the columns are, the only
 difference being that they will be somewhat broader."
2680. It is desirable to avoid the use of pilasters at inward argles penetrating each other, because of the irregularity such practice produces in the entablatures and capitals. One break is quite as much as should be ever tolerated, though in many of the ehurehes in Rome they are multiplied with great profusion of mutilated capitals and entablatures; "than whiel," observes Chambers, " nothing ean be more confused or disagreeable."
2681. Neither should columns be allowed to penetrate each other, as they do in the court of the Louvre, inasmuch as the same irregularity is induced by it as we have above coticed in the ease of pilasters.

Sect. X Y'.

CARYATIDES AND PERSIANS.

es82. The origin of earyatides we have in the First Book (165, et seq.) so far as regaras our own opinions, explained, and in that respect we slall not trouble the reader. Our object in this section is merely to offer some observations on the use of them in modern practice. The figures denominated Persians, Atlantes, and the like, are in the same category, and we shall not therefore stop to inquire into their respective merits; indeed, that has already been sufficiently done in the book above alluded to. The writer of the article in the Encyclopedie Methodique has, we think, thrown away a vast deal of elegant writing on the subjeet of caryatides; and using, as we have done, to some extent, that extraordinary work, we think it necessary to say that we cannot recommend anything belonging to that article to the notice of the reader, except what is contained in the latter part of it, and with that we do not altogether agree.
2683. The object, or apparent object, in the use of earyatides is for the purpose of support. There is no ease in whieh this cannot be better aecomplished by a solid support, such as a column, the use of the attic order, or some other equivalent means. But the variety in guest of which the eye is always in seareh, and the picturesque effeet which may be induced by the employment of caryatides, leads often to their necessary employment. The plain truth is, that they are admissible only as objects necessary for an extreme degree of decoration, and otherwise employed are not to be tolerated. There can, as we imagine, be no doubt that the most successful application of these figures as supports was by Jean Gougeon in the Louvre; as was the most unfortunate in the use of them in a ehureh in the New Road, which at the time of its erection was much lauded, but whieh we hope will never be imitated by any British architect.
2684. As to the use of what are ealled Persians or male figures, originally in Persian desses, to designate, as Vitruvius tells us, the victory over their country by the Greeks, the observations above made equally apply, and in the present day their applieation will not tear a moment's suspense in consideration.
2685. We have been much amused with the gravity wherewith Sir William Chambers, n t with his usual sound sense, treats the claims of the personages whose merits we are discussing: he savs, " Male figures may be introduced with propriety in arsenals or galleries of armour, in guard-rooms and other military places, where they should represent the figmres of captives, or else of martial virtues; such as strength, valour, wisdom, prudence, fortitude, and the like." He writes more like himself when he says, "There are few nobler thoughts in the remains of antiquity than Inigo Jones's court" (in the design for the great palaee at Whitehall), "the effeet of which, if properly executed, would have been surprising and great in the highest degree." (See fig. 207.)
2686. What is called a terminus, which is, in fact, nothing more than a portion of an inverted obelisk, we shall not observe upon further than to say that it is a form, as applied to arehiteeture, held in abhorrenee. For the purpose, when detaehed and isolated, of supporting busts in gardens, it may perhaps be oecasionally tolerated: further we have notring to say in its favour. Those who seek for additional instruction on what are called termini, may find some aceount of them, as the boundary posts of land among the Romans, in books relating to the antiquities of that people.

268\%. We slall now proceed to submit some examples of earyatides for the use of those whose designs require their employment. Fig. 926. is from a model of Mielael Angelo

lic. 926.

Buonarotti, and is extracted from the Treatise on Civil Architecture, by Sir William Chambers, as are the succeeding examples.
2688. Figs. 927. and 928. are also designs by Michael Angelo, which, though not aesigned for a building, are well adapted for the purpose under certain conditions.
2689. Fig. 929. is the design of Andrea Biff, a sculptor of Milan, in the cathedral of which city it is one of the figures surrounding the choir. The statue possesses muen grace, and was admirably suited to the edifice wherein it was employed.
2690. Fig. 930. comes from Holland, having been executed by Artus Quellinus in the judguent-hall of the Stadthouse at Amsterdam.

2691. Fig. 931. is by Michael Angelo, and is at the Villa Ludorisi at Rome.
2692. Fig. 932. is from the design by the last-named master for the monument of Pope Julius, whereof we have had occasion already to make mention in the First lBook of this work. (335.)
2693. Fig. 933. is a representation of one of the celebrated caryatides by Jean Gougeon in the Swiss guard-room of the old Louvre at Paris, and does not deserve less admiration than it has received. The seale on which this and the preceding figures are given does not admit of so good a representation as we could wish.
2694. Fig. 934. is from the areh of the goldsmiths at Rume, being thereon in basso rilievo, but considered by Chambers as well as ourselves a suitable hist for carrying out the purpose of this section.

Sect. XVi.

BALUSTRADES AND BALUSTERS.
2695. A baluster is a species of column used as an ornamental railing in front of windows, or in areades, or on the summit of a building, whose professed object is the protection of its inhabitants from accidents : analogously, too, it consists of a capital, shaft and base.
2696. The baluster is not found in the works of the ancients, and we believe it owed its introduction in architecture to the restorers of the arts in Italy, in which country a vast variety of examples are to be found. They made their first appearance in the form of stunted columns, not unfrequently surmounted by a clumsily-shaped Ionic capital. The term is said to have had its rise (with what truth we cannot pronounce) from the Latin balaustium, or the Greek Banavoriov, the flower of the wild pomegranate, to which in form the architectural baluster is said by some to bear a resemblance. The writer in the Encyclopedie Methodique has taken the opportunity, in the article " Balustre," of launching his anathema against the use of it, but we by no means agree with him; and instead of calling it, as he does, "une invention mesquine," we incline to think that it was almost the only invention of the modern architeets that deserves our admiration. It is true that the form has been abused in every possible shape; but we are not, in art more than in morals, to arrive at the conclusion that anything is bad because it has been abused and misapplied. Such, then, being the case, we shall proceed in a serious vein to consider its proportions, founded on the best examples that have come to our hands. We must first premise with J. F. Blondel, that balusters and balustrades, which last are a series of the first, should in form and arrangement partake of the character of the edifice. They have even been in their species so subdivided as to be arranged under as many classifications as the orders themselves, a distinct sort having been assigned for employment with each order. We are not quite certain that such an arrangement is necessary, but are rather inclined to think it fanciful ; though we are quite willing to allow that where the lighter orders are employed,
the balustrades to be used over them are suseeptible of a more minute and lighter sul)division of their parts.
2697. The general rules to be observed in the use of the balustrade are, that its balusters be of an odd number, and that the distance between them should be equal to half their larger diameter, from which will result an equality between the open and solid spaces. Blondel disapproves of a half baluster on the flanks of a subdivision of a balustrade: in this we dissent from him, and would always recommend its adoption if possible. In respect of the detailed proportions of the balusters themselves, we are to recollect that the subdivisions are of the capital, the slaft or vase of the baluster, and its base. For proportioning these to one another, Chambers (and we think the proportions he uses not inelegant) divides the whole given height into thirteen equal parts, whereof the height of the baluster is eight, that of the base three, and of the cornice or rail two. If the baluster is required to be less, he divides the height into fourteen parts, giving eight to the baluster, four to the base, and two to the rail. He calls one of these parts a module for the measurement of the rest, and that measure we think convenient for adoption in this work. The module he divides intu nine parts.
2698. Balusters intended for real use in a building, as those employed on steps or stairs, or before windows, or to enelose terraces, should not be less than three feet in height, nor more than three feet six inches; that is, suffieiently high to give seeurity to the persons using them: but when merely used as ornamental appendages, as in crowning a building, they should bear some proportion to the parts of the building. Chambers says that their height never ought to exeeed four fifths of the height of the entablature on whieh they are placed, nor should it ever be less than two thirds, without counting the zoccolo or plinth. the height of which must be sufficient to leave the whole balustrade exposed to view from the best point of sight.for viewing the building. We can scarcely admit these rules to pass without noting the examples in Palladio's works, which give a mueh greater latitude for variety. When balusters fill in between the pedestals, as in the façade of the Palace Chiericato at Vicenza, the balustrade's height is of course regulated by that of the pedestal itself; but in the eourt of the Porti palace the crowning balustrade is not higher than the cornice of the entablature on which it stands. The same proportion is observed in the atrium of the Carità at Veniee. In the Valmarana palace the height of the balustrade is equal to that of the entablature of the small order. It is true that in a few instanees this master made the height of the balustrade equal to that of the whole entablature, and Inigo Jones has in some instances followed his example; but this was not the general practice either of the one or the other.
2699. We have already said that the baluster generally varies in form, so as to be appropriate to the order over which it is used. It is moreover to be observed that the baluster is suseeptible of a pleasing variety of its form by making it square instead of eircular on the plan, whereof examples are given in figs. 938, 939, and 940.; but when the situation requires an expression of solidity, almost all the circular examples we submit to the reader may be ehanged from a circular to a square form on the plan, and thus as required we may obtain the character suitable to their respective situations. These clanges, from one to another form in detals of this description, are in their adoption much moe the index to the eapacity and genius of the architect than the restless and capricious longing after variety recently exhibited in some of the latest works produced in the city of London, works which reflect no credit on the age in which we live. In fig. 935. is given a baluster

suitable to the Tuscan order; and using the module of nine parts above mentioned, the following is a table of its dimensions:-

2700. In fiy. 936. is given the form of a baluster suited to the Dorie and Ionic orders, of whieh also the table of dimensions is subjoined : -

	Members.			$\begin{aligned} & \text { Heights in } \\ & \text { Parts of a } \end{aligned}$ Module.	Projections in Parts of a Module from Centre of Baluster
Rail, 2 modules.	[Fillet -	-	-	2	27
	Cyma reversa	-	-	$3{ }_{3}^{2}$	
	Corona -	-	-	7	22
	$\underline{\text { Quarter round }}$ Fillet	-	-	11	
Baluster, 8 modules.	Abacus	-	-	$5{ }^{2}$	11
	Echinus	-	-	31	
	Fillet	-	-	1	
	Neck	-	-	5	5
	Astragal $\}$ -	-	.	8	
	Centre of belly		-	27	121
	From same to a		-	9	
	Astragal -	-	-	2	
	Fillet -	-	-	1	
	Inverted cavetto	-	-	6	10 , upper part
	Fillet -	-	-	品	
	Plinth	-	-	73	12!
Prdestal, 3 miodules.	(Fillet -	-	-	13	
	Inverted ogee	-	-	5	
	Fillet -	-	-	15	
	Astragal	-	-	41	
	Plinth	-	-	15	$23 \frac{1}{2}$

2701. A suitable balnster for the Corinthian or Composite order is exhibited in fig. 937. whereof the measures are as follow : -

2702. The Tuscan baluster (fig. 938.) is suitable for terraces and basements : its rail

Fig. 938.

Fig. 939.

Fig. 940.

Fig. 341

Fig. 912.

Fig. 943.
and pedestal may be the same height as in the fig. 935 . Its principad measures being as follow: -

	Members		Heights in Parts of a Module.	Projections in Parts of a Module from Centre of Baluster.
Baluster 5 modules.	Abacus - -	-	3	6
	Cyma reversa -	- -	2	
	$\left.\begin{array}{l}\text { Neck } \\ \text { Fillet }\end{array}\right\}$ - -	- -	4	3
	Rustic belly $\{$ at top $\}$	- -	-	112
	Rustic belly [at bottom	- -		$7 \frac{1}{2}$
	$\left.\begin{array}{l}\text { Bottom of belly } \\ \text { Fillet }\end{array}\right\}$ -	- -	$2 \frac{1}{2}$	2
	Inverted cavetto and fillet	,	8	3
	Plinth		St	71

Other forms of Tuscan balusters are given in figs. 939. and 940., but it is not necessary to give the detail of the parts, as the proportions are sufficicntly preserved in the figures.
2703. The double-bellied baluster is used in situations where greater lightness is required from the smallness of the parts and the delicacy of the profiles. The proportions for the bases and rails need not vary from those already giren. Perhaps they need not be quite so large.
2704. Fig. 941. is an example of a double-bellied baluster. suitable to the Doric order. Its parts are as follow :

2705. In fig. 942. we give an example of the double-bcllied baluster for the Ionic order, and its measures are subjoined :-

2706. The last example we shall give of the double-bellied baluster (fig. 943.) is suitable to the Corinthian order. The measures are as follow: -

2707 . We do not deem it neeessary to give any examples of the seroll and Guiloche balustrades, which were so much in vogue during the reigns of Louis XIV. and Louis XV., though the present taste seems almost to require it. As that taste has beem mainly generated by honse decorators, as they are called, and upholsterers, these gentry "ill soon find out another means of amusing the public, by driving them out of fashion and finding all that is beautiful in some renovated and equal absurdities.

2708 . We have already observed that the intervals between balusters should not be more than half the diameter of the baluster at its thickest part ; to this we may here add, that they should not be less than one third of that diameter. The pedestals for supporting the rail ought neither to be too frequent nor too far apart ; for in the first case they impart a heary appearance to the work, and in the last the work will seem weak. Seven or nine balusters are good numbers for a group, besides the two half ones engaged in the pedestals. The disposition, however, and number of the pedestals depend on the places below of the piers, columns, or pilasters, for over these a pedestal must stand ; and when, therefore, it happens that the intervals are greater than are required for the reception of nine balusters, the distance may contain two or three groups each, flanked with half balusters, and the width of the dies separating the groups may be from two thirds to three quarters the width of the principal pedestals. The rail and base should not be broken by projections, but run in unbroken lines between the pedestals.
2709. When the principal pedestals stand over columns or pilasters, their dies should not be made wider than the top of the shafts, and on no account narrower; indeed, it is better to flank them on each side when the ranges are long with half dies, and give a small projection to the central pedestal, and to let the base and rail follow the projection in their profiles. This practice will give real as well as apparent solidity to the balustrade.
2710. Fig. 944. shows the application of a balustrade to a portion of a staircase, and herein the same proportions are observed as on level ranges. Some masters have made the mouldings of the different members of the baluster, follow the rake or inclination of the steps; but the practice is vicious: they should preserve their horizontality, as exhibited in the figure, in which, at A and B, is also shown the method in which the horizontal are joined to the inclined mouldings of the base and rail. In the balustrades of stairs the spaces between the balusters are usually made narrower than they are on level beds; and Le Clere recommends that the height of the plinth should be equal to that of the steps; but this is not absolutely required, though it must on no account be less.
2711. The bulbs or bellies of balusters and their mouldings may be carved and otherwise emriched : indeed, in highly decorated interiors,

Fig. 944. this seems requisite.
2712. The following observations as to the height of statues placed upon balustrades are from Sir William Chambers: - "When statues are placed upon a balustrade their height should not exceed one quarter of the column and entablature on whieh the balustrade stands. Their attitudes must be upright, or, if anything, bending a little forwards, but never inclined to either side. Their legs must be close to each other, and the draperies close to their bodies, for whenever they stand straddling with bodies tortured into a variety of bends, and draperies waving in the wind, as those placed on the colonnades of St. leter's, they have a most disagreeable effect, especially at a distance, from whence they appear like lumps of unformed materials, ready to drop upon the heads of passengers. The three figures placed on the pediment of Lord Spencer's house, in the Green Park, which were executed by the late ingenious Mr. Spang, are well composed for the purpose."
2713. "The heights of vases placed upon balustrades should not exceed two thirds of the height given to statues," says the same author. We are not altogether averse to the application of either statues or vases in the predicated situations, but we think the greatest discretion is required in their employment. When it is necessary to attract the eye from an indispensably obtrusive roof, they are of great value in the composition; but we shall not further enter on this point of controversy, for such it is, inasmuch as many object to their use altogether, and have considerable reason on their side. We must, however, briefly state the ground of objection, and Chambers's answer as respects statues. There are, he says, some "who totally reject the practice of placing statues on the outsides of buildings, founding their doctrine, probahly, upon a remark which I have somewhere met with in a French author, importing that neither men, nor even angels or demi-gods, could stand in all weathers upon the tops of houses or churches."
2714. "The observation is wise, no doubt," (we doubt the wisdom of it ,) " yet, as a piece of marble or stone is not likely to be mistaken for a live demi-god, and as statues, when properly introduced, are by far the inost graceful terminations of a composition, one of the most abundant sources of varied entertaimment, and amongst the richest, most
durable, and elegant ornaments of a structure, it may be hoped they will still continue to be tolerated." We fear that if the only reasons for their toleration were those assigned by the author, their doom would soon be sealed.

Sect. XVil.

PEDIMENTS.

2715. A pediment, whose etymology is not quite clear, consists of a portion of the burizontal cornice of the building to which it is applied, meeting two entire continued raking cornices, and enclosing by the three boundaries a space which is usually plain, called the tympanum. It is not, however, necessary that the upper cornice should be rectilinear, inasmuch as the cornice is sometimes formed by the segment of a circle. The arrangement in question was the Roman fastigium, and is the French fronton. The Greeks called pediments $a \in \tau o t$, or eagles; why, this is not the place to inquire. The origin of the pediment, according to authors, seems to have arisen from the inclined sides of the primitive hut. This is a subject, however, which in the First Book (subsee. 5.) has been already considered, and we shall therefore in this section confine ourselves to its employment in the arehitecture of the day.
2716. Of the varied forms which, by masters even of acknowledged talent, have been given to the pediment, whether polygonal, with curves of contrary flexure, with mixed forms, broken in the horizontal part of the cornice or in the raking parts of it, or reversed m its office with two springing inclined sides from the centre, we propose to say no more than that they are such abuses of all rules of propriety, that we shall not further notice them than by observing that in regular architecture no practice is to be tolerated where the pediment is composed otherwise than of two raking unbroken and one horizontal unbroken cornice, or of the latter and one continued flexure of curved line. To these only, therefore, we now apply ourselves.
2717. Generally, except for windows and doors, the pediment ought not to be used, but as a termination of the whole composition; and though examples are to be found without number in which an opposite practice has obtained, the reader, on reflection, will be convinced of the impropriety of it, if there be the smallest foundation for its origin in the termination of the slant sides of the hut.
2718. The use of the pediment in the interior of a building is, perhaps, very questionable, though the greatest masters have adopted it. We think it altogether unnecessary : if the oyramidal form is desirable for any particular combination of lines, it may be ubtained by a vast number of other means than that of the introduction of tne pediment. Hence we are of opinion that the attempted apology for them in Sir William Chambers's work, is altogether weak and unworthy of him, and only to be explained by that master's own practice.
2719. Vitruvius ordains that neither the modillious nor dentils which are used in the horizontal cornice should be used in the sloping cornices of a pediment, inasmucl as they represent parts in a roof which could not appear in that pesition: and the remains generally of anticquity seem to bear him out in the assertion; but the Roman remains seem to bear a different testimony to the validity of the law, and to our own eyes the transgression affords pleasure, and we should recommend the student not to feel himself at all bound by it ; for, as Chambers most truly observes, "The disparity of figure and enrichment between the horizontal and inelined cornices are such defeets as cannot be compensated by any degree of propriety whatever, and therefore to me it appears best, in imitation of the greatest Roman and modern architects, always to make the two cornices of the same profile, thus committing a trifling impropriety to avoid a very considerable deformity."
2720. Different sized pediments in the same fsçade are to be avoided; but as respects their forms in ranges of windows and niches a pleasing variety is often obtained by making them alternately curved and rectilinear, as in the temple at Nismes and in the niches of the Pantheon at Rome.
2721. In the horizontal part of a cornice under a pediment the two upper mouldings are always onitted, and the intersection of the inclined with the horizontal lines, supposing the inclined members of the cornice to be of the same height as those which are horizontal, will not fall into the profile (fig. 945.) whereof AB and BC are the leading lines. To obviate this inconvenience, some architects have made a break in the cymatium and fillet, as shown

Fig. 965.
in the figurs. But this is a bad practice, and to it we prefer either mahing the cyma and fillet higher, as the dotted line AD indicates, or altogether lowering the height of the cyma on the horizontal line. If the inclined cornice is joined on each side by horizontal ones, the best expedient is to give only such small projection to the eyma as that it may meet the inclined sides.
2722. The heights of pediments slould be regulated by their lengths, independent of the consideration of climate. (See Book II. Chap. III. Sect. IV. 2027.) Thus, when the base of the pediment is short, the height of the pediment may be greater; and when long, it should be diminished: for in the former case the inclined cornice leaves but seanty space for the tympanum, and in the latter case the tympanum will appear overcharged. From one fifth to one quarter of the length appears to have been agreed on as the limits; but we subjoin, from a work by Stanislas L'Eveillé (Considerations sur les Frontons, 4to. Paris, 1824), the method which we consider the best for determining the height of a pediment, observing, by the way, that a strict adherence to the ordinary rules for finding the height may produce the absurdity of a pediment higher than the columns by which it is borne, a condition which would not at all accord with the view we have taken of the orders in Sect. II.

Chap. 1. of this Book. In fig. 946. we have a synoptical view of pediments of varıous extents, and as the letters applied to the central pediment will apply to all the rest, we shall restrict our deseription to that. Suppose the points a and b to be the extremities of the fillet of the corona. Then, with a radius equal to $a b$, from the points a and b, describe the ares $a x, b x$, and from their intersection x with the same radius let the are ayb be described. From y, as a centre, with a radius equal to the height of the horizontal part of the cornice, describe the portion of the circle $f g$, and from a and b draw thereto tangents intersecting in y. Then $y b$ and $y a$ will be the proper inclination of the fillet of the corona to which the other members of the inclined parts will necessarily be parallel.
2723. We conclude this section by the words of Chambers. "The face of the tympan is always placed on a line perpendicular with the face of the frieze; and when large, may be adorned with sculpture, representing the arms or eypher of the owner, trophies of various kinds, suited to the nature of the structure, or bas-reliefs, representing either allegorical or historical subjects; but when small it is much better left plain."

Sect. XVill.

connlews.
2724. In many cases the façades of buildings are erected without any of the orders appearing in the design, other, perhaps, than those which are applied as the dressings of windows, niches, or doors. The palaces of Florence and Rome abound with such examples, in most of which the edifice is crowned with a cornice, which adds dignity to the building, producing a play of light and shadow about it of the utmost importance as regards its picturesque effeet. The moderns have generally failed in this fine feature of a building, and it is only within the last few years, in this country, that a return to the practice of the old masters, a practice properly appreciated by Jones, Wren, Vanbrugh, and Burlington, has manifested itself. If a building be entircly denuded of pilasters and columns, and there are very few common instances that justify their introduction, it seems rational to
deduce the proportion of the leeight and profite of its cornice from the proportions that would be given to it if an order intervened.
2725. If we cons:der the height of the crowning cornice of a building in this way, and as the portion of an entablature whose height is, as in the case of an order, one fifth of that of the building, we should immediately obtain a good proportion by dividing the whole height into 25 parts and giving two of them to the height of the cornice. For the entablature being one fifth of the whole hoight, and its general division being into 10 parts, four whercof are given to the cornice, we have for itsheight the $\frac{4}{10}$ of $\frac{1}{5}=\frac{4}{50}$ $=\frac{2}{25}$, or the twelfth and a half part of the total height of the building $=0.08$. Now there are circumstances, such as when the piers are large, and in other cases when the parts are not very full in their profiles, which may justify a departure from the strict application of this sule; but it will be seen that in the following ten well-known examples the practice has not much differed from the theory, nearly the greatest devation beng in the celebrated cornice of the Farnese palace, which is here placed (fig. 947.) as an extraordinary work of art in comnection with the building it crowns. The examples alluded to are as fullow, and we shall begin with those of carlier date,

Fin. 947. the diminution in height being almost a chronological table of their erection, with the exception of those by Palladio:-

In the Spannocechi palace, at Siena, the cornice is $\frac{81}{1000}$ of the whole height of bilding, or ${ }_{37}=0.081$.
In the Picolomini palace, at Siena, the cornice is $\frac{7 t}{1000}$ of the whole height of building, or $\frac{2}{27}=.074$.
In the Pojana palace, built by Palladio, at Pojana, in the Vicentine territory, the cornice is $\frac{71}{1000}$ of the whole height of building, or $\frac{1}{1+}=071$.
In the Strozzi palace, at Florence, the cornice is ${ }_{T} 6900$ of the whole height of building, or $\frac{2}{29}=\cdot 069$.
In the Pandolfini palace, at Florence, by Raffaelle, the cornice is ${ }_{1090}{ }^{69}$ of the whole height of building, or $\frac{2}{29}=\cdot 069$.
In the Vitla Montecehio, by Palladio, the cornice is $\frac{69}{}{ }^{6000}$ of the whole height of building, or $\frac{2}{2}=069$.
In the Villa Caldogno, by Palladio, the cornice is ${ }^{69}$ of the whole height of building, or $\frac{2}{29}=069$.
In another villa by Palladio, for the family of Caldogno, the cornice is $\frac{66}{1000}$ of the whole beight of building, or $\frac{1}{1_{3}}=\cdot 066$.
In the Farnese palace, at Rome, the cornice is $\frac{59}{1000}$ of the whole height of building, or it $=059$.
In the Gondi palace, at Florence, the cornice is $\frac{57}{1070}$ of the whole height of building, or $\frac{2}{35}$ $=057$.
From these examples it appears that the mean height of the cornices under consideration is something more than one fifteenth of the height of the building, and experience shows that, except under particular circumstances, much more than that is too great, and much less too little, to satisfy an educated eye. The grace beyond the reach of art is, if we may use an llibernicism, in the power of few, but the bounds have been passed with success, as is testified in the Farnese palace. It may be objected to the system that we have generally adopted in this work, that we are too much reducing the art to rules. But this is a practice of which the painter is not ashamed in the proportions of the human figure, and we must remind our reader and the student that all rules are more for the purpose of restraining excess than bounding the lights of genius.
2726. Fig. 948. is an entablature by Vignola, which possesses great beauty, and has been often imitated in tarious ways for crowning a building; this must be con-

Fig. 914.
sidered more in relation to a building than a mere corniee, and requires rustic quoins, if possible, at the angles when used. Chambers, speaking of this example, says, that "when it is used to finish a plain building, the whole height is found by dividing the height of the whole front into eleven parts, one of which must be given to the entablature, and the remaining ten to the rest of the front." We suspect that the smallness which is assigned by this author to its height has been induced by some error, and that a better rule would be induced by assigning to the cornice its proper height, according to the laws above linted at, and proportioning the rest of the entablature from the cornice thus obtained.

2727. In figs. 949, 950, and 951. are given three examples of block cornices (the second being by Palladio), whose proportions the figures sufficiently show without here giving a detail of their parts. The height of either should not be less than one fifteenth of the height of the building.

Fig. 352.

Fis. 954.

Fig. 9.53.
2728. Figs. 952. and 953. are block cornices, which we have adopted from Chambers, the first being from a palace at Milan, and the other, by Rafthelle, in a house in the Lungara at liome. The height of these, says the author, and we agree with him, need not exceed one sixteenth part of the whole front, nor should either be less than one eighteenth. Fig. 954. is what is called an architrave cornice, which was frequently employed by the old masters. It seems well adapted to the entablatures of colunns bearing arches, being rather in the nature of an impost; but it is useful, changing it to suit the order in cases where the height does not admit of the whole of the entablature being used over the order.

Sect. XIX

PROFII.ES OF DOORS.

2729. ()ne of our objects in this work has been to impress throughout on the minds of our readers that architeeture does not depend on arbitrary laws; and though we may not have proved satisfactorily to the student that the precise laws have been exactly stated, we trust we have exlibited sufficient to show and convince him that there was a method and limit in the works of the ancients which in the best times prevented the artists from falling on either side into exeess.
2730. In fig. 955. we give a door with its architrave, frieze, and cornice, without relation to mouldings, but merely considered in the masses. Its proportions correspond with those most usually adopted; that is, its height is twice its width, the entablature is one fourth of the height of the opening, and the architraves on each side, together, two sixths of the width. The opening, therefore, measuring it in terms of the width of the architrave, will be 6 parts wide and 12 high, and its area consequently 72 parts. Now
t will be found that the solid parts of this are exactly on their ace two thirds of this area; for up to the top of the opening eath rehitrare being equal to 12 , the sum will be 24 ; and the entabla:ure being 8 wide and 3 (one fourth of twelve) high, $8 \times 3=24$; which added to 24 for the architraves gives 48 for the solids, and $\frac{18}{2}=\frac{2}{3}$, as above stated. The same analogy does not seem to hold n respect of doors and windows, of making the voids equal to the upports and weights, as in intercolumniations; nor indeed ought we to expect to find it, for the conditions are totally different, nasmuch as no door can exist except in a wall, whereas the office of columns is connected with the weight above only. We trust, herefore, we have shown enough to keep the reader's mind alive o some such law as ahove developed, without insisting very strongly on a minute attention to it in detail.
2731. We slall now, before submitting any examples of doorways

Fig. 955. o the reader, touch upon some important points that must be attended to; the first of which s, that all gates and doors, independent of all other considerations, must be of sufficient siz6 or convenient passage through them. Hence internal doors must never be reduced under 2 feet 9 or 10 inches, and their height must not be under 6 feet 10 inches or 7 feet, so as to ddmit the tallest person to pass with his hat. These are minimum dimensions for ordinary houses in the principal floors; but for houses of a superior class, which are provided with what may be called state apartments, widths of 4,5 , and 6 feet, folding doors and the like, will not be too great for the openings, and the heights will of course be in proportion. The entrance doors of private houses ought not to be under 3 feet 6 inches, nor ordinarily more than 6 feet in width; but in public buildings, where crowds of people assemble, the minimum width should be 6 feet, and thence upwards to 10 or 12 feet. No gate should be less than 9 feet wide; and when loaded waggons or carts are to pass through it, 11 or 12 feet will not be too much. As a general observation we may mention that all doors should open inwards, for otherwise the person entering pulls the door in his face, which is an inconvenient mode of entering a room. Also when the width of a door is greater than 3 feet 8 inclies it should be forned in two flaps, by which three advantages accrue : first, that the door will not occupy so mucls space for opening; second, that each door will be lighter; and, third, that the flaps will more nearly fold into the thickness of the wall. Chambers properly says, " That in settling the dimensions of apertures of doors regard must be had to the architecture with which the door is surrounded. If it he placed in the intercolumniation of an order, the height of the aperture should never exceed three quarters of the space tetween the pavement and the architrave of the order; otherwise there cannot be room for the ornaments of the door. Nor should it ever be much less than two thirds of that space, for then there will be room sufficient to introduce both an entablature and a pediment without crowding; whereas if it be less it will appear trifing, and the intercolumniation will not be sufficiently filled. The apertures of doors placed in arches are egulated by the imposts, the top of the cornice being generally made level with the top of the impost; and when doors are placed in the same line with windows, the top of the rerture should be level with the tops of the apertures of the windows; or if that be ot practicable without making the door much larger than is necessary, the aperture nay be lower than those of the windows, and the tops of all the cornices made on the same evel."
2732. To say that the principal door of a building should if possible be in the centre of the front would seem almost unnecessary ; but it is not so, perbaps, to inculcate the necessity of its being so situated in connection with the internal arrangement of the building as to lead with facility to every part of it, being, as Scamozzi observes (Parte Secunda, lib. vi. c. 4.), like the mouth of an anmal placed in the middle of the face, and of easy communication with the inside. In the internal distribution the doors should as mucli as possible be opposite one another on many accounts, not the least whereof is the facility thus given to ventilation ; but sucl a disposition also gives the opportunity of a far better display of a series of rooms, which on occasions of fétes imparts great magnificence to the apartinents. In this climate it is well to avoid too great a number of doors, and they should never, if it can be avoided, be placed near climneys, because of subjecting to draughts of air those who sit near the fire. Generally the doors in a room should be reduced to the smallest number that will suit the distribution, and the practice of making feigned or blank doors, though sometimes necessary, should if possible be excluded.
2733. The ornaments with which doors are decorated must of course depend on the building in which they are used; and as this is a matter in which common sense must direct the architect, it is hardly neecssary to say that the ornaments applied to them in a theatre would ill suit a church.
2734. The composition and designing of gates and their piers must of necessity suit the ocasion, as well as tlie folding gates attached to them, for the enchosure of the parks.
gardens, and other places they are to serve. There are few finer examples in the highe class of this specier of design than the celebrated gates at Hampton Court.
2735 . The evil days on which we have fallen in this country, in respect of the arts, pre cludes the hope of again seeing the doors of our buildings ornamented with bassi relievi an bronze ornaments, a practice common among the ancients no less than among the reviver of the arts; witness the doors of St. Peter's, and, above all, those monuments of the art, th drors of the baptistery at Florence by Lorenzo Ghiberti, wherein art rises by being mad only subservient to the holy purpose to which it is the mere handmaid. In the mention of doors those of San Giovani Laterano at Rome must not be omitted; they have the credi of having been the enelosures to the temple of Saturn in the ancient eity.
2736. The manufacture of doors has been already sufficiently noticed in the Secon Book; and it therefo:e only remains for us to subjoin a few examples, which, we thin's among many others, deserve the attention of the student.

2737. Fig. 956. is an external doorway designed and exeented by Vignola, at Caprarola not a great distance north of Rome; it must speak for itself: if the reader be of on mind, he will see in it a beantiful handing of the subject; but we eannot further answer fo our opinion, knowing as we do that some of the reviewers of these days may find out tha it possesses no asthetic beauties. There are cases where imitation has been permitted; anc the sanction for our opinion is, that it has been imitated by one whom we and all other hold in reverence at Greenwich Hospital, though, as we think with Chambers, for th worse. "The aperture is in the form of an arch, and occupies somewhat more than twe thirds of the whole height. It is adorned with two rusticated Doric pilasters and a regular eutablature. The height of the pilasters is 16 modules, that of the entablature 4 The width of the aperture is 7 modules, its height 14 , and the breath of each pier i: 3 modules." To the detail of Chambers we have to add that the void in this example which has no analogy to that which as a general rule we gave in the commencement o the section, is about one third of the area of the whole design, the void being to such aree as $7 \cdot 57$ to 20.88 .
2738. Fig. 957. is a design by the last-mentioned master, in which the void is as nearly as possible equal to one third of the area, the supports another, and the weights the othe third: in other terms, the aperture occupies two thirds of the whole height and one hal of the whole breadth, being, in fact, a double square. Its entablatire has an alliance with the Tuscan order, and the cornice is equal to one fifteenth of the whole height of the door. These two examples are especially external; those which follow are from their 1 ature applicable in general form to either external or internal doorways.

2739 Fig. 958. is a doorway in the Cancellaria at Rome, and is from the design of Vignola. The width is one half the height, and the height of the entablature is equal to one third of the height of the aperture. The breadth of the architrave is one filth of the aperture's width, and the vilasters below the consoles are half as broad as the architrave. It is heavy, as might have been expected from the proportion between the voids and the solids.

2;40. Fig. 959. is a design by Michael Angelo Buonarotii, and its aperture may be twice its height,

Fig. 959.

he whole entablature a quarter of its height, and the arehitrave one sixth of the width of the aperture. The face of the pilasters or columns at the sides must be regulated oy the lower faseia of the arehitrave, and their breadth is to be a semidiameter.
2741. Fig. 960. is by Vignola, and is in the Farnese palace at Rome. The opening is avice the width in height, and the entablature is three elevenths of the height of the aper;ure, one of the foregoing elevenths being given to the architrave. The whole of the ornanent on the sides is, ineluding arehitraves and pilasters, equal to two sevenths of the width of the aperture. The cornice is Composite, with modillions and dentils, and the fricze is enriched with a laurel band.
2742. Fig. 961., another of the examples given by Chambers, is believed to be by Cigoli. The void is rather more in height than twice its width. The impost of the a:eh equal to half a diameter, the columns are rather more than nine diameters higl, ana rusticated with five square cinctures. The entablature is not so much as one quanter of the height of the column, and its tablet is equal to the width of the aperture.

2749. Fig. 962. is by Inigo Jones, and the aperture may be twice as high as it is wide. The architrave may be a sixth or seventh of the width of the aperture, the top of it being level with the astragal of the columns, which are Corinthian, and ten diameters in height. They must be so far removed on each side from the arehitrave as to allow the full projec tion of their bases. The entablature may be from two ninths to one fifth of the columa, and the pediment should be regulated by the rules given in Seet. XVII. (2722.).
2744. Fig. 963. is by Serlio. The aperture may be a double square, or a trife less; the diameter of the columns a quarter of the width of the aperture, or a trife less; their height 8 to $8 \frac{1}{2}$ diameters; the entablature about a quarter of the height of the columns, and the pediment should be drawn in conformity with the directions in Sect. XVIl.

Sfat. X. .
windows.
2745. Windows, of all the parts of a building, are those which require the greatest nicety in adjustment between the interior and exterior relations of them. The arehitect who merely looks to the effect they will produce in his façades has done less than half his work. and deserves no better name or rank than that of a mere builder. It seems almost useless to observe that the windows of a building should preserve the same character, that those in each story must be of the same height, and that the openings must be direetly over one another. Blank windows are, if possible, to be avoided. they always indicate that the arehiteet wanted skill to unite the internal wants of the building with its external decoration. Windows, moreover, should be as far removed as the interior will permit from the quoins of a building, because they not only apparently, but really, weaken the angles when placed too near them.
2746. Vitruvius, Palladio, Scamozzi, and Philibert de l'Orme, besicies many other masters, have given different proportions to them as connected with the apartments to be lighted. That these should be different is indicated by the different places in which those masters have written. Nothing, indeed, seems so much to disallow general laws as the proportion of windows to an asartment; aceording to the elimate, the temperature, the

Icugth of the days, the general clearness of the sky, the wants and customs of commerce and of life generally. In hot climates the windows are always few in mumber and small na dimension. As we approath those regions where the sun has less power and the winter is longer, we observe always an increase in their size and number, so as to enable the inhabitants to take as much advantage as possible of the sun's light and rays. It seems. therefore, almost impossible to give general rules on this subject. We shall on this account endeavour, in the rules that this section contains, to contine ourselves to the sizes which seem suitable in this elimate, as resuects the proportion of light necessary for the comfort of an apartment.
2747. It is a matter of experience that the greatest quantity of light is obtained for an apartment when lighted by an horizontal aperture in the ceiling. Of this a very extraordinary verification is to be found in the Pantheon at Rome. This edifice, whose elear internal dianeter is 142 feet 6 inches, not including the recesses behind the columns, is nearly 74 feet high to the springing of the dome, which is semicircular. The total clear number of cubic feet in it may therefore be taken in round numbers at $1,934,460$ cubic feet. Those who have visited it well know that it is most sufficiently and pleasingly lighted, and this is effected by an aperture (the eye, as it is technically called,) in the crown of the dome, which aperture is only 27 feet in diameter. Now the area of a circle 27 feet in diameter being rather more than 572 feet, it follows that cach superficial foot of the area lights the astonishing quantity of nearly 3380 cubic fect. Independent of all considerations of climate, this shows the anazing superiority of a light falling vertically, where it can be introduced. But in a majority of cases the apertures for light are introduced in vertical walls; and the consequence is, that a far greater area of them for the admission of light becomes necessary. In considering the question it must be premised that a large open space is supposed before the windows, and not the obstructed light which it is the lot of the inhabitants of closely-built streets to enjoy. Again, it is to be recollected that in the proportioning of windows it is the apartments on the principal floor that are to be considered, because their width in all the stories must be guided by them, the only valriety admissible being in the height. In this country, where the gloom and even darkness of wet, cloudy, and foggy seasons so much prevails, it is better to err on the side of too much rather than too little light, and when it is superabundant to exclude it by means of shutters and blinds. We are not very friendly to the splaying of windows, because of the irregularity of the lines which follows the practice; but, it must be admitted, it often becomes necessary when the walls are thick, and in such cases a considerable splay on the inside increases the light in effeet by a great diminution of shade. It is well, if possible, to have an odd number of windows in an apartment : nothing wherein contributes more to gloom than a pier in the centre.
2748. We do not think it necessary to advert to the rule of Palladio for the dimensions of wiadows given in the first book of his work, chap. 25. ; because, were it true for the climate of northern Italy, it would not be so for that of Great Britain; neither are we at all satisfied with that which in his practice Sir William Chambers says he adopted, and which is as follows, in his own words:--" I have generally added the depth and height' we suppose width " of the rooms on the principal floor together, and taken one eighth part thereof for the width of the window; a rule to which there are few objections: admitting somewhat more light than Palladio's, it is, 1 apprehend, fitter for our climate than his rule would be." This rule is empirical, as indeed is that on which we place most dependence, and to which we shall presently introduce the reader, being ourselves inclined to the belief tinat in the lighting a room there is a direct relation between the area of the aperture admitting the light and the quantity of cube space in the room. Indeed the law which we are about to give is one founded on the cubic contents of the apartment; and if the results bore a regular ratio to that quantity, the discussion would be at an end, for we should then have only to ascertain the cubic contents, and, knowing how much an area of light one foot syuare would illuminate, the division of one by the other would supply tise superficies of windows to be provided. Our own notion on this subject is, that I foot superficial of light in a vertical wall, supposing the building free from obstruction by high objects in the neighbourhood, will in a square room be sufficient for 100 cube feet if placed centrally in such room. It will, however, immediately occur to the reader, that this rule cannot in many cases satisfy the requirements of an apartment as respects the quantity of light necessary for its proper illumination. The subject is beset with numerous difficulties, which to overcome requires the greatest skill. In the case of an apartment, long as compared with its width, it is well known to every practical architect that windows of the same collective area at either of the narrow ends of such apartment will light it much more effectively than if the same area of light were admitted on either of the long sides, and most especially so, if it should happen that on such long side there were a pier instead of a window in the centre of such side. In illustration of what we mean, let us refer the reader to the ball room at Windsor Castle, an apartment 90 feet long, 34 feet wide, and 33 feet high. This room is lighted from the northern narrower side by a window nearly occupging the
width, and is supplied by an abundance of light. But had the same quantity of light been admitted from either of the long sides of the room, so many masses of shadow would have been introduced through the interposition of piers, that its effect would have differed most widely from the cbeerful and airy aspect it now presents. We have taken this as an example that more presently occurs to us, but the reader from his observation will have no difficulty in supplying instances in corroboration of our impressions on this subject.

But we shall now proceed to give, in the author's own words, the rules of which we have spoken. That author is Robert Morris, and the work quoted is Lectures on Archilecture, consisting of Rules fimmded on Harmonick and Arithmetical Proportions in Building. London, 8 vo. 1734. " There are rules, likewise, for proportioning of light according to the magnitude of the room by which any room may be illuminated, more or less, recording to the uses of them, and at the same time preserve an external regularity; which, as it is on an uncommon basis, I shall explain to you as well as I conveniently can. Let the magnitude of the room be given, and one of those proportions I have proposed to be made use of or any other ; multiply the length and breadth of the room ogether, and that product multiply by the height, and the square root of that sum will je the area or superfieial content in feet, \&e. of the light required."

<------------------ Breadth 16 ft.--
Fig. 96 I .

Fig. 96\%.
2749. "Example. Suppose a room (fig. 964.), whose magnitude is the arithmetical roportion of 5,4 , and 3 , and is 20 feet long, 16 feet broad, and 12 leet high, the eube or roduct of its length, breadth, and height multiplied together is 3840 , the square root of which sum is 62 feet. If the height of the story is 12 feet as before mentioned, divide hat 62 feet into three windows; each window will contain 20 feet 8 inches of superficial ight, and those will be found to be 3 feet $2 \frac{1}{2}$ inehes broad, and 6 feet 5 inehes high, which re windows of two diameters."
2750. "Let us now suppose another room on the same range whose height is 12 feet, as lie preceding example is, and its proportion (fig. 965.) shall be the cule. The product of hat cube is 1728 , and its root is 41 feet 4 inches, or thereabouts: divide that 41 feet inches in two parts for two windows, and each will be 20 feet 8 inches of superficial ight, and those will be two diameters in height, and the magnitude the same as the preeding room."
2751. " For example sake, I will only suppose one more room (fig. 966) upon the same ange, and 12 feet in height, those proportion shall be the rithmetical of 3,2 , and 1 ; hat is, its height being 12 eet, the breadth will be 24 nd length 36 , the product of hose numbers multiplied toether will be 10368, and its oot 101 feet 8 inches, or hereabouts: divide this room ato five windows, each winoow will have 20 feet 4 inches uperficial light, and the magitude will be near or equal to

Fig. 9ff. he others, and if the proportion be 6,4 , and 3 , and coved, the light is the same." 2752. "There is," says the author, rather perhaps simply, "but one objection to this ule to make it universal for all kinds of proportioned rooms on the same floor, and that s, the square root doth not always happen to be exact enough for to make them alike; but s the variation will be so small, it may be made use of; and if the area sometling exceeds he standard of the principal room, that room may be converted to a use which requires nore than standard light, and the necessities of families sometimes require it. But, howver, the rule will serve for the purpose near enough for any practice."
2753. "If you extend the rule to larger rooms, the same methods will be preservec even if the height be continued through two stories, if the upper windows be made square

i) f ief.

Fig. 967.
and to have two tire" (tiers) " of windows. Let us suppose the room (fig. 967.) with two tire of windows in height, to be 50 feet long, 40 feet wide, and 30 feet high, the arithmetical proportion of 5,4 , and 3 , the product of those numbers multiplied together will be 60000 , the square root of which sum is 245 superfical feet; divide that sum for the tire" (tiers)" of windows into three parts, or take one third of it, and that makes the attic or square windows 81 feet 8 inches superficial light; divide this into 5 windows, and they are 4 feet and half an inch square, and the five lower windows, consisting of 163 feet 4 inches superficial light, being what remains out of the 245 feet, the root, each of these windows is 4 feet and half an ineh by 8 feet 1 inch, or two diameters, which 245 feet, the whole sum of the square root of the room, will sufficiently illuminate the same."
2754. The extreme piers should not, if possible, be less than half the width of the principal piers. This cannot always be obtained, but a much less width eauses great irregularity, and that more especially when one of such end piers falls opposite a chimney breast, besides causing a great mass of shadow on the other side of the chimney, which has a tendency towards making the room dark and gloomy.
2755. Windows in the same story should be similar. There may be an oceasional deviation for a great central window, but such deviation must be used with much caution. Another practice, most properly reprobated by Chambers, is that of intermitting the arehitrave and frieze of an order in the intervals between the columns to make room for windows and their enrichments, as on the flanks of the Mansion House in the eity of London; a practice from which Sir Christopher Wren was, unfortunately, not exempt, as may be noticed in St. P'aul's Cathedral.
2756. What are called Venetian windows are oceasionally allowable, when so ranged and introduced as not to interfere with the composition, - a task often difficult to effect. They should not be much repeated, as in the front at Holkham, where they become actually disgusting. Though in the examples which follow there be two which are composed with semicircular-headed centres, we do not approve of the general use of examples designed on sueh prineiples, and would advise the student rather to study the composition of the Venetian window, when required, as in fig. 968., which we do not present as one of beauty, but rather of propriety, where the want of light to the apartment renders a Venetian window expedient. The method of making sashes, shutters, and the other accessories of windows has been described in a previous section; we therefore proceed to offer a few of the most celebrated examples of windows. It is not necessary, after the investigation relative to the voids and solids of doors, to pursue the inquiry into the relative proportions of windows as respeets that part of the subject. They are, in a measure, in regard to windows, subjeet to the same principles, and this, by trial, will be inmmediately apparent to the student; and we therefore shall not stop for such investigation.

Fig. 968
2757. Fiy. 969. is after the lower stery of windows at St. Peter's at Rome, by Michael Angelo, and is rather less than the double square in beight. Tue architrave is one seventh

of the aperture's width, being the same as that of the pilasters. The length of the consoles is one third of the width of the aperture, and the entablature one quarter of its height.
2758. Fig. 970. is from the Mattei palace at Rome, and is the design of Bartolome, Ammanati. It possesses, though rather heavy, considerable beauty, and well deserves the attention of the student. Chambers, from whom we have selected many of our examples in this and others sections, says, "the parts made somewhat less would sueceed better, as would also a pediment instead of the sloped covering at top: " but we entircly disagree with him, and are of opinion that what he proposes would ruin the design.

Fig. 971.

Fjg. 9:2.
2759. Figs. 971. and 972. are the compositions of Bernardo Buontalenti. The apertures are a double square, or something less, the architraves a sixth or seventh of the apertures, and the pilasters may be about the same. The height of the entablature should not be more than a quarter that of the aperture, nor much less. The greatest length of the consoles should not exceed half the width of the aperture, nor should their least length be less than one third of it.
2760. Fig. 973, is from the old Louvre at Paris, and is by the celebrated I'ierre Iefocot.
abbot of Clugny in the reigns of Francis I. and IIemry II. Its proportions are not mueb dissimilar from the two last examples.

FIg. 975.

Fig. 974.

Fig. 975.
2761. Fig. 974, is a window constantly used by Palladio. The opening is a dotable square, the breadth of the architrave equal to one sixth of the aperture, and the frieze and cornice together equal to double the height of the architrave. The breadth of the consoles equal to two thirds the width of the architrave. The breaks over the consoles in the bed mouldings of the cornice are perhaps not strictly correct, but are deviations from propriety which may be tolerated. The breaks in the upper vertical parts of the architrave would perhaps be better omitted. The practice generally should be avoided, except in cases where a greater length of cornice is wanted for the purpose of filling the bare walls to which the windows are applied.
2762. Fig. 975. is from the Banqueting House at Whitehall, by Inigo Jones. The aperture is a double square, the entablature one fourth of its height, and the architrave somewhat more than one sixth of its width.
2763. Fig. 976. is by Michael Angelo, and executed at the Farnese palace at Rome. It possesses all the wildness and fancy of the master, and though abounding with faults, is redeemed by its grandeur and originality.
2764. In fig. 977. is given the design by Ludovico da Cigoli of a window from the ground floor of the Renuccini palace in Florence. It ean scarcely be properly estimated without its connection with the façade, to the character whereof it is in every respect suitahle.
2765. Fig. 978. is a design of Palladio, nearly resembling that executed in the Barbarano palace at Vicenza. It has been imitated by Inigo Jones, and perhaps improved on by him, in the flanks at Greenwich Hospital.

F4s. 976.

Fig. 3:7.

FYg. 978.

Fig. 979.
2766. Fig. 979. is also by Palladio, and executed by him in the Porto palace at Viecnza. 2767. Fig. 980. is the design of Raffaclle Sanzio, and worthy of the reputation of that
great painter and arehitect. It is executed in the Pandolfini palace at Florence, on the principal floor. The height of the aperture is a very little more than twi?e its width, the architrave is one seventh the width of the aperture. The columns, which are lonic, are

Fig. 9s0.

Fig. 981.

9 diameters high, and should be as much detached from the wall as possible. The distance of them from the architrave of the window is a quarter of a diameter, which is also the distance of the entablature from the top of the same architrave. The total height of the entablature is two nintlis of that of the column, and the height of the pediment is one quarter of its base or somewhat less. The pedestals are one quarter of the lieight of the whole order.
2768. Fig. 981. is one of the windows of the Bracciano palace at Rome, by Bernini. The aperture is more than a double square, and the architrave about one sixth the width of the aperture. The entallature is only one fifth of the height of the columns, including their sub-plinths, and the pediment is less in height than one quarter of its extent.

Fig. 982.

Fig. 983.
2769. Fig. 982. is from the principal floor of the Palazzo Thiene at Vieenza. The aperture is two and two tenths of its width in height ; the columns are nine diameters high, and one quarter engaged in the wall. The under sides of the Ionic capitals are level with the top of the aperture, having angular volutes with an astragal and fillet below the volute. The bases are Tuscan, and there are on caeh shaft five rustic dies of an equal breadth.
whose inner sides are on a line with the sides of the aperture, and their projection equal to that of the plinth of the base, that is, one fifth of a diameter of the column. The keystones incline forwards towards the top, and they are hatehed, only the surface being left rough, as are likewise the dies on the columns, except at their angles, which are rabbed smooth. The entablature is Ionic, the architrave consisting of only two fascix, the frieze swelled, and the dentil band placed immediately on the frieze, without any intervening mouldings, a practice not very unusual with L'alladio. The petestals are rather more than one third the height of the columns. The dies and balusters stand on the platband of the basement. which was done to diminish the projection.
2770. Fig. 983. is a design by Inigo Jones, which has been mueh used in this country. It is rather higher than a double square. 'The width of the arehitrave is one fifth that of the aperture, and the rusties are a trifle less than the third of it. The entablature is two ninths of the height of the openng, and the height of the pedestal is $\frac{27}{100}$, or nearly so, of the height of the aperture and pedestal taken together.

Fig. 984.

Fig. 9S5.
2771. Fig. 984, is the design of a Venctian window by Colin Campbell, the compiler of the three first volumes of the Vitruvius Britannicus; and
2772. Fig. 985. is very similar to the Venetian windows in the west façade of the Horse Guards, executed by Kent. It is perhaps as favourable an example of this species of window as can be produced.

Sect. XXI.

NICHES AN1) STATIES.

2773. A niche is a recess constructed in the thickness of a wall for the reception of different objects, such as statues more especially, but occasionally also for that of busts, vases, and tripods. Vitruvius makes no mention of niches, and but for an inseription published by Visconti in the Monumenti Gabini we should not have known that they were by the ancients called zotheca, or places for the reception of a figure. Our English word niche is evidently derived from the Italian nicchio, a shell.
2774. In the carly Greek temple the niche is not found; at a later period, as in the monument of Philopappus, we find a circular and two quadrangular-headed niches occupied in the time of Stuart by statues; and it does not seem improbable that in the Gymnasia, Agora, Stadia, \&c. of the nation mentioned, the use of the niche was not uncommon. But the different forms of the ancient tomb, and the early methods of sepulture, would soon suggest to the Greeks and Romans the use of the niche, especially in such tombs as were devoted to the use of a particular family. These sepulchres, whose subdivisions were called columbaria, had their walls ornamented with small niches for the reception of cinerary urns, or those containing the ashes of the dead. In these, a large-sized niche occupies the principal place in the apartment, and in this was deposited the urn or sareophagus of the head of the family.
$2^{7} 75$. The small temples (edicula) of the Romans are often found decorated with niches; and in the small building on the Lake of Albano, generally supposed to have been a Nympheum, we find each side of the interior dressed with six niches, whose height sufficiently indicates that they were provided for the reception of statnes. In the temple of Diana, at Nismes, in the South of France, which is now considered to have been a portion
of Thermæ, as the great aqueduct ran near it, the interior has two sides decorated with six Corinthian columns, and in the wall between each column is a niche (called tabernacle by the moderns). Each is placed on a pedestal, and at the sides have pilasters alternately surmounted by segmental and triangular pediments. We do not, however, consider it necessary to enumerate the various Roman works wherein the niche finds a place, and shall therefore do no more than refer the student to the Pantheon, the temple of Peace, the arch of Janus, at Rome, and to its exnberant employment at Palmyra, Baalbec, and S_{i} alato. The buildings cited will furnish him with examples of all sorts and sharacters.
2775. The dresses of niches seem to bear an analogy to those of windows and doors in their form and decoration; the niche may really be considered as an opening in a wall, and indeed there are, in the arch of Claudius Drusus, now the l'orta Maggiore, at Rome, openings used as niches, in which an object placed may be seen from either side of the wall. It therefure appears nut improper to dress the niehe with the ornaments which custom has sanctioned for doors and windows. The author of the article "Niche" in the Encyclopedie Methodique, has divided niches into three classes. The first are such as are square on the plan, and either square or circular-headed. These are the simplest, and are without dressings of any sort. Second, such as are square on their plans, and with square heads, but ornamented with dressings, or crowned with a simple platband supported by two consoles. In the third class are included all niches whose plan and heads are semicircular, either ornamented with festoons, or with dressings, or with columns and entablature. These, says the author, are to be introduced into buildings according to their several characters, from simple to highly enriched, as requisite.
2776. Some architectural authors have laid down positive rules for the proportions of niches. According to others the proportion is found in a niche twice and a half its width in height; and indeed this produces a proportion not inelegant. But in considering the classes separately, they have divided the width of the niches invariably into twelve parts. To a niche of the first class they give twenty-eight of such parts; to one of the second class, thirty; and to one of the third class, thirty-one parts. This reduction, however, of the proportions of a niche seems to us to partake of empiricism ; and we would rather always trust to an educated eye than to rules which seem to have no basis on fituess and propriety. It is, moreover, to be recollected that all mules of art can be considered only a, mean trrms, serving more as approximations than positive laws for the guidance of the artist in the different combinations he imagines.
2777. The use of tiers of niches over each other is condemned by J. F. Blondel, unless separated by a line of entablature between them, which may seem to indicate the existence of a floor; otherwise, he observes, one figure seems to stand on the head of another. This, however, is an abuse of reasoning ; not that it is to be understood that we think the practice very allowable. The recommendation of this master in respect of the relation between niches and the statues that are to occupy them is worthy of attention. He opposes, and we think with great propriety, the placing a statue without a plinth in the niche. The plinth is, indeed, necessary to the good effect of every statue; and to pretend that the imitation in marble could or ever was intended to be mistaken for the object it imitates, would be to leave behind all those matters of convention in art for which the spectator is well prepared. In architectural decoration, no less than in the abstract imitation of the oljects of sculpture, no one is desirous of believing them natural and living, but only as models of imitation.
2778. The following observations are from Chambers, relative to the size of the statues used in niches. "The size of the statue depends upon the dimensions of the niche; it should neither be so large as to seem rammed into it, as at Santa Maria Maggiore, in Rome, nor so small as to seem lost in it, as in the Pantheon, where the statues do not occupy above three quarters of the height of the niche, and only one half of its width. Palladio, in arched niches, makes the chin of his statues on a level with the top of the impost (springing), so that the whole head is in the coved part. In the nave of St. I'eter's, at Rome, the same proportion has been observed, and it has a very good effect. The distance between the outline of the statue and the sides of the niche should never be less than one third of a head, nor more than one half, whether the niche be square or arched; and when it is square, the distance from the top of the head to the soffite of the niche should not exceed the distance left on the sides. The statues are generally raised on a plinth, the height of which may be from one third to one half of a head; and sometimes, where the nicher are very large in proportion to the architecture they accompany, as is the case when an order comprehends but one story, the statues may be raised on small pedentals, by which means they may be made lower than usual, and yet fill the niche sufficiently, it being to be feared lest statues of a proper size to fill such niches should make the columns and entablature appear trifling. The same expedient must also be made use of whenever the statnes in the niches, according to their common proportions, come considerably larger than those placed at the top: of the building. A trifling disparity will not be easily perceived, on as--
count of the distance between their respective situations; but if it be great, it has a sery bad eflect; and therefore this must be well attended to and remedied, either by the above-mentioned method, or by entirely omitting statues at the top of the building, leaving the balustrade either free, or placing thereon vases, trophies, and other similar ornaments." Further on in the same work, the author says that "niches, being designed as repositorics for statues, groups, vases, or other works of seulpture, must be contrived to set oll the things they are to contain to the best advantage; and therefore no ornaments should ever be introdueed within them, as is sometimes injudicionsly practised, the cove of the niche being either filled with a large scollop shell, or the whole inside with various kinds of pro. jecting rusties, with moulded compartments, either raised or sumken, or composed of different coloured marbles, for all these serve to confuse the outline of the statue or group. It is even wrong to continue an impost within the niche, for that is of considerable disadvantage to the figures, which never appear so perfect as when backed and detached on a plain smooth surface. An excess of ornaments round the niche should likewise be avoided, and particularly masks, busts, boys, or any representation of the human figure, all which serve to divide the attention, and to divert it from the principal object."
2779. "The depth of the niche should always be sufficient to contain the whole statue, or whatever else it is to contain, it being very disagrecable to see statues, or any other weighty objects, with false bearings, and supported on consoles or other projections, as is sometimes done, and in the ease of niches, the side views become exceedingly uncouth; for in these a leg, an arm, a head, in short, those parts alone which project beyond the niche appear and look like so many fragments, stuck irregularly into the wall." We trust we: shall be excused for this and many other long quotations from Chambers, on account of the strong common sense with which they abound, though not always expressed in the most elegant language that might have been selected.
2780. We conclude the section with a few examples of niches, whose general proportions are sufficiently to be derived from the figures which represent them, and which, therefore, will not require our more minute description in this place, the diagrams themselves being the more useful mode of submitting the subject to the student.

2781. Fig. 986. is the simple niche, square and circular in the head and in the plan ; in the latter we have before, as a general rule, given the proportion of its leeight as twice and a half that of its width; but the former, or the square-headed one, may be a double square, yet it never should exceed in height twice and a half its width.
2782. Fiy. 987. is a common form of using the niche where the opening of windows with which it is accompanied requires a correspondent square recess for the niches, as also iu interiors where the leading lines may require such an expedient.
2783. Fig. 988. shows the method of introducing niches in a rusticated basement, which is often requisite. The rustics are received on a flat gromed, in which the niche is formed. The reader is not to understand that any of the figures are intended as models for imitation, but merely as modes on which, in using them, he may so work as to reduce them to his own views in the design whereon he is engaged.
2784. Fig. 989. is from the plate of Palladio's Egyptian Hall, and exhibits the violation of Chambers's excellent maxim of not allowing the impost to be continued round the springing of the niche. If niches are merely introduced for play of light and shadow without reference to their reception of statues, the practice of this abuse may be tolerated: but certainly not in cases where statues are to be placed in them.
2785. Fig. 990. is the niche accompanied by entablature, pediment, architraves, consoles, and pedestals, as in the windows winich have already

Fig. 9\%K.

Fig. 991.
been given, and their proportions will serve as a guide in this; the only difference being, that a niche is inserted within the architrave of the opening.
2787. Fig. 991. is imitated from one of the niches of the Pantheon, for the details whereof the reader may refer to Desgodetz.

Sect. XNiI.

CHIMNET PIECES.

2788. It is not our intention to devote much of a space, necessarily restricted, to the consideration of designs for chimney pieces; not because we consider them unworthy of the serious attention of the student, nor because the ever-varying fashion of the day seems to create a desire for new forms, but because they come under the category of doors and windows (strange as it may seem) in respect of the relation of the void to the solid parts. We are not aware that any view of this nature has heretofore been involved in the consideration of them. but we are not the more on that account to be driven from our hypothesis. The examples of chimney pieces that have been given by Chambers, and, before him, by old Serlio, were but fashions of their respective days; and if it be possible to establish something like a canon on whieh they might be designed, we apprehend it would be useful to the student.
2789. A chimney piece is the ornamental decoration applied to the aperture of a chimney opening, and it seems but reasonable that in its general distribution it should be subject to those laws which regulate the ornaments of other openings. The forms and fancies into which this ornament of a room may be changed are infinite, and we therefore consider that if its appendages can be drawn into a consistent shape we shall be of service in the few

remarks subjoined. In fig. 992. the chimney opening to be decorated is 40 wide and 3 feet 6 inches high; its area is therefore equal to $4: 0 \times 3: 6=14$ feet. The principle here recommended is to make the two supporting pieces equal to one half of that area, or seven feet, and the supported piece B equal to the other half. Now, as the height is $3: 6$, we shall have $\frac{7}{3.5}=2$ for the width of the two piers, that is, each will be one foot wide. By the addition of these to the width of the opening, the dimension becomes six feet; and as B is to contain seven feet superficial, it follows that $\frac{7}{6}=1 \frac{1}{6}$ is the height of B that it may contain 7 feet.
2790. In fig. 993. we have shown the method of developing the principle; in it the supports, load, and void bear the same relation to each other as in the preceding figure. The entablature is divided into three equal parts for the architrave, frieze, and cornice, and trusses are placed on the pilasters by the sides of the architrave. The tablet is of course not absolutely required, and the trusses may be formed of leaves instead of being plain, as here shown.
2791. Fig. 994. is another mode of using the proportions given in fig. 992., and upon it, as well as that last given, we have only to olserve, they are not introduced as specimens of design, but solely with the view of illustrating a principle. The projection of chimneypieces should not generally be greater than the whole width of the support, nor less than tralf.
2792. We wish we could give some rule for adjusting the size of a chimney opening to that of the room it is to warm. Morris, in his Lectures on Architecture, before quoted, imagined that he had found out one, and he speaks with confidence on the results which follow its use; but we confess we are not satisfied with them. We nevertheless should be wrong in omitting it, and therefore give his words for the consideration of the student. The first rule is as follows: - "To find the height of the opening of the chimney from any given magnitude of a room, add the length and height of the roon together, and extract the square root of that sum, and half that root will be the height of the chimney." The second rule is as follows : - " I'o find the breadth of a chimney from my given mangitude
of a room, add the length, breadth, and height of the room together, and extract the square root of that sum, and half that root will be the height of the chimney." The third rule he gives is, "To find the depth of a chimney from any given magnitude, including the breadth and height of the same, add the breadth and height of the chimney together, take one fourth of that sum, and it is the depth of the chimney." His fourth and last rule is, "To find the side of a square or funnel proportioned to clear the smoke from any given depth of the chimney, take three fourths of the given depth, and that sum is the side of the square of the finnel. Observe, only, that in cube rooms the height is equal to the breadth, and the foregoing rules are universal." The rules given by Chambers are extremely vague and general. He says that "in the smallest apartments the width of the aperture is never made less than from three feet to three feet six inches; in rooms from twenty to twentyfour feet square, or of equal superficial dimensions, it may be four feet wide; in those of twenty-five to thirty, from four to four and a half; and in such as exceed these dimensions, the aperture may be extended to five or five feet six inches; but should the room be extremely large, as is frequently the case of halls, galleries, and salons, and one chimney of these dimensions neither afford sufficient heat to warm the room nor sufficient space round it for the company, it will be much more convenient, and far handsomer, to have two chimney pieces of a moderate size than a single one exceedingly large, all the parts of which would appear clumsy and disproportioned to the other decorations of the room." It is well so to place the chimney as that persons on entering a room may at once see it. In this climate a checrfulness is imparted by the sight of a fire; but it is not to be so placed as to be opposite a door, neither ought it, if possible to be avoided, to be so placed as to have a door on either side of it. There are, however, circumstances under which even the last-named category camot be avoided, but it is always well if it can. The fact is, that the further the door can, generally speaking, be removed from a chimney, the better; and the architect must, if the plan admit it (and he ought so to distribute his parts), avoid all cross draughts of air in a room. Angular chimneys are only admissible in small rooms where space and other considerations permit no other means of introducing a chimney. We can hardly think it necessary to say, with Chambers, that "whenever two chimneys are introduced in the same room they must be regularly placed, either directly facing each other, if in different walls, or at equal distances from the centre of the wall in which they both are placed. He observes, however, with a proper caution to the student, that "the Italians frequently put their chimneys in the front walls, between the windows, for the benefit of looking out while sitting by the fire; but this must be avoided, for hy so doing that side of the room becomes crowded with ornaments, and the other sides are left too bare; the front walls are much weakened by the funnels, and the chimney shafts at the top of the building, which must necessarily be carried higher than the ridges of the roofs, have, from their great length, a very disagreeable effect, and are very liable to be blown down." All these objections, however, may be easily answered, and the funuels collected, or shafts, as they then beeome, be, with skill, made even ornamental to a building. It is in cases like these that the power of the architect above the artisan is manifest.
2793. Where the walls of a building are sufficiently thick, their funnels rise within the thickness of the walls, but in walls of a mean thickness this camot be accomplished, for under such circumstances the walls and chimney pieces will necessarily project into the rooms, and if the break be great, the effect is unpleasant; but this may always be obviated by making arched recesses on each side, which, in commoner rooms, may be occupied by presses or closets, thus enabling the architect to carry the cornice unbroken round the room, a point which should never be forgotten, inasmuch as by the cornice or entablature of the apartment being carried round it without a break, which gives the ceiling an unbroken and regular form, a regularity is preserved infinitely more satisfactory to the eye than the disagrecable appearance of a broken, and, we may say, disjointed cornice.
2794. Of the materials employed in the construction of chimney pieces, nothing more is requisite than to say that the costliness of the material must follow the wealth of the founder of the building. Marble, however, is the material usually employed, and the various sorts known are not unfrequently intermixed, so as to produce a pleasing effect. When the aid of the sculptor is called in, much latitude is allowed in the proportions; but on this head we hope we may, without prejudice, deliver our opinion, that the effect has never amounted to anything like what might bave been expected from his extraneous aid; and the solution is easy: his object is not to produce a work in harmony with the apartment, but rather to exhibit his own powers.
2795. In the external appearance of chimney shafts, so as to group them with the building to which they belong, no archítect can be put in competition with Sir John Vanbrugh. Those of Blenheim, Castle Howard, and other of his buildings, exceed all praise, and deserve the closest investigation of the student. They become in his works, as they always should do, parts of the building, inseparably connected with it, and their removal would detract from the majesty of the structure with which they are comected. On this point we are certain that the best advice that can be given to the student is a constant
contemplation of the works of Vanbrugh. In these days there seems to he a return to good feeling in this respeet; and we hope it will, for the credit of the English school, be tollowed up.

Sect. XXIII.

STAlRCASES.

2796. A stairease is an enclosure formed by walls or partitions, or both, for the reception of an aseent of stairs, with such landings as may be necessary. Of the construction of stairs we have treated in previous sections; this will be contined to general observations on them and their enclosures.
2797. Scarcely any subdivision of a building is of more importance, as respects the character of the arehitect and the comfort and pleasant oceupaney of it by his employer, than its principal and subordinate staircases. There is, moreover, no part, perhaps, in which more room is left for architectural and pieturesque display. In our own country there are some extraordinary examples of great beauty produced in staircases on comparatively small seales; whence the student may learn that without great space he may produce very imposing effects. One of these may be still seen, though in a very neglected state, as are most of the buildings attached to the collegiate chureh of Westminster, at one of the prebendal houses there built by our great master Jones. It is a speeimen of his consummate skill as an artist, and well worth the attention of the student, if he can obtain admittance to view it; but if he camot, we may refer him to some plates executed from drawings made by us many years since, and published in the first and best edition of Illustrations of the I'ublic Buildings of London (Lond. 1828). The extreme space oceupied by the stairease in question does not exceed 24 by 23 feet; and within these small dimensions he contrived a stairease fit for a palace. So highly did the late Sir John Soane think of this bijou that he had a series of drawings made to illustrate its parts, and exhibited them in his leetures at the Royal Academy.
2798. It is almost unnecessary to impress upon the student that an excess rather than a deficiency of light is requisite in a staircase, and that it should he easily accessible from all parts of the building. Those laws upon which the ease of persons ascending and descending depend will form the subject of two subsections shortly following (2804. and 2814.), to which we particularly recommend the reader's attention. They are of the utmost importance, and we record with surprise that they have not been attended to by architects generally of late years. We have crept up staireases in houses of consequence, which deserved little more than the name of ladders, and we are sorry to say that this defeet is found even in the works of Chambers himself; but never in those of Jones and Wren. We shall with these remarks proceed to further observations on the subject, which has already been partially touched upon in 2176. et seq.
2799. We know little of the staircases of the Greeks and Romans, and it is remarkable that Vitruvius makes no mention of a staircase, as an important part of an edifice; indeed his silence seems to lead to the conclusion that the staircases of antiquity were not constructed with the luxury and magnificence to be seen in more recent buildings. The best preserved ancient staircases are those constructed in the thickness of the walls of the pronaos of temples for ascending to the roofs. Of this sort remains are found in several peripteral temples. That of the temple of Concord at Agrigentum is still entire, and consists of forty-one steps. According to Pausanias, similar staircases existed in the temple of the Olympian Jupiter at Elis. They were generally winding and spiral, like the inside of a shell, and hence are called scale a lumaca by the Italians, and by the French escaliers en limagon. Sometimes, as in the Pantheon at Rome, instead of being circular on the plan, they are triangular; so were they in the temple of l'eace, and in the baths of Dioclesian.
2800. Very few vestiges of staircases are to be seen in the ruins of Pompeii ; from which it may be inferred that what there were must have been of wood, and, moreover, that few of the houses were more than one story in height. Where they exist, as in the building at the above place called the country house, and some others, they are narrow and inconvenient, with steps sometimes a foot in height. Occasionally, too, we find private staireases mentioned, as in the description of Pliny's Tusculan villa, where one was placed by the side of the dining room, and appropriated to the use of the slaves who served the repast.
2801. The author of the article "Eseaiier" in the Encyc. Method. observes that the magnifieence of the stairease was but tardily developed in modern arehitecture, and that it owed much of its luxury to the perfection to whicin a knowledge of stereotomy brought the science of masonry. The manners too and the customs of domestic life for a length of time rendered unnecessary more than a staircase of very ordinary deseription. Thus in the earliest palaces the staireases seem to have heen constructed for the use of the inha-
bitimts only, possessing in fact no more beauty than we now give to a back stairease. They are for the most part dark, narrow, and inconvenient. Even in Italy, which in the splendour of its buildings breceded and surpassed all the other nations of Europe, the stairease was, till a late period, extremely simple in the largest and grandest palaces. Sueh are the staireases of the Vatican, Bernini's celebrated one being comparatively of a late date. The old staireases of the Tuilleries and of the Louvre, though on a considerable seale, are, from their simplicity, construction, and situation, little in unison with the richness of the rest of these palaces. And this was the consequence of having the state apartments on the ground floor. When they were removed to a higher place, the staircase which conducted to them neeessarily led to a correspondence of design in it.
2802. It will be observed that our observations in this seetion are eonfined to internal staireases. Large flights of steps, such as those at the Trinità de' Monti and Arace!i at lume, do not come within our notice, being unrestricted in their extent, and searcely sulject to the general laws of architeetural composition. In these it should however be remembered that they must never rise in a continued series of steps from the bottom to the summit, but must be provided with landings for resting places, as is usually the case in the half and quarter spaees of internal stairs. An extremely fine example of an external flight of stairs may be cited in those descending from the terrace to the orangery at Versailles. For simplieity, grandeur, design, and beauty of construction, we scareely know anything in Europe more admirable than this stairease and the orangery to which it leads.
2803. The selection of the place in which the stairease of a dwelling is to be seated, requires great judgment, and is always a difficult task in the formation of a plan. Palladio, the great master of the moderns, thus delivers the rules for observance in planning them, that they may not be an obstruction to the rest of the building. He says, "A particular place must be marked out, that no part of the building should receive any prejudice by them. There are three openings neeessary to a stairease. The first is the doorway that leads to it, which the more it is in sight the better it is; and I highly approve of its being in such a place that lefore one comes to it the best part of the house may be seen, for although the house be sinall, yet by such arrangement it will appear larger : the door, however, must be obvious, and easy to be found. The second opening is that of the windows through which the stairs are lighted; they should be in the middle, and large enough to light the stairs in every part. The third opening is the landing place by which one enters into the rooms above; it ought to be fair and well ornamented, and to lead into the largest plates first."
2804. "Staircases," continues our author, "will be perfeet, if they are spacious, light, and easy to ascend; as if, indeed, they seemed to invite people to mount. They will be clear, if the light is bright and equally diffused; and they will be sufficiently ample, if they do not appear seanty and narrow in proportion to the size and quality of the building. Nevertheless, they ought never to be narrower than 4 feet" (4 feet 6 inches English *), "so that two persons meeting on the stairs may conveniently pass each other. They will be convenient with respect to the whole building, if the arehes under them can be used for domestic purposes; and commodious for the persons going up and down, if the stairs are not too steep nor the steps too high. Theretore, they must be twice as long as broad. The steps ought not to exceed 6 inches in height; and if they be lower they must be so to long and eontinued stairs, for they will be so meh the easier, because one needs not lift the foot so high; but they must never be lower than 4 inches." (These are Vicentine inches.) "The breadth of the steps ought not to be less than a foot, nor more than a foot and a half. The ancients used to make the steps of an old number, that thus beginning to ascend with the right foot, they might end with the same foot, which they took to be a grod omen, and a greater mark of respect so to enter into the temple. It will be sufficient to put eleven or thirteen steps at most to a flight before eoming to a half-pace, thus to help weak people and of short breath, as well that they may there have the opportunity of resting as to allow of any person falling from above being there eaught." We do not propose to give examples of other than the most usual forms of staircases and stairs; their variety is almost infinite, and could not eren in their leading features be compassed in a work like this. The varieties, indeed, would not be usefully given, inasmuch as the forms are necessarily dependent on the varied circumstanees of each plan, calling upon the arehitect almost on every oecasion to invent pro re natá.
2805. Stairs are of two sorts, straight and winding. Before proceeding with his design, the architect must always take care, whether in the straight or winding staircase, that the person ascending has what is called headway, which is a clear distance measured vertically from any step, quarter, half-pace, or landing, to the underside of the ceiling, step, or other part immediately over it, so as to allow the tallest person to clear it with his hat on; and this is the minimum height of headway that can be admitted. To return to the straight and winding stairease, it is to be observed, that the first may be divided into two jlights, or be

Fig. ! $S_{s i n}$.

Fig. 996.
rade quite square, so as to turn on the four sides round a close or open newel, as in fig. 995. 1 which the former is the case, light being obtained by windows in the walls which enclose te newel ; or, as in fif. 996. : in which case, the newed is open, and the light may be reecived ither from a vertical light above, or from side windows in the walls. Palladio says these wo sorts of stairs were invented by Sig. Ludovico Cornaro, a gentleman of much genius, tho erected for himself a magnificent palace at Padua.
2806. Of winding or spiral stairs, some are circular on the plan, either open or with a old newel ; others elliptical, also with open or solid newels. Those with the open newel de preferable, because of their allowing the staircase to be lighted additionally, if requisite, ,y the light obtainable from above; besides which, persons passing up and down may see ach otber. Palladio thus directs the setting out of spiral staireases. "'Those," he says. - which have a newel in the middle are made in this mamer. The diameter being divifed nto three parts, two are given for the steps, and the third is for the newel; or, otherwise, be diameter may be divided into seven parts, three of which are for the newel and four or the steps. "Thus," he says, " was made the staircase of the column of 'Trajan at Rome ; mo if the stairs are made circular," (that is, the treads segments of circles on the plan, "they will be handsomer and longer " (of course) "than if made straight."
2807. "But as it may happen that the space will not give room for these measures, he diameter may be reduced and divided according to the plates." The essence of these blans, omitting the step whose plan is segmental, we here subjoin.
2sos. Fig. 997. is a plan and section of a stairease with a solid newel, in which the whole diancter is divided into twelse parts, and of these four are given to the neweh and the remainder divided equally between the steps.

Pig. 997.

2809. Fig. 998. is the plan and seetion of a spiral stairease with an open newel, wherens the diameter is divided into four parts, two being given to the newel, and the remainder equally divided between the steps.
2810. Fig. 999. is the plan and section of an elliptical stairease with an open newel. The comjngate diameter is divided into four parts, whereof two are given to the conjugate diancter of the newel, and the remainder one on each side to the steps.
2811. In fig. 1000. the same stairease is given, but with a solid newel, and of course requiring many openings on the sides to light it.
2812. It is not the difficulty of multiplying the examples of staireases which prevents our proceeding on this head, but the space into whieh our work is to be condensed. Enough of example has been given, by using portions of the examples, to meet every ease, the deeoration being dependent on the design of the arehiteet, and the distribution on his good sense in the application of what we have submitted to him.
2813. There is, however, one important point in the construction of a stairease to which we must now advert, and that is easiness of aseent. IBlondel, in his Coners d'Architecture, was, we believe, the first arehiteet who settled the proper relation between the height and width of steps, and his theory, for the truth whereof, though it bears mueh appearance of it, we do not pledge ourselves, is as follows.
2814. Let x the space over which a person walks with ease upon a level plane, and $z=$ the height which the same person conld with equal ease aseend vertieally. Then if $/$ be the height of the step, and w its width, the relation beiween h and w must be such that when $w=x, h=0$, and when $h=z, u=0$. These conditions are fulfilled by equations of the form $h=\frac{1}{2}(x-w)$ and $w=x-2 h$. Blondel assumes 24 (French) inehes for the value of x, and 12 fer that ol z. We are not sufficiently, from experiment, convineed that these are the proper values; but, following him, il those values be substituted in the equation $h=\frac{1}{2}(24-w)$, and $w=24-2 h$: if the height of a step be 5 inches, its width shondd be $24-10=14$ inehes, and it must be confessed that experience seems to confirm the theory, for it must be observed, and every person who has built a sairease will know the fact. that the merely

Fig. 999.

Fis. 1000.
reducing the height of the risers without giving a correspondent width of tread to the step is inemvenient and unpleasant.

Secr. XXIV.

CEILINGS.

2815. Economy has worked so great a change in our dwellings, that their ceilings are, of late years, little nore than miserable naked surfaces of plaster. This section, therefore, will possess little interest in the eye of speculating builders of the wretehed houses erected about the suburbs of the metropolis, and let to unsuspecting tenants at rents usually about three times their actual value. 'To the student it is more important, inasmuch as a welldesigned ceiling is one of the most pleasing features of a room.
2816. There is, perhaps, no type in architecture more strictly useful in the internal distri bution of apartments than that derived from timber framing; and if the reader has understood our section on floors, he will immediately see that the natural eompartments which are formed in the earpentry of a floor are such as suggest panels and ornaneuts of great variety. Even a single-framed floor with its strutting or wind-pieces between the joists, gives us the hint for a celling of coffers eapable of producing the happiest effeet in the most insignificant room. If the type of timber-framing be applied to the dome or hemispherical ceiling, the interties between the main ribs, diminishing as they approach the smmint, form the skeletons of the coffers that impart beauty to the Panthoon of Agrippa. We allude thus to the type to inculeate the prineiple on which ornamented ceilings are diesigned, being satisfied that a refermee to such type will insure propriety, and bring us batek to that
fitness which, in the early part of this Book, we have considered one of the main ingredients of beauty. If the panels of a ceiling be formed with reference to this principle, namely, how they might or could be securely framed in the timbering, the design will be fit for the parpose, and its effect will satisfy the spectator, however unable to account for the pleasure he receives. Whether the architrave be witly plain square panels between it and the wall, as in the temples of the Egyptians, or as at a later period decorated with coflers, for instance in the Greek and Roman temple, the principle seems to be the same, and verifies the theory. The writer of the article "Plafond" in the Encyc. Meth. has not entered into the subject at much length, nor with the ability displayed in many other parts of that work; but he especially directs that where a ceiling is to be decorated on the plane surface with painting, the compartments should have reference to the construction. With these preliminary observations, we shall now proceed to the different forms in use. Ceilings are either Hat, coved, that is, rising from the walls with a curve, or vaulted. They are sometimes, however, of contours in which one, more, or all of these forms find employment. When a coved ceiling is used, the height of the cove is rarely less than one fifth, and not more than one third the height of the room. This will be mainly dependent on the real height of the room, for if that be low in proportion to its width, the cove must be kept down ; when otherwise, it is advantageous to throw height into the cove, which will make the excess of the height less apparent. If, however, the architect is unrestricted, and the proportions of the room are under his control, the height of the cove should be one quater of the whole height. In the ceilings of rooms whose figure is that of a parallelogram, the centre part is usually formed into a large flat panel, which is commonly docorated with a flower in the middle. When the cove is used, the division into panels of the ceilintr will not bear to be so numerous nor so heavy as when the ceiling appears to rest on the walls at once, but the same sorts of figures may be employed as we shall presently give for other ceilings. If the apartment is to be highly finished, the cove itself may be

decorated with enriched panels, as in the figs. 1001, 1002, 1003, 1004, 1005, 1006. In all ceilings it is desirable to raise the centre panel higher than the rest, and the main divisions representing the timbers in flat ceilings should, if possible, fall in the eentre of the piers between the windows.

〔817. Fiy. 1007, shows the ceiling of a square room in two ways as given on each side of the dotted line, or it may be considered as representing the ends of a ceiling to a room whose form is that of a parallehogram. The same observation applies to figs. 1008 . and 1009. 'The solites of the beams should in all cases approach the width they would bes.

Fi; 1007.

Fig. 100 .

Fig. 1009.
considered as the sofites of architraves of the columns of the order to which the cornice belongs, and they may be decorated with guiloches, as in fig. 1011., or with frets. (Sec the word "Fret" in Glossary.)

Fig. 1010.
2818. In the two foliowing figures (1011. and 1012.) are given four examples of rooms which are parallelograms on the plan, and above eaeh is a section of the compartments.

Fig. 1011

Fig. 1012.
2819. As to the proportion of the comice, it onght in rooms to be perhaps rather less than in halls, salons, and the exterior parts of a building ; and if the entablature be taken at a fifth instead of one fourth of the height, and a proportional part of that filth be taken for the cornice, it cannot be too heavy. Perhaps where columns are introduced it will be better to keep to the usual proportions. Chambers, if followed, would make the proportions still lighter than we have set them down. He says that if the rooms are adorned with an entire order, the entablature should not be more than a sixth of the height nor be less than a seventh in flat-ceiled rooms, and one sixth or one seventh in such as are coved; and that when there are neither columns nor pilasters in the decoration, but an entablature alone, its height should not be above one seventh or eighth of those heights. He further says that in rooms finished with a simple cornice it should not exceed one fifteenth nor be less than one twentieth, and that if the whole entablature be used its height should not be more than one eighth of the upright of the room. In the ceilings of staireases the cornices must be set out on the same principles; indeed in these, and in halls and other large rooms, the whole of the entablature is generally used. In vaulted ceilings and domes the panels are usually decorated with panels similar to those in figs. 1001, 1002, 1008, 1004, 1005, 1006., but in their application to domes they of course diminish as they rise towards the pye of the dome. (See 2837.)

Smot. XXV

PRORORIIONS OF ROOMS.

2920. The use to whicls rooms are appropriated, and their actual dimensions, are the principal points for consideration in adjusting the proportions of apartments. Abstractedly considered, all figures, from a square to the sesquialteral proportion, may be used for the plan. Nany great masters have carried the proportion to a double stuare on the plan; but except the room be subdivided by a break the height is not easily proportioned to it. This objection does not however apply to long galleries which are not restricted in length,
on which Chambers remarks, "that in this case the extraordinary length renders it impossible for the eye to take in the whole extent at once, and therefore the comparison between the height and length can never be made."
2921. The figure of a room, too, necessarily regulates its height. If a room, for example, be coved, it should be higher than one whose ceiling is entirely flat. When the plan is square and the ceiling flat the height should not be less than four fifths of the side nor more than five sixths; but when it leaves the square and becomes parallelogramic, the height may be equal to the width. Coved rooms, however, when square, should be as high as they are broad; and when parallelograms, their height may be equal to their width, increased from one fifth to one third of the difference between the length and width.
2922. The height of galleries should be at least one and one third of their width, and at the most perhaps one and three fifths. "It is not, however," says Chambers, "always possible to observe these proportions. In dwelling-houses, the height of all the rooms on the same floor is generally the same, though their extent be different; which renders it extremely difficult in large buildings, where there are a great number of different-sized rooms, to proportion all of them well. The usual method, in buildings where beanty and magnifieence are preferred to economy, is to raise the halts, salons, and galleries higher than the other rooms, by making them occupy two stories; to make the drawing-roons on other largest rooms with flat ceilings; to cove the middle-sized ones one third, a quarter, or a fifth of their height, according as it is more or less excessive ; and in the smallest apartments, where even the highest coves are not sufficient to render the proportion tolerable, it is usual to contrive mezzanines above them, which afford servants' lodging-rooms, baths, poudering-rooms," (now no longer wanted!) "wardrobes, and the like; so much the more convenient as they are near the state apartments, and of private access. The Earl of Leicester's house at Holkham is a masterpiece in this respect, as well as in many others: the distribution of the plan, in particular, deserves much commendation, and does great credit to the memory of Mr. Kent, it being exceedingly well contrived, both for state and convenience."
2923. In this country, the coldness of the climate, with the economy of those who build superadded, have been obstacles to developing the proper proportions of our apartments; and the consequence is, that in England we rarely see magnificence attained in them. We can point out very few rooms whose height is as great as it should be. In Italy, the rules given by Palladio and other masters, judging from their works, scen to be sevenfold in respect of lengths and breadths of rooms, namely, - 1 . circular ; 2. square ; 3. the length equal to the diagonal of the square; 4 . length equal to one third more than the square; 5. to the square and a half; 6 . to the square and two thirds; or, 7 . two squares full. As to the height of chambers, Palladio says they are made either arched or with a plain ceiling : if the latter, the height from the pavement or floor to the joists above ought to be equal to their breadth; and the chambers of the second story must be a sixth part less than them in leight. The arehed rooms, being those commonly adopted in the principal story, no less on account of their beauty than for the security afforded against fire, if square, are in height to be a third more than their breadth; but when the length exceeds the breadth, the height proportioned to the length and breadth together may be readily found by joining the two lines of the length and breadth into one line, which being bisected, one half will give exactly the height of the arell. Thus, let the room be 12 feet long and 6 feet wide, $\frac{12+6}{2}=9$ feet the height of the room. Another of Palladio's methods of proportioning the height to the length and breadth is, by making the length, height, and breadth in sesquialteral proportion, that is, by finding a number which has the same ratio to the breadth as the length has to it. This is found by multiplying the length and breadth together, and taking the square root of the product for the height. Thus, supposing the length 9 and the breadth 4 , the beight of the areh will be $\sqrt{ } 9 \times 4=6$, the height required; the number 6 being contained as many times in 9 as 4 is in 6 .
2924. The same author gives still another method, as follows: - Let the height be assumed as found by the first rule $(=9)$, and the length and breadth, as before, 12 and 6 . Multiply the length by the breadth, and divide the product by the height assumed; then $\frac{10}{3} \times 6=8$ for the height, which is more than the searnd rule gives, and less than the first.

CHAP. II.

PRINCIPLES OF PROPORTION.

Sect. I.

GENEHAL REMAKKS.

2825. In undertaking to point out some of the mechanical methods of obtaining proportions of length, breadth, and height, in plans and elevations, as traceable upon geometric representations of the design, we would recall the reader's attention to the admirable remarks on the true nature of proportion made by the author of this Encyclopadia in Sect. I of the first chapter in this book.
2826. But, however just those remarks may he, they do not, any more than any of the mechanical means, result in success in the building as executed and seen in perspective. The ever varying relation between the sides of a mass, such as a Greek temple, can hardly be supposed tube at every moment equally beatutiful in proportion, and the finest mediaval structure equally owes the satisfactory effect which it produces to the spectator's judicious choice of his point of view. Some very judicious observations on the rectification of proportions according to the position of the spectator are given by James Pemethorne, in his E'lements and Mathematical I'rinciptes of the Gireek Architects, 8vo, London, 1844.
2827. Before the probable effect in exceution of an intended design can be ascertained, the designer must have well mastered the routine of drawing, as explained in the several sections on Duawing, Perspective, and Shadows, given in this work. He should likewise have familiarised himself with the varying effects of the changes resulting from points of view and alteration of light upon some building of which he may have opportunities to make studies in the usual Geometric Drawings (explained 2490a. et seq.), so as to become imbued with that sense of general fitness of parts to the whole, which is meant by having the " compasses ill one's eye."

2828-2837. The simpler such a building may be, the easier it will be at first to begin to acquire the power of anticipating correctly the effect in a design if it be executed : that power can then be applied to designs of more complicated character resulting from the various methods, which we are about to poilt out, of obtaining proportions.

Sect. II.

HORIZONTAL AND vERTICAL COMBINATIONS OF BUBIDINGS.

2838. The different elements of a building are ranged by the side of or above each other, and in designing an edifice both these combinations must be kept in mind, though in the study of the subject, in order to lighten the labour, they may be separately considered. The two species of disposition are horizontal, as in plans, and vertical, as in sections and elevations.
2839. As respects horizontal disposition of the elements of a fabric, beginning with columns, their distance in the same edifice should be equal, but that distance may be varied as circumstances require. In buildings of small importance, the number is reduced as much as possible, on the score of economy, by increasing the distance between them; lut in public buildings they should be introduced in greater number, as contributing to the greater solidity of the edifiee by affording a larger number of points of support. They ought not, however, to be at all introducel except for the formation of porticoes. galleries, and the like subdivisions. The least distance at which they can be properly placed from a wall is that which they are apart from one another. This distance, indeed, suits well enough when the columns are moderately wide apart; but when the intercolumniations are sinall compared with their height and the diameter of the columns, their distance from the walls in porticoes must be inereased, otherwise these would be much too narrow for their height, affording shelter neither from the sun's rays nor from the rain. On this aceount, under such circuinstances, they may be set from the walls two or three times the distance between the axes of the columns. From this arrangement will result an agreeable and suitable proportion between the parts.

2840 The ceiling of a portico may be level with the under side of the architrave, or it
may be sunk the depth of the architrare, which may return in a direction towards the walls, thus forming sunk pancls in the ceiling, or the sinking of the panels may be as much as the whole height of the entablature, whose mouldings should then be carried round them. When several ranks of columns oceur in a portico the central part is sometimes vanlted, the two central columns of the width being omitted. The method of disposing pilasters in respect of their diminution las been treated of in a former part of this work. (2671, et seq.)
2841. The exterior walls which enclose the building should rum as much as possible in straight contimed lines from one angle to another; a straight line being the shortest that ean be drawn. The internal walls, which serve fur subdividing the building into its several apartments, should, as much as may be, extend from one side to the opposite one. Where they are intercepted by openings, they should be connected again above by lintels or other means.
2842. In fig. 1013. is shown the method of forming a plan or horizontal distribution, and combining it with the vertical distribution in the section and elevation. 'The thing is so simple that it can hardly want explanation. The equidistant parallel axes being drawn and cut at right angles by similarly equidistant ones, the walls, according to the required accommodations, are placed centrally upon the axes; and the columns, pilasters, \&e. upon the intersections of the axes. 'The doors, windows, niches, and the loke are then placed centrally in the interaxes, which must be bisected fior that purpose. Above and below the horizontal combination the section and plan are to be drawn. These vertical combinations are infinite, and from every plan many sections and elevations may be formed. 'The figure exhibits a building of one story only, with a central apartment occupying the height of two stories. But on the same plan a building of two or more stories may be designed. These may have two tiers of porticoes, one above the other, or one only on the ground story, forming by its covering a terrace on the first floor; or a port:co might receive on its columns the walls of the next story, and thus become recessed from the main front. So, again, the stories may be equal in height, or of different heights, as circumstances may require. 'The most usual practice is, above a basement to make the succeeding story higher; but above a principal floor the height of succeeding ones is diminished. The method of placing orders above orders does not require that any addition should be made to what has been said on that sulject in Chap. I. Sect. 11. of this Book, and by the same methods arcades over areades may be conducted.
2843. Not the least important of the advantages resulting from the method of designing just submitted to the reader is the certain symmetry it produecs, and the prevention, by the use of these interaxal lines on cach floor, of the architect falling into the error of false bearings, than whieh a greater or more dangerous fault cannot be committed, more especially in pubiic buildings. The subterfuge for avoiding the consequence of false bearings is now a resort to cast iron, a material beneficially enough employed in buildings of inferior rank; but in those of the first elass, wherein every part should have a proper point of support, it is a practice not to be tolerated. Neither should the student ever lose sight, in respeet of the ties he employs in a building, of the admirable observation of Vignola on the ties and chains proposed by Tibaldi, in his design for the baptistery at Milan: "Che le fabbriche non si hanno da sostenere colle stringhe ; "- Buildings must not depend on ties for their stability. The foregoing figure is from Durand's Precis d'Architcecture. We now submit, in fiy. 1018., an illustration of the principles of interaxal division

Fig. 1013.
from the celebrated and exquisite Villa Capra, near Vicenza, by Palladio, wherein it will be seen, on comparing the result with what has actually been executed, how little the design raries from it. It will from this also be seen how entirely and inseparably comected with
the !orizontal are the vertical combinations in the sec. tion and elevation, the voids falling over voids, and the solids over solids. Whatever the extent of the building, if it is to be regular and symmetrical in its composition, the principles are applicable, and that even in buildings where no columns are used ; for, supposing them to exist, and setting out the design as though they did exist, the design will prove to be well proportiched when they are removed. The full application of the principles in question will be seen in the works of Durand, the Précis and Cours d'Architecture, which we have used freely; and where we have had the misfortune to differ from that author, we have not adopted him.
2844. The student can scarcely conceive the infinite number of combinations whereof every desigu is susceptible by the employment of the interaxal system here brought under his notice; neither, until he has tested it in many cases, will he believe the great mastery in design which he will acquire by its use. In the temples and other public buildings of the ancients, it requires no argument to prove that it was the vital principle of their operations, and in the courts, cavedia, \&c. of their private buildings? it is sufficiently obvious that it must have beenextensively used. 'That its use in the buildings of those who are called the Gothic architects of the middle ages was universal, a glance at them will be sufficient to prove. The system of triangles which appears to have had an influence on the proportions of the early cathedrals may be traced to the same source (see the early translation of Vitruvius by Casar Cesarianus), and indeed, followed up to that source, would end in the principle contended for.
2845. It is impossible for us to prove that the interaxal system was that upon which the revivers of our art produced the astonishing examples many whereof are exhibited in our First Book; neither can we venture to assert that it was that upon which our great master Palladio designed the example above given, unquestionably one of his most elegant works; but, to say the least of the coincidence which has been proved between the aetual design and the theory upon which it appears to have been founded, it is a very curious, and, if not true, a most extraordmary circumstance. Our helicf, however, is, that not only Palladio but the masters preceding him used the system in question, and that is strengthened ly the mode (not strictly, we allow, analogous) in which Scamozzi, in the tenth elapter of his third book, directs the student to adopt in buildings seated on plots of ground whose sides are irregular.
2846. To Durand, nevertheless, the public is greatly indebted for the instruction he has imparted to the student in his Précis d'Architeciure more especially, and we regret that in our own country the art is treated by its professors too much in the manner of a trade, and that the seramble after commissions $t_{i s}$ is prevented their occupation upon works similar to those which have engaged the attention of professors on the continent. The fault, however, is perhaps not, alter all, so much attributable to them as to a govern-

Fig. lult. ment, whatever the party in power, till within the last five years (nay perchance even now) totally indifferent to the success of the fine arts, whose palny days here were under the reign of the unfortunate Charles. Our feelings on this subject, and love for our art, betray us perchance too much into expressions unsuitable to the subject under consideration, and thereon we entreat, therefore, the patience of our readers, hnowing " we have a grood conscience."
$\because 847$ Our huits preclude the further enlargement on this part of the sthbect, which in
detail would ocenpy the pages of a separate work, and which, indeed, from its nature, conld not be exhansted. We trust, however, enough has been given to conduct the stadent on the way to a riglit understanding of this part of the laws of composition.

Sect. III.

2848. The subdivisions, apartments, or portions whereof a building consists are alnost as many as the elements that separately compose them: they may be ranked as porticoes, porches, vestibules, staircases, halls, galleries, salons, chambers, courts, \&c. \&e. All these are but spaces enclosed with walls, open or covered, but mostly the latter, as the case may require. When covered, the object is accomplished by vaults, floors, terraces, or roofs. In some of them, columns are employed to relieve the bearing of the parts above, or to diminish the thrust of the vaulting. The horizontal forms of these apartments - a general name by which we shall designate them, be their application what it may - are usually spuares, parallelograms, polygons, circles, semicircles, \&c.; their size, of course, varying with the service whereto they are applied. Some will require only one, two, or three interaxal divisions; others, five, seven, or more. It is only these last in which columns become useful ; and to such only, therefore, the system is usefully applied. The parts whereof we speak may belong to either public or private buildings : the former are generally confined to a single story, and are covered by vaults of equal or different spans; the latter have usually several stories, and are almost invariably covered with roofs or flats.
2849. When columns are introduced into any edifice to diminish the action of the vaults and inerease the resistance to their thrust, the choice of the species of vanlt must be well considered. If, for example, the vaull of a square apartment (fig. 1015.) of five interaxal

Fig. 1015.

Fig. 1016.

Fig. 1017.
divisions be covered with a quadrangular dome, or, in other words, a quadrantal cove, mitred at each angle, twelve columns would be required for its support. If the vault were cylindrical (fig. 1016.) eight columns only would be necessary; but if the form of the eovering be changed to the groined areh (fig. 1017.), four columns only will be required. Supposing a room of similar form on the plan contained seven interaxal divisions each way, twenty columns must be employed for the coved vault, twelve columns for that whose covering was semi-cylindrical, and still but four for the groined vault. It is obvious, therefore, keeping economy in mind, that the consideration and well weighing of this matter is most important, inasmuch as under ordinary circumstances we find it possible to make four columis perform the office of twelve and even twenty. Here, again, we have proof of the value of the interaxal system, whose combinations, as we have in the previous section observed, are infinite. But the importance of the subject becomes still more interesting when we find that economy is inseparable from that arrangement whose adoption insures stability and symmetry of the parts. These are considerations whereof it is the duty of the arehitect who values his reputation and character never to lose sight. If honour guide him not, the commission wherewith he is intrusted had better have been handed over to the mere builder, - we mean the respectable builder, who will honestly do his best for his employer.
2850. What occurs in square apartments occurs equally in those that are oblong, for the first or square is but the element of the last. If it happen that from the interaxal divisions contained in the length of an oblong or parallelogram, the subdivisions will not allow of three bays of groins, it does not follow that the arrangement must be defective, for one may be obtained in the middle bay. In subdivisions of width, allowing five interaxes, at least four columns would be saved, and in those of seven interaxes eight columns might be dispensed with. (See fig. 1018.)
2851. When the subdivisions on the plan, supposing it not square, take in five interaxes whichin the longitudinal extent of the apartment include several bays of groins, whose number must always be odd, one column is sufficient to receive cach springing of the areh, but in those of seven interaxal divisions two columns will be necessary. (See fig. 1019, A.)
2852. If the vaulting be on a large scale, its weight and thrust are neeessarily increaned,
and the columns may be changed into pilasters conneeted with the mair. walls, as in fig. 102. , or as II in the preceding figure.
2853. The height of the apartment from the floor to the springing of the arehes will be found three interaxes in apartments whose horizontal combination is of five interaxes, and four and a half for the height to springing of such as are of seven interaxal divisions ons the plan. Where the combinations are different in the adjoining apartments the heights just mentioned afford the facility of lighting the larger one above the crown of the lower one, as at B in fig. 1019.

Fig. 1018.

Fig. 1020.

Fig. 1019
2854. Sometimes the springing is from the walls themselves, as at C, fig. 1019., instead of from the columns as at L. The first of these arrangements should be permitted only when en suite with the apartment there is another, D, wherein the springings are from columns. When the apartment is the last of the suite, the springings inust be from piers or columns, one interaxis at least from the wall. If all these matters are well understood, as also the sections upon the orders, and upon the different elementary parts of a building, a graplic combination has been established by which we shall be much aided in the composition or design of all sorts of buildings, and enabled, with little trouble, and in a much shorter period of time than by any other process, to design easily and intelligently. To do more distinguishes the man of genius from the man who can be taught only up to a certain point.

Sect. IV.

2855. Having shown the mode whereby the parts of a building are horizontally and vertically combined in the several apartments, which may be considered the grammar of composition, we shall now show its application in the leading forms or great divisions of the plan. Keeping in mind the advantage, upon whieh we have before touched, of arranging the walls of buildings as mueh as possible in straight lines, we should also equally endeavour to dispose the principal apartments on the same axes in each direction. Upon first thoughts the student may think that a want of variety will result from such arrangement, but upon proper refleetion he will in this respeet be soon undeceived. The combinations that may be made of the different prineipal axes are, as above stated, numberless, that is, of those axes whereon tice parts may be advantageously placed so as to suit the various purposes to which the bulains is destined, paying also due regard to the nature fif the ground whereon the tabric is to be erected
2856. Let us, for example, take a few only of the combinations which may be formed from the simple square, as in the first sixteen diagrams of fig. 1021 ., by dividing it in both directions into two, three, and four parts. The thick lines of the diagrams may be considered as representing either walls or suits of apartments, in which latter ease the open spaces between them become courts. In reference also to the vertical combinations connected with the
 dispositions in question, some parts of them may consist of one, other parts of two and three stories, as well for additional accommodation of the whole building to its purpose as for producing variety of outline in the elevation. If, as in some of the diagrams, we onit some of the axes used for the division, such omissions produce a new series of subdivisions almost to infinity. By this method large edifices may be most advantageously designed; it emables us to apply to the different leading axes the combinations suitable to the destination oit the building. Considered however as merely an exercise for the student, the use of it is so valuable that we do not believe any other can be so beneficially employed by those masters who profess to teach the art. We have not gone into the subdivisions of the circle in detail, contenting ourseives with the two most obvious dispositions. These are susceptible of as great variety as the square, observing however that the leading axes must be concentric.
2857. Following up the method just proposed, let us imagine a design consisting of a certain number of

 $15+1$ similar and dissimilar parts placed in certain relations to cach other. Now, having fixed clearly in our mind the relative situations of the several parts and the mode by which they are connected with each other, we shall have a distinct perception of the work as a whole. We may abbreviate the expression of a design by a fiw marks, as in fig. 1022., wherein the crosses tepresent square apartments, and the simple li.es are the expressions of parallelograms, whose relative lengths may be expressed by the lengths of the lines. The next step might be to expand these abbreviations into the form given in fig. l023., on which we may indicate ly eurses and St. Andrew's crosses, as dotted in the diagram, the way in whels the several apartments are to be covered.
2858. We may now proceed wit! the design; but first it will be well to consider one of the apartments, for which let one of the angles 13 be taken (see fig. 1024. and 1025.). Suppose it, for instance, to be five

Fig. 1022.

Fig. 1025 or imy other number of interaxal parts spnare. This, then, will be the width of the apartments whose forms are that of a parallelogram; and inasmuch as in this apartment the diameter of the vanlt will be diminished by two interaxes, which results from the use of the four angular columns, the groined vault will be of the width of three interaxes, and the same arrangement will govern the rest of the apartments. In the centre an open court is attendant on the disposition, as indicated by the diagram. The section wheh is the result of the combination, subject however to other regulation in the detail, is given under the plan of the figure, and the elevation above it entirely depends upon, and is regulated by: the joint combination of the plan and seetion. The example is given in the most genera way, and with the desire of initiating the student in the theory of his art. The building here instanced might serve some public purpose, such as a gallery for the reception o: painting or sculpture, or at least give the hint for one; but our object is not to be mis. understood, - we seck only to give the tyro an insight into the principles of composition.
2859. It is not our intention to enter further on the variety which follows the method on designing, of which the foregoing are only intended as hints; but we cannot leave the subicet without sulmitting another example for the study of the reader. Our desire is that of establishing general principles, whereof fig. 1026. is a more complete illustration than those that have preceded it. The abbreviated form of the horizontal disposition is shown at A, and in B it is further extended, and will be found to be very similar to that of No. 15. in fiy. 1021. In the example the interaxal divisions are not drawn throught the

Fig. 1024.

$\mathrm{Fi}_{\mathrm{i}} .1025$.
glan, but it will be immediately seen that the space allotted to the whole width of the partments is three in number. In the eentre a circular apartment is introduced and covered with a dome, which might have been raised, in the vertical combination, another story, and thus have added more majesty to the elevation. And here we repeat, that in

Fig. 1026.
designing buildings of more than one story, (for it cannot be too often impressed on the mind of the student), the combination of the vertical with the horizontal distribution will suggest an infinite variety of features. which the artist may mould to his fancy, although it must be so restrained as to make it subservient to the rules upon which fitness depends.
2859a. We cluse this portion of the subject with an example in perspective from Durand. The general plan, A, fig. 10-6., will be found simitar to No. 11 in fig. 1021., and the distiibution may be a good practice for the student to develope. It is an excellent example for exlibiting of what plastic nature are the buildings which the vertical combinations will adhuit as based on those which are horizontal.

Secr. V.

GENERAL PRINCIPLES OF PROPORTION.

(The following pages of this section were originally compiled by the late Edward Cresy for his Encyclopadia of Civil Engineering, publi>hed by Nessrs. Longmans, who have now duemed it preferable to place it in this edition of Gwilt's Encyclopadia of Architecture, as being in every respect a more suitable place for it.) (1867).

That branch of the principles of architecture which is most intimately connected with the architect's practice, the proportioning of masses, or the arrangements for the supports of an edifice, must be the objects of his unwearied study and attention. We shall, thercfore, here endeavour to point out, as triefly as possible, the gencral features which in this respect belong to the two oldest divisions, viz. the Greek, and the Roman, architecture.

That part of Greece which lies to the south of Thessaly, near the foot of Mount Othrys, is supposed to have contained the capital of Hellen, who lelt his kingdom to his three sons Nolus. Wurns, and Xuthus, the second son becoming the founder of the Dorian race, and the youngest that of the Ionian.

Architecture can hardly be said to have existed as a science until the Dorians perfected that style, which we find in the temples and other buildings seattered throughout those islands and countries in the Mediterrancan Sea which received Doric colonies. The dwellings of these early civilisers of mankind were plain and simple; the laws of Lycurgus forbade the use of any carving or decoration, their doors being fashioned only with the saw, and their roofs by the axe; but in their temples and public edifices, they were encouraged to bestow more labour and superior workmanship : the Dorian architecture appears never to have undergone any great change ; the same style, and almost the same proportions, are found in most of the examples that have been spared us.

These people spread a knowledge of the arts of construction wherever they settled; and we find them at a very early period in the northern districts of Greece, under the Olympian cinain of mountains, in the island of Crete, on the eastern side of the northern coast, on which is situated the town of Cnossus with its harbours, Heracleum and Apollonia, at which latter places their religious rites were celebrated. After having overrun Thessaly, they seat firm thence a colony to the district of Driopis, called the Doric Tripolis, between Cita and Parnassus, from the union of the three cities Brum, Cytinium, and Erineus, and, subsequently, when Acyphas was added, Tetrapolis.

The country next occupied by the Doric tribes extended from the river Sperchius beyond Eta to Parnassus and Thermopylx, but the most important of their migrations was that called the Return of the Heraclida. After this period they were for a short time driven into Attica, where they received protection from Theseus, and when again settied in the Peloponnesus, they sent out colonies to Rhodes, Cnidus, ard Cos, led by princes of the Heraclida from Argos and Epidaurus. Another colony from Troezen was established at Halicarnassus. The towns which composed the Tripolis of Rhodes, together with Cnidus, Cos, and Halicarnassus, formed the Doric league called Hexapolis, but after the separation of the latter place, Pentapolis: this league met on the Triapian promontory to celebrate the rites of Apollo and Ceres. A colony was sent from Lindos to Telos; others from Cos, Nisyrus and Calydna; from Argos to Carpathus, now the island of Scapanta; from Cuidus to Syme, a town of Asia Minor; from Megara a migration took place, which settled at Astypalea, one or the Cyclades; and others to Anaphe, Thera, Plhalegandros, Melos, Myndus, Mylasa, Cryassa, Synnada, and Norieum in Phrygia.

The Rhodians fonuded Gagæ, and Corydalla in Lycia, on the shores of Asia Minor; l^{\prime} inaselis on the confines of that country; Pamphylia; and Soli in Cilicia. According to lhucydides, about 713 years before Christ, Antiphemus led a colony from Lindas, and founded the town of Gela in Sicily.

Corinth sent out numerous colonies from Lechæum in the Cresæ.n Gulf, which founded Syracuse about 760 years before Christ; Molycrion, Chaleis, towns of Æolia; Salicum in Aearnania; Ambracia and Anactorium in Epirus; Leucadia, now the island of St. Maura, which was formerly joined to the continent by a narrow isthmus; Coreyra, on the coast of Epirus; Epidamnus in Macedcnia; Apollonia Potidæa, with several others.

Issa, an island in the Adriatic, was peopled from Syraeuse. Megara, situated between Corinth and Athens on the Sinus Saronicus after it hecame a part of the territory of the Heraclidx, sent colonies to Astaens in Bithyma and Chaleedon, another city in that province opposite to Byzantium, Selymbria in Thrace, and 11erachai in Pontus, celebrated for its naval power.

Megara also colonised Hybla in Sicily, famous for its wild thyme and honey, which people founded Selinus. Sparta founded Tarentum about 700 years before Christ, whicn at one time comprised thirteen tributary cities within its govermnent, and could muster 100,000 foot and 3000 horse.

From Gela, which was eolonised from Lindus in the 1sland of Rhodes, originated Agrigentum, a place of considerable importance at the time the Cretan Phalaris obtained the sovereignty; indeed Crete and lihodes jointly may be said to be the founders of Agrigentum.

In following the progress of the Meraclidx along the shores of the Mediterranean to the Pillars of Hereules, we find wherever they settled those beautiful examples of construction in masonry which we can never be weary of admiring and studying. The temples in the Doric style in Sicily are of great beauty, and they may be some years anterior to those now remaining in Grecce, but the difference cannot be very great: those at Syracuse and Agrigentum were constructed from the spoils obtained when Hiero defeated the Carthaginian general Hamilear at Himera, and those at Athens were not built till some time alter the defeat of Xerxes; but by some of the historians it is said that both battles were fought on the same day, that whilst Hiero was obtaining his independence, the Persians were overthrown at Salamis. Some time, however, elapsed after these vietories before the Athenians and other states of Greece which had been engaged in the war reeovered their prosperous condition; and it was not until the time of Pericles, which is nearly 50 years after the building of the imples at Agrigentum and Syracuse, that the restoration of the Parthenon and other public buildings throughout Greece was modertaken. The temples at Selinus are said to have been built when the city was founded, 620 years before Christ, and it is asserted they were entirely destroyed when the inhabitants deserted the city 950 years after its foundation : conld this be proved, they would rank anong the first erected.

The Propylea at Athens was built by Mnesicles in the 85th Olympiad; and a few years afterwards, when Pericles governed, Ietinus completed the Parthenon, and probably the temple of Theseus. The temples at Sunium and Plygalia were also the work of that renowned arehitect, and are deservedly ranked for their proportions and execution among the most graceful productions of Greek arehitecture. The temple of Jupiter Panhellenius in the Island of Egina was founded by Eacus before the Trojan war, but the ruins we now admire no doubt may be referred to the time of Pericles.

The source of those beautiful effeets which have received the almost instinctive admiration of every age and country can only be traced by correct measurement, and a careful observation of the proportions of the masses, which will ahnost irresistibly convince us that in temples and fronts of porticoes one general law prevailed, and was applied to all tetrastyle, hexastyle, and octastyle arrangements, based upon the proportion of a cube. This is found to govern most of the designs executed from the time of l'ericles to the death of Alexander, the golden age of Greek art, when sculptors, painters, arehit cts, and engineers were called forth to vie with each other in their several branches, and workmen of skill and ingenuty were found to embody the suggestions of their inagination; and the results would lead us to suppose that the acmé of perfection was attained, for sinee that period none of the productions either in sculpture or architecture have equalled those of the Greeks in the simple elegance of their design, or the excellenee of their exceution.

Titrastyle Porticoes with four columns exhibit the simplest, and perhaps the earliest, application of the Doric order; the entire façade is comprised within a square, the height being divided into three portions, the upper constituting the entablature, and the other two-thirds being divided equally between the supports and their three intercolumiations, making the latter a little more than a diameter. We may imagine the square divided in its height and width by 8 , making altogether 64 compartments of equal area; the upper 8 devoted to the pediment will have, when the inelined sides are set out, a diminution of onehalf their area, four whole squares leing rejected in those parts above the pediment, the area of the tympanum being only equal to four. The entire mass is thus redueed to the area of 60 of these squares, which are thus disposed of; 20 are given to the supports, or 5 cubes to each column, 20 are divided between the three intercolumniations, and the remaining 20 constitute the load supported; the columns are 5 dianeters in beight, and bear no more than their own weight, a due harnony being obtained through-
out ; the eye is satisfied that the toad cannot distress its supports, and the spaces between the supporting masses are again proportioned and made equal to either, so that we have a triple division, - one, the perpendicular arrangements of the supports, another their just distribution or equal distances, and the third, the entablature proportioned to the strength that is to carry it, all of which are comprised within the boundary of a square. The tetrastyle porticoes that remain are not numerous, and none are perfect; three have been selected, which will enable us to test the idea we have attempted to define. First, that at Elcusis, the entire width of which is 20 feet 6 inches, the height 21 feet 6 inches; and if we reject half the height of the pediment we shall have a square : the united diameter of the columns only varies 5 inches in width from those of the intercolam-

Fig. 1027.
TBTRASTYLE PURIICOES. niations.
If we divide the height into three, rejecting, as already observed, half the pediment, which in this case is 1 foot $1 \frac{1}{2}$ inch, we have for the height of the square 20 feet 4 inches, whilst the entire width is 20 feet 6 inches, a difference not very great: this divided into three, and giving two-thirds to the height of the columns, would make them only 13 feet 6 inches and 8 seconds, whilst they really are 14 feet $2 \frac{1}{2}$ inches in beight. In this example the entire height, which we may call 21 feet $5 \frac{1}{2}$ inches, is divided into three, two parts of which constitnte the height of the columns.

In the Temple of Themis at Rhamnus, the width is 20 feet 11 inches, and the height the same, the diameters of the columus being in excess 3 inches only above the width of the intercolumniations.

In the Doric Portico at Athens, the entire height equals nearly the width.
Hexastyle Porticoes. - The practice of the Dorian architects, in setting out a temple with six columbs in front, appears sometimes to have been to divide the width into twelve parts, the height without the pediment being made equal to eight of them; thas forming a façade within a parallelogram or a square and a half: as the ninth division in height cuts the pediment in half, we have thirty-six squares for the entablature or mass supported, being the same quantity found in the six columns and the five intercolumniations; at other times we find the entire width divided into nine parts, and six given to the beight, one of which indicates the pediment, thus rising a ninth : if a circle be described in the tympanum, and a horizontal line drawn throngh the centre, cuttmg off a twelfth of the height, the remaining $\frac{11}{12}$ being divided into three equal parts, the upper third, or entablature, heing the part supported, the remaining $\frac{2}{3}$ are divided between the colnmms and their interspaces; thus making the columns equal to $\frac{2}{3}$ of the height comprisel between the centre of the tympanum and the platform upon which they were placed.

If we take each of these nine parts as 5 feet, we have 45 feet for the width, 30 for the height, including the 5 feet for the rise of the pediment, which if we divide by the borizontal line, to obtain its true area or quantity, we shall have 2 feet 6 inches for its mean height, and 6 feet 8 inches for that of the level entablature: for as we have observed, these two dimensions, which make 9 feet 2 inches, must be equal to half the beight of the columns, or the whole will not be divided into three parts; or, which is the same thing, the height from the centre of the pediment must be divided into three parts, and the upper division taken for the entablature. These proportions are exceedingly simple in their application; if it were intended that the columns and the spaces between them should be equal, half the width of the façade, or 22 feet 6 inches, should be distributed among the intercolnmniations, and the other half divided among the columns.

The Temple of Theseus at Athens is one of the best preserved as well as the most admired, and was probabiy ereeted soon after the Parthenon; it is of Pentelican marble, adorned with admirable scuptares. The total width of its bexastyle portico is 45 feet, and its height, instead of 30 , is 31 feet; the extra foot, which prevents it being an exact square and a half, is given to the pediment, which probably has undergone some change, as it rises much more than the ninth of its whole extent.

Fig. 1028.
hexantvee poltticoes.

The height of the pediment is	-	-	-	-	$\begin{gathered} \text { Fest. } \\ 5 \end{gathered}$	${ }_{9}{ }^{\text {m.75 }}$
level cornice	-	-	-	-	1	$0 \cdot 45$
frieze -	-	-	-	-	2	$8 \cdot 55$
architrave	-	-	-	-	2	$8 \cdot 9$
columus	-	-	-	-	18	$8 \cdot 8$
and of the entire f		-	-	-	31	0.4

making together a dimension nearly equal to half the height of the
columns. ${ }^{9} \quad 4.775$
The façade of this beautiful temple is divided equally into three parts; $\frac{1}{3}$ is given to the entablature, and the other two to the columns and their intercolumniations. The outer columns are 3 feet 4.85 inehes in diameter, and all the others 3 feet $8 \cdot 4$ inches. The middle intercclummiation is 5 feet 3.95 inches, the next two each 5 feet 4.05 inches, and those towards the angles 4 feet 6.35 inches. The diameters taken together are 20 feet, and the intercolumniations 25 feet, so that the columns and their spaces are not in equal proportions: the furmer would have required a diameter of 3 feet 9 inches, which would have made them nearly five diameters in height, instead of what they are; they would have been heavier, it is true, but more in accordance with the early examples.

The Hexastyle Temples at Rhamnus, Sunium, Egina, Eleusis, and Phygalia, are not sufficiently perfeet to enable us to decide whether our principles would apply to them : but from the judgment we can form from their remains, they appear to have been all comprised in a square and a half, and their entablatures and pediments in the proportion of a third of the whole.

The Hexastyle Temple at Segesta in Sicily is sufficiently perfect to enable us to judge of its entire proportions.

Feet. In.
Its total length is
and beight - . - . . 508
or the whole façade is bounded by a square and a half.

				Tect. in.		
entablature	-	-	-	-	11	4
Total height of superincumbent mass			-	-	15	6

which is exactly one-half of 31 feet, the height of the columns; so that we have, as far as height is concerned, $\frac{1}{3}$ for the superincumbent mass or entablature, and $\frac{2}{3}$ for the colunns. and their intercolnmniations.

		Fect.	
The columns have their united diameters	-	-	$-\quad 37$
The intercolumniations ditto -	-	-	

so that they are not in exact equality, although the difference is not considerable.
At Agrigentum are the remains of four Hexasty'e Temples.- That of Juno Lucina is witheat its cornice and pediment : the diameter of the colmmns is 4 feet 6 inches, and the entire width is $5 j$ feet. The united diameter of the six columns is 26 , and of the five intercolum. niations 29 feet.

The Temple of Coneord is in width 57 feet, and in height 38 ; or it is comprised within square and a half.

The hieht of the colum			Feet.In. $2: 3$		
The height of the	-	-			
	-	-	-	8	0
pediment	-	-	-	7	0
					0

		Feet	In
Half the height of the perliment is	-	-	-

Thus one-third of the entire height is given to the entablature or mass supported. The united diameter of the columns is 28 feet, and that of the intercolumnistions 29 feet, the latter being a little in excess.

Temple of Hercules. - The total width is 84 feet, and height 56 , which is a square and a balf.

The united diameter of the columns is 43 feet, and that of the intercolumniations 41 feet. The height of the entablature and half pediment is in this case 17 feet 9 inches, instead of 16 feet 9 inches, as it should have been to have equalled half the height of the columms.

Temple of Castor and Pollux is imperfect, but the total width is 45 feet, of which the diameters of the six columns occupy 24 feet, and the intercolumniations 21 . The height of the columns is about 20 fect, and that of the entablature 8 feet, as measured on the flank. This temple nearly agrees in width with the temple of Theseus at Athens, but its proportions vary; there is not sufficient remaining to judge of its entire form.

At Selinus are the remains of five hexastyle temples. In one the total extent is 51 feet, of which the united diameters of the columms oceury 24 , and that of the five intercolumniations 27 feet. The height of the entablature is about 11 feet, but that of the columns and pediments has not been yet ascertained.

The second temple is in width 77 feet 6 inches, the diameters of the columns occupying 37 feet, and the five intercolumniations 40 feet 6 inches; the height is 50 feet 8 inches, so that the whole façade is included in a parallelogram, having a height not quite equal to two-thirds its extent, or a square and a half.

which is a foot less than the required height.
In this example there is not an exact correspondence betwern the coiumns and what they support: the entablature and pediment oceupy 13 , the intercolumniation 12 , and the
columns 11 parts out of the whole number, 36 , into which the parallelogram may be supposed to be divided.

The third temple is not sufficiently measured to enable us to examine into its proportions; the total width is 79 feet, of which the united diameters of the six columns occupy 36 feet, and the five intercolumniations 43 feet.

The fourth temple is in width 84 feet 9 inches, and in height 56 feet 6 inches or a square and a half.

Thus the heights are in just proportion, one-third beng given to the entablature and pediment, and the other two-thirds to the eolumns and their intermediate spaces, which are in the proportions of 44 feet 9 inches for the columns, and 40 feet for the five interrolumniations.

The fifth temple is 81 feet in front, the six columns oecupying 37 feet 8 inches, and the five intercolumniations 43 feet 4 inehes. The height of the column is 31 feet, and the entablature 15 feet 6 inehes, or one-lalf the height of the column, so that, without the pediment, the entablature in this example would constitute a third; and if the pediment had only risen 7 fiet 6 inches, to make the general proportion a square and a half, these columns would have had more to sustain than any other example we have yet referred to.

Octastyle Temples.-We will now apply these principles to a façade with eight columns, and endeavour to follow the same system. We have already had a square, and a square and a half, as the form or figure within which the design was comprised; the portico of four columns being cireumscribed by the one, and that of six by the other; and as in the octastyle there are double the number of columns contained in the first, a double square is required to comprise it, that the same relative proportions may be obtained.

Fig. 1029.

> OCTASTYLE PORTICOES.

After the width of the façade is determined, it is divided into sixteen parts, and ten are sct out for the height to the top of the tympanum of the pediment; which generally rising a ninth of the extent, two divisions will serve to denote it, and if a circle be inscribed in the tympanum, and a horizontal line drawn through the centre, we shall have a parallelogram 16 squares in width, and 9 in height.

Six squares in height will determine the under side of the entablature, which, if divided equally between the columns and their intercolumniations, would give 48 squares to each, which are precisely the proportions of the example we are about to examine.

I're Parthenon or Temple of Minerva at Alhens is admitted to have the most beautiful proportions of all octastyle Greek examples; its entire width, measured in the front of the columns at the base, is 100 feet 9 inches, and its height to the centre of the tympanum, from the level of the platform on which the columns are placed, 51 feet $2 \frac{1}{2}$ inches, 20 inches only beyond what it should be to accord with the rules laid down. Dividing this height into three parts, we have in round numbers 17 feet 1 inch for each: the beight of the entablature and half pediment is 17 feet, and that of the columns 34 feet 2 inches, precisely one-third of the height being devoted to the entablature, the lower two-thirds being divided between these and their intercolumniations; adding all the diameters together, we have 49 feet 6 inches; the intercolumniations being 51 feet 3 inches, or only 1 foot 9 inches in excess for the latter: hence if a parallelogram or double square be divided into $40 \frac{1}{2}$ squares, and $13 \frac{1}{2}$ be given to the columns, the same quantities to the intercolumniations, the entablature and its pediment, we should have the general proportions of the Parthenon, the difference before alluded to being too slight to produce any effect on the eye in so large a mass. The height to the centre of the pediment is 51 feet $2 \frac{1}{2}$ inches, consequently the width to make it an exact double square should have been 102 feet 5 inches, instead of 100 feet 9 inches: and this difference may have been occasioned by the difficulty of setting out the triglyphs or from the idea that the width, as measured along the corona, should have some consideration, and a mean be established.

As we have before observed that the Parthenon is considered perfect both in its design and execution, a more detailed account of its construction and mouldings will be the best illustration that can be offered on the subject of Grcek masonry, premising that in the present instance it is all of the finest marble from Pentelicus.

The Doric Column varies considerably in its proportions, some not being more than four diameters in height, whilst in other examples they are from that to six and a half: those we are now considering are formed of twelve blocks; on the upper and lower bed of each are described two circles, the circumference of the outer being 9 inches from the edge. whilst the inner circle is only 20 inches in diameter. The space between these is not polished, but left rough as from the chisel, and a little sunk for the purpose of retaining

a fine mortar or cement. In the centre of each block is a square hole, measuring $5 \frac{1}{2}$ inehe. on each side, sunk 3 inches in depth; in these were inserted pieces of hard wood, 6 inches in length, to steady the blocks, and keep them from being displaced, particularly at the time the flutes were worked, or the exterior was undergoing the process of polishing. The outer columns are 6 feet $3 \frac{6}{10}$ inches in diameter at bottom, and the others 6 feet $\frac{1}{10}$ inch, the upper diameter of the latter being 4 feet 9_{4}^{3} inches: their total height is 34 feet $2 \frac{8}{8}$ inches, or nearly five diameters and a half; the diminution is not regular, there being at a certain height a swelling or entasis, which improves the outline, and destroys that meagreness which is the result of a straight line. The angular column is a little more in diameter, that it may not appear less than the others, which are not so surrounded by air.

The shafts have generally twenty flutes, uniting in an arris, and not with a square fillet between them, as in the other orders; they are elliptical in some examples, as at Pastum, where their number is 16 and 24 ; the heads are variously finished. The capital of this order varies in its height from $\frac{1}{3}$ to $\frac{2}{3}$ of the lower diameter of the columns, and the
abacus is sometimes more than $\frac{1}{4}$ longer than that width, all these proportions depending more upon the height of the column than upon its lower diameter.

Under the abacus is the echinus or ovolo, which is beantifuliy turned, or cut like the bell or profile of a flat cup, under which are usually from 3 to 5 annulets. The contoun

or profile of the echinus is a portion of a curve formed by the section of a cone. Where the capital is placed on the column is another sinking, and sometimes three; and the truc and delicate manner in which these lines are cut gives a charm that more elaborate sculpture fails in attaining.

The architrave of the Parthenon, which extends from the centre of one column to that of the other, is in three thicknesses, showing two joints on the soffite. The frieze is admirably contrived not to overload the architrave : the triglyphs are each in a single hlock, 3 feet wide and 2 feet 3 inches in thickness. On each side is a perpendicular groove $1 \frac{1}{2}$ inch deep, into which the sculptured metopes are slipped, the clear width between the triglyphs being 4 feet $3 \frac{15}{150}$ inches, and the angular one 3 inches less: at the back of the metopes, and between the triglyphs, is a hollow space, from 8 to 14 inches deep. The metope is held to the back of the fricze by a metal cramp in the form of an H, 2 feet long, and attached on each side to the adjoining triglyph by others 17 inches in length. The cornice is in one thickness ; the angular block covers two mutules, each of the others one space and a matule. For further particulars of the construction of the Parthenon, and for several dimensions omitted by Stuart, the writer must refer to some notes he added a few years after his return from Athens to his wife's (Mrs. Cresy) translation of "The Lives of celebrated Architects, ancient and modern, by Francesco Milizia," 2 vols. 8vo. 1826.

In the Doric Order we may trace a reason for the direction given to the several lines, whether perpendicular or horizontal ; and although there is great variety in the form of the members, yet when examined in detail, nothing will be found to disturb the unity

If be dasien. The roids ate nicely adjusted to the solids and all those parts, as the solamns and tigirphi ictended as suppors, are striated perpendicularly, whilst those sup proted are decoraied with members and mouldings running horizontally, and indicatine res or zepose. The incliaed lines of the pediment are the only exception to this rule and Lhes are composed of lonzitudinal members, placed consistently with their use, viz that of

 Qi the capital indicare so mary cincrures to bind the tops of the perperdicula: fute "getber: before tie e'ean: tarza of cup-izke raze is placed beireen the shaft and the abacuis

Iowic Propht juk - This sigle seems vesy neatl coeval with the Doric : it is supposed by sorne oumuentains in be of Achaic o:irin by orhers of Persian; Loth Greeks a id Parsiass mar hare coutributed io iss formation ; the term Iocic was applied io it by Vitru-fin- foviti being Exst used by the inhabitants ot Ionia; the few perfect examples re-

The shotes of Avia Mon, ia the ieign of Medon the son of Codres tere taien passession o: by a dymber of Greeks who commenced the: mig.ation about a thousand years beiuce CEris; atee wey had pasted tom Awica ibey Ars: mixed with the inhabitants of Caria zai the Leilezs. Helen the son of Diccalion tho reighed in Phihia, situated be-
 कouza: in sethersects elsewhere: Dorus established bimself in the reighbourhood of Pamassus and Xutious is Atties bbere be married the daughte: of Erechiteut, the sore-

Is with \equiv rume: of toilowers irom A-hens west into the Pelopoaresus and established

 his dominions; Io buil: Helice and calici the inhabivarts Iorians. sme time enet Io \#as :icallei io -1 itiens io commanit the tuosps in a wai apains: tie Tinacians, oret whom
 "us civiceci by I 2 among fuer irbes the Geleostes the A zades the . Egicoras, and the
 "xarcis

When Fist thens c̈erl. Cexrops, his eléest son succueded and Xivilux, his oiker son, was inve= ous of Artica; in the countr! he attermards in'sebited he kuil: four towns,
 Achacus then passed ines Laconia and Thessaly, when he recorerfd his faeher's domirinos;
 of Dausur oce of the rofal ¿auily of Argos. The Iacedxmonjons and . Egears were
 and obl zati so Zee :0 Arzalus and is:0 A-tica, where the lomiars again received thern on acesonts of ibeiz ormmon stigin
\therefore : the duath of Codrus bis yourgest son Nilers emberied with a.l the Ioniars into \therefore ina Where ibet vecpiel eigit of the Iosian cities riz. Milewus. Ephesus Mrus, Tsos

 Neathe acoo:dag is Hecoioros, ines mete previously so civided is the Pelopcrnesus; the rames citue cit ita fom whesce thet were ejectel we:e Pellene sea: Sicton, Fgira and

The inhabituta of Achens =ho migratod trom the "ry"aneum rere the most noble
among the louians, though all who celebrated the Aplurian festiral. from which alone the Ephesian and Colophonisus were exeluded, were afterwards callet Iomians.

The appellations Doric. Ionic, and Corinthian ane derived from Vitrurius: bur is appears doubtul whether these terms were currems among the Greoks: thas author asserts that the first is the mo-t ancient; "for Dorus the son of Hellen. and the mymp Orseis, huilt the temple of Juno at Areas of this order when he reigned orer the whole o: Achaia and Peloponesus: that many femples anterwands eneved throughent Grecte were of the Dorie order, but by command of the Delphic orate ia a general asemably of the different states of Grevie, thirteen colonies were sent into Asta, who built the cities betore mentioned, and erected temples; among the first they dedieated was one to Apollu l'anionios having Doric proportions, and another to Diana, in which some variatiens mas made. The first was of a masculine proportion, the other feminine, and the lamer was the invention of the Iomain setters and atterwands called foum them lonie.

But if it he difteult to trace the lonie order to its origit, we may amave its propmotions and compare then with that onder which prevaled so mivensaly in Geetre, which will lead un to remark that a very great change fow place when the rules that guided the Doric builders were had aside: at no other peried were stoch material slecrations made in the proportions of the mases the columbs entablannes and imeroblumnations: to the Corimthan, so umiversally used in later times by the homans the feminine propurtions were applied which are stated by V"itruvius to have commenezd with the lomisas.

There is of course moch table in all the acounts that have reached us upon these importomt changes but among them is one which seems to carry with is some semblance of trusho sud which is as foilews:- "when Hermesmes was employed to eroct the temple of baschus at Tows, awording to Virmowis the marble was preparet for one ia the boric style: hut the arehitert changed his mind. from the idea that other propertions atterwards called lonis, were more sutable for the purpose shmost indueing the inference that Hermogenes was the inventer of these deliente propurtions: he sppears ungtestionably to hase dis. phayed great shill and iagennity in all his desighs amd to have entertaned the opinhoa that saceat huidings should mot be construeted with harie propertions as they abliget the ndoption of false and ineongrowes armemememe"

To obtain meredeliante proportions withous soriticing the grast primeiple of mahat the weight supported equal to its supports. would seem at first dittients: in the example of the Dorie order we have seen this practice umiversally adopted, and it is eypally widens in the lomic. though not exactly after the sume method: the oolums and their cutabuture or whar they sarry, arree it dumaty, but their diveribution is differens. The square or figure wheth bends the lonie fagste is divided into four parts one of which is given to the ritablature, a setwod to the cohume and the other twe or ome halto are distributed amtorg the interowhmamions.

In the quamtity of material for constrating the two varietios of tomplos there is a considerable ditference the Dorie requiring onechind more than the Jomic: for example, in a 1) orie tetrastyle portion where the area was 13 , four parts would be given to the entahlature. four to the cilumas amd feur to she interwhumiations In the lonie shree parts would be reypired for the entablatures, and three for the columbs six being shlowet fios the iatercolunnations: thas one temple wobld have cight, and the other six parts solid ous of twelle comsoquently, with a given quantity of materials two very diderent portions might be built. without making amy change in the propertions which the columas loar to their entablatures. Hermugenes onnlal eanstruet with the same material a muth barger temple in the lomie style than in the lhorie: and suppoting the dimensions alrady accibed upom, there woudd be a swing of labour and material: from the imperfers sate of the lonie temple remaining it is saanely possible to enter inte a thonmeth ewamimation of etheir proportions; that an the llisass at A thens measured by suars, no longer eaisto but its dimensions, given by that very aconrate delineator, may serve our parpowe as am example of a tetratele portion. Its entire width was ts feet if ineltex and height tw the top ot the level corntice in trone 15 feet tithehes of wheh mast be added that of the tempamm of she peoliment: multiplyins the wroth hy the height of the entahlature and
 the portions supported 10.5 fies + inehes and ? purs: the quantity owatained in the four

 purts, which mattiplied be the height of the columus is $1: 0$ tieet 1 inch and ? parts for the sreat: fo fert : inches and ? parts lese than it wonld have bew had it equ.ellod the quansty: contaned in the colnmas and their entablature or been one half the entire ane of the fogade

The portion of this elegat cample of lonie was nearla as sinare without the peoliment. and the supports and supported are in caact stovedane as to quantits, whils the inter-

Fig. 1039.
portico, as already done for the Doric order, having the same number of columns, and like the tetrastyle eustyle of Vitruvius, divide each side of the square which eircumseribes it into $11 \frac{1}{2}$ parts, premising that the pediment rises a ninth and one side of the square passes through its eentre. The side of the spuare being divided into $11 \frac{1}{2}$ parts, 1 is given to the diameter of the columns, 3 parts to the middle intereolumniation, and $2 \frac{1}{3}$ to each of the others; thus the sites for the columns are obtained: dividing the upright sides of the iquare into the same number of parts, $8 \frac{1}{2}$ are given to the height of the eolumn, and the remaining 3 to the entablature and half pediment.

Multiplying $11 \frac{1}{2}$ by the same, we have for the entire area $132 \frac{1}{1}$, which if divided into 4 is 93 and a fraetion for the columns, the same for the entablatures, and double that for the intercolumniations: the columns being four in number and $8 \frac{1}{2}$ diameters in height, their area will be 34 pats; the intereolumniations being $7 \frac{1}{2}$ in their united width, that multiplied by $8 \frac{1}{2}$, their height, gives $63 \frac{3}{\frac{3}{4}}$ for their area, and the entablature being 3 ligh and $11 \frac{1}{2}$ in width, we have for its contents $34 \frac{1}{2}$ parts, giving a result of nearly a fourth Cor the entablature as well as for the columns, and a half for the intercolumniations. liy making some allowance for the diminution of the columns, an exact agreement between the quantities might be obtained; those in the intercolnmniations would then be found equal to those in the entablature and its supports, or half the entire square devoted to solid and the other half to voids : had the columns of the temple on the Ilissus been about 1 ineh less in diameter, its proportions would have been in close accordance with those of the figure, where the 4 columns oceupy 38 squares, the entablature the same number, and the intercolumniations 76 .

Ionic Hexastyle. Temple of Erechtheus at Athens.-This highly-enriehed example, exeented in the finest marble, is in beight without the pediment 26 feet 6_{3}^{3} inches, and in wirlth, measured along the front of the corona, 40 feet 6 inches, so that this portion is comprised within a square and a hall or nearly so : the lower diameter of the columns is 2 feet $3 \frac{8}{10}$ inches, and the upper 1 foot $11 \frac{2}{10}$ inches, giving a mean of 2 fect $1 \frac{5}{10}$ inches; their colleeted diameters are 12 feet 9 inches, whilst that of the intercolumniations at the same level is 23 feet $1 \frac{5}{10}$ inches, nearly double the space cecupied by the columns. The height of the eritablature without the pediment is 4 feet $11 \frac{1}{4}$ inehes, and its superficial content on the face 190 feet, and rdding 85 feet for the area of the tympanum, we have altogether $2^{-} 5$ fect.

supposing the tymprnum to rise a ninth of its base; the height of the columns is 21 feet $7 \frac{1}{2}$ inches, and their united mean dianteter 12 feet 9 inches, which being multiplied together produce 275 feet 8 inches, or nearly equivalent to the area of the mass they support. Io obtain the exact quantity of mass and void, the mean diameters of the columns as well as of the intercolumniations should be taken; the greater the probable delicacy of execution, the greater is the necessity for the arehitect to balance his quantities exactly. In the sulject now under consideration the whole is comprised within a square and a half; the supports and the entablature are equal, and the intercolumniatiors as much as the two together or one-half the whole. The height of the architrave is 2 fect $1 \frac{5}{100}$ inehes; that of the frieze 1 foot $11 \frac{3}{4}$ inches, and the level part of the cornice 10,45 inches.

Roman Tetrastyle. Ionic Temple of Fortuna Virilis.-The width is 33 feet 6 inches, and height, including half the pediment, 37 feet 1 inch, comprising an area of 1242 feet 4 inches, one quarter of which, 313 feet 1 inch, nearly agrees with the quantity contained in the entablature as well as in the columns which support it ; their height is 27 feet, and their united diameters 12 feet 4 inches, which multiplied together produce 333 feet for the area of she supports. The height of the entablature with half the pediment is 10 feet 1 inch : this multiplied by its width, 33 feet 6 inches, gives 337 feet 10 inches for the area of that supported : the intercolumniations are together 21 feet 2 inches, which multiplied by their height, 27 feet, gives 571 feet 6 inches for their area, about 100 feet less than the quantity comprised in the columns and entablature.

Without the pediment this façade is nearly square ; its proportions rank very high in the estimation of all admirers of Roman architecture; it has, however, undergone many reparations before the stucco was put upon the columns; they were lighter, as was the entablature, the upper members of the cornice being somewhat heavier than is usual in the early examples of this order; if divested of these additions, and giving a triffe more to the intercolumniations, we shall obtain half the area for the columns, and a quarter for each of the other divisions; at present the eolumns equal in quantity the mass they carry.

If it, be required to draw a tetrastyle portico in exact accordance with the rules laid down, after forming the square each side should be divided into 12 parts, or 144 squares, arranged like those of an abacus: one of these divisions on the base would become the diameter of the column, and nine their height, the other eight on the base would be devoted to the intercolumniations, and the upper three of the height to the entablaturc. The columns, 9 diameters in height, would thus comprise 36 squares, the intercolumniations 72 , and the cotablature and half pediment 36 ; consequently the columns and entablature would be equal in quantity, and the intercolumniations half the whole, or equal to the contents of the supports and supported.

Roman Hexastyle. Corinthian, Maison Carrée at Nismes. - This beautiful temple has underg one several restorations; its entire width and height to the apex of the pediment is 43 feet 8 inches, fiom whence it has derived its name. The height of the columns, includ-
ing base and capital, is 29 fect 6 inches, that of the entablature 6 feet 9 iuches, and of the pediment 7 feet 5 inches; taking away half the height of the pediment, we have 39 feet 11 inches and 6 parts, which may be considered as 40 feet; this multiplied by the width produces for the entire area 1746 feet 8 inches. The superficial content of pediment anc entablature, 456 feet 8 inches, is obtained by multiplying the entire width by 10 feet 5 ; inches, the height of the entablature and half the pediment, which superficies is only 20 feet 2 inches more than a quarter of the whole. The united diameter of the six columns is 17 feet 6 inches, and that of the intercolumniations 26 feet 2 inches, so that they are in the proportions to each other of 2 and 3 , the whole being 5 , one having an area of 515 feet 9 inches, the other 772 feet; when added together they are nearly three times the area of the part supported.

The proportion between the columns and intercolumniations of the temple at Assissi is also similar, the height of the columns is 32 feet 10 inches, and the total width of the six 52 feet, which dimensions multiplied together produce 1707 feet 4 inches, one-fifth being 341 feet 6 inches nearly.

The area of the columns is 684 fcet, and that of the intercolumniations 1023 feet 4 inches, giving a proportion of two-fifths and three-fifths. The entablature, pediment, and pedestals upon which the columns are placed seem to have undergone a change since their erection. If the whole extent of an bexast!le portico be divided into 18 parts, and one be called the diameter, to obtain the same proportions as those laid down for a tetrastyle portico, the height $1 p$ to the centre of the pediment must include 12 only of those parts, which would give a portico of a square and a half, comprising 216 squares; the 6 columns, each 9 diameters in height, would require 54 ; the 5 intercolumniations, double that number, or 108 , and the entablature and half pediment 54 .

Roman Octastyle. - The Pantheon at Rome, which has a portico of 8 columns, is one of the best examples that can be selected fer examination. The total width is 109 feet 10 inches; the diameters of the eight columns 39 feet 5 inchas, and the seven intercolumniations 70 feet 5 inches, or nearly in the proportion of 1 to 2. The height of the columus is 46 feet 5 inches, and that of the entablature and half pediment 23 feet $2 \frac{1}{2}$ inches, togethei 69 feet $7 \frac{1}{2}$ inches, nearly a square and a half, the area of which is 7647 feet 2 inches.

The united diameter of the columns, 39 feet 5 inches, multiplied by their height, gives 1829 feet 7 inches, and the collected intercolumniations multiplied by the same height will be 3268 feet 6 inches: multiplying 109 feet 10 inches by 23 feet $2 \frac{1}{2}$ inches, we obtain for the area of the entablature and pediment 2549 feet, which, rejecting parts of an inch, will, when added to the two other calculations, make up a sum agreeing with the entire arca.

A line drawn through the centre of the pediment, another at half the height of the columus, and a third under the entablature, would divide the height into thrce equal portions, proving that, in this example, the Romans made the part supported onethird of the whole, and divided the other two between the columns and their intercolumniations. The shaft of each column is cut out of a single block of granite; they are not sufficiently delicate to he exactly in the proportion of half the quantity contained in the intercolumniations; but if allowance be made for their diminution, the difference is not very great. The whole width being 109 feet 10 inches, the third, 36 feet 7 inches and 4 parts, is nearly a mean between the collected diameters of the top and bottom of the shaft, making the intercolumniations double the quantity contained in the supports, or equal to that of the supports added to the mass they earry. The whole would then be divided into four, as in the previous examples of the Ionic, and two portions given to the intercolumniations.

The Pantheon Portico is a double square without the pediment, or nearly so, the length of the level cornice, which crowns the entablature, being double the height of the order : this, no doubt, was the outline of the proportions before the heavy pediment was placed upon it, which in all probability was heightened beyond the ordinary rise of a ninth, for the purpose of concealing the wall behind it. The Roman proportions are frequently made independently of the pediment; the tetrastyle porticoes are a square, the hexastyle a square and a half, and the octastyle, as in this instance, a double square without it.

To set out an octastyle portico, in which half the pediment should be comprised within the double square, after dividing the width into 24 and the height into 12 , which multiplied produce 288 squares, 72 are given to the column, the same to the entablature ang half pediment, and double that, or 144, to the intercolumnations, or proportions similar to those laid down for the tetrastyle and hexastyle porticoes. The columns in such a case would be nine diameters in height, the entablature and half pediment three: supposing the latter to rise a ninth of the span, the remainder would be distributed among arehitrave, frieze, and cornice.

We have endeavoured to show the proportions repuired in a tetrastyle, hexastyle, and octastyle portico among the Dorians, the lonians, and their followers the Romans: the square and a half, or the double square, were the outlines or boundary figures from whence the other proportions were deduced.

The great difference of character in the Doric and Ionic designs arises from the distance at which the columns are placed, which affects the proportions of the entablature laid upon them, as well as that of the columns themselves; where these are six diameters in height or consist of six cubes, they are made to earry the same quantity, whatever may be their distance apart, and where drawn out to nine diameters, they have only their own weight to support; but the form given to this weight, or the proportions of architrave, frieze. and cornice, vary, as the intercolumniations are of one or more diameters.

It has beentoo generally considered that the orders derived their proportions from the lower diameter of the columns, without reference to their application: this has produced a variety of design, but at the same time occasioned a great departure from the true principles, and led to very important errors. The Tuscan, the Doric, the Ionic, the Corinthian. and Composite orders have been laid down in modules or measures of various kinds, which the young architect has adopted as mere isolations, regardless of the many other considerations which have stamped beauty on his model; hence we have imitations, but soul is wanting.

The Doric order is treated of as so many diameters in height according to its age, and the entablature is said to be heavy or light, as it was of early or late execution ; the other orders have been chronicled in a similar manner, and arehitecture has been fettered, and its great principles lost, or at least neglected: it is true that the outline which bounds the figure has undergone but few changes, but the subordinate parts or the filling-in are susceptible of interminable variety. An object inscribed within a circle is perhaps the most easily compassed by the eye, next that within the square, and when a building is vast, and distance is necessary to comprise a view of the whole, the double square; beyond this the ancients seem seldom to have gone for the proportions of their façades, or of a portico intended to be seen in front. After the masses were proportioned, their decorations were more various than the buildings themselves; no two are perfectly alike, but the great difference is in their ornaments and enrichments, or in the number of diameters contained in the height of the columns.

The Parthenon and Pantheon po:ticoes are both octastyle, each admitted to be as beantiful as they can be-one the perfection of sober grandeur, the other of cheerful lightness; one Greek Doric, the other Corinthian, both comprised within a double square, and having their columns equal in quatity to the mass of entablature they support: where, then, is the difference between the two examples? It results, as we have already seen, from the material in the one occupying two-thirds, and in the other only half the entire area. In the façade of the Parthenon the eye las onc-third void only to contrast with the solid matter, and in the Pantheon half, which proportions seem to have been established by the Ionians, and usually adopted by the Romans.

In proportioning the architrave, trieze, and cornice, care must be taken that no more is laid upon the columns than their own bulk: when the latter are one diameter apart, this quantity will be greater in height than when they are further distant; so that the greater the intercolumniation, the lighter in appearance will be the entablature, the columns still bearing the same weight, nor need they be increased after it is ascertained that they are competent to their duty: to do so would be to employ material in excess, whieh it should be the aim of an architect to avoid.
If we now examine the portico of the Pantheon, we cannot fail to perceive the agreement existing between the parts supported and their supports.

which leaves little more than 100 cubical feet of differenee between one and the other; and if the crown moulding returned on the flank be comprised, the quantity contained in the entablature would equal that of the eight columns.

The pediment is omitted altogether in this calculation, it being in reality, though not in appearance, an additional load for the eight columns beyond their reguiar entablature, which is of marble, and weighs probably 452 tons; the granite solumns with their marble bases and capitals are something more than that quantity, and these, including the entablature and pediment, probably contain upwards of 1000 tons of material.

The Capitals of the Columns of the I'anthenn are admitted to rank among the hest examples found in Rome: though not so highly and elaborately worked as those which decorate the columns of the temple of (Jupiter Stator) the Dicscuri, yet they are remarkable for the

elegant arrangement of the ornaments: further details will be found in Taylor \& Cresy's Architectural Antiquities of Rome, whence the dttails here given have been selected

Fis. 1045.

FIT. 1041.

Fig 1045.
capitals of pantheon.

Fig. 1016.

Fig. 1047.

Although the Romens aid not improve the arts which the Greeks had spread among them, by the introduction of the arch they materially altered the character of the architecture practised before the time of the Republic: this feature alone produced entirely

证

A buildirg. thouga entirely deroid of ormamemt mar be rendered beastitul by the justness of its proportion, and the tichest edifice wanting in this never can excite acmination: facades having but height and breadth, these swo dimensions muss be equal to each viher, if we adop: the symmetrical pronortions prescribed by Tisurius tor he obsertes - the square inciuiles the human tigute either lying down of standing in an erees posiute. the arms being stretched out-" Temples. triumphal arches, and othe: buildings left us Ly rhe Greeks and Romans were decidedly desiched upon :his princigle- 2s rere =ast of the fagrade of the re igions structuras enected since the fall ot the Romis empite

In the - Songe de Poliphite," ontrinally published in Italian by A'dus in the year If fen are some obserrations on setting out a tuajie. which conver sume idea of the principhts adopted for the formation of a pertecs and harmocious design on the revival of Roman architecture.

- Dram a square figure, divided by thee perperdicular and three borizontal lites 25 equal distances from each other. forming sirteen squane: on the top of the syumere adid a half square, which stmilarly divided, makes al:ogether :wemer-four :quares: in the fowe: spuare dram two diagonals, crossing eight squares in the catme memmer: then form a lowenge above the zreat scivare, tracing within it fout limes on the four principal poinse shas sppuzate the four sides of the roid=

Atter understanding this tigure. I thought within mreeti shas ran matern actitects da who estern themselres so leasted without letters of principles? Ther seither kiom sules rior dimensions, and therefore cortupt and deform zll surts of buildings buth publie amd prisate destring. nature. who seackes them io do well if ther would imisase het: troul workmen. besides their scieace mary emrich their work cithe: br adjugz to or diminishirg therefrom the better to plases the ere bu: the mass should remain eatine. with which ala should be made to harmonise. Br the mass is undersoed the boty of the eilitive. whicto without any ornament. shows the knowledge and spirts of the master, for it is easy to embellish ater any iavention : the distribution and artangement of the parts is al:0 2 matter
 how to ornament 3 work, bu: to inve: lies our in the heads of the rise

Taking trom the square and a halt, the lozenge and the diagomal limes leares the three perpendicular and the three horizomsal. except thas in the midfly, which serminasen in the rentre of the perpeadicular. cutaing is inso four parte or portions: br this sule will be fium

 rou what shickiess wust be given to the centre of the purtico; if you carty it whizth the iine will serve to denote the architrave: and the point of the cemere of the uppet square will show fou the centre of the arch or cutre to be given :o the dewr ; turning a seativiztie it will rest on :he transerse line, which cuts the squate ami a bact into tso eqg-1 patis : bu: if doae by ayy other means 1 do aot estem it peritio This mathoi uns in ented by ansient and exper masoms $2 \mathrm{~m}^{3}$ obserreit in their anthes and vaulic so give themr boch grace and solidits : the pedesal on which the columns rest commences as the lerel of the panement by a plinth. and the whole is a fowt bigh. turmithed with mouldinss; one prortion is divided into anchitrare, fricre and cortioe the latter leing somethngemore them the
 be six. The whole :weatr-tour squares sorm a square and a bulf; theo cirile the urger halt into six parts by tire horizomal sad fire perpendiculsr limes and drame of lime foert the
 commences; then draw it perpendicular on the key of the archirolit and it -ill show you the height to be given to the frontivpite shore, the extremities of Fublh shoull unte that relate to :he projection of the craztium and its wov'times
 single openings, were a square cither comprising or ex cludung their attics : thas the centhe form whence the archirolt was struck ois the cuntre of the syume of if the ts zate wis more than a square, as the ath of Trajizn si Ancoms thee where the swo civguealis crussed the courre was dixed. The width of the opeaing is gemeral! thalf the cmaire examon some times three parts out of serem

Trese triumphal arches were getersil r surmoumed by a groug of tgures of the est am?
 from the ememy; these as shem on sereral metialts sppeas so be equal in theight to $\frac{7}{1}$ of
 the wlumms sad pites:al; the cther $\frac{1}{1}$: and se the former ate teanly equal in their beighto 10 fol ows that the hone avd his riker. or the cat and iss riumphsm: teta were double the

 Rowe is naatir the same is the witeh of the gres: centre opeoimg; many of the orkers are lest than thas propuriva; bus it stemsothe the cube wis the michears the
bounded the proportions, as shown in fig. 10;3. The several lioman examples seleeted differ in arrangement, but not in principle, from the description given by Poliphile: take away the pedestals on which the columns are placed, and then four squares in height include half the tympanum, and eighteen squares the entire figure, 6 of which may be considered as devoted to the arch, and the other 12 to supports: or, if we comprise the whole façade in 20 squares, and abstract the 8 which belong to the opening between the pedestals, we have 4 for each pier or sup-

Fig. 1019. arch of auguetus at mimin. port, and 4 for the entablature, the supported being only $\frac{1}{2}$ the quantity contained in the two supports: resistance to the arel, or its thrust, requires a different arrangement from that of a portico, but we nevertheless find detinite proportions made use of, and a double quantity given to masses which have to bear weight as well as resist thrust.

The Arch of Augustus ut Rimini has the height of its order determined by the length of the frieze.

The Arch of Augustus at Avsta resembles that of Titus in arrangement; it is a perfect square comprising the attic.

Cusp. If.

The Arch of Sergius at Pola is a perfect square, without attic, like that of 'Titus.

The Arch of Titus at Rome, raised by the senate and Roman people to commemorate the conquest of Judæa, is one of the best examples of proportion that remain: built of white marble, it is a monument of constructive art, some of the blocks being 9 feet square, and ef feet thick; the areh is composed of eleven vonssoirs 16 feet deep. For a detailed account of its construction and ornament the reader is referred to the "Architectural Antiquities of lame."

The proportions are a square, as is the opening of the archway, up to the springing; and not a double sipuare, as described by Serdo. The pedestals are in height nearly half the opening of the archway, which I'alladio observes was the ordinary proportion
 given by the ancients. The entire length of the upper menber of the cornice in this example is 48 feet, which dimension corresponds with the entire height, almost to a fraction: the width of the opening is 17 feet 6 inches, a trifle more than one-third of the entire width : bounding the façade by a parallelogram, excluding the attic, and drawing two diagonals, we obtain the centre from which the arch is struck, which rule will apply to the other

Fig. 103:.
ALCLI OF THES, AX ROME
triumphal arches with a single opening, though varying materially from the principles laid down by Poliphile, and adopted by Serlio and other architects at the revival of Italian arehitecture. The Areb of Titus is a square comprising its entire façade; that of Poliphile a square up to the under side of the entablature ; consequently, the opening of the triumphal way is in width half the height to the top of the impost upon wheh the archivolt rests, while in the more ancient the entire ajperture without the arch is a square.

In the Arch of Poliphile the entahlature and pediments are nearly equal in quantity to each of the piers upon whict. they are carried; and the piers themselves are in width only one quarter of the whole breadth of the façade: it will be found, however, that nearly the same proportions exist between supports and supported in both examples.

The Arch of Augustus at Susu has a single arch: proportion a square to the top of the entabla-

Fig. 105J.
arch or augustus at susa. ture, opening a square to the springing: width divided into four, two given to the opening and one to each pier, which has a three-quarter column at the angle : attic as ligh as piers are wide.

In arches with three openings, as those of Septimus Severus and Constantine, these

occupy one-haff the width, and the piers the other: where the diagonals of the figure eross is the centre, from which the priacipal arch is struck.

The Arch of Trujan at Beneventum. - Circle struck from the centre which deseribes the archivolt ; comprises all within it except the attic : division of width into seven, two for eacb pier, three for centre; attic half the height of the order.

Fiz. 1055
ARGe of trajan at renetentum.
In the foregoing examples, we have attempted to show that the beauty which belongs to form in arehitecture rests upon one principle based on the laws of nature, and that the first element in a good design is the proportion of the parts as well as the whole: nothing has more minled the critics upon this subject, as well as arehitects themselves, than implicitly following the rules laid down for drawing the orders. In treating upon the antique, they have frequently been right as far as regards the letter, but essentially wrong in the spirit. The laws of nature do not vary, nor do our organs of sense or perception, and what was apparently fit and proper in the opinions of the Greeks is equally so at the present day: in their sculptures we never find a man representel carrying more than his own weight, and such laws ought to be our guide.

After the destruction of the Roman empire, the character impressed upon architecture by the Greeks was lost : other styles arose in suecession. which have been designated as Byzantine, Romanesque, Lombardie, Saxon, Norman, Saracenic, and Pointed. The five first retained the semicircular arch, and only differed in the quantity of material ennployed: for examples of the three first-mentioned we must refer to a work entitled "Arehitecture of the Middle Ages at Pisa," by Edward Cresy and G. L. Taylor, containirg measurements made in 1817.

CHAP. III.

MEDI.EVAL ARCHITECTURE.

Sect. I.

THE STYLE IN GENERAE.

The question that first naturally arises is, What is Gothic or Medieval architecture? Although Rickman, in his essay mentioned on page 971, gave a sketch in which he wished to show the differences between Classie and Guthic architecture, the first real attempt at defining the charater of Mcdieval art seems to have been made by the late A. W. l'ugin, who, in his True Principles of Pointel or Christian Architecture, 1841, enunciated the fullowing principles, which have formed the keynote for the various works and lectures on the subject since written and delivered :-

1. There should be no featurs about a building which are not necessary for convenience, construction, or propriety. I1. All ornament should consist of enrichment of the essential construction of the building. III. The sinallest detail should have a meaning or serve a purpose. IV. The construction itself should wary with the material employed. V. The derign should be adapted to the material in which it is executed. Vl. Pointed architeeture does not conceal her construction, but beantifies it. Vil. Plaster, when used for any other purpose than coating walls, is a mere modern deception. Vill. A flat roof is contrary to the spirit of the style. IX. A splayed form is necessary for piers, arches, bast moulds, strings, and copings. X. All mouldings of jambs are invariably sumk frum the face of the work. XI. Large stones destroy proportion. XII. The jointing of masonry should not appear to be a regular feature. Xlll. A joint in tracery should always be cut to the centre of the corve where it falls. XIV. The external and internal appearanee of an edifice should be illustrative of, and in accordance with, the purpose for which it is destined. XV. It is a de'ect to make the two sides of a desigu correspondent if their purposes differ. XVI. The picturesque effect of the ancient buildings resulis from the ingenious methods by which the old builders overcame local and constructive difficuities, XV11. The elevation should be subservient to the plan. XV1II. Details are multiplied with the increased scale of the building.

These principles, with the addition of the subject mentioned in the next paragraph, secm to form the creed of the most advanced foreign archæulogists, such as M. Viollet le Due, for the ensideration of the spirit of the style has been neglected in favour of an investigation of details by French and German writers on arehitecture.
"Internal altitude," writes Pugin in the same work (p. 66.), "is a feature which would add greatly to the effect of many of our fine English churches, and I shall ever advocate its ir troductioa, as it is a characteristic of foreign pointed architecture of which we can avail ourselves without violating the principles of our own peeuliar style of English Christian architecture, from which I would not depart in this comery on any account. I unce stood on the very edge of a preepipe in this respect, Irom which I was rescued thy the alvice and arguments of my respected and reveted friend Dr. Rock, to whose learned researehes and observations on Christian antiquities 1 am highly ind.bted and to whom I feel it a bounden duty to make this public acknowledgment of the great benefit I have received from his advice. Captivated by the beauties of foreign pointed architect:re, I was on the verge of departing from the severity of our English style, and engralting portions of foreign detail and arrangement. This I feel convineed would have been a failure; for although the great principles of Christian architecture were everywhere the same, each comntry had some peculiar manner of developing them, and we should continue working in the same parallel lines, all contributing to the grand whole of Catholie art, but by the very variey increasing its beauties and its interest."

This authur clamed for pointed architecture the merit of its having been the only phasu of art in which the "principles" bad heen carried out, and is supported, with some resers:tions, by Viollet le Due. Our space is too limited to discuss that assertion ; the student who desires to investigate the subject must refer to l'ugin's publication for his arguments, and must guard againt being eaptivated by the one-sided illustrations given as "contrast." For an assertion of the same general principles in regard of Classic and Modern architecture, the reader is referred to the chapter on Beauty in Ancmitecture, in the present work
(par. 3492, ct seq.), written, we are inclined to consider, before the publication of Pugin's propositions.

A more strictly architectural definition of the term Gothic architecture has been deduced from the writings of various investigators, as being that combination of art and science in building which followed the adoption, during the middle ages, of broken arches for vaults, openings, and ornaments, in lieu of the previously existing arehes of continuous lines. The term Gothic architecture, according to such writers, does not acknowledge as its legitimate productions any structures that are point vaulted and point arched, point vaulted but not arched, point arched but not vaulted, or neither arehed nor vaulted, unless they conform to rules approved by the builders in north-western Europe (and especially in England) during the middle ages. These regulations are, in effect, nine :-I. Daylight must not fall upon any apparently horizontal plane surface, however small, except pavements, steps, seats, and tables. II. Every arch must be moulded within a chamfer, or at least be chamfered. HII. Every impost must follow the plan of the arch or arehes which it receives. IV. Every pillur must be an assemblage of juxtaposed slafts or mouldings. V. Every pier must be polygonal, or at least circular in plan. VI. Every base must follow the plan of the pillar or pier to which it belongs, or at least be either polygonal (preferably octagomal), or cylindrical if under \& shaft. V1I. All decoration must be worked within the plane of the walling to which it beiongs, except in the cases of bases, bands, capitals, cornices, copings, and dripstones. V1II. Roofs of high pitch and flying buttresses, spires, and pinnacles, tracery and foliation, are incidental, rather than peculiar, features. IX. The continuous arch may be exceptionally employed when it, with the rest of the building in which it occurs, exhibits submission to the preceding regulations.

These regulations were observed to the north of the Loire and of the $A l_{\mathrm{ps}}$, which was the seat of what may be designated oriyinal Gothic. South of those boundaries we have to deal with what may be designated imitatice Gothic, to which, as a matter of course, uppends itsclf one of the two divisions, Christian and Mahomedan, of Pointed art. We take it for granted that the reader is already convinced that the Romanesque and Byzantine perfect developments of Roman construction do not become transitional to original or initative Gothic architecture merely by the introduction of the pointed arch as a mere fo m , independent of the regulations above enumerated. On the contrary, they become new styles, with their own periods of transition and development; which, by those writers who do not feel that the arehitecture of the Mahomedans has been as consistent as that of north-western Europe, are at present considered as mere solecisms, deserving to have the epithets of pointed Romanesque and pointed Byzantine given to them.

These regulations, therefore, define the difference between Gothic and Pointed architecture. They exclude from the title of Gothic those branches of the transition from Romanesque art which, in Germany, Italy, and the Spanish peninsula, were, whatever the period might be, merely imitation Gothic ; as they also exclude any branch of the pointed Byzantine sehool, which was employed by the Normans in Sicily, or by other Christian communities.

The readers who are desirous of considering this subject more in detail are referred to Freeman, Histry of Architecture, 1849, wherein Chapter I. Part II. treats upon the "Definition and Origin of Gothic Architecture;" and concludes with the observation : "We may then define Gothic architecture as a style whose main principle is verticality, a principle suggested by the pointed arch, and carried out in its accompanying details." A writer in the Archicological Journal, for February 1847, has expressed his notion that "it would be very possible to build a thoroughly good Gothic chureh, taken entirely from ancient examples, without a single pointed arch throughout;" a principle which would astonish most of the talented practitioners of the present day.

An eminent amateur has written a very studied and elaborate explanation of what he considers to constitute Gothic architecture. "I believe," says Mr. Ruskin, in Stones of Venice, Vol. II. Chap. VI., after a short inquiry into the mental power or expression, "that the characteristic or moral elements of Gothic are the following, placed in the order of their importance:-I. Sarageness; II. Changefulness; III. Naturalism; IV. Grotesqueness; V. Rigidity; and VI. Redundance. These characters are here expressed as beloaging to the building. As belonging to the builder they would be thus expressed :I. Savageness, or rudeness; II. Love of change; III. Love of nature; IV. Disturbed imagination; V. Obstinacy; and VI. Generosity. The withdrawal of any one, or any two, will not at once destroy the Gothic character of the building ; but the removal of a majority of them will." He then proceeds to examine them in their order; but our limit.d space prevents our following him word for word, and we have found it necessary to curtail some of the following paragraphs.

In defining its outward form, he states that the most striking feature is that it is composed of pointed arches. "I shall say then, in the first place, that Gothic architecture is that which uses, if possible, the pointed areh for the roof proper ;" and subsequently adds, "Our definition will stand thus: Gothic architecture is that which uscs the pointed arch
for the roof proper, and the gable for the roof mask. "-"All good Gothic is nothing more than the develnment in various ways, and on every conceivable scale, of the group formed ly the pointed arch for the bearing line below, and the galle for the protecting line above (fig. 1056.). The sulject of the masonry of the pointed areh has been disenssed in Chapter XI. of Volume I. (of his work), and the conclusion deduced, that of all possible forms of the pointed

Fig. 1056. arch (a certain weight of material being given), that generically represented in fig. 1057. is the strongest. But the element of foliation must enter somewhere, or the style is imperfect; and our final definition of Gothic will, therefore, stand thus:-Foliated architecture, which uses the pointed arch for the roof proper, and the gable for the roof mask."

Fig. 1057.

The figure 1057, though of the outline as given by Mr. Ruskin, really exhibits the stone arch erected in granite aeross the chancel of the Bruen Testimonial Church at Carlow, designed by the late J. Derick (Builder, 18.54, p. 34.). The trefoiled arch exercises a force within the building neutralising the outward thristing force of the lancet areh, the two forces producing a state of rest.
"A few plain and practical rules," continues Mr. Ruskin, "will determine whether a given building be good Gothic or not, and if not Gothic, whether its arehitectmre is of a kind which will probably reward the pains of careful examination:--1. Look if the roof rises in a steep gable, high above the walls. If it does not do this, there is something wrong; the building is not quite pure Gothic, or has been altered. II. Look if the principal windows and doors have pointed arches, with gables over them. If not pointed arches, the building is not Gothic; if they have not any gables over them, it is either not pure or not filst-rate. If, however, it has the steep roof, the pointed arch, and gable all united, it is nearly certain to be a Gothic building of a very fine time. III. Look if the arches are eusped, or apertures foliated. If the building has met the first two conditions, it is sure to be foliated somewhere; but, if not everywhere, the parts which are not unfoliated are imperfect, unless they are large bearing arches, or small and sharp arehes in groups, forming a kind of foliation by their multiplicity, and relieved by secilpture and rich mouldings. If there be no foliation anywhere, the building is assuredly imperfect Gothic. IV. If the building merts all the first three conditions, look if its arches in gencral, whether of doors and windows, or of minor ornamentation, are carried on true shafts with bases and capitals. If they are, then the building is assuredly of the finest Gothic style. It may still, perhaps, be an imitation, a feeble copy, or a l:ad example, of a noble style; but the manner of it, having met all these four conditions, is assuredly first-rate. If its apertures have not slafts and capitals, look if they are plain openings in the walls, studiously simple, and unmoulded at the sides. If so, the building may still be of the finest Gothic, adapted to some domestic or military service. But if the sides of the window be moulded, and yet there are no capitals at the spring of the areh, it is assuredly of an inferior school."
"The next tests to be applied are in order to discover whether the building be good architecture or not ; for it may be very impure Gothie, and yet very noble arclitecture; or it may be very pure Gothic, and yet, if a copy, or originally raised by an ungifted builder, very bad arehitceture $: \mathbf{- 1}$. See if it looks as if it had been built by strong men; if it has the sort of roughness, and largeness, and nonchalance, mixed in places with the exquisite tenderness, which scems always to be the sign-n anual of the broad vision and massy power of men who ean see past the work they are doing, and betray here and there something like disdain for it. If it has not this character, but is altogether accurate, minute, and scrupulous in its workmanship, it must belong to either the very best or the very worst of sehools: the very best, in which exquisite design is wronght out with untiring and conscientious care, as in the Giottesnue Gothic; or the very worst, in which meehanism has taken the place of design. On the whole, very accurate workmanship is to be esteemed a bad sign. 1I. Observe if it be irregular, its diflerent parts fitting themselves to different purposes, no one caring what becomes of them so that they do their work. III. Observe if all the traccries, capitals, and other ornaments, are of perpetually varied des'gn. IV. Lastly,
Read the sculpture. P'reparatory to reading it, you will have to diseover whether it is Read the sculpture. Preparatory to reading it, you will have to diseover whether it is legible (and, if legible, it is nearly eertain to be worth reading). The criticism of the luilding is to be conduct.d precisely on the same pinciples as that of a book; and it must depend on the knowledge, feeling, and not a little on the industry and perseverance of the reader, whether, even in the case of the best works, he either perceives them to be great, or feels them to be entertaining."
"The rariety of the Gothic schools," says Mr. Ruskin, in another portion of the same work, "is the more healthy and beautiful, because in many eases it is entirely unstudied, and results, not from mere love of change, but from pracical necessities. It is one of the
chief virtues of the Gothic builders, that they never suffered ideas of outside symmetries and consistencius to interfere with the real use and value of what they did. If they wanted a window they opened one; a room, they added one; a buttress, they Luilt one; utteriy regardless of any established conventionalities of external appearance. Every successive arehitect employed upon a great work built the pieces he added in his own way, utterly regardless of the style adopted by his predecessors. These marked variations were, however, oally permited as part of the great system of perpetual change which ran through every member of Gothic design, and rendered it as endless a field for the beholder's inquiry as for the bulder's imagination ; change, which in the best schools is subtle and delicate, and rendered more delighttul by intermingling of a noble monotony, in the more barbaric ochools is somewhat fantastic and redundant ; but, in all, a necessary and constant condition of the life of the school. Sometimes the variety is in one feature, sometimes in another: it may be in the eapitals or crockets, in the niches or the traceries, or in all together, but in some one or ther of the features it will be found always. If the mouldings are constant, the surface sculpture will change; if the capitals are of a fixed design, the traceries will ehange; if the traceries are monotonous, the capitals will change; and if ever, as in some fine schools, the early English for example, there is the slightest approximation to an unvarying type of mouldings, capitals, and floral decoration, the variety is found in the disposition of the masses, and in the figure seulpture."

Sect. II.

PEHIODS OF GOTHIC ARCHITECTURE.

The divisions of Gothic arehitecture in England, as made by King, Dallaway, Mille r and others. have been used in Book I. Chap. I11.; but their subdivisions and nomenclaturs have been discarded by later investigators; and many tables have been put forward of divisions and suldivisions. Tius, Britton's nomenclature (1807) was, English 1189-1272; decorated English 1272-1461; highly decorated, or florid, English 1461-1509; debased English 16\%5. Millers's division (1807) was early English 1200-1300; ornamented English 1300-1460; and florid English 1460-1537, as adopted herein in Book I. E. Sharpe elassifies the style as, Romanesque-Saxon period until 1066; Norman 1066-1145, Guthic-transitional 1145-1190; lancet 1190-1245; geometrical 1245-1315; curvilinear 1315-1360; and rectilinear 1360-1550.

The fullowing table introduced by Rickman, Attempt to Discriminate. §e., shows his nomenclature and the duration of the periods; these names have maintained themselves, is consequence of their general appropriateness, from 1819 to the present time:-

Kings.	Date.		Name of Period.	Remarks.
William I.	1066)		
William 1I.	1087			Prevailed little more than 124
Henry 1.	11110	C	Nohman.	years ; no remains really known to be more than a few years
stephen. Heury II.	1154 to $\begin{aligned} & 1135 \\ & 1189\end{aligned}$)		to be more than a few years older than the Conquest.
Richard I.	1189)		
Johin.	1199			
Henty 111.	1216	-	Early English.	Prevailed about 118 years.
Edward 1.	1272 to 1307)		
Edward 11.	1307)	Decor ited	Continued perhaps 10 or 15 years
Edward III.	1227 to 1377)	English.	later; prevailed little more than 70 years.
Richard 11.	1377			
Henry lV.	1349			Prevailed about 169 years.
Henry V. Henry VI.	1413 14.2			Few, if any, whole hears.
Henry Visard 1V.	1461	¢	Perpendicular	cuted in this style later than
Ellward V.	1483		English.	Ilenry VIII,
Richard 11.	14×3			This style us+d in additions and re-
Ilenry Vll.	1509 to $\begin{array}{r}1485 \\ 1546\end{array}$)		as late as 1630 or 1640 .

The reign of Richard I. was the chief period of the transition from the Norman to the early English style; that of Edward I. for the change from the early English to the decorated style (the Eleanor crosses belonging rather to the latter, than to the former, style); while in the latter part of the long reign of Edward III. the transition to the perpendicular style commenced, and was almost completed by the time of the aecession of Rielard II.

Similar tables of the duration of styles in foreign countries have been given in the section Ponted Ahcmimecture, in Book I.

Bickman, in describing the style to which he gives the name "decorated," especially classes under that style the tracery in which "the figures such as circles, treloils, quatrefoils, \&c., are all worked with the same moulding, and do not always regularly join each other, bat touch only at points; this," he says, "may be called geometrical tracery." The Rev. G. A. Poole, Ecclesiastical Árchitecture, 1848, remarks that "a very large proportion of the buildings in which this k and of tracery is used, belongs to the previous period, called early English. The examples which might have been supposed to clear up the difficulty only make it greater. Thus, in speaking of the chapterhouse at York, which has splendid geometric tracery, he says, "The chapter-louse is of decorated character;" yet the chapter-house is clearly of a character which prevailed during a considerable part of that period which Rickman assigns to the early English style. The general tendency has likewise been, of late, to range with the early English ly far the greater propartion of those examples which answer to Rickman's definition of geometrical decorated; a few of the later examples only being treated as transition from early English to decorated. The mouldings, it is true, are generally of perfectly early English character, and so are the elusters of fuliage, the bosses, and other ornamental appendages. Instances occur in which the simple early English lancet was used during the period of the geonetrical tracery. How, then, are the two styles, if they be two, to be separated, in a system which is in part chronological? How are they to be united, in a system which is also in part founded on similarity of parts?
"It is, however, perhaps the most perfect of all the styles; for its tracery has the completeness and precision of the perpendicular, without its license and exuberance; while its minor details partake of the boldness and sharpness of the carly English, which need not fiar to be compared with the ornamental accessories of any subsequent style. Besides the intrinsic beauty of this style, it is important as alfording the first full development of tracery and of cusping, with all their power of enriching large windows, and of bringing tugether several lights as one whole."
"In pursuing the study of medixval architecture, it may be held as an axiom," writes Brandon, Analysis of Guthic Architecture, "that personal inspection of the old churehes of England is the only means by which it can be possible now, either to appreciate the genius of our mediæval architects, or to sympathise with the spirit which animated them. But it is probable that even experienced observers may sometimes be misled by a practice of occasionally assimilating work in a latur style to some already existing portion of an incomplete general design. lndeed it forms a strongly marked exception to the usual practice; for it was a general rule with the builders of the middle ages never to fall back upon a past era of their art, even when engaged in completing structures of a bygone age." He then describes the proceedings in this respect at St. Alban's Abbey Church, at Westminster Abbey, and at Fotheringay Church, Northamptonshire.

The early English character of Westminster Abbey Church has been so well preserved throughout, that in many cases it requires a close inspection before it is possible to detect the presence of decorated or of perpendicular work. Thus the windows in the aisles erected by Henry V. are very decidedly of carly decorated character; the customary octagonal and moulded cap of the perpendicular period occupy the place of the corresponding circular and foliated members, which, had the windows really been crected some孔undred years earlier, would assuredly have surnounted the boltels placed in their jambs.

Efg. 1058 WESTMINSTER ABEEY; TRANSEPT
Fig. 1059. Westminster abbey; fillars of naye (i, easters BAYS, DECORATED-M, WESTEKN BAYS, PERYENDICULALi-)
In the earlier plans of the nave piers four shafts stand clearly detached from the main body of the pier, fig. 1058.; but subsequently the pier was worked with eight shafts, fig. 1059. (L) ; and, later still, with eight shafts, fig. 1059. (M) all attaehed to the central
mass, indicative of the altered fashion of the day, in which detached shafts, once such a farourite feature, were entirely discarded. In the piers they worked the bands of the 134 h

Fif. 1060.
WESTMNSTEL: ABEEY,
 century (N) with the mouldings pectaliar to the 15th (O). Fagures 1060, both drawn to the same scale, show how they departed both from the outline and size of the original. In the triforia, the early English design is equally apparent in the earlier and later portions of the work; but the mouldings in each are true to their styles. Although the groining is tolerably in keeping throughont, yet in the aisles and in the later portion of the vaulting, the original spring and height of the ridge rib has been preserved, while to the elegant acutcly pointed lancet of the earlier groining an obtusely pointed arch has been preferred, which, consequently, it has been necessary to stilt. Brandon gives illustrations of the early English and perpendicular arcades under the windows, a feature whieh, though long disused and supplanted by a system of panelling, is yet followed ont. "I am not aware," writes the Rev. J. L. Petit, "whether suffieient attention has been given to the attempts oecasionally made by the medieval architects to assimilate their work to the portions erected in an earlier style. In some instances, as in the choirs at Ely and Lineoln, this is done without sacrifieing any of the distinctive features of the style then in use ; but in Beverley Ninster, and in Whitby Abbey, the case is different. In the latter, the whole of the early English arrangement of the choir, as regards its lancet windows, is continued in the transept, though the ornaments with winich it is enriched show that this part elearly belongs to the decorated period. The triforium in the former is uniform throughout the whole chureh, for the same is continued in the decorated work, exeept the disuse of marble in the shafts."

The same system of using previous ideas, but working them out with later details, is exemplified in the Shetch Book of Wilars de Honecort, an architect of the middle of the 13th century. In comparing his sketehes with drawings from the original works, their extreme inaccuracy and contempt of detail is evident. He sketched them because be saw there was something in the general arrangement which, with alterations, might become useful. He therefore drew each with his own improvements to it. As to the details, Wilars did not want them, for he was perfectly conineed that those of his own time were better than anything previously executed. The reader will find reviews of this work in the Builder for 1858, with some woodeuts of the illustrations.

Besides this question of assimilation of style, there arises that of similarity of $w \cdot o r k$ in different buildings, resulting from the superintendence or design of one master mind; but this is so extensive a sulject that in our limited space we dare not do more than name it for the attention of the student or seader. Another interesting important point is that of the transition from one period into another, sueh as the decorated into the perpendicular. A curious example of this exists in the chureh at Edington, in Wiltshire, an aceount of whieh, with woodents, is given by Parker, in the 6 th edition of Riekman's Attempt, 1862.

Sect. III.

MOULDINGS.

It will probably surprise many of our readers that even so late as 1845 , the statement was made that "but little aequaintance with mouldings is evinced in the works of most modern architects." Such was the opinion expressed by F. A. Baley, when he published his very useful Munual of Gothis Mouldings. "Viewed as an inductive science," he writes, "the study of Gothic mouldings is as curious and interesting in itself as it is important iit its results. Any one who engages aetively in it will be amply repaid, if only by the errlarged views he will acquire of the ancient principles of effect, arrangement, and conposition. But the curves, the shadows, and the blending forms, are really in themselves extremely beautiful, and will soon become the favourites of a familiar cye; thou ${ }_{g} \mathrm{~h}$ viewed without understanding they may seen only an unmeaning cluster of holes, nooks, and shapeless excrescences. Perhaps few are aware that any group can be analysed with perfeet ease and certainty; that every member is cut by rule, and arranged by certain laws of combination. The best work on Gothic mouldings which could possibly be written wiil do no more than set him in the right way to obtain a knowledge of the subjeet by his own research. The look of a moulding is so very different in section, projected in a reluced size
on paper, from its appearance in perspective reality, that the same form seen in the one may scarcely be recognised in the ether.
"Gothie architceture revelled in the use of mouldings; -and yet, mouldings are merely the ornamental adjuncts, not the essentials, of architecture. Some buildi.igs of the best periods were quite devoid of them, whence it is evident that they are not necessary even to a perfect design. Boldness and simplicity produce effects, different indeed in their kind, yet not less solemn and striking than richness of detail. If the uniformity in their use had not been very strict and close, it had been a hopeless task ever to master the subject; indeed, if there had not been a system of moulding, there would have been nothing to investigate. But so little did the medixval masons depart from the fixed conventional forms, that we often find a capital, a base, or an arch mould of perfectly the same profile in an abbey or a cathedral which we had copied in our note-book from a village church at the other end of the kingdom, so that we might almost suspect that the very same working drawing had been used for both."-Thus far we have quoted from. Paley, to whose work we shall again have recourse in the further development of this section; but in so condensed a form, that it should not prevent the student from himself possessing so invaluanle a work, of which a third edition was issued in 1865, with an accession of illustrations.

We must now attempt to give some i lea of the nomenclature of medirval mouldings. "The most complete specimen," writes Professor Willis, in his Architectural Nomenclature of the Middle Ayes, 1844, "is that preserved to us by William of Worcester, or Botoner," who was born in Bristol, in 1415, and is now best known by a manuscript note book remaining in the library of Corpus Christi College, Cambridge; it was printed in 17.8 by Nasmith. Two of its pages contain lists of technical words attached to ronghly drawn outlines of jamb mouldings, the one showing the north door of St. Stephen's Church, the other the west door of St. Mary's Redcliffe Church, both at Bristol. These doors are still in existence; on comparison, the former agrees perfectly with the mouldings of the $\mathbf{s} \mathbf{s} u t / h$ porch of the church in question, except that two little boltels have been scraped clean off. The west door of Redelife Church has undergone a much severer skinning. Fi\%, 1061. represents the outline of the former door; "the names given to the mouldings by Botoner are, A, a cors wythoute; B, a casement, C, a bowtelle; D, a felet; E, a double ressaunt;

8T. MART'S JLEDCLFFE; AND ST. STEPHEN'S; BHISTOL.
F, a boutel ; G, a felet; H, a ressant; I, a felet; K, a casement wyth Levys; L, a felet, a boutel, a felet; M, a ressant; N, a felet; O, a casment wyth trayler of Levys; P, a felet, a boutell, a filet; Q, a casement; R. a felet; S, a casement; T, a felet; U, yn the myddes of the dore a boutelle." Of these terms (which display his various modes of spelling) perhaps the only ones needing remark are K and O , which are identical, and have square leaves or flowers in them of the usual form, set at regular intervals, forming a long continuous train. "Benet le Fftemason" appears to have worked the original mouldings.

The section of the mouldings of the west door of Redcliffe Church is shown in fig. 106 i2., to which the names were also attached, the additional terms obtained being "A, a chamfer; C, a double Ressant wyth a filet; O, a Ressant lorymer; M, a lowryng casement; and I, a grete bowtelle." "I camot help pointing out," writes I'rofessur Willis, "liow imperlect
a nomenclature must be, which can make no stronger dintinction betreen the combinations E and C, than by calling one a 'double ressant,' and the other a 'douhie ressant with a fillet.' 'The universal moulding O, in fig. 1062, is a 'ressant lorymer.' "Fig. 1063. is an outline of the jamb mouldings as they appear at present, engraved from a drawing made expressly for us by Mr. T. S. Pope, of Bristol, and exlibits the skinning they have undergo..e.

Mouldings of an arch or jamb are said to be grouped when they are placed in combination as they are generally found; but a group is a branch of mouldings or separate members, standing prominent or isolated, eiber on a shaft, or between two deep hollows. An arch of two or more orders is one which is recessed by so many successive planes or retiring arches (see fig. 1065. \&e.), each placed b.hind or beneath the next before it, reckoning from the outer wall line. The accompanying figures exhibit both groups and orders.

We have adopted the usual arehitectural system of exhibiting the mouldings in the manner of a mould or pattern, and it likewise carries out the prineiple of this work. It is also preferred to the popular way of engraving sections, that is, by an apparently perspective representation of a stone cut out of an areh. The several sets of figures are all drawn to seale. The examples selected are, Fountains Abbey, Yorkshre, for the transition and for the early English period; Tintern Abbey, Gloucestershire, for the geometrie period; Howden Chureh, Yorkshire, for the late decorated period; and IIenry V1l.'s Chapel, Westminster, for the perpendicular period. For those from the three fist buildings, we have to express our grateful acknowledgment to E. Sharpe's Architecturul Parallels, 2 vols. fol. 1845-48, a work combining technical precision, without which it would be useless to the architect, with artistic character, by which it will recommend itself to every one interested in such antiquities. The illustrations of Tintern are valuable examples of the geometric period. The work contains many geometrical plans. elevations, and sections of 14 buildings, with all the prineipal mouldings to a large seale (those herein are all reduced, and therefore less useful), with an additional valuable volume of the mould. ings engraved full size. For the illustrations of the fourth period we are indebted to Cottingham's work on the Chapel, fol. 1822-29, perbaps the only perfect monograph of a large structure yet published in England.

One reason for selecting the illustrations in this manner has been that, with the very limited space at our disposal for so extensive a subject as the detail of Gothic arehitecture, we could not emulate either the very satisfactory work which now, with its useful ullustrations, passes as Riekman's Attempt to Discriminate the Styles of Architecture in Enyland, 8vo. 1865, 6th edit., or Brandon's Anulysis of Gothic Architecture, which is full of examples of detail drawn to scale. Another reason was, to give the means of comparing the use of details in similar parts of edifices of nearly the same general dimensions; otherwise we could merely have given the prettiest selection that it had been possible to have made for the purpose.
" During the period in which the so-called Anglo-Suxon architecture prevailed, little decorative work was done. The very rude carvings are extremely shallow, being such as could be worked with the hammer or piek, and without the chisel. In some doors and larger arehes there is a regular impost at the springing, having a rude resemblance to Loman mouldings; otherwise the jambs and arch stones are merely returned square. The tower of Sompting Chureh possesses early carved work, and boltels at the angles of the window openings, and also a very peculiar ornamented string course. The chancel areh at Wittering Chureh, Northamptonshire, is among the early attempts at moulding observed in this country, being rough and coarsely chiselled members. generally semi-cylindrical. A square-edged reveal soon became a boltel, by first chamfering. and then removing indefinitely the angles. Thus, a squareedged areh with its sub-arch or soffit rib, was cither worked into rounds at each angle or into pointed rolls; or some edges were ehamlered, others worked into rolls, and the sub-arch eut away into a broad semi-cylindrical rıb.
"The Norman arehitects never got much beyond the plain semi-cylindrieal roll (fig. 1064.

Flg. 1064. FotNTANS Ablev; Jave. does not show even so much work). They paid more attention to surface sculpture
and shallow ornamental work in the arelivelts and soffits. Some of the early mouldings and ornaments are illustrated in fiu. 188, in Book I.
" The invention of the pointed baltel, eontemporareously with the pointed areh, opened the way to a great number of new forms, all more or less referable to this common origin, in varying the menbers of complex early English groupings. 'The first and by fir the most important of these is the roll and fille t, as A in fiys. 1065. and 1066. It is the heynote of almost all the subsequent formations. The eharacteristies of the mouldings of this style may be d lined to be, deep underent hollows between prominent inemb:rs, which eomprise a great var ety of pointed and filleted boltels, elustered, isolated, and repeated at certain intervals, a great depth or extent of monkled surfaces, and the general arrangement in reetangular fiees. The hollows, giving the effect of a series of detached arche; or rils, rising in suceession, are seldom true eircles (A, fily. 1067.) ; and, like the projeeting parts, they assume a great number of catpricions forms. They are not always arranged in exact 1/hanis; the student must be filly prepared to find great irregularity in this respeet.
"Early English monldings may be said to comprise the following members:-1. The plain boltel or edge roll ; II. The pointed boltel; Ill. The roll and tillet; IV. The seroll moulding (rare) ; and V. Angular forms, consisting of ehamfered ridges and intervening projections of irregular character. The other torins eliefly ronsist of eapricions modifieations of the roll and fillet. The roll and trinle fillet (of which 13, fig 1067., is a moditication), is mueh used in the more advanced buildings ol the style, and was the favourite form during the reigns of Edwards 1 . and 11 Som times only one side hasa fillet attached. as at C , and others. Three pointed rolls, placed together somewhat in the

Fig. 1067. tistern abgey; cuoir. shape of a fleur-de-lis, form a combination of very frequent occurrence (as figs. 1097. and 1104.), with many minor varieties of shape. The fillet is almost always a narrow edge line. The irregular stape and the freely undulating curve of the roll and fillet moulding has been commonly referred. Almost every conc eivable modification of the phin roll, peaked, depressed, ellipticai, grooved at the end, thriated, isolated, and eombined, might be found and catalogued by a earcful observer. The scroll moulding, also called tdye moulding or ressant lorymer, as o in fig. 1062. and D in the above figures, was used in advaneed carly English work, it is
so callec. from its resemblance to a roll of thick paper, the outer edge of which overlaps the side exposed to view. It was extensively used in the decorated period.".

The exquisite skill, taste, and patient labour invariably evinced in the working of carly English mouldings, are truly admirable. The deepest hollows are all as clearly and perfectly cut as the most prominent and conspicuous details; and as much so in the village church as in the eathedral. Some examples (of doorways) occur at Bolton and Furness Abbeys, whose arch mouldings extend 5 to 6 feet in width.
"The details of dccorated mouldings are for the most part identical with those of the preceding style, with the addition of some new members, and several important modifications of grociping. The latter will be found to produce an entirely different effect, though in deseription the distinction may appear very trilfing. Much greater geometrical precision in drawing both the hollows and the projecting members prevailed. Segments of cireles, both convex and concave, were much used, with an avoidance of strong contrasts of light and shade, which imparted a more pleasing, though much less strihing, offect. The perfection of moulding, as of all architectural detail, is considered by many to have been attained in this period; yet rich mouldings in it are of rather rare occurrence. Very often plain chainfers are used in all the windows, doorways, and pier arches, while minor parts, such as bases, sedilia, and the like, have fine and claborate details.
"There appear to be three distinct kinds to which decorated mouldings may be generally referred :-1. The plain or hollow chamfer of two or more orders, which, properly speaking, is only the step preparatory to moulding. II. Roll and fillet mouldings, and tillets with hollows between each group. III. A succession of double ogees, or double ressants, divided by hollows of three-quarters of a circle Sometimes the mouldings of 11 . are combined with those of IJI. The mouldings of class II. are generaliy borne by jamb shatts, now engaged in, and not detaehed, from the wall. 'Those of IlI. are almost always continuous, except in pier arches, where they constantly occur. Four or five of these t. gether give a very deep and rich effect to a doorway. One member of a double ogee is often considerably larger than the other, or those of one order of different size from the others.
"The prineipal forms found in decoratell work are:-I. The roll and fillet, the fillet being extremely broad, oftere as much as 3 and 4 inches. 1I. The roll and triple fillet, invariably producing a fine effect. Its edge lines are sharp and delicate, and the profile beautifully relicved by the deep side hollows with which it is necessarily connceted. III. The ogee. IV. The double ogee, or double ressant. V. The scroll moulding, or ressant lorymer. VI. The wave moulding, which may be cal'ed the undy-buliel (A in fig. 1068.) , from its gently undulating surface: searcely any method of moulding is so common in, or so characturistic of, this period, as two orders of the wave moulding, with a hollow between them: all the varieties of this moulding appear to occur without any definite distinction throughout the decorated and perpendicular periods; it is wider and shallower in early than in late work; the wavy line is even at times very faint. V1l. The plain,

Fig. 1068. HOWDEN CIURTCI ; CuOIR. or hollow, ehamfer ; and V111. The sunken chamfer. The boltel, or three-quarter round, is used very sparingly. The hollows are usually of larger size than those of the early English ; and there is this general difference in their use, that in this style they diride gronps, in the eurly Enylish, individual members. A few exceptional instances occur of a tongue-shaped member projecting from the inner side of the principal roll and fillet; this is a very characteristic detail of the class 11 .
"In windows, the plane in which the mouldings of the jamb lie is seldom coincident with that on which the side of the mullion is arranged, for this would in most cases give too great thickness to the latter. The dillerence of inclination may be very slight, but it requires attention.
" In mouldings of the perpendicular reriod, a comparatively meagre save-trouble method of working them is perceived. Large and ecarse members, with little of minute detail: wide and shallow hollows; hard wiry cdges in place of romded softened forms, are all conspicuous characteristics. Their general arrangement on the chamfer plane (fiys. 10 onl. and 1062.), whieh is a marked feature of this period, gives a flatness unpleasing to the eye in comparison with the rectangularly recessed grouping of the two preceding styles. Three peculiarities are so common, that their absence almost forms the exeeption to the general usage. Thee are:-I. A wide shallow hollow, usually oceupying the eentre of the gronp, and equal to about one third of the entire width. When the hollow is deep, and narrow, it is generally a mark of early work; of late, when wide and shallow; and of debased, when sunken but little below the chamfer plane. One or both ends of the hollo: are sometimes returned in a kind of quasi-boltel (as I. fig. 1062.). The boltel is ofteu
formed from a plane by sinking a channel on each, face; and oceasionally it stands like an exerescence on the surfaee of a plane (as in figs. 1061. and 1069.); but this is a departure from the usual practice, as well as from the prineiple of mouldings. 11. The constant use of boltels, or beads of three-quarters of a circle, resembling small slafts. And III. The frequency of the double ogee, and some varicties of it peculiar to the period, as shown in the figures above-named. This double ogee appears to be composed of a semi-circular hollow continued in a boltel. All varieties may be considered distinctive criteria of the period. The dondle ressant is sometimes of a large and clumsy size. The roll and fillet was not extensively used; its form is that of B, fig. 1071.
" Rich and good perpendicular mouldings are not very common, most examples consisting but of three or four very ordinary members, oflering nothing either novel or interusting to the view. The doorways are, however, often very deeply recessed, and the engaged jamb sha'ts bear isolated groups of considerable delicacy. The distinction of the orders is often completely lost ia this period, while it is seldom undefinable in the previous one. The ehamfer plane in many cases is either more or less than an angle of 45°. Sometimes two parallel chamfer planes are taken for the basis of the arrangement of the mouldings."
Among the characteristics of the tertiary French style, or the Flamboyant, which has been deseribed and illustrated in pars. 546, et. seq., is that called by Professor Willis, in a most ingenious and valuable paper, read in 1840 before the Institute of British Arehitects, venetration or interpenetration of the different mouldings and parts. The lirench antiquaries hare called the system in question moulures prismutiques. Neither of these terms seem satisfactory, but of the two we are inclined to prefer the first as most significant. In the paper above mentioned, he observes that the practice is very rarely to be seen in English buildings, but produces an instance of it in the turrets of King's College chapel, at Cambridge (fig. 1069.), where the cornice A of the pedestal seems to pierce the plinths of the angle buttresses, and appears at B. This is, however, by no means a capricious, but rather an indispensable arrangement, by

Fig. 1069.

Fig. 1070.
which the solidity of the octangular base was obtained withont the necessity of the multitude of re-entering angular mouldings, which would have otherwise been carried round the buttresses.

Instances of interpenctration are abundant in France. Amongst those selected by him is one from a screen, in the eathedral at Chartres; it is given here geometrically (fig. 1070.). Fig. 1071. is from the stone cross at Rouen, in which the interpenetration principle is displayed in many of

Fig. 1071. the vertical as well as horizontal members of the structure. The parts A A, mark where the fillet of the mullion pierces the eliamfered and moulded parts of the sill. "In many Flam!oyant examples, small knobs and projections may be olserved, and on a superticial
view might pass for mere ummeaning ornments, but will be found explicable upon this system of interpenetration." Fig. 1072, "is a window from a house near Roanne, at the base of whose mullions, linobs may be observed, which really represent the Gothis base of a square mullion on the same plinth with the hollow chamfered mullion, and interpenetrating with it." The Professor also states that, "it may perhaps be found that this character belongs to one period, or one distriet, of the Flamboyant style; " but from our own observation, we are inclined to believe it to have been universal from the middle of the fifteenth century to the period when the style of the Renaissance superseded it. The principles on which it is conducted certainly prevailed

Fig. 1072. in Germany and in the Low Comitries, as Professor Willis afterwards states. A notion to what extent it proceeded may be perceived by fig. 1073, taken from Möller's Denkmüler der Deutichen Baukunst, 1821, and exhibits on the plan a series of interferences contrived with great ingenuity and a comsummate acquaintance with practical geometry. The subject is the plan of a tabernacle, or canopy, such as is not unfrequent in clurches on the Continent. It shows, says Mötler, how the simple and severe architecture of the 13th and 14th centuries had been debased. The square BCDE is the commencing figure.

A comparison of English and French mouldings has been made, with illustrations, by the Rev. J. L. Petit, in his work, Architectural Studies in France, 8vo. 1854,

Fig. 1073. page 141. Of course Viollet le Duc's Dictionnaire has now become a well of information on this as on many other details. Some few examples are given at the end of the ensuing chapter of this Book. Venetian details have been carefully elucidated by J. Ruskin, in Stones of Venice, Vol. III , 1853, wherein pp. 221-249 are devoted to the examination in succession of the bases, doorways and jambs, capitals, archivolts, cornices, and tracery bars, of Venetian architecture. We do not, however, perceive that any scale or dimeasion is given to the examples illustrated, the absence of which materially lessens the usefulness of the examples. German details may be sought in Möller's work before quoted; in King, Study Book of Merliaval Architecture and Art, 1860; in Statz, Ungewitter, and Riechensperger, Gothic Model Book, 1859 ; and in Hollstadt, Gothisches ABC buch, 1840.

Sect. IV.
PIERS AND COLUMNS.
The general plans of the piers supporting the principal arehes are either simple or compound : simple, when composed of one phain member; and compound, when consisting of a core surrounded by smaller shafts, detached or engaged. Piers of the earliest period for carrying walls were square, as at the cathedral at Worms. These were relieved by engaged shafts, as in fig. 1074. In the 12th century the slaft begins to take the form on its plan of a Greek cross (fig. 1075.), with engaged colunns in its angles as well as on its principal faces.

For the benefit of those making surveys of buildings, we think it useful to subjoin the following recommendation from the "Remarks" of Professor Willis:-"In making
arehitectural notes, the plan of a pier slould always be accompranied with indications of the distribution of its parts to the vaulting ribs and arches which it carries. The

Fig. 1074.

艮 to convey these particulars. The dotted lines, drawn from the respective wembers of the pier, mark the direction of the ribs and arches; and upon each of these, at a small distance from the pier, are placed vertical sections of these ribs, as at $A B C D$."

Fig. IL75a.

Fig. 1076. Fountains abdey; Nave.

Norman piers are, in their carlier form, mostly masses of wall, with rectangular nooks containing attached shafts, as at Winchester, figs. 1267 and 1268. The circular (fig. 1076.) and cetagonal columris seem to have been introduced abont the time of the transition; and continued common in ordinary parish churches throughont the carly English and decorated periods. Complex early English piers are so varied in arrangenent that it would be impossible here to do more than notice their general characteristics, which consist priscipally in the number of smaller isolated slafts clinging to a central column, to whicis they are at intervals attached, in reality as well as in appearance, by moulded bands or fillets (Westminster Abhey, fig. 1278.), wherein a circular slaft is found, with four detached solonnettes (fig. 1058.), and with eight small detached shafts at Ely. Fig. 107\%. is a gracefully de-

Fig. 1077. FOUNTANS AbBEY; CHOLR.

10-8 (0^{-9}) engaged (figs. mass in lines and hollows. The eximple (fig. 1059.), from Westminster Abhey, has fime detached, and four attached, colonettes to the central shatt, but the reason for this exeepl-
and extent of the great piers in eathedrals and abbeys. Piers in the perpendicular period are generally of oblong or parallelogrammic plan, the longitudinal direction extending from north to south (fig. 1316.). On the east and west sides
 half shafts are attached, which bear the immermost order or soffit mouldings of the arch; the rest, including the great hollow, being usually continuous, without the interruption of any impost. The plan of the pier in Henry VII.'s Chapel is a fine example (fig. 1324.) of such an arrangement; and fig. 1059. shows the continued adoption of the decorated piers in the later portion of the nave of Westminster Albey. Sometimes the ground plan is a square, set angleways (as in the nave of Canterbury Cathedral, fig. 1299., and at Bath Abbey Chureb, fig. 1320.), and each angle may have an engaged shaft of a Fig. 1079. howten churcu. circular or ogee form.

Sect. V.

CAPITALS.

The monldings of eapitals and bases are more definitely marked in the various periods than any other kind of mouldings. "It is by no means impossible, even for an experienced eyc, to mistake the details of a decorated for those of a perpendicular arcli; but no one moderately acquainted with the subject could besitate in pronouncing the style of a capital or base, provided it possessed any character at all. In the Norman period, when the shaft was round, the highest and lowest members only were square, the parts immediately next them being rounded off to suit the shape of the shaft (fig. 1266.). This is seen in the ordinary form of the cushion capital. We may observe the lingering reluctance to get rid of the square plinth, in the tongue-shaped leaves or other grotesque excrescences which are often seen to issue from the circular mouldings of transition Norman bases." Fig. 1080. is a curious example of the square form in front (N), and the cireular moulded form in rear, of the shaft, shown on plan, fig. 1076. As soon as a sub-arch was introduced the corners of the capitals were either cut off or cut out: the former process produeed the octagonal form ;

Fig. In8u).
FOUNTAINS ALEEY; NAVK. the shape of the shalt produced

Fig. IUs:
TINTLAN AbHEY.
the circular capitals and lase. But capitals became octagonal before plinths: and similarly octagonal plinths were retained long after cireular capitals had become universal.

Fig. 1031, is the frout fise of the shaft shown in figo. 1077., as is also fis. 1052 of that of $f y 10^{-5}$, \& ec.

- Capitals mas be diril d isto monlded and forized. In the latter t^{2} e foliage in thic transifion Normas aud early. Enclish period is arranged vertically, in the decorated is

Berver ematerat
 ry ad the erpital (fig. 1C53.). In the per:peradieular, troce fregaent'r enratl leares or paista are set lite stud at intervalo senos d the shaft abore the seck. The earrital con-
 the reck In the eart F Ftyylins periad the atractus is alosost ivsarisily usdercut. Is the
 ซifthe efliacrical soil of leos wize b-bow in The bell, in sarl? Ergliwhe capm, is sumetimes doukie, with a nerg lawdugrat effeet, wli3e in
 eut It is alwo moets mose varied biy elabou

 is cfurs coserpened of a :oll ard Eillet. The zutil z ioras ans jurpenturst detail is juderis? of the dates o^{2} we work Ja the easly Ir F Jubt it is ustal? of a bold awr lat cou-lisme; of a ues iburagon. The seck durimg the deouraied perind is alswant always ite wer B

 a IT le devijuted in the daie of capitals of the

 promen : qut mosked faturea that ther ase
 ingo are lay

145．｜hal｜

lun＇ume al ith）．

 mombers amd wetatumal bolaw．The expitals
 vither a plam romme or a hind of debomed sompli monldinge with the uppor edere ehamfind as in the abseles．If will he fombl tatat a mbeh greater liseme was tahen in designiner the monddinge ot
 swett，ll wt the capital wf the shat the the areh betwent the nate piers in Hem！Vll．s chaped．

 the explitals en the smatl chopel at the emi wi

Snor 11.

ばざが

 monded in the Ittic form，mome or lew mbeltod

 the umder she when divikes the shatt fiom the plinth．

and intermediate champs or fascice is incre:sed, and the latter are often earved m panels, \&c. 'Thus a second table, 13 , is introduced above the ground line G. Professor Willis applies the term "ground table, grass table, or earth table," to the slope B, and states that ws such tables as D the term "ledgement tables" were probably applied.

Sect. Vil.
VAULIING SHAFTS AND HIBS.
When the main shaft supporting the clerestory had an attached circular shaft in front, the latter was often carried up as a shaft to the roof (fig. 1265.) The point

has not yet been settled whether this shaft in some early buildings was. or was not, so carried up, to receive the cross rib of a vault, or simply to bear the heam of the rooting. When vanlting became more general, the purpose of the shaft was undisgrised (fig. 1978.) and being made correspondent with the vaulting ribs, the groups of the latter were reccived on a colonnette or on small columns. The vaulting ribs at St. Saviour's (Soutbwark) Church, are given in fig. 662e. In the latter part of the 15 th century engaged colonnettes for receiving the vault ribs rise from corbels placed on or above the capitals of the sliafts, and sometimes the ribs themselves spring from the corbels (figs. 1274. and 1275.), and later, or in the perpendicular period,

Fig. 1099.
NAVE AND CHOHR.

Fig. 1100.
alsle.
tintern abbey. vaulting shafts. the older form was, as it were, reverted to, and the attached circular shaft was carried up to, and received the vaulting ribs, as in figs. 1302., 1307., 1314., 1317., and 1325.

Conbels very fre.. quently supplied the place of capitals both for the springing of arch mouldings and for vaulting. 'These corbels were either moulded or carved to correspond with the capitals (fig. 1109.), or they were

Fig. 1101.

Fig. 1102.

Fig. 1103. NAVE AND GHOLR Transverse bib and Diagonal. lashioned into a mass of foliage, into heads of males and females, or of animals. Even whole figures were introdnced, occasionally deformed if not purposely so carved for admission within the

Fig 1104 sate.
vaultivg suafts.

Fig. 1105.
choir aisle.
howden cilureil.

Fig. 1106.
CHOHIS ANB AISLE.
Transverse Kib and Diazonal.

F1g. 1107. Wall rib. Vaultino bibs.
spare. In the vaulted saeristy at Winchester College, its" springers present au arehbishop, in benediction, a bishop, and a king, and over the door a guardian angel. Bosses of
oak leaves and roses alternately, carved with great taste and 'subtilitè, enrich and cover
valletiva Rib.

A and B, Ribs for groining. HENはY VH.'s CHAHEL; MSLE. the junction of the sibs.- The uncouth and barbarie heads in the corbels which surround the prineipal tigures contrast with their graeiousness, and form that antithesis whieh the great masters in tine arts of the sueceeding centuries employed so abundantly. The virgin patron'ss presides over the western pinnacle of the ehapel ; the angel Miehael at the other termination of the building menaces with his Haining falchion the several demons whieh might approaeh the hall, refectory, cellar, and kitehen; the angel Raphael points out the entrance to the house of prayer at New College; the king and the bishop support the label of the gatewa!s to the college at Winchester, and the entrance of the chapel ; and as the appointed guardians and supporters of temporsl and spiritual things, they sustain alternately the corbels or springers of the ceiling of the chapel. At the entrance of the hall and kitehen, the reereating psaltery and bagpipes are affixed; over the kitchen window is 'excess,' a head vomiting; and opposite is 'frugality ' in the figure of a bursar with his iron-bound money chest. Over the master's windows are the pedagogue instructing, and a listless seholar, scarcely attentive to the book he holds in his hand. Elsewhere we reeognise the soldier, the scholar, the elergyman, \&e, as suggesting the varions professions in which the inmates may oceupy themselves in atter life. The inept substitutions for these significant and appropriate ornaments are amongst the most palpable evidences of the insuffieiency and inaptness of our mimiery of this style, in most instances in the present day; and they betray great ignorance of the poetical mind and spirit of mediæval seulpture."Cockerell, The Wykehum Buildings.

Sect. VIII.

hood mouldings and sting courses.

"The strings consist of projecting ledges of stones carried below windows, both within and without a building, round buttresses, and other angular projections, and to cornices, parapets, tower stages, and other parts of edifices, being used as dividing lines. Though subordinate, they are of the greatest possible importance in imparting a character to a building. They at once reliere naked masonry, and bind into a whole the seemingly detached portions of a rambling or irregular construction. In most cases, especially to windows, a string course forms a real drip or weathering, and adapts its upper surface especially to this end, thus beeoming what is termed a hood moulding, whieh when used

Fig. 1110. Fig. 1110a.

Fig. 1110 .

Fig. 1114.

Fig. 1111.

Fig. 1112.
norman lemod.
internally, cannot be said to have any real use; but they form a decorative finish of too important a kind to be neglected with impunit.."

Norman strin r courses are generally full of erges or hard chamfered surfaees (fig. 1110 .). In mont eases they have some sculpured decoration of the style, as the billet, the chevrom,

the hatehed or serrated moulding, or the like (fig. 188.). Figs. 1111. and 1112. are anomg the simplest, being the latest in the perionl. Ihe commonest early English strings are wh: fiys. 1114. and 1115 ; the undel-eutting giving a hold projeetion is a striking feature
of this moulding as of all others of the style. 'The most frequent decorated form is fig. 1116 . 'That shown on figs. 1179, and 1181. is also very common. The scroll, with a half-
 round next below it, fig. 1115 , is very characteristic. The ronnded form of the upper side, or weathering (fig. 1118.), is pecular to the two first styles; the angular or cham"ered, of the last (fig: 1119. and 1120.). String courses follow the principle of the ab:acas of the capitals, from which indeed they are often continned along the wall of the building.

Perpendicular string. and hood mouldings are generatly marked liy the plane slope of the upper surface. The details of the parts underneath are so varied as to render it impos ible here to give any account of them. A characteristic ma k of the style is a small boltel in the lower part (fig. 1121.). The wall olten recedes abose the string, or even overhangs it. Fu. 1122. is the section of the "Angel cornice" over the arehes in I Ienry VII.'s chapel, as shown in the elevation, fig. 1325., at 1). Fig. 1123. is the cornice and base over it, over the pantling above the octagon windows. The scale is the same as to fig. 1085.

Sectr. IX.
BASE COUILSES OR PLINTIS,
This term is applied to that series of mouldings formed at the base of a wall, which leads the eye from the urright face gradually into the ground. The lowest course of

chamfered set-offs. They then became very similar, as in the transepts of Beverly Minster, to fig. 1126., of the geometric or decorated period, in which the tablet or slope took a curved or ogee ontline, and was qenerally only one in mumber, finished at top by a seroll moulding, with occasionaliy a string above it, as at Eiworby. The lieight of
fig. 1126 is very small for so large a building. The basement to Lichficld Cathedra! 1 s not much more tutined. Fig. 1277. is a ricler example.

The basement in the perpendicular period is one of the glories of the style. That shown in fig. 1306. from Winchester, may be considered very plain, as is also that at Bath, fig. 1319. Reversed ogees and hollows, variously disposed, are the princial members. Fig. 1128 . being the tasement round the outside of Henry Vill's chapel, will allord sone idea of the work bestowed upon this feature. Velvertoft Church, Northamptonshire, has four rows of diagonal, square, and circular panelling, one above the other (Rickman, page 213., 6 th edit.). In Norfolk, where flint work was used in the erection of the building, it was introduced in upright panelling in the lowest fice, above an ogee moulding (ilid, page 214.).

Sect. X.

PAHAPETS.

The Norman period may be said not to have exhibited any parapet, the roof being finished by the tiles or lead work projecting over the wall and supported by a cortel I locking.

During nearly the whole of the early English period, the parapet in many buildings was often plain, as fics. 1129. and 1126.; or with a series of arches and panels; or with quatrefoils in small panels, as fig. 1277., which is of the next pericd; or plain, with a rich cornice under it.

In the decorated period it was still plain but with moulded capping and cornice, as figs. 1130. and 1131., and with the ball flower, as iif fig. 1128., but also closer and comected by tendrils; it is often pierced in various shapes, of which quatrefoils (fig. 1277), in circles, or without that enclosure, are very common; but another, consisting of a waved line, is more heautiful and less usual; the spaces are trefoiled. Pierced battlements are very common, with a round or sipuare quatrefoil. The plain battlement most in use is one with small intervals, and the capping moulding only horizontal.

They contimued to be used in the perpendicular period. The trefoiled panel with waved line is seen, but the dividing line is more often straight, making the divisions regular triangles. One of the finest examples of a panelled parapet, comsisting of quatrefoils in spuares with shields and flowers, is that at the Beanchamp Chapel, Warwick. The pierced parapet on Heny VII.'s (hapel (fiy. 1193.) is a line example, with its angle pinacle. That on the choir at Winchester Cathedral consists of upright panclling only (fiy, 1306.). Lally period battlements frumently have quatrefoils either for the lower compartments or on the top of the pancls of the lower, to form the higher. The later examples have often two heights of pancls, or richly pierced quatrefoils in two heights, forming an inducted

Fi, 1128. mesry yi.'s charpl. battlement. They bave generally a ruming cal moulding carrich round the indentatio ns.

Fig. 1139.

In a few late buiddings the capping is ornamented, somewhat like a cresting : and in a few instances ligures resembling soldiers on guard have been carved on the battlements.

Plain battlements have been divided into four descriptions. I. Of nearly equal divisions, having a plain eapping ruming round the outline. 11. Of nearly equal intervals,

Fig 1131.

tintern abbey ; choir.

Fig. 1132. Howden church ; Cholr. and sometimes with large battlements and small intervals, the eapping being only placed on the top, and the sides cut plain. III. Like the last, but with a moulding running round the outline, the horizontal capping being set upon it. And IV. The most common late battlement, with the eapping broad, of several mouldings running round the outline, often narrowing the intervals (Rickman). It is seldom that the battlements wili tell the age of the building, as they have been so often rebuilt. A small battlement differing to these four descrip)tions, is shown in fig. 1128., under the windows of Henry VII.'s chapel. A few more words may be said in the section Towers and Spires.

Sect. XI.
MOULDINGS iN woolwork.
"If this kind of work be attentively examined, it wi'l be seen that it was wrought altogether on the same prineiples as the corresponding sculpture in stone. We see the thoroughly conventional early school, the naturalesque middle-pointed school, and the again conventional thirdpointed school of carvers, succeeding each other in exactly the same way, the main difference between the two being that thie work in wood is ordinarily very mueh more thin, flet, delicate, and sharp, than the work in stone ; that it has always some limits set to its exuberance by the nature of the framework in which it was wrought. In earpenter's work, it was always the rule only to mould the useful members, and so it was also as regards the carving. It was not useful or convenient to put on to a piece of oak framing a mass of oak to be carved as a hoss or a stopping to a label (this sort of device was reserved for the ingenuity of nincteenth century architects), and so it will be found that most of the old wood-carving is so contrived as to be wrought out of the same plank or thickness as that which is moulded. or else is a separate piece of wood -in a spandril, for instance, enclosed within the constructional members. The spandrils ia the arcades behind the stalls at Winchester Cathedral are an admirable example; they are carved in thin oak, perforated in all directions, and then set forward alout half-an-inch in advance of the back panelling. The effect

carving the most dis:inct relief ; and it is an effect strictly lawful, because it was impossibie in other materalal, and yet natural in woodwork. The same attention to the material will be found exemplified very remarkally in all old wooden mouldings. The accompanying illustrations (fiys. 1154. and 1135) will show how extraordinarily minute, delicate, and

Fig. ll3 STALLS; WINCHESTER CATHEDRAL

Fig. 1155. SCRERX: ST. MARY'S HOSHITAL, ClICHEST .R.

Fig. 1157.
Scale 2 in. to 1 ft . sharp they were. In the stalls at Selby we see an elaborate eap, only $1 \frac{3}{4}$ inches high ; at Winchester, a band $\frac{7}{6}$ ths of an inch in height, and yet consisting of four distinct members, and showing in elevation as many as eight

Fig. 1136.
SCREEN; NORTHFLEET.
distinct lines. The finish of the wall plates in the porch at Horsemonden, and the carving of the miserere seat, so curiously preserved in the midst of woodwork some three hundred years later in date, in Henry VII.'s chapel, are fair illustrations of the goodness of the earlier sculpture."
"The whole of the early mouldings are sharp, delicate, minute, and quaintly undercut. They are very often unlike any stone mouldings, just as many wooden traceries (e g. those of the screen at St. Mary's hospital. at Chichester (fig. 1135.), and the stalls at Lancaster), are quite umbe what could conveniently be executed in stone. In spite of a bad lashion which obtains just now," among some of the present medieval architects, "of ignoring the value of mouldinge, I maintain that they prove conclusively the existence of a school of art in this country of almost unsurpassable excellence." Street, On Eaglish Hooduork in the 13th and 14ih centuries, read at the Royal lustitute of British Architects, 2cth February, 1865.

As an example of early work we give figs. 1136. and 1137., from Bury, Hooduork. beins the details of the screen in Northfleet Chureh, Kent. M, in the first figure, is the first column (the details being given to a larger seale at S) in the sercen abutting upon the
ceutre opening, the areh of which is shown at N . The corresponding positions on plan are exhibited in fig. 1137. The section O, represents the face of the buttress P, while the plan Q is that of the arch mouldings at R.

Fig 1138. is a section of the sereen on the south side of the chancel at Lavenham Church, Suffolk, wherein the details N, \mathbf{O}, and l , are those belonging to the buttress Q, which even in late mediaval carpentry was not omitted, though somewhat out of accordance with the "true principles" attributed to derign in that style.

Fig. 1189 , being the eapital and base mouldings from the sereen in Aldenham Church, Hertfordshire, are of the perpendieular period. These examples are all further illustrated in Bury's work above-mentioncd, as well as figs. 1140. to 1144., showing the general style of mouldings adopted
 for seats and bench ends, as noticed in Jar. 2192 $\%$. Fif. 1140. is the rail of the bench; fig. 1141. the division under the seat; and fly. 1I42. the section of the arm of the stall and of a bench end, all at Bridgenorth Church, Somerset-
 shire. Fiy 1143. is the arm of the stalls at Wantage Chureh, Berkshire; and fig. 1144. the rail and stall mouldings at Swinbrook Chureh, Oxfordshire. The ends of the stall even in Henry VII.'s chapel are worked out of only 3 -ineh planks, and formed into three attached shafts, similar to fiy. 1143. O. her notices of the thickness of stull are given in pur. 2175 cl .
llaving given illustrations of the prineiples of constracting timber roofs during the mediaval period, we now append some of their details, which, ou comparison with the

SECTIONS OF HoUldings to benchls.
figures just given, will tend to show the mode in which the rougher and larger timbers were ornamented, especially those so much further from the sight than sereens and other

like decorative work. Fiy. 1145. shows the rafters used at Pulham Church, Norfolk \{fiy. 7010.), L being the main, and M the common, rafters, with the boarding N stmk

in between them. Fi.j. 11t6. is the purline; fiy. 1147. the wall pieee; and fiy. 1148. the collar-beam. Frig. 1119. illustrates the ralturs in the church at Capel St. Mary,

Flg. 115z. Sulfolk (fig. 701\%), 0 being the section of the common rafter. Fig. 1150. is the collar-beam with the arched truss under it ; and P the ridge picee; fig. 1151. shows the moulded cornice abutting upon the hammer-ticant: fig. 1152., ant Q the luwer purline. Fig. 1153. gives the details of the roof of late work at Knapton Chureh, Norfolk (fig. 701t.), being the section of the lower hammer-bean ; fig. 1 i54, the post abutting upon it; fig. 1155. the ridge piece; and IR the purline. These will all be found to a larger seale, with the other details, in Brandon's Analysis. All the illustrations from figs. 1145. to 1155 . are drawn to the same scale,

The following sections repre-

Fig. 1450. sent the roof timbers in the south aisle of Lavenhan Clurch,

Fig. 1160 . ST, ALBAN'S.

Suffolk, from which building the sereen in fig. 11.38. was also derived. Fig. 1156. is the cornice; fig. 1157. the wall strut, and fig. 1158. the purline. Fig. 1159. is the cornice in the chancel aisle. These are likewise illerived from Bury, Hoodwork.

Sect. XII.

wINDUWS.
In the body of the work we have, under each period of Gothic arehitecture, given a description in general terms of the windows prevailing at the several times. The examples here brought together, are inserted merely for the purpose of showing the gradual change in their forms and combinations, which are alnost infinite in number, and yet that the latter are far from exhausted, is conclusively shown by R. W. Billings, in his work on Geometric Combinations ; and by E. Sharpe, in Decorattd Window Tracery.

The earliest windows are extremely small, always semi-circular headed, or nearly so, and without moulded archivolts. They are usually with a single light (fig. 1266.), except

Fig 1161.
beaudesert. in belfry towers, where we often find them divided into two by a shaft with a eapital. as in the tower at St. Alban's (fig. 1160). The simple plain head, however, in the latter part of the carly period,

Eig. 1162 . canterbery. was more or less ornamented with the chevron or zigzag, and other orna-

big. 1162. caxtetdery. Fig. 1163. salisbery. ments of the time, as in fig. 1161. One of the greatest and most striking changes brought in by the prointed style was that of introdueing, from the suddenly elongated dimensions of its windows, a blaze of light into its edifices, which, from the low and narrow sizes of their predecessors, were masses of gloom. From the beginning of the 1sth
 century we see them lengthened in a surprising manner, and terminating with a lancet-head, which sometimes lecame oceasionally cusped. An instance of the simple lancet-liead is given in fiy. 1162., from the Trinity (hapel at Canterbury Cathedral. Sometimes an elegant combination is obtained by grouping lancet-headed windows under one hood, the centre rising above the side ones, as at Salishury Cathedral (fig. 1163.), where the spaces between the heads are ornamented, or have a sunk panel or device. These spaces are frequently pierced with foliated cireles, or with trefoils or quatreficils not enclosed. In an example at Lincoln (fig. 1164.), the height of the group is equal, hut the light of the centre being wider than the two side lights, the curvature of the arches of the latter is necessarily much less than that to the former, and the effect is not satisfactory. There were, however, many other arrangements in derigning these laneet-lieaded windows than the single and triple ozes just mentioned Two, four, and five, lights oecasionally fo mi the group. Of the list-ramed, are windows at lithlingborough, in Warwickshire. and at Ommile, in Northamptonshire, in which the lights on the sides gradually rise $u p$ to the centre one. In the latter part of the period. heads fimish with trefoils; the mullions are moulded and finished, both inside and outcide, with shafts or colonettes, from the capitals of which spring the mouldings of the subdivisions.

The finest and largest gronp of early English lancets in the kingdon is the five, commonly called 'the five sisters,' in the north transcpt at York Cathedral, completed 1250. They are each about 5 fect 7 inches wide and nearly 60 feet high, and in the interior have a beauty altogether their own, not surpassed, if it be equalled, by any decorated or perpendicnlar window in the kingdom. The rich effect of the arrangement of the two storics. each having three lights. ar t'e east end of Sonthwell Minster, is well deserving of attention. Hly cathedral has internally five lights over three, while externally three more are observed over the live.

At Kilkenny Cathedral there are three huge zarly English laneets, the centre one being.

62 feet high and 8 feet wide. The detached shafts are filleted in four rows; the mouldings over are formed into trefoil arches. In the south side of the choir of St. John's Priory, in the same city, is a continuous arcade of 54 feet of lancets, the largest pier being only 9 inches wide.

These filleted bands are an interesting work, as they are found in many parts both of Ireland and England. Perhaps the most remarkable example in England is that at Walsoken Church, near Wisbeach, where the chancel arch has four small shafts in each pier, all banded five or six times It is additionally sriking from its greater antiquity than any of the Irish examples, heing, as at St. Alban's, romanesque. These banded columns and roll mouldings find their counterpart at Margam Abbey, in Glamorganshire, the west front of which slows a fine triplet, and a doorway below banded in this peculiar manner. Transactions of the Institute of British Arehitects, 1865-fi6, plp. 80-86.

The filiations seen in windows belonging to the earlier examples of this style in England are not generally cut out of the same stone as the head of the arch to which they belong,

Fig. 11 f5. r.MNTED CHAMBER. but form the tracery, in small pieces, and these enter into the class of plue trucery, i.e. they belong to the flat soffit, and not, like bar tracery, to the outer mouldings.

By perforating the space between the heads of two adjoining lancet-headed windows, as in the old painted chamber at Westminster (fiy. 1.65), the elements of the ornamented window are obtained. To cover it, however, ornamentally, the enelosing arch must be depressed and moditied ; and at Ely (fiy. 1166), we find an example for illustrating the remark. The lozenge-shaped form between the heads of the arches is converted into a circle which. as well as the heads of the lights is foliated. Instead of a single

Fig. 1166. ELY. circle inserted in th. had of the window, we then have them with three foliated circles, as

Fig. 1167. merton college.

Fig. 1ites. c.atiedichl, oxford.

Fig. 1169. st. oUES, moven.
at Lineoln, one above and two bolow ; the same cathedral furnishing an example in the east window of its upper part having one large circle inelosing seven smaller foliated ones, be-

Fig. 1170. cawstus. sides its containing similar ones in the heads of the two leading divisions below. The windows just described helong to a transitional style between the early English Gothic and the decorated; but the ornamented windows of the 14th century exhibit in their general form and details a va-t variance from them in the easy unbroken flow of the tracery with which they aloound.

In the next stage come the examples shown ly fig. 1167., Meiton - College Chapel, and fig. 1168., the Cathedral, both at Oxford; the latter whereof has a tendency towards the Flamboyant style, which has been before mentioned, and which, in the 14 th century, hat thoroughly established itself in Fratce, as may be seen in the windows of the church of St. Ouen, at Rouen, exhibited in fiy. 1169. It may be observed that the principal lights are seldom divided by transoms; when thev, however, occur they are mostly plain, and rarely embattlerl. Though the ogee head is often found, the nisual form is that of the simple-pointed arch. In the clerestory, squareheaded windows are of en seen, but more often in other parts of the edifec. In the preceding, ats well as in this period, oceurs the windww bounded by three equilaterally segmental curves foliated more or less as the date increases. The arrangement of the tracery of windows has, by the French antiguarics, been divided into two classes - rayomant and
flambionfent Their raymmont, so called on acconnt of the great part the circle plays in it, and on whose radii its leading forms are dependent, was flourishing throughont the 1 th ceatury in France. - The flumbonant or tertiary pointed style followed it. We have already observed that the Contment preceded us in each style as much as half a century.

After this comes the Florid style, in which the edilices seem to consist almost entirely of windows, and those of the most highly ornamented description. It is scarcely necessary to do more than exhibit the figures for a compreliension of the nature of the change which took place; in short the

Fig. 1171. Notwictr. introduction of the Tindor arch alone was sufficient hint for a totally new system. In the example (fig. 1170.) of a window at Cawston Church, Norfolk, we may observe the commencenent of the use of transoms, which at lengtly were repeated

Fig. $1172 . \quad$ AYLSHIM. twiee and even more in the height of the window, and indeed became necessary for aflording stays to the lengthy mullions that came into use. Fig. 1171, is an example of the square-headed window of the period, and fig. 1172, of a Tudor-headed window at Aylsham Church, Norfolk. Another example may be referred to in fig. 200., and in the several illustrations given under the section pincifles of propontion, at the end of this chapter.

Mullions appear t, have been introduced about the end of the 12th century as sub)stitutes for iron frames, and were at first built in courses that corresponded with the other work of the wall in which they stood, or were in small picees. But as early as 1235 they were fuce-budded stones dowelled with iron. As the oxidation of the metal

Fig. 1173. WiNDSOR. proved ingurious, iron was superseded, alter the end of the 14 th century, ly dowels made from the bones of sheep or from the horns of deer. Fig. 1173., from the west windows in the tomb-house at Windsor, temp. Henry V1I, illustrates the arrangement usually adopted in drawings to show the distance from centre to centre, as at MI, N and O, that is to be allowed in forming the length of radius employed in striking the curves for the tracery. Other examples of such sections are given from the clerestory of the nave of Winehester Cathedral, fig. 1303; Ronen Cathedral, fig. 1290; King's College Chapel, fig. 1312. ; St. George's Chapel, Wiidsor. fit 1:31fi.; and from Amiens Cathedral, fig. 1329.

Tt:e simplest mullion or moninl or trasery lar would be a plain rectangular block of stone. The next, with the erlges chanfered, varied ly subutituting a hollow for a plain chamfer; by giving an ogee form to the chamfer; and by cutting ont a hollow in the chamfer with recediug angles instead of a receding curve: this lant is perhaps peentiar to the carly decorated style. The hollowed chanfer is the only moulding ordinarily made to carry the ball llower ornament of the

Fig. 1174.

Fig. 1175.
FOUXTANS AHEEY。 CHOHE

14th eentury, and the four-leaved tlower of the 15 th century. When the tracery becomes at all elab rate, the subordination of the parts is effected by giving to the jumbs and mullions, or perhaps to some of the mullions ouly, and to some of the tracery bars, an additional orier of mouldings. Then the fillet or boltel of the onter monlaing (\mathbf{N}, in fiy. 1173.) deseribes the greater lines: that of the inner monlding (0) the smaller lines of the traeery and the whole of the ensping. In like manner a third oricer is
may be as varied as was the first. Perhaps the most common form for the first is the hollowed ehamfer, and for the second and third, the resant with a fillet. In a very few

Fig: 1176.
tintern abbey. chome
Fig 1177. becomes a sharp edge, i.e. the mullion is chansered to an arris.

* Nothing is nore essential to the grood effeet of windows (exeept where the mullions are treated as shafts muder a mass of tracery without glazing), and nothing is so much neglected by modern architects, as making the mullions of adequate thickncss," writes Mr. Denison, in Church Building. "I'le modern works are very seldommore than $\frac{1}{6}$ th of the width of the lights; probably about 4 inches in the ordinary side windows, and sometimes less, and perhaps a fiw as much as 7 or 8 inehes in large east and west windows. In the east window of Tintern Abbey, which has cight lights (fig. 1178.), the principal mullion is 15 inches thick, and the two secondary ones

Fig. $1178 . \quad$ tintern abibey. east window. Fig. 1179. are 11 inches, and the four smallest very nearly 8 inches. At Guisborough Priory, of the geometrical period. a window of only seven lights bad two prineipal mullions, both as thick as the middle one at Tintern. The great mullion of the east window at Lincoln is about 2 feet thick. Even the two small east windows of Guisborough, with only three lights, has 9 -inch mullions, and those at Tintern 7-inch. Some four-light windows at Whitby have the middle mullions about $1: 3$ inches, and the short cierestory windows of Brialington are above a foot thick. Nomullion ought to be mach less than one-third of the width of the adjacent light. The lights of the small Guisborough windows are exact y three times the width of the mallions: the aisle windows of Selby are abont the same; where there are more lirhts than these, and therefore two or more classes of mullions are required, the larger ones must be considerably more than this. In all eases the depth from back to front ought to be at least twice the width or thickness from side to side. 'There are a few old geometrical windows, with 'thin' mullions, but they are execptions, and do not hok well.
"The dillerenee between good and bad windows, strikingly exhibited in the same chureh, may be seen in the north aisle of the choir at Selly, where a set of windows of no more than three lights, and those rather short ones, having thacery of the simplest possible pattern, only three quatrefoils in the head, ane perhaps the most beantiful windows of the size to be found anywhere. Above them in the clerestory are windows of four lights and much more elaborate tracery, and yet almost as ill-looking as any modern ones. The reason is that the lower ones are deep set, and have thick mullions and tracery, and high arehes, whereas the others are very shallow, on aceount of the passige in the wall; the

Sect. XIII.

WINDOW JAMBS AND ARCH PLANES.
The following details of window jambs and mouldings, are reduced from those given in the valuable publication already mentioted, namely Sharpe's Architectural Purallels. Fig. 1174. is the plan of the jambs, and fig. 1175. of the mouldings of the arch over them, to the early English choir at Fountains Abley, Yorkshire. Figs. 1176. and 1177. are the similar portions to the geometric choir at Tintern Abbey, Monmouth ${ }_{-}$ shire. The samepublication gives, amongst its numerous details, the elaborate grouping of mouldings to the magnificent east (fiys. 1178. and 1179.) and west (figs. 1180. and 1181.) windows of this building, which is somewhat transitional to the decorated period, and of very great beauty. Fig. 1184. is the janb mouldings to the decorated east window at Howden Chureh, Yorkshire, showing a passage
 in the wall, which materially deteriorates fron the good effeet of the window.

The following illustrations are from Henry VII's Chapel. Fig. 1183. is the wall jamb to the first cant of the angular windows to the aisles. Fig. 1184, is the first angle mullion of the circular or bow windows; it also shows the arrangement for the mullions or monials, and (L) the mitring

with the wall-work inside. Fig. 1185. is the jamb mouldings of the upper range, or the clerestory windows. These are all reduced from Cottingham's work on this building,
 and are, to some extent, shown in the interior elevation of the bay, given in fig. 1325.

The section of the jambs to the windows of the elerestory at Winchester Cathedral is given in fig. 1303. ; to the windows of King's College Chapel, Cambridge, in fig. 1312.; to those of St. George's Chapel, Windsor, in fig. 1316. ; and to those in the clerestory at Amiens Cathedral, in fig. 1329.

The areh planes worked in the same buildings, have been placed on pages 971 ., 972 ., and $973 .$, while the series of mouldings to the arches of Henry V'II,'s Chapel will be found very poor in eomparison, as may be observed in fig. 1325.

Secr. XIV.

CIRCULAR WINROWS.

The large eircular windows so frequently seen in the transepts of churches, and sometimes at the west ends of them, and going by the general name of rose windows, seem to have originated from the oculi with which the tympana of the ancient hasilice were pierced, and which are still observable in monuments of the 11th century. For the study of this species of window the edifices of France furnish the most abundant means, many of them being of exquisite composition, and in our opinion far surpassing any else where to be seen. Many of these, from Rouen, Beauvais, and Amiens, will be found illustrated in the following chapter of this work.

It is scarcely previous to the 12th century that they can be fairly called rose windows; before that period they are more properly denominated uheel windows, the radiating mullions resembling the spokes of a wheel and being formed of small columns regularly furnished with bases and capitals, and connected at top by semicircular arches or by trefoils. By many the more decorated circular window has been called the marigold window, but we scarcely know why that should liave been done. The rose windows are used in gables, but their dimensions are then generally smaller and they are often enclosed in segmental curves whose versed sines form an equilateral tiangle or a segmental square.

An early specimen of the wheel window is in Barfreston Church (fig. 180.), wherein it is manifestly later than the other parts of the front. The example from Patrixbourne Church, Kent (fig. 1186.), is a curious and early example of the wheel window; herein, and

Fig. $1186 . \quad$ PATRIXBOURNE. indeed in all the minor examples, a single order of columns is disposed round the centre:

Fig. IIS7.

Fig. 1198. ST. Divib's. 13 jo. a, D.
but in the south transept at York Cathedral we have a moble instance of this speeies (fig 1187.)-a double order of columns being employed, comected by foliation above the capitals of the columns; this example is of the 13 th century. As the early style came in, the columns would of course give place to the mullion, as in the elegant speeimen from st. David's, shown in fig.1188. The two following examples (figs. 1189. and 1190.) from Westminster, and Winchester Palace, Southwark, are both of the 14th century. The tirst

Fig. 1189. WESTMINSTER ABLEY CHUTE'H.

Fig 1190. Whenestel palace, Southwaik.
is not the oniginal window, but we have reason to believe it was aceurately remade from the original one. The latter is a most elegant arrangement flowing from the continued sides

Fig. 1191. ST. OUEN, ROUTN, of the central hexagon, and consequently forming a series of equilateral triangles decorated with foliation. It was placed in the gable of the great hall of the palace, which hall was spanned by a timber roof of very beautiful and ingenious construction, a few years since destroyed by fire, after which the wall containing the window was taken down.

During the period of the three last examples in this country, the Freneh were making rapid strides towards that era in which their flamboyant was to be stifled and extinguished b_{y} the introduction of the renaissance style, about whielt we have already submitted some remarks, and produced some examples. In the church of St. Ouen, at Rouen, the circular window (fig. 1191.), middle of the 14th century, exhibits the extraordinary difference between Freneh and English examples of the same date. Beautiful as many of the Englislı examples undoubtedly are, we know of none that is equal to this for the casy and elegant flow of the tracery composing it. The leading points it will be seen are dependent on the hexagon, but, those determined, it appears to bramen off from the centue with mehecked luxurianee, preserving, nevertheless, a purity in its forms quite in character with the exquisite edifice it assists to light. The details of this window may be advantageously studied in I'ugin's Antiquities of Normandy, and in the larger woodeut given in the subsequent ehapter.

Besides these examples of eircular windows, others will be found of varying patterns, forming the centre picces in the heads of large windows, as at the churches of Easby, Hlowden, Wellinghorough, and at St. Alban's Abber.
Sict. XV

TRACELS OF WINDOWS.

As the perpendicularity of the style changed, at the begiming of the 13 thi century, from that which might be termed horizontal, so did the comparatively rude and clumsy form of its ornament assume a lightness founded on a close observation of nature. Its seulpture is endowed with life, and its aspiring forms are closely conneeted with the general outlines bounding the masses. The models used for decoration are selected from the forest and the meadow. Among the flowers used for the angular decorations of pinnacles and spires,
on crockets, and in similar situations, an ornament very much resembling the cypripedium calteolus, or lady's slipper, and the iris, are of constant occurrence. The former plant, however, appears to be found only in the woods in the north of England, and now, at any rate, it is very rare.

These models, however, though closely and beautifully imitated (says Ramée), are submitted to reduction within such boundaries as brought them to a regular and geometrica! form. Thus is found every conceisable description of ornament brought within the limits of circles, squares, and triangles, as well as within the more varied forms of the manysided polygons; the latter, as in the maigold and rose windows, being again subject to the eircumscribing circle; these polygonal subdivisions having always reference to the regulating subdivisions of the apsis, as will be further referred to in Chap. IV.

The circle obviously presents a boundary for a very extended range of objects in nature. In the vegetable world, a flower is scarcely to be found which, within it, cannot be symmetrically arranged. Its relations affurd measures for its subdivisions into two, three,

Fig 1192. four, and six parts, and their multiples, by the diameter and radius alone; the last being an unit, upon which the equilateral triangle and hexagon are based; moreover, as the interior angles of every right-lined figure ($E u$ clid, prop. 32. b. 1.), together with four right angles, are equal to twice as many right angles as the figure has

Fig. 1183.
sides, it will be inmedately seen that the interior angles in the equilateral triangle, the pentagon, the hexagon, the nonagon, and the dodecagon, are divisible by the sides so as to

Fig. 1194. ciear the result of fractions. Thus, in the equilateral triangle, the number of degrees subtended by the sides is 60°. In the pentagon the number is 108°; in the hexagon, 120°; in the nonagon, 140°; and in the dodecagon, 150°. (See par. 1219.). Independent, therefore, of the service of the circle in construction, we are not to be surprised at

Fig. 1195.
its being so favourite a figure in architecture, from the period at which the art was to become truly serviceable to mankind.

In respect of the pentagon (fig. 1194.), if lines be drawn from each angle so as to connect every two of its sides, the pentalpha results; a figure in much esteem in the 13th and 14th centuries, and used among the Pythagoreans as a symbol of health, centuries and centuries before.

The lieptagon and undecagon, whose interior angles are not divisible withont a fraction or remainder, were rarely used by the Frcemasons; an instance of either does not occur to us.

An incuection of figs. 1192. to 1198. will show the mode of generating from the several polygons the lohes of circular windows, as also the way of obtaining the centres for the lobes in a simple and symmetrical manner. In fig. 1192. the basis of formation is the equilateral triangle, and three lobes are the result. Those of four lobes, or quatrefoils (fig. 1193.), originate from the square; and

Fig. 1196. the Crucifera, or eruciform plants, 'Tetradyuamia of Limman's systen, seem to be their types in nature.

For those of five lobes, resulting from the pentagon (fig. 1194.), types are found in the
classes Pentandria, Dceandria, and Icosandria, of Linnæus. They comprise the rose, the apple, eherry, and medtar blossoms; those of the strawberry, the myrtle, and many others.

For circular windows consisting of six lobes, and based on the hexagonal formation (fig. 1195.), the class Hexandria seems to furnish the type, under which are found almost all the bulbous-rooted flowers, pinks, \&c. These observations might be extended to a

Fig. 1197. great length; but the writer does not feel inelined to pursue the system to the extent to which it has been carried by a German author (Metzger), who bases the principles of all pointed architecture on the formations of the mineral and vegetable kingdoms. In fig. 1196. the octagon is the base; in fig. 1197, the nonagon; and in fig. 1198.

Fig. 1198
the dodecagon. Beyond the last, the subdivision is very rarely, if ever, carried. It was not that all these types were selected from a mere desire of assimilating to nature the decorations of the 13 th century, but it sprung from that deep impression of the utility of

J'ig. 1199. geometrical arrangement, which sought in the vegetable kingilom, and elsewhere, such forms as fell in with the outlines adopted. Similar formations based upon the arrangement of squares, triangles, and polygons, are exhibited in figs. 1335. to 1339., in the latter portion of this chapter, as obtained from the decorations of Amiens Cathedral.

Mr. Denison comments upon a particular figure in -window tracery, which appears to him to be very bad, and often adopted. He calls it the "broken-backed cusp," (fig. 1199.) because it gives the feeling that it is always going to break (like fiy. 1205., doorway). By it, the cusps are made a principal instead of an accessory; the proper way being to make a sub-arch at the back of the lower pair of cusps (fig. $1 \because 00$.), and to thicken the trefoil above until it looks like a piece of solid stonework, and having a real bearing on each other, and capable of resisting pressure.

Few attempts have been made to point to the origin of tracery and its ramifications. As the spaces of window openings went on increasing, until at li.t they became gigantic, in several instances exceeding 40 feet, a construction of stone framework became absolutely necessary. This framework, as we find in examples of the early decorated period, was at first unornamented-mere pillars or mullions below, with segmental curves, crossing each other, to fill the arch. But by degrees these curves changed their character, and assumed all the infinite variety we now know under the term tracery. From great windows, this class of decoration descended to the minor parts of buildings; and at last we find that light, fragile, sereen-work, to be the great depository of this kind of knowledge. Fixed geometric forms, rather than mere fancy, as the foundation of composition, are ever to be preferred as of the utmost importance to the designer, if he wishes or intends to arrive at a successful result.—Billings, Infinity of Geometric Design.

Our limited space warns us to refiain from the further elucidation of this subject; but before quitting it, we can refer to the many illustrations of the further development of

Fig. 1201. "tracery and geometric forms," forming a portion of the principles of proportion, treated hereafter, wherein examples are given from Westminster Abiey, Beauvais, Rouen, and other eathedrals.

To aid in the furmation of tracery a perfect knowledge of practical geometrical drawing is requisite; we therefore refer the reader to that section in Book II. where, commencing at par. 1007., he will find other more useful problems that will assist him in his designs. We append another application of the problem "to inscribe a circle in a given triangle," as being one of those more generally required in circular forms, and perbaps a quicker method than those above described. If a five-lobed figure be required, as in fig. 1201., obtain the triangle $\Lambda B C$ from the five divisions, on a base line $B C$ at a tangent to the circle; bisect BC and join A D. Bisect the angle A BC by a line BE, and
where it crosses the line $A D$, as at F, will be the centre of the required circle or lobe. A circle with the radius A F being drawn, the other centres on the lines of divisien, as A G, A H, \&c., are readily found.

Another usual geometrical problem in tracery work consists in finding the centre of a circle placed in the head of an arch. This has been elucidated by E. W. Tarn, in the Builder for 1863, p. 221. Let A B C in fig. 1202. be an equilateral arch, and the width A B he divided into three equal portions A D E B. Let the arches D F and E G be drawn with the same radius as those of A and B , as D H . Then it is required to find the centre of the circle which shall touch the four ares. Make E I equal to $\frac{1}{6}$ th of E B, and with: the centre A and radius A I draw an are cutting the
 perpendicular or centre line of the window in K; then K is the required centre, and $K L$ the radius of the circle.

Sect. XVi.
DOORWAYS.
It is almost needless to observe that through the several changes of style the doorways followed their several forms; our duty will, therefore, be to do little more than present the representations of four or five examples to the notice of the reader. The Prior's entrance at Ely (fig. 187.) is a fine specimen of a highly decorated Norman doorway. The earlier Norman doorways had but little carving. They are, as in fig. 1203., generally placed within a semicircular arch, borne by columns recessed from the face of the wall, and the whole surmounted with a dripstone. In fig. 187. it will be seen that the semicircular head of the door is filled in level with the springing, and sculptured with a figure of our Saviour in a sitting attitude; his right arin is raised, and in his left is a book. What is termed the vesica piscis surrounds the composition, which is supported by an angel on each side. These representations are frequently met with in Norman doorways. Many examples are composed of a series of recesses, each spanned by semicircular arches springing from square jambs, and occupied by insu-

Fig. 1203. WYKEN CHURCH, WAHWICKSHIRE. lated columns; though sometimes the columns are wanting and the recesser run down to

the plinth. The arelies are very often decorated with the chevron, zigzag, and other Norman ornaments.

- The early English doorways have the same character as the windows of the period; the smaller ones are often recessed with columns, from which a pointed areh is twined with q eut moulding on it and a dripstone over it. The more important doors, however, are mostly in two divisions, separated by a pier column, and with foliated heads. These are generally grouped under one areh, springing from clustered columns on each side, and the
space over the openings is filled in, and
 decorated with a quatrefoil, as in the doorway to the chapterhouse at Lichificld (fig. 1204.). Sculpture often occurs in the arrangement. The door to the elrapel of St. Nicholas, at Lymn (fig .1205.), is a cu rious example of the latter part of the decorated period. Fig. 1206., from Tattershall Castle, Lincolncolnshire, belongs to
 the Florid English or perpendieular period, whose simplest doorways usually had the depressed or Tudor arch, and without the square head which appears in the example. The more ornamental ones wcre eroeketed, and terminated with finials, as appears in the face of the porch at King's College Chapel, Cambridge (fig. 1208.). The doorway at St. George's Chapel, Windsor (fig. 1207.), though later in date, is more simple than the last, notwithstanding the exuberance of ornament and tracery which had then very nearly reached its meridian,

Sect. XVII.

PORCHES.

The poreh is a distinguishing feature both in ecclesiestical and domestic arelutecture throughout northern Europe during the whole of the mediaval period. In the ease of the smaller churches it was usually attached to the north and south doors. When to the north, it was generally built of stone, while the south porch was more often of timber. In France the porches are usually of very grand proportions and of elaborate strueture.

A Norman poreh, with an upper story or parvise, a ehamber which appears to have been variously appropriated, oecurs on the north side of Southwell Minster, Nottinghamshire, and is arched (Rickman, p. 81.); and another at Sherborne, Dorsetshire, which is groined. The example at Malmesbury Abbey Chureh is perhaps the finest of the few that exist of this period. An early English poreh with a chamber remains on the north side of St. Cross Church, Hampshire. The poreh at Felkirk, in the West Riding of Yorkshire, of late early English or carly decorated date, has a roof formed of stone ribs 1 foot in breadth by 10 inches in depth, plain chamfered at the angles, placed about 18 inches apart, springing from a string or impost about 4 feet from the floor. A complete illustration of this interesting example is given in Robson, Mason's Guide. The same simple plan is followed in those at Barnack, Northamptonshire, and at Middleton Cheney, Notthamptonshire. The south poreh at St. Mary's Uffingdon, Berkshire, is groined. This feature was extensively used in this period, as at Salisbury and Wells.

A beautiful example of a vaulted roof to a shallow porch oceurs in the decorated church at Higham Ferrars, Northamptonshire (Rickman, p. 111 ., also giving a plain vault with richly moulded door jambs at the west poreb of Raunds Chureh, Northamptonshire). Stone ribs are employed in the vestry or ehapel at Willingham Chureh, Cambridgeshire (Rickinan, p. 179., decorated); the chapel is 14 feet 1 inch long, and 9 feet 9 inches wide, as slown in Lysons' Cambridgeshire, p. 285. In this, and in the following, periods, the groined roof became common, and partook of all the varied enrichment exhibitell in larger roofs. The porches exceed in profuseness of decoration those of the preceding style: they were almost universally adopted. The south porch of Gloucester, and the south-west porch of Canterbury are beautiful examples. In the former, eanopied niches occupy the front over the doorway, the front being crowned with an enbattled parapet of pierced panelling, and at the quoins are turrets embattled and finished with croeketed pinnacles.

The example here given of the shallow porch at King's College Chapel, Cambridge (fiy. 1208.), is beautiful in design and in proportion. The nortlı porch at Beverley Minster rises somewhat higher than the aisle, the upper part forming a parvise. The doar has a fine feathured straight-sided canopy. over one of ogee form, both cro. keted: It is Hanked with niches, buttresses, and pinnacles; the whole front is panelled and crowned with a lofty central pinnacle, having a niche. An idea of it will be gained from the illustration given as a frontispiece to the present edition. The south porch of Leverington Church, Cambridgeshire, is groined and also has carred bosses. Over it is a parrise 10 feet ! inch wide and 14 feet 4 inches in length. The covering (of slabs of stone?) is supported by six arched stone ribs, placed 2 feet 1 inch apart, and 9 feet 5 inches span; the rib is 4 inches wide, 6 inches in depth, and chamfered on the lower edge. It fias a richly perforated stone ridge ornament. The section and details are given in Builder for 1848, p. 91, which also (iii. 598.) illustrates the sonth poreh at North Walsham Church, Norfolk, which is lofiy and open to the roof, it not having been divided into stories. It is a specimen of the mixture of flint

Fif 1208. KING'S CULILGE CHALIL, CAMBHLDGE. with stone details. The south porch of a churcls near Evesharn, in Worcestershire ; the sacristy, also at Felkirk : and the porches at the churehes of Strelly, in Nottinghanshire; of All Saints, at Stanford; and of Arundel, in Sussex. have interesting stone roofs.

In the case of domestic buildings, the porch, as at Wingfield Manor House, Derbyshire, has a story over the entrance, differing from those at Eltham, Croydon, Cowdray (which has an elaborate groined stone roof), and many others, having only one story. That at Porchester Cas le hall was the whole height of the building, having a room above the entrance to the hall, which was elevated on a basement story, and was reached by a flight of steps occupying the lower story of the porch. At Dartington Manor House, Derbyshire, and at East Barsham, Norfolk, there are two stories above the entrance, an arrangement frequently observed in similar crections, as at 'Thorpland Hall, Norfolk, and at Eastbury House, Essex, erected cir. 1572 . From the architectural prominence given to this fuature in domestic buildings, the designation "porch house" was often employed.

So very exceptional is the use of brickuork in England in medixval work, at any rate nntil the common brick porches, which were added in the 17 th century, that we

Fig. 1200. TORCH, AT LLJILCK, are induced to notice one of the many examples in this material excented abroad, in Germany especially. The north porch of Liibeck Cathedral (fig. 1209.), is described by G. E. Street, as "a 13th century addition, of two bays ia depth, with groining piers of clustercd shafts with sculptured capitals, and a many-shafted doorway of the best character. Its interior is probably mainly of stone, but the exterior is all of brick. The archway is boldly moulded, and above it is a horizontal arcaded corbel table, stepped up in the centre t" admit the arch. The gable is boldly arcaded upon shafts, and has a stepped corbel table, with a double line of moulded bricks above it next to the tiles. A couple of simple open
arches are pierced in each side wall, and there are flat pilasters at the angles. In the gatble, enclosed within the arcading, are some circular openings, one of which is cusped with small foliations formed of brick. The moulded bricks in the main arch are of two kinds only, one a large boltel, the other a large hollow, and these arranged alternately with plain square-edged bricks, produce as much variety as is needful. The jamb of the doorway is of plain bricks, built with square recesses, in which detached stone shafts are placed. The capitals thronghout are of stone, and carved with simple foliage. Perhaps no other example is more completely all that it should be in the use of its materials. The exterior is simple in all its details, yet sufficiently enriched by their skilful arrangement to be thorougily effective; whilst in the interior, where more adornment was naturally required, brick is frankly abandoned, and the ricnly moulded and sculptured ribs and archivolts are all of stone, though I have no doubt the vaulting and walls are, as on the outside, of brick. The only tracery which can be properly executed in brick is in fact the simplest plate trucery (and even this requires great skill and care in its execntion), or that sinple fringe of cusping round an opening which occurs in the porch, and which may be executed with ease with a single pattern of moulded brick often repeated." Church Builder, 1863, p. 56. We have somewhat altered the arched entrance as shown in Mr. Street's sketch, understanding that this porch has been lately restored in this manner.

Sect. XVill.
TOWERS AND SPIKES.
Europe has been cousidered by J. H. Parker, Transactions of the Institute of British Irchitects, to be indebted to Caen and its neighbourhood for that very interesting feature. the Gothic spire of stone. He has also traced its history from the low pyramid of Thaon Church. Normandy, dating about
 the end of the 11 th century, shown in fig. 1210 ., whereof the stones are left rougl within and overhang one another, while at the base a large piece of timber was introduced as if to bind the whole together (fig. 1211.), which has now entirely decayed. The apex has also decayed or been removed. The spires of Comornes near Bayeux ; Basly near Caen, middle of 12 th century ; and Rosel, are of the same character, and are followed by those at Huppeau Jigg 1211.
sLCTION OF SIU E.

A chronologieai sketeh of the gradual develupment of the spire in Germang, has

FIg. 1212. lately been attempted by W. II. Brewer, in the Builder for 1865, to which we can here only refer the reader, as well as for its very peculiar illustrations.

In England, during the Norman period the west end of the larger churches sometimes had towers terminating the aisles. Another tower rose from the intersection of the criss (the smaller churches had but this one), while it was only of suffi. cient elevation to break the long line of nave, choir, and transepts, all of equal
 height. The roofs of the towers were

Fig. 1214. Wammagon. of but little higher piteh than the rest. The nearest approach to spires, in form if not in height, were found in the pinnacles surmounting the angle buttresses in the larger churches. During the early English period, towers rise to a greater elevation, and are very generally finished with a spire, sometimes of great height. The most frequent spire is that called a broach when it does not rise from within parapets, lut is earried up ouf foer of its sides from the top of the square tower, the diagonal faces resting on squinches, or arehes thrown aeross the eorners within, and finished on the outside in a slope, as shown in fig. 1214. of Warmington Chureh, Northamptonshire, which has been published in detail by W. Caveler. A great many spires consisted of wooden frames, covered with lead or with shingles; and these in general, as well as stone spires in a few instanees, were connected with the tower in a different way; the spire itself bering at first only four-sided, and the angles being canted off a little above the base, to form the octagon. The carly English spire, completed in 1222, to Old St. Paul's Cathedral was the highost in Europe, being 500 feet high, according to Stow, or 489 feet as calculated by Mr. E. B. Ferrey.

In the decorated period, Heekington Chureh, Lineolnshire, one of the most beautiful and perfect models in the kingdom shows, says Rickman, "a very lofty tower and spire situated at the west end (fig. 1215.), the four pinnacles which crown the tower are large and pentagonal. This unusual shape has, at less cost, an effect fully equal to an octagon, and the pinnacles are without crockets, but have rich finials; the spire is plain, with three tiers of windows on the alternate sides. The whole arrangement of this steeple is peculiarly calculated for effect at a distance." The details of this work are given in Bowman and Crowther's useful publication. The claborately arranged octagon at Ely Cathedral, the design of Alan de Walsingham, is of this period. The work entitled Churches of the Archdeaconry of Northamptonshire, 1849, illustrates in small pictorial views several of the fine lofty west towers and spires of this and the sueceeding period, ereeted in that locality.

The perpendicular period is distinguished by the splendour and loftiness of its towers and spires. That at Salishury, for example, rises to the height of about 387 feet. That at Norwich, rebuilt soon after 1361, is 318 feet high. St. Miehael's spire, at Coventry, built 1378-95, is the most beautiful one in the kingdom; it does not rise, like those at Salisbury and Norwich, from the centre of a transeptal chureh, but from the ground; and its flying buttresses. and extremely taper form, give it great advantage over every spire which rises from within hattlements. The broach is not unfrequent in this style, and examples are eniefly to be found in Northamptonshire. Of other remarkable spires of
this style we should name Whittiesea, in Cambridgeshire (fig. 1216.): Rushdon, in Northamptonslire ; the two spires of St. Mary and St. Alkmund, at Shrewshury; I augh-ton-en-le-Morthen, in Yorkshire; Chester-le-Street, in Durham; and fually, Louth, in Lineolnshire, of which latter structure the building accounts are given in the Archoologia, vol. x., showing its completion between 1501 and 1518.

The spire of the tower of St. Nicholas Chureh, at Neweastle-upon-Tyne, from its pecialiarity of standing on arehed ribs, holds a high place in the series; it is the type of which there are various imitations. The best known are St. Giles's, at Edinburgh; the church at Linlithgow; the college tower at Aberdeen, and its modern imitation by Sir C. Wren, at St. Dunstan's-in-the-East Church, in London. Of another class of towers of this period, that of Fotheringay Church is the type. The ordinary square tower is surmounted by an oitagonal lantern of much smaller dimensions, connected with the tower, in composition,

Fig. 1215. hectisgton.

Fig. 1:2 w. WHITI, ESEA.

Fig. 1217. Al.L SAANTS, UEHBY
by flying buttresses from the bases of the angle pinnaeles. The tower of All Saints' Chureh, at Derby, has deservedly a very high reputation (fiy. 1217.). It is late in the style; as is also the fine detached campanile at Evesham. The tower of St. Peter Man(roft, at Norwich, is a good specimen of flint building with stone panels. The most remarkable of the perpendicular towers, both in itself and for its influence in the ecelesiasti, al architecture of a large district, is that of Gloucester, erected about 1455. This noble tower rises above 200 feet from the ground and about 100 feet above the roaf of the choir. lt is surmounted by a erenellated parapet flanked by four turret-like pimacles, all of delicate open work, to the very finials, of a light and graceful character almost beyond the matural capacity of stonework. Among the more important imitations of it are St. John's, at Glastonbury ; St. Stephen's, at Bristol; St. Mary, at Taunton; and that at North Petherton; the two last are said to have been designed by the same architect.

Beacons were sometimes added to towers; such is the lantern of All Saints' Pavement, at York, which is an octagon erected upon the tower. Hadleigh Church, in Essex, has a beacon in an iron framework placed on the top of an angle turret.

By far the finest west front, comprising two towers of the perpendicular period, is that of Beverley Minster. What the west front of York is to the decorated style, this is to the perpendicular, with the addition, that in this front nothing but one style is seen-all is harmonious. (See frontispiece, fig. 1218.) Each of the towers has four large and eight
small pinnacles, and a very beautiful battlement. The whole front is panelled, and the buttresses, which have a very bold projection, are ornamented with various tiers of nichework of excellent composition and most delicate execution. We may here incidentally notice that the east front is fine, but mixed with early English, which style extends to the transepts, while the nave and aisles are decorated, treminating with perpendicular, and finished with the west façade above noticed.

In concluding this portion, we cannot withhold naming the most elaborate work on the subject of this section, published from drawings made by C. Wickes, in S vols. fol. 185359. Its chief drawback is that the illustrations are pictorial and not geometric, which might have been obviated by a plan and section to each. Our sketch of the varieties of towers and spires will be found filled up, in Rev. G. A. Poole's History of Ecclesiastical Architecture.

In Ireland, the Dominican Abbey, commonly called the Black Abbey. at Kilkenny, had a tower placed on the south of the altar in a most singular way. At the Franciscan Church, the tower was placed at the east end of the nave, with a chancel at the end; the tower was much narrower than the nave, but exactly the width of the lofty arch supporting it, so that now the roof has gone, the construction appears extremely bold and hazardous. This building was one of a numerous class. Except the round towers, which ceased to be built when the English went to Ireland, and the low Cistercian towers, the Irish churches up to that period were almost towerless. In a few instances other towers could be named, as the fine massive one of the Trinitarian Friary, at Adare; but suddenly, in the 1.5 th century, it became the practice to build to the Franciscan and Dominican structures these lofty and slender additions The nave was shut out from the choir - by two transverse walls placed close together and pierced each with a narrow arch ; above them rose the slender tower, standing as it were on the apex of the gables, instead of spreading over the width of the nave. They were linished with a peculiar battlemented parapet. There is no instance of two western towers to the medixval churches in Ireland; and a medixval spire is not known to exist in that country.

In Scotland, the spires are chiefly of the middle pointed period, but not erected until about the middle of the 15 th century. Short octagonal stone spires form a very common termination to towers of late date ; they generally carry small pedimental headed lights cither on all or on the cardinal faces, and are for the most part plain, though, as at Corstorphine, at Aberdeen, and at Crail, in Fifeshire, they are banded by two or three embattled strings or coronæ into stages. Sometimes, as at the two fommer places, there are small pinnacles at the angles; while at Corstorphine, and St. Andrew's at Aberdecn, a lumpish semi-pyramidal abutment on the angles is extremely suggestive of the brouch.
'The construction of the tower and spire is of such importance as to require much attention. A tower built for the reception of bells intended to be rung, should have a solid foundation, not merely four arches nearly as wide as the tower itself, leaving four piers not much bigger than the thickness of the wall which they support. Bells require a tower to themselves, for it is known that they will spoil the best clock ever fixed. In Sir C. Wren's towers, and others built by bis imitators, the substance of the walls was concentrated at the angles, leaving a moderate sized arch on each side, and only the same internal area as would exist in the case of four straight walls. This is sound construction, and is well displayed in the tower of Antwerp Cathedral. Such an arrangement also admits of a staircase being carried up in the substance of the wall, without diminishing strength, besides, a desirable ohject in some large towers, doing away with the necessity for buttresses. The tower, if thus carried up its whole height, will be more fit to support an octangular or circular spire or lantern. The mean internal area should be half the external area, and then, if well built and of good materials, the tower will safely bear as many bells as can be hung on one level.

There should be an offset to support the ringing floor and the bell floor, so that nor timber be run into the wall to act as battering rams. Neither should a bell be hung on cross beams resting on the walls, but always in a trussed cage. As regards sound, one level of bells is considered better than two tiers. It is wonderful that sume of the carly brick or stone cones or pyramids (shown in fig. 1211.) have stood, for they were evidently. built in level but gathering courses, even in the 11 th century, around a light frame of timber, which was either removed or left to decay. As soon as the principle of diminution upward was acknowledged, two systems of construction presented themselves; the first is, direct carriage of the upper storey from the basement floor; the other is a false-bearing ; the weight being, in either case, thrown as much as possible upon the angles, even to the extent upon each floor of an opening in the centre of each side, which is the weakest part of a blank tower. In the first case there are two varieties, one being the pyramidal roof square on plan; the other being the pyramidal roof octagonal on plan. The latter, whether completed externally as a broach or otherwise, requires to be carried as low down the tower fur support as possible; and in some cases, as at St. Léonard, in France, the octagon is more judiciously placed with four angles over the centres of the sides of the
tower, than with four faces over the corners of the tower, which then require to be loaded by pinnacles. These are set diagonally more advantageously than when square with the: tower, because they thus have a larger base. The greater height given in the middle of the 12 th century to the spire rendered such precaution inevitable; and at the same time it became evident that if the spire were to be no longer square on plan, it must not seem to rise abruptly out of a square.

Octagonal steeples, with octagonal spires not built through, but resting upon them, seem to be considered now as dangerous experiments in construction. Yet one at Guebwiller, in France, is a central steeple of four stages, including the pendentives. At Schelestadt is another of the same kind. This plan does not seem to have been in favour after the commencement of the 13th century.

When the French architects determined to trust their octagonal spires to the upper storeys of their steeples, they seem to have been careless about allowing the pendentives to approach points of weakness. The student will gather a good lesson on this point from the section of the steeple at the Abbaye de la Trinité, at Vendône, given in Viollet le Due's Dictionnaire. In the steeple of the cathedral at Chartres, the pendentives of the octagon sit upon the four pinnacles, which are thus each obliged to take a part of the weight of the spire; the other part being thrown upon the four faces of the octagonal trum, which are weighted by heavy gables. At the bottom the spire is $31 \frac{1}{2}$ in. thick, and at top $11 \frac{3}{4} \mathrm{in}$. in a length of 156 ft .8 in , built of hard Berchère stone. The roofs of the pinnacles are $19 \frac{3}{4} \mathrm{in}$. thick. It is to be noticed that the danger of a fall, which was so inminent as to cause the destruction of the stceple at St. Denis, is attibuted in great part to the increase of weight given to it during a course of restoration, by using the stone of St. Pierre instead of that of Vergelé. Some French spires have a very curious effect, due to the presence of a simulated hip in the centre of their sides for the whole or part of the height: but still more extraordinary were the slits in that of St. Denis, and the slit with two transoms in that of St. Nicaise, at Reims.

The spire of the chureh at Langrune, near the sea-coast, north of Caen, in Normandy, has at its base in the interior, a sort of buttress of thin stone resting on the thicker walls of the tower, which runs up for a great height to eachs of the angles and sides of the spire. They are pierced so as to afford a free passage all round at the base of the spire; and may have been provided to assist in strengthening it on account of its exposed position. It has been drawn by Rev. J. L. Petit in his Architectural Studies.

It will be found that the stone spires of the 12 th century were high in regard to the rest of the steeple. The proportions at St. Denis were $38 \frac{1}{2}$ to 35 ; those at Chartres are 60 to 42 ; but in time these proportions were altered so much that the spires of St. Nicaise at leims (end of 13 th century), and those of the front of the cathedral in that eity, are scarcely half the height of the tower instead of equal or superior to it. Murphy, in his account of the Batalha, remarks that no settled proportion seems to have been observed in the dimensions in general ; they varied from four times the width of the base to eight times.

As regards the jointing of the stones of which spires are composed, their security seems to be wholly the result of an accurate working of the heds and vertical joints, and the adhesion of naturally good and properly applied mortar. In modern work it is questionable whether such aids as dowelling and cramping should be altogether dispensed witl. Iron must not be used, for reasons given in an carlier portion of this work. One method used at present to steady and tie in the spire, is that of the insertion of an intermediate stage or floor of timber framing. Sir C. Wren, when rebuilding the upper portion of the (former) spire of Chichester Cathedral which had been forced out of the upright, placed two intermediate stages comneeted with a pendent beam of timber about 80 feet in length attached to the finial stone; each stage was about 3 inches less in diameter than the spire at their levels; these restored the spire if it departed from the upright. A similar pendulum, with two stages, to act in like manner, has been introduced by Gibbs in his spire of St. Martin's in the Fields, London. Iron rods have of later years been used to effect this purpose.
When the beds of the stones are horizontal, one course of binders secured with dovetailed dowels will perhaps be enough in the height; but when the beds are inelined, two or three of these courses in its height would be an effectual means of preventing its spread. It has been considered that a spire is stronger when the beds are set at right angles to the face, but if not well set, water gets in, and sudden frosts do much injury. It is probable, however, that a large number of steeples would, were examination possible, be found to have been well chained with timber or with metal The former material appears to have been employed in the church at Châteauncul' (Sâone et Loire).

The spire, built cir. 1:315, of St. Aldate's Chureh, Oxford, had to be taken down in 186.5. The tower is about 56 feet high; the spire, about the same height to the weathercock, was for 10 feet down from it of solid stone, similarly to that shown in fig. 1213. The cause of its failure was that a $!\frac{1}{2}$-inch iron bar coupled at the angles and inserted in
the first course of stone 7 inches thick at the base of the spire, had rusted, in some place, entirely through, bursting the stone inside and out. The angle pinnacles alone sustained the spire for many years.

Nearly all the spires of Normandy are said to have been executed in thin slabs of stone; they are all about 7 inches thick at the bottom, and about 4 inches thick at the top, and are almost all executed in the Crenilly stone. In Caen, especially, that stone was employed in the steeples, though it had to be brought about 12 or 14 miles. The joints are (probably) set at right angles to the face of the stone. The spire at Batalha is about 7 inches thick, independent of the carved work, though almost a fourth part of its superficies is perforated : its stones are said to he keyed together by means of dovetailed pieces of pine wood (Murphy). The slender stone ribs of the octagonal spire of Freiburg Cathedral are girded together at intervals of about 15 feet by means of double horizontal ribs or bands of limestone; in the middle of each of these bands an iron cramp is inserted, so that one half of the thickness of the metal is fixed in the under course of the stone-work, and the other half in the upper course, in order to prevent all thrust. The space between the rib and the horizontal bands is filled up with perforated tracery, so that the appearance of great lightness, united with great boldness, is imparted to the whole. Plate XI. of Moller's work shows a careful representation of the joints, explaining in what manner the stones are connected together, both in the principal members and the ornamental parts. The spires of Strasburg and Constance Cathedrals, and that of St. Stephen's Church at Vienna, present other examples of open work spires. The thickness of the decorated spire to the staircase in the north tower of the west front of Peterborough Cathedral, is about 11 inches at 2 feet above the wall of the tower, where the octagon commences, and is about 10 feet diameter (shown in Robson, Masons Guide). The methods adopted of strengthening Salisbury spire and tower, are related by Price in his work published in 1750, who states that it is 400 feet high from the pavement to the extr-me top, but to the top of the capstone or ball only 387 feet as previously noticed. It is only 9 inches thick at the botton, diminishing to 7 inches.

The outline of a tower in elesation should be a parabalic carve, for strength as well as appearance, as it will not then present a top-heavy appearance. The difficulty in designing a tower and spire in the Roman or Italian style is to prevent a telescopic effect; and in the medieval style the appearance of an extinguisher is too often obtained. The entasis to the spire, and due diminution of the tower (though the former is usually held not to have existed, some spires being formed of two and even three lines at different angles), are desirable both for appearance and strength. They are common features in Essex and Middlesex, and the absence of them may be noticed by any one going from Essex into Suffolk, the round towers in which county have the entasis, but not those of later date. The tower of All Saints' Church, Culchester, possesses it, and diminishes from 21 feet to 19 feet, having internally an offset at each floor and at the roof, so that no timbers run into the walls.

A mathematical method of setting out the entasis for a spire was furnished by Mr. Thomas Turner, of Hampstead, to the Builder for 1848, through the late Prufessor Cockerell, R.A. But as he states that the ordinates may be obtained very nearly true by taking a thin lath and bending it to the extent required, we do not consider it necessary here to do more than to refer $t 0$ the paper. In the reconstruction of the spire to St. Stephen's Church, at Yienna, an iron framework was introduced to support the light stone ribs, until near to the summit, which was made wholly of iron.
The iron spires at Ronen, Bruxelles, and Auxerre, are the only three we have noted.

> CIIAP. IV.

MEDIAVAL PROPOITTION.

Sect. I.
EFFECT OLI ISE OF NUMAERS.
The introduction into this work of the investigation of the principles of proportion, as propounded by the late E. Cresy, renders it necessary that some preliminary details shonld be considered, before the student passes on to those pages. These details will consist of the result of the use of numbers, as given by the late Mr. Gwilt and appended to the previous editions, and of the enquiry by modern investigators into the use of the triangle and of the square during the mediæval period. The subject is interesting, and a very enticing
one, and we regret that our limited space will not allow us to do more than merely enter upon it. We would warn the student that should he feel inclined to devote any time to this subject himself, he must not be content with the measurements he may usually find in publications, but must found his theories on those taken by himself to be in any degree certain of his deductions.

The plim on which the earlier Christian churches were constructed, wrote Mr. Gwilt, was that of a cross : he omitted to notice, however, the Italian basilican plan and the domical Greek plan; but he justly observes that (in we-tern Europe) after the 10th century it would perhaps be difficult to find a cathedral deviating from a cruciform plan. At the beginning of the 9 th century, in an inauguration (of a church) sermon, the preacher observes, "In dextro cornu altaris qua in modum crucis constructa est ; " and again, "In medio ecelesix quax ent instar crucis constructa." (Acta SS. Benedict.) Roumd ehurches, as at Aix la Chapelle, in Germany, Rieux and Merinville, in France, with Little Maplestead. Cambridge, Northampton, and the Temple Church, London, in England, are not enough in number to affect the rule. It was in the 13 th century that the termination of the choir was changed from a circular to a polygonal form. The general ordonnance of the plan was, however, not changed, and seems almost to have sprung from the laws and proportions upon which surfaces and solid bodies are dependent. The square and its diagonal, the cube and its sides, appear, at least the latter or the side of the former (fig. 1219.), to furnish the unit on which the system is based. Hence the numbers 3,5 , and 7 , become the governing numbers of the different parts of the building. The unit in the Latin cross, placed at the intersection of the nave, gives the developinent of a perfect cube, according to the rules of descriptive geometry. Here are found the number 3 , in the arms of the cross and the centre square; the number 5 . in the whole number of squares, omitting the central one; and the number 7, counting them in each direction. The foot, however, of the cross was, in time, lengthened to repetitions of five and sis, and even more times. In monumental churches, formed on such a system, there necessarily arises an umity of a geometrical nature; and the geometrical principles emanating therefrom guided not only their principal, but their secondary, detail. Even hefore the 13th century there seems to have been some relatio. between the number of bays into whech the nave was longitudinally divided, and the exterior and interior divisions whereof the apsis comsisted; but after the introduction of the pointed style, this relation became so intimate, that from the number of sides of the apsis the number of hays in the nave may be always predicated, where the work has been carried out as it was originally designed. From the examination of many, incleed most, of the churches in Flanders, this circumstance had been long known to us; but for its first publicity, the antiquary is indebted, we believe, to M. Ramée, in 1843.

The connection of the bays of the nave with the terminating polygon of the choir was such, that the polygon is inseribed in a circle, whose diameter is the measuring unit of the nave, and generally of the tratisepts, and forms always the side of the square intercepted by them. It is most frequently octagonal (fig. 1280.), and gene-

Fig. 1220. rally formed by three sides of the octagon. When this is used, the gorerning number will b: found to be 8, or some multiple of it. Thus, in the Abbaye aux Hommes, at Caen (this, however, is previous to the 13th century), the termination of the choir is ly a double octagon, and the number of bays in the nave is eight. The same occurs at St. Stephen's, at Viema; in the Chureh of St. Catherine, at Oppenheim ; at Lichfield Cathedral ; at Tewkesbury Abbey, and at almost every example that is known.
It may be well here to observe, that English eathedrals, partly from their great deficiency in symmetry, on account of their not having been linished on their original plans, do not afford that elucidation of the theory that is found in those on the Continent. In twenty-four instances of them we have sixteen in which the terminations are square instead of polygonal; when polygonal, the rule seems to have been always followed. It must be noted, however, that in contradistinction to the rest of Europe, England kept steadily, as a rule, to a square east end ; and though at Canterbury and Tewkesbury, and a few other noted examples; the circular form appears, yet often, as at Peterboough and Westminster, the curved apse was capped with a rectilinear addition, protesting, as it were, against the foreign element.

An eastern termination of the choir in three bays may be produced from the octagon, by omitting the sides in the direction of the length of the building, as in fig. 1221. In fig. 1222. the three sides will be found to be those of a hexagon; and in this case the number 6
governs the oller parts. Examples of this arrangement are, the minster at Freburg-imRreiggau; the cathedral at Cologne, where the apsis is dodecagonal, and there are six bars in

Fig. 1221. the nave; and the abbey at Westminstor, where the eastern end is hexagonal, and there are found twelve bays in the nave. In respect of a nonagonal termination,

Fig. 122 ? the most extraordinary instance of a coincidence with the above-mentioned rules oceurs in the duono of Milan, commenced at the end of the 14th century. Its apsis is formed by three sides of a nonagon, and the bays in the nave are nine in number. One third of the are contained under the side of an equilateral triangle seems to be the governing dimension. The number 3 , submultiple of 9 , pervades the structure. There are three bays in the choir, and the like number in the transepts The vault of the nave is subtended ly an equilateral triangle. The lower principal windows are each designed in three bays. The plan of the columns in the nave in cach quarter contains three principal subdivisions, and, in a transverse section of the nave, the voids are just one-third of the solids. These are curious points, and much more worthy of investigation than many of the unimportant details which now-a-days so much occupy the attention of archæologists. If the stcm of the plant is right, the leaves and fruit will be sure to grow into their proper forms.

Figs. 1223. and 1204. show the decagonal terminations of an apsis. In the first, a side of the polygon faces the east; in the second, the angle of the polygon is on the axis of the

Fig. 12?3 churel. The last case is of rare occurrerce. Examples of it are, however, found in the chureh at Morienval, and in the choir of the dom-kirche of Naumburg. The first case is illustrated by a variety of examples-such are

Fit. $1: 94$.
the cathedrals at Reims, Rouen, Paris, Magdeburg, and Ulm, with the churches of Ste. Elizabuth at Marburg, that at St. Quentin, \&.c., and, in this country, the cathedral at Pererborongh; all of which have either five or ten bays in the nave. The dodecagon, as a termination, is subject to the same observations as the hexagon : indeed they were articipated by the mention of the cathedral at Cologne. Under the figure of the heptagon must be ciassed the magnificent eathedral of Amiens, wherein seven chapels radiate round the choir end, and there are as many bays in the nave (fig. 237.). The choir at Beaurais is terminated by a double heptagon; and, had the chuch been completed, it would doubtless have lad seven or fourteest bays in the nave. At Chartres, the choir is also terminated by a double heptagon, and the nave contains seven bays. In the duomo at Florence, the eatern termination is octagonal, and there are four bays in the nave; this is an example of the expiring Gothic style in Italy.

On an examination of the principal churches on the Continent, in and after the 13th century, it would appear that the practice of regulating the details was dependent on the number of sides in the apsis, or of bays in the nave. Thus, if the choir is terminated by three bays, formed on an octagonal plan, we find 3 , or a multiple of it, is carried into the subdivision of the windows. So, if the number 5 is the dominant of the apsis, that number will be found transferred to the divisions of the windows; and in like manner the remainder is produced. There are two or three other matters affecting the monuments of art erected in and after the 13 th century. The aisles are usually half the width of the nare, though instances occur where the width is equal. Mary churehes have two apsidessuch are the cathedrals at Nevers, and at St. Cyr; and in Germany, St. Sebald at Nuremberg; the dom-kirche at Mayence; the abbey chureh at Laach; the cathedrals of Bamberg, Worms, and others. So far Mr. Gwilt.
"It remains to observe," writes Professor Cockerell, in the Archaological Journal, 1845 " upon the mysterious numbers employed by Wykeham in the plans of his chapels at Winchester and Oxford, which are divided longitudinally by 7, and transversely by 4, equal parts. In the first, the chapel consists of 6 of these parts, and the ante-chapel of 1 ; in the second, the chapel consists of 5 , and the ante-ch:pel of 2 ; the width being equal to 4, corresponding with the entire figure of the resica piscis."

The recurrence of the number 7, "a number of perfection," is constant; accordingly we find it employed in the following remarkable instances, sometimes in the nave, and sometimes in the choir. In the cathedrals of York, Westminster, Exeter, Bristol, Durham, Lichfield, Paris, Amiens, Chartres, and Evreux ; in the churehes of Romsey, Waltham, Buildwas, St. Alban's (Norman portion), and Castle Acre ; and in St. George's Chapel, at Windsor, Roslyn Chapel, and many others. See also the notice on page 1011.

Sect. 1I.

EARLY USE OF GEOMETRY AND OF A MEASURE.
The idea is now generally sanctioned, that the medixval architects had some settled system of proportioning their designs either by simple geometric forms or by combinations of them. It will be our endeavour to indicate the sources whence the facts on this subject can be drawn, and to notice such of the details as our space will permit.

The knowledge of geometry previous to, and in, the 12th century has been commented upon in par. 309, et seq. The Album of Wilars de Honecort, an architect living in the middle of the 13 th century, exhibits the use of geometry in various ways. This manuseript was published in facsimile by M. Lassus in 1858, and an English translation was edited by Professor Willis in 1859. The sketches also show a certain mastership of figure drawing, besides many designs of portions of buildings. Some original drawings still exist of Reims Cathedral, known to be before 1270, thus of the same period as those of Wilars, and two of them have been published in the Annales Archéologiques, vol. v. page 92. The drawings were traced with a masterly line; they only showed how the design was to be arranged; and by means of axial lines only, the whole was set out as regularly as could be done for the most classical building. Scarcely any of the later original drawings still existing in many continental cities show the use of geometric figures (see fig. 1073.). Yet, on the 14th of February, 1321, during the erection of the cathedral at Siena, five persons who had heen appointed for the purpose reported that "the new work ought not to be proceeded with any further, because if completed as it had been begun, it would not have that measure in length, breadth, and height, which the rules for a church require." The old structure, it also appears, " was so justly proportioned, and its members so well agreed with each other in breadth, length, and height, that if in any part an addition were made to it under the pretence of bringing it to the right measure of a church, the whole would be destroyed." Della Valle, Lettere Sanesi, ii. p. 60 ; noticed in Hawkins, Gothic Architecture, 1813, p. 183. This statement would seem to prove that some system had existed.

In par. 620, we have already mentioned the disputes on the great question of proportioning the cathedral at Milan, 1387-1392, by the foreign system of squares, or by the native theory of triangles. The first notice in England of this unique instance of a dispute appears to have been taken by J. W. Papworth, who preseated in 1854 to the Institute of British Arehitects some extracts from the Records of the Board of Works for Milan Cathedral, published by Giulini, Memorie di Milano, 4to. Milan 1776, part 2, pp. 448-60 of the Continuazione. These notes further condensed show, that on the 1st of May, 1392, fourteen of the artists employed upon the works made affidavit of their opinion on ten points submitted to them, on the part of the German Enrico di Gamondia, who was one of the number. On the third point, thirteen declared that the said chureh, not including the intended eupola, should be raised non al quadrato ma fino al triangolo, that is to say, on the triangular proportion. The same opinion is given on the fifth point as to the versed sine of the vaulting. Enrico, who on all the points held a contrary opinion to the thirteen, was thereupon dismissed. Another meeting of similar character, held 26 th of Mareh, 1401, of thirteen artists employed on the building, and two amateurs, was not so vearly unanimous upon the question of the alterations proposed by the Frenchman Giovanni Mignotto, and upon that occasion Guidolo della Croee (one of those employed) declared that the alterations were correct, and that Mignotto was a verus operarius geometra, because his ratios were like those of the dismissed maestro Enrico. The dismissal of this Jean Mignot, 13 th of Octoher, 1401, was accompanied by a clarge for the expense of pulling down the work that he had erected during two years. Although the chronicle makes the curious mistake that the magister Enricus and the magister Annex (i.e. Johann von Fernach, 1391-92), also a German, had advocated the triangular system, it rightly adds that the triangular system prevailed over that of the square; and the lines may he supposed to have been truly given by Cesare Cesariano. The conclusion we have arrived at in the matter is that the plan was designed on the principle of the square (exhibited in fig. 1281.), while the elevation was designed on that of the triangle (shown in fig. 1232.).

Cesare Cesariano, the first transiator of Vitruvius, Como, 1591, terms the geometrie principle of design, "Germanic symmetry," and "rule of the German architects." Rivius, who translated this work (Nur. 1.548), names the order resulting from the triangle as "the inighest and most distinguished principle of the stonemasons." One principle rested on the arrangement of the square, or of the octagon which proceeds from it, in the same way as that of the equilateral triangle was based upon the hexagon or dodecagon which resulted from it. On this law of the square is founded the work by M. Roriczer, On the Ordination of Pinnacles, 1486, whieh was printed by Heideloff, in Ilie Bauhütte des Nittelalters in Deutschland, Nuremherg, 1844; and also by Reichensperger, who translated it into
modern German, Trier, 1845. It was noticed in the Journal of the Arehrological Institute of Great Britain, 1847; and translated in a concise manner by J. W. Lapworth for the Architectural Publication Society, Detachicd Essay, 1848, with woodeuts. An appendix follows On the Construction of a Canopy, which was also given in Heideloff's publication.

The square, or oetagon system, maintained itself among the German stonemasons until the commenement of the 19 th century. Heidelotr relates that the chef-d'euve of Kieskalt, the last city architect of Nuremberg (1806), was founded on the wles used in Roriczer, und those in the book of instructions written 1506 by Laurenz Loeher, architect of the Count P'alatine, on the art of the stonemason, nach des Choresmaass und Gerichtighe:t, "according to the measure and ordination of the choir."
"The system depending on the equilateral triangle for its variety of form," states E. Cresy, Stone Church, 1840, "continued in use till the beginning of the 15 th century in France, when it underwent a great ard important change by the introduction of the isosceles triangle and its compound the pentagon. A pupil of lierneval, the designer of the Chureh of St. Ouen at Rouen, proved that these figures could furnish novelties in design. We can well imagine how displeasing this innovation must have been to the whole fraternity of masons ; their mystery was invaded." Pommeraye, in his History of the Abhey of St. Uuen, mentions that tlie master was so incensed at the clergy preferring the rose window of the northern transept (fig. 1293.) executed by his pupil, where this innovation was first introduced, to that of the south (fig. 12:88.), of his own execution, upon the ancient triangular system, that in a fit of jealousy he killed his rival, and was himself condemned to be hanged. (See page 1036.)

In the year 1525, Albert Duerer published in German his Geometrical Elements, showing therein clustered columns, and a few other details of Gothic architecture. In 1532 a Latin edition was published at Paris, entitled Albertus Durerus, Institutionum Germetricarum; and in 1606 a second edition was printed at Arnheim. It is this author who first brings to our notice the use of a figure called the vesica piscis, which is explained in Sect. III. In 1589 Spenser published his Faëry Queene, and in it allusion is made to the proportion of a building in words which deserve attention (b. 2, canto 9, v. 21). In 1593 Sir Thomas Tresham erected the curious lodge at Rushton Hall, Northamptonshire, entirely constructed on the equilateral triangle; it contains one room of an hexigonal form ; the upper windows are mostly triangular openings (Builder, iii. 538. 550.).

Stieglitz, in Altdeutscher Bauknust, 4to. Leipzig, 1820, records the possession of a manuscript Treatise on Architecture, giving the rules and instructions according to which the ancient ucrkmisters and steinmetzen worked. Judging from the character of the handuriting, it must belong to the middle of the 17th eentury, and this is also indicated by the drawings which exhibit the Italian style of that epoch. But the rules fur the construction of churches belong to a more remote period, and the author of the manuscript states that these r iles were never described, but were transferred in a traditional way to, and kept by, the artists, who called them, like the ancients, Measure of the Choir and Justice. it seems to be the only written directions for a building which has come down to us. The drawings in it, which are only shaded, are finely executed by a steady and practised hand. They show the formation of the several cornices, mouldings. jambs for doors and windows, plinths, and arches, and also the formation and the arches of the vaulting. The building is proved to have strict rules and an established module, according to which all the members are regulated ly the ensemble of the structure, and the whole is again regulated by the members. The choir is considered as the key, and a'ter its breadth is regulated, the thickness of the enclosure-wall, and also all the dimensions for the cornices and other members are obtained. Thence the saying, "Measure of the Choir and Justice."

At first, from a given circle an octagen is to be constructed, and according to it, the ground-plan and the pentagonal projection of the choir are to be devised. Should the choir contain 20 feet in the clear, its wall would be 2 fuet thick; and if 30 feet wide, then 3 feet. The pillars of the choir are commonly $2 \frac{1}{2}$ feet thick at their l,ase, exclusive of the ground table (schrägesims), and the depth is double of the thickness. The width of the windows is regulated by the space between the columns, which is divided into 5 parts: 3 are given to the window in the clear, together with the mullions. If the choir be very extensive, and therefore the lights of the windows be too wide, in such case intermediate mullions are introduced; but small windows have only one main or two subsidiary imulions.

The nave and aisles are regulated after the manner of the choir, being made equal to it in width, yet in such a manner that the pillars, although equal in thickness to the wall of the choir, do not run in the same line of the opening, but project with three sides of their octagonal form. The breadth of the elooir being divided into 3 equal parts, 2 are to be given to each aisle, including the wall of the choir. The same dimension of two such parts is applied to the pillars from one centre to the other, which shows at the same time the space for the buttresses on the enclosure-wall. As, in consequence of the aisles, the nave portion requires a wider vaulting than the choir, the enelosure wall of the nave ought to
he constructed one-third thicker than that of the choir. The buttresses are the same in thickness and breadth as for the ehoir. The windows are kept of the same width thronghout the whole strueture. The transept projects as far as the breadth of the aisles, and its wall has the same thickness as the wall of the choir. 'The length of the ehurch is for the most part regulated according to the requirements of the population.

The towers, erected on both sides of the façade, are devised from the width of the inner shafts and external pillars, which width formed into a syuare gives the external enclosureline of the towers. If only a single tower be constructed, it ought to be regulated after the choir, and agree with the same. The thickness of the towr-wall is regulated by the height of the tower itself. Thus for every 100 feet of height, 5 feet in thickness is required for the wall. Then, to this thickness one half more is to be given for the foundation. But if the ground be firm and good, this thickness need only be kept as far as the base, and thence gradually reduced. The formation of the groining is not so clearly developed ly the editor, and we therefore omit it.

The outline and elevation of the choir are also calculated from its width. A choir which is 20 feet broad, ought to be one and a half' or twice as high. The latter height was called the real height. An ordinary choir requires only four tables or strings. The ground table (schrägesims) rises from the floor or ground to a height equal to the thickness of the counterforts. The string course (kaffsims) above is placed as high as the distance between the pillars. The supporting string (trayesims) ought not to rise higher than the capital of the pillars in the interior of the choir. The top, or roof-cornice (dachsims) ought to be placed at least half a foot higher than the vaulting. The pillar-cornice is measured ly taking the thickness of the pillars twice down from the top cornice. A choir of greater height requires more cornices and decorations. The height of the nave portion is fixed by taking twice the width of the ehoir, and this is measured from the ground-table to above the top-cornice. The ground floor of the tower ought to be as high as the whole tower is hroad, and the upper floors to be regulated aceordingly. We have only to add that the form given to the towers by the anthor of the MS. shows the Italian style of his epoch, whilst the church itself' is constructed in German fashion, that is, with high pointedarehed windows and buttresses, which are drawn without any mouldings.

Sect. III.
TIIE VESICA FISCIS.
If on the diameter of a circle (fig. 1225.), with an axisperpendicular to it, an equilateral

Fig. 1225. triangle be described, whose vertical height shall be equal to the semi-diameter of such circle, and from the angles of the triangle on the diameter, with a radius equal to one side of the triangle, ares of circles be described cutting each other superiorly and inferiorly, the figure described is that which is called the resicu piscis, or tish's bladder.

The Greek word i $\chi \theta$ ìs, signifying a fish, sems to have been in early ages a mystieal word, under which Christ was denominated, "Eò quod in hojus mortalitatis abrsso, velut in aquarum profunditate, sine peecato esse potuerit, quemadmodum nihil salsedinis a marinis aquis pisei affricatur;" that is, Beeause in the unfathomed deep of this mortal life he could exist without sin, even as a fish in the deptlis of the sea is not affected by its saltness. The term, too, at a very early period, furnished an anagram, whose paits were expanded into the expression, 'I η oov̀s Xpı panded into a long acrostic (to which reference may be had, sub voce Acrostichia, and also under the term Ichthys, in Hoffinam's incomparable Lexicon) on the Day of Judgment, said to have been delivered, dirino affutu, by the Erythrean syibil, but much more resembling the hard-spun verses of a learned and laborious man than the extemporaneous effusions of a mad woman. This aerostic is reengnised by Lusebius, and by St. Augustine, Civ. Dei., \&c. There is nothing, declared Mr. Gwilt, to alford any proof of the connection of this monogram with the form and plan of the churches erected during the mediaval period of the art. Apology, perhaps, would be due for any digression upon it, had it not been for an opinion in favour of its use expressed by the late Professor C. R. Cockerell, whose talents and learning deservedly ranked high in the eyes of the public, in his essay on the Architectural Works of Willian of Wykeham, read 1845, before the Arehaological Institute of Great Britain and Ircland. Rumée, in his Histoire, has also grone more at length into this subject. Professor Cockerell likewise noticed that the writers of the 16 th century, Cesariano 1521, Caporali 1536, and De Lorme 1576, reeommend this figure, ehiefly as that geometrieai rule by whieh "two lines may be drawn on the ground at right angles with each other in any seale, aceording to the conception of Euclid's mind."

From an early time the triangle seems to have been associated with as much mystery and veneration as the number 3. Without here touching on symbolism, in its use, whethe. equitateral or isosceles-we cannot but perceive, both in one and the other, a tendency to the production of the pointed areh. The geometrical law for describing it is, as every one knows, founded on the intersection of t:vo circles of the same radius (fig. 1226.) The P! thagoreans called the equilateral triangle, Tritogeneia. It was, according to Plutareh, the symbol of justice. The subdivis'on of the ares bounding an equilateral triangle by other ares of equal radius, gives other modifications of the pointed areh, and by their intersections are obtained the skel.ton lines of ornamented windows of an early period, which, at a later date, branched out into the most

Fig. 1220. Luxuriant forms. Mrs Jameson, in Sucred and Legondary Art, 3rd edition, 1857, vol. i. p 93, gives a drawing from an ancient Greek picture, wherein the upper part of the representation of the Infant Christ is placed in a tigure formed of four equilateral triangles (which produce the dodecagon). The head of the infant may be supposed to occupy in the diagram the site of a chancel, the body in the place of a nave, and the hands, being held forth, assume the place of the transepts.

Sect. 1 V.

MODERN INVESTIGATIONS.

Among the investigators early in the present century was C. L. Stieglitz, who pulilished his Aldeutschen Baukunst, 1800, as already mentioned. Therein he states that, "with regard to the ground-plans of churches, it seems that two sorts have been employed. With the first, the nave of the church was in breadth equal to that of each of the aisles. With the second, if, for instance, such a breadth be taken as an unit, the brcadth of the nave would be the diagonal line of the square, and the breadth of each aisle an unit. The length of the interior of the churches of these two sorts, measured from the entrance to the choir, contains usually nine mits The church of St. Stephen, at Vienna, is an illustration of the first system; and the Münster at Strasshurg of the second. The cathedral at Cologne is a variety of the first plan. In this instance the nave is the breadth of its aisle, but each aisle is divided into two by a row of columns in the middle. The fore-part of the church has usually three diagonals of the squave for its breadth, wherefrom the unit, should it be unknown, can easily be deduced. According to this principle, if the whole imer breadth of the church be considered as the root of a square, the diagonal of the sanse will be equal to the whole breadth of the front on the outside.

In the first sort of plan, the nave of the church is raised either to an equal height with the aisles or a little higher. In the second, however, the nave is constructed far higher. Owing to the first disposition. both the nave and the aisles are brought under a single roof, as in St. Stephen's at Vienna. In those of the second sort, the nave and the choir (which was equal in hreadth to the nave) had each, as well as the aisles, a separate roof. The wall of the nave and of the choir, on account of its small theckness, comparatively with its height, required some support at the sides, and this was provided tor by arched counterforts or flying buttresses from the enclosure-wall of the aisles. The caithenral at Colcgne shows a similar disposition, although the nave is equal in breadth to one of the aisles, wherefore the aisles are divided into two rows by pillars, for the purpose of giving to this portion of the vault (when it will be finished), on account of its smaller arching, a less height than the one intended for the vault of the nave and of the choir. The ground plan of this eathedral is a Latin cross. The aisles simround the choir, which rises ligh above them, and therefure the enclosure-wall of the choir is connected with the pillars of the outer wall by means of arched buttresses. According to Boceker's observations, the number 7, consecrated by religion and philosophy, is applied all over the parts of this edifice, not only in the measures of length, in the proportions of height, in the pillars of the nave, as well as in those of the choir, but also in the decorations and details."

The inner height of the choir is stated to be 161 feet; the height to the gable, corresponding to the entire width of the west front. is 231 feet; the (proposed) height of the towers is equal to the entire length of the building, $5: 2$ fect ; the loeight of the side aisles 70 feet, and so forth. In a similar manner, at the entrances on either side, are pedestals for seven statues; in each of the entrances as many spaccs for statucs; there are 14 comer tabernacles on the southern tower; and with attention, the same combination may be traced in all the details. Twenty years appear to have elapsed, and then Hoffstadt pulhlished the Gothisches ABC Buch, Frankfort, 1840, which enters fully into the formation of details by a geometric system.

In England, the subject was not thoroughly taken up until 1840, when R. W. Biilings published his Attemft to Definc the Geometric Proportions, \&c. Ite therein considers that
during the Norman period, no intricate figures were used for regulating the proportion

$\begin{aligned} & \text { Clerestory } \\ & 1 \text { square. } \end{aligned}$
Triforium a square.
Arch
$\begin{gathered} \text { Column } \\ \text { Cis square. } \end{gathered}$

FIg. 1227. of the various parts of buildings. He exhibits the carly simplicity of proportion, in the clevation of a compartment of the Norman nave of Gloucester Cathedral, as in the amexed fig. 1227. Something of the same sort of equality may be perceived at Winchester Cathedral, as shown in fig. 1266., where the width K L gives the heights I. M and M N ; the diagonal of this square gives the height L, O; and $O P$ is a square in height; Dut we are at a loss to regulate the upper part, unless the triangle be used, when $\boldsymbol{P} \mathbf{Q}$ will give the upper point at R, the centre of the head of the semicircular window.

In the projection of the plans of the nave and choir of Carlisle Cathedral (fig. 1228.). the architect, says Mr. Jillings, was guided by the repetition of a circle whose diameter in the first or Norman part was the extreme width of the building; and in the second part, erceted 200 years subsequently, it was the width between the internal walls. The distribution and even the substance of the columns was regulated by some recognisable subdivision of the cirele; and a circle, or are of a circle regulated by the width of each compartment thus formed, was the hasis upon which the heights of the different portions of the interior were framed. The woodent must suffice to show this principle as regards the
 plan. The precise divisions will not probably answer in any other build. ing, but must be modified. The east wall, it will be perceived, is included within the boundary lines; this is also the case at the Temple Chureh, London. From the result of caleulations, the scale for the shoir was made 8 parts of the radius of the principal circle, or $\frac{1}{16}$ th of the diameter ; this sixteenth part is equal to 4 feet 6 inches (or a yard and a half), and the dimensions of the building may be calculated therefrom. In the nave, the piers are exactly 5 feet 8 inches, or $\frac{1}{2}$ th of the diameter, and it was this exact division, states Mr. Billings, which induced the application of the scale of twelve parts to the diagram of that end of the building.

tig. 1229. BAY in Choirg carlisle.

In every portion of the elevation of a compartment of the choir (fig. 1229), there is evidence of its geometric formation. The student must have recourse to the publication itself for the further detailed development of the system in connection with this figure, but it is necessary to state that from the dimensions of the arch Mr. Billings divided the width between the centres of the piers into 6 parts for a scale; this gives all the remaining proportions. The same scale of 6 parts of the width was applied by Mr. Billings to a bay of the presbytery of the choir at Worcester, and finding it satisfactory, though totally at variance in its proportims, with the exception of the principal arch, it was considered as confirmatory of the theory. These two examples are of nearly the same period in the style.

In 1846 Mr. Billings published his Architectural Antiquities of the County of Durham, and in collecting the measurements of its churehes he was led to compare their proportions. The result is given by him in two tables, proving a groundwork of squares, and this he states "would at once account for the non-existence of ancient working drawings, for the designer would only have to communicate a rough diagram of his plan, bounded by series of equal squares, and give the dimensions of one, to be properly understood by a practical man. Most singularly, the measure is in each case one spuare yard (as above noticed). No less than six of the chimeels are 15 feet; thee others are 18 feet; and three of 21 feet. At Houghten, the wilths of the clancel, of the transept and the distance between the columns of the nave, are all 15 feet."

The next investigator was the late Prof. Cuekerell, R.A., who, in his essay before noticed (pages 1007, 1010), considers that Cesare Cesariano "may be said to have done to a great extent in that style what Vitrusius did in the Greek, namely, in discovering many of its fundamental doctrines and principles. More especially does he reveal the estimation in which Vitruvius was held during the middle ages; and the interpretations of his rules attempted by the architects and commentators of that period." Thus, the ehureh in the Castle of Nuremburg, built by Barbarossa in 1158, and the Frauenk irche, probably of later date, in the centre of that city, are exact illustrations of the temple "in Antis" of Vitruvius, as given by Cesariano. lib. iii. fol. 52. The use of the work of Viruvius, about 1284, is also recorded in Galiani's edition of the author, by an amusing story connected with the building of the Castel Nuovo at Naples.
"It is needless to produce any further proofs of resemblance," writes J. S. Hawkins, in his History of the Origin of Gothic Architecture, 1813, p. 223, "than to say that, in every Gothic eathedral as yet known, the extent from north to south of the two transepts, including the width of the choir, if divided into ten, as Vitruvius directs (for Tuscan buildings, lib. iv. cap. 7), would exactly give the distribution of the whole. Three arches form the north and three the south transept; the other four give the breadth from one transept to the other. One division of the four being taken for each of the side aisles of the nave, and two left for its centre walls, the complete distribution of the nave is also given. Of the proportion of onc-third of the whole width as the height of the columns, the cathedral of Milan is a decided instance. The two transepts together are 110 cubits, the breadth of the choir 28 , making together 138 ; and the height of the columns is 46 cubits."

The rules named by Cesariano occur in his Commentary, fols xiv, and xv., and he illustrates them by the plan and section, of Milan Cathedral, which was commenced in 1386. The figures are entitled "iehnographia,"-" orthographia,"-" scens, graphia,"-" sacre Edis Baricephalx, Germanico more, a Trigono ac l'ariquadrato perstructa," and, "secundum Germanicam symnsetriam," and again, "per symmetrix quantitatem ordinariam ac per operis, decorationem ostendere, Germanico more," \&c.

The first rule, "a 'Trigono," establishes the respective proportions of the length and breadth of the cross, which are included within the two ares of 102°, constructed according to the first proposition of Euclid. The fig. 1230. has been commented upon (page 1010) as involving the

Fig. 1230. vesica piscis. Mr. Cackerell continues his remarks by noticing Mr. Kerrich's paper in the Archaologia, xix. p. 353-61, wherein that author uses the figure but does not confess lis debt. In all the examples given by lim the vesica is applied to the internal length and breadth.

The second rule, "a Pariquadrato," is effected by dividing the area comprehended in the vesica, into commensurate squares or bays, on the intersections of which the columns and buttresses are placed. The number of them will be determined by the extent of the plan. Fig. 1230. represents the illustration of the rule in which 14 by 8 are used; in the chapels of Wykeham we have 7 by 4. The plan, Fig. 1231., explains the determination (by the symbol of the resica piscis) of the length and breadth of a church; the subdivision into squares, the position of its piers, \&ec. Fig. 1232. explains the rule by which the heights of the vaulting, the roof, the spire, $\& \cdot \mathrm{c}$, are determined, namely, by equilateral triangles erected upon the plan. The woodent exhibits both a single and a double aisled church.
This important fundamental rule will be found to be applicable to cathedrals in England, as at York, Winchester, Worcester, Lichfield, Hereford, Salisbury, Norwich, Exeter, Westminster, Romsey, and others: in Italy, in the chureh of San Petronio at Bologna, and in most of the works of the architects Lombardi, as San Zac-

FLa. 1231. caria and San Salvatore, at Venice: in France, in the eathedral at Rouen, and in others: and in Germany, in those at Prague, and others. But it is to be noted, continues Professor Cockerell, that another rule of distribution (not yet discoverel) is more frequent in the latter countries.

The third rule, also "a Trigono," is orthographic, and establishes the normal heights in
the clevations and sections by equilateral triungles, according to Cesariano, fol. 15. "The

Fig. 1255. ILAN ; NEW COLLEGE CHAPEI, : OXFOLED. application of the first and second rules in New College Chapel is exact ; the whole and the parts are commensurate, as well in the bays or squares as in the subdivision of the bays of the windows; of the flanks, as also of the west end. While in All Souls' and Magdalene Chapels, the two copies of the former, the divergences are extreme. Fig. 1233. is the plan and its subdivisions of New College ('hapel, Oxford. 'To our author's own work we must refer the student for the apt remarks and comparison of the three plans, merely adding that the first is three dianeters long, while the other two are less than three diameters, hy which Professor Cockerell apprehends that the rule had been lost, or was disregarded, although Chichele's chapel was built by "the King's masons." The chapel at Winchester is upon the same principle, the number 7 including the vestibule, which only occupics one of the divisions instead of two, as at New College; the relation of three diameters is obtained withont makiag the diagram, as in New College Chapel, inclusive of the walls.
" The application of the third, the orthographic rule, is not traced so distinctly in the elevations and interior of New College (hapel, though more exactly in that of Winchester, and we also perceive the value of the principle of the extension of these squares laterally, for the purpose of establishing the height of the ceiling, and of the pimmacles in the east and west fronts."
The next exponent of this instructive subject was R. D. Chantrell, who in 1847 read a paper on the Geometric system, before the Institute of British Arehiteets. It was printed, with cuts of the two chief keys of the system, in the Builder for the same year. IIe first refers to Mr. Kerrich's use of the vesica piscis, explaining it, as in fiy. 1234. Where the

elancel is separated liy an arel, the plan is subdivided by taking the breadth as radius (fiy. 1235.), as at Routh Chureh, near Bevcrley, the resica coming sometimes within the walls and western arch, and at others extending to the western face of the arch in the nave, in many works of the 1sth century. The apse is sometimes included in, and sometimes excluded from, the vesici, Where the nave and chancel vary in breadth, the base of the triangles equal the breadth of the chancel (fig. 1236.), its length being determined by the resich, and in each of these cases the breadth of the nave is obtained by framing a similar vesica upon the remaining lengtl.

The Anglo-Norman chureh at Alel, in Yorkshire, is defined upon the extreme length

Flg. 1237. internally, as shown in fig. 12:37., and subdivided by the proportions of smaller resice and other proportions.

The equilateral triangle alone l'as been tried, but no great variety, 1 e considers can be produced, as, like the former system, it is but a minor portion of the great system in which most others will be found cumbined. He notices that in 1830, J. Browne,

Fig. 123s.
of York, produced a system on the circle. liy placing a square or cross on the centre of the circle, dividing it into four equal parts, centres are obtained for resica (fig. 1238.) of different proportions to those formed by the double triangles. By striking these radiai lines upon each of the four points on the circumference, centres are prodnecd in abundance for quatrefuils, crosses, and other figures applying more especially to tracery. The first resica gives the proportions of the naves and their aisles of the cathedrals at Durham. Ely, Peterborongh, Canterlury and Salisbury, but ro others, and cannot therefore be considered an universal system.

Cuap. IV.

In 1842 Mr. Chantrell developed a system whieh includes that of Kerrieh's. Its formation is detailed in the journal named, to which we must refer the investigator, as the essay h:as not otherwise been published. Fig. 1239. will at once show the principle, and if it be drawn out to a very much larger scale it will not appear so complex. Besides the triangles, the points are obtained for many nolygons. The six divisions, A A, B B, from the semidiameter are first olytained ; and straight lines drawn to each alternate one give triangles. On their intersections, as C C, if lines be continued to the circumference, six centres are given, D D, FF, upon which, with the first radius A B (or of the scmi-dianeter), strike a second series of segments, and a third set of $1: 2$ eentres is obtained. The second centres will give two intersecting triangles, eompleting the first part of the design. Upon the 24 points of the intersecting inner arrs, a circle inseribed

Fig. 1259.
Mr. Chantrele's system. will determine the inner triangles upon the centres of the first, and the diagran is perfeeted. For more complex forms, an additional number of eentre lines may be drawn upon the remaining intersections.

The number 10 was, according to Vitruvius, Plato's perfeet number; but the antiPlatonists, with their 6 or the radial division of the cirele (A to B. fig. 1239.), con'd. by the working of their centres, without the neeessity of dividing with the compasses, produce the 10 , showing that they were the more perfect. as their system comhined with ail others. The examples named by Mr. Chantrell, in which "the system is clearly exhibited," are the rose window in the south transept of York Cathedral; that of Winehester Palace in Southwark (fig. 1190.), but slightly varied and almost undisgnised; and the east window of Hawkhurst Chureh, Kent. Walkington Chureh, near Beverley, using the entire diagram, affords a simple illustration; whereas Kerrich's plans are proportionel upon the second radial figure produeed by the division of the circle, they should be placed upon the base of the great triangle, thus facilitating the operation of giving proportion to a plan. In the composition of the cathedrals at Ely, Lmeoln, Canterbury, Norwieh, Salisbury, Worcester, Durham, I'eterborough, and Winchester, the general proportion is determined by the first of the 24 suldivisions on each side of the centre intersecting the great triangle. The albeys are all produced on the intersections of the triangles and their centres, and the subdivisions for the piers are found in the centre portion of the diagram, with this oceasional difference, that transversely the radial lines may either pass through the centres of the piers or come om the outer or inucr faces, to conceal the principle on which they were based. Thus MI (fig. 1239.) is part of the plan of the nave of Buston Church, Lincolnshire, arranged on the former principle, while N is part of that of Middleton-on-the-Wolds Church, Yorkshire, where the lines come on the inner face of the piers.
"For the elevation, proceeding with the double spherieal triangle upon the centres longitudinally, and the variations before noticed, transversely, the various heights were obtained for the pillars; and the subdivisions by the spherical triangles upon them gave arches, eapitats, and bases, triforia, tracery, mouldings of every description, and due proportion to each feature. I have every reason to believe," concludes Mr. Chantrell, "that this system will apply to the works of all ages that can be testel by sound geometric principles."

The results of the investigations published by E. Cresy in 1847 are added in Scet. VI.
F. C. Penrose, in his investigations at Lineoln Cathedral in 1848, for the Archacological

Institute of Great Bri'ain and Ireland, urges that "the tendency towards the system of designing on the square, with greater or less degree of approximation, is found to occur in so many churches that it is a law which had great authority with, at least, the more orthotox of the middle age arehitects, although they did not seruple to modify it when they saw oceasion." Ile decides that the nave of Lineoln Cathedral was formed on this system on the intersection or intended intersection of the piers, and coinciding with the outside of the main walls. The choir seems to be built upon the true system of squares, which are of the same size as those of the nave, but the greater width of the former allows of the squares coinciding with the inside of the walls. "The height of the ehoir appears to be obtained, as is so frequently the case, from that of an equilateral triangle, whose base lies within the walls. The height of the nave is obtained by a square placed within the same limits, which, though less symbolical, is more commensurate." He thinks that if the lengeth of St. IUugl's ehoir could be recovered, the whole length from east to west was then such that it included the transepts within a resicu piscis. He also conceives (for reasons he states) that the architect to the presbytery had access to the original drawings prepared for the earlier parts of the building.

The ratio of the voids to solids appears to be more remarkable than is to be found in any vaulted building in Europe, at least among the larger structures. Very careful measurements taken inmediately above the plinths give voids 1056, supports 107, or the former nearly ten times the supports, including in the latter, the external buttresses and walls; and ineluding in the voids, the clear internal area of the church.

Mr. Penrose gives the measurements of the heights of various parts taken by him with great exactness, and this height he divides into 26 parts, which will be fomml "to agree in on exceedingly accurate manner with the principal divisions of the bays. In Buurges Tathedral, he states the height of the vaults agrees with that of an equilateral triangle whose base occupies the breadth from centre to centre of the external walls. Some of the heights may be obtained from parts of this triangle, and others from integral numbers of French feet. In the cathedral at Metz, the height is 130 French feet = 1386 English feet. If this he divided into 300 parts, varions proportions of them determine heights. The cathedral of Ratisbon appears to he founded on the triangle taken as that at Buarges. The zatio of its height to length is as 3 to 8 ; and is $104 \cdot 2$ English feet high, or 110 lhavarian feet. These results are well worth further consideration, from the well-known conscientious manner of taking measurements adopted by Mr. P'enruse.

An early investigator, Mr. W. P. Griffith, published in 1847-52, numerous essays on this subject, as named in the list of books in the Glossary addendum. He exhibits
 the adaptation of the square, set square and diagonally, one upon another (as in fig. 1073.) to the church of the Holy Sepulchre at Cambridge, fi./. 1240.; and also of the triangle, for early churches, as at Little Maplestead, fig. 1241. Westminster Abbey Chureh, and the eathedrals at Salisbury, Winchester, and Rochester, are based upon a triangle whose base being the width of the nave, including the walls, is placed inpon the centre of the central

Fig. 12.n.
CHURCA AT LITTLE MAILESTEAD.

Fig. 1210. cuveci of tan mory tower, and three of these triangles will inchude the skivecume, cambeives. lenegth of the nave. Ely Cathetral, Redelille Chureh, Bristol, and Bath Abbey Chureh, are proportioned in a similar manner. "We must insist," he writes, "after a primary figure of form or unit has then given, that each pait

${ }_{-100}^{10}$ fect
Ftg 1212 CEFTON. produced shall bear a proportion to each other, and to the original unit. - Although the equilateral triangle dietated the general proportions, the square and pentagon were fomed very useful in the details. The chapter houses of Wells, York, Salisbury, and Westminster, are proportioned by joint sipuares forning an octagon; and those of Lincoln, Westminster. Worecster, and others, ly two conjoint pentagons, forming a decagon." He illustrates the furmation of the plan of Salishory Cathedral, both on the square and on the triangle; but, as noticed respecting Milan Cathedral, althongh the square appears to suit best for the plan, the elevations appear to have been set out upon the triamgle. Fig. 1242. shows the system applied by him to the plan of Scfton Chureh, Lancashine.

A comparisun of the number of equilateral triangles, as named by Mr. Griffith, in fixing the height of buildings, will be as folluws, viz., Westminster Abbey, 6 ; King's College Chapel, 4 ; Linculn, $3 \frac{1}{2}$; Ilerefurd Cathedral, 4; l'eterborough; 3年; Lichfeld, 31 ; Exeter, 4; Woreester, $3 \frac{1}{2}$; Bristol, 3. The loftiness of Westminster Abbey is attributed to the eause that the eloisters adjoining (similar to double aisles, as originally intended) being included in the
base of the triangle of the transverse section, therefore the height of the abbey is more than the cathedrals. The chancel of Bristol Cathedral has no triforim, and is gecordingly less in height. These buildings having been based upon the equilateral triangle, that figure will alune be a key to them, and it will be futile to try the square. In Westminster Abbey that figure mostly abounds (in trefoils, hexafoils, dodecafoils, $\& \mathrm{c}$.) ; while Salisbury Cathedral, being based on the square, that figure and its products will be found eliefly employed (in tetratoils, oetafoils, $\mathcal{\&}$..). This building is 4 sequares high.

Dr. Henszhnam, in his Remarks on his alleged diseovery of the constructional laws of medieval church architecture, rad at the Institute of British Arehitects, 1852, states that " the architects of old did not employ much reekoning in their constructions, but used geometric forms. - In studying the chuches, I beeame persuaded that out of a ground line or sum, considered as a basis, there can be developed, either by a geometrical or algebraical method, between 30 and 60 sums or linus, corresponding to the size, age, and importance of the building, and there is, with very fevexceptions, not a structural member, be it large or small, the proportions of which are not defined by one of these lines or sums, or exceptionally by their multiples or divisions." He published the first portion of his elaborate system in 1860; this, together with the extensive system put forward by D. R. Hay, of Edinburgh, must be left to the reader to investigate from the books themselves.

The last of the investigators with whose system we shall trouble the student is W. White, who mublished it in the Ecclesiologist for 1853. He has perceived that each architectural period lias its own appropriate order of rules, and this in minute accordance with an intelligible system of development. Thus, in the Norman period, the general proportions of the plan are reducible to the square, and the relative proportions and positions of the minor parts chicfly by the equilateral triangle. As architeeture progressed the sfuare disappeared, and to the outline and detail was applied the triungle. In the middle of the 14 th century, as art declined, the triangle was forgotten, and a system of a diagonal square was taken up. Since then mathematical proportions have been chiefly employed, especially that of the diagonal of the square, fig. 1243.
"The figures apphiable to the setting out of mediaval buildings are these: 1, the stuare; 2. the equilateral triangle; and 3. certain ares deseribed upon diagonals and

Fig. 1243.

Fig. 1214.
III.
iv.

Fig. 1246.
v.

Fig. 1217.
hases of the same." Thus, in Norman work, the proportion of a square placed lozengeways from the ends of which a vesica piscis is struck (fig. 1244.) is in common use. In first
 pointed work, the proportion is that of a square touching the head and sill (fig. 1245.). The system shown in fiy. 1246. seems chiefly used in lanect windows and works of t^{\prime} at pericd, the height being first determined. The proportion in fig. 1247. is used in tiaceried first pointer, the resica, giving the width, being obtained from the apex of an equilateral triangle. The proportions figs. 1248. to 1251. predominate in midde pointed; those of II. and V. the same, only in the latter period the rule is applied to the determining of the lights

Fig. 1252.
or bays instead of the whole opening, and is applied to the centres of the mullions and not to the sides only. All these proportions appear to have been equally well known in all early times, but in the middle prointed period they graduatly became more complicated, and are consequently more dilficult to trace out. In third pointed they ean hardly be found, and in obtuse third pointed they quite

Fig. 125.1.
vill.

Fig. 1253.
disappear, the proportions shown in fiys. 1213. and ly52. taking their place. The equilateral triangle of 60°, D E F (fig. 1253.) used to ohtain one point, is often accompanied by the angle formed of $30^{\circ}, \mathrm{E}$ F G, to obtain another relative point ; each equal suldivision

F I) and F G; F G and F E, having the eorrespo:ding angles of each equal; whereas in other triangles (as fif. 12.54.) this is not the case.
We give one of his illustrations of the theory as applied to Steyning Church, Sussex, a Norman building. The plan (fig. 1255.) is set out hy equal squares, and also the exterior

Fig. 1256.
Fig. 1257.
STEYNING CHUBCH. (fig. 1256.) to some extent. The interior (fig. 12.57.) is set out by squares and triangles. 'The diagrams will explain themselves. The diameter of the columas is determined similar to $\mathrm{c} e f$ in Riule II. The lower wiudow is set out by II. and the upper one by VI.

Fig. 1263.

Fig. 1258. is the gronnd-plan, and fig. 1259. the clevation of the east end : and fig. 1260 . the elevation of part of the side, of the church of St. John, Wippenbury, Warwickshire. The relation of the lines one with another is well exhibited in the diagrams. At Itchenor Chureh, Sussex, the width is dis ided

Fig. 1260. externally. In the west window of the north aisle of the ehurch of St, Andrew's at Ewerby, the centres of the mullions obtained on the plan by squares diagonally divided. exactly coincide with the same points on the elevation as developed according to Rule Vl. This system is shown in fiys. 1287. and 1303. Figs. 1262, and 1263. explain the method of setting out the proportions for third pointed work; the height of the bay (R) being first determined by the diagonal of a square. The example is the church at St. Probus, Cornwall. The windo vs S are a square wide to the outer edge of the moulding, and are fixed by a square on the base of the bays. The windows 'Thave their points fixed much in the same way, b it their width is determined by the diagonal of a square. The height of the arches in the iaterior are also determined by the diagonal of a square (fg g. 1261.).
"No one," writes Mr. White, "seems to have carried out upon the equilateral triangle any definite theory of design, or to have reduced the application of it to any tangible shape--The theory is that the several parts of a perfect building must be in certain relative proportions to each other,-so that all parts may be bronght into an entire and ammistahable larmony with each other,-hence it is not a delinite application of these principles that is insisted on, but only a systematic observance of them in some way or ather.-In secular and domestic buildings, we do not look for the same amount or kind
of beauty, nor is the same exactnes; of proportion of equal importance as in an ecclesiastical building, where every line ought to be in its proper place, and every form distinctly marked to convey an idea of perfection. In common dwelling-houses, where it is directly evident $\mathrm{t} \mid$ at the external form is entirely dietated by certain requirements of internal arrangement, a sort of natural beauty always results, and so there is not the same need to have recourse to exactness of proportion to produce some degree of good effeet.
"The advantage of a mechanical process for defining proportions and forms would be immense in the mere practical carrying out of the work; for by its means we could, by taking one leading dimension, transcribe, reduce, or enlarge drawings with the greatest accuracy, and with less than half the labour of using seales and compasses. A large body of men, working apart from each other, but under certain and very rigid restrictions, must produce diversity as well as similarity. Their works must all possess the same general character, though the details and form in the application of them must vary in every instance with the circumstances of the case and the workings of the different minds."

This systen is developed by Mr. Whire, on numerous plans, details, towers, \&c. taken from his own dimensions.

Sect. V.

JROIORTIONS OF HOCLDINGS.

To enable us to decide that mouldings may have heen also designed aceording to a measure, there is a very interesting notice recorded by Llaguno, Nuticia: de los Arquitectos y. Aryuitectura de Lsjuīa, edited by Cean-Bermudez, 1829, wherein, under the life of Pascual lturriza. he states that that arcihtect designed, ℓ th of May, 1.541, the capilla mayor to the pari th churel at I'lasencia in Guipuzcoa. While the work was in hand, complaints arose from the townspeople, voters, that he was decorating it with work that was too minute and could not be seen from t!e floor. To this assertion he replied, according to an entry iu the archives of the town, that they might bring some persons, peritos en la gimetria, who could give a judgnent in the matter. Such skilled persons were bronght to the building and approved the work in delate. Whereon the town council requested the viear, as being a person who was always in the building, to oversce the remainder of the work. The church is in the Gothic style, with a nave and chancel only, and is executed in cut stone. Iturriza was further cmployed at Sunta Marina de Oxirondo in 1559.

We have given in the section Masonry an illustration (fig. $662 h$.) of a mode of setting out the ribs for vaulting. found on an ineised bloek of stone. Suel specimens of medieval work are very rare. P'rof. Willis, in his paper on Vaulting, gives another example, and periaps only two more could be quoted. But these do not show how the mouldings were proportioned.

We insert from the appendix to Roriezer's work, quoted on page 1008 , the methorl of making the template or mould for working the moulding, for a canopy. The directions are:In a given square A B C D (fig. 1264.) inscribe a circle and draw the diagonal and centre lines. Witls the centre Z, and a radius equal to the given line A 13, describe a circle, and therein inseribe a square EFGH parallel to the diagonals of the first square. This give; the size of the horizoutal measurement of the four leaves of the great flower or tinial of tha canopy. In the same circle inseribe a square I K L M of equal size to the la t mentioned square, but parallel to the sides of the sppuare A BCD, a:ld let the line 1 K intersect the line F G in N, and the line $F G$ intersect $K \mathrm{~L}$ in O , and the line K L intersect the line G II in P ', and the line G Il intersect the line L, M in \mathbf{Q}. Bisect the line B K in R , and with the centre B and the radius B I describe a circle; and with the same radius deseribe a similar circle about the centre C. With the centre G, and the same radins, cut off from the line G Z
 a portion $G T$, and through the point T draw a line S S of indelinite length; and from the points 0 and I'draw lines perpendienlar tur the line SS and joining it. This gives the outhe of the template for the arelied mould ings; for $M Q$ will be the internal face of the wall, $Q P$ the external splay, with one lollow moulding C therein; the rectangular parallelogram under $\mathrm{P} O$ will contain the jamb mouldings from which the template of the mullion is found, Se.

The jamb and hood mouldings are not described by Roriczer, but probably the back of the hood is obtained by the radius X Y cutting Z E at a, and from a and X the same radins will give the point l, from whence the curve $\mathrm{X} a$ is obtained. The curved line Ya is obtained from X . Divide X Y into 5 equal parts, and at 1 draw a line parallel to Z co. The length af will be equal to the diameter e Y. With a radius equal to de, and the centres f and Y , describe ares of circles intersecting in the point g, and with the eentre g) and the same radius describe the are $f \mathbf{Y}$. The roll moulding appears to be formed by the length $e \mathbf{Y}$ on the line E Y, cutting the line Y X at 1 .

The jamb moulding is prohably obtained by dividing the line SS into 8 equal parts; a radius equal to one of the parts struck from 2 and 6 will give the curves, and the line V W. 'T r will be equal to half T 4 , and the jamb is completed. For the remainder of the construction of the canopy we must refer the reader to the publication in question.
" lt is in vain," states Cresy, Stone Church, Kent, 1840, " that we attempt to imitate the tracery or mouldings belonging to this (the 13 th century) style correctly, unless we consider them to emanate from some simple figure. However numerous the monldings, they never appear confused, which entirely arises from the order observed in their arrangement." This he illustrates by the mouldings forming the trefoil arches round the chancel. "The points of inter-
 section of the two equilateral triangles are the centres for the hollows, and the more prominent parts of the moulding are set out with the same radius at the points of the triangles; or, in other words, four circles are encircled within a circle, and by omitting each alternate one the figure is formed."

Fig. 1265. is from Mr. White's essay, and represents his system applied to a cap and base of the porch doorway at the church of St. Andrew, at Heckington, in Lincolnshire. The mouldings are reduced from full size drawings whereon the diagrams coincidie very accurately with the several

Fig. 1265. HECKINGTON. members, the whole being set out by subdivisions of the equilateral triangle, or angles of 30° and 60° \&c. (as fig. 1253.). Fig.1265a. illustrates another cap and base from Steyning charch, previonsly selected as an example. The cap of the columns is formed on the principle of Rules II. and III., and the base upon that of VI.

A remarkable ciremmstance connected with this subject is, that although the German archeologists appear to have reduced the proportioning of mouldings and details to a system, as illustrated and explained by Hoffstadt, Guthisches A B C Buch, Frankfort, 1810, whieh has been translated into French by T. Aufselilager, Trincipes du Style Gothique, Paris and Frankfort, 1847, no one has translated it into English, or prepared a corresponding publication on English work (certainly not since the well conceived but lamentably produced system by Batty Langley in 1742), not even the author of the Analysis of Gothic Architecture, from whom it might have been expected. In faet, a true system of medirval architecture being still unknown in England, dcsigns are made at random, and the school, in disregard of its professed prineiples, continues dismited. For the satisfaction of those who may desire to subject the mouldings given in Chap. Ill. to a system, we add that the plans of Fountains, Tintern, and Henry VII,'s Chapel, appear to be uesigned on the system of the square; that of Howden on the triangle.

Sect. VI.

PUNCIPLES OF PROPORTION.

The following portion of the elucilation of this subject was originally published in 1847 by E. Cresy in his Encyclopadia, as referred to at page 900 of this work, who noticed, while introdueing it, that "our attention must not be direeted to the decorative portions of the style, but to the construction, from the study of which some valuable lessons may be deduced."

Chap. IV.
The Saxon manner of Building. - A division of the transept of the cathedral at Winchester has been selected as the bett authentieated example of the style in use previous to the Norman Conquest. In a paper read lefore the British Archæological Association at their second annual congress, held at Winchester in August, 1845, the author gave his reasons for supposing it to be the work of St. Athelwold, for which the reader is referred to its " Transactions."

Arches upon arehes enabled the Suxons to continue their walls to a considerable height, the openings between the piers being proportioned as those of the Roman buildings in the time of the emperors. The plans of the piers differ from those previous to the introduction of Christianity : in Britain both the Greek cross and the circle are applied to them.

At Winchester Cathedral the columns of the triforium recede within the pier, and are set round a circle, (fig. 1267.); the passage in the walls of the clerestory is shown at the side; in another portion of the same building is a similar arrangement in less massive piers. (fig. 1268.)

The Saxon churches were generally divided into three tiers or storiec, viz. a lower arcade, a triforim, and clere-story above; and such was the solidity and thickness of the walls, that buttresses were altogether omitted, the outer face of their buildings in this particular bearing a closer resemblance to the Roman than the Norman, although the workmanship was rude, and the decoration scanty.

The proportions found in Saxon buildings are the same as in the Roman, which, without doubt, they took for their models. The circular temple of the lanathoon at Rome, 142 feet 6 inches diameter internally, and 183 feet 8 inches externally, contains the proportions of two-fifths wall and threefifths voil; the area of the latter being 15,948 superficial feet, and of the former 26,493 superficial feet; the difference of these areas giving 10,545 feet for the area of the walls.

We have already seen that in the Coliscum at Rome the points of support are about one-sixth of the entire area of the plan; and the proportions of both these buildings have been admired for nearly 2000 years, the one vaulted, the other uncovered.

Gencrally the walls and piers of our Saxon cathedrals oscupy from one-third to two-fifths of the entire area; in their sections one-third is devoted to walls and piers, and the remainder divided between the nave and side aisles.

The division of the cathedral at Winchester exhibits very perfectly the Suxon manner of building; the piers that support the lower arches are 10 feet wide, and the clear openings between them 12 feet 1 inch. The nave and transepts retain their original construction; in the former under the easing exccuted by William of Wykeham, and in the latter it is seen in its. full purity. The ehoir stands over the crypts built by St. Athelwold, and though

K Fig. 12Gf. WINCHESTER CATHEDRAL

Fig. 1267.
PIER IN NAVE AY HINCHESTER CATHEDRAL.
somewhat changed by the Normans, it yet retains the dimeusions given to it by its celehrated Saxon constructor.

The small piers, one of which, in the south tramsept, is nearly perfect. are set out with great regularity, and measure 9 feet 8 inches from west to sast, and 8 feet 2 inches from north to south; their furm is that of the Greek cross, composed of five cubes, each 2 feet 7 inches in width, with large and small columns placed around them to receive the mouldings that decorate the arches: six of these columns have their centres on the same circle: it is evident that the hexagon, or the duplication of the equilateral triangle, was applied, and that the whole was set out ly one conversant in geometry, and acquainted with the propertions of the cube. The Greek cross, which defines the solid mass, is continued through the triforium

[ig. 1268. PIER AT TRANSEPT AT WINCHESTER CATHEDRAL. and clerestory up to the timber roof. The columns of the triforium, set round the inner circle, are partly cut into the lateral arms of the Greek cross, but the face of the shafts of the columns are in a line
with its outer side. The centre of the pier is preserved throughout, and so placed as always to balance the masses around it equally. The circular shatis at Gloncester ('athedral, Tewkesbury Abbey Chureh, and several others, were probably of carlier date than pillars formed of several shafts; those in the chureh of Saint Germain des Prez, at Paris, are delicate examples of the former style.

That aisles, galleries, and passages, belonged to the construction of a Saxon church, we have sufficient evidence in the recounts left us by contemporary historians; but the present subject is ahmost conclusive on this point, there being a preparation for a wall 6 feet 8 inches in thiekness, containing the passage 2 fuet in width, indicated by the plan of the pier at fig. 1267 . The arrangement of the columns shows that there was no intention of vaulting the side aisles, for the two which carry the cross springers appear to have been added sume time after the original construction, as were also those in the pier, fig. 1268.

Athelwold is supposed to have executed the whole of this work before the year 980: the mouldings throughout are rudely cut, the capitals of the main pillars being the only portions which are at all enriched by sculpture, and they are very simply carved.

The Normau munner of Building can scareely be said to differ from the Saxon, though the masons employed after the Conquest certainly acquired a superior knowledge in their art. The ornaments which we find in Norman buildings had all been previouly used by the Saxons; hence the difficulty of distinguishigg the works of one from the other: where written authority is not handed down to us, we can only judge by the difference of the workmanship; it cannot be denied that there were many very able masons anong the Sasons, who were qualified to raiee buildings and enrich them with sculptured ornament.

The finest examples of Norman work may be seen at Caen and its neighbourhood, and have been engraved from measurements taken by the late Mr. l'ugin.

In England the same style prevailed throughout our religious structures ; there is a great similarity of arrangement, and little variety of ornament. The Norman style was generally adopted after the Conquest, but that named by the monkish historians the "Opus Romanum " was continued in many of our parish churches, as well as in some larger buildings. The Nor:nan pillar was sometimes composed of a cylinder with four small half columns attached, as at Amiens, which is 7 feet 2 inches diameter.

For the Saracenic or Arabian Styles we must refer to the beautiful work recently published by Mr. Owen Jones, where the decorative parts of

Fig. 12 t 9.
fier at amiens this curious and highly ornamented architecture are admirably given, and proceed to the description of the principles which guided the constructors of pointed architecture.

The Lancet Sty'e succeeded the Norman, and we find it well defined in many churches and eathedrals as early as the year 1180; in it decoration was sparingly introduced, and throughout every part of the design there was simple uniformity, and a display of a considerable knowledge of geometry: the heads of the windows and doors were formed of a pointed areh, constructed upon an equilateral triangle; all the mouldings which surrounded those apertures were delicately formed, and had both capitals and bases; this style was practised till 1230, when it was followed by another, which by some writers has been termed

The Early English or the Geometric Style, from the manner in which the several portions of a building were set out; and we find it alopted generally up to the year 1280.

Salisbury Cathedral, fuunded by Bishop Richard Poore, in the year 1220, was finished in 1260. Its plan is that of a Greek or patriarchal cross, the extreme length being 480 feet, that of the great transept from north to south 232 feet, and that of the lesser transept. 172 feet : the stone used for the external walls and buttresses was brought from the quarries at Chelmark, which lies about 12 miles distance, westward from the eity. The midd!e
of the walls is filled in with rubble, and the shafts of the columns are of marble, from the Purbeck quarries. At the intersection of the nave with the great transept rises a noble stone tower and octagonal spire, the total height of which is 400 fect ; the stone of the spire is in thickness about 2 feet to the height of 20 feet above the tower, after which it is only 9 inches in thickness to the summit: this spire, though braced and strengthened throughout by timbers and ironwork, has deelined from the perpendicular $22 \frac{1}{2}$ inches; but since 1681 , when the observation was made, there has been no further declination.

The walls, after they were carried up to the floor of the triforium, appear to have beet. increased by corbelling, as if it had been doubted whether, as originally set out, there would be sufficient strength to carry the cross springers of the vaulted nave; the total width is exactly 100 feet. The clear width of the mave, as measured on a level with the triforium, is 33 feet 3 inches, and that of each side aisle balf that dimension, or 16 feet 9 inches; had this last been 16 feet $7 \frac{1}{2}$ inches only, the proportions shown by a section would have been exactly one-third for walls and two-thirds for voids; after appopriating the third of the 100 feet to the walls, half the remainder is given to one side, and halt to the other; we also find that each of these dimensions of 16 feet 8 inches is divided into three, two parts of which are given to the outer wall and buttress, and the other to the main pillar that divides the nave and side aisles, or nearly so.

The inclination of the arched buttresses is not such as to resist the spreading of the vault at its base, the knowledge of their use not having then been attained The height of the vaulting of the nave from the pavement is 81 fect.

Wells Cathedral has some peculiarities in its construction, particularly in the application of its arched buttresses: they piteh against a stone corbel inserted below the springing of the

Fig. 127 .
SECtion of wells catiledral.
middle vault, and a tangent drawn at the back of the vanlt and elongated determines the inclination of the top of the flying buttress: here some improvement is shown non those
at Salishury. The masonry of the arches is admirably constructed, and the joints all radiate to a common centre.

The total width of this cathedral from face to face of the buttress is 86 feet 5 inches, and that of the nave 31 feet 10 inches, instead of 28 feet $9 \frac{1}{2}$ inches, as it would have been if a third had been adopted; the side aisles are also diminished in consequence, being only 13 feet $7 \frac{1}{3}$ inches in the clear; they are, however, equal to the buttress, outer wall, and main pillar adiled together, the first projecting 2 feet 8 inches, the second or outer wall being 6 feet in thickness, and the piers 5 feet diameter; whilst the width of the side aisle measures 13 fect $7 \frac{1}{4}$ inches, an approximation sufficiently near to suppose that the proportions of thirds was still adopted in practice. The nave has been increased at the expense of the side aisles, and its height is 68 feet 9 inches to the top of the vaulting from the pavement.

Fig. 1273. TRIFORUMM, inside.

Chapter House at W $\boldsymbol{W} l l s$, erected between the years 1293 and 1302 , is an octangular building of great beauty. A section through the buttresses shows that two equilateral triangles crossing each other bave determined the mass and void, which are in the proportion of one to two, or the thickness of the two walls is equal to one-third the entire diameter: the base line of the triangle, on which the supports of the crypt are placed, clearly indicates this arrangement. Of the twelve equilateral triangles comprised in the parallelogram formed by miting the bases of the two larger, each outer wall and buttress occupy two, or the two walls and their buttresses four of the twelve divisions, leaving eight for the space between them.

Fig. 1274. diviston of wells cazhedral.

Fig 1275. Cinhim-huine at wells.

Where it is determined that the walls shall occupy one-third of the section of a building, no figure is so well calculated for such a distribution as the equilateral triangle; it enables the arehitect at once to limit and fix the proportions of his design; hence its universad application : and the mysterious qualities attached to it by the freemasons no doubt arose from the extraordinary facility it afforded them in setting out their several works. What can be more simple or more beautiful than the distribution of this edifice? Within a circle a hexagon is set out, the perpendicular sides of which mark the outer faces of the buttresses; the junctions of the angles, by forming a base to every two sides, produce the two equilateral triangles, which sub-divided not only enable us to arrange the other portions accurately, but also to measure with the greatest nicety their relative dimensions. The quantities of material employed in construction can be estimated by such means much more easily than by measuring each portion separately, cubing it, and adding the numerous dimensions so obtained together; there is decidedly more simplicity in the former than in the latter sy stem : the area of one triangle being found, we at once know that of all the rest,

Fig. 1276.
Chapter-house, wells: plan.
or of any portion. In the suhject before us the distance from the macie of one buttress to that of the other is 31 feet 6 inches, and the diameter taken through them at this level is 92 fect; omitting the buttresses, the outer side measures 26 feet, and the inner 21 feet 6 inches, the respective radii of the circles which comprise the octangular outer walls and the void being 88 feet and 31 feet 5 inches. Hence we find that the entire area of the building without the buttress is - - - - 3264 feet. The area of the void - - - - 2176 feet.

And of the walls or points of support -
1088 feet.

At the level of the erypt, above the outer pinth, we have these regular proportions, twothirds void and one-third walls.

The height of the entire building, from the pavement to the top of the parapet, is 72 feet 6 iuches, and to the top of the pinnacles 92 feet, the total height being equal to the extrome diameter taken above the plinth moulding on the outside. The interior of this chapter-
house exhibits the most perfect proportions as well as appropriate decorations ; the eight windows, divided into four days, have their heads filled in with circles set out upon equilateral triancles; the vaulted stone roof rests partly upon the octangular central pillars, 3 feet in diameter, surrounded by sixteen small columns, one at each angle aud another between : the height of the pillar is 22 feet 8 inches.

Thoroughly to comprehend the expression, as well as use of the various members found in the architecture of the middle ages, we must trace the progress made in vaulting, and observe the changes it underwent, from the simple cylindrical to the more complex and difficult display of fan tracery or conoidal arches. The ridge ribs, or liernes, as they are termed, in the crypt of the Chapter-house at Wells, pass from the eentre of the building to the middle of each buttress; the diagonals, or croissóes, mitre into them as well as into the formerets or rilse against the outer walls.

In the vaulting of the Chapter-room, we have evidence of greater refinement, and an

Fig. 1277.
Cuaster-llofise at wells: section.
improvement in the decoration, by the addition of a number of intermediate ribs terminating against the octangular one in the middle.

At a later period we find transverse ribs made use of, then others between; but although the design may seen complicated, yet when laid down the plan will assume the greatest simplicity, as shown in the division representing the groining of the crypt.

When this system had been carried out to a considerable extent, the fan tracery was introduced, and although apparently more difficult of execution, it is far more scientifie in its application and arrargement, evincing a higher knowledge of mathematical principles and geometry, and is another evidence of the gradual progress of the mind towardo perfection in this style of architecture.

Westminster Albey, commenced in the year 1245, Is in that style whieh for many years prevailed in France, the fine chureh at St. Denys, near Paris, is exactly similar in all it detail. Tlye windows are wide, divided by mullions, and have their heads filled in with plain circles, the origin of the cusp, or that kind of decoration which every pointed areh afterwards received. This style, which succeeded the Lancet, is found throughout England, and many of the parish churches exhibit fine examples of it. Stone Church, in Kent, of which the writer has published an account, may be cited as one of the best ; its ornament shows the skill and taste that prevailed among the freemasons at that period. Salisbury, Wells, and York Cathedrals abound with rich foliage and sculptures of the highest merit executed at the same time, and it is wonderful to observe to what a state of perfection the artists of this country had arrived. The effects of the chisel of the Pisan school were displayed upon marble, but our seulptors work ed upon an inferior material; yet the draperies of their figures, as seen in the front at Wells, and elsewhere, are quite equal to those wrought by the pupils of Italian masters at the same time. The circle and its intersections at this period were alone employed for the plans of piers, sections of mouldings, and the filling in of windows and dormays: from them we trace the origin of the style which immediately sueceeded.

The eathedrals of Cologne, Amiens, Beauvais, the Sainte Chapelle at Paris, and numerous other examples on the continent, exhibit the same proportions and style with that of Westminster ; the lofty pointed arches, which rest upon the main cluster, are decorated with mumerous small mouldings ; the triformum, in some instances glazed, have their pointed arehes filled in with trefoils, einquefoils, or sexfoils, and the clerestory, carried up to the very apex of the vaulting, is similarly atorned. Westminster Abbey is one of the finest examples of building executed in the thirteenth century.

Tracery and Gcometric Forms.-To comprehend thoroughly the principles which directed the freemasons of the middle ages in the execution of all their works would require far greater illustration than can be bestowed upon the subject in the present volume: it must be sufficient if we point out a few which influenced the design of some of their best examples, and show that it is a perfectly erroneous opinion to suppose they were executed without a thorough knowledge of certain rules, originating with themselves, and perfected by a constant study of what was not only useful, but productive of the best effect. Those who inquire into this subject must collect the data upon which an opinion can be formed, for it is scarcely possible, without positive measurement, to arrive at any conclusion upon the matter: the admirer of the Greek, or the commentator upon Vitruvius, alone can scarcely hope to be successtial : it is true that in one of the early printed Italian editions of the valuable anthor quoted, there are several diagrams which seem to point to the subject, bat the student will find only the nucleus around which the lovers of geometry in the mislille ages

Fig. 1278. westminster arbey. aramged their varying and beautiful forms; this is the equilateral triangle, and by inclosing the plan, section, or elevation of a building within it, the several proportions can be accurately measured, and if sub-divided into a number, cither of the triangles would show the proportion it bore to the whole area.

In one of the tracery heads of the windows in the elointer at Westminster, the date of which is about 1348, we have two figures that resemble the plans given to elustered pillars, indicating at once that the same principles were applied to the setting out of both windows and points of support. When the circumference of a circle is divided into twelve equal parts, He points which divide them form the termination of four equilateral tringles, and we have at their intersections, not only the centres of the circles that constitute the filling in, but also the several mitres and other portions of the figure.

These rules were evidently applied to windows, and to tracery of every description, executed at the end of the thirteently and commencement of the fourtenth centuries; also to the plans of the main cluster of pillars in many eathedrals and churches. For nearly a century, cireles and their intersections formed the ornamental portions of every hind of panel and window head; they were afterwards blended into other figures, and apparently set out upon dillerent principles; but the hexagon and equilateral triangles were necessary to produce the flowing lines which suceceded. The thange which took place in design 110 doubt arose from the facility which had been attained by the practice of this method. and if it were possible to exhibit each variety in England alone, there would be ample evidence of the inventive power of the freemasons, and the progressive improvement in their school for depicting form. The quatrefoil in fig. 1279. is met with in the panels of several altar tombs, in the spandrills of the arches of doorways, and it is worthy of observation that all the mitrus, where the figures change their form, are perfect for each: had these collsiderations been neglected, we should not have had the graceful flowing lines found in these designs: no other triangles crussing are so universally applicable, or require less skill in their adoption. The student of the present day might occupy a life in the collection of these subjeets, and they are most excellent models for the application of the rules of theoretical geometry to practice.

Windows of three Days or Divisions are met with, having heads of singular beauty, inclosed within an equilateral triangle, and so numerons are the designs, that it is rare to meet with two exactly similar. In

Fig. 1279. clolstems at wempminsten abbey.

Fig. 12s0. cluisters at westainster abbey.

$\mathrm{Fig}, 1 \mathrm{EE}$,
the more simple of three days or lower divinions, the head is orcupied by three circlen, each of which contains a trefoil constructed upon the crossing of either three or fomr equilateral trimgles.

A very extriordinary design, composed of intersecting circles, is to be seen at the east end of the chancel of the church at Sutton, at Hone, in Kent; although much dilapidated, it seill preserves many of its original Alowing lmes, all struck from the same radius, throngb points previously determined by crossing the primitive circle by four ceguilateral triangles,

At half the beight of the head of the window a horizontal line may be supposed to be drawn from one side to the biher, on which are three circles: the two onter touching, are crossed by the third, struck from the point of their junction; with the same radius several spherical triangles are struck from the points of intersections, producing the lines, which unite and divide the window head into several compartments, differing in pattern and dimension. After the eircles were struck, the lines that did not play into each other were left out, and those only retained which flowed on gracefully; by these nice considerations and just application of prineiples, the masons were certain of producing a perfect effect, without rigidly adhering to any particular form.

Fig 1282.

Windows of four Days or Divisions. - Among the heads of a more simple character are those which contain one large circle, subdivided by three equilateral triangles, each.

Fig. 1283.

Fig. 1234.
iaclosing a trefoil. Others contain, in addition to the one great equilateral triangle, ewo smaller, constructed upon the points of its base, and dropping into the space compised between the heads of the divisions below.

Windows of Six Divisions are far more complicated, and, though exhibiting greater skill in geometry, are set out precisely upon the same principle. The two equilateral triangles inclused within the great cirele mark out the prominent features of the design, and their ter ninations are the centres of as many spherical triangles, which, by their crossing, constitute the elaborate filling in.

Iu some examples, above the two main lower divisions is a circle divided by several others, the twelve which are indieated in the figure serving to propotion the tracery of this compartment.

At the latter end of the fourteenth century, these designs were so multiplied that almost every cathedral and church had its peculiar windows: in Amiens cathedral, the chapels constructed at this same time receive their light from windows, the heads of which are filled in with tracery execedingly varied, but the general prineiples of setting out the work are preserved; the circle and the equilateral triangle were subdivided

Fig. 1285. almost to inlinity, and at no peniod of the arts do the inventive faculties appear so fertile as in that we are now considering. The great west window of York Cathedral is the finest example of the improvement made in this mode of decoration ; the geometric forms are there so concealed by the blending of the several curves, as to produce continued flowing lines, which is partly shown in fig. 1282. : they are, however, all set out in the same manner, and the centres upon which they are struck are established by the crossing of equilateral triangles.

During the episcopacy of Joln Grandisson, from the year 132'7 to 1369, Exeter Cathedral was undergoing an entire change

Fig. 1286. in its architecture. To this bishop we are indebted for the great west window, of nine days, and several smaller of four and five, in which are introduced tracery showing a great variety of design : some are composed of equilateral triangles, each containing a trefoil, some of circles with six turus, others have four and thrce; but the heads of all, varied as they are, belong to the same school as fig. 1285.

The great east wiudow at Bristol Cathedral is anther fine example of nine days,
executcd about the middle of the 1 thl century; the centre of the head of the window, or rather the nueleus to the tracery, is an octagon, six sides of which are retained, the otier two being suppressed, to allow of a better combination with the three centre divisions of the lower part.

The equilateral triangle also defined the form and magnitude of the several mullions, as shown by fig. 1287., constructed upon measurement of the windows of the clerestory of the nave at Winchester: a line drawn from the apex of one mullion to the other is the base of the triangle, and the space inclosed by the two is divided into ten other equilateral triangles, two of which agree in dimensions and form with each mullion. Of the twelve equilateral triangles embracing two balf mullions, ten are given to the day or space to admit the light, and two, or onesisth of the whole, is comprised by the mullion; such appears to have been the manner of proportioning the parts of windows in the middle ages.

Flg. 1287. See also $6 g$. 1303. WiNCHESTIR.

Rose Windous in the West Transept of the Church of St. Ouen at Rouen is 29 feet 6 inches in dianeter, and composed of seven equal circles, one of which oceupies the centre: each of those, which surround it, are again subdivided by others; two only of the outer six are preserved in the figure, and form the quatrefoils, whilst the intersections of the others serve as eentres to the rest of the design.

Fig. 1288.
st. ofen at rouen.
Rose Window of the South Transept of the Cathedral at Rouen is 23 fcet in diameter, measured to the centre of the large bead, which comprises the figure. A portion only of

Cuap. IV.

this beautiful example is given, for the purpose of exhibiting the principle upon which it is set out : it will be evident that the nueleus of the design is composed of two erguiletcral triangles, and the sides of each continued, constitute the alternate divisions.

Fig. 1230.
rouen catuedral: bouth thansbyt.
The internal hexagon has its parallel sides prolonged, to mark the position of the four divisions that have their pointed heads attached to the small circle, which forms the eye of the pattern; and the length of these prolonged lines is linited to the extent of the sides of an equilateral triangle, which is again divided regularly, the triangular spaces between being filled in with trefoils. The small mullions are in width $2 \frac{1}{2}$ inches, the next size 3 inches, and those which mark out the figure and have a bead for their termination are $4 \frac{1}{2}$ inches: another bead and bold projecting label, or rim, circumscribe the whole rose window, the hollow around which is emriched with a eurved leaf. On each side of the internal hexagon an equilateral triangle is constructed, around which a circle is struck, uniting elegantly with the next, and forming the six turns which characterise the filling in of
circles at this period; these were the principal decorations after the Iancet style was abandoned, and were continued until succeeded by more flowing and varicd designs.

Rose Window of the South Transept at Beauvais, 34 feet 4 inches in diameter, is composed of six large cireles and their intersections.

To set out dhis window the great circle expressed by the cuter lead is divided into twelve parts, each being equai to half the radius; twelve equibateral triangles are then inseribed, the points of whel touels each of the divisions, and where they cross nearest to the outer circle, the twelve pointed arches that surround the figure are struck; rhe other 1,oints of intersection of the triangles are contres, from which the other curves are drawn. It must at once be evident, that in a circle so divided, or by any other equal number of equilateral triangles, the portions contained between the smaller angles must be equal to each other; the six circles around the centre have their curves blended into the outer, and if it be required to fix centres for each of these flowing lines, they ean only be obtained by covering the entire rose window with lines in the manner already deseribed. The radius being equal to the side of a hexagon, and that figure being composed of two equilateral triangles, was probably the chice reason of its first preference over all others; it certainly affords the most extraordinary

Flg. 12Y1. bEALVAIS CATHEDKAL: SOUTII TRANSEPT. powers of combination, and there is carcely a moulding or form in the arehitecture of this period but is set out from it. The mullions that bound the divisions are all portions of this figure, as are the mouldings, which sweep round the arehes of the buildings themselves. Nothing can surpass the brilliant effect of these marigold windows when glazed with riel colours, and exposed to either a rising or setting sun ; in the example now deseribed, this effect is still further heightened by making nearly the whole end of the southern transept a continuation of the same design, the glass descending almost to the tops of the doors whieh affird aceess to the eathedral. The construction of sueh works must excite our highest admization, fior it appears searecly possible to esed the perfeet mamer in which the parts are pu: together and worhed off, the execution being in every patieular worthy the design.

The Rose Window in the South Transept at Amiens, 29 feet 6 inches in diameter is set out upon two squares, which cross each other diagonal!y.

FIL. 1292.
a milens cathedral : suUth transept.
Sixteen divisions are employed in this figure, and by crossing as many squares, we arrive at the method by which it is set out; each side of the square is equal to the radius by which the master line on the outer bead or circle is struck: where the squares eross each other are the divisions of the pattern, and their several points are the centres upon which the pointed arehes are struck, which surround the outer portion of the rose.

Where the lines of the squares cross, in the interior of the figure, the smaller divisions are established, and their points of intersection serve for centres to strike the lesser curves; to show this clearly the whole must be set out, and drawn to a large scale.

The architecture of France underwent a material change after the thirteenth century; the heads of the windows were no longer filled with tracery composed of six foils, generally three in each window, but branched out into a more ruming pattern, as practised in several parts of England. The fourteenth century not only exlibits windows of more difficult design, but an apparent absence of the principles by which the several parts were proportioned to each other. Before the Perpendicular style appeared, great progress had been made in the groining of the spacious vaults of the naves, as well as those of the side aisles. After the fan tracery was substituted in England, the windows had straight mullions ascending till they intersected the areh; and we have no further display of the varied figures that everywhere prevailed before: geonetry was now exereised upon the intricacies which their surprising vaults exhibited. It is somewhat singular that we never find the beauties of a previous era retained, and blended with that which succeeded.

For the 300 years during which the Pointed style continned to flourish, each half century gave to it a new character; hence we have seldom any difficulty in establishing its date all these changes resulted from an improved knowiedge in the art of construction. The lodges of freemasons were gradually approaching the principles which directed the efforts of the arehitects of the Byzantine school, and which were fuund too refined and delicate to be practised out of Italy after the eleventh century.

The Rose Window in the Northern Transept of the Church of St. Ouen at Rouen, 28 fuet 6 inches in diameter, is an example of the pentagonal setting out.

Fig. 1293.
St. oUEN at roeen.
When the sides of a pentagon are prolonged, they unite and form five isosceles triangles, each having for its base a side of the original pentagon. The equilateral triangle, the square, and the pentagon may have been adopted by different confraternities of freemasons; the first can be formed into hexagons, duodecagons and their multiples; the squares, by crossing diagonally, into octagons; they may be also tripled and guadrupled: the mitre of the equilateral triangle is in the direction of its centre of gravity, as is that of the square and the isosceles triaugles; consequently to mite the mouldings around either, the plummet would indicate the direction of the line, when dropped from the angles and suffered to cross, the point of intersection being the centre of gravity zommon to the several lines.

In the chapel of St. Cecile is the monument of Alexander Berneval, the master mason of the works at St. Onen, at the time the rose window was executed by his pupil, whom it is reported he murdered from jealousy : such an application of triangles was then ealled the pentalpha.
The foundations of this ehureh were laid by Maredargent, about 1318, by whom it was built as far as the transept ; but probably the rose window of the northen transept was not inserted till many years after, for the memorial of Berneval bears the date o"1440: this monumental stone is 8 feet 6 inches in length, and 4 feet in wilth, and in it is represented the architect and his pnpil, each employed tracing with his compasses his respective design; these beautiful hrasses with their rich tabernacle work were in the highest state of perfection when the writer was last at Rouen, and around the master figure was inscrabed in German letters :-
 notre Cire, Du Baillage be Rouen, et be cȩ̉te Eglize, qui trespaşa, l'an be grace mit. cecert. le v jour de Januire.

SDric'z Dicu fout r'ame be luy.
The date of the pupil's death is not commemorated, which has led some to imagine the tale of his murder untrue, and that he erected the monmment to lis master with the intention of being buricd by liso sile.

The North Rose Wiullow at Amicns, 37 feet $\mathbf{8}$ inches in diameter, is a magnificent erample of the applieation of the pentagon, with 5 isoseeles triangles around it.

This window, probably exceuted in the fourteenth century, has a great resemblance to the last deseribed; the fan tracery, of which we have early specimens in the eloisters at Gloucester, required the same knowledge of geometry to perfect their design. In 1482 Euclid was first printed at Venice from the Greek text; but geometry had been studied in England from the time that Adhelard, in 1130, had introduced a translation of that anthor from the Arabic versions which he met with during his travels in Spain. In 12.56 Campanus of Navarre translated Euclid, who seems to have been commented upon by several eminent writers, and no doubt it was the text-book of the freemasons, who diligently applied the problems it contained to every purpose of their art. In 1486 the Editio Princeps of litruvius appeared, and the commentariesof Casare Casariano followed in 1521; the latter author published three plates of the Cathedral at Milan, covered with equilateral thiangles, which have not been described so as to be useful or understood.

Fig. 1294.
amiens : rose window.

The compartments which have the flat sides of the original pentagon for their base, and parallel sides throughout till they terminate in the pointed areh, have their mullions proportioned to their opening, the larger being double the size of the smaller, whilst the latter are equal to half the open space between them: the muilions in these examples, which divide two spaces, 6 inches in width, are usially 3 inches in thickness, and the others are in the same proportion. The next sized mullion is $4 \frac{1}{3}$ inches, with a bead of $1 \frac{1}{3}$ inch diameter, which runs round the whole pattern of the figure, the centre of which may be called the master line, by which all the rest are set out ; the several mullions are all twice as much in depth as in width.

Buptestery of Pisa. - The internal diameter of this circular building is 100 fect, and the thickness of its outer walls and columns 10 feet 6 inches; its external diameter is 121 feet, the areat of which is 11,499 superficial fect, that of the interior being 7854 ; if we deduct fiom it what is occupied by the four piers and eight co'umns, or 188 fect, we have 7666 feet for the void, exactly two-thirds of the entire area. To find these proportions in an edifice commenced about the middle of the twelth century in taly, is a curions corroboration of the opinions already advanced, the same iutes as those described for the Chapter Ilouse at Wells being apparently followed: the conical brick dome was the work of an atter period, and may have been the prototype for that of St. Panl's at London; the pointed arehitecture belonging to the exterior of this edifice, of the same character as that which adorns the crosses of Queen Eleanor in England, was added in the tourtecnth century.
'The section shows how the equilateral triangle governs the proportions of' this celebrated buiding; the extreme diancter is the base, and its apex the level on wheh the
more recent comical sud hemispherical domes are placed: the intersection of the two great triangles fixes the diameter to be given to the internal void, around which the side aisle, its walls and pillars should be formed. The circle which has its dameter comprised between the apex of the two equilaterals determines the clear width between the

outer walls. That the architects of those days delighted in the forms produced by the several intersections of the cirele in combination with the equilateral triangle, we are assured by viewing the several designs they have left us in mosaic upon the walls of the Duomo, and at the cathedrals of Florence, Sienna, and elsewhere.

Roslyn Chapel, Scotland, commenced about the year 1416, has its buttresses well suited to give aid to the walls, and to enable them to resist the flurust of its nearly semicircular vault, which they receive below the springing. The extreme width from face to face of the buttresses is 48 feet 4 inches; the span of the nave is is feet 8 inches, being 5 inches less than the proportion of a third; the two side aisles together
are 15 feet, or within a few inches of the width of the rave; eonsequently the walls and piers in this beautiful example are 17 feet 8 inches, or 15 inches more in extent than they would have been if the proportion of one-third had been adopted. The height from the pavement to the under side of vault is 41 feet 10 inehes.

After the examples deseribed, we cannot doubt of the great proficiency that had been made in the applieation of the rules of geometry to arehitecture ; every feature, whether the simple monlding or the most elaborate tracery, was set out either upon the equilateral triangle, square, or pentagon, and these regular figures seem to have been chosen on account of the facility by whieh they are subdivided. From the introduction of the style eaeh fifty years that succeeded brought with them new and improved prineiples, and at the very commeneement of the fourteenth century, we see the clustered pillar and

Fig. 1296. ROSLiN CHipel.

Fig. 1298.
sEC'ION OF HOSLYN CHAPLL.
its many moulded arches yielding to a style that combined greater simplicity with a more thorough knowledge of construction, which will be evident upon an examination of St. Stephen's Chapel, Westminster, (now destroyed,) begun in 1348, the nave of Canterbury and Winchester Cithedrals, and several others. In these eamples we have elegantly formed arches resting on well-propertioned piers, the mouldings of which so combine that they form a perfect figure, and show that the points of support were designed to carry all that is placed above them; the same contour of moulding that surrounds the pier performs its useful part in the upper portions of the building, constituting one entire whole. This style, simple as well as elegant, was exccuted by masons fully qualified to advance it to the greatest perfection, and deserves both our study and admiration.

Canterbury Cathedral exhibits every variety of style found in mediaval architecture; its history has been published ly Mr. Britton: to that work, to which the writer contributed some measurements in 1820, he must refer for a detailed and elaborate nccomit of the several changes made in the decoration of the edifice. It is only to the pillars of the nave we are desirous of drawing the attention, and that merely to show their simple form, and the mamer of setting them out : four squares are so placed that their diagonals and sides are united in the centre, thus constituting a form capalle of the greatest resistance at the four points of the entire pier, where the several thrusts and pressures are rereived: the OG mouldings of the piers run round the arches, whilst the columnar mouldings towards the aisle and nave support the ribs of their respective vaults. Greater simplicity can hardly be oltained, and every line and indentation of the plan has its use and appropriation : there is no profusion, or member for the sole purpose of decoration; in this arrallgement we have the commencement of good taste, and the indication of a more harmenious and perfeet style.

Fig. 1299. canterbury cathrdral.

Fig. 1500. canterbury cathedral.

In the Church at St. Ouen at Rouen, we have a very different anangement, and by no means so solid a form.

Winchester Cuthedral. - One division of the nave has been selected to show the peculiar styie practised at the latter end of the fourteenth century, and also the skill exhibited in ehanging the form of a Saxon edifice, and giving it its present character. The plars, fig. 1303. is that of the pillar, as well as of the mouldings and walls of the triforium and clerestory above. When William of W'ykeham elfected the ehanges in the nave of this cathedral, he preserved all above the arches of the triforium, cutting away only the masonry of each division below that level which intervened between the main pillars; he then caused the whole to be cased with an ashlar, so that the original Saxon masonry and proportions of the mass remain within the easing. The dotted semicircular areh is the same as that in fig. 1266., and in the roofs above the groining the Saxon walls are traceable, another proof that when any alteration was made in a building by our medixval masons, they did not think it necessary entirely to demolish it. We have in this example the decorative character which belongs to the architecture of the latter end of the fourteenth century, though somewhet heavy in its proportions, which arises from the mass constituting the original fabric being preserved, or having undergone so little ehange. The thickness of these pillars from north to south is 10 feet 8 inches, and from east to west 10 feet, whilst the width of the opening from east to west is only 14 feet.

If we examine the area of one severy of the nave, as left by Wykeham, and ealeulate the points of support, we shall see that the proportions are not those found in the nave at Canterbury, or in other cotemporary buildings; comprising the space between the buttresses, the entire area of the parallelogram contained between lines drawn through the middle of the piers from north to south is 2228 feet; while the points of support within that area are $\overline{5} 57$ feet, or onequarter of the whole.

On the section, shown at fig. 1504., the buttresses on the north side project 6 feet; the north wall is 5 feet 6 inches in thickness, the half piers attaehed project internally 2 feet 1 inch; the north aisle is in width 13 fiet 1 ineh, the pier 10 feet 8 inches; the elear width of the nave 32 feet 5 inches; the pier 10 feet 8 inches; the south aisle 13 feet 1 inch, the half-pier which projects from the south wall 2 feet 1 inch, and the thickness of the south wall 7 feet 2 inches; there are no buttresses, as the cloister, now removed, served their purpose. The width from east to west, measured from the centres of the piers, being 22 feet 1 inch, and the width of

Fig. 1302.
Nave of wineliester cathenral.
buttresses outside 3 feet 2 inches. The cathedral or duomo at l'isa presents a very diffurent result; the total width of the nave is 113 feet 6 inches, and the width of a severy 17 feet 1 inch, the area of which is nearly 1930 feet, the peints of support being only a twelfth of that quantity on the plan, and one-sixth as regarded upon the section. Hence we see the necessity of ascertaining the proportions of mass and void in a building, before we can aceurately indge of its merits as a style, each having its peculiar quantity, which marks its character.

The section or rather plan of the walls, on the level with the gallery of the triforium, shows the method adopted to proportion the openings to the mass. The thickness of the clerestory walls is included within the eight equilateral triangles, and where their sides cross, the position of the mullions is established. In fig. 1287. the circle which comprises the two that divide the window into three days shows their proportion and their size, which in this example is one-third of the opening: in a window of three days we have six triangles for space, and three for mullions: the splays at the sides of these windows, uniting them with the faces of the wall, are cut parallel with the sides of the several triangles. The main pier is set out by uniting the bases of two equilateral triangles with perpendicular lines, or forming the whole into the figure of a bexagon. By a comparison of this plan with that of fig. 1267. the additions made by William of Wykeham to the original Saxon pillar will he readily perceived.

The width of one of the divisions of the nave at Winchester, measured from the centres of the piers from west to east, is 22 feet 1 inch, and the same dimension taken in the nave at Canterbury is 20 feet only. In the former example the opening between the piers is 12 feet 1 inch, and in the latter 14 feet; there is consequently no oomparison, with regard to lichtness, in these two works of the same period; the

Fig. 1505. Mer and windows of clerestury, winchistere. pier being comprised $2 \frac{2}{3}$ times in the entire division at Winchester, and $8 \frac{1}{3}$ times at Canterbury, or on the pavement the plinths around the base seem to fall within one-third of the entire width. It would almost appear that in setting out the pillars of several cathedrals, the same system was practised as shown for the mullions of windows at fig. 1287.: but the plintis, and not the cluster of columns and mouldings, must be regarded as occupying the third. I3ath Abbey church is 20 feet Φ inches from centre to centre of pier from east to
west, and the cle ir widh between the plinths about two-thirds of that dimension, and this is the case with many examples.

The Section through the Nave of Winchester Cathedral is highly deserving of our attention: the clear width of the side aisles is 13 feet 1 inch, and that of the nave 32 feet 5 inches; the clear width of the building between the outer walls is 80 feet, the thickness of the walls 16 feet 10 inches, the projection of the buttress 6 feet, and the thickness of the piers 10 feet 8 inches, making for the entire width from north to south 102 feet 8 inches.

The width between the walls forms the base of an equilateral triangle, the apex of which determines the height of the vaulting of the nave; a semicircle struck upon this base, with، a radius of 52 feet, determines the intrados of the arches of the flying buttresses on each side, which are admirably placed to resist the thrust opposed to them.
O_{n} this section we have endeavoured to apply the principles of Cesare Cesariano, before referred to, to the measurement of mass and void by a method far more simple than that usually aclopted.

By covering the design with equilateral triangles we see the number occupied by the solids, and can draw a comparison with those that cover the voids : to prevent confision in the diagram a portion only of three of the triangles has been subdivided, to show with what facility the quantities of the entire figure might be measured, if the several large equilaterals were subdivided throughout in a similar manner. The band which extends

Fic. 2301.
SECTION OF WINCHESTER CATHEDHAL.
from the face of the outer butress to the centre of the section contains 36 small equilateral triangles, six of which cover the pier ; consequently it occupies on the section one-sixth of that quantity; no further calculation is requisite to find the proportion it bears to the whole: in like manner the other parts of the seetion may be compared. Such was the use of equilateral triangles in the middle ages for aseertaining quantity.
The two equilateral triangles which occupy the nave and a portion of the piers are conıprised within the ñgure called a Vesica Piscis; if the horizontal line drawn at half the height, uniting the base of the upper and lower triangles, be taken as a radius, and its extremities as centres, it will be evident that parts of circles may be struck, comprising the two triangles within them. Euclid bas shown that a perpendicular may be raised or let fall from a given line by a similar method, the space between the segments being called afterwards a nimbus; and there can be no doubt that from time immemorial all builders have used it: the bee adopts for its honied cell a figure composed of six equilateral triangles, and this is proved to be the most economical method of construction; the sides of each inexagon are all common to two cells, and no space is lost by their junction. The nearer the troundary line of a figure approaches the circle, the more it will contain in proportion to it,
but cireles could not be placed above and under each other, or side by side, without imorstices occurring, and the equilateral triangle, or a figure compounded of it, is the only form that will admit of it being so arranged.

The interior and exterior division of the choir at Winchester exlibits two styles; the l.tster is a fine example of the decorated elegance to which architecture had arived at the c.anmencement of the sixtcenth century.

Fig. 1506.

King's Colleye Chapel, Cambridye, has no side aisles, but in lieu of them are small chapels between the buttresses, which are not interrupted in their depth, their whin. strength being requisite to maintain in equilibrio the highly wrought stone vault; this they have hitherto perfeetly done, to the admiration of all who have studied its principles of construction. The chapel is divided in its length mto twelite equal divisions or severies, each of winch is formed of four quadrants of a eoneave parabolic conoid standing on their apex, and is bounded by a main rib or arch of masonry which has its abutments seeured by the weighty buttresses added to the outer walls. The width of each severy from centre to centre is 24 feet, the thiekness of the buttresses being 3 feet 7 inches, and the length of the chapel betwcen them 20 feet 6 inches; their depth is 13 feet 6 inches in the clear.

The transwerse section shows more particularly the proportion of mass and void, which are here equal : the total extent or width from the face of one buttress to that of the other is 84 feet, and the clear width 42 feet; the height from the pavement to the top of the stone vault is 80 feet 1 ineh, though this varies from the pavement being out of the level; the thickness of the walls at top is \bar{F} feet $7 \frac{1}{2}$ inches; in it is a gallery \simeq feet $1 \frac{1}{2}$ inch wide, and 7 feet high, communicating entirely around the building.

The herght of the eluster column, whose capital receives the points of the inverted cones, is 59 feet 3 inches, so that the areh, which is struck from four centres, does not rise more than 18 feet 6 inches, and the intersections tahe place at one quarter of the span when the height is 15 feet 6 inches: this arch or stone rib is 2 feet in depth and 18 inches in breadth, formed of twelve voussoirs on each side, the jomnts radiating to the centres respectively ; it abuts at its extremities against the ponderous buttresses. and remains steadfast and immovable, dividing, as before stated, the vault into several severies.

The plan of the main piers shows that there has been no after-thought grafted upon the original design, which, in all probability, was commenced soon after the year i446, as we find that a stone quarry at Haselwode, and another at Huddlestone, in Yorkshire, were granted, for the works to be car-ied on here. The stone roof does not appear to bave been commenced till about 1519 , the indenture concerning it bearing date the fourth

!ig. 1307, KING's COLLEGE CHAPEL. year of King Henry VIII.; in this doeument Thomas Larke is called the "surveyor," John Wastell the "master mason," and Henry Semerk one of the "wardens," the twe latter agreeing to set up a sufficient vawte, according to a plat signed; the stone to be from the Weldm quarries: the contracting parties were also to provide "lyme, scaffoldyng, cinctores. moles, ordinanmees," and "every other thyng required for the same vawting: the timbers
of two severics of the "great seaffolding" were given them for the removal of the whole; and they were to havo the uses of all "gynnes, whels, cables, hobynatts, saws, \&e.;" they were to pay for the stone, and to have 100 l . for each severy, or 1200 . for the whole, money being advanced for wages as the works proceeded : the "chare roff," as the vault is calied was to be sufficiently buttressed, and the whole performed in a perfect manner.

Fig. 1308.
SECTION OF King's Cullege chaidel.
The extreme width, measured from the face of one buttress to that of the other, is 04 feet, and from north to south, from the centre of one pier to that of the other, 24 feet; thus the area comprised in a severy, or space between two lines drawn through the centres of the buttresses on the plan, is 2016 feet, exactly double the area of one of the severies of St. George's Chapel, Windsor : the extreme widh is the same, but the difference arises from the divisions in the one being double that of the other, as measured from east to west.

The area of the nave, $42 \times 24-$			Feet.	
of the chapel on one side	-	-	-	-
dito1008 on the other	-	-	-	-
336				
dito				
of the walls on one side				
ditto on the other	-	-	-	-

Hence we have for the areas of the space or void on the plan 1680 feet, and for the walls and pier 336 feet, or one-sixth of the whole 2016 feet, similar proportions to those which we
shall afterwards find in St. George's Chapel, Windsor. ln King's College the nave comprises lialf the entire area of a severy, and the remaining half is divided into three, one of which is given to each of the chapels, and the other divided between the points of support : in this beautiful building, with its majestically contrived roof of stone, the lightest construction is adopted. The catenarian curve exbibits the direction of the thrust of the vault, which falls within the base.

The stone roof we are now examining differs somewhat from that of Henry VII.'s chapel at Westminster; the area of the points of support is only one-half of those in the latter elegant example; in no instance have we so much effect produced by the mason's art, with so suall a quantity of material : it is evident that the gradual changes made in the architecture of the mediæval period led at last to the greatest perfection, beyond which it seems impossible for us to advance.

In selecting a style of any one period, it may be fairly asked whether the principles found in the latter, or the economy adopted in the constructions of the 15 th century, might not be applied to it, and the same effect produced, - the section of the chapter-house at Wells, for instance, lightened of half its material : undoubtedly it might, for the lofty pointed arch, not having the thrust which the latter, struck from four centres, had, would exert less thrust, and be in favour of such a change.

But at the present day, when copies are rigidly made of the finest examples of each style, it would seem a bold innovation to suggest such an adoption; still it might be introduced, and probably would have been, had the freemasons continued an operative fraternity, and been required to build in the Lancet or other style, which superseded it. 'The same decorations ali 1 form of arch may be used

Fig 1309. vaulting of king's college chapel. in the later styles as in the earlier, as far as construction is concerned, and we have evidence of sufficient stiength in the example before us; the principles are the same in each, thongh they may differ in form ; there would be no more difficulty in transforming one style to that of another, than was experienced by William of Wykeham, when he changed the Saxon nave of Wincliester to the Perpendicular.

On the section shown at fig. 1308. a line is drawn exhibiting the catenarian curve, for the purpose of showing that the abutment piers are set out in correspondence with its principles; it is not contended that a knowledge of this curve gnided the freemasons in proportioning their piers, or that their flying buttresses were always placed within it; but it is singular that in those structures where their true position seems to have been decided, the catenarian passes through them.

Bath Abbey section (fig. 1319.) is an example which exhibits this most perfectly; and by a comparison of its section with that at Wells (fiy. 1272.), it will be perceived that the struts are differently placed, and that the earlier example is defective : fig. 1298 . represents laslyr

Chapel, in which there is evidently some improvement ; but at the time of its construction perfeet knowledge on this subject had not been attained. In a catenarian chain formed of links of equal lengti, every side is a tangent to the curve, and the direction of each link is at right angles to it, acting in a direction perpendicular to the line it forms in the catenaria; and hence its useful application to the science of construction. It is quite clear that wherever the curve passes through the section of a building, stability is obtained; and where it does not, it is doubtful : certainly the hest application of flying buttresses is that which can be tested by this principle.

The main arches of the roof abut against the outer buttresses, and spring from a cluster of mouldingsset round a circular pier; the situation of the small columns and hollows which decorate it being determined by the crossing of equilateral triangles. The ribs of each severy abut in the centre upon a circle 3 feet 6 inches in diameter, formed of two stones, and indicated by No. 1.: in the middle is a mortise-hole 9 inches square; No. 2. is in width 17 inches in the widest part; No. 3. is 2 feet 2 inches; No. $4 ., 3$ feet 8 inches; No. 5., the same; No. 6., 3 feet 3 inches; No. 7. 4 feet 3 inches; No. 8., the same; No. 9., 3 feet 2 inches, and No. 10., which abuts against the outer wall, 4 feet.

By a reference to the plan on fig. 1312., it will be understood how the several rings of voussoirs which compose the quarter of the parabolic conoid abut and are locked one into the other: the construction of this vault is somewhat similar to that ndopted by Soufflout at the Church of St. Geneviève at Paris, although his manner of applying it materially differs.

The buttress in the present

Fig. 1510. king's college chable: ribs of vault. example has an area of 56 feet, equal to that of the piers, to which it is attached; or the two piers and buttresses together have an area of 224 feet ; it is curious to find that of the 336 feet before given to the points of support, one-sixth should be applied to the piers, one-sixth to the buttresses, and the other portion to the walls between; for $55 \mathrm{ft} .6 \mathrm{in} . \times 6=336$ feet-the arca of the points of support taken on both sides; so equally are the parts even distributed.

When the Normans first used flying buttresses, as at the Cathedral at Chartres, the Abbaye aux Hommes at Caen, and several other buildings, they abutted them against the ordinary outside wall ; but it was soon discovered that a greater resistance was necessary to oppose the thrust, and prevent the abutments from yielding. Salisbury Cathedral was probably one of the earliest where flying buttresses were used; and the opinion of Sir Christopher Wren is worthy of quoting upon this subject, as it applies more particularly to the first constructed, and not so immediately to those erected in the fourteenth or fifteenth centuries. "Almost all the cathedrals of the Gothic form are weak and defective in the poise of the vault of the aisles; as for the vaults of the nave, they are on both sides equally supported and propped up from spreading by the bowes or flying buttresses, which rise from the outward walls of the aisles: but for the vaults of the aisles, they are indeed supported on the outside by the buttresses; but inwardly, they have no other stay but the pillars themselves, which, as they are usually proportioned, if they stood alone, without the weight above, could not resist the spreading of the aisles one minnte: true, indeed, the great load above of the walls and vaulting of the nave should seem to confine the pillars

Chap. IV.
in their perpendicular station, that there should be no need of butment inwarãs, but experience bath shown the contrary, and there is scarce any Gothic eathedral, that I have

Fig 1512. king's collage chapel : piers.
seen at home or abroad, wherein I have not observed the pillars to yield and bend inwards from the weight of the vault of the aisle; but this defect is the most conspicuous upon the angular pillars of the cross, for there not only the vault wants butment, but also the

Fig. 1313.
king's college chapel: buttresses, etc.
angular arches that rest upon that pillar, and therefore both conspire to thrust it mwards towards the centre of the cross."

At King's College chapel, flying buttresses are dispensed with, and happily the knowledge of construction had arrived at such perfection, when its astonishing vault was projected, that we have no evidence whatever of its yielding in any part.

It may seem extraordinary that the Pointed style made so little progress in Italy, the Byzantine being always preferred: the architects of that country were probably unwilling to relinquish a mode of construction so economical, half only of the material employed in the lightest, and a quarter in the earliest of the Gothic style, being required for the basilica : for example, where 100 rods of stonework would be used in the latter, 200 would be necessary for the style practised at King's College, St. George's Chapel, and Bath Abbey Church, and $4 C 0$ for that of the Chapter-house at Wells; this result would lead to the couelusion, that no style is so well adapted for the wants of the present day as the Byzantioe.

St. George's Chapcl, Windsor.-If we suppose a line on the plan to pass through the centre of the buttresses and piers, and one severy of the nave to be defined, we shall have a width of 12 feet, and a length of 84 feet, the area of which is 1008 feet : after this we shall find the area of the walls and piers comprised within this severy to be 168 feet, or one-sixth of the whole; such are the proportions of mass and void found in this ehapel. The elear width of the side aisles between the columns is 11 feet 9 inches; that of the nave 34 feet 10 inches, and between the outer walls 69 feet 2 inches: the height of the top, of the vaulting of the nave is 54 feet 2 inches. The height up to the springing line of the great vault over the nave being equal to half the entire width, it is evident that two squares must comprise within them the entire building beneath this line; upon setting them out we find the nave and its pillars occupy one, whilst the other is given to the side aisles, exterial walls, and buttresses.
The Rev. John Milner, in his admirable treatise on the Eeclesiastical Arehiteeture of England, which has been the text-book for all modern writers, states that "its rise, progress, and deeline, occupy little more than four centuries in the chronology of the world: as its eharacteristic perfection consisted in the due elevation of the arch, so its decline commenced by as undue depression of it. This took place in the latter part of the 15 th century, and is to be seen, amongst other instances, in parts of St. George's Chapel, Windsor, commeneed by Edward IV. in 1482 ; in King's College Chapel, Cambridge, and in the Chapel of Menry VII. at Westminster. It is undoubtedly true that the architects of these splendid and justly admired erections, Bishop Cloose, Sir Reginald de Bray, \&c. displayed more art and more professional science than their predecessors had done; but they did this at the expense of the characteristic excellence of the style itself which they built in."
"In St. George's Chapel we have the work covered with tracery and carvings of the most exquisite design and execution, but which fatigue the eye, and cloy the mind by their redundaney:" but we have also a building construsted with one-half the materials that would have been employed had the style practised in the chapter-house of Wells been adopted. The admirers of the Pointed style have not sought for the true principles which mark its several changes; they bave not examined into its constructive arrangements; had they done so, they would have pereeived that, as the skill of the free. masons advanced, and their workmanship improved, they economised material, constructed more solidly, and produced a rieher and more harmonious effect, without sacrificing any of the principles whieh governed their practice ; the improvements they made were as great as those noticed when the

Fig. 131h. ST. GEURGE'S CHAPEL, WINDSOR.

Doric proportions were ehanged to the Ionic. In the Doric we had two-thirds mass, onethird void; in the Ionie half mass, half void; at Wells Chapter-house one-third mass, two-thirds void; in St. Gcorge's Chapel, one-sixth mass and five-sixths void.

Fig. 1515.
ST. GEORGE'S CHAPEL, WINDSOR.
The plan of the pillars is that of a double square, or parallelogram, the diagonals of which latter figure beeome the sides of equilateral triangles that serve for the setting out

Fig. 1316.
fier of st. geongees chapel, windsoh.
the splays, upon which the several mouldings are cut: from east to west these piers are 3 feet 1 iuch, from north to south 3 feet 6 inches, not conorising in this last dimension the three
small columns on the fall towards the nave, or the single column on that towards the side aisles, the first of which projects 6 inches, and the latter 4 inches.
The mouldings around the windows and their mullions are shown at the side of the pier in their proper position.
Division of the Nave of St. George's Chapel. - The mouldings set around the plan of the pier are continued up to the vaulting of the roof, without any other interruption except where they are mitred round the arches.

Bath Abbey Church is 89 feet 5 in . wide from face to face of the buttresses to the nave: whose elear width is 29 feet 10 in , or one-third of the whole; and raeh of the side aisles is a trifle more than the half of the width of the nave, being 15 feet 8 inches: the walls and piers added together are not quite equal to a third, as they amount only to 14 feet 2 inches on each side, or together to 28 feet 4 inches, the difference being given to increase the side aisles.

The section of this beautiful building presents to us all the improvements made in vaulting, and the right proportions as well as directions to be given to the flying buttresses: in the first application of those supports, as at Salisbury, they are evidently misapplied, but in the example before us we find that the constructors had arrived at a knowledge of the principles of the catenarian curve, which is traceable through the solid masses of the section: it was by slow degrees that the fruenasons arrived at a knowledge of the peculiar properties of this figure; had it been known at the first commencement of the introduction of flying buttresses, we should have had a better application of them ; in several instances we find them adopted where no advantage, or very little, could be derived from them.

Division in Bath Albey Church differs from all nther examples of this period, by the height given to the clerestory and the omission of the triforium : the judicious and excellent arrangement of the flying buttresses permits of the greater display of glass, which in the sixteenth century had arrived at its most gorgeous state, rich in every colour, and beautiful from the drawing of the patterns, and figures with which it was covered.

Bishop King commenced this building about the year 1500, on an entirely new site, near the old chureh : from the centre of one pier to that of the other is 20 feet 1 ineh; the thickness of the outer buttresses 3 feet, and their projection 4 feet; one severy of building contains 1650 feet, and the area of the points of support is 275 feet, or one-sixth. The pillars are square, though set diagonally, their width from north to south and from east to west

Fig. 1517. bath abBey church, being 5 feet, and the opening of the arehes between them 15 feet 1 ineh; half their plan and base is shown at fig. 1320.: the height from the pavement to the top of the capitals, where the sculptured angel is placed, is 56 feet 3 inches, and to the top of the vaulting 73 feet 6 inches, within 7 feet as much as the clear width between the outer walls.

Fig. 1321, shows the plan of the stone vaulting, which is perfectly geometrical in its setting out ; the cloisters at Gloucester, the aisle at the east end of Peterborough cathedral, and St. George's Chapel, Windsor, have vaults of a similar kind.

The thickness of the stone which comprises the vaults of fan tracery varies according to its position, but in no instance is it considerable, or more than absolutely necessary to resist crushing. The spire of Salisbury, 180 feet in height, of an octangular form, ineasures from east to west internally 33 feet 2 inches, and from north to south 6 inches more; the thickness of the spire at bottom is only 2 feet, or the area of its base is half that of the roid, the void containing two parts, and the solid around it one; this spire diministaes in thickness for the first 20 feet, after which it is 9 inches in thickness throughout; at about 30 feet from the summit is a hole, by which an exit from the interior may be made, and by means of the croekets and irons on the outside the top of the spire may be attained: in 1816 the writer examined the position of the vane, and the manner in which the capping stone was placed, and descended astonished at the perfection of the masonry, and the thimess of the stone with which it was eanstructed.

Fig. 1519.
BEC ILON OF DATII ALBEY CHURCH.

Fig. 1520. pier.

Fig. 1321.
G:3:1viNG.

The Lady chapel at Caudeyec, near Rơen, Normandy, exhibits the manner of suspending a keystone by locking it between the voussoirs of a strong semicircular arch. The length of this
pendent stone is 17 feet 6 inches, and its thickness at the top, where locked, is 30 inches: the voussoirs are 3 feet in lenth ; the small pointed arches or ribs that form the groining of the hexagonal vault spring from the side walts and the ornamental knob of the pendentive, and are perfectly independent. The abutments of the semicircuiar arch, which has a radius of 12 feet, are formed by solid walls continued for some length in the direction of its diameter. This saeristy is hexagonal ; each side internally measures 12 feet. and the height from the pavement to the springing of the ribs is 18 feet.

Henry thie Seventh's Chapel, Jestminster.The first appearance of the pointed arch wan probably a little before the termination of the twelth century; the pil.
 lars and mouldings which then accompanied it were of Saxon origin: to its acute form was

Fig. 1524.
FIER OF HENRY VH.'S CHAPEL.
afterwards added the slender Purbeck columns and simple groining, produeing that unadorned majesty which reigns throughout the cathedral of Salisbury. This style underwent several changes, and was suceeeded at the latter end of the thirteenth century by another, in
which the arch was struck from more than two centres：the naves of York，Canterbury，and Winchester Cathedrals have been cited as among the best examples．But we have now to describe the principles of a style founded upon the others，and applied to all buildings in England from the middle of the fifteenth to the middle of the sixteenth century；it is not met with on the contment，the Italian
hiversity of Tomonto

AllE

HN FISHER ZZIMBE

TuT

entringethe of aithtertire三taricalg theotetic
期嚚

Fig, 1526.
SECTION OF HENRY VH'S. CHAPEL.
6 inches, and the elear width of the nave 33 feet. The entire width, at the basement or level of the pavement of the erypt, is 79 feet : $26 \frac{1}{3}$ feet, or $\frac{1}{3}$, is devoted to points of support, and $52 \frac{2}{3}$ feet, or $\frac{2}{3}$, to the side aisles and nave; the area of a severy shows $\frac{1}{3}$ applied to walls and piers, and $\frac{2}{3}$ to the void, which proportions accord with the early rather than with the late examples; the great weight of the vaulting, which is 62 feet high from the pavement of the chapel, requiring additional strength, the proportions of St. George's Chapel at Windsor would not have been equal to the neeessary resistance. (Sce par. 2002w.)

Our limits will not permit a more extended inquiry into the prineiples of proportion, the study of which is calculated to produce an important improvement in the noble art, for the practice of which the young arehitect must prepare himself by careful measurement, not only of the ruins of the Acropolis and of the Capitol, but of all that remains of mediæval architeeture: he must be a pilgrim seeking after truth, not bowing before any favourite shrine, but returning with a devotion as enlarged as his subject. The stupendous works whieh antiquity has transmitted to us, it is hoped, may excite the attention of the general reader, nor will his interest be diminished by the contemplation of the astonishing development of modern industry. The writer cannot but feel the importance and variety of his subject, and, while he is conscious of his own imperfections, he must often accuse the deficiency of his materials: but the results of ins labour, however inadequate to h:s own wishes, he finally delivers to the candour of the publice.

Tae Figure of the Cube has from time immemorial been selected by the arehiteet and engincer as best suited for every varicty of edifice; and it is remarkable that the multiplying of the cube constitutes the design of the Greek temple, the Gothie cathedral, and the modern iron structure at Sydenham, the variety of effect depending upon the mode of its application. Reviewing the temples of the aneients, we find that those composed of a portico of four columns, and six intcreolumniations on the flank, or seven columns; that the whole constituted a donble euhe, or two cubes side by side, A sube of 32 fect 4 inches in height, breadth, and length, placed behind another of the same dimensions, would reprisent the entire mass of the temple of Fortuna Virilis at Rome.

The temple of six columns, or the Hexastyle, is composed of nine half cubes, or three entire, placed one behind the other, with the addition of thrce half cubes against the sidcs of the first, making altogether four cubes and a half.

The Octastyle temple is composed of nine whole cuhes, or four cubes and a half in depth, repeated twice, placed side ty sid.. The Partlenon is thus formed of cubes, whose sides each measure 50 feet 6 inches; two occupy the front, of 101 feet; the depth of the four and a half cubes are a trifle more than 227 feet, the true extent lieing 297 feet 7 inehes.

Six cubes, placed one above the other, form the design of the Campanile, at Florence, commenced by the celebrated Giotto in the year 1334 ; and on the breaking up of these eubes into ornament, the perpendicular lines are lengthened out, whilst in the Greek temple the horizontal are made to preponderate; repose in the latter, and lofty aspiration in the former, marks the distinction between them.

The Tower of Rochester Castle, usually supposed to be of Norman construction, perfeetly resembles the far-famed Coliseum at Rome, in the mamer in which the piral vaults are excouted. and in the gencral method adopted in carrying up the massive walls. The cement employed was cidently manufactured on the spot, as it is enirely composed of the materials found elose at hand, and the stone such as could be brought down the Medway, and quarried on its shores. If this enduring structure was the work of Gundulph in the l2th century we have the strongest evidenee that the Roman a ts of construction were continued without any change either in the art or mystry of building up to that period at least.

The building is a cube and a half nearly, being about 74 feet square without the entrance porch, and its height to the top of the angular tarrets is 112 feet. A square divided into twenty-five equal squares exhibits its plaia; the sixteen outer squares represent the thickness of the walls, in which are galleries, reee-ses, and contrivances necessary for its protection against an enemy ; the nine inner squares of the plan are divided into twor spacious rooms, one being 45 feet by 19 feet, the other 45 feet by 21 feet; the wall that divides them is 5 feet 6 inehes in thickness. The height comprises a basement story and three others beneath its roof, which has been vaulted, and which is 90 fect to the top of the battlement, and 112 feet to the top of the turrets.

Rules adopted by the Frecmasons in setting out their Buildings, from the Tenth to the Fifteenth Century:-

In the foregoing remarks on Proportion some general rules have been suggested as to mass and void, and more partieularly the prineiples of setting out the windows and thacery of the English and French eathedrals. On referring again to this interesting subject, the writer was led to inquire why the structures of the latter country should be so uniformly larger than those of the former, from which they differed but little in style, preserving the same relative preportions, though differing in dimensions. Guided by the supposition that the buildings of the above period were the works of fraternities of ficemasons, it seemed conclusive that they should lave some standard of measurement, either of their own or peeuliar to each country; and. on testing the measurements with that view, it resulted that thoce of England were set out with the English perch of 16 feet 6 inches, and no doubt by an English lodge; while in those of France the French perch royal, of 22 pids du roi. equal to 23.45% English feet, was employed; the few exceptions at Bayeux, Caen, St. Geor-e Bocherille, and some oihers with round arel:es, and the elegant chureh of St. Ouen at Rouen, in the flamboyant style, are set out with the English perch of 16 fuet 6 inches, and are universally attributed to English cunstructors; they certainly most euricusly agree in proportion and dimension with the Enolish eathedrals, which have two cubes given to the nave, produeing on the plan a Latin cross. instead of the Greek so usually found in Fiance. It would sem that the stardard measures referred to were well and wisely elosen, as if intend d to apply to all times and all varieties of structure; for it is singular low nearly the dimensions of the cubes of the fairy palace at Sydenham, 24 feet, coirespond to 23 !eet 6 inches of the royal French jerch.

To illustrate this subject fully is not within our present narrow limits; a very few examples must suffice, out of the numbers which might be adduced in support of the proposition; and it is earnest! hoped that the young arehiteet may be sufficiently inte-
rested to test the theory practically, that while he admires their picturesque beauties, he will examine by measurement their plans and sections.

Of the French Cathedrals, we must be content to refer to Chartres, Reims, and Amiens as those most admired, and which serve as examples of the application of the French pereh in setting out their various parts as well as the whole.

Chartres Cathedral, in which the pointed arch tirst appears, is a structure of the 11th ceatury, and one of the most remarkable, as well as beautiful, erected after the first introduction of the pointed style by those who had journeyed with the Crusaders, and had an opportunity of studying their craft in the East.

The proportions are simple in the extreme. A cube is devoted to the nave, two to the transept, one to the choir; in addition to which, at the eastern extremity, is a semicircular termination with six polygonal chapels attached, furming on the plan a Greek cross of admirable design.

The nave, comprising six divisions of pointed arches on each side, is in its length and width six royal perehes, the distribution of which will enalle the reader to comprehend the setting out of the entire plan, whieh he can refer to in several publications.

The elear width of the nave is two royal perches between the clerestory walls; each side aisle is one royal pereh, and the distance from the middle of one pier to that of the other, from west to cast, is also a royal pereh.

The entire width of the nave from out to out, that is to say, from the face of the exterior buttresses, is six royal perches, four perches being given to the two side aisles and mave for their clear widths, and the other two to the projection of the buttresses, thickness of the two outer walls, and those of the clerestory of the nave.

If the royal pereh be divided into three, one part constitutes the diameter given to the pillirs, and another the thickness of each of the walls of the side aisles.

The internal height of the nave is the same as its clear internal width with side aisles; so justly is all proportioned that the pereh royal, and its division irto three, enahles ins to comprehend the dimensions of the parts, as wchl as that of the entire mass of construction.

Reins Catiedral was similarly set out. The clear width of the nave is two royal perehes, and each of the side aisles is one perels. The extreme width of the nave, comprising the projection of the buttresses, is six royal perehes; the diameter of the piers, one-third of a royal perch, as in the example of Chartres.

It must be observed that the dimensions do not apply to the elear distances between the pillars but to the space between the walls, which in the clerestory are peculiar for the contrivances of a gallery, which usually continues around the entire eathedral, and which will be better understood when we triat upon Amiens Cathedral, reserved for a fuller deseription. That the percis was the standard of measurement there can be no doubt; for in the smaller churches of Great Britain, as that of Roslyn, for example, the nave is a single perch in width, and the side aisles half a perch; the proportions of the parts being al o those of the third of an English perch.

Salishury Cathedral, a contemporary structure with Amiens, is set out with the English pereh, and affords the best commentary upon the two standard measures made use of in the same century by the French and English freemasons.

The Nave of Amiens Cathedrul is usually admired for its elegant proportions, and by several eminent critics has been cited as the lean ideal of that style of architecture so universally practised during the middle ages, or after the Romanesque had been diseontinued. It is one of the most simple in it arrangement, though at first sight, removing all idea of simplicity, and appearing so complicated from its vaiety of parts, as to defy the application of any urdinary rules; the numerous arcades, the narrow and lofty compartments, the vaulted divisions. the diagonal inc curved lines, hending one into the other, and apparently without limit, it is some time before the eye can aequi see in the idea that such an edifice can be brought under the same laws as a Greek temple. or that the cube could be the measure of its parts or its whole. In taking the measurements, however, of this rare example, the dimension of 23 feet 6 inches sc freguently occurred that it scemed to denote a standard by which to arrive at the length, bieadth, and height of the whole, and that if considered after the mamner of Sebastian Serlio where he deseribes Bramante's plan of St. l'eter's, we might arrive at something like a clue to the whole design.

It is curious to note, in the work of the above mentioned arehitect, several allusions to the cube, in the defining the parts as well as the whole of a design, and there can be little donbt that this simple figure served as the mans of measuring the quantities, of either solid or void, in every period of the constructive arts; certainly none presents to the architeet a better means of comprehending or of measuring quantity, and none is more readily subdivided, or rendered subservient to the taste of the designer, whatever may be the arehitecture he is anxious to imitate.

Within an isometrical cube may be placed the entire nave of Amiens Cathedral; and the better to understand its proportions, we must suppose each square or cube into which it is
divided to measure 23 feet 6 inches eath side, or the isometrical figure to contain 216 such eubes; the total height, width, and length being 141 fect, or six times the 23 feet 6 inehes. (See fig. 1327.)

On the plan are six divisions in length and width, or altogether 36 squares; eaeh measure 23 feet 6 inches on each of their sides. The six outer divisions of the principal figute are devoted to walls and buttresses; the adjoining six on each side slow the situation

Fig. 1527.
nave of amers cathedral
of the side aisles; and the two middle divisions that of the nave. The two side aisles occupy together 12 squares, as does the nave; the remaining 12 being devoted to outer walls and their buttresses.

The entire area, therefore, has 24 squares to represent its interior distribution, and halt that number its external walls; or one third walls, two-thirds void. Such are the general arrangements of its plan, and its extreme simplicity has enabled the constructors to execute the vaulting of the side aisles and that of the centre nave by diagonal ribs, which in the former extend over one square, and in the latter two, thus giving to the nave its due proportion of height, without changing the principle of its construction.

The freemasons of the middle ages were so perfeetly aequainted wi h geometry that there is seldom any defect in their vaulting; it is evident that they laid down their plans for its execution before they decided upon the form of their main piers; in their setting ont, every part had its due function; and the column, which was intended to be connected with the vaulting, either of nave or side aisle, was peculiarly adapted by its pesition for its use.

The master mason Robert de Luzarehe commenced the building of this nave about the year 1220, the founder being Bistop Evrard. The pillars of the nave were raised to the heiglit of their capitals in 1236, but it was not till 1236 that the vaulting was comp'cted; and about eight or nine years afterwaras the lateral eliapels were added.

To the top of the battlement of the nave there is not quite so much height as the outer wall of the Colsemm at Rome, which is 1.57 feet; but it is curious to observe that one division of this renowned building does not differ very materially in its proportions from that at Amiens; the division of the ampitheatre being seven cubes in height ; the piers oceupy one third of the width of a compartment, as is usual in Roman structures of the same period. The masonry of Amiens Cathedral is executed after the Roman models, consequently the pointed arch makes the chief difference between the two styles.

To render the application of the theory of the cube to the nave of Amiens Cathedral more evident, or how the 216 cubes which the isometrical figure contains are placed, somewhat more of detail must be entered into.

The six main divisions shown in the figure, with the side aisle behind them, have their points of support at the four angles of each of the six squares; then each square, with its 23 feet 6 inches sides, shows the position of the lowest cube of the six placed one above the other, forming the entire height of each division or severy.

At the top of the second cube is the level upon which the main arehes spring, and that upon which the ribs of the vaulting of the side aisles rest.

The top of the third cube indicates the level upon which the triforium is based, and consequently contains the vaulting of the side aisle.

The fourth cube is the triforium, and the fifth and the sixth the clerestory.

On examining the section, the side aisles are three cubes in height, including the vaulting, and the nave six; the entire open space of the interior has 18 cubes for each aisle, or 36 for the two side aisles, and 72 for the nave; in all 108 cubes, or exactly one lalf the entire number contained in the isometrical cube.

It must be aemarked that considerable alterations have been made since the buitding was constructed; between the buttresses, chapels have been formed, and the original windows, which lighted the side aisles, removed to the extent, or somewhat beyond the outer face of buttresses, as represented. The interior is therefore increased mate ially in wilth, and its effect greatly improved, making the entire internal width and height more in conformity with each other, or each 141 feet.

In the elevation of the divisions the boundary of eash of the six cubes is more clearly marked. The width from centre to centre of each pillar, indicated by the seven circles (fig. 1:228.) is 23 fect 6 inches; to the top of the capitals from the pavement AB , the height is twice that dimension; ts the bottom of the bases of the column of the triforium 13 C , the same; thence to the boltom of the glass of the clerestory windows C D, the same; to the tops of the capitals or spring of the arches 1) E , the same; and above that line to the underside the vaulting E F, the same; thus, six tumes 2.3 feet 6 inches, or 141 feet, is the total height from the pavement, of the division represented in fig. 1328.

As the groined vanlts of the side aisles are set rig 1328.
blevation of nate; amiens. out upon a spuare, and the width from the centres of piers is the same as these towards the
nave, we have three perfcet cubes of 24 feet in each severy up to the bottom of the triforium story, and the same number from thence to the top of the vaulting of the nave.

The main pillars are 7 feet, and 7 feet 2 inches in diameter, composed of a large cylindrieal column, with others attached for the support of the vaulting. Towards the nave there are three columns which are carried up to the height of about the middle of that of the clerestory windows; on the capitals which terminate them rest the cross springers and diagonal ribs of the vaulting. The arches of each division are 4 feet 9 inches in thiek. ness, and rest on the side columns, of 18 inches diameter. The faint line on the plan fig. 1329. represents the pier and mullions of the division of the clerestory window.

The seven circles shown in fig. 1528. exhibit the proportion each pier bears to the opening, namely, that of twosevenths for piers, and five-serenths for the space between them. The dimensions vary a little as taken thronghout the six severies, as in some instances the diameter of the piers saries as above stated.

It may be remarked that the contour of the torus and scotia in the base, are not sections of cylinders or their portions, but partakes of the elliptical. The mouldings below, are contoured differently to those above, the cye, and consideration is given to their position, to produce proper effect.

Fig. 1330.
rlan of columins; amiens.

The base and capital of the main pillars, as here shown with their dimensions, is the same as the front view towards the nave, with the exception that the two 7 -inch columns at the side of that in the middle are omitted.

The piers that divide the side chapels, and the original outer buttresses, have been changed probably from their original design; they are now 8 feet wide.

The clerestory window with its piers and mullions being al eady given (fiy, 1329.) it remains to show the plan of the piors and mullions of the triforimm, and its gallery or passage, which has a clear width of 20 inches between the main pier and the outer wall, which is about 10 inches in thickness (fig. 1334) The middle mullion, or that which divides the triforium into two principal arelies, is 2 feet 6 iaches in width, and composed of seven stall columns, as shown attached to the main pillar, which has a depth of 6 feet 8 inehes.

The ordinary decoration in this cathedral is very simpl:, consisting of a circle, comprising either three, four, five, six, or cight others: the centres of which and their portions may lee maderstood by reference to the five diagrans figs. 1335. to 1339. Sculptured foliage ocsurs in the capitals and

Fig. I354.
1.SAN OF TMIFOROAS.
 along the sting mouldings; figures, however, of the most elaborate execution and design decorate the exterior, and particularly around the chief entrances; perlaps few buildings execl the Cathedral of Amiens in the richness of these portions, or the magnificence of its porches. In describing the figs. 1292. and 1291., an attempt was made to convey an idea of the geometrical style of the tracery in the rose windows, as well as those of the side chapels.

We cannot quit this part of our subject without regretting the want of further space for the treatment of this very interesting reference to the arts as displayed by the builders of this period, particularly as the principles upon which they practised are so little known. Simple as they were, their system seems to have been forgotten after the lodges of the fremasons were broken up, and the new era appeared. The renaissance, or the return to the Greek models, at once set aside all knowledge of that arehitecture which had attained such perfection in Europe for four centuries.

THE BUILDING FOR THE EXHIBITION OF THE INDUSTBY OF ALL NATIONS, 1851.
This building was stated to have been suggested to the Society of Arts in June 1845 by his Royal Highness l'rinee Albert, and it was not long ere the plan for its adoption was developed. The public quickly responded to an appeal ly subscribing 75,000 , to enable the commissioners to erect a suitable building, to be completed by the 1st of May 185:; the site being granted by Her Majesty, on the south side of Hyde Park; and all that was required of the exhibitors was, to deliver their various speeimens of art and
manufacture at the building which would be provided for them. Mr. Paxton, after some other denigns had been set aside, submitted a design composed chiefly of glass and mon, which Messrs. Fox, I Ienderson, \& Co. tendered to construct for 79,800l. 'This was inmediately carried into effect.

The site for the buildiar contained about 26 aeres, being 2,300 feet in length, and 500 feet in brealth : the principal front extending from west to east. The total area of the ground floor was 772,784 superficial feet, and that of the galleries 217,100 square feet. The length of thes: galleries extended nearly a mile. The cubical contents of the building were estimated at $33,000,000$ feet.

There were used in its construction 2,300 cast iron girders, 3 j8 wrought iron trusses for supporting the galleries and roof, 20 miles of gutters for carrying water to the columns which served as water-pipes, 202 miles of sash-bars, and 900,000 superficial feet of glass.

Oa the ground-floor, 1,106 columns of east iron, rested on cast iron plates, based upon concrete; these columns were 8 inches in diameter, and 18 feet $5 \frac{1}{2}$ inches in height; they were cast hollow, the thickness of the metal varying from ${ }_{8}^{3}$ to $1 \frac{1}{8} \mathrm{in}$, according to the weights they were destined to support. The sectional area was increased by four broad fillets or faces, $3 \frac{1}{2}$ inches in width, and a little more than a sixth of an inch in thickness.

The principal entrance was in the centre of the sonth side : passing through a vestibule 72 feet by 48 , the transept was entered, which was covered by a semi-cylindrical vault 72 feet in diameter, springing from a height of 68 feet from the floor; and this vault of iron and glass was in length 408 feet from north to south. On eaeh side of the transept was an aisle 24 feet wide.

Standing in the middle of the transent, the vista or nave, at right angles, extended east and west 900 feet in each direction; the total length being 1,818 feat. This mare was 72 feet wide, and 64 feet hith; and on each side was an aisle 24 leet in width; and above, at a height of 24 feet from the floor, were galleries which surrounded the whole of the nave and transept.

Beyond these side aisles and parallel with them, at a distance of 48 feet, were second side aisles. of an equal width to those already nientioned, and also covered with galleries on a similar level to the others. Bridges of communication were made at consenient distances, to allow of an unbroken promenade, and from which: a view of the several courts might be olitained. These courts were roof id in, at the height of 2 stories, and were 48 feet in width. Ten double staircases 8 tect wide gave access to the several galleries.

After the transept and nave were marked out, the general arrangement consisted of a series of compartments 24 fect square, and as much in height ; these bays or cubes were each formed of 4 columns, supporting girders put together very ingeniously. One of these bays or gallery-floors, 24 feet square, containing 576 superficial feet, was calculated to support as many ewts, or 30 tons.

The symmetry and strength of this vast building depended upon the aecuracy with which the simple plan was drawn out, and much eredit is due to Mr. Brounger, who superin. tended this portion of the work. He had to establish a series of squares of 24 feet, and this was admirably effected by rods of well-seasoned pine, fitted with gun-metal cheeks.

Stakes were driven into the ground to mark the position of the columns, their precise centres leing afterwards found by the theodolite. and marked by a nail on the top of the stake or pile; and when the digging commenced for the foundations, and there was a necessity to move the pile, a right-angled triangle was formed in deal, and previous to the removal of a stake, a nail indicating the position of the column was placed at the apex of the triangle; two other stakes were driven in, and the first withdrawn. The entire ground plan may be consider d as composed of 1,453 squares, each containing 576 superficial feet. The south front occupied 77 , the east and west fronts each 17 , so that the entire parallelogram contained 1,309 of these squares; on the nerth side were 48 others, 3 divisions in depth, making an additional 144, thus completing the number stated. The nave, transept, and courts were formed by the omission of the columns, where their width required to be either 48 or 72 feet, and girders of sufficient strength were substituted to span the space where such columns were onitted. Had each of the 1.387 squares of which the plan consists had its complement of columns to have perfected each cube, 1,502 would hive been required; but the formation of the wider openings occasioned only 1,106 to be emplored, so that, by the omission of a third, the courts, nave, and transepts acquired their admired proportions. Each of the 1,387 squares was 576 superficial feet, or a total of 798,912 stuperficial feet. The columns being 8 inches in diameter, the area of the section of the whole 1,106 was 380 superficial feet, or the points of support were a trifle more than a 2,000 th of the entire area, for $2_{359012}=2,102$.

When we compare the Crystal Palace with one of the lightest constructed basilieas of ancient Rome, we are astonishcd at the difference in the proportions. For instance, the total area of the basilica of St. Paul without the walls of llome, was 108,000 superficial feet; while the points of support were 12,000 , or one nintll. The Crystal Palace, which was seven times the area of the lasilica of St . Paul, had it been constructed in a similar manner, would have required 84,000 superficial feet for the points of support, instead of 380 superficial feet.

In the Saxon cathedrals, one third of the entire area was employed for walls and piers; m the Pantheon at IRome, one quarter ; in St. Paul's, London, one sixth; and in most of the enthedrals constructed from the 12th to the 15th century, the same proportions are practised; but we have never hitherto seen any attempt to lessen the proportions of the supports beyond a twentieth of the entire area, when the ordinary building materials, as brick or stone, have been employed, whilst in this instance iron columns are found sufficiently strong, when they have the proportion of a $2,000 \mathrm{th}$ part of the whole, or are one hundred times less in section than their points of support, estimated as a twentieh of the whole, and which we have considered as the lightest of the constructions hitherto practised; the round Temple of Claudius at Rome being the example. Tredgold calculated that an iron column of cast iron 8 inches in diameter, and 24 feet high, will carry nearly 50 tons, or $1,106,55,800$ tons; so that, if each of 1,387 squares had to sustain 30 tons, there would be ample strength, this not amounting to more than 41,610 tons.

In preparing the foundations for the columns, great care was taken to arrive at the gravel, upon whieh a bed of concrete was thrown; and it was es:imated that a pressure per superficial foot of $2 \frac{1}{2}$ tons should be provided for. The concrete varied in depth from 3 to 4 feet, and was finished by covering the top with a surface of fine mortar, worked evea and with a level face. On this was laid a base plate for each column, the lower part oonsisting of a horizontal plate having attached to it a vertical tube of the form of the column it was to carry. The length of these base plates was from north to south, so that the water brought down by the columns from the roof might run in the direction from east to west. Into the sockets, cast iron pipes 6 inches in dianeter were inserted, for the purpose of conveying the water into the cisterns and tanks provided to receive it.

At the upper portion of the base plate four holes were cast, in as many projections, which answered to others at the foot of the column to be placed upon it, which, when fixed, was secured by nuts. Between the shaft and its base, pieces of canvas dipped in white lead were introduced before the joints were secured, which were thus rendered watertight. The columns were 8 inches in diameter, and those on the ground floor 18 feet $5 \frac{1}{2}$ inches in height, being cast hollow to allow of a current for the rain water; the strength of these columns was iacreased by four projecting rilis, and by the form of angular additions made to receive the nuts and screws.

The Crystal Pulace at Sydenham had also the simple cube as the nucleus of which this vast

Fig. 1342. SECTION OF THE CRISTAL PALACE, SYDENHAM. edifice was composed; and the simplicity of its form enabled the constructors, by a small variety of castings, to expcute the whole. It was to this locality that the materials of the Hyde Park building were removed and readapted to a much more extensive erection. Three cubes, placed one on the other, formed the sive galleries, as seen in the section, fig. 1342 The omission of six such cubes measures the width and height of the nave to the level of the springing of the arched covering; such are the simple proportions composing this vast structure. On the ground-floor is laid boarding $1 \frac{1}{2}$ inches in thickness, $\frac{1}{2}$ an inch apart, upon joists 7 inches by $2 \frac{1}{2}$ inches, which rest upon sleepers 13 inches by $3 \frac{1}{4}$ inches, placed 8 feet apart. The second tier of columns are 16 feet $7 \frac{1}{4}$ inches long, with connecting pieces 3 feet $4 \frac{1}{2}$ inches deep, and a similar girder to those below. The third tier of columns and connecting pieces in every case are the same as the second.

CHAP. V.

SPECIAL SU゚BJECTS.

2861 to 2946. Mr, Gwilt wrote, in 1842, Chapter V., Public and Private Buirdings. The several sections were revised and enlarged and additional ones inserted in 1867, and agrin in 1876. The progress in most of the subjects, as well as of others, has been so great of late year's that a volume for each might well be written, giving the later examples and principles of arrangement. As it is a convenient place in this work for speciatly trating some subjocts, tho chapter is retained under a new heading. Tho se tions Ventilation of Buldings and Warming of Buildings are taken to Use of Materials or Practical Buiding, Chapters XIII. aud XIV., and most of the other sections are inserted in the Glossary. The student will find in the List of Books many works relating to the subjects, of which he may be in scarch.

Sect. I.

THEATRES.

2947. A taste for dramatic representations prevailed at a very early period among the people of antiquity, and this was not diminished by the introduction of Christianity, even when the temples were deserted and paganism seemed extinct. The destruction of these, however, was its concluding triumph. It would be a difficult matter to fix the precise date of the abolition of the pagan theatre, but it seems likely to have resulted rather from the falling into decay of the old theatres than from a disinclination on the part of the people to the pleasure they received at them. With the revival of the arts, the taste for scenic representations appeared with the literature on which they are dependent. In Italy we find, therefore, the drama at this period repiesented in very large enclosures, such as the amphitheatre constructed by Bramante in the large court at the Vatican, whence the taste soon spread over all the nations of Europe.
2948. The pleasure which flowed from this renewal of an ancient art was at first confined to few, and those were either men of learning or select societios, who bore the expenses, and again raised in the country a reucwal of a theatro much resembling those of the ancients as respected the form and disposition. To prove this, we need only cite tho example of the celebrated theatre at Vicenza, bnilt by Palladio in 1583, and designed in imitation of the ancient theatres. A full account of this building is given in L'Origine dell' Academia Olympica, §c. Opera di Ottacio Bertotti Scamozzi, Vicenza, 1690. For dramatic representations this theatre is no longer used, and at present it is only recognised as a monoment of the extraordinary skill of tho architect, and a memorial of the dramatic buildings of its period. The theatre at Parma, built by Aleotti, is another building belonging to the same class, and preserved, lize the last-mentioned, as a curiosity.
2949. When, hewever, the taste for scenic amusements began to spread, the sovercign princes, who alone coukd support the expense of such establishments, began to make them is necessary part of their palaces; and the theatre, no longer a public and essential building, become whit it now is, a place which served for the habitnal amusement of those who could afford it. The drama again revived, and its history is an index to the odfifees that rose for its representation. Liecoming thus necessary for the amusement of the better classes of society, the establishment of theatres was mudertaken by individuals in almost pery city, and competition was the natural consequence. Then began the division of the theatre into different parts, the entry to which was marked by difforent prices, and the separation of the common people from those of rank and fortune.
2950. Italy does not contain so many theatres, nor of such consequence, as might bo predicted from the taste of its inhabitants. Among the earliest of consequence was that built at Bologna in 1763 by Antonio Galli Pibiena (not to mention that built at Verona under the direction of the celebrated Scipio Maffei by lirancesco Galli Bibiena), with it noble portico in front and salons in the angles, possessing moreorer great merit in its
interior distribution. In the Italian theatres there is almost invariably a certain feeling of grandeur and mity about tho interior hittle to be expected from the exterior, which in no way leads the spectator to the suspicion of a fine Salle de Speetacle behind it.
2951. France has the credit of having erected tho first modern theatre that ean be denominated an example in this specios of monumental arehitecture. That to which we allule is the theatre at Bordeanx, which is 325 fect in leagth, and half that measure in width. Whether we consider the exterior or interior of this edifice, everything is grand; the arcessories are worthy of the whole, and the richness of the interior decoration is only equalled ly the fine forms whereon the decorations are used. The ingress and egress are admirable ; and a splendid concert-room and magnificent staireases complete the destination, to which it is so suited, as to afford the finest model of a theatre to which we can refer the student. The plans, \&ce. of this work were published by its arehitect, V. Louis, minder the title of Salle de Speetaele de Bordeaux, athis folio, Paris, 1782.
2952. The principal points for the consideration of the arelitect in the composition of ia theatre may be classed under the heads of atility, suitableness for the purpose, and taste in combining them. Under the first head must be placed the accomplishment of two main oljeects, those of seeing and hearing what passes on the stage. These, indeed, are intimitely connected with each other, and are entirely dependent on the form adopted fur the plan of the intorior, that is, the general form giren to the boxes which surronnd the pirt before the curtain. We are not awaro of any plan which, in this respect, is not based on a qualrangular, elliptical, or circular form.
2953. The quadrangular form, besides its want of beanty, is not well adapted for fulfilling the oljects with which wo set out. In this, the greater number of spectators or audience who occupy the side boxes are so inconveniently placed, that, to observe what is going on, their heads must be turned sidewise, and they are heuce in a falso position for the object. The actor being generally the point to which all eyes aro directed, the spectator opposite the proscenium will lo k at him in a right direction; but as the spectator removes to the extremity of the side, it is manifest that the angle in which the head must be turnod becomes sharper, and the position is then painful. Besides this objection, the form is known to be unfaromable to hearirg or to the propagation of sound.
2954. The truncated oral is in some measuro sulject to the same inconveniences on the sides as the last-mentioned figure. It removes also a large portion of the spectators to a considerable distance from the centre of the scene, besides which, in the boxes near the proscenium, their seats tend in opposite directions to the actor. It lais been to remedy these faults that the form of the horseshoo has been adopted, which is a sort of mean between the quadrangular and oral forms: and where the plot of ground is much longer than it is wide, it is a suitable figure, and one which affords the opportunity of increasing the number of boxes.
2955. When, however, the circumstances concur in allowing it, the adoption of the semicireular plan is doubtless the best. It is a figure which allows each spectator to be at an equal distance from the scene, that also by which the speetators in adjoining boxes less interfere with one another, that which affords the means of all seeing equally well, that in which the sound is most equally distributed, and that whose uniformity and simplicity seom to ongender the best decoration. The semi-elliptic, with the transrerse axis parallel to the proscenium, has interior adrantages in some respocts over the semicirele; but it induces great difficulty in connecting the proseenium itself with the anditory part of the house, and, by increasing the width of the proscenium, increases the perplexity in framing (as formerly) the roof conveniently for the painting rooms, and seenrely as respects the walls.
2956. Upon the destruction by fire of Drury Lane Theatre a pamphlet appoared, entitled Observations on the Prineiples of a Design for a Theatre, by Benjamin Wyatt, London, 8 vo. 1811. These observations are so well worth the notice of the student that wo shall close this section by giving the substance of thom. The heads for consideration, says the author, are :-
2957. First. The size or capacity of the theatre, as governed by the width of the prose sium or stage opening; and by the pecuniary return to be made to those whose property may be ombarked in the conern. Sceond. The form or shape of the theatre, as connected with the primary objects of sound and rision. Third. The facility of ingrees mul egress, as materially affecting the convenience of those who go to every part of the house respectively, as well as their lives, in cases of sudden accident or alarm. Fourth. Decorum amongst the several orders and classes of the visitants to the theatre, as essential to the accommodation of the more respectable part of those visitants, and consequently of great importameo to the interests of the thaitre. Fifth. Security against fire, as well in regard of insurance, as with relation to the lives of individuals going to the theatro.
2958. The size or capacity will necessarily depend very much on the width of the proscenium or stage opening, inasmuch as it is from the extremities of that opening that the form of the theatre must spring. The amexod is a statement of the width of the proscenium at the theatres named in that publication:-

Argentino, at Rome - Old Covent Garden (burnt 1856) Théâtre Italien, Paris (bmrnt) Turin - Bordeaux	36 fcet 38 feet 33 feet 39 feet 39 feet	Parma - Mi'an - San Bent de'to, at Venice Theitre Francais, at Paris Drury Lane -			- 40 feet - 40 feet - 40 fect - 40 fett - 40 feet 6 in .	
Tatile prepared hy Mr. E. M. Barry, 1860, for his descrip ion of New Cowent Garden I heatre, London.	$\begin{aligned} & \text { San Carlos, } \\ & \text { Nap'es. } \end{aligned}$	$\begin{aligned} & \text { La Scala, } \\ & \text { Milan. } \end{aligned}$	Bolagna Theatre.	Turin Theaze.	$\frac{\text { Lor }}{\mathrm{M} \text { Mijenty's. }}$	$\begin{aligned} & \text { New. } \\ & \text { Nowent } \\ & \text { fiarden. } \end{aligned}$
Wilth of froseenium . Number of hoxes in each tier Number ot tiers of buxes Whdh letwcen the boxes . Length from curtain to centte box Height from put to ceiling.	53 feet 29 fi $70 f_{c}$ et 71 70	43 feet 41 5 $\Gamma 6$ feet $\times \times \frac{1}{2}$ 69	51 feet 25 5 57 58 78 6.3	$\begin{aligned} & 42 \text { feet } \\ & 29 \\ & 6 \\ & 52 \text { feet } \\ & 61 \\ & 5: \frac{1}{3} \end{aligned}$	$\begin{aligned} & 27 \text { feet } \\ & 43 \\ & 6 \\ & 59 \text { feet } \\ & 84 \\ & 51 \end{aligned}$	$\begin{aligned} & 50 \text { fect } \\ & 36 \\ & 4 \\ & 63 \text { feet } \\ & 61 \\ & 6 . \frac{1}{2} \end{aligned}$

A width bey ond 40 feet seems to have been considered by the performers as inconvenient, from the space they would have to pass over in the business of the drama, but 50 feet appears now to Le the maximum adopted. A greater width, indeed, than that stated prevents the easy and secure working of the scenes, f r the machinery is inereast din magnitude and weiglit as the he:g.t and breadth of the secnes increase. In mere spectacle and scenic grouping a reduction in the wisth of the proseenium, and depth of the stage, reduces the number of extra performers, or supernumeraries as they are called, which become necessary for filing the stage. Again, every additional foot given to the stage opening increases the quantity of canvas used in the scenes, as well as the framing whereon they are fixed.
2958a. In the Edinburgh New Philosophical Journal, vol. xxvii., Mr. J. S. Russell gives some elementary considerations of certain prineiples in the construction of buildings desigued to accominodate spectators and auditors, well worth the arehitect's notice. In every larges room, says the writer, a perfectly good seat is one in which, without uneasy elevation of the head or eye, without straining or stretehing, we can calmly and quietly take any casy position, or variety of positions, which we may be disposed to assume, and yet may in ail of them sce and hear the speaker with equal clearness and repose, so as to give him patient and undisturbed attention. The objeet, then, is to ascertain in what manner the interior (f a building for public speaking should be formed, so that throughout the whole range whi I the voice of a man is capable of filling, each individual should see and hear without interruption from any of the rest of the audience, with equal comfort in an easy posture,

Piz. 1357.
and as clearly as if no other individual auditor or spectator were present. (See figs. 1347. and 1848.) The position of the seats is first investigated. In the usual variety of station

Fig. 1348.
ard of position, it appears from experiments that the range required for the purpose is more
than a foot and less than 18 inches, so that thise may be taken as the linits; that is, over the head of the person before you there must be a clear range of 12 or 18 inches, throngh which the head may be moved upwards or downwards withont interruption. In ether words, that a straight line drawn from the speaker's head over that of the anterior spectator ehall intercept the straight line which forms the back of the seat of the posterior observer, so as to cut off a lieight of 12 or 18 inch:s, within which the head of the spectator shall at times be comprehended while sitting in acomfortable position. Thus let S (fig. 1347) be the speaker and XYZ be three successive ascents; then the line SX must fall below SY, so as to leave the space $\mathrm{Y} x=18$ inches $=\mathrm{Z} y$.
2959. Applying this formula to every individual place in the room or building, we shall have the form required to satisfy the auditors. Let $2 \frac{1}{2}$ feet be assumed as a constant representing the distance of one spectator behind another, measured horizontally; and II feet as the clear space, measured on the vertical line, for the mean range of comfortable vision for each. If the level of the floor, that is, of the lowest seats, he already determined, the form of the interior accommodation may be thus described. AY (fig. 1348.), the height of the speaker, YX the level floor. From $\mathrm{A} y$ take $\mathrm{Y} y=4$ feet. Draw $y x$ parallel to $\bar{X} \mathrm{X}$. Take $\mathrm{A} y$ to $y x$ as $1 \frac{1}{4}$ to $2 \frac{1}{2}$, that is, as h, the range of position of the spectator, to d, the distance between the seats. 'Take horizontal distances $1,2,3,4, \mathbb{N} . \mathrm{c} .=\frac{21}{2}$ feet, prolong A. x to x^{\prime}, then the height x^{\prime} to $l=1 \frac{1}{7}$ feet. Join $\mathrm{A} l$ and prolong it to $x^{\prime \prime}$, and take a distance $x^{\prime \prime}$ to $m=1 \frac{1}{4}$ feet. Through m draw Am, and prolong it to $x^{\prime \prime \prime}$, and take $x^{\prime \prime \prime} n=1!$ feet. Continue the process in the same manner to $p, q, r, s, t, \delta c$., and the points will be found of the successive places which the heads of the auditors should occupy.
2960. But it is not only in receding that the back seats must rise; those too far forward may be also umpleasant. They are too low; they also should be raised : but this must be done so as not to interrupt those who are behind. It may be accomplished in a similar way; for, as formerly set off, $1,2,3,4,5,6, \& \cdot \mathrm{c} .=2 \frac{1}{2}$ feet (fig. 1349.), 1 is the first anterior point. Join $\bar{A} 1$, and let it cut the vertical line through 2 in $x^{\prime \prime}$, the portion downwards $x^{\prime} l=1 \frac{1}{4}$ feet; then l is the point found. Join $A l$, make $x^{\prime \prime} k$ $=1 \frac{1}{4}$ feet ; join $A k$ and $x^{\prime \prime \prime \prime} i=1 \frac{1}{1}$ feet; and so on. g, h, i, k, l, are the places found which the heads of the spectators should occupy, and show the elevation to be given to the seats successively.

Fi, 13 +9.
2961. If the simple process deseribed be accurately performed, the points which indicate the places of the spectators will lie in the branches of a very beautiful curve, which may be termed the iseidomal or the isacoustic curve, that is, one of equal seeing or hearing: it will be of the form in fig. 1850. A being the place of the speaker, and the heads of the spec-

Fig. 1350.
tators being placed on the line Amn, continued as far as the voice will reach, XAX being the axis of the curve, and YY its parameter. This curve has two branches on opposite sides of A, showing that if the building extend behind the speaker, or if the spectacle be visible or the sound audible on every side, the same may be continued all romd. By means of this curve, the position of seats in a theatre may be satisfactorily determined.
2962. For any great assemblage, where it is desirable that one individual or group of individuals should be seen or heard, an amphitheatre of this form might be constructed from the surface of revolution generated by moving the curve round its axis, which would perfectly accommodate 10,000 individuals.
2963. According to the arrangement of London audiences, Mr. Wyatt caleulates that a theatre consisting of three fourths of a circle on the plan, with a stage opening of 35 fect, will contain, in boxes in four tiers, four other boxes hext the stage, a p.t atd tho gralleries, 2,869 persons, exclusive of four boxes in the proscenium, and fourteen immediateiy under the dress buxes. P'erhaps no modern theatre can be required to holdabote 2,500 peophe.
2964. We have already given some general hints relative to the form ; we shall here add the auhor's view of this mater; and thereon he very properly says that, with referenee to distinct sound, the safest method is to adopt a form known to be most eapable of convening sound with facility, to construct that form of materials that are conductors of sound, and to avoid all beaks and projections on the surface of that form, becatise they obstruet and impede the progress of the sound. It is well known that a circular enclosure withe ut breaks pussesses the power of conveying sounds with facility, as the whispeling gallery in St. Paul's C'athedral ; and that wood is an admirable conducting material for the purpose. Count Algarotti, in his treatice on the Opera, says, daily experience teaches us that in a box whose walls are naked, the singer's voier is reverberated in a partieular manner; it sounds erude and harsh, and by no means flattering to the ear; the aecents are quite lost it the box be hung with tapestry; whereas they are reflected full, sonorous, zud agrecable to the ear when the boxes are only boarded, which is an obvious proof, and conlimed by experience, that the best lining for the interior part of a theatre is wood, as is said to have been the eave in Her Majesty's Theatre, burnt in 1867.
2965. Whatever be the form of the theatre, it o.rght in every part to be limited in extent to such distance as the voice will distinctly reach; and the nearer that figure conforms to the proportions wherein the natural soice is heard in each direction, the more equally will the sound be heard in every part of the theatre. The experiments tricd by Mr. Wyatt proved that the reach of the voice when moderately exerted was in the proportion of about two ninths further in a direct front line than laterally; and that being distinctly audible on eath side of the speaker at a distance of seventy-five feet, it will be as planly heard at a distance of ninety-t wo feet in front of him, deelining in strength behind him so as not to be elearly heard at much more than thirty feet. "Aecoroing," says Mr. Wyatt, "to these data, it would appear that the geometrical figure, which comes the nearest to the extreme limits of the natural expansion of the voice, is a semicirele of 75 feet radius, or 150 feet in diameter, contmued on each side to the extent of 17 feet, or in the proportion of about two ninths of its lateral expansion (fig. 1351.) beyond the limits of the semieircle, and then converging suddenly until the two lines meet at C, behind the back of the speaker." But though the voice may be heard at these distanees, it does not follow that a theatre of this extent should be erected; indeed, it would be absurd to do so, for the actor varies his place almost every moment ; and as he removes from the centre, from which it has been assumed he is speaking, he would become inaudible to some parts of the audience as he receded from it. It is evident, therefore, in planning a theatre, the radius or semi-diameter must be so reduced as to bring the extreme distance at which he may in any case be plaeed within the space of 75 feet, that is, that when the speaker is placed at the
 extremity of either side of the stage, his voice may be heard by those seated on the opposite side of the house. In the diagram, the widest part of the theatre inscribed in the larger figure is 58 feet upon the level of the dress boxes; and allowing 9 feet 6 inehes for the depth of the boxes on that floor, by means of a projection of 18 inehes more than the boxes above, there will be 67 feet 6 inches between the extreme part of the stage on one side and the back wall of the boxes on the opposite side: but as the speaker is in no case placed at either extremity of the stage, and even if so situated, the distance between him and the opposite side of the house would be within 8 feet of the reach of his voice in its lateral direction, and 25 feet within its limits in a direct line, it hence appears that the cireular is preferable to any other form ; and if we fix a limit for the dianeter of that form, we are in possession of the rules which linit the length of the theatre, or the distance from the front line of the stage to the boxes immediately in front of that line. Taking 75 feet for the distance at which the voice can be heard laterally, as the space between the front line of the stage and its immediately opposite boxes may occasionally be in the lateral direction of the voiee, the greatest distance from the front wall of the stage to the back wall of the boxes oppesite the stage shonld not exceed 75 fect, the limit of the voice in its lateral direction, because of the turns of head which he must often make for the business of the seene, when that which was opposite might become lateral; and thus those persons sitting in the opposite boxes would be $92-75$ feet $=17$ feet beyond the reach of his voice.
2966. The use of a semicircle without modification would, however, involve the extension of the stage opening to an inconvenient wids; and Mr. Wyatt veryproperly considers that the whole area of a theatre should contain little more than one third of the space oner
which the roice can reach; "the onc," he s.2ys, "Leing (independently of the space behind the back of the speaker) a superficies of 11,385 feet, and the other of 4003. ." This, he thinks, will compensate for the absorption of sound consequent on the number of the audience, the woollen garments they wear, and the state of the atmosphere, and would ensure a good hearing in every part of the house.
2967. According to the author's statement, he recommends that the distance from the front of the stage to the back wall of the boxes immediately opposite should be about 54 feet; in the old Drury Lane it was 74 feet, and in the old Covent Garden Theatre, built about 1730, it was 54 feet 6 inches. In the Opera House, built by Vanbrugh, it was 66 feet. At Milan it is 78 feet. At the old San Carlos, at Naples, 73 feet; and at Bulogna, 74 feet. The distance in the late Corent Garden Theatre was 69 feet 8 inches, or nearly 16 feet more than it ought to have been. How, then, can people wonder at not seeing and hearing in such theatres? See also the Table given in subsect. 2958.
2968. In an opera house the band as it were sustains the veice, and the spectacle of the ballet is more addressed to the eye than to the understanding; but even in that the theatre is universally too large for the pleasure of those who appreciate properly what is transacted in the scene. It is satisfactory to know that the theatre, which in our introductory remarks was selected as a model, should coincide in the main points here in question with Mr. Wyatt's project. We are not certain whether he had visited it, but are certain that if he had he would not change his opinion.
2969. In respect of rision in a theatre, there can be no question that the semicircle gives the best chance for the whole of the audience; but the objections to it are, that it requires that either the stage opening should be of inconvenient wilth or that the size of the house should be too small. It is therefore, without modification, inadmissible. It is on this account that the ellipse, the horseshoe, and other flat-sided forms, have in later theatres been adopted, though it is manifest that a large proportion of the audience, say: our author, "must be placed with their backs inclining towards the scene, and that in all of them (if the house be not of extremely small dimensions) the front boxes must be at it great distance from the stage; for in proportion as the sides shall approximate ench other the front mast recede, provided the circumference be not varied." The summing up of the question on this head is thus given by Mr. Wyatt: "There is no olject connected with the formation of a theatre which, in all its bearings, is of more inportance than that the part of the house which faces the scene should be within a moderate distance from the stage. Unless that be the case, it is obvious that a very large proportion of the spectators must be excluded from a clear and distinct view of that play of the features which constitutes the principal merit of the actor in many of the most interesting scenes." Mr. Wyatt does not beliere that the beight of the ceiling injures or affects the sound of the roice in the lower parts of the theatre, and observes that it must in every theatre " be much too high to act as a reverberator or sounding board to the lower parts of the house." But we do not agrec with him on this point, and think we could refer him to more than one theatre in the metropolis which is defective in the conveyance of the sound from this cause alone. Besides this, we do not feel quite cert.in that the diagonal line drawn from the actor to the upper tier of boxes should not be the regulating distance, instead of the horizontal one which has been mentioned above.
2970. The following include many of the late suggestions for improving a theatre for the public, with those named in the former edition of this work. The mode of securing an exit free from fear, as well as from actual danger, has not been sufficiently faced; to provide against the disastrous results of a panic is a work of greater physical difficulty than to render a building fireproof. For a stage manager to appear every night and explain the arailable means of egress, the attendant at special doors to shout "here" on being named (and then to vanish for the rest of the evening), might satisfy some persons. The paramount consideration is a sufficiency of exit. Ingress and egress should be provided on each side of the house, so that whatever doors, passages, and staircases are placed on one side, there will be corresponding ones on the other. The spectators are thus divided and pressure aroided. The various tiers may in large theatres require more than one exit. It is important to prevent two crowds meeting in the street, such as the pit and the gallery, for the pathway becomes blocked. The difficulty on the ground floor is not great.

A " crush" room and waiting room are wanted, where those having carriages may wait, and those who are going to walk should be let out clear of them.

Whenever two p.issages meet, by which an exit takes place, from that point onwards the passage should be double the size, in or ler to let the crowd pass easily. The passages and staircases should be made direct, so that the crowd need not hesitate or stop the way at all. Large halls and staircases give rise to much lounging about, which is lad. Angles should as much as possible be avoided, as well as steps in passages, for which no excuse can be offered.

Sloping corridors have been adrocated, but these are not praticable in some localities.
$2970 a$. Erery opening should be instantly and always practicable. All obstructions should be forlidden by law. Doorways ought not to be less than 6 feet wide, and the doors in most cases are best malle sliding, or should open both ways, whether made of wool, wrought iron, cement, or terra-corta. Nessrs. Chubl have lately iuvented a clever contrivance for dispensing with an attendant at extra exit doors, consisting of a superimposed spring panel on tho inside of the door, in which the lock is embeddel; with a slight pressure the double doors fly open outward, and it is impossible to open them from the outside except by a key. Another invention is Walker's now safety and escape door, consisting of an inner frame of a door which will ofen outwards, the usual outer frame opening inwards. Present doors can be adapted to the invention.

2970b. Two stone or cement staircases to the galleries are essential, althongh one need only be used as an entrance. The staireases for the upper parts should bo as wide and as easy as possible. Staircases should never be less than 5 feet vide (some writers say not more than 3 feet widu), the steps to be all straight, no winders, 12 inches in the tread. and not less than $6 \frac{1}{2}$ inches rise. They should be square, and be formed along an enclosed Wellhole, if any; no windows shonh be permitted. A series of staircases absolutely disconnected with each other has lately been urged; the only doors on to it being at tho top and bottom; an iron hand rait on each side. It has also been suggested that " there shonld be an equal number of steps to each flight, say thirteen fur headway and space; the half-landing shou!d te clliptical, crery door should open loth ways, and folding, with an easy fastener. Ali these, in any case, ought to be provided in new buildings, and as much as possitle in old luldings" (W. H. White, F.S.A.) In large staircases, which consist. of a centre and two side flights, the central one should be equal in width to the two side flohts together. In catculating the width, regard should in some moasure he had to the number of persons which the part they serve will contain. Tho broad, long gallery stairs at the Italian Opera House, Covent Garden, with the door near the top, show a good arrangement ; they serve a double purpose, being at once a stairs and a waiting-hall. Communication with the wardrobe and the property rooms should be effected only by iron spiral stairs.

2971 The "erush room" or saloon at the Italian Opera House, Covent Garden, is situated at the top of the grand stairease, and forms an ante-room for all those passing to the boxes. At each end of the room are refreshment bars, to which all classes can thus resort, to the exclusion of none. Proper cloak roms, with lavatories and water-closels, and refreshment roums or bars, are necessary adjuncts. The varions rooms required for the different dep rerments will differ in every thoatre, and the architect must obtain this information from the manager, before he sets to work. Near the orchestra is a waitingroom for the musicians, with cupboards for their instruments and coats, lavatories, \&c. The music library shoull not be far away. A painting room over the ceiling of the auditorium was formerly usual, also at the back of the stage, where the art st can paint against the upright wall. The carposters' shops are near to it. The property and armoury rooms must be near the stage; and a very well ventilated property shop. The theatre at Warsaw is said to be rery complete in its wardrobes. The dressing-rooms for men and women should be kept apart ; the tailors' and dressinakers' shop and wardrobes just above them, and fitted with lifts to send costumes up and down. Supennmeraries' and soldiers' dress-ing-rooms are also required. A large magazine near the stage, to keep the stock, scene cloths, and wings, properly fitted with racks and grooves, to stow them anay in goed order. Green-rooms, or waiting-rooms for men and women, so that no one should be on the stage who is not immediately concrined in the acting. The patsages to have plenty of swiag doors to prevent draughts. Proper apartments for firemen, hall porter, and housekceper ; kitchen and cellars; rooms for the manager, secretary, ticasurer, chorns and solo practice; and laratories, \&c., throughont the house. A bnx office is usually provided near the chief entrance. Large and dry cellarage is a desideratum, in which to stow uncused properties.

2971a. With the exception of the dressings and interior ornaments of the luilding, it would be possible, though perhaps somewhat inconvenient, to ertct a theatre, though not perhaps absolutcly fireproof, ytt very secure against fire. Small theatres can be constructed of concrete and cement and terra-cotta, from its rude form as common brick, to .stair treads; all the finishing touches would be of the ordinary mattrials of theatre building. Iron should never be depended upon except as a stiffewer, and then buried in ennere'e. Sto ie should be excluded. Floors to be of cement fluated on concrete, such as Wilkinson's improved granite concrete, having arched under surface between iron girders; also with iron \perp joists forming a parallel landing alout 6 inchrs thick for landings and corjidors ; and for paving: \& C. ; steps can be formed of it singly for fixing, or formed in sith with moul ded or plain sofitc. As a matter of primury importance, the auditorium and the
stage, with its accessory apartments, should be, as far as possible, two distinct structures, by making the wall between them of brick or concrete of sufficient thickness, aud calrrying it considerably above the roufs; it should have as few openings in it as possible, and all of them should be fitted with fireproof doors.

2971b. The proposed iron curtain or door to this opening, as at the Prince of Wales's Theatre, has betn taken exception to, on the grounds that it is cumbersome, costly, aboorbs heat rapidly, and is slow in working. A single plated curtain may be liable to buckle and to become a sheet ot red-hot metal. At several theatres Messrs. Clarke, Bunnett \& Co. have made a curtain of two screens of wrought iron plate $\frac{1}{8}$ th of an inch thick, having an air space of 6 inches between them. The framework is furmed of longitudinal and cransrerse T and angle iron, with external chaunel iron frame perforated, so that a current of air is continually passing between the two screens The top portion of the curtain is riveted to double wronght iron girders, secured to the head of an hydraulic ram, which, with the cylinders, are fixed and bolted to the prosceniun wall, which varies in thickness from 14 to 18 inches. The movement of the curtain occupies about 30 seconds, in ascending or in descending; it is caused by pulling a lever, and the curtain stops automatically as it reaches the stage level. The lever can be worked from the stage or in the box-office, where it would be under the control of persons remote from the fire. The new iron curtain for the Comédie Française, by M. Edoux, can be set in motion from various parts of the theatre

2971c. A simpler form of curtain is composed of asbestos, at a less cost. At Manchester it has been applied at the Queen's Theatre, and at the Comedy Theatre. At the latter, the curtain runs in an iron groore closely fixed to each side of the brickwork. Being used nightly in place of the green curtain, it is constantly in working order, and can tie dropped instantly. As to the curtain invented by Max Clarke, Mr. Emden considers that the silicate co:ton, with which it is lined, has " no texture," and would consequently be liable "to sink down and become dense at the bottom of the curtain, while the top wonld be thin" and inefficient. He also considered that "no curtain has been invented which, in the ordinary theatre, would realily cut off the auditorium from the stage for more than a limited time." Messrs. Jones, however, state that with "a curtain properly constructed and lined with silicate cotton, the auditorium would be cut off from the stage for any length of tume"-say a whole week (British Architect, March 30, 1888). A fireproof cuitain put forward by Capt. W. E. Heath is described as "to be of asbestos cluth quilted on a strong canvas, rolled on a roller over a narrow tank of water, and in unrolling it passes under another roller at the bottom of the tank, thus rising perfectly saturated." A further description is given in the Proccedings of the Inst. of Brit. Architects of February 23. 1888, p. 174 ; and in the Architect, February 17, p. xiv. of Supplement.

Sufficient has perhaps not been said in this work as to the use of silicate cotton or slag wool, a pure mineral fibre, manufactured from iron slag, and quite incombustible. The best non-conductor of heat or sound yet discorered; as a non-radiator of heat or cold it is well established; and acts well in preventing the transmission of rarefied air, and arresting the spread of fire. It may be applied in a loose or natural form, as packing; woven with yarn or wire into sheets and strips; or felted in conjunction with wire netting, and put on similarly to ordinary felt. One ton will cover 1800 square feet of one inch thickuess. It has been referred to, s.v. "Pugging," par. 22t7. The advantages of this useful material are well de-cribed in the British Architect, April 6, 1888, on the reports of W.H. Stanger, F.C.S., with the experiments on its fire-resisting qualities.

2971d. Johnson's patent fireproof wire lathing, ty which any partition or ceiling is rendered practically fireproof. Metal laths, on Edwards's patent, tor use in the construction of fire-resisting ceilings, partitions, and doors. With his dove-tailed corrugated iron sheets (Hyatt's patent), for the same purpose, partitions are formed of Portland cement, concrete, and iron only two inches thick, the metal being completely protected. The "fibrous plaster" slabs of Wilkinson and Co., and of Hicchens, are intended for lining walls, ceilinge, and floors for fireproof purposes, as noticed par. 2246b. Fireprouf flooring of various sorts are noticed par. 1903l. et seq.

2971 e. Wood can now be protected by various paints, for which reference can be made to the previous chapter, s v. Painting. Among them are, Asbe.tns fireproof paint, also water-resisting ; coluurless fireproof liquid "antiflame" for fireproofing fabrics; aiso a fireproof stain. Griffith's pyrodene firt proof paint is stated to render wood of all kinds and fabrics absolutely flame-proof by leing simply soaked with it, and can be applied by anyone (par. 2273j). It was supplied to the Manchester Exhibition, 1887. Sir Seymour Blaine's fireproof paint was used (1887) at Edward Terry's new theatre in the Strand.
$2971 f$ The flimsiest material, as canvas, bangings, dresses, gauzes, \&e, can now, by some solution, or by chemical treatment, also be rendered incapable of burstiug into tlame. The chemicals now most commonly used fur this purpose are alum, borax, phosphate of soda, sal-ammoriac, and tungstate of soda (a "fireprof stareh"
prepared with it was first introduced by Donald Nicoll, ex-sheriff of London). This tungstate is considered the best, but as, if usel singly, it is ap to become insoluble and to ruib off, the addition of abmut 3 er cent. of plosphato of soda will diminish the rink. After the ordinary washiug the go ds should to immersed, before wringing and drying, in a solution containing 20 per ceat, of tungstate, with al proportionate quantity of phosphate. Alum acts injurionsly on the fabrics, especially if coloured. The others are cheap and commonly harmess.
$2!71 \mathrm{~g}$. The electric lighting system should be used in pref-rence to the common gas system. It has been put up at the Savoy and the Criter on Theatres in i.ondon. Any gas burners should be properly protected, and no intlammable substance ueed.

2971 h . An exit for smoke is adrocated to be formed orer the stage and over the proscenium. Firemen to be always in atteudauce with hose capable of being attached to hydrants fixed at convenient points, the water being supp ied trom a tank, and also from the water matus. The supply of water from large reservoirs provided in the upper parts of the huilding is a precaution which should never be omitted, th ia_h late tire- hare shown they are never in order when required. Pipes may be laid ou foom them to those parts, such as the carpenters' room, scene room, and painting-roum, where fires would be most likely to break out, and where if they did break out they would probably be most daugerous. The necessary tireman's arrangemants, with teli-tale elucks, \&e, must be duly provided.

2971i. The "automatic sprinkler" is adrocated by mony, to be fixed orer the fiis and over the roof of the audituriun. They have been introduced at Mr. E. Terry's new theatre in the Sirand. A hul:ow girder was adrertised in 1861 by William Hood fur hulding water, which could be played on a fire without opening dours and windows to get at it. This was objected to for many reasons. This is now staied to have been " the ingenions invention of Jethro, Robinson, who introluced tho sy:tem to E. T. Smith, whe wed it at Astley's Theatre." Sinclar's "automatic sprinkler" has fuund favour tately in America, where it was adopted in various ways in warehouses. Insurance offices are sald to have reduced the premiums in consequence of the use of the system. The water jets leave nut a space outside the range of action. Once fixed they work of themselves when a temper..ture of 155 degrees arises where they are placed. All the apparatus is tested to a pressure of 500 ll s. to the square inch. Hannay s patent pnenmatic principle is applied fur clarging the tubes with air as a protection arainst frost. Dickis Fire Queen extincteur is portalle and self-acting; a gallon of its contents (Watir super-saturated with carbonic acid gas) is stated to be of more value tham 30 grallom of water.

2971\%. Mr. K. S. Ash, of Monaco, in q letter to the Times, Aurust 1887, suggested that each theatre should have a fire guard room, disconnected from the man buildiag. From it a series of water pipes should pass to those parts specially menaced with fire. In rexponse to all electric summons, the man in charge would be enibled to turn on one or more or all the pipes. One pipe shonhl be specially prepared to saturate the curtain, or to act as a falling sheet of water it the curtain be up. People are rarely burnt to death in a fire, but are suffocated by the carbonic acid gas, the want of air, the smoke, or the intense heat. The pipes are not exposed to rust, it is stated, but unluss they are used occasionally, it is feared they will rust. The guardian, it is supposed, will not experience the feelings of panic, and so will be prepared to obey the summons, and, "if the tuwn supply of water is working satisfactorily, water would be delivered immediately where needod." The Asphaleia Company, on whose system the now Opera House in BudaPesth, and the Stadt Theatre at Hallé, have been rebuilt, have sent over a model of their system fur exhibition; it was explained by Mr. Walter Emden, in his paper on Theatres and Fireproof Construction, read at the Socirty of Arts, Janurry 25, 188 s .

2971l. A Modern Fireproof 'Theatre. Edward Terry's, in the Strand. Almost the whole of the structural portions are of incombustible materials, and the limited amount of woodwork has been coated with fireproof paint. Ironwork has been thoroughly case din concrete; the flights of stairs are generally of concrete, the corridors and floors ch efly of mesaic and cement, the panelling is in fibroms plaster, the gallery seats are of concrete. The isolation of the auditorium from the st ge is complete. The proscenium wall rises some 20 feet above the auditorium roof, and iron dours close the openings between the two parts of the house, while an asbestos drop curtain, stretched on a metal tramework, fil's the proscenium opening, and is to be nad as an ordinary green curtain. Behime this curtain, besides the fireproof nature of the materials used, all the woodwork has lieen coated with the fireproot solution called Pyrodene, prepared by Messrs. Griffiths Brothers. A thoroushly efficient system of automatic sprinklers and the electric hght have been introduced. In both the roofs direct exhausts have been tormed so as to carry off the ordinary heat, and in case of fire to draw up and extract the smoke and grises generated. An efficient hydrant servien is provided all over the house. Although the theatre is only estimated to accommolate about 800 persons, exits have been provided for an assembly of 3,500 persons. Eatch part of the house has two or mure exits, on two sides
of the building. The corridors ard gangways generally a rerage 3 feet 6 inches to 4 feet in width. Plain directions are painted over each opening ont of the anditorium, which openings can be arailable for ordinary use. The cloors are fitted with a specially constructed lock, invented by Messrs Chubb and Mr. Walter Emden, the architect, which can only be openel from the ontside with a key, a push from within opening it without difficulty. (British Architcet for October 21, 1887, p. 295.)

2971 m . There are now two new theatres in London which are considered fairly fireproof, and the "Court" at Sloane Square may be a third, as regards inflammabilitr. As to any advance in plans and sections, there have been two plans prominently put forward this year (188•). One father d by Mr. Henry Irving and Alfred Darlyshire, architect, drawings of which were published in the Daily Tclegraph of Octoher 29, 1887. Another was brought forward by R. Nevill, architect, in an extensive paper read at the Royal Institute of British Architects, Dec. 9, 1887 (discussion); and reported in Proceccings of Jan. 26 following. Another is by R. M. Roe, architect, printed in the Proceedings of Feb. 23. One by J. G. Buckle, architect, described in his work, and dedicated to Wilson Barrett. And lastly, ly E. J. Tarver, architect, whose drawing is given in the British Architect for March 23. "Managers who contemplate new structures will have to form their own judgments and sclections according to what may be the individual characteristics of the ground and neighbourhood. The Darbyshire plan is for a house detached all round, and with one gallery only. The Buckle plan is for a place where an underground house is needed. The Tarver plan is for a theatre abore ground, adaptable io any site with one side open and the pit partly or wholly sunk."

2971n. Many of the bad features of construction and arrangement in modern theatre building are stated to le often due to the pruprietors or managers; the architect has not his entire way in the matter. The expenses of a theatre are very grat, and the amount of the ground rent is an inducement to the site being made as small as possible. Any extraueous provision m!st necessarily intail ost and occupy space.
2972. Foreign theatres are not considered goul examples for tho study of an Englishman, as the habits of the mations are so different. Abruad, too, theatres usually stand in open squares, as at Hanover, Mmich, Berlin, Dresden, and Darmstadt; not in back streets and crowded thoroughfares. The rew Opera Honse in Paris is essentially a government establishment, and would be wholly useless in England, where a theatre is a private speculation. It is an exaggerated and badly proportioned copy of Munich theatre, with which it will not compare for compactness. It seats only 2,000 people. One of the best studits of a house on the halcon principle is that at Mayence, given in Fergusson's Handbonk. The theatie at Darnistadt has been the type for those at Munich, Berlin, Moscow, and other places. But their passages and front arrangementsare all bad for use in England; the idea being to collect the people into the entrance hall for show. The Victoria theatre at Berlin is a double theatre, one for winter, with another for sumn cr. The theatre at Dreeden is round, following the form of the interior. It has been lately suggested that the orchestra floor should be much deeper than is usual, so as to hide the movement of the instrunients, which often spoils the illusion of the scene. In Englant the stage is always made on the incline; in Germany it is flat, which arrangement has becume very general abroad; as in the domble theatre at Berlin.

2972a. We have availed ourselves largely of papers read at the Royal Institute of British Architects, in which will be found further remarks upon the lighting, ventilation, and fittings required for these structures: On the Construction and Rebuilding of the Royal Italian Opera House, Covent Garden, by its arenitect, Mr. E. M. Barry, Feb. 6, 1860 ; and On the Construction of Theatres, by Mr. Warington Taylor, Dee. 19, 1864. The Builder, Building News, Architect, and British Architect journals, contain descriptions of most of the numerous theatres erected at home and abroad of late y ears, and to these publications the architect can resort for further viows on the several important points touched upon by us herein. The Metropolitan Board of Works has issued regulations for the proper working of theatres for the safety of the public. The Home Secretary, it is stated (1887-88), is preparing a measure of reform in respcet of theatre construction and management, in consequence of the late serious accidents.

Sect. II.

HOSPITALS.

2973. The buildings called hospitals are devoted to the reception of those persons who may be sulfering from disease or accidental injuries. To this sort of building will this section be chiefly devoted. The same name has been given to a building for the reception of traveners; for the temporary accommodation of the destitute ; for the maintenance and education of yonth; and for the support of meritorious and indigent persons; the hospitals of Greenwich and Chelsea are goud examples of establishments of this latter class; the former buiding, indeed, adds to its other excellencies a magnificence in the architeeture worthy the object, though not so orginally intended. The liòiel des Invalides at Paris is another monument worthy of all praise; and indeed we searcely know a quadrangle more imposing than the court of this elifice with its double tier of arcades. This hospital contains 7,000 veterans, and has attached to it a library of 20,000 volumes. The building erected for the alleviation of incorable diseases is properly an infirmary, and might be termed an almshouse.

2973a. To the honour of most of the nations, lut few citios are now unprovided with one or more hospitals. In Milan there are so many of such buildings that it has been remarked that no one has need to pay for adice. The governments of lirance, Russia, Germany, and Turkey support these institntions; but in England, with theexception of Chelsea and Greenwich Hospitals, they depend upon the charity and foundations of benevolent iudividuals, as at Guy's, St. Thonas', Bartholomew's, and the many other hospitals of London. There is great relnctance often on the part of the poor to enter an hospital ; and on this account we do not think that money in bestuwed which tend, to innpart to it an agreeable and cheerful exterior. It is almost unnecessary to insitt upon the thorough warming and ventilation of the edifice: no means should be omitted to ownler the place wholesome, and to prevent infection spreading from one part to amother. The hospitals of a city should be seated in the least populous part, if the health of the city be consulted, or in each suburb; in which latter case the establifbment would be nearer tie quarter it is to serve, and more acces-ihle in a short time in the case of accidents.
2974. The plans of some of the tinest (but old) hospials in Europe are given in Durand's Parallile d'Edfiees, 1801-9. Among them is that of Milan. It was commencel hy Filarete in 1457, and is of course in a half. Gothic style. The men are placed to one side of a central cloistured courl, whieh is 210 feet wide and 243 feet long in the clear, in a quadrangle 263 feet wide and 279 leet lung, the cell's being placed in the form of a cross of that size and 30 feet wide. In the intervals of the cross are four eourtyards, on whore remaining sides are rooms for the as-intants. On the opposite side of the eloistral court are placed the women. In the middle of the narrow side of the great cloister, opmosite the entrance, is a church, which setves for the whole estallishnent. The cloiters of the lurge court and main body of the buililing are in two stories, so that they form gralleries of communication. This edifice has served for a model to many others of an early date, but it is perhaps now considered good ouly for the pleasant promenalles supplied by the cortidors. The hospital of La Roquette, in the suburbs of Paris, designed by Poyet, was conceiverf on a magnticent scale, and was admirably planned. In this design each room, as well those on one side of tiee establishment for the males as those on the other sile for the females, is appropriated to one particular disease. Each of these rooms is about 32 feet wide and 30 feet Gin. high. Behind the beds (which are in two rows in cach room) runs a passage about 3 feet 4 in . wide, which removes them so much from the walls, and allows therefore of the neeessary waiting on the invalids, and hides the wadrobe attached to each bed in the window recesse-. Above these passages, which are about 6 fect 6 in . high, is arranged on earh side a row of windows, by which ventilation as well as light is ubtained. The gromd floor contains the halls and ottices necessary for such an establi-hment. The desigus for this building were made about 1788 , on the instructions drawn mb, after several years' investigation, by a munher of the most skiltul and learned medical mun of France, no as best to unite health and convenience in such an edifice. One of the conditions prescribed ly their programme was the complete insulation of each apartment, as well as an easy communication by covered galleri-s round the bilding, and these were required to he of such extended dimensions that the air aronnd should be unobsuructed aid circulating in every part with freedom, thus affording a wholesome promenade for the patients. The pran, howe er, was not continued.
2975. In France the hospital of St. André at Bordeaux, designed 1825-9 by J. Burg!eet for 728 patients, was considered so good in its arrangements, that they were followed in the hôpital du Nord, alterwards Lariboisiere, at Paris, tenigned 1846-54 by M. P. Gamhier for (i) 6 beds. 'I'ris plan of making a distinction between dormitories for the comparatively healthy, and warts for the sick, and abolishing all communications by passayes and stairs
between wards was the important feature of such establishments. This hospital las leen the model for those designing later works.
$\simeq 97.54$. The erection of the Victoria genetal military hospital at Netley, commenced in 1856 by Mr. Memie, led to so much correspondence, investigation, and contradiction, that the student is best referred to the journals between 1856 and 1858, when a plan was finaily adopted, which met with the approval of Miss Night ugale. It is said to have proined averages of $1,315,1,406$, and $\mathrm{t}, 8 \mathrm{CO}$ cubic feet per patient. The communication of the wards with a general corridor and with the water-closets has been alleged as its chief lault, but its plan shoutd be compared wih others regarded as models at the time, to oltain a notion of the great stride in the planning of these buildings. The eontroversy continued with great advantage, as it produced plans of other hospitals considered as models on varions points, up 101862 , when the military authorities issued their official plans for Lospit:ls.
¿975b. In 186.5 the Sociáté Chirurgicale de Paris issued the then rucent exposition of scientific views with regard to the reconstruction of the hôtel-Dieu and of hospitals generally. It demanded a minimum of 538 square feet per bed as clear space of site outside the building; a maximum of two siories of wards, and of 500 to 300 beds in each houpital, considering that two small hoopitals are prefurable to one equal to their united capacity, becatuse the periodical and regular vacancy of wards has been attended with gosl results. It considered that small wards of 15 to 20 beds are to be prelerred to larger wards, and that the building should not only posess a day ward for convalescents, but another for their incals. The wards should be separated by landings and rooms tor attendants They should be completely isolat.d blochs, all having the same aspect, and being exposed without any obstruction to the rays of the sun, to the effects of rain, and to the action of the wind; and they should be arranged in a single line or in parallel lines at intervals. of 260 feet or 330 feet, in order to obtain an elficient separation and a sufficent current of air. Finally it declares that no emanation from refise or effluvium is to be tolerated; and that no abundance of antificial venilation compensates for an insuthcient natural ventilation. (The L'uiller journal, 1865 , vol. x iii. p. 170.)

2975c. It has been strongly recommended that ward space for each patient, approaching as near as circumstances allow to 2,000 cubic fert, with 144 square leet of floor, should be allowed for each bed : the ventilation to be obtained on the natural sistem; yet others are in favour of arificial ventilation with an ascending eurrent; others for a destending current, which is adopted at the hôpital Lariboisière to the extent of 12 to 14 cubic feet per minute; at the hopital Bedujon 24 to 36 leet, which was inefficient; and at Guy's hospital 40 to 60 feet, which was sucessful. Jireplaces alone are considered inefficient for the purpose.
$2975 d$. The opinions expressed by the writers in the Builder journal during 1856.61, result in describing the corncet plan as consisting of detached wards separated at least by lawns tife as wide as the height of the buildings, each ward being enclosed by four separate walls, and having windows on two sides that open from the ceiling with double sashes glazed; water-closets undera eparate root and divided from the wards by a coridor; the corridurs contimous and cluse for 7 feet high, but open above with piers or columns; walleries, with stats in the gardens; comfort of nurses roums; and eare as to finish of thours, \&ec. Be-ids the above publication and various parliamentary reports, the works by Husson, Études sur les Hôpituux, 4to. Paris 1862, and ly Jaccoud, Nouveaı Dict. \&e., vol. xvii., £vo. Paris, 1873, both contain plans and valuable suggestions.

2975 e. The new building of St. 'Ihomas's Hospital in London, designed $1865-71$ by Mr. Henry Currey, has been described by him in a lecture read at the Royal Institute of British Architects, January 23, 1871 . It may !e supposed to exhibit all that is requ:isite to be provided in an hospital of a metropolis, for the aecommodation of 600 patients. It is arranged on the pavilion principle, now generally admitted to be the best for hospital purposes, and being placed in a $o w$ is specially suitable for the spare of ground on which the edtice is crected. The corridor, of two stories, with a flat roof over, connecting the end of each of the six pavilions, is 900 feet long; they are placed at the distance of 125 feet from each other, their axis being due east and west. The wards are 28 feet in widih by 120 fect in length, and 15 feet high, in which are placed twenty eight beds on cach of five floors, giving a cubic capacity of 1,800 feet for each patient, the beds being placed 8 feet fron centre to cemre: small wards for two beds, contiguoas thereto, separate special cares from the others. Adjoining the passage are placed the si-ters' room, the wart hitchen, and a room for medial ufticers. The staireases are wide, and have a tread of $12 \frac{1}{2}$ in., with a rise of $5 \frac{7}{8} \mathrm{ml}$. The well-holes are occupied by lifes and ventilating shafts. The water-closets, lavatories, and a bath-room are attached to each ward, and cut off from it ly intercepting lobbies, with windows on both sides. There also are the foul linen and dust shoots communicating with the basement lor external removal. Dormotories for the nurses and servants are placed in the attic story. The wards have flat cei,ings, and the windows are carried up to it, to cmsure a thorengh change of air in the upper part. 'The
sixth or last pavilion is designed for special diseases, and the wards are therefore smaller. The floors of the wards are laid with wainscot as being non-ibsorbent, and tongu d with hoop iron, and prepared for waxing and polishing ; the walls are plastered with Parian eement, with the same elpject, the finisling coat of which is tinted to aroid the glare of the white. The winlows are constructed in three divisions, the lower part being hung to npen in the usu:l way, and the upper sash drops to the depth of the transom. They are glazed with plate glass.
2975 . The general entrance to the hospital is placed in the centre, and the hall forms the sulistructure of the chapel. Near to it is the kitchen department. On the first fioor are the resident medical officer's department, two operating theatres, \&c., placed bet ween the euds of the blocks next the side publict thenghfare. The administrativedepartment is p!acel at the end, adjoining the bridge, in a detactiod building, and comprises the governors' hall, committce room, counting-house, c'erk and surveyor's offices, the treasurer's residence, mad many other apartments necessarily required for so large an establishment. The traiuing institution for nurses adjoins the matron's residence between the first and second wards, and affords accommodation for forty probationers, each having a separate bedroom.

2975g. The Warming and Ventilating Arrangements.-For the latter, the natur.l system is depended upon as much as possible, but in order to change the airduring cold and boisterous weather and at night, a main extracting shaft is carried up in the well-hole of the stairralse, and in this is placed the smoke flue from the boiler, consistiug of a wrought iron tnue 15 in . in diameter. In the upper part of this shaft is also placed the hot-water cistern. Shafts are carried from the ends of all the warls, both at the ceiling and floor level, and from the centre of the stove hereafter men ioned, communicating with a horizontal trunk in tho roof, which trunk is conneced with the heated shaft previously referred to. To replace the air thus extracted, fresh air is introduced by means of zine tubes laid between the "Dennett arching" and the floor boards, communicating with the stoves and hot-water coils, the whole admitting of regulation by valves. The wards generally are warmed by three open fireplaces, aided in cold weather by an auxiliary system of hot water. 'Shese st:und in the middle of the wards, with vertical shafts, an inner one of wrought iron 15 in . diameter, and an outer case of cast iron, the space between forming a rentilating shaft, which is connected with the main trunk in the roof. The smoke tube is carried down to the basement, from whence it can be swept. The $\mathbf{v e n t i l a t i o n ~ o f ~ t h e ~ l a v a t o r i e s ~ a n d ~ w a t e r ~}$ closets is entirels independent of the wards, and is carried up the shaft in the river turret. That of the medical museum and school buildings, placed beyond the hospital buildings, is on the same general principle. the rentilating and smoke shaft being contained in the tower at the southern end of the building. There is an hydrautic lift to fach parilion.

Fur the numerous other details the student must be referred to the paper itself, which contains a plan and perspective view of this admimbly designed building.

2975h. The sixth report of the Local Gorernment Board contains the report made ly Dr Bristowe and Mr. Holmes on the inspection of all huspitals in Great Britain and Irelint.

2975 c . The first circular hospital erected in England was the Miller Memorial ILospital, at Greenwich, designed ly Messrs. Keith D. Young ind II enry Hall. The Burnley hospital was another, and then the H-stings, St. Leonard's, and East Sussex hospital, which was opened in September, 1887 (illustrated in British Architect, Jannary 28, 1887; and Builder, p. 180). The Antwerp hospital, the hospital at llampstead, and 110 circular hospitals for the army deserve inspection; but this llastings hospital is the most typie, and arobably the most compicte building on the circular principle which has yet been erected in this conntry, or indeed anywhere.

2975j. In the rectangular ward, where the murse's room is at one end, while at the other is possil) y placed the worst " case," that is, the patient who is most severely ill, the uurse, as the day gue.; on, must find the whole length of that ward a great strain upon her physically. In the circular ward, the nurse can wee all the beds except one-certainly except two-in the whole ward from any point in it; and she has to travel the shortest mossitle distance to get to any one patient who may need her services at any given time. It must not be regarded as the most perfect system of hospital construction; it is one type of construction suited to special cases, and one which deserves a fair and prolonged tral. (Ilenry C. Burdett). Professor Marshall and P. Gordon Smith, Cirular System of Hospital Wards, 8ro. 1878.

2975k. Village Hospitals.- Each village ought to have the means of accommodating instantly, or at a few hours' notice, s.yy four cases of infections disease, in at least two separate room-, without requiring their remosal to a distance. A decent four-room or six-room cottage, at the disposill of the authmities, would answer the purpose. When such provision as this has been made, and ease of distase in exeess of the aceommodation
oceur, the sick should not be crowded together, but temporary further provision be made for them. The most rapid and the che pest way of obtaining this further accommodation may often be to hire other neighbouring cottages; or, in default of this, tents or hurs might be ertected apon adjacent ground. The regulation bell tent is 14 feet diameter, 10 feet in height, the area of base is 54 square feet, and cubic space 513 feet. The regulation hospital marquée is 29 feet long, 14 teet wide, with side walls 5 feet 4 in., height to ridge 11 feet 8 in ., giving a cubic capacity of a little over 3,000 feet.

Mr: Geo Buchanan's report (1888) to the Local Government Board, containing suggestions as to the provision of isolation hospital accommodation, with plans, is of high importance.

2975\%. Convalescent Hospitals, erected in the country for the recovery of patients after they have been treated for their diseases in town hospitals, and then only requiring a short tine of charge and fresh air before returning to work, are now considered desirable aljuncts to hospital treatment.

2975 m . An Imbecile asylum is provided at the Poplar and Sepney sick asylum; Austin Bros., architects.

Sect. III.

INFIRMARY.

2976. Tho word infirmary appears to have two opposite meanings. In one it designates a place for aged, blind, or impotent persons; the other, a place for the cure of woundel or diseased persous; such are hospitals, which buildings were originally called infirmaries. The infirmary proper is the place appropriated to the sick in a large establishment, such as an asylum, a prison, a workhouse or a school. Greenwich Hospital has an infirmary attached to it.

2976a. Workhouse infirmaries were until lately greatly condemned for the want of accommodation; the want of classification and seraration; imperfect ventilation, owing to the insufficient supply of culbe space, sometimes aggravated ly essential defects in construction: 500 cubie seet per bed only being provided where 1,000 feet at least is required; insufficient washing arranements; and other comforts for the patients, as well as for the nurses, and officens, neglected.

29766 The requirements of the Local Gorernment Board at Whitehall for a provincial workhouse sick ward or infirmary, comprise a separate building from the workhouse itself. The sick should be divided into: 1. Ordiuary sick of loth sexes; 2. Lying-in women, with a separato labour room adjoining the lying-in ward; 3. lteh calses of both sexes; 4. Dirty and offensive cases of both sexes; $\overline{5}$. Venereal cases of both sexes; 6. Children of both sexes; and, lastly, 7. Ferer and small-pox cases of both sexes. Classes 1 to 6 maly lie accommodated in the infirmary ; separate entrances for 3 and $\mathscr{6}$; a detached Luilding with separate rooms for 7 . In the case of large infectious wards, there should be a detached washhonse, otherwise a shed containing a copper, in which the linen may be disinfected by boiling lefore being taken to tho general laundry. The sength of durmitory wards should be calculated according to the following minimum wall-space for eaci bed, in addition to that cecupied by doors or fireplaces, viz. : for inmats in health, adults 4 feet; women with infints 5 feet; children, single beds $3 \frac{3}{4}$ feet, double beds 5 feet; and for sick, itch, and venereal cases, 6 feet; for lying-in, offensive, fever, and small-pox cases. 8 feet. The day rooms should ufford accommodation for not less than one-half of those who occupy the day and night rooms. A minimum of 20 feet flow space should be allowed for tach sick person. Sick wards should be 2.) feet wide and 10 to 12 feet in height. Infectious wards should be 20 feet wide and 12 feet in height, and should have external windows on their opposite sides. The gangways should be in the centre of the wards; but if a sick ward halds only one row of beds, which is not recommended, it should be at least 12 feet in width, and hare the gangway and fireplace on the side opposite to the beds. The dimensions abore given are consilered the most economical, and at tho same time the most convenient for the rarious classes of wards. But where they are not so constructed, there should be

One room or a suite of rooms communicating by a gugway should rarely exceed 90 feet in levgth. Such a room or suite of rooms may be counceted with a similar suite in the
same line by the central part of the building, in which would be placed the apartments of the nurses, and other offices; or they may he placed in llocks, parallel or otherwise, connected by a corridor. Nurses' rooms and suitable kitchens and sculleries should be providerl. Special means of ventilation, apart from the nsual means of doors, windows, and fireplaces, shond he secured. Air bricks are suggested, 9 in. by 3 in. or 9 in. by 6 in., covered on th \rightarrow inside with metal, having perf rations of about one-t wentieth of an inch in diameter inserted about 8 feet or 10 feet apart in the upper and lower parts of the external wall. The lower set may be fitted with hit-and-miss gratings, made to lock so that they may be regulated only by the proper authorities. Vontilating fireplaces are useful. Where hot-water pipes are used, they should ron round tine wards, and a portion of the fresh air pass over them. If no other system of warming be adopted, fireplaces shonkl be prorided in all iuhabited rocms, say a fireplace to each 30 feel of length. The walls of all sick wards should $1 e$ plastered internally.

2976c. The infirmary for the Central London Listrict Schools at Hanwe'l, designed 1865 by Mr. Gale, accommodates 100 children of each sex. It forms three sides of a quadrangle, and consists of ten wards, five on each flo or. Each ward has a nurses' room, two fireplaces, and set of bath room, water closets, \&c.; six of the wards have double sets with two entrances fur the convenience of subdivision. The corridors are all provided with open fireplaces and draw-off sinks, with supply of hot an cold water. In each corridor, at a central point betwern the rarious wards, is a lift by which provisions, \&c., ar: sent up direct from the kitchen.

2976d. The infirmary at Blackburn, erected 1858 by Messrs Smith and Turnbull, may le described as arranged on the pavilion principle, consisting of a main corridor, on eq. ${ }^{\prime}$ side of which are placed eight wards alternating, each hol ling 8 beds in a ward, with their own set of bath rooms and water-closets. In the middle and separating the set is the building devoted to a chapel, the necessary offices and apartments, and the operating room, with two wards of four beds in each.
sect. IV.

PRIVATE BUILDINGS.

GENERAC OHSERYATIONS.

2983. Private buildings differ in their proper character from public buildings as much as one publie building differs in character from another not of the same kind. The ends in brith, however, in common, are suitableness and utility. The means are the same, namely, the observance of convenience and conomy. The same elements are used in the formation of one as of the other; hence they are subject to the same principles and the same mechanical composition. Distribution, which is usually treated distinct from decoration and construction, and very improperly so, as applied to privite edifices, is conducted as for publie buildings, that is, as we have said, with a view to utility and economy.
2984. If the student thoroughly understand the true principles of archit ecture, - if he possess the facility of combining the different elements of buildings, or, in other worls, fully comprehend the mechanism of composition, which it has in a previons part of this Book (III.) been our object to explain, nothing will remain for him in the composition of private buildings, but to study the special or particular conveniences required iu each. There are some quaint old aphorisms of Dr. Fuller, prelendary of Sarum, which are so applicalle to all private buildings, that we shall not apologise fur transterring them to our pages.
2985. "First," he says, " let not the common rooms be several, nor the seteral rooms common; that the common rooms should not be private or retired, as the hall (which is a pandocheum), galleries, \&c, which are to be open ; and the chambers, closets, \&c., retired and private, provided the whole house be not spent in paths. Light (God's eldest daughter) is a principal brauty in a building; yet it shines not alike from all parts of the hearens. An east window gives the infant beams of the sin, before they are of strength to do harm, and is offensive to none but a slnggard. A sonth window in summer is a climney with a fire in it, and stands in need to be sereened by a curtain. In a west window the sun grows low, and over familiar towards night in summer time, an! with more light than delight. A north window is best for butteries and cellars, where tho beer will be sone becanse the sun smiles upon it. Thorongh lights are best for rooms of entertainments, and windows on one side for dormitories."
2986. "Seenndly, as to capaciousness, a house had better le too litule for a day than too big for a year ; therefore houses onyht to be proportioned to ordinary occasions, and not to extraordinary. It will be easier borrowing a lirace of chambers of a neighbour for a night, than a bag of money for a year ; therefore 'tis a vanity to pruportion the receipt to an extraordinary occasion, as those do who, by orerbui ding their houses, dil pidate their lands, so that their estates are pressed to death uuder the weight of their house."
2987. "Thirdly, as for strength, country houses must be sulstantives, able to stand of themselves, not like city buildings, supported and flanked by those of their ueighbour on each side. By strength is meant such as may resist weather and time, but not attacks; castles leing out of date in England, except on the sea-consts, \&c. As for moats round honses, 'tis questionable whether the fogs that arise from the water are not nore muhealthful than the defence that the water gives countervails, or the fish brings profit."
2988. "Fourthly, as for beauty, let not the front look asquint upon a strangel, but accost him right at his entrauce. Uniformity and proportions are very pleasing to the eye; and 'tis observible that freestone, like a fair complexion, grows old, whilst bricks kuep their beauty longest."
2989. "Fifthly, let the offices keep their due distance from the mansion-house; those are too familiar which presume to be of the same pile with it. The same may be said of stalles and barns; without which a house is like a eity without works, it can never hold out long. It is not only very inconvenient, but rather a blemish than a beauty to a building, to see the barns and stables too near the house; because cattle, poultry, aud suchlike must be kept near them, which will be an annoyance to a honse. Gardens onght also to be disposed in their proper places. When God planted a garden eastward, he made to grow out of the ground every tree pleasant to the sight and good for food. Sure he kuew better what wns proper for a garden thatu those who now-a-days only feed their eges and stare their taste and smell." The same honest old dignitary (would we had some such in these days!) says, "He who alters an old house is ty'd as a translator to the original, and is confined to tho faney of the first builder. Such a man woald be unwiee to pull down a good old luilding, perhaps to erect a worse new one. But those who erect a new house from the ground are worthy of blame if they make it not handsome and useful, when method and confusion are both of a price to them."

Sect. V.

PRIVATE BUILDINGS IN TOWNS.

2990. The common houses of the town are not those which will engage our attention. In London, and indeed throughout the towns of England, the habits of the people lead them to prefer separate houses for eaeh family, to one large one in which several families may be well lodged, or, in other words, they prefer rows of mean-looking buildings, with holes in the walls for windows, to the palaidal appearance which results in Paris and most of the other cities in Europe, from large magnificent buildings with eourts, and capable of aecommodating a number of different establishments. The section will be confined chiefly to the arrangement of a house of the first class; and from what will be said, sufficient hints may be drawn for the composition of those in a lower elass.
2991. The private buildings in a town are often in their e,mposition beset with difficulties which do not occur in those of the country, where the extent of site is freor and ampler. These, therefore, may be isolated, and receive light from every side. Their officts may be separated from the main house, and the parts may be disposed in the simplest possible manner; but in cities the site is generally more or less restricted, often very irregular in form, and generally bounded by party walls. Yet, with all these obstacles, it is necessary to provide almost as many conveniences as are required in a country house; whence the disposition cannot be so simple in its application as where there is no retraint. All that can be done is to make it as much so as the nature of the spot will permit, and to produce the maximum of comfort which the site affords.
2992. Nothing must be considered below the attention of an accomplished arehitect, nor anything above his powers; he ought as cheerfully to undertake for the proprietor the conduct of the meanest cottage as of the most magnificent palace. Little will be requisite to be said on the common houses of London, or other cities and towns, in which there are seldom more than two rooms and a closet on a floor, with an opening behiud. These may be varied; but the general mode is to construct them with a kitehen in a floor sunk below the ground, and a room behind, serving for a variety of purposes; an area in front, with ranlts under the street, and the same often in the rear of the house. The space opposite
the deseend ing atairs will form a dark cluset; and the privies, and wine and beer cellirs, with other smill offices, are provided in the vaults. On the ground floor thero is rarely more than a passage on one side, which conducts to a staircase; and this requiring more wilth than the passage itself, the best room on this floor is placed in front, and the back is a smaller room, often opening on a small light closet still further in the rear. A yard is supposed behind, by which light is obtaned for the back room. On the one-pair and other floors the passage becomes nectssary as an access; the drawing or front room thercfore runs over it, and becones larger, capable, in the upper floors, of subdivision for hedruoms, or other purposes, as may be required; and the buck rooms with their closets, if carried up, follow the form of those on the ground floor. Though little variety may be the result of the restricied space to which this species of house is usually confined, the addition of four or fire feet either way will enable an intelligent architect to throw in clusets and other convenien es which are invaluable, as relieving a small house from the pressure which utherwise will exist in the different apartments. But this will be olvio,ns to the practical man, unless he walks about blindfold. The houses we hare just described may stand upon a site of about twenty feet by thirty feet, independent of the vaults in frout and rear, and the back light closet, which is an invaluable appendage to a huse of this description; which is the scale of a seccnd-rate house.
2993. Of the next higher rate of house the rarieties aro too great to be deseribed, becuse the extent of the largest arrives at what would be called a palace on the continent. But, taking a mean between that just described and that last named, we may take one similar to a moderate one in Portland Place for example In such a one must be provided, on the basement or sunk story, vaults under the street for beer, coals, wood, privies, and the like, the refuse or clust of the house. The body or corps de lugis on this floor must contain housekeeper's room, servants' hall, rooms fur butler and head footman, wine cellar, cloets for linen, strong room for plate, with closets and other conveniences for the household. The ascending staircase must also have a space set apart for it. In the rear, under the open area hehind, will be placed a kitchen, scullery, and the larder, with the other appendages of this fart of the household; an area, covered, where the communicat on with the rest of the flow is made between tho hody of the house and the offers in question Beyond the kitchen are often vaults (thongh the disposition is sometimes otherwise), over which the stables and coachhonses are placed, opening on the ground floor on to a mews parallel to the street in which the house is situate. The ground floor of this disposition has usually a dining-room in frent, with a good-sized hall at its side, leading to a stairease which ascends in direction of the long side of the house; and this is necessary whin the rooms above are to communicate by folding doors. In some oll houses, however, the staircase ascends between the front and back rooms, and a back thircase is provided by the side of it. But more commonly this is placed beyond the principal stairs, to allow of throwing the drawing-rooms into one. In rear of the dining-room is often planed a library for the gentleman of the house; and beyond this, and further than the lack stairs, when the lateral staircase is used, a waiting-room, at the rear of which a water-closct may le placed, with a door from it to the area over the kitchen; or there may be a com uunication of this sort from the waiting-roorn, which may serve the purpose of access to the stables. On the one-pair floor the disposition will be two drawingrooms, a boudoir over the waiting-room, and beyond this a water-clest. On the two-pair floor two bed-rooms, each with a drtssing-room, or three bed-rooms and one dressingroom, and a bath-room and water-closet. Abore this four bed-rooms and closets may lie cltained; and, if necessury, rooms in the roof in addition. For a good house of this class, with the offices, the plut of ground should not be much less than 100 feet by 30 .
2994. Of the first-class of houses. as a model may be taken the town-house, in Piccadilly, of his Grace the Duke of Devonshire, which, with the offices and court-yard in front, covers an area fxtending about 231 feet towirds the strect, and 188 feet in depth, whereof the house itself occupies a frontage of 163 feet and a depth of 188 feet, and upens on to a large girden in the rear. On the east sido of the court-yard are disposed the kitch an and other domestic offices, opposite whercto, on the west side, stand the coach-houses and stabling. The basement of the honse contains apartments fur the various persons attached to such an establishment. The principal floor, to which thie ascent is by an external staircase, contains an entrance-hall, 35 feet by 30 feet, and communieates to an apartment on the west side, 33 feet by 22 feet, leading to the southWestern corner room, which is 20 fect square. On the north of the last is a room, making the north-west angle of the building, and this is 40 feet ly 20 feet. On the cast side of this last, and facing the porth, is a room 33 feet by 23 feet, and in the centre of the north front, corresponding with the width of the hall, is an apartment 30 feet by 23 feet 6 inches. To the east of the list is a room 33 feet by 24 feet, and east of that, forming the north-east angle, is a small room 2) feet square. Thus far these rooms, seven in number, are all ch suite, lat this is in sume measince intermpted by the semainder of the east flank, which is filled with three smaller roms. To that of them, howerer, at the
south, which is 20 feet square, a passage is prespere:l, an I from that you enter another room, 23 feet by 22 feet, which once more lnings you back to the hall. The stairases are ' et ween the north and south rooms on each side of the hall. Abure this floor are the lodging rooms, \&e. The superficial area of all the reeeption rooms on the principal floor, added together, amounts to 5708 feet. Plans and elevations are giren in the Vitravius Britannicus, which contains other town houses of importance of the period, well worth the student's attention.
2995. Burlington house, Piceadilly, before its late partial demolition, was in some respects - for instance, in its beautiful semieircular colonnade in the front court-considered superior to that just described. It can le hardly necessary to add that, in such edifices, rooms must be provided for steward, butler. housekeeper, stillroom-maid, valets, ladies' maids, servants hall of good dimpmsions, 心e, for a muniment room and for plate, both of which must be fire-proof. Baths also should be provided on the ehamber floor, with 0 her conveniences which will oceur to the architect. The rooms for pietures, if possible, should be on the north side of the building. The illastrated journals of the present day show the great ehanges which have been made in the requirements, and the size and number of the apartments, of all grades of society.

2995a. During the last thirty years, however, flats, or residences in flats, hare been largely atopted, and the system appears to lo gaining ground in large towns for many elasses of society. The paper by Mr. W. H. White, On Middle-class Houses in Paris and Central London, read November 19, 1877, at the Royal Instituto of British Architects, is suggested for perusal.

Sect. VI.

Private buildings in THE COUNTRY.

2996. Of first-class private buildings in the country, we apprehend we eannot furnish hetter hiuts than by describing that of Kellestone, in Derbyshire, ereeted for Lord Scarsdate by Robert Adam. There are others which are larger, but we do mot thank any superior io distribution and effect. The plans and elevitions of it are to be seen in the I'itruvius Britannicus abore mentioned. The main bod ${ }^{\prime}$ of the house M (fig. 13j2), is about 136 feet by 10.5 feet; and at each angle are qualrants of eommunicaticn to the four wings $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D , which are each about 70 feet by 54 fuet. On the kasement story of the main building are a larye and small sub-ball in the eentre, the former 67 teet 3 inches by 42 feet, and the latter 42 feet by 40 feet 7 inchis. On the right of these are disposed a butler's room, 22 feet 6 inches by 17 feet 9 inches; a housekeeper's ruom, and a steward's room, 30 feet by 21 feet 3 inches. On the left, a bath, a gun-room, 23 feet

Fig. 1352. 9 inches by 23 feet 7 inehes; a smoking parlour, 28 feet by 17 feet 9 inehes; a bootroom, 22 feet 6 inches ly 17 feet 9 inches, besides elosets, staireases, \&e., on either side. The wing 13 contains the stables, a chapel, and other apartments. C, sleeping and orher romms, eight in number, with a stairease whi h conducts to the corridor in the corresponding quadrant. D contains the kitehen and its requisite aceersories, and a servants' hall. This wing has also a stairease to its corresponding corrilor in the quadrant, which attaches it to the main body. On the principal story, the main boly al has at the entrance, which is in the centre, and approached by a nolle flight of steps, a magnifieent hall, 69 feet 3 inches by 42 feet, at the end whereof is a saloon 42 feet diameter. To the right, entering from the hall, is the principal stairease, beyond whieh, laterally, is a bud chamber 33 feet by 22 feet, with its accessories; and on its end, towards the back front, are ante-rooms, and towards the front the dining room. whence by the eorridor is access to the kitchen in the wing D , and from the ante-rooms above mentioned the eorresponding eorridor on that side leads to a conservatory in the back front of the wing, and the upper part of the chapel. On the left-hand side of the hall, with windows in the left flank of the main body, is the drawing-room, 44 feet by 28 feet; at the end towards the rear is a library, which is continued in the corridor leading to the wing A, wherein is a musie gallery, 66 feut liy 18 feet, with other rooms and a stairease. On the end of the drawingrom, towards the front, is a music rome, 36 fect ly 24 feet, whence the curridor leads to Lord Scarsdale's belroom, is feet square, with dressing- rooms, and the lady's libratry, which, on this floor, are in the wing (C. The wing D is ocenpied liy the upper part if
the kitchen, a lammery, 30 feet by $18 \mathrm{fee}^{2}$, and some bedrooms, to which access is ly it gallery over part of the kitchen. The main body and wings contain a story over what has been last described, ehiefly for chambers. Wo have before (in the First Book, figs. $221, \underline{2} 2$) noticed the splendid hall and saloon, whiel occupy the height of the whole building, and are, though somewhat fanlty in detail, sery finely-conceived and wellproportioned apartments. The former is 40 feet high to the top of the cove, and the latter 55 fiet to the level of the eye of the dome. Though the glerations exhibit defects, we are not inclined to quarrel with them in a dwelling which deserves rather the name of a palace than of a country house.
2997. England abounds with country seats of this clase; among them is Holkham, Whicb has already been mentioned in the First Book (511); but we know none fur disposition that ean claim superiority orer that which we have above described at length, from which the student may derive much information on the requirements in a mansion of the first class. It is to be understood that we here it tend modern buildings. The houses of the times of Elizabeth and James are many of them magnificent structures, but the comfort, introluced into houses of later date leaves them, independent of their picturesquo beauty, far lehind the buillings of Kent, Carr, James, and many others. Bleuheim is monumental in its design, and properly so, and hence dues not fall within the category of this section.
2998. There are, of course, many intervening degrees between the mansion we have just deseribed and the villa of the re.ired banker or merchant: it would be impossitle to state them in detail. We have giren the maximum in the above case, and we shall now give the minimum for the class last mentioned.
2999. The smallest site of ground on which a villa can be well designed is, supposing it an oblong, about 80 feet ly 56 to 60 feet. This on the principal floor will admit of a hall, a saloon or ante-room, which may lead to the principal apartments, a drawing-room, two secondary drawing-rooms, one whereof may be appropriated to the reception of a lilliard table, a good dining-room, not less than 30 feet by 20 feet, a library of equal size, with other rooms, suitable to the particular taste of the proprietor, and the conveniences and accessories whech such a building reguires. The ground, supposing the domestic offices to be under the principal floor, should be raised, so that they need not be much sunk below the general level or the land. If the building be seated on rising ground, a little more sinking may be allowed than under other circumstances, provided the lower story be pro'ected ly dry drains all round the building, to prevent the earth lying against the walls, because drainage, the most important of all things in a building, may then be obtained easily by the natural fall of the ground. But a villit need not be compelled to have its domestic offices underground; then their combination with the apartments will t-st the architect's capabilities. The plot we hare mentioned will admit of all the offices below which are necessury for the service of a good-sized family, and abore, with only one story above the principal one, will afford a pretty fair allowance of dormitnries ; lut if a concealed story for servants be practised in the roof, there are few establishments on a common scale for which, on libo plot, accommodation may not be provided by a skiliul artist. The stables and coach-houses and the greenhouses should stand apart. Some persons like to have the se communicating with the villa itstlf; but the practice is destructive of symmetry and very injurious (except in the villa on an irregular plan, which then rather appraches to the cuttage orné) to the geveral effect of the architecture.
3000. The villas at Foot's Cray and Mereworth, imitations of Palladio's Villa Capra, so often mentioned in this volume, and represented in fig. 1018, are tho masima of vilias; leyond this the villa becomes a mansion, and must be treated as one on a scale more or less grand, as the means of the proprietor allow the architect to provide for his wants. All precepts, however, on this head are ralueless, because the architect is regulated so much by the convenience required. He must possess himself fully of that, and, attending to the general rules given throughout this work, but especially in this Third Book, he will find little difficulty in fulfiling the commission with which he is intrusted. Amoner other mattars let hin well inform himself of what las been done, and make himself master of the points involved in domestic economy, from the lowest to the highest grade, and he cannot, using that information, fail of giving his employer that satisfaction which is the first care that should animate him.
3001. The cottage orné, as it is called, is a building suhject only to rules which the architect chooses to impose upon himse!f. The only point to be attended to, after internal comfort has been provided for, is to present pieturesque effect in the exterior. Tho student should consult the work of Professor Kerr, The English Geatleman's House, 8vo. London, 3rd edition, 1871, in which will be found a selection of the best examples of house planning, with a fund of nseful observations; while the illustrated journals of the present day exhilit plans and views of villas designed in the many peculiarities of architecture adcpted by the varions professors of the art.

Sect. VII.

FARM-HOUSE.

300 2. The mere building denominated a farm-honse is simple enongh in its distribution, and scareely justifies a section here, beeause the persons engaged in agrieulture have generally the bent notion of the mode of suiting it to their own partienlar business and the nature of the firm they oceupy. It is first to be considered whether it is expedient to flace it elose to the other buildings of the farm, such as the barns, stables, and stalls for eattle, $\mathcal{\&} e$. If so, it should be designed in eharater with them, and a large space of ground is enclosed for the formation of a farm-yard; whieh, notwithstanding the seemingly repulsive mature of the suljeet, may be made a very picturesque composition as a whie. The farm-house itself, though it must be sufficiently large to accommodate the family of the farmer, should be restricted in the size of its rooms and the extent of its plan by the magnitude of the farm, it being altogether an absurdity to plant a large house on a small farm, not only because of the original cost, which the rent of the land will not justify, but because of the cost of the annual repairs which a large building entails beyond those of a smaller one. The same observation applies to the farm buildings themselves, which in extent must be regulated by the size of the farm eultivated. It is moreover to be comsidered, in respect of the latter, whether the farm be grazing or arable. In the first case more provision of cattle sheds must be afforded; in the latter ease more harns must be allotted to the eultivator. These, however, are matters upon which the architect reeeives lis instructions from the proprietor, and whereon, generally speaking, he is himself incompetent to form a correet judginent.
3003. In the commonest farm-houses the external door may open to a plain passage, at the end whereof the staircase may be placed. On one side of the passage may be a common kitehen, and on the other side the better or larger kitehen, serving also as a parlour for the farmer and his family. Beyond these, on one side, may be placed the pantry, and on the other side the dairy-room, the last being much larger than the former, and being on the side of the parlour or best kitchen, not so liable to the heat. To these, as needful, may be added more rooms on the ground floor; the upper story being divided into bedehambers for the family, with garrets over them for the servants. The kitehens should be placed upon arehed cellars on several aceounts, not the least of which is that the farmer should have the meats of preserving in good condition the malt liquor or eyder which is the principal beverage of his establishment. It is a sad mistake on the part of landed proprietors, though common enough, to think that such buildings are not only below the care of an architect, but that he is too ignorant of the wants of the farmer to be competent to the task; if, however, he will refleet for a moment, he must admit that the artist who cim make the most of a large plot of ground, with numberless requirements in the accommodation, is not less able to turn to the greatest advantage for the comfort of the oecupier even a small farm-house.
3004. In the erection of a larger farm-house the choice of the site, as before, must depend on the nature of the ground and the situation of the farm Health and convenience are the primary governing matters. It must never be placed where it canot be well drained. It should be central to the land, and as near the road as the conditions will admit. For such a building the principal door may open into a moderately wide passage, having therein a staicease to the upper rooms. On the right of the passage a common kitchen may be provided for the family, and on the left a room somewhat larger, whieh in very small farm-houses used to be called the best kitchen, but which in this may be really the parlour, where the family may sit retired from the servans. Under these, cellars, as above mentioned, may be provided. On the ground floor we may now ald a bakehouse and seullery to the pantry and dairy provided in the first scheme, as also closets and such convenienees for the housewife. The floor above may be extended over the additional rooms just mentioned, thus giving lodging room to a larger number of persons than to those contemplated in the first scheme. "In this manner," says Ware, in his Complete Body of Architecture, folio, London, 1756, "the young arehiteet will very easily see how to enlarge or contract his plan for the building of farm-houses, according to the intended bigness." . . "'They all consist of the same number of rooms, and in general of the same number of offices; this is where the bare article of convenience for farming is concerned. Where the inhabitant is grown rieh, and intends to live in another manner, he may add what he pleases, which the architect may adopt." . . "It is then no longer to be considered a farm-house, but as the house of some person of fortune, who intends to live as those independent of business do, but withal to have some farming in his eye." When the farm-house comes to this extent it trenehes hard upon the condition of the villa, though not guite reaching it, beeause the latter includes many provisions for a refined mode of living whieh the yeomat, the pride of England, does not require; a class which, we fear, the manutacturing and commercial classes are fast aminilating.

Sect. VIII.
COITAGES.
300.5. "Fistates," observes Kent, (Hints to Gentlemen of Landed Property, 8vu. Loncion. 1776 ,) "being of uo value without hands to cultivate them, the latourer is one of the mont valuable members of society: without bim the richest soil is not worth owning." It follows, then, that his condition should be most especially considered, and it is a duty or. every country gentleman to take care that the labourers on his estate are so considered as to be made at least confortable. "The shattered hovels," says the same author, "whicls half the poor oi" this kingdom are obliged to put up with, is truly affecting to a heart fraught with humanity." . . "The weather penetrates all parts of them, which must oceasion illness of various kinds, particularly agues; which more frequently visit the children of eottagers than any others, and early shake their constitutions.". . "We are carefut of our horses, nay, of our dogs, whieh are less valualle animals; we bestow considerable attention upon our stables and kemels, but we are apt to look upon cottages as ineumbraness and clogs to our property, when, in fact. those who occupy them are the very nerves and sinews of agriculture." We fear the negleet of the comfort of the cottager has given a greater impulse to poaching and other crimes than his natural propensities have induced. This, however, is not a matter for disenssion here. It is not to be supposel that we mean the labourer is to be placed in an expensive dwelling; a difference of rank must exist; and if the whole revente of the country were divided among the population per head, it would be seen (as MI. Dupin has recently shown in a most eloquent and soond address delivered in l'aris as respects France) that the division of it per day, after allowing for the expenses of the most economical government that could be de vised, would be such as would not satisfy the lowest class of labourer, much less the ingenious mechanic. This is a matter so suseeptible of proof, and so proper to be generally promulgated, that we have here gone a little out of our way lest we should be considered too urgent with respeet to the cottager.

30uri. No cottage ought to be ereeted which does not contain a warm, comfortable, plain room, with an oven to bake the bread of its occupier; a small closet for the beer and provisions, two whoiesome lodging rooms, one whereot should be for the man and his wite, and the other for his children. It would be well always, if possible, that the boys and girls in a cottage should be separated; but this unfortmately entails an expense, and pe:haps is not so materially necessary, beeause the boys find employment at an early age. A shed for fuel should be attached.

Cottages should always be placed in sheltered spots, and as near as possible to the farm where the labourer is employed. The wear and tear of a man is not very dissimilar to that of an engine, and it tends as muels to the interest of the farmer as it does to the comfort of the labourer that all unnecessary fatigue be avoided.
3007. In the erection of cottages it is not only more economical, but more comfortable to the oceupiers, that they should be built double, or in twos at least. In those proviaces where brick or stone can be obtained they should never be constructed with timber, and tiles, if they can conveniently be had, should ahways supersede thatel. Further ohservation on this subject will be umecessary, for we have ill delivered the principles of our art if the student be not now prepared to carry out the few hints on the subject of cottages, -buildings, in point of fact, of importance paramount to the palace which the sovercign inh bits.

The following remarks are by J. C. London, and are extracted from a "Report to He: Majisty's principal Secretary of State, from the l'oor Law Commissionors, on an Euquiry into the Santary Condition of the Labouring Population of (ireat Britain," 1842.
" 'The essential requisites of' a confortable labourer's cottage may be thus summed up: -
" I. The cottage should be placed alongside a public road, as being more cheerful than a solitary situation and in order that the cottager may enjoy the applause of the publie when he has his garden in good order and keeping.
" 2. The cottage should be so placed that the sun may shine on every side of it during the day throughout the year, when he is visible. For this reason, the front of the cottage can only be parallel to the publice road in the case of roads in the direction of north-eant, sonth-west, north-west, and south-east; in all other eases the front must be placed obliquely tio the road, which, as we have previously shown, is groatly preferable to having the front parallel to the road.
" 3. Every cottage ought to have the floor elevated, that it may he dry; the walls double or hollow, or battened, or not less than eighteen inches thick, that they may retain heat ; with a course of slate or Hagstone, or tiles bedded in cement. six inches above the sarface, to prevent the rising of damp; the roof thick or double, for the sake of warmth; and projecting eighteen inclaes or two feet at the caves, in order to keep the walls dry, and to elleek the raliation of heat from their exterior surface.
" 4. In general, every cottage ought to be two stories high, so that the sleeping ronmen may not be on the ground floor; and the ground Hoor ought to be from six inches to onc fout above the outer surface.
" 5 . The minimum of accommodation ought to be the kitelnen or living room, a bact kitehen or wash-house, and a pantry, on the ground-floor, with three bedrooms over ; or two rooms and a wash-house on the ground foor, and two bedrooms over.
" 6. Every cottage, including its garden, !ard, \&c.. onght to occupy not less than onf sixth of an acre ; and the garden ought to surround the cottage, or at all events to extend both before and behind. In general, there ought to be a front garden and a back yard, the latter being entered from the back kitehen, and containing a privy, lifuid manure tank, blace for dust and ashes, and place for fiel.
" 7. If practicable, every cottage onght to stand singly, and surrounded by its garden; or at all events not more than two eottages ought to be joined together. Among other important arguments in favour of this arrangement, it may lee mentioned that it is the only one by which the sun can shine every day on every side of the cottage. When eottages are joined together in a row, unless that row is in a diagonal direction with reference to a sonth and north line, the sun will shine chiefly on one side. By having cottages singly or in pairs, they maty always be placed along any road in such a manner that the sum may shine on every side of them. provided the point be given up of having the front parallef to the road, a point which in our opinion ought not for a moment to be put in competition with the advantages of an equal diffusion of sumshine.

- "8. Every cottage ought to have an entrance porch for containing the labourer's tools, and into which, if possible, the stairs onght to open, in order that the bedrooms may be communicated with, withont passing throngh the front or back kitehen. This, in the canc of siekness, is very desirable, and also in the case of deaths, as the remans may be carried down stairs while the family are in the front room.
" 9. The door to the front kitchen or best room should open from the porch, and not from the back kitehen, which, as it contains the cooking utensils and washing apparatus, can never be fit for being passed through by a stranger, or even the master of a fanily, where proper regard is had by the mistress to cleanliness and delicacy.
" 10 . When there is a supply of clear water from a spring adjoining the cottage, or from some other efficient source, then there ought to be a well or tank, partly under the Hoor of the back kitehen for drawing it up for use, as hereafter described in detail. The advantages of having the tank or well mader the back kitchen are, that it will be secure firm frost, and that the labour of carrying water will be avoided.
"11. The privy should always be separated from the dwelling, unless it is a proper watercloset, with a soil-pipe communicating with a distant liquid manure tank or censpool. When detached, the privy should be over or adjoining a liguid manure tank, in which a straight tube from the bottom of the basin onght to terminate; by which means the soil basin may always be kept clean by pouring down the common slops of the house. No surface being left from which smell can arise, except that of the area of the pipe, the double flap, to be hereafter described, will prevent the escape of the evaporation from this small surface, and also ensure a dry and clean seat.
"12. The situation of the lipuid manure tank should be as far as possible from that of the filtered water tank or clear water well. It should be covered by an air-tight cover of Hagstone, and have a narrow well adjoining, into which the liquid should filter through a grating, so as to be pumped up or taken away without grosser impurities, and in this state applied to the soil about growing crops.
"13. In general, proprietors ought not to intrust the erection of labourers' cottages on their estate to the farmers, as it is chiefly owing to this practice that so many wretched hovels exist in the best-cultivated districts of Scotland and in Northumberland.
"14. No landed proprictor, as we think, ought to charge more for the land on which cottages are built than he would receive for it from a farmer if let as part of a farm; and no more rent ought to be charged for the eost of building the cottage and enclosing the garden than the same sum would yield if invested in land, or, at all events, not more tf in can be obtained by govermment securities.
" 15 . Most of these conditions are laid down on the supposition that the intended builder of the cottage is actuated more by feelings of human sympathy than by a desire to make money; and hence they are addressed to the wealthy, and especially to the proprietors of land and extensive manufactories or mines."

3008. To the foregoing fifteen essential requisites we have only to add a few observations on the design of a ottage. The plan should not be otragnling, on such as to render a varity of roof-lines necesary, and although its arrang ment shosild be compact, it shoakl not be enamped. Shapeless nooks and corners do not become convement cupboards and closets or because t. ey are enelosed and possess a door, but ranmer conven ent hidingplaces for mice and dirt. Too many prijections make a small building look smaller by
depriving it of breadth; and tou great a diversity of coluur gives it a vulgar appearance, and frequently destroys the eflect of really good proportions. The temptation to build picturespuely and to try experiments with new materials and methods of construction, is much greater in the country than in town. Coloured bricks, bands of ornamental tiles, glazed patera, and other similar attractions, may give variety to elevations, but they must he adopted with considerable caution in small buildings. New inventions and psendoeconomical devices too often prove miserable and expensive delusions. As the details of construction, \&e., which are given in the next section, are equally applicable to those in the country, this subject will be now dimmissed.
3009. In the autumn of 1863 two premiums of $25 l$. each were offered through the Society of Arts for the most approved designs for cottages, to be built singly or in pairs. at a cost not exceeding $100 l$ each. It was essential that each cottage should fulfil the folluwing requirements. On the grome floor, a living-room of abont 150 feet superfieial; a scullery or kitehen of not less than 70 feet superficial; with a ventilated pantry. On the upper floor, three bedrooms, one to be not less than 100 feet superticial ; fire-places to be provided in two of the rooms. The height from the ground to the first floor to be 9 feet, and the bedroons to be 8 feet in the clear. The memorandum of the Inclosure Commissioners with respect to the substantiality of agricultural buildings to be adhered to. In the estimate. briekwork was to be taken at 81 . per rod reduced; Countess slates at 233 s. ; and Baltic timber at $2 s .3 d$. per foot cube. An allowance of 20 per cent. was to be made for contingencies and builder's profit on the e st prices of labour and materials, with 5 per cent. for superin. tendence. The prime cost, therefore, of each house was not to exceed $80 l$., ineluding not only the cottage, but the fixtures, water supply or well, fenci.g, pasing, and all those necessary addenda which the owner must supply.
3010. An able report was drawn up on the 154 designs submitted, by the three appointed judges (given in Builder, 1864, p. 359), towards the conclusion of wheh they observe "that although good cottages may possibly be crected, under fivourable circumstances, in some parts of England for a lower sum, we consider the probable average cost of a pair of cottages built with the conveniences enumerated, would be about $280 l$. to 3001 , and that the attempt to ereet then at any considerable reduction upon this amount must result in some inferior kind of buildings, discreditable to the owner, and wanting in much of the necessary accommodation for a labourer and his family." The premiated design is given in the same volume, $\mathrm{p} .95 \%$. On p. 295 of the following volume, six bilders' estimates are given for erecting six cottages on the premiated plan, ranging from 397l. 13s. 4d. to 52%. the pair ; a difference somewhat accounted for by the designer in his ol servations at p. 319, where lie states that $260 l$. the pair would le the price of some he was then creeting, with modificat.ons. On $p .394$ is given a design estimated at 2002 ., and tendered for at $180 l$. the pair, which is deserving of comparison.
3011. The Central Cottage Improvement Socjety, London, stated in 1865, that " reports from different parts of the country, of the actual cust of building, prove that on the average, each room containing 100 superficial feet, or 10 fe t square, of a cottage or block cf Luildings, costs from col . to 251 ., exclusive of land; this is equivalent to $3 d$. per foot cuhe. In the fives.ts of plans published lyy the socjety, No. 1, of four rooms, has been built for 162l.; No 2. slightly larger, for 168l.; No. 3, same as No. 1, with a seullery, for 1751.; and No. 4, more commodious, for an artizan, for 220 l per pair. The Journal for 18.58 , of the Bath and West of England Suciety, vol. vi., details a cuttage of fise rooms, built on Exinoor, for 60l., with a living room 15 feet by 13 feet.

Sect. IX.

TOWN DWELLINGS FOR THE INDUSTRIAL, CLASSES.

s012. The ladug features cf construction and detailed arrangement which may be considerd peculiarly applicable to dwellings intended for working men whose "ages range from 12 s, to 24 s. per week will be described herein. Workmen of this class have been hitherto strangers not only to the conveniences which render home attractive, but to the barest accommodation neces ary to render social life tolerably decent. Unforthnately, the nearer an improved dwelling approaches its miserable predecestor in general aspect and character, the more popular it will be. The difficuly, therefore, in designing new homes for the poor consists in the introduction of improvements which shall lead to the gradual abandomnent if injurious habits, and to nive no sudden offence to jealously cherished prejudices. Tondorthis effectively it is desirable to accertain the leading requirements of the inhalitants of the district in which it is proposed to build.
3015. A poor man's town dwelling should consist of a living roon and bedroom; a plemtiful supply of water; a water-clonet, sink, and lavatory. distinct but not far remored from his tenement; a wash-house, with the means of dying cluthes in any weather wibout arthlicial heat; and, when practieable, a play ground for ehidren.
3014. The living-room should be 12 feet by 10 feet clear of all obstructions or projectio.s, and 8 feet high, giving 960 cubic feet at least. The rooms should be of a square form, as being easily kept clean and made comfortable. Fig. 1353. presents a general plan of the arrangements. The door should open into a porch or vestibule, and be placed at the end of the wall opposite to the window, so tiat when both are open the air in the dwelling may be effectively changed. The window shouid be sufficiently large to light every part of the room. It should be fitted with sashes, to insure top and bottom ventilation; and its sill should not be more than 2 feet 9 inches from the floor, to prevent high furniture being placed under it. Tolerably large panes of glass will be found to last longer than if the panes be small. The fire-place should be as near the centre of its own wall as possible, and be furnished with a range containing a
 boiler, with a tap of the best description fixed

Fig. 1353 prabody dwellings, commerclal strert. 2 inches alove the bottom; an oven; and a ccoking place at least 10 inches wide from side to side, with sliding bars, flap and catch, all of which ought to be of wrought iron. The living-room should have a good serviceable closet the entire height of the room, the front flush with the chimney breast, to contain shelves for cooking utensils and crockery, \&c., and a large covered box for coal; this closet should be lighted by a small window hung upon centres and to be easily opened.

305 . The bedrooms should be 12 feet by 8 feet, and 8 feet high, communicating with the living room hy a door in the wall opposite to the fire-place at the end nearest to the window, so that enough wall space may be secured for the bed. As these rooms would be sufficiently warmed from the living-roum, fire-places can be dispensed with where space is limited or expense of much importance.
3016. The walls should be well-built with sound stock bricks (the partitions being half a brick thick) and coloured with two coats of well sized distemper colour of a warm cheerful tint. Such walls offer no harbour for vermin; they are uninjured when nails are driven into them; and their freshmess and colour are easily renewed at a trifling expense. The ceilings should be plastered, not only for a clean appearance, but also as a preventive against the spread of fire. The floor is best made of wood, though it is apt to get dirty and tolerably difficult to clean. If firewood or coal be broken upon any other floor than a wooden one the concussion is injurious to it. Tile and asphalte floors are often recommeaded as the best; but thongh they have a clcan appearance, they are cold to the feet when uncovered by a carpet; are more liable to injury; and are more troublesome to repair. Asphalte a..d cement floors depend in a great measure upon their rigidity for their efficiency, and require iron beams and brick arches, which are expensive.
3017. As regards ventilation, beyond supplying duors that do not fit too close, windows that will open at tup and buttom, and fire-places with air-clannels underneath the floor, it is extremely difficult to know how to proceed further without detcetion. A ventilator once discovered is instanily rendered nseless by being pasted over. Perforated bricks placed throughont the length of the wall in which the window is set, and in that opposite to it, causes the air to be so diffust by its passage through the narrow channels with which the bricks are provided, that the paste-brush is seldom used.
3018. The lavatory should contain a water-closet fitted with a strong galvanized iron. valve; a lead trough, for washing purposis, supplied with a high-pressure loose valve cock, and an enamelled iron basin. A smaller lead trough or waste, for the discharge of dirty water, should bave an inch service cock above it for supplying pails and kettles. The walls, coloured as those of the dwelling, should be well painted to the height of 18 inches above each trough, for frequent and easy washing. The floor is best covered with thick 9 -inch square tiles, which bear a govd deal of wear and tear and slopping in one spot without injury. The lavatory should have two windows at least, one in the external wall of the water closet and one at the furthest end of the wall at right angles to it.
3019. To attach a laundry to an extensive range of such dwellings becomes a positive duty. A washing tub and rinsing tub are necessary, about 3 feet 3 inches long by 1 foot 9 inches wide, with washer, plug, and chain, and a separate cold water service to each. The top of the tubs should be 3 feet 3 inches above the foot-board, or the floor, if not provided. A 10 -gallon copper, with cold water service, and a tin ladle. The flue of the copper is to be carcfully constructed to insure the heat being well distributed over the sides and bottom, and to afford facilities for regulating it and for cleaning. Wringing machines might be provided if hydroneters are not used; they are easily attached to the tubs. Artificial neans of drying clothes, as adopted with advantage in public wash-houses,
are to be avoided in small laundries, because they cannot be maintained without considerable expense. Clothes are more easily and effectively dried when protected from rain, and suspended in strong cross currents of air.
3020 . The water-cistern should be as close to the laundry as possible, in order that the piping may be short, with very few joints and bends so as to be free from the risks which attend a variety of levels. More atiention is desirable to the dimensions of the iron piping, and the nature and position of the services, than they usually receive. Thus means should be provided for filling, emptying, and cleaning the cistern or tank; also for regulating the supply during the time that any portion of the piping is under repair. Every rising main should be furnished with at least two valves. The first is best fixed in the junction between the rising main and the company's street main, so as to regulate the entire supply of the building. The second should be fixed at the bottom of the rising main, so as to release the water which remains in the pipe after the cistern has been filled. In some cases an additional cock, 2 fect above each floor level, for the supply of buckets, or for the comnexion of hose in case of fire, may be desirable.
3021. A few square yards of play-ground is of inestimable value for the lahouring man's children. One large play-ground to a block of buildings is of much greater use than many small yards to as many cottares, and has temded as much as anything to ensure the suceess of the large bloeks of dwellings in London.
$30 \geqslant 2$. The drain-pipes should be of the best description, and their diameters larger than those employed under ordinary circumstances, because their liabilities to obstruction are very much greater. The main drains should be external to the building, and supplied with examination holes at intervals for repair and cleansing, and should possess the means of being regularly flushed with water. When the ground is sott, the diains, both large and small, should be laid upon beds of concrete, to preserve them in their proper falls. Soil and other pipes should be ventilated by being taken above the roof of the building.
3023. The site for a block of associated dwellings should be as open and in a situation as public as possible, not only to receive the adva.itages of light ana ventilation, but that it may be easily found and readily aceessible, and that its residents may have contact with neighours whose habits and appearance are superior to their own. The ends of the site should face north and south, so that its east and west sides should have the morning and evening sun. It should olfer every facility for good drainage; the nature of the subsoil should be well assertained, and every necessary precaution taken to avoid, or to clear out, any accumulation of foul refuse that may have been carted into the vaeant site. The most economieal dimensions for a site "ithin the jurisclietion of the Metropolitun Board of Works in London, are 108 feet long by 60 feet wide. This area will accommodate a building 108 feet long by 34 feet wide, and admit of a playground 26 feet deep in its rear. The multiple of 108 by $34=3600$ in romen numbers, is the arca allowed by Act of Parliament for a buildrng containing several distinct tenements, and possessing only one entrance and stairease. The height of the building is best kept at 46 feet from the ground-line to the eaves of the roof; it almits of as many stories of dwellings as can be occupied with comfort to the tenants, and it requires no mnecessary thickness of walls. If made five stories in height it will contain 40 or 45 divellings, about 16 water-closets, 8 lavatories, 8 wash tubs and coppers.
3024. The following paragrablis comprise abrief description of the dwellings lately built or now constructing. In the basement, only a small cellar need tee providd dor dust, aecess to it is to be obtained by a small external stairease under its first landing, but di-tinet. so that the dust may be removed without amoyanee. The ground, first, second, and third floor plans may be divided throughout their entire length into two equal portions, by a corridor 4 feet 2 inches wide, on each side of which are arranged the dwellings (fig. 1354.). In the centre is the prin-
 cipal entrance, which is 5 feet 6 inches wide, and furnished with external and internal folding-doors under the inmediate supervision of the poiter whose office adjoins it. The staircase, placed immediately opposite to the entrance, is 8 feet wide, with solid square stone steps having a 10 -inch treal, and an average rise of 7 inches. The sitle furthest from the coridor has an
tending from the gromnd-line to within a few feet of the eaves of the roof. It is separated from the corridor by two arches, whose centre pier coutains a dust shaft, traversing the eutire beight of the building, and communicating with the cellar above named in the basement. It is 14 inches wide within, open above the roof for ventilation, and is furnished with a hopper, which receires the dust, and closing flush with the wall at each floor level.
3025. The lavatories adjoin the staircase, those for the men on one side, for the women on the other. The fourth or topmost floor contains a laundry, about 22 feet long by 12 fect wide, covered with an open timber roof, the tie-beams having standards helping to support it, and serving as clothes posts. It is lighted by a range of small casements, admitting air sufficient to remose any unpleasautness that might arise from the laundry, and to thoroughly dry the clothes. It is furnished with eight sets of wash tubs, some being separated by slate partitions, for privacy ; eight 10 -gallon coppers; eight wringing machines, or a patent hydrometer; trellis framed standing boards; s'ools (as being better than tables) for clothes baskets; soap boxes and ladles. This floor also contains a bathroom for each sex, placed over the lavatories; it is furnished with one of Rufford and Finch's stoneware baths, and has a serrice of cold water. Hot water is supplied from the laundry when required. A cistern lined with lead adjoins each bath-room, and also supplies the lavatories below it; this position secures a direct fall to the several sorvices, and avoids the necessity for frequent bends and joints.
3026. The main drains are 12 or 9 inches in diameter; the smaller drains, kept as short as possible, are 6 and 4 inches, according to their requirements. The ventilation is secured by the side corridor having a window at each end of it, and by the open staircase in the middle of its length, all which forbid stagnation and remove impurities. These very practical observations are mainly due to the paper by H. A. Darbishire, who has designed several blocks of dwellings in the metropolis, as given, with illustrations of those in Commercial Street, Whitechapel Road, in the Civil Engineer, \&c. for 1864.

Sect. X.

SANITARY ASPECT OF HOUSE CONSTRUCTION

3027. This subject may usefully be referred to. Granting that a horise is well drained and that the plumber's work is properly carried out, there are yet other matters to be considered, so that a house may be a healthy residence. It should have plenty of light, plenty of air at all times, pure and dry, or at least as much so as possible. During the period when the number of windows and the glass in them were each taxed, large windows were advocated; but as soon as both were taken off, a change of fashion occurred, and small windows and small panes were again introduced. As regards street architecture, it is important that the houses should be erected of a height bearing a direct relation to the breadth of the street in which they are situated. Perhaps the height of the house should not exceed two-thirds of the width. As regards the direction of a street, the best is one nearly north and south, as the sun shines on a house on the west side from morning till mid-day in the front, and from mid-day till the evening on the back of it. In the orlher case, the louses on the south side get scarcely any direct sunlight, in winter none at all in front; while those on the north side get none to the back roons. Hence, large windows are necessary to compensate, by giring as much light as possible, for the direct sunlight which is necessary to make an apartment wholesome.
3028. Purity of air cannot be maintained in a house unless it be thoroughly dry. Setting aside the not inconsiderable quantity of water in the atmosphere produced by those living in it, aud by the combustion of gas, oil, and candles, the air in a house is liable to le rendered moist, 1 , by absorption from the soil below it; and 2 , from the porous material of which it may be built.
3029. The porosity of most building stones and bricks is remarkable. A cubic foot of stone will absorb from 5 to 9 lbs. of water, or from half a gallon to nearly one gallon. The absorption by certain kinds of stone is so rapid that in slight showers the water is all imbibed; and if the surfice be kept wet by constant rains, a large portion must find its way inwards, Freestone also allows of the passage of air or other gas by transpiration and diffusion; also bricks, unless these have been exposed to a temperature high enough to flux the material. The quantity of air diffused into and out of a house by the walls is very considerable. If the stone be coated with oil, paint, or any silicate solution, and the absorption be prevented, the valuable property of diffinsing air into the house is prevented. Hollow wills may secure these advantages. These may be of brick, or of concrete, or of stone outside and brick inside. In some parts of the country the material is laid with beds slightly sloping upwards somewhat to counteract the efferts of the raio, especially when blown from the south-west; perhaps the two inches of the bed of the
3030. Where rubble walls are used, the best thing to be done is perhaps to point them with a mixture of 1 of Portland cement to 2 of sand, and then to colour the whole with cement wash. But this shonld not be done until after one summer's sun has assisted in drying the stone, or the damp may dry inwards. It is considered that a 2 -feet stone will not dry thoroughly, even under fivourable circumstances, in less than two years.
3031. Plaster, whether on brick or lath, is exccedingly porous, and permits of a ready diffusion of gases. A wall merely whitewashed or coloured is better in a sanitary point of view than one that is covered with oil paint, which is then practically impervious to the passage of gases. Wall papers are probably not so bad in this respect as oil paint, but inferior to colouring or distemper work.
3032. The foundation of a house is an important part of it. The most perfect is a solid platform of concrete extending over the entire area of the building, from 2 to 3 feet in thickness, and coated on the top with nearly pure cement. Damp cannot penetrate this, it is considered. The joists should be laid on sleepers, so as to obtain ventilation to the space; in cuse of the bursting of a water pipe or of water getting into the concrete bed, it should be laid sloping, so that water could be carried off by outs de gratings. This would be expensive, it is true. Another system would be, to build the walls and dwarf-walls to a certain level, and then to fill in with hard dry rubbish, and cover the whole with cement 3 inches thick, composed of 1 of cement and 2 of coarse sand. Or, this might be covered with asphalte, also orer the walls, or the usual damp course take its place. This damp course must be put to main and dwarf walls.
3033. Gratings should be placed all round the building, thoroughly to ventilate the space under the basement floor, alout 10 feet apart. If a town house, then about 5 or 6 feet apart and each about 10 by 6 inches. Cross walls should have good openings in them to obtain this circulation of air. The floor may be considered cold by this ventilation; if so, the floor c in be pugged, or the boards be groored and tongued.
3034. In this wet climate, where occasionally half an inch of rain falls in e day, it is well to cover the tops of the chimneys, in order to prevent rain from coming down the straight flues into the grate, or down others into the gable walls and keeping them damp, preventing the smoke rising; and this cover can be combined with some means for preventing downdraughts.
3035. A simple method of ventilating a room is to drill a series of smallish holes vertically through the lower frame or meeting bar of the top sash of the window, say six or eight to the sash; the air rises through them into the room in the same manner as in a Tobin's tube. This is an old custom, and often tends to cure a smoky chimney caused in a room. Another is to have a bar of 3 or 4 inches in height to fit in between the frame on the sill of the lower sash, when raised for the purpose; there will then be a space left at the meeting rails for inlet of air.
3036. At the meeting of the Sanitary Institute of Great Britain, held at Bolton, Mr. R. E. Middleton, C.E, read a paper on the then proposed Sanitary Registration of Buildings Bill, 1887, in which he quoted a specification where water-closets are used. It is here given, as showing the present views, extreme or otherwise, of many sanitary officials.
"1. Every drain or part of a drain inside a house and all soil pipes shall be watertight throughout.
" 2 . The main drain of the house shall be ventilated at its upper extremity by means of a continuation of the soil pipe, or by a special pipe prorided fur the purpose; such ventilating pipe, whether connected with the soil pipe or otherwise, having a clear sectional area of 10 square inches throughout, and being carried to such a height that its outlet shall be at least 3 feet above the eaves of the roof, and the same distance above any window or opening in the roof, not being a chimney, and not less than 6 feet distaut from any chimney or opening in the roof, whether of the house to which it helongs or of the next arjoining house, measured in any direction. The main soil pipe shall te similarly ventilated, and if there be more than one soil pipe, then each such soil pipe which shall be longer between the basin of the closet and the main drain than 8 feet shall be similarly ventilated. The main drain shall be disconnected from the sewer or cesspit by means of a syphon trap of approved construction, provided with means fur cleaning the trap and the portion of the drain between the trap and the sewer or cesspit; and it shall be ventilated by an inlet air-pipe or ventilating disconnecting manhole ; and if there be more than one outlet ventilating pipe connected with the house drain, then each such portion of drain and outlet ventilating pipe shall te provided with a suitable syphon trapand an inlet air-pipe or disconnecting manhole, as already described; and the area of the inlet airpipe shall in all cases be at least double that of the outlet ventilating pipe in the clear.
"3. No pipe which passes through any part of a house, not being a soil pipe or soil drain, shall be connected directly with the main drain.
" 4 . No water-closet shall be situated next to a larder or place where food is storel. No pan-closet or D trap shall be used, and every water-closet shall be trapped, and shall be arranged so as to prevent syphonage.
discharged into the open air in an exposed position, and shall not be connected with the soil drain or rain-water pipes, either directly or indirectly, l, ut shall act as detectors.
" 6. All sinks, baths, lavatories, and urinals shall be trapped with suitable trips, and the discharges from them shall be carried ontside the walls of the house. and shall not be connected directly with any soil drain, nor shall they be introduced under the gr ating of any trap, but they shall terminate in the open air, and not nrar any window or other opening.
"7. All water-closets, urinals, and slop sinks shall be provided with suitable flushing cisterns, and the flushing pipe for any eloset shatl not have a less internal diameter than $1 \frac{1}{4}$ inches, and the height of the flushing cistern above the closet, urinal, or slop sink shall not be less than 4 feet. It shail be impossible to draw water from any cistern used for flushing purposes for any other purpose than that of flushing.
"8. The cisterns used for general purposes shall be easily accessible, and shall be prorided with covers rentalated into the open air outside the house by a rising pipe other than the overflow pipe, and no pipe from them shail be connected in any way with any soil pipe, drain, or with any pipe receising the discharge from any batb, lavatory, urinal, sirk, or tlushing cistern.
" 9 . No rain-water pipe used to receive the waste from any bath, lavatory, sink, or urinal stall be placed near a window or other opening; and no rain-water drain shall econnect directly with a soil drain; and no rain-water pipe shall be used as or connected with the soil pipe, nor as a ventilating pipe.
" 10 . No cesspit shall be constructed in such a manner, nor placed in such a position, as to endanger the water supply; and every cesspit shall be veutilated by an inlet air pipe and by an outlet ventilating pipe rising to an elevation above the ground level of not less than 20 feet, and haring a ciear sectional area of not less than 10 square inches, the area of the inlet pipe being double that of the outlet ventilating pipe."

Sect. XI.

TECHNICAL SCHOOL AND COLLEGE BUILDINGS.

3037. The remarkable morement in favour of more efficient technical training has called for an extet treatise on the peculiarities of plan and structural arrangements and fittings of buildings required for its development. Foreign nations have been leforehand with us in this matter, and have long since provided noble buildings, specially created and admirably fitted up for the purpose, and well stored with singularly complete industrial and fine art collertions.
3038. Mr. E. C. Robins, F.R.I.B.A., F.S.A., has, besides the lectures delivered by him. brought together a large amount of information on the subject of technical education as taught both in England and abroad, and on the adaptation of architecture to the requirements of this teaching. This new volume is entitled, A Treatise on the Design and Construction of Applied Science and Art Buildings, and their suitable Fittings and Sanitaion, with a Chapter on Technical E/hcation, 4to. 1887. It contains full descriptions of such institutions as the Bonn, Berlin, and Munich chemical laboratories; Du Buis-Reymond's Physiological Institute at Berlin; the laboratories at Charlottenburg, Zurich, Paris, Strassburg. Most of these are accompanied with cuts and diagrams, so that their interior arrangements may be studied in minutest detail. Descriptions of the Jialioratories at South Kensington, Finsbury, Leeds, Bristul, Manchester, Huddersfield, Oxford, Cambridge, and other English cities, are given; with chapters devoted to the firtings of these buildings, giving detailed information concerning the lundred and one minor things which go to make up the perfect laboratory; as the working benches, demonstration tables, drawing rooms, and so on. The heating, ventilation, and sanitation of applied science buildings are also elaborately treated and profusely illustrated. An appendix gives statistics as to the technical schools in Great Britain : as particulars of the area nccupied by buildings, their cubical contents, the cost of land, cost of fittings, annual expense of maintenance, number of stodents, and so forth. One chapter embraces the planning of schools for middle class education generally, as at South Hampstead, Gravesend, Sevenoaks, Caterham, Battersea, Wapping, Haverstock Hill, Stepuey, with the Camden School for Girls, and the North Londo: Collegiate School for Girls
3039. It has lately been pointed out that technical education was not meant to be a substitute for apprenticeship. The olject is rather to teach boys and young men how to learn a trade rather than to teach them the trade itself. As a comparison of the views held ly some continental states, and by England, on this subjert, it has been stated that the Finsbury College, London, cost $37,000 \mathrm{l}$. to build, and requires $6,000 \mathrm{l}$. per annum from the City Guidds for maintenance; and that the City and Guilds Central Institute cost $90,000 \mathrm{l}$. to luild, and receives $10,000 \mathrm{l}$. per annum; while at Berlin, a building has been erected twice the size of Buckingham Palace, which cost $690,000 l$. to build, and it

BOOK IV.

VALUATION OF PROPERTY.

CHAP. I.

The walnations in whieh the architect is eonsulted are properly onls those wherein huiliings have heen or may be erceted; from which if he wamler, the probability is that he will create difficulty for himself, tending to exhibit him as a pretender to knowledge not within the regular course of his oceupation. The general prineiples, therefore, on which we propose to tomeh, are confined to the species of property above named, as distinguished from that in which the resident valuator near the spot in the different provinces is the hest adviser, from the local knowledge he possesses. The auctioneers who with unblushing effrontery pretend to a knowledge of the value of property in the metropolis, are utterly incompetent to the duties they undertake, from an ignorance of the durability and eost of buildings, which can be attained by the practice and experience of the arehiteet only.

Buitdings may be so disadvantagcously placed on their sites as to realise nothing like a proper interest on the money expended in their erection; and, indeed, so as altogether to destroy even the great value of the ground on which they are built. Thus, to place before the reader extreme cases, which generally best illustrate a subjeet, let him suppose a row of hovels built in Piceadilly, and a house like Apstey House placed in Wapping Iligh Street. In both eases the productive value of the ground is destroyed, there being no inhabitants for such dwellings in the respective quarters of the town.

From this it must be evident that the value of town or city property, which consists principally of buildings, is divisible into two parts; namely, -

That arising from the value of the soil or site; and
That which arises from the value of the buildings placed upon it.
We will suppose for a house which is fairly let at a rent of 1001 . per ammon, no matter what the situation of it be, that it could be built for 10001 , and that the proprietor or builder would be content with 7 per cent. for the outlay of his money, a rate by 1 a means larger than he would be entitled to claim, seeing that the letting, after it is built, is a matter of speculation, and that loss of tenants and other easualties may temporarily deprive him of the interest of his capital. In this case, then, the rent of the mere building would be 700 . ; and as the full rent assumed is 1001 .,
$100-70=30$, which is manifestly the value of the ground or ground rent.
Thus in the cases of valuation of freeholds, wherein the gross rent can be accurately ascertained, there can be no diffieulty in coming at the real value of the ground rent, because the building rent, or that arising from the expenditure of moncy on the soil, can he immediately asecrtained by the architeet, with the rate of interest on it which it is it the builder should have. The remainder of the rent is that inseparably attached to the value of the soil, and belongs to the ground landlord.

The reason for thus separating the two rents is this: the ground rent, attached as it is to the soil, is imperishable. It is true that the value of ground is constantly Huctuating from the power of fashion over certain localities; but with this the valuator camot deal. The changes are slow; and the Lord Shaltesbury in the time of Charles II. would have little thought it possible, when he placed his residence in Aldersgate Strect, that his suceessors would have dwelt in a house in Grosvenor Square; neither, even five and twenty years ago, did it cross the mind of the then possessor of the Grosvenor property that the Five Fields at Chelsea contained a mine of wealth in the ground rents of Belgrave and Eaton Squares. Such are the mutations of property, with which the present question is not involved, unless the gift of foresight, in a degree not to be expected, be given to the valuator. The other portion of the value of house property is strictly the result of the perislable part of it, namely, the building itself; and this is limited by the durability of the building, which has great relation to the time it has already existed, and to the substantiality with which it las been construeted. The durability, then, or the number of years a building will continue to realise the rent, is the seoond ingredient in a valuation, and is a point upon which none but an experienced person can properly decide.

The rate of interest which the buyer is content to obtain in the investment of his money in buildings, or, in other words, in the parchase of the perishable amuity arising from the building, will necessarily sary with the value of money in the market. In the compensation cases under public improvements, wherein it is obligatory on the owner to
part with his property, the 6 per cent. rate of the table is generally used, by which the buyer makes too little interest on the perishable part of the property. Few would be inclined to invest money in sich property at so low a rate, for a rent which every year, from wear and tear, becomes less valuable. Individuals undersianding the subject would scarcely be found to purchase, unless th:cy could make at least 8 per cent. for this part of the capital. In the cases above mentioned, twenty-five years' purchase, that is, 4 per cent., is the usual price at which the ground rent is taken.

Uaving thus prepared the student, we will present an example of a valuation conducted or the principles named. Thus, suppose a building and the ground on which it stands to be together worth $150 l$. per ammum, and that its durability is such that a purchaser may count on receiving that rent during a term of fifty years. We will suppose the house to stand upon a plot of ground 24 feet in frontage and 60 feet in depth; that the size of the house is 24 feet lyy 40 feet, and that to build a similar one would cost 1,440 ., which, at a rate of 7 per cent. upon the expenditure, would produce a building rent of 100 l . 16 s . per annum.

We therefore bere have the imperishable part, viz the ground, of the value of $49 / .4 s$. per annum, which, giving the purchaser 4 fer cent. interest for his money, is twenty-five years' purchase for the fee-simple by the Fourth Table, that is
An amuity (from the building) of $10 \% l .16 s$., to continue for fifty years, is. by the Fourth Table at 5 per cent., worth $18{ }^{2} 256$ years' purchase, that is

$$
1840 \quad 0 \quad 11
$$

The value of the old materials at the end of the term, if taken to be pulled down and sold for 1501 ., will be that sum at the end of fifty years to be received at the present time, discounting at 4 per cent. from the Second Table $\cdot 1437 \times 150$

Total value of the freehold

$-$| $21 \quad 20$ |
| ---: |
| 3091211 |

In the above valuation the ground estimated by its frontage would be $\frac{497.4 s .}{24 \text { feet }}=41 \mathrm{~s}$. per foot, and ground is usually let by the foot when demised for building. In the chief parts of great cities ground is now usually sold and let at per foot superficial.

The next case of valuation is that of a beneficial lease, in which the rent paid by the lessee is less than the actual value of the premises. The difference between them, therefore, is an annuity for the term of the lease, which is so much benefit to the lessee, and is estimated by the Fourth Table; thus-

If the term of the lease be twenty one years, such is the length of the annuity, and the question stands as under :-

An annuity for twenty-one years, discounting at 5 per cent., is by the Fourth Table worth $12 \cdot 8211$ years' purchase, which multiplied by $501 .=6411.1 \mathrm{~s}$.

It is to be observed that the annuities must be clear after the deduction of all outgoings which may be necessary to keep it unencumbered.

Let us take another case.
A man takes a lease of ground at $10 l$. per annum, and lays out 1,000 . on a sixty-one years' lease, interest being 3 per cent. How much must lee rcceive as rent to replace the principal at the end of the term?

1000l. at 3 per cent. $=30 l .+10 l$. ground rent $=40 l$. improved rent.
1l. per annum for sixty-one years at 3 per cent. will amount to $169 l$. (See Third Table.) $\frac{1000}{169}=5 l .9 s .=$ the sum to be laid out yearly.
And $30 l .+5 l .9 s=35 l .9 s$. , or 3.59 , is the rate of interest to secure or replace the principal at the end of the term without consideration of repairs, loss of tenants, insurance, \&c.

We now subjoin some observations on the va'uation of hemse property, which clain the architectural student's attention. Inwood's T'ables for the Purchasing of Es/ates, \&.c. have long bee. in general use; they are founded on the elaborate Tables by Baily and Smart. A series are given hereafter. W. D. Biden, Rules, Formula, and Tables for the J'aluation of Estates. \&.c., with his smaller work, Pructical Ru'es for Valuers, 1862, are useful, and have furnished the outline for the following remarks.

It is generally considered that the value of a friehold house ranges, according to sitnation, style. condition. \&c., from 10 to 20 y ars' purchase. It naturally follows. that purchasers, and some valuators indeed, innagine that house property, as a rule, pays from 5 to 10 per cent. interest on the purchase-money. This is a great error, as many have experienced who have endeavoured to realise and to expend yearly 8 per cent. on the cost of house property. The valuation shonld be made at 5 per cent. (if the purchaser will be content with that interest); and the present value of all the costs, charges, and losses incident to house property should be fairly stated and deducted in the valuation, and then the purchaser will not be deluded with the idea that he is to net a very large interest, which may be spent unconcernedly. Such is the expectation of many of those who are induced to join Building Societies, and who buy, what appears to them, a bargain, as they will be receiving for years double or treble the amount of interest obtainable from the funds. A change of tenants, or other cause, soon shows the difference. Where, however, the buyer himself' occupies the house, whether frechold or luasehold, he may make a very advantageous investment of his money. In the latter case, that is, of a leasehold. he must hear in mind the result of the occupation of the premises, namely, dilapidations, for which he will be called strictly to account by his landlord at the expiration of his term of lease.

Compare the following valuations, made in two ways, of a frechold house, which will last for about 80 years, the tenants paying the rates amounting to about $£ 7$ per ammm. One valuator may make ont his calculations thus:-
$£ \quad s . d . \quad £ \quad s . d$.
Gross rent received by the landlord -
C3 $0 \quad 0$

edu	Insurance -			
	Land Tax - Sewers Rate	when paid by him	-	$\begin{array}{rr}1 & 2 \\ 0 & 15\end{array}$
"	General repairs	, 10 per cent.		6
	Collection, \&			- 414

(In a leasehold valuation, the ground rent would also have to be deductel)
To pay 8 per cent., at years' purchase (Fourth Table)
$12 \ddagger$
l'resumed value of the property, according to this rough valuation -
$£_{607} 0 \quad 8$
Another valuator will make out his calculations as follows:-

Net rent
$4811 \quad 9$
But property is usually subject to various depreciating contingencies, which must be provided against by an amual reserve according to the class of building, thus:-
Deduct for losses by bad tenants, say l year's rent in $6=10100$
And, for extra repairs and expenses contingent upon such frequent changes, say an equal sum $\quad-\quad$ - $1010 \quad 0$
Deduct a sum for rebuilding (say about $\mathfrak{E} 630$), which, put by each year in the funds at 3 per cent. compound interest, will produce that amount at the end of the life of the house, say 80 years, i.e., $£ 1$ per annum for 80 years (Third Table) - - - $=£ 321 \cdot 3 ; 3$

Clear income from the property

23	0	0
25	11	3

If the purchaser elects to have 5 per cent. for his speculation, the amount to be paid for the property will be
$£ 512 \quad 0 \quad 0$
The value of the ground in these calculations is included in the rental; when of some lnportance, it must be valued upon its own merits, as shewn in the previous page.

But there may be a furtier expedditure for surveyors' charges. solicitors' eharges for transerring the property, and loss of eapital by stlling out of the funds, whieh it may the olten neeessary to deduet from that amount. A matter also of consideration is whether the building is in a good state of repair, buth in structure and decoration, as ready for a tenant.

When the property is leasehold, then, as soon as the clear ineome has been ascertainen. it will have to be multiplied by the number of years' purchase at the rate of interest required for the term (Fourth 'Jable), to find the amount that the property is wortl. The number of years' purchase piovides for the pereentage and to get back the principal, the anmual instalments of which must be insested at the same rate of interest to produce the total sum at the end of the term (in lien of the rebuilding fund in the freehold property). Among Inwood's Tab/es, 16th edition. 1855, is one (p. 177). whereby to calculate "the present value of an income for a certain number of years, which is to pay duing its continuance a given rate of interest on the purchase-money, and to replace the purchase-money at the end of the same number of years at a rate of interest to be selected."

From the former method of expressing the valuation, it would appear that a purchaser may realise 8 per cent. upon his outlay; and so indeed he may, for a few years, if everything eonnected with the property be very favourable; but the latter calculation shows exactly what may be expected, namely, that on capitalising a firther sum to form a sinking fund for certain repayments, then 5 per cent. per aunum may be appropriated as income, the remainder of the rent being set aside to supply a fund to meet exigencies of no uncommon occurrence. The real value of the property, moreover, is found to be much less than what the rough calculation would show it to be worth.

The deductions for losses depend entirely upon the class of house. First class houses in good situations let so readily to responsible tenants, who for their own comfort and display maintain the fabrie, that the sums to be deducted for the oceasional want of ocenpants and expenses of reletting are reduced to a minimum. On the other hand, a much lower elass of house, together with the present unsatisfactory mode of letting houses on three years' agreements, and the still more ineligible arrangement by the year, throw so much larger amounts for repairs, decorations, and ehange of tenancy, upon the landlord. that the total of the sums to be ddacted is raised to a very ligh estimate. Hercin the best judgment of the valuator is called into requisition, and it requires the knowledge obtained by the practical architect to assist his judgment in such matters.

After the actual value has been aseertained, another item for consideration is the additional sum that a purchaser will be induced to give fur some reason-such as the property being in a fashionable neighbourhood; the house possessing arrat gements peculiarly suted to his wishes, and so on : this amount may be called a "fancy price," and when paid had better be considered as money sunk.

For making rough calculations, aecording to the first instance, the value of freehold land in the country is generally considered worth from 30 to 33 years' purehase, being calculated on the 3 per cent. tables. In a few very exceptional cases as much as 40 yars' purchase has been given; but the difference constituted a "faney price." For town plots from 25 to 30 years' is more usual. Freehold honses and buildings, 1 st and 2 nd class, fiom 18 to 20 years' purchase, or 5 per cent.; 3rd and 4th class, about 16 years' purchase. or 6 per cent.

For Lcaselio'd property :-

2nd and 3rd	"	14 to 15	,	7	"
3 rd and 4th	"	12 to 13	"	8	"
4 th and 5th	"	11 to 12	"	9	"
5 th and 6 th	"	10	"	10	"

Freehold Ground-rents are valuable in proportion to the extent to which they are covered by the rack-rent and by the period of reversion. A good ground-rent ought to, be six times covered, that is, five parts are brick and mortar rent, and one part groundrent. A reversion, however, meless within forty years, is not much taken into account. Some ground-rents in the City of London (where the ground-rent is larger in proportion) have sold for $31 \frac{1}{4}$ years' purchase; those only covered by three times the rack rent, sold for 25 years' purchase. Leasehold and freehold ground-rents ean only be valued according to loeality, circumstances, length of holding, \&c. Unsecured ground-rents are usually valued at 25 years' purehase, but those well-secured at from 30 to 33 years' purchase. Improred ground-rents are not worth so much as the freehold ground-rent, in consequence of the covenants of superior leases, danger of breaches of covenants, \&e.

In the valuation of leases held on lives, the operation, after bringing the rent to a clear annuity, is conducted by means of the sixth, seventh, and eighth tables, given liereafter, as the ease may require.

In the valuation of uarchouses, the only safe method of coming at the value of a rental
is by the quantity of goods or tonnage they will contain after leaving pro; er gaingwarz, and not overloading the fleors. In corn warehouses, however, the grain being distributed over the surface of the floor, the squares of floor are takea to comp at the contents. Guods warehonsed are paid for to the warehouseman usually at a weekly or monthly rent; and it is commonly considered that the profit he should make oughe to be one half of the rent he pays to the landlord, so that in fact two-thirds of the actual rent realised goes to the proprietor, and the other third to the warehouseman or lessee. Tables of the weight and space occupied by different goods are given in the Glossaky Aidendum.

We have noticed at the commencement of this chapter that valuations depending upon building or building land are essentially within the province of the architect. But well as desirable here to items, beye to enter, we will only notice that, as regards the former, there are several property, and thase already mentioned, to be taken into cons deration. A man holding a dispossessed against his will, has a right to be paid for his interests being so much as 30 per cent. for house property, now it is only 10 per cent. ; while for land, from 10 to 25 per cent. is obtained, according to circumstances. With certain exceptions, the purchase of lands compulsorily is placed under the provisions of the Statute 8 Vict. cap. 18, "The Land Clanses Act." The assessment of the items usually consists of the following beads :-I. The val:ne of the property taken. II. Any reversionary or prospective advantage the owner may be likely to receive at any time; to be estimated in present money. IIl. Any advantage the owner may have by carrying on a trade, business, or profession, in a locality; whether the same would be utterly destroyed, or a portion be taken with him. IV. The cost of removing, or loss by torced sale. V. The value of the portion only of the property (if so taken), and amount of damage the remainder may sustain in consequence of the severance; this is usually called consequential damage. VI. If a portion only be taken, and that portion injuriously divides the remainder of the property, the estimated amomnt of damage is known as severance. VII. Compensation for loss of time, trouble, and expense, in find ing a new investment; loss of interest; the parting with property to which one is attached to and has an interest in ; and other losses by being forced to give up a property and seck new. This forms the item of compulsory sale.

CIIAP. II.

CIVIL AND FCCLESIASTICAL DILAPIDATIONS.

The arelitect, in the course of business, may be commissioned to ascertain the extent of neglect on the part of an orcupant in keeping premises in proper order according to the terms upon which the property is held lyy him. In civil cases it is not usual for the lessor to exercise a power, generally reserved to him in leases, of causing his architect to inspect the premises from time to time to detect dilapidation; but it is usual for the lessor to cause such an inspection (at a reasonable period, so that the repairs may be done) before the (xpiration of the term: this reasonable period may vary from two to twenty-six weeks, more or less. After sucl inspection or survey, a notice to repair dilapidations according to its appended schedule is served npon the tennt, who may either execute the works within the term, or (unless he can compound with the lessor for a sum to be ascertained under arbitration) take the responsibility of paying the charges of the tradesinen employed by the lessor after the premises have been surrendered, to which a compensation for loss of rent is naturally added; but this arrangement, if adoptel, is a very exceptional procedure. It will be evident that in cases where a lease expires and is not to be rencwed before other suitable premises can be obtained, the latter method of action may be desirable; but generally, and especially in the case of a dwelling-house, the cheapest, if the most inconvenient, course is for the tenant to have a survey made for himself and to get the repairs executed within the term. In ecclesiastical cases the survey previous to the end of ocenpancy is rarely, if ever, practicable; and a sum must be ascertained under arbitration. According to the usual tenor of leases, the lessor expects that the premises shall be delivered, at the expiration of a term, in as good condition as the use and wear during the time will permit, and the lessee undertakes to make good any injury which the premises may have suffered through accident, neglect, or intention; these conditions apply, not only to what was originally demised, but to whatever may have been erected during his occupation. In ecclesiastical cases the principle, as wili hereafter be explainel, is rather different. It may be noticed here that the term wear and tear is a popular mistake which the law does not support; use and wear is legitimate, tcar is dilapidation.

In civil dilapidations a tenant is bomb, according to his covenant, specific or general, but never beyond maintaining and upholding, unless the conditions of repair are so had that no measures shart of reconstruction are consistent with safety, or possible from the extent of decay. Ilis liability is not supposed to extend to such defects as only indicate age, so long as the effieiency of the part still remains. But if the effects of use or age have proceeded so far as to destroy the part, or its efficiency in the structure, the tenant is liable, it being the presumption that at the commencement of the term the tenant was satisfied that every part was suffeciently strong to last to the close. On the same presumption the degree of liability of the tenant is regulated by the actual condition of the premises at ang time, as specified in his covenant, and adinits of no extenuation by reason of dilapidatiuns existing at the commencement of his term, as he is presumed to have taken the proper course to guard hims. If against the oecurrence of undue liability. In extreme cases, the liability of a tenant extends to the rebuilding of a party wall condemned as unsafe, to reconstruction after fire, \&e., unkess specially excepted. In fact, under the natural and the legal favour which the lessor enjoys, the person proposing to become the lessee should employ a professional surveyor, not only to inspect the apparent, and as far as he can the hidden, state of the building, but also to cheek the conditions contained in the draft of the lease, which are sometimes extravagant when applied to an old and worn-out fabric, though they might be reasonable as regards a new structure.

Whatever the tenant has power to remove during the term cannot be chargeable with dilapidations. Upon this point the old rule is, that whatever is fixed to the freehold cannot be removed by the tenant: thus a lessee may erect barns or sheds or any building upon wooden or stune or other blocks laid on the surface of the gromnci, and take them down, it he please, without substitnting anything in their place; but if the barns are fixed into the ground, they immediately become the property of the iessor. There seems, however, to be an exception in respect of buildings erected for the purposes of trade : hence not only coppers and ovens may be talen away, but workhops and the like erected by the tenant for his paticular trade. This exception seems at first to have applied only to wooden bnildings; but Lord Kenyon held that a brick chimney would prevent a terant from removing a building, and decided that its being on a brick foundation would nut do it. Though this opinion was not held hy Lord Ellenborough, yet it was not because the buildings were of brick, but bccause they were erected for the purposes of agriculture, and not of trade. It is to be remembered, in all cases, that a lessee is bound to leave the premises in as good condition after the removal of fixtures as though they had never existed: thus, if a marble be substituted for a wooden chimney-piece, when the former is removed, the latter, or one of equal value, must be replaced. If a partition be put up and taken away, all damages to the adjacent work must be repaired.

The general rule for determining what injuries are considered dilapidations, is to ascertain what is fair wear withont dilapidation arising from accident or neglect. Injury by accident is that which happens suddenly, and perceptibly dillering from wear, which occurs only by lengthened use. Thus the nosing of a step worn away is not dilapidation; but if such be broken away instead of worn, it is a dilapidation. It may be said that aceident is defined here with too much latitude, inasmuch as it takes account of that which occurs without apparent reason at any particular tine; but we use the term in common language, and may cite as an example, that if the timbers of a floor decay, the floor will yield, even without a load upon it. When accident occurs, such alone does not limit the extent of the dilapidation, but also such injuries to the building as follow in its train. Thus, if the weather-boarding of a building decay from age, so long as the covering will keep out wet, it is no dilapidation; but if broken in any part, that is a dilapidation; and if from want of reparation any of the internal parts of the building be injured, such injury is a dilapidation : so if timber or timbers belonging to any part of a house merely decay, if it or they be still sufficient for the support of the house, no dilapidat on can be chargeable; but if such timber or timbers gise way, they must be replaced, and all parts made good which suffered by their failure. Wa:te, in law, is insufferable, cven in freeholds which are held for lives only. According to Wood'all (Landlord und Tenant), "waste may be done in houses by pulling them down or sulleing them to be uncovered, whereby the rafters and other timbers of the house become rotten; but the bare suffering them to be uncovered, without rotting the timber, is not waste: so if a house be uncovered when the tenant cometh in, it is no waste in the tenant to suffer the same to fall down." In external covering, however, it seems that decay arising from inattention to it is dilapidation, even though no accident be the cause. It is always considered that though painting neglected is not itself a dilapidation, yet where decay arises from it, it is one. Broken glass is not considered a dilapidation, unless there be more than one crack in the pane. Some, however, contend that while the glass is sufficiently entire to exclude the wind and weather, no waste is assignable. Generally it seems then to be the rule, that where accident occurs, it is a dilapidation.

In the preceding l'aragraph the word neglect has naturally occurred; dilapidation from
neglect being very often followed by dilapidation by arcident: the latter term is still more nearly connected with the word misise, which oceupies the place here given to "aceident " in the Report upon Jilapidations, published in 1844 hy the Royal Institute of British Arelitects. This Report docs not define its meaning of the word misuse; it is clearly not the meaning in which the term is generally employed; fur the Report says, "If the effeets of use or age have proceeded so far as to destroy the part or its efficiency in the strueture, this argues neglect or misuse." The student will find it advantageous to sturly the Report, and especially the specification contained therein.
This specification instructs the mason " in cases of broken nosings, or of the treads being worn to such an extent as to render the passing up and down dangerous," to piece as deseribed the step; and also direets the joiner "to put nosings to stairs where partially defective, and treads where wholly so." There is in appearance a contradiction between these views upun worn steps and that given in the commencement of this chapter ; but the practised surveyor will see that they are easily reconciled, and that his judgment must deeide which is, and which is not, fair use and wear. It is to be regretted that the clear and discriminating section on dilapidations in Chambers and Tattersall, Lanes reluting to Builling, 1845, contains a sweeping condemnation of this Report, which is in no way autlorised by the evidence adduced.

We have added to the usual definition of dilapidation, namely any injury through accident, misuse, or neglect, the word intention : and the propricty of the addition, as meaning something different from wilful waste, will be obvious. The erection of a photographer's room on the top of a house in one strect may be deemed an injury, and be claimed as dilapidation by a lessor, who would demand the removal of it and the restoration of the roof; while in another street, and within a few yards of this dilapidation, the same lessor might consider the same work (if judiciously executed) an improvement which he would not allow to be removed. So also a grated iron door, instead of the common wooden one, and similar alterations, may become dilapidations of intention at the pleasure of the lessur. There is another point on which surveyors have frequently differed, namely the insertion of nails and serews for the suspension of frames of pictures. \&e. This may be now considered to be determined ly the judgment in the ease of Martin and another v. Roe (1857), where hot house frames, bedded in mortar on brick walls, had been removed without damage except what was unavoidable to the mortar. Lord Campbell said that, "in considering this question, we treat the removal by the plaintiff as having been in fact effected without injury t, the frechold. In all cases of this kind, injury to the freehold must be spoken of with less than legal strictness. A serew or a nail can scarcely be drawn withont some injury; and when all the harm done is that which is unavoidable to the mortar laid on brick walls, this is su trifling that the law, which is reasonable, will regard it as none." Among surveyors it has been held that what is nailed belongs to the freehold, but that which can be unscrewed does not, the careful withdrawal of the serew enabling the tenant to make good the hole.

Although there is a general impression that only damage of broken glass can be claimed from a yearly tenant, he is to use the building in a husbandlike manner, and is bound to fair and tenantable repairs so far as to keep it wind and water tight and to prevent waste or decay.

It used to be supposed that the judgment in the case of Wise v. Medcalf (1829) contained an exposition of the whole law on the subject of ecelesiastical dilapidation as far as regarded incumbents; and the decision, which is contained in the following words, should be always in the mind of the surveyor:-"Upon the whole, we are of opinion the incumbent was bound to maintain tire parsonage (which we must assume upon this case to have been suitable in point of size and other respects to the benefice) and also the chancel, and to keep them in good and substantial repair; restoring and rebuilding wien necessary, aceording to the original form, withont addition or modern improvement ; and that he was not bound to supply or maintain anything in the nature of ornament. to which painting (unless neeessary to preserve exposed timbers from decay) and whitewashing, and papering belong." This decision is beld to estahlish the principle that the exceutors of a deceased incumbent are bound to perform those repairs whieh are neecssary to prevent Gecay, and to use all reasonable means for preventing any future decay. The case of Mason v. Lambert (1848) showed that perpetual curates were liable as incumbents for these dilapidations. We have therefore to add, in eeclesiastical cases, any provision against prospective injury; such as paint necessary to preserve exposed woodwork from decay, the insertion of ties to plates taking the fect of rafters, the underpiming of walls at cracks showing continual settlement: these might be entitled dilapidations of precaution, and ought to include the immediate destruction of any erections mado by a late incumbent which were suitable to his private fortune rather than to the benefice, as seems to be indicated in the judgment given in the ease of Martin and another v. Rove (1857), wherein it is observed that. "as to any matter of needless expense or lux:ary or ornament by which the present incumbent has gratified his own taste or increased his own
confort, he is not only not bound. but he onght not, to trausmit it to his successor." The prinsiple thus stated is directly opposite to that which, as we have above observed, regulates civil cases, namely, that the occupier must keep in repair whatever may have been erected during his occupation. The judgment just cited continues in these words : "If the successor may recover damages from the executor after such things have been removed by the testator, there can be no doubt he in his turn must maintain it; and if he maintain it he must also restore, and even rebuild when decaycd; so that the benefice might become permanently saddled with a useless burden." The duty to remove such erections does not, however, appear quite to have been thrown upon the estate of the erector : the same judgment says, "the case now supposed is that of an erection, which, if the deceased had left out of repair, his successor could not have maintained any action for dilapidations, which he himself therefore would not be bound to keep in repair, which imposes no burden on him, and which he may remove; for it would be unreasonable to hold that he might not remove, however useless or utisuitable to the living, or even inconvenient to the occupation of the parsonage or glebe, that which for one of these reasons he was not bound to keep in repair." Finally we would quote from the same judgment: "with regard to an ecelesiastical benetice, the character and object of the building to which the chattel is attached, and the manner in which it has been so attached, seem of very great consequence in determining whether there was any intention to separate it permanently and irrevocably from the personal cstate." In this case the plaintills (executors) were leld justified in removing the framework and sashes, valned at 3002., of two hot houses, and might apparently have removed also the brickwork, repairing any waste or danage to the freehold. With respect to that damage we have already referred to this case.

The real difference between civil and ecclesiastical dilapidations may be thus stated :One man takes certain premises, engaging to pay a rent in order to derive advantages out of them, but having no interest in the reehold. The other man receives a salary to do certain services, the use of the house being a portion of that salary. In the latter case, if for a man's own private convenience be lays out a large sum on the frechold, that expenditure will seriously affect his successor, if he have to be burdened with large and expensive erections or decorations suitable perhaps for one of an aristocratic family, but quite foreigu to the habits of a future rector of the village coming in as an ordinary occupant.

Such are the general principles of the law of dilapidations; these, in their application, generally impose upon the out-guing occupant or his representatives the payment of a sum for which special provision is razely made during the occupancy: the misery thus entailed is sometimes evaded in civil cases by the lessee, who parts with the remainder of a lease to any one who will give something for it ; or who (if the lessor be not careful) assigns it tu a man of straw.

CIIAP. III.

CALCULATION OF INTEREST.

Interest, or the value of the use of money, is usually expressed per cent., or after the rate per hundred on the principal lent. Thus, if we put out 500 pounds sterling at 5 per cent., it signifies that for every hundred pounds the lender is to receive five pounds per annum during the continuance of the lom. The solution of this question, which is one merely of simple interest, is so obvious, that it is unnecessary further to detain the reader upon it ; and we therefore pass on to compound interest, or interest upon interest, which arises from the principal and interest tahen together, as it becomes due at the end of each stated time of payment.

In the resolution of this question, we are to consider that $100 l$. at the cnd of a year becomes 105\%. Let $a=$ principal. Its amount at the end of the year is found by saying, if 100 gives 105 , what will a give? and we answer $\frac{105 a}{100}=\frac{21 a}{20}$, which may be also expressed $\frac{21}{20} \times \boldsymbol{\alpha}$, or $a+\frac{1}{20} \times a$.

Thus, by adding its twentieth part to the original principal, we have the principal at the end of the first year; adding to this last its twentieth, we know the amount of the given principal in two years, and so on. Hence the amual increases to the principal may be easily computed. Suppose, for instance, the pincipal of 1000 . Expressing the values in decimal fractions, it will be worth-

After 1 ycar	-	-		$\begin{array}{r} 1050 \\ 52 \cdot 5 \end{array}$	One ycar's interest on $£ 1050$		
After 2 years	-	-	-	$\begin{aligned} & 1102 \cdot 5 \\ & 55 \cdot 125 \end{aligned}$		-	$1102 \cdot 5$
After 3 years	-	-	-	$\begin{gathered} 1157.625 \\ 57.881 \end{gathered}$		-	$1157 \cdot 625$
After 4 years	-	-		$\begin{array}{r} 1215 \cdot 506 \\ 60: 775 \end{array}$		-	$1215 \cdot 506$
After 5 years	-	-		1276.281	\&c.		

The method above exhibited would, however, in calculations for a number of years, become very laborious, and it may be abridged in the following manner.

Let the present principal $=a$; now, since a principal of 201 . will amount to $21 l$. at the end of a year, the principal a will amount to $\frac{21}{20} \times a$ at the end of that time. At the end of the following year the same principal will amount to $\frac{21^{2}}{2\left[1^{2}\right.} \times a=\left(\frac{21}{20}\right)^{2} \times a$. This principal of two years will, the year after, amount to $\left(\frac{21}{20}\right)^{3} \times u$, which will therefore be the principal of three years; increasing in this mamer, at the end of four years the principal becomes $\left(\frac{21}{21}\right)^{+} \times a$. After a century it will amount to $\left(\frac{21}{20}\right)^{100} \times a$, and in general $\left(\frac{21}{2 j}\right)^{n} \times a$ is the amount of the principal after n years; a formula serving to determine the amount of principal after any number of years.

The interest of 5 per cent., which has been taken in the above calculation, determined the fraction $\frac{21}{25}$. Had the interest been reckoned at 6 per cent. the principal a would at the end of a year be $(106) \times a$; at the end of two years to $\left(\frac{105}{1000}\right)^{2} \times a$; and at the end of n years to $\left(\frac{106}{100}\right)^{n} \times a$. Again, if the interest be at 4 per cent. the principal α will, after n years, be $\left(\frac{10.1}{100}\right)^{n} \times a$. Now all these formulx are easily resolved by logarithms; for if, according to the first supposition, the question be $\left.\binom{21}{2}\right)^{n} \times a$, this will be $\mathrm{L} \cdot\left(\frac{21}{20}\right)^{n}+\mathrm{L} . a$, and as $\left(\frac{21}{20}\right)^{n}$ is a power, we have $\mathrm{L} \cdot\left(\frac{21}{20}\right)^{n}=n \mathrm{~L}$. $\frac{21}{21}$: so that the logarithm of the principal required is $=n \times \mathrm{L} . \frac{21}{20}+\mathrm{L} . a$, and the logarithm of the fraction $\frac{21}{20}=\mathrm{L} .21-\mathrm{L} .20$.

We shall now consider what the principal of 1000 . will amount to at compound interest of 5 per cent. at the end of 100 years. Here $n=100$. Hence the logarithm of the principal reguired will be $=100 \mathrm{~L} \cdot \frac{21}{20}+\mathrm{L} .1000$, calculated as under : -
L. $21=1 \cdot 3222193$

Subtracting L. $20=1 \cdot 3010300$

$$
\mathrm{L} \cdot{ }_{20}^{21}=0.0211893
$$

Multiply by 100

$$
\begin{aligned}
100 \mathrm{~L} \cdot \frac{21}{20} & =\overline{2 \cdot 1189300} \\
\text { Add L. } 1000= & =\frac{3 \cdot 0000000}{5 \cdot 1189300}=\text { Logarithm of the principal }
\end{aligned}
$$ required, from the characteristic whereof the principal must be a number of six figures, and by the tables it will appear to be $131,501 \%$. In the case of a principal of 34521 . at 6 per cent. for sixty-four years, we have $a=3452$ and $n=64$. Principal at the end of the first year therefore $=\frac{106}{109}=\frac{53}{50}$. Hence the logarithm of the principal sought $=64 \times \mathrm{L}$. $\frac{53}{50}+$ L. 3452 , which will be found to amount to $143,763 l$.

When the number of years is very great, errors of considerable magnitude may arise from the logarithms not being sufficiently extended in the decimal places; but as our object here is only to show the principle on which these calculations are founded, we do not think it necessary further to pursue that subject.

There is another case which now requires our consideration; it is that of not only adding the interest annually to the principal, but mereasing it every year by a new suin $=b$. The original prineipal a would then increase in the following mamer: -

$$
\begin{aligned}
& \text { After } 1 \text { year, } \frac{21}{20} a+b \\
& \text { After } 2 \text { years, }\left(\frac{21}{20}\right)^{2} a+\frac{21}{25} b+b \\
& \text { After } 3 \text { years, }\left(\frac{21}{20}\right)^{a} a+\left(\frac{21}{25}\right)^{2} b+\frac{21}{21} b+b \\
& \text { After } 4 \text { years, }\left(\frac{21}{20}\right)^{4} a+\left(\frac{21}{25}\right)^{3} b+\left(\frac{21}{20}\right)^{2} b+\frac{21}{20} b+b \\
& \text { After } n \text { years, }\left(\frac{21}{20}\right)^{n} a+\left(\frac{21}{25}\right)^{n-1} b+\left(\frac{20}{20}\right)^{n-2} b+\ldots \ldots \frac{21}{20} b+b
\end{aligned}
$$

This principal evidently consists of two parts, whereof the first $=\left(\begin{array}{l}\text { 鄙 }\end{array}\right)^{n} a$, and the other, taken inversely, forms the series $b+\frac{21}{25} b+\left(\frac{21}{21}\right)^{n} b+\left(\frac{21}{25}\right)^{3} b+\ldots\left(\begin{array}{c}\left.\frac{21}{20}\right)^{n-1} b\end{array}\right.$. This last series is n. evidently a geometrical progression, whose exponent $=\frac{2}{22}$. Its sum, therefore, will he found by first multiplying the last term $\left(\frac{21}{25}\right)^{n-1} b$ by the exponent $\frac{21}{20}$, which gives $\left(\frac{21}{25}\right)^{n} b$. Subtract the first term b, and we have the remainder $\left(\begin{array}{c}201\end{array}\right)^{n} b-b$; and lastly, dividing ly the ex-
ponent minus 1 , that is, by $\frac{1}{20}$, we have the sum required, $=20\left(\frac{21}{25}\right)^{n} b-20 b$. Wherefore the principal sought is $\left(\frac{21}{20}\right)^{n} a+20\left(\frac{21}{20}\right)^{n} b-20 b=\left(\frac{21}{20}\right)^{n} \times(a+20 b)-20 h$.

To resolve this formula we must separately calculate its first term ($\left(\frac{1}{25}\right)^{n} \times(a+2(b)$, which is $\left.n \mathrm{~L} \cdot \frac{2}{2}\right)+\mathrm{L} \cdot(a+20 b)$, for the number which answers to this logarithom in the tables will be the first term, and if from this we subtract $20 b$ we have the principal sought.

Suppose a principal of 10001 . placed out at 5 per cent. compound interest, and to it there be annually added 100l. besides its compound interest, and it be required to know to what it will amount at the end of 25 years. Here $a=1000, b=100, n=25$, and the operation is as follows:-

$$
\mathrm{L}_{20} \frac{21}{20}=0.021189299
$$

Multiply by 25 we have $25 \mathrm{~L} . \frac{21}{2 J}=0.5297324750$

$$
\text { L. } \begin{aligned}
(a+20 b) & =3 \cdot 4771213135 \\
& =4 \cdot 0068537885
\end{aligned}
$$

The first part or number which answers to this logarithm is $10159.1 l$. ; from which if we subtract $20 b=2000$ we find the principal in question to be after 25 years $8159 \cdot 1$.

If it be required to know in how many years a principal of 1000 . under the above conditions would amount to $1,000,0001$. ; let n be the number of years required, and since $a=1000, b=100$, the principal at the end of n years will be $\left(\frac{21}{25}\right)^{n}(3000)-2000$, which sum must make $1,000,0001$. ; whence results this equation : -

$$
3000\left(\frac{21}{2}\right)^{n}-2000=1000000
$$

$$
\begin{aligned}
\text { Adding to both sides } 2000 \text { we have } 3000\left(\frac{21}{21}\right)^{n} & =1002000 \\
\text { Dividing both sides by } 3000 \text { we have }\left(\frac{21}{20}\right) & =334
\end{aligned}
$$

Using logarithms we have $n \mathrm{~L} \cdot \frac{21}{20}=\mathrm{L} .334$, and dividing by $\mathrm{L} \cdot \frac{21}{20}$, we obtain $n=\frac{\mathrm{L} .334}{\mathrm{~L} . \frac{21}{20}} . \quad$ Now L. $334=2.5237465$ and L. $\frac{21}{25}=0.0211893$, wherefore $n={ }_{0.262118933^{\circ}}^{2.52345}$ If, lastly, the two terms of this fraction be multiplied by 10000000 , we shall have $n={ }_{211 \times 93}^{2.523465,}$ equal to one hundred and nineteen years one month and seven days, which is the time wherein the principal of 1000%. will be increased to $1,000,000$. In the case of an amual decrease instead of inerease of the eapital by a certan sum, we shall have the following gradations as the values of a, year after year, the interest being at 5 per cent., and, representing by b the sum amually abstracted from the principal,

After 1 year it would be $\frac{21}{20} a-b$

$$
\begin{array}{lll}
\text { After } 2 \text { years } & - & \left(\frac{21}{20}\right)^{2} a-\frac{21}{20} b-b \\
\text { After } 3 \text { years } & - & \left(\frac{21}{25}\right)^{3} a-\left(\frac{21}{20}\right)^{2} h-\frac{21}{25} b-b \\
\text { After } a \text { years } & - & \left(\frac{21}{20}\right)^{n} a-\left(\frac{21}{25}\right)^{n-1} b-\left(\frac{21}{25}\right)^{n-2} b \ldots
\end{array}
$$

This principal evidently concists of two parts, one whereof is $\left(\frac{21}{2,}\right)^{n} \alpha$, and the other to be subtracted therefrom, taking the terms inversely, forms a geometrical progression, as follows : -

$$
b+\left(\frac{21}{25}\right) b+\left(\frac{21}{20}\right)^{2} b+\left(\frac{21}{25}\right)^{3} b+\cdots\left(\frac{21}{20}\right)^{n-1} b
$$

The sum of this progression has already been found $=20\left(\frac{21}{20}\right)^{n} b-20 b$; if, therefore, this be subtracted from $\left(\frac{21}{20}\right)^{n} a$, we have the principal required after u years $=\left(\frac{21}{20}\right)^{n}(a-20 t)+20 h$.

For a less period than a year, the exponent n becomes a fraction ; for example, 1 day $={ }_{36} \frac{1}{3}, 2$ days $=_{3 \frac{2}{5}}^{5}$, and so on. It often happens that we wish to know the present value of a sum of money payable at the end of a number of years. Thus, as 20 pounds in ready money amount in a twelvemonth to 21 pounds, so, reciprocally, 21 pounds payable at the end of a year can be worth only 20 pounds. Therefore, if a be a sum payable at the end of a year, the present value of it is $\frac{20}{2} a$. Hence, to find the present value of a principal a at the end of a year, we must multiply by $\frac{20}{2!}$; to find its present value at the end of two years, it must he multiplied dy $\left(\frac{20}{5 T}\right)^{2} a$; and, in general, its value n years before the time of payment will be expressed by $\left(\frac{20}{2}\right)^{\prime \prime} a$.

Thus, suppose a rent of 1001 . receivable for 5 years, reckoning interest at 5 per cent., if we would know its value in present money, we have

> For $£ 100$ due after 1 year, the present value is $£ 95.239$
> after 2 years - 90.704
> after 3 years $\quad-\quad 86: 385$
> after 4 years - $\quad 82.272$
> after 5 years - 78:3.55

So that in present money, the value is $432 l .19 \mathrm{~s} .1 \%$.
But for a great number of years such a calculation would become laborons. It may be facilitated as fellows : - Let the amual rent $=a$, commencing directly and con-
 is a geometrical progression whose sum is to be found. We have therefore only to multiply the last term by the exponent, the product whereof is $\left(\frac{20}{20}\right)^{n+1} a$, then subtract the first term, and the remainder is $\left({ }_{2}^{2} 9\right)^{n+1} a-a$. Lastly, dividing by the exponent minus 1 , that is, ${ }^{n} 1$, , or, which is the same, multiplying by -21 , we have the sum required, $\left.=-21\left(\frac{2}{2}\right)^{n}\right)^{n+1} a+21 a$, or $21 a-21^{n+1} a$, the value of which second term is easily calculated by logarithms.

CHAP. IV.

COMPOUND INTEREST AND ANNUITY TABLES.

As the architect is often called on $t 1$ value property, we here add some practical observations on the subject, and a set of Tables for the really calculation of such matters, which we shall at once expiain.

Table First contains the amount of 17 . put out to accumulate at compound interest for any number of years up to 100 , at the several rates of $3,4,5,6,7$, and 8 per cent. The amount of any other sum is found by multiplying the amonnt of $1 l$ found in the table at the given rate per cent., and for the given time, by the proo osed sum.

Example :- Required the amount of $755 l$. in 51 years, at 5 per cent. Amount of 11 . for 51 years. at 5 per cent. is - - - - 12.040769
Given sum - - - - - - - - . 755

$$
\text { or } 90901.15 \mathrm{~s} .7_{\mathrm{T} \mathrm{~d}}^{3} \mathrm{~d} \text {. }
$$

£9080780595
Table Second contains the present value of 11 . payable at $t^{1} \mathrm{e}$ end of any mumber of years up to 100 . The present value of any given sum payable at the expiration of any number of years is found by multiplying the present value of 11 . for the given number of years, at the proposed rate per cent., by the given sum or principal.

Example:-Required the present value of 90901 . payable 51 years hence, compound interest being allowed at 5 per cent.
By the table, the present value of 12. payable at the expiration of
51 ycars at 5 per cent. is -
Given proncipal -
or $7541.18 s .7_{10}^{4} d$.

Tabie Tirirn contains the amount of an annuity of $1 l$. for any number of years, and is thus used. Take out the amount of 1 ? answering to the given time and rate of interest : this multiplied by the given annuity will be the required amount.

Example :-Required the amount of an annuity of 271 . in 21 years, at 5 per cent. compound interest.

Annuity of $1 l$. in 21 years at 5 per cent.
Annuity given
or $964 l . ~$
ss. $4 \frac{7}{10} d$.

Table Founth shows the present value of an annuity of 11 . for any number of years, at $3,4,5,6,7$, and 8 per cent., and is used as follows:-

First, when the annuity commences immediately. Multiply the tabular number answering to the given years and rate of interest by the given annuity, and the product will be che value required. (This table provides for the percentage and to get back the principal.)

Example:-Required the present value of an annuity of 451 ., which is to continue 48 years, at the rate of 5 per cent.

Serond, when the annuity does not commence till after a certain number of years. Mnltiply the difference between the tabular numbers answering to the time of commencement end end, at the proposed rate of interest, by the given annuity, the product with be the present value required.

Example.

An ennuity of $40 l$. is to commence 20 years hence, and is to continue 30 years; required its present value, the rate of interest being 4 per cent.
Under 4 per cent. and opposite to 20 is
Under 4 per cent. and opposite to $50(20+30)$
is
Difference
or 3151. 13s. $5 \frac{8}{\mathrm{E}} \mathrm{d}$.
Table Fifth contains the amuity which 11. will purchase, compound interest being allowed. The manner of using this table is obvious, from what has been said relative to the preceding tables.

Example.

What annuity for 10 years will $500 l$. purchase, the rate of interest being 5 per cent.?

Tables Sixth, Seventh, and Eighth are for finding the value of annuities on single and joint lives, and were constructed by Simpson, on the London bills of mortality.

To find the value of an annuity for a single life, at a proposed rate of interest, within the limits of the table, take from Table VI. the number answering to the given age and proposed rate of interest, which multiplied by the given annuity, the product will be the value required.
Example.

What is the value of an annuity of $50 l$. upon a single life aged 40 years, according to the London bills of mortality, the rate of interest being 4 per cent. ?
The value of an annuity of 12 . for 40 years at 4 per cent. is -
Annuity
Value -

To find the value of an annuity of two joint lives, multiply the number in Table VII. answering to the given ages, and at the proposed rate of interest, by the given annuity, and the product will be the required value.

Example.

What is the value of an annuity of $60 l$. for two joint lives, the one being 30 and the other 40 years, interest at 4 per cent.?

To find the value of an anmuity for the longest of two given lives, proceed as directed in the case immediately preceding, but usiug Table VIII., and the product will be the value.

Example.

What is the value of an annuity of 60%. for the longest of two lives, the one being 30 and the other 40 years, interest at 4 per cent.

The first five tables which follow are printed from those of Smart; the remainder are from Simpson.

The calculations involving the valuation of annuities on lives are not very frequently imposed on the architect, but it is absolutely necessary he should be capable of performing them, as in the ease of valuations of leases upon lives, which sometimes occur to him.

The Fikst Tabee of Compount literest.
The Amount of One Pound in any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
3	1.014889	$1 \cdot 019803$	1.024695	1.029563	1.034408	1.039230
1	1.030000	1.040000	1.050000	1.060000	1.070000	$1 \cdot 080000$
12	$1 \cdot 045335$	$1 \cdot 0605.96$	1.075929	1.091336	1-106816	$1 \cdot 122368$
2	$1 \cdot 060900$	1.081600	1-102500	1-12:300	$1 \cdot 144900$	$1 \cdot 166400$
$2 \frac{1}{2}$	$1 \cdot 076695$	1-103019	1-129726	$1 \cdot 156817$	$1 \cdot 184293$	$1 \cdot 2121.58$
3	$1 \cdot 092727$	1-124864	$1 \cdot 157625$	1-191016	1.22504 .3	1.259712
$3 \frac{1}{2}$	1-108996	$1 \cdot 147140$	1-186212	$1 \cdot 226226$	1-267194	$1: 09131$
4	$1 \cdot 125508$	1-169858	1-215506	$1 \cdot 262476$	1:310796	1:360488
$4 \frac{1}{2}$	1-142266	1-193026	$1 \cdot 245523$	$1 \cdot 299799$	$1 \cdot 355897$	$1 \cdot 413861$
5	1-159274	1.216652	1.276281	1-338225	$1 \cdot 402551$	$1 \cdot 469328$
$5 \frac{1}{2}$	$1 \cdot 176534$	$1 \cdot 240747$	1:307799	$1 \cdot 377787$	1.4 .50810	1.526970
6	$1 \cdot 194052$	1-265319	$1 \cdot 340095$	$1 \cdot 418519$	$1 \cdot 500730$	1.586874
$6{ }_{2}^{1}$	1.211830	$1 \cdot 290377$	1-373189	$1 \cdot 460454$	$1 \cdot 552367$	$1 \cdot 649128$
7	1.229873	1.315931	$1 \cdot 407100$	1.503630	1605781	$1 \cdot 713824$
$7 \frac{1}{2}$	$1 \cdot 248185$	1.941992	$1 \cdot 441848$	$1 \cdot 548082$	$1 \cdot 661033$	$1 \cdot 781058$
8	1266770	$1 \cdot 368569$	1.4:7455	1.593848	1.718186	1-850930
$8 \frac{1}{2}$	1-285631	$1 \cdot 395672$	$1 \cdot 513941$	$1 \cdot 640967$	$1 \cdot 777305$	$1 \cdot 923543$
9	1-304773	1.423311	1-551328	$1 \cdot 689478$	$1 \cdot 888459$	$1 \cdot 999004$
$9 \frac{1}{2}$	1.324200	$1 \cdot 451498$	1.589638	$1 \cdot 739425$	$1 \cdot 901717$	$2 \cdot 077426$
10	$1 \cdot 343916$	$1 \cdot 480244$	1-628894	$1 \cdot 790847$	$1 \cdot 967151$	2.158925
$10 \frac{1}{2}$	1.363926	$1 \cdot 509.558$	$1 \cdot 669120$	1.843790	2.034837	$2 \cdot 243620$
11	1.384233	$1 \cdot 539454$	$1 \cdot 710339$	1-898298	$2 \cdot 104851$	2.331639
$11 \frac{1}{2}$	$1 \cdot 404843$	1.569941	$1 \cdot 752576$	$1 \cdot 9.54417$	$2 \cdot 17727.5$	2.423110
12	1-425760	$1 \cdot 601032$	$1 \cdot 795856$	$2 \cdot 012196$	$2 \cdot 252191$	¢.518170
1212	$1 \cdot 446989$	$1 \cdot 632738$	$1 \cdot 840205$	$2 \cdot 071683$	$2 \cdot 329685$	$2 \cdot 616959$
13	$1 \cdot 468533$	$1 \cdot 665073$	1.885649	2•139928	$2 \cdot 409845$	$2 \cdot 719693$
1312	$1 \cdot 490398$	1.698048	$1 \cdot 932215$	$2 \cdot 195984$	$2 \cdot 492763$	2.826:315
14	1.512589	$1 \cdot 731676$	1.979931	$2 \cdot 260903$	$2 \cdot 578534$	$2 \cdot 937193$
141	$1 \cdot 535110$	$1 \cdot 765970$	$2 \cdot 028826$	$2 \cdot 327743$	$2 \cdot 667256$	$3 \cdot 052421$
15	$1 \cdot 557967$	1.800943	¢ 078928	$2 \cdot 396558$	$2 \cdot 759031$	3-172169
$15 \frac{1}{2}$	1.581164	1.836609	$2 \cdot 130267$	$2 \cdot 467407$	$2 \cdot 853964$	$3 \cdot 296614$
16	$1 \cdot 604706$	1.872981	2182874	$2 \cdot 540351$	$2 \cdot 95216.3$	3-42.5942
$16 \frac{1}{2}$	1-628599	1.910073	$2 \cdot 236780$	$2 \cdot 615452$	3.053741	$3 \cdot 560344$
17	I 652847	1.947900	$2 \cdot 292018$	2.692772	3-158815	$3 \cdot 700018$
$17 \frac{1}{2}$	$1 \cdot 677457$	$1 \cdot 986476$	2:348619	$2 \cdot 772379$	3-267.503	$3 \cdot 845171$
18	$1 \cdot 702433$	$2 \cdot 025816$	$2 \cdot 406619$	$2 \cdot 8.54 .339$	3-3799.32	$3 \cdot 996019$
1818	$1 \cdot 727780$	$2 \cdot 065935$	$2 \cdot 466050$	$2 \cdot 938722$	3.496:29	4-152785
19	$1 \cdot 753506$	$2 \cdot 106849$	$2 \cdot 526950$	3.025.599	$3 \cdot 616527$	4315701
1918	$1 \cdot 779614$	$2 \cdot 148573$	$2 \cdot 589353$	$3 \cdot 115045$	$3 \cdot 740965$	$4 \cdot 485008$
20	1.806111	2.191123	2-653297	3*207135	$3 \cdot 869684$	$4 \cdot 660957$
$20 \frac{1}{2}$	1-833002	$2 \cdot 234515$	$2 \cdot 718821$	3:301948	4.002832	4.843808
21	1.860294	2.278768	$2 \cdot 785962$	3.399563	$4 \cdot 140562$	$5 \cdot 033833$
$21 \frac{1}{2}$	1.887992	$2 \cdot 323896$	$2 \cdot 854762$	$3 \cdot 500064$	4.283031	$5 \cdot 231313$
22	$1 \cdot 916103$	$2: 369918$	$2 \cdot 925260$	$3 \cdot 603537$	$4 \cdot 430401$	$5 \cdot 436540$
$22 \frac{1}{2}$	$1 \cdot 944632$	$2 \cdot 416852$	$2 \cdot 997500$	$3 \cdot 710068$	$4 \cdot 582843$	$5 \cdot 649818$
-23	1.973586	$2 \cdot 464715$	$3 \cdot 071523$	3-819749	4-740.529	5•871463
$2: 3 \frac{1}{2}$	$2 \cdot 002971$	$2 \cdot 513526$	3.147375	$3 \cdot 932672$	$4 \cdot 903642$	$6 \cdot 101804$
24	$2 \cdot 032794$	$2 \cdot 563304$	3.225099	$4 \cdot 048934$	5.079366	$6 \cdot 341180$
24!	$2 \cdot 063060$	$2 \cdot 614067$	3.304744	$4 \cdot 168633$	$5 \cdot 246897$	$6 \cdot 589948$
25	$2 \cdot 093777$	$2 \cdot 665836$	3386354	4.291870	$5 \cdot 4274.32$	6.848475

The first Tabie of Compoind lnterfst-cometinued.
The Amount of One Pound in any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$25 \frac{1}{2}$	$2 \cdot 124952$	$2 \cdot 718630$	$3 \cdot 469981$	4-418751	5.614179	$7 \cdot 117144$
26	2-156591	$2 \cdot 772469$	$3 \cdot 555672$	4.549382	5.807852	7.396353
$26 \frac{1}{2}$	$2 \cdot 188701$	$2 \cdot 827375$	$3 \cdot 643480$	$4 \cdot 683876$	6.007172	$7 \cdot 686515$
27	2.221289	$2 \cdot 883368$	$3 \cdot 783456$	$4 \cdot 822345$	6.213867	$7 \cdot 988061$
$27 \frac{1}{2}$	9.254362	$2 \cdot 940470$	$3 \cdot 825654$	$4 \cdot 964909$	6*427674	8:301437
28	$2 \cdot 287927$	$2 \cdot 998703$	$3 \cdot 920129$	$5 \cdot 111686$	$6 \cdot 648838$	$8 \cdot 627106$
$28 \frac{1}{2}$	$2 \cdot 321992$	$3 \cdot 058089$	$4 \cdot 016937$	5.262803	6.877611	$8 \cdot 965551$
29	2.35656.5	3.118651	4•116135	$5 \cdot 418387$	$7 \cdot 114257$	$9 \cdot 317274$
291	2.391652	$3 \cdot 180412$	$4 \cdot 217783$.5:578571	7:559044	$9 \cdot 682796$
30	$2 \cdot 427262$	$3 \cdot 243397$	$4 \cdot 321942$	$5 \cdot 743491$	$7 \cdot 612255$	$10 \cdot 062656$
$30 \frac{1}{2}$	$2 \cdot 463402$	3-307629	$4 \cdot 428673$	$5 \cdot 913286$	$7 \cdot 874177$	10.457419
31	$2 \cdot 500080$	$3 \cdot 373133$	$4 \cdot 538039$	6.088100	8.145112	10.867669
$31 \frac{1}{2}$	$2: 587304$	$3 \cdot 439934$	$4 \cdot 650106$	6-268083	$8 \cdot 425370$	11.294013
32	2.575082	$3 \cdot 508058$	4-764941	$6 \cdot 453386$	$8 \cdot 715270$	11.737083
32 $\frac{1}{2}$	$2 \cdot 613423$	$3 \cdot 577532$	$4 \cdot 882612$	$6 \cdot 644168$	$9 \cdot 015146$	$12 \cdot 197534$
83	$2 \cdot 652335$	$3 \cdot 648381$	5.0031 88	6.840589	9-325:339	$12 \cdot 676049$
331	$2 \cdot 691826$	$3 \cdot 720633$	$5 \cdot 126742$	7.042818	$9 \cdot 646206$	$13 \cdot 173337$
34	$2 \cdot 731905$	$3 \cdot 794316$	$5 \cdot 253347$	$7 \cdot 251025$	9.978113	$13 \cdot 690133$
$34 \frac{1}{2}$	$2 \cdot 772581$	$3 \cdot 869458$	5:383079	$7 \cdot 465387$	$10 \cdot 321440$	14.227204
35	2.813862	3-946088	$5 \cdot 516015$	$7 \cdot 686086$	$10 \cdot 676581$	$14 \cdot 78534+$
351	$2 \cdot 855758$	4.024236	$5 \cdot 652233$	$7 \cdot 913310$	11.043941	$15 \cdot 365380$
36	$2 \cdot 898278$	$4 \cdot 103932$	$5 \cdot 791816$	$8 \cdot 147252$	$11 \cdot 423942$	$15 \cdot 968171$
$36 \frac{1}{2}$	$2 \cdot 941431$	$4 \cdot 185206$	$5 \cdot 934845$	8-388109	$11 \cdot 817017$	16.594610
37	$2 \cdot 985226$	4-268089	$6 \cdot 081406$	$8 \cdot 636087$	12.223618	$17 \cdot 245625$
$37 \frac{1}{2}$	$3 \cdot 029674$	$4 \cdot 352614$	$6 \cdot 231587$	$8 \cdot 891395$	$12 \cdot 644208$	17-922179
38	$3 \cdot 074783$	$4 \cdot 438813$	$6 \cdot 355477$	$9 \cdot 154252$	13.079271	$18 \cdot 625275$
$38 \frac{1}{2}$	3.120554	4.526719	$6 \cdot 543167$	9.424879	$13 \cdot 529303$	19.355954
39	$3 \cdot 167026$	$4 \cdot 616365$	$6 \cdot 704751$	9•70:507	15.994820	$20 \cdot 115297$
391 $\frac{1}{2}$	$3 \cdot 214181$	4.707788	6.870325	9.99037%	$14 \cdot 476354$	$20 \cdot 904430$
40^{-}	$3 \cdot 262037$	$4 \cdot 801020$	$7 \cdot 039988$	$10 \cdot 285717$	14.974457	$21 \cdot 724521$
$40 \frac{1}{2}$	3:310606	-4.896099	$7 \cdot 213841$	$10 \cdot 589794$	$15 \cdot 489699$	22.576785
41	3:359893	-4.993061	$7 \cdot 391988$	10.902861	16.022669	$23 \cdot 462483$
$41 \frac{1}{2}$	$3 \cdot 409924$	$5 \cdot 091943$	$7 \cdot 5745.33$	$11 \cdot 225182$	16.573978	$24 \cdot 382927$
42	$3 \cdot 460695$	5•192783	$7 \cdot 761587$	$11 \cdot 557032$	17•144256	$25 \cdot 339481$
$42!$	3:512222	$5 \cdot 295621$	$7 \cdot 953260$	11.898693	$17 \cdot 734157$	26:333562
4.3	3.564516	$5 \cdot 400495$	$8 \cdot 149666$	$12 \cdot 250454$	18:3443.54	$27 \cdot 366640$
$43 \frac{1}{2}$	$3 \cdot 617589$	5.507446	$8 \cdot 350923$	12.61261 .5	18.975548	$28 \cdot 440247$
44	$3 \cdot 671452$	$5 \cdot 616515$	$8 \cdot 5.57150$	$12 \cdot 985481$	19.628459	$29 \cdot 555971$
$44 \frac{1}{2}$	$3 \cdot 726117$	$5 \cdot 727744$	$8 \cdot 768469$	13:369371	20-303836	$30 \cdot 715466$
45	$3 \cdot 781595$	$5 \cdot 841175$	$8 \cdot 985007$	$13 \cdot 764610$	$21 \cdot 002451$	31.920449
45 $\frac{1}{2}$	3.837900	$5 \cdot 956853$	9.206893	$14 \cdot 171534$	21.725105	$33 \cdot 179704$
46	3.895043	$6 \cdot 074822$	$9 \cdot 434258$	14.590487	22.472623	$34 \cdot 474085$
$46 \frac{1}{2}$	3.953037	$6 \cdot 195127$	$9 \cdot 667237$	$15 \cdot 021826$	$23 \cdot 245862$	$35 \cdot 826520$
47	4.011895	$6 \cdot 317815$	$9 \cdot 905971$	$1.5 \cdot 465916$	24.045707	$37 \cdot 232012$
471 $\frac{1}{2}$	$4 \cdot 071628$	$6 \cdot 442933$	$10 \cdot 150599$	$15 \cdot 923135$	24.873072	$38 \cdot 692642$
48	4.132251	$6 \cdot 570528$	10.401269	16.393871	$25 \cdot 728906$	$40 \cdot 210573$
481	$4 \cdot 193777$	$6 \cdot 700650$	$10 \cdot 658129$	16.878524	$26 \cdot 614187$	$41 \cdot 788053$
49	$4 \cdot 256219$	6.833349	10.921333	17:377504	27.529929	$43 \cdot 427418$
$49 \frac{1}{2}$	$4 \cdot 319590$	$6 \cdot 968676$	11-191036	$17 \cdot 891235$	$28 \cdot 477180$	$45 \cdot 131097$
50	$4 \cdot 383906$	7-106683	$11 \cdot 467399$	$18 \cdot 420154$	29.457025	$46 \cdot 901612$

Phe Fikst Table of Conspound Interest - coitinued.

The Amount of One Pound in any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$50 \frac{1}{2}$	$4 \cdot 449178$	$7 \cdot 247423$	11.750588	18.964709	$30 \cdot 470583$	48.741585
51	4.515423	$7 \cdot 390950$	$12 \cdot 040769$	19.525363	$31 \cdot 519016$	$50 \cdot 653741$
$51 \frac{1}{2}$	$4 \cdot 582654$	7537320	$12 \cdot 338117$	$20 \cdot 102592$	$32 \cdot 603524$	$52 \cdot 640912$
52	$4 \cdot 650885$	$7 \cdot 686588$	12.642808	$20 \cdot 696885$	33725347	$54 \cdot 706040$
$52 \frac{1}{2}$	$4 \cdot 720123$	$7 \cdot 838813$	12.955023	$21 \cdot 308747$	34-885771	$56 \cdot 85 \div 185$
53	4.790412	7-994052	13.274948	21-938698	$36 \cdot 086122$	$59 \cdot 082594$
$53 \frac{1}{2}$	$4 \cdot 861737$	8.152365	$13 \cdot 602774$	22.587272	3:-327775	$61 \cdot 400360$
54	4.934124	$8 \cdot 313814$	13.938696	$23 \cdot 255020$	$38 \cdot 612150$	$63 \cdot 809196$
$54 \frac{1}{2}$	$5 \cdot 007589$	$8 \cdot 478460$	14.282913	$23 \cdot 942508$	$39 \cdot 940719$	$66 \cdot 312389$
5.5	5.082148	8.646366	14*635630	$24 \cdot 650321$	$41: 315001$	$68 \cdot 913856$
$55 \frac{1}{2}$	5-157817	8.817598	14.997058	$25 \cdot 379059$	$42 \cdot 736569$	$71 \cdot 617380$
56	$5 \cdot 34613$	8-992221	15.367412	$26 \cdot 129340$	$44 \cdot 207051$	$74 \cdot 426964$
$56 . \frac{1}{2}$	5-312552	9•170302	15•746911	$26 \cdot 901802$	$4.5 \cdot 728129$	$77 \cdot 346770$
57	5.391651	9:351910	16.135783	$27 \cdot 697101$	47-301545	80:381121
$57 \frac{1}{2}$	$5 \cdot 471928$	$9 \cdot 537114$	$16 \cdot 5942.57$	$28 \cdot 515911$	$48 \cdot 929098$	83.534512
58	5.553400	9×725986	16.949572	29:358927	$50 \cdot 612653$	$86 \cdot 811611$
$58 \frac{1}{2}$	$5 \cdot 636086$	9-918599	$17 \cdot 360970$	$30 \cdot 226865$	52.354135	$90 \cdot \underline{17273}$
59	5-720003	10.115026	17:789700	$31 \cdot 120463$	$54 \cdot 155539$	93-756540
5912	$5 \cdot 805169$	10-315343	18.229018	$32 \cdot 040477$	$56 \cdot \mathrm{Ol} 8925$	97-434655
60	5•891603	$10 \cdot 519627$	$18 \cdot 679185$	32.98\%690	$57 \cdot 9464 \div 6$	$101: 257063$
$60 \frac{1}{2}$	5.979324	10.727957	$19 \cdot 140469$	33-96:906	59.940249	$105 \cdot 229427$
61	$6 \cdot 068351$	10940412	$19 \cdot 613145$	$34 \cdot 966959$	$62 \cdot \mathrm{C02676}$	109:357628
$61 \frac{1}{2}$	$6 \cdot 1.58703$	$11 \cdot 157075$	20.097493	$36 \cdot 000680$	$64 \cdot 136067$	$113 \cdot 647781$
62	$6 \cdot 250401$	$11 \cdot 378029$	$20 \cdot 593802$	$37 \cdot 064969$	C6.342864	$118 \cdot 106239$
$62 \frac{1}{2}$	$6 \cdot 343464$	$11 \cdot 603358$	$21 \cdot 102367$	38.160721	$68 \cdot 625592$	129.7.99604
63	6.437913	11.833150	$21 \cdot 623492$	39.288867	$70 \cdot 986864$	127:554738
$63 \frac{1}{2}$	$6 \cdot 533768$	$12 \cdot 067492$	$22 \cdot 157486$	$40 \cdot 450364$	$73 \cdot 429383$	132:558772
64	6•631051	12:306476	22.704667	$41 \cdot 646199$	$75 \cdot 955945$	$137 \cdot 759117$
$64 \frac{1}{2}$	6.729781	12.550192	$23 \cdot 265360$	$42 \cdot 877386$	78:569440	$143 \cdot 163474$
65^{2}	$6 \cdot \times 29982$	$12 \cdot 798735$	23.839900	$44 \cdot 144971$	$81-272861$	$148 \cdot 779846$
$65 \frac{1}{2}$	6.931675	$13 \cdot 052200$	24.428628	$45 \cdot 450030$	84.069301	$154 \cdot 616552$
66	$7 \cdot 034882$	13:310684	$2.5 \cdot 0.31 \times 95$	$46 \cdot 793669$	86.961961	$160 \cdot 682234$
$66 \frac{1}{2}$	7-139625	$13 \cdot 574288$	$25 \cdot 650060$	$48 \cdot 177031$	$89 \cdot 954152$	166.985876
67	$7 \cdot 245928$	13.845112	$26 \cdot 283490$	$49 \cdot 601290$	$93 \cdot 049298$	$173 \cdot 536813$
$67 \frac{1}{2}$	7:353814	14•117こ59	$26 \cdot 932563$	$51 \cdot 067653$	$96 \cdot 250943$	180:344746
68	7.463306	14:396836	27597664	52.577367	99.562749	$187 \cdot 419758$
$68 \frac{1}{2}$	7.574428	$14 \cdot 681950$	28.279191	$54 \cdot 151713$	102.988509	194.779326
69	$7 \cdot 687205$	14.972709	28-977548	$55 \cdot 732009$	106.532142	202-413338
$69 \frac{1}{2}$	7801661	15.269228	$29 \cdot 693150$	57-379615	110•197704	$210 \cdot 354112$
70	7.917821	15:571618	30.426425	59075930	113.989392	$218 \cdot 606405$
$70 \frac{1}{2}$	$8 \cdot 035711$	15.879997	$31 \cdot 177808$	$60 \cdot 822392$	$117 \cdot 911544$	227-182441
71	8-155356	$16 \cdot 194483$	$31 \cdot 947746$	$62 \cdot 620485$	121-968649	236.094918
$71 \frac{1}{2}$	$8 \cdot 276782$	16.515197	32-736698	64.471736	126.165352	$245 \cdot 357036$
72	$8 \cdot 400017$	16.842262	33.5451.34	66:377715	130.506455	254-982.511
$72 \frac{1}{2}$	$8 \cdot 525086$	$17 \cdot 175804$	34:373533	$68 \cdot 340040$	134.996926	$264 \cdot 985599$
73	$8 \cdot 652017$	17:515952	35*222390	$70 \cdot 360378$	$139 \cdot 641906$	$275 \cdot 38111.2$
73, ${ }^{\frac{1}{2}}$	8.780839	$17 \cdot 862837$	36.092210	$72 \cdot 440442$	$144 \cdot 446711$	$286 \cdot 184447$
74	$8 \cdot 911578$	18-216591	36.983510	$74 \cdot 582000$	149.416840	297741601
$74 \frac{1}{2}$	9044264	18.577350	37.896821	76:786869	154-557981	$303 \cdot 079203$
75	9•178995	18.045254	38.832685	$79 \cdot 056920$	159.876019	321-204.529

The First Table of Compound Interest - continued.
The Amount of One Pound in any Number of Years, \&e.

Years.	3 per Cent.	${ }^{4}$ per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
751 ${ }^{\frac{1}{2}}$	$9 \cdot 315592$	$19 \cdot 320444$	39•791662	$81 \cdot 394081$	16.5:377040	333.805539
76	$9 \cdot 454293$	19.703064	$40 \cdot 7 \overline{7}+320$	$83 \cdot 800336$	171.067340	$346 \cdot 900892$
$76 \frac{1}{2}$	$9 \cdot 595059$	20.093262	41.781245	86.277726	$176 \cdot 953433$	$360 \cdot 509982$
77^{2}	$9 \cdot 737922$	20.491187	$42 \cdot 813036$	88.828356	183.042054	$37 \cdot 4 \cdot 6.52963$
771	$9 \cdot 882911$	20•896992	$43 \cdot 870307$	$91 \cdot 454390$	189.340173	$389 \times 3507 \times 1$
78	10.030059	21:310834	$44 \cdot 953688$	94-1580.57	$195 \cdot 854998$	$40 \cdot 1 \cdot 625200$
$78 \frac{1}{2}$	$10 \cdot 179399$	21.732872	46.063822	96.941653	202-593985	$420 \cdot 498844$
79	10-330361	22.163268	$47 \cdot 201372$	$99 \cdot 807541$	$209 \cdot 564848$	$436 \cdot 995216$
$79 \frac{1}{2}$	$10 \cdot 484781$	$22 \cdot 602187$	$48 \cdot 367013$	$102 \cdot 758152$	216.775564	$454 \cdot 138751$
80	$10 \cdot 640890$	23.049799	$49 \cdot 561441$	$105 \cdot 795993$	$224 \cdot 234387$	$471 \cdot 954834$
$80 \frac{1}{2}$	10•799324	23:506275	$50 \cdot 785364$	108.923642	231-949854	490•469851
81	$10 \cdot 960117$	23.971791	$52 \cdot 039513$	$112 \cdot 14.3753$	239:930794	$509 \cdot 711221$
$81 \frac{1}{2}$	$11 \cdot 123304$	$24 \cdot 446526$	$53 \cdot 324632$	$115 \cdot 459060$	$248 \cdot 186343$	$529 \cdot 707439$
82	11.288920	$2+\cdot 930662$	$54 \cdot 641488$	118.872378	256.725950	$550 \cdot 488118$
82t $\frac{1}{2}$	$11 \cdot 457003$	$25 \cdot 424387$	55-990864	122:386604	$265 \cdot 559387$	$572 \cdot 084035$
83	11-627588	$25 \cdot 927889$	57.373563	$126 \cdot 004720$	$274 \cdot 696766$	$594 \cdot 527168$
$83 \frac{1}{2}$	$11 \cdot 800713$	26.441362	58.790407	129•729800	$284 \cdot 148545$	$617 \cdot 850757$
84	$11 \cdot 976416$	$26 \cdot 965004$	60.242241	133.565004	$293 \cdot 92.5540$	$6.42 \cdot 089341$
$84 \frac{1}{2}$	$12 \cdot 154734$	$27 \cdot 499017$	61.729928	137.513588	$304 \cdot 0: 8943$	667×278818
85	12-33.5708	$28.04360 \cdot 4$	63.254353	141-578904	$314 \cdot 500328$	$693 \cdot 456488$
$85 \frac{1}{2}$	$12 \cdot 519376$	28-598977	-816424	$145 \cdot 764403$	$325 \cdot 821669$	720.661124
86	$12 \cdot 705779$	29•165349	$66 \cdot 417071$	$150 \cdot 073638$	336.515351	$748 \cdot 933008$
$86 \frac{1}{2}$	12.894958	$29 \cdot 742936$	68.057245	154.510267	348.094186	$778 \cdot 314013$
87	13.086953	30-331963	69.737924	159.078057	$360 \cdot 071425$	808.847648
$87 \frac{1}{2}$	13.281806	30-932654	$71 \cdot 460108$	163:780884	$372 \cdot 460779$	840.579135
88	13.479561	$31 \cdot 545241$	73.224820	168.622740	385.276425	873.555460
$88 \frac{1}{2}$	13.680261	32-169960	75.033113	$173 \cdot 607737$	398-533033	907-825465
89	$13 \cdot 883948$	32-807051	76.886061	178.740104	412.245775	943.439897
891	14.090668	$33 \cdot 456758$	78.784769	$184 \cdot 024201$	$426 \cdot 430345$	$980 \cdot 451503$
90	14:300467	$34 \cdot 119333$	$80 \cdot 730365$	$189 \cdot 404511$	$441 \cdot 102979$	1018.915089
$90 \frac{1}{2}$	14.513389	$34 \cdot 795029$	$82 \cdot 724007$	195.065653	456280470	1058.887623
91	14.729481	35-484106	84.766883	$200 \cdot 832381$	$471 \cdot 980188$	$1100 \cdot 428296$
$91 \frac{1}{2}$	14.948790	36.186830	86.860208	206.769592	488.220103	$1143 \cdot 598633$
92	15•171365	36.903470	89.005227	$212 \cdot 882324$	505.018801	1188.462560\|
921	15:397254	$37 \cdot 634303$	91-203218	$219 \cdot 175768$	$522 \cdot 395510$	1235.086523
93	$15 \cdot 626506$	$38 \cdot 379609$	93.455488	$22.5 \cdot 655264$	540-370117	1283-539564
931 ${ }^{\frac{1}{2}}$	15.859172	39•139675	$95 \cdot 763379$	$232 \cdot 326314$	$5.58 \cdot 963196$	1933 893.445
94	16.095301	39.914794	98-128263	$239 \cdot 194580$	578-196026	1386-222730
$94 \frac{1}{2}$	16.334947	$40 \cdot 705262$	100.551548	$246 \cdot 26.5893$	$598 \cdot 090619$	$1440 \cdot 604921$
95	16.578160	$41 \cdot 511385$	103.034676	253.546254	$618 \cdot 669747$	1497-120548
$95!$	16.824995	42.333473	105.579125	261.041846	639-956963	$1555 \cdot 853315$
96	$17 \cdot 075505$	$43 \cdot 171841$	$108 \cdot 186410$	268.7.59030	$661 \cdot 976630$	1616.890192
$96 \frac{1}{2}$	17329745	44.026812	$110 \cdot 858082$	276.704357	684•753950	1680-321580
97	$17 \cdot 587770$	$44 \cdot 898715$	113.595730	284.884572	708:314994	1746-241407
$97 \frac{1}{2}$	17-849637	$45 \cdot 787884$	116.400986	293:306618	$732 \cdot 686727$	1814.747.306
98	$18 \cdot 115403$	$46 \cdot 694663$	119-275517	301.977646	757.897043	1885-940720
$98 \frac{1}{2}$	18.385126	$47 \cdot 619400$	122.221035	$310 \cdot 905016$	783.974797	1959.927091
99	$18 \cdot 658866$	$48 \cdot 562450$	125.239293	$320 \cdot 096305$	810949836	2036.815978
9912	18.936680	$49 \cdot 524176$	128:332087	$329 \cdot 559317$	$838 \cdot 853033$	2116.721258
100	$19 \cdot 218631$	$50 \cdot 504948$	$131 \cdot 501257$	339 -302083	86\%.716325	$2199 \cdot 761256$

The Second Table of Compound Interest.
The present Value of One Pound payable at the End of any Number of Years, \&e.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent:
$\frac{1}{2}$	-985329	. 930580	. 975900	-971285	$\cdot 966736$	-962250
1	-970873	-961538	-9.59380	-943396	-934579	-925925
$1 \frac{1}{2}$	-956630	-942866	-929428	-916307	-903492	-890972
2	$\cdot 942595$	$\cdot 924556$	-907029	-889996	-873438	-857398
212	-928767	-906601	-885170	-864440	-844:385	-824974
3	$\cdot 915141$	-888996	- 863837	-839619	816297	$\cdot 7938.32$
$3 \frac{1}{2}$	-901715	-871:32	-843019	-815510	$\cdot 789144$	$\cdot 763865$
4	-888487	-854804	'829702	-792093	-762895	-785029
$4 \frac{1}{2}$	-875452	-838204	-802875	-769349	737518	$\because 07282$
5	-862608	-821927	-783526	-747258	$\cdot 712986$	$\cdot 680.583$
$5 \frac{1}{2}$	-849953	-805965	-764643	$\cdot 7 \times 5801$	-689269	-654891
6	-837484	$\cdot 790314$. 7462 i 5	-704960	-6663442	-630169
$6 \frac{1}{2}$	-825197	$\cdot 774967$.728231	-684718	-644177	-606381
7	-813091	759917	-710641	-665057	-622749	-583490
$7 \frac{1}{2}$	-50:162	745160	-693553	-645960	-602034	-561463
8	-789409	$\cdot 730690$	-676839	-627412	-582009	-540268
$8 \frac{1}{2}$	-777828	-716500	-660527	-609396	:562649	-519873
9	766416	$\cdot 702586$	'644608	-591898	-543933	-500248
$9 \frac{1}{2}$	-753172	-688942	-699073	-574902	-525840	-481364
10^{-}	$\cdot 744093$	$\cdot 675564$	-513913	$\cdot 558394$	-508:349	$\cdot 463193$
$10 \frac{1}{2}$	$\cdot 733177$	-662445	-599117	-512360	-491439	-445708
11	$\cdot 722421$	-649580	-584679	$\cdot 5.6787$	-475092	-428882
$11 \frac{1}{2}$	$\cdot 711829$	-636966	. 570588	-5116.61	$\cdot 459289$	- 412692
12	$\because 01379$	-624.597	-536837	-496969	-444011	-397113
$12 \frac{1}{2}$	-691090	-612467	-543417	$\cdot 48 \div 699$	-429242	-3821 52
13	-680951	-600.5i4	530321	$\cdot 468839$	$\cdot 414964$	-367697
1312	-670961	588911	- 517540	$\cdot 455376$	-401161	-353817
14	-661117	$\cdot 577475$	-505067	-442300	-387817	-340461
1412	-651418	-566260	492895	-429600	$\bigcirc 374917$	-327608
1.5	-641861	$\cdot 555964$	$\cdot 481017$	$\cdot 417265$	-362446	-315241
1512	-632445	. 544481	$\cdot 469421$	-4052S93	-350389	. 303341
16	-623166	-53:908	458111	-393646	-339734	-291890
$16 \frac{1}{2}$	-614024	-523540	447071	-382343	-327467	-280871
17	-605016	-513373	436296	-371364	-316574	-270268
1712	-596140	-503403	-42.5781	-360701	-306044	-260066
18	- 587394	-493628	-415590	$\cdot 350343$	-295863	-250249
$18 \frac{1}{2}$	-578777	$\cdot 484042$	-405506	-540-8:3	-286022	-240802
19	- 570286	-474642	-395733	-330513	-276508	-231712
1912	-561919	-465425	-386196	-321022	$\cdots 67310$	-222965
20	-553675	-456386	376889	$\cdot 311804$	-258419	. 214548
$20 \frac{1}{2}$	545552	-447524	-367806	$\cdot 3028.51$	-249823	-206449
21	- 537549	-438833	-358942	-294155	-241.513	-198655
$21 \frac{1}{2}$	-529663	$\cdot 430311$	-350291	-285708	-233479	-191156
22	-521892	-421955	-341849	$\cdots 277505$	-225713	-185940
$22 \frac{1}{2}$	- 514235	$\cdot 413761$	-33.3611	$\because 69.536$	-218205	-176996
23	-506691	-405726	-325571	$\because 61797$	-210946	-170315
$23 \frac{1}{2}$	-499258	-397847	-317725	-254279	-203930	-16:885
24	-491933	-390121	-310067	-246978	-197146	-157699
$24 \frac{1}{2}$	-484716	-382545	-302595	-239886	-190588	$\cdot 151746$
25	$\cdot 477605$	$\cdot 375116$	-295302	-232998	-184249	$\cdot 146017$

The Second Table of Compuend Interfest-continued.
The prescnt Value of One Pound payable at the End of any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$25 \frac{1}{2}$	-470.598	-367832	-288186	-226308	-178120	-140505
26	-463694	$\cdot 360689$	-281240	-219810	$\cdot 172195$	-1:35201
$26 \frac{1}{2}$	-456891	. 353684	-274462	-213498	-166467	-130097
27	450189	-346816	-267848	$\because 0736 \%$	-160930	-125186
$27 \frac{1}{2}$	443584	$\cdot 340081$	-261393	.201413	$\cdot 155577$	-120461
28	-4.37076	$\cdot 333477$	-255093	-195630	-150402	-115913
$28 \frac{1}{2}$	-430564	$\cdot 327001$	-248945	-190012	-145399	-111538
29	-424346	. 320351	-242946	-184556	-140562	-107327
$29 \frac{1}{2}$	-418120	-314424	-237091	$\cdot 1792.57$	$\cdot 135887$	-103275
30	411986	-308318	-231377	-174110	-131367	-099377
$30 \frac{1}{2}$	$\cdot 405912$	-302331	-225801	-169110	-126997	:095625
31	-399987	-296460	-220359	-164254	-122773	-92016
311	$\therefore 394119$	-290703	-215048	-159538	-118689	:088542
- 32	-388337	$\because 285057$	-209866	-1.54957	-114741	-085200
$\bigcirc 2 \frac{1}{2}$:382639	$\cdot 279522$	-204808	-150507	-110924	-081983
33	-377026	-274094	-199872	$\cdot 146186$	-107234	-078888
$33 \frac{1}{2}$	$\cdot 371495$	-268771	-19.5055	-141988	-103667	-075910
34	-366344	-263552	-190354	-137911	-100219	-0:3045
$34 \frac{1}{2}$	- 660674	-258434	-185767	-135951	-096885	-070287
35	-355383	$\cdot 2.53415$	-181290	-130105	-093662	-067634
$35 \frac{1}{2}$	-350169	-248494	$\cdot 176921$	-126369	-090.547	-035081
36	- 345032	$\bullet 243668$	-172657	-122740	-087535	-062624
$36 \frac{1}{2}$	-339970	-238936	-168496	-119216	-084623	-060260
:37	-3344982	*234296	-164435	-115793	.081808	-0579×5
$37 \frac{1}{2}$	-330068	-229746	-160472	-112468	$\cdot 079087$	-055796
38	-325こ26	-225285	-156605	-109238	.076456	-053690
$38 \frac{1}{2}$	-320454	:20910	-152831	-106102	-073913	-0.7166:3
39	-3157.53	-2166:0	-149147	-103055	-071455	-019713
3 S $\frac{1}{2}$	-311121	-212413	$\cdot 14.5553$	-100096	-069078	-017836
40	-306556	-208289	$\cdot 14045$	-097222	-066780	-0460:30
$40 \frac{1}{2}$	-302059	-204244	-138622	-094430	-064559	-044293
41	-297628	-200277	-135281	-091719	-062411	-042621
$41 \frac{1}{2}$	-993261	-196388	-132021	-089085	-060335	-041012
42^{2}	-288959	-199574	-128839	'086527	-058328	-03946 4
$42 \frac{1}{2}$	-284719	-188835	-125734	-084042	-056388	-037974
43	- 280542	-185168	-122704	-081629	-054512	-036540
$43 \frac{1}{2}$	-276127	-181572	-119747	-079285	-052699	-035161
44^{-}	-272371	-178046	-116861	-077009	-050946	-033834
$44 \frac{1}{2}$	-268375	-174588	$\cdot 114044$	-074797	-049251	-03こ556
45	- 64438	-171198	-111296	-072650	. 047613	-031327
$4.5 \frac{1}{2}$	-265559	-167873	-108614	. 070563	-045029	.030145
46	-256736	-164613	-10.5996	-068537	-04-198	-029007
$46 \frac{1}{2}$	-25:970	-161417	-103442	-066.369	-043018	-027912
47°	-249258	-158282	-100949	-054658	-041587	:026858
471	-245601	-155208	-098516	-062801	-040204	-025844
48	- 241998	-152194	-096142	-C60998	-038866	. 024869
$48 \frac{1}{2}$	-238448	-149239	-093825	-059246	-037578	-023930
49	-234950	-146341	-091563	- 0.57545	-036324	-023026
$49 \frac{1}{2}$	-231503	-143499	-089357	-055893	035115	-022157
50	-228107	$\cdot 140712$	-087203	-054288	03.9247	-021321

The Second Table of Compound Interest - continued.
The present Value of One Pound payable at the End of any Number of Years, \&c.

Y ears.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
501	-224760	-137980	-085102	-0.52729	-032818	-020516
51^{1}	-221463	-135300	$\cdot 083051$	-051215	-031726	.019741
$51 \frac{1}{2}$	-218214	-132673	-081049	-049744	-030671	-018996
52	-215012	-130096	. 079096	-048316	-029651	-018279
$52 \frac{1}{2}$	-211858	-127570	. 077190	'046929	-028664	-017589
53	- 208750	-125093	-075329	. 045581	-027711	-016925
$53 \frac{1}{2}$	-205687	-122663	$\cdot 073514$	- 044272	-026789	-016286
54	-202670	-120281	$\cdot 071742$	-043001	-025898	$\cdot 015671$
$54 \frac{1}{2}$	-199696	-117945	-070013	-041766	-025037	-015080
35	-196767	-115655	-068326	-040567	-024204	. 014510
551 $\frac{1}{2}$	-193880	-113409	-066679	-039402	-023399	-013963
56	-191036	-111207	-065072	:038271	-022620	-013435
$56 \frac{1}{2}$	-188233	-109047	-063504	. 037172	-021868	-012928
57	-185471	-106930	. 061974	-036104	-021140	-012440
$57 \frac{1}{2}$	-182750	-104853	-060480	-035068	-020437	- 011971
58	-180069	-102817	-059022	.034061	-019757	. 011519
$58 \frac{1}{2}$	$\cdot 177428$	-100820	:057600	-033083	-019100	-011084
59	-174825	-098862	-056212	.032133	-018465	-010665
591	-172260	-096942	-054857	-031210	$\cdot 017851$	-010263
60	$\cdot 169733$	-095060	-053535	-030314	-017257	-009875
60_{2}^{1}	$\cdot 167242$	-093214	-052215	-029443	. 016683	-009503
61	-164789	-091404	-050986	-028598	:016128	-009144
$61 \frac{1}{2}$	-162371	-089629	-049757	-027777	:015591	-008799
62	-159989	-087888	-048558	-026979	-015073	-008466
621	-157642	-086181	-047388	-026204	-014571	$\cdot 008147$
63	-155329	-084508	-046246	-025452	-014087	-007839
$63 \frac{1}{2}$	$\cdot 153051$	-082867	-045131	024721	-013618	-0, 07543
64	$\cdot 150805$	-081258	$\cdot 044043$	-024011	-013165	-007259
$64 \frac{1}{2}$	-148593	-079680	-042982	-023322	$\cdot 012727$	-006985
65	-146413	-078132	-041946	-022652	-012304	-006721
6.51	- 144265	-076615	-040935	-022002	-011894	-006467
66	-142148	-075127	-039949	-021370	-011499	-006223
$66 \frac{1}{2}$	$\cdot 140063$	-073668	. 038986	$\cdot 020756$	-011116	-005983
67	-138008	-072238	- 038046	-020160	-010746	-005762
$67 \frac{1}{2}$	-135983	-070835	. 037129	$\cdot 019581$	-010389	-005544
68	-133988	-069459	-036234	-019019	- 010043	- 005335
$68 \frac{1}{2}$	-132023	-068110	-035361	-018473	-009709	-005134
69	-130086	-066788	-034509	-017943	-009386	-004940
$69 \frac{1}{2}$	-128177	-O6549I	-033677	-017427	-009074	$\cdot 004753$
'70	-126297	-064219	-032866	-016927	$\cdot 008772$	-004574
$70 \frac{1}{2}$	-124444	-062972	-032074	-016441	-008480	-004401
71	-122618	-061749	-031301	-015969	-008198	$\cdot 004235$
$71 \frac{1}{2}$	-120819	-060550	-030546	- 015510	-007926	-004075
72	-119047	-059374	-029810	-015065	-007662	-003921
$72 \frac{1}{2}$	-117300	-058221	-029092	. 014632	$\cdot 007407$. 003778
73	$\cdot 115579$	-057090	-028391	-014212	-007161	-003631
$73 \frac{1}{2}$	-113884	-055982	-027706	-013804	-006922	-00:3494
74	-112213	-054895	-027039	-113408	-006692	-003362
$74 \frac{1}{2}$	$\cdot 110567$	-053828	- 26387	$\cdot 013023$	$\cdot 006470$	-003235
75	-108945	-052783	-025751	-012649	-006254	. 003119

The Second Table of Compound Interest - continued.
The present Value of One Pound payable at the End of any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	${ }_{6} \mathrm{p}$ per Cent.	7 per Cent.	8 per Cent.
751	-107346	-051758	-025130	-012285	-006046	-002995
76	-105772	-050753	-024525	-011933	-005845	-002883
$76 \frac{1}{2}$	-104220	-049767	-023934	-011590	-005651	-002773
77^{2}	-102691	-048801	-023357	-011257	-005463	$\cdot 002669$
$77 \frac{1}{2}$	-101184	. 047853	-022794	-010934	-005281	-002568
78	-099700	-046924	-022245	-010620	-005105	-002471
$78 \frac{1}{2}$	-098237	. 046013	-021709	-010315	. 004935	-002378
79	-096796	-045119	-021185	-010019	. 004771	. 002288
$79 \frac{1}{2}$	-095376	-044243	-020675	-009731	-004613	-002201
80°	-093977	-043384	-020176	-009452	-004459	-002118
$80 \frac{1}{2}$	-092598	-042541	- $0 \cdot 9690$	-009180	. 004311	-002038
81	-091239	-041715	-019216	-008917	-004167	-001961
$81 \frac{1}{2}$	-089901	-040905	. 018753	-008661	-004029	. 001887
82	-088582	-0401 11	-018301	-008412	-003895	-001816
$82 \frac{1}{2}$	-087282	-039532	-017860	.008170	-003765	.001747
83	-086002	-038568	$\cdot 017429$	-007936	$\cdot 003640$	$\cdot 001682$
$83 \frac{1}{2}$	-084740	-037819	$\cdot 017009$	$\cdot 0.7708$	-003519	-001618
84	-083497	-037085	$\cdot 016599$	-007486	$\cdot 003402$	-001557
$84 \frac{1}{2}$	-082279	-036364	-016199	-007272	-003289	$\cdot 001498$
85	-081065	-035658	-015809	$\cdot 007063$	-003179	. 001442
$85 \frac{1}{2}$	-079876	-034966	- 015428	-006860	-003073	-001397
86	-078704	-034287	-015056	-006663	-002971	-0013335
$86 \frac{1}{2}$	-077549	-033621	-014693	-006472	-002872	-001284
87	-076411	-032968	-014339	-006286	$\cdot 002777$	-001236
$87 \frac{1}{2}$	-075290	-032328	-013993	-006105	-002684	-001189
88	-074186	-031700	-013656	-00.5930	-002595	$\cdot 001144$
$88{ }_{2}^{1}$	-073098	-031084	-013327	-005760	-002509	-001 101
89	-072025	-030481	-013006	-005594	-002425	. 001059
$89 \frac{1}{2}$	-070968	-029889	-012692	-005434	-002345	-001019
90	-069927	029308	-012386	-005278	-002267	-000981
$90 \frac{1}{2}$	-068901	-028739	-012088	-005126	-002191	-000944
91	-067891	-028181	-011797	-004979	-002118	-000908
$91 \frac{1}{2}$	-066895	-027634	-011512	-004836	-002048	-000874
92	-065913	-027097	-011235	-004697	-001980	-000841
$92 \frac{1}{2}$	-064946	-026571	-010964	-004562	-001914	-000809
93	-063993	-026055	-010700	-004431	-01850	-000779
$93 \frac{1}{2}$	-063054	-025549	-010442	-004304	-001789	-000749
94	-062129	-025053	-010190	-004180	-001729	$\cdot 000721$
$94 \frac{1}{2}$	-061218	-024566	-009945	. 004060	-001671	. 000694
95	-060320	-024089	.009705	. 003944	.001616	$\cdot 000667$
$95 \frac{1}{2}$	-059435	-023621	-009471	-003830	-001562	-000642
96	-0.58563	-023163	-009243	-003720	-001510	-000618
$96{ }_{2}^{1}$	-057704	-022713	-009020	-003613	-001460	-000595
97	-056857	-022272	. 008803	. 003510	-001411	-000572
$97 \frac{1}{2}$	-056023	-021839	-008590	-003409	-001364	'000551
98	-055201	-021415	-008383	-003311	-001319	-000590
$98{ }_{2}^{1}$	-054391	-020999	-008181	003216	-001275	-000510
99	-053593	-020592	-007984	-003124	-001233	. 000490
$99 \frac{1}{2}$	-052807	-020192	-007792	-003034	-001192	-000472
100	-052032	-019800	-007604	-002947	.OO1152	000454

The Third Table of Compound Interest.
The Amount of One Pound per Annum in any Number of Years, \&c.

Years.	3 yer Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$\frac{1}{2}$	-496305	-495097	-493901	-492716	-491543	-490381
2	$1 \cdot 000000$	$1 \cdot 000000$	$1 \cdot 000000$	1.000000	1.000000	$1 \cdot 000000$
$1 \frac{1}{2}$	1:511194	$1 \cdot 514901$	$1 \cdot 518596$	1-522279	1-525951	$1 \cdot 599611$
2	$2 \cdot 030000$	$2 \cdot 040000$	$2 \cdot 050000$	$2 \cdot 060000$	$2 \cdot 070000$	$\underline{2} \cdot 080000$
$9 \frac{1}{2}$	$2 \cdot 556530$	$2 \cdot 575497$	$2 \cdot 594526$	$2 \cdot 613616$	$2 \cdot 632768$	$2 \cdot 651980$
3	. 090900	$3 \cdot 121600$	3•152500	$3 \cdot 183600$	3.214900	$3 \cdot 246400$
$3 \frac{1}{2}$	3•633226	$3 \cdot 678517$	$3 \cdot 724252$	$\because 3 \cdot 770433$	3•817061	3-864138
+	$4 \cdot 183627$	$4 \cdot 246464$	$4 \cdot 310125$	4:374616	$4 \cdot 439943$	$4 \cdot 506112$
4.	$4 \cdot 742222$	$4 \cdot 825658$	$4 \cdot 910465$	4.996659	$5 \cdot 084256$	$5 \cdot 173270$
5	5:309135	$5 \cdot 416322$	5-525631	5 6:37092	5750739	$5 \cdot 866600$
51	$5 \cdot 884489$	-018684	$6 \cdot 155988$	6.296459	$6 \cdot 440154$	6.587131
6	$6 \cdot 468409$	$6 \cdot 632975$	$6 \cdot 801912$	6.975318	$7 \cdot 153290$	7-335929
$6 \frac{1}{2}$	$7 \cdot 061024$	7×259431	$7 \cdot 463788$	$7 \cdot 674246$	7890964	8.114102
7	$7 \cdot 662462$	$7 \cdot 898294$	$8 \cdot 142008$	8:393837	8.654021	8.922803
$7!$	$8 \cdot 2798.55$	8.549809	8.836977	$9 \cdot 134701$	$9 \cdot 443332$	$9 \cdot 763230$
8	$8 \cdot 892336$.214226	9.549108	$9 \cdot 897467$	10.259802	$10 \cdot 636627$
$8 \frac{1}{2}$	$9 \cdot 521040$	9.891801	$10 \cdot 278826$	10.682783	11.104,65	$11 \cdot 544288$
9	$10 \cdot 159106$	10.582795	$11 \cdot 026564$	$11 \cdot 491315$	11.977988	$12 \cdot 487557$
$9 \frac{1}{2}$	$10 \cdot 806671$	11:287473	$11 \cdot 792767$	$12 \cdot 323750$	$12 \cdot 881671$	$13 \cdot 467831$
10	$11 \cdot 463879$	$12 \cdot 006107$	$12 \cdot 577892$	13•18079 1	$13 \cdot 816447$	$14 \cdot 486562$
$10 \frac{1}{2}$	$12 \cdot 130372$	12.738972	13.382406	14.063175	14.783388	$15 \cdot 5452.58$
11	$12 \cdot 807795$	13.486351	$14 \cdot 206787$	14.971642	$15 \cdot 783599$	$16 \cdot 645487$
$11 \frac{1}{2}$	$13 \cdot 494798$	14.248531	$15 \cdot 0.51526$	$15 \cdot 906966$	16.818225	$17 \cdot 788879$
12	14.192029	$15 \cdot 025805$	$15 \cdot 917126$	16.869941	$17 \cdot 888451$	$18 \cdot 977126$
121	$14 \cdot 899642$	$15 \cdot 818472$	$16 \cdot 804102$	$17 \cdot 861384$	18.995501	20.211989
13	$15 \cdot 617790$	16.626837	17.712989	18.882137	$20 \cdot 140642$	$21 \cdot 495296$
131	$16 \cdot 346631$	$17 \cdot 451211$	$18 \cdot 644307$	$19 \cdot 933067$	$21 \cdot 325186$	22.828948
14	17.086324	18.291911	19.598631	$21 \cdot 015065$	$22 \cdot 550487$	24.214920
141 $\frac{1}{2}$	$17 \cdot 837030$	$19 \cdot 149260$	$20 \cdot 576523$	22.129051	$23 \cdot 817949$	$25 \cdot 655264$
15	18.598913	20.02:3587	$21 \cdot 578563$	$23 \cdot 275969$	$25 \cdot 129022$	$27 \cdot 152113$
151	19:372141	20.915230	$22 \cdot 605349$	24.456794	$26 \cdot 485205$	28-707685
16	$20 \cdot 156881$	$21 \cdot 824531$	$23 \cdot 657491$	$25 \cdot 672528$	$27 \cdot 888053$	$30 \cdot 324283$
$16 \frac{1}{2}$	$20 \cdot 953305$	$22 \cdot 7518: 39$	$24 \cdot 735616$	$26 \cdot 924202$	$29 \cdot 339170$	32.004300
17	$21 \cdot 761587$	$23 \cdot 697512$	$25 \cdot 840366$	$28 \cdot 212879$	$30 \cdot 840217$	$33 \cdot 750295$
173	$22 \cdot 581904$	$24 \cdot 661913$	$26 \cdot 972397$	29.539654	3-392912	35.564644
18	$23 \cdot 414435$	$23 \cdot 645412$	$28 \cdot 132384$	$30 \cdot 905652$	33.999032	:37-450243
$18 \frac{1}{2}$	$24 \cdot 259361$	$26 \cdot 648389$	$29 \cdot 321017$	$32 \cdot 312033$	35.660416	$39 \cdot 409816$
19	$25 \cdot 116868$	$27 \cdot 671229$	$\therefore 0.539003$	$33 \cdot 759991$	37-378964	$41 \cdot 446263$
19 !	$2.5 \cdot 987142$	$28 \cdot 714325$	$31 \cdot 787068$	35-250755	$39 \cdot 156645$	$43 \cdot 562601$
20	$26 \cdot 870374$	$29 \cdot 778078$	$33 \cdot 065954$	$36 \cdot 785591$	40.995492	$45 \cdot 761964$
$20 \frac{1}{2}$	$27 \cdot 766756$	$30 \cdot 862898$	34:376421	$38 \cdot 365401$	$42 \cdot 897610$	$48 \cdot 047609$
21	$28 \cdot 676485$	31-969201	3; 719 951	39:9927:6	$44 \cdot 865176$	$50 \cdot 422921$
$21!$	$29 \cdot 599759$	$33 \cdot 097414$	$37 \cdot 095243$	41-667\%49	46:9004 13	52.891418
29	30-536780	34.247969	38.505214	$43 \cdot 392290$	49.005739	$55 \cdot 456755$
22 !	21-487752	35.421310	\$9.950005	45.167814	51.183474	$58 \cdot 122731$
29	$32 \cdot 452883$	36.617×88	$41 \cdot 430475$	46.995827	53.436140	60.8932 .95
$23{ }_{2}^{1}$	$33 \cdot 432385$	37.838163	$42 \cdot 917505$	48.877882	$55 \cdot 766317$	$63 \cdot 7725.50$
24	$34 \cdot 426470$	$39 \cdot 082604$	$44 \cdot 501998$	$50 \cdot 815577$	$58 \cdot 176670$	$66 \cdot 764759$
241	$35 \cdot 435356$	$40: 351689$	$46 \cdot 094880$	52-810555	$60 \cdot 669959$	$69 \cdot 8743.54$
25	$36 \cdot 459264$	$41 \cdot 645908$	47・フ27098	54-864512	$63 \cdot 249037$	$73 \cdot 105939$

Chap. IV.
The Third Table of Conhound Inteprast - continked.
The Ansount of One Pound per Annum in my Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 pur Cent.	7 per Cent.	8 per Cent.
251	37.498417	42.965757	49:399624	56.979189	$65 \cdot 916856$	76.464302
26	38-55.3042	44.311744	$51 \cdot 113453$	59•156382	$68 \cdot 676470$	$79 \cdot 954415$
$26 \frac{1}{2}$	$39 \cdot 623369$	45.684387	$52 \cdot 869605$	61 -397940	$71 \cdot 5: 31036$	83.581446
27	$40 \cdot 709633$	47.084214	54.669126	63.705765	$74 \cdot 483823$	87:350768
$27 \frac{1}{2}$	41.812070	48.511763	$56: 513086$	66.081817	77-538209	$91 \cdot 267962$
28	$42 \cdot 930922$	$49 \cdot 967582$	$58 \cdot 402582$	68.528111	$80 \cdot 697690$	95:338829
$28 \frac{1}{2}$	44.066433	$51 \cdot 452233$	60:338740	71.046796	$83 \cdot 965884$	$99 \cdot 569399$
29	45.218850	$52 \cdot 966286$	$62 \cdot 322711$	73.639798	87:346529	$103 \cdot 965936$
$29 \frac{1}{2}$	$46 \cdot 388425$	54:510323	$64 \cdot 355677$	7C-309529	$90 \cdot 843495$	108.534951
30	47:575415	56.084937	$66 \cdot 438847$	79.058186	94-460786	$113 \cdot 283211$
$30 \frac{1}{2}$	48.780078	$57 \cdot 690735$	68.573461	$81 \cdot 888101$	98.202540	118.217747
31	$50 \cdot 002678$	$59 \cdot 328335$	70.760789	$84 \cdot 801677$	$102 \cdot 073041$	123:345868
$31 \frac{1}{2}$	51 -243481	$60 \cdot 998865$	$73 \cdot 002154$	$87 \cdot 801387$	106.076718	$128 \cdot 675167$
32	$52 \cdot 502758$	62•701468	$75 \cdot 988829$	$90 \cdot 889778$	$110 \cdot 218154$	134.213537
321	53.780785	$64 \cdot 438300$	$77 \cdot 652241$	$94 \cdot 069470$	$114 \cdot 502088$	139.969180
35	55.077841	$66 \cdot 209527$	80.063770	97-343164	118.933425	145.950620
3312	$56: 394209$	68.015832	82.534853	100•718639	123.517234	$152 \cdot 166715$
34	57.730176	69.857908	85.066959	104-183754	128.258764	$158 \cdot 626670$
S412	59.086035	71 -736465	$87 \cdot 661596$	$107 \cdot 756457$	133-163441	$165 \cdot 340052$
35	$60 \cdot 462081$	$73 \cdot 652224$	90-320307	111434779	138.236878	172:316803
$35 \frac{1}{2}$	$61 \cdot 858616$	75.605923	93.044675	115.221844	$143 \cdot 484882$	179.567256
36	$63 \cdot 275944$	$77 \cdot 598313$	95•836322	119•120866	$148 \cdot 913459$	$187 \cdot 102147$
361	$64 \cdot 714374$	79.630160	98.696909	123•135155	154.528824	$194 \cdot 932637$
37	$66 \cdot 174222$	$81 \cdot 702246$	$101 \cdot 628138$	$127 \cdot 268118$	160-337402	203.070319
$37 \frac{1}{2}$	$67 \cdot 655806$	$83 \cdot 81$ 〔367	104-631755	:31-523264	166:345841	$211 \cdot 527248$
38	69.159449	85.970336	107•709545	$135 \cdot 904205$	172.561020	220:315945
381	70-685480	88.167982	$110 \cdot 863342$	140-414660	$178 \cdot 990050$	$229 \cdot 449428$
39	72.234232	90-409149	114.095023	$145 \cdot 058458$	185.640291	$238 \cdot 941221$
$39 \frac{1}{2}$	73-806044	$92 \cdot 694701$	$117 \cdot 406510$	149.839540	192.519354	$248 \cdot 805382$
40	$75 \cdot 401259$	95.025515	120•799774	154.761965	199•635111	259.056518
$40 \frac{1}{2}$	77.020226	$97 \cdot 402489$	124.276835	159•829912	206.995708	269•709812
41	$78 \cdot 663297$	$99 \cdot 826536$	127-839762	165.047683	214-609569	$280 \cdot 781040$
$41 \frac{1}{2}$	80-330832	$102 \cdot 298588$	131-490677	170-419707	$222 \cdot 485408$	292.286597
42	$82 \cdot 023196$	$104 \cdot 819597$	135.231751	$175 \cdot 950544$	230652239	304.243523
421	$83 \cdot 740757$	107.390532	139.065211	$181 \cdot 644890$	$239 \cdot 059387$	316.669525
43	85.483892	110.012381	142.993338	187:507577	$247 \cdot 776496$	$329 \cdot 583005$
$4.3 \frac{1}{2}$	$87 \cdot 252980$	$112 \cdot 686153$	$147 \cdot 018471$	$193 \cdot 543583$	$256 \cdot 793544$	$343 \cdot 003087$
44	89.048409	115.412876	$151 \cdot 143005$	$199 \cdot 758031$	$266 \cdot 120851$	356.949645
$44 \frac{1}{2}$	$90 \cdot 870570$	$118 \cdot 193599$	$155 \cdot 369395$	206•156198	$275 \cdot 769092$	$371 \cdot 443334$
45	$92 \cdot 719861$	121.029392	159•700155	$212 \cdot 743513$	285.749310	$386 \cdot 505617$
$45 \frac{1}{2}$	94:596687	$123 \cdot 921343$	164•137865	219-525570	296.072928	$402 \cdot 158801$
46	96.501457	126.870567	$168 \cdot 685163$	$226 \cdot 508124$	$306 \cdot 751762$	$418 \cdot 426066$
$46 \frac{1}{2}$	98-434587	$129 \cdot 878197$	173.344758	$233 \cdot 697104$	317•798033	4.35:331505
47	100•396500	132.945390	178.119421	$241 \cdot 098612$	329×224385	$452 \cdot 900152$
$47 \frac{1}{2}$	102.387625	136.073325	183.011996	$248 \cdot 718930$	341.043896	471-158026
48	$104 \cdot 408395$	139.263206	188.025392	$256 \cdot 56+528$	353-270093	490•132164
$48 \frac{1}{2}$	$106 \cdot 459254$	142.516258	193.162596	$264 \cdot 642066$	365.916969	509•850668
49	108.540647	$145 \cdot 833734$	198.426662	$272 \cdot 958400$	378.998999	530-342737
4912	110653031	149.216908	$203 \cdot 820725$	281.520590	$392 \cdot 531156$	$551 \cdot 638721$
50	$112 \cdot 796867$	$152 \cdot 667083$	209•347995	290:385904	406.528929	573•770156

The Thin Table of Compound Interest-continued.

The Amount of One Pound per Annum in any Number of Years, \&c.

\%ears.	3 per	4 . per Cent.	5 per C	6 per Cen	7 per Cen	8 per Cent.
501	114.972622	156.18.5.585	215.011:62	299.411826	421.008337	19
51	117-180773	$159 \cdot 773767$	$220 \cdot 815395$	$308 \cdot 756058$	$435 \cdot 985954$	68
$51 \frac{1}{2}$	$119 \cdot 421801$	$163 \cdot 433008$	$226 \cdot 762350$	318.376535	$451 \cdot 478921$	645.511405,
52	$121 \cdot 696196$	167.164717	²32.856165	328-281422	467-504971	10
521	124.004455	$170 \cdot 970329$	$239 \cdot 100467$	$338 \cdot 479127$	$484 \cdot 082445$	698
53	126:347082	$174 \cdot 851306$	24	$348 \cdot 978307$	-	
$53 \frac{1}{2}$	$128 \cdot 724589$	178.809142	252.055491	$9 \cdot 787875$	$518 \cdot 968217$	2
54	131-137494	$182 \cdot 845358$	$258 \cdot 773922$	$0 \cdot 917006$	537:316441	75
$54 \frac{1}{2}$	$133 \cdot 586326$	186.961507	$265 \cdot 658265$	5148	556.295992	$816 \cdot 404863$
55	136.071619	191-159173	$272 \cdot 712618$	394-172026	575.928592	848.923201
55,	138.593	195.439968	1178	$406 \cdot 317657$	236711	882.717252
56	141-153768	199•805539	$287 \cdot 348249$	418.822348	617×243594	917-8370.57
$56 \frac{1}{2}$	143.751734	$204 \cdot 25: 567$	294-938237	$431 \cdot 696716$	638.973281	954-334632
57	146.388381	208-797761	$302 \cdot 715661$	$444 \cdot 951689$	$661 \cdot 450645$	99
$57 \frac{1}{2}$	$149 \cdot 064286$	213.427869	$310 \cdot 685149$	$458 \cdot 598519$	$684 \cdot 701411$	1031
58	151 780032	14967	318.851444	790	708.752190	
$58 \frac{1}{2}$	$154 \cdot 536214$	$222 \cdot 964984$	327-219407	487-114430	$733 \cdot 630.510$	$111.5 \cdot 215915$
59	$157 \cdot 353433$	$227 \cdot 875658$	$335 \cdot 794017$	$502 \cdot 007717$	$759 \cdot 364844$	1159
$59 \frac{1}{2}$	160-172301	$232 \cdot 883583$	$344 \cdot 580377$	$517 \cdot 341296$	785.984645	$1205 \cdot 433188$
60	163.053436	237.990685	353583717	533-128180	$813 \cdot 520383$	1253.213295
$60 \frac{1}{2}$	165.977470	243-198927	362-809396	1774	842.003571	
61	168.945039	$248 \cdot 510312$	$372 \cdot 262903$	566.11.5871	$871 \cdot 466810$	$1354 \cdot 470359$
$61 \frac{1}{2}$	171-956794	$253 \cdot 926884$	$381 \cdot 949866$	583-344680	$901 \cdot 943821$	$1408 \cdot 097971$
62	175.013391	$259 \cdot 450725$	$391 \cdot 876048$	$601 \cdot 082824$	$933 \cdot 469486$	$1463 \cdot 8$ 827988
$62 \frac{1}{2}$	$178 \cdot 115498$	265.083959	$402 \cdot 047359$	619:345361	966.079888	$1521 \cdot 745052$
63	$181 \cdot 263792$	270-828754	$412 \cdot 469851$	93		1581-934927
$63 \frac{1}{2}$	$184 \cdot 458963$	$276 \cdot 687318$	$423 \cdot 149727$	$657 \cdot 506083$	$1034 \cdot 705480$	1644
64	187.7C1706	$282 \cdot 661904$	$434 \cdot 093343$	$677 \cdot 436661$	$1070 \cdot 799215$	1709
$64 \frac{1}{2}$	190.992732	288.754810	445×307214	$697 \cdot 956448$	$1108 \cdot 134864$	1777
65	194.332757	294-968380	$456 \cdot 798011$	719.082860	$1146 \cdot 755160$	
65_{2}^{1}	$197 \cdot 722513$	301-305003	$468 \cdot 572574$	$740 \cdot 833835$	$1186 \cdot 704304$	
66	201 -162740	$307 \cdot 767115$	$480 \cdot 63791$	$763 \cdot 227832$	1228.028021	1996
$66 \frac{1}{2}$	204.654189	$314 \cdot 35720$	493.001203	786.28386	$1270 \cdot 773606$	2074
67	203197622	321 •077800	$505 \cdot 669807$	810.021502	1314-989983	2156
$67 \frac{1}{2}$	211793815	$327 \cdot 931491$	518.651 663	$834 \cdot 460897$	$1360 \cdot 7277$	
68	$215 \cdot 443551$	334-92091	$531 \cdot 95329$	859.622	$1408 \cdot 039282$	$2330 \cdot 246976$
$68 \frac{1}{2}$	219•147629	$342 \cdot 04875$	545•583826	885:528550	$1456 \cdot 978701$	2422-154079
69	$222 \cdot 906858$	349:317748	559-550962	$912 \cdot 200160$	1507*602032	2517 -66673
6912	$226 \cdot 722058$	$356 \cdot 730701$	$573 \cdot 863018$	$39 \cdot 660263$	$1559 \cdot 967211$	2616
70	230-594063	$364 \cdot 29045$	588.528510	967•93216	1614-131174	27.2
$70 \frac{1}{2}$	234-523720	371 '999929	$603 \cdot 556169$	$997 \cdot 039879$	$1670 \cdot 164915$	$28.27 \cdot 280518$
71	$238 \cdot 511885$	$379 \cdot 862077$	618.954936	$1027 \cdot 0080$	$1728 \cdot 12356$	$2938 \cdot 68647$
$71 \frac{1}{2}$	$242 \cdot 559431$	$387 \cdot 879926$	$664 \cdot 733977$	1057-86227	1788.07645	$3054 \cdot 46295$
72	$246 \cdot 667242$	396.056560	$650 \cdot 902683$	1089•628585	$1850 \cdot 092216$	$3174 \cdot 781398$
$72 \frac{1}{2}$	$250 \cdot 836214$	404:395123	$667 \cdot 470676$	1122 :33400	1914.241812	3299.8199
73	255.067259	412 -898822	$684 \cdot 447817$	1156.006300	1980.598671	$3429 \cdot 763909$
731	$259 \cdot 361301$	$421 \cdot 570928$	701844210	$1190 \cdot 674049$	2049-238738	$3564 \cdot 80559$
74	$263 \cdot 719277$	$430 \cdot 414775$	719.670208	1226-366679	$2120 \cdot 240578$	$3705 \cdot 1450$
$74 \frac{1}{2}$	268-142140	439433765	737.936420	1263-114492	$2193 \cdot 685450$	3850
75	$272 \cdot 630855$	$418 \cdot 631366$	$756 \cdot 653718$	1300.948679	$2269 \cdot 657418$	4002.5560

Tife Third Table of Compound Interest - continued.
The Amolint of One Pound per Annum in any Number of Years, \&ce.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
75⿺𠃊 ${ }^{\frac{1}{2}}$	277•186404	$458 \cdot 011116$	$775 \cdot 833241$	1339•901361	$2348 \cdot 243432$	$4160 \cdot 069247$
76	281-809781	467-576621	$795 \cdot 486404$	$1380 \cdot 005600$	2429-533437	$4323 \cdot 761154$
$76 \frac{1}{2}$	286.501996	477:331560	$815 \cdot 624903$	$1421-295443$	2513 620472	$4493 \cdot 874786$
77	291.264074	487-279686	$836 \cdot 260724$	$1463 \cdot 805936$	2600-600778	$4670 \cdot 662046$
$77 \frac{1}{2}$	$296 \cdot 097056$	$497 \cdot 424823$	$857 \cdot 406149$	$1507 \cdot 573170$	$2690 \cdot 573905$	$4851 \cdot 384769$
78	301.0019	70873	879.073760	$1552 \cdot 634292$	833	
$78 \frac{1}{2}$	$305 \cdot 979968$	518.321816	$901 \cdot 276456$	$1599 \cdot 027560$	2879-914078	524:3•735551
79	311.032056	529.081708	924.027448	$1646 \cdot 79 \div 350$	2979-497831	$5449 \cdot 940211$
$79 \frac{1}{2}$	$316 \cdot 159367$	$540 \cdot 054688$	947 - 340279	$1695 \cdot 969214$	3082.508064	$5664 \cdot 234395$
80	$321 \cdot 363018$	$551 \cdot 244976$	971-228821	$1746 \cdot 599891$	$3189 \cdot 062679$	5886.935428
$80 \frac{1}{2}$		$562 \cdot 656876$	995-707293	1798•727367	99.283628	7
81	332.003909	$574 \cdot 294775$	1020•790262	$1852 \cdot 395884$	3413-297067	$6358 \cdot 890262$
$81 \frac{1}{2}$	337-443472	$586 \cdot 163151$	$1046 \cdot 492658$	$1907 \cdot 651009$	$3531-233482$	$6608 \cdot 842999$
82	$342 \cdot 964026$	$598 \cdot 266566$	$1072 \cdot 829775$	$1964 \cdot 539637$	3653-227861	$6868 \cdot 601483$
$82 \frac{1}{2}$	348-566776	610.609677	1099-817290	$2023 \cdot 110069$	$3779 \cdot 419826$	$7138 \cdot 550438$
83	354.252947	623-197229	1127•471264	$2083 \cdot 412016$	909•953812	7419.089602
$83{ }_{2}^{1}$	$360 \cdot 023780$	636.034064	$1155 \cdot 808155$	$2145 \cdot 496673$	4044-979214	$7710 \cdot 634474$
84	$365 \cdot 880535$	649-125118	$1184 \cdot 844827$	2209-416737	$4184 \cdot 650579$	$8013 \cdot 616770$
$84 \frac{1}{2}$	$371 \cdot 824493$	$662 \cdot 475427$	$1214 \cdot 598563$	2275-226474	$4329 \cdot 127759$	$8328 \cdot 485232$
85	$377 \cdot 856951$	$676 \cdot 090123$	$1245 \cdot 087068$	$2542 \cdot 981741$	$4478 \cdot 576119$	$8655 \cdot 706112$
85, $\frac{1}{2}$	383-97922	$689 \cdot 974444$	1276-328491	2412-740062	22	
86	390-192660	704•133728	1308:341422	$2484 \cdot 560645$	$4793 \cdot 076448$	9349 162600
86 $\frac{1}{2}$	$396 \cdot 498605$	$718 \cdot 573422$	$1341 \cdot 144916$	2558-504466	$4958 \cdot 488372$	$9716 \cdot 425174$
87	402.898440	$733 \cdot 299077$	1374•758493	$2634 \cdot 634284$	5129-591799	10098.095609
$87 \frac{1}{2}$	409•393563	748-316358	1409:202161	$2713 \cdot 014734$	$5306 \cdot 582558$	10494•739188
88	415.985393	763.631040	$1444 \cdot 496418$	2793•712341	$5489 \cdot 663225$	$10906 \cdot 943257$
$88 \frac{1}{2}$	422.675370	$779 \cdot 249013$	$1480 \cdot 662269$	$2876 \cdot 795618$	$5679 \cdot 043337$	$11335 \div 318323$
89	$429 \cdot 464955$	$795 \cdot 176282$	$1517 \cdot 721238$	2962:335082	74 -939651	$11780 \cdot 498718$
$89{ }^{1}$	$436 \cdot 355631$	$811 \cdot 418973$	$1555 \cdot 695383$	3050-403355	6077-57	$2243 \cdot 143789$
90	$443 \cdot 348903$	827-983333	1594•607300	$3141 \cdot 075187$	6287-185426	$12723 \cdot 938615$
${ }^{2}$	$450 \cdot 4463$	$844 \cdot 875732$	$1634 \cdot 480152$	$3234 \cdot 427556$		$13293 \cdot 595292$
91	$457 \cdot 649370$	$862 \cdot 102667$	$1675 \cdot 337665$	$3330 \cdot 539698$	6728.288406	$13742 \cdot 853705$
$91 \frac{1}{2}$	$464 \cdot 959689$	$879 \cdot 670762$	$1717 \cdot 204160$	$3429 \cdot 493210$	$5960-58186$	916
92	472-378851	$897 \cdot 586773$	$1760 \cdot 104549$	3531 -372080	$7200 \cdot 268595$	2S2001
92, $\frac{1}{2}$	$479 \cdot 908480$	$915 \cdot 857592$	$1804 \cdot 064368$	$3636 \cdot 262802$	744	$15426 \cdot 081549$
93	$487 \cdot 550217$	934•490244	$1849 \cdot 109776$	$3744 \cdot 254405$	7705:287	$16031 \cdot 744561$
$93 \frac{1}{2}$	$495 \cdot 305734$	$953 \cdot 491896$	$1895 \cdot 267586$	$3855 \cdot 438571$	$7970 \cdot 902800$	$16661 \cdot 168073$
94	503•176723	$972 \cdot 869854$	$1942 \cdot 565265$	$3969 \cdot 909669$	$8245 \cdot 657$	7315-284126
$94 \frac{1}{2}$	$511 \cdot 164906$	$992 \cdot 631572$	$1991 \cdot 030965$	$4087 \cdot 764885$		$17995 \cdot 061519$
95	$519 \cdot 272025$	$1012 \cdot 784648$	2040-693528	4209-104249	$8823 \cdot 853540$	18701 506856
$95_{\overline{2}}^{1}$	$527 \cdot 499853$	1033•336834	2091-582514	$4334 \cdot 030778$	9127	$19435 \cdot 666440$
96	$535 \cdot 850186$	$1054 \cdot 296034$	$2143 \cdot 728205$	$4462 \cdot 650504$	9442-523288	$20198 \cdot 627405$
961	544-324849	$1075 \cdot 670308$	2197-161639	$4595 \cdot 072625$	9767-91357	20991-519756
97	$552 \cdot 925692$	$1097 \cdot 467875$	$2251 \cdot 914615$	4731 409534	10104-499918	21815•51759
971 ${ }^{2}$	$561 \cdot 654594$	$1119 \cdot 697120$	$2308 \cdot 019721$	$4871 \cdot 776982$	10452:667529	$22671 \cdot 841336$
9	570.513462	$142 \cdot 366590$	$2365 \cdot 510346$	$5016 \cdot 294106$	$10812 \cdot 8$	$2: 3561 \cdot 759005$
$98 \frac{1}{2}$	579-50423	$165 \cdot 485005$	$2424 \cdot 420708$	$5165 \cdot 083601$	$11185 \cdot 35$	486:588643
99	$588 \cdot 628866$	$1189 \cdot 061254$	$2484 \cdot 785863$	5318.271753	$11570 \cdot 71195$	$25447 \cdot 699726$
993 ${ }^{\frac{1}{2}}$	$597 \cdot 889359$	$1213 \cdot 104405$	$2546 \cdot 641743$	5475-988617	11969-329054	$26446 \cdot 515734$
100	607 287732	$1237 \cdot 623704$	$2610 \cdot 025156$	$5638 \cdot 368058$	$12381 \cdot 661793$	$27484 \cdot 515704$

The Fourtil Tabif of Compoivid Inizrest.
The present Valne of One Pound per Annum for any Number of Vears to come, \&c.

Years.	3 per Cent.	4 per C'ent.	5 per Cent.	6 per Cont.	7 per Cent.	8 per Cent.
$\frac{1}{2}$	-489024	-485483	-481998	-478568	-475193	-471869
1	-970873	-961538	$\cdot 952380$	-943396	-934579	-925925
$1 \frac{1}{2}$	$1 \cdot 445654$	1.428349	1-411427	$1 \cdot 394876$	1:378685	1-362842
2	1-913469	$1 \cdot 886094$	$1 \cdot 859410$	$1 \cdot 8333992$	$1 \cdot 808018$	$1 \cdot 783264$
$2 \frac{1}{2}$	$2 \cdot 374421$	$2 \cdot 33 \cdot 4951$	$2 \cdot 296597$	$2 \cdot 259317$	$2 \cdot 223070$	$2 \cdot 187816$
3	2.829611	2•77.5091	$2 \cdot 723248$	2.673011	$2 \cdot 624316$	2.577096
31	$3 \cdot 276137$	$3 \cdot 206683$	3-139616	$3 \cdot 074827$	3.01:215	$2 \cdot 951682$
4	$3 \cdot 717098$	$3 \cdot 629 \times 95$	3-545950	3.465105	$3 \cdot 387211$	3:312126
$4 \frac{1}{2}$	$4 \cdot 151589$	$4 \cdot 044888$	$3 \cdot 942491$	3.844177	$3 \cdot 749733$	3-658964
5	$4 \cdot 579707$	$4 \cdot 451822$	$4 \cdot 329476$	$4 \cdot 212363$	$4 \cdot 100197$	$3 \cdot 992710$
$5 \frac{1}{2}$	5.001543	4.850854	$4 \cdot 707135$	$4 \cdot 569978$	4.4:0003	4:313856
6	$5 \cdot 417191$	5-242136	$5 \cdot 075692$	4:917324	$4 \cdot 766599$	$4 \cdot 622879$
$6 \frac{1}{2}$	$5 \cdot 826741$	5.625821	$5 \cdot 435366$	$5 \cdot 254696$	$5 \cdot 0831.80$	$4 \cdot 920237$
7	6.230282	$6 \cdot 0020.54$	$5 \cdot 786373$	5:582381	5:389289	5-206370
$7 \frac{1}{2}$	$6 \cdot 627904$	$6 \cdot 370981$	$6 \cdot 128920$	$5 \cdot 900657$	$5 \cdot 68.521 .5$	5.481701
8	$7 \cdot 019692$	6.732744	$6 \cdot 463212$	6.209793	5.971298	$5 \cdot 7 \cdot 46638$
$8 \frac{1}{2}$	$7 \cdot 405732$	7.087482	6.789448	$6 \cdot 510053$	6.247865	$6 \cdot 001575$
9	$7 \cdot 786105$	$7 \cdot 435331$	7-107821	$6 \cdot 801692$	$6 \cdot 515232$	$6 \cdot 246887$
$9 \frac{1}{2}$	$8 \cdot 160905$	$7 \cdot 776125$	$7 \cdot 418522$	$7 \cdot 084956$	6.773705	$6 \cdot 482940$
10^{2}	8.530202	8•110895	7•721734	$7 \cdot 360087$	$7 \cdot 023581$	6.710081
$10!$	8.894082	8.435870	8.017640	$7 \cdot 627317$	7.265145	6.924648
11	$9 \cdot 252624$	8.760.476	8:306414	$7 \cdot 886874$	$7 \cdot 498674$	7-138964
11!	$9 \cdot 605905$	9.075837	$8 \cdot 588228$	8-138978	$7 \cdot 7244.95$	$7 \cdot 341340$
12	$9 \cdot 954003$	$9 \cdot 385073$	$8 \cdot 863251$	$8 \cdot 383843$	$7 \cdot 942686$	$7 \cdot 536078$
$12 \frac{1}{2}$	10:296995	$9 \cdot 688305$	$9 \cdot 131646$	$8 \cdot 621678$	8-153677	$7 \cdot 723463$
13	$10 \cdot 634955$	$9 \cdot 985647$	$9 \cdot 393572$	$8 \cdot 852682$	$8 \cdot 357650$	$7 \cdot 903775$
$13{ }^{1}$	10.967956	10*277216	$9 \cdot 649187$	$9 \cdot 077054$	$8 \cdot 554835$	$8 \cdot 077281$
14	11.296073	10.563122	$9 \cdot 898640$	$9 \cdot 294983$	$8 \cdot 745467$	8.244236
$14 \frac{1}{2}$	11.619375	10.843477	$10 \cdot 142082$	$9 \cdot 506655$	$8 \cdot 929756$	$8 \cdot 404890$
15^{2}	11.937935	$11 \cdot 118387$	10•379658	$9 \cdot 712248$	$9 \cdot 107914$	8:559478
$15 \frac{1}{2}$	$12 \cdot 251821$	11.387958	$10 \cdot 611507$	9.911939	$9 \cdot 280145$	8-703231
16	12.561102	$11 \cdot 652295$	$10 \cdot 837769$	$10 \cdot 105895$	$9 \cdot 446648$	8.851369
$16 \frac{1}{2}$	$12 \cdot 865845$	11.911499	$11 \cdot 058578$	$10 \cdot 294282$	$9 \cdot 607612$	8.989103
17	1:3•166118	$12 \cdot 165668$	$11 \cdot 274066$	$10 \cdot 477259$	$9 \cdot 763222$	$9 \cdot 121688$
171	$13 \cdot 461986$	$12 \cdot 414902$	11.484360	10.654983	$9 \cdot 913656$	$9 \cdot 249169$
18	$12 \cdot 753513$	$12 \cdot 659296$	11-689586	$10 \cdot 827603$	10.059086	9:371887
$18 \frac{1}{2}$	$14 \cdot 040763$	12.898945	11.889867	10.995\%67	10.199679	$9 \cdot 489971$
19	14.32.3799	$13 \cdot 133939$	12.085320	$11 \cdot 158116$	$10: 335595$	9•605599
19! ${ }^{\frac{1}{2}}$	$14 \cdot 602682$	$13 \cdot 364370$	1 $\because \cdot 276064$	$11: 316289$	10.466990	$9 \cdot 712937$
20	14.8,747	$13 \cdot 590326$	$12 \cdot 462210$	11.469921	10.594014	$9 * 818147$
$20 \frac{1}{2}$	$15 \cdot 148235$	13.811894	$12 \cdot 643870$	11.619141	10.716813	9.919386
21	$15 \cdot 415024$	14.029159	$12 \cdot 821152$	11.764076	$10 \cdot 835527$	$10 \cdot 016803$
$21 \frac{1}{2}$	$15 \cdot 677898$	$14 \cdot 242206$	$12 \cdot 994162$	11.904850	10.950292	10.110542
22	$15 \cdot 936916$	$14 \cdot 151115$	13.163002	$12 \cdot 041581$	11.061240	10.200743
$22 \frac{1}{2}$	$16 \cdot 192134$	$14 \cdot 655967$	13.327773	$12 \cdot 174387$	$11 \cdot 168497$	10-287539
23	16.443608	14.856841	13.488573	12:303378	11:979187	10:371058
23!	$16 \cdot 691392$	15.053814	$13 \cdot 645498$	$12 \cdot 428667$	11-372427	$10 \cdot 451425$
24	$16 \cdot 935542$	$15 \cdot 246963$	$13 \cdot 798641$	12-550357	11.469384	10.528758
$24 \frac{1}{6}$	$17 \cdot 176109$	$1.5 \cdot 436360$	$13 \cdot 548094$	$12 \cdot 668553$	11.563016	10.60:3171
25	$17 \cdot 413147$	$15 \cdot 622079$	14.093944.	$12 \cdot 783356$	$11 \cdot 653583$	$10 \cdot 674776$

Tile Fourth Table of Compuune Intenest - continued.
The present Valne of One Pound per Annum for any Number of Years to come, \&.c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	${ }_{6} 6$ per Cent.	7 per Cent.	8 per Cent.
$25 \frac{1}{2}$	17.646708	$15 \cdot 804192$	14-236280	12.894862	11.741137	10.743677
26	$17 \cdot 876842$	15.982769	14-375185	13.003166	11.825778	10•809977
$26 \frac{1}{2}$	$18 \cdot 103600$	16.157877	14-510742	$13 \cdot 108360$	11 -907604	$10 \cdot 873775$
27	18:327031	16.329585	$14 \cdot 643033$	$13 \cdot 210334$	$11 \cdot 986709$	10.935164
$27 \frac{1}{2}$	18.547184	16.497959	14.772136	13-309774	12.063182	10.994236
28	$18.76+108$	16.663063	14.898127	$13 \cdot 406164$	$12 \cdot 137111$	11.051078
$28 \frac{1}{2}$	18.977549	16.824960	15.021082	$13 \cdot 499786$	12.208581	$11 \cdot 105774$
29.	19•188454	16.983714	$15 \cdot 141073$	13:590721	12.277674	$11 \cdot 158406$
291	19:395970	17-139385	15.258173	$13 \cdot 679044$	12:344468	$11 \% 2090.50$
30	$19 \cdot 600441$	$17 \cdot 292033$	$15 \cdot 372451$	13.764831	12-409041	11 257783
$30 \frac{1}{2}$	19.801912	17.441716	$15 \cdot 483974$	13.848154	12.471465	11:304676
31	20.000428	17.588493	15.592810	13.929085	$12 \cdot 531814$	$11 \cdot 349799$
$31 \frac{1}{2}$	20-196031	17.732419	15.699023	$14 \cdot 007693$	12:590155	11.393918
32	2038876.5	17.873551	$15 \cdot 802676$	14.084043	$12 \cdot 646555$	$11 \cdot 434999$
$32 \frac{1}{2}$	20.578671	18.01194:	$15 \cdot 903831$	14-158201	$12 \cdot 701079$	11.475202
33	$20 \cdot 765791$	18.147645	16.002549	14-2:0229	12.753790	11.513888
3331	20.950166	18.280713	16.098887	14:300189	$12 \cdot 804747$	11.551113
34	$21 \cdot 131836$	$18 \cdot 411197$	16.192904	$14 \cdot 368141$	12.854009	11.586933
$34 \frac{1}{2}$	21:310841	$18 \cdot 539147$	16.284654	14-434141	$12 \cdot 901632$	$11 \cdot 621401$
35	$21 \cdot 487220$	18.664613	16.374194	$14 \cdot 498246$	$12 \cdot 947672$	$11 \cdot 654568$
351	$21 \cdot 661011$	$18 \cdot 787642$	16.461575	14.560510	12.992180	11.686482
36	21.832952	$18 \cdot 908281$	16.546851	$14 \cdot 620987$	$13 \cdot 035207$	11.717192
$36 \frac{1}{2}$	22.000981	19.026578	$16 \cdot 630072$	14.679727	13.076804	11.746743
37	$22 \cdot 167235$	$19 \cdot 142578$	16.711287	14.736780	13.117016	11.775178
$37 \frac{1}{2}$	$22 \cdot 331050$	$19 \cdot 256325$	16.790545	14.792195	$13 \cdot 155891$	11-802540
38	22.492461	$19 \cdot 567864$	16.867892	14.846019	13-193473	11.828868
$38 \frac{1}{2}$	$22 \cdot 651505$	$19 \cdot 477236$	$16 \cdot 943376$	14.898297	$13 \cdot 229805$	11.854203
39	$22 \cdot 808215$	$19 \cdot 584484$	$17 \cdot 017040$	$14 \cdot 949074$	$13 \cdot 264928$	11.878582
$39 \frac{1}{2}$	$22 \cdot 962626$	19.689650	$17 \cdot 088929$	14.998393	13.298883	11.902040
40	$23 \cdot 114771$	$19 \cdot 792773$	17-159086	15.046296	13:331708	$11 \cdot 924613$
$4 \stackrel{O}{2}_{\frac{1}{2}}$	$23 \cdot 264685$	$19 \cdot 893894$	$17 \cdot 227552$	15.092824	13:368442	11.946833
41	$23 \cdot 412399$	$19 \cdot 993051$	17294367	$15 \cdot 138015$	13:394120	$11 \cdot 967234$
$41 \frac{1}{2}$	2:3557947	$20 \cdot 090283$	$17 \cdot 359573$	15•181909	$13 \cdot 423777$	11.987346
42	$23 \cdot 701359$	$20 \cdot 185626$	$17 \cdot 4: 3207$	$15 \cdot 224543$	$13 \cdot 452448$	12.003698
42! ${ }_{2}^{1}$	$23 \cdot 842667$	$\underline{20279118}$	$17 \cdot 485308$	$15 \cdot 265952$	$13 \cdot 480166$	12.025320
43	23.981902	20.370794	17-545911	15:306172	13.506961	12.043×39
$43 \frac{1}{2}$	$24 \cdot 119094$	$20 \cdot 460690$	$17 \cdot 605055$	$15 \% 34.5238$	$13 \cdot 532865$	12.060482
44	$24 \cdot 254273$	$20 \cdot 548841$	$17 \cdot 662773$	15.383182	13.557908	12.077073
$44 \frac{1}{2}$	$24 * 387470$	$20 \cdot 635979$	17.719100	$15 \cdot 420036$	13:582117	12.093038
45	24518712	$20 \cdot 720039$	$17 \cdot 774069$	$15 \cdot 455832$	13.605521	12108401
451	2.4648029	$20 \cdot 8031.53$	17.827714	$15 \cdot 490600$	$13 \cdot 628147$	12.123184
46	24.775449	20.884653	$17 \cdot 880066$	15.524369	$13 \cdot 650020$	$12 \cdot 137408$
$46 \frac{1}{2}$	$24 \cdot 900999$	$20 \cdot 964570$	17.931156	15.557169	13.671165	12.151096
47^{2}	$25 \cdot 014707$	$21 \cdot 042936$	$17 \cdot 981015$	15.589028	$13 \cdot 691607$	$12 \cdot 164967$
471	25-146601	$21 \cdot 119779$	18.089673	$15 \cdot 619971$	13.711369	12.1769+1
48	$25 \cdot 266706$	21-195130	$18 \cdot 077157$	15650026	13720474	12.189136
481	25.385049	$21 \cdot 269018$	18.123498	15.679218	13.748943	$12 \cdot 200871$
49	$2.5 \cdot 501656$	$21 \cdot 341472$	18.168721	15.707572	$13 \cdot 766798$	12.212163
$49 \frac{1}{2}$	$25 \cdot 616553$	21.412518	$18 \cdot 212855$	15.735111	$13 \cdot 784059$	$12 \cdot 223029$
50	-25.729763	21.482184	18.255925	15.761860	13.800746	$12 \cdot 23.484$

The Fourth Table of Compound Interest - contimued.
The preseut Value of One Pound per Annum for any Number of Years to come, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$50!$	$25 \cdot 8.11313$	21.550498	18.297957	15.787841	13.816×78	12.243545
51^{-}	$25 \cdot 951227$	$21 \cdot 617485$	$18 \cdot 338976$	15.813076	$13 \cdot 832473$	$12 \cdot 253226$
$51 \frac{1}{2}$	26.059528	$21 \cdot 683171$	18.379007	15.837586	13.847549	$12 \cdot 262542$
52	26-166239	$21 \cdot 747581$	18.418072	15.861392	$13 \cdot 862124$	$12 \cdot 271506$
$52 \frac{1}{2}$	26.271386	21-810741	$18 \cdot 456197$	15.884515	13.876214	12.280131
53	26.374990	$21 \cdot 879674$	18.493402	15.906974	13.889835	12.288431
$53 \frac{1}{2}$	$26 \cdot 477074$	$21 \cdot 933403$	$18 \cdot 529711$	15.928788	$13 \cdot 903004$	$12 \cdot 296418$
54^{2}	26.577660	$21 \cdot 992956$	18.565145	15.949975	$13 \cdot 915734$	12:304103
$54 \frac{1}{2}$	26.676771	$22 \cdot 051351$	18.599725	$15 \cdot 970.554$	13.928041	12:311498
55	26.774427	$22 \cdot 108612$	18.633471	15.990542	13.939938	$12 \cdot 318614$
$55 \frac{1}{2}$	26.870651	$22 \cdot 164760$	18.666405	16.0099 .57	13.9.1440	12.325461
56	26.965463	$22 \cdot 219819$	18.698544	16.028814	13.962559	12:332050
$56{ }_{2}^{1}$	27.058884	22.273808	18.729909	16.047129	13.973308	$12 \cdot 938390$
57	27-150935	22.326749	$18 \cdot 760518$	16.064918	13.983700	$12 \cdot 344490$
$57 \frac{1}{2}$	27-241635	$22 \cdot 378662$	18.790390	16.082197	13.993746	12.350361
58	27.33100 .5	$22 \cdot 429566$	18.819541	16.098980	14.003458	12.356010
58.1	$27 \cdot 419063$	22.479482	18.847990	$16 \cdot 115280$	14.012847	12:361445
59	$27 \cdot 505830$	22.528429	18.875754	$16 \cdot 131113$	14.021923	12:366675
$59{ }^{\frac{1}{2}}$	27.591324	22.576425	18.902848	$16 \cdot 146491$	14.030698	12.371708
60	$27 \cdot 675563$	$22 \cdot 623489$	18.929289	16.161427	14.039181	$12 \cdot 376551$
60_{2}^{1}	27.7585	22.669640	18.955093	16.175935	14.047381	12:381211
61	27.840353	22.714894	$18 \cdot 980275$	16.190026	14.055309	12:385696
$61 \frac{1}{2}$	27.920939	$22 \cdot 7.59269$	19.004851	16-203712	14.062973	12:390011
62	28.000342	$22 \cdot 802782$	19.028834	16.217005	14.070382	$12 \cdot 394163$
621	28.078581	22.845451	$19.05 \because 239$	16.229917	14.077545	12:398158
63	$28 \cdot 15567.2$	$22 \cdot 887291$. 075080	16.242458	14.084469	$12 \cdot 402002$
$63 \frac{1}{2}$	28.231632	22.928318	19.097370	16.254639	14.091163	$12 \cdot 405702$
64	$28 \cdot 306478$	22.968549	19-119123	16.266470	14.097635	$12 \cdot 409261$
$64 \frac{1}{2}$	28-380<25	$23 \cdot 007998$	19.140352	16.277961	14-103-91	$12 \cdot 412687$
65^{2}	$28 \cdot 452891$	23.046681	19-161070	16.289122	14.109939	12.415983
$6.5 \frac{1}{2}$	28.524491	23.084614	19-181288	16-299963	14.115786	12.419154
66	$28 \cdot 595040$	$23 \cdot 121809$	19-201019	16:310493	14.121438	12.422206
$66 \frac{1}{2}$	2.6664554	$23 \cdot 158282$	19.220274	16.320720	$14 \cdot 126903$	$12 \cdot 425143$
67	28.733048	$23 \cdot 194017$	19-239066	16.330653	14-1.32185	$12 \cdot 427969$
$67 \frac{1}{2}$	$28 \cdot 8005.8$	$23 \cdot 229118$	19.257404	16.340302	14-1:37292	$12 \cdot 430688$
68	28.867037	23.263507	19.275301	16:349673	14-14£229	$12 \cdot 433304$
$68 \frac{1}{2}$	$28 \cdot 932561$	$23 \cdot 297228$	19-292766	16.358775	$14 \cdot 147002$	$12 \cdot 435822$
69	$28 \cdot 997123$	$23 \cdot 380295$	19.309810	16:367616	14.151616	$12 \cdot 438245$
69.1	29.060739	$23 \cdot 3627 \div 0$	$19 \cdot 326444$	16:376203	14.156077	$12 \cdot 440576$
70°	29-123421	$23 \cdot 394514$	$19 \cdot 342676$	16:384543	14-160389	12.442819
7012	$29 \cdot 185183$	$23 \cdot 425692$	19:358518	16.392644	$14 \cdot 164558$	$12 \cdot 444978$
71	29.246040	$23 \cdot 456264$	19:373977	$16 \cdot 400513$	14.168588	$12 \cdot 447055$
71.1	$29 \cdot 306003$	23.3486242	19:389064	16.408155	$14 \cdot 172484$	$12 \cdot 449053$
72	$29 \cdot 365087$	$23 \cdot 515638$	$19 \cdot 403788$	16.415578	14-176250	$12 \cdot 450977$
$72 \frac{1}{2}$	$29 \cdot 423304$	$23 \cdot 544464$	$19 \cdot 418157$	16.422788	14.179891	$12 \cdot 452827$
73	$29 \cdot 480667$	23.572729	$19 \cdot 432179$	16.429790	$14 \cdot 183411$	$12 \cdot 454608$
$73 \frac{1}{2}$	$29 \cdot 537188$	$23 \cdot 600446$	$19 \cdot 445863$	16.436592	$14 \cdot 186814$	12.456321
74	29.592881	$23 \cdot 627624$	$19 \cdot 459218$	16.443198	14-190104	12457970
$74 \frac{1}{2}$	$29 \cdot 647756$	$23 \cdot 654275$	$19 \cdot 472251$	16.449615	14-193284	12.459557
75	$29 \cdot 701826$	23.680408	$19 \cdot 484969$	16.455848	$14 \cdot 196859$	$12 \cdot 461083$

The Fourth Table gf Cumpound Interest - continued.
lhe present Value of One Pound per Amum for any N:unber of Years to come. \&c.

Ye	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$75 \frac{1}{2}$	$29 \cdot 755103$	$23 \cdot 706033$	19'497382	16.461901	14.199331	-462553
76	29.807598	23.731161	19.509495	16.467:81	14.202204	$2 \cdot 463966$
$76 \frac{1}{2}$	$29 \cdot 859323$	$23 \cdot 755801$	19.521316	16.473492	14.204982	$12 \cdot 465326$
77	29.910289	$23 \cdot 779963$	19.532852	16.479038	14.207668	$12 \cdot 466635$
$77 \frac{1}{2}$	$29 \cdot 960508$	23.803655	19.544110	16.484426	14-210264	12.467895
78	30.00998	-26887	19.555097	$\cdot 489659$	14.2127\%4	9107
$78 \frac{1}{2}$	$30 \cdot 058745$	$23 \cdot 849668$	19.565819	16.494741	14.215200	$12 \cdot 470273$
79	30-106:86	23872007	19.576283	16.499678	$14 \cdot 217545$	12471395
$79 \frac{1}{2}$	$30 \cdot 154192$	23.893912	$19 \cdot 586495$	$16 \cdot 50+473$	14.21981 .3	$12 \cdot 472475$
80	30-200763	23.915391	19.596460	16.5091\%0	14.222005	12.473514
$80 \frac{1}{3}$	30.246720	23•936454	19.606185	15.513654	14.224124	12.474514
81	$30 \cdot 292003$	$23 \cdot 957107$	19.615676	16.518047	14.226173	12.475476
$81 \frac{1}{2}$	$30 \cdot 336621$	$23 \cdot 977359$	$19 \cdot 624938$	16.522315	14.228153	12.476402
82	30-380585	23.997218	$19 \cdot 633977$	16.526460	$14 \% 30068$	$12 \cdot 477292$
82'	$30 \cdot 423904$	$24 \cdot 016692$	$19 \cdot 642798$	16.530486	14.231919	12.478150
83	30	$24 \cdot 035787$	19.651407	16.534396	-233708	74
8	30•508645	24.054511	$19 \cdot 659808$	16.538194	14-23.54,38	$12 \cdot 479768$
84	$30 \cdot 550085$	24.072872	$19 \cdot 668007$	16.541883	14.237111	$12 \cdot 480532$
$84 \frac{1}{2}$	$30 \cdot 590917$	24.090876	$19 \cdot 676008$	16.545466	14.238727	$12 \cdot 481267$
85	$30 \cdot 631151$	$24 \cdot 108531$	$19 \cdot 683816$	16.548946	14.240290	$12 \cdot 481974$
8.5	30	25	$19 \cdot 691436$	26	14.241801	54
86	$30 \cdot 70985$	142818	698872	555610	-243262	3309
$86 \frac{1}{2}$	30.748343	$24 \cdot 159464$	19.706129	$\cdot 558798$	-244674	3939
87	30•786267	24-175786	19.713212	16.561896	$14 \cdot 246039$	$12 \cdot 484545$
$87 \frac{1}{2}$	30-823634	24-191792	$19 \cdot 720123$	16.564904	14.247359	$12 \cdot 485129$
88	30•860453	24.207487	19.726868	$5678 \geq 6$	14.248635	5690
$88 \frac{1}{2}$	$30 \cdot 896732$	24.222877	19.733451	16:570664	14.249868	$12 \cdot 486230$
89	$30 \cdot 932479$	$24 \cdot 237968$	19.733874	16.573421	14.251060	-486750
$89 \frac{1}{2}$	$30 \cdot 967701$	$24 \cdot 252766$	$19 \cdot 746143$	16.576098	$14.25221 / 3$	$12 \cdot 487950$
90	$31 \cdot 002407$	$24 \cdot 267277$	19.752261	16.578699	$14 \cdot 253327$	$12 \cdot 487732$
$\frac{1}{2}$	31.036603	$24 \cdot 281506$	19.758232	.581225	$14 \cdot 25+40.5$	12.488195
91	$31 \cdot 070298$	$24 \cdot 295459$	$19 \cdot 764058$	$16 \cdot 583678$	$14 \cdot 255446$	$12 \cdot 488640$
$91 \frac{1}{2}$	$31 \cdot 103498$	24-309140	19.769744	$16 \cdot 585061$	$14 \cdot 256453$	$12 \cdot 489069$
92	$31 \cdot 136211$	24:322556	19.775294	16.588376	$14 \cdot 257426$	$12 \cdot 489482$
92!	51-168445	$24 * 385712$	19•780709	16.590624	$14 \cdot 258367$	$12 \cdot 489879$
93	$31 \cdot 200205$	$24 \cdot 348612$	19.788994	16.592807	14.259277	$12 \cdot 490261$
$93 \frac{1}{2}$	31.231500	$24 \cdot 361261$	19.791151	$16 \cdot 594928$	14.260156	$12 \cdot 490628$
94	$31 \cdot 262335$	$24 \cdot 373665$	19•796185	$16 \cdot 596988$	14.261006	$12 \cdot 490982$
$94 \frac{1}{2}$	$31 \cdot 292718$	24.385828	19-801097	16.598959	14-261828	$12 \cdot 491323$
95	$31 \cdot 322655$	$24 \cdot 397755$	$19 \cdot 805890$	$16 \cdot 600932$	14-262623	$12 \cdot 491650$
95.1	$31 \cdot 352154$	$24 \cdot 409450$	19.810568	16.602819	14.263391	12.491965
95	$31 \cdot 381219$	$24 \cdot 420318$	$19 \cdot 815133$	$16 \cdot 604653$	14-264133	$12 \cdot 492 \div 69$
96 !	$31 \cdot 409858$	$24 \cdot 432164$	19.819589	$16 \cdot 606433$	14.264851	$12 \cdot 492560$
97	$31 \cdot 438077$	24.443191	19.823937	$16 \cdot 608163$	14.65545	$12 \cdot 492841$
$97 \frac{1}{2}$	$31 \cdot 165881$	24.454004	$19 \cdot 828180$	$16 \cdot 609843$	14-266215	12.493111
98	$31 \cdot 493278$	$24 \cdot 464606$	19.832321	$16 \cdot 611474$	14.66865	12.493372
$98 \frac{1}{2}$	$31 \cdot 520273$	$24 \cdot 47.5003$	19.836362	16.613059	14.267492	12.49362 .2
99	$31 \cdot 546 \times 79$	$24 \cdot 485198$	$19 \cdot 840305$	16.614599	14268098	12.493865
992	31.573081	$\underline{24.495196}$	19.844154	16.616094	14268684	$12 \cdot 494094$
100	$21 \cdot 598905$	24.504958	19847910	16.617546	14.269250	$12 \cdot 494317$
S F.	$33 \cdot 338333$	25.000200	20.000000	16.666666	$14 \cdot 28.5714$	500000

The Fifth Table of Compound Interess.
The Annuity which One Pound will purchase for any Number of Years to come, \&c.

Years.	3 per Cent.	4 yer Cent.	3 par Cent.	6 per Cent.	7 per Cent.	8 per Cent.
1	$1 \cdot 030000$	$1 \cdot 040000$	1.050000	$1 \cdot 060000$	1.070000	$1 \cdot 080000$
$1 \frac{1}{2}$	-691728	-700108	-708502	- 716909	-725328	$\cdot 733760$
2	- 522610	. 530196	-537804	-545436	-553091	-560769
$2 \frac{1}{2}$	-421155	-428274	-435426	-442611	-449828	-457076
3	- 353530	- 360348	- $367 \bigcirc 08$	-374109	-381051	-388023
$3 \frac{1}{2}$	-305237	-311848	- 318510	-325221	-391981	-3:8789
4	-269027	-275490	-282011	-288591	-295228	-301920
$4 \frac{1}{2}$	-240871	-247225	-253646	-260133	-266685	.273301
5	-218354	-224627	-230974	-237396	-243890	-250456
$5 \frac{1}{2}$	-199938	- 206149	$\cdot 212443$	-218819	-225275	-231811
6	-184597	-190761	197017	-203362	-209795	-216315
$6 \frac{1}{2}$	-171622	-177751	-183980	-190305	-196797	-203242
7	-160506	-166609	-172819	-179135	-185553	-192079
$7 \frac{1}{2}$	-150877	-156961	-163160	-169172	175894	-182425
8	-142456	-148527	-154721	-161035	-167467	-174014
$8{ }_{\text {d }}^{1}$	-135030	-141093	-147287	-153608	-160054	-166622
9	-128433	-134492	-140690	-147022	-153486	-160079
$9 \frac{1}{2}$	-122535	- 128593	-134797	-141144	-147629	-154251
10	-117230	-123290	-129504	-135867	-142377	-149029
$10 \frac{1}{2}$	-112434	-118499	-124724	-131107	-137643	-144328
11	-108077	-114149	-120388	-126792	-133356	-140076
$11 \frac{1}{2}$	-104102	-110182	-116438	-122865	-129459	-136214
12	-100462	-106552	-112825	-119977	-125901	-132695
$19 \frac{1}{2}$	-097115	-10:3217	-109509	-115986	-122644	-129475
13	-094029	$\cdot 100143$	-1006455	-112960	-119650	-126521
1312	-091174	-097.302	-103635	-110167	-116892	-123804
14	-088526	-094668	-101023	-107584	-114344	-121296
14.1	-086063	-092221	-098599	-105189	-111985	-118978
15	-083766	-089941	-096342	-102962	$\cdot 109794$	-116829
$15 \frac{1}{2}$	-081620	-087812	-094237	-100888	-107756	-114833
16	-079610	-085820	-092269	-098952	-105857	-112976
$16 \frac{1}{2}$	-077725	-083952	$\cdot 0.0427$	-097141	-104084	-111245
17	-075959	-082198	-088699	.09.5444	-1024:5	-109629
171	-074283	-0.50548	$\cdot 087074$	-093852	-100870	-108117
18	$\cdot 072708$	-078993	-085546	- 092356	. 099412	$\cdot 106702$
$18 \frac{1}{2}$	-071221	$\cdot 077525$	-084105	-0909 48	-OS8042	-10E: 74
19	-069813	.076138	-08274.5	-089620	-0967.53	-104.27
$19 \frac{1}{2}$	-068480	-074895	-081459	-088368	-095538	-102955
20	-067215	-073581	-080242	.087184	-094392	$\cdot 101852$
$20 \frac{1}{2}$	-066014	.072401	-079089	-086064	. 0933311	-100812
21	$\cdot 064871$.071280	$\bigcirc 077996^{\circ}$	$\cdot 085004$	-092-89	$\cdot 099832$
21.	-0663784	$\cdot 070213$	-076957	-083999	-091321	.098906
22	-062747	-069198	$\cdot 075970$	-083045	-090405	-0980:32
$29 \frac{1}{2}$	-061758	-068231	$\cdot 075031$	-082139	- 89537	-097204
23	-060813	-067309	$\cdot 074186$	-081278	.088713	-096422
$23 \frac{1}{2}$	-059911	-066428	.073284	-080459	-087931	-0956:0
94	-059047	-065586	.072470	-079679	-087189	-094977
$24 \frac{1}{2}$	-058220	-064782	-071694	$\cdot 078935$.086482	-091311
25	-057427	-064011	. 070952	-078926	-085810	-093678

The Fifth Table of Compound Interest - conitinued.
The Ammity which One l'orind will purchase for any Number of Years to come, \&c.

Years.	3 yer Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Ceut.	8 per Cent.
$25 \frac{1}{2}$	-056667	-063274	070243	. 077550	. 085170	-093078
26	-055938	-062567	-059564	. 076904	-084561	-092507
$26 \frac{1}{2}$	-055937	-061889	-068914	-076287	-083979	-091964
27	-0.54564	-061238	-068291	-075697	. 083425	-091448
$27 \frac{1}{1}$	-053916	-060613	-067695	. 075132	.082896	-090956
28	-053293	-060012	-067122	-074592	. 082391	-090488
28.1	-052693	-059435	:066573	. 074075	-081909	-090043
29	-052114	-058879	-066045	-073579	.081448	-089618
$29!$	$\cdot 051557$	-058345	-065538	-073104	.081007	-08921 3
30	-051019	-057830	-065051	-072648	-080586	.088827
30_{2}^{1}	-050500	.057333	-064582	-072211	-080183	-088458
31	-049998	-056855	-064132	$\cdot 071792$. 079796	088107
$31 \frac{1}{2}$	-049514	-056393	-063698	-071389	-079127	-087771
32	$\cdot 049046$	-035948	-063280	-071,02	-079072	-087450
32!	-048594	-055518	-062877	-070630	078733	-087144
33	-048156	-035103	-062490	-070 272	-078408	-086851
$33 \frac{1}{2}$	-047732	-054702	-062116	-069929	.078096	-086571
34	-047321	-054314	-061755	-069598	. 077796	.086304
$34 \frac{1}{2}$	-046924	-05:3939	-061407	-069280	$\cdot 077509$	-086048
35°	-046539	-053577	-061071	-068973	-077233	-085803
$35 \frac{1}{2}$. 046165	-053296	-060747	-068678	-076969	-08.5568
36	-045803	-059886	-060434	-068394	-076715	-085344
$36 \frac{1}{2}$	-045452	-052558	-060132	-068121	-076471	-085129
37	-045111	-052239	-059839	-067857	-076236	-084924
:371	. 044780	$\cdot 051930$	-059557	-067603	. 076011	084727
. 58	-044459	$\cdot 0.51631$	-059284	.067858	-075795	-084538
$388 \frac{1}{2}$	-0441.47	-051341	- 059020	-067121	-075586	-084358
39	-043843	-051060	-058764	-066893	-075386	-084185
$39 \frac{1}{2}$	- $0+3549$	-050788	-058517	-066673	$\cdot 075194$	-084019
40°	-043262	$\cdot 050523$	-058278	-066461	-075009	-083860
$40 \frac{1}{2}$	- 042983	-050266	$\cdot 0.58046$	-066256	-074831	-083707
41	-042712	-050017	-057822	-066058	-0:4659	-083561
$41 \frac{1}{2}$	-042448	-049775	-057605	-065867	-074494	-083421
42	. 042191	- 049540	-057394	-065683	.074:335	-083286
$42!$	-041941	- 049311	- 057190	-065505	$\cdot 074183$	-083157
43	. 041698	-049089	-0.66993	-065333	-074035	-083034
$4: 312$	-041460	-048874	-056801	.06.3166	. 073894	. 082915
44	-041229	-048664	-056616	-065006	-073757	-082801
+4!	-041004	-048460	-056436	-064850	-073626	-082692
45	-040785	$\cdot 048262$	-056261	- 064700	$\cdot 073499$	-082587
$4.51 \frac{1}{2}$.040571	. 048069	-056092	.064555	073377	. 082486
45°	. 040362	-017882	0.55928	.064414	. 073259	-082389
$45^{\frac{1}{2}}$	-040159	$\cdot 047699$	-0.5.5768	-064279	$\cdot 073146$	-082297
47^{2}	-039960	047591	-055614	-064147	-073037	-082207
$47 \frac{1}{2}$	-039766	047348	-055 +64	-064020	-072932	-082122
48	-039577	-017180	-055318	.063897	.079830	-082040
$48!$	-039393	$\cdot 047016$. 055176	.063778	. 072732	-081961
49	-039213	-016857	-0550)39	-063663	-072638	-081885
$49!$	-039037	046701	-0.54 406	-063552	.0725.17	081812
50^{-}	-038.665	. 046.550	U54776	063444	$\cdot 072.459$	081742

The Fiftif Table of Compound Interest - continued.
The Annuity which One Pound will purchase for any Number of Years to come, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	${ }^{6}$ per Cent.	7 per Cent.	8 per Cent.
50_{2}^{1}	-038697	-046402	-054650	-063339	-072375	-081675
51	-038533	-046258	-054528	-063238	-072293	-081611
$51 \frac{1}{2}$	-038373	-046118	$\bigcirc 054409$	-063140	-072214	-081549
52	-0.38217	-045982	-054294	-063046	-079139	-081489
521	-038064	-045848	. 054182	-062954	-072065	-081432
5.3	-037914	-045719	-054073	-062865	-071995	-081377
$53 \frac{1}{2}$	-037768	-045592	-053967	-062779	-071926	.081324
54	-037625	-045469	. 053864	-062696	-071861	-081273
$54 \frac{1}{2}$	-037485	-045348	$\cdot 053764$	-062615	-071797	-081224
55	-037349	-045231	-053666	-062536	.071736	.081177
551	-037215	-045116	-053579	-062461	-071677	-081132
56	-037084	-045004	-053480	-062387	-071620	.081089
$56 \frac{1}{2}$	-036956	-044895	-053390	-062316	-071565	$\cdot 081047$
57	-036831	-044789	-053303	-062247	-071511	-081007
$57 \frac{1}{2}$	-036708	$\cdot 044685$	-053218	-062180	-071460	-080969
58	-036588	-044j84	-053136	-062115	071410	-080932
$58 \frac{1}{2}$	-036470	-044485	-053056	-062052	-071363	-080896
59	-036355	-044388	-052978	-061 992	-071316	-080S62
$59 \frac{1}{2}$	-036243	-044293	-052902	-061932	-071272	-080829
60	-036132	-044201	-052828	-061875	-071229	$\cdot 080797$
60^{1}	-036024	-044111	-052756	-061820	-071187	-080767
61	-035919	-044023	-052686	-061766	-071147	-0¢0738
$61 \frac{1}{2}$	-035815	-043938	-052618	-061714	. 071108	-080710
62	-035713	$\cdot 0438.54$	-0.52551	-061663	-071071	-080683
$62 \frac{1}{2}$	-035614	-043772	-052487	-061614	-071035	-080657
63	-035516	$\cdot \mathrm{O}+3692$	-052424	-061567	-071000	-080632
632	-035421	-043614	-052363	-061520	-070966	-080608
64	-035327	-043537	-052303	-061476	-070933	-080584
$64 \frac{1}{2}$	-035235	-043463	-052245	-061432	-()70902	-080562
65	. 035145	-043390	-052189	-061390	-070872	-0805.11
$65 \frac{1}{2}$	-035057	-043318	-052184	-061349	-070842	-080520
66	-034971	-043249	-052080	-061310	-070814	-080501
$66_{\underline{1}}^{1}$	-034886	-043181	-052098	-061271	-070786	-080481
67	-034503	-043114	-051977	-061234	.070760	-080+63
$67 \frac{1}{2}$	-034721	-043049	-051928	-061198	. 070734	-08()446
68	-034641	-042985	-0.51879	-061163	-070710	-080429
$68 \frac{1}{2}$	-034563	-042923	-051832	-061129	-070686	-080412
69	-034486	-042862	-051787	-061096	-070663	-080397
$69 \frac{1}{2}$	-034410	-042803	-051742	-061064	-070641	-080382
70	-034336	-042745	-051699	-061033	-07C619	$\cdot 080367$
$7{ }^{1}$. 034263	-012688	$\cdot 0516.56$	-061002	-070.598	-080.353
71	-034192	-042632	$\cdot 051615$	-060973	-070578	-080340
$71 \frac{1}{2}$	-034122	-042578	$\cdot 051575$	-0CO915	-070559	-080327
72^{2}	-034054	$\cdot 04252.4$	$\cdot 051.536$	-060917	. 070540	-080:314
72,	-033986	-042472	$\cdot 051498$	-060891	-070522	-080:303
73	-033920	-042421	-051461	-060865	-070504	-080291
$73 \frac{1}{2}$	-033855	-042372	-051424	-O60839	-070487	-080280
74	-033741	- 042323	-051389	-060815	-070.171	-080269
741	-033729	-0.12275	-051355	-060791	-070455	-080259
75	-033667	$\cdot 642229$	-051321	$\cdot 060768$. 070.140	'080249

Tie Fifth Table of Compound Interest - continued.
The Annuity which One Pound will purchase for any Number of Years to come, $\&$ c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent	8 per Cent.
75. ${ }^{\text {\% }}$	-033607	-042183	-051288	-060746	-070425	-080240
76	-033548	-042138	$\cdot 051257$	-060724	-070411	-080231
$76 \frac{1}{2}$	-033490	-012094	-0512:6	-060703	$\cdot 070397$	-080222
77	-033433	-042052	-051195	-060683	.070384	-080214
$77 \frac{1}{2}$	-033377	-042010	-051166	-060663	-070371	-080206
78	-033322	-041969	$\cdot 051137$	-060644	$\cdot 070359$	-080198
$78 \frac{1}{1}$	-033268	-041929	-051109	-060525	-070347	-080190
79	-032215	-041890	-051082	-060607	-070:335	-080183
$79 \frac{1}{2}$	-033162	-041851	-051053	-060589	-070324	-080176
80	-032111	-041814	-051029	-060572	-070313	$\cdot 080169$
$80{ }_{2}^{1}$	-033061	. 041777	-051004	- 060555	-070303	-080163
81	-033012	-041741	-050979	-060539	-070292	-080157
$81 \frac{1}{2}$	-032963	-041706	-050955	-060524	-070283	-080151
82	-039915	-041671	-050932	-060509	$\cdot 070273$.080145
$82 \frac{1}{2}$	-032868	-041637	-050909	-060494	-070264	-080140
89	-032822	-041604	-050886	-060479	-070255	-080134
83 $\frac{1}{2}$	-032777	-041572	-050865	-060466	$\cdot 070247$	-080129
84	-032733	-041540	-050843	-060452	$\cdot 070238$	-080124
8.4	-0.32689	-041509	-050823	-060439	-070230	-0 0120
85	-032646	-041479	-050803	-060426	- 070223	-080115
8.51	-032604	-041449	-050783	-060414	. 070215	-080111
86	-032562	-041420	-050764	-060402	-070208	-080106
$86 \frac{1}{2}$	-032522	-041391	$\cdot 050745$	-060390	. 070201	-080102
87	-032482	- 041363	-050727	-060379	-070194	-080099
$87 \frac{1}{2}$	-032442	-041336	-050709	-060368	-070188	-080095
88	-032403	-041309	-050692	-060357	-070182	-080091
$88 \frac{1}{2}$	-032365	-041283	-050675	-060347	$\cdot 070176$	-080088
89	. 032328	$\cdot 041257$	-050658	-060337	-070170	-080084
$89 \frac{1}{2}$	-032291	-041232	-050642	-060327	$\cdot 070164$	-080081
90	-032255	$\cdot 041207$	-050627	-060318	$\cdot 070159$	-080078
901	-032220	.041183	.050611	-060309	-070153	-080075
91	-032185	-041159	-050596	-060300	-070148	-080072
$91 \frac{1}{2}$	-032150	-041136	-050582	-060291	.070143	-080070
92	-032116	.041114	-050568	-060283	$\cdot 070138$	-080067
92!	-032083	-041091	-050554	-060275	-070134	-08006 4
93	-032051	-(041070	-050540	-050267	-070129	-080062
991	-032018	- 041048	$\cdot 050527$	-060259	-070125	-080060
94	-031987	-041027	-050.514	-060251	. 070121	-080057
$94 \frac{1}{2}$	-031956	-041007	-050502	-060244	.070117	-080055
95	-031925	-040987	- 050490	-060237	.070113	-080053
$9.5 \frac{1}{2}$	-031895	-040967	-050478	-060230	.070109	-080051
96	-031866	-040948	-050466	-060224	$\cdot 070105$	-080049
961	-031837	-040929	-050 1.55	-060217	-070102	-0800-17
97	-031808	-040911	-050444	-060211	$\cdot 070098$	-050045
$97 \frac{1}{2}$	-031780	-040893	. 050133	-060205	$\cdot 070095$	-080044
98	. 031752	-040875	$\cdot 050422$. 060199	-070092	-080012
$98 \frac{1}{2}$	-031725	- 010858	-050412	-060193	-070059	-080040
99	-031698	-040841	-050402	-060188	-070036	-0800:39
991	. 031672	-040824	-050392	-060182	-070033	-080037
100	-031646	-040808	-050383	-060177	-070030	. 080036
F.S.	. 030000	$\cdot 040000$. $05000{ }^{\circ}$. 060000	-6700)0	-080000

Table VI. Showing the Value of an Annuity on one Life according to the Probabilities of Life in London.

Age.	Year's value at			Age.	Year's value at		
	3 per Cent.	4 per Cent.	5 per Cent.		3 per Cent.	4 per Cent.	5 per Celit.
6	$18 \cdot 8$	$16 \cdot 2$	14•]	41	13.0	11.4	$10 \cdot 2$
7	18.9	$16 \cdot 3$	14.2	42	$12 \cdot 8$	11.2	$10 \cdot 1$
8	$19^{\circ} 0$	16.4	$14 \cdot 3$	43	12.6	$11 \cdot 1$	$10 \cdot 0$
97				44	$12 \cdot 5$	11.0	$9 \cdot 9$
and	$19^{\circ} \mathrm{O}$	$16 \cdot 4$	$14 \cdot 3$	45	$12 \cdot 3$	$10 \cdot 8$	$9 \cdot 8$
10 -				46	$12 \cdot 1$	$10 \cdot 7$	$9 \cdot 7$
11	$19 \cdot 0$	16.4	14:3	47	11.9	10.5	$9 \cdot 5$
12	$18 \cdot 9$	16.3	14.2	48	118	$10 \cdot 4$	$9 \cdot 4$
13	$18 \cdot 7$	16.2	$14 \cdot 1$	49	11.6	$10 \cdot 2$	$9 \cdot 3$
14	$18 \cdot 5$	16.0	14.0	50	$11 \cdot 4$	10.1	$9 \cdot 2$
15	18:3	$15 \cdot 8$	$13 \cdot 9$	51	11.2	$9 \cdot 9$	$9 \cdot 0$
16	$18 \cdot 1$	$15 \cdot 6$	$13 \cdot 7$	52	11.0	$9 \cdot 8$	$8 \cdot 9$
17	$17 \cdot 9$	$15 \cdot 4$	13-5	53	$10 \cdot 7$	$9 \cdot 6$	$8 \cdot 8$
18	$17 \cdot 6$	$15 \cdot 2$	13.4	54	$10 \cdot 5$	$9 \cdot 4$	$8 \cdot 6$
19	$17 \cdot 4$	$15 \cdot 0$	13.2	55	$10 \cdot 3$	$9 \cdot 3$	$8 \cdot 5$
20	17.2	14.8	$13 \cdot 0$	56	$10 \cdot 1$	$9 \cdot 1$	$8 \cdot 4$
21	17.0	$14 \cdot 7$	$12 \cdot 9$	57	$9 \cdot 9$	$8 \cdot 9$	$8 \cdot 2$
22	$16 \cdot 8$	$14 \cdot 5$	$12 \cdot 7$	58	$9{ }^{6}$	$8 \cdot 7$	$8 \cdot 1$
23	16.5	$14 \cdot 8$	$12 \cdot 6$	59	$9 \cdot 4$	$8 \cdot 6$	$8 \cdot 0$
24	$16 \cdot 3$	$14 \cdot 1$	$12 \cdot 4$	60	$9 \cdot 2$	$8 \cdot 4$	$7 \cdot 9$
25	$16 \cdot 1$	14%	$12 \cdot 3$	61	$8 \cdot 9$	$8 \cdot 2$	$7 \cdot 7$
26	$15 \cdot 9$	$13 \cdot 8$	$12 \cdot 1$	62	$8 \cdot 7$	8-1	76
27	$15 \cdot 6$	$13 \cdot 6$	12.0	63	$8 \cdot 5$	$7 \cdot 9$	$7 \cdot 4$
28	$15 \cdot 4$	$13 \cdot 4$	11.8	64	$8 \cdot 3$	$7 \cdot 7$	$7 \cdot 3$
29	$15 \cdot 2$	$13 \cdot 2$	11.7	65	$8 \cdot 0$	$7 \cdot 5$	$7 \cdot 1$
30	15.0	$13 \cdot 1$	1] 6	66	$7 \cdot 8$	$7 \cdot 3$	$6 \cdot 9$
31	14.8	$12 \cdot 9$	$11 \cdot 4$	67	$7 \cdot 6$	$7 \cdot 1$	$6 \cdot 7$
32	$14 \cdot 6$	$12 \cdot 7$	11.3	68	$7 \cdot 4$	$6 \cdot 9$	$6 \cdot 6$
33	$14 \cdot 4$	$12 \cdot 6$	11.2	69	7-1	$6 \cdot 7$	6.4
34	14.2	$12 \cdot 4$	11.0	70	6.9	$6 \cdot 5$	6.2
35	$14 \cdot 1$	$12 \cdot 3$	$10 \cdot 9$	71	$6 \cdot 7$	$6 \cdot 3$	6 \%
36	$13 \cdot 9$	$12 \cdot 1$	$10 \cdot 8$	72	$6 \cdot 5$	$6 \cdot 1$	$5 \cdot 8$
37	$13 \cdot 7$	$11 \cdot 9$	$10 \cdot 6$	73	$6 \cdot 2$	$5 \cdot 9$	$5 \cdot 6$
38	$13 \cdot 5$	$11 \cdot 8$	$10 \cdot 5$	74	$5 \cdot 9$	$5 \cdot 6$	$5 \cdot 4$
39	$13 \cdot 3$	11.6	$10 \cdot 4$	75	$5 \cdot 6$	$5 \cdot 4$	$5 \cdot 2$
40	13.2	$11 \cdot 5$	$10 \cdot 3$				

Table Vla. Expectation of Life.
De Moirre's Hypothesis on the duration of human life, namely, that of 86 persons born one dies every year till all are extinct, has led to an empirical rule of easy recollection for the expectation of life, namely, to subtract the age from 86 and halve the difference for an answer. In the left hand side of the subjoined table is shown the number of persons out of 10,000 who may be expected to die in the year following their attaining the age marked in the first column, according to the Hypothesis, to the Northampton and Carlisle tables, and to the Belgian one of Quetelet. The table on the right shows the values of annuities on lives at 3 per cent. in years' purchase, whence it appears that in money results the Hypothesis curiously agrees with the celebrated Northampton tables.

Age.	Hypothesis.	Northampton.	Carlisle.	Belgium.	Age.	$\begin{aligned} & \text { Hypo- } \\ & \text { thesis. } \end{aligned}$	Northampton.	Carlisle.
10	132	92	45	88	10	19.9	207	$23 \cdot 5$
20	152	140	71	120	20	$18 \cdot 5$	186	21.7
80	179	171	101	126	30	16.8	16.9	196
40	217	209	1:30	144	40	$14 \cdot 8$	14.8	$17 \cdot 1$
50	278	284	134	183	50	$12 \cdot 5$	12.4	$14 \cdot 3$
60	385	402	335	325	60	$9 \cdot 7$	98	$10 \cdot 5$
70	625	649	516	680	70	$6 \cdot 4$	6.7	7•1
80	1667	1843	1217	1425	80	$2 \cdot \mathrm{~S}$	8.8	$4 \cdot 4$

Table VII. Showing the Value of an Annuity on the jciat Continuance of two Lives, according to the Probabilities of Life in London.

Age of the		Value at			Age of the		Value at		
Y ounger.	Elder.	3 yer Cent.	4 per Cent.	5 per Cent.	Younger.	Elder.	3 per Cent.	4 per Cent.	5 per Cent.
10	10	14.7	13.0	116		55	$7 \cdot 9$	$7 \cdot 3$	$6 \cdot 7$
	15	14.3	$12 \cdot 7$	$11 \cdot 3$		60	$7 \times$	$6 \cdot 7$	$6 \cdot 2$
	20	$13 \cdot 8$	$12 \cdot 2$	$10 \cdot 8$	30	65	$6 \cdot 5$	$6 \cdot 1$	$5 \cdot 7$
	25	$13 \cdot 1$	$11 \cdot 6$	$10 \cdot 2$		70	$5 \cdot 8$	$5 \cdot 5$	$5 \cdot 2$
	30	$12 \cdot 3$	$10 \cdot 9$	97		75	$5 \cdot 1$	$4 \cdot 9$	$4 \cdot 7$
	35	11.5	$10 \cdot 2$	$9 \cdot 1$					
	40	$10 \cdot 7$	$9 \cdot 6$	$8 \cdot 6$		35	$9 \cdot 9$	$8 \cdot 8$	$8 \cdot 0$
	45	$10 \cdot 0$	$9 \cdot 0$	8-1		40	$9 \cdot 4$	$8 \cdot 5$	$7 \cdot 7$
	50	$9 \cdot 3$	$8 \cdot 4$	$7 \cdot 6$		45	$8 \cdot 9$	$8 \cdot 1$	$7 \cdot 4$
	55	$8 \cdot 6$	$7 \cdot 8$	$7 \cdot 1$		50	$8 \cdot 3$	$7 \cdot 6$	$7 \cdot 0$
	60	$7 \cdot 8$	$7 \cdot 2$	$6 \cdot 6$	35	55	$7 \cdot 7$	$7 \cdot 1$	$6 \cdot 6$
	65	$6 \cdot 9$	$6 \cdot 5$	$6 \cdot 1$		60	$7 \cdot 1$	$6 \cdot 5$	$6 \cdot 1$
	70	$6 \cdot 1$	5.8	$5 \cdot 5$		65	$6 \cdot 4$	$6 \cdot 0$	$5 \cdot 6$
	75	$5 \cdot 3$	$5 \cdot 1$	$4 \cdot 9$		70	$5 \cdot 7$	$5 \cdot 4$	$5 \cdot 1$
15						75	$5 \cdot 0$	$4 \cdot 8$	$4 \cdot 6$
	15	$13 \cdot 9$	$12 \cdot 3$	11.0					
	20	$13 \cdot 3$	11.8	$10 \cdot 5$		40	$9 \cdot 1$	$8 \cdot 1$	$7 \cdot 3$
	25	$12 \cdot 6$	11.2	$10 \cdot 1$		45	$8 \cdot 7$	$7 \cdot 8$	$7 \cdot 1$
	30	11.9	$10 \cdot 6$	$9 \cdot 5$		50	$8 \cdot 2$	$7 \cdot 4$	$6 \cdot 8$
	3.5	11.2	$10 \cdot 0$	$9 \cdot 0$		55	$7 \cdot 6$	$6 \cdot 9$	$6 \cdot 4$
	40	$10 \cdot 4$	$9 \cdot 4$	$8 \cdot 5$	40	60	$7{ }^{\circ}$	$6 \cdot 4$	6.0
	4.5	$9 \cdot 6$	8-8	$8 \cdot 0$		6.5	$6 \cdot 4$	$5 \cdot 9$	$5 \cdot 5$
	50	$8 \cdot 9$	$8 \cdot 2$	$7 \cdot 5$		70	$5 \cdot 7$	$5 \cdot 4$	$5 \cdot 1$
	55	8-2	$7 \cdot 6$	$7 \cdot 0$		75	$5 \cdot 0$	$4 \cdot 8$	$4 \cdot 6$
	60	$7 \cdot 5$	$7 \cdot 0$	$6 \cdot 5$					
	65	$6 \cdot 8$	$6 \cdot 4$	$6 \cdot 0$		45	$8 \cdot 3$	$7 \cdot 4$	$6 \cdot 7$
	70	$6 \cdot 0$	$5 \cdot 7$	$5 \cdot 4$		50	$7 \cdot 9$	$7 \cdot 1$	$6 \cdot 5$
	75	$5 \cdot 2$	$5 \cdot 0$	$4 \cdot 8$		55	$7 \cdot 4$	$6 \cdot 7$	$6 \cdot 2$
					45	60	$6 \cdot 8$	$6 \cdot 3$	$5 \cdot 8$
20	20	12.8	11.3	$10 \cdot 1$		65	$6 \cdot 3$	$5 \cdot 8$	$5 \cdot 4$
	25	$12 \cdot 2$	$10 \cdot 8$	$9 \cdot 7$		70	$5 \cdot 6$	$5 \cdot 3$	$5 \cdot 0$
	30	$11 \cdot 6$	$10 \cdot 3$	$9 \cdot 2$		75	$4 \cdot 9$	$4 \cdot 7$	$4 \cdot 5$
	35	$10 \cdot 9$	$9 \cdot 8$	$8 \cdot 8$	-				
	40	$10 \cdot 2$	$9 \cdot 2$	$8 \cdot 4$		50.	7.6	$6 \cdot 8$	$6 \cdot 2$
	45	$9 \cdot 5$	$8 \cdot 6$	$7 \cdot 9$		55	$7 \cdot 2$	$6 \cdot 5$	$6 \cdot 0$
	50	$8 \cdot 8$	$8 \cdot 0$	$7 \cdot 4$	50	60	$6 \cdot 7$	$6 \cdot 1$	$5 \cdot 7$
	55	$8 \cdot 1$	7.5	$6 \cdot 9$		65	$6 \cdot 2$	$5 \cdot 7$	$5 \cdot 3$
	60	$7 \cdot 4$	$6 \cdot 9$	$6 \cdot 4$		70	$5 \cdot 5$	$5 \cdot 2$	$4 \cdot 9$
	65	$6 \cdot 7$	$6 \cdot 3$	$5 \cdot 9$		75	4.8	$4 \cdot 6$	$4 \cdot 4$
	70	60	$5 \cdot 7$	$5 \cdot 4$		55	$6 \cdot 9$	6.2	$5 \cdot 7$
	75	5×2	$5 \cdot 0$	4.8		60	$6 \cdot 5$	$5 \cdot 9$	5.5
25	25	11.8	$10 \cdot 5$	$9 \cdot 4$	55	65	6.0	$5 \cdot 6$	$5 \cdot 2$
	30	$11 \cdot 3$	$10 \cdot 1$	$9 \cdot 0$		70	$5 \cdot 4$	$5 \cdot 1$	$4 \cdot 8$
	35	$10 \cdot 7$	$9 \cdot 6$	$8 \cdot 6$		75	$4 \cdot 7$	$4 \cdot 5$	$4 \cdot 3$
	40	$10 \cdot 0$	$9 \cdot 1$	$8 \cdot 2$		60	$6 \cdot 1$		
	45	$9 \cdot 4$	$8 \cdot 5$	$7 \cdot 8$		65	$5 \cdot 7$	$5 \cdot 3$	$4 \cdot 9$
	50	$8 \cdot 7$	$7 \cdot 9$	$7 \cdot 3$	60	70	$5 \cdot 2$	$4 \cdot 9$	$4 \cdot 6$
	55 60	$8 \cdot 0$ $7 \cdot 3$	$7 \cdot 4$ 6.8	$6 \cdot 8$ $6 \cdot 3$		75	$4 \cdot 6$	$4 \cdot 4$	$4 \cdot 2$
	60	7	$6 \cdot 8$	6.3					
	65	$6 \cdot 6$	$6 \cdot 2$	$5 \cdot 8$		65	$5 \cdot 4$	$5 \cdot 0$	$4 \cdot 7$
	70	$5 \cdot 9$	$5 \cdot 6$ $4 \cdot 9$	5:3	65	70	$4 \cdot 9$	$4 \cdot 6$	$4 \cdot 4$
	75	5•1	$4 \cdot 9$	$4 \cdot 7$		75	$4 \cdot 4$	$4 \cdot 2$	4.0
30	30	$10 \cdot 8$	$9 \cdot 6$	$8 \cdot 6$		70	$4 \cdot 6$	$4 \cdot 4$	$4 \cdot 2$
	35	$10 \cdot 3$	$9 \cdot 2$	$8 \cdot 3$	70	75	$4 \cdot 2$	$4 \cdot 0$	$3 \cdot 9$
	40	$9 \cdot 7$	$8 \cdot 8$	$8 \cdot 0$		7			
	45	$9 \cdot 1$	$8 \cdot 3$	$7 \cdot 6$	75	75	$3 \cdot 8$	$3 \cdot 7$	3.6
	50	$8 \cdot 5$	$7 \cdot 8$	7.2					

Table VIII. Showing the Value of an Anuity on the Ionger of two Lives.

Age of the		Value at			Age of the		Value at		
Younger.	Eider.	3 per Cent.	4 per Cent.	5 per Cent.	Younger.	Elder.	3 per Cent.	4 per Cent.	5 per Ceas
10	10	23.4	19.9	17.1	30	55	$17 \cdot 4$	$15 \cdot 1$	13.4
	15	$22 \cdot 9$	$19 \cdot 5$	16.8		60	17.0	$14 \cdot 8$	$13 \cdot 2$
	20	$22 \cdot 5$	$19 \cdot 1$	16.6		65	16.6	14.5	$12 \cdot 9$
	25	$22 \cdot 2$	$18 \cdot 8$	16.4		70	$16 \cdot 1$	$14 \cdot 1$	$12 \cdot 6$
	30	$21 \cdot 9$	$18 \cdot 6$	16.2		75	$15 \cdot 6$	$13 \cdot 7$	$12 \cdot 2$
	35	$21 \cdot 6$	$18 \cdot 4$	$16 \cdot 1$	35				
	40	21.4	$18 \cdot 3$	16.0		35	$18 \cdot 3$	$15 \cdot 8$	13.8
	45	21.2	18.2	15.9		40	$17 \cdot 8$	$15 \cdot 4$	13.5
	50	$20 \cdot 9$	18.0	$15 \cdot 8$		45	17\%1	$15 \cdot 1$	13:3
	55	$20 \cdot 7$	17.8	$15 \cdot 7$		50	$17 \cdot 1$	$14 \cdot 8$	13.1
	60	$20 \cdot 4$	$17 \cdot 6$	$15 \cdot 5$		55	$16 \cdot 7$	14.5	$12 \cdot 9$
	65	$20 \cdot 1$	$17 \cdot 4$	$15 \cdot 3$		60	16.3	14.2	$12 \cdot 7$
	70	$19 \cdot 8$	$17 \cdot 2$	$15 \cdot 1$		65	$15 \cdot 8$	$13 \cdot 8$	$12 \cdot 4$
	75	19.5	16.9	$14 \cdot 8$		70	$15 \cdot 3$	$13 \cdot 4$	12.0
15						75	14.8	13.0	11.6
	15 20	$22 \cdot 8$ 22.3	19%	$\begin{aligned} & 16.7 \\ & 16.4 \end{aligned}$	40	40	$17 \cdot 3$	15.0	$13 \cdot 3$
	25	$21 \cdot 9$	$18 \cdot 6$	16.2		45	16.8	$14 \cdot 6$	$13 \cdot 0$
	30	$21 \cdot 6$	$18 \cdot 3$	16.0		50	16.3	14.0	$12 \cdot 7$
	35	$21 \cdot 3$	$18 \cdot 1$	$15 \cdot 9$		55	15.9	$13 \cdot 9$	$12 \cdot 4$.
	40	$21 \cdot 1$	$17 \cdot 9$	$15 \cdot 7$		60	$15 \cdot 4$	$13 \cdot 5$	$12 \cdot 1$
	45	$20 \cdot 9$	17*3	15.6		65	$14 \cdot 9$	13•1	11.8
	50	$20 \cdot 7$	17.6	$15 \cdot 4$		70	$14 \cdot 5$	$12 \cdot 7$	11.4
	55	$20 \cdot 4$	$17 \cdot 4$	$15 \cdot 3$		75	14.0	$12 \cdot 3$	11.0
	60	$20 \cdot 1$	17.2	$15 \cdot 2$	45				
	65	$19 \cdot 8$	$16 \cdot 9$	15.0		45	$16 \cdot 2$	14.2	12.8
	70	$19 \cdot 4$	$16 \cdot 6$	$14 \cdot 7$		50	$15 \cdot 7$	13.8	$12 \cdot 5$
	75	$18 \cdot 9$	$16 \cdot 3$	14.4		55	$15 \cdot 2$	13.4	$12 \cdot 1$
20						60	$14 \cdot 7$	$12 \cdot 9$	$11 \cdot 7$
	20	$21 \cdot 6$	18:3	1.5 .8		65	$14 \cdot 1$	$12 \cdot 5$	11.4
	25	$21 \cdot 1$	17.9	$1.5 \cdot 5$		70	13.6	12.0	11.0
	30	$20 \cdot 7$	17.6	15.3		75	$13 \cdot 1$	$11 \cdot 6$	$10 \cdot 6$
	35	$20 \cdot 4$	$17 \cdot 4$	$15 \cdot 1$	50				
	40	$20 \cdot 1$	$17 \cdot 2$	15.0					
	45 50	$19 \cdot 9$ 19.6	$17 \cdot 0$ 16.8	14.9		50 60	$14 \cdot 5$ $13 \cdot 9$	$12 \cdot 9$ 12.4	$11 \cdot 7$ 11.3
	50 55	$19 \cdot 6$ $19 \cdot 4$	16.8	14.7		60	$13 \cdot 9$ $13 \cdot 3$	$12 \cdot 4$ 12.0	11.3 $10 \cdot 9$
	55 60	$19 \cdot 4$	16.6	14.5		65 70	$13 \cdot 3$ $12 \cdot 8$	12.0 11.5	$10 \cdot 9$ $10 \cdot 5$
	60	$19 \cdot 1$ 18.7	$16 \cdot 3$ 16.0	$14 \cdot 3$ 14.1		70 75	$12 \cdot 8$ $12 \cdot 3$	11.5 11.0	$10 \cdot 5$ $10 \cdot 1$
	70	18.2	$15 \cdot 7$	13.8	55				
	75	17.7	$15 \cdot 3$	13.5		55	13.6	12.4	11.3
25						60	13.0	$11 \cdot 9$	$10 \cdot 9$
	25	$20 \cdot 3$	17.4	$15 \cdot 1$		65	$12 \cdot 4$	$11 \cdot 3$	$10 \cdot 5$
	30	$19 \cdot 8$	17.0	14.9		70	11.8	$10 \cdot 8$	10.0
	35	$19 \cdot 4$	16.7	$14 \cdot 7$		75	11.3	$10 \cdot 3$	$9 \cdot 5$
	40	$19 \cdot 2$	16.5	14.5	60				
	45	$18 \cdot 9$	$16 \cdot 3$	$14 \cdot 3$					
	50	$18 \cdot 7$	$16 \cdot 1$	$14 \cdot 2$		65	11.5 10.9	$10 \cdot 6$ $10 \cdot 1$	$10 \cdot 0$ 9.5
	55	$18 \cdot 4$	$15 \cdot 9$	14.0 13.8		70 75	$10 \cdot 9$ $10 \cdot 3$	$10 \cdot 1$ 9.5	9.5 9.0
	60	18.0	$15 \cdot 6$	$13 \cdot 8$					
	65 70	$17 \cdot 6$ 17.2	$15 * 3$ $15 *$	$13 \cdot 6$ 13.3	65	65	$10 \cdot 7$	10.0	$9 \cdot 4$
	75	16.7				70	$10 \cdot 0$	$9 \cdot 4$	$8 \cdot 9$
						75	$9 \cdot 3$	$8 \cdot 7$	$8 \cdot 3$
30	30	$19 \cdot 3$	16.6	14.5	70	70	9.2	$8 \cdot 6$	8.2
	35	$18 \cdot 8$	$16 \cdot 2$	$14 \cdot 2$		75	8.4	$7 \cdot 9$	$7 \cdot 6$
	40	$18 \cdot 4$	15.9	14.0	75				
	50	$18 \cdot 1$ 17.8	$15 \cdot 6$ 15.4			75	7×6	$7 \cdot 2$	6.9

A BRIEF SYNOPTICAL LIST OF THE PRINCIPAL ARCHITECTS,

ANCIENTAND MODERN, WITII TIIEIR CHIEF WORKS,
Revised by Wyatt Papworth

Note.-Many of the Names herein are more fully moticed in the body of this work, and some few others will be found by reference to its Index.

BEFORE CHRIST.

7th. Century.

t. Aganenes and Thophonius of Delphi.--Mentioned only in mythology; temple to Apollo at Delphi ; a temple to Neptune near Mantinæa.
11. Theodorus and lingecus, of Samos.-Labyrinth at Lemnos; some buildings at Sparta ; the temple of Jupiter at Samos; foundations of one of the temples of Diana at Ephesus.
in. IIermogenes of Alabanda. -Temple of Bacchus at Teos; and that of Diana at Mlagnesia.

6th. Ceutury.

iv. Demetrius and Peonius, of Ephesus.-Continuation of one of the temples of Diana, at Epliesus; which had been begun by Cuersiphion or Ctesiphon aud his son Metagenes.
v. Daphnes of Miletus. - With Panins, temple of Apollo at Miletus.
vi. Eupalinus of Megara.-Tunnel for the aqueduet, and some edifices at Samos.
vi. Chimosophus of Crete.-Temple to Ceres and Proserpine ; another to the Paphian Venus, and one to Apollo; all at Tegea.
vir. Mandrocles of Samos. - Bridge of boats over the Thracian Bosphorus, for King Darius.
ix. Memso of Persia. - A magnificent palace at Eebatana for Cyrus.

5th. Century.

x. Pytrus of Priene.-Mausoleum at Malicarnassus; the temple of Minerva at Priene, and wrote a treatise on it. In the former he was assisted ioy Satyrus.
xi. Spintharus of Corinth.- Rebuilt the temple of Apollo at Delphi, which had been destroyed by fire.
x11. Is bo of Elis.- Temple of Jupiter Olympius at Olympia.
x11. Ictinus of Athens.- Parthenon at Athens, and wrote a treatise upon it ; perhaps the temple of Ceres and Proserpine at Eleusis; temple of Apollo Epicurius near Phigaleia.
xiv. Callickates of Athens.-Assisted Ictines in the erection of the Parthenon.
xv. Menesicles of Athens.- Propylea of the Acropolis at Athens.
xvi. Antistates of Athens.- A temple of Jupiter at Athens.
xvin. Scopas of Paros.- One side of the Mausoleum at Halicarnassus; a column of the temple at Ephesus. Employed on temple of Minerva at Tegea.
xviif. Hıppodamus of Miletus. - Laid out Munychia in the Piræus and Rhodes.
xix. Concebus and Metagenes Xypetius of Athens.-Perhaps the temple of Ceres at Eleusis.
xx. Polyclitus.-A theatre with a dome at Epidaurus, highly praised by Pausanius.
xxi. Archias of Corinth.-Many temples and other edifices, at Syracuse.
xxif. Calllas of Aradus.-Machinery.
sxili. Tarchfsius and Argelius. - Wrote treatises on Architecture; the furmer is supposed to have erected the temple to Esculapius at Tralles.
xxiv. Mnesthes. - Pseudodipteral temple of Apollo at Magnesia.

4th. Century

xxv. Deinocrates or Dinochares of Macedonia.-Rebnilt the last temple of Diana at Ephesus; laid out the city of Alexandria, and designed many edifices there; proposed to transform Monnt Athos inte a colossal figure of Alexauder.
xxvi. Calliancucs of Corintl.- Reputed inventor of the Corinthian order. Vitruvius, v.iv. chap. 1.
xxyti. Sustratus of Cnidus.-The Pharos near Alexandria.
xxvili. Eubolenus of Argos.-Several temples and a theatre at Argos. The Herenm near Myсенæ.

3rd. Century.

xxix. Pheax of Agrigentum. - Var ous buidings at Axrigentum.
xxx. Cleudamas of Byzantium. - Restored, with Athenæus, the cities destroyed by the Seythe and others.

2nd. Century.

xxxi. Cossutus of Rome. - Additions to the temple of Jupiter Olympins at Athens, for Antiochos Epiphanus, king of Syria, and afterwards diestroyed.
xxxif. Pinlo of Athens or of Byzantimm.-Enlarged the arsenal and the Pireus at Athens; erected the great theatre, rebuilt by order of IIadrian. Wrote on Architecture.
xxxif. Hermonorus of Salamis.-Temple of Jupiter Stator in the Forum, and temple of Nars in the Circus Flaminius, at Rome.
xxxiv. Catus Mutius of Rome.-Temples to Honour and Virtue near the trophies of Marius at Rome.

1st. Century.

xxyv. Batrachus and Saurus, of Laconia.-These two architects builr the temple
and enclosed by the portico of Octavia, at Rome. The name of the first (Barpaxos)
xxxvt. signifies a frog ; and that of the latter ($\sigma \alpha u \rho o s$), a lizard. They are considered to have perpetuated their names by the representation of those anima's in the eye of the volutes of the Lunic order, of which a capital has been found ; and in the churches of St. Euselius and of St. Lorenzo fuori Ie Murà, at Rome. are pedestals seulptured with them.
xxxvin. Dexipitanes of Cyprus, or Cuidos.-A causeway; and rebuilt or repaired the Pharos at Alexandria, erected by Sostratus.
xxxvim. Valerius of Ostium.- Covered in a theatre at Rome.
xxxix. Cyrus of Rome.-Arehitect to Cicero and his brother.
x . Posthumus of Rome.- Nany works at Rome and Naples.
xlı. Lucius Coccelus Auctus of Rome.-Grotta Iella Sibella from Lacus Averntis to Baia; a temple at Pozzuoli ; tumnel of Cumæ, near the Lacus Avernus.
x bil. Fussitius or Fufitius of Rome.-Several buildings at Rone. The first Roman who wrote copiously on architecture.
xlif. Messinfus and Philoxenus.-Formed an aqueduct near Rome for Cicero's brother.
xliv. Numisius.-Theatre at Herculaneum ; buried a.d. 79.

AFFTER CHHIST.

1st. Century.

1. Mancus Vitauvius Polio of Fano. - Basilica Justitix at Fano. Writer on arehitecture, the oldest work extant on the art.
2. Virruvius Cerdo of Verona. - Triumphal areh at Verona.
3. Celer of Rume.-Golden house of Nero, wihh Severus of Rome.
4. Rabinius of Rome.-Palace of Domitian and works connected therewith, on Munnt Palatine.
5. Mustius of Rome.-Temple to Ceres at Rome.

2nd. Century.

6. Julius Frontinus of Rome. - He has lefi a work on aqueduets.
7. Apolmonorts of Damascus. - The formon of Trajan, the column of Trajan, and other buildings at Rome; a stone brilge over the Danube in Lower Hungary, the remains of which are still vi sble.
8. Cailus Julus Lacer of Rome. - Bridge over the Tagus at Alcantara, in Spain; a temple there, now dedicated to San Giuliano.
9. Detrianus of Rume-Moles Hadriani and the Pons Aelins; now called the Castello and Ponte Sant' Angelo ; removed the enlossal statue of Nero for Hadrian.
10. Antoninus, Senator, of Rome.-Pantheon at Epidaurus; baths of Asculapius, in the same eity.

4th. Century.

11. Metronorus of Persia. - Many buildings in India, and some at Constantinople. The first known Christian architect.
12. Alypius of Antioch.-Employed by Julian to lay the foundation of a new temple at Jerusalem.

5th. Century.

13. Cyrianes, Consul, of Rome-A basilica and bridge for Theodosius, carried on by Auxentins, senator. Symmachus, prefect, and Afrodisius, consul.
14. Sennamar of Arabia.-Sedir and Khaovarnack, two celebrated palaces in Arabia. THE SCYTHIAN DEVASHATIONS.
15. Alonstus of Padua or Rome.-Buildings for Theodoric; assisted Daviel in the erection of the celebrated mausoleum at Ravenna, the cupola of which is of one stone, 36 feet diam. outside, 30 feet inside, and bollowed within.

6th. Century.

16. Etheruts of Constantinople.-The vestibule called Chalce in the Imperial Palace it Constantinople, for Anastatius I ; and a wall in Thrace 54 miles long.
17. Anthemus of Tralles.-Sta. Sophia at Constantinople; be was assisted by Isıones of Niletus.
18. Curyses of Alexandria.-Constructed the embankments along the Euripus, near Dara, in Persia, to keep the river in its channel, and to keep out the sea.

7th. Century.

19 and 20. Isınorus of Byzantium, and Joannes of Miletus.-The city of Zenobia, on the river Euphrates, in Syria, for Justinian.

8th. Century.

21. Abuelbrahaman I. of Spain.-Gave the designs for the mosque at Cordova.

9th. Century.

22. Renualnus of Franee.-Cathedral at Rheims, the earliest example of Gothie architecture.
23. Magnus Ecinharnes of Odenwald, in Germany.-Prafect of buildings to Charlemagne. The monastery at Mulinheim, now Seligenstadt; drawing of monastery for Gozpertus, abbot of St. Gall in Switzerland.
24. Trona of Spain.-Palace for King Alphonso the Chaste, at Oviedo, now the episcopal palice; churches of St. Salvador (since destroyed), St. Miehael, and St. Mary, and St. Julius outside the walls.

10th. Century.

25. Eberifard, abbot, of Switzerland.-Church and monastery at Einsiedlen, in Switzerland, and completed by Tietlann, abbot.
26. Abdallah ben Said of Spain.-Eastern aisles of the mosque at Cordova.

11th. Century.

27. Busketus or Buschetto.- Church of S. Paolo at Pistoja, 1032. Duomo at Pisa, the earliest example of the Lombard style of architecture. It was built in 1063.
28. Humbert, archbishop, of Lyons.-Erected the stone bridge over the Saone at Lyons, and is recorded as the architect.
29. Pietro di Ustanker of Spain.-Crypt of the cathedral at Chartres, or hy hishop Fulbert ; rebuilt the chureh of St. Inidorus at Leon, and erected a bridge there
30. Carilepho, hishop of Durham, of England.-Began the eathedral ehurch of Durham, "on a plan which he had brought with him from France," where he had been abbot of St. Vincent, in Normandy.

12th. Century.

31. Lanfrancus of Italy. - The cathedral at Modena, 1099-1108.
32. Landfrinus of Normandy.- Erected the castle of lithiviers in Normandy, and then that of Ivry; after whieh this "architect" was beheaded, that he might not erect another elsewhere.

AFIER CHIRIST.
33. Gundulipues, bishop of Rochester, of England.-Considered tohave designed Rochester Castle; his honse, and the abbey for muns at Malling in Kent; White Tower of the Tower of London, and western portion of Rochester Cathedral ; the eastern portion erected later by Bishop Ernulf.
34. Ono, prior of Croyland, of England.-Church of Croyland Abbey. Arnold, a lay brother of the abhey, was employed as mason.
35. Lafrs of the Land of Canaan. - Neath Castle, Glamorganshire, and other castles, monasteries, and churches; built Lalyston ; appointed architect to King Henry I.
36. Raymundo of Montfort, of France.-Cathedral at Lugo, in Spain, all but the belfry and facade.
37. Diotı Salivi, or D. ne Petroni, of Italy.-Baptistry at Pisa, in the Lombard style.
38. Buono of Ravenna.-Palaces and chorehes at Ravenna; tower of St. Mark at Venice, which is 330 feet high, and 40 feet square, built 1148-54; the Castel del Covo and the Castle Capuano, at Naples; and palazzo de' Signori at Arezzo.
39. Gruanoss of Pistoia. - Part of churches of St. Andrea and of St. Giovanni at Pistoia.
40. Alvar Garcia of Estella, in Spain.-The reputed designer of the cathedral at Avila del Rey, in Spain.
41. Sugger, of France.-Built parts of his abbey chureh of St. Denis, near Paris.
42. P'ietro Cozzo of Limena in Italy.-Sala della Ragione at Padna, which is abont 261 feet long, 88 teet wide, and 87 feet high inside. The rouf was burnt in 1420, and restored by Rizzio and Piccino, of Venice; it was dismantled by a whirkind in 1756, and restored by B. Ferracina.
43. Wilhelmus of Germany--Campanile at Pisa, 178 feethigh, with Bonano of Pisa. Tomaso, also of Pisa, completed it in the 14th century.
44. Willian of Sens.-Choir of Canterbury Cathedral, alter the fire of 1174; completed by Wiliam the Euglishman.

13th. Century.

45. Isenbert of Xainctes,in France.-Bridges at Xainctes and Rochelle. Recommended by King John to the citizens of London as a proper person to finish London Bridge, begun by Peter of Colechurch, in 1176.
46. Helvas de Berham or Derham, canon of Salisbury, of England.-Overseer for twenty years of the works at Salisbury Cathedral, from its foundation. He was succeeded by a certain Robert. He may be the same person who is called Elyas the Engineer, in records of the reigns of Kings Richard I. and John, relating to the repair of the king s houses at Westminster.
47. Euvaind Fitz-Odo of England.-Supposed master of the works at Westminster Abbey Church for King Henry III.
48. Robert de Luzatches of France. - Cathedral of Amiens; continued by Thomas de Cormont, and finished by his son Regnault, as stated in the labyrinth in the nave.
49. Estienne de Bonnueill of Paris. - Chureh of the Trinity at Upsala, in Sweden, built after the model of Notre Dame at Paris, with ten companions and as many pupils.
50. Wilars de Monecort of France.-Author of a vellum sketeh book, preserved at Paris; publishet by Lassus and Darel in 185?, and translated by Professor Willis 1859. Church of St. Elizabeth at Cassovia, now Kasehau, in IIungary; and of St. Yived de Braine; and one at Cambray.
51. Pierre de Corbie of Franee.-Many churches in Picardy, and perhaps the apsidal chapels at Rheims Cathedral.
52. Jacoro or Laro of Florence (there were st-eral other artists of this name). -Church de' Monaci Cassimensi (afterwards the Venovado, and now the eathedral) at Arezzo, continued by Margaritone. The piers of the ponte della Carraja at Florence.
53. Jean de Cuelles of France-Gabled fronts of the transept and first clapels of the choir at the cathedral of Notre Dame at Paris.
54. Pierre de Montereau or de Montreuil, in France.-The first Sainte Chapelle at Vincennes; the refectory, dormitory, chapter-house, and chapel of the Virgin in the monastery of St. Germain des Prés, near Paris; the Sainte Chapelle at Paris, and other churehes.
55. Hues Libergiers of Rheims, in France. - Church of St. Nicaise at Rheims, now destroyed. He was succeeded by Robert de Coucy. It is one of the early specimens of pure Gothic in France.
56. San Gonsalvo of Portugal.-A bridge and a church at Amaranto.
57. San Pietro Gonsalvo of Tui, in Portugal. - Stone bridge at Tui.
58. San Lorenzo of Portugal. - Stone bridge at Cavez.
59. Jacopo of Germany.-Remodelling the buildings of the monastery of St. Francisco at Assisi ; the Palazzo del Barjello; and the façade of the archbishop's palace, both at Florence.
60. Nicola of Pisa.-Monastery and church of the Dominicans at Bulogna; church of San Micheli; some palaces; and the octagonal campanile of the Augustins at Pisa ; church del San Antonio at Padua; church of Santa Maria at Orvie:o ; church de' Fratri Minori at Venice ; abbey in the plains of Tagliacozzo, near Naples, as a memorial of the victory by Charles I. over Conrad; design for the church of San Giovanni at Siena, and for the church and monastery clella Santissima Trinita at Florence; Dominican monastery at Arezzo, carried out by Maglione, his scholar. Repairs and alterations to the duomo at Volterra, and the Dominican monastery at Viterbo.
61. Henri de Narbonne of France.-Cathedral at Gerona, in Spain, which city he undertook to visit six times a year.
62. Jacobus de Favaris of Narbonne, in France.-Succeeded him at Gerona.
63. Fuccio ur Fucius of Italy.-Perbaps restored the charch of Santa Maria sul' Arno at Florence. The gate and towers near the river Volturno at Capua. Finished the Castel Capuano, now the Vicaria, and Castello dell' Uovo, at Naples, commenced by Buono.
64. Ferrante Maglione of Pisa.-Cathedral and church of San Lorenzo at Naples. Palazzo Vecehio and many churches at Naples, in conjunction with Giovanni Benincasa. Dominican monastery at Arezzo, from the designs of Nicolo da Pisa.
65. Masuccto of Naples.-Completed the Castel Nuovo, and the church of Santa Maria della Nuova; designed the churches of San Domenico Magyiore and San Giovami Maggiore; restored the cathedral of San Geniaro ; designed the Palazzo Sant' Angelo and Palazzo Colombrano; all at Naples.
66. Giovanni da Pisa, in Italy (son of Nicola da Pisa). Campo Santo or public cemetery, and the tribune of the Duomo, at Pisa; Castel Nuovo, and the church of Santa Maria della Nuovo at Naples; façade of the cathedral at Siena; many buldings at A rezzo and other towns in Italy. He was the first architect in the modern style of fortification.
67. Erfin von Steinbach, in Germany. - The portail of the cathedral at Strasbourg, from 1277 till his death in 1318. His son continued the work.
68. Stefano Masuccio of Naples.-Church of Santa Chiara at Naples. The lower part of the campanile is attributed to him or to his pupil Giacono de Sanctis.
69. Pedro Perez of Spain.-Commenced the eathedral at Toledo.

14th. Century.

70. Arnolfo di Cambio or Arnolfo di Lapo of Florence.-Restoration of the ponte di Trinità ; the church of Santa Croce; the walls of the city, with the towers; the loggia of the Or San Michele; the principal chapel of the Badia, enlarging the church and the campanile ; Palazzo della Siguori, now Pallazzo Vecenio; design, model, and foundation of the cathedral of Sta Maria del Fiore, with the Loggia and the Piazza dei Priori; all at Florence.
71. Johannes de Midoelton, of Durham.-As mason erected the lower part of the dormitury of the monastery; completed by Peter Dryng in 1401.
72. Andrea da Pisa in Italy.-Designed the Castello della Scarperia at Mugello, at the foot of the Apennines; designed the chumeh of San Giovanni at Pistoja; fort.fied and enlarged the ducal Palazzo Gualtieri at Florence.
73. Agostino da Siena, or pa Pisa, in Italy, and his brother Angelo da Pisa.-North and west fagades of the eathedral at Siena, and wo gates; church and monastery of San Franciseo; Palazzo de' Nove Magistrati ; grand fountain in the piazza opposite the Palazzo della Signoria; hall of the council chamber, and P'alizzo Publico ; churcha della Santa Maria in Piazza Manetti, all at Siena, and all bailt by him in conjunction wilh his brother; also seseral works at $\Lambda_{\text {ssisis }}$, Orvieto, and other towns.
74. Whlliam Borden of England.-Chief architect (or master mason) for the chapel of the Virgin at St . Albaus Abbey Church.
75. Henry (Latomus, or stonemason) of Evesiam, in England-Chapter-house, refectory, abbot's lall, and kitchen of the monastery at Evesbam.
76. Walter de Weston of England. - Clerk of the works at Westminster, kept the rolls of expenses of the erection of St. Stephen's Cliapel.
77. Thomas of Cantenbury, in England.-Naster mason, 1330, at St Stephen's Chapel, Westminster.
78. Ramond de Temple of France.-Gient stairease at the Louvre at Paris.
79. Ricuakd de Farieigh of England.-Master mason at Bathand Reading; at Salisbury Catnedral he worked with Robert, the mason. (See No. 4ob).
80. Nicolas Bonaventuaa of Paris.-Employed on cathedral at Milan 1388, followed by Jean Campomosia of Normandy, and by Jėn Mignot in 1399.
81. Giacomo Lanfrani of Italy. - Church of San Francerco at Imola; church of San Antonio di Ca-tello at Venice, and some tombs at Bologna.
82. Jean Rayy or Radt of Fianee.- Finished the church of Notre Dame at Paris.
83. Llans Hins, Hiliz, or Hüliz, of Cologne.-Conducted the works, after the death of the Steinbachs, at Strasburg Cathedral, to the four winding staircases up to the cupola. His son Hans completed the tower.
84. Jost Dotzinger of Worms.- Sueceeded Hiltz; he made the font, repaired the choir and the vaulting. Ite had sufficient influence to canse, 1452, the confederacy of the mason'' lodges in Germany, and is considered by many as thus commencing the motern Freemasonry.
8.5 Atronso Domingues of Litbon.-Said to be the first architect engaged on the monastery at Batalha in Portug..l.
85. David Hacket, or Aquete, or Ouguet, of Ireland.-Commenced the chapel of the founder at the Batalha, in Portugal.
86. Whaiam of Wyкeham, bishop of Winehester, in Fingland.-Supposed to have designed New Colleg", Oxford, and the College at Winchester, both founded by him ; retouilt or eased the nave of Wiachester Cathedral; and erected some portions of Windsor Castle.
87. Whelam de Wyaford, of Englath.-Master mason ; was employed by Wykeham on many of his buildings.
88. Alan de Walingham, sacrist and prior at Ely, in England. - The Lantern Tower and accessory portions, and the Lady Chapel, at Ely Cathedral.
89. Whalam Reade, bishop of Chichester, of England.-First library at Merton College, Osford; Amberley Castle, Sussex; an eminent mathematician.
90. Andrea mi Cione, ealled Oreagna, of Florence, and his brother Jacopo mi Cione.Additions to the Gran-ducal palace, and the Loggia de' Lansi, at Florence. His brother built the tower and gate of San Piero Gattolino at Florence.
91. Gainsborough, or Gaynisburg, of England.-Employedat Lincoln Cathedral, where his gravestone still exists.
9?q. IIenky Yevele or Zeneley, and Stfphen Lotf, of London.-Contracted for the stonework of the tomb of the first wife of Richard II.; and devised the form and model for raising the walis of Westminster 1lall, London.

15th. Century.

3. Filippo di Ser Brunefiesco dei Lapl of Florence.- Dome of the eathedral ef Sinta Maria del Fiore at Florence. A council of artists trom all parts was held in 1420 , to advise on this scheme. The Palazzo Pitti, begun and half built by him, completed by Luca Fareelli; great part of the chureh of San Spirito ; chap-ter-house and a chapel to the elm.reh of Ste. Croce; the chureh degl' Angeli, never completed; the fortress of Milan, and several works about that city ; a model for the fortress of Penaro; the old and new cit ulels at Pisa; some other works there, as well as at Trento, and in other parts of Italy; and the drainage of the country round hantua. He set the first example of a purer style in the arenitecture of Italy.
9.4. Michelozzo Michearzz of Morence.-Palazzo di Medici, now Riceardi, the tirst building in Florence on modern rules; Palazzo Cafaggiolo, at Mugello; Dominican monastery and church of S. Marco; Noviziata della Santa Croce; chapel in the ehureh dej Servi ; Villa Medicea di Careggi, now Otsi ; Palazzo Tornabnoni, now Corsi ; with several other buildings at Florence. Library at the monastery of the Black Benedictines at Venice; Palazzo at Fiesole; some buildings at Trento; a beautiful fountain at Asisi, the old citadel at Perngia; alterations to the palace at Milan presented by Francisco Sfurza to Cusmo di Medici ; and other grent works in various towns in Italy.
4. Juan Alonso or Aifonso of Spain.-Directed the construction of the castle of Mouraon in the Alemtejo ; and designed the sanetuary church of the monastery at Guadalupe in Spain.
5. Glumanodi Majano, near Fiesule.-Sicceeded Lapi at the Duomo at Florence; Palazzo del Poggio Rale at Naples, and many works in that city, besides foumains. An edifice in the first Cortile in the Vatiean at Rome; palace of Sin Mareo at Rome; and restored the church. liegan to enlarge the ehurch of Sta. Casa, at Lorcto, completed by his nephew Benedeto da Majano.

AFIERCHIRIVI.

97. Norton or Morton, of England (fellow and warden).-Restored St. Mary Redeliffe church, Bristol, after the fall of the spire in 1446.
98. John Dryeli, or Dayell or Druell, of England.-Surveyor at the erection of All Souls' College, Oxford, of which he was a fellow.
99. Rogeic Keyes, of England.-Fellow and warden of the college, succeeded to Dryell ; he had been master of the works of Eton college, Berkshire.
100. Whinam Horwon (freemason) of England.-Nave, aisles, and tower of the Collegiate chapel at Fotheringay, Northamptonshire.
101. Nicholas Cloos, or Close (afterwards bishop of Lichfield) of England.-Supposed to have designed King's College chapel, Cambridge; though, according to some, his father was the architect.
102. Christonoclos.-Mosque of Mahommed II. on the site of the church of the Apostles with eight schools and eight hospitals, all at Constautinople.
103. Baceio Pintelli of Florence. - Church and monastery of Santa Maria del Popolo; the celebrated Capella Sistina in the Vatican; the hospital of Santo Spirito in Sassia ; Ponte Sisto; the church of San Sisto; the church of St. Agostino ; the church of San Pietro in Vincola; palace for the Cardinal del Rovere in Borgo Vecchio, all at Rome. Repaired the church and munastery of San Francesco at Assisi. The palace for the Duke Federigo Feltre at Urbino is attributed to him. He first set the example of grandeur in the architecture of chapels.
t04. Bartolomeo Suardi, Il Bramantino, of Italy.--Many wurks at Milan, and other parts of Italy.
104. Guvannt del Pozzo, of Cueuca, in Spain.-Dominican monastery, and a great bridge over the Huexar, near Cuenca.
105. Andrea Ciccione of Naples.-Monattery and church of Monte Oliveto, now San Carlo Borromen; great portal of the church of San Lorenzo; church of Sta. Marta; Palazzo of Bartolomeo Riccio, now Ercolense; and several other convents and palaces, all in the city of Naples.
106. Abistotile Alberti or Rinolfo Fioravanit of Bologna.-Restored the tower of the church of S. Biagio, at Cento, to its perpendicular pusition; removed the Campanile of Santa Maria del Tempio, at Bologna, several feet; rebuilt a bridge over the Danube in Hungary; built the Church of the Assumption at Moscow, in w1 ch city he is supposed to have built the Kremiin, and other works.
107. William Onchyearde of England. - Master mason of Magdalen College, Oxford.
108. Frencesco mi Giongio of Siena.-The ducal palace at Urbino, attributed also to Alberti, Luciano, and Ponteli.
109. Tommaso Formentone of Brescia.-Palazzo Municipale or Della Loggia, at Brescia, one of the four chicf town-halls in Italy; continued by Sansorino and completed by A. Palladio.
110. Luciano di Martino or L. in Lauranna.-Palazzo for the Duke Federigo Feltre at Urbino, completed by Pontelli.
111. Leone Battist.a Albenti of Fhorence.-Church of San Francisco at Rimini; churches of San Sebastiano and of San Andrea, at Mantua. The priacipal raçade of Santa Maria Novella, at Florence, has been attributed to Alberti, but from the circumstance of its leing Gothic, it is more probally by Bettini ; the gate and Corinthinn logyie are, however, from the designs of Alberti. Palazzo Rucellai; and the choir and tribune of the church della Nunziata, both at Florence. At Rome he altered the papal palaee for Pope Nicholas V., and repaired the aqueducts of the Aqua Vergine, and decorated the fomtain of Trevi. Many buildings in Italy are attributed to him, but are by his pupils.
112. Jan Keldermans of Germany.-Completed the old Hotel le Ville at Louvain, now the council chamber.
113. Mathieu de Layens of Louvain.-Hotel de Ville at Louvain; choir of the church of Ste. Waltrude at Mons; Tabernacle, haptitry, and altar of the Virgin in the churclı of S. Leonard at Léau; completed the church of S. Sulpice at Diest, begun by S. van Vorst, and erected the tower.
115 Hans Bofbingel and Mathiaeus Bueblinger.-Commenced the Franenkirche at Esslingen, neur Stuttgart, continued by his son, who bult the Katherineukirche and the Spitalkirche. Employed on the cathedral at Frankfort-sur-Maine, and on that at Ulim.
114. Richard Beauchamp, bishop of Salisbury, in England.-Built the great hall, parlour, and chamber of the palace at Salisbury : appoimed master and supervinor of the works of St George's Chapel at Windsor Castle (where he was succeeded by Sur Regtnald Buay, who was comptroller of the royal works to INenry V'It); and bailt a ehantty chapel in Salisbury Cathodial.
115. John Kendale of England.-Supervisor of the king's works throughout the realm. 1 Edw. IV.
116. John Ashfield of England.- Master of the new works, 1473, at Bristol Cathedraı . Prior Joln Martyn succeeded him.
117. Donato Lazzarl, usually called Bramante d'Urbino, from the town near his birth. place. -The octagonal church of Sta. Maria Incoronata at Lodi; two churches and a palace at Casale ; church at Canobbio. At Milan, the church and sacristy of St. Satiro; chapel of the large lazaretto, and part of that building itself; the monastery of San Ambrogio and its cloisters, and the cupola of the church of Sta. Maria della Grazie. Designed and commenced the building of St. Peter's at Rome; many works in the Vatican, particularly the library and the Belvedere court, \&e., for Julius II.; the circular Doric chapel in the convent of San Pietro Montorio; the palaces of S. Giacomo Scossacavalli, afterwards Girand and Torlonia, del Duca de Sora, della Cancelleria (if not due to the brothers Giamberti Sangallo), dell' Nuovo dell' Imperiale; the churches of SS. Euloy de' Orfani, Lorenzo, and Damaso; cloisters of the monastery della Pace. \&c., at R mme ; the Strada Julia in that eity; ducal palace at Urbino; l'alazzo Publico at Breacia; church of Sta. Maria del Monte, near Forli ; cathedrals at Città di Catello, Fanza, and Foligno; fortress at Civita Vecchia, and other engineering works at Milan; marble exterior to the Santa Casa at Loreto; Villa Imperiale near I'esaro, churches of San Sepolcro and of Santa Maria della Campagna at Piacenza; church of the Madonna, outside Todi, in the f.rm of a Greek cross, in imitation of his design for St. Peter's; and many other works.
118. Vemrura Vironi of Pistoja.- Charch dell' Umiltà at Pistoja, after the design of Bramante, whose pupil he was.
119. Martino Lombardo of Venice.-Scuola or confraternità di San Marco at Venice, and perhaps the church of S. Zaccaria in same city, but the interior is considered earlier. Other palaces there are attributed to him.
120. Simone Pollafuolo, or Il Cronaca, of Florence.-Façade and additions in the cortile to the Palazzo Strozzi, begun by Majano; convent of the Padra Serviti ; sacristy of Santo Spirito; and the Council Hall, all at Florence; church of San Francisco, at S. Miniato, near Florence.
121. Novello fa San Lucano of Naples.-Palace of Prince Robert Sanseverino, duke of Salerno, now a church; and restored the church of San Domenico Maggiore, both at Naples.
122. Pietro Lombardo of Venice.-Tomb of Dante, the poet, and its chapel in the church of San Francisco; the two great columns in the piazza, at Ravenna; clock tower to the church of San Marco; Palazzo Lr redano-Vendramin-Calergi ; church of Sta. Maria de' Miracoli; works at the ducal palace; besides many others at Venice; a cloister in the monastery of Santa Giustina at Padua; the Cathedral at Cividal del Friuli.

16th. Century.

125. Joun Alcock (bishop of Ely) of England.-Comptroller of the royal works, temp. IIenry VII.; his chapel in Ely Cathedral ; supposed to have designed St. Mary's, or the University Cburch, Canbridge; Colleg iate Church of Saint Giles at Malvern.
126. Whlehm bolfon, prior of St. Bartholomew, Smithfield, in London.- Master of the works at the chapel of King Henry VII., at Westminster, and is supposed to have designed it.
127. Gabriello d'Agnolo of Naples.-Church of S. Giaseppe; ehurch of Santa Maria Egiziaca ; palaee of Ferdinando Orsini, duke of Gaavina, at Naples.
128. Glan Francesco Mormando of Mormanno.-Church of San Severino; Palazzo Filomarini ; Palazzo Cantalupo ; the small church della Stella, at his own expense; all at Naples.
129. Joun Cole of England.-Master mason of the spire at Louth churel, Lincolnshire.
130. John Mifmer and Willam Vertue of England. - Fruemasons, erected the vaulting of the choir of St. George's Cliapel, Windsor.
131. Gulano Glamberti, called San Gallo, of Florence.-Part of the eloister of the monastery of Santa Maddelena de' Pazzi at Florence; cluister for the Fratri Eremitani di S. Agostino; the Poggio lmperiale; fortress near the Porto a Prato, and other works, at Florence; a magnifieent palace at Poggio a Cajano for Lorenzo di Medsei, with a ball 163 feet by 68 feet by 65 feet high, having a ceiling the widest then known : repaired the cupola and roofed the church della Madoma at Loreto ; restored the roof and decorations of the ceiling of the church of Santa Maria Maggiore; restored the church dell' Anima; Palazzo Rovere, near S.m Pietro in Vincola, and o:her worhs at Rome; church of Madoma delle Carceliat

AFTER CHRJST.

Prato; Palazzo Rovere at Savona; an unfinished palace at Milan; fortress and Duric gate of San Marco at Lucca; works at lisa ; fortifications at Ostia.
132. Martin Chambiches or Chambiges of Cambrai, in France. - Employed to construct the portail of the cathedral at Troyes. Directed with Jcan Vast the erection of the transepts to the cathedral at Beauvais, and was succeeded by M. Lalve.
133. Pieare Ganyer of Paris. - Probably designed for Francis I. the Château de Boulogne or Madrid, near Paris, now destroyed.
134. Domento Boccadono, cailed Dominique de Cortone.-Remodelled the Hôtel de Ville at laris to an Italian de-ign.
13.\%. Tuilio Lombando of Venice.-Assisted his father Pietro in the Cappella Maggiore in the Cathedral at Treviso. At Venice, the palazzo Corner-Spinelli; the church of Sa. Maria de' Miraculi, and several other buildings and fine tombs. Cathedral at Belluno. The transept, if not the whole of the church of the Madonna dellia Grazie at Treviso, completed with the help of his kin men Giul'o and Sante.
136. Leonardo da Yinci, near Florence.-Aqueduct of the Adda and other engineering works at Milan; various machines, plans, and works on arclitecture.
137. Fra Glovanni Giocondo of Verona, ralled Joconde in France.-"Diviseur des batimens"; bridge of Notre Dame at Paris; fortifications at Trevioo; built the Foadaeo de' Tcdesehi, elcansing of the Lagunes, and made a design for the Ponte Rialto, all at Venice. After the death of Bramante, he was engaged with Raffaele and G. da San Gallo in erecting St. Peter's at Rome. Several works at Verona are attributed to him.
138. Hans Holbein of Basle.-Gateway at Whitehall ; ceiling of Chapel Royal at St. James's Palace; Wilton House, Wiltshire. Did 1543.
139. Rombaut Keldermans, of Malines. - Staircase to Hötel de Ville at Oudenaarden: works to the lower portion of Hôtel de Ville at Gand; house for Grand Conseil at Malines ; and chapel of the palace of the dukes of Brabant at Bruxelles.
140. Lunovico Beretta of Brescia (?).-Façade of the church of Santa Maria dei Miracoli at Brescia, in a florid cinquecento arabesque style.
141. Raffallo Sanzio of Uibino.- Continued the church of St. Peter at Rome, afier the death of Bramante, his master in architecture; engaged at the Patazzo Farnese, and sta'ling near thereto; repaired and altered the church of Santa Maria in Navictlla; Palazzo Caffarelli, now Stoppani; the gardens of the Vatican; the façade of the church of San Lorenzo, and of the Palazzo Uggoccioni, now Pa!dolfini, all at Florence.
142. John of Pauda in Italy.-Deviser of buildings to Kings IIenry VIII and Edward VI. of England. supposed to have designed Somerset House; and Sion House, Middlesex. Also attributed to J. Thorpe (175), and J. Shute (200).
143. Hfetor Asheley of England.-Master mason and supervisor in the erection of Hunsdon House, Hertiordshire.
144. Roger Amice of England.-Surveyor to King Edward VI.; Almes Knight's lodgings at Windsor Castle.
145. Andrea Contucer of Monte Sansavino, in Italy.-The cappella del Sagramento in the church of Santo Spirito at Flurence ; palazzo della Canonica, and fortifications at Loreto ; church della Nunziata at Arezzo ; chapel for the monks of St. Agostino, and his own house at Sansavino; buildings at Venice; and a palace at Evora, with some other buildings in Portugal.
146. Bartolommeo Buono of Bergamo, in ltaly.- Three chapels in the church of S. Rocco ; bell chamber, attic and spire to the Campanile of San Marco; and superirtended the works at the Procurazie Vecchie, all at Venice.
147. Guglelmo di Bergamo, called 11 Bergamasco, of Itad.--Cappella Emiliana, near the Camaldolee in the island of Murano; palazzo di Calmerlenghi, near the ponte Rialto at Venice; palace at Portagruaro, at Friuli ; porta di Santo Tom inaso at Treviso ; porta del Portello at Padua.
148. Giovanni mi Ololzago of Biscay, in Spain -Cathedral of Iluesea, in Arragon.
149. Pedro de Gumiel of Alcala, in Spain.-Monastery of Sta. Engraçia at Saragossa; college of S. Ildefonso at Alcala de Henares ; and church of SS. Justo y Pastor.
150. Juan Campero of Spain.-Chureh and convent of S. Francis at Torrelaguna, in Spain; commenced the cathedral at Salamanca, under Gil de Hontanon; and the aqueduct. Removed a cloister at Segovia to the site of the new cathedial; and heightened the tower of the moncstery of St. Maria del Parral, in that city.
151. Antonio Giamberti (da San Gallo) of Florence.-Churches of the Madonna at Montefiascone; the Canonicà, with a double loggia; fortifications at Civita Vecchia, Civita Castellana, Montefiascone, Perugia, and many other strong places in

Ataly. Altered the tomb of Iladrian at Rome to its present fom as the caste of S. Angelo, and its fortifications
152. Antonio Picconi (da San Galio) of Mugello, near Florence. - Completed the church of Sta. Maria di Loreto, near Trajan's column at Rome; the cupola is by G. del Duca. Palazzetto of the Counts of l'arma. near the gate of Venice, and other palaces in Rome and repared some rooms in the Vatican. Palazzo at Gradoli, and restored the fortress of Capo di Monte near thereto. Mide a design fur the fortress at Caprarola. Palaces for Bart. Ferratino, and Cardinal di Santa Prassedia; chureh for Cardinal Alborense ; contimued the erection of St. Peter's on a new plan, after the death of his uncle Ginliano da San Gallo; church of the Florentines, and of Santa Maria di Monferrato, all at Rome. Fortifications at Civita Verchia, Parma, Arcona, Placenza, Perugia, and Florence. Church of the Madonna at Loreto, nearly rebuilt. At Castro he built the fortress, Palazzo l'Osteria, and the Mint. At Rome, triumphal arch of wood at the palace of S. Marco for the entry of Charles V. ; the bastions to the walls and the gate of Sinto Spirito; the Capella l'aolina; the stairease at the Sistine Chapel, and the lalazzo Farnese near the Campo di Fiore, are among his numerous works.
153. Baldassare Peruzzi of Volterra.-llan and model of the cathe.iral at Carpi; designs for the façade of San Petronio, and for the gate of San Michele in Bosco at Bologna; fortifications at Siena. At Rome, the little palace for Agostino Chigi, now called the Farnesina, in the Limgara; palazzo Massimi, near the church of San Pantaleo ; villa di Papa Giulio III. ; cortile of the palazzo d'Altemps; casino at the palazzo Chigi; tomb of Pope LIadrian IV. in the church dell' Anima; palazzo Spinosa, now the hospital degli Eretici convertiti; and assisted in the erection of St. P'eter's.
154. Marco dı Pıno of Siena.-Modernised the church della Trinità di Palazzo, and built the church and convent of Gesì Vecchio at Naples.
155. Pietro lierretini, or Pietro da Coktona.-lorico of the charch of Sta. Maria della lace at Rome ; made a design for the façade of the Louvre ; palazzo Sacchetti at Ostia; several chapels; the façade of the church of Sta. Maria in Via Lata, and the church of SS. Maria Martina and Luca Evangelista, his masterpieces; and the cupola and other parts of the church of San Ambrogio and Carlo in the Corso.
156. Andiea bhiosco, or Riccio, of Padna. - Church of Sta. Giustima, and loggia and council house in the Piazza degli Signori, at Padua.
1.57. Ghovanni Merifano of Nola, in Italy.-At Naples, Strada di Toledo; churehes of S. Giorgio de' Genovesi and of S. Giaccmo degli Spagnnoli; palazzo of the Principe di Sansevero, and palazoo of the Duca della Torre ; the Castel Capmano, altered to a court of law; a fountain at the extremity of the Mole; and triumphal arches at Naples for the entrance of Cbarles V.
158. Ferminando Manho of Naples.-Third cortile to the palazzo Reale; church and hospital della Nunziata ; Strada di Porta Nolana, and di Capua, with other streets and palaces at Naples; a bridge at Capua.
159. Juan Gli. de Hontanon of Rasines, in Spain.-" Maestro principal" at the eathedral of Salamanca, erected from the designs of A. Rodriguez and A. de Egas.
ifo. Rodrigo Gil ne Hontanon of Spain.--Contimued the cathedrals of Sulamanea and of Segovia; works at Seville; church at Valladolid; rebuilt the dome of the cathedral at Seville; and commenced the cathedral at Segovia.
161. Baccio dAgnolo of Florence.-Several triumphal arches for the visit of Pope Leo X., and of Charles V., at Florence. Campanile of San Miniato in Monte was executed, and that of Santo Spirito commencel, by him; designed the entablature and gallery round the hottom of the cupola or Sta. Maria del liore, the great altar and choir of which was built by his son Guuniavo; ralazzo for Giovami Bartolini on the Piazza della Santa Trinità, and the palaces, all at Florence.
162. Giovanni Makia Falconetto of Verona.-Lomeria of two storeys at the palazzo Cornaro; and a musie hall ; commeneed the ehurels of Sta. Maria delle Grazie; Doric portal to the palazzo del Capitanio; gates of S. Giovami, and of Savenarola, all at Padua ; palazzo Savorgnano at Usopo in Friuli.
163. P'ietro de Una of Spain.-Bridge of Almaraz, over the Tagus, having two arches, one about 150 feet, and the other 119 feet
164. Alonzo de Covakrubias de Leiva of Spain.-Worked for, or was consulted upon the cathedrals at Toledo, Salamanca, Plasencia, Segovia, and Seville. Archiepiscopal palace at Alcala de Henares. With Luis de Vega remilt and enlargod the palaces at Madrid and Toledo for Charles V With Vidana be denigned the celebrated

AFIER CHRIST.

Hieronymite church and monastery of S. Miguel de los Reyes at Valencia, and commencen the eloister of it; and other works.
.65. Diego Siloe of Toledo.-Cathedral and Alcazar at Granada; church and convent of S. Jerome in the same city.
166. Girolano Genga of Urbino.-Repaired the ducal palace at Urbino ; built another on the Monte Imperiale, near Pesaro; church of San Giovanni Battista at Pesaro; façade of the cathedral, and restored the bishop's palace at Mantua; convent de' Zoccolanti at Monte Baroccio; and the çburch of St. Maria delle Grazie, and the episcopal palace, at Sinigaglia. Iis son Bartolomeo assisted him, and also practised at Pesaro, Urbino, and other places.
167. Michele San Micheir of Verona.-Cathedral at Montefiascone; chureh of S. Domenico at Orvieto ; fortresses in the Venetian territury, in Corfu, Lombardy, and the ecclesiastical states, as at Legnani, Orzi Nuovo, and Castello; palazzo di Canossa, dell'Gran Guardia on the Bra; l'ellegrini de' Verzi ; the preficturate and façade of the palazzo Bevilacqua; chapel Guareschi in the church of S. Bernardino; design for the campanile of the Duomo ; churches of Santa Maria in Organo de' Monaci, di Monte Oliveto, di S. Giorgio, and della Madonna della Campagna; gates Nuova, del Pallio, di S. Zenone, del palazzo Pretorio, and slel palazzo Prefettizio, all at Verona; as well as fortifications of the same city, where triangular hastions were first introduced, that of della Madellena being erected in $15 \div 7$.
:68. Phaibert ne LiOnae of France. - Commenced the Tuileries; built the c!âteaux of St. Maur, Anct, Meudon, and many others. Wrote on architecture.
169. Gateazzo Alessi of Perugia in ltaly.-Directed the works at the monastery of S. Pietro; entrance gateway of the fortress and the governor's residence; chapel del Sacramento in the cathedral, and the front of the church of Sta. Maria del Popolo, and several palazzi, all at Perugia. Works at the arsenal and the haven and mole at Genoa, where he executed the public granaries; loggia dei Banchi with a large hall; Palazzo Reale; cupola, choir, and other works of the duomo of S. Lorenzo; the church of Sta. Maria di Carignano; the Stradi nuova and nuovissima, with most of the palazzi in them, and uther palaces in the Borgo di S. Pier d'Arena. At Bologna, at Milan, and other cities, he designed many palaces and churches; later he made a design for the church del Gesù at Rome, and for the Escuial in Spain.
170. Sante Lombardo of Venice.-Assisted his father Giulio in the Scuola di S. Rocea; palazzi Trevisani and Gradenigo; the church of S. Georgio de' Greci with Chiona; all at Venice.
171. Michel Agnolo Buonarroti Simone of Florence. - Chapel and cupola of the new saciisty to the church of San Lorenzo ; part of the façade of the church; library of the Medici, generally called the Iaurentian Library; all at Florence. Church of San Giovanni, which he did not finish; Fortifications at Florence, and at Monte San Niaiato. Monument of Julius II. in the church of San Pietro in Vincolà; the Campidoglio, with the palazzo de' Conservatorj, the building in the centre, and the flight of steps; the celebrated cornice and other portions to the palazzo Farnese; and several gates, particularly the l'orta del Popolo and the Porta Pia, all at Rome. I'lans for many other palaces, churchis, and chapels. He was employed on St. l'eter's, after the death of Ant. Picconi da San Gallo, making many alterations in the design, and giving the model for the great dome, which was followed out, except as to the lantern.
172 Glacono Barozzı, of Vignola in Italy.--Various buildings at Bologna; Farnese palace; church of S. Agostino; palazzo di S. Giorgio dei Scotti, all at Piaceliza. Received the charge of the Acqua Vergine at Rome, and the works at the Vigna of Pope Julius IIJ. (or his villa), and other huildings for him and his fanity. Constructed the celebrated palace at Caprarola, near Viterbo, for Cardinal Alessandro Farnese. Became architect to S. l'eter's after the death of Bnonarroti, when he designed the lateral cupolas; and many other works in that city, inchisding the church del Gesù up to the cornice. 'The large clurch ot' Sta. Maria degli Angeli at Assisi. Consulted on the designs for the Escurial in Spain, and made one which was highly approved.
173. Giulio Pippi of Rome, called Giulio Romano. - Villa Madama; Palazzo Larite at San lietro ; church della Madonna del Orto; Palazzo Ciccia porei alla Strada di Banchi ; Palazzo Cenci sulla Piazza S Eustachio, and other buildings in Rome. The celebrated Palazzo del Té at Mantua; palace at Marmiruolo near that city; modernised the ducal palaces, the Duomo, and many other buildings in Mantua; façade of San Petronio at Bolugna; and works at Vicenza.
174. Euetace Mascall or Marshatl or Malcola of England. -Clerk of the works at
the building of Christehurch Colleqe, Oxford ; and chief eletk of accounts for all the buildings of Henry VIII. within twenty miles of London.
17.5. John Thonpe of England.-A long list of his supposed works will be found in Book I., England.
176. Henhicx of Flanders.-Foreman at the first Royal Exchange, London, erected for Sir T. Gresham, who "bargained for the whole mould and substance of his workmanship in Flanders."
17.. Damian Forment or Monhanes, of Valencia, in Spain.-Façade of the church of Sta. Engraçic, at Saragossa.
178. Martin de Gariza of Navarre, in Spain.-Carried out works at the Cathedral at Seville, and made the design for the capilla real attached to it, and finished by F. Ruiz.
179. Alonso Berruguete, of Paredes de Nava, in Spain.-1Ias given his name to that phase of the Renaissance style, which was the fashion of the sixteenth century in Spain, also called the Plateresque style; but it is unknown what works he designed other than shrines, altar-pieces, and tomb:.
180. Juan Sanchez of Spain. - "Maestro mayor" of the works of the city of Seville, is supposed to have designed the Casa del Ayuntamiento in it.
181. Pedro mi Valmevira of Spain.-Chapel of S. Salvador, at Ubeda; palace in the same place; hospital and chapel of S. Jaŋo at lBaza.
182. Penro Ezguerra of Ojebar, in Spain. - Works at the cathedral at Plasencia; church of S. Nateo at Caceres; that at Robledillo; and commencell that at Malpartida.
183. Ferdinando Ruiz of Cordova, in Spain.-Coatinued the capilla real, and heightened the Torre della Giralda of the cathedral, at Seviile.
184. Pedro Machuca of Spain.-Royal Palace of tie Alhambra at Granada, Sueceeded by lis son Luis.
18.5. Antonio Fiorentino of Dillo Cava near Florence. - Chureh of Santa Catterima a Formello at Naples.
186. Jacopo Tatti, called Sansovino, of Florence-Commenced the chuich of S. Marcello, and built that of S. Giovanni de' Fiorentini ; Loggia on the Via Flaminia, close to the Porto del Popolo; Palazzo Gaddi, now del Nicolini, at Rome. Church of San Francesco della Vigna, finished by Palladio ; continued the Scuola begun by M. Lombardo; the Zeeca or mint; Palazzo Cornari on the Grand Canal; and other public buildings; besides repairing many dumes of the churehes of San Fantino, of San Martino, of the Incurables, and of San Geminiano; all at Venice.
187. Theodore Maveus or Meave, of Cleves. - Caius Court of Caius College, Cambridge. with its gateways.
158. Domingo Teotocopula of Greece.-College of the Doma Maria d'Arragona at Madrid ; church and convent of Dominican muns; also of the Ayuntamiento at Toledo ; church and convent of the Bernardine nuns at Silos.
189. El Padie Bartolomé Bustamente of Spaih.-Gave the plans for the Jesuits' college at Cadiz, Caravaca, Segura, Trigueros, and Murcia; and hospital of San Juan Bautista, near Toledo.
190. Juan Bautista de Toleno in Spain.-Designed the Escurial completed hy Juan de IIerrera; assisted in planning the Strada di Toledo at Naples; chureh of San Giacomo degli Spagnuoli in the same city; and palace at Posilippo.
191. Jusn de Heraera, of Mobellan, in Spain.-Continued the Escurial after the death of his master, Juan Bautista; bridge of Segovia at Madrid; palace at Aranjuez; south f.ıçade of the palace at Toledo; cathedral at Valladolid; exchange at Seville. He was consulted on designs for many works in Spain and Portugal.
199. Pierae Lescot of Paris.-Fontaine des Innocents in the Rue St. Denis, at Paris: carved by Jean Gougeon. His design for the court of the old Louvre was pref rred by S. Serlio to one of his own. He executed the part showing a Corinthian order with a Composite one over it.
193. Sebastiano Serido of Bologna,--Employed ly Francis I. of France at Fontainebleau and at the Louvre. Was the first to publish the Ancient Edifices of Italy and wrote a treative on architecture
194. Jean Cambiche of Paris. - The salle du Centaure, and the lower storey of the petite galerie at the Louvre. Master of the Masons at the hôtel de ville at Paris.
195 Bartorommeo Ammanato, of Florence, in Italy.-Palazzi Rucellai and Mattci at Rome ; ponte della 'I'rinità ; continued the Palazzo Pıti; church of San Giovanni, at his own expense: all at Florence; and many works at Pisa, Lucca, and other: cities.
196 Nicolo Abate or Nicolo da Modena. - Old claìteau of Meudon ; tomb of Francis I., at S. Denis, both usually attributed to de l'Orme ; and decorated the apartments of the palace of Fontainebleau.

AFTER CHRIST

197. Andrea Palladio, of Vicenza, in Italy.-Areades to the Sala della Ragione; erected the Olympic 'Theatre after the ancient type, and many other edifices; with the Palazzi Tiene, Chiericati, and Valmarana, all at Vicenza; Villa Capri near that city, and numerous other buildings in neighbouring towns. The church II Redentore and other works at Venice. Published a treatise on architecture, and a book on the ancient ruins.
198. Bernardo Timante Buontalenti of Florence.-Villa of Marignolla, now Capponi; the easino behind San Mareo; the corridor half a mile long extending to the palazzo Pitti; palazzo for the Acciajuoli, now the Corsini ; a façade to the Strozzi palace, and to the palazzo Ricardi; the façade of the church della Santissima 'Trinità, all at Florence; the loggia de' Banchi. ducal palare, and façade of the ehureh of San Spirito at Pisa; the palazzo at Siena; and works in other p:rts of Italy.
199. Domenico Fontana, of Como, in Italy. - Raised, transported, and fixed, the four great obelishs in Rome, with many improvements there; the Dorie arcale and loggia to the front of the chureh of S. Giovanni Laterano; a palazzo on one side of it for the use of the Popes; enlarged the papal palace; b:ilt the palazzo Mattei, now Albani; the library at the Vatican and other works there; and restored the columns of Antonine and Trajan. The Royal palace and other works at Naples.
200. John Shute of England. - A painter and architect, temp. Queen Elizabeth. Wrote the first work on architectare in England.
201. Henry IIawthorne, of England.-Sarveyor of the works to Queen Elizabeth; designed the gallery now part of the library at Windsor Castle, "a fine speesmen of Anglo-Italian architecture."
202. Sir Thomas Treshayr of England.-Liveden House, Northamptonshire; Rushton Lodge and the triangular lodge, in the sarre county. Also given to J. Thorpe (175).
203 . Robert and H. Smithson of England. - Wollaton, Nottinghamshire.
203. Louis de Foix of France. - New mortlı to the river Adour; Tour de Cordouan, the lighthouse at the mouth of the Gironde, near Bordeaux,
204. Jean Baptiste Androuet nu Cerceau of Orleans, in France.- Yont Neuf at Paris; hôtels de Sully, de Mayenne, and des liermes or hotel Sequier Mademore drawings for monastic huildings, churches, \&e., than any architect in France during half a century. Rebuilt church of Notre Dame at Clery ; and S. Etienne du Mont at Paris.
205. Jacques Androuet nu Cerceau of France.-Finished the works at the Louvre next the river for King IEnry IV. There were four architects of the name of $d u$ Cerceau, and their works are not well separated. Wrote on arebitecture.
206. Vincenzo Scamozzi of Vicenza.-Additions to the library of S. Mark at Venice; finished the Olympie theatre by Palladio at Vicenza; theatre at Sabionetta; and other buildings. Wrote on architecture.
207. Jacques de Brosse of Paris.-Palais du Luxemburg at Paris and other works; château de Monceaux, near Meaux château of Colomier, near Paris; façade of the church of SS. Geronis and I'rotais; and the great hall of the Palais de Justice, both at l'aris.
208. Caklo Manerno, of Bissone, Largo di Como.-Altered Michael Angelo's design fir S. Peter's at Rome, from a Greek to a Latin cross; began the palace of Lrtian VIII., and many churches and palaces.

17th. Century.

210. Jomn Warren of Eugland -'Tower of St. Mary's Church, Cambridge, designed by John Alcock.
211. Inigo Joxes of London.-Banqueting House, Whitehall, being part of his design for a noble Palace; Chapel, Lincoln's Inn ; Surgeons' Hall ; arcade to Covent Garden and the Church; the grand portico to old S. Paul's Cathedral; and many other important works.
212. Glambattista Aleotti of Ferrara.--Fortress at Ferrara; many theatres and other public buildings at Mantau, Modena, and Venice; and the great theatre at Parma.
213. Pierre le Muft of France.-Grand hôtel de Luynes; hòtel Laigle and Beauvilliers; finished the Chureh of the Val de Grâce; all at l'aris.
214. Thibaut Metezau of Dreux, in France.-Commenced the Porte S. Antoine at Paris; and the salle des Antiques at the Louvre. Louis Metezan, the sor, is supposed to have directed the construction of the first half of the great gallery of the Louvre, as far as the third wieket.
215. Francesco Borrominı of Bissamo, in Italy. - Worked at the Palazzo Barberini;
church and monastery of S. Carlo alle quattro Fontane; completed the collegio della Sapienza, with its church; additions to the oratorio di S. Felipe Novi in Vallicella, and to the church of Sta. Agnese in the piazza Navona; several other churches and chapels; restored the interior of the baptistry of Constantine; and many other works; all at Rome.
216. Alessandro Algardi of Bulogna, in Italy.-Villa Pamaili, called Belrespiro; façade of Church of S. Ignazio, at Rome.
217. Giovanni Lorenzo Bernini of Naples.-The piazza, colonnade, and stairease, and other works at S. Peter's, with its Baldachiro ; grand fountan in the Piazza Nalvona, and others; the great palazzo di Monte Citorio ; several large chapels; all at Rome. Cathedral at Terni ; porta Nuova at Ravenna; villa Rospi_liosi at l'intoja. Visited France and made a design for the completion of the Lourre. The front, if not all the oval ehurch of S. Andrea al Novizi to dei PP. Gesuiti on the Quirinal, considered by Bernini himself as his masterpiece.
218. Bernaid Jansen of Eugland.-Built Audley End, Essex; the greater part of Northampton, afterwards Northumberland, House, London; also Charlton House, Wiltshire, and Lulworth Castle, Dorsetshire; all for 'Jhomas Howarll, earl of Suffolk.
219. Augustin Bernardino of Spain.-Collegiate Chereh of San Nicolas at Alicante in Spain: he was succeeded by Martin de Meta; it is consider.d a fine work in design and detail.
220. Prroo or Pyrrioo Ligorio of Naples.-Additional buildings at the Vatican; the easino in the wood of the Belvedere, now villa lia; palazzo Lanceoletti, at Rome. Additions to the villa d'Este at Tivoli; published Antichitio di Romm.
221. Giovanni ma Ponte of Venice.-Restored the public edifices of the Rialto, \&e.; rebuilt the college at the ducal palace; great Council Hall; storetouse of the arsenal ; bridge of the Rialto; the prisons adjoining the Doge's pa'ace, and the Bridge of Sighs; all at Venice.
222. Françols Mansart of Paris.-Portail of the Church of the Feuillans, rue St. IIonoré, now destroyed, at Paris. West front in the entrance court of the Château at Blois; church and nunnery of the Val-de-Grâce, continued from nine feet by Le Mercier ; château des Maisons sur Seine for the President René de Longueil; gallery for antiquities, and stabling for Cardinal de Mazarin; many châteaux, including that of D: Fresne, near Meaux; the portail of the church of the Minims in the Place Royal at l'aris; with many other works.
223. Claude Perbautt of l'aris.-Façade of the Louvre; the Observatory; trimmhal arch now destroyed; chapel of Nôtre Dame in the church of the P'etits P'ères, all at Paris. Chapel at Sceaux. Translated Vitruvius.
224. Frangois Blondel of Ribemont, in lirance.-Part of bridge over the Cherente at Saintes; Gate of St. Denis at Paris; repaired and decorated the gate of St. Antoine, and rebuilt that of St. Bernard. Published a Cours d'Arebitecture.
225. Astoine le Pautre of France. Wings of the châtean at St. Cloud. Church of the nunnery of 1'ort Royal ; and Hôtels de Gevres and de Beauvais, all at Paris. F'ublished his designs and fine plates for decorations.
226. Jacques le Mercier of Pointoise, in France.-Pulled down the Kuep of the old Louvre and enlarged the court, with other works. The centre of the present west façade of the Tuileries. The palace, and the Sorbonne, for Cardinal Richelieu, and his château in Poitou ; completed the church of the Pères de l'Oratoire, rue S . Honoré, begun by C. Metezau; continued the church of the abbaye de Val of Grace, began by F. Mansart ; church of S. Roch, completed by R. de Cotte; all at Paris; many other works there and elsewhere.
227. Thomas Holt of York, in England.-Bodleian Library; Wadham College; the large quadrangle of the Pu!lic Schools; garden quadrangle of Merton College; and other works ; all at Oxford.
228. - Marsh, or Marcir, of Lincolnshire, in England.---Additional buildings at Bols. over eastle, in Nottinghamshire, sometimes attributed to J. Smithson; and both names are given to Nottingham Castle.
229. Sir Christopher Wren, of East Knoyle, in England. -After the Fire of London 1666, he presented a plan for rebuilding the City. The Cathedral of St. Paul began and completed by him 1675-1710. The churches of St. Andrew, Holborn; St. Bride, Fleet-street; Christ Church, Newgate-street; St. Dunstan's in the East; St. James, Westminster ; St. Lawrence, Jewry ; St. Mary Aldermary, Bow-lane ; St. Michael, Cornhill ; and St. Stephen, Walliook; all masterly works, annong a large number of other churches. College of Physieianc, Warwick-lane; Lecture Theatre at Oxford; Chelsea College; Marlborough House; part of Hampton

Court Palace; the colomades and other portions of Greenwich Hospital ; lubrars of Trinity College, Cambridge : the Monument of London; repairs at Wes.minster Abbey; and many other buildings.
230. Robert Ноoкe of England.--Old Bethlehem Huspital in Moorfields; Aske's Almshouses at Hoxton; Duke of Montague's house in Bloomsbury, but Leing burnt was rebuilt by P. Рuget. He gave a plan fur rebuilding the City of Londonafier the Fire of 1666 , and was appointed one of the surveyors for laying out the land. 931. Henry Aldrich of Wetminster, in England.-Three sides of the quadrangle of Christ's Church, called Peckwater-square; chapel of Trinity College; a:ad Church of All Saints, all at Osford. Published Elementa Architectura Civilis.
2:32. Jules Hardouin Mansart of Marly, in France.-D:me of the Môtel des Invalides; Galerie du Palais Royal; the llace Lonis le Grand, and that des Victoires; Royal Château de Clagny; additions to the Royal Château at Versailles; château de Marly ; stairease and other works at S. Cloud; Maison Royale de S. Cyr; new château at Meudon ; decoration of the choir of Notre Dame at Paris; alterations at Chambord; and many other works.
232a. Cahiu Fontana of Bruciato, near Como--Completed with Bernini the churcher built by C. Rainaldi in the Piazza del Pupolo at Rome; several chapels; aqueduct and supply of water to the Vatican, \&e., with some of the fountains; Palazzi Grimani and Bigazzini, now Torlonia; all at Rome. Completion of the cathedral at Bergamo ; designs for college and church of the Jesuits near Azpeitia in Spain. Baptistry chapel at S. Peter's at Rome; entrance, campanile, and cortile to the palazzo della Camera Apostolica; and many other works, in which he was assisted ly his son, two nephews, and several pupils. He published several works.
巳is3. Juan Bautista Monegno of Spain-Archiepiscopal palace at Alcald finished by J. Gomez de Mora.
234. Ciement Metezau of Dreux, in France.- Made des'gns for the Luxemhourg; commenced the church of the Pères de l'Oratuire; hôtel de Chevreuse; the famous dyke at La llochelle; Châtcau Neuf at S. Germain en Laye, and some others. South transept of chureln at Dreux.
235. John Abel of England.-Market houses of Brecon, Hereford, Weobly with its schoolhouse, Kington, and Leominster; the timber work of the church at Abbeydore, Herefordshire ; appointed "carpenter" to King Charles I.
226. Nicodemus Valentinson Tessin of Stralsund.-Crown architect of Sweden. Palace at Drottningsholm, completed by his son; the Royal villa of Stromsholm; and the mausoleum of Charles Gustavus.

18th. Century.

293. Niconemus Tessin (Count) of Nykoping.-Royal palace at Stockholm after the fire of 1697 ; laid out the grounds at Drottningsholm and at Ulriksdal; cathedral at Calmar; design fur rebuilding palace at Copenharen, curtailed after his death, 1728.
294. Juhann Berniarn Fischers of Prague, called von Ertach, and his son Joserh Emanufl Fischers, baron von Erlach.-Designed the hunting-sedt at Schönbrunn, and additions at the palace; winter palace now the mint; and palace in the S. Ulrich Vorstadt, at Vienna. The palace in the old town at Prague; church of the Virgin at Salzburg ; church of S. Carolus Borromocus at Vienna; and many other buildings. His son assisted him in most of them, besides the Hor Bibliothek at Vienna; the Reichs Kanzlei in the Burg platz; the Reit Schule; and the front of the stables for 400 horses.
295. Filippo lvara, or Juvara, of Messina.- Royal palace in the environs of Messina; church of the Carmelites in the l'iazza di San Carlo; church of the Virgin on the Monte di Superga; church of the Virgine del Carmine ; and an interior staircase at the palace ; all at Turin. Design for the monastery and palace at Mafra in Portugal ; finished cupola of Sant' Andrea at Mantua; palazzo Birago di Borghe at. Turin, and a number of other works.
296. Sir John Vanbregh of England.- Blenheim in Oxfordshire; Castle Howard, Yorkshire ; Eastbury, Dorset; King's Weston, near Bristol ; Clarendon Printing Office at Oxford; the Opera House of the time; part of Greenwich Hospital, and a few other buildings.
297. Colan Campbelid of Scotland.-The front great gate and street wall of Burlington House. l'iecadilly; Rolls House, Clancery lane, London; Hongliton Hall, Aorfolk, finished by 'T. Ripley; Goodwood, near Chichester; and part of Greenwich Hospital; Wanstead Ifouse, Essex; Mereworth Castle, near Maidsten:. Compiler of the V'itrurius Britunnicus, 3 vols.
298. Robert de Cotte of Paris,-Continued Man-ait's works at the dome of the Invalides; the chapel at Versailles, and the house at Trianon. Decorations at Notre Dame; new buildings at St. Denis; many hotels. Designs for foreign princes.
299. Nicholas Hawrsmore of East Drayton, in England. -Assisted his master, Sir C. Wren, in mary of his works. The churches of St. George, Bloomsbury; St. Ame, Limehouse; St. George-in-the-East; St. Mary Woolnoth; and Chrint Chureh, Spitalfields ; part of Greenwich Huspitat, \&e. Assisted Sir J. Vanbrugh at Castle Howard, and at Blenheim.
300. Jean Baptiste Aiemandre ie Blond of France.-L'Hôtel de Clemont or de Sessac, at Paris. Emptoyed in Russia by l'eter the Great, on his residence, at l'eterkof and at Strehlna. Part of the archbishop's palace at Auch, Edited the second and improved edition of D'Aviler's "Cours ;" and published works on arehitecture.
301. Alessandao Galieer of Italy.-Façade of the chureh of S. Gioranui de' Fiorentim. and of that of S. Giovanni Laterano, with the splendid capella Corsini therein; at. Rome.
2i6. Jacques Gabriel of Paris.-Buildings at Bordeaux, Rennes, Paris, \&e. Completed the Pont Royal at Paris, under F. Romans; Episcopal palace at Blois; designs for the new street façades at Rennes, and the places Louis X1V. and XV.; bridge over the Loire at Blois, and many other bridges. The place at Nantes; town hall, chapel, and Hall of States at Dijon; portails of the cathedral at La Rochelle, and at Orleans; and commenced the great sewer at Paris, finished by his son.
302. John James of Greenwich, in England.-St. George's Church, Hanover-square; mansion fur Sir Gregory Page, Bart., at Blackheath ; employed at Greenwich Hospital, St. Paul's Cathedral, and Westminster Abbey.
303. Gıacono Leoni of Venice.-Dover House, Old Burlington-street; Bramham-park, near Leeds; Moor-park, near Rickmansworth; Lathom House, Laneashire; Lyme Hall, i ear Manchester; Bold Hall, near Warrington; and ohber country seats in England. Published a translation of Palladio's Arelitecture.
304. Germain de Boffranid of Nantes, in France. - Nuch employed in Paris and Germany ; rebuilt the Palais du Petit Bourbon; built three houses for himself, which he sold to noblemen; restored the Arsenal, and the Grand Chambre of the Palais de Justice; restored vaulting of the transept, and other works at Notre Dame; many buildings in the provinces, in Germany ; and in Lorraine. as the hôtel de Craon at Nancy, the château at Luneville, and the château called the l'a'ais de la Malgrange, near Nancy, one of his hest works; several bridges; the chapel and main buildings of the IIôpital des Enfans Trouvés; new buildings for the hospita's de Bicêtre, of the Salpêtrière, and at Cipion; and the châtean de Bossette, near Melun. He pullished a Licre d'Architecture.
305. Michel D'Ixnard of Nismes.-Reconstructed the première abbey of St. Blaise of the Benedictine order, in the Black Forest; Hôtel Sekingen at Freibourg, in Brengau; Palace of Clemenshurg at Trêves; Hôtel de Miroir at Strashurg.
306. James Gibbs of Aberdeen, in Scotland.-Barholomew Hospital, Smilhfield; Radcliffe Library at Oxford; St. Mary's, or the New Church in the Strand; that of St. Martin's-in-the-Fields; the Fellows' Building', Library, and Senate House of King's College at Cambridge; Canons, Middlesex, for Duke of Chandos; circular colonnade at Burlington House, Piccadilly: and a number of other edifices. Published his "Designs, \&c."
307. Willam Adam of Maryburgh, in Scotland - Designed upwards of thirty residences; town house at Dundee; thee hospitals at Edinburgh; library and university at Glasgow; chureh at Hamilton; Hoptone House; Castle Kemmure, and Fleurs Castle, all in Scotland. He was assistad by his son John, who completed Fort George, and designed Duınfies House, Douglas Cattle, \&c. Robett, James, and William were other sons, and architects of repute. l'ublished Vitruvius Scoticus.
308. Wilenam Kent of Rotherbam, in England.-Additions at Kensington Palace; laid out Hyde-park; royal residence at Kew; modernised Rainham House, Norfolk ; several lauses in London; Library in the Green-park for Queen Caroline; Devonshire House, Piccadilly; range of buildings in Margaret-street, Westminster, now the Law Courts; and the Horse Guards, St. James's-pa:k. He published fuigo Jones's designs.
2.54. Thomas Rifiey of England.-Houghton Hall, Norfolk; Aduiralty. Whitehall.
25.5 Charies Labelye of Vevay, in Switzerland. - Westminster Bridge, London; pulled down 1861.
309. Ffrdinanio Gali, Bibiena of Bologna, - Celehrated for theatrical decorations and painted architecture. Theatre of P'arma. Published L'Architecture Civile, \&c.,

AFTER CHRIST.

1711. Great hall or theatre at Prague for Charles VI, His three sons, Giuseppe, Alessandro, and Autonio, practised as arehitects.
1712. Giuseppe Gali. Bibiena of Parma.-An amphitheatre at Prague for 8,000 persons. Some large buildings in Silesia; works at Dresden and Berlin.
1713. Alessandro Gabli Bibiena of Parma.--Great theatre, and the church of the Jesuits at Mannhein.
1714. Antonio Galli Bibiena of Parma.-Theatrieal decorations; warious works in Italy, Vienna, and in Hungary. Published "Varie Opere." Theatres at Pistoja, Siena, Treviso, Pavia, and Bulogna. Enlarged that of La Pergola at Florence.
1715. Franefsco Galli bibiena of Italy, brother of Ferdinando. - Theatrical decorations; riding sehool. \&.c., at Mantua; theatres at Vienna, Nancy, Verona, and Rome.
1716. Glanbattista Safchetti of Turin.-Royal Palace, Madrid.
1717. John Woon of Bath.-Large improvements at Bath-the Crescent, Cirens, Queen Square, \&e. ; Prior Park fur Mr. Allen; Buckland Park for Sir John Throckmorton; Exehange at Bristol.
1718. Jean Nicholas Servandoni of France. - Façade of the church of St. Sulpice at Paris ; staircase of the Hôtel du Cardinal Auvergne; round chapel of M. de Live; Rotunda with twelve Corintliaian eolumns, for Marshal de Richelieu; parish church of Coulanges in Bourgogne; and many other works, besides theatres and theatrical decoration", and designs for foreign prinees.
1719. George Dance, sen., of London.-Mansion House ; the churches of St. Luke's, Old Street: St. Leonard's, Shoreditch; and St. Butolph, Aldyate ; all in London.
265 Luigi Vanvitelli of Italy.-Palaee at Caserta, near Naples.
1720. Jacques Frasçois Blondel of Rouen, in France. - Opened the first private acadeny of arehiteeture; design for the Imperial Academy at Moscow; street and square opposite the eathedral at Rouen; other works both there and at Strasbourg; improvements at the eity of Metz, including the round ehureh of the Royal Abhey of St. Louis, the Episeopal Palace, façade of the building occupied by the Parliament, the Hôtel de Ville, Corrs de Garde, \&c. Improvements of the city of Cambray; and many eountry houses in France and Germany, and in Flanders. Published "Architeeture Françuise " and a "Cours d'Architeeture."
1721. John Baettingham of England.-Finished Holkham Hall, Norfolk; Norfolk House, St. James's Square.
1722. Robert Furze Brettingham of England.-Ereeted the gaols at Reading, Hertford, Poole, Downpatrick, and Northampton; Winchester IIouse, St. James's Square ; No. 9, Berkeley Square; Maidenhead Bridge; and made many alterations at noblemen's mansions in the country.
1723. Ferminando Fuga of Florence.-Cumpleted the Fabbriea della Consulta on the Quirinal ; the great addition to the wing of the Pontitical 1'alace at the eorner of the Via delle Quattro Fontane; church of Sta. Maria dell' Orazione; completed the Palazzo Petroni and the Palazzo Corsini ; all at Rome. Chureh and nunsery of Sta. Caterina della Ruota at Aquila; restored the chureh of Sta. Naria Maggiore ; enlarged the hospital of Sto. Spirito in Sassia; and other works at Rome. The great hospital and the public cemetery, the Palazzo Giordani, and the very large Palazzo Caramanica; commenced the Granili, to contain a granary, artillery arscnal, and storehouse ; and other works at Naples.
1724. M. Aug. Simonftit of Italy. - Museo Pio Clementino in the Vatican at Rome.
1725. Jacques Ange Gabried of France. - Continued his father's works. The Eiole Militaire and Champ de Mars; and Garde Meuble, all at l'aris; theatre at Versailles; châteauat Compiègne; additions to that at Choisy; and north and west façades to the eourt of the Lourre.
1726. Jean Rodolphe Ierronet of France. - Director of the bridges and ruads of France ; bridge of Neuilly, and many others.
27\%. Jacques Germain Soufflot of Irancy, near Anxerre, in Firance.-Hospital, Exchange, Concert-room, and Theatre, all at Lyons; façade, nave, and towers of the church of St. Geneviève, at Paris.
1727. Sir Willian Chambers of Ripon, in England.-Visited China, and published works on Chinese architecture and Oriental gardening. Pagoda and other buildings at Kew ; villa at Rochampton for Earl of Besborough; Duldinguton, neaw Edinburgh, for Lord Abercom; and mansions for other noblemen; Cisino near Dublin for Lord Charlemont; Somerset Ilouse, in the Strand, Ledudou. Published " The Decorative Part of Civil Arehitecture."
1728. Robert Adasy of Kirkaldic, in Scotland.-Sereen at the Admiralty in London; Kedlestone for Lord Scarsdale; Register Oiliee at Edinburgh; lntirmary at Glatsgow ; the Edinhurgh Unisersity' ; Luton House; Lansdowne House, Berkeley

Square ; Adelphi Terrace, Portland Place, and other houses in London; Ken Wood House, Highgate; entrance screen at Sion House, Middlesex. IIis brother James assisted in most of the later works. Published "The Ruinsat Spalatro," and "Works in Architecture."
\& - . Shr Robert Taylor of London.-Parts of Bank of England now taken down; villa at Richunond for Sir Ctharles Asgill: Duke of Grafton's house, Piccadilly; mansion for Lord Howe in Hertfordslire ; Stone Buildings. Lincoln's han ; Ely House, Dover Strect ; Lord Grimstone's at Gorhambury ; and many others, which are engraved in his "Desigus."
277. James Paine of London.-Mansion House at Doncaster; Wardour Castle; and Worksop Manor House. Designs published.
278 Victor Louls of Paris.-Designed a palace at Warsaw ; employed at Nancy and Lnneville; church at Besauçon, and at Dunkirk; theatre at Bordeaux for 4,000 persons (published); Galleries at the l'alais Royal, and the Théatre des Variétés, introducing framing in ison ; both at l'aris; the Hôtel de la Prélecture, the Banque, and Maison Fonfrède at Bordeanx.
279 Jacques Denis Astonee of Paris.- Hôtel des Monnaies; new buildings at the Palais de Justice ; Greek portico to the Hospice de la Clarité, all at l'aris; Mint at Berne, and other works.
eso Claude Nicolas Ledoux of Dormans, in France.-Hôtels d'IAalleville, d'Uzès, of the Prince de Montmorency, de Montesquien, de Thélusson, and de Guimard; five blocks or maisons Holstein, and many maisons, all at laris; theatre at Xarseilles; Château Benouville in Normandy, and other works, which with many desigus are given in Kraff's Receuil, and in his own fine pullication.
28] Henry lloland of London.-Carltun House for the Prince Regent; Claremont for Lord Clive. Large additions at Trentham, Staffordshire; Sloane Street and Ilans Place, Chelsea; portico in Whitehall; improvements at Woburu Abbey, Bedfordshire; the Albany in l'iceadilly, and additions to the Assembly Roons at Glasgow; Old Drury Lame Theatre, \&c.
282 Joserin Bonomi of Rome.-Dale l'ark, Susex; Gallery for the Townley collection in Lancashire; Church at Packington, Warwickshire, solidly vaulted throughout; additions at Langley Hall, Kent; Eastwell Honse, Kent; Mausoleum at Blickling l'ark, Norfolk; Longford Hall, Shropshire; additions to Lamiton Hall, Durham, for Earl of Durham; and an Italian mansion at Roseneath, Durnbartonshire, his most celebrated work; the portico, projecting for carrages to set down under it, is remarkable for having a centsal column.
283 Jacques Guinaume le Grand of Paris. - Théatre Feydau; Halle au Drap; roof to Ilalle au Blé (burnt) at Paris; and other works.
284 Karl Gotruand Langhans of Landshut, in Silesia.-Government House, Theatre, Exclange, Church, and many Houses, all at Breslau; Great Poor House at Kreuzburg; the Brandenburger-'Thor ; tower of St. May's Churell, Hercules Bridge, National Theatre, Palace of l'rince Wilbelm, all at Berlin; the Palace 'Iheatre at Charlsttenburg.
23.5 Robert Mylne of Scotland.--Blachfriars Bridge, pulled down 1864; Inverary Castle, \&.e.
286. Jacques Gonnon of S. Ouen sur Seine, in France. - Ecole de Médecine, Paris, and published a deseription of it. The Colome de la Grande Armée was erected in conjunction with Lepieme.
287. Hennrich Karl yon Fischer of Manhheim, in Germany.-Theatre, Infimary, Hall of Antiquities at the Academy, and several mansions, all at Munich. Opera House at Viema.
288. George Dance, Jun. of London.- Newgate Privon; St. Luke's Iospital; College of Surgeons, Lincoln's Inn Fields, all in London; and many country mansions.
289. James Ganion of London. - Custom House, \&e.; Exchange; Four Courts, \&e. in Dublin. Published with Wool?e, Vitruvius Britannicus. Designs for Exchange at Dublin; and for St. Luke's Lunatic Asylum, London. New Docke, Stores, and Custom House ; East Portico, \&c., to Houses of Parliament, now the Bank; the Four (Law) Courts; Screen Areade and Wings, with additions to House of Commons, Carlisle Bridge; and Inns of Court; all at Dablin; Court Ilouse and Gaol at Waterford.
290. Sir John Soane of London.-Bank of England; Board of Trade; State Paper Office; En!rance to House of Lords; and many works in London, besides his own house in Lincoln's Im Fields, now his Museum. l’ublished "Dcsigns," \&e.
291. Chardes Percier of Paris. - Restorations, $\&$ c.at the Louvre and Tuileries; Chapelle Expiatoire. l'ublished "Recueil de Décurations," and other books of ornament, with Picrre Françis Lenard lostane.

AFIER CHRISI

292. Domfnico Merlini of Brescia.--Several apartments in the Palace at Wusaw; and villas near that city.
293. John Kendall of Exeter, in England.-" Mason and Architect" to the new works at Exeter Cathedral, 1805-30.
294. Thomas Cooley of England -- Royal Exchange; Chapel in Phoenix Park; Hibernian Marine Shool-; Newgate Prison; the western wing of the Four (Law) Courts; all at Dublin.
295. Jasies Essex of England -The earliest in modern times who practised solely mediæval art; restoration of Ely and other calhedrals; alteraiuns at various colleges at Cambridge and Oxford.
296. T. Thomond of France.-The great Theatre, and the Exchange, at St. Petershurg.
297. Jases Wyatt of England. - The Pantheon Asembly Rooms; Palace at Kew; Fonthill Abbey ; Doddington Hall; Ashridge House; and many restorations.
298. Johann Aman of St. Blasien, in Baden.-Building for the reception of the Mueller Collection; interior of the Chapel of the Palace, a Theatre, Hohe Markt, Dornthea-IIof, a new Court Theatre, all at Vienna. New Theatre at Pesth; repairs to the Cathedral at Vienna; restorations, \&ce, at the Palace of Schonbrumn, with the Conservatories.
299. John Carr of Horbury, called Carr of York. - Kirby Hall near York, and the laace Stand; Harewood House near Leeds for Earl of Harewood; Tatley House, Cheshire, for Lord de Tabley: Lythan Hall mar P'reston; Constable Burton near Hull; Thoresby Lo 'ge, Notts, for Duke of Kingston; east fiont of Wentworth Castle for Earl of Strafford; Aston Hall, Rotherham; Basıldon Park, Berksliire ; Town Hall, Newark; Court House at Yoik; County Lunatic Asylum ; Crescent and perhaps the Stabl ng at Buxton Batlis; Mausoleum at Wentworth; and many other buildings and houses.
300. Don Josff Martin de Aldehëela of Manzaneda in Valencia.- Church and College of the Jesuits at Teruel ; completed Church of San Filipe Neri at Cuença; with other Churches, \&e., in that city; Aqueduct, 6 miles Iong, to Malaga; great Bridge at Ronda over the Tajo, and water supply. Went to Granada to design the lalace for Charles V.
3)1. Gusefte Piermarini of Foligno.-As pupil of Vanvitelli he assisted in the Pa'ace at Caserta ; and in the alterations at the Palazzo Imperiale at Milan, which latter work was transerred to him; and in which city be designed the Teatro "La Scala:" Monte di Pietà ; Teatro della Canubbiana; Porta Orientale; the extensive f.çade of the Palazzo Delgioioso; several palazzi, with many extensive im. provements.

19th. Century.

302. Vincenzo Brenna of Russia.-Carried out Bazhenov's design for the Palace of st. Michael, now the Scheol for Engineer Officers; Obelisk of black granite; the Exercising House, 540 ft . by 120 ft. , at St. Petersburg. Desigus publishe 1.
303. Llenry Whliam Inwood of England.-St. Pancras New Chureh; St. Martin's Chapel ; Regent Square Chapel ; Somers Town Chapel; all in London. l'ublished "The Erechthieon at Athens."
304. Jean Nicolas Louis Durand of France.-Published "Recueil et Parallèle des Édifices," and other works
so5. Augustus Pulan of England. -Published " Specimens of Gothic Architecture," "Examples of Gothic Architecture;" "Antiquities of Normandy," and other works.
305. John Nasir of England.-Brighton Pavilion; Haymarket Theatre; Buckingham Palace; Regent's Park, and its terraces of dwellings; Regent Street and the Quadrant; many residences, \&ic.
306. Sir Jeffry Wyatvile of England.-Extensively rebuilding and altering Windsor Castle.
307. Whelam Wheins of Enyland.-St. George's Hospital; London Uhiversity; National Galiery; Universiny Club Itome; in Loudon. Downing College, Cambridge. Published a translation of part of "Vitruvius."
308. Benjamin Henky Latrobe of Fulnec near Leeds, in England. - Several mansions in Surrey and Sassex, \&c. Visited Americi, where he rendered the James river navigable; Water Supply at Philadelphia; and Bank of l'ennsylvania; cumpleted the exterior of the north wing of the Capitol at Washingion, added corresponding wing, \&c. ; denigned the central portion, and the Hall of Representatives: at this building Chales Bulpncin succeeded him, and erected the Rotunda, \&e. Water Supply to New Orleans; Exchange and Cathedial at Bahimore; Bank of United States at Mhiladelphia.
309. Thomas Flarrison of Richmond, Yorkshire.-Bridge over the river Lime at Laraeaster ; rebuilding of the Castle there as a Gaol ; new County and Crown Courts; Bridge over the Derwent at Derby, and others; Prison, County Courts, Armouy, \&c., at Chester, wholly of stone; Broom Hall, Fiffeshire, for Eırl of Elgin; Athenxum, Lyceum, and Library of the Literary Society, at Liverpool; Theatre Athenxum, and Exchange, at Manchester; Grosvenor Bridge at Chester over the river Dee, 200 feet span; and many other works. Designed a Palace for Count Michacl Woronzow, to be built in the Ukraine on the Dnieper.
310. Il Marchese Lugg Cagnola of Milan.-Porta del Sempione or Arco della Pace; Porta di Ticino; Ca-ino de' Nobili; all at Milan. Many magnificent projects; and the Palazzo for hinself at Inverigo, with a central salone of 45 ft . dianneter.
S12. Stefano and Luigi Gasse of Naples.-Observatory; additions to Villa Reale; Reale Edifizio di San Giacomo, or Palazzi de' Ministeri ; and the Dogana; all at Naples.
311. Thomas Rickman of Eugland.-New Court of St. John's College, Cambridge; restoration of the Bishop of Carlisle's Palace, Cumberland; upwards of twentyfive churches in the Midland Counties; several private dwellings. Iublished "Attempt to Discriminate the Styles of Architecture in England."
312. Carl Friedrich ron Schinkel of Prussia.- Hauptwache, Theatre, and Museum; Werder-Kirche (Gohic) ; Bauschule, and Olservatory, all at Berlin; Theatre at Hamburg; Schloss Krzeseowice, Charlottenhof, and the Nicolai-Kirche at Potsdam. l'ublished his designs, many of which were not executed.
313. Joseph Michael Gandy of England.-Phocnix and Pelican Assurance Offices; additions to the prisons at Lancaster; buildings at Liverpool. Publiwhed "Designs" for rural bnildings. Better known for his arti-tic conceptions of architectural restorations.
314. Frienrici von Gärtner of Bavaria. - Façade of the Porcelain Establishment; Ludwigs-Kirche, Bibliothek, and Record Office; and many other buildings at Munich. The Befreiungshalle at Kellhein; Pompeian House at Aschaffenburg, \&.c. Published his de-igns.
315. Sir Richard Morrison and Wheiam Vithuvius Morbison of Dublin.-Aiterations of cathedral at Cashel; Connty Court House, Clonmel; Shelton Abbey; Kilruddery Hall; Ballyfin; Court Honse, Carlow; Longford Castle; \&e.
316. Harvey Lonspale Elmes of England.-Collegiate Institution; St. George's Hall; at Liverpool.
317. Peter John Ganny-Deeming of England.-Associa'ed with Wilkins in the Club House, and University. St. Mark's Church, North Andly y Street; and Fxeter Hall, at Loudon. P'ublished "l'ompeiana" with Sir W. Gell, and many Classc Antiquities for the Society of Diletanti.
318. Jacob Gay of France.-Extensive fortified watehouse for grain at Novogeorgievsk, near Warsaw, and the Greek church of the Alexandrian colony.
319. Augustus Welby Northmore Pugis of England.-His residences at Salisbury, and at Ramsgate with a chapel adjoining. No less than thirty six Roman Catholic ehurches, including the cathedral of St. George, Southwark, and those at Killarney and Enniccorthy ; the church at Cheadle; and extensive alterations at Alton Towers. Published "Contrasts," "True Principles, \&c.,"" Designs for Metal and Timber," \&e.
320. Piftro Aigner of Gallizia, in Austria.- Churches of St. Alexander, and of St. Andrew ; Obstratory, said to be the finest in Europe; Guard House, Government Palace completion of the Mint, University Library, Radzivill Palace and great Bazaar, all at Warsaw. Cathedral at Szuwalkach in Lithuania; and other works.
s393. Wiliam Porden of England.--Stables at the Pavilion at Brighton, with the Riding Houres, \&c. Eaton Hall, Cheshire, for the Marquis of Westminter, \&c.
321. John Havilann of Taunton, in England.-Pittsburgh Penitentiary ; Eastern Penitentiary at Cherry 1Iill; Hall of Justice, New York; Naval Asylum, Norfoik; New Jersey State Penitentiary, and many others, with gaols, asylums, and county halls, all in the United States.
322. Guliaume Abel Biouet of Passy, in France.-Completed the Arc de l'Étoile; works at the falace at Fontainebleau. P'ublished "Expédition Scientifique de Morće;" supplement to Rondelet's "L'Art de Bâtir;" and revised the tenth edition of that work.
323. James Gillespie Gnamam of Orchil, in Scotland.-Culdees Castle, Perthshire; Russ Priory, Dumlartonshire; Dunse Castle, Berwickshire; and many country residences; Victoria or Assembly IIall, at Edinburgh ; chapels there and at ulasgow.
324. Whillam Henky Playfair of Scolland.-St. Stephen's Chureh; Royal Institution; National Gallery ; Donaldson's Iluspital; Free Church College; Surgeons' Hall; all at Edinburgh.
325. John Blatton of England -Published the "Cathedral Antiquitios" 14 volumes; "Arehitectural Antiquities," 5 vols.; "Edifices of London," 2 vols.; and many others. Began the restoration of Redeliffe Church, Bristol.
326. Leigi Canina of Rome.-Pubished many works on the Ilistory of, and Discoveries conneeted with, Classic Architecture.
327. Loms Tullus Joachin Viscosti of France.-Cumpleted the Palace of the Lonvre; Monument of Moliere in the Rue Richelieu; Fountain on ste of the old Opera House, Place Louvois; Fountain in Place St. Sulpice; façade of the angle of two streets in the Rue Neuve des Petits Champs; tomb of the Emperor Napoleon 1. at the Livalides, all at P'aris.
328. Thomas Hamluton of Scotland.-The Iligh Schools; College of Physicians; and some churches; Pavilion for the Grey Festival, 1834; all at Edinburgh. Monument to Burns, near Ayr.
329. Alphonse Ricard de Montfelland of France.-Column to the Emperor Alexander; and Church of St. Isa:c, at St. Petersburg. Both published.
330. Sur Chatles Barry of London.- The Travellers' Club House (published); the Reform Club House; Bridgewater House; the Houses of Parlianent; Privy Council Office; laid out Trafalgar Square; three churchts at Ball's Pond, Cloudesley Square, and Holloway; all in London. The Grammar Sehool at Birminglam. Clifden House, near Reading. Trentham Hall, Derbyshire. St. Peter's Church at Brighton. A ehurch, the Athenæum, and the Royal Institution, at Manciester.
331. Ernst Friembich Zwirner of Prussia.-Restoration of Cologne Cathedral. Church at Remagen.
332. David Hamiton of Glasgow.-Huteheson's Hospital; Nelson Monument; Royal Exchange; Western Club House, atid other buildinge, all at Glavgow. Castle Toward; Dunlop Huse; Airth or Kier Castle; Hamilton Palace ; and Lemiox Castle, all in Scothand.
333. Robert Mhls of Charleston, South Carolina. The Congregational Church at Charleston, with a dome 90 feet diam. insude, the first in that country. Sevenal edifiees at Philad lphia, ineluding the Bank (the first building in the Gothic style), and the timber bridge over the Schuylkill, about 340 feet span. The Court House and other buildings at Richmond; Monument to Washington at Baltimore, and two churches there; Lunatic Asylum at Columbia; Penitentiary at New Orhans; and buildings at Charleston. The Bunker Hill monument. Many works for the Gosernment at Washington. He largely intruduced a fire-proof sistem into the construction of his buildings.
334. Leo von Klenze of Prussia.- The Gilyptothek, and other puhlic and private works at Munich. The Walhalla, near Ratisbon. Buildiugs at St. Petersburg. De:signs published.
335. James Bunstone Bunving of Eugland. - City of London School. Highgate and Nunhead Cemeteries; Bethnal Green Workhouse; Freemason's Orphan Schoul-, Brixton; the Coal Exehange; Cuty Prison, Holloway; Bulingsgate Market; Metropolitan Cattle Market, Islington; Alıerations in Newgate Prison; Pauper Luratic Asylum at Stone , "ith many improvements in the City of London.
s.99. Ludwig Försten of Austria,-Publis’ed the Allgemeine Bunzeitung, 38 volumes (to 1873). Buildings in Vienna.
336. Cuarles Robert Cockerell of London. - Philosophic Institution at Bristol. Hanover Chapel, Regent Street. St. David's College, Lam, eter. National Monument, Calton Hill, Edinburgh. University Library and Muscum, Cambridge. Westminster Life Office, Strand. Dividend Pay Office, , nd the Private Drawing Office, in the Bank of England; and Branch Banks at Manchester, Bristol, and Liverpool. Sun Fire Assurance Office. Tay lor and Randolph Galleries and Library at Oxford. Liverpool and London lasurance Buildings at Liverpool. Completion of the Fitzwilliam Museum at Cambridge, commenced by G. Basevi ; and of St. George's Hall at Livarpool, commenced by H. L. Erines.
337. Josepii Gwilt of London.-Compiler of the "Enegclopædia of Architecture," and writer of many other works.
338. Luigi Cavoni"a of Milan.-Anfiteatro Diurno for 30,0no spectators, for Napoleon I. ; Teatro Careano, Ré, and Fiando; the interior of Palazzo Orsino, and Cas.a Canonica, all at Milan. Theatres at Brescia, Mantua, and Parma.
339. Lovis von Zantir of Würtemburg.-The Wilhelma near Stuttgardt, in a Moorish
style; design for a large village and its luildings in Hungary ; published "The Antiguities of Sicily " with J. 1. Hittorff.
340. Sir Joserf Paxton of Milton Bryant, Bedfordshire.-Tie Conservatory for the Vi.toria Regia at Chatsworth, and other buildings there. The suggestion for the building of the Industry of All Nations 1851. Village of Edensor near Chatsworth ; Mentmore for Baron Mayer A. de Rothseliild. Mansion at Ferrières in France for Baron James de Rotlischild. Alterations at Lismore Castle, Ireland, for Duke of Devonshire. Laid out Parks at Liverpool, Birkenheal, Glasgow, and elsewhere.
34.5. Capt. Francis Fowke of Belfast, in Ireland.-Raglan Barracks, Devonport. Additions to South Kensington Museum; Picture Galleries for the Shecpshanks, Vernon, and Turner collections thereit. Industrial Museum, Edinburgh. New buildings for South Kensington Museum. National Gallery, Dublin. Desigra for Gardens, Conservatory, and south arcades, Royal Horticultural Gardens; the building for 1862 Exhibition, and entrances to the Gardens. Design for Natural Listory Museum. Original design for the Royal Albert Hall.
341. Jacques Ígnace Hittorff of Cologne.-Practised at Paris, where, with Lecointe, he conducted several funeral pomps, and many festivities; reconstructed the interior of the Salle Favart, and rebuilt the Theatre of the Ambigu Comique. Published with Zanth, "Arehitecture Moderne de la Sicile," and "Arehitecture Antique de la Sicile;" and with Olivier, an edition of the "Inedited Antiquities of Athens." Designed the circular Panorama in the Champs Elysées; Grand Cirque Olympique; Cirque on the Boulevard des Filles du Calvaire; assisted in raising the Obelisk of Luxor, and designed its pedestal; and the Fountains in the Place de la Concorde: with Leplise, the basilican church of St. Vincent de Paul : Mairie on the Place du Panthéon; another, with a suite of buildings close to the Chureh of S. Germain l'Auxerrois; laid out part of the Bois de Boulogne; denigned the circular edifiees in the Place de l'Are de l'Étoile; and Terminus of the Great Northern Railway of France.
342. Str Robert Smirke of London.-Large additions at the Royal Mint, London; Covent Garden Theatre; General Post Olfice; Penitentiary, Millinank; British Museum up to 1847; King's College, London; Central Portion, alterations, \&c., at the Custom House; Restoration of York Minster, 1828; Belgrave Chapel, and many churches; Wellington Testimonial, Dublin; Courts of Justice at six cities, and other similar buildings. Lowther Castle, Cumberland, for Earl of Lonsdale ; Eastnor Castle, Ledbury, Iterefordshire, for Larl Sorers; Drayton Manor, f.r Sir Robert Peel; and many other mansions, and additions to them ; U!uion, Carlton, and Junior United Service Clubs; several of the interiors of the Dining Halls to the Ims of Court; Serjeants' Inn; Approaches to London Bridge.
343. Phuip Mardwick of Londın.-House and Warehouscs at St. Katherine's Docks; New IIall of the Goldsmiths' Company; Entrance portico, the large hall, and hotels, at the Railway Station, Euston Square; New Ilall and Library for Society of Lineoln's Inn ; all at London.
344. Charles Texier of Versailles, in France.--Restored Arch at Rheins. Published "Description de l'Asie Mineure," and "L'Arménie, la Perse, et la Mésopotamie." Sent to Algeria, he measured all the Roman works in that country. Published "Byzantine Architecture," and "Prineipal Ruins of Asia Minor," both with R. P. Pullan.
345. Sri James Pennethorne of Worcester.-Assisted Mr. J. Nash in carrying out in London, the improvements in the Strand; Carlton House Terrace; St. James's Park; various implovements in the streets of the Metropolis, for the Government. The St. James's Bazaar; St. Julian's, Sevenoaks, for C. J. Herries; Dillington House, 11 minster, for Mr. J. L. Lee; Swithland Hall for Mr. Butler Danvers; Christ Church, Albany Strect; and Trinity Chuich, Gray's Inn Road. Formed and laid out Victoria and Battersea Parks, and Kensington Palace Gardens. Museum of Economic Geolog., Piccadilly. General Record Office, Chancery Lane. State Lall Room, Supper Ruom, and Galleries, at Buckingham Palace. Additions to Somerset House, fronting Lancaster Place. Alterations at the National Gallery; and at Marlborough House for the Prince of Wales. University of London, Burlington Gardens; and many other worksfor the Government.
346. Sir Thomas Deane of Monkstown, near Dublin.-Banks, with other Guildings, and the Court house with a fine portico, at Cork; Qucen's College, Cork; Lunatic Asylum at Killarney; addition to Trinity College, Dublin, in the Venetianstyle; Museum at Osford with his son Thomas and Mr. Woodwarti.

AFTER CHRIST.

352. Edward Walters of Lordon--Many large warelouses in the Renaissance style at Manchester; and numerons hcoses in the suburbs; Freo Trade Hia 1; Manchester and Salford Bank; stations on the Midland Railway; church in Cavendish Strect ; Fire Insurance Office, King Street; Warrington Public Hall, \&c.; all at Manchester. Died January 22, 1872, aged 63.
353. Sir Wiliam Tite of Londoa.-Restored, with David Laing, the church of St. Dunstan's-in-the-East. Designed the Scotch Church, Regent Square; the Royal Exchange; London and Westminter lank, Lothbury, with C. R. Cockerell, R.A.; several mailway stations; all in London. The termini and most of the stations on the Caledonian and Scottish Central Railways; and on the line from Harre to Paris Memorial Church, Gerrard's Cross. Largely employed in the valu tion, purchase, and sale of the land required for the extensire railway and improvement works of his time. Died April 20, 1873, aged 75.
354. Owen Jones of London.-Designed St. James's Hall and its decoration ; the decoration of the Hall of the Fishmongers' Company; that of Fonthill House, near Salisbury, for Mr. Alfred Morrison, and of his residenee in Carlt n Honse Terrace; of Preston Hall, for Mr. Henry Brassey; of the Exhibition of Industry of All Nations, 1851 ; and of the Crystal Palace, Sydenham. Designed furniture, \&c. Publishtd "Plans, \&ce, with Details, of the Alhambra," in colours, fol. 1836-45; ; "Designs for Mosaic and Tesselated Parements," to. 1842; "An Apology for the Colonring of the Greek Court at the Crystal Palace," 8ro. 1854; "The Grammar of Ornament," 100 plates, fol. 1856; 112 plates, 1865. Many other works on colour and ornament. Died May 1 (?), $187+$, aged 65.
35j. Alexandfr Thomson of Balfron, Scotland, called "Greek Thomson," after the style to whieh the bent of his studies entitled him.-Designed the C f ledonian Road United Presbyterian Church; the St. Vincent Street U.P. Church; and Queen's Park U.P. Church ; the Egyptian Hall, Union Street ; two buildings on north side of Sauehiehall Street ; all at Glasgow. Died Mareh, 22, 1875, aged nearly 58.
3.56. Pifrre Françols Henri Labrocste of Paris.-With Visconti, superintended the decorations for the funeral ceremony consecrating the return of the remains of the Emperor Napoleon I. to Paris. Opened an atelier. Designtd the Library of Ste. Geneviève ; the enlargement of the National Library, with new reading room, \&c. Appointed general inspector of diocesan edifices. Died June 24, 1875, aged 7 t.
355. David Bryce of Edinburgh.-Designed many public offices, banks, \&c., in Edinlurgh, in various styles; as Fett.s College; the Sheriffs' Court; Edinburgh Royal Infirmary; Lanark Infirmary; several elurehes in Edinburgh, Dalkeith, Dundee, Falkland, St. Mungo's, \&c. In a long list of mansions, and of additions and alterations, are mentioned Panmure, for Earl of Dalhousie; Kinnaird Castle, for Earl of Southesk; Langton, for Marquis of Breadalbane; and the mausoleum for the Duke of Hamilton. Died May 7, 1876, aged 73.
3.5. Raphael Brandon of London.- With his brother Arthur, who died December 18 47 , published "Parish Churches," sixty-threa in number, 8vo. 1848. Then " Analysis of Gothic Architecture," seven hundred examples, 4to. 18t9; "Open Timber Roofs of the Middle Ages," thirty-five examples, 4to. 1819. Designed the church in Gur'on Square for the members of the Catholic Apostolic Church, in conjuaction with Mr. Ritchie. Church in Great Windmill Street, Haymarket; and one at Knightsbridge. Died Octoler, 1877.
356. Sydney Smirke of London.- With his brother Sir Robert, designed the Oxford and Cambridge Club, Pall Mall. He restored the Temple Church, and published an account of it, 1845. A block of buildings in the Temple; the Conservative Club, St. James's Street; Carlton Clubhouse, Pall Mall; the circular Reading Room, and other parts, at the British Museum ; the Exhibition Roorns for the Royal Academy of Arts, Burlington House. Died December 8, 1877, aged 77.
357. Sir Matthew Digby Wyatt of Devizes.-Travelled for two years, and on his returned published "The Geometric Mosaics of the Middle Ages," fol. 1849. Reported, 1819, on the Industrial Exposition at Paris. Published "Industrial Arts of the Nineteenth Century," fol. 1853 ; "Metal Work and its Artistic Design," fol. 1852. As superintendent of the Fine Arts department at the erection of the Crystal Palace, he, with Owen Jones, designed several of the Courts, and wrote the descriptions. He designed the Court and interior finishings of the new India Office, Whitehall; Addenbroke's Hospital, Cambridge; the Royal Indian Civil Engineering College at Cooper's Hill ; restored the hall of Clare College, Cambridge; designed the Crimean Memorial Arch at Chatham, fur the Royal Engineers, \&c.; the manion for Louis Huth, Esq.,
at Possingworth, Sussex; the red brick house for Lady Marian Alford at Kensington Gore. He published his "Lectures" as Slade Professor in 1870. Died May 21, 1877, aged 57.
358. Sir Ge prge Gilbert Scott of Gaweott, near Buekingham.-W. B. Moffatt was partner for some years; they designed, 1841, the Martyrs' Memorial at Oxford; St. Giles's Chureh, Camberwell ; and the Infant Orphan Asylum, Wanstead. He designed the St. Nicholas Church at Himburg ; Cathedral at St. John's, Newfoundland ; 1854, the Parish Church of Doneaster, Yurkshire ; from 1849, as architect to the dean and chapter of Westminster, he continued the restorations of the church, and restored the chapter-house. Designed the Foreign Office, ineluding the exterior of the India Office, Whitehall ; the Memorial to the Prince Consort, Hyde Park; and the new Cathedral at Edinburgh. Restored portions of nearly every cathedral in Fingland, and some in Wales; Tewkesbury Abbey ehoir, \&e., and St. Alban's Abbey. Designed the Albert Memorial Chapel, at Windsor ; St. Mary Abbott's Church, Kensington ; chapel of St. John's College; Cambridge ; Glasgow University Buildings; Leeds Iufirmary; Preston Town Hall; houses in the Broad Snactuary, Westminster; and very numerous new churches; also numerous rebnildings and restorations. He wrote "Gleanings from Westminster Abbey," 1861 ; "Remarks on Secular and Domestic Architecture," 1857; "Leetures on the Rise and Development of Medieval Arehiteeture," 2 vols., 1879 ; and many papers and essays. Died March 27, 1877, aged 67.
359. Edward Blore of Derby.-Designed, 1816, Abbotsford, for Sir Walter Scott; was employed for many years in making drawings for antiquarian and other publie:ations; and published "The Monumental Remains of Noble and Eminent Persens," $1824-26$; and was ameng the first to stimulate the revival of Gothic architecture. Restorations at Peterborough, Glasgow, Ely, and Winchester Cathed:als; Merton College Chapel, Oxford; Barfreston Church, Kent; Thorney Church, Cambridgeshire ; Ramsey, Huntingdonshire ; and several others. Rebuilt the residence, restored the hall and ehapel of Lambeth Palace. Designed the Palace of Aloupka, in the Crimea, for Prince Woronzow; Worsley Hall, Laneashire: Haveringland Hall, Norfolk; Cranford Inall, Dorset ; and nthers. Made extensive ilterations at Wadham and St John's Colleges, Oxford; and at Windsor Castle. Designed the new front, \&c., to Buckinghan Palace; and works of restoration, \&c., at Westminster Abley for several years. Died September 4, 1879, aged nearly 90 .
360. Joserf Lous Duc of Faris.-Designed, 1833-40, the Colonne de Juillet; and after 1840, the buildings of the Paluis de Justice, ineluding the new Salle des Pas Perdus, all at Paris. In 1869 he receired the Grand Prix of $100 ; 000$ francs decreed every five years by Napoleon III. Died Jannary, 1879.
361. Gotteried Semper of Altona, in Denmark.--Designed, 1834, the Court Theatre, and the Synagogue, at Dresden; and 1847, began the new Museum. He retired to I'aris, and then to London, where, 1853, he designed the Wellingten funeral car. After some years he went to Zurich as Professor of Arehiteeture; designed the large Polytechnie School; the town hall; the railway station. The rebuilding of the Court Theatre, at. Dresden, was earried out by his son Manfred. Designed the Exchange ; new Museum ; additions to the Imperial residence; and, with von Hasenauer, the Imperial Court Theatre ; all at Vienna. Died at Rome May 15, 1879, aged 76.
362. Euedne Emannuel Yiollet-le-Dec of Paris.-In 1840 he was nominated, with Lassus, in the restoration of the Ste. Chapelle, at Paris. He restorel the Abbey Church of Vézelay; the churches of St. P'ierre, Montréale; the Hôtel de Ville, at Nartonne ; the eharch at Poissy, of St. Nazare in Careassonne, and at Semur. With Lassus, 1846, the restoration of Notre Dame, at Paris; works at the Abbey of St. Denis; 1849, commenced the resteration of the fortifications at Carcassonne ; at the Cathedral at Amiens, and the Syndical Ifall at Sens; Notre Dame, at Châlonsesur-Marne; the Cathedrul at Laon; the Château do Pierrefonds. Designed the Protestant Cathedral at Lausanne; and the Château d'Eu, for the Comte de Paris. Besides the important "Dictionnaire Raisonné de l'Arehiteeture Française," 1853-68, he published "Essai sur l'Architectura Militaire," 1854; "Dictionnaire du Mobilier Français," 1855 ; "Entretiens sur l'Arehitecture," 1858-68; and others. Died September 17, 1879, aged 65.
363. Edward Middleton Barry of Lendon.-Designed, 1857, St. Saviour's Church, Haverstock Hill; the schools in Endell Street, for St. Giles's-in-the-Fields; 1857, Covent Garden Theatre, for Mr. Gye, with the Floral Hall adjoining; was appointed, 1860 , to complete the new Palace at Westminster, after the death of

AFTER CHRIST.

Sir C. Barry. Designed the Halifax Town Hall ; new Opera-house at Malta; the staircase to the Royal Academy rooms at Burlington House; the new chambers, "Temple Gardens"; the Cannon Street and the Charing Cross Hotels, with the Queen Eleanor Cross ; the Hospital for Children, Great Ormond Street; the Birmingham and Midland Institute. Rebuilt Crewe Hall, Cheshire ; designed the decoration of St. Stephen's Chapel, Westminster ; and the additional galleries to the National Gallery of Pictures. Died January 27, 1880, aged 49.
367. Jean Pierre Cluysenaar of Liège.-Designed the Marché de la Madeleine; the Hôtel du Conservatoire ; and the Galeries St. Hubert, all at Bruxelles. He published "Bâtiments des Stations, \&c." 4to., 1862; "Maisons de Compagne, Châteaux, \&c.," 4to., 1862. Died January (?), 1880, aged 69.
368. Johann Heinrich Strack of Bückeburg, in Holstein.-As a student of Schinkel's he assisted in designs for the then Crown Prince, afterwards Frederick William IV., at the new Palace at Berlin; 1828, in the erection of the Palace of Prince Carl, and the Palace of Prince Albrecht. He completed the Palace of Babelsberg, near Potsdam, as well as the present Imperial Palace. At Berlin, he designed the Palais Raczynski, 1843; the churches of St. Peter and St. Andrew; the National Gallery, 1866-76; the Column of Victory in the Thiergarten, 1871-75; and the Villa Borsig. He published several works, including his discovery, 1862, of the Theatre of Dionysius at Athens. He was lecturer at the Academies, and also " baumeister" from 1838 to the Emperor of Germany. Died June 13, 1880, aged 75.
369. Bentamin Ferrey of Christchurch, Hampshire.-Laid out the estate of Sir Geo. Gervis, and designed the Bath Hotel, with several rows of rillas, at Bournemouth. Restored the nare and transepts and the Lady ChapeI of Wells Cathedral ; and the Bishop's palace and chapel. Designed the Church of St. James, at Morpeth; of St. Stephen, Rochester Row, Westminster ; the town halls at Dorchester and Luton; the church at Buckland St. Mary; Wyunstay, for Sir W. W. Wynn; Bulstrode, for Duke of Somerset ; mansion for the Duke of Connaught at Bagshot Park, \&c. His insention of stamping plaster was carried out at Macclean Church, near Ampthill; at All Saints', Blackheath ; at Streatham Parish Church, and other churches. Died August 22, 1880, aged 70.
370. Thomas Henry Wratt of Loughlin House, Roscommon. - He practised in London in partnership with David Brandon from 1838 to March 17, 1851, and designed the Assize Courts at Winchester, Devizes, Usk, Brecon, and Cambridge. Among numerous hospitals, \&c., those at Malta; for Norfolk and Norwich; Wiltshire Lunatic Asylum ; and the Buckingham Lunatic Asylum ; the Exchange Buildings at Liverpool ; the cavalry barracks at Knightsbridge, London ; railway station at Florence; Adelphi Theatre, London; St. Aidan's College, Birkenbead; Oatland Park Hotel, Surrey ; mansion in Park Lane, for Sir Dudley Majoribanks; with many others; and alterations. Among the numerous new churches, in Wiltshire, that of Wilton, near Salisbury ; memorial church to George Herbert at Bemerton, \&c. ; in Dorsetshire, in London, in Cambridgeshire, \&c.; the Garrison Church at Woolwich; also the earlier restorations at Llandaff Cathedral, and at Wimborne Minster. Died August 5, 1880, aged 73.
371. Wildiam Burges of London.-Gained, in conjunction with Mr. Clutton, the first premium for Lille Cathedral; was occupied in the decoration of the Chapter House at Salisbury ; also the first premium for the Memorial Church at Constantinople; designed Brisbane Cathedral, and the Cathedral at Cork ; restorations at. Waltham Abbey; at Cardiff Castle, for the Marquis of Bute; decoration of chapel of Worcester College, Oxford; desigued the Art School at Bombay ; made designs for Hartford College, United States ; carried out his own house in Melbury Koad, Kensington; designed Worcester College Hall ; and new churches at Studley and Skelton, near Ripon. Died April 20, 1881, aged 53.
372. Decimus Burton of London.-Desigued, 1824-26, the Colossenm, Regent's Park, and the Hyde Park improvements, including the Ionic façade and the triumphal arch ; the Calverley Park estate at Tunbridge Wells, for Mr. John Ward; Grove House, Regent's Park; Royal Naral Club, and the Athenæum Club, Pall Mall; Holford House, St. Dunstan's Villa, and St. John's Lodge, Regent's Park; Worth Park, Sussex; Stapleton Palace, near Bristol; the new town, church, hotel, lighthouse, \&c., at Fleetwood; the Union Club, United Service Club, and Junior United Service Club, London; palm house, winter garden, \&c., at Kew; and numerous prirate houses. Died December 14, 1881, aged 81.
373. Anthony Salvin of Sauderland Bridge, Durham.-Designed Mamhead, near Ex-ter; Morly Hall; restored the hall at Brancepeth Castle; designed Methley Hall;

Parham Court, and many others; Peckforton Castle; restored the Beauchamp Tower and Traitors' Gate at the Tower of London; also Carnarvon Castle, with numerous others; the Curfew Tower and other works at Windsor; Alnwick Castle, Northomberland. Jesigued Ktele Hall, Staffordshire; Thoresby Hall, Nottinghamshire. Restored Petworth House ; Birdsall IIouse ; Fernhurst Church, Sussex; Kilndown Church; the Church of the Holy Sepulchre, Cambridge, \&c.; and Dunster Castle. Died December 17, 1881, aged 82.
374. Geuige Edmund Street of Woodford, Eszex.- Designed Hadley Church, Essex; others at Constantinople, Rome, Genoa, Lausanne, Veray, Mü̈rren, and Paris; All Saints' Church, parsonage, and schools, at Boyne Hill, Berkshire; Church of St. James the Less, Garden Street, Westmin-ter; St. Peter's Church, Bournemouth; and the nave to Bristol Cathedral. Restored south transept and the reredos at York Minster. Designed the Courts of Justice, London; the churches of St. Margaret at Liverpool ; All Saints at Clifton ; St. Mary Magdalene at Paddington; St. Saviour at Eastbourne; St. Johu at Torquay; St. Philip and St. James at Oxford; the Theological College at Cuddesdon; Dulecht House and Chapel. Restored Christ Church Cathedral, Dublin. He published "Brick and Marble Architecture in Italy," 8vo., 1855 ; "Gothic Architecture in Spain," 8vo, 1865 ; and wrote numerous papers and lectures. Died Dec. 18, 1881, aged 57.
375. Conte Comandatore Virginio Vespignani of Rome.-A Architect to the Church of St. Peter's at Rome. Died December 3, 1882.
376. David Rhind of London.-At Edinburgh designed the Commercial Bank Buildings ; Life Association of Scotland; Normal School, Chambers Street; Stewart's Hospital ; addition to the Assembly Hall un Castle Hill ; and the Commercial Bank, Glasgow. Died April 26, 1883.
377. Signor Emilio de Fabris of Florence. - Designed the new façade to the Cathedral of Santa Maria, at Florence, ordered 1869. Died (on the ere of the day appointed for uncovering this great work) June 28, 1883.
378. Heinrich Freinerr von Ferstel of Viema.-At Vienaa, the Votivkirche; the new University ; the Palace of the Grand Duke Charles Ludwig Victor; and several other works theroin. Died July 15, 1883, ag+d 55.
379. Jean Baptiste Cicéron Lesueur of Clairefontaine, near Rambeuillet, France.Designed the Parish Church at Vincennes ; Conserratoire de Musique at Geneva; at Paris, a great number of princely mansions; 1840 , extension and completion of the Hôtel de Ville (burnt 1871), \&c. Published, with F. Callet, "Edifices Publiques, \&e., de Turin et de Milan," 1855 ; "Vues Choisies des Monuments Antiques de Rome," 1827; "Chronologie des Rois d'Egypte," 4to., 1848; "Histoire et Théorie de l'Architecture," 1879. Died December 25 (${ }^{\text {' }}$), 1883, aged 89.
380. Théodore Ballu of Paris.-At Paris, he completed the Church of St. Clotilde (by Gau); carried out the reconstruction of the Hôtel de Ville after 1873 ; designed the churches of La Trinité and St. Ambroise ; restored the ancient Tower cf St. Jacques de la Boucherie; and the ancient Church of St. Germain l'Auxerrois. Died May 23, 1885, aged 68.
31 . Thomas Leverton Dosaldsin of London.--Designed the Church of the Holy Trinity, South Kensington ; the town mansion of Mr. H. T. Hope, in Piccadilly, with M. Dusillion of Paris; mansion for Mr. H. Hippisley at Lambourn, Berkshive; University Hall, Gordon Square ; the library and laboratury at University College, Gower Street; Gordon Street Church; Scotch Church, Wo Iwich; and Scottish Corporation Hall, Crane Court, Fleet Street. He published "Examples of Doorways from Ancient and Modern Buildings in Itrly and Sicily," 4to., 1833-36; "Lime, Mortar, Stucco, \&c.," 4to., 1840; "Architectura Numismatica," 4 to., 1859 ; read a vast number of papers at the Royal Institute of British Architects, of which he was the first secretary, and one of the chief f unders in 1835 : and was for many years Profes-or of Architecture at University College. Died August 1, 1885, aged 90.
382. Théodore Labrouste of Paris.-Designed the Maison Municipale de Santé, Faubourg St. Denis. Died November 28, 1885, aged 86.
383. Janes Fergussen of London.-Designed the picture gallery for Miss Nortlis paintings in Kew Gardens, illustrating his theory of lighting temples. Puklished "Rock-cut Temples of Indıa," 1845; "True Principles of Beauty in Art," 1849; "Picturesque Illustrations of Ancient Architecture of Hindostan," 1847; "Handbook of Architecture," 2 rols. 1855 ; " Mowlern Styles," 1862; "History of Architccture," 2 vols. 1865; "History of II dian and Eastern Architectur̃e," 1876; "'upography of Jerusalem," 1847; "Palaces of Nineveh and Persepolis restored," 1851; "Mausoleum of Halicaruassns," 186:" "Rude Stone Mom-

AFTER CHRIST.

ments," 1873 ; "Tree and Serpent Worship," 1873 ; "Temples of the Jews," 1878 ; "Cave Temples of India," 1880, with Mr. James Burgess; "The " Parthenon, an Essay on Lighting Temples," 1885 ; and many lectures and papers. Died January 9, 1886, aged 78.
384. Henry Hobson Richardson of Louisiana, U.S.A.-Educated at Harvard University, he proceeded, 1859, to Paris, where ho studied; settled at New York for three years, and then at Boston, where he designed Trinity Church and two others; 1878, Sever Hall, and 1881, Austin (Law School) Hall, both for Harvard University; the New York State Capitol at Albany from 1868, at an estimated cost of four million dollars, but will probably cost double that amount; in 1878, Messrs. Eidlitz, Richardson, and Olmsted were appointed joint architects, but to Richardson is due, after 1875, the south side, with a central stairease seventy feet square, and the Senate chamber, opened March 1881. He also designed, 1884, the County Buildings and the Jail at Alleghany, Pennsylvania; 1885, the Field Building or Store at Chicago, 325 feet long; the Cincinnati Chamber of Commerce, Ohio; with several libraries, dwelling-houses (including his own), railway stations, \&cc. He exercised great influence upon the architectural art of his country. Died April 27, 1886, agel 48.
385. R. Krrye Pensun of Oswestry.-He held several appointments in Carmarthenshire and Cardiganshire, and designed a large number of churches, residences, schools, bridges, and other works, especially St. Mark's Church, Wrexham; and Dynevor Castle, Llandilo, for Lord Dynevor; with numerous restorations of churches, \&c. Died May 22, 1886, aged 70.
386. John Prichard of Llandaff.-Was a pupil of A. W. Pugin, and held the position of diocesan architect for nearly forty years. Superintended the restoration of many churches, as well as that of the eathedral in conjunction with Mr. J. P. Seddon, the general restoration with Mr. T. W. Wyatt, and subsequently by himself. He remodelled, about 1865, Eatington Hall, Warwickshire; and designed the mansoleum of the Bute family at Cardiff Castle. Died Oct., 1886, aged C8.
387. George Vullamy of London.-A pupil of Sir C. Barry; travelled much abroad, returned in 1843. Succeeded Mr. Marrable at the Metropolitan Board of Works as superintending architect in 1861, and for whom he designed the group of buildings on the south side of Queen Victoria Street, near Bucklersbury; additional story, \&c., to the offices of the Board ; several of the Fire Brigide stations, \&c. Amongst his private works are the French Protestant Church, Bloomsbury; church, \&c.. at Queenhithe; the mernorial tower to the Earl of Ellesmere; Dyffryn in Merionethshire; the restoration of the north transept of Ruchester Cathedral; All Saints' Church, Ennismore Gardens; the pedestal and sphinxes for the Cleopatra's Needle, \&c. Died November 12, 1886, aged 69.
388. George Gordje of York.-He was pupil, and then partner with Messrs. Hadfield and Weightman of Sheffield. He removed to London, and designed the Church of St. Wilfrid, at York; the Pro-Cathedrals at Kensington, at Durban in Natal, and at Middlesborough ; the Cathedral at Sligo ; the Church of St. John of Jerusalem, in Great Ormond Street; Upsall Castle, and Weston Manor in the Isle of Wight; and many Roman Catholic churches, \&c. Died Marlı 1, 1887, aged 59.
389. Victor Marie Charles Ruprich-Robert of Paris.-He designed the Church of Flers; the r -storation of the Château d'Amboise ; the Church of Ste. Trinité at Caen ; the Church of Ouistreham in the Cuvados diocese. Besides "Flore Monumentale," 1866, and the monograph on the Church and Minnastery of Yal de Grâce, 1875, he had nearly completed a great work on "Norman Architecture in Normandy and Eugland." Died May 7, 1887, aged 67.
390. Sir Horace Jones of London.-Cominencing practice in 1846, he designem the British and Irish Magnetic Telegraph Company's offices, Threadneedle Street; the Sorereign Assurance office, Piccadilly; Royal Surrey Music Hall ; Cardiff Town Hall ; Casersham Park, and other buildings, warehouses, residences, \&c.; and was surveyor to sereral estates. In February 1864 he was appointed architect to the Corporation of the City of London, which office he held for twentythree years, for whom he designed, 1868, the Central Meat Market; 1875, the Poultry and Provision Market; 1883, the Fruit Market; 1871, the Foreign Catle Market at Deptford; 1877, the reconstruction and enlargement of Billingsgate Market ; and 1882, the rebuilding of Leadenhall Market, with large additions, \&c., to the Islington Cattle Market. He also compieted, 1364, the City Lunatic Asylum at Dartford ; designed, 1864, the new r.of and other works to the Guildhall; 1872, the library and muscum, and 1884, the new council chamber. Several stations for the City police; artizans' dwellings in Farringdon Road; the

AFTER CHRIST.

J. W. Barry as engineer; the Guildhall School of Music, on the Embankment; and the Temple Bar Memorial, are among his later designs. In 188\%-83 he was President of the Royal Institute of British Arehitects. Died May 21, 1887, aged 68.
391. Daniel Ramée of France - Much occupied for the "Monuments Historiques" of France. Restored the Palais de Justice at Beauvais; the Church of St. Vulfran at Abbeville, Notre Dame de Noyon, the Church of St. Riquier, that at Senlis, and many others. He published many works, especially "Histoire Générale de l'Architecture," $8 \mathrm{ro}, 1843 ; 2$ nd edit. 1862 ; and others named in the list of publications. Died September, 1887, aged 81.
392. Edward I'Ansun of London.-President of the Royal Institute of British Architects at the time of his death, January 30, 1888, aged 76.
393. George Godwin of London.-Edited "The Builder" from 1845 (vol. iii.), for nearly forty years, retiring in October 1883.—Died January 27, 1888, aged 73.

I N D E X

TO THE LIST OF

THE PRINCIPAL ARCHITECTS.

The numbers refer to figures which precede each name in the List.

Abate, N., 196
Abdallah ben Said, 26
Abdelrrahaman, 21
Abel, J., 235
Adam, R., 275
—W., 252
Etherins, 16
Agamedes, i.
Agnolo, B. d', 161

- G. d', 127

Agostino da Siena, 73
Aigner, P., 322
Alan de Walsingham, 89
Alberti, A., 107

- Leо B., 112

Alcock, J., 125, 210
Aldehuela, J. M. de, 300
Aldrich, H., 231
A leotti, G. B., 212
Alessi, G., 169
Algardi, A., 216
Aloisius, 15
Alonso, J. de, 95
Alypius, 12
Aman, J., 298
Amice, R., 144
Ammanato, B., 195
Andrea da Pisa, 72
_- di Cione, 91
Androuet du Cerceau, J.B., 205

- J., 206

Angelo da Siena, 73
Anthemius, 17
Antistates, xvi
Antoine, J. D., 279
Antoninus, 10
Apollodorus, 7
Aquete, D., 86
Archias, xxi
Argelius, xxiii
Arnold, 34
Arnolfo di Cambio, 69
Asheley, H., 143
Ashfiel̃, J., 118
Baccio d' Asrnolo, 161
Barozzi da Vignola, G., 172
Barry, Sir C., 333
Batrachus, xaxy

Bazhenov, V. I., 302
Beauchamp, R., 116
Bergamasco, Il. 147
Bergamo, B., 147
Berham, H. de, 46
Bernardino, A., 219
Rernini, G. L. $1 ., 217$
Berretini, P., 155
Berretta, L., 140
Berruguete, A., 179
Bibiena, F. G., 256

- G. G., 257
A. G., 258
- A. G., 259
F. G., 260

Blond, J. B. A. le, 244
Blondel, F., 224

- J. F., 266

Blouet, G. A., 325
Boccadoro, D., 134
Boeblinger, H. and M., 115
Boffrand, G., 249
Bolton, W., 126
Bonano, 43
Bonaventura, N., 80
Bonomi, J., 282
Borromini, F., 215
Boyden, W., 74
Bramante, 119
Bramantino, 104
Bray, Sir R., 116
Brenna, V., 30:
Brettingham, J., 267
——R. F., 268
Briosco, A., 156
Britton, J., 328
Brosse, J. de, 208
Brunellesco, 93
Bulfinch, C., 309
Bunning, J. B., 358
Buouarroti, M. A., 171
Buono, 38

- B., 146

Buontalenti, B., 198
Busketus, 27
Bustamente, B., 189
Cagnola, L., 311
Callias, xxii

Callicrates, xiv
Callimachus, xxvii
Cambiche, J., 194
Campbell, C., 241
Campero, J. de, 150
Canina, L., 329
Canonica, L., 342
Canterbury, 'T. of, 77
Carileplo, 30
Carr, J., 299
Celer, 3
Chambers, Sir W., 274
Chambiches, M., 132
Chelles, Jean de, 53
Chersiphron, iv
Chirosophus, vii
Chryses, 18
Ciccione, A., 106
Cione, A. di, 91
Cleodamas, xxx
Cloos or Close, N., 101
Cocceius Auctus, L., xli
Cockerell, C. R., 310,353
Cole, J., 129
Colechurch, P. of, 45
Contucci, A., 145
Cooley, T., 294
Corbie, P. de, 51
Cormont, T. de, 48
Coroebus, xix
Cortone, D. de, 134
P. da, 155

Cossutius, xxxi
Cotte, R. de, 226, 242
Coucy, R. de, 55
Covarrubias, A. de, 164
Cozzo, P., 42
Cristodoulos, 102
Cronaca, Il., 122
Ctesiphon, iv
Cyriades, 13
Cyrus, xxxix
Dance, G., 264
-_Jun., G., 288
Daniel, 15
Daphnis, v
Deane, Sir T., 351.
Demetrius, iv

Detrianus， 9
Dexiphanes，xxxvii
Dinocrates，xxv
Dioti Salvi， 37
Domingues，A．， 8.5
Dotzinger，Jost， 81
Dryell，J．， 98
Du Cercean，J．B．， 205
－J．， 206
1）urand，J．N．L．， 304
Eberhard， 24
Esinhardus，M．， 23
EImes，1I．L．， 318
Elyas， 46
Erlach，J．B．F．von， 238
Ernulf， 33
Erwin von Steinbach， 98
Essex，J．， 295
Estienne de Bonnenill， 49
liupalinus，vi
Jiupolemus，xxviii
Ezguerra，P．de， 182
Falconetto，G．M．，16：
Farleight，R．de， 79
Favaris，J．de， 62
Ferracini，13．， 42
Fioravanti，li．， 107
Fiorentino，A．，1s
Fischer，C．von，287
Fischers，J．13．， $2: 38$
－J．E．， 238
Fitz－Odo，E．， 47
Foix，l．de，zol
Fontana C．，2： 2 a a
－U．，1！
Forment，1）．， 177
Formentone，T．， 110
Förster，l．， 339
Francesco di Ciorgio， 109
Frontinus， 6
Fowke，F．，：4．
Fuccio， 63
Futitins or Fussitius，xlii
Fuga，F．， 269
Fulbert， 29
Gabriel，J．A．， 271
－J．， 246
Gadyer，P＇．， $1: 3$
Gacrtner，F．von， 316
Gainsborough， 92
Gainza，M．de， 17 б
Galilei，A．， 245
Galli Bibicua， 256 to 260
Gandon，J．， 289
Giandy，J．J1， 315
－Deering，1＇．J．， 819
Garcia，A．， 40
Gasse，S．and L．，312
Gay，J．， 320
Genga，G．and B．， 166
Giamberti，（i．， 131
－A．， 151
Gibbs，J．， 251
Gil de Ilontanons，J．， 159
－IR．， 160
Giocondo， 137
Giorgi，F．di， 109
fiovami da lisa，66
Cialio liomann， 173
Gomez de Mora，J．， $2: 3$
Gousloin，J．，286
Gunsalye，Sin，ot

Graham，J．G．， 326
Grand，J．G．le， 283
Gruamons， 39
Guniel，P．de， 149
Gundulphus， 33
Gwilt，J．， 341
Hacket，D．， 86
Hamilton，I）．， $3 \% 5$ T．， $3: 31$
Hardwick，P．， 348
Harrison，T．， 310
Haveus，＇T．， 187
Haviland，J．， 324
Hawksmore，N．，243
llawthorne，H．， 201
Heave，T．， 187
Heinricx， 176
Helyas de Berham，4is
IIenry Latomus， 75
Ilermodorns，xxxiii
IIermogenes，iii
llerrera，J．de， 191
IIilts， 11 ans， 83
Ilippodamus，xviii
1Iittorff，J．1．， 346
Holbein，Hans， 138
Holland，I1．， 2×1
Holt，T．，22－
Honecort，IV．de，60
Hooke，li．，230
Horwod，W．， 100
Hultr，Il．， $8: 3$
1Humbert， 28
Hylmer，J．，1：30
Ictinus，xiii
Inwood，Il．W゙．， 303
Isenbert， 45
Isidorus of Miletus， 17
－＿of Byzantium， 19
Ixnard，M．d＇， 250
Ivara，or Juvari，F．， 239
Jaeopo of Florenee， 5 는
－of Germany，59
James，J．， 247
Jansen，B．， 218
Jean de Chelles， 5.3
Joannes of Miletus， 20
Johannes de Middelton， 71
John of Padua，1．12
Jones，Inigo， 211
Juvara，F．， $2: 3$
Keldermans．J．，11：3
－li．， 139
Kendale，J．， 117.
K゙endall，J．，29：3
Kent，W．， 258
Keyes，R．， 9 ？
Klenze，L．von， 337
Labelye，C．，25．5
Lacer， 8
Lalye，M．， 132
Lalys， 35
Landfridus， 82
Lanfrancus， 31
Lanfrani，（i．．， 81
Langlans，K．G．， 284
Lapi，F゙．dei， 23
Lapo，A．di， 69
Lazzari，I）， 119
latomus，Ilcury， 75

Latrole，R．11．． $30 n$
Lauranna，L．， 111
Layens，M．de， 114
Le Blond，J．J．A．， 214
Ledoux，C．N．， 280
Le Grand，J．G．，28：；
Le Muet，P．，21：
Leoni，G．， 248
Lepère，J．B．，286， 346
Lescot，P．， 192
libergiers，Hues， 55
Libo，xii
Ligorio，P．， 220
Lombardo，M．， 121
—— P．， 124
－Sante， 170
－T．， 135
Lorenzo，San， 58
L＇Orme，l＇．de， 168
Lote，S．， $92 a$
Louis，V．， 278
Lucano，N．da San． 123
Luzarehes，R．de， 48
Machuca，P．， 184
Maderno，C．， 209
Maglione，F．，64
Majano，G．da，！ 6
Malcolm，E．， $17 t$
Mandrocles，viii
Danlio，F．， 158
Mansart．F．，25：
－J．II．， 232
Marsh，or Mareh， 228
Marshall，E．，174
Martino，L．dil， 111
Mascal，or Marshall，E．．， 1.4
Masnceio， 65
－Stephano， 68
Memno，ix
Menesicles，xv
Mercier，J．le，222，2：2
Merliano，G．， 157
Merlini，1）．， $29: 3$
Messidius，xliii
Meta，M．de，21？
Metagenes，iv，xix
Metezau，T．， 214
－C．， 226,231
Metrodorus， i
Michael Angelo，171
Michelozzi，M．， 94
Middelton，J．de， 71
Mignot，J．， 80
Mills，R．， 336
Mnesicles，xy
Mnesthes，xxiv
Modena，N．da， 196
Monegre，J．I．， 233
Montereau，P．de， 51
Montferrand，A．R．de，3：3
Morlanes，D．， 177
Mormando，G．F．， 128
Morrison，Sir I．，and W．V．． 817
Morton，－， 97
Muet，P．le， 213
Mustius， 5
Mutins，Cahins，xxxiv
Mylne，li．，：28：
Narbonne，11．di，$;$
Nash，J．， 306
Nicola of Pisa，fin
Norten，－， 97

Noveilo da S．Iucano，12；
Odo of Crovland， 34
Ololzago，G．di， 148
Orcagna， 91
Orchyearde，W．， 108
Orme，P．de l＇， 168
Ouguet，D．， 8 G
Parlua，J．of，142
Pronias，v
Paine，J．，2行
l＇alladio，A．， 197
Pautre，A．le， 225
Paxton，Sir J．， 344
Pennethorne，Sir J．，350
Percier，C．， 291
Perez，P． 69
Perrault，C．， 223
Perronet，J．R．， 272
Peruzzi，B．， 153
Peter of Colechurch， 40
Petroni，Dioti de＇， 37
Phæах，xxix
Philo，xxxii
Philoxenus，xliii
Piccino，－， 42
l＇icconi，A．， 152
Piermarini，G．， 301
Pierre de Corbie， 51
Pietro Gonsalso，S：an， 57
Pino，M．di 154
Pintelli，B．， 103
Pippi，G．， 173
Pisa，A．da， 72
G．da， 66
Piarfair，W．H．，3：${ }^{2}$
Pollajuolo，S．，1：2
Polyclitus，xx
Ponte，G．．dit， 221
Porden，W．， 323
Postumius， xl
Pozzo，G．del， 105
Puget，P．， 230
Pugin，A．， 305
－A．W．N．， 321
Pythius， x
Rabrius， 4.
Raffaello d＇Urbino， 141
Raimond du Temple， 78
Ravy，J．， 82
Raざmundo， 46
lieade，W．，90
Rhoecus，ii
Ricard de Montferrand，A，33－2
Riccio，A．， 156
Riekman，T．， 313
Ripley，T．， 254
Rizzio，－， 12
Robert，46， 79
Robert de Luzarclies，
Romain，F．， 246
Romano，G．，17：
Romualdus， 22
Ruiz，F．， 183
Sacchetti，G． 261
Sanchez，J．， 180
Sanctis，G．de， 68
San Gallo，A．，151， 152
－G．G．， 131
San Lorenzo， 58
San Lucano，N．da， 123
San Micheli，M．， 167
San Pietro Gonsalvo， 57
Sansarino，A．，145， 186
Sante Lombardo， 170
Sanzio，R．， 141
Satyrus， \mathbf{x}
Saurus，xxxvi
Scammozzi，V．， 207
Schinkel，C．F．von， 314
Scopas，xvii
Sennamar， 14
Sens，W．of． 44
Serlio，S．， 193
Servandoni，J．N．， 263
Severus， 3
Shute，J．， 200
Siloe，D．， 165
Simonetti，M．A．， 270
Smirke，Sir R．， 347
Smithsen，R．and H．， 203
Soanc，Sir J．， 290
Sostratus，xxyii
Soufflot，J．G．， 273
Spintharus，xi
Steinbach，E．von， 68
Suardi，B．， 104
Sugger， 41
Tarchesius，xxiii
Tatti，J．， 186
Taylor，Sir R．， $2 \overline{6} 6$
Teotocopuli，D．， 188

Tessin，N．V．， 2.96
——Count N．， 237
Texier，C．， 349
Theodorus，ii
Thomas of Cantrrbury， 7
Thomoud，T．， 296
Thorpe，J．， 175
Tietland， 25
Tioda， 24
Tite，Sir W．， 353
Toledo，J．B．de， 190
Tomaso，－， 43
Tresham，Sir T．， 202
Trophonitus， i
Uria，I．de， 163
Ustamber，I＇．de， 29
Valdevira，P．de， 181
Valerins，xxxviii
Vanlrugl，Sir J， 240
Vanvitelli，L．， 265
Vertue，W．， 131
Vinci，L．da， 136
Vignola， 172
Visconti，L．T．J．， 830
Vitoni，V．， 120
Vitruvius Cerdo， 2
Vitruvius Pollio，M．， 1
Walsingham，A．de，89）
Walter de Weston， 76
Walters，E．， 35%
Warren，J．， 210
Weston，W．de， 76
Wilhelmus， 43
Wilkins，W．， 308
William de Wynford， 88
——ot Sens， 44
－of Wykenam， 87
－the Englishman， 44
Wood，J．， 262
Wren，Sir C．， 229
Wyatt，J．， 297
W yatville，Sir J．， 207
WYkeham，W．of， 87
Wynford，W．de， 88
Yevele，or Zcneley，II．，92a
Zanth，L．von，343， 346
Zwirner，E．F．， 334

ADDITIONAL LIVES（1888）．
Ballu，T．， 380
Barry，E．M．， 366
Blore，E．， 362
Brandon，R．， 358
Bryce，D．， 357
Burges，W．， 371
Burton，D．，37：
Cluysenaar，J．P．， 367
Donaldson，T．I．， 381
Duc．J．L．， 363
Fabris，E．de， 375
Fergusson，J．， 383
Ferrey，B．， 369

Ferstel，11．von， 378
Godwin，G．， 393
Goldie，G．， 388
I＇Anson，E．， 392
Jones，O．， 354
Jones，Sir H．， 390
Labrouste，P．F．H．， 356
Labrouste，T．， 382
Lesueur，J．B．С．， 379
Penson，R．K．， 385
Prichard，J．， 386
Ramée，D．， 391
Rhind，D．， 376
Richardson，II．H．． 384

Ruprich－Robert，V．M．C．， 389
Salvin，A． 37.3
Scott，Sir G．（., 361
Semper，G．， 364
Smirke，S．， 359
Strack，J．H．， 368
Street，G．E．， 374
Thrimson，A．， 355
Vespignani，V．， 375
Viollet－le－Duc，E．E．， 365
Vulliamy，G．， 387
Wyatt， Sir M．1）．， 360
Wyatt，T．H．． 370

A CATALOGUE

OF THE PRINCIPAL AND MOST USEFUL

publications relating TO Architecture.

ARRANGED UNDER THE FOLLOWING CLASSES:

I. GRECIAN ARCHITECTURE . PAge	xi. statics, STrains, strength, MECHANICS, TABLES, \&c. . 1182
III. OTHER COUNTRIES: ANCIENT ARCHITECTURE :	III. PRACTICAL WORKS OF CONSTRUCTION 1184
A. Assyria, Baiblonia, Persia, \&c. 1164	XIII. FIREPROOF CONSTRUCTION AND PROTECTION . . . 1186
B. Africa, Asia, Spain . . . 1164 C. Egypt, Holy Jand, \&c. . . 1165	XIV. BRIDGES AND ARCHES . . 1186
D. India, \&c. 1165	PCIFICATIONS
E. Great Britain, Russia, France, \&c. 1166 F. Nortil and South America . 1166	TRADES, OFFICE WORK . . 1188 XVI. DESIGN, DRAWING, PERSPEC- TIVE 1188
1v. GOTHIC AND RENAISSANCE ARCHITECTURE: A. Great britain and Ireland. 1166	III. ORNAMENT, DECORATION, BRASSES, \&c. 1189
B. Other Countries . . . 1169 V. MODERN ARCHITECTURE: A. Great Britain and Ireland. 1172	XVIII. COLOURED DECORATION, STAINED GLASS, PAINTS, HERALDRY, \&c. 1193
B. France and Belgium .1174 C. Germany, \&c. . . D. Spain, Italy, Russia, \&c. $\mathbf{1 1 7 5}$	XIX. SURVEYING, MENSURATION, LEVELLING, QUANTITIES, PRICES, ESTIMATING • . 1195
VI. THEATRES • 1177 VII. RURAL ARCHITECTURE, GAR- DENS, STABLING, \&o. . . 1178	XX. LAW, DILAPIDATIONS, FIXTURES, LIGHT AND AIR, ESTATES, \&c.
VIII. HISTORY OF ARCHITECTURE, THEORY, \&c. 117	XXI. SCIENTIFIC SUBJECTS, \&c. . 1196
IX. ELEMENTARY WORK, ORDERS,	WARMING • • . . 1197
DETAILS, MOULDINGS . . 1180	XXIII. DICTIONARY, BIOGRAPHY,
X. MATERIALS 1181	JOURNAL 1199

[^6]
publications relating to architecture.

I. GRECIAN ARCHITECTURE.

Averdeen, Earl of. Inquiry into the Principles of Beauty in Grecian Architecture. 8vo. Aikin, E. Essay on the Doric Order. Folio. 1810
[1822.
Aurès. Théorie du Module déduite du texte de Vitrure. 8ro. Nismes, 1862.
Beulé, E. L'Acropole d'Athenes. 2 vols. 8 ro. Paris, 1853.
Blouet, A. Expédition Scientifique en Morée. 3 rols, folio. Paris, 1826-39.
Botticher, A. Olympia. 8ro. Berlin, 1883.
Canina, L. L' Architettura Antica. 5 vols. 8 ro. and folio. Rome, 1834-43.
Carapanos, C. Dodone et ses Ruines. 4to. Paris, 1878.
Choiseul-Gouffier. Voyage Pittoresque de la Grèce. 2 vo's. folio. Paris, 1782-1809.
Clarke, J. T. American Explorations at Assos. 4to. Cambridge, U.S.A., 1883.
Cockerell, C. R. Temple of Jupiter Olympius at Agrigentum. Folio. 1825.
——The Temple at Agina and at Bassæ. Folio. 1860.
Darid, F. A. Antiquités Etrusques, Greeques, et Romaines ; with explanations by Hugues d'Hancarville. 5 vols. Paris, 1787.
Delagardette, C. M. Les Ruines de Pæstum, ou Posidonia. Folio. Paris, 1799.
Donaldson, T. L. Collection of the most approved Examples of Doorways from Ancient Buildings in Greece and Italy. 2 rols. 4to. 1833.
[8ro. 1859. - Architectura Numismatica, or Architectural Medals of Classic Antiquity. Plates,

Falkener, E. Dædalus; or, the Cause and Principles of the Excellence of Greek Sculpture. 8vo. 1860. Fphesus and the Temple of Diana. 8vo. 1862.
Faso Pietrasanto, D. (Duca di Serradifalco). Le Antichità della Sicilia. 5 vols. folio. Palermo, 1834-42.
Fergusson, J. The Parthenon ; an Essay on the Mode by which Light was introduced into Greek and Roman Temples. 4to. 1883.
Gaertner, F. Monuments of Greece and Sicily. Folio. Munich, 1519.
Geymüller, H. de. Samothrace. 8vo. Paris, 1882.
Gwilt, J. Essay on Grecian Architecture, to his edition of The Decorative Part of Civil Architecture, by Sir W. Chambers. 8ro. 1825.
Harris, W., and Angell. S. Metopes of the Temple at Selinus. 4to. 1826.
Hittorff, J. İ., and Zanth, L. Architecture Antique de la Sicile. Folio. Paris, 1825-37 2nd edition. Text, 4to. Plates, folio. Paris, 1870.
Ittar, S. Raccolta degli Antichi Edificj di Catania. Folio Catania, 1812.
Krell, - On the Doric Style : 24 tables by Stall. 1870.
Labrouste, H. Les Temples de Pæstum. Folio. Paris, 1877.
Le Roy, J. B. Les Ruines des plus beaux Monuments de la Grèce, considérées du côté de l'Histoire et du côté de l'Architecture. Folio. Paris, 1758.
Luynes (le Duc de), and Debacq, F. J. Métaponte. 10 plates, folio. Paris, 1833.
Major, T. Ruines de Pæstum. 24 plates, folio. 1768.
Michaelis, A. Der Parthenon. Folio. Leipzig, 1870.
Müller, K. O. Ancient Art and its Remains; or, a Manual of the Arcbæology of Art. 2nd edition, 8vo. 1852.
[Chambers. Folio. 1826.
Papworth, J. B. Essay on Grecian Architecture, to his edition of the Work by Sir W.
Pennethorne, J. Elements and Mathematical Principles of the Greek Architects and Artists, \&c. 8vo. 1844. The Geometry and Optics of Ancient Arehitecture, illustrated by exampies from Thebes, Athens, and Rome. Folio. $18 \% 8$.
Penrose, F. C. Principles of Athenian Architecture; with reference to the Optical Refinements of the Ancient Buildings at Athens. 42 plates, folio, 1851.
Puchstein, O. Das Ionische Capitell. 4to. Berlin, 1887.
Quatremère de Quincy, A. C. Jupiter Olympien. Folio, plates. Paris, 1815.
_Restitution des deux frontons du Temple de Minerve à Athènes. 4 to. Paris, 1825.
Schliemann, H. Troy and its Remains. 8ro. 1875. Mycenæ: A Narrative of Researches and Discoveries at Mycenæ and Tiryns. 8ro. 1878. Ilios: the City and the Country of the Trojans. 8ro. 1880. Exploration of the Bœotian Orchomenus. 8ro. 1881. Troja: Results of the latest researches, \&c. 8vo. 1884. Prehistoric Palace. 4to. 1886.
Smith, W. Dictionary of Greek and Roman Antiquities. 2nd edition, 8ro. 1848.
Society of Dilettanti. Unedited Antiquities of Attica, comprising the Architectural Remains of Eleusis, Rhamnus, Sunium, aud Thoricus. Edited by Wilkins, GandyDeering, and Bedford. Folio. 79 plates. 1817, 1833.
[1840, and 188].
_-... Antiquities of Ionia, by Chandler, Revett, and Pars. Folio, 4 vols. 1769-97,

Stanhope. J. S. Olympia; or, Topograplyy of the ancient state of the Plain of Olympia, and of the Ruins of the City of Elis. Folio. 182 t.
[1842. Stewart, J. R. Ancient Monuments still existing in Lydia and Phrygia. 20 phater, folio. Stuart, J., and Rerett, N. Antiquities of Athens. 4 rols folio. 1762, 1787, 1794. And a supplementary volume edited by J. Woods in 1816. A second edition, with considerable additions; edited by W. Kinnard, with a supplement of Antiquities in Greece, Sicily, \&c., by C. R. Cockerell, W. Kimmard, T. L. Donaldson, W. Jenkins. and others. 4 rols. folio. 1825-30. The plates in the three first volumes of this edition are from the coppers of the French edition, by J. J. Hittorff. Folio. Paris, 1808-22. Visconti, E. Q. Ourrages de Sculpture du Parthénon. 8ro. Paris, 1818.
West, W. R. Grecian Temples, how roofed and lighted. 4tn. Philadelphia, 1866.
Wilkins, W. Antiquities of Magna Græcia. Folio. Cambridge, 1807.
Prolusiones Architectonicæ; or, Essays on Subjects connected with Grecian and Roman Architecture. 2nd edition, 4to. 1837.

Topogruphy and Buildings of Athens. Sro. 1816.
Williams, II. W. Select Views in Greece, with Classical Illustrations. 4to. 1827.
Wood, J. T. Discoreries at Ephesus, including the site and remains of the Great Temple of Diana. 8ro. 1877.

II. ROMAN ARCHITECTURE.

Adam, R. Ruins of the Palace of the Emperor Diocletian at Spalatro in Dalmatia. Adler, F. Das Pantheon zu Rom. Berlin, 1872.
[Folio, 61 plates. 1764. Allason, T. Picturesque Views of the Antiquities of Pola. Folıo, 14 plates. 1817.
Bartoli, P. S. Gli Antichi Sepolchri orrero Mausolei Romani ed Etrusehi. Folio, 110 plates. Roma, 1727. Colonna Trajana, a P. Bellori. 128 plates.
Bellori, J. P. Veteres Arcus Augustorum Triumphis insigncs ex Reliquiis que Roma adhuc supersunt, per J. J. de Rubeis. Folio. Roma, 169\%. and Caussen, M. A. Picturæ Antiquæ Cryptarum Romanarum et Sepuleri Nasonum delineatæ. Folio. Roma, 1750.
[Eolio. Roma, 1812.
Bianchi di Lugano, P. Osservazioni sull' Arena, e sul Podio dell' Anfiteatro Flavio. Bianconi, G. L. Descrizione dei Circhi. Folio, 20 plates. Roma, 1789.
Burn, R. Rome and the Campagna. History and Topographical Description of the Site, Buildings, and Neighbourhood of Ancient Rome. 4tn. 1871.
Cameron, C. Baths of the Romans explained. Folio, 75 plates. 1772.
Canina, L. Gli Edifizi di Roma Antica engniti per alcune importanti reliquie. 6 vols. folin. Roma, 1848-56. [medesima 2nd edition, folio. Ruma, 1846. __ Ricerche sull' Architettura, più propria dei Tempj Cristiani e applicazione della L' Architeltura Antica. 5 vols. 8ro. and folio. Roma, 1834-43.
L' Antica Etruria Marittima compresa nella Dizione Pontificia. 2 vols. folio. Roma, 1846-49.
Caristie, A. Plan et Coupe d'une partie du Forum Romain et des Monuments sur la Voie Sacrée. Atlas folio. Paris, 1821.
Cassas, L. F. le. Voyage Pittoresque de l'Istrie en Dalmatie. Folio. Paris, 1802.
Castell, R. Villas of the Ancients Illustrated. Large folio. 1728.
Choisy, A. L'Art de Bâtir chez les Romains. Folio. Paris, 1873.
Ciampini, J. Romæ Vetera Monumenta. Folio. Romre, 1690-99, 1747.
Cipriani, G. B. Monumenti di Fabbriche Antiche. 4to. Roma, 1796.
Cockburn, Col. J. P., and Donaldson, T. L. Pompeii Illustrated. 2 vols. Folio, 1827.
Darid, F. A. Antiquités Etrusques, Grecques et Romaines; with explanations by Hugues d'Irancarville. 5 rols. Paris, 1787.
Daris, N. Carthage and its Remains. 8ro. 1860.
Dennis, J. The Cities and Cemeteries of Etruria. 2 rols. 8ro. 1848.
Desgodetz, A. Edifices de Rome, dessinés et mesurés très exactement. Folio, upwarls of 300 plates. Paris, 1682.
Dodwell, E. Views and Descriptions of Cyclopean or Pelasgic Remains in Greece and Italy. Folio. 1833.
Donaldson, T. L. Temple à la Victoire; monument commémoratif à Messène: Plan géometral et Vue avec explication historique. 4to. 1876.
Dyer, T. Pompeii ; its History, Buildings, and Antiquities. 2nd edit. 8ro. 1868.
Gell, Sir W., and Gandy, J. P. Pompeiana ; tho Topography, Edifices, and Ornaments of Pompeii. 2 rols. 8vo. 1824.
Geymüller, H. de. Documents Inédits sur les Thermes d'Agrippa, le Panthéon, et les Thermes de Dioclétien. 4to. Lausanne, 1883.
Grangent, M. M., Durand, C., et Durant, S. Iescription des Monuments Antiques du Midi de France. Folio, plates. Paris, 1819.

Gutensuln, J. G., and Knapp, J. MI. Denkmale der christlic'sen Refigion \&c., oder Basiliken Roms. Fulio, Stuttgart, 1822-27; and folio, Romit, 1823.
Haudebourt, L. P'. Le Laurentin; Maison de Campagne de Pline le Jeune. Plates, 8vo. Paris, 1838.
Jordın, H. Tempel der Vesta. 4to. Lerlin, 1886.
Labacco, A. Libro d'A. L. appartenente all' Architettura nel qual si figurano alcune notabile Antiquiti di Roma. Plates, folio. Roma, 1552, 1558.
[1829. and 1838.
Maznis, F., aud Gau. F. C. Les Ruines de Pompéi. 4 vols. folio. Paris, 1812, 1824 ,
Middleton, J. H. Ancient Rome in 1885. 8ro. Elinburgh, 1885.
Nibby, A. Del Foro Romano, della Via Sacra, dell' Anfiteatro Flavio, e dei Luoghi arjacenti. 8ro. Roma, 1819.
[Napoli, 1854-65.
Niccolini, F. and F. Le Case ed i Monumenti di Pompei. Vols. I and 2, \&e. Folio.
Palladio, A. I Quattro Libri d' Architettura: the last hook treats of ancient Roman Architecture. Figures on wool biocks. First edition, folio. Venice, 1570. Sereral later editions.
[Folio. Milimo, 1803. Il Tempio di Minervit in Assisi confrontato colle Tarole di Gior. Antolini. Les Thermes des Romains, dessinées pur O. B. Scamozzi, d' près l'Exemplaire du Lord Burlington. Folio. Vicenza, 1785.
Paoii, P. R sine della Città di Pesto. Folio. Roma, 1784.
[Oxford, 1883.
Parker, J. H. The Archrology of Rome. 2nd edition, revised and enlarged. Sro.
The Twelve Egyptian Otelisk in Rome; their History explained by translations of the Inssriptions upon them. 2nd edition, 8ro. Oxford, 1879.
P'ennethornc, J. The Geometry and Optics of Ancient Architecture: Thebes, Athens, and Rome. Folio. 1878.
Perret, L. Catacombes de Rome. 6 rols. 327 plates, fulio. Paris, 1851.
Piranesi, Gior. Bapt. The works of (the son) subsequent to the death of John Baptist Piranesi. 29 rols. imperial folio. Roma, 1756-1\&07. An abbreviated list of them is subjoined :-

Vol. 1. Ruins of ancient Elifices of Rome, with the Explanation, Aqueducts, Bathe, the Forum, \&c. \&c.
Vol. 2. Funeral Monuments, Cippi, Vases, \&c. \&c.
Vol. 3. Ancient Bas-reliefs, Stuccoes, Mosaics. In-criptions, \&c. \&e.
Vol. 4. The Bridges of Rome, the Ruins of the Theatres, Porticoes, \&c. \&c.
Vol. 5. The Momments of the Scipios.
Vol. 6. Ancient Temples, the Temples of Vesta, of Honour and Virtue, Statue of the Goddess Vesta, Altar to Bacchus, the Pantheon of Rome, \&c. \&c.
Vol. 7. The Magnificence of the Ancient Roman Architecture, Pedestals of the Arches of Titus and Septimus Sererus, Portico of the Capitol, \&c. \&c.
Vol. S. Grecian, Etruscan, and Roman Architecture, Arches of Triumph, Bridges, Temples, Amphitheatres, Prisons, \&c.
Vol. 9. Fêtes and Triumphs, from the Foundation of Rome to Tilerius, Temple of Castor and Hercules, and other simple Monuments of the Ancient City of Cora, \&c. \&c.
Vol. 10. The aucient Campo Marzio, Ruins of the Theatre of Pompeii, Portico of Octarius, Reserroir of the Virgin Water, Mausolemm of Augustus, Palace of Aurelius, the Pantheon, the Cave of the Archives of the Romans, Baths and Tombs of Adri in, Apotheosis of Antonine the Pious, Arch of Marcus Aurelius, Baths of Sallust, Plan of the Roman Senate House, \&c. \&c.
Vol. 11. Antiquities of Albano, Temple of Jupiter, Sepulchral Attributes to the Horatii, Amphitheatre of Domitian, ancient Baths, \&e.
Vol. 12. Ancient Candelabra and Vases, Urns, Lamps, \&c. \&c.
Vol. 13. Ancient Candelabra and Vases, Urns, Lamps, \&c. \&c.
Vol. 14. The Trajan and Antonino Columns.
Vol. 15. Ruins of Pæstum, Temple of Neptune, Temple of Juno, \&e. \&e.
Vol. 16. The Principal Modern Edifices of Rome, Monuments, Palaces, Fountains, Aqueducts, Bridges, Temples, Porticoes, Amphithoatres, Baths, \&c. \&c.
Vol. 17. The Principal Modern Edifices of Rome, Monuments, Palaces, Fountains, Aqueducts, Bridges, T'emples, Porticoes, Amphitheatres, Baths, \&c. \&c.
Vol. 18. The Principal Ancient Statues and Busts of the Royal Museum of France, the Vatican, of the Capitol, Villa Borghese, Villa Ludovici, Farnesian Palace, the Gallery of Florence, \&c. \&c.
Vol. 19. Theatre of Herculaneum.
[ぶc. \&c.
Vol. 20. Egyptian, Grecian, Etruscan, and Ronaan Chimney Pieces, Ornaments, Vol. 21. Forty-four Plates after Guercino, by Pirancsi, Bartolozzi, \&c.
Vol. 22. Italian School of l'ainting.
[neum, sce itr.
Vol. 23. Twenty-four grand Subjects from Rafacle, Volterra, Pompoii, Hercula-
Yol. 24. Twelve Paintings of Rafaclle, in the Vatican, \&e. \&c.

Yol. 25. Fourteen Paintings of Rafaelle, in the Vatican, \&c. \&c.
Vol. 26. Thirteen Paintings of Tasari, after the Designs of Michael Angelo, \&c. \&ce.
Vol. 27. The Destruction of Pompeii, its Tombs, Utensils, Ornaments, \&cc. \&c.
Vol. 28. Antiquities of Pompeii, its Houses, Tombs, Vases, \&c.
Vol. 29. Antiquities of Pompeii and Herculaneum, \&c. \&c.
Pistolesi, E. Antiquities of Herculaneum and Pompeii. English, Franch, and Italian text. 2 rols. 4to. Naples, 1842.
Pollen, W. H. Column of Trajan. 8 ro. 1875.
Ponce, N. Description des Bains de Titus. Folio, plates. Paris, 1786.
Roller, T. S. Clément de Rome; Description de la Basilique souterraine récemment découverte. 8ro. Rome, 1873.
Rossi, De. La Roma Sotterranea. 40 plates, folio. Roma, 1865.
Rossini, L. Le Antichità Romane. 100 large plates, atlas folio. Roma, 1820, \&c. Roux, H., Bouchet, A., et Barré, M. L. Recueil d'Herculaneum et Pompéi. 8 vols. 4to. Paris, 1837-40.
Smirh, R. M., and Porcher, E. A. History of the recent Discoveries at Cyrene in 18601861. 60 plates, folio. 1864.

Taylor, G. L., and Cresy, E. Architectural Antiquities of Rome. 2 vols. folio. 1820 1822. Second edition with additions, folio. 1874.

Valadier, G. Raccolta delle più insigni Fabbriche di Roma Antica e sue Adjacenze, illustrata con Osserrazioni Antiq. de F. A. Visconti. Plates. Roma, 1810-26.
Vasi, G. Magnificenze di Roma Antica e Moderna. 3 vols. Roma, 1747.
Vaudoyer, A. L. T. Description du Théâtre de Marcellus à Rome. 4to. Paris, 1812.
Wey, F. Rome ; with an Introduction by W. W. Story. 4to. 1872.
Winckelman, J. J. Remarques sur l'Architecture des Anciens. 8ro. Paris, 1783.
Histoire de l'Art chez les Anciens. 3 vols. 4to. Paris, 1790.
Monumenti Antichi Inediti. 2 vols. folio. Napoli, 1820.
Wood, R. Ruins of the Balbec and Palmyra. 2 rols. folio. 1753-57.
Zestermann, A. Die antiken und christlichen Basiliken. 4to. Leipzig, 1847.

III. OTHER COUNTRIES: Ancient Architecture.

A. Assyria, Babylonia, Persia, \&c.

Bonomi, J. Ninerel and its Palaces. 8ro. 1852.
Botta, P. E., and Flandin, E. Monuments de Ninire. 5 vols. folio. Paris, 1849-50. Fergusson, J. The Palaces of Nineveh and Persepolis restored. 8ro. 1851. Flandin, E., and Coste, P. Voyage en Perse. 6 vols. folio. Paris, 1851.
Layard, A. H. Researches and Discoveries in Nineveh, and an Enquiry into the Arts, \&c., of the Ancient Assyrians. 4th edition, 2 vols. 8ro. 1850. Monuments of Nineveh, from drawings made on the spot. Folio. 1849. The Palace of Sennacherib. Folio. 1853.
Loftus, W. K. Travels and Researches in Chaldæa and Susiana. 8ro. 1857.
Perrot, G., and Chipiez, C. Histoire de l'Art dans l'Antiquité. Chaldée et Assyrio. 8vo. Paris, 1884.
Place, V. Ninise et l'Assyrie. 8 ro. and folio. Paris, 1867-70.
Rich, C. J. Ruins of Babylon and Persepolis. 8ro. 1816.
Texier, C. Description de l'Asie Mineure. 3 vols. folio. Paris, 1839.
Description de l'Arménie, la Perse et la Mésopotamie. 2 vols. folio. Paris, 1842. and Pullan, R. P. Byzantine Architecture : being a collection of Monuments of the earliest times of Christianity in the East. Folio. 1864.

Principal Ruins of Asia Minor. 63 plates. Folio. 1865.

B. Africa, Asta, Spain.

Berbrugger, L. A., and others. L'Algérie historique, pittoresque ot monumentale; Algiers, Oran, Bona, and Constantine. 3 vols. folio. Paris, 1844.
Bourgoin, J. Les Arts Arabes; Architecture, Menuiserie, Bronzes, \&c. Folio. Paris, 1868-73.
Carmona, M. S. Antigüedades Árabes de Granada y Córdoba. Folio. (Madrid), 1868. Girault de Prangey. Monuments Arabes et Moresques de Cordoue, Séville et Grenade. Folio. Paris, 1840.
_ Essai sur l'Architecture des Arabes et des Mores en Espagne, en Sicile et en Barbarie. 8 ro. Paris, 1841.
-_ Monuments Arabes d'Egypte, de Syrie et d’Asie Mincure. Folio. Paris, 1846-47. Grimm, D. Monuments d'Architecture en Géorgie et en Arménie. Folio. Petersburg, 1864.

Jones, O., and Goury, J. Plans, \&c., of the Alhambra. 2 vols. folio. 1838-42.
Le Bon, G. La Civilisation des Arabes. 4to. Paris, 1884.
Murphy, J. Arabian Antiquities of Spain. 97 plates, folio. 1828.
Salzenberg, W. Altchristliche Baudenkmale Constantiropels rom V. bis XIII. Jahrhundert. Folio. Berlin, 1854.
Spanish Government. Monumentos Arquitectónicos de España. French and Spanish text. 2 parts, folio. Madrid, 1859-86.
Taylor. L'Alhambra. 10 coloured plates, folio. Paris, 1853.

C. Egypt, Holy Land, \&e.

Relgrado, Ab. di. Architettura Egiziana. 4to. Parma, 1786.
Canina, L. L' Architettura Antica; Egiziana, \&c. 5 vols. folio; text 4to. Roma, 1834-43. Cassas, L. F, de. Voyage Pittoresque de la Syrie, de la Phénicie, de la Palestine, et de la Basse-Égypte. 2 vols. folio. Paris, 1798.
Cesnola, L. P. di. Cyprus: is Ancient Cities, Tombs, and Temples. 8vo. 1877.
Coste, P. Architecture Arabe ; ou Monuments de Caire. Folio. Paris, 1820-22.
Denou, V. Voyage dans la Basse et la Haute-Égypte. Folio. Paris, 1802. Translated by Aikin. 4to. 1803.
[4to. 1878.
Fergusson, J. Temples of the Jews and other Buildings in the Haram area at Jerusalem.
Gau, F. C. Antiquités de la Nubie; ou Monuments inédits des Bords du Nil, situés entre la première et la seconde Cataracte. Folio. Paris, 1824-25.
Hay. R. Illustrations of Cairo and Egypt 30 plates, folio. 1840.
Lepsius, C. R. Denkmäler aus Aegypten und Aethiopen, \&cc. New edition, 6 vols. folio. Berlin, 1849-59.
——— Letters from Egypt, translated by L. and J. C. Horner. 8vo. 1853.
Long, G. Egyptian Antiquities in the British Museum, viz. monuments, obelisks, temples, sculpture, statues, pyramids, \&c. 2 vols. Svo. 1832.
Mariette Pacha, F. A.F. Le Sćrapéum de Memphis. Folio. Paris, 1857-63.
_- Choix de Monuments et de Dessins découverts, pendant le déplacement du Sérapéum. tto. Paris. $185 \overline{6}$.

- Abydos; Vol. 1, Ville Antique, Temple de Séti. Folio. Paris, 1869. Monuments divers recueillis en Egypte et en Nubie. Folio. Paris, 187%.
The Monuments of Upper Egypt. Sro. Alexandria, 1877.
Parker, J. H. The Twelre Egyptian Obelisks in Rome; their History explained by translations of the Inscriptions upon them. 2nd edition, 8ro. Oxford, 1879.
Pennethorne, J. The Geometry and Optics of Ancient Architecture. Folio 1878.
Perring, J. E., Andrews, E. J., and Vyse, Col. The Pyramids of Gizeh, from actual survey in 1837. Folio. 1839-42.
Perrot, G., and Chipiez, C. Histoire de l'Art dans l'Antiquité. L'Égypte. 8ro. Paris, 1882. Phénicie, Cypre. 8ro. 1885. Judée, Sardaigne, Syrie, Cappadoce. 8ro. 1887.

Prisse d'Arennes. L'Art Arabe d'après les Monuments du Kaire depuis le VII ${ }^{\circ}$ Siécle à la fin du XVIII ${ }^{\circ}$. Folio. Yaris, 1869-73.
Quatremère de Quincy, A. C. L'Architecture Égyptienne considérée. 4to. Paris, 1803.
Rosellini, I. I Monumenti dell' Egitto e della Nubia illustrati. New edition, 10 vols. 8ro., 3 s vols. folio. Pisa, 1835-47.
Sharpe, S. History of Egypt from the Earliest Times till the Conquest by the Arabs, 640 a.d. 2 yols. 8 ro. 1859.
Teynard, F. Egypte et Nubie; Sites et Monuments. Folio. Paris (1858).
Thrupp, J. F. Ancient Jerusalem. History, Topography, and Plinl of the City, Environs, and Temple. 8vo. Cambridge, 1855.
Tournefort, J. P. de. Voyage into the Levant. 2 vols. 4to. 1718.
Vogiié, M. de. Les Églises de la Terre Sainte. 4to. Paris, 1860.
Le Temple de Jérusalem; Monographie du Haram-ech-Cherif. Folio. Paris, 1864.
Wilkinson, Sir J. G. Manners and Customs of the Ancient Egyptians. Two series. 5 rols. 8ro. 1837-46.
Williams, G. The Holy City : Notices of Jerusalem; with Professor Willis's Arehitectural Historer of the Holy Sepulchre. 2nd edition, 2 vols. 8vo. Cambridge, 1849.
Wilson, E. Cleopatra's Needle, with Notes on Egypt and Egyptian Obelisks. 8ro. 1878. Our Egyptian Obelisk. 4th edition, 8ro. 1877.

D. India, \&c.

Cole, H. II. Ancient Buildings in Kashmir. . Photog. 4to. 1869.
Cunningham, A. On the Aryan Order of Architecture as exhibited in the Temples of Kawhnir. 8ro. Calcutta, 1848.
Daniell, T. and W. Oriental Scenery. 9 vols. folio. 1813.
Dixon, -. Orissa and its Temples and Rock-cut Caves. Folio. 1860.

Fergussom, J. Illustrations of the Rock-cut Temples of India. 8ro. and folio. 181, l'icturesque Illustrations of Ancient Arehitecture in Hindostan. 17 plates, folio. 1817.

Tree and Serpent Worship ; or, Illustrations of Mythology and Art in India in the first and fourth centuries after Christ, from the Sculptures of the Buddhist Topes at Sanchi and Amravati. 4to. 1868.
___ and Burgess, J. The Care Temples of India. 8vo. 1880.
Kaye, J. W. Simpson's India, Ancient and Modern, after his Water-colour Drawings. 2 vols. folio 1870.
Langles, L. Monaments, anciens et modernes, de l'Hindostan. 2 vols. folio. Paris. 1818. Sewell, R. Reporl on the Amaravati Tope, and Excavations on its Site in 1877. 4to. 1880.

Taylor, M., and Fergiusson, J. Architecture in Dharwar and Mysore. Folio. 1866. Tennent, Sir J. E. Ceylon: an Account of the Island. 2 vols. Svo. 1859. Wilsen, F. C., and Brumund, J. F. G. Boro Boetwer op het Eiland Java. Dutch and French text. Plates, 4 vols. folio. Leyden, 1873-74.

E. Great Britan, Russia, France, \&e.

Brash, R. R. Ecclesiastical Architecture of Ireland to the close of the Twelfth Century. 4to. 1870.
[Paris, 1870.
French Governmeut. Dictionnaire Archéologique de Gaule; Epoque Celtique. Folio. Imre, H. No umenta Hungariæ Archæologica. 4to Pest, 1869.
Kanitz, F. The Byzantine Monuments of Serbia. Vienna, 1862.
Maskell, A. Russian Art; for South Kensington Museum. 8ro. 1885.
Radel, P. Recherches sur les Monuments Cyclopéens, etc. 8vo. Paris, 1841.
Stephens, G. Old Northern Runic Monuments of Scandinaria and England, now fi st collected. Folio. Copenhagen, 1866.
Stroganov, S., Zagoskin, M. N., Suegirer, J. M., and Veltman, A. T. The History of Architecture in Russia. Russian text. 6 vols. 4to. and folio. Mos ow, 1849-53.
Verueilh, L. de. Architecture Byzantine en France ; st. Front de Périgueux et les Églises à coupales de l'Aquitaine. Plates, tho. 18.51.
Waing, J. B. Stone Monuments, Tumuli, and Ornaments of Remote Ages; Remarks on the Early Architecture of Ireland and Scotland. Folio. 1870.

F. North and Souti America.

Bollaert, W. Antiquarian, \&c., Rescarches in New Granada, Equador, Peru, and Chili, with Observations on the Moumments. Sro. 1860.
Gualdi, P. Monuməntss de Mejico. Folio. Mexico, 1841-42.
Norman, B. M. Rambles in Yucatan: a V'isit to the Ruins of Chi-Cheu, Kabah, Zayi, aud Uxmal. 8vo. New York, 1843.
Soquier, E. Travels in Central Ameriea, particularly in Nicaragua, 2 vols. 8 vo. New York, 18.53.
[ton. 1848.
——and Davis, E. H. Ancient Monuments in the Mississippi Villey. 4to. WashingWa'deek, E. de. Voyage Pittoresque et Archéologique dans la Province d'Yucatan en 1834 et 1836. Folio. Paris, 1838.

IV. GOTHIC AND RENAISSANCE ARCHITECTURE.

A. Great Britatn and Ireland.

Architectural Association Sketch Book. Folio. 1867-87.
[8ㅜ. 1537.
Bardwell, W. Temples, ancient and modern; or, Nutes on Church Architesture. Large Bentkam, J. History and Antiquities of the Chorch at Ely. tto. 1771.
_ Essay on Gothic Arehiteeture. Sro.
Billings, R. W. Architectural Illustrations of Carlisle Cathedral. to. 1839. - Illustrations of the Architectural Antiquities of the County of Durham. 4to. 1846.
[4 vols. 1848-52. —— The Baronial and Ecelesiastical Antiquities of Scotland Illustrated. 240 plates, Blore, E. Monumental Remains of Noble and Eminent Persons. 8ro. 1824-26.
Bowman, II., and Crowther, J. S. The Churches of the Middle Ages. 2 vols. folio. 1845-53.
Brandon, R. and J. A. Analysis of Gothic Architecture. 2 rols. 4to. 1847-49.

- Parish Churches; being Perspective Views of English Eeclesiastical Structures. 8ro. 1848-ŏ.
Britton, J. Cathedrals, comprising Canterbury, York, Salisbury, Norwich, Oxfurd Wiuchester, Lichfiell, Hereford, Wells, Exeter, Worcester, Peterborough, Gloucester, and Bristol. 4to. 1821-35.

Britton, J. Architectural Antiquities of Great Britain. 4 vols. 4to. 1807-14. Vol. j, 1826; 2ud eflition, 1835 ; containing Chronological and Historical Illustrations of the Ancient Ecclesiastical Architecture of Great Britain.

History and Antiquities of Bath Abley. Royal 8ro. 1825.
History and Antiquities of Redelyffe Chureh, Bristol, 4to. 1813.
and Brayley, E. W. History of the Aneient Palace and lato Houses of Parliament at West ninster. 8ro. 1836.
Carter, J. Ancient Architecture of England. 2 rols. folio. 1837.
Caveler, W. Select Specimens of Gothic Arehitecture. tto. 80 plates. 1839.
Clayton, J. Ancient Half-timber Edifices of England. 26 plates, folio. 1846.

- Close, S. P. Holycross Abbey, co. Tipperary. Measured drawings. Folio. Belfast, 1868.

Collie, J. Plans, \&c., of Glasgow Cathedral. 34 plates, folio. 1835.
Colling. J. K. Details of Gothic Architecture. 2 vols. 200 plates, 4to. 1851-56.
Cotman, J. S. Architectural Autiquities of Norfolk. Folio, 60 plates. 1818.
—— Archntectural Antiquities of Normandy. 2 rols. folio. 1820-21.
Cottingbam, L. N. Plans, \&c., and Details of Henry VII.'s Chapel, Westminster. 72 plates, 2 vols. fulio. 1822-29.
Dallaway, Rev. James. Ohservations on English Architecture. 8vo. 1806.
—_ Notices of Ancient Church Architecture in the Fifteenth Century. 4to. 1824. Discourses on Architecture. Sro. 1833.
Dollman, F. T. Examples of Ancient Pulpits in England. 30 plates, 4to. 1849.
:- Examples of Ancient Domestic Architecture; illustrating the Hospitals, Bedehouses, Schools, \&c., of the Midàle Ages in England. 4to. 1856-58.

- and Jollins, J. R. An Analysis of Ancient Domestic Architecture in Great Britain. 2 vols. 4to. 1861-64.
Duearel, A. C. Anglo-Norman Antiquities. Plates, folio. 1767.
Dugdale, W. History of St. Paul's Cathedral in London. Folio. 1688.
Fastlake, C. L. IIistory of the Gothic Revival. 4to. 1872.
Edinburgh Arehitectural Association. Sketch Book. Folio. Edinburgh, 1886-7.
Ferrey, E. B. Sonth Winfield Manor House: Plans, \&c. 4to 1870.
Freeman, E. A. History of the Cathedral Chureh of Wells, as illustrating the History of the Cathedral Churches of the Old Foundation. 8ro. 1870.
Gage, J. History and Antiquities of Hengreave in Suffolk. Reyal 4to, plates. 1823.
Glasgow Arehiteetural sketeh Book. Folio. Glasgew, 1885.
Glynne, S. R. Notes on the Churehes of Kent. Svo. 1877.
Gough, R. Sepulchral Monuments in Great Britain 5 vols. foiio 1696.
Grose, F. Essay on Gothic Architecture. Sro. 1800.
Gunston, A. P. Kelso Abbey: Plans, \&c. Folio. 1881.
Habershon, M. Ancient Half-timbered Honses of England. 4to. 183t.
Hadfield, J. Ecelesiastical, Castellated, and Bomestic Architecture-of Essex. 81 plates, folio. 1848.
Halfpenny, J. Gothic Ornaments in the Cathedral of York. fto. i0. plates. 1795. Fragnenta Vetusta; or, Remains of Ancient Luildings in York. Royal 4to. 34 plates. 1807.
[59 plates. 1813.
Hall. sir J. Essay on the Origin, History, and Principles of Gothic Architecture. 4to.
Hawkins, J. S. Origin and Establishment of Gothic Arehitecture. Plates, large 8ro. 1813.
Hill, A. Monograph of Cormac's Chapel, Cashel. 4to. Cork, 1874.
———Ardfert Cathedral, co. Kerry. 4to. Cork, 1870.
Ancient Irish Architecture; Kilmalkedar Church, co. Kerry, and Temhlemahoe Church, co. Kierry. 4to. Cork, 1870.
Ingram, J. Memorials of Oxford. 3 vols. 4to. Oxford, 1837.
Johnson, J. Outline Views of Beverley Miuster. 10 plates, folio. (1845.)
- Reliques of Ancient English Architecture. 4to. 1852-53. [Devizes, (1876).

Jones, Rer. W. II. The Sixon Church of St. Laurence, Bradford-on-Avon. 8ro.
Kendall, J. Elucilation of the Principles of English Architecture usually denomina' ed Gothic. 8vo. 1818.
Keux, J. Le. Memorials of Čmbridge. 2 vols. Ito. Cambridge, 1845.
King, F. Munimentr Antiquar. 4 vols. folio. plates. 1799-1805.
King, R. J. Handlook to the Cathedrals of England, 6 rols. Sro. (Murray.), 1831-69. Handbook to the Cathedrals of Wiales. Bro. 1873.
Lamb, E. B. Studies of English Domestic Arehitecture of the tia es of IIemry V1Il., Elizabeth, and James 1. Folio. 1846.
Longman, W. The Three Cathedrals of St. Paul. London. 8ro. 1873.
Lueas, C. Les Eglises circulaires d'Angleterre: précédé de Notes sur les 'Temples ronds de lia Gréce et de 1 Italie et sur l'église du St. Sepulere de Jérusalem. E2nd edition. 8ro. Paris, 1882.
Mickenzie, F. Collegiate Chureh of St. St $\stackrel{\rightharpoonup}{\text { phen, Wrestminster. }} 18$ plates, folio. 18.41.

Mackenzie, F. and Pugin, A. Specimens of Gothic Architecture, consisting of Doors Windows, Buttresses, Pinnacles, at Oxford. 4to. 61 plates.
Millers, G. Description of the Cathedral Church of Ely, \&c. 8ro. 1808.
Miher, J. Treatise on the Ecelesiastical Architecture of England. 8ro. $183 \overline{5}$.
Nash, J. Mansions of England in the Olden Time. 4 series, folio. 1839-49.
—— Views of the Interior and Exterior of Windsor Castle. Folio. 1849.
Neale, J. The Abbey Church of St. Alban, Herts. Folio. 1878.
Niven, W. Old Worcestershire Houses. 1873. Old Warwickshire Houses. Folio. 1878. Old Staffordshire Houses. Folio. 1882.

Paley, F. A. Illustrations of Baptismal Fonts. 8ro. 1844. Gothic Mouldings. 4th edition, 8ro. 1877.
[1858.
Parker, J. H., and Grosvenor, Rev. F. Mediæral Architecture of Chester. 8ro. Chester,
Perry, J. T., and Henman, C., jun. Illustrations of Mediæral Antiquities of the County of Durham. Folio. Oxford, 1567 .
Petit, Rev. J. L. Remarks on the Principles of Gothic Architecture as applied to ordinary Parish Churches. 2nd edition, 2 rols. 8ro. Oxford, 1846.
Petrie, G. Ecclesiastical Architecture of Ireland; Origin and Uses of the Round Towers of Ireland. 2nd edition, 8ro. Dublin, 1845.
Potter, J. Specimens of Ancient English Architecture. 42 plates, 4to. 1845-48.
Pugin, A. Specimens of Gothic Arehitecture, selected from various Ancient Edifices in England. 4to. 2 rols. 1823. Examples of Gothic Architecture. 3 rols. 4to. 1836. Examples of Gothic Ornaments. 4to. 1831. Examples of Gothic Gables. 4to. 1831.
Pugin, A. W. N. Treatise on Chancel Screens and Rood Lofts. 4to. 1851.
Reed, F. H. Illustratious of Tattershall Castle, Lincolnshire, from measured Drawings. Folio. 1872.
Richardson, C. J. Studies from Old English Mansions; their Furniture. Plate, \&c. 4 series, folio. 1841-48. Architectural Remains of the Reigns of Elizabe'h and James I. 2 parts, folio. 1838-40.
Robinson, G. T. Military Architecture of the Middle Ages; Kenilworth, Warwick, and Maxtoke Castles. Sro. 1859.
Ruprich-Robert, V. M. C. L'Architecture Normande au XI ${ }^{0}$ et XII ${ }^{0}$ siècles. In progress. Folio. Paris, 1884-87.
[1863.
Scott, G. G. Gleanings from Westminster Abbey, with appendices. 2nd edition, 8 ro.
Sharpe, E. Architectural Parallels; or, the Progress of Ecclesiastical Architecture through the 12 th and 13th centuries. 121 plates, folio. 1845-48. Supplement. 60 plates of full-sized details, folio. 1848. The Architecture of the Cistercians. 4to. 1874. Seven Periods of Church Architecture. 2nd ellition, 8ro. 1871.
-- Jolnson, J., and Kersey, A. H. The Churches of the Nene Valley, Northamptonshire. 4to. 1880.
Shaw, H. Specimens of the Details of Elizabethan Architecture. 4to. 1839.

- Series of Details of Gothic Architecture, selected from various Cathedrals, Churches, \&c. Folio. 1823.
Sinupson, F. Series of Ancient Baptismal Fonts. 8ro. 1828.
Simith, J. Spccimens of Ancient Carpentry. 4to. 36 plates.
Society of Antiquaries of London. Archæologia. 4te. 1773-1874. It contains Essays on Gothic and English Architecture, and suljects connected with it, as well as on Ancient and Modern Architecture.

Vetusta Monumenta. 6 vols. large folio.
Society of Antiquaries of Scotland. Transactions. 4 vols. 4to. Edinb., 1712-1833. Proceedings. 9 vols. 4to Edinb., 1852, \&c.
Spring Gardens Sketch Book. 7 vo!s. folio. 1866-78.
Stewart, D. J. The Architectural History of Ely Cathedral. 8ro. 1868.
Stokes, M. Early Christian Architecture in Ireland. 8ro. 1878.
Stothard, C. A., and Kempe, J. A. Monumental Effigies of Great Britain. Folio. 1817.
Taylor, II. Old Halls in Lancashire and Cheshire. 4to. Nanchester, 1884.
Turner, T. H., and Parker, J. H. Some Account of Domestic Architecture of England, 12th to 15 th centuries. 3 vols. in 4 vols. 8vo. Oxford, 1851-53-59.
Wakeman, W. F. Handlook of Irish Antiquities. 8vo. Dublin, 1848.
Walcott, M. E. C. Ancient Chureh of Scotland: History of all the Cathedrals, Conventual and Collegiate Churches, and Hospitals. 4to. 1874. Church and Conrentual Arrangement. 8vo. 1861.
Waring, J. B. Stone Monum n nts, Tumuli, and Ornament of Remote Ages. 41.0. 1870.
Warton, Rev. T. Essay on Gothic Architecture. 8 vo. 1800.
Waterhonse, P. Pediments and Gabl-s. 4to. Oxford, 1886.
Wiekes, C. Illustrations of the Spires and Towers of the Medireral Churches of England. 3 rols. 72 plates, folio. 1853-59.
Wild, C. Cathedral Church of Lincoln. 4to. 1838.

Wilkinson, G. Practical Geology and Ancient Architecture o. Ireland. 85o. 1845.
Williams, R. L., and Uudrrwood, M. The Village Churches of Denbighshire. 4to. Denbigh, 1872.
Wilson, F. R. An Architectural Surrey of the Churches in the Arehdeaconry of Liodisfarne, Northumberland. 4to. Neweastle, 1870.
Winkles, B. Cathedrals of England and Wales. 2 rols. 1836-42.
Woolnoth, W. Ancient Castles of England and Wales. 2 vols. 8vo. 1825.

IV. GOTHIC AND RENAISSANCE ARCHITECTURE.- B. Other Countries.

Adler, F. Mittelalterliche Backstein-Bauwerke des Preussischen Staates. 150 plates, folio. Berlin, 1860-66.
[Truluase, 1882. Aillaud, L., Rolland, J., and de Rivières. La Cathédrale Ste. Cécile d'Alli. Folıo. Anderson, R. Examples of the Municipal, Commercial, and Street Architecture of France and Italy, from the 12 th to the 15th Century. 4 to. 1874.
Architectural Association. The Domed Churches of Charente. 4to. (1882.)
Arundale, F. Buildings and Antiquities of Jerusalem, \&ic., with a Tour in Syria and Egypt. Plates, 4to. 1838.
Arundel Society, The. Cathedral of Santiago de Compostella in Spain: Sculpture of the Portico. Photog. folio. 1868. Sculptured Ornameat of the Monastery of, Batalha. Folio. 1868.
[Paris, 1877.
Benois, N., Resanoff, A., and Krakau, A. Monographie de la Cathédrale d'Orvieto. Folio.
Blarignac, J. D. Histoire de l'Architecture Sacrée du IV au Xe Siècle dans les anciens Évêchés de Genève, Lausanne et Sion. 2 vols. 8ro. Lausanne, 18ă3-54.
Boisseré, S. Denkmale der Baıkunst vom TIIten bis zum XIIIten Jahrhundert am Nieder-Rhein. 72 plates, folio. Munich, 1833.
___ Vues, Plans, Coupes, et Détails de la Cathédrale de Cologne. Large folio. Stuttgardt, 1827. Text in 4to.
[1836-42.
Bötticher, C. G. W. Die Holz-Architectur des Mittelalters. 26 plates, folio. Berlin, Bourassé, J. J. Les Câthédrales de France. 4to. Tours, 1843.
-_Le plus belles Eglises du Monde, notice historique. 8vo. Tours, 1857, 1861.
Cahier, C. Nouveaux Mélanges d'Archéologie, d'Histoire et de Littérature sur le Moyen Ãge. 4to. Paris, 1874.

- and Martin, A. Mélanges d’Archéologie, \&c. 4 vols. 4to. Paris, 1847-56.

Cappelletti. Le Cbiese d' Italia dalla loro origine sinoai giorni nostri. 8ro. Venezia, 1847. Cnroto, G. Antichitá di Verona. Folio. Terona, 1764.
Caumont, A. de. L'Architecture Religieuse. 4th edition, 8 ro. Paris, 1859.
Chapuy, N. M. J., and Ramée, D. Le Moyen Âge Monumental et Archéologique. 2 vols. folio. Paris, $1840 \sim 44$.

La France Monumentale et Pittoresque. Folio. Paris, 1842, \&ce.
Clutton, H. Illustrations of the Domestic. Architecture of France. Folio. 1853-56.
Cresy, E., and Taylor, G. L. The Architecture of the Middle Ages at Pisa., 4to. 1829.
Darrein, F. de. Etude sur l'Architecture Lombarde, et sur les origines de l'Architecture Romano-Byzantine. Text 4to.; 100 plates, folio. Paris, 1865-82.
Darie, W. G. Architectural Studies in France. Folio. $1877 . \quad$ [Piris, 1847.
Iecluux et Doury. Histuire Archéulogique, etc., de la Sainte Chapelle du Palnis. Folio. Delaquérière, E. Description Historique des Maisons de Rouen. 2 vols. 8 ro. Ronen, 1841. Didron, A. N. Annales Archéologiques. 28 vols. 4to. Paris, 1844- 81.

Lassus, J. B. A., and Duval, A. Monographie de la Cathédrale de Chartres. Text 4to. 1835. Plates folio. Paris, 1842.
Dresser, C. Japan : its Architecture, Arts, \&c. Folio.
Drouyn, L. La Guienne Militaire. 4to. Paris, 1863.
Durand, P. Monographie de Notre Dame de Chartres. 4to. Paris, 1881.
Escosura, P. de la, and Villa-Amıl. L'Espagne Artistique et Monumentale. French and Spanish text. 3 rols. follo. Paris, 1842-59.
Essenwein, A. Norddeutschlands Backstein bau im Mittelalter. Folio. Carlsruhe, 1863. lergusson, J. Essay on the Ancient Topography of Jernsalem. 8ro. 1847. [1878. Fi. Temples of the Jews, and other Buildings in the Haram area at Jerusalem. tin.
Förster, E. Monuments d'Architecture, de Sculpture et de Peinture cle l'Allemagne, repuis l'établissement du Christianisme jusqu’aux temps modernes. 4 vols. folio. Paris, 1859-60.

Denkmale Dentscher Kunst von Einführung des Christenthums lis auf die neneste Zeit. 4to. Leipzig, 1858-67.
[folio. 1863.
Fourmois et Simoneau. Le Rhin Monumen'ale et Pittoresque d'après Nature. 30 wiews,
Franchetti. G. Storia e Descrizione del Duomo di Milano 4to. Millan, 1821.
French Guvernment. Archives de la Commission des Monuments Historiques. Plates, folio. Paris, 1856-76.

Gailbabaud, J. L'Architecture du Moyen Age et de la Renaissance du Ve au XVII• Siécle et les Arts qui en dépendent. 400 plates, 4 vols. 4 to. 1 vol. folio. 1850-59.
George, E. Etchings on the Mosel. 4to. 1873.
Gladbach, E. Der Schweizer Holzstyl in seinen cantonalen und constructiven Verschiedenheiten vergleichend dargestellt mit Holzbauten Deutschlands. Folio. Darnstadr,
Goerz, R. Die Peterskirche zu Mainz constructiv erläutert. Folio. Mainz, 1847. [1863.
Grarina, D. B. Il Duomo di Monreale. 2 vols. Folio. Palermo, 1859.
Guhl, E. Der Dom zu Köln. 4to. Stuttgart, 1851.
Guilhermy, F. de, and Lassus, J. B. A. La Sainte Chapelle de Paris, après les restaurations. Folio. Paris, 1857.
Hefner-Alteneck and Becker, C. Kunstwerke und Geräthschaften des Mittelalters und der Renaissance. 3 rols, 4to. Frankfurt, 1852-63.
Heideloff, C. A. von. Nürnlurg Middle Age Buildings. Folio. 1843.
Die Kunst des Mittelalters in Schwaben. Text by F. Müller. 8 parts, 30 platcs, folio and 4to. Stuttgart, 1855-64.
Johnson, R. J. Specimens of Early Fronch Architecture; selected chiefly from the Churches of the Isle of France. Folio. Newcastle-on-Tyne, 1861-64.
Joliment, F. J. de, and Chapuy, N. M. J. Les Cathédrales de France. 115 plates, folio. Paris, 1826-31.
Jong, S. de. Contributions to the Knowledge of the Gothic or Pointed Style in the Netherlands. Folio. Amsterdam, 18 ± 7.
Jourdain, L., et Duval. Les Stalles de la Cathédrale d'Amiens. 8ro. Amiens, 1843.
Kallenbach, G. G. Geschichts-Abriss der Deutsch Mittelalterlichen Baukunst. 8vo. 86 plates entitled "Chronologie," folio. Munich, $1846 . \quad[4 t 0$. Halle, 1850, \&c.
___ and Schmitt, J. Die christliche Kirchenbaukunst des Abendlandes. 48 plates,
King, 'T. H. Study Book of Medieeval Architecture and Art : the Principal Monuments to uniform scales. 200 plates, 2 ro's. 4to. 1859.
Knight, H. G. Saracenic and Norman Remans, to illustrate The Normans in Sicily. New edition, folio. 1846.

- Ecclesiastical Architecture of Italy, from the time of Constantine to the 15th century. Plates. 2 rols. folio. 1842-44.
Kreutz, G. L. La Basilica di S. Maren in Venezia, 57 plates, folio. Venice, 1843-53.
Lacroix, P. Les Arts au Moyen Âge et à l'Époque de la Renaissance. 8ro. Paris, 1869; 1872, 2nd series.

> [Paris, 182].

Langlois, E. H. Description Historique des Maisons de Rowen. 8ro. with plates.
Lassus, J. B. A., and Quirherat, J. E J. Album de Villard de Honnpcourt, Architec•e du XIIIe Siècle: Considérations sur la Renairsince de l'Art Français an XIX* Siècle. 72 plates, 4to. Paris, 1858. Translated, with notes, by Prof. R. Willis. 4to. 1859. Lenoir, A. Architecture Monastique. 4to. Paris, 1852-56.
Lespeyres, I'. Die Kirchen der Renai:sance in Mittel-Italien. Folio. Berlin, 1882.
Lozamo. P. Antigiiedades Arabes de Espagıa. 2 vols. folio. Madrid, 1804, \&c.
Lübke, W. Die mittelalterliche Kunst in Westfalen 8vo.; plates folio. Leipzig, 18.s3.
——Eclesiastical Art in Germany during the Middle Ages, translated from the German by L. A. Wheatley. 2nd edition, 8 vo. Edinburgh, 1873, 1876.
Lucas, C. Architecture en Portugal, Mélanges hist. et archéologique. 8ro. Prris, 1870.
Lusson, A. L. Spécimen d'Architecture Gothique ; ou Plans, Coupes, Elérations de la Chapelle du Château de Nenville. Folio, 17 plates. Paris, 1839.
Luynes, Le Duc de. Recherches sur les Monuments, etc., des Normands, etc., dans l'Italie Méridionale. Folio. Paris, 1844.
Mallay, M. Essai sur les Eglises Romanes et Romano-Byzantines du Puy de Dôme. Folio. Moulins, 1838-40.
Mandelgren, N. M. Monuments Scandinaves du Moyen Age, avec les peintures qui les décorent. Folio. Paris, 1862.
[Bruxelles, 1854.
Maquarlt, C. Monuments d'Architecture et de Sculpture en Belgique. 2 vols. folio.
Martin, P. Recherches sur l'Architecture du Moyen Age et de la Renaissance à Lyon, etc. Folio. Lyon, 1863.
Milan. Nuova Descrizione del Duomo di Milano, \&c. 4to. plates. Milano, 1820.
Mithoff, H. W. H. Archiv für Niedersachsens Kunstgeschichte. Folio. Hannorer, 1863.
Moller, G. Denkmäler der Deutschen Baukunst, herausgegeben von Hessemer: 190 plates, 2 vols. folio. Leipzig, 1821. Vol. iii. edited by E. Gladbach. New odition, folio. Frankfurt, 1852.
Moret, S., ft Chapuy, N. II. J. Moyen Âge Pittoresque. Folio. Paris, 1857, \&c.
Murphy, J. Plans, \&c., and Views of the Batalha in Portugal. Folio, plates. 1795. 2nd edition, 1836.
Nail, E. le. Le Château de Blois; extéricur et intérieur, ensemble et details, etc. Folio. Paris, 1875.
[folio. 1862.
Nesfield, W. E. Specimens of Mediæval Architecture in France and Italy. 100 plates,

Nodier, C, and Taylor, J. Voyages Pittoresques de l'Ancienue France: Hate-Normandie; Dauphiné; Franche-Comté; Auvergne; Languedoc; Champagne; Picardie; Pretagne. 14 vols. folio. Paris, 1820-46.
Norwegian Government. The Cathedral at Throndheim, by P. A. Munch and H. E. Schirmer. Folio. Christiania, 1860.
Okely, W. S. Development of Christian Architecture in Italy. 8 vo. 1860.
Osten, F. Bauwerke in der Lombardei vom VIIten lis zum XVIten Jahrhundert. French and German text. Folio. Darmstadt, 1846-48.
Palloni, B. Chiese Antiche di Pisa. 8ro. Pisd, 183 j.
Paravicini, T. V. Die Renaissance-Architektur der Lombardei. Folo. Dresden, 1883. Pellassy de 1 Ousle. Histoire du Palais de Compiègne: Chronique du Séjour des Sourerains dans ce Pa'ais. Folio. Paris, 1862.
Perelle, A. (Euvres Direrses: Recueil des plus belles Vues, \&c. 2 vols. 428 engravings of castles, \&c. Folio. Langlois, 1680, cir.
Petit, Rev. J. L. Architectural Studies in France. 8ro. 1854.
Perit, V. L'Architecture Pittoresque; ou Recueil des Vieux Châteaux de France des XV ${ }^{\mathrm{e}}$ et XVI ${ }^{\mathrm{e}}$ Siécles. Folio. Paris, 1854.
[Paris 1857-60.
—_ Châteaux de la Yallée de la Loire, des XVe, XVIe et XVII ${ }^{e}$ Siècles. 2 rols, fol oo.
Pfnor, R. Honographie du Château d'Anet, construit par P. de l'Orme en loj48. Folio. Paris, 1866.
Pollet et Roux, H. Monuments d'Architecture Grecque, Romaine, Gothique, de la Renaissance, recueillis en France ; Dé orations Sculpturales, \&c. Folio. Paris, 1840-41.
Popp, J, and Bülau, T. Les Trois Ages de l'Architecture Gothique à Ratisbonne. l'olio. Parjs, 1840.
Pugin, A., and Le Keux, H. Architectural Antiquities of Normandy. 4to. London, 1825. 2nd edition, edited by R. P. Spiers. 4to. 1874.
Puttrich, L. Drakmäler der Baukunst des Mittelalters in Suchsen. 5 vols. 387 plates, folio. Leipzig, 1835-52.
Q aglio, A. F. von. Denkmäler der Baukunst in Bayern.
Quast, A. F. von. Die altchristlichen Bauwerke von Ravenna vom Vten bis zum IXten Jahrhundert. Folio. Berlin, 1842.

- Denkmäler der Baukunst in Preussen. Folio. Berlin, 1852, \&c.

Kamée, D., and Pfnor, R. Monogruphie du Château de Heidelberg. Folio. Paris, 1859. Rayet, O., and Thomas, A. Milet et le golf Latmique. 4to. Paris, 1880.
Revoii, H. Architecture Rnmane du Midi de la France. 4 vols. 4to. Paris, 1859-73.
Rey, G. Étude sur les Monuments de l'Architecture Militaire des Croisés en Syrie et dans l'ile de Chypre. 4to. Paris, 1871.
[Folio. 1883.
Richter, J. P. Literary Works of L. da Vinci-as "Arehitect." By H. de Geymüllre.
Rohault de Fleury, G. La Toscane au Moyen Age, Architecture civile et militaire. 8vo. Piates, folio. 2 vols. Paris, 187.t.
_- Les Monuments de Pise au Moyen Âge. 8vo. Plates, folio. Paris, 1866. Édifices de Pise, relevés, dessinés, et décrits. 4to. Paris, $1862 ; 1867$.
Le Latran au Moyen Âge. Fulio. Paris, 1877.
Runge, L. Der Glockenthurm des Dum zu Florenz. Folio. Rerlin, 18 ā3.
Rupp, L. Chiese Principali d' Europa. 11 buildings. Folio. Milan, 1824.
Ruprich-Robert, V. M. C. L'Arelıtecture Normande aux XI ${ }^{\text {e }}$ et $\mathrm{XlI}^{\mathrm{c}}$ Siècles. In progress. Folio. Paris, 188t-৯7.
Ruskin, J. Stones of Venice. 3 vols. 8 ro. and 1 vol. folio, plates. 1851-53. 1858-67.
Saccardo, P. I, Basilica di S. Mareo in Venezia. 4to. 1883.
Salazaro, D. Études sur les Monuments d’Italie Méridionale des XIIIe et XIVe Siècles. Folio. Naples, 1872.
Schayes, A. G. R. Essai sur l'Arehitecture Ogivale en Belgique; Mémoire Couronné. 4to. Bruselles, 1840. Translated by H. Austin in Weale's Quarterly P'apers one Architecture. 4to. 1845.

- Histoire de l'Ar hitecture en Belgique. 2nd edition, 4 vols. 12 mo. Bruxelles, 1853.
schmidt, C. W. Baudenkmale in Trier. Fulio. Treves, $18+3$.
Schmitz, F., and Ennen, L. Der Dım zn Cöln. Svo. aud folio. Colngıe, 1871-77.
Schreiber, H. Das Müuster zu Strassburg. Foliv. Karlarulie, 1829. Das Münster \%u Freiburg. Folio. Karlsruhe, 1829.
Schultz, J. C. Danzig und seine Bauwerke. Text 4to.; plates folio. Berlin, 1872.
Schulz, H. W. von. Denkmäler der Kunst des Mitielalters in Unter-Italien, heriusgegeben von A. F. von Quast. 4 vols, 4 to., 1 vol. folin. Dreaden, 1860.
Schuitz, A. Die Renaissance in Italien. 4 vols. folio. Hamburg, 188%.
Selvatico, P. Sull' Arehitettura e sulla Scultura in Venezia dal im dio evo sino ai nestri giorni. 8ro. Venrzia, 1847.
Sllaw, R. N. Architectural Sketches from the Continent (France, Italy, and Germany). Folio. London, $18 j 8$.

Silva, J. P. N. da. Dissertation artistione sur l'Architecture en Portugal depuis le XII ${ }^{\circ}$ au XVIII ${ }^{\text {e }}$ Siècle. 8 vo . Lisbonne, 1869.
an Notice listorique et artistique des principaux Édifices Religieux du Portugal, avec la Description des Plans de leurs glises. 8 ro. Lisbonne, 1873.
Simonaur, C., et Fils. Principaux Églises Gothiques de l'Europe. Texte historique far A. Voisin. Fulio. Bruxelles, 1854-55.

Stappaerts, F., and Stroobant, F. Monuments d'Architecture et de Sculpture en Belgique. 2 vols. 63 plates, folio. Brusclles, 1Sō4-55.
Statz, V.. Ungewitter, G., and Reichensperger, A. The Gothic Model-book: a collection of Gothic Types from existing Monuments in Germany. Folio. 1859.
Stieglitz, C. L. Altdeutschen Baukunst. 34 plates, 4to. and folio. Leipzig, 1820.
Street, G. E. Brick and Marble in the Middle Ages in the North of Italy. 8ro. 1855. 2nd edition, 1874.

Some Account of Gothic Architecture in Spain. 8ro. 1865.
Terzi, A. La Chapelle du Palais-Royal de Palerme. Folio. Naples, 1871.
Truefitt, G. Architectural Sketehes on the Continent. 4to. 1817.
Tschischka, F. Der St. Stephens-Dom in Wien. New edition, folio. Wien, 1844.
Ungewitter, G. G. Vorlegeblätter für Ziegel und Stein-Arbeiten. 2nd cdition, fulio Leipzig, 1850.
Vallardi, P. and J., and Bramati, J. and A. Il Duomo di Milano. Folio. Milan, 1863.
Verdier, A., et Cattois, F. Architecture Civile et Domestique au Moyen Age et à la Renaissance. 4to. Paris, 1852-57.
Verneilh, L. de. Architecture Byzantine en France; St. Front de Périguenx et les Églises à coupoles de l'Aquitaine. 4to. Paris, 185 j 2.
Viollet-le-Duc, E. Military Architecture of the Middle Ages. Translated from the French by M. Macdermott, with Nutes on English Castles, ly C. A. Hartshorne. 8ro. Osford and London, 1860.
et Lassus, J. B. A. Moncgraphie de Notre Dame do Paris et de la Nourelle Sacristie. 63 plates, \&c. fulio. Paris, 1858.
Viten, L. Monographie de l'Église Notre Dame de Noyon. 4to. Paris.
Vogiié, Comte M. de. Syrie Centrale: Architecture Civile et Religieuse du Ier au VII ${ }^{\circ}$ Siecle. 4to. Paris, 1867.
Waring, J. B. Architectural Studies in Burgos an 1 its Neighhourhood. Folio. 1852.
-Illustrations of Architecture and Oruament. Folio. 1865.
and Macquoid, T. R. Examples of Arehitectural Art in 1taly and Spain, chiefly in the XlIIth and XVI'h centuries. Folio 1850.
Webb, B. Sketches of Continental Eeclesiology; or, Church Notes in Belgium, Germany, and Italy. 8 vo. 1848.
[Folio. Berlin, 1866.
Weerth, E. and M. Kunstdenkmäler des Christlichen Mittelalters in den Theinlanden.
Whewell, W. Architectural Notes on German Churches; with Notes on a Tour in Picardy and Normandy. 3rd edition, with Notes on the Churches of the Rhine, by M. F. de Lissatulx. 8ro. 1852.

Whittington, G. D. Ecclesiastical Antiquities of France. Large 8ro. 1811.
Wiebeking, C. F. ron. Analyse Historique et Raisonnée des Monumens de l'Antiquité des Édifices les p'us remarquables du Moyen Âge, cte. Text, 4 vols. 4 to. Plates, follio. Munich, 1821-26; and 1838-40.
Wild, C. Examples of Architectural Grandeur in Belgium, Germany, and France. Two series, new edition. Folio. 1846.
Winkles, B. French Cathedrals. 4to. 1837.
Woillez, E. Archéologie des Monuments Religieux de l'Ancien Beauroisis, depuis le Vo jusque rers la fin du XIIe siécle. Folio. Paris, 1842.
Yriarte, U. Florence; Histoire, etc. Folio. Paris, 1868. Transl. by C. B. Pitman. Folio. 1882. Venise; Ilistoire, etc. Folio. Paris, 1878. Transl. by F. J. Sitwell. 4 to. 1880. 1 F. de Rimini, etc. 4to. Paris, 1883.
Zanotto, E. Il Palazzo Ducale di Venezia. New edition, 4to. Venezia, 1846-58.

V. MODERN ARCHITECTURE.--A. Great Britarn and Ireland.

Adam. W. Vitruvius Scoticus ; a Collection of Public and Private Buildings in Scotland. Folio, 160 plates. Edinburgh, $1720-40$, and 1810.
Adams, M. B. Artists' Homes. Folio. 1883.
A shpitel, A., and Whichcord, J. Baths and War-hhouses. 3rd edition, 8vo. 1852.
Baly, P. P. Baths and Washhouses. 4to. 18á2. Appendix, 4to. 1853.
Brace, H. G. Middle class House Architecture. 8ro. 1881.
Brettingham, M. Plans, \&c., of Holkham, in Norfolk. Folio. 1763.
Burcuctt, H. C. Cottage Hosritals. 2nd edition, 8ro. 1880.

Burn, R. S. Architecture and Building ; a series of Working Drawings and Designs, with Essays by eminent Arehitects. 55 plates, folio. Edinburgh, 1863-65.
Campbell, C. Vitrurius Britannicus. 5 vols., the two last being a Continuation by Woolfe and Gandon. Folio. 1715, 1725, 1731, 1767, 1771.
Cape, G. A. Baths and Washouses. 4to. 1854.
Chambers, Sir W. Plans, Elevations, Sections, \&c., of the Gardens and Buildings at Kew. Folio. 1757.
Clarke, J. Schools and Schoolhouses. 27 plates, folio. 1852.
Clayton, J. Pilrochial Churches of Sir C. Wren. 60 plates, folio. 1849-52. [1870.
Cubitt, J. Cburch Design for Congregations; its Developments and Possibilities. 8ro.
Duwnes, C., and Cowper, C. The whole Construction of the Building for the Great Exhibition of 1851. 4to. 1852.
[8vo. 1850.
${ }^{\mathrm{D}}$ wellings of the Labouring Classes; their arrangement and construction; by the Society.
Eastlake, C. L. Hints on Huusehold Taste in Furniture, \&cc. Sro. 1872.
Fletcher, B. Model Houses for the Industrial Classes. 2nd edition, 8ro. 1877
Foulston, J. Public Buildings erected in the West of England. 4to. 1838.
Fox, W. Baths and Washhouses. Folio. Liverpool. 1849.
Fullarton, A. Grammar of House Planning. 4to. Edinburgh, 1864.
Gilbs, J. Book of Architecture, containing St. Martin's Churelh, \&c. Folio. 1728.
——Designs for the Radelyffe Library at Oxford. Folio. 1747.
Gollelicutt, J. Heriot's Hospital, Edinburgh, the Design of Inigo Jones. Folio. 1828.
Hakewill, A. W. Thorpe Hall. 12 plates, folio. 1852.
Hennicke. Bericht über Schlachthäuser und Viehmarkte. (Germany, England, and France.) Folio. Berlin, 1866.
Hole, J. Homes of the Working Ciasses. 20 plates of the Model Villages of Akroydon, Copley, West Hill Park, Halifax, \&c. 8ro. 1866.
House Planning, Trammar of; Hints on arranging and modifying Plans, \&c. 12 mo .1864.
Jebb, R. Report on the Construction and Ventilation of Pentoncille Prison. 8ro. 1844.
Jessop. Baths and Washhouses. 8ro. 1853.
Jones, Inigo. Designs for Public and Private Buildings, by Kent. Folio. 1770.
Kerr, R. An English Gentleman's House; being Practical Hints for its Plan and Arrangement-containing descriptions of Houses adapted to various ranks and fortuncs, from the Villa to the Palace, \&c. 3rd edition, revised, 8ro. 1871.
Laing, D. Plans of Buildings executed in various parts of England, including the Custom-House. Folio. 1818.
Lassaulx, V. de, and Elliott, J. Street Architecture ; a series of Shop Fronts. 1855.
Leeds, W. H. The 'Travellers' Club-House, by C. Barry ; with Essay on Italian Architecture. Folio. 1839.
Lewis, J. Original Designs in Architecture, consisting of Plans, \&c., of Public and Privato Buildings in England and Ireland. 2 vols. fulio, 61 plates. 1780-97.
Libraries. Reports on Public Libraries. Folio. 1844.
[8ro. 1878.
Marshall, J. On a Circular System of Hospital Wards; with Remarks by P. G. Smith.
Micklethwaite, J. T. Modern Parish Churches; their Plan, Design, and Furniture. 8го. 1874.
Mitchell, R. Descriptions of Buildings erected in England and Scotland. Folio. 1801.
Morris, F. O. The Country Seats, \&c., of Great Britain and Ireland. 5 vols. 4to. 1866-80.
Mouat, F. J., and Snell, H. S. Hospital Construction and Management. 2 parts, 4to. 1883-84.
Neale, J. P. Views of the Seats of England, \&c. Two series. 11 vols. 4to. 1818-29.
Paine, J. Plans, Elevations, \&c., of Noblemen's and Gentlemen's Houses in varions Counties. Folio, 175 plates. 1783.
Papworth, J. W. and W. Museums, Libraries, and Picture Galleries; to which is appended the Public Libraries Act, 18j0, \&c. 8vo. 1853. [1886.
Potter, T. The Construction of Silos, and Compression of Green Crops for Silage. 8vo. Prisons. Report on Construction, \&c., of Convict Prisons. 8ro. 1851.
Pullan, R. P. The Arehitectural Designs of W. Burges. Folio. 1883 and 1887. The House of W. Burges. Folio. 1886.
Pyne, W. H. Royal Residences of Windsor Castle, St. James's Pilace, Carlton House, Kensington Palace, Hampton Court, Buckingham Palace, and Frogmore. 3 vols, 4 to. 100 coloured plates. 1819.
Radclyffe, C. W. Blenheim Palace. Folio. 1812.
Richardson, G. New Vitruvius Britannicus. 2 rols. folio. 1802; 1808.
Roberts, H. Dwellings for the Labouring Classes. 3rd edition, 8ro. 1850.
Description of H.R.H. Prince Albert's Model Houses for Families. 8vo. 1851.
Robins, E. C. Technical School and College Building. 65 plates, 4to. 1887.
Rubinson, J. B. Shop Fronts of a plain and elaborate character. 4to. Derby, 1870.

 Imish, It.is.

 Hustratiod Jomrnala in Clasm Y\%.III.)

 Piolie, D'arim.

| Whiratile, 1x74.

 1:\% \%

 Pa: -312,

Narjoux, F. Architectıre Communale; Hôtels de Ville, Mairies, Maisons d'École, Sitles d'Asile, e ${ }^{*} \mathrm{C}$. 3 vols. 4to. Paris, 187 (1)-81.
Normand, A. L'Architecture des Nations Étrangères, Esposition Unirerselle de Paris, 1867. Folio. Paris, 1870.
L. M. Monuments Funéraires, choisis dans les Cimetiéres de Paris et des Principales Villes de France. 3 parts. fulio. Paris, 1832-36, (1847), and 18.50).

- L.., et La Croix. Paris Moderne ; ou Choix de Maisons. 3 rols. 480 plates, 4 to. Paris, 1837-38-45.
Paris. Les Eglises de Paris. 8ro. Paris, 1813.
Maisons les plus remirquables de Paris construites pendant les trois dernières années. Follio. Paris, 1870.
Patte, P. Études d'Arehitpeture. 4to. plates. Paris, 1755.
Penor, A. Les Cités Ourriéres do Mulhouse et du Département du Haut-Rhin. Sro. Mulh., 1867.
I'fnor, R. Monographie du Palais do Tontainebleau. Folio. Paris, 1861 and 1866.
- Architecture, Décoration et Ameublement de l'époque de Louis XVI. Folio. Paris, 1864.
Ramée, D., et Roguet, F. Palais de Fontainelleau depuis les XVIo et XVII ${ }^{\circ}$ Siécles. Folio. Paris, 1859-51.
[Folio. Paris, 1858.
Roguet, F. Choix de Châteaux, Palais et Maisons de France du XVo an XVIII ${ }^{\circ}$ Sièclo.
Rohault de Fleury, C., fils. Museum d'Histoire Naturelle à Paris. Folio. Paris, 1844.
Fudd, J. B. Collection de Plans, etc., des Principaux Monuments de la Ville do Bruges depuis le XIV ${ }^{0}$ jusqu'au XVII ${ }^{\circ}$ Siécle. 28 plates, folio. Bruges (1824).
Siunvigeot, C. Pilais, Chateaux, Hôtels et Maisons de France, du XVo au XVilic Siécle. 4 rols. plates, folio. Paris, 1867.
[1874-75.
Viollet-le-Duc, E. E., and Narjoux, F. Habitations Modernes. 2 vols. folio. Paris,

V. MCDERN ARCHITECTURE.-C. Germany, \&c.

Chateauneuf, A. de. Architectura Publica. 14 plates, folio. Jerlin, 1860.
Gärtner, F. von. Sammlung der Entwïrfo aus yeführter Gebäude. 2 vols. folio. Munich, 184t-47.
Heideloff, C. A. von. Architectonische Entwiirfe und ansgefilhrte Bauten im Byzantinischen und Altdeutschen Styl. 2 vols plates, folio. Nïrnherg, 1851.
Jlo hstetter, J. Architectoniwhe Ausfihrungen. 5 parts, folio. $\quad\{1866$.
Joffmann, A. W. Cheraical Laboratories in the Universities of Bonn and Berlin. 4to.
Kilenze, L. von. Anweisung zur Architectur des christlichen Cultus. 36 plates, folio. München, 1837.
Sammlung architectonischer Entwürfe. 50 plates, folio. München, 1847.
Knoblauch, G., and Hollin, F. Die nene Symagogue in Berlin. Folio. Berlin, 1867.
Metzger, H. Formenlehre zur Rundbogen-Architectur. Folio. Müuchen, 1851.
Moller, G. Entwïrfe ausgeführter und zur Ausführung hestimmto Gebäude. 29 plates, folio. Darmstadt, 1825-31.
Prussian Govermment. Vorlegeblätter für Daumeister. 4tn. and folio. Berlin, 18.44.
Raczynski, A. Histoire de l'Art Moderne en Allemagne. 3 vols, folio. Paris, 1836-41.
Schinkel, C. ron. Sammlung architectonischer Entwïrfe. Largo folio. 174 plates. Berlin, 1819-48.
Stieglitz, C. P'lans et Dessins tirés do la Belle Architecturo (England and France). 113 plates, folio. Liepzig and Moscow; 1801.
Stiiler, 1 . Dass nene Muscum in Berlin. Jolio. Potstam, 1850. Das nene Univer-sitaits-gelaude zu Konigsberg. Folio. Berlin, 1865. Die burg llohonzollern. Folio. Berlin, 1866. [1817.
Titz, E. Architectonische Mitheilungen aus der Neuzeit Berlins. 2 parts, folio. Berlin,
Unger, J., and Voigt. Collection of Sketchos of Private Houses and Municipal Buildings, principally executed at Munich. Folio. Munich, 1800.

V. MODERN ARCHitecture.-D. Spain, Italy, Russia, \&c.

Prado, I. de S. J. do. Monumento sacro da Faibrica do Real Convonto de Mafra. Folio. Lisboa, 1751.
Raczynski, A. Les Arts on Portugal. 8ro. Paris, 1846.
——Dictionnaire Historico-Artistique de Portugal, pour fairo suite à l'ouvrage ayant pour titre Les Arts en Portugal. 8ro. Paris, 1842.
Virian, G. Scenery of Portugal and Spain. 31 plates folio. 1839.
Wyatt, Sir M. I. An Architect's Note Book in Spain, priacipally illustrating the Domestic Architecture of that Country. 4to. 1872.

Bonanni, P. P. Templi Vaticani Historia. Folio. Romæ, 1696.
[1808-15.
Callerari, O. Disegni e Scritti d'Opere di Architettura. 90 plates, 2 vols. folio. Vicenza, Cullet, F., et Lesieur, J. B. C. Architecture Italienne; ou Palais, Maisons, et autres Edifices d'Italie. Folio. Paris, 1827.
Cassina, F. Le Fabbriche più cospicue di Milano. Folio. Milan, 1840-44.
-I'Italia Monumenta'e; Galleria delle principali Fabbriche Antiche e Mcderne d' Italia. 2nd edition. Folio. Milan, 1870.
Cicognara, L. Le Fabbriche più cospicue di Venezia, misurate, illustrate, ed intagliate. 2 vols. large folio. Venezia, 1815.
Clochar, P. Palais, Maisons, et Vues d'Italie. Folio, 102 plates, Paris, 1809.
Costa, G. Delizie del Fiume Brenta, espresse ne Palazzi e Casini situate sopra le sue Sponde. Folio. Venezia, 1750.
[Folio. Paris, 1763.
Dumont, G. M. Evurres d'Architecture; contenant les Détails de St. Pierre de Rome.
Fontana, C. Templum Vaticanum, et ipsius Origo. Folio. Romæ, 1694.
Gauthier, M. P. Les plus beaux Édifices de la Ville de Gênes et de ses Environs. Fo'io. Paris, 1824-1830.
Geymüller, H. de. Les projets primitifs pour la Basilique de S. Pierre de Rome. 4to. and folio. Paris, 1875-80.
Grandjean de Mentigny, A., et Famin, A. Architecture Toscane. Folio, 73 plates. Paris, 1837. New editions, 1846 ; and 1875.

Guarini, G. Architettura Civile. 2 vols. folio. Turin, 1737.
Guarino, C. G. Disegni d'Architettura. Folio. Turin, 1686.
Gwilt, J. Notices of the Buildings of Architects of Italy. 8ro. $1818 . \quad$ [1825-3?.
Itittorff, J., et Zanth, L. Architecture Moderne de la Sicile. Imperial folio. Paris,
Isabelle, C. E. Paralléle des Salles Rondes de l'Italie. 2nd edition, folir. Paris, 1863.
Lundi, - Racolta di alcune Facciate di Palazzi e Cortili di Bologna. Folio. Bologna.
Letarouilly P. Édifices de Rome Moderne. 3 vols. folio, text 4to. Paris, 1829-55.
——— Le Vatican et la Basilique de Saint Pierre de Fome. 3 vols. fulio. Paris, 1882.
Magrini, A. Il Palazzo del Museo Civico in Vicenza. 4to. Vicenza, 1855.

- Les Bâtimens et Desseins receuillis et illustrés, par Ottavio Bertotti Scamozzi. In French and Italian. 4 vols. folio. Vicenza, 1787.
Palladio, A. L' Architettura di. Folio. Venezia, 1642.
Parker, C. Villa Rustica; selected from Buildings in the Vicinity of Rome and Florence, and arranged for Lodges, Dwellings, and Schools. 3 vols. 4to. 1849.
Percier, C., et Fontaine, P. F. L. Cheix des plus célébres Maisons de Plaisance de Rnme et de ses Earirons. 75 plates, folio. Paris 1824.
[Firenze, 1830.
Pieraccini, F. La Piazza del Granduca di Firenze co' suni Monumenti. Folio, plates.
Price, L. Interiors and Exteriors in Venice. Folio. 1843.
Ronzani, F., e Luciolli, G. San Michele; Fabbriche Cirile, Ecclesiastiche e Militari. 147 plates, folio. Venezia, 1832.
Rossi, G. J. Raccolta di Fontane uell' alma Città di Roma, Tiroli e Frascati. 4lo. Rome.
Iossini, L. Scenografia degl' Interni delle più belle Chiese e Basiliche antiche di Roma. Folio. Rome, 1843.

I Monumenti piú interessanti di Roma dall' X. Sec. sino al XVIII. Folio. Rome, 1818.
Rupp, L. Chiese Principali d' Europa (11 buildings). Folio. Milan, 1824.
Succhi, A. Architettura Practica-le Abitazioni. Folio. 1874.
Sanmichele, M. Porte di Città e Fortezze, Depositi Sepolcrali, ed altre principali Fabbriche pubbliche ed prirate, da F. Albertolli. Imperial folio. Milan, 1815.
Suys, F. T., et Haudebourt, L. P. Palais Massimi à Rome; Plans, Coupes, Élérations, Profiles, Voûtes, Plafonds, etc. 43 plates. Paris, 1818.
Tusi, F. M., and Becchio, A. Altirs, Tabernacles, and Sepulchral Monuments of the NIVth and XVth Centuries existing at Rome. Italian, French, and English text ly Mrs. S. Bartlet. Folio. Lagny, 1843.
Valentini, A. Le Quattro principali Basiliche di Roma. 2 vols. folio. Rome, 1836-46.
Yriarte, C. See IV. B.
Custe, P. Monuments Modernes de Perse. Folio. Paris, 1866.
Demidoff, A. de. Exenrsion Pittoresque et Archéologique en Russie, etc., en 1839. Folio. Paris.
[1864.
Kiprianoff, V. Histoire Pittoresque de l'Architecture en Russic, etc. 8 ro. Petersburg,
Quarenghi, G. Édifices construites à St. Pétersbourg. Folio. St. Péters., 1810.

- Falbriche a Disegni. Folio. Milano, 1821.
[18:6-48.
Ricard de Montferrand, A. Cathèdrale de St. Isaac à St. Pétersbourg. Folio. Paris,
Rusca, L. Recueil des Dessins de différens Bátimens construits à St. Pétersbourg, ete, 180 plates, large folio. St. Petersburg, 1804-10.

Denmark. Danmark Fremstillet i Billeder. 74 plates, folio. Kjobedharen, 1860.
Graffenried und Stürler, M. von. Schweizerische Architektur. French and German text. 2nd edition, folio. Berne, 1847.
Hochstetter, J. Schweizerische Architectur in perspectirischen Ansichten, etc. Folio. Carlsruhe, 1863.
Varin, A. et E. L'Architecture Pittoresque en Suisse, ou Choix de Constructions Rustiques prises dans toutes les parties de la Suisse. 4to. 1860.

Barnard, IF. School Architecture, with Illustrations of the most approved Plans. 5th elition, 8ro. Hartford, U.S. 1854.
Strickland, W. Public Works in the United States of America. 8ro. 1841.

VI. THEATRES.

Arnaldi, Conte E. Idea di un Teatro nelle principali sue Parti simile a' Teatri Antichi all' Uso moderno accomodato. 4to. Vicenza, 1762.
Beccega, T. C. Sull' Architettura Greco-Romane applicata alla Costruzione del Teatro moderno Italiano e sulle Macchine Teatrali. Folio. Venezia, 1817.
Borgnis, J. A. Des Machines Imitatives et des Machines Théâtrales. 4to. 27 plates. Paris, 1820.
Boullet. Essai sur l'Art de construire les Théâtres, leurs Machines et leurs Mouvemens. 4to. plates. Paris, 1801.
Caros, A. Traité sur la Construction des Théâtres. 21 plates, 4to. Leipzig, 1849.
——Grand Théâtre de Moscou. 1860.
Contant, C., et Filippi, J. de. Parallèle des Principaux Théâtres Modernes de l’Europe, et des Systèmes de Machines Théâtrales Françaises, Allemandes et Anglaises. 134 plates, 2 vols. folio. Paris, 1840-42.
Daly, C., et Darioud, G. Théâtre Impérial du Châtelet. Théâtre Lyrique. Folio. Paris, 1871.
Descrizione del Nuero Sipario dell' Imperiale Regio Teatro della Scala in Milano. Small folio. Milano, 1821.
Donnet, A., et Kauffman, J. A. Architectonographie des Théâtres de Paris; ou Parallèle Historique et Critique de ces Élifices, considéres sons le Rapport de l'Architecture et de la Décoration. 2 rols. 8 ro., plates 4 to. Paris, 1837.
Unmont. Parallèle de Plans des Salles de Spectacle d'Italie et de France, aree des Détails de Machines Théátrales. Imperial folio, 61 plates. Paris, 1774.
Fontanesi, C. F. Decorations for Theatres; or, Desigus for Scene Painters. Fulio, 24 plates. 1813.
Galliari. Décorations de Théátre. Folio, 24 plates. Milan.
Garnier, C. Le Nouvel Opéra de Paris. Text 2 vols. felio. Paris, 1878-81. Plates 6 vols. folio. Paris, 1875-80.
Giorgi Felice. Descrizione Istorica del Teatro di Tor di Nino. 4to. 9 plates. Rone, 1795.

Gosset, A. Construction des Théàtres. Folio. Paris, 1886.
Kammerling, H. Das Victoria-Theater zu Berlin. Folio. Berlin, 1861.
Lachèz, T. Acoustique et Optique des Salles de Réunions Publiques, Théâtres et Amphithéâtres, etc. Sro. Paris, 1848.
Landriani, P. Osservazioni suj Defetti prodotti nei Teatri dalla cattiva Costrazione del Palio Scenico, e su alcune inarvertenze nel dipingere le Decorazioni. 4to. 9 llites. Milane, 1815.
Langhans, C. F. Das Victoria-Theater in Berlin. 4 plates, folio. Berlin.
Luuis, V. Salle de Spectacle de Bourdeaux. Atlas fulio, 21 plates, containing plans of several other theatres. Paris, 1782 .
Magne, A. Monographie dı Théâtre du Vanderille érigé par la Ville de Paris sous la direction de. Folio. Paris, 1871.
Morelli, C. Pianta e Spaccato del nuovo 'Teatro d' Imola. Folie, 19 plates. Roma, 1780.
Fatte, P. Essai sur l'Architecture Théâtrale. 8vo Paris, 1782.
Saunders, G. Treatise on Theatres. 4to. 13 plates. 1790. Uf little ralne.
Schinkel, C. F. vom. Theatre at Hamburg. 6 plates. Berlin, 1828.
Semper, G. Das königliche Hoftheater zu Dresden. Folio. Brunswick, 1849.
Strack; J. H. Das altgriechische Theatergebäude, nach sämmtlichen bekannten Ueberresten. Folio. Potsdam, 1843.
Titz, E. Das neue Victoria-Theater in Berlin. 24 plates, fulio. 1861.
Ware, S. Remarks on Theatres, and on the Propricty of Vaulting them with Brick and Stone. 8 ro. plates. 1809.
Wyatt, B. On the Rebuilding of Drury Lane Theatre. 4to. plates. 1812.

VII. KURAL ARCHITECIURE, GARDENS, STABLING, \&c.

Alphand, A. Les Promenades de Paris, Bois de Boulogne, et de Vincennes, etc. 2 rols. folio. Paris, 1874.
[8ro. 1852. \dot{A} ndrews, G. H. Construction of Agricultural Buildings of every Description. 3 rols. Birch, J. Examples oî Labourers' Cottages. 8ro. 1871.
Blarkburne, E. L. Suburban and Rural Architectare; English and Foreign. 1865
Cliateauneuf, A. de. Architectura Domestica. Folio. 1839-40.
[1849.
Dean, G. A. Construction of Farm Buildings and Labourers' Cottages. 4to. Stratford, Series of Selected Designs fur Country Residences, Lodges, \&c., ereeted for the Prince Consort, Earl of Leicester. \&c. 4to. 1867.
Denton, J. B. Farm Homesteads of England. 2nd edition, 75 plates, 8ro. 1865.
Downing, A. J. Architecture of Country Houses; with Remarks on Furniture, \&c., and Warming and Ventilating. New edition 8vo. New York, 1852.
[York, 1853.
——Architecture of Cottage Residences, with Additions, \&c. New edition, 8ro. New Theory and Practice of Landscape Gardening; with a view to the Improrement of Country Residences; with Remarks on Rural Architecture. 4th edition, 8ro. New York, $18+0$.
Fawkes, F. A. Hortic altural Buildings. 8ro. 1881.
Gray, IV. J. Kural Arehitecture ; Plans, \&e., of Farmhouses, Cottages, Schools, Gates, Railings, \&c., with Specifications. 8 ro. Edinburgh, 1853.
Hartshorne, C. H. Libourers' Cottages on Estates of Duke of Bedford. 8vo. Northamp-
Hints on Ornamental Gardening; Designs for Garden Buildings, \&cc. 8ro. 1823.
Hughes, J. A. Garden Ar hitecture and Landseape Gardening. 8ro. 180̊6. [ciety. 1857.
Isalac, T. W. P. Essay on Labourers' Cottages ; premiated by the Royal Agricultural Su-
Isabey, L., and Leblanc. Villas, Maisons de Ville et de Campagne, composées sur les motifs des laabitations de Paris Modernes. Folio. Paris, 1864-67.
Kemp, E. How to lay out a Garden : Plans, \&c. New edition, 8ro. 1864.
Kerr, R. A small Country House; the Planning of a Residence to cost from 2,000l. to Knightley, T. E. Stable Arehitecture. Folio. $1862 . \quad[5,000 l .8$ vo. 1873. Krafft, J. C. Plans des plus beaux Jardins Pittoresques de France, d'Angleterre, et d'Allemagne, et des Edifices, Monumens, Fabriques, etc., qui concourent à leur Embellissement, dans tous les Genres d'Architecture. 2 vols. oblong 4to. Paris, 1809.
... Recueil d'Architecture Civile, contenant les Plans, Coupes, et Elérations des Châteaux, Maisons de Campagne, et Habitations Rurales. Folio. Paris, 1809.
Loudon, J. C. Encyclopadia of Cottage, Farm, and Villa Architecture. 8ro. 1839. Encyelopaedi九 of Gardening, \&c. New edition, 8ro. 1850.
MacIutosh, C. The Book of the Garden. 2 vols, 8 ro. Edinburgh and London, 1852.
Major, J. Theory and Practice of Landscape Gardening. 4to. $185^{2} 2$.
Menzies, W. Cottages for Rural Districts. 8ro. 1885.
Miles, W. Geueral Remarks on Stables and Examples of Stable-Fittings. 8vo. 1860.
Morton, T. C. The Prince Consort's Farms. 4to. 1863.
Normand, C. Recueil rarié de Plans et de Façades, Motifs pour des Maisons de Ville et de Campagne. Folio, 53 plates. Paris, 1815.
Рарюorth, J. B. Rural Residences: a Series of Designs for Cottages, Decorated Cottages, small Villas, \&e. 8 ro. 1832.
[8vo. 18:3.
—— Ilints on Ornamental Gardening; Designs for Garden Buildings, \&cc. 29 plates,
Repton, II. Landscape Gardening, \&c. The entire works, edited by J. C. Loudon. New edition, 8ro. 1842.
[bird. 3rd etlition, 8 ro. 1853.
Rham, W. C. Dictionary of the Farm, with Supplement. Revised by W. and II. Rayn-
Richardson, C. J. Englishman's House, from a Cottage to a Mansion. 8vo. 1870.
Robinson, P. F. Rural Architecture; or, a Series of Designs for Ornamental Cottages. 4to. 1823. Ornamental Villas. 4to. 1837. Village Architecture. 4to. 1837. Farm Buildings. tto. 1837.
Robinson, W. Parks, Promenades, and Gardens of Paris, described and considered in relation to mants of our own cities 8ro. 1869.
Robson, G. Modern Domestic Building Construction. Folio. 1876.
Siebeck, R. Art of Landseape Gardening, represented in a Plan and elucidated by the Determining Motives. Translated by R. H. Westley, 6 plates, 4to. 1862.
_- Picturesque Garden Plans. 24 coloured plates, folio. 1864
Smith, C. H. J. Parks and Pleasure Grounds; Practical Notes on Country Residences, Villas, \&c. 12 mo .185 L.
Standish, J., and N ble, C. Practical Hints on Planting Ornamental Trees. 8ro. 1852.
Starforth, J. Architecture of the Farm ; being a Series of Designs for Farmhouses, Factors' IInuses, Agricultural Labourers' Cottages, and Farmsteadings. 4to. 18:3.
Stephens, H., and Burn, R. S. Book of Farm Buildings: their Arrangement and Construction. Sго. Edinburgh, 1861 ; and 1871.

Strickiand, C. W. Cottage Construction and Design. 18 plates, 8ro. 1864.
Tittersall, ©. Sporting Architecture. 4to. 1842.
Thomson, J. Retreats: a Series of Designs. 4tu. 1833.
Vaux, C. Villas and Cottages: a Series of Designs prepared for Execntion in the United States. 8ro. New York and London, lミj̄7.
Villa and Cottage Architecture. Published by Blackie. 4to. Edinburgh, 1869, 1880.
Vincent, J. Country Cottages; Designs for Improved Dwellings tor Agricultural Labourers. 20 plates, 2 nd edition, 4 to. 1860.
Wrilter, T. U., and Smith, J. J Cottage and Villa Arehitecture, \&c. 4to. Philadelphia,
Wearer, H. Hints on Cottage Architecture ; Designs for Labourers' Cottages, singly, iu pairs, and in groups. 2nd edition, folio. Bath, 18.50.

- Hints on Vilia Architecture; Sulection of Designs for Schools, Cottages, ald Parsonage Houses. 10 plates, folio.
Wickes, C. Handlybook of Villa Architecture. 61 plates, 4to. 1887.
Wilkinson, W. English Country Houses; Practical Treatise on House Building. 4to. Oxford, 1870, $187 \bar{\circ}$.

VIII. HISTORY OF ARCHITECTURE, THEORY, \&c.

Barry, E. M. Lectures on Architecture ; with Memoir. 8ro. 1881.
Batissier, L. Kistoire de l'Art Monumental dans l'Antiquité et au Moyen Age, suivio d'un 'Traité sur la Peinture sur Verre. 2nd edition, revised, 8vo. Paris, 1860.
Charteau, L. Ilistoire et Caractères de l'Architecture en France depuis l'époque Druidique jusqu’à nos jours. 8vo. Paris, 1864.
Cuusin, J. Génie de l'Architecture. 4to. 60 plates. Paris.
Donaldson, T. L. Architectural Maxims and Theorems. 8ro. 1847.
Durand, J. N. L. Recueil et Parallèle des Édifices de tous Genres, anciens et modernes. Folio, 90 plates, and 8 ro. text by Le Grand. Paris, 1801-9. [8ro. 18.55-63.
Fergusson, J. Handbook of Arehitecture ; a History and Description of all Styles. 3 vols.
———Historical Inquiry into the True Princhples of Beauty in Art. 8ro. 1849.

- - History of Architecture in All Countries, from the Earliest 'Cimes to the Present Day. 2 vols. 8 ro. 1862-67. Modern Architecture. 2ndedition, 8vo. 1874.
- Rude Stone Monuments in All Countries; their Age and Uses. 8vo. 1873.

Freeman, E. A. History of Arclitecture. 8vo. 1849.
Gailbabaud, J. Monuments anciens et modernes, consisting of plans, \&c., of the most remarkable edifices in the world. Fuur series, 4to. Paris. 1842-52.
_ L'Art dans ses Diverses Branches, on l'Arehitecture, la Sculptnre, \&ce, chez tous les Peup.'es et à toutes les Epoques jusqu'en 1789. 4to. Paris, ! 861.
Garbett, E. L. Treatise on the Principles of Design in Architecture. 12mo. 1850.
Crwilt, J. Rudiments of Architecture, Practical and Theoretical. 8ro. 18:6.
Henszlmann, Dr. Théorie des Proportions appliqnées dans l'Architecture depuis la XIIe Dynasije des Rois égyptiens jusqu'au $\mathrm{XVI}^{\mathrm{e}}$ Siècle. Folio, text 4to. Paris, 1860. Part 1 only.
Hope, T. Historical Essay on Architecture. 3rd edition, 8vo. 1840.
Isabelle, C. E. Les Édifices circulaires et les Dômes. 77 plates, fulio. Paris, 18 13 -ãj. Kugler, F. Denkmäler der Kunst; by Voit, Guhl, and Carpar. Fulio. Stuttgart, 1845.
——Handbuch der Kunstgeschichte. 8ro. Stuttgart, 1 \$48.
Geschichte der Baukunst. 3 vols. 8vo. Stutteart, 1859.
l.aw, H. Rudiments of Civil Engineering. 12mo. 18052.

Lefébre. Marvels of Architecture, translated by R. Donald. 8vo. 1870.
Le Grand, J. G. Essai sur l'Histoire Généralo de l'Architecture 8vo. Paris, 1819. This is the text to Durand's "Parallele."
Lesueur, J. B. Histoire et Théorie de l'Architecture. Svo. Paris, 1879.
Lloyd, W. W. General Theory of Proportion in Architectural Design. 4to. 1863.
Liibke, W. Geschichte der Architectur. 2nd editiou, 8ro. Cologne, 1858. Transla'ed by F. E. Bunnett. 2 vols. 8vo. 1868.
Montfançon, B. de. L'Antiquité Expliquée et Rrprésentée en Fignres. 5 rols. fulio. Supplement, 5 vols. folio, 964 plates. Paris, 1729-33.
Nicholson, P. Principles of Architecture. 3 rols. 8ro. 1836.
Otte, H. Handbueb der Kirchlichen Kunst: Archiologie des Deutschen Mittelalters. 8ro. Leipzig, 18 āt.
[1845.
Oudin, J. Manuel d'Archéol gie Religiense, Civile et Militaire. 2nd edition, 8vo. Paris,
Paley, F. A. Manual of Gothic Architecture. Sro. 1846.
Patte, P. Mémoires d'Architecture. 4to. Paris, 1769.
Petit, J. L. Remarks on Architectural Character. Folio. Oxford, 1846.
Poole, G. A. History of Ecclesiastical Architecture in England. Svo. 1848. [1852.
-Churches, their Structure, Arrangement, and Decoration. 31d edition, 18 mo .

Pugin, A. W. N. The True Prineiples of Pointed or Christian Arelritecture. 4to. 1841. Contrasts; or, a Parallel Letween the Edifices of the XIVth and XVth Centuries and the Present Day. 13 plates, new edition, 4to. $1841 . \quad[P a r i s, 1870-72$. Ramée, D. Manuel de l'Histoire Générale de l'Architecture. 2nd edition, 2 vols. 12 mo . Histoire de l'Architecture en France depnis les Romains jusqu'au XVIe Siècle. 12 mo . Paris and Leipzig, 1846.
[York, 1887. Reber, F. von. History of Ancient Art : and History of Mediæval Art. 8vo. New Reynaud, L. Traité de l'Arehitecture, cuntenant des Notions Générales sur les Principes de la Construction et sur l'Histoire de l'Art. 82 plates, folio. Paris, 1850.
Rickmın, T. Attempt to Discriminate the Styles of English Architecture. 6th ed tion, with additions by J. H. Parker. 8vo. Oxford, 1862. 7th edition, 1881. The 4th edition of 1835 contaius the Topographical List of Buildings.
Royal Institute of British Architects. Transactions. 2 parts, 4to. 187 and 1842. Sessional Papers. 31 vols. 4to. 1853-84. Now series, 4to. 3 vols. 1885-87.
Ruskin, J. Seren Lamps of Arehitecture. 8vo. 1849.
Scott, L. The Renaissance of Art in Italy. 4to. 1883.
[1859. Scott, Sir G. G. Remarks on Secular and Domestic Architecture. 2nd edition, 8ro. Lectures on the Rise and Development of Mediæval Architecture. 2 vols. 8 ro. 1879.

Se-oux, D'Agincourt. IIistoire de l'Art par les Monumens. 6 vols. folio. Paris, 1823. Smith, T. R. Gothic and Renaissance. 8ro. 1884.

$$
\text { - and Slater, J. Classic and Early Christian. 8vo. } 1882 .
$$

Viollet-le-Duc, E. E. Entretiens sur l'Architecture. 2 vols. 8vo. Paris, 1863-72.
Plates, folio. 1864. Translated by B. Bucknall. 8vo. 1877.
Compositions et Dessins. Folio. 1881-84.
Habitations of Man in all Ages. Transl. 8vo. 1876.
Histoire d'un Hôtel de Ville et d'une Cathédrale. 8ro. Paris, 1882. [1885.
White, W. H. The Past, Present, and Future of the Architectural Profession. 12 mo .

- Architecture and Public Buildings; their Relation to School, Academy, and

State, in Paris and London. 8vo. 1884. [Munich, 1827-31. Wiebeking, C. F. von. Architecture Civile. Text, 7 vols. 4to., and plates folio, Winckelman, J. J. Remarques sur l'Architecture des Anciens. 8 ro. Paris, 1783.
——Histoire de l'Art chezz les Anciens. 3 vols. 4to. Paris, 1790.

- Monumenti Antichi Inediti. 2 vols. folio, 184 plates. Napoli, 1820.

Woods, J. Letters of an Architect. 2 vols. 4to. 1828.

IX. ELEMENTARY WORKS, ORDERS, DETAILS, MOULDINGS.

Alherti, Leo Bapt. Libri de Re Ædificatoria. Folio, 1st cdition. Florence, 1485. Numerous later editions.

Translated into English by G. Leani. Folio. 1726-55.
Andronet du Cerceatu, J. Lirre d'Architecture. Folio, 50 plates. Paris, 1662. Antoine, J. Traité d'Architecture. 4to plates. Treves, 1768. A viler, C. A. d'. Cours d'Arehitecture. 4to. Paris, 1760. Barozzi da Vignola, G. Euvres complètes. Fulio. Paris, 1823. Ordini d'Architettura Civile. 4 to. 44 plates. Milano, 1814. Blondel. J. F. Cours d'Architecture. 9 vols. 8 vo. 300 plates. Paris, 1771-17r7. Bullet, P. Architecture Pratique. 8vo. Paris, 1774. Edited by Mazois. Paris, 1824. Chambers, Sir William. The Decorative Part of Civil Arehitecturo; with Essay on Grecian Architecture, and other Additions, hy J. Gwilt. 2 rols. imp. 8 vo. 66 phates. 1823.

- Treatise on the Decorative Part of Civil Architecture; with Essay on Greciau Architecture, by J. B. Papworth. The original plates. Folio. 1826.
Clerc, S. Le. Treatise on Architecture, translated by Chambers. 3 rols. 8 ro. 1732.
Detournelle, A. Projets d'Architecture. Folio, 60 or 120 plates. Paris, 1800̄-6. Durand, J. N. L. Leçons d'Architecture. 2 tom. 4 to plates. Paris, 1819.
- Partie Graphique des Cours d'Architecture. 4to. 34 plates. Piris, 1821.

Evelyn, J. Parallel of Ancient and Modern Architecture ; translated from R. Freart. Folio. 1680. Folio. 1723.
Felibien, M. Principes de l'Architccture, de la Sculpture, et de la Peinture. 4to. plates. Paris, 1697.
[S50. 1851.
Freeman, E. A. Essay on the Origin and Development of Window Tracery in England.
Gallaccini, T. Trattato sopra gli Errori degli Architetti. Folio. Venezia, 1767.
Goldmann, N., Arehitecture of, by L. C. Sturm. German text. Folio. Augsburg, 1716-52.
Hoffstadt, F. Gothisches A-B-C Buch. Text 8ro.; 43 plates, folio. Frankfurt, 1843-45,
1845-64. Translated into French. Folio. Paris, 1851.
[1882.
Kinross, J. Details from Italian Buildings, chiefly Renaissance, Folio. Edinburgh,

Leeds, W. H. Rudimentary Treatise on the Orders of Arehtecture. 12 mo . 1849.
L'Ereillé, C. J. Considérations sur les Frontons. 4to. Paris, 1824.
L'Orme, P. de. EEurres d'Architecture. Folio, 2 vols. in 1. Paris, 1626 ; Ronen, 1648. The Treatise on Architecture, in 9 bonks, was first published in Paris, 1567. The tenth book, on Carpentry, entitled, "Nourelles Inventions pour bien Bâtir et à petit Frais," folio, Paris, 1561-68, and 1576.
[edition, 4to. Elinburgh, $18 i 6$.
Mahan, D. H. Elementary Course of Civil Engincering. Edited by P. Barlow. New
Mandar. C. F. Étude d'Architecture Cirile; ou Plans, Elérations, Coupes, et Détails nécessaires pour élever, distribuer, et décorer une Maison et ses Dépendances. Imperial folio, 122 plates. Paris, 1830.
Manetti, G. A. Studio degli Ordini d'Architettura. Folio, 25 plates. Firenze, 1808.
Mauch, J. M. von. Neue systematische Darstellung der Architektonischen Ordnungen der Griechen, Römer und neuern Baumeister. 100 plates, 4to. Potsdam, 1850.
Nicholson, P. Principles of Architecture. 3 vols. 8ro. 1/95-8. 1836.
Normand, C. Noureau Parallèle des Ordres d'Architecture des Grees, des Romains et des Auteurs Modernes. Folio, 63 plates. Paris, 1819. Translated by A. Pugin. 1829.
Palladio, A. See Class II.
Perrault, C. Ordomnance des Cinq Espèces de Colonnes. Folio. Paris, 1683.
Robson, E. R. School Architecture; being Practical Remarks on the Planning, Designing, Building, and Furnishing School Houses. 8ro. 1874.
Scamozzi, V. L' Idea dell' Architettura Unisersale. 2 vols. folio. Venetia, 1615.
Serlio, S. Architettura. 4to. Venetia, 1567. Later editions.
Serrure, E. Cours Classique d'Architecture. Folio. Gand, 1874. [2 vols. 8vo. 1849.
Sharpe, E. Treatise on the Rise and Progress of Decorated Window Tracery in England.
-... The Seven Periods of English Architecture defined and illustrated. 8vo. 1851. The Mouldings of the Six Periods of Gothic Architecture from the Conquest to the Reformation. 4to. 1871.
Shute, John. The First and Chief Groundes of Architecture. Folio. 1563.
Thiollet, F. Leçons d'Architecture, Théorique et Pratique, comprenant l'Histoire des Ordres, etc. 6 rols. 4to. Paris, 1843.
Trimen, A. One Thonsand authenticated Mouldings of Mediæral Architecture, from the best examples. 53 I lates, 8 vo. 1863.
Visentini, A. Osservazioni sopra gli Errori degli Architetti ; contin. al Trattato di T. Gallaccini. Folio. Venezia, 1771.
Vitruvius. De Architectura, cum notis Variorum, a J. de Laet. Folio. Amst. 1649.

- Architettura di, tradotta ed comentata da B. Galiani. Folio. Siena, 1790. Trad. et coment. da Barbaro. Folio, woodeuts. Venezia, 1556.
_- Architecture of; by Poleni and Stratico. 8 parts in 4 vols. 4 to. Utini, 1825-30. by A. Marinio. 4 vols. folio. Rome, $1836 . \quad$ [3 vols. 4to. Paris, 1837.
———by Perrault. Folio. Paris, 1684. Augmentée par E. Tardieu et A. Coussin. Traduction Nouvelle, par Maufras. 2 vols. 8ro. Paris, 18 ± 7.
- -_ Translated by J. Gwilt. Imperial Sro. 1826.

Wiebeking, C. F. Architecture Civile, Théorique, et Pratique ; l'Histoire descriptire des Edifices anciens et modernes les plus remarquables. 7 vols. 4 to.; 260 plates, folio. Munich, 1823.

X. MATERIALS.

Austin, J. G. Preparation, \&c., and Application of Limes and Cements, \&cc. 12mo. 1862.
Bale, M. P. Wood-working Machinery; Saw Mills; Stone-working Machinery. 8vo. 1885.

ㄲlacrore, G. H. Marble Decoration, and the Terminology of British and Poreign Marlles. 8ro. 1888.
[1857.
Burnell, G. R. Limes, Cements, Mortars, Concretes, Marticks, and Plastering. 12 mo .
Burnham, S. M. History and Uses of Limestones and Marbles. 8ro. Bostou, U.S.A., 1883.
Brun, F. M. le. Sur l'emploi du Béton. 4to. Paris, 1843.
Coignet, F. Béton Aggloméré pour Fortifications, Ponts, etc. 8ro. Paris, 1862.
Davis, C. T. Practical Treacise on the Manufacture of Bricks, Tiles, and Terracotta, \&c. 8ro. Philadelphia. 1884.
[Process. 8ro. 1868.
Day, St. J. V. Manufacture of Malleable Iron, with special reference to the Richardson
Dobson, E. Treatise on the Manufacture of Bricks and Tiles. 12 mo . 1850.
Drake, C. Building in Concrete. 8ro. 1874.
Faija, H. Portland Cement for Users. 8ro. 1881.
[etition, 8ro. 1869.
Fairbairn, W. Iron; its History, Properties, and Processes of Manufacture. 3rd Farraday, M. Presention of Dry Rot in Timber. 8ro. 1836.
Flachat, E., Barrault, A., and Petiet, J. Traité de la Fibbrication du Fer et de la Fonte, etc. 3 rols 4 to. and folio. Liège, 1852.

Gilmore. Practical Treatise on Limes, Hydraulic Cements, and Mortars. 8ro. New Godwin, G. Nature and Properties of Concrete. 4to. 1836. Hodgkinson, E. Esperimental Researches on the Strength and other Properties of Cast Iron, \&c. 8vo. 1846.
Holtzapffel, C. Deseriptive Catalogue of the Woods commonly employed for the Mechanical and Ornamental Arts. 8ro. 1843.
Ifull, E. Treatise on Building and Ornamental Stones of Great Britain and Foreign Countries. 8 vo. 1872.
Hutchinson, J. New Experiments in Building Materials, in reference to their Conducting Power, Dryness, and Resistance to the Progress of Fire. 8 ro. 1843.
Hyatt, 'T.' Experiments with Portland Cement Concrete, combiued with Iron, as a Building Material. 4to. 1877.
Keily, J. Expansion of Structures by Heat. 8ro. 1887.
Kirkaldy, D. Experimental Inquiry into the Tensile, Strength, \&e., of Wrought Iton and Steel. New edition, 8ro. Glasgow, 1863.

Results of an Experimental Inquiry into the Mechanical Properties of Steel.
Laslett, T. Timber and Timber Trees. Sro. 1875.
[4to. 1873.
Lee, A. Marble and Marble Workers. 8 ro .1888.
Lingard, J. Inquiry into the Nature and Construction of Timber, including the Causes of Dry Rot. 2nd edition, 8 ro. 1842.
Inckwnod, H. Concreting and Asphalting. 4to. Manchester, 1886.
Metropolitan Board of Works. Regulations for the Construction of Concrete Buildings under the Metropolitan Building Act, 1855. Folio. 1882.
Mushet, D. Papers on Iron and Steel. Practical and Experimental. 8ro. 1840.
Papworth, J. Easay on the Causes of Dry Rot in Buildings. 4to. 1803.
Pasley, C. W. On Limes, Calcareous Cements, Mortars, Stuccoes, Concrete, and Puzzuolanas, \&c. 8ro. 1838. 2nd edition, Part I. only. 1817. [Enlarged, 1875.
Percy, J. Metallurgy; or, the Art of Extracting Metals from their Ores. 8ro. 1859-61.
Potter, T. Concrete; its use in Building. 8ro. (1877).
Reid, H. Practical Treatise on Concrete, and how to make it ; with Observations on the uses of Limes, Cements, and Mortars. 12mo. 1869.
——The Science and Art of the Manufacture of Portland Cement, with snme Constructire Appliances. 8ro. 1877. [8ro. 18.57. Rogers, S. B. Treatise on Iron Me'allurgy, up to the manufacture of Puddled Bars. Smith, C. H. Lithology; or Observations on Stone used for Building. 4to. 1845.
Stone. Report and Investigation into the Qualifications and Fit ness of Stone for Building Purposes, particularly for the New Houses of Parliament. New edition, 4to. 1845. Geol gical Surrey of Great Britain. Mineral Statisties of Great Britain, \&c. By R. Hunt. Part II. for 185s. 8ro. 1860.
Timber and 'Timber Duties Commissioners' Report. Folio. 1835.
Treussart, Gen., Petot, M., and Courtois, M. Essays on Hydraulic and Common Mortars, and on Lime Burning. Translated ly J. G. Totten. 8 ro. New York, 1842. Truran, W. The Iron Manufacture of Great Britain. Revised edition, 4to. 1862.
United States. Report on the Building Stones of that country. 4to. New York, 1883. Unwin, W. C. Rate of Hardening of Cement and Cement Mortars. 8ro. 1886.
—— Testing of Portland Cements. 12 mo . Manchester, 1886.
Testing of Materials of Construction. 8ro. 1888.
Vicat, L. J. Recherches expérimentales sur les Chaux de Construction, les Bétons, et Mortiers ordinaires. 8vo. Paris, 1819. Transl. by J. T. Smith. 8vo. 1837.
Whicheord, J. Kentish Ragstone as a Building Material. 8ro. 1846.

XI. STATICS, STRAIN, STRENGTH, MECHANICS, TABLES, \&c.

Adamson, D. The Mechanical and other Properties of Iron and Mild Steel. 8 ro. (1878.) Attock, H. Engineer's Pocket Book. 8ro. 1862, \&c.
Anderson, J. Strength of Materials and Structures. 5th edition, 12mo. 1880. 12mo. Baker, B. On the Strength of Beams, Columns, and Arches. 8ro. 1870. [1887. Baker, T. Principles and Practice of Staties, and Dynamics. 12 mo .1851.
Barlow, P. Treatise on the Strength of Timber, Cast Iron, Malleable Iron, and other Materials, \&c. New edition. Edited by J. F. Heather. 8ro. 1851.
Beardmore, N. Hydraulic Tables. 2nd edition, 12 mo .
Bourdais, J. Traité Pratique de la Résistance des Materiaux appliqués à la Construction des Ponts, des Bâtimens, etc. 8ro. Paris, 1859.
[18j)
Bow, R. H. Treatise on Bracing, with its Application to Bridges, \&cc. 8ro. Edinburgh,
Box, T. Practical Treatise on the Strength of Materials, including their Elasticity, \&c. 8vo. 1883.

Rrunet，F．Dimons＇ons de Fers qui doivent former la Coupole de la Halle aux Grains． Campin，F．Engincers＇Pocket Remembraucer．8vo．1863．［Folio．Paris， 1809. Cargill，T．Strains upon Bridge Girders and Roof Trusses．8vo． 1873.
Clarke，G．S．Principles of Graphic Statics．too． 1880.
Cotterill，J．H．Applied Mechanics．8ro． 1884.
Engineers＇，Architects＇，and Contractors＇Pocket Book．8ro．（Weale．）1863，\＆c．
Fairlairn，W．Application of Cast and Wrought Iron to Building Purposes，with Treatise on Wrought Iron Bridges．4th edition，8ro． 1870.

Useful Information for Engineers．4th edition， 3 vo＇s．，8vo．1864－67．
Fenwick，S．Mechanics of Construction，including the Theories of the Strength of Materials，Roofs，Arches，and Suspension Bridges．8vo． 1861.
Graham，R．H．Graphic and Analytic Strains in Thoory and Comparisoc ；also a chapter on Wind Pressures．8vo． 1883.
Grier，W．The Mechanic＇s Calculator．4th edition， 12 mo .1841.
Hogg，J．Merchant and Iron Trader＇s Guide，\＆c．Tables of Weights and Measurement of Metals，Stone，aud Timber． 12 mo .1859.
Humber，W．Strains in Girders and similar Structures，and their Strength． 12 mo ．
Hurst，J．T．Handbook of Formulæ，太゙c．13th edition，sm．oll．1882．［1868，188：）．
Inwood，W．Tables for the Purchasing of Estates，Freekold，Copyhold，\＆c．；Anuui－ ties，\＆c．7th edition．By F．Thoman．12mo． 1859.
Kirk，Balfour，and Ward．New Zealand Timber．8ro．Wellington， 187 万．
Kirkaldy，D．Results of an Experimental Inquiry into the Comparative Tensile Strength， \＆c．，of various kinds of Wrought Iron and Steel．8ro． $1862 . \quad$ Results of an Experimental Inquiry into the relative properties of Wronght Iron Plates．4to． 1876.
Lea，W．Tables of Strength and Deflection of Timber．8ro． $18,50$.
Malpas，H．Builder＇s Pocket Book of Reference：Tables of Strength of Timbers， Wood，and Iron Beams，\＆c． 18 mo ． 1852.
Molesworth，G．L．Pocket Book of Useful Formulæ and Memoranda．21st edition， 16 mo .1882.
Morin，A．J．Leçons de Mécanique Pratique． 4 vols．1846－50．2nd edition，8ro． Paris，1855．Aide－mémoire de Mécanique Pratique．5th edition，8vo．Paris， 1861. Fundamental Ideas of Mechanics，and Experimental Data．Translated，\＆c．，by J． Bennett．Sro．New York，1860．［edition，8ro．18；：．
Moseley，H．Mechanics applied to the Arts，including Statics and Hydranlics．3id
Mechanical Principles of Engineering and Architecture．2nd edition， 8 vc． 1855.
Moss，N．A．Strength of Materials and Strains in Structures；treats of Girder and Suspension Bridges only． 8 ro． 1887.
Neville，J．Hydraulic Tables，Coefficients，and Formulæ for finding the Discharge of Water from Orifices of all kinds．New edition，8ro． 1860.
Olander，E．New Method of Graphic Strains applied in the Construction of Wrought Iron Girders ；Series of Working Drawings of Modern Type．Vol．I．Folio． 1880.
Peddie，A．The Practical Measurer，or Wood Merchant＇s Assistant；with Tables．New edition， 8 ro．Glasgow， 1862.
Penn，S．Tables showing the Weight of different lengths of Round，Square，Flat Bar Iron，\＆c．5th edition．Liverpool， 1813.
Planat，P．Pratique de la Mécanique appliquée à la Résistance des Matériaux．8ro． Paris， 1887.
Pratt，J．H．Mathematical Principles of Mechanical Philosophy，and their Application to Elementary Mechanics and Architecture，\＆c．8ro．Cambri，ge， 1845.
Rankine，W．J．M．Manual of Applied Mechanics．3rd edition，8vo．Glasgow， 1864.
Richards，J．Wood－working Factories and Machinery．8ro．New York， 1873.
Ricker，N．C．Elementary Graphic Statics and the Construction of Trussed Roofs．8ro． New York．
［1882．
Roberts，J．The Pressure of Wheat stored in elongated cells or lins．8ro．Liverpool，
Robertson，F．Tables for Arches．8ro． $1871 . \quad$［Students． 8 ro．
Robinson，H．Hydraulic Power and Machinery，for the use of Practical Engineers and
Ryde，E．Hydraulic＇l＇ables：Discharge of Water through Pipes，\＆c．8ro． 1952.
Seddon，H．C．Tables on the Strength or＇Timber．8vo．Chatham， 1881.
Shiclds．F．W．Strains on Structures of Ironwork，with Remarks on Iron Construction． 8ro．1861．2nd edition， 8 ro． 1867.
Snell，G．Stability of Arches．Sro． 1846.
Stoney，B．B．Theory of the Strains in Girders and similar Structures；Tables of Strength of Materials．8ro． 1869.
Tarlack，E．L．Handbook of House Property ；a Practical Guide，including the Law of Dilapidations，Fixtures，and Valuations，\＆c．4th edition，enlarged，8vo． 1887.
Tarn，E．W．Scienco of Building ；Elementary Treatise on the Principles of Corstruc－ tion．Svo． 1870.

Tate, T. Strength of Materials; original Formulæ, applied to Tubular Bridges, Iron Beams, \&ic. 8vo. 18 ão.
Timmins, T. Examples of Iron Roofs, \&c. Vol. 1, 4to. 1882. Obtaining by Diagrams the Strains in, and Strength of, Rireted Girders and Curved Roofs. Vol. 2,4to. 1882. Tomlinson, C. Mech nirs. 12 mo .1859.
Toussaint, C. J. Traité de Géométrie et d'Architecture Théorique et Pratique simplifié. 4 rols, 4to. Paris, 1811-12.
Tredgold, T. Praetical Treatise on the Strength of Cast Iron and other Metals. Rerised, \&c., by E. Hodgkinson. 8vo. 1860.
Turnbull, A. H. Tables of Compound Inierest, and Annuities; Yearly, \&c., Payments. 8vo. Edinburgh, 1863.
Turnbull, W. Essay on the Construction of Cast Iron Beams. 8ro. 1833.
Unwin, W. C. Formulæ for Flow of Water in Pipes. 4tn. Manchester, 1886.
Warr, F. Dynamies, Construction of Machinery, Equilibrium of structures, and the Strength of Materials. 8vo. 1851.
[1857.
Weir, H. F. Land Measuring Talles, showing the area of any sized Plot. 8ro. Glasgow,
Whewell, W. Elementary Treatise on Mechanics. 7th edition, 8ro Cambridge, 1847.
Willich, C. M. Popular Tables for ascertaining the Value of Lifehold, Leasehold, and Church Property. 4th edition, Svo. 1859.
Woollury, D. P. Treatise on the various Elements of Stability in the well-proportioncd Arch. 8vo. New York, 1858.

XII. PRACTICAL WORKS OF CONSTRUCTION.-See also Class X.

Adams, H. Joints in Woodwork. 8ro. 1877.
Adhémar, J. Traité do Charpente. 2nd edition, 8ro. Paris, 1854.
Traité de la Coupe des Pierres. Text 8ro., plates folio. Yaris, 1859.
Ardant, P Sur la Charpente à Grande Portée. Folio. Paris, 1853.
Aslpitel, A. New Guide, or Book of Lines for Carpenters, geometrically explained. New edition, 4to. 1857.
_—— IIandrails and Staireases; a Simple Mcthod of Finding the Lines. 4to. 1851.
Bancroft, R. M. and F. J. Tall Chimney Construction. 8ro. Manchester, 1885.
Bankes, L. Joiner's Instructor in the Construction of Staircases and Handrailing. 4to.
Blagrove, G. H. Shoring and its Application. Sro. $1887 . \quad$ [1849.
Borgnis, J. A. Traité Elémentaire de Construction appliquée à l'Architecture Civile. 2 vols. 4 to. 30 plates. Paris, 1823. 3rd edition, to. Liège, 1840.
Brandon, R. and J. A. Open Timber Roofs of the Middle Ages. 4to. 1849.
Brees, S. C. Railway Practice: a Collection of Working Plans, \&cc. 4 series, 4to. 1837, 1810, 1847.
Brown, G. Healthy Foundations for Houses. 18n:o. New York, 1885.
Brunet, F. Dimensions des Fers de la Coupole de la Halle au Grain. 4to. Paris, 1809.
Bruyère, L. Études relatives à l'Art des Constructions. Folio. Paris, 1823-28.
Building Construction. Notes on. 3 vols. 8ro. 1875-79.
Burn, R. S. New Guide to Carpentry, general Framing, and Joinery, theorctical and practical. 4to. 1871.
Bury, T. Remains of Ecclesiastical Wootwork. 21 plates, 4to. $18+7$.
Christy, W. J. Practical Treatise on the Joints made and used by Builders. 12mo. 1882.
Collings, G. Circular Work in Carpentry and Joinery: A Practical Treatise on Circular Work of Single and Duuble Curvature. 8ro. 1887.
Dempsey, G. D. Examples of Iron Roof, spans from 20 to 153 feet. Folio. 1850.
Dohson, E. Fudimentary Treatise on Mlasonry and Stone-cutting. 12mo., 4to. 1849. Rudiments of the Art of Building. 12mo. 1881. On Fomdations and Concrete Wurk. 12 mo .1850.
Douliot, J. P. Traité special de Coupe des Pierres. 2 vols. 4to. Paris, 1825.
Durand-Claye, A. Étude sur la Stabilité de la Coupole projetcée par Bramanto pour la Basilique de S. Pierre de Rome. 4to. Paris, 1879.
Eek, C. L. G. Traité de l'Application du Fer, de la Fonte, et de la Tôle, dans les Constructions Civiles, etc. Folio. 1841.
_ Mémoire sur la Construction de Nouvcaux Planchers, destinés à rendre les Bâtiments Incombustibles. Folio. Paris, 1841.
[Liège, 1845.
Emy, A. R. Traité de l'Art de la Charpenterie. 2 vols. 8 vo. 157 plates, foli .
_ Description du Nouveau Système d'Ares pour les Grandes Charpentes. Folio. Liège, 1852.
Farkairn, W. Treatise on Mills and Millwork. Part I. Principles of Mechanism. 3rd cdition, 8vo. 1871. Part II. Machinery and Construction and Arrangement of Mills. 2nd edition, 8ro. 1860.

Fontenay, T. Notice on the Construction of the Tunnels of St. Cloud and Motretout ; with General Observations on Subterranean Passages, and the Dimensions and Prices of Sixty-six Tunnels in France, England, and Belgium. 8ro. Paris, 1847.
Fourneau, H. Art du Trait de Charpenterie. 4 rals, folio, 87 plates. Paris, 1820.
Fox, H. H., and Barrett, G. Construction of Public Buildings and Privato DwellingHouses on a Fireproof Principle, without increase of cost. 12 mo . 1849.
Frezier, M. Théorie et la Pratique de la Coupe des Pierres et des Bois. 3 rols. 4 to. plates. Paris, 1757.
Galpin, J. Joiner's Instructor: Staircasing and Handrailing. 2 rols. 4to. 1853.

- Joiner's Own Book, and Builder's New Guide, showing the Improvements upon Carpentry and Joinery since the days of the late Mr. Nicholson. 39 plates, 4to. 1856.
Gauthey, E. M. Dissertation sur les Dégradations survennes aux Piliers du Dôme du Panthéon, et sur les Moyens d'y remédier. 4to. plates. Paris, 1798.
Goodwyn, H. Wrought-Iron Roofing, as applicable to every description of Building, and showing the modification necessary to adapt the system to European dwellings in India, \&c. 4to. Calcutta, 1844.
Hassenfratz, J. H. Traité de l'Art du Charpentier. 4to. Paris, 1804.
Jousso, M. Ouverture de l'Art dı Serrurier, Charpentier, etc. 2 vols. folio. Flèche, 1627. Le Secret d'Architecture. Folio. 1642. L'Art de Charpente. 3rd edition, folio. Paris, 1702.
Krafft, J. C. Traité sur l’Art de la Charpenterie ; Plans, Coupes et Élévations, de direrses Productions. Folio. Paris, 1820.
Lasvinges, H. et L. Cathédrale de Bayeux: Reprise en sous-œurre de la Tour Centrale ; Description des Travaux. 25 plates, 4to. Paris, 1861.
Laxton, H. Examples of Building Construction, being a Series of Working Drawings to a large Scale. 27 parts, folio. 1853-56.
Matheson, E. Works in Iron; Bridge and Roof Structures, with a Vocabulary. 8vo. 1873.

Merrifield, C. W. Determination of the Form of the Dome of Uniform Stress. 8vo.
Mesauge, M. Traité de Charpenterie et des Bois de toutes Espèces. 2 tom. Paris, 1753.
Mignard, B. R. Guide des Constructeurs; Traité. 3rd edition, by A. F. Chelly. 2 vols. Svo.; 87 plates, folio. Paris, 1866.
Morey, P., et Roux, H. Charpente de la Cathédrale de Messine. Folio. Paris, 1841.
Morris, T. British Carpentry: History and Principles of Gothic Roofs. 8ro. 1871.
Newland, J. Carpenter's and Joiner's Assistant, \&c. 2 rols. folio. Liverpool, 1860.
Nicholson, P. Carpenter and Joiner's Assistant. 4to. 1815. Carpenter's New Guide. 4to. 1819. Practical Treatise on the Art of Masonry and Stone-Cutting. 8ro. 1832.
Oldham. Report on the Fall of the Cotton Mill. Folio. 1845.
Oppermann, C. A. Nourelles Anbales de Construction. In progress, folio. Paris, 1855-87.
Powell, G. T. Foundations and Foundation Walls; Pile Driving; Building Stones and Bricks. With Foundations and Isolated Piers as followed in Chicago, by F. Baumann. 8ro. New York, 1887.
Price, F. British Carpenter. 4to. plates. 1753.
Riddle, R. Staircasing, Handrailing, Carpentry, \&c. 1860.
Roberts, T. Mode of Scarfing Timber. 8ro. Devonport, 1852.
Robson, G. Modern Domestic Building Construction. Folio. 1876.
Robson, R. Mason's, Bricklayer's, and Decorator's Guide; containing Examples of Foundations, Domes, Lighthouses, Bridges, \&c. 4to. 1862.
Rolfe, C. Chancel Screens and Roofs. 8ro. Reading, $1876 . \quad$ [1846-50. Romberg, S. A. Die Zimmerwerk-Baukunst in allen ihren Theilen. Folio. Leipzig.
Rondelet, J. Traité Théorique et Pratique de l'Art de Bâtir. 5 rols. 4to. and 207 plates, folio. Continuation of G. A. Blouet. Paris, 1858. 10ih edition.

As great use was made of this work by Gwilt, we notice here that he had the edition of 1835. It was first published in 1805-10, which edition is in the library of the Institution of Civil Engineers; the second, of 1812-14, is in the library of the Institute of British Architects, and in Sir John Soane's Muscum ; while the British Museum contains the edition dated 1830-2. In this one some of the plates hare been re-engraved and rearranged.
[Paris, 1814. Mémoire Historique sur le Dôme du Panthéon François. 10 plates, 4to. Mémoire sur la Réconstruction de la Coupole de la Halle au Blé de Paris. 4to. 3 plates. Paris.
Roy, C. F. le. Traité de Stéreotomie ; à la Théoris des Ombres, la Perspective linéaire, la Gnomonique, la Coupe des Pierres, et la Charpente. 2 vols. folio and 4to. Liège, 1845.

Seddon, H. C. Building Trades and Building Construction. 2nd edition, folio. Chatham, Builders' Work and the Building Trades. 8 ro. 1886.
[1877.

Sganzin, J. Leçons d’un Cours de Constructions, arec des applications tirées spécialement de l'Art de l'Ingénieur des Ponts et Chaussées. Sth edition, by M. Reibell. 180 plates, folio. Text 3 rols. 4to. Paris, 1845. Simms, F. W. Practical Tunnelling. Revised by W. D. Haskoll. 2nd edition. 4to. Simonin. Traité Élémentaire de la Coupe des Pierres. 4to. Paris, 1792.
Sirr, H. English Stall Work, Canopies, and Rood Screens of the XVth century. 2 vols. 4to. 1883-85.
[1878.
Small, J. W. Scottish Woodwork of XVIth and XVIIth century. Folio. Edinturgh, Stoek, C. H. Shoring and Underpinning. 8vo. 1882.
Tarbuck, E. L. Encyclopædia of Practical Carpentry and Joinery, \&c. 4to. 1857-69.
Tarn, E. W. Elementary Principles of Carpentry and Joinery, from the work by Tredgold. Plates, 4 to. 8 ro. 1873 . On the Construction of Roofs. 12 mo. 1882.
Thierry. Recueil d'Escaliers en Pierre, Charpente, Menuiserie et Fonte. 4to. Paris, 1844.
Timmins, T. Iron Girders and Roofs. Vol. 1, 2nd edition, 4to. 1883. Vol. 2, Graphic Strains. 4to. 1882.
Tregold, T. Elementary Principles of Carpentry, by P. Barlow. 4to. 50 plates. 1853. Revised ly T. Hurst. 3rd edition, 8 ro. 1880. 5 th edition, rerised by E. W. 'Jarn. 4 to. 1885.
Trendall, E. W. Examples for Roofing. \&c., for Show-Rooms, Theatres, Warehouses, Churches, Chapels, Schools, Villas, Greenhonses, \&e. New edition, tto. 1860.
Walker, T. L. Architectural Precedents. 65 plates, 8 ro. 1841.
Walmisley, A. T. Iron Roofs. Folio. 1884.
Willeocks, G. W. Roads and Roadways. Sro. 1879.

XIII. FIREPROOF CONSTRUCTION, \&

Ashpitel, A., and Whicheord J. Fireproof Houses in Flats. 8ro. $18 j 5$.
Bellamy, T. Fireproof Construction. Folio. 1872.
Boult, J. Structural Requirements of the Fire Prevention Acts, \&c., in Liserpool. Svo. Liserpool, 1869.
Braidwood, J. Fireproof Buildings. 8vo. 1850.
—— Fire Prevention and Fire Extinction. 8ro. 1865.
Fox, H. H., and Barrett, G. Construction of Public Buildings and Private Dwelling Houses on a Fireproof Principle, without increase of cost. 12 mo . 1849.
Hornblower, L. Improvements in the Construction of Fircproof Buildings; Specifications, \&c. 8ro. 1874.
Merryweather, J. C. Fire Protection of Mansions. 8ro. 1881.
Papworth, W. Notes on the Causes of Fires; or, which is the safest of the rarious modes of Warming Buildings. 16 mo .1853.

- Notes on Spontaneous Combustion. 16mo. 1855.

Shaw, E. M. Fire Surveys; or, Principles in Estimating Risk of Buildings. 8ro. 1872.
Young, C. F. T. Fires, Fire-engines, \&c.; with Remarks on lireproof Construction. 8 ro. 1866.

XIV. BRIDGES AND ARCHES.

Adhémar, J. Traité Théorique et Pratique des Ponts Biais. Folio. Paris, 18.57.
Anselin, N. J. B. Expériences sur la Main d'Eurre des différens Travaux dépendans du Service des Ingénieurs des Ponts et Chaussées, etc. 410. Boulogne, 1810. [1804.
Atwood, G. Dissertation on the Construction and Properties of Arches. 4to. 1801-
Aubry. Mémoire sur la Construction d'un Pont de Bis de 450 Pieds d Ourerture dun seul Jet, etc. 4to. Paris, 1790.
[Bridge. 4to. 1884.
Baker, B. The Strength of Beams, Columns, and Arches. 8ro. 1870. The Forth
Bashforth, F. Practical Treatise on the Construction of Oblique Bridges with Spiral and with Equilibrated Courses. New edition, 8vo. 1855.
Bauernfeind, C. M. Vorlegeblätter zur Brückenbaukunde. Folio. Munich, 1853-5t.
Blackfriars Bridge. 7 plates of the machines used in its construction and the centring of the middle arch. Oblong folio.
Blair and Phillips. Construction of Viaducts, Bridges, \&c. 8ro. 1845.
Boistard, L. C. Recueil sur les Ponts de Nemours, \&c. 4to. 19 plates. Paris, 1822.
Bow, R. H. Treatise on Bracing; with its Application to Bridges, \&c. 8vo. Edinburgh, 1851.
Cargill, J. Strains upon Bridge Girders and Roof Trusses. 8ro. 1873.
Clark, E. Britannia and Conway Tubular Bridges, with General Inquiries on Beams. 2 vols. 8 ro. 1850.

Cresy, E. Practical Treatise on Bridge Building and on the Equilibrium of Vaults and Arches. Plates, folio. 1839.
Dempsey, G. D. Maleable Iron Tubular Bridges. 4to., plates folio. 1850.

- Brick Bridges, Sewers, and Culverts. 4to., plates folio, 1850.

Emmery, H. C. Pont d'Ivry en Bois, sur Piles en Pierre, traversant la Seine près du confluent de la Marne. 2 vols. 4to. plates. Paris, 1832.
Etzel, C. von. Brücken und Thalübergänge Schweizerischer Eisenbahnen. Folio. Basel, 1856. Supplement, 1859.

Exchaquet, H. Dictionnaire des Ponts et Chaussées. 8 ro. 12 plates. Paris, 1787.
Fairbairn, W. Account of the Construction of the Britannia and Conway Tubular Bridges. 20 plates, 8 ro. 1819.
Gauthey, E. M. Traité de la Construction des Ponts; Mémoires sur les Canaux de Navigation, etc., publié par M. Navier. 4 vols. 4to. plates. Paris, 1816.
Gautier, H. Traité de la Construction des Ponts et Chaussées. 8vo. Paris, 1721-65.
Goury, G. Rocueil d'Observations, Mémoires et Projets concerrant la Navigation Intérieure. 2 vols. 4to., plates folio. Paris, 1827.
Gwilt, Joseph. On the Rebuilding of London Bridge. 8vo. with 1 plate. 1823.

- Treatise on the Equilibrium of Arches. 8vo. plates. 1826. The editions of a later date are spurious, being without additions or corrections by the author.
Hann, J., and Hosking, W. Theory, Practice, and Architecture of Bridges of Stone, Iron, Timber, Wire, and Suspension. 4 vols. 8 ro. 1843. Supplement, by G. R. Burnell. 8ro. 1850.
[Iron. Folio. 1864.
IHaskoll, W. D. Examples of Bridge and Viaduct Construction of Masonry, Timber, and
Haupt, II. General Theory of Bridge Construction, containing Demonstrations of the Principles of the Art, the Scrains upon Chords, Ties, Braces, \&c. New edition, 8ro. New York, 1853.
Hodges, J. Great Victoria Bridge at Montreal in Canada. Text 4to., plates folio. 1860.
Humber, W. Complete Treatise on Cast and Wrought Iron Bridges and Girders, as applied to Railway Structures and Buildings generally. Plates, 4to. 1860.

Complete Treatise on Cast and Wrought Iron Pridge Construction, including Iron Foundations. 80 plates, 2 vols. 4 to. 1864 and 1870.
Hutton, C. l'rinciples of Bridges. 8ro. 1772.
Latham, J. H. Construction of Wrought Iron Bridges, embracing the Practical Application of the Principles of Mechanics to Wrought-Iron Girder Work. 8vo. Cambridge, 1858.
Le Sage, P. C. Recueil de divers Mémoires des Ponts et Chaussées. 2 vols. 4 to. Paris, 1810.
Marquand, C. On the Different Constructions of Bridges, and Improvements to secure their Foundations. 4to. 1749.
Maw, W.H., and Dredge, J. Modern Examples of Road and Railway Bridges. 4to. 1872.
Milne, J. Theory and Principles of Bridges and Piers. 8ro. 36 plates. 1806.
Molinos, L., et Pronnier, C. Traité Théorique et Pratique de la Construction des Ponts Métalliques. 4to., plates folio. Paris, 1858.
Navier. Mémoire sur les Ponts Suspendus. \&to. Paris, 1830.
Nicholson, P. Guide to Railway Masonry, containing a complete Treatise on the Oblique Arch. 3rd edition, revised by R. Cowen. 8ro. 1860.
Perronet, M. (Euvres de. 4to., plates folio. Paris, 1793.
Polonceau, A. R. Notice sur le noureau Système de Ponts en Fonte, suivi dans la Construction du Pont du Carrousel. 4to. Atlas folio, plates Paris, 1839.
Font en Pierre à construire sur la Seine à Rouen. 4to. plates. Paris, 1815.
Prony, M. de. Nouvelle Architecture Hydraulique. 2 vols. 4to. plates. Paris, 1790.
Regemortes, M. de. Description du nouveau Pont de Pierre construit sur la Rivière d'Allier à Moulins. Folio. Paris, 1771.
Robertson, F. Tables for Arches. 8vo. 1871.
Rondelet, A. Essai Historique sur le Pont de Rialto. 4to. plates. Paris, 1837.
Seaward, J. Obserrations on the Rebuilding of London Bridge. 8ro. plates. 1824.
Seguin, A. Des Ponts en Fil de Fer. 8ro. plates. Paris, 1824.
Semple, G. Treatise on Building in Water. 63 p!ates, 4to. Dublin, 1776.
Shanahan, M. Plans and Elerations of Bridges in France, Switzerland, Italy, and Savoy. Oblong folio. Plates only. No date.
Snell, G. Stability of Arches. 8vo. 1846.
[1882.
Telford, T. Reports on the Holyhead Roads, Harbour, Bridges, \&c. Folio, with plates.
Turnbull, W. Mathematical Investigation of Dredge's Principle for Bridges. 8vo. 1841.
Vicat, L. J. Description du Pont Suspendu construit sur la Dordogne à Argental. 4to. plates. Paris, 1830.
Ware, S. Treatise on the Properties of Arches, and their Abutment Piers. 1809.
Wiebeking, Le Chevalier. Architecture Hydraulique fondée sur la Théorie et la Pratique. 4 vols. 4to. Atlas vol. of plates. Munich. 1814-2 4.

XV. SPECIFICATIONS, GUIDES TO TRADES, OFFICE WORK.

Bartbolomex, A. Specifications for Practical Architecture, preceded by an Essay on the Decline of Excellence in the Structure and in the Science of Modern English Buildings. 8ro. 1840. 2nd edition, 8vo. 1846.
Beckett-Denison, Sir E. Lectures on Church Building; with Remarks on Bells and Clocks. 2nd edition, 8vo. 1856.
——A Book on Building; including Church Restoration. 2nd edition, 12mo. 1880.
Blenkarn, J. Architectural and Engineering Specifications of Works, Roads, and Sewers, with Agreements and Reports. 8vo. 1865.
Burn, R. S. Handbook of the Mechanical Arts in Building; with Hints on Roadmaking and Enclosing of Land. 2nd edition, 8vo. Edinburgh, 1860.
Claudel, J. Formules, etc., ou Aide Mémoire des Ingénieurs, des Architectes, etc. 2nd edition, 8 ro. Paris, 1857.
Dempsey, G. D. The Builder's Guide : A Practical Manual. 8ro. 1851.
Dobson, E. Rudiments of the Art of Building. 12 mo .1849.
Student's Guide. 3rd edition, with additions by E. L. Garbett. 8ro. 1858.
Donaldson, T. L. Handbook of Specifications, \&c.; with a Review of the Law of Contracts, by W. C. Glen. 2 rols. 8 ro. 1860.
Haskoll, W. D. Clerk of the Work's and Young Architect's Guide. 12mo. 1849.
Houba, E. Code à l'usage de Propriétaires. Ingénieurs, Architectes. 8ro. Brux., 1880.
Hurst, J. T. Handbook of Formulæ, Tables, and Memoranda for Architectural Surreyors, \&c. 13th edition, sm. obl. 1882. [edition, 8ro. 1880.
Jenkins, E., and Raymond, J. A Legal IIandbook for Architects. Sro. 1873. 3rd
Mathews, J. D. Architect's and Contractor's Handbook. 8ro. 1883, 1885.
Noble, J. Professional Practice of Architects, and that of Measuring Surveyors; and Reference to Builders. 8ro. 1836.
[W. Young. 8ro. 1870.
Pewtner, W. Comprehensive Specifier: a Guide to Practical Specification. Edited by
Rankine, W. J M. Manual of Ciril Engineering. 3rd edition, 8ro. Glasgow, 1864.
Roberts, J. B. Short Hiuts to the Student in Architecture oll entering the Office, making Drawings, \&c. 16 mo .1852.
Rogers, F. The Architect's Guide: a Text-Book of Useful Information for Architects, Engineers, Surveyors, C'ontractors, Clerks of the Works, \&c. 8ro. 1877.
Ryde, E. Test-Book for the constant use and reference of Architects, \&c. Landed Property, by J. Donaldson. 8ro. 1854.
[tory and Diary for 1888.
Sears, J. E. The Architect, Eurveyor, and Engineer's Compendium, Specialist's Direc-
Seddon, H. C. Notes on the Building Tredes and Building Construction. 2nd edition, folio. Chatham, 1877. Buil\}er's Work and the luilding Trade. 8ro. 1886.
Science and Art Derartment. Notes on Building Construction. 3 vols. 8vo. 1875-79.
Spons' Architects' and Builders' Pocket Book. \&c. 14th edition, by W. Young. 32mo. 1887.
Walker, T. L. Architectural Precedents; with Essay on Architectural Practice. 8ro. 1841.
Ware, W. R. Examples of Building Construction. 8vo. and 4to. Boston, U.S.A., 1877-80.
Wheeler, W. H. Construction, \&c., of Roadways. 8ro. 1877.
Wightwick, G. Hints to Young Architects. 2nd edition, 8ro. 1860. New edition, by G. H. Guillaume, 12 mo .1880.

XVI. DESIGN, DRAWING. PERSPECTIVE.

Adhémar, J. Tiaité de Perspective. 8ro. Paris, 1838.
[tto. Paris, 1850. Armengaud, C. Cours élémentaire de Dessin industriel a l'usage des Écoles premières. - Nouveau Cours raisonné de Dessin industriel appliqué principalement à la Mécanique et à l'Architecture. Folio. Paris, 1848.
Billings, R. W. The Infinity of Geometric Design ヶxemplified. 4to. 1849.
——The Power of Form applied to Geometric Tracery. Sro. 1851.
Burchett, R. Linear Perspective. 18th edition, 8vo. 1878.
Burges, W. Architectural Drawings : Measured Drawings from France, England, and Italy, illustrating 13th century work. Folio. 1870.
Davidson, E. A. Projection. 12mo. (1868.) Other works on Drawing for Trades.
Edwards, M. A Guide to Modelling in Clay or Wax. Sro. 1879.
[Paris, 1846.
Grand, A. le. Dessin linéaire, lasé sur la Géométrie fratique et la Perspective. Folio.
Griffith, W.P. Ancient Gothic Churches ; their Proportions, \&ec. 3 parts, 4to. 1847-52.
Gwilt. J. Seiography; or, Examples of Shadows; with Rules, \&c. 8vo. 24 plates. 1824.
Harding, J. D. Elementary Art; or, the Use of the Black-lead Pencil ad rocated and explained. 28 plates, 4to., 4th edition. 1858. Lessons on Art. 2 vols. 48 plates, 2nd ϵ dition, 8 ro. 1854. Principles and Practice of Art ; treating of Beauty of Form, Imitation, Composition, Light, Shade, Effect, and Coluur. 4to. 1845.

Jousse, M. Secrets d'Architecture et des Traits Géométriques. Folio. Flè he, 1642.
Malıan, D. H. Industrial Drawing; Use of Drawing Instruments, Plane Figures, Solids, \&c. \&c. 8 ro. New York, 18.52.
Malton, J. Young Painter's Maulstick. 4to. 1806.
—— Practical Treatise on Perspective. 4to. 1800.
Malton, T. Complete Treatise on Perspective. Folio, 2 vols. 1778.
Minifie, W. Text-Book of Geometrical Drawing, for the use of Mechanies and Schools; Drawing Plans, \&c., of Buildings and Machinery, Isometrical Drawing, Linear Perspective, and Shadows. New edition. 8ro. Baltimore, 1851.
Monge, G., et Brisson, M. Géométrie Descriptive; suivie d'une Théorie des Ombres et de la Perspective. 7th edition, 4to. Paris, 1847.
Normand, L. M., et Rebout, A. E. M. Études d'Ombres et de Lavis. Folio. Paris, 1845. Ogle, C. C. The Centrolinead. 8ro. 1873.
Pasley, C. W. Course of Practical Geometry and Plan Drawing. 8ro. 1838.
Portlock, E. J., and others. Geometrical Drawing. 4to. 1863.
Prout, S. Hints on Light, Shadow, and Composition, \&c. 4to. 1838. [4to. 1854. Pyne, G. Rules for Drawing; Outline, Orders, Perspective, Light and Shade, Colour. Roy, C. F. le. Traité de Géométrio Descriptive. 3rd edition, 2 vols. 8vo. Paris, 1950.
Ruskin, J. Lectures on Architecture and Painting. 8vo. 1852.
-The Elements of Perspective. 8ro. 1859.
Simms, F. W. Mathematical and Drawing Instruments. 12 mo . 1847.
Smith, J. Projection and Artistic Drawing. 2nd edition, Sro. 1843.
Sopwith, T. Isometrical Drawing, 2nd edition, 8ro. 1843.
Spiers, R. P. Architectural Drawing. 4to. 1887.
[1878.
Stanley, W. F. Descriptive Treatise on Mathematical Instruments. 5th edition, 8 ro.
Tarı, E. W. Practical Gcometry for the Architect, Engineer, Surveyor, and Nechanic. 8vo. 1871.
[Paris, 1853.
Tripon, J. B. Études progressives et complètes d'Architecture et do Lavis. Folio.
Twining, H. Nature and Application of Perspective and Foreshortening. 8vo. 1850.
Ware, W. R. Modern Perspective. 8ro. and 4to. B ston, U.S.A., 1883.
Warren, S. E. Shades and Shadows: General Problems formed both by Parallel and by Radial Rays. 8ro. New York, 1867.
Willson, H. Use of a Box of Colours: Composition, Light and shatle, Svo. 1842.
Wilme, B. P. Handbook for Mapping, Engineering, and Architectural Drawing. 8ro. 1846.

XYII. ORNAMENT, DECORATION, BRASSES, \&C.

Adams, L. G. Recueil de Sculptures Gothiques d'apres les plus Beaux Monuments en France depuis le XI^{e} jusqu'au XVe Siécle, 192 plates, 2 rols. 4to. Paris, 185.6.
-Décorations Intérieures et Meubles des Époques de Louis XIII. et XIV., d’après les Compositions de C. de Passe, etc. 100 plates, folio. Paris, 1862-64. [1805.
Albertolli, F. Corso Elementare di Ornamenti Architettonici. Folio, 28 plates. Milan,
Amé, E. Les Carrelages Émaillés du Moyen Âge et de la Renaissance. 4to. Paris, 1859.
Antonelli. Collezione de' Migliori Ornamenti Antichi nella Città di Ven: zia. 130 plates, 4to. Venezia, 18'
Architectural Ornalments. A Collection of Capitals, Friezes, Roses, Entablatures, Mouldings, \&c., drawn on Stone from the Antique. 100 plates. (Ackermann), 1824.
Arundel Society. Sculptured Ornament of the Monastery of Batalha. Folio. 1868.
Asselineau, C. Meubles et Objets divers du Moyen Âge et de la Renaissance. Folio. Paris, 1854.
Audsley, W. J. and G. A. Outlines of Ornament in the Leading Styles. Folio. 1881.
, G. A., and Bowes, J. L. Keramic Art of Japan. Folio. 1875.
Baldus, E. Palais du Lourre et des Tuileries; Motifs de Décoration Intérieure et Extérieure. 2 vols. folio. Paris, 1874.

Recueil d'Ornements d'après les Maîtres les plus célèbres des $\mathrm{XV}^{\text {e }}$ au XVIII ${ }^{\text {e }}$ Siècles. Folio. Paris, 1869.
Basoli, A. Raccolta di Diversi Ornamenti. 100 plates, folio. Bologna, 1838.

- Compartimenti di Camere. 100 plates, fulio. Bologna, 1827.

Beauvallet, P. N. Fragmens d'Architecture, Sculpture, et Peinture dans le Style Antique. Folio. Paris, 1804.
Blashfield, J. M. History and Manufacture of Ancient and Modern Terra Cotta, and of its Use in Architecture. 12mo. 1855.
Bock, translated by Suckau. Les Trésors Sacrés de Cologne. 48 plates, coloured.
Bordeaux, R. Serrurerie du Moyen Âge. 4to. Paris, 1853.
Borsato, G. Opera Ornamentale ; con Cenni Storici dell' Ornato Decorativo Italiano du Vallardi. 60 plates, folio. Milano, 1831.

Boutell, C. Monumental Brasses of England. 8vo. 1849.
Boutowski, V. de. Histoire de l'Ornement Russe du X^{e} au XVIe Sièele, d'après les manuserits. 200 plates, fulio. Paris, 1870-72.
Charles, R. Dccorative Designs by Robert Adams. Folio. 1883.
Choir des Monumens les plus remarquables des Anciens Égyptiens, des Persins, des Grecs, des Volsquer, des Eirusques, et des Romains, consistans en Statues, Bas-Reliefs, et Yases. 2 rols. folio, 244 plates. Rom $\because, 1788$.
Cicognara, L. Monumenti Sepolcrali cospicui eretti alle Memorie degli Uomini Celebri in Venezia, \&c. Folio. Turin, 1858.
Clarkson, D. A. Ancient Ironwork from the 13th century. 4to. 1860.
Colette, J. Lirre de divers Ornemens pour Plafonds, Cintres, Surbaissées, Galeries. Fulio, 10 plates. Paris.
Colling, J. K. Art Foliage for Sculpture and Decoration. 72 plates, 4to. 1865.

- Gothic Ornaments of Great Britain. 200 plates, 2 vels. 4 to. 1818-56.

Examples of English Mediæval Foliage, taken from Buildings of the 12th to 15th century. 4to. 1872
Columbani, P. Capitals, Friezes, and Cornices, \&c. 4 to.
Cramer, J. O. Ornements du Moyen Âge en Italie et en Sicile. 4to. Ratisbon, 1842.
Ureeny, W. F. A Book of Fac-similes of Monumental Brasses on the Continent of Europe. Folio. Norwich, 1884.
Curler, T. W. A Grammar of Japanese Ornament and Design. 65 plates, 4 to. 1880, 1887.
Cutts, E. L. Manual for the Study of Sepulchral Slabs and Crosses of the Middle Ages. 8 ro. Oxfurd, 1849.
Daly, C. Motifs Historiques d'Architecture et de Sculpture d'Ornement des Monuments Français de la Renaissance à la fin de Louis XVI. Two serics, folio. Paris, 1866 68 ; 1874. Motifs Historiques d'Architecture, etc., pour la Composition et la Décoration extérieure des Édifices publics et privés. 2 vols. folıo. Paris, 1870.
Davidson, E. A. Amateur House Carpenter. 8vo. 1875.
Day, L F. The Anatomy of Pattern. 8ro. 1886.
Degen, L. Constructions en Priques. 48 plates, 4 to. Paris, 1859.

- Constructions en Bois; Motifs de Décoration et d'Ornement. 48 plates, 4 to.

Destailleur, H. Recueil d'Estampes relatives a l'Ornementation des Appartements aux $\mathrm{XVI}^{\mathrm{c}}-\mathrm{XVIII}{ }^{\mathrm{e}}$ Siècles. Folio. Paris, 186j-71.
Didron, A. N. Manuel des Eurres de Bronze et d'Orférrerie du Moyen Âge ; drawn by L Gaucherel. 4to. Paris. 1859.
Dietterlein, W. Architectura ron Ausstheilung, etc. der fünff Sculen. Folio. Nuremberg, 1593, 1598.5 Biich, 1655. New edition, folio. Liège, 1862.
Drawing-Book of the Government School of Design. Folio. 1842-43.
Dresser, C. Modern Ornamentation. 50 plates, 4to. (1866.) Art of Decorative Designs. 8vo. 1862. Japan: its Architecture, Art, \&c. 8 ro. 1882.
Duchêne, Lacroix, et Seré. Le Moyen Âge et la Renaissance; Histoire des Mœurs, des Arts, etc., A.d. $500-1$ C00. 300 plates, 5 vols. 4to. Paris, 1848-51.
Eastlake, E. Recueil de Meubles et d'Ornements Intérieurs de différents Styles depuis l'Époque Louis XIII. 2 vols. folio. Bruxelles.
Elbetts, D. J. Examples of Decurative Wrought Ironwork of XVIIth and XVIIIth centuries. Folio. 1879.
Eggert, F. Sammlung Gothischer Verzierungen. Plates, folio. Munich.
Eisenlohr, F. Ornamentik in ihrer Anwendung auf verschiedene Gegenstände der Baugewerke. Folio. Carlsruhe and Leipzig, 1851.
_- Mittelalterliche Bauwerke im südwestlichen Deutschland und am Rhein. und Feederle, F. Holzbauten des Schwarzwaldes, \&c. Foliv. Carlsruhe, 1854.
Fabre, A., and Veslay, L. de. L'Arehitecture au Salon; Art Antique, Moyen ge, Renaissance, etc. Folio. Paris, 1872.
Fergusson, J. Tree and Serpent Worship. 4to. 1868.
Feuchère, L. L'Art Industriel ; Recueil de Dispositions et Décorations Intérieures. 72 plates, fulio. Paris, 1839-48.
Fowler, W. Collection of Mosaic, Roman and Norman Tesselated Pavements, and ancient Stained Glass, discorered in different parts of England. Folio. Various dates, from 1798 to 1821. Collations and Notes, 4to. 1883, by Lord Lindsay.
Gaucherel, L. Exemples de Décoration appliqués à l'Architecture et à la Peinture. 120 plates, 4to. Paris, 1857.
Ilaines, H. A Manual of Monumental Brasses. 2 vels. 8 vo. Oxford, 1861.
Havard, H. L'Art dans la Maison. 8vo. Paris, 1881.
ITeideloff, C. A. von. Art Specimens of Nuremberg, for Turners, Pottery and Porcelain Manufacturers, Jewellers and Goldsmiths, Woodearvers, Carpenters, \&ec. 4 parts, 4 to. Nuremberg, 18.51.

Heideloff, C. A. ven, and Gorgel, C. Les Ornements du Moyen Âge (Byzautine and Gothic Scyles). 144 plates, 4 parts, 4 to. Nuremberg, $1813-52$.
Hessemer, F. M. Arabische und Alt-Italienische Baurerzierungen. 120 plates, large felio. Berlin, 1842.
Hill, A. G. Organ Cases and Organs of the Middle Ages and Renaissance. Folio. 1883.
Hinz, A. Die Schatzkammer der Marienkirche zu Dantzig. 8ro. 1871.
Hulme, F. E. Suggestions in Floral Design. Folio. 1886.
Husson, F. L'Architecture Ferronière: Exemples de Construction et d'Ornementation anciemnes et modernes. 4te. Paris, 1872.
Jacquemart. A. History of the Ceramic At-of all Ages and all Nations. Translated by Mrs. Bury Palliser. 8ro. 1873.
Jalembier, C. A. Principes d'Ornemens pour l'Architecture. 40 p'ites. Paris.
Jenkins, W., and Hosking, W. Selection of Architectural and other Ornaments, Greek, Roman, and talian. 25 plates, folio. 1829
Jumbert, C. A. Répertoire des Artistes; ou Recueil de Compositions d'Architecture et d'Onmens, antiques et modernes, de toute espèse, par divers Auteurs. 2 vols. felio. Paris, 1765.
Junes, Owen. Examples of Chinese Ormament. 4to. 1866; and 8ro. 1867. The True and the False in the Decorative Arts. 8ro. 1863.
Julienne, E. LOrnemaniste des Arts Industriels. Felio. Paris, 1840.
Julienne, MI. E. L'Orfévrerie Française, les Bronzes et la Céramique. Folio. Paris, 1868.
King, T. H. Orférrerie et Ourrages en Métal du Meyen Âge. 200 plates, 2 vols. folio. Bruges, 1853-60.
Kinvess, J. Details frem Italian Buildings, chiefly Renaissance. Felio. Elinlurgh, 1882.
Labarte, J. Histoire des Arts Industriels au Moyen Âge et à l'Époque de la Renaissance. 2 vols 4to. Paris, 1848-51.
Lachave. Nourelle Collection de Menuiserie en Bâtiments. Folio. 1864.

- Srrrurerie. Recueil conteuant Balcons en fer corroyé et d'autres en fonte, lits en fer, ete Fulio. 1864.
Laredan, B. Guide Pratique de S rrurerie Usuelle et Artistique à l'usage des Architectes, etc. 3 vols 4te. Paris, 1867.
Lefuel. Palais du Louvre et des Tuileries; Motifs de Décorations. Folio. Paris, 1870.
Le Noir, A. Nouvelle Collection d'Arabesques propres à la Décoration des Appartemens dessinées à Rome par In. Peussin 4to. Paris.
Le Pautre, A. Euvres d'Architecture; contenant las Frises, Fevillages, Montans on Pilastres, Grotesques, Moresques, Panneaux, Placarts, Trumeaux, Lambris, Amortissemens, Plafends, et généralement tout ce qui concernc l'Oruement. 3 vols. folio. Paris, 1751.

Levy, E. Meubles Religieux et Civils conservés dans les Principaux Monastères ot Musées de l'Europe du Moyen Âge et de la Renaissance. Folio. 1863.
Lewis, T. C. Organ Building and Bell Founding. 4to. $1878 . \quad$ [Munich, 1872.
Metzger, E. Ornaments designed from Flowers, for Architects, Decorators, \&c. Folie.
Moreau, C. Fragmens et Ornemens d'Architecture dessinés à Rome d'après l'Antique, formant un Supplément à l'Gurre d'Architecture de Desgodetz. Large folio, 36 plates. Paris, 1802.
Nichols, J. G. Essay on Encaustic Tiles, with Examples. 4to. 1842-45.
Normand, C. Le Guide de l'Ornemaniste et de Décoration. New edition, felio. Lic̀ge, 1847. _ Noureau IRecueil en divers Genres d'Ornemens, et autres Objets propres à la Décoration. Felio, 46 plates. Paris, 1803.
Oldham, T. Ancient Irish Pavement Tiles. 4to. Dublin, 1842.
Ornament. Cellezione dei Miglieri Ornamenti Antichi, sparsi nella Cittii di Venezia, con alcuni Frammenti di Gotica Architettura. Folio. Venezia, 1843-45.
Cours Élémentaires de Lavis appliqué à l'Ornementation. Folio. Paris, 1853.
Papworth, J. W. and W. Specimens of Decoration in the Italian Style, selected from the Designs of Raffaello in the Vatican Palace at Reme. 14 plates, 4to. 1844.
Pequenot. Architecture, Sculpture, Cheminées, Plafonds, Decorations Intérieures, d'après les Maitres. 200 plates, 4 to. Paris.
Percier, C., et Fontaine, P.F. L. Recueil de Décorations Intérieures, comprenant tout ce qui a rapport à l'Ameublement. Folio, 72 plates. Paris, 1812.
Pergolesi, M. A. Designs for Arabesques. Large folio, 30 plates. 1777-85.
Petit, V. Noureau Portefeuille de l'Ornemaniste. 50 plates, folio. Paris, 1864.

- et Bisiaux. Motifs de Décoration. 1st series, 50 plates, folio. Paris, 1864.

Pfnor, R. Architecture, Décoration et Ameublement de l'Époque de Louis XVI. Folio. Paris, 186t-65.

Ornementation usuelle de toutes les Époques dans les Arts Industrielles et en Architecture. 2 vols. folio. Paris, 1867-68.
Pireli, 'L. Monumens Antiques du Musée Napolćon. 4 rols. 4 to. 40 plates. Paris, 1804.

Pompeii. Gli Ornati delle Pareti ed i Parimenti delle Stanze dell' Antica Pompeia. Atlas fulio, 21 plates. Napoli, 1796.
Pugin, A. W. N. Glossary of Ecclesiastical Ornament and Costume. 3rd edition, 4to. 1868.
——Floriated Ornament. A Stries of 31 Designs. 4to. 1849.
Pullan, R. P. The Designs of William Burges. Folio. 1886.
Queverdo, F. MI. Décorations Intérieures; Epoque de Louis XVI. Folio. Paris,
Ramée, D. Sculptures Décoratives, Motifs d'Ornementation recueillis en France, Allemagne, Italie, et Espagne, dans les plus Beaux Monuments élevés du XII ${ }^{\circ}$ au XVI® Siècle. 4to. Paris, 1863-64.

Meubles Religieux et Civils, conservés dans les principaux Monuments et Musées de l'Europe, pendant Moyen Age-de Louis XVI. 2 vols. folio. Paris, 1861.
Reynard, O. Ornemens des Anciens Maîtres des XV ${ }^{\text {e }}$ du XVIII ${ }^{\circ}$ Siècles. Folio. Paris, 184.

Richardson, C. J. Studies of Ornamental Design. 2 rols. folio. 1849-51.
Rigollot. Histoire des Arts du Dessin, depuis l'Époque Romaine jusqu'à la fin du seizième Siècle. 2 vols. Svo. Paris, 1861.
Romagnesi. Recueil d'Ornemens en Sculptures. Folio. Paris, 1843.
Rottman, L. Ornaments from the Interiors of Celebrated Buildings of Munich. Folio. Munich, 1849.
Rouyer, E., et Darcel, A. L'Art Architectural en France depuis François Ier jusqu'à Louis XIV ; Motifs de Décoration. 184 plates, 4to. Paris, 1862-65.
Runge, L. Essais sur les Constructions en Briques en Italic. Text French and German. 2 series, folio. Berlin, 1846-53.
Schmidt, C. W. Baudenkmale in Trier und seiner Umgebung. 5 parts, folio and $4 t 0$. Treves, 1836-45.
Scott, Sir G. G. Guide to the Architectural Museum. 8vo. 1876.
Scott, W. B. The Ornamentist ; Designs selected from the Works of Dietterlin, Berain, Blondel, Meissonier, Le Pautre, \&c. 4to. Edinburgh, 1845.
Sharpe E. The Ornamestation of the Transitional Period of British Architecture, 11451190. 4to. 1871.

Shaw, H. Handbook of Mediæral Alphabets and Derices. 8ro. 1853. Decorative Arts of the Middle Ages. 8ro. 1851.
-— Specimens of Tile Parements. 4to. 1852.
Silrestre, J. Collection d'Alphabets; Histoires et Fleuronnés tirés des Principales Bibliothèques de l'Europe. Folio. Paris, 1843.
Sommerard, A. du. Les Arts du Moyen Âge, en ce qui concerne principalement le Palais de Paris; l'Hôtel de Cluny, etc. 11 vols. 8vo. and folio. Paris, 1838-46.
Talbert, B. J. Gothic Forms applied to Furniture, Metal Work, Decoration, \&c. Fulio. Birmingham, 1868.
Tatham, C. H. Grecian and Roman Ornaments. Folio, 101 plates. 1825.
Thiollet, F. Modèles de Serrurerie et Fonte de Fer. Folio. Paris.
Tyrwhitt, R. St. J. Christian Art and Symbolism. 8ro. 1872.
Úmé, G. L'Art Décoratif; Modèles de Décoration et d'Ornementation de tous les Styles. 4to. Paris, 1862.
Ungewitter, G. G. Plans, etc. Meubles du Moyen Âge, composés par G. U. 48 plates, folio. Leipzig, 1856.
——Sammlung mittelalterlicher Ornamentik in Geschichtlicher. Folio. Liepzig, 1863.
Vatican. Recueil d'Arabesques; contenant les Loges du Vatican, gravées d'aprés Raphael et grand Nombre d'autres Compositions du même Goût dans le Style Antique. Large folio. Paris, 1802.
Viollet-le-Duc, E. E. Dictionnaire Raisonné du Mobilier Français de l’Époque Carloringienne à la Renaissance. 4 vols. 8vo. Paris, 1858-72.
Volpato, J. Raphael's Loggie del Vaticano. 3 rols. folio. Rome, 1772-77.
Vulliamy, L. Examples of Ornamental Sculpture in Architecture. 40 plates, folio. 1528.
Waller, J. G. and L. Monumental Brasses from Edward I. to Elizabeth. Folio.
Waring, J. B. Illustrations of Architecture and Ornament. 4to. 1868.

- Stone Monuments, Tumuli, and Ornaments of Remote Ages. 4to. 1870.

Weale, J. Ornamental Ironwork, Gates, Lcdges, Palisading, \&c., in the Royal Parks, \&c. 4 to, 1840.
Wornum, R. N. Analysis of Ornament; Characteristics of Styles. 8ro. 1856.
Zach. Ornements d'Architecture du Moyen Age d'Angleterre et de France. 4to. Munich, 1842.
Zahn, W. Select Ornaments for Architects and Workmen. Folio. 1844.
Zanetti, G. Studj Architettonico-Ornamentali. Folio. Venezia, 1845.

XVIII. COLOURED DECORATION, STAINED GLASS, HERALDRY, \&c.

Adams, E. Polychromatic Ornament of Italy. 4to. 1847.
Arrowsmith, W. and A. House Decorator's and Painter's Guide ; Designs for Decorating Apartments. 4to. 1840.
Beltord, W., K. R. The Blazon of Episcopacy. 8ro. 1858.
Benson, W. Manual of the Science of Colour. 8vo. 1871.
Berg, A. R., and P. van der. School of Painting for the Imitation of Woods and Marbles. 36 plates, folio.
Blackburne, E. L. History of the Decorative Painting applied to English Architesture during the Middle Ages. 4to. 1847.
Bourgoin, J. Les Arts Arabes. Archi ecture, Menuiserie, Bronzes, Plafonds, Marbres, Pavements. Vitraux, etc., et le trait général de l'Art Arabe. Folio. Paris, 1873.
Burke, Sir B. Encyclopædia of Heraldry or General Armory. 8vo. 1842. New edition. 1878.
Cahier, C., et Martin, A. Vitraux Pients de Saint-Étienne de Bonrges; Recherches détachées d’une Monographie de cette Cathédrale. Verrières dn XIII ${ }^{\circ}$ Siécle. 74 plates, folio. Paris, 1841-44.

Suite aux Mélanges d'Archéologie. Ser. $1^{\text {re }}$. Carrelages et Tissus. 8ro. Paris 1873.
Caneto, F. Sainte-Marie d'Auch; Atlas Monographique de cette Catlhédrale. 60 plates of glass, folio. Paris, 1857.
Cherreul, M. E. De la Loi du Contraste Simultané des Couleurs, etc. 8vo. Paris, 1829. Plates, 4 to. 1839. Translated by C. Martel. 8ro. London, 1854. Translated by J. Spanton. 8vo. 1860 and 1883.

Clurch, A. H. Colour: an Elementary Manual for Students. 8ro., new edition. 1887.

Daly, C. Décorations Intérieures Peintres. Salons, Salles à Manger, Chambres à Coucher, etc. etc. 3rd series of L'Architecture Prisée. Folio. Paris, 1874.
Davidson, E. A. House Painting, Graining, Marbling. \&e. 12mo. 1876.
Descamps, H. P. V., et Le Maistre-d'Anstaing, I. Vitraux de la Cathédrale de Tournai, dessinés par Capronnier. 13 plates, folio. Paris, 1846-48.
Deville, A. Histoire de l'Art de la Verrerie dans l'Antiquité. 4to. Paris, 1873.
Dupont-Auberville. Art Industriel. L'Ornement du Tissus, Recueil Historique et Pratique de l'Art Ancien, du Moyen Age, de la Renaissance, et des XVIf et XVIIIe Siécles. $1 v 0$ plates. Folio. Paris, 1874-77.
Fenger, L. P. Dorische Polychromic. 4to. 1886.
Field, G. Chromatography ; or, a Treatise on Colours and Pigments, and of their Powers in Painting. 2nd edition, 8ro. 1841. Rerised by T. W. Silter. 8ro. 1869.
——Rudiments of the Painter's Art; or, a Grammar of Colouring. 12 mo . 1850.
Fowler, W. Collection of Pavements, \&c. (See List XVII.)
French, G. H. Hints on the Arrangement of Colours in Ancient Decorative Art. 2nd edition, 8 ro. Manchester, 1850.
Gaucherel, L. Exemples de Décoration appliqués à l’Architecture et à la Peinture depuis l'Antiquité jusqu’à nos jours. 4to. Paris, 1857.
Girault de Prangey. Choix d'Ornemens Moresques de l'Alhambra. Folio. Paris, 1847.

Goethe, J. W. ron. Theory of Colours. Translated from the German by C. L. Enstlake. Sro. 1840.
Gruner, L. Fresco Decorations and Stuccoes of Churches and Palaces in Italy during the XVth and XVIth Centuries. Text by J. I. Hittorff. 4to. plates, folio. 1844. New edition, 1854.
-Ornamental Designs for Decorations and Manufactures. Pullished for the Government School of Design. Folio. 1848.
Hay, D. R. Nomenclature of Colours, Hues, Tints, and Shades. 8ro. Tdinkurgh, 1845.
-. Principles of Peauty in Colouring Systematised. Sro. Elinburgh, 1845.
Higgins, W. M. The House Decorater, or Decorator's Companion ; a Complete Treatise on the Art of House Painting, Graining, Marbling, \&c. 4to.
Hittorff, J. I., et Zanth, L. von. L'Architecture Polychrome chez les Grecs. Folio. Paris, 1852.
Hunt, W. H. The Present System of obtaining Naterials in use by Artist Painters, as compared with that of the Old Masters ; read before the Society of Arts, \&c. Journal, 1886.

Jones, O. Attempt to define the Principles which should regulate the Employment of Colour in Decorative Arts. 8ro. 1852.

Grammar of Ornament. Folio. 1857. 4to. edition, 1865-66.

Langlos, E. H. Essai Historique Descriptif sur la Peinture sur Verre, Ancienne et Moderne, et sur les Vitraux les plas Remarquables. 8vo. Ronen, 1832.
Latilli, E. Fresco, Encanstic, and Tempera Painting. 8vo. 1842.
Lery, E., et Capronnier, J. B. Histoire de la Peinture sur Verre en Europe. 37 plates, folio. Bruxelles, 1860. Paris, 1865.
Linion, W. Ancient and Modern Colours; with their Chemical and Artistical Properties. 8 ro. 1852.
Magne. L. L'Envre des Peintures Verriers Frangais. 8ro. 1887.
Mandelgren, N. M. Notes sur IExécution technique de no vieilles Peintures d'Église, et sur le Moyen de les Restatirer. 8ro. Stockhulm, 1873.
Merrifield, Mrs. M. P. Art of Fresco Painting, as practised by the old Italian and Spanish Masters. 8ro. 18 ± 6.
Miller, F. Interior Decoration : Surface Decoration, with Notes on Colour, Stencilling, and Panel Painting. 8vo. 1887.
Moore, G. B. Principles of Culour applied to Decorative Art. 8ro. 1851.
Morton, II. History of Paperhangings; with a Review of other Modes of Mural Decoration. Svo. Liserpoul, 1875.
Papworth, J. W., and Morant, A. An Aphabetical Dictionary of Coats of Arms belonging to Families in Great Britian and Ireland; or, Ordinary of British Armorials. 8ro. 1874.

Racinet, A. L'Ornement Polychrome; Recueil Itistorique et Pratique-17th and 18th Centuries. 100 plates, folio. Paris, 1870-i2.
Rossi, G. B. de. Musaici Christiani e Saggi dei Pavimenti delle Chicso di Roma anteriore al Secolo XV. Folio. Roma, 1872.
Science and Art Department, Sonth Kensingron. A List of Buildings in England haring Marble or other Painted Decorations, of dates previous to the middle of the $16 t h$ century. By R. H. Sinith. Svo. 1872. 3rd edition, 8ro. 1883.
——Report on Mosaic Pictures for Wall-decurations, and Notes of Objects in Italy suitable for reproduction by various methods. 8 ro. 1872.
Seré, F., et Louandre C. Les Arts Somptuaires ; Histoire du Costume et de l'Amenbloment en Enrope, et des Arts et Industries qui sy rattachent. 4 vols. 4 to. Paris, 1852-58.
Standage, II. C. The Artist's Manal of Pigmerts, showing their Composition, Conditions of Permanency, mon-Permanency, Adulteration, \&c., Tests of Purity. 8vo 1887.

Texier, C. Histoire de la Peinture sur Verre en Limousin. 8ro. Paris, 1817.
Vacher, S. Fiftenth Century Italian Ormament. Folio. 1886.
Waring, J. B. Arts connected with Architectnre; Stained Glass, Fresco Ornament, Inlay, \&c., during 13th to 15 th century in Central Italy. 41 plates, folio. 1828.
Warrington, W. History of Stained Glass from the Farliest Period. Folio. 1848.
Weale, J. Disers Works of Early Masters in Stained anl Painted Glass. 2 vols, folio. 1846.

Westwood, J. O. Distinctive Character of the rarious Styles of Ornamentation empl syed by the Early British, Anglo-Saxon, and Irish Artists. 8vo. 1854.
- Faesimiles of Miniatures and Ornaments of Anglo-Saxon and Irish MSS. Folio. 1868.
Whitaker, H. Materials for a new Style of Ornamentation, consisting of Botanical Subjects and Compositions drawn from Natnre. 4to. 1849.
Willement, T. Royal Heraldry. 4to. 1821.
Wilme, B. P. Manual of Writing and Printing Charaters, Loth Ancient and Modern. 4to. 1845.
W(inston), C. Inquiry into the Difference of Style in Ancient Glass Paintings, especially in England; with Hints on Glass Painting. 2 vols. 8 ro. Oxford, 1847.
—— Introduction to the Study of Painted Glass, with Remarks on Modern Glass Painting. 8ro. 1849.

- Memoirs Illustrative of the Art of Glass Painting. 8vo. 1865.

Wyatt, M. D. Metalwork nnd its Artistic Design. Folio. 1852.
_- Geometrical Mosaics of the Middlo Ages. Folio. 1858.
Zahn, W. Die schönsten Ornamente und merkwür Zigsten Gemälde aus Pompeji, Herkulanum und Stabiæ. 3 series, 250 plates, folio. Berlin, 1829-54.

- Oruamente aller klassischen Kunst-Epochen. 100 plates, 2 vols. folio. Berlin, 1838-42, 1843-48, 1849-63.

XIX. SURVEYING; MENSURATION ; LEVELLING; QUANTITIES; PRICES ; ESTIMATING.

Ainslie, J. Comprehensive Treatise on Land Surveying. New edition, by W. Galbraith. 8ro. and 4to. Ediuburgh, 1849.
Baker, T. Land and Engineerıng Surveying. 12mo. 1883.
———Mensuration. 12mo. 1859.
Castle, II. J. Treatise on Land Surveying and Levelling. 8ro. 1845.
Dobson, E. Student's Guide to Measuring and Valuing Artificers' Work. Enlarged by E. L. Garbett. 8 vo. 1853. New edition, by E. W. Tarn. 8ro. 1871.

Fletehor, B. Quantities; a Text-Book for Surreyors. 4th edition, 8ro. 1881.
Leaning, J. Quantity Surveying. Svo. 1880. 2nd edition, 1886.
Morell, J. R. Enclid Simplified in Method and Language. 16mo. 1875
Nesbit, A. Practical Mensuration, with Key. New edition, 12mo. 1852. Prdctical Land Surveying. 10th edition, revised by T. Baker. Sro. 185.5.
Nicholson, P. Principles of Architecture. 3 vols. 8 vo .183 ¢.
Reid, J. Young Surveyor's Preceptor: Art of Arehitectural Meusuration. 2nd edition, 4to. 1859.
Stephenson, G. Estimating: a Method of Pricing Builders' Quantities. 8ro. 1883.
Simms, F. W. Principles and Practice of Levelling. 3rd edition, 8re. 1856. 8vo. 1875.
Spons' Architects' and Builders' Pocket-book of Prices, \&c., tor 1887. Edited by J. Y'oung. 14 th edition, 32 mo . 1887.
Young. J. R. Mensuration in Theory and Practice. 8vo. 1853.
Weir, H. F. Land Measuring Tables, showing the Area of any sized Plot. 8vo. Glasgow, 1857.
XX. LAW ; DILAFIDATIONS ; FIXTURES; LIGHT AND AIR; ESTATES, \&e.

Addison, C. G. Treatise on the Law of Contraets, and Rights and Liablities ex contractu. 5th e tition, 8 vo. 1862.
Amos, A., and Ferard, J. Treatise on the Law of Fixtures. Sro. 1847.
Bayldon, J. S. Art of Valuing Rents and Tillages, and Claims of Tenants upon quitting Farms. Sth edition, by J. C. Morton. 8 ro. 1862.
Bruton, E. G. Eeclesiastical Dilapidations. 2nd edition, 12ino. Oxford, 1865.
—_Handybook on the Ecclesiastical Dilapidations Act, 1871, with the Amendment Act, 1872. 2nd edition, 8vo. 1873.
Chambers, T., and Tattersall, G. Law relating to Buildings, Fixtures, Ir surance, Actions on Builders' Bills, Dilapidations. 12 mo . 1840.
Chitty, J. Treatise on the Law of Contracts. 6th edition, by J. A. Russell, 8ro. 1857.
Cox, H. Law and Science of Ancient Lights. 8ro. 1869.
Dean, G. A. Enfranchisement and Commutation of Copyhold Property considered with the Copyhold Enfranchisement Bill. 8ro. 18501.

- The Lind Steward; Hints on Choice of Landed Estates, Principles of Drainage, Irrigation, arrangement of Farm Buildings, Walls, Roads, \&c. 8vo. 1851,
Dilapidations. Report of Select Committee of Royal Inst. of Brit. Architects. 8vo 1844.
Eeclesiastical Dilapidations Act. Report of the Select Committee. Folio. 1876.
Elmes, J. On Dilapidations. 8ro. 1829.
——. Practical Treatise on Architectural Jurisprudence. 8ro. 1827.
Emden, A. The Law relating to Building, Building Leases, and Building Contracts. 8vo. 1882, 1885.
-Metrupolis Management and Building Acts Amendment Act, 1882. 8ro. 1882.
Fletcher, B. Dilapidations. 3rd edition, 8ro. 1883. Compensations. 8ro. 1871. Light and Air. Revised, 2nd edition, 8vo. 1886. Metropolitan Building Acts, \&c. $\mathbf{2}_{2}$ 1855̄-82. 8ro. 1882. Arbitrations. 8ro, 1875.
Gibbons, D. Law of Fixtures. 8vo. 1836.
_- Law of Dilapidations and Nuisances. New edition, 8ro. 1849.
_- Law of Contracts for Works and Services. 12 mo . 1857.
Goddard, J. L. Treatise on the Law of Eisements. 2nd edition, 8vo. 1877.
Goldstraw, W. Manual of the Building Regulations in force in Liverpool. 8vo. Liverpool, 1882.
Grady, S. G. The Law of Fixtures ; Law of Dilapidations. 3rd edition, 8vo. 1876.
Holden, J. Easements and Rights of Light. 8vo. Manchester, 1880.
Hudson, R. Lant Yaluer's Best Assistant; being Tables on a very much improved plan for calculating the Value of Estates, \&c., for laying out Plots of Land. 8vo. (1859.)

Ingram, T. D. Compensation to Land and House Owners. 12mo. 1864.
Jackson, C. The Practical Arbitrator. 8vo. 1879.
Jenkins, E., and Raymond, J. A Legal Handbook for Architects. 3rd edition, 8 ro. 1880. Building Contrats. 8ro. 1873.

Kerr, R. On Ancient Lights, and the Eridence of Surveyors thereon. 8ro. 1865. The Consulting Architect. 8ro. 1886.
Lanktree, J. Elements of Land Vialuation, and Instructions as to the Qualific.ations and Duties of Valuators. Svo. Dublin, 1853.
Lathom, F. G. Law of Window Lights, 12 mo .1867.
Law, T. J. Acts for Building Churches. 8ro. 1847.
Lewin, T. A Practical Treatise on the Liw of Trusts. Fch edicion, by I. A. Lewin. 8vo. 1879.
Low, D. Landel Property and the Economy of Estates. 8ro. 1856.
Lumley, W. G. Nuisances Removal and Diseases Prevention Act, 1818 ; with Notes and the Amending Act: and ditto of 1855. 2nd edition, 12 mo .1860.
———Law of Paroshial Assessments. 4th edition, 12 mo .18 .58.
Lyon, G. Compendium of the Lim of Landlord and Tenant, as applicable both to Agricultural Leases and to those of Urban Tenements. 8ro. Edinburgh, 1848.
Macdorald, D. G. F. Estate Management. 8ro. 18:0.
MeGovern, J. H. Liverpool Compensations. 8ro. Liverpool, 1882.
Marwick, T. P. Valuation of Heritable and Linded Estate. Sro. Edinlurgh, 1887.
Morris, T. Clue to Railway Compensation, Value of Estates, nnd Parochial Assessments, \&c. 2nd edition, 12 mo .1866.
Morton, J. L. The Resources of Estates; the Agricultural Improrement and General Manigement of Landed Property. Sro.
Price, R. On Reversionary Payments and Annuities; by Morgın. êth edition, 2 rols 8ro. 1803.
Roscon, E. S. Digest of Building Cases. 2nd edition, 8ro. 1883. Digrst of Law of Light. 1881. 2nd edition, 8so. 1886.
Rouse, R. The 「ractical Man; or, Pocket Companion for Solicitors, Valuers, and Owners of Property. 4th edition, 8 ro. 1841.
Russell, F. The Power and Duty of an Arbitrator. 8 ro. 1878.
St. Leonard, Lord. Handybook on Property law. 7th edition, 8 ro. 1866.
Scratchley, A. Copyhold, Lifo Leasehold, and Church Property. 4th 'dition, 8 ro. 1859.
Scriven, J. Law of Copyhold, Castomary, Freehold, and Ancient Demesne Tenure. th edition, 2 vols. Svo. 1819.
Smith, J. W. Law of Contracts. 8ro. 1855. Law of Landlord and Tenant. 8ro. 1860.
Smith, T. R. The Practice of an Architset. 8vo. 1880.
Tarbuck, F. L. Handbook of House Property ; Guide to the Purchase, Mortgage, Tenancy, and Compulsory Sale of Houses and Lan.l, \&e. $12 m o .1875$.

- Handbook of House Property. 2॥d edition, 12mo. 1880.

Watson, W. H. Law of Arbitration and Awards. 8vo. 1846.
Wily, W. Law of Dilapidation in Ireland. 8 ro. Dublin, 1850.
Woodfall, W. Law of Laudlord and Tenant. 8 ro. 1856.
Woolrych, H. W. Law of Party Walls and Fences, with Building Act. 8vo. 1845.
—— Treatise of the Law of Ancient and Mo lern Window Lights. 12mo. 1864.
The Metropolis Local Management Acts. 8vo. 1880.
Yool, G. W. Waste, Nuisance, and Trespass. 8ro. 18 C 3.
——Compensation to Landowners. Sro. 1864.

XXI. SCIENTIEIC SUBJECTS.

Anderson, R. Lightning Conductors; their History, Nature, and Mode of Application. 3rd edition, revised, \&c. 8vo. 1887.
Ansted, D. T. Elementary Course of Geology, \&ic. 2nd edition, 12mo. 1856.
Arnott, N. Elements of Physics. 8vo. 1828.
Beardmore, N. Manual of Hydrology. Sro. 1862.
Brande, W. T. Manual of Chemistry. 4th edition, 8ro. 1836.
Dalemagne, L. La Silicatisation appliquée à la Conscrvation des Monuments, \&c. 4to. Paris, 1867.
Donkin, W. F. Acousties. Part I. Theoretical. 8ro. Oxford, 1870.
Edwards, F. On Smoky Chimneys, their Cure and Prevention. 4th edition, 8ro. 1866. Electric Light : Phœnix Fire Office Rules for Electric Light Installations. 7th edition, 8ro. 1887.
Fownes, G. Manual of Elementary Chemistry, Theoretical and Practical. 9th edition, 8ro. 1863.

Ganot, A. Elementary Treatise on Physics. Translated by E. Atkinson. 9th edition, 8ro. 1863.
Glymin, J. Construction of Cranes and Machinery for Raising Heary Bodies. 12 mo . 1849.

Goslin, S. B. A Reriew of Fit ts and Records in connection with Kitchen Boiler Explosions, \&c 8ro. 1881.
Hedges, K. Usefuil Information on Electric Lighting. 8ro. 1882. Precautions to be adopted on introducing the Electric Light, \&c. 8ro. 1886.
Hughes, S. Treatise on Gas Works and Practice of Manufacturing Coal Gas, \&cc. 8ro. 1853.

Humble, W. Dictionary of Geology and Mineralogy. 3rd edition, 8ro. 1840.
Keily, J. Expansion of Siructures by Heat. 8ro. 1887.
Lightning-Rod Conference-Report. 8ro. 1882.
Lyell, Sir C. Elements of Geology. 5th edition, 8vo. 185j. Supplement, 1857.
Page, D. Introductory Text-Book of Geology. 11th edition, 8ro. Edinburgh, 1877.

- Advanced Text-Book of Geology ; Descriptive and Industrial. 5th edition, 8ro. Edinburgh, 1876.
Parnell, A. The Action of Lightning, and the Means of Dcfending Life and Property from its Effects. 12mo. 1882.
Pennethorne, J. The Geometry and Optics of Ancient Architecture; illustrated liy examples from Thebes, Athens, and Rome. Folio. 1878.
Peschel, C. F. Elements of Physics. Translated by E. West. 2nd edition, 3 rols. 8 ru . 1854.

Roscoe, H. E. Elementary Chemistry : Inorganic and Organic. 12 mo . 1869.
Smi h, T. R. Acoustics of Public Buildings. 12mo. 1861.
Tomlinson, C. Introduction to the Study of Natural Philosophy. 12 mo .1859.
Tyndall, J. Sound; eight Lectures. 8ro. 1869. Heat as a Mode of Motion. 6uh edition, 8 vo. 1880. Light; six Lectures. 1873. 2nd edition, 8 ro. 1875.
Urquhart, J. W., and Webb, F. C. Electric Light; its Production and Use. Sro. 1880.
Webster, A. W. On the Principles of Sound; their Application in the Construction of Public Buildings. 8 ro. 1840.
Webster, T. Principles of Hydrostatics; or, Law of Fluids. 3rl edition. 8 ro. 1847.
Wilkinson, G. Practical Geology and Ancient Architecture of Ireland. 8ro. 1845.
Williamson, A. W. Chemistry fur Students. 8ro. Oxford, 1868.
Wilson, G. Chemistry. 12 mo . Edinburgh, 1860.
Wright, M. R. Sound, Light, and Heat. 8vo. 1888.

XXII. SANITARY; VENTILATION; WARMING.

Baths and Washhouses. See Class IV.
Bernan, W. History and Art of Warming and Ventilating Rooms and Buildings. 2 rols. Sro. 1846.
Blondel et Ser, L. Rapport sur les Hôpitaux Civils de I¿ Ville de Londres. 4to. Paris, 1862.

Boulnois, H. P. The Municipal and Sanitary Engineer's Handbook. 8ro. 1883.
Brown. G. Water Closets. 12mo. New York, 1884.
-_- Experiments in Trap Siphonage. 8ro. Washington, 1886.
Buchan, W. P. A Text-Book to the Practice of the Art and Craft of the Plumber. 1876. 4th edition, 8ro. 1883.

Buckton, C. M. Our Dwellings, Healthy and Unhealthy. 8ro. 1885.
Collins, H. H. Hints on Home Sanitation. 8vo 1881.
Corfie'd, W. H. The Laws of Health. 5th edition, revised, 12mo. 1887.
Water Supply, Sewerage, and Sewage Utilisation. Folio. Chatham, 1874.
Creswell, C. E. Ventilation of Sewers and Drains. Folio. 1884.
Davies, P. J. Standard Practical Plumbing; a complete Cyclopædia. 8 ro. vol. 1. 1887.
Dempsey, G. D. On the Drainage of Towns and Buildings. 12mo. 1849.
Denton, J. B. The Sewage Que-tion; explaining the sereral Processes that hare been adopted for the Treatment and Utilisation of Sewage. 8 mo .1871.

- Sanitary Engineering. Svo. 1877.
E. F. B. Handbook of House Sanitation. New edition, 8ro. 1882.

Drysdale, J., and Hayward, J. H. Health and Comfort in House Building ; or, Ventilation with Warm Air 1 -y Self acting Suction Power. Svo. 1872.
Eassie, W. Healthy Houses: a Handbook to Defects and Remedies of Drainage, Ventilation, Warming, and kindred subjects. 12 mo . 1872. 8 ro. 1876.
Edwards, F., jun. The Ventilation of Dwelling Houses, and the Utilization of Waste Heat from Open Fireplaces. 2nd edition, rerised, Svo. 1881.

EHice-Clarke, E. B. Further Remarks on Ventilation of Sewers. 8ro. Liverpool, 1878. Gatliff, C. Improred Dwellings, and their Effect on Health and Morals. 8 ro. 1875. Galton, D. On the General Principles to be obsel ved in the Construction of Hospitals. 8ro. 1869.
Grantham, R. F. The S-parate System of Sewerage. 8ro. 1886.
Hellyer, S. S. The Plumber and Sanitiry Houses. 8ro. 2nd edition. 1880.
——. Lectures on the Science and Art of Sanitary Plumbing. 8ro. 1882.
Hennicke. Bericht über Schlachthäuser und Viehmärkte. Folio. Berliu, 1866.
Hood, C. Practical Treatise on Warming Buildings by Hot Water; and Laws oí Radiant and Conducted Heat. 1855. 5th edition, 8vo. 1879.
Hosking, W. Healthy Homes; Guide to the Proper Regulation of Buildings, Streets, Drains, and Sewers. New edition, 8ro. 1849.
Husson, A. Étude sur les Hôpitaux, considérés sur le rapport de leur Construction, etc. 4 to. Paris, 1862.
Inman, W. On Ventilation, Warming, and Transmission of Sound. 8ro. 1336.
Isaacs, L. H. Practical Treatise on Sewerage and Drainage. 8vo. 1859.
Jacob, A. On the Designing and Construction of Storage Reservoirs. 8ro. 1867.
Judge, M. H. Sanitary Arrangements of Dwelling Houses. 2nd edition, 8ro. 1884.
Knight's Annotated Model Bye-Laws; Local Government Bcard. Bro. 1883.
Krepp, F. C. The Sewage Question; being a general Review of all Systems and Methods for Iraining Cities and Utilizing Sewage. 4to. 1867.
Lanchester, H. J. How to make a House IIealthy and Comfortable. 8ro. 1873.
Latham, B. Sanitary Engineering; a Guide to the Constructiou of Works of Sewerage and Ifouse Drainage; with Tables. 8ro. 1873. 2nd edition, 8ro. 1878.
Law, H., and Clark, D. K. The Cunstruction of Roads and Streets. 12mo. 187.
Morris, 'T. Hydrosthetics of the Cistern, Drain, and Sewer. 8vo. is78.
Newton, H. R. Semering and Purification of Sewage. Svo. 1887.
Nightingale, F. Notes on Hospitals; with Plans. 3rd edition, 4to. 1863.
Oppert, E. Hospitals, Infirmaries, and Dispensaries; their Construction, Arrangement, and Management. 8ro. 1867.
Parkes, E. A. Manual of Fractical Itygiene. Edited by Dr. de Chaumont. 6th edition, 8ro. 1883.
Péclet, E. Traité de ly Chaleur considérée dans ses Applications. 3rd cdition. Paris, 1860-61. Folio. Liège, 1845.
Perkins, A. M. Apparatus for Warming and Ventilating Buildings. 8ro. 1840.
Rawlinsən, R. Designs for Tall Chimmey Shafts, Ventilating Towers, \&c. Folio. 1850.
Reid, A. Theory and Practice of Ventilation; with Remarks on Warming, Lighting, and the Communication of Sound. 8ro. 1844.
Ritchie, R. A. Sanitary Arrangements of Factories; with Remarks on the Present Method of Warming and Ventilation. 8vo. 1844.
Schmidt, E. W. C. F. How Not to Build a House, \&c. Sro. East bourne, 1884.
Shone, J. Main Drainage of the Houses of Parliament. 8vo. 1887.
Smyth, P. Method of Cooling the Air of Rooms in Tropical Climates. 4to. 1851.
Snell, H. S. Charitable and Parochial Establishments. 4to. 1881.
Tanner, E. Ventilation in India. 8ro. Loodiana, 1869.
Tattersall, W. Hints to Houst holders. 8vo. 18.... Ventilation of Factories and Workshops. Sro. 1887.
Teale, T. P. Dangers to Health: a Pictorial Guide to Domestic Sanitary Defects. 2nd edition, 8vo. 1879.
Tomlinson, C. Warming and Ventilation. 8th edition, 12 mo. 1878.
Trélat, E. Infuence exercée par la Porosité des Murs sur la Salubrité des Habitations. 8vo. Genera, 1883.
Turner, E. The Sanitary Work of an Architect. 8ro. 1881.
Vaudoyer, L. Instructions sur les Mojens de prévenir ou de faire cesser les Effets do l'Humidité dans les Bâtiments. 4to. Paris, 1844.
Ventilation and Warming of the Houses of Parliament: Report of the Select Committee. Folio. 1835.
Westgarth Prize Essays on Reconstruction of Central London. By W. Westgarth, W. Woodward, H. H. Bridgman, and J. Corbett. Society of Arts. 8vo. 1886.

Workhouses in Ireland. Report on Inquiry into Execution of Contracts for certain Union Workhouses. Folio. 1844.
Werthington, T. Hospital Construction; the Chorlton Union Hospital, near Manchester. 4to. 1867.
Wyman, M. Practical Treatise on Yentilation. New edition, 8 r 0 . New York, 1851.

XXIII. DICTIONARY; BIOGRAPHY; JOURNAL.

Architect, The. A weekly magazine. In progress. 4to. 1868-87.
Architectural Publication Society. Detached Essays, with Illustrations. Folio. 1849-53. -_Dictionary of Architecture, A-S. Iu progress. Folio. 1853-87.
Andsley, W. J., and G. A. Popular Dictionary of Architecture and the Allied Arts. Vols. 1 to 3, 8ro. 1881-2.
Batissier, L. Éléments d'Archéologie Nationale. 8ro. Paris, 1843.
Bloxam, M. H. Principles of Gothic Ecclesiastical Arehitecture Flucidated; with Explanation of Terms. 11th editien, 3 vols. 12 mo . 1882.
Bosc, E. Dictionnaire Raisonné d'Architecture et des Sciences et Arts qui s'y rattachent. 4 rols. 8 ro. Paris, $1877-80$.
Brees, S. C. Illustrated Glossary of Practical Architecture and Civil Engineering. 2nd edition, 8ro. 1853.
British Arebitect, The. A weekly magazine. In progress. 4to. 1874-87.
Britton, J. Dictionary of the Architecture and Archæology of the Middle Ages. 8vo. 1838.
Builder, The. A weekly magazine. In progress. 4to. 1843-87.
Building News, The. A weekly magazine. In progress. 4to. 1856-87.
Calliat, V., and Lance, A. Encyclopédie d'Architecture. 12 vols. 4to. Paris, 1851-62 Continued as Gazette des Architectes et du Bâtiment. 1863-71. Again as Encyc. d'Arch., 2nd series, 1872. In progress.
Caumont, A. de. Abécédaire, ou Rudiments d'Archéologie. 3 vols. 8 ro. Paris, 1851-62.
Chabat, P. Dictionnaire des Termes employés dans la Construction, ftc. 2 vols. $8 \mathrm{r} \%$. Paris, 1875-75.
Civil Engineer and Architect's Journal, The. 29 vols. 4to. 1837-74.
Cresy, E. Encyclopadia of Civil Engineering; with Supplement. 8vo. 1861.
Daly, C. Rerue Générale de l'Architecture, etc. 4to. Paris, 1840-45; 1847; 1849 ; 1851-87. In progress.
Dictionary of Terms used in Architecture (Weale). 8ro. 1849-50. New edition, by R. Hunt. 12 mo . 1873.

Förster, L. Allgemeine Bauzeitung. Text 4to. and plates folio. Hamburgh, 1837-87. In progress.
Gardissal and Tolhausen. Technological Dietionary in French, English, and German. 3 vols. 8 vo.
Geymüller, H. de. L. da Vinci as Architect; in J. P. Richter, Literary Works. Folio. $1: 83$.
—— Raffaello Sanzio come Architetto. Folio. Milan, 1884.
-_ Les Du Cercean, leur Vie et leur (Eurre. 4to. Paris, 1887.
Glossary of Terms used in Grecian, Roman, Italian, and Gothic Architectures. 5 th edition, 3 rols. Sro. Oxford, $18 \subset 2$.
Godwin, H. The English Archæologist's IIandbook. 8ro. 1867.
Llaguno y Amirola, E., and Caen Bermudez, J. A. Noticias de los Arquitectos y Arquitectura de España. 4 vols. 4to. Madrid, 1829.
Loudon, J. C. Architectural Magazine. 5 vols. 8ro. 1838.
Mangeant, M. Journal de Menuiserie spécialement destiné aux Architectes, aux Ménuisiers, etc. 4to. Paris, 1863-72.
Milizia, F. Memorie degli Architetti antichi e moderni. 2 vols. 8ro. Bassano, 1785. 4th edition, translated by Mrs. E. Cresy. 2 vols. 8ro. 1826.
Mitchell, T. Rudimentary Manual of Architecture, with Glossary. 8vo. 1870.
Nicholson, P. Architectural Dictionary. Edited ly Lomax. 2 vols. 4 to. 1853.
Papworth, W. The Renaissance and Italian Styles of Architecture in Great Britain, dated examples, 1450 to 1700 . 8ro. 1883.
Phillips, L. B. Dictionary of Biographical Reference. 8vo. 1871.
Plumber and Decorator, and Journal of Gas and Sanitary Engincering. 4to. 1879-87. Quatremère de Quincy, A. C. Dictionnaire historique de l'Architecture. 2 vols. 4 to. Paris, 1832.

Histoire de la Vie ot des Ouvrages des plus célčbres Architectes. 2 vols. Ato. Paris, 1830.
Raczynski, A. Dictionnaire d'Artistes, pour sersir à l'Histcire de l'Art moderne en Allemagne. 8vo. Berlin, 1842.
Ramée, D. Dict. Gén. des Termes d’Architecture. Four Langunges. 8vo. Paris, 1868. Rich, A. The Illustrated Companion to the Latin Dietionary and Greek Lexicon, \&ic. 8ro. 1849. A Dictionary, \&c., 1860 ; 3rd edition, 1873.
Snith, W., and Cheetlam, S. Dictionary of Christian Antiquities. 2\% vols. 8ro. 187.

Stephens, L. Dictionary of National Biography, A-D. 15 rols. In progress. 8 ro. 1835.
Surveyor, Engineer, and Architect. Edited by Mudie. 4 rols. 4to. 1840-42.
Vasari, G. Vite de' più eccellenti Pittori, Scultori ed Architetti. 3 vols. Bologna, 1647. 13 vols. Svo., Firenze, 1822. 12 vols. 12 mo., Firenze, 1846-5̃6. Translated by Mrs. J. Foster. 5 vols. 8ro. 1850.
Viellet-le-Duc, E. E. Dictionnaire Raisunné de l'Architecture Française du Onzième au Seizième Siècle. 10 vols. 8 vo . Paris, 1853-68.

Dictionnaire Raisonné du Mobilier Français de l'époque Carloringienne à la Renaissance. 6 rols. 8 ro. Paris, 1872-75.
Viollet-le-Duc, fils, et Corroyer. Gazette des Architectes et dı Bâtiment. 4 series, 4 to. Paris, 1862.
Virloys, C. F. R. le. Dictionnaire d'Architecture Civile, etc. 3 rols. 4to. Paris. 1770.
Walcott, M. E. C. Sacred Archæology: a Popular Dictionary of Ecclesiastical Art and Institutions, from Primitire to Modern Times. 8ro. 1868.
Walpole, H. Anecdotes of Painting, \&c. New edition, by R. N. Wornum. 3 vols. 8vo. 1862.

Weale, J. Quarterly Papers on Architecture. 4 rols. 4to. 1843-45.
Westropp, H. M. Handbook of Archæology ; Egyptian, Greek, Etruscan, Roman. 8ro. 1867.

Willis, R. Architectural Nomenclature of the Middle Ages. 4to. Cambridge, 1844.

GLOSSARY OF TERMS

USED IN

ARCHITECTURE AND IN BUILDING.

[Note.-Further explanations, illustrations, \&cc., of many of the terms herein will be olitained in the Encyclopedia by reference to the Index; and many publications on the subjects described will be found in the List prefixed hereto.]

A.

Abaciscus. A word sometimes used as synonymous with abacus, but more correctly applied to a square compartment enclosing a part or the entire pattern or design of a Musaic parement.
Abaces. (Gr. ABag, a slab.) The upper member of the capital of a column, and serving as a crowning both to the capital and to the whole columu. It is otherwise defined ly some as a square table, list, or plinth in the upper part of the capitals of columns, especially of those of the Corinthian order, serving instead of a drip or corona to the capital, and supporting the nether face of the architrave, and the whole trabeation. In the Tuscan, Doric, and ancient Ionic orders, it is a flat square member, well enough resembling the original title ; whence it is called by the French tailloir, that is, a treneher, and by the Italians credenza. In the richer orders it parts with its original form, the four sides or faces of it being arched or cut inwards, and ornamented in the middle of eaelı face with a rose or other flower, a fish's tail, \&c. ; and in the Corinthian and Composite orders it is composed of an orolo, a fillet, and a cavetto. The word is used by Scamozzi to signify a concare moulding in the capital of the Tusean pedestal.
Abaton. (Gr. abatov, an inaccessible place). A building at Rhodes, mentioned by Vitruvius, lib. ii., entrance to which was forbidden to all persons, becanse it contained a trophy and two bronze statutes erected by Artemisia in memory of her triumph in surprising the city.
Abatcorr. (Fr. Abattre, to knock down.) A building appropriated to the slaughtering of cattle. All private slaughtering-bouses, in large towns at least, should be abolished, and public ones, under proper supervision, established, as lately effected at Edinburgh, Manchester, and a few other towns.
Abber. (Fr. Abbaïe.) Properly the building adjoining to or near a convent or monastery, for the residence of the head of the house (abbot or abbess). It is often used for the church attached to the establishment, as also for the buildiags composing the whole establishment. In such e-tablishments the church was usually grand, and splendidly decorated. They had a refeetory, which was a large hall in which the monks or nuns had their meals; a guest hall, for the reception and entertainment of visitors ; a parlour or loeutory, where the brothers or sisters met for conversation; a dormitory, an almonry, wherefrom the alms of the abbey were distributed; a library and museum; a prison for the refractory, and cells for penance. The sanctuary was rather a precinct than a building, in which offenders were, under conditions, safe from the operation of the law. Granges, or farm buildings, and abbatial residences. Sehools were nsually attached for the education of youth, with separate accommodations for the scholars ; a singing school. A common room, with a fire in it, for the brothers or sisters to warm themselves, no other fire being allowed, except in the apartments of the higher officers. A mint for coining, and a room called an exehequer. The abbey was always prorided with a churchyard, a garden, and a bakchousc. The sacristy contained the garments of the priests, and the ressels, \&c.; vcstiaria or wardrobes being assigned for the monks. Many of the ordinary duties of these persons were performed in the cloisters where they delivered their lectures.

Anrecronr. (Fr.) In masonry, the juint between two stones, or the interstice to be filled up with mortar or cement, when either are to be used.
Absciss, or Absciss.a. A geometrical term, denoting a segment cut off from a straight line by an ordinate to a curve.
Absis. See Apsis.
Absorption. The penetration of a gas or liquid into any substance; or the taking np of moisture by capllary attraction. A principle seriously affecting the durability of all building materials. The rapidity of absorption is not a criterion as to durability, but the comparative durability of stones of the same kind may be tested by the smallness ot the weight of water which a given weight of stone is capable of absorbing. The actual absorption of water by bricks of various qualities has thas been stated:-Malm place brick, 62 ouncas of water; white Surrey, 58 oz ; white seconds, 52 oz .; red faeing-, 51 oz . ; pickings, 50 oz . ; stocks, 27 oz .; Workman's waterproofed, 2 oz . The following table of the absorbent powers of certain stones, when saturated under the exhausted receiver of an air-pump is given in the Report of the Commissioners on Building Stones, 1839 :-

Sandstones.		Oolites.			Magnesian Limestones.		Limestores.		
Craigleith	. $0 \cdot 143$	Ancaster		. $0 \cdot 180$	Bolsover	. $0 \cdot 182$	Barnack		. $0 \cdot 204$
Heddon	- 0.156	Bath Box		- $0 \cdot 312$	Huddlestone	- $0 \cdot \underline{2} 29$	Chilnark		. $0 \cdot 05 \%$
Kenton	- $0 \cdot 143$	Portland		- $0 \cdot 206$	Roach Abbey	- 0×248	Ham-Hill		. 0147
Mansfield, red	. 0.151	Ketton	-	- $0 \cdot 214$	Park Nook.	- 0.249			

The granites, though closely granulated, take up much more than the grauwaeke, but less than the sandstones; while the grauwacke resists the water four times that of granite, and thirty-six times that of Yorkshire sandstones.
Abstract. A term in general use among artificers, surveyors, \&c. to signify the collecting together and arranging under a few distinct heads the various small quantities of different articles which have been employed in any work, and the affixing of a price to determinate portions of each, as per square, per foot, per pound, \&c. for the purpose of more expeditionsly and conveniently ascertaining the amount.
Abusz. A term applied to those practices in architecture which, arising from a desire of innevation, and often authorised by custom, tend to unfix the most established principles, and to corrupt the best forms, by the vicious way in which they are used. Palladio has given a chapter on them in his work. He reduces them to four principal ones: the first whercof is the introduction of brackets or modillions for supporting a weight; the second, the practice of breaking pediments so as to leave the centre part open; third, the great projection of cornices; and, fourth, the practice of rusticating eolumns. Had Palladio lived to a later day, he might have greatly increased his list of abuses, as l'errault has done in the following list:-the first is that of allowing columns and pilasters to penetrate one another, or be conjoined at the angles of a building. The second that of coupling columns, which Perrault himself in the Lourre has made almost excusable ; the third, that of enlarging the metope in the Doric order, for the purpose of accommodating them to the iutercolumniations'; the fourth, that of leaving out the inferior part of the tailloir in the modern Ionic capital ; the fifth, that of runuing up an order through two or three stories, instead of decorating each story with its own order; the sixth, that of joining, contrary to the practice of the ancients, the plinth of the column to the cornice of the pedestal, by means of an iuverted caretto; the seventh, the use of architrave cornices ; the eighth, that of breaking the entablature of an order over a column, \&c., \&c.
Abutament. The solid part of a pier from which an arch immediately springs. Aloutments are artificial or natural : the former are usually formed of masonry or brickwork, and the latter are the rock or other solid materials on the banks of the river, in the case of a bridge, which receive the foot of the arch. It is obvious that they should be of suffieient solidity and strength to resist the thrust of the arch.
Abdttals. The buttings or boundings of land.
Acanthus. (Arav日os, a spine.) A spiny herbaceons plant found in varions parts of the Levant. Its leaf is said by Vitruvius to have been the model on winch the Grecian architects formed the leaves of the Corinthian eapital.
Acer. A genus of trees comprehending the maple and sycamore, the wood of which is not of much value. That of the acer campestre furnishes the cabinet makers with what they call bird's-eye maple.
Access. See Passage; also Adit.
Accidental Point. In perspective, the point in which a straight line•drawn from the eye parallel to another straight line ents the perspective plane. It is the point wherein the representations of all straight lines parallel to the original straight line concur
when prodaced. Its name is adoptel to distinguish it from the principal point or point of riew.
Acoustics. (Gr. Akouw, to hear.) Thre doctrine or theory of sounds, as applicable to buildings. See Theatres, book iii., ehap. v., and Churches in the same book. The subject is one presenting great difficulty. The statements of various professors, and a comparison of buildings themselves, have been collected in a work by Mr. T. R. Smith. It was stated by Professor Lewis, at a lecture given in 1861-65, that in consulting one of the most eminent Scottish philosophers respecting the plan for a church, the reply was, that in his opinion the principle adopted would most probably answer; but he added that he had studied acoustics probably as nuch as any man, and the conclusion he arrived at was that in applying theory to actual practice he knew nothing about it, and he believed nobody else knew more.
Acropolis. (Gr. Akpos and mo^ıs, city.) The upper town or citadel of a Grecian city, usually the site of the original settlement, and chosen by the colomists for its natural

Fig. 1361. The Acropolis at Atliens.
strength. The most celebrated were those at Athens, Corintl, and Ithome; the two latter were called the horns of the Peloponnesus, as though their possession could secure the submission of the whole peninsula.
Acroteria. (Gr. Akp $\omega \tau \eta \rho \circ o \nu$, the extremity of anything.) The pedestals, often without base or cornice, placed on the centre and sides of pediments for the reception of figures. Vitruvius says that the lateral acroteria ought to be half the height of the tympanum, and the apex acroterium should be an eighth part more. No regular proportion, however, is observable in Grecian buildirgs.

The word acroterium is applied to the ridge of a building; it has also been used to signify the statues on the pedestals; but it is only to these latter that it is strictly applicable. The word has, moreover, been given to the small pieces of wall in balustrades, between the pedestal and the balusters, and again to the pimacles or other ornaments whieh stand in ranges on the horizontal copings or parapets of buildings.
Acute Angle. A term used in geometry to denote an angle less than 90°, that is, less than a right angle.
Acute-angled Triangle. A triangle having all its angles acute. Erery triangle has at least two acute angles.
Admesion. (Lat. Adhrereo.) A term in physics denoting the force with which different bodies remain attached to each other when brought into contact. It must not be confounded with cohesion, which is the force that unites the partieles of a homogeneons body with each other. The following is an account of some experiments recorded in the Technical Repository for 1824 :- The insertion of a nail is accomplished by destroying the eohesion of the wood, its extraction by overcoming the force of adhesion and friction. We will consider it here solely as a case of adhesion. Fine sprigs, of which 4560 weighed one pound, $\frac{44}{100}$ of an inch long, forced four-tenths of an inch into dry Christiania deals at right angles to the fibre, required a foree of 22 lbs , to extraet them. The same description of nail having 3200 in the pound, $\frac{53}{100}$ of an inch long, and forced $\frac{4.4}{100}$ of an inch into the same kind of wood, required 37 lbs to extract it. Threepenny brads, 618 to the pound weight, one and a quarter inch long, forced half an inch into the wood, required a force of 58 lbs . to draw them out. Fivepenny nails, 139 to the pound weight, two inches long, and forced one inch and a half into the wood, required a force of 320 lbs . to extract them. Sixpenny nails, 73 to the pound, two inches and a half long, and forced one inch into the wool, required 187 lbs . to extract them. The same kind of nail forecd one inch and a half into the wood required 327 lbs , to draw it
out; and one forced two inches into the wood required 530 lbs . to extract it. In this last experiment the nail was forced into the wood by a hammer of cast-iron weighing 6.275 lbs. falling from a height of twelve inches, four blows of which were necessary to furce the nail an inch and a half into the wood. It required a pressure of 40 llds , to furce the nail to the same depth. A sixpenny nail driven one inch into dry elm across the grain or fibres requirt d 327 lbs . to draw it out by direct force ; driven endwise into dry elm, or parallel with the grain, it required only 257 lbs . to extract it. The same sort of nail driven into dry Christiania deal was extracted by a force equal to 257 lbs , and by one of 87 lbs . from a depth of an inch. The adhesion, thercfore, of a nail driven into elm across the grain, or at right angles to the fibres of the wood, is greater than when it is driven with the grain, or parallel with the fibres, in the proportion of 100 to 78, or 4 to 3. And under the same circumstances. in dry Christiania deal, as 106 to 46 , or nearly 2 to 1 . The comparative adhesion of nails in elm and deal is between 2 ard 3 to 1 . To extract a sixpenny nail dri ren one inch into green syeamore required 312 lbs. ; from dry oak, 507 lbs . ; and from dry beech, 667 lbs . A common screw of one-fifth of an inch had an adhesion about three times as great as that of a sixpenny nail. A common sixpenny nail driven two inches in dry oak would require more than half a ton to extract it by pressure.'
Adir (Lat. Adeo), or Adirus. The approach or entrance to a building, \&c. Among the ancients the uditus theatri, or adits of a theatre, were doorways opening on to the stairs, by which persons entered the theatre from the onter portico, and thence descended into the seats. Upon the same principle were the adits of a circus.
Adjacent Angle, in geometry, is an angle immediately contiguous to another, so that one side is common to both angles. This expression is more particularly applied to denote that the two angles have not only one side in common, but likewise that the other two sides form one straight line.
Adpten. (Gr. Ajutov, a recess.) The seeret dark chamber in a temple to which rone but the priests had access, and from which the oracles were delivered. Seneca, in his tragedy of Thyestes says -

" Hinc orantilus
 Responsa dantur certa, dum ingenti sono Laxantur adyto fata."

Among the Egyptians the secos was the same thing, and is described by Strabo. The only well-preserved ancient adytum that has come to our knowledge is in the little temple at Pompeii ; it is raised some steps abore the level of the temple itself, and is without light.
Adze or Addice. An edged tool used to chip surfaces in a horizontal direction, the axe being employed to chop materials in rertical positions. The blade, which is of iron, forms a small portion of a cylindric surface, in both its sides, and has a rooden handle fixed into a socket at one of its extremities, in a radial direction, while the other extremity, parallel to the axis of the cylinder, and therefore at right angles to the handle is edged with steel, and ground sharp from the concave side. The adze is chicfly employed for taking off thin chips from timber or boards, and for paring away irregularities at which the axe eannot come. It is also used in most joinings of earpentry, particularly when nutched one upon another, scarfings, thicknesses of flooring boards opposite to the joists, \&c.
Arrial Perspective. The relativo apparent recession of objects from the forcground owing to the quantity of air interposed between them and the spectator. It accompanies the recession of the perspective lines.
 is in the fine arts that science which derives the first principles from the effect which certain combinations hatve on the mind as connected with nature and right reason. Sce pp. 795 and 922.
Atrialor. (Gr. Aetos, an eigle.) The name given ly the Grcek architects to the slahs forming the fice of the tympanum of a pediment. This word occurs in the Athenian inscription now in the British Museum, brought to England ly Dr. Chandler, and relating to the surroy of some temple at Athens.
Tetoma, or Etos. (Gr. Atcos.) A name given by the Greek architects to the tympanum of a pediment. It seems derived from the custom of decorating the apex or ridge of the ruof with figures of eagles, and that the name thence first given to the ridge was afterwarls transferred to the pediment itself.
Air Drafns, or Dry Areas. Carities between the external walls of a building protected ly a wall towards the earth, which is thus prevented from lying against the said walls and creating damp. They may be made with the walls battering against the ground, and covered orer with paving stones, or with their walls nearly perpendicular, and arehed on the top. This covering should be above the ground, and sloped to throw off the wet. The bottoms should be paved, and the areas should be well ventilated.

Air Holes. Holes made for admitting air to rentilate apartments: also for introducing it among the timbers of floors and roofs for the prevention or destruction of the dry rut.
Air Trap. A trap formed so as to prevent foul air from rising from sewers or drains into the atmosphere. There aro various sorts, all depending upon a certain amount of water in them.
Aisle, or Aile. (Lat. Ala.) A term chiefly used by the English architect to signify the side subdivisions in a church, usually separated from the nare or centre divisiun by pillars or columns. Among different nations, as applied to architecture, it bears different significations. Strabo states that among the Egyptians the alce of the temple were the two walls that enclosed the two sides of the prondos, and of the same height as the temple itself. The walls, he observes, from abeve ground, were a little further apart than the foundations of the temple, lut as they rose, were luilt with an inclination to each other. The passage, however, is not clearly to be understood.

In Gothic, as well as in many modern, churches, the breadth of the chureh is divided into three or fire parts, by two or by four rows of pillars running parallel to the sides; and as one or other is the case, the church is said to be a threeaisled or five-aisled fabric. The middle aisle is called the nave or chief aisle, and the penthouse, which joins to each side of the main structure containing the aisles, is called a wing. St. Mary's, Taunton; Chichester Cathedral ; St. Helen's, Abingdon; and Elgin Cathedral, perhaps comprise all the five-aisled churches in Great Britain, except a building at the west end of the cathedral at Durhan. On the Continent there are many such buildings, among which is the cathedral at Milan. It is somewhat remarkable that in Westminster Abbey and in Redeliff Church at Bristel the aisles are continued on each side of the transept, and in Salisbury Cathedral on one side only, a circumstance not met with in any other churehes in this country.
Ajetage. (Fr.) Part of the apparatus of an artificial fountain, being a sort of jet d'eau, or kind of tube fitted to the mouth or aperture of a vessel, threngh which the water is to be played, and by it determined into the form to be given to it.
Alabaster. A white semi-transparent variety of gypsum or sulphate of lime, a mineral of cemmon occurrence, and used for ornamental purpeses, as screou work, and fer sculpture. It was much used formerly for monuments in churches and the like, and has been re-introduced of late years for similar purposes.
Albariem Opes. (Lat.) In ancient Roman architecture a term imagined by some to have been nothing more than a species of whitewash applied to walls, but, as we think, incorrectly. In the passage of the tenth chapter of the fifth book of Vitruvius, where he recommends the use of the albarium opus for the ceilings of baths, he allows tectorium opus as a substitnte; so perhaps it was a species of stucco. Its employment at the baths of Agrippa, seems to prove it to have been superior to the other, and it is by no means improbable that it was susceptible of a high polish.
Accove. A wide and deep recess in a room. That part of a sleeping chamber wherein the ber is placed. The use of alcoves, though not by that name, is ancient. They were frequently designed in the form of a niche; such, for instance, as those that Winkelman notices at Hadrian's villa at Tivoli, of which sort are seme at Pompeii. They were often formed by enclosures or balustrades, of various heights, and by means of draperics the alcove was separated from the large chamber of which it was a part. Some idea may be formed of it from many of the ancient bassi relieri, especially from the celebrated one known by the name of the Nozze Aldobrandini. In medern works this part of a room differs according to the rank and taste of the proprietor. In England it is rarely introduced, but in France and Italy it often forms a beautiful feature in the sleeping apartments of palaces and large houses.
Alder. (Ang. Sax. Ellarn.) A tree belonging to the order Betulaceæ. It is used fur piling and any similar work under water.
Areatoriem. In ancient Roman architecture, a room in which games at dice wfre played.
Alipterion. In ancient Roman architecture, a room used by the bathers for anoiuting themselves.
Alkurajes. In Eastern architecture, high slender towers attached to mneques, and surrounded with balconies, in which the priests recite aloud at stated times prayers from the Koran, and announce the hours of devotion to worshippers. They much embellish the mosques, and are often very fantastical in form. They aro also called Minarets.
Alley. (Fr. Allée.) An aisle, or any part of a church left open for access to another part. In towns, a passage narrower than a lane. An enclesed walk in a garden.
Almery or Aumbrye. A recess or eupboard fer holding the sacred ressels, \&c., used in the mass. An example, dating cirea 1200, is seen in Lincoln Cathedral.

Almonry. Properly a eloset or repsitory for the reception of broken vietuals set apart as alms for the poor. It is more generally used to denote a house near the eliureh in abbeys, or at their gates, provided with rarious offices for distributing the alms of the convent, and for tho dwelling of the almoner.
Anshouse. A house deroted to the reeeption and support of poor persons, and generally endowed for a partieular deseription of persons.
Altar. The name given to a flat stone found in Celtic erections.
Altar. (Lat. Altare.) A sort of pedestal whereon sacrifice was offered. Aecording to Servius there was among the aneients a difference between the ara and altare, the latter being raised upon a substruction, and used only in the service of the celestial and superior divinities, whereas the former was merely on the ground, and appropriated to the service of the terrestrial gods. Altars to the infernal gods were made by exeavation, and termed scrobiculi. Some authors have maintained that the ara was the altar before which prayers were uttered, and that the altare was used for salerifices only. There is, however, from ancient authors no appearance of such distinetions, but that the words were used indiscriminately. The earliest altars were square polished stones, on which were placed the offerings to the gods. Whilst the saerifice consisted only of libations, perfumes, aud offerings of that nature, the altar was small, and even portable; when man, however, began to consider he was homouring the divinity by an offering of bloot, the altar necessarily expanded in dimensions. Different forms of it were adopted, according to the nature of the sacrifice, and on it the throat of the vietim was cut and the flesh burnt. Of this sort is the eireular altar of the Villa Pamphili at Rome, one of the largest and most elegant of the class. On it appears the carity for holding the fire, and the grooves for earrying off the blood. The rarieties of altars were suitable in furm, ornament, and situation to the serviee to which they were appropriated: some, as we have already observed, being for sterifices of bluod, others for receiving offerings and the satered ressels; some for burning ineense, others for receiving libations. Many were set up as mere monuments of the piety of a derotee, whilst others were raised to perpetuate some great event. They servel for adjuration as well as for an asylum to the unfortunate and evil doer. In form they variod from square to oblong, and from tri ingular to eircular. Those of metal were commonly tripodial. When of briek or stone their plan is generally square. According to Pausanias they were oceasionally made of wood. They do not appear to have been of any regular standard height, for they are sometimes found on bassi relievi reaching but little above a man's knee, whereas in others they appear to reach his middle; but it seems that in proportionto its diameter the circular altar was generally the highest. Vitrurius says that they should not be so high as to intercept the statues of the gods, and he gives the relative heights of those used for different divinities. Thus, he says, those of Jupiter and the celestial gods are to be the highest; next, those of Vesta and the terrestrial gods; those of the sea gods are to be a little lower, and so on. On festivals they were deeorated with such flowers and leares as were sacred to the particular dirinity. But besides this casual decoration, the ancient altars furnish us with some of the most elegant bassi relievi and foliage ornaments that are known. According to Vitruvius, their fronts were directed towards the east, though very frequently but little regard was paid to their position, as thoy were occasionally placed under the peristyle of a temple, and not unfrequently in the open air. In the larger temples were often three different altars. The first was in the most saered part, in front of the statue of the god; the second before the door of the temple; and the third (called anclabris) was portable, and on it the offerings and sacred ressels were placed.

The altars of the Catholic ehureh are either attached or isolated. The former generally stand against a wall, and are so decorated as to appear quite independent of it. The decorations are either of painting or sculpture, or both. The isolated altar has no sort of connection with any part either of the building or of its decorations. The high altar is alwaysisolated, whether placed at the end of the chureh or in its centre, as in the well-known example in St. Peter's at Rome. Whatever the situation of the high altar, it should be grand and simple, and raised on a platform with steps on every side. The holy table of the Protestant ehurehes of England was generally of wood, but some of stone (but not affixed) have been put up of late years; they are usually covered with a cloth more or less decorated. Above it is the Riredos.

The altars of the Greek ehureh, though in other respeets the religion vies in splendour with the Romish church, are destitute of painted or seulptured ornament. In Calvinistic charehes the name as well as the uses of an altar are unknown either as an appendage or a decoration.
Altar Piece. The entire decorations of an altar. See Reredos.
Altar Screen. The baek of an altar, or the partition by which the choir is scparated from the presbytery and Lady chapel. The date of its introduction into English churehes we believe to have been about the close of the thirteenth century. It is generally of
stone, and coniposed of the richest tabernacle work, of niches, finials, and pe?fertals, supporting statues of the tutelary saints. Those to the high altars of Winchestre Cathedral, of St. Allan's Abbey, and of New College at Oxford, are fine examples. Many were destruyed at the Reformation, or filled up with plaster and corered with wilinscot. In many altar-screens a door was placed on each side of the altar for the officiating priests, whose vestments were deposited in an apartment behind the screen.
Altar Tomb. A tomb of a square box-like form, raised some 3 ,to 6 feet in height above the ground. On it is usually seen a sculptured recumbent representation of the deceascd. These effigies are often placed under an arch, sometimes richly canopied.
Alto Relifyo. See Relievo.
Alure. A gutter, passage, or gallery, as on the top of a wall or building, being one in which a person conld walk. Lydgate used the word fur covered walks in the streets.
Ambitus. A space which surrounded a tomb, and was held sacred. In deseriptions of subterranean tombs, it denoted a small niche made in the wall for the reception of an urn or body. When the corpse was placed in it, to the mouth of the niche a slab was fixed, so fitted and cemented as to prevent noisome effluria. The slabs were sometimes inscribed with the name and quality of the party. If they received an urn, either upon that or over the niche the inscription was placed. Much decoration was occasionally used in the recesses themselres.
Ambo. (Gr. A $\mu \beta \omega \nu$.) The elevated place or pulpit in the early Christian churches, which, according to Ciampini, fell into disuse about the begiming of the fourteenth century. The last erected ambo in Rome is supposed to have been that of S. Pancrazio, on which appears the date of 1249 . It was au oblong enelosure, with steps usually at the two ends. Two ambones are described by Eustace in the eathedral at Salerno. They are pliced on each side of the nave before the steps of the ehancel, and are both of marble, the largest being covered with mosaic work and supported by twelve Corinthian granite columns.
Ambrey. Sue Aumbrie.
Ambulatio. (Lat.) See Pteroma.
Ambulatory. (Lat.) A sheltered place for exercise in walking; a cloister; a gallery:
Anpurrostyle. (Grr. A $\mu \phi \iota$, both or double, $\pi \rho 0$, before, $\sigma \tau \nu \lambda o s$, a column.) A term applied to a temple having a portico or porch in the rear as well as in the front, but without columns at the sides. This species of temp'e never exceeded the use of four columns in the front and four in the rear. It differed from the temple in antis, in laving columns instead of antæ at the angles of the portico. Such was the temple of Nike Apteros at Athens. See Temple.
Amphitheatre. (Gr. Aupl, about, and $\theta \in \alpha \tau \rho o \nu$, a theatre.) An edifice formed by the junction of two theatres at the proscenimm, so as to have seats all round the periphery, a contrivance by which all the spectators being ranged about on seats rising the one above the other, saw equally well what passed on the arena or space enclosed by the lowest range of seats, whose wall towards the arena was called the prdium. The origin of the amphitheatre seems to have been among the Etruscans, to whom also are attributed the first exhibitions of gladiatorial fights. It was from this people that the Romans acquired a taste for sueh shows, which they communicated to every nation which became subject to their dominion. Athenæus says, "Romani ubi prinum ludos facere cœperunt, huie asciti artifices ab Etruscis civitatibus fuerunt, sero autem ludi omnes qui nune a Romanis celebrari solent sunt instituti." Lib. iv. c. 17. The most extraordinary edifice remaining in Rome, we may indeed say in the world, is the amphitheatre generaily called the Coliseum. It was commenced by Vespasian, and completed by Titus his son. Words are inadequate to convey a satisfactory idea of its stupendous and gigantic dimensions. Ammianus says that it was painful to the eye to scan its summit; "ad cujus summitatem ægrè risio humana conscendit." Martial, in one of his epigrams says,
"Omnis Cæsareo cedat labor amphitheatro, Unum pro cunctis fama loquatur opus."

The greater axis of the ellipsis on which it is planned is about 627 feet, and the lesser 520 feet, the height of the outer wall about 166 feet, such wall being decorated ly the Doric, Ionie, and Corinthian Orders, and pierced with arcades between the columns. Covering five English acres and a quartcr, it was capable of containing the vast number of 87,000 persons. It has suffered much from having been used actually as a quarry for many of the modern edifices of the city; but in the present day its preservation is strictly attended to by the papal government. A description of this building has been given in p. 04 et seq. Besides the Coliseum, there were three other amphitheatres in Rome: the Amplitheatrum Castrense, on the Esquiline, built probably by Tiberius; that of Statilins Taurus, and that built by Trajan in the Campius Martins. The other principal amphitheatres were those of Otricoli; on the Garigliano, of lrick;

Puzzuoli, Capua, Verona, at the foot of Monte Casino, Pæstum, Syracnse, Agrigentum, Catanea, Argos, Corinth, Pola in Istria (see fig. 1362.), Hipella in Spain, Nismes, Arlos, Frejus, Saintes, and Autun. This last has four stories, in that respect like the Cohseum. That which remains in the most perfect condition is at Verona; its age has not been aceurately determined, some placing it in the age of Augustus, and others in that of Maximian; of these, Maffei thinks the first date too early, and the latter too late. The

Fig. 1362. Amphitheatre at Pola. silence of Pliny upon it, seems to place it after the time of his writing. In the reign of Gallienus, it was not only built, bat began to suffer from dilapidation, for many of the stones belonging to it are found in the walls of Verona, which walls were crected in the time of that emperor Many of these wero keystones, and the numbers cut upon thens still remain. From the silence of authors that it was the work of any of the emperors, it seems probable that, like that at Capua, it was erected at the expense of the citizens. The length is about 514 feet, and the breadth about 410 ; the long diameter of the arena 242 feet, the short diameter 147 feet. The audience part or visorium contained fortyseven tiers of seats, and the building was capable of containing about 22,000 seated spectators. In the profile of the walls of this amphitheatre the diminution in thiekness upwards is made on the inside, which is also the case in that at Pola. In the Coliseum the diminution is on the outside. The amphitheatre at Nismes contained about 17,000 persons, and was about 400 feet in length and 320 feet in breadth.

The first anphitheatres, as we learn from Pliny, were constructed of wood, and usually placed in the Campus Martius, or in some place out of the city. Accidents occurring from their insecurity, they were abandoned for tho moro substantial species of fabric of which we have been speaking. The first person who is said to have erected an amphitheatre in Rome was Caius Scribonius Curio, on the occasion of the games lie gave to tho people it the funeral obsequies of his father. Determined to surpass all that hat hitherto been seen, he constructed two theatres of wood, back to back, which, after the theatrical representations had been finished, were turned round with the spectators in them, leaving the stages and scenery behind. By their opposite junction, they formed a perfect amphitheatre, in which the people were gratified with a show of gladjators.

The part in which the gladiators fought was called the arena, from being usually covered with saud to absorb the blood spilt in the conflicts, for which it was used. It was encompassed by a wall called the podium, fifteen or sixteen feet high, immediately round which sat the senators and ambassadors. As in the theatres, the seats rose at the lack of each other; fourteen rows back from the podium all round being allotted to the equites, and the remainder to the public generally, who sat on the bare stone, cushions being provided for the senators and equites. Though at most times open to the sky, there were contrivances for covering the whole space with an awning. The avenues by which the people entered and retired were many in number, and were called romitoria.
Anamorphosis. (Gr. a νa, backward, and $\mu \nu \rho \phi \eta$ form.) A term employed in perspectire to denote a drawing executed in such a manner that when viewed in the common way it presents a confused and distorted image of the thing represented, or an image of something entirely different; but when viewed from a particular point, or as reflected by a curved mirror, or through a polyhedron, it recovers its proportions and presents a distinct representation of the object.
Anchor. In decoration, an ornament shaped similarly to an anchor or arrow head. It is used with the egg ornament to decorate or enrich mouldings. By some it is called a tongue, from its supposed resemblance to the forked tongue of a serpent. It is used in all the orders, but only applied to the moulding called the echinus or quarter round.
Ancones. (Gr. A ykur, the joint of the elbow.) The trusses or consules sometimes employed in the drossings or antepagmenta of apertures, serving as an apparent support to the cornice of them at the flanks. In ancient doors the ancones were sometimes broader at the top than at the bottom, and were not in contact with the flanks of the arehitrave, but situated a small distanco from them. The term is also used to signify the corners or quoins of walls; cross beams, or rafters.
Andron. (Gr. A $\quad \eta \rho$.) In ancient architecture, the apartment appropriated to the reception
of the male branches of the estallishment, and always in the lower part of the house; the gynacia, or women's apartments, leing in the upper part.
Angle. (Lat. Angulus.) The mutual inclination of two lines meeting in a point, called indifferently the angular point, vertex, or point of concourse: the two lines are called legs.
Angle Bar. In joinery, the upright bar at the angle of a polygonal window.
Angle Bead, or Staff Bead. A rertical bead, commonly of wood, fixed to an exterior angle and flush with the intended surface of the plaster on both sides, for the purpose of securing the angle against accident, serving also as a guide fur floating the plaster. The section of these beads is about three-quarters of a circle, with a projecting part from the other quarter, by means whereof they are made fast to the wood bricks, plugging, or bond timbers. Angle beads of wood round the intradosses of circular arches are difficult to bend witlout cutting or steaming them. The former has a very unsightly appearance, and the latter method is at once inconrenient and troublesome. The plaster itself is the best material in this case, and at the height generally placed will be out of the reach of accident. In good finishings, corner beads which are unsightly should not be used, but the plaster should be well ganged and brought to an arris.
Aygle Brace. In carpentry, a piece of timber fixed to the two extremities of a piece of quadrangular framing, making it partake of the form of an octagon. This piece is also called an angle tie and a diagonal tie. By the use of this piece wall plates are frequently braced. In constructing a well hole of a circular section through a roof or fleor for a skylight, \&c. the framing is first made in a quadrangular form ; braces are then fixed opposite to each angle, and the aperture becomes of an octagonal form; finally, pieces are fixed at each angle of the octagon, meeting each other in the middle of its sides, so as to transform the section of the aperture inte a circle, or oval.
Angle Bracket. A bracket placed in the vertex of an angle, and not at right angles with the sides. See Bracheting.
Avgle Capital. In ancient Greek architecture, the Ionic capitals used to the flank columns which have one of their volutes placed at an angle of 135° with the planes of the front and returning frieze. As an example may be cited the angle capitals of the temple of Minerva Polias at Athens. This term is also applied to the modern Ionic capital, in which the whole of the four volutes have an angular direction.
Angle Chimney. A chimney placed in the angle of a room.
Angle Iron. A plate of iron rolled into an L shape, and used for the purpose of securing two iron plates together by rivets, as $\mathrm{Y} \mathbf{Y}$ in the beam of the plate girder, fig. 1363, and the bex-beam, fig. 1364.
Angle Modillon. A modillion placed in a direction parallel to a diagenal drawn through a cornice at its mitring. It is an abuse seen only in the buildings erected during the decline of Roman architecture, as in the ruins of Balbec and Palmyra, and in the palace of the Emperor Dioclesian at Spalatro.
Angle of Vision. In perspective, that angle under which Fig. 1363.

Fig. 1364. an object or objects are seen, and upon which their apparent magnitudes depend. In practical perspective it should not exceed sixty degrees.
Angle of a Wall. The angle contained by the vertical planes of two walls which form the angle of the building. The term is sometimes used to denote the line in which the twe sides of the angle meet, which by workmen is commonly called the arris: the arris, however, is not the angle, but the line of cencourse formed by the two sides ar planes which contain the angle.
Angle Rafter. The piece of timber in a hipped roof placed in the line of concourse of the two inclined planes forming the hip. It is more often called a hip raftcr.
Avgle Rrb. A piece of timber of a curved form placed between those two parts of a coved or arched ceiling or rault which form an angle with each other so as to range with the common ribs on each side or return part.
Angle Staff. See Angle Bead.
Angle Stones. A term used by some authors to denote quoins.
Angle Tie. See Angle Brace.
Anglo-Saxon Architecture. Bede mentions one Benedict called Biscop, as the first person who introduced builders of stone edifices and makers of glass into England, a.d. 672 . The principal characteristics of the style is a debased imitation of the Roman works, long and short masonry, absence of buttresses, semi-circular and triangular arches, rude balusters, hammer-dressings, and unchiselled sculptures.
Angular Capitar. See Capital.
Annclar Mocldings. Generally those having rertical sides and horizental circular sectious.
Annclar Vault. A rault springing from two walls each circular on the plan; such as that in the temple of Bacchus at Rome.

Annulated Colemn. Slonder shafts clustered together or joined by bands of slone, sometimes of metal, to a central pier or to a jamb. They were much employed in Eirly Enghsh Gothic architecture, and were very often of Purbeek marble.
Anvolet. (Lat. Anuulus.) A small fillet whose horizontal section is circular. The neck or under side of the Doric capital is decorated with these thin fillets, listels, or bands, whose number varies in different examples. Thus in the Doric of the theatre of Mar. cellus there are three, whilst in the great temple at Pæstum they are four in number. and in other cases as many as five are used.
Anta, e plur. (Lat. Anta.) The jambs or square posts supporting the lintels of doors The term antre we think only applicable to pilasters or pillars attached to a wall, though some authors, as Perrault, have thought otherwise. Vitruvius calls square pilasters when insulated parastate. There are three kinds of antæ: those of porches or jamb ornaments; angular antæ, being such as show two faces on the walls of a temple; and those on the longitudinal walls of its cell. Antw are only found in temples as wings to the ends of the walls of the pronas to give a finish to the terminations the ends of the walls would otherwise present. It might have been this riew which led the Greeks to treat them rather as distinct objects than to assimilate their finishings to thoso of columns. The pilasters in Roman architecture differ only from the column in being square instead of round. A rule in the use of antre was, that their projection shombid always be equal to that at least of the mouldings used on them. Some beautiful examples of antre capitals exist in the temple of Minerva Polias, and the templo of Apollo Didymæus, in Ionia.
Ante-chamber or Ante-room. An apartment through which access is obtained to another chamber or room. One in which servants wait and strangers are deta ned till the person to be spoken with is at leisure. In the distribution of many houses the peculiarity of the plan forces upon the architect the introluction of ante-rooms: in most cases, indeed, they add both elegance and diguity to a design.
Ante-cour. A French term, sometimes, however, used by English authors. It is the approach to the principal court of a houso, and very frequently scrves for communication with the kitchen, cellar, stables, \&c.
Antefixe. (Lat. Anti and Figo.) The ormaments of lions' and other heads bolow the eaves of a temple, through perforations in which, usually at the mouth, the water is cast away from the eaves. By some this term is used to denote tho upright ornaments above the eaves in ancient architecture, which concealed the ends of tho harmi or joint tiles.
Antepagmenta. (Lat.) In ancient architecture, the jambs or moulded architraves of a door. The lintel returning at the ends with similar mouldings down upon the antepagmenta was ealled supercilium.
Antependius. The frontal langings of the altar.
Anterines. In ancient arehitecture, buttresses or counterforts for tho support of a wall. The Italians call them speroni (spurs).
Anthemon. (Gr. A $\nu \theta \epsilon \mu / \nu_{\text {. }}$) It is considered to mean the honeysuckle, palmetto, or fleuron ornament in the necking of some columns of the Ionic order.
Anticung. (Lat.) A porch to a front door, as distinguished from posticum, which is the porch to a door in the rear of a buikling. It was the space also between the front columns of the portico and the wall of the cellia. The word has been sometimes improperly used for anta.
Antiquaricm. Among the ancients an apartment or cabinet in which they kept their ancient books and vases.
Axtique, A term applied to pieces of art worked by the Greeks and Romans of the clas. sical ige.
Apartment. (Lat. Partimentum.) A space enclosed by walls and a ceiling, whieh latter distinguishes it from a court or area.
Aperture. (Lat. Aperio.) An oponing throngh any body. In a wall it has usually three straight sidcs, two whereof are perpendicular to the horizon, and the third parallel to it. connecting the lower ends of the rertical sides. The materials forming the rertical sides are ealled jambs, and the lower level side is called the sill, and the upper part the head. This last is either a curved or flat arch. Apertures are made for entrance, light, or ornament. In Greek and Egyptian architecture, but especially in the latter, the jambs incline towards each other. Somet;mes apertures are mado circular, eliiptical, or portions of those figures. "Apertures," says Sir Henry Wotton, "are inlets for air and light; they should be as few in number, and as moderate in dimensions, as may possibly consist with other due respects; for, in a word, all openings are weakenings. They should not approach too near the angles of tho walls ; for it were indeed a most essontial solecism to woaken that part which must strengthen all the rest."
Apraky. (Lat. Apis.) A place for keeping bechires. Sometimes this is a small house
with openings for the bees in front, and a door behind, which is kept locked for secnity. Sometimes it is an area wherein each particular beehive is chained down to a post and padlocked.
Apodyterium. ('A $\pi o \delta \sigma \theta a l$, Gr., to strip oneself.) The apartment at the entrance of the ancient baths, or in the Palæstra, where a person took off his dress, whether for bathing or gymnastic exercises. In the baths of Nero, these apartments were small, but in those of Caracalla the apodyterium was a magnificent room with columns and oth \mathbf{r} decorations.
Apophyge. (Gr., signifying flight.) That part of a column between the upper fillet or annulet on the base and the cylindrical part of the shatt of a column, usually moulded into a hollow or cavetto, out of which the column seems as it were to fly or escapo upwards. The Freuch call it congé, as it were, leave to go.
Aporneca. (Gr.) A storehouse or cellar in which the ancient Greeks deposited their oil, wine, and the like.
Approach, A curred or graduated road leading to a building sitnated some distance within the grounds.
Apron, or Pitching Pifce. A horizontal piece of timber, in wooden double-flighted stairs, for supporting the carriage pieces or rough strings and joistings in tho half spaces or landings. The apron pieces should be firmly wedged into the wall.
Apsis, or Absis. (Gr., signifying an arch.) A term in ecclesiastical architeeture, denoting that part of the church wherein the clergy was seated or the altar placed. It was so called from being usually domed or vaulter, and not, as Isidorus imagines, from being the lightest part (apta). The apsis was either circular or polygonal, and domed over; it consisted of two parts, the altar and the presbytery or sanctuary. At the middle of the semi-circle was the throve of the bishop, and at the centre of the diameter was placed the altar, towards the nave, from which it was separated by an open balustrale or railing. On the altar was placed the ciborium and cup. The throne of the bishop having been anciently called by this name, some have thought that thence this part of the edifice derived its name; but the converse is the fact. The apsis gradata implied more particularly the bishop's throne being raised by steps above the ordinary stalls. This was sometimes called exhedra, and in later times tribune.
Aquariumr. A case to contain sea or fresh water, in which to preserve living objects of natural history. Fiom a small glass case for a drawing-room, they have increased in size until buildings are erected to contain a number of crystal tanks for the purpose of exhibition-such are those at Brighton, and at the Crystal Palace, in England; and at Hamburgh. London, Liverpool, and other cities are now seeking to establish them. The term is also used for the tanks formed for growing the Victoria Regia and other plants, as at Syon, Kew, Botanic Gardens in the Regent's Park, and elsewhere.
Aqueduct. (Lat. Aquæ ductus.) A conduit or channel for conveying water from one place to another, more particularly applied to structures for the purpose of conveying the water of distant springs across valleys, for the supply of large cities. The largest and most magnificent aqueducts with the existence of which we are acquainted, were constructed by the Romans, and many of their ruins in Italy and other comntries of Europe still attest the power and industry of that extraordinary nation. The most ancient was that of Appius Claudius, which was erected in the 442 nd year of the city, and conreyed the Aqua Appia to Rome, from a distance of 11,190 Roman paces (a pace being $58 \cdot 219$ English inches), and was carried along the ground, or by subterranean lines, about 11,000 paces, about 190 of which were erected on arches. The next, in order of time, was the Anio Vetus, begun by M. Curius Dentatus, about the year of Rome 481. The watcr was collected from the springs about Tivoli; it was abont 43,000 paces in length. In the 608th year of the city, the works of the Anio Vetus and Aqua Appia had fallen into decay, and much of the water had been fraudulently abstracted by individuals, the preetor Martins was therefore empowered to take measures for increasing the supply. The result of this was the Aqua Martia, the most wholesome water with which Rome was supplied. It was brought from the neighbourhood of Suliaco, twenty miles above Tivoli, and was 61,710 Roman paces (about 61 mites), whercof 7,463 paces were above ground, and the remainder under ground. A length of 463 paees, where it crossed brook and valleys, was supported on arches. To supply this in dry seasons, was conducted into it another stream of equal goodness by an aqueduct. 800 paces long. About mineteen years after this was completed, the Aqua Tepula wals brought in, supplied also from the Anio; but not more than 2,000 paces in length. In the reign of Augustus, Agrippa collected some more springs into the Aqua Tepula. lut the latter water flowing in a separate channel, it preserred its name. This was 15,426 pices long, 7,000 above ground, and the remainder of the length on arcades. To this was given ly Agrippa the name of Aqua Julia. In the year 719 of the city, Agrippa restored the dilapidated aqueducts of Appius. of Martius, and of the Anio Vetus, at his own expense, besides erecting fountains in the city. The Aqua Virgo, which receives
its name from a girl having pointed out to some soldiers the sources of the stream from which it was collected, was brought to Rome by an aqueduct 14,105 paces in length, 12,865 of which were under ground, and 700 on arches, the remainder being above ground. The Aqua Alsietina, called also Augusta, was 22,172 paces from its sonrce to the city, and 358 paces of it were on areades. The seven aqueducts above mentioned being found, in the time of Caligula, unequal to the supply of the city, this emperor, in the second year of his reign, began two others, which were finished by Claudius, and opened in the year of the city 803 . The first was called Aqua Claudia, and the second Anio Novas, to distinguish it from one heretofore mentioned. The first was 46,406 Roman paces, of which 10,176 were on arcades, and the rest subterranean. The Anio Norus was 58,700 paces in length, 9,400 whereof were abore ground, 6,491 on arches, and the rest subterranean. Some of the arches of these are 100 Roman feet high. All the aqueducts we have mentioned were on different levels, and distributed accordingly to those parts of the city which suited their respective elevations. The following is the order of their heights, the highest being the Anio Norus, 159 feet above level of Tiber; Aqua Clandia, 149 feet; Aqua Julia, 129 feet; Aqua Tepula, Aqua Martia, 125 feet; Anio Vetus, Aqua Virgo, 34 feet; Aqua Appia, 27 feet; and the Aqua Alsietina on the lowest level. The Tiber at Rome being 91.0 feet above the level of the Mediterranean, the mean fall of these aqueducts has been ascertained to be about 0.132 English inches for each Roman pace ($58 \% 219$ English inches), or 1 in 441 . Vitruvius directs a fall of 1 in 200 , but Seamozzi says the practice of the Romans was 1 in 500 . The quantity of water furnished by six of the aqueducts, as given by Frontinus from a measurement at the head of each aqueduct, is as follows :-

The whole supply is given as 14,018 quinarix, after much fraudulent diversion of the water by individuals; but the diminished quantity is supposed to have been $27,743,100$ English cubic feet, or, estimatirg the population of Rome at one million of inhabitants, 27.74 eubic feet per diem for each inhabitant, or about 170 gallons English. * These were used for the street and sewer flushings, the baths, and scenic representations. \dagger This was used for drinking purposes, and is still so used.

Parker, Aqueducts of Rome, says 24,805 quin. was the exact quantity of water daily poured into Rome in Trajan's time, equal to a stream 20 feet wide by 6 feet deep constantly running in, at a fall six times as rapid as that of the river Thames. He calculated that when the Trajan and the Aurelian aqueducts were finished, the daily supply was quite $332 \frac{1}{4}$ millions of gallons, or at least 332 gallons per head.

There are remains of Ronıan aqueducts in other parts of Europe even more magnificent than those we have mentioned. One, or the ruins of one, still exists at Metz, and another at Segovia in Spain, with two rows of arcades, one abore the other. This last is about 100 feet high, and passes over the greater part of the honses of the city. The Romans do not appear to have been aware of the fact of water rising at a distance to its level at the fountain head.
Arabesque. The term is commonly used to denote that sort of ornament in Saraceme arehitecture consisting of intricate rectilinear and curvilinear compartments and mosaics which adorn the walls, pavements, and ceilings of Arabian and Saracenic buildings. It is cipricious, fantastic, and imaginative, consisting of fruits, flowers, and other oljeets, to the exclusion in pure arabesques of the figures of animals, which the religion forbade. This sort of ornament, however, did not originate with the Arabians; it was understood and practised by the ancients at a very early period. Foliago and griffins, with ornaments not very dissimilar to those of the Arabians, were frequently employed on the friezes of temples, and on many of the ancient Greek vases, on the walls of the baths of Titus, at Pompeii, and at many other places. To Raffaele, in more modern times, we are indebted for the most elaborate and beautiful examples of a style of decoration called Arabesque, which he even dignified, and left nothing to be desired in it. Since the time of that master it has been practised with varying and inferior degrees of merit, especially by the French in the time of Louis XVI. Arabesques lose their chatractor when applied to large objects, neither should they be employed where gravity in the style is to be preserved.
Arabian Architecrure. See Saracenic Archittecture.
Arabo-Tenesco. A term used chiefly by the Italians. An example of this style may be quoted in the baptistery at Pisa (fig. 152), erected by Dioti Salvi in 1152. It is a circular edifice, with an arcade in the second order composed of columns with Corinthian capitals and plain round arches. Between each arch rises a Gothic pinnacle, and above it is finished ly sharp pediments enriched with foliage, terminating in a trefoil.
Araostyle. (Gr. Apaws, wide, and $\sigma \tau v \lambda o s$, a column.) One of the five proportions used by
the ancients for regulating the intercolumniations or intervals between the colums in porticoes and colonnades. Vitruvius does not determine precisely its measure in terms of the diameter of the column. His commentators have tried to supply the deficiency; and, following the progression observable in the intercolumniations he does descrive, each of whieh increases by a semidiameter, the areostyle would be three diameters and a half. Perrault, in his translation of Vitruvius, proposes that the interval be made equal to four diameters, which is the interral now usually assigned to it. It is only, or rather ought only to be, used with the Tuscan order.
Areosystyle. (Gr. Apalos, wide, $\sigma v \nu$, with, $\sigma \tau u \lambda o s$, a column.) A term used by the French architects to denote the method of proportioning the interrals between columns coupled or ranged in pairs, as invented by Perrault, and introduced in the principal façade of the Louvre. It was also adopted by Sir Christopher Wren in the west front of St. Paul's.
Arc. In geometry, a portion of a circle or other curve line. The are of a circle is the measure of the angle formed by two straight lines drawn from its extremities to the centre of the circle.
Arc-boutant. (Fr.) An arch-formed buttress, much employed in sacred edifices built in the Pointed style, as also in other edifices, and commonly called a flying buttress, whose object is to counteract the thrust of the main rault of the edifice; it is also called arched buttress and arched butment. It was used in the Baths of Diocletian.

- Arc Doubleau. (Fr.) An arch forming a projection before the sofite of a main arch or vault, in the same manner as a pilaster breaks before the face of a wall.
Arcade. (Fr.) A series of apertures or recesses with arched eeilings or sofites. But the word is often raguely and indefinitely used. Some so designate a single-arched aperture or enclosure, which is more properly a cault; others use it for the space covered by a coutinued vault or arch supported on piers or columns; and, besides these, other false meanings are giren to it instead of that which we have assigned. Behind the arcade is generally a walk or ambulatory, as in Covent Garden, where the term piazza is ignorantly applied to the walks under the arcade instead of to the whole place (Ital. piazza) or square.

The piers of arcades may be decorated witn columns, pilasters, niches, and apertures of different forms. The arches themselves are sometimes turned with rock-worked, and at other times with plain rustic, arch stones or voussoirs, or with a moulded archivolt, springing from an impost or platband; and sometimes, though a practice not to be recommended, from columns. The keystones are generally curved in the form of a console, or sculptured with some derice. Scamozzi made the size of his piers less, and varied his imposts or archivolts, in proportion to the delicacy of the orders he employed; but Vignola made his piers always of the same proportion.
Arcade. In mediæral architecture, an ornamental dressing to a wall, consisting of colonnettes supporting moulded arches. Sometimes they stand sufficiently forward to admit of a passage behind them.
Arce. In ancient Roman architecture, the gutters of the cavedium; arca signifying a beam of wood with a groore or channel in it.
Arcella. (Lat.) In mediæval architecture, a cheese room.
Авсн. A mechanical arrangement of blocks of any hard material disposed in the line of some curve, and supporting one another by their mutual pressure. The areh itself is furmed of coussoirs or arch stones cut in the shape of a truncated medge, the uppermost whereof is called the keystone. The scams or planes, in which two adjaceut voussoirs are united, are called the joints. The solid extremities on or against which the arch rests are called the abutments. The lower or under line of each arch-stone is called the intrudos, and the superior or upper line the extrados. The distance between the piers or abutments is the span of the arch, and that from the level line of the springing to the intrados its height, or rersed sine. The forms of arches employed in the different styles and periods of architecture will be found described under the several heads.
Architect. (Gr. Apxos and $\tau \epsilon \kappa \tau \omega \nu$, chief of the works.) A person competent to design and superintend the execution of any building. The knowledge he ought to possess forms the subject of this work; whatever more he may acquire will be for the adrantage of his employers; and when we say that the whole of the elements which this work contains should be well known and understood by him, we mean it as a minimum of his qualifications. To this we may add, that with the possessions indicated, devotedness, faithfulness, and integrity towards his employer, with kindness and urbanity to those whose lot it is to execute his projects, not however without resolution to check the dishoncsty of a builder, should he mect with such, will tend to insure a brilliant and happy career in his profession.
Architecture. The art of building according to certain proportions and rules determined and regulated by nature and taste.
Architraye. (Gr. Apxeiv to govern, and Lat. Trabs, a beam.) The lower of the three
principal members of the entablature of an Order, being. as its name imports, the chief leam employed in it, and resting immediately on the columns. It is called in Grecian architecture, Epistylium, from $\in \pi 1$, upon, and $\sigma \tau v \lambda o s$, a column. The height of the architrave raried in the different Orders, as also in different examples of the same Order.
Ancmitrave Cornice. An entablature consisting of an architrave and cornice only, without the interposition of a frieze. It is never used with columns or pilasters, unless through want of height. It is, however, allowable.
Arcuitrate of a Door or Window. A collection of members and mouldings round either, used for the decoration of the aperture. The upper part, or lintel, is called tho traverse, and the sides the jambs. See Antepagmenta.
Archivolt. (Lat. Areus volutus.) The ornamental band of mouldings round the voussoirs, or arch-stones of an arch, which terminates horizontally upon the impost. It is deeorated, as to the members, analogously with the architrave, which, in areades, it may be said to represent. It differs in the different Orders.
Archivoltum. In mediæval architecture, an arehed receptacle for filth. A cesspool or common sewer.
Arch Mouldings. The series of mouldings forming the decoration of an arch as used in medieval architecture. The illustration of the Early English period, is from St. Mary's Church, Lincoln.
Archway. An aperture in a building corered with a vanlt. Usually an arched passage or gate wide enough for carriages to pass.
Arcus Ecclesie. In medixval architecture, the arch dividing the nare of the church from the choir or chancel,
Alicus Presbyterit. In mediæval arehitectare, the arch over the tribune marking the boundaries of its recess.
Arcus Toralis. In medireval arehitecture, the lattico separating the choir from the nave in a basilica.
Area. In Architecture, a small court or place, often sunk below the geneal surface of the ground, before windows in the basement story. It is also used to denute a small count or yard, even when level with the gronnd.
Area. In Geometry, the superficial content of any figure.

Hig. 1313. The "area" of every building shall be deemed to be the superficies of a horizontal section of such building made at the point of its greater surface, including the external walls and such portion of the party walls as beloug to the building, but excluding any attached building the height of which does not exceed the height of the ground story. Metropolitan Building Act, 1855.
Arena. The central space in a Roman amphitheatre, wherein the gladiators fought.
Armoury. An apartment destined for the reception of instruments of war.
Arovade. Embattled; a junction of several lines forming indentations like the upward boundary of an embattled wall, except that the middle of every raised part is terminated by a convex arch, which arch does not extend to the length of that part.
Alrmére Voussure. A secondary arch. An arch placed within an opening to form a larger one, and sometimes serving as a sort of discharging arch.
Arris (probably abbreriated from the Ital. a risega, at the projection, or from the Sax. apifan, to rise). The intersection or line on which two surfaces of a body forming an exterior angle meet each other. It is a term much used by all workmen concerned in building, as the arris of a stone, of a piece of wood, or any other body. Though, in common language, the edre of a body implies the same as arris, yct. in building, the word edge is restrained to those two surfaces of a rectangular parallelopipedal body ou which the length and thickness may be measured, as in boards, planks, doors, shutters, and other framed joinery.
Arris Fillet. A slight piece of timber of a triangular section, used in raising the slates against chimney shafts, or against a wall that euts obliquely across the roof, and in forming gutters at the upper ends and sides of those kinds of skylights of which the planes erincide with those of the roof. When the arris fillet is used to raise the slates, at the eaves of a building, it is then called the caves' board, caves' lath, or eaves catch.
Arris Gutter. A wooden gutter of this V form fixed to the eaves of a building.
Arsenal. A public establishment for the deposition of arms and warlike stores.
Artificer. (Lat. Ars and Facio.) A person who works with his hands in the manufacture of anything. He is a person of intellectual acquirements, independent of mere operition by hand, which place him above the artisan, whose knowlodge is limited to the general rules of his trade.
Abtificial Stone. A material produced hy the use of cement and other substances, sueh as Austin's artifieial stone, which is not burnt.

Asarotum. In ancient architecture, a spectes of painted parement used by the Romans before the invention of Mosaic work.
Ashlar or Ashlfr. (Ital. Asciare, to chip.) Common or frec-stones as brought from the quarry of different lengths and thicknesses.

Also the facing given to squared stones on the front of a building. When the work is smoothed or rubbed so as to take cut the marks of the tools by which the stones were cut, it is called plain ashlar. Tooled ashlar is understood to be that of which the surface is wronght in a regular manner, like parallel flutes, and placed perpendicularly in the building. But wrien the surfaces of the stones are cut with a broad tool without care or regularity, the work is said to be random-tooled. When wrought with a narrow tool, it is said to be chiselled or hoasted, and when the surface is cut with a very narrow tool, the ashlar is said to be pointed. When the stones project from the joints, the ashlar is said to be rusticked, in which the faces may have a smooth or broken surface. In superior work, neither pointed, chiselled, nor random-tooled work are employed. In some parts of the country herring-bone ashlar and herring-bone random-tooled asblar are used.
Ashlaring. In carpentry, the short upright quartering fixed in garrets about two fect six inches or three feet high from the floor, being between the rafters and the floor, in order to cut off the acute angle formed by the rafters. The upright quarterings seen in some open timber roofs between the inner wall plate and the rafters, is also so called.
Aspect. (Lat. Aspicio.) The quarter of the hearens which the front of a building faces. Thus a front to the north is said to have a north aspect.
Asphalte. A bituminous substance found in various places. When used for floors or roadways, it is either poured on in a liquid state, forming when set a hard substance, impervious to damp; or it is placed on the ground in powder, in a hot state, and pressad down ly hot iron rammers.
Assemblage. The joining or uniting several pieces together, or the union of them when so joined. Carpenters and joiners have many modes of accomplishing this, as by framing, mortise and tenon, dovetailing, \&c.
Astemblage of the Orders. The placing of columns upon one another in the several ranges.
Assyrian Architecture. Little more is known of the buildings of Assyria and Babylonia than the thick walls forming halls and chambers lined with carvings, and having carved stone pavements. The roofing is supposed to have been formed with wood pillars supporting the framework of the roof, the spaces between the pillars allowing the entry of light and of fresh air.
Astragal. (Gr. A σ poayados, a die or huckle bone.) A small moulding of a semicireular profile. Some have said that the French call it talon, and the Italiuns tondino; but this a mistake, for the term is properly applied only to the ring separating the cafital from the column. The astragal is occasionaliy cut into representations of beads and berries. A similar sort of moulding, thongh not developed in its profile as is the astragal, is used to separate the faces of the architrave.
Astilar. A design made without the introduction of columns or pilasters is termed an astylar composition.
Athinson's Cement. A quick-setting cement similar to Parker's or Roman cement, formerly oltained from nodules found near Whitby in Yorkshire.
Atlantes or Atlantides. Figures of males used instead of columns for the support of an entablature. In some modern works figures resembling Persians have been introducel, and hence that name has been applied to them. Caryatides.
Atriem. In ancient Roman architecture, a court surrounded by porticoes in the interior part of Poman houses. According to Scaliger it is derived from the Greek altpoos exposed to the air. By some it has been considered the same apartment as the cestbule, and Aulus Gellius intimates that in his time the two words were confounded.
Attic, or Attic Order. It is employed to decorate the facade of a story of small heipht, terminating the upper part of a building; and it doubtless derives its name from 11 s resemblance in proportional height and concealed roof to some of the buildings of Greece. Pliny thus describes it after speaking of the other orders: "Preter has sunt quæ rocantur Atticæ columnæ quaternis angulis pari laterum intervallo." We, however, find no examples of square pillars in the remains of ancient art, though almost all the triumphal arches exhibit specimens of pilastral attics, having no capitals stre the cornice breaking round them. In modern architecture the proportions of the attic order have never been subject to fixed rules, and their good effect is entirely dopendent on the taste and feeling of the architect. The attic is usually decorated with antre or small pilasters.
Artic Base. The base of a column consisting of an upper and lower torus, a scotia and fillets between them. It is thus descrilsel by Vitruvins, "It must be so subdivided that the upper part be one-thirl of the thickuess of the column, and that the remainler bo
assigned for the height of the plinth. Excluding the plinth, divide the heigit into four p.uts, one of which is to be giren to the upper torus; then divide the remaining three parts into two equal parts; one will be the height of the lower torus, and the other the height of the scotia with its fillets. See figure s. r. Base of a Column.
Attic Srory. A term frequently applied to the upper story of a house when the ceiling is square with the sides, to distinguish it from garrets.
Atributes, in decorative architecture, are certain symbols given to figures, or disposed as ornaments on a building, to indicate a distinguishing character; as a lyre, bow, or arrow to Apollo ; a club to Hercules; a trident to Neptune ; a spear to Pallas, \&c. For attributes given to Saints and others in medireval architecture, see Symbols.
Avgerr. A carpenter's and joiner's tool for boring large holes. It consists of a wonden handle terminated at the bottom with stcel. The more modern augers are pointed and sharpened like a centre-bit, the extremity of one of the edges being made to cut the word clean at the circumference, and the other to cut and take away the core, the whole length of the radius.
Adla. (Lat.) In ancient Roman architecture, a court or hall.
Aumbrye. A recess in the wall of the chancel for the preservation of the sacred ressels. Aviary. (Lat. Avis.) A house or apartment, set apart for keeping and breeding birds.
Awning. (Fr. Aulne.) Any covering intended as a screen from the sun, or protection from the rain.
Axr. (Sax. Eax.) A tool with a long wooden handle and a cutting edge situate in a plane passing longitudiaally through the handle. It is used for hewing timber ly cutting it vertically, the edge being employed in forming horizontal surfaces. The axe differs from the joiner's hatchet by being much larger, and by its being used with only one hand. Axes of rarious s.zes, depending upon the quality of the material, are used by stone-cutters and bricklayers. The adze is used to horizontal surfacos.
Axis. The spindle or centre of any rotative motion. In a sphere a line passing through the centre is the axis.

B

Bibylonian Architecture. See Assyrian Arcintecture.
Back. The side opposite to the face or breast of any piece of architecture. In a recess upon a quadrangular plane, the face is that surface which has the two adjacent planes, called the sides, elbows, or gables. When a piece of timber is fixed in a horizontal or in an inclined position, the upper side is called the back, and the lower the breast. Thus the upper side of the handrail of a staircase is properly called the back. The same is to be understood with regard to the curved ribs of ceilings and the rafters of a roof, whose upper edges are al ways called the backs.
Back of a Ciumney. The recessed face of it towards the apartment, \&c. Sce Chimney. Back of a Iland-rail. The upper side of it.
Back of a IHip or other Rafter. The upper side or sides of it in the sloping plane of the side of the ruof.
Back Fillet. The return to the face of the wall, of the margin of a projecting quoin ; as in a plain architrave to an opening.
Back Lining of a Sasif Frame. That parallel to the pulley piece and next to the jamb on either side.
Back Puttying. The cleaning off of the putty in the rebate of a sash bar on the inside after the glass has been put in, and the outer putty left a while to harden.
Back Shetters. Those folds of a shutter which do not appear on the face being folded within the bexing.
Back of a Stone. The side opposite to the face. It is generally rough.
Back of a Wall. The inner face of it.
Back of a Winnow. The piece of wooden framing in the space between the lower part of the sash frame and the floor of the apartments, and bounded at its extremitics right and left by the elbows of the window. The number of panels into which it is framed is dependent on what may be necessary for carrying out the design; it rarely, howerer, eonsists of more than one.
Backing of a Rafter or Rim. The formation of the upper or outer surface of either in such a manner as to range with the edges of the rafters ur ribs on either side of it. The formation of the inner edges of the ribs for a lath and plaster ceiling is sometimes called backing, but improperly, since contrary to the true meaning of the word.
Backing of a Wall. The filling in and building which forms the inner face of the work. In this sense it is opposed to facing, which is the outside of the wall. In stone walls the backing is unfortunately too often mere ruble, while the face is ashlar.
Badigeon. A mixture of plaster and freestone sifted and ground together, used by statuarics to repair defects in their work. The joiner applies this term to a mixture of sawduet and strong glue, with which be fills up the defects of the wood after it has been
wrought. A mixture for the same purpose is made of whiting and glue, and sometimes with putty and chalk. When the first of these is used it is allowed to remaia until quite hard, after which it may be submitted to the operation of planing and smoothing. Without this precaution it may shrink below the surface of the work.
Bagnio. (It.) An Italian term for a bath, usually applied by the English to an establishment having conveniences for bathing, sweating, and otherwise cleansing the body: and now called a Turkish bath. The term is applied by the Turks to the prisons where their slaves are confinel, in which it is customary to have baths.
Baguette. (Fr.) A small moulding of the astragal species. It is occasionally cut with pearls, ribands, laurels, \&c. According to M. Le Clere, the baguette is called a chaplet when ornaments are cut on it.
Batley. See Castle.
Bakehouse. An apartment prorided with kneading troughs and an oven for baking.
Balaneia. A Greek term for a bith.
Balcony. (It. Balcone.) A projection from the external wall of a house, borne by columns or consoles, and usually placed before windows or openings, and protected on the extremity of the projection by a railing of balusters or ironwork. In the French theatre, the bahon is a circular row of seats projecting beyond the tier of boxes immediately abore the pit.
Bindachino. (It.) A canopy supported by colimns, generally placed over an altar in Roman Catholic places of worship. Sometimes the baldachino is suspended from the roof, as in the church of St. Sulpice at Paris. It succeeded to the ancient ciborium, which was a cupola supported on four columns, still to be seen in many of the churches of Rome. The merit at its invention seems to belong to Bernini. That erected by hims in St. Peter's is 128 feet high, and being of bronze weighs near 90 tons. It was built by order of the Pope Barberini, from the robbery of the Pantheon, and occasioned the litter observation, "Quod non fecerint Barbari fecerunt Barberini." The decision of the Arches Court against issuing a faculty for the ertetion of a baldachino in St. Barnabas Church, Pimlico, is given in the journals of the early part of 1874.
Balection or Bolfenion Mouldings. Mouldings which project beyond the surface of a piece of framing.
Balistraria. An opening, sometimes in the form of a cross, in the wall of a Gothic castle or turret, through which archers could diselarge their missiles without heing perceived. They were usually in the form of a cross, the vertical slit or opening being made longer than the horizontal one which crossed it in the middle. Sometimes the ends were formed circular insteal of square.
Baliks or Baulks. (Dutch.) Pieces of whole fir, being the trunks of small trees of that species, rough-squared for building purposes. In the metropolis the torm is applied to short lengths, from eighteen to iwenty-five feet, mostly under ten inches square, tapering considerably, and with the angles sole't that the piece is not exactly square.
Ball flower. An ornament resembling a ball inclosed in a flower of a circular shape, the three petals of which from a cup round it. It is usually placed in a hollow moulding, and is considered one of the chief characteristics of the Decorated period of Gothicarchitecture.
Ballium. In the architecture of the middle ages, the open space or court of a fortified castle. This has acquired

iit.g. 1366. in English the appellation Bailey; thus Ft. Peter"s in the Bailey at Oxford. and the Old Bailey in London, are so namel from their ancient connection with the sites of castles.
Balloon. A round ball or globe placed on a column or pier, by way of erowning it. The same name is given to the balls on the tops of cathedrals, as at ist. Peter's, which is 8 feet in diameter, and at St. Paul's in London.
Baleteus. (Lat. a girdle.) The wide step in theatres and amphitheatres, which afforded a passage round them without disturbance to the sitters. No one sat on it; it served merely as a landing-place. In the Greek and Roman theatres, every eighth step was a balteus. Vitruvius gives the rules. in the third chapter of his fiftli book, for properly setting it out.

The term balteus is also used by Vitruvius to denote the strap which seems to bind up the conssinet, cushion, or pillow of the Ionic capital.
Baluster. A species of small column belonging to a balustrade. See Columelle. This term is also used to denote the lateral part of the rolute of the Ionic capital. Vitruvius calls it pulvinata, on account of its resemblance to a pillow.

Baluster Shaft. A small shaft or pillar in the shape of a baluster dividing an opening, seen in the window of belfries in the Komanesque towersin England. They havo generally an elliptical or pear-shaped entasis or swelling in the lower half. The illustration is from Wykham Church, Derbyshire.
Balustrade. A parapet or protecting fence furmed of balusters, sometimes employed for real use, and sometimes merely for ornament.
Band. (Fr. Bande.) A flat member or moulding, smaller than a fascia. The face of a band is in a rertical plane, as is also that of the fascia; the word, however, is applied to narrow members somewhat wider than fillets; and the word fascia to broader members. The cinctures sometimes used roncd the shafts of rusticked columns are called bands. In this case the column is called a banded column.
Bandages. A term applied to the rings or chains of iron inserted in the corners of a stone wall, or round the circumference of a tower, at the springing of a dome, \&c., which act as a tie on the walls to keep them together.
Bandelet, or Bandlet. A small land encompassing

Fig. 136i. Wykham Cburch, Derbyshire. a column like a ring.
Banding Plane. A plane intender for cutting out groores and inlaying striugs and bands in straight and circular work.
Banister. A vulgar term for baluster, which see.
Banker. A bench, on which masons prepare, cut, and square their work.
Banquet. (Fr.) The footway of a brilge when raised above the carriage-way.
Baptistery. (Gr. Bantisw.) A detached building, or a portion of a church, destined for administration of the rite of baptism. It has been contended by some that the baptistery was at first placed in the interior vestibules of the early churches, as are in many churches the baptismal fonts. This, howerer, was not the case. The baptistery was quite separate from the basilica, and even placed at some distance from it. Until the end of the sixth century, it was, beyond doubt, a distinct building; but after that period the font gradually found its way into the restibule of the church, and the practice became general, except in a few churches, as at Florence, Ravenna, of S. Giovanni Laterano at Rome, and in those of all the episcopal cities of Tuscany, and some few other places. The Roman example is perhaps the most ancient remaining. There was a baptistery at Constantinople, of such dimensious that, on one occasion, it held a very numerous council. That at Florence is nearly ninety feet in diameter, octagonal, and covered with a dome. It is enclosed by the celebrated bronzo doors by Lorenzi Ghiberti. which Michel Angelo said were fit to be the gates of Paradise. The baptistery of Pisa, dosigned by Dioti Salvi, was finished about 1160 . The plan is octagonal, about 129 feet in diameter and 179 feet high.
Bar. In a court of justice, an enclosure, three or four feet high, in which the counsel hare their places to plead causes. The same name is giren to the enclosure, or rather bar before it, at which prisoners are placed to take their trials for criminal offences.
Bar. A piece of wood or iron used for fastening doors, window shutters, \&c.
Bar or Barred door. The term used in Scotland fur a ledged door.
Bar of a Sash. The light pieces of wood or metal which divide a window sash into compartments for the glass. The angle bars of a sash are those standing at the intersection of two vertical planes.
Bar Iron. Iron made of the cast metal after it comes from the furnace. The sows and pigs, as the shapes of the metal are technically termed, pass through the forges and chaufery, where, having undergone five successive heats, they are formed into bars.
Bar-posts. Posts driven into the ground for forming the sides of a field gate. They are mortisel, to admit of horizontal bars being put in or taken out at pleasure.
Bar-tracery. A name given to the completely developed form of Gothic tracery, from its fancied resemblance to bars of iron wrought and bent into the various forms exhibited.
Barbacan. A watch-tower for descrying an euemy; also the outer work or defence of a castle, or the fort at the entrance of a bridge. Apertures in the walls of a fortress, fcr firing through upon the enemy, are sometimes called by this name. The etymology of the word has been variously assigned to French, It:lian, Spanish, Saxon, and Arabian origin. See Castle.
Barae Boards. The inclined projecting boards placed at the gable of a building, and liding the horizontal timbers of a roof. They are frequently carved with trefoils, quatrefoils, flowers, and other ornaments and foliage.

Barge Couples. (Sax. Bjan to bar.) Two beams mortised and tenoned together for the purpose of increasing the strength of a building.
Bargie Course. The part of the tiling which projects over the gable of a building, and which is made good below with mortar.
Barn. (Sax. Benn.) A covered farm-building for laying upgrain, hay, straw, \&c. The situation of a barn should be dry and elevated. It is usually placed on the north or uorth-east side of a farm-yard. The barns, outhouses, and stables should not be far distant from each other. They are most frequently constructed with wooden framing of quarters, \&c., and covered with weather boarding; sometimes, in superior farms, they are built of stone and brick. The roofs are usually thatched or tiled, as the materials for the purpose are at hand; but as the grain should of all things be kept dry, to prevent it from moulding, the gable ends should be constructed of brick, and apertures left in the walls for the free admission of air. The bays, as they are called, are formed by two pairs of lolding doors, exactly opposite to each other, and, as well as for thrashing, afford the convenien ef carrying in and out a cart or waggon load of corn in sheaves, or any sort of bulky produce. The doors in question miust be of the same breadth as the threshing-floor, to affor light to the threshers, and air for winnowing the grain. It is a good practice to make an extensive penthouse over the great doors sufficiently large to cover a load of corn or hay, in case of the weather not permitting it to le immediately housed.
Barrack. A building erected for the housing of soldiers.
Barrack-room. A name given to a long room in some houses in the country, and intended for the sleeping place of a number of men who may hare to stay a night or two, the house not affording a room for each.
Barrel Drain. One in the form of a hollow cylinder.
Barrel Vault. A cylindrical vault, presenting a uniform concave surface not groined or ribbed.
Barrow. In Celtic antiquities a sepulchral mound, and called ty different names according to the shape of it.
Bartisan. A turret on the summit of a tower, castle, or house, whereon was generally hoisted the standard or flag preper to the place.

Fig. 1368. Temple on the Ilyssus. Fig. 1369. 'Iemple at Priene.

Fig. 1370. Early English Period.

Barycee or Barycephalet. (Gr. Bapus. low or flat, and $\kappa є \phi \alpha \lambda \eta$, head.) The Greek name for an aræustyle temple.
Base. (Gr. Baбcs.) In geometry, the lower part of a figure or body. The base of a solid is the surface on which it rests.
base of a Column. The pirt between the shaft and the parement or pedestal, if there be any to the order. Each column of the Romans has its particular base, for which see Fig. 1371. For the Attic base, see also under that word. The Grecian Doric orler did not have a base, the shaft standing on the pavement. Two examples of Greek Ionic bases are given in Figs. 1368 and 1369.

Tuscan, Doric, Ionic, Corinthian, Composite, Attic, Fig. 1371. Roman bases. Bases are also used to the shafts in me:izval architecture, of which Fig. 1370 illustrates an example.
Base of a Room. The lower projecting part. It consists of two parts, the lower of which is a plain board adioining the floor, called the plinth, and the upper of one or more mouldings, which, taken collectively, are called the base-mouldings. In better sort of work the plinth is tongued into a groove in the floor, by which means the diminution of breadth created by the shrinking never causes any aperture or chasm between its under edge and the floor, and the upper edge of the plinth is rebated upon the base. Bedrooms, lobbies, passages, and staircases are often finished without a diado
and surbase, and indeed the fashion has exten led the practice to rooms of the higher class, as drawing-rooms, \&c.
Basement. The lowest story of a building, whether above or below the ground.
Basil. Among carpenters and joiners the angle to which the edge of an iron tool is ground so as to bring it to a cutting edge. If the angle be very thin the tool will cut more freely, but the more obtuse it is the stronger and fitter it is for service.
Basilica. (Gr. Ba \quad b $\lambda \epsilon \boldsymbol{s}$, a king.) Properly the palace of a king; but it afterwards came to signify an apartment usually provided in the houses of persons of importance, where assemblies were held for dispensing justice. Thus in the magnifieent villa of the Gordian family on the Via Prenestina there were three basilice, each more than one hundred feet lung. A basilica was generally attached to every forum, for the summary adjustment of the disputes that arose. It was surrounded in most cases with shops and other conveniences for traders. The difference between the Grecian and Roman basilica is given by Vitruvius in the fifth chapter of his first book.

The term basilica is also applied by Palladio to those buiddings in the cities of Italy similar in use to our town halls.
Basis. See Base.
Basket. A term often applied to the vase of the Corinthian capital, with its foljage, \&c. Basket-handle Arch. (Fr. Anse de panier.) An arch whose vertical height is less than half its horizontal diameter, such as an elliptic arch.
Bass. A trough containing mortar, used in tiling, \&c.
Basse Cour. (Fr.) A court destined in a house of importance for the stables, coachhouses, and servants attached to that part of the establishment. In country houses it is often used to denote the yard appropriated to the cattle, fowls, \&ic.
Basso-relieyo. See Reifevo.
Bastard Stucco or Trowblled Stucco. Fine stuff mixed with sand to form a surface in plastering to receive puint.
Bat. In bricklayer's work, a piece of a brick less than one half of its length.
Batardead. (Fr.) The same as Coffer Dam.
Batement Light. A window having upright sides, but the bottom of which is not level. Batir. (From the Saxon, Bad,) An apartment or series of apartments for bathing. Among the ancients the public baths were of amazing extent and magnificence, and contained a vast number of apartments. These extraordinary monuments of Roman magnificence seem to have had their origin in many respects from the gymnasia of the Greeks, both being instituted for the exercise and health of the public. The word therme (hot baths) was by the Romans used to denominate the establishment, although it contained in the same building both hot and cold baths. In later times a house was incomplete unless provided with hot and cold baths; and, indeed, it was not till the time of Augustus that public baths assumed the grandeur which their remains indicate. Different authors reckon nearly eight hundred baths in Rome, of which the most celelrated were those of Agrippa, Antoninus, Caracalla. Diocletian, Domitian, Nero, and Titus. It appears from good authority, thit the baths of Diocletian conld accommodate no less than eight hundred bathers. These stupendous edifices are indicative of the magnificence, no less than the lluxury, of th.e age in which they were erected. The parements were mosaic, the ceilings vaulted and richly decorated, and the walls encrusted with the rarest marbles. From these edifices many of the most valuable examples of Greek sculpture have been restored to the world; and it was from their recesses that the restorers of the art drew their knowledge, and that Rafaelle learnt to decorate the walls of the Vatican. See p. 96.
Batten. (Probably from the Fr. Baton, from its small width.) A scantling or piece of stuff from two to six inches broad, and from five-eightlis of an inch to two iuches thick. Battens are used in the boarding of floors and also upon walls, in order to receive the laths upon which the plaster is laid. See Boarded Floor.
Battening. The fixing of battens to walls for the reception of the laths on which the plaster is to be laid. It a'so signifies tho battens in the state of being fixed for that purpise. The battens employed are usually about two inches brad and three-fourths of an inch thick; the thicknesses, however, may be varied according to the distances that the several fixed points are from each other. Their distance in the clear is from eleven inches to une foot. To fix the battens, equidistant bond timbers were formorly built in the wall: the wall is now plugged at equal distances, and the plugs cut off fiush with its surface, or the batiens are spiked into the wall. The plugs are generally placed twelve or fourteen inches from centre to centre in the length of the batten. Battens upon external walls, the ceiling and bridging joists of a naked floor, also the common joists for supporting the loarding of a floor, aro fixed at the samo distance, viz. from eleven to twelve inches in the clear. When battens are fixed against flues, iron holdfasts are of course employed instead of bond-timbers or p? igs. When they are attached to a wall they are generally fixed in rertical lines, and when fixed to the surface of a stone or brick vault, whose intrados is generated by a plane revolring about an axis, they ought to be placed in plames tending to the axis; as in this position they hare only to be fixed
in straight lines, in case the intradus is straight towarls the axis, which will be the case when it is a portion of a cone or cylinder; and when the intrados is curved towards the axis they will bend the easiest possible. Great care should be taken to regulate the fans of the battens, so as to be as nearly as possible equidistant from the intended surface of the plaster. Every piece of masonry or brickwork, if not thoroughly dry, should be battened for lath and plaster, particularly if execnted in a wet season. When windows are boarded, and the walls of the room not sufficiently thick to contain the shutters, the surface of the plastering is brought out so as to give the architrave a proper projection, and quarterings are used for supporting the lath and plaster in lieu of battens. This is also practised when the lureast of a chimney projects into the room, in order to cover the recesses and make the whole side flush, or all in the same surface with the breast.
Batter. (Probably from the Fr. Battre.) A term used by artificers to signify that a body does not stand upright, but inclines from a person standing before it; when, on the contrary, it leans towards a person, its inclination is described by saying it overhangs.
Battlament. An indented parapet on the top of a wall. They were first used in ancient fortifications, and subsequently applied to other buildings as mere ornament. Their outline is generally a conjunction of straight lines at right angles to each other, each indentation having two interior right angles, and each raised part two exterior right angles. The solid parts are called merlons and cops; the interrals crenelfs or embrasures. In Irish architecture a battlement occurs very frequently, the merlons being graduated in height.
Battle-embattled. A term applied to the top of a wall which has a donble row of battlements formed by a conjunction of straight lines at right angles to each other, both embrasures and rising parts leing double, the lower part of every embrasure less than the upper, and therefore the lower part of each riser broider than the upper.
Bathe. See Balk.
Baulk Roofing. Roofing in which the framing is constructed of baulk timber.
Bay. (Dutch, Baye.) The dirision of a barn or other building, generally from fifteen to twenty feet in length or breadth. For the bay of a nave or choir of a medixual church, see Nate.
Biy. In plasterer's work, the space between the screeds prepared for regulating and working the floating rule. See Screed.
Bay of Joists. The joisting between two linding joists, or between two girders when binding joists are not usec?.
Bar of Roofing. Thesmall rafters and their supporting purlins bet weentwo principal rafters.
Bay Window. A window placed in a bay or projection in a room. It is also called an oriel window. See Bow Window.
Bay of a Window. See Day.
Batar. A species of mart or exchange for the sale of divers artjcles of merchandize. The word is Arabic, signifying the sale or exchange of goods or merchavdize. Some of the Eastern bazars are open, like tho market-places of Europe, and scrve for the same uses, more particularly for the sale of more bulky and less valuable commodities. Others are corered with lofty ceilings and even domes, which aro pierced for the admission of light. It is in these that the jewellers, goldsmiths, and other dealers in rich wares have their shops. The bazar or meidan of Ispahan is one of the finest in Persia.
Beacon Turret. The turret of an angle of a tower, sometimes in Border counties used for containing the apparatus for kindling at the shortest possible notice the need-fire.
Brad. (Sax. Beade.) A moulding whose section is circular. It is frequently used on the edge of each fascia of an architrave, as also in the mouldings of doors, shatters, skirtings, jmposts, and cornices. When the bead is flush with the surface it is called a quirk bead, and when raised it is called a cock-head.
Bead and lbutt Work. Framing in which the panels are flush, laving beads stuck or run upon the two edges; the grain of the wood being in the direction of them.
Bead, Butt, and Square Work. Framing with bead and butt on one side, and square on the other, chiefly used in doors. This sort of framing is put torcther square, and the lead is stuck on the edges of the rising side of the pannel.
Bfal and Flusif Work. A piece of framed work with beats rim on each edgo of the included panrel.
Beat, Fidsh, and Square Wolk. Framing with beal and flush on one side, and square on the other, used chiefly in doors.
Bead and Quirk. A bead stuck on the edge of a piece of stuff, flush with its surface, with only one quirk or without being returned on the other surface. Bead and double quirk occurs when the bead appears on the face and edge of a piece of stuff in the same manner, thus forming a double quirk.
Beak. A little pendent fillet left on the edge of the larmier, forming a canal behind to prevent the water from running down the lower bed of the cornice. The beak is sometimes formed by a groove or channel recessed on the soffite of the larmior upwards.

Beak-head. An ornament often used in Norman mouldings, resembling the beak of a biril. Beak Moulding. See Bird's-beak Moulding.
Beam. (Sax. Beam, a tie.) A piece of timber, or sometimes of metal, for supporting a weight, or counteracting two opposite and equal forces, either drawing it or compressing it in the direction of its length. A beam employed as a lintel supports a weight; if employed as a tie beam, it is drawn or extended; if as a collar beam, it is compressed. The word is usually employed with some other word used adjectively or in opposition, which word implies the use, situation, or form of the beam; as tie beam, ham. ner beam, dragon beam, straining beam, camber beam, binding beam, girding bcam, truss beam, summer beam, \&e. Some of these are, however, used simply, as collar for collar beam, lintel for lintel beam, \&e. That which is now called the collar beam was by old writers called uind beam, and strut or strutting beam. A beam is lengthened either by building it in thicknesses, or by iapping or splicing the ends upon each other and bolting them through, which is called searfing. See Collar Beam.
bfam Compasses. An instrument for describing large circles, and made either of wood or metal with sliding sockets, carrying steel or pencil points. It is used only when the circle to be described is beyond the reach of common compasses.
Beim Filling. The briekwork or masonry brought up from the level of the under to the upper sides of the beims. It is also used to denote the filling up of the space from the top of the wall plate between the rafters tothe under side of the slating, board, or other covering.
Bearer. That whieh supports any body in its place, as a wall, a post, a strut, \&ce. In gutters they are the short pieces of timber which support the boarding.
Bearing. The distance or length which the ends of a pieee of timber lie upon or are inserted into the wails or piers; thus joists are usually carried into the walls at least nine inches, or are said to have a nine-inch bearing. Lintels of an aperture should in like manner have a similar bearing. the object being to prevent any sagging of the piece acting on the inner horizontal quoins of the wall.
Bearing of a Timber. The unsupported distance between its points of support without any intervening assistance. A piece of timber having any number of supports, one being placed at each extremity, will have as many bearings, wanting one, as there are supports. Thus a piece of timber extended lengthwise, as a joist orer two rooms, will have three supports and two bearings, the bearers being the two outside walls and the partition in the midst between them.
Bearing Wall or Partiticn. A wall or partition built from the solid for the purpose of supporting another wall or partition, either in the same or in a transverse direction. When the latter is built in the same direction as the supporting wall, it is said to have a solid bearing; but when built in a transverse direction, or unsupported throughont, its whole length is said to have a false bearing, or as many false bearings are there are intervals below the wall or partition.
Beater. Animplement used by plasterers and bricklayers for beating, and thereby tempering or incorporating together the lime, sand, and other ingredients of a cement or plaster.
Beaufet. See Beffet.
Bed. (Sax. Beb.) The horizontal surface on which the stones, bricks, or other maters in building lie. The under surface of a stone or brick is called its ander bid, and the upper surface its upper bed. In general language the beds of a stone are the surfaces where the stones or bricks meet. It is almost needless to inculeate the necessity of every stone being worked quite straight, and not dished or hollowed out, which masons are very apt to do for the purpose of making a fine joint. Stones thus worked are very liable to flush and break off at the angles.
Bed Chamber. The apartment destined to the reception of a bed. Its finishings of course depend on the rank of the party who is to occupy it.
Bed-mouldings. The mouldings under a projection, as the corona of a cornice.
Bed of a Slate. The under side of a slate, or that part in contiguity with the boarding or rafters.
Beds of a Srone, in cylindrical vaulting, are the two surfaces intersecting the intrados of the vault in lines parallel to the axis of the cylinder. In conic vaulting, where the axis is horizontal, they are those two surfaces which, if produced, would intersect the axis of the cone. In arching the beds are called summerings by the workmen.
Bedinge of Timbers. The placing them properly in mortar on the walls.
Beech. One of the forest trees, but not often used in building.
Beetle. (Siax. Bẏrel.) A large wooden hammer or mallet with one, two, or three handles for as many persons. With it piles, stakes, wedges, \&c., are driven.
Belection Moulding. See Balection Moulding.
Belfry. The upper part of the steeple of a church for the reception of the bells. It is the camnanile of the Italians, though amongst them a building often altogether unconnected with the body of the church. It is sometimes used more especially is respect of the timber framing by which the bells are supported.

Bexi. The naked rase or corbeille of the Corinthian and Composite capitals reund which the foliage and volutes are arranged. Its horizontal section is everywhere a circle.
Bell Roof. One whereof the rertical section, perpendicular to the wall or to its springing line, is a curve of contrary flexure, being concare at the bottom and conrex at the top. It is often called an ogee roof from its form.
Bell Torret. A small tower formed specially for holding a bell. A "bell-gable" is a gable-like wall perforated to hold a bell.
Ber.f. In masonry, a course of stones projecting from the naked, either moulded, plain, fluted, or enriched with pateras at regular intervals.
Bflefedere (It.) A raised turret or a lantern for the enjoyment of a propect ; also a small edifice in gardens, net uncommon ins.France and Italy.
Benatcra. The holy water ressel placed at the entrance of churches, generally on the right hand of the outer, or inner, porch door, or both. The sprinkler, originally made of the herb hyssop, is called aspergillum.
Lench. A horizontal surface or table about two feet eight inches high, on which joiners prepare their work.
Bexch Hook. A pin affixed to a bench for preventing the stuff in working from sliding ont of its place.
Bent Timber Roof. A roof of large span, in which the principals are formed of timber bent to the required form, and secured by bolts or bands.
Beton. (Fr.) Concrete made according to the French system.
Bevel. (Lat. Bivium.) An instrument used by artificers, one leg whereof is frequently curved according to the sweep of an arch or rault. It is movealle upon a pivet or $\mathrm{c}-$ ntre, se as to render it capable of being set to any angle. The make and use of it are much the same as those of the common square and miter, except that these are fixed, the first at an angle of ninety degrees and the second at forty-five; whereas the bevel being moreable, it may in some measure supply the office of both, and yet supply the deficiency of both, which is, indeed, its principal use, inasmuch as it serres to set off or transfer angles either greater or less than ninety or forty-fire.

Any angle that is not square is called a bevol angle, whether it be more obtuse or more acnte than a right angle; but if it be one half as much as a right angle, riz. furty-five degrees, the worknan calls it a mitcr. They have also a term half miter, which is an angle one quarter of a quadrant or square, that is, an angle of twenty-two degrees and a half.
Bier. A portable carriage for the dead. Hearse or Herce.
Billet Moulding. (Fr. Billet.) A monlding used in Norman architecture, in string courses and the archivolts of openings. It con-
sists of short, small, cylindrical pieces, two or three inches long, placed in hollow mouldings at intervals equal to about the length of the billet. See fig. 1372.
Binding Joists. Those beams in a floor which, in a transverse direction, support the bridging joists abore, and the ceiling joists below. When they

Fig. 1372. Billet Moulding. are placed parallel to that side of a room on
which the chimney stands. the extreme one on that side ought never to be placed close to the breast, but at a distance equal to the breadth of the slab, in order to allow for the throwing over the brick trimmer to support the hearth.
Binding Rafters. The same as purlins.
Binn for Wine. The open subdivision in a cellar for the reception of wine in bettles. The average dameter allowed for green bottles is $3 \cdot 56$ inches. Thus a binn $6 \mathrm{ft} .2 \frac{3}{4} \mathrm{in}$. long will take twenty-cne bottles. If they are laid in double tiers the depth should le 32 inches.
Birn's-efak Moulding. A moulding which in section forms an ovole or ogee with or without a fillet under it, followed by a hollow. It is usual in Greek work, especially in the cap of the anta of the Doric order.
Bird's-eye Maple Wood. The wood of the acer macrophyllum, or broad-leaved maple. It is scarcely inferior in grain to the finest satin wood. It is largely used in cabinet work.
Bird's-eye Perspective. A representation of any place or building taken from a great height. The lines can only be found geometrically. It differs from the ordinary perspective representations only in that the horizontal line is very much above the object to be shown.
Bird's Modtin. An interior angle cut on the end of a piece of timber, for the purposo of obtaining a firm rest upon the exterior angle of another piece.
Bir. An instrument for bering holes in wood or any other substance, so constructed as to admit of being inserted or taken out of as spring. The handle is divided into fire
parts, all in the same plane; the middle and the two extreme parts being parallel. The two extreme parts are in the same straight line, one of them having a brass end with a socket for containing the bit, which, when fixed, falls into the same straight line with the other end of the stock; the further end has a knob attached, so as to remain stationary, while all the other parts of the apparatus may be turned round by nicans of the projecting part of the handle.

There are various kinds of bits; as shell bit, used for boring wood, and having an interior cylindric concavity for containing the core; cintre bit, used to form a large ylindric hoie or excavation; countersink bit, for widening the upper part of a hole in irvod or iron, to take in the head of a screw or pin, so that it may not appear above the surface of the wood; rimer bit, for widening a hole; and taper shell bit, used also fur the last-named purpose.
Bitumen. A mineral pitch used in former ages instead of mortar. The bricks of the walis of Babylon are said to have been cemented together with it.
Blade. (Sax. Blæz.) A name sometimes given to the principal rafter of a roof.
Blade of a Chiskl. The iron or steel part of it as distinguished from the wooden handle.
Blade of \triangle Saw. The thin steel part on the edge of which the teeth are cut. The chief properties of a good saw are, that it should be stiff and yet bend equally into a regular curre, well tempered, equally thick oid the cutting edge, and thinner towards the back edge.
Blank Door. A door either shut to prevent a passage, or one placed in the back of a recess, where there is no entrance, haring, nevertheless, the appearance of a real door.
Blank Window. One which has the appearance of a real window, but is merely formed in the recess of the wall. When it is necessary to introluce blank windows for the sake of uniformity, it is much better to build the apertures like the other and real windows, provided no flues or funnels interfere; and instead of representing the sashes by painting, real sashes should be introduced with the panes of glass painted black on the back.
Blind. The ordinary white linen material for draw-down blinds, now also made buff, blue, or red in colour. Also quadrangular forms of wood or metal, covered with an opaque substance, stretched between the framing, so as to cover either the whole or part of the sashes of a window. They are used for the purpose of diminishing the intense effects of the sun's rays, or of preventing persons from seeing into the in terior of an apartment. Helioscene. Venetian.
Block (Teutonic) of Wood. A piece of wood cut into some prescribed form fur a particular purpose.
Block of Stone or Marble. A piece rough from the quarry before it has received any form from the hand of the workman.
Blocking or Blocking Course. In masonry, a course of stones placed on the top of a cornice and forming the crown of a wall.
Blockings. Small pieces of wood fitted in and glued to the interior angle of two boards, or other pieces, tor the purpose of giring additional strength to the joint. In gluing up columns the staves are glued up successively and strengthened by blockings ; as also the risers and treads of stairs and all other joints that demand more strength than their own joints afford. Blockings are always concealed from the eye.
Board. (Sax. Bono.) A picce of timber of undefined length, more than four inches in breadth, and not more than two inches and a half in thickness. When boards are of a trapezoidal section, that is, thinner on one edge than the other, they are called featheredged boards. Boards when wider than nine inches are called planks. The fir boards called deal (because they are dealt or divided out in thicknesses) are generally imported into England ready sawn, being thus prepared cheaper by saw mills abroad than they can be here. Fir boards of this sort, ne inch and a quarter thick, are called whole deal, and those a full half inch thick, slit deal. See Batten.
Board for Valleys or Valley Board. A board fixed on the ralley rafters, or a piece for the leaden gutter of the valley to rest on.
Boarded Floor. A floor covered with floor-boards. The laying of floors usually commences when the windows are in and the plaster dry. The boards should be planed on their best face and set up to season, till the natural sap is expelled. They are then to be planed smooth, shot, aud squared on the edge. The opposite edges are brought to a breadth by drawing, with a flooring gange, a line on the face parallel to the other edge. After this they are gauged to a thickne:s, and rebated down on the back to the lines drawn by the gauge. The next thing is to try whether the joists be level, and if not, either the boards must be cut on the under side to meet the inequality, or the joists must be furred up by pieces to bring the boards, when laid, to a level. The boardsemployed in flooring are either battens or deals of greater breadth. The quality of battens. is divided into three sorts. The best is that free from knots, shakes, sap wood, or cross-
grained stuff, well matched, and selected with the greatest care. The second best in that in which only small but sound knots are permitted, but it is to be free from sapwond and shakes. The most inferior kind is that left from the selection of the other two.
Boarding Joist. In naked floori.gs the joist to which the boards are to be fixed.
Boarding for Lead Flats ani) Gutters. That which immediately receives the lend, rarely less than one inch and an eighth, or one inch and a quarter thick. It is usually laid merely with rough joints.
Boarding for Pugging or Dliafening, also called Suend Buarding. Short boards disposed trausversely between the joists of floors to hold some sulstanee intended to prevent sound being transmitted from one story to another. These boards are supported by fillets fixed to the sides of the joists, about three-quarters of an inch thick and an inch wide. The substance, often plaster, placed between them to prevent the transmission of the sound, is called the pugging.
boarding for Slatino. That nailud to the rafters, in place of laths, for the reception of the slates, usually $\frac{3}{4}$ to $\frac{7}{8}$ of an inch in thickness; the sides commonly rough; the edges either rough, shot, ploughed and tongued, or rebated and sometimes sprung, so as to prevent the rain from passing through the joints. The boarding for slating may be ©) arranged as to diminish the lateral pressure or thrust against the walls by disposing, the boards diagonally on the rafters. On the lower edge of the boarding is fixed tho curs loard, as also against all walls either at right angles to or forming an aente angle with the ridge, or a right or oltuse angle with the wall plate. The eaves board is tor raising the lower ends of the luwer row of slates that form the eaves. Those placed against walls are for raising the slates to make the water run off from the wall. The barding for slates should be of yellow deal without sap.
Buarding for lining Walls. The boards used for this parpose are nsually from fiveeighths to three-quarters of an inch thick, and are ploughed and tongued together.
Boaster. Λ tool used by masons to make the surface of the work nearly smooth. It is two inches wide in the cutting part.
boasting in Masonry. The act of paring the stone with a broad chisel and mallet, but not in uniform lines.

In Carving, it is the rough cuttiug round the ornaments, to reduce them to their contours and profiles, before the incisions are made for forming the raffels or minuter parts. Seo Ashlar.
Body of a Niche. That part of it whose snperficies is vertical. If the lower part be cylindrical and the upper part spherical, the lower part is the body of the niche, and the upper part is termed the hend.
Body of a Room. That which forms the main part of the apartment, independent of any recesses on the ends or sides.
Body Range of a Groln. The wider of two vaults which intersect and form a groin.
Bolection Mollding. See Balection Mollding.
Bolster or Pillow. The baluster part of the Ionic capital on the return side. See Baluster.
Bolt. (Gr. Bo入ıs, a dart.) In joinery, a metal fastening for a door, and mored by the hand, eatching in a staple or notch which receires it. Bolts are of rarious sorts, of which plate spring and flush bolts are for fastening doors and windows.

This name is also giren to large cylindrical iron or other metal pins, having a round head at one end and a slit at the other. Through the slit a pin or forelock is passed, whereby the bar of a door, window shutter, or the like is made fast. These are usually ealled ronnd or window bolts.

The boit of a lock is the iron part that enters into a staple or jamb when the key is turned to fasten the door. Of these the two sorts are, one which shuts of itvelf when the door is shut to, called a spring lolt; the other, which is only acted upon by applying the key, is called the dormant bolt.

In earpentry, a bolt is usually a square or cylindrical piece of iron, with a knob at one end and a screrr at the other, passing through holes for its reception in two or more pieces of timber, for the purpose of fastening them together, by means of a mut serewed on the end opposite to the knob. The bolt of earpentry shonld be proportioned to the size and stress of the timbers it conneets.
Bolthi. See Boultine.
Bond. (Sax.) Generally the method of comnecting two or more bodies. Used in the plural number, it signifies the timbers disposed in the walls of a house, such as bond timb. rs, lintels, and wall plates. The term chain bond is sometimes applied to the bond timbers formerly placed in one or more tiers in the walls of each story of a building, and serving not only to tie the walls together during their settlement, but afterwarts for nailing the finishings thereto. These bond timbers are now not allowed to be used in bnildings in the metropolis.

In masonry or brickwork, is that disposition of stones or bricks which prevents
the rertical joints falling over one another. Heart boud is that bond which occurs when two stones being placed in a longitudinal position extending the exact thickness of the wall, another stone is put over the joints in the centre of the wall.
Bond Masonry. See Bound Masonry.
Bond Stones. Those whose longest horizontal direction is placed in the thickness of the work.
Boxetng, or Bunina. (Etym. doubtful.) The act of judging of, or making, a plane surface or line by the eye. It is also performed by joiners with two straight edges, by which it is seen whether the work is out of winding, that is, whether the surface be plane or twisted.
Booth. (British, Bwth.) A stall or standing in a fair or market. The term is also applied to any temporary structure for shade and shelter, as also for wooden buildings for itinerant players and pedlars.
Border. (Fr. Bord.) A piece of wood put round the upper odges of any thing, either for use or ornament. Such are the three pieces of wood, to which the term is more usually applied in architecture, which are mitred together round the slab of a chimney.
Boring. The art of perforating any solid. For wool, the various sorts of bits are described under Byt.
Boss. (Fr.) A projecting mass or prominency of material, to be afterwards cut or carred. It is placed at the intersection of the ribs in groined ranlting. The bosses in the later mediæval styles were beautifully carved with foliage and figures. See Orr.
Boss. Among bricklayers, a wooden vessel used by the labourers for the mortar used in tiling. It has an iron look, by which it hangs on the laths or on the rounds of a ladder.
Bossage (Fr.) Projecting stones laid rongh in building to be afterwards cut into mouldings or carved into ornaments. The term is also used to signify rustic work, which seems to adrance before the naked of a building, by reason of indentures or channels left at the joints. The cavities or indentures at the joints are sometimes berelled or chamfered, and sometimes circular.
Buodorr. A French term used in England to designate a room in a large mansion especially appropriated to the mistress of the house as her sitting-room.
Boolder Wales. Such as are built of round flints or pebbles laid in strong mortar. This construction is used where there is a beach cast up by the sea, or where there is an abundance of flints in the neighbourhood.
Bocltine or Boltel. A name sometimes given ly workmen to a convex moulding, such as an orolo. See l'owtrl.
Bound or Bonn Masoniry. That wherein the stones of each succeeding course are laid so that the joint which mounts and separates two stones always falls directly orer the middle of the stone below.
Bow. (Sax. Busen.) The part of any building which projects from a straight wall. It is sometimes circular and sometimes polygonal on the plan, or rather formed by two exterior vibtuse angles. Bows on polygonal plans are called canted bous.
Bow. Among draughtsmen, denotes a beam of wood or brass, with three long screws that direct a lath of wood or steel to an arch. It is used in drawing flat arches of large radius.
Bow Compasses. Instruments for describing small circles.
low Room. A room having a bow on one or more sides of it.
Bow Saw. One for cutting the thin edges of wood into curves.
Bow Window. A semicircular or polygonal projection from a building, and containing a window. The supports are either carried up from the ground, or in the case of an upper story, they are formed of projected suites of mouldings springing from a corbel. They are most frequently seen in the later medion val and the Italian styles.
Bowlers or Bolders. See Pavement.
Bowrel or Boltel. The medireval term for a plain moulding or shaft of a circular shape. See Boultinls.
Box. (Sax.) Generally, a case for holding anything.
Box for Mitering. A trough for cutting miters. It has three sides, and is open at the ends, with cuts on the rertical sides at angles of forty-five degrees with them.
loox \boldsymbol{f} a a Rib Saw. Two thin iron plates fixed to a handle, in one of which plates an opening is made for the reception of a wedgo, by which it is fixed to the saw.
Box of a Theatre. One of the subdivisions in the tiers round the circle.
Boxed Shutters. See Boxings of a Window.
Bixings of a Winnow. The cases opposite each other on each side of a window, into which the shutters are folded or fall back. The shutters of principal rooms are nsually in two divisions or halves, each subdivided into others, so that they may be receired within the boxings. The subdivisions are seldom more in number than three, and are so contrived that the subdivision whose face is risible, which is called the front shutter,
is of the exact breadth of the boxing, and also flush with it; the next, hidden in the boxing, is somewhat less in breadth than that last mentioned, and the third still less. Suppose, for instance, a wirdow four feet wide, standing in a two-brick or eighteen-inch wall; we may thus find the number of leaves each of the halves must hare, as follows :To the thickness of the wall add that of the plastering, say 2 inches, and we have 20 inches. Now the sash frame $=6$ inches in thickness, being added to the reveal or distance $=4 \frac{1}{2}$ inches of the sash frame from the face of the wall $=10 \frac{1}{2}$ inches, which, subtracted from 20, the thickness of the wall and plaster, leares $9 \frac{1}{2}$ inches. This will give three leaves, or subdirisions, and as it is usual to make the back faps, or those foldeu. within the boxings, less than the front shutter, whose face is visible and flush with ard of the exact breadth of the boxings, the arrangement may be as follows:-Front shutter $9 \frac{1}{2}$ inches, the next 8 inches, and the third $6 \frac{1}{2}$ inches; in all, 24 inches, the half of the opening of the window. It will be perceired that no allowance has been made for the shutters being rebated into each other, as is usually the case; and for this half an inch more must be allowed for the two rebates of the three leares, and one-eighth of an inch for the rebate at the meeting of the two principal divisions in the middle of the window, making, with the breadth of the three subdivisions, $24+\frac{5}{8}$; the flaps, therefore, may be thus disposel :-Front leaf $9 \frac{1}{2}$ inches, second leaf $8 \frac{1}{2}$ inches, and the third leaf $6 \frac{5}{8}$ inches; in all $24 \frac{5}{8}$ inches, being fully the width of each principal division. To find the depth to be given to the boxings, to the thickness of each of the leares add onesixteenth of an inch, and if there be a back lining add also the thickness of that. The second and third flaps are almost always thinner than the front leaf; thus, say front leaf $1 \frac{1}{2}$ inch, second leaf $1 \frac{1}{4}$ inch, and third leaf $1 \frac{1}{4}$ inch; to which add $\frac{3}{16}$ for the three leares, and the amount will stand thus: $-1 \frac{1}{2}+1 \frac{1}{4}+1 \frac{1}{4}+\frac{3}{16}=4 \frac{3}{16}$ inches for the depth of the boxings. If the walls are only a brick and a half thick, or the window very wide, the architrave is made to project before the face of the plaster, for the purpose of obtaining width for the boxings, or the plaster is brought out from the internal face of the wall by means of battening.
Brace. (Fr. Embrasser.) An inclined piece of timber used in trussed partitions and in framed ruo?s, in order to form a triangle, by which the assemblage of pieces composing the framing are stiffened. When a brace is used to support a rafter, it is called a strut. When braces are used in roofs and in partitions, they should be disposed in pairs, and introduced in opposite directions. See Angle Brace.
Bracket. (Lat. Brachium.) A supporting piece for a shelf. When the shelf is broad the brackets are small trusses, which consist of a vertical picce, a horizontal piece, and a strut; but when narrow the brackets are generally solid pieces of board, usually finished with an ogee figure on their outer side.
Bracket for Statr. It is sometimes used under the ends of wooden steps next to the well-hole, for the sake of ornament only, for it gives only the appearance of a support.
Bbacketing to a Cornice. The wooden ribs nailed to the ceiling, joists, and battening for supporting the cornices of rooms when too large for security, by the mere dependence on the adhesive power of plaster to the ceiling. It consists of vertical ribs whose rough outline is that of the cornice, and to which the laths are nailed for sustaining the plaster in which the mouldings are run. The bracketing for coves is only an enlargement of the scale which occurs in ordinary cornices, the operation being that of obtaining a set of ribs to which the laths may be nailed for the reception of the plastering. The ribs in question are usually cut out of deals, whose thickness must necessarily vary with the weight of plaster they have to support.
Brad. (Etym. uncertain.) A thin nail used in joinery without the spreading head which other nails have, the projection of the head being only on one side. There are various sorts of brads, such as joiners' brads fur hard woods; tatten brads, for softer woods; and bill, or quarter brads, used for a hastily laid floor. When brads are used they are generally driven below the surface of the wood through the medium of a punch, and the hole is filled up with putty to prevent an appearance of the nailing.
Branches. The ribs of a Guthie varlt, rising upwards from the tops of the pillars to the apex. They appear to support the ceiling or vault.
Brandering. Covering the underside of joists with battens about an inch square and from twelve to fourteen inches apart, to which to nail laths, in order to secure a better key for the plastering of the ceiling.
Brandrith. A fence or rail round the opening of a well.
Brass. A metal much used in building. It is an alloy of copper and zinc, whose proportions vary according to the required colour. Four parts of copper and one of zine form a grood brass. The common process for making it is by heating copper plates in a mixture of native oxide of zinc, or calamine and charcoal.
Brass. A sepulchral metal plate. generally sunk into a grave-stone; sometimes with a mere inseription. lut very frequently with effigics, armorial bearings, and other devices engraved upon it.

Brattishing. An ornamental eresting. The carved open work orer a simine.
Brazing. The union of pieces of copper by heating and hammering them. See Solsering and Welding.
Breadth. The greatest extension of a body at right angles to its length.
Brbak. The recess or projection of any part within or beyond the general face of the work, in either case it is to be considered a break.
Break in. In carpentry, it is the cutting or breaking a hole in brickwork with the ripping chisel for the purpose of inserting timber, or to receire plugs, the end of a beam, or the like.
Bueaking down. Sawing a baulk of timber into boards.
Breaking Jonnt. In masonry or brickwork, it is the placing a stone or brick over the course below, in such a manner thet the joint above shall not fall rertically immediately above those below it.
Breast of a Chimney. The projecting or facing portion of a chimney front towards a room which projects into it, or which, from other construction, may not have a break. It is, in fact, the wall carried up over the front of a fireplace, whether projecting or not. See Chimney.
Bresst of a Window. The masonry or brickwork forming the back of the recess or parapet under the window sill.
Breeze. Small ashes and cinclers used instead of coal in the burning of bricks.
Bresstmmer or Breast Summer. That is, a summer or beam placed breastwise for the support of a superineumbent wall, performing in fact the office of a lintel. It is principally used over shop windows to carry the upper part of the front and supported by iron or timber posts, though sometimes by stouc. It the interior of a building the pieces into which the girders are framed are often called summers.
Brewhouse. An establishment for the manufactory of malt liquors. A hrewhouse is generally provided as an appendage to dwelling-houses in the country, for brewng the beer used by the family.
Brick. (Dutch, Bricke.) A sort of fictitious stone, composed of an argillaceous earth, tempered and formed in moulds, dried in the sun, and finally burnt to a proper degree of hardness in a clamp or kiln. The method pursued by the ancients in making unburnt bricks is described by Vitrurius, book ii., chap. iii. That anthor describes the three different sorts in use:-Didoron ($\delta, \delta \omega \rho o \nu$), being one foot long and hallf a foot wide; the other two sorts are called Pentadoron and Tetradoron. By the word Doron the Greeks mean a palm, because the word $\delta \omega \rho o \nu$ signifies a gift which can be borne in the palm of the hand. That sort, therefore, which is five palms each way is called Pentadoron; that of four palms Tetradoron. The former of these two sorts is used in public buildings; the latter in private. Each sort has half-bricks made to suit it. Towarls the decline of the Republic, the Romans made great use of bricks as a building material. According to Pliny, those most in use were a foot and a half long, and a foot broal. This agrees neirly with the Roman bricks used in England, which are generally found to be about serenteen inches in length, by eleven inches in breadth. Ancient bricks are generally very thin, being often no more than one inch and a half thick, and are often called tiles. From the article in the Encye. Méthodique, it appears that in the researches made among the buildings at Rome, bricks of the following sizes were found. The least were $7 \frac{1}{2}$ inches (French) square and $1 \frac{1}{2}$ inch thick; the medium one $16 \frac{1}{2}$ inches square and from 18 to 20 lines in thickness. The larger ones were 22 inches square by 21 or 20 lines thick. The smaller ones were nsed to face walls of rubble work; and for making better bond with the wall, they were cut diagonally into two triangles, the longer side being placed on the outside, aud the point towards the interior of the work. To make the tie more effectual between the rubble and the facing, there were placed at intervals of four feet in height, one or two courses of large square bricks. The larger bricks were also used fur the arches of openings to discharge the superincumbent weight.
Bricklayek's Work. The art of bricklaying.
Brickwork. Any work performed with bricks as the solid material.
Bridge. (Sax. Bujse.) A structure for the purpose of eonnecting the opposite lrinks of a river, gorge, valley, \&c., by means of certain materials, forming a roadway from one side to the other. It may be made of stone, brick, iron, timber, suspended chains or ropes, or the roadway may be obtained by means of boats moored in the stream. In the bridges of the aucients the arches were semicircular ; in those erected during the nediæral period the arches were obviously made psinted, and generally of small pans, although there are a few good exceptions; while in those of modern date they liave been segmental or semi-elliptical. The last two forms are rery much more suitable, because of the freer passage for the stream, especially in the case of fluods. We would refer the student to the brick railway bridge at Maidenhead, over the river Thames, carried out in 1835 , by Sir I. Brunel, as a daring effort of work; the two largest arches, elliptical in form, are each 128 feet sp.nn, with a rise of 24 feet 3 in .
only; to the elliptical stone Lridge over the Arno at Florence, 1567-70, by Bart. Ammannato, for its acknowledged beauty, the largest arch of which is 95 feet 10 in ., with a rise of 15 feet 2 in .; and to the Grosvenor bridge at Chester, over the Dee, executed 1825-27, by Thomas Harrison, architect, for its design and good construction, as well as for beng the largest span of any bridge yet erected in Great Britain, and almost in the world, consisting of only one segmental arch of 200 feet span, with a rise of 42 feer. In the brick bridge at Pavia, over the Ticino, which is of an early period, and also a covered bridge (a practice useless perhaps, but not nocummon in Italy and other parts of the Continent), the arches, 70 feet in span, are Pointed; a form rery farourable in every respect and most especially so in rivers subject to sudden inundations, but unfarourable certainly in cases where the span of the arch (here having a rise of 64 feet) is required to have a large width in proportion to its height.

There are two rules respecting bridges which ought not to be neglected : the principal one is, that their direction must, if possible, be at right angles to the stream ; the other that they must be placed in the line of the streets which they connect on the rpposite lanks of the stream. From a want of regard to these points many unfortunate bhunders have been committed, which a prodigal expenditure will net afterwards rectify. The position of a bridge should be neither in a narrow part nor in one liable to swell with tides or floods, because the contraction of the waterway increases the depth and velocity of the current, and may thus endanger the navigation as well as the bridge itself.

It is the common practice to construct a bridge with an odd pnmier of arches, for the reason, among many others, that the stream being noually strongest in the middle, egress is there better prorided by a central areh. If the bridge be not perfectly horizontal, symmetry results by the sides rising towards the middle, and the roadway may be made one continued curre. When the roadway of a bridge is horizontal, the salving of centering for the arches is considerable, becanse two sets of centres will perhaps be sufficient for turning all the arches. If, however, the bridge be higher in the uiddle than at the extremities, the arches on each side of that in the centre must diminish similarly, so that they may be respectively symmetrical on each side of the middle. From this disposition beanty necessarily results, and the centering for one of the sides equally suits the other. A bridge should be constructed with as few arches as possible, for the purpose of allowing a free passage for the water, as well as for the vessels; if the bridge can be constructed with a single arch not more should be allowed. The piers should be of sufficient solidity to resist the thrust of the arch, independent of the counter thrust from the other arches; in which case the centering may be struck without the impendent danger of overturning the pier left naked. The piers should also be spread on their bases as much as possible, and should diminish gradually upwards from their foundations. In brick bridges of small plan, an inverted arch is often formed between the piers, to form a support, as well as to prevent any ill effects to the piers or abutments from a scour.

The method usially employed for forming the foundations is by means of coffer-damis. When, however, the ground is loose, this method cannct so well be used; and then caissons hare been employcd. On this system the piers of old Westminster and old Blackfriars bridges were constructed; both bridges have heen reluilt. It is now universally admitted to be defective and inefficient, principally from the liability of the piers being undermined by increased scour. Waterloo, Southwark, and London bridges were all built with the coffer-dam, laying the foundation dry. At new Westminster bridge another plan was adopted, a voiding the expense of coffer-dams. The principal bearing is on elm piles, cut off below low water. These are surruunded by iron piles with cast ioon plates driven between the piles, thus forming a complete casing which surrounds and includes the elm bearing piles, and the interstices are filled in with concrete, makirg the whole solid. The next system of foundation is that of iron cylinders open at hottom and sunk into the bed of the river by excavating first inside ly divers; and afterwards, when watertight etrata are reached, by pumping out and working dry; the interior, when a sufficient depth has been reached, being filled solid with concrete or brickwirk. Some other examples of bridges are noticed in this work.
Bhidge Board, otherwise called Notch Board. A board into which the ends of the steps of wooden stairs are fastened.
Bridge-over. A term used when several parallel timbers occur, and another piece is fixed tra"sversely over them; such piece is then said to bridge-over the parallel pieces. Thus in framed roofing, the common rafters bridge-over the purlins; so, in framed flooring, the upper joists, to which the flooring is fixed, bridge-over the beams or bindingjoist, and for this reason they are called bridging-joists.

Bridge Stone. A stone laid from the pavement to the entrance door of a honse over a sunk area and supported by an areh.
Bridged Gutrer. One made with boards supported by bearers and covered above with lead or zinc.
Bridging or Bridging Pieces, also calle Strutting or Straining Pieces. Pieces placed between two opposite beams to prevent their nearer approach, as rafters, braces, struts, \&c. When a strutting-piece also serves as a sill, it is called a straining sill.
Bridging Floors. Those in which bridging-joists are employed.
Bribging Joists. Those which are sustained by transverse beams below, called binding joists ; also those joists which are nailed or fixed to the flooring-boards.
Bridging to Floors. In some parts of England and in Ireland this term is applied to what is usually called Herring-bone Strutting, or Herring boning between the joists of a tloor.
Bringing-Formard. Priming and painting new work mixed with old, so that the whole shall have the same appearance when finished.
Bringing-Up or Carrying-Up. A term used by wolkmen to denote building-up. Thus bringing-up a wall four feet means buildingit up.
Broach. An old English term for a spire, and still so employed. Sometimes it is used to desiguate a spire rising from the tower without any parapet, as in the Early English period.
Broached Work. See Droved and Broached.
Broad Stone. The same as Free Stune.
Broken-joint Flooring. The sume as floor-boar!!s laid folding. See Floor.
Brosteum. (Gr.) In ancient Greek Architecture, that part of the theatre under tho floor in which brazen ressels with stones in them were placed to imitate the sound of thunder.
Brozze. A compnund metal applied to rarious useful and ornamental purposes. The composition consists of 6 to 12 parts of tin and 100 parts of copper. This alloy is heavier and more tenacious than copper; it is also much more fusible, and less liable to be altered by exposure to the air.
Budaf. A small pocket used by tilers for holding the nails in lathing for tiling.
Buffet. (Fr.) A cabinet or cuploard fur plate, g'ass, or china. Some years back it was the practice to make these small recesses very ornamental, in the form of niches, and left open in the front to display the contents. At present, when used, they are generally closed with a door.
Behl Work. Formerly called Boule work from the name of its inventor. It consists of one or more metals inlaid upon a gruund of tortoise shell, alone or with coloured woods, or of these last-named materials inlaid upon grounds of metal. The process is as follows:-Two pieces of veneer are placed together, with paper between them, each being glued to the paper. Upon the surface of the upper one is placed the drawing of the pattern to be cut, and then the outlines of it are cut through by means of a very fine watch-spring saw. The parts are then separated, that which is taken from tho darker wood is let into tho lighter wood and vice versâ. See R ignier Work.
Bullder. A person who contracts for performing the whole of the different artificers' works in a buildirg.
Bullding. Used as a sulstantive is the mass of materials shaped into an edifice. As a participle, it is the constructing and raising an edifice suited to the purposes for which it is erected; the knowledge requisite fur the design and construction of buildings being the sulject of this work, in which it is treated under its rarious heads. A "new building" is the re-erecting of any building pulled down to or below the ground floor, or of any frame luilding of which only the framework is left down to the ground floor, or the conversion into a dwelling house of any building not originally constructed for human habitation, or the conversion into more than one dwelling house of a building originally constructed as one dwelling house only. Public Health Act, 1875.
Berlding Act. An Act passed for regulating the construc ion and use of buildings in any town or city.
Bullding of Beams. The same as Ecarfing. A "built-beam" as a beam or girder formed of stveral pieces of timber fitted and bolted or strapped together, in order to obtain one of a greater strength than usually obtainable in one balk of timber.
Bulker. A term used in Lincolnshire to signify a beam or rafter.
Buicen Nails. Such as have round heads with short shanks turned and lacquered. They are principally used in the hangings of rooms.
Bull's Eye. Any small circular aperture for the admission of light or air. The name is also applied to the knob in a pane of common glass, left in its manufacture, which was formerly used for cheapness, and lately as a sort of ornament or for the sake of obscurity.
Buli's Nose. The external or other angle of a polygon, of of any two lines meeting at an obtuse angle.

Bullock Sheds. Houses or sheds for feeding bullocks, in which the main points to be observed are good ventilation, facility in feeding and cleaning the animals, perfect drainage, and a good aspect. They ought not to be less than nineteen feet wide.
Bund. A Persian term for a dam or dyke.
Bundle Pillar. In Gothic architecture, a column consisting of a number of small pillars round its circumference.
Bungalow. The Hindoo name for a thatched house; or generally for a house.
Botment. The same as Abutment, which see.
Butment Cheers. The two solid sides of a mortise. The thickness of each chcek is usually equal to the thickness of the mortise, but it happens that circumstacees arise to vary this thickness.
Butt-end of a piece of Timber. That which was nearest the ront of a tree.
Buttery. A store-room for provisions; it should be on the north side of a building.
Bott-hinges or Butts. Those employed in the hanging of doors, shutters, casements, \&c. They are placed on the edges with the knuckle projecting on the side in which the ciosure is to open, and the other edges stopping against a small piece of wond left in the thiekness of the clusure so as to keep the arris entire. Workmen generally sink the thickness of the hinges flush with the surface of the edge of the closure, and the tail part one-half into the j$\lrcorner \mathrm{mb}$. Stop butt-hinges permit the closure to open orly to a right angle, without breaking the hinges; rising butt-hinges, which are those that turn upon a screw, canse the door to rise as it opens, so as to clear the carpet in the apartment; slip off hutt-hinges are nsed where a door or window-blind is required to be taken off occasionally
Burting Jonst. That formed by the surfaces of two pieces of wood, whereof one is perpendicular to the fibres, and the other in their direction. or making an oblique angle with them, as, for example, the joints made by the struts and braces with the truss posts.
Button A small piece of wood or metal, made to turn al out a centre, for fastening a door, drawer, or any other kind of closure. The centre is generally formed by a serew.
Buttress. (Fr. Aboutir, to lie out.) A mass of brickwork or masonry to support the side of a wall of great height, or pressed on the opposite side by a bank of earth or body of water. Buttresses are employed against the piers of Gothic buildings to resist the thrust of the vanlting. See Arc Boutant, or flying buttress. The buttress called the pillared buttress is formed by vertical planes attached to the walls themselves. These sometimes form the upright terminations of flying buttresses.
Byzantine. The style of architecture and art established under the Eastern division of the Roman Empire. It, contains more of the Greek element than Romanesque Art, which was developed in the Western dirision.

Cabin. (Brit, Chabin.) A term applied to the huts and cottages of ponr prople and to those of persons in a sarage state of life.
Cabinet. (Fr.) A retired room in an edifice sft apart fur writing, study, or the preservation of anything curious or valuable. The term is also applied to an apartment at the end of a gallery in which pictures are hung, or smill pieces of sculpture, medals, bronzes, and other curiosities are arranged.
Cable Moulding. A convex circular moulding used in Norman Arehitpeture, as in fig. 1373.
Cabling. A moulding of a convex circular sec ion, rising from the back or concare surface of a flute of a column, so that its most prominent part may be in the same continued circular surface as the fillet on each side of the flute. Thus the surface of a flute is that of a coneave cylinder, and that of the calle is the surface of a convex cylinder: with the axes of the cylinders parallel to each other. The cable seems to represent a rope or staff laid in the flute, at the

Fig. 1373. lower part of which it is placed about one third of the way up. Cabling of flutes was nut frequently used in the works of antiquity. At the arch of Constantine the cables rise to about one thir.I of the height of the shaft. In modern times an occasional abuse has been practised of calling without fluting, as in the elurch della Sapienza at Rome.
Caer. A term in British antiquity, which, like the Saxon term Chister, denotes a castle, and is generally prefixed to the names of places fortified by the Romans.
Cage. In carpentry, is an outer work of timber surrounding another. Thus the cage of a stair is the wooden inclosure that encircles it.

Cairn. A pyramidal pile of stones heaped up by the ancient races, for monumental or memorial purposes.
Caisson. (Fir.) A large and strong chest of timber, water-tight, used in large and rapid rivers for building the pier of a bridge. The bottom consists of a grating of timber, contrived in such a manner that the sides, when necessary, may be detached from it. The ground under the int-nded pier is first levellcd by divers, or other means, or piles driven in whereon the caisson may lodge; the caisson is then launched and floated into its proper position, and the pier built therein; it sinks, and the work is continued as high as the level of the water, or nearly so. The sides are then detached. The objection to the system is that a perfectly level bed cannot be obtained, and the caisson rests on limited portions; increased weight and time may no doubt produce a more even bearing, but settlement is involved to some extent. Old Westminster and old Blackfriars Bridges were so constructed. The tonnage of each of the caissons used at Westminster Bridge was equal to that of a forty-gum ship.
Caisson. A sunken panel in ceilings, vaults, and cupu'as. See Cofrer.
Calcameous Earth. A species of earth which becomes friable by burning, and is afterwards reduced to an impalpable powder by mixing it with water. It also effervesces with acids. It is frequently met with in a friable or compact state in the form of chalk.
Caldaricm. (Lat.) In ancient architecture a close vaulted room, in which persons were brought intn a state of profuse perspiration, by hot water or heatel air. It was one of the apartments attached to ancient baths.
Calppen. A place for nourishing ealves. It is generally a small apartment within the cowhouse; but the practice is not to be recommended, as it keeps the cow in a restless and agitated state, and prevents her from feeding well and giving that quantity of milk she would otherwise furnish.
Calirer. (Spanish.) The greatest extent or diameter of a round body.
Caliber Compasses. Those made with bent legs for taking the diameter of a convex or concave body in any part. See Mould.
Caliducts. (Lat.) Pipes or channels disposed along the walls of honses and apartments. They were used by the ancients to convey heat to the remote parts of the house from one common furnace.
Caliper. See Caliber.
Calotte. (Fr.) A concavity in the form of a cup or niche, lathed and plastered, serring to diminish the height of a chapel, alcove, or cabinet, which otherwise would appear two ligh for the breadth.
(amarosis. (Gr.) An elevation terminated with an arched or vaulted head.
Camber. (Gr.) An arch on the top of an aperture oz on the top of a beam. Hence camber windows.
Camber Beam. That which forms a curved line on cach side from the middle of its length. All beams should, to some degree, if possible, be cambered; but the cambered beam is used in flats and church platforms, wherein, after being covered with boards, these are corered with lead, for the purpose of discharging the rain-water.
Camerated. (Gr.) The same as arched.
Cames. Small slender rods of cast lead in glazing, twelre or fourteen inches long. of which when drawn separately through a species of rice, forming a groove on each side of the lead, the glaziers make the patterns for receiring the glass of casements, and for stained gla:s windows.
Camp Ceiling. A ceiling whose form is convex inwardly.
Campanile. (It.) A tower for the recepticn of bells, usually; in Italy, separated from the church. Many of the campaniles of Italy are lotty and magnificent structures That at Cremona is much celebrated, being 295 feet high. It consists 0° a square tower, rising 262 feet, furmounted by two octagonal open stories, ornamented with columns; a conical shaft and cross terminate the clevation. The campanile of Florthee, from the designs of Gioton, claims admiration for its richness a ad workmanship. It is 267 feet high, and 45 feet square. The most remarkable of the campaniles in the country mentioned is that at Pisa, commonly called the "Leaning Tower." It is cylindrical in general form, and surrounded by eight stories of columns, placed over one another, each having its entablature. The height is about 150 fect to the platform, whence a plumb line lowered falls on the leaning side nearly 13 feet beyond the base of the building.
Camp-sheeting or Camp-siot. The sill or cap of a wharf wall.
Canal. (It. Canale.) A duct for the eonveyance of a fluid; thus the canal of an aqueduct is the part through which the water flows:
Canal. A term sometimes used fur the flutings of a column or pilaster. The canal of the volute is the spiral channel, or sinking on its face, commencing at the eye, and following in the revolutions of the rolute. The canal of the larmier is the ehamel or
groove suuk on its soffite to throw off the rain, and prevent it from running down the bed mould of the cornice.
Cancelis. (Lat.) Latticed windows, or those made with cross bars of wood or iron. The balusters or rails whieh close in the bar of a court of justice, and those round the altar of a church, are also so ealled; hence the word chancel.
Candelabrum. (Lat. Candela.) A stand or support on which the ancients placed a lamp. Candelabra varied in form, and were highly decorated with the stems and leaves of plants, parts of animals, flowers, and the like. The etymology of the word would seem to assimilate the candelabrum to our candlestiek; it is, however, certain that the word candela was but a lamp, of which the candelabrum was the support. In the works of Piranesi some of the finest specimens are to be found. The most curious, hewever, as respects form, use, and workmanship, are those excarated at Herculaneum and Pompeii. They are all of bronze, slender in their proportions, and perfectly portable as they rarely in lieight exceed five feet. On none of the candelabra hitherto found is there any appearance of a socket or pipe at top, from which an inference as to the use of candles could be made.
Canephorde. (Gr. Kajŋфopos, bearing a basket.) Figures of young persons, of either sex, bearing on their heads baskets containing materials for sacrifice. They are frequently confounded with caryatides, from their resemblance in point of attitude and the modern abuse of their application.
Cainopy. (Gr. Kavळтєוov.) An ornamented covering over a seat of state; and in its extended signification any covering which affords protection from above. It is also the label or projecting roof that surrounds the arches and heids of Gothic niches.
Cant. An external angle or quoin of a building. Among carpenters it is used as a rerb, to signify the turning of a piece of timber which has been brought in the wrong way for their work.
Cant Moulding. One with one cr more bevelled, instead of curved, surfaces. The cant moulding was used at an early period of the art.
Cantalever or Cantilever. (Prubably from Canterii labrum, the lip of the rafter.) Blocks inserted into the wall of a building for supporting a balcony, the upper members of a cornice, or the eaves of a house, and the like. They answer the same purpose as modillions, mutules, blocks, brackets, \&c., although not so regularly applied. They are, in modern use, not unfrequently made of timber or cast iron, and project considerably, as to the roof of the church of St. Paul, Covent Garden, which projects one quarter of the height of the column.
Canted Colemn. One whose horizontal sections are polygos. In the works of the ancients it is rarely met with. The examples immediately occurring to us are the columns of the porticc, of Philip of Macedon and of the temple at Cora.
Cantharus. A fountain or basin of water in the centre of the atrium before the ancient churches, wherein persons washed their faces and hands before they entered. Among the Romans the cantharus of a fountain was the part out of which the water issued.
Canthers or Canterit. In ancient carpentry the common rafters of a roof, whose ends, say some, the mutules of the Doric order represent.
Canting. The cutting away of a part of an angular body at one of its angles, so that its horizontal section becomes thereby the portion of a polygon of a greater number of sides whose edges are parallel from the interscetion of the adjoining planes.
Cantoned Bulding. One whose angles are deeorated with columns, pilasters, rustic quoins, or anything projecting beyond the naked of the wall.
Canvass. The names and sizes of the usual canvasses prepared for the use of painters (the width of the frame is a matter of taste) are as follows:-

Head size	24 by 20 inches	Half-length size . . 50 by 40 inches
Three quarters do.	20 by 2.5	Bishop's half-length do. . 56 by 44
Kit-cat do.	36 by 28	Whole length do. . . $9 \pm$ by 58
Small half-length do.	44 by 34	Bishop's whole length do. 106 by 70

Cap. A term used in joinery, signifying the uppermost of an assemblage of parts. It is also applied to the capital of a column, the cornice of a door, the capping or uppermost member of the surbase of a room. the handrail of a stairease, \&c.
Capital. (Lat. Caput.) The head or uppermost member of any part of a building; but generally applied in a restricted sense to that of a column. The capital of the pilaster or anta of the Greeks was very different to that of the eolumns in front of it. The ace companying illustrations exhibit the sort of caps used in mediæval architceture. Fig. 1374 is Norman; fiqs. 1375 and 1376 Early English; and fig. 1377 Late Decorated.
Captral, angular. The modern Ionic capital, whose four sides are all alike, showing the volute placed at an angle of 135° on all the faces.
Capital of a Balcster. The crowning or head mouldings of it.

Capital of a Lantern. The corering by which it is terminated; it may bo of a bell form, that of a dome, spire, or other regular figure.

Fig. 1374. St. Peter's, Northampton.

Fig. 1375. York.

Fig. 1376. North Doorway, Westminster.

Fig. 1372. York Minster.

Capital of a Trijiypir. The square band which projects over it. In the Roman Doric it has a greater projection than in the Grecian.
Cafirol. The Acropolis of ancient Rome.
Capreoll. (Lat.) In ancient carpentry, the joints or braces of a trussed roof.
Caracol. A term sometimes applied to a stairease in the form of a helix or spiral.
Caravanserai. Among the Eastern nations a large public building or inn appropriated to the reception and ludgment of travellers by caravans in the desert. Though the caravanserai serves the purpose of an inn, there is this essential difference between the two, that in the former the traveller finds nothing either for the nse of himself or his cattle, but must carry all his provisions and necessaries with him. Caravanserais are also numerous in cities, where they serve, not only as inns, but as shops, warehouses, and even exchanges.
Carbolic Acid. This fluid has lately leen obtained from creosote by distillition. By the use of a solution of Mc Dougall's patent prepared carbolic acid, sewage is rendered imputrescible, all smell being removed, and no further decompusition possiblo. A solution of it (about a pint to a cartload) has lately been mixed with the water sprinkled on roads by watering earts, by which a disinfecting action takes place on the droppings of horses, decomposing dust, \&c. The powder may be used in dust-bins, water-closets, in whitewashing the walls of hospitals, \&c. Formed into a soap, it can be employed in washing painted work and floors, or linen. Mixed carefully with oil of vitriol, sulphurous acid gas is liberated for fumigating an apartment. It is not poisonous.
Carcass. The naked building of a honse before it is lathed and plasterel or the floor boards laid, \&c.
Carcass Flooning. That which supports the boarding, or floor boards, above, and the ceiling below, being a grated frame of timber, varying in many particulars.
Carcass Roofing. The grated frame of timber work which spans the building, and carries the boarding and other covering.
Cardinales Scapi. In ancient Ruman joinery, the stiles of doors.
Carolitic Column. One with a foliated shaft.
Carpenter. (Fr. Charpentier.) An artificer who practises the science of framing and fitting to each other the various pieces and assemblages of timber used in the construction of buildings.
Carpenters' Rule. The instrument by which carpenters take their dimensions, aud by the aid of a brass slide, which makes it a sliding rule, they are enabled to make calculations in multiplication and division, besides other operations.

Carpenter's Square. An instrument whose stock and blade consists of an iron plate of one piece. One leg is eighteen inches long, and numbered on the outer edge from the exterior angle with the lower part of the figures aljacent to the interior edge. The other leg is twelve inches long, and numbered from the extremity towards the angle; the figures being read from the internal angle, as on the other side. Etch of the legs is about an inch broad. This instrument is not only used as a square, but also as a level and measuring rule.
Carpentry. (Lat. Carpentum, carved wood.) An assemblage of pieces of timber connected by framing, or letting them into each other, as are the pieces of a roof, floor, centre, \&c. It is distinguished from joinery ly being put together, without the use of any otber edge tools than the axe, adze, saw, and chisel, whereas joinery requires the uso of the plane. The leading points that require attention in sound carpentry are, 1. the quality of the timber used; 2. the disposition of the picces of timber, so that each may be in such direction, with reference to the fibres of the wood, as to be most capable of performing its office properly; 3. the forms and dimensions of the piects; 4. the manner of framing the pieces into each other, or otherwise uniting them by means of iron, or other metal.
Carrara Marble The name of a species of white marble obtained at the quarries near the town bearing that name, in the Tusean States. It was called marmor lunense and ligustrum by the ancients, and differs from the Parian marble by being barder in texture, and less bright in colour.
Carrage. The timber framework on which the steps of a wooden staircase are supported.
Carríup. See Bring up.

-
-
-

Cartouch. (Fr.) A name given to the motillion of a cornice used internally. It is also used to denote a scroll of paper, usually in the form of a tablet, fur the reception of an inscription. In Egyptian architecture, it is applied to the form enclosing hieroglyphs, as in the annexed cut.
Carver. An artificer who cuts wood into various forms and devices. Carving, generally, is the art of cutting a body by recession, in order to proluce the representation of an olject, either in relief, or recessed within tho general surface. In this sonse it equally applics to the making of intaglios as to that of making cantens.
Caryatides. Figures of females used instead of columns for the support of an entablature. They were used at the temple of Erechtheus, at Athens, as shown in the illustration, fig. 1378. See Canephore. Atlantes.
Case. The outsido covering of anything, or that in which it may be enclosed. It is also a term used to denote the carcass of a house.
Case Bays. The joists framed between a pair of girders in naked flooring. When the flooring joists are framed with one of their ends let into a girder, and the opposite ends let into a wall, they are called tail bays. The extent of the case-bays should not exceed ten feet.
Case of a Door. The woolen frame in which a door is hung.
Case of a Stair. The wall surrounding a staircase.
Cased. A term signifying that the outside of a building is faced or cosered with materials of a better quality. Thus, a brick wall is said to be cased with stone,

Fig. 13 78. or with a brick superior in quality to that used in the inner part of the wall.
Cased Sash Frames. Those which have their interior vertical sides hollow, to admit tho weights which balance the sashes hung between them.
Case-hardening. The process by which the surfaces of soft iron are conrerted into: species of imperfect steel, sufficiently hard to resist the action of an ordinary file. Hodgkinson has proved the fallacy of the assertion that if the hard skin at the outside of a cast iron bar be removed, its strength comparatively with its dimensions will be much reluced. Bars planed down on all sides to an inch square, bore a breaking-weight quite equal to those of bars cast exactly an inch square.
Casemate. A hollow moulding, such as the carctto.
Casement. A glazed frame or sash, opening on hinges affixed to the rertical sides of the frame into which it is fitted.
Casing. Spe Lining.
Casino. (It.) A term applied to a small country house, and to a sort of lcdge in a park; lut formerly to one capable ni affording defence on a small scale against an attacking force. Cassinomb. An clliptic curre wherein the product of any two lines, drawn from the foci
to a point in the curve, slall be equal to the rectingle under the semi-transverse and semi-conjugate diameters.
Castella. In aneient Roman architecture, reservoirs in which the waters of an aqueduct were eolleeted, and whence the water was conducted throrgh leaden pipes to the several parts of a eity.
Castellateis House. One with battlements and turrets, in imitation of an ancient castic.
Castivg. In earpentry and joinery, a term synonymous with warping. It means tho bending of the surfaces of a piece of wood from their original state, cansed either by the gravity of the material, by its being subjeeted to unequal temperature, to moisture, or to the want of unifurm texture of the material.
Cast Iron. It is the product of the process of smelting iron ores. Different sorts of pig iron are produced from the same ore in the same fuznace under different eireumstanees as to temperature and quantities of fuel. Intense cold makes east iron brittle, and sudden changes of temperature sometimes cause large pieces of it to split. The proof strength is about one third of the breaking load.
Castle. (Lat. Castellum, or Sax. Calizel.) A building fortified for military defence; also a honse with towers, usually eneompassed with walls and moats, and having a donjon or keep in the centre. The principal castles of England at present are those of the Tower of London, of Dover, Windsor, Norwieh, \&e. At one time those of Harwood, Spofforth, Kenilworth, Warwick, Arundel, and others, might have ried with these in importance. The charactoristies of a castle are its calla (cmbankments) and fosse (ditehes); from tho former whereof the walls rise usually erowned with battlements, and flanked by circular or polygunal bastions at the angles formed by the walls. These were pierced for gates, with fixed or draw-hridges, and towers on each side. The gates of considerable strength were further guarded by descending gratings, called portcullises. All the apertures were made as small as they conld be, eonsistent with internal lighting.

The eomponent parts of the eastle were-the fosse or moat, with its bridge; the barlacan, whieh was in advance of the castle. being a raised mound or tower, whose outer walls had terraes towards the castle, with their bustions, as above mentioned; the gutehousc, Hanked by towers, and crowned with projections called machicolations, through which heavy materials, or molten lead, were dropped on the assailants entering the gateway; the outer ballium, or bailey, or area within the eastle, which was separated from the inner ballium by an embatuled wall with a gatehouse, and in which the stables and wher offices were nsually seated; and the inncr ballium, for the residenee of the owner or governor, and his retinue; this, at one corner, or in the centre, hal a donjon or keep toucr, which was the stronghold of the place, and contained a state apartment, a well, and a chapel; the former usually, and the latter frequently, are found in ancient eastles.
Catabasion. (Gr. Kaqaßaiva.) A plueo in the Greek church, under the altar, in whieh relics are deposited.
Cataconb. (Gr. Kaza, against, and Kopeos, a hollow place.) A sulterraneous place for burying the dead. The hyprgæa, eryptia, and cimeteria of the aneients were used for the same purpose. In some eities the excavations for catacombs were of vast extent, and were used for other purposes than those of sepulture; at Syraense, for instance, the same eavern served for a prison as well as a publice cemetery. It has been said, that in the early ages of Christianity they served as places of public worship or devotion. The most celebrated for their extent are those of Rome, Naples, Syracuse, \&e.; and the more modern ones of Paris, which have been furmed by quarrying for the stone of which a great part of the eity has been built.
Catafalco. (lt. a seaffold.) A temporary structure of carpentry, decorated with painting and seulpture, representing a tomb or cenotaph, and used in funcral ceremonies. That used at the final interment of Michel Angelo, at Florence, was of a very magnificent description; and, for the art employed on it, perhaps unequalled by any other before or since its employment.
Catch Drain. A drain used on the side of a larger open one, or of a canal, to receive the surplus water of the prineipal conduit.
Catenary Curye. The meehanieal curve formed ly a heayy fexible cord or chain of uniform density, hanging freely from the two extremitics. Galileo tirst noticed it, and proposed it as the proper figure for an arch of equilibrium. He, however, imagined that it was the same as the parabola. It was James Bernouilli who first investigated its nature, and its properties were thereafter pointed out by John Bernouilli, Huygens, and Leibnitz. From the first of these mathematicians, the following geometrieal method of determining the relations between the parts of a eatenary is translated. The catenarean curve is of two kinds, the common, which is furmed by a chain equally thick or equally heary in all its points; or uncommon, whieh is formed by a thread unequally thick, that is, which in all its points is unequally heary, and in some ratio of the ordinates of a given eurve. To draw the common catenary mechanically, suspend on a vertical plane
a chain of similar and equal links of homogeneous matters, as flexible as possible, frum any two points not in a perpendicular line, nor so distant from each other as the length of the chain. Prick the plane through the links as nearly as possible in the middle of the chain, and throngh the points draw the catenary (fig. 1379.) Let the chord FBD or Fbd be given, and the abscissal BA or $b \mathrm{~A}$ intersecting it (fig. 1379) in B or b at a given angle. Draw the vertical line BA and EBD or Fbd at the given angle on the plane. Fix one end of the chain at F , and from the point D or d, with another part of the chain, raise or lower the chain until the lower part coincides with A, and through points, made as before, draw the curve.

To draw a tangent to the catenary: let DBF be a horizontal line, and at right angles to BA

Fig. 1379. from A draw AR equal to the curre DA, obtained as before, and draw BR, which bisect in o. At right angles to BR draw oC intersecting BA continued in C. Draw CR, and make the angle BDT equal to the angle ACR. DT is the tangent required, and BC equals CR ; CA is the tension at the point A, or the horizontal draft, which, in a catenary, is in every point the same, and is therefore a constant quantity; as DB : BT:: $\mathrm{CA}: \mathrm{AR}$: or as DB: BT: the constant quantity CA: AR, equal to the length of the chain AD.

If CH be drawn through C at right angles to BC it is called the directrix, and DII drawn parallel to BC , intersecting the directrix at H , is the tension at the point D , being always equal to the sum of the abseissa and constant quantity. With the centre C and radius $=$ the tension DH at $\mathrm{D}=\mathrm{CB}$, cnt the tangent at the vertex Λ in R, then $A R$ is the length of the chain $A D$.
$A C$ is the semi-axis of an equilateral hyperbola, and also the radius of curvature of a cirele equicurred with it and the catenary.

In the triangle CAR, when CA is the radius, then the tension equals CR, the secant of the angle $\mathrm{ACR}(=\mathrm{BDC})$. The chain AD equals AR , the tangent of the same angle and the alsciss AB equa!s $\mathrm{CR}-\mathrm{CA}=\mathrm{SR}$. Hence, ACR being a right-angled triangie, it is manifest that when two of the five quantities, viz. the angle, the absciss, the length of the ehain between the vertex and points of suspension, the constant quantity or tension at the vertex, and the tension at the points of suspension, are known, the other three may be obtained geometrically, or from a table of tangents and secants.
Cathedral. (Gr. Kaधe $\delta \rho a$, a seat or throne.) The principal church of a province or diocese, wherein the throne of archbishop or bishop is placed. It was originally applied to the seats in which the lishop and presbyters sat in their assomblies. In after times, the bishop's throne was, however, placed in the centre of the apsis, on each side whereof were inferior seats for the presbyters. In the present day the lishop's throne is placed on one side of the choir, usually on that towards the south.
Catherine Wheel Window also called Marigold Window. In mediæval buildings a window or compartment of a window of a circular form with radiating divisions or spokes. Examples are seen at Patrixbourne, York, St. Darids, of a small size; while at Westminster (fig. 1380) south transepts of St. Ouen at Rouen, and of

Fig. 1880. Westminster Abbey. A miens cathedral, and at the cathedral of Strasbourg, they are of larger sive. See Rosk Window.
Cathetus. (Gr. Kafetos, let down.) A perpendicular line passing through the centre of a cylindrical body as a baluster or a column. It is also a line falling perpendicularly, and passing through the centre or eye of the volnte of the Ionic capital.
Cattle Shed, or Cattle Honse. In agricuitural buildings, an erection for containing cattle while feeding, or otherwise. The cattle shed is, of cuurse, most economically constructed when built against walls or other buildings. If cattle sheds are built in isolated situations, the expense of a double shed will be much less than that of a single one, to contain the same number of cattle. Buildings of this description shonld be well ventilated, and be so constructed as to require the least possible labour in supplying the food, and clearing away the dung. The stalls should be placed so as to keep the cattle
dry and clean, the floor level and with sufficient drains to receive the ordure, and to be readrly flushed. There should be good provision of air boles in the roof; and, if the puilding have gables, a window should be placed in each as high as possible with movable luffer-boards, which may be easily opened and shut. A cubical space is required of not less than 1000 feet for each animal, whether there are inhabited rooms over the shed or not. The cattle plague first broke out in the central districts of London, where the space allotted did not exceed 450 cubic feet. Many of the model farms and stockbree ers now use iron cow-stalls, to assist in preventing the spread of rinderpest. A bullock arerages 7 fect 6 inches in length, 5 feet in height, and 2 feet 6 inches in width. The stall should be 5 feet wide for each milch cow, or 6 feet if kept indoors all the year, the building leing 16 feet wide; the top of the manger not more than from 12 to 18 inches abore the floor, 18 inches broad, and 12 inches deep, with three divisions, for moist and dry food and water. See Bullock Shed.
The infectious effluria from the private slaushter-houses often causing contagieus maladies in their neighbourhood, the French government in 1811 remored all such buildings from the heart of their capital. For this purpose fise open airy spots were selected in the ontskirts of the city; those at Ménilmontant and Montmartre are the most considerable and extensive. These five establishments were later merged into one large abattoir. Happe was the architect of the former ; anl the cost was something aluore 120,000 l.

The Metropolitan Cattle Market was designed by the late Mr. J. B. Bunning, City Architect, and opened in 1855. Several additions have since been made by the late Sir Horace Jones, City Architect. A market and abittuir was designed 1870-71, at Deptford, by the same architect, for the City of London, where foreigu cattle are lauded, inspected, sold, and slaughtered. The cost of the market, including $95,000 l$. paid for the site of 22 acres, was 210.000 .
Of late years several such buildings have leen erected, as at Glasgow: Edinburgh, and Bradford; and a carcase market with butchers' slaughter-houses adjoining, at Manchester. A description of this luilding, erected from the designs of Mr. A Darbyshire, was read by him at the Royal Institute of British Architects, Feb. 1, 18.5 ; and as it is considored a well-arrangel structure for its purposes, a fer details will be given. It is in the shape of the letter L. In the long side fronting Water Street are the entrances, and the carcase market, 418 feet long and 55 feet 6 inches wide, pared with asphalte. Behind this are the wholesale slaughtor-houses, twenty-one in number, each being 24 feet by 17 feet 6 inches inside, with a lair attached in rear, 22 feet by 17 feet 6 inches. Both of these are open to the roof, but entirely separated, and the former well lighted by rows of glass slates, which light is superior to side windows for the several operations necessary. The former has a glazed enamelled brick dado, 5 feet high, and a plentiful supply of water. They are pared with Yorkshire stone. In rear of part of the above are placed nineteen retail slanghter-houses similar to the above. In rear of these latter is the condemned meat department, consisting of a lair, slaughterhouse, meat store, and boilin r-house. The blood department consists of a storingroom, drawing-off room, and drying-room. The pig slaughtering department is adjacent, and contains a large pig slaughter-house, open yard, and piggeries. The two lodges at the gates (through which all cattle must enter the abattoir) contain residences for the porter and the inspector, with rooms for the conrenience of the markets committee. The site also contains a large general lair for cattle, a manure pit, and a common room for drosers and others; suitable conveniences at various points; and a stable and gig-house for the inspector. The total cost was somewhat over 30,000 l. Space prevents us from following the author through his explanation in detail of the uses to which the rarious buildings are applied, but one very important feature remains to be noticed. A simple and effectual apparatus has been provided by the engineer, Mr. John Meiklejohn, of Dalkeith, by which the carcase when realy is placed on a hoist, and moved along rails across the roadway into the market, or placed into the carts; this apparatus also allows the seller to detach any particular carcase from the others, and deposit it in the cart of the buyer, without in any way disturbing the other carcases hanging on the beams. A considerable amount of manual labour is saved; and, in addition, the meat. intended fur human food receives as little handling as possible after being dressed, and is not transferred at any time to the dirty and greasy backs and shoulders of the slanghterers. The private slaughter-houses have the same hoisting apparatus, but the carcase is placed at. once in carts and removed to the butcher's shop. At the Edinburgh abattoir a central crane and semicircular hanging beam is in operation; while at Bradford an bydraulic lifting power is in use.

A very interesting discussion followed the reading of the piper, in reference to private slaughter-houses; the bost mode of lighting; the paring; the use of a tripery at the abattoir; bloodstores; a place for salting hides; and other apparatuses. An important fact was stated, tending to the greater introduction of killing animals in
the country and sending the carcases up to the "dead meat" markets in cities and towns:- that it has been proved that if an animal he slaughtered in Edinburgh, near where it was fed, and another be taken from the same herd and sent as carefully as possible to London by railway, and slaughtered there, the latter loses at least three stones in weight as compared with the former, and this represents a sovereign.
Catrus. A moveable shed usually fixed on wheels.
Cafl. An inplement used hot in veneering to keep the glue moist, while at the same time it presses down the veneer until it cools.
Caulicolas or Caulicoli. (Lat. Caulis, a stalk.) The eight lesser branches or stalks in the Corinthian capital springing out from the four greater or principal canles or stalks. The eight volutes of the capital of the order in question are sustained by four caules or leares, from which these caulicole or lesser foliage arise. They have been sometimes coufounded with the helices in the middle, and by others with the principal stalks whence they arise.
Catleing or Cocking. The mode of fixing the tie-beams of a roof or the binding joists of a floor dowu to the wall-plates. Formerly this was performed by dovetailing in the following manner:-A small part of the depth of the beam at the end of the under side was cut in the form of a dovetail, and to receive it a corresponding notch was formed in the upper side of the wall-plate, across its lreadth, making, of course, the wide lart of the dovetail towards the exterior part of the wall, so that the beams, when laid in their notches, and the roof finished, would greatly tend to prevent the walls separating, though strained by inward pressure, or even if they should have a tendency to spread, through accidents or bad workmanship. But beams so fixed have been found liable to be drawn to a certain degree out of the notches in the wall-plates from the sbrinking of the timber. A more secure mode is that of forming a sort of pin out of the upper side of the plate, with a notch in tho beam, which obviates all hazard of one being drawn out of the other.
Caustic Curve. (Gr. Kaıw, to burn.) The name given to a curre, to which the rays of light, reflected or refraeted by another curve, are tangents. The eurve is of two kinds, the catacaustic and the dia-austic; the former being caused by reflection, and the latter by refraction.
Cavedicm. (Lat.) In ancient architecture an open quadrangle or court within a house. The earedia described by Vitruvius are of fire species:-Tuscanicum, Corinthium, Tetrastylon (with four columns), Displuviatum (uncovered), and Testudinatum (vanlted). Some authors have made the cavædium the same as the atrium and vestibulum, but they were essentially different.
Cave. (Lat. Carum.) A hollow place.
Cares. (Lat.) In aneient architecture the subterranean cells in an amphitheatre, wherein the wild beasts were confined in readiness for the fights of the arena. In the end the amphitheatre itself (by synecdoche) was called cavea, in which sense it is employed by Ammianus Marcellinus, lib. xxix. cap. i.
Caverto. (Lat. Cavus.) A hollowed moulding, whose profile is the quadrant of a circle. It is principally used in cornices.
Cedar. (Gr. Keठpos.) The pinus cedrus of Linnæus, a forest tree little used in this country, except for cabinet work.
Criling. (Lat. Cœelum.) The upper horizontal or curved surface of an apartment opposite the floor, usually finished with plastered work.
Criling Joists. Small beams, which are either mortised into the sides of the binding joists, or notched upon and nailed up to the under sides of those joists. The last mode diminishes the height of the room, but is more easily executed, and is by some thought not so liable to break the plaster as when the ends of the ceiling-joists are inserted into pulley mortises.
Cril. (Lat. Cella.) In ancient architecture the part of a temple within the walls. It was also called the naos, whence the word nave in a chureh. The part of a temple in front of the cell was called the pronaos, and that in the rear the posticum. See Vimana of the Hindoos. It is also the chamber in which a prisoner is confined.
Cellar. (Fr. Cellier.) The lower story of a building, wholly or partly under the level of the ground, and not adapted for habitation, but merely for lumber, storage purposes, coals, wine, and such like: and having openings into the onter air for ventilation only. Coal cellars in the metropolis are arched vaults under the street paring.
Cellular Beams. Beams mado of wrought iron plates, rivetted together, and whoso strength depends upon the system of cells placed at the top of the web or over the cell, which takes the place of it in a larger beam or girder. In very large ones, cells are also placed under it.
Celtic Erections. The manner of building adopted by the early inhabitants of the Northern part of Europe, comprising chiefly the erection of large stones in a variety of forms, and of tumuli in which are found chisels and adzes of bronze or hard stone,
hence the name of celts derived from celtcs, the ancient Latin word for a chisel. They ave discovered in great quantities in England, Ireland, and France.
Cement. (Lat. Cementum.) The medium through which stones, bricks, or any other materials are made to adhere to each other. Sce Mortar.
Cemetery. (Gr. Kofada, to sleep.) An edifice or area where the dead are interred. The most celebrated public cemeteries of Europe are those of Napl-s. that in the vicinity of Bologna, of Pisa, and the more modern ones of Paris, whereof that of Pere-la-Chaise is the principal. That of Pisa is particularly distingnishell by the beanty of its form and architecture, which is of early Italian Gothic. It is 490 feet long, 170 feet wide, and 60 feet high, cloistered round the four sides.
('enotaph. (Gr. Kevds, empty, and Táфos, a sepulchre.) A monument erected to the memory of a person buried in another place.
Centaring. The temporary woodwork or framing, whereon any vaulted work is constructed, and sometimes called a centre.
Centre. (Lat. Centrum.) In a general sense denotes a point equally remote from the extremes of a line, superficies, or body, or it is the middle of a line or plane by which a figure or body is divided into two equal parts; or the middle point so dividing a line, plane, or solid, that some certain effects are equal on all its sides. For example, in a circle the centre is everywhere at equal distance from the circumference; in a sphere the centre is a point at the same distance from crery point in the surface.
Centres of a Donr. The two pivots on which the door revolves.
Centrolinead. An instruinent for drawing lines converging to a point at any requirel distance, whether accessible or inaccessible. It is used for making drawings in perspective.
Ceroma. (Gr.) An apartment in the Gymnasia and baths of the ancients, where the bathers and wrestlers were anointed with oil thickencd by wax, as the name imports.
Cesspool, or Sesspool. A small well sunk below the mouth of a drain to receive the sediment which might otherwise choke up its passage, in its course to its outfall.

A cesspool is also a well sunk to receive the soil from a water-closet, or kitelen sink, drain hole to a path, \&c. It is sometimes lonilt dry so that the water percolites through the joints of the stone or brickwork into the surrounding soil; or it is built in mortar, and a drain formed to carry off the surplus water from near the top of it. When found to be full, the cesspool is emptied and the contents carted away, or used for garden manure, \&c.
Chain Mollding. An ornament of the Norman period, carved in imitation of a chain. Chain Timber. See Bond.
Chair Rail. A picce of wood fastened to a wall, to prevent the backs of the chairs injuring the plastering when placed against it. This result is often better effected by fixing a fillet of sufficient projection on the floor, next the skirting, for the fert of the chair to strike against, similar to that frequertly put to cover the nails securing the carpet.
Chatra Cate. The name given to a class of rock-cut Buldhist temples in India, Chaitya meaning an olject of worship, whether au image, a tree, an edifice, or mountain. They resemble in almost all particulars, both of form, size, and purpose, the choirs of Gothic churches of the eleventh or twelfth centuries: the dagoba occupying the place of the altar, and being like it, simply a relic shrine. They are scen at Karli, Ajunta, and other places.
Chalcidicum. (Lat.) In ancient architecture, a term used by Vitrurius to denote a large building appropriated to the purpose of administering justice, but applied sometimes to the tribunal itself.
Chalk. (Germ. Kalk.) Earthy carbonate of lime, found in abundance in Great Britain, and, indeed, in most parts of the world. It is insoluble in water, but decomposed 1 y heat, and sometimes used in building for the same purposes as limestone.
Chamber. (Fr. Chambre.) Properly a room vaulted or arched, but the word is now generally used in a more restricted sense to signify an apartment appropriated to lorging. With the French the word has a much more extensive meaning; but with us the almost only use of it, beyond what is above stated, is as applied in a palace to the room in which the sovereign receives the subject, which room is called the Presence Chamber.
Chamber of a Lock. In canals the space between the gates in which the vessels rise and sink from one level to another, in order to pass the lock.
Ciamber Story. That story of a house appropriated for bed-rooms.
Chambranle. (Fr.) An ornamental bordering on the sides and tops of doors, windows, and fireplaces. This ornament is generally taken from the architrave of the order of the building. In window frames the sill is also ornamental, forming a fourth side. The top of a three-sided chambranle is called the transecrsc, and the sides ascendants.
Chamfer. (Fr. Chamfrein.) The arris of anything originally right-angled, cut ablope, or bevel, so that the plane it then forms is inclined less than a right angle to the other
planes with which it intersects. If it is not carried the whole extent of the piece, it is returned and then is said to be 'stop chamfered.'
Champain Line. In ornamental carved work formed of excavations is the line parallel to the contimuous line, either ascending or descending.
Chancel. That part of the eastern end of a charch in which the altar is placed. Seo Caxcelli. This is the strict meaning; but in many cases the chancel extends much farther into the church, the original divisions haring been romoved for accommodating a larger staff of clergy. The word is also used to denote a separate division of the ancient basilica, latticed off to separate the judges and council from the audience part of the place.

The chancel of a Protestant church is now raised two or three steps above the parement of the nave, and provided on each side with two rows of benches or stalls for choristers; on the north side in a sort of chapel or recess is placed the organ, and behind which is sometimes the choristers' vestry, attached to the restry for the clergy. Beyond, is the part called the sacrarium, railed off, with a step for the communicants, and inside which is the altar or communion talle placed on a platform raised two or three steps. In a large chancel, the space will allow of two or three chairs or perhaps sedilia for the clergy on the south side. with an aumbry for the church utensils, and a credence table or shelf for the bread and wine before being placed on the table.
Chandry. An apartment in a palace or royal dwelling for depositing candles and other lights.
Channel of the Larmier, and of the Volute. See Canal of the Larmier, and of the Volete.
Channec. (Fr. Canal.) A long gutter sunk below the surface of a body, as in a street, and serving to collect and run off the rain water with a current.
Chanki. A great porch or hall, as used in India, usially attached to the IVimana with its mantopa and antarala, all three forming the temple properly speaking. This porch in lower India is called a maha mantapa, and is generally used for marriage ceremonics and religious ceremonies performed in public.
Chantlate. A piece of wood fastened at the end of rafters, and projecting beyond the wall, to support several rows of slates or tiles, being so placed as to throw off the rainwater from the face of the wall.
Chantiky. (Lat. Cantaria.) A little chapel in ancient churches with an endowment for one or more priests to say mass for the release of souls out of purgatory. In the fourteenth year of Edward VI., all the chantries in England were dissolved: at this pericd there were no less than forty-seven attached to St. Paul's Cathedral.
Chaper. (Lat. Capella.) A building for religious worship, erectel separately from a church, and served by a chaplain. In Catholic churehes, and in cathedrals and abbey churches, chapels are usually annexed in the recesses on the sides of the aisles. These are also called chantries. It is also the name of the building erected for worship by the dissenters and others.
Chapiter. The same as Capital.
Chaplet. (Fr. Chapelet.) A moulding carved into beads, olives, and the likc. Sce Baglette.
Chapter House. In ecclesiastical architecture the apartment (usually attached) of it cathedral or collegiate church in which the heads of the church or the chapter meet to transact business. These council chambers date back in England as far as the time of Archbishop Cuthbert at Canterbury. On the Continent the chapter houses, for the most part, are square or oblong rooms with timber roofs. In the ninth century, the east alley of the cloister was used as a chapter house, hot in the tenth. a distinct building was formed for it at Fontenclle. In the eleventh century king Edward the Confessor erected a round and vaulted chapter house at Westminster. It is a remarkable fact that the Benedictine monks almost invariably built polygonal, while the Seculars erected rectangular, chapter houses. The tro exceptions to the rule are those of Worcester and Westminster. From the commencement of the thirteenth century a polygonal shape was adopted; a decagon as at Hereford, St. Paul's at London, Bridlington, Lichfield, and Lincoln, and at Worcester though it is a circle internally; an octagon at Wells, York, Salisbury, and Westminster. At Westminster, Wells, and St. Paul's, it was built over a crypt.

	Dates.	Diameter.
Lincoln	$1186-1203$	60 ft
York completed about 1350	57 ft	
Wells	$1293-1302$	55 ft . by 42 ft
Lichfield	about 1240	44 ft . by 26 ft.

Worcester	Dates.	Diameter.
1263-1372	48 ft.	
Salisbury	$1263-1270$	58 ft.
Westminster	1250	58 ft.

Cifaptrel. (Fr.) The same as Impost.

Charcoal. Bones or regetable matter decomposed by heat without the free access of air. Its sanitary properties consist in its power of absorbing gases, which is most efficient
when the charcoal is powdered. Animil chareoal is better than that $n f$ wood, cr of peat, for the purposes of disinfection. When cleansing cesspons, the charcoal should be mixed with the soil. When used to destroy foul air, the charcoal requires to be exposed in thin films, presenting the greatest possible surface. It is essentially neeessary to the proper filtration of water. It is a bad conductor of heat, but conducts eleetricity.
Cuarged. A term used to denote that one member of a piece of arehitecture is sustained by another. A frieze is said to be charged with the ornament cut on it.
Charnel House. A place whore the bones of the dead are deposited.
Cirartophylacium. A recess or apartment in an ancient building, fur the preservation of records or valuable writings.
Cirase. An upright indent cut in a wall for the joining another to it. It aiso means an indent cut in a wall, into which a pipe or some such article is placed.
Cifase Mortise, or Puxhey Mortise. A long mortise cut lengthwise in one of a pair of parallel timbers, for the insertion of one end of a transverse timber, by making the latter revolve round a eentre at the other end, which is fixed in the other parallel timber. This may be exemplified in ceiling joists where the binding joists are the parallel timbers first fixed, and the ceiling are the transers joists.
Chatlay. The modern French form of the word castle, and used for a castle, fort, or country mansion.
Cherks. Two upright, equal. and similar parts of any piece of timber-work. Such, for instance, as the sides of a dormer window.
Cireeks of a Mortise are the two solid parts upon the sides of tho mortise. The thickness of each cheek should not be less than the thickness of the mortise, except mouldings on the stiles absolutely require it to be otherwise.
Cuefse Room. A room set apart for the reception of checses after they are made. The walls should be lined, and fitted up with shelves with one or moro stages, according to the size of the room, and propor gangways for commodious passage. In places where much cheese is manufactured, the dairy-room may be placed below, the shelf. room directly above, and lofts may be built over the shelf-room, with trap-doors through each floor. This will sare much carriage, and will be found adrantageous for drying the cheeses.
Cifequers. In masonry, are stones in the facings of walls, which hare all their thin joints continued in straight lines, without interruption or lreaking juints. Walls hilt in this manner are of the very worst description; particularly when the joints are mado horizental and vertical. Those which consist of diagonal joints, or joints inclined to the horizon, were used by the Romans.
Ciresnot or Cuestnut. The fugus castanca. A large tree chijefly grown in England in ornamental grounds. It has ofton been stated that its timber has been used in building, but no satisfactory proof has been adduced. Where wido planks can be procured without a fanlt, they have perhaps been used for panels and carring, as the wood is very similar to wainscot, but is without the flower.
Chest. The same as Caisson.
Chftet. A term used by French architects and antiquaries to denote the surrounding aisles to the choir of a cathedral, from their resemblance on the plan to the form of a bolster.
Chevron Mouldivg. A zigzag ornament used in the archivolts of Saxou and Norman arches, similar to fig. 1381.
Cimmera. A monstcr of the Grecian mythology, described as having a lion's head, a goat's body, and the tail of a dragon. Out of the bick grows the head and neck of a goat. One such piece oi sculpture, brought to England by Sir Charles Fellowes

Fig. 1581. from Asia Minor, is now in the British Musoum.
Cumney. (Fr. Cheminée.) The place in a room whero a fire is burnt, and from which the smoke is carried away by means of a conduit, called a funnel or a fluc. Where the walls are sufficiently thick, the chimneys are formed in the substance of them, but they are usually made ly a projection from a wall and a recess in the same from the flour ascending within the limits of the projection and the recess. That part of the opeuing which faces the room is properly called the fircp'ace, the stone, marble, or mactal, under which is callod the hararth. That on a level with and in front of it is tho slab, thongh often called the hearth. The vertical sides of the opening are called jambs. The head of the fore-plate recting on the jambs is called the mantei. The tube or eavity from the fireplace upwards is called the furnel or fluc. The part of the funnel which contracts as it ascends is termed the gathering, ly some the gathering of the wings. The part between the gathering and the flue is called the throat. The part of the wall facing the room, and forming one side of the funnol parallel thereto, or the part of the wall
forming the sides of the funnels where there are more than one, is the briast. In external walls, that side of the funnel opposite the breast is called the back. When there is more than one chimney in the same brenst, the solid parts that divide them are called withs or withes: and when several chimneys are collected into one mass, it is called a stack of chimneys. The part which rises above the roof, for discharging the smoke into the air, is called a chimney shaft, whose horizontal upper surface is termed the chim-ney-top; on this is placed the chimncy-pot, or contrivance for dissipating the smoke, or for creating a draught.

The covings were formerly placed at right angles to the face of the wall, and the chimney was finished in that manner; but Count Rumfurd showed that more heat is obtained from the fire by reflection when the covings are placed in an oblique position. He likewise directed that the fire itself should be kept as near to the hearth as possible, and that the throat of the chimney should be constructed much narrower than had been practised, with the view of preventing the escape of so much heated air as happened with wide throats. If the throat be too near the fire, the draught will be too strong, and the fuel will be wasted; if it be too high up, the dranght will be too languid, and there will be danger of the smoke being occasionally beaten back into the room. The chimney of large furnaces and for boilers is called a stalk, and built very tall in order to create sufficient draught for the fire.
Chimexy Piece. The assemblage of architectural dressings around the open recess constituting the fireplace in a room, and within which the fuel is burnt, eilher immediately upon the hearth itself, or in a raised grate, or open stove. Formerly fireplaces were provided only in the principal rooms of a house; those in public rooms, as town halls, became fine pieces of architecture.
Cunfese Architecture. In the tent is to be found the type of this architecture. A chirracteristic quality is gaiety of effect. The coloured roofs, porches diapered with varicgated tints, the varnish with which the woodwork is covered, the light forms of the buildings, all unite in producing a style very different to that seen in other countries. The towers called pagodas, and the arehes, are two of the peculiar erections of that country.
Curp. A piece of any material cut by an acute-angled instrument.
Chisel. An instrument used in masonry, carpentry, and joinery, and also by carvers and statuaries, for cutting either by pressure or by impulse from the blows of a mallet or hammer. There are various linds of chisels; the principal ones used in carpentry and joinery are the former, the paring chisel, the gouge, the mortise chisel, the socket chisel, and the ripping chisel.
Chiseled Work. In masonry, the state of stones whose surface is formed by the chisel.
Cur. An instrument used for cleaving larhs.
Choir. (Gr. Xopos.) The part of a church in which the choristers sing divine service. In former times it was raised separate from the altar, with a pulpit on each side, in which the epistles and gospels were recited, as is still the case in several churches on the Continent. It was separated from the nave in the time of Constautine. In nunneries, the chvir is a large apartment, separated by a grate from the body of the church, where the nuns chaunt the serrice. In churches in Italy, the cors is moreable, and is held sometimes in one part of the church, and sometimes in another. See Chanchi.
Chomr Screen or Rood Screen. An ornamental open screen of wood or stone, diviaing the choir or chancel from the mave, yet so as not to obstruct sight or somd. The modern choir sereen at Hereford Cathedral has been formed of wrought iron and decorated. See Jubé.
Choragic Moncment. (Gr. Xopos.) In Grecian architecture, a monument erectol in honour of the choragus who gained the prize by the exhibition of the best musical or theatrical entertainment at the festivals of Bacchus. The choragi were the heads of the ten tribes at Athens, who overlooked and arranged the games at their own expense. The prize was usually a tripod, which the victor was bound publicly to exhibit, fur which purpose a building or column was usually erected. The remains of two wery fine monuments of this sort, viz. of Lysicrates and Thrasyllus, are still to be seen at Athens.
Chord. In geometry the straight line which joins the two extremities of the are of a curve; so called from the resemblance which the are and chord together havo to a bow and its string, the chord representing the string.
Choclithy (proper'y Chaturam). A Tatar term for a post hoase, lodge, or hall for travellers. It is only used in the Madras Presidency. There are various sorts, from a mere shed (chauvadi), one in which images are sometimes placed (mandapam), to the true choultry, built expressly as an inn or caravanserai.
Chrismatory. A recess resembling a piscina, near the spot where the font originally stood, to contain the chri-m, or holy oil, with which, after baptism, infants were anointed.
Cherch. (Gr. Kuprakov, from Kıpıos, Lord.) A building dedicated to the performance of Christian worship. The basilice were the first luildings used for the assembly of
the early Christians. Among the first of the churches was that of St. Peter at Rome, about the year 326 , nearly on the site of the present church; and it is supposed that the first church of St. Suphia at Constantinople was built somewhat on its model. That which was afterwards erected by Justinian seems, in its turn, to have afforded the model of St. Mark's, at Veuice, whech was the first in Italy constructed with pendentives and a dome, the former affording the means of covering a square plan with a hemispherieal vault. The four most celebrated churches in Europe erected since the revival of the arts are, St. Yeter's at Rome, which stands on a area of 227,069 feet superficial; Sta Maria del Fiore at Florence, standing on $84,802 \mathrm{ftet}$; St. Paul's, Loudon, which stands on 84,025 feet, and St. Generiève at Paris, 60,287 feet. The churches on the Continent are usually ranged under seren chasses; pontifical, as St. Peter's, where the pope occasionally officiates ; patriarchal, where the government is in a patriareh; metropolitan, where an archbishop is the head; cathedral, where a bishop presides; collegrate, when attached to a college; parochial, attached to a parish; and conventual when belonging to a convent. In this country the churches are cathedral, abbey, and parochial, and those be'ongung to the numerous classes of dissenters, which until late years were called chapels, and by sume denominations are still so called. A list of large churches in England is given in the Builder journal, 1865, paige 123, and 1867, page 701. The designs of the temples of the alcients are given in this Glossary.

The early Christian worship, attended by large congregations, required for its exercise edifices whose interiors were of great extent and well lighted. Nothing was so well adapted for this purpose as the basilice, which, bearing the name from their resembiance to the ancient cuurts of justice, were raised for the purpose. Such was that of St. Patal without the walls of Rome (figs. 141. and 142.). That of St. Giovanui Laterano was divided by tour ranks of columns, which supported the walls, carrying the roofs of five aisles formed by the ranks of columns, the middle one or nave being wider and higher than the others. Each aisle being lower than that adjoinirg it, allowed windows to be introduced in the several walls. The direction of the length of the nave and aisles was from cast to west, and was crossed by a transrerse nave, called a transept, from north to south. In front was an ample porch or portico. The use of the modern church being the same as that of the first Christian basilice, it may le doubted whether for extremely large assemblies a better di-position could be chosen. Bramante imitated the Temple of Peace in the design for the new church of St. Peter. The desire of gatherirg into a single edifice the beauties of several, irduced the architect to crown the edifice imitated from the Temple of Peace with another, imitated from the Pantheon. The obstraction to seeing and Learing caused by the large piers of the later churches is a great defect when compared with the little obstruction that the columns of the basilice present. The cost of the Italian charches is another serious oljection to them, especially in the construction of the domes, which are, with their tambours, buildings deficient in real solidity, from the large portion of false bearins they must involve; creating a very different rensation to that experienced in viewing the lantern, as at Peterborough and Ely Cathedrals.

The smaller parish church, with its nave and an aisle on each side, is not only the most economical, but the best form of plan. It was that which best pleased Sir Christopher Wren, whose churches are gencrally so planned; and we slall here give a short account of one of his best of this form, that of St. James's, Westminster, whose interior is worthy of all praise. It is an excellent example of Wren's love of harmony in proportions; the breath being half the sum of its height and length, its lieight half its longth, and its breadth the sesquialtera of its height: the numbers are 84,63 , and 42 feet. The church is divided transversely into three unequal parts, by a range of six columns on each side of the nave, forming aisles which are each onc-fitth of the whole breadth, the remaining three-fifuhs being given to the breadth of the nave. The roof is carried on these columns, and is as great a proof of the consummate skill of the archite.t as any portion of the fabric of St. Paul's, on account of its extreme economy and durability. It is not further necessary to describe the building; but the observations of its architect with regard to it are of the utmost value, emanating from such a man. "I can hardly think it possible," says the architect, "to make a single room so capacious, with pews and galleries, as to hold above two thousand persons, and all to hear the service, and both to hear distinctly and see the preacher. I endeavoured to effect this in building the parish church of St. James's, Westminster, which, I presume, is the most capacious, with these qualifications, that hath yet beea built; and yet at a solemn time, when the church was much crowded, I could not discern from a gallery that two thousand were present. In this church I mention, though very broad, and the middle nave arched up, yet as there are no walls of a second order, nor lanterns, nor buttresses, but, the whole roof rests upon the pillars, as do also the galleries, I think it may be found beautiful and convenient, and, as such, the cleapest of any form I could invent." On the place of the pulpit in a church of this class, the same architect continues: "Cou-
cerning the placing of the pulpit, I shali observe, a moderate roice may be heard fifty feet distant before the preacher, thir y fuet on each side, and twenty behind the pulpit; and not this, unless the pronunciation be distinct and equal, without losing the voice at the last word of the sentence, which is commonly emphatical, and if olscured spoils the whole sense. A Frenchman is heard farther than an English preacher, because he rilises his voice, and not sinks his last words." Speaking of the dimensions of a church, Wren, a'ter stating that a proposed church may be 60 feet broad, and 90 fcet long, "besides a chancel at one end, and the belfry and portico at the other:" says: "These proportions may le raried; but to build more room than that every person may conreniently hear and see, is to create moise and cosfusion. A church should not be so filled with pews bnt that the poor may have room enough to stand and sit in the alleys, fur to them equally is the gospel proached. It were to be wished there were to be no pews but benches; but there is no stemming the tide of profit, and the adrantage of powkeepers; especially, too, sinee by pews in the chapels of ease the minister is chiefly supported."-."As to the situation of the churches, I should propose thcy be brought as formard as possible into the larger and more open streets, not in obscure lanes, nor where coaches will be much obstructed in the passage. Nor are we, I think, too nicely to observe east or west in the position, unless it falls out properly: such fronts as shall happen to lie most open in riew should be adorned with porticoes, both for beauty and convenience; which, tngether with handsome spires or lanterns, rising in good proportion above the neighbouring houses (of which I bare given sereral examples in the city, of different forms), may be of sufficient ornament to the town, without a great expense fur enriching the catward walls of the churches, in which plainness and duration ought principally, if not wholly, to be studied."

Churches are usually constructed on the plan of a Greek cross, which is that wherein the length of the transrerse part, or transept, is equal to that of the nare; of a Latin cross, wherein the nave is longer than the transept; of a Lorraine cooss, where there is a transept giren to the long choir, as in a cathedral; in rotondo, where the plan is a circle; simple, where the church has only a nave and choir; with aisles, when a subdirision nccurs on each side of the nave; and those with aisles may hare more than one of such aisles on each side of the nare.

The church being a building in which tu do work, the work to be done in one is to carry out the distinctise worship of the body to which it belongs. Hence the church of every communion, if true to its nature, must rary as the worship of that communion raries. As the English Refornation involred no breach of continuity, the ancient churches of this land have in the main serred well for present use. But the aim of that Reformation was to reduce the many services of the older ritual into an order at once simple and congregational, and the modern English church ought therefore to be simple in its l lan and congregational in its working arrangements, absorbing as many of the people into the more actire work of worship as possible. Therefore with a great town congregation the luilding should be broad and high, as well as long, and solid and dignified in every part. It must be broad in proportion to the number for which it is intended, for if the nave be narrow many will not see or hear sufficiently. Might not the nave be sometimes polygonal or circular, as at the Temple Church, and the decagon of St. Gereon at Cologne ?-- cr a witc nare with proportionately narrow aisles, serring rather as passages than omitted altogether? Chairs or benches are both good in their respective ways. The baptistery should be emphasized. The choir or chaucel proper ought not to be much elevated above the nare; practically the raising will be found incouvenient, and artistically many steps at the chancel arch can seldom be successfully managed. The great rise might be between the chancel and the sanctuary leading up to the table. The elevation compensates for the necessary distance, and places the table in full sight of the whole church. The choir or chancel screen is claimed as "distinctly and emphatically Anglican." A low screen of stone or with metal rails is frequently introduced in place of it. The Ecelesiologist journal, 1845, p. 135, contains an elaborate paper on the dirision of a church into nare, chancel, and sacrarium.

The chancel shculd also be broad; usmally one or perhaps two rows of seats or stalls on each side are provided; but might not three, and four rows even, he appropriately introduced for the necessary choir, and made without encroaching on the gangway in the middle? A useful paper on the Choral Arrangements of Churches was read at the Northampton Architectural Scciety, in Oct. 1870. In a large town clurch the usual three sedilia sometimes prorided may be found too few; a stone bench on either side may suit better. An apse or a square end to the chancel must drpend on the circumstances of the case. It is now the fashion to place the " organ chamber" in the north or south side of the chancel, hiding away the instrument and muffing the sound. With a large choir and a lofty chancel, it might with advantage project orer the stalls on nne or both sides. It has been proposed to place the Litany desk, made capable of containing two or three clerks, in a space left free of sittings at the easternmost bay of the nave, or in the central crossing where there are transflts. The
lectern. where the church is small, may well be placed in the chancel; but where the church is intended for a large congregation, and the choir nust have ample room, then the lessons bad best be read at the extreme end of the nave; thus the Litany desk in the middle and the pulpit on the other side, as suggested by Mr. Beresford Hope ai Brighton, in 1874, most of whose remarks are used by wherein; and who adricated the construction of a triforium where it was essentially necessary to have galleries. The experiment of such an arrangement has been tried in a new Roman Catholic church at Amsterdam, with, he said, a telling effect; and one has bern adopted in the memorial church at Cawnpoze. In such a case the table must be well raised, and the chancel screen just so high that those below may be uuder its , tracery, and those aloft, above it.

Complaints are often made as to "the difficulty of seeing and hearing in some of our new churehes." Exeter Hall has been greatly improved by substituting a gently cursel woodtn ceiling for the original ceiling intersected by wide spaces; and "one of the best churches for facility of hearing is that of St. Pancras in Euston Équare, which accommodates 2,500 persons: it has a flat ceiling, and no massive arches and columns to intercept the sind, which travels freely round the walls of the spaciuns building." Mr. Spurgeon's Tabernacle at Newington, is also praised.

The sulject of Church arrangement during the nedieral period has been elucidated by Mr. W. H. Dykes, architect, in a paper read before the Yorkshire Architectutal Society, in 1852 ; and the Rev. M. E. C. Walcott, On Church and Conrentual Arrangement, 1861, 8 ro., describes the conventual plaus adopted by the various religious orders.
 a dome of ogee form, like the bowl of a reversed cup, carried or suptorted by four columis, the whole covering the altar. In later times the name was transferrel to a tabernacle, coffer, or eise, in which the host was deposited; whence the covering was thence called umbraculum or baldacchino. The earliest known instance of a ciborium appears to have been one in the church of St. George at Thessalunica, and supposed to lave been in use about A.D. 325 . It is also the name for the reesel in which the bread is placed at the Communion, instead of on a paten when many persons are present at it. Cilery. The drapery or fuliage carved on the heads of columus.
Cill. (Sax. Cill.) The timber or stome at the foot of a door, \&c. Ground cills are the timbers on the ground which support the pests and superstructure of a timber building. The term also applies to the bottom pitce which supports quaster partitions.
Cimbia. A fillet string, list, or cornice.
Cinifiarch. The apartment in old churches where the plate and vestments were deposited.
Cincture. The ring, list, or fillet at the top and buttom of a column, which divides the shaft of the column from its capital and base.
Crace-Cento Architecture. Literally 500 , but used as a contraction for 1500 , the century in which the rerival of ancient architecture took place in Italy. The term is applied to distinguish the style of architecture which then arose in that country. In lrance the style as introluced there is called Style François premicr, and Renaisance; and in Englaud the Revival, and Elizalethan.
Cinquafoll. An ornament used in the Painted style of architecture; it consists of flve cuspidated divisions or curred pentents inscribed in a pointed arch, or in a circular ring applied to windows and panels. The cinquefoil, when inscribed in a circle, forns a rosette of five equal leares haring an open space in the middle, the leavts being formed by the open spaces, and not by the solids or cusps.
Cippes. A small low column, sometimes wihout a base or capital, and most frequently bearing an inscription. Among the ancients the cippus was used for various urpuses; when placed on a road it indicated the distance of places; on other occasious cippi were employed as memorials of remarkable events, as landmarks, and fur bearing sepulchral epitaphs.
Circle. (Lat. Circulus.) A figure contained under one line called the circumference, to which all lines drawn from a certain point within it, called the centre, are equal. It is the most capacious of all plain figures.
Circle. The name given to one of the megalithic remains, as at Stonehenge, Avebury, and other places.
Circular Buildings. Such as are built on a circular plan. When the interior aiso is circular, the building is called a rotunda.
Circular-Circular, or Cylindro-cylindric Work. A term applied to any work which is furmed by the intersection of two cylinders whose axes are uot in the same dircetion. 'J he line formed by the intersection of the surfaces is termed, by mathematicians, a line of double curcature.
Circular Winding Stairs. Such as have a cylindric case or walled enclosure, with the planes of the risers of the steps ending towards the axis of the cylinder.
Chicular Work. A term applied any work with cylindric faces, as roofs, \&c.
Circumference. The boundary line of a circular body.

Cuscumpolutions. The turns in the spiral of the Ionic capital, which are usually three, but there are four in the capitals of the temple of Minerva Polias.
Circus. (Lat.) In ancient architecture, a straight, long, narrow building, whose length to its breadth was generally as 5 to 1 . It was divided down the centre by an ornamented barrier called the spina, and was used by the Romans for the exhibition of public spectacles and chariot races. Several existed at Iome, whereof the most celebrated was the Circus Maximus, Julius Cas:ar improved and altered the Circus Maximns, and that it might serve for the purpose of a naumachia, supplied it with water. Augustus added to it the celebrated oluelisk now stauding in the Piazzo del Popolo. Of this circus no vestiges remain. Besides these at Rome were the circi of Flaminius, near the lantheon; Agonalis, occupying the site of what is now called the Piazza Navona; of Nero, on a portion whereof St. Petcr's stands; of Antoninus and Aurelian, of which no portion whatever exists; and of Caracalla, whieh was 738 feet in length, and is at the present time sufficiently perfect to exhilit its plan and distribution in the most satisfactory manner. The spectacles of the circus were called the Circensian Games, and consisted of chariot and horse races, of both whereof the Romans were passionately fond, but particularly of the former, which in the times of the emperors excited so greats an interest as to diride the whole population of the city into factions, distinguished by the colours worn by the different chariotecrs. The disputes of these factions often led to serious disturbances.
Cissold. In gcometry, a curred line invented by Diocles. Its name is derived from - кıбoos, iry, from the curve appearing to mount along its assymptote, as iry climbs on the trunk of a tree. The curve consists of two infinite branches above and below the diameter of a circle, at one of whose ends a tangent being drawn, the curve approaches the tangent without ever meeting it. The curre was invented by its anthor with a view to the solution of the famous problem of the duplication of the cube, or the insertion of two mean proportionals between two given straight lines. Its meehanical construction may be found in Newton's Arithmetica Universulis.
Clst. (Gr. Kı $\sigma \tau \eta$, a chest.) A term used to denominate the mystic laskets used in processions connected with the Eleusinian mysteries. It was originally formed of wicker work, and when afterwards made of metal, the form and texture were preserved in imitation of the original material. When sculptured on ancient monuments, it judicates some connection with the mysteries of Ceres and Bacchus.
Cist, or Cistraen. In Celtic or Druidical luildings, the chamber formed of laterally recumbent blocks of stone.
Cistern. (Gr. Kı $\sigma \tau \eta$.) A reservoir for water, whether sunk below or formed of planks of wood above ground. In the construction of an earthen cistern, a well-tempered stratum of elay must be laid as a foundation for a brick flooring, and the bricks laid in terras murtar or Parker's cement. The sides must be built with the same materials; and if in-a cellar or other place near a wall a space must be filled with clay, from the foundation to the top of the cistern contiguous to the wall, by which means it will be preserved from injury. Cisterns above ground are usually formed of wooden planks lined with lead or zinc, and carried by bearers; but the cistern formed of slates, now much used, is the best for adoption.
Civic Crown. A garland of oak leaves and acorns, often used as an arehitectural ornament.
Civil Architecture. The art of erecting every species of edifice destined for the use of man, the several matters necessary to the knowledge whereof forms the snbject of the Encyclopædia.
Clamp. In brick-making, a large mass of crude bricks generally piled quadrangular on the plan, and six, seven, or eight feet high, arranged in the brick field for burning, which is effected by flues prepared in stocking the clamp, and breeze or cinders laid between cach course of bricks.
Clamp. In carpentry and joinery, is a piece of wood fixed to another with a mortise and tenon, or a groove and tongue, so that the fibres of the piece thus fixed cross thoso of the other, and therchy prevent it from casting or warping.
Clamp and Clasp Nails. See Nails.
Classic Architecture. The term applied in a broad sense to the works of the ancient Greeks and Romans. The term classic is applied sometimes to a style, but none such exists. The Greek and Roman styles of arehitecture being so different in principle, they cannot correctly be described under one name. Of late years the term has constantly been misapplied to the modern Italian sehools of architceture.
Clathin. In ancient Roman architecture, were bars of iron or wool which were used to secure doors or windows.
Cfar. In ordinary language, any earth which possesses sufficient ductility to admit of being kneaded with water. Common clays may be divided into three classes, viz. unctuous, meagre, and calcareous. Of these the first is chiefly used in pottery, and the second and third are employed in the manufacture of bricks and tilcis.

Claying. The operation of spreading two or three coats of clay and incorporating them, for the purpose of keeping water in a ressel. This operation is also called puddling. Cleam. A term used in some places with the same signification as to stick or to glue.
Clear. The nett distance between two bodies, where no other intervenes, or between their nearest surfaces.
Clear Story or Clere Story. The upper vertical divisions of the nave, chorr, and transepts of a church. It is clear above the roof of the aisles, whence it may have taken its name; but some have derived the name from the clair or light admitted through its tier of windows. Nearly all the eathedrals and large churches have clear stories, either as tiers of areades, or of windows over the triforia. There is no triforium in the priory church of Bath, but a series of large and lofty windows constitute the clear story. The choir at Bristol Cathedral has neither triforium nor clear story. Examples are giren in figs. 1416 to 1426 .
Cleats. Small wooden projections in tackle to which to fasten the ropes.
Clabiving. The act of forcibly separating one part of a piece of wood or other matter from another in the direction of the fibres, either by pressure or by perenssion with some wedge-formed instrument.
Cexft. The open crack or fissure which appears in wood which has been wrought too green. The carpenter usually fills up these eracks with a mixture of gum and siwdust, but the neatest way is to snak both sides well with the fat of beef broth, and then dip pieces of sponge into the broth, and fill up the cracks with them; they swell out so as to fill the whole crack, and so neatly as to be searcely distinguishable.
Clepsydra. (Gr. from $K \lambda \in \pi \tau \omega$, to conceal, and ' $\gamma \delta \omega \rho$, water). A water clock, or vessel for measuring time by the running out of a certain quantity of water, or sometimes of sand, through an orifice of a determinate magnitude. Clepsydras were first used in Egypt under the Pto'emies; they seem to have been common in liomo, though they were chiefly employed in winter. In the summer season sundials were used.
Clinching. The itet of binding and driving backward with a hammer the pointed end of a nail after its penetration througl a piece of wood.
Clinkers. Bricks impregnated with nitre, and more thoronghly burnt by being nearer the fire in the kiln.
Closca. The name given to the common sewer of ancient Rome for carrying off into the Tiber the filth of the city. The chief of these, called the eloaca maxima, was built by the first Tarquin of huge blocks of stone placed together without cement. The top was arched, and consisted of three rows of stones one abore another. It began in the Forum Romanum, was 300 paces long, and entered the Tiber between the temple of Vesta and the Pons Senatorius. There were as many principal sewers as there were hills in the city.
Cloak-pins and Rail. A piece of wool attached to a wall, furnished with projecting pegs on which to hang hats, great-coats, \&e. The pegs are called cloak pins, and the board into which they are fixed, and which is fastened to the wall, is called the rail.
Clock Tuwer. A tower specially designed to hold a clock with its quarter and hour bells. Bells which are to be rung shonld properly be placed in a distinct erection, as the ribration injures the clock.
Cloister. (Lat. Claustrum.) The square space attached to a regular monastery or largo church with a peristyle or ambulatory round, usually with a range of building over it. The eloister is perhaps, ex vi termini, the central square shut in or closed by the surrounding buildings. Cloisters are usually square on the plan, having a plain wall on one side, a series of windows between the piers or columns on the opposite side, and arched orer with a raulted or ribbed ceiling. It mosily forms part of the passage of communication from the church to the chapter house, refectory, and other parts of the establishment. In England all the cathedrals, and most of the collegiate churehes and abbeys, were provided with eloisters. On the Continent they are commonly appended to large monasteries, and are often decorated with paintings, and contain tombs.

A common appendage to a cloister was a lavatory, or stone trongh for water, at which the monks washed their hands previous to entering the refeetory.
Close String. In dog-legged stairs, a stairease without an open newel.
Closer. The last stoue in the horizontal lengtly of a wall, which is of less dimensions than the rest, to close the row. Closers in brickwork, or pieces of bricks (or bats), less or greater than half a brick, that are used to close in the end of a course of brickwork. In English as well as Flemish bond, the length of a briek being but nine inches, and its width four inches and a half, in orler that the vertieal joints may be broken at the end of the first stretcher, a quirter brick (or bat) must be interposed to preserve the continuity of the bond, this is ealled a quen-cioser. A similar preservation of the bond may lue obtained by inserting a three-quarter bat at the angle in the stretching course ; this is ealled a king-c?oser. In both cases an horizontal lap of two inches and a quartor is left fur the next header.
Closet. A small arartment frequently made to communicate with a bed-chamber, and
used as a dressing room. Sometimes a closet is made for the reception of stores, and is then called a store closet.
Clough or Cloyser. The same as paddle, shuttle, sluice, or penstock. A contrivance for retaining or letting out the water of a canal, pond, \&c.
Clocgu Arches or Papnee-holes. Crooked arches by which the water is conveyed from the upper pond into the chamber of the loek of a canal on drawing up the clough. Clout Nail. See Nails.
Ci.ustered. The combination of several members of an Order penetrating each other.

Clustered Pillar. Several slender pillars or slafts attached to each other so as to form one. In Roman arehitecture the term is used to denote two or four columns which appear to intersect cach other, at the angle of a building, or of an apartment to answer to each return.
Coarse Srtaf. In plastering, a mixture of lime and hair used in the first coat and floating of plastering. In floating, more hair is used than in the first coat.
Coar. A thickness or corering of plaster, paint, or other wrom done at one time.
Cob-waifs. Such as are formed of mud mixed with straw, not uncommon in some districts of England, but the best are to bo found in Somersetshire.
Coching or Cogging. Seo Cauliing.
Cockle Stars. A term sometimes used to denote a winding staircase.
Condings. A Scotch term for the base or footings on which chimney jambs are set in the ground floor of a building.
Ccenaculum. (Lat.) In ancient Roman arehitecture, an eating or supper room. In the early period of their history, when the houses rarely consistell of more than two storirs, it denoted generally the upper story. The wr, ed also signified lolgings to let out for hire. Also the upper stories of the circi, which were divided into small shops or rooms.
Ceenatio. An apartment in the lower part of the Roman houses, or in a garden, to sup or eat in. From Suetonius it would appear that it denoted a banqueting and summer house. In the Laurentine Villa a large cœenatio is described by the younger Pliny, and it seems, from the description, that it was placed in the upper part of a lofty tower.
Coffer. (Sax. Corne.) A sunk panel in vanlts and domes, and also in the soffite or under side of the Corinthian and Comprsite cornices, and usually deenrated in the centre with a flower. But the application of the term is general to any sunk panel in a ceiling or soffite. See Carsson.
Coffer Dam. A case of piling, water-tight, fixed in the bed of a river, for the purpose of exeluding the water while any work, such as a wharf wall, or the pier of a bridge, is earried up. A coffer dam is variously formed, either by a single enclosure or by a double one, with clay, ehalk, bricks, or other materials between, so as effectually to exelude the water. The coffer dam is also made with piles only driven close together, and sometimes notched or dore-tailel into one another. If the water be not rery deep, piles may be driven at a distance of five or six feet from each other, and grooved in the sides with boards let down letween them in the grooves. For building in eoffer dams, a gool natural bottom of gravel or elay is requisite, for though the sides be made sufficiently water-tight, if the bed of the river be loose, the water will ooze up through it in too great quantities to permit the operations to be carried on. It is almost unnecessary to inculcate the necessity of the sides being very strong and well-braced on the inside to resist the pressure of the water.
Cogging. See Catliking.
Cohesion. See Resistance.
Cols. (Fr.) The same as quoin. The angle formed by two surfaces of a stone or brick building, whether external or internal, as the corner formed by two walls, or of an arch and wall, the corner made by the two adjacent sides of a room, \&c.
Cokel, Cockle, or Coakel. A furnace made of rery thick iron for geverating heated air of great intensity, the iron often being made red-bot.
Coliseum. The name giren to the amphitheatre built (a.d. 72) by Vespasian.
Collar or Colarino. (It.) A ring or cincture; it is another name for the astragal of a column. It is sometimes called the neck, gorgerin, or hypotrachelinm.
Collar Beam. A beam used in the construction of a roof above the lower ends of the rafters or base of the roof. The tie beam is always in a state of extension, but the collar beam may be cither in a state of compression or extension as the principal raf'ers are with or without tie beams. In trussed roofs, collar beams are framed into queen posts; in common roofs, into the rafters themselves.
In general, trusses have no more than one collar beam; yet, in very large roufs, they may haretwo or three collar brams besides the tie beam. The collar beam supperts or trusses up the sides of the rafters, so as to kcep them from sagging withont any other support, but then the tie beam would be supportol only at its extremities. In common purlin roofing, the purlins are laid in the acute angles between the rafters and the upler edges of the collar btams.

Colrege. An establishment properly so termed for the education of youth in the higher branches of stady. It generally consists in this country of one or more courts or quadrangles, round which are disposed the rooms for the students, with the chapel, library, and eating-hall; apartments for the head of the ostablishment and for the fellows aud studeuts; a combination room, which is a spacious apartment wherein the latter assemble after dinner; kitchen, buttery, and other domestic offices, latrines, gardens, \&c. On the Continent the college differs very materially.

At Rome, the college, formerly that of the Jesuits, now the Roman college, is a rery large edifice, simple in claracter, as this species of building seems to demand. Its length is 328 feet, and its height, without the attic, 87 feet. The other buildings in Rome which pass under the name of colleges are not to be considered as establishments for education, being destined to the study of theology and other sciences; such are the Propaganda and the Sapienza: the latter is one of the finest buildings of that city. At Genoa is a magnificent college, which was formerly the palace of the Balbi family, by whom it was given to the Jesuits for a place of education. Of the many colleges in Paris hardly one, says the author of the article "College" in the Encyclopédie Méthodique, deserves notice. The same writer says that in England alone are found examples of what a college ought to be.

The universities of Oxford and Cambridge form good examples; many are irregular in plan, but are convenient in disposition, and highly picturesque. Merton Cullege, at Oxford, erected for secular priests, 1270-77, was the earliest in England; only a small portion of it remains, such as the stone treasury, and the chancel, an exquisite specimen, and one of the carliest, of the Dccorated period. Several colleges were founded both in Oxford and Cambridge within a few years afterwards; but no other collegiate buildings were erected in either university until near the end of the fourteenth century, when the magnificent foundation of William of Wykeham arose, emphatically termed New College, because it was to a great extent on a new system; he also crected the college at Winchester, both founded between 1380 and 1390, and alchough belonging more to the monastic thau to the strictly domestic character, they yet afford valuable examples of the style of building of their period.

In Oxford the most regular college in plan is Queen's College, commenced as late as 1710 , and in the Italian style. The accommodation afforded is for about 170 persons, including the provest and fellows, whose apartments, of course, occupy a cousiderable portion of the space. A bed and sitting room, both of moderate dimensions, are as much as can be afforded to the students. Nicholas Hawksmore, the architect, completed the first quadrangle and library in 1759. Of the colleges in Oxford, Christchureh is past question the most magnificent. Its extent, towards the street, is 400 feet. What is callod Christehurch Meadow, attached, affords delightful walks for the exerciso and recreation of the members, being bounded on the east by the Cherwell, on the south by the Isis, and on the west by a branch of the same river. The whole establishment is worthy of the princely founder. Sueh a magnificent foundation cannot elsewhere be referred to. Keble College, by W. Butterfield, 1867-70, does nut appear to hare been yet illustrated; it encloses the greater part of a quadrangle 243 feet by 220 feet. The chapel (1875) has been erected at a cost of about $82,000 \mathrm{l}$. in a decorated style, with mosaic work, stained glass, marbles, \&c.

In Cambridge, the library and court of Trinity Cullege, the former one of the finest works of Wren; and the extraordiuary and beantiful chapel of King's College, are the prineipal features of this university. The chapel is, inside, 289 feet long, 42 teet broad, and 80 feet high to apex of the vaulting.

Besides the modern Queen's colleges iu Ireland, Trinity College, Dublin, is the only one requaring notice. It was first designed by Sir William Chambers, and carried out by G. Meyers. The front is 300 feet in length, with a total depth of 600 feet, which encloses two quadrangles; it was erected 1759-80. The campanile, in the middte, 95 feet high, was erected 1853, by Sir C. Lanyon. The number of students is upwards of 500 . Near to the library is another court, erected 1818, with the anatomy honse, 1824. Beyond these are the nєw museum buildings, 1852-5, designed by J. MacCurdy, with Messrs. Deane, Son, and Woodward.

In Seotland, among the latest buildings of this sort, is the extensire one erected 1864-1870 for the university of Glasgow, at a cost of about $420,0001$. , from the desigus of Sir G. G. Seott, R.A. The plan is given in the Builder journal, xxriii. 1870, to which work the student is referred for a description of it. This publication also gives, xxiii., 1865, the Malvern Proprietary College, by C. F. Hansom ; xxri., 1868, the College of St. Nicholas at Lancing, by 1R. C. Carpenter, with its chapel by Messrs. Slater and Carpenter; and xxix., 1871, Owens Cullege at Manchester, for seientific purposes, by Alfred Waterhouse.

In this class there have sprung up a number of bnildings specially designed for the purposes of technical education, having lectnre rooms and work rooms fitted with the requisite apparatus for working scientifieally or according to trades. These are so
numerons and special that the student is at once referred to the work by Mr. E. C. Robins, on Technical Schools and College Buildings, 1887.
Colonelly. (It.) The Italian name for the posts employed in any truss framing.
Colonnabe. (It. Colonnata.) A range of columns. If the columns are four in mumber, it is called tctrcastyle; if six in number, hexastyle; when there are eight, octustyle; when ten, deccustyle; and so on, according to the Greek numerals. When a colonnade is in front of a building it is called a portico, when surrounding a building a poristyle, and when double or more polystyle. The colonnade is moreover designated according to the nature of the intercolumniations introduced as follows: pyezostyle, when the space between the columns is one diameter and a half of the column; systylc, when it is of two diameters; eustyle, when of two diameters and a quarter; diastyle, when three; and areostyle when four.
Columbarium. (Lat.) A pigeon-house. The plural of the word (columbaria) was applitd to designate the apertures formod in walls for the reception of cinerary urns in the ancient Roman cemeteries.
Columelle. A name sometimes used for balusters.
Columen. The ridge piece of a roof.
Colume. (Lat. Columna.) Generally any body which supports another in a vertical directiun. See Prer, Pillar, and Shaft. There are rarious species of columns, as twisted, spiral, and rusticked. Cabled or rudentcd columns are such as have their futings filleil with cables or astragals to about one-third of the height. Carolitic columns have their shafts fuliated. Columus were occasionally uted as monuments. The following list comprises the best known ones; the heights in feet are to the top of the abacus:-

By the side of the Halle au Blé at. Paris there is a gnomonic column for showing the time, erected by Catharine di Medicis.

The Columna Bellica at Rome was near the temple of Janus, and at it the consul proclamed war hy throwing a javelin towards the enemies' country. The chronological column was rather historical, bearing an inscription to record an event. The cruciferal column is one bearing a cross; the funcreal one, an ura; the zoophoric, an animal; and the itinerary one pointed out the various roads diverging from its site. There was among the Romans what was called a lacteal column, which stood in the vegeta! Ie market, and coutained on its pedestal a receptacle for infants abandoned by their parents. (Jurenal, Sat. vi.) On the legal column were engraved the laws; the boundary or limitative column marked the boundary of a province ; the manubial column was for the reception of trophies or spoils; and the rostral column, decorated with prows of ships, was for the purpose of recorling a naval engagement. The triumphal column was erected in commemoration of a triumph, and the sfpulchral one was erected on a tomb. The milliarium aureum, or milliary column of the Romans, was originally a column of white marble, erected by Augustus in the Forum, near the temple of Saturn. From it the distances from the city were measured. It is a short column with a Tusean eapital, having a ball of bronze (formerly gilt) for its finish at top, and is still preserved in the Capitol.
Columpiation. The employment of columns in a desigu.
Comitiom. (Lat.) A building which stood in the Roman Forum, wherein assemblies of the people were held. It occupied the whole space between the Palatine Hill, the Capitol, and the Via Sacrat:
Commssure. (Lat.) The joint between two stones, or the application of the surface of one stone to the suriace of another.
Common Centring. Such as is constructed without trusses, but having a tio beam at its ends. Also that employed in straight vaults.
Comron Joist. One in single naked flooring to which the boards are fixed. Such joists are also called boarding joists, and should not exceed one foot apart.
Common Rafter. One in a rouf to which the boarding or lathing is attacherl.
Common Roofing. That which censists of common rafters only, which bridge over the purlins in a strongly framed roof.
Cumparten. (Fr. Compartir, to divide.) That which is divided into several parts is said to be comparted.
Compartition. The distribution of the ground plot of an edifice into the varicus passages and apartments.
Cumpartment. A subdivisional part, for ornament, of a larger division. To this alone is the term properly applicable.
Compartmeat Ceming. One divided into panels, which are usually surrounded by mouldings.

Compartment Tiles. An arrangement of varnished red and white tiles an a roof.
Compasses. (Fr. Compas.) A mathematical instrument for drawing circles and mansuring distances between two points. Common compasses have two legs, moreable on a joint. Triangular compasses have two legs similar to common compasses, and a third leg fixed to the bulb by a projection, with a joint so as to be moveable in every direction. Beam compasses are used for describing large circles. Proportional compasses have two pair of points moreable on a shiting centre, which slides in a groore and thereby regulates the proportion that the opening at one end beirs to that of the other. They are useful in enlarging or diminishing drawings.
Compass Saw. One for diriding boards into curred pieces; it is very narrow and without a back.
Comipass Window. An old English term for a projecting window of a circular plan.
Complement. The number of degrees which any angle wants of a right angle. The complement of a parallelogram is two lesser parallelograms, made by drawing two right lines parallel to the sides of the greater through a given point in the diagonal.
Compluvium. (Lat.) An area in the centre of the ancient Roman houses, so constructed that it might receire the waters from the roofs. It is also used to denote the gutter or eave of a roof.
Cumpo. A name often given to Parker's cement, or the so-called Roman cement. It is also the name of the material used for making imitation carved-work for frames, de., and made of glue and whiting: it is the short for "composition."
Conposite Arch. The same as the pointed or lancet arch, but better appropriated to an arch of four centres.
Composite Numbers. Such as can be divided by some other number greater than unity, wheress prime numbers admit of no such divisor.
Cumposite Order. The fifth order used in Roman and Italian architecture, and being of a more decorative character than the Corinthian order. The capital is somewhat similar to the Corinthian ; the volutes are larger, but not so large as those in the Ionic capital. The base is shown in fig. 1368.
Chmposition in Architecture. The student will find that in most cases a good distribution of plan will lead to good sections and elevations. Upon the adaptation of the different fronty of the building to sort with the internal conrenience, the greatest care should be bestowed; and then the decoration of such an edifice becomes a secondary and comparatively easy work, though requiring, of course, the early cultivation of the taste of the architect, and an intimate acquaintance with the parts of the design. Fore the thorough comprehension of a projected edifice, a plan, section, and elevation are required; these comprise the whole clementary part of the mechanical process necessary for making a design or composition. To carry out such a design, working drawings may be required showing the parts at large. See Design.
Composition of Forces. The comlination or union of several forces for determining the result of the whole.
Compoond Pier. A term sometimes given to a clustered column.
Compressiblimty. The quality of bodies which permits of their being reduced to smaller dimensions. All bodies, in consequence of the porosity of mattor, are comprossible, but liquids rosist compression with immense foree.
Concamerata Sudatio. An apartment in the ancient gymnasium, between the laconicum or stove, and the warm bath. To this room the racers and wrestlers retired to wipe off the sweat from their bodies. Sce Caldariom.
Concamerate. (Lat.) To arch over.
Concavity. (Lat. Concavus, hollow.) Of a curre line is the side between the two points of the curve next its chord or diameter. The concarity of a solid is such a curved surface, that if any two points in it be taken, the straight line between them is in a void space, or will coincide in only one direction with the surface.
Concentric. (Lat.) Having a common centre, as are the radii of a circle.
Conchoid of Nicomedes. A name given to a curve invented by that mathematician for solving the two famous problems of antiquity-the duplication of the cube, and the trisection of an anyle. It continually approaches a straight line without meeting it, though ever so far produced.
Concrete. (Lat. Concrescere.) To coalesce in one mass. A mass composed of stons chippings, or ballast, cemented together through the medium of sand and lime, or of cement, and usually employed in making foundations where the soil is of itself too light or boggy, or otherwise insufficient for the reception of the walls. It is likewise used to cover the ground under a building to keep ditmp from rising. Also to form a backing to a wharf wall, or one at the side of a railway cutting, for extra strength. Of late years it has heen uscd in lieu of bricks or stone wherewith to build houses; for incombustible flooring; and a church has been built of it near Paris. Large concrote blocks are used for the interior work of piers to harbours, and similar extensive erectuns.
Condur. (Fr.) A long narrow walled passage underground, for secret communication
between different apartments. It is a term also used to denote a canal or pipe for the conreyance of water, and is also applied to the structure to which it is conveyed for delivery to the public.
Condr's Patrint Fluid. Called, from its mode of action and effectireness, "Nature's Disinfectant;" it purifies, deolorises, and disinfects, by the agency of nascent or ozonie oxygen, its active principle. It combines powerful purifying properties with a wholesome nature.
Cone. (Gr. Kwlos). A solid body, having a circle for its base, and terminatrng in a point called its vertex; so that a straight line drawn from any point in the circumference of the base to the vertex will coincide with the convex surface. If the axis or straight line drawn from the centre of the base to the vertex be perpendicular to the base, it is termed a right cone; if not, it is an oblique cone.
Confessional. (Lat.) In Catholic churches the small cell wherein the priest sits to hear the confession of, and give absolution to, the penitent. It is usually constructed of wood and in three dirisions, the central one whereof has a seat for the couvenience of the priest.
Configuration. The exterior form or superficies of any body.
Cengé. (Fr.) The same as Aporhyge.
Conic Sections. The figures formed by the intersections of a plane with a cone. They are five in number: a triangle, a circle, an ellipse, a parabola, and an hyperbola; the three last, however, are those to which the term is usually applied.
Conical Roof. One whose exterior surface is shaped like a cone.
Conisteriuar. (Gr. koyior η piov.) In ancient architecture a room in the gymnasium and palæstra, wherein the wrestlers, having been anointed with oil, were sprinkled over with dust, that they might lay firmer hold on one another.
Conjugate Dianeters. The diameters in an ellipsis or hyperbola parallel to tangents at each other's extremities.
Conoid. (Gr. Kovocions.) Partaking of the figure of a cone. A figure generated by the revolution of a conic section round one of its axes. There are three kinds of conoids, the elliptical, the hyperbolical, and the parabolical, which are sonetimes otherwise denominated by the terms cllipsoid or spheroid, hyperboloid, and paraboloid.
Cusservatory. A building for preserving curious and rare exotic plants. It is made with beds of the finest composts, into which the trees and plants, on being remored from the greenhouse, and taken from the tubs and pots, are regularly planted.

With respect to its construction, it is very similar to the greenhouse, but it must be more spacious, loftier, and finished in a superior style. The sides, ends, and roofs should be of glass for the free admission of light, and for protection of the plants. It should be, moreover, seated on a dry spot, and so as to receire during the diy as much of the sun's heat as possible. It is to be provided with flues, or hot-water pipes, to raise the temperature when necessary ; there must also be contrivances for introducing fresh air when required. In summer time the glass roofs are taken off, and the plante exposed to the open air ; but these are restored always, if taken off, on tho slightest indication of frost. The chief point in which conservatories differ from greenhouses is, that in the latter, the plants and trees stand in pots placed upon stages, whereas, in the former, they are planted in beds of earth surrounded with borders. Sce Greenhouse.
Console. The same as Ancones.
Constroction. Literally, the building up from the architect's designs; but amongst architects it is more particnlarly used to denote the art of distributing the different forces and strains of the parts and materials of a building in so scientifie a manner as to aroid failure and insure durability. The second book of the Encyclopædia is devoted to the subjects involved in the science of construction.
Contact. (Lat. Contactus.) In geometry, the touching any figure by a line or plano which may be produced either way without cutting it.
Content. (Lat. Contentus.) The area or superficial quantity contained in any figure.
Contexture. (Lat. Contextus.) The inter-disposition, with respect to each other, of tho different parts of a body.
Contignatio. In Roman carpentry, the same as that now called naked flooring.
Continued. A term used to express anything uninterrupted. Thus, an attic is said to he continued when not broken by pilasters ; a pedestal is continued when, with its mouldings and dado or die, it is not broken under the columns; so of a socle, \&c.
Contour. (It. Contorno.) The external lines which bound and terminate a figure.
Contract. An agreement, attached to a specification for the performance of certain works in accordance therewith, and with the drawings accompanying it, if any.
Convent. (Lat. Conventus.) A building for the reception of a society of religious persons, but more properly applied to one for the habitation of nuns.
Cunventual Church. Onc attached or belonging to a convent.

Confrrgent Lines. Such as, if produced, will meet.
Contex. (Lat. Convexns.) A form whieh swells or rounds itself externally. A convex rectilinear sarface is a curved surface, in which a point being taken, a right line passing through it can only be drawn in oue direction.
Coping. (Dutch, Cop, the head.) The lighest and covering course of masonry or briekwork in a watl. Coping equally thick throughout is called parallel coping, and ought to be used only on inclined surfaces, as on a gable, for eximple, or in situations sheltered from the rain, as on the top of a level wall, which it is intended to cover by a roof. Cuping thinuer on one edge than on the other serves to throw off the water on one side of the wall, and is called feather-edged coping. Coping thicker in the middle than at the edges is called saddle-backed coping. This, of course, delivers ach way the water that falls upon it. It is commonly used on the walls of a sunk area, on dwarf walls carrying an iron railing, and in the best constructed fence walls. In Gothic arehitceture, coping is either inclined upon the faces or plumb; in the former case the sides of the vertical section are those of an equilateral triangle with an horizontal base. It is sometimes in one inclined plane, terminated at top by an astragal, and at others in tro inclined planes parallel to each other, the upper one bcing terminated at top by an astragal and projecting before the lower, which, like that on one inclined plane, changes its direction at the boitom into a narrow verical plane projecting before the level sotite before the parapet. The inclined coping is occasionaly used without the astragal. 'I he sofite of a projection is said to cope over when it slants downwards from the wall.
Corper. (Cuprum, a corruption of Cyprium, having been originally brought from the island of Cyprus.) Une of the metals used in building, but not now to the extent to which it was employed a few years back.
Cordell. (Lat. Corbis, a basket.) A carred basket, with sculptured flowers and fruit, used as the finishing of some ornament. The name is given to the lasket placel on the heads of Caryatides, under the sofite of the architrave cornice. The term is also apphed to the bell of the Corinthian capital.
Corsel. A range of stones projecting from a wall for the purpose of supporting a parapet or the superior projecting part of the wall. Their fronts aro variously noulded or carved. They perform the same office as the modillions of an order, but the term is chiefly confined to Pointed architecture.

The word corbel is sometimes used to denote a projection from a wall to carry a statue or bust. It also signifies a horizontal range of stones or timber fixed in a nall or in the side of a vault, serving to sustain the timbers of a floor or of a vault. In old buildings many of the timber floors or contignations were thus supported.
Conbel Table. A series of small arches for carrying a battlement, parapet, or cornice, and resting on corbels. Also any projection borne by corbels, as figs. 1382 to 1354.

Fig. 1382. Nebuly Corbel Table.

Fig. 1383. Wary Corbel Table.

Fig. 1384. Corbel Table.

Corbie Steps. Steps in the gables of old buildings, especially as used in Scotland.
Cordon. The edge of a stone on the outside of a building.
Core. The interior part of anything. In walls of masonry there should be thorough stones at regular intervals, for strengthening the core, which is commonly composed of rubble stones, or, when they are not procurable, two bond stones lapped upon each other may lie used, one from each face of the wall. Instead of each thorough stone two stones may be laid level on the upper bed, and one large stone in the core lapped upon both, observing that the tails of the two lower stones be right-angled; by this means the two sides of the wall will be completely tied together.

The core of a column is a strong post of some material inserted in its central carity when of wood.

Bricks or tiles brought out for the formation of cement cornices or other projections. It is also the interior part of a lump of lime, which has not been sufficiently burnt In slaking lump lime these "cores" will not disintegrate, consequently they can be removed; but when lime is ground, these lumps are ground up with it; the result is an infurior mortar.
Corinthian Order. The fourth order nsed in Roman and Italian architecture. It is richer than the Ionic order; and its capital is composed of a bell-shaped vase, surrounded
with leafage, and having small rolutes projecting at each angle of it. The lase is shown in fig. 1368. The two following capitals, figs. 1385 and 1386, are those to which our knowledge is confined of the use of this order in Greece. The first one can, howerer, scarcely be considered Corinthian, and the second one not very strictly so : the monument was erected about 330 b.c. See Choragic Monument.

Fig. 1385.
T'emp'e of the Winds at Athens.

Fig. 1386.
Choragic Monument of Lysicrates at Athens.

Cornice. (Fr. Corniche.) Any moulded projection which crowns or finishes the part to which it is affixed; as the cornice of an order, of a pedestal, of a pier, door, window, house, \&c. The cornico of an order is a secondary member of the order itself, being the upper subdivision of the entablature.
Curnna. (Lat.) A mamber of the cornice, with a broad vertical face, and us:ally of consilerable projection. The solid, out of which it is formed, is commonly rectssed upwards from its sofite, and this part by the English workmen is called the drip, because it facilitates the fall of the rain from its edge, by which the parts below it are shelterud. The situation of the corona is between the cymatium above, and the bed-moulding below.
Corosa Lucis. A crown or circlet suspended from the roof or vaulting of a church, to hold tipers or gas jets.
Corridor. (It. Corridore.) A gallery or passage round a quadrangle leading to tho various apartments. Also, any gallery of communication to them.
Consa. (Lat.) In ancient architecture, the name given by Vitruvius to any platband or square fascia whose height is greater than its projection.
Cortile. (It.) A small court or area, quadrangular or curred, in a dwelling-house, which is surrounded by the buildings of the house itself.
Cottage. (Sax. Cor.) A small house or dwelling for a poor person.
Cottage Ornée. A small villa erected in the country, emulating tho houses of a rural character, and not affecting to display exteriorly any particular style. They were very fashionable at the beginning of the nineteenth century.
Counter Drain. A drain parallel to a canal or embanked mater-course, for collecting tho soakage water by the side of the canal or embankment to a culvert or arched drain under the canal, by which it is conveyed to a lower level.
Counterfort. (Fr.) A buttress or pier built against and at right angles to a wall to strengthen it.
Counter gavge. In carpentry, the measure of the joints by transferring, as, for instance, the breadth of a mortise to the place on the other timber, where the tenon is to bo made to adapt them to each other.
Counter Latif. One placed between every couple of ganged ones.
Counterparts of a Building. The similar and equal parts of the design on each side of the middle of the edifice.
Cuonter Sink. The sinking a cavity in a piece of timber or other material to rcceivo a projection on the piece which is connected with it, as for the reception of a plate of iron, or the head of a screw or bolt.
Coupled Columns. Those arranged in pairs half a diameter apart.
Cocples. A term used in the North to signify rafters framed together in pairs with a tio fixed above their feet. The main couples answer to the trusses.
Course. (Lat. Cursus.) A continued level range of stones or bricks of tho same height throughout the face or faces of a building. Coursed masonry is that therefore wherein the stones are laid in courses. The course of the face of an arch is the face of the arch stones, whose joints radiate to the centre. The course of a plinth is its continuity in the face of the wall. A bceid course is that whose stones are inserted into the wall far-
ther than either of the adjacent courses, for the purpose of binding the wall together. A coursing joint is the joint between two courses.
Coular. (Fr. Cour.) An uncovered area before or behind the house, or in the centre of it, in which latter case it is often surrounded by bnildings on its four sides, and is more often called a quadrangle, as at Somerset House in the Strand.
Cuurt of Justice, Law Court, Assize Court. The apartment arranged for a trial. It is also sometimes applied to the building contaning it and the necessary accommodation for the persons privileged to attend in it at the trial. Thus the designs must provide apartments and accommodation for the robing, and occasional refreshment, of the judges, the bar, and the different officers attached to the court, also suitable accommodation for the jury, for the witnesses, for the attorneys whose iustructions to counsel are from instant to instant neeessary for the proper conduct of a case, and though last, not least, ample space for the publie, who have all undoubted right to be present; also refreshment and waiting rooms for them. The architect must be careful to supply such accommodation as shall render the office of all parties engaged a pleasing duty rather than an irksome task. To every court of law should be attached a restibule or saloon, sufficiently large to afford ia promenade for those of all classes engaged in the courts. In Westminster, bad as the courts were, this was well provided in the maguificent saloon called Westminster Hall. In courts for the trial of felons it may be necessary, if the prison has no communication with the court, to add accommodation for the police and other officers, as likewise some cells for criminals.

In these, as in cther buildings where there is often congregated a great number of persons, the entrances, and at the same time outlets, should be increased in number as much as convenience and the situation will permit ; and another indispensable requisite is, that the court itself should be so placed in the design that no noise created on the outside of the building may be heard in the intorior, so as to interfere with the attention of those engaged on the business before them.

The assize or law courts at Manchester, erected 1859-6t by Mr. Alfred Waterhouse, architect, in the Pointed style of architecture, have receired the highest approbation for the accommodation provided, not only for all those immediately interested in the administration of justice, but for the public. This edifice has bern des rribed by its architect in the Sessional papers of the Royal Institute of British Architects, $1864-5$, p. 165 , from which we gather that the cost, limited to 70,000 l., did not exceed $110,000 l$., or nearly $9 d$. per foot cube ; the furniture was about $10,000 l$. more. It eonsists of two almost distinct parts, the inner structure containing the courts, public offices, and arrangements for business. This is separated by a courtyard in front, but connected by a corridor at back, from the judges' residence or "lodgings."

In the basement of the main building, which is 256 feet long by 166 feet deep, and three storics or about 60 feet in lieight, are cells for the prisoners under trial, chambers for heating and rentilating, kitchens, refreshment rooms, \&e. On the principal floor, which is about 17 feet above the level of the street, and close to the entrance, is tho central hall, 100 feet long, 48 feet 6 in. wide, and 75 feet high; beyond it are the assize courts, and the sheriffs' or additioual court at one end; also the various rooms for the accommodation of the bench, the bar, the different officers of the court, witnesses, and jurors. The crown and civil courts are each 59 feet by 45 feet and 39 feet 6 in . high, being among the largest courts in the kingdom. In them the bar is placed as usual opposite the bench, the jury is on the judge's left hand, the witness-box on his right and brought close to the bench. To each of the courts there are eight entrances, and also two to the ladies' gallery above. All these are approached from the corridurs, 10 feet wide, which, diverging from the central hall, run round the building, and return to the hall again. The barristers' corridor at the rear of the courts is 184 feet long, and shut off so as to keep it for the exclusive use of the bar. Opposite the main entrance, but quite in the rear, is a door leading from this corridor into the library, 60 feet by 25 feet, another into the robing room, beyond which are the lavatories, placed round a ventilating shaft. The rooms fur the prothonotary, clerk of the crown, and indictment office, all also open into this corridor. Other rooms on this floor are devoted to the witnesses, who are classified as much as possible, to jurcrs, attorneys, and barristers' clerks, to the various officars of the assizes, and to purposes of consultation. On the upper floor are situated the Chancery court for the County Palatine of Lancaster, 41 feet by 23 feet; the grand jury room, 40 fect by 25 feet; the magistrates' board room; and the barristers' mess room, 55 feet ly 22 feet.

The article Town Hall gives references to many similar buildings of modern erection, and of rarious sizes, but the above is probably still the best of its class.

The Courts of Justice in London; the foundations were commenced in 1871, and the
building was nearly completed in 1881, at the death of the arehitect, Ceorge Edmund Street, R.A. They were fori:ally handed over to the First Commissioner of Public Works in October, 1882, on their completion by his son, Mr. A. E. Street, with Mr. A. Blomfield. The journals since that period have illnstrated many portions of this large work.
Cuussinet (Fr.) or Cushion. A stone placed apon the impost of a pier for receiring the first stone of an arch. Its bed is level below, and its surface above is inclined for receiving the next voussoir of the arch.

The word is also used for the part of the Ionic capital between the abacus and quarter round, which serves to form the volute, and it is in the eapital thus called because its appearance is that of a cushion or pillow seemingly collapsed by the weight over it, and has a band called balters. Baluster is the side of the volute.
Core. Any kind of concave moulding or rault; but the term in its usual acceptation is the quadrantal profile between the ceiling of a room and its cornice.
Cove Bracketing. The wooden skeleton for the lathing of any cove; but the term is usuaily applied to that of the quadrantal core, which is placed between the flat ceiling and the wall.
Cover. That part of a slate which is hidden or corered. See Gauge.
Cover Way. In roofing the recess or internal angle left in a piece of masonry or brickwork to receive the roofing.
Coving. In old buildings, the projection of the upper story orer the lower ones.
Coving of a Fire-place. See Chimney.
Cow-house. See Cattle-shed.
Cowl. See Windguard.
Crab. A species of crano much used by masons for raising largo stones; it is a wheel and axle mounted on a pair of sloping legs, three or four feet apart, the legs being inserted into a frame at tho base, whereon, opposite to the weight to be raised, a load may be placed for gaining so great an amount of leverage as to overcome the weight to be raised. The rope for the tackle works round the axle, which is turned by pinion wheels to gain power.
Cradle. A name sometimes given to a centering of ribs and lattice for turning culverts.
Cradle Vault. A term used, but improperly, to denote a cylindric vault.
Cradling. The timber ribs and piecesfor sustaining the lathing and plastering of vaulted ceilings. The same term is applied to the wooden bracketing for carrying the entablature of a shop front.
Cramp. An iron instrument about four feet long, having a screw at one end, and a moveable shoulder at the other, employed by carpenters and joiners for forcing mortise and tenon work together.
Crampfren or Cramp Iron, usually called for shortness cramp. A piece of metal bent at both extremities towards the same side, for fastening stones tegether. When stones are to be connected with a greater strength than that of mortar, a chain or bar of iron with different connecting knobs is inserted in a carity, cut on the upper side of a course of stones across the joints, instoad of single cramps across the joints of each two stones. Cramps are commonly employed in works requiring great solidity; but in common works they are applied chiefly to the stones of copings and cornices, and generally in any external work upon the apper surface or between the beds of the stone. All external work, liable to the injuries which weather inflicts, should be cramped. The most sccure mode of fixing cramps is to let them into the stone their whole thickness, and to run them with lead; bat in slight works it is sufficient to bed them in plaster, as is practised in chimney-pieces. In modern buildings iron is chiefly used for the cramp. The practice is bad, from the liability of iren to rust and exfoliate; hence east-iron is letter than wrought, and should be of somewhat larger size than when wrought, irou is employed. Copper cramps are also used in best works. The Romans wisely used cramps of bronze, a material far better than cither cast or wrought iron.
Crampoons. Hooked picees of iron, something like double calipers, for raising timber or stones.
Crane. (Sax. $\mathrm{C}_{\mathrm{p}} \mathrm{an}$.) A machine for raising heary weights, and depositing them at some distance from their original place. The crune may be constructed of immenso power, and worked by human strength or by stoam power.
Crapaudine Doors. Those which turn on pirots at top and bottom.
Creasing or Tile Creasing. Two rows of plain tiles placed herizontally under the coping of a wall, and projecting about an inch and a half on each side to throw off the rain water.
Credence. (It. Credenza, a buttery or pantry.) The slib whercon, in the sacrifice of the mass, or before the Communion Serrice, the elements are deposited previous to the oblation. Sometimes a plain recess, sometimes a slab on a bracket; it is in all eases placed on the south side of the altar.
Crensles. In Gothic architecture, the opening in an cmbattled parapet.

Crenellated Moulding. A moulding used in Norman architecture, carved into a resemblance of battlements, notchings, or indentations.
Crepido. (Lat.) The projecting members of a cornice, or other projecting ornament. Crescent. A building, or rather a series of buildings, which on the plan is disposed in the are of a cirele.
Crest Tife. That on the ridge of a house. In Gothic architecture, crest tiles are those which, decorated with leaves, run up the sides of a gable or ornamented canopy.
Crib. The rack of a stable; sometimes applied to the manger. It is used also to express any small habitation; and moreover the stall or cabin of an ox.
Crocket. (Fr. Croc, a hook.) One of the small ornaments placed on the inclined sides of pinnacles, pediments, canopies, \&c. in Gothic architecture, and most commonly disposed it equal distances from each other. The crocket seems to have had for type the buds and boughs of trees in the spring season, from the great resemblance it bears to those periodical productions: examples, moreover, of the same ornament have great resemblance to the first stage of the leaves when the buds begin to open; sometimes, however, animals are substituted in the place of leares.
Cromech. A mass of large flat stones laid across others in an upright position. Examples of cromlechs are found in tho southern districts of England, in Brittany, and in many other parts of the world.
Cross. (Lat. Crux) A figure consisting of four branches at right angles to each other, or a geometrical one, consisting of fire rectangles, each side of one rectangle being common with one side of each of the other four. It is a figure more particularly used for the plans of churches than for those of other edifices. In Ecclesiastical architecture, there are two kinds of plans having the form of a cross. The first is that wherein all the five rectangles are equal, or wherein each of the four wings is equal to the middle part formed by the intersection: this form is called a Greck cross, as fig. 1387. Tho second has only the two opposite wings equal, the other two aro unequal, and the three rectangles in the direction of the unequal parts are of greater length than the three parts in the direction of the equal parts ; this is the Latin cross, as fig. 1388. The middle part in each direction is common.

Fig. 1387.

Fig. 1392.

Fig. 13s8.

Tig. 1393.

Fig. 1389.
Fig. 1300.

Fig. 1391.

Fig. 1395.

The cross, the symbol of Christianity, has rery naturally been extensirely used in the monuments of the Middle Ages. It is unnecessary to give the ornamental and profusely decorated examples which the student everywhere finds, therefore the simple forms by which crosses are distinguished will only here be noticed. When the two branches of the cross are equal in length, as in fig. 1387, the cross is called a Greek cross, and when the stem is longer than the arms, as in fig. 1388, it is a Roman or Latin cross. When the figure has two arms, one longer than the other, as in fig. 1389 (the upper one meant as a representation of the inscription which was placed over the head of Christ), it is known by the name of the Lorraine cross, and has receired that name from its being a bearing in the arms of the Dukes of Lorraine. By our own heralds this is called a patriarchal cross. The next cross, whose arms are triple, as fig. 1390, is the papal cross, and is one of the emblems of the papaey, signifying, perliaps, like the triple crown or tiara, the triple sovereignty orer the aniversal Church, the suffering Church, and the triumphant Church. The great majority of the western churches, with transepts, are constructed in the form of a Latin cross, those in the form of the Greek cross being very rare. Those in the form of the Lorraine cross
are still rarer, and yet rarer are those constructed with triple transepts. Thiere is another form called the truncated or tau cross, as fig. 1391, having the form of that letter, on which, as a plan, a few churehes have been built. Considered as respects the contour, the cross in blason has been variously shaped and named. Thus, fig. 1392, in which the extremities widen as they recede from the centre, is called a cross patie. This is met with more frequently than any of the others. It is seen in the nimbus, on tombs, on shields, upon coins, etc. ; and is the usual form of the dcdication cross found in religious structures. Fig. 1393 is by the French called ancrée, the extremities forming hooks, but by our own heralds it is called a cross moline. Crosses flory are those in whieh the ends are formed into trefoils, as is seen in fig. 1300 , the papal cross above mentioned. Fig. 1394, is a cruss potent, and fig. 1385 is the cross elichée, as respects the outer lines of its form; when it is voided, as shown thy the inner lines, the ground or field is seen on which it lies. Fig. 1396 is the eross of the Russian Greek Church.
Fig. 1396.
Cross. In Gothic architecture, an erection of various kinds, which may be classed as follows:-those used for marking bountaries, those which were memorials of remarkable events, monumental or sepulchral, as that at Waltham, and others of that nature; for preaching, as the ancient St. Paul's Oross ; and market crosses, as at Winchester, leighton Buzzard, etc.
Cross-banded. A term applied to handrailing, which is said to be cross-banded when a veneer is laid upon its upper side, with the grain of the wood crossing that of the rail, and the extension of the veneer in the direction of its fibres is less than the breadth of the rail.
Cross Beam. A large beam going from wall to wall, or a girder that holds the sides of the house together.
Crossettres. (Fr.) The same as anconcs. In architectural construction the term is applied to the small projecting pieces aa $\int^{\prime a}$ a in arch stones, which hang upon the adjacent stones.
Cross Garnets. Hinges haring a long strap fixed close to the aperture, and also a cross part on the other side of the knuekle, whieh is fastened to the joint. See Garnet.
Cruss-grained Stuff. Wood which has its fibres in a contrary direction to the surface, and which consequently cannot be perfectly smoothed by the operation of the plane, without turning either the plane or the stuff. This defect arises from a twisted disposition of fibres while in the act of growing.
Cross Springers. The ribs in the Pointed style that spring from the diagonals of the pillars or piers.
Cruss Vaulting. That formed by the intersection of two or more simple vaults. When each of the simple vaults rises from the same level to equal heights, the cross vaulting is denominated a groin; but when one of the simple vaults is below the other, the intersection is called an arch of that particular species which expresses both the simple arehes. For example, if one cylinder pierce another of greater altitude, the arch so formed is termed a cylindro-cylindric arch; and if a portion of a cylinder pierce a sphere of greater altitude than the cylinder, the areh is called a sphere-cylindric arch, and thus for any species of arch whatever, the part of the qualifying word which ends in o denotes the simple vault having the greater altitude; and the succeeding word the other of less altitude.
Crow. A bar of iron used in bricklaying, masonry, and quarrying, and serving usually as a lever in its employment.
Crowde, Croude, or Croft. The old term for the crypt of a church.
Crown. (Lat. Corona.) The uppermost member of any part. Thus, the upper portion of a cornice, including the corona and the members above it, is so called.
Crown of an Arch. The most elerated line or point that can be assumed in its surface; it is also ealled the extrados.
Crown or Joggle Post. The same as a king post, being the truss post that sustains the tiebeam and rafters of a roof.
Crown Glass. A common sort of window glass cut from a sheet blown into a disk form haring a bull's eye in the centre of it.
Crowning. The part that terminates upwards any piece of architecture, as a cornice, pediment, etc.
Crypt. (Gr. K $\rho \cdot \pi \tau \omega$, I hide.) The under or hidden part of a building. It is used also to signify that part of the ancient churches and abbeys below the floor, appropriated to monumental purposes, and sometimes formed into chapels. There are only four apsidal crypts in England; Winchester, 1079; Worcester, 1084; Gloucester, 1089; ancl Canterbury, 1006. In all these the sido aisles run completely round the apse. See Crowne.
Cbypto-Porticus. In ancient architecture a concealed portico, also one that for coolvess
is enclosed on every side. Some of them were sunk some way into the ground. It also is a term applied to subterranean or dark passages and galleries in the Roman villas, often used as cool sitting rooms.
Vube. (Gr. Kußos, a die.) A solid bounded by six square sides. It is also, from its six sides, called hexahedron.
lubic Feet (as the quantity necessary to be allowed for health under varying circumstances). From 60 to 100 feet superficial is rccommended for each bed. It is stated that a healthy man respires about twenty times in a minute, and inhales in that period about 700 cnbic inches of air. Fresh air contains rather more than 23 per ceut. of oxygen, and about $1 \frac{1}{2}$ per cent. of carbonic acid; by the process of respiration the oxygen is reduced, in round numbers, to 11 per cent., and the carbonic acid is increased to rather more than 8 per cent. Now, $3 \frac{1}{2}$ per cent. of this gas renders air unfit to support life; so that a man, in respiring 700 cubic inches in a minute, vitiates about 1630 cubic inches, without taking into account the effect produced by the exhalation from the skin.

Cubie Feet.	
ever Hospital, Islington, allow	$\left\{\begin{array}{l}2300 \\ 9010\end{array}\right.$
	2010 "
pat Aldershot .	1500
eral Hospuital, Bristol	. 1090
iboisiere Hospital at Paris 17	to 1860
cemes Hospital . . 1:	00 ts 1334
rough Hospital, Birkenhead	- 1430
oldiers' Hospital, Netley 1315,	406,1800
bert Hospital, Woolwich	. 1400
ecently prescribed for Military	
pitals by the English Barrack and	
Hospital Commissioners-in Great	
Britain 1200
itto, in hot climates	1500
itto, in wooden hospitals, tents,	
in permanent barracks . 400 to 600	

Meeting of Medical Officers lıad
decided was sufficient in dwelling houses
ondon IIospital, smallest allowed estminster Hospital 300 800 per bed.
niversity College Hospital iclulesex Hospita. . Bartholonuew's Hospital ondon Hospital
'y's 110 pital ing's Cullege Hospital \cdot
$\cdot 1377$
-1300

- 2000 1300 to 2000 ", 1800 to 2068 " orkhouse liospitals in London, for ordinary sick
itto, ordinary wards for the infirm, \&c.

500
ard space, as near as may be to 2000 with 144 square feet of floor.
resent requrements :-
Vugrant wards, cells, ordinary,
36 feet of floor space, and .
360

Cubie Feet

Cells, for a woman with children, 54 feet ditto

540 per bed.
Ordinary dormitories, 36 ditto - 360 " Sick wards, 60 ditto . . . 600 Lying-in, Offensive, or Infectious wards, 80 disto
$960 \quad$ "
"

Dormito ies ; wall space for eaeh bed,
in addition to that occupied by dooks
or firc-places :-
inmates in health ; adults 4 feet
women with infants . 5 , children $\left\{\begin{array}{l}\text { single beds } \\ \text { double beds }\end{array} 34\right.$ "
Sick; ordinary, itch, and venereal 6 "
Ditto, lying-in, offensive, fever
and small-pox cases
. 8

It has been lately calculated that the average space allowed to each person in London is 1220 square feet, while in Paris it is only 500 ditto.
obiculum. (Lat.) A chamber. A distinction is made by Pliny between the cubiculum and the dormitorium. The name was also applied to the royal pavilion or tent which was built in the circus or amphitheatre for the reception of the emperors.
virt. A linear measure, in ancient architecture, equal to the length of the arm from the elbow to the extremity of the mildle finger, usually considered about eighteen English inches. The geometrical cubit of Vitruvius was equal to six ordinary cubits. Mr. Perring, in 1843, calculated the Egyptian cubit at 1.713 English fcet, divided into four palms each of seven digits. The cubit, in the survey, etc., of the Holy Land, was assumed (1875) at 21 inches. Sce Mrasurie.
ul de Four. (Fr.) A low vault spherically formed on a circular or oval plan. An oven-shaped vault.
ulmen. In ancient Roman architecture, the ridge-piece of the roof.
ulvert. An arched channel of masoury or brickwork built beneath the bed of a canal for the purpose of conducting water under it. If the water to be conveyed has nearly the same level as the canal, the culvert is built in the form of an inverted siphon, and acts on the principle of a water-pipe. The word also signifies any arehed channel for water under ground.
ulver-tail. The same as Dote-tail.
ineves. (Lat.) That part of the Roman theatro where the spectators sat.
upboard. A receptacle whether a rocess in a wall or otherwisc, and fitted with shelves, fur small articles. Sec Closet.

Cupola. (It. from Cupo, hollow.) A term, prcperly speaking, which is confined to the underside or ceiling part of a dome. See Dome.
Curb for Brick Steps. A timber nosing, generally of oak, used not only to prevent tho steps from wearing, but also from being dislocated or put out of their places. When the steps are made to return, the curb also returns, but when they profile against a wall, the ends of the curb or nosing pieces house at each end into the wall.
Curb Plate. A circular continued plate, either scarfed together or made in two or more thicknesses. The wall plate of a circularly or elliptically ribbed dome is called a curl)plate, as likewise the horizontal rib at the top, on which the rertical ribs terminate. The plate of a skylight, or a circular frame fur a well, is also called a curb-plate. The name is moreorer given to a piece of timber supported in a curb roof by the upper ends of the lower rafters for receiving the feet of the upper rafters, which are thence called curb-rafters.
Curb Roof. One formed of four contiguous planes externally inclined to each other, the ridge being in the line of concourse of the two middle p'anes and the highest of the three lines of concourse. A roof of this construction is frequently termed a Mansard roof, from the name of its supposed inventor. Its principal advantage orer other roofing arises from its giring more space in the garrets, which become attics.
Curb Stone. The stone in the foot-paving of a street, which divides it from the carriagepaving, abore which they are, or ouglit to be, raised.
Ctria. (Gr.) A Roman council house. Tho city and empire contained many curiæ. The curia municipalis, or domus eurialis, seems to hare, in destination, resembled our Guildhall. The curia dominicalis was a sort of manor house.
Curling Stuff. That which is affected from the winding or coiling of the fibres round the loughs of the tree where they begin to shout out of the trunk. The double iron plane is the lest for working it.
Curkent. The necessary slope of a piece of ground or parement for carrying off the water from its surface.
Cursor. (Lat.) The point of a bcam compass that slides backwards and forwards. Also the part of a proportional compass by which the points are set to any given ratio.
Certail Step. The first or botom step by which stairs are ascended, ending at the furthest point from the wall, in which it is placed in a scroll ; perhaps taking its name from the step curling round like a cur's tail.
Curvature, See Radius of Crrtature.
Curve. (Lat. Curvus.) A line that may be cut by a straight lino in more points than one.
Curvilinear. Formed of curved or flowing lines. Thus a curvilinear roof is one erceted on a curved plan, circular, elliptical, or otherwise. Tracery in the later inediæval styles is so called.
Cushion of an Ionic capital. See Coussinet.
Cushor Capital. A capital used in Romanesquo and early Mediæral architecture, resembling a cushion pressed down by a weight. It is also a cap consisting of a cube rounded off at its lower angles, largely used in the Norman period of architecture. Fig. 1397.
Cusiion Rafter. See Principal Brace,
Cusp. (Lat. Cuspis.) One of the pendents of a pointed arch, or of the arched head of a compartment of such an arch, or oue of the several pendents forming what may be termed a polyfoil. Two cusps form a trefoil, three a quatrefoil, and so on.
Custon House. A custom house is an establishment for receiring the duties, or, as they are called, customs, levied on mercbandise imported into a country; as

Fig. $139{ }^{\circ}$. well as of regulating the bounty or drawhack on goods exported. According, therefore, to the importance and wealth of a city, the building to receire it is of considerablo consequence. The first point that immediately presents itself is, that it should be provided with spacious warehouses for holding the merchandise which arrires, and in which it is, as it were, impounded till the duties are paid; aud next, that there must be prorided ample acconmodation for the officers who are to superrise the lerying of the imposts. The general principles in design are contained in the two maxims, of ample capaciousness for the merchandise to be receired into the warehouses. and a panoptical riew, on the part of the proper officers, of that which passes in the establishment. Security against fire must be strietly attended to. The warehouses and covered places for examining and stowing the goods should therefore be arched in lrick or stone, and should, moreover, be as much as possille on the ground floor, The offices
for the public and heads of the establishment may be over them on the first. Buth of these are, of course, to be regulated in size by the extent of trade in the place The general character should be that of simplicity ; decoration is unsuited, and should be very sparingly employed. The species of composition most suitable seems to be pointed out in areades and arched openings. The site should be as near as may be to the riser or port, so that the merchandise may be landed and housed with as little labour as possible. The Custom house at Dublin, designed by James Gandon, is a good work.

The following is a general riew of the apartments and offices of the London Custom House. The long room, which is the principal public room for the entries, \&c., is 185 feet long and 66 feet wide. This, as well as the rooms next enumerated, are on the first or principal floor, viz. a pay office for duties, treasury, bench officers' or commissioners' rooms, secretary's room, rooms for the inspector-general, surveyor of shipping, registrar of shipping, surveyor of acts of navigation, strong rooms, comptrollers, outwarl and inward, surveyor of works; Trinity light office, bond office, board room, chairman's room, committee-room and plantation clerk's office. On the ground floor are the following offices: for minute clerks, clerk of papers, petitions, messengers, landing surveyors, wood farm office, tide waiters, tide surveyors, inspectors of river, gangers, landing waiters, coast waiters, coast office " long " room, coast bond office, coffee office, housekeeper, searchers, merchants' and brokers' room, comptrolling searchers, appointers of the weighers, and office for the plantation department. Besides these apartments there are warehouses for the merchandise.

The abore long list will gire a notion of what would be wanted on a smaller scale; but on such matters the special instructions on each case must be the guide to the architect in making his design. Many of the above offices would, of course, be unnecessary in a small port, neither wou!d the dimensions be so large as the examples quoted. The staireases, corridors, and halls must be spacious in all cases, the building being one for the service of the public.
Cur. In inland navigation, the same as canal, arm, or branch.
Cut Brackets. Those moulded on the edge.
Cut Roof. One that is truncated. That is, one that appears as if the part abore the collar beams was cut away; a good example is that over the chapel at Greenwich Hospital.
Cur Splay. The term for the oblique cutting of the corners of bricks in walling; as to reveals of doors, and other openings.
Cut Standards. The upright side pieces, or cheeks, supporting the ends of the shelres placed above a dresser table, or to a bookcasc. The front edge is usually cut into a curred outline.
Cut Stone. Hewn stone, or that which is brought into shapo by the mallet and chisel.
Cur String Stairs. Stairs which have the outer string cut to the profile of the steps. The nosings are mitred and returned; and the riser is mitred to the sting. "Close string stairs" are where tho steps and risers are housed into the strings. See String Board.
Cutters. The finest marl or malm bricks, chiefly used for arches of openings, quoins, \&.c., and which from their evenness of texture allow of being cut.
Cutting Plane. A plane dividing or cutting a solid inte two parts in any direction.
Cyclograph. (Gr. Kuклos and Грaфш.) In pracical geometry, an instrument for describing the are of a circle to any chord and versed sine, but chiefly used in flat segments, or those whose curvatures approach to straight lines.
Crcloid. (Gr. Kuk $\lambda=\epsilon i \delta \eta s$.$) A figure described by rolling a circle upen a plane along$ a straight edge, until the point on the circle which touches the straight edge return again to it after a revolution. The point traces the curve called the cycloid or trochoid.
Cyclopean Masonry. Works constructed of large rude stones arranged without mortar are called by this name; alse Megalithic, and Pelasgic. It is considered there were four distinct periods, illustrating the changes from the rude constructions to more refined masonry. 1. Vast misshapen masses piled one upon another without order, the interstices filled up with pebbles and small stones. 2. Poljgonal hewn blocks cut to fit each other ; some interstices filled in with pebbles. 3. Courses of stone trapezoidal in appearance, but broken, as two courses equal in height to one adjoising; joints not always rertical, and the stone's of irregular size. 4. Continuous coursed trapezoidal arrangement, the beds continued horizontally throughout, but the joints rarely vertical.
Cylinder. (Gr. Ku入ıע $\rho \rho \nu$.) A solid whose base is a circle, and whose curved surfuce is ererywhere at an equal distance from the axis or line supposed to pass through its middle. Its formation may be conceived to be generated by the revolution of a rectangu-
lar parallclogram about one of its sides. The cone, sphere, and cylinder hare a remarkable relation to cach other, first discovered by Archimedes, namely, that the cone is one third the cyliuder haring the same base and altitude; and the inscribed sphere two thirds of the cylinder ; or the cone, sphere, and cylinder are to each other as the numbers $1,2,3$. It is termed a right cylinder wheu the axis is at right angles to the base, but if at an oblique angle the cylinder is said to be oblique.
Tuble of the areas of cylinders from 9 to 15 inches diameter:-

Diameter of Cylinder.	Area of Cylinder.	Diameter of Cylinder.	Area of Cylinder.	Diameter of Cylinder.	Area or Cylinder.
Inches. 9	Square Inches. 63.58	Inclies.	Square Inches.	Inches.	Square Inches.
		$11 \frac{1}{2}$	03.84	$13 \frac{1}{2}$	$143 \cdot 02$
10	78.5	12	113.07	14	153.96
$10 \frac{1}{2}$	86.56	$12 \cdot \frac{1}{2}$	122.65	$14 \frac{1}{2}$	165.04
J1	95.01	13	$132 \cdot 66$	15	176.6

Nore.-The areas of cylinders are as the squares of their diameters.
Cylindrical Ceiling or Vaulting. Vnlgarly called a waggon-head and cradlc. One in the shape of the segment of a cylinder. This form appears to have been first used lyy the Romans. It admits of being pierced by lunettes for the admission of light, which form cylindro-cylindric arches, and is usually formed into panels or coffers.
Cylindrical Work. Any kind of work which partakes of the shape of a cylinder, of whatever matcrial it be formed.
Cyninnorn. A solid which differs from a cylinder in having ellipses instead of circles for its ends or bases.
Crma. (Gr. Kupa, a wave.) A moulding taking its name from its contour resembling that of a wave, being hollow in its upper part and swelling below. Of this moulding there are two sorts, the cyma recta L thas, just described, and the cyma reversia thus, wherein the upper part swells, whilst the lower is hollow. By workmen, each is called an ogec.
Crmatiun. (Gr.) The name commonly applied to the upper monlding of a cornise or c:apping.
Crimis. The same as Fillet.
Cypress. (Lat. Cupressus.) The wood of the cypress was valued for its hardness and durability by the ancient architects.
Crzicencs. In ancient architecture, a large hall decorated with sculpture. Sce Glyptotheca.

Dabbing, Daubing, or Pitching. Working the face of a stone after it has been broacked and draughted, with a pick-shaped tool or the patent axe, so as to form a series of minute holes.
Dado. The die, or that part of the pedestal of a column between the base and the curnice. It is of a cubic form, whence the name of die. Large rooms are sometimes decorated with a base, dado, and cornice, representing a pedestal, and the term dado is often applicd to the whole. See Base.
Dagnoba or Dagoba. The Eastern topes or tumuli mostly contained relics, the worship of these objects being one of the principal characteristics of Budhism. These were designated dagobas, of which the word "pagoda" appears to be a corruption. In a Budhist temple, the dagoba is a structure which occupies the place of an altar in a Christian church. It consists of a low circular basement or drum surmounted by a hemispherical or elliptical dome that supports a square block covered by a roof called a tee.
Dairy. An apartment in a house, or a separate building. for the preservation of milk, and the manufacture of it into butter, cheese, or other dairy producc. When on a small scile, where the milk is only used for butter, the dairy may be a room on the north side of the dwelling, or furm one of the offices connected with the kitchen court. The temperature of a dairy should be within the range of forty-eight to fifty-five degrees of Falrenheit, with sufficient rentilation to discharge all smells and impuritics of the air. A dairy on a large scale should be a detached building, in which case it should cont:in a nuilk-room, a churning-room, and a dairy scullery or place for scalding the utensils.

If cheese be to be made, a room is required for the cheese-press, and another for drying and storing the cheeses.
Dais. (Fr.) The platform or raised floor at the upper end of a dining-hall, where the high table stood; also the seat with a canopy orer it, for the chief guests who sat at the high table.
Dam. See Coffer Damr.
Damp Course. In order to prevent the damp rising up the walls from the soil on which a house is built, a course of some impermeable material is laid on the foundation walls a short distance (about a foot) above the lerd of the cutside soil. This damp course, as it is called, is formed of a layer of powdered charcoal mixed with pitch or resin and powdered pitcoal ; or of two courses of slates set in cement; of asplalte; or of the stoneware hollow tile manufactured for this purpose.
Dispeness. A moisture generally attendant on buildings finished hastily on account of the materials not being dry; or the walls not being made of good well-burnt bricks; or with bad mortar ; or the joints not flushed up, and allowing wet to come through.
Dancette. The chevron, or zigzag moulding, in Norman architecture. See fig. 1381.
Day or Bay. Ia Gothic architecture, the compartment in windows formed by the transoms or horizontal pieces and mullions or rertical pieces.
Dead Shore. A piece of timber worked up in brickwork to support a superincumbent mass until the brickwork which is to carry it has set or become hard.
Deafening Sound-boarding. The pugging used to prevent the passage of sound through wooden partitions. Sce Boarding.
Deal. (Sax. Delian, to divide.) Properly the small thickness of timber into which a piece of any sort is cut up ; but the torm is now, though improperly, restricted in its siguification to the wond of the fir tree cut up into thicknesses in the countries whence deals are imported, riz. Christianin, Dantzic, \&c. Their usual thickness is three inches, and their width nine. They are purchased by the hundred, which contains 120 deals. be their thickness what it may, reduced ly calculation to a standard thickness of one inch and a half and to :s length of twelve feet. Whole deal is that which is one inch and a quarter thick, and slit deal is half that thickness. Clean deal refers to picked or selected deal, which is always used for stair treads for good work. Sce Board.
Decagon. (Gr. $\Delta \in \kappa a$, ten, and $\Gamma \omega v a$, an angle.) A geometrical figure laving ten sides and ten angles. If the sides and angles are all equal, the figare is a regular decagon, and capable of being inscribed in a circle.
Decastyle. See Colonnade.
Decmal. (Lat.) A term applied to a system of arithmetic in which the scale of numbers procerds ly tens.

Defimal Eqeitalents of Inches, Feet, and Yards; and of a Suilling.

Fractions of an Inch.	Decimals of an Inch.	Decimals of a Foot.	Inches.	$\begin{aligned} & \text { Decimals of } \\ & \text { a Font. } \end{aligned}$	Decimals of a Yard.
I .	$1 \cdot(0000$	-08333	1	-0833	0.0277
$\frac{15}{16}$	-9375	$\cdot 07812$	2	-1666	-05.5
$\frac{11}{12}$	-9165	-07638	3	-2500	-0833
13 $\frac{7}{8}$	-8750	-07291	4	-3333	-1111
	-812.5	$\cdot 06771$	5	-4166	-1389
- $\frac{3}{4}$ or $\frac{6}{8}$.	$\cdot 7500$	-062.00	6	-5000	-1666
	$\cdot 7499$	-106249	7	- 5833	-1944
$\frac{11}{16}$.	$\cdot 68$-5	-05729	8	-6666	-2222
$7_{7} \frac{5}{8}$	-6250	-05208	9	$\cdot 7500$	-2500
$\frac{9}{16} \quad$.	-5833	-04860	10	-8333	-2778
	-5625	-04688	11	-9166	$\stackrel{-3055}{ }{ }^{-333}$
;	- 5000	-04166	12	$1 \cdot 0000$	-3333
${ }^{16} \quad \frac{5}{12}$	$\begin{array}{r} \cdot 4375 \\ \cdot 4166 \end{array}$	$\begin{array}{r} \cdot 03645 \\ \cdot 03472 \end{array}$	Decimals of a Sihlling.		
1255	-3750	-03125	${ }^{4}$	${ }^{\text {ciol }}$	-sit
		-02777		${ }_{-0416}^{0046}$. 54.516
	-3125	-0260t	$1 \frac{1}{2}$	-1249 - 12	${ }_{-6250}$
3	-2500	-02083	2	-1666	${ }^{-6666}$
$\frac{3}{16}$	-1875	-01562	${ }_{3}^{23}$		-7083
$\frac{2}{12}$	-1666	-01388	$3{ }^{3}$	-2916	-7916
$\frac{1}{8}$	-1250	-01011	4^{4}	3333 9750	-8333
	$\begin{array}{r} .0833 \\ .0625 \end{array}$	-00694	4_{5}^{43}	${ }_{-4166}^{9750}$	-8750
		-00521	${ }_{5}^{5}$	${ }_{-4,463}$	${ }_{-9,983}$
			6	-5100 - 112	1.0000

Dechal Parts of a Putnd.

d.	Decimal.	d.	Decimal.	d.	Decimal.	s.	d.	Decimal.
1	-00208	6	-02500	$11 \frac{1}{2}$	-04791	10	0	-5000
1	-00416	$6 \frac{1}{2}$	-02708	s. d.		11	0	-5500
$1{ }_{2}^{1}$	- 10625	7	-02916	10	- 0500	12	0	-6000
2	-00833	$7 \frac{1}{2}$	-03125	20	-1000	13	0	-6500
21	-010t1	8	-03333	30	-1500	14	0	$\cdot 7000$
3	- Cl 250	$8!$	-03541	40	-2000	15	0	-7500
$3 \frac{1}{2}$	-01458	9	-03750	50	-2500	16	0	-8000
4	-01666	92	-03958	60	3000	17	0	-8500
$4 \frac{1}{2}$	-01875	10	-04166	70	-3500	18	0	-9000
5	-02083	$10^{\frac{1}{2}}$	-04375	80	-4000	19	0	-9500
5.2	-02291	11	-04583	90	$\cdot 4500$	20	0	$1 \cdot 0000$

Drcoraten Period. A term applied to the Medirval arehitecture in England prevaiing during the reigns of the three first Edwards, wherein the decorative features grew out of, or became embodiel in, and formed part of, the construcion. It succeeded to the Early English poriod.
Decoration. The combination of ornamental objects which the desire for varying a form or forms brings together in many ways for embellishing those subjects which are tho objects of art.
Demicatron Cross. See Cross, fig. 1392.
Deliquie. (Lat.) A term used by Vitrurius to designate the rafters which formed the ridge of the roof and threw the water on each side.
Dexsity. (Lat. Densus, thick.) A term used in physics to denote the quantity of matter which a body contains under a given or determinate surface; for example, a cubic foot. The quantity of matter in a body is called its mass, and is measured by the weight of the body, to which it is always proportional ; hence the density of a boly is great in proportion as its weight is great and its volume small; or the density of bodies is directiy as their masses, and inversely as their volumes.
Destils or Dentel.s. (Lat. Dentes, teeth.) The small square blheks or projections in the bed mouldings of cornices in the Ionic, Corinthian, Composite, and occasioually Doric orders ; their breadth should be half their height; and, as Vitruvius teaches, the interval (Метосне) between them two thirds of their breadth. In the Grenian orders they are not used under modillions.
Deomorisation and Disinfection. The Summary of the "Hastings Prize Essiy, 186ī," on these subjects, states that:-I. For the sick room, free ventilation, when it can be secured, together with an even temperature, is all that can be required. II. For rapid deodorisation and disinfection, chlorine is the most effective agent known. III. For steady and continuous effect, ozone is the best agent known. IV. In the absence of ozone, iodine exposed in the solid furm to the air, is the best. V. For that of fluid and semi-fluid substances undergoing decomposition, iodine is the best. VI. For the deodorisation and disinfection of solid bodies that cannot be destroyed, a mixture of powdered chloride of zinc or powdered sulphate of zine, with sawdust, is the best. After this, a mixture of carbolic acid and sawdust, ranks next in order; and following on that, wood ashes. VII. For that of infected articles of clothing, etc., exposure to heat at 212° Fahr. is the only true method. Aud, VIII. For the deodorisation and disinfection of substances that may be destroyed. heat to destruction is the true method.

Carbolic acid, Conly's fluid, Burnett's fluid, and Chareoal are among the materials ininufactured for this purpose.
Derby or Darby. A two-handed float used in plasterers' work.
Description of a Burding. The same as Speclfication.
Descriptive Geometry. That which consists in the application of geometrical rules to the representation of the figures, and the various relations of the forms of bodics. aceording to certain conventional forms. It differs from perspective, on aceount of the representation being made in such a manner that the exact distance between the different points of the boly represented can always be found, and consequently all the mathematical relations resulting from the form and position of the body may be deduced from the representation.
Design. (Lat. Designo.) The idea formed in the mind of an artist on any particular sub)ject, which he trinsfers by some medium, for the purpose of making it known to others. Every work of design is to be considered either in relation to the art that produced it, to the nature of its adaptation to the end songht, or to the mature of the end it is destined to serve; hence its beanty is dependent on the wislom or excellence displayed in
the design, on the fitness or propriety of the adaptation, and upon the utility for the end. See Composition.
Details. A term usually applied to the drawings on a large scale for the use of builders, and generally called working drawings.
Determining Line. In the come sections, a line parallel to the base of the cone; in the hyperbola this line is within the base; in the parabolic sections it forms a tangent to the base, in the elliptic it falls without it. In the intersecting line of a circle, the determining line will never meet the plan of the base to which it is parallel.
Diaconicum. A place contiguous to the ancient churches, wherein were preserved the sacred vestments, vessels, relics, and ornaments of the altar. In modern language, the sacristy. The saeristy is now also called the restry.
Diagonal. (Gr. $\Delta i a$, through, and $\Gamma \omega \nu i a$, angle.) A straight line drawn through a figure joining two opposite angles. The term in geometry, is used in speaking of four-sided figures, but it is nevertheless properly appied with reference to all polygons whereof the number of sides is not less than four. The term diameter is used by Euclid in the same sense ; but modern geometers use the term diameter only in speaking of curve lines, and diagonal when speaking of angular figures.
Diagonal. Scaic. A compound scale formed by rertical and horizontal subdivisions with diagonals drawn across them, wherely very small parts can be measured off by means of equidistant parallels crossing others of the same kind.
Diagram. (Gr. $\Delta a \gamma p a \mu \mu a$, from $\Delta i a$, through, and $\Gamma \rho a \phi \omega$, I write.) The figure or scheme for the illustration of a mathematical or other proposition.
Diameter. (Gr. $\Delta i a$, through, and Mefpov, a measure.) A straight line passing through the centre of a geometrical figure, as that of a circle, ellipse, or lyyperbola. The term is architecturally used to express the measure across tho lower pirt of the shaft of a column, and is usually divided into sisty parts called mimutes, which form the scale for the measurement of all the parts of an order. See Difgonal.
Dhameton. The Roman method of building a wall, with rogular ashlar work on tho outsides and filled in with rubble between. It is similar to Emplecton, but without the diatoni or binding stones which go through tho thickness of the walls, showing on both sides. See Masonry.
Diamond Patement. One disposed in squares arranged diagonally.
Diaper Work. 'The face of stene worked into squares or lozenges, with a leaf therein; as over arches and between bands. It is generally done only in interior work for decorating a plain surface. The illustration (fig. 1398) is from Canterbury Cathedral, and of the Perpendicular period.
Diastyle. (Gr. $\Delta i a$ and İtudos, a column.) That distance betweeu columns which consists of three diameters, or, according to some, of four diameters. The term is sometimes used adjectively, to signify that the building is arranged with those intervals between the colunnis.
Diatoni. (Gr. ala and Tovos, an extension.) In Greek architecture. the stones of a

Fig. 1398. Diaper work in stone. wall wrought on two faces, which, from stretehing beyond the stones above and below them, that is, going through the wall, made a good bond or tie to the work.
Diazoma. (Gr. $\Delta i \alpha$ through, and $Z \omega \mu a$, a cincture.) In ancient architecture, the landings or resting places which, at different heights, encircled the amphitheatre like so many bands or cinctures, whence the name.
Dicastemum. (Gr. Δ iк η, justice.) In ancjent architecture, the name of a tribnual or hall of justice.
 worked in conrses, like the meshes of a ate. Also open lattice-work, for admitting light and air.

Didoron. (Gr.) See Brick.
Die of a Pedestal. That part included between the base and the cornice. See Dado.
Digging. In soft ground, one man with a spate will throw up, per hour, a cubic yard of twenty-seren feet. If a mattock must be used, the same quantity will require two men, and in a strong gravel, three. It will require three men to wheel thirty cubic yards of gravel in a day to the distanee of twenty yards.
Diglypir. (Gr. $\Delta i s$, twice, and $\Gamma \lambda u \phi \omega$, I carre.) A projecting face or femur, with two panels or channels called glyplts, sunk thereon. See Triglypir.
Dinapidation. The state of neglect into which a building has been permitted to fall.
Dimension. (Lat. Dimetior.) In geometry is either length, breadth, or thickness. Thus a line has one dimension, as of length ; a superficies has two, length and breadth; a solid has three dimensions, length, breadth, and thickness.
Diminisifed Arcif. One lower or less than a semicircle, called by the French voute surbaissée. See Surbased Arch.
Dhminisima Bar of a Sash. One thinner on the elge towards the room than on that towards the glass of the window.
Diminisied Column. A column whereof the upper diameter is less than the lower.
Diminising Role. A board cut with a concare edge, so as to ascertain the swell of a c.lumn, and to try its curvature.

Diminisiung Scale. A scale of gradation used in finding the different points for drawing the spiral curve of the Ionic volute, by describing the are of a circle through every three preceding points, the extreme point of the last are being one of the next three. Each point through which the curve passes is regulated so as to be in a line drawn to the centre of the volute and the lines at equal angles with each other.
Diminution of a Colume. The continuel contraction of the diameter of the column as it rises. Most of the modern authors make the diminution to commence from one-third the height of the column; but in all the ancient examples the diminution commences from the bottom of the shaft. See Entasis. In Gothic architecture neither swell nor diminution is used, all the horizontal sections being similar and equal.
Dining or Dinser Room. Generally one of the largest rooms in a dwelling-house. In large buildings it extends to forty or fifty feet in length, and the breadth is from half to three-fourths the length. In middle-sized houses, dining-rooms run from twenty-four down to eighteen feet in length by eighteen to sisteen feet in width, and thirteen or fourteen feet in height.
Dhocletian Window. Usually called a Tevetian Window.
Dipteral. (Gr. $\Delta \iota \pi \tau \epsilon \rho o s$, double-winged.) In ancient architecture, a temple having a double range of columns on each of its flanks. See Temple.
Direct Radial. In perspective, a right line from the eye perpendicular to the picture.
Dirfeting Line. In perspective, the line in which an original plane would cut the directing plane.
Directing Plang. In perspective, a plane passing thruugh the point of sight, or the eye, parallel to the picture.
Directing Point. In perspect:ve, that in which any original line produced cuts the directing plane.
Director of an Oricinal Line. In perspective, the straight line passing through the directing point and the eye of a spectator.
Dirfctor of the Eye. In perspective, the intersection of the plane with the directing plane perpendicular to the original plane and that of the picture, and hence also perpendicular to the directing and vanishing planes, since each of the two latter is parallel to each of the two former.
Directrix. In geometry, the name given to a certain straight line perpendicular to the axis of a conic section. One of the properties of these eurres is that the distance of any point of the curve from the directrix is to the distance of the same point from the focus in a constant ratio. The name is sometimes applied generally to any straight or curved line required for the description of any curve.
Discharge. (Fr. Décharger.) The relief given to a beam, or any nther piece of timber, too much haaded by an incumbent weirlit of building. When the rulief is given, the weight is said to be discharged.
Discharging Arch. An arch built over a wood lintel, wherely the bearing upon it is taken off. Tho chords of discharging arches are not much longor than the linttl, being the segments of very large circles. A temporary areh is frequently introducel, and removed on completing the building. Sumetimes the arches are built withont any lintel under them.
Dishing Out. The same as Cradling.
Disploviatom. (Latt.) In ancient architecture, a place from which the rain is enneyed away in two channels. Accurding to Vitrurius, a catadium displuctutum was an open conrt exposed to the rain.

Dispostion. (Lat.) Onc of the essentials of architecture. It is the arrangement of the whole design by me:ns of ichnography (plan), orthography (section and elevation), and scenngraphy (perspective view). It differs from distribution, which siguifies the particular arrangements of the internal parts of a building.
Distance of the Eye. In perspective, the distance of the eye from the picture in a line perpendicular to the plan thereof.
Distance, Point of. In perspective, the distance of the picture transferred upon the vanishing line from the centre, or from the point where the principal ray meets it; and thus it is generally understood to be on the vanishing line of the horizon.
Distance of a Vanishina Line. The length of a perpendicular falling from the eye perpendicular to the rauishing plane.
Distemper. (Fr. Detemper.) In house paniing, whiting mixed with size and wator, with which ceilings are generally done; plastered walls when not painted or papered are also so covered, and are called coloured when a tint is used in it.
Distribution. (Lat.) The arrangement of the various apartments of a building.
Dodecanon. (Gr. $\Delta \omega \delta \epsilon \kappa \alpha$ and 「unia, an angle.) A regular polygon of twelre equal sides.
Dodecahemron. (Gr. $\Delta \omega \delta \in \kappa \alpha$ and ${ }^{\text {e }} \delta \delta \rho \alpha$, a seat.) One of the fire platonic lodies, or regular solids, its snrface being composed of t welve equal and regular pentagons.
Dodecastyle. A colonnado or porticu consisting of tivelve columins.
Dog-leggen Stairs. Such as are solid between the upperflights, or such as have no well-hole, and in which the rail and balusters of buth progressive and retrogressive flight fall in the same vertical plane. The steps aro fixed to strings, newels, and carriages; and the ends of the steps in the inferior kind only terminate on the side of the string without any housing.
Dog-tooth Ornament. This ornament (fig. 1399 is a conmon represel.tation of it), so greatly used in First Puinted or Early English work, appears in the abacus of one of the capitals in the cloister at Monreale, in Sicily, 1182-94; and it is noted by J. G. Wigley as occurring in the jambs of the little church of the Cœnaculum at Jrusalem, now known as the mosque of the tomb of Darid, erected early in the fourteenth century.

Iis. 1399. He assigns the origin of the ornament, as well as of the "ball flower," to the Holy Land, the types being olitained from the cyclamen or gazelle's horn, and the red anenone. The usp of it in Wistern architecture, 1090-1187, curiously corresponds with the period of the first Ciusiades.
Dolmen. The French name fur a Cromlech.
Dome. (Lat. Domus.) The spherical, or otherwise formed, convex roof over a circular or polygonal building. A surbasid or diminished dome is one that is segmental on its rertical section, a surmounted dome is one that is higher than the radius of its bass. There is great variety in the forms of domes, both in plan and section. In the former, they are circular and polygonal ; in the latter, we find them semicircular, semi-elliptical, segmental, pointed, somelimes in curves of contrary flexure, bell-shaped, \&c. The oldest dome on reenrd is that of the Pantheon at Rome, which was erected under Augustus, aud is still perfect. Below is a list of the principal domes.

Domus Conversorum. The day-room and dormitory of the conecrsi of a Cistercian monastery. They performed all the agrarian, artificers', and menial work incidental to the cultivation of the land, and the clothing and daily service of the whole community, taking part oniy ocasionally in the daily service of the Church.

Donson. (Fr.) Tho masive tower within ancient castles to which the garrison michit retreat in case of necessity. It was centrally placed, and frequently raised on an art1ficial eleration.
Dook. (Scotch.) The same as Wooden Brick.
Dioor. (Sax. Do , Gr. ©upa.) The gate or cutrance of a honse or other building, or of an apartment in a house. It must be proportioned to the situation and use for which it is intended. Thus, for an ordinary dwelling-house, a door should not. be less than seven to eight feet high, and three to four feet broad; but to churches and public buitdings the entrance doors should be much wider, to allow of a multitude passing out. So in stately mansions, the doors must be from six to twelve feet in width, and of proportionate height.
Dour Frame or Case. The woolen-frame enclosing a door.
Dior Plane. The plane between the door proper, and the largor opening within which it, maly bo placed. It is often richly ornamentech.
Door Stor. The slip of wood against which a door shuts in its frame. See Rebate.
Doormay. The framework of an opening for a door. the shape of which is determined by the style of architecture of the building. The Greek doorway was always square-headed, and generally less in width at top than at hottom. The Roman and the Romanesque doorways are sometimes r und-arched; the Mcdieval ones are pointed in shape.
Doric Order. The first of the orders used in Grecian architecture, and the second as used in Roman and Italian architecture. Its capital is composed of straight lines and mouldings. In the frieze is used the triglyph. with mutnkes in the cornice and corresponding to them.
Dormant Tree or Sumaer. The lintel of a dour, wiudow beam. \&c. A beqm tenoned into a girder to support the ends of joists on both sides of it. Suinmer, in some localities, is the common term for a girder. See Bressumarer.
Dormer. A window placed on the inclined plane of the roof of a house, the frane being placed vertically on the rafters.
Dormitory. (Lat. Dormio, I sloep.) A large sleeping-room, capable of containing many beds. A range of cells for sloeping in.
Doron. The Greek for a palm. See Brick.
Dossel. Seo Reredos.
Doubie Cone Mocldingt. A moulding used in the arches of the Norman periol. (Fig. 1400.)
Duuble Curfature. The curvature of a curve, whereof no part can le brought into a plane, such as the cylindro-cylindric curve, \&c.
Double Floor. One constructed of linding and

Fig. 1400. bridging joists.
Docble-hung Sashes. A window opening with two sashes, one for lifting up, the other for drawing down, fitted into the sash frame of a window opening.
Double Vaults. Two vaults of brick or stone carricd up separately with a carity between them.
Doubles. A sized slate used in roofing.
Doubling. A term used in Scutland to denote eaves' boards.
Dotcine. The French term for the cym trectia.
Dove-hotse, or Dore-cot. A building for keeping tame pigeons, the only essential difference between which and a common poultry house is that the entrance for the birds must be placed at a considerable height from the ground, because of the flight of pigeons being so much higher than other birds.
Dove-tail. A joint, so called from its being formed spreading like a pigeon's tail, used by carpenters and joiners in connecting two pieces of wood, by letting one into the other. It is the strongest method of joining masses, becanse the tenon or picee of wood widens as it extends, so that it cannot be drawn out, because the tongue is larger than the cavity through which it would have to be drawn. The Freuch call this method queue d'hironde, or swallow's tail.
Dove-tail Moulding. An ornament formed of ruming lands, as Example 3, fig. 188. It is sometimes called a triangular fiet.
Dowel. A pin of wood or iron nsel at the elges of boards in laying floors to aroil the appearance of the nails on the surface. Floors thus laid are ca led dowelled floors. The drums of columns were steadied by the insertion of dowels of wood, enbe in shape, as found in the remains of Greek and Egyptian architecture. Slate dowels are now often used in preference to iron, on account of the latter matorial tending to split the stone with rust.
Drafr. (Verb.) A torm applied to anything bearing down or rubbing on another. Thus, a door is saild to drag when its hinges liecome so loosened that the lower ellge rubs upon the flow:

Dragging. The operation of eompleting the surface of soft stone ly means of an instrument called a drag, whieh is a thin plate of steel with fine teeth on one edge, moved backwards and forwards by the workman.
Dragon beam or Piece. In carpentry, a short beam or piece of timber lying diagonaliy with the wall-plates at the angles of a roof for receiving the heel or foot of the hip rafter. It is fixed at right angles with another piece called the angle tie, which is supported by each returning wall plate, on which it is cocked down. It may be a corruption of "dragging."
Drain. A sulterrancous or other eliannel for waste water.
Draught or Drawing. The representation of a building on paper, explanatory of the various parts of the interior and exterior, ly means of plans, elevations, and seetions, drawn to a seale, by which all the parts are exhihited in the same proportion as the parts of the edifice intended to be represented. Working drawings show the parts in detail, or serve as direetions to the artificers.
Dravght. In masonry, a part of the surface of the stone, hewn to the breadth of the ehisel on the margin of the stone according to the curved or straight line to which the surface is to Le brought. When the draughts are framed round the different sides of the stone, the intermediate part is wrought to the surface by applying a straight edge or templet. In very large stones, when the substance needs much reduction, it is usual to make several intermediate parallel draughts, and thus the intermediate parts may bo hewn down nearly by the eye, without mueh applieation of the straight elge or templet.

In carpentry, when a tenon is to be secured in a mortise by a pin, and the hole in the tenon is made nearer the shoulder than to the cheeks of the mortise, the insertion of the pin draws the shoulder of the tenon close to the cheeks of the mortise, and it is said to have a draught. See Draw Bore Pins.
Iravght Compasses. Those with movealde points.
Draw Bore. (Verb.) The pimning a mortise and tenon, by piercing the hole through the tenon nearer to the shoulder than the holcs through the cheeks from the abutnent in whieh the shoulder is to come in contact.
Draw Bore Pins. Pieces of steel in the shape of a frustrum of a eone, rather taper, and inserted in handles with the greatest diameter next to the hamdle, for driving through the draw bores of a mortise and tenon in order to bring the shoulder of the rail close home to the abutment on the edge of the style. When this is effected, the driw bore pins, when more than one are used, are taken out singly, and the holes immediately filled up with wooden pegs.
Drawbridge. One made with long and heary levers to be raised or let down, at pleasure.
Drawing. See Draught.
Drawing Kmpe. An edge tool ased to make an incision on the surface of wood along whieh the saw is to follow. It prevents the teeth of the saw tearing the surface.
Drawing Roon, perhaps more properly Withdraweg Room. The apartment to which the company withdraw after dinner.
Dressed. A term in masonry which expresses the operation a stone has undergone before building is in the wall, whether by the hammer only or ly the mallet and chisel, and then rubbing the faee smooth. In Seotland the term is used to signify hammer dressing only.
Dresser. A long table placed against a wall in a kitchen, usually with drawers, and having shelves over it for plates, stopped by a Cut Srandard. At the edges of the shelves hooks are driven to carry jugs and cups. Under the drawers is a shelf raised a few inches above the floor, and called a pot board, fur holding pots used in cooking.
Dressing Roon. A room generally adjoining to and communicating with the sleeping room, used, as the name implies, for dressing in. It should have a separate door to open on the lobby or passage of communication.
Dressings. All kinds of mouldings beyond the naked walls or ceilings are called by the general name of dressings. In joinery it is a term applied to the arehitraves or other appendages of apertures.
Drift. (Sax. Dniran.) The horizontal force which an arch exerts with a tendency to overset the piers from which it springs.
Difp. See Cohona.
Dripstone. The moulding in Gothic architeeture placed over an opening to throw off water. It is also called a weather moulding, or more properly hood mould; and label when it is returned square.
Dripping Eaves. The lower edges of a roof from whiel the rain drips or drops to the ground.
Drong. A Sanserit term for a hill fort, a term used in IIindostan.

Drop or Obtise Arch. A poiuted arch of less height than that formed by an equilateral triangle, similar to Fig. 1401.
Drops. (Sax. Dnoffan.) The frusta of cones in the Doric Order, used under the triglyphs in the architrave below the tania. They are also employed in the under part of the mutuli or modillions of the order. In the Greek examples they are sometimes curved a little iuwards on the profile, and were called Guttes.
Droved Ashlar. A term used in Scotland for chiselled or random-tooled ashlar. It is the most inferior kind of hewn work in building. What is in that country called broached work is sometimes done without being drored; but in good broached work the face of the stone should be preriously drored, and then broached.
Droved and Broached. A term used in Scotland to signify work that has been roughed and then tooled clean.
Droved and Striped. Work that is first droved and then striped. The stripes are shallow grooves done with a half

Fig. 1401. or threo-quarter inch ehisel, about an eiglith of an inch deep, having the droved interstices prominent. This and the two preceding sorts of work are not much used in the southern part of England.
Druidical Architecture. The Celtic erections were formerly so called.
Drum. (Dan. Tromme.) The upright part under or above a cupola. The same term is sometimes applied to the solid part or rase of the Corinthian and Composite capitals; as well as to the block of stone composing part of the shaft of a column.
Drcixy. Timber having decayed spots or streaks of a whitish colour in it.
Dry Rot. A disease of timber which destroys the cohesion of its parts; it is usually ascribed to the attacks of fungi, such as the Polyporus destructor and Merulius lacrymans, whose spawn appears upon the surface orerspreading it like a tough thick skin of white leather ; and there is no doult of its being often connected with the appearance of such fungi. Dry rot is, however. in some cases to be identified with the presence of fungi of a more simple kind than those just mentioned, sueh as those of the genus Sporotrichum.
Dubbivg out. A term used by plasterers to signify the bringing of an uneren surface in a wall to a plane, by pieccs of tile, slate, or the like, before it is plastered over.
Duchesses. A sized slate used in roofing.
Dwang. A term used in Scotland to denote the short pieces of timber employed in strutting a fluor.
Dwarf Walnscoting. Such as does not reach the whole height of a room, being usually three, four, five, or six feet high. Sometimes called a Dado.
Dwarf Walls. Low walls of less height than the story of a building; sometimes the joists of a ground floor rest upon dwarf walls. The enclosures of courts are frequently formed by them with a railing of iron on the top; and indeed any low wall used as a fence is a dwarf wall. See Fender.
Dwelling House. See House.
Drxamics. (Gr. Δ viauts, force or power.) As generally understood, the science which treats on the motion of bodies, because it is only known to us by the motion it produces in the body on which it acts. It is however nisually restrictel to those circumstances of motion in which the moring bodies are at liberty to obey the impulses communicated to them ; the opposite cases, or those in whieh the bodies, whether ly external circumstances or by their connection with one another, are not at liberty to oboy the impulses given, being within the science of mechanics.

E
Eacle. See Etialoi.
Early Exglisi Period. The name given to the first, or Lancet period of medieewal architecture in England. It succeeded that of the Norman towards the end of the twelfth century. The accompanying illustration, fig. 1402, is a fine example of the work of that period.
Ears. The same as Crossettes.
Earth Closet. A convenience for the use of the occupants of a house. in lieu of a water closet, lately suggested by Rev. H. Moule, of Dorchester. Though adaptable to every dwelling, it is more appropriate to a country hathitation. Two tubs are required, one being the store for dry common garden mould; the other, the receptacle fur the deposits, over each of which is to be placed half a spadeful of the mould; this prevents any smell arising. When the tulb is full, it may either be set asile for abont a weck or fortuight to dry, when the mould is then fit to be re-used, er employed for garden
firposes．Liquid sewage will require to be disposed of separately，as it saturates a large quantity of eartl．
Ealitu Table，or Ground Tabtr， and Grass Table．The plin＇h of a wall（usually in Gothic work）， or lowest comrse of projeeting stones immediately aliore the ground．See Foot－stall．
Fisster，or Holy，Sepclichrf．A recess for the reception of the holy elements consecrated on the Cona Domini or Maunday Thuraday，till high mass on Easter－day．The few examples in England remaining are gene－ rally shallow，under an areh of obtuse or broad ogee form，rising about three feet from the slab， and are placed on the north side of the chureh．
Eatrs．（Probably Fr．Eanx．）The lowest edges of the inelined sides of a roof which projeet beyond the face of the walls，so as to throw the water off therefrom， that being their office．
L＇ates＇Board，Eates＇Lath，Eates＇ Catch．See Arbis Filint．
Ebony．The wood of a natural order of shrubby or arborescent exogens，chiefly inlabiting the tropies．Some species are re－ markable for the hardness and llackness of their wood，which is principally used for furniture．
Eccenthcity．The difference of

Fig．1402．West Front and Towers of Ripon Cathedral，1215－55． eentre from another eirele．The distanee between the foei of an ellipse．
Echea．（Gr．H $\chi \in \omega$, I sound．）In ancient architecture，sonorons ressels of metal or earth． in the form of a bell，used in the ennstruetion of theatres for the purpose of reverberat－ ing the sound of the performer＇s roice．They were distributed between the seats，and are described in the fifth book of Vitruvius，who states that Mummius introduend then in Rome，after the taking of Corinth，where he found this expedient used in the theatre．
EChinus．（Gr．Exivos．）The same as the ovolo or quarter round，though the moulding is only properly so called when carved with eggs and anehors．（See Ancuor．）It is the shell or lhusk of the chesnut，thougt the cruament does not seem to bear much resemblance to it．
Ecplura．（Gr．Eк，out，фép ω ，I benr．）A word used ly Vitrivius（lib．iii．cap．3．）to signify the projecture of a member or moulding of a column，that is，the distance of its extremity from the naked of the column，or，accorling to others，from the axis．
Ectupe．（Gr．Eктuто⿱亠䒑．）An objeet in reliero，or empos－ed．
Edab．（Sax．Eege．）The intersection of two planes or surfaces of a solid，which therefore is either straight or curred according to the direction of the surfaces．See Arris．It is also that side of a rectangular prismatie body whieh contains the length and thick ness；but in this sense of the term，the body to which it applies is generally under stood to be rery thin；thus ue say＂the edge of a door，＂＂the edge of a board，＂meaning the narrow side．The edge of a tool is the meeting of the surfaces when ground to a very acute angle．
Edie Tools．Those which elip or shave in the operation of working．
Euging．In carpentry，the reducing of the edges of ribs or rafters，whether extermally or internally，so as to range in a plane or in any curved surface required．Backing is a particular use of edging，and only applies to the outer edges of ribs or rafters；but edging or ranging is a general term，and applies either to the baeking or internal sur face．See Backing．
Empice．（Lat．Adifieium．）A word synonymous with fabrie，building，erection；the word is，however，more usially employed to denote architectural erections distingnished for grandeur，dignity，an I importanee．
Effect．（Lat．Efficio．）That quality in works of art whose nature is to give partieular effeaey to other qualities，so as to bring them out and astract the eye of the spectator．

Egg and Tongur. Ornaments used in the echinus, supposed by Quatremere de Quincy to have had their origin in the head of Isis, and, as he imagines, representing a mystical collar or necklace of the mundane egg and the tongue of the serpent of immortality; but as we think, in the represeatation of much more simple objects, those of nature herself. See Echinus.
Egiptian Arcminecture. In analysing the architeeturo of Egypt, three points offer themselves for consideration; construction, furm, and decoration. If solidity be a merit, no nation has equalled the Egyptian. Uniformity of plan characterises all their works; they never deviated from the straight line and square. The decorations of the buildings were chiefly incised, or painted on plaster. The pyramids, temples, obelisks, statues, and rock-cut tombs, all attest the duration of a style doomed to become eternal.
Egiptian Hall. See Ecus.
Elezotinsium. (Gr. Enalov, oil.) In ancient architecture, an apartment in the baths wherein, after leaving the bath, the bathers anointed themselves.
Elastic Curye. In mechanics, the figure assumed by an elastic body, one end of which is fixed horizontally in a vertical plane, and the other loaded with a weight which, by its gravity, tends to bend it.
Elasticity. (Gr. Eגa $\lambda \tau \eta$, a spring, from Eגauvo, I draw.) In plysics, that property possessed by eertain bodies of recovering their form and dimensions after the external furce which has dilated or compressed them is withdrawn. It is only perfect when the body recovers exactly its primitive form after the force to which it has been subjected has been removed, and that in the same time as was required for the force to produce the alteration. This is however a quality not strictly found in nature.
Elisow. The upright side which flanks any panelled work, as in windows below the shutters, \&e.
Elevation. (Lat. Elevatio.) A geometrical projection drawn on a plane perpendicular to the horizon.
Elizabethan Architecture. The name given to the mixed or debased, yet picturesque, style of architecture prevailing during the reign of queen Elizabeth of England, caused by the partial introduction of Italian art and its mixture with medieval details, with the requirements of greater civilization, leading to the parer examples displayed by Inigo Jones.
Ellipse or Ellipsis. (Gr. E $\lambda \lambda \epsilon \iota \psi \iota s$, defect.) One of the conic sections produced by cutting a cone entirely through the curved surface, neither parallel to the base, nor making a sul,contrary section; so that the ellipsis, like the circle, is a curve that returns into itself and completely encloses a space.
Ellipsugraph. An instrument for describing an ellipsis by continued motion.
Ellipsoid. See Conoid.
Elliptic Arch. A portion of the curve of an ellipsis employed as an arch.
Elliptic Compasses. The same as Ellipsograpil.
Elliptic winding Stairs. Such as are cased in and wind round an elliptic newel.
Elm. (Lat. Ulmus.) A forest tree occasionally used in building, principally for weatherboarding to barms, and such-like sheds.
Embankment. A term signifying any large mound of earth on the sides of a passage for water or other purposes; also for protection against the action of the sea. It is usually constructed of earth, and, when necessary to resist much force, cased with brick or stone.
Embatted. A wall indented with notches in the form of embrasures on the top of a wall, parapet, or other building. It is sometimos called crenellated.
Embattled Aronade. See Aronade.
Embattled-battled Line. A straight line bent into right angles, so that if there be three sets of parts, one set may be parallel to those of the other two.
Embattled Bulldings. Those with embrasures in tho parapets, resembling a castle or fortified place.
Embossing or Embossed Work. (Fr. Bosse, a protuberance.) The raising or forming in relievo any sort of figure, whether performed with the chisel or otherwise. It is a kind of sculpture, in which the figures rise from the plane on which they yre formed, and as they are more or less prominent they are said to he in alto, mezzo, or basso relieco.
Embrasure. An opening made in the wall or parapet of a fortificd place; it is also c:llled a crenel. The term is also applied to an enlargement within the sides of a window, in which sense it is the same as Splay.
Emplecton. (Gr. E $\quad \pi \lambda \epsilon \kappa \omega$, I entangle.) Among the ancients, a method of constructing walls, in which, according to Vitruvius, the front stones were wrought iair and tho interior left rongh and filled in with stones of various sizes.
Encarpus. (Gr. E ν and kapтos.) The festoons on a friezo, ponsisting of fruit, flowers, leaves, \&c.
Encaustic Work. An ancient mode of painting, in which the execution was aceomplished by the application of iheat. It would appear as if one process consisted in
mixing tle tints in hot wax, whiel were then applied on the wall; and another, to cort the wall with wax after the tint had been given to the wall, rubbing in well the wax with hot eloths.
Evcaustic Tiles. Tiles of earthenware used as paring. They are coloured and glazed, and formed to any shapes for patterns.
End of a Stone, Brick, \&c. The two parallel sides which form the vertical joints.
Eindecagon. (Gr. E $\nu \delta \kappa \kappa \alpha$, eleven, and $\Gamma \omega \nu i a$, an angle.) A plain geometrieal figure bounded by eleven sides.
Evgaged Columis. Those attached to walls, by which a portion of them is eoncealel. They never stand less than half their diameter out of the wall to which they are attached.
English Bond. In brickwork, the laying one course of bricks all headers, and the next course all stretchers, when for a one-brick wall.
Essemble. (Fr.) A term denoting the masses and details considered with relation to eich other.
Eintablature. (Fr. Entablement.) In Greek, Roman, and Italian arehitecture; tho whole of the parts of an order abore a column. The assemblage is divided into three parts: the architrave, which rests immediately on the column; the frieze, next over the arehitrave, being the middle member; and the cornice, which is the uppermost part. All three vary according to the different Orders. The entablature has sometimes been used as an arehivo't, as in the specimen here given, from a buidding ly the elder Dance, who followed the example of Wren and other eminent professors. This use of it has been highly reprobated as a false principle of construction, as it coureys false idea of the real use of the entablature; see fiy. 1403. In the early Rennaissance architecture, the arch sprang from the capital of the column.
Entall or Entayle. The more delicate and elaborate portions of earred medireval decoration.
Extasis. (Gr. Evcaois.) A delicate and almost imperceptible swelling of the shaft of a column, to be found in almost all the Greeian examples. It seems to have been adoptel to prevent the crude appearance which the frusta of cones would hare presented. This refinement is alluded to in the second chapter of the third look of Vitruvins, and mas first in modern times observed in execution in 1814 by Mr. Allason.

Fig. 1403. Church of St. Leomari, Shoreditch. It has been adopted in the lines of a spire.
Enter. (Verl.) In carpentry and joinery, the att of inserting the end of a tenon in the month of a murtise previous to its being diriven home to the shouldur.
Enterclose. A passage between two romis.
Entresol. (Fr.) A low story orer another ono, both coming within a story equal iu height to both. See Mezzanine.
Envelope. (Verb.) The covering of a portion of the surface of a solid with a thin sulstance or wrapper, which in all points or parts comes in contact with the surface of such surfice. 'To develop the surface of a solid is to find the envelopes that will cover its different parts.
Eopyla. (Gr.) A chureh with an apsis at the eastern end.
Eothola. (Gr) A chureh with an apsis at the western end.
Epasbeium. (Gr.) A building, in ancient architecture, for the exereise and wrestling of the youth.
Eptcranitis. (Gr.) A name given by the Greeks to the tiles forming the eyma or upper member of the corniee of their temples.
Epicycloid. (Gr. Exıkuкגos, and Eioos, form.) In gemmetry, a curve line generated by the revolution of a point in the circumference of a circle, which rolls on the circumference of another cirele, either externally or intermally.
Episcenicar. (Gr. Emı, upon, $\Sigma^{\prime}<\eta \nu \eta$, a sienc.) In aneient architceture, the upper order of the scene in a theatre.
Efistyliom. (Gr. Etı, upon, Exudos, column.) The same as Arciutiave.
Deitithedes. (Gr. E $\pi \iota$, upon, $\mathrm{T} t \theta \eta \mu$, I place.) The crown or upper mouldings of an entablature.
Equiavgular. Having equal angles.
Lquidistant. At equal distanees.
Equilateral. Having equal sides.

Eqellateral Arcif. An arch furmed of two segments of eircles whose centres are at the spring of the areh on each side, and if united with the point of intersection or apex of the arch form an equilateral triangle, as shown in fig. 1404.
Equilibriom. In mechan'es, an equality of forees in opposite directions, so as mutually to balance each other. For the arch of equilibrium, see Catenary Curve.
Eremacausis. Slow combustion, which tikes place in timber, and is the eause of its decay.
Ergastolim. In ancient arehitecture, a name given by the Romans to a prison or house of correction. where sla eses, by the sole authority of their masters, were confined for their offences and subjected to laard labour. By the Greeks these buildings were called sophronistcria.
Escape. That part of the shaft of a eolumn where it springs out of the base moulding. It is also called the apophyye, and in French, congé.

Fig. 1404.

Escutcheon. A shield for armorial bearings. a mode of decoration extensively used in Gothie architecture. It is also a plate for protecting the keyhole of a door : or one to which the handle of a door is attaehed.
Estimate. The computed cost of works before they are commenced.
Estrade. An even or level space; a publie road.
Etruscan Belldings. The inhabitants of Etruria, a country of Italy, and now ealled I'uscany, are supposed to have been a colony from Greece. Great solidity of constrvetion is the prominent feature, enormous blocks of stone forming the high walls of furtified places. Their other works are tombs, in whieh are found works of art of ligh merit, especially the vases of red ware with black figures and ornamentation.
Evrithmy. (Gr. Evpu μ a, justness of proportion.) The regular, just, and symmetricil measures resulting from harmony in the proportions of a building or order. Vitruvius makes it one of his six essentials.
Eustile. (Gr. Eu, well, and इturos, column.) See Colonnade.
Evaporation. (Lat.) The conversion of substances into vapour, during whieh process a considerable quantity of sensible heat passes into the latent or insensible state. The circumstances which principally influenee the process of evaporation, are extent of surface, and the state of the air in respect of temperature, dryness, stillness, and density.
Evolute. (Lat. Evolvo.) In the theory of curve lines, is a curve from which any given curve may be supposel to be formed by the evolution or unlapping of a thread from a surface having the same curvature as the first enrve. The eurve thus generated is eailed the involute curve.
Excafation. (Lat.) The digging out or hollowing the ground for the foundations of a wall or of a building, or of a floor below the level of the ground.
Exchange. A place of meeting and resort for the merchants of a city to transact the affairs relating to their trading. There is every reason to believe that the aneient basilica served at the sametime for the aceommodation of the officers of the law and fur the assembling of the merchants. All modern rities with any pretension to commeree have some place appropriated to the recep ion of the merchant, to which at a certain hour he resorts. Sometimes it is a place surrounder with porticoes and planted with trees. Often it is a building, ineluding several porticues, surrounded by offiees for the bankers and money-changers, which latter use has given among us the name of exchange to the building.

The exchange is, perhaps, next in importance to the town hall, and should be commensurate in appearance and accommodation with the wualth aud consequence of the city; it should, moreover, if possible, be placed in the most central part.

The Exchange at Amsterdam seems for a long time to have prevalled as the model for all others. It was commenced in 1608, and finished in 1613 , and its arehitect was Cornolius Dankers de Ry. It is about 271 feet long, and about 152 fect wide.

The Bourse at Paris has always been considered an adnairable model, both in distribution and design. The edfice was begun in 1808, from the designs of Brongniart, and completed ky Labarre at a much protracted period. The general form on the plan is a parallelogranı of 212 feet by 126 feet. It is surrounded by an unbroken peristyle of sisty-six Coriuthian columns, supporting an entablature and attic. The peristyle forms a covered gallery, to which the ascent is by a flight of steps extending the whole width of the western frunt. In the centre of the paralle!ogram is the Salle, or great hall, 116 feet long and 76 feet broad. It conveniently contains 2,000 persons. At its eastern end is a cireular space railed off for the convenience of the agens de change: these only are admitted within it, and to it there
is a communication from their hall of usiness. On the right are rooms for the committee and syndicate of the agens de change, for the courtiers de commerce, and a hall of meeting for the latter. From the gallery, as on the ground floor, a corridor extends ruond the Salle, communicating witu the Chamber of Commerce, the Court of Bankruptey, and other public offices. The cost of this elegaut building was about 326,0001 .

The Royal Exchange in London was erected from the design of the late Sir William Tite, and opened October 1844, at a total cost of about 150,000 l. It is 308 feet long, and 119 feet wide at the west end, but 175 feet at the eant end. The central area, which is uncovered as above noticed, is 111 feet by 53 feet, aud with the arcades (21 feet wide) surrounding it, 170 seet by 112 feet. This was originally left umover, d, but a fine glazed roof was put over it in 1886 by Chorles Barry. The subseribers' ruom of Lluyd's is 100 feet long by 48 feet wide; the commercial room on the north side is 86 feet long and 40 fett wi 'e. The ambulatory was highly painted and decorated in eucanstic by Fred. Sing.

The Stock Exchange was reluilt in 1854 by Thomas Allason, jun, but in $188 \tilde{5}-7$ it w.as enlarged to about double the size, with numerous additions, by John J. C ile. It is somewhat in the form of a Greek cross, having a dome of tumber with skylights, 39 feet in diameter. It will hold about 1,200 members, but it is seldom all are present. Freproof strong rooms with lockers are provided for the custody of securities. Besides the "house" or large reading and refreshment rooms, there are offices for brokers in the houses communicating.

The Coal Exchange was robuilt in 1849, by the late Mr. J. B. Bunning, City architect. It consists of offices on several floors around a e-ntral hall 60 feet diameter, and 74 feet high to the top of the dome ; it is formed principally of iron, and is decurated with representations of nature found in the coal measures, \&c.

The Exchange Buildngs at Liverpool, formerly one of its grandest huildings, erected in 1801, by Mr. Foster, sen., has been lately rebuilt by Mr. Thos. H. Wyatt, of London, on a much larger scale. The area of the Corn Exchange there is 100 feet by 98 fect, divided into three aisles by two rows of iron columus, the centre having curved iron rilss supporting the roof. There are 170 stands for the merchants. The architect was Mr. J. A. Picton, and it was erected 1851-53, at a cost of 11,0001 .

Corn exchanges, or corn markets as they are usually called, are now to be seen in every important town. In 1856, when that at Coventry was built, it was stated to be "the largest hall of the sort," being 110 feet long, 55 fect wide, and 46 feet high; across the galleries it was about 74 feet wide. The Corn Exchange, in Mark Lane, is the greatest corn markct in the world. Though the first site had been increased in area, additional space was acquired, and in 1878 a new exchange whs in course of construction from the designs of the arehitect, the late Elward I'Anson. It is akout 100 feet wide; the front part is 40 feet deep, and in rear is a nave of 60 feet with aisles on three sides of 20 feet each, the centre having a semicircular roof of iron, the aisles arehed in iron.
Exhrora. (Gr. E ξ, out of, and 'E $\delta \rho \alpha$, a chair.) In ancient arehitecture, a small room in the laths and other buildings appropriated for conversations. See Apsis.
Exostra. (Gr.) In ancient architecture, a machine for representing the interior part of a building as conneeted with the seene in a theatre.
Expassion. One of the ordinary effects of heat, which enlarges the bulk of all matter. Though the expansion of solids is by increase of temperature comparatively small, it may be rendered sensille by carefully measuring the dimensions of any substance when cold and again when heated. Thus an iron bar fitted to a gauge, showing its length and breadth, will when heated no longer pass through the apertures. The metals are most expansible by heat and cold. The following exhib ts the change which some of them undergo when heated from the freezing to the boiling point of water:-

	Expansiou in linea dimension.	$\text { ar } \underset{32^{\circ}}{ }{ }^{\text {Tempe }}$	ture.		Expansion in linear dimension	$\substack{\text { Temi } \\ 320 \\ \hline 2}$	ature.
'latinum		120000	120104	Lead	$\cdot 0028$	--	120345
feel	-011	-	12014	Zinc	0029	-	120360
Oll	- $\cdot 0012$	-	12015 i	Granite	$\cdot 0008$-0069	-	
'opper	-0017	-	120204	Marble	-00065 •011	-	
3ra	-002	120000	120230	S.indstone	-0009 -0012	-	
in	-0021	-	120290	Slate			
(Rankine, Manual of Civil Eng., 1864).							

Extension. (Lat.) One of the g neral properties of matter, being the quantity of space which a body occupies, its extremities in evary direction limiting or circumseribing the matter of that body. It is the magnitude, size, or bulk of a body.
External or Extlrior. A term of relation applied to whatever is on the surface or outside of a body, as opposed to internal or interior. Exiernal. Wall, see Wall.

Extrados. The exterior curre of an arch. The torm is generally used to denote the upper curve of the voussoirs or stones. See Intrados.
Ere. A general term signifying the centre of any part: thus the eye of a pediment is a circular window in its centre. The eye of a dome is the horizcntal aperture on its summit. The eye of a volute is the cirele at the centre, from whose circumference the spiral line commences. See Bull's Eie.
Erelsinow. A name sometimes given to the fillet.

F

Fankic. (Lat.) A general term applied to a large and important building.
Façade. (Fr.) The face or front of any building towards a street, court. garden, or other place; a term, however, more commonly used to signify the principal front.
Face Mould. The name applied by workmen to the pattorn for marking the plauk or board out of which ornamental hand-railings are to be cut for stairs or other works.
Face of a Stone. The surface intended for the front or outward side of the work. The back is usually left rough. Stones should be faced in the opposite direction of their splitting grain.
Facetres. (Fr.) Flat projections between the flutes of columns.
Facia. or Fascia. (Lat.) A flat member of an order or of a building, like a flat band or broad fillet. The architrave, when subdirided for instance, has three lavids called fascie, whereof the lower is cilled the first fascia, the middle one the second, and the upper one the third.
Facing. That part in the work of a building seen by a spectator; but the term is usually employed to signify a better sort of material, which masks the inferior one usud internally.
Factabling. The same as Coping.
Faldstool. A moveable reading desk provided with a kneeling shelf at the foot thereof. Fall of Land. A measure used in Scotland. equal to 36 square yards.
Falling Moulns. The two moulds applied to the vertical siles of the railpiece, one to the convex, the other to the concave side, in order to form the back and under surfice of the rail and finish the squaring.
False Atric. An attic without pilasters, casements, or halust"ades, used for crowning a building, as at the gates of St. Denis and of St. Martin, at Paris.
false Beariyg. See Bearing Wall.
False Roof. That part between the ceiling of the upper floor and the covering of the roof. lan Tracery or Vaulting. A system of vaulting used in the Perpendicular period, in which the ribs spring from slender shafts or corbels at the side, and then diverge and

Fig. 1405. Tor,g Churcl, Shropsthire.
sprend themselves over the ranlting, presenting an appearance similar to the framework of a fan. This fan sometimes also springs from a pendent in the raulting metting the uther fan work, as in fig. 1405 . See Prmont.
iang. The narrow part of the cutting iron of any tool which passes into the stock. 'andm. (Lat.) A place consecrated to religion, including the building and ground belonging to it. Those temples erected to the memory of distinguished persons were called fana by the ancients.
-arraria. See Granary.
iascia. See Facia.
'astigium. (Lat.) See Phidiment.
Aтном. (Sax.) A measure of six feet, taken from the extent of both arms when stretehed out in a right line. It is chiefly used in measuring the depth of water, quarries, wells, or pits.
eathez-hdged. A term applied to any thin body whose section is trapezoidal ; that is, thicker on one edge than on the other. See Board; Coping.
eatherinas. The cusps, plain or decorated, at the ends of a foil in traeery.
YEDER. A ent or channel by whieln a stream or supply of water is brought into a camal. Sometimes the supply itself of the water is so ealled.
reming Hovse or Sired. A farm-luiiding for stalling and fattening neat cattle. It should be in a dry warm sitnation, capable of free ventilation, and supplied with proper con:eniences for food and water.
bait Grain. That position of splitting timber which is rloven towards the centre of the tree, or transrersely to the annular rings or plates. The transverse position, or rather that which is in the direction of the annular plates, is called the quarter grain.
relisa. The aet of splitting timber by the felt grain.
emur. See Triglyph.
'exce. (Lat. Defensio.) Any sort of construction for the purpese of enelosing land, as a bank of earth, a ditch, heelge, wall, railing, paling, \&e.
Bender. A dwarf wall in the basement of a house, built up to carry the frout hearth of a fireplace.
'ender Pines. Those driven to protect work, either on land or in water, from the con eussion of a moving body.
inestration. A design in which the windows are arranged to furm the prineipal feature.
restoon. (Fir.) A senlptured representation of flowers, drapery, ard foliage, looped or suspended at intervals on walls. The festoon was much used on friezes, altars, tallets, also over or under niches, as well as in many other situations.
igURE. In a general sense the terminating extremes or surface of a bolly. No body ean exist without figure, or it would be infirite, and all space solid matter. Figure, in geometry, is any plane surface eomprehended within a certain line or lines.
illet. (Fr. Filet.) A narrow flat band, listel, or amulet, used for the separation of one moulding from another, and to give breadth and firmness to the upper edge of a crowning moulding, as in a cornice. The small bands between the flutes of a column are called fillets. Sce Annilet, Band, and Facette.
"illet." In earpentry or joinery, is any small timber scantling equal to or less than battens. Fi'lets are used for supporting the ends of loards by nailing them to joists or quarters, \&e., as in sound boarding, and in supporting the ends of shelves.
inlet Gutter. A :loping gutter, with a learboard and fillet thereon, to divert the water.
Filling in Pieces. In carpentry, short timbers, less than the full length, fitted against the hijs of roofs, groins, braces of partitions, which interrupt the whole length.
ine Set. When the sole of a plane iron ouly projects sufficiently to take off a very thin sharing of wood.
ine Sruff. Plaster used in common ceilings and walls for the reeeption of paper or colour. It is composed of lime slaked and sifted through a fine siere, then mixed with a due quantity of hair and fine sand.
ivial. In Gothic arehitecture, the top or finishing of a pinnacle or galle, as it is now generally un lerstool; but in ancient documents the term was used to denote an entire pinnacle. The earsed tops of bench ends are also called finials.
inishing. A term frequently applied to the termination of a building; but more espeeially to the interior in the plisterer's work for the last coat, and often to the joiner's work, as the architraves, bases, surbases, \&e.
ir. A forest tree, extensively usel in builking, both for beams and for deals.
ir Poles. Small truiks of fir trees, from ten to sixteen feet long, used in rustic buildings and outhouses.
ir in Bosd. A teehnical expression to denote lintels, bond timbers, wall plates, and all timbers built in walls. See Bend.
Gir framed. Rough timber framed, but which has not undergone the action of planing. fir wrought. That planed ou the edges and sides.
fir wrougit and franed. That which is both planel and frumed.
ir wrought, framid, and rebathi. That which is planed, framed, an! rebated.

Eir wronght, framed, rebathi, and beadeil. The same as the preceding article, with the addition of beading.
Fir no Labour. Rough timber emplyed in walls, withont plaming or framing.
Fire-place. See Chimey.
Fire-stone. That which resists the action of the fire. A species of it is used in juinery for rubbing away the ridges made by the cutring-edge of the plane.
Firmer Tool. A chisel used by joiners with a mallet, by which the sides of mortises are formed.
Firring. See Furring.
First Coatr. In plastering, the laying the plaster on the laths, or the rendering, as it is called, on brick work, when only two coats are used. When three are used, it is called pricking-up when upon laths, and roughing-in when upon bricks.
First Floor. Generally the floor over the ground fleor. Where there is a basement to a building as in a country mansion, the floor orer is often called the "principal floor."
Fisin. (Verb.) To secure a piece of wood by fastening another piece above or below it. and sometimes both to strengthen it.
Finied Beam. A long beam formed of two short beams placed end to end, and covered ly a long piece of wood placed over and under the joint, the whole being secured together by bolts. Sometimes these latter pieces are indented to the beams as a further security. Scarfing is a somewhat similar operation.
Fistuca. (Lat.) A pile-driving instrument with two handles raised by pulleys, and guided in its descent to fall on the head of a pile so as to drive it into the ground, being what is by the workmen called (but improperly so) a monkey.
lixture. A term applied to all articles of a personal nature affixed to lant. This annexation must be by the article being let into or united with the land, or with some sul--tance previously conneeted therewith.
Fisasis. Thin stones used for paring, from one and a half to three inches thick, and of rarious lengths and breadths, according to the mature of the quarry. See Lanmes.
Flake White. In painting, lead corroded by the pressing of grapes, or a ceruse prepared ly the aeid of grapes. It is of Italian manufacture, and for the purity of its white far surpasses the white lead of this country.
Flamborant Purion. The term applied to a period of mediæval architecture in France, in which the mullions and tracery terminate in waved lines of contrary flexure in tlamelike forms. Lxamples of it occur about the beginning of the 15th century, and continue down to the midule of the 16 th, being coincident nearly with the latter part of the period of our Ornamental English, and the whole period of the Florid English, cr Tudor, style.
Flange. A prejection round the edge of a pipe or other article of metal, to admit of its being fastened to a similar projection by screws, rivets, or bolts. The L-shaped pieces of wrought iren, used in girler work, are also called "flanges," and are employed for seenring iron plates at right angles to each other, and for suspending one piece of work to anether.
Flask. (Fr. Flane.) That part of a return body which joins the front. In town honses the party-walls are the flank walls. Same as End.
Flashing. (Prolably from Fr. Flaque, a aplash.) Pieces of lead or other metal let into the joints of brick work so as to lap orer the metal of gutters, or along the slatin, of a roof, and thus prevent the rain getting access behind the latter, and so injuring the interior works.
Fisat. That part of the covering of a building laid horizontal, or sufficiently sloping to throw off the water, and finished with lead or other material, perhaps to be walked upon.
Flatting. In house painting, a mode of painting in oil, in which the surfice is left, when finished, without any gloss. The material or paint is prepared with a mixture of oil of turpentine. which secures the colours, and when used in the finishing, leaves the paint quite dead. The process is of use where it is desirable that the surface painted should retain the colour. It is only nsed for inside work and in the best apartments. Nut oil and poppy oil may be used for the purpose, both of which are good media for the coleur.
Elemish Bond. In brickwork, the laying of eath course of bricks as headers and stretchers, one course breaking joint with that over and under it.
?lemish Bricks. A species of bricks used fer paring, whereof serenty-two will pave a square yard ; they were originally imported from Flanders, are of a yellowish colour, and harder than common bricks.
ceur-de-Lis. An ornament like a lily, and often used as a finial ; it is a favourite form in decoration.
lexibility. (Lat. Flecto.) That property of bodies which admits of their bending. It is opposed to stifness on the one hand, an! brittleness on the other; stiff bodies being such as resist bending, and brittle kodits those which cannot be bent without it disruption of their pats.

Flextre. The bending or curve of a lino or surface. The point of contrary flexure is that point of a curve where the curvature alters from convex to coneare, or the reverse, as respects the first direction of the curve.
Flight of Steps. In a staircase is the series of steps from one landing place to another. Thus, the same staircuse between one floor and another may consist of more than one flight of steps; the fight being reckoned from lauding to landing. Sue liloor.
Flist. A material used in building walls where chalk abounds. Common flints are nearly pure silica. They usually occur in irregular nodules in chalk. Their origin is still an unsolred geological problem.
Flont. In plastering, a long rule with a straight edge, by which the work is reduced to a plane surface.
Fioated Lath and Plaster. Plastering of three coats, whereof the first is pricking-up, the second, floating or floated work; and the last, of tine stuff.
Floated Work. Plastering rendered perfectly plane liy means of a Float.
Floating Screeds. Strips of plaster preriously set out on the work, at convenient intervals, for the range of the floating-rule or float.
Fr.oor. (Sax. Flope.) The pavement or loarded lower horizontal surface of an apartment. It is constructed of earth, brick, stone, wood, or other materials. Carpenters include in the term the framed timbor work on which the boarding is laid, as well as the boards themselves. In carpentry, it denots s the timbers which support the boarding, callerl also nuked floonng and carcass flooring.

The term floor is, moreover, applied to the stories of a building, as basement floor, ground floor, \&e. When there is no sunk story, the ground story becomes the basement floor, and the next floor the principal flour, cont ining the principal rooms; in many country houses they are on the ground floor, but in those of the town mostly ou the one pir floor. The expressions, one pair, two pair, \&c., imply a story above the first flight of stairs from the ground, and so on.
Fhoor. Folding or Folded. One in whieh the floor hoards are so laid that their joints do not appear contimous throughout the whole length of the floor, but in bays or folds of three, four, five, or more bourds each.
Floor. Straight Jont. That in whieh the floor boarls are so laid that their joints or edges form a continued line throughout the direction of their length; in opposition to folding floor, wherein the joints end in folds.
Floor Cloth. Stout canras covered with coarse oil paint, and then printed with a pattern, more or less elaborate. It should he thoronghly dry before being used, else it soou wears out. Kamptulicon, a preparation of caoutchouc and ground cork; aud Linoleum, produced from oxylised linseed oil mixed with ground cork, and rolled on to strong canvas, are late and good substitutes for the common floor cloth. Corticine, and Cork Carpet are other similar materials; while Boulinikon, or buffalo hide floor-cloth, is a late candidate for public farour.
Fioor Joists. The joists supporting the boards of the floor ; but when the floor consists of binding joists, whieh are secured into the girdure, and lridging joists, the bridgings aro never called floor joists.
Floriated. Carved in imitation of flowers or le:ires, either conventional or natural, and generally applied to decorated capitals, corbels, and bosses.
Fiorid period of Eiglish medireval architecture is the same as the Perpendicular period, and is also called the Tud or style.
Fiue. The long open tube of a chimney from the fire-place to the top of the shaft, for voidance of the smoke. See Chimsey.
Fluing. The same as Splayed.
Flush. (Lat. Fluxus.) A term used by workinen to signify a continuity of surface in two bodies joined togrether. Thus, in joinery, the style, rails, and muntins are usually made flus.! ; that is, the wood of one piece on one side of the joint does not project or recede from that on the nther.
Flush. In masonry or brick-work, the aptitude of two brittle bodies to splinter at the joints where the stonos or bricks come in contact when contiguous in a wall.
Flesh. (Verb.) A term to denoto the complete bedding of masonry or brick-work, in the mortar or cement used for the connection of the stones or bricks, so as to leave no vacant space where the stones or hricks do not nicely fit in their places.
Flush eolt. A bolt of iron or brass let into the woodwork so that it does not project beyond the face of it. The bolt has to lee worked by the thumb or a finger.
Fietres or Flutings. Upright channels on the shafts of columns, usually ending hemispherically at top and bottom. Their plan or horizontal section is sometimes circular or segmental, and sometimes, as in the Grecian examples, elliptical. The Doric column has twenty round its circumference ; the Ionic. Corinthian, and Composite have twentyfour. The Tuscan column is itever fluted. Flutes are oceasionally ectbled. See Cablis. Elyers. Steps in a flight of stairs that, are parallel to each other. See Winnerz.
yeng Butrrass. A buttress in the form of an arch, springing from a solid mass of masonry, and abutting against the springing of another arch which rises from the upper points of abutment of the first. It is employed in most of the cathedrals, and its office is $t \mathrm{act}$ as a counterpoise against the raulting of the nave. If flying buttresses were built solid from the ground, it is obvious that they would interfere with the vista alonf the aisles of the church ; hence the project of continuing a resistance by means of arches. Their stability depends on the resistance afforded by the weight of the vertical buttress. whence they spring. See Arc-boutant and Buttress.
cus. In geometry and the conic sections, a point on the concave side of a curve, to which the rays are reflected from all points of such curve.
dder or Fother. A weight among the plumbers of London of 191 cwt . enilia. (Lat.) See Granary.
IL. The small ares in the tracery of Gothic windows or panelling. See Cosp. i.ded Floor. See Floor.
liding Duors Such as are made to meet each other from the opposite jambs to which they are hung; and when they are rebated together, their edges meet folding orer each other, with a bead at the joint, to give the appearance of one entire door. lding Joint. A joint made like a rule-joint or the joint of a hinge.
liage. A sculptured group of the leares of plants and flowers, so arranged as to form rrchitectural ornaments, as in friezes, panels, \&c., and in the capitals of the Corinthian and Composite orders.
liation. The use of small ares or foils in forming tracery.
NT. A vessel, generally of stone or metal, for containing the water of baptism in the Christian Church. The body of the font is usually a large bleck of stone hollowed out, and supported by a short column, single or clustrred, and elevated on a base ; sometimes two or three steps lead to the platform on which the font may be fixed. Ancient examples occur where they are made of metal. Some of the early fonts are extremely boautiful, and wrought with great richness of decoration. The singular inscription frequently found on the walls of baptisteries occurs also occasionally on ancient fonts: NIYON ANOMHMATA MH MONAN OYIN, which, reading equally well both ways, admonishes the reader to cleanse himself from sin, not less than to use the outward ceremony of baptism.
от. (Germ. Fuss.) A measure of lengtl, but used alse in a sense which expresses surface and solidity. Thus we say, a foot superficial and a foot cube. As this term is used in almost all languages as a lincar measure, it has doubtless been derived from the length of the human foot. It seems in all other countries, as in England, to be divided into twelve equal parts, or inches. See Measures.
The English standard fuot (31 Edw. I.) is $=12$ lineal English inches $=36$ barleycorns $=16$ digits $=4$ palms $=3$ hands $=5 \frac{1}{3}$ nails $=1 \frac{1}{3}$ spans $=1.5151$ Gunter's links $==$ 938306 ft . of France $=3047$ met. of France. The fuot is divided by geometricians into 10 digits, and each digit into 10 lines, \&c. The French, as the English, divide the foot into 12 inches, and the inch into 12 lines. The foot square or superficial is a foot each way, and contains, therefore, $12 \times 12=144$ superficial inches $=2 \cdot 295684$ square links. The glazier's foot in Scotland $=61$ square Scotch inches. The Scotch foot is to the English foot as 1066 to $1 \cdot 000$, being in fact the French foot.
The length of the foot varies in different countries. The Paris royal foot exceeds that of England by $9 \frac{1}{2}$ lines. The ancient Roman foot of the Capitol consisted of 4 palms $=11 \frac{7}{10}$ English inches. The Khinland or Leyden foot, used by the northern hations of Enrope, is to the Roman foot as 950 to 1000 . The following talle exhibits he length of the foot in the principal places of the Continent, the English foot being livided into 1000 parts, or 12 inches :-

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Mr. Raper (Philos. Trans. vol. li.), from various authorities, determines the mean of the Roman foot to be nearly 968 parts of the London foot; and he considers that before the reign of Titus the Roman foot exceeded $\frac{970}{1000}$ of the London foot, and afterwards, in the reigns of Severus and Diocletian, it fell short of 965 . Cagnazzi, from examination of the monuments of antiquity in Herculaneum and Pompeii, determines the Roman foot at - 29624 metre, which, the metre being $3 \cdot 2808992$ English feet, would make the old Roman foot $\frac{972}{1000}$ of the English foot.
List of feet of all countries as drawn up by Dr. Thomas Young from Hutton, Cavallo, Howarl, Vega, and others:-

Altdorff font	English Feet.		English Feet.	
	-7is Hutton	Copenhagen foot	- -	1.049 H.
	.927 H.	Cracow foot -		$1 \cdot 169$ H. V.
Amsterdam fout	930 Cavallo.	Cracow greater fll	- -	20.4 V.
	-931 Howard.	Cracow smaller ell	- -	1.855 V .
Amsterdam ell	$2 \cdot 238 \mathrm{C}$.	Dantzic foot		.923 H.
Ancona foot	1.282 H	Dauphiné foot	. -	1-119 1\%.
Antwerp font -	-340 11.	Delft foot	-	-. 947 H ,
Aquilein foot	1.128 11.	Denmark foot -	- -	1.017 H.
Arles foot	-888 H.	Dijon foot	- .	1.130 H.
Augsburg font	972 L	Dordrecht foot	- .	-7才) H.
Avignon=Arles.		Dresden foot	- -	-929 Wolfe.
Barcelona foot	-9\%2 ${ }^{\text {H. }}$	Dresden ell $=2$ feet	- -	18.97 V .
Basle foot	. 044 H	Ferrara foot	- .	$1: 317$ II.
Bavarim foot -	-968 Beigel.	Florence foot	- .	-995 H.
Bergamo foot	1431 H	Florence braccio		$\{1900\}$ Carallo.
Berlin foot	-792 H.	Florence braccio	-	$\{1.910\}^{\text {Carailo. }}$
Berne foot	-9ti Howe.	Franche Comte foot,	- .	1.172 H
Besançon foot -	1.015 H .	Frankfort = Hamburgh	- -	H.
Bologna foot	$\begin{cases}1.244 & \text { H. } \\ 1.250 & \text { Cavallo. }\end{cases}$			$(812 \mathrm{H}$
Bourg en Bresse foot	${ }_{1} .030 \mathrm{H}$.	Genoa palm		$\left\{\begin{array}{l}-817 \\ .819\end{array}\right\}$ Cavallo.
Brabant ell. in Germany -	2.268 Vega.	Genoa canna	- .	$7 \cdot 300 \mathrm{C}$.
Bremen foot	-95\% H.	Geneva foot	- -	1.919 H.
Brescia foot	1.517) H.	Grenoble $=$ Dauphine .		
Brescian bracelo	$2 \cdot 092 \mathrm{C}$.	Harlem foot -	- .	-937 H
Breslau foot	$1 \cdot 125 \mathrm{H}$	Halle foot	- -	$\cdot 977 \mathrm{H}$
Bruges foot	-749 H.	llamburgh foot	- -	-933 H.
Brussels foot	$\begin{cases}0.02 \\ .051\end{cases}$	Heidelterg fo t		-903 H.
Brussels foot	-954 V.	Inspruck foot.	- .	1-101 15.
Brussels, greater ell	$2 \cdot 278 \mathrm{~V}$.	Leshorn foot		-992 H.
Brussels, lesser ell	$2 \cdot 245 \mathrm{~V}$.	Leipzig foot	- -	$1 \% 34$ H.
Castilian vara -	2.716 C .	Leipzig ell		1.833 H .
Chambery foot	1.107 H .	Leyden foot		1.023 H.
China matbematical foot	1.127 H.	Licge foot		$\cdot 944$ H.
China imperial foot	$\{1.051 \mathrm{H}$.	Lisbon foot	-	-952 H.
Chinese li	6106.050	Lucca braccio.	-	1958 IT.
Cologne foot	.913 H.			-915 IT.
Constartinoz lo	$\{2.19511$.	Madrid foot - -		\{918 How
	1-165	Madrid vara	- -	3.263 c.

Roman braccio dei mercanti (+	Euglish Fect.
	2.7876 F .
palms) -	$2 \cdot 856 \mathrm{C}$.
$\left.\begin{array}{c}\text { Roman braccio di tessitor di } \\ \text { tela }\end{array}\right\}$	2.0868 F .
Roman braccio di architettura	2.561 C.
Rouen $=$ Paris -	II.
Russian arschine	$\left\{\begin{array}{l}2.3625 \\ 2.333\end{array}\right.$
Russian verechok(1-16th arsch.)	
Russian foat=to the English.	
Savoy = Chambery -	H.
Seville=Barcelona -	H.
Seville vara	$2 \cdot 760$ C.
Siena foot	$1 \cdot 239$ H.
Stellin foot	$1 \cdot 224 \mathrm{H}$.
Stockholun foot	1.073 H
Strasbourg town foot	${ }_{\cdot 956} .97$ Ceisiu
Strasbourg country foot	$\cdot 967$ H.
Toledo $=$ Madid	H.
Trent foot -	1.201 H,
Trieste ell for woollens	2.220 H.
Trieste ell for silk	2.107 H.
Turin foot	1.676 H.
Turin ras	1.958 C .
Turin trabuco-	10.085 C .
Tyrol foot	$1 \cdot 096 \mathrm{~V}$.
Tyrol ell -	2.639 V.
Valladolid foot	.908 H.
	$1 \cdot 137 \mathrm{H}$.
Venice foot	1.140 How
Venice braccio of silk	$\begin{array}{rl}1.167 \\ 2.108 & \mathrm{C} \\ \text { C. }\end{array}$
Venice ell -	${ }_{2}{ }_{2} \cdot 089 \mathrm{C}$ ¢
Yenice braccio of cloth	$2 \cdot 250 \mathrm{C}$.
Verona foot	$1 \cdot 117$ H.
Vicenza foot	1.136 II.
Vienna foot	1.036 H.
Vienna ell	${ }^{2.557}$ Нож.
Viemua post mile - - -	24.888 V .
Vienne in Dauphiné foot	1.058 H .
Ulm foot -	.826 11.
Urbino foot	1.162 H .
Utrecht foot	$\cdot 741 \mathrm{H}$.
Warsaw foot	$1 \cdot 169 \mathrm{H}$.
Wesel $=$ Dordrecht	H .
Zurich foot	$\begin{cases}979 & \text { H. } \\ .08 \downarrow & \text { Phil. Mar. }\end{cases}$

Foot of the Eie Director. In perspective, that point in the directing line mado by a vertical plane passing through the eye and the centre of the picture.
Foot of a vertical Line. In perspective, that point in the intereecting line which is made by a vertical plane passing through the eye and the centre of the picture.
Foot Pace or Haxf Pace That part of a staircase whereon, after the flight of a few steps, a broad place is arrived at, on which two or three paces may be taken before coming to another step. If it occur at the angle turns of the stairs, it is called a quarter pace.
Footing Beam. The name given, in some of the prorinces, to the tie-beam of a rocf.
Footings of a Wall. The projecting courses at the base of a wall to spread it, and thus give security to the wall.
Foot-stall. The base or plinth of a building. See Earth Table.
Force. In mechanics, the course of motion in a body when it begins to move, or when it changes its dircetion from the course in which it was previously moving. Whilo a body remains in the same state, whether of rest, or of uniform and rectilinear motion, the cause of its so remaining is in the nature of the body, which principle has reccived the name of incrtia.
Forcer. In mechanics, a solid piston applied to pumps for the purpose of producing a constant stream, or of raising water to a greater height than it can be raised by the pressure of the atmosphere.
Fone Front. The principal or entrance front of a building.
Fore Plane. In carpentry and joinery, the first plane used after the sam or axe.
Foreshorten. In perspective, the diminution which the representation of the side or part of a body has, in one of its dimensions, compared with the other, occasioned by the obliquity of the corresponding side or part of the original body to the plane of projection.

Fonm. The external appearance or disposition of the surfaces of a body, in which sense it is synonymous with Figure.
formeret. The arch rib, which in Gothic groining lies next the wall, and is consequently less than the other ribs which divide the viulting.
Forum. (Lar.). In ancient archite, ture, a public market; also a place where the common courts were held, and law pleadings carried on. The fora of the Romans were large open squares strrounded by porticoes, parts whereof answered fur market-places, other parts for public meetings of the inhabitants, and other paris for courts of justice; the forum was also occasinnally used for shows of gladiators. There were in Rome serenteen; of these fourteen were for the sale of goods, provisions, and merchandise, and called Fora Venalia; the other three were for civil and judicial proceedings, and called Fora Civilia et Judicialia. Of the latter sort was the furum of Trajan, of which the Trajan column formed the principal ornament.
Foundation. The ground prepared for the footings of a wall to be placed thereon. The concrete and footings of i wall are sometimes called the "foundations."
Foundry. A building in which various metals are cast into moulds or shapes.
Fountarn. (Lat. Fons.) Any natural or artificial apparatus by means whereof water springs up. In natural fountains the ascensional effect is produced by the hydrostatic pressure of che water itself; in artificial fountains, by the same sort of pressure, or by that of compressed air, and sometimes by machinery.
Fox tail Wedging. A method of fixing a tenon in a mortise by splitting the end of the tenon and inserting a projecting wedge, then entering the tenon into the mortise, and driving it home. The botiom of the mortise resists the wedge, and forces it farther into the tenon, which will expand in width, so as not only to fill the cavity at the bottom, but be firmly compressed by the sides of the mortise.
Frame and Framing. (Sax. Fnamman, to form.) The rough timber work of a house, including floors, roofs, partitions, ceilings, and beams. Generally, any pieces of wood fitted together with mortises and tenons are said to be framed, as doors, sashes, \&c.
Franking. A term used by the mak-rs of window-sashes, and applied to the mode of forming the joint where the cross-pieces of the frame intersect each other, no more wood being cut away than is sufficient to show a mitre.
Frefing Beads. The beads formed on the elbows of the boxings of a window, to allow of the shutters rising high enough to come on to the bead of the window sill.
Free Stone. It is an old term that has no very distinctive meaning, but one which is commonly employed when speaking of any stone, whether it be a situdstone or a limestone, that is capable of being easily toole i, quite irrespectire of its chemical composition, such as Portland stone, Bath stone, Yorkshire stoue, some Scotch stone. \&c.
French Casements. Windows turning upon two vertical edges attached to the jambs, and, when shut, lap together like folding doors upon the other two parallel edges, and are fastened by means of a long bolt called an Espagnolette bolt, extending their whole height. French casements are made in the form of the old English window, the two meeting styles, which lap together, forming a munnion about four inches in breadth. The lower part only of the window is moveable, the upper being fixed, and having a corresponding munnion; the lower rail of the fixed part and the upper rail of the moveable part forming a transom. The upper part is now sometimes made to open on centre pivots at the sides, to allow of ventilation to the apartments whilst the casement is closed.
Frfsco Panting. (It. Fresco, fresh.) A system of wall or ceiling decoration in which a painting is executed by incorporating the colours on the plaster before it is dry, by which it becomes very permanent.
Frette or Fret. A species of ornament consisting of one or more small fillets meeting

Fig. $14 n 6$.
in vertical and horizontal directions. (See fig. 14(16.) The sections of the channels between the fillets is rectangular.
Fret-work. Ornamental decoration raised in protulerances.
Friction. (Lat. Frico, I rub.) The resistance pruduced by the rubbing of the surfaccs of (wo solid bodies agrainst each other.
Frieze, Freeze or Frize. (Ital. Fregio, adorned.) That member in the entablature of an order between the architrave and cornice. It is always plain in the Tuscan; ornamented with triglyphs and sculpture in the Doric (See Metops); in the modern or Italian Ionic it is often swelled, in which case it is said to be pulvinated or cushioned; and in the Corinthian and Composite it is variously decornted with figures and foliage,
according to the taste of the architect. The illustration is from the western end of the Parthenon at Athens. presenting a portion of the Panatheiac frieze. It is one of the fine specimens of Grecian art of the EIgin collection in the British Museum. (Fig. 1407.)
Fimeze of the Capitai. The same as the IItpotracheLIUM.
Frieze Panel. The upper panel of a six-panelled door.
Frieze Rall. The upper rail but one of a six-panelled door.
Firgidarium. In ancient architecture, the apartment in which the cold bath was placed. The word is sometimes used to denote the

Fig. 1407. cold bath itself.
Front. (Lat. Frons.) Any side or face of a building, but morecommonly used to denote the entrance side.
Frontal. The cloth hung in front of the altar, also called antependium.
Frontispiece. (Lat. Frous and Inspicio.) The face or fore-front of a house, but the term is more usualiny applied to the decorated entrance of a building.
Fronton. The French term for a pediment.
Frosted. A species of rustic-work, imitative of jce, formed by irregular drops of water.
Frowey Timber. Such as works freely to the plane without tearing, whose grain therefore is in the stme direction.
Frustum. (Lat.) In geometry, the part of a solid next the bast, formed by cutting of the top, or it is the part of any solid, as a cone, a pyramid, \&c., between two planes, which may be eithor parallel or inclined to each other.
Folcrum. (Lat.) In mechanics, the fixed point about which a lever moves.
Funner.. (Lat. Infundibulum.) That part of a chimney contained between the fire-placo and the summit of the shaft. See Chimney.
Furnitore. (Fr. Fommir, to furnish.) The visible lrass work of locks, knobs to doors, window-shutters, and the like.
Furring. (Fr. Fourrer, to thrust in.) The fixing of thin scantlings or laths upon the edges of any number of timbers in a range, when such timbers are out of the surface they were intended to form, either from their gravity, or in consequence of an original deficiency of the timbers in their depth. Thus the timbers of a floor, though level at first, oftentimes require to be furred; the same operation is frequently necessary in the reparation of old roofs, and the same work is required sometimes in new as well as old floors.
Forkings or Firrings. Pieces of wood used to bring a surface to a level with ochers.
Fusarole. (It.) A member whose section is that of a semicircle carred into beads. It is generally placed under the echinus, or quarter round of columns in the Dorie, Ionic, and Corinthian orders.
Fust. (Fr. Fût.) An old term for the shaft of a column or trunk of a pilaster. It is also a term used in Devonshire, and, perlaps, in some other counties, to signify the rilge of a house.

G
Gable. (Brit. Gavel.) The vertical triangular piece of wall at the end of a roof, from the lerel of the eaves to the summit
Gablet. A small gable, or gable-shaped decoration, as intro luced on buttresses, \&c.
Gage. See Gatge.
Gain. In carpentry, the bavelled shoulder of a binding joist, for the purpose of giving additional resistance to the tenon below.
Galilee. A porch usually built near the west end of abbey churches. The galilees of Durham and Ely are found in the situation here described. The last mentioned is still used as the principal entrance to the church. The porch. south-west of the great transopt, at Lincoln Cathedral is also sometimes called a galilee. The word has been frequently used, but improperly, to designate the nave of a church. Many conjectures
have been made on the origin of this term, but the most commonly receired op.nion, founded on a passage in the writings of St. Gerrase of Canterbury, is, that when a female appliel to see a monk, she was directed to the porch of the church, and answered in the words of Scripture, "He goeth before you into Galilee, there shall you see him."
Gallery. (Fr. allée coaverte.) The name given to one of the structures called Celtic and Megalithic, and formed of upright stones covered with flat ones.
Gallery. (Fr. Galerie.) An apartment of a house, for different purposes. A common passage to sereral rooms in any upper story is called a gallery. A long room for the reception of pictures is called a picture gallery. A platform on piers, or projecting from the wall of a church and opan in front to the central space is also called a gallery. The Whicpering Gallery at St. Paul's is another example of the varions uses of the word. The whole or a portion of the uppermost story of a theatre is likewise called a gallery.
Gallet. See Garreting.
Gand. A prison, or place of legal confinement.
Garden Sheds. Erections for containing garden implements, flower-pots, hot-bed frames, and glass sashes, \&c.; also for working in during bad weather. They are best placed on the back wall of the greenhouse, and thus hold the furnaces, fuel, and other articles.
Gargoville, or Gurgoyle. The carred representations of men, monsters, \&c., on the exterior of a church, and especially at the angles of the tower, serving as waterspouts, being connected with the gutters for the discharge of the water from the roof.
Garlands. (Fir.) Ornaments of flowers, fruit, and leaves anciently used at the gates of temples where feasts or solemn rejoicings were held.
Garnets, Cross A species of hinge used in the most common works, formed in the shape of the letter T turned thus \vdash, the vertical part being fastened to the style or jamb of the doorcase, and the horizontal part to the door or shutter.
Garret. The upper story of a house taken cither partially or wholly from the space within the roof. It is also an epithet appliel to rotten wood.
Garretino, or Galieting. Inserting small splinters or chips of stone or flint, called gallets, in the mortar joints of rubble work, after the walls are built.
(xate. (Sax. Lear). A large door, generally framed of wood. The width of gates should be from eight and a half to nine feet, and the height from five to eight feet. The materials of gates should be well seasoned previous to use, otherwise they will be soon injured by the sun and wind. The parts should be also very correctly put together. For durability, oak is the best; but some of the lighter woorls, as deal, willow, and alder, are, on account of their lightness, occasionally used. These, however, are more for field-bar gates than close gates.
Gatertay. A passage or opening formed through an enclosure wall or fence. It is also given to a building placed at the entrance of a property, and through which access is oldained, and guarded by a gate, or formerly by a portcullis drawbridge.
Gathering of the Wings. See Chimefy.
Gatge, or Gage. In earpentry or joinery, an instrument for drawing one or more lines on any side of a piece of stuff parallel to one of the arrisses of that side. Of this tool there are four sorts; the common gauge and the flooring gauge (which are both applied to the draming of a line parallel to an arris), the interual gauge, and the mortise and tenon gauge.

This term is also used to signify the length of a slate or tile below the lap; also the measure to whieh any substance is confin.d.
Gauged Arcir. One having the bricks or stones formed radiating to a centre. The bricks have to be cut, and, in very good work, they are also rulbed, to get a fine joint.
Gavged Stuff. In plasterer's work, stuff composed of three parts of lime putty and one part of plaster of Paris, to set quicker. In bricklayer's work, it is the same proportion of mortar and Roman or Portland cement, used for filletings and in setting chimneypots.
Gavel. The sameas Gable.
Gemmels. A mediæral term for hinges. See Gimbals.
Gentrating Curte. See Evolute.
Generating Line or Plang. In Geometry, a line or plane which moves according to a given law, either round one of its extremities as a fixed point or axis, or parallel to itself, in order to generate a plane figure, or solid, formed by the space it has gone user.
Gevesis. (Gr.) In geometry, the formation of a line, plane, or solid, by the motion of a point, line, or plane. See Generating Line.
Geonetric Proportion. A building designed by geometrical figures, as the square, the triangle, \&c.
Geometrical. That which has a relation to geometry:

Gemetrical Decoratel. The period of medieval arehitecture in which the tracery and other ornamentation consisted entirely of distinet geometrical forms, and in which the principle of verticality and unity by a subordination of parts was fully developed.
Geometrical Staircase. That in which the flight of stone stairs is supported by the wall at only one end of the steps.
Geometry. (Gr. $\Gamma \eta$, the eartll, and M $\epsilon \tau \rho \omega$, I measure.) That science which treats of the objects of fignred space. Its etymology implies the object of measuring land. The invention of the science has been referred to a very remote period: by some, to the Babylonians and Chaldeans; by others to the Egyptians, who are said to have used it for determining the loundaries of their several lands after the inundations of the Nile. Cassiodorus says that the Egyptians either derived the art from the Babylonians, or invented it after it was known to them It is supposed that Thales, who died 548 b.c., and Pythagoras of Samos, whe flourished about 520 b.c., introdueed it from Egypt into Greece. Whatever the origin, however, of the term, the oceasions on which it is neeessary to compare things with one another in respect of their forms and magnitudes are so numerous in every stage of society, that a geometry more or less perfeet must have existed from the first periods of civilisation.
Geombtry, descriptive. The art of representing a definite body upon two planes at right angles with each other, by lines falling perpendieularly to the planes from all the points of concourse of every two contiguous sides of the body, and from all points of its contour, and, rice versâ, from a given representation to ascertain the parts of the original objects.
Geometry, practical. The methed of working problems in geometry.
Giraut. A Hindoo term for a landing place, steps on the banks of a river, a pass between mountains, and the mountains themselres, especially the eastern and western ranges, which cut off from the upper or table land the narrow strips of low coast that intervene between them and the sea.
Giblfa Cheque, Giblet Cheek or Check. A term used by Scoteh masons to denote the cutting away of the right angle formed by the front and returns of the aperture of a stone door-ease. in the form of a rebate or reveal, so as to make the outer side of the door or closure flush with the face of the wall.
Gilding. The practice of laying gold leaf on any surface.
Gimbals, Gimbols, or Gimbles. (Lat. Gemellus.) A piece of mechanism consisting of two brass hoops or rings which move within one another, each perpendicularly to its plane, about two axes at right angles to eaeh other. A body suspended in this manner, haring a free motion in two directions at right angles, assumes a constantly rertical position. See Gemmels.
Gimlet, or perhaps more properly Gimblet. (Fr. Guimbelet.) A piece of steel of a semi-cylindrical form, hollow on one side, haring a cross handle at one end and a worm or screw at the other. Its use is to bore a hole in a piece of wood. The serew draws the instrument into the wool when turned by the handle, and the excavated part, forming a sharp angle with the exterinr, cuts the fibres across, and contains the core of the wood cut out. It is used for boring holes larger than is effected by the bradawl.
Girder. (Sax. Eynzan, to enclose.) The principal beam in a floor, for supporting the linding or other joists, wherely the bearing or length is lessened. Perhaps so called because the ends of the joists are enclosed by it. An iron or timber girder carries a wall or assists to carry a floor. See Bressumer.
Girdie. A circular band or fillet surrounding a part of a column.
Girit. The length of the circumference of an olject, whether rectilinear or curvilinear, on its horizontal section. In timber measuring, according to some, it is taken at one-fourth of the circumference of the tree, and is so taken for the side of a square equal in area to the section of the tree cut through, where the perimeter is taken in order to obtain the girt.
Glass. (Germ.) A transparent, impermeable, and brittle substance, of which there are different sorts used in building. The "Times" paper of February 6th, and others in May, 1875, stated that a Frenchman had discovered that glass heated to redness, and then cooled or annealed in oil, greatly increased its toughness, while its transparency remained the same. Thus a plate of glass supported at the ends would resist a weight falling two feet, but when treated as above it would resist the same weight falling six or eight feet. See Crown Glass, Sheet Glass, Plate Glass.
Glass Painting. A decoration frequently used in buildings. It is the method of painting on glass in such a manner as to produce the effect of the drawing, which has to be prepared by an artist for it. A French painter of Marseilles is said to have been the first whe instructed the Italians in this art, during the pontifieate of Julius II. It was, however, practised to a considerable extent by Lucas of Leyden and Albert Durer. See Stained Glass and Рot Metal.
ilazier. An artisan whose employment is that of fitting and fixing glass.

Glue. (From the Lat. Gluten.) A tenacious viscid matter made of the eskins and hoofs of animals, for cementing two bodies together. Glue is bought in cakes, and is better the older the skin of the animal from which it is made. That which swells without dissolving when steeped in water is the best. To prepare glue it should be broken into small fragments and then steeped in water about twelve hours. It should be then heated in a leaden or copper vessel till the whole is dissolved, stirring it frequently with a stick. After this it is put into a wonden ressel and remains for use. A watertight joint in wood can be obtained by grinding glue and white lead in equal proportions, boiled in linseed oil, so as to make the liquid of a whitish colour, and strong but not thick. It is also useful for external work. "Marine glue" is a very strong liquid matter, the material often giving way before the joint.
Glyph. (Gr. Г $\lambda \nu \phi \omega$, I carve.) A sunken channel, the term being usually employed in reference to a vertical one. From their number, those in the frieze of the Doric order are called triglyphs.
Gifpptotheca. (Gr. Г $\lambda \nu \phi \omega$, and $\Theta \eta \kappa \eta$, deposit.) A building or room for the preservation of works of sculpture. See Cyzicenus.
Gnelss. A species of granite which, from excess of mica, is generally of a lamellar or slaty texture. It is a torm used by the miners of Germany.
Gnomon. (Gr. $\Gamma \nu \omega \mu \omega \nu$.) An instrument for measuring shadows, and thereby determining the sun's height. In dialling, it is the style of the dial, and its shadow marks the hour. It is placed so that its straight edge is parallel to the axis of the earth's rotation. In geometry, a gnomon is that part of a parallelogram which remains when one of the parallelograms about its diagonal is removed; or the portion of the parallelogram composed of the two complements and one of the parallelograms about the diagonal. The lerm is found in Euclid, but is now rarely used.
Gobrets. Blocks of stone; and also squared blocks of stone.
Gocciolatoro. (It.) The same as Corona.
Godown. The Bengalese term for a warehouse or cellar.
Godroon, or Gadroon. An ornamented moulding, consisting of beadings or cablings.
Gola, or Gula. (It.) The same as Cyma.
Gontgneter. (Gr. Гwhia, an angle, ind Metpo, I measure.) An iustrument for measuring solid angles.
Gopura. The Indian name for a gate-tower in the wall enclosing the space of ground in which are the cell and porch forming a temple in the south of Hindostan. In elevation it is pyramidal like a pagodi ; but instead of being square like the temple in plan, the gopura is merely a y ylon, sometimes 130 feet wide by 100 feet deep, pierced in the middle of the longer sides by a gateway which occupies a seventh or even a fourth of the width of the tower. The pile is covered by a crested roof, resembling a boat with the keel uppermost. Among the finest examples are those at Seringam, at Combaconum, and at Chillambaram, dating about 990-1004.
Gorgr. The same as Cavetto. The gorgerin is a diminutive of the term.
Cioroonhis. (Gr.) Key-stones carved with Gorgons' heads.
Gothic Architecture. The name given about the end of the seventeenth century to the Pointed arehitecture of the mediæval period, and now called Medieval Anchitecturb. Goufing Foundations. A Scotch term, signifying a mode of securing uasound walls by driving wedges or pins under their footings.
Gouge. A chisel whose section is of a semicircular form.
Gradetti. (It.) The same as Annulets.
Gradient. Good lists are given in Builder, 1863, p. 818 ; and xrii. p. 214.
Greecostasis. A hall or portico adjoining the Roman comitia, in which foreign ambassadors waited before entering the senate, and also whilst waiting the answer that was to be given to them.
Grain. The line of direction in which some materials can be split transrersely.
Graining. The imitation of the grains or texture of certain ornamental woods, by means of paint worked over by a comband other implements required to represent the various sorts. It is also called "combing."
Granary. (Lat. Gramum.) A building for storing corn, especially that intended to be kept for a considerable time. Vitruvius calls those buildings intended for the preservation of grain granaria, those for hay fenilia, and those for straw farraria. The term horreum was used by the Romans for denoting buildings not only for the preservation of corn, but for various other effects.
Grand. A term used in the fine arts, generally to express that quality by which the highest degree of majesty and dignity is impurted to a work of art. Its source is, in form, freed from ordinary and common bounds, and to be properly appreciated requires an investigation of the different qualities by which great and extraordinary objects produce impressions on the mind.
Grangr. A farm-yard or farmery, consisting of a farm-house and a court of offices for the different animals and implements used in farming, as also of barns, feeding houses, poultry honses, \& \&c.

Gramite. This word is apparently a corruption of the Latin word geranites, used by Pliny to denote a particular species of stone. Tournefort, in the account of his Voyage to the Levant in 1699, is the first of modern writers who uses the name. The constituent parts of true granite are concrtions of felspar, quartz, and mica, intimately joined together, but without any basis or ground. They are variable in quantity. Granites vary in colour. as the whire, red, pink, blue, \&c. See Gneiss.
Grass Table. See Earth Table.
Graticulation. The division of a design or draught into squares, fur the purpose of reducing it to smaller dimensions.
Gravel. A term applied to a well-known material of small stones, varying in size from a pea to a walnut, or something larger. It is often intermixed with other substances, as sand, clay, loam, flints, pebbles, iron ore, \&c. It is used for roads and for concrete.
Grave-stone. A flat stone placed over the grave of a deceased person, on which the name, dates, \&c., are engraved.
Gravity. See Specific Gravity.
Grecian Architecture. The refined works of the ancient Greeks, as exhibited in the buildings at Athens and numerous other cities of Greece, Asia Minor, Sicily, \&c. The chief principle of construction was the entablature and columns.
Greco-Roman Styer. The style of architecture adopted by many architects in England at the end of the last century, in which the severity of the ancient Greek style is modified by the richness and olaborate details of that of the Roman, together with the introduction of features such as the arch, adapted to the requirements of the style and of the present era.
Gree, Grees, Grese, or Gryse. An old worl, signifying a step, steps, or degrees.
Greek Cross. See Cross, fig. 1387.
Grefk Masonry. The manner of bonding walls among the Grecians. See Masonry.
Greennousse. A building for sheltering in pots plants which are too tender to endure the open air the greater part of the year. It is constructed with a roof and one or more sides of glass, and being erected for luxury should not be far away from the dwelling-house, so that the greatest enjoyment may be had from it. At the same time it should, if possible, be near the flower garden, as being of similar character in use. The length and breadth can only be determined by the wealth and objects of the proprietor. The best aspects are south and south-east, but any aspect may, in case of necessity, be taken, if the roof be entirely of glass, and plenty of artificial heat be supplied. In thoso greenhouses, howerer, which face the north, the tender plants do not in winter succeed so well, and a greater quantity of artificial heat must then be supplied, and the plants shouId, in such case, be chiefly crergreens, and others that come into flower in the summer season, and grow and flower but little during the winter. The plants in greenhouses are kept in pots or boxes on stages or shelves, so as to be near and follow the slope of the roof, and thus made more susceptible of the action of the sun's rays immediately on passing through the glass.

An orangery, from being constructed with a ceiled roof, differs from a greenhouse; it is. moreover, chiefly deroted to plants producing their shoots and flowers in the summer season, and in the open air; the use of the orangery being merely to preserve them during the winter. The structure is more properly called a conservatory, though this term is now applied to buildings with glass roofs, wherein the plants are not kept in pots, but planted in the free soil, and wherein some are so reared as to grow and flower in the winter months.
Grey Stocks. Bricks of the third quality of the best or malm bricks.
Grinding. The act of taking off the redundant parts of a budy, and forming it to its destined surface.
Grindstone. A cylindrical stone, mounted on a spindle through its axis, with a winchhandle for turning it, to grind edge-tools.
Grit Stone. One of various degrees of hardness; mostly of a grey, sometimes of a yellowish colour. It is composed of a siliceous and micaceons sand. closely compacted by an argillaceous cement. It gives some sparks with steel, is indissoluble, or nearly so, in acids, and vitrifiable in a strong fire. It is used for millstones more than for building.
Groin. (Sax. Finopen, to grow.) The line formed ly the intersection of two arches. which cross each other at any angle. See Cross Vactiting.
Grotnfi Ceiling. One furmed by three or more curved surfaces, so that every two may form a groin, all the groins terminating at one extremity in a common point.
Gronen Vauling. A rault which is formed by groins springing from rarious points and intersscting. The varieties are described in Book II. Chap. 1, p. 388 ; and Chap. 3. p. 608.

Groove. (Sax. Б. apan, to dig.) A sunken rectangular channel. It is usually employed to connect two pieces of wool together, the piece not grooved having on its edge a projection or tongue, whose section corresponds to and fits the groove.

Grotesuur. (Fr.) A term applied to eapricious ornaments which, as a whole, have nn type in nature, consisting of figures, animals, leaves, flowers, fruits, and the like, all connected together.
Ground Floor. The floor of a building level, or nearly so, with the surface of the ehief thoroughfare or the land around it. It is not always the lowest floor, the basement being frequently beneath it. A floor, if on such a level, as in some country mansions, becomes a ground floor, though generally called a basement.
Ground Glass. The white effect given to glass by grinding it with emery powder, and thus obscuring it, so that it cannot be seen through.
Ground Joists. Those which rest upon sleepers laid upon the ground, or on brieks, prop stones, or dwarf walls; they are only used in basement and ground floors.
Ground Line. In perspective, the intersection of the picture with the ground plane. See Ground Plane.
Ground Niche. One whose base or seat is on a level with the ground floor.
Ground Plan. The plan of the story of a house level with the surface of the ground, or near to it.
Ground Plane. In perspective, the situation of the original plane in the supposed level of our horizon. It differs from the horizontal plane, which is said of any plane parallel to the horizon; whereas the ground plane is a tangent plane to the surface of the earth, and is supposed to contain the objects to be represented. The term ground plane is used in a more confined sense than that of original plane, which ray be any plane, whether horizontal or incliner?
Ground Plate or Grotnd Sile. The lowest horizontal timber on which the exterior walls of i building are erected. It chiefly occurs in timber buildings, or in buildings whose outside walls are formed of brick panels with timber framings.
Ground Plot. The plan of the malls of a building where they first commence abore the foundation, though more properly it is the piece of ground selected to receive the building. For dwellings. its chief requisites are a healthy situation, a con venient supply of water, good drainage, a pleasant aspect, \&e. If fer trade or manufacture, it should be conveniently placed for receiring the raw material, and for exporting the articles manufactured.
Grounds. In ioinery, certain pieces of wood attached to a wall, to which the finishings are fastened. Their surface is flush with the plastering. Narrow grounds are those whereto the bases and surbases of rooms are fastened. Grounds are used over apertures, as well for securing the architraves as for strengthening the plaster. That the plaster may be kept firm, should the wood shrink, a groove is sometimes run on the edge of the ground next to the plaster, or the edge of the ground is rebated on the side next to the wall, so that in the act of plastering the stuff is received into the groove or rebate, which prevents it from slifting when it Lecomes dry. Wide grounds are framed.
Grouped Columns or Pilasters. A term used to denote three or more columns placed upon the same pedestal. When two only are placed together they are said to be coupled. Grout. (Sax. Ghur.) A semi-liquid mortar, composed of quicklime and fine santl, poured into the joints of masonry, and those of large masses of brickwork at every four courses or so, in order to fill up the joints well, which process is called grouting. It is not required when the joints are properly flushed up.
Growing Shore. See Dead Shore.
Gudgeon. The axle of a wheel, on which it turns and is supported. To diminish friction gudgens are made as small as possible in diameter, consistent with their weight. They are often made of cast iron, on account of its cheapness, but wrought iron of the same dimensions is stronger, and will support a greater load.
Getcloche. (Fr.) An ornament in the form of two or more bands or strings twisting over each other, so as to repeat the same figure, in a continued series, by the spiral returning of the bands. The term is applied, but improperly so, to a Fret.
Gula, or Gola, or Gueule. (It.) Synonymous with Cymatium.
Gunter's Chain. One used for mensuring land, and taking its name from its reputed inventor. It is 66 feet, or 4 poles, long, and divided into 100 links, each whereof is joined to the adjacent one by three rings; the length of each link, including the adjaeent rings, is therefore 7.92 inches. The advantage of the measure is in the facility it affords to numerical calculation. Thus the English acre, containing 4,8 10 yards, and Gunter's chain being 22 yards long, it follows that a square chain is exactly the tenth part of an acre, consequently the contents of a field being cast up in square links, it is only necessary to divide by 100,000 , or to cut off the last five figures, to obtain the contents expressed in acres.
Gtrgoyle. See Gargoyle.
futtre. See Drops.
Gritprr and Guttering. A canal to the ronfs of houses, to receive and carry off rainwater. Gutters are made of metal or of tiles, whieh are either plain or concave ; these
last are called gutter tiles, and so adapted to each other as to be laid with great ease. The Romans had gutters of terra-cotta along the roofs of their houses, and the rainwater from them ran out through the heads of animals and other devices placed in the angles and in convenient parts. Zinc is often used for gutters, but should only be fixe l to temporary erections. An Arris Gutrer is formed of wood. The channels on each side or in the middle of a roadway to carry off water, are called gutters.
Gimnasium. (Gr. 「uuvaбıov, from 「umpos, naked.) Originally a space measured out and covered with sand for the exercise of athletic games, the gymnasia in the end became spacious luildings, or institutions, for the mental as well as corporeal instruction of youth. They were first erected at Lacedæmon, whence they spread through the rest of Greece, into Italy. They did not consist of single edifices, but comprised several buildings and porticoes for study and discourse, for Laths, anointing rooms, palæstras, in which the exercises took place, and for other purposes. It is also a building for the practice of physical games, and instruction in gymnastic exercises; and in Russia and Germany it is the school below the academy or university, where the schol:ar receives a superior education and learns its application in life.
Grafecrum. (Gr. Гuvakeiov.) In ancient architccture, that portion of the Grecian house set apart for the occupation of the female part of the family
Gypsum. (Probably from $\Gamma \eta$, earth, and E $\psi \ddot{\omega}$, I concoct.) Crystals of native sulphate of lime. Being subjected to a moderate heat to expel the water of crystallisation, it forms plaster of Paris, and when water is applied to it, it immediately assumes a solid form. Of the numerous species, alabaster is, perhaps, the most abundant.

II

Habitable Rooas. These are required by the Metropolis Local Management Act, 1855, c. 120 , to be not less than 7 feet high. When placed in the roof they must be of that heiglit at least, throughout not less than one half of the area of such room. When underground, they must be of that height at least, 1 foot of which must be above the surface of the footway of the street. They must have, for their entire frontage, an open area from 6 inches lelow the level of the floor to the surface of the footway and 3 feet wide in every part; they must be effectually drained; have a fire-place with a proper chimney or flue; and an external glazed window of at least 9 superficial feet in area, clear of the frame, and made to open in an approved manner. There must be appurtenant to such room or cellar a water-closet or priyy, and an ashpit furnished with proper doors and corerings.
Hack. In brickmaking, the row in which crude bricks are laid to dry after being moulded, and before being placed in the clamps or kilns to be burnt.
Hacking. In walling, denotes the interruption of a course of stones, by the introduction of anotler on a different level, for want of stones to complete the thickness. Thus making two courses at the end of a wall of the same height as one at the other. The last stone laid is often notched to receive the first stone of the other where the two leights commence. Hacking is never permitted in good work. The term is used more in Scotland than in England. Taking down old plastering from a wall or ceiling, is called "hacking off."
Hacking-out Knife. An implement used in cutting old putty out of the rebates of a bar of a light, before inserting a new pane of glass. As this operation injures the bars, a liquid preparation is now often used for softening the putty.
Hagioscope. (Gr. ä γ nos, holy, and $\sigma \kappa 0 \pi d s$, mark.) An aperture made in the interior walls or partitions of a church, generally in the sides of the chancel arch, to enable persons in the aisles, or side chapels, to see the elevation of the host. They are teclmically called squints, and sometımes elevation apertures; and now written Agios:ope.
Half-pace. See Foot Pace.
Half Round. A spmicircular moulding which may be a boad or torus.
Half-timber Beiding. A structure formed of studding, with sills, lintels, struts, and braces, sometimes filled in with brickwork, and plastered over on both sides. Cottages were usually lathed and plastered on the outside only, the upright timber work showing ou the inside. The outside woodwork was sometimes painted black.
Hall. (Sax. Hal.) A name applied indifferently to the first large apartment on entering a house, to the public room of a corporate body, a court of justice, or to a manor house.

Vitruvius mentions three sorts of halls; the Tetrastyle, whict has four columns sup, porting the ceiling; the Corinthian, which has columns all round, and is vaulted; and the Egsptian, which has a peristyle of Corinthian columns, learing a second order with a ceiling. .These were called oci. In magnificent edifices, where the hall is larger and loftier than ordinary, and is placed in the middle of the house, it is called a salonn ; and a royal apartment consists of a hall or chamber of guards, a chamber, an antechamber, a cab:net chamber, and a gallery.

Halving. A method of joining timbers by letting them into each other. It is preferable to mortising, even where the timbers do not pass each other, as they are less liable tu be displaced by shrinking.
Ham. (Sax.) Properly a house or dwelling place; also a street or village, whence it has become the final syllable to many of our towns, as Nottingham, Buckingham, \&c.; hence, too, hamlet, the diminutive of ham, is a small street or village.
Jlammer Beam. A beam acting as a tie at the feet of a pair of principal rafters, but not extending so as to connect the opposite sides. Hammer beams are used chiefly in roofs constructed after the Gothic style, the end which hangs over being frequently supported by a concave rib springing from the wall, as a tangent from a curve, and in its turn supporting another rib, forming an arch. The ends ot hammer beams are often decorated with beads and other derices. The finest example of such a roof is at Westminster Hall. Hance. The small arch which often joins a straight lintel to a jamb. Hence the term Hance arch.
Hand-rail of a Stair. A rail raised upon slender posts, called balusters, to prevent persons falling down the well hole, as also to assist them in ascending and descending.
Handspike. A lever for raising a weight, usually of wood, and applied to the holes in a capstan head.
Mang over. (Verb.) A term used to denote the condition of a wall when the top projects beyond the bottom.
Havgings. Linings for rooms of arras, tapstry, paper, or the like. Paper hangings were introduced early in the seventeenth century.
Ilanging Stile of a Dour. That to which the hinges are attached.
Harditare. Ironmongery is so called.
Ifarmonic Proportion. That which, in a serifs of quantitics, any three adjoining terms being taken, the difference between the first and second is to the difference between the secoad and third, as the first is to the third.
Harmus. (Gr. 'Apmos.) In ancient architecture, a tile used for corcring the joint between two common tiles.
Harness Room. A room wherein harness is deposited. It is absolutely requisite that it be dry and kept clean. Its sitnation should be near the stable it is destined to serve.
IIasp. The fastening to a common casoment. See Snachet and Staple.
Massack. The provincial name for Kentish rag stone.
Hatchet. (Fr. Hachette.) A small axe used by joiners for reducing the edges of boards. Haunches of an Arcis. The parts between the crown and the springing.
Hawk. A small quadrangnlar tool with a handle, used by a plasterer, on which the stuff required by him is served, for his proceeding with the work in progress. He has always a loy attendant on him, by whom he is supplied with the material. The boy in question is called a Hawk boy.
Head. See Aperture.
Head and Foot Stones. The upright stones placed to the grave of a deceased person, and on which the name, dates, \&cc., can be engraved.
Header. In masonry and brickwork, the stone extending over the thickncss of a wall. Hence the term Hending e urse.
Heading Jonst. In joinery, the joint of two or more loards at right angles to the fibres, or in handrailing at right angles to the back; this is so disposed with a view of continuing the length of the board when too short. In good work the heading joints are ploughed and tongued, and in dadoes are, moreover, connected with glue.
Ifadway of Stains. The clear distance, measured perpendicularly, from a given landingplace or stair to the ceiling above, whether of the stairs or landing.
Heart Bond. In masonry, that in which two stones of a wall forming its breadth, have one stone of the whole breadth placed over them. See Bond.
Ifearth. See Chinney. See Slab.
IIfather Roof. A covering used in Scotland, by some considered superior to straw.
Hecatompedon. (Gr.) A temple one hundred feet in front. A term applied to the Parthenon. Fig. 1458, 90 and 100.

Mr. Pearose's measurement gives the length of top of upper step as 101:241 English feet $=100$ Attic feet. Length of the same 228.141 English feet.
Нeek. The same as Rack.
Herl. A term used by workmen to denote a cyma reversa.
Ileel of a Rafrer. The end or foot that rests on the wall plate.
Heigirs. The perpendicular distance of the must remote part of a body from the plane on which it rests.
Height of an Arcif. A line drawn from the middle of the chord or span to the intrados. It is also called the versed sine.
Helical Line of a Hanprail. The spiral line twisting round the cylinder, representing the form of the handrail befure it is moulded.

IIeliocamists. (Gr. 'HNios, the sun, and Kapivos, a furnace.) A chamber in the Roman houses which depended on the rays of the sun for warming it.
11 blioscene. An outside blind invented of late years, formed like the leuvres of a rentilator, which keeps out the rays of the sun, ensures ventilation, and permits a clear riew from the inside of the room to the window of which it is applied.
Helix. (Gr. "HAıg, a kind of ivy whose stalk curls.) A small volute or twist under the abacus of the Corinthian capital, in which there are, in every perfect eapital, sixteen, called also urille; viz., two at each angle, and two meeting under the middle of the abacus, branching out of the caulicoli or stalks, which rise from between the leares.
Hem. The spiral projecting part of the Ionic capital.
Hemeycle. A semicircle; the term is used architecturally to denote vaults of the cradle form, and arches or sweeps of raults, constituting a semicircle.
Hemisphere. In geometry, the half of a globe or sphere, when divided by a plane passing through its centre.
Hemitigglyph. A half triglyph.
Heptagon. (Gr.) A geometrieal figure of seven sides and argles.
Hermitage. A small but or dwelling in an unfreqnented place, occupied by a hermit. Imitation buildings in a park, as a resting place, are so called.
Herrlyg Bone Work. In paving, a disposition of bricks or stones laid diagonally (sce diagram in the margin), each length receiving the end of the aljoining brick or stone. In walling, courses of stone or bricks laid angularly in the face of a wall, in a similar manner. Sometimes there is a horizontal
 course of stones or bricks laid between each angular course. See Ashlar.
Hewn Stone. That which is reduced to a giren form by the use of the mallet and chisel.
Hexagon. ('E ξ and revia, angle.) In geometry, a plain figure bounded by six straight lines, which, when equal, constitute the figure a regular hexagon.
Hexahedron or Cube. (Gr 'E ξ six, and 'E $\delta \rho \alpha$, seat.) One of the five regular solids, so called from its having six faces or seats.
Hexastyle. (Gr. 'E ξ and Erudos, column.) That species of temple or building haring six columns in front. (Fig. 1408.) See Colonvadie.
Hick-joint Pointing. That species of pointing in which, after the joints are raked out, a portion of superior mortar is inserted between the courses, and made perfectly smooth with the surface. Sce Puinting.
Hieroglyphics. ('Iepos, sacred, and $\Gamma \lambda u \phi \omega$, I engrave.) Sculpture or pic-ture-writing, which has obtained the name from
 being most commonly found on sacred buildings. They consist in the expression of a series of ideas by representations of visible objects. Tho name, is, howerer, more particularly applied to a species of writing used by the ancient Egyptians, of three different varieties of characters:-1. The hieroglyphic, properly so called, whercin the representation of the object conreys the idea of the object itself. 2. That in which the characters represent ideas by images of visible objects used as symbols. 3. That consisting of phonetic characters, in which the sign does not represent an olject but a sound.
Hindoo Architecture. See Indian Architrcturb.
Hinges (from Hang.) The metal joints upon which any body turns, such as doors, shutters, \&c. There are many species of them, as described under the names.
Hip. A piece of timber placed between every two adjacent inclined sides of a hip roof, for the purpose of receiving what are called the jack rafters.
Hıp Knob. A finial, placed at the end of the ridge piece of a ronf, or apex of a gable, and against which abuts the barge board of a gable ; it is often dinished with a pendant.
Hip Mould. A term used by some workmen to denote the back of the hip; by others it is used to signify the form or pattern by which the hip is set out.
IIrp or Hippfod Roof. A roof whose return at the end of a building rises immediately
from the wall plate with the same inclination as the adjacent sides. The back of a hip is the angle made on its upper edge, to range with the two sides or planes of the roof, between which it is placed. The jack rafters are those short rafters which are shorter than the full-sized ones to fill in against the hips.
Hip or Cornfr Tiles are those used at the hips of roofs; they are ten inches long, and of appropriate breadth and thickness, and bent on a mould before burning.
Hıppodrone. (Gr. 'Ittos, a horse, and $\Delta \rho o \mu o s$, a course.) In ancient architecture a place appropriated by the Greeks to equestrian exercises, and one in which the prizes were contended for. The most celebrated of these was at Olympia. It was four stadia (each 625 feet) long, and one stadium in breadth.
Hoarn. (Sax. Hoio, to keep.) A timber enclosure round a building, in the course of erection or muder repair.
Hod. A utensil employed by labourers for carrying mortar or bricks.
Hooging. That curre upwards or convexity which is given to the middle of a long line, as the ridge of a roof, to prevent it appearing to lave sunk in that part of it. It is carrying out the scamilli impares recommended by Vitruvius for the same purpose.
Hordpast. A long nail, with a flat short lead for securing objects to a wall.
Hocsow. A concave moulding, whose section is about the quadrant of a circle; called, sometimes, by the workmen a cassment.
Hollow Newel. An opening in the middle of a staircase. The term is used in contradistinction to solid newel, into which the ends of the steps are built. In the hollow newel, or well hole, the steps are only supported at one end by the surrounding wall of the staircase, the ends next the hollow being unsupported.
Hollow Quons. Piers of brick or stone made behind the lock gates of canals.
Hollow Wall. One built in two thicknesses leaving a cavity between them, for the purpose of preventing rain being drifted through the brickwork into the apartment, or for preserving a uniform temperature therein. They are tied together at intervals by iron ties, square slate, \&c. A lining of slate in the cavity has lately been added.
Tomestall and Homestead. A mansion, or seat in the country.
Iomologous. In geometry, the corresponding sides of similar figures. The areas and solid contents of such figures are likewise homologous.
Iood Mould. The projecting moulding forming a drip to protect the other mouldings to a door or window. See Label.
Took. (Sax. Hoce.) A bent piece of iron, used to fasten bodies together, or whereon to hang any artiele. They are of various kinds.
look Pin. The same as Draw-bore Pin.
Iorizontal Cornice. The level part of the cornice of a pediment under the two inclined cornices.
Inrizontal Line. In perspective, the vanishing line of planes parallel to the horizon. Iorizontal Plana. A plane passing throngh the eyo parallel to the horizon, and producing the vanishing line of all level planes.
Iorizontal Projection. The projection made on a plane parallel to the horizon. This may be understood perspectively, or ortlographically, according as the projecting rays are directed to a given point, or perpendicular to a given point.
Iorn. A name sometimes given to the Ionic volute.
forreum. See Granary.
Ionse Block. A square frame of strong boards, used by excavators to elevate the ends of their wheeling planks.
Iorse Run. A contrivance for drawing up loaded wheelbarrows of soil from the deep cnttings of foundations, canals, docks, \&c., by the help of a horse, which gocs backwards and forwards instead of round, as in a horse-gin.
Iorseshoe Arch. An arch which, being higher than a semicircle, the radius is continued down on to the capital. It is chiefly used in Saracenic architecture.
Iosprral. A building erected for the care of sick persons. It is also given to one for infirm persons, as Greenwich Hospital, but that is properly an infirmary.
Hostel or Hoter. (Fr. Hôtel.) This word is used to denote a large inn, or place of public entertainment; but on the Continent it is applied to a large house, either of a private or public nature. One of the most interesting of the former class in Paris, is that of the ce'ebrated IIôtel de Cluny (fig. 1409), now containing a museum of mediæval antiquities. It was erected at the end of the 15 th century, the works being resumed in 1490, after some interruption, hy Jacques d'Amboise, Abbé of Cluny. (See page 239.) Hor Houss. A general term for the glass buildings used in gardening, and including stoves, greenhouses, orangeries, and conservatories. Pits and frames are mere garden structures, with glass roofs, the sides and ends being of brick, stone, or wood, but so low as to prevent entrance into them; they cannot therefore be considered ns hothouses.
nations of the east and of the south, houses are flat on the top, to which ascent is general on the ontside. As we proceed northward, a declivity of the roof becomes requisite to throw off the rain and snow, which are of greater continuince in higher latitudes. Amongst the ancient Greeks, Romans, and Jews, the houses usually enclosed a quadrangular are:t or court, open to the sky. This part of the house was by the Romans called the impluvium or cavadium, and was prorided with channels to carry off the waters into the sewers. Both the Roman and Greek house is described by Vitruvius, to whose work we must refer the reader for further information on these heads. The word house is used in various ways; as in the phra:e, "a religious house," either the burldings of a monastery, or the community of persons inhabiting them may be designated. In the middle ages, when a family retired to the lodge connected with the mansion, or to their country seat, it was called "keeping their secret house." Every gradation of building for habitation, from the cottage to the palace, is embraced ly the word honse, so that to give a fuil account of the requisites of each would occupy more space than can be deroted to the subject in this place.
Housing. The space taken

Fig. 1409. Hôtel de Cluny, Paris. out of one solid for the insertion of the extremity of another, for the purpose of connecting them. Thus the string board of a stair is most frequently notched out for the reception of the steps.
Hovel. An open shed for sheltering cattle, for protecting produce or materials of different kinds from the weather, or for performing various country operations during heary rains, falls of snow, or severe frosts.
Hoveling. A mode of preveating chimneys from smoking, by carrying up two sides higher than those less liable to receive strong currents of air; or apertures are left on all the sides, so that when the wind blows over the top, the smoke may escape below.
Hue. In painting, any degree of strength of colour, from its deepest to its weakest tint.
Hundred of Lime. A dermmination of measure which, in some places, is equal to thirtyfire, in others to twenty-five, heaped bushels or bags, the latter being the quantity about London, that is, one hundred pecks. The hundred is also used for numbering, thus deals are sold by the long hundred, or six score. Pales and laths are soll at five score to the hundred if five feet long, and six score if only three feet long. The hundred weight is 112 lbs . aroirdupois; the long hundred weight is 120 lbs ; so that the former is to the latter as 93333 te 1 .
Hung, dotrle and snale. A term applied to sashes; the first when both the upper and lower sash are balanced by weights, for raising and depressing ; and the last when only one, usually the lower one, is balanced over the pulleys.
IIurricane. A riolent storm of wind, calculated at a velocity of from 80 to 100 miles per hour ; and to exereise ε force of from $31 \frac{1}{2}$ to 49 lbs per superticial foot. In places
where buildings are subject to destructive hurricanes, the precautions to be observed have been described in the Papers, \&c., of the Corps of Royal Engineers, new series, 1851 , vol. i. The whole of the roof should be fixed down to the wall-plate, and the wall-plate to the wall; the wall being made strong enough to resist the powerful current of air rushing against it. Where buildings are of wood, the framework should be tied into the ground, or into stone piers fixed in the ground. During the hurricane at Barbadoes, on the 11 th August. 1831, buildings having substantial partitions at short intervals, withstood the blast, whilst others without them were blown clown. Inside buttresses would answer the purpose. Shutters should be made to open on pirots at top and lottom. Joists used in galleries and verandahs, when let into the wall, tend to upset it. All brickwork should be English bond well grouted throrghout, the bricks having first been well saturated with water, and the mortar made of four parts of sand carefully selected, mixed with one of coral lime; this mixture sets rery strong. In the hurricane mentioned, a small building arched like a gunpowder magazine was uninjured; and a hospital building, well tied with iron, also withstood the storm. Roofs when reconstructed had diagonal bracing inserted to stiffen the rafters; parapet walls were found to protect roofs. Flat roofs, such as those used in the Mauritius, are perhaps the best to use.
Hur. A small cottage or horel, generally constructed of earthy matcrials.
IIrdraulics. (Gr. 'r $\delta \omega \rho$ and Audos, a pipe.) That branch of natural philosopby which treats of the motion of liquids, the laws by which they are regulated, and the eflects which they produce. By sowe anthors the term hydrodynamics is used to express the science of the motion of fluids geterally, whilst the term hydraulies is more particularly applied to the art of conducting, raising, and confiniug water, and to the construction and performance of waterworks.
Hydrostatics. (Gr. 'rowp and $\mathbf{\Sigma} \tau \alpha \omega$, I stand.) The science which explains the properties of the equilibrium and pressure of liquids. It is the application of statics to the peculiar constitution of water, or other bodies, existing in the perfectly liquid form. The following is the fundamental law whereon the whole doctrine of the equilibrium and pressure of liquids is founded : when a liquid mass is in equilitrium under the action of forces of any kind, every moleculo of the mass sustains an equal pressure in all directions.
Itypethrar. (Gr. 'rao, under, and Aıөnp, the air.) A huilding or temple open to the air. The temples of this class are arranged by Vitruvius under the seventh order, which had ten columns on cach front, and surrounded by a double portico as in dipteral temples. The cell was open, whence the name, but it generally had round it a portico of two ranges of columns, one above the other. Sce Teaplee.
Hyperboi.a. (Gr. ' $\Upsilon \pi \in \rho$, over, and B $\alpha \lambda \lambda \omega$, I throw.) One of the ennic sections, being that made by a plane cutting the oppo-ite side of the cone produced abore the vertex, or by a plane which makes a greater angle with the base than the opposite side of the cone makes.
Hyperbolic Conold, or Ilyrernolotid. A solid formed by the revolution of an hyperbola about its axis. See Coxmbl.
Hyperbolic Cylindroid. A solid formed by the revolution of an hyperbola about its conjugate axis or line through the centre, perpendicular to the transverse axis.
Hyperthyrum. (Gr. ' $\Upsilon \pi \epsilon \rho$ and $\Theta u p a$ a a door.) The lintel of the aperture of a doormay.
Hypncaestum. (Gr. 'rxo, under, and Kaw, I burn.) In ancient architecture, a vaulted apartment, from which the lieat of the fire was distributed to the rooms above by means of earthen tubes. This contrivance, first used in baths, was afterwards adopted in private houses, and is supposed to have diffused an agreeable and equal temperature throughout the different rooms.
Ifrognem. (Gr.) A term applied among the ancients to those parts of a building which were below the level of the ground.
Ilpporudium. A foutstonl used in the ancient baths.
Iyposcenius. In anciest architecture, the front wall of the theatre, facing the orchestra from the stage.
IIvpostyle. (Gr.) Work supported by columns; a covered colonnade, or a pillared hall. Hyputrachelicm. (Gr. ' \uparrow тo, under, and Tpax $\eta \lambda o s$, the neck.) The slenderest part of the shaft of a column, being that immediately below the neek of a capital.

Icr House. A subterranean depôt for preserving ice during the winter. The most important adrice that can be given to the builder of an ice house is, that it be so thoroughly capable of drainage, from the lowest point of its floor, as to permit no water erer to collect upon it; this accomplished, no difficulty will. with common precaution, prevent the preserration of the ice. The aspect of such a building should be towards the south-
east, that the morning sun may expel the damp air which is moro prejudicial than warnth. If possible it should be placed on a declivity fur the facility of drainage. At the end of the drain which is to carry away the water arising from the melted ice, a perfect air trap should be placed, to prevent all communication between the external and internal air, from which trap the water should be carried off without the possibility of obstruction. With respect to the dimensions and form of the ice house, the former may be of a medium diameter, from fifieen to twenty feet; a moderate size would be from eight to fifteen feet. The best form is the frustum of an inverted cone, ten to tweuty fort deep, bricked round, and with double walls, a cavity of four inches being left between them. The ice is sustained on a grated floor, through which the water is rapidly carried off by the drainage first mentioned. The ice is best collected during tho severest part of the frost, and should be pounded as laid in the ice house, besides being well rammed down as it is put in. Snow loowever, hard rammed, will answer when ice cannot be oltained. The entrance may be at the top by double flaps well covered over with straw ; or near the top at the side by a lobby with a door at each end, and fillect with trusses of straw to kecp out the air.
Ichnograpiy. (Gr. I χ vos, a model, and r $\rho a \phi \omega$, I draw.) The representation of the ground plot of a building. In perspective, it is its representation, intersected by an horizontal plane at its base or groundfloor.
Icusahemron. (Gr. Ekool, twenty, and 'Ejóa, seat.). One of the five regular or platonic bodies, hounded by twenty equilateral and equal triangles. It may be regarded as consisting of twenty equal and similar triangular pyramids, whose vertices all meet in the same point; and hence the content of one of these pyramids, multiplied by twenty, gives the whole content of the icosahedron.
Image. In perspective, the sconographic or perspective representation of an object.
Imbow. (Verb.) To arch over or to vault.
Imbricated Tracery. A pattern formed like the tiles on a roof.
Impages. A term used by Vitruvius (lib. iv. c. 6.), which has usually been considered as meaning the rails of a door.
Imperial. (Fr.) A species of dome, whose profile is pointed towards the top, and widens towards the base, thus forming a curve of contrary flexure.
Imperials. A sized slate used in roofing.
Impetcs. (Lat.) In mechanics, the same with momentum or force.
Impluviem. (Lat.) In ancient architecture, the uncorered court of a house. In the summer time it was the practice to stretch an awning over it. The term is also applied to the sinking in the floor to receive the water.
Impost. (Lat. Impono, I lay on.) The capital of a pier or pilaster which receives an areh. It varies in the different orders; sometimes the whole of the entablature serves as tho impost to an arch. The term is applicable to any supporting piece. An impost is said to be mutilated when its prejection is diminished, so that it does not exceed that of the adjoining pilaster which it accompanies.
Inbond Jambstone. A bondstone laid in the joint of an aperture.
Incertumr. (Lat.) A term used by Vitrurius to designate a mode of building which consisted of small rough stones and mortar, and whose face exhibited irregularly furmed masonry, not laid in horizontal courses. See Masonry.
Incir. A measure of length, being the twelfth part of a foot, and is usually subdivided into eighths and sixteenths. See Foot.
Incised Slab. A memorial to a deceased person, sometimes plainly lettered, and occasionally ornamented with brasses; they usually formed the parement of anciont churches. See Mural Slab.
Inclination. (Lat.) The approach of one line, which if continuod will meet another or the same of two planes.
Inclined Plane. One of the five simple mechanical powers, whose theory is deducel from the decomposition of forces:
Incrustation. (Lat.) Anything, such as mosaic, scagliola, \&c., applied by some conneeting medium to another body.
Indefinite. (Lat.) Anything which has only one extreme, whence it may be produced infinitely as it is produced from such extreme.
Indentem. (Lat.) Toothed together, that is, with a projection fitted to a recess.
Indian Architecture. Tho Buddhist and Mahometan buildings of Hindostan aro comprised under this title. Rock-cut temples, temples, pillars, monumental tomhs, halls, tanks, \&c., show the energy and skill of these people, many of the work being profusely covered with sculpture and carvings, the earlier works chiefly having reference to their religion.
Induration. (Lat.) A term applied to the firmer consistence which a body aequires from varions causes.
Inertia. (Lat. Iners.) A term applied to that law of the material world which is known
to predicate that all bodies are absolutely passive or indifferent to a state of rest or motion, and would centinue in those states unless disturbed by the action of some extrinsic force. Inertia is one of the inherent properties of matter.
Infinite. (Lat. Infinitus, boundless.) In geometry, that which is greater than any assignable magnitude; and as no such quantities exist in nature, the idea of an infinito quantity can only, and that most imperfectly, exist in the mind by excluding all notions of boundary or space.
Infirmary. A public building for the reception of infirm persons; but the term is more generally used to denote a sick ward attached to some public establishment.
Inlaid Work. Work in which the surface of a material is cut away to allow of the substitution of metal, stone, cement, wood, ivory, tortoiseshell, mother-of-poarl, or other substance, with a flush surface. Such is Buhl Work, Marquetry, \&ic. Mosaic Work in stone is also inlaid work. The inlaying of metal on metal is called damaseening. Veneering is also a species of inlaying.
$1_{\text {nner Plate. The wall plate, in a double-plated roof, which lies ncarest tho centre of }}$ the rouf; the side of the other wall plate, called the outcr plate, being nearer the outer surface of the wall.
Inner Square. The edges forming the internal right angle of the instrument called is square.
Inserted Column. One that is engaged in a wall.
Instrunents, Mathematical. Those used for describing mathematical diagrams and drawings of every description, when the figures or clementary parts of them are composed of straight lines, circles, or portions of them. The indispensable instruments for such operations are a drawing pen, a pair of plain compassts, commonly called dividers, a pair of drawing compasses, a port crayon and pencil foot, a pair of bow, of triangular, and of proportional compasses, a protractor in the form of a semicircle or rectingle, and graduated on the edges, a plain scale, and a parallel rulc.
Insular, or Insulated Building. Such as stands entirely detached from any other.
Insulated Columin. Ono detached from a wall, so that the whole of its surface may bo seen.
Intaglio. (It.) Sculpture in which the subject is hollowed out, as for a seal, so that the impression from it would present the appearance of a bas-relief.
Intavolata. The sime as Cyma.
Intercepted Axis. In conic sections, that part of the diameter of a curve comprehendel between the vertex and the ordinato. It is also called the abscissa, and forms an arch of a peculiar kind.
Intercolonniation. (Lat. Inter, between, and Columna, a column.) The distance between two columns measured at the lower part of their shafts. It is one of the most importimt elements in architecture, and on it depends the effect of the columns themselves, their pleasing proportion, and tho harmony of an edifice. Intercolumniations are of fire species, pycnostylos, systylos, diastylos, arcostylos, and custylos, which see.
Interdentels. The space between two dentols. From a comparison of various examples it scems that the Greeks placed their dentels wider apart than the Romans. In the temple of Bacchus at Teos, the interdentel is two-thirds the breadth of the dentel, and in that of Minerva Polias at Priene, the interdentel is noarly three-fourths. In the temple of Jupiter Stator at Rome, the intordentels are equall to half the breadth of the dentel.
Interduce. The same as Interitie.
Interior Angle. An angle formed within any figure by two straight lined parts of the perimeter or bnundary of the figure, the exterior angle being that which is formed in producing a side of the perimeter of the figure. The term is also applied to the two angles furmed by two parallel lines, when eut on each side of tho intersecting line.
Intimior and Opposite Angles. An expression applied to the two angles furmed by a line cutting two parallels.
Interlacing Arches. Semicircular aches as in an arcade, the mouldings of which intersect oach othor, as frequently seen in Norman architecture. Milner supposed the Pointed style to have had its origin from them.
Interval Angle. See Interior Angie.
Intertis. Short pieces of timber used in roofing to bind upright posts together, in roofs, in partitions, in lath and plaster work, and in walls with timber framework.
Jn ronaco. (It.) The term often applied to the whole coating of plastering upon a wall or ceiling; but properly it means the finishing coat only.
Intiendos. The interior and lower line or curve of an arch. The exterior or upper curve is called the extradys. See Areir.
Inviention. (Lat. Invenio, I fincl.) In the fine arts, the choice and production of such objects as are proper to enter into the composition of a work of art. "Strictly speaking," says Sir Joshua Reynolds, "invention is little more than a new combination of thoso images which have been previously gathered and deposited in the memory:
nothing can come of nothing; he who has laid up no materials can produce no combinations." Though there be nothing new under the sun, yet novelty in art will be attainable till all the combinatious of the same things are exhausted, a circumstance that can never come to pass.
Inverted Arch. An arch turned with its back and keystone downwards. It is used in foundations, to distribute the weight of particular points over the whole extent of the foundation, and hence its employment is frequently of the first importance in constructive architecture. Such an areh has been used in some of the English cathedrals to form a buttress between the piers of tho central tower when they appeared to be giring way from the weight abore.
Involute, See Erolute.
Infard Angle. The re-entrant angle of a solid. See Interior Angle.
Ionic Order. The second of those employed by the Greeks, and the third used by the lomans and in Italian architeeture. The capital is known by the rolutes. Dentels are used in the cornice. The proto-Ionic is considered to be found in the capital of the columns at Persepolis. The Authemion is an ornament peculiar to this order.
Irun. One of the chief metals. The metallic products of the iron manufacture are of three kinds: malleable or wronght iron, being pure or nearly pure rron :cast iron; and steel, being certain compounds of iron with carbon. In all cases cast iron is best for exterior, and wrought iron for interior purposes-as the former is not acted upon so greatly by atmospheric influences.
Ironid-in. Ashlar work, when acted upon by water, is sometimes set in hydraulic cement, the joints being filled and rubbed up so as to make the stuff curl out, which is then to be neatly struck off and ironed-in to secure a good water-tight joint.
Ironmongery. The artieles in iron and other ware, required by the buifler during the exeeution of his works; such as bolts, locks, and other fastenings, hinges, nails, spikes, screws, and such-like.
Irregular Figure. One whose sides, and consequently angles, are unequal to each other.
Isagon. (Gr. I $\sigma o s$, equal, and $\Gamma \omega \nu$ a, an angle.) A figure with equal angles.
Isle or Ile. The old way of writing aisle or aile.
Isodomum. (Gr.) One of the methods of building walls practised by the Greeks. It was executed in courses of equal thickness, and with stones of equal lengths. The other method was called pseudisodomum, in which the heights, thicknesses, "and lengths of the stone were different. There was yet another mode called Ensplecron.
Isometrical Projection. A system of drawing oljects similarly to a birl's-eye view, excepting that parallel lines are not made to radiate to vanishing points as in that and in the usual perspective. It was matured about 1823 ly Professor Farish, who explained it in the Transactions of the Cambridge Philosophical Society, vol. 1. The figures $590 f$ and $590 p$ are drawn by this method of representation.
Isosceles Triangle. One in which two of the sides are of equal length
Italian Architectore. That adaptation of ancient Roman architecture which commenced at the period of the Renaissance of Art in Italy.

Jack Arch. One whose thickness is only of one brick.
Jack Plane. A plane about eighteen inehes long, used in taking off the rongh surface left by the saw or that of the axe, and for taking off large protuberant parts, to preparo the stuff for the trying plane.
Jack Rafter. See Hip Roof.
Jack Ribs. Those in a groin, or in a polygnnally-domed ceiling, that aro fixed upon the hips.
Jack Timber. Any one interrupted in its length, or cut short.
Jamb Lanings. The two vertical linings of a doorway which are usually of wood.
Jamb Posts. Those introduced on the side of a door, to which the jamb linings are fixed. They are particularly used when partitions are of wood,
Jamb Stones. In stone walls, those which are employed in building the sides of apertures, in which every alternate stone shonld go entirely through the thickuess of the wall.
Jamis. (Fr.) The sides of an aperturo which connect the two sides of a wall. Sce Aperture and Chimney.
Jerkin Head. The end of a roof not hipped down to the level of the opposite adjoining walls, the gable being carried higher than the level of those walls.
Jetty. The projecting part of a building, as an upper story beyond a lower oue.
Jewisir or Hebrew Architecture. Very little beyond the references in the Scriptures is known of the works of these ancient people. The excavations lately made at Jerusalem have not led to any discoveries of value relating thereto.

Jis Donr. A door so constructed as to have the same continuity of surface with that of the partition or wall in which it stands. Its use is to preserse an unbroken surface in an apartment where one door only is wanted nearer to one end of a room than another, and generally for the purpose of preserving uniformity.
Jiblet Cheek. See Giblet Check.
Joggle. The joint of two bodies so constructed as to prevent them sliding past each other, by the application of a force in a direction perpendicular to the two pressures ly which they are held together. Thus the struts of a roof are joggled into the truss posts and into the rafters. When confined by mortise and tenon, the pressure which keers them together is that of the rafter and the reaction of the truss-post. The term is also used in masonry to signify the indentation made in one stone to receive the projection in another, so as to prevent all sliding on the joints. This may be also accomplished by means of independent pieces of material let into the adjacent stones. See Cramp; Dowel.
Joggle Prece. The truss post in a roof when formed to receive a brace or strut with a jogglo.
Joiner. The artisan who joins wood by glue, framing, or nails, for the finishings of a building.
Jonery. The practice of framing or joining wood for the internal and external finishings of houses; thus the covering and lining of rough walls, the covering of rough timbers, the manufacture of doors, shutters, sashes, stairs, and the like are classed under this head.
Junt. The surface of separation between two bodies brought into contact and held firmly together, either by some cementing medium, or by the weight of one body lying on another. A joint, however, is not merely the contact of two surfaces, though the nearer they approach the more perfect the joint. In masonry, the distances of the planes intended to form the joint is comparatively considerable, becauso of the coarseness of the particles which enter into the composition of the cement.
Jointer. In joinery is the largest plane used by the joiner in straightening the face of the edge of the stuff to be prepared. In bricklaying, it is a crooked piece of iron forming two curres of contrary flexure by its edges on each side, and is used for drawing, by the aid of the jointing rule, the coursing and vertical joints of the work.
Junting Rule. A straight edge used by bricklayers for the regulation of tho direction and course of the jointer in the horizontal and rertical joints of brickwork.
Joist. (Fr. Joindre.) The timber whereto the boards of a floor or the laths for a ceiling are nailed. Joists rest on the walls or on girders; sometimes on both. When only one tier of joists is used, the assemblage is called single-flooring; when two, double-flooring.
Jubí. (Fr.) The rood loft or sereen at the entrance to the choirs of French cathedrals. In England it is usually called the chancel screen. It is also the stand (often onding upwards in an cagle with expanded wings) on which the Gospel is placed to be read, receiring its name from the words "Jube Domne benedicere," used by the deacou when the missal is presented to him by the officiating priest at mass, previous to the reading of the Gospel. See Choir Screen and Rood Loft.
Jofrers. An obsolete term for pieces of timber four or five inches square.
Jump. An abrupt rise in a level course of brickwork or masonry to accommodate the work to the inequality of the ground. Also in quarrying, one among the various names given to the dislocations of the strata in quarries.
Juaper. A long iron chisel used by masons and miners.

K

Kamptulicon. An elistic covering for floors. See Floorcloth.
Kfblah, or Kiblef. The point in a mosque designating the direction of the temple of the Mahometans at Mecca.
Keel. The fillet, raised edge, or sharp arris, formed on roll mouldings, by which the heariness of the large ones was relicved, and diversity gained without loss of mass.
Keep, or Keep Tower. A term almost synonymous with donjon. See Castle.
Kerb. See Kirb.
Kerf. The way made by a saw through a pioce of timber, by displacing the wood with the teeth of the saw.
Keinel, or Kernelle. See Crenelle.
Kex. (Sax. Cæ̧e.) An instrument for driving back the bolt of a lock. The key of a floor is the board last laid down. In joinery generally, a key is a piece of wood let into the back of another in the contrary direction of the grain, to preserve the last from warping.
Key Srone. Tho highest or central stone of an arch. Sec Arci, In Gothic vaulting, see Pendent and Boss.

Keyed Dado. That which has bars of wood groored into it across the grain at the back to prevent it warping.
Kers. In naked flooring are pieces of timber fixed in between the joists hy mortise and tenor. When these are fastened with their ends projecting against the sides of the joists, they are called strutting-picces.
Kiln. A building for the accumulation and retention of heat in order to dry or burn certain materials deposited within them.
King Post. The centre post in a trussed roof. Sce Crown Post.
Kirb Plate, Roof, and Stone. See Curb Plate; Curb Roof; and Curd Stone.
Kitchen. (Fr. Cuisine.) The apartment or office of a house wherein the operations of cookery are carried on.
Knee. A part of the back of a handrailing, of a convex form, being the reverse of a ramp, which is also the back of a handrail, but is concave. The term knee is also given to any small piece of timber of a bent or angular form.
Knee Piece, or Knee Rafter. An angular piece of timber, to which other pieces in the roof are fastened.
K wobbling. Knocking off the rough protuberances of hard rock stone at the quarry. It is called also skiffling.
Knocker. A movable sort of hammer, more or less of an ornamental character, hinged to the face of a door or gate by which attendance is claimed to the demands of those requiring admittance. The knob which is struck upon is sometimes called a door-nail.
Knot, or Knob. A bunch of leaves or flowers, as the bosses at the ends of a label; at the intersection of ribs; and in capitals.
Knotting. The preliminary process in painting, to prevent the knots appearing, by covering them with a coat composed of red read, then white lead and oil, and lastly, a coat of gold size. Sometimes leaf silrer is used. Also a knotting size.
Knuckle. The joint of a cylindrical form, with a pin as an axis, by which the straps of a hinge are fasteued together.
Knulling. A moulding nearly flat, and similar in character to a bead and reel ornament. It is chiefly used in calinet work.
Koss. A measure of length used in India, which varies in different prorinces; generally about two miles.
Kurb Stone. See Curb Stone.

L

Label. In Gothic architecture, the drip or hood moulding over an aperiure when it is returned square.
Labour. (Lat.) A term in masonry employed to denote the value of a piece of work in consideration of the time bestowed upon it.
Labyrinth. (Gr. Aabuputos.) Literally a place, usually subterraneous, full of inextricable windings. The four celebrated labyrinths of antiquity were the Cretan, Egyptian, Lemnian, and Italian. The first has the reputation of being the work of Dredalus to secure the Minotaur; the second is said to hare been constructed under the command of Psammeticus, king of Egypt; the third was on the island of Lemnos, and was supported by columns of great beauty; the fourth is reported to have been designed by Porsenna, king of Etruria, as a tomb for himself and his successors.
Labyrinth Fret. A fret, with many turnings, in the form of a labyrinth. Sce Fret.
Liconicum. (Lat.) One of the apartments in the ancient baths, so called from its having been first used in Laconia.
Lacquer. A yellow varnish, consisting of a solution of shell-lac in alcohol, coloured by gamboge, saffion, annotto, or other yellow, orange, or red colouring mattors. The use of lacquer is chiefly for rarnishing brass, and some other metals, in order to give them a golden colour and preserve their linstro.
Lactarium. (Lat.) Strictly a dairy-house. In ancient architecture, it was a place in the Roman herb market, indicated by a column, called the Columna Lactaria, whero foundlings were fed and nourished.
Lacunar. (Lat.) The ceiling or under surface of the member of an order. Also the under side of the larmier or corona of a cornice. The under side also of that part of the architrave between the capitals of columns. The ceiling of any part in architecture receives the name of lacunar only when it consists of compartments sunk or hollowed, without spaces or bands, between the pancls; if it is with bands, it is called laquear.
Lady. A sized slate used in roofing.
Lady Cuapel. The name given to a cliapel dedicated to the Virgin, gencrally, in ancient cathedrals, placed behind the high altar.

Lagaing, or laggins. The planks laid on the ribs forming the centreing of an arch, to earry the stone or brickwork.
Lancet Arch. One whose head is shaped like the point of a lancet, and generally applied to long narrow windows. Fig. 1410.
Landing. The terminating floor of a flight of stairs, either alove or below it.
Lantern. (Fr. Lánterne.) A structure either square, circular, elliptical, or polygonal, on the top of a dome. It is also the upright windows placed over the ceiling of an apartment, to give light. The internally polygonal tower over the intersection of the nave with the transepts of a church, as at Ely Cathedral ; St. Helen's, York, \&c., is also so callod.
Lap. The part of one body which lies on and covers another.
Laquear. Seo Lacunar.
Lararicm. (Lat.) In ancient arehitecture, the apartment in which the lares or household gods were drposited. It frequently contained also statues of the proprictor's

Fig. 1410. Lancet Δ rch. ancestors.
Larder. The place in which undressed meat is kept for the use of a family.
Larmier. (Fr.) The same as Corona.
Lit, or Latif. The Sanscrit term for a pillar.
Latcin. The eateh by whicha door is held fast.
Latent IIeat. That which is iizensible to the thermometer, upon whieh the liquid and aeriform states of bodies depend, and which becomes sensible during the conversion of rapours into liquids and of liquids into solids.
Lateral Strengiti. The resistance which a body will afford at right angles to its grain.
Lateral. Turust. The weight, or rather pressure, of materials sideways, as in an arch.
Latir. (Sax. Leeta.) A thin piece of wood used in slating, tiling, and plastering. For the latter, there are two sorts, double and single, the furmer being about threccighths of an inch thick, and the latter barely a quarter of an inch. Laths for slates and for pantiles aro pieces of fir, about three inches by one inch thick, to which the former are nailed, and on to which the latter are hung.
Latio Brick. A species made in some pasts of England. They are twenty-two inches long and six inches broad.
Latif floated and set fair. Three-coat plasterers' work; the first is called pricking up; the second floating; the third, or finishing, done with fine stuff, is the setting coar.
Lath laid and set. Two-coat plasterers' work, except that the first is called laying, and is executed without scratching, unless with a broom. When used on walls, this sort of work is generally coloured; when on ceilings, it is whited.
Latif plasterkd, set, and coloured. The same as lath laid, set, and coloured.
Latif pricked up, floated, and set for Paper. The same as lath floated and set fair.
Iattice. (Fr. Lattis.) A reticulated window, made of laths of wood, strips of iron, or other materials, and only used where air, rather than light, is to be admitted, as in cellars and dairics.
Laundry. It should be spacious and well supplied with orery convenience for washing, drying, mangling, and ironing the linen of a family or of an establishment. Horscs, or frames of wood, should be provided for hanging the linen upon to dry, which should be suspended to the timbers of the ceiling by pulleys, by which they may be raised and lowered, unless a drying closet heated by a stove or hot water be provided; this is fitted up with horses running on iron rails backwards and forwards.
Lavatory. (Lat.) Besides the reference to the monks' lavatories, as noticed s.v. Clolster, this term is now employed to designate a closet or small room fitted up with basins and othor apparatus for washing hands; it sometimes includes urinals and water-closets. or communicates with another room fitted up with them.
Law Cotrts. Seo Court of Justice.
layer. In brickwork and masonry. it is synonymous with Course.
Layer Boarding. The same as Gutter Boardino; the boards being fixed to the bearers to carry the leadwork of a gutter to a roof.
Laying. In plastering, the first coat on lath of two-coat work, the surface whereof is roughed by sweeping with a broom. The difference between laying and rendering being, that the latter is the first coat upon brick.
Lazarifouse, or Lazaretto. (Ital.) A hospital for the recoption of the poor and those atflicted with eontagious diseases. There are many in the southern states of Europe for the performance of quarantine, into which those only are admitted who arrive from cosutrics infected by the plague, or suspected of being so. An account of the principal lazarettos of Europe was published by the celebrated IIoward.

Lrad. (Sax. Lat.) The hearirst metal next to gold, platina, and mereury, being cleve times hearier than its own bulk of water.
Leaf. One side of a door, upright slab of stono, \&c.
Leanto. A building whose rafters pitch against or lean on to another building or wall.
Liar Board. The plank fastencd on the feet of the rafters to carry the side pieee of th lad of a gutter under the bottom ruws of the slating or tiling.
Leaves. (Sax. Lear.) Ornments imitated from natural leaves, whereof the ancient used two sorts, natural and inaginary. The former were those of the laurel, palm acanthus, and olive; but they took great liberties in the representations of all of them
Lectern. The reading desk placed in the choir of mediexal churches. It was made it the shape of a pillar, with a slab for the book, and was usually of brass, sometime: elaborately carved. It was superseded by the reading desk after the Reformation.
Lectorium. The ancient name for the place where the epistle was read in a church hence lectorn and lettern for the desk itself. The lectorium in the German churches i now of rare occurrence, but one is to be seen in Meissen Cathedral.
Lecture Hald. A building erected for the special purpose of affording good accommoda tion for a lecturer and his audience. It is sometimes a large room cumbined witl others; thus, in a village or small town, a building containing a lecture hall about fi ty fect by thirty feet, might have a reading room about twenty feet by cighteen feet, elass-room, with a restibule and the usual necessarics.
Ladge. A surface serving to support a body either in motion or at rest. Ledges of door: are the narrow surf uces wrought upon the jambs and sefites parallel to the wall to stol the door, so that when it is shut the ledges coincide with the surface of the door. ledge, therefore, is one of the sides of a rebate, each rebate boing formed of two sides In temporary work the ledges of doors are formed by fillets, likewise called a stop Also the horizontal planks in common doors, to which the vertical planks are nailed.
Ledgenent. The development of a surface, or the surface of a body stretched out on plane, so that the dimensions of the different sides may be casily ascertained.

A string course or horizontal moulding. Ledgement table is applied to any of the pro jections of a plinth in Gothic architecture, except the lowest or carth table.
Lemgers. In scaffolding for brick buildings are horizontal pieces of timber parallel th the walls. They are fastened to the standards, or upright poles, by cords, to suppor the put-logs, which lie at right angles to and on the walls as they are brought up, ant receive the boards for working on.
Legs of an IIyperbola. The two parts on each side the vertex.
Legs of a Triangle. The sides which inclose the base.
Lengtir. (Sax. Lens.) The greatest extension of a body. In a right prism the lengtl is the distance between the ends; in a right pyramid or cone, the length is the distinc between the vertex and the base.
Lescue. (Gr.) A publie building among the Greeks, consisting of open courts with por ticoes, the walls corered with paintings. It was used principally as a lounging plate The nearest modern approach to it appears to be the Ruhmeshalle, or mercantil exchange, at Mnnich. Ancient writers state that these public meeting-places were s much in request that there were no less than 360 in Athens alone.
Lettern, or Lectern. A desk in a church from which the lessons are read. See Ambl, in the ancient church. An eagle with wings displayed, that bird being symbolieal o S. John the Erangelist and his Gospel, was often used as a book board in the Middl Ages; and is also seen in the cathedrals and in some large churches in England.
Leucomb. Sce Lookum.
Leved. (Sax. Lœrel.) A line or surface which inelines to neither side. The term used substantively to denote an instrument which shows the direction of a straight lin parallel to the plane of the horizon. The plane of the sensible horizon is indicated i two ways: by the direction of the plummet, or plumb line, to which it is perpen dicular; and by the surface of a fluid at rest. Accordingly, levels are formed eithe by means of the plumb line, or by the agency of a fluid applied in some particula manner. They all depend, however, upon the same principle, namely, the action terrestrial gravity.

The carpenter's level consists of a long rule, straight on its lower edge, about ten o twelre feet in length, with an upright fixed to its upper edge, perpendicular to and i the middle of the length, having its sides in the same plane with those of the rult and a straight line drawn on one of its sides perpendicular to the straight edge of th rule. The mason's level is formed of three pieees of wood, joined in the form of a isosceles triangle, having a plummet suspended from the vertex over a mark in th centre of the base.
Levelideg. The art or act of finding a line parallel to the horizon, at one or more sta tions, in order to determine the height of one place with respeet to auother, for layin
grounds even, regulating descents, draining morasses, conducting wators for the irrigation of land, ete.

In the praetice of levelling, it is evident that the level line, carried on by means of a spirit level or other instrument used for the purpose, is a tangent to the earth: it is therefore necessary to make an allowance for the difference between the true level B C and the apparent level B D. This difference is, of course, equal to the exeess D C of the secant of the arel of distanee above the radius of the earth. Henee, from station to station, accordingly, allowance must be made. The suljoined Table exhibits the corrections or
 values of the length C D.

Distance or BC.	$\begin{aligned} & \text { Diff. of Lev. } \\ & \text { or CD. } \end{aligned}$	Distanee or BC.	Diff. of Lev. or CD.	Distance or BC.	$\begin{aligned} & \text { Diff. of Lev. } \\ & \text { or CD. } \end{aligned}$	Distance or BC.	Diff. of Lev. or CD.
Yards.	Inches.	Yards.	Inches.	Miles.	Feet. In.	Miles.	Feet. In.
100	$0 \cdot 026$	900	$2 \cdot 081$	$\frac{1}{4}$	$0 \quad 0 \frac{1}{2}$	6	2311
200	$0 \cdot 123$	1000	$2 \cdot 570$	$\frac{1}{2}$	02	7	326
300	$0 \cdot 231$	1100	$3 \cdot 110$	$\frac{3}{4}$	0 4 ${ }_{2}$	8	426
410	$0 \cdot 411$	1200	$3 \cdot 701$	1	08	9	539
500	$0 \cdot 643$	1300	$4 \cdot 344$	2	28	10	66 4
600	0.925	1400	5.038	3	60	11	803
700	$1 \cdot 260$	1500	$5 \cdot 781$	4	107	12	957
800	$1 \cdot 645$	1600	$6 \cdot 580$	5	$16 \quad 7$	13	1122

Lever. In mechanics an inflexible rod, moveable about a fulcrum, or prop, and having forces applied to two or more points in it. Tho lever is one of the mochanical powers, and being the simplest of them all, was the first attempted to be explained.
Lever Boards. A set of boards so fastened that they may be turned at any angle to admit more or less light, or to lap upon each other so as to exclude all air or light through apertures. See Louvre Boards.
Lewis, or Lewisson. An instrument used by builders to raise stones of more than orilinary weight to the upper part of a building. It was revived by a French artisan in the reign of Lcuis XIV., and is now generally employod. It operates by the pieces forming its dovetail end being hold in their corresponding places in a hole sunk in the stone, by a middle straight piece, kept in its situation by a pin passing through it and the dovetail pieces at top, and the comvination of the whole is effeeted with a large ring, which is attached to the rope or chain, and the stone lifted to its place.
Lias. A provincial name adopted by geologists for an argillaceous limestone, which, together with its associated bed, is charaeterised by peeuliar fossils.
Library. An edifice or apartment for the reception of a collection of books. The most ancient and celebrated library in existenco is that of the Vatican : in the latter respeet, as well on account of its size as of the number of valuable manuscripts it contains. It oecupies in the suite of its apartments one of the sides of the Vatican 900 feet in length. In the architeeture or arrangement there is nothing particularly to admire, and indeed it was not originally intended for the purpose to which it has been appropriated.

The Medicean library at Florence, the work of Michael Angelo, has grand proportions, but the details are as eaprieions as that great man could possibly have invented. The library of St. Mark at Venice has already been described in the First Book. Sansavino had to encounter many difficulties in respect of its site and connection with other buildings, but Palladio considered the success of its design to have been so great as to have made it worthy of any age.

Although a public library would seem to require a grave and simple style of treatment, it is, nevertheless, properly susceptible of much richness, if the funds admit, and it comports with the surrounding buildings to use muc- decoration. Sceurity against fire is the first important consideration in its construction; and the next is to ensure the perfect quiet neeessary for stndy. There ean scarcely be too mueh light, bocause there are always modes of exeluding the excess in the brightest days of summer. The light should not be placed high up for the purpose of obtaining more room for the presses which are to receiro the books, beeause even a greater space may be obtained, as in the magnificent library at Trinity College, Cambridge, by Wren, by making the presses stand against the piers at right angles with the longitudinal walls, and placing the windows between them. Moreover, the presses, when placed longitudinally against the walls, the windows being above, have the titles of the books they contain indistinet, from being too much in shadow. The library just mentioned is in every respect one of the finest works of Sir Christopher Wren; it is 190 feet long, 40 feet
wide, and 38 feet high, floored with marblo, and decorated with pilasters and an entallature of the Corinthian order. This library is adduced as a perfect model of the mode of distribution, which might be carried in principle to any extent. If the readers be rery numerous, a separate reading-room becomes a nectssary addition, which should be placed as centrally as may be to the whole mass of building, so that the labour of the attendants may be lessened, and the readers at the same time more readity served with the books wanted. The best mode of warming the apartments is by hot water in pipes carried round the apartments, or pumped up through the floor. Efficient means of afforling rentilation to the room or rooms is also necessary.

At Paris the Bibliotheque Nationale is, though of immense extent, little more than a warehouse for holding the books. The library of St. Generière, in the same city, is a well-conceived and well-designed building, and particularly suited to its destination. This ornamental edifice was designed by M. Labrouste in 1843.

Perhaps one of the most absurd distributions of plan for the buildings under consideration is to be seen in the Radeliffe Library, at Oxford. It is circular on the plan, and hence vast loss of room is experienced, but nevertheless it is a noble building.

In London the only library of any size to which reference can be made is that of the British Museum. With so many clubs and institutions, each possessing its own library, it may probably be many years before an edifice, similar to the Free Library and Musenm at Liverpool, is erected in London; especially as the parishes have not yet had sufficient courage to tax themselres for the establishment of free libraries, which the Act of Parliament has for some years past enabled them to do. The king's library at the British Musenm is situated in the east wing, and was erected, 1825-28, by Sir R. Smirke, R.A. The chief room is 300 feet long, 40 feet wide, and 30 feet high. Little was done for the accommodation of the readers, largely increasing in numbers, until 1857, when the new reading-room was opened, affording desks for threo hundred readers, which are rery often fully occupied, who have free access to about 20,000 volumes ranged around it. The room is 140 feet diameter and 106 feet high, having a central light of 40 feet diameter in the dome, with tall side lights in the springing of the dome. It was desigued by Mr. Sydney Smirke, R.A. The arrangements for economising the space around it for holding the annual accession of new books in narrow and well-lighted corridors, are admirably managed. The Builder journal, xp. p. 229, and the Building Neus jorrnal, iii. 157, 449-55, contain full details of these fine additions to the national establishment.

The library attached to the London University, Gower Street, designed by Professor T. L. Donaldson, is 91 feet long by 21 feet 6 inches wide, 45 feet through the recesses, and 45 feet high in the centre. It is a good example of such a room, planned as is nare and aisles, with cases projecting from tho outer walls up to the piers. The library erected by the Corporation of the City of London, and attached to the Guildhall, is 98 feet by 65 feet, and musenm, with reading room 54 feet by 20 feet, is a well-designed edifice, ly Sir Horace Jones, the City architect.
Lierne Rib. A short rib in vaulting.
Lift, or Huist. A machine introduced into warehouses, to raise goods from the lower to the higher floors of the building, and worked either by manual or by hydraulic power. Lately it has been placed in large houses and in hotels, for the purpose of raising fuel, lnggage, \&c., to each floor; in some instances the platform has been formed into a room for the accommodation of persons while being hoisted to an uppor, or lowered to an under floor, without the fatigue of walking up and down long flights of steps. For lifting stones, see Lewis.
Light, Diffusion of. Light passing into a room through obscured glass or a blind, by means of which the intensity of the light is broken. It the glass be placed flush with the outside of the wall, the obscured side being placed outside, the effect is very great in diffinsing light.
Light, Obstruction of. The raising a building opposite a neighbour's windows, whereby he is deprived of a certain amount of light. It used to be held that all persons building on old foundations in the City of London could carry their buildings to any height they pleased; that the intervention of a street or public way justifies the raising of a building to any extent; that a building may be raised providing the raising is not to a height beyond a line drawn at an angle of 45 degrees from the window opening or openings, the light of which is affected by the raising of an adjoining building; that skylights or horizontal roof lights are not subject to the same law as ordinary vertical windows ; but these are all fallacious notions. However distant the obstruction, or hewever brought about, if an aneient light which has existed twenty years is injuriously affected by reason of the works of an adjoining owner, there is a cause for actisn.

Lignt, Reflected. Light thrown by means of a light and polished surface into the windows opposite to it. This may be effected in some degree by limewhiting the wall; also by building it of white glazed bricks; also by white tiles being affixed to the wall. "Reflectors" are also prorided for this purpose, made of a white metal, fixed in a frame and corered with glass, which is suspended and fixed at an angle which will throw the light to the point required.
Lighthouse. A lofty building, on the top whereof artificial lights are placed to guide ships at sea. The lighthouse dates from the earliest period, and appears to have consisted of a tower of masonry, sometimes of a circular form, but usually square, and consisting of various apartments, as the establishment was greater or less, wherein was a raised altar upon which the beacon was established. Fire-towers or lighthouses were cammon on the shores of the Mediterranean, the Archipelago, the Bosphorns, and Red Sea. Among the most celebrated of these was the Pharos of Alexandria. It was accounted one of the seven wonders of the world.
In England, the Eddystone lighthonse, by the celebrated Smeaton, was not only an object of beauty, but of that soundness of construction which is the most essential requisite in works of this kind. The general form is seen in fig. 1411. This is a fine illustration of fitness producing beauty. The resistance it afforded against the wares arose from the beautiful curved line which leads them up it instead of being broken against it. Indeed, in stormy weather, the waves actually rolled up the side, and fell in a contrary curve over the top of the lighthouse. The beds of the masonry were so laid and dovetailed and joggled as to become a part of the rock on which it was erected, between June 12, 1757, and Octaber 16, 1759. A narrative of the work was pablished by Mr. Smeaton. This elegant structure was pulled down and a new lighthouse built between August 19, 1879, and Jnne 1, 1881, when the first and last stones were laid. The old lighthonse was re-erected on land.

The most architectural of modern lighthouses is that of Corluan on the coast of France, which stands on a large rock, or rather on a low island, about three miles from land, at the entrance of the riser Garonne. Founded about the year 1584, in the reign of Henry II. king of France, it was carried on under the reigns of three successive monarchs, arriving at its completion in 1610, in the reign of Henry IV. It stands upon a platform of solid masonry, and is surrounded by a parapet about 145 feet in diameter, which is equal to the height. The lightkeepers' apartments and store rooms are not in the main

Fig. 1411. tuwer, but form a detached range of buillings on the great platform, the interior of the tower itself being finshed in a style of magnificence too splendid for the use of common persons. Over the fuel cellar, which is formed in the solid masonry of the platform, is the great hall, twenty-two feet square, twenty feet high, with an arched ceiling. On this floor are two wardrobes and other conveniences. A bove the last-mentioned room is the ling's room, twenty-ore feet square and twenty ligh, with an elliptical ceiling. There are on this floor a vestibule, two wardrobes, and other conreniences. On the third floor is placed the chapel, for a priest who occasionally says mass is attached to the establishment, and this is twenty-one feet in diameter, domed, and forty feet high, and lighted by eight windows. Thure is an eye in the dome through which is seen the ornamental roof of the room above, and that is fourteen feet diameter and twenty-sereu feet high. This is used by the lightkecpers as a watch room. Over it rises an apartment, which is immediately under the light room, used for holding sufficient fuel for one night's consumption, and capable itself of being converted into a place for the exbibition of a light in case of repairs being required to any extent in the main light room, which, as we have said, is immediately over it, and is surrounded by a balcony and circular stone parapet. The height from the floor to the top of the cupola of the original lantern or light room was 17 fert, and being unglazed, the smoke was carried out on either side in the direction of the wind. The roof, inorcorer, formed a kind of chimney in the form of a spire, torminatirg with a ball. The height
of the light room, which was entirely of stone, was thirty-one fect from the light room floor to the ball on the top of the spire. The fuel first used for the light was oak, after which pit coal was introduced; but in modern times lamps and reflectors have succeeded the last, and the light is now seen at a proper distance.
The attempt to make lighthouses resemble columns is intolerable; they should possess, according to the different situations, a character peculiar to themselves: hence the application of a column for the purpose is the worst of abuses. The North Foreland lighthouse, whose plan is polygonal, would be a good example had the details been properly attended to in the design.
Ligliting. The quantity of daylight admitted by windows and skylights into an apartment. The superficial area of light may be equal to one-half the area of one wall of the room, if the room is lighted on one side only, and does not exceed more than one and one-half times its height in depth. A room more than twice its height in depth, i.c. in distance back from the side from which it receives the light, cannot be effieiently lighted from one side only. The aspect of a window makes rery considerable difference in the amount of light, as also the presence of buildings or trees in the vicinity. It should be remembered that the higher the top of the window is in the room the better will be the light at the back of the room. A line at an angle with the wall of 60° from the top of the window to the floor will cut off all the depth than can be freely lighted. The quantity of light admitted by a skylight is considered to be equal to about thirty times that by a window -thns, if one foot souare of vertical light placel centrally be sufficient for 100 cubic feet of room, one foot of horizontal light will suffice for upwards of 3,000 cubic feet, as proved ly the Pantheon at Rome; see sect. 2747.
Lightrina Conductor. A metal rod fixed to the highest part of a building, carried down the face of it, and into the earth, for the purpose of attracting the fork of liyhtning, and carrying it away from the other metal-work of the structure. Newall supplies copper rope of $\frac{3}{8}, \frac{1}{2}$, and $\frac{5}{8}$ inch diameter, with copper points and fittings. A conductor requires fixing with proper isolators and attachments, to pievent the interruption of the electric current. Hart and Son supply a sort of wire chain under Spratt's patent.
Lights. A term sometimes used to denote the openings whether of doors, gates, or windows, or unenclosed places, and through which air and light have parsage.
Like Arcs. In the projection of the sphere, the parts of lesser cireles containing an cqual number of degrees with the corresponding ares of greater circles.
Like Figures. In geometry, such as have their angles equal, and the sides about the equal angles proportional.
Like Solids. Those which are contained under like planes.
Lime. (Germ. Leim, glue.) A most useful earth, obtained by exposing chalk, and other kiuds of limestones or carbonates of lime, to a red heat, an operation generally conducted in kilns constructed for the purpose, by which the carbonic acid is expellerl, and lime, more or less pure, according to the origital quality of the limestone, remains, in which state it is called quicklime.
Limekiln. One for the purpose of burning lime. They are construeted in a variety of ways, to save expense, or to answer to the particular nature of the fuel.
Limestone. A generic term for those rarieties of stone containing earbonato of lime, which are neither crystallised nor earthy, the former being calcareous spar, the latter chalk. When burned they yield quicklime.
Line. (Lat. Linea.) In geometry, a magnitude haring only one dimension, and definel hy Euclid to be that which has length without breadth. The term is aiso used to denote a measure of length used formerly in France, namely, the twelfth part of an inch, or $\frac{1}{144}$ of a foot.
Line of Direction. In mechanics, the line in which motion is communiented.
Line of Station. The intersection of a plane passing though the eye, porpendicular to the picture, and to the geometrical or primary plane with the plane itself.
Line, Geonetrical. In perspective, any straight line in the geometrical or primary line.
Line, Horizontal. A line parallel to the horizon. In perspective it is the vauishing line of horizontal planes.
Line, Vertical. The intersection of a vertical plano with the picture passing along the station line.
Line, Visuac. A ray of light reflected from the object to the eye.
Lines of Ligut and Shade. Those in which the light and shade of a boily are seprrated. Thus, on a curred surface, it is the line determined by a tingent to the surface in the direction of the rays of light.
Lining. The covering of the surface of any body with another thin substance. Thus the lining of a wall is a wooden boarding, whose edges are either rebated or grooved aml tongued. Lining is distinguished from casing, the first being a covering in the interior of a building, whilst the latter is the covering of the exterior part of a building.
Lining out Stuff. (Participle.) Tho drawing lines on a piece of board or plank no as to cut it into thinner pieces.

Linings of Boxings. The pieces of framework of a window into which the mindaw shutters are folded back.
Linings of a Door. Those of the sides of apertures of doors called the jambs or jamblinings, that which corers the top or head being the soffite.
Lintel. (Span.) A horizontal piece of timber or stone over a door, window, or other opening to discharge the superincumbent weight. If a wall be very thick, more than one lintel piece will be required, unless scantling of sufficient width be found. In some old books on carpentry, lintels are classed under wall plates, but the word is now never used in this sense, unless the joisting or tie beams rest upon it, in which case it is both a lintel and a wall plate.
Last, or Listal. The same as Fillet.
Listed Boards. Such as are reduced in their width by taking off the sap from the sides. They are also explained as boards, sorted and matched, so as to make the floor appear all of one colour.
Listing. (Participle.) Cutting the sap wood out from both edges of a board.
Loam. A soil in which clay prevails. It is called heavy or light as the clay may be more or less abundant.
Lobsy. (Germ. Laube.) An enclosed space surrounding or communicating with one or more apartments, such as the boxes of a theatro, for instance. By it also is understood a small hall or waiting room, or the entrance into a principal apartment where there is a considerable space betreen it and a portico or restibule; but the dimensions, especially as regards the width, will not allow of its being called a vostibule or ante-room.
Lock. (Sax. Loce.) A well-known instrument, consisting of springs and bolts, for fastening doors, drawers, chests, \&c. A good lock is a masterpiece in smithery, requiring much art and delicacy to contrive and vary the wards, springs, bolts, and other parts whereof it is composed, so as to adjust them to the places whero they aro serviceable, and to the various purposes of their use. The structure of locks is so varied, aud the number of inventions of their different sorts so extended, that we cannot attempt to enumerate them.
Those placed on outer doors are called stock-locks, those on chamber doors spring locks, and rim locks, and such as are hidden in the thickness of the doors to which thoy are applied, mortise locks. The padlock is too well-known to need description here.
Lockrall. The middle horizontal rail of a door.
Locutory. An apartment in a monastery in which the monks were allowed to converse when silence was enjoined elsewhere.
Lodge. A small house, situated in a park or domain, subordinate to the mansion. Also the cottage placed at the gate leading to the mansion.
Loft. An upper platform, as in Scotland. It has been applied to the gallery in a church. In modern usage it is limited to the place immediately under the rafters, as cockloft in a house, hay-loft in a stable, \&c. See Solar.
Logan. See Rocking Stone.
Logarithes. Artificial numbers used to facilitate arithmetical calculations.
Loggla. (It.) In its striet meaning a lodge; but usually signifying a gallery open to the air, and used for shelter, or from which to obtain a prospect.
Log-house. A hut constructed of the trunks of trees.
Logistic Spiral. One whose radii are in continued proportion, and in which the radii are at equal angles; or, in other words, a spiral line whose radii everywhere make equal angles with the tan rents.
Lumbard Architecture. The class of

Fig. 1412. Tower of Earl's Barton Chirch. Romanesque architecture which prevailed in the Northern parts of Italy.
Long and Short Wurk. A rough sort of building, consisting of quoin stones placed fat and upright alternately. Many writers consider such masoury as a mark of the worls of the 11 th century, or previous to it, and call it Saxun work. Sce fig. 1112.

Longimetry. A term used to denote the operation of trigonometry for measuring lengths, whether accessible or inaccessible.
Lookum, or Leccomb. A word used for the projection on the upper floor of a warehouse or mill, to cover a wheel and fall, or a crane, and has a trap-floor to it. It may, probably, be derived from the French term lucarne.
Loop. (Fr.) A small narrow window. A loophole is a term applied to the vertical scries of doors in a warehouse, through which the goods in craning are delivered.
Loophole. A narrow aperture formed in walls, and sometimes in the merlon of a battlement, through which the defenders discharged their bows or firearms. See Balistraria.
Lotus. A plant of the water-lily species much used in the architectural ornaments of the early nations, aud especially in the capitals of Egyptian columns. See fig. 54.
Louvire. A turret or lantern over a hall or other apartment with openings for ventilation and to allow the escape of smoke or steam.
Louvre, Luffer, or Lever Boarding. (Fr. Lourte.) Boarding, with intervals between the boards, nailed horizontally in an inclined direction, on the sides of luildings or lanterns, so as to admit a free current of air, and at the same time to exclude the rain. They are used for air-drying lofts. Each set, if required, is made to open and shut by the action of a lever.
Low Side Window. A small opening like a window, usually placed in the south chancel wall, and lower than the other windows, for what purpose is not strictly known. It has been called a Lychnoscope.
Lozenge. A quadrilateral figure of four equal sides, with oblique angles.
Lozexge Molloing. An ornament used in Norman architecture, presenting the appearance of diamond-shaped lozenges laid in the hollow of the moulding.
Locarne. The same as Dormer.
Lumber. Timber sawn ready for use. It is a term used chiefly in America.
Lene or Lunula. The space between two equal ares of a circle.
Lunette. (Fr.) A cylindric, cylindroidic, or spherical aperture in a ceiling. As an example of the term, we may refer to the upper lights in the nare of St. Paul's Cathedral.
Lorhern. The same as Dormer.
Lach-Gate, or Corpse-Gate (from the Anglo-Saxon Leich, a dead body). A gate at the entrance of a churchyard, where the coffin was set down for a few minutes before burial. It is generally of wood, and often thatched. Lych-gates are not of frequent occurrence in England. In Wales many of them may be seen.
Lycheoscope. See Low Side Window.
Lying Panels. Those wherein the fibres of the wood, or the grain of it, lie in a horizoutal direction.
Lysis. (Gr.) A plinth or step above the cornice of the podium of aucient temples, which surrounded or embraced the stylobate; au example of it may be seen in the temple of Fortuna Virilis at Rome.

M

MI Roof. A roof formed by the junction of two common roofs with a valley between them. The letter $\Lambda 1$ inverted represents this species of covering.
Machicolations. (Fr. Machicoulis.) In castellated architecture are, according to Grose, the projections, supported by brackets or corbels, through which melted lead and stones were dropped on the heads of assailants. They were not probably, however, projecting works, but sometimes were considered as the series of square holes in the raultings of the portals used for the same purpose.
Machine. (Gr. Maxapn.) In a general sense, anything which serves to increase or regullate the effect of a given force. Machines are simpie or compound. The former are the simple mechanical powers, six in number; viz. the lever, the wheel and axle, the pulley, the wedge, the screw, and the funicular machine. The latter are formed by the combination of two or more simple machines, and are classed according to the forces by which they are put in motion, as hydraulic machines, pnermatic machines, cletric machines, \&e., or the purposes they are intended to serve, as milhtary machines, arehitectural machines, \&c.
Maknhir, or Menhir. A long upright stone in Celtic works, called by the Norman writers peulvan, and by country people hoarstone.
Magnesian Lamestone. An extensive series of beds lying in geological position immediately ibove the coal measures; so called because the limestone, which is the principal member of the series, contains magnesia.
Magintude. (Lat.) A term by which size, extent, or quautity is designated. It was originally applied to the space occupied by any figure; or, in other worls, it was applied to oljects strictly termed geometrical, and of three dimensions, length, l, readth, ant thickuess, but it has gradually become enlarged in its signification, so as to be given to
every kind of quantity that admits of mensuration, or of which greater or less can be predicated; in which sense it was used by Euclid.
Mahogany. A wood used for doors, window-sashes, and ornamontal work, especially eabinet work. The Jamaiea mahogany is the hardest and most beautiful, and is distinguished from that of Honduras by the chalky appearazce of its fibres. The latter has very little flower.
Marn Couple. See Couple.
Malleablity. (Lat. Malleus, a hammer.) The property of being susceptible of extension under the blows of a hammer. It is a characteristic of some of the metals, most particularly in gold. Common gold-leaf is not more than a two-hundred-thousandth part of an inch in thickness. Five grains may be beaten out so as to cover a surface of more than two hundred and seventy square inches.
Malleable Iron. Tho same as pure Wrougit Iron, being iron that can be worked ly the hammer and tongs. The name has also lately been given to a soft quality of iron mure easily worked for ornamental purposes.
Maliet. (Lat.) A large kind of wooden hammer much used by artificers who work with a chisel, as masons, stonecutters, carpenters, joiners, \&c.
Maltha. (Gr.) A native bitumen used by the ancients for plastering the walls of their dwellings, \&c. An artificial kind was made of piteh, wax, plaster. and grease; a nother sort was composed of lime slaked with wine, and incorporated with melted pitch and fresh figs.
Manger. The trough in the stall of a stable whercin is placed the corn or other short food given to live stock, and more especially to horses.
Manhole. An opening formed over a sewer, or by the sido of it , large enough to admit a mau to enter to do repairs, \&c., when requisite. It is also formed on the top of large boilers, to give access to clean out the interior; and also over a cesspool tor the samo purpose. A manhole has usually a close-fitting cover, well set to prevent the escape of steam, foul air, \&c.
Mansard Roof. (So called from the name of its supposed inventor, the French arehitect, Franç, is Mansart.) The same as Curb Rouf.
Mansion. A large house; a term more usually applied to one in tho country. The origin of the word and its application is supposed to bo derived from the mansiones, or stationary camps of the Roman soldiers.
Mantapa. The Hindoo term for the poreh attached to most rimanas or temples beyond the antarala. It is a square building, having a door on each of its four sides; the roof is generally pyramidal. If there should be two porches, the outer one is called the maha mantapa.
Mantel Piece. The horizontal decoration in stone or marble in front of the mantel tree, and supported by the jambs or boxings of a chimney-piece.
Mantel Shelf. The slab lying on the mantel piece, and secured at the back into the plastering of the wall.
Mantel Tree. The wood lintel or brick arch to the openings of a fire-place.
Marble. (Gr. Mapuaipa, to gleam, to sparkle.) A term limited by mineralogists and geologists to the several varieties of carbonate of lime, having more or less of a granular and crystalline texture. Among sculptors, the word is used to denote several compaet or granular kinds of stone sasceptible of a very fine polish; the varieties of it are very numerous. Ancient Marbles:-The most valuable sort, and the grandest quarry of the Greek white marbles, was the Penitclican, obtained from mount Penteles, in Attica. It was used in the Parthenon and other buildings in Athens, and was in great repute with the seulptors. This marble is overlaid in the quarries with large figured red and green Cipollino. The base rock of the Aeropolis at Athens, a mass of richly coloured marble-rose, reds, browns and greys-was discarded by the Greeks. The Parian was obtained from the island of Paros. Mount Marpesus yielded the best, which was called Murpessian; it was also termed Lychneus, because of its use for candelabra, and Lygdincum, from the promontory of Lygdos. It consists almost entirely of carbonate of lime; and Dr. Clarke states it has lasted better than the Pentelicun, which has veins of extraneous substances intersecting the quarries, and which appear, more or less, in all works executed in this sort of narble. The Parian has a waxy appearance when polished, and hardens by exposure to the air; the statues of the Venus di Medici, the Diana Venatrix, the collossal Ninerra Pallas of Velletri, and the Capitoline Juno, wero carved in this material, and the tomb of Mausolus was luilt of it, the remains of which aro now in the British Museum.

Other white marbles were of mount Hymettus, in Attica, of Thasus and Lesbos, in great repute; of Lunar, in Etruria, of a white even whiter than that of Paros; the Phellense, from mount Phellens; the Coraliticum, found near the river Coralios in Phrygia, which was also termel Sangarium, from another name of the samo river;

Cyzicum, from Cyzicus in Asia Minor, one of the three marbles of which the temple at Éphesus was to be built; also called Proconnesian marble.

Chernites was another sort of marble, which resembled ivory in its colour. The Phengitcs of Capadocia was white with yellow spots.

The black marlles were: Tenarus, highly esteemed; one from the island of Lesbos; Lybicum or Numidian, called also Lucullcum; Chium, from Monnt Palineus, in the island of Chio, of a transparent chequered black colour; Obsidianum, from Ethiopia; Synnadicum, or Marmor Phrygium, from near Synnas, in Phrygia, having small circles in its black ground; Africano, from the island of Scio, so called from its dark colour by Pliny, who was wrong.

The rose Africano, from Porta Santa, in the island of Scio, a grand quarry, yielding six or more different kinds (Brindley); the old quarries of Rosso antico were discovered at Laconia ; quantities were obtained from Egypt.
Taygetum supplied the grcen porphyry, or serpentine, of the Italians. Carystus, in Eubre, gare the green Cipollino, one of the marbles most appreciated by the Romans, of which in Rome alone 500 columns still remain; it was a mingled dark green ; Memphites and Ophites, resembling the skin of a serpent, and from the city in Egypt, near where it was found; it is the Serpentino antico of the Italians; Laconicum, from Mount Taygetes, the well-known Verd antique of the antiquaries; the green Tiberian and Augustan marbles were obtained from Egypt.

Yellow marble was found at Corinth; the Rhodiun marble was marked with spots resembling gold; that of Melos was excarated in Monnt Acynthus.

Atracium, from Mount Atrax, in Thessaly, was a misture of white, green, blue, and black.

The Romans seem to have introduced coloured marbles in monumental works after their conquest of Egypt, whence they derived their first ideas of monolith columns. Their early buildings contained few varieties of coloured marbles, the number increasing as the colomes matured. The monoliths in St. Peter's and St. Sebastian were cut from the quarry of Porta Santa, in the island of Scio, as was also the basin, 15 fect diameter and 4 feet thick, discorertd by Mr J. T. Wood, at Ephesus. The ancient quarry in Tunis supplied the Giallo antico, and varieties of rose and orange Breccias; this marble was reserved for Rome, where 172 columns of it are still extant. Nost of the parement in the Basilica Julia, and the columns in St. John Lateran, the Pantheon, the Arch of Titus, are of this marble; as well as the wall-lining, half an inch thick, in the palaces of the Cæsars.

The first paper read by Mr. Brindley names forty-six of the principal quarries of various countries worked in the tinie of the Romans; the second one refers to the stones and marbles found in Egypt. Transactions of the Royal Institute of British Architects, 1887-88 and 1888-89. The building and decoratire stones of Egypt, including limestone, saudstone, granite, porphyry, opus Alerandrinum, verde Augustus, Oriental alabaster, Breccia verde, gem stones, \&c., are described by Mr. Brindley, 1887, Nor. 24. See Porphyry and Syente.

The Numidian inarble of the Romans, obtained from North Africa, is coloured marble of rarious shades and tints, but does not include white marbles or shades of white, of which there are numerous quarries in North Africa. Marmor Numidicum appears to be a misnomer, for the only known quarry in the ancient province of Numidia is at Filfilla, near Philipporille. The only yct discovezed quarries are those at Chemtou in Tunisia (Simittu Culonia in Africa Prorincia of the Romans), and at Kleber in Algeria, north-east of Oran (in the ancient kingd, m of Mauretania). The former quarries are much in the condition in which they were left by the Romans. The quarrics at kleber coser an area of over 1,500 acres. Breccias, from dark brown to blood red ; Giallo antico of different hues. designated as Canarino, Avorio, and Pavonazzo; Cipollino rosso, and more than one quality of white marble. Specimens of some of these are now to bo seen in the new mausolenm riom of the British Museum. Great and beautiful varieties are to be seen in the prayer chambor of the great mosque at Kairouan, and of her mosques (Alex. Graham, in Procecdings Royal Institute of British Architects, 1886-87).
A useful list of ancient and modern marbles, with refereuces to works of art, is contained in the work by the Count de Clarac, and translated in the Cieil Enginecr, of e, Journal for 1839, pages 367, 434, and 452. It also gires numerous referencos to writers on the subject.
The onyx marbles of Algeria, Mexico, and California, are of the same nature as tho Oriental alabasters.
Almost every mountainous district of the world produces this mineral, but the finest and most valuable is from Italy. The material is brought to an eren face by rubling wih free-stone, afterwards with pumice-stone, and lasily with cmery of screral coluurs;
but white marble is finished with calcined tin. The Italians polish with lead and emery. The sawing of marble, preparatory to polishing, is by a saw of soft iron, with a continued supply of the sharpest sand and water. The Belgian marble chimneypieces, toilet-table top*, and such like articles, are finished with a liquid which gives a polished appearance; but it is not lasting.

The rarieties of marble used in modern times are rery numerous, and a classifiration of them would occupy a larger space than can be here given. Except the finest specimens of white marble, they are mostly opaque. Some extremely fine specimens of white marble are to be seen in the Borghese Palace at Rome, which, on being suspended by the centre on a hard body, bend very considerably. It is found that statuary marble exposed to the sun acquires, in time. this property, thus indicating a less degree of adhesion of its parts than it naturally possessed. Two books have been written on the subject: Marble and Marble Workers, by Arthur Lee, and Marble Decoration, by G. H. Blagrove, both dated 1888.

Margin. That part of the upper side of a course of slates which appears uncorered by the next superior course.
Marigold Window. The name given to a circular window in which radiating mullions prevail. See Catherine-wheel Window; Rose Window.
Market Cross. A cross set up in a market-place. The primitive form was a long shaft with a cross stone, set upon a number of steps. Subsequently it was constructed in an elaborate manner; and later, a sort of arched structure was erected around the central pillar. In Scotland many were finished with a crowning work.
Marmoratum Opus. (Lat.) A fine stuff used by the ancients, formed of calcinod gypsum with pulverised stone, or for finest work with pounded marble, well beaten together, and rubbed to a fine marble-like surface, examples of which still exist at Girgenti, formerly Agrigen ${ }^{\dagger}$ uin.
Marquetry. (It. Intarsiatura. Fr. Marquetrie.) Inlaid work, consisting of thin flates of irory, or of various coloured woods, glued on to a ground, usually of oak or fir well dried and seasoned, which, to prevent casting and warping, is composed of several thicknesses. It was used by the early Italian builders in cabinet work, and represented by its means figures and landscapes. See Buhl Work; Inlaid Work; Parquetry.
Mason. An artificer who practises the science of cutting and setting stones in building walls. Formerly the workman who worked the stone was called a free-stone mason, hence the term freemason; while the man that sct the stone was called a rough mason.
The term " master mason" was during the mediæval period equivalent to the more modern term "arehitect." He designed and carried out tho monastic, cathedral, or regal buildings. Later, the designer taking the namo of surveyor, the master mason became the head of his trade.
Masonry. (Fr.) The science of combining and joining stenes for tho formation of walls and other parts in constructing buildings. Whon applied in the construction of domes, groins, and circular arches, it is difficult and complicated, and is dependent on a thorough knowledgo of descriptive geometry.

Among the ancients, several sorts of masonry were in use, which are described by Vitruyius as follows, in the eighth chapter of his second book:-"The different species of walls," he observes, "are the reticulcutum (net-like) (fig. 1413 A), a method now in general use, and tho incertum (B), which is the ancient mode. The reticulatum is very beautiful, but liable to split, from the beds of the stones being unstable, and its deficiency in respect of bond. The incertum, on the contrary, course over course, and the

Fig. 1413. whole bondsd together, does not present so beautifnl an appearance, though stronger than the reticulatum. Both species should be built of the smallest sized stones, that the walls, by sueking up and attaching themselves to the mortar, may last the longer: for as the stones are of a soft and porous nature, they absorb, in dry-
ing, the moisture of the mortar; and this, if used plentifully, will consequently exercise a greater cementing power; because from their containing a large portion of moisture, the wall will not, of course, dry so soon as otherwise; and as soon as the moisture is absorbed by the pores of the stones from the mortar, the lime, losing its power, leares the sand, so that the stones no longer adhere to it, and in a short time the work becomes unsound. We may see this in several monuments about the city (Rome) which have been built of marble, or of stones squared externally, that is, on one face, but filled up with rubble run with mortar. Time in these las taken up the moisture of the mortar, and destroyed its efficacy by the porosity of the surface on which it acted. All cohesion is thus ruined, and the walls fall to decay. He who is desirous that this may not happen to his work should build his two-face walls two feet thick, either of red stone, or of bricks, or of common flint, binding them together with iron cramps run with lead, and duly preserving the middle space or carity. The materials in this case not being thrown in at random, but the work well brought up on the beds, the upright joints properly arranged, and the face-walls, moreover, regularly tied together, they are not liable to bulge, nor be otherwise disfigured. In these respects one cannot refrain from admiring the walls of the Greeks. They make no use of soft stone in their buildings; when, howerer, they do not employ squared stones, they use either flint or hard stone, and, as though building with brick, they cross or break the upright joints, and thus produce the most durable work. There are two sorts of this species of work, one called isodomum (CC), the other pseudisodomum (DD). The first is so called, because in it all the courses are of an equal height; the latter received its name from the unequal heights of the courses. Both these methods make sound work; first, because the stones are hard and solid, and therefore unablo to absorb the moisture of the mortar, which is thus preserved to the longest period; secondly, because the beds being smooth and level, the mortar does not escape; and the wall, moreover, bonded throughout its whole thickness, becomes eternal. There is still another method, which is called $\epsilon \mu \pi \lambda \epsilon \kappa \tau o \nu$ (emplecton) (E), in use even among our country workmen. In this species the faces are wrought. The other stones are, without working, deposited in the cavity between the two faces, and bedded in mortar as the wall is carried up. But the workmen, for the sake of despatch, carry up these casing walls, and then tumble in the rubble between them, so that there are thus three distinct thicknesses, namely, the two sides or facings, and the filling in. 'The Greeks, however, pursue a different course, laying the stones flat, and breaking the vertical joints; neither do they fill in the middle at random, but, by means of bond stones, make the wall solid, and of one thickness or piece. They, moreover, cross the wall from one face to the other, with bond stones of a single piece, which they call δ aarovol (diatoni) (\mathbf{F}), tending greatly to strengthen the work." (G) is supposed to show the solid masonry of a wall properly bonded in the courses.
Mass.- (Germ. Masse.) The quantity of matter whereof any hody is composed. The mass of a body is directly as the product of its rolume into its density. Multiplied into the constant force of gravity, the mass constitutes the weight; hence the mass of a body is properly estimated by its weight.
Mastic. (Gr. Maбтıкך, a species of gum.) A cement employed for plastering outsite walls. It is used with a considerable portion of linseed oil, and sets hard in a few days. From this latter circumstance, and from its being fit for the reception of paint in a vely short period, it is extremely useful in works where expedition is necessary, but it must be constantly painted; when the oil has dried out, it has proved to be worthless. Asphalte mixed with coal tar or limestone, ready for use in paring, is termed "mastic." Materials. Things composed of matter, or possessing its fundamental properties.
Mathematics. (Gr. Maө \quad ots, learning.) The science which investigates the consequences logically deducible from any given or admitted relations between magnitude or numbers. It has usually been divided into two parts, pure and mixed. The first is that in which geometrical magnitude or numbers are the subjects of investigation; the last that in which the deductions so made are from relations obtained by observation and experiment from the phenomena of material nature. This is sometimes called physics, or physical science. Mathematics, as respects what is necessary for the arehitect, comprises Aritnmetic, Algebra, and Geometry.
Mausoleum. A term used to denote a sepulchral building, and so cailed from a very celebrated one erected to the memory of Mausolus, king of Caria, by his wife Artemisia, alout 353 в.c. From its extraordinary magnificence, it was in ancient times esteemed the serenth wonder of the world. Many statues and other portions of it are now in the British Museum.
Mfan. In mathematics, that quantity which has an intermediate value between several others, furmed according to any assigned law of succession. Thus, an arithmetical means of several quantities is merely the average, found by dividing the sum of all the quantities by their number. A geometrical mean bet ween two quantities, or a mean proportional, is the middle term of a duplicate ratio, or continued proportion of three terms; that is,
that the first given term is to the quantity sought as that quantity is to the other givern term. In arithmetic, it is the square root of the product of the two given terms. The hurmonical mean is a number such that, the first and third terms being given, the first is to the third as the difference of the first and second is to the difference of the second and third.
Mrasure. (Lat. Mensura.) In geometry, strictly a magnitude or quantity taken as a unit, by which other magnitudes or quantities are measured. It is defined by Euclid as that which, by repetition, becomes equal to the quantity measured. Thus, in arithmetie, the measure of a number is some other number which divides it without a remainder, though, perhaps, such a definition rather intimates the notion of aliquot parts. But that meaning on which this article is submitted is the unit or standard by which extension is to be measured. We have measures of length, of superficies, and of volume or capacity. But the two latter are always deducible from the former; whence it is only uecessary to establish one unit, namely, a standard of length. The choice of such a standard, definite and invariable, though beset with many and great difficulties, modern science has accomplished. The rude measures of our ancestors, such as the fuot, the cubit, the span, the fathom, the barleycorn, the hair's breadth, are not now to be mentioned in matters of science, much more precise standards having been found, and not susceptible of casual variation. Nature affords two or three elements, which, with the aid of science, may le made subservient to the acquisition of the knowledge required. The carth being a solid of revolution, its form and magnitude may be assumed to remain the sime in all ages. It this be so, the distance between the pole and the equator may be taken as an invariable quantity; and any part, say a degree, which is a ninctieth part of it, will be constant, and furnish an unalterable standard of measure. So, again, the force of grarity at the earth's surface being constant at any given place, and nearly the same at places under the same parallel of latitude, and at the same height above the level of the sea, the length of a pendulum making the same number of oscillations in a day is constant at the same place, and may be determined on any assumed scalc. Thus we have two elements, the length of a degree of the meridian, and the length of a peudulum beating seconds, which nature furnishes for the basis of a system of measures. Others have been suggested, such as the height through which a heary body falls in a second of time, determined, like the length of the pendulum, by the force of gravity, or the perpendicular height through which a barometer must be raised till the mercurial column sinks a determinate part; for instance, one thirtieth of its own length; but these are not so capable of accurately determining the standard as the terrestrial degree, or the length of the pendilum.
In the Englisli system of linear measures, the unit has been for many years the yard, which is subdivided into 3 feet, and each of those feet into 12 inches. Of the yard, the multuples are, the pole or perch, the furlong, and the mile; $5 \frac{1}{2}$ yards being 1 pole, 40 poles being 1 furlong, and 8 furlongs 1 mile. The pole and furlong, however, are now much disused, distance being usually measured in miles and yards. The English pace is $1 \frac{2}{3}$ vards $=5$ feet. See Percha and Mile.

Under the word Foot will be found the length of that measure in the principal places of Europe.
The following table exhibits the relations of the different denominations mentioned:-

Inches.	Feet.	Yards.	Poles.	Furlongs.	Miles.
1	0.083	0.028	0.00505	0.00012626	0.0000157828
12	1.	0.333	0.06060	0.00151515	0.00018939
36	3.	1.	0.1818	0.004 .545	0.000 .56818
198	16.5	5.5	1.	0.025	0.003125
7020	660°	220°	40°	1.	0.125
63360	5250	1760°	320	8.	1.

The measures of superficies are the square yard, foot, inch, \&c., as under:-

144 square inches are equal to	-	-	-	-1 square foot.	
9 square feet	-	-	-	-	-1 squire yarl.
27 square yards	-	-	-	-	-1 square pice.
1089 square paces	-	-	-	-	-1 square pole.
40 square poles	-	-	-	-	-1 square rood.
4 square roods	-	-	-	-	-1 square acre.

In which it will be seen that the multiples of the yard are the pole, roonl, and arre. Very large surfaces, as of countries, are expressed in square miles. Sco Mun,

The relations of square measure are given in the following table:-

Square Feet.	Square Yards.	Square Poles.	Square Roods.	Square Aeres.
	0.1111	0.00367309	0.000091827	0.000022957
9.	1.	0.0330579	0.000826448	0.000206612
272.25	30.25	1	0.025	0.00625
10890°	1210°	40°	1.	0.25
43560°	4840°	160°	4°	1.

The mensures of solids are cubic yards, feet, and inches, 1728 cubic inches being equal to a cubic foot, and 27 cubic feet to one cubic yard. By the act of 1824 , the standard measure for all sorts of liquids, corn, and other dry goods, is declared to be the Imperial gallon. According to the act in question, the imperial standard gallon contains ten pounds avoirdupois of distilled water, weighed in air at the temperature of 62° Fahrenheit's thermometer, the barometer being at 30 inches. The pound avoirdupois contains 7000 troy grains, and it is declared that a cubic inch of distilled water (temperature 62°, barometer 30 inches) weighs $252 \cdot 458$ grains. Hence the imperial gallon contains $277 \cdot 274$ cubic inches. The gallon is subdivided into quarts and pints, 2 pints being cne quart, and 4 quarts one gallon. Its multiples are the peck, which is 2 gallons, the bushel, which is 4 pecks, and the quarter, which is 8 bushels. The relations of measures of volume are given in the subjoined table:-

Pints.	Quarts.	Gallons.	Pecks.	Bushels.	Quarters.
1	$0 \cdot 5$	$0 \cdot 1^{\circ} 5$	$0 \cdot 0625$	0.015625	0.0019 .53125
2	1.	$0 \cdot 25$	$0 \cdot 125$	0.03125	0.00390625
8	4.	1.	$0 \cdot 5$	$0 \cdot 125$	0.015625
16	8.	2.	1.	0.25	0.03125
64	32.	$8 \cdot$	4.	1.	$0 \cdot 125$
512	256°	64°	32	8	1.

The old wine gallon $\mathrm{c} \cdot \mathrm{ntained} 231$ cubic inches, the old corn gallon $268 \cdot 8$ cubic inches, and the old ale gallon 282 cubic inches.

Subjoined are a few of the principal ancient measures of France:-

> 1 toise, French $=6$ French feet. $=6.394665$ English feet.
> 1 foot, do. $=12$ French inches $=12.78936$ English inches.
> 1 inch, do. $=12$ French lines $=1.06578$ English inches.
> 1 line, do. $=6$ French points $=0.088815$ English inches.
> 1 point, do. $=. . . . \quad . \quad=0.0148025$ English inches.

According to General Roy, an English fathom : a French toise :: 1000: 1065.75.
In the now French system the mitre, which is the unit of linear measure, is the tenmillionth part of the quadrant of the meridian $=3.2808092$ English feet (but lately ascertained by Capt. Henry Kater, to be more correctly 3.280916 English feet); and, as its multiples and subdivisions aro decimally arranged and named by prefixing Greek numerals, the following table exhibits each:-

Denomination.				English Feet.
Myriametre	-	- 10000 met		$2808: 991667$
Kilometre	-	1000	=	$3280 \cdot 8992$
Hectometre	-	100	=	328.08992
Decametre	-	10	=	$32 \cdot 808992$
Metre (the unit)	-	- 1	=	3.2808992
Decimetre	-	$0 \cdot 1$	=	$0 \cdot 32808992$
Centimetre	-	0.01	=	$0 \cdot 032808992$
Millimetre	-	0.001	$=$	0.0032808902

The metre, therefore, is equal to $39 \cdot 37079$ English inches.
The unit of superficial measure, in the French system, is the are, which is a surface of 10 metres each way, or 100 square metres. The centiare is 1 metre square.

Denomination.	English Square Yards.			
IIectare -	-	-10000 square metres	$=11960.33$	
Are (the unit)	-	-	100	$=119.6033$
Centiare -	-	-	1	$=$

The are, thercfore, is equal to 1076.4297 English square fect.

The unit of measures of capacity, in the French system, is the litre, a ressel containing a cube of a tenth part of the metre, and equivalent to 0.22009668 British imperial gallon. Its multiples and subdivisions are as follow:-

The unit of solid measure, or the stere, is equal to 35.316 .5 S English cubic feet ; therefore,

Denominatior.		English Cubic Feet.		

There is much uncertainty respecting the ancient measures; the tables before printed being the usually received notions are continued, hut subjoined are some of the dimensions given in Dr. W. Smith's Dictiunary of Antiquities:-

Scripture Lona Measure.
(See Ccbit.)

Hebrew and Chaldean
Meusires, as drawn
up by F. R. Conder, C.E., 1875.

Barkeycorns. Eng.in.
$=2=0.6666$
$=8=2 \cdot 6666$
$=40$ or Artificers' culit $=13 \cdot 3333$
$=48$ or Land cu-
lit $=16$.
$=52$ or Sacred cubit $=17 \cdot 3333$

Grecian Losa Measulif.
(See Hecatompedon.) English

Roman Long Measure.

6		$=1$ sicilicum.		$\begin{array}{r} \mathrm{En} \\ \text { Taces. } \end{array}$		In.	Smith's Dict. fit. Iuches.		
8	scrupula	$=1 \text { duellum. }$							
$1 \frac{1}{2}$	duellum	$=1$ semniaria.							
18	scripulas	$=1$ digitus transversus		0	0	0.725	$=$		\%281
	digitus	$=1$ uncie, or ineh	-	$=0$	0	0.967	=		-9708
3	unciæ	$=1$ palma minor	-	$=0$	0	2901	$=$		2.9124
4	palmæ	$=1$ pes, or foot -	-	0	0	$11 \cdot 604$	=		$11 \cdot 6496$
	pes, or foot	$=1$ pislmipes	-	0	1	$2 \cdot 50.5$		1	2-if\%
	palmipes or $1 \frac{1}{2} \mathrm{ft}$.	$=1$ cubit	-	0	1	54406		1	$5 \cdot 474$
	cubit or $2 \frac{1}{2}$ feet	$=1$ gradus	-	$=0$	2	$5 \cdot 01$		2	$5 \cdot 12{ }^{\text {f }}$
2	gradus or 5 feet	$=1$ passus	-	$=0$	4	$10 \cdot 02$		4	10.2.18
2	passus	$=1$ decompeda	-	$=1$	4	$8 \cdot 14$		-9	8496
25	passus	$=1$ stadium	-	$=120$	4	$4 \cdot 5$		he Pat	mus major
8	stadia	= 1 milliare, or mile		$=967$	0	0			$8 \cdot 7372$
1000	passus	$=1$ millo passunm	-	-		-	$=$	-48i	

Mrchanical Carpentry. That branch of carpentry which relates to the disposition of the timbers of a building in respect of their relative strength and the strains to which they are subjected.
Mechanical Powers. See Machine.
Mechanics. (Gr. M $\eta \chi a \nu \eta$, machine.) That science in natural philosophy treating of forces and powers, and their action on bodies, either directly or by the intervention of machinery. The theory of mechanics is founded on an axiom or principle, called the law of inertia, namely, that a body must remain for ever in a state of rest, or in a state of uitorm or rectilineal motion, if undisturbed by the action of an external cause. Theoretical mechanics consists, therefore, of two parts:- Statics, which treats of the equilibrium of forces; and dynamics, or the science of accelerating or retarding forces, and the actions they produco. When the bodies under consideration are in a fluid state, these equilibria become respectively hydrostatics and hydrods namús.
Medallion. A square, or more properly, a circular, tablet, on which are embossed figures, busts, and the like.
Mediefal Architecture. The architecture of England and the Continent during the Middle Ages. It is also chiefly called Gothic and Pointed.
Megalithic. A term which has lately been applied to those works usually called Celtic and Druidical.
Mehrab. A niche in a mosque of the Mahomedans which marks the direction of the Kebla or temple at Mecca, to which their religion directs them to bow their face in praying.
Member. (Lat.) Any part of an edifice; or any mouldiug in a collcetion of mouldings, as of those in a cornice, capital, base, \&c.
Menagerie. (Fr.) A building for the housing and preserration of rare and foreign animals. The ancient Romans of opulence usually bad private menageries, a sort of small park attached to their villa, and in them various kinds of animals were placed.
Menhir. See Maenhir.
Mensa. The slab, top, or table of the altar of the Roman Catholic Churcl.
Mensuration. (Lat.) The science which teaches the method of estimating the magnitudes of lines, superficies, and bodies.
Meridian Line. A line traced on the surface of the earth coinciding with the intersectinn of the meridian of the place with the sensible horizon. It is therefore a line which lies due north and south. In Italy these lines have been laid in large churches, as at Sant Maria del Fiore at Florence, the Duomo at Bologna, \&c. They are traced on brass rods let into the pa vement of the church, and marked with the signs, and otherwise graduated. A hole in the roof permits the sun's rays to fall on them at his culmination, thus marking noon as well as its height each day in the heavens.
Merlon. The plain parts of an embattled parapet, between the crenelles or embrasures. Meros. (Gr.) The plane face between the channels in a triglyph. See Triglyph.
Mrsaule. (Gr.) Described by Vitrusius as itinera or passages; they were, however, smaller courts. Apollonius Rhodius, in describing the reception of the Argonauts at the palace of Eetes, conducts them first into the vestibule, then through the folding gates into the mesaula, which had thalami here and there, and a portico ($\alpha, \theta o v \sigma a$) on every side.
Meta. (Lat.) A mark or goal in the Roman circus to which the chariots, \&c., ran.
Metal. (Gr. Mefandov.) A firm, heary, and hard substance, opaque, fusible by fire, and concreting again when cold into a solid body such as it was before ; generally malleable under the hammer, and of a bright glossy and glittering substance where newly cut or broken. The metals conduct electricity and heat, and have not been resolved into other forms of matter, so that they are regarded as simple or elementary substances. They also reflect, when polished, both light and heat. Modern chemists have carried the number of metals to over forty-two, only seven whereof were known to the ancients; namcly,-1. Giold, whose symbol is thus marked \odot; 2. Silver, D; 3. Iron, ठ; 4. Copper, ㅇ; 5. Mercury, ஒ; 6. Lead, ? ; 7. Tin, 4.
Metatome. (Gr. M $\in \tau \alpha$, and $\mathbf{T} \epsilon \mu \nu \omega$, I cut.) The space or interval betweon two dentels.
Metoche. (Probably from Mє $\boldsymbol{\epsilon} \in \boldsymbol{\chi} \omega$, I divide.) In ancient arehitecture a term used by Vitruvius to denote the interval or space between the dentels of the Ionic, or triglyphs of the Doric order. Baldus observes that in an ancient MS. copy of that author, the word metatome is used instead of metoche. This made Daviler suspect that the common text of Vitruvius is corrupt, and that the word should not be metoche but metatome, as it were section.
Meropa. (Gr. Met α, between, and Oп η, a hole.) The square space in the frieze between the triglyphs of the Doric order: it is left either plain or decorated, according to the taste of the architect. In very ansient examples of this order the metopa was left quite open. Figs. if14 and 1415 represent two sculptures from the Parthenon at Athens.
Metre. The French unit of length (see Measure), from whence is derived their metrical system now followed by many other nations.

Mexican Architecture. The buildings of the ancient people inhabiting Mexico and Yueatan in America-Teocalli or pyramids, with walls of ruined cities, various carvings

Fig. 1414.

Fig. 1415.
on the face of the stones, and sculpture of hideous shape, comprise nearly all that is as yet knewn of their works.
Mezzanine. (Ital. Mezzano, middle.) A story of small height introduced between two higher ones. See Entresol.
Mezzo Relievo. See Rflievo.
Middle Post. In a roof, the same as King Post.
Middle Quarters of Columins. A name given to the four quarters of a column divided by horizontal sections, forming angles of fort y-five degrees on the plan.
Middle Rail. The rail of a door, on or in which the lock is usually fixed.
Mile. (Lat. Mille passuum, a thousand paces.) A measure of length in England equal to 1.760 yards. The Roman pace was 5 feet; a a d a Roman foot being equal to 11.62 modern inches. it follows that the ancient Roman mile was equivalent to 1,614 English yards, or very nearly eleven-twelfths of an English statute mile. The measure of the English mile is incidentally defined by an Act of Parliament passed in the 35 th of Elizabeth, restricting persons from erecting new buildings within three miles of London, in which Act the mile is declared to be 8 furlongs of 40 perches each, and each perch equal to $16 \frac{1}{2}$ feet.
Milk Room. See Dairy.
Millstone Grit. A coarse grained quartzose sandstone. It is extracted from the group of strata which occur between the mountain limestone and the superineumbent coal formations.
Minaret. (Arab. Menarah, a lantern.) A slender lofty turret, rising by different stages or stories, surrounded by one or more projecting balconies, common in Mohammedan countries, being used by the priests for summoning (from the balconies) the people to prayers at stated periods of the day. They are also called alkoranes.
Minmra. The name for the cella containing the statue of a Hindoo temple, from whence rises the sikr or spire; the pronaos is the munduf, and the portico is in front, which is the châori or pillared hall.
Minion. An iron ore, which mixed with a proper quantity of lime makes an excellent water cement.
Minsfer, A chureh to which an ecelesiastical fraternity has been or is attached. The name has been also used freely to distinguish coilegiate or conrentual churches from parish ehurches.
Minute. (Lat.) See Module.
Mischia, See Scaoliola.
Miserere. A hinged seat attached on an horizontal axis to a stall in a church or cathedral. It was so contrived that if, during the performance of religious ceremonics, the occupier of it slept, he would fall on (perehance) the floor. Hence the name. The corbel under the seat, which formed the resting place, is usually carved with foliage, or with figures sometimes of a ludicrous design. The carliest examples are in Exeter Cathedral, dating 1240-56.
Mitciel. A name given by workmen to Purbeck stones of twenty-four inches by fifteen when squared for building.
Miter, sometimes written Mitre. See Bevel.
Mithr Box. See Box for Mithr

Mitre Arch. A French name for a peliment arch similhr to fig. lilo. Examples are found in early Greek and in Celtic structures as well as in the early Norman work in England.
Mixed Angle. An angle of which one side is a curve and the other a straight line.
Mixed Figlre. One composed of straight lines and curres, being neither entirely the sector nor the seg. ment of a circle, nor the sector nor segment of an ellipsis, nor a parabola, nor an hyperbola.
Moat. A wide ditch surrounding a house, castle, or town, and always full of water, or capable of being filled when requisite.
Monel. (Lat.) An original or pattern proposed fur anyone to copy or imitate. Thus St. Paul's may be, though not strictly so, said to be built after the model of St. Peter's at Rome.

The word is also used to signify an artificial pattern made of wood, stone, plaster, or other material, with all its parts and proportions, for the satisfaction of the proprietor, or for the guide of the artificers in the execution of any great work. In designing large buildings a good method of proceeding is to make a model,

Fig. 1416. Recess at Barnack Church aud not to trust entirely to drawings.
Modillion. (Fr.) A projection under the corona of the richer orders resembling a bracket. In the Grecian Ionic there are no modillions, and they are spldom found in the Roman Ionic. Those in the frontispiece of Nero at Rome consist of two plain faces separated by a small cyma reversa, and crowned with an orolo and bead. In the frieze of the fourth order of the Coliseum, the modilions are cut in the form of a cymil reversa.
Mopular Propoution. That which is regulated by a module. See Module.
Modulation. (Lat.) The proportion of the different parts of an order.
Modole. (Lat.) A measure which may be taken at pleasure to regulate the proportions of an order, or the dispasition of the whole building. The diameter or semi-diameter of the column at the bottom of the shaft has usually been selected by architects as their module ; and this they subdivide into parts or minutes. Vignola has divided his module, which is a semi-diameter, into 12 parts for the Tuscan and Doric, and into 18 for the other orders. The module of Palladio, Cambrai, Desgodetz, Le Clerc, and others, is divided into 30 parts or minutes in all the orders. Some have divided the whole height of the column into 20 parts for the Dric, $22 \frac{1}{2}$ for the Ionic, 25 for the Corinthian, \&c., one whereof is taken for the module by which the other parts are to be regulated.

Vitruvius haring lessened his module in the Doric order, which in the other orders is the diameter of the lower part of the column, and having reduced the great module to a mean one, which is a semi-diameter, Perrault reduces the module to a third part for a similar reason, namely that of determining the different measurements without is fraction. Thus, in the Doric order, besides that the height of the base, as in the other orders, is determined by one of these mean modules. that same morlule furnishes the height of the capital, architrave, triglyphs, and metopæ. But the smaller module obtained from a third of the diameter of the lower part of the column has uses considerably more extensive, inasmuch as by it the heights of pedestals, of columns, and entablatures in all the orders may be obtained without a fraction.
Modolus of Elasticity. A term in relation to elastic bodies, which expresses the weight of themselves continued, which would draw them to a certain Iength without destroying their elastic power.
Mole. (Sax.) A pier of stone for the shelter of ships from the action of the wares. Amongst the Romans the term was applied, as in the case of the mole of Madrian (now the castle of St. Augelo at Rome), to a kind of circulari mausolcum.
Monentum. (Lat.) The impetus, force, or quantity of motion in a moving body. Tho word is sometimes used simply for the motion itself.
Monastery. A house for the reception of religions desotees, but more properly applied tn one for the habitation of monks.
Monlal. An old way of writing Mullon, and still used by some writers.
Monkey. In piling operations. Sue Fistuca.
Monochrome. A system of decoration of one colour ouly.
Monolith. (Gr. Movos one, Aitos, a stone.) A monument, obelisk, or column of a single stone. Such works are found in many parts of the world. In Egypt and India temples have been formed out of the rock or of single blocks of stone. Many cirelns of stones, at at Abury and elsewhere, consist of monoliths.

Munopteral. (Gr.) A species of temple of a round form, which had neither walls not cella, but only a cupolia sistained by columns. See Temple.
Monotriglyph. (Cr.) A term applied to an intercolumniation in which only one triglyph and two metopæ are introduced.
Munstrance. A transparent pyx for processions of the Church, or when the Host is exhibited; a casket for the exlibition of the Sacrament.
Montanr. The intermediate style in a piece of framing, which is tenoned into the rails. It is als) called a muntio.
Monument. (Lat. Moneo.) An edifice of importance in the history of art, and which was raisel to perpetuate the memory of some eminent person, or to serve as a durable token of some extraorlinary eveht. See Mausnleum. The pyramids may also come u ider this class, although they were tombs. The word monument is too generally applied to mere tombs.
Mororsture. A species of granite found in Cornwall and some other parts of Eugland, and very serviceable in the coarser parts of a building. Its colours are chiefly black and white, and it is very coarse. In some parts of Ireland immense beds of it aro found.
Moresque Architecture. The style of building peculiar to the Moors and Arabs. It is also called Saracenic.

The wrord Moresque is also applied to a kind of painting in that style used by the Moors. It consists in many grotesque pieces and compartments, promiscuously, to appearoluce, put together, but without any perfect figure of man or animal. The style is sometimes called Arabesquc.
Mortar. The material used to lind atone, bricks, \&c., togetber; it is ecmpnunded of burnt limestone and sand. Hydraulic mortar is made of hydraulic lime and sand.
Mortice, or Mortisf. (Fr. Mortoise, probably from the Latin Mordeo, to liste.) In carpentry and joinery, a recessed cutting within tho surface of a pice of timber, to receire a projecting piece called a tenon left on the cnd of another piece of timber, in order to fix the two together at a giveu angle. The sides of the mortice aro generally four planes at right angles to cach other and to the surface, whence the excaration is made.
Mortice Lock. A lock made so as to fit into a mortice cut in tho lock rail of a door to receive it. It is thus shut out from sight.
Mosatc. (It. Mosaico.) A mode of representing objects by the inlaying of small cubes of glass, stone, marble, shells, wood, \&c. It was a species of work much in repute among the ancients, as may be gathered from the numorous remains of it. It is supposed to hare originated in the east, and to have been bronght from Phonicia to Greece, and thence carried to Rome. The term Mosnic work is distinguished from marquetry and parquetry by being ouly applied properly to works of stone, metal, or glass. The art continues to be practised in Italy at the present day with graat succes*.
Mosque. (Turk. Moschet.) A Mohammelan temple or place of worship. The earliest Arabian mosques were decorated with ranges of a rast number of columns, often belonging originally to other buildings. Those of the Turks, on the other hand, are more distinguished for the size aud elevation of their principal cupolas. Each mosque is provided with a minaret, and commonly with a fountain of wator, with numerous basins for ablutions.
Mould. A term used to signify a pattern or contour by which any work is to be wrought. The glazier's moulds are of two sorts, one of which is used for casting the lead into long rods or cames, fit for drawing through the vice in which the grooves are formed. This they sometimes call the ingot mould. The other is for moulding the small pieces of lead, a line thick and two lines broad, which are fastened to the iron bars of easements.

The mason's mould, also called caliber, is a piece of hard wood or iron, hollowed on the edge, answering to the contours of the mouldings or cornicos to be formed. The ends or headingjoints being formed as in a cornice by means of the mould, the intermediate parts are wrought down by straight edges, or circular templets, as the work is straight or circular on the plan. When the intended surface is required to be very exact, a reverse mould is used, in order to prove the work, by applying the monld in a transyerse direction of the arrises.
Mould. The prepared form on which plumbers cast their sheets of lead; it is simply called a table. They have others for casting pipes without soldering.
Mould Srone. One of the stones of a moulded jamb.
Mouldings. The ornamental contours or forms applied to the edges of the projecting or receding members of an order. Grecian muuldings are formed by some conic section, as a portion of an ellipse or hyperbola. The Roman mouldings are formed by ares of circles, the same moulding having the same currature throughout. The mouldings usod in Pointed architecture are chiefly formed by portions of circles.
Million, Munnion, or Monial. In Pointed architecture, the vertical post or bar which divides a window into two or more lights.
Multtfoll. An arch with such mumerous foliations that it is thought unnecessary particularly to specify the number.

Municipal Architecture. The term applied to buildings erected for civil and municipal purposes, such as town halls, guild halls, \&c. No particular style is inferred, as the buildings partook of the style prevailing at the time of their erection, and in the present day it depends on the decision of the persons for whom the edifice is designed.
Muniment Room. A strong, properly fire-proof, a partment in public or private buildings, for the keeping and preservation of evidences, charters, seals, \&c., called muniments. Munnton. See Mullion.
Muntin. See Montant.
Mural. (Lat.) Belonging to a wall. Thus, an upright monumental slab attached to a wall is called a mural monument; sometimes a mural slab or tablet; an arch inserted into or attached to a wall is called a mural arch; and columns placed within or against a wall are called mural columns.
Museum. (Gr. Movgetov.) A museum is a building destined to the reception of natural, literary, or scientific curiosities, and for that of the works of learned men and artists. The term was first applied to that part of the palace at Alexandria appropriated solely to the purpose of affording an asylum for learned men; it contained buildings and groves of considerable magnificence, and a temple wherein was a golden coffin containing the body of Alexander. Men of learning were here lodged and accommedated with large halls for literary consersations, and porticoes and shady walks, where, supplied with every necessary, they devoted themselves entirely to study. The .establishment is supposed to have been founded by Ptolemy Philadelphus, who here placed his library. It was divided into colleges or companies of professors of tho several sciences, and to each of such professors was alloted a suitable revenue.

Museums, in the modern sense of the word, legan to be established about the sixteenth century, when collections were formed by most of the learned men who studied natural history. On a small scale, they are hecoming more common in the principal towns of this country. Where economy requi:es it, and the collection in oach department be not too large, the whole may be properly and conveniently cumprised within one building. In respect of security against fire, and quietness of the situation, the same precautions will be necessary as have been indicated for libraries, and must always be observed.

In the composition of museums, decoration must not he exuberant. It must be kept in the interior so far subordinate as not to interfere with the objects to be exhibited, which are the principal features of the place. With this caution we do not preclude the requisite degree of richness which the architecture itself requires. Great skill is necessary in introducing the light properly on the objects, inasmuch as the mode of properly lighting up objects of Natural History is very different indeed from that which is required for Pictures, and this, again, from what Sculpture requires. Specimens illustrating Natural History, Sculpture, Vases, and the like, should have high lights. Algarotti states that the museum which Rubens built for himse f at Antwerp was circular, with a single light in the roof. The museum at Scarborongh, desigued by Mr. R. H. Sharp, is 32 feet in diamster inside, with a skylight of 9 feet. It has also seren windows round the lower portion of the ronm. There are subjects, nevertheless, in all these classes (in mineralogy, for example), for which strong side lights are essential to an advantageous exhibition of them. In such cases small recesses may be practised for the purpose. At the Hôtel des Monnaies, at Paris, the presses which contain the collection of Mineralogy form a circle which encloses a small lecture theatre, and thus become doubly serviceable. The student is thus made aware how room is to be gained when the area of a site is restricted. The collection of Sculpture is not so well lighted as are the models and other objects, Paintings excepted, in the Vieux Lourre, which are exhilited to perfection.

Where the same museum is to contain several classes of objects, the suites of rooms for the different departments should be accessible from some central one common to all; this may be circular or polygonal, as may best suit the arrangement and means; and, if possible frum the site, the building should not consist of more than one story abore the ground; on no account of more than two.
For the objects it contains we question whether the British Museum is surpassed, as a wholo, in Europe; and those of the Vatican, of the Uffizj at Florence, of Portici, and of Paris, are none of them of sufficient architectural importance to detain the reader by description; neither would they, if so described, be useful to the student as models. At Munich the Glyptotheca for sculpture, and the Pinacotheca for pictures, by the Baron ron Klenze, are in some respects well suited to the exhibition of the objects deposited in them, better, indeed, than is the museum at Berlin. As specimens of architecture they have been highly praised and as sevarely censured.

Sir John Soane's Museum, in Lincoln's Inn Fields, should be visited by any amateur contemplating the formation of a collection of works of art, to understand how much may be got into a small space, with well-lighted, warmed, and rentilated apartments.

The Museum of Economic Geology, in Jerniyn Street, was designed 1837-49, by the late Sir James Pennethorbe. It is well adapted for the special purpose. The hall or museum is 9.5 feet long, 55 feet wide, and 52 feet high to the springing of the iron roof, and 42 feet 9 inches to its crown. It is also a good specimen of well-selected Anston stone, and cost about 30,000 l. The Fitzwilliam Miuseum, at Cambridge, was commenced in 1837 by George Baseri, and partially completed after his death in 1845 by C. R. Cockerell, R.A.; but it has since receired several alditions and alterations for the increased culcections. The South Kensington Museum, as it is called, combining works of art and manufacture of modern date, has many portions to be highly commended. The Art Museums at Dublin, Edinburgh. in the catstle at Nottingham, Mincherter, and numerous other towns, afford examples for the future designer of sach useful edifices fur general purposes. The Natural History Musenm at Sunth Kensington, designed $1873-81$ by Mr. Alfred W..terhouse, R.A., affords one of the latest examples of a building for a special purpose. It is probably the largest modern building in which territcotta hats been exclusively used for external and i,ternal surfices, including architec ural and decorative features, except ceilings and fluors. It is 670 feet long and 290 feet deep.

The public museum and library erected at Hârre, by M. L. Fortuné Brunet Debaines, about 1848, is exceedingly meritorious. It consists of a central hall for sculpture; on either side, and separated from it by an open arade, by means of which the hall is lig ted, is a gallery and museum, the floor of which is six or eight feet abore the floor of the hall, so as to afford rooms for attendants, \&c., beneath. Access to these galleries is had from the hall by a flight of steps on each side of the entrance in front. A long flight of steps from the centre of the back of the hall, with other flights right and left, conduct to a picture gallery over the hall, and to a library, contilining 20,000 volumes, over the side galleries. It is a square of about 100 feet, not iuclnding the principal staircase. The bulding, without the fittings, cost about $40,000 \%$ It is of stone.
Mushuebeeyeh. The Arabic term for a projecting balcony enclosed with lattice work, in which the occupiers of a house can sit without being seen from the street and enjoy the air.
Musid. The Arabic for a mosque; the jumma musjid is the chirf mosque of a city.
Mutilated Cornice and Pediment. One that is broken or discontinued. Such works were much used during the worst period of the Renaissance, and may still be seen occasionally introdueed in modern buildings
Mutilation. (lat.) The defacing or cutting away of any regular body. The word is applied to statues and buildings where any part is wanting.
Mutcle. (Lat.) A projecting ornament of the Doric cornice, which occupies the place of the modillion in the other orders, and is supposed to represent the ends of ratters. The mutule has always been assumed as an imitation of the end of a wooden rafter; hence, say the adroeates for a timber type, they are properly represented with a declination towards the front of the coronas.

Nail. (Sax. Nægel.) A small metal spike for fastening one piece of timber to another. The sorts of nails are very numerous. Those of most common use in building are known by the names of ten-penny, twenty-penny, and two-shilling nails. Rose nails aro drawn square in the shank. Brads are long and slender nails without heads, used for thin deal work to aroid splitting. Tacks, the smallest sort of which serve to fasten linen or paper to wood; the middling fur medium work; the largir size are much used by upholsterers. Cut nails, or nails cut by machinery instead of being wrought by hand as formerly, are now much used, especially for securing flooring boards to the timbers. See Adhesion.
Nail-head Moulding. One used in Norman buildings, and s') called from being formed by a series of projections resembling the heads of nails or square knobs.
Naked. A term applied ei her to a column or wall to denote the faee or pl in surface from which the projections rise.
Naked Flooring. The assemblage of timbers for the floor of a building, whercof there are three sorts, viz., single flooring, double flooring, and double-framed flooring.
Naked of a Wall. The remote face whence the projections take their rise. It is generally a plain surface, and when the plan is circular the naked is the surface of a cylinder nith its axis perpendicular to the horizon.
Naus. (Gr.) See Cell.

Narthex. An inclosed space in the ancient basilica when used as a Cliristian church; and also of an ante-temple or restibule outside the church; it is thus used as synonymous with porch and portico. Some modern churches have a narthex with a lean-to roof, s) as to form a kind of large porch the whole width of the building, or of the nave only.

Nafural Bed of a Stone. The surface from which the laminæ were soparated. In all masonry it is important to its duration that the laminæ should be placed perpendicular to the face of the work, and parallel to the horizon, inasmuch as the connecting substance of these laminæ is more friable than the laminæ themselves, and therefore apt to scale off in large flakes, and thus in luce a rapid decay of the work.
Nacmachla, (Gr. from Naus, a ship, and Maxy, a battle.) In ancient architecture, a place for the show of moek sea engagements, litile different from the circus and amphitheatre, since this species of exhibition was often displayed in those buildings. One was erected at Milan under the orders of Napoleon I.
Nave. (Gr. Naos.) The body of a church reaching from the rail or partition of the choir to the principal entrance. See Church. By far the mest important feature of Romanesque architecture is the greater elevation obtained for the interior of churches beyond the mere walls of previous times. This resulted in the triple range of Pier arsh, dividing the nave from the aisles, as 1 in fig. 1417 ; the Triforium, containmg sometimes a gallery over the aisles, as 2; and the Clerestury, or row of windows admitting light to the n ave, as 3 . The string courses are unbroken, and gire the appearance of the building being divided into layers or stages; the arches also do not harmonise, and the whole

Fig. 1417. Roman.

Fig. 1418. Norman. presents the characteristics of the horizontality of ancient types. The first stage of transition to the verticality of Pointed architecture

was the use of shafts of small diameter running up in front of the piers and dividing the

triforium and clerestory into compartments, as in fig. 1418. The style adranced, as is shown in fig. 1419, being an example if the treatment of a bay of a nave or choir in the Early English or Laneet period; fig. 1426 in that of the Geometrical Decorated ; fig. 1421 in that of the Flowing or Late Decorated; and fig. 1422 in that of the earlier part of
the Rectilinear or Perpendicular period. In the later portion may be noticed the flatten ing of the arches, the four-centred arch being that most frequently used. The ogee arch (fig. 1427) was also much used at the same period. The above representations (figs. 1424 to 1427) of a bay of a nave or choir, exhibit the additions of a Perpendicular clerestory on a lower portion of earlier character; and the extinction of the triforium as a gallery, it being translormed into a wall decorated with panels. The priory church at Bath has not a triforium, lut a lofty elerestory, like fig. 1426; while the choir at Bristol has neither triforium nor clerestory.
Nebule Moulding. (Lat. Nebula.) An ornament in Norman architecture, whose edge forms an undulating or wavy line, and introduced in corbel tables and archivolts. Fig. 1382.
Neck of a Capital. The space, in the Doric order, between the astragal on the shaft and the annulet of the capital. Some of the Grecian Ionic capitals are with neeks below them, as in the examples of Minerra Polias and Erechtheus, at Athens. But the Ionic order has rarely a neek to the capital.
Needle. A horizontal piece of timber serving as a temporary support to some superincumbent weight, as a pier of brickwork, and resting upon posts or shorcs, while the lower part of a wall, pier, or building is being underpinned or repaired.
Nervures. A name given by French architects to the ribs bounding the sides of a groined compartment of a vaulted roof, as distinguished from the ribs which diagonally cross the compartment.
Net Measure. That in which no allowance is made for finishing, and in the work of artificers, when no allowance is made for the waste of materials.
Neutral Axis. That plano in a bean in which theoretically the tensile and compressive forces terminate, and in which the stress is therefure nothing.
Newel. The upright cyliuder or pillar, round which, in a winding staircase, the steps turn, and are supported from the bottom to the top. In stairs, geometrical for instance, where the steps are pinned into the wall, and there is no central pillar, the stairease is said to have an opran newel.
Niche. (Fr. probably from Neof \quad a, a nest.) A cavity or hollow place in the thickness of a wall for the reception of a statue, rase, \&c.
Nidged Ashlar. A species of ashlar used in Aberdeen. It is brought to the square by means of a cavil or hammer with a sharp point, which reduces the roughness of the stone to a degree of smoothess according to the time employed. Whea stone is so hard as to resist the chisel and mallet, the method described is the only way in which it can be dresserl.
Nug. The same as a Wood Brick.
Nogging. A species of brickwork earried up in panels between quarters or studs, and in which manner partitions called "brick-nog partitions" aro made.
Nogging-piece. A horizontal board laid in brick-nogging, and nailed to the quarters for strengthening the brickwork. They are disposed at equal altitudes in the brickwork.
Nonagon. (Gr.) A geometrical figure having nine sides and nine angles.
Normal Line. In geometry, one which stands at right angles to another line.
Norman Architecture. This term comprises the architecture of the Normans as seen in Sicily and adjoining countries; and is applicd to the round areh style which was carried out chiefly in Normandy, and thence taken over into England soon after Elward the Confessor's time, and more prominently in the reign of William I. It is a rariation of Romanesque architecture. See figs. 1417 and 1418.
Nosing of a Step. The projecting part of the tread-board or cover which stands before the riser. The nosing is generally rounded, so as to have a semicircular section; and in the better sort of staircases a fillet and hollow is placed under the nosing.
Notation. In the early periods of the Roman notation, four was written IIlI., this has been changed into IV.; nine was written VIIII., now IX. ; forty was written XXXX., now XL. Five hundred was originally written ID., now D.; a thousand CIO., now M. The number $\mathrm{I}_{\mathrm{D}}=500$, is increased in value ten times for every ρ annexed. Thus $\mathrm{I}_{\mathrm{O}} \mathrm{D}=$ 5,$000 ; \mathrm{I}_{\mathrm{OO}} \mathrm{O}=50,000$. and so on. The number $\mathrm{CI}_{\mathrm{O}}=1,000$ is increased in value ten times for every C and ρ prefixed or annexed to it. Thus $\mathrm{COI}_{0 \rho}=10,000$, \&c. This notation is not now in use, bnt will be found in works of the 17 th century.
Notation, Architectural. The method adopted of placing signs to figures when marking dimensions on drawings. Thus. in lieu of writing feet, inches, and parts of an inch, certain dashes are used, ' for feet, " for inches, and "" for parts; or ${ }^{\circ}$ for feet,' fur inches, and "for parts. There is no settled method for using these marks.
Notch-board. A board which is grooved or notched for the reception and support of the ends of steps in a staircase.
Notcung. A hollow cut from one of the faces of a piece of timber, generally made rectangular in section.
Nuclevs. (Lat.) In ancient architecture, the internal part of a floor, which consisted of a strong coment, over which the pavement was laid with mortar.
Nugger, or Nafar. The Sanscrit name for a city; as Ahmednugger, properly Ahmad-
nagar, the city of Almad.

Nuraghe. The name of a species of very ancient structure in Sardinia, resembling and used for a similar purpose as the cromlechs or dolmens. They are supposed by some writers to be the work of the ancient Phenicians.
Nymphacm. (Gr.) A name used by the ancients to denote a picturesque groto in a rocky or woody place, suppostd to be dedicated to, and frequented by, the nymphs. The Romans often made artificial nymphex in their gardens. In Attica, the remains of a nymphæum are still to be seen decorated with inscriptions and bassi-rilievi, from the rude workmanship of which it may be presumed that the grotto is of very ancient date.

0

Oak. (Silx. Ac, Æc, A forest tree, whore timber is, from its strength, hardness, and durability, the most useful of all in building.
Obelisk. (Probably from ò $\beta \in \lambda \delta s$, a spit, brooch, or spindle, or a long javelin.) A lofty pillar of a rectangular form, diminishing towards the top, those of Egypt often having inscriptions and hieroglyphics. The upper part finishes generally with a low pyramid, called a pyramidion. The proportion of the thickness to the hright is nearly the same in all obelisks; that is, betwoen one ninth and one tenth, and their thickness at top is never less than half, nor greater than three fourths, of that at bottom. The following table exhibits a list of the principal obelisks; and with the dimensions must be taken with some reservation. Builder, 1877, xxxy., 1076, gives a plate of eleven.

Situation, \&c., of the Obelisk.	Height.	Thickness.		
		At top.	Below.	
Two, memtioned by Diodorus Siculus	$\begin{gathered} \text { Eug. Feut. } \\ 158 \cdot 2 \end{gathered}$	$\begin{gathered} \text { Eng. teft } t \\ 7 \cdot 0 \end{gathered}$	$\begin{gathered} \text { Eng. lipet. } \\ 11.8 \end{gathered}$	
Two, of Nuncoreus, son of Sesostris, according to Herodotus, Diodorus				
Siculus, and Pliny - - - - - - - - - - - - - .	121.8	$6 \cdot 6$	10.5	
Of Nectanabis, erected near tha tomb of Arsinöe by Ptolemy Plila-				
Attributed to Sothis, mentioned by Pliny	$63 \cdot 3$	$4 \cdot 5$	$5 \cdot 1$	
Karnak; Thebes: two in the ruins, raised on a block -	$72.8 \& 90.0$	$5 \cdot 0$	$7 \cdot 5$	
" ", two in the ruins, raised ou a block	$63 \cdot 3$ \& $70 \cdot 0$	$4 \cdot 5$	$5 \cdot 1$	
"* " ${ }^{\text {" }}$ - - - - - - - - -	105.0			
Rome : Piazza del Laterano; taken to Alexandria by Constantine, and to Rome by Constantius, where it was placed in the Circus				
Maximus ; broken in tbree pieces, repaired and raised, 1588, by				
Rome : Piazza del Popolo ; Seti and his son Rameses II.; brought				
from Heliopolis by Augustus, b.c. 10, aud placed in Cireus Maximus; raised 1589 by Fontana	$78 \cdot 2$	$4 \cdot 5$	$7 \cdot 4$	
Rome: Piazza di Monte Citorio P Pammeticus II., R.f. 594-588;				
brought from Heliopolis by Augustus to act as a giomon; re- moved 1792	71.9	$4 \cdot 9$	$7 \cdot 9$	
Rome : Piazza of St. Peter ; Manephthall from lleliopolis, B.c. 1400,				
Rome: Piazza Navona; cut for Donitian ; placed in Circus Caraca la or Maximus; raised 1651 by Bernini ; also called Pamphi ian obelisk	54.9	2.9	4	
Rome: Piazza Sta Maria Maggiore; cut by Claudius ; formerly in front of the mansoleum of Augustus; (made about b.c. 2000?); raised 1587 by Fontana (plain) -	$48 \cdot 3$	$2 \cdot 9$	$4 \cdot 3$	
Rome : Quirinal Hill ; also cut by Clandius, and sct up by Augustus,		-	-	
Rome: Trinita de ${ }^{\text {a }}$ Monti ; brought by Hadrian ; set up 1789 -	$43 \cdot 6$	$2 \cdot 1$	\%	
" in front of the Pantheon; from Crareus Maximus ; stt up 1711	$20 \cdot 1$	$2 \cdot 1$	$2 \cdot 4$	
" Villa Mattei, on the Calian - - - - - - - - -	$26 \cdot 4$	$2 \cdot 2$	$2 \cdot 7$	
" On the Pincian (called the Aurelian) ; raised for Pius TI]. -	$29 \cdot 9$			
raised on an elephant 1667 by Bernini -	$17 \cdot 6$	$2 \cdot 0$	$2 \cdot 6$	
, Villa Medici - - - -	$16 \cdot 1$	$1 \cdot 9$	$2 \cdot 4$	
" the Barberini - - - -	30.0	$2 \cdot 2$	$3 \cdot 9$	
" from Thebes: by Thothmes 11I. or 1V. - - - - - -		-		
Heliopolis : only one now remains cut of three pairs; it is the oldest, by Osirtesen, about 3000 B.C.	$67 \cdot 1$	$5 \cdot 1$	$8 \cdot 1$	
London : Thothmes III., B.c. 1600 ; it was origiually on a block of granite 5.2 feet high, on three steps 6 ft .6 in ., pieds de Paris; removed b.c. 23 to Alexandria; removed 1878 to London, ard raised				
for E. Wilson, by John Dixon, C.E. ; called Cleopatra's Needle -	68.51	40.550	$7 \cdot 5 \& 7 \cdot 10 \frac{1}{2}$	
Arles: found buried there in 1389, and raised 1675	$50 \cdot 1$	4.5	$7 \cdot 4$	
Paris: from Luxor; removed and raised 1831-36 by Lebas	$76 \cdot 6$	-	8	
Lusor: still there - . - . -	79.1	$5 \cdot 3$	8.0	
Constantinople : in the At-Meidan; moved by Emperor Theodosius	59.7 \& 50-0	$4 \cdot 5$	72	
", smaller one, according to Gyllius	34.2	$3 \cdot 9$	$5 \cdot 9$	
Axum, Abyssinia, about - -	6 600	-	-	
Gardens of Sallust : according to Mercati - -	48:3	$2 \cdot 9$	$4 \cdot 3$	
Bijije, near Meednet-el-Fayoum, in Egy'pt : Qsirtesen I.; nrequal \}	42.9 43.0	$2 \cdot 6$	$4 \cdot 2$	
sides - . - . - - - - . .	430 416	$4!$ 4.9	$\begin{gathered} 5 \cdot 92 \\ 5 \cdot 10 \stackrel{\text { d }}{6} \cdot 5 \cdot 5 \end{gathered}$	
Alexandria, Thothmes-Rameses . . - - . -	67\% \& 69.1	-	-	

Oblique Angie: One that is greater or less thin a right angle.
Oblique-angled Triangle. One that has no right angle.
Orlique Arches. Such as cross an opening obliquely to the front face of them.
Oblique Line. One which stands, in respect to another, at a greater angle than ninety degrees.
Oblong. A rectangle of innequal dimensions.
Obsfryatory. (Fr.) A building for the reception of instruments and other matters for observing the heavenly bodies. The observatory at Paris, from the designs of Perrault, is a noble building, but, we believe, is universally admitted to be very ill suited to the purposes for which it was bnilt. A regular observatory is ono where instruments are fixed in the meridian, whereby, with the assistance of astronomical clocks, the right

Fig. 1428.
hscensions and declinations of the heavenly bodies are determined, and thus motson, time, and space are converted into measures of each other. On the observations and determinations made in such establishments they are therefore, to maritime states, of vital importance, and ought to be liberally endowed by their gorernments. As the subject will be better understood by a plan, we suljjoin, in fig. 1428, a plan and elevation of the observatory at Edinburgh. The general form of the plan, as will bo therein seen, is a Greek cross, 62 feet long, terminated at its feet by projecting hexastyle porticoes, which are 28 feet in front, and surmounted by pediments. The intersecting limbs of the eross at their intersection are covered by a dome 13 feet diameter, which traverses round horizontally, and under its ceutre a pier of solicl masonry is brought up of a
conical form 6 feet in diameter at the base, and 19 feet high. This is intended either for an astronomical circle or for an equatorial instrument for olservations of the heavenly bodies made out of the meridian. In the eastern foot of the cross ($b b$) are stone piers for the reception of the transit instrument; c is the stone pier to which the transit clock is attiched; and d is a stone piece on which an artificid horizon may be placed, when olservations are taken by reflection: this is covered by a floor board when not in use, being just under the level of the floor; a a are the slits or chases running through the walls and roof, but closeable by means of shutters when the observittion is completed. On the western side ($e e$) are chases as in the transit room; f a large stone pier for the reception of a mural circle; g the clock pier; h the pier for an artificial horizon as before; i is the conical pier above mentioned, over which the moveable dowe is placed, laving an opening (l) in the elevation for the purpose of observation; k is the observers room; and m the front entrance.

It is to be especially observed that the piers for the reception of the instruments must not be in any way connected with the walls of the building; they should stand on the firmest possible foundation, which, if at all doubtful, must be formed with concrete, and the pier's should, if possible, be out of a single block of stone; but if that cannot be oltained, the beds must be kept extremely thin; partial settlement being ruinous to the nicety of the instruments as well as to the observer's business. The observation applies also to the cleck piers, all vibration and settlement being injurious also to them. A dry situation should be chosen for the site, for, except in the computing rooms, no fire heat can be allowed; and it is important that the brass whereof the instruments are made should not be corroded ly the action of moisture. In large public observatorics there should be the readiest access from one part to another, and rooms for a library and computers independent of the chief astronomer's room. The Orwell Park observatory, as described by its architect. Mr. Macricar Anderson, is published in the Sessional pupers of the Royal Institute of British Architects, Nov. 16, 1874. The observatory at Warsaw by Pietro Aigner is said to be one of the finest in Europe; that at Armagh is very good. A descriptive account of public and private observatories in England is given in the Pictorial Handbook of London, 8vo., London, 1851, published by J. Weale.
Obruse. (Lat.) Anything that is blant.
Obtuse-angled Triangle. One which has an obtuse angle.
Ohtuse Arch. Sce Drop Arch.
Obruse Secrlin of a Cone. Among the ancient geometricians a name given to the hyperbola.
Ocizagon. (Gr. 'Окт $\begin{gathered}\text { aud } \text { 「wria, angle.) A figure having eight equal sides and eight }\end{gathered}$ equal angles.
Octahedron. (Gr.) One of the five regular bodies bounded ly eight equal and equilateral triangles.
 columns in tront. See Colonnade.
Odeun. (Gr.) Among the Greeks, a species of theatre wherein the poets and musicians rehearsed their compositions previous to the public prodaction of them.
Oecus. See Halr.
Offices. The apartments wherein the domestics diseharge the several duties attached to the service of a house; as kitchens, pantries, brewhouses, and the like.
Offser. The horizontal projection from the faces of the different parts of a wall where it increases in thickness.
Ogee. A moulding, the same as the Cyma reversa.
Oglef Arcin. A pointed arch, the sidez of which are each formed with a dubble curve. (See fig. $1+29$.) It frequently appears in the Decorated period of Gotlic architecture, and oceasionally in that of the Perpendicular ; chiefly in small ornamental work, as shrines and canopies; its inflected curres weaken it too much for supporting great weights. In some late work, this arch is also made to curve forward.
Oqive. A term used by French architects to denote the Gothic arch, with its ribs and cross springers, \&c. The word is used by them to denote the pointel arch.
Olleets, or Oyletts. Small openings or eyelet holes seen in mediaval military buildings, through which missiles could be discharged without exposing the sollier.

Fig. 1429.

One patr of Statrs. An expression signifying the first story or floor above that fluor level with, or raised only by a few steps, above the ground, which latter is thence cafled the ground floor.
Oyyx Marble. See Marble.

Oрж. (Gr. Oпп.) The beds of the beams of a floor or roof as in a Grecian temple, the space between which are called the Metopa.
Open Newel Stairs. See Newel.
Opening. (Sax.) That part of the walls of a building which is unfilled, for admitting light, ingress, egress, \&c. See Aperture.
Opisthonomes. (Gr.) The same as the Roman posticum, being the enclosed space in the rear of the cell of a temple.
Opposite Angles. Those formed by two straight lines crossing each other, but not two adjacent angles.
Opposite Confs. Those to which a straight line can be applied on the surfaces of both cones.
Opposite Sections. The sections made by a plane cutting two opposite cones.
Optic Pyramid. In perspective, that formed by the optic rays to every point of an object.
Optic Rays. Those which diverge from the eye to every part of an original object.
Orangery. A gallery or building in a garden or parterre opposite to the south. See Greenhouse. The most magnificent orangery in Europe is that of Versailles, which is of the Tuscan order, and with wings.
Oratory. (Lat.) A small apartment in a house. furnished with a small altar, crucifix, \&c., for private derotion. The ancient oratories were small chapels attached to monasteries, in which the monks offered up their prayers. Towards the sixth and seventh centuries the oratory was a small church, built frequently in a burial-place, without either baptistery or attached priest, the serrice being performed by one oceasionally sent for that purpose by the bishop.
Orb. (Lat. Orbis.) A knot or foliage of flowers placed at the intersection of the ribs of a Gothic ceiling or vault to conceal the mitres of the ribs. Sce Boss.
Orchestra. (Gr. CpXeopal.) In ancient architecture, the place in the theatre where the chorus danced. In modern theatres it is the enclosed part of a theatre, or of a music room, wherein the instrumental and vocal performers are seated.
Order. (Lat.) In Grecian, Roman, and Italian architecture, an assemblage of parts, consisting of a base, shaft, capital, architrare, frieze, and cornice, whose several scrvices requiring some distinction in strength, have been contrived in five several species-Tuscan, Doric, Ionic, Corinthian, and Composite; each of these has its ormaments, as well as its general fabric, proportioned to its strength and use. These are the fire orders of architecture, the proper understanding and application of which constitute the foundation of all excellence in the art.
Ordinate. In geometry and conics, a line drawn from any point of the circumference of an ellipsis or other conio section perpendicular to, and across the axis, to the other side.
Ordonnance. (Fr. from the Lat.) The perfect arrangement and composition of any architectural work. It applies to no particular class, but the term is general to all species in which there has existed anything like conventional law.
Organical Description of a Curve. The method of describing one upon a plane by continued motion.
Orifl, or Oriel Window. (Etym. uncertain.) A large bay or recessed window in a hall, chapel, or other apartment. It ordinarily projects from the outer face of the wall either in a semi-octagonal or diagonal plan, and is of raried kinds and sizes. In larye halls its usual height is from the floor to the ceiling internally, and it rises from the ground to the parapet on the outside ; sometimes it consists only of one smaller window supported by corbels, or ly masonry projecting gradually from the wall to the sill of the window. A bow window projects eireularly, and was formerly called a compass or embowed window; whilst the projection of the oriel is made up of angles and straight lines forming generally the half of a hexagon, octagon, or decagon, and was better known ly the name of bay window, shot window, or outcast window, a distinction, however, not generally olservec.
Orientation. (Lat. Oriens.) The deriation of a church from due east, it being supposed that the chancel points to that part of the east in which the sun rises on the dity oi the patron saint. This point, however, has not been fully investigated.
Original Line, Plane, or Point. In perspective, a line, plane, or point referred to the object itself.
Orle. (Itall.) A fillet under the ovole or quarter round of a capital. When the fillet is at the top or bottom of the shaft of a column it is called a cincture. Palladio uses the word orle to express the plinth of the bases of the columns and pedestal.
Ornament. The smaller and detailed part of the work, not essential to it, but scrving to enrich it ; it is generally founded upon some imitation of the works of nature.
Ornamented Enghisin Arcuitecture. That phase of mediæval architecture in England which is generally called the Deconated period ; it was comprised chiefly in the reigns of the three first Edwards.

Orthograpily. (Gr. Opөos, right, and $\Gamma \rho a \phi \omega$, I deseribe.) The elevation of a building showing atl the parts in their proper proportions; it is either external or internal. The first is the representation of the external part or front of a building showing the face of the principal wall, with its apertures, roof of the building, projections, decorations, and all other matters as seen by the eye of the spectatur, placed at an infinite distance from it. The second, commonly called the scction of a building, shows it as if the external wall were removed and separated from it.

In geometry, orthography is the art of representing the plan or side of any object, and of the elevation also of the prineipal parts: the art is so denominated from its et ymology, leeause it detrrmines things by perpendicular right lines falling on the geometrical plan, or because all the horizontal lines are straight and parallel, and not, is in perspective, oblique.
Orthostyle. A columnar arrangement, the columns being placed in a straight line.
Oscolating Circle. That, the radius of whose curve, at any particular point of another curre, is of the same length as that of the curve in question at that particular point. Hence it is the kissing circle, and that so closely that there is no diffurence in the curvature of the two curves at that particular point.
Oundy, or Undy Moulmng. A moulding with a wavelike outline. See fg. 1383.
Out and In Bond. A Scotch term for alternate header and stretcher in quoins, and in window and door jambs.
Outer Duors. Those common to both the exterior and interior sidos of a building.
Outier Plate. See Inner Plate.
Outcine. The line which bounds the contour of any object.
Out of Winding. A term used by artificers to signify that the surface of a body is that of a perfect plane; thus when two straight edges in every direction are in the same plane they are said to be out of winding.
Out ro Out. An expression used of any dimension when measured to the utmost bounds of a bouly or figure.
Outward Angle. The external or salient angle of any figure.
Ora. (Lat.) Ornaments in tho shape of an egg, into which the echinus or ovolo is often carved.
Oval. A geometrical figure, whose boundary is a curve line returning into itself; it inclutes the ellipsis or mathematical oval, and all figures resembling it, though with diff rent properties.
Overhang. See Batter.
Overistory. The clear-or elere-story of a building.
Ovolo. (Ital.) A convex moulding whoso lower extremity recedes from a perpendicular line drawn from the upper extremity.
Oxidation. The corrosion of iron by the atmosphere. Paint is one of the hest preservatives, renewed as necessary. Lime-whiting is another; and lataly it has been urged to pickle the wrought iron in dilute sulphuric acid, so as to remose the scaly oxide betore painting.

P

PaCe A portion of a floor slightly raised above the general level : a dais. It is also applied to a landing in a staircase; its prefix, half or quarter, determines the size of it. See also Measure.
Packing. Small stones imbedded in mortar, used to fill up the interstices between the larger stones in rubble work.
Paddle. A small sluice, similar to that wherely water is let into or out of a canal lock. Pagoda. A name given to the tall pyramidal structure of several stones, forming one of the peculiar features of Chinese architecture. It is said to be derived fron the Hindoo word dagoba.
Panted Giass. Glass painted with ornaments or pictorial representations, and then put into a kilu and the paint burntin. See Staned Glass, with which it is sometimes used in painted windows.
Panser. An artificer who combines the knowledge of colours and the application of them to decorative purpnses.
Painter's Work. The work of painting, with different coats of oil colour and turpentine, the parts of a building usually so treated.
Pair. As one-pair, two-pair, \&c., story. See Floor. and One-pair.
Palace. (Lat. Palatium.) In this conntry, a name given to the dwelling of a king or queen, a prince, and a bishop. On the Continent, it is a term in more general use, almost all large dwellings of the higher nolility and government offices being so denominated. A palace is properly an edifice destined wot only for the residence of the sovereign or prince, but for the reception also of persons who have the privilege of public or
private audience. It being impossible for the whole of the parties to be present together, there must be, besides the apartments which are occupied by the sovereign and his or her family, ample room and accommodation for the attendants in waiting of every degree, and the consequent aceessories. A palace should be disposed with porticues, vestibules, galleries, halls of waiting suited to every season, wherein those to be admitted may wait with convenience and comfort till their turn of admission arrives. It is evident that, from the nature of such an edifice, much magnificence should be displayed in it. The site on which a palace is to be seated must be open and free in every respeet, so that a largo expanse of gardens should be attached to it for the use of the public as well as the sovereign, in which respect the palaces of the Tuileries and Versailles are unparalleled. All should have a royal bearing, parsimony being inadmissible in works of this nature.

The palaces of the Escurial, Versailles, and the Tuileries are, though extremely spacious and imposing, but ill-disposed and imperfect examples of a palace. Perhaps the most perfect in Europe is that at Caserta, near Naples, commenced in 1752, which is described by Milizia as follows :-" The plan of this palace is a rast rectangle, 731 feet long from east to west, 569 from north to south, and 106 feet in height. The interior is divided into four courts, 162 feet by 244 . The depth of building that surrounds these courts, in which are the apartments, passages, \&c., is 80 feet, including the thickness of the walls, which are in some instances 15 feet. The two principal façades have five stories besides that below the ground, and each contains thirty-seven windows. There are three entrances, one in the centre, and the others at equal distances between it and the extreme angles, where, as well as in the centre, the building breaks forward a litile, is carried up to the height of 60 feet, and formed into pavilions by columns 42 feet high. Thus the whole height of the building is 102 feet from the foundation to the top of the parilion, at the anglts 162 feet, and in the centre 190 feet. The basement, which is rusticated, comprises the lower offices, the ground floor, and its mezzanine. Abore is placed an Ionic order of columns and pilasters, which contains the two ranges of state apartments; the lower windows are ornamented with pediments; in the frieze are introduced the windows of the upper mezzanine. The centre entrance leads to a superb portico, which traverses the building from north to south, and is sufficiently spacious to allow carriages to pass under from either façade to the centre of the building, where is a large octangular vestibule, which untes the arms of the cross produced by dividing the plaa into four courts : two sides of the octagon are open to the portico, four to the four courts, one to the grand staircase, and the eighth is occupied by a statue of Hercules crowned by Virtue.
"The grand staircase, which is on the right, is lighted by twenty-four windows, and decorated in a beautiful style. At the first landing it is dirided into two flights; the hundred steps of which it is composed are 18 feet long, and each of one piece of marble ; it is lighted also from the top by a double skylight. The upper restibule is also octangular, and surrounded by twenty-four columns of yellow marble 18 feet high. Four dours lend from thence to the apartments: the one opposite the landing to the chapel, that to the right to the apartments of the king, which comprehend the south-west angle of the building, overlowing the sea and the plains of Naples and Capua. To the left are the apartments of the queen, occupying the north-west angle, the remainder of these floors being occupied by the princes. The chambers throughout are vaulted, and admirally arranged; the apartments of the king and queen are separated ly a gallery 138 feet long, 42 wide, and 52 high. The palace contains a small elegant theatre, on a circular plan, divided into nine compartments, with four tiers of boxes. The chapel is rectangular in its plan, with the end terminated semicircularly, and decorated with isolated Corinthian columns on pedestals, with an entablature, in which the cornice is not omitted. The marbles and sculptures throughout are of the richest kind; the apartments generally well arranged and distributed, of magnificent dimensions, and of various forms. The whole is a rare as-emblage of vastness, regularity, symmetry, richness, ease, and elegance. The multiplieity of windows may certainly be a little at variance with propriety.
" But the most wonderful part of this grand work has not as yet been deseribed. There are ranges of aqueducts of a great height, and of sufficient length to unite the two Tifati mountains near the Furche Caudine. The waters on the mountain are collected into a canal for the purpose of supplying these acqueducts, and corducted to various lakus and fountains of every description. To the embellishments," adds Milizia, "of this ruyal residence are added a convenience and solidity that throw into shade all that has been done before or since." The plans, \&c. of this palace are given in Durand's P'aralléle des Edifices, and also in the work by Vanvitelli, its architeet.

The palace at Whitelall projected by Inigo Jones, and published in Kent's Designs (see fig. 207, supra), consisted of six courts, with greater beauties of composition; incl had the edifiee, of whieh the "banqueting-lonso" is not the humdrelth part, been carried to eompletion, it would have eclipsed the ono at Caserta, which contains the
leading, and, indeed, governing principles upon which the palace for a sovereign should be constructed.

Many useful remarks on this subject will be obtained in perusing Brewer's Descriptive and Histerical Account of the various Palaces and Pablic Buildings, English and Foreign, 4 to., London, 1821. We regret that in this country no model of a palace can be offered for the student. Windsor Castle, with all its beautics, which consist, however, more in site and scenery than in the disposition of a palace, is not to be commended; St. Jamer's Palace is said to be planned with many advantages for holding courts, but the exterior is far from what a palace should be.
Palestra. (Gr. Пa入al ω, I wrestle.) A part of the Grecian gymnasinm, particularly appropriated to wrestling and other gymnastic exercises; it was sometimes used to denote the whole building. It contained baths which were open for the use of the public. According to the authority of Vitruvins no palestra existed in Rome.
PaLle. A small pointed stake or piece of wood, used for making landmarks, and enclosures, placed vertically.
Pale Fencing, or Pale Fence. That constructed with pales.
Palisade. A fence of pales or stakes driven into the gruund, set up for an enclosure, or for the protection of property.
Palladian School of Architecture. A marner of designing, taking its name from its introflucer, the celelrated architect Andrea Palladio. It is a sort of medium between that vigorous severity which some exclusive minds abuse in the endearour to imitate the Classic style, and the licentious anarchy of those who refuse to recognise rules, which rules allow of exceptions. In the conception and execution of the edifices by Palladio there is always a clear intuition, a simple method, a sufficiently perceptiblo accord between need and pleasure, and such harmony in this accord that it would be difficult to say which gave the law to the other. His manner offers to all countries it model easy of imitation. The talent of the author of it is donbtless the principle whence this facility emanates, but this facility oî adapting itself to ererything and being adopted by all, is what distinguishes his taler tand generalises its influence. In fact, it may be said with truth, that Palladio has become the most universally followed master in all Europe, and in some sort the chief of the modern scho 1 in ciril buildings. This school has been reproduced in England with the greatest success, as in the case of Inigo Jones and others. Quatremère de Quincy, Dict. Arch. See also Gwilt's critiessm in Book I.
Palm. A measure of length. See Measore (Ancient), and Foot.
Panpre. (Fr.) An ornament composed of vine leaves and bunches of grapes wherewith the hollow of the circumvolutions of twisted columns are sometimes decorated.
Pan. A square of framing in half-timbered houses, the uprights being filled in with work. It is called post and pan, or post and petrail work, in the north of Eigland.
Pancirpi. (Gr.) Garlands and festoons of fruit, flowers, and leaves, for the ornament of altars, doors, vestibules, \&e.
Pane. A term applied to the side of any olject, as a square, octagon, \&c., which would be said to have four, eight, \&cc., sides.
Panel. (From the low Lativ panellum.) A board whose edges are inserted into the groove of a thicker surrounding frame, as in a door.

A panel in masonry is one of the faces of a hewn stone.
Panier. (Fr.) An upright corbel fixed against a pilaster and under a beam to break the angle so formed.
Pantameter. A graduated bevel.
Pantile. The curved tile used for roofing.
Pantograph. An instrument for copying, diminishing, or enlarging drawings.
Paper. A substance made by the maceration of linen rags in water and spreading them by hand or machinery into thin sheets; on this the drawings of the architect are usually made ; its usual sizes, as made by Whatman, being :-

Demy	-	-	-	-				inch	15	nch
Medium	-	-	-	-	-				17	
Royal	-	-	-	-	-	-	24	-	19	
Super-royal	-	-	-	-	-	-	27	-	19	-
Imperial -	-	-	-	-	-	-	30	-	22	-
Culombier	-	-	-	-	-	-	31	-	23	-
Atlas	-	-	-				33	-	27	-
Double Elephant	-					-	40	-	27	
Antiquarian -	-					-		-	31	
Extra Antiquarian						-			38	
Emperor -			-	-	-			-	48	-

"Cartridge" is a stronger sort for working drawings. For rough sketching, a thin paper, the " lining paper" of the paperhangers, is much used, and is obtained in a roll of twelre yards in length. Continuous cartoon paper is $3 \mathrm{ft} .4 \mathrm{in} ., 4 \mathrm{ft}$., and 5 ft . wide. Tinted papers cau also be so obtained. For mapping or such work a strong continuous paper is made, and ready mounted on holland for extra strength. See Tracing Paper.
Paperhangings. The paper prepared, either plain or with a pattern printed upon it, for covering the walls of rouns. The varieties are very numerous. The better sort are still printed from wood-blocks, but the inferior kind are pristed by machinery.
Papyrus Capital. A species of capital seen in some of the temples of Egypt. See fig. 59.
Parabola. (Gr, חapa, through, and Bad ω, I throw.) In geometry, a curved line formed by the common intersection of a conic surface, and a plane cutting it parallel to another plane touching the conic surface.
Parabolic Assymptote. In geometry, a line continually approaching the curve, but which, though infinitely produced, will never meet it.
Parabolic Curve. The curved boundary of a parabola, and terminating its area, except at the double ordinate.
Parabolic Spinal, or Helicoid. A curve arising from the supposition of the axis of the common farabola bent into the peripliery of a circle, the ordinates being portions of the radii next the circumference.
Pakaboloid. See Conuid.
Parallel. (Gr. Пapa $\lambda \wedge \eta \lambda o s$.$) In geometry, a term applied to lines, surfaces, \&c., that$ are in every part equidistant from each other.
Parallel Cuping. See Coping.
Parallelugram. (Gr.) Any four-sided rectilineal figure, whose opposite sides are parallel.
Parallelopipen. In geometry, one of the regular bodies or solids comprehended under six faces, each parallel to its opposite face, and all the faces parallelograms.
Parameter. (Gr. Mapa, through, and Met $\rho \omega$, L measure) In conic sections a constant right line in each of the three sections, called also latus rectum.
Parapet. (Ital. Parapetto, breast high.) A small wall of any material for protection on the sides of bridges, quays, or high buildings.
Parascenium. Another name for the postocenium in the ancient theatre.
Parastate. See Antee.
Parclose. The screen which separates chapels (especially at the east end of the aisles) from the body of the churel. They are usually of wood, but are also sometimes of stone.
Parget. A name given to the rough plaster used for lining chimney flues, and formed of lime and cow's dung.
Parge Wurk; Pargetting. A particular sort of plaster work, haring patterns and ornaments raised upon it or indented; much used in interior decorations, and often on the exterior of halt-timber houses, during the Elizabethan period.
Parker's Cement, also called Roman Cement in 1796 . It is manafactured principally from nodules found in the Isle of Sheppey and at IIarwich, being septaria from the London clay. When burnt, it is ground into powder, and mixed with sand, and water being applied to it, it sets fast and very hard, and is impervious to water.
Parlour. (Fr.) A room for conversation, whieh in the old monasteries adjoined the buttery and pantry at the lower end of the hall. At the present day it is used to denote the room in a house where visiturs are commonly received, and often serves as a dining-room.
Parados. (Gr.) The grand entrance of the scene of an ancient theatro that conducted on to the stage and orchestra.
Parpeyn. See Perpeyn-Wall.
Parquetry. Inlaid work, made of thin plates or veneers of hard coloured woods, and seeured to a framing of deal, well-dried and seasoned, to form the flooring of an apartment. They are arranged in patterns. Of late years solid, and thick, parquetry has been introduced. The floor may be left plain, but is more frequently polished. There is also a thin substance, about $\frac{3}{8}$ ths of an inch thick, which is secured to the old floor by a patent cement, or by brads. The old method of covering a floor by a carpet, whieh collects the dust and covers the furniture with it when swept, is now abandoned in many houses, and parquetry substituted, with rugs, or square carpets, or Indian matting, so as to be easily removable for cleansing. A "parquetry border" has also taken tho place of the eommon, but still useful, stained and varnished border, around a symare carpet. See Maliqlefiry.
Palsonage Ilouse. A building, ustuilly near the chureh, occupied by the incumbent of
the living ; in former times this sort of building was often embattled and fortified, and had various appendages, including sometimes a small chapel or oratory.
Parting Bead. The beaded slip inserted at the centre of the pulley style of a sash window, to keep the two sashes in their places when being raised or lowered.
Partition. (Lat.) A wall of stone, brick, or timber, diriding one room from another. When a partition has no support from below, it should not be suffered to bear on the floor with any considerable weight, and in such cases it should hare a truss formed within it, in which case it is called a trussed partition. See Truss.
Party Wall. Such as is formed between buildings to separate them from each other and prevent the spreading of fire. Every wall used or built in order to be used as a separation of any building from any other building, with a view to the same being occupied by different persons. The regulations prescribed for them form a large portion of the Metropolitan Buildings Act, and of local Acts passed for similar purposes.
Pakty Fence Wall. A wall separating the open ground in one ocenpation from that in another; each owner having a right up to the centre of such wall.
Party Strocture. This term includes party walls, and also partitions, arches, floors, and other structures separating buildings, stories, or rooms which belong to different owners, or which are approached by distinct staircases or separate entrances from without.
Parvise. A porch, portico, or large entrance to a church. It seems also to hare signified a room over the church porch, where schools used to be held.
Parvise Turret. The small tower which encloses the staircase to the parvise.
Passage. The avenue leading to the various divisions and apartments of a building. When there is only one series of rooms in breadth, the passage must run along one side of the building, and may be lighted by apertures through the exterior walls. If there be more than one room in breadth, it must run in the middle, and be lighted from abore or at one or both ends.
Patera. (Lat.) A ressel used in the Roman sacrifices, wherein the blood of the rictims was received. It was generally strallow, flat, and circular. Its representation has been introduced as an ornament in friezes and fasciæ, accompanied with festoons of flowers or husks, and other accessories.
Paternosters. A species of ornament in the shaps of beads, either round or oval, used in baguettes, astragals, \&c.
Pafement. (Lat. Pavimentum.) A path or road laid or beaten in with stones or other materials. According to the information of Isidorus, the first people who paved their streets with stones were the Carthaginians. Appius Claudius, the founder of the Appian Way, appears to have introduced the practice into Rome, after which the Roman roads were universally paved, remains of them haring been found in every part of the empire.
In the interior of the Roman houses, the parement was often laid upon timber framing; and the assemblages so constructed were called contignata pavincenta. The pavement called coassatio was made of oaken planks of the qucreus asculus, which was least liable to warp. The Roman parements were also frequently of mosaic work, that is, of square pieces of terra cotta or stone, called tesseræ, in various patterns and figures, many of which remain in Britain to the present day.

The various sorts of paring are as follows:-1. Pebble paving, of stones collected from the sea-beach, mostly obtained from Guernsey or Jersey. This is very durable if well laid. The stones vary in size, but those from six to nine inches deep are tho best, those of three inches in depth are called bolders or bowlers, and are used for paving courtyards and those places wherever heavy weights do not pass. 2. Rag paving: inferior to the last, and usually from the vicinity of Maidstone, in Kent, whence it bears the name of Kentish rag-stone. It is sometimes squared, and then used for paving coach tracks and footways. 3. Purbeck pitchers, which are squared stones, used in footways, brought from the island of Purbeck. They are useful in courtyards; the pieces running about fire inches thick, and from six to ten inchos square. 4. Squared paving, by some called Scotch paving, of a cle ur close stone, called blue wynn. This is now, however, quite out of use. 5. Granite, of the material which its namo imports. 6 . Guernsey paving, which, for street work, is the best in use. It is broken with iron hammers, and squared to any required dimensions, of a prismoidal figure, with a smaller base downwards. It is commonly bedded in small gravel. 7. Purbech paving, used for footways, of which the blue sort is the best, is obtaincd in pretty large surfices, of about two inches and a half thick. 8. Forkshire paring: a very good material, and procurable of very large dimensions. 9. Ryegate, or firc-stone paving, used for hearths, stoves, ovens, and other places subject to great heat, by which this stone, if kept dry, is not affected. 10. Ncweastlc flags, useful for the paving of offices. They run about one and a half to two iuches thick, and about two feetsqnare, and bear considenable resemblance
to the Yorkshire. 11. Portland paving may be had from the island of Portland, of almost any required dimensions. The squares are sometimes ornamented by cutting away their angles, and inserting small black marble squares, set diagonally. 12. Sweedland paring: a black slate, dug in Leicestershire, useful for paring halls or for particoloured paving. 13. Marble paving, of as many sorts almost as there are species of marble. It is sometimes inlaid after the manner of mosaic work. 14. Flat brick paving, executed with bricks laid flat in sand, mortar, or grout, when liquid lime is poured into the joints. 15 . Brick-on-edye pating, executed in the manner of the last, except that the brichs are laid on edge. 16. Herring-bone paving: bricks laid diagonally to each other. See Herring-bone Work. 17. Bricks laid endwise in sand, mortar, or grout. 18. Paving bricks are made especially for the purpose, and are better than stocks. 19. Ten-inch tile paving. 20. Fuot tile paving. 21. Clinker paving. 22. Diamond tile paving. 23. Coloured tiles, and tessellated or mosaic pavements, now form a large trade.

The pavements of churches are often in patterns of several colours, of which, to show the great rariety that may be obtained from a few colours, M. Truchet (Mém. Acud. Fran.) has proved that two square stones, dirided diago ally into two colvurs, may be joined together chequerwise in sisty-four different ways.
Paricion. (Ital. Padiglione.) A tarret or small building, generally insulated and comprised under a single roof. The term is also applied to the projecting parts in the front of a building. They are usually higher than the rest of the building.
Pavilion Roof. A roof sloping or hipped equally on all sides.
Paving Slabs. Experiments made ly George Rennie uponslabs 12 inches long, $2, \frac{1}{2}$ inches wide, and 1 inch thick, laid flat on bearings 10 inches apart, the weight being suspended from the middle of each, gave the following results:

Buchauan tried specimens of stones, the weights being piled on :-
Breaking Weight.

Pecky. Timber in which the first symptoms of decay appear. An American term.
Pedestal. (Compound, apparently, of Mous, a foot, and इivioos, a column.) The lowest division in an order of columns, called also in Greek, stylobate and stereobate. It consists of three principal parts: the die, the cornice, and the base.
Pedinent. The triangular crowning part of a portico, which terminates vertically the

Fig. 1430. Temple at Egina.
sloping parts of the roof. See Temple. It is sometimes placed over an opening as part of the decoration of the dressings; it should never be used under covor. In Gothic architecture this triangular piece is much higher in proportion to its width, and is denominated a Gable. The illustration (fig. 1430) exhibits the ecntre portion of the sculpture in the pediment of the temple at Egina, which is among the earliest examples of Grccian art. See fig. 1457, which shows the eleration of the temple.
ediment Arcif. See Mitre Arch.
elasgic Buleme. Walls of cities and houses formed of huge stones scareely more than piled together, without the connecting medium of mortar or cement. It is also called Cyclopean building. ellet Moulding. A flat band on which are circultu flat d.sks forming an ornament, used in Norman architecture. Soe fig. 1431.
endeat. (Lat.) An ornament suspended from the summit of Gothic vaulting, very often elaborately decorated. The mode in which stune pendents are constructed will be inmediately understond by a consideration of the annexed figure (fig. 1432). used very frequently to timber-framed roofs, as in that of Crosly Hall, which has a series of pendents along the centre of it. Pendents are also attached to the ends of the hammer beams in Gothic timber roofs.
endentive. The entire body of a vault suspended out of the perpendicular of the walls, and bearing against the arch boutants, or supporters. It is defined by Daviler to be the portion of a vault between the arehes of a dome, commonly enriched with sculpture. Felibien defines it as the plane of the vault contained between the double arehes, the forming

Fig. 1431.
The pendent was also

Fig. 1432. arches, and the ogives.
exdentive Bracketing, or Cave Bracketing. That springing from the rectangalar walls of an apartment uprards to the ceiling, and forming the horizontal part of tho ceiling into a circle or ellipsis.
expentive Crabling. The timber work for sustaining the lath and plaster in vaultel ceilings.
enetrale. (Lat.) The most sacred part of the temple, which generally contained an altar to Jupiter Hercæus, which appellation, according to Festus, was derived from épos, an enclosure, and supposed him the protector of its sanctity.
enetralia. (Lat.) Small chapels dedicated to the Penates, in the innermost part of the Roman houses. In these it was the custom to deposit what the family considered nost valuable.
exitentiary. In monastic establishments was a small square building, in which a penitent confined himself. The term was also applied to that part of a church to which penitents were admitted during divine service. The word, as used in the present time, implies a place for the reception of criminals whose crimes are not so heinous ε.s to deserve punishment beyond that of solitary confinement and hard labour, and where means are used to reclaim as much as possible those who have become subject to the laws by transgressing them.
'enstock. A small paddle, working up and down vertically in a grooved frame, for penning back water.
entacle. A figure whose basis is a double triangle ; it is not unfrequent in early ornamental art.
'entadoron. (Gr.) A species of briek used in ancient architecture, which was fire palms long. entagon. (Gr. חevtє, five, and $\Gamma \omega \nu i a$, an angle.) In geometry, a figure of five sides and five angles. When the five sides are equal, the angles are so too, and the figure is called a regular pentagon.
'extagraph. Seo Pantograph.
Pentalpha. A figure formed by a continuous line, making a five-pointed star, not unfrequent in mediæval decoration and window tracery. See fig. 1293.
eentastile. A portico or colonnade having five columns in front. ent-house, A shed having a lean-to roof.
eppercorn Rent. A rent for land, being one of the smallest possible value. A rose is sometimes named; also a flag or banner. A farm in St. Saviour's, Southwark, was let at the price of 17 lbs . of pepper at $2 s$. per pound. Also an acre of land at Lamberh "for $2 s$. fur the price of one pound of pepper by the year beyond all rents resolute." erch. A measure for brickwork used in Jreland in plece of the Rod in England. It is 21 feet in length, by 1 foot high, and 1 foot thick. It equals $15 \frac{3}{4}$ cube feet. One thousind bricks, a quarter cart of sand, and one and a quarter hogshead of lime, will serve for four and a half perches. It is also there used for masonry, as well as in some counties in England.
'eriacti. (Gr. Пєptáyєlv, to revolve.) The revolving scenes in an ancient theatre, called by the Romans scence versatiles.
'eribous. (Gr.) The wall bounding an enelosure. It has become applied to the enclosure itself, more particularly around a temple. It was frequently ornamented
with statues, altars, and monuments, and sometimes had smaller temples or a grove. The peribolus of the temple of Jupiter Olympius, at Athens, was four stadia in circumference.
Peridrone. (Gr. חtel, about, $\Delta \rho o \mu o s$, a course.) The space, in ancient architecture, between the columns of a temple and the walls enclosing the cell.
Perlmeter. (Gr.) The boundary of a figure.
Phimphery. (Gr. Mєpıфfє , I surround.) The circumference of a circle, ellipsis, parabola, or other regular cursilinear figure.
Perifteral. (Gr.) A building encompassed by columns. See Temple.
Peliptery. (Gr.) The range of insulated columns round the cell of a temple.
Peristylium. (Gr.) Ia Greek and Roman buildings, a court, square or cloister, which sometimes had a colonnade on three sides only, and therefure in that case improperly so called. Some peristylia had a colonnade on each of the four sides; that on the south being sometimes higher than the rest, in which case it was called a lihodian peristylium. The range of columns itself was called the peristyle. See Colinnnade.
Pbigthyrides. The same as Anconfs.
Peritrochium. (Gr.) A term in mechanics applied to a wheel or circle concentric with the base of a cylinder, and together with it moveable about an axis.
Perpen Ashlar. A provincial term, being probably a corruption of perpendieular, as the stone in the form of $4,6,8$, or 10 inches thiek, in 10,12 , or 14 ineh courses, and from 30 inches to 54 inehes long, is placed on edge, and must of course be set very plumb or perpendicular; the edge or bed also must be truly square with the upright face.
Perpendicular. In geometry, a term applied to a right lino falling directly on another line, so as to make equal angles on each side, called also a normal line. The same definition will hold of planes starming the one on the other. A perpendicular to a curve is a right line cutting the curre in a point where another right line to which it is perpenelicular makes a tangent with the curve.
Prirpendicular Period. The last periol into which the Gothic style in England has been divided. Its name is derived from the predominance of vertical or rectilinear lines. Fig. 1433 is a fine example of the style.
Perpend Stone, or Perpender. A long stone reaching through the thickness of the wall, so as to be risible on both sides, and therefore wrought and smoothed at the ends.
Perpern wall. A kind of pier or buttress projecting from a wall.
Perron. (Fr.) A staircase, lying open or outside the building; or more properly the steps in the front of a building which lead into the first story, when it is raised a little abore the level of the ground.

Fig. 1433. Wrington Charch, Sumersetshire.

Persian or Persepclitan Arciuttecture. The ancient style presents many features similar to the Assyrian remains; they are chiefly seen at the ruins at Persepolis. The modern buildings much resemble those of other Mahommedan countries.
Persians. See Atiantes.
Perspective. (Lat. Perspicio.) The science which teaches the art of representing objects on a definite surface, so as from a certain position to affect tho eyo in the same manner as would the objects themselves. See Bhrd's-fye Perspfctive; Isometmical Pumection.
Pest Hovse. A lazaretto or infirmary where persons, goods, \&e., infected with the plague or other contagious disease, or suspected so to be, are lodged to prevent zommunication with others, and the consequent spread of the contagion.
Pelevan. Sce Maeshir stone.

Pew. (Fr. Piou.) An enclosed seat in a church. Pews were in use long before the Reformation in England.
Phalangete (Gr.) A name applied by Vitruvius to a species of wooden rollers, used to trialsport heavy masses from one spot to another.
Pirarus. (Gr. from ゆass, a light, and Opaw, I see.) See Lighthouse.
Pheasantay. A building or place for the purpose of breeding, reiring, and keeping pheasants.
Pionics. The doctrine of sonnds, which has not yet been so reduced in its application to architecture as to justify more than its definition. See Acuustics.
Photo-Lathography. A process of reproducing line engravings and drawings, either copied, enlarged, or reduced, not excesdingone-sixth, and in some cases one-tenth, of the expense hy other processes.
Phuroneter. (Gr.) An instrument for measuring the different intensities of light.
Pazza. (Ital.) A square open space surrounded by buildings. The term is very frequently and very ignorantly used to denote a walk under an areade.
Picture Gallery. A room or rooms for the exhibition of pictures, drawings, and engravings, and designed to suit either the wealth of the nation or the means of a private person.

The arrangement of the collection has to be first decided by the proprietor or curator of the gallery. Thus: Whether in one or more rooms-MiscellaneouslyGrouped according to the class of objects-Divided according to the different schools of painting-The largest size of any picture to enter the collection-The admission of water-colour pictures, chalk drawings, and of prints-The arrangements as to the admission of the public-The amount and nature of accommolation for students, and any other rooms required for the keeper, for the cleaner, packing, and other similar occupations. The miscellaneous arrangement of a collection is certainly the mont common, as well as the most gratifying to the public. The amateur and artist would prefer the division of pictures by schools, which obtains on the Continent, particularly in Germany. The Munich Gallery afforls information as to the proportion of space which was allotted to each of the groups into which the collection is divided.
In the Pinasotheca at Munich the paintings are grouped according to schools, perhaps more perfectly effected than at Berlin, and a corridor runs the whole length, 420 feet, of the building. The large pictures are placed in very large rooms, 42 ft . wide and 31 feet 6 inches high to the cornice. Some of the large rooms are 93 feet long. The smaller pictures are placed in lesser rooms, formed on the other side of the karger ones, and with a side light from the north, which is admitted to be the best light for all pictures and for painting-rooms. The museum and picture gallery at Berlin, by Herr Schinkel, is formed on three sides of a central restibule; all the rooms are 39 feet 9 ins. wide and 26 feet high, with a flat ceiling, and the light throughout is admitted by common windows down to the dado on the side. Screens about 16 feet high by 20 feet long diride the galleries into rooms about 30 feet by 18 feet, for grouping the paintings.

The number of lineal feet of wall in the great picture galleries is as follows:Munich, 1600 ; Lourre, 1300°; Berlin, 1116 ; London (on the principal floor), 670 , but of late ycars iucreased to more than double that quantity; and Dresden, which as much exceeds the extent of Munich or of Berlin as did these th t of London.

It has been urged by the Messrs. Papworth, in their work on Museums, Librarics, and Pieture Galleries, 8ro. London, 1853, that a skylight to a room, with divisions or presses projecting from the wall, is the most economical mode of arranging a buildiug to receive an unfurmed collection of works of art. They also direct the pieture gallery to be on the first floor; the ground floor being devoted to ohjects of art, not in relicf.

Galleries for oil paintings, large or of a moderate size, minst be lighted from abore. But when they are of the small cabinet size, a side light, being a suitablo side light, is well adapted to their display. In the first case, the lights were formerly plactl in square or polygonal tambours, whose sashes were rertical or slightly inclined inwards, their forms following the plan of the rooms; as at the Dulwich Gallery, by Nir Johm Soane, R.A. Of late years, for large ronms, a long skylight having ubseared glass in it has been preferred, with a coved ceiling under to prevent shatlows falling on the pictures. This is ocrasionally hidden by a tlat skylight having ground or ubscured glass, the upper skylight having elear glass, but the necessary framework caluses some shadows. It will be in the memory of many how miserally lighted, for exhibiting the pictures, is the loug gallery of the Louvre at Paris, which of late years has hat somo dormer windows formed to admit more light. The walls shouk be boarr'el throughont for facility in hanging the pictures. Many galleries fail of success from being over-lighted. A roof all glass would be as bad fur the pictures as open air. The glare of light, as it is termed, would be too great.

The Fitzwilliam Museum at Cambridge, a litrary, picture, and statue gallery, affords an example of the mode of lighting for pictures, as also the uffect of seulpturo as
seen by a low side light olitained from one side only. This is also to be found at the galleries in Dublin; in both cases not with the happiest results.
Professor Magnus, of Berlin, proposed a gallery for small paintings, to be lighted by windows on both sides, and not opposite one another, reaching nearly to the ceiling, and about 5 feet from the floor, each about a fourth of the breadth of the room. Between these were to be placed screens at an angle of 62 degrees with the wall. As the pictures required to be removed 5 or 6 feet from the wall, the useless space served for doorways from one compartment to another. The professor proposed a circular building for such an arrangement, perbaps somewhat similar to that described under Museums, but where the inner space was formed by a double circular staircase, to lead to suveral storits, and where the upper room might have the adrantage of a skylight.

A principle of lighting a picture gallery, namely, that the window or scurce of light by which a picture is seen, and the picture itself, ought not both to come within the range of vision at the same time, was exemplified in the gallery built cir. 1825 by Sir Benjamin West. P.R.A., expr soly for the purpose of exhibiting his paintings. Another on the same principle was desigued at Clapham, by the late Mr. J. B. Papworth, and with an equally successful result. It consists in forming a side light opposite to the picture wall ard above the ceiling; thus all the light is thrown upon the painting, and the source of the light is quite invisible to the spectator. This system is perlaps beiter adapted for a private than for a public gallery, on account of the difficulty attending the construction of the roof.

The peculiar arrangements of the small picture gallery in Sir John Soanc's museum should be seen and studied. The grand gallery at the National Gallery, by the late Sir James Pennethorne (a perspective riew of which is given in the Buikler fur 1861) ; the new galleries for the same national structure, erected 1875-76, from the designs of E. M. Barry, R.A., with the new entrance and suite of galleries beyond, erected 1886-87, from the denigas of Juhn Taylor, principal surveyor of H.M. Works and Public Buildings; the Art courts and the picture galleries at the South Kensingion Museum; the picture galleries created for the Exhibition of Industry, 1862; the exhibition rooms of the Royal Academy at Burlington House, may all be referred to for the latest inprovements.
Piece-work. Work done and paid for by measure of quantity; i.e. so much for the piece or job; in contradistinction to work done and paid for by the measure of time, i.e. by day work.
Pielrort. (Fr.) A pier or small pillar, partly hid within a wall. It differs from a pilaster in laving neithor base nor capital.
Prexd. An arris; a salient angle; a hip. It is a northern appellation.
Piend Check. The rebate furmat on the pirnd or angle at the bottom of the riser of a stone step of a stair, to catch upon the angle formed at the top of the under step.
Pier. (Fr.) A solid between the doors or wiudows of a builling. The square or other formed mass or post to which a gate is hung. Also the solid support from which an arch springs. In a bridge, the pier next the shore is usually called an abutment pier.
Pier Aich. An arch springing from a pier, as large shafts aro usually termed in medizeral architecture. See figs. 1417 to 1427.
Pierced Stone, Tolmen or hilei stone. One of the consecrated stones of the Celtic pepple
Pilaster. (Fr.) A sort of square column, sometimes insulated, but more commonly engaged in a wall, and projecing only a fourth or fifth of its thickness. Seo Anta.
Pile. (Lat.) A large timber driven iuto the earth, upon whose head is laid the foundiation of a building in marshy and lo se suils. Amsterdam and some other cities are built wholly upon piles. The stoppage of Dagenham Breach was effected by piles mortised into one another by dovetail juints. They are best and most firmly driven by repeated strokes; and for the saving of time, a pile engine is generally used, in apparance and effect very much like a guil'otine; this raises the hammer to a cortain height, which, pressing the cla-ps or monkicy that carry it up, suddenly drups down on the pile to be drisen.
Pillar (fr. Pilicr.) A column of irregular form, always disengaged, and always deviating from the proportion of the orders, whence the distinction between a column and a pillar. In any other sense it is improperly used.
Pis. In carpentry, a cylindrical piece of wood driven to connect pieces of framing together. It is also called a trencil.
Pinacotheca. (Gr.) An edifice for the preservation of pietures. A picture gallery.
Pinnscle. (Low Lat. Pinnaculum.) A summit or apex. In mediæval architecture, the crown of a buttress or vertical abutment, more or less ornamontal, terminating in a cone or pyramid. It was intended to assure the stability of a vertical abutment by its weight; it arrests the sliding of the coping stones of gables; it serves as an atiachment to the balustrade ; and also, by a well-composed outline, it helps to give to build-
ings a particular elegance. Pinnacles should have a bold and aspiring outline, and should receive the parapets and copings against their plinths (as fig. 1216), and not, as often done, against their shafts. Good examples are to be seen at St . Nicbolas, Great Yarmouth; Magdalen College, Oxford ; and St. Sepulehre's, London. A Hip nnoy to a gable is a sort of pinnacle.
Pinney. Also called "green beds" of the Chilmark quarry; they are situate below the tro gh beds. They are small but very durable.
Pinving up. In underpining, the driving the wedges under the upper work so as to bring it fully to bear upon the work below. The term pinning is used to denote the fastening of tiles with pins of iron or of heart of oak in roofs.
Pipe. A conreyance for water or soil from any part of a building, usually of lead or iron. When for the supply of water to a building it is called a service pipe; when for carrying off water, a waste pipe; and when for carrying off soil, a soil pipe; and those which carry away the rain from a building are called rain-water pipes. When a cistern or reservoir is supplied in such a way that those who labour to fill it should be made a ware that it is full, the pipe which disctarges the orerflow is called a warning pipe. Also for the conveyance of gas, when it is usually of iron, or of a softish white metal. called composition. A pipe throngh which the roice is sent to communicate with a distant apartment, is called a " speaking tube."
Pipe. The following rule has been given to ascertain the strength requisite to be given to a pipe of the metals named. Let $d=$ intermal diameter ; $t=$ thickuess of metal loth in inches; $h=$ head of water in feet required to burst the pipe ; $c=$ constant, wrought iron, 200 ; cast iron, 73 ; copper, 87 ; brass, 83 ; and lead 10 . Then $c \frac{t}{d}=h$; and $\frac{d h}{c}=t$. In practice, the thickness of cast-iron water pipes is taken as $=\frac{1}{5} \sqrt{ }$ diameter. Hurst, Surreyors' Hand Book.
Piscina. (Lat.) Among the Romans this term was applied to a fish-pond; to a shallow reservoir for practising swimming; and to a place fur watering horses and washing clothes. The piscina in ecclesiastical architecture was a shallow bowl for water, generally in a niche in the south wall of the chancel, wherein the priest laved his hands Lefore the performance of the sacred rites, and for rinsing the chalice at the time of the celebration of the mass. A hole at the bottom allowed for the es ape of the water, so as not to be reused. The variety of their form is great; some are quite plain, others very richly decorated; and they often occur in pairs.
Pısé. A species of walling, of latter years used in the south of France, made of stiff earth or clay rammed in between moulds as it is carried up. This method of walliug was, however, in very early use. (Plin. lib, xxxiv. chap. 14.)
Pit. A place from whence chalk, gravel, and such like are obtained. See Quarry.
Pit of a Theatre. Formerly the part on the ground-floor between the lower range of boxes and the stage; but it is now much reduced fur the stalls and reserved pit seats.
Pitcir. See Tar.
Pitch. A term generally applied to the vertical angles formed by the inclined sides of a roof. Roofing.
Pitch of an Arch. The rersed sine, or height from the springing line up to the underside of it.
Pitcinng Piece. See Apron Piece, which is at the battom, as the pitching picce is at the top, of a flight of steps, to carry the rough strings.
Pıvot. (Fr.) The sharpened point upon which a wheel whoso axis is perpendicular or inclined performs its revolutions.
Place Bricks. The commonest sort of bricks, being those near the outside of the clamp and therefore not much burnt.
Plafond or Platfond. (Fr.) The ceiling of a rcom, whether flat or arched; also the underside of the projection of the larmier of the cornice; generally any sofite.
Plain or Plane Angle. One contained under tifo lines and surfaces, so called to distinguish it from a solid angle.
Plain Tiles, properly Plane Tiles. Those whose surfaces are planes. They are used for roofing purposes; forming copings, tiles in cement flats, etc. See Weather-thing.
Plav. (Fr.) The representation of the horizontal section of a building, showing its distribution, the form and extent of its rarious parts. In the plans made by the architect, it is customary to distinguish the massire parts, such as walls, by a dark colour, s.) as to separate them from the voids or open spaces. In a geometrical plan, which is that above mentioned, the parts are represented in their natural proportions. A perspective plan is drawn according to the rules of per-pective.
Planceer. The same as the sofite or under-surfice of the corona; the word is, howeser, very often used generally to mean any sofite. See Plafond.
Plane. (Lat. Planus.) A tool used by artificers that work in wood for the purpose of producing thereon a flat even surface. There are various sorts of planes.

Plane. In geometry, a surface that coincides in every direction with a straight line.
Plane, geonetrical. In perspective, a plane parallel to the horizon, whereon the olject to be delineated is supposed to be placed. It is usually at right angles with the perspective plane.
Plane, horizontal. In perspective, a plane passing through the spectator's cye, parallel to the horizon, and cutting the per-pective plane in a straight line, called the horizontal line.
Plane, inclined. One that makes an olilique angle with a horizontal plane.
Plane, objective. Any plane, face, or side of an original object to be delineated on the perspective plane.
Plane, perspective. That interposed between the original objects and the eye of the spectator, and whereon the objects are to be delineated.
Plane Trigonometry. That branch of mathematics whose object is the investigation and calculation of the sides and angles of plane triangles. It is of the greatest importance to the arehitect.
Planimetry. That branch of geometry which treats of lines and surfaces only, without reference to their height or depth.
Plank. (Fr.) A name given generally to all timber, except fir, which is less than four inches thick and thicker than one inch and a half. See Board.
Plank Roof. A roof, the trusses of which are formed principally of planks cut to a curved shape, as in de Lorme's system; or bent to the shape requircd, as in Limy's system.
Planted. When a moulding is wrought on a separate piece of stuff, and is fastened in its place, as around a panel, it is said to be plantod (on the stuff).
Plaster. Lime properly prepared for the plasterer.
Plasterers' Work. The laying of ceilings; the finishing to walls to give a fair face; the making and fixing of ornamental work; and cementing to walls.
Plaster of Paris. A preparation of gypsum, originally procured in the vicinity of Mont Martre, near Paris. The plaster stone, or alabaster, is, howerer, found in many parts of Eugland, as at Chelaston near Derby, and Beacon Hill near Newark. The former pits yield about 800 tons a yoar. It is ground and frequently used for manuro. or rather as a stimulant for grass. It is calcined inte the plaster used by the modeller, plasterer, \&c. When diluted with water into a thin pasto, plaster of Paris sets rapidly, and at the instant of setting, its bulk is incroased. Mr. Boylo found ly experiment that a glass ressel filled with this paste, and close stopped, bursts while the mixture sets, a quantity of water sometimes issuing through the cracks; hence this material becomes valuable for filling eavities, \&c., when other carths would shrink. The gypsum is preparsd either ly burning or boiling, and loses from four to six cwt. in a ton. After burning, it is ground into p.wder in a mill.
Plat or Plot. A late nedieval term for a design or drawing.
Platband. Any flat and square monlding whose projection is much less than its height, such are the fascix of an architrave, the list letween flutings, \&e. The platband of a door or window is the lintel, when it is made squire and not much arched.
Plate. A general term applied to thoso horizontal picces of timber lyiug mostly on walls for the reception of another assemblage of timbers. Thus, a wall plate is laid round the wails of a building to reccive the timbering of a floor and roof; a gutter plate under the gutter of a building, \&c.
Plate Glass. Glass cast in shects or plates, and polished. Plato glass is superior in quality and colour to both "crown" and "shect" glass. The best kind may be tested by its perfect freedom from colour, blemishes, specks, and strise of every sort. It is not subject to dampness or "sweating." That which is tinged is of inferior quality, and cannot be used where it is intended to exhibit coloured artieles behind it. The usual thickness is one quarter of an inch. The letter sort of plate glass is used for looking-glasses, and is charged a bigher prico than for glazing purposes. There is also an inferior sort of plate glass, called "patent plate," which consists of blown glass of an extrat thickness, which is then openel and polished. For largo sizes tho price is about the same as plate glass.
Prate Rack. A fixture over the sink in a scullery for the reception of dinner plates and dishes after washing.
Plate Tracery. The earliest form of tracery, used at the commencement of the Liuly Euglish period of medieval architecture, as Fig. 143t; it consists of the openings being formed or cut in the stonework, and showing no projecting mouldings.

Fig. 1131.

Pharfons. An assemblago of timbers for earrying a flat corering of a house, or tho
flat covering itself. A terrace or open walk at the top of a building. The raised dais on which the altar stands, and also that on which the font stands.
Plintif. (Gr. П $\lambda \iota \nu \theta o s$, a brick.) The lower square member of a base of a column or pedestal. In a wall the term plinth is applied to two or more rows of bricks at the base of it, which project from the face.
Plotting. The art of laying down on paper the angles and lines of a plot of land by any instrument used in surveying.
Plotgh. A joiner's grooving plane.
Plough and Tongued. This is a continued mortise and tenon along the edges of two boards, the one having a groore cut in it, and the other formed into a projection; such work is used to linings and floors. Sometimes both edges are grooved, and a thin piece of wood or of hoop iron let into both, while being fixed up or laid. See Heading Joint.
Plug. A piace of timber driven perpendicularly into a wall with the projectiug part sawn away, so as to be flush with the face.
Pluf and Feather, or Key and Feathrir. A name given to a method of disiding hard stones by means of a long tapering wedge called the key, and wedge-shaped pipces of iron called feathers, which are driven into holes previously drilled iuto the rock for the purpose, and thus forcibly split it.
Plumbing. (Lat. Plumbus.) The art of casting and working in lead and usi..g it in building. Plemb Rule, Plumb Line, or Plumaet. An instrument used by masons, carpenters, \&c., to draw perpendiculars or verticals, for ascertaining whether their work be upright, horizontal, and so on. The instrument is little more than a piece of lead or plummet at the end of a string, sometimes descending along a wooden or metal ruler raised perpendicularly on another, and then it is called a level. See Level.
Plumbrr. The artificer who works in lead and zinc. The fittings for water-closets, cisterns, pumps, gutters, \&c., come under his care.
Pocket. The space iu the pulley style of a sashed window. It is also a space closed up, or nearly so, formed out of a larger space. Pockets are often found in the flues of old houses, and form one of the great causes of fires, by accumulating the soot, which at last heats and ignites adjoining woodwork.
Podius. (Lat.) A continned pedestal. A projection which surrounded the arena of the ancient amphitheatre, See Ampuitheatre.
Ponst. (Lat. Punctum.) In geometry, according to Euclid, that which has neither length, breadth, nor thickness.
Point, accidental. In perspective, a term used by the old writers on the science to signify the ranishing point.
Point of Distance. In perspective, the distance of the picture transferred upon the vanishing line from the centre, or from the point where the principal ray meets it, whence it is generally understood to be on the vanishing line of the horizon. See Distance.
Pont, obsectife. A point on a geometrical plane whose representation is required on the perspective plane.
Point of Sight. The place of the eye whence the picture is riewed, according to 1)r. Brook Taylor, but, according to the old writers on perspective, is what is now called the centre of the picture. It is also called the point of view.
Ponted or Lancet Arch. An arch formed by a radius equal to the span of the opening, and struck from both sides of it on the springing line. A lancet arel of a higher pitch is formed by the radius being struek as much beyond the opening as may be desired. See Tierce Point.
Pointed Architecture. The mediæval styles of architecture in which the pointed arch is adopted as a principle of construction.
Ponting. The raking out the mortar from between the joints of brick work, and replacing the same with new mortar.
Polf Plate. A plate fixed to the lower ends of a truss of a roof, to receive the ends of the common rafters, as B in Fig. 688.

Fig. 1435.

Polishivg. The act of imparting to fancy wools, as wainscot, mahogany, hird's-eye maple. \&e., a brilliant surface to show off their flower to advantage. This is done liy rubbing on them a spirit rarnish with great care. Varnish, wax, and a common polish are rubbed or laid on with a brush for cheapness. Sce Marble.
Pullard. A tree which has been frequently lopped or polled of its head and bramehes, a practice very injurious to good timber.
Polychromy. The decoration of exteriors and interiors of buildings, with colours and tints. When executed in a single colour, it is called monochrome painting.
Porygon. (Gr. IIo $\lambda u s$, many, and $\Gamma \omega \nu i a$, an angle.) A multilateral figure, or one whose perimeter consists of more than four sides and angles. If the sides and angles bo equal the figure is called a regular polygon. Polygons are distinguishel acenrding to the number of the sides; thus those of five sides are called pentagens, those of six
hexagons, those of seven heptagnens, and so on. The subjoined is a table of the aras and perpendiculars of polygons, the side being $=1$.; and of the lergths of sides of polygons to Radius 1. See also par. 1219.

Number of siies.	Names of Polygous.		Area.	Perpendiculars.	Circumscribed.	Inscribed.
3	Trigon	-	- 433013	-2886751	$3 \cdot 46+1$	1.7321
4	Tetragon	-	$1 \cdot 000000$	-5000000	$2 \cdot 0000$	1.4142
5	Pentagon	-	1.720477	-6881910	$1 \cdot 4.530$	1-1756
6	Hexagon	-	2.598076	-8660254	$1 \cdot 1548$	1.0000
7	Heptagon	-	$3 \cdot 633912$	$1 \cdot 0352617$	0.9630	0.8677
8	Octagon	-	$4 \cdot 825427$	1.2071068	$0 \cdot 8: 284$	0.7651
9	Enneagon	-	$6 \cdot 181824$	1.3737387	$0 \cdot 7278$	0.6840
10	Deragon	-	$7 \cdot 69+209$	1.5388418	$0 \cdot 6498$	0.6180
11	Endecagon	-	$9 \cdot 365610$	1.7028437	$0 \cdot 5872$	0.5634
12	Doducagon	-	$11 \cdot 196152$	$1 \cdot 86602.54$	05358	0.5176

From the above, to find the areal of a regular polygon, multiply one of the sides of the polygon by the perpendicular from the centre on that side, and multiply half the product by the number of sides; or, multiply the square of the giren sido of the polygon by the number opposite to its name under the word Area.
Polygram. (Gr.) A figure consisting of many lines.
Polyhedron. (Gr.) A solid contained under many sides or planes. If the sides of a polyhædron be regular polygons, all similar and equal, it becomes a regular body, and may be inscribed in a sphere, that is, a sphere may be drawn round it, so that its surface shall touch all the solid angles of the bolly.
Polystile. (Gr. Mo入os and Itu入os.) Of many columns. Sce Colonnade.
Pumbl. (Lat. Pomum.) A globular protuberance terminating a pinnacle, \&c.
Poplar. (Lat. Pupulus.) A tree sometimes used for rafters in common buildings.
Poppy Heads, or Poprizs. The termination of the ends of open seats, often carred as heads, foliage, \&c.
Porci. (Fr.) An exterior appendage to a building, forming a corcred approach to one of its principal doorways.
Porphyry. (Gr.) A very hard stone, partaking of the nature of granite. It is not so fine as many of the ordinary marbles, but far exceeds them in hardness, and will take a very fine polish. It is generally of a high purple, which varies, however, from claret colour to violet. Its rariations are rarely disposed in grains. The purple porphyry was obtained by the Romans in Egypt, the quarrics of which were only discorered, between the River Nile and the Red Sea, about 1855-87, by Burton, Schweinfurth, and lastly by Brindley. Columns of it wrought 1900 years since still retain the freshuess of colour. It had bcen obtained of very large sizes, for tombs, \&e. It must not bo confounded with the Syenite of Egypt.

The red-lead coloured porphyry, which abounds in Minorca, is variegated with black white, and green, and is a beautiful and valuable material. The pale and red porphyry variegated with black, white and green is found in Araba Petrea and Upper Egypt, and in separate nodules in Germany, England, and Ireland. The sorts best known are what the Italians call the porfido rosso (red), which is of a deep red with oblong white spots; the latter are of fild spath, which resembles schorl. Thereare two varieties of black porphyry, the porfido nero, or black porphyry, and that called the serpentino nero antieo. The first has a ground entirely black, sp itted with oblong white spots like the red porphyry; the other has also a black ground, with great white spots, oblong, or rather in the form of a parallelopipedon, nearly resembling in colour what the French call serpentin vert antique. The brown porphyry has a browu ground with large oblong greenish spots. There are several sorts of green porphyry, which the Italians princitally distinguish by the names of serpentino antico verde, found in great abundance and in large blocks in the neighbourhood of the ancient Ostin, of a green ground with oblong spots of a lighter shade of the same colour; and the porfido verde, which is of a ground of very dark green, almost approaching to black, with lighter shales of a fine grass green.
Portal. (Lat. Porta.) The arch over a door or gate ; the framework of the gate; the lesser gate, when there are two of different dimensions at one entrance. The Fr. portail is given to the entrance façade of a building. This term was formorly applied to a small square corner in a room separated from the rest of the apartment by wainscoting.
Portcullis. (Fr.) 1 strong grated framing of timber, rescmbling a harrow, the yertical pieces whereof were pointed with iron at the hottom, for the purpose of striking into the ground when it was dropped, aud also to break and destroy that upon which it fell. It
was made to slide up and down in a groove of solid stone-work within the arch of the portals of old castles. It was introduced into the early Norman castles.
Portico. (Lat. Porticus.) Sge Colonnade.
Portland Cement. A quick-setting cement made from limestone and clay. It is calcined at a very great heat; will take a larger quantity of sand than Roman cement; and is much lighter in colour, reudering it more agreeable for decorative purposes.
Portland Stone. A dull white species of stone brought from the island of Portland. It stands the action of the Loudon atmosphere better than any other stone.
Portuguese Arciltecture. See Spanisii Architecture.
Position. In geometry, the situation of one thing in regard to another. Speaking architecturally, it is the situation of a building in respect of the four cardinal points of the horizon.
Post. (Fr.) An upright piece of timber set in the earth. Any piece of timber whose office is to support or sustain in a vertical direction, as the king and queen posts in a roof, is so calied.
Post and Paling. A close wooden fence constructed with posts fixed in the ground and pales nailed between them. This kind of tence is sometimes called post and railing, though this latter is rather a kin! of open wcoden fence, used for the protection of young quickset hedges, consisting of posts and rails, \&c.
Pustern. A side door or gate usually employed in castellated architecture.
Posticum. (Lat.) See Cell.
Postscenium or Parascenium. (Lat.) In aucient architecture, the back part of the theatre, where the machinery was deposited, and where the actors retired to robe themselres.

Put Metal. See Stained Glass.

Pouletry House. A building for the shelter and rearing of poultry, of which, perhaps, the finest example is that at Winnington in Cheshire. The front is one hundred and torty feet in length, with a pavilion at each end, united to the centre by a colonnade of small cast-iron pillars, supporting a slated roof, which shelters a paved walk. In the centre of the front are four strong columns, and as many pilasters, supporting a slated roof, with an iron gate between them, from which a large semicircular court is entered, with a colonnade round it, and places for the poultry. On one side of the gate is a small parlour, and at the other end of the colonnade a kitchen.
Power. In mechanics, a force which, applied to a machine, tends to produce motion. If it actually produce it, it is called a moving power, if not, it is called a sustaining power. The term is also used in respect of the six simple machines, viz, the lever, the balance, the scrow, the axis in peritrochio, the wedge, and the pulley, which are called the mechanical powers.
Puynteld.. A parement consisting of small lozenge-shaped tiles, or square tiles laid diagonally.
Pozzuolana. See Puzzuolana.
Pracinctio (Lat.) or Balteus. A wide seat, or rather step, round the audience part of the ancient theatres and amphitheatres. It was termed $\delta(\alpha<\omega \mu a l y$ the Greeks.
Preaching Cross. A cross erected in the highway, at which the monks and others preached to the public.
Preceptory. A manor or estate of the Knights Templars, on which a church was erected for religious service, and a convenient house for habitation, and gencrally placed under one of the more eminent members of the fraternity, called the preceptores templi, to have care of the lands and rents of the place. The preceptories were nothing more tham cells to the Temple, or principal house of the knights in London.
Presbytery. That part of the church reserved for the officiating pricsts, comprising the choir and other eastern parts of the edifice.
Priching ef Coat. The first coat of plaster in three-cont work on lathing.
Prick Post. The same as a Queen P'ost of a roof. Also the posts in a wooden linilding placed between the principal posts at the corners. Also the posts framed into tho Ireastsummer, between the principal posts, for strengthening the carcass of a house.
Prine. (Lat.) A figure in geometry that cannot be divided into any other figures more simple than itself, as a triangle in plane figures, and a pyramid in solids.
A prime number is one that cannot be divided by another number withont a remainder.
Priming. In painter's work, the first colouring of the work, which forms a ground for the succeeding coats.
Principal Brace. One immediately under the principal raftrrs, or parallel to them, in a state of compression, assisting, with the principals, to support the timbers of a roof.
Frincipal. Pont. In perspective, a point in the perspective plane upon which a line will fall drawn from the eye perpendicular to that plane. It is, in fact, the intersection of the horizontal and vertical plancs, or the point of sight or of the eye.

Princtpal Rafter. One whose size is larger than that of a common rafter, and is framed in such a manner, as in a truss, as to bear the principal weight of the latter.
Principal Ray. In perspective, the line passing from the eye to the principal point on the perspective plane.
Priory. A monastery, the head of which was called a prior or prioress.
Prism. (Gr. прıб μ.) In geometry an oblong or solid body contained undor more than four planes, whose bases are equal, parallel, and similarly situate.
Prismoid. A solid figure, having for its two ends any dissimilar parallel plane figure of the same number of sides, and all the upright sides of the solid trapezoids. If the ends of the prismoid be bounded by dissimilar curves, it is sometimes called a cylindroid.
Prison. A building erected for the confinement, or safe custody, of those who have transgressed the laws of their country, until, in due course of time, they aro discharged.

In considerable cities and towns, humanity, and in leed justice, demands that the same building which confines the conricted felon should not enclose tho debtor and the untried prisoner, as well as him whose offence is not of an aggravated nature. In small towns, where there may be only one, perhaps small, prison, the separation of the prisoners is more difficult to accomplish. Tho separation of the sex is indispensable. For whatever class of prisoners a building is erected, salubrity and ventilation are as essential as the security of those confined. It is now unnecessary to reprint the whole of the requisites which the celebrated IIoward specified for prisons: modern rules have necessitated great alterations since his time.
Prison discipline is a problem the wisest of our legislators have not yet been able to solve. When Pentonville Prison was erected it was thought that completo separation, by its sererity, wonld lessen crime. Tho result, however, has scarcely justified the belicf. The Goverument have had ample opportunity of forming an opinion upon the merits of the separate system, consequently about 1851 some relaxation was mado, and about ten per cent. were placed in association. The City authorities adopted a middle course, and they hare the means of confining the ricious in separato cells; and have sufficient number of workrooms for classified assoriation.

One of the prisons erceted for the metropolis is the Model or Pentonville Prison in the Caledonian Road, erceted 1840-42 by Major R. Jebb for 1,000 prisoners, and to which additions hare been made. A lieport was published at the time giving all the defails of the cells, which are 12 feet by 7 feet by 9 fect high, and intended for solitary confinement. Another, the new City Prison, in the Camden Road, erected 1849-52, ly the City architect, Mr. J. B. Bunning, has 418 cells. It is constructed on the radiating principle, having four wings diverging from the centre, with two others in front of the former. Each is twelro cells in length, or about 100 feet long, and three stories high. The corridors are 16 feet wide, and are open up to the arched ceiling, with galleries leading to the upper cells. One of the latest prisons erected is that at Edinburgh. It is described in the British Architect for October 14, 1887, p. 291.
Problem (Gr.) In geometry, a proposition in which some operation or construction is required, as to divide a line, to mate an angle, to draw a circle through three points not in a right line, \&cc. A problel_ consists of three parts : the propasition, which states what is required to be done; the resolution or solution, whercin are rehearsed the step or steps by which it is done; and the demonstration, whercin it is shown that by doing the several things prescribed in the resolution the thing required is obtained.
Prodonus. In ancient architecture, the portico before the entrance to the cell of a temple. See Cell.
Producing. In geometry, the continuing a right line to any required length.
I'rofile. The rertical section of a body. It is principally used in its architectural sense to signify the contour of architectural members, as of bases, cornices, \&c. The profile of an order is in fact the outline of the whole and its parts, the drawing whereof is tcchnically called profiling the order.
Pronection. The art of representing a body on a plane by drawing straight lines through in given point, or parallel from the contour and from the internicdiate lines of the body, if any, so as to cut the plane. When the projection is made by drawing straight lines from a point, it is called a perspective representation; but if formed by parallel lines, it is called an orthographical representation.
Projecture. An out-jetting or prominence beyond the naked of a wall, column, \&c. By the Greeks projectures werc cilled éкфopaı, by the Italians sporti, by the French saillies; our workmen called them sailings over.
Prolate. (Lat.) An epithet applied to a spheroid when generated by the revolution of a semi-ellipsis about its longer diameter.

Pronaus. See Cell.
Prop. A support, or that on which anything rests. See Rance and Shork.
Proportion. The just magnitude of each part, and of each part to another, so as to be suitable to the end in view. See Marmonic, and Geometric, Proporthon.
Proportional Compasses. See Compasses.
Propylaum. (Gr. $\Pi \rho o$, before, and $\Pi \nu \lambda \eta$, a portal.) Any court or restibule before a building, or before its principal part ; but more particularly the entrance to such court or restibule.
Proscenium. (Gr.) That part in the ancient theatre whercon the actors performed in front of the scene, being what we call the stage. The Romans called this part the pulpitum.
Prostyle. (Gr. Mpo, and $\mathbf{\Sigma \tau u \lambda o s}$, a column.) A portico in which the columns stand in adrance of the building to which they belong.
Prothesis, Table of. See Credence.
Prothyris. (Gr.) A word used in ancient architecture to signify a cross beam or overthwart rafter, as likewise a quoin or course of a wall. See Console.
Prothyrom. (Gr.) A porch at the outer door of a house; a portal.
Protractor. (Lat. Protractus.) An instrument for laying down an angle in drawing or plotting.
Psetdisodomum. Sce Isodomum.
Pseciodipteral or False Dipteral. A disposition in the temples of antiquity wherein there were eight columns in front and only one range round the cell. It is called false or imperfect, because the cell ouly occupying the width of forr columns, the sides from the columns to the walls of the cell hare no columns therein, though the front and rear present a column in the middle of the roid. See Temple.
Psecdoperipteral or Imperfect Peripteral. A disposition in the ancient temples, in which the columns on the sides were engaged in the wall, and wherein there was no portico except to the façade in front; such are the Maison Carrée at Nismes, and the temple of Fortuna Virilis at Rome.
Prera. In Grecian architecture, is the colonnade which surrounded the cell of the temple, the monopteros temple being the only species which had columns without a wall behind them. The peripteral had one tier of columns round the cell, the dipteral two, and the pseudo or false dipteral, invented by Hermogenes, was that in which the ptera was single, but occupicd the same space on the sides of the cell as the dipteral, though one of the tiers of columns was left out. Thus, by metaphor, the columns were called the wings of the temple. See Temple.
Pteroma. (Gr. חtєpov, a wing.) The space between the wall of the cell of a temple and the columns of the peristyle. called also ambulatio.
Public Building. Every building used as a church, chapel, or other place of public worship; also every building used for purposes of public instruction; also as a college, public hall, hospital, theatre, public concert room, public ball room, public lecture room, public exhibition room, or any other public purposes. Metropolitan Building Act, 1885.
Pudding. The filling behind a wall, filling up a arity, or banking up with clay tempered with water, and carefully rammed down with the repeated strokes of beaters or beetles, in order to make it solid. See Claying.
Pugging. A coarse kind of mortar laid upon rough boarding placed between joists, to prevent the transmission of sound from the apartment above to that below.
Pug-mil. A stone, or a pair of large circular stones, in a vertical position, worked by machinery to roll round as a wheel and also in and round an iron pan, for the purpose of grinding up clay for brickmaking, and also the lime and bricks in making mortar.
Pug-piling. The same as dovetailed piling, or pile planking.
Pulley. (Fr.) One of the fire mechanical powers, consisting of a wheel or rundle, haring a channel around it and turning on an axis, serving, by means of a rope which moves in its channel, for the raising of weights.
Pulley Mortise. The same as Chase Mortise.
Pulpit. (Ital. Pulpito.) An elevated place, an enclosed stage or platform for a preacher in a church. The ancient ambo served the same purpose.
Pulpilum. (Lat.) See Proscenidm.
Pulvinaria. (Lat.) Cushions in the ancient temples whereon the statues of the gods were sometimes laid.
Pulvinata. (Lat.) A pillow; as applied to the volute of the Ionic order.
Pulvinated. See Frieze.
Puarp. A machine for raising water; there are many varieties of them.
Puncheon. (Fr. Poinçon.) A name common to iron instruments used in different trades for cutting, inciding, or piercing a body. In carpentry, it is a picce of timber placed
upright between two posts whose bearing is too great, scrving, together with them, to sustain some heary weight. The term is also applied to a piece of timber rased upright under the ridge of a building, and in which are jointed the small timbers. Also to the arbor or principal part of a machine on which it turns vertically, as that of a crane.
Purbeck Stone. A species of stone obtained from the island of Purbeck in Dorsetshire, of a very hard texture, and used for paving. See Parement.
Purfled. (Fr. Pourfiler.) Ornamented work in stone, or other material, representing embroidery, drapery, or lace work.
Purlin. A horizontal piece of timber lying generally on the principal rafters of a roof to lessen the bearings of the common rafters. Locally callet side timbers, and side wavers.
Puteal. The marginal stone of a well. The celebrated one of Scribonins Libo was erected by order of the senate to mark the spot where a thunderbolt had fallen near the statues of Marsyas and Janus by the Comitia.
Putlog. See Ledger.
Putty. A sort of paste consisting of whiting, with or without a small portion of white lead, and linseed oil, beaten together until it assumes a kind of tough consistency like dough. In this state it is used by glaziers for fixing in the squares of glass to sash windows, etc., and also by house-painters to stop up holes and cavities in woodwork before painting.
Puzzuolana. A grey-coloured earth deriring its name from I'uzzuoli, whenco it was originally brought. It is a volcanic matter found in many other parts of Italy, and generally in the neighbourhood of volcanoes active or extinct, from which it has been thrown out in the form of ashes. It immediately hardens when mixed with one-third of its weight of lime and water, forming an admirable water cement.
Pycnostyle. (Gr. Mukyos, close, Etudos, columb.) See Colonnade.
Pylon. The mass of building on either sido of the entrance to an Egyptian temple. It is pyramidal in form and sometimes as much as 100 feet in length and 32 feet in wilth.
Pyramid. (Gr. חvp, fire.) A solid standing on a square, triangular, or polygonal basis, and terminating at top in a point ; or a body whose baso is a regular rectilinoar figure and whose sides are plain triangles, their several verticles meeting together in one point. It is defined by Euclid as a solid figure consisting of sereral triangles whose bases are all in the same plano and havo one common vertex.

The principal properties of pyramids are as follow:-1. All pyramids and cones standing on the same base and having tho same altitude aro equal. 2. A tringular pyramid is the third part of a prism, standing on the same base and of the same altitude. 3. Hence, since every multangular may be divided into triangulars, every pyramid is the third part of a prism standing on the same base and of the samo altitude. 4. If a pyramid be cut by a plane parallel to its base, the sections will be similar to the base. 5. All pyramids, prisms, cylinders, etc., are in a ratio compounded of their bases and altitudes; the bases therefore being equal they are in proportion to their altitudes, and the altitudes being equal, they are in proportion to their bases. 6. Similar pyramids, prisms, cylinders, cones, etc., are in a triplicate ratio of their homologons sides. 7. Equal pyramids, etc., reciprocate their bases and altitudes, i.e. tho altitude of one is to that of the other, as the base of the one is to the base of the other. 8. A sphere is equal to a pyramid whose base is equal to the surface, and its height to the radius of the sphere. See Frustom.

The name of the structure crected over a tomb, as commonly seen in Fgypt.
Pyramidon. The small flat pyramid which terminates the top of an obelisk.
Q
Quadra. (Ital.) A square borler or frame round a basso-relievo, panel. etc.; the term is not strietly applicable to any circular borler. The term is also applied to the bands or fillets of the Ionic base on each side of the scotia; and also to the plinth or lower member of the podium.
Quadrangle. Any figure with four angles and four sides. This term is in architecture in England applied to the inner square or rectangular court of a building, as in the college courts of Oxford, ctc.
Quadrant. (Lat.) The quarter of a circle, or an are of it containing ninety degrecs within its enclosed angle.
Quadrature. (Lat.) The determination of the area of a figure in a square, or even any other rectilinear form.
Quadrel. An artificial stone perfectly square, whence its name, much used formerly ly the Italian architects. Quadrels were made of a chalky or whitish and pliable carth, and dried in the shade for at least two years.
Quadriforis. (Lat.) In ancieut architecture, folling doors whose height was diviled into two parts. When they opened in one height. they were termed fores valvatre or ralue.
Quadiilamiral. In geometry, a figure whose perimeter consists of four right lines making four angles, whence it is also called a quadrangular figure.

Uarrel, vulgarly called Quarry. (Fr. Carré.) A square or lozenge-shaped piece of glass used in lead casements.
uarky. (Irish, Carrig.) A place whence marbles, stones, or slates are procured.
iarrying. The operation of extracting the produce of a quarry is one which requires much practical knowledge to render it beneficial to its owner; but in respect of the details they are not required to be noticed in this work.
icarter Grain. See Felt Grain.
uuarter Pace. See Foot Pace.
duarter Partition. One consisting of quarters, or upright pieces of timber receiving the lath and plaster work.
luarter Round. The same as Ovolo and Ecunves, being a moulding whose profile is the quadrant of a circle.
tuarters. Small vertical timber posts, rarely exceeding four by three inches, used to form a partition instead of walls for the separation or boundary of apartments. They are placed, or ought to be, about twelve inches apart, and are usually lathed and plastered in the internal apartments, but if used for external purposes are commonly boarded. A series of such posts is called Quartering.
luartz. (Germ.) A mineral production better known by the name of rock crystal. It includes a rariety of stones with which we hare nothing here to do, and the only motire for mentioning it is its occurrence in the granites, wherein it is immediately recognised, from its glass-like appearance.
luatrefoil. (Fr. Quatrefeuille.) A modern term denoting a form disposed in four scgments of circles, and so called from its imagined resemblance to an expanded flower of four petals. It is only found in the windows, panels, etc., of Gothic architecture. Luay. (Fr.) A bank formed towards the sea or on the side of a river for free passage, or for the purpose of unloading merchandise.
lueen-post. A suspending post where there are two in a trussed roof.
lueen. A size slate used in roofing.
Luicklime. Lime in lump or in powder, ready for water to be added to it. See Lime. lurk. A piece taken out of any regular ground-plot or floor; thus, if the ground plan were square or oblong, and a piece were taken out of the corner, such piece is called a quirk.
See Re-entering angle.
Luirk Moulding. One whose sharp and sudden return from its extreme projection to the re-entrant angle seems rather to partake of a straight line on the profile than of the curre. Of this class are a great number of the ancient Greek mouldings.
2ooins. (Fr. Coin.) A term applied to any external angle but more especially applied to the angular courses of stone raiscd from the naked of the wall at the corner of a building, and called rustic quoins. See Rustic Quoins.

R

Radbet. See Rebate.
lack. The case, enclosed by bars, over the manger in a stable, wherein the hay is placed for the horses.
Zad and Das. A substitute for brick nogging in partitions, consisting of cob or a mixture of clay and chopped straw filled in between laths of split oak or hazel. It is also called wattle and dab.
zadial Curves. In geometry, those of the spiral kind whose ordinates all terminate in the centre of the including circle, and appear like so many radii of such circle
Radius. In geometry, the semidiameter of a circle, or a right line drawn from the centre to the circumference.
Radius of Curvature. The radius of the osculatory circle at any point in a curve. See Osculatory Circle.
Raffle Leaf. A leaf in ornamental foliage formed of small indentations at the edge. The acanthus leaf is so called.
Rafters. (Quasi, Roof-trees.) The inclined timbers of a roof, whose elges are in the same plane which is parallel to the covering.
Rag Slate. A slate obtained from Wales, and sold by the ton, which will corer about one square and a half of roofing.
Rasl. (Ger. Riegel.) A term applied in various ways, but more particularly to those pieces of timber or wood lying horizontally, whether between the panels of wainscuting, or of doors, or under or over the compartments of balustrades, \&cc. ; to pieces, in framing, that lie from post to post in fences; in short, to all pieces lying in a horizontal direction which separate one compartment from another.
Ransall. To calculate the quantity of water that will accumulate over a given area, nultiply the inches of rainfall by $2,323,200$, which will equal the cube feet per square mile. If by $14 \frac{1}{2}$, it will equal millions of gallons per acre, If by 3,630 , it will equal cube feet per acre. (Mo'esworth.)

Ram-water Pipe. One usually placed against the exterior of a house to carry off the rain-water from the roof.
Ratsing Piece. One which lies under a beam and over the posts or puncheons. The term is chiefly used in respect of buildings constructed of timber framework.
Raising Weights. See Lewis.
Rake. A slope or inclination, as of a roof.
Raking. A term applied to any member whose arisses lie inclined to the horizon.
liamp. (Fr.) In handrails, a concavity on the upper side formed over risers, or over a half or quartur pace, by a sudden rise of the steps above, which frequently occasions a knee above the ramp. The term is also applied to any concare form, as in coping, \&ce., where a higher is to be joined by a continned line to a lower body.
Rampant Arcii. One whose abutments or springings are not on the same level.
Rance. A prop or shore; a term used in Scotland.
Ranbon Tooling. In Scotland called droving, is a mode of hewing the face of a stone either as preparatory to some other process, or as a finishing operation. A chisel two to four inches broad at the cutting edge, is adranced along the stone at about $\frac{1}{8}$ inch per stroke, the result being a series of indentations on the surface of the whole stone-The excellence of the work depends upou the regularity of these flutings and the absence of ridges between the draughts.
Range, or Ranging. (Fr.) A term applied to the edges of a number of bodies when standing in a given plane. Thus, if the edges of the ribs of a groin were placed in a cyliudric surface, they would be said to range. It is also used in respect of ia work that runs straight without breaking into angles.
Rank Set. When the sole of a plane iron projects greatly below the plane.
liay, Princrpal. In perspective, the perpendicular distance between the eye and the perspective plane.
Rayonnant. (Fr. Radiating.) A term applied in France to a periud in Gothic architecture, wherein the mullions and tracery terminate in forms founded on the divergence of rays from certain centres. It prevailed from the latter cnd of the thirteenth until near the end of the fourtcenth century.
Rebate. (Fr. Rebattre.) A channel or small recess cut in a piece of wood, longitudinally, to receive the edge of a body, or the ends of a number of bodirs that are to be sucured to jt. The depth of the channel is equal to the thickness of the body; so that when the cad of the latter is let into the rebate, it is in the sance face with the outside of the piece. Sce Dour-stop.
lifiate Plane. One used for sinking rebates.
liecfss. (Lat. Recedo.) A carity left in a wall. sometimes for use, as to reccive a sideboard, bed, \&c., or to add to the quantity of Hoor room, and sometimes for ornament, as when formed into a niche, \&c.
Reciprocals. A term in mathematies, mostly applied to the fraction mado by inverting auother fraction; thus $\frac{3}{7}$ is the reciprocal of $\frac{7}{3}$ and $\frac{1}{7}$ of $\frac{7}{1}$.
Rectavale. In geometry, a figure whose angles are all right angles. Solids are called rectangular with respect to their position, as a cono, eylinder, \&ce, when perpendicular to the plane of the horizon. A parabola was anciontly called it rectangular section of a cone.
Rectieication. In geometry, the finding of a right line that shall be equal to a given curre, or simply finding the length of a curve.
Rectilinear. A figure whose boundaries are right lines.
Rectilinear Period. A name given by some writers to the Pereendicular period of mediæval architecture in England, from the predominance of rectangular orstraight lines.
Renuct. A quirk or small piece taken out of a larger to make it more uniform and regular.
Reduction of a figure, desigu, or draught. The colying it on a smaller scale than tho original: preserving the same form and proportions. For this purpose a pair of proportional compasses are generally used, by which the labour is much lessened.
Reed Modlding. A moulding formed by three or more beads worked side by side.
Re-zinterino angle. An angle returned (A), in contradistinction to a square or solid angle (B), by the former of which much space is often lost in small houses, it being sometimes adopted from its picturesque qualities. See Qourk.
Refectory. (Lat.) A room for taking refreshments. See Anhey.
Ifflector. A polished surface so placed at an augle that it will reflect light towards any required position. See Light, Reflectid.
Reflex. The light reflected from a surface in light to one in shade.
liefuge. The name given to a building prepared for the reception of destituto people, where they are boarded and clothed and hare to work, or if younr are tanght some trade, such as the "Boys' Refuge Farm School and Conatry Home," at Bisley, near Wokiug, in Surrey.
Recinet. (Fr.) A flat narrow moulding, used chicfly to separate the parts or members of compartments or pancls from each other, or to form knots, frets, and other ormaments.
ifarating. In masonry, the process of remoring the outer surface of an old hewn stone, so as to give it a fresh appearance.
iegula. (Lat.) 1 band below the tænia in the Doric architrave.
iegular. An epithet applied to a figure when it is equilateral and equiangular. A body is said to be regular when it is bounded by regular and equal planes, and has all its solid angles equal.
iegular Architecture. That which has its parts symmetrical or disposed in connterparts. iegular Curves. The perimeters of conic sections, which are always curved after the same geometrical manner.
ieignier Work. Ornamental figures or patterns inlaid in wood in the manner of buil work, with le ives \&c. of different colours.
elins of a Vault. The sides or walls that sustain the arch.
tejointing. The filling up the joints of stones of old buildings when the mortar has been dislodged ly age and the action of the weather.
delation. The direct conformity to each other, and to the whole, of the parts of a building. ielievo (It.) or Remef. The projecture from its ground of any arehitectural ornament. Among sculptors there are three degrees of relievo ; namely, alto relievo, when the figure stinds quite out from its ground ; mezzo rehevo, when one half of the figure projeets; and basso relievo, when the figures are raised from the ground in a small degree.
ielieting Arch. See Discharging Arcit.
dexder. To plaster on walls, slates or tiles, without the intervention of laths.
inalisance Architecture. The name given to the style which studied to revire the forms and ornaments of Roman art and partly of the Grecian. It was commenced under the best efforts of the artists of the sixteenth and serenteenth centuries. The style is called "Cinque Cento" in Italy ; and the "Rerival" or "Elizabethan " in Great Britain. cexdsring. The act of laying the first coat of plaster on brickwork.
'eplum. (Lat.)' In ancient architecture, the panel of a framed door. See Impages.
ieredos. A screen placed behind an altar in mediæral architecture, and decorated with niches, statucs, paintings, or other work, in accordance with the period of the style employed. See Altar Screen,
teservoir. (Fr.) An artificial pond, basin, or cistern for the collection and supply of water. iesistance. That power which, acting in opposition to another, tends to destroy or diminish its effect. There are severa! sorts of resistance, arising from the rarious natures and properties of the resisting bodies, as the resistance of solids, tluids, air, \&c.

The following is a synopsis of the most important results that have been drawn by different writers on the sulject, both practical and theoretical :

1. The resistance of a beam or bar to a fracture by a force acting laterally is as the solid made by a section of the beam in the place where the force is applied, iuto the distance of its centre of gravity from the point or line where the breach will end.
2. In square beams the lateral strengths are as the cubes of their breadths and depths.
3. In cylindric beams, the resistances of strengths are as the cubes of the diameters.
4. In rectangular beams the lateral strengths are conjointly as the breadths and squares of the depths.
5. The lateral resistances of any beams whose sections are similar figures and alike placed are as the cubes of the like dimensions of those figures.
6. The lateral strength of a beam, with its narrower face upwards, is to its st rength with the broader face upwards, as the breadth of the broader face to the breadth of the narrower.
7. The lateral strengths of prismatic beams, of the same materials, are as the areas of the sections and the distance of their centre of grarity directly, and as their leugths and weights reciprocally.
8. When the beam is fixed at both ends, the same property has place, except that in this case we must consider the beam as only half the length of the former.
9. Cylinders and square prisms have their lateral strengths proportional to the cubes of their diameters or depths directly, and their lengths and woights inversely.
10. Similar prisms and cylinders have their strength inversely proportional to their linear dimensions.

The relative resistance of wood and other bodies is slown in the following tablo:-

	Proportional Resistance. 11	Aider, ash, birch, white fir, willow			Proportional Resistance. 6
ox, jew, plum-tree, oak -	11 8				107
nut, thorn	$7 \frac{1}{2}$	Brass	- -	- -	50
fir, holly, elder, plane, crab-		Bone	- -	- -	22
tree, apple-tree	7	Lead	- -	- -	$6 \frac{1}{2}$
eech, cherry-tree, hazel -	$6 \frac{2}{3}$	Fine freestone -	-	- -	1

The following table shows the cohesive force of a square inch of different substances, from the experiments of Professor Robinson:--

Responds. Half-piers at the east or west, end of the nave, transepts, or choir. They are sometimes formed in the shape of corbels.
Ressaulet. (Fr.) The recess or projection of a member from or before another, so as to be out of the line or range with it.
Retable. A shelf, temporary or otherwise, between the altar and the east wall. A scries of receding shelves or retables, behind and separate from the altar, is thought conrenient for placing thereon vases of flowers and candlesticks.
Retaining Wall. Such as is built to retain a bauk of earth from sliding down. It is is also called a revetment, or revêtement, wall. The term is usually restricted to a wall built to retain an artificial bank. One erceted to sustain the force of solid gronnd is called a breast wall.
Reticulated. Like the meshes of a net. The reticulatum opus of the ancients is described under the article Masonry.
Return. The continuation of a moulding, projection, \&c., in an opposite direction. A side or part which falls away from the front of a straight work.
Retcrn Bead. See Bead aní Ducble Quirk.
Reveal. (Lat. Revello.) The rertical side of an aperture between the front of the wall aild of the window, or door, frame.
Revolution. In geometry, the motion of a point or line about a centre. Thus, a rightangled triangle, revolving round one of its legs as an axis, gererates a cone in its revolution.
Ruevish Architecture. The species of Romanesque practised in the Rhine countries, differing only in subordinate fentures from that of other parts of Germany. Fig. 1436.
Rhomiond. (Gr.) A quadrilateral figure whose opposite sides and angles are equal.
Ruombus. (Gr.) A quadrilateral figure, whose sides are all equal, and whose opposite angles are respectively equal, two being obtuse and two acute.
Rib. (Sax.) An arch-formed piece of timber for supporting the lath and plaster work of a rault.
Ribbing. An assemblage of ribs for a rault or coved ceiling.
Ridge. (Sax.) The highest part of a roof. The term is more particularly applied to the piece of timber against which the upper ends of the rafters pitch.
Ridge Tile. A convex tile made for covering the ridge of a roof. Slate ridging and terra cotta ridging are often employed.
Right Angle. One containing ninety degrees. A ready mode of obtaining a right angle in setting out buildings and for other purposes, is: make the rertical line equal to six divisions, the base line equal to eight similar di-

Fig. 1436. Church at Andernach. visions, then the distance between each point should be equal to tcu such divisions, to make the angle to bo obtained a right angle.

Rigut Circle. A eircle drawn at right angles with the plane of projection.
Rigut Lisp. A line perfectly straight.
Jiser. The upright face of a step, from tread to tread.
Rising Hinge. A hinge so formed as to rais the dour as it opens, that it may pass over a carpet or mat; and thus having an inclination causing the door to close of itself. See Sadnle.
River. Riveting. A small bolt of metal furged with a head. When required for uso in joining plates together, or a plate with an angle iron as in a girder, the bolt is made red hot, placed into the holes propared for it, and maintained there by one person, whilst another hammers at the opposite end until its superabudant length has been driven flat against the plate. Such work is called riveted. See Angle Iron.
Road Roling machlne. Two steam locomotives, invented respectively by Lemoine and Ballaison, the latter having been approved as the better of the two, have been lately employed in Paris to crush and consolidate the broken granite laid on the roadways in that city. This machine has two rollers, the engine being placed between, and the boiler on one of them. With fuel and water, the weight of the Ballaison steam roller is $13 \frac{1}{2}$ tons with springs; and an iron framework $15 \frac{1}{4}$ tons. Its strength is 10 horsepower, and its consumption of eoal about 16 ll . perhorse. It does its work in half the time and at half the co-t that would be required were the work done by rollers drawn ly horses, besides that it is performed more rapidly and completely. Over the Pont Royal, the roadway was corered with granite at ten o'clock in the erening, the rolling contimued all night, and the roadway opened for traffic in the morning.
Roadway. In rolation to any road, passage, cr way, the word shall mean the whole space open for traffic, whether carriage traffic and foot traffic, or foot traffic only. Metropolis Management and Building Acts Amendment Act, 1878. Street.
Rocking Stone, or Logan. A large rough stone so placed on a small part of its bed that it can be mored to and fro with a slight force. It is classed in the Celtie period.
Rococo. A debased variety of the Lnuis XV. style of ornament. It is also applied t, anything bad or tasteless in decoration.
Rod. A measure of length equal to $16 \frac{1}{2}$ feet. A square rod is the usual measure of brickwork, and is equal to $272 \frac{1}{2}$ square feet, and in London is calculated at $1 \frac{1}{2}$ bricks in thickness.
Roe Stone or Oolite. A kind of limestone, found under chalk in various parts of Englaul. Fous. A piece of wood prepared for the plumber to turn the lead over it, where the sheets join, so as to protect the flat roof or edge from the admission of water.
Ror Moording. A moulding in the shape of a cylinder. It occurs chiefly in the Early English and Decorated periods of Gothic architecture. When it has :a slight edge at one part, it is a seroll or edge moulding, or a ressant lorymer. When there is a fillet, it is a roll and fillet moulding; this is seen in the Decorated period. Sce Kefe.
Rolls or Rollers. Among workmen are plain cylinders of wood, seven or eight inches diameter and three or four feet long, used for the purpose of moring large stones, ieans, and other heavy weights. They are placed successively under the fore part of the masses to be removed, and at the same time are pushed forward by levers applied behind. When blocks of marble, or other very heary weights, are to be mored, they use what are called endless rolls. Those, to give them the greater force and prevent their bursting, are made of wood joined together ly cross-quarters, double the length and thickness of the common rollers, and girt with iron hoops at each end. At a foot from the ends are two mortises pierced through and through, into which are put the ends of long levers, whieln the workmen draw by ropes fastenen to the euds, still clanging the mortise as the roll has made a quarter of a turn.
Romay Architecture. The style adopted by the ancient Romans from that of tho Greeks. It was based upon the principle of the round arch.
Roman Cement. The common name for Parker's cement. It is now wery often called " brown eement," to distinguish it from Portland or "white cement."
Roman Order. The same as Composite Order.
Romanesque Architecture. The style which was based upon a Roman form, and which led on to the Pointed or medieval styles. There are nany varieties of Romanesque, ats Lombard, Rhenish, French, and English Norman, \&ce, each having its own independent developments.
Rood. (Sax. Robe.) A cross, crucifix, or figure of Christ on the cross placel in a church. The holy rood was one, generally as large as life, elevated at the junc ion of the naye and choir, and facing to the western entrance of the church. The rood loft was tie gallery on which the rood and its appendages were placed. This loft, or gallery, was commonly placed over the chancel screen in parish churches. In Protestant cathedrals the organ used to occupy the original place of the rood loft, but is now almost always placed on the North side of the chancel. The rood tower or stepple was that which stocd orer the intersection of the nave with the transepts.

Rood. A measure equal to 36 square yards, by which rubble masonry is valued in Scotland. Rubble walls at and below 18 inches thick are reduced to one foot; and above 18 inches thick, to 2 feet. It is also a measure of land. See Measure.
Roof. The covering to a building.
Roorino. The assemblage of timbers, and covering of a roof whose pitch in this climate, for different coverings, is shown in the following table:-(See table 2040b.)

Species of Covering.		Inclination to the Horizon.				Height of Roof in Part of the	
Copper or lead	-	-	3°	50	-	-	ono forty-eighth.
Large slates	-	-	22	0	-	-	one-fifth.
Common slates	-	-	26	33	-	-	one-quarter.
Stone slates	-	-	29	41	-	-	two-sevenths.
Plain tiles	-	-	29	41	-	-	two-serenths.
Pan tiles	-	-	24	0	-	-	two-ninths.
Thatch	-	-	45	0	-	-	one-half.

Roor. (Sax. Rum.) An interior space or division of a house, separated from the remainder of it by walls or partitions, and entered by a doorway. Habitable Room.
Rose or Rosette. An ornament of frequent use in architectural decorations. The centre of the face of the abacus in the Corinthian capital is decorated with what is called a rose.
Rose Window. A circular window with compartments of tracery not branching from a centre. The illustration (fig. 1437) is an outline from Lincoln Cathedral. Other examples may be seen at St. Onen at Rouen, and at Beauvais in the sonth transept. See Book III., Chap. III., Sect. 14.
Rostrem. (Lat.) Literally, the beak of a bird; also the beak or fore-part of a ship. The elerated platform in the Forum of ancient Rome, whence the orators addressed the people, so called from its basement being decorated with the prows of ships. The term is now used generally to signify a platform or elevated spot from which a speaker addresses his audience.
Rot. Seo Dey Rot.
Rotunda or Rotondo. (Ital.) A building crecular on the interior and exterior, such as the Pantheon at Rome. See Circular Bulldings.
Rough-cast. A species of plastering used on external walls,consisting of a mixture of lime, small shells or pebbles, occasionally fragments of glass and similar

Fig. 1437. materials. This is usually applied to cottages.
Ruund Churcii or Bullding. See Circular Bulinngs.
Rubbing or Polishing. Erasing the tool marks (after boasting or scabbling) on the face of a stone, by the agency of a piece of Yorkshire, or grit, stone, used as a rubber, first with sand and water, and then with water only, by which a smooth surface is obtained, rendering the stono less liable to be affected by the atmosphere.
Rubble Work. Walls built of rag or rubble stones, in coursed or uncoursed work. In the former, the stones are roughly dressed, and laid in courses of equal height; in the latter they are used as they occur, small and large stones together as they may fit in. 'This last is more applicable to Gothic than to Italian architecture. See Masonry.
Rudenture. (Lat. Rudis, a rope.) The same as Cablina.
Ruderation. (Lat. Ruderatio.) A method of laying pavements, mentioned by Vitruvius, and according to some, of building walls with rough pebbles and mortar. The mortar called statumen by Vitruvius was made of lime and sand.
Role. An instrument for measuring short lengths. Of rules there are various sorts, each adapted to the class of artificers for whose use they are made. Thus, there are stonecutters' rules, masons' rules, carpenters' rules, sliding rules, parallel rules, \&c. The sliding rule is, however, of more general use, as it solves by inspection a number of questions from the change of the position of the slider, and therefore of much importance to the less educated artisan.
Rural Architecture. A style of architecture suited for country places, and not strietly conforming to any rules but that, perhaps, of the picturesque.

Rossin Architecture. The ancient buildings are designed after the Byzantine school of art ; the modern ones after the German, French, and Italiau masters.
Rossian Cross of the Greek Church. See Cross.
Rustic Order. A species of work where the faces of the stones are hatched or picked with the point of a hammer.
Rustic Quoins or Coins. The stones placed on the external angles of a building projecting beyond the naked of the wall. The edges are bevelled, or more or less moulded, or the margins recessed in a plane parallel to the face or plane of the wall.
Rustic Work. A mode of building masonry wherein the faces of the stones are left rough, the sides only being wrought smooth where the union of the stones takes place. It was a method much practised at an early period, and re-introduced by Brunellesehi at the revival of the arts. The most common sorts of rustic work are the frosted, which has the margins of the stones reduced to a plane parallel to that of the wall, the internediate parts haring an irregular surface; vermiculated rustic work, wherein the intermediate parts present the appearance of having been worm-eaten; chamfercd rustic work, in which the face of the stones being smoothed and made parallel to the surface of the wall, and the angles bevelled to an angle of one hundred and thirty-five degrees, with the face of the stone, where they are set in the wall, the berel of the two adjacent stones forms an internal right angle.
Iivbat. The Scottish term for a Reveal.

Sacellom. (Lat.) In ancient Roman architecture, a small inclosed space without a roof. Small sacella, too, were used among the Egyptians, attached frequently to the larger temples. In old church architecture, the term signifies a monumental chapel within a church, also a small chapel in a village.
Sacrarium. (Lat.) A small sacred apartment in a Roman house, deroted to a particular deity; also the cella, penetrale or adytum of a temple. The name is now given to the place in a chancel enclosed by the altar rails: also called "Sanctuary."
Sacristr. A vestry attached to a church, in which the restments, plate, and other furniture used in dirine worship are kept. It was anciently called Diaconicum.
Saddle. A thin board of wood, placed on the floor in the opening of a doorway, the width of the jambs. The door being made to shut upon this piece of wood passes clear over the carpet, and does not therefore require rising hinges, used for achiering the same object.
Saddle-backed Coping. See Coping.
SADDle-back Roof. A tower haring a top in the form of a common roof-gable. This form appears on a few old English towers (as at Brookthorpe Church, Northamptonshire, cir. 1260), and in many Continental churches.
Sag or $^{\text {Sagalng. The bending of a body by its own weight when resting inclined or }}$ horizontally on its ends.
Sagirta. (Lat. an arrow.) A name sometimes applied to the keyntone of an arch. In geometry, it is often employed to signify the abseissa of a curve; and in trigonometry it is the rersed sine of an arc, which, as it were, stands like a dart upon the chord.
Sail over. See Projecture.
Saint. See Symbols of Saints.
Saliant. (Fr.) A term used in respect of a projection of any part or member.
Sally. A projecture. The end of a piece of timber cut with an interior angle formed by two planes across the fibres. Thus the feet of common rafters, and the inclined pieces which support the flying steps of a wooden stair, are frequently cut; as are, likewise, the lower ends of all inclined timbers which rest upon plates or beams.
Salon, or Saloon. (Fr.) A lofty and spacions apartment, frequently vaulted at top, and usually comprehending the height of two floors with two tiers of windows. Its place is commonly in the middle of a building, when it is sometimes lit from the top; or at the head of a gallery, etc. In palaces it is the state room.
Sanatary measores. Precautions taken for curing diseases.
Sancte-bell Cot. A small erection at the east end of the nave for the reception of the bell that gives notice of the Sanctus being commenced, and also to waru the people of the approaching elevation of the Host.
Sanctuary. The extreme eastern part of the chancol, containing the communion table, seats for the clergy, \&c. See Sacrariem.
Sanitory measures. Precautions taken for preserving the hcalth.
Sand. There are three sorts, river, sea, and pit sand. They are mixed with lime and cement in varying proportions. When they can be only procured mixed with earthy and clayey particles, they must be repeatedly washed until the sand becomes bright in colour and feels gritty under the fingers. Sca sand must be very well washed in fresh
water, and it is doubted by some practitioners whether it can ever be freed from particles of salt, which would prevent the plaster or cement drying.
Sandstone. In mineralogy, a stone principally composed of grains, or particles of sand, either united with other mineral substances or adhering without any risible cement. The grains or particles of sandstone are generally quartz, sometimes intermixed with feldspar or particles of slate. When lime is the cementing matter the stone is called calcareous sandstone. The cementing matter is not unfrequently oxide of iron intermixed with alumine. The particles of sand in these stones are of various sizes, some being so small as to be scarcely visible.
Sap. The juice or pith of trees that rises from the earth and ascends into the arms, lranches, and leaves, to feed and nourish them. Also that part of the stem or wood of the body of a tree that is soft, white, etc. The term is used also as a verb, to denote the undermining a wall by digging a trench under it.
Saracenic Architecture. See Moresque Architecture.
Sarcophagus. ($\Sigma \alpha \rho \xi$, flesh, and $\phi a \gamma \omega$, to eat.) A tomb or coffin made of one stone. From Pliny it appears to hare been originally applied as the name of a stone found in the Troad, which, from its powerful canstic quilities, was selected for the construction of tombs. From its frequent application to this purpose the name became at length used for the tomb itself. Sarcophagi were made of stone, marble, alabaster, porphyry, ete. The Greeks sometimes made them of hard wood, as oak, cedar, or cypress, which resisted moisture; sometimes of terra cotta, and eren of metal. The form was usually a long square, the angle being rounded. The lid viried both in shape and ornament. Those of the primitive Christians often enclused scveral corpses, and wore ormmented with sereral sets of bassi relievi. Those of higher antiquity were frequently senlptured with great taste and beauty of design, the figures being those of the deceased, or parties connected with them, allegorical or mythological. The Egyptian sarcophagi are sculptured with hieroglyphics. Those of the Greeks and Romans sometimes represent Sleep and Death with their legs crossed, one hand supporting the head and the other holding an inverted torch; sometimes Mercury is represented conducting the Souls, and Charon ferrying them orer in his barque. Occasionally groups of bucchanals and bacchic scenes are found upon them.
Sarking. Thin boards for lining, etc. Boarding for slating is so called in Scotland.
Sash. (Fr. Chassis, a frame; more probably the Dutch Sis, a grate.) A feamo for holling the glass of windows, and so formed is to be raised and depressed by means of pulleys. Sashes are single or double hung; the casement is hung with hinges.
Sash Frame. The frame in which the sashes are fitted for the convenience of sliding up and down. See Casement.
Sash lines. The rope by which a sash is suspended in its framo. They are often madf of common cord, which soon untwists and breaks; tho "imperial patont flax sash lines" are made in four qualities. The sash lines made of jute have neither strength nor durability. The modern brass chains are liable to break with sudden jerks.
Saw. (Dutch, Sawe.) A tool made of a thin plate of stecl, furmed on tho edge into regular teeth for cutting wood, stone, ete. Saws are of rarions kinds.
Saw-pit. A pit excarated for sawing timber. The sawing is performed by two persons called sawyers, one standing above and the other lelow. Much of the labour, howerer, is sared by the use of a saw-mill, or machine moving a circular saw, which by its revolutions and keeping the timber close up, perfurms the work quicker and better than can be done by the labour just described.
Saxon Architecturf. The term used to designate the early architecture used in England before the introduction of the Romanesque or Nirman. The long and short work is considered the mode of building of that period. See fig 1412.
Scabellum. (Lat.) A species of pedestal anciently used to support busts or statues. It was high in proportion to its breadth, ending in a kind of sheath, or in the mancer of is baluster.
Scaffold. (Fr. Echaufaud.) An assemblage of planks or boards sustained by pieces of wood called putlogs or putlocks placed on others ealled Lengers, which are made fast to vertical poles called standards, by means of which workmen carry up a building of lrick, or plasterers complete their work in the interior of houses. Stone-faced buildings have an inner and outer serios of standards and ledgers, so that tho work shall nut be injured. Framed scaffolding is much used in large works, which is formed of square timbers, and on these a tram is placed for a moveable platform, or a steam cranc. Suspended scaffolds are useful in repairing or painting a front. They are formed of a sort of open trough for the workinen to stand in, who raise and lower it by means of ropes attached to pulleys fixed at the end of beams secured out of upper windows or to the roof.
Scagliola. (Ital.) A species of plaster or stuceo invented at Carpi, in the stato of Modena, by Gruido Sassi, between 1600 and 1619 . It is sumetimes called n:ischia, from
the mixture of colours introduced in it. It was not, however, till the middle of the eighteenth century that the art of making scag!iola was brought to perfection. It is used to decorate the walls of a staircase, and for columns and pilasters to a room. When well done it resembles marbles of great beauty, and to great perfection, and the best can be obtained at a less cost than the real marble.
Scale. (Sax.) A line divided into a certain number of equal parts, usually on wood, ivory, or metal, for laying down dimensions in mathematical and architectural drawing. There are various sorts of scales; as, the p'ane scale, Gunter's scalc, diagonal scale, \&c.
Scalene Triangle. (Eka \quad 位os, oblique.) In geometry, one whose sides are all unequal. Scale Paper. Paper having woren in it divisions at certain distances; or it is so prepared by printing the divisions upon it. It can be used for writing, squaring dimensions, or even for drawing in proportionate parts, or axial lines, a system of desiguing used by Bramante and other early Italian artists.
Scallage or Scallenge. A term used in Herefordshire and the west of England for a lychgate.
Scalpturatem, Opus. According to Pliny it resembled inlaid work, the pattern being chiselled out of the solid ground, and filled up with thin leaves of coloured marble. A beatiful example was found at Pompeii ; it was first introduced into Italy after the beginning of the third Punic war, b.c. 147-103.
Scaimlli mpares. A term used by Vitruvins, which has puzzled all the commentators until the investigations of Mr. Penrose, when he found that the horizontal lines of the Parthenon were inclined almost imperceptibly from the ends to the centre. These slight risings are held to explain the term. See Hogging. The term was formerly supposed to mean a small plinth below the bases of the Ionic and Corintlean columns.
Scandules. (Lat) In early buildings of the Romans, shingles or flat pieces of wool used for covering instead of tiles. According to Cornelius Nepos, this was the only covering used in Rome till the war with Pyrrhus in the 470 th year of the city.
Scavtle. A gauge for regulating the proper length of slates.
Scantling. (Fr.) The dimensions of a piece of timber in breadth and thickness. It is also ia term used to denote a piece of timber, as of quartering in a partition, when under five inches square, or the rafter, purlin, or pole plate of a roof. In masonry, scantling is the length, breadth, and thickness of a stone.
Scape or Scapus. (Gr.) The shaft of a column; also the little hollow, abore or below, which connects the shaft with the base, or with the fillet under the astragal.
Scapiing or Scabbling. A method of tooling the face of a stone.
Scarfing. The joining of two pieces of timber transversely together, so that the two appear but one. Large timbers are likewise bolted together.
Scene. (Gr. ミк $\kappa \nu \eta$.) Strictly an alley or rural portico for shade or shelter, wherein, according to Cassiolorns, theatrical pieces were first represented. When first applied to a theatre, it signified the wall forming the back of the stage, lnt afterwards came to mean the whole stage, and is now restricted to the representation of the place in which the drama represents the action. According to Vitruvius, the Greck sceue was occupied in the middle by a great door, called the royal door, becanse decorated as the gate of a palace. At the sides were smaller doors, called hospitalia, becanse representing the entrances to habitations destined for strangers, which the Greeks commonly placed on the two sides of their houses.
Scenozraphy. (Gr.) The method of representing solids in perspective.
schemule of Prices. A document forming part of a contract, and intended to be used for ascertaining (after execution) the sum to be paid for works performed, whether by measurement or by daywork. Where a " hill of quantities" has not been prepared, or where the extent of work cannot be exactly settled beforchand, a schedule is usually atop ed. For certain works a schedule is fully priced out, and tenders invited at it percentage above or below such prices, either over the whole, or on or off each particular trade.
Scheme or Skene Arch. One which is a segment of a circle.
Schene. (Gr.) The representation of any design or geometrical figure by lines so as to make it comprehensible.
Scholicm. In mathematics, a remark after the demonstration of a proposition, showing how it may be done some other way, or giving some advice or precantion to prevent mistakes, or adding some particular use or application thereof.
School of Art. See College and Musecm.
School. A building for elementary, practical, general, or special education, and preliminary to university institutions. In Germany, compulsory education is a fact, and absentees are fined. The schools are so arranged that a child can pursue a course of training which will most fit him for his future carcer. There are Elementary schools ;
next the Burgher schools, at which children of the lower middle classes are educated; the Realschulen, consisting of three kinds of instruction; the Practical school, in which scientific subjects are taught; then the Gymnasium, which forms a stepping-stone to the Unirersity or the Polytechnic school, to qualify for any business or profession.
Sciagraphy or Sclography. (Gr. $\sum_{k \iota \alpha}$ a shadow, and Г $\rho a \phi \omega$, I describe.) The doctrine of projecting shadows as they fall in nature.
Sconcheon. (Fr. Ecoinçon.) The portion of the side of an aperture, from the back of the jamb or reveal, to the interior of the wall.
Scotia. (Gr. さкотьa, darkness.) The hollow moulding in the base of a column between the fillets of the tori. It receives the name from being so much in shadow. The scotia was, from its resemblance to a pulley, called also $\tau \rho o \chi$ ı $\lambda o s$. It is most frequently formed by the junction of ares of different radii, but it ought rather to be profiled as a portion of an ellipsis.
Scratch Work. (lt. Sgraffiata.) A coloured plaster being laid on the face of the buidding, it is covered with a white one, which being seratched through to any design with an iron bodkin, the coloured work appears through and makes the contrast. It is an Italian method of decorating a plain surface, and is now being much carried out in England.
Screed. In plastering or cementing largo spaces, a ledge of about 4 inches and of the proper thickness is carefully formed, every 4,5, or 6 feet apart, to form a gauge for the remainder of the work, which is then applied in the panel, a long flowt being worked over it, forcing off the superfuous plaster, and a clear and even face is obtained.
Screen. (Lat. Excerno.) An instrument used in making mortar, consisting of three wooden ledges joined to a rectangular frame at the bottom, the upper part of which frame is filled with wire-work for sifting the sind or lime. This term is usod in ecelesiastical architecture to denote a partition of mood, stone, or metal, usually so placed in a church as to chut out an aisle from the choir, a private chapel from a transept, the nave from the choir, the high altar from the east end of the building, or an altar tomb from a public passage of the church. In the form and ornamental detail of screens, the ancient artists appear to have almost exhansted fancy, ingenuity, and taste.
Screm. (Dutch, Sroere.) Ono of the six mechanical powers, chiefly used in pressing or squeezing bodies close, though sometimes also in raising weights, as a screw-jack.
Scribing. Fitting the edge of a board to a surface not accurately plane, as the skirting of a room to a floor. In joinery, it is tho fitting one piece to another, so that their fibres may be perpendicular to each other, the two edges being cut to an angle to join.
Scroll. A convolred or spiral ormament varionsly introduced. Also the volutes of the Ionic and Corinthian capital. Tho subjoined woodeut is called a Vitruvian seroll.
Scullery. The apartment for washing up dishes and utensils wherein the scullion works.
Scul.pture. (Lat. Sculpo, to carre.) The art of imitating forms by chiselling and working away solid substances. It is also used to denote the carved work itself. Properiy, the word includes works in clay, wax, wood, metal, and stone; but it is generally restricted to those of the last matcrial, the terms modelling, casting, and carving being applied to the others. See Frifze, Pediment, and Metopas.
Sealing. The fixing a piece of wood or iron on a wall with plaster, mortar, cement, lead or other binding, for staples, linges, joints, \&c.
Seasoned Timber. Timber that has undergone a proper process of air or hot air drying so as to render it fit to be used in building.
Sbcant. (Lat.) A line that cuts another. In trigonometry, the secant is a line drawn to the centre from some point in the tangent, which consequently cuts the circle.
Secos. (Gr.) Soe Adytum.
Section of A Building. A geometrical representation of it as divided or separated into two parts by a vertical plane, to show and explain the construction of the interior. The section not only includes the parts that are separated, but also the elevation of the receding parts, and ought to be so taken as to show the greatest number of parts, and those of the most difficult construction. Of every building at least two sections should be made at right angles to one another, and parallel to tho sides. A section of the flues should also be made, in order to avoid placing timbers near them.
Section of a Solid. The plane of separation dividing one part from tho other. It is understood to be always a plane surface.
Sector. An instrument for measuring or laying off angles, and diriding lines and circles into equal parts.
Sector of a Circle. The space comprehended between twe radii and the are terminated by them.
Sedilia. (Lat.) Seats recessed in the south wall of the sanctuary of a church, and formerly provided for the clergy in the sacrifice of tho mass, during that part of the office in which the "Gloria" and "Credo" are sung. They aro now also provided in

Protestant churches for the officiating clergy, usually three-pricst, deacon and subdeacon.
Segment of a Spherf. A portion cut off by a plane in any part except the centre, so that the base of such segment must be always a circle, and its surface a part of the sphere.
Segment. (Lat.) A part cut off from anything. Thus, fig. 1438 shows a segmental arch. The area contained by the are of a circle and a chord. In the segment of a circle the chord of the are is called the base of the segment, and the height of the are the height of the segment.
Sell. See Cill and Aperture.
Semicircle. The half of a circle contained by the diameter and circumference.
Semicircular Arches. Those whose ares are semicircular, as in fig. 1439 .
Sepolchre. (Lat. Sepelire, to bury.) A grave, tomb, or place of interment. The cenotaph was an empty sepulchre raised in honour of a person who had had no burial. See Easter, or Holy Sepulchre; and Matsoletm.
Seragito. (Pers. Serai.) A large hall or house. The palace of an Eastern prince, but more particularly that in which the females are lodged.

Fig. 1438.

Serpentine. See Porphyry.
Sesquialteral. In the proportion of one and a half.
Sesspool. See Cesspool.
Sett. In piling, a piece placed temporarily on the head of a pile which cannot be reached by the monkey or weight from some interveuing matter.
Setting. The hardening of mortars and cements. The term is also used in masonry for fising stones in wal's or raults, in which the greatest care should
 he taken that the stones rest firmly on their beds, and that their faces be ranged in the proper surface of the work.
Setting-out Rod. One nsed by joiners for setting-ont frames, as of windows, doors, \&c.
Settlfamests. Those parts in which failures by sinking in a building have occurred.
Satt-off. The projecting part between the upper and lower portion of a wall where it diminishes in thickness.
Severy. A compartment or division of scaffolding. It is also a scparate portion or division of a building corresponding with the modern term compartment, being as it were screred or divided.
Sewer. A large draiu or conduit for carrying off soil or water from any place.
Sexagesimal. The division of a line, first into sixty parts, then each of these again into sixty, and so on, as long as division can be made. It is principally used in dividing the circumference of a circle.
Sgraffito (Ital.) See Scratch Work.
Shanows and Siradowing. In drawing, the art of correctly casting the shades of objects and representing their degrees of shade.
Shaft. The cylindrical part, or rather body, of a column, between the base and the capital. It is, properly, the frustum of a conoid. and is also called the fust, trunk, or body of the column. The term is also applied to the pier supporting arches in medirval architecture, as in the wave of a church.
Shaft of a Chimney. See Chimney.
Shaft of a Iing Post. The part between the joggles.
Sifake. A fissure or rent in imber by its being dried too suddenly, or exposed to too great heat. Any timber, when naturally full of slits or clefts, is said to to be shaky.
Shamble. The old name for a place for slanghtering cattle, now called abattoir.
Sifank. (Sax.) The space between two channels of the Doric triglyph, sometimes called the leg of the triglyph. The Romans called the shank, fcmur.
Shiaring. The aetion of cutting short off, as a pair of scissors acts apon paper. It is "pplied to a plate of metal acting upon a bolt or rivet.
Sheet Glass. Glass blown into a "muff," which is slit on one side, and opened out flat. A smperior sort of sheet glass is "flattened" by a rubling whilst it is in the annealing kiln, and hence its name.
Sheet Lead. Lead cast into a sheet, in contrulistinction to lead rolled ont by a mill.
Shelf. (Sax.) A board fixed against a wall, the upper side being horizontal, for receiving whatever may be placed upon it. A shelf is usually supported by briackets, or by picces at the end, called standards. See Sunk Suelf.
Smur. Slate broken into small pieces, as employed for monding roads in Curnwall.

Shingles. (Germ. Schindel.) Loose stones sifted from gravel for making concretc. Also the small slab of oak bark or split pieces of wood, used instead of tiles in furmer times, and still usually so employed in the backwoods of America and uther countries. They are about eight to twelre inches long, and about four inches broad, thicker on one edge than the other. The process of making a roof of this kind is called shingling.
Shoe. The inclined piece at the bottom of a rain-water pipe for turning the course of the water, and discharging it from the wall of a building.
Shooting. Planing the edge of a board straight, and out of winding.
Shooting Boarns. Two boards joined together, with their sides lapped upon each other, so as to form a rebate for making short joints.
Shore, or Shoar. (Sas.) A prop or oulique timber acting as a brace on the side of a building, the upper end resting against that. part of the wall upon which the floor is supported, and beth ends received by plates or beams. A dead shore is an upright piece luilt up in a wall that has been cut or broken through for the purpose of making some alterations in the building. The terms "needle," "tossle," "joggle," and "stud " are used among workmen to denote the piece of wood inserted in a wall above the head of a raking shore. A "waling" is a piece of timber placed horizontally against the side of a trench and strutted across it: ; " "settirg" is a rectangular frame holdng all four sides of an excavation. "Cleadings" used with " settings" strve the same purpose as "poling boards" in connection with walings.
Shollder of a Tenon. The plane transverse to the length of a piece of timber from which the tenon projects. It should be at right angles to the length, thongh it does not always lie in the plane as hero defined, but sometimes in different planes.
Shocldpring. In slating, a fillet of haired lime laid upon the upper edge of the smaller and thicker kinds of slates, to raise them and prevent their being open at the lip; it also makes the joint weathertight. Sometimes the whole surface under the heads of any sized slates is so done, to prevent the slates cracking when stepped on.
Shread Head. The same as Jerkin Head.
Shredings or Furrings. In old buildings, short slight pieces of timber fixed as bearers below the roof, forming a straight line with the upper side of the rafters. 'Tiling fillet.
Surine. (Sax. Scpin.) A desk or cabinet ; a case or box, particularly one in which sacred things are deposited : hence applied to a reliquary and to the tomb of a canonised person. The altar is sometimes called a shrine.
Surinking. The contraction of a piece of timber in its breadth by drying. The length docs not change. Hence in unseasoned timber mitred together, such as the architrares of doors and windows, the mitres are always close on the outside and open to the door, forming a wedge-like hollow on each side of the frame. Narrow boards called battens are used in floors, as the shrinking, if any, is less.
Shutters. The framed boards which shut up the aperture of a mindow, or of a light.
Side Posts. Truss posts placed in pairs, disposed at the same distance from the middle of the truss. Their use is not only to support the principal rafters, \&c., but to suspend the tie beam below In extended roofs two or three pair of side posts are used.
Side Timbers or Side Wavers. The samo as purliis, the first term being used in Somersetshire and the last in Lincolnshire.
Silicate Cotton or Slag Wool. A pure mineral fibre made from blast furnace slig. It is white and like spun glass. It is extremely light, a cube foot weighs only from 16 to 18 lbs , and one ton corers about 1500 to 2,400 square feet one inch thick. It is a good non-conductor of heat and sound.
Sill. See Cill and Aperture.
Silt. The muddy deposit of standing water.
Sima. See Cyma.
Similar Figures. Thoso whose several angles are respectively equal, and the sides about the equal angles proportional.
Sine. A right line drawn from one end of an arch perpendicular upnn tho diameter, or it is half the chord of twice the arch. The sine of the complement of an arch is the sine of what the arch wants of ninety degrees. The versed sine is that part of the diameter comprehended between the are and the sine.
Single Frame, Single: Joist, and Naked, Floor. One with only one tier of joists.
Single Ifung. An arrangement in a pair of window sashes, in which one only is morable.
Single Measure. A term applied to a door that is square on both sides. Double measure is when the door is moulded on both sides. When doors are moulded on one side, and are square on the other, they are acconnted measure and a half.
Single Span Church. A church laving a very wide nave. Such is the church of the Dominicans at Ghent, $1240-75$, with a nare of 53 feet between the piers slightly projecting from the wall, covered by a wooden raulting on curves of 60 fect radius. (Se9 par. 557.) The reader is reforred to the Builder journal, for 1867, pp. 661, 687, 700 716, for many notices of such struetures.

Site. (Lat. Situs.) The sitnation of a building ; the plot of ground on which it stands. Skew. The sloping top of a buttress where it slants off into a wallsor the coping of a gable. Skew Back. In a straight or curved arch, that part of it which recedes beyond tho springing from the rertical line of the opening.
Sketw Corbei. See Sumater Stone.
Skiffling. Sce Knobbling.
Skirting or Skirtivg Board. The narrow board placed roind the margin of a floor which, where there is a dado, forms a pliuth for its base; otherwise, it is a plinth for the room itself. Skirting is either scribed close to the floor or let into it by a groove; in the former case a fillet is put at the back of the skirting to keep it firm.
Skirts. Several superficies in a plane, which would corer a body when turned up or down without overlapping.
Skirts of a Roof. The projection of the eares.
Skreen. See Screen.
Skylight. A frame consisting of one or more inclined planes of glass, placed in a ronf to light passages or rooms below. See Lantern light; Lighting.
Slab. An outside plank or board sawed from the sides of a timber tree, and frequently of very unequal thickness. The word is also used to express a thin piece of marble, consisting of right angles and plane surfaces.
Si.sn. The front hearth of a fireplace. The Metropolitan Buildings Act, 1855, requires that "There shall be laid, level with the floor of every story, before the opening of every chimney, a slab of stone, slate, or other incombustible substance, at. the least twelre inches longer than the width of such opening, and at the least eighteen inches wide in front of the breast thereof:-That on every floor, except the lowest fl.or, such slab shall Le laid wholly upon stone or iron bearers, or upon brick trimmers; but on the lowest floor it may be bedded on the solid ground:-and That the hearth or slab of every chimney shall be bedded wholly on brick, stone, or other incombustible substance, and shall be solid for a thickness of seven inches at the least beneath the upper surface of such hearth or slab." Such precautions are too frequently neglected in country houses, to their ultimate destruction by fire. No timbers should be placed under the hearthis on any account. See Timbers.
Slate. A species of argillaceous stone, an abundant and very useful material. It can be sawn to a very large size or split into than plates, of any required thickness; being nonabsorbent it is used for roofing, and for water cisterns. There are varieties of blue, red, and green in colour.
Slathis' Work. Laying slates on roofs; forming water cisterns; and a few other matters connceted therewith, constitute this artificer's work. See Shournering.
Suezpers. Horizontal timbers disposed in a buildiug next to the gronud transversely under walls, gronnd joists, or the boarding of a floor. When used on piles they are laid upon them, and planked over to support the superincumbent walls. Underground joists either lie upon the solid earth. or are supported at varions parts by props of brickwork or stones. When in the former position, having no rows of timber below, these ground joists are themselves callel sleepers. Old writers on practical arehitecture call those rafters lying in the ralley of a roof, sleepers; but in this senso the word is now obsolete.
Sliding Rule. One constructed with logarithmic lines, so that by means of another scale sliding on it, rarious arithrictical operations are performed merely by inspection. Slit Dral. Spe Board.
Slofe of a Ruof. See Roofing; and Pitcif. Of a Road, see Gradient.
Slotice. A stop against water for the drainage or supply with water of a place. It is hung with hinges from the top edge when used merely as a stop against the watcr of a river: but when made for supply as well, it moves vertically in the groove of its frame by means of a winch, and is then called a penstock.
Suithery. The art of uniting several lumps of iron into one lump or mass, and forming them into any desired shape. The Foundry is a brench ot it.
Saoothing Plase. The plane last used by the joiner to give the utmost degree of smoothness to the surface of the wood, and is chiefly for cleining off finished work. It is $7 \frac{1}{2}$ inches long, 3 inches broarl, and $2 \frac{3}{4}$ inches in breadth.
Svacket. A provincial term for the hasp of a casement.
Snipe's Bill Plane. One with a sharp arris for getting out the quirks of mouldings.
Socket Chisel. A strong tool used by carpenters for mortising, and worked with a mallet. Socle or Zocle. (It.) A square member of less height than its horizontal dimension, serving to raise pedestals, or to support rases, \&c. The socle is sometimes continuce round a building, and is then called a continued socle. It has ueither base nor cornice.
Soffita, Suffir, or Sofite. (Ital.) A ceiling; the lower surface of a vault or arch. A term denoting the under horizontal fice of the arditrave between columns; the under surface of the corona of a cornice.
Sorl. The same as ground and earth : it is also used to denote the denosit in a cessp ol from a water-closet or privy.

Sons. A prorincial term, chiefly, however, used in the north, signifying the principal rafters of a roof.
Solar, or Sollar. A mediæval term for an upper chamber: a loft.
Solder. A soft metallic composition used in joining together or soldering metals. See Brazing and Welding.
Solid. (I, it.) In geometry, a body which has length, breadth, and thickness: that is, it is terminated or contained under one or more plane surfaces as a surface is under one or more lines. Regular solids are such as are terminated by equal and similar planes, so that the apex of their solid angles may be inscribed in a sphere.
Solid Angles. An angle formed by three or more angles in a point, and of whill the sum of all the plane angles is less than three hundred and sixty degrece otherwise they would constitute the plane of a circle and not of a solid.
Solid Shoot. See Water-Shoot.
Sommering. See Summering.
Sortant Angle. The same as Salient Aygle.
Sound-board. The canopy or type fixed over a pulpit, to reverberate the roice of the speaker.
Sound-bgarding. In floors, consists of short boards placed transversely between the joists, and supported by fillets fixed to the sides of the latter for holding pugging, which is any substance that will prevent the transmission of sound from one story to another, such as a mixture of mortar and chopped straw, or sawlust. The narrower the somel-boards the better; the fillets on which they rest may be three-quarters of an inch thick and about an inch wide, nailed to the joists at interrals of a foot. It las been suggested to put an india-rubber washer of about the same width as the joist, between the eciling joist and the joist, having a thickness of half an inch when properly screwed up, to effect tho same olject. See Boardina for Puggina.
Suuse, (Fr.) or Source. A support or under prop.
Spalls. Stone broken up into shapeless lumps. "Spawled misonry" in Ireland, consists of these lumps, about 6 to 14 inches, worked up in a wall, the joints of each stone matching those of the others around it; the faces of the stones are usually rough dressed with the hammer. It is the "uncoursed rublle work" of England. See Spawled.
Sran. An imaginary line across the openiug of an arch or roof, by which its extent is measured. The width of a vanlt or arch between the springing.
Gpan Cifurch. See Single Span Cifercif.
Span Roof. One consisting of two inclined sides, in contradistinction to a shed or lean-tu roof. It may be with simple rafters, with or without a collar beam, or when of inereased span it may be trussed, the term only applying to the external part.
Spandrel. The irregular triangular space between the outer curve or extrados of an areh, a horizontal line from its apex, and a perpendicular line from its springing. In mediæval architecture they are often filled with figures, medallions, shiclds, as at York eathedral, or diaper work as at Westminster Abbey. In the Italian style, thry are often filled with figures, or compositions relating to the purposes for which the building is erected.
Spandrel Pracketing. A cradling of brackets fixed between one or more curves, each in a vertical plane, and in the circumference of a circlo whose plane is horizontal.
Spanish Architecture. The styles adopted were those introduced by the ancient Romans, the Moors, hy French and German medixral practitioners, and by the Italian masters brought into the country by the monarchs and others.
Spar-piece. A name given in some places to the collar beam of a roof.
Spars. The common rafters of a roof for the support of the tiling or slating.
Seawled. A block of stone after the chips or spawls have been knocked off. Sce Spaily.
Specification. A description at length of the materials and workmanship to be used and employed in the erection of any luilding.
Specific Gravity. A gravity or weight of every solid or fluid compared with the weight of the same magnitude of rain water, which is chosen as the standard of comparison, on account of its being subject to less variation in different circumstances of time, place, \&c., than any other solid or fluid. By a fortunate coincidence, at least to the English philosopher, it happens that a cubic foot of rain water weigls 1,000 onnces avoirlupois; consequently, assuming this as the specific gravity of rain water, and comparing all other bodies with this, the same numbers that express the specific gravity of bodies will at the same time express the weight of a cubic foot of each in a aoirdupois ounces, which affords great facility to numerical computations. Hence are readily deduced the following laws of the specific gravity of bodies:-

1. In bodies of equal magnitudes the specific gravitics are directly as the weights or as their densities. 2. In bodies of the same specific gravities the weights will be as the magnitudes. 3. In bodies of equal weights the specific gravities are inversely as the magnitudes. 4. The weights of different bodies are to each other in tho compound ratio of their magnitudes and specific gravitios.

Thus, it is obvious, that if of the magnitule, weight, and specific grarity of a body any two be given, the third may be found; and we may thus arrive at the magnitude of bodies which are too irregular to admit of the common rules of mensuration; or, by knowing the spocific gravity and magnitude, we may find the weight of bodies which are too ponderons to be submitted to the action of the balance or steel yard; or, lastly, the magnitude and weight being given, we may ascertain their specific gravities.
Sreces. (Lat.) In ancient architecture, the canal in which the water flowed in aqueducts raised above the surface of the ground, and constructed of hewn stones or bricks. It was covered with a rault to preserve the water from the sun, and from being mixed with rain water. The specus was sometimes corered with flat stones, laid horizontally, as in the Aqua Martia, part of the Aqua Claudia, and the aqueduct of Segovia. Sometimes the same arcade carried several of these canals one above the other.
Speroni. See Anterides.
Spheristeriom. A building for the exercise of the ball; a tenmis court. The ancier ts generally placed spheristeria among the apartments of their bathis and gymnasia. They were also placed in large villas, as in those of Pliny the younger.
Sphere. (Gr. $\mathbf{\Sigma} \phi \alpha, \rho \alpha$.$) A solid, whose surface is at every point equally distant from a$ certain point within the solil, which point is callel the centre of the sphere. Every sphere is equal to two-thirds of its circumscribing cylinder, that is, it is equal to a cylinder whose ends are circles, equal to a great circle of the sphere, and whose height is equal to the diameter of the same.
Spmbical. Bracketing. That so formel that the surface of the plastering which it is to receive forms a spherical surface.
Spheromb. Spe Cexord.
Spheromal Bracketing. That formed to receire the plastering of a spheroid.
Silia. See Circus.
Spiral. A curve which makes one or more revolutions round a fixed point, and does not return to itself. See Volutes.
Spine. (Gr. $\sum \pi \alpha i p \alpha$, a twisting.) In ancient architecture, the base of a column, and sometimes the astragal or torus. The termination of the tower of a church, generally diminishing, and either pjramidally or conically. See Steeple.

A spire which is octagonal, the sides facing the carlinal points being continued to the eaves which project over the lower work, and the diagonal faces being intercepted at the lottom by semipyramidal proiections whose edges are carried from the angles of the tower upwards, terminating in points on the corresponding oblique faces of the spire, is called a broach (Fr. Broche, a spit).

The following table gives the heights of many of the chief Towers and Spires, but it is liable to correction, for it is very difficult to oltain accurate dimensions of any structure or parts of one.

Spiay. A slanting or bevelling in the sides of an opening to a wall for a window or doer, so that the outside profile of the window is larger than that of the inside; it is done for the purpose of facilitating the admission of light. It is a term applied to whatever has one side making an oblique angle with the other: thus, the heading joists of a boarded floor are frequently splayed in their thickness. The word fluing is somotimes applied to an apcrture, in the same sense as splayrd.
Sprivg Bevel of a Rail. The angle made by the top of the plank, with a vertical plane touching the ends of the rail piece, which terminates the coneare side.
Spienvaed or Spriva. In boarling a roof, the setting the boards together with berel joints, for the purpose of keeping out the rain. See Bearding for slativg.
Spinixez. The impost or place where the rertical support to an areh terminates, and the curve of the arch begins; the term is sometimes used for the rib of ingroined roof.
Spinvange Cobrse. The herizontal course of stones, from which an arch springs or rises; or that row of stones upon which the first arch stones are laid.
Spends and Rings. A method adopted in Ireland of sccuring the posts of a door, in a basement story, ly a ring of iron into which the post is placed, with a projection or spud for insertion into a corresponding bole in the sill or step.

Spur. Carred timberwork at the doorway of old houses, to support a projecting upper story; some fine examples of the fourteenth century exist in York and other old towns.
Square. (Lat. Quadra.) A figure of four equal sides, and as many equal angles. An area of such form surrounded by houses, and ornamented in the centre with a lawn, shrubs, trees, \&c. In joinery, a work is said to be square framed, or framed square, when the framing has all the angles of its styles, rails, and muntins square without being moulded. The word is also applied to an iustrument for setting out angles square. See Carpenter's Square. It is alsu a measure used in building, of 100 superticial feet.
Square Shoot. A wooden trough for discharging water from a building.
Square Staff. A piece of wood placed at the external angle of a projection in a room, to secure the angle, which if of plaster would be liable to be broken, and at the same time to allow a good finish for the papering.
Squaring a handrale. The method of cutting a plank to the form of a rail for a staircase, so that all the vertical sections may be right angles.
Squaring a piece of stuff. The act of trying it by the square, to make the angles right angles.
Squincr. A small arch, or set of arehes, formed across an angle, as in a tower, to form a base for an octagon construction abore it.
Squint. See Magioscope.
Stable. Lat.) A building for the accommodation of horses.
Stack of Cmmneys. See Chimney.
Stadiem. (Gr.) In ancient architecture, an open space wherein the athlete or wrestlers exercised running, and in which they contested the prizes. It signifies also the place irself where the public games were celebrated, which often formed a part of the gymnasia. The word also denotes a measure of length among the Grecians, of 125 paces.
Staff Bead. See Angle-Bead; Square Staff.
Stage. A floor or story. In a theatre, the floor on which the performers act. The stage of a buttress is, in ceclesiastical architecture, the part between one splayed projection and the next.
Staned Guass. Glass stained throughout its thickness during its manufacture is known as "pot metal" glass. White glass is sometimes coloured on the surface only, whenee it is called "flashed" glass. Both sorts are used for decorating windows in patterns, as in churches. See Paintel Glass.
Staircase. That part or suldivision in a building containing the stairs, which enable persons to ascend or descend from one floor to another.
Stairs. (Sax. Sexsen, to step.) Stones, or other material forming steps, ranged one above and beyond another, by which a person can ascend a height. A series of steps or stairs for ascending from the lower to the upper part of a building, when enelosed, is cilled a staircase.
Stalk. (Sax.) An ornament in the Corinthian capital, which is sometimes fluted, and resembles the stalk of a plant ; from it spring the volutes and lelices.
Stall. (Sax.) A place or division in a stable wherein one horse is placed for feeding and sleeping. According to their number in a stable it is called a one-stall, two-stall, \&c., stable. This word is also used to denote the elevated seats in the choir or chancel of a church appropriated to ecclesiastics. The precentor's stall is the first return stall on the left on entering the choir. The dean's stall is the first return stall on the right.
Stanchion. (Fr. Estançon.) A prop or support. The upright iron bars of a window or open screen. Also a Puncueon.
Standards. The upright pieces in a plate rack; or above a dresser to support the shelving. When the edges of standards are cut into mouldings, according to the widths of the shelves, and across the fibres of the wood, they are called eut standards.
Staple. Λ small piece of iron pointed at each end, and bent round, so that the two ends may be parallel to each other, and of equal lengths, to be driveninto wood or into at wall, thus forming a loop for fastening a hasp or bolt.
Star Moulding. One of the usual decorations of a surface in Norman architecture. Fig. 1440.
Starlings or Sterlings, sometimes called Stilts. An assemblage of piles driven round the piers of a bridge to give it support.
Statics. See Mechanics.

Fig. 1440.

Statuary Marble. The pure white marble, such as is obtained from Carrara, and used by sculptors and carvers for their best works.
Statumen. A mortar of lime and sand used by the liomans for parements, as stated liy Vitruvius, vii. 1. See Ruperation.
Staves. Small upright eylinders, sometimes callel rounde, for furning a rack to contain the hay in a stible for the supply of it to the horse.

Stap. A piece performing the office of a brace, to prevent the swerving of the picce to which it is applied. The term is general, and applies to all materials.
Steel. (Sax. Szal.) Iron which possessed the properties of hardening and tempering, those properties depending essentially on the presence of carbon with the iron. Steel now, howerer, generally includes many rarieties of materials, which can be no more tempered or hardened than many qualities of wrought iron. The only difference between cast iron and steel was the proportion of carbon ; pure iron contained no carbon. The steel generally used for girder-work and plates contained perhaps $\frac{2}{10}$ per cent. of carbon, and directly it got to 1 and $1 \frac{1}{2}$ per cent. it beeame cast iron. It is also cheaply made, for great masses, by abstracting carbon from cast iron. The process for converting iron into steel was known to the ancients.
Steening. The brickwork laid dry (that is, without mortar), for forming the eylindrical slaft of a well or cesspool, to prevent the irruption of the surromnding soil.
Srefple. (Sax. Stenel.) A lofty erection attached to a church, chiefly intended to enntain its bells. The word is a general term, and applies to every appendage of this nature, whether tower or spire, or a combination of the two.
Srep. A block of any material, and of sueh a height as is within a moderate lift of a person's foot, say, seven inches at most. A series of steps form stairs.
Srergobata. See Pedestal.
Sereorraphic Projection. That projection of the sphere wherein the eye is supposed to le placed on the surface.
Stereography. (Gr. $\Sigma_{\tau \epsilon \rho \in o s, ~ s o l i d, ~ a n d ~} \Gamma \rho a \phi \omega$, I describe.) That branch of solid geometry which demonstrates the properties and shows the construction of all regularly defined solids; it explains the methods for constructing the surfaces on planes, so as to form the entire body itself, or to cover its surface; or, when the solid is bounded by plane surfaces, the inclination of the planes.
Srereotomy. The seience of cutting solids to suit the conditions required for their forms. Sticking. The operation of forming mouldings by a plane, in contradistinction to forming them by luand. When done they are said to be stuck.
Stile. (Sax.) The rertical part of a piece of framing into which, in joinery, the ends of the rails are fixed by mortises and tenons.
Stillicidicm. Dripping eares to Dorie buildings; but in the propylæum at Eleusis, the sima or upper moulding of the pediment cornice, is continued along the flanks, and a channel hollowed in it to collect the rain falling on to the roof.
Still Room. A room in a large mansion, wherein the housekeeper and her assistant prepare tea and coffee for the family and risitors, and make preserves, cakes, and liscuits, and so on. It was formerly the work-room of the lady of the house when engaged in making household cordials. In a smaller class of residence, this room frequently relieres the kitehen of all the lesser cooking, and of pastry making. It should adjoin the store and housekeeper's rooms.
Stilt. See Starling.
Stiled Arch. One in which the spring of the arch hegins not immediately from the imposts, but, from a vertical piece of masonry or lirickwork resting on them, so as to give to the arch an appearance of being on stilts (fig. 1441). In describing the care temples at Elephanta, Freoman, History of Architecture, p. 56 , notes, "the stilt or dé ahove the capital of the piers, and the manner in which it spreads into the roof; this would seem to be the rudest and most primitive form of the lracket capital, though it has less projection, and extends only in two directions." And in the Addenda, he says " f for this rery expressive word stilt I am under an obligation to a paper ly Professor Orlebar. It expresses a portion of masonry abore the regular colupin, which isconstrnetively part of the pier, but in the direction assumes the form either of a portion of the areh or of a distinct member." The first confirmed use

Fig. 1441. of the stilt oecurs in the Aralian buildings at Cairo, where it may hare been suggested by the dé of the anterior Eayptian style. In p. $2 / 2$ he further says, "stilted arehes cannut be always avoided whero openings of different brealth are required to be of the same height."
Stos. (Gr.) In Greeian architecture, a term corresponding with the Latin porticus, and the Italian portico.
Stock. The part of a tool for boring wood with a crank whose end rests against the breast of the workman, while with one hand he holds the boring end steady, and with the other turns the erank; the steel borers are ealled lits, and the whole instrument is called a stock and bit.

Stume. (Sax.) A natural indurated substance found beneath and on the surface of the parth in almoxt every part of the world, and which for its strength and durability häs been universally employed for building purposes.
Stuneware. A prepared clav, burnt and glazed to prevent water soaking through it; and used for jars, bottles, drain pipes, \&C.
Stoul. The name giren to the bench whereon the briek-monlder moulds his brieks.
Stouthing. A provineial term which signifies the batteming of walls. See Tworhing
Stop-cuck. A coek used in plambery to turn off the supply to a reservoir or tank.
Stopping. Making good cracks or defeets in plastering, wood, \&e.
ATory. (Lat. or Sax. Szon.) One of the verteal divis:ons of a building; a serios of apartments on the same level.
Story Pusts. Upright timbers disposed in the story of a building for supporting tho superineumbent part of the exterior wall through the medium of a beam over thent; they are chiefly used in sheds and workshops, and should hare either a solid wall below or stand upon a strong wooden sill upon inverted arches, or upon large stones with their ends let into sockets. They also form the posts at the ends of a trussod partition.
Story Rod One used in setting up a stairease, equal in lengih to the height of the story, and divided into as many parts as there are intended to be steps in the staircase, so that they may be measured and distributed with aceuraey.
Stoup. See Piscina.
Stove. An enclosed fire grate for the purpose of obtaining a large amount of heat. A chamber prepared specially for drying articles by heated air is often called a Stove.
Stragimt Arch. A lintel formed of separate pieces or roussons on the primeiple of the arch.
Straight Jonnt Floor. See Floor.
Strain. (Sax. Sepeng.) The furce exerted on any material tending to disarrange or destroy the cohesion of its componemt parts.
Straning Piece or Stretting Piece. A beam plaeed between two opposito heams to puerent their near approach, as rafters, braces, struts, \&ic. It such a piece serves also the offiee of a sill, it is called a straining sill.
Strap. (Dutch, Stroppe.) An iron plate for the connection of two or more timbers, into which it is screwed by bolts.
Street. A public way fur general traffic. The Metropolitan Board of Worke, under the "Metropolis Loeal Management Act, 188i," sect. 202, has power to compel notice of laying out new streets, and requires a width of 40 feet at least fur carriage traffic, and 20 feet for foot traffic, exelnsive of gardens, areas, \&c. A street shall have at the least two entrances of the full width of sueh street, and shall be open from the gromed upward. A definition of the word "strect" is given. The consent of the Board is required by seet. 75 of the Metropalis Management Act Amendment Aet, 1862, tu those oreeting buildings or structures beyond the general line of buildings in any street, place, or row of houses within 50 feet. Rules are also given for measuring the width, the curve of the earriage way, the height of the kerb 10 the foot-paths, and the slope of the footpath. By the same Act, sects. 98 and 99 , further legislation is extended, and by sect. 112 any mews is ineluded. The following are the widths of a few of the new streets:-Cannon Street, by St. Paul's, between kerbs, is 30 fept 6 inches; that of Cheapside, opposite Bow Chureh, is 31 feet; that of Queen Virtoria Street, 1872-5, is 80 feet; that of Victoria Street, Westmiuster, is 80 feet; and of Northumberland Avenue, 187j-6, is 80 feet.
Stretched out. A term applied to a surface that will just cover a body so extended that all its parts are in a plane, or may be made to coincide with a plane.
Stretcher. A briek or stone laid with its longer face in the surface of the wall.
Stretching Course. In walling, a course of stones or bricks laid with their longer dimensions in a horizontal line parallel to the face of the wall; it is exatetly the enmtrary of a heading course, in which the lreadths of the stones or bricks are laid in a straight line parallel to the face of the wall.
Strife. (Lat.) The lists or fillets between the flutes of columns.
Striated. Chamfered or chanueled.
Striges. The channels of a fluted column.
Striking. A term used to denote the dranght of lines on the surface of a body; the term is also used to denote the drawing of lines on the faee of a pieee of stuff for mortisus and cutting the shoulders of tenons. Auother application of the word oeeurs in the practice of joinery, to donote the aet of running a moulding with a plane. The striking of a centre is the remoral of the timber framing upon whieh an arch is built, after its completion.
Stung or String Pace. That part of a fight of stairs which forms its eciling of nofite. See Cambiage.

Stiang Biari). In wooden stairs, the board next the well-hole which receires the ends of the steps; its face follows the direction of the well-hole, whatever the furm; when curved, it is frequently formed in thicknesses glued together, though sometimes it is got out of the solid, like a hand-rail. See Cut String.
Stuing Cocrse. A projecting horizon'al course of stone, continued along the face of a building, frequently under winduws, to form a tie or bonding course. It is either plane or moulded.
Stirix. (Lat.) A channel in a fluted column. Fiute.
Strick. A term used to denote the remoral of any temporary support.
Strut. See Brace,
Strutting Beam or Piece, also Strut Beam. A term used by old writers in carpentry, for what is now called a straining piece ur collar beam. See also Bridging and Key.
Srocco. (Fr. Stuc.) A term indefinitely applied to calcareous cements of rarious deseriptions. Rough stucco is that finished with stueeo tloated and brushed. Basterd stucco is three-coat work in plastering: 1, the render enat; 2, floating, as to trowelled stuceo; and, 3, finishing, lime with a little hair and a little sand. This last is termed "setting" when used with fine stuff for papering, and is well finished.
Srumo. An apartment especially adapted for a persou to write or work in. It is generally presumed to be for art purposes.
Stuls. (Sinx.) The quarters or posts in partitions. See Quarters.
Sture. (Duteh.) A general term for the wood used ly joiners.
Stcmp Tracery. The later or after Gothie of Germany has tracery in which the rilis are made to pass through each other, and are then abruptly ent off. This maty be ealled stump tracery, necording to Professor Willis.
Stule. The diffcrent varieties of arehitecture. See Stile.
Stylobata. See Pedestal.
Subnormaln The distance between the foot of the ordinate and a perpendieular to the curve (or its tangent) upon the axis.
Sob-plinth. A second and lower plinth placed under the principal one in columns and pedestals.
Sub-principals. The same as auxiliary rafters or prineipal braces.
Subway. An underground passage. It now more espeeially refers to the arched raults formed under a street for the purpose of containing the sewer, and gas, water and other ppes, with a bench or footwiy for access to the former or tor making repairs to tho latter. The subway requires a trap with lalder for aceess, and veatilating shafts. Tho Builder journal, xviii. 640, illustrates a subway formed in London.
Sudatio and Sudatoriem. (Lat.) The same as Calipariem. See Concaneleata Sumatio. Summrr. (Perhaps from Ital. S ma.) The lintel of a door, window, ete. A beam tenonel into a girder to support the ends of joists on both sides of it. It is frequently nsed ats a synonyme for a girder. Also a large stone laid over columus and pilasters in the commeneement of a eross vault. It is, moreover, nsed in the same sense as lbessommir.
Summer Stone. The lowest stone at the end of a gable, st pping the eaves of the tiliug or slating. The first piece of the tabling is worked in the solid of the summer stone, and so becomes an abutment and support for the rest. It is also called a sliew corbel.
Summer Tree. Sce Dormant Tree.
Summering. See Beds of a Stoye.
Sun Ligit. A new method of lighting large rooms from the ceiling, by a number of gas jets placed under i reflector, with tubes through the eeiling and porhaps roof for earrying off the proluets of combustion and for ventilation. A valvo to prevent down dranghts is introdneed near the top of the tube.
Sunk Shenves. Such as are formed with a groove in their upper surface, to prevent plates, dishes, or other materials sliding off when pacel upright on them, is in a dresser.
Super-altar. A shelf or ledge let into the east wall just orer the altar or communion table, on whicl: are pliteed the altar cross, altar lights, and flower vases not allowed by law on the table itself.
Soperciliom, (Lat.) The lintel of a dorr. See Anthpagmenfa.
Superintendance. The architect's duty leing to see that the quality of the materials used, and of the workmanship are equal to those specified, and that the building is being erected in aceordance with the drawings and specifieations, his visits to the building will be regulated by his own judgment, the extent of his practice, the magmtudo of the works, the distanee they may lee away, whether a clerk of the works bo employed or not, and the reputation of the builder, and lastly the expectations of his elient. The young pratetitioner will soon learn which are the best occasions for risiting the works, ifter having seen to the setting out, to the drains, found tions. the footings commeneed, ete.
Supersetructura. (Lat.) Work built on the foundation of a buiding. The upper part. Suppont. See Points of Support,
Sirbase. The series of mouldings forming a eapping to the dato of a rom.
Surbased. An areh, vault, or dome of liss hight than half its span.

Sjemounted. An arch, vault, or dome rising higher than a semicircle.
Swalluw-tail. See Duye-tail.
Syenite. A stone which consists of feldspar and hornblende, of various colours, as reddish, dull green, \&c., as the feldspar or hornblende may predominate. It obtained the name from its abundance of syene, and according to Pliny was at first named pyropcecilos. It is, in fact, a species of granite, and is used in Pompey's Pillar at Alexandria. It is not the Egyptian porphyry, though often mistaken for it.
Symbol. An attribute or siga accompanying a statue, or a picture of a personage, in allusion to some passage in the life of the person represented, and hence often used as a figurative representation of the figure itself. The symbols connected with the metals are delineated herein s. v. Metals. From the constant occurrence of symbols in tha edifices of the Middle Ages it may be useful to insert a list of them, as attached to the A postles and Saints, most commonly found. The Cross has been received as a symbol of Christianity, and the crescent of Mahommedanism.

HOLY APOSTLES.

St. Peter.-Bears a key, or two keys with different wards.
St. Andreu.-Leans on a cross, so called from him ; called by heralds the "saltire."
St. John Evangelist. - With a chalice, in which is a winged serpent. When this symbol is used, the eagle, another symbol of him, is never given.
St. Bartholomew. - With a flaying knife.
St. James the Less.-A fuller's staff, bearing a small square banmer.
St. Jumes the Greater.-A pilgim's staff, hat, and escalop shell.
St. Thomes.-An arrow, or with a long staff.
St. Simon.-A long saw.
St. Jude.-A club.
St. Matthias.-A hatchet.
St. Philip. - Leans on a spear ; or has a long cross in the shape of a T.
St. Metthew.-A knife or dagger.
St. Murk.-A winged bion.
St. Luke.-A bull.
St. John.-An eagle.
St. Puul.-An elevated sword, or two swords in saltire.
St. John Baptist.-An Agnus Dei.
St. S'tephen.-With stones in his lap.

SAINTS.

St. Agatha.-Her breast torn by pincers.
St. Agnes.-A lamb at her feet.
St. Aidan.-A stag crouching at his feet.
St. Alphege.-His chasuble full of stones.
St. Antigradesma.-Covered with leprosy.
St. Anne.-Teaching the Blessed Virgin to read.
Her finger usually pointing to the words Radux
Jesse Floruit.
St. Antony, Eremite.-Devil appears to him in the shape of a goat.
St. Authony of Pudua.- Accompanied by a pig.
St. Apollonia.-With a tooth.
St. Barbara. - With a tower in her hands.
St. Blaise.-With a woolcomb.
St. Boniface.-Hewing down an oak.
St. Britius.-With a child in his arms.
St. Canute.-Lying at the foot of the altar.
St. Cathavine.-With a wheel and sword.
St. Cecilia. - With an organ.
St. Christopher. - A giant carrying the infant Sqviour on his shonlder across a stream. A monk, or female figure, with a lantern on the farther side.
St. Clement.-With an anchor.
St. David.-Preaching on a hill.
St. Denis.-With his head in his hands.
St. Dorothy. - Bears a nosegay in one hand and a sword in the other.
St. Dunstan.-Bears a harp.
St. Edith. - Wrshing a beggar's fect.
St. Edmund.-F'astened to a tree and pierced with arrows.
St. Edward.-Bearing in his hand the Gospel of St. John.

St. Eunuchus.-A dove lighting on his head.
St. Etheldrella, A bbess.-Asleep, a young tree blossoming over her head.
St. İustachins, or St. IInbert-A stag appearing to him, with a cross between its horns.
St. F'abtan.-Kneeling at the block with a triple crown at his side.
sit. F'uith. - With a bundle of rods.
St. Georye. With the Dragon.
St. Gertrude, Abbess.-With a loaf.
St. Giles, Abbot.-A hind with an arrow piercing
her neck, standing on her hind legs, and resting her fieet in his lap.
St. Gudult.-With a lanterr.
St. Hilury. - With three books.
St. llippolytus.-Torn by wild horses.
St. Hugh.-With a lantern.
St. Jonurrius.-Lighting a fire.
St. Jouchim.-With a staff, and two doves in a busket.
St. Latrence. - With a gridiron.
St. Slagnus.-Restoring sight to a blind man.
St. Margaret.-Trampling on a dragov, a crosier in her hands.
St. Mfartin.-Giving half his cloak to a begger.
St. Nicholus.-With three naked children in a tub, in the end whereof rests his pastoral staff.
St. Glilo, Abbot.- With two gobl-ts.
St. Pancras.-Trampling on a Saracen, a palm branch in his right hand.
St. Richard.-A chalice at his feet.
St. Rosaly. - With a rock in her arms.
St. Sebastian. - As St. Edmund, but withont a crown.
St. Ursula.-Snrrounded with virgins much less in size than herself.
St. Vincent.-On the rack.
St. Wallurga.-Oil distilling from her hand.
St. Waltheof. - Kneeling at the block, the suu rising.
St. Winifred, Abbess. - With her head in her arms.
St. Wulfstan. - Striking lis pastoral staff ou a tomb.

The Blessed Virgin is usually represente l-

1. At the Annunciation, "with an almond treo flourishing in a flower-pot.
2. At her Purification with a pair of turtle doves.
3. In her Agony, with a sword piercing her heart.
4. In her "Repose" (death).
5. In her Assumption.
6. With the blessed Saviour in her lap.
7. In her Ecstasy, kneeling at a faldstool, which faors the Temple, the Holy Dove descending on her.

Martyrs hold palme; Firgins, lamps, or, if also Martyrs, lilies and roses; Cunfessors, lilies; Iatriarchs, wheels.
Gtories round beads are circular, except when living prelates eminent for holiness are repre sented, when they are square.

Symbolism. Mr. Gwilt's remarks on this subject, written for insertion in his Appendix, are subjoined. "Invested with much of the character of chivalry and romance, the medizeval period has been often stated to have expressed in matter its spiritual impressions. The aspiring vertical lines of its monuments have by some been considered types of aspiration after the Divinity. This may or may not have been the case, but there can not be other than an indisposition to believe in symbolism, when there are so many forms in nature whose imitation, or the study thereof, would lead to the same results. Holding symbolism in churches as an idle conceit, not much will be said on that subjeet; but a few specimens of the nonsense it induces may as well be set down. The renerable Bede, for instance, says that the walls of a church are a symbol of the Christian worshippers that frequent the edifice. 'Omnes parietes templi per circuitum omnes sanetæ ecclesiæ populi sunt, quibus super fundamentum Christi locatis, ambitum orbis replerit.' The venerable scribe, be itobserved, is speaking of Solomon's temple. Again, in respect of cloors, we have 'Ostium autem templi Dominus est, quia nemo venit ad Patrem nisi per illum,' \&c. As to the windows, they are symbols of the saints and spiritual worshippers; ' Fenestræ templi sunt sancti et spirituales.' To come, however, to recent symbolisms, we find that the moderns have discovercd that the principal entrance of a church is a symbol of our entrance into physical and moral life; that the tympanum, or gable-like form, over the great western porch (whose origin is the Greek pediment, but raised to conform with the character of the style), is a symbol of the Holy Trinity ; the great rose window at the western end of a church is, from its circular form, accounted a-symbol of Divine Proridence! At Amiens, the four rose windows have been considered symbolical of the four elements! In respect of the towers, that on the left is said to represent the ecelesiastical and spiritual hierarchy, and that to the right, order, that is, the civil or temporal power! and generally, where four horizontal divisions oceur, the lower one is symbolical of the curé, the next upwards of the dean or archdeacon, the third of the bishop, and the fourth of the arehlishop. Should a fifth herizontal division occur, the primate is the type. So in the right hand tower, the lowest compartment represents the mayor, and in succession upwards appear a count, a duke, a king; and if the tower be covered with a spire, no less than an emperor appears. One is almost surprised that there is no symbol to represent the suisse of the continental, nor the beadle of our churches in this country. The interior of a church, according to the symbelists, affords some further curious features of mysticism. The principal entrance is at the foot of the Cross, because, by the use of the feet (i.e. travelling) the Gospel was preached! What is called canting heraldry surely does not equal this. The nave is said to represent the body of the faithful! The ceiling over the altar is accounted a symbol of hearen, and the chapels round the altar are said to represent the aureola round the head of Christ! But it is scarcely worth while to waste more time on the conside ration of such absurdity, where the things have been ingeniously fitted to the types, instead of the converse. There is, however, one other point connected with the subject, which has been recently revived, and a few words must be expended in notice of it." This is the vesica piscis.
Symmetry. (Gr. Evv, with, and Metp, I measure.) A system of proportion in a building, from which results from one part the measurement of all the rest. It also conveys the meaning of uniformity as regards the answering of one part to another.
Systyle. (Gr.) A colonnade or portico, in which tho iuter-columniation is equal to two diameters of the column.

Tabern. A provincial term for a cellar.
Tabernacle. (Lat.) In Catholic churches, the name given to a small representation of an edifice placed on the altar for containiug consecrated vessels, \&cc.
Table. In perspective, the same as the plane of the picture, being the paper or canvas on which a perspective drawing is made, and usually perpendicular to the horizon. In the theory of perspective, it is supposed to be transparent for simplifying the theory. In glass works and among glaziers, it is a circular plate of " crown" glass, being its origival form before it is cut or divided into squares. Twenty-four tables make a case.
Table or Tablet. (Lat. Tabula.) A flat surface generally charged with some ornamental figure. The outline is gencrally rectangular, and when raised from the naked of the wall, is called a projecting or raised table. When not perpendicular to the horizon, it is called a raking table. When the surface is rough, frosted, or vermiculated, from being broken with the hammer, it is called a rusticated table.
Tabeet. The same as Table; but is applied usually to a wall slab or momumental tablet.
Tabling. A term used by the Scotch builders to denote the coping of the walls of very common houscs.

Tambinum. (Lat.) In Roman architecture, an apartment situated in the narrow part of the atrium, as is supposed, fronting the entrance. Its exact position is not now known, and indeed the situation of it may, under circumstances, have raried; its true place therefore must be a matter of doult.
Tabulatum. (Lat.) A term used by the Romans not only in respect to the floors, wainscottings, ceilings, \&e., which were construeted of wood, but also to balconies and other projecting parts, which latter Vitrurius calls projectiones.
Tace. The name in Scotland for a Sally.
Tacks. Small nails used for various purposes, but principally for stretching cloth upon a board.
Thenia. (Gr.) The fillet which separatos the Dorie frieze from the architrave.
Tarl. (Verb.) A term denoting the hold of any bearing picce on that which supports it, as where the end of a timber lies or tails upon the walls. The expression is similar to what in joinery is called housing, with this difference, that housing expresses the complete surrounding of the cavity of the picce which is let in.
Tail Bay. Seo Case Bay.
Tall Thmmer. One next the wall, into which the euds of joists are fastened in order to avoid flues.
Tailing. That part of a projecting stone or brick not inserted in a wall.
Tailloir. (Fr.) Tho name which the French give to the abacus.
Talon. (Fr.) The name given by the French to the ogee.
Tambour. (Fr. a drum.) A term denoting the naked ground on which the leares of the Corinthian and Composite capitals arc placed. It signities also the wall of a circular temple surrounded with columas; and further the cirenlar vertical part below a cupolit as well as above it.
Tangent. (Lat. Tango.) A line drawn perpondicular to the extremity of the diameter of a circle, and therefore touching it only at one point. In trigonometry, it is a line drawn perpendicularly from the extremity of the diameter, at one end of the are, and bounded by a straight line drawn from the centre through the other.
Tank. A receptacle, generally formed undor ground, for liquids, as a water tank, liquid manure tank, \&c.
Tapering. A term expressive of the gradual approach, as they rise, of tho sides of a body to each other, so that if continued they would terminate in a point.
Tar. A product of the valuable family of the coniferous trees, and chiefly from the species of pine known as the Scotch fir. It is stored up in the roots, from which it is extractel by heat. When tar is subjected to heat a volatile spirit is dist:lled froun it, learing a black solid mass which is termed pitch. Buth have the property of resisting moisture.
Tarras. A strong cement, useful formerly in water-works.
Tassal, Tassel, Torsel, or Tossel. The plate of timber for the end of a beam or of a joist to rest on, as formerly in a chimmey, where the mantel tree rested on it at cach enl.
Tarern. A house open to the pullic where wine is sold.
Taxis. (Gr.) A term used by Vitruvius to signify that disposition which assigns to every part of a building its just dimensions. Modern architects have called it ordonnance.
Teaze Tenon. A tenon on the top of a post, with a donhle shoulder and tenou from cach for supporting two level pieces of timber at right angles to each other.
Tectoricm Opes. (Lat.) A name in ancient architecture given to a species of plastering used on the walls of their apartments.
Telamones. (Gr. T $\lambda \alpha \omega$, to support.) Figures of men used in the same mamer as Caryatides. They are sometimes called atlantes.
Temenos. (Gr.) 'The same as the Latin Templum. Sce Traple.
Tempered. An epithet applied to bricks which may be cut and reduced with ease to a required form. The term is also apphed to mortar and cement, which has been well beaten and mixed together.
Tempes. (Lat.) Timbers in the roof of the Roman temples, which rested on the cantherii, or principal rafters, similar to the purlins in a modern roof.
Template. An improper orthograpliy for Tempiet.
Temple. (Lat.) Gencrally an elifice erected for the public exercise of religious worship. Herein is described the different species of temples mentioned by Vitrurias, in Jook 3 of lis work. - Λ temple is said to be in antis when it has ante or pilasters in front of the walls, which enclose the cells, with two columns between the antie. Sre Fig. 1442. It was crowned with a pediment, and was not dissimilar to the prostylos temple, to which we shall preseutly come. In the fignere, \boldsymbol{A} is the cell, a a the antre. and if in front of them the columns $b b b b$ were placed, it would he a prostyle temple; \mathbb{C} is the door of tl e eell, and B the pronans. The appearance in front of this species is the same as the amphiprostyle temple, which is given in fig. 143 , and whorein columns are also placed
in front of the antre. Of the prostyle temple, an example, that of the temple of Jupiter and Fannus, existed on the island of the Tiber at Rome. In fig. 1443, the amphiprostyle temple, A is the cell, B the pronaos, C the posticus, D the door of the cell, and a a are

Tig. 1442.

Fig. 1443.
the autæ. It will be immediately seen that the same cleration will apply (fig. 144)

Fig. 144.
to both the plans just given. The amphiprostyle temple, be it olsorved (fig. 1413), lime

Fig. 1445.
columns in the rear us well as in the front, and is distinguishod ly that from the proo
etylos (fig. 1442), wherein the columns $b b b b$ would make that prostylos whieh, but for them, would be merely a temple in antis. The amphiprostylos then only differs from the prostylos by having columns in the rear, repeated similarly to those in the front. The fig. 1444 applies on double the scale of the plans to both figs. 1442 and 1443 , and is a diastyle tetrastyle temple, that is, one whose intercolumniations (see ColonNade) are of three diameters, and the number of whose columns is four.

A peripteral temple had six columns in front and rear, and eleven on the flanks, counting the two columns on the angles (see fig. 1445), and these were so placed that their

Fig. 146.
distance from the wall was equal to an interenlumniation or space hetween the columns all round, and thus it formed a walk around the cell. In fig. 1446 is the eleration of the species, which is hexastyle and eustyle, that is, with six columns in front, whose

Fig. 1447.

Fig. 144 s.
intercolumniation is custyle, or of two diameters and a quarter. (Sce Colonnsde.) In this figure, which is to a double scale of the plan, a a a are acroteria.

The pseudo-dipteral temple was coustructed with eight columns in front and rear

Fig. 1449.
and with fifteen on the sides, including those at the angles, see fig. 1447. The walls of

Fig. 1450.
the cell are opposite to the four middle columns of the front and of the rear. Hence,

Fig. 1451.
from the walls to the front of the lower part of the columns, there will be an interval
eq.al to two intercolumnations and the thickness of a column all romd. No example existed of such a temple at Rome; bat there was one to Diana, built hy Hermogenes of Alabanda, in Magnesia, and that of Apollo by Menesthes. The dipteral temple (fig. 1448) is octastylos like the former, and with a pronaos and posticum, but all round the cell are two ranks of columns: such was the temple of Diana at Ephosus, Luilt by Ctesiphom. The elevation (fig. 1449) is the same in the dipteral and pseududipteral temple, and in the figure is with the systyle intercolumniation.

The hypathral temple, or that uncovered in the centre, is decastylos in the prinnios and posticum; it is in other respects (see fig. 1450) similar to the dipteral, except.

Fig. 14.).
that in the inside it has two stories of columns all round, at some distanee from the walls, after the manner of the peristylia of porticoes as drawn in fig. 1451, in which one half is the clevation and the other half the presumed section of such a temple.

The peripteral temple has been deseribed, but thete is still another connected with that species, though distinct, and that is the pseudu-prripteral, or false peripteral. in which there is no passago round the walls of tho cell, but an appearamee of surrounding columns (see fig. 1452).

By this arrangement more room was given to the space of the cell. The clevation of this is given in fig. 1453.

2ig. 1453.
Vitruvius thas describes, as follows, the proportions of the Tuscan temple:-
The length of the site of the temple intendel (see fig. 145t.) must be divided into six parts, whence, by subtracting one part, the wi lth theroof is oltainod. The length is then divided into two paris, of which the furthest is assigned to the cell, that noxt the fro it to the reception of the columns.

The above witth is to be divided into ten parts, of which threa to the right and thrae to Who left are for the smaller cells, or for the alie, if such are requirel; the remaining form are to be given to the ecutral part. The space before the cells in the promas is to have
its columas so arranged that those at the angles are to correspond with the ante of the external walls: the two centritl ones opposite the walls between the antre and the middla of the temple are to be so disposed, that between the

Fig. 1454. antre and the above columns, and in that direction, others may be placed.

Their thickness below is to be one-seventh of their height, their height one-third of the width of the temple, and their thickness at top is to be one-fourth less than their thickness at bottom. Their bases are to be half a diameter in height. The plintlis, which are to be circular, are half the height of the base, with a torus and fillet on them as high as the plinth. The height of the capital is to be half a diameter, and the width of the abacus equal to the lower diameter of the column. The height of the eapital must be dirided into three parts, whereof one is assigned to the plinth or abaeus, another to the echinus, the third to the hypotrachelium, with its apopliyge.

Oyer the columns coupled beams are laid of such height as the magnitude of the werk may require. Their wilth must be equal to that of the hypotrachelium at the top of the column, and they aro to be so coupled tngether with dovetailed dowels as to leave a space of two inches between them. Abore the beams and walls the mutuli project one-fourth of the height of the columns. In front of these mentbers are fixed, and over them, the tympanum of the pediment, either of masonry or timber.
Of circular temples there are two speeies; the menopteral (fig. 1455) having colnmons without a cell, and the peripteral with a cell (fig. 1456). In this last the clear diameter of the cell within the walls 's to be equal to the height of the columns above the

pedestal. Of this species was the celebrated temple at Tivoli, in the admiration of which (i) nisgentient from its allowed beamey has hitherto been recorded. With it situation hils coubttess much to do.

Having thus related the description of Roman temples as known to Vitruvius, we give an eleration of two Grecian temples as restored, to contrast with the above descriptions of similar works. Fig. 1457 is the temple of Pallas, or of Jupiter Panhellenius at Egina, in the gulf of Athens. The ruins were explored in 1811 by Messrs. Cockerell, Foster, Haller and Lynek, with very remarkable success, in elucidation of every desired architectural detail, and of the then unascertained style of the Eginetan school of

Fig. 1457. Temule at Egina.
sculpture, constantly mentioned by ancient writers as of the first merit and of universal estimation. The temple is hexastyle peripteral, but has twelve culumns. only in the flanks. The top step measures 44 feet 10 inches by 93 feet 1 inch; the height to the point of the pediment is 35 feet. The pediments and acroteria were adorned with not less than thirty-four Parian statucs representing the two Trojan wars, in which the Aacide were engaged more especially. These sculptures are now at Berlin, but casts of them, placed in models of the pediments, are erected in the British Museum. Fig. 1430 shows the centre gronp of one of the perlimente to a larger scale. The date of this work is supposed to be not later than the sixtla century b.c.

Fig. 1458. The Parthenon at Athens.
Fig. 1458 is a representation of tho west front of the temple of Minerva, commonly called the Parthenon, at Athens. It is an example of the rare arrangement of the octastyle peripteral, the sides have seventeen columns. The top step measures 101.336 English feet by 228.15 feet; the height to the apex of the pediment is 59.27 feet. A capital of one of the eolumns and many of the seulptures of the pediments, metopa, and frieze around the cella, furmed a scries of the gens of Lorl Elgin's collection, and are uow in the British Museum. Ietinus and Callierates were the arehitects, and Phidias
the director of the sculpture, intrusted by Pericles with its erection. It is supposed that ten or fifteen years were so occupied, and that the temple was completed в.c. 438.
Templet. A mould used in masonry and brickwork for the purpose of cutting or setting cut the work. When particular aceuracy is required, two templets should be used, one for moulding the end of the work, and its reverse for trying the face. When many stones or bricks are required to be wrought with the same mould, the templets ought to be made of some metal.

The term is also used to denotea short piece of timber sometimes laid under a girder, particularly in brick buildings.
Tenia. The fillet or band at the top of the frieze in the Doric order.
Tenant. The occupier of a house and holding a lease or agreement from the landlord or other person. "Tenants in common" are such as hold by sereral and distinet titles, but by unity of possession. "Joint tenants" are such as have equal rights in lands or tenements by virtue of one title.
Tenon. (Fr. Tenir.) A projecting rectangular prism formed on the end of a piece of timber to be inserted into a mortise of the same form.
Tenon Saw. One with a brass or steel baek for cutting tenons.
Tension. The stretching or degree of stretching to which a piece of timber or other material is strained by drawing it in the direction of its length.
Tencalla. The house of God or temple of ancient Mexico. It is a pyramid formed in terraces with flat tops, and always surmounted by a chamber or cell, which is the templo itself, where the ceremonies were exhilited to the people. One at Cholulu is 1440 feet square, and 177 feet high, having four stories. The teocalla of Yucatan rises at an angle of about 45 degrees to the level of the platform on which the temple stood; an unbroken flight of steps leads from the base to the summit. That at Palenque is the finest yet discorered.
Tepidarium. (Lat.) A name given to one of the apartments of a Roman bath.
Teram. The seroll at the end of a step.
Tercento. The style of art prevailing in Italy during what is usually called tho fourteenth century.
Term or Terminal. A sort of trunk, pillar, or pedestal, often in the form of the frustum of an inverted obelisk with the bust of a man, woman, or satyr on the top. See Vagina.
Trerminus. The popular word for the station at each end of a railway.
Terra-Cotta. (It.) Baked earth. In the time of Passanias there were in many temples statnes of the deities made of this material. Bassi-rilievi of terra-cotta were frequently employed to ornament the friezes of temples. In modern times it has also been much used for architectural decoration, being modelled, or cast, or made up of pipe or potter's clay with fine sand and flint, and afterwards fired to a stony hardness, hardly to be scratched with a steel point. The manufacture is greatly used in a variety of ways for ornamental and useful purposes. "Many early productions, even of less durability than those now made, are found in ruins of stone, in which the latter material has been steadily disintegrating for thousands of years, but leaving the terrib cotta as perfect, in many cases, as if recently produced. In faithfully made and ritrified terra-cotta we have the great and lasting triumph of man over natural productions; for timber will rot ; stone, even granite, will disintegrate; iron will oxidise; all ot her metals will succumb to the action of fire, and to other destroying influenecs of the elements. Properly made and thoroughly burned terra-cotta will pass through centuries, and be the last to yield to those influences to which all natural productions must give way. In all architectural employments it is pract cally time-proof and indestructible. Very many important transactions recorded in this material have been found in a good state of preservation in the ruins of Babylon." (Davis, in Builder, xlvii. 479.)
Terbace. An area raised before a building above the level of the gromad to serve as a walk. The word is sometimes, but improperly, used to denote a balcony or gallery.
Tesselated Payexent. A rich parement of mosare work made of small squares of marbles, bricks, tiles, or pebbles, and called tesseloe or tesserce.
Tessera. (Gr.) A cube or die. This name was applied to a composition used some years ago for covering flat roofs, but now abandoned.
Testudo. (Lat.) A name given by the ancients to a light surbased vault with which they ceiled the grand halls in baths and mansions. Generally, any arched roof.
Tetradoron. (Gr) A species of brick four palms in length. See Burck.
Tetragon. (Gr.) A figure which has four sides and as many angles.
Teiraspastos. (Gr. Tetpa, four, and $\Sigma \pi \alpha \sigma \sigma \omega$, to draw.) A machine working with four pulleys.
Tetrastyle. (Gr. Tefpa, and $\Sigma_{\tau u \lambda o s, ~ a ~ c o l u m b .) ~ S e e ~ C o l o n n a d e . ~}^{\text {a }}$
Thatch. The covering of straw or reeds used on the roofs of cottages, barns, and such buildings; and sometimes the coltuge orné is so finished for a picturesque effict.

Tiffatre. (Gr. ©eaoual, to see.) A place appropriated to the representation of dramatie spectacles.
Theodolite. Au instrument used in surveying for taking angles in vertical or horizontal pl:nes.
Theorem. A proposition which is the suljeet of demonstration.
Tharme. See Bath.
Thorocgh Framing. The framing of doors and windows, a term almost obsolete.
Thorough Lighted Room. A room having windows on opposite sides.
Thresholi of a Door. The sill of the door frame.
Throat. See Gorge and Chimney.
Throvgh or Thorough Stone. A bond stone; a heading stone going through the wall.
Throst. The force exerted by any body or system of bodies against another. Thus the thrust of an areh is the power of the arch stones considered as a combination of wedges to overturn the abatments or walls from which the arch spring.
Tie. (Sax. Tian, to lind.) A timber-string, ehain, or iron rad connecting two bodies logether, which hare a tendency to diverge from eaeh other, sueh as tio-beams, diagonal ties, truss-posts, ete. Braces may act either as ties or straining pieees. Straining pieres are preferable to ties, for these cannot be so well secured at the joints ats straining pieces. See Angle Brace.
Tie beam. The leam whieh connects the bottom of a pair of prineipal raftors, and prevents them from thrusting ont the wall. Fig. 1459 is an illustration of a late mediseval example of a speeies of such a roof.

Fig. 1459. St. Mary's Clurch, Leicester.
rise Row. The iron rod securing the feet of the priucipal rafters in tho manner, and in lien, of the tie-bcam.
Therce Point. Tho vertex of an equilateral triangle. Arehes or vaults of the third point, whieh are called ly the Italians di terzo acuto, are sueh as consist of two ares of a circle intersecting at the top. Sce Pointei) Arch.
Ticna. The tie beam of an ancient timber roof.
Tine. (Sax. Tigel.) A thin pieee or plato of laked elay or other material used for the external eovering of a roof. A thieker sort sorves for paving. The flat tiles are called plain tiles, the eurved ones are pan-tiles ; these latrer, if made with a doublo curvature, are called Bridgewater tiles.

Fig. 1460.

In ancient buildings two forms of tiles were used. The imbrex, placed in regular rows to receive the shower, and the tegula, which covered and prevented the rain from penetrating the joints. The latter were fixed at the eaves with upright ornamental pieces called antefixe, which were also repeated along the ridge at the junction of the tiles. The present common tiles of Italy are on this principle. and are shown by fig. 1460. Similar tiles have of late years been manufactured in England, but the joints require to be set in mortar to prevent wet and snow drifting into the roof. Tile Creasing. See Creasing.
Tiling. The act of putting tiles on to roofs of buildings. The work itself is also so called.
Tiling Fillet. A chamfered fillet laid under slating or tiling, to raise it where it joins the wall, and prevent water from entering the joint. See Shreadino, Furing.
Tinber. (Siax, Timbnan, to build.) Properly denotes all sueh wood, either growing or cut down, as is suited to the purposes of building. A single piece of wood similarly employed is so called, as one of the timbers of a floor, roof, etc.
Thimbers. It is advisable, as directed by the Metropolitan Buildings Act 1855, that no timber or woodwork be plated in any wall or chimney breast, nearer than 12 inches to the inside of any flue or chimney opening:-Under any chimney opening within 18 inches from the upper surface of the hearth of such chimney opening:- Withiu two inches from the face of the brickwork or stonework about any chimney or flue, whers the substance of such brickwork or stonework is less than $8 \frac{1}{2}$ inches thick, unless tho fite of such brickwork or stonework is rendered :-and that no wooden plugs be driven nearer than 6 inches (not euough) to the inside of any chimney opening.
Tip (verb.) To discharge a barrow or waggon load of anything by turaing it on end or on one side.
Tomen, or Holed Stone. One of the many stones attributed to the Celtic inhalntants.
'lomb. (Gr. Tu μ Bos.) A grave or flace for the interment of a human body, including also any commemorative monument raised over such a place. The word embraces every variety of sepulchral memorial, from the meanest grave to the most sumptuous mansoleum.
Tingute. See Groove.
Toons. (Sax.) Instruments used ly artificers for the reduction of any material to its intended form, and with which they are assisted in fixing and ornamenting it.
Twoth. The iron or steel point in a gauge which marks the stuff in its passage, or draws a line parallel to the arris of the piece of wood.
Toothing. A projecting piece of material which is to be received into an adjoining pieco. A tongue or series of tongues. See Stoothing.
Top Beam. The same as Cullar Beam.
Top Rall. The uppermost rail of a picce of framing or wainscoting, as its name imports.
Tope. A Buddhist monument in a temple for preserving relics. Also the large mound enclosed and haring gateways, as the celebrated Sanchi tope, dating about 600 b.c.
Torsel. The same as Tassal.
Torston. The twisting strain on any material.
Tores. (Lat.) A large moulding whose section is semicircular, used in the bases of columus. The only difference between it and the astrigal is in the size, the astragal being much smaller.
Touch Stone. A smooth baek stone like marble. It was much used for tombs in tho 16 th and 17 th centuries, as in that of Henry VII.
Tower. (Say.) A lofty building of several stories, round or polygonal. See Stpisple.
Fuwn Hall. (Fr. Hôtel de ville. Ger. Stadthaus and Rathhaus.) A building in whicha the affairs of a town are transacted. It will necessarily vary with its extent and opulence. In towns of small extent it should stand in the market-place; in many of the towns of this country the ground floor has usually columns or piers, and forms the corn market, the upper floor being generally sufficiently spacious for transacting municipal business. Where the sessions and assizes, as in cities, are held at the town hall, it is necessary to proride two courts, one for the civil and the other for the criminal trials. In cities where much municipal business occurs, the number of apartments must of course be increased to meet the exigencies of the particular caso; and, if possible, a large hall should be provided for the meetings of the corporation. On the ground floor of the first class of town halls, courts, porticoes, or arcades, or spacions staireases, should prepare for and lead to the large apartments and conrts of law. Erery means should be employed in providing ample egress and ingress to the persons assembling. Fire-proof muniment rooms should be provided for the records and accounts. Court of Law.

For the disposition of these buildings the student may turn with profit to the examples abroad in wLich, generally, apartments are provided for every brauch of t! 10
government of the city. Durand, in his Paralléle des Edifices, has given several examples. We have chosen the Belgian examples, as most splendid, to remark upon; but it is not to be understood that fine specimens are only to be found in that country. France and Germany (see Builder for 1866) abound with such edifices, and a very voluminous work might be produced on the subject.

On the four principal hôtels de ville, that of Bruges is the earliest. Its
date is 1377 , and it is chiefly remarkable for the original wooden roof to the great hall. The Hoitel de Ville of Brussels is, as an edifice, the first of the class, whether considered by itself, or as the dominant feature of a place surrounded by buildings of the most unique and varied appearance, the most interesting that we recollect anywhere to have contemplated. It appears to have been completed in 1445 . Fig. 1460a. is a view of the east façade. An ancient building which oceupied this site, has not been entirely removed; for in the northern

Fis. I4Gua.
HOTEL DE YILLE; Elil'ssELS.
side from the tower. the piers of the loggia, which on the basement extends along the front, consist, at least three of them, of columns whose date is evidently a century carlier, and which it is probable were left when the main front of the building was earried up. Indeed, it seems highly probahle that when the architect Jean van Ruysbroeck undertook the tower, his part of the work, the hotel was in existence as high as the one-pair floor. The whole of the tower seems rather later than the date above given, which accords well enough with the northern wing. The authorities we have looked into scarcely, however, admit us to doubt its correctness. As the building stands executed, taking one of the bays on the northern side as a measuring unit, there are three measuring the central space for the tower, ten for the north wing, and eleven for the south wing; the height, to the top of the parapet, nine; to the ridge of the roof, thirteen; to the top of the spire, thirtythree. The tracery on the spire is very elegant, and is piereed throughout. It is 364 feet high, and erowned with a copper gilt colossal statne of St. Alichacl, the patron of the city, 18 feet high, which is so well balancel upon the pivot on which it stands that it is susceptible of motion with a very gentle wind. The interior of the edifice has a guadrangular court, with t:ro modern fountans, statues of river gods with reeds and vases, as usual in

GLOSSARY.

such cases. Besides the Grande Salle, there are mary interesting apartments, some whereof possess ceilings of great beauty. This fine monument is perhaps the most admirable example of the adaptation of the style to secular architecture that can be quoted.

Smaller in plan, but more beautiful and symmetrical, is the hôtel de ville of Louvain. It is the most perfect, in every respeet, of this class of buildings in Europe. Nothing can surpass the richness and delieacy of the tracery upon it. Like th:at at Brussels, it consists of three stories, but has no tower. Commenced in 1448 , it was not completed till 1463 by De Layens. It stands on a site of about 85 feet by 42 feet ; so that it derives little advantage from its absolute magnitude, and perhaps appears less than it really is, from the great height of the roof, which is pierced by four tiers of dormers or lucarnes. The angles are flanked by turrets, of which some notion may be formed by reference to fig. 1460b. and the ridge of the roof is receired at each end by another turret corbelled over from the gables. The façade towards the Place extends rather more than the height, and is pierced with twenty-eight windows and two doorways, being ten openings in each story, the spaces between the windows being decorated with canopics, and groups of small figures from the Old Testament. some whereof are rather licentions. This clarmingedifice, which in its delicate rich tracery had suffered much from time and the elements, has, at the joint expense of the town and government,

Fig. 1460b. undergone a complete renovation. This has, stone by stone, been effeeted with great eare and artistic skill by M. Goyers. The new work heing executed in very soft stone, which, however, hardens with exposure to the air, it has heen saturated with oil.

In form, though not in features, totally different from the hotels de ville we bave just left, is that at Ghent, never completed, but exhibiting, in what was executed of the design, a choice example of the last days of the flamboyant period. It was begun in 1481; in it are all those indications of clange in the solites and curves, as well as in the lines of the foliage and tracery, hat eventually proved its downfall; and the style is now out, if character with the habits of the age, from which alone a real st le of arehitecture can ever spring. The subdicivion of the building as to height is into two stories as to effeet, though in
reality there are more; and the transoms, which abound in the apertures, seem to reign in accordance with the horizostal arrangement of lines which was so soon to supereede the flaming curves that had prevailed fur nearly half a century. The elegant turret or tribune at the corner, with the part adjoining, in the richest flamboyant Gothic, is by Eustace Polleyt, 1527-60; the other façade, $1600-20$, has columns of three different orders superposed.

The most celebrated of town halls in Europe was that of Amsterdam, erected during the first half of the 17 th century by Van Campen. The design is given in Durand's Parallèle, and it also forms the subject of a volume, in folio, published in Holland, in 1661-64. The town halls at Antwerp and at Matestricht may be also referred to, but these have now been surpassed by modern structures; amongst them may be mentioned the town hall at Berlin, 1881. The Hôtel de Ville at laris was commenced 1533, and continued from 1549 or 1559 on the designs of Domenico Boccadoro, called by the French Dominique de Cortone, in what is now termed the style of the Renaissance. The additions which became necessary in consequence of the extended business of the city wore executed in the same style, and the building presented one of the finest and most picturesque features of the city, until 1870-71, when it was destroyed by fire ; its reconstruction was carriod out by Théodore Ballu.

St. Gcorge's Hall, at Liverpool, with the tuwn halls at Leeds, Halifix, Manchester, and other towns, large aud small, are modern examples. Such a building, for a moderate-sized market town (as referred to previously), might require, on the ground floor, a wide entrance vestibule, out of which would be a room for the police, with fonr or five cells for prisoners; an office for the board of health, witnesses' room, magistrates' room, wilh a staircase to the first floor, to consist of a common hall, at one end of which, or in the middle of one side, would be arranged the courts for any local purposes, as a county coart perhaps, with a retiring room for its chief. This hall would require a stairease for the public, entering at onco from the main thoroughfare. Apartments for the resident policemau, and tho usual conreniences, will also be necessary.
Trabeation. Another term for Entablatube.
Trans. The Latin term for a wall-plate.
Tracery. In Gothic architecture, the intersection, in rarious ways, of tho mullions in the head of a window, the subdirisions of groined vaults, \&ic. Sce Winnow Tracery.
Thachelivar. (Lat.) The neck or space immediately below tho capital in the Roman orders.
Tracing Cloth. A fine white cloth, prepared in a similar way to paper for rendering it transparent. Haring a very greasy surface it is not so easy to work upon it; and as it shrinks much if wetted, no large washes of colour can be put on it; even many small tints are detrimental to aceuracy. Lines made in error can be crased ly gently using a brush damped with some soapy water. The cloth renders this paper much stronger than tracing paper, and it is now constantly used for working drawings.
Tracing Paper. A tissue paper made tramsparent by a preparation of turpentine and wax, slightly washed over it and then allowed to dry. Formerly resin and oil were used, as may be seen in the old sketch Louks, where the paper has turned a dark brown colour, and sometimes sticks to the leaves. In England it is made in sizes of 60 in. by 40 in .; 40 in. by 30 in . ; and 30 in . by 20 in . The last-mamed size is also made of a thicker paper. The following are the sizes of modern French-made tracing pruer. It is also made 40 in . wide, and $21 \frac{1}{2} \mathrm{yds}$. in length:-

Besides this, J. Ponre and Co. make a ferro-prussiate paper, which crives whito lines on a blue ground, and supplied in rolls thirty and forty inches wide, of thin, thick, and extra thick paper. This not having licen considered a very satisfactory process, a "black-line process," by Bemrose and Sons, of Derly, has lately been brought out (1888), l.y which copies of the original drawings can loo producel; they can also be coloured and treated as ordinary drawings. It is called "Perfection Brand Scnsitized Paper" (black-line process).
Tracings. An aniline process of photographic printing was patented a few years since by Mr. Willis, wherelyy facesimile copies of tracings are obtained, of the samo
size as the originals, howerer large their dimensions, and copies can be supplien in a few hours. Delicate tinting as well as the black outlines are fitithfully reproduced. By this process uo cost is incurrel for drawing, engraving, or lithographing. Drawings on thin drawing paper and on parclament can also be copied by this process.
Trammel. An instrument for describing an ellipsis by continuel motion.
Transept (quasi Transscptum). The transverse portion of a cruciform church; that part which is placed between and extends beyond those dirisions of the building containinr the nave and choir. It is one of the arms projecting each way on the side of the stem of the cross.
Transition. A term used to denote the passing from one period of a style to another, exhibiting features peculiar to both, some of which have not quite been given up, and some of which were beginning to be introduced.
Transow. A beam or beams across a window to divide it into two or more lights in height. A window having no transom was formerly called a clear-story window.
Transtra. (Lat.) The horizontal timbers in the roofs of ancient Roman buildings.
Transvarse. Lying in a cross direction. The transverse strain of a piece of timber is that sidewise, by which it is more easily bent or broken than when compressed or drawn as a tie in the direction of its length.
Trap. In drainago and water escape, an article formed in any material to prevent the escape of foul air ; such as a bell trap, syphon trap, D trap, \&c.
Trapfzicm. (Gr.) In geometry, a quadrilateral figure, whose opposite sides are not parallel.
Trapezoid. (Gr.) A quadrilateral figure haring one pair of opposite sides parallel.
Treaverse. A gallery or loft of communication in a church or other large building
Trkad. The horizontal part of the step of a stair. It can be greatly prutected where there is much traffic, by squares of hard wood inserted grain upwards into a light castiron frame, which is then secured to the original tread.
Trefoil. In Gothic architecture, an ornament consisting of three cusps in a circle.
Tremice. A reticulated framing made of thin bars of wood; it is used as a screen to windows where air is required for the apartment, \&c.
Trenail. A large cylindrical wooden pin, used in roof work and framing.
Tresssel or Trussel. Props for the support of anything the under surface of which is horizontal. Each tressel consists of three or four legs attached to a horizontal part. When the tressels are high the legs are sometimes braced. Tressels are much used in building for the support of seaffolding; and by carpenters and joiners while ripping and cross-catting timber, and for many other purposes.
Triangle. (Lat.) A plame rectilincal figure of three sides, and consequently of three angles. In measuring, all rectilineal figures must be reduced to triangles, and in constructions for carpentry all frames of more than three sides must be reduced to triangles to prevent a revolution round the angles.
Triangular Conpasses. Such as have three legs or feet by which any triangle or any three points may be taken off at once.
Tribune. See Apsis.
Tricunicm. (Lat.) The room in the Roman honse wherein the company was received, and seats placed for their accommodation. It was raisel two steps from tho peristyle, and had therein a large window, which looked upon the garden. The aspect of winter triclinia was to the west, and of summer triclinia to the east.
Triforivar. (Lat.) The gallery or open space between the vaulting and the roof of tho aisles of a church, generally lighted by windows in the external wall of the building, and opening to the nare, choir, or transept over the main arches. It occurs only in larige churches, and is varied in the arrangement and decoration of its openings in each succeeding period of architecture. See figs. 1417 to 1422. There is no triforium in Bath abbey church, nor to the choir at Bristol cathedral.
Triglyph. (Gr. T $\rho \in i s$, and $\Gamma \lambda v \phi \eta$, a channel.). The vertical tablets in the Doric frieze chamfered on the two vertical edges, and having two channels in the middle, which are doulle channels to those at the angles. In the Grecian Doric, the triglyph is placed upon the augle; but in the Roman, the triglyph nearest the angle is placed centrally over the column. The space between the channels was called a femur and meros. Fig. 1461 is an example of a triglyph with the metope decorated with a bull's skull and garlands, as used in Italian architecture, by Sir William

Fig. 1461. Chambers and others. See Shank.

Ditriglyph is the arrangement by which two triglyphs are obtained in the frieze between those which stand over the columns.

Tritriglyphs is where there are three so placed,

Thiganometry. (Gr. T ρ eis, three, Г $\omega \nu$ a an angle, and M $\epsilon \tau \rho \omega$, I measure.) The science of determining the noknown parts of a triangle from certain parts that are given. It is either plane or spherical; the first relates to triangles composed of three right lines, and the second to triangles formed upon the surface of a sphere by three circular ares. This latter is of less importance to the architect than the former.
Thilateral. (Lat.) Having three sides.
Tailition. Two upright stones linked together by a third on the top like a lintel ; many such are seen at Stonehenge.
Tum. (Verb.) To fit to anything; thus, to trim up, is to fit up.
Trimmed. A piece of workmanship fitted between others previously executed, which is then said to be trimmed in between them. Thns, a partition wall is said to be trimmed up between the floor and the ceiling; a post between two beams; a triwmer between two joists.
Trmmed out. A term applied to the trimmers of stairs when brought forward to receive the rough strings.
Trimmer. A small beam, into which are framed the ends of several joists. The two joists, into which each end of the trimmer is framed, are called trimming joists. This arrangement takes placo where a well-hole is to bo left for stairs, or to avoid bringing joists near chimneys, etc.
Trine Dimensions. Those of a solid, including length, breadth, and thickness; the same as threefold dimensions.
Tripon. (Gr. Tpets, aud חous, a foot.) A table or seat with three legs. In architectural ornament its forms are extremely varied, many of those of the ancients are remarkable for their elegance and beauty of form.
Terptycr. A picture with folding doors, the inside of which is either also painted, or else decorated with diapers, etc. Whon the picture has only oue door, it is called a diptych.
Trisection. The division of anything into three equal parts.
Triempial Arch. A building of one arch erected first by the Roman people in memory of the victor, his trophios being placed on the top. Subsequently they becane enriched and loaded with ormaments, and later were penetrated by three apertures, a central and two smaller ones. The arch of Trajan at Ancona, and that of Titus at Rome, have one arch; an arch at Verona has two openings; while those of Constantine, Septimius Severus (fig. 1462 as restored) and others, have three. There are numerous modern examples, such as the are de l'etoile at Paris; the arco dalle pace at Milan; tho marble arch at London, etc.

Fig. 1462. Septimins Severus, as restored.

Trochilus. (Gr. Tpoxinos, a pulley.) An annular moulding whose section is coneare, like the edge of a pulley. It is moro commonly called a scotia, and its place is between the two tori of the base of a column.
Trochoid. (Gr. Tpozos, a wheel, and Eibos, shape.) A figure described by rolling a circlo upon a straight line, such circle having a pin or fixed point in its circumference upon a fixed plane, in or parallol to the plane of the moving circle. It is also called a eycloid.
Trophy. (Gr. Tpomazov.) An ornament represonting the trunk of a troo charged with various spoils of war.
Trovgir. (Sax. Troh.) A vossel in the form of a rectangular prism, open on the top for holding water.
Troven Gutter. A gutter in the form of a trongh, placed below the dripping eaves of a house, in order to convey the water from the roof to the vertical trunk or pipe by which it is to be discharged. It is only used in common buildings and outhouses.
Truncated. (Lat. Trunco, I cutshort.) A term employed to signify that the upper portion of some solid, as a cone, pyramid, sphere, cte. has been cut off. Tho part which remains is called a frustum.
Tronk. That part of a pilaster which is contained between the base and the capital. Also a vessel open at each end for the diseharge of water, rain, cte.
Truss. (Fr. Trousse.) A combination of timber framing, so arranged that if suspended at two given points, and charged with one or more weights in certain othors, no timber would press transversely upon another except by strains cxerting equal and opposito forces.
Truss Partition. One containing a truss within it, gencrally consisting of a quadrangular frame, two braces, and two queen posts, with a straining post botween them, opposite to the top of the braces.
Truss Roof. A roof formed of a tiebeam, principal rafters, king post or queen post, and other necessary timbers to carry the purlins and common rufters, etc.
Trussed Bram. One in which the combination of a truss is iuserted between and let into tho two pieces whereof it is composed.

Trussing Pieces. Those timbers in a roof that are in a state of compression.
Try. (Verb.) To plane a piece of stuff by the rule and square only.
Tube. (Lat.) A substance perforated longitudinally; generally quite through its length.
Tuck Pointing. In old brickwork, after it has been well washed and the mortar raked out, the joints are filled with new mortar; the face of the work is then coloured yellow or red, as desired. Lines to mark the joints are made by putting on a ridge of lime putty with the point of the trowel orer the new mortar, and cutting it straight and to the required width by means of a straight edge and knife.
Tudor Stice. A name given to the late portion of the Perpendicular Gothic, from the line of sovereigns in England who reigned during its prevalence. The arch is of a four-pointed obtuse shape.
Tofa. A mass of volcanic earth, consolidated. Tufo is a mass of agglomerated sand without rolcanic character. Tufaceous, mixed with tufo.
Tumbled in. The same as trimmed in. Sce Trinmed.
Tonulus. A barrow or artificial earth mound. Among the Celtic works the former was sepulchral, and the latter perhaps erected for beacens or for a memorial purpose.
Tunnel. (Fr.) A subterranean channel for carrying a stream of water under a rond, hill, etc., or through which a road or railway is run.
Tun of Water. See Water, Weight of.
Turning Piece. A board with a circular face for turning a thin brick arch upon.
Turpentine. Turpentine is obtained by exudation and hardening of the juice flowing from incisions into pine trees. To obtain the oil of turpentine, the juice is distilled in an apparatus like the common still, and water is introduced with the turpentine.
Turret. (Lat. Terris.) A small tower often crowning the angle of a wall, ete.
Tuscan Order. The first of the five orders used in Roman and Italian architecture. See fig. 1454.
Tusk. A bevel shoulder made above a tenon, and let into a girder to give strength to the tenon.
Trmpanum. (Gr.) The naked face of a pediment (see Pediment) included between the level and raking mouldings. See Etialol and Etoma. The word also signifies the die of a pedestal, and the panel of a door.
Type. (Gr. Tutos.) A word expressing by general acceptation, and consequently applicable to, many of the rarieties involved in the terms model, matrix, impression, \&c. It is, in architecture, that primitive model, whatever it may have been, that has been the foundation of erery style, and which has guided, or is supposed to have guided, the forms and details of each. What it was in each style is still only conjecture.
Txpe. The canopy over a pulpit, also called a sound board.

U

Undercroft. A vaultunder a church or chapel. See Crypt, Croft, and Shrowds.
Underpinning. Bringing a wall up to the ground sill. The term is also used to denote the temporary support of a wall, whose lower part or foundations are defectivo, and the bringing up new solid work whereon it is in future to rest. See Goufing.
Underpitch Groin. See Welch Groin.
Ungula. The portion of a cylinder or cone comprised by part of the curved surface, the segment of a circle, which is part of the base, and another plane.
University. An assemblage of colleges under the supervision of a senate, etc.
Uphers. Fir poles, from four to seven inches in diameter, and from twenty to forty feet in length. They are often hewn on the sides, but not entirely, to reduce them square. They are chiefly used for scaffolding and ladders, and are also employed in slight and common roofs, for which they are split.
Upright. The eleration of a building; a term rarely used.
Urila. See Helix.
UrN. (Lat.) A vase of a circular form, destined among the ancients to receire and preserve the ashes of the dead. With the vase, it often forms a decoration to the pedestal of a balustrade on a terrace, top of a wall, etc.

V

Vagina. (Lat.) The lower part of a terminal in which a statue is apparently inserted.
Valley. (Lat.) The internal meeting of the two inclined sides of a roof. The rafter which supports the valley is called the valley rafter or valley piece, and the board fixed upen it for the leaden gutter to rest upon is called the valley board. The old writers called the valley rafters sleepers.
$V_{\text {alve. (Lat.) Anything which opens on hinges or pivots as a door. }}$
Vane. A plate of metal shaped like a banner fixed on the summit of a tower or steeple, to show the direction of the wind.

Vanishing Line. In perspective, the intersection of the parallel of any original plane and the picture is cilled the vanishing line ot such plane. The vanishing point is that to which all parallel lines in the same plane tend in the representation.
Vaporariom. (Lat.) The same as Caldariem.
Variation of Curvature. The change in a curre by which it becomes quicker or flatter in its different parts. Thus, the curvature of the quarter of an ellipsis terminated by the two axes is continually quicker from the extremity of the greater axis to that of the lesser. There is no variation of curvature in the circle.
Varnish. A glossy coat on painting or the surface of any matter. It concists of different resins in a state of solution, whercof the most common are mastic, sandarac, liae, benzoin, cupal, amber, and asphaltum. The menstrua are either expressed, or cessential oils, or alcohol.
Vase. (Lat. Vas.) A term applied to a ressel of various forms, and chiefly used as ath ornament. It is also used to denote the bell, or naked form, to which the foliage and volutes of the Corinthian and Composito capitals are applied. The vascs of a theutre in ancient architecture were bell-shaped vessels placed under the seats to produce reverberation of the sound. See Echea.
Vaulf. (It. Volto.) An arched root over an apartment, concave towards the roid, whose section nay be that of any curre in the same direction. Thus a cylindric vault has its surface part of a cylinder. A full-centred vault is formed by a semi-cylinder. When a vault is greater in height than half its span, it is said to be surmounted; when less, surbascd. A rampant vault springs from planes not parallel to the horizon. The doul, e vanlt occurs in the case of one being abore another. A conic cault is formed of part of the surface of a cone, as a spherical vauit consists of part of the surface of a sphere. The plane of an annular vault is contained between two concentric circles. A valult is said to be simple when formed by the surface of some regular solid round one axis, and compound when formed of more than one surface of the same solid or of two different sollids. A cylindro-cylindric vault is formed of tho surfaces of two unequal cylinders; and a groincd vault is a compound one rising to the same hejght in its surfaces as that of two equal cylinders, or a cylinder with a cylindroid. The reins of a vault are the sides or walls that sustain the arch. See Fan Vaulting.

The following table gives the clear breadths and heights in English feet, of the most remarkable raulted avenues, as given by Mr. Garbett in his "Principles of Design in Architecture":-

Date. ${ }^{\text {d }}$	Name.	Bramith.	Height.	Propurtion.
Tarquin I.	Cloaca Maxima	16	26	1:1.62.i
1st cent.	Temple of Peace, Rome	83	121	1:1.16
2nd or 3rd	Second Teniple at Ba:lbec	63	93	$1: 1.47$
11 th	Cathedral at Speser - -	45	107	1:2.35
13th	-_- Silishury	35	84	$1: 2 \cdot 3$
	-_- Amiens -	42	147	1:35
	-_- Cologne	$41 \frac{1}{2}$	145	1:35
	Westminster Abbey - -	33	99	1:3
14th	Cathedral at York (not vaultou)	46	92	1:2
	-_ Milan	55	165	1:3
	Choir at Beaurais Cathedral - -	48	167	1:35
15th	Chapel of King's College, Cambridge	40	80	1:2
16 th	Cathedral at Florence - - -	55	110	1:2.54
17th	-_- of St. Peter's, Rome - -	84	147	$1: 1.74$
	-_ - St. Paul's, London.	41	82	1:2

Thus St. Peter's has the same external height as Amiens but gives twice the breadth; yet both are considered well proportioned arenues in their respectivo styles.
Vaulted Cemeng. A ceiling built of stonc, bricks, or blocks of wood, supporting itself on the principle of the arch.
Viulting Suaft. A pillar, sometimes rising from the floor, or only from the capital of a pier, or even only from a corbel, from the top of which spring tho vaulting ribs of the groining.
Velarium. (Lat.) The great awning, which by means of tackle was hoisted orer the Roman theatre and amphitheatre to protect the spectators from the rain or the sun's rays.
Veliar Cupola. A term used by Alberti to denote a dome or spherical surface termimated by four or more walls, frequently used over largo staircases and salons, and other lofty npartments.

Veneer. A rery thin leaf of wood of a superior quality, for covering furniture, ete, made of an inferior wood. Wafers of wood thirty-two inches wide were made about 1824.
Venetian Door. A door having side lights on each side of its frame.
Venetian Style. That style of modern Italian arehiteeture formed by the architects of the Venetian states in the fifteenth to the early part of the serenteenth centuries.
$V_{\text {finftian }}$ Window. One formed with three apertures separated ly slender piers from each other, whereof the centre one is mueh larger than those on the sides.
Vent. The flue or funnel of a chimney ; also any conduit for carrying off that which is offensive.
Vemtiduct. A passage or pipe for the introduction of fresh air to an apartment.
$V_{\text {entilation. The eontimal ehange of air to an apartment, or portion of an edifice, \&e. }}$ The architect has to provide means for letting off or taking a way the foul air, gencrally by apertures at the upper part of the room, etc., to which the hot air will ascend, is well as to provide for the almission of fresh air in sufficient quantities to take its place or to force it out without any appreciable eurrent.
Verandah. An open gallery having a roof supported by light pillars, and placed over the windows of the prineipal rooms of a house to shelter them from the rays of the sun, and under which persons can promenade for fresh air. It is sometimes onclosed with glass screens to form a conservatory.
Verge Buards. See Barge Buarls.
Vermicolated Work. (Lat.) A term applied to rustic-work which is so wrought as to have the appearance of having been eaten into by worms.
$\dot{V}_{\text {Rrtex. }}$ (Lat. the top.) A term generally applied to the termination of anything finishing in a point, as the rertex of a cone, ete.
Viritical Angies. The opposite ones made by two straight lines cutting each other.
Vrrtical Piane. One whose surface is perpendicular to the horizon.
Vesica Piscis. (Lat. a fish's bladder.) A wrm which may be proluced in the endeavour to gain two lines at right angles with each other. Ares of circles inclosing two equilateral triangles drawn on the same base line will also produce it. It was a monogran, which has been supposed to be connected with the plan and form of churehes erected during the mediæval period. Many mediæval seals of eeclesiastieal and other communities were designed on the same form, and have been imitatel of late for those of some archæological societies. See Symbolism.
Vretinule. (Lat. Vestibulum.) An apartment which serves as the medium of communieation to another room or series of roms. In the Roman houses it appears to have been the place before the entrance where the clients of the master of the house, or those wishing to pay their eourt to him, waited before introluetion. It was not considered as forming a part of the house. The entrance from the cestibulum led immediately into the atrium, or into the cavedium.
Vistry. (Lat. Vestiarium.) An apartment in, or attaehed to, a ehureh for the preservation of the saered restments and utensils. A sacristy; see Diaconicum.
Vibration. A motion or eombination of motions. The theory of the vibrations of the particles of an elastie fluid is the key to what is known of the phenomena of sound and light: and it is supposed that the causes of the sensible phenomena of heat, eleetricity, and magnetism will be found in the vibrations of matter of some kind. It is statrol that iron kept constantly in a state of vibration oxidates less rapidly than that which is at rest, as exemplified in railway rails. It is recorded that the greatest vibration on the timber temporary bridge over the river Thames at Blackfriars was produced by empty four-wheel cabs. The vibration on the top platform, though it appeared considerable, was in faet only a quarter of an inch.
Vice or Yis. (Fr.) An old terin applied to a spiral or winding staircase. In mechanies, a machine serving to hold fast anything worked upon, whether the purpose be filing, bending, riveting, ete.
Vilea. A conntry-house for the residence of an opulent person. Among the Romans there were three descriptions of villa, each having its particular destination, namely, the Iilla urbana, whieh was the residence of tho proprietor, and contrined all tho conveniences of a mansion in the eity. The lilla rustica, which containel not only all that was essential to rural economy, sueh as barns, stables, etc., but comprised lolging apartments for all those who ministered in the operations of the farning establishment. The I'illa fructuaria was appropriated to the preservation of the difforent produetions of the estate, and contained the granaries, magazines for the oil, cellars for the wine, etc.
Village Hoseital. A class of building lately recommended to be formed in small localities fur the purpose of preventing the spread of fevers, \&ic., by at once plaeing the sick under proper treatment.
Vmana. The name for the temple of the Hindoos, in front of which is the mantapa or poreh, and again the gopura or pyramidal entrance gateway.
Vlvery. A house for the cultivation of vines. See Cunservatory.

Visorium. (Lat.) See Amphitheatre.
Visoal Point. In perspective a point in the horizontal line in which the visual rays unite. Visual Ray. A line of light supposed to come from a point of the object to the eye.
Vitruvian Scroll. See Scroll.
Vitrification. The hardening of argillaceous stones by heat. See Brick ; Terra Cotta. Vivo. (Ital.) The shaft of a column.
Volure. A spiral seroll whieh forms the principal feature of the capital of the Ionic order in Greek and Roman architecture. The capital of the Corinthian order has one smaller in size (Helix), which is enlarged in that of the Composite order. Several methods have been put forward of deseribing the spiral lines of the Ionic volute. The returns or siles are called pulvinata or pillows. Balteus is the outer fillet on the side of the volute. Vomitoriom. (Lat.) See Amphitheatre.
Voussoir. (Fr.) A wedge-like stone or other matter forming one of the pieces of an arch. See Arch. The centre voussoir js called a keystone:
Vulcanised India Rubber. A material perhaps only brought into requisition by the arehitect for the purpose of excluding draughts from doors and the entry of dust into elosets or cases. As a tube, with or without a spiral wire in it, $1 t$ is grcatly used for morable gas-lights.

W

Wagaon-headed Ceiling. The same as cylindrical ceiling. See Vault.
Wainscot. (Dutch, Waysehot.) A term usually applied to the oak or deal lining of walls in panels. The wood originally used for this purpose was a foroign oak, and called wainscot, hence the name of the material bccame attached to the work itself.
WALL. A body of material for the enelosure of a building and the support of its varions parts. "External wall" shall apply to every outer wall or vertieal enclosure of any building, not being a party wall (Metropolitan Building Act, 1855.) "Cross wall" shall apply to every wall used or built in order to bo used as a separation of one part of any building from another part of the same building, such building being wholly in one oecupation. (Idem.) Sce Pabty wall.
Walings. See Shoring.
Walls of the Ancifits. See Masonry.
Walls, Cased. Those faced up anew round a building, in order to cover an inferior material, or uld work gone to decay.
Walnut. A forest tree used in cabinet work.
Washer. A flat picee of iron, or other metal, pierced with a hole for the passage of a serew, between whose nut and the timber it is placed, to prevent compression on a small surface of the timber. Also the perforated metal plate of a sink or drain, which can be removed for letting off the waste water, and thus more easily cleansing it.
Wasting. Splitting off the surplus stone from a bloek, with a point or a pick, reducing it to nearly a plane surface. In Scotland it is called clouring.
Water. See Weight.
Water Joint. A joint between two stones in the paring of a terrace, where eaeh side of the joint for about an inch is made level and then rounded off into a sinking of the stones, to prevent water lodging in tho joint, especially if occasionally covered with it, as a river landiug-place.
Water Joint Hinoz. A hinge made into a sort of loop at the turning part, whereby it is less likely to stiffen by rusting, as it is generally used in out-door work.
Water Shoot. See Square Shoot.
Water Supply. See Plumbrry, See Aquedrct.
Water Table. An inelined plane where a wall sets off to a larger projection, for the purpose of throwing off any water that may fall upon that plane, and is principally used to buttresses and other similar parts of mediæval buildings : but in all styles it is an efficient way of attaining the above desirableoljeet. Where a stone entallature oceurs, the top is often covered with lead to prevent water soaking through.
Waves. In many engineering works, the weight of the stone to be employed is of the utmost importance, especially for low buildings occasionally under water, where there is a rapid current, or where they are subject to the influence of powerful wases. Snch circumstances will requiro a heavier stone to be used than may at first have been considered necessary, beeause all bodies immersed are reduced in weight by so much as is equal to that of the bulk of water whieh they displace. The force of the waves at, Skerryvore lighthouse was found to be 4,335 lbis. per square fout; that at Bell linck
lighthouse was $3,013 \mathrm{lbs}$. The highest force obscrved was $6,000 \mathrm{lbs}$. For weight of water, see Weight.
Weatifr Boarding. Boards nailed with a lap on each other, to prevent tho penetration of the rain and snow. The boards for this purpose are generally made thinner on one edge than on the other, especially in good permanent work. The feather edged board is, therefore, used in such cases, the thick edge of the upper board being laid on the thin edge of that below, lapping about an inch or an inch and a half, and the nails being driven through the lap.
Weather Moulding. A moulded string course. The projecting moulding of an arch, having a weathered or sloped surface at top, serving to throw off the rain, and to protect the other mouldings. See Hood Mould.
Weather Tilino and Slatina. The covering an upright wall with tiles, or with slates.
Wedge. (Dan. Wegge.) An instrument used for splitting wood or other substances; it is usually classed among the mechanical powers.
Weight. (Sax. Wihr.) In mechanies, a quantity determined by the balance; a mass by which other bodies are examined. It denotes anything to be raised, sustained, or mored by a machine as distinguished from the power, or that by which the machine is put in motion.
Wetght, in commerce. A body of given dimensions, used as a standard of comparison for all others. By an act of parliament passed in June, 1824, all weights were to remain as they then were, that act only declaring that the imperial standard pound troy shall be the unit or only standard measure of weight from which all other weights shall be derived and computed; that this trey pound is equal to the weight of 22.815 cubic inches of distilled water weighed in air at the temperature of 62° of Frhrenheit's thermometer, the barometer being at 30 inches, and that there being 5760 such grains in a troy pound, there will be 7,000 grains in a pound avoirdupois.

Troy Weight.
24 grains $=1$ pennyweight.
480 . . . = 20 = 1 ounce.
$5760 \ldots=240 \ldots . . .=12 \ldots=1$ pound.
Avoirdtpuis Welght.

16 drams	$=1$ ounce.
$256 \ldots=$	$16 \ldots=$
$7168 \ldots$	$=448 \ldots=$
$28672 \ldots=$	$=1792 \ldots=12 \ldots=1$ quarter.
$573440 \ldots$	$=3584, \ldots=2210 \ldots=80 \ldots=1$ cwt.

The avoirdupois pound: pound troy $:: 175: 144$, or $:: 11: 9$ nearly ; and an avoirdupois pound is equal to 1 lb .2 oz .11 dwts .16 grains troy. A troy ounce $=1 \mathrm{oz} .1 \cdot 55 \mathrm{dr}$. avoirdupois.

The following is a table of weights according to the French system.

Names.		French value.		Enylish value
Millier,	1000 kilogrammes $=$	French ton		19.7 cwts.
Quintal,	100 kilogrammes			1.97 cri.
Kilogramme,	$\left\{\begin{array}{c}\text { Weight of one culic } \\ \text { the temperature }\end{array}\right.$	ecimètre of $39^{\circ} 12^{\prime}$ Fah		$2 \cdot 6803 \mathrm{lbs}$ troy. $2 \cdot 2055$ lhs.avoirdupois
Hectogramme,	$\frac{1}{10}$ of kilogramme			3.2 ounces troy. $3 \cdot 52 \mathrm{ozs}$. avoirlupo
- Decagramme,	$\frac{1}{100}$ of kilogrammo	- - -		6.43 dwts. troy. $5 \cdot 438$ grains troy.
Gramme,	$\frac{1}{1000}$ of kilogramme			0.643 pennyweight. 0.032 ounce troy.
Decigramme,	$\frac{1}{10000}$ of kilogramme	- .		$1 \cdot 5438$ grain troy*

The following table exhibits the proportion of weights in the principal places of Europe to 100 lbs . English avoirdupois.
100 lbs. English $=91 \mathrm{lbs} .8 \mathrm{ozs}$. for the pound of Amsterdam, Paris (old), \&c.

	$=96$	8	-	Antwerp or llabant.
	$=98$ $=88$	0	-	Rouen (the Viscounty weight).
	$=106$	0		Lyons (the city weight).
	$=90$	9		Rochelle.
	$=107$	11		Toulouso and Upper Languedoc.
	$=113$	0		Marseilles or Provence.
	= 81	7	-	
	$=93$ $=89$	5	-	Fraukfort, \&c.

100 lbs. English $=96 \mathrm{lbs} .1$ ozs. for the pound of Leipsic, \&c.

-	$=137$	4	-	Genoin.
-	$=132$	1	-	Leghorn.
-	$=153$	11	-	Milan.
-	$=152$	0	-	Venico.
--	$=154$	10	-	Naples.
-	$=97$	0	-	Serille, Cidiz, \&c.
-	$=104$	13	-	Portngal.
-	$=96$	5	-	Liege.
-	$=112$	0 需	-	Russia.
-	$=107$	${ }^{1} \frac{1}{24}$	-	Sweden.
-	$=89$	$0 \frac{1}{2}$	-	Denmark.

The Paris pound (poids de marc of Charlemagne) containcd 9216 Paris grains; it was divided into 16 ounces, each ounce into 8 gros, and each gros into 72 grains. It is equal to 7561 English troy grains.

The English troy pound of 12 ounces contains 5760 troy grains $=7021$ Paris grains. Tho English avoirdupois pound of 16 ounces contaius 7000 English troy grains, and is equal to 8538 Paris grains.
$\begin{array}{ll}\begin{array}{l}\text { To reduce Paris grains to English troy grains, divido by } \\ \text { Or, to reduce English troy grains to Parie grains, multiply by } \\ \text { To reduce Paris ounces to English troy, divide by } \\ \text { To reduce English troy onnces to Paris, multiply by }\end{array} & \{1.2189 \\ & 1.015731\end{array}$
Wergut of Man. As guidance in providing sufficient strength in a floor loadod with human beings, the following weights are subjoined:-

Mean weight of a Belgian -

- 140.49 lbs . Mean height, 5 feet $6 \frac{3}{4}$ inclies. " Frenchman " Englishman
- 136.89 "
- 150.98 " "

The woight in travelling carriages uaually taken is 165 lbs.
Supposing, therefore, cach individual in standing to occupy 2.5 superficial feet, which would be close to one another, and indecd closor than pleasant, on a square of flooring there would be $\frac{10.0}{2 \cdot 5}=40$ persons, and $40 \times 150.98 \mathrm{lbs}=2.96$ tons. The averago surtace of a man's body is usually considered about 15 superficial feet, which would give a cubic content of 3.05 fcet, and a consequent specific gravity of 612 .
Weagut of Materials. As, in the construction of warehouses, it is essential for tho arehitect to know the probable weight of merchandise which his client may probably put upon the respectivo floors, the following tables may bo found useful. Tho second oue is taken from the Papers of the Corps of Royal Engincers, 1832, iii. 192, contributed by Major Harry D. Jones.

Aritcles.	Weight of a culic ft. lbs.	Cuble feet = one ton.	Articles.	$\begin{aligned} & \text { Weizht of } \\ & \text { a culicic fit. } \\ & \text { libs. } \end{aligned}$	Cubic feet $=$ one ton.
Ashes--52 fect $=1$ chaldron	37	60.5	Llay, well pressed Indigo	8	46.6
Brimstone - -		19.8	lron, cast - -	450	5
Chalk, from	140	15.5	-wrought -	497	45
- to -	166	$13 \cdot 75$	Lime, stone -	53	424
Clay, from -	120	18.66	-chalk - -	44	81
- to - -	135	17	Marl - -	120	18
Coal, Cannel	54	26.66	Mortar, from (old)	88	2.51
- Welch -	58	39	- to (new) -	119	19
- Newcastle - Navy allowance	50	48	Nightsoil - -		18
Coals, average		$45 \cdot 3$	- river - -	118	19
- solid	80		Shingle	89	$25 \frac{1}{2}$
Coke -	47	48	Slate -	180	$12 \frac{1}{2}$
Cork - -		14934	Straw - - -	:12	Truss= 36 lbs .
Concrete -	120	$18 \cdot 66$	- well pressed . -	65	
Earth, from	95	23.5	Sngar - - -		69.0
Fir - -	126	${ }_{65 \cdot 16}^{18}$	- hogsheal $3 \cdot 11$ in		
Flint -	164	13.66	Tallow - -		88.0
Glass, crown	157	14.25	Thames ballast -		20.0
- Flint	187	12	Tiles, average -	112	20
- Plate	184	$12 \cdot 166$	Oil of Turpentine	514	41
Gravel	112	12.75	- Linseed - - -	683	88
- Coarse - -	120	18.66	Whanc - - -	573	38.8
Grme : -	5		Warchouse, mean for Shipping, ditto -		40.0 350

A heaped Bushel of Wheat $=60 \mathrm{lbs}$. per foot enbe, and 48.13 eube fect in a ton. A ditto of Larley $=47$ to 50 lbs . A ditto of Oats $=38$ to 40 lbs . A ditto of Coal $=88$ to 94 lbs .

Weight of Water:-

$$
\begin{aligned}
& 1 \text { quart of water }=69.318 .5 \text { enbic inches }=21 \\
& 4 \text { quarts }=1 \text { gallon } . \text { weight. } \\
& 2 \text { gallons }=1 \text { peck }=277.274 \text { enbic inches }=10 \text { lbs. weight. } \\
& 4 \text { ditto }=154 \cdot 548 \text { cubic inches }=20 \text { lbs. weight. }
\end{aligned}
$$

Sea water, 1 cubie foot $=64 \mathrm{lbs} ; 35$ cubic feet $=1$ ton.
A cubic metre of water is equal in volume to 35.3174 feet English or to 220.0967 imp . gallons. As it is nearly equivalent to the old English tun of four hogsheads holding $3 . \% \cdot 248$ eubic fect, and as it lins been for some time in use on the Continent for measuring sewage and water supply, it is now employed for the same purpose in England.
$W_{\text {eights }}$ of a Sash. Two weights, one on each side of a sash, by which the sask: is suspended and kept in the situation to which it is raised by means of cords passing over pulleys. The vertieal sides of the sash frames are generally made hollow in order to receive the weights, which, by this means, are entirely concealed. Thus, to keep the sash in suspension, eaeh weight must be half the weight of the sash. Tho cords should be of the bestquality, or they soon fret to pieces. Wire salsh line, leather sash line, and copper sash chains, are late inventions to supersede the hempen cords.

Welch Groin. A groin formed by the intersection of two cylindrical valults, one of which is of less height than the other. Also called an underpitch groin.
Welding. The union of two pieces of iron by heating and hammering them. It requires great care that, the joint shall be of the same strength as the remainder of the metal. Malleable cast iron does not weld. In all but the very thinnest castings, although the surface has been converted into a malleable form, there remains an inner core which at the temperature required for welding falls to pieces immediately the object is struck with the hammer. Good specimens may be bent double when cold, aithough they will probably break if bent back again. The metal can also be forged to a limited extent at a moderate red heat, although if heated abore this point it falls to pieces under the hammer. It may be bornt together at a temperature approaching fusion, or may do brazed with hard solder to either iren or steel. See Soldering and Brazing.

The cheapening of oxygen by Brin's process of manufacture caused Mr. Thos. Fletcher, of Warrington, to make some experiments with the compressed oxygen and eoll gas, whereby with a half-inch gas supply a joint could be brazed in a 2 -ineh wrought iron pipe in about one minute, the heat being very short, the redness not extending over one inch on each side of the joints. Welding is not possible with ordinary coal gas and air, owing to magnetic oxide on the surfaces. As a good weld was obtained on an iron wire $\frac{1}{8}$ inch diameter, with an air jet about $\frac{1}{32}$ inch diameter, the matter should be taken up and tried further (January 1888).
Well. A deep circular pit, or sort of shaft, sunk ly digging down through the different strata or beds of earthy or other materials of the soil, so as to form an excavation for the purpese of containing the water of some spring or internal reservoir, by which it may be supplied.
Well-hole. In a flight of stairs, the space left in the middle beyond the ends of the steps.
WheEl. (Sax.) In mechanics, an engine consisting of a circular body turning on an axis, for enabling a given power to move or overcome a given weight or resistance. This machine may be refurred to the lever.
Wheelbartow. An implement for carrying bricks, soil, \&c. from one place to another, which has a wheel attached in frout of a box-like carringe, to which two handles are affixed behind; by these the man raises the box, pushing it forward on the wheel.
Wheel Window. Sco Catherine Whfel Window.
Whrtstone. A stono of fine quality by which tools for cutting wood are bruught to a finc edge, after being ground upon a gritstonc, or grinding-stone, to a rou h_{c} c.dge.

Whinstone. The name by which the marl of the lower greensand is distinguished in Western Sussex ; probably of Saxon origin, remarks Dr. Mantell.
Winte Lead. A material forming the basis of most colours in house-painting. The common method of making it is by rolling up thin leaden plates spirally, so as to leave the space of about an inch between each coil. These are placed vertically in earthen pets, at the bottom of which is some good vinegar. The pots are corered, and exposed for a length of time to a gentle heat in a sandbath, or by bedding them in dung. The vapour of the rinegar, assisted by the tendency of lead to combine with the oxygen which is present, corrodes the lead, and converts the external portion into it white substanco which comes off in flikes. These are washed and dried in stoves in lumps, and form the white lead of the painters. It is much improved in quality by kecping.
Wicket. A small door made in a gate.
Wind-beam. An obsolete name for a Collar-Beam. The term is now applied to a piece of wood laid diagonally under the rifters of a long roof, from the foot of one truss to the head of another to strut them, so as to prevent the roof racking with the wind.
Windras. The steps in a stircase which radiate from a centre, and are therefore narrower at one end than another.
Wind-Guary. One of the many names given to inventions professing to cure a down draught or a smoky chimney. Amongst these are reckoned Boyle's patcut chimney cowl, " a most effectual cure" for cither a sluggish chimney or a blow-duwn. Milhurn's patent noiscless chimney cowl has all the fittiogs made of copper and brass, and will last for a long time, is easily swept, and the oil box only requires refilling every six years. Banner advertises a "Wessex chimnoy cowl" as most efficient. "Inity's Windguard," and the " l'rince" ehimuey pot for prerenting down-blow, are manulactured by Ewart and Son. Hammond's patent glazed stoncware chimnoy terminal is reasonable, and stated to ensure "a perfect cure."
Winding. The same as casting or warping.

Windlass or Windlace. A machine for raising weights, in which a rope or chain is wound about a cylindrical body moved by levers; also a handle by which anything is turned.
Window. An aperture in a wall for the transmission of light. See Bull's-eye; Skyhight; Lantern light; Venetian Window.
Window Tracery. The ornamental stonework in the heads of windows in mediæval architecture. The earlier windows during the early English or First Pointed period of mediæral architecture, were as a rule very narrow (fig. 1463) and without a dripstone. Later on, however, a dripstone, or perhaps more correctly, a hood mould, was used, which was often continued on from window to window (fig. 1465).

Fig. 1463.

Fig. 1464.

Fig. 1465.

$\mathrm{F}_{\mathrm{ig} .} 1466$.

As the style adranced, these narrow pointed openings were placed in couplets or triplets, the centre ono being highest (fig. 1466); and the first approach to window tracery was developed by the piercing of the wall aloove the couplets with a circular or lozenge shaped opening (fig. 1467).

Fig. 1467.

Fig. 1463.

Fig. 1469.

Fig. 1470.

Fig. 1471.

The next step in the derelopment of the traceried window was the grouping together of two or three of these lancet windows and enclosing them under a label or arch (fig. 1468).

The triplet window, however, contributed much less to the development of Gothis tracery than the couplet, as there was no necessity for the circular opening to fill up the spaces between the tops of the windows and the enclosing arch, as that spaco was already occupied by the central light (fig. 1469), which was much taller than the others. The combination of couplets with a circular opening between the tops is therefore the fundamental principle of a Gothic window, and the result produced thereby was the earliest form of Plate tracery (fig. 1470). The east window of Lincoln Cathectral (shown in the illustration fig. 1472), which is perhaps the largest one in existence belong. ing to this style, consists of two large pointed compartments, each of which is divided into four smaller compartments orlights, called bays or days, placed in couplets with foliated circles between their heads. These couplets have also larger foliated circles between their heads, and in the spandril between the heads of the twolarge compartments is a large circle cuclosing seven smaller foliated circles, one being in the centre and six surrounding it. The mullions or divisions between the

Fig. 1472. Outline of East Window, Lincoln.

Fig. 1473.

Fig. 1474.

In the perfect form of tracery which was developed during the Decorated feriod, the slips of wall between the narrow windows became reduced into mullions or upright lars of stone dividing the lights, while the tracery of the npper part of the window, of the same thickness as the mullions, consists of perfect geometrical forms roting upon the arches of the lights, the spandrils between which are piereed, and all combined or cuelosed
under one areh. A common form in earler examples consists of threa lights of pqual lreight (fig. 1473), the head of the window containing three circles placed pyramidally, the insil les of which are trefoiled. But as already seen, the form which served most to develope
 the traceried window was the couplet with a circle above, combinations of which are shown in the accompanying diagrams (figs. $1 \not 44,1475$). The windows of the mave of Fixeter Cathedral are for the most part pure specimens of this style; although they are all perfectly uniforn with each other, no two are alike on the same side.

Fig. 148.
The ogival forms introduced into the tracery, in the next period, instead of circles, trefoils, etc., caused tho mullions instead of terminating with the arch of the lights, to be continued upwards in intermingling, wasy, or flowing lines to tho top of tho window (figs. 1476, 1477), melting as it were finally into the mouldings of the window arch, and forming by their intersections elongated aud pear-shaped apertures, which aro insually foliated or cuspod.
The introduction of the ogee arch (fig. 1477) formed a new principle identical with the Flamboyant period in Frameo, of which there aro many examples in England. The Perpendicular or Rectilinear period sueceeded, as it was found that the extension upwards could be effected by vertical lines as well as by flowing or curved ones, and with mueh greater ease (fig. 1478). The mullions are continucd upwards to the head of the windows so as to form perperdicular divisions, which aro again divided into compartments by horizontal transoms, and are trefoiled or cinquefoiled at top. Theso transoms were necessary to prevent tho tall mullions from being pressed out of their verticality by the weight of the masonry abovo. They at last presented tho appearance of being a huge sereen of open panclled stonework. (Sco figs. s. v. nave.) The Pointed arch became flatter, and at last, in the case of small windows, becamo quite straight, the tracery finishing against the head.
Wine Cellar. The apartment, generally placed on the basement story, between front and back rooms, or else furmed underground, for stowing wine. The most importint point in its construction is its being kept at a cool equal temperature at all times of the year. See Bina.
Wings of a Boilding. The sido portions of a fiçade which are subordinate to the principal and central divisions. A small huilding attached to the eentre or main portion ly an areade or passige, is also called a wing.
Wire. A small flexible bar of any sort of metal, elongated by moans of a machine callel at draw-bench. Wove iron wire is used for the floor of malt kilns; and the size of four meshes to tho inch is useful to placo before openings in a building to prevent the access of flames from a fire opposito.
Wire Gauges, Birmingiam. Theso aro a seale of numbers extensively employed, both in this country and abroad, to designate a set of arlitrary sizes of wire, varying from about half an meh down to the smallest size usually drawn. There is no authorised standard in existence, and a great number of gauges have come into practical use, differing materially from each other. It is a mode of measuring to a great nicety very small thickuesses of metal. The usual marks are 00000 for half an inch, 1 stands for $\frac{5}{16}, 3-4$ for $\frac{1}{4}, 11$ for $\frac{1}{8}, 16$ for $\frac{1}{16}, 31$ for $\frac{1}{124}$, and so $u p$ to 36 .
Wiee Clomis. A very fine lattice work of wire used for blinds.
Witife. (Sax.) The partition between two chimney flues in the same stack.
Woub. (Siax.) A fibrons material much usod in building, and formod into shape by cdge tools. It is timber cut up for use by the different trades. Sce Thmbis.

Wood Brick. A block of wood cut to the form and size of a brick, and inserted in a wall to which to fasten the works in joinery.
Working Drawings. Drawings of a design showing the details, and serring as instructions to the several artificers.
Wreathed Coleme. That which is twisted in the form of a screw, also very appropriately called a contorted column.
Wreatied String. The circular portion of a string to a stair where there is a hollow newel.
Wrodght or Malleable Iron. Iron in its perfcet condition, a simply pure iron. Its strength is in general greater or less according to the greater or less purity of the ore or fuel employed in its manufacture. It is distinguished by the property of welding. The proof strength of wrought iron is almost exactly one third of the breaking load.
Wratt's patent Slating. A mode of slating with thin squared slates, laid on rafters of less elevation than usual and with the breadth of the laps much less; Imperial slates were used by the architect, James Wyatt, and having their lower edges sawn smouth, the roofing so done has consequently a much neater appearance than commouroofing.
Wyatt Window. The form so designated in Ireland, is the square-headed Venetian window, or a wide opening divided into three lights.

X

Xenodochidm. (Gr. $\Xi \in \nu o s$, a guest, and $\Delta \in \chi о \mu a t$, to receive.) A name given by the ancients to a building for the reception of strangers.
Xystus. (Gr.) In ancient architecture, a spacious portico wherein the athlete exercised themselves during winter. The Iomans called, on the contrary, their hypcethral walks aysti, which walks were by the Greeks called $\pi \in \rho เ \delta \rho \rho \mu \iota \delta e s$.

Y

Yard. A well-known measure of three feet. The term is also applied to a pared area, generally placed at the back of a house. It is also used for the ground belonging to a workshop, as a "builder's yard," etc. A long piece of timber was formerly so called. See Mizasure.
Yellow Pine or Deal. The produce of the Pinus sylvestris, or Scotch fir. This is a better and more lasting wood than white deal, which is the produce of the Abies excelsa, or communis, or Norway spruce.

7.

Zax. A slater's axe, corrupted into zax. An instrument for cutting slates.
Zigzag Moulding. An ornament used in mediæral architecture of the Norman period. It is the same as chevron and dancette. . See fig. 1381. It is also to be seen in the architecture of Diocletian's palace at Spalato.
Zinc. A metal now much used in building.
Zinc White. A paint preferred by some as keeping its colour longer, and being less detrimental to the workmen's health. But there is difficulty in working it, and a coat or two more than is usual with white lead paint are required to produce a good surface.
Zosco, Zoconlo, and Zocle, (Ital.) The same as Socle.
Zorhores. (Gr. Zwoфopos.) The same as Frieze.
Zotheca. A small room or alcore, which might be added to, or separatcd from, the room which it adjoined.

I N D E X.

*. The buildings generally are placed under the towns in which they are situated: but the edifices in London are placed under their names. The figures refor to the several paragraphs, except where the letter p. occurs, when they refer to the paye. It will be noticed that occasionally the numbers to the paragrapls are interrupted.

ABA

BACUS stone in vaulting 2002q
Abbeville; St. Wulfran Church, 547
Abbreviation, method of; in architectural composition, 2857
Aberdeen, lord; On the pointed arch, 300
Aberdeen ; spires, p. 1002, p: 1003
A berthaw lime, $1843 b$
Aberystwith, Cardiganshire ; castle, 402
A bicll, Guillermo; architect, 593
A bousimbel, or Ipsambiool; temple, 71, 92, 166
Abrantes ; church of San Francisco, 603
Absorption, $1667 w$
Abury; circles of stones, 16, 17, 40
Abyssinian well, $2218 h$
Acme ventilation, 2278 u
Acoustics. See "Isacoustic curve," and "Theatre"
Acts of Parliament for Building, \&c., 2280i
Adam, Robert ; architect, 517, 518
Adamant cement, 2250 c
Adamantine clinker, 1839a, 1905c
Adams, Bernard ; architect, 442
Adams, Robert ; architect, 441
Adare; friary ; tower, p. 1003
Adel, Yorkshire ; proportion of church. p. 1014
Adelard, monk, of Bath, 309b, p. 1037
Adelphi, in the Strand, 517
Adhesive power of nortar, \&c. 1494 et scq.
Adi, temple of ; at Ellora, 56
Admiralty, London, 507
Adrian I., pope ; arts under, 281
Adze ; carpenter's, 2003
Eolus water spray ventilator, $2278 t$
Erarium, the ; at Rome, 213
Aerschot ; church, 558, 560
Æsthetics in architecture, 2493
Afflighem; abbey church, $55 \pm$
Africano marble, 2002 bb
Agnelli, Gulielmo ; architect, 613
Ayopal, or Fora, of the Greeks, 173
Agram ; cathedral, 570
Agricola ; architecture under ; in Britain, 381
Agrigentum ; founded, p. 943 . Temples of Peace and Concord, 148, p. 946; of Hercules,
ib. Columns worked, 1925a. See "Girgenti"
Aguero, De Campo ; architect, 367
Air brick, $1886 e$; in spec., $2286 a$

- drain, 1750, 1880, 1886a. Paving to, in suec., $228+c$

AMA

Air, foul state of, $2278 e, 2287 v$. Velocity of, or wind, 1592a

- grating, in spec., 2286a
required for eacl person, $22: 8 z$
See "Ventilation"
—— syphon ; Chowne's, $2278 f$
- trap to drains; in spec., $2286 a$
- vessel in pumps, $2218 f$

Aisle or lean-to roofs, $2052 m, 2052 p, 2052 v$
Aisles; width of, p. 1007. Of equal height, 558
Aix-la-Chapelle; cathedral and palace, 283, 572. Round church, p. 1006

Alabaster ; use, 2002ee. In windows, 615
Alæ of a Roman house, 249,253
Alan de Walsingham ; architect, 319
Alatrium ; cyclopean remains, 32
Alava, Juan de ; architect, 596, 598
Alba; amphitheatre, 228
Alberti. Leone Battista, 324. His book, De
Re Edificatoria, 325
Albissima paint, 2273 g
Albo carbon gas light, 226.4e
Alby ; cathedral, 532
Alcila ; church and college of the Jesuits, 367, 371, 598. Palace, 368
Alcantara; bridge, 193, 222. Church, 607
Alcazars of Segovia and Seville, 128
Alcinous, house of ; illustrative of Greek architecture, 138
Alcobaça; monastery and church, 601, C02, 607
Aldenham, Ifertfordshire ; church, p. 986
Alder, 1719
Aldrich, dean; architect, 490
Aicotti, G. 13.; architect, 2918
Alexandrinum upus, 2002 cc
Altred, king; his care of buildings, 386
Algarotti, count; On the opera, 290 t
Alhambra; ornamental aletail, 12j. When founded, and description, 127. Court of the Lions, 127
Aljubarrota; battle of, 604
Allemagne; st ne quarries, $1666 l$
Almeila ; castle, 603
Almcirim ; reyal chatean, 607
Alonso, Juan ; architect, 59.t
Altenburg ; abbey, 5 tiz
Altitude, internal, p. 964
Amalti; campanile, 625

AMA
Amarante; Dominican monastery, 807
Amati, Carlo; architect, 620
Amberley, Sussex ; castle, 413
Ambreshury, Wilshire ; house, 465
American cookin⿻ stoves, $2279 e$. System of warming, $2279 g$
Amicable Life Assurance Office, $1666 d$
Amiens ; cathedral. 310, 314, 315, 541, 542. Apse, p. 1007. Doorway, 539 . l'iers, p. 1023. Plan copied at Cologne, 567. Proportion of, p. 1058 et seq. Window, p. 990 , p. 993 . Rose windows, p. 1035, p. 1037

Ammanato, Bartolommeo; architect, 331. His work La Cittù, ib.
Amoros, N. ; architect, 594
Anphitheatres deseribed, 228 et seq. First used by the Etruscans, 232
Ampthill, Bedforlshire, 423 , 426. Drawings of Old house, 440
Analysis of sixteen stones, 1666
Anastasius II., emperor ; architecture under, 271
Ancaster stone, $1666 n$; analysis, specific gravity, and cohesive power, 1666
Ancona; arch of Trajan, p. 959 . Clinrel of San Agostino, 6ét
Anderlicht, upper chturch, 559
Andria; castle, 625
Angers; vaultiug of hospital, $1499 g q$
Angle irons, 16296 . Strensth of, $1630 r$. Weight, 2254

- of vision, in perspective, how to sclcet, 2444 et seq.
- ribs for square domes, 2064. Tic, 2009

Anglesea marble, 1681
Anglo-Saxon architecture, 383-397. Mouldings, p. 981
Angoulĉme ; chureh, 535
Ani, Armenia; cathedral, 305
Anjou; vaulting at, $1499 g g$
Annaberg ; ehurch of St. Anne, 583
Annex, Giovanni, of Freibu:g ; architect, 365 . See "Fernach"
Annuities. See "Componnd lnterest"
on lives; tables relating thereto, p. 1104 et seq.
Annulet moulding, 2532
Anson, lord; house in St. James's Square, 516
Anspach, church, 583
Anston stone, $1666 \mathrm{~d}, 1666 k, 1667 w$
Antx, 2671
Antefixa, in a Roman lonse, 247
Anthracite coal, $2279 q$
Anticorrosion paint, $2.273 a$
Antoine column, 486, 2t603
Antoine, Jacques Denis ; architect, 360
Antoninus and Fanstina; Corintlian temple at Rome, 211
Antwerp, 564. St. Jacques, 557, 5ã?. Chureh of the Dominicans, ib. Notre Dame, 559. Its towrr, p. 1003
Ansta; arch of Augustus, p. 959
Apodyterium of the Roman baths, 235
Apollo Didymxus; temule near Miletus, 103

- Epicurius; temple in Arealia, 150

A potheca of a lioman house, 253
Appelmans, Jan; architect, 559
Apron ; piece ill stairs, 20.6 ; of Lead, in spec., 2288
Apsis; polygonal and square, p. 1006 ; double, P. 1007

Aqueducts, earliest; of Rome, 223 et seq. Cubic feet of water supplicd to liome, ib.

ARC
Injured, 238. Oi the Greeks, 174. At Con. stantinople, 306 . At Solmone, 625
Aqueous, \&c., Rock Boring Co., 2218i
Arabian architecture, $118,128$. Domestic architecture at Algiers, 130
Araostyle intercolumniation, 2605, 2608 2609,2613
Arandia, Juan de ; architect, 59.
Aranjuez; royal ןleasure house, 371, 372
Arc; complement of, 1037 . Supplement of, 1038. Sine of, 1039 . Versed sine of, 1040 . Tangent of, 1041. Co-sine of, 1042. Cotangent of, 1043. Co-secant of, 1014
Are doubleau. $1499 v$
Arcades, 2618, 2619, 2626. Tusean, 2621, $262 *, 2628$. Doric, 2618, 2623, 2629. Ionje, $2618,2624,2630$. Corinthian, $26!8,2625$, 2631. Imposts and archivolts of, 2632. Columns used in, 2635. Their internal decorations, ib.
Areades and arches, 2617 et seq.
_ above arcades, $\angle 653$ et seq. Best mode of disposing, according to Chambers, 2654 et seg. Accordins to Scan.ozzi, 2655. Balustrades of, 26is. Dorie above l'uscan, 2658, 26\%9. Ionic above Doric, 2660, 2661. Corintlian above Ionic, 266\%. Confined by the aneients to theatres and amplitheatres, 2664
Arcadius, emperor; architecture under, 271
Arch, its introduction etfected sreat chance in the art, 266 . In pointed architecture, p. 1054. No trace of, in the ruins ot Babylon, 45. In ligypt, at Saccara, 75. Unknown in Grecian architecture, 134. Arabian, species most employed, 129. At Bussorah, 131

- of Augustus at Kimini, p. 960 ; at Aosta, ib. p. 962. Of Claudius Drusus, niches. 2776. Of Constantine, 262, 2547, p. $9,9, \ldots, 96 \%$ Of the Goldsmiths at Rome, 195. Of Janus, niches, 2775. Of Sercius at lola,]. 961. From Poliphilus, p. 2 18. I'roportions of, p. 958 et seq. Of Severus at liome, 264, 2547, p. 962. Of Titus, 264, 2547, p. 961. Of 'Irajan at Ancona. p. 959 ; at Susa, p. 962 ; at Beneventum, p. 963
- elliptic:al ; to draw and find the joints, 19:31-1937. Flat; in masonry, to draw the joints, withont the centre. 1932. Proper form for one, $1583 f$. Of various points, 1943b et seq. Kampant, pointed; to draw azd tind the joints, 1943

Jlanes in Golhic, p. 971 , p. 992 et seq.
Archer, Thomas ; architect, 498
Arclue: equilibrium uf ; 1] istory, 1353-1863. Observitions on friction, \&c., $1364-138 ?$ The way in which arch stones support each other, $1390-1397$. Geomsetrical application of foregoing, 1398, 1399. Su:momied arches, 1400 . Application of the princijles to the Pointed archs, 1401. 'Tle same to a surmounted Catemaresn arch, 1402-1406. Application of the principles te surbased arelies, 1407. Thrusts of arelies; cassinoid, cyeloid, and ellipsis, $1408-1412$. Raking arches, $1413-1416$. Level extrados, 1117-1421. Diflerent application of principles in the last case, 1422,1431 . Foussoirs increase towardsthe springing, $1432-$ 1441. Mode in which an ath fails, 1442. Compound vaulting, 143 . Groined vaulting, 1441-1458. Application of principles

ARC
of groined vaulting, 1459-1463. To a Coved vault, 1461-1477. To Spherical vaulting. 147я-1493
Arches; Working drawings for, and n.oulds of voussorrs, 19:9-1936. Elliptical, cutting throush a wall ciniquely to bevels arid moulds of, 1967-1970. In sloping walls, 1971, 1972. An abridged method of doing the last, 1973, 1974. Oblique where the front slopes and rear are perpendicular to the axis, 1976-1979. Semicircular-headed, in a mass of masonry battering on an oblique plane, 1980-1983. Un the quoin of a sloping wall to find the moul 's, 1984 1987. In round towers or circular walls, 1988-1990. Oblique in a round sloping tower intersecting a semicircu'ar arch within it, 1991-1994. Freuch terms for, 546
Arches; inverted ; in foundatione, 1885 - relieving ; in spec., $228: a, 2293 b$ Architect, 312, 319, 326. Of France ; attached to Venetian in preference to Roman Scloool, 358
Architects; ancient and modern, list of, p. [1 29 et seq.
Architectural design; maxims in, 2502. Bounding lines of buildings not sources of beauty, considered geometrically, 2503
1rchitecture; not a fine art until founded on rules of proportion, 1. Not confined to a single type, ib. As a fine art, dependent on expression, 2492. Its end, $i b$. Genius in, ib. Taute in, ib. Esthetics in, 2493. Cunsidered in respect of rules of art, 2494. Fitness is the basis of proportion, 2496, 2502 . Bounding lines of buildings, 2503 . Interiors of buildings, beauty of, 2504. Types in, 2507. Styles in; ail dependent on fitness, 2508. UUnity and harmony in, 2509. Symmetry in, ib. Colour in, 2511. Polychromatic, 2512 . Decoration of, $2 \dot{1} 13-$ 2522
Irchitecture in 11 th century not a liveral art, 309a
lrchitrave, to form ; in joinery, 2196. Method of supporting, 1925 h. Moulded, in spec.,2285g Irchivolts of arcades, 2632
Ardbraccan, near Navan ; house, 527 uden lime, 1843 c
(rea of Buildings, 1583 et seq.

- given; method of enclosing in any regular polygon, 1518-1524
- gratings, 2255 ; in spec., $2286 a$
irena; of an amphitheatre, $228,230,231$. Of the Roman circus, 240
rezzo ; cathedral, 613. San Domenico, ib. San Francesco, ib.
Irgos; gate and chief tower, 29
trgyle, duke of ; house for, 525
Irleri, Pietro; architect, 581
irles ; amphitheatre, 228. St. Trophime, 517 Irmarium of a Roman house, 253
Irnott ventilator. $2278 f, 2278 p$. Smoke consuming grate, $2279 d$. Stove, $2279 e$
Irpino; gateway, 304
trrayolos ; castle, 603
trriaga, Luis; architect, 368
rris of a piece of stuff, 2124. Gutter, in spec., 2285 h
Irroyo, Giuseppe ; architect, 368
artiticial hydraulic limes, 1857
- stone, 1667 o et seq., $1903 e, 1903 \mathrm{n}$ et seq. Arts in England have never thoroughly taken
root, 437 . Flourished while in the hands of the clergy, ib.
Arundel, Sussex ; castle, 394, 398. Church porch, p. 999
Aruns ; tomb uf, 25.5
Asbestus board, 2947. Paint, 2273j, 2971e Curtain, 2471c
Asgill, Sir Charles; villa at Richmond, 515 Ash, 1723
Ashes mortar, 1859b, 1859d
Ashlar; walls, 1918. Facing, 1918 et seq. Rafter, 2052f
Ashlaring; in spec., 2284, $2281 b$
Ashridge, Buckinghamshire ; house, 528
Asinelli tower, at Bologna, 2500
Asphaleia Theatre Company, $2971 k$
Asphalte, 1867 d . In damp course, 1886 c . laving, 19C5h, 2251o. Roofing felt, 2210d Assimilating work, p. 968 , Г. 969
Assisi; clhurch of Sin Francesco, 318, 612. Sta Chiara, 612. Temple at, p. 912
Assos; gateway, 304
Assouan, 39
Assyrian architecture, 50 et seq.
A:ti ; cathedral, 616. San Secondo, ib.
Astorga ; cathedral, $59 \dot{o}^{\circ}$
Astragal ; bead, or baguette, 2532
Ath; houses at, 564
Athelwold's work at Winchester, p. 1021, p. 1023
Atheneum Club house ; scagliola floors, 2250 h
Athenians; early superiority in the arts, 136
Athens: early buildings of earth and clay, 136. Temples, p. 943 et seq., p. 918. Parthenon, or temple of Minerva, $141,150,258$, 2570 , p. 943, p. 948 . Columns worked, 1925a. Proportion of, p. 1057. Teuple on the Ilissus, p. 951 . Of Erechtheus, p. 952. Of Thesens, 150, p. 944. Portico of Augustu ${ }^{\prime}$, 151. Propylanm, 150
Atkinson's cement, lí64. Use of, 2251a. In blocks, 1903 dd
Atlantes, 2682
Atmosphere ; weight of, $1592 a$
Atreus, treasmy of ; at Mycene, 35
Atrium ; of a Roman house, 181, 216. Different species of, \&c., 247. In a house at Pompeii, 253
Attic base; Gothic, p. 979
Attics and basements, 2665 et seq. Examples of, 2668
Attleborough, Norfolk; church, 408, 421
Attributes; in decoration, 2519, 2520
Aubiguy stone, $1666 h h, 1667 w$
Audenaerle ; clurch of Sie. Pamele, 553,555. Ste. Walburge, 559
Audley End, Essex ; designs for, 440, 442, $445,451,452$
Audritu ; church spire, p. 1000
Augsburg, 580. St. Ulric and St. Afra, 579, 583
Augustins, royal convent of ; at Madrid, 371
Augustus; arch at Rimini, p. 1010; at Ansta, p. 960 ; at Susa, p. 962 ; Portico at Athens, 15.1

Au-tin's artificial stone, $1667 p$. Artificial cement paving, $1963 c$
Autu12; amphitheatre, 228. Doorway, 539
Auxerre ; cathedral, 540 . Iron spire, p. 1005. Roof of préfecture, $205 \% h$
Avallon ; doorway, 539. St. Pierre, 540
A verlino, Antonio, called Filarete; architect, 2974
Avignon ; cathedral, 307. Bridge of St. Esprit, 313. Chureh of the Celestins, 527.

AVI
St. Pierre 547. St. Martin, ib. Church of the lominicans, 5.5 . St. Didier, ib. 1'alace, ib.
Avila ; cathedral, 587. S. Vicente, ib., 591 A vington, Berkshire ; church, 389
Axe; carp ntri's, 2003
Axed face in masonry, 1915a
Axial lines in drawings, p. 1008
Aylsham, chureh, Nurfolk; window. p. 990
AyotSt. Lawrence, l Lertfordshire ; church, $5: 6$
Az'ec architecture, $110-116$
B AALBEC; structures at, 196 . First described by Maundrel, ib. Niches, $27 / 5$
Babylon, ruins of, described by liieh, 38-41. Citadel. 42. Tunnel under the Euphrates, 43. Dimension, its character, rather than art, 44
Bacchus; temple at Rome, 2547. At Teos, 153, p. 951
Back flapts of shuttere, 2147
2285 c lings of sash-frame, 2147 . In spec.,
——of a slate, 2210
Badajoz ; cathedral, 589, 598
-, (ijovanni di ; arelistect, 367
Bacza; S. Andres, now La Colegiata, 598
Bagdad ; foundations laid by Almanser, 119. I's walle, 131
Bagnall, Sir John ; house for, 440
Baguette, 2532
Baker, llenry A.; architect, 526
Balaguer, Pedro; architect, 594
Balcony; traceried at Venice, 6:0. In spee., $2281 \dot{b}$
Ballast ; lmunt clay, 1833d et seq., 1801. In spec., 2281
Ballcock to a cistern, $2223 b$. Valves, 2223 s
Balleso, Giovanni ; architect, 867
Ballium of a castle, 394
Balusters, 2695 et seq. Not used by ancients, 2696. Their measures, 2697. For Tuscan order and table of proportions, 2699, 2702. For Doric and Ionic orders, 2700 . For Corinthian and Composite orders, 2701. Double-bellied, 2703. For Doric order, 2704. For Ionic order, 2705. For Corinthian order, 2706. Intervals between, 2708. Bulus or bellies of, 2711. Of glass, 2231a. Iron, in spec., 2286. And Newels, in spec., 2280. ${ }^{2}$

Balustrades, 2695 et seq. Rules for setting ont, 2697. Height ot, 2698. Scroll and Guiloche, 2707. Intervals in, 2708. l'edestals of, 2708,2709 . Applied to staircazes, 2710. Statues used on, 2:12. Vases used on, 2713. Of arcades, 2657 . In spec., $2284 a$
Bamberg; cathedral, two apsides, p. 1007. St. Mary, 567
Bamborough, Northumberiand ; castle, 394, 398
Fand saw blades, $2124 b$
Hangor slates, 1802
lauk of England; Rotumla dome, $1903 i$
Banker; bricklayer's, 1890
Banqueting house. See "Whitchall"
Baptistery; under choir at Siena, 613. At Pistoia, 616. At l'isi, p. 1037. Doors at Florence, 2735
Bar; use of the word, 1628c. Kunning loads on. 1628 a
iron, $176.4 a, 1764 f$. Werghe of al foot ot spuare, romnd, and flat, $2 \cdot 54$. Of flat, $2251 a$. Off flat close I:ammered, ib.

BAY
Bar tracery, p. 989
Barbacan of a castle, 394
Barcello; bridge, coo
Barcelona; Casa consistorial, 594. Casa de la Diputacion, 595 . Pointed arch, 306. Cathedral, 588, 595. S. Justo and S. l'astor, 592 . Sta Maria de los Reves, or Sta Maria del Pino, 593. Sta Maria del Mar, ib. Collegiate church of Sta Anna, ib. Crypt of Sta Eulalia, ib.
Barft's patent stone, $1667 x$. Coating of iron work, 17800
larireston, Keut; ehurel, 38\%. WVindow, р 993
Barhan's remlering plaster, 2250b
Barnack, Northamptonshire ; church porch, 1. 928. Stone, its analysis, specific gravity, and cohesive power, 166
Barozzi da Vignola, (iacomo ; architect, 371. Door by, at Famese palace, 2711. 1'rotiles of orders, 3is
Barracks and hospitals, ventilation, 2078u
Barrel bolt, 2ej9
Barrington cement, $1864 j$
Bars, rolld d iron, $1629 r$. Strength of. $1630 r$

- with latchets, 2243

Bartholomew's hospital, London, 503
Base; Course or plinths; Gothic, p. 982 , t s s. Of columns, 135. More of mhing up in wood, $\because 202$. Gothic, 1. 978 , 1. 979 et sey.
Basements and atties, 2663 et seq. Gencrally: decorated with rustics, 2666 . Courses of, how disposed, 2667. livekwork in, ? 6 (70
Basemouldings; in spec., 288 a
Basilica of Antoninus. 2517 . Of Constantine, $21 \overline{7}, 2547$. Of San P'aolo fuori le Mura, 2о̄. Ancient ; of liome, 273-275
Basing house, llampshire, 449
Basly church; spire, p. 1000
Bastard stucco, 2236-24:
bastille, at Paris, 311
13at, of a brick, 1896
Batallaa; Dominican monastery and church, 601, 60I. Spire, p. 1004, p. 1005
Bath, Somerset-hire, 513. Abbey church, p. 1047 , p. 105 2et seq. Founders and dimensions, p. 196. Proportion of, p. 1016. Base course, p. 983. Dier, p. 977, Vaulting, 2002x. Design for bathe at, 525
Bath stone; in lintels, 1052 p . Analysis, specific gravity, and cohesive power, lititi. Quarries, \&c., $166 \mathrm{t} j \mathrm{j}, 1667 \mathrm{v}, 1667 \mathrm{c}$. In spec., 2284
Baths ; supply to, 2223t. Material f r, 2923μ. Of copper, in spec., $2: 88 a$. Of slate, 2211%. Marble, in spec., 228 le. Wood framing, in ditto, 2285 g . Fittings, \&.c.. complete, in spec., 228: For industrial dwellings, $30: 5$. Heating, $2: 233 t$
; number of, at Rome; those of Caracalla, 234, $235 . \quad$ Of Titus, Diocletiau, Agrippa, Nero, and Domitian, ib. Jlighly decorated with painting and sculpture, 237. Those of Agripla, ib. None crected after. the removal of the empire, 238 . Of ' I'itus, paintings in, 239. Of Caracalla, 241, 28^{2}. Of Diocletian, 264, 2517. Of Nero, $2 \cdot 10$
Battening of walls; in spec., 22800 . How measured, 2338
L3attens in slating, 2210b
Battista, Giovanni; architect, 370
Battlements, p. 983, p. !8.4
Banuer, Johann ; architect, 579, 580
bay window, $1: 7$

BIE

Bayeux ; cathedral, 540,545 . Set out witl the perch, p. 1057. New works at cathedral, 1666 k . Porch, 534. Spires p. 1000
Beacons to towers, p. 1002
Bead and butt. 2131. And double quirk, 2127. And flush, 2131. In cement, 2287

Beaded briek for garilen walls, 1831 c
Bead or baguette, 2532
Beam, use of the word, 1628c. Best proportion of, 1628v. Supporting two weights, 1629z. To obtain bread hand depth, $1630 a$, 16306. Cut in to various depths, strength of, 1630d
filling to roofs, 2211 m . In spec., $2282 a$
Beams and pillars, 1593-1682a. Woods used for, 1593-1595. Weights of wood in the same tree, 1597. Timber, experiments on, 1598 et seq. Cohesive force of timber in direction of its longth, 1598. Strength of wood in an upriglit position, $1600-1602$. Horizental pieces of timber, $1603-1608$. Strength of timbers in an inclined position, 1628. For classes of buildings, $1628 d$. Strains, 1628e. Transverse strain, 1628 g. Shapes, 1628p. Varions laws, 1628s. Transverse sections, $1628 x$. Condition of Breaking weight, 1629 g . Tension, $1630 c$. Neutral axis, ib. Deflection, 1630e. Modulus of elasticity, 163 Ci . Impact or Collision, 1630% Tensile Strength, $1630 p$. Cohesive power, 1630 r . Compression, 1630 w . Pillars, 1630 w . Stancheons and Struts, 1631i. Detrusion or Shearing, $1631 n$. Torsion, 1631.r. Working strength of materials, 1632 . Table of strength of various timivers, $1632 a$.
Bearers; in spec., $2285 b$
Beart's pierced bricks, $1831 f$
Beaulieu palace, Hampshire, 426
Beaumaric, Isle of Anglesey ; castle, 402
Meaumont's heating system, $2279 e$
Beauprè, Gloucestershire ; castle, 452
Beauty in architecture; partly from suitable forms, 2495. Source of, 2492 et seq. In medieval architecture, 1. 964 et seq.
Beauvais; cathedral, 541,549 . Apse, p. 1007. lose window of south transept, p. 1034. Church of St. Etienne, lintel to north door, 1925 h
Bec, Nurmandy ; abbey, 310
Beckford, William ; house for, 528
Bed; of a slate, 2210. Of a stone, 1922
Bedding ; stones in brickwork, 1890. Of stones, 1667a. Slates in mortar, 2210. Timbers, in spec., $228: a$
Beddington, Surrey ; hall roof, $205.2 t$
Bedford, Bedfordshire ; castle, 394
—, duke of ; house for, 440, 524
Bedroom for a poor man, 3014
Beech, 1701
Beejapore, 1499o, 1499p
Beer stone, 1666
Beeston, Cheshire ; castle, 391, 398
Beffroi ; of Belgium, 561 . At Tournai, il. Ghent, $i b$. Ypres, $i b$. Bruges, $i b$. Lierre, ib. Nieuport, ib. Alost, ib.
Beja ; castle, 601
Belem; fort of San Vicente, and monastic buildings, 607
Belfry at Zaragoza, 598
Belgian sleet glass, 1874
Belgium ; Pointed architecture in, \bar{y};3 et seq. Beffiroi of; 561. Marbles of, $16{ }^{2} 9$

Bell ; iutrodnced, 390. Common and electric, 2262a. Metal, 1791

- Rock lighthouse, 1671e towers, p. 1001 et seq.
- trap, 2220g et seq.
- of a cap ; Gothic, p. 978

Bellhanger's work; in spee., 2292. Electric and pueumatic, in spec., 2292
Belnont, viscount ; house for, 528
Belus; tower of, 38, 41
Belvedere Garden, Rome ; areade, 2638
——, Kent ; house, 516
Bench, joiner's, and parts of, 2102. Planes, ib.
Beuches ; in churches, $2192 a$. Wood mouldings to, p. 986. Sizes of, 2192b. In spec., 2285h.
Benedictine monastery at Leça do Balio, 603
Benet, the freemason, p. 970
Benevento ; church, 587. Arch of Trajan, p. 963

Beni-hassan ; tomb, 133
Bennett's improved granitic stone, $190 \bar{c}$ c
Bent timber in roofs, $2052 b$
Berchère stone, p. 1004
Bergamo, San Agostino, 624. Colleone chapel, ib. Sta Maria Maggiore, ib.
Bergen, in Prussia; church of papier-mâché, 2251
Berkeley, Gloucestershire ; castle, 394, 398, 414
Berlin; Brandenburg gate, 306. Theatre, 2972
Bernburg ; chureh of St. Mary, 567
Berneval, Alexandre de; architect, p. 1009, p. 1036

Bernières ; church spire, p. 1000
Bernini, Lorenzo ; architect, 347, 349. Staircase by, 2801
Berruguette, Alonzo; architect, 368
Berwig quarries, 1666aa
Bessemer's pracess ; in iron, 1774. Strength of, 1630
Bethel and Bothel mentioned, 13. That set up. by Jacob, ib. Olject of idolatrous worship where the Canaanites appeared, ib.
Bethell's patent for preparing timber, 1667 m , $1752 a$
Bethersden marble, 1681 h
Bethlehem hospital, London ; designs for, 526
Béton, 1861, 1862e. Aggloméré, 1862f, 1903 dd
Beudeghem, Loys van ; architeet, 563
Bevel; bricklayer's, 1890
Beverley, Yorkshire; conventual church, 407, 421. West front restored to perpendicularity 449. West front and towers, p. 1002. See Frontispiece. Pinths, p. 9*2. Porch, p. 999. Assimilating work, p. 969

Bevignate, Fria ; architect, 616
1 isib cock, 2223 s
Biban el Melook; subterranean chambers, 63
Biliena, Antonio Galli ; arehitect, 2950
Bitliotheca of a Roman house, 252
13ickerstaffe, Norfulk; church roof, 2052u
Bidborongh, Kent ; church door, $2 \mathbf{i 4 5 a}$
Bideford and mineral paiut, 2273c
Bilian, or irm wood of Borneo, 1728d
Billet ornament, 397
Billiard table ; of slate, 2211 q
billings, W' K.; architect, on proportion, p. 1011

Bincho, A. de; architect, 555
Kindin: joists, 2919—20:2
Birch timber, $1: 25$

BIR

lirkenhead：arched brick flours at， 1903 c
Birmingham：ehureh of St．Dhilip， 428
liors Nemand，near babylon：as deseribed be lieh，40．The ruins，t0， 41
Biseop，Benediet：bishop，founder of the abbey of 11 carmmeth，355， 386
Biseut，ls：itg
liismuth，strength of．labn r
linuminous cements， 1 sbit it zeq．，2．35lo it seq．
13lack bricks，1s3ld
Blackburn Intirmary 297（ib
Hackfriass bridare，London，52a．Mote of repairing defective s：ones in arehes，1920 f^{\prime}
I lackman air propeller，2：2．8i
Haine＇s fireproof paint， $2: 2: 3 j, 297 l e$ ．
Hlank areale， 504
J3lankenbyl， 11 ．；master mason， 5%
Blast irons ：qualities of，20260
Blenheim，Oxtorishire；house， 493
liletehinglen marble， 1681 h
Blickling park，Norfolk；mausoleum， $5: 5$
13 lister steel． 17.1
Blocking contse；in spec．，22sla
3lois，châtean de， 545°
Blondel aud Ser，MIM．；repert on London hospitals．20゙だの，ロござ
Blondel，Francois and Jaeques；architects， 366
13ne bricks， 18316
Blue lias lime，Ist3a et seq．．Nsoth．Mortar， 1859，Warwick stone， 1666 ．We
Buard；slater＇s，：209
Boarding；to Sliting，2010．In spec．，2．esou． Oi roots，how measured，2342．To under side of open roofs，2211n．For floors， $20.23 a$ et seq．．2173ez．How mensured，2352，2362． For ceilincs， $2023 \mathrm{c}, 2023 \mathrm{~g}$
Boards ：cutting of，for covering domes，groins，太c．，2068－207s
Boaster：mason＇s， 1910
Buceaduro，Domenico ；architect，2s？2
Bodmer．s compressed stone brieks， 1903 ec
Boeblinger，Johann and Matthaeus；arehi－ tects， 581,583
Wuthy，livillermo ；architect， 595
Botriand，Germain de ；architect， 366
Bo ler plates；quality，1630s，İ64e．In sheets， plates，and slabs，
Boilers for lwt－water heating，22－9\％
Bois－le－Due ；church of St．Jean， 558,560
Ibisserie or panel work， $418,4: 8$
3hulection mouldings，2129，21．15
Jologna；church of San Petron！o，its proper－ tion，p．1013．Fors de＇Mereanti， 613. ＇Theatre，2950．Garisendi tower， 2500
Bulsover，Derbyshire；house， 45% ．Adli－ tional buidinics， 460
－stone， 1666 d， $1666 e$ ．Analysis，specitic gravity and adhesive power，libit
Bolt， 1631% In earpentry，201：3，2254n． Various sorts， $2: 59$ ．And nuts ；weight of， $\because 254$
13 oltel，or Bowtel，moulding．p． 970 et seq．
Bolton，Lancashire ；conventual church， 398. Doorway，p． 973
Bombay granite，167：a
Bonaventure，Nicolas；architect．， $61 ?$
Bond；in bricklaying， 1891 ．Sce＂English bond，＂＂Flemish bond．＂In spee．，＂2L： 2 ． Of a slate，2：210
－stones． 1920 et seq．Timber，1899．In sp？c．， 2285
Bonding bricks， 1902 c
Bonneveil，Etienne de ；architcet，zozes

BRA
Ponomi，Joseph．A．li．A．；architect， 525
Book boards to benches，21 292a
Buorde or Forde，Andrew：his Aietorie quoted and directions for building a mansion，407， 43s
Bordeaux ；cathedral，itho．Porte de Cailhau， 54 s ．Theatre，2！ $51,2058$. Hospital， 20.95
Boring Company，$\because \because 18 i$
Bornco wood， 172 E ad
Burrominc．Francesco ；arelitect，306，3u？， $34 \therefore$ ． 11 is style， $3 \cdot 16$
Boss stone in ramling，2002s it seq．，20－8．
Bosse ：tiler＇s，190s
Bussing ；in finmbers work， $2: 25 a$
Buston furnace，2．2790
Hoston，Lincolnshire ：chureh，（1）s，tel．Pro－ portions， $1.1015 . \quad$ Groined ceiline，202igy
Botoner，William ；writer of the 15 th century， I． 970
Bote，dohamn ron ；architect，Abi5
Lottom panels of a loor，$\because l i 0_{0}$ liails of n deer，ib．
Roucherie；at Diest， 561 ．It Ypres，ib．At Antwerp，sb．
Bughton quarries， $1660 t$
Bungry church；spire，p． 1000
Bonmann，George $1 \because$ ，；architect， 366
Bourges ；catheiral，510．Iruportion of，p． 1016
Bonstiehl＇s patent stone， $166 \pi x$
Bowden honse．Wiltahire，oits
Buwer：my laty＇s，or parlour，1：5
Bow latch，2：20
Bowtel，or Boltel，monlding．p． 970 et seq．
Boxbeam， $16: 29,16: 9 n$
Buxings for shatters， 2141 ， 2147 ．Of a

Bowl，Sir John；house for，at Nhouter＇s llill， 515
Boyd＇s patent flue plates，22－8f
Boyle system of ventilation， $2.5-8 / 2$
lBoynton American firmace， $2279 g$
Bracciano palace，at liome；winilow，2768
－，houses at，il4．Castle，621
Braced roofs， $2052 \mathrm{~m}, 205: r$
Braces in carpentry，2010
Bracketing and eradling，in spec．，228．0
Brackets and bracketing，20Fy et seq．Fur cornices，to make similar to one wiven， $2($ sit． Angle to support plastering，20\＆1，20ざ．． Jor coves，？（183，Angle brackets for coves， $2081,2085,2086$ ．Ln extermal amd internal angles，2087．For moulded cornices，2088． For a shelf， 2263
Bracket stairease；mole of forming， $21: 3$
Bradawl；joiner＇s， 2110
Bradding hammer；fl：zier＇s， 2207
Brads，22．万̈a，2：5न
－for floors ；weight of， 2257
Bradshaw，Lawrence；architect．11：
13ragerio，Bertolino ；architect， 613
Braine，near Loisons ；chureh， 524,566
Bramante or Lizzari，Donato；nrehiteet， $33 \mathrm{~J}_{\text {，}}$ 371,2917
Bramshill house，IIants，45 ？
Brandenburg ；church of Ste．Catherine， 5.9
lirandenburg，laul von；arehitect， 5 sil
Brandon，Suffolk，tlint quarries， $166 t \mathrm{~b}$
Brandon，Laphael；architect，writer on archid teeture，p， 968. Il is Andysis，\＆c．，p． 571
Branuon，1hilip；fireprouf construction， 1903π
Brass， $1790.2 \pi=2 \mathrm{~m}$ ．Wreight of n plate， ：1：2 1 m ．Strength of， 1630 ．Hrazing， $2: 636$

1PLA
Brass points ; glazier's, 2226
Braybrowke, lord; house for, 410
Jhraza; cathedral, 607
Breaking weizht; limits of, 1628f: In the middle of a beam, 1629 y et srg. Oi motals and timbers, 1630 , 1630 s . Ot timber, 1622
lireak joints, $1916 a$
Hréant's process for repairing timber, 1752
Brecze, coke ; 18\% 30
13rescia; broletto, 1 13
Breslatu ; ehureh of Ste. Elizabelh, 579
lhetteville; chureh spire, p. 1000
Brewery at Villers abley, 555
Brick, 1811-18:33. Description of, and antiquity, 1811. Species used, accorling to Vitruvius, 1812. Jmproper bricks used by the moderns, 1813. Earth for, 1814. Mannfacture, 181\%. Clamps, 1816. Kilus for burning. 1819. Suecies of tricks, 1820 . South Stalliondshire, 1830. Stocks, 1820-1822. llace, 1823. Burrs and clinkers, 1821. lind, 1825. Fire, 1827. Wiadsor, ib. Welsh lumps, il. Yaving, 1828. Dutch dinkers, 1833u, and Flemish, 1829. Compass. 1825. Concave or llollow, 1×26. lhhe bricks, 1830. Wood, for fixing, in Spece, 228\%. Red, 1831c. Suffolk and other bricks, I83la. Pierced, J831e. I Black, 18:31d. Glazed white and other colours, 18:31e. Sizes of, 18:32. Beart's patent, 1831b. Strengtli o1', 1833. Weight of", $18: 336$. Should be well saturated in sumsmer, ${ }^{\circ} 32 a$. Number for a given quantity of work, 2:317

- employed in Eryplian architecture, 72. Varicties of ; in spec., 2282. Much used in England, 416. Crushing weight of, $1500,1502 / 2$
- paving, $1908 b, 2300$; in spee., $2282 b$. Axe, 1890 . Cornices, cut and motided, 1904. Moulded, in spec., $228: 2$
liricklust mortar, 1805 c
Bricklayer, 1901
Bricklayer's work, in spec., 2282. Estimating, 2500. Tools, 1890

Bricklaying and tiling, 1880-1008
13rickmaking, 1814 et seq. Machines, 1832
Bricknogged paritions, 1902, 202.1. Jn spee., $2282 b$. 11 ow measured, 2313
lirickwork; crushing weight of a mulic foot, 1833. Expansion of, 1833c. Measuring and estimating, 2300, 2306 et seq. 'Table of number of bricks in a wall, 2:17. Table of number of reduced feet in quantities of different thicknesses, 2318 el sfq . Medieval ; in loelgium, 554. In Spanish churches, 585. In Ituly, 616. Gothic, p. 991. Moulded, ib. Strengtls of, $1502 l, 1502 \mathrm{~m}$. Weight, 1901. In spec., 2282. Coloured, 3008 . T'able of rod of brickwork, 2320
Bridewell, or Blackfriars' l'alace, London, 526
Bridge ; Croyland, Lincolnshire, 419. Della Sanlissima Trinita, Florence, 331. Rarliest in Rome, 222. At Narni, ib. Of Trajan over the banube, ib. At Alcaniara, ib. At Avignon, 31:\%. Of St. Esprit, ib. At Barcello, 600. Of Coimbra, 6i07. I)" Hroel at Courtrai, ight. Des Trous at Tournai, ib. Del Obispo at Jiacza, 598. At Orense, 589. Architecture of, 419. Of Whinstone, 1922h. Building of ; considered an ant of piety, 310. Of Chinn, 108. 'Those of timber, 2005 el seq. Ower the Brenta by Palladio, 2096 ; and over

1:しO

Thes Cismone, 2096; rins anotler, 2057.

Joriskenorth church, Somersethhire; bench (114) ए. 585

Bridgewater double roll tile, 18 多 8

- , carl of ; hou*e for, iz 28

Briduing joists, 201! ! , 2022
Bridlingtom, Y'orkshire; priory chureh, mullions, p. !9 1
Brighton, Suserex ; the pavilion, 521
IBriakbourt, Northumberland; conventoal church, 398, 407
lisioule, church of St. Julien, 5,3
Bristol, Somersetwhire; catherlr. I, 398, 421. Founders and dimensions, 134. P'roportion, p1017. West window, p. 1631. I'arochisl लhurch of St. Mary Redclitle, 421, pr. 9न0. l'roportion, p. 161 f . Church of st. Stephen, 421, p. 970. Tower, p. 100:
Britain; architecture of, 575 rt seq. Under Claudins, 381. Lider Aerieola, ib. Jn time of Constantius abounderl with wraxl artilicers, 3×1. lioman works in, ruins of, 3×8

- mu-eum, Lomdon, formerly Nontague house, 46 . Firanite columns, 16 ; 1 e
Britons; ignorant of architecture lefore final departure of liomans, 381, 382. Early housces and architectore of, 379, 280. How lodged under the Normans, 393
13rizi, - ; architect, 612
liroach; of a tower, p. 1001
Broaching ; in masomry, 1914
liroad tool ; ma-on's, 1910
Irroletlo; at Como, 611. At Monza, 613. At l’:escia, ib.
IBrongniart, Alexandre; architect, 2913
Brontacum of the Greck theatre, 172
Bronze, 1791. Nonuments, \& co, 220ib. Castings, 2266
Brosse, Jaeques de ; architect, 358
lirou; church, B4!
Brown, J.; writer on prop.orlion, p. 1014
liruges; chapelle du Saint Sang, sjot. Notre Dame, 557, 560. St. Sauveur, 5.51
Brunellesco, Filippo ; architect, $323,327,436$, 1620
Branet Delsaines, M. L. F., architect. 2919
Brunsbergh, Jleinrich; architect, $579,5 \times 1$
liruxelles; Notre Dame dez V'ictoires, 557. Notre Dame du Sablon, 55y, 5tbt. Ste. Gudule, $553,555,557,55 \%, 560$. Mason Ilu roi, 56\%. Iron spire, p. 10n.5. Notre Dame de la Chapelie, $55.3,555,550$
Buckliurst house, Sussex, 440, 116
Juckingham house, Loudon, 465 . I'alace, 166600
liuckingham, duke of ; house for, $410,16.5$
- John ; sceond carl of, 52:5

Fuckwell's granitic Breceia stone, 1903ce
Bucozzo; architect, 323
Builder's fire ; the, 2279 d
Buibling stones of England, 1636 et seq. Of Nromandy, 1666k et seq.
Buidings, covering of ; as to compmrative weights. See "Covering of Buildings"

- publicand private; gencral observations on, 2983 et seq.
Bullant, Jean; architect, 857, 3.58, 549
liunnett's fireproof iloor, 190 ir
Buonarroti, Michel Angelo; architect, 335, 336, 345. 1) wor by, 2740
Buontalenti, Bernardo; architect, windows by, 2759

13UR
Burgh, Suffolk ; castle, 391
Burghleigh, or Burghley, near Stamford, Lincolnshire, 440, 446
Bursos ; cathedral, 588, 591, 595, 596. Dominican churels of S. Pablo, อ̄95. Nunuery de las Huclgas, near, 587
Bursuet, J. ; architect, 2975
Burley-on-the-Ilill, Northamptonshire, 4.40
Burlington, earl of; amateur architect, 464, 509,510 . Ilis liberality to W. Kent, 511
Burlington house, London, 2985. Colonnade, 509. Pilasters, or half-columns, condemned, 2615. Gateway, view and of house, 2670

Burner for gas, 2293
Burnett's patent for preparing timber, 1752
Jurnt clay ballast, $1833 \mathrm{~d}, 1833 e$
Burrugh, Sir James; amateur architect, 490
Burrs and clinkers, 18:2
Bury Saint Edmunds, Suffolk; Conventual chureh, 398. Chureh of St. Mary, 408, 4:1
Buschetto of Dulichio, architect, $2 \dot{8} 6$
Bustamente, Bartolomeo di ; architcet, $3 \mathbf{7} 0$
Butt hinges, 2258
Butting; in carpentry, 200 ?
Buttress; strength of, p. 1047 et seq.
Byland, Yorkshire ; conventual chureh. 398
Byzantine architecture, 270 et seq. Continued till introduction of I'ointel strle, $28: 3$. The style adapted to the wants of the present day, p. 1049

CAABA of Mecea, spared in 1803, by the Waliabees, 11世
Cable, ornament, 397
Cablings, 2588
Cadmians ; Bryant's thoughts on the, $2 \overline{7}, 136$
Caen; fine examples of Norman work: p. 1023. Buildings set out with the pereh, p. 1057. Church of St. Stephen, 290. Spires, p. 1000. St. Peter's spire, ib. Holy 'I'inity, 290. St. Saviour's, spire, p. 1000 . St. Jean, 47. t'hâ'eau de la Gendarmerie, 548. Abbaye aux $110 m m e s$, clivir; p. 1006 ; buttresses, p. 1048

Stone, 1666% h et seq. $166 \pi v, 166 \pi w$
Wood, Middlesex; house for Lord Mansfield, 517
Caernarvon, Caernarvonshire ; castle, 402, 103
Caerphilly, Glamorganshire ; castle, 398, 404, 419
Cahors ; cathedral, 535
Cairn, or Carn, 24
Cairo, fomuled by Akbah, 120. Mosque of Amrou, 306
Caissons; in cylindrical vaulting, how to regulate, $2002 a$. In hemispherical vaulting, $2002 c$.
Calcarium, 2274a
Caldarium of the Roman bathe, 235
Caldogno villa ; cornice, 2725
Calmar ; cathedral, 567
Cilorifere stove, $2279 e$
Calverley stone, $166{ }^{\circ} \mathrm{m}$
Camalodunum ; first Roman colony in Britain, 381
Camber ; of a beam. 16290
Camber slip; 1ricklayer's, 1890
Cambio da Colle, Amolfo di ; architect, 323
Cambridge, church of Holy Sepulchre; proportion of, p. 1016 . King's College, 2907. Chapel, 1499h, $1499 c c$, P. 1045, J. 1046 Vaulting, $2002 x$. Porch, p. 949 . Buttresses. p. 1049. Stalls. 2192t. Window. p. 9 get. p. 993. Doorway, p. 998. Turrets, p. 971

CAR

Came: in wazing, 2228
Caminha ; church, 637
Campbell, Colin ; architect, 504. Window by, 275
Camplell's tomb at Geezel, 304
Campden, Gloucestershire ; church, 421. House, 445, 451
Campello, Filippo da ; architect, 612
Camperio, Giacomo de ; architect, 613
Campero, Jean de ; architect, 593
Campione, Matteo da ; architect, 618
-_Marco and Jacopo da ; architects, 619
Campo Ayrero, Francisco de ; architect, 567
——Vaccino, Rome ; columns of, 2547. See
"Formm" at Rome
Canárah, in Isand ot' Salsette, near Bombay ; excayations, 57
Cancelleria, palazzo della. at Rome, 335d. Doorway, 2739
Cimons, Mirlulesex; house for Duke of Chandos, 440,505
Canopy; to set out moulding z, p. 1019
Camterbury ; castle. 394, 398. Cathedral, $307 a, 312,596,398,421$. Founders and dimensions, 43.4. I'ier, p. 977 . Central tower, $200-x$. Vaulting, $1499 x$. Pillars of nave, p. 1040. South-west porch, n. 998 . 'Trinity chapel window, p. 988 . Deans' chapel, vanlting, 2002. x°
Canvas; prepared tor roofs, 1908 a
Capel St. Mary's, Suff lk; church roof, $2352 t$. Roof mouldings, p. 987
Capillary attraction, $1886 b$
Capitals of co umns; origiu of, 135. Mode of ghuing up, 2203, 2204. Gothic, p. 976 et seq. Of pilasters, 24:7 et seq. Tusean aml Boric, ib. Ionic, 2678 . Corinthian and Composite, 2679. And Bases, in spec., 228.16
Caprarola ; arrade. 2637. Hoorway, 2737
('apri, villa; near Vicenza, 353, 2843
t'apua; amphitheatre, 193, 228
('arbolineum Avenarius, $1752 d$
(arbon paint ; for iron, 2273b
C'arcass; scasoning, 1751. Measuring, 2341
Carcassonue ; St. Nazaire, 534, 540. Church, 307
Carceres of the Roman Cireus, 210
Cardiff; Glamorganshire ; castle, 208
Carisbrook, Isle of Wight ; eastle, 398
Carita, La ; convent of Venice, 354
Carlisle, Cumberland; cathedral, 406. Founders and dimensions, 4B4. Proportion of, p. 101\%. Winlow, $1502 c$

Carlow, in Ireland; Bruen Testimonial chureh, 1. 966

Carlton house, London, 524
Carnac, Brittany; remains of Druidica? monument, 14,40
Carnak, ligyt ; temple, 73. 77, 81
Carpenter's boast, 2011. Tools of the car penter, 2003
Carpenter's work ; in spec., 2285. Wages, 315. Measurement of, 2330-2365

Carpentry, 2003 ct seq. System in use among the Chinese, 102
Carpintero, Macias; architect, 597
Carr, John ; arehitect, 514
Carrara marble, 1666i, 1677-1677c, 2002hh
Carreno, Fernando de ; architect, 596
Carriage of stails: 2026
Carron grate, 2279d
(arrying up work, 1223, 1925a
C'arson's anti-corrosion paint, $2: 23 a$
Cart, Picter; :urchitect, 365

CAR
Carter, Edwarl ; architect, 319. 464
Carthusian nunnery at Miratlores, 596
Cartmell, Lancashire ; choir, 398
Carton pierre ; enrichments, 22.51
Carving; in Italy, 609. Wood earving, $2124 c$
Caryatides, 85. Account of their origin, 165. Used in other than the classic styles of architecture, 166. Probable origin, 168
Caryatides and Persians, 2682 et seq. By Jean Gougeon, 2683, 2693. Those designed for Whitehall, 2685. By Michel Angelo, 2687, 2688, 2691. By Biff, at Milan, 2689. By Quellinus, at Amsteriam, 2620. At the Louvre, 2693. From the areh of the Goldsmiths at Rome, $269 t$
Case hardening, 1771
Cuscment ; moulding, 2532, p. 970

- frames ; in spec., 228.0 d
in leadwork, 2227. Wrought iron, $225 \overline{2} d$. Hopper, in spec, $2286 a$
Casing, to protect stone dressings; in spec., 22850. For pipes, in spec., $2285 h$

Cast iron, 1764, 176 è et seq. Strength, $1630 r$. Experiments on, $1628 m$. Breaking weight in the middle, $1629 i$. To fracture it, $2223 u$. Columm 2255 .
Ca-t lead, 1788° et seq. Steel, 1773
Castel San Angelo, Rome, 256
Castella, of aqueducts, 225
Castellamare eastle, 625
Castings; in iron, 2265e, 2265g. Testing, 2265 h
Castle Coote, in Ireland, 528

- Jushen, Isle of Man, 168I

Abbey, Northamptonshire, 425
—— Howard, Yorkshire, $49 t$
——Rising, Nerfolk; church, 398. Castle, ib.
Castles encouraged by William I., 393. By
Willian II. ib. Description and list, $39 \dot{4}$.
Gateway, 416. Of Benevento, Penafiel, and 'Tordesillas, 128. At Beja, 601. At Freixo, ib. At Almeida, 603. At Ourem, ib. Obides, ib. At Braceiano, 624. At Andria, Castellamare and Teano, 625. At Arrayolos, 603. At Estremos, ib.

Castletown, Derbyshire ; castle, 301
Castor, Norfolk ; castle, 391
Castor and Pollux; temple at Agrigentum, p. 946 ; at Rome, 208, 262

Catalonian forge, 1762
Catenarian curve, contained in walls of Gothic buildings, $1583 f$, p. 1047
Cathedrals, Englisli; Publications on, 434. Having parts of Norman erection, 396. Devoid of symmetry, p. 1006. Proportion, p. 1013-p. 1015

Catledge, Cambridgeshire; house, 446
Caudebec, Normandy ; houses, 539. Sacristy of church, 546 . Lady chapel, $1499 b \dot{b}$, $2002 u, 200 \div u c$, р. 1053
Cammont, M. de; his division of French styles. 537
Caviedium of a Roman house, 246
Cazes; of Ellora, 56. Of Indra Subba, ib.
Cavetto, Mouth, or Hollow ; ornament, 2532. In Norman architecture, 897
Cavil or stone axe, 1913
Cawston, Norfolk; church window, 990
Cecil, William, Lord Burleigh; house for, 440
_-Sir Thomas; house at Wimbledon, 440
Cedar, 1705 ; or deal deors, $2145 c$. From Florida, 1727d

CHA
Ceiling juists, 2019-2022
Ceilings; 2815 et seq. Timber framing the tupe for firming panels in, 2816. Coves to, ib. Examples of ornaments for, $i b$. Examples of subdivisions, 2817, 2818. Cornices to, proportions of, 2819. Of wood in medieval period, 2023a. And decorated, ib. Finislings to; in spec., 2287, 2290. In plasterins, how set, 2246. Ribbed; how neasured, 2339. Divided in wood, in spec., $2-285 e$
Cellae domestica et familiarica of a Roman house, 253
Cellar, arch; in spec., 2282a. Doors; in spec, $2284 d$
Celorico ; church of San Pedro, 601
Cement, 1863 et seq. Concrete, 1864 g . Foz Mosaic work, 2231i. For plasterer's work, $2251 a$ et seq. In spec., 2287. Quantity to cover surface, 2248
Cementation of iron, 1771
Cementing ; to brickwork, 1813. To glass in leadwork, 2229
Cendres de Tournai, 1859
Centering: how measured, 2332 . In spec., 228.

Centre-bits ; plumber's, $2 \geqslant 12$
Centre of motion, 1241. Of gravity, 1242, 1266-1292. See "Mechanics and Statics"
Cesarianus, Cæsar; architect, p. 1008, p. 1013. Work by, p. 1037, 435
Cesspools; bad substitutes for sewers, 1887. In spec., 22826
Crain plates; in footings, 1882. Riveting, 1631 q
Chains and ties, 1495. Metal or timber, p. 1 C0t
Chaldæa; architecture of, 9
Chalk lime, 1849, 1859h
Chalons sur-Saône; cathedral, 540
Chamalières, in France ; gates, $2145 c$
Chambers, Sir Willinh; architect, 518. Treatise on Architecture, 521
Chamfer; moulding, p. 973 . Plane in arches, ib. In spec., 2285 .
Chancel ; at west end, 569
Chantlates; at eaves, 2211 m
Chartrell, Robert D.; arclitect, on proportion, p. 1014 ct seq.
Chapter house ; at Batalha, 605. At Wells p. $1025, \mathrm{p} .1026$. In England, vaulting of, 1499bb. Proportion of, p. 1016
Chare roff, p. 1046
Charente stone; 1666pp
Charing Cross liotel, 1681 c
Charité sur Loire, la; churclı, 289
Charlemagne, emperor ; architectural era of, 283, 289
Charles V., king of Spain; patron of architecture, 368

- V. and VI., kings of France ; architecture under, 311
__ VIII., king of France; aequainted with the arts of Italy, 358
Charlton, Kent; house, 15 ?
Charlton, Wilts; house, 415, 151, 452
- white, $2273 g$

Charola, or apse, 602
Chartres; Notre Dame, 289, 534, 541, 547. Propertion of, p. 1058. Roofed with copper, 2224. Steeple, p. 1001. Apse, 1'.1007. Buttresses, p. 1018. Sercen, 1. 9.4
Chased mortises, 2019
Clâtean de Madrid; near I'aris, 440. At Siehem, 564 . At Terheyden, ib.

CHA

Châteauneuf; clurch, p. 1C0t
Clateaux ; of France, 548. Talle of classinication for dates, 537
Chaucer, Geoffrey ; poet, clerk of the works, 319
Cheeks to dormers, in spec., 228% a
Che!-Minar, or Jersepolis ; ruins of, 46-49
Chelsea, near London ; hospital. $2978 a$
Chemical analysis of stones, 1666
Chenies, John ; house for, 440
Chepstow, Monmouthshire ; castle, 402
Cherence stone, 16660
Cherson: church of St. Basil, 375
Chester: eathedral, 398 ; Founders and dimensions, 43t. Conventual Church of St. John, 398
Chester-le Street, Durham ; church tower, p. 1002

Chesterfiehd house, May Fair, 525
Chesterford, Essex ; castle, 391
Chestnut; 1696
Cheret, 553
Cherron ornament, 397
Chez-lui paint, 22:3g
Chichester, Sussex; cathedral, $398,421$. Founders and dimensions, 434. Spire to steady, p. 1004. St. Mary's hospital, p. 98 s
Chillambaram, on the Coromandel coast ; pagoda, 58
Chilling iron, 1765L, 1779
Chilmark stone, p. 1023 Analysis, \&ic., 1666, $1666 q$
Chimney bars, 2255. In spee., 2286
openings, how proportioned; by Morris, 2792. By Chambers, ib. Angular funnels of, 2793

- piecos, 2788 ct seq. Method of proportioning dressings of, 27s!. Materials employed in, 2794. Of slate, $2211 r$. In spece. $2284 d$

pots ; in spee., 2287

_- shaft, $279 \overline{5}$. As a ventilator, $2278 f$. One for all fireplaces of a house, $2279 c$. Ut bricks, in spec., $2282 \boldsymbol{2}$. Of stone, in spee., $2284 b$
China; architecture of, 9. Tent, the type of, 93. Does not scem to have improved, 94. Principles of, 95 . Quality of, 96 . Its ornaments, 97 . Timber, chief material used in, 98. Brick also employed, ib. Regulations in building, ib. Granite, $1672 a$.
houses; described gencrally, 101. Palaces, 103. That at l'ekin, 103

- wall ; description of, 108

Chisel; a caypenter's tool, 2003. A mason's tool, 1909. The firmer, the paring, 2111 ; the mortise, 2112
Chiswick; villa for Lord Burlington, 509
Choir ; termination of, p. 1006. In tixed stalls in nave of Spanish cathedrals, $: 88$
Cholula; great pyramid, 112
Chopping block; bricklayer's, 1890
Choultry, 61
Chowne's patent air syphon, $2278 f$
Chrismas, Gerard; architect or seulptor, 412
Christchurch, Hampshire ; church, 398

- Oxford; college, 126. Quadrangle, 490

Christian architeeture, p. 964
Christiania deals, etc., $1729 d$
Chureh; with fonrteen sides, 535 . Round, p. 1006. Ancient rules for the planning of, p. 1009 et seq. Plan of carly Christian, p. 1006. With single naves, 557
fittings, in spec., 2285m. Floors, in spec., 22856

CLI

Church. glazing, in spec., 2289
—— Plaster to inside walls, in spee., 2287
Smith's work for, in spec. $2286 a$ Tioubers for, in spec., 2285 h Hower and spire, in spec., $2281 b$. Steps t.) chancel, in spec., 22084. Passage. ib.

Churches, new ; commissioners for buildiug, 521

- From 9th to 12 th century, and later, general forms of sections, 290. Of Greek religion, distribution of, 375 Warming of, $2279 q$
Charton Mendip, Sumersetshire; church, 421
Cicero's Formian and Tusculan villas, 243
Cigoli or Cardi, Lodovico ; architect, door by, 2742
Cima recta, 2129. Reversa, ib., 2532
Cinders in mortar, 1859 d
Cintra; II ieronymite monastery of La Pena, 607
Circle; in geometry, 908-928. Segments of; table of a reas when the diameter is mity, 1225 . To describe independent of a centre, 2074
Circles of Stone, 16. Usel by the Israelites, 15. One set up by Joshua, ib. Remains of, in counties of Derby, Devon, Dorset, Somerset, and Westmoreland, 16
Circular ; ribs of timber, 2052 et seq. Saw, 212ta. W'indows, p. 903 et seq.
(ireus of the Greeks and Romans, 240. Maximus, at liome, 210
Cistern for water, 1785a, 2223a-2223e. Of lead, zinc, and late, $2 \cdot 23 a$. Of slate, $2211 q$. ()f deal, in spec., 228 g. Of lead, in spec., 2288 . Uf zinc, in spec., $2: 291$
———in a gutter, 2214
Cistercian; abbey, 587. Monastery at Tarouca, dic 0 . Nleobaça, 602. Near Vi’laviciosa. 589. Nunnery, 603
Cittib del Castello; church of Sta Maria Maggiore, 624
Città del Pieve, 624
(ivil and licclesiastical dilapidations, p. 1098
Civray; church, 534
Clamond gas light, $2264 e$
Clamps of bricks, 1816, 1817
Clapboard, 1689
Chapham, Keds. ; tower, 389
Clare hall chapel, Cambridge, 490
Claremont house, near lisher, 521
(Carke, Dr.; amateur architect, 490
Claudius; architecture under, in l3ritain, 381. 'lemple of, at Camalodunum, 381. At liome, p. 1065
Clay for bricke, 1814 et seq., $1831 f$. For terra cotta, $1839 i$
Cleaning paint and varnish, 2276 c. Down Bath stone, $166{ }^{-1} n$
Clear coleing, 2273
Clerestury, 602. Δt Amiens cathedral, p. 1061. At Winehester cathedral, p. 1042. At Wells, p. 1024. At Winchester, p. 1032. Windows, p. 990 , p. 991
Clerk of the Works, 312, 319. And his office, in spec., $2280 k$
Clermont ; fountain, 548
Clermont-Ferrand; cathedral, 5.15
Cliefden bouse, Buckinghamshire, 465
Cliff Wond quarry, $1666 y$
Clifton, Sir J. ; lionse for, 440
Climates of Emrope, 1050
Clinkers, 182. Dutch, 1830

CLI

Clips; glazier's, 2229
Clive, lord ; house for, 524
Cloisonné work, $22 \overline{i ̄ i}$
Cloister, 560. Great, at Ratalla, 605
Close boarding ; in sjec., $2288 \overline{5} a$
Close picked; to granite, 1915c
Closet knols, 2263. l'an; stoneware, 2218. Valve to cistern, 2223g. Eartl, 2218a. Arm juint, $22233 n$
Closets, dwarf; in spec., 2285g. See "Cupboard"
Cluny; abbey of, 289. Hôtel de, at Paris, 548
Coach-house door and gate; in spec., 2:8.5e
Coal Exchange ; timber dried, 1749a, 294"a plates, 2255 ; in spec., $228 \dot{4}$ a . Tar, 1867d
Coap, Sir Walter ; house for. 440, 452
Coarse stuff; plasterer's, 2235
Coated glass, 22312
Coating composition for iron, $2273 b$
Cobarrubias, A lonso ; architeet, 367,368
Cobleitz; St. Mary', 579 . St. George, 583
Coccaglio; village, 622
Cockerell, Charles Robert, R.A.; architect, on proportion, p. 1013
Cockermouth, Cumberland ; castle, 398
Coffermaker, Thierri de; architect, 559
Cohesive power of stone, $1502 r$. Ot metals, 1630 r . Of timber; 1630 s . Of materials, $1628 e$
Coignet's béton aggloméré, 1867 f , 1903 dd
Coimbra; Santa Cruz, 607. University, ib. Bridge, ib. Chapel of Santa Caterina and the palace, ib. Church, ib.
Coke, Sir Anthony ; house for, 440
Coke breeze, 1833 e
Cokels, $2279 f$
Colchester, lissex ; 111 Saints' church, p. 1005. Castle, 344. Monastery, 389
Cold blast, 1757, 1758. Iron; strength of, 16281 et seq., 1630 r. Short iron, 1764
Coleshill houve, Berkshire, 462
Coliseum, or Flavian amphitheatre, at Rome, 192, 228, 229, 2547. Drainage, 231. Pro~ portion of, p. 1021. Ileight of, p. 1660
Collar beam, 2031, 2034. Gothic, p. 987
— roof, 20t1, $2052 q$
Collegia Fabrorum, 310
Collinge's hinges, 2258 c
Collision or impact. $1628 \rho, 16300$
Cologne ; catlicdral, 567, 573 . Proportion, 1011. Vaulting, 2002 g . Apse, p. 1007. Masons' marks, $322 b$. Manner of glazing, 2229 d . Chureh of the Apostles, 555. Church of the Minorites, 566. House in Altmarktplatz, 582
Colonia, Juan and Simon de ; architects, 595 , 596
Colonna, Francesco; writer, author of the Poliphili Hypnerotomachia, 326, p. 9:8
Colonnettes, 19220 , p. 976 . Strength of, $1502 f^{\prime}$
Coloured bricks; in spec., 2282a. Glass, 2231b. Coursed stone work, $1666 e$
Colour in architeciure, 2511
Col ruring in drawing, ${ }^{2} 3836$. Cement work, 2277. In spec., 2287

Column ; in Place Vendôme at Paris, 363, 2603. Duke of York, 1671e, 167\%. Of Antonipe, 486, 2603. Of Trajan, 193, 2603
Columns; Clinese mode of forming, 10. Origin of, 135. Heights and diameters of

CON
aucient Roman, 2547. Diminution of, aceording to beight, 2548. Height and diminution of, 2543 et seq. Vignola's method of diminishing, 2545. Blondel's nethod, 2546. Diminution in ancient examples, 2547. Grouping of, 2614. In apartments, how arranged, 2849-2851
Cramms; stone, mode of working, 1924. Of brick, in spec., $2282 b$. Of st. ne, in spec., 2284a, 2293b. Gluing up, in joinery, 2201. Should not penetrate each other, 2081. And pilaster, deal, in spec., 2285g. Of materials, in testing, 1502 d
Cast iron, 2255. Strength of, p. 1065. Compression of, $1630 y$ et seq.

- Gethie, P. 975 et seq. At Amiens cathedral, p. 1061.
Combe abley, Warwickshire, 465
Combination of parts of a building, 2825 et seq. Ilorizontal and verticul, 2838 . Of parts in leading forms, 2850. Examp'es of, 2856. Method of abbreviation in composition, 2857. Design proceeded with, 2858. Examples, 2859, 2860

Combination water closet, w2:20f.
Combing or grainiug, 2276
Combustion of gas, $2264 c$.
Common joists and their seantlings, 2014, 2015
Common rafters, in a roof, 2035a. Sentling, 2040: to caleulate for strength, $2040 a$
Como; cathedral, 623. Broletto, 611
Comornes church; spire, 958
Companies' hails; at Ghent, ¿63
Compass bricks, 1829
Compasses ; bricklayer's, 1850
Compiègne; church' of St. Antoine, 517. St. Jacques, 545
Complement of an arc, 1037
Compluvium of a Roman house, 247, 253
Composite order, table of exmmples, 264. General proportion, 265, 2591 et seq. Vignola's profile of, 2592. Table of parts of, $i b$. Parts to a larger seale, 2593. Mode of profiling eapital, 2594. Profile by Vitruvius, 2595 . By P'alladio, 2596. liy Serlio, 2597. By Scamozzi, 2598. Arrangements of modillions, 2614
Composition enrichments, 2251, 2252
Composition ; general principles of, 2485 et seq. Ornament i non-essential, 2486. Façades should depend on internal distribution, 2487. What compositions please, 2488. Method of the Gothic architeets as to windows, 2489. Talent of an arehitect, how to be judged of, ib. Drawings necessary in, 2490a. Method of abbreviation in, 2855
Compound intcre:t and annuity, p. 1101 et seq. T'ables, 1. 1105 et seq.
Compression, $1628 e, 1628 n, 1630 w$. Of stone, etc., 1500 et seq. Of a east iron bar as pillar, 1630!!
Comptroller of the works, 319
Concamerata sutatio of the Roman batlis, 236
Concave or hollow bricks, 1829

- surfaces, in joinery, to form, 2199

Conehy ; Notre Dame, and church, 534
Concord; temple (now of Siturn) at liome, 213, 260, 2547. At Agrigentum, p. 947.
Concrete, 166 7o, 1861 et seq. In foundations, 1881. When to use, 1882. Layer of; in basement, 1886 f . In spec., 2288. Flous,
$1903)^{2}$ et seq. And cement bleckis, 1905 aut et seq. In walls, in spec., $2293 b$
Conerete building and building appliances, 1864/t, $1903 v$ et seq.

- stress on cubes of concrete, 1903 ff .

Conduction of heat, 2279
Cone; sections of $1056-1109$. Of brickwork, 1499l. Construction of, $1499 u$
Confraternité des Pcuts; founded by st. Benezet, 310, 313
Conie sections, $1056-1109$. Definitions, 1057. Ellipsis, 1058-1082. IIvperbola, 10831094. Parabola, 1095 - 1109

Conic surfaces; to form in joincry, 2206 , 2207
Conisburgh, Yorkshire ; castle, $39 \downarrow$
Conisterium of the Greck gymnasium, 175. Of the Koman baths, 235
Constance cathedral ; spire, p. 1003
Constant supply of water ; system, 29.23 et scq.
Coustantine, emperol; unsuceessful in restoring the art, 199. His attempt towards it, 200. His timmphal areh, 201. His basilica at Rome. formerly called the Temple of Peace, 217, 2547. A type of the basilica of the early Christimes, 217. Niches at, 2775
Constantinople; works at, by Theodosius, Anastasius, and Justinian, 271. Aqueducts, 306. Church of Sta Sophia, 271. Served as a model after the conquest of the city, 300. Chureh of the Holy Apos: les, 271

Constantius, emperor; exhibited little desire to restore the art, 202
Contractor, in spee., $22801 /$
Convaleseent hospital, 2975 l
Couventual arehitecture, 434
Conversion of timber, $212 \overline{5} a$ et seq.
Conway, Cacrnarvonshire ; castle, 402-405
Cooley, Thomas ; auchitect, 526
Cope, Sir Walter ; louse for, 440,452
Coping stone; in spee., 228 la
-, cast iron ; in spee., $2286 a$
Copper, 1787 et seq., 222.4 ct seq. A metal early employed, 1787. Weight, 1787. Ore in England, where found, how smelted, 1788. Sheet copper, 1789. Alloyed with zine, for furniture, 1790. With zine, for bell metal, 1791. In spec., $2286 a$. sulphate of, 1752 et seq. Thickness of sheet, $2224 a$. Found and square ditto, 2224h. Weight, 2224 c. Strength, $1630 r$
Copper cords, 2260. Cramps, in spec., 2281d; 2286 . Nails, in slating, in spec., $2-283$
Copper, for water, in spec., $228: 3,2=264$
Coppin, Nir Ceurge ; desien for, 440
Cupt hall, Essex ; for Sir Thos. Meneage, 440 Copying works, 562
Copyism in German churches, 567. Sce "Assimilating work"
Cora, near Velletri ; walls of, 179. Cyclopean remains at, 32
Corbel; Gothic, p. 980. Stone for girders, and of briek, in spec., $2284 c$. Table; ornament, 397
Cord for sashes, 2260
Cordova, mosque of; commenced by A bderhaman, 126
Core, 18436, 1848, $1859 h, 1862 f$

- of a lead; in gluzing, $2229 a$

Corfe castle, Dorsetshire, 391, 391. Quarries, $1681 g$
Coria; cathedral, 586

Corinthian order, 258: et seq, p. 053 et seq. Vignola's protile, 2583. Table of parts, it. l'arts to a larger scale, 2584. Mude of drawing capital, 2585 . Volutes, 258 t. l'arts of the eapital, ib. Profile ; by Vitruviue, 2587. By Palladio, 2588 . By Serlio, 2582. By Seamozzi, 2590. Expedients relative to modillions, 2614. Best manuer of proceeding, ib. In Grecee, 161 ct seq. Ot the Romans, 262. Table of ixamples, ib. General proportions of, 2 n'3
areade, 2625 . With pedestal, 2031. Capital, origin of, accordiug to Vitruvins, 140
Corintbians ; colonies of, p. 943
Cormont, Thomas and lieguinit de ; architects, 542
Corncockle quarry, $1666 v$
Corneto; houses, G14. Palazzo Vitelleschi, 6-4
Cornice; crowning buikjings, 27.24 et seq. Proportion it slould bear to total height of building, $2 \pi=5$. That of Farnese palace, ib. Ot the Spanocchi palace, at Steua, ib. Of the l'iccolomini palace, at Siena, ib. Of the Pejana palace, by Palladio, ib. Of the Strozzi palace, at llorence, ib. Of the Pandolfini palace, at Florence, ib. Of the Villa Monteceio, by Palladio, ib. Of the Villa Caldogno, by Palladio, ib. Of another villa fur same family, ib. Of the Farnese palace, ib. Of the ciondi family, at lilorence, ib. Entablature by Vignola, 2726. Of the Florentiue palaces, 327,329

- of rooms ; proportious, 2819. 13r* ck , 1904. Block, 2727,2728 . Deal; in spee., 2285a. Gothic wood, p. 987. l'laster, 2250. In spec., 2287. To form in cement; in spee., 2282a
Cornwall granite, 1669
Corrosion ; of copper, 1789. Of iron, 1779 ct seq. Of galvanized iron, 1796b. Of lemd, 1785. Of metal, 2224, $2224 f$.

Corrosive sublimate, 1752
Corrugated iron; use of, 2255c. Slutters, 214 ia
Cors, in Gothic architecture, p. 970
Corschill stone, $1666 z$
Corsi collection of marbles, 1678 a
Corstorphise church; spire, l. 1003
Cortona; walls of, 179
Co-s ecant of an arc, 1044
Co-sine of an are, 104?
Cosy grate, 2.279d
Co-tangent of an are, 1013
Cottage, ornée, 3001
Cottages, $300{ }^{\text {a }}$ e t seq. Loudon's obzervations on, 3007 . Approved designs for, 3009
Cotte, liobert de ; architect, 366
Cottingham, Lewis Nockalls; architect, author of llenry VII. Chapel, \&e., p. 939
Coucr, châtcau le, $3 \because 2$
Coucy le Châ ean; church, 534
Counterforts, 1592
Countersinks, 2108
Coupled columns, 267
Course of brickwork, 1891
Courtrai, 562. Church of St. Martin, 559
Contances; cathedral, 540
Coved vaulting, 1464-1477
Covent Garden ; square of, $16 \approx$. Old theatre, 1855, 2958, 2967.
Coventry ; parochial chureh of St. Nichael, 408, 421. Spire, p. 1001
Covered glass, 92316

DEC

Covering boards of domes, groins, $\& c ., 2068$ -2078

- of buildings; comparative weighte of different materials, 2010b. Temporary; 1907c
Covert, Sir Walter ; honse in Suseex for, 440
Coves of ceilings ; height of, 2816
Cowdray, Sussex; mansion, 426. Porch, p. 999

Cowl for chimners; in spre., 2494
Cowley bricks, 1831
Cradle roofs, 205:2g et seq.
Cradles of iron ; in spec., 2286
Cradling and braeketing ; in spec., $2285 a$, $2285 b, 228$ ie. To chimmeys, 2255
Craigleith stone ; analysis, \&̌c., 1666
Crail church, Fifeshire, p. 1003.
Cramps and dowels, $1495,1857,2224$, 2955. In spec., 2284d, 2286. For hollow walls, 1902c. To ashlar work, 19251. In a spire, p. 1004

Crate of glass, $1871 a$
Crcasete, or wil of tar, $1752 u, 1752 c$
Creesing; in spec., $228^{\prime \prime}$ "
Cremona ; cathedral, 613
Crennels; of a eastle, 394
Cresting; to thatched roofs, 2211 s
Cresy, Edward ; arclitect, on proportion, p. 1015
Creuilly stone, $1666 \mathrm{~m}, 16660$. In spires, p. 1005
Crewe hall, Cheshire ; seaglicla floor ${ }^{3}$, 2250h
Croce, Francesco ; arehitect, 621
Croisée d'Ogive, $1499 v$
Cromlechs, 23. On the Malabar coast, ib.
Cross; chureh designed on that furm, 2876 , p. 1006. See "Church"

Cross garnct hinge, 2258 a
Crossettes or joggles, 1925e et seq.
Crow, iron ; bricklayer's, 1890
Crown Assurance Company's office, $1666 e$
Crown glass, 1868a, 1870a, 1871. Steeples, p. 1002. Or plain tiles, 1835

Croxton ; church roof, $2052 l$
Croydon, Surrey; palace hall roof, $20 \overline{5} 21$. Railway station roof, 2043
Croyland, Lincolnshire ; monastery, 312, 319. Expeuses for building; how raised, 392. Conventual churell, 421 . Bridge, 419
Cruciform plan ; for a churelh, p. 1006
Crusades of the twelfth century, 310
Crushing weight of several materials, 1500 , 1502. Of timber pillars, 1630 w et seq. Ut iron pillars, $1630 y$
Crystal Palace, 1851 , at London ; proportion of, p. 1062 et seq. At Sydenham; proportion of, $1671 b, 1728 d$, p. $105 \overline{7}$, p. 1065
Ciystal white sheet glass, 1874
Ctesiphon ; palace, 305
Cube; in proportion, p. 1006, p. 1057
Cubes, \&ce. ; Tables of, $2297 \mathrm{~g}, 229 \mathrm{~h}$. Of materials ; in testing, $1502 \mathrm{~d}, 1502 \mathrm{~m}$
Cubie feet of air in wards, 2975c. In rooms, 3032. See Glossary

Cubiculum of a Roman house, 253
Cubing dimensions, $2297 e, 2297 f$. Tables of, p. $780-787$

Cuença ; cathedral, 368. Dominican church of S. Pablo, 598
Cues; hospital church, 579
Cuise ; church of St. Martin, 531
Cul de Four, 1995
Cundy's ventilating stoves, 2279 d
Cunei of the Ronan theatre, 226
Curi or Cuneo ; church of San Francesen, 613

Cuphoard fronts; in spec., 22859. Lock, 2261
Cupola; in Belgium, 555. See "Dome"
Curb for circular windows, to form, 2065. For story posts, in spec., 2284c. For skylight, in spec., $2: 285 e$

- or Mansard roof, $203 \overline{5}$

Current ; in plumbery, 2.213
Currey, Heury ; architect, 2975e
Curtail step, 2186, 2190-2192
Curtain ; at theatres, 2971b
(urved ribs; in spec., 2285a
Cushion capital, p. 974
Cusp; broken-backed, p. 996
Cusped ogee areh; to draw, 1913،
Cutters ; species of bricks, 1821
Cutting knives; plumber's, 2212
Cyanite paint, $22-3 j$
Cyclopean buildings ; four eras of, according to Mr. Hamilton, 32
Cyelopes, the seven ; Bryant's opinion on 31
Cylinders; deflection of, 1650 h . Strength of, $1630 y$. In foundations, $1885 a$
Cylindrical tubes for beams, 1629a

- surfaces ; to form in joinery, 2198, 2205

Cyma, Cyma recta, or Cymatim, $2129,25.92$

DADO; in spec., 2285b. Ilow measured, 2356
Daines's process, 1667 m
Dairy and fittings; in spec., 2284c
Dais, 391
Dallaway, Rev. James; writer on architecture,]. 105 s
Damaseus; honses, how built, 131. Mosque, 300
Damp ; cause of decay in timber, $1746,17.0$
—Walls, $2251 g$. Paint for, 2273 g . Drying, $2250 i$
Damp-proof courses, 1886 b et seg. In spec., 2282, $2: 281$
Dance, George, sen.; arehitect, 313, 521

- Gearge, R A., jun. ; architect, 523

Danckers de Ry, Cornelis; architect, 2910
Dantzie timber, $1729 f$
Danvers, Sir John ; hnuse for, 440
Darbishire, II. A.; architect ; model dwellings by, 3026
Darby, lidy ; a London house for, 440
Darley Daile stone ; aualysis, \&c., 1666
Darmstadt ; theatre, $29{ }^{\circ} 2$
Dartiagton, Derbyshire ; Manor house, porch, p. 999

Divid I., king of Scotland ; his zeal in crecting religious buildings, 392
Datvison and Symington's process of drying timber, 1749a. Furnace, 2279f
Dawnay's fireproof floor, $1903 n$
Day, length of; jongest in diflerent countrics of Europe, 1030
Day work; materials and labour, how charged in, 2322-23:9. Bricklayer's, 1901
Dead lock, 2261
Deal, 1710. Sizes of, 2125c. Standarl of, 1729. How to reduce, 2363 . Table of values of, 2364-2365. Battens, 2362. Left plaiu, in spec., $2: 290$
Decagon; to form, 1021
Decay of stone, $1640,1666 k, 1667$ et seq. Of timber, 1745 et seq.
Decomposition of granite, $16 \sigma^{-0 a}$
Decorated Gothie; or ornamented English architecture, 410 , p. 967 . Characteristics of, 420. Proportion in, p. 1017. Mouldiags,

DEC

p. 973. Piers, p. 976 Capitals, p. 978. Base, p. 979 . Ribs, p. 980 . Iloodmoulds, p. 982. Plinths, p. 982. Parapet, p. 983 . Wood mouldings, p. 985. Windows, p.989. Window jambs, p. 982. Doorways, p. 997. Porches, p. 998. Towers, p. 1001
Deceration. 2513. Arises from desire of variety, 2515 . Analogy in, 2517,2518 . Allegory in, 2520. Dxample=, 2521 , 2522. Gothic, p. 994. Or seulp.ure at Amiens cathedral, p. 1062
Dccorative work in tints, $2251 l$

- appliances, 2277i

Deflection; of a beam, $1628 e, 1630 e$. Of pillars, $16: 28 e, 1630 w$. Correction of formula, $1630 n$
Delhi ; mosque of Kootub, 306
Delorme, Philibert ; architect, 857,858 . Il is work translated into Encrlish, 438. Ilis mode of framing domes, 2052
Delphi ; temple of, 136
Delta metal, 1791a
Denbigh castle, Denbighshire, 398
Denderah, 71
Denham, Sir John ; architect. 319
Denmark; buildings erected by Inigo Jones, 456
Denurtt arch, 1903rd
Dentils, centres of, 2612
Derby ; All Saints' church, p. 1002. Lunatic asvlum, $2278 y$
—— larly ; honse for, 440
plasterer's, deseribed, 22.12
Derbyshire marbles, 1681 a et seq.
Derick, John ; architect, p. 966
Desachy's fibrous plaster, 2251
Deseriptive geometry, 1110-1211
Design ; sce "Architectaral Desisu." Method in proceeding to make one, "4!0b
Detrusion, 1628 e, $1631 n$. Of stone, 16020
Devisor. 312, 319
Devonshire granite, 1669. Mables, $1502 g$, $1681 c$

- house, Piceadilly, 2991
l)iagannâtha; temple at l:llora, 56

Diagonal braced roof, $2052 d, 2052 g$
Diof a square ; sy:tem of proportion, p. 1017
Diamond; glazier's, 2226
liaper work ; in plaster, 585. To walls, 302
Diaphragm ventilator, 2278 r
Diarbekr ; palace of Tigranes, 305
Diastyle intereolumniation, 2605, 2609, 2611
Dickenson, Barnard ; house for, 528
Die of a pedestal, 2603
licppe ; church of St. Jacques, 547
Diest; church of the Béguinage, 558. Of St. Sulpice, 558
Digr out; in spec., 2281
Dijon; cathedral, 510. Church of St. Benigne, 289. Palace, 548

Dilapidations, p. 1098
1)imensions ; squaring and cubing, 2297

Diminution of columns, 2543 et seq. Visnola's method, 2545. Blondel's methot, 2546. In ancient examples, 2517 . Accurding to their height, 2548
Dinant; chareh of Notre Dame, 5.67
Dinkelsbuehl ; church of St. George, 580
Diocletian, emperor; desirous of reviving the art, 198. Il is palace at Spalatro or Spalato, ib.
Dionysiaca of the Greeks, 172
Dioscuri ; temple of, at liome, 208, 262
Director, 312, 319
Discharge of air through a tube, $2278 c, 2278 p$

DOR

Disconnector to drains, 2220i
Dishing out the beds, 1925 a
Dispersion of mankind from a central spot 11-14, 21
Distemper, 2274 et seq. Painting, 2274d. In spec., 2290
Distribution of plan, 2489
Ditriglyph, 2611
Djenonasia, temple of ; at Fllora, 56
I) ockyards; graving docks, $1671 b$

Dodecag n ; to form, 1022
Dog-legged stairease, and mode of fomming, 2182
Dome ; pinted, 533. Constructirn of, 1499 g . Not an arch, $1499 p$. Stability of, $1499 q$. Node of framing, by Delorme, 2052. Cir. cular and polygonal, to determine ribs of, 206\%. To cover with boarls, 20-0-2073. Construction of, in timber, 2089. 1low to regulate caissons in, 2837. Lead to; in spec., 2288 . Yauling, in masonry, 1356 et seq.

- of l'antheon, p. リ58. Uf St, Panl's, I.rndon, 20.19

Domestic architecture, 539,545 . Of the Romans, 242-255. Gothic, 2489. Of the Tudor period, 423-125. In Belgium, 564. In Germany, 582. In Spain, 585 . In Italy, 613. In Sicily, 626. At San Gimignano, 62:. At Venice, ib. At Aquila, Popoli, and Solmone, 625. Purch in, p. 999
Domical covering, 535
Domingues, Alonso ; architect, $60 t$
Dominican church, 545. At Burgos, 595. At Valladolid, 596. At Salamanea, 598. At Cuença, 598. At Mouza, 62.!. At latisbon, F69. At l'alma, 586. At Ghent, 557. At Louvain, ib. At Antwerp, ib., 560
-monastery at Guimaraens, 603. At Batalha, 60 f . At Amarante, 607
Domma, temple of ; at lillora, 56
Doneaster, V̌orkshire ; parochial chureh, 421
Door cases, etc. ; in spec., 228jc. Linings, in spec., $22 \mathrm{~s} \overline{\mathrm{~s}} \mathrm{c}$

- chains and barrels, 2263

Doors; deserited as variously moulded, 2130 - 2111 . In spec., $2285 e, 22 \times 5 f$ et seq., 2293 c. Of the medieval period, $2 i 45 a$.
and frames of wrought iron; sizes of, 2250. In spec., 2286 . Fireproof, 2970 , 29716
Doorways; profiles of, 2729 et seq. Considered in respect of m isses and voids, 27.3 (. Dimensions, 2731. Places and nmbers, 2732. Decorations, 2733. Gates and piers, 2734 . Of St. P'eter's Baptistery at Florence, and San Giovanni Laterano, 2735 . Nannfacture of, 2736. Examples of do rways, 2737-2739. At the Cancellaria, 2739. By Michael Angolo, 2740. By Vignola, 274i. liy Cigoli, 2742. By Inigro Jones, 2743. 13y Serlio, 274I. Gothic, p. 997 et seq. Divide:l by a post, 553
Dorhay, Frimgois ; architect, 357
Dorian architecture, p. 912
Doric arcade, 26:33. With pedestal, 2629

- order, Grecian. R(clative antiquity of examples determined from intervals between the columns, \&e., 140. Dorms, imagined inventor of, 140-142. Table of examples of, 14.. F'irst used in Paris by Antoine, 360. Used in Germany by Langhans, 366 . In the L'arthenon, 25:0. Table of its parts, ib. Pancipal buildings of, 25:2. I'roportions, p. 918 et seq.

DOR
Doric order ; Roman, 258. Of the theatre of Mareellus, ib. At baths of Dinelesian, $i b$. Vi order; of the Italian architects, 258. Vignola's commended by Daviler, 2651 . Mutular Dorie on larger seale, 2562. Table of heights and projeetions, $i b$. Difficulties in arranging entablature, 25̄63. How employed by the aneients, 2564. Dentieular Doric, and parts of, on larger scale, $256 \overline{5}$. Table of heights and projections, $i b$. Vitruvius's profile, 2566. Palladio's profile, 2567. Serlio's profile, 2568. Seamozzi's profile, 2569. Intercolumniations, 2605
-temples; general proportions of plan examined, 152. At Corinth, early specimens, 146. At Selinuntum, p. 913 et $s(q$.

Dorking lime, 1843
Dormers ; in spee., $2285 a$. Lead to ; in spee., 2288
Dormitory ; of an infirmary, 2976b
Dorrell, sir Thomas; house fur, 440
Dorsett and Blythe's patent for preparing timber, $1752 b$
Dortmund ; chureh of St. Reinold, 579
Dotzinger, lodoque ; master of the works at Strassburg, $322 a$
Double bead, 2128

- floor, 2019. Framed flooring, 2013, 2020, 2021
_glazing to partitions, 2231. Windows, 3037
Doulton's smoke and air flue, 2278f. Joint for pipe drain, $1888 a$. Fireproof floor, $1903 q$
Douvres; chureh spire, p. 1000
Dover castle, Kent, 391, 393, 394
Dovetailed backing to grounds, 2166
Dowel, 1495, p. 990 . Of wood in columns, 1925a. In spee., $2284 d$
Dowelled floors, $2171-2173$
Dowelling in a spire, p. 1004
Dozen of paper, 2277 e
Drag ; mason's tool, 1915a
Dragou beam, 2009
Drainage; of foundations, 1887. Of land, 1888e. Of dwellings, 3022, 3026. In spee., 2282a
Drains, 1887, 1888a et seq. Combined and separate systems, 1888 f . Special recommendations, 1888 r , 1888 s
Drake \& Co.'s conerete construction, $1903 x$
Drammen deals, \&e., 1729 d
Drawback lock, 2261
Drawer handles, 2263
Drawing ; in general, 2381. As applied to landseapes, 2404. Methods of teaching, 2383 et seq. Method of Dupuis, 2385. Ancient method, 2387 et seq.
- knife; joiner's, 2114

Drawings, 2491. Necessary in composition, 2490 a et seq. In making a design, how to proceed, 1490b. Ought not to be coloured nor highly finished in shadow, 2490c. Of caissons in vaulting, 2002a. Of horizontal and vertical combinations, 2839 et seq. By interaxal divisions, 2842. P'revention of false bearings, 2843. Working, 2491, p. 1008
Dresden ; theatre, 2972
Dresser; in spee., 2285 g . Top, in spee., 2285 g
Dressing and flatting tool ; plumber's, 2212
Dressings to doors and windows, in spec., $2281 b$
Driers, and drying oil, 2275
Drilling holes for rivets, $1631 t$

ECO

Drips; in flats and gutters, 2214
Droving; it masonry, 1914
Druidieal and Celtie building; introduced into Britain by the Canaanites of Tyre and Sidon, 14
Druids of the British Isles; a colony of the first race of people, 11
Drums of columns; to work, 1925a
Drury Lane theatre, London, 524, 2958. $W_{\text {Wyatt's principles in constructine, } 2957 .}$ Drury Lane in olden times, 2967. Old rouf, 2048
Dry area or drain, 1886a. In spee., $2282 a$
Dryburgh ; abbey, 431
Drying oil, 2274 . Timber, 1749a. Damp walls, 22500
Dry rot; cure of, 1753
\rightarrow soil closet, $2218 a$
Dublin; custom house, \&c., 526. Houses of larliament, ib. Four courts, ib. Carlisle Bridge, ib. Inns of Court, ib. Royal Exchange, ib.
Du Cerceau, Jaeques Androuct; architect, 357
Ducy ; chureh spire, p. 1000
Dumfries stone, $1666 z$
Dung pit; in spee., $2282 c$. Iron coping to, in spec., $2286 a$
Dungeon of a castle, 394
Duodecimals; to use, 2297 a et seq.
Durand's Parallè'e des Edifices, noticed in several pages
Dureseo, $2274 c$
Durhan ; castle, 394, 398, 414. Cathedral, 406. Founders and dimensions of, 434.

Vaulting, 1499x. Kitehen, 1499bb. Pro-
portion of churches in county, p. 1012
Dust bin, 1907 d . In spee., 2282 c c

- ilestructor, $1907 e$

Duster ; glazicr's, 2226
Duteh clinker, 1828, 1905c. Terras, 1859e
Dwarf closets; in spec., $2285 g$
Dwellings for industrial classes, 3012
EARL'S Barton, Northamptonshire ; tower
Early English architecture, 399 et seq., p. 967, Characteristies of, in arehes, trefoil and einquefoil heads, columns, windows, roofs, walls, ornaments, and plans, 405. Examples, 406. Proportion in, p. 1017, p. 1023. Monldings, p. 972. Piers. p. 976. Capitals, p. 977. Base, p. 979. Ralss, p. 980. Hood moulds, p. 981. Plinths, p. 982 . Parapet, p. 983. Wood mouldings, p. 985 . Windows, p. 988. Window jambs, p. 992. Doorways, p. 997. Porehes, p. 998. Towers, p. 1001

Earth eloset, 2222

- slope of, 1585
- table, p. 980

Earthenware; glazed, 1839g. Pipes 1888 a
Last Barsham hall, Norfolk; porch, p. 999

- end; forms of, p. 1006
- India house, Leadenhall street, 524

Eastbury house, Essex ; porch, 1908 a, p. 999
-house, Dorsetshire, 495
Eastwell house, Kent, 525
Laves gutter; of woorl, in spec., 2286a. Of lead, in spec., 2287 . Of zine, in spee., 2291
Ecclesiastical dilapidations, p. 1098
Echinus, or quarter round, 2532
Eeole de Médécine, Paris, 303. Des Beaux Arts, at Bruges, 563

ECO
Economiser grate, 2279d
Econen ; château, 357. Clıurch, 543
Edfoo, near Thebes; temple at, 7
Edrar the Peaccable, king ; his care of the Anglo-Saxon buildings, 386
Fdge roll moulding, 1499gg, p. 972
Edinburgh ; St. Giles's church spire, p. 1002. High church, 485
Edlingham, Northumberland ; castle, joggled works at, 1925e
Edmundsbury. See "Bury St. Edmund's"
Eecken, Jan ver der ; arclitect, 559
Efflorescence, $1667 \mathrm{c}, 1667 \mathrm{~m}$
Egas, Henrique de ; architect, 598
Eyina ; temple, p. 943 , p. 945
Egl, Andreas ; architect, 576
Frypt: architecture of, 9. Earlier than Greek architecture, 10. Its analysis and development, 70 et seq. Considered in respect of style, taste, and character, 76 et seg., 84 et seq. Tenples and tombs; t e principal works in it, 67. Form und disposition of temple, 76. Honotonous, 88. Physical causes which affect it, 63 et seq. No circular temple in it, 69. Principal edifices and map of the Nile, 91
Eleotherinm; of the Greek gymnasit: 175. Of the Roman baths, 235
Elasticity ; modulus of, $1628 \mathrm{e}, 1630 \mathrm{i}$. Of timber, 1610
Elbenf; tower of St. Jean, 547
Eleanor crosses, p. 1037
Electric appliances, 226.4 let seq. Danger of, 2264 m . Systems, $2264 n$, 22640 . Bells, $2264 q$ et seq.
Flectro process to iron, $2224 g$
Elephanta, near Bombay ; excarated temple, 57
Eleusis; temple, p. 944 , p. 945
Elevation, 2490a
Elevator. See "Lift"
Elgin; parochinl chureh of, 2043
Elizabetls, queen; did not patronise architecture, 438
Elizabcthan architecture, 4?5, 436 et seq. Practised till the days of Inigo Jones, $4 \cdot t \overline{5}$. List of palatial houses, 416. Character of, 449. Sepulchral monuments, ib.

Ellipsis, 1058-1082
Elliptical arch; to draw, in masonry, and find the joints, 1934-1937. At Modain, 305
Ellora; temples at, 26, 55, 56
Elm, 1720
EIsden, W.; architect, 602
Elten ; church, $56 ;$
Eltham ; palace, hall roof, $2052 t$
Fly, Cambridureshire ; monastery, 319. Cathedral, 406. Founders and dimensions, 434. Proportion of, p. 1016. Galilce perch, p..979. Prior's entrance, 397, 398, p. 997. Chapel of St. Mary, 421. Lantern, P. 1001, Window, p. 989. East windows. p. 988. Capitals, 390. Arch, ib.
Ely house, Dover Street, 515
Embossed glass, 2231e
Emere, Garcia d' ; architect, 370
Emerson's patent for prepariug timber, 1752
Emery cloth, 22760 d
Emmerich ; church of St. Algund, 567
Emy's system of roofing, $2052 b$
linamelled glass; varieties, 2231e. Iron, 17806. Slate 2211r. Water pifics, 2223q

Enamels; coloured, 2231f. Gold and silver, 2.31 g

EXE

Encaustic tiles, 1839b, 1908c
Endon stone, 1666
Engaged columns or pilasters, at Burlington house, 2615
Engelberger, Burkhard ; architeet, 581
England; architecture of, from James I. to Anne, 451 et seq. Under George I., 499 et seq. Under George 11., 506 et seq. Under Geurge III., 514 et seq. Saxon churches of. 290. Periods of Gothie architecture in. p. 967

English architecture, see "Druidical and Celtic building;" "Norman;" "Early English;" "Decorated; " Perpendicular ; " Elizabethan;" \&e.
——bond, 1892 et seq. In spec., 2282 builders in France. p. 1057

- granites, 1671 et seq.

Enrichments ; in plastering, 2250
En'ablature ; heichit of, 2523 et seq., 2542, 2544. Subdivision of, 2549. Deal ; in spec., 228 ă g
Entasis, or swelling of columns, 25%. First verified by T. Allason, 14. 'To a spire, p. 100.)

Eon ventilators, \&c., 2278 u
Fosander, Johann Friedrich ; architect, 365
Ephebeum; of the Greck gymmasium, 175. (If the Roman baths, 285
Ephesus ; church of St. John. 271. Temple of Diana, 141, 2581a
Episcenimm ; of the Greel: theatre, 172
Equilateral triangle applied to buildings, p. 1008 et seq.

Equilibrated dome, 1499h
Equihbrinm ; system of, in Gothic buildings. not known, 1583 e

- curve of, 1107. Necessary for fitness, 2500
Erechtheus; Ionie temple at Athens, 155, p. 952

Erwin von Steinbach ; architect, 305, 322 at
Escobado, Giovanni, Alonso, and lia Giovanni d' ; architects, 367
Escurial, near Madrid, 370, 371
Eseller. Nicholaus and Son ; architects, 580
Esher, Surrey ; palace, 426
Eisneh ; rnins at, 91
Espagnolutte bolt, 2165d, 2259
Essliugen ; church of St. Katherine, 583 ; of St. Mary, ib., 597
Estates, purchase of, p. 1096
Estimating, 2255 et seq.
listremos; castle, 603
Eton, Buckiughanshire ; college chapel, 421. Wecks and Co.'s ventilation, \&c., 2278u
Etruscan architecture, 178. Marked by great solidity of construction, 169
Etruscans first used amphitheatres. 232
Euclid's Elements; early uscd, 309b. Work translated, p. 1037
Eureka Concrete Companys, $1903 x$
Eustyle intercolumniation, 2605-2611
Evesham, Worcestershire; detached campanile, p. 1002
Evora ; chureh of S:an Franciser, 607

- Fermando d'; arehitect, 605

Evrenx ; cathedral. 517
Liwerly, Lincolnslure ; chureh, proportion of, p. 1018

Excavations, 1884
Excavator's work ; in spec., 2281. Estimaling, 2298
Excter, Devonshime; eathedral founders and dimensions of, 43.4. West window, p. 1031.

EXH

Towers, groined ceiling, 2023g. Castle gateway, 391
Exhaustion ; system of ventilation, $2278 x$
Exhedra; of the Greek gymnasium, 175. Of the Roman baths, züy. Of a Roman house, 252, 253
Exhibition of the Industry of All Nations, 1851 , p. 1062 et seq. Building of, 1862, 2052 Expansion; of brickwork, 1833c. Of concrete, 1862a. Of hot-water pipes, 3059
Exterior cements, 2251 a et seq.
TABRE, Jayme ; architect, 592
Fubris. E. de; architect, 323
Face work; in medirval masonry, 1915a
Facing block of stone, $1902 e$.

- of stone, in spec., 2282a. Bricks, in spec., 2282
Faggoted iron, $1764 a$
Faija's concrete, $1903 x$
Fair Oak house, Isle of Wight; warming, $\& \mathrm{c}$, , 2279 c
Fairbairn's beams and girders, 1629a, 1629n
Fulaise; quarries near, 1660 k
Fall for a drain, 1888 g
Falling mould of stairs, 2188
False gable at Tarragona, 587
Fan system ; for extracting foul air, 2278 g For driving in air, $2278 h$
Fan tracery, p. 1027. In cloisters at Gloucester, p. 1037. Vaulting, 1499ee, 2002 w , $2002 x$
Fancelli, Luca, architect, 323
Fancy colours, in painting, 2272d
Fanlight frames ; in spec., 2285 d
Fano; forum, 218
Faraday's ventilation to gas lights, $2278 v$
Farm-houses, 300:2 et seq. Distribution of, 3003. On large scale, 3004

Fascia, brick, in spec., $2282,2282 a$
Fastenings ; iron to joints, $1631 p$
Faucts ; of a Roman house, 250, 253
Faustina, temple at Rome, 2547
Feather or rib; on a cast-iron beam, to be avoided, 1629 d
Fees, to pay ; in spec., $2280 k$
Felber, Johann ; architect. 580
Felkirk, Yorkshire; church porch, p. 938. Sacristy, p. 999
Felspar ; in granite, 1669
Felt; under slating, $2210 d, 2210 e, 2211 n$. For roofing, 2210f. For temporary roofs, $1907 c, 2: 210 e$
Felt grain; in wainscot, $2125 b$
Fence walls; in spec., $2282 b, 2282 c$
Fencing, oak ; in spec., 2285/h
Fernach, Johanues Petrus ; architect, p. 1008
Fernandez, Matheos and Son; architects, 605
Ferrey's stamped plastering, 2245a
Fez, ancient Arabian city ; described generally, 132
Fibres ; of iron, $1764 b$ et seq.
Fibrous plaster, $2246 b, 2251$. Slab, ib., $2971 d$. Asphalte or felt, 2210 d
Fiesole ; walls of, 179
Figueras, near Gerona; parochial church, 589
Figures ; in decoration, 2519, 2521. Similar, 958-968
Filarete. See "Averlino, Ant."
Filippo, Maestro ; architect, 367
Fiilfet; listel or annulet, 2129,2532, p. 970. Moulded to roofs, 2173a

FLO

Filleting ; to a roof, 2211k. To slates, in spec., $2283 a$
Filter ; beds for purifying water, 2222c, $2222 g$. Of porous sandstonc, $2222 i$, Of siliceous stone, ib. Household, ib.
Fine stuff; plasterer's, 2236

- axed, to granite, 1915c

Finger-plates, 2261
Finislings ; interior, timber for, $1729 f$
Fir, 1706 et seq. Wellingtonia, 1726. Strength of, $i b$.
Fire clay lumps, 1826. Lump grates $2279 d$ Places, in spec.. 2281d. See "Chimncy." Stone, 1666aa. Brick, 1823, 1826. Terracotta, 1908s

- extincteurs, 2971i

Fireproof; doors, 2255e, 2971a. Plaster, $2246 b$. Wire lathing, 2246c. Iron columns, 2255. Paints, 2273j, 2971d. At theatres, 2971a et seq. Curtain, 2971b. Lathing, 2971c. To protect gauzes, \&c., 2971f. Theatre, 29711. Rooms, 2889, 2971 a. Floors, 1903 et seq.
Fires; causes of, in buildings, 2279p. Precautions agninst, ib., 297̄la. From gas lights, 2279b. Open, in heating, 22796. Close, $2279 b$
First pointed work ; proportion in, p. 1017
Fischers, Carl ; architect, 365
Fishmongers' hall ; columns, 1671 e
Fish's bladder. See "Vesica Piscis"
Fitness; the basis of proportion, 2496, 2497. Dependent on equilibrium, 2500. Maxims relating to, 2502
Fitwillians, Mr. W.; house for, 440
Five-gisled church, 557, 558, 559, 560. At Kuttenburg, 567
Fixing blocks, 2166, 1903r, 2173c. In spee., 2285, 2285a
Flachat, E.; architect, 1666k
Flambard, bishop; as builder, 321
Flanıboyant period in France, 546, p. 990. At Ghent, 2896c. Tracery, in Spain, 594. Mouldings, p. 974.
Flanders; proportion of churches, p. 1006
Flange; for box in slate cistern, 2223 g . To plate girder, $1629 p$
Flanged beums, $1628 q$
Flashed glass, $2231 b$
Flashings ; in plumbery, 2213. In spec., 2288. To slate, $2211 \mathrm{k}, 2214$
Flat ; arch, proportion for, 1925h. Floors arched, $1903 b$ et seq. Tile roofs in India, 1903g. Of concrete, $1903 u$ et seq. Tile, in spec., 2282π. Of zinc, in spec., 229.4 . Iron, rolled for flitches, 1629u. In spec., 2285a. Of lead, in spec.: 2288. Wetterstedt metal for, $2224 e$

- in houses, 2995a, 3012 et seq.

Flattened sheet glass, 1872
Flatting ; in spec., 2290
Flemish bond, 1892 et seq. In spec., 2282. Bricks, 1828. Tiles, 1838
Fletcher's warming and cooking, $2279 g$
Fliers ; in stairs, 2186
Flint work 1666 ff, $1922 k$ et seq, p. 983. In spec., $2281 d$
Flitch; of wrouglt iron, 2255a. Beans, $1629 u$
Fliteroft, Ilenry; architect, 512
Fluat stone ; bricklayer's, 1890
Floated work; plasterer's, 2242. Quantity, 2248
Floor; under oven or stove, 2279p
Floor or tloor boards, 2168 et seq. How

FLO
measured, 2352, 2361. Laying, 2168. Nailing, 2173 b . Varieties, in spec., $2285 b$
Floorcloth; injurious to a floor, 1747
Flooring; 2013 et seq. How measured, 2334. Single, 2014 et seq. Double, 2019. Doubleframed, 2020. Framed, 2022. Constructed with short pieces of timber, 2023. Timber for, 1729f. In srec., 2285b. Loads and weight: placed on, 1628 d . "See Boarding"
Floors; arched, in brickwork, 1903 b et seq. Fireproof, $1903 l$ et seq. Of cement, 1905 F . Of eonerete, $1093 r$ et seq. Plain tiles, in cement, 1903e. Of scagliola, 2250k. Of Parian cement, 2251h. Other cements, 2251 m et seq. Wood blocks, 2173 c . In medieval period, 2023a. Their ornamentation, ib. et seq. Of churches, in spee., 92856 . For industrial dwellings, 3016 .
Florence ; church of Sta Maria del Fiore. 323, 327, 477, 616 ; dome, $1499 p$; apse, p. 1007. Proportion of campanile, p. 1057. Church of Sta Maria Novella, 616. Of Sta Croce, ib. Choir of church of the Annunziata, 325 . Pal. Gondi, cornice, 2725. Pal. litti, 325, 329, 331. Pal. Niceardi, 327. Palaces, 358. Pal. Pandolfini, 329, 2725, 2767. Pal. Strozzi, 327, 329 ; cornice, 2725. Brilge. 313. Walls ; at ehurch of Sta Spirito, $1535,1551,1554$; at San Lorenzo, 1535, 1550,1554
Florentine school of architecture, 329. Irinciples of, 330 . I'rinciple churches of, $i b$. Byzantine architecture traced in works of, 332. Period and princinal masters of, $3: 33$

Florid English or Tulor style; its ara, \&c., 422 et seq. Examples in Scotland, 431 . In EngIand, 432
Flowers; used in decoration, p. 994, p. 995
Flue; $1905 a, 1905 b, 2793$. In spec., 2282a. See "Chimney"
Fluo-silicie acid, 16674
Flush rings, 2263. Bolt, 2259
Flushing; 1887b, 1888h. Tank, 2220p. Sce "Water waste preventer"
Fluted sheet glass, $187 \mathbf{2 d}$
Flutes of columns ; their nature and probable origin, 145 , p. 948
Flying buttresses, p. 1024, p. 1047, p. 1048
Foix, Luigi de ; architeet, 371
Folded floor, 2168
Folding doors, 2130. In spee., 2285f
Foliation ; in windows, p. 989
Fontaine le Ilenri, near Caen; châtenu, 548. Stone, $1666 k k$
Fontana, Carlo ; architeet, 365

- Domenico ; architect, 33f, 344

Fonthill, Wiltshire ; abbey, 528
Footings; of a wall, 1882 et seg., 1916 a. Stone, in spee., $228.1 b$
Foots Cray, Kent; villa, 3000
Force of the wind, 1592a et seq., $1667 f$
Forest of Dean ; stone, 1666e
Fork ; thateher's, 2211 s
Formation of bodies by glue in joinery, 2193 -2208
Formeret, $1499 v$
Fortified houses ; in Spain, 586
Fortuna Virilis, at Rome; temple, 212, 261, p. 953 , p. 1057

Forum; of the Romans, deseribed, 218. Civilia and Venalia, ib. Of Pompei, 212
Fotheringay, Northamptonshire ; church, assimilating work, p. 968 . Spire, p. 1002
Foul air in roons, 3032

FRO

Foundations, 1881 et seq., 1916b, 3032. Vitruvius's advice on, 1881. Best soils fur, 1882, 1883. Their depth, 1884. Spread of, 1581. Use of inverted arches in, 1885. Cylinders in, 1885 a. Walls above, should be kept dry, 1886. Drainage of, 1887. Insufficient, 1502c. In spec., 2281, $2293 a$. For iron columns, p. 1065
Foundery, 2265 et seq. Work; in spee., 2286. Estimating, 2374
Fountain at Batalha, 605. At Rouen, 548. At Clermont, ib. At Viterbo, 614
Fountains, Yorkshire ; conventual church, 398,497, p. 971 et seq.
Fractures; in an arch, 1496, 1497
Framed flooring; weight of, 2022

- roofs ; single, $2052 \mathrm{~m}, 2052 q$. Double. 2052s
Frames; for windows, in spec.. $22850 f$
Framing ; of joinery, 217t-2175a. Timber for, $1729 f, 2125 c$. Angles in joinery, 217.4 et seq.
Franc, Juan ; architect, 594
France; ollest buildings in, 289. Narbles of, 1679. Pointed architecture in, 530 et seq.
Francis I., of France ; patron of arts, 358
Frankenherg ; church of St. Mary, 567
Frankines sash bars, 2165
Franklin's calorifere stove, $2279 e$
Frascati ; houses, 614
Fratres pontis, 310, 313
Freeholds ; valuation of, p. 1091
Freeman, Edward A.; writer on arehitecture, p. 965

Freemasons; Company of, 308 et seq., 401, p. 1055, p. 10.57

Freemasons' hall, London, 1681 c
Frcemasonry; listories of, 3I6, 2629
Free seats ; in sp c., 2285 h
Freibertr ; cathedral, 567,579. Spire, p. 1005
Freibury an der Unstrut ; chureh, 579
Freiburg-im-ßreisgau; münster, $570,579$. A jise, p. 1007
Freidebert ; church, 572
Freixo d'Espada a Cinta; walls, towers, eastle and church, 601
French architects; attached to Venetian in preference to Roman schools, 358 . The first in liurope, 360
French; building stones, 1666 h et seq. Casement, $2165 b$ et seq., $22-8 \mathrm{~m}$; in spec., 2285 d . Monldings and details, p. 1035. Polishing ; in spee., $2250 a$. Sashes, $2164,2165 b$. School of architecture, 357 et seq., p. 1035. Slates, $2211 h$
Fresco painting ; not treated, $2273 h$
Frette-embattled ornament, 397
Frette-triangnlar ornament, 397
Fietwork ; in glazier's work, 2:22?a
Freuilenstadt ; church, 583
Fribourg ; mason's mark at, 322
Friction, 1331-1341. Observations on, 136t -13×9
Frieze; to eornice, in spec., $2: 85$ e. l'ancls of a door, 2130. Rails of a door, ib.
Frimidarium; of the Greck gymnasium, 175. Of the loman batis, 235
Frisone, Marco da; architect, 619
Frit ; in glass-making, 1868
Frobel, F.; "zimmerman," 579
Frog, or hollow of a brick, 1502 k
Frogmore ; mansoleum, $1671 a, 1671 b, 1671 f$, 167 1 , 1 fi80

Frost ; effect of, on slate, 1808. On a building, 2:50h
Fryer's refuse destructor, 1907e
Fuller, bishop; his aphorisms relating to private buildings, 298n-2989
Funnels; of chimneys, 2793
Furnes, Belgium ; church of Ste. Walbarge, 557
Furness, Lancashire; conventual church, 398. Masons' marks, 322b. Duorway, p. 973
Furniture ; inlaying, 2173c. For locks, 2261. For doors, in spec., $228 \overline{\mathrm{j}} f$
Furring joints of floors, 2169

GABRIEL, Jacques Ange ; architect, 360 Gaddi, Taddeo; architect, 323
Gaiters; thatcher's, 2211 s
Galatino; monastery of Sta Catherina, 625
Galera ; houses, 614
Gallego, Juan ; architect, 596
Gallery ; height of, 2822. In Elizabethan houses, 440 . In nave of church, 601
Galli-Bibiena, Antonio ; architect, 2950
Gallo, Tommaso ; abbot, 611
Gallot, gallet, or garret; stone chipping, 1861, 1922 n
Galtou ventilating stove, 2279 d
Galvanic action; in metal roofs, 2224, $2224 f$
Galvanizing iron, 1780 c, 1796 et seq.
Galway marble, 1683 c
Gamondia, Enrico di; architect, p. 1008
Gandon, James ; architect, 50t, 526
Gankoffen, Jocrg ; architect, 579
Garcia, Pedro; architect, $59 \overline{5}$
Gargoyle, 553
Garigliano ; amphitheatre on banks of, 228
Garret or gallet; see "Gallut"
(xas; governors, 2264. Lighting buildings, 2201f. Leakage, 2264j. Fires, 2279b. Burners, 2264 c . Danger of, 2264 h . Ventilation of, $2264 j$

- fitter, 2264 et seq . In spec., 2293. pipe, $2223 q, 2264 a$, 2264 h . Flexible, 2264. Delivery per hour through pipes, 226!a. Mode of fixing, 2264b
- stoves, 2264i. $2279 e$

Guses, noxious ; diffusion of, 3032
Gates; and coachhouse doors in spec., 2285e. And piers, 2734
Gateway at Arpino, \&c. 304. At Bruxelles and Louvain, 564. At Mycenæ, 34
Gauge ; joiner's tool, 2120. Bare or margin of a slate, 2210. Of tilting, 1835. For zinc, $2224 h$. Stuff, 2237, 2246. For filleting, 2211k
Gauged arches, 1925e. How measured, 2311. In spec., 2282
Gault clar, $1831 f$
Gauthier, M. P.; architect, 2975
Gayfere, Thomas; mason, 528
Geber ; architect, 368
Geezeh; pyramids, 74, 304
General joiner ; machine, 21246
Genève, Simon de ; priest and architect, 561 Genius in architecture, 2492
Genoa ; church of San Lorenzo, 319
Genoese Gothic, 608
Geometric forms; in tracery, p. 995, p. 1028 piers, 976

Geometrical drawings, 2490c

- principles of proportion, p. 1006 594

GLA

Geonetrical staircase, 1927 et se 7 . In joinery, mode of forming, 2184
Geometry, 874 et seq. Definitions, 875 . Right lines and rectilineal figures, 876 -907. Circles, 908-y28. Surfaces, 929-934. Proportion, 93- 957 . Similar figures, 958 915. Planes, 969-978. Solids, 979-995. P'ractical, 996-1032. Descriptive, 11101211. Use of in proportion, p. 1008 et seq. S udied in England, p. 1037
Gerbert; munk and pope Sylvester II., 309
Gerbier, Sir Balthazar; architect, 465
German architecture, 365 et seq. Details and mouldings of Gothic architecture, p. 975. Gothic in Italy, 608. Spires, p. 1001
German sheet glass, 1874
Germanic symmetry, p. 1008
Germany; early architects of, 365. Employed in other countries, ib. Italian architects employed in, ib. Two different styles in its ancient churches, 283. Pointed architecture in, 565 et seq., p. 975
Gerona; cathedral, $586,592,595$. Baths, 306
Gerwin of We=el; architect, 577
Ghent ; church of St. Nicolas, 554, 559. St. Jacques, ib. St. Bavon, 555. 55̄̄, 559, 560 . Of the Dominicans, 557. Of St. Michel, ib., 559. Hospital of La Byloque, 557.

Giallo Antico marble, $200.26 b$
Gibis, James; architect, 501-503
Giddea hall, Essex, 440
Gil de Hontanon, Juan and Rodrigo ; architects, 367,597, 598, 599
Gilding, 227īa, 2379
Gilt mouldings; in spec., 2291
Gimlet, 2110
Giotto or Bondone ; architect, 323, 616, p. 1057
Giraida ; bell tower at Seville, 320, 368
Girder; use of the word, 1628 c

- of cast iron ; shapes of, $1628 x$. In spec., 2286
of timber, 2020. Scantlings for, 2021. Method of trussing, 2021a. Timber for, 1729f. Huw measured, 2335
Girgenti, 148. Houses at, 626. Sce "Agrigentum "
Gisborne priory, Yorkshire; convental church, 421
Gisborough castle, Yorkshire, 398
Gizeh; see "Geezeh"
Glaetzel, Conrad ; architect, 5.9
Glasgow ; works at, 1671 g
Glass, 1868 et seq. Pliny's account of discovery of, 1869. Crown glass, 1870a. Knobglass, ib., 1871a. Sheet, 1872. Patent plate, 18726 . German shect, 1874 . Plate, 1875. Rough plate, 1877. Quarries, 1899. Broken, in dilapidations, p. 1'95. To remove from sashes, $2226 a$. For ornamental purposes, 2231a. Compressive strength, $2231 d$. In spec., 2289. See "Glazing" "
- used in An:glo-Saxon buildings, 385,386 paper, $22 \overline{6} 6 d$
Glastonbury, Somersetshire ; monastery of, $389,43 \overline{5}$. St. John's cluurch tower, p. 1002. Chapel of St. Joseph, 393
Glazed bricks; white and other colours, 1831e. Earthenware, 1839 g . Tiles; white, 1839a
Glazier, 318. Work, in spec., 2289. Estimating. 2378
Glazier's vice, 2228. Knife, 2226

GLA

Glazing, 2225 et seq. Large roofs and areas, 2226c
Globe; in glass making, 1870a. Lights, 3042 Gloucester cathedral, 306, 397, 421. Founders and dimensions of, 434. Proportion of nave, p. 1012. Shafts, p. 1023. Tower, p. 1002. South porch, p. 998. Cloisters, p. 1037
Groined ceiling of ditto, 2023g. Masons' marks at, $322 b$
Glover, Moses ; architect, 442
Gloves; to workmen, 317. Thatcher's 2211s
G1 $e, 2125 d$
Glued work, 2175
Glueing-up work in joinery, 2193-2208
rimuinden, Heinrich von ; architect, 620
Gneiss, 1669
Godstone, Surrey ; house corridor, 440
Going of stairs, 2179
Gold leaf, 2277a. Paint, 227ib
Gombao, Gabriel ; architect, 598
Gondouin, Jean Jacques ; architect, 363
Gentard, Karl von ; architect, 366
Gores of boards for covering domes, groins, \&c., 2068-2078
Gorges, Sir Thomas ; house for, 440
Gorhambury house, Hertfordshire, 446
Gosfield hall, Essex, 426
Gothic arch; bistory of, 29.4 et seq. In masonry, to draw and find the joints, 1938 et seq.

- architecture, 294, 307b, 530-627, p. 964 et seq. See "Pointed Arehitecture." Details more than principles have occupied attention, 1583 c . Style for houses, 527
- dome, $1499 \circ$
- vaulting, 2002d et seq.

Gonge, 2:13. Bit, 2107
Gougeon, Jean; sculptor, 358
Gowas or robes to workmen, 317
Goyers, M. ; architect, 2896 b
Gradus; of the Roman thealre, 226, 227
Grafton, duke of ; house for, in Piecadilly, 515
Graining, 2276
Granada; cliurch, 368. Palace, ib.
Granby ehurch, Notts., 1908 a
Granite, 1668 et seq. Constituent parts of, 1669. Not decomposed by acids, 1670. Varicties; English, 1671. Scottish, 1671d. Irish, $1671 j$. For paving, 1672. Weights of, $1672 c$. Crushing weight of, 1500,1502 , 1502h. Working of, $1915 b$
in Spanish churches, 585. In Normandy, 16660

- paper ; to manufacture, 2278

Granitic Breccia stone, 19030,1905 c. Paint, $2273 g$
Granolithic stone, 1905 c
Grantham, Lincolnshire ; chureh, 408, 421
Granulated steel, 1775
Grass table, p. 980
Grate, form of ; for heating; 2279d et seq.
Grating, cast iron ; in spec., $2286 a$. To stable yards, in spee., $2286 a$
Grätz, Johann von; architect, 620
Grauwacke, $1672 c$
Gravity ; centre of, 1242. See "Centre of gravity."
Grease traps, $2220 n$
Girceian arclritecture ; strict meaning, as distinguisled from Roman, 134. No arches used in, if. Identical with columnar architecture, 133. In its decline, 177. His-

GUT

tory and proportion of, p. 942. Orders, 2570 et seq. Style for houses, 525
Grecian temple; origin of, 139
Grecians, early buildings of ; were palaces of princes, 137. Described, ib.
Greco-Roman style, 524
Greek churches; distribution of, described, $375-377$. Cross, for a plan for, p. 1606

- marbles, 1676
- mouldings, 268, 2532

Green ; arsenical, 2278
Greenheart timber, $1728 c$
Green marble or serpentine, 1683 c
Greenwich, Kent; church, 505. Hospital, $2973 a$; interior of chapel, by Stuart, 516 ; roof of chapel, 2047. Yalace, 423. Qucen's house, 462
Grégoire, Mons. ; architect, 550
Gregory IlI., pope ; arts under, 281
Greville, Sir Fulke; house for 440
Grey cast iron, 1765b. Stone linies, 1843
Grifith, W. P.; arehitect, on proportion, p. 1016

Grimsthorpe, Lincolnshire ; palace, 426
Grinding stone ; bricklayer's, 1890
Gritstone ; thatcher's, 2211s
Groined arches in brickwork, 1903 ccilings of timber, $20 \pm 3 \mathrm{~g}$ et seq.
equilibrating, 1457,145 . Ready method of cliurehes with naves and aisles, 14591463. In pointed architecture, $1499 v$

Groins, in masonry; various, 1945 et seq. To describe parts where the arches are of unequal and of equal heights, 2059, 2060. Ribs for, 2058-2077
Groove, 2023, 2101, 2171
Ground; glasx, 22jle. Rents; valuation of, p. 1095, p. 1096, p. 1097.- Table, p. 980
Grounds; in joinery, 2166, 2167. In spec., 2285 c
Group ; of mouldings, p. 971
Grout ; or liquid mortar, 1860
Grouting ; a cause of decay in timber, 1746. In spec., 2282
Grozing irons ; plumber's, 2212
Gruenberg ; church, 567
Grundy's warm air grate, 2279d. Warming apparatus, $2279 e$
Guadalajara ; palace of Mendoza, 597
Guadalupe ; Ilieronymite monastery, now a barrack and parish church, 594
Guards to windows, in spec., $2286 a$
Guarini, Camillo; architect, 365
Guebwiller church; octagon steeple, p. 1004
Guildford, Surrey ; castle, 394, 398
Guildhall, London, 414, 523
Guild of inasons, 313 et seg .
Guiloches, 2817
Guimaraens ; Dominican cloisters, 603. Nossa Senhora da Oliveira, ib.
Guisborough priory, Yorkshire ; mullions, p. 991
Gully traps, 2220k
Gumiel, Pedro ; architect, 367, 598
Gundulph, bishop, 321. Introduced ornament into Norman architecture, 395
Gun metal ; strength of, 1630 r
Gutta-percha, 2223r. Experiments on pipes, ib.
Gutter ; tiles, 1837. In filleting, $2211 /$
——boards, in spec., $2285 a$
Gutters, 2255. In spec., 2285a, 2286a, 2293f. Uf zinc, in spec., 2294 . Arris of deal, io

GUY

spec., 2280̆h. Lead, in spec., 2288. Of copper, 2224, $2224 a$
Guy's hospital ; ventilation, $2278 y$
Gyddye hall, Essex, 440
Gymmasia of the Greeks ; parts of them and plan, 176
Gypum, 1866c. Used for walls in Paris, 2249 a et seq.

Hand IIL hinges, 2258a
Hack, in brickmaking, 1815
Hacket or Ouguet, David; architect, 604, 605
Hacking knife : glazier's, 2226
Haddon hall, Derbyshire, 426
Haden and Co.'s system of ventilation and warming, 2278l.
Iladleigh, Essex ; church beacon, p. 1002
Hadrian's villa; walls at, 1535
11al, or IIalle; church of Notre Dame, 559. Ot St. Maurice, 567
Halberstadt; cathedral, 569
Half paces, in stone stairs, 1929
Halkin mountain lime, $1843 c$
Hall : at Westminster; Guildhall, London ; Goodrich ; Chester ; Bristol ; Woodstock ; Eltham ; Kenilworth; Darlington ; Crosby, in London; Durham; Conwar ; Raby; Swansea (2) ; Castlc hall, in Lcicester ; Spofforth; Caerphilly ; Warwick; Mayfield ; Berkeley, 414
Halle, or hall of companies; at Ypres, 561. Bruges, ib. Louvain, $i b$. Diest, $i b$. Ghent, ib. Hala at Barcelona, $59 \overline{0}$
Halle an der Saale : church of St. Mary, 583
Halle aux bleds, ai Paris ; roof, 2051
Hallmann, Anton ; architect, $3 \overline{7} 7$
Halnacre, Suffolk, 428
Ham Hill stone ; its analysis, \&c., 1666
Hamelin's cement, 1865
11amilton palace, Scotland, 1683
11ammer; bricklayer's, 1890. Plumber's, 2212. Slater's, 2209

- beam roofs ; Gothic, p. 987, 205ㅢ, 2052l, $2052 m, 205 \geq s$. In spec., $228 \bar{a} a$
- blocked, to granite, 1915 c

Hampton Court, Herefordshire, 423
Hamıton Court, Middlesex; palace, 426, 1683, 1908a. Roof, $2052 t$. Gateway, 427
Handlinch house, Wiltshire ; portico, 516
Handpick ; slater's, 2209
Handrail, 2176,2187 et seq. In spec., 2285 d. Of glass, $2231 a$
Hanging sashes, 2165̈a. Tiles, 1907b
Hanwell, District scbools infirmary, 2976c
Hardening steel, 1776
Hardwick, Philip, R.A.; architect, $1666 d$
Hardwick hall, Derbyshire, 446
Hare, A. ; architect, 561
Hare-hill stone, $1667 w$
Harewood, lord ; house for, 514
Harlaxton hall, Lincolnshire, 426
Harlech castle, Merionethshire, 402
Harmony in architecture, 2509
Hart, Sir Percival ; house for, 440
Hart's ventilator, 22780
Harwich cement, 1863
Haselwode stone, p. 1045
Haseridge, Sir William ; house for, 440
Hassock; in ragstone, $1666 t, 1922 \mathrm{cc}$
Hatched ornament, 397
Hatchet ; joiner's, 2117
Hatfield, Hertfordshire ; honse, 445, 151, 452
Hatfield lodge ; plan for, 440

HIP

Hatton, Lord Chancellor ; house for, 440
Haunch of an arch ; to fill up, 1497
Hawarden cast'e, Flintshire, 398
Hawk ; plasterer's, 2234
Hawkhurst ch ırch, Kent; east window, p. 1015
Hawkins, John S. ; amateur writer, p. 1012
Hawksley's patent treads, 2180
Hawksmoor, Nicholas ; architect, 499
Hay and moss for setting tiles, 1906
Hayrack ; in spec., $2285 h$
Head of iron; in casting, 2265 h
Header ; bricks, 1894. Slates, 2211c
Health : cubic feet allowed; for hospitals, 2975 a et seg. For infirmaries, 2976a et seq. Generally, p. 1226. Couditions of a house, 3027 et seq.
Heart wood ; densest and strongest, 1628:v
llearths; in spec, $2282 a$. Back, in spec., $2284 d$
Heating, 2279 et seq. Insecurity of apparatus; $2279 p$. In spec., $2282 b$
Hecke, Van ; ventilation, 2278h, 2278z
Heckington, Lincolnshire; chureh, 421. Tower and spire, p. 1001. Mouldings of doorway, 1029)
IIeckler, Johann Georg ; architect, 570
Heddon stone; its analysis, 1666
Hedgerley bricks, 1×26
Hedingham castle, Essex, 394, 398
Hegge marble, 2002ii
Height of colurns, 2543 et seq. Of buildings, use of square and triangles, p. 1015, p. 1016
IIeilbronn ; church of St. Kilian, 583
Heinzelmann, Conrad ; architect, 579, 580
IIempstead Marshall, Berkshire ; house at, 465
Heneage, Sir Thomas ; house for, 440
Hengrave hall, Suffolk, 426
Henry III.; many religious buildings founded in his reign, 401
Henszlmann, Dr. E. ; architect, on proportion, p. 1017

Heraclidæ; colonies of, p. 943
Herbert, Henry, earl of Pembroke ; amateur architect, 508
Hercules; temple at Agrisentum, p. 9.16
Hereford; cathedral, 398, 421. Founders and dimensions of, 434
Hermogenes; architect, p. 951
Herodes Atticus; his munificence in architectural expenditure, 193
Herrera, Giovanni de; architect, 371
Hever cas:le, Kent, 425
Hexastyle ; temples, 2528 et seq. Porticoes, p. 944 et seq.

Hexham, Northumberland ; cathedral, 385
Hexpartite vaulting, $1499 f f$
IIieroglyphics ; in Egyptian architecture, 86
Hieronymite monastery ; at Lupiana, 592. At Guadalupe, 594. Segovia, 596. Of La Pena at Cintra, 607
Higham Ferrar:, Northamptonshire ; church, 408, 421. Roof, 2052o. Porch, p. 998
Higlgate, Middlesex ; house at, 440
High-pitched roof; adopted from vaulting, 205: $2 f$
High-pressure water supply, 2218k et seq.
Hill hall, Essex, 426
Ilingeing. 2149 et seq.
Ilinges, different snrts, 2258 et seq. In spec., $2285 f$ and $g, 2286 a$
Hiorne, Francis; architect, 514
Hip rafter, 2009, 2035u. Tiles, 1836

IIips, to find back of, 2054. Lead, in spec., 2288
Hitchin's fibrous sIab, $2246 b$
Hoarding ; in spec., $2284 e$
Hud and Board; slater's, 2209. Bricklayer's, 1890
Hodgkinson's form of girder, $1628 y, 1629 k$
Hoetlich, Claus ; architect, 580
Hoffmann, Nikolaus ; architect, 583
Hoffstadt, F.; architect, on proportion, p. 1020
Holbeach, Lincolnshire ; church, 21456
Holbein, Hans; painter and architect, 427
Holdenby, Northamptonshire; banqueting house, 410
Holkham, Norfolk; house, 511, 2822, 2997
Holland, Henry ; architect, 524
Holland house, Kensington; for Sir Walter Cuap or Cope, 440,452
Ilollington stone, 16660
Hollow bricks, 1830, 1831c. In mortar, 19006. In partitions and arches, $1902 b$, $1903 i$
——cement blocks, 1002 l

- moulding, 2532 , p. 970 , p. 973
- walls, 1902 c et seq., 3029. In spec., $2282 c$

Holt, Sir Thomas; ground-plan for, 440
-Thomas ; architect, 443
Holyrood chapel, Edinburgh, 431
Homan and Kodgers' fireproof floor, 19030
IIoman"s quartz, \&.c. paving, 1900 c
Homogeneous metul, 1773. Strength of, $1630 r$
Hone, Kent; church windows, p. 1030
Honecort, Wilars de ; architeet of 13 th century, P. 969, 1008
Honeyman's diaphragm ventilator, 2278 r
Hontleur ; Church of Ste. Catherine, 547
Hontanon. See "Gil de Hontanou"
Hoorl mouldings, p. 981 et seq.
Hoogstraeten ; brick church, 560
Honp-iron; weight of, 2254. Bond 1899 a. Cramps for hollow walls, 1902e
Ilope, II. T. ; house of, in Piccadilly, $1666 r$
Hopper casements; in spec., $2286 \alpha^{\circ}$. Waterclosets, 2220 c. Ventilator, $2278 n$
IIopton Wood stone, $1666 i, 167 \mathrm{Fb}$
IIorizontal courses to vaults, 1925d, 2C02f, 2838
Hornblende ; granite, $1669,1671 j$
Ilorse Guards, London, 511
Horscheath house, Cambridgeshire, 465
Ilorsemonden, Kent ; chureh poreh, P. 985
Ilorse-power, 1346.
Horticultural Society; London ; roofs, 2052
Hospital church at Cnes, 579
_ of La Byloque at Ghent, 557. At Santiago, 598. Of San Giovanni Battista, near Toledo, 370. At Vercelli, 611. At Angers, vaulting, $1499 g g$
IIospitals, 2973 et seq. Examples at Milan, 2974. Of Greenwich and Chelsea, 2973a. La Roquette at Paris, 2974. At Bordcaux, 2975. Lariboisière at Paris, ib., 2278z. At Netley, 2975a. IIotel Dieu at Paris, and uthers, 29756 .

- size of wards, 2975 c . Ventilation of, ith. New French hospitals, $2278 h$. London, $2278 q$. Separation of wards, $2975 d$. St. 'Thomas's hospital, London, 2975e; its warming and ventilating arrangements, 2975 g . St. Ceorge's hospital, $2278 k$. Circular, $2975 k$. For villages, $2975 h$. Convalescent, 2975 . Imbecile, 297 jm

HYD

Ilospitium of a Roman house, 251
Hot-air flues or channels, 2279 . In America, 2279 g . In spec., $2282 b$.
Hot blast, 1758 . Iron, strength of, $1628 l$ et seq., $1630 r$
Hot water; low-pressure system, 22796 , 2279h. High pressure, $2279 i$. Cistern, $2223 q$
Hôtel; des Ambassadeurs at Dijon, 548. De Bourgtheroulke, at Ronen, 550, 551, 552. De Cluny, Paris, 548. Dn Franc, Bruges, 563. Des Invalides, Paris, 359

Hôtel de Ville; St. Quentin, 5.18, 550. Comnpiègne, 549. Orleans, 548. St. Omer, 545. Alost, 562. Bruges, ib. Brnxelles, $i b$. Lourain, $i b$. Mons, ib. Ghent, ib. Audenaerde, ib. Courtrai, ib. Leau, ib. Casa de Ayuntamiento at I'alencia, 596. Valladolid, ib.
Hou, of the Chinese, 106
Houghton, Durlam; church, proportion of, p. 1012

- hall, Norfolk; water-honse, 508

House ; of the Forest of Lebanon, 53
House of Commons; Reid's system of ventilation, 2278 g
Houses, first; sccording to Vitruvius, 5. First, of the Egyptians, Peruvians, ib. I'resent, of the Abyssinians, ib. In the East, consisting of more than a singie story, 140. Terrace on the tops of them, ib. Designed by John Thorpe, 440. Private, 2994. Supply of water to, $2223 i$. Sanitary aspect of construction, 3027 et seq. of Parliament; London, $5 \because 7$. River wall, 1671b. Roufs, 1796 . Stones used in building, 1666. In Dublin, 526
Household of the King, 319
Housing; of principal rafters, 2033. Of steps, in spec., 2285 c
Hownrd: Ilenry, earl of Northampton; house built for, 442
Howarth's screw ventilator, 2278 g
Howden, Yorkshire ; conventual chnreh, 407, 421, p. 971 et seq.
Hubbuck's zine white, 2272 c
Huddlestone stone, 1681c, p. 1015. Analysis, 1666
Huerta, Juan de ; sculptor, 548
Huesea ; cathedral, 598. Doors, 2145c. Church, 591
Hugo de Guldelif; master mason, 312
Hull, Yorkshire ; bricks nsed early at, 416
Hültz or IIiltz, John, senior and junior ; architcets, 305, 570
Human figure; proportions of, 2394. Actions of, 2396 et scq. Centre of gravity of, ib. Motion of, 2397 . In running, $2: 398$. In preparing to strike, 2399 . In bearing a weight, 2400 . In leaping, 2401. In leaning, 2402. In flying and falling, 2403. Drawing, 2383d
Hundred of lime, 2303
Hunsdon house, Hertfordshire, 426, 446
Huppeau; church spire, p. 1000
Hurlers, the ; circle of stones in Cornwall, 16
Hurstmonceaux, Sussex ; house, 423
II urwood's window, 22780
Hutchinson's process for preserving stone, 1667 m
Huy ; church of Notre Dame, 558
II yoatt's patent sheets for fluors, 1903 r
Ilydraulic ; concrete, 1862d. Lift, 2223e. Limes, 1843 d. Mortar, 1859 i. Lam, 2219

HYG

ISA
Interiors of buildings, beauty of, 2504, 2505
Interpenetration, 578. Of mouldings, p. 974
Intertie of a partition, 2025
Intrados ; of a Gothic arch, 1925d
Inverted arch; in foundations, 1885 . In spec., $2282 c$
Jona marbles, 1682
Ionia; colonies in, p. 950
Ionic order; origin of, according to Vitruvius, 140. Of the Greeks ; height of its columns, 154. Entablature, ib. Bases, 156. Volute, 157. Proportions, p. 950 et seq. Principal examples, 2581. In the temple on the Ilissus, $i b$. ; Table of its parts, $i b$.

- order of the Romans, 260. Table of examples, ib. General proportion, 261. Iroportions, p. 950 et seq.
- of the Italians, 2573 et seq. Vignola's profile of, 2574. Table of parts of, ib. Parts of, to a larger scale, 2575. Volutes of, described, 2576. Profile of, by Vitruvius, 2577. By Palladio, 2578. By Serlio. 20779. By Scamozzi, 2580. Intercolumniations of, 2607 . Arcade, 2624. With pedestal, 2630
Ipsambool, 92, 166. Temple, 71
Ipswich, Suffolk ; college, 426
Irish; a colony of the first race of people, 11 granites, $1671 j$ et seq. Marbles, 1683 et seq. Slates, 1806. Towers, p. 1003
Iron, 1754 et seq. Species of ore, 1755. Mode of smelting, 1756-1759. Bar iron. 1760, 1761. Malleable iron, 172:; et seq. Observations on iron, 1764-1766. Fibrous and crystalline irons, 1764b. P'late iron, $1764 f$. Cast iron, 1764 et scq. Security for supporting weight, 1768. Soft gres, best sort, 1765 . Test of gooiness of caist, 1767. Corrosion, 1779. Galvanizing, 1780b
- Weinht of 1 foot cube of bar iron, 2254 ; of wrought iron, it.; of cast iron, $i b$.; of 1 foot in Iength of square iron, ib.; of round iron, $i b$. ; of close lammered flat bar iron, $i b_{0}$; and of flat cast iron, $i b$. In stonework ; decay of, p. 100.1
—— bark wood, 1728d
_ cast and wrought; strains on beams, girders, and pillars, 1628 et seq. Crushing weight, 1630. Qualities of, for castings, 2265a. Weights of varieties, $2254 a, 226 \overline{\mathrm{a}} \mathrm{l}$ construction in rear of warchouse for light, 2255d
- drains, 1888 n
-_joists and girders, $1628 x$ et seq. Special lengths, \&c., 1629 ff
sulphate of, 1752. Oxide of, il. I'rolignite, $1752 a$. l'aints fur, $2273 b$ et seq. Minium paint, $2273 d$
Iron spire, p. 1005 ; and roof, at Cologne, 574
——stairs, 2205. Doors, 225. e. Columns, 2255. Shop fronts, 2255f. Wine binv, 2まō
——ties in Italian Gothic, 609
wire, 1779 d. Cords, 2260
Ir nmonger, $2245 r$; in spec., 2286 . To joincr*s work, in spec., $2285 f$
Irons; use of the word, 1628 c
Ironwork; how prewerved from action of moisture, 1779, 2263a, 2273b et seq. Treated decoratively, $2255 h_{3} 2264$. Fixing, in spec., $2293 f$
Itthlingborough, Warwickshire ; chureh window, p. 988
Isacoustic curve; for a lceture room, 25982962

Isle of Man marbles. 1681
Issoire ; doorway, 539
Italian; architecture, 323 et seq. Gothic, 616. Tiles, 1835
Italy, pointed architecture of, 608, p. 1049
ltchenor, Sussex; proportion of church, P. 1018
Ituriza, Pascual; architect, p. 1019
Ivan IV., of liussia, emperor; patron of the arts, 375
Ivan Veliki ; clock tower in Moscow, 375
Ivara, Filippo. See "Juvara"

JACK plane; flumber's, 2212 Jack rafters, 2035a
Jacobus; architect, 612
Jacopo da Campione ; architeet, 619
Jacopo or Lapo ; arclitect, 613
James, John ; ar. hitect, 505
Jammet. Mons. ; design for house at Paris, 440
Jansen, Beruard : architect, 412
Jarmin's house, St., near P'aris, 440
Jedburgh abbey, Roxburghshire, 431
Jedding axe, $19: 3$
Jennings ; at St. Paul's cathedral, 469
Jerusalem ; temple of, construeted by Solnmon; notion of, by Villalpanda, 52. Chureh of Holy Sepulchre, 305. Nusque of Calif Walid, 306
Jib door, 2130
Jimon, at Seville ; architect, 595
Jobbing work; in spec., $2: 84 c$. By carpenter and joiner, in spec., $2285 i$
Joffred, abbot ; of Croyland, 392
Joggles; in carpentry; 2009. In stone stairs, 1927 et seq.
Joggling, $1925 e$ et seq.
Johmnn; architect, 581
John, king of Portugal ; chapel at Batalha, 604
John VI, pope; aris under, 281
John of Gaunt's gateway at Lancaster castle, 416
Jolin of Padua and his fullowers, 42.5 et seq.
John's stucco wash, cement, and print, 1866a
Joiner's work and mode of measuring, 2351 et seq. In spec., $2: 85 ; 2: 23 c$. Of med aval period, 2125 et seq. Tools used in, $2102-$ 2124. Mouldings, 2126-2129. Wood used for, 2124. Machinery in, 2124a. Formasion of bodies by joining with glue, 2193-2208.
Joinery, 2100 et seq.
Jointer; bricklayer's, 1890, 1900e
Jointing rule; bricklayer's, 1890
Joints, embossed or hollowed, 1499. Fastenings to iron, 1631μ. In drain pipes, 1888 a. ' 1 'o lead pipes, 2223o. Of mortar, 1900. In brickwork, $1900 e$. In stonework, in spec., 2284d. In carpentry, sce "Scerfing." See "Glue"
Joists, 2014 et seq. Spacing of, in spec., 2285. See "Ceiling," "Binding," " lbridging," "Trimmine," " Common," \&c.
Jones, Inigo ; architect, 319, 335, 440, 454 -464, 425. Door by, 2743. Window by, 2770
Jortan's wood and stone carving machine, $2124 d$
Julian, pope; patronised architecture, and extent of his patronage, 203
Juno; temple at Samos, 153. At Agrigentum, p. 946

Jüpiter; temple at Olympin, 141

KIR

Jupiter Panhellenits ; temple at Egina, 146, 1. 943

- Stator (now the temple of the Dioscıii) ; temple at Rome, 208, 262
'Tinans (now the temple of Vespasian) ; tfmple at Rome, 209, 262
Justin, emperor; architecture under, 272
Ju-tinian, emperor; architecture uader, 272.
His architects, Antliemius and Ifidorns, ib.
Restored 13yzantine palace, ib. Fortifica-
tions in Europe and Asia, ib.
Juvera, or Ivara, Filippo ; architect, 372,623
T AILACA; temple of, at Ellora, 56 Kanlin or Chiua clay, $1670 a, 1671 a$
Kallkulith stain, 2276f
Kaschan ; church of St. Elizabeth, 572
Kedlostone house, Ierbyshire, 517, 2996
Keene's cement, 1866. Use of, 2201e. In spec., 2287
Keep; of a castle, 394
Kecper; of the Fabric, 312, 319. Of the works, ib.
Keldermens. See "Mansdale"
Kelso abbey, Roxburghshire, 431
Kelston house, Soniersetshire, 446
Kenilworth castle, Warwjekshire, 398, 414, 423, 438,446
Keuninghali, Norfolk; mansion. 423
Kennington, Surrey ; palare, 423
Kenon disconnecting trap, 225b
Kensington. Middlesex ; p lace, 1683
Kient, William; architect, $511,162 \bar{b} b$. Window by, 2772
lientioh rag stone, 1663 s et seq., 1922 e et sey. ln spec., 2284
Kientou stone, anelysis, 1666
Kitrb; see "Curb"
Kerby, Northamptonahire; honse, 440
Kerr, Hobert, architect; his work, The English Gentleman's House, 3001
Kerrich, Mr. ; on proportion,]. 1013, p. 101.1
Ketton stone, $1666 s$. Analysis, 1606
Kew, Middlesex ; palace, 527
Keyhan dock yard, grauite used at, 1671a
Keys and wedges, 1131 u
- to bib-cocks, 2223 s

Kieystone; diminution of arch, 1.198. In vaulting, 2002s
Kiddington, Oxfordshire; church, roof of snuth chapel, 20520
Kief; church built at, in the time of Vladimir, 375. Convent of l'etchorsky, ib. Of St. George and St. Irene, ib.
Kilkenny ; eathedral, windows, p. 988. Black abber, tower, p. 1003. Franciscan church, ib lound tower, 1499 w
Killing knots; in painting, 2268. In spec., 2290
Kiln-burnt bricks, 1817
Kilns ; in brick-burning, 1817, 1819. In limeburning, 184;
Kimbolton, lluntiugdonshire; palace, 426
King, bishop; at Bath, p. 1052
King closer; in brickwork, 1896

- post, 2031. lioof, 2035a, 2052d

King's College, chapel. See "Cambridge"
King's College, Loudon, 520
King's Langley, Herts; palace, 426
Kirby or Kerly, house, 440
Kirchheim-in-Ries ; church, 572
Kirkaldy testing machiwery', 2266h
Kirkham, Yorkshire ; conventual cliurch, 421

KIR

Kirkstall, Yorkshira; colventual church, 421
Kitchen; at Alcobaça, 602. Vaulting, 14996 b

- gas in; 2261i

Kitchener, in spec., 2286a
Kit's Coty house, near Rochester, 23
Knapton, Norfolk; church, 2052t. Roof mouldings, p. 987
Knife ; thatcher's, 2211 s
Knob glass, 1871
Knobbled; in mason's work, $1922 d$
Knocker, in spec., 2286
Knots; in painting, to kill, 2268. In spec., 2290
Kuowle house, Kent, 446
Kot $\lambda o v$, or cavea; of the Greek theatre, $1 / 2$
Kowrie wood, 1728d
Kreglinger, W.; architect, 580
Kuemelke, Johann nnd Matthias; architects, 579
Kühlmann's process for preserving stone, $1667 k$
Kuttenberg ; church, 567
Kyan's process for preparing timber; 1742, 1752
Kylns or Kailaca, at Ellora, 56

LAACH; abbey church, two apsides, p. 1007
Labour and materia's, 2343
Labourers' dwelling*, 3012
Labra; of the Roman baths, 235
Lacing courses; in flint work, $1922 n$
Laconicum ; of the Roman baths, 235, 236
Ladles; plumber's, 2212
Lake Albano; niches in buildings at, 27 亿o
_Lady; house for, 440
La Maladrerie quarrles, 16662
Lambton hall. Durham, 520
Lamego ; cat hedral, 603
L, aminated ribs; in roof, 2052b
Lancaster ; castle, 398. Joln of Gaunt's gateway at, 416. Stalls, p. 985
Lancet-headed windows, p. 988
Lancet style ; origin of the term, 405. Proportion of, p. 1023
Landau ; church, $\grave{50} 80$
Landings ; in stone stairs, 1929. Of slate, 2211 q. In wood stairs, in spec., 2285 d
Lanercost, Cumberland; conventual church, 407
Langeberg, Johann von ; architect, 577
Langhans, Carl Gotthard ; arcliitect, 366
Langrune; church spire, p. 1000 , p. 100 t
Lansdowne house, Berkeley square, 517
Lantern ; at Ely, p. 1001
Laon ; cathedral, 540. Church of St. Martin, 534, 545
Lap; of a slate, 2210
Lapo or Jacopo; architect, $303 a, 365$
Lapo, Arnolfo di; archirect, 323'
Lararium ; of a lioman house, 253
Larch, 1717
Larder fittings ; in spec., $2285 h$
Larke, T.; surveyor, p. 1035
Lascelles' concrete construction, $1903 x$
L'Assant ; church of St. Pierre, 534
Lastringham, Yorkshire ; capital, 390
Latches; different sorts, 2262
Lath; for tiling, 2301, 2302. Plastercr's; diff: rent sorts, 2238 . In sp?c., 2287. In slating, 2210b. Quantity per square, 2248, 230 L

Lathing, 2238. Toinside of roof, in spec., 2287. Wire lathing, $2971 d$.

- hammer ; tiler's 1908 Staff; iler's, ib.

Lath layed or plastered and set, 2211
Latin cros ; for a plan, p. 1006
Latomus; a macon, 312
Latterkin; glazier's, 2228
Laughton-en-le-Mortheo, Yorkshire ; church tower, p. 1002
Launceston, Cornwall ; castle, 398
Laundry ; in industrial dwellings, $3019,3025$. Fittings, in spec., 2280 /h
Lavatio, frigida et calida; of the Greek gymnasium, 175
Lavatories, $2223 t$. In industrial dwellings, 3018, 3025
Lavenham, Suffolk; parochial church, 421. Screen, p. 986. Roof mouldings, $\rho .987$
Laves's girder, $1630 c, 2021$ d
Lavoûte-Chilhac, in France ; gates, 21 toc c
Layens, Matthew de ; architect, 562
Layer Marney, Essex ; hall, 426, 1908a
Layers in timber; ns regards strength, $1628 w$
Lai ing ; in plasterer's work, 2239
Lazzari, Donato. See "Bramante"
Lead, 1781 et seq. Specific gravity, \&c., 1781. Nut altered by exp sure to air and water, 1782. Cast and milled, 1783, 1784. Danger of using water with it, 1785 . Marine metal, 1786. Nee "Plumbery." Strength, $1630 r$. Sheet ; thickness of. $2215 a$. In spec., 2288. Weight of, $2215 a, 2215 b$. For cramps, in spec., 2284d. Old or waste, 2216. lipes, $2223 g$. Traps in pipes, 221:b

- colours, $227.2 d$
covering, 2216
Leads used in glazing, 2228, 2:299a
Leadwork ; in glazing, 2227
- to roof ; in spec., 2288. Ornamental, 2217
Leaf of a lead, 2229a
Lean-to roofs, $2052 m, 2052 p, 2052 v, 614$
Lear boards, 2285a
Leaseholds; valuation of, P. 1097
Lenses held on lives; valuation of, p. 1097
Leau ; church of St. Léonard, 557
Lebrun, M.; his analysis of loads and weights of an order, 2521 . Theory as respects arcades, 2618, 2619
Leça do Balio; fortified tower and church, 603
Ledgement tables, p. 980
Lee priory, Kent, 5:3
Leicester ; Roman wall, 382. Church of St. Martin ; roof, $2052 n$
Le Mercier, Jacques ; architect, 359
Leo the Isaurian ; destroys statues, 272
Leon ; cathedral, $588,589,2002 k$
Leon; in Chinese architecture, described, 100
Lerida ; cathedral, 588
Le Roulet ; church, 535
Lescot, l'ierre ; architect, 357, 358
Lethicium, $2276 c$
Letters; glass, 2:31a. On parapets, 412
Le Veau, Louis; architect, 357, 359
Level ; bricklayer's, 1890
Levtr ; properties of, 1265-1269
Ltverington, Cambridgeshire ; church porch, p. 999

Lias, blue, 1843
Lichficld, Staffordshire ; cathedral, 421. Founders and dimensions, 431. Choir, p. 1006. Door to chapter housc, p. 998. Base course, p. 983

LIE

Liége ; eathedral of St. Paul, $55 \overline{7}, \mathbf{5} \mathbf{5 0} 0 . \mathrm{St}$. Croix, 558. St. Jacques, 560 . St. Maltin's, ib. St. Barthélemi, ib. St. Jean-en-L:le, ib. Episcopal palace, 263
Lis rne ribs in vaulting, $2002 w$
lierre ; church of St. Gommaire, 559
Life; annuity tables, p. 1126 et stq. Exp ectation of, ib.
Lift; worked by hydraulie, gas, steam, and hand power, $222 \stackrel{2}{ }$
Lifting shutters, 2148a
Light ; curve for reflection, 1107. Quantity of, 2747 . In hospitals, 29 iōe

- diminution 0°, through glass, $2226 e$

Lighting; by gas, 2"24 et seq. Cumparison of materials, 22649 . In spee., $229 \pm i$. By c'ectricity $2264 l$
Lightning conductor; 2261k. Cords for, 2260 . In spec., $2286 b$
Lights; leadwork for, 22:27
Ligorio, Pirro ; architect, 345
Lily ; in decoration, 87
Lime; 1840. Varicties of limestone, 18111842. Durking and Merstham, 1843. Lias formation, 1843a. Bydraulic, 1843d. hrown most estecmed, 1844. Neazures of, 23013 . Effect on iron, 1780 a Best, that which heats most in slaking, 1848. Use of fresh, 1849. Forming mortar, 1854 et seq. Examined by Smeaton, 1850.

- putty joints, $1900 a$. Water, 183

Limehouse, Lendon ; chureh of St. Amer. 499
Limestone, 1841, 1842. How to analyse 1845. Kilns for burning, 1816, 18.17
Limewhiting, 2233 . In -pec., 2287
Limoges ; cathedral, 547
Lineoln ; carthenware tile pipes found at, 2223 p . Cathedral, $396,406,421$. Founders' and dimensions of: 43\%. Propertion of uave, r. 1916. Window, p. 988. Last window, I. 991. I'urbeek columns, 1681h. Choister, groined ceiling, 202:3g. Chapter-hou e, 14946b. Castle, 394,398
lincoln's Inn; new hall and library, 1 ci6ed -
Lincrusta Walton, $22 \pi / h$
Jindisfarne, 1)urham; church, 388
lindsay \& Co.'s fireproof thoor, 1903 p
Line pins; bricklayer's 1890
Linings; to doors, in spec., 2285̌. To damp walls, of slate, 2211 ?
Linlithgow ; chureh spire, p. 1002
Lintel, or beam of stunc, \&c., 15020 . Strength of, 1864 . Of concrete, 1903x. Methods of joggling, 192: h. To relieve weight over, 1925f: Of wood, ill spec., 2285 ; of stone, 1925h
lisbon : capture from the Moor*, G00. Cathedral, 603
Lisienx; cathedral, 510. Church of St. Pierre, ib.
Lisseweghe ; chureh, 555
Listel, or Aunulet, 2532
Little Casterton stone, $1666 p$
Little Maplestead, Essex; round ehurch, p. 976. P'roportion, p. 1016

Liverpool, Lancashire; cathedral church, p. 197. Acme system of veatilatoon at pul lic
 Vault, 1903i. Ricid's system of ventilation, 22π ¿g. Concert room, lighting, $2261 f$. Docks, $1671 \mathrm{~h}, 16 \mathrm{~F} 1 \mathrm{i}$
L.ives; tables of amuity on, p. 1127

Living room ; for a poor man, 3014
Llanphey coutt, l'embrokeshise ; palace, 113

LOU
LIanthony, Mommouth hire; church 398
Lloyd's list of timbers, $1728 f$
Load of fir timber, 2344
Loals and supports in an order ; equality of, 2524. Principles of prupurtion for the orders, 2525 et seq. In tetrastyle. hexa-tyle, and octastyle temples, 2528. Concordance with the laws given by Vitruvius, 2529. Ancient examples of, 2531. l'rinciples applicd to points of support, ib.
Loam ; at ends of timber, 1746. For moulding, 2.26 .5 c
Lobes, in Belgium ; destroved church, 5.58
Lubes of circular windows, to form, p. 995
Lulmar, G. ven; master mason, 57
Looher, Lorenz ; architect, p. 1009
Le.ches ; eastle chapel, 307 . Chureh, 53.5
Lock; different surts, 2261 . Furuiture, $2261 a$
Lock tails of a donr, 2130
L.odge or workshop, 317, $322 a$

Logan or rocking stones, 25
Aoyetov; of the tircek theatre, 172
Lomazzo, G. P.; painter, translation of his work, 438
Lombard; Gothic, 608. Style, G23
l.omb rdi, the ; architects, p. 1013

Lombard; overrun Italy, their civilisation and works, 280
London: commission temp. James I. to prevent building on new foundations, 457. Buildinjr stines used in, 1666c. Bridge, 167 le. Lniversity college library, 2192a
; St. Praul's old cathedral, 396 ; founders and dimensions, 484 ; repaired, 457 ; spire, 1. 1001. New cathedral, 339, 1499/, 2828; designs for, 467 ; ruins removed, 468 ; tir:t and last stones laid, 469; description of. 470-474: cost. 475; dimensions compar d with St. I'eter's, ih.; size compared with three other principal churches of Eurupe, 476 ; defect in section in comparison, 477 ; puin's of eupport and mechanical skill, 478 ; its defects and almses, 479 ; failures in, ith, fine vi w of, 2503 ; points of support of, 1581 ; timbering of tome, 2049 ; proportion of, p. 1065; steps, 1681 ; mosaic work, 2231/
churches; Cbrist church, Spitalfelds, 499. St. Dunstan's-in-the-East, 485; spire, p. 1002. St. (ieorge's, Boomsibury, 499. St. George"s, 1 Ianover Square, 499. St. Giles'-in-the-Fields, 5 l2. St.James', Westminster, 875, 2870. St. John's, Westminster, d98. St. Martin's-in-the-Fields, 502; roof of do., 2046 ; spire, D. 1004. St. Luke's, Old Street, 523. St. Leonart's, Shoreditch, ib. St. Mary-lc-13ow, 484. St. Mary-le Strand, 508. St. Mary W'olnoth, 499. St. Stephen Walbrook, 483. St. Olave, 512. Temple church, p. 1006; proportion of, 1012. See "Southwark"

- See under names herein.

Londendery ; locks, 16:1/h
Longerd castle, Wiltshire ; 4.10,452
Longford hall, Shropshire; 525
Longleat house, Wiltshire; 4.46
Long Meg and her daughters; circle of, in Cumberland, 16
Lorker's ventilator, 22780
Loriot's cement, 1859k, 1865
Lorme, De ; Ske " Dtlorme"
Lorseh; convent, 283
Louis, V. ; architect, 2951

LOU
Louis XII., king of France; aequainted with the arts of Italy, 358

- XIV., king ; extravagances of style under his reign reprobated, 2601. Works of architects under, 359
Louth, Lincolnshire ; parochial church, 421. Tower, p. 1002
Louvain ; church of the Dominicans, 557. Of the Grand Béguinage, 558. Ot St. Pierre, 559. 11ôtel de Ville, 562

Louvre or Luffer ventilators, 2231a. Boarding, in spec., $2285 b$
Louvres; Hôtel Dien, 540
Lovelace marble, 1681 h
Lozenge ; orament, 397. And pattern slating, 2210 g
Lubeck ; cathedral, north porch, p. 999
Lacarne windows, 550
Lucca ; cathedral, 616. Honses, 614
Luechino da Milano ; architcet, 623
Ludlow, Shropshire; eastle, 394, 398. Parochial church, 408,421
Luedinghausen; charch, 583
Luffer. See "Louvre boarding"
Lugo; cathedral, 587
Lullingstone. KCent ; design for, 440
Luna, Francisco de ; architeet, 598
Luncttes, $19 \overline{\mathrm{y}}$
Lunghi, Onurio ; architect, 3 !2
Lupiana; Hieronymite monastery of San Bartolomé, 592, 596
Luxor; temple at, 81
L.xzarche, Robert de; master mason at A miens, 303a, 542, p. 1059
lynn, Norfolk ; church of St. Nicholas; doorway, p. 993
Lyon; cat hedral, 540 ; Bourbon chapel thercin, 547. Churclı of St. Nizier, 545

Ly:icrates; choragic monument of, 163
Lyveden, Northamptonshire; design for house, 440

IIACADAM ; for paving, 1672 Machinery; in joiners' trade, 212fa
Machuca, P'edro; architect, 368
McKinnel wentilator, $22 \pi 8 q$
Macleod's metallic concrete, 1905 c
Maderno, Carlo ; architect, $336,338,341$
Madrid ; palace, 368, 371
Madurah; cloultry or inn, and temple, 61
Maess, Heinrich ; architect, 577
Maestricht ; church of St. Servais, 560
Magdeburg ; cathedral apse, p. 1007
Magister Operum, 319
Maglione, Ferrante ; architect, 613
Magnetic oxide of iron paint, $2: 73 g$
Mahadeo ; temple at Ellora, 56
Malogany, 1727 et seq. Spani-h, ib. IIonduras, $1727 a, 1749$ a. African, 1727 . Doors, in spec., 2288. f
Maidstone, Kent ; parish church, 408, 421
Mainz, J. von ; architect, 577
Maitani, L.; architect, 615
Malines, 564. Cathedral, 557. Church of Notre Dame, ib., 559
Mallealhle iron, 1762, 1764 et seq. Cast irou, $223 \overline{2}$
Mallet ; mason's, 1909. Plumben's, 2212
Mallett's buck led iron plates, $1903 f^{\prime}$
Malm or marl stock, 1820,1821
Malmesbury, Wiltshire; abbey church, porch, p. 998. Nasons n arks, 32 2 2 b

Man's power, 124?

MAS

Manchester, Lancashire ; collere, 42I. Cathedral, dates, and founders, 434
Manchester grate, 2279d
Manders's distemper, $2274 b$. Stains, 227 af
Manger ; in spec., $2285 /$
Manorial houses ; of timber, 439
Manresa ; collegiate church of St a Maria do la Sco, $586,59 t$ Sta Maria del Carmen, $i b$.
Mans ; chnrch of St. Julien, 540
Mansard, Jules Hardouin ; architect, 359
Mansard roof; described, 2035
Mansdaele, A. D. and R. van ; architects, 563
Mansfield Woorthouse stone, 1666π, 1666 . Red Mansfield, analysis, 1666, $1666 z$
Mansion house, Londoil, 523
Mansions ; of the Tudor age, 429
Mantua; clurch of Sta Maria della Grazie, near, 624
Marble, 16 -3 et seq. External characters and constituent paris, 1674 . Burnt into quicklime, 1675. Different varieties, modern, 1676 et seq. For Ancient marlles, see Glossary. Weights, 1683d. Crushing weight, $1500,1502 \mathrm{~g}$. White Marble at Milan, 621. Hop on Wood stone, 1666 i. Use of, 2002aa et seq. Mouldings for marble work, 2002 ll

- chimney-picce; in spee., $2281 d$
- mantles and beams, $1502 q$
—— paper; in spee., 2.91
- tar pavement, 1908 d
- arch, London, 1677b
- hill, Twickenham, Middlesex, 508

Marbling, 2276a
Marburg, church of St. Elizabeth, 566, 567 ; apse of, p. 1007. Church, 567
Marcellus; theatre at Lome, 226,258
Marchione of Arezzo ; architect, 613
Marco da Canpiore ; architect, 619

- da Frisone ; architect, 619

Marezzo imitation marble, 2250 m
Margam abbey, Glamorganshire; bands to shafts, p. 989
Margaritone, of Arezzo ; arclitect, 613
Margary's patent for preparing timber, 1752
Margins of the xystus, 175
Marig.ld window, p. 993
Marl stocks, 1820, 1821
Marlborongh grate, 2279d
Marlborough house, London, 1683
Marmorarius, 312
Marquetry, $2173 g$
Mars Utor; temple at Rome, 210
Marseilles ; church of St. Victor, 540, 545
Marsh, - ; architect, 466
Martinelli, Domenico ; architect, 365
Martinez, Alfonso; architect, 595

- Diego ; architect, 592

Martin's cement, 1866. Use of, $2251 b, 2251 d$. In spec., 2287
Mason, 312 et seq. In spec., 2281
Mavonry, 1909 et seq. Tools used in, 1909, 1910. Scientific operations of stone-cutting, 1930 et seq. Dome vaulting, $19 \overline{5} \mathrm{et}$ seq.
-at Amiens, after Roman models, p. 1060 Matons' marks on stone, 316,322
Mason's work; in spec., "281. How meat sured, 2371
Masques ; by Inigo Jones, 46 J
Mass and void; measurement of, p. 1013
Masses; proportioning of, p. 912
Master mason, 312, 317 et seq. p. 1045
——of the wores, 312,319

Mastic asphalte，1867，1867a
Material ；ecouomy of， 1049
Mathematical proportions，p． 1017
－tiles．1839a
Mausoleum of Kinc John，at Batalha，60j
Mayence ；cathedral， $287,2 \pm 8$ ．Two apsides， p． 1007 ．Theatre， 20.2
Marfield hall，Essex． 414
Meare，Somersetshire ；fish honse， 2211 s
Measure；use of a，in proportion，p． 1008 et seq．，p．1057．Of the choir and justice，p． 1008
Measure＇s patent floor，1903r
Measuring and estimating， 2295 et seq．
Measuring rule；plumber＇s， 2212. Rods， 2296
Meath，bishop of ；house for， 527
Mecca；houses，how built， 131
Mechanical arts；not absolutely necessary to progress of architecture， 9
Mechanics and statics ；gennral observations and definition，1240－1243．Parallelogram of forees， $1244-1259$ ．Of the lever， $1260-$ 1265．Centre of gravity，1266－1268．Cen－ tre of gravity of lines， $1269-1274$ ．Centre of gravity of surfaces， $1275-1230$ ．Centre of gravity of solids， $1281-1290$ ．Centre of gravity of irregular solids， $1: 91,1: 92$ ．of the inclined plane， $1293-1306$ ．Of the wheel and axle， $1307-1314$ ．Of the puller， 1315－1320．Of the wedre， $1321-1323$. Ut the screw， $1324-1230$ ．Of friction， 133t－13＇t．Values of moving powers， 1342－1352
Mcdallions， 493
Medixval architeeture，p． 96 k et seq．Sce ＂Pointed Arehitecture．＂I＇roportion， P ． 1005 et seq．

－artiticers，${ }^{\text {on0 }} 08$

Medina del Campo；Castillo de la mota， 590° Meillaut，château de， 548
Meissen ；chureh of St．Afra，566．Cheir．567， 569,572
Melbourne，now Dover，house，Whitelall， $5 \cdot 3$
Mells church，Somersetshire ；lead of glass， $2229 a$
Mclrose，Roxburghshire；abber， 431
Melton，Suffolk；parochial church， 398
Melton Muwbray，Leicestershire ；parochial church， 421
Members，of mouldings， 2129
Memel；deals，太e．，1\％29d．Timber，152？g
Memnonium；statues Ilescribed， 85
Mende；bell tower， 532
Menilmontant ；abattoir at Paris， 2935
Mennie－；architcct，2975a
Mensuration，1212－1237，2295 et seq．
Merab，in Arabia；reservoir uf， 118
Mercury ；bichloride of，1752
Mereirorth，Kent ；villa，50．1， 3000
Merinville；round church，p． 1006
Meroë ；pyramids，304
Merseburir ：cathedral， 583
Merton edllege chapel，Oxford，421．Ceiling of library，2023a．W＇intow，p．98！
Messina；cathedral，boarding to rouf，2173a． llouses， 626
Meta of the Lioman cirenc，2－10
Metal work；wrought，2250h et seq．
Metallic canvas， 1686 ．Sand， $1852 c$ Con－ crete， $190{ }^{\circ} c$
Metals；transverse strength of， 1628 l
Metopa；origin of， 135

MONF

Metz；cathedral，545．Propertion of，p．1016． Aqueduct，2：3
Mews，Charing Cross ；arcade at， 2635
Mexico：architecture of， 109 et seq．City of， described，11\％．Pyramids of，111，112
Miao，or idol temples in Pekin， 104
Mica；in granite， 1669
Michelozzi，Michelozzo；architect．323
Middle class houses in Paris and London 299：a
panels，rails，and stiles；of a door 2130
— pointed work ；proportion in．p． 975
Middleburg，Yorkshire；castle，423
Middleham，Iorkshire ；castle． 398
Middlesex hospital，London：Jarian cement nsed in，2こち $2 k$ ．Ventilation of， $2.2 \pi \mathrm{Em}$ ， 2ご心。
Middleton Cheney，Northamptonshire；church porch，p． 998
Midlleton，lord ；house for， 440
Diildleton－on－the－Wolds，lurkshire；proper－ tion of church，p． 1015
Mignot，or Mignotte，J．；architect，p． 100 s
Milan；cathedral， $365,586,619$ ；propertion of，p．1008，p．1013，p．1016，p．1437： apse，p．1007；marble used in building， lbïa．Chureh of Sta Maria della Grazie， 624．IIospital，20－1．Theatre 2058
Military architecture in England，382，391， $394,402,413$
Mill bar iron， 1760
Milled lead， 1783 et seq ．In spec．，2essa
Milner，John ；writer on pointed arehitecture， p． 1050
Milton abbey，Dorset ；church， 407
Minaret ；introducel ly Alwalid II．， 119
Minera firestone，lobica
Minerva；temple at Athens，or Parthenon， 150，p． 943, p． 249 ．At 太心ninm， 150
－Medica；temple，at liome，21t
Pohas；temple，at Athens，153．At l＇riene， 153
Wing Tombs：the， 108
Ministers；English，care little about the arts， 361
Minorites ：clurch of the，at Cologne，¿it
Mint ；at l＇aris，3ito．At Venice，35l
Minyas，king of Urchomenos ：treasury， 37
Miratlores ；Carthusian munnery， $5!6^{\circ}$
Miramichi deals，Sc．， 1729 c
Miranda do Douro ；cathedral， 007
Miserere seat，Henry V＇11．＇s chapel，p． 985
Missolonghi ：gateway near， 301
Mitla，Mexico；palace ot， 115
Mitre；box in joinery，2121a．Joint， $2155 b$. Square，21：t
Modain ；palace，s0．
Model dwellings， $1902 b$ ．Commercial Street， 3012 et scq．
Modillions ；centres of，2612－2614
Module， 2550
Modulus of clast icity，1628c， 1630 i
Monianum；of an amphitheatre， 228
Mocr，Theodorich；master mason or archila－ picula，àz
Mussac ；church， 307
Muna marble， 1681
Mondragone，near Frascati ；nreade， 2640
Monial or mulliun，p． $5!10$
Mons；church of Ste．Wandrn， 559
Mont St．Michel ；salle des chevaliers， 547
Montague l：onse，Bloomsbury，now the lbrilish Mu：cum， 416°

YTH

Mucon tie mose ？．

玉：

 \therefore 새․

Masen In sument

浬 saven is

0 ax ampern－ixy

 Eacuat

 nemernis $2 \pi=$

 2：22
——

Xcun
M sum

 $3:$

II © $0-20=10=0$
 swmen ㅋ․：

M．．－2 2ressi．：Nざ

Moerxany vmen me，－Tivivo

Nさ

M i inuluarkiv？？

M－ximene …

1
 ，berv．：－N

 sher．Fins

Ysinem $-\infty$,

Nin Fombix $\because=$

－边 以上

 $=-\frac{z}{2}$ Int
 ©
 $-2 \mathrm{E}=$

——oviris．II s．．

Nexi
运 $-1 /=-1$
NI地
NOL 2x：

Nori－120－2 $2001+10.2$
 －15－

NEIV

Newcastle-upon-Tyne, Northumberland; parechial church of St. Nicholas, 485 ; tower, p. 1002. Cathedral church, p. 197. Castle, 394, 398
Newel of stone stairs ; open and solid, 1926. Of wood, in spec., 2280 d
Newgate prison, London, 523
Newman system of iron drains, $1888 n$
Newton's process for preserving stone, 1667 m
Nice ; amphitheatre, 228
Niche ; in brickwork, 1905. In joinery, 2197. In carpentry, 2066, 2067
Niches, $27 \% 3$ et seq. Not found in early Greek works, 2774. At the Maison Carrée, and other places, 2775 . Their decorations, 2776 . Rules for proportioning, 2777. Tiers of, in stories, $27 \% 8$. Chambers's rules for, $2 \pi \%$. Depth of, 2780. Examples of, 2781-2787
Nidging ; in masonry, 1915
Nienburg an der Saate ; clurch, 567
Niesenberger, Johann; arehitect, 579
Nilometer ; in Egypt, 91
Nimroud ; drains, 304
Nineveh, 44, 51a
Nismes; amphitheatre, 228, 203. Maison Carrée, 211, p. 953 . Niches in, 2775
Nitrification, $1467 c, 1667 m$
Noerdlingen; chureh of St. George, 580
Noirlac ; church, 58.4
Nomenclature; of Gc thic mouldings, p. 970. Of classic mouldings, 2532
of Gothic architecture ; English, p. 9 fi7.
French, 536. Belgian, 553. German, 565
-in vaulting, 14990
Non-compressibility of water, $22: 23 w$
Non-conducting feit, 2210d
Nonsuch, Surrey ; palace, 426
Norba; Cyclopean remains, 32
Norfolk latel, 2262
Norman, Juau; architect, 595
Nurman and Suxon styles; difference between them, 397

- architecture, 383, 392 et seq. Charaeteristics of, 397. In England, p. 967. Examples of, 398. Cathedrals, 396. Churches, 290. Columns, 397. Arches, it. Arches of entrance, il. Windows, ib., p. 988. Ceilings, 397 . Walls, $i b$. Ornaments, ib. Ilans, ib. Mouldings, 397, p. 971, p. 972 . I'iers, p. 676. Capitals, p. 977. Base, p. $: 79$. Ribs, p. 980. Hood moulds, p. 981. Plinths, p. 982. Parayet, p. 983. Doorways, p. 997. Porches, p. 998. Towers, p. 1000
bishops, and their works, 396
wurk, syst-m of proportion, p. 1017. Manner of building, p. 1023
Normandy ; spires of, p. 1005
Norrey church ; spire, p. 995
Northampton ; parochial church of St. Peter, :39. Round church, p. 1006
North Anstun stone, 166 Cd , $166 \mathrm{~T} w$
North letherton, Somersetshire; church tower, p. 1002
North Walsham chureh, Norfolk ; roof, $2052 p$
Northfleet church, Kent; roof, 20.5 2 . Screen, p. 985

Northumberland house, Strand, 442
Norwegian timber, 1729f. Used in honses at Antwerp and Ypres, 56
Norwich, Norfolk; eathedral, 398, 421. Founders and dimensions, 43.4. Spire, p. 1001. Church of sis. Margaret, 421. Of St. l'eter Mancroft, 408, 421. 'Tuwer, p. 1042. Castle, 393, 394

ORD

Norwich stove, 2279d
Nosing of stairs, 2180 . In dilapidations, p. 1096
Notation, 2297a
Notices; to give, in spec., $2280 k$
Notre Danse de l'Epine ; church, 547
Nutre Dame le Puy; churches of St. Martin and St. Giles ; doors, 214ōr.
Nottingham ; castle, 423. County hall and prison, $5 \div 6$
Noyon ; eathedral, 534, 5 15. Hotel de Ville, 550
Nubia ; temples and remains of, 92
Numbers; use of, in proportion, p. 1005 et seq., p. 1015. At Cologne, p. 1011

Nuremberg ; church in castle, p. 1013. Church of St. Lawrence, 579, 580 . St. Mary, 572 . St. Sebald, two apsides, p. 1007
Nymphea Lotus, or water lily; source of Exyptian ornament, 87
Nymphaxum, 214, 2775

0AK timber, 1685; cutting, 2125a. Feneing, in spec., $2: 28$ h
Oare, Joüo ; architect, 603
Obelisk ; of grey granite, 1571i. See Gı.osS.11:

Obidos; castle, 603
Obscured shect glass, 1872d
Obscurity of Statues, 558
Observatory at I'aris, 359. See Glossamy
Octagon; to furm, 1016
Octastyle temples, $252 \times$ et seq., p. 947, p. 954
Odilo, abbot ; eathedral at Chartres, 289
Odivellas; Cistercian mumery, (603
Odoacer; amihilation of the arts on invasion of, $276-278$
Eeus; of a Roman house, 252. Several species of, ib. 'That ealled Cyzicene, ib.
Fillet holes ; at Caernarvon castle, 402
Ogree; moulding, p. 973,2129 . A rehes, to draw, 1943 det seq. Arch in Venice, 610
Ogive ; its derivation, 538
Uils; in painting, $22 \overline{1} 1$ a et seq. Deterioration of, $2 \geqslant 71 \mathrm{c}$
Olite; church of S. Pelro, 589
Oliva ; nave and refectory, 583
Olotzaga, Juan de ; architeet, 3є7, 591
Olympia ; temple of Jupiter, 141
Owodeo, Giovamni Antonio; arehitect, 365, 620
Onyx marble, $2002 g g$
Open fires, 22794

- Medieval roofs, 2052d, 2211 n
- work spires, p. 1005

Opera house, at 1uda-Pesth, 2971k. Sce "Theatre"
Opere Franciseno, 569
Oporto ; cathedral, 600. San Francisen, 601
Oppenheim; church of st . Catherine, 322 , 567, 569. Choir, p. 1006
Opus Grecanicum, 2231e
Oreagna, Andren ; architect, 323
Orchestra; of a Roman theatre, 226. Of a Greek theatre, 172
Orchomenos ; treasury at, 37
Order. See "Tuscan," "Duric," \&c.

- of an arch and mouldings, 19220, 1.971 , p. 974, p. 940

Orders ; character of the different, 2538 ct siq. Doric, Ionic, and Corinthian, 2539. Sir Henry W'atton's deseription of them, 25:10. Invention of new ones, 2541. En-

PAN

tablatmres，height of，in，2542．Mode of measuring them，2550．Application of， 2552
Orders of architecture， 2523 et seq．Consist of essential and subservient parts，2523．Are five in number，$i b$ ．Mode of profiling an order．ib．Lebrun＇s analvsis of loads and supports in an order，2524．Principles of proportion as to loads and supports， 2525 et seq．Systrle intercolummiation produced by such principles，2527．Principles of load and supports carried into tetrastrle，hexa－ style，and ectastyle temples， 2528 et seq． Concordance thereof with the laws given by Vitruvius，2529．Ancient examples of dif－ ferent orders in verification of the theory， 2531．Principles applied to points of sup port，ib．Tuscan，2553．Doric，2560．Ionic， 2573．Corinthian，2582．Composite， 2591 Ortiers above orders， 2642 et seq．Vitru－ vius thereon，2643．Scamozzi＇s rule， 2644. Laws of solidity respecting，2645．Axes of upper and lower columns，how placed， 2646．Disposition of，according to Cham－ bers， 2647 et scq．Doric above Tuscan， 2648. Ionic above Doric，2619．Corinthian alove Ionic，2650．Composite above Corinthian， 26ā1．Eligible intercolumniations， 2652
Orforl castle，Suffolk， 398
Orgagna，Andrea；architect， 327
Oriel window， 415
Orleans；cathedral，549．Church of Notre Dame de boumes nouvelles， 289
Orme，Philibert de L＇；architect．See＂De－ lorme＂
Ornament；a non－essential in architecture， 2486．Gothic，p． 995 ．Drawing of， $2383 c$
Ornamental wrought iron work， 2255 h et seq．
Ornamented English architecture， 409 et seq． Characteristics of，in arches，colnmns，win－ dows，roofs，or ceilings，and ornaments， 420
Ornaments of mouldings ；how to arrance， 2535．How to be cut，2536．Degree of relief they should have，2537．Of the Grecian edifices suitable to their destination， 164. In stone，in spec．， $2284 b$
Orsenigo，simone da ；architect， 619
Orthographia；of Vitruvius，p． 1013
Orvieto ；cathedral， 615
Osmaston manor，Derby ；warming and venti－ lating，2279c
Osterley house，Middlesex，446， 447
Ostiarins ；of a Roman house， 246
O．ymandyas ；tomb of， 85
Otricoli；amphitheatre， 228
Ouguet，David ；architect，604， 605
Oundle，Northamptonshire ；church window， p． 988
Ourem ；castle， 603
Ourscamp ；church， 540
Out of winding， 2123
Outline；the fundamental principle of draw－ ing， 2382
Outside linings；of a sash frame，2147．Stiles of a door， 2130
Oven；how measured，2314．Of brick or iron，in spec．， $2282 b$
Overscer，312， 319
Ovolo，2129．Echinus or quarter round， 2532
Oxford；Christ Church cath．Chapter－house， 460．Founders and dimen－ions，434．Win－ dow， $\mathrm{\Gamma} .989$ ．Chureh of St．Aldate，p． 1004. Of St．Mary，421．Of St．I＇eter，398．New

College Chapel，1377．Woreester College Lihrary，490．St．John＇s College，45́6， 1681h＊Peckwater quadrangle，at Christ－ church，490．Magdalen College Chapel， 421，p．1014．All souls＇College，499，p． 1014．Castle，394，398．Palace， 423. Public schools， 444
Oxidation of metal．See＂Corrosion＂
Oxide of iron paint， 22736

DACE，convent deila ；at liome， 335 Packing ；in masor ry， 1921
Packington，Warwickshire ；church，525
Padıa；chureh of San Antonio， 285,$61 ;$ ．Sta Mari dell＇Arena， 616
Padua，John of ；architect， 319 ；and his fol－ Iowers， 425
Piestum；hyprethral temple， 149
Page，Sir Gregory；house at Blackheath， 505
Pagodas，or Chinese towers ；that of Nankin， 105．That of Ilonans，at Canton， 10 t
Paine，James ；architect， 514
Paint；varieties of， 2273 et seq Effect of，on wood，1747．To remove old，2270．lïre－ proof， $2273 j$
Painted glass，2231b
Painter＇s；tools，2268．Work，in spec．， 2590. Estimating， 2379
Painting，2267 et seq．Iron work，1780a． Stonework 1667i．On cement， $2273 h$
－and sculpture；intimately comnected with architecture，68．Much used in orna－ mented English architecture，412．In Egyptian architecture，86．On walls，is decorations，2519，25：2
Palace ；at Westmin－ter，42．．At Oxfor 1， ib．At Woodstork，ib．At Kennyngton，ih．
Palestra ；of the Grrek gymnasium， 175
Palamlino marble，2002ce
Palatial houses ；list of Elizabethan， 446
Paleing or soldering，222：3f
Palencia ；casa del Ayuntamiento， 596
Palermo；cathedral，319．Witls at san Giuseppe，1535．At San Dominico，ib． Houses at，626．Sta Maria della Catena，ib． Palazzo Reale，door， 2145 c
Paley，F．A．；writer on monldings，p． 969
Paling，park；in spec．，22×．5b
l＇alladian school of architecture， 464
 dows by，2761，2765，2766．Theatre，294 8 ．
Palm－tree leaf ；in Egrptian ornament． 8 \＆
Palma；church of the Dominicans， 586
Palmyra；extraordinary structurts，196， 197. Niches， 2775
Pam！lona；cathedral．591
Pandoo Koolies ；of Hindostan， 12
Panel；of a loor，2130，21456．Of slate，221＇q
Paneling ；timber for， $1729 f, 2125 c$
Pantheon；at lome， $215,216,262,2517,14!41$. 1499p，p．954．Lishted from a very ：mill aper．ure，2747．Niches，2755，2779，りご行， Capitals，p．956，p．9．7．Proportion，p．10：1． p． 1065
－of the Escminl；the sepulchres of the kings of Spain，371．Sice＂F＇arıs＂
－the tre；in Oxfor I Strect， 527,2080
Pantiles，18：38．Gange，1906， $1907,1507 \pi_{0}$ Table of the number required for a givin quantity of work，23：l
Pantiling， 2302
Panton，Mr．；a louse Iesigned for， 410

PAP

Papantla; pyramid of, 113
Paperhanger's paste, $227 \pi \mathrm{~g}$. Work, in £pec., 2291. Estimatins, 2380

Paperbanging, 2277c
Papier-mâché, 2251 ; in spec., 2287
Japworth, J. W. ; on domes, 1499o. On Milan cathedral, p. 1008
Parabola, 109.-1109. Curve, many uses of, in architecture, 1107
Parapets ; in spec., 2282a. Gothic, p. 983 et seq
Parascenium of the Greek theatre, 172
P'arastate, 2671
P'arget, 1905b. To face work, 2245a. To chimney, in srec., $2282 a$
Parian ; cement, 1866 . Use of, $2251 f$ et seq. In spec., 2287a. Poiished, 225li. Marble, 1676
Parigi, Alfonso and Ginlio ; architects, 331
Pariquadrato proportion, p. 1013
Paris ; cathelral, $539,541,570$; doorway, 539 ; apse, p. 1007. Ste. Chapeli'e, 540. Decoration copied at Cologne, 567. Chureh of St. Eutache, 54!. St. I?tienme du Mont, 549, $200: 2 x$. St. Sulpice, 362. St. Généviève, or the l'anthéon, $2 \times 9,361,476,477, p .1018$; dome, 1499 m ; points of support, 1581 . St. Germain des l'rèz, 289 ; shafte, p. 1023. St. Germain l'Auxermis, 5t7
; abber of St. Antoine: near, 310

- ; street architecture, 364. Honses in Rue de la Victoire, casement in, 216ajf. Fnubourer St. Germain, 440
- : Napoleon column, 2603. IIospitals, $2978 z, 2974$. Invalides, 1581 . The Louvre, façate of, 3509,2613 ; winlows, 2760 . Observatory, 359. (iarde-meuble and mint 360. Théâtre dn Chatelet, mode of lighting, 2: 244 . Théâtres Italien and Françaic, 29.58. New Opera humse, 2972. Ihalle aux bleds, 2051
Park Nook stone ; analysis, 1666
Park Springr stone, 166 ̃w
P'arker's cement. Sie " Roman cement"
Parliament hinges, 2:58a
Parma ; theatre, 2948, 2958
l'arocona ; temple at Ellora, 56
Parquetry, 2173c. In spec., $2285 b$
Parthemon. See "Minerva, temple to "
Parting beud of a saslı frame, 2117. Strip in a waslı frame, :2165
Partilions; in carpentry, 2024, 2025. How measured, 2331. Weight of, $1628 b$. Brick$\mathrm{nog}, 1902$; in spec., $22 \mathrm{~s} \geqslant \mathrm{~b}$. Malf briek, 1902r. Stone slat, it. Tiles, ib. Ilollow brick, 1902b. (ilazed, 2231. (Quartered, in sper., 22s5u. Timber for, 1729f. (If deal, in spee., 2285\%. Gnspipes shomld not be enclosed in, 2:26.16
larts of an order, 2523
larvise over porch, p. 998 et seq.
P'asley, Col. ; on domes, $14!9 /$
Paste for paperhanders, 227 gg
1'ateley l3ridge stone, $166 i 6$
Pateni axe; mason's tool, 1915b, 1915c
-plate flass. 18726,1873 . Romgh plate gliss, 1878 . Slating, 2210 h
Paths, in : pec., 2281
Patrixbmrue, kent; circular window in chureh, p, 993
Pattorm-making, 2265 f°
Pavements, $16 \operatorname{lit}_{i}, 19030$. Ornamental, 1830/, 190 sc . In spec., 228tc
- lights, 2.2 ± 5

PER

Pavia; church of the Certosa, 619: terracotta, 1908j. Church of St. Michael, 280
Paving, 1905 c et seq. How measured, 2300, 2372. Granite, 1671 c, 1672 . Brick, 1827 , 1831b. In spec., $228-b$. Tile, $1839 a$ et seq. In spec., $2082 b$. With cements, 2251 m . Making good, in spece, 2284e. 13lack and white marble, 2002 cc . Tar, 1905 h
Pavodilos floor, 21736
Pavonazzetto marble, 2002bb, $2002 g g$
Paxton, Sir Joseph, p. 1063
Pay-lcou, or trimmphal arches of the Chinese, 107
Payne's patent for preparing timber, 1752
Peabody dwellings, Commercial Street, 3014 ; described, $302 \cdot \frac{1}{2}$ et scq.
Peace, temple of ; at liome, 217, 2517, 27.5. Sec "Constantine, basilica of"
Peckings, 18:23
Pede, Henry van; architect, 562, 563
Perlestals, 2599 et seq. Table showing their heifhts, ancient and modern, 2601 . Parts 260_{2}^{2} Dics, 2603. Jimployment of, 2601
Pedia ent ; origin of, 135. Observation bs Cicero on, ib. Inclination, Loman, 269. Of varied forms, 2716. Ilow they should be used, 2717,2718 . Virruvius's rule respecting, 2719. Different sizas in same fagade to be avoided, 2720. Norde of eomnecting the horizontal and raking pirts, $27-21$. Ileiohts of ; bow terulated, $2-22$. Fare of $1!$ inp:tmum ; how disposed, 2723 . Working of ; in spee., 228.1\%.
Peel; cathedral, 1681
P'wmata ; of the amphitheatre, 230
Pelin, palace, 103
Pelasgic buildings, 27
Pelican Otlice, Lombard Strect, 515
P'Hlegrini, I'ellegrino ; architect, 621
Pellet ornament, 397
I'embroke ; Philip, earl of, 461
Penaria; of a lioman honse, 253
l'endentives, 2090. Conieal, for covers to ceilings of square romms, 2091. 'To linel springing lines, 2092. Methot of coviner a square room with spherical, 20!3. To tind intersections of ribs in, 209\%. In dame stone varlting, 1094 et seq., $2002 u$, $2(1) 2 x$. At Candebee, p. 1053. In towers, p. 1003, p. 1004 . In earpentry, $20!10$ et seg.

P'enctration of monlelings, 57x, p. $97 \cdot \mid$
P'ennet horne, James; arehitect, 520, IG6tid
L'emrose, F. C.; architect, on propurtion, p. 1015
Penshurst house, Kent, 416
l'entaron form, p. 10:34
1'entacomal chureh, 572
l'entalphat form, j. 1036
1'entelic marble, 1676
l'enthouse roots ; in Italy, 614
leon or juon wood, 172xil
l'erch, a measure of length; used in setting out a building, [. 1057, p. 105x
l'erforated glass, 1879. Ventilator, 2231a, 3037. Zine, 222.14

P'ergula; of a lioman house, 253
leriches serchitecture of (irecec under, 1.11
leridhomedes; of a Girek in masinm, 175
P'erigurux ; chureh of St. Front, 307; and St. Eticume de la Cité, 535
Perionk of Cothic architecture, p. 967
l'eristylium ; of a (ireek gymmasium, 175. Of a lioman house, 245, 25:, 253

PER
Perkins' system of beating by hot water, $2275 i$
Pernes ; church, 307
Perpendicular period of Gothic architecture in England, p. 967. Work, proportion in, P. 1017. Mouldings, p. 973. Piers, p. 977. Cipitals, p. 978. Bases, p. 979 . Ribs, p. 980. Ilcod moulds, p. 982. Plinths, p. 982. Parapet, p. 983. Wood mouldings, p. 985. Windows, p. 990. Window jambs, p. 992. Doorways, p. 997. Purches, p.999. Towers, p. 1002

Perpignan ; cathedral, 545. Church, 586
Perrault, Claude ; architect, 359,360
Persepolis, or ruias of Chel-Minar, 46-49. Architectural details compared with those of Egypt and Persia, 50
Persia; present architecture of, 51
Persians, 2682, 2681
Persienne blinds, :2165̃f
Perspective, 2405 et seq. Temp. 1565, 440
Perugia; Madonna di Monte Lnce, 624. San Excolano, 616. Sita Giuliana, $i b$.
Pestagalli, P.; architect, 620
Petchorsky ; convent of, at Kiev, 375
Peterborough, Northamptonshire ; cathedral, 396,398 . Founders and dimensions, 434. Spire ot staircase, p. 1005. Apse, p. 1007. Lantern, groined ceiling, $2023 g$
Petersburg deals, \&c. $1729 e$. See "St. Petersburs"
Peteisham house, for Lord Harrington, $\overline{5}[0$
Petra; ruins of, 3
P'etworth marble, $163 k, 1681 g$
Pevensey castle, Sussex, 391
Pew hing-s, $2: 258$
Pewing, 944. In spec., $2285 h$
Philip of Macedon; portico of, in Delos, 151
lhillip's rolled iron girder, $1629 f$
Phenician architecture, 9,54
I'hygalia; temple, p. 943, p. 945
1'ickart, Jan ; architect, 558
Picked, to granite, $1915 c$
Piece ; of paper, 2278
Pied du roi ; a measure of length, p. 1057
Pier ; on a column, I925d. Gates and piers, 2734. Rules for finding proper stability, 1563-1582. To windows, 2754. Of mediæval buildings, p. 975 et seq. Circular, p. 1023. At Amiens cathedral, p. 1061. Canterbury cathedral, p. 1040. St. Ouen, at Rouen, ib. St. George's chapel, Wiudsor, p. 1051. Henry VII.'s chapel, p. 1054. In basement, in spec., $2: 82 a$. See "Pillars"
Pierced bricks, $1831 f$
Pierrefonds ; churelı of St. Etienne, 534
Pig ; of iron, 1765. Of lead, 1782
Pilaster, : 671 et seq. At 'revi, 2672. Projection of, 2673. When used with columns, 2674 . Pilaster capitals, $2675,2677 \mathrm{et} \mathrm{seq}$. Supposed to represent columis, 2676. To be avoided at inward angles, 2680 . Engaged, 2615. Stone, in spec., 2284a. Of wood, in spec., 2285 g
Piles, how measured, 2331
Pillar or column ; centre, 1500
Pillars, see "Beams and Pillars." Of materials in testing, 1502 e. Compression of, $1630 y$ et seq. Carrying up, 1923. In a chareh, mode of strengthening, 557. Of Westminster Abley, p. 968 ; bands of shafts, p. 969. See "Piers"
Pinacotheca; of a Roman house, 252, 253
Pine wood, 171:

Pinnacles: ordination of, p. 1008. Mode of setting out, p. 1019
Pins, keys, and wedges, $1631 u$
Pintelli, Baccio; architect, 612
Pipe casiugs; in spec., 2285 h
Pipe trap; cast lead, $2218 b$
Piper, - ; architect. 583
Pipes for drains, 1888 a et seq. Of earthenware, $2223 p$. Of stone, ib. Of iron, $2223 q$. Of gutta-percha, $2223 r, 22646$. Of leai, manufacture, 2223% Of lead, in spee, 2288. Weight of, $2223 n$
for gas, 22614 et seq.
$=$ main service and supply, $2223 \mathrm{~g}, 2223 n$
hot water; for heating, $22 \% 9 \mathrm{~m}$. Expansion of, ib. Quantity for a buildiug, $2279 n$
Pirna ; church, $5 \delta 3$
Pisa; Duomo, 286, p. 1042. Baptistery, 291, 292, p. 1037. Sta Caterina, 613. San Francesco, ib. San Martino, 616. House, 614. Canipo Santo, 291, 293. Campanile, ib. Casement adopted there, 216jc
Pisano, Niccolo; architect, 613
Piscina ; of the Roman baths, 235
Pisè work, 190366
Pistola; San Salvatore, 613. San Domenieo, ib. San Francesco, ib., 616. La Quarquonia, 614. Baptistery of San Glovanni Rotund», 616. Palazzo delia comunità, 618. Palazzo pretorio, $i b$.
Pit sand, 1851, $1852 b$
Pitch or slope of a roof, 1906, 2040b, 2052n
Pitching; for paving, 1672. Piece in stairs, 206
Place brick, 1817, 1823
Placentia palace, at Greenwich, 423
Plain tiles, 1835. Table of the number required for a given quantity of work, 2301 , 2321. Gange, 1906. Setting in mortar, and dry, ib.
Plan, 2-490a. Distribntion of, 2483
Plane trigonometry, 1083-10.55
Planes, in geometry, 969-978
——, in carpentry ; Jack, trying, long, jointer, smoothing, 2102 ; compass, forkstatf, straight block, 2103 ; rebate, moving, tillister, sash fillister, plough, 2104; mouldin's, 210 - ; bead, and snipe bill, 2106
Planing machine, $2124 a, 2124 c$
Plank, 1710. How measured, 233 I
Planking ; to doors, $2145 a$
llanted work; in Gothic joinery, 2175c
Plasencia; cathedral, 596 . Parochial chureh 1. 1019

Plaster; adhesive power of, 1494. Fireproof, 2246b. Fibrous plaster slab, 2246b. Slate ground for, 2.246d. Quantity to cover al surface, 2248 . New inventions, $22 j 0$ a rt

Plasterer's work; in ppec.. 2287. Estimating, 2376. Work, in 1)ublin, 2246a

Plastering, 2232 et seq. Quantity of dillerent materials in a given nmber of yards, 2218 . Purots, 3031
Plate girder, $1629 a$ et seq., $1629 p$

- glass, $1870 \dot{\alpha}, 18726,1875$. P'atent, $18 \bar{y}^{-2} 26$. Rough, $18: 7$
Wiron, $1764 f$. Strength of, $1630 r, 1600 v$
Weight per foot, 2254
- rack ; in spec., 22855 g
——tracery, $\mathrm{p}, 989, \mathrm{p} .999$
-, wall, in spec., 228ju

PLA
Plateresque of Spain, 599
Plates of metal to doors, 2145c
Play-ground in industrial dwellings, 3021
Plenum srsten of ventilation, $2278 b$
Plinths, p. 977 . And base mouldings; in spee., 2281a, 2284b. Gothic, p. 982 et seq.
Ploughed and tongued, 2171
Plugging with lead, in spec., 2281 a et seq.
Plumb rule, 1890
Plumber and his boy, 318,319
Plumber's work ; in spec., 2288. Estimating, 2377. Weighed and fixed, 2215

Plumbery, 2212 et suq.
Plymouth; naval hospital, 1670
Podium ; of an amphitheatre, 228
Point or division, $1943 b$; mason's, 1910
Pointed arch; theories respecting, 294 et seq. liev. Mr. Whittington's and Sir Christopher Wren's opinions, 300. Aneients aequainted with, ib. Countrjes in which it appeared, 301. l'revailed in the East, ib. lis origin probably there, ib. Moller's opinions of, 302. Appearance jmmediately after first crusade, ib. Mr. Kerrich's opinion of origin, ib. Difference of writers' opinions, 303. Miehelet's opinion, 303 a. J. Fergusson's, 304 et seq. Combated by E. Sharp, $307 b$. Ignored in Italy, ib. ; in England, 597,400 . In Italy, 318.
In France, 536. In Venice, 610 vaulting, $1499 v$
or Christian architecture, 530 et seq., p. 964 et seq. In Spain, 584. In Portugnl, 600. In Italy, 608. In Sicily, 626. Iroportion, p. 1023
Puints of support, 1563, 1581-1583, 2531. Table of, in principal buildings of Eturope, 1583. Tuble of, in Gothic buildings, $1583 a$. Of apartments, 2848 et seq.
Poitiers; Notre Dame, 531. Masons' marks, $3 \geq 2 b$
Pojana; villa, corniee, 2725
Pola; amphitl:eatre, 2:8. Arch of Sergius, p. 961

Pole plate, 2035, 2035a
Poliphilus, Mypnerotomachia; account of the work, 326, p. 958. See "Colonna"
Polishing marble, 2002nn
Polleyt, Eustarhe; architect, 562, 2800c
Polyehromatic architecture, 171, 2511-2514
Polygonal figures; used with the triansle, p. 1017. With the square, ib., p. 1018. Subdivisions in tracery, 1. 995
Polytons ; table of, 1219
Polytechuic Institution, 1786. Ventilation at, 22781
Pompeii ; formm, 212. Theatre, 1227. Ilouse of Pansa, 253
Ponte, Giovanni da ; arehitect, 356
Pontigny : abbey ehurch, 602
Poole, Sir Cicorge St. ; house fur, 440
l'uon wood, 172 Ed
Pope, Alexander, poet ; his jgnorance of art, 491. 507

Poplar, 1718
Porch house, p. 999
; not known in Italy, 609. Gothic, p. 998 et seq.
Porchester, Hampsire ; castle, 391, 394, 398. Castle hall, proch, 1. 999
Porosity of stones, $1667 f, 1667 w$. Of materials, 3029
Porta, Jaeopo della; architect, 336

Porta Santa marble, 2002bb
Port crayon; its uses in drawing and in comparing proportions, 2391 et seq. As applied to the whole figure, 2393
Porteullis ; of a castle, 344
Portico; of Septimius, 2547. Of Philip of Macedon, 151. Doric, at Athens, p. 944. Brick, in spec., 22826 . Columns of, $22882 b$. Stone, in spec., 22846 . To admit carriages, earliest, $52 \overline{5}$

- propurtion of Duric, tetrastrle, p. 943. Ilexastyle, p. 944. Oetastyle, 1. 947. Koman tetrastyle, p. 953. Mlexastyle, ib. Octastyle, p. 954 . Ionic tetrastyle, p. 95%. Ionic hexastyle, ib. Tho-e of the l'arthenon and Pautheon contrasterl, p. 955.
Porticus; of the Greek gymnasium, 1i3. Of the Roman house, 244,253
Portland cement, 1861 a ct seq. Use of, 22.51 m 2251b. In spec., 2287a. Conerete, $1862 d$ Safe load, $1864 e$
Portland stone; its qualities, 1666f, $1667 w$. Strength, 16672 . Crushing weight, $150 ? a$, $1502 b, 1502 \mathrm{~g}$. In lintels, 1502 p . Analysis, 1666
Port Philip granite, 1672n
Portsmouth; docks, $1671 e$
Portugal; architecture of, 367 et seq. Pointed architecture of, 600
Post office, London; ventilation, 2278 h
Pusts in wareloouses; in spec., 2285 b
l'ot metal glass, $2231 b$
Potash; to soften putty and paint, 2226a
I'otassi, J. ; architect, 607
Puts and jars; in arched work, $1903 i$
I'otter's bar ; house at, If $1 /$ Whel, $1839 f$
l'ower of a number, $229 \mathrm{~T} / \mathrm{h}$
Poyct, - ; architect, 2974
Poynter, Ambrose ; architect, table of Firench and English architceture, 587
Pozzo, Andrea : architect, 365
Pozzunli, amphitheatre, 228
Practieal building, 1881 et seq. Carpentry, 2003 et seq. Geometry, 999 et seq.
Preceinctio; of the Roman theatre, 226. Of the amphitheatre, $2: 28$
Prague; cathedral, 567, 572. Proportion of, p. 1013

Prato; cathedral, 616, 626
P'rebendal lou*e, W'estminster; stairease, 2997
Prenzlau ; chureh of St. Mary, 572
Presence or privy chamber, 415
Preservation of stone, $166 \overline{\mathrm{z}} \mathrm{h}, 1789 \mathrm{et} \mathrm{seq} ., 17 \div 9$ et seq., 22733 . Of Iron, $2 \div 236$. Of timber, 1730 et seq., 1748 et seq.
Pressure; piers, vaults and arches, 1351 it seq. Walls and piers, 1500 et seq. Earth against walls, 1584 et self. Wind again-t walls, 1592a. See "Crashing," "Compression," \&c.
Priam's palace had fifty chambers, 140
Pricking-up ; plasterer's, 22.10
Priene ; temp'e, 153
1'riests ; ridicule of, 311
l'rimary Gothic, $\mathbf{5} 37$
l'riming coat, $226 \times 2273 h, 2276 f$
Principal rafters in a rouf, $20: 35 a$
l'rincip'es of composition, 2825
Prior park, near Bath, 513
Prisoms; Newgate, 523 . The steen at Antwerp, 563
P'rivate buildings ; general observations on, 2983 et seq. In towns, 2990 et seq. Commun houses of L.ondon, 2992. Of a grade higher,

PRI

RED
nus at Saceara, 74. Gencrally, 83. Of Mexico, 111; of Cholula, 112 ; of Papautla, 113. At Meroé and Geezeli, 304

Pyrodene paint, 2273j, 297le
Pyrographic woodwork. 21736

Q
CADRIPARTiTE vaulting, 1499w, 1499ff Quantities, 2280d
Quarter pace in stone stairs, 1929
——round, 2129. 2532
Quartered partitions, 2024, 2025. In spec., 228ja. How measnred, 2313
Quarry glass, 1879
Quarrying stone, $73,1660 \mathrm{j}$
Quartz in granite, 1669
Quebec deals, \&c., 1729a
Queen closer, 1896

- post roof, 2042. Posts, $203 t$

Quellinus, Artus; senlptor, 2690
Quirk, 2106
Quirked bead, 2126
Quoin stones ; in spec., 2284a

RADIATION of heat, 2279

ll Radnor, Earl of ; house for, 440
hars, Georges ; architeet, 561
Rafters, 2033, 2035̌. Common, 2035. Lilip, ib. Jack, ib. Gothic, p. 986
Raglan castle, Monmouthshire, 426
Ragstone, 1922e et seq.
Railing; ornamental, in spee., $2286 a$
Rails of a door, 2130
Railway compensation, p. $109!$
Rainfall, $222 \cdot 2 e, 2223$
Rain water, $2223 c$. Pipes, heads, \&e., 2255. In spec., $2286 a, 2288$. Of lead. in spece, 2288. Of zine, in spec., 2294. Formed in columns, p. 1065
Rake ; plasterer's 2233. Thatcher's, 2211 s
Raker; brieklayer's 1890
Raking arehes, 1413-1416
Raleigh, Sir Walter ; house for, 440
Lamée, Daniel; writer on proportion, p. 1006
Ramichouer ; temple at Ellora, 56
Rammer; bricklayer's, 1890
Rampant printed arch ; to draw and find the joints, $19: 13$
Random walling; in spec., $228 t$
Ranger's artificial stone, 190366
Ranging lath; in glazing, 2226
Ransome's ; prucess, $16671,1667 \mathrm{~m}$. Siliceous stone, $1667 q$. Concrete stone, $1667 \mathrm{r}, 1667 \mathrm{~s}$. Experiments on, $1667 t-166 \bar{\imath} w$
Ranville stone, $1666 \mathrm{~m}, 1666 \mathrm{io}, 1666 q$
Ratisbon ; cathedral, 569,576 . Proportion of, p. 1016. Dominican church, 569. Clumell, 309
Raunds chureh, Northamptonshire; roof, 2052o. Porch p. 998
Ravaecione marble, 1667 et seq.
Ravenna, 272. Church of San Apollinaris, 278. Of San Vitalis, 282. Jogrigled arch at, 1925e
Rayonnant period in France, p. 990
Reading, leerkshire ; abbey, 135
Reading abbey conerete stone, 19030
Rebated boards, 2173a
Red; bricks, 1825. Cedar from Anstralia, 1728d. Granite, 1915c. Marble of the Apennine, 615

- short irnn, 1764

Fedmund's hinges, 22586

REE
Reed thatching, 2211s
Heedham, Norfolk; church, $2052 q$
Keeds; moulding, 2129
Retinery furnace, 1761
Reform club hunse; scagliola at, 2250 g .
Lighting, 2264 f. Ventilation of, 2278%
Refuse destruct (r, $1907 e$
Reid, Dr. ; system of ventilation, 2278 g
Reisate firestone, $1666 t$
Reims ; cathedral, $541,5 \% 0$. Propor ion of, p. 1058. Apse. p. 1007. Original drawings, p. 1008. St. Kemi, 534, 547. St. Nicaise, spire, p 1004
Reinhard, Johann ; architect, 579
Relief to be givin to ormaments, 2537
Relieving arch, $1925 f$. In spec., $22882 a, 2281 b$
Removal of cloisters, 598
Kenrissance style, 323-329. And flumboyant styles, mixture of, $2002 x$. In Spain, 547,599
Rendering; planter, $2250(b$. In phasterer's work, $22: 38$. To underside of slates, 221ω. In spec., $2<87$
Reredos, 415
Rese'voir ; at Merab, 118
Resilience or toughness of bodies, 1630 i
liesin box ; glazier's, 2229
Resistance; of beams, 2021c. Of mortars, $1858 \div$
Ressaunt, dnuble; a moulding, p. 970,]. 974.
-_ Lorymer, p. 970
Reveley, W'illey; architect, 525
Reve:sed toe irons, $1629 t$
Revett, Nicholas, archituct, 516
Revolviner shutters, 2148 a, $2255 f$. Of wood; in spec., $22 \times 5 e$
Rhanmus ; temple of Themis, p. 944 , p. 9.15
Rheims. See "Reims"
Rhedrz; eathedral, 532
lihodian colonics, p. 942
Iiiano, Diego de ; architect, 595, 599
liib or web of a plate girder, $1629 c$

- vaulting, $2002 e$, p. 980 et seq., $1499 v$, 2002d. Setting vut, p. 1019. Monlded, $2002 n$. To prorches, p. 998. In King's College Chapel, p. 1005
- for groins in carpentry, 2058 et seg. Curved, for roofs ; in spec., 22×5 a
Ricchini, Francesco; arehiteet, 621
Richard of Cornwall, Emperor of Germany, 569
Richborough, Kent ; castle, 391
Richmond, Yorkshre ; castle, 394, 398
- Surrey; entertainment at, by Heury VII., 4:8
- house, Whitehall, 510
park; new lodge in, 508. Old lodge, design for, 440
Rickel, l'aul de; architect, 560
Rickets's rentilating globe light, $2278 v$
lickman, Thomas, architect, writer of Attempt to discriminate the Sityles, §c., ए. 967, p. 971

Ridse ; crestings, 2255h. Piece, 2035, 2035a. Roof and hip tiles, 1836. In spec., 2283a, 2293 . Of lead ; in sjec., 2288
Riding licuse ; at Mascow, 2050
lieux ; round chureh, p. 1006
Rieux-Mérinville; church, 535
Rig: timber, $1729 f$
light lines and rectilineal figures, 8-6-907
Kim lock, 2:261
Nimer, 2108
Rimini ; chureh of San Francesco, 325. Arch of Augustus, p. 959

ROM

Ringing floor of a bell tower. p. 1003
Ripley, Thomas ; architect, 547
Ripon minster, Yorkshire, 407. Dates and founders, 434
Riser ; of stairs, 2180
Risingham, Norfolk; Roman altars, marks on, $3 \div-26$
Rising linges, 2258, 2258b
Livaulx, Yorkshire ; conventual church, 407
liveted plate sirder, $1629 e$
liveting plates, $1631 p$
Rivets, $1631 r$. Iron for ; streng h of. 16,90
Hoad scrapings, $1839 i, 185: \%$. Mak1igg, $1839 / 4$. Drains ; in spec., 2.2stia
Roadway; in spec., 2:81
lioanne house near ; window, p. 97.)
Robert the Pious, king of France; architecture under, 289
Kobin Hood stune, $1666 t$
Kohins, E. C. ; architect, on techical schools, 3038
Roche Abbey stone ; analysis, 1606
Roche lime, 22:0f
Kocliester, Kent ; cathedral, 396, $40 . i$. Founders and dimensions, 434 . Prajortion of, p. 1016. Joggled work at, 1925e. Castle, keep, 394, p. 1057
Rock concrete tubes for sewers, $1887 a$
Rocking stones. See "Logan stones"
Hock worked rusties, 26ti9, 2(iT0
Liud of brickwork; decimal parts of. 2320 . How to ascertain value of, 2314 . Table of value of, at different prices, 2319

- bolts, 2259. Of iron, stretching and breaking, $1630 n$
Rodario, 'T'. ; architect, 623
Rodriro, Alonzo; architect, 505
Rodriguez, Juan ; arehitect, 5!5
Roclandt, - ; architect, 29K1
Rolbrich, Oxfordshire ; circle of ston s, 16
Roll and fillet ; moulding, p. 972 ; and triple fillet moulding, ib.
- ribbing ; slates, 2211 i
liolled irons or bars, $1629 r$
Rollers ; brass, 2263
Rolls; in plumbery, 2213
Rolls chapel, 1908 a
Roman architecture ; character of, and observations on, 258. Not an original species, 182. Its succinct history to 309 u.c., ib. Time of Appius Claudins, 183. Under Cæsar, 186. Augustus, 187. Tiberius to Claudius, 191. Galba to Vitellius, 19:. Yespasian and Titus, ib. Domitian to Ňerva, ib. Trajan, 193. Hadrian, ib. The Antonines, 191. Hecline, 195 et seq. Under Diocletian, 198 et seq. Revived but little under Valentinian 11., 204. Honorins raised or repaired some basilice at Rome, 204. Roman empire in the W'est ended in 476 A.d., 205. Destruction of Roman empire, p. 963
- brickwork ; ancient, 1895
cement, 1863 . Use of, $2251 a$. In spec., 2287
- mosaic, 2231e
school; its character, 334. Period of, 346.
Principal masters of, ib.
-temples, l . 963 et seq. Of the nuadrangular species, 208 et seq. Of the circular species, 214 et seq., 217. Houses, 2.15
Romanesque or Byzantine architecture, 270 et seq. In lrance, 539. In Germany, 568, 570,581. In Spain, 581,587

ROM

Rone; cathedral of St. Pcter, 33:-341. Doors of. 2735. Nave of, 2779. Niches and statues in, 2779. Points of sul purt of, 1581. Windows at, 2757

- church cf Sau Carlo alle quattro fontane, 3.42. Uf San Carlo on the Curso, 342. Walls at San Clirysogono, 1535. Of San Lorenzo fuori le Murà, 281. Sta Maria Maggiore, niches at, 2779 ; walls at, 1535 , 1549. Sta Maria sopra Minerva, 616. Sta Maria in Trastcyere; walls at, 1535 . San Paolo fuori le Murà, 281, 1534-1546, 1553; points of suppr rt of, 1581 ; roof of, 2051. Walls at San Pietro in Vincolà, 1535. Walls at Sta Sabina, 1535, 1548, 1554. Chafel of San Pietro in Montorio, 335. San Stefano Rotondo, 1528. See "Pantheon "

Tcmple of Peace, 217, 2547. For other temples, see the names

Palaces, 343, 344, 2735. Bracciano palace, window, 2768 . Theatres, 226,258 . Farnese palace, coruice, 2725; dcor, 2744 ; window, 2763 . Massimi palace, arcade, 2632. Mattei palace, windows, 2758 . Argentino theatre, 2958 . Villa Pia, near, 345. See "Arch"

- taken by Totila, and again united to Eastern empire, 279
Romsey, Hampshire ; church, 396
Roof; examination of strains in, 2031. Names of parts, ib. Scautlings of timbers for different spans, $203 \overline{3}-2040$. Mode of framing for different spans, 2042-2045. Mode of forming, in the medieral period, $2052 d$ et seq. Mouldings of, p. 986 et seq. Lines for framing, 2053. Hip, to find the back of, 2054 . Lines of, to find, 2053-2057. Inclination of; in various climates, 2027-2030. Heights of roof in parts of span, 2040b -glazing for skylights, \&c., 2226c. In spec., 2289
-; of stone, p. 998, p. 999. Of zinc, 2224 h . Exposed to wind, $1592 d$ et seq. Weights of materials used for coverings, 2040b. In spee., $2283,2285 a, 2285 h$
Rooting; how measured, 2337. Of Athens and Nome, 176
Rooms ; proportions of, 2820 et seq. Height of, 2821. Height of galleries, 2822. Y'alladio's rules, 2823, 2824
Rope and cables; breaking weiglıt of, 1630 s
- yarn in thatching, $2 \% 11 \mathrm{~s}$

Loriczer, Mathias; arehitect, his work on Pinnacles, p. 1008, p. 1019
Roritzer, Conrad; architect, 579, 580
hose ; of lead, to cistenn in gutter, 2214 . In spec., $2: 288$
-winduw, p. 993 et seq. At York cathedral, p. 1015. At I pres, 557, 558. At St. Ouen, p. 1032, p. 1056. At Rouen cathedral, p. 1033. At Beaurais cathedral, p. 1034 . At Amiens cathedral, p. 1035, p. 1057, p. 1062 Rosel church ; spire, p. 1000
Rosellini, Bernardo ; architect, 335
Roseueath, Dumbartonshire; house, 525
Roslyn chapel, near Edinburgh, 431, P. 1038. Width, p. 1058
Rostock; chureh of St. Mary, 567
Rot; in timber, 1746 et seq.
Rothenburg, 580
Rouen ; its secular and ecclesiastical architecture, 552. Many churches, 549 \longrightarrow, cathedral, 511, 549. Apse, p. 1007.

SAI
Clerestory window, p. 990. Rose windows, p. 1032, p. 1033. Iron spire, 1005

Ruuen, St. Ouen, 544, 545 ; derigned, p. 1009. Set c.ut with the perch, p. 1057; Nave and transepts, 547 ; Piers of nave, p. 1040; Window, 1. 989; Rose windows, p. 994, p. 1009, p. 103.2, p. 1036. Church of St. Nieaise, 550 . St. Vincent, 547. St. Maclou, 544. Palais de Justice, 550 ; roof, 2052i. Fontaine do lat Croix, 548 . Stone cross, p. 974 . Hôtel de Bourgtheroulde, 550
Rouglicast, 2249. In spec., 2287
Rough plate glass, 1877, 1878. In spee., 2289
Round churclees, p. 1006

- towers of Ireland, $1499 w$, p. 1003

Routh, Yorkshire ; proportion of church, p . 1014
Royal exchange, London, 1855. Granite at, i67la. Steps at, 1671 b

- Polytechnic institution, London, 22i8l, 1786
Rozier, -; architect, 579
Rubled returns, 1890
Rubbing stone; bricklayer's, 1890
liubble; masonry, 1666i. In footings, 1886 c . Work, 1922a et seq., 3030. In Spauish churches, 585
Rudstone pillar, Yorkshire, 14
Ruesga, Juan de ; architect, 596
Ruffiden, Sir William ; house for, 440
Ruiz, Ferdinando ; architect, 368
Rule; glazier's, 2226. Plumb, 1890. Fur castings, 226.5
Rules; adopted by Freemasons; in proportion, p. 1057. Of proportion, p. 1013

Rumford grates, 2:79d
Rumsey, Hampshire ; church, 396
Rumning loads over bars, 1628 a
Ruprecht, George and Fitz; architects, 572
Ruremonde ; Notre Dame, $\overline{5} 55$
Rushdon, Northamptonshire ; church tower, p. 1002

Rushton hall, Northamptonshire; lodge at, p. 1009

Ruskin, John ; writer, describes Gothic, p. 965

Russell, John S.; his principles in the construction of buildings fur secing and hearing in, $2958 a$ et seq.
Russian architecture, 374 et seq. Churches built in the eleventh contury, 375 ; typo of, 377
Rustic work ; in spec., 2284a
Rustics to joints of columns, 1925re
linysbroek, Jan van; architect, 562
SABICUE wood, $1728 d$
Sacclectti, Giambattista; architect, 372
Sackville, Thomas, Earl of Dorset; houso for, 440
Sacrificial stones, 22
Saeristy; Felkirk church, p. 999
Saddle bar; in glazing, 2227,22296 . In spec., $2286 a$
Safe loads, 1618
Safety brick, 1905 c
Sattrou Walden, Essex ; church, 421
Sagging, 2021a, 2031. 205\%k. I'revented, 2031
Sagres; Villa do Infante, 607
Saint Alhan's, If ertfordshire; cathedral, 312, 398,407 . Founders and dimensions, p. 196. Assimilating work, p. 968 . Ceiling of nave and east end, 2023a. Ceiling of choir and

SCH

lady chapel, 2023g. Window, p. 987, p. 988

Saint Amand; churel, 584. Château de Meillant, 518
Saint Contest ; church spire, p. 1000
Saint Cross, Hampshire, 396. Ceiling in tower, 2023a. Porch, p. 998
Saint Cyr ; two apsides, p. 1017
Saint Darid's, Pembrokeshire ; cathedral, cir© nlar window, p. 993, p. 994
Saint Denis; abbey, 539. Donrway, 539. Church, 510, p. 1028 . Steeple, fall of, p. 1004
Saint Edmmndsbury. See "Bury Saint Edmunds"
Saint George ; convent in Russia, 373
Saint George Bocherville; set out with the English perch, p. 1057
Saint (ieorge's hall, liverpool, $1671 e$
Sint George's hospital ; ventilation, $2278 k$
Saint Germain de Blancherbe; quarries, 1666 cl
Sinint Germajn's, Curnwall ; monastery, 38^{4})
Saint Germain's, near l'aris, 440
Saint Itonorine gramite, 1669
Saiut IIubert ; chureh, 559, 560
Saint James's hall ; lighting, $22.54 f$
saint James"s palace, W'estminster, 426
Saint Jean aux Bois; church, 540
Saint John's deals. \&e., 1729 b
Saint Léonard ; church tower, p. 1008
Saint louiz, king; great number of ecele-
siastical buildners erected under, 310
Saint loup: church spire, 1000
S int Luke's hospital, Oid St eet, 523
Saint Maximin ; church, $5 \cdot 10$
Saint l'etersburg; founded, 378. Palaces of, ib. Chureh of Our Lady of Kiazan, ib.
Saint lierre Canivet; quarries, $16 \mathbf{6} 6 \boldsymbol{k}$
Saint Pierre-lez-Bitry ; church, 534
Saint Poole, Sir George ; designs for, 440
Saint Quentin; church,517. Anse. p. 1007. llôt.l de Ville, $51 \mathrm{R}, 550$
Suint Riquier ; church, 547
Saint Liombant ; cathelral, 558, 559
Saint 'Thomas's hospital, 2975e et seq.
Saint Trond ; chureh of St. Martin, 554
Sainte Kadigonde ; masons' marks in chnrch, 3:26
Saintes ; amplitheatre, 228
Sakkarah, pyramids, 7.1, 75
Salamanca ; cathedral, 587, 597, 599. Dominiean chnreh of S. Esteban, 598. Culegio mayor de Santiago el Zebedeo or del arzobispo, 597. University, 593
Salisbury, Wiltshire ; cathedral, 512. Fonnders and dimensions of, 431 ; l'roportion of, 1. 1616, p. 10:3, p. 1058 . Vaulting, 20029, 2002 m . Bnttresses, 1. 10-18. W'induw, p. 988. Spire, p. 1001 ; strengthened, p. 1005. Chapter-house, $14996 b$
Saloons, 549
Salsette, excavation of ; near Bombay, 57
Siltpetring, $1667 \mathrm{c}, 1667 \mathrm{~m}$
Salzburs ; cathedral, 355
salzdorf, Johann von; arehitect, 580
San Bernardino ; chupel at, 350
Sand; measures, 230f. River, 1851. Pit, 18.)2. Sea, 1852a. Metallic, 1852c. For moulding, 2265c, 2265c. In cement, $2251 a$. Paper, 2276 cr . llow measured, 2301
Sind 1 or sanmel bricks, 1×23
Sanding in painting ; outside work, 2277
Sand tones; 166.4. Building*, 1665 . Crushing force, $1502 i$
Sangrllu, Giuliuno di ; architect, 335

Sangallo, Antonio, architect, 343
San Gimignano, 614. Houses, 622
San Miche:i, Michele; architect, 350
San Pedro de Rates, 600
Sanitary appliances; closets, 22206. Hapers, $2277 c, 2275 h$

- arrangements for a house, 3036 et seq.
- aspect of house construction, 3027 et ieq.
- specification for a villa, $2294 b$.

Sansorino, Jacupo ; architect, 351, 355
Santa Maria de Val de Dius; chureh, 589
Santa Maria el lieal de las Ilnelgas, near Burgos; cistercian nunuery, 58
Santarem ; capture of, 60\%. Sau Francisco, 600. Sta Maria de Marvilla, ib., 607. The Conceicao Velha, GUT
Saracenic or Arabian architecture, 118 tt seq. Decline of, 128
Saragossa ; church of Sta Engracia. 367
Sarepplagus of Duchess of Kent, $1671 f$
Suriñena, Juan ; architect, 598
Sarking ; to a root, 2210
Sarzaua; cathedral, 618
Sarum, Old; cathedral, 396
Sash bars; of zinc, $22: 1 g$. Of metal, 2255 f. Door, 21656 ; in spec.. $2285 f$.
—— Frames, $2164,21650 . \ln$ spee. 228.m!. Lines, $2165 a, 2260$. 1'ullers, 2260 . Weight:, $21650,22(33$. Monntings, $216 \bar{a} a$. Pocket and fittings, $2165 u$. Tools; glazier's, $2 \% 26$
Sashes, 2164. liemoval of, $216 \dot{0} a$. In spec., $2285 d$. Cast iron, in spec. 2286
Sashwork, 2226
Saturn, temple to (now of Vespasian), at liume, 213, 260, 2547
Sanl or sâl timber, $1728 a$
Savoy, London; palace, 423. Chapel ceiling, $2023 c$
Saw; not known to the Greeks, 7. Carpenter's, 2003. Tippiug, half ripuer, hand, pranel, tenon, sash, dovetailed, compass, keyhole or twining, 2115. T'ecth ot, $: 2116$. Sawing iron, 1.67
Saw bench, $2124 a, 2124 b$
Saxon and Norman styles; difference between, 397
Saxons; arrival of, in Britain, 383. M imer of building, p. 1021. Cathedrals, propurtion of, p. 10.55
Scabling hanmer, 1913
Scatlolding; in spec., 2282c. Framed, in spec., $2284 e$
Scarliola work, 2250 h et seq.
Scales of iron; in mortar, $1858,1859 k$
Seales and weights; plumber's, 2212
Scamozzi, Vincenzo ; architect, 355, 365
Seantle ; slater's, 2209
Scantlings: for joists, 2015-2022. For girders, 2921
Scappled blocked ; to granite, 1015 c
Seappling hammer, 1913
Scarborourh museum, 2916
Searfing, 2007
Seenal ; of the Greek theatre, 172
Scenegraphia; of Vitruvius, p. 1013
Scheiner, Johann; architect, 583
Schelestadt chureh; octagon steeple, p. 1004
Schinkel; architect, 2923
Schneeloerg ; paruchial church, 583
Schnellmeier, IIcimrich ; architect, 579
Schomberg house, l'all Mall, $1666 k$
Schönbrun ; palace, 365
School, Hlanwell ilistrict, 2976 c
Schorl; in granite, 1660

SCH

Schwerin ; cathedral, 567
Scingraphy, 2458-2484. See "Shadows"
Scorite; in mortar, 1850d
Scoteh granites, 1670 . Slates, 1805
Scotgate Ash stone, 1666.x
Scotia or Trochilus, 2532
Scotland ; architecture of, in time of the Saxons, 383,388 . Stone buildings in, of high antiquity, 388. Tudor examples of strle in, 431. Spires of, p. 1003. Granites of, 1671 d et seq. Marbles of, 1682
Screen ; Northfleet church. p. 985 ; Lavenham church, p. 9.86. Aldenham church, ib.
Screw, 1:24-1330, 1631v. Varietics of, 2257

- driver, 2110. Cheek, 2102

Screwduwns or valves, 2223 s
Scribe ; bricklayer's, 1890
Scroll moulding, p. 972
Sculpture ; in Gothic architecture, p. 971 et seq., p. 1028. Much used in the early English style, 401. In France; of the Itth century, $543 ; 15$ th and 16 th centuries, 546 . In France and Germany, 568. In Germany, 578

- rather than painting, allied to architecture, 25%,
Sea coal mortar, 1859a
Se 1 sand, $18 \overline{51}$ et seq., 2222d. Inducing rot, 1746
Sea water; effect of, on iron, 1779. On cement, $1862 b$ et seq., $1864 c$
Seams; in plumbery, 2213
Seasoning timber, 1748, 1751
Seats; wood monldings, p. 986. Of a church, in spec.. $22800 i$
Secqueville church ; spire, p. 1000
Section, 2490a
Sér z; cathedral, 540
Sefton, Lancashire; proportion of church, p. 1016

Segeste ; temple, 149, p. 945
Segments of a circle; Table of areas when the diameter is unity, 1225
Segovia ; bridge of, at Madrid, 371

- cathedral, 367, 598. New cathedral, ib., 599. Masons' marks, 3226 . Casa de moneda, 526. Hieronymite monastery of Sta Maria del Parral, 596
Selby, Yorkshire ; cruventual church, 398, 421. Choir, groined ceiling, 2023g. Windows, p. 991
Selenitic mortar, 2250a
Self-coiling shutters, 2148a
Sclinus; founded, p. 943. City, 147. Five temples, p. 946 , p. 948 , p. 949
Semiramis, queen; works of architecture attributed to, 9
Semite ; of the xystus, 175
Senlis; cathedral. 540 . Church of St. Pierre, 547. Church, 534

Sens; cathedral, 510, 547
Septimus Severus; arch at Rome, 2517, p. 962
Seraclio ; reception room of the, 132
Serlio, Sebastien ; architect, 2744. Mode of relieving a lintel, $1925 f$. On proportion, p. 1058

Serpentine, 1681 et seq., 1683 c
Servandoni, Niccola ; architect, 362
Service ; box to cistern, 2223c. Pipes, 2223 g
Set; produced by a straining force, 1628 k, 163ve
Sets off, 1900d

SIE
Setting board; glazier's, 22e8. Knife, glazier's, ib.
Severey, 415, p. 1046
Seville; cathedral, 368, 595, 599
Sewers; their use, size and furm, 1887 et seq.
Shade, as distinguished from shadow, 2459
Shadows; method of projecting in architectural drawingrs, 2458-2484. Angle nsially employed fur the light, 2459-2462. Examples, 2464 et seq. On steps, 2468. Of modillions, 2464-2471. On triglyphs, 2472. Of consoles, 2473. Of niches, $247 \overline{5}$. Of pediments, 2476. Of bases, 2480. Of Tuscan, Ionic, and Corinthian capitals, 2480-2481
Sh:ft ; Gothic, p. 976. Filleted, p. 989. In vaulting, p. 980 et seq. Of stone, strength of, 1502 g . Of coloured stone, in spec., 22846. How measured, 2358

Shaftesbury house, Aldersgate Street, 462
— ventilator, $2: 278 q$
Shah Abbas ; caravanserai of, 51

- Meidan; at Ispahan, 51

Sham; ceilings, 2023 g . Vaulting, 1499 b
Shapes uf beams and girdere, $16: 25 p$ et seq.
Sharpe, Edmund, architect; on the pointed arch, 303, 307b; author of Architectural Parallels, p. 971
Shawk stone, 1666z
Shear steel, 1772
Shearing or detrusion, 1631 n et seq. In iron, 1629c. Of stones, $1502 i$
Sheephouse quarries. Drogheda, 16666 b
Sheerness docks, 1671e
Sheet ; copper, 1789. Glass, 18:8a, 1870a, 1872. Iron, weight and thickness, $2: 251$. Lead, 1753 ; thickness of, $2215 a$
Shell lac for protecting stone, $1667 n$
Shelving ; of slate, $2211 q$
Shene, Surrey ; palace, 424
Sherborne, DorsetsLire; minster, 398. Porch, p. 998

Sheritt IIutton, Yorkshire ; palace, 420
Sheringham's ventilator, 2278p
Shingles ; in rooling, 2221 . Lmitation of, on stone spires, p. 1000
Shingling iron, 1757
Shoes; for shutters, $2225 f$. Of iron for timber, 1746. Of iron in roofing, $20+3$ et seq.

Shune's sewage ejectur, $188 \overline{7} \mathrm{c}$, $185{ }^{\circ} \mathrm{i} \mathrm{d}$
Shooting, 2102
Shop; fittings, in spec, 2285e. Fronts of iron, $2255 f$; in spec., $2285 d$
Shoring, 1889 r. 111 spec., $228 \cdot 1 \mathrm{e}, 2285$
Shorland's tubes, 2278 s . Grate, $2: 279 d$
Short aud loug work, 192. 6
Shoulders ; in coursed masonry, 1925g. In framing, 2175a
Shrewsbury; St. Mary and St. Alkmumd churches, p. 1002. l'edestal of Lord Clive, 1671a
Shute, John ; architect, 438
Shutter; bars, $2 \leq 63,21186$. Shoes, ib.
Shutters, $2146-2145^{\circ}$. In spec., 22285. Boxings, in spec., 2285c. Revolving irum, $2255 f$. Of wood, in spec., 2285c. Silding, in spec., 2280c. Ontside, in spec., 2:2 $8 \bar{c}$ c.
Sicilian Gothic architecture, 620°
$—$ marble, $1666 \mathrm{c}, 1677$ et seq., 2002 h / h
Sicily ; marbles of, $1678 a$. lointed arch in, 306. Temples in, 147, p. 913

Siculo-Norman style, 626
Side; boards, 2102. Hook, 2121
Siena; cathedral, 613, 615. D'roportion of,
p. 1008. San Francesco, ib. IImses, 614. Pal. Buonsignori, 614. Pal. Piccolomini, 329 ; cornice, 2725. Pal. Spanocchi ; cornice, 2725
Siena marble, 1678
Signia; Cyclopean remains, 32
Siguenza ; cathedral, 587, 598
Silica and lime, 1859 c
Silicate cotton, or slag wool, 2247, 2971c
Silicate of iron paint, 2273 g
Sill ; of a partition, $20 \div 5$. Of a wiudow, in spec., 22846
Siloe, Diego de ; architect, 368
Similar figures, 958-968
Similarity of work, p. 969
Simpson, Archibald; architect, 20.13
Sine of an arc, 1039
Single axed ; to grinite, 1915 c
Single; flooring, 2014. Slates, 2211c. Framed root, $2052 \mathrm{~m}, 2052 \mathrm{q}$. Stoncs ; early practice of erecting, and of what prubabie cmblem, 13
Sink ; of stone, of earthenware, in spec., 2.8.1d. Deal, in spec., $2: 2805$ g. Lined with lead, in spec., 2288. Of slate, $2: 211 q$. Trap, 2220i
Sink stone, in spec., 2284 d
Sion house, Middlesex, 442
Site for industrial dwellings, 3023
ミкпиท', or Scena, of the Greek theatre, 172
Skerryvore; lighthouse, $1671 /$
Skew back, 1890
Skiffled ; in mason's work, $192.2 d$
Skimming ; in plasterer's work, 22:16a
Skinning work, p. 970
Skirtings; in spec., 2285b. Of cement, 2287. Of slate, in spee, $2283 u$
Sliirts ; of a roof, 2053
Skylights, in spec., 2285e. How measured 2355
Skynners, Sir Vincent; house for, 410
Slab; of slate, 1810. Generally used, 2211_{p}. In rooting, 2210 h
Slag; in mortar, 1859 d
Shas wool, $2: 24,2971 c$
Slaking lime, 1813d, 1818, 1859h
Shate, 1798 et seq. Descriptions of, 1798. Quarries, 1800. Propertics of, 1801. Different sorts, 1802 et seq., 2211e et seq. 'Tests of quality of, 1807 et seq. Strength of, 2.2l1e. Use ot, in P'embrokeshire, "211o. Detect in constructions of it, ib. Ilips and ridge, 2211i. Koll ribbing, ib. Slope of root's for, 2030. Names and sizes, $2211 c$. Number to cover a square, 22L1b, Slabs, 2211). ; in spec., 2283 (
articles, \&i., 1804 . Dowels, 1925 f . Ground for plastcrinis, $22.16 d$. Uf glass, 2:31. Enamelled, $2: 211 r$
Slater's work; in spec., $2 \because 8: c$. IIow measured, 2370
Slating, 2209 ct scq. Open, 2210c. Patent, $2210 i$
Slaugham, Sussex ; house for Sir W. Covert, 4.10

Sleaford, Lincolnshire ; church, 398
sleepers ; timber for, 17299 . llow measured, 2331 . Walls, in spec., 2282a. Uak for, in spec., 228:. Blocks of earthenware, $1886 d$
Sliding of vou*seirs, 1495 a
Slope or pitch of a rocs, 20-10b, 2052u
Slotting a bar, 2:555i
Nluw combustion grates, 2279 d
Small cut brads; slazier's, $22: 26$
Smirke, Lir Lioburt ; architect, 520

SPH

Smirke, Sydney; architect, $2052 u$
Smith, Edward; sculptor, 526
Smithery and ironmongery, 2253 et seq.
Smith's and ironmonger's work, 2255 . In spec., 2286. Estimatinc, $237 \overline{5}$.
weather-tight casement fastenings, 22:9, $2259 d$
Smithson, Iuntincdon ; architect, 443
——, Rovert ; architect, 440, 443
Smoke flues, 305%. Overheating, 2062
Smyrna; tumulus near, 301
Suaking bricks in water, 19006
Soane, Sir John; architect, 523.
Sod kiln; for lime, 1846
Sofites, in spec., 22850 c
Softening water, $2: 23 / h$
Suil pipes, $2: 23 g$, $2223 k$
Soils; best for foundations, 1882, 1883. To cover in bascment, $1886 i f$. In spec., 2281
Soissons; St. Pierre, 534. St. Jean des Vignes, 545
Sular cell; of the batlis of Caracalla, 235
Solari, Chri-tofano: architect, 6 ± 3
Solder; for lead work, $222: 3 n$. For copper, iron, brass, and pewter, $22 \cdot 4 d$
Soldering, $2223 f ; 2 * 23 h$. Zine, 1797
Solids, $979-995$. Mensuration of, 12:29 et seq. See " Mensuration"

- to voids ; ratio of, in vertical sections of Gothic buildiugs, 1583 e. See "Points of" Support"
Solmone ; aqueduct and house, 625
Solutions, fireproof, $2971 f$
Somerset heuse, London, 518 et srq., 2893. Old; ground plan of, 4.10 . WFater tront, 4is
Somersetshire ; churches in the Horid English style, 423
Sompting, Sussex ; church tower, p. 971
Souflot, Jacques G.; architect, $3 \subset 11$, p. 1048
Souillac ; chureh, 307. 535
Sound boardiug. See "l'ugging "
Sound. See "I sacoustic curve" and "Theatre" Non-conductor of; see "Slay wool." Wood as a conductor, 2964
South Wingfield, Derlyshire; mansion, 426
Souih Wraxhall, Somer=etshire; hall ruof, $2052 t$
Southampton ; new church, 525
Southtleet, Kent ; church roof, 20520
Southwark, Surrey ; church of St. Mary Overies, or St. Saviour's, 41; vaultingr ribs, p. 980. Of St. Olave, 512

Southwell, Nottinghamshire; collegrate church. 389. Fonnders and dimensions, p. 197. Last windows, 1.988. Porch, p. 998 Sow ; of leard, 1782
Spain; marbles of, 1680. Architecture of, 367 et seq., $58 \pm$
Spalatro (1, roperly spalato); joggled arches, 1925 . Niches, 2765
Spandril ; in vaulting, 2002e
Spanish white, 2274
Spazi, L. de'; architect, 623
Speaking tubes, 226:2
Special suljects, 2861 et scq.
Specilications, 2280 et seq.
Spey, Johann von; architect, 579
Spheristerimm ; of the Greck gymmasium. 175
Suhere; surface or serment, 1237 . Solidity of a, 12:38. Solidity of a spherical segment, 1239. Its resistance, 1592 d

Spherical surtices; to form in joinery, 2208. Vauling. 14is-1.193
Sphins of Erg! pt, it

Spiders in roofs, 557
Spikes, 2263
Spina; of the Roman circus, 240
Slindle; self-adjusting, 2261
Slinkwell quarry, $1666 y$
Spiral stairs, 2808
Spires, p. 1000 et seq. Construction of, p. 1003.
In spec., $228+46$. Of iron, p. 1005. Of zinc, $2224 h$. With open tracery, p. 1005. Of wool, at Breslau, 559. Of stone, at Thomar, 607. At Salisbury, p. 1052 ; thickness of stone, it. Lofty, in Belgium, 560. (If brick, ib. Gothic, wrought into Italian architecture, 484
Spires, or Speyer; cathedral, 287
Splays, ramps, and chases; in spec., $2282 b$
Split oak for pales, 2125b
Splitting slates, 2211 d
Sprmkler, automatic, $2971 i$
Square ; bricklayer's, 1890 . Bricklayer's large, ib. Glazier's, '2226. Joiner's, 2118. Nitre, 2124
Squares ; use of, in proportion, p. 1005 ct seq., p. 1008 ct seq. And triangles, systems ot, $6: 0$
Squares, \&c. Tables of, 2297g, 2297h
Squaring the rail of stairs, 2187. Dimensions, 2.297

Squinch, p. 1001
Stability ; of piers or points of support, 1563 ; of buildings, 1583 e et seq. In a roof, 203za. Source ot fitness, 2500. Dependent on laws of gravitation, 2501
Stable ; and fittings, 2255l. In spec., 2:82b, $2285 h, 2286 a$. Su|ply of water to, 22233 . Mason's work in, in spec., $2284 d$
Stacking timber, 1730 et seq.
Stadinm ; of the Greek gymnasium, 175
Stafford, Duke of Buckingham ; his palaces, 426
Staffordshire tile, $1908 c$
Stages of mouldings, p. 979
Stained glass, $2231 b$
Stains for wood, 2276e. In spec., 2290a
Staircases, 2796 et seq. Designing of, important, 2797. Light in, 2798. Ot the Greeks and Romans, 279 . Few remains of, at Pompeii, 2800. Of the Trintà de' Monti and Araceli, 2802. Palladio's rules for forming, 2803, 2804. Various sorts, 2805. Wiuding or spiral, 2806. Palladio's rules for, 2806,2807 . Spiral, with solid newel, 2808. Spiral, with open newel, 2809. Filiptical, with open newel, 2810. Elliptical, with solid newel, 2811 . Easiness of ascent in, 2813 . Blondel's rule, 2814 . Ilow mensured, 2357
Stairs; iron circular, 2255. Back and principai of stme, in spec., 2284 . Of wood, in spec., $2285 \mathrm{c}, 2285 \mathrm{~d}$

- stone, 1926 et seq. With solid or open newel, 1926. Geometrical, 1927-1929. Landings, half paces and quarter paces of, 1929. Thicknes of steps, 1928. Rules for risers and treads,2177-2179. Carriage, \&c. of, 2026 . Deal, in spec., $2285 e, 2293$ c
Stall board; in spec., $2285 e$. In stables, in spec., $2285 h$. Dres ings, in spec. $2285 h$
Stalls; in churches, 2192a. At Winchester cathedral, p. 984 . At Selby, p. 985. At Lancaster, ib. In Henry V II.'s chapel, p. 986
Stamford, Lincolnshire; parchial chureh, 4थ1. All Saints church, 1 orch, p. 999
Stamped or incised plaster, 22450

STO

Stancheons; to windows, 2229c. Streugth of, 163 li et seq. In spec., 22806
Stancliffe stone, 1666
Standard; of deals, 1729
Stanford's joint for drains, 1888 a
Staplehmst Kent; church door, 21:15a
Starston, Norfolk; chureh, $2052 r$
Stassins, Jan ; architect, 559
Stationes ; of the Greek grmnasium, 175
Statues, 2773 et seq. Founding of, 22 ef.
King William IV., 1671 b . At Portsmouth
Aberdeen, \&c., $1671 f$. See "Niches"
Steam ; in warming, $2279 b, 2979 \mathrm{~m}$
Steel, 16:33-1635, 1764,1769 et seq. Sheariner of, 1681 s . Plates, strength of, 1030 r .
Columns, 2255. Orwament, 2255o
Steel decking for floors, $1903 p$
Steely iron, or semi-steel, 1769 a, 1773
Steenhoukebelde, Thiery de ; architect, 5 ธ̃9
Steening wells, 18:9. In spec., $2 \pm 8: 6$
Steeple; octagonal, in Spain, 590. Of zine, $2224 k$. See "Spire"
Steier ; church, 567
Sieinbach, Erwin and Johann von ; archi ects, 7.0

Stellar form of vanlting, $1499 y$ et seq., $2002 w$
Stench trap; to drain, $2220 j$. In : pec., 22088 ,
Stepping ; to flashing, $2211 /$
Steps, 2180a. And risers, to proportion, 2177, 2178a. Of slate, $2211 q$. Of black marble, 1683. Arches to carry, in spec., $22 \delta^{2} 2$. To chancel, in spce., $2281 c$
Stereotomy. See "Masonry"
Stevens, John ; architect, 561
Stewing stoves, in spec., 22826
Stewkley, or Stukely, Buckinghamshire ; chureh, 389
Steyning, Sussex ; parochial church, 398. Proportion of, p. 1018. Cap and base of pier, p. 1020
Steyning or steening wells, 1829
Sticking; in moulded work, 2105
Stickles, Robert ; architect, 410
Stieglitz, C. L.; writer, p. 1009, p. 1011
Stitfuess; in a beam, $1628 v, 1636 h$. Ot bodies, $1630 i$
Stirling. Morries; improvements in iron, 1628 n
Slirrup irons, in spec., 2286
Stock and bit, 2107
——; bricks, 1820, 1822. Locks, 2261
Stoke-1'ogis hou-e, Buckinghamshire, 446
Stone; early working of, 10. Quarried ant worked with skill by the Eqyptians, 7%. For Culogne cathedral, 573,544 . In Spanish churches, 585. In spec., $2 \cdot 2 \times 1$ et seq.

- 1636 et seq. Freestone, 1637. Limestones and sandstones, $i b$. Requisite qualities, 1639. Rejort on selecting stone for th: new Houses of l'arliament, 1641 - 1665. List of sandstone, limestonc, marnesian limestone, and oolitic stone quarrics in the provinces, 1664,1665 . List of buillings ot sandstone, p. $462-165^{\circ}$. List of buildings of limestone, p. 465-168. List of buildings of magnesian limestone, n. 468-170. Analysis of sixteen diflerent. sirts of stene, 1666. Crushing weights, $1500-1502,150: /$. 158%. Table of weirhts, $1666 \mathrm{n}, 1666 \%$, Stones used in the metropolis. lititic. Varions stones used, $1666 d-1666 b b$. Quarrying, 1666 ce. Frencli buildincr. stones, 1666 h . Kentish ragstone, $166 \operatorname{lichl}^{2}$
decay of, 1610,1667 et seq. Effects of wind, sun, heat aud coid, $1666^{\circ} f$. Dressings,
in spec., 228.4. Walling, random, in spec., 2284. Prescrvation of, 166 h h et seq. Artificial, 16670 et seq. Absorption of water, $1667 w$
Stone age, 1913. Bricks, 1903o. Lime, 1849 ; $1859 h$. Coloured, $1666 e$. Pipc, $2223 p$. In spee., $2282 u, 2293 b$. Cutting; see "Masoury." -, Kent ; church, p. 1020, p. 1028 , Nicholas ; mason, 313, 440, 462

—buildings, Lincolu's Inn, 515
Stonehenge; account of, 18. By Inigo Iones, 457-461. By Mr. Cumnington, 19, 40. Not built by the Britons. :80, 3×8
Stoneware, 1839e, 1908a. Pipes, 1888a, 2223p. Bonding bricks, $1902 c$
Stop; to chanters and mouldings, 21750
Stop-cock for gas; in spec., 2293
Stopping and picking out tools ; plasterer's, 2233

- in painter's work, $22 \% 0$. In spec., $2290 a$ Story; posts and curb for, in spec., 22sic, 2.285u, 22850. Rud, for stairz, 218:

Stoves, $2279 d, 2279 c$. For gas, $2264 i, 2279 e$
Stowting, Kent; church, lead of glass, $2229 a$
Straight-edge, 2123. Plasterer's, 2233
Straifht-joint floor, 2168
Straining-picce, 2034
Strains; on teams and girders, 1628e et seq. On roof framing, 20:1. On inclined timbers, 1662
Strap; in carpentry, 2011. To roufs, in spec., $2286,2286 \dot{c}$
Stra-shurg ; cathedral, 322, 567, 570. Proportion, p. 1011. Masous employed at, 312, 315. Spire, 1. 1005 . Carving at, 311

Stratford-upon-Avon, Warwickshire; paroclial church, $314,408,421$
Straw; in thatehing, 2211 s
Strelly, Nottinghamshire; church porch, p. 999
Strength; of materials, 1500 ct seq. In a beam, $1628 v$. Of bolies to resist deflection, 1 (i30 h. Of varicus timbers, $1632 a$
Stretchers, 1894
Siretching; resistance to, 1630 i
String courses, p. 981 et seq. Or bands to spires, p. 1003. In spec., 2281a
Strings ; of stairs, 2026. In spec., 2285 d
Stripel work; in masonry, 191t
Striping; in masonry, 1914
Stripping walls before re-papering, 227if. The surface, in spec., 2281
Strole \&i Co's ventilator for gas, 22780
Stroking; in masonry, 1910
Strong closets ; in spec., $2282 b$
Strons, Thomas ; master mason, 469
Struts; in carpentry, 2009, 202l/1, 2031. Strength of, 16312 et seq. And braces, abutments for, 2010
Strutt, or Belper stove, $2279 f$
Strutting picees, 2018
Stuart, Jumes; ;architect, 516, 525, 2047
Stuart's granolithic paving, 1905 c
Stucen, 2250d et seq. Bastarel, 2236; 2243. Painting, 2269. In Ireland, 2250 g . In spec., 2287
Stuck work; in joinery, 2105. In Gothic joinery, $2175 c$
Stull' ; size of, in Gothic work, 2175 c . Thickness, in Gothic work, $2175 d$, p. 986
Stukely, or Stewkley, Buckinghmmshire ; church, 389
Stump tracery, 578
Styles; of a door, 2130

Styles of architecture, all dependent on fitness, 2508. P'rinciples of, p. 1047

Sub-arch, p. 977
Subdivisions and apartments of buildings, and their points of support, 2848. Vaults for covering, how arran eed, 2849-2854
Subiaco ; monastery of Sta Scolast ca, 614
Subterranean style of Egypt ; caused by the climate, 64
Sulatio ; of the Greek gymnasium, 1\%. Of the Koman baths, 235,236
Sudely, Gloucest rshire; house, 423
Suffolk; bricks, 1820, 1831a. Lateh, 2262

- Lord; house for, 440

Sugar ; effect of, on iron, $17 \overline{7} 9 \mathrm{c}$
Sully-sur-Loire ; roof, $2052 i, 2052 q$
Sulphate of colper, 1752 c
Summer ; building in, 1832a
Summer hill. Kent, 452
Sun Fïre office; plinth, $1671 b$
Sunium; temile, p. 943 , p. 945
Sun lights, 2264e
Superficies ; mensuration of, 1212-12:8. Sce "Mrnsuration"
Superintendents of English buildings in the middle ages, 312
Supervisor. 312, 319, 320
Supplement; of an arc, 1038
Support*. sce "Points"
Surfaces, 929-934
Survey of Gothic buildings; system of noting, 1. $97 \overline{0}$
Surveyor, 312, 319. General, 319
Susa; arch of Auccistus, p. $!62$
Suspending rods : in roofing, $20 \cdot 13$
Sussex marbie, $16 \times \mathrm{tg}$
Sutton Place. Surrey: 1908a
Swansea, Ghmorganhire ; castle, 413, 414
Swardentone, Nortilk : church rouf, 205:2
Swedish timber, 1729f
Swift, dean ; his ignorance of art, 491
Swinbrook, Oxfordshiise ; bench end, p1. 986
Sybil ; temple of the, at Tivoli, 214, 2517
Si camore, 1724
Sydenham, Surrey ; palace at, p. 1057
Syenite, 1669 . Crushingr weight of, $1502 h$
Syenitic granite, 1669, 1671 g
Sylvester's prccess for protecting stone and brickwork, $1667 n$. System of ventilat un, $22 i 8 y$. Stoves, $2279 t, 2279 e$
Symmetry; in architecture, 2510 , p. 958
Syphon trap, 2220!g; 22233. In spec., $2288 a$

- T'ank. 1888 h

Syphonage, $1888 d, 2220 h, 2223 \mathrm{~m}$
Syphonic aspirator vemilation, 2278u
Sy racuse, 626. Temples, 1. 913 Houses, 626
Systyle intercolumniation, 2605 . Monotriglyph, ib.
Sz relmey's process for prescrving stone, 166 m

TA ; sepulchral tower of the Chinese, 106 Tabary metallic cement, 1667 n
Tabernacle, or campy; plan of, p. 975
Tathes, or stone courses, 192! $0,11.979$
Tablinum; of a Roman house, 248, 253
Tacks, 2257a, 225̄̄d
Tadmor or l'alnyra; extraordinary structur. s, 196, 197
Tai ; of the Chinese, 106
Taking down, in spec., 2281
Talenti, Francisco ; a:chitect, 323
Tall boy, 1905 a

TAL

Tall's concrete construction, $1903 x$
Tangent ; of an arc, 1041
Tanjore ; pagoda, 59
Tanks and cisterns; of iron, 2223h. For water, $1785 a, 2222 b$
Taormina ; houses, 626
Taper shell bit, 2102
Tar; as a paint, 2273b. Asphalte, 1867d, 1905h. Paving, 1905h. Oit of, 1752a
Tarentum ; founded, p. 943
Tarnish, of copper, 1789a
Tarouca ; Cistercian monastery, 600
Tarpaulin, 1908a
Tarragona; cathedral, 587, 592. Masons' marks, $322 b$
Tarring fence, in spec., 2285h
Tas de charge ; in vaulring, 2002e
Tassels; in a roof, $205.2 f$
Taste ; in architecture, 2492. Standard of, 2506
Tattershall, Lincolnshire ; castle, 423. Doorway. p. 998
Tatti, Jacopo; architect. See "Sinsovino"
Taunton; St. Mary's church, 421. Tower, p. 1002

Tayler, Mr. ; his house at Pctter's Bar, 440
Taylor, Sir Robert ; architect, 313, 515, 523
Taylor's new roofing tiles, 1835. Damp proof c urse, 1886d. Facing block for walls, 1902e
Teak wood, 1728. Strength of, 1630 w
Teale, T. F.; grate, 2279 d
Teano ; castle, 625
Tcaring materials asunder, $1630 i$
'Tebbutt's safety brick, 1905 c
Tectorium ; for walls, 227Th
Techn'cal sctools and college buildings, 3037 et seq.
Tce irons, $1629 s$
Telekouphionon; fur speaking tube, $2262 a$
Tempering iron, 1769a
Temple Newsham, Yorkshire ; house, 452
Temp'e, 76 et seq., 142 et seq., 196 et seq., 2547 et seq. Proportion of, p. 1057 et seq. Sec in Glossary
Templ-t ; bricklayer's, 1890. Or Mould, 1890, p. 1019. Carpeuter's, in spec., $228 \overline{0}$
Tenons, 20 (8
Tensile strain ; in stone and marble, 15020
-s rength, $1628 e, 1628 n, 1630 p$. Of cast iron, 1630's
Tensinn, $1628 e, 1630 e$. Rind to a beam, 20216
Tentyra ; temple at, 71, $78,80,91$
Teocallis; houses of gods of the Mexicans, 111, 113
Teos; temple, p. 951
Teotiluacan; pi ramids of, 111
Teutocopoli, Domenico ; architect, 369
Tepidarinm; of the loman baths, 235
Terminus 2686
Terni ; church of San Francesco, 613
Terra-cotta $16670,1839 \mathrm{~g}$ et seq. Por us, 1903 r . Architectural nse of, 1908. Colours in, $1908 t$. S rength if. 15080. And brick church, $6: 24$. Work, in Spain. 585 ; and other places, 1908
Terras, $1859 \mathrm{c}, 1859 e$
Terro-metallic ; tiles, 1835. Grooved bricks, 1905̄e
Tertiary French Gothic. See "Flamboyant" Tesseree, 1839c
Testing ; cast and wrought iron, and steel. $2266 a$. A Leam, $1630 f$. Stone, 1510 et seq., 2266d. Bricks, $1502 k$. Drains, $1888 p$. Timber, 1603 et seq., 2266 h . Cement, $226=e$

TIE

Testing machines, 2266a et seq., 2266f et seq.
Tetbury, Gloncestershire ; church, 514
Tetrastyle temple, 2528 et seq.
Tettrje, or penthouse roof, 614
Tewkesbury, Gloucestershire ; monastery, 389. Conventual church, 421. Shafts of, p. 1023. Choir, p. 948

Thames; ballast, 1861. Embankment, 1671b, 1671c
Thaon, Normandy; cburch, 547. Spire p. 1000

Thatching, 2211 s
Thaxted, Essex ; parochial church, 421
Theatre; in Rome, 185, 226, 258. Ot Nmilits Scaurua, ib. Toat by Curio, il. Of Marcellus, 226, 258, 2547. That of Pompcii, $\because 27$
—— of the Greeks, 172. First constructed is a temporary manner, ib. - roof of old Drury Lane, 2048

Theatres; modern, 2947 et seq. By Bramanto, ib. 'Their r vival, 2949 . l'ints for consideration in, 2952. Forms of, 295\%, 2!157. Wyatt's principles, $2 \Omega 50$. Siz s of, and sch mes for hearing and sceing, 2957-2961. Use of semicircle in, 2965. Distance frum stage to boxes, $2!168$. Seeing in, 2469. Foreign theatres, 2972
-Late suggestions for improving, 2970 et seq. Ingress and cgress, 2970, 2971. Cr sh rom, 2970, 2971. Passages. ib. Staircases, ib., 2970b. Openings, 24. 0 . a. Doorways, ib, Departments, 2:Ti. Fireproot wirk at, 2971a. Curtain. 2971\%. Lighting, elfetric and gas, $2971 g$ Ventilation, 2971/. Fire at, ib. Water tur, $297!h$ tt seq. Firepr of theatres, $2971!$ et seq Reference to publications, 2951 m , 2972a
Themis; t mple at Rhamnus, p. 944, p. 94,
Theobalds, Hertfordshire ; housc, 446
Theodoric, king; architecture under, 278. 11 is mansoleum at Liavenna, ib. His successors, 279
Theodus'us, emperor ; architecture under, 271
Ther dosin: Il., emperor ; architecture under, 271. His works at Cinstantinuple, 271

Theron; tomb, at Agrigentum, 158
Theseus; temple, at A thens, 150, p. 04.1
Thienen, Jacques van ; architect, 56:
Thiers; churches of St. Nectaire, St. Simphosien, and St. G. nès, 534
Third Pointed work; p oportion in, p. 1017
Thirds; in proportion, p . 188
Thomar ; cloisters of the Templars, 600. Nussa Senhora dos O1 vaes, ib. Choir, (601. San Joâo Battista, 607
Thornbury, Gloucestershire; palace, 4: 6. Bay window at castle, $4: 8$
Thornton coll ge ; for Sir Vineent Skynners, 440
Thorpe, John ; architect, his folio volume of drawings, 440. Obscrvations on hy Walpole, 441. Desigu for his own hou-e, ib.
Therpland, Norfolk; hall porch, p. 999
Through stones, 1920
Thrust; of an arch, 1408-1112, 1496
Thuin, Jean de, and his son ; arehitfets, 559
Thumb; sciews, 2263. Latcl, 2.26
©vué η, of the Greek theatre, 172
Tie-bean, 2031 . Ruofs, 2031 et seq., 2032 m , $2052 n$
-rods to a beam, 1629 m . And suspensiun bars, strength of, 1603 r
Titrceron; in vaulting, $1499 f$

Ties of iron, $557,558,560$. And chains, 1495 Tigranes; palace of, at Diarbekr, 305
Tile; floor and roof, $1903 e$ et seq. Arch or flat. in spec., 2282a. Floor, in spec., $2: 282 b$, 2284c, 2293c. Paving, 1905d. To clean tıles, 190.5 g

- $18: 34$ et seq. Of what composed, and how manufactured, 1834. Varieties of, 1835, 1906. Ridge roof and hip tiles, 1836 . Gutter tules, 1837 . Pan or Flemish tiles, 18:38, 1907. Paving tilos, 1839, 1839%. Bridgewater double roll tiles, 1838 . Lockjaw tiles, 183 S . Weights, 1839 . Terrometallie tile: $1889 a$. Adamantine clinker, ib., 1905c. Mathematical tiles, 1839a. Of glass, 22:31 a. Glazed, $1839 a$; in spec., 2.284a

Tiles: Plain, Roman, and holdow ; proper slope of roofs for, 2030
Tiler's; tools, 1908. Work, in spec., 2283. Trowel, 1908
Tiling, 1906 et seq. In spec., 2283. Measuring and estimating, 2301
Tilting cistern; for flushing, 18886
Timber; chief material in use among the Chinese, 98

- Hot an clement in Egrptian architectural composition, 63-71. Houses in England, short account of, 439. On the Continent, il. At Troyes, 2023 d
_dilferent species of, $168 \cdot \mathrm{et} \mathrm{seq}. \mathrm{Oak}$, 1685. Chestuut, 1696. Be ech, 1701. Walnut, 1703. Cedar, 1705. Fir, 1706. White fir, 1710. Spruce tir, 1711. American pine, 1712. Larch, 1717. I'opar, 1718. Alder, 1719. Vlm, 1720. Ash, 1723. Sycamore, 1724. Birch, 1725. Wellingtonia, 1726. Mahogany, 17:77. Teak, 17:28. Morung saul, $172 * a$. Morris, 17286 . Greenheart, 1728c. l'eon or 1 mon, 1728 l . Kowrie, ib. Red cedar, ib. Sibicue, ib. Iron bark, ib. Burueo wood, it. Bilian, ib. Table of weights of timber, 1547,1728 e. Woods as classed at Lloyd's, 1728f. Standards of deals, 1729
piorts-Qucbec, $1729 a$; St. John's, $1729 b$; Purwash, Miramichi, 1729c. Baltic ports -Memel, $1720 d$; Christiania, ib.; Drammen, ib. Home trade 1729e
; mode of preserving, $1730-1738$. I'reservation, 1739-1744. Decay, 17151747. Prevention of decay, 1748-175:b. Cure of dry rot, 1753. Irying, 1749a
- different species of strength, $15 y 8$. Cohesive forec, in the direction of length, $159 x$, 1599. Sireegtl, iu an upright position, 1600. Liesintance of a post 1602 . Horizontal pieces of timber, experiments, 1603 -1611. Sirength, moditied to its absolute and primitive foree and its tlexibility, 1611 - 1613 . Strength of timbers in au inclined po:ition, $1622-1627$. 'limber injured by strains, $1628 d$. Ditto by action of sun, $1628 e$. Trable of strength of various timbers, $1632 a$. Strains on beims and girders, 1628 g et seq. Tru sverse strength of, 1628 i et scq., 1624 g et scq. Breaking weight of, 1630 s. Crushing strength of, 1630 w . W' cights of, 1728 e. Use of, in building, $1729 f$
pillar ; strength of, 1600 et $s \mathrm{cq} ., 1630 \mathrm{w}$
Timbers; scantlings of, for roofs, 2037-2040. Should be measured when carcass of building is completed, $2: 314$. Use of, in buildings, $17 \therefore 9 j$. Cohsersion of, $21 \because 5 u$ et seq. Cubic
fost of ; to compute value, 2344,2345 . In spec., 2285 . In circular work for roofs, 2052 et seq.
Tin; strengih of, $1630 r$. Alloyed with copper, 1791
Tinsaw; bricklarer ${ }^{\circ}$ s, 1890
Tinemouth. See "Tynemouth"
Tinned iron; effect of, 17806 . Lead pipe, $222: 3 \mathrm{~m}$
Tinterne, Monmenthshire; conventual ehnreh, 407, p. 971 et seq.
Tiryn-; walls of, 31,33
Tishury stone, $1666 q$
Tivoli ; temple of the Sy-bil, 214, 2547
Toad's back rail, 2189
Tobin veutilator, $22 \% 8 \mathrm{~s}$
Torldington house, Bedfordshire, 446
Toils; of a hinge, $215 \overline{5}$
Tuledo; cathedral, 588, 596. Franciscan monastery of S. Juan de los lieyes, 596 . Gate of San Martino, 368
Tulmen or colossal stones, 26. Constan'ine Tuhmen in Cornwall, it.
Tombs ; of the Komans, 254 . Of the Horatii, now of Aruns, 2\%.5. Of Caius Cesrius, at Rome, 256. Tlat of lladrian, at liome, ib. That of Cecilia Metclla, at Liome, ib. Group of, from Pompeii, 20 ō
of Dules of Burgundy, Philippe lellardi, and dean-sans-t eur, ot Ot Kins John and I'hilippa, at 1hitalha, 64 Ut the Constable l'efro Fernamdez de Velaseo, 596 . Of Atlonso 11. and III., \&ce, and of I'edro I. and Ignez de Castro, ut A leobaça, 602. Of the Scaligeri, at Verona, 617
of Elizabeth:-n arehitecture, 449. Of l'ntelitle, Earl of Sussex, it. Of Dud'ey, Earl of Leicenter, ib. Of Carey, Lord llunsdon, ib. Under James I., 453. Of Archbishop Stratford, at Canterbury, 1499 d d
Tongres; church of Notre Dame, 557, 560
Tongue ; in joinery, 2191
Tomage; in valuation of warehouses, 1). 1098

Touls for building; used by the early Greelis, 7. See " l'ainters" and other trades

Toothings; of walls, 1900c
Top rails of a door, 2130
Torbay iron paint, $2: 73 c$
Torsion, 162*e, 1631x
Tortuise stove, $2279 e$
Torus, 25332 . In Norman architecture, 397
Tote; of a plane, 2104
Tothill Fields prison, 1855
Totila takes Rome, 279
Tou:hened cast iron, 1765b
Toughnes of bodies, $1630 i$
'Toulouse ; cathedral, 5xi;. St. Sernin, 545
Toultees; architecture of the, 110
Toumai, 564 . Cathedral, 557,558. Chureh of St. Quentin, 55 3, $50 . \mathrm{H}$. The Madcleine, 555 . S.. Jacques, ib.
Tower of London, 391-398, 423
'Towers and spires ; construction of, 961, p. 1000 et seq. In sjec., $22 \times 4 a, 22 s 16$. Medieval, domestic, at San Gimignamo, (fy2. Tliree western, 5×3. Of brick, at Bruges, $55{ }^{7}$; at liois-Ie-Duc, 560
Town dratage, $1888 f$
Fown dwellings for industrial classes, 3112 et sig.
Townley hall, Lancashire ; gallery, 525
Tracery' bar, 1. 990

TRA
Tracery and geometric forms, p. 1028. Amiens, geometrical style of, p. 1062. In German Gothic, 565. In windows, p. 989, 1. 994 et seq. In spec., $2284 a, 2286 a$

Trajan's ; Column, 193, 486, 2603. Bridge over Danube, 193, 222. Forum, 193. Arch at Beneventum, p. 963
Trams ; for paving, 1672
Trani ; cathedral, 626
Transition ; of periods in Gothic architecture, 410, p. 969
Transparent wire-wove for glass, 2226 d
Transverse strain, $1628 e, 16: 8 \mathrm{~g}$ et seq., $1628 t$. In stone, 1502o. Strength of Lricks, 1833 et seq.
Trap to drains, 2218b. In spec., 2288a. To water closets, $2220 a, 2220 \mathrm{~g}$. Of cast iron, in spec., $2286 a$

- doors ; in spec., $2285 a$

Trass or terras, $1859 e$
Traversing wood, 2121
Tread, for steps, 2178a. Hawksley's patent, 2180
Tread ; of metal, 2180. Of stoneware, $1908 n$. Of marlile, 2002 nn . In spec., 2285̄d
Treasury, in London; by W. Kent, $1 / 276$
-at Myceux, 36. at Orchomenos, 37
Tretgold's form of beam, 1628x, $1629 i$
Tresham, Sir Thomas; architect, 440
'Treussart's concrete, $1862 b$
Treves or Trier; clurch of St. Mary, 566 ; and of St. Matthias, 5×3
Trevi ; temple at, 211, 2672
Trevigi, Girolamo da; architect, 427
Triang'e ; use of in proportion, p. 1005 ct seq., p. 1008 et seq. No definite theory of design carried out on it, p. 1018
Triclinium; of a Roman house, 252, 253
Triforimm, 286,555,602. None to chancel of Bristol cathedral, p. 1017, p. 1028. At We:ls cathedral, p. 1024. At Amiens cathedral, p. 1061
Triglyphs ; origin of, 135. Regulate the disposition of Doric order, 2605
Trigon ; proportioh, p. 1013
Trigonometry; plane, 1032 et seq.
Trinnmers aid trimming joists, 2017. How measured, 2340. To hearths, in spec., $2282^{\circ} a$
Trimming ; of slates, 2210
Tripoli ; described generally, 132
Triumphal arches; different sorts, 220. Proportion ol', p. 958 et seq.
Trechilus or Scotia, 2532
'Trough shape beans, $1629 t$
— closete, 22200
Trowel; bricklayer's, 1890. Slater's, 2209. l'hasterer's, 2233. Tiler's, 1908
Trowelled or bastard stucco, 2236-2244
Troyes; Hloors in timber houses at, 2023d
Truuch, Norfolk ; church roof, $2052 t$
Truro, Cornwall; parochial church, $408,421$. Cathedral; founders and dimensions, p. 196
Truss, 2031. System of trusses, 2032. For girders, 2021. In spec., $2285 a$
Trussed; patition in a roof, 2052 g . Rafter ruufs, $2052 m$
Trussing a beam; formula for, $1629 v, 1630 n$, $2021 a$
Trying up, 2102. Plane, plumber's, 225^{2}
Tules; ventilation by, 2278q et seq.
Tuling, welded ; for gas, $2261 h$
Tuck lointing ; in maioury, 1900, 1915a

VAL

Tuddington, Bedfordshire ; house at, 440
T'udela; cathedral, 587, 588
Tudela de Duero; parochial church, 598
Tudor style ; examples of, in Scotland, 431. In England, 422 ct seq., 432. Characteristics of, in windows, ceilings, flying buttresses, ornaments, canopies, pedestals, \&c., 430

- headed windows, p. 990

Tufa ; in panels of vaults, $1499 \mathrm{cc}, 2 \mathrm{CO} 2 \mathrm{k}$
Tuileries and Louvre, at Paris, 357
Tulle; cathedral, 534
Tumbridge, Kent; castle. 394. Sandst.one, $1666 t, 1667 \mathrm{~m}$. Ware, 2173 c
Tungstate of soda, $2971 f$
Turbine; for ventilation, 2278 h
Turin; Carlo Alberto statue, $1671 \mathbf{a}$
Turnbuckles. 2263
'Turpentine, 2271
Tuscan Gothic architecture, 608
order; inventors of, 258 . The order, 255\%. Admits of few ornaments, 2554. Method of profiling, $2 \overline{55} 5$. Parts of, on larger scale, ib. Table of heights and projections, ib. Whole height of, 2556. Palladio's method of protiling, 2557. Ser.iu's method, 2558. Scamozzi s method, 25 5i5. Intercolumiation, 2606-2609. Arcide, 2621. With pedestal, 2628

Tusculum ; aqueduct, 304, 306
Tusk; in carpentry, 2008
Tutbury church, Staffordshire ; door, 2002ee
Twisting or torsicn, $1631 x$
Tympanum, 2715 . Face of, how dispo.ed, 2723
Tynemouth, Northumberland; conventual church, 407
Types; of architecture, in three states of lite, 2 . Of the art, 258,2507

TFFINGTON, Berkshire; chancel ceiling, 2023g. Porch, p. 998
Ulm ; cathedral, 575. Apse, p. 1007
Ulric, of Lilm ; architect, $36 \overline{5}$
Undercutting; to mouldings, p. 981
Underpinning; in spec., 2282c. Wedges for; in spec., 2286
Undy-boltel ; moulding, p. 973
Unity; in architecture, 2509
Upholsterers and decorators; to be avoided in matters of taste, 2604
Uria, Pietro de ; architect, 367
Urinals; of slate, 2221
Use and wear; in dilapidatious, p. 1001
Utenhove, M.; architcet, 559
Utrecht, bishop of ; killed by a frcemason, 310

VACUUM system of ventilation, 22786 Vaison, churches, 30 a
Valencia; cathedral, 588,591 . P'uerta de Serranos, 594. Tuwer lil Micalete, ilo.
Vale lioyal, Cheshire; consentual church, 407
Valladolid ; cathedral, 586. Casa ded Ayuntamiento, 596. S. Benito, 598. Sta diaria Madalena, 599. Dominican cellege of s. Gregorio, 597. College of Santal Croce, 沈7
Valle Crucis, Denbighshire; conventuad church, 407
Vailtatona, Bernardo de ; architect, 587
Valmarama, palazzo, balustrades, 20y

VAL

Valuation of property, p. 1094 et seq.
Valve water losets, 2220 b

- to cisterns, $2223 s$

Vanbrugh, Sir John; architect, herald, and dramatist, 491-497
Van Hecke's ventilation, 22i8h, $2278 z$
Vanes; in spec.. $2286 a$
Variety, desire for; cause of decoration, 2515
Varnish ; in paint, 227lc
Varnishing; 227, 2276b. To clean, 2276c. In spee., $2290 a$.
Yasquez, M. ; architect, 60.5
Yaucelles; church spire, p. 1000
Vault, 1499p. Of stoac, in India, 190.3k. For covering apartments, how arranged, 28.49. Its weight and thrust, 285.. Springing of, 2849-2854. In Gothic architecture, terms employed in, $1499 c$. Different species of, 1499 w et seq. Prepared for, betore piers were set out, p. 1059
Vaulting, eylindrical ; how to regulate caissons in, $2 i 00$ et seq. Compound and groined, 1444-1456. Coved, 1464-14i7. Spherieal, $1478-1193$. Intersecting, 1944 et seq. Roufing over, 20:2f
examples of, 1499%. Solid throughout, at Packington clurch, 525. At King's College chaljel, p. 10:17, p. 10:18. At Bath albey church, p. 10.5\%. In cloisters at Gloneaster, ib. In east aisle of l'eterhorough eathedral, ib. At St. George's chapel, Windsor, ib. Thickness of stone in, il. In cliapter-house, at Wells, p. 1026. 'o perches, p. 998 , p. 999

- shafts and ribs, p. 980 et seq.

Velarium; of the amphitheatre, 229
Velletri ; campranile, l 225
Velocity; of a talling body, 16300
Vendome; abbaye de la Trinité, tower, p. $100 t$
Yeneers; हluing together in joinery, 2200
Venetian; windows, 2 万5 6 , Frames, in spec, 2285%. Mosaic, 2231e, 2231h. Filters and tauks, 2223c et seq.

Gothic architecture, 608. Details, p. 975 filter, $2222 c$
_-school of Italian architecture; its character, $349,356,46: 3,46$ t
Venice ; charch of San Marco, 284, 307. La Carita, arcades at, 2655, 26556 . San Fantino, and pal. Comari, 351 . San Salvadore, 355. Sill ti Giovanni e l'aolo, 613. Madonna del Orto, ib. Sta Maria Gloriosa re' Frari, ib. Of the liedentore, 854. San Zaccaria and San Salvature, proportion of, p. 1013. Rialto bridge, 356. St. Mark's library, 357, 2910. Sila del Con-iclio of ducal palace, 618. L'iazza S. Marco, 355. C'a Contarini Fasan, (j10. I'al. Grimani, 850.
Vinter ; of an aqueduct, 225
Ventlated slating, $210 \mathrm{c}, 2210 \mathrm{f}$
Ventilation; of sewer*, 18876 . Of rlrains, 188 ki . (ff hospitals, 2975 c . Of rooms, 3035. Of buildings, 2278 ct seq. Assists warming, $2 \cdot 29 a$. 'lo gas burners, 22i8v. 'To drains, $22 \div 0 h$, $222 \dot{3} \mathrm{~m}$. At theatres, 2971/
Ventilatore $2278 p$. Of glass, 2231a. Of perforated zinc, 2224 . Air bricks, in spe. 2286. Tobin's, $22-88$. Table of cube feet of air thromgla a ventilator, 2278 s
Vereelli; monastery of Sin Andrea, 611. llosintal, ib. Chur h, ib.

WAL
Verde Antico and Verde di Corsica marble, 2002 ii
Vergelè stone, p. 1004
Yerona; Church of Sta Anastasia, 624. San Bernardino, ib. San lermo Maggiore, 616. San Pietro, door, 2143c. Amphitheatre, 2:28. Pal. Pompei, 3न0. Porta del Palli,, ib. Porta Nuova, ib. Theatre, 290
Versailles; arched thoor at war office, 1903b
Versed sine; of an are, 1040
Verucal; cathedral, masons' marks, $322 b$. Cistercian abbey, 587, 592
Vesica Piscis; use ot, p. 1007, r. 1009, p. 1010, p. 1014, p. 16.43
Vesinet, near St. Germain : church, $1903 p$
Vesparian: temple to, a thome, 209, $213, \geqslant 60$, 2 22, 2544
Vesta; temple at Rome, 21.1, 2.547
Vestibulum; of a Roman house, 244
Yézelay; clurch, 53:4. Doorway, 539
Viaduct; at Cuença, 598
Vianden; chapel of eatle, 5 if
Vibration; afle ting iron, $17 \overline{7} 9 a$
Vice; glazier's, 22:2 8
Vicenza; cathedral, 62l. Areades, $2641,2663$. Balustrades at Chiericato palace, 2698. At Porti pal., ib. l'al. Thienne: window, 2769. Areades, 26ī6. Theatre, $29: 18$

Vietr ria stune, 1 bitizz
Vieille Montagne zinc works, 1792, 1795, $222 \cdot 1 / h$
Vienna; catherral, 567. St. Stephen's, 576; spire, p. 16015; choir, p. 1003 ; proportion, p. 1011. St. Maurice, 53̈2. Stables, ventilat ton, 2278 n
Vignola. Sce " Barozzi"
Villa ; site on which it can be designed, 2999, 3001. Those of liome, 345 . (it the Liomans, very extensive, 181. Of Cicero, 243. Of Lambius and of Pollio, ib.
-- sanitares specification for, $2291 b$
Village hosp itals, 2975k
Villaneuva, Baltasar, de ; architect, 371
Villers; abbey, 555
Villers, st. l'anl ; lintel to door, 1925h
Vincennes ; castle of, 311
Vine, The, Hampshite; portico at, 165
Vintimionlial ; cathedral, bu8
Visen ; tower of Don Duarte, 607
Viterbo; the palazzetto, 614. Fountain, ib.
Vitruvins Pollio, Mareus; architect, manuscripts of, 326. Wis precepte un the Duric order, 2610. Work nppeared, p. 10.37 ; and work eited in the midd'e ages, p. 1013
Vittoria, Alessandro; architect, 356
Volterra; wallo of, 17.9
Volute; of the Ionic order, 151. Method of describing, 1925h, 2576
Vomitoria; of the amphitheatre, 229
Voussuir, or keystone, 19.33c

WADE, General ; house for, 510
Wages of workmen, 315
Waghemakere, Dominique de : architect, 563
Waiblingen ; outer (hurch, 580
Wainseot, $1689,2125 h$. In spec., 228jh, 228: F . How measured, 23.54
Waketield, Yorkshire; chapel on the bridge, 421. P'arochial clurch, ib.

W, les ; early buildings in, 387
Walker's sytem of hot-water llocks, 3057
Walkington, Yorkhire; church, propertion of, p. 1015

WAL

Walling, 1916 et seq. Of brick, in spec, 2282c, 2293b. With concrete cores, in spec., 2284. Hollow, and ties, $1902 c$
Wall plates; framing, 2009. In spec., 2285a. How measured, 2333. Gothic, p. 986
Walls ; at St. Filippo Neri, Naples, 1535. St. Giuseppe and St. Domenico, Palermo, 1535. Of two hundred and eighty buildings in France and Italy, 1537. In private houses, 1538. In large buildings, 1539, 1540. Rules and examples for, 1542 - 1554 . Examples for thickness of, in houses of many stories, 1555-1560. In ordinary houses, 1556 , 1557. In double houses, 1558. Of the Hôtel Yendome, 1560. Of a house for the Brothers Mocenigo, 1562. Pressure of earth against, and rules for finding thicknese, 1581-1592. Thickness of, 1900 d . Pressure or force of wind against, $1592 a$ et seq.

- of brick; mode of measuring, 23062308. Should be gradually carried up, 1891. Precepts to be observed respecting, 1898-1900
- and piers, 1500 et seq. Thickness proportioned to height, 1502. Stability and resistance, 1500-1502. Stability of, 1503 -1517. Mode in which forces act on, 1505 -1509. Enclosing spaces of different forms, 1512-1517. Method of enclosing a given area in a regular polygon, 15181528. Thickness, to acquire stability, 1525. Exteriorwall of San Stefano Rotondo, 1528. Thickness, in buildings not vaulted, 15291554. Kept together by roofs, $1532-1541$. Examp'es of, 1505 et seq. Rules for, 1542, 1543. Examples of, 1544 - 1562

Walnut, 1703
Walsingham, Alan de ; architect, 319
Walsoken, Norfolk ; bands to shafts in church, p. 989

Walter, of Coventry ; architect, 395
Waltham, Essex ; abbey, 359
Wanstead house ; Essex, 446, 504
Wantage, Berkshire ; bench end, p. 986
Wappenbury, Warwickshire; proportion of church, p. 1018
Ward of hospital, 2975c. Separation of, 2975d. Circular and rectangular, 2975i $2975 j$. For dormitories of an infirmary, $2976{ }^{\circ} \mathrm{b}$
Warden, p. 1045
Wardour stone, $1666 q$
Ware, Isaac ; architect, his Complete Body of Architecture, 525

- Samuel ; his tract on Vaults and Bridges, $1499 x$ et seq. On Theatres, $1499 g$
Warehouse ; valuation of, p. 1097. Posts, in spec., $2285 b$. Floors, in spec., $2285 b$
Warkwortl, Northumberland; castle, 398
Wrarming, $2975 \mathrm{~g}, 2976 \mathrm{~b}$. Of buildings, 2279 et seq.
Warmington, Northamptonshire ; church, groined ceiling, 2023g. Tower and spire, p. 1001

Warsaw ; theatre, 2971
Warwick; Beauchamp chapel, parapet, p. 983. Castle, 414, 418, 423. Sessions house. 514
Washers, $1631 w$
W ash-out water closets, $2220 d$
W aste; in dilapidations, p. 1099
Whipe to cistern, $22223 b$
Wastes to bath, sink, \&c., 22231
Water supply, 2218 et seq., 2223i. To Rome,

WES

223-228. To industrial dwellings, 3018 et seq. In spec., 2288. Waste preventers or 'waste-nots,' $2223 f, 18886$. Cisterns and tanks, $2222 b$
Water, qualities of, 2222f. To soften, 2222h. Supply for daily use. 2223. For mortar, 1853. Weinht of, 1592a. Weight and quantity, $2223 i$. Condensed, in spec., 2293 g . Effect of lead on, 1785a. Effect of copper on, $1780 b$

- bar to casement, $2165 b, 2255 \mathrm{~d}, 2259$
- closets, 2220 et seq. In spec., $2285 g$, 2288. Apparatus, 2220 et seq.
-glass, $1667 k, 166 \overline{7} q$. I'ipes, $1699,2223 n$; of iron, $2223 q$. Trunks, in spec., $2285 b$
__ joint hinges; in spec., $2285 \mathrm{~g}, 2285 \mathrm{~m}$
- works; concrete for, $1 \& 62 b$

Water-lily ; used in Egyptian ornament, 87
Waterloo bridge, 1671 e
Wratson's double current ventilator, $2278 q$
Wary ornament, 397
Wax and resin paint. $2275 f$
Wear and tear; in dilapidations, p. 1099 et seq.
Weather bar ; see "Water bar." Boarding ; in spec., 2285b. Tiles, $1907 b$
Weathering course, p. 981
Web or rib of a plate girder, $1629 c$
Webb, John ; architect, 464, 465
Wedge, 1321-1323, 1631 . For underpinning, in spec., 2286
Weeks and Co.; warming and ventilating, $2278 u$
Weights; of materials used in covering buildings, 2040 b . Of brickwork, \&c., 2303 et seq. Of building stones, $1666 a, 1666 b$. Allowed on a floor, 1618. See the various materials. Crushing, \&c., 1500 ct seq. and measures ; French, 1369
Weissenfels ; clurch, 579

- Peter von ; architect, 579

Welded wrought-iron tubes, $2223 q$?
Welding; iron, 1760, 1764a. Of a flitch, 2255a. By hydraulic pressure, ib. By a gas apparatus, $2263 b$
Weldon stone, p. 1045
Well. 18:9. To dig first, 1882, Sinking, $2218 a, 2218 i$. In spec., $2281,2282 b$
Wellinghan, Cambridgeshire ; church porch, p. 998

Wellingtonia, fir, 1726
Wells, Somersetshire ; cathedral, 398, 406 , 421. Founders and dimensions, 434. Proportion of, p. 1024. Chapter-house, 149364, p. 1025, p. 1026

Welsbach gas light, $2264 c$
Welsh; groins, 2058. Lumps, 1826. Rag slates, 1802, $2211 b$
Wenham gas light, $2264 e$
Wenloek, Shropshire ; choir, 398
Werfen; church of St. John, 579
West W'alton church, Nortolk ; tower, 398
Westminster abbey church, 389,406, p. 1028. Founders and dimensions, p. 111. Proportion of, p. 1016. Assimilating work, p. 968. A pse, p. 1007. I'iers, p. 976 . Corbel, p. 981. Windows in cloister, P . $10: 9$. Circular window, p. !91. IIcnry VIIth's chapel, $440,5: 8,645,1499 \mathrm{~h}, \mathrm{\Gamma} .4 \div 1 \mathrm{et}$ seq., p. 1054 et seq. Vaulting, $2002 u$ et seq. Miscrere, p. 985

- Palace. Painted chamber, window p. 989. St. Stephen's chapel. 121, p. 1040

WES

Westminster hall ; section, 415; Window, School Roof, 2052l, 2052t. Palace, 423. $1502 c$; dormitory, 510. Bridge, granite, 1671a, $1671 \mathrm{c}, 1671 h$
Westmoreland's ventilator, $2278 u$
Westwood hall, Worcestershire, 426, 446
Wetter; church, 567
Wetterstedt's marine metal, 1786, 2224e
Weyrer, Stephan ; architect, 580
Wharncliffe stove, 2279 d
Wheat straw ; in thatching, 2211s
Wheeb!e's Reading abbey stone, 1903co
Wheel windows, p. 9 ± 3 et seq.

- and axle, 1307-1314

Whinstone, $1922 h$. Crushing weight of, $1502 h$
Whippingham, Isle of Wight; church, 2245a
Whispering gallery, 2964
Whitby, Yorkshire; conventual church, 407. Assimilating work, p. 969. Mullions, p. 991 stone, $1667 w$
White, William; arehitect, on proportion, p. 1017 et seq.
White; ant in timber, 1728d, 1744. Cast iron, $1765 b$. Lead, $2271 a$ et scq. Manufacture of, 2272. New process of, $2272 b$. Charlton, 2273 g . Washing, 2273 g
Whitehall: palace, 457 ; banqueting house, 458; window, 2762
Whitewashing, $22 \% 4$
Whiting, 2274
Whittington, Rer. G. D.; writer on pointed architecture, 310, 313-315
Whittlesea, Cambridgeshire; parochial church, 421. Tower, p. 1002
Wight's fireclay tiles, 1903\%. Company and inventions, $1903 r$
Wilfrid; bishop of York, $383,385,386$
Wilkes' metallic paving, 1905 c
Wilkinson and Co.'s specular granitic paving, 1905c. Fibrous slab, 2246 b
Willesdear roofing paper and canvas, 2210 g
William of Sens; architect, $30 \overline{\mathrm{u}} a, 312,32 \mathrm{I}$, 395
——of Worecster. See "Botoner" of Wykeham ; bishop, as builder, 319. His college chapels, P . 1007
Willis, l'rof. Robert; on penetration of mouldings, 578. Work on Architectural Nomenclature, p. 970. Work on P'ointal Vaulting, 1499hh
Willoughby, Sir lirancis ; house fur, 440
Wilton house, Wiltshire, 461, 508. Works in church, 2250 g
Wimbledon, Surrey ; house for Sir Thomas Cecil, 440, 446, 448
W'imbutsham, Norfolk ; church, 2052q
Wimmington, Bedfordshire ; church roof, 20520
Wimpfen-im-Thal ; church, 569
Winchelsea, Sussex ; narochial church, 398
Winchester, llampshire; enthedral, 313, p. 993. Fonnders and dimensions.434. Proportions of, p. 1012, p. 1016, p. 1021. Nave, p. 1041, p. 1043. Choir, p. 1044; groined ceiling, 2023 g . Piers of nave, \&c., p. 1022. Pase course, p. 9×3. P'nrapet, ib. Clerestory winduw, p. 990. p. 1032. Stall mouldings, p. 18.1
-St. Mary's college at, chapel, p. $100 \overline{\text { an }}$. Proportion, p. 1014. Groined ceiling, 2023 9 . Sacristy, corlels, p. 980

- palace, Southwark; window, p. 1015. Circular window, p. 991

Wind ; pressure or force of, 1592 a et seq. Effects of, on stone, $1667 f$

- guard, revolving, 3034. Slaking, 1843 α Wrinde, Captain William ; architect, 465
Winders; in stairs, 2186
Winding ; in joinery, 2123. Stairs, 2808
Window or Ajimez; of Spain, 585
- cleaning, 2230. Bars of glass, 2231a. Backs, elbows, and suffits, in spec., 2285c. Ventilation, 22780 . Guards of iron, in spec., 2286a
Windows; 2745 et seq. In Egyptian buildings, 82. Blank to be avoided, 2745. Pruportions of, as connected with apartments, 2746. Mode of obtaining proper quantity of light, 2747. Rule for size, by Chambers, 2748. Rules by Morris, ib. Examples of rules fur sizes, 2749-2752. When there are two ranges of windows in rooms, 2753 . Piers of, 275%. In the same story should be similar, 2755. Venctian, 2756. Examples of Italian, 2757 et scq. Examples of Gothic, p. 988 et seq. Examples with tracery, p. 1028. Of three days, p. 1029. Of four days, p. 1030. Of six days, p. 1031. Divisions of, p. 1007. Effect of good and bad, p. 991. At Carlisle cathedral, $1502 c$. At Westminster hall, ib. Jamb mouldings, p. 992 et seq.
- painted and stained, 2231b. Alabaster, \&c., 615, 2002gg
Windsor, Berkshire; St. George's chapel, p. 1050 ct seq. Vaulting, $200 \% x$. Doorway, p. 99.8 . Clerestory windows, p. 993 . Tomb house, mullions, p. 990 ; decoration, 2231/h.
——Castle, 393, $39 \cdot 1,398,527,2882$
——bricks, 1826
Wine bins ; of slate, 2211 q . Of iron, 225äg. Cellars and fittings, in spee., $2: 822 b, 2281 c$
Winglie!d, Derbyshire; manor bunse, 423. Porch, p. 999
Winter; building brickwork in, 1832a, 1900b, 2250 h
Wire ; strength of, 1630r. Gauge, Birmingham, 2251. Cords, repe, and strand, 2260. Wire wove for glass, 2226 d
Wirework; in lieu of lathing, 22:16c, 297 ld
Wismar ; church, 56π. St. Mary's ehureh, 572
Witney, Oxon ; parochial church, 408
Wittering, Northamptonshire ; church, p. 971
Wittlich, J. von ; architect. 583
W'olurn, Bedfordshire ; abbey, 512, 524
Wolfe, John ; architect, 504, 526
Wollaton hall, Notts, $440,443,445,452$
Wolsey, cardinal; lis buildings, 426
Wolterton hall, Norfolk, 426, 1908a
Wood, John, of Bath ; architect, 513
Wood; earliest material cmployed in building, 7. Used for joinery, $212 \overline{5} c$. See "Timber." Affected by heat from hot-water pipes, 2279i. Good sound conductor, 2964
-block floor, 2173 c . Mosaics, $1905 f$
-bricks, 2166 . In spec., 2285. Mouldings,
p. 981 et seq. Tallestry, 2175b
carpet parquetry, $21 / 37$
workint machints, 2124 ct seq. Carving machine, $212 \cdot \mathrm{sc}$
Woodstock, Oxford-hirc ; palace, 423
Woodwork; medicval, 2192b, 2192c. Readymade, $2124 e$
Worcester; cathedral, 421. Founders and dimensions, 134. Section, $15 \times 3 \mathrm{H}$. Chapter house, 14996 . Lioof over railway workshol's, 2012

WOR

Workhouse infirmary, 2976a et seg.
Working drawings ; principles on which they are to be made, 2491 et seq. Mediaval, p. 1008

- strain, limited, on a wrought-iron structure, $1628 f$
Werkmen; medioval, 3ù. Building a church, 566
Worms; cathedral, 287. Two apsides, p. 1007. Picrs, p. 975
- sea, 1728c. In timber, 1742 et seq.

Wren, Sir Christopher ; architect, 319, 466489, 1493cc. Parentalia, 481-489. Work at Chichester cathedral spire, p. 1004. Opinion on buttresses, p. 1048. Fullowed certain proportions, 353
Wrexham, Flintshire ; parochial church, 421
Wright and Co.'s lintel, 1903x
Wright's fixing block, 2166. Tar paving, 1905 h
Wrought iron, 1764 et seq. Columns, 2255. Casements, 2255 d . Ornamental work, 2255 h et.seq.
Wratt, James; architect, 527. His house in Purtland Place, ib. His patent slating, $2210 i$
-_Beniamin; architect, work on theatres, 2950ं, 2960
Wykeham. See "William"
Wjken, Warwickshire; church doorway, p. 997

Wymondham, Norfolk; church roof, $2052 t$

Y ANTEN; church of St. Victor, 57%
A Xochiculco; military intrenchment of, 114
Xystus; of the Greek gymnasium, 175. Of the Roman baths, 235

YARD paving ; in spec., $2281 c$ Yaroslat, prince; patron of architecture in Russia, 375
Ielvertoft, Norfolk; church, p. 983

ZWI

York ; cathedral, 406. Founders and dimeusions, 484. Groined ceiling, 2025 g . Win dows, "five sisters," p. 988. Rose window, south transept, p. 99., p. 1015. West window, p. 1051. Chapter-house, 1499bb. Conventual church of St. Mary, 421. St. Margaret's porch, 398. All Saints' Pavement church, beacon, p. 1002. Parochial church of All Saints, 42 I

Castle, 394
Duke of ; house for, 524

- Lodge of masons, 315

Place, London, 426

- Stairs water gate, London, 462

Ypres, 562. Church of St. Pierre, 55\%. Of St. Martin, 555, 557, 559
Ypsambool; temple. See "Ipsambul"
Yorkshire stone, $1666 t$

7AMODIA; architect. See "Omodeo"
II Zamora ; church, 586, 587
Zaragoza; cathedral, 597. Church of Sta Engracia, 367
Zax; slater's, 2209
Zecco or Mlint, at Venice, 351
Zehra, near Cordova, 121
Zerbst ; church of St. Nicholas, 567, 579
Zinc, 1792 et seq. Found everywhere, 1792. Mode of extracting from ore, $i b$. Furmed into plates and wire, 1793. Its peculiarities, 1793, 1794, 2224g et seq. Alloyed with copper, 1790. Strength of, $1630 r$. Effeet of, on iron, 1780b. Effect of atinosphere on, 1795b. Strips applied to copper, 2224 white; fur paint, $2272 c$ work, 2224 k . In spec., 2294 . Flue pipes, 179.36

Zinked iron, 1796. Tinned iron, 1706a
Zodiacal signs and emblems, 539
Zopissa paint, 2273 g
Zwickau ; church of St. Mary, 567
Zwirner, Ernest Frichrich; architect, 57.4

Gwilt, Joseph
An encyclopaedia of
G93
1888

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

開
4)
Now dow

登

```
%
```

为象畐 \qquad fil
然解


```
%
```



```
%
*
```


[^0]: See foumd d 1133 . The east window, of late Decorated n ork 32 ft wide, is perhaps the most heautiful in the world: see Bullings's Carlisle Cothedral. The refectory is 79 ft long and 27 ft . wide. The internal length is 205 fl . and breadth 131 ft .6 in . Restorations 1853.57 by EWan Chistian.

[^1]: See founded 635. The ehapol of the Nime Altars was hegun about $1=30$, forming a sort of transept at the

[^2]: Sre founded fisf. The church is very uniform, having bern, like Salishury and Exeter, built on one plan. "A dated record would render this cathedral one of the most valuable for the history of the development' of style: "Professor Willis. The polygonal apse is a snecial feature of this cathedral, and is unigue in England: the triple spires is another feature. The arches in the trifori, show the dog-tooth moulding in great perfection. The Lady chapel hy Bishop W. Langton, 1296-1321. The chapter house, cir. 1240, is an elongoted octagnn, 40 ft .3 in by 27 it .5 in ., with a central pillar. The internal length is 37 ft and breadth 149 It . Restorations since 1860 by Sir G. G. Scott.

[^3]: See founded 648 The west front was originally the work of Bishop Edingdon. The nave, which was "transformed" (Prof. Willis) by Wykeham is, with Ely and Canterbury, probably the longest in the world, S. Peter's at Rome excepted. The Cloisters are 180 ft . by 174 ft . The exterior of the choir is of the finest Gothic of the fifteenth century. The choir as at Gloncester, is imder the tower. The chantries of Waynflete aod Beaufort are fine examples. The crypt is an interesting example, and more so now that the chalk, 4 ft . deep. filled in about 400 years since, has been removed, $189 \mathrm{ij-7}$. There is no chapter house. The external length is $557 \mathrm{ft} .9 \mathrm{in}$. ; the internal lingth is 525 ft , the breadth 208 ft . The stone screen and the episcopal throne are by Gabbett. The west front restored 1860 .

[^4]: See foundeã 1886. Repairs carried on steadily since about 1856 by John Gregory and his labourers. Fronı 1875 the roofing, restoratiou of the west spires and of the chapter house, were completed under Mr. Ewan Cnristian, who (1886) has commenced the stalls and restoration of the screens; and the flooring of stone and marble. The perfect eondition of this structure, erected of magaesian limestone sinilar to that of Bolsover Moor, attracted the attention of the Commissioners in their Report on Stone for the Houses of Parliament, fol., 1839. Its internal length is 306 ft . It was reopened Febrnary 2, 1888.

[^5]: 566. The earliest truly printed buildings seem to be, the chureh of St. Mary at 'Treves,
[^6]: N.B.-All the works are published in London, unless otherwise stated.

