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ABSTRACT

Some new results in the scheduling of dynamic multi-

commodity flows in data communication networks are presented.

A new performance measure for effective delivery of back-

logged data to their destinations is defined and the solution

to the resulting delivery problem is obtained through a se-

quential linear optimization methodology. Properties of an

optimal dynamic multicommodity flow schedule are studied in

detail, taking advantage where possible of the linear pro-

gramming formulation. The special case of the delivery

problem in a single destination network also is analyzed.

Application of the results to stochastic delivery prob-

lems in which the data inputs to the network are modelled as

Poisson processes is addressed, and a new dynamic data com-

munication network analysis is presented.

Finally, the delivery problem on networks with capacitated

links and with traversal delays is considered and some new

results obtained.
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I . INTRODUCTION

A. MOTIVATION

The design of data communication networks has received

much attention during the past decade and the interest in

this field is constantly growing. This fact is explained by

the rapidly expanding role being played by data processing

in today's society and the apparent advantage in sharing power-

ful computational resources

.

The overall subject of data communication networks can be

looked upon from many different points of view, each repre-

senting an intellectually challenging problem. Just to name

two: there is the problem of cost effective topological net-

work design and there is the problem of determining, in a given

network, the routes which data should follow from their source

to their destination. The problem of assigning routes has

been one of the most intensively studied areas in the field

of data communication networks.

It is possible to view the complete routing problem as com-

posed of two parts: the first, calculation of routing assign-

ments and second, their implementation in an actual data

routing control strategy in a real, basically stochastic, net-

work environment. It is the first part that we are mostly con-

cerned with in this research, although we touch briefly on the

other.

A network model for calculating routing assignments can

be roughly classified as static or dynamic. These reflect the

15





long and the short term stochastic behavior of a network,

respectively. A finer taxonomy is possible, regarding the

frequency with which a routing assignment has to be recomputed

to support efficient communication. A desirable complete rout-

ing methodology must provide fast adaptation to a changing net-

work environment and be stable at the same time. It should

be dead-lock free as well as distributed to minimize computa-

tional complexity and control information flows. Clearly, there

are substantial difficulties in achieving all these attributes

simultaneously or even in qualifying trade-off relations among

them.

In spite of the progress made in some areas, and in par-

ticular in the computation of static routing assignments, many

basic questions remain unanswered. For example, definition of

a meaningful performance measure for dynamic routing assignments

which will give rise to mathematically tractable problem formu-

lation, seems to have been missing. Thus, it appears that new

insight into the relationships that make up a dynamic network

model should be helpful in coping with these questions. The

new conceptual ideas and analytic tools for studying them

introduced in this research are a step in this direction.

B. SURVEY OF PREVIOUS WORK

In [15] Kleinrock introduced an analytical model of a data

communication network. Many algorithms use this model to com-

pute routing assignments, for example, the algorithms due to

Cantor and Gerla [17], Fratta, Gerla and Kleinrock [16] and

16





Defenderfer [18]. In all those algorithms the steady-state

delay of messages in each link is calculated explicitly as

t.
ij c . .

- f . .

13 13

where:

^ii
is the data f l°w rate in link [i,j] (messages/

J second)

;

c
i

- is the capacity of link [i,j] (messages/second);

i]
is the expected delay/message experienced by
all messages using that link.

A routing assignment is selected to minimize the expected weighted

delay T,

t = y f

.

.t. .

[i,j] ^ ^

of messages traversing the network. This analysis is based on

the assumption that message arrivals to each link can be con-

sidered as Poisson process with independent, exponentially

distributed, message length, which requires Kleinrock's famous

"independence assumption" that messages "lose their identity"

at each node and are assigned new independent lengths.

All the algorithms referenced thus far exploit the convexity

of the objective function. A different approach, leading to

a linear problem formulation, was suggested by Wozencraft in

[29]. Instead of minimizing the average expected delay, the

objective is to minimize the maximal saturation ratio f . i/c. .

17





in the network. Subsequently the next maximal saturation ratio

is minimized, etc. This Min-Max policy was extensively studied

by Ros [8] and as a result considerable insight into the problem

of static routing was gained. One of the objectives of this

research is to study possible generalization of the Min-Max

approach and in particular its sequential character to deal with

dynamic network models.

Kleinrock's steady-state and independence assumptions make

his model appropriate to describe long term stochastic behavior

of a data communication model, but less applicable for computa-

tion of dynamic routing assignments.

One of the most important efforts in the direction of find-

ing a more appropriate model for describing network dynamics

was proposed by Segall [1] . His approach is to view the con-

tents of data queues at the network nodes in a continuous state

space setting rather than as an integer number of messages or

bits. The continuous nature of the state is justified by

recognizing that any individual message contributes very little

to the overall behavior of a network. Having established the

model, Segall expresses the dynamic routing assignment problem

as a linear-optimal control problem for which a close-loop solu-

tion is sought. This formulation has been used to investigate

how to minimize

fc

f

D = / ( I q*(t))dt
t
Q

(i,k)

where

:





t
f

is some time at which all queues are empty;

q^Ct) is the queue size at node i of data destined to
node k, at time t.

Here D is the total delay experienced by the queued messages

during the period [t
Q
,t

f
], during which all the queued data

are to be delivered to their destinations.

The solution to this problem is approached by means of

the minimum principle of Pontryagin [30], since this principle

provides not only necessary but also sufficient condition for

optimality in that case. A comprehensive set of principles

describing the closed loop solution has been obtained by Moss

[2] for the case in which all backlogged data have the same

destination and the input to the network is continuous and con-

stant. Additional study of the single destination case is pro-

vided in [11] and [31] . Unfortunately the optimal control

approach runs into difficulties when the general, multicommodity

case is considered and no general solution has yet been obtained

C. SYNOPSIS OF THESIS

To cope with the difficulties posed by the multicommodity

dynamic routing assignment problem, a different approach is

taken in this research. It involves a change in the perform-

ance measure. Rather than trying to minimize the total delay

experienced by the backlogged data, the concept is to deliver

all of that data to their destinations in the shortest time

possible. Since eventually there are many dynamic routing

assignments that can do so, one which maximizes the total amount

19





of delivered data over time, is selected. We refer to this

problem formulation as the "delivery problem" and to the corres-

ponding dynamic routing assignment as the "flow schedule."

There are several advantages associated with the above state-

ment of the delivery problem. Most important is the ability

to find the desired flow schedule by solving a sequence of

hierarchically related linear programs. Also, it turns out

that the new performance measure reveals some structural proper-

ties that bring new insight to the problem of dynamic flow

scheduling. The main purpose of this research is to study those

properties in detail.

The new performance measure (we call it the "delivery func-

tion") and related optimality criterion are explained in Ch. II.

Also, by introducing a concept of "global optimality" we are

able to relate the optimal delivery function to the "total de-

lay" criterion. In Ch. II we also introduce the basic network

model and the notational convention to be used throughout the

thesis

.

In Ch. Ill a solution algorithm to the delivery problem

is presented. It consists of solving a sequence of hierarchi-

cally related linear programs. In principle, each linear

program that is solved contracts the space of remaining feasible

flow schedules, until finally an optimal piecewise constant

flow schedule is obtained. The optimality of the resulting

flow schedule is formally derived in Ch. Ill using some basic

results regarding the properties of feasible flow schedules.

In Ch. IV we study in detail the structural properties of

an optimal flow schedule. By exploiting various properties of

20





linear programming we are able to derive several results that

characterize an optimal flow schedule. One key result is the

description of critical sets of commodities and the capacity

resources (links) they must saturate for various periods of

time. Also, the properties of those saturating flows, and in

particular their total rates, are determined. In this chapter

the important idea of optimal solution "stability" is intro-

duced, which allows one to express most of the above properties

in terms of the optimal dual variables associated with the

linear programs of the solution algorithm.

We devote Ch. V to discussion of the single destination

network. The solution algorithm of Ch. Ill is specialized to

handle this case. Considerable additional simplifications are

obtained by observing that the single destination delivery

problem may be interpreted as a single commodity flow problem

so that advantage may be taken of many well established results.

The concept of stability is revised and exploited as part of

the solution algorithm.

Continuing the discussion from Ch. II we show that the opti-

mal single destination flow schedule is also globally optimal

and thus also solves the single destination "minimal total de-

lay problem" [11] . The computational advantages of the new

algorithm are addressed briefly.

In Ch. VI we analyze the stochastic delivery problem. Here,

in addition to the backlogged data considered so far, we are

concerned with Poisson arrivals of messages to the network.

Following Yee [12] the expected minimal time to empty an M/M/l

21





queueing system is taken to be the new performance measure.

It is shown that the theory of dynamic flow scheduling, derived

earlier for the deterministic case, and in particular the se-

quential linear optimization methodology, can be applied (at

least, in principle) to solve the stochastic .delivery problem.

In Ch. VII we consider a more general setting for a de-

livery problem. Here we associate with each link a traversal

delay, in addition to a capacity constraint. Although it would

be possible to continue our discussion within the context of

data communication networks, it is more natural to choose the

transportation problem as the framework for our investigation.

This allows a generalization of link capacity constraints to

include loading and unloading constraints. The addition of

traversal delays greatly complicates the delivery problem.

It is possible, however, to exhibit a (conceptually) simple

solution procedure for the case of bi-partite transportation

networks . A discrete time approximation for general network

models also is discussed and a particular example of military

application is presented.

In Ch. VIII we summarize the most important results of

this research and indicate areas for future study.

Finally, we defer to the Appendix a number of proofs,

examples and short discussions which would tend to blur the

main ideas if left within the body of the thesis.

22





II. PROBLEM FORMULATION

A. COMMUNICATION NETWORK MODEL

1 . Topological Representations

A data communication network may be modelled as a set

of nodes interconnected by a number of links. The nodes repre-

sent physical locations at which data may enter or exit the

network and the links represent unidirectional channels over

which data is transmitted from node to node. A typical data

communication model is shown in Fig. II. 1.

data entry

data exit

Fig. II. 1. Communication Network

With each link we associate a channel capacity which indicates

the upper bound on the data flow rate for that channel. With

each node we associate, at every instant of time, the amounts

of data awaiting transmission to each destination at the corres'

ponding location. The collection of node descriptors for all

23





the nodes in the network constitutes the state of the system,

or equivalently , system congestion at any given time t.

We will say that any data in the network is commodity

(if k) if its origin (entry node) was node i and its final

destination (exit node) is node k. We shall also say that any

data in the network is commodity k if its final destination is

node k.

Consider a data communication network G(V,L
n ),

where

V = {l,2,...,n} is a set of n nodes and L
n

= {[i,j]} is a set

of links. By the notation [i,j] we mean the link that con-

nects node i to node j, in that direction. We will also use

the notation L = {1,2, ...,1} and denote an element of L« by

e. If link e corresponds to link [i,j] then h(e) = i and

+
t(e) = j. We say that node i can communicate to node k iff

there is at least one directed chain of links going form node

i to node k. We also define:

N- = set {(i,k)} of node pairs such that node i can
communicate to node k, i ^ k.

k
q (t) = amount of commodity k, stored in node 1 at time t

ki v(i,k) £ N
Q

.

f. .
(t) = flow rate of commodity k on link [i,j] at time t

13 *[i,j] e L
Q

and *(i,k) e N
Q

.

C.

.

= capacity of link [i,j], *[i,j] e L
Q

.

a (t) = flow rate of commodity k arriving at node i from
i outside the network, at time t, v(i,k) e N

Q
.

"h~head, t— tail h(e) * t(e]
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We reserve the use of respective capital letters for sets and

vector notation, interchangeably. For example,

J
F(t) - (f

12
(t) ,f

13
(t) , . . . ,f (t) . . . ) denotes a vector (set)

of flows.

2 • Dynamic System Equations and Constraints

The flows and the queues just defined must satisfy three

basic constraints: non-negativity, conservation and capacity.

The non-negativity constraint states that

f
i
j(t) > 0, *[i,j] e L

Q
, v(i,k) -: N

Q
and *t. (II. 1)

The conservation constraint may be written as

\= aj(t) f

a*(t) , if q*(t) > 0,

otherwise

,

*(i,k) - N
Q

and s*t. (II. 2)

Constraint (II. 2) accounts for the fact that at all times the

amount of any commodity stored at any node is a non-negative

quantity. iMoreover, the fact that the net delivery rate of

commodity k from node i is non-negative, r. (t) ^_ , *(i,k) -: N
n

and vt, implies that data is not stored at intermediate nodes

+
en route from its entry node to its exit node m the network.

4-

Intermediate storage of commodities is discussed in
Appendix C.
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Finally, the capacity constraint is

f
ij

(t) "
k J i)

f
ij

(t) i c
ij'

^[i,j] ^ L
Q

and vt (II. 3)

where f^ (t) denotes the aggregate flow rate on link [i,j] at

time t.

Definition (II. 1) .

A set of flows F(t) , t
Q

< t < t, is a feasible multicommcdity

flow schedule if it satisfies constraints ( II . 1) - ( II . 3 ) for all

t e rt , tl ].

D

We will assume, for mathematical convenience, that data input

flow rates are identically zero during the time interval under

consideration, i.e.

a*(t) E 0, *(i,k) e N
Q

, t
Q

< t < t
] _

(II. 4)

In Ch. VI the behavior of a communication network in a stochas-

k ktic environment is considered and a. (t) = a., v(i,k) £ N will

be interpreted as a rate of a Poisson process.

We follow the model proposed by Segall [1] , where the

contents of the queues at the nodes are viewed as continuous

quantities, rather than as integer number of messages (in Ch.

VI we recognize the existence of separate messages but model

their size as a continuous quantity) . This macroscopic point

of view not only provides a model that is analytically simpler

than others, but also is justified by recognizing that any
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individual message (bit) contributes very little to the over-

all behavior of the network.

Let Q(t
Q

) and Q(t
1

) be the system states at times t
n

and t
±

respectively. We say that the state Q(t ) is reachable

from the state Q(t
Q

) if there exists a feasible multicommodity

flow schedule F(t) , t
Q

< t <_ t
±

for which

qi
(t

1 ) = q^ctQ) - / r*(t)dt, *(i,k) e n
q

(ii. 5)

or in shorthand notation, F(t): Q(t
Q

)
-> Q(t

1
). To every feasi-

ble multicommodity flow schedule we adjoin a delivery function

D(t), t
Q

< t <_ t. which represents the total amount of data

delivered to their destination by time t.

D(t) = I [qi(t n
)-q*(t)], t

n
< t < t, (II. 6a)

(i,k)eN
Q

10 1 - - 1

or equivalently

t .

D(t) = / r. (a)da, t n t < t, (II. 6b)
(i,k) eN() t

Q

0-1
From the nature of the model that we constructed and

k +
in particular from the fact that q. (t-J > -> (i,k) e N-. ,

' we

conclude that the zero state is reachable from any other finite

state within some finite time t, , i.e. there exist both t, and

4-

'To avoid excessive notation complexity we will assume in
the sequel that q^(t ) > «-* (i,k) e N

Q
. The case of

q^(t
n

) > -*> (i/k) e N
Q

is included in the examples.
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F ^' t
Q

< t < t
±

such that F(t): Q(t
Q

) - q^) = 0. Consequently,

for every initial state there is some minimal value of t, . We

define the minimal total delivery time t? as

t-i = nun {t, F(t): Q(t n ) - Q(t,) = 0} (II. 7)1
iF(t!} 1 1-

We conclude this section with a basic result regarding the

nature of feasible multicommodity flow schedules.

a.

Theorem II.

1

'

Let Q(t
Q

) and Q(t.,) be any two states such that Q(t,) is

reachable from Q(t
Q
). Then there exists a feasible multi-

commodity constant flow schedule F. (t) = F, t- £ t <_ t, such

that F
x
(t) : Q(t

Q
) - Q(t

1
)

.

This result implies that in order to transfer a system into a

reachable state it is sufficient to look for an appropriate

flow schedule within the subset of constant flow schedules.

The benefits of this property will become evident in following

chapters

.

3 . Piecewise Constant Flow Schedules

From this point on we will narrow our interest to the

subset of feasible multicommodity flow schedules which are

piecewise constant. By an M-part constant-flow schedule

F„ (t) , t A < t < t, we mean
M — — 1

4.

See Appendix A for proof of this theorem,
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FM (1)
'

fc
2 < t I fc

l

FM(t) = < FM (m) ,
fc

, < t < tM M m+1 — m (II. 8)

^FM (M) , t n t < tH 'M

Consulting (II. 6) we immediately conclude that the correspond-

ing delivery function D
M (t), t

Q
< t < t. is piecewise linear.

We write

DM
(t

l
)
"
pM (1) * (t

i
-t)

'
t
2

< t I t
l

dm^ = < DM (t )-p M (m) • (t -t) , t J_. < t < tM M v

m' yM m 'm+1 — m (II. 9a)

^ VV^^'tV^' fc
n £ t 1 tM 'M

where P M (m) is the total delivery rate in the m-th interval,M

PM (m) = I r (m)

(l,k)eN
Q

(II. 9b)

The r. (m) , (i,k) € N» is the net delivery rate of the k-th

commodity from node i (see (II. 2)) in the m-th interval,

corresponding to the flow schedule segment F (m) in (II. 8)

.

Clearly, PM (m) is the slope of the delivery function in that

interval. An example of a piecewise linear delivery function

is shown in Fig. II.

2
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r->

^j

pM < 2 '

t
3

t
2 tl t

Fig. II. 2. Piecewise Linear Delivery Function

4 . Example

To fix ideas, in this subsection we provide a simple

example of a communication network, and use it to illustrate

the various notation and definitions introduced previously.

Consider the network G(V,L
n

) shown in Fig. II. 3.

VV = 10

q
3
(t

Q
)
=5 q2

(t
Q

) = 5

Fig. II. 3. Communication Network with Queued Data
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For this netowrk

V = {1,2,3}

L
Q

= { [1,2], [2,3] , [3,1]}

N = ((1,2), (1,3), (2,1), (2, 3), (3,1), (3, 2)}

Q(0) = {0,10,5,0,0,5}

Consider a constant flow schedule F, (t) , t < 15

given by its components:

f
2

"12 3' "12 £ f
1

3' 23
i f

3

3' 23
2- f

1
3' r

31
1
3'

31

It is easy to check that F, (t) satisfies constraints (II . 1) - (II . 3)

for all t, t e [0,15] and that F,(t): Q(0) + Q(15) = 0. We

find it useful to decompose the flow pattern into commodity

chain flows as shown in Fig. II. 4.

Fig. II. 4. Chain Flow Decomposition
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Using (II. 2) we find the net delivery rates

2 34 = 0, r^
3' r

2

1
3'

= 0, r
3

= 0,

The total delivery rate is thus (their sum) p, (1) = -y and the

resulting delivery function is given in Fig. II. 5.

Dj_(t)

20

15

10

Fig. II. 5. Delivery Function

B. OPTIMAL DELIVERY FUNCTION CONCEPT

Recall that our objective is to find a flow schedule that

will efficiently deliver a given set of data backlogs to their

destinations. Thus, we need to establish what are the desired

properties of an optimal delivery function and find its

generating flow schedule. In defining the optimality criteria

we were led by the following goals:
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(i) physically meaningful criterion;

(ii) computational tractability of the solution procedure;

(iii) gaining new insight into the problem.

We will show that the criterion we have chosen actually attains

these goals. In this section we discuss property (i) above.

Properties (ii) and (iii) will be considered in the next

chapters

.

1 . Convex Delivery Functions

Consider some non-convex piecewise linear delivery

function D (t) . A typical example of such a function is shown

in Fig. II . 6 .

D^>

^J

- /X/ *\s

Fig. II. 6. Non-Convex Delivery Function

Let Q(t.) and Q(t^) be the system states at times t^ and tj

,

respectively. Since Q(t.) is reachable from Q(t
i

) (by assump-

tion), then according to Thm. II. 1, it is possible to construct

a constant flow schedule F^t) , t. < t < t. such that
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F
1
(t): Q(t

i
)

-»- Q(t. ). To this flow schedule corresponds a

linear delivery function, indicated by the broken line in

Fig. II. 6.

We define a new flow schedule F„ , (t) , tn < t < t.,M-l — — 1

as

FM-l
(t)

FM (t) , t
Q

<_ t < t
i

and t. < t <_ t.

F,(t) , t± < t < t1-" -i _ -j

where F
v
,(t) is the original flow schedule corresponding to

4-

DM (t) . The new delivery function 1

D , (t) , t
Q

< t < t
1

is

convex. It is not difficult to see that a similar procedure

may be applied, repeatedly if necessary, to any non-convex flow

schedule. We summarize this fact in Lemma II. 1.

Lemma II.l

Let D (t) , t
n

<_ t <_ t, be a non-convex piecewise linear de-

livery function. Then there exists a convex piecewise linear

delivery function D (t) , t n < t < t, and K < M such that

D
R
(t) > DM (t) , yt 6 [t ,t

1
]

.

There should be no doubt that in the context of our problem the

delivery function DK (t) is preferable to D (t) . As a result

TBy "delivery function" we mean, unless otherwise indicated,
a feasible, convex, piecewise linear delivery function. Simi-
larly, we use loosely "flow schedule" to mean a feasible,
multicommodity piecewise constant flow schedule.
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we conclude that the search for "optimal" delivery functions

may be confined to the subset of convex delivery functions

.

2 . Preference Relation

Here we answer the following question: If Dw (t),M
A B R

t
Q

<_ t <_ t, and D (t) , t_ <_ t, £ t, , are two delivery func-

tions, which is preferable? From our previous discussion of

piecewise linear delivery functions (see (II. 9)) we know that,

for a given initial system state, a delivery function is

completely specified by its corner points and delivery rates.

We define T to be a descriptor vector for a delivery function

DM (t).

T = (t1/ p 1
,t

2
,P 2/ ... # tM ,PM ) (11.10)

Definition II.

2

A.

Given two convex, piecewise linear delivery functions DM (t),

t < t < t^ and D^(t) , t
Q

< t < t1# we say that D
M

(t) dominates

D^(t) iff T
A

< T
B

and T
A = T

B
i = l,2,...,j-l for some j,

K ] 3 i i

j <_ min(M,K), where T. denotes the j-th component of T^

The implication of Def. II. 2 will become evident in the follow-

A . B .

ing examples. In Fig. II. 7, D
3
(t) dominates D

2
since

p
A
(l) < p^d). In Fig. II. 8, D^(t) dominates D

3
(t) since

3 2 *-

t^ <t
A In Fig. II. 9, D

A
(t) dominates D^Ct) since t

2
<

t

2
.

3. Optimality Criterion

The definition of optimal flow schedule now follows

directly from the preference relation that we established.
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D(t)
|

Fig. II. 7. Comparison of Delivery Functions

D(t)

Fig. II. 8. Comparison of Delivery Functions
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D(t)

Fig. II. 9. Comparison of Delivery Functions.

Definition II.

3

We say that a delivery function D°(t) , t
Q

<_ t <_ t? is optimal

for an initial system state Q(t
Q ) iff

min {T.
(D

K
(t)} 3

i
l
/i 2' ' Tj-1" j = 2 , . . . , 2M (11.11)

I

In words, DM (t) i- s an optimal delivery function if it is not

dominated by any other delivery function. We shall call a flow

schedule F IJt (t), t A < t < t, which generates D„ (t) an optimal
M — — 1 J M —

flow schedule.

There is a technical question concerning the existence

of D,. (t) : Can we be sure that M, the number of corner points
M

is finite, because if not the delivery function will not be piecewise
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linear. We defer the discussion of this point to Appendix E,

since we need additional results before we can cope with it.

Our definition of optimality is based on a particular

preference relation, which we believe to be a natural one within

the framework of the optimal delivery problem. Obviously, other

preference relations (and thus optimality criteria) , based on

the delivery function concept, can be designed. For example,

the minimal total delay objective (see [1], [2]) may be speci-

fied, in terms of a delivery function, as

fc
l

min / [ I q*(t )
- D(t)]dt (11.12)

(D(t)} t
Q

(i,j)eN )
x

where Q(t.) = 0/ and the optimal delivery function is that one

which satisfies (11.12).

A legitimate question to be raised is: Since the optimal

delivery function approach as well as the minimal total delay

objective seem to have merits in the same workframe, are they

related? To answer this question we need to introduce the con-

cept of global optimality .

Definition II.

4

* *

We say that a delivery function D (t) , t. < t < t^ is globally

optimal iff

D*(t) > D (t) , vt £ [t
Q
,t*] and vD

R
(t). (11.13)

D
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Theorem II.

2

*

Suppose there exists a globally optimal delivery function D (t)

* *
Then D„ (t) and its crenerating flow schedule F„(t) solve the

optimal delivery as well as the minimal total delay problems.

Proof

If we denote the total amount of data stored in the network

at time t~ by q n then (11.12) may be written

D°(t) = arg {rnin [(t
1
-t n )q n

- / D(t)dt]} (11.14
K

{D(t)>
l ° ° t

Q

The graphic representation of (11.14) is shown in Fig. 11.10

D(t)

~ V*>

>V

Fig. 11.10. Graphic Representation of Eq. (11.14).

39





The objective is to minimize the shaded area. Assume that

D
R
(t) solves the problem and D°(t) ? D*(t). Then, since by

definition D
M (t) > o£(t), vt e [t

Q
,t*] the double shaded area

is smaller than the shaded area. This contradicts the assump-

*tion that D
R
(t) ^ Dm^ and completes the proof with regard

to the minimal total delay problem.

Next, assume that D (t) solves the optimal delivery

problem. Looking at D
R
(t) from t, backwards, and arguing that

by definition it satisfies (11.11), we find that it is identi-
*

cal to DM (t) . This completes the proof with regard to the

optimal delivery problem.

We conclude from Thm. II. 2 that if either criterion

produces a globally optimal D(t), then they are equivalent.

Unfortunately, the conjecture that a globally optimal delivery

function always exists for any multicommodity delivery problem

is disproved by counterexample as shown in Appendix B. We

shall prove later, however, that a globally optimal delivery

function does always exist when all flows have a single

destination.

4 . Example

We conclude this section with a simple example of opti-

mal delivery function and its generating flow schedule. We

use the same delivery problem as in Sec. A. 4 of this chapter.

An optimal flow schedule is shown in Fig. 11.11, were

we use the chain flow representation.
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0<t<10

qj[(0) = 10

lW(10) = 5

qj(0) = 5 q~(0) = 5

Fig. 11.11. Optimal Flow Schedule

The optimal delivery function is plotted in Fig. 11.12

The broken line depicts the delivery function that we obtained

D(t)

Fig. 11.12. Optimal Delivery Function
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for this problem in the previous section. A methodology for

obtaining an optimal delivery function is treated in the next

chapter

.
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III. SOLUTION ALGORITHM

The definition of optimal delivery function (see Def. II. 3)

suggests in itself a sequential structure of the solution al-

gorithm. We start by solving for t , the minimal time in which

all the queues can be delivered to their destinations. Then,

keeping t
1

fixed we search for a flow schedule which generates

a delivery function with a minimal possible delivery rate in

its first interval. We denote this rate by p.. The next step

is to hold t, and p. fixed and search for t_ , the next corner

point, etc. We will refer to the problems in which the mini-

mal time (or corner location) are being found as Minimal Time

Problems (MTP, for short). We will call the other problems,

Minimal Rate Problems (or MRP) . Since there may be more than

one corner point to consider, we will usually add an index to

indicate which corner we are dealing with. We will show that

both types of problems can be formulated as linear programming

problems (LP) , and as such enjoy tremendous computational

benefits. The mathematical properties of the optimal solutions

as well as their meaning will be the subject of Ch. IV.

A. THE FIRST CORNER POINT

1. The First Minimal Time Problem

Let F. (t) be an optimal flow schedule and D__(t) its
M M

delivery function. Thm. II. 1 assures us of the existence of

.0,^ .... .0 _.._,_ ,.„.,. J> /4 i ,-wns _ „,<_(),
an F^(t) , < t < t^ such that F^(t) : Q(0) + Q(tp = . The

relation between D°(t) and D^(t) is pictured in Fig. III.l
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D(t)

F
M

(t) - DM { '

D°(t) <- F°(t)

r\j

Fig. III.l. D°(t) versus D?.(t)

An important consequence of the above is that our search for

t, can be confined to the subset of constant flow schedules

(with one corner only) {F
n
(t)}.

Definition III.l

The First Minimal Time Problem is given by

MTP (1) : min t
±

s.t.

V I f
ii

(i:

j(*
l

t

f^d) ) = q^o) , ^(i,k) 6 n
(

I f
±1

(l) < c
±

. , *[i,j] e L
Q

t lf fjjd) 1 o, v[i,j] £ L
Q

, v(i,k) e N
Q

(III. la)

G
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The minimal value of the objective function of MTP(l)

represents the minimal time by which the set of commodity

queues Q(0) can be completely delivered to their destination

by some constant flow schedule F, (t) . We summarize this fact

with the previous observation that we need to look only within

the class of one corner flow schedules by

Theorem III.l

The minimal value of the objective function of MTP(l)

equals t,

.

1
D

Problem (III. la) has some quadratic constraints. To

overcome this difficulty we use a simple transformation of

variables. Define

uj.(l) ^ t
1
f^

j

(l), *<i,k) 6 N
Q

, *[i,j] e L
Q

(ill. 2)

The transformation relies on the assumption that t
1

> . Ob-

viously this is the case in any problem of interest. Intro-

ducing (III. 2) into (III. la) results in

MTP(l)

:

min t
±

s . t.

7 u
k
.(l) - U* (1) = q

k
(0) ,

v(i,k) «s N
Q

(j^i)
1: j(*i) J ^

-t,c. + I u
k
.(l) £0, v[i,j] £ L

Q
(III. lb)

1 ^ k(^i) 1:

t uj.(l) 10, v[i,j] t L
Q

,
v(i,k) 6 N

Q

D
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which is an LP. The new variable u* (1) represents the total

amount of data destined to node k that traverses link [i,j]

during a period of length t,

.

2
•

The First Minimal Rate Problem

Now that we have found t, we want to find a flow

schedule which satisfies both t? and p!?.

D(t)

F (t) * D
2

(t)

FM
(t) * D>

Fig. III. 2. D"(t) versus D
2
(t)

Let DM (t) be an optimal delivery function and let

Q(t,-e) be the state of the system at some time t, -e , where

< e < t,-t
2

. From Thm. II. 1 we know that there exists a con-

stant flow schedule which can transfer the system from its

initial state Q(0) to Q(t,-e). If we combine this flow schedule

ith part of the optimal flow schedule in the interval (t,-e,t, 3i

we obtain a two part flow schedule F
2
(t) , < t < t, . The

w

46





resulting delivery function D„(t) , <_ t <_ t. is shown in

Fig. III. 2. We observe that the delivery function D_ (t) has

a delivery rate, in the interval (t,-e,t,3, p~(l) which is

identical to p..

Definition III.

2

The First Minimal Rate Problem is given by

MRP(l)

:

min £ r . (1)

(i,k) e N

s. t

.

(tj-e)r£<2) + er
k
(l) = q

k
(0), *(i,k) -: N

Q

I fjjd) i civ * [i ' j] e L
o

k(^i) 13 1D
(III. 3)

r
k
.(l), r

k
.(2), f

k
.(l), f

k
,(2) > 0, *[i,j] e L

Q
,
*(i,k) t N

Ql j l J 13 -
L -'

for any e such that < £ < ti'to'

where

r
k
(p) ^ £ f

k
(p) -

I f
k

( P ), *(i,k) N
1 j(?i) 13 j(*i) D

o0

P = I/ 2 *

As in the case of MTP(l) also here we can state that

Theorem III.

2

The minimal value of the objective function of MRP(l) equals

D1"
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The condition on e in (III. 3) requires knowledge of

t
2
which has not yet been determined. This difficulty is only

of a theoretical nature, however, since in practice we can

choose z as small as we wish. If the very small z we picked

is too large, i.e., z > t
1
" t

2
' then we will miss one corner

point of the optimal delivery function and the solution we

obtain will be suboptimal in this sense. On the other hand,

there is not much to lose by overlooking corners in the optimal

delivery function which are an infinitesimal distance apart.

B. SUBSEQUENT CORNER POINTS

By now it should be clear that the procedure of Section A

in principle can be applied M-times in sequence to obtain the

optimal delivery function. Thus, for example, the optimal

delivery function solution to MTP (m) , which we denote by D (t)

coincides with the optimal delivery function DM (t) in the first

2m-l elements of the descriptor vectors (see (11.10) and Def.

II. 2). These elements are t, ,p,,...,p _wt . The optimal

delivery function solution to MRP (m) , which we denote by D (t)

coincides with the optimal delivery function D (t) in 2m des-

criptor elements, namely t,
, p, , . . . , t , p . Since the term

"optimal delivery function" may be confused with partial solu-

tions we will usually use "optimal delivery function of order m"

whenever we mean a solution to MTP (m) or MRP (m) for some m,

1 <_ m < M.

Using Fig. III. 3 and Fig. III. 4 to help identify the

variables we can write linear programs for solving MTP (m) and

MRP(m) as follows:

48





1 . The m-th Minimal Time Problem

Definition III.

3

The m-th Minimal Time Problem is given by

MTP (m)

:

min tm

s. t

.

m k k k
Y ( V u* (p)-

l
u*.(p)) = q!f(0), *(i,k) e N

p=l j(?i) ^ j#i) J1

J u
k
.(p)- u

k
. (p) 0, *(i,k) -:N

n , p = l,2,...,m
i(^i)

1: j(*i) 3 '

k-tc. + V u..(m) < 0, v [i, j ] € L
•3 k(?i) 13

i

k
. (m-1) < 0, *[i,i] e L rt (III. 4)t ,c. + y u. . (m-1) < 0, *[i,j] € L

ra- 1 ^ k(£i) 1]

I
u* <p) 1 At°c *[i,j] € L

Q
,

k(^i) 1J y J

p = 1,2, . . . , m-

2

•t lP
U

. + y (I u* (m-1)- I u (m-1-D) =

V ( l
u*(p)- I

u .(p)) = At p ,p =1,2, ...,m-:

i,feN n j(?i) 1] j(*i) : P P

t + t , - tm ,

m m-1 m-1
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u
ij (p) 'Wi - °' v(i

' k) N
Q

, *[i,j] 6 LQ/ p = 1,2, ... ,m

j- .0for given t^ V^p^
D

We used the following change of variables

u..(p) =

At°f*. (p) , p = l,2,...,m-2

.

v(i,k) 6 N n/ v[i,j] £ L

p
f\. (p) , p = m-l,m

(III.

5

and

n- A
+- 4- TO TAt

p = fc

p
- Vi' p =

'

Fig. III. 3 shows the relations between the various parameters

of MTP(m)

.

!

1
r^/ — — —

(1)

f\s

°>

m

Fig. III. 3. The m-th Minimal Time Problem
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Using Thm. II. 1 and the same reasoning as in Section A

we see that

Theorem III.

3

The minimal value of the objective function of MTP (m) equals

tm
D

2 . The m-th Minimal Rate Problem

Definition III.

4

The m-th minimal rate problem is given by

k
rMRP (m) : min i
r . (m)

(i,k)eN

s . t

.

(t°-£)r
k (m+l)+£r

k
(m) + At°r

k
(p) = q

k
(0), *(i,k) e Nmi i ^ p l i u

f
k
.(p) C.,, *[i,j] £ L/ p = 1,2, m+1

k(^i) 13 1D

(III. 6)

I
r
k
(p) = d°, p = 1,2, . . . ,m-l

(i,k)€N
Q

x P

r
k
(p), f

k
-(p) 1 0, *(i,k) € N

Q
, *[i,j] c L

Q
, p = l,2,...,m+l

°
for given t^p^ . . . , p

ffl-1
, tm , £

,

_

where

r
k
(p) ^

I f
k
,(p) -

I f
k

.( P ), *U,k) , N , P = 1,2 m+1
1 j(H)

1] jWi) 3

(III. 6a)

At A t ° - t° , P = l,2,...,m-l
p P P+1
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and e is any real number such that < e < t° - 1° Fiam m+ 1 * 6 '

III. 4 shows the relations between the various parameters of

MRP (m)

.

D(t)

° «S Ci

Fig. III. 4. The m-th Minimal Rate Problem

Again, using Thm. II. 1 to prove the existence of D (t]

as shown in Fig. III. 4 we conclude that

Theorem III.

4

pm-

The minimal value of the objective function of MRP (m) equals
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C. SUMMARY OF THE SOLUTION PROCEDURE

In Sections A and B we showed how to formulate the MTP (m)

and MRP(m) in LP form. The solution algorithm consists of

an iterative procedure in which we solve that pair of problems

for each new corner point of the optimal delivery function.

We refer to this kind of procedure as Sequential Linear Optimi-

zation (SLO) . We will see in Chapters V, VI and VII that the

SLO methodology is a very powerful tool for solving a variety

of complex multicommodity network and certain other problems

as well.

1. The Algorithm

We now define conditions for algorithm termination.

Suppose we have just solved the MTP(M) , and thus found t .

The optimal flow schedule of order M, D (t) is actually the

optimal flow schedule we are looking for. Suppose that we solve

now the MRP to obtain p, . It is obvious that the new flow
M

schedule F„ , (t) will generate a delivery function Q, (t) which
M+

1

Wf1

D(t)

Fig. III. 5. Stopping Rule
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is identical to D
M
(t), and the points A and B in Fig. III.

5

will coincide. Thus the stopping rule can be written as

PM (M) = PM "* St°p (HI. 7)

We can summarize the solution procedure "formally" in

the following statement.

Algorithm :

m =

Loop

m -«- m+1

solve MTP (m) and MRP (m)

if p m (M) = p then stop

Repeat

2 . Computational Complexity

We now propose a conjecture which we believe to be

correct although we have not been able to prove it rigorously.

Conjecture III.l

Let DM (t) be an optimal delivery function. Then the number

of corner points M is bounded by j

N

n |

.

M < |N
Q |

(III. 9)

where I

N

n I denotes cardinality of the set N n .

U U
Q

We briefly discuss this conjecture in Appendix F.

We do not intend to comment further on the issue of

computational complexity. There is a vast literature which
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deals with efficient solutions of medium to large linear pro-

grams, and much of it is dedicated to multicommodity struc-

tures (see [3], [4]). The objective of this thesis is to show

how to apply these LP methods to the solution of certain dy-

namic network problems.

We conclude this chapter with a simple example of a

computer solution to optimal delivery problem. An additional

example is provided in Appendix G.

3 . Computer-Solution Example

q^(0) = 85, q^(0) = 30

c.. = 1, *[i,j] € L
Q

3ql(0) = 15, q2(0) = 20^- ^ q^O) = 10, q2 «»
= 50

Fig. III. 6. Delivery Problem

The delivery problem in Fig. III. 6 was solved using the algorithm

presented in this chapter. As a result the optimal delivery

function and its generating optimal flow schedule were found.

The optimal delivery function is shown in Fig. III. 7.
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D(t)

55 t

Fig. III. 7. Optimal Delivery Function

The optimal flow schedule solution is shown in Figs.

III. 7a to e.

q^(0) =5 q^O) =10 q
3
(0) = 20 q^O) =50

Fig. III. 7a. Optimal Flow Schedule for t e [0,10]
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q^UO) = 5 q^dO) = 10 qJdO) = 40

Fig. III. 7b. Optimal Flow Schedule for t e (10,15]

q£(15) =15
qj(15) =70

q^dS) =35 03(15) =5

Fig. 111.7c. Optimal Flow Schedule for t £ (15,20]
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q^(20) =65

qlJtfO) = 30

Fig. III.7d. Optimal Flow Schedule for t e (20,50

q^(50) =5 q^(50) =10

Fig. III.7e. Optimal Flow Schedule for t e (50,57.5]

It is somewhat surprising to find that even a simple

delivery problem, such as the one considered here, should give

rise to what might seem a complex optimal flow schedule. It

is one of our aims in the following chapters, to show that what
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appears to be a "random" looking optimal flow schedule has a

lot of well defined structure to it. In particular, we shall

return to discuss the above example at the end of Ch. V.
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IV. PROPERTIES OF THE OPTIMAL SOLUTION

In Ch. Ill we have presented a sequential linear optimi-

zation methodology for solving the optimal delivery problem.

The availability of potent computational tools, like the sim-

plex method (see [5] ) , makes the attractiveness of linear pro-

gramming obvious. But it is not only the computational advan-

tage that LP enjoys. For example, the linear dependence of

optimal solution to changes, within certain bounds, in the

right hand side (RHS) makes the LP formulation specially appeal-

ing from the sensitivity analysis point of view. In this

chapter, we use this and other known results of linear pro-

gramming to determine some of the structural properties enclosed

within a multicommodity delivery network problem.

A. THE FIRST CORNER POINT

1. On the Minimum Time t.

a. The Primal Problem

For convenience we restate the First Minimal Time

Problem (see (III. lb)) in standard LP form.

MTP(l)

:

min t
1

s . t

.

I u
k
.(l) - J u*. (1) = q

k
(0), *(i,k) £ N

-t,c. + I u
k
.(l) + s..(l) = 0, v[i,j] e L

n
(IV. 1)

1 ^ k(?i) 1J 1D

k
J
ij

D

t,, S.^(l), U*_.(l) > 0, v[i,j] e L
Q

,
v(i,k) = N

Q
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The slack variable s^ . (1) gives the amount of unused capacity

of link [i,j] over the period [0,t!|], v[i,j] -: l

Example

:

0"

q^O), q^O)

q,
2
(0), s~s. q,

3
(0

1
]

q^O), q
3
(0)

Fig. IV. 1. Three Node Network Delivery Problem

The matrix formulation of (IV. 1) for the problem in Fig. IV.

1

is given below.

min t.

s . t

.

000010000-1
0000010000
0000001000
00000-10100
000000-1010
0000000001

-c
12
100110000

-c
23

o 10001100
-c

31
o 01000011

s
12

(l)

s
23

(l)

s
31

(l)

u
12 (1)

u
12

(1)

u
23

(1 >

u|
3
(l)

u
31

(1)

u
31

(1)

qjto)

q^tO)

qj(0>

q 2

3
(0)

qjlO)

q'lO)

(IV. 2)
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X
T

(1) A (t
1
,812 (l),S

23 (l),B
31

(l) f uJ 2 (l) f uJ 2
(l) f U^3(l)

U
23 (1) ' u 31 (1) ' u3l (1)) - °

I

b. The Dual Problem

The dual linear program to (IV. 1) can be written

[6] as follows:

DMTP(l): max Y a
k
(l)a

k
I a (l)q(O;

(i,k)eN x x

s . t

I 1^ (l)c <_ 1
[i,j] € L

f

TT-Lj £ 0, v-[i,j] 6 L
Q

(IV. 3)

a
k
(l) - a

k
(l) + TT

ij
(l) <_ 0, *(i,k) e N

Q
,

*[i,j] £ l
q

,

where

ak
-

and

A(l) £ (2(1),II(1))

is a vector of dual variables. The vector £(1) has n(n-l)

components corresponding to the n(n-l) conservation constraints
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in (IV. 1). Vector 11(1) has I components corresponding to the

I capacity constraints in (IV. 1).

Applying the complementary slackness theorem of

linear programming (see [6], p. 77) to (IV. 1) and (IV. 3) we

have

Lemma IV.

1

Let X(l) and A(l) be optimal solutions for the primal and

dual problems, respectively. Then *[i,j] -z L and v(i,k) e N
n

(i) u?-;(l) > - -Tr..(l) = a
k
(l) - a

k
(l)

-TT
ij

(l) >a
k
(l) - a

k
(l) - «ijd> =

ii) s^d) > ° - ^
i
-(D = (IV. 4)

where

7i

ij
(1) < - s (i) = o

k n , A n0,(1) =

D

In Ch . II. A. 2 we concluded that in our network

model, the zero state is reachable from any initial state of

the system, provided that q. (0) > -* (i,k) e N
n

. This is

equivalent to saying that problem (IV.l) has a finite optimal

solution. Using now the duality theorem of linear programming

(see [6], p. 72) we conclude that the dual problem (IV. 3) has
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also a finite optimal solution, and the corresponding values

of the objective functions are equal. An immediate consequence

of this argument is the following lemma.

Lemma IV.

2

Let t
1

be the first minimal time. Then

t? = I afd)qft(O) (IV. 5)
(i,k)eN X X

D

c. Stability

In this paragraph we briefly discuss the question

of uniqueness of the optimal dual solution and its relation

to sensitivity analysis.

Consider a linear program in standard (matrix) form

LP: min z = T'X

s . t.

A X = b (IV. 6)

X >_

G

where r is the cost vector, A is the matrix of coefficients,

b is the Right Hand Side (RHS) vector of requirements and X

is the vector of primal variables.' And its dual:

The interpretation of these quantities in the iMinimal Time
Problem context can be deduced by comparing (IV. 6) to (IV. 2).
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DLP

:

max z = A •

b

s.t.

AA < r (IV. 7)

where A is the vector of dual variables.

Definition IV.

1

For a given requirement vector b, an LP is said to be stable

or to be at a stable point if the optimal dual solution A is

unique

.

Let the LP (IV. 6 ^ be written

LP: min z = T^ + T^
s.t.

BXD + DXn = b (IV. 8)

V X
D > °

where X_ is a vector of basic variables. We can transform
B

(IV. 8) into an equivalent linear program

LP: min z = I^B^b + (T
D

- ^B^D) X
D

s.t.

X,, + B"
1DX

r,
= B

X
b (IV. 9)

B D

V X
D > °

D

If X„ is a basic optimal solution (X„ = 0) it implies that:
B
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-1
(i) X

B - B ~b >_ 0, i.e., it is primal feasible

(IV. 10)

(ii) r
D -r

B
B D > 0, i.e., it is dual feasible

and

A = r
B
B
_1

(IV. 11)

is the related optimal dual solution to DLP . It should be noted

that the primal feasibility does not depend on the cost vector

r, and that the dual feasibility does not depend on the require-

ment vector b.

Let us now consider a new requirement vector b

such that

b = b - Ab (IV. 12)

where

Ab

Thus, z denotes the magnitude of the perturbation vector Ab

and 1.. is a unit vector in its direction. In what follows
Ab

we will be concerned only with perturbations resulting in a

requirement vector b for which the LP has a feasible solution.

We call such perturbations, feasible . If Ab is a feasible

perturbation then, since the dual feasibility (IV.lO(ii)) does

not depend on the requirement vector, the new solution X to

the perturbed problem will be optimal if it is primal feasible, i.e
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-1 -1
X
B

= B
x
(b -Ab) = X

B
-B x

Ab > (IV. 13)

An immediate consequence of condition (IV. 12) is

that if X > 0_, i.e. if the optimal primal solution is not

degenerate , then there exists some real and positive e, such

that condition (IV. 13) is satisfied for all feasible directions

1 , and all < e < e, . On the other hand, if X is degenerate

it is always possible to find some direction of perturbation

such that (IV. 13) is not satisfied unless the magnitude, z ,

of this perturbation is zero.

Now, if primal feasibility is satisfied for the

new (and therefore optimal) solution XB , then from (IV. 9) we

have

min z = ?
B
B

X
(b -Ab) = min z - r

B
B
-1

Ab (IV. 14)

The change

A ^

Az = min z - min z (IV. 15)

in the optimal value of the cost function is

Az = r DB
_1

Ab (IV. 16a)
B

or in terms of the related optimal dual solution (IV. 11)

Az = A-Ab (IV. 16b)
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Definition IV.

2

Consider an optimal primal solution to LP and let A be the

related optimal dual solution. We say that a feasible pertur-

bation Ab is acceptable if the change Az in the optimal value

of the cost function due to that perturbation is

Az = A«Ab

«:

It is clear from our discussion that if an optimal

primal solution happens not to be degenerate then all feasible

directions give rise to a nonzero acceptable perturbation. We

now show that the same property holds for a weaker condition

than primal solution non-degeneracy, namely stability.

Let Ab be a feasible perturbation and assume that

(IV. 13) is not satisfied unless z = 0. This also implies that

X_, is degenerate, i.e. there is at least one basic variable at
o

zero level. If we force the magnitude of the perturbation to

be somewhat larger than zero this causes one or more of the

zero level basic variables to become negative. To satisfy

primal feasibility, a new optimal basis B has to be found by

exchanging the basic negative variable (s) with appropriate

non basic variable (s). The optimal value of the cost function

for the perturbed problem can be written as

min z = f DB
* (b -el A . )

(IV. 17)
B Ab

"^This is usually performed by a Dual Simplex pivot step(s)

(see [7]) .
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If we let £ go to zero, then in the limit we have

lim {min z} = min z (IV. 18)

from which we conclude that the optimal perturbed basis B

is also an optimal basis for the original (unperturbed) LP.

If we assume that the unperturbed optimal solution

to LP was stable (unique optimal dual) , then we have

r DB
_1

= A (IV. 19)

where A is the related optimal dual solution to the original

DLP. As a consequence of (IV. 19) we state

Theorem IV.

1

At a stable point, there exists a real and positive E-, such

that all the feasible perturbations Ab, where

ib = e£
Ab

and

< £ < £,

are acceptable.
D

The application of Thm. IV. 1 to the optimal delivery problem,

and in particular to MTP(l) results in

Corollary IV.

1

At a stable point, let t? be the first minimal time and let

AQ = {Aq
k

} be a small change in the data queues sizes. Then
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the change A^ in the first minimal time which is caused by

that perturbation of queues is

At
i I o. (1) Aq. (IV. 20)

<i f *>«H
Q

Necessary and sufficient condition for optimal

dual solution being unique is not obvious but partial results

exist. The next two results (see [5] , p. 144) indicate condi-

tions for the existence of optimal stable solutions.

Result IV.

1

If LP has at least one not degenerate optimal basic solution

then the optimal dual solution is unique.
D

Result IV.

2

If LP has a degenerate optimal solution then the optimal

dual solution is never unique if it is not degenerate.

D

To make the digression from our main exposition as

short as possible, we defer an illustration of stability in

optimal delivery problems to Appendix D. For the rest of our

study we will assume, without loss of generality, the existence

of stability whenever we consider perturbation problems. This

allows us to evaluate the effect of a perturbation on the opti-

mal value of a cost function without considering the perturbed

optimal basis, which is very convenient from the mathematical

point of view.

Our interest in the stability concept is strongly

motivated by yet another property that we find very useful for
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analysis purposes. Consider the LP in (IV. 6), and in particu-

lar let

X = (Y,S) (IV. 21)

where S is a vector of slack variables. We say that a con-

straint is critical if its slack variable is zero in all

optimal primal solutions. In the next section we show that

if an optimal solution to LP is stable, then all the critical

constraints can be uniquely identified with the help of the

related optimal dual solution. It is again worth noting, how-

ever, that there is no loss in generality associated with the

stability assumption, since in Ch. V we present an algorithm

to identify critical constraints even when the optimal primal

solution is unstable.

d. Critical Sets

In [8] Ros showed that the optimal solution to the

static flow routing problem imposes a certain partition of links

and commodities into hierarchically related sets. Our study

of the optimal delivery problem (= dynamic flow routing) re-

veals the existence of a similar structure. We obtain a some-

what more general result which involves critical sets of links

and commodities as well as critical flow rates. In hindsight,

the existence of a more general structure is not surprising

in view of the higher complexity of dynamic versus static flow

routing problems. Here we present results related to the criti-

cal sets of links and commodities. The critical flow structure

is considered in Section A. 2. Extension of these results to
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subsequent corners of the optimal flow schedule will be

studied in Section B.

We start with definition of the critical set L,

.

Definition IV.

3

At a stable point, a link [i,j] £ L
Q
belongs to the set L,

iff tt. . (1) < 0.
J

D

The links in L, have the property that they must be saturated

for the whole period [0,t,] in any flow schedule F T.(t),x K

< t < t? such that Pv (t): Q(0) > Q(t?) = 0. To see that this— — x J\ x ""

is true we need to show that the links in L. are saturated in

all optimal primal solutions to MTP(l), and that no other links

are saturated in at least one optimal solution. The first

fact follows from (IV.4(ii)) . Now suppose there is an optimal

solution for which there is some link [i,j] £ L. such that

s. • (1) = and tt. . (1) =0. Applying the theorem of strong

complementary slackness (see [9], p. 54) to (IV. 1) and (IV. 3)

we have

Lemma IV.

3

Given a pair of primal and dual programs with feasible solu-

tions, there exists at least one pair of optimal solutions

X(l) and A(l) for which:

(i) U* (1) > <-* -I^U) = CK(1) - Qj(l)

-tt..(1) > a
k
(l) - a^(l) ++ u

k
(1) =
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(ii) s
±

. (1) > « TT

i
. (1) = (IV. 23)

Tr

i
.(l) < «* s

i
.(l) =

where

c*<i> A o

D

Since by the assumption of stability the optimal dual solution

is unique, Lemma IV.3(ii) implies an existence of a different

optimal primal solution for which the link [i,j] is not saturated

any more

.

In passing we note that the optimal solutions re-

ferred to in Lemma IV. 3 are not necessarily basic solutions.

Also, Lemma IV. 3 differs from Lemma IV. 1 in that the properties

(i) and (ii) are implied here in both directions.

To see that the links in L, are not only saturated

in all optimal primal solutions but in any flow schedule that

empties all data queues by time t-j_ , it suffices to refer to the

+
proof technique of Thm. II. 1. There it is shown how a flow

schedule F
R
(t), <_ t < tj such that FR

(t) : Q(0) * Q(tJ) =

can be replaced by a constant flow schedule, F, (t) = F,

<_ t <_ t, such that F, (t) : Q(0) * Q(t,) = 0. The construction

used there assures us that a link [i,j] e L is saturated in

the constant flow schedule iff it is saturated in F
R (t) for

the whole period [0,t,]. This proves our point.

See Appendix A,
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Consider some commodity (i,k) e N
fl/

which uses

links in the set L, . Let P(i,k) be a collection of all directed

link chains connecting node i to node k. Suppose there is

k ksome chain p. £ P(i,k) such that p. n L, = 0, i.e. the set

L, and the chain p. have no links in common. In this case it

would be possible to divert more of commodity (i,k) flow into

this chain. Recall from Lemma IV. 3 that there exists at least

one optimal primal solution for which all the links [i,j] / L,

are not saturated. This makes that flow diversion possible.

But if a flow is diverted from the chains cutting through L,

,

some links in L, will become unsaturated which contradicts

the definition of the set L. . Thus, any commodity (i,k) which

is using links of L. enjoys the property

p
k

n L. ± 0, vp^ e P(i,k) (IV. 24)

If we denote by N, the set of all commodities that

use links of the set L, then (IV. 24) leads to the following

theorem.

Theorem IV.

2

The set L, is a disconnecting set for commodities in N,

.

' D

We say that a chain p. e P(i,k) is active if the

flow of commodity k is non-zero on each of its links. Let us

pick for any commodity (i,k) which is using links of the set

fWe follow here the terminology used by Ford & Fulkerson
in [10] .
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L,, one of its active chains. From Lemma iv.l(i) we have

that for each link of that chain

°a (1) = "
TT

a3
(1) + a

3
{1)

'
¥

t a '^ e Pi (IV. 25)

Using "chain substitution" we find that

°i
(1) = -"ia (1

>
+

°a (1 > " -ia (1
»

" ^3 (1
>

+
"B

(1 >

I
k "a6

ll) (IV - 26)

Since at a stable point,

< 0, iff [a, 3] e L
1

%s (1)

= , otherwise

We conclude that commodities (i,k) 6 N_ which use the set L.

have their optimal dual variable a. (1) positive. We summarize

this observation in a formal definition of the set N-, .

Definition IV.

4

At a stable point, a commodity (i,k) e N n belongs to the set

N
1

iff a^(l) > 0.

D

Again, as in the case of the set L, , it can be shown

that the set N, is unique, i.e. the same for all flow schedules

Fv (t), < t < t? such that F„(t): Q(0) +Q(t?) = 0.
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Let us consider again the optimal delivery func-

tion D (t) and its generating optimal flow schedule F^(t).

More precisely, let us look at the first part of F (t) , namely

F (1) , t
2

< t <_ t,. The delivery rate in this interval p,, is

the minimal delivery rate over all flow schedules F„(t)

,

<_ t <_ t
1

such that F
R
(t) : Q(0) - Q(t°) = 0. From the results

in this section we know that the critical set of links L-. has

to be saturated at all times t ^ [0,t,] and consequently for

all t £ (t~,t,]. The only commodities that can saturate L,

are those in the critical set N. . This being the case, we

may expect that p. is the minimal value of flow rate with

which the commodities in N. can saturate the link set L, . We

address this proposition in the next subsection.

2 . On the Minimal Rate o.

From the discussion of stability property in Paragraph

(c) of the last subsection, we conclude that there exists a

real e, e > such that all feasible perturbations AQ = {Aq.}

that satisfy the equation

I a
k
(l)Aq

k
= £ (IV. 27)

(i,k)eN x x

v
where Aq. >_ 0, *(i,k) -- N

Q
are acceptable. This means that

e describes the change in the optimal value of the minimal

time t, which is caused by that perturbation.

The plot in Fig. IV. 2 depicts the optimal delivery

function D?(t), < t < t? (the solution to MTP(l)) and its

n
perturbed version, say D?(t) , <_ t <_ t-^ -e.
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D(t)

A q.

(i,k)eN
Q

x

Fig. IV. 2. The First Perturbation Problem

The perturbed flow schedule F^(t) , <_ t <_ t,-e delivers all

but Aq., *(i,k) £ N~ of each of the backlogged data queues

q. (0) to its destination.

Suppose we can find now another flow schedule F, (t)

,

t,-£ < t < t, such that F, (t) : AQ -* 0_. This flow schedule

will generate a delivery function D, (t) , t,-£ < t <_ t, which

is shown by the broken line in Fig. IV. 2. The value of the

delivery function D^(t) at time t,-e depends on the perturba-

tion AQ that was chosen, and the locus of its possible values

is shown by the vertical line in Fig. IV. 2. Our objective is

to find a perturbation AQ , for which the value D^(t,-s) will

attain its maximum. This obviously is equivalent to finding

a delivery function D,(t) , t,-e < t _< t, with minimal value
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of the delivery rate p,(l). We can formalize now the above

construction in the following Perturbation Problem :

PP(1) : min £ Aq^

s.t.

(i,k)eN

I a*(l)Aq* = E

(i,k) e N
1

x x

Aq^ - ( I f* - I PMs = 0, *(i,k) e N

I f^, < c.., *[i,j] e L
n

(IV. 28a)
k(^i) ID ~ i: u

Aq
i'

f
ii - °' * (i ' k) £ N

'
v ti,j] € L

Q

where the positive value e is chosen small enough so that all

AQ that satisfy (IV. 27) are acceptable.

D

Due to stability assumption such an e exists and we

can rewrite (IV. 28a) as

PP(1)

:

min £ r
k

(i,k)eN
Q

X

s.t.

I aj(l)r* = 1

:k v ;k ~k
:

ii " L

j(*i) 1D
j(f«i)

I ff* -
J f* -rj 0, v(i,k) 6 N (IV. 28b)
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k(^i) 1] 1J °

*i'
f
ij - °' * (i ' k) e V ¥[i ' j] £ V

where

a
k

~v \ Aq .

Moreover, for each acceptable perturbation and in

particular for the optimal solution to PP(1) there exists a

feasible flow schedule F?(t) , <_ t <_ t,-e such that

)?(t°-e) =
I (q

k
(0)-Aq

k

(i,k)eN x x

here, since as a result we can state the next theorem.

Theorem IV.

3

D?(t,-e) = (q.(O)-Aq.). We stress this observation
(i,k)eN x x

At a stable point, the minimal value of the objective func-

tion of PP(1) is equal to p.

G

An immediate implication of Thm. IV. 3 is that the

minimal flow rate p, can be found in a much simpler way than

by solving MRP(l) . The number of variables and constraints

in PP(1) is considerably smaller (we are not concerned with

flow variables corresponding to the period [0,t,-e]) than in

MRP(l). The only limitation is that the formulation of PP(1)

is valid for stable points.

A more important consequence of Thm. IV. 3 is that it

enables us to obtain a new insight into the problem by a
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careful study of (IV. 28b). First, we want to indicate that

problem (IV.2Sb) is feasible. As an example we can pick any

1
E, < £ < t, and a perturbation

Aq
j_

= er^(l), *(i,k) e N
Q

, (IV. 29)

where r, (1) is the net delivery rate for the flow schedule

F°(t) , v(i,k) £ N
Q

. Then

f
ij

{1) = f
ij

(1)
'

* k
'

* [i 'J ] e L
Q

(IV. 30)

is a solution to PP(1) . The corner point of the resulting de-

livery function D^(t) is schematically indicated as point A

in Fig. IV. 2. We say that the flow pattern of the optimal

solution to MTP(l) is a feasible solution to PP(1).

Another simple observation results from the structure

of PP(1)

.

Lemma IV.

4

In the optimal solution to PP(1)

r
k

= if a
k
(l) < (IV. 31)

This, together with the fact that a.(l) = 0, *(i,k) / N, sup-

ports our previous observation that only commodities in N,

play a role in the first segment of the optimal delivery function.

1 By flow pattern we mean the flow composition, without any
particular reference to time, e.g. an m-piece flow schedule is

constructed of m flow patterns.
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The perturbation equation

I nfd)? = 1
(i,k)eN

1

X X

has a very important interpretation: it expresses the condi-

tion that the flows of commodities in N, need to satisfy in

order to saturate the set L, . This interpretation can be de-

duced by the following argument. The flow shcedule F, (t)

,

t,-e < t <_ t, whose flow pattern is obtained from the solution

of PP(1) must saturate L, with commodities from N, , since it

is a part of two segment flow schedule which delivers all the

queues by t, . Now, if we look carefully at the constraints

of (IV. 28b) there is nothing there, beside the perturbation

equation, that can account for this saturation property.

Theorem IV.

4

At a stable point, let £(1) be the optimal dual solution to

MPT(l). Then a feasible flow pattern F, of commodities in

N, saturates the set L, iff

I a*(l)r* = 1.
(i,k) £ N

1

x

Q

The next topic we want to consider is the lower bound

on p. . Suppose that we remove the feasibility constraints from

(IV. 2 8b) and end up with

"0 r ~k
p. = mm I r.
1

(i,k) t N
1

x

s.t.
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I a^(l)r* = 1 (IV. 32)
(i,k) t-N

1

1 x

r* > 0, Y(i,k) e N
x

.

D

"0
It is obvious that p, p,, and thus can serve as a lower

bound. It also is easy to see that for this simple LP

where

'l " 1/a
max (1) ' < IV - 33 >

a (1) = max {a*(l)}max / • t \ xt i
(i,k) ~N

1

Theorem IV.

5

At a stable point, the minimal rate p, satisfies

p? 1/a (1), (IV. 34)
X — Iua.X

wnere

a (1) = max {a . (1) } .

max
(i,k) e N

x

X

D

A related result states

Lemma IV.

5

At a stable point, if the optimal delivery function of

order one, D, (t) , <_ t _< t, satisfies

82





a
i
(1) = a

max (1)
'

* (i ' k) ~: N (IV ' 35
:

then it is the optimal solution to the delivery problem.

Proof :

Suppose that condition (IV. 35) is satisfied. By Thm. IV.

4

we must have that (in this case N, = N_)

I a
k
(l)r

k
(l) = 1 (IV. 36)

(i,k) € N
x x

Substituting (IV. 35) into (IV. 36) results in

I r
k
(l) = l/o (1)

(i,k) eNn
X

(IV. 37)

But the left hand side of (IV. 37) is equal, by definition, to

the total flow rate p, (1). Comparing with (Iv.34) we must conclude

that D, (t) is already the optimal delivery function and

P 1 ( 1 ) = P i
•

D

An interesting case occurs when

a
k
(l) = a (1), v(i,k) e N, (IV. 38)

l max 1

and

N
l = N

o

The delivery rate of the flow schedule solution to MTP(l),

F, (t) , may be viewed as composed of two constituents.
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P 1
(l) = p(N

1
) + p(N

Q
-N

1
) , (IV. 39)

where p (A) denotes the delivery rate due to commodities in the

set A. Using Thm. IV. 4 and substituting (IV. 38) into the

perturbation equation we obtain

p(N, ) = l/o (1)
1 max (IV. 40)

Since all the backlogs are delivered by the time t-T , we conclude

that

P(N -N
1

) ^o , . , 4

L

tj (i,k)-: N
Q
-N

1

q*(0 (IV. 41)

We now show that in this particular case there exists

a solution to PP(1) in which p, attains its lower bound, namely

l/o (1) • Fig. IV. 3 will help the reader to follow the
max * *

argument.

D(t)

F
1

(t) - Djt).

F^(t) *.o£(t)
p a) = i/o(D +4- I1 ^ t° (i^)-:^-^

q*(0)

D°(t) - F°(t)

<-

Fig. IV. 3. Special Case of the First Perturbation Problem
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Let us take the flow schedule solution to MTP(l),

F-^lt), _< t <_ t, and increase the flows of all the commodi-

ties in the set N ~N
i

• This is possible since none of these

commodities passes through L,, and thus all use only unsaturated

links. As a result all the queues of commodities not in N,

will be fully delivered prior to t-, , say by some tine t,-£.

Let us denote this new segment of a flow schedule by F?(t) ,

<_ t <_ t,-e as shown in Fig. IV. 3. In the remaining time

interval (t,-£,t,], only the commodities in N, will continue

to flow with a total rate p. (1) = 1/a (1) . This is denoted
1 max

by F, (t), t-,-£ < t <_ t, in Fig. IV. 3. Comparing this value

of p, (1) with the lower bound on p, (IV. 34) makes our point.

Two observations are appropriate here. First, in this

particular case it is not necessary at all to solve the PP(1)

since the minimal rate value is known to be p n = 1/a (1)K max

ahead of time. Second, there is a slight change in the notion

of the next time problem. In MTP(2) we will be looking ex-

plicitly for the minimal time t~ by which all the queues of

commodities not in N, can be fully delivered to their destina-

tions, given that queues of commodities in N, are delivered by

the time t, . These two observations have a considerable im-

pact in the case of single destination networks where the

special case we consider here turns out to be the general case.

3. THE SECOND CORNER POINT

We now begin a study parallel to that carried out in Section

A, and define and describe the same type of concepts and
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results that were derived for the first corner of the optimal

delivery function. Since most results will be totally analo-

gous we will not dwell on their proofs, unless the reasoning

behind a proof is very much different from that in Section A.

1 . On the Minimal Time t
?

The Second Minimal Time Problem can be written (see

Def. III. 3) in standard LP form as

MTP (2) : min t
2

s . t

.

2

( u
k
.(p) - u

k
(p)) = q*(0), *(i,k) e N,

=1 j(£i) 1: j&i) 31p=± j

U* (2) -
I u

k
(2) = q

k
(0) , *(i,k) i N,

j(*L) 1D j(*i) ]1

I uf, (p) - I u*. (p)-di(P) = °' ^(i*k) € N ,

j(yii) 1J j(*i) D1

P = 1,2

k
. (1) = 0, v[i,j] € L, (IV. 42)t,c . + u. .

1 ^ k:(i'k)-: Nl ^

T u
k

. (1) + s.

.

(1) = 0, *[i,j] / L,
1 lj

k: (i,k)eN

)
u
k

. (2) = 0, v[i, j] e L.
2 ij

k: (i,k),N
1

-t~c. . + J u
k

. (2) + s. . (2) = 0, v[i,j] d L.
2 ^ ktfi) ^ 1D
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-tlp ? + I (. I. uj.(l) - uii(D)(i,k)£N
x

j(^i)
ij

j(£i)

4 + t
2

= t
°

k, » k
' ll ' JJ "0

v (i,k) £ N

d
i
(p), u

i
(p) , s

ij
(l), s

i
(2), t

x
, t

2
> 0, v[i,j]

for given t, and p.

D

In the formulation of (IV. 42) we have incorporated some of the

results we derived earlier in this section. All the flows in

the first time interval (t~,t,] are due to commodities in the

set N, . This is so because any commodity (i,k) / N, ceases

to flow (its queue is completely delivered) , in an optimal

solution, prior to time t, . Also, there is no need for slack

variables in capacity constraints for links in L, , since we

know that they must be saturated for all t e [0,t,] . We note

that the third constraint in (IV. 42) accounts for no intermedi-

ate data storage (d. (p) denotes the surplus variable for this

constraint, v(i,k) e N, , p = 1,2). In Fig. IV. 4 we indicate

the basic relationship between the various parameters of

(IV. 42)

.

Let A (2) = (X(2),n<l) ,£2(2) ,11(1) ,II(2),a
p
(l),a

t
(2))

be the vector of dual variables for the dual problem to (IV. 42)

The vector £(2) has |N
Q |

components corresponding to the first

two delivery constraints of (IV. 42). The vectors Q(l) and

0(2) , have |N,| components each and they correspond to the
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D(t)

Fig. IV. 4. The Second Minimal Time Problem

"no intermediate storage" constraints for both epochs (p = 1,2

in the third constraint of (IV. 42)). Vectors 11(1) and H(2)

have |

L

|
components each and correspond to the capacity con-

straints in both time periods. Finally, a (1) and a (2)

represent the dual variables corresponding to the rate and the

time constraints, respectively.

Lemma IV.

6

(IV.1)
T

Let X(2) and A (2) be optimal solutions for the primal and

dual problems, respectively. Then *[i,j] £ L
Q

and *(i,k) e N
Q

(i) u?j(2) > -,..(2) o*(2) - a*(2)

-n
±

. (2) > a?(2) - a*(2) + u. . (2) =

4.

We will indicate in the brackets the analgous result in
Section A.
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(ii) s
±j

(2) > - TT

ij
(2) = if [i,j] / L

±
(IV. 43)

7r

ij
(2) < - Sij (2) = if [i,j] / L

x

tt . . (2) is unconstrained in sign if [i,j] s L,

where

o£(2) £

Li

Application of the duality theorm of linear programming results in

Lemma IV.

7

(IV. 2)

Let t~ be the second minimal time. Then

t2 = I 0^(2^0 + a (2)t? (IV. 44)
(i,k)eN

Q

X X t 1

D

It is worth noting that t„ depends on the queue sizes and on

I
It is not difficult to see that at a stable point

a. (2) < 0: Suppose that we resolve MTP(2) while we let

t, + t,+At, . Now it is possible to deliver some small amount

of each commodity in this additional interval and we expect
A A

t
2

to decrease as a result by some At
?

. Recalling that at a

stable point, a, (2) relates the perturbation to the change in

an objective function, we conclude that a, (2) < 0.

The discussion of stability in Section A.l.c applies

without change to MTP(2) and we obtain:
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Lemma IV.

8

(Corollary IV. 1)

At a stable point let t„ be the second minimal time and let

(AQ,At^) be a small change in the data backlogs sizes and in

the minimal total delivery time t-,. The corresponding change

in the second minimal time At- is given by

At° = I 0^(2)^ + a (2) At? (IV. 45)
(i,k)eN

Q

ii-l
D

Following the discussion in Section A.l.d we define

the critical set L
2

.

Definition IV.

5

(IV. 3)

At a stable point, link [i,j] e L
Q
belongs to the set L

2

either if [i,j] £ L, or if [i, j] / L, and tt . . (2) < .

D

The links in L„ have the property that they are saturated for

the whole period [0,t
2

] in any flow schedule FK (t), <_ t <_ t,

such that

i) F
R
(t): Q(0

(ll) PR ( 1) = Pj_/ ^t £ (t
2
/t

1
.

(IV. 46)

We note that the necessity to break the definition of

L
2

into two exclusive cases results from the fact that it . . (2)

is in general not restricted in sign (see Lemma IV.o(ii)),

'1for links [i,j] e L n . Thus, a simple statement like
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[i,j] e L
2

f-*-iT
i

. (2) < 0, will not be correct. With the same

precaution we define the set N_ as follows.

Definition IV.

6

(IV. 4)

At a stable point, a commodity (i,k) -: N
Q
belongs to the

set N
2
either if (i,k) s m or if (i,k) / N, and a

k
(2) > 0.

D

The commodities in N have the property that they must

flow through the set L
2

and saturate it during the interval

[0,t
2

] for all F
R

(t) such that (IV. 46) is satisfied. Using

the same arguments as those leading to (IV. 24) we have

Theorem IV.

6

(IV. 2)

The set L
2

is a disconnecting set for commodities in L n .

U

A false impression may result from our discussion,

namely that each corner point in the optimal delivery function

implies a new pair of critical sets. This is true only for

the first corner point. It is possible that, for example,

L
2

= L, and correspondingly N„ = N, . This would be the case

when the corner point occurs because the commodities in N,

can not maintain the minimal flow rate p, any longer (backwards

in time) . At this point a new rate o
2
will be computed without

change in either L, or N, . This brings us into the discussion

of p 2
.

2 . On Minimal Rate p
2

Our objective here is to study the properties of p
2

and its interpretation. As before, we will rely on the stability

assumption to simplify analysis.
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D(t)

D
x
(t)

Fig. IV. 5a. The Second Perturbation Problem

Fig. IV. 5a depicts the optimal delivery function D~ (t) ,

t t, (solution to MTP(2)) and its perturbed version

D^tt), <_ t <_ t.-e. The perturbation equation derived in

Section A (IV. 27) is not applicable here. We want to find a

n
perturbation AQ such that Dp(t_-e) will be maximal but at the

same time we must preserve previous results, i.e. the minimal

rate p. and its duration t,-t„. The perturbed delivery function

Dp(t) in Fig. IV ,5a has the required properties. It is described

by a generalized perturbation equation

E =
I a*(2)Aq* + eo (2)

(i,k)eN
(IV. 47a)

which may be also written as

T^TIT *
a
i
(2)r

i
= X

1 °t^ } (i,k) €N
Q

(IV. 47b)
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As in PP(1), we require from the flow schedule F, (t)

,

t
1
-e < t < tj_ to satisfy F

1
(t) : AQ + 0. The broken line in

Fig. IV. 4 denotes the delivery function D, (t) which is gener-

ated by F, (t) . Now, if we permute the segments denoted by

(b) and (a) , by permuting the corresponding flow schedules in

time (this is always possible) , we obtain the desired struc-

ture as shown in Fig. IV. 5b.

waxiD^(t°
2
-t) }

t
2
-e t

2
t
x

t

Fig. IV. 5b. The Second Perturbation Problem (Permuted)

Since maximizing D?(t
2
_ £) is equivalent to minimizing

the delivery rate p, (1) we can finally state the PP(2)

.
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PP(2) :

min 1 r

.

(i,k)eN X

s . t

.

1 r k ,„, ~k
l-g ( 2 )

L a
i
(2)r

i
= 1

t UJ (i f k)eN
X X

IV. 48)

I fi, " I rf±
" r* = 0, *(i,k) e N

:k
r

k(^i)£„
f
ij -

c
ij' * [i ' j] £ L

o

f
ij'

r
i - °' * [i 'J ] e LQ/ *(i,k) £ N

Q

G

By the stability assumption, all perturbations AQ

that satisfy the perturbation equation (IV. 47b) are acceptable,

and for each perturbation there exists a perturbed delivery

function D?(t) of the form discussed. Due to this fact we

can state the following.

Theorem IV.

7

(IV. 3)

At a stable point, the minimal value of the objective function

for PP(2) is equal to p~.

The analysis of PP(2) leads to exactly the same results

as for PP(1), aside from the slight modifications introduced

by the factor 1/1-a (2) in the generalized perturbation equa-

tion. We state those results here for completeness:
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From the structure of PP(1) we have

Lemma IV.

9

(IV. 4)

In the optimal solution to PP(2)

r* = 0, if a*(2) <_ (IV. 49)

D

kThis, together with the fact that a. (2) = 0, *(i,k) { N-

supports our previous observation that only commodities in

N
2

play a role in the second segment of the optimal delivery

function.

The interpretation of the generalized perturbation equa-

tion is analogous to that in PP(1). Observing that this is the

only condition in the statement of PP(2) that can account for

the fact that commodities in N_ must saturate L„ , we have

Theorem IV.

9

(IV. 4)

At a stable point, let \{2) be the optimal dual solution to

MTP(2). Then a feasible flew pattern F, of commodities in N„

,

saturates the set L- iff

) a . (2) r . = 1
t », li1' CJ

t
(2) (i,k)-:N

2

D

The lower bound on p„ has basically the same form as

the lower bound on p.
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Theorem IV. 10 (IV. 5)

At a stable point, the minimal rate o~ satisfies

^V 2 '

°2 - 5 (2) l (IV. 50)
max

where

a
max<

2
» = ,.

m
f* „

{o
i<

2 ')
(i,k) -N-

D

We can be certain that the flow schedule solution

D2<t), <_ t <_ t, generates the optimal delivery function if

(cf. Lemma IV. 5)

a*(2) = a (2), *(i,k) £ N 9 (IV. 51)
l max z

The special case that we discussed at the end of the

last section applies here as well. As we indicated there we

will discuss it in detail in the single destination networks

case in Chapter V.

C. SAMPLE PROBLEM

From previous sections it is apparent how everything studied

so far generalizes and applies to any corner point. From a

conceptual point of view only two corner points have to be

studied, since corner three, or any subsequent corner presents

no significant difference with respect to the second corner

point. We believe that it will be more enlightening to present
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a detailed study of a sample problem than repeat the same

ideas again.

Example

:

q2
(0)=4q/ 2 q^o) = q

= 1, v[i,j] e L

Fig. IV. 6. Sample Delivery Problem

As the first step in solving the delivery problem in Fig.

IV. 6 we wish to find the composition of the first critical set

N . Obviously, N, can be only one of the following:

(i) {(1,4)}, (ii) {(2,3)}, (iii) {(3,2)}, (iv) { (1 , 4) , (3 , 2) } ,

(v) {(3,2) , (2,3) }, (vi) {(1,4) , (2,3) }, (vii) { (1,4) (2,3) , (3,2)

}

In what follows we consider explicitly each one of the above

possibilities.

(i) — For this case commodity (1,4) must have all its chains

(here, there is only one) going through L, , which implies that

at least one of the links [1,3], [3,2] or [2,4] must be in L,

.





But this would imply that at least one of the commodities (2,3)

or (3,2) uses links in L, and thus belongs to N, . This contra-

dicts (i) .

(ii) -- For this case commodity (2,3) must have both of its

available chains going through L, , which implies that at least

one link in each of the following pairs, { [2 , 1] , [1 , 3 ] } and

{ [2 ,4 ] , [4 , 3] } must be in L, . It is not difficult to see that

if link [2,1] is saturated so is [1,3]. Similarly, if link

[4,3] is saturated so is [2,4]. This implies that commodity

(1,4) uses links in L, and thus belongs to N, . This contra-

dicts (ii) .

(iii) — In principle the same type of argument applies

here; we write in shortened notation:

N
x

= {(3,2)} - [3,2] -; L
1

- (1,4) <l N
]

_

-> N
±

? {(3,2)}

(iv) - In this case L = {[3,2]}. Suppose that commodity

(1,4) is using link [3,2] with some flow rate a, and conse-

quently commodity (3,2) is using that link (remaining capacity)

with flow rate 1-a. Then it is true (remember that at this

stage we are solving for a constant flow schedule) that

q>) _ q
2

3
(0)

'1 a 1-a

or equivalently

t
° = i£ = _g_c
l a 1-a
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We can eliminate the flow variable a by using the law of

proportions, namely ^ = £ = |±^, such that

_ 2q + q
fc
l " a ? 1=5

= 3q

Now, we can also solve for a, to obtain a = 2/3. The remain-

ing capacity on links [1,3] and [2,4] is thus 1/3 (actually,

less than 1/3, say j-e , £ > 0, since commodity (2,3) { N-, and

in the solution to MTP(l) it must flow only through unsaturated

links) . We find that the time required to deliver the queue

of commodity (2,3) is

2 (-j -e)

which contradcits our assumption in (iv)

.

(v) — We have already seen in (iii) that if commodity

(3,2) £ N, then also commodity (1,4) £ N, , which contradicts

(v) .

Exercising our advantage over the reader in knowing the

solution, let us study possibility (vii) prior to (vi)

.

(vii) — This case is equivalent to (iv) if we let s e

(now commodity (2,3) e N,) in our discussion there. Then it

must be true (for an optimal solution to MPP(l)) that

Q qj(0) q^O) q^O)
'1 a 1-a 2(l-a)

or equivalently

,
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2q
a 1-a

4q
2 (1-a)

where the last equality can never be satisfied for non-zero a

We conclude that (vii) cannot be accepted as correct.

.vi. For this case L, = { [1 , 3] , [2 ,4 ] } (the remaining

commodity (3,2) uses the unsaturated link [3,2] only, as

required) . The chain flow decomposition of the constant flow

schedule solution to MTP(l) is shown in Fig. IV. 7.

qj(0)

3 < 1-a

q^(0)

Fig. IV. 7. Chain Flow Decomposition

It must be true then that

qj(o)

a 2 (1-a)

q^O)

8
(IV. 52)

where

3 < 1-a.
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If we consider in (IV. 52) only those elements that have the

variable a associated with them, we have (using the law of

proportions)

2c
*l

(0) +4 {0)
4 1 3H =

2a + 2 - 2a
= V 0) + 2V 0) (IV ' 53)

For the queues sizes we have selected,

t
1

= 4q (IV. 54)

Using (IV. 52) and (IV. 54) we can evaluate a,

a = || = \, (IV. 55)

and 8

3 =
4q

=
T'

(IV. 56)

which is less than 1-a = ~- (as desired) .

Now that we have established t-, , N, and L-. we turn to

calculate p, , the minimal delivery rate in the first interval

of the optimal delivery function. Recalling that (see (IV. 5))

t? = I o£(l)q£(0),
1

(i,k) £ N
1

and comparing to (IV. 53) results in

aj(l) = 1, a\{l) = j. (IV. 57
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To obtain p, we have to solve PP(1) (IV. 28b),

PP(1)

:

s. t.

mm
(i,k)eN.

~k
r
i

1 = k,, % ~k

(i,k) € N
I aJUJr*, (IV. 58)

and

{r-}, *(i,k) e N, is a feasible set of delivery rates

Consulting (IV. 57), problem (IV. 58) can be solved by

inspection yielding

(rlf r2 ) = (1,0) , (IV. 59)

which is shown in Fig. IV. 8.

Fig. IV. 8. Solution to the First Minimal Time Problem
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Thus, we conclude that

P 1
= 1

The fact that the solution to PP(1) is unique, considerably

simplifies the formulation of MTP(2). Let Q(t
2

) denote the

system state at time t~ , < t
2 £ t-,. From our study we know

that there exists a constant flow schedule F(t) , <_ t <_ t
?

such that F(t) : Q(0) * Q(t
2

) . This fact can be expressed by

the chain flow decomposition in Fig. IV. 7 if we substitute

Q(0)-Q(t
2

) for Q(0). Also, we cannot be sure any more (nor is

it required) that 3 < 1-a, since it is possible that N
2

= N, u (3,2

Because of the uniqueness property of the optimal solution to

PP(1), we have that the components of Q(t
2

) are

/ (t;-tL
,

'1' i,k) = (1,4;

otherwise.

k k
Since q-(t

2
) <_q.(0), *(i,k) e N then in particular

q l
(t

2
}

= (t
l
_t

2
)p

l - ^l^^ (IV. 61a)

or equivalently

t
2

> tj - qj(0) = 2q (IV. 61b)

Equation (IV. 61b) presents a lower bound on the minimal value

of t
2

, i.e. t
2

>_ 2q.
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Let us check whether it is possible that t~ = 2q. This

is equivalent to asking whether the queues of commodities (2,3)

and (3,2) can be delivered within the time interval [0,2q].

Since commodity (2,3) and (3,2) have no common links in their

respective chain flow decomposition we can assign a flow rate

of 2 to commodity (2,3) and a flow rate of 1 to commodity (3,2) .

It is easy to see that it will take -S- = 2q and 3- = q units

of time to deliver the respective queues to their destinations.

The complete optimal flow schedule is now shown in Fig. IV.

9

q2
(0) =4q

£

o < t < q

Q 2
q3 (0) =q

q1
(t=2q) =2q

q < t < 2q 2q < t <_ 4q

Fig. IV. 9. Optimal Flow Schedule
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'he optimal delivery function is shown in Fig. IV. 10

D(t)

Fig. IV. 10. Optimal Delivery Function.

D

A remaining problem, which, does not arise in the foregoing

example, concerns the possibility of loops existing in the

flow solution. Evidently, such loops cannot affect the opti-

mality of the delivery function, but nonetheless their exis-

tence is not aesthetically pleasing. Two comments are in

order: First, such loops cannot appear if the input traffic

between all pairs of nodes is non-zero. Second, given the

time and rate parameters of the optimum delivery function, all

loops can be eliminated by solving the last flow problem

again, but this time with the objective of maximizing the sum

of the link slack variables.
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V. SINGLE DESTINATION NETWORKS

By a Single Destination Network (SDN, for short) we mean

that all the data traffic in a network is destined to a single

node. Without loss of generality we will assume that node to

be n, n £ V. Accordingly, for present purposes we redefine

N
fi

= set {i} of all nodes such that node i can communicate

to node n, i f- n.

In general, we will simplify the notation by dropping out the

destination indication, which is implicitly understood to be n.

Naturally, all the results that were derived for multi-

commodity case apply to SDN. Their generality though, tends

to hide some of the unique properties of SDN which we study

here.

A. THE FIRST CORNER POINT

The single destination variant of MTP(l) is given by

MTP (1) : min t.

s . t

.

I u. . - u. . = q. (0) , vi N,

j(*i) "« j(?i) D1

-t,C. + u. . + S. . = 0, v[i,j] £ L n
(V.l)

1 13 13 l]

t1# U
i

-, s
i

. > 0, *[i,j] e L
Q
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where we have used the previously defined change of variables

u
ij - t

i
fiy * Ci '^ ] e V

The dual linear programming form to MTP(l) can be formu-

lated exactly as in the multicommodity case. The same state-

ment applies to the discussion of stability and to the defini-

tions and properties of the sets L, and N, . Let us assume,

at this point, that the optimal solution to MTP(l) is stable.

Hence, the sets L, and N, are uniquely determined by MTP(l)

.

Later on in this chapter, when we discuss the solution algorithm

for SDN, we will relax this assumption.

By Thm. IV. 2, the set L, is a disconnecting set for nodes

in N, , i.e. every chain that connects any of the nodes i e N.

to the destination n has at least one of its links in the set

L, . We shall see in the next few paragraphs that the maximal

flow rate p (N, ) with which data can be delivered from theH max 1

set N, to the destination node n is given by the Max-flow

Min-cut theorem (see [10], p. 11]

p (N,) = max I r. = CS (N, ) , (V.2)
maX 1

{P} icN
x

X 1

where CS (N.. ) is the value of a minimal cut-set, separating

the set N, from node n.
±

It is important to realize that in the SDN case the multi-

commodity delivery problem turns into single commodity' problem

Discussion of the differences between single commodity
and multicommodity can be found in [9]

.
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which makes the notion of minimal cut-set meaningful. To

prove (V.2), consider an optimal flow solution to MTP(l). A

typical source node i, i « N, is shown in Fig. V. 1(a). The

initial queue q. (0) is diminished with a rate r. (1) (net

delivery rate of data from node i) such that q. (t?) = 0. Part

(b) in Fig. V.l describes an equivalent setup made up of a

virtual node v connected to node i by an infinite capacity

link [v,i] . There is a constant data input with rate r. (1)

to node v.

q±
(0)

<_ t <_ t"

Fig. V.l. A Source Node in an Optimal Solution to MTP(l)

If we extend the model to all nodes in the set N. , the result

is as shown in Fig. V.2.

Recall now that the critical set N, consists of all nodes

i, i -: N. which determine the minimal time t. . An implication

of this characterization is that it is impossible to increase

any of the initial queues (while not changing the others)
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Fig. V.2. The Flow Pattern of F?(t) , <_ t <_ t?

without causing t, to increase. Equivalently no delivery rate

r.(l),i = N, can be increased, even momentarily, without

decreasing some of the other delivery rates.

To show that the flow pattern originating in node v and

terminating in node n, as shown in Fig. V. 2, is maximal it

suffices to demonstrate that there is no flow augmenting path

(see [10], p. 12] from node v to node n. The existence of

such a flow augmenting path would manifest itself in an allowa-

ble increase of flow rate on exactly one of the links [v,i],

for some i e N, . But this would be equivalent to an increase

in exactly one delivery rate r. (1) , for some i e N, (without

changing any of the others) which is just what we have shown

to be impossible. This brings us to the conclusion:
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Theorem V.l

Let F^(t) f <_ t <_ t, be an optimal flow schedule solution

to MTP (1) . Then

I r (1) = CS(N ) (V.3
ieN

1

±

As all the queues are reduced to zero by the time t!j we

can write

I q± (0)
lc' N

l
fc
l

=
CS(N,) ^ V - 4

But it is also true that (see Lemma IV. 2)

J a
i
(l)q

i
(0) (V.5)t

(

icN
1

Comparison of (V.4) and (V.5) raises a question about the

functional relation between the set of optimal dual variables

and the value of the minimal cut-set CS (N, ) . The next lemma

answers this question.

Lemma V.l

At a stable point, let T (1) be an optimal dual solution to

MTP(l) . Then

a
i
(l) = 1/CS(N

1
) , vi -; N

]_

(V.6)

110





Proof :

Suppose that not all a^d) , i e N, are equal, and let a and

b be a pair of sources in N, such that a (1) > a, (1). Define
-L a d

a new delivery problem for which

i qa
(0)-Aa, if i = a

q i
(0) = I qb

(0)+Ab / if i = b (V.7)

V q (0) , otherwise

and

•a (l)Aa + a, (l)Ab = (V.8)a d

where

Ab > Aa >

At a stable point, we can always find a perturbation (Aa,Ab)

for which (V.8) is satisfied and the perturbation is acceptable

It is not difficult to see that condition (V.8) implies the

fact (see Corollary IV. 1) that

l{ = t° (V.9

~0
where t, is the first minimal time for the new problem. The

total delivery rate of sources in N, is, for the new flow

schedule,
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I q ± (0)

leN,
P(N

X ) = Tq (V.lOa)

which can be also written as

p (N
1

) = p (N
1

) + £ (V.lOb)

where

A Ab - Aa

We already know that p (N, ) = p (N, ) , and from (V.lOb) and
j. max j_

the assumption that a (1) > a, (1) we have that e > 0. Thus
a d

p(N, ) > o JN,) = CS(N,) (V.ll)
I max 1 1

which of course is impossible. This contradicts our initial

assumption about an existence of unequal dual variables. As

a consequence we may rewrite (V.5) as

4 " Vk (1
» .1 1i<°>

(V - 12 »

leN,

and comparison to (V.4) completes the proof.

D

It is interesting to observe in consequence that in SDN,

the first minimal time t, is always equally sensitive to changes

in any of the queues in the set N,
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One of the significant properties of the set L. is that it

must be saturated by flows originating in the set N, , through-

out the interval [0,t,]. The total rate of the saturating

flows was found to be maximal and thus equal to CS (N, ) . It

is quite obvious that this flow rate cannot drop from its

maximal value, even momentarily, since this would cause some

of the data coming from sources in N-, to be delivered later

than t, . This observation holds for all flow schedules, as

long as they terminate by time t, . We conclude that no seg-

ment of an optimal delivery function may have a slope less than

CS(N,)

.

Lemma V.2

Let D„(t) , < t < t, be an optimal delivery function in SDN.
M — — I

Then

p° > CS(N, ), m = 1,2, . . . ,M. (V.13)
m — 1

We will show now that (V.13) is satisfied with the equality

for the first segment of an optimal delivery function. Suppose

that in the optimal solution to MTP(l) we find that N
1

= N
Q

.

The total delivery rate of F, ( t) , <_ t < t
±

is maximal and

ecrual to CS(N_) . It can be easily seen with the help of the

sketch in Fig. V.3 that the existence of a delivery function

(shown by the broken line) that dominates D
1
(t) would imply a

delivery rate p'(N-) > CS(N
Q

) which is of course impossible.

We must conclude that D^(t) , <_ t <_ tj is the optimal delivery

function. This proves our claim for the case of N
1

= N
Q

.
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D(t)

Fig. V.3. Delivery Function with Maximal Flow Rate

In general we may expect in a solution to MTP(l) that

N, c N
n

. In this case it is possible to increase all the de-

livery rates of sources in N^-N, since they use (by definition)

only unsaturated links. Hence, all the data backlogged in these

nodes will be completely delivered prior to time t, , say at

some time t,-e. In the remaining interval only data from the

set N, will continue to flow in the network, with the rate of

CS (N, ) . This simple construction proves the existence of a

two part (e > 0) flow schedule with a delivery rate of CS(N,)

in the interval (t,-e,t,].

Corollary V.2

Let DM (t) be the optimal delivery function in SDN. Then

p^ = CS(N
1

) (V.14)

D
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The proof leading to Corollary V.2 deserves some addi-

tional discussion. Let us consider an optimization problem

in which the objective is to minimize the total delivery time

of data backlogged in N_-N, , while keeping the delivery time

of data queued in N, at time t, . This is a slightly more

formal statement of the construction method we used to prove

Corollary V.2. Since the solution to this problem will auto-

matically satisfy (V.14) we may use this new formulation as

a substitute for our previous formulation, which required both

MRP(l) and MTP(2) in order to obtain the value of t- . The

substitute optimization problem can be written as follows.

mm t~

s.t

( u. . (p) - U. . (p)) = q (0) , *i -; n , p = 1,2
p=l j(^i) ^ j(^i) ^ X

u.
. (p) - u.

.

(p) 0, *i e N, , p = 1,2
j(^i) i:

j(^i) Dl

I u..(l) -
I U,.(l) = q.(0), *i -: N -Nl (V.15)

?i) 1D j(^i) 3JW

t„c . . + u. . (1) < t n c.

•

2 i] i] 1 iD

tjC. . + U. . (2) <_ 0, v[i, j] e L
{

u..(p),t
2

> 0,v[i,j]-:L ,P=l,2,

D
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where we have used the notation

(i) U..(l) A (tj-t^fy

(ii) u..(2) A t
2
f..

The formulation (V.15) depends on the knowledge of the set

N, (and the time t, ) , and hence on stability of MTP(l) . As

we indicated before, we will later show that the stability

requirement is not necessary.

We now show net only that MRP(l) is not needed in SDN, but

that the optimization problem in (V.15) can be formulated in

a much more efficient way (with regard to the number of varia-

bles and the number of constraints) . The basic idea is that

the flow pattern of data delivered from the set N, in the

°-t°
'2

c
l

period (t -t, ] can be made identical to its pattern in the

interval [0,t
2
]. In other words , let p. £ P(i,n) be an active

link chain used by some source i, i e N, with a rate r. [p.]

,

vt e [0,t
2 J. Then the same chain can be used to forward data

from source i with the same rate r
. [p . ] , vt e (t

2
,t,]. In

order to see it we need the following result.

Theorem V.

2

There exists an optimal flow schedule FM (t) , < t < t,

for which

q ±
(0)

r.(t) = -~— , vt £ [0,t^] and *i e N
]_

(V.16)
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Proof :

Before we start with the proof, we remind the reader that

r. (t) is the net delivery rate of data from node i at time t

(see (II. 2) ) .

Let i and j be any two nodes such that i ~ N, and j £ N n~N i

Let P(i,n) and P(j,n) be the sets of all directed chains con-

necting node i and node j, respectively, to destination node

n. Select any active chain p. e P(i,n) and let x oe the head

node of the first link in that chain that belongs to L, (there

x n
is at least one such link since i e N, ) . Let p. c p. denote

the partial chain connecting node i to node x. Our claim is

that

if p . is active then p . n p
1

. = 0, v-p
n

P(j,n) (V.17)

This claim can be easily verified by referring to Fig. V.4.

l

ieN.

j €N -N]

Fig. V.4. Illustration for Theorem V.2
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Suppose that there is some active chain p. e P(j,n) such

that

n n
Pj n P i

= [a,b]

.

(V.18)

n-Since j / N, , the flow on this chain r
. [p . ] , cannot go

through L, , so that the chain must have the form (see Fig.

V.4)

P- = (j,.. .,a,b,. .. r c,...,n)

.

(V.19)

But this would imply the existence of a chain (not necessarily

active)

P i
= (i, . . . ,a,b, . . . ,c, . . . ,n)

,

(v. 20)

which violates the fact that L, is a disconnecting set for all

nodes in N, . We must conclude that (V.17) is true.

Now, consider the optimal solution to MTP(l) and let p.

be an active chain in that solution, for some i -: N, . Our

proof of claim (V.17) indicates that no data flow from any

of the sources in N„-N, may ever (in any flow schedule) use

the partial chain p., and this is true for all partial chains

of this type for all i e N. . In view of this observation we

may require, without loss of generality, that an optimal flow

x r x-
schedule will have the same chain flow structure (p.,r.[p.],

?i €NJ as the flow solution to MTP(l). This in turn implies

(V.16) since in MTF(l) the delivery rates of all the sources
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and in particular those in N, , have the form

r
±
(t)

q^o)
•i e N , *t -: [0,t![] (V.21)

This concludes our proof.

G

Thm. V.2 does not mean that the solution to MTP(2) has

no effect on the chain flow structure of sources in N , but

only that any effect must occur beyond the critical set L.

.

This is schematically indicated by point d in Fig. V.4.

Suppose next that we have solved MTP(2) , so that the chain

flows of sources in N incorporate interactions with the chain

flows originating in N n -N, . Since in the period (t_,t-,] only
'0 1 2' ur

the sources in N, are active we may require, without loss of

generality, that their chain structure in that interval, will

remain the same as in the interval [0,t~]. This result leads

us to a new formulation of MTP(2) , which is described next.

3. SUBSEQUENT CORNER POINTS

Given N, , t, and armed with the results of the last section

we can formulate the Second Minimal Time Problem as

MPT ( 2 ) : min t.

s.t,

q ±
(0)

- fc
2 "TO— +

E U
ii

" E u
ii = 0, vi € N

uI u. .
- I

= q..(0) , vi , N -N
x

(V.22)
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_t
2
C
ij

+ U
ij 1 °' v ti,j] € L

Q

t
2

, u
ij

> 0, *[i,j] -: L
Q

where we have used the transformation of variables

u.. 6 t
2
f.., *[i,j] 6 L

Q
.

It should be noted that the number of variables as well as

constraints is exactly the same here as in MTP(l) (cf . V.l)

.

At a stable point, the optimal dual solution to MTP(2) may

be used to identify the sets L_ and N» (see Def . IV. 4) . More-

over, using similar arguments to those used in the proof of

Thm. V.l, an analogous result can be obtained for sources in

N~ . We state without proof:

Theorem V.

3

(Thm. V.l)

Let F
2
(t) ' ° t <_ t, be an optimal flow schedule solution

to MTP ( 2 ) . Then

(i) J r
j
_(2) = CS(N

2
)

ieN
2

(ii) I
r
i
(l) =

I r
i
(2) = CS(N

1
)

±eN
1

ieN
1

Proposition (ii) above was already proved in Thm. V.2, but we

include it here for completeness.

Similarly, it can be shown (by analogy to Lemma V.l)

that at a stable point, the optimal dual variables corresponding
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to sources in N
2
~N, are positive and equal, i.e.

°i (2) " W 21
'

¥i -: N2"N
1

(V - 23 »

The functional relation of a (2) to the value of the minimalmax

cutset CS(N
2

) can be determined as follows. Using Thm. V.3,

we have

t°CS(N, ) + I q. (0)

i,N -N
fc
2

=
csRnT)

l (v ' 24a)

or equivalently

t
1

2 CS(N
2

)
- CS(Nl ) ^^.^

a. (0) (V.24b)

But we also have (from Corollary IV. 1 and the form of RHS of

(V.22) ) that

tS = Jmav (2) I q- (0). (V.25)
z max • »t xt x

leN2"N
l

Comparing (V.25) and (V.24b) we conclude that

Lemma V .

3

At a stable point, let £(2) be an optimal dual solution to

MTP(2) . Then

C
i
(2) " CS(N

2
)-CS(N

1
)

- ^ e N2"N 1
(V - 26)
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Next, using reasoning completely parallel to that in the

proof of Lemma V.2 and its corollary we arrive at a similar

result, which we state formally as:

Lemma V.4

Let DM (t) be an optimal delivery function in SDN. Then

p° = CS(N
2

) (V.27)

The implication of this result and its constructive proof

is that we can proceed directly to solve a new version of

MTP(3), without bothering to solve MRP (2). This new version

of MTP(3) may be phrased as follows:— "Minimize the total

delivery time of queues in the set N -N„ , such that all queues

in N„-N, are delivered by the time t~ and all queues in N,

are delivered by the time t,." In order to show that this

MTP(3), like MTP(2), can be formally stated in an efficient

way, we need to prove a result parallel to Thm. V.2.

Theorem V.4

There exists an optimal flow schedule F (t) , < t <_ t, for

which

q± (0)

(i) r
i
(t) = -±^— , yt e[0,tj] and n ~ N

±
t
l

(ii) r
±
(t) = I

t
2 vi e n

2
-n

x
(V.28)

V , otherwise
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Proof :

Proposition (i) is a restatement of Thm. V.2 and is included

for completness.

The proof is in essence identical to that of Thm. V.2.

:,n
2
-
Ni

keN()-N
2

Fig. V.5. Illustration for Thm. V.4

Our basic claim is that for all sources j , j -: N„-N, , any active

subchain p . remains free from any interaction with flows

originating in the set N -N„ . Suppose that a flow coming from

some node k, k e N--N- interferes with a flow coming from some

node j , j £ N--N-, in link [a,b]. Since the flow from k cannot

use the set L~ (and in particular L„-L,) by definition, it

must use the bypassing chain which goes through node c. But

this would imply that the node j has a chain outside the set

L„ which is impossible since L~ is a disconnecting set for

nodes in N~ . This basically completes the major arguments of

the proof. The remaining details are as in the proof of Thm. V.2

-
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By now the reader has no doubt surmised (correctly) that

all the results derived up to here can be extended to subsequent

corners of the optimal delivery function. We therefore conclude

that the general character of the optimal delivery function

is as illusted in Fig. V.6, where

r~>

r^>

Fig. V.6. Optimal Delivery Function in Single Destination
Networks

p" = CS(N ) ,m m
m = 1,2,...,])M

r icN.( csib" J„ q i
(0) '

t0 -

m = 1,

(V.29a)

CS(N )-CS(Nm^) i£N _N
m m-1

I q. (0) , m = 2,3, ... ,M.
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and

M o

The general form of MTP (m) , m = 1,2,...,M is given by

iMTP(m); min tm

s.t.

V 0)
, v I

-t „— + ) u. . - ) u.. = 0, *i e <

N
x

, k = 1

VNk-r
k = 2,3, ... ,M

I u. . - l u. = q. (0) , »i < N.-N ,

j(?l) 1]
J<?il ^ x ° m" 1

"Vij + U
ij

=
°'

" U ' jl £ Lm-l
f

(V - 29b:

-tc..+u..+s.. = 0, v[i,j] € L n -L ,

m ij ij ij m-i

t
B#

u.., 8
±j

1 0, *[i,j] 6 L Q/

D

where t, ,t.,.. . ,t , are given, and12 m-1 3

N., = N .M o

There is no need for slack variables since the links

[i,j] -- L , are saturated for all t e [0,t°].
J m-

1

m
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C. GLOBAL OPTIMALITY

We stated previously that one of the distinctions between

a multicommodity delivery problem and a delivery problem in

SDN is exhibited in the fact that every optimal delivery

function in SDN is also globally optimal. This is not true

for multicommodity case, as the counter example in Appendix

B indicates.

Theorem V.5

Let D.„(t) be an optimal delivery function in SDN. Then it

is also globally optimal.

Proof ;

Assume to the contrary that there exists some other delivery

function D (t) , < t < t, for which
i\ — — J.

D T,(t') > D°(f), for some t * e [0,t?]. (V.30)

With the help of the optimal delivery function let us find m,

m € {1,2, ...,M} such that t" e (t -, ,t ]. Let us mark now

all the data stored in nodes of the set N~-N so it will be
m

distinguishable from the data stored in the nodes of the set

N . Before applying the flow schedule F T_(t), < t < t, which
m r\ — — -L

generates the delivery function D (t) , let us place an observer

at node n. His duty is to count how much marked Q and unmarked

Q data is delivered to node n, up to time t'.

D
K
(t '» " Qm

+ Qu lV - 31
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It is clear that

Qm £ . J q± (0). (V.32)
leN -N

o m

The observer cannot count more marked data than there was

initially in the network. Also,

Q < CS(N ) -t' (V.33)
u — m

since no more than CS(N ) of unmarked data per unit time can
m r

reach the node n at any given time. Thus

Dv (f) I q (0) +CS(N)-t'. (V.34)
K — . „ L„ l m

m

But the right hand side of (V.34) is exactly the value of D (t)

at time t', which contradicts (V. 30) and completes the proof.

D

The proof of Thm. V.5 is not dependent anywhere on the fact

that the flow schedule F (t) is feasible in the narrow sense
K

(see Appendix A) , i.e. does not allow for intermediate storage

of data in the network. Combining this observation with the

result of Thm. II. 2 We know that the optimal delivery function

and its generating flow schedule also solve the minimal total

delay problem over the class of flow schedules that allow

intermediate data storage. As such, we obtain a much simpler

solution algorithm to that problem than the one described in [11]

.

+
The work of Shats and Segall seems to be the only known

open loop solution to the minimal total delay problem in SDN
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D. SOLUTION ALGORITHM FOR SINGLE DESTINATION NETWORKS

Up to now we have established that the optimal delivery

function and its generating flow schedule can be obtained by

solving a sequence of specialized MTP's. In addition, the

size of each of the problems is limited to 21+1 variables and

n+£-l constraints independently of which corner point we are

solving for. The only condition that we assumed, for the above

to be true, is that a solution to MTP(m), m = 1,2,...,M iden-

tifies uniquely the critical set N , or equivalently , is stable

When we say the set N , we really have in mind the nodes inm u

N -N ., , since the nodes in N , were supposedly identified at
m m-1 m-1 ^ 2

previous corners.

Consider an optimal dual solution £(1) for MTP(l). Define

NZ" = set {i} of all nodes i e N such that a. (1) > 0,

and

L. = set {[i,j]} of all links [i,j] e L
Q

such that tt . . < 0.

A useful interpretation of the sets N. and L. can be obtained

with the help of the following lemma.

Lemma V.4

Let 1(1) be an optimal dual solution to MTP(l). Then

a. (1) > + i € N
x

(V.35)
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Proof :

Let i, i £ N
Q
be some node for which a. (1) > 0. From (IV. 10)

we have (for SDN, k = n)

O
i
(l) - - T » (1), (V.36

[a,S J ep
i

where p. is any active chain connecting source i to the destina-

tion n. Since tt
R

0, *[ct,6] e L~ we conclude that there exists

at least one link in the chain p., for which tt „ < . From the

slackness theorem (see Lemma IV.l(ii)) we know that this particu-

lar link will be saturated (zero slack variable) in all optimal

primal solutions, and hence belongs to the critical set L, . Any

source node using this link must belong to the set N, . We con-

clude that i e N,

D

It is clear now that the set N, consists of all the members

of N, that were uniquely identified by the optimal solution to

MTP ( 1 ) .

N* = N
1

(V.37)

and similarly

L
i - L

i

where the equality holds if the solution to MTP(l) is stable.

i

It should be observed also that the set N!T cannot be empty. This

can be easily deduced from application of (IV. 5) to MTP(l)

:
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tj = I a
i
(l)q

i
(0) (V.38)

i,N

Since t, > and q. (0) _> 0, vi e N
Q

there must be at least one

node i, i e N
Q

for which a. (1) > 0. This also implies that

there is at least one link (a, 6] e L~ such that tr n (1) < 0.
ap

Up to this point we have no way of identifying the remain-

ing members of N, . But let us try to proceed with the solution

algorithm in spite of this fact. We will use the set N, in-

stead of N, ; as a result we obtain a slightly different formu-

lation for MTP(2)

.

MTP ( 2 )

:

min t
2

s. t.

q i
(0)

i u
ii

- i u
ii - °' ** £ N

i

l u - ) U = q (0), *i / N
1

j<*i) ^ j(*i) 31

•t
2
C
ij

+ u
±j

= 0, v[i,j] e h\

t
2
c
ij

+ u
ij

+ s
ij

=
°' * [i ' j] / L

i

(V.39

s • • , t , u. . 0, v [i, j] -; L n13 2 ij —

In this equation we don't need slack variables since we
know that all the links in L, have always to be saturated.
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Suppose now that actually m^ c m Then it is impossible

to deliver all the queues in the set N -N prior to time t!j

while keeping at the same time the delivery rates of all the

nodes in N at the value q^O)/^. We therefore conclude that

Lemma V.5

Let t
2
be the optimal value of the cost function for problem

(V. 39) . Then

N^ c n
i

-> t° = t° (V.40

This does not necessarily seem like progress until we con-

sider the optimal dual solution to (V.39). Using again (V.5)

for our problem here, we obtain

t° = tj =
I a

i (2)qi (0) (V.41)

which implies (similarly to (V.38)) that there must be at least

one node i, i / N such that a. (2) > 0. We want to show now

that this node belongs to N, . Let us pick some active chain

for that node. If the chain passes through L, , we are done,

since this implies that i e N, . If the chain does not go through

L, , then we can repeat the argument used to prove Lemma V.4.

Defining

N^ = N^ u {i|a
i
(2) > and i / N^} (V.42)

and
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1 1
l>! = L

x
u {[i,j]|7T < and [i,j] / LJ) (V.43)

2 2we can solve (V.39) again, this time using N, and L, instead

of N, and L, , respectively. In view of the precedding dis-

cussion we are assured that after a number of iterations k,

,

k, |N,
|
the whole set N, (and L, ) will be identified and we

may proceed to solve the original MTP(3)

.

The general idea behind the solution procedure and how it

applies to subsequent corner points should now be clear. The

only consequence of instability in any of the corner points

is to increase the number of iterations needed to reach the

next corner. If we let K denote the total number of iterations,

where

M
K = J k. (IV. 44)

i=l
X

then we obviously have

M <_ K < JN
Q |

(V.45)

where M is the number of corners in the optimal delivery

function in SDN.

E. REMARK ON MULTICOMMODITY FLOW SCHEDULES

In this subsection we briefly discuss a class of multi-

commodity problems for which the optimal dual variables satisfy

at every corner, the following relation:
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a . (m) = a (m) , *(i,k) e N , m = 1,2, . . . ,M. (V.46)
x max in

In particular, it can be shown that the data flow rate with

respect to the set N is maximal in the period [0,t 1, i.e.m c m

I r^(t) = P mp (N ) , *t e [0,t°] (V.47)
(i,k)-:N

X max m m
m

The delivery of all data queues corresponding to the set

N A -N can be accomplished prior to t , say by tn-e , since byOm - r m Jjr J

definition the flows of commodities in N..-N only use unsaturated
m 2

links.' Thus the generalized perturbation equation must be

satisfied by flows of commodities in the set N (see Thm. IV. 9)m

n

max
, . r

K
(t) = 1, *t e (t"-e,t"] (V.48)

l'°t {m) (i,k)eN X m m
m

Using (V.47) in (V.48) we have

1 -o (m)

p (N ) = z-7-^-
. (V.49)Mmax m a (m)max

As a consequence, the optimal delivery function for this class

of multicommodity problems is characterized by:

X _a
t
(m)

(i) p
U

= p (N ) = Vt (V.50
v ^m H max m J (m)

max

A more detailed argument can be found in Chapter IV. A.

2

133





I q-(0)

(11) fc

m ~ p (N ) - p (N~TT '
m=2 ' 3 M

max m K max m-1

and

t°
(i,k)-:N

1

1
q?(0

1 p (N. )max 1

Moreover, it is easy to see that the proof of global opti-

mal ity for SDN applies without change to the multicommodity

case considered here if we use p (N ) instead of CS (N )

,

max m m

since the two are not equal in general for the multicommodity

case.

It turns out that computer solution example which we con-

sidered in Chapter III. 3 falls into this category of "SDN

like" multicommodity problems, i.e. multicommodity problems

for which the "optimal" solution is also globally optimal.

For convenience we restate that delivery problem.

q
2

(0) = 85, q^(0) = 30

C
ij

=1
'
v[i 'J ] £ L

q^O) = 10,

q^O) = 50

Fig. V.7. Delivery Problem of Chapter III.C.3.
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The critical sets for this problem are (from the computer

solution)

:

N
]

_

= { (1,2) , (1,3) }, N
2

= { (2,3)} u N
1 ,

N
3

= {(3,2)} u N
2

, N
4

= {(3,1)} u N
3

, (V.51)

and N
5

= { (2,1) } u N
4

.

It is not difficult to see from Fig. V.7 that the maximal

flow rates with respect to the critical sets are:

J
max (N

l> = 2
< °n,ax

(N 2> = 3
< Pmax (N 3> = 4 '

•WV " 5
'

and WV = 6

Using (V.50) we obtain the optimal corner times

^° - 115 - R7 r ^° 50 -nt, =
2

57.5, t~ = -tzj = °0

t° = -20- = 20 t ° « -il , 15^3 4-3 zu
'

r
4 5-4 15

and fc
5

=
6^5

= l0

Comparison with Fig. III. 7 will immediately reveal that (V.52)

is a correct description of the optimal delivery function.

This completes our promise at the end of Chapter III, to

show that what looks like a random flow schedule has indeed a

lot of structure, and thus simplicity, to it.

135

(V.52a)

(V.52b)





F. SAMPLE PROBLEM

We conclude this chapter on single destination networks

with a short study of a sample delivery problem. This gives

us an opportunity to illustrate some of the special proper-

ties that are characteristic of SDN.

In [11] Shats and Segall presented an interesting algorithm

for solving minimal total delay problems in SDN. We have shown

(see Thm. V.5) that the optimal delivery function is also

globally optimal in SDN and thus (cf. Thm. II. 2) serves as an

optimal solution to the minimal total delay problem. Unlike

in [11] , the sizes of linear programs that are required in our

solution procedure are independent of the number of corners of

the optimal delivery function. This makes our algorithm ade-

quate to solve large network problems, a task which could not

be handled by the authors there. We believe that there is also

another advantage to our methodology, namely the additional in-

sight it provides.

We have adopted one of the computer solution examples from

[11, p. 73] as our sample problem. We intend to show that by

using concepts introduced here it can be solved, with very little

effort, actually by inspection only.

As the first step in solving the delivery problem in Fig.

V.8, we wish to find the composition of the first critical set

N . Obviously, N can be only one of the following:

4-

The study in this reference aroused our interest in SDN,
and inspired many of the results obtained in this chapter.
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q1
(0) =2

q
3
(0) =4

capacities are indicated
on links

Fig. V.8. Single Destination Delivery Problem

(i) {1}, (ii) {2}, (iii) {3}, (iv) {1,2},

(v) {2,3}, (vi) {1,3}, (vii) {1,2,3}.

Let us now consider all the possibilities for which node

1 e N, (i.e.: (i), (iv), (vi) and (vii)). As a result of our

study we know that the chain flows originating in N. must satur-

ate CS(N,) in the optimal solution for all t e [0,t,]. An

immediate consequence of this statement is that node 2 has no

available chains, during that period, to send its data to the

destination n. This leaves us with possibilities (ii) , (iii)

and (v) . By using exactly the same reasoning we can discard

possiblity (iii) .
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Now, suppose that N. = {2,3}. Since the flow originating

in N, must saturate CS (N, ) , one of the following chain flow

decompositions must be part of the optimal flow schedule:

q
2
(0)=5

q
3
(0) =4

< a < 1

Fig. V.8a. Chain Flow Decomposition for N, = {2,3}

or

q,(0) =5 2

q3
(0) = 4

< 8 < 1

Fig. V.8b. Alternate Chain Flow Decomposition for N. = {2,3}

Then, it also must be true that

(a) t:
1+a 4-a

or
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(b)
3+3

For the first case we have a solution for a , a = l — and for
y

the second case, 3 = -15. Both of course are infeasible and

we conclude that N.. = {2}.

We are ready to construct the optimal flow schedule. The

flows from node 2 must saturate CS(2) , which is equal to 2.

The chain flow decomposition which achieves this is unique and

is shown in Fig. V.9.

< t <

q2 (0)

1 CS(2)
= 2.5

Fig. V.9. Optimal Flow Schedule for Source (2).

We are left essentially with a delivery problem shown in

Fig. V.10.

The final solution should be obvious to the eye at this

point. For completeness though, we continue with our formal

exposition.

Suppose now that

{1,3} e N
2

- N
x
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qx
(0) =2

q3
(0) =4

available capacities are
indicated on links

Fig. V.10. Delivery Problem for Sources in N--N,

this would imply the chain flow decomposition which is shown

in Fig. V.ll.

q1
(0) =2

q3
(0) =4

< a < 1

Fig. V.ll. Chain Flow Decomposition for N^-N, = {1,3}

Also

,

2+a 3-a
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This leads to a = - 1/5, which is unacceptable. The only

remaining possibility is shown in Fig. V.12.

qx
(0) =2

< t < 1

q3 (0) =4

Fig. V.12. Optimal Flow Schedule for Sources (1) and (3)

The solution presented in Fig. V.12 is equivalent to the

following statements:

(i) N. 3} u N-

ii) N. {1} N.

where

N. {1}

The resulting optimal delivery function is shown in Fig

V. 13, where

CS(2) = 2, p° = CS(2,3

CS(2,3,i;

5
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D(t)

11 .

8
3

i p
2 y

7 i

°3 /

and

Fig. V.13. Optimal Delivery Function

q 2
(0)

CS(2)
2

2̂

q 3
(0)

CS(2,3)-CS(2 - i|

q x
(0)

CS(2,3,1)-CS(2,3)
= 1

D
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VI. APPLICATION TO STOCHASTIC DELIVERY PROBLEMS

We have studied in depth so far the optimal delivery prob-

lem. The mode that we have used in our discussion is based on

the assumption that during the period of interest the data

input rate is identically zero. We find it convenient, espec-

ially in view of the forthcoming discussion, to refer to that

class of delivery problems as "deterministic."

We now focus on stochastic delivery problems. Here the

data input rates are assumed to be governed by some stochastic

process. In this new framework, the time necessary to empty

a data queue (deliver its contents to their destinations) is

no longer a deterministic value but a random variable. In [12]

Yee suggested use of the expected delivery time as a performance

measure for dynamic routing. We demonstrate that the Sequential

Linear Optimization (SLO) methodology, which we used to solve

the deterministic case, can be applied to the stochastic

case with Yee's performance measure. Before we do so though,

we briefly summarize the most common stochastic routing model

[13] and indicate why the new performance measure seems to be

advantageous

.

A. BACKGROUND 1
"

Our point of departure is the original (cf. Chapter II)

£-link, n-node model for a communication network. Data entering

In this section we closely follow the discussion in [13]
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the network from external sources forms a Poisson process with

a rate of a^ (messages per second) for those messages entering

the network at node i and destined for node k. All messages

are assumed to have lengths that are drawn independently from

an exponential distribution with mean 1/y (bits) . The combined

effect of finite link capacities and random fluctuations in the

actual arrival rate of messages to the network causes queueing

delays. In order to accommodate these queues we assume that

all nodes in the network have unlimited storage capacity. At

any given time, the state of the network (or its congestion)

is described by the set of data queues.

With each link [i,j] £ L_ we associate, in addition to its

capacity, c. ., a queue q. . of all messages waiting to be trans-

mitted over that link. The routing of messages (flow pattern)

in the network is accomplished by determining for each node

what fraction of the incoming traffic, for each commodity (i.e.

destination) , is to be directed to which link queue.

other coimiodities

c. .

ID

>
to node j

k
a.
1

commodity k,

to other links

Fig. VI. 1. Schematic Representation of Node-Link
Queueing Model
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The data rate conservation equations for any node i, i € V

can be written (with the help of Fig. VI. 1) as

I f^j " I f*i = a* *(i,k) -: N (VI. 1)
j(*L) 1D j(^i) 3

1 x °

and the routing variables are defined by

f
k

.

a
ij " :

X

\k 7 k »[i-J] -: V ¥k (VI - 2 »

We are now faced with analysis of a network of queues. A

similar problem was studied by Jackson [14] , and he was able

to establish that an imbedded queueing and serving facility

offered a solution identical to the same facility acting inde-

pendently from the network, but with Poisson arrivals at a

rate offered by the network. In order to apply this remarkable

result here it is necessary to assume that every message, once

it arrives at its intended queue q. ., has its length randomly

selected anew from an exponential distribution with mean 1/^

.

This destroys the dependence between interarrival and service

(transmission) times. This assumption was studied extensively

by Kleinrock in [15] , with the conclusion that the so-called

"independence assumption", albeit rigorously unjustified,

leads in practice to useful results.

With the independence assumption, we see that any link

[i,j] £ L
n

is now representable as an MJM|l' queue with Poisson

1 Detailed study of M|M|l queues can be found in any basic
text on queueing theory.
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karrivals of rate f.
.
= £ f. and exponential service rate

1J k XJ

with mean 1/yc^ . . For notational simplicity we will assume

that all capacities in the network include the factor u, and

thus the mean service (transmission) time of a message over

link [i,j] is 1/c . . . In what follows we assume steady-state

operation of the M|m|1 system, and thus require that

f
±j

< c.. (VI. 3)

For the queueing model described above the average delay

T of a message passing through the network is given by [13]

1
f

•

'

T = ± =i
— (VI. 4)a

r
..v_c..-f..

[± f j]eL n ij ij

where

a ^ T
k

(i/k).:N
Q

and

f-. = I f
k

.

±3 k(?i) 1D

The most common statement of the routing problem involves

minimization of the average delay T as the objective function,

subject to constraint (VI.l). Various solution methods for

this non-linear problem have been presented (e.g. [16] through

[20]) in past years. In [8] a different approach leading to

a linear programming formulation was taken, namely a satura-

tion ratio f . ./c. . is defined for each link [i,j] -; L n , and
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the worst of them is minimized. This procedure is then

iterated until all saturation ratios have been minimized.

When implementing any of the above methods in actual routing

control it is necessary to update the estimates of input data

rates more or less often (depending on the nature of external

data sources) , and to recalculate the routing variables in

order to adapt to possible changes. It should be noted that

in (VI. 4) the flow rates {f. .}, and respectively the routing

k kvariables {a. .} depend only on the input rates {a.} and not

on the actual congestion {q. . } in the network at the update

time. It is reasonable that inclusion of global congestion

information in determination of the routing variables should

improve the adaptivity properties of any routing methodology.

In particular we follow [12] in suggesting the expected time

needed to empty a queueing system as a practical performance

measure which uses congestion information.

3. ON THE EXPECTED TIME TO EMPTY A QUEUEING SYSTEM

In this section we will derive (following Yee) the formula

for t, , the expected time needed to empty, for the first time

an MJ M| 1 system.

The first question in this respect that we wish to answer

is: If a message arrives to an empty system, how long will

it take, on average, before the system becomes empty again?

Some thought will show that this is exactly the expected length

of a "busy period" t,, which is known to be for m|m|1

t, = — (VI. 5)
b c-a
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where a and 1/c are the arrival rate and the expected service

time, respectively.

Now, suppose we look at a queueing system and find (q-1)

messages awaiting transmission, and one message being trans-

mitted. Let us agree to put any message that arrives from now

on in buffer (b) (see Fig. VI. 2). Also, we will always empty

the (b) buffer prior to servicing the (a) buffer.

new arrivals

Fig. VI . 2 . Queueing System

It is clear that the next message in buffer (a) must wait,

before beginning transmission, the length of a busy period

(VI. 5) . (We note that the change in queueing discipline that

we introduced does not affect the distribution of busy/idle

periods for m|m|1.) Following the same argument it is clear
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that the system becomes empty for the first time after

waiting, on average,

H = qt
b

=
5?a (VI - 6

We summarize this part of our discussion in the following

lemma

.

Lemma VI .

1

The expected time t, needed to empty, for the first time,

an m|m[1 system with q messages is

t
1 c-a

where a and 1/c are the arrival rate and expected service time,

respectively.

Consider a commodity (i,k) e N_ which is characterized at

a given moment, say t - 0, by its queue q. (0) and its arrival

rate a. . Suppose we dedicate to this commodity a part of the

capacity resources of the network in such a way that they can

support a constant flow rate f . of commodity (i,k) from node i

to node k. From our previous discussions we know that it is

impossible to assign to commodity (i,k) more capacity than

CS(i,k) the value of a minimal cutset separating node i from

node k, i.e.

f
k

< CS(i,k) (VI. 7)
i —

This situation is depicted schematically in Fig. VI . 3

.
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qj(0)

\1/

o-

i
pk

>
CS(i,k)

Fig. VI . 3 . Queueing System for Commodity (i,k)

At this point we can write that the expected time t. needed to

empty, for the first time, a queue of commodity (i,k) is

t
k
1

q*(0)

7k k
f. - a .

(VI. 8)

We would like to consider the same construction simultan-

eously for all commodities in the network. Since the capacity

resources are limited the following constraints must be satisfied

(i) link capacity constraint

I f < c , *[i,j] e L
k(^i) 1] 1J u

(VI. 9)

where f
J

. . denotes the part of link capacity c. . that is dedi-

cated for commodity (i,k) use.

(ii) capacity assignment continuity

f
k

.

j(^i) 1D j(^i) ]1
f?, v(i,k) £ N

Q
:vi.io:
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The constraint preserves a constant total assignment, say

f ,, of network capacity to commodity (i,k) along all paths

from node i to node k. Substituting (VI. 10) into (VI. 8) we

obtain

, v(i,k) e N
Q

(VI. 11)
k

q*<0)

i
- y f..-a

k

From all feasible capacity assignments that satisfy (VI. 9)

and (VI. 10) we ask for one which has the minimal largest ex-

pected delivery time. This is the same Min-Max criterion we

used in the formulation of the First Minimal (deterministic)

Time Problem. The formulation of the corresponding First

Minimal Expected Time Problem (METP(l)) and subsequent optimi-

zation problems are the subject of the next section.

C. SEQUENTIAL LINEAR OPTIMIZATION FORMULATION

With every feasible capacity assignment, {f. .} we asso-

ciate a descriptor vector T = (t, , t~ , . . . , t ) , M <_ |

N
Q j

of

distinct expected times to empty the queues. We assume, with-

out loss of generality that the components of T are ordered

such that t. > t., if i > j. Now, aiven two feasible capacity
1 j

J

assignments F and F , we say that F dominates F iff t .
< t.

A B
and t. = t., i = l,2,...,j-l for some j, j <_ min (MA ,M

B )

(cf . Def . II. 2) . The definition of optimal capacity assign-

ment now follows directly.
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Definition VI .

1

We say that a capacity assignment is optimal for a given

k knetwork state (q.(0)} and arrival rates {a.}, *(i,k) -: N

iff

t
m = min {tm |tj,t2 , ...,t° ]_>/ m=l,2,...,M (VI. 12)

{f
ij>

D

Our objective is to show that the optimal capacity assignment

can be obtained by solving an appropriate deterministic optimal

delivery problem with constant rate data inputs.

We now present the statement of the First Minimal Expected

Time Problem (METP(l), for short), in which the largest expected

queue delivery time is minimized.

iMETP (1) : min t.

q*(0)

j(?*i) 13 j(^i)
:l x

= t, , v (i,k) e N.

£
k

<_ c *[i,j] e L
Q

(VI. 13)
k(*i)

l:

tv f^j > 0, *[i,j] 6 L
Q

, *(i,k) -: N
Q

The optimal solution to problem (VI. 13) is a function of the

initial network congestion (q.(0)} and the expected arrival

rates {a.}. This open-loop solution can be implemented, at

least in principle, as closed-loop routing control by continuously
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recalculating it in time, with the current network state (con-

gestion) as initial condition for each problem. It should be

pointed out that we do neither imply nor believe that this kind

of implementation is possible unless the frequency with which

a new solution is recomputed can be adjusted to match the

actual transmission and computation capabilities of a network.

In spite of this fact, we will assume in the sequel that

it is possible to recompute the capacity assignment with every

new message arrival to the network. As a result we obtain a

theoretical model which provides some new insight into what

is the effect of including congestion information, in addition

to that of arrival rates, on dynamic routing strategies.

Following the assumption above we specify the set N~ , in

this chapter, to include those commodities (i,k) for which

q. (0) > 0. By doing so we do not allocate in (VI. 13) capacity

resources to empty queues (as long as they remain empty)

.

If one "deletes" from problem (VI. 13) those commodities for

which q. (0) =0 (the expected time needed to empty those queues

is not well defined) , then its interpretation as a "minimal ex-

pected time to empty" is strictly valid, and the network could

operate for some finite time with links saturated while also

obeying the capacity assignments.

Using the transformation

uij ~ t
l
f
ij'

¥[i ' k]
'
: V y(i ' k) 6 N

and introducing slack variables we obtain the LP formulation

of METP(l) in standard form.
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METP(l): min t
±

s.t.

-t a
k

+ I u* - I u
k

= q*(0), *(i,k) N

-t,c. . + ) u. . +s. • = (VI. 14)

fc
l'

u
ij

> 0, *[i,j] e L
Q

, *(i,k) e N
Q

The reader will recognize problem (VI. 14) as a statement of

the First Minimal (deterministic) Time Problem (cf. III. lb)

with constant rate data inputs {a.} to the network. Although

both formulations are mathematically identical, here we inter-

pret t, to be the expected value of a delivery time.

It is easy to see (cf. VI. 14) that as t, reduces to its

minimal value t, a subset of links, say L, , is bound to become

critical. For this set of links the second constraint in

(VI. 13) holds with equality or, equivalently , the respective

slack variables in (VI. 14) must be identically zero.

It can be expected that many feasible capacity assignments

will solve problem (VI. 14) . Because of this circumstance, we

may ask for the "best" among many solutions. One way to ap-

proach this question will be to apply the same min-max criterion

as in METP(l) to those links which are not critical, i.e.

to all [i,j] such that [i,j] £ L, . We therefore seek next to

minimize expected delivery time t„ , while retaining t, for

all commodities that were assigned capacity in the set L .
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We denote the set of these commodities by N, . The Second

Minimal Expected Time Problem can then be stated as

METP (2) : min t
2

<Ji«»
^r-k ^ k " V ¥(i ' k) ' N

l
> f . .

- >f . -a.

q
k

(0)

If. -
- If.- -a

1"

j(^i)
1

-3 j(^i)D1

< t«, v(i,k) e N -N
!

(VI. 15)

I f£, = c *[i,j] e L.

k(^i) 1J 1J

f* < c *[i,j] 6 L -L.

k(^i) 1D

t
2

, f*. > 0, v[i,j] 6 L
Q

, v(i,k) -: N
Q

D

Again, using the transformation

u
k

. £ t.f
k

.
(VI. 16)

ij 2 i:

and rearranging results in an LP formulation
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METP ( 2 ) : min t.

s.t.

-t„ (

—

~— + a, ) + ) u
2

v

. ji ~ A. u
ii

= 0, ¥(i,k) e N.
j(*i) 1J j(^i) :

-t a
k

+ y u
k

.
-

I u
k

.

2 X
j(?i) 13

j(£i) 3 1
= q

i
(0) , *(i,k) s N

Q
-N

1

-t~c . . + ) u

.

2 13 k(^i) 1]
= 0, *[i,j] £ L

x
(VI. 17)

r kt_c . . + ) u. . + s . .

2 13 k(ii) ^ ^
= 0, *[i,j] £ L ~L

1

2' 13' s
ij

> 0, *[i,j] £ L
Q

,

*(i,k) £ N n

for given t

It may also happen that the solution to METF(2) is not

unique. The procedure could then be repeated by identifying

additional critical links [i,j] and defining L~ to be a set

of links including the new critical links as well as those in

L, . Similarly we define N„ to be the set of all commodities

that have capacity assignments in the set L„ . Continuing to

iterate in this way until we have exhausted all commodities,

we ultimately generate a capacity assignment for which (VI. 12)

is satisfied and thus is optimal .

For completeness, we present the linear programming formu-

lation of the m-th Minimal Expected Time Problem.
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METP (m)

s.t.

q i
(0)

k

p

min t
m

+ I u
i-i

" I U.. = 0, *(i,k) -: N -Nn .

p = 1,2,... ,m-l

"V? +
I u

k
. - I u

k
.

*i (0)
'

V(i
' k) 6 N 0-Nm-1

-t c . . + y U
K

. = 0, v[i,j] 6 Lm_1 (VI. 18)

•t C . + ) U. • + S .m ID k^j ID D
= 0, „[i,j] 6 L -Vl

k
t , u. .

m i j

for given t,,t-,...,t ,12 m-1

N_
1

=

> 0, v[i,j] -; L
Q

,

*(i,k) € N

D

The SLO methodology establishes a hierarchical order among

the critical sets, as indicated in Fig. VI . 4 . The arrows

there indicate, for a given set of links, which are the

commodities that may (must--for a horizontal arrow) use it.

The question of identification of critical sets (or their

partial composition) was considered in detail in Chapter V.5

and we need not repeat it here.
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Fig. VI . 4 . Hierarchical Structure of Critical Sets

The following example of a stochastic delivery problem

illustrates some of the concepts that we have introduced in

this section.

Example

capacities are indicated
on links

Fig. VI. 5. Stochastic Delivery Problem
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Following the argumentation we used in discussion of the net-

work shown in Fig. VI . 5 (cf. Chapter V.F) it can be shown that

the first critical set N, is composed of commodity (3,4) only.

In this case the assignment of capacity to commodity (3,4)

is unique and shown in Fig. VI. 5a.

4=*

f
4 =2r
3

Fig. VI. 5a. Optimal Capacity Assignment for Commodity (3,4)

4
The minimal expected time to empty the queue q, is given by

4

A 4
f
3

- a
3

2-1
= 5

Commodities (1,4) and (2,4) belong to N,,-N, and the correspond-

ing capacity assignment is shown in Fig. VI . 5b . The second

minimal expected time is computed (using the values in Fig.

VI. 5b) to be

A 4 2.5-1
f
l " a

l

= 4 (

159

2.5 - 2
= 4)





Fig. VI. 5b. Optimal Capacity Assignment for Commodities
in N

2
-N,

We conclude this section with an observation regarding the

optimality criterion in Definition VI . 1 . Since the mathemati-

cal formulation of MTP(l) and METP(l) are identical we can

interpret the stochastic delivery problem as a deterministic

delivery problem with constant rate inputs. We could ask then

for an optimal capacity assignment (that may change with time)

which consists of two consistent parts, one that accommodates

the constant input rates in such a way that the other enables

optimal delivery of the backlogged data (in the optimal de-

livery function sense) . Since the modifications necessary

to make the time (MTP (m) ) and the rate (MRP (m) ) problems handle

constant inputs are trivial, this approach would result in an

optimal capacity assignment schedule (utilizing a sequence of

corresponding METP ' s and MERP's).
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Although our previous results indicate that this sequen-

tial optimization approach of interleaved time/rate problems

is more powerful than that of time problems only, we do not

use it because of conceptual difficulty that arises between

firm scheduling of events in time and the potential necessity

to recompute a new capacity schedule. For example, it is possi-

ble that in an optimal capacity assignment schedule, a queue

of some commodity (i,k) e N
Q
will be assigned capacity only

following a point in time which is beyond the recomputation

instant. This can lead, at least in theory, to tremendous

delays in the delivery of that queue. For this reason we find

it conceptually more satisfactory to consider constant capacity

assignment (as derived in this section) in our model.

D. DISCUSSION

In the last section we have shown that an optimal capacity

assignment can be obtained as a result of solving a sequence

of linear programming programs (METP's). We also have indi-

cated that the mathematical formulation of a stochastic delivery

problem is identical to that of a corresponding deterministic

problem with constant rate data inputs. Due to this similarity

we can apply the theory developed in previous chapters to derive

and understand the structural properties of an optimal solution.

The derivation of routing variables has been studied mainly

in two extreme situations. In the first case only the steady-

state arrival rates of messages are taken into consideration.

The performance measure objective usually is to minimize expected

161





delay experienced by a message traversing the network or, as

in [8], to minimize a sequence of saturation ratios. In any

case, the underlying network model is that of Kleinrock [15]

,

as described in Section A. In the other case, only the con-

gestion state of a network is utilized to compute a routing

flow schedule that attains optimal delivery function. This
4.

approach is studied in detail in this thesis. 1 The dynamic

delivery problem introduced in this chapter, provides a theo-

retical model which will combine both types of information,

i.e. the expected arrival rates of messages and the existing

congestion in a network. We combine the objective of empty-

ing the set of initial queues with the probabilistic informa-

tion about future expected arrival rates of messages. We

believe that the resulting optimal capacity assignment pro-

vides a fairly accurate analytic model for a desired dynamic

(short term) routing strategy (routing variables) . How to

use such routing variables (whatever their origin) in the

implementation of an actual network control system is a com-

+ —
plex matter and only initial 1 results are available. We

will not consider this issue here.

We have indicated before that it is unrealistic to expect

that the new dynamic model can actually be used to compute

routing variables in real network environments. We do suggest,

however, that it may prove useful in simulation studies as

1 For relation to other results, see Chapter I

' fSee for example [21], [22] and [23].
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a reference against which actual routing strategies can be

compared.

In this connection, it is worth noting that it is also

possible to solve the dynamic routing problem which results

k kwhen all of the a. (not just those for which q. (0) is non-zero)

are involved in allocation of the {f. .}. In practice this

requires interpretation of the set N. in (VI. 14) and in subse-

quent time problems as the set of all commodities. This does

not change anything in the mathematical procedure used to solve

those problems. The conceptual difference, however, arises

due to the assignment of capacity resources to commodities

for which q. (0) = 0. Since the message arrivals to the net-

work are stochastic in nature, it now may happen that for a

certain period of time the assigned capacity f. (for the com-

modities in question) will not be fully utilized. This model

variant, although in theory inferior to the one discussed

earlier, is probably an acceptable compromise between the static

and the dynamic network models. Its obvious advantage results

from the fact that it is not necessary to recompute the

capacity assignment with every new message arrival to the net-

work but rather as frequently as the actual computational

facilities allow it. Finally, we mention that the new stochas-

tic delivery model seems to be free from the "independence

assumption." Moreover, observe, that if all the q. are set

equal to one, the resulting (static) solution optimizes the

objective function which (sequentially) seeks to minimize the

maximum expected length of the queueing system busy periods.

163





VII. APPLICATION TO NETWORKS WITH TRAVERSAL DELAYS

A. INTRODUCTION

Up to this point we have considered multicommodity delivery

problems for which the delay in delivery was caused by finite

capacity of network links. A natural extension of this model

is to consider networks with traversal delays. Association

of traversal delay with each one of the links complicates the

mathematics of the optimal delivery problem, but provides a

considerably improved model for transportation applications.

The classical transportation problem (see, for example,

[7]) refers to the shipment of assets' from a set of sources

to a set of destinations, to satisfy given demand at minimal

cost . An important class of extensions of this problem recog-

nizes the existence of queueing and traversal delays, and conse-

quently looks into the question of minimal time demand satis-

fiability. We prefer to view this issue in a more general

framework of Minimal Time Redistribution Problem (MTRP) ; given

initial and desired distributions of assets, in some geographi-

cal locations, the objective is to redistribute the assets

accordingly in minimal time. Thus from our point of view

there is no inherent distinction anymore between "source" and

"destination" nodes.

'We use "asset" instead of the more common term "commodity"
to distinguish it from our definition of commodity in Chapter
II. There commodity was identified with destination node,
where here one type of asset may be demanded in many locations,
and a location may have demand for many types of assets.
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An obvious and important application of this class of

problems is to military logistics planning. In particular,

assume that an outbreak of hostilities in a number of locations

requires redistribution of assets (troops, tanks, supplies,

etc.) in minimal time. The same model may be used for supply

of aid to disaster-struck areas or for transportation of

perishable supplies, and many others.

The usefulness and applicability of minimal time problems

has attracted great attention (see [24] for survey and exhaus-

tive list of references). Most of the research, however, has

been done in the area of bi-partite transportation networks.

Hammer [25]
' provided an algorithm to solve a single asset,

uncapacitated minimal time problem. Tapiero and Soliman [27]

have treated the multi-asset version of the capacitated minimal

time problem as an optimal control problem, using a maximum

principle and a continuous state-space framework. Their paper

does not contain proof of their algorithm. Bookbinder and

Sethi [24] use basically the same approach but elaborate more

on the mathematical programming aspect of their algorithm,

for which only convergence to a local minimum is assured. In

both cases it is unclear whether or not the algorithms are

computationally manageable for problems of practical size.

In [24] an important observation is made, namely that at

least for bi-partite transportation networks, capacity linking

constraints (to be discussed in the next section) cause most

For similar results see [26]
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of the complexity in MTRP . The authors predict there that it

may not be easy or even possible to include a capacity linking

constraint and still provide a linear programming formulation

of the problem. In this chapter we study this question and

come to a conclusion that Sequential Linear Optimization

methodology can be used to solve MTRP. Also, we analyze the

special nature of capacity linking constraints and their influ-

ence on solution procedure complexity. Then we consider

possible extension (by discrete time modelling) of the results

to general networks. Application to military decision problems

is provided in the formulation of the Maximally Delayed Decision

Problem (MDDP)

.

B. TRANSPORTATION NETWORK MODEL

1 . Topological Representation

A useful way to view the redistribution of assets over

a set of locations is in terms of a network model composed of

nodes and links. The links represent unidirectional means of

asset transportation and the nodes represent physical locations.

A typical transportation model is shown in Fig. VII. 1.

With each link we associate a traversal time, i.e.

the time required by the corresponding transportation mode

to traverse the distance between the locations represented by

the head and tail nodes of that link, respectively.

In general, we allow for a variety of capacity con-

straints, the most common of which concern loading, unloading
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ferry

truck , \trains

train

Fig. VII. 1. Transportation Network

and link capacities. 1 The loading and unloading constraints

(sometimes referred to as "linking constraints") provide an

upper bound on the volume of assets that can be loaded or un-

loaded (in general, with respect to particular transport mode)

at a given location per unit time. The link capacity constraint

represents the upper bound on the volume of transportation mode

and thus on the total amount of assets per unit time that can

be sent over that link.

With each node we associate, at every interval of time,

the amount of assets stored at the corresponding location. The

collection of these descriptors for all the nodes in the net-

work and for assets in transit constitutes the state of the

system.

'One also may consider an upper bound on the amount of
assets allowed at any given time at a particular node.
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Since none of our results is dependent on the number

of asset types nor on the number of different transportation

modes we will, for the sake of simplicity, limit the notation

to represent a single type of asset and a single mode of trans'

portation. Generalization to more than one type of each is

straightforward. Furthermore, since most of the notation and

the meaning of network parameters are the same as in Chapter

II, we will keep our discussion brief whenever possible.

Consider a transportation network G(V,L
n
), where

V = {l,2,...,n} is a set of n nodes and L» = {[i,j]} is a

set of I links. We also define:

q. (t) = amount of asset stored at node i at time t,
1

v-i 6 V;

f .
.
(t) = rate of asset flow leaving node i on link

ID [i,j] at time t, *[i,j] e L

c. . = capacity of link [i,j] (or of the transpor-
1 -1 tation mode represented by that link) ,

*[i,j] £ L
Q

a. = loading capacity at node i, vd e V

b

.

= unloading capacity at node j , * j £ V

t . = traversal delay from node i to node j along
JO link [i, j] , v [i, j] e L n .'0

We reserve the use of respective capital letters for set and

vector notation, interchangeably. For example, the quantities

of assets stored in network nodes at time t are given by

Q(t) = (q1
(t) ,q 2

(t) , . . .,qn (t) )

.
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2 . Dynamic System Equations and Constraints

The quantities just defined must satisfy three basic

constraints: non-negativity, conservation and capacity. The

non-negativity constraint states that

f
±j

(t) > *[i,j] e L
Q

, *t,

q i
(t) >_ 0, *i 6 V, *t.

The conservation constraint may be written as

q,(t ) = q (t ) - / ( I f (a)) do

fc

2

+ f ( 7 f . . (a-T . . ) )dct, *i e V

and

t
2

> tr

(VII. 1)

(VII. 2)

Constraint (VII. 2) accounts for the fact that flows arriving

at node i, i e V over link [j,i] at time t, left node j at time

t-x .
.

, where t . is the traversal delay associated with link
31' ]i

[j/i]. Finally, the capacity constraints are

f
i

. (t) £ c
i

., *[i,j] e L
Q

, *t

I f . . (t) < a. , *i e V (VII. 3)

j(*i> 1: X
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I f
i±

(t) < b

Definition VII.

1

A set of flows F(t) is a feasible flow schedule if it

satisfies (VII . 1) - (VII . 3) for all t.

G

Let Q
Q

and Q. denote the initial and the desired

(terminal) distributions of assets (network states) , respec-

tively. We say that Q, is reachable from Q. if there exists

a feasible flow schedule F(t) , t~ <_ t <_ t, such that F(t) :

Q_(t
n

)
-* Q, (t, ) and <_ t_ < t, < °° .

' Consequently, for any

such pair (Q n ,Q, ) there is some minimal value of t,. We

define the minimal redistribution time t, as

t? = min {t,|P(t): Q n (0) -> Q- (t
1

) } (VII. 4)
1

(F(t)}
l U L l

Definition VII.

2

We say that a feasible flow schedule F(t): Q
Q
(0) *

Q]_( t 1
) is

an optimal solution to the minimal time redistribution problem

if tl = t
;

C. BI-PARTITE NETWORKS

1. Problem Statement

D

In this section we study the minimal time redistribution

problem on bi-partite networks. A bi-partite network is one

TWe of course exclude the trivial case where Q
Q

= Q, . Also,
we assume without loss of generality that the initial time t

Q
is identically zero.
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whose node set can be partitioned into two subsets S and D,

so that each link has its head node in S and its tail node in

D. A typical network of this nature is shown in Fig. VII. 2.

Fig. VII. 2. Bi-partite Network

It is customary to associate the set S with "supply"

nodes, and the set D with "demand" nodes. Various amounts of

A

assets are stored initially at each of the I = |s| supply nodes

and there is a specified requirement for assets at each one
A

of the J = jDJ demand nodes. Following our notation we write:

IS-. / o _ , . . . f S— f\Jf\Jf . . . , u

[ ,
~

/ . . . f
~

f f CX. f » , , f d —

,

(VII. 5)

The notation (-) indicates "don't care" situation. It is not

important how many assets remain in the supply set S (as long

as these are non-negative quantities)

.
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We can restate now the Minimal Time Redistribution

Problem as follows:

For any given pair of system states (Q Q/ Q,) and net-

work parameters T= {x..}, C = {c. . } , A = {a.}, B = {b . }

.

13 13 1 j

where i = 1,2,..., I and j = 1,2,..., J, find a minimal time

flow schedule.

2 . Structure of the Minimal Time Flow Schedule

In this subsection we analyze the structural properties

of the minimal time flow schedule. We derive a result which

parallels that of Thm. II. 1 and enables us later on to formu-

late the minimal time redistribution problem in LP form. We

start with the trivial but important observation that

Lemma VI I.

1

Let F(t), t <_ t, be a feasible flow schedule such that

F(t): Qq(0) + Q-,(t,). Then we may always take

t, -t . < t < t, , if t . . < t.
( VT

ij

f
ij

(t) = / *[i,jl e L
Q

(VII. 6)

< t < t, , if t . . > t,— — 1' 13 1

Proof :

Consider a bi-partite network (like that shown in Fig. VII. 2)

and assume that there is some feasible flow solution F(t)

,

< t < t such that F(t): Q
Q
(0) * Q

1
(t

1
). It is quite obvious

that this flow schedule cannot use any link [i,j] for which

t. . > tw since all the flows on this link will arrive at their
13 1'
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destination j later than t, , and thus be of no use in the con-

text of the minimal time problem. Also, there is no point in

sending flows over a useful link [i,j] (t. . < t
1

) beyond time

t
l~

T
ii

because they will not reach their destination in time.

D

Combining (VII. 2), (VII. 5) and (VII. 6) we can express

the desired system state with respect to the demand nodes as

t,-T. •

f

-1 13
d. =

J. / f^ (t)dt, *j e D (VII. 7)
J i ±J

Similarly, the non-negativity constraint (VII. 1) with respect

to the supply nodes can be written as

t,-T .

.

1 i:
s. > I j f (t)dt, vi 6 S (VII. 8)

j o 1J

The minimal time redistribution problem reduces to

finding a flow schedule which satisfies (VII. 7) and (VII. 8),

subject to capacity constraints, in minimal time.

We now show that the search for a minimal time flow

schedule may be confined similarly to the optimal delivery

problem, to the class cf piecewise constant flow schedules.

Furthermore, it is possible even to narrow this class to flow

schedules which we call linking flow schedules . In order to

present this subclass we need to introduce some additional

notation.

For a given bi-partite transportation network we define
A

for each supply node i, i e S a vector T. = (t . (1) ,T . (2) , . . . ,x . (n.

)
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of all distinct traversal times associated with outgoing links

of that node. The components of T. are assumed to be ordered

so that t . (k) < t . (r) if k < r < n. , and n. is the number of
1 1 — 1 l

vector components. By n. . we denote the ordinal position of

an element of T. such that t. (n. .) = t. .. For the network
i i id i]

in Fig. VII. 3 we have

Traversal delays are
indicated on links.

Fig. VII. 3. Bi-partite Transportation Network

(3,7), T. (5,10), T
3

= (8)

= 2, n
2

= 2, n
3

= 1

n
11

1, n
12

= 2, n
21

= 2, n
22

= 1, n
23

= 2,

n
33

= l '
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We now use this example 1

to demonstrate the structure

of a linking flow schedule.

(

fu (t)

' f
12

(t>

fn (t)

f^(t)"2 1 22

:

23

k 22"

U,,(t

a
3

| f (t)

fu (l)

iiiH
f
21

(l)

f
22

(l)

*
f
23

d) :

•33 (1)

f
22

(2)

t -10 V s

fu (2)

V 7 V5
-+— f^/

V 3 h b

Fig. VII. 4. Linking Flow Schedule (t, > max t. .

L
o

The length of a horizontal line in Fig. VII. 4 expresses the

time duration of effective flows en that link (Lemma VII. 1)

.

The labels above a line identify the constant segments of a

flow. The crosses (or corner points) indicate the time instances

at which the flow may change its value. We do not consider

flow termination points as corner points in this context.

We consider loading and link capacities. Unloading
capacity constraints are studied later on in this chapter
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The flow schedule in Fig. VII. 4 was obtained by using

the following construction rule.

Construction Rule :

A flow
1

on a link [a,b] has a corner point at time t iff

link [a,b] is linked by a loading capacity constraint to some

other link [c,d] such that t = t, -t , , and t > t .

1 cd cd ab

D

Now we are in position to formulate a general descrip-

tion of a linking flow schedule for the case when t, > max i

.

1
r

. .

t 13
[i,D ]

J

i.e. all the links are usable.

Definition VII.

3

A feasible linking flow schedule F(t) , <_ t t, is described

by

f (i) f < t < VT ij(
i;

f
ij(

t) = / f
i

. (m) , t
1
-T

i
- (m-1) < t < t

1
-x

i
(m)

V f..(n..), t.-r .

.

(n. .-1) < t < t,-T..(n..)x i] in
;

1 in in - 1 il ID1:

(VII. 9)

where T. = (T..(l),...,i..(n.)) is a vector all distinct
1 ij ID 1

traversal delays of links linked to [i,j] by a loading con-

straint
A

, v[i,j] e l
q

. Also, we define x..(0) = t
1

Of each of the asset-types, in multiasset case
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For notational convenience, we define <5 . (m) to denote the

duration of the m-th flow seament f .
.
(m)

,

6
. (m) = t .

.
(m-1) - t .

.
(m) , m=l,2,...,n. (VI I. 10

l ij lj ' i]

Since our interest lies, as indicated before, within

the class of linking flow schedules, it is useful to rewrite

the constraints (VII . 1) - (VII . 3) (we also use (VII. 7) and

(VII. 8)) as they apply to linking flow schedules.

(i) —non-negativity

f
i

. (m) >_ 0, *[i,j] £ L
Q

, m = 1,2, ...,n
i

.

n . .

v
3

s. > f .
. (m) 5

.
(m) , *i € S

j m=l

(VII. 11)

(ii) —conservation

n . .

L = I I f (m)5
i
(m), *j e D

J i m=l J

(iii) —capacity

f
i

. (m) < c^., *[i,j] e L
Q

, m = 1,2, ...,n
i ^

7 f . . (m) < a., vieS, m=l,2,...,n..
j 13 - 1 x 3

Finally we state and prove the main result of this

section.
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Theorem VII.

1

Let Q n
and Q, be any two states of a given bi-partite trans-

portation network such that Q, (t, ) is reachable from Q n
(0) by

some flow schedule F(t) ,0 t t, . Then there exists a

feasible linking flow schedule F(t), t t, such that

F(t) : Q (0) - Q
1
(t

1
)

.

Proof :

Define (for useful links)

V T
ij

(m)

f..(m) = : ) , / f..(t)dt, (VII. 14)
« 5

i
(m)

tl -T..(m-l)
J ^

*[i,j] e L
Q

, m = 1,2, .. . ,n
i

.

If we start now in state Q (0) and apply the new flow schedule

F(t) as defined in (VII. 14), the system will be transfered by

time t, into a new state, say Q
]
_(t

1
) (cf. VII. 12), such that

n.
ij *

d (t,) =
I I f

ii
(m)6

i
(m) , vj e D

-1 i m=l

Substituting (VII. 14) into (VII. 15) results in

t
l~

T
i

'

d, (t,) = I / f
±i

(t)dt, *j 6 D31
i

and from (VII. 7) we conclude that

;
vii. 15)

(VII. 16)

d. (tj = d. (t.) , *j e D (VII. 17)
3 -1- J x





Equation (VII. 17) is essentially the desired result

but we still must show that F(t), as defined in (VII. 14),

satisfies constraints (VII . 11) - (VII . 13) . The first part of

(VII. 11) is trivial due to the requirement f .
.
(t) 0,

*[i,j] e L , *t. The second part of this constraint is shown

to be satisfied by substituting (VII. 14) into it and comparing

the result with (VII. 8).

To show that f..(m) < c.., * [ i , j ] £ L~ , m= 1 , 2 , . . . ,n .

.

lj — i j
J i j

we conclude from (VII. 14) that

f .
.
(m) max {f .

. (t) }

,

(VII. 18)
13

[t
1
-x

ij
(m-1) ,t

1
-i

ij
(m) ]

13

m = 1,2,. . . , n .

lj

But since by assumption the right hand side of (VII. 18) must

satisfy the link capacity constraint, so must f .
.
(m)

.

To show that the loading constraint holds for the new

flow schedule, we write (by assumption)

7 f .
.
(t) < a. , *i € S, vt (VII. 19)

h lj — 1
]

Integrating both sides of (VII. 19) over the interval [t
1
~T

i
. (m-1) ,

t,-i. .(m)], for any m such that 1 < m < n . . results in
1 lj J — — i]

t,-T . . (m)

/ (Tf..(t))dt a., (VII. 20)
' "IT — 15 . (m) , n N

l t, -t .
.
(m-1)

1 ID

vi £ S, m= 1,2,... ,n
i

.
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But (VII. 20) can be written as

V T
ij

(m)

V —1— f f.,(t)dt = f.,(m) a. (VII. 21)
k <5, (m) ^ _ ,_ , J 1J

j
: ~

J i t
1
-T

i
(m-1)

* i <-: S , m=l,2,...,n..
13

which completes the proof.

An obvious consequence of Thm. VII. 1, with respect to minimal

time flow schedules, is given in the following corollary.

Corollary VII.

1

If there exists a feasible minimal time flow schedule then

there also exists a feasible minimal flow schedule of the

linking type.

It is worth noting the difference between the optimal solution

to MTP(l) for a network without traversal delays, and the

minimal time flow schedule here. In the first case it was

sufficient to consider a constant flow schedule, whereas here

we need a piecewise constant solution, which serves as a first

indication of higher complexity of delivery problems on net-

works with traversal delays.

3 . Solution Algorithm

Armed with the results of the last subsection we may

state the Minimal Time Redistribution Problem as fellows.
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MTRP: min t,

s . t

.

n .

I I f .
.
(m)6

.
(m) = d. , vj e D

i m=l 13 1 3

n . .

I I f..(m)5 (m) s., *i e S (VII. 22)
j m=l -1

1 x

f
±

. (m) < c
i j

v[i,j] e L
Q

, m = 1,2, ...,n

T f
i

. (m) < a
±

, *i € s, m = 1,2, ...,n.
j

t
l'

f
ij

(m) - °' ^ [i '^ € L
o'

m = 1 / 2 ^---/ n
i -;

D

We have assumed that t, > max{i . .}, i.e. that all links are
1

L ^
K1

L
usable.

Inspection of the first two constraints of (VII. 22)

shows that in both the coefficient of f. .(1), ^[i,j] e L-.
ij J

has the form (VII. 10):

6
i
(l) = t

x
- T

i
(l) , *i £ S

The value of this coefficient is unknown since it is a func-

tion of the variable t, . Define

u
i
.(l) = f

ij
(l)6

i
(l), v[i,j] e L

Q
(VII. 22)

Using (VII. 23) and rearranging (VII. 22) results in
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MTRP: min t
±

s . t

n . .

13
I^iU) + I I f^(m)6.(m) = d., *j -: d
i J i m=2 ±J 1 1

n . .

13
£u. (1) + £ J f. (m)6.(m) s .

, *i e S (VII. 24)
j

J
j m=2 1D x x

-Vj + »ij(D 1 -^(1)^ , *[i,j] , L
(

f
±j

(m) < cijf *[i,j] 6 L
Q

,

m = 2 ..... n .

ID

t
l
a
i

+
I

u
ij

(1) 1 -T
i
(l)a

i , *i e S

D

f
±

. (m) < a ±f *i e s, m = 2,3,. ..,n..

t, , u .. (1) , f..(m) 0, ¥[i,j] e L n , m = 2,3,...,n..
-1- 13 13 — u 13

which is a linear programming problem.

It should be noted that the formulation in (VII. 24)

is valid only when t, -t . (1) > 0, *i e S which makes the inverse

transformation of (VII. 2 3) meaningful. But this is taken care

> IT

L,

of by the assumption that t, > max {t. .}. Let

T = (t (1) , . . . , i (n) ) be the vector of all distinct traversal

delays of the bi-partite network. The components of T are
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assumed to be in descending order of their size, and n is

their number. Thus for example the statement: t? > max {t..},

is eauivalent to

1
L 13L
o

t° > t (1) (VII. 25)

Suppose now, as may be the case, that t, < x (1) , and

in particular that

t (k+1) < tj < t (k) (VII. 26)

for some k, 1 <_ k <_ n-1. It should be clear that the solution

to MTRP will yield (due to the nonnegativity of u.
. (1)

,

*[i,j] -: L
Q

)

tj = T(l) (VII. 27)

Equation (VII. 27) suggests itself as an indicator of the fact

that t, < t (1) . We may think of solving MTRP again, but this

time we "remove" all the links for which t . . = t (1) . It may

happen now that t, = x(2) , in which case we repeat the proce-

dure with rescect to links for which t . . = x (2) . If
ID

t(2) < t, £ t(1) then we have found an optimal solution.

Definition VII.

4

The m-th, m >_ 1 , Minimal Time Redistribution Problem (MTRP (m) )

is equivalent to MTPR for which all the links [i,j] e L
Q

, such

that i. . > t (m) are considered to be not usable.

D
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Actually, we are free to search for t, in any order,

and in particular we may implement a "binary search" technique

[28] . The resulting algorithm will have the following form:

Algorithm:

Looo

m rn

Solve MTRP (m)

if t = T(m+1) then m * m +

(VII. 28)

n-m

repeat loop

if t, > t (m) then m ra

2
, repeat loop

else stop,

where n is the number of distinct traversal delays in the

network and
|
X

j
denotes the ceiling (i.e. the smallest

integer >_ X) of the number X.

D

Since the complexity of a "binary search" is logarithmic with

respect to the number of elements being searched we conclude

that

Lemma VI I.

1

The MTRP can be solved in dg
2

n ) number of steps, each

being a solution of an LP, where n is the number of distinct

traversal delays in the network.

D

In the next subsection we give a simple example of MTRP.
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4 . Example

.a, =4

Fig. VII. 5. Minimal Time Redistribution Problem on
3i-partite Network

The iMTRP shown in Fig. VII. 5 was solved using the methodology

of the last subsection. The resulting minimal time flow schedule

is shown in Fig. VII. 6a. We find it useful to present the

same flow schedule from a demand node point of view, i.e.

with respect to the arrival time. This is done in Fig. VII. 6b.

We conclude the example with the observation that the existence

of unsaturated links and/or loading constraints (cf. f_,(l),

f.-d), f - -, ( 2 ) ) in the optimal solution suggests the optimal

delivery function as the final goal of optimization. We leave

this point open for a future study. We will touch again upon

this issue when we consider discrete time networks.
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Fig. VII. 6a. Minimal Time Flow Schedule (flow departure!

fu <t)

f
21

<t)

f
12

(ti

f
22

(«

f
13

<t)

f
23

(t)

fu (l) = = 2 fu (2) =2

fn (l)=0.67

f
12

(2)=2

f
22

(l) =0.27

f
13

(D =2

f
23

(l) =2 f
23

(2) =1.14

. , . o' ,, ,
9 10 13.5 t^=17.5

Fig. VII. 6b. Minimal Time Flow Schedule (flow arrival)
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5 . Introducing Unloading Constraints

Up to this point we have considered the MTRP (on bi-

partite networks) with link and loading capacity constraints

only. In this subsection we introduce the unloading constraints

We will use the network in Fig. VII. 3 for illustration purposes.

The unloading constraint introduces linking of the

flows with respect to their arrival time at demand node set D.

The loading constraints had the same effect with respect to

the departure time from supply node set S. Fig. VII. 7 shows

the unloading linkage of flows. (Note that from a demand node

point of view, a flow on link [i,j] commences at time t. . and

terminates at time t,.)

11
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f
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f
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(t)

f
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f
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f
33
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f
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(l) f
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f
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f
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(l)

f
33

(2)
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Fig. VII. 7. Linking by Unloading Constraints
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When both loading and unloading constraints are in

effect, problem formulation is complicated by the requirement

that the two grids of corner points, namely that in Fig. VI I.

4

and that in Fig. VII. 7 must be consistent ; if any flow variable

changes value at a particular point of time (corner point)

,

then all other flows linked to it (now by both constraints)

must also be allowed to change. Consider for example the

artificial network in Fig. VII. 8.

Cj. = c, v[i,j] £ L
Q

Fig VII. 8. Network with Linking Constraints

The sequence of plots below illustrates the procedure of find-

ing a consistent flow schedule. In each figure, the crosses

identify already established corners, while the circles denote

new ones.

After some thought the reader can convince himself that

if the traversal times (and/or the solution time t, ) are

incommensurate , the number of corner points would be infinite,

in which case the solution is not piecewise constant. This

difficulty may be overcome by approximating the continuous time

axis by a finite sequence of discrete time values with some
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Fig. VII. 9. Linking Flow Schedule

resolution At, At > 0. We note that the same reasoning applies

to general networks with traversal delays and hence defer furthe]

discussion of discrete time networks to the next section, where

we no longer restrict consideration to the bi-partite network.

D. DISCRETE TIME APPROXIMATION

In this section we briefly discuss a discrete time approxi-

mation of a minimal time redistribution problem. We have shown
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already that this approximation arises naturally in the con-

text of bi-partite networks with both loading and unloading

constraints. The same reasoning applies to general networks.

Hence we must assume that the corner points of a minimal time

flow schedule may occur at any integer multiple of some basic

unit of time At, At > 0.

It is worth mentioning that for general networks the number

of corner points in a minimal time flow schedule can be very

large, even if only link capacity constraints are present.

This is so since a flow over any link in the network has to

reflect all the possible time patterns of flow arrivals (in-

tended for that link) to the head node of that link. Although

this phenomenon is unrelated to the notion of commensurability

its effect for large networks may be in practice the same.

We start by breaking a given interval of time [0,T], where

T-At < t]_ T, into k = T/At parts. A feasible flow schedule

F(t) , <_ t t, is assumed to be constant throughout each

segment of duration At. Also, the traversal delays are approxi-

mated to the next nearest integer multiple of At. Thus from

here on we will interpret t . . as the integer specifying the

number of basic time units At which make up the traversal time

from node i to node j . We use the following notation for the

initial and desired states (i.e. distribution of assets) of a

network:

Q " (S 1' S
2

S
n }

^1
=

( d
1
,d

2
/ * "

'

/d
n^
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and also the convention

f .
. (r) = the amount of assets shipped out of node i,

over a link [i,j] at time instant rAt,
and arriving at node j at time instant
(r+T

±
.)At, r = 0,1,.. .,k

A

q. (r) = the amount of assets stored at node i

throughout the r-th interval, r = 0,l,...,k.

We also observe that a link [i,j] can carry useful flows

that were initiated up to and including the (k-x .
.

) -th inter-

val. Any flow launched beyond this time will not reach node

j by time k«At.

We formulate now the minimal time redistribution problem

as

MTRP : Find a minimal value of a time segment index k, say k ,

for which the optimal value of the cost function in the

following linear program is zero.

LP: min a

s . t

.

a + q. (k) = d
i

, vi 6 V

q (0) + I f,.(0) = S., vi -: V

q (r) -q.(r-l) + J f .. (r) - [ fU (r" T
ii )

= °' vi _: V '

1 x j(^i) 1] j(yii) J1 3

r = 1,2, ... ,k

For notational simplicity, here and in the sequel, we use
r = 0,1, ... ,k although f . . (r-x . . ) = 0, unless < r-x^

i
<_ k-T .^

v[i,j] £ L
Q

.
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I fH W < a
. , *i 6 v, r = 0,1, . . .,k

(VII. 29)

£
f
ii

(r " T
ii ) - b

i'
vi € v

'
r = °' 1 ' k

fij(r) 1 c
ij/

*[i,j] e l q/ r = 0,1,.. .,k

a, q
i
(r), f

± j
(r) > 0, *i e v, v[i,j] e L

Q
,

r = 0, 1, . . . , k

where Q
Q

and Q, are given

D

It is not difficult to see that k At approximates the

optimal value of the minimal time t, , within one basic time

interval. More precisely

(k°-l)At < t? < k°At . (VII. 30)

This is achieved of course at the expense of solving the LP in

(VII. 29) a number of times, for different values of the time

segment index k, until the smallest value of k, say k , is

discovered for which min a = 0. Using a binary search tech-

ATnique (similar to (VII. 28)) results in needing (lg
? -yf)

steps,

where AT is the size of the potential range of values of t,

.

The additional computational complexity that is introduced

by this approximation scheme is counterbalanced, at least

partially, by our ability to implement the notion of an optimal

delivery function. We remind the reader that in the case of

192





exact solution (of a bi-partite network without unloading

constraints) it was in general impossible to implement any

requirements with respect to delivery time (the optimal delivery

function and in particular the minimal rate problem fall within

this category) while preserving a piecewise constant flow

schedule.

The discrete time version of a delivery function (compare

with (II. 6)) is given by

D(r) =
I q.(r), r=0,l,...,k° (VII. 31)
ieD x

where the summation is over all nodes for which the demand

is defined (demand set). The delivery function in (VII. 31)

was defined for flow schedules which do not allow intermediate

storage or, in general, the amount of assets at any node i and

any time t cannot exceed the demand d. at that node. In the

redistribution problem this assumption is not true anymore

and a generalized formulation of delivery function is necessary.

We define

D(r) = 7 w.(r), r = 0,1, ...,k
U (VII. 32)

ieD

where

w
i
(r) . (

q i
(r) , q i

(r) < d
±

otherwise
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The formulation in (VII. 32) accounts for the fact that a

surplus delivery of assets (beyond the demand d.) is not con-

sidered helpful and thus must be disregarded. The reader will

notice that if q. (r) <_ d . , *r, as the case is in the delivery

problem of Chapter II, Definition (VII. 32) reduces to (VII. 31).

Since the corner points of the minimal time schedule are

fixed by the approximation method and the minimal time index

solution k , the optimal (generalized) delivery function is

defined as follows.

Definition VII.

5

A delivery function D (r) , r = 0,1,..., k is said to be

optimal if it satisfies

D°(r) = max {D (r) |

D° (k°) ,
D° (k°-l) , . . . ,

D° (r+1) }

,

(VII. 33)
F(k)

r = k -1 , . . . ,

where

D°(k°) A
I d.

ieD

The sequential linear optimization procedure now consists

of solving the minimal time problem (VII. 29) followed by a

sequence of k -1 LP problems. The formulation of the m-th,

m = k -l,k -2, . . . ,1 problem in that sequence is derived next.

We start by observing that

max D(r) = min{ £ d. - D(r)}
i£D
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or equivalently

max D(r) = {min V h. (r) } (VII. 34a)
itD

where

h. (r) = d
i

- w
i
(r) =

d . -q . (r) , d . > q . (r]

otherwise

We can state now the m-th optimization problem as follows:

min l h . (m)

ieD X

s . t

.

q. (k°) = d. , vi .; Dxl l

a. (0) + J f..(0) = s. , *i e V

q. (r) - q. (r-1) + f .. (r) -
I f..(r-T..) = 0, vi e V,

r = 1,2, .... ,k

h . (r) + q. (r) > d. , vi e d

r = m,m+i , . . . ,k -1

fSee (VII. 29)
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I h. (r) = Id,-" D°(r), r = m+1 ,m+2 , . . . ,k°
i-:D ieD

I, f
ij

(r) I a
i'

vi - V, r = 0,1, ...,k°
j(^i) ±J

I f .(r-x .) b , *i e V, r = 0,1, ...,k° (VII. 34b)

f
ij

(r) - c
ij'

* [i '3 ] £ L
o'

r = °/l"--/k

h
i
(r), q i

(r), f „ (r) > 0, *i e V, *[i,j] e L
Q

,

r = 1 , . . . , k

where Q Q , Q,, k and D (r) , r = k ,k -l,...,m+l are given,

D

It is important to notice that the definition of h. (r) in

(VII. 34a) is satisfied in the linear problem formulation

(VII. 34b). The underlined constraint and the form of the cost

function in (VII. 34b) provide for this fact. If q. (r) > d^,

then the cost function will force the corresponding h. (r)

to be equal to zero and when q. (r) < d. then h. (r) is exactly

the difference between the two values.

We use the following example to illustrate some of

the ideas ©resented in this section.
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Example

:

a. =2

S D

Fig. VII. 10. Discrete Time Redistribution Problem

For the problem in Fig. VII. 10 the traversal times (in units

of At) are indicated on the corresponding links. The relevant

loading and unloading constraints are shown per unit of time

At. This problem was solved using the methodology presented

earlier in this section. The resulting minimal time flow

schedule is schematically illustrated in Fig. VII. 11.
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Flow

J'
(w

a
2
=2

f
14

(t)

f
23

(t)

f
24

(t)

Shipment instance12 3

Fig. VII. 11. Minimal Time Flow Schedule (loading)

The same flow schedule is shown with respect to arrival time

in Fig. VII. 12.

b
3
=3

Flow

f
13

(t)

f
23

(ti

b
4
=4J

f
14

(t)

f
24

(«

m

Arrival instance12 k

6 7

Fig. VII. 12. Minimal Time Flow Schedule (unloading)
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The optimal delivery function is shown in Fig. VII. 13

D(t)

21

17

12

Fig. VII. 13. Optimal Delivery Function'

An observation with respect to Fig. VII. 13 is appropriate here

In contradiction to the optimal delivery function studied in

the main body of this thesis, here the objective function is

no longer convex. This is still one more distinction between

the delivery problem on networks without and with traversal

delays

.

We have mentioned in the introduction to this chapter that

the minimal time redistribution problem has important appli-

cation in military logistics planning. The SLO methodology

and the results obtained thus far allow us to extend this
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statement beyond the classical transportation problem, into a

domain of complex decision making processes. We study one such

application in the next section.

E. MAXIMALLY DELAYED DECISION PROBLEM (MDDP)

In this section we are concerned with a particular aspect

of the decision making process in a military environment.

Assume initially that a possible strategy to follow has been

determined and that the problem of interest is the redistribu-

tion of available assets to implement this strategy. Since

the various possible distributions of assets over a given set

of locations constitute a state space of our model, any strategy

implies one or more corresponding state trajectories (from initial

to desired distribution) in that space. If there is a set of

possible strategies under consideration, the ability to analyze

their corresponding state trajectories can help identify which

of these strategies is most attractive.

Consider a military environment characterized by a network

G = (V,L
Q

) and an initial distribution of assets Q Q
= (s,,...,s ),

and suppose there is a set P = (p, ,p~ , . . • /PM ) of M strategies.

Each strategy is described in turn by its corresponding terminal

distribution of assets Q , m = 1,2,...,M. We assume, without
m

loss of generality, that all the states Q , m = 1,2,...,M are

reachable from Q A/ i . e . there exists F (k) : Q n (0) * Q_(K) for
U mum

some K < <*>, which is called the horizon time. The decision

maker is faced with the problem of selecting the most desirable

(in a military context) strategy from the set P. An inherent
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property of most military situations is the necessity to make

decisions subject to a high degree of uncertainty (as to the

enemy's state, for example). It seems natural that the deci-

sion maker should seek to delay the decision process as much

as possible, while still ensuring that all the terminal dis-

tributions {Qm } are attainable within the prescribed time limit

K. By delaying the decision instant, a number of advantages

are achieved, for example:

(i) minimize unnecessary, sometimes irreversible,

commitments of assets.

(ii) maximize enemy's uncertainty as to which strategy

is selected.

(iii) gain time to acquire additional information which

may influence the decision process.

As a first step in delaying the decision instant by, say,

k, units of time, we consider finding a common flow schedule

F (k) , <_ k <_ k, which will transfer the system from its

initial state Q n
(0) to some intermediate state Q (k, ) . Ob-

viously, the flow schedule F (k) , the state Q (k, ) and the re-

sulting decision delay of k, units make up an acceptable solution

to the delayed decision problem iff all the terminal states

Q , m= 1,2, ...,M are reachable from Q (k,) within the remain-

ing time K-k, . This leads us to the statement of the First

Maximally Delayed Decision Problem.
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MMDP(l): Find the largest time index k-^ say k-T , for which
the optimal value of the cost function in the
following LP is zero.

LP: min ct.

s.t

F
X
(k): Q

Q
(0) - Q

1
(k

1
)

F (k) : Q
X
(k )

-> Q (K) - a, , m = 1,2, ...,Mm j. m —l

(VII. 34)

where a = (a,, a.., . . . ,a. ) is an n component vector and a, > 0.

D

To simplify the notation we have used vector formulation,

where each of the constraints in (VII. 34) represents a short-

hand for all the constraints in LP (VII. 29) with the distinction

that Q (k,) here (which corresponds to Q, = (d, ,d
2
,...,d )

there) is unknown.

It is true that as k increases to its maximal value k,,

some subset of trajectories connecting Q (k, ) to their respec-

tive terminal states is bound to become critical, so that the

corresponding terminal states become unreachable from Q (k)

for any k > k, . We denote by P, the subset of strategies that
-L J.

become critical at k, . The decision to select any one of these

strategies has to be made prior to or at time k. At.

If P c p, then we may follow the same line of reasoning

as before to formulate a second optimization problem, which will

let us identify the second critical set of strategies and

their corresponding critical time.
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MDDP(2) : Find the largest time index k , say k? , for which
the optimal value of the cost function in the
following LP is zero.

LP: min a
2

s . t

F
1
(k) : QQ (0) - Q

1
(kJ)

Fm (k) : Q^kJ) - Qm (K) , *m -: 1?

±

F
2
(k) : Q

i
(kJ) * Q

2 ^
2

] (VII. 35)

F
m
(k):Q 2

(k
2

) - Qm (K) - a
2

, *m / P
±

for given k, , where a
2

= (a- ,a
2

, . . . ,a n ) and a2 >_

D

Continuing to iterate in this way until we have exhausted all

strategies, we will generate a finite number M~, M
n

M-l of

pairs (k ,P ), m = 1,2,...,M
Q
with the following properties

(i) < k, < k < . . . < k„ < K.- 1 2 M
Q
-

(ii) P. n P. = 0, i,j = 1,2,.. .,Mn , i ? j. (VII. 36)

M

(iii) u P. = P
i=l

1

We see, as before, that the SLO methodology gives rise to a

hierarchical structure (Fig. VII. 14) in which the solution of
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the individual optimization problems is carried out in a

sequential manner, and that each such solution constrains the

solution space of problems lower in the hierarchy.

Fig. VII. 14 Hierarchical Structure of the Strategy-

Sets w/r to Decision Instance

We conclude this section with an example of MDDP

.
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Example:

C
ij

= 2
'
¥[i '^ 6 L

T.j = 1, v[i,j] e L
Q

a. = b. = », vi e V

Fig. VII. 15. General Transportation Network

For the network in Fig. VII. 15 the initial distribution

of assets is

Q
Q

= (20,0,0,0,0,0)

and there are two possible strategies characterized by their

respective terminal distributions q, and q_ at time KAt, where

X = 10.

Q
x

= (0,0,0,0,0,20), Q
2

= (0,0,0,15,5,0)

The decision maker is faced with the problem of identifying

a flow schedule which will enable him to delay as much as possible

the final decision as to which of the strategies he is to follow.
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The problem was solved using the methodology of this sec-

tion. It was found that the latest instant of time by which

a decision which strategy to follow has to be made is k?At,

where k, = 4

.

K=10 -

F^k)

qX)

F
2
(k)

Fig. VII. 16. Hierarchical Structure of the Decision Process

The first critical strategy set P. consists of strategy p_

.

The fact that strategy p. is not critical (and the only one

left) indicates that once it is decided to select p, at time

k, =4, it is possible to meet the desired distribution Q-,

prior to time K = 10, say at time K* (see Fig. VII. 16) . The

appropriate minimal time flow schedule can be found by solving

a minimal time redistribution problem with Q = Q (k, ) and

Q, . The complete flow schedule solution to the MDDP

in Fig. VII. 15 is given in Appendix H.

I
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VIII. CONCLUSIONS

A. SUMMARY OF IMPORTANT RESULTS

In Chapter I we expressed the desire to obtain new insight

into the problem of dynamic routing assignments. As an initial

step toward achieving this goal a new performance measure for

efficient delivery of backlogged data to their destinations is

presented and called the optimal delivery function. The first

important result is that the corresponding optimal flow schedule

can be obtained by solving a hierarchical sequence of linear

programming problems. Due to this fact the optimal delivery

problem is computationally tractable even for moderately

large networks. Furthermore, the well established results of

linear programming are exploited to derive and understand the

properties of an optimal flow schedule. Among the important

results, at each hierachical level, the optimal flow schedule shows

(i) A critical set of commodities that share a common

delivery time.

(ii) A critical set of network links that must be saturated

by those commodities throughout their delivery period.

(iii) The minimal rate with which saturation can be achieved.

Another important result relates, at each hierarchy level,

the properties of an optimal flow schedule to the optimal dual

variables associated with the corresponding linear program.

In particular, the composition of the critical sets can be

uniquely identified and the minimal rate of the saturation
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flow can be calculated, whenever the optimal solution is

stable.

The optimal delivery problem is then studied in the case

of single destination networks. Two important results are

obtained. The first states that the optimal delivery function

is globally optimal, i.e. no flow schedule can deliver more

commodity to the destination at any time, than the optimal

flow schedule. The second result is the algorithm for solution

of the single destination delivery problem. It is composed

of a sequence of linear programs whose size is independent of

the total number of hierarchy levels, which makes it compu-

tationally efficient. In this context a method for identifying

critical sets, when the optimal solution is not stable, is

presented.

An important result of this thesis is presented in the form

of a new dynamic network analysis in which the optimal capacity

assignment for routing purposes takes into account not only

the backlogged messages but also the expected arrival rates

of messages at the network. It is shown that the "minimal

expected time to empty a queueing system" objective leads to

a mathematical formulation which is identical to that of the

deterministic delivery problem with constant flow inputs, and

thus most of the previously derived results apply. It is also

shown that a slight modification of the dynamic network analysis

leads to a reasonable problem formulation which can be expected

to provide a bound on the performance of more computationally
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tractable routing procedures which might be implemented in

a real network environment.

In the last chapter a number of results concerning the

delivery problem in capacitated networks with traversal delays

are obtained. In particular we mention the solution algorithm

for the bi-partite network case.

B. AREAS OF FUTURE WORK

Many additional areas of research appear to be ready for

further investigation.

One important point for future study concerns the efficiency

of the proposed algorithm for solving the multicommodity

delivery problem. In particular, decentralized computation capa-

bility should be investigated for its efficient implementation

in dynamic routing schemes.

A further study of the delivery problem on general net-

works with traversal delays is needed. Here the question of

computational tractability seems to be crucial. Our results

for the bi-partite and general networks should provide an

appropriate starting point for this effort.

Throughout the thesis we presented a number of conjectures.

The questions of the number of corner points in the optimal

multicommodity delivery function and its possible global

optimality , in the case of intermediate storage flow schedules,

remain open.
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APPENDIX

A. PROOF OF THEOREM II .

1

Thm. II. 1 was stated in terms of flow schedules which satisfy

constraints (II . 1) - (II . 3) . We prove this theorem here for a

wider class of flow schedules, namely those that allow inter-

mediate data queuing. More precisely, we say that a multi-

commodity flow schedule is feasible in a wide sense (w/s) if

it satisfies the following conditions:

(i) f
ij

(t) I '
v ti,j] e L and ¥t *

(ii) q^(t) > 0, *(i,k) e N
Q

and vt. (A.l)

k(^i)

.k
iii) I fv. (t) < c

i>
,

v [i,j]

where

t
1

- kVV = ^V " / { I f
ij

(t) "
I

fji^)}dt.

The basic difference from Chapter II is that here the delivery

rate of commodity k from node i at time t,

r
k
(t) A

I f*(t) - I f*
±
<t) (A. 2)

1
j(^i)

±3 j(*i) J

is not restricted any more to be a non-negative quantity
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Theorem II.

1

(Extended)

Let Q(t«) and Q(t,) be any two states such that Q(t, ) is reach-

able from Q(t
n ) by some feasible (w/s) multicommodity flow

schedule F(t) , t
Q <_ t £ t-, . Then there exists a feasible (w/s)

multicommodity constant flow schedule F, (t) = F, t« t <_ t,

such that F
1
(t): Q(t

Q
) + Q(t

1
).

Proof

:

Define

fc

l

f^, =
.

1
. / f^(t)dt, *[i,j] -c L , *k (A. 3)

±J r
l t 1J

If we start now in the state Q(t,) and apply the new flow schedule

F for a duration (t,-t
Q

) we will transfer the system into some

(A. 4a)

new state, say Q(t,

q*(t ) = q*(t )-(t -t ){ I f% ~ I f^l

*(i,k) e N
Q

Substituting (A. 3) into (A. 4a) gives:

q^t,) = q*(t ) - / {. I f^(t) - l ^(tlldt, (A.4b)

t
Q

j(*i) 13 j(*i)

*(i,k) e N
Q

and from (A.l) we conclude that

q^( t]_) = q^(t
x
), *(i,k) e N

Q
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Equation (A. 5) is the desired result but we must still show

that F, as defined in (A. 3), satisfies the constraints in (A.l):

(i) obvious, integration of a non-negative (by assumption)

function results in a non-negative value,

(ii) From (A. 4a) we have that for any t -: [t„,t,]

q*(t) = ^V ~ (t-t
Q
)r£, *(i,k) -: N

Q
(A. 6)

where

r* 4
I i* -

I "f* * (i , k ) _: N ( A . 7)
1

j(^i) ^ j(^i) ^

~k
Since r. is not a function of time we see (using (A. 5) and (A. 6)

k k k
that q.(t) falls on the line segment joining q.(t

n ) and q.(t, ).

k k
But q. (t

n
) and q. (t, ) are non-negative (by assumption) which

leads to

qk(t) > 0, *(i,k) € N
Q

, vt £ [tg,^]. (A. 8)

(iii) Define

f.. i I f
K

. (A. 9)
13 k(£i> ^

We need to show that f.. < c. . , *[i,j] £ L
Q

. Using (A. 3) we

can write

f.. = r-^r- / < I
f^(t)}dt f v[i,j]n t,-t n ^

;
,, h^i\ i:

•0
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By assumption

ma* i I f^(t)} < c.., v[i,j] -: L (A. 11)
t£[t Q/ t

1
] k(^i) iJ - i]

which results in

f
ij 1 c

ii#
v[i,j] e L

Q
(A. 12)

and completes the proof.

D

We derive two corollaries of Thm. II. 1.

Corollary IIJ..1

In Thm. II. 1 let Q(t,) = 0. Then the constant flow schedule

F, (t) = F, t
Q

t <_ t, is feasible in the narrow sense (n/s) .

Proof :

Using equation (A. 6) together with the requirement that

Q(t,) = 0, we have

= q*(t )
- (t

1
-t

Q
)r^ / *(i,k) e N

Q
(A. 13)

k ^k
But q. (t.) 0, *(i,k) € N_ and thus r. >_ 0, v(i,k) £ N

Q
and

there is no buildup of queues.

Corollary II. 1.2 .

In Thm. II. 1 let F(t) , t
Q £ t <_ t'

1
be a feasible (n/s) multi-

commodity flow schedule. Then F, (t) = F, t
Q

< t < t^ is also

feasible in a narrow sense.
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Proof :

From equation (A. 3) and the definition of a net delivery rate,

we have that

r
± = r-rr- / r*(t)dt, *(i,k) e Nn (A. 14)

Obviously if r
±
(t) >_ 0, *t -: [tg,^] and v-(i,k) e N

Q
, so is

"k
r . .

i

G

We prove now a result which is frequently used in our study.

Lemma I I. 1.1

Let Q(t
Q

) and Q(t,) be any two states such that Q(t-,) is

reachable from Q(t
Q

) . Let {F(t)}, t
Q

<_ t <_ t, be the set of

all flow schedules such that F(t): Q(t
Q

)
+ Q(t

;

,). Also, let

{F, (t)}, t
Q

<_ t <_ t, be the set of all constant flow schedules

such that F
1
(t): Q(t

Q
) - Q(t.). Any link [i,j] - L

Q
that is

saturated in all flow schedules in the set {F, (t) } is saturated

for the whole period [t_,t, ] in all flow schedules in the set

(F(t) }.

Proof :

Suppose that a link [i,j] e L
n

is saturated in all the flow

schedules in the set {F, (t) }. Let there be some schedule F(t)

,

t
Q

<_ t t, for which this link is not saturated for the whole

period [t ,t,]. Then by Thm. II. 1 and in particular (A. 10) it

is possible to construct a constant flow schedule F,(t),

t
Q _< t < t, such that F

1
(t): Q(t

Q
) + Q(t

1
) f but for which
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the aggregate flow f . .
< c. ., so that the link is not saturated

This contradicts the definition of the set (F, (t)}.

D

B. GLOBAL OPTIMALITY AND MULTICOMMODITY FLOW SCHEDULES

In this section we show by counterexample that the conjec-

ture that every optimal delivery function is also globally

optimal is false for the multicommodity case. The counterexam-

ple applies only to flow schedules which are feasible in the

narrow sense, i.e. do not allow intermediate data storage.

It is still an open question whether the same conjecture holds

for the more general class of flow schedules, namely those that

allow for queues buildup.

Consider the delivery problem in Fig. B.l.

q1 (0) =30

q^O) =70

^4 (0) =60

o. . = 1,

v[i,j] e L.

qg(0) =40

Fig. B.l. Delivery Problem

; For definition and related issues see Section A and

Section C of the appendix.
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Using the algorithm of Chapter III an optimal flow schedule

solution is obtained. It is described in Fig. B.2.

(4,3)

< t < 28.33

(4,3)

^5 n

© ©
(3,4) (6,1)

28.33 < t < 55

(4,3) (1,6) (6,1)
55 < t < 110

,0

Fig. B.2. Chain Flow Decomposition of F
3
(tl
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The optimal delivery function which is generated by this

flow schedule is shown by the solid line in Fig. B.3.

D(t)

200 i

<£•

p l
== 1.12

p l
== 1.27

138.33 i vO"
">*

105

85

i

f

//

c°-3

* i

-?
P
2
-2

D°
3
(t)

— D
2
(t)

28.33 35 44.13 55 110

Fig. B.3. Optimal Delivery Function

The delivery function D
2
(t) shown by the broken line in Fig.

B.3 corresponds to the flow schedule F
2
(t) , < t <_ t

1
which

is depicted in Fig. B.4.
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(4,3)

< t < 35

(4,3) (1,6)

35 <t <110

(6,1)

Fig. B.4. Chain Flow Decomposition of F (t)

We have that

D
2
(t) > D^(t) , *t (28.33,44.13 (B.l)

from which we conclude that not every optimal multicommodity

flow schedule is also globally optimal.
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C. INTERMEDIATE QUEUEING OF DATA

In this thesis most of the results concerning the deter-

ministic delivery problem in communications networks are derived

in terms of flow schedules that do not allow intermediate queue-

ing of data (i.e. that are feasible in the narrow sense 7
) . This

approach avoids unnecessary complexity which could obscure

insight into the problem.

For completeness, we now show that the solution algorithm

in Chapter III can be easily modified to allow intermediate

data storage. The implication of w/s feasibility (see (A.l))

is that the net delivery rate r. (t) ,

r*(t) 4
I f* (t) -

I f* (t) I (C.l
1

j(^i) 13
j(?*i)

]1

is not limited any more to be a non-negative quantity. As a

consequence the conservation constraint (II. 2) must be changed

into

q*(t) 4 q*(0) - / { I f*(a) -
I 4(a))da>0, (C.2)

1 X
j(*i) 1D j(*i) D

*(i,k) e N Q/ vt

in order to account for the non-negativity of all queues at

all times.

Now, it is not difficult to see that the formulation of

MTP (m) (see (III. 4)) in terms of a w/s feasible flow has the

following form.

This section should be read after Section A of this appendix,
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MTP (m) (w/s)

s . t

.

min tm

m

5=1 j(^i) 1D j(^i) I 1
?(0) , *(i,k) e N

Q

m

I ( I u" (p)
p=n j (^i)

i: I u*(P>> <_ q£(0) , *(i,k) -: N
Q

,

n = m , m- 1 , . . . , 2

t c . . + Y u . . (pimi] £ m *'
< 0, *[i,j] £ L.

t -c. . + 7 u. . (m-1)
m-1 i] £ i:

< 0, * [i, j] £ l
q

(C.3a)

u (p) < Ate..,pi:'

V*[i f j] £ Lq,

p = 1,2,..., m-

2

•t n
-
u

. + V ( y u. . (m-D- u. . (m-1-U) =

I (. I. u^.(p) - y u .( P ))

(i,k)£N j (^i) D
j (^i) D

At
p V

p = 1,2 , ... ,m-

2

t + t -,m m-1
= t

m-1

u. . (p) , t , t .

i} m m-i
> 0, *-(i,k) e N

Q
,

V[i,J] £ L
Q

,

p = 1 , 2 , . . . , m
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_0 ^oo
for given t,,p,,...,t , , p ,11 m-1 m-l

Inspection of (C.3) reveals that it differs from the original

statement of MTP (m) in the form of one constraint only (under-

lined) . A similar modification can be applied to MRP (m)

(III. 6) to allow for intermediate data storage.

MRP (m) (w/s) min I
f .

•
(m)

(i,k) J

s . t.

m-l
(t°- £ )r

k
(m+l) + £ r

k
(m) + f AtV(p)mi l L

, p lp=l *
q^O) , *(i,k) £ N

(

(tm' £)r i
(m+1) < q*(0) , *(i,k) -: N

(

(t°-e)r
k
(m+l) + er

k
(m)mi l

<_ q?(0) , *(i,k) £ N
Q

(C.3b;

m— 1

(t°-s)r
k
(m+l) + er

k
(m) + \ At°r

k
(p) < q

k
(0), *(i,k) £ NQf

p=n ^

n = m- 1 , m- 2 , . . . , 2

I
£
2i

( p> c.. *[i,j] £ L
n ,

p = 1,2,..., m+1

(i,k)eN
I

rj(p) = d , p=l,2,..., m-

1

' P

fij(p), r?(p) > 0, v(i,k) £ N
Q

,

v [i, j] £ L
Q

,

p = 1,2,... ,m+l

.
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for given t, , p,

,

m-1 m

where

j(?
I

f^(p) -
J f^(p)/ *(i,k) £ N p = l,2,...,m+l

4- ^° ^0 . nt = t -t , , p = 1 , 2 , . . . , m-1
p p p+1 c

and

e is any real number such that < £ < t - t , .m m+1

The change in the form of the cost function is necessary to en-

sure that we minimize delivery rate and not the total flow rate

in the network.

We conclude this section with an example of a simple delivery

problem for which we compare the delivery functions resulting

from both types of flow schedules.

Example;

q£(0) =18
j

qj(0) =6

q^CO) =6

q^O) =6 q^O) =6

capacities are indicated
on links

Fig. C.l. Delivery Problem
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An optimal flow schedule solution for the problem in Fig

C.l is shown in Figs. C.2a and C . 2b

.

q{(0) =6 q*(0) =18

1—

^

q^O) =6

<D q!(0) =6

Fig. C.2a. Chain Flow Decomposition for the Period [0,1]
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G>

qjd) =15

qjd) =6

q2<l)=3 f

q^l) =3 13

Fig. C.2b. Chain Flow Decomposition for the Period (1,4 ]

The resulting optimal delivery function is shown in Fig.

C.3.

Suppose now that we allow for intermediate data queueing

and in particular consider the flow schedule in Figs. C.4a and

C.4b. Observe that in the first period, [0 , 1

]

f
commodity (1,7)

flows with rate six from node 1 to node 6 and continues
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Fig. C.3. Optimal Delivery Function

qx (0) =
q^O) =6 q^O) =6

7
q ( t) ( intermediate

storage)

Fig. C.4a. Chain Flow Decomposition with Intermediate
Queueing for the Period [0,1]
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qJ(D«18Q[

q^l) =6
q^(l) =3

Fig. C.4b. Chain Flow Decomposition with Intermediate
Queueing for the Period (1,4]

with rate three from node 6 to node 7. As a result, three units

of commodity (1,7) are stored in node 6 in an intermediate

queue denoted by qg (t) . The contents of this queue are delivered

in the second period (1,4].

The delivery function which is generated by the new flow

schedule is superior (dominates) the optimal delivery function.

Both delivery functions are displayed in Fig. C.5.

We conclude that flow schedules which allow intermediate

data queueing may have advantages in certain instances over

flow schedules which are feasible in the narrow sense. Never-

theless, it seems clear that wide-sense (w/s) feasible optimal
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D(t)

42

15

12 — (w/s) D~(t)

— (n/s) D°(t)

Fig. C.5. Comparison of Delivery I unctions

flow schedules (which allow for intermediate data queueing)

do not produce delivery functions that differ substantially in

their basic characteristic (piecewise linear, convex, etc.)

from those produced by narrow sense (n/s) optimal flow schedules

D. MORE ON STABILITY

In this section we complete the discussion of stability

(from Chapter IV. A. c) with examples of delivery problems that

illustrate this concept.

1. Unstable Delivery Problem

qi<o) q^(0)

Fig. D.l. Delivery Problem
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3 3For the case when qx (0) = q 2
(0) = q, an optimal con-

stant flow schedule solution can be found by inspection. It

is shown in Fig. D.2.

< t < q

Fig. D.2. Optimal Constant Flow Schedule

Formally, the MTF(l) for this problem can be written as

4TP(1) '

:

s . t

.

1 1

-1 1

-1 1 1

-1 1 1

-1 1

min t.

u
12

U
2 3

U
13

S
12

s
23

S
13

(D.l)

(t
l
,U

12
,U

2 3' U13' S 12' S
2 3'

S
13 ) >

Since both commodities have a common destination (node 3),

we will not use the upper index notation to indicate the destina-

U.J., *[i,j] e L
Q

.tion, i.e. u
i]
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An optimal basic solution X ' is found to be
B

X
B

(t
l'

U23' u13' s
12

,s
13 ) = (q,q,q,q,0) , (D.2)

and the related optimal dual solution is

A = V B
-1

(0,1,0,0,-1) (D.3)

where

B (1,0,0,0,0,0,0)

.

Now, suppose that q 2
(0) = q-e, £ > 0. It is not diffi-

cult to see that in the new optimal flow schedule, commodity

(1,3) must use the link chain ( [1 , 2] , [2 , 3] ) in addition to

link [1,3]. Therefore it has the form shown in Fig. D.3. Also,

q-s

< a < 1

Fig. D.3. Structure of the Optimal Perturbed Flow Schedule

TRecall that the flow rate variables f .
. are related to the

u. .-variables by the transformation
13 f .

ij ~ u
ij
7t

l' ^'J] « L
o-
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it must be true that

^ u _ q q-e t 2q-e z

We can now calculate a from (D.4)

£

a - —^r " 1 = ^r (D.5)

q-f q-|

The change iz in the optimal value of the cost function

that was caused by the perturbation is

AZ = tj - tj = q - (q -|) = | (D.6)

If we use the optimal dual solution (D.3) to evaluate Az, we

obtain

Az = A-Ab = (0,1,0,0,-1) • (0, ,0,0, 0)
T

= e, (D.7)

which is incorrect. We conclude that the original optimal

solution is not stable (optimal dual is not unique) . Actually,

the new optimal basic solution is (cf. Figs. D.3 and D.5 )

X3
= (t

l'
U12' U23' U

13
/S 12^

= (q~f'f ,q~f ,q~f ' q~ e) (D.8)

4-

Using the law of proportions,

a _ c a+c
b " d b+d*
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and the new related optimal dual is

a = r
B
B
-1

(0.5,0.5,0,-0.5,-0.5)

,

(D.9)

where

Obviously,

r = r
B B

A ^ A. (D.10)

2 . Stable Delivery Problem

qj(0)

Fig. D.4. Delivery Problem

4 4
For the case when q, (0) = 2q and q 2 (0) = 3' an °Ptimal

constant flow schedule solution can be found by inspection.

It is shown in Fig. D.5.
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< t < q

Fig. D.5. Optimal Constant Flow Schedule

Formally, the MTP(l) for this problem can be written as

MTP ( 1 )

:

s.t.

min t.

0110100000000
0-101010000000
00-1-1001000000
•1100000100000
1010000010000
1001000001000
•1000100000100
•1000010000010
•1000001000001

fc
l

U
12

u
13

U
2 3

u
14

u
24

U
34

S
12

S
13

s
23

s
14

S
24

s
34

2q

q

o

o

o

o

o

o

o

(D.ll)
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V u12' u13' u
2 3' u14' u24' u34' s 12' s 13' s 23' s 14' s 24' s

34 ) - °

An optimal basic solution X_ is found to beB

X
B " (t

l'
U12' U13' U23' U14' U24' u34' S 12' S

13 )

(q/q ( 0,q,q,q,q,0,q), (D.12)

and the related optimal dual solution is

A = TgB" 1
= (|,y,y,0,0,0,--y,-y,-y), (D.13)

where

r
B

= (1,0, . . .,0) .

4
Now, suppose that q, (0) = 2q+£, z > 0. With a little

thought the reader will convince himself that commodity (1,4)

must use link chain ( [1 , 3] , [3 , 4] ) in addition to ([1,4]) and

( [1, 2] , [2, 4] ) . Therefore an optimal solution has the form

shown in Fig. D.6.

Also, it must be true that

;0 _ 2c£e _ q . 3q+£ = e (D>14)
1 2+a 1-a 3 ^3

We can now calculate a from (D.14)

£
a = 1 2_ = _1_ (D.15)

q+3 q +3
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Fig. D.6. Structure of the Optimal Perturbed Flow Schedule

The change Az in the optimal value of the cost function

that was caused by the perturbation is

"0
Az = t, - t. q - (q +|) (D.16)

If we use the optimal dual solution (D.14) to evaluate Az,

we obtain

Az = A-Ab =
111 111 T
T'T'T' ' ' ' ~~T'

""
T'

—
T £ /

u
/ . . . /)

V (D.17)

which is the correct value. Actually, the new basic solution

is (cf. Fig. D.6 and D.15 )

X
B " (t

l'
u12' U13' U23' U14' U24' U 34' S

13
,S

23 )

(q+-|,q+j,|,q,q+|-,q+-|,q+§,q,3-) ,
(D.18)
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and the new related optimal dual is

where

A = TgB" 1
= (|,|,|, ,0,0,-k-k-i), (D.19)

r
b * B

Thus

A = A. (D.20)

Formally, we have not shown that the original delivery

problem in this paragraph is stable (i.e. has a unique optimal

dual) but rather have illustrated that although the perturbation

causes a change in the optimal basis, the optimal dual solution

is not changed, a behaviour which is characteristic of a stable

point. It is worth noting that further study of this example

would show that the only unstable point here results from a

4 14
requirement vector b, such that q, (0) = jq and q 2

(0) = <3- T^e

corresponding flow schedule is shown in Fig. D.7. In general,

for a given network we expect a randomly selected requirement

vector b (queues sizes) to be stable though the optimal primal

solution may be degenerate. This observation is backed up by

the experience we have gained in solving a number of delivery

problems. This serves as an additional motivation why we are

interested more in stability than in non-degeneracy.
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q> -§

°<tif

Fig. D.7. Unstable Optimal Flow Schedule

E. OPTIMAL DELIVERY FUNCTION IS PIECEWISE LINEAR

In this section we show that the assumption we made about

the piecewise linearity of an optimal delivery function is jus-

tified. Assume to the contrary, that there exists a continuous,

non-linear optimal delivery function. This function must be

convex, since otherwise we could improve on it by generating

its convex hull by the method of constant flow substitution

(see Appendix I. A). A typical delivery function of this kind

is shown in Fig. E.l. The broken line in Fig. E.l represents

the delivery function which corresponds to an optimal solution

to MTP(l)

.

Consider the optimal flow schedule F(t), £ t <_ t, that

generates D(t), and in particular the net delivery rates r.(t),

236





D(t)

Fig. E.l. Optimal Continuous Non-linear Delivery Function

v(i,k) £ Nq at time t = t, . Define a perturbation vector AQ

such that

Aq* = 6r*(tJ) , *(i,k) £ N
± , (E.l)

where

< 6 <_ o-,/

and <5 , is the maximal value of 5 for which the perturbation AQ

is acceptable (for simplicity we assume that the problem is

at a stable point and thus 5-, > 0) .

The optimal value of the cost function for the perturbed

problem is t,-e where (IV. 20)
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£ =
I

(i,k) £N.

a*(l)Aq* (E.2)

From Thm. IV. 4 we have that any flow pattern of commodities

in N, that saturates the set L, (and in particular the flows

R = (r.(t,)}) must satisfy the perturbation equation, i.e.

1 =
I

(i,k) eN.

a£(l)r*(t°) (E.3)

Using (E.l) and (E.2) with (E.3) , we conclude that

(E.4)

Equality (E.4) ensures us that it is possible to deliver

k k
the set of queues Aq. = 5r.(t,), *(i,k) e N, within the period

(t,-e,t,] by using the set of feasible flows {f..(t,)},

*(i,k) e N, of the optimal flow schedule F(t), < t <_ t
1

. The

perturbed (two segment) delivery function is shown in Fig. E.2.

D(t)

*h

Fig. E.2. Perturbed Delivery Function

238





Since D_(t) dominates D(t), the last cannot be an optimal

delivery function.

Following the same argument it can be shown that an optimal

delivery function must be composed only of linear segments,

i.e. it is not possible to have an optimal delivery function

as shown in Fig. E.3.

D(t)

linear
segment
non-linear
segment

"2 "1

Fig. E.3. Mixed Type Optimal Delivery Function

Basically, this completes our argument about piecewise

linearity of optimal delivery functions. We note that in case

the optimal solution to MTP (l) is not stable, the argument does

not change significantly:

Instead of (E.2) we write

£ = I
(i,k) eN.

0*5(1, R) Aq*, (E.5)
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where

R = (rj(tj)}, *(i,k) 6 R

kThe dual variables a
i
(l,R), v(i,k) e N, in (E.5) correspond

to the related optimal dual solution for the perturbed problem
k k

(note, a
i
(l / R) = a^l), *(i,k) e n if the original solution

is stable) . All other properties remain as before.

We summarize our discussion with the following theorem.

Theorem E.l

An optimal delivery function is piecewise linear.

F. ON THE NUMBER OF CORNER POINTS

In Chapter III.B.2 we proposed a conjecture (Conjecture

III.l) which upper-bounds the number of corner points of an

optimal delivery function with JN^j, the number of non-zero

data queues. The conjecture is based on one aspect of our

experience with delivery problems, the essence of which may be

formalized as follows.

Proposition F.l

At a stable point, let K denote the number of commodities
c m

for which the dual variables at the m-th corner are equal to

their maximal value or are negative, i.e.,

K = |{(i,k): a
k
(m) = a (m) or a^(m) < 0}

m ' i max i
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then

K
m+1

> K , m=l,2,...,M.

Conjecture III.l is a trivial consequence of Proposition

F.l. Actually, we proved a related result (cf. Lemma IV. 5)

which says that if K = |N A j

for some m, then the delivery func-m ' '

tion cannot be improved any more and thus is optimal. There

seems to be a slight difficulty in proving the opposite direc-

tion, i.e. that an optimal delivery function implies (at a

stable point) equal dual variables. We must leave the proof

of this conjecture and of Proposition F.l as open topics for

further research.

G. COMPUTER SOLUTION EXAMPLE OF OPTIMAL DELIVERY PROBLEM

q^(0)=70, q^O) =35, q^O) =50, q^(0)=25, qj<0) -25, q^(0)=35

Fig. G.l. Optimal Delivery Problem

241





The problem in Fig. B.l was solved using the algorithm of

Chapter III. We will not present the partial solutions in de-

tail, but only the optimal flow schedule and its corresponding

delivery function. The optimal flow schedule is composed of

four segments, the chain flow decomposition of each is shown

in the following figures. We append each segment with the

relevant information obtained from the solution of the corres-

ponding minimal time problem (recall that in our notation the

"first" segment is (t
2
,t, ]). Also, we demonstrate the pertur-

bation equation for each one of the flow segments.

iMTP(l) : N. =
{ (1,5) ,(2,4) , (3,1) ,(3,5)}, L

x
= { [3 , 4 ] , [4 , 5 ] ,

[2,5], [3,1]}, 1(1) = (c:j(l)=j,a4(l)=i,al(l) =i,

a*{l)=j,Q t . ..,0)

I
(i,k)cN.

a*U)r*

Pi
=

2 = 1

Fig. G.la. Chain Flow Decomposition for t -: (50,51.25]
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MTP(2) N
2

[(2)

a
t
(t)=

N
l'

L
2 " L

l

= (a^ (2) =1,0^ (2) =1^3 (2) =2,-3 (2) =2,0,

=-4)

,0

) q^(t)

*&* uA°*
U)r

*

= ±-(0.8-1 +0.2-1+1- 2+1-2)

-• -i

= 1

Fig. G.lb. Chain Flow Decomposition for t e (31.25,50]
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MTP(3) N
3

1(3)

= N
2

u {5,3 } L = L. { (2,3) , (5,3)}

c
t
(t)=

= (a^ (3) 4,a^3)4^ (3) 4^5 U) 4,0,.

-1.5)

,0,

i

1
n) I a*(3)r*(3) = ^(k+k+U+T 1 '

1-a. (2) ,. .( . 1 1 2.5 2 2 2 2
t (i,k) eN

Q

1. P
U

3
=5

q^t)

Fig. G.lc. Chain Flow Decomposition for t £ (25,31.25]
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MTP(4) : N
4

= N
3

u { (4,2)} , L
4

= L
3

u { [1,2] , [1,4] , [4 , 2]

}

1(4) = (a^(4)»l,a2.(4)»l,a3(4)-l/j3(4)-l,c|(4)=l,

a
4
(4)=l,0,. .. ,0,a

t
(4)=-5)

W l ^(4)^(4)
1 V 4

' (i,k)eN
4

x

= #(1.7 +1 +1 +0.15 +1.15 +1) = 1
6

fi

Fig. G.ld. Chain Flow Decomposition for t e [0,25]
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The corresponding optimal delivery function is shown in

Fig. G.le.

D(t)

25 31.25 50 51.25

Fig. G.le. Optimal Delivery Function

H. DETAILED SOLUTION OF THE MDDP EXAMPLE

For completeness we restate the MDDP.
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c.. = 2, *[i,j] e L
Q

t.. = 1, v[i,j] -: L

a. = b . = co vi £ v
1 l

Q
Q
= (20,0,0,0,0,0),

Q
1
= (0,0,0,0,0,20),

Q
2
= (0,0,0,15,5,0) .

Fig. H.l. Maximally Delayed Decision Problem

Optimal Flow Schedule ;

F
X
(k)

link

[1,2]

[1,3]

peric d flow

1 2

2 2

3 2

1

2

3

k =
We assume here that the starting time is k

as before.
= 1 , and not
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link

[2,3]

ii

[2,4]

ii

[2,5]

[3,5]

ii

[3,6]

n

[5,4]

[5,6]

period flow

2

3

2

3

2

3 2

2

3

2

3

3

3

F
1
(k)

:

[1,2]

[1,3]

[2,3]

4

5

6

7

8

4

5

6

7

8

4

5

6

2

2

2

2

2

2

2

2

2

2
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link

[2,3]

[2,4]

[2,5]

[3,5]

[3,6]

period

7

8

4

5

6

7

8

9

4

5

6

7

8

9

4

5

6

7

8

9

4

5

6

7

8

9

flow

2

2

2

2

2

2

2

2

2

2

2
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link

[5,4]

>eriod flow

[5,6]

4

5

6

7

8

9

4 2

5

6 2

7 2

8 2

9 2

F
2
(k)

[1,2]

[1,3]

[2,3]

4

5

6

7

8

4

5

6

7

8

4

5

6

2

2

2

2

2

2

2

2
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link

[2,3]

[2,4]

[2,5]

[3,5]

[3,6]

period

7

8

4

5

6

7

8

9

4

5

6

7

8

9

4

5

6

7

8

9

4

5

6

7

8

9

flow

2

2

2

1

2

1

2

2

2

2
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link

[5,4]

[5,6]

peri od flow

4 2

5

6

7

8 2

9 2

4

5

6

7

8

9
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