Issued January 8, 1908.

DULC 2230377

U. S. DEPARTMENT OF AGRICULTURE, BUREAU OF ANIMAL INDUSTRY.—BULLETIN 101.

A. D. MELVIN, CHIEF OF BUREAU.

Α

001 120 188

6

HE AVAILABLE ENERGY OF RED CLOVER HAY.

INVESTIGATIONS WITH THE RESPIRATION CALORIMETER

IN COOPERATION WITH

THE PENNSYLVANIA STATE COLLEGE AGRICULTURAL EXPERIMENT STATION.

BY

HENRY PRENTISS ARMSBY AND J. AUGUST FRIES.

RANSEY JUNIOR HIGH SOH

WASHINGTON: GOVERNMENT PRINTING OFFICE. 1908.

WARANSEY JUNIOR HIGH SCHOOL AR

MINNEAPOLIS, MINNESOTA

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

Issued January 8, 1908.

U. S. DEPARTMENT OF AGRICULTURE,

BUREAU OF ANIMAL INDUSTRY .- BULLETIN 101.

A. D. MELVIN, CHIEF OF BUREAU.

THE AVAILABLE ENERGY OF RED CLOVER HAY.

INVESTIGATIONS WITH THE RESPIRATION CALORIMETER

THE PENNSYLVANIA STATE COLLEGE AGRICULTURAL EXPERIMENT STATION.

BY

HENRY PRENTISS ARMSBY AND J. AUGUST FRIES.

WASHINGTON : GOVERNMENT PRINTING OFFICE. 1908.

THE BUREAU OF ANIMAL INDUSTRY.

Chief: A. D. MELVIN.

Assistant Chief: A. M. FARRINGTON.

Chief Clerk: E. B. JONES.

Biochemic Division: M. DORSET, chief; JAMES A. EMERY; assistant chief.

Dairy Division: ED. H. WEBSTER, chief; C. B. LANE, assistant chief.

Inspection Division: RICE P. STEDDOM, chief; MORRIS WOODEN, R. A. RAMSAY, and ALBERT E. BEHNKE, associate chiefs.

Pathological Division: JOHN R. MOHLER, chief; HENRY J. WASHBURN, assistant chief.

Quarantine Division: RICHARD W. HICKMAN, chief.

Division of Zoology: B. H. RANSOM, chief.

Experiment Station: E. C. SCHROEDER, superintendent; W. E. COTTON, assistant. Animal Husbandman: GEORGE M. ROMMEL.

Editor: JAMES M. PICKENS.

Librarian: BEATRICE OBERLY ROGERS.

ANIMAL HUSBANDRY OFFICE.

Animal Husbandman: George M. Rommel.

Assistant Animal Husbandman: G. Arthur Bell.

Animal breeding investigations: Animal husbandman in charge; E. H. Riley, assistant.

Animal nutrition investigations: H. P. Armsby, expert in charge; J. August Fries, W. W. Braman, and F. W. Christensen, assistants.

Beef production investigations: Animal husbandman in charge; Dan T. Gray, expert in charge of Alabama work; Frank G. King, assistant in Missouri work.

Hog investigations: Assistant animal husbandman in charge; L. R. Davies, assistant.
 Horse breeding investigations: Animal husbandman in charge; W. L. Carlyle, expert

in charge of Colorado work; W. F. Hammond, expert superintendent, Morgan horse farm, Middlebury, Vt.

Milking Shorthorn cattle investigations: Animal husbandman in charge; D. A. Gaumnitz, expert assistant in Minnesota work.

Poultry investigations: Rob R. Slocum in charge; Gilbert M. Gowell, expert in charge of Maine work.

Sheep and goat investigations: Edward L. Shaw in charge; T. F. McConnell, expert in charge of Wyoming sheep-breeding work.

Supervision of pedigree record associations: Animal husbandman in charge; Roy A. Cave, assistant.

LETTER OF TRANSMITTAL.

U. S. DEPARTMENT OF AGRICULTURE, -BUREAU OF ANIMAL INDUSTRY,

Washington, D. C., August 30, 1907.

SIR: I have the honor to transmit herewith and to recommend for publication as Bulletin 101 of this Bureau a manuscript entitled "The Available Energy of Red Clover Hay," by Dr. H. P. Armsby, and J. August Fries. This paper reports further experiments conducted with the respiration calorimeter by the Pennsylvania Agricultural Experiment Station in cooperation with this Bureau. Similar experiments in connection with timothy hay, red clover hay, and maize meal have previously been reported in Bulletins 51 and 74 of this Bureau.

Respectfully,

A. D. MELVIN, Chief of Bureau.

Hon. JAMES WILSON, Secretary of Agriculture.

3

LETTER OF SUBMITTAL.

STATE COLLEGE, PA., July 1, 1907.

SIR: I have the honor to submit herewith a report upon the third series of cooperative experiments with the respiration calorimeter at the Pennsylvania State College.

As in previous experiments, the details of the work have been in charge of Mr. J. August Fries, assistant in animal nutrition. Mr. Fries has been assisted by Messrs. W. W. Braman, A. K. Risser, T. M. Carpenter, R. E. Stallings, J. B. Robb, and John Foster, while the necessary chemical work was carried out by the chemical division of the experiment station under the general direction of Dr. William Frear.

Very respectfully,

HENRY PRENTISS ARMSBY, Expert in Animal Nutrition.

Dr. A. D. MELVIN,

Chief of the Bureau of Animal Industry.

4

CONTENTS.

	Page.
Introduction	7
Description of experiments	7
Analytical methods	7
The feeds	8
Periods and rations	8
Live weights	9
Determinations of digestibility	10
Weighing and sampling of feed	10
Treatment of samples	10
Hours of feeding	10
Collection and sampling of excreta	10
Digestibility of rations	11
The urinary excretion	13
Growth of epidermal tissue	14
Determinations of respiratory products	14
Check tests.	15
Results upon the animal	16
Determinations of heat	19
Rate of heat emission	20
Heat emission and heat production	23
The balance of matter	27
The nitrogen and carbon balance	27
Gain of protein and fat	28
The balance of energy	28
Discussion of results	30
Digestibility	- 30
Metabolizable energy	31
Influence of temperature on heat production	32
Net available energy	34
Corrections for standing and lving	37
Heat requirement of the animal	-41
Maintenance requirement of the animal	43
Distribution of energy	45
Appendix	47

ILLUSTRATIONS.

,

			Page.
Diagram	1.	Live weights of animal	9
	2.	Availability of energy	35
	3.	Average results of carbon and nitrogen and energy balances	36
	4.	Average results from energy balances	39

 $\mathbf{6}$

THE AVAILABLE ENERGY OF RED CLOVER HAY.

INTRODUCTION.

The experiments reported in Bulletin 74 of this Bureau upon "Energy values of red clover hay and maize meal" gave somewhat questionable results for the net available energy of red clover hay. From a comparison of the first and second periods of that experiment an availability of 36.42 per cent was computed, but it was pointed out in reporting this result that the figures were comparatively low and must be accepted with considerable reserve. The experiment here reported, which was carried out during the winter of 1903–4, is a repetition of that portion of the previous experiment relating to clover hay, but upon a more extended scale, and shows that the doubt expressed as to the accuracy of the earlier figure for availability was apparently fully justified.

The general plan of the experiment was to feed the animal three different amounts of red clover hay, all less than the maintenance requirement, and to investigate the metabolism of the animal upon each ration at two different temperatures. Unfortunately, as appears in the following pages, the range of temperature within which the respiration calorimeter could be used was so limited that the experiments failed to afford any decisive results regarding the influence of temperature upon metabolism.

The animal used was the same grade Shorthorn steer which served in the experiments of 1901–2 and 1902–3. At the time of these experiments he was approximately 5 years old.

DESCRIPTION OF EXPERIMENTS.

ANALYTICAL METHODS.

The methods employed for the analysis of the feed and the excreta were substantially those recommended by the Association of Official Agricultural Chemists. The nitrogen of the feces was determined in the fresh material by König's method and the nitrogen of the urine by direct oxidation by the Kjeldahl method. In the computation of proteids from proteid nitrogen the conventional factor 6.25 was used both for the clover hay and for the feces. The nonproteids were computed from the nonproteid nitrogen by multiplication by

7

4.7, the factor for asparagin. Carbon and hydrogen were determined by combustion with cupric oxide in a current of air followed by oxygen. The heats of combustion of the feed and excreta were deter mined by means of the Atwater-Hempel bomb calorimeter.

THE FEEDS.

The hay used was red clover hay grown on the college farm in the summer of 1903. It was secured without rain and retained most of the leaves on the stems. On November 30 about a ton of this hay was run through a feed cutter and cut to lengths of about 7 to 10 centimeters. From the mass of cut hay two separate samples were taken by the same method as in previous experiments.^a During the progress of the experiments a sample of hay was also taken at the time of weighing out for each period, as described in subsequent pages, or three samples in all. The following table shows the composition of the dry matter of the several samples, the generally close agreement of the results indicating that the method of sampling was sufficiently accurate:

Constituents and energy	G	eneral sample	es.	Samples taken during experi- ments.		
	А.	в.	Average.	Period I.	Period 11.	Period III
Ash Proteids Nonproteids. Crude über Nitrogen-free extract Ether extract	Per cent. 6, 57 11, 69 0, 78 28, 78 49, 25 2, 93	Per cent.	Per cent. 11.18 0.89	Per cent. 6, 92 12, 11 1, 35 28, 45 47, 83 3, 33	Per cent 7, 11 11, 82 1, 63 28, 02 47, 98 3, 44	Per cent. 6, 84 11, 84 1, 45 28, 83 47, 69 3, 35
•	100.00			100,00	100.00	100.00
Total carbon Total nitrogen Proteid nitrogen	$\begin{array}{r} 46.\ 43\\ 2\ 039\\ 1.\ 872 \end{array}$	$\begin{array}{c} 46.04 \\ -2.042 \\ -1.818 \end{array}$	46, 24 2, 041 1, 845	$\begin{array}{c} 46.\ 57\\ 2.\ 223\\ 1.\ 935 \end{array}$	$\begin{array}{r} 46.24 \\ 2.238 \\ 1.890 \end{array}$	46, 17 2, 203 1, 895
Heat of combustion, per	Calories 4, 4932	Calories 4-4906	Calories 4. 4919	Calories. 4-4903	Calories. 4 4888	Calories 4. 475

TABLE 1.—Composition of clover hay (dry matter).

PERIODS AND RATIONS.

On November 4, 1903, the steer was placed in a stall in the station barn and fed 6.35 kilograms of mixed clover and timothy hay with a little grain until December 2, 1903, when the grain ration was withdrawn. On December 26 the feeding of the ration used for the first period of the experiment was begun, and on January 2 the animal was transferred to a stall in the calorimeter building. The hay was given in equal amounts at about 6 p. m. and 6 a. m. Each period covered twenty-one days, of which the first eleven were regarded as a pre-

^a Bulletin 51. Bureau of Animal Industry, p. 10.

liminary period and the last ten as constituting the digestion period proper. In view of the fact that all the rations were less than the maintenance requirement, intervals of seven days were interposed between the successive periods, during which the animal was removed to the station barn and fed a ration of 14 pounds of hay and 10 pounds of grain daily. The table shows the exact dates of the several periods and the rations fed.

TABLE	2.—Dates	s and	! rations.
-------	----------	-------	------------

Period.	, Interval.	Preliminary period.	Digestion period.	Hay fed per diem.
I II. III	December 26 to January 1 January 23 to January 29 February 20 to February 26.	January 2 to 12. January 30 to February 9 February 27 to March 8	January 13 to 22 February 10 to 19 March 9 to 18	Kilograms. 3.4 5.9 4.8

The animal was watered daily at about 1 p. m., with the exception of the days when he was in the calorimeter and the day before and after, when water was given immediately before the morning feeding.

DIAGRAM 1.-Live weights of animal.

LIVE WEIGHTS.

The animal was weighed daily at 1 p. m., immediately before watering and also immediately after, the difference being taken as representing the amount of water consumed. On the days when the animal was in the calorimeter the weight was taken immediately before entering and immediately after leaving the apparatus. The figures for live weight and amount of water consumed are given in Table I of the Appendix in connection with the weights of the excreta, and the live weights are shown graphically on Diagram 1.

12237—Bull. 101—07—2

9

DETERMINATIONS OF DIGESTIBILITY.

WEIGHING AND SAMPLING OF FEED.

The hay for each period was weighed out in advance in cloth bags, a day's ration in a bag. In filling the bags the mass of hay was worked into from the side, taking all the material down to the floor. While the bags were being filled, two or three portions of the hay were taken from each bag and set aside in a covered vessel. Immediately after the weighing this was rapidly chopped in a meat chopper, thoroughly mixed, and a sample of 1,000 to 1,500 grams was taken to the laboratory in a covered vessel for determination of dry matter and of the composition of the latter, with the results shown in Table 1.

TREATMENT OF SAMPLES.

The samples when received at the laboratory were immediately weighed, air-dried at a temperature of about 60° C., allowed to hang at ordinary temperature in heavy paper bags for several days, and then ground in a mill as rapidly as practicable, and preserved in sealed bottles. The analyses were made as promptly as practicable, although not in all cases immediately.

HOURS OF FEEDING.

As a matter of convenience in arranging for the work with the respiration calorimeter, the hour of 6 p. m. was taken as the beginning of the day. Approximately one-half of the hay was given at this time and the remainder twelve hours later.

COLLECTION AND SAMPLING OF EXCRETA.

The animal was provided with the rubber duct described and illustrated in a previous publication a for the collection of the feces and with the ordinary urine funnel. These were worn both during the preliminary days and during the digestion period proper, but not during the intervals between the periods. The apparatus served its purpose excellently, loss of excrete occurring in but few instances.

During the digestion period the excreta were weighed promptly at the end of each twenty-four hours, and a sample was drawn after thorough mixing and taken at once to the laboratory for treatment. There a uniform percentage of the total excretion was set aside for a composite sample, chloroform being used as a preservative. At the close of the period these composite samples were thoroughly mixed. In the feces the total nitrogen in the fresh substance was determined by the König method, while a portion of the composite sample was also air-dried at about 60° C, and the air-dry sample subjected to the usual method of analysis, including the determination of its heat of combustion and of carbon and hydrogen. In the mixed sample of

^{(Pennsylvania} Experiment Station Bulletin 42, p. 74.

urine the total nitrogen, total carbon, hydrogen in organic combination, and heat of combustion were determined.

DIGESTIBILITY OF RATIONS.

Period I (January 13-22, 1904).

The live weights of the animal and the weights of excreta are shown in Table I of the Appendix. The following table shows for the digestion period proper, the weight of hay fed, of hay eaten, and of the portions remaining uneaten; the weight of excreta collected, of the portions spilled, and of the total excretion; and the corresponding weights and percentages of dry matter found.

Feed and excreta.	Fresh weight.	Dry matter.	
Hay:	<i>Grams.</i>	Per cent.	Grams.
Total in 10 days	34,000.0	86.32	29, 348, 8
Uneaten January 21 a.	63.0	3.33	2, 1
Uneaten January 22	15.9	83.65	13, 3
Total uneaten	78.9		15.4
Eaten	33,921.1		29, 333. 4
Eaten per day	3,392.1		2, 933. 3
Feces: Collected in 10 days Spilled in calorimeter January 14 Adhering to duct January 14. Spilled in stall January 16. Spilled in calorimeter January 22. Spilled in stall January 22.	$54,937.0\\109.1\\18.0\\1.2\\25.1\\36.6$	29. 36 41. 52 28. 44	$\begin{array}{c} 11,256.6\\ 34.0\\ 6.1\\ 1.1\\ 10.4\\ 10.4 \end{array}$
Total excretion	55, 127.0		11, 318.6
Daily excretion	5, 512.7		1, 131.8

TABLE 3.—Feed and excreta—Period I.

a Including water spilled in feed box.

The composition of the dry matter of the feeding stuffs has already been stated in Table 1, and that of the dry matter of the feces is shown in Table II of the Appendix.

Basing the computation upon the above average weights, the digestibility of the hay, as shown in Table III of the Appendix, was as follows:

TABLE 4	–Digestibi	lity of ra	tion-1	'criod 1.
---------	------------	------------	--------	-----------

Constituents and energy.	Total digested.	Digesti- bility.
Dry matter	Grams.	Per cent. 61 41
Ash.	89.4	44.04
Organic matter	1,712.0	62.70
Proteids	193. 8	54.56
Nonproteids a.	39, 6	100.00
Crude noer.	402.2	00.04
Attrogen-nee extract	80.8	69,94
Ditrogen	39.36	60.36
Carbon	819.07	59,96
	Calorics	
Energy	7,767.35	58.97

a Assumed to be wholly digestible.

^b The calorie referred to in this bullctin is the large calorie (kilogram-calorie; often written with a capital C). A calorie is the amount of heat required to raise the temperature of 1 kilogram (2.2 pounds) of water 1 degree centigrade, or about 4 pounds of water 1 degree Fahrenheit.

Period 11 (February 10-19, 1904).

The following tables, corresponding to those for Period I, summarize the weights of food and excreta and the percentage digestibility of the hay, which are contained in detail in Tables II and III of the Appendix.

TA	RLE	5.	F	eed	and	ercrei	a-1	Peri	od	L	1.
4.55	896+84		4	E C TA	10/11/1	CALLACT CO	U .	614	1112	. 4.4	

Feed and excreta.		Dry matter.		
IIay. Total in 10 days. Uneaten February 17 e Uneaten February 18. Uneaten February 19.	Grams. 59,000.0 580.0 27.0 23.2	Per cent. 85. 24 2. 15 23. 33 88. 11	Grams. 50, 291. 5 12. 5 6. 3 19. 5	
Eaten	58, 369. 8 5, 836. 9		50, 253, 3 5, 025, 33	
Feces Total in 10 days. Spilled in calorimeter February 12. Spilled in stall February 13. Collected in calorimeter February 19. Spilled in stall February 19.	97, 807. 0 142. 4 51. 6 56. 2 4. 7	19.75 24.09 38.57 49.34 27.66	19, 316, 88 34, 3 19, 9 28, 46 1, 3	
Total excretion Daily excretion	98,061.9 9,806.19		19, 400, 84 1, 940, 1	

a Including water spilled in feed box.

Constituents and energy.	Total digested.	Digesti- bility.	
Dry matter. Ash. Organic matter. Proteids . Nonproteids a. Crude filter. Nitrogen-Inee extract. Ether extract. Ether extract. Total nitrogen. Total ention.	Grams. 3, 085, 2 146, 2 2, 939, 0 321, 2 81, 9 788, 2 1, 636, 9 110, 8 69, 02 1, 391, 9	Per cent. 61, 39 62, 96 54, 08 100, 00 55, 97 67, 90 64, 08 61, 37 50, 89	
Energy	Calories. 13, 425. 7	59, 51	

a Assumed to be entirely digestible.

THE URINARY EXCRETION.

Period III (February 27 to March 18).

In this period the final results were as follows:

TABLE 7.—Feed and excreta—Period III.

Feed and excreta.		Dry matter.		
Hay: Total in 10 days. Residue March 9. Residue March 9. Residue March 10. Residue March 10. Residue March 10.	Grams. 48,000.0 28.0 138.5 5.8	Per cent. 86, 48 88, 57 28, 51 87, 93	Grams. 41, 510. 4 24. 8 39. 6 5. 1 8. 1	
Residue March 17 Residue March 17 Residue at end of period. Eaten Eaten per day.	47, 746. 1 4, 774. 6	91, 83	$ \begin{array}{r} 27.0 \\ 4.2 \\ 10.2 \\ \hline 41,391.4 \\ 4,139.14 \\ \end{array} $	
Feees: Total Spilled March 11. Spilled March 18. Adhering to duct.	75, 693. 0 37. 0 20. 6	$21.38 \\ 61.62 \\ 61.16$	16, 183, 16 22, 80 12, 60 53, 00	
Total excretion. Daily excretion.	75,750.6 7,575.06		16,271.50 1,627.10	

TABLE 8.—Digestibility of ration—Period III.

Constituents and energy.	Total digested.	Digesti- bility.
	Grams.	Per cent.
Dry matter	2,511.9	60.68
Ash	104.3	36.83
Organic matter.	2,407.6	62.43
Proteids	262.1	53.48
Nonproteids a	60.0	(100.00)
Crude fiber	642.0	53, 81
Nitrogen-free extract.	1,352.5	68, 51
Ether extract	91.0	65, 62
Total nitrogen	54.8	60.08
Total carbon	1.131.0	59, 18
	Calories.	0011
Energy	10, 869	58, 64

a Assumed to be wholly digestible.

THE URINARY EXCRETION.

Table IV of the Appendix, based upon the weights recorded in Table I, shows the total amounts of nitrogen, carbon, and potential energy in the urine. In those cases in which some was spilled, the material was taken up as completely as possible with the aid of distilled water and the weight and nitrogen content of the washings determined. It has been assumed that their content of carbon and of energy was proportional to the nitrogen. The following table gives a summary of the average daily excretion:

TABLE 9.—Average daily excretion in urine—Periods I. II. and III.

Period.	Nitrogen.	Carbon.	Energy.	Energy per grain of carbon.
			-	
	Grams.	Grams.	Calories.	Calories.
I	50.75	112.15	1.046.40	9,33
11	69,05	168.76	1,522,25	9.02
III	60.55	141.80	1,247.16	8,79

It will be observed that the results obtained for the energy per gram of carbon in the urine tend to be rather lower than those found in Kellner's well known experiments, the average being 9.05 calories as compared with 9.6 calories found by Kellner for lean animals. On the basis of later experience, we are inclined to suspect that our estimate of the energy lost in the drying of the samples is somewhat too low. Nevertheless, the discrepancy between our figures and Kellner's is much less than in the previous year and the results have been used as reported.

GROWTH OF EPIDERMAL TISSUE.

The steer was thoroughly brushed each time immediately before entering the calorimeter and after leaving it, and the hair, dandruff, etc., in the latter case collected. To this was added the small amount brushed up from the floor of the calorimeter. In these samples determinations of nitrogen, carbon, and energy were made with the following results, which include for each period the total for the four days during which the animal was in the calorimeter.

	The start of the			Average.		
Constituents and energy.	Period 1.	Period II.	Period III.	Per period.	Per day.	
Weight	29.0	35, 3	52,8			
Dry matter	93.10	93, 76	93, 48			
Weight of dry matter	27.0	33.1	49.36			
In dry matter:						
Nitrogen						
Percentage	4. 59	6, 31	1.85			
Weightgrams	1.242	2.08	3,86	2,39	0, 6	
Carbon						
Percentage	36,716	40.19	42.56			
Weight	9,928	13.30	21.00	14.74	3. 35	
Energy						
Per gram	4, 108	4, 533	4, 747			
Total calories	110.91	150.04	234.31	165, 10	41.3	

TABLE 10. - Weight and composition of hair, dandruff, etc. - Periods I, II, and III.

As in previous bulleting, it has been assumed that these figures represent the normal rate of production of hair, epidermis, etc., by the animal during the experiment, but not, of course, the matter and energy contained in the growth of hoofs and horns. In the succeeding computations, the averages of Table 10 have been deducted from the gain (*i. c.*, added to the loss) to determine the real gain of flesh and fat, but they have of course been included as a part of the total gain in the final computations of availability.

DETERMINATIONS OF RESPIRATORY PRODUCTS.

As was stated in the introduction, the total metabolism was determined at two different temperatures. For this purpose the animal was placed in the calorimeter on the first and second days and on the eighth and unith days of the ten-day digestion period proper. Dur-

14

ing the first of these two respiration experiments the temperature of the calorimeter was kept at 19° C. and during the second at 13.5° C. In the statements which follow the dates given indicate the twenty-four hours ending at 6 p. m. on the date named.

TABLE 11.—Dates of respiration experiments—Periods I, II, and III.

Period.	At 19° C.	At 13.5° C.
Ι	January 13 and 14, 1904	January 20 and 21, 1904.
II	February 10 and 11, 1904	February 17 and 18, 1904.
III	March 9 and 10, 1904	March 16 and 17, 1904.

The respiratory products were determined during forty-eight hours continuously, the time being divided into four subperiods of twelve hours each, the apparatus used being the respiration calorimeter briefly described in Bulletin 51 of this Bureau and more fully in the Experiment Station Record, Vol. XV, p. 1037.

It is impracticable to reproduce here all the details of these determinations. For the general methods employed the reader is referred to the publications just mentioned.

CHECK TESTS.

External air.—As stated in previous bulletins, check tests are depended upon as a means of computing the amount of combustible gases contained in the air as it enters the respiration chamber. The check tests were made at intervals during the experiments here described with the following results:

Date.	Observed volume of air.		Carbon dioxid weighed.	Per 100 lit at 0° C, ar Hydrogen.	ters dry air nd 760 mm. Carbon,
January 7, 1904 January 25, 1904. March 1, 1904. March 21, 1904. March 21, 1904.	<i>Liters.</i> 1,090 1,139 1,090 941 892	Gram. 0.0135 .0230 .0170 .0175 .0143	Gram. 0.0080 .0080 .0071 .0047	Milligram. 0, 153 , 243 , 193 , 226 , 194	Milligram. 0.223 .208 .224 .157
Average				. 202	. 203

TABLE 12.—Combustible gases in external air.

As before, the results are somewhat variable, but in no case are the corrections large as compared with the total amounts determined in the experiments upon the animal.

Alcohol check tests.—The accuracy of the apparatus was tested, as in previous years, by burning in it known amounts of ethyl alcohol and determining the amounts of carbon dioxid, water, and heat evolved. The results of these alcohol check tests as regards carbon dioxid and heat are given below. The results upon water have not yet proven satisfactory.

		Weig	ht of hol.	С	arbon di	oxid.		lleat.	
Date.	Dura- tion.	lly- drated.	Anhy- drous.	Com- puted.	Ob- served.	Percent- age ob- served.	Com- puted.	Ob- served.	Percent- age ob- served.
January 5, 1904 March 25, 1904	Hours. 6 7	Grams. 487, 12 541, 68	Grams. 436, 89 485, 82	Grams. 834, 90 928, 40	<i>Grams.</i> 830, 58 907, 51	99, 48 97, 74	Calories. 31,253 34,753	Calories. 31, 428 35, 490	100, 57 102, 13

TABLE 13.—Results of alcohol check tests.

It will be noted that the agreement of the results in the test of January 5 is very satisfactory, while in that of March 25 a somewhat greater departure from the theoretical results occurred.

RESULTS UPON THE ANIMAL.

Tables V, VI, VII, VIII, IX, and X of the Appendix contain the results of the determinations of the respiratory products for the several periods and subperiods. These are summarized in the table following:

TABLE 14.—Excreted in respiration.

Period and subperiod.	Carbon as CO ₂ .	Carbon as CH ₆ .	Water.
Period Ia: Subperiod I Subperiod 2	Grams. 533, 15 530, 01	Grams. 25,97 23,20	Grams. 1,979.72 2,048.84
First day	1,063.16	49.17	4,028.56
Subperiod 3	542, 45 552, 44	25, 40 27, 39	1,925.27 1,886.38
Second day	1,094.89	52, 79	3, 811, 65
Аустиде	1,079.03	50.98	3,920.11
Period Ib: Subperiod L., Subperiod 2.,	533, 80 539, 19	25,36 23,24	1,242.85 1,395.35
First day	1,072.99	48, 60	2, 638, 20
Subperiod 3 Subperiod 4.	545, 31 566, 16	25.73 23.14	1,377.35 1,498.50
Second day	1, 141, 47	45, 57	2, 875, 85
Average	1,092.23	48.74	2,757.03
Period 11a Subperiod 1 Subperiod 2	605, 68 642, 34	31, 40 41, 68	2,270,10 2,395,53
First day	1,248.02	73.05	4,665,63
Subperiod 3 Subperiod 4	$\begin{array}{c} 642,50\\ 628,97\end{array}$	38, 45 25, 43	2,377,88 2,358,17
Second day *	1,271 47	63, 88	4, 736. 05
Average	1,259.75	68, 48	4, 700, 84
Period 115: subperiod 1 Subperiod 2	615, 27 622, 32	$ \begin{array}{r} 19.72 \\ 22.05 \end{array} $	1,684.21 1,649.37
First day	1,237.59	41.77	3, 333, 58
8 Dopertical 3 Subperiod 4	622,96 618,04	31.20 (?)	1, 7%2. 71 1, 772. 73
second 1. In	1,241.00		3, 555, 44
Average	1,239.30	48, 64	3, 444, 51

Period and subperiod.	Carbon as CO ₂ .	Carbon as CH ₄ .	Water.
Period IIIa: Subperiod 1 Subperiod 2	<i>Grams.</i> 587.26 568.68	Grams. a 28.03 a 34.07	Grams. 2, 349. 54 2, 283. 50
First day	1, 155. 94	a 62.10	4,633.04
Subperiod 3 Subperiod 4	$581.71 \\ 563.11$	$\begin{array}{c} 25.08\\ 27.36\end{array}$	2,185.98 2,364.54
Second day	1,144.82	52.44	4, 550. 52
Average	1,150.38		4, 591. 78
Period 111b: Subperiod 1 Subperiod 2	568.23 560.76	$24.13 \\ 31.28$	1,756.48 1,622.86
First day	1, 128. 99	55.41	3, 379. 34
Subperiod 3 Subperiod 4	$568.89 \\ 572.29$	$31.94 \\ 34.35$	1,693.32 1,851.48
Second day.	1, 141. 18	66.29	3, 544. 80
Average	1, 135.09	60.85	3, 462.07

TABLE 14.—Excreted in respiration—Continued.

a Includes a correction for the time during which the gas supply of the combustion furnaces was cut off.

Hydrocarbon gases.—In the experiment with timothy hay in 1901-2 it was shown that the ratio of hydrogen to carbon in the combustible gases given off by the animal was almost identical with that for methane, while in the experiment of the succeeding year it was appreciably lower. The corresponding results for the present experiment were as follows:

TABLE 15(Compos	ition of a	combus	tible	e gases.
-----------	--------	------------	--------	-------	----------

Period and subperiod.	Hydro- gen.	Carbon.	Ratio of hydrogen to carbon.	Methane com- puted from carbon.
Period Ia: Subperiod 1 Subperiod 2	Grams. 8.03 7.23	Grams. 25.97 23.20	1:3.234 1:3.209	Grams. 34.70 31.00
First day	15.26	49.17	1:3.225	65.70
Subperiod 3 Subperiod 4	8.02 8.69	25.40 27.39	1:3,167 1:3,152	$\begin{array}{c} 33.94\\ 36.59\end{array}$
Second day	16.71	52.79	1:3.159	70.53
Average	15.99	50,98	1:3.188	68.11
Period Ib: Subperiod 1 Subperiod 2	7.67 7.06	25,36 23,24	$1:3.306 \\ 1:3.292$	33.88 31.05
First day	14.73	48.60	1:3.299	64.93
Subperiod 3	8.49 7.15	$25.73 \\ 23.14$	1:3.031 1:3.237	34.38 30.92
Second day	15.64	48.87	1:3.125	65,30
Average	15.19	48.74	1:3.209	65.12

Period and . ubperiods. IIydro- gen. Carbon. Ratio of hydrogen to earbou	com- puted
	Carbon.
Period 11a: Grams. Grams. Subperiod 1. 9.92 31.40 1:3.165 Subperiod 2. 13.19 41.68 1:3.160	Grams. 41,95 55,69
First day	97.64
Subperiod 3, 12,36 38,45 1:3,111 Subperiod 4, 7,91 25,43 1:3,215	51.37 33.98
Second day	85,35
Average	91,49
Period 11b: 6,09 19,72 1:3,238 Subperiod 2 7,43 22,05 1:2,968	26, 35 29, 46
First day	55, 81
Subperiod 3. 9,79 31,20 1:3,187 Subperiod 4. (2) (2)	41,68
Second day. Average.	
Period 111a: subperiod 1	37, 45 45, 52
First day	82,97
Subperiod 3. 7,89 25,08 1,3,170 Subperiod 4. 8,63 27,36 1:3,171	$33,51 \\ 36,55$
Second day	70,06
A verage	76,52
Period 111b; Subperiod 1 Subperiod 2	$\frac{32,24}{41,79}$
First day	74,03
Subperiod 3 10,40 31,94 1:3.071 Subperiod 4 11,06 34,35 1:3.106	42,67 45,89
	00 00
Second day 21.46 66.29 1:3.089	35, 50

TABLE 15.—Composition of combustible gases-Continued.

a Includes a correction.

It will be observed that in every instance the ratio of hydrogen to carbon is lower than that in methane. The average ratio for all the periods is almost exactly the same as that found in the experiments of the previous year, as reported in Bulletin 74 of this Bureau, viz, 1:3.17, which corresponds to the following composition as compared to the theoretical:

	Found	In meth- anc.
Carbon Hydrogen	Per cent 76,02 23,95	Per cent. 74,85 25,15
	1 400,00	100,00

The presence of free hydrogen in the intestinal gases of animals has occasionally been noted, but it is difficult to see what compound richer in carbon than methane would be likely to be present. In the light of subsequent experience, we are inclined to suspect that insufficient heating of the platinized kaolin may be responsible for the deficiency of hydrogen. At any rate, pending a critical study of the method employed, we have for the present computed the excretion of methane from the amounts of carbon shown in the above table.

The results of Period II*b*, it will be noted, are exceedingly low, and none at all are reported for subperiod 4 of this period. In the subsequent computations, therefore, these results have been rejected and those obtained in Period IIa, on the same ration, employed.

DETERMINATIONS OF HEAT.

It is impracticable to reproduce here the very voluminous records required for the determination of the heat produced, and it must suffice to indicate the general method and to summarize the main results.

As explained in Bulletin 51, the heat given off by the animal as sensible heat is removed from the apparatus by a water current, the amount thus removed being measured by the product of the amount of water passing through the absorbers and the rise in temperature during its passage through the apparatus. As noted, the temperature of the water is taken every four minutes, while the efflux of each 100 liters is noted on the records. In any portion of the experiment during which the rate of flow of water is uniform we may, without sensible error, compute the averages of the ingoing and of the outcoming temperatures and multiply the total weight of water by the difference between the two. Certain corrections are necessary, however.

First. The pipe composing our absorber being of small diameter, there is a not inconsiderable pressure upon the bulbs of the thermometers, and this pressure varies with the rate at which the water flows. Since the pressure is greater upon the ingoing than upon the outcoming thermometer, the effect is to render the observed difference in temperature too small. A correction for this effect has been worked out experimentally for the range of pressure used and is applied in the table.

Second. The friction of the water in the absorbers is itself the source of a small amount of heat, which is computed from the difference in pressure at entrance and exit and the weight of the water passing through the absorbers.

Third. As Atwater and Rosa have shown, it is essential to take account of the variation in the specific heat of water at different temperatures. We have followed their practice, and, assuming the specific heat of water at 20° C. as unity, have expressed all our

results in calories at 20° , using for this purpose the table of the specific heat of water given by those observers.^a

Fourth. Corrections have to be made for the heat introduced into the apparatus or withdrawn from it in case the feed, drink, excreta, and vessels containing them are introduced or removed at a temperature different from that of the calorimeter. The net amount of these corrections, as appears from the table, is ordinarily small, but the single factors are sometimes not inconsiderable. This is especially the case with the feces, where considerable difficulty has been experienced in determining the true average temperature of the mass.

The results of these several computations are contained in Table XI of the Appendix. To the heat thus measured is to be added the latent heat of water vapor evaporated in and carried out of the chamber. This is computed from the results for water, assuming the latent heat of vaporization to be 0.592 calorie per gram.

The following table contains a summary of the amounts of heat measured in the calorimeter in the several periods and subperiods. By a series of accidents the results for Period IIb, subperiods 3 and 4, were rendered valueless.

		Contraction of the second s				
	Period Ia.	Period 1b.	Period IIa.	Period 11b.	Period IIIa.	Period IIIb.
First day: Subperiod 1i Subperiod 2	Calories. 5,667.92 5,213.80	Calories. 5,827.99	Calories. 5,765.91 5,639.28	Calories. 5,773.06 5,300.77	Calories. 5, 586, 97 5, 322, 91	Calories. 5, 683, 14 5, 115, 06
Total	10, 881, 72		11, 405, 19	11,073.83	10, 909, 88	10, 798, 20
Second day: Subperiod 3 Subperiod 4	5, 522, 33 5, 605, 56	5, 956, 95 5, 739, 96	5,901.96 5,721.91		5, 324, 48 5, 350, 96	5, 345, 11 5, 561, 71
Total	11, 127, 89	11,696,91	11, 623, 87		10, 675, 44	10, 906, 82
Average per day	11,004.5		11, 514. 53		10, 792, 66	10, 852, 5

TABLE 16.- Heat measured in calorimeter.

RATE OF HEAT EMISSION.

As in previous experiments, the rate at which heat was emitted by the animal varied notably according as the animal was standing or lying. The following table shows the total heat emitted during the periods of standing and lying, respectively. The figures of this table relate only to the amount of heat given off by radiation and conduction and removed from the calorimeter in the water current, and do not include the heat carried off as latent heat of water vapor.

(U.S. Department of Agriculture, Office of Experiment Stations Bulletin 63, p. 56.

RATE OF HEAT EMISSION.

TABLE 17.—Heat emission, standing and lying.

. Period and subperiod.	Time.	Position.	Total heat.	Heat per minute.
Period Ia:				
Subperiod 1-	Minutes.	Q1 11	Calories.	Calories.
6.00 p. m. to 11.59 p. m	309	Standing	2,228.03	6.2079
2.13 a. m. to 6.00 a. m.	227	Standing	1.628.23	7.1728
Subperiod 2—			-,	
6.00 a. m. to 9.44 a. m.	224	Standing	1,329.16	5.9333
9.44 a. m. to 11.39 a. m.	115	Lying	471.06	4.0961
Subneriod 3-	991	standing	2,200.07	0.1100
6.00 p. m. to 7.46 p. m.	106	Standing	652.54	6,1560
7.46 p. m. to 7.51 p. m	5	Lying	26.50	5,3000
7.51 p. m. to 12.58 a. m.	307	Standing	1,967.26	6, 4080
3.08 a m to 6.00 a m	172	Standing	1 154 69	6 7133
Subperiod 4-	112	, stunding	1,10,41,00	
6.00 a. m. to 6.00 p. m.	720	Standing	4, 488. 83	6,2344
Period Ha:		ł)
Subperiod 1 6.00 n m to 2.36 s m	516	Standing	3 347 84	6 4880
2.36 a. m. to 5.01 a. m.	145	Lving	643.67	4, 4390
5.01 a. m. to 6.00 a. m.	59	Standing	430.50	7.2796
Subperiod 2—	0.04	G		
6,00 a. m. to 9,41 a. m.	221	Standing	1,440.59	6,5185
⁹ .41 a. m. to 12.40 p. m.	189	Standing	856 39	4.5120
2.46 p. m. to 4.29 p. m.	103	Lying	413.74	4,0169
4.29 p. m. to 6.00 p. m.	91	Standing	712.75	7,8320
Subperiod 3-		04	1 100 00	
6.00 p. m. to 8.55 p. m	175	Standing	1,199.09	6,8519
10.42 n m to 2.05 g m	203	Standing	1.448.46	7, 1359
2.05 a. m. to 4.33 a. m.	148	Lying	689,35	4.6577
4.33 a. m. to 6.00 a. m.	87	Standing	636.28	7.3135
Subperiod 4-	100	Chamilton	000 50	0.5000
8.12 m to $10.36 a$ m	132	Standing	632 67	0.0202
10.36 a. m. to 1.07 p. m.	151	Standing	1.054.01	6,9802
1.07 p. m. to 2.49 p. m.	102	Lying	479,26	4.6986
2.49 p. m. to 6.00 p. m.	191	Standing	1,291.34	6,7609
Period IIIa:				
6.00 p. m. to 8.57 p. m	177	Standing	1.079.26	6.0975
8.57 p. m. to 9.36 p. m.	39	Lying	160.94	4.1266
9.36 p. m. to 2.53 a. m.	317	Standing	2,005.17	6.3240
2.53 a. m. to 4.58 a. m.	125	Lying	541.65	4.3332
4.05 a. m. to 0.00 a. m	02	standing	405.02	0.0911
6.00 a. m. to 8.31 a. m.	151	Standing	939.75	6.2235
8.31 a. m. to 10.10 a. m	99	Lying	346.29	3.4978
10.10 a. m. to 11.46 a. m.	96	Standing	649.32	6.7637
2.27 p m to 6.00 p m	213	Lying	1 354 92	4.2280
Subperiod 3-	1 210	standing	1,004.02	0.0011
6.00 p. m. to 7.46 p. m	106	Standing	663.16	6. 2562
7.46 p. m. to 9.20 p. m.	94	Lying	427.21	4. 5448
9.20 p. m. to 10.24 p. m.	64	Standing	447.00	0.9843
11.58 p. m. to 12.25 a. m	94 27	Standing	192.46	7, 1281
12.25 a. m. to 2.09 a. m.	104	Lying	489.88	4.7103
2.09 a. m. to 3.04 a. m	55	Standing	432.65	7. * 663
3.04 a. m. to 4.59 a. m.	115	Lying		4, 9001
Subperiod 4-	01	standing	001.00	0.0010
6.00 a. m. to 9.30 a. m.	210	Standing	1,295.38	6, 1685
9.30 a. m. to 11.36 a. m	126	Lying	522.45	4.1464
11.36 a. m. to 1.37 p. m.	121	Standing	757.97	6.2642
3.56 p. m. to 3.50 p. m	139	Standing	814.90	4.0320
Period 1b:	124	ovanuing	011.00	(,,,,,,,,,)
Subperiod 1—				
6.00 p. m. to 6.00 a. m.	720	Standing	5,092.23	7.0725
Supperiod 2— 6.00 p m to 6.00 p m		Standing		
Subperiod 3-	720	summing		
6.00 p. m. to 6.00 a. m.	720	Standing	5,141.56	7.1411
Subperiod 4				
6.00 a. m. to 6.00 p. m.	720	Standing	4,852.85	6.7401

TABLE 17. Heat emission, standing and lying-Continued.

Period and subperiod.	Time.	Position.	Total heat.	Heat per minute.
Period 116:	Minutes		Caloria	Calories
Suppend 1-	A71	Standing	3 971 84	Curonica.
1 51 0 p. m. to 1 56 a. m.	5	Lying	32 56	6.5190
1.56 a m to 2.90 a m	93	Standing	665.08	7.1514
3.20 a m to 5.46 a m	137	Lying	690, 83	5.0425
5.46 a m 10.6.00 a. m	14	Standing	115.70	8, 2642
Subperiod 2-		0		
6.00 a. m. to 1.14 p. m.	434	Standing	2,648.94	6.1035
1.14 p. m. to 3.26 p. m.	132	Lying	581.85	4.4075
3.26 p. m. to 6.00 p. m.	154	Standing	1,093.56	7, 1010
' Subperiod 3 =				
6.00 p. m. to 7.59 p. m	119	Standing	788.46	6. 6257
*A 7.59 p. m. to 10.38 p. m	159	Lying	861.70	5, 4195
10.38 p. m. to 11.42 p. m	64	Standing	485.74	7
11.42 p. m. to 1.51 a. m	129	Lying	739.81	5, 7349
1.51 a. m. 10 5.17 a. m	206	Standing and	1,192.22	(a)
		lying.a	000 01	
5.17 a. m. to 6.00 a. m	-43	Standing	333.94	7.7660
Subperiod 4-		Of a Para	1 001 40	0.000
6.00 a. m. to 8.59 a. m.	1/9	Standing	1,231.48	0. 8/9/
8.59 a. m. to 10.26 a. m.	84	Lying	454.05	0.2189
10.26 a. m. to 1.24 p. m.	178	Standing	1,202.04	0. 1004
1.24 p. m. to 2.20 p. m	00	Lying	1 500 72	9.0995
2 20 p. m. 10 6.00 p. m	220	standing	1,000,00	1. L.W.K.
Period 1110: Subpariod 1				
6.00 m m to 10.97 m m	967	Standing	1 815 36	6,7001
10.27 n m to 19.24 n	-97	Lying	574 40	5 0304
12.21 n th to 2.05 n th	104	Standing	751 12	7 19993
2.65 m to $3.31 m$ m	NG	Lying	457 29	5 3173
3.31 a. m. to 6.00 a.m.	149	Standing	1.045.05	7.0137
Subperiod 2 -			47.1.1.1.1.1.1	
6.00 a. m. to 10.33 a. m.	273	Standing	1.587.45	5.8148
10.33 a. m. to 12.33 p. m	120	Lving	551.84	4.5986
12.33 p. m. to 1.54 p. m.	81	Standing	497.03	6,1361
1.54 p. m. to 2.44 p. m.	50	Lying	215.99	4.3198
2 44 p. m. to 6.00 p. m.	196	Standing	1,302.02	6.6428
Subperiod 3 -				
6.00 p. m. to 8.07 p. m.	127	Standing	792.55	6,2405
8.07 p. m. to 9.30 p. m		Lying	394.36	4.7513
9.30 p. m. to 1.25 a. m	235	Standing	1,612.37	6.8611
1 25 a. m. to 2.58 a. m	. 93	Lying	483.30	5. 1967
2.58 a. m. to 3.47 a. m	49	Standing	312.72	6.3520
3.47 а. ш. to 5.44 а. ш.	117	Lying	608.25	5.1987
5 44 a. m. to 6.00 a. m	16	Standing	139.12	8. 6950
Subperiod 4		(A. 1)		
6.00 a. m. to 9.18 a. m	198	Standing	1,286.64	6. 4981
9 18 a. m. to 11 28 a. m.	130	Lying	574 65	4. 4203
11.25 a. m. to 1.43 p. m	135	Standing	921.79	0.8720
1 45 p. m. to 1 45 p. m	2	Lying	1 674 10	1. 1900
tao h. m. to gran h. m	200	standing	1,014.18	(1, (H)-H

 $\,$ $\,$ $\,$ The animal lay down so quietly that it was not noticed at the time. Therefore no division was made between 1.51 and 5.17 for standing and lying.

From the foregoing table have been computed the following results for the total heat emitted during the several periods in the lying and the standing positions, respectively, together with the average heat emission per minute. In making these computations the artificial division into subperiods has been disregarded.

	Lying.	Standing.
Period Ia:	204	9.408
Total heat	1 718 2	15,490
Heat per minute	4.4747	6,2700
Ratio	1	1.4012
Period IIa:		
Minutes	934	1,946
Total heatcalories.	4,177.5	13,285.8
lleat per minutedo	4.4727	6.8272
Ratio	1	1.5264
Period IIIa:	1.000	
Minutes.	1,096	1,784
lotal neat	4, (19.8	11,428.7
Patio	4. 0004	0.4002
Pariod 1b (subpariade 1 3 and 4):	1	1. 40/0
Ninutes	1	2 160
Total heat calories		15 086 64
Heat per minute		6, 9846
Period 11b (subperiods 1 and 2 only):		
Minutes	274	1,166
Total heatcalories	1,305.2	7,802.2
lleat per minutedo	4.7636	6.6914
Ratio	1	1.4047
Period 1116:		
Minutes	795	2,085
Total heat	3,862.5	13,743.4
neat per minute(0	4.8080	6. 5915
Katio	1	1. 9900

TABLE 18.—Average heat emission per minute.

The differences in rate of heat emission, although slightly smaller, are still quite comparable with those observed in the previous year with the same animal (Bul. 74, p. 24), while both are larger than those observed in the first year's experiments (Bul. 51, p. 37). In the results of the last two years there appears a distinct effect of the amount of feed consumed, the difference in the heat emission standing and lying tending to be greater on the heavier rations. In this year's experiments, too, the difference seems to be less in the trials at the lower temperature, although the results for periods Ib and IIb, as noted, are somewhat incomplete. While we should naturally ascribe these differences in heat emission chiefly to the increased muscular exertion required in standing, it would seem that there are other factors affecting it.

HEAT EMISSION AND HEAT PRODUCTION.

The figures of the preceding tables show the amounts of heat given off by the animal. The heat emitted by the animal, however, is equal to the amount of heat actually produced only when the initial and final states of the animal are the same. Consequently there may be, according to circumstances, either a storage of heat in the body or an emission of heat produced in a previous period. In this respect there are two principal sources of error—first, variations in the body temperature of the animal; second, a storage or loss of matter by the body. As regards the first of these sources of error, it has been assumed that under normal and uniform conditions the body temperature would be substantially the same at the same hour of the day. We have not been able as yet to make systematic determinations of the body temperature of cattle as a check upon this assumption, but the rectal temperature of the animal was taken daily during the digestion periods proper of Periods I and II, except when the steer was in the calorimeter, and also during the preliminary feeding of Periods II and III and on one day during the digestion period proper of Period III. The observations were made immediately before watering, by means of a self-registering mercurial thermometer, with the following results:

Pe	eriod 1.		Period 1	Period II.		Period III.	
Date.	Те	mpera- ture.	Date.	1	Tempera- ture.	Date.	Tempera- ture.
January 15 16 17 18 19 22 Average		°C. 38,3 38,1 38,1 38,2 37,9 34,0 38,1	February 3 4 5 7 8 9 12 13 14 15 16 19 Average		°C. 38, 3 38, 2 38, 2 38, 2 38, 2 38, 2 38, 1 38, 1 38, 1 38, 1 38, 1 38, 2 38, 1 38, 2 38, 1 38, 2 38, 1 38, 2 38, 1 38, 2 38, 38, 2 38,	February 28, 29 March 1 3 4 5 6 7 12 Average	°C. 38.1 38.3 38.4 38.4 38.4 38.4 38.5 38.5 38.5

TABLE 19. - Temperature of the animal.

In but two cases does the difference between two successive days exceed 0.1° C. With an average live weight of about 580 kilograms, assuming a specific heat of 0.8 for the body, this difference is equivalent to 46 calories.

If the animal stores up matter in its body, there must necessarily be a corresponding retention of a portion of the heat arising from body metabolism, since the matter which is stored was consumed in the food at a temperature considerably below that of the body. On the other hand, if there is a loss of matter from the body in any one of the various excrets, the temperature of this matter is reduced (either actually or by calculation) to that of the surrounding air before it leaves the calorimeter, and this heat which was previously stored up in the body is measured along with that actually produced during the experiment. The above statements are of course true whatever be the kind of matter stored up or given off; but the income and outgo of water is of especial importance in this respect, both because of its large amount and because of the high specific heat of water. Indeed, a very simple calculation serves to show that in these experiments the difference in the income and outgo of dry matter does not materially affect the computation of the balance of

energy, and that consequently only the income and outgo of water need be considered.

From the data contained in the various tables of the Appendix are compiled the following tables, showing the income and outgo of water by the animal and the corresponding gain or loss of heat on each day of the calorimeter experiments. The body temperature has been assumed to be represented by the average for the period (Table 19), while that of the calorimeter was 19.0° C. and 13.5° C. in the series *a* and *b*, respectively, except in Period III*b*, when it was 13.8° C. In the case of feces spilled in the calorimeter the water remaining in them when sampled has been divided equally between the two days.

TABLE 20.— Ap	proximate water l	balance.
-----------------	-------------------	----------

PERIOD I.

	Income.	Outgo.		Income.	Outgo.
Period Ia: January 13— Hay.	G r ams. 272	Grams.	Period Ib: January 20— Hay	Grams. 289	G r ams.
Water Feces Feces spilled	11,330	2,908 37	Water Feces Feces spilled	3, 554	4,936
Urine. Water vapor. Balance.		$3,963 \\ 4,029 \\ 665$	Urine. Water vapor. Balance.	7,334	3,599 2,638
	11;602	11,602		11,177	11,177
January 14— Hay Feces. Feces spilled Urine. Water vacor	296 760	4,718 37 2,984. 3 812	January 21— llay. Water Feces Feces spilled Urine Water vapor	270 11,895	5, 102 4 2, 583 2, 876
Balance	10, 495	11 551	Balance	19 165	1,600

Period 11a:			Period IIb:		
February 10-			February 17-		
Hay	. 536		11ay	449	
Water	. 11.952		Water	25,670	
Feces.		9,856	Feees		7.658
Feces spilled		54	Feces spilled		14
Urine		5 209	Urine		5, 242
Water vapor		4 666	Water vapor		3 334
Balanco	7 907	4,000	Ralanco		9.871
Datanco	. 1,201		Datance		0.011
	19.785	10.785		26.119	26.119
	10,000	10,100			
February 11-			February 18-		
Hav	597		llav	504	
Water	17 470		Water	14,460	
Foos		\$ 606	Focos	,	6 921
Foos spilled	• • • • • • • • • • • • •	5.4	Fooos spilled		1.4
I wine		0.99	Linino		5 071
Water report		4 794	Water yoper		3 560
Balance	1 002	4,750	Delence	609	0,000
Dalanee	1,003		balance	002	
	10.070	10.070	N	15 566	15 566
	19,070	19,070		10,000	10,000

PERIOD II

	Income.	Outgo.		Income.	Outgo.
Period 111a. March 9 - Hay Unoaten residue Feces Urine Water vapor	Grams. 458 5, 205	<i>Grams.</i> 99 5,762 7 4,578 4,633	Period IIIb: March 16— Hay. Feces. Feces spilled. Urine. Water vapor. Balance.	Grams. 412 18.100	Grams. 6,611 4 4,461 3,379 4,057
Dalaike	9,410 15,079	15,079		18,512	18,512
March 10— Hay Uneaten residue Feces Feces spilled. Urine Water vapor Balance	451 16, 020	53 5, 100 7 4, 503 4, 551 2, 257	March 17— Ilay	387 11, 200 2, 289	5,779 4 4,548 3,543
	16, 471	16, 471		13,876	13, 870

TABLE 20.- Approximate water balance-Continued.

PERIOD III.

Upon the basis of the above figures the actual heat production has been computed, as shown in the following table, the difference between the income and outgo of water, expressed in kilograms, being multiplied by the difference between the average body temperature for the period and the temperature of the calorimeter to obtain the correction. With the exception of Period II*a*, the results for the two days of each period where such a comparison is possible show a very close agreement in the amount of heat actually produced.

TABLE 21.- Heat production.

	Period.	Measured in calorim- eter.	Correction for water balance.	Heat pro- duced.
Period 1a: First day . Second day .	· · · · · · · · · · · · · · · · · · ·	Calories. 10, 881. 7 11, 127. 9	Calories. + 12.7 - 200.5	Calories. 10, 894. 4 10, 927. 4
Average.		11,004.8	- 93.9	10, 910, 9
Period 1b: First day Second day.		11,695.9	+ 39.4	11,736,3
Period Ha: First day Second day		11, 405, 2 11, 623, 9	-140.1	11, 265, 1 11, 604, 6
Average	· · · · · · · · · · · · · · · · · · ·	11, 514. 5	- 79.7	11, 434, 9
Period 11b; First day Second day		11.073.8	+243.8	11, 317, 6
Period IIIa: First day Second day.		10, 909, 9 10, 675, 4	-181.7 + 43.6	10, 728, 2 10, 719, 0
Average .		10, 792, 7	- 69.1	10,723.6
First day Smood day		10, 798. 2 10, 906. 8	+ 99.4 - 56.1	10, 897, 6 10, 850, 7
Average		10, 852. 5	+ 21.7	10, 874. 2

THE BALANCE OF MATTER.

Considering the figures for epidermal tissues in Table 10 to represent the average rate of growth of hair, etc., we may subdivide the gain or loss as ordinarily computed into the growth of these tissues and the real gain or loss of the proteids and fat of the body, as has been done in the computations which follow.

THE NITROGEN AND CARBON BALANCE.

The income and outgo of nitrogen and carbon are shown in the following table. The figures for hydrogen are omitted for the reason that, as stated on page 15, the results for water were not found to be entirely satisfactory. In Period II*b*, as noted on page 19, the results on methane were apparently too low, and therefore those of Period II*a*, on the same ration, have been substituted.

TABLE 22.—.	Income and	l outgo of	nitrogen and	l carbon	per da	y and i	head
-------------	------------	------------	--------------	----------	--------	---------	------

	Nitr	ogen.	Car	Carbon.	
Period.	Income.	Outgo.	Income.	Outgo.	
Period Ia: Hay- Frees.	Grams. 65. 12	Grams. 25.85	Grams. 1, 363. 70	Grams. 546, 98	
Orine. Brushings. Methane. Carbon dioxid.		50.75 0.60		112, 15 3, 69 50, 98 1, 079, 03	
Balance	12.08		429.13		
	77.20	77, 20	1,792.83	1,792.83	
Period Ib: Hay. Feces. Urine	65, 12	25. 85 50. 75	1,363.70	546, 98 111-61	
Brushings.		0.60		3. 69	
Carbon dioxid. Balance.	12.08		439. 70	48.74 1,092.38	
	77.20	77.20	1,803.40	1,803.40	
Period IIa: Hay Peces Urine	112.06	43, 45	2, 323, 71	931, 83 168, 76	
Brushings.		0.60		3, 69	
Carbon dioxid Balanee	1, 04		108, 80	1, 259, 75	
	113. 10	113.10	2, 432, 51	2, 432, 51	
Period 11b: Hay. Fees	112.06	43 45	2, 323, 71	931-83	
Urine. Brushings. Methane		69, 05 0, 60		168, 76 3, 69 68, 48	
Carbon dioxid Balance	1.04		88, 35	1,239,30	
	113, 02	113.02	2, 412, 06	2, 412, 06	
	and the second design of the s	a successive and an end of the successive	Contraction of the local division of the loc	shado on a state of the second se	

	Nitr	ogen.	Carbon.	
Period.	Income.	Outgo.	Income.	Outgo.
Period IIIa IIay Foxes Urine	Grams. 91. 47	Grams. 36, 44 60, 55	Grams. 1,911.04	Grams. 780.05 141.80
Brushings		0, 60	0.00 15	3, 69 57, 27 1, 150, 38
Balance.	97. 59	97, 59	2, 133, 19	2,133,19
Period 1116: Hay. Feces. Urine Brushings	91. 47	36, 44 60, 55 0, 60	1,911.04	780, 05 141, 80 3, 69
Methane Carbon dioxid. Balance.	6. 12		210. 44	60, 85 1, 135, 09
	97. 59	97.59	2, 121, 48	2, 121, 48

TABLE 22. Income and outgo of nitrogen and carbon per day and head-Continued.

GAIN OF PROTEIN AND FAT.

Excluding the brushings, the gain of protein and fat, which was of course negative in every instance, has been computed in the usual manner, using Köhler's ^a figures for the composition of the nitrogenous tissue of cattle, namely, nitrogen 16.67 per cent and carbon 52.54 per cent. In other words, body protein is equivalent to nitrogen multiplied by 6. In the computation of fat from carbon the usual factor (1.3) has been employed.

TABLE 23.- Gain of protein and fat per day and head.

		and the second sec	and the second s						
Period.	Gam of nitro- gen.	Equiva- lent pro- tein (N×6).	Ga Total.	in of carbo As pro- tein.	on. As fat.	Equiva- lent gain of fat.	Comput Protein,	ed energy Fat.	of gain, Total.
Ia Ib IIa IIb IIIa IIIb	Grams. - 12.08 12.08 - 1.04 - 1.04 - 6.12 - 6.12	Grams. -72.48 -72.48 - 6.24 - 6.24 - 36.72 - 36.72	Grams, -429,13 -439,70 -108,80 - 88,35 -222,15 -210,44	Grams, -38.08 -38.08 - 3.28 - 3.28 - 19.29 - 19.29	Grams. 391.05 401.62 105.52 85.07 202.86 191.15	Grams. -508.4 -522.2 -137.2 -110.6 -263.7 -248.5	Calories. -413.2 -413.2 - 35.6 - 35.6 -209.3 -209.3	Calories, -4, 829, 8 -4, 960, 9 -1, 303, 4 -1, 050, 7 -2, 505, 2 -2, 360, 8	Calories, -5, 243, 0 -5, 374, 1 -1, 339, 0 -1, 086, 3 -2, 714, 5 -2, 570, 1

THE BALANCE OF ENERGY.

In these experiments we have direct determinations of all the factors of income and outgo of energy, except the potential energy of the methane excreted and that of the tissue gained by the animal. The energy of the methane, however, may be safely computed from its amount, its heat of combustion at constant pressure being 13.344 calories per gram. The energy of the gain of tissue by the animal

"Zett. f. Physiol. Chem., 31, 479,

may be estimated in the usual way from the computed amounts of protein and fat given above, using the factors 5.7 calories and 9.5 calories per gram, respectively. Having done this, we are in position to compare the income with the outgo of energy, and thus to check to a considerable extent the accuracy of our experiments. The following table contains such a comparison for each period. The difference between income and outgo, which has been entered in the table under the heading "Error," shows, of course, the extent to which our results appear to deviate from those required by the law of the conservation of energy.

	Peri	od I.	Peric	od II.	Perio	d III.
	Income.	Outgo.	Income.	Outgo.	Income.	Outgo.
Series a, at 19° C.:	Calories.	Calories.	Calories.	Calories.	Calories.	Calories.
Hay	13, 170. 7		22,557.7		18,535.1	
Feces		5,403.3		9, 132.0		7,666.
Urine		1,046.4		1,522.3		1,247.5
Brushings		41.3		41.3		41.3
Methane		908.9		1,221.0		1,021.0
Heat		10,910.9		11, 434.9		10,723.
Loss by body-						
Proteids	413.2		35.6		209.3	
Fat	4,829.8		1,303.4		2,505.2	
Error		102.9	· · · · · · · · · · · · · · · · · · ·	545.2		550.
	18, 413. 7	18, 413.7	23, 896. 7	23, 896. 7	21, 249. 6	21, 249.
Series b. at 13.5° C.:						
Hav	13, 170, 7		22.557.7		18, 535, 1	
Feces	10,100	5,403,3		9, 132, 0		7,666.
Urine		1.046.4		1, 522, 3		1,247.5
Brushings		41.3		41.3		41.
Methano		868.9		a 1. 221 0		1.084.
Heat		11 736 3		11 317 6		10.874.0
Loss by body-		11,100.0		11,01110		10,011
Proteide	412.2		35.6		200.3	
Fat	4 060 0		1 050 7		2 560 8	
Error	551.4		1,000.7	409.8	2,000.0	191.
	10,006,2	10,006,2	23 644 0	92 644 0	91 105 9	21 105

TABLE 24.-Balance of energy per day and head.

^a Assumed to be the same as in Period IIa. See p. 19.

With the exception of Periods Ia and IIIb, the agreement between the results computed from the energy balance and those computed from the balance of carbon and nitrogen is much less satisfactory than in previous years. A direct comparison of the gains or losses, however, is somewhat misleading, because all the errors of the experiments are concentrated in a single relatively small number. It seems on the whole fairer, therefore, to compare the total heat production as measured with that computed from the balance of carbon and nitrogen, as has been done in the following table:

	Period.	Computed.	Observed.	Com- puted-t-ob- served.
la 1b 11a 11b 111a 111b		Calories. 11,012.9 11,184.9 11,980.1 11,727.4 11,274.0 11,055.8	Calories. 10, 910. 9 11, 736. 3 11, 434. 9 11, 317. 6 10, 723. 6 10, 874. 6	Per cent. 100.9 95.3 104.8 103.0 105.1 101.8

TABLE 25.- Heat production per day and head.

The computed heat production exceeds more or less that actually observed in every instance but one. This is practically equivalent to saying either that the results for the carbon excretion are too high, or those for heat too low, or else that some nonnitrogenous body substance other than fat was being oxidized. As regards the first alternative it may be said that according to the results of our alcohol check tests in each year the tendency of the apparatus seems to be in precisely the opposite direction, viz, to give results slightly too low for carbon dioxid and too high for heat. As regards the nature of the body substances oxidized, it is of course possible that it may have consisted in part of stored-up carbohydrates (glycogen) which would evolve more CO_2 in proportion to the energy liberated than would fat. It is hardly possible, however, that this can have been the case to the large extent required to account for the observed discrepancies.

It should be noted further that the results in Periods IIb and IIIb are somewhat uncertain, owing to various disturbances during the runs.

DISCUSSION OF RESULTS.

DIGESTIBILITY.

The results tabulated in Table III of the Appendix and summarized also under the several periods are brought together in the following table:

and a second	 		
Constituents and energy	Period I.	Period 11.	Period 111
Dry matter Vah Organic matter Uroteids Nonproteids Crude fiber Nitroget-fiss extract Ether extract Ether extract	Per cent, 61, 41 44, 04 62, 70 54, 56 a 100, 00 55, 37 68, 05 62, 24 58, 97	Per cent, 61, 39 40, 92 62, 96 54, 08 a 100, 00 55, 97 67, 90 64, 08 59, 51	Per cent. (0, 68 36, 85 62, 43 53, 48 4 100, 00 53, 81 65, 63 58, 64

TABLE 26.—Percentage digestibility.

9 Assumed

The slight differences between the several periods attest the accuracy of this part of the experiment.

METABOLIZABLE ENERGY.

The term metabolizable energy has been used by the writers to designate that portion of the total energy of the food which is capable of conversion into the kinetic form in the body. In this sense it is equivalent to energy of food minus energy of excreta or to what is often called "fuel value."

The data of the foregoing pages enable us to compute the metabolizable energy of the rations in the several periods. Before doing so, however, a certain correction is necessary in the energy of the urine. For example, in Period I the animal lost 12.08 grams of body nitrogen, corresponding to a loss of 72.48 grams of protein. According to Rubner's results, the potential energy of the urine is increased by about 7.45 calories for each gram of urinary nitrogen coming from the oxidation of body protein. In this case, then, the urine contained approximately $12.08 \times 7.45 = 90$ calories of energy not derived from the potential energy of the food but from that of body It is plain, then, that the potential energy of the urine must tissue. be diminished by this amount before it is subtracted from the gross energy of the food in order to get the true metabolizable energy of the latter. The corresponding corrections for the several periods, computed in this way, are as follows:

TABLE	27	Energy	of urine.
-------	----	--------	-----------

Period.	Observed.	Gain of nitrogen.	Equiva- lent mergy.	Corrected energy of urine.
I II. III.	Calories. 1,046.4 1,522.3 1,247.2	Grams. -12.08 - 1.04 - 6.12	Calories. -90.0 - 7.8 -45.6	Calorics. 956. 4 1, 514. 5 1, 201. 6

Using these corrected values the metabolizable energy of the clover hay fed is computed in the following table:

1	Peri	od I.	Perio	od II.	Perio	d III.
	Feed.	Excreta.	Feed.	Excreta.	Feed:	Exercta.
	Calories. 13, 170, 7	Calories.	Calories. 22, 557, 7	Calories.	Calories. 18, 535, 1	Calories.
e (corrected).		5,403.3 956.4		9, 132. 0 1, 514, 5		7,666,1 1,201,6
haùe. abolizable		888.9 5, 922.1		a 1, 221, 0 10, 690, 2		1,053.0 8,614.

Hay Fece Urii

Met Met

TABLE 28.—Metabolizable energy of elover hay.

a Period IIa only.

13, 170, 7

22, 557.7 22, 557.7 18, 535.1

13, 170, 7

The relation of the metabolizable energy to the amount of matter in the food may be expressed in terms of calories per gram of the

666.1 $\begin{array}{c} 1,201.6\\ 1,053.0\\ 8,614.4\end{array}$

18, 535, 1

total or of the digested organic matter. Computed in this way the results are as shown in the following table:

		Organic ma	atter of hay.	Metabolizable energy.			
	Period	Total.	Digested.	Total.	Per gram of total organic matter.	Per gram of digest- ible organic matter.	
I 11 111		$\begin{array}{c} Grams,\\ 2,730,3\\ 4,668,0\\ 3,856,0 \end{array}$	Grams. 1,712.0 2,939.0 2,407.6	Calories. 5, 922, 1 10, 690, 2 8, 614, 4	Calories. 2, 169 2, 290 2, 234	Calories. 3. 460 3. 637 3. 578	

TABLE 29. Metabolizable energy per gram of organic matter.

The metabolizable energy of a feeding stuff may also be expressed as a percentage of the total or gross energy. Such a percentage is analogous to a digestion coefficient, so that if an average value for it were established for any particular kind of feeding stuff the amount of metabolizable energy in a given amount of it could be computed from its total energy by multiplication by this coefficient, just as the digestible dry matter or organic matter can be computed from the total amount present by the use of a digestion coefficient. The first half of the following table shows the percentage of the total energy which escaped in the several excreta or which was metabolized in the animal's body, while the second half of the table shows the same relations based upon the energy of the digested matter.

Fnorm	Gross energy.				Energy of digested matter.				
runtky.	Period 1.	Period 11.	Period 111.	Average.	Period I.	Period 11.	Period 111	Average.	
In feces In urine In methane Metabolizable	Per cent. 41.03 7.25 6.75 44.97	Per cent. 40, 49 6, 72 5, 41 47, 38	Per cent. 41.31 6.48 5.68 46.48	Per cent. 40, 96 6, 81 5, 95 46, 28	Per cent. 12,30 11,44 76,26	Per cent. 11, 28 9, 09 79, 63	Per cent. 11.05 9.69 79.26	Per cent. 11, 54 10, 07 78, 39	
	100.00	100, 00	100, 00	100,00	100,00	100,00	100, 00	100,00	

TABLE 30. - Distribution of energy of clover hay.

INFLUENCE OF TEMPERATURE ON HEAT PRODUCTION.

As stated in the introduction, one of the purposes of the experiment was to observe the effect of temperature upon the total metabolism, so far as this could be done within the limited range of the apparatus. Two series of respiration experiments were made, one at 19° C, and one at 13.5° C, these being designated as series a and series b, respectively. The results have already been given in the description of the experiment, but are brought together here for more convenient comparison.

		Series a ,	at 19° C.			_		
Period.	Given off by radi- ation and conduc- tion.	Given off as latent heat of water vapor.	Correc- tion for water balance.	Total.	Given off by radi- ation and conduc- tion.	Given off as latent heat of water vapor.	Correc- tion for water balance.	Total.
1 11 111	Calories. 8,684.1 8,731.6 8,074.3	Calorics. 2, 320. 7 2, 782. 9 2, 718. 3	Calories. 93. 9 79. 7 69. 1	<i>Calories.</i> 10, 910. 9 11, 434. 9 10, 723. 6	Calories. 9, 994. 4 9, 100. 3 8, 803. 0	Calories. 1,702.5 1,973.5 2,049.5	Calories. + 39.4 +243.8 + 21.7	Calories. 11, 736, 3 11, 317, 6 10, 874, 2

TABLE 31.—Heat production.

In Period Ib, as shown in Table 17, the animal stood constantly for forty-eight hours, and as would be expected the heat production appears to be abnormally high. In the other cases the difference of 5.5° C. in temperature seems to have made but a slight difference in the total heat production.

But, while this is true as regards the total amount of heat produced, the difference in temperature made a striking difference in the channel of excretion by which the body rid itself of its heat. A much less proportion of it was removed as latent heat of water vapor and correspondingly more by radiation and conduction at the lower temperature, as is shown clearly in the following table, based on the figures for heat production just given. The correction for the water balance is taken as representing heat stored temporarily in the body.

TABLE 321	Percentage di	stribution of	heat produced
		A1	

	Se	ries <i>a</i> , at 19°	°С.	Series b, at 13.5° C.			
Period.	Given off by radi- ation and conduc- tion.	Given off as latent heat of water vapor.	Stored in body.	Given off by radia- tion and conduc- tion.	Given off as latent heat of water vapor.	Stored in body.	
I II III	Per cent. 79.59 76.36 75.29	Per cent. 21. 27 24. 34 25. 35	Per cent. 0. 86 0. 70 0. 64	Per cent. 85.16 80.41 80.95	Per cent. 14, 51 17, 44 18, 85	Per cent. 0, 33 2, 15 0, 20	

The relative humidity of the air does not appear in this case to have been an important factor in bringing about the marked decrease in the evaporation of water at the lower temperature. The relative humidity of the ingoing and of the outcoming air, and also the average relative humidity of the four residual samples taken at the end of each subperiod, were as follows: TABLE 33. Relative humidity.

	Period.	Ingoing air.	Outcoming air.	Residual samples.
la 11a 111a 15 11b 111b		Per cent. 2.3 2.4 2.2 2.2 4.9 4.7 2.3	Per cent. 28.2 32.1 30.6 29.9 33.8 31.2	Per cent. 27, 2 29, 7 29, 7 28, 7 34, 7 32, 3

Apparently the difference in the method of excretion of the heat was a direct effect of the lower temperature.

NET AVAILABLE ENERGY.

Both our own observations and those of others, notably those of Zuntz and his associates, have shown that a considerable portion of the metabolizable energy of the food may be consumed in those mechanical and chemical processes incident to the digestion of the food and its conversion into forms fitted to nourish the body, or may otherwise be converted into the form of heat, and so not be directly available to make good the losses of potential energy from the body caused by the vital processes. The portion of the metabolizable energy remaining after subtracting the portion thus expended represents the net contribution which the food has made to the maintenance of the stock of potential energy in the body. This portion of the energy of the food is designated as net available energy. In other words, it is energy available for maintenance.

As explained in previous bulletins, the availability of the energy of a feeding stuff is determined by a comparison of the losses of energy by the animal in periods in which different amounts of the feed in question are consumed. In this experiment three different amounts of clover hay were fed to the animal, and consequently a comparison of the three periods should give us two results regarding availability in Series a and two in Series b.

The losses of protein and fat by the animal as tabulated on preceding pages do not take account of the amounts of matter and energy contained in the brushings, which are tabulated separately. It is clear, however, that these ought to be included in a computation of availability, since a portion of the energy of the food was expended in their production. Furthermore, since the metabolizable energy of the food has been corrected in Table 27, for the gain or loss of nitrogen by the animal, the figures for the gain or loss of engery should be similarly corrected by adding to the gain (i. e., subtracting from the loss) 7.45 calories for each gram of nitrogen lost by the animal. Indicating gain or loss by the mathematical signs + and -, the corrections and the corrected gains were as shown in the following table:

	Gain ac-	Correct		
	previous tables.	Brush- ings.	Gain of protein.	corrected gain.
Computed from balance of nitrogen and carbon: Period Ia Period IIa Period IIIa Period IIb Period IIb Period IIb Computed from balance of energy: Period Ia Period IIa Period IIa Period IIa Period Ib Period Ib Period Ib Period Ib Period Ib Period Ib Period Ib	$\begin{array}{c} Calories.\\ -5,243.0\\ -1,339.0\\ -2,714.5\\ -5,374.1\\ -1,086.3\\ -2,570.1\\ -5,140.1\\ -793.8\\ -2,164.1\\ -5,925.5\\ -676.5\\ -2,378.9\end{array}$	$\begin{array}{c} Calories. \\ + 41.3 \\ + $	$\begin{array}{c} Calories. \\ + 90.0 \\ + 7.8 \\ + 45.6 \\ + 90.0 \\ + 7.8 \\ + 90.0 \\ $	$\begin{array}{c} Calories. \\ -5,111.7 \\ -1,289.0 \\ -2,627.6 \\ -5,242.8 \\ -1,037.2 \\ -2,483.2 \\ -5,008.8 \\ -744.7 \\ -2,077.2 \\ -5,0794.2 \\ -627.4 \\ -2,292.0 \end{array}$

713	0		\sim .	
1 4 72	TT: 3	4	orroot	od dame
1 1 1 1	1111 0	T	1011601	eu guino.

As already noted, there was no marked difference between Series a and Series b as regards heat production or loss except in Period

DIAGRAM 2.—Availability of energy.

Ib. In this period for some reason the animal refused to lie down at all. It is presumably in consequence of this fact that the observed heat production was considerably higher than in the corresponding

Period Ia, although this is not true of the heat production as computed from the balance of nitrogen and carbon. If we arbitrarily reject Period Ib as having been under abnormal conditions and plat the data of the remaining experiments as in previous bulletins, we have the results for the two series separately and for their average, which are shown in Diagram 2. While the losses as computed from the carbon and nitrogen balance are greater than those deduced from the energy balance, the average results of Series a and Series bare quite closely parallel.

If, on the other hand, again omitting the results for energy of Period 1b, we average for each series separately the results as com-

DIVORYM 3 - Average results of carbon and nitrogen and energy balances.

puted from the carbon and nitrogen balance and those computed from the energy, we have the results shown in Diagram 3, which again expresses the fact, already pointed out, that a very slight difference was shown between the results of Series a and those of Series b.

 Λ - previously stated, the results of the calorimeter experiments Ib and 11b were not as satisfactory as the others. In both cases the balance of energy was obtained for twenty-four hours only, owing to various disarrangements of the apparatus, and in subperiod 4 of Period IIb the methane determination is lacking. On the whole, therefore, we incline to attach considerably more value to the results of Series a than to those of Series b.

CORRECTIONS FOR STANDING AND LYING.

The average number of hours per day during which the animal lay down in the several periods was, as shown in Tables 17 and 18:

Period Ia, 3 hours, 12 minutes.	Period Ib , ———.
Period IIa, 7 hours, 47 minutes.	Period IIb, 2 hours, 17 minutes.
Period IIIa, 9 hours, 8 minutes.	Period IIIb, 6 hours, 38 minutes.

In view of the very marked influence of standing as compared with lying upon the metabolism of the animal, as shown in all our experiments, it is evident that the results of the several periods are not strictly comparable. Unfortunately, the data available for computing a correction are not fully sufficient, because, although the variations in the rate at which heat was given off by radiation and conduction are shown by the records of the experiment, as summarized in Tables 17 and 18, the apparatus does not permit similar determinations of the rate at which heat was carried off as latent heat of water vapor.

The best approximation which is available appears to be that outlined in Bulletin 51 of this Bureau, page 38. This consists in assuming, on the one hand, that the rate of elimination of water vapor varied at the same rate as that of the radiation of heat, and, on the other hand, that it was unaffected by the position of the animal. It would seem that these two hypotheses may be fairly regarded as representing the extremes of probable variation, and if, as appears to be the case, the results when corrected on these two hypotheses are substantially concordant, we shall be inclined to regard them as probably correct.

In place of computing the metabolism for the entire twenty-four hours either standing or lying, as was done in Bulletin 51, we have preferred in this case to compute the results, on the two hypotheses above stated, to a uniform period of seven hours passed lying down. The method of computation may be illustrated by the results of Period Ia. In this period, as appears from Table 19, the average rate at which heat was given off by radiation and conduction and brought out of the calorimeter in the water current was:

Standing, 6.2700 calories per minute. Lying, 4.4747 calories per minute.

If the animal had lain down for seven hours out of the twentyfour, the total heat given off through these channels would have been:

Standing 17 hours, 6.2700 calories \times 1,020=6,395.4 calories. Lying 7 hours, 4.4747 calories \times 420=1,879.4 calories.

The heat actually carried off as latent heat of water vapor in this period was 2,320.7 calories, and constituted 21.09 per cent of the total heat emission. Upon the first hypothesis, then, the total heat emission would have been:

 $\frac{8.274.8}{0.7891}$ = 10.486.4 calories.

Upon the second hypothesis, that of unchanged elimination of water vapor, the total heat emission would have been:

8.274.8+2,320.7=10,595.5 calories.

To find the actual heat production, the above figures must be corrected as in Table 21 for the results of the water balance, the correction in this period being -93.9 calories. Accordingly the heat production computed for Period Ia on the assumption that the animal lay down for seven hours is:

On the first hypothesis, 10,392.5 calories. On the second hypothesis, 10,501.6 calories.

Identical computations for the other periods give the results stated in the following table. In the case of Period Ib of course no data are available for such a computation.

	Period.		On the first On the s hypothesis. ond hy pothesis	(40)
			-	
ta			Calories. Calorie	8. 1. 0
11a	 		11, 580, 9 11, 54	5. 3
111a 115			11, 083, 2 10, 99 10, 983, 6 1 11, 04	2. 2
1115			10, 826, 7 10, 83	5. 1

TABLE 35. Computed heat production-Seven hours lying.

The corresponding (negative) gains by the animal—computed, of course, from the energy results, since we have no corresponding data for the carbon and nitrogen balance—would be as shown in the following table, in which the corrections for the brushings and for the gains of protein have been included in the same manner as in Table 34:

38

TABLE 36.—Computed gains—Seven hours lying.

DIAGRAM 4. Average results from energy balances computed to 17 hours' standing.

The averages of these results compared with the amounts of metabolizable energy supplied in the feed are expressed graphically in Diagram 4 and are computed numerically in the following table, which includes also the amounts of total and of digested organic matter consumed by the animal in each period.

	Organie	matter	Metabo-	On first h esta	ypoth- 9,	On seco pothe	nd hy- esis.	Avera	ige.
perfore which heatenst.	Total.	Digesti- ble	energy.	Gain.	Avalla- bility.	Galn.	Availa- bility.	Gain.	Availa- bility.
Senes a Period 111. – Period 1	Grams. 3,856.0 2,730.3	Grams. 2,407.6 1.712.0	Calories. 5,614.4 5,922.1	Calorics. 2, 436. 8 4, 489. 9	Per d.	Calories. 2, 345. 8 4, 599. 5	Per et.	Calorics. -2, 391. 3 -4, 544. 7	Per ct.
Difference.	1,425.7	695. 6	2.002.3	2,053.1	76, 26	2,253.7	83.71	2, 153. 4	79.99
Period 11 Period 111	4, 668, 0 3, 856, 0	$2,939 0 \\ 2,407.6$	$\frac{10,600.2}{8,614.4}$	890, 7 -2, 436, 8		- 865. 3 -2, 345. 8		878.0 -2,391.3	
Difference	\$12.0	531.4	2.075.8	1, 546, 1	74.48	1, 480, 5	71, 32	1, 513. 3	72,90
Series b: Period 11. Period 111 Duference	4, m.S. 0 3, 856, 0 812, 0	2,939,0 2,407,6 531,4	10, 690, 2 8, 614, 4 2, 075, 8	293. 4 -2, 244. 1 1, 950. 7	93, 96	-353.0 -2,252.5	91.51	323.2 -2,248.3 1.925.1	92.74
				-,		.,			

TABLE 37. - Availability of metabolizable energy.

It must be admitted that the results as they stand do not appear especially satisfactory. In particular, the correction to a uniform period of lying has the effect of destroying the approximate correspondence between the results at different temperatures which was indicated by Diagrams 2 and 3. The corrected results show apparently a considerably smaller loss by the animal in Period IIb, at the lower temperature, that in Period IIa. This result seems unlikely, and, as already noted, both Periods Ib and IIb were not altogether satisfactory.

Strictly speaking, the results should be corrected also for differences in the weight of the animal. Our apparatus does not permit taking the weight of the animal during the respiration period, but the weight is taken immediately before entering and immediately after leaving the calorimeter. If we may assume that the average of the last two weights before the respiration period and the first two succeeding it represent approximately the average weight of the animal during the trial, we have the following as the live weights in the different periods:

Live weights of animal during respiration periods.

Period	4 (Sec	ries al — Series b
1 11 111	Kib	9grams - Kilograms, 571, 1 - 553, 7 586, 7 - 576, 0 580, 1 - 565, 8

It must be remembered, however, that these variations in weight were doubtless due to a considerable extent to variations in the amount of material contained in the digestive tract on the different tations. We can hardly suppose that the actual radiating surface of the body was materially different in the different periods, although, on the other hand, the metabolism incident to the maintenance of the standing position would naturally be greater the greater the weight of the animal, as was indeed found to be the case. Any probable corrections for the influence of the live weight, however, are so small as to be insignificant as compared with other sources of error and are therefore not taken account of in these computations.

HEAT REQUIREMENT OF THE ANIMAL.

If we confine our attention to the results of Series a as being on the whole decidedly more satisfactory than those of Series b, we have apparently a greater average availability between Periods I and III than between Periods III and II. A similar result was noted in Bulletin 51 in the results computed for the lying position. This difference was there interpreted (page 57) as indicating an indirect utilization by the animal of the heat resulting from the digestion and assimilation of the light ration. This view assumes that at a given temperature a certain minimum amount of heat is required by the animal organism to maintain its temperature, and that if this amount of heat is not produced by the ordinary activity of the internal organs and the muscles it will be supplied by a direct combustion of food or tissue for the purpose of heat production. In the case observed in Bulletin 51 it was believed that when the animal was lying down the necessary production of heat aside from that resulting from the ingestion of food was insufficient to supply the demands of the animal. On the heavier ration a part only of the heat resulting from the work of digestion and assimilation was required, in addition to that produced by the internal work, to supply the demand for heat. As the amount of food was decreased, however, a point was reached at which all the heat produced by digestion and assimilation was required for this purpose, while with a still smaller amount of food a portion of the animal tissue had to be metabolized to supply the necessary heat. At or below this point, then, the entire metabolizable energy of the food was of use to the animal and the apparent availability became 100 per cent, represented graphically on Diagram III of Bulletin 51 by the dotted lines, making an angle of 45 degrees with the coordinates. It is of some interest to apply the same interpretation to this experiment and to compare the results obtained with those found in the previous experiment.

In the experiments of 1901–2 the average live weight of the animal in Periods A and B, the ones to be compared, was 401.8 kilograms. The computed heat production, lying, in Period A was:

On the first hypothesis	7, 920 calories. 8, 250 calories.
Average	S, 085 calories.

This average amount we may regard as representing the minimum of heat required by the animal.

In the present experiments the average live weight for Periods I and III was 574.3 kilograms. The heat production in Period Ia, computed to seven hours lying, was, as previously shown:

On the first hypothesis		10, 392 calories.
On the second hypothesis	 	10, 502 calories.

which we may regard as being the minimum required for the older and larger animal.

It seems to be fairly well established that the requirement of the animal body for heat is substantially proportional to its surface, or, what is approximately the same thing, to the two-thirds power of its volume or weight. On this hypothesis we can compute from the observed results the probable minimum requirement of an animal weighing 500 kilograms as follows:

Experiment of 1901-2.

On the first hypothesis, 7,920 calories $\times \left(\frac{500}{401.8}\right)^{\frac{3}{2}} = 9,163$ calories. On the second hypothesis, 8,250 calories $\times \left(\frac{500}{401.8}\right)^{\frac{3}{2}} = 9,545$ calories.

Average 9,354 calories.

Experiment of 1903-3.

The close agreement of these figures seems to support strongly the view advanced above, namely, that on the lighter ration of Period I the animal was consuming its own tissue for heat production and that up to a point between this and the ration of Period III the food would show an apparent availability of 100 per cent. In other words, we conclude that the availability would be represented approximately by the dotted line in Diagram 4. The point at which the relation changes is indicated on the diagram at X, and could, of course, be computed numerically by the methods of analytical geometry.

If this interpretation of the results is correct, the loss of tissue in Period 1b, at 13.5 C., should be greater than in Period 1a, at 19 C., and, as a matter of fact, that appears to be the tendency, although the results are uncertain. On the same hypothesis the losses in Periods II and III should be the same at both temperatures. Such an equality was observed in Period III, but not in Period II. In the latter, as already noted, the loss, computed for seven hours lying, was less at the lower than at the higher temperature.

MAINTENANCE REQUIREMENT OF THE ANIMAL.

Another method of comparing the results of the two experiments is to compute the maintenance requirement of the animal for a uniform weight of, say, 500 kilograms. The maintenance requirement may be defined as the amount of food which supplies sufficient available energy to make good the losses incident to the vital activities of the animal. Owing to the varying degree of availability of different foods, the total weight of food-or the total metabolizable energy-required will vary with the feeding stuff used. The maintenance requirement, therefore, is most logically expressed in terms of available energy, and its amount will be found graphically by producing the line representing the availability of the food until it intersects the vertical axis. The distance from the origin to this point of intersection will represent the maintenance requirement in terms of available energy, or, in other words, it will be the theoretical fasting metabolism of the animal at the given temperature. Performing the same operation arithmetically, we have, on the basis of the average results of Period IIa, the following:

 $(10,690 \text{ calories} \times 0.729) + 878 \text{ calories} = 8,671 \text{ calories}, maintenance requirement}.$

For the experiments of 1901–2 the computation is not so simple, because the rations employed contained in each case 400 grams of linseed meal, a material whose net available energy has not yet been determined. Its utilizable energy (production value), however, compared with that of maize, as computed by the use of Kellner's factors^{*a*}, is:

100 pounds linseed meal=78,929 calories.100 pounds maize=88,847 calories.

If we assume that the net available energy of the two materials is proportional to their utilizable energy, we may compute the net available energy of linseed meal per kilogram of dry matter from that of maize, as given in the first table on page 40 of Bulletin 74 of this Bureau, as follows:

2.679 calories $\times \substack{78,929\\88,847} = 2.381$ calories per gram of dry matter.

^a Pennsylvania Experiment Station Bulletin 71 (revised), page 16,

Upon this assumption the maintenance requirement of the animal in Periods A and B of the experiment of 1901–2 would be as follows:

TAME 38. Computation of maintenance requirement according to experiment of 1901-2.

	Dry matter ealen.	Net avall- able energy per gram.	Net avail- able energy of ration.
Period A Ilay	Grams. 2,879.5 357.8	Calories. 1.268 2.381	Calories. 3, 652 852 2, 578
Maintenance.			7,082
Period B Hay. Linseed meat. Loss from body	4,018,0 354,7	$1,268 \\ 2,381$	5, 097 845 791
Maintenance Average maintenance.	·····	•	6, 730 6, 908

The time spent standing in the experiment of 1901–2 was, on the average of Periods A and B, fifteen hours. This does not differ sufficiently from the seventeen hours to which the results of 1903–4 have been computed to render a correction necessary for the purposes of the present approximate comparison. The reduction of the above figures to a live weight of 500 kilograms gives the following results:

Experiment of 1903-4, 8,671 calories
$$\times \left(\frac{500}{583,4}\right)^{\frac{2}{3}} = 7,824$$
 calories.
Experiment of 1901-2, 6,908 calories $\times \left(\frac{500}{401.8}\right)^{\frac{2}{3}} = 7,992$ calories.

We find, then, that if we assume that the results obtained by comparing Periods II and III represent the true availability of the clover hay, and that the divergent results obtained by the comparison of Periods III and I can be explained in the manner just detailed, we obtain results which are closely concordant with those of earlier experiments both as to the minimum requirements of the animal for heat and as to the amount of available energy required for maintenance. In spite, therefore, of the somewhat unsatisfactory nature of the experiment there seems good reason to believe that the availability of the metabolizable energy of the clover hay was in the neighborhood of 73 per cent, and that the much lower figure obtained in the previous year's experiment was erroneous. The latter conclusion is further strengthened by computing in the same way from the results of that experiment the maintenance requirement of the animal in terms of available energy. A computation similar to that used above gives as a result, for the live weight of 500 kilograms, 5,907 calories. This result is so much lower than those computed from the other two experiments as to be almost certainly erroneous and indicates that for some reason the loss by the animal in Period II of the experiment in 1903 was overestimated.

44

DISTRIBUTION OF ENERGY.

Using the above corrected figure for the availability of clover hay, we may derive the following corrected figures for the percentage distribution of the energy of several feeds which were tabulated on pages 44 to 46 of Bulletin 74:

TABLE 39.—Percentage distribution of total energy	•
---	---

	Timothy hay.	Clover hay.	Meadow hay.	Maize meal.
In feces. In urine. Expended in digestion and assimilation. Expended in tissue formation. Stored as gain by animal	Per cent. 48.90 3.06 3.79 16.41 13.10 14.74	Per cent. 40.96 6.81 5.95 12.49 33.79	$ \begin{array}{c} Per \ eent. \\ 40.96 \\ 5.71 \\ 6.77 \\ 27.28 \\ 19.28 \end{array} $	Per cent. 9.18 3.83 9.31 17.23 19.06 41.39
Available for maintenance	100.00 27.84	100.00	100.00	100.00 60.45

TABLE 40. -- Percentage distribution of energy of digested matter.

	Timothy hay.	Clover hay.	Meadow hay.	Maize meal.
In urine. In methane. In digestion and assimilation. In tissue formation. Stored as gain.	$\begin{array}{c} Per \; cent. \\ 6.00 \\ 7.42 \\ 32.10 \\ 25.64 \\ 28.84 \end{array}$	$\begin{array}{c} Per \ cent. \\ 11.53 \\ 10.08 \\ 21.15 \\ 57.24 \\ \end{array}$	$ \begin{array}{c} Per \ cent. \\ 9. \ 66 \\ 11. \ 57 \\ 46. \ 08 \\ 32. \ 69 \end{array} $	Per cent. 4.22 10.25 18.97 20.99 45.57
	100.00	100.00	100.00	100.00
Available for maintenance	54.49	27.61		66,55

The same results may also be computed in calories per unit of dry matter, using the percentages of the above tables as coefficients. The total or gross energy of the materials, taking in case of timothy hay, clover hay, and maize meal the average of the two general samples, was as follows:

	Per kilo- gram dry matter.	Per kilo- gram di- gested or- ganic matter.
Timethy hay	Calories.	Colories.
Closen board	4,004	0 4,002 5 4 470
Clover nay	4,492	0 4, 470
Maize meal.	4,431	c 4, 321
German meadow hay	4,413	4.437

a Preliminary period, steer No. 1. b Average of Periods I and II. C Average of Periods III and IV.

On this basis have been computed the figures of the tables following, showing the total energy per kilogram of dry matter and its distribution in accordance with the percentage figures already given.

	Timothy hay,	Ulover hay.	Mendow hay.	Malze meal.
Lost in feees	Calorics. 2,227 139 173 747 507 671	Calorics. 1,840 306 267 561 1,518	Calorics. 1,807 252 299 } 1,204 851	Calorics. 407 170 413 763 844 1,834
Total	4, 554	4, 492	4, 413	4, 431
Available for maintenance	1,268	1,518		2,679

TABLE 12. Energy per kilogram of total dry matter.

TABLE 43. Energy per kilogram of digestible organic matter.

	Timothy hay.	Clover hay.	Mendow hay.	Maize meal.
Lost in urine Lost in methane Expended in digestion and assimilation Expended in tissue formation Stored as gain	Calorics. 262 325 1,407 1,124 1,264	$Calories, 516 \\ 451 \\ 947 \\ 2, 562 \\ \end{bmatrix}$	$\left.\begin{array}{c} Calories, \\ 429 \\ 513 \\ 2,045 \\ 1,450 \end{array}\right\}$	Calorics. 183 443 821 + 908 1,972
Total	4,382	4,476	1.437	4,327
Available for maintenance	2,388	2,562		2,880

Taking the figures for timothy hay as unity, the relative values of these four feeding stuffs are as follows:

TABLE 14. Relative values.

	Foel.		Per kilogra → dry ma	am total tter.	Per kild digestible matt	organie organie er.
			For main- tenance.	For fat- tening.	For main- tenance.	For fat- tening.
Timothy hay Ulover hay Meadow hay Maize meal		•	$\begin{array}{c} 1.\ 00\\ 1\ 20\\ 2\ 11 \end{array}$	$1.00 \\ 1.27 \\ 2.73$	$1.00 \\ 1.07 \\ 1.21$	1.00 1.15 1.56

APPENDIX.

TABLE I.-Live weight, water drunk, and excreta of animal fed on clover hay.

Period and date.	Live weight.	Water drunk.	Feces.	Urine.a	Period and date.	Live weight.	Water drunk.	Feces.	Urine.a
Period I.					Period II-Con.				
Jan., 1904.	Kilos. 619, 5 592, 4	<i>Kilos.</i> 0.0 28.6	Grams.	Grams.	Feb., 1904—Con. 13. 14.	<i>Kilos.</i> 567. 6 56 5. 1	<i>Kilos.</i> 22. 1 21. 8	Grams. 10,709 9,324	Grams. 7,798 5,977
45	597.0 584.2				15	573, 4 1 ^b 577, 6	14.0 0.0	10,645	8,278
6 7 8	569.8 577.8	$ \begin{array}{c} 0.0 \\ 27.3 \\ 21.0 \\ \end{array} $			17 18	d 579.3	25.67 14.46	8,815 9,711 8,806	
10 11	570.8 558.6	0.0			Total	5/4.8	15.00	97.807	0. 452 65. 796
12	$ \begin{smallmatrix} b & 580. \\ c & 577. \\ \end{smallmatrix} $	0.0			Spilled in calo- rimeter Feb.				
13 14 15	d 565.3	11.33	3,599 5,940 5,425	$4,034 \\ 3,125 \\ 4,803$	Spilled in stall Feb 13			142.4	
16. 17.	565.1 571.2	24.6 8.5	5,335 6,042	11,635 10,002	Spilled in calo- rimeter Feb.			01.0	
18 19	562.6 b 560.7 c 557.2	9.5 0.0	5,994	10,252	18. Spilled in stall Feb 19			56. 2 4. 7	
20	d 550.7	$3.554 \\ 11.895$		$3,724 \\ 2,705$	Transition pe- riod:			1	
22 Total	546.2	25.8	4,075	4,650	Feb. 21 22 23.	571.2 581.1 583.5	27.2 20.8 20.1		
Spilled in calo- rimeter Jan.			100.1	05.45	24. 25	586.3 586.1	16.9 15.7		
Dung from duet Jan. 14			109.1	95, 85	Period III.				
Spilled in stall Jan. 16			1.2	230, 96	Feb., 1904.	200 5	17.0		
rimeter Jan. 21			25.1	39.35	$\frac{2i}{28}$	585.7 579.7	12.9 15.0		· · · · · · · · · · ·
Spilled in stall Jan. 22			36, 6		Mar., 1904.	579.0 581.0	18.5		
riod: Jan. 23	552.0	19.0			3 4	$579.2 \\ 575.1$	11.4 17.0		
24 25 26	560.4 571.0 576.8	19.8 16.4			5 6	577.8 567.8 578.6	2.3 23.7 2.0		· · · · · · · · · · · · · · · · · · ·
$\frac{20}{27}$ 28	582. 8 584. 8	15.1 25.6			8	{ ^b 572. 0 { ^a 590. 8	23.0		
29 Period II	594.9	14.0			9 10 11	d 583, 6 573, 8	5.205 16.020 1.4	$ \begin{array}{r} 7,306 \\ 6,504 \\ 8.082 \end{array} $	4,770 4,697 5,287
Jan., 1904.					12	$560.2 \\ 569.8$	$\frac{22.2}{7.8}$	$7.768 \\ 7.810$	$\frac{4.735}{4.452}$
30 31 Feb., 1904.	597.8 597.4	13.0 40.8			14 15 16	564.2 567.4	16.1	$7,710 \\ 6,392 \\ 8,449$	$[4]{3,097}$ $[4]{707}$ $[4]{657}$
1	596.2 596.4	25, 2 5, 4			17	$d\ 569,\ 2\ 562,\ 2$	$\frac{11,200}{14,4}$	$7,385 \\ 8,287$	4,735 5,038
$ \begin{array}{c} 3. \\ 1. \\ 5. \\ \end{array} $	584.6 594.9 594.8	$ \begin{array}{c} 29.1 \\ 19.5 \\ 6.2 \end{array} $			Total Spilled in calo-	···		75,693	46,175
6 7	584.2 589.3	22.8 13.9			rimeter Mar. 10.			37, 0	
8 9	585.0 b 597.2 c 584.5	11.3			Spilled in stall Mar. 14 Spilled in calo-				441
10	d 587.1	$ \begin{array}{c} 11.952 \\ 17.470 \\ 10 \end{array} $	12,165 10,807	5,446 5,825	rimeter Mar. 17	-		20, 6	
12	578.1	12.1	8,725	7,408					

[For 24 hours ended at 6. p. m. on date given.]

^a Including wash water. ^b Taken at 7.30 a. m. ^c Taken at 1 p. m.

^d Taken at 6 p. m. ℓ Small loss of urine.

Constituents and	Period	Period	Period	Constituents and energy.	Period	Period	Period
energy	L	H.	III.		I.	II.	III.
$\frac{Vsh}{Vroten}$ (N × 6.25) Vrote filer, Nitrogen - free ex- tract. Ether extract.	Per cent. 10, 03 14, 25 32, 90 39, 56 3, 26 100, 00	Per cent. 10.88 14.06 31.95 39.91 3.20 100,00	Per cent. 10.99 14.01 33.86 38.21 2.93 100.00	Total nitrogen Proteid nitrogen Carbou, Hydrogen Heat of combustion	Per cent. 2.28 2.06 48.29 6.07 Calories per gram. 4.770.4	Per cent. 2.24 2.06 48.03 6.15 Calories per gram. 4,707.0	Per cent. 2, 24 1, 97 47, 94 6, 23 Calories per gram. 4, 711, 4

TABLE 11. Composition of dry matter of feces.

TABLE III. - Digestibility of rations.

		Dry mat- ter.	Ash.	Or- ganie mat- ter.	Pro- teids,	Non- pro- teids.	Crude fiber,	Nitro- gen- free ex- tract.	Ether ex- tract.	Nitro- gen.	Car- bon.	Ener- gy.
Hay Fees.	Period T	Grms. 2,933.3 1,131.9	Grms. 203.0 113.6	Grms, 2,730.3 1,018.3	Grms, 355.2 161.4	Grms. 39.6	Grms. 834.8 372.6	Grms. 1,403.0 448.2	Grms. 97.7 36.9	Grms. 65.2 25.9	Grms. 1, 366. 1 547. 0	Cals. 13, 170, 7 5, 403, 3
1	ngested. befficient.p.ct.	$\begin{array}{c}1,801.4\\61.41\end{array}$		$1,712.0 \\ 62.70$	193.8 54.56	39,6 100,00	$462.2 \\ 55.37$	954, 8 68, 05	60, 8 62, 24	39.3 60.36	819.1 59.96	7,767.4 58.97
Pe Hay Fees,	riod II.	5, 025, 3 1, 940, 1	$357.3 \\ 211.1$	4,668.0 1,729.0	594.0 272.8	81.9	1,408.1 619.9	2, 411, 1 774, 2	$\begin{array}{c} 172.9\\62.1\end{array}$	112.5 43.5	2,323.7 931.8	22,557.7 9,132.0
1 6	hgested Gefficient.p.ct.	3, 085, 2 61, 39	$146.2 \\ 40.92$	2, 939, 0 62, 96	$321.2 \\ 54.08$	81.9 100.00	788.2 55.97	$1,636.9 \\ 67.90$	110.8 64.05	69.0 61.37	$1,391.9\\59.89$	13,425.7 59.51
P Hay Feces,	eriod III	4,139,1 1,627,2	283.1 178.8	3, 856, 0 1, 448, 4	490.1 228.0	60.0	1, 193.0 551.0	1,974.2 621.7	138.7 47.7	91.2 36.4	1,911.0 980.0	18,535,1 7,666,1
1	Digested 'oefficient.p.ct.	2,511.9 60.68	$104.3 \\ 36.83$	2,407.6 62.43	$262.1 \\ 53.48$	60.0 100.00	642.0 53.81	1,352.5 68.51	$91.0 \\ 65.62$	54, 8 60, 08	$1,131.0 \\ 59.18$	10, 869, 0 58, 64

TABLE IV. Results on urine (inclusive of wash water).

	Aver-				Energy.		
Period.	Weight, specific grav- ity,	weight, specific Total nitrogen, grav- ity.				Per kilo- gram.	Total.
Period 1 Lotal coffected Daily average 10 days	Grams, 62, 157 6, 215, 7 1, 0379	Per cl. 0 813	Grams. 507, 53 50, 75	Per ct. 1.797	Grams. 1, 121, 48 112, 15	Calories. 167. 6	Calorics. 1, 046, 40
Lotal collected . Daily average (10 days) . Period III	65,796 6,579,6 - 1,0411	1, 050	690, 5 69, 05	2,566	1,687,6 168,75	231.4	1, 522, 25
Total collected Daily average (10 days	$\frac{46,616}{-4,661,6-1,0432}$	1.299	005, 5 60, 55	3, 040	1, 418, 0 141, 80	267.5	1, 247, 16

APPENDIX.

TABLE V.—Residual air.

	50				ght.	Co spor	rre- nding	Tota] ume	vol-	airin ed.	Tota chan	il in iber.
Poriod	readin	8	Ire.		xid.	0° ar m	nd 760 m.	san redu	nple iced.	moist reduc		xid.
16100.	Aspirator	Barometer	Temperatu	Water.	Carbon dic	Water.	Carbon di- oxid.	Dry.	As sam- pled.	Volume of chamber	Water.	Carbon dic
Period Ia.	Liters	Mm	°C	Gms	Gms	Liters	Liters	I iters	Liters	Liters	Gms	Gms
At end of preliminary run At end of subperiod 1 At end of subperiod 2 At end of subperiod 3 At end of subperiod 4	25 25 25 25 25	713. 44 710. 29 701. 80 701. 56 705. 37	15.6 19.0 20.2 19.6 19.1	0, 1104 . 1003 . 1088 . 1034 . 1041	0. 1064 . 1066 . 1020 . 0999 . 1122	0.14 .12 .14 .13 .13	0.05 .05 .05 .05 .05	22. 24 21. 89 21. 55 21. 58 21. 75	22, 38 22, 01 21, 69 21, 71 21, 88	$10,753 \\ 10,759 \\ 10,646 \\ 10,636 \\ 10,687$	53.04 49.03 53.40 50.66 50.84	51.12 52.11 50.07 48.94 54.80
Period IIa.												
At end of preliminary run At end of subperiod 1 At end of subperiod 2 At end of subperiod 3 At end of subperiod 4	25 25 25 25 25 25	723. 33 724. 72 724. 17 723. 97 720. 98	17.0 17.6 18.2 18.4 19.2	.1129 .1218 .1169 .1156 .1159	.1211 .1103 .1198 .1096 .1142	.14 .15 .15 .14 .14	.06 .06 .06 .06 .06	$\begin{array}{c} 22.\ 46\\ 22.\ 46\\ 22.\ 39\\ 22.\ 37\\ 22.\ 22\end{array}$	$\begin{array}{c} 22.\ 60\\ 22.\ 61\\ 22.\ 54\\ 22.\ 51\\ 22.\ 36\end{array}$	10, 917 10, 941 10, 944 10, 945 10, 911	54.54 58.94 56.76 56.21 56.55	58, 50 53, 37 58, 17 53, 29 55, 72
Period IIIa.												
At end of preliminary run At end of subperiod 1 At end of subperiod 2 At end of subperiod 3 At end of subperiod 4	25 25 25 25 25	706. 43 710. 71 713. 05 717. 18 712. 37	$18.8 \\ 16.8 \\ 17.3 \\ 17.2 \\ 18.9$. 1093 . 1114 . 1169 . 1189 . 1173	. 1046 . 1010 . 1111 . 1010 . 1090	.14 .14 .14 .15 .15	.05 .05 .06 .05 .05	21,79 22,07 22,12 22,27 21,97	$\begin{array}{c} 21.93\\ 22.21\\ 22.26\\ 22.42\\ 22.12\end{array}$	10, 693 10, 726 10, 766 10, 825 10, 778	53.30 53.80 56.54 57.41 57.16	51.00 48.78 53.73 48.76 53.11
Period Ib.												
At end of preliminary run At end of subperiod 1 At end of subperiod 2 At end of subperiod 3 At end of subperiod 4	25 25 25 25 25	731, 04 724, 46 719, 80 717, 81 713, 40	$13.2 \\ 16.0 \\ 15.6 \\ 14.6 \\ 16.0 \\ 16.0 \\ 16.0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $. 0832 . 0657 . 0900 . 0867 . 0856	.1106 .1066 .1087 .1117 .1088	.10 .08 .11 .11	.06 .05 .05 .06 .05	23.00 22.56 22.45 22.47 22.22	$\begin{array}{c} 23.10\\ 22.64\\ 22.56\\ 22.58\\ 22.33\end{array}$	$11,254 \\ 11,198 \\ 11,068 \\ 11,028 \\ 10,979 \\ 1$	$\begin{array}{r} 40.53\\ 32.50\\ 44.16\\ 42.34\\ 42.09\end{array}$	53.88 52.73 53.33 54.55 53.49
Period IIb.												
At end of preliminary run At end of subperiod 1 At end of subperiod 2 At end of subperiod 3 At end of subperiod 4	25 25 25 25 25	720. 25 720. 49 724. 84 725. 20 722. 80	$14.1 \\ 18.0 \\ 15.6 \\ 16.2 \\ 16.8 $. 0715 . 1165 . 0921 . 0961 . 0933	. 1031 . 1121 . 1152 . 1171 . 1130	.09 .14 .11 .12 .12	.05 .06 .06 .06 .06	$\begin{array}{c} 22.58\\ 22.29\\ 22.61\\ 22.58\\ 22.46\end{array}$	22, 67 22, 43 22, 72 22, 70 22, 58	$\begin{array}{c} 11,068\\ 10,959\\ 11,143\\ 11,142\\ 11,128 \end{array}$	34.91 56.92 45.17 47.17 45.98	50.34 54.77 56.50 57.48 55.69
Period IIIb.												
At end of preliminary run At end of subperiod 1 At end of subperiod 2 At end of subperiod 3 At end of subperiod 4	25 25 25 25 25	$\begin{array}{c} 712.\ 67\\ 715.\ 66\\ 721.\ 80\\ 726.\ 14\\ 719.\ 79 \end{array}$	15.7 19.1 16.6 15.6 17.5	. 0830 . 0771 . 0879 . 1054 . 0981	. 1043 . 0980 . 1047 . 1065 . 1156	. 10 . 10 . 11 . 13 . 12	. 05 . 05 . 05 . 05 . 06	$\begin{array}{c} 22, 22\\ 22, 05\\ 22, 43\\ 22, 65\\ 22, 31 \end{array}$	$\begin{array}{c} 22.32\\ 22.15\\ 22.54\\ 22.78\\ 22.43\end{array}$	$10,954 \\ 11,051 \\ 11,084 \\ 11,143 \\ 11,077 \\$	$\begin{array}{r} 40.\ 73\\ 38.\ 46\\ 43.\ 22\\ 51.\ 56\\ 48.\ 45\end{array}$	51.19 48.90 51.49 52.10 57.09

a Corrected for tension of aqueous vapor. The air in the aspirator is assumed to be saturated.

Period.	Volume at meter pump.	Average barome- ter.	A verage tension of aqueous vapor,	A verage tempera- ture.	Reduced volume at meter pump, dry,	Sample of resid- ual air,	Methane pro- duced.	Volume of entering air, dry.
Period Ia.								
Subperiod 1., Subperiod 2, Subperiod 3,, Subperiod 4,	Laters, 454, 412 462, 239 463, 428 463, 923	Mm. 726.6 722.0 718.8 719.9	Mm. 1.66 1.20 1.09 1.13	° C. 16.8 18.0 18.0 18.2	<i>Liters.</i> 408, 344, 4 411, 279, 9 410, 587, 3 411, 347, 4	Liters. 21.89 21.55 21.58 21.75	<i>Liters</i> , 48, 61 , 43, 44 50, 78 , 51, 26	Liters. 408, 317, 6 411, 258, 0 410, 588, 1 411, 317, 9
Period Ha.			,					
Subperiod 1 Subperiod 2 Subperiod 3. Subperiod 4	$\begin{array}{r} 471,503\\ 488,990\\ 488,247\\ 487,949\end{array}$	739.0 740.9 739.9 739.0	$1.75 \\ 1.50 \\ 1.48 \\ 1.60$	$15.3 \\ 16.3 \\ 15.5 \\ 17.8$	433, 076, 6 448, 937, 8 448, 887, 4 444, 520, 9	22.46 22.39 22.37 22.22	58,79 78,03 71,99 47,60	433, 040. 3 448, 882. 2 448, 837. 7 444, 495. 6
Period IIIa.								
Subperiod 1 Subperiod 2 Subperiod 3. Subperiod 4	488, 147 493, 993 495, 677 498, 936	$\begin{array}{c} 724.3 \\ 727.3 \\ 730.6 \\ 731.8 \end{array}$	1.69 2.37 2.04 1.68	16.6 16.6 15.3 15.5	437, 473, 2 444, 206, 9 450, 045, 0 453, 543, 0	$\begin{array}{c} 22.07\\ 22.12\\ 22.27\\ 21.97\end{array}$	$52, 46 \\ 63, 77 \\ 46, 95 \\ 51, 23$	437, 442, 8 444, 165, 2 450, 020, 3 453, 513, 8
Period 1b.	1							
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	453, 669 459, 415 453, 719 454, 164	740, 4 735, 4 781, 7 728, 4	$1.31 \\ 1.02 \\ 1.10 \\ 1.00$	$12.4 \\ 14.0 \\ 14.3 \\ 14.6$	$\begin{array}{c} 422,112,0\\ 422,288,6\\ 414,500,4\\ 412,627,8\end{array}$	$\begin{array}{c} 22.56\\ 22.45\\ 22.47\\ 22.22\end{array}$	47, 47 43, 50 48, 18 43, 33	$\begin{array}{c} 422,087,0\\ 422,267,6\\ 414,474,7\\ 412,606,7\end{array}$
Period 11b.								
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	$\begin{array}{r} 487,850\\ 491,863\\ 487,751\\ 492,110\end{array}$	734.5 737.2 738.6 737.5	$ \begin{array}{r} 1.50 \\ 1.00 \\ 1.10 \\ .98 \\ \end{array} $	$14.2 \\ 15.1 \\ 13.6 \\ 14.1$	$\begin{array}{r} 447,273,2\\ 451,481,2\\ 450,851,2\\ 453,460,5 \end{array}$	$\begin{array}{r} 22.29 \\ 22.61 \\ 22.58 \\ 22.46 \end{array}$	$36.92 \\ 41.28 \\ 58.41 \\ 26.84$	447, 258, 6 451, 462, 0 450, 815, 3 453, 456, 1
Period IIIb.								
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	498,006 498,848 493,745 496,321	$\begin{array}{c} 729.1 \\ 734.4 \\ 738.0 \\ 737.9 \end{array}$	$ \begin{array}{r} 1.77 \\ 2.35 \\ 1.60 \\ 1.45 \end{array} $		451,671,8 454,774,7 454,942,9 455,316,7	$\begin{array}{c} 22.05 \\ 22.43 \\ 22.65 \\ 22.31 \end{array}$	$\begin{array}{c} 45.17\\ 58.57\\ 59.79\\ 64.31\end{array}$	$\begin{array}{c} 451,648.6\\ 454,738.6\\ 454,905.8\\ 455,274.7\end{array}$
			-					

TABLE V1.- Ventilation.

APPENDIX.

TABLE VII.-Ingoing air.

	Anni			Re- duced	Vol- une	Total volume	Ratio	Wa	ter.	Carbor id	i diox-
Period.	rator read- ing.	Ba- rome- ter.a	Tem- pera- ture.	aspira- tor read- ing, dry.	of car- bon diox- id.	of sam- ple re- duced and dry.	ple to total ventila- tion.	In sam- ple.	In total venti- lation.	ln sam- ple.	ln to- tal ven- tila- tion.
Period Ia.											
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	Liters 200 200 200 200	$\begin{array}{c} Mm. \\ 711.1 \\ 700.2 \\ 703.0 \\ 706.5 \end{array}$	$^{\circ}$ C. 20. 4 21. 6 21. 2 20. 6	Liters. 174. 12 170. 76 172. 25 172. 87	Liters 0.05 .05 .05 .05	<i>Liters.</i> 174. 17 170. 81 172. 30 172. 92	$\begin{array}{c}1:\\2,344.4\\2,407.7\\2,382.8\\2,378.7\end{array}$	Gram. 0. 0927 . 0622 . 0646 . 0664	Grams. 217.3 149.8 153.9 157.9	Gram. 0. 1064 . 1092 . 1061 . 1049	Gms. 294. 4 262. 9 252. 8 249. 5
Period IIa.											
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	200 200 200 200	725.7724.7726.5722.7	19. 2 19. 6 20. 0 20. 8	$\begin{array}{c} 178.\ 43\\ 177.\ 95\\ 178.\ 14\\ 176.\ 72\end{array}$.05 .05 .05 .05	$178. 48 \\ 178. 00 \\ 178. 19 \\ 176. 77$	$\begin{array}{c} 2,426.3\\ 2,521.8\\ 2,518.9\\ 2,514.5\end{array}$. 1244 . 0623 . 0644 . 0547	$\begin{array}{c} 301.8 \\ 157.1 \\ 162.2 \\ 137.6 \end{array}$. 1062 . 1047 . 1013 . 1053	257.7 264.0 255.2 264.8
Period IIIa.											
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	200 200 200 200	$710. 2 \\712. 2 \\718. 6 \\714. 4$	18. 8 18. 6 18. 2 20. 4	$174.84 \\ 175.47 \\ 177.28 \\ 174.92$. 05 . 05 . 05 . 05	$174.89 \\ 175.52 \\ 177.33 \\ 174.97$	2,501.3 2,530.6 2,537.8 2,592.0	. 0761 . 0679 . 0679 . 0668	$190.\ 4\\171.\ 8\\172.\ 3\\173.\ 1$. 1053 . 1040 . 1043 . 1074	$\begin{array}{c} 263.\ 4\\ 263.\ 2\\ 264.\ 7\\ 278.\ 4\end{array}$
Period Ib.											
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	200 200 200 200	726. 2720. 3718. 1714. 4	17.4 17.0 15.4 17.2	$179.\ 66\\178.\ 44\\178.\ 89\\176.\ 86$	• 06 06 • 06 • 05	179. 72 178. 50 178. 95 17 6. 91	2,348.6 2,365.6 2,316.2 2,332.3	.1188 .1653 .1146 .0582	279.0 391.0 265.4 135.7	. 1143 . 1176 . 1133 . 1057	$\begin{array}{c} 268.\ 4\\ 278.\ 2\\ 262.\ 4\\ 246.\ 5\end{array}$
Period IIb.											
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	200 200 200 200	722. 3724. 5726. 6724. 3	19.4 16.4 18.0 17.8	$177.\ 47\\179.\ 85\\179.\ 39\\178.\ 95$.05 .05 .05 .05	$177.52 \\ 179.90 \\ 179.44 \\ 179.00$	$\begin{array}{c} 2,519,5\\ 2,509,5\\ 2,512,4\\ 2,533,3 \end{array}$.1217 .2228 .0590 .0365	306.6 559.1 148.2 92.46	. 1030 . 1040 . 1069 . 1072	$\begin{array}{c} 259.\ 5\\ 261.\ 0\\ 268.\ 6\\ 271.\ 6\end{array}$
Period IIIb.											
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	200 200 200 200	718.7 722.0 726.8 720.8	20.4 16.6 17.4 19.0	175.99 179.10 179.80 177.34	. 05 . 05 . 05 . 05	$176.04 \\ 179.15 \\ 179.85 \\ 177.39$	2,565.6 2,538.3 2,529.4 2,566.5	.0562 .0558 .0527 .0551	$144. 2 \\ 141. 6 \\ 133. 3 \\ 141. 4$. 1040 . 1060 . 1065 . 1092	266, 8269, 1269, 4280, 3

a Corrected for tension of aqueous vapor. The air in the aspirator is assumed to be saturated.

Period.	Carbor In sa (corre	Carbon dioxid In samples (corrected).4		In sam- ple of	Correc- tion for	Total CO ₁ in out-	Total CO ₂ In	CO ₁ aoded in	Equiva-
	Pan No. 1.	Pan No. 2.	and cor- rected.b	ual air.	air.	air.	alr.	ber.	carbon.
Period Ia. Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	Grams. 10, 9642 11, 0263 11, 1844 11, 3608	Grams. 11. 0337 11. 0203 11. 2091 11. 2954	Grams. 2,203.4 2,208.3 2,243.0 2,268.4	Grum. 0.1 .1 .1	Grams. +1.0 -2.0 -1.1 +5.9	Grams. 2, 204, 5 2, 206, 4 2, 242, 0 2, 275, 3	Grams. 249. 4 262. 8 252. 8 249. 5	Grams. 1,955.1 1,943.6 1,989.2 2,025.8	Grams. 533. 2 530. 0 542. 5 552. 4
Period IIa. Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	12, 3888 13, 0521 13, 0874 12, 7990	12. 4076 13. 0508 13. 0295 12. 8457	2, 483 . 7 2, 614. 6 2, 616. 0 2, 568. 7	.1 .1 .1 .1	-5.1 +4.8 -4.9 +2.4	2, 478, 7 2, 619, 5 2, 611, 2 2, 571, 2	257. 7 264. 0 255. 2 264. 8	2, 221. 0 2, 355. 5 2, 356. 1 2, 306. 5	605. 7 642. 3 642. 5 629. 0
Period IIIa. Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	12. 1124 11. 6727 11. 9952 11. 6808	12. 0378 11. 7236 11. 9922 11. 6693	2,419,0 2,343,5 2,402,7 2,338,9	. 1 . 1 . 1 . 1	-2.2 + 5.0 - 5.0 + 4.4	2, 416, 9 2, 348, 6 2, 397, 8 2, 343, 3	263. 4 263. 2 264. 7 278. 4	2,153.5 2,085.4 2,133.1 2,064.9	587. 3 568. 7 581. 7 563. 1
Period Ib. Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	11, 1265 11, 3118 11, 2516 11, 5985	11, 1061 11, 1981 11, 3297 11, 5990	2, 226, 9 2, 254, 7 2, 261, 9 2, 323, 6	. 1 . 1 . 1 . 1	-1.2 + .6 +1.2 -1.1	2, 225, 9 2, 255, 4 2, 263, 2 2, 322, 6	268, 4 278, 2 262, 4 246, 5	1,957,5 1,977,2 2,000,8 2,076,1	533. 8 539. 2 ¢ 545. 3 566. 2
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	12, 5948 12, 7031 12, 7993 12, 6649	12, 4758 12, 6671 12, 6885 12, 6897	2,511,2 2,541,2 2,553,0 2,539,6	. 1 . 1 . 1 . 1	+4.4 +1.7 +1.0 -1.8	2, 515, 7 2, 543, 1 2, 554, 1 2, 538, 0	259.5261.0268.6271.6	2, 256, 2 2, 282, 1 2, 285, 5 2, 266, 4	615, 3 622, 3 ¢ 623, 0 618, 0
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	11, 7520 11, 5499 11, 8184 11, 8825	11, 7364 11, 6389 11, 6908 11, 8158	2,352,7 2,322,7 2,354,8 2,373,7	.1 .1 .1 .1	-2.3 +2.6 +.6 +5.0	2, 350, 5 2, 325, 4 2, 355, 5 2, 378, 9	266, 8 269, 1 269, 4 280, 3	2, 083, 7 2, 056, 3 2, 086, 1 2, 098, 6	568, 2 560, 8 568, 9 572, 3

TABLE VIII.-Carbon dioxid.

^a For number of pump strokes.
 ^b For a slight leakage from the pans, amounting to about 0.165 per cent of the total volume.
 ^c Correction applied for man entering chamber, -0.3 gram carbon.

TABLE IX.--Water.

	Water ples recto	in sam- (cor- ed).a	Total, Nos.1 and	Ĭn	On ab-	In sam- ple	Cor- rec- tion	Cor- rec-	Total H ₂ O in out-	, Total H2O	Water	Equiv-
Period.	Pan No. 1.	Pan No. 2.	2×100 (cor- rect- ed). ^b	cans.	sorb- ers.	of resid- ual air.	for resid- ual air.	of hy- grom- eter.	ing air +ab- sorb- ers.	in in- going air.	in cham- ber.	hydro- gen.
Period Ia. Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4 Period IIa.	<i>Gms.</i> 3. 7923 2. 8452 2. 5353 2. 6640	<i>G ms.</i> 3. 8547 2. 8766 2. 5547 2. 6476	Gms. 766.0 573.1 509.8 532.0	Gms. 1, 440.0 1, 626.0 1, 577.0 1, 517.0	Gm. 0.0 .0 .0	Gm. 0.1 .1 .1	Gms. - 4.0 + 4.4 + 2.7 + .2	Gms. -5.0 -5.0 -5.0 -5.0	<i>Gms.</i> 2, 197. 0 2, 198. 6 2, 079. 2 2, 044. 3	Gms. 217.3 149.8 153.9 157.9	Gms. 1, 979. 7 2, 048. 8 1, 925. 3 1, 886. 4	<i>Gms.</i> 220.0 227.7 213.9 209.6
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	4. 1329 3. 6795 3. 6035 4. 0213	4. 1775 3. 6654 3. 6398 4. 0380	832.4 735.7 725.5 807.3	1,740.0 1,824.0 1,820.0 1,693.0	0. 0. 0. 0.	.1 .1 .1 .1	+ 4.4 - 2.2 6 + .3	-5.0 -5.0 -5.0 -5.0	2,571.9 2,552.6 2,540.1 2,495.7	301.8 157.1 162.2 137.5	2,270.1 2,395.5 2,377.9 2,358.2	$\begin{array}{c} 252.\ 2\\ 266.\ 2\\ 264.\ 2\\ 262.\ 0 \end{array}$
Period IIIa. Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	6. 3729 5. 9328 5. 1046 4. 2235	6. 4288 5. 9024 5. 1016 4. 2406	1, 282. 3 1, 185. 5 1, 022. 3 847. 8	1,262.0 1,272.0 1,340.0 1,695.0	0. 0. 0. 0.	.1 .1 .1 .1	+ .5 + 2.7 + .9 3	-5.0 -5.0 -5.0 -5.0	2, 539. 9 2, 455. 3 2, 358. 3 2, 537. 7	190. 4 171. 8 172. 3 173. 1	2, 349.5 2, 283.5 2, 186.0 2, 364.5	$261. 1 \\ 253. 7 \\ 242. 9 \\ 262. 7$
Period Ib. Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	3. 0157 2. 3775 2. 5541 2. 3299	3.0425 2.3810 2.5526 2.3264	$\begin{array}{c} 606.8\\ 476.6\\ 511.5\\ 466.4\end{array}$	928.0 1,303.0 1,138.0 1,173.0	.0 .0 .0	. 1 . 1 . 1 . 1	-8.0 +11.7 -1.8 3	-5.0 -5.0 -5.0 -5.0	1,521.9 1,786.4 1,642.8 1,634.2	279.0 391.0 265.4 135.7	1,242.9 1,395.4 1,377.4 1,498.5	138. 1 155. 0 ¢153. 0 166. 5
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4 Period IIIb.	3. 6076 2. 4445 2. 7217 2. 4214	3. 6374 2. 4589 2. 7077 2. 4335	725.7 491.2 543.8 486.3	1,248.0 1,734.0 1,390.0 1,385.0	.0 .0 .0	.1 .1 .1 .1	+22.0 -11.8 + 2.0 - 1.2	-5.0 -5.0 -5.0 -5.0	1,990.8 2,208.5 1,930.9 1,865.2	306.6 559.1 148.2 92.5	1, 684. 2 1, 649. 4 1, 782. 7 1, 772. 7	187. 1 183. 3 ¢198. 0 197. 0
Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	4. 4379 3. 6533 3. 9753 3. 6247	4. 4660 3. 6412 3. 9933 3. 6324	891. 9 730. 7 798. 2 726. 9	1,016.0 1,034.0 1,025.0 1,274.0	.0 .0 .0	.1 .1 .1 .1	-2.3 +4.8 +8.3 -3.1	-5.0 -5.0	1,900.7 1,764.5 1,826.6 1,992.9	$144.2 \\ 141.6 \\ 133.3 \\ 141.4$	$\begin{array}{c} 1,756.5\\ 1,622.9\\ 1,693.3\\ 1,851.5 \end{array}$	195. 2 180. 3 188. 2 205. 7

.

a For number of pump strokes.
b For slight leakage from pans, see previous table.
c Correction applied for man entering chamber -0.05 gram hydrogen.

Period.	Total CO ₂ weighed ×200 (cor- rected).s	Correc- tion for ingoing air.	Carbon as hy- drocar- bon.	Total HrO weighed ×200 (cor- rected).a	Correc- tion for ingoing air.	Hydro- gen as hydro- carbon.	Methane, CO ₂ × .3643.
Period Ia. Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4	Grams. 98.26 88.15 96.20 103.47	Grams. 3.04 3.06 3.05 3.06	Grams. 25.97 23.20 25.40 27.39	Grams. 79.69 72.54 79.65 85.72	Grams. -7.42 -7.47 -7.46 -7.47	Grams. 8.03 7.23 8.02 8.69	Grams, 35, 80 32, 11 35, 05 37, 69
Period IIa. Subperiod 1. Subperiod 2. Subperiod 3. Subperiod 4.	118, 37 156, 18 144, 34 96, 54	- 3, 22 - 3, 34 - 3, 34 - 3, 30	31. 40 41. 68 38. 45 25. 43	97. 12 126. 83 119. 36 79. 23	-7.86 -8.15 -8.15 -8.07	9, 92 13, 19 12, 36 7, 91	43, 12 56, 90 52, 58 35, 17
Period 111a. Subperiod 1. Subperiod 2. Subperiod 3. Subperiod 4.	106. 02 128. 22 95. 32 103. 71	3, 25 3, 30 3, 35 3, 37	28.03 34.07 25.08 27.36	87, 95 106, 00 79, 17 85, 92	7, 94 8, 07 8, 17 8, 24	8, 89 10, 88 7, 89 8, 63	38. 62 46. 71 34. 73 37. 78
Period Ib. Subperiod 1 Subperiod 2. Subperiod 3. Subperiod 4.	96, 12 88, 35 97, 74 87, 94	$ \begin{array}{r} -3.14 \\ -3.14 \\ -3.37 \\ -3.07 \end{array} $	25, 36 23, 24 25, 73 23, 14	76, 67 71, 18 84, 68 71, 86	-7.67 -7.67 -8.24 -7.49	7, 67 7, 06 8, 49 7, 15	35. 02 32. 19 35. 61 32. 04
Period 11b. Subperiod 1 Subperiod 2. Subperiod 3.	75. 64 84. 22 117. 75	3, 33 3, 36 3, 35	$19.72 \\ 22.05 \\ 31.20$	62, 94 75, 10 96, 36	-8.12 -8.20 -8.19	6, 09 7, 43 9, 80	27, 56 30, 68 42, 90
Period 111b. Subperiod 1 Subperiod 2. Subperiod 3. Subperiod 4.	91. 83 118. 09 120. 50 129. 35	$ \begin{array}{r} -3,36 \\ -3,38 \\ -3,38 \\ -3,39 \end{array} $	24, 13 31, 28 31, 94 34, 35	73.50 98.54 101.83 107.78	- 8, 20 - 8, 26 - 8, 26 - 8, 27	7, 26 10, 03 10, 40 11, 06	33, 45 43, 02 43, 90 1 47, 12

TABLE X.-Carbon and hydrogen in combustible gases.

^a For slight leakage from pans, see previous table.

APPENDIX.

TABLE	XI	Heat	measur	ements.
-------	----	------	--------	---------

	rate of	Ave	erage te	mperat current	ure of w	ater		e e f i c tter.	Heat duce absor	pro- ed in bers.	
Period.	Relstive flow.	Ingoing.	Outcoming.	Difference.	Correction for pres- sure.	Corre ct e d difference.	Total water.	Average sp heat of wa	Difference of pressure.	Equivalent heat.	heat, calories at 20.°
PERIOD Ia.											
Subperiod 1.		0.0		0.0	0.0		T. Hana		0	0.1	
6 p. m. to 6.51 p. m 6.51 p. m. to 11.59 p. m 11.59 p. m. to 12.40 a. m. 12.40 a. m. to 1.08 a. m. 1.08 a. m. to 2.13 a. m. 2.13 a. m. to 6 a. m	29.030.028.027.028.030.0	$\begin{array}{c} 7.5062 \\ 6.8605 \\ 6.6220 \\ 6.8814 \\ 6.0665 \\ 5.0205 \end{array}$	$\begin{array}{c} 12.5308\\ 10.7945\\ 12.0500\\ 13.5243\\ 12.2594\\ 9.6850\end{array}$	$5.0246 \\ 3.9340 \\ 5.4280 \\ 6.6429 \\ 6.1929 \\ 4.6645$	+0.0008 .0010 .0006 .0004 .0006 .0010	$\begin{array}{c} 5.0254\\ 3.9350\\ 5.4286\\ 6.6433\\ 6.1935\\ 4.6655\end{array}$	2007 59.00 490.00 35.00 16.00 55.00 349.50	$\begin{array}{c} 1.0030\\ 1.0035\\ 1.0033\\ 1.0030\\ 1.0035\\ 1.0044 \end{array}$	0.40 .50 .30 .20 .30 .50	.01 .08 .01 .01	$\begin{array}{r} 297.38\\ 1,934.82\\ 190.64\\ 106.61\\ 341.82\\ 1,637.71\end{array}$
Latent best of water											4,508.98
Vapor Correction for feed, water, excreta, and											1,171.99
Vessels											-13.05
Subperiod ?											3,007.92
6 a. m. to 8.17 a. m	30.0 29.0 28.0 27.0 28.0	$5.2237 \\ 5.4425 \\ 5.7324 \\ 6.4975 \\ 6.2513$	$\begin{array}{r} 9.3171 \\ 10.1983 \\ 11.4200 \\ 13.6640 \\ 12.8185 \end{array}$	$\begin{array}{r} 4.0934 \\ 4.7558 \\ 5.6876 \\ 7.1665 \\ 6.5672 \end{array}$. 0010 . 0008 . 0006 . 0004 . 0006	$\begin{array}{r} 4.0944\\ 4.7566\\ 5.6882\\ 7.1669\\ 6.5678\end{array}$	$\begin{array}{c} 209.\ 00\\ 60.\ 00\\ 60.\ 00\\ 44.\ 50\\ 331.\ 50\end{array}$	$1.0044 \\ 1.0041 \\ 1.0038 \\ 1.0031 \\ 1.0033$. 50 . 40 . 30 . 20 . 30	. 03 . 01 . 01 . 03	$\begin{array}{r} 859,46\\ 286,55\\ 342,58\\ 319,92\\ 2,184,38\end{array}$
Latent heat of water											3,992.89
vapor. Correction for feed, water, excreta, and vessels.				•••••							+8.00
Total heat											5,213.80
Subperiod 3.											
6 p. m. to 6.42 p. m 6.42 p. m. to 7.46 p. m 7.46 p. m. to 7.51 p. m 7.51 p. m. to 12.58 a. m 12.58 a. m. to 2 a. m 2 a. m. to 3.08 a. m 3.08 a. m. to 6 a. m	28.029.028.029.028.027.029.0	$\begin{array}{c} 6.3282\\ 6.0525\\ 6.1400\\ 6.0323\\ 6.2820\\ 6.6006\\ 5.9584 \end{array}$	$\begin{array}{c} 12.9191\\ 11.4269\\ 11.4200\\ 11.6083\\ 12.0880\\ 13.5171\\ 11.1751 \end{array}$	$\begin{array}{c} 6.5909\\ 5.3744\\ 5.2800\\ 5.5760\\ 5.8060\\ 6.9165\\ 5.2167\end{array}$. 0006 . 0008 . 0006 . 0008 . 0006 . 0004 . 0008	$\begin{array}{c} 6.5915\\ 5.3752\\ 5.2806\\ 5.5768\\ 5.8066\\ 6.9169\\ 5.2175\end{array}$	38.00 76.50 5.00 351.50 51.00 41.00 220.50	$\begin{array}{c} 1.\ 0032\\ 1.\ 0036\\ 1.\ 0036\\ 1.\ 0036\\ 1.\ 0034\\ 1.\ 0030\\ 1.\ 0037 \end{array}$. 30 . 40 . 30 . 40 . 30 . 20 . 40	. 01	$\begin{array}{r} 251,28\\ 412,67\\ 26,50\\ 1,967,26\\ 297,14\\ 284,44\\ 1,154,69\end{array}$
Latent heat of water											4,393.98
vapor Correction for feed, water, excreta, and									····· ¹		1,139.76
vessels											-11.41
Total heat											5,522.33
Subperiod 4. 6 a. m. to 9.40 a. m 9.40 a. m. to 6 p. m	29.0 29.0	6.0129 6.1229	10.9675 11.2345	4.9546 5.1116	. 0008 . 0008	4.9554 5.1124	$279,00 \\ 602,00$	$1.0037 \\ 1.0031$. 40 . 40	. 04	1,387.63 3,087.13
											4, 474, 76
Latent heat of water vapor Correction for feed, water, excreta, and											1, 116, 73
vessels											+14.07
Total heat											5,605,56

	rate of	Ave	rage te	mperat current	ure of w	ater		efic ter.	Heat duce absor	pro- d ln thers.	
Period.	Reistive flow.	Ingoing.	Outcoming.	Difference.	Correction for pres- sure.	Corre et e d difference.	Total water.	Average a p (heat of wa	Differen c e of pressure.	Equivalent heat.	Total heat, calories at 20°.
PERIOD IIa .											
Subperiod 1. 6 p. m. to 7.23 p. m 7.23 p. m. to 2.36 a. m 2.36 a. m. to 3.04 a. m 3.04 a. m. to 5.01 a. m 5.01 a. m. to 6 a. m	28.0 29.0 28.0 27.0 29.0	° C. 5.0676 4.1681 3.9163 4.5355 3.4421	° C. 12. 4276 9. 6580 9. 6438 12. 4741 9. 3100	°C. 7.3600 5.4899 5.7275 7.9386 5.8679	° C. + 0. 0006 . 0008 . 0006 . 0004 . 0008	° <i>C</i> , 7, 3606 5, 4907 5, 7281 7, 9390 5, 8687	Liters, 67.50 517.50 26.00 62.00 73.00	1.0037 1.0046 1.0044 1.0038 1.0049	Cm. 0.30 .40 .30 .20 .40	Cal. 0.07	498.68 2,854.44 149.58 494.09 430.50
Latent heat of water vapor											4, 427. 29 1, 343. 90
vessels			<u> </u>					· · · · · · · ·	·····		-5.28
Total heat											5,765.91
Subperiod 2 6 a. m. to 9.41 a. m 9.41 a. m. to 12.46 p. m. 12.46 p. m. to 2.46 p. m. 2.46 p. m. to 4.29 p. m. 4.29 p. m. to 6 p. m	29.0 27.0 29.0 27.0 27.0 29.0	3, 2498 4, 1857 3 , 5490 4, 8046 3, 9145	8. 4346 11. 9750 9. 6357 12. 9669 9. 8682	5. 1848 7. 7893 6. 0867 8. 1623 5. 9537	. 0008 . 0004 . 0008 . 0004 . 0008	5, 1856 7, 7897 6, 0875 8, 1627 5, 9545	$\begin{array}{c} 277.\ 00\\ 102.\ 00\\ 140.\ 00\\ 50.\ 50\\ 105.\ 83 \end{array}$	1.0052 1.0040 1.0048 1.0037 1.0046	. 40 . 20 . 40 . 20 . 40 . 40	.03	1, 443, 85 797, 73 856, 32 413, 74 633 05
Latant best of water											4, 144. 69
Vapor Correction for feed, water, excreta, and										•••••	1,418.15
Total heat											5 670 98
Subperiod 3.											0,100,20
6 p. m. to 8.55 p. m 8.55 p. m. to 9.23 p. m. to 9.23 p. m. 10.42 p. m. 10.42 p. m. 10.42 p. m. to 2.05 a. m 2.05 a. m. to 2.35 a. m 4.33 a. m 4.33 a. m	29.0 27.0 28.0 29.0 28.0 28.0 27.0 29.0	3. 8551 4. 6557 4. 1560 3. 5025 3. 8671 4. 6323 3. 4147	9. 9025 12. 5771 11. 2200 9. 7694 10. 0114 13. 2696 9. 2357	6.0474 7.9214 7.0640 6.2669 6.1443 8.6373 5.8210	. 0008 - 0004 - 0005 - 0005 - 0005 - 0004 - 0009	$\begin{array}{c} 6.0482 \\ 7.9218 \\ 7.0646 \\ 6.2677 \\ 6.1449 \\ 8.6377 \\ 5.8218 \end{array}$	$\begin{array}{c} 198.00\\ 12.00\\ 60.00\\ 230.00\\ 26.00\\ 61.00\\ 108.75\end{array}$	1.0046 1.0038 1.0042 1.0048 1.0046 1.0037 1.0050	. 40 . 20 . 30 . 40 . 30 . 20 . 40	. 02	$1,203,03\\95,42\\425,66\\1,448,46\\160,50\\528,85\\636,28$
Latent heat of water											4,498.20
vapor. Correction for feed, water, excreta, and			•••••	•••	- 11-						1,407.70
Total heat								~ ~			5 001 06
Subperiod 1	-										
6 a. m. to 8.12 a. m 8.12 a. m 9.48 a. m 0 9.48 a. m 9.48 a. m 9.48 a. m. to 10.33 a. m. to 10.33 a. m. to 10.36 a. m 10.39 a. m. to 1.07 p. m. 10.7 p. m. to 1.42 p. m 1.42 p. m. to 2.49 p. m. to 2.49 p. m	29.0 27.0 28.0 27.0 29.0 29.0 29.0 29.0	3. 4053 4. 7396 4. 0182 4. 3700 3. 7216 5. 1844 4. 7962 4. 8045	8, 9379 13, 1496 10, 9500 9, 6248 12, 5688 11, 0456 9, 9883	$\begin{array}{c} 5,5326\\ 8,4100\\ 6,9318\\ 7,6100\\ 5,9032\\ 7,3844\\ 6,2494\\ 5,1838\end{array}$	0008 0004 0005 0004 0004 0004 0004 0005 0005	5, 5334 8, 4104 6, 9324 7, 6104 5, 9040 7, 3848 6, 2500 5, 1846	$\begin{array}{c} 160,00\\ 46,00\\ 34,00\\ 1,00\\ 177,75\\ 17,25\\ 56,00\\ 239,00 \end{array}$	1.0050 1.0037 1.0043 1.0040 1.0047 1.0047 1.0037 1.0040 1.0043	40 20 30 20 40 20 30 40	02	889, 75 388, 31 236, 72 7, 64 1, 054, 01 127, 86 351, 40 1, 244, 42
Latent beat of water											4, 300. 11
vapor Correction for feed, water, excreta, and		•••••								-	1,396.04
Total heat	-										5,721.91

TABLE XI.—Heat measurements—Continued.

						-					
	rate of	Ave	rage te	mperat curren	ure of w t.	ater		e c f i c ater.	Heat duce absor	pro- d in rbers.	Totel
Period.	Relative flow.	Ingoing.	Outcoming.	Difference.	Correction for pres- sure.	Corre et e d difference.	Total water.	Average sp heat of w	Differen c e of pressure.	Equivalent heat.	heat, calories at 20°.
PERIOD IIIa.											
Subperiod 1.											
6 p. m. to 8.57 p. m 8.57 p. m to 9.23 p. m 9.23 p. m 9.25 p. m	29.0 28.0 27.0 29.0 27.0 28.0 27.0 29.0	°C. 6. 4284 6. 3200 6. 6400 5. 6846 6. 1169 5. 7100 5. 7000 5. 2827	°C. 11. 4346 12. 2583 13. 1300 11. 3675 13. 7538 12. 2987 12. 2000 10. 6780	° C, 5, 0062 5, 9383 6, 4900 5, 6829 7, 6369 6, 5887 6, 5000 5, 3953	° C. +0.0008 .0006 .0064 .0008 .0004 .0005 .0004 .0008	^o C. 5,0070 5,9389 6,4904 5,6837 7,6373 6,5893 6,5004 5,3961	$ \begin{array}{c} Liters. \\ 215, 00 \\ 21, 00 \\ 5, 50 \\ 351, 50 \\ 47, 00 \\ 26, 00 \\ 1, 50 \\ 75, 50 \end{array} $	$\begin{array}{c} 1.\ 0035\\ 1.\ 0034\\ 1.\ 0029\\ 1.\ 0037\\ 1.\ 0028\\ 1.\ 0035\\ 1.\ 0035\\ 1.\ 0040 \end{array}$	Cm. 0.40 .30 .20 .40 .20 .30 .20 .40 .20 .40	Cal. 0.03 .04	$\begin{array}{c} 1,080,24\\125,14\\35,80\\2,005,17\\359,95\\171,92\\9,78\\409,02 \end{array}$
Latent heat of water											4, 197. 02
Correction for feed, water, excreta, and vessels											-, 98
Total heat											5, 586, 97
Subperiod 2.											
$\begin{array}{l} 6 a, m, to 8.31 a, m, \ldots, \\ 8.31 a, m, to 9.16 a, m, . \\ 9.16 a, m, to 10.10 a, m \\ 10.10 a, m, to 11.46 a, m \\ 11.46 a, m, to 11.46 a, m, \\ 12.06 p, m, to 12.32 p, m, \\ 12.32 p, m, to 1.31 p, m, \\ 1.31 p, m, to 2.27 p, m, . \\ . 2.27 p, m, to 5.46 p, m, \\ . \\ . 5.46 p, m, to 6 p, m, \\ \end{array}$	29.0 27.0 27.5 29.0 27.0 27.5 27.0 27.5 29.0 27.0	$\begin{array}{c} 4,1684\\ 6,5208\\ 6,2800\\ 5,4408\\ 6,1020\\ 6,0886\\ 6,4521\\ 6,2457\\ 5,9192\\ 6,4500 \end{array}$	10. 6034 13. 7475 13. 5908 11. 2941 13. 4140 13. 3714 14. 2535 13. 1750 11. 4074 12. 5867	$\begin{array}{c} 5.\ 2581\\ 4.\ 2267\\ 7.\ 3108\\ 5.\ 8533\\ 7.\ 3120\\ 7.\ 3120\\ 7.\ 2828\\ 7.\ 8014\\ 6.\ 9293\\ 5.\ 4882\\ 6.\ 1367\end{array}$. 0008 . 0004 . 0005 . 0008 . 0004 . 0005 . 0004 . 0005 . 0008 . 0004	$\begin{array}{c} 5,2589\\ 4,2271\\ 7,3113\\ 5,8541\\ 7,3124\\ 7,2833\\ 7,8018\\ 6,9298\\ 5,4890\\ 6,1371 \end{array}$	$\begin{array}{c} 178.00\\ 22.00\\ 34.50\\ 110.50\\ 10.00\\ 17.00\\ 28.00\\ 38.00\\ 230.50\\ 7.50\end{array}$	$\begin{array}{c} 1,0040\\ 1,0030\\ 1,0031\\ 1,0032\\ 1,0032\\ 1,0030\\ 1,0030\\ 1,0031\\ 1,0036\\ 1,0032 \end{array}$. 40 . 20 . 25 . 40 . 20 . 25 . 20 . 25 . 20 . 25 . 40 . 20	. 02	939. 80 93. 27 253. 02 649. 32 73. 35 124. 21 219. 10 264. 14 1, 269. 47 46. 17
Latent heat of water											3, 931, 85
vapor Correction for feed water, excreta, and vessels											1,351.83 +39.23
Total heat											5, 322, 91
Subperiod 3.	===					_					
$\begin{array}{l} 6 {\rm p. m. to 7.46 p. m. \dots} \\ 7.46 {\rm p. m. to 8.23 p. m} \\ 8.23 {\rm p. m. to 9.50 p. m} \\ 9.20 {\rm p. m. to 10.24 p. m} \\ 9.54 {\rm p. m. to 10.24 p. m} \\ 11.22 {\rm p. m. to 11.22 p. m} \\ 11.28 {\rm p. m. to 12.22 a. m} \\ 12.25 {\rm a. m. to 12.22 a. m} \\ 12.25 {\rm a. m. to 2.09 a. m. } \\ 2.09 {\rm a. m. to 2.09 a. m} \\ .218 {\rm a. m. to 3.04 a. m} \\ .304 {\rm a. m. to 5.34 a. m} \\ .544 {\rm a. m. to 5.44 a. m} \\ .544 {\rm a. m. to 6 a. m} \\ \end{array}$	29.0 27.0 27.5 29.0 30.0 27.5 28.0 29.0 30.0 27.5 29.0 30.0 27.5 30.0 27.5 30.0 27.5 29.0 30.0 27.5 29.0 30.0 27.5 29.0 30.0 27.5 29.0 30.0 27.5 29.0 27.5 29.0 27.5 29.0 29.0 27.5 29.0 29.0 29.0 27.5 29.0 29.0 27.5 29.0 29.0 29.0 27.5 29.0 29.0 29.0 29.0 27.5 29.0 29.0 29.0 27.5 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0	$\begin{array}{c} 6,0941\\ 6,6267\\ 6,4292\\ 6,0600\\ 5,8562\\ 6,4693\\ 6,0555\\ 5,5767\\ 5,5000\\ 4,6850\\ 5,2300\\ 4,6850\\ 5,0235\\ 4,1700\\ 4,1950\\ 4,8325 \end{array}$	$\begin{array}{c} 11.\ 6382\\ 13.\ 5767\\ 13.\ 2823\\ 11.\ 6722\\ 10.\ 6737\\ 13.\ 6950\\ 12.\ 9766\\ 11.\ 6950\\ 11.\ 2900\\ 13.\ 6731\\ 12.\ 1500\\ 10.\ 0817\\ 12.\ 5089\\ 10.\ 0089\\ 10.\ 0089\\ 10.\ 1000\\ 12.\ 4875\\ \end{array}$	$\begin{array}{c} 5,5441,\\ 6,9500,\\ 6,8531,\\ 5,6122,\\ 4,8175,\\ 7,2257,\\ 6,9211,\\ 6,9211,\\ 5,7200,\\ 7,8127,\\ 6,9200,\\ 7,8127,\\ 5,3967,\\ 7,4854,\\ 5,8389,\\ 5,9050,\\ 7,6550,\\ \end{array}$. 0008 . 0004 . 0005 . 0008 . 0010 . 0005 . 0008 . 0010 . 0005 . 0010 . 0005 . 0010 . 0005 . 0010 . 0005 . 0010 . 0005	$\begin{array}{c} 5.\ 5449\\ 6.\ 9504\\ 6.\ 8536\\ 5.\ 6130\\ 4.\ 8185\\ 7.\ 2262\\ 6.\ 9217\\ 6.\ 9217\\ 5.\ 7210\\ 7.\ 8132\\ 6.\ 9208\\ 5.\ 3977\\ 7.\ 4859\\ 5.\ 8399\\ 5.\ 9058\\ 7.\ 6554 \end{array}$	$\begin{array}{c} 119.\ 00\\ 20.\ 50\\ 41.\ 50\\ 39.\ 00\\ 47.\ 00\\ 33.\ 00\\ 27.\ 00\\ 29.\ 00\\ 27.\ 00\\ 62.\ 50\\ 10.\ 00\\ 67.\ 00\\ 75.\ 00\\ 46.\ 00\\ 10.\ 50\\ 7.\ 25\end{array}$	$\begin{array}{c} 1.\ 0036\\ 1.\ 0030\\ 1.\ 0030\\ 1.\ 0038\\ 1.\ 0038\\ 1.\ 0037\\ 1.\ 0037\\ 1.\ 0037\\ 1.\ 0037\\ 1.\ 0037\\ 1.\ 0037\\ 1.\ 0045\\ 1.\ 0045\\ 1.\ 0045\\ 1.\ 0045\\ \end{array}$	$\begin{array}{c} . \ 40)\\ . \ 20\\ . \ 20\\ . \ 50\\ . \ 50\\ . \ 25\\ . \ 40\\ . \ 50\\ . \ 25\\ . \ 40\\ . \ 50\\ . \ 25\\ . \ 50\\ . \ 20\\ \end{array}$.01 .01 .01 .01	$\begin{array}{c} 662, 20\\ 142, 91\\ 284, 30\\ 219, 68\\ 229, 17\\ 187, 50\\ 178, 11\\ 14, 35\\ 489, 86\\ 69, 46\\ 363, 19\\ 563, 52\\ 269, 83\\ 62, 29\\ 55, 71\\ \end{array}$
Latent heat of water											4,029.42
vapor. Correction for feed, water, excreta, and											1,294.10
Total heat											5 934 49
rotai neat											0, 2014. 48

TABLE XI.—Heat measurements—Continued.

	rate of	Ave	rage ter	npe rat i current	ure of wa	ater		ecfic iter.	Heat duce absor	pro- d in bers.	
Period.	Relative flow.	Ingoing.	Outeoming.	Difference.	Correction for pres- sure.	Corrected difference.	Total water.	Average a p heat of wa	Differen e e of pressure.	Equivalent heat.	Total heat, calories at 20°.
PERIOD IIIa-Cont'd. Subperiod 4.	29.0	° C. 4. 1684	° C. 10, 7689	° C. 6, 6005	° C. 0. 0008	° C. 6. 6013	Liters. 82.00	1,0043	Cm. 0, 40	Cal.	543, 62
7.16 a.m. to 9.30 a.m., 9.30 a.m. to 10.07 a.m. 10.67 a.m. to 10.46 a.m. 10.49 a.m. to 11.36 a.m. 11.36 a.m. to 11.36 a.m. 12.32 p.m. to 1.27 p.m. 1.37 p.m. to 1.58 p.m. 1.35 p.m. to 1.58 p.m. 1.58 p.m. to 3.56 p.m. 3.56 p.m. to 5.27 p.m., 5.27 p.m. to 6 p.m.,	$\begin{array}{c} 2\%,0\\ 27,0\\ 27,5\\ 27,0\\ 28,0\\ 29,0\\ 27,0\\ 27,5\\ 29,0\\ 27,5\\ 29,0\\ 28,5\\ \end{array}$	$\begin{array}{c} 4,5500\\ 5,3700\\ 5,1550\\ 5,5208\\ 4,9227\\ 4,6826\\ 5,4100\\ 5,8213\\ 5,2195\\ 5,4100\\ \end{array}$	12, 0151 13, 8244 13, 3570 14, 0777 13, 1027 11, 8158 13, 4140 13, 9290 11, 3545 11, 7100	$\begin{array}{c} 7,4651\\ 8,4544\\ 8,2020\\ 8,5569\\ 8,1800\\ 7,1332\\ 8,0040\\ 8,1077\\ 6,1350\\ 6,3000 \end{array}$. 0006 . 0004 . 0005 . 0004 . 0006 . 0008 . 0004 . 0005 . 0008 . 0008	$\begin{array}{c} 7.4657\\ 8.4548\\ 8.2025\\ 8.5573\\ 8.1806\\ 7.1340\\ 8.0044\\ 8.1082\\ 6.1358\\ 6.3007 \end{array}$	$\begin{array}{c} 102,00\\ 16,00\\ 23,00\\ 23,00\\ 33,00\\ 68,00\\ 7,95\\ 61,25\\ 96,00\\ 28,75\\ \end{array}$	$\begin{array}{c} 1.0039\\ 1.0034\\ 1.0032\\ 1.0036\\ 1.0036\\ 1.0040\\ 1.0034\\ 1.0032\\ 1.0039\\ 1.0039\\ 1.0037\end{array}$. 30 . 20 . 25 . 20 . 30 . 40 . 20 . 25 . 40 . 35	.01	764, 46 135, 73 189, 26 197, 46 270, 93 487, 04 62, 24 498, 21 591, 32 181, 81
	-										3, 922, 08
Correction for feed, water, excreta, and											1, 399, 81
vessels							· • • • • • • • • • • • • • • • • • • •	· · · · · · · · ·			+29.07
Total heat											5, 350. 96
PERIOD 10.											
Superiod 1.	45.0	2 1002	4 9720	1.000	10.0169	1.1020	1.10.00	1.0004	0.15	42	16.2 84
6.23 p. m. to 12.11 a. m. 12.11 a. m. to 1.14 a. m 1.14 a. m. to 5. a. m	47.0 49.0 51.0	2, 8406 2, 8613 2, 8275	3. 9274 3. 9106 3. 8159	1. 0868 1. 0493 . 9884	. 0196 . 0230 . 0266	1, 1064 1, 0723 1, 0150	2, 236, 00 416, 00 1, 969, 00	$ \begin{array}{r} 1.0067 \\ 1.0067 \\ 1.0067 \\ 1.0062 \end{array} $	9. 13 10. 25 11. 25 12. 25	7.27 1.48 7.60	2, 492, 75 447, 58 2, 003, 33
Latont boat of water	-				-						5, 107, 50
Correction for feed, water, excreta, and	·										735, 76
Total heat								-			5, 827, 99
Subperiod 2.			e= = = = 1	-							
6 a. m. to 6.20 a. m	. 51.0						130.00				
6.20 a. m. to 8.28 a. m. 8.28 a. m. to 9.10 a. m.	. 85.0 . 50.0	6, 2910	7.02%	. 7350	. 0248	. 7598	114.00 298.00	1,0046	11.75	1.09	226. 37
9.10 a. m. to 9.28 a. m. 9.28 a. m. to 11.37 a. m	. 42.0 . 33.0	6, 6400 4, 2800	5, 7, 6620 5, 9606	1.0220	. 0122	1.0342	88, 00 470, 00	1,0043 1,0055	7.00	. 20	91.20 792.12
11.37 a. m. to 12.21 p. m 12.21 p. m. to 1.46 p. m	. 42.0	3.3818	4, 8290	1. 4472	. 0122	1.4594	200, 00 300, 00	1,0061 1,0056	7,00 4,00	. 44	2941, 22 542, 70
1.46 p. m. to 3.25 p. m. 3.25 p. m. to 4 p. m	40.0	2. 5452	4, 9284	2. 39 32	. 0095	2. 3718	300,00	1.0064	4.75	. 45	250.27
4 p. m. to 4.18 p. m 4 18 p. m. to 4.28 p. m.	. 41.0	1.2320	4. 5500	2. 0475	0134	2.7580 2.7184 2.7184	44.00 32.00	1.0067	7.75	. 05	87.49 95.61
4.43 p. m. to 6 p. m	45.0	2.0400	4. 7179	2. 6779	. 0213	2. 6602	200, 25	1.0066	10.75	. 68	543, 40
Latent heat of water vapor											-3, 764, 67 826, 05
Correction for feed, water, excreta, and vessels.											-19.09
Total heat .		2.		-		-					4, 571-63
Subperiod 3											
6 p m to 5.02 a m 5.02 a m, to 5.46 a m, 5.46 a, m, to 5 a, m,	-15, 1 50, 0 49, 0	E 2, 8460) 2, 1360) 2, 1633) 4. 2419 4. 1482 3 3. 5967	1. 3929 1. 4591 1. 4334	i 0213 . 0248 I . 0266	1.4142 1.4839 1.4600	13, 320, 00 232, 00 68, 00	$\frac{1,0065}{1,0066}\\\frac{1,0066}{1,0070}$	$ \begin{array}{c} 10.75 \\ 11.75 \\ 11.25 \end{array} $	11 43 . 85 24	4, 714, 23 345, 69 99, 73
		-	-	-		-					5, 159, 65

TABLE XI .- Heat measurements-Continued.

APPENDIX.

	rate of	Ave	rage te	mperat current	ure of w t.	ater		eeifie ater.	Heat duce absor	pro- ed in rbers.	Total
Period.	Relative flow.	Ingoing.	Outcoming.	Difference.	Correct i on for pres- sure.	Corrected difference.	Total water.	Average sp heat of w	Differen e e of pressure.	Equivalent heat.	heat, calories at 20°.
PERIOD Ib-Cont'd.											
Subperiod 3Cont'd.											
Latent heat of water		° C.	• C.	° C.	° C.	• C.	Liters.		Cm.	Cal.	015 00
Correction for feed, water, excreta, and vessels.											-18.09
Total heat											5, 956. 95
Subperiod 4.											
6 a. m. to 9.31 a. m 9.31 a. m. to 10.10 a. m. 10.10 a. m. to 11.38 a. m. 11.38 a. m. to 1 p. m 1 p. m. to 6 p. m.	49. 0 47. 0 43. 0 43. 0 47. 0	$\begin{array}{c} 3.\ 5877\\ 4.\ 2560\\ 3.\ 9250\\ 3.\ 2415\\ 2.\ 3776 \end{array}$	5. 0707 5. 7180 5. 8359 5. 8280 5. 2708	$\begin{array}{c} 1.\ 4830\\ 1.\ 4620\\ 1.\ 9109\\ 2.\ 5865\\ 2.\ 8932 \end{array}$	0. 0230 . 0196 . 0134 . 0134 . 0196	1. 5060 1. 4816 1. 9243 2. 5999 2. 9128	932.00 168.00 300.00 200.00 718.00	$\begin{array}{c} 1.\ 0062\\ 1.\ 0056\\ 1.\ 0057\\ 1.\ 0059\\ 1.\ 0064 \end{array}$	11. 25 10. 25 7. 75 7. 75 10. 25	3.32 .55 .74 .49 2.33	1,408.57249.75579.84522.562,102.45
******											4, 863. 17
vapor.											887.11
water, excreta, and											- 10 32
Total heat											5, 739, 96
Period IIb.											
Subperiod 1.											
$\begin{array}{c} 6 {\rm p. m. t} {\rm o} 6.35 {\rm p. m} \dots \\ 6.35 {\rm p. m. t} {\rm o} 6.55 {\rm p. m} \dots \\ 6.55 {\rm p. m. t} {\rm o} 6.55 {\rm p. m} \dots \\ 7.17 {\rm p. m. t} {\rm o} 1.10 {\rm p. m} \dots \\ 1.15 {\rm p. m. t} {\rm o} 1.51 {\rm a} \dots \\ 1.56 {\rm a} \dots {\rm t} {\rm o} 1.56 {\rm a} \dots \\ 1.56 {\rm a} \dots {\rm t} {\rm o} 3.29 {\rm a} \dots \\ 3.49 {\rm a} \dots {\rm t} {\rm o} 3.29 {\rm a} \dots \\ 4.39 {\rm a} \dots {\rm t} {\rm o} 4.39 {\rm a} \dots \\ 4.39 {\rm a} \dots {\rm t} {\rm o} 5.57 {\rm a} \dots \\ 5.57 {\rm a} \dots {\rm t} {\rm o} 5.57 {\rm a} \dots \\ 5.57 {\rm a} \dots {\rm t} {\rm o} 6 {\rm a} \dots \\ \end{array}$	32.0 33.0 34.0 35.0 36.0 33.0 34.0 32.0 30.0 33.0 33.0 32.0 33.0 37.0	2.5389 2.4440 2.3800 2.4491 2.2898 2.2650 2.1744 2.2875 2.2138 2.3300 2.5114 2.1800 2.0500 1.9850	$\begin{array}{c} 5,3778\\ 4,9800\\ 4,4033\\ 4,1261\\ 4,0600\\ 3,9557\\ 4,1850\\ 3,8938\\ 4,4766\\ 5,5164\\ 4,8500\\ 4,1300\\ 3,8450\end{array}$	2. 8389 2. 5360 2. 2400 1. 9542 1. 8363 1. 7950 1. 7813 1. 8975 1. 6800 2. 1466 3. 0050 2. 6700 2. 6700 1. 8600	+0.0020 .0024 .0032 .0040 .0050 .0024 .0050 .0024 .0020 .0010 .0024 .0040 .0040	$\begin{array}{c} 2.8409\\ 2.5384\\ 2.2432\\ 1.9582\\ 1.8413\\ 1.7974\\ 1.7863\\ 1.8999\\ 1.6832\\ 2.1486\\ 3.0060\\ 2.6724\\ 2.0840\\ 1.8662\\ \end{array}$	$\begin{array}{c} 78.00\\ 55.00\\ 67.00\\ 800.00\\ 645.00\\ 18.00\\ 370.00\\ 50.00\\ 160.00\\ 31.00\\ 85.00\\ 16.00\\ 23.00\\ 13.00\end{array}$	$\begin{array}{c} 1.\ 0063\\ 1.\ 0064\\ 1.\ 0066\\ 1.\ 0068\\ 1.\ 0068\\ 1.\ 0068\\ 1.\ 0068\\ 1.\ 0069\\ 1.\ 0069\\ 1.\ 0066\\ 1.\ 0069\\ 1.\ 0069\\ 1.\ 0069\\ 0.\ 0069\\ \end{array}$	$\begin{array}{c} 1.00\\ 1.50\\ 2.00\\ 2.50\\ 3.00\\ 1.50\\ 2.00\\ 1.50\\ 2.00\\ 1.00\\ 50\\ 1.50\\ 2.50\\ 3.50\end{array}$	02 03 04 63 01 35 02 10 01 01 01 01 01	$\begin{array}{c} 222, 97\\ 140, 48\\ 151, 25\\ 1, 576, 27\\ 1, 195, 10\\ 32, 56\\ 665, 08\\ 95, 61\\ 271, 07\\ 67, 04\\ 257, 11\\ 43, 03\\ 48, 24\\ 24, 43\\ \end{array}$
Latent heat of water											4, 790, 24
vapor. Correction for feed, water, excreta, and vessels.											997.05
Total heat						-					5,773.06
Subperiod 2.											
$\begin{array}{l} 6 a. m. to 7.33 a. m. \dots \\ 7.33 a. m. to 1.14 p. m. \\ 1.14 p. m. to 1.29 p. m. \\ 1.29 p. m. to 1.43 p. m. \\ 1.39 p. m. to 2.06 p. m. \\ 2.06 p. m. to 3.26 p. m. \\ 3.26 p. m. to 6 p. m \dots \end{array}$	37.0 36.0 34.0 33.0 32.0 30.0 37.0	$\begin{array}{c} 1.9696 \\ 2.4865 \\ 2.7550 \\ 2.7833 \\ 2.8850 \\ 3.2140 \\ 2.7226 \end{array}$	$\begin{array}{c} 3.7492 \\ 4.1986 \\ 4.6325 \\ 4.7466 \\ 5.1383 \\ 6.4190 \\ 5.4550 \end{array}$	$\begin{array}{c} 1.\ 7796\\ 1.\ 7121\\ 1.\ 8775\\ 1.\ 9633\\ 2.\ 2533\\ 3.\ 2050\\ 1.\ 7324 \end{array}$. 0062 . 0050 . 0032 . 0024 . 0020 . 0010 . 0062	$\begin{array}{c} 1.7858\\ 1.7171\\ 1.8807\\ 1.9657\\ 2.2553\\ 3.2060\\ 1.7386\end{array}$	$\begin{array}{r} 383.00\\ 1,238.00\\ 44.00\\ 35.00\\ 46.50\\ 100.50\\ 597.50\end{array}$	$\begin{array}{c} 1.0070\\ 1.0067\\ 1.0064\\ 1.0064\\ 1.0048\\ 1.0048\\ 1.0057\\ 1.0062\end{array}$	3.50 3.00 2.00 1.50 1.00 .50 3.50	. 43 1. 18 . 03 . 02 . 01 . 02 . 66	$\begin{array}{r} 688.32\\ 2,138.83\\ 83.25\\ 69.22\\ 105.36\\ 324.02\\ 1,044.59\end{array}$
Latent heat of water				1							4, 453, 59
vapor Correction for feed, water, excreta, and						1					976.42
Total heat											5 200 77
rotal neat						L					0,000.11

TABLE XI.—Heat measurements—Continued.

	ate of	Ave	rage te:	mperat carrent	ure of w	ater		ecific ter.	Heat duce absor	pro- d in rbers.	
Period.	Relative r flow.	Ingoing.	Outcoming.	Difference.	Correction for pres- sure.	Corrected difference.	Total water.	Average s p heat of wa	Difference of pressure.	Equivalent heat.	Total heat, calories at 20°.
PERIOD 115 Cont'd.											
Subperiod 3. 6 p. m. to 7.59 p. m 7.59 p. m. to 10.38 p. m. 10.38 p. m. to 10.56 p. m. 10.56 p. m. 10.107 p. m. 11.07 p. m. 11.07 p. m. 11.07 p. m. to 11.42 p. m. 11.42 p. m. to 12.42 a. m. 12.42 a. m. 1.51 a. m. 1.51 a. m. 1.51 a. m. 1.52 a. m. 202 a. m. to 2.48 a. m.	. 37.0 . 34.0 . 37.0 . 39.0 . 41.0 . 34.0 . 32.0 . 37.0	° C 2, 5843 2, 5803 2, 4100 2, 3650 2, 3478 2, 4747 2, 4647 2, 2533	°C 4, 2926 4, 4635 4, 1220 3, 9200 3, 7645 4, 4027 4, 8665 4, 3900	°C 1.7083 1.8832 1.7120 1.5550 1.4167 1.9280 2.4018 2.1367	 C 0.0062 .0032 .0062 .0086 .0110 .0032 .0020 .0062 	°C 1.7145 1.8864 1.7182 1.5636 1.4277 1.9312 2.4038 2.1429	Liters. 472.00 454.00 74.00 55.00 189.00 184.00 158.00 23.00 2.00	$\begin{array}{c} 1.\ 0066\\ 1.\ 0065\\ 1.\ 0069\\ 1.\ 0068\\ 1.\ 0066\\ 1.\ 0066\\ 1.\ 0065\\ 1.\ 0067\\ \end{array}$	Cm. 3.50 2.06 3.50 4.75 6.30 2.00 1.00 3.50	Cal. 0.52 .29 .08 .08 .38 .12 .05 .03	814.07 861.70 127.94 86.50 271.32 357.57 382.22 49.59
2.48 a. m. to 3.16 a. m. 3.16 a. m. to 3.34 a. m. 3.34 a. m. to 5.17 a. m. 5.17 a. m. to 6 a. m	37.0 38.0 40.0 42.0	$\begin{array}{c} 3.2729\\ 3.0420\\ 2.6096\\ 2.3820 \end{array}$	$\begin{array}{c} 6.2943 \\ 5.2260 \\ 3.9588 \\ 3.7540 \end{array}$	3.0214 2.1840 1.3492 1.3720	.0062 .0074 .0098 .0122	3.0276 2.1914 1.3590 1.3842	89.00 62.00 538.00 240.00	$\begin{array}{c} 1.0658\\ 1.0062\\ 1.0067\\ 1.0068\end{array}$	3.50 4.00 5.60 7.00	. 10 . 08 . 96 . 53	270, 92 136, 63 735, 08 333, 94
Latent heat of water											4, 427, 48
Correction for feed, water, excreta, and vessels	• • • • •		• • • • • • • •			• • • • • • • •	••••••			• • • • • •	1,058.32
Total heat											5, 460, 19
Subperiod 4.	-										z
6 a. m. to 7.10 a. m 7.10 a. m. to 8.11 a. m. 8.11 a. m. to 8.59 a. m. 8.59 a. m. to 9.16 a. m. 9.16 a. m. to 10.26 a. m. 1.24 p. m. to 1.24 p. m. 1.24 p. m. to 1.26 p. m. 1.26 p. m. to 2.20 p. m. 2.20 p. m. to 2.40 p. m. 2.40 p. m. to 2.53 p. m. 2.53 p. m. to 6 p. m	42.0 40.0 38.0 32.0 37.0 35.0 31.0 37.0 39.0 41.0	$\begin{array}{c} 2.3500\\ 2.4373\\ 2.5150\\ 2.6275\\ 2.7522\\ 2.6136\\ 2.8500\\ 3.1177\\ 2.8380\\ 2.8075\\ 2.7161 \end{array}$	$\begin{array}{c} 3.\ 7078\\ 3.\ 8406\\ 4\ 0800\\ 4.\ 6525\\ 5.\ 0372\\ 4.\ 3141\\ 4.\ 3900\\ 5.\ 6615\\ 4.\ 6020\\ 4.\ 2975\\ 3.\ 9972 \end{array}$	$\begin{array}{c} 1.3578\\ 1.4033\\ 1.5650\\ 2.0250\\ 2.2850\\ 1.7005\\ 1.5400\\ 2.5438\\ 1.7640\\ 1.4900\\ 1.2811 \end{array}$. 0122 . 0098 . 0074 . 0024 . 0020 . 0062 . 0040 . 0012 . 0062 . 0086 . 0110	$\begin{array}{c} 1.3700\\ 1.4131\\ 1.5724\\ 2.0274\\ 2.2870\\ 1.7067\\ 1.5440\\ 2.5450\\ 1.7702\\ 1.4986\\ 1.2921 \end{array}$	$\begin{array}{c} 409.\ 00\\ 306.\ 00\\ 207.\ 00\\ 35.\ 00\\ 166.\ 50\\ 700.\ 50\\ 6.\ 00\\ 98.\ 00\\ 78.\ 00\\ 64.\ 00\\ 1,\ 003.\ 75 \end{array}$	$\begin{array}{c} 1.\ 0069\\ 1.\ 0068\\ 1.\ 0067\\ 1.\ 0065\\ 1.\ 0066\\ 1.\ 0065\\ 1.\ 0056\\ 1.\ 0056\\ 1.\ 0064\\ 1.\ 0065\\ 1.\ 0065\\ 1.\ 0065\\ \end{array}$	$\begin{array}{c} 7,00\\ 5,60\\ 4,00\\ 1,50\\ 1,00\\ 3,50\\ 2,50\\ .75\\ 3,50\\ 4,75\\ 6,30\end{array}$. 91 . 55 . 26 . 02 . 53 . 78 . 02 . 09 . 10 2. 00	$\begin{array}{c} 563.\ 29\\ 434.\ 80\\ 327.\ 41\\ 71.\ 40\\ 382.\ 65\\ 1,\ 202.\ 65\\ 9.\ 32\\ 250.\ 79\\ 138.\ 87\\ 96.\ 43\\ 1.\ 303.\ 50\end{array}$
Latent heat of water											4,781-11
vapor Correction for feed, water, excreta, and vessels											-1, 049, 46 42, 09
Total heat											5,788,48
PERIOD 1115.											-
Subperiod 1.											
6 p. m. to 10.27 p. m 10.27 p. m. to 10.45 p. m. to 12.21 a. m. 12.21 a. m. 12.21 a. m. 12.23 a. m. 12.38 a. m. to 12.38 a. m. 2.05 a. m. to 3.31 a. m 3.31 a. m 4.18 a. m. to 4.18 a. m	35.0 33.0 30.0 35.0 37.0 32.0 35.0 35.0	$\begin{array}{c} 2.4247\\ 2.5340\\ 2.9704\\ 2.6560\\ 2.5641\\ 2.6633\\ 2.3025\\ 2.1496\end{array}$	$\begin{array}{c} 4.8101\\ 4.8140\\ 6.4647\\ 5.2800\\ 4.7613\\ 5.2290\\ 4.7758\\ 4.3460\end{array}$	$\begin{array}{c} 2.3854\\ 2.2800\\ 3.4943\\ 2.6240\\ 2.1972\\ 2.5657\\ 2.4733\\ 2.1964 \end{array}$	+0.0040 .0024 .0010 .0040 .0052 .0020 .0040 .0050	$\begin{array}{c} 2.3894\\ 2.2824\\ 3.4953\\ 2.6280\\ 2.2034\\ 2.5677\\ 2.4773\\ 2.2014 \end{array}$	$\begin{array}{c} 762, 50\\ 43, 50\\ 135, 00\\ 46, 00\\ 284, 00\\ 177, 00\\ 139, 00\\ 315, 34 \end{array}$	$\begin{array}{c} 1.0065\\ 1.0065\\ 1.0058\\ 1.0058\\ 1.0063\\ 1.0065\\ 1.0063\\ 1.0066\\ 1.0067\end{array}$	$\begin{array}{c} 2.50 \\ 1.50 \\ .50 \\ 2.50 \\ 3.50 \\ 1.00 \\ 2.50 \\ 3.00 \end{array}$. 60 . 02 . 02 . 04 . 32 . 06 . 11 . 30	$\begin{array}{c} 1, 833, 76\\ -90, 91\\ 474, 58\\ 121, 61\\ 629, 51\\ 457, 29\\ 346, 51\\ 698, 54\end{array}$
Latent heat of water											4,661 11
Vapor Correction for feed water excreta, and											1,039 53
Total best											5 653 14
roustingt		3-m	-		-				-		

TABLE XI.—Heat measurements—Continued.

APPENDIX.

ļ	rate of	Average temperature of water current.						ecfic ater.	Heat pro- duced in absorbers.		Tetal
Period.	Relative 1 flow.	Ingoing.	Outcoming.	Difference.	Correction for pres- sure.	Corrected difference.	Total water.	Average sp heat of we	Differen c e of pressure.	Equivalent heat.	heat, calories at 20°.
PERIOD II1b—Cont'd. Subperiod 2. 5 a. m. to 10.33 a. m 10.33 a. m. to 11.34 a. m. 11.34 a. m. to 12.25 p. m. 12.25 p. m. to 12.33 p. m. 12.33 p. m. to 1.47 p. m. 1.47 p. m. to 1.54 p. m. 1.54 p. m. to 2.44 p. m. 2.44 p. m. to 6 p. m	36.0 31.0 30 0 29.0 34.0 33.0 29.0 33.0	° C. 2. 4933 3. 0787 3. 1423 3. 2250 2. 7544 2. 7450 3. 1108 2. 7171	° C. 4.5211 5.7440 6.2508 6.7150 5.1600 4.9400 6.8450 5.4371	°C. 2.0278 2.6653 3.1085 3.4900 2.4056 2.1950 3.7342 2.7200	° C. 0,0050 .0012 .0010 .0008 .0032 .0024 .0008 .0024	°C. 2.0328 2.6665 3.1095 3.4908 2.4088 2.1974 3.7350 2.7224	<i>Liters.</i> 839.00 106.00 76.00 8.50 190.50 16.00 57.50 458.50	$\begin{array}{c} 1.\ 0066\\ 1.\ 0060\\ 1.\ 0058\\ 1.\ 0057\\ 1.\ 0063\\ 1.\ 0063\\ 1.\ 0057\\ 1.\ 0062 \end{array}$	$\begin{array}{c} Cm.\\ 3.00\\ .75\\ .50\\ .40\\ 2.00\\ 1.50\\ .40\\ 1.50\end{array}$	Cal. 0.80 .03 .01 .12 .22	$\begin{array}{c} 1,715.98\\ 284.32\\ 237.68\\ 29.84\\ 461.65\\ 35.38\\ 215.99\\ 1,255.74 \end{array}$
Latent heat of water vapor Correction for feed, water, excreta, and vessels											4,236.58 960.73 82.25
Total heat											5,115.06
Subperiod 3. 5 p. m. to 8.07 p. m	33.0 29.0 33.0 35.0 37.0 32.0 35.0 37.0 32.0 30.0 28.0 35.0	2.7809 3.2067 2.8800 2.7743 2.8249 3.2100 3.0925 2.8613 2.6382 2.4400 2.7725 2.0300	$\begin{array}{c} 5.5312\\ 7.3129\\ 6.1000\\ 5.3029\\ 4.9000\\ 5.9000\\ 5.4850\\ 5.4850\\ 5.0451\\ 5.3873\\ 5.9600\\ 7.7125\\ 5.2225\end{array}$	2.7503 4.1062 3.2200 2.5286 2.0751 2.6900 2.3925 2.1838 2.7491 3.5200 4.9400 3.1925	. 0024 . 0008 . 0024 . 0040 . 0062 . 0020 . 0040 . 0062 . 0020 . 0010 . 0006 . 0040	$\begin{array}{c} 2.\ 7527\\ 4.\ 1070\\ 3.\ 2224\\ 2.\ 5326\\ 2.\ 0813\\ 2.\ 6920\\ 2.\ 3965\\ 2.\ 1900\\ 2.\ 7510\\ 3.\ 5210\\ 4.\ 9406\\ 3.\ 1965\\ \end{array}$	$\begin{array}{c} 293.00\\ 95.50\\ 11.50\\ 73.50\\ 663.00\\ 178.50\\ 47.50\\ 90.00\\ 169.50\\ 7.00\\ 23.00\\ 43.25\end{array}$	1. 0062 1. 0055 1. 0060 1. 0062 1. 0063 1. 0059 1. 0063 1. 0063 1. 0062 1. 0056 1. 0065	$\begin{array}{c} 1.50\\ .40\\ 1.50\\ 2.50\\ 3.50\\ 1.00\\ 2.50\\ 3.50\\ 1.00\\ .50\\ .30\\ 2.50\end{array}$. 14 . 01 . 06 . 74 . 06 . 04 . 10 . 05 . 03	811, 40 394, 36 37, 28 187, 24 1, 387, 85 483, 30 114, 48 198, 24 469, 18 24, 80 114, 27 139, 12
Latent heat of water											4,361.52
vapor Correction for feed, water, excreta, and							· · · · · · · · · · · ·				1,002.44
Total heat											5 345 11
Subperiod 4.											0.040.11
6 a. ni. to 9.04 a. m 9.04 a. m. to 9.18 a. m 9.18 a. m. to 11.28 a. m 11.28 a. m. to 1.43 p. m 1.43 p. m. to 1.45 p. m 1.45 p. m. to 6 p. m	37.0 36.0 29.0 36.0 29.0 36.0 36.0	$\begin{array}{c} 1.9639\\ 2.1700\\ 3.0169\\ 2.6065\\ 2.6600\\ 2.8551 \end{array}$	$\begin{array}{r} 4.\ 1550\\ 4.\ 1975\\ 7.\ 1572\\ 4.\ 9512\\ 5.\ 0300\\ 5.\ 0764 \end{array}$	$\begin{array}{c} 2.\ 1911\\ 2.\ 0275\\ 4.\ 1403\\ 2.\ 3447\\ 2.\ 3700\\ 2.\ 2213 \end{array}$. 0062 . 0050 . 0008 . 0050 . 0008 . 0050	$\begin{array}{c} 2.\ 1973\\ 2.\ 0325\\ 4.\ 1411\\ 2.\ 3497\\ 2.\ 3708\\ 2.\ 2263\end{array}$	575.50 40.50 138.00 392.50 1.00 731.50	$\begin{array}{c} 1.0069\\ 1.0068\\ 1.0056\\ 1.0064\\ 1.0064\\ 1.0063\end{array}$	3.50 3.00 .40 3.00 .40 3.00	.64 .04 .02 .37 .70	1,272.63 82.83 574.65 927.79 2.38 1,638.09
Latent heat of water vapor											4, 498, 37 1, 096, 07
water, excreta, and vessels.										* *	- 32.73
Total heat											5,561.71

TABLE XI.—Heat measurements—Continued.

0

, ,

. .

.

.

.

•

.

.

.

. .

.

.

