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The Kolmogorov—Arnold stochasticity parameter technique is
applied for the first time to the study of cancer genome
sequencing, to reveal mutations. Using data generated by
next-generation sequencing technologies, we have analysed
the exome sequences of brain tumour patients with matched
tumour and normal blood. We show that mutations contained
in sequencing data can be revealed using this technique, thus
providing a new methodology for determining subsequences
of given length containing mutations, i.e. its value differs
from those of subsequences without mutations. A potential
application for this technique involves simplifying the
procedure of finding segments with mutations, speeding
up genomic research and accelerating its implementation in
clinical diagnostics. Moreover, the prediction of a mutation
associated with a family of frequent mutations in numerous
types of cancers based purely on the value of the Kolmogorov
function indicates that this applied marker may recognize
genomic sequences that are in extremely low abundance and
can be used in revealing new types of mutations.

1. Introduction

To study mutations in the genomic sequences of cancerous
tissues, we use the statistic introduced initially by Kolmogorov
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[1] and later developed by Arnold [2,3] in defining a degree of randomness (stochasticity) for a given
sequence of real numbers. The universality of the method has been revealed in measuring the degree of
randomness of finite sequences in theory of dynamical systems and in number theory [2]. This approach
has been applied to physical problems, i.e. in the study of non-Gaussianities in cosmic microwave
background radiation [4-6] and of X-ray galaxy clusters [7]. This method was instrumental in detecting
the thermal trust effect (Yarkovsky—Rubincam effect) for the first time in the properties of satellites
probing General Relativity [8].

2. Method

Let us briefly introduce the technique and the descriptors which were then applied to the genomic data.
For {X1,X5,...,X,} n independent real-valued variables ordered in increasing manner X; <Xp <--- <
X, the cumulative distribution function (CDF) is defined as F(x) = P{X < x} [1-3].

The empirical distribution function F(x) will be

0, x<Xj;
k

F”(x)z EI Xk §x<Xk+1/ k:1,2,...,1’l—1; (2'1)
1, X,<ux

Then the stochasticity parameter is defined as
An = v/nsup |Fu(x) — F(x)|. (22)
X

Kolmogorov’s theorem [1] states that for any continuous CDF F the following limit is converged
uniformly:

lim P(hy =2} = (), 2.3)
where the ®(0) =0,
+0o0 2
o)=Y (e, a0, (2.4)
k=—00

and the distribution (Kolmogorov’s) @ is independent of F. For small values of A the following
approximation yields:

D) ~ %’T e /BN, (2.5)

This method thus provides the measure of the degree of randomness (stochasticity) for sequences of
n values within the interval of 1, [0.3, 2.4] ([2,3], see also [9]).

3. Data

The following data have been used for the analysis. Gliomas are the most frequent malignant tumours
of the central nervous system and are defined by WHO grade I to grade IV classification standards
and histopathological features [10,11]. Application of novel techniques to elucidate the fundamental
genetic mutations in grade II-III astroctyomas and grade IV glioblastomas is a critical next step in glioma
research. Here, we interrogated exome data of 30 brain tumour patients from the Preston Robert Tisch
Brain Tumor Center at Duke University as described previously [12]. The exomes of 30 patients were
selected as they provided a large enough dataset to conduct our initial analysis. Each case contained
four datasets corresponding to aligned paired end sequencing data files (both a forward and reverse file
for each patient’s tumour and normal blood). Included in this study were 15 grade III astrocytomas
and 15 grade IV glioblastomas. Samples on average yielded 36 and 32 somatic mutations for grade
III astrocytoma and grade IV glioblastoma, respectively. Of particular interest to the general cancer
community is the prevalence of highly recurrent mutations across all types of cancer. To this end, a list of
highly recurrent mutations occurring in 23 genes commonly seen in cancer was used to interrogate the
dataset (table 1). The selected genes are from a list of genes frequently mutated in cancer provided by
Personal Genome Diagnostics (Baltimore, MD, USA). Next, we surveyed the exome data to identify any
occurrence of these 407 highly recurrent mutations located within these 23 commonly mutated genes [13].
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Table 1. Twenty-three genes commonly mutated in cancer.

gene symbol gene description transcript accession
ABL1 c-abl oncogene 1; non-receptor tyrosine kinase X16416

4. Analysis

The data for 30 patients have been analysed in the following manner. First, for each dataset the
cumulative distribution function was obtained for three combinations of nucleotides (guanine, adenine,
thymine and cytosine (G,A,T,C), i.e. of codons. For comparison, in one- and two-based analyses of the
same data, no CDF was possible to define due to large scatter in the frequency counts; however, it
was possible for the three-base empirical distribution for each particular genomic sequence, followed
by obtaining of the stochasticity parameter and then Kolmogorov’s function @. The fact that @ was
possible to define only for three-base CDF can be considered as a genuine feature linked to the nature of
the genetic coding (first noted by cosmologist George Gamow in the 1950s) determined by the chemical
properties of the molecules forming the nucleotides.

The above-described exome data were represented in a format of over 50 million rows, of 100-base
each, i.e. in total about 10°-valued sequences. We analysed such datasets for 30 patients; a block of four
datasets, representing paired-end sequencing, was available for each patient, including those for blood
and tumour, denoted as normal and with tumour, respectively. The following aim was inquired into:
whether the Kolmogorov—Arnold (K-A) technique is able to distinguish the strings, i.e. sequence pieces
of given length, with and without mutations, for a given sample of mutations. Figure 1 represents the
results for computations for 100-base rows containing such mutations in all 119 blocks (dark column on
the right; one file was corrupted), and the mean of the function @ for 50 rows without mutations (light-
coloured column on the left) in the same sequence where the former mutations have been located. The
same procedure has been repeated for shorter, i.e. for 50 and 25-base strings with and without mutations
(the right two double-columns, respectively). The shorter, 50-base strings were generated in the following
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Figure 1. The function @ averaged for rows with mutations (dark bars) and normal ones (light bars) averaged over 50 rows, for 100, 50
and 25-base rows (here denoted as word), correspondingly. Error bars correspond to standard errors.
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Figure 2. The same as in figure 1, but with the averaged values of the function @ for 100-base rows for the highest recurrent specific
mutations in the studied dataset as listed in table 2.

Table 2. The codes (MC) and frequency counts for seven highest recurrent mutations in the studied database.
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Table 3. The codes for candidates for mutations in a genome sequence with high @ at given row numbers.

lineN
1186009

4073568

manner: if the mutation is located completely either in the first or the second half of the 100-base string,
then the corresponding halves were included in the analysis. In the case of partial location, the proper
number of bases was included from either side, that is the mutations are included completely even at part
passage to the next row. The case for 25-base strings was similar, while for no-mutation strings (rows)
their initial 50 or 25-base parts were included in the analysis. For no-mutation rows their alignment,
i.e. their position in the sequence, was not important. The error bars correspond to standard errors. The
analysis was performed by means of a software created in Pascal in environment Delphi and intended to
be made public in due course. The CPU time for one sequence (about 10° nucleotides) is about 1h for an
i7, 2600 3.4 GHz processor of 6 GB memory.

Then, rows containing the most frequent specific mutations in the same dataset of 30 patients (table 2)
were analysed. Obviously, more frequent mutations provide higher statistics, and table 2 and figure 2 are
represented to show the scales of the input frequency numbers versus the results. The mutations, i.e. the
genes, the mutant positions and amino acid changes, are known for the codes listed in table 2, and from
the individual mutation reports of the performed studies [12] one can list all mutations contained within
each tumour; we intend to address these issues in further publications on the applications of the method
discussed here. The results for the mean & with standard error bars are presented in figure 2. One can
see that certain specific mutations can be distinguished by the value of mean @.

5. One step further: possibility for discovering new mutations

Up to now we were estimating the Kolmogorov function @ for genomic sequence pieces (rows) with
known mutations and without (those) mutations. We reveal the differences in the mean values of @
for rows with and without those mutations. If so, then one can pose the inverse problem, namely, one
can try to detect unknown mutations based on the value of @, if estimated blindly in a given genome
sequence. In table 3, we show the results for a sample from the above studied database from genome
with tumour (081T1): 11 rows (of over 50 million) with & > 0.7 (only the rows with the number of
unidentified nucleotides n < 3 have been taken into account) have been revealed with the codes given in
table 3 as candidates for mutations. Obviously, certain parts of these cases can be just noise, i.e. without
any association with real mutations; however, if at least part of this list when studied by conventional
methods can be confirmed as associated with mutations, then one will have an explicit tool for detection
of unknown mutations by means of this relatively simple (i.e. consuming little time and manpower)
method. Certainly, the exhaustive answer to this question will need comprehensive parallel studies
with different analysis methods. However, for now, for illustration, for the given sample of detected
candidates for mutations, we performed the following. We sampled five reads from the aforementioned
list of 11 rows in table 3 and aligned them to the human genome for further investigation. While none of
these five reads matched to previously reported mutations in the COSMIC database, one of the reads
aligned to a region of interest to oncogenomic laboratories. This read aligned to the transcriptional
regulator ARID1A, an SWI/SNF family member that is frequently mutated in numerous types of cancers,
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including gastric, ovarian and pancreatic cancers [14-17]. Probability for a chance coincidence is less n
than 10~ (assuming for simplicity an equipartition in the frequency counts, cf. table 2), thus proving the
efficiency of the method for blind application to datasets using the previously calibrated @.

Another potential application for this technique involves detection of rare variants of sequencing
data, where the parameter @ may recognize genomic sequences that are in extremely low abundance
and warrant further investigation by the researchers.

6. Conclusion

The following basic conclusions can be drawn from the above analysis:

(i) the stability of the descriptor, that is small standard errors and hence high and stable confidence
levels of the values of @ for paired-end sequence rows both for normal, i.e. without mutations,
and those with mutations;

(ii) the difference in values of @ for rows with and without mutations;
(iii) the considered variations of string lengths still reflect the tendency; and
(iv) rows with certain mutations can be distinguished by means of the used marker.
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The presented results demonstrate for the greater cancer research community the power of the K-
A technique for identification of mutations in paired-end genome sequencing data. In addition to the
significance of revealing the important nature of the difference in the degree of the randomness between
the genome sequence with and without mutations, the method also has an important application
potential. It may be applied to non-aligned sequencing segments, which may significantly simplify
the procedure of finding segments with mutations and could speed up genomic research and its
implementation in clinical diagnostics (cf. [18-20]).

Finally, the consideration of the inverse problem, namely, the revealing of a mutation associated with
a tumour based purely on the computation of the value of the marker when blinded to the data, indicates
that the latter may be used for detection of rare or new types of mutations.

Data accessibility. The data files are located at http://www.impactjournals.com/oncotarget/index.php?journal=onco
target&page=article&op=view&path[]=1505 and one can also get the data from http://www.ncbinlm.nih.gov/
pubmed/24140581.
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