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Due to a wide range of applications, sand casting occupies an
important position in modern casting practice. The main
purpose of this study was to optimize the performance
parameters of sand casting based on grey relational analysis
and predict the missing data using back propagation (BP)
neural network. First, the influence of human factors was
eliminated by adopting the objective entropy weight method,
which also saved manpower. The larger variation degree
in the evaluation indicators, indicating that the evaluated
projects had good discrimination in this regard, the larger
weight should be given to these evaluation indicators.
Second, the performance parameters of sand casting were
optimized based on grey relational analysis, providing a
reference for sand milling. The larger the grey relational
degree, the closer the evaluated project was to the ideal
project. Third, this paper provided a new method for
determining the number of hidden neurons in a network
according to the mean square error of training samples, and
venting quality was predicted based on BP neural network.
The relevant theory was deduced before predicting missing
data, such that there will be a general understanding regarding
the prediction principle of BP neural network. Fourth, to
demonstrate the validity of BP neural network adopted in the
process of missing data prediction, grey system theory was
applied to compare the result of missing data prediction.
1. Introduction
The industries and national economy in China have rapidly
developed [1,2]. The foundry industry is the basis of modern
equipment manufacturing, which occupies a very important
position in the national economy [3,4]. However, during its
service in social development, the foundry industry has also
caused some negative effects, such as environment pollution [5–7]
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and casualties [8], which have a certain relationship with the foundry materials, and countermeasures

should be adopted to eliminate the serious results [9,10]. In the foundry industry, the proportion of sand
casting has increased nearly 90% [11], and it is of great significance to select appropriate performance
parameters of sand casting for the safe foundry production.

For optimizing design in sand casting, the main research works focus on optimization of riser design
[12,13] and process parameters [14]. When optimizing the sand casting performance parameters, usually
one parameter in batch A reaches the ideal value, and another parameter in batch B reaches the ideal
value, but not all the parameters in one batch can reach the ideal values at the same time. Therefore,
it is of great significance to optimize the performance parameters in a single batch. The common
optimization method of sand casting performance parameters is Taguchi’s method [14], but this
method has some disadvantages. First, the test number of orthogonal array in Taguchi’s method is
too much, which requires much experimentation and increases costs, and this is counter to its purpose
of reducing costs. Second, the purpose of Taguchi’s method is to reduce the effects of mutagenic
factors rather than removing the mutagenic factors to improve quality. Third, despite the large
amount of data, we are still unable to obtain any information about the interaction between
controllable variable factors. Fourth, if there is no interaction between the controllable factors and
interference factors, then a sound design does not exist. Therefore, it is necessary to find a simple
method for optimizing sand casting performance parameters. A novel optimization method of
performance parameters based on grey relational analysis was introduced here.

Grey relational analysis is a very active branch in grey system theory. Its basic idea is to determine the
grey relational degree (GRD) between different sequences according to the geometrical shape of the
sequence curves [15]. The larger the grey relational degree, the closer the project evaluated was to
the ideal project. Accordingly, the order of the projects evaluated can be confirmed. Grey relational
analysis does not require too many samples, nor do the samples have a typical distribution law, and
the workload of calculation is relatively small. The grey relational analysis results are in good
agreement with the qualitative analysis results. Grey relational analysis has been applied to many
fields, such as decision-making [16], green supplier selection [17] and quality evaluation of red wine
[18]. Wei [16] has investigated the dynamic hybrid multiple attribute decision-making problems based
on grey relational analysis. In this study, grey relational analysis was used for optimization of sand
casting performance parameters. During the process of grey relational analysis, assessment indicator
weights should first be calculated.

Determination methods of indicator weights can be divided into subjective, objective and integrated
weight methods. Subjective weight methods include the analytic hierarchy process [19] and Delphi
method [20], which are mainly determined by experts’ subjective cognition rather than objective data.
Objective weight methods include principal components analysis [21], entropy weight method [22]
and variation coefficient method [23], which are mainly confirmed by objective data. The integrated
weight method [24–26] combines subjective and objective weight methods, reflecting experts’ subjective
cognition and objective data at the same time. The subjective and integrated weight methods need
scoring by experts, which takes a lot of manpower and increases the workload. Therefore, the objective
entropy weight method [22] was adopted in this study to calculate indicator weights.

The frequently used prediction techniques include back propagation (BP) neural network [27–29], grey
system theory [30], principal component analysis [31], support vector machine [32] and Monte Carlo
methods [33]. Among these prediction methods, BP neural network is a kind of nonlinear mathematical
model that simulates nonlinear process of any degree. The biggest advantage of this model is that it can
be trained and tested repeatedly, and finally it can approach any complicated nonlinear function. For
example, Guo et al. [29] have proposed a hybrid wind speed-forecasting method based on BP neural
network.

Once the optimization performance parameters were achieved, sand casting should refer to that batch
to ensure safe casting and improve casting quality. But if some batches have data missing, they should be
deleted and cannot be used for optimizing performance parameters, which will have a bad influence on
optimizing performance parameters. What is more, the optimization performance parameters are less
likely to be achieved due to shortage of enough valid data. Remeasurement of the missing data needs
a lot of money, manpower and time, which would lead to a waste of resources. In addition, it is often
difficult to find sand samples from the original casting batch due to the continuous production.
Therefore, it was important and necessary here to predict the missing data based on the existing data.
In the sand casting process, a portion of the recorded parameters data might be lost due to improper
care, such as the tally book lost, or the storage data computer breakdown. Here, BP neural network
[29] was introduced to predict missing data of sand casting. As the few papers published refer to the
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basic principle of BP neural network, correlative theory of BP neural network was deduced to let readers

have a better understanding of this model.
The main purpose of this paper was to optimize the sand casting performance parameters based on

grey relational analysis; also, the missing data of sand casting can be predicted using BP neural network.
To eliminate the influence of human factors, the objective entropy weight method was adopted in
determining the weights of evaluation indicators. Before predicting missing data of sand casting, the
relevant theory was deduced, and a new method was proposed for determining the number of
hidden neurons in a network according to the mean square error of training samples.
 .org/journal/rsos

R.Soc.open
sci.6:181860
2. Methods
This section mainly introduces basic principles of the composite model, including grey relational
analysis, entropy weight method and BP neural network.

2.1. Grey relational analysis
Grey relational analysis is an important part of grey system theory [15]. The specific evaluation process of
grey relational analysis is described as follows.

Let the original data matrix of the evaluation project be

Y ¼
y11 y12 . . . y1n
. . . . . . yij . . .
ym1 ym2 . . . ymn

2
4

3
5,

where m is the number of evaluation projects and n the number of evaluation indicators; yij (1 ≤ i ≤m,
1 ≤ j ≤ n) is the value of the jth evaluation indicator of the ith evaluation project.

Matrix Y* = [y1 y2… yn] is the ideal project, where yj is the ideal value of the jth evaluation indicator.
For positive indicators, the ideal value is the maximum; for negative indicators, it is the minimum; for
moderate indicators, it is determined according to a particular case.

Because of different physical significance for each evaluation indicator, the evaluation indicators
usually have different dimensions and order of magnitudes. Evaluation indicators should be
dimensionless for comparison, reducing the interference of dimensions. The mean method was
applied to non-dimensionalize the evaluation indicators, as shown in the following equation [16]:

zij ¼
yijPm

i¼1 yij=m
j ¼ 1, 2, . . . , n, ð2:1Þ

where zij is the dimensionless value of the jth evaluation indicator of the ith evaluation project.
After dimensionless, the original data matrix of evaluation indicators was transferred as follows:

Z ¼
z11 z12 . . . z1n
. . . . . . zij . . .
zm1 zm2 zmn

2
4

3
5,

and the ideal project Z* = [z1* z2*… zn*], zn* is the ideal dimensionless value of the jth evaluation
indicator.

With dimensionless evaluation indicators, let the ideal project Z* be the reference sequence and the
evaluation project Z be the sequence to be compared, in which case the grey relational coefficient of the
jth evaluation indicator of the ith evaluation project can be achieved according to the following equation [18]:

jij ¼

min
1�i�m
1�j�n

jz�j � zijj þ 0:5� max
1�i�m
1�j�n

jz�j � zijj

jz�j � zijj þ 0:5� max
1�i�m
1�j�n

jz�j � zijj , ð2:2Þ

where ξij is the grey relational coefficient of the jth evaluation indicator of the ith evaluation project.
Let the evaluation indicator weights of projects evaluated be W = [w1 w2…wn], in which case the

GRD of projects evaluated can be obtained according to the following equation [17]:

ri ¼
Xn
j¼1

jij � wj i ¼ 1, 2, . . . ,m, ð2:3Þ

where ri is the GRD of the ith project evaluated.



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181860
4
The larger the ri, the closer the ith project evaluated was to the ideal project Z*. Accordingly, the order

of the projects evaluated can be confirmed.

2.2. Entropy weight method
The procedures of the objective entropy weight method are presented below [22].

From the original data matrix Y, the data proportion was calculated based on the following equation:

pij ¼
yijPm
i¼1 yij

j ¼ 1, 2, . . . , n, ð2:4Þ

where pij is the data proportion of the jth evaluation indicator of the ith evaluation project.
The entropy of evaluation indicators was achieved according to the following equation:

ej ¼ �
Pm

i¼1 pij � ln pij
lnm

, ð2:5Þ

where ej is entropy of the jth evaluation indicator.
The entropy weight of evaluation indicators was calculated based on the following equation:

wj ¼
1� ej

n�Pn
j¼1 ej

, ð2:6Þ

where wj is the entropy weight of the jth evaluation indicator.
According to the calculating process, the smaller the entropy ej, the larger the variation in evaluation

indicators, the more information it provided, and the larger weight it should be given.

2.3. BP neural network
In 1986, Parallel Distributed Procession, headed by Rumelhart and McClelland, published Parallel
distributed processing: exploration in the microstructures of cognition [34]. They applied BP network to
neural networks and started a new era of BP neural network research. Subsequently, BP neural
networks have been widely studied and rapidly developed [35,36], and the relevant theory has been
gradually improved. BP neural network consists of two parts, the forward propagation of information
and back propagation (BP) of error.

During forward propagation, the information incoming from the input layer, after transition in the
hidden layer, transfers to the output layer. When the actual and expected output values do not match,
it will turn into error BP. The output error correction alters the weight and threshold value of each
layer in a certain way, and back propagates to the hidden and input layers. The autonomic learning
process of BP neural network involves the input, hidden and output layers constantly adjusting the
weight and threshold values, which is also the process of forward information propagation and error
BP. When the output error is less than the default, or the number of epochs reaches the preset value,
the learning process is over.

BP neural network usually has three layers, the input, hidden and output layers (figure 1).
Let xj be the input value of an input layer neuron, j = 1, 2,… , m and ok the output value of the kth

output layer neuron (figure 1).
In BP neural network, each layer contains several neurons. The input and output layers have one layer

each and the hidden layer is set according to the structural features of the network as one or more layers;
there might also not be a hidden layer.

2.3.1. Forward propagation of information

The input neti and output oi of the ith neuron of hidden layer are shown in the following equations:

neti ¼
Xm

j¼1
wijxj þ ui ð2:7Þ

and

oi ¼ f (neti), ð2:8Þ
where neti is the input of the ith neuron of hidden layer; wij is the weight from the ith hidden layer neuron
to the jth input layer neuron; θi is the threshold value of the ith hidden layer neuron; oi is the output of the
ith neuron of hidden layer; ϕ is the active function of the hidden layer.
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Figure 1. Structural chart of BP neural network.
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The input netk and output ok of the kth neuron of output layer are shown in the following equations:

netk ¼
Xq
i¼1

wkioi þ ak ð2:9Þ

and

ok ¼ c (netk), ð2:10Þ
where netk is the input of the kth neuron of hidden layer; wki is the weight from the kth output layer
neuron to the ith hidden layer neuron, i = 1, 2,… , q; ak is the threshold value of the kth output layer
neuron, k = 1, 2,… , l; ok is the output of the kth neuron of hidden layer; ψ is the active function of the
output layer.
2.3.2. Back propagation of error

During error BP, the output layer calculates the neuron output error of each layer, then adjusts the weight
and threshold values of each layer according to the gradient descent method, finally letting the revised
output values meet requirements.

The quadric-form error of each sample is shown in the following equation:

Es ¼ 1
2

Xl

k¼1

(Tk � ok)
2, ð2:11Þ

where s indicates the sample; Tk is the expected output value of the sample at the kth neuron; Es is the
quadric-form error of sample s.

The total error of the system is shown in the following equation:

E ¼ 1
2

Xp
s¼1

Xl

k¼1

(Ts
k
� os

k
)2, ð2:12Þ

where p is the number of the samples; E is the total error of the system.
The weight adjustment function of the output layer is shown in the following equation:

Dwki ¼ �h
@E
@wki

¼ �h
@E
@ok

@ok
@netk

@netk
@wki

, ð2:13Þ

where η is the learning rate; Δwki is the weight adjustment function of the output layer.
The threshold value adjustment function of the output layer is shown in the following equation:

Dak ¼ �h
@E
@ak

¼ �h
@E
@ok

@ok
@netk

@netk
@ak

, ð2:14Þ

where Δαk is the threshold value adjustment function of the output layer.
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The weight adjustment function of the hidden layer is shown in the following equation:

Dwij ¼ �h
@E
@wij

¼ �h
@E
@oi

@oi
@neti

@neti
@wij

, ð2:15Þ

where Δwij is the weight adjustment function of the hidden layer.
The threshold value adjustment function of the hidden layer is shown in the following equation:

Dui ¼ �h
@E
@ui

¼ �h
@E
@oi

@oi
@neti

@neti
@ui

, ð2:16Þ

where Δθi is the threshold value adjustment function of the hidden layer.
In equation (2.12), the total error derivation of ok is shown in the following equation:

@E
@ok

¼ �
Xp
s¼1

Xl

k¼1

(Ts
k
� os

k
), ð2:17Þ

where @E=@ok is the total error derivation of ok in equation (2.12).
In equation (2.9), derivation of wki and ak is respectively shown in the following equations:

@netk
@wki

¼ oi ð2:18Þ

and

@netk
@ak

¼ 1, ð2:19Þ

where @netk=@wki is the derivative of equation (2.9) on wki; @netk=@ak is the derivative of equation (2.9)
on ak.

In equation (2.7), derivation of wij and θi is respectively shown in equations (2.20) and (2.21).

@neti
@wij

¼ xj ð2:20Þ

and

@neti
@ui

¼ 1, ð2:21Þ

where @neti=@wij is the derivative of equation (2.7) on wij; @neti=@ui is the derivative of equation (2.7)
on θi.

In equation (2.8), derivative of neti is shown in the following equation:

@oi
@neti

¼ f0(neti), ð2:22Þ

where @oi=@neti is the derivative of equation (2.8) on neti.
In equation (2.10), derivative of netk is shown in the following equation:

@ok
@netk

¼ c0(netk), ð2:23Þ

where @ok=@netk is the derivative of equation (2.10) on netk.
From equations (2.15) and (2.16), to achieve the weight and threshold value adjustment function, the

function @E=@oi should be first obtained. From the above analysis, there was no direct contact between
the system total error E and neuron output oi of the hidden layer. Therefore, it was needed to first turn
@E=@oi into equation (2.24).

@E
@oi

¼ @E
@ok

@ok
@netk

@netk
@oi

, ð2:24Þ

where @E=@oi is the derivative of system total error E on neuron output oi.
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Equations (2.17) and (2.23) were input into equation (2.24), and the equation for @E=@oi was obtained,

as shown in the following equation:

@E
@oi

¼ �
Xp
s¼1

Xl

k¼1

(Ts
k
� os

k
) � c0(netk) � wki: ð2:25Þ

Equations (2.17), (2.23) and (2.18) were input into equation (2.13), and the weight adjustment function of
the output layer was obtained, as shown in the following equation:

Dwki ¼ h
Xp
s¼1

Xl

k¼1

(Ts
k
� os

k
) � c0(netk) � oi: ð2:26Þ

Equations (2.17), (2.23) and (2.19) were input into equation (2.14), and the threshold value adjustment
function of the output layer was obtained, as shown in the following equation:

Dak ¼ h
Xp
s¼1

Xl

k¼1

(Ts
k
� os

k
) � c0(netk): ð2:27Þ

Equations (2.25), (2.22) and (2.20) were input into equation (2.15), and the weight adjustment function of
the hidden layer was obtained, as shown in the following equation:

Dwij ¼ h
Xp
s¼1

Xl

k¼1

(Ts
k
� os

k
) � c0(netk) � wki � f0(neti) � xj: ð2:28Þ

Equations (2.25), (2.22) and (2.21) were input into equation (2.16), and the threshold value adjustment
function of the hidden layer was obtained, as shown in the following equation:

Dui ¼ h
Xp
s¼1

Xl

k¼1

(Ts
k
� os

k
) � c0(netk) � wki � f0(neti): ð2:29Þ

2.3.3. Related functions of the training process

The performance function uses the mean squared error, as shown in the following equation (2.30):

mse ¼ 1
n

Xn
i¼1

(yi � yi)
2, ð2:30Þ

where mse is short for mean squared error; n is the length of data predicted; yi is the actual value; yi is the
predicted value.

The active function of the hidden layer used a hyperbolic tangent sigmoid transfer function, as shown
in the following equation (2.31):

f(x) ¼ 2
1þ e�2x � 1, ð2:31Þ

where x indicates the independent variable of active function of the hidden layer.
The active function of the output layer used purelin, a transfer function, as shown in the following

equation:

c(u) ¼ u, ð2:32Þ
where u indicates the independent variable of active function of the output layer.

The training function used was trainlm, based on Levenberg–Marquardt BP.
The learning function used was learngd, based on the gradient descent method.

2.4. Procedure for model formulated
The main procedures for this composite model formulated based on grey relational analysis and BP
neural network were as follows:

(1) Determining the weight of evaluation indicators. To avoid the influence of human factors, the weight
of evaluation indicators was determined by the objective entropy weight method, which also saved a



Table 1. Sand casting performance parameters and their testing frequency.

performance parameters sampling spot testing frequency

venting quality (VQ), wet compressive strength (WCS),

moisture content (MC), compactability (Com)

discharge port of sand mill, or

conveyer of foundry sand

once every half to

two hours

under the hopper of moulding machine once every four to

five hours

content of effective braize, content of effective

bentonite, wet-heat tensile strength

under the hopper of moulding machine once a day

content of clay, content of lump, grain composition under the hopper of moulding machine once a week

sand temperature, availability of bentonite, mobility,

fracture and heat shock time

under the hopper of moulding machine in case of need
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lot of manpower. The larger variation degree in the evaluation indicators indicated that the projects
evaluated had good discrimination in this regard, and a larger weight should be given to these
evaluation indicators.

(2) Selecting the optimization performance parameters of sand casting. The GRD can be achieved after
the weight of evaluation indicators was determined. The larger the GRD, the closer the evaluated
project was to the ideal project. Accordingly, the order of the projects evaluated was confirmed.

(3) Predicting the missing data of performance parameters. Dividing the performance parameters data
into training samples and prediction samples. Using the training samples for training BP neural
network, then predicting the missing data based on the trained BP neural network. This paper
also provided a new method for determining the number of hidden neurons in a network.

3. Results
3.1. Selection of sand casting performance parameters
The foundry sand has many performance parameters, and each of them has an impact on the casting
quality. However, the influence of each performance parameter on the casting quality is not the same,
and the testing frequency is smaller for the performance parameter which is more important for
improving the casting quality. The sand casting performance parameters and their testing frequency
are shown in table 1.

As shown in table 1, the sand casting performance parameters, such as VQ, WCS, MC and Com, are
the most important factors for improving the casting quality, and the testing frequency is also the
smallest. Therefore, this study optimizes the performance parameters, such as VQ, WCS, MC and
Com, for improving casting quality.

Taking 40 batches of floor sand in the casting line, the original data of performance parameters in this
foundry sand sample were measured, including VQ, WCS, MC and Com (shown in electronic
supplementary material, table S1) [37].

Among these performance parameters, VQ is the ability that gas to penetrate polymer material under a
certain degree of pressure and time. The venting capacity of sand casting is increased not only by the riser
and gas vent, but also by the VQ of the foundry sand. The VQ of foundry sand should not be too low to
avoid the occurrence of boiling and pore defects in the casting process. But, the VQ of foundry sand
should not be too high to prevent the molten metal from infiltrating into the porosity, which will cause
rough surface or abreuvage of casting. Therefore, the VQ of the foundry sand needs to be within an
appropriate range, and should not be too high or too low. For high-density moulding, the VQ of foundry
sand should be high. For low- and medium-density moulding, the VQ of foundry sand should be low.

WCS refers to the ability of an object to resist external pressure under the saturated water condition. If
the WCS of foundry sand is insufficient, the sand mould may be damaged or collapsed during the
process of drawing and mould assembling; in the pouring process, the sand mould may not
withstand the impact of molten metal, which will cause blisters or even molten metal discharging
from the parting surface. However, the WCS of foundry sand is not the higher the better. The higher
WCS of foundry sand needs more bentonite, which not only affects the MC and VQ of foundry sand,



Table 2. Grey relational coefficient of evaluation indicators.

batch no. VQ WCS MC Com batch no. VQ WCS MC Com

1 0.5634 0.7557 0.8111 0.5721 21 0.8524 0.7364 0.7834 0.3607

2 0.8524 0.4953 0.6626 0.3607 22 0.3821 0.7557 0.945 0.9945

3 0.3358 0.7364 1 0.5721 23 0.5634 0.7364 0.945 0.499

4 0.8524 0.7557 0.9076 0.5721 24 0.4961 0.7364 0.9076 0.8091

5 0.5634 0.7557 0.7834 0.6702 25 0.7073 0.4953 0.7105 0.5638

6 0.4208 0.4953 0.945 0.7927 26 0.7073 0.7364 0.862 0.6702

7 0.5634 0.7364 0.8513 0.8091 27 0.5634 0.7557 0.7746 0.9945

8 0.7073 0.7557 0.7834 0.9945 28 0.8524 0.7364 0.945 0.6589

9 0.5634 0.4953 0.7105 0.5638 29 0.7073 0.7364 0.7179 0.5721

10 0.7073 0.7364 0.7746 0.5638 30 0.7073 0.7364 0.6562 0.4375

11 0.8524 0.4953 0.8957 0.7927 31 0.7073 0.7364 0.8957 0.5638

12 0.4961 0.7364 0.8208 0.6589 32 0.4961 0.4869 0.862 0.8091

13 0.8524 0.7557 0.9582 0.8091 33 0.7073 0.7364 0.7746 0.7927

14 0.7073 0.7557 0.8957 0.5638 34 0.7073 0.7364 0.8957 0.7927

15 0.5634 0.7557 0.7412 0.7927 35 0.8524 0.7557 0.862 0.9945

16 0.4961 0.7364 0.7834 0.7927 36 0.8524 0.7364 0.7834 0.9945

17 0.8524 0.7364 0.7492 0.9945 37 0.8524 0.7557 0.7105 0.6589

18 0.7073 0.7364 0.6151 0.8091 38 0.8524 0.4869 0.7105 0.5638

19 0.8524 0.7557 0.9582 0.7927 39 0.8524 0.7364 0.9582 0.8091

20 0.7073 0.7557 0.862 0.7927 40 0.7073 0.7364 0.9582 0.7927
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but also increases the cost of casting. In addition, the higher WCS of foundry sand brings difficulties to
the process of sand milling and shakeout.

MC is the percentage of water content to the total mass of the object. If the MC of foundry sand is low,
the VQ of foundry sand will be high, and the casting is prone to sand burning. If the MC of foundry sand
is high, a large amount of gas will be generated in the cavity due to evaporation of moisture during the
pouring process. Once the gas in the cavity cannot be discharged smoothly within a limited time, an
explosion accident may occur. Therefore, the MC of foundry sand should have a suitable range
according to the filed practice.

Com is the proportion of the volume change of the object under a certain degree of pressure. On the
one hand, the Com of foundry sand should not be too small; otherwise, the bentonite will be
insufficiently wetted, leading the foundry sand to brittleness, low surface strength and difficulty in
drawing. On the other hand, the Com of foundry sand should not be too large; otherwise, the
castings are prone to boiling and pore defects.

In electronic supplementary material, table S1, it is assumed that all the performance parameters were
within a reasonable range, meeting the normal production of sand casting. From the above analysis, it is
known that all the performance parameters, namely VQ, WCS, MC and Com, belonged to the moderate
indicator category, not too large or too small.

3.2. Optimization of performance parameters based on grey relational analysis
Sand casting performance parameters have a significant impact on casting quality, such that selection of
the appropriate performance parameters was needed. The original data matrix was non-dimensionalized
according to formula (2.1), and the ideal project can be achieved, where the optimal values of VQ, MC,
Com and WCS were the maximum, minimum, average and maximum of the non-dimensionalized data,
respectively.

The grey relational coefficient of evaluation indicators can be obtained based on formula (2.2), as
shown in table 2.



Table 3. Weights of the evaluation indicators (using original data of evaluation indicators in electronic supplementary material,
table S1).

indicators VQ WCS MC Com

ej 0.9496 0.9505 0.9501 0.9498

wj 0.252 0.2475 0.2495 0.251

Table 4. GRD of foundry sand.

batch no. GRD batch no. GRD batch no. GRD batch no. GRD

1 0.675 11 0.7598 21 0.6831 31 0.7255

2 0.5932 12 0.6774 22 0.7687 32 0.6637

3 0.66 13 0.844 23 0.6853 33 0.7527

4 0.7719 14 0.7303 24 0.7368 34 0.7829

5 0.6927 15 0.7129 25 0.6196 35 0.8665

6 0.6634 16 0.7017 26 0.7438 36 0.8421

7 0.7397 17 0.8336 27 0.7719 37 0.7445

8 0.8104 18 0.7171 28 0.7982 38 0.6541

9 0.5833 19 0.8399 29 0.6832 39 0.8392

10 0.6953 20 0.7793 30 0.634 40 0.7985
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In order to get the GRD of evaluation indicators, their weights should be known first. The weights of
the evaluation indicators, including VQ, WCS, MC and Com, were achieved by entropy weight method
based on formulae (2.4)–(2.6), as shown in table 3.

The GRD of foundry sand was achieved based on formulae (2.3) and the weights of the evaluation
indicators (table 4).

As shown in table 4, the GRD of sample batch 35 was the largest, which was the closest to the ideal
project. Thus, it was advised that the performance parameters of sand casting refer to batch 35 to ensure
safe casting and improve casting quality.
3.3. Prediction of missing data using BP neural network
In this section, the data were divided into training samples and prediction samples. The first 39 batches of
performance parameters from sand castings were training samples and the 40th batch the prediction
sample. WCS, MC and Com were the input data and VQ the output data.

Any nonlinear function can be achieved by a three-layer BP neural network according to Kolmogorov
theory. Here, the input layer contained three neurons and the output layer contained one neuron. Some
scholars have studied the number of neurons in the hidden layer [38–41], but they have not reached
consistent conclusions. The number of suitable neurons in the hidden layer was first examined, with
the relationship between the mean square error of training samples and the number of hidden
neurons, as shown in figure 2.

The mean square error of the training samples showed a downward trend as a whole when number
of hidden neurons belonged to (1,9), but when it was greater than 9, the mean square error of the training
samples basically remained unchanged (figure 2). Therefore, to simplify the calculation process and
improve calculation efficiency, the number of hidden neurons was 9 in this network.

With the number of hidden neurons at 9, retraining the samples and the relationship between mean
square error of training samples and epochs is shown in figure 3.

As the number of epochs increases, the mean square error decreases gradually, and it was the smallest
at epoch 140 (figure 3). As the training sample data were not very good, the mean square error did not
reach the goal.
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The relationship between the output and target of samples during training is shown in figure 4.
As shown in figure 4, the little circle refers to the actual fitting data, the blue line represents the

function relationship between target and output of training samples, and the imaginary line
represents the output was equal to the target. The function relationship between target and output of
training samples is shown in the following formula (3.1).

Output � 0:96� Targetþ 0:0033, ð3:1Þ
where Output indicates the output of samples during training; Target indicates the target of samples
during training.

The correlation coefficient of fitting function was R = 0.98037. The output and target of the training
samples were basically equal (figure 4). But due to poor correspondence between the training
samples, the output and target of individual samples still had great error, which was consistent with
the analysis results shown in figure 3.

Using the trained BP neural network to predict missing data, the sand sample WCS, MC and Com of
the 40th batch were the input data and VQ the output data. The predictive result of VQ was 179.9028 and
the relative error 0.054%. The prediction precision was thus good, which met engineering needs and can
be used to predict missing data of sand casting.
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As each initialization possessed a random weight and threshold value, the prediction results were
different each time. BP neural network with good training results can be saved and used for later predictions.

4. Discussion
4.1. Compared the predictive result with grey system theory
To demonstrate the validity and feasibility of BP neural network adopted in the process of missing data
prediction, this section compares the result of missing data prediction with GM(1,1) model. GM(1,1)
model is one basic and important part in the grey system theory, which refers to first-order Grey
Model in one variable [20]. The brief procedure of GM(1,1) model was as follows [20].

Let the original data sequence beX0 ¼ (xð0Þð1Þ, xð0Þð2Þ, . . . , xð0ÞðnÞ) and the accumulation data sequence
X1 ¼ (xð1Þð1Þ, xð1Þð2Þ, . . . , xð1ÞðnÞ), where x(1)(i) can be calculated based on the following formula:

xð1ÞðkÞ ¼
Xk
i¼1

xð0ÞðiÞ, k ¼ 1, 2, . . . , n, ð4:1Þ

where x(0)(i) indicates the original data; x(1)(k) indicates the accumulation data.
Suppose the matrix X(1) accords with the exponential change law, and the whitenization equation of

GM(1,1) model is as follows:

dx(1)

dt
þ ax(1) ¼ b, ð4:2Þ

where t indicates the time; a indicates the development coefficient; b indicates the grey action.
Let �xð1Þð1Þ ¼ xð1Þð1Þ be the initial conditions, solve the equation (4.2) and the predictive formula of X(1)

can be achieved, as shown in (4.3).

�xð1Þ(k þ 1) ¼ x(0)(1)� b
a

� �
e�ak þ b

a
, k ¼ 0, 1, 2, . . . , ð4:3Þ

where �xð1Þ(k þ 1) indicates the predictive value of accumulation data.
The predictive formula X(0) of the original data sequence is shown in the following formula (4.4),

calculated as x(1)(k + 1)− x(1)(k):

�xð0Þ(k þ 1) ¼ (1� ea) x(0)(1)� b
a

� �
e�ak, k ¼ 1, 2, 3, . . . , ð4:4Þ

where �xð0Þ(k þ 1) indicates the predictive value of original data.
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The development coefficient a and grey action b are based on the least squares estimate of GM(1,1)

model, as shown in the following formula:

�a ¼ (BTB)�1BTY ¼ (a, b)T , ð4:5Þ
where the matrix B and Y are as follows.

The background value Z(1) is the mean sequence of X1, as calculated by the following formula:

Z(1)(k þ 1) ¼ 1
2
[X(1)(k þ 1)þ X(1)(k)], k ¼ 1, 2, . . . , n� 1, ð4:6Þ

where Z(1)(k + 1) indicates the background value.
Suppose VQ performance parameter of the first 39 batches were the original data sequence, then the

predictive formula of VQ can be achieved based on the above procedures, as shown in the following
equation:

�xð0Þ(k þ 1) ¼ 173:2346e0:001k, k ¼ 1, 2, 3, . . . : ð4:7Þ
Therefore, the VQ predictive value of the 40th batch was 180.1235 according to formula (4.7), and the
relative error was 0.069%.

It can be seen that the predictive value of BP neural network was more precise than grey system
theory. It is mainly because that BP neural network takes advantage of more information, and BP
neural network is a kind of nonlinear mathematical model that can simulate nonlinear process of any
degree. The biggest advantage of this model is that it can be trained and tested repeatedly, and finally
it can approach any complicated nonlinear function.

4.2. Discussion of results
The present results confirmed that the composite model proposed in this paper was successfully applied
to sand casting. This was the first report in this field of the optimization of performance parameters based
on grey relational analysis and predictions of missing data based on BP neural network. The advantages
of the composite model proposed in this paper were as follows. First, optimization performance
parameters can contribute to reducing foundry defects and improving casting quality as well as
ensuring safety in sand casting. Second, prediction of missing data can avoid repetitive waste of
resources and the difficulties of retesting. Third, this paper provided a new method for determining
the number of hidden neurons in a network according to the mean square error of training samples.

Motivated by previous studies on grey relational analysis [15–17], this method was introduced into
the field of sand casting for performance parameters optimizing for the first time in this paper. The
larger the GRD, the closer the project evaluated was to the ideal project. Accordingly, the order of the
projects evaluated was confirmed. The GRD of sample batch 35 was the largest, so sample batch 35
was the optimization performance parameter of sand casting. The results showed that grey relational
analysis can be easily used for performance parameters optimization of sand casting. Different from
Taguchi’s method [14], which requires a lot of experimentation, grey relational analysis is less
demanding on the quantity and regularity of samples and can be easily calculated without any
discrepancy between calculated results and quantitative analysis results. In the process of determining
assessment indicators weights, to eliminate the influence of human factors, such as subjective [19,20]
and integrated [24–26] weight methods, the objective entropy weight method [22] was adopted, which
also significantly decreased manpower.

In determining the number of hidden neurons, there were not consistent results [38–41]. This paper
provided a new method for determining the number of hidden neurons according to the mean square
error of training samples. The results showed that mean square error of training samples was the
smallest when the number of hidden neurons was 9 and the epoch 140 when training BP neural
network, and the relative error of the prediction samples was 0.054%. BP neural network is a widely
used prediction technique, but there are a few studies that refer to the basic principle [27–29], which is
not conducive to the improvement of the algorithm. Therefore, relevant theory of BP neural network
was deduced before predicting missing data, such that there will be a general understanding of the
prediction principle. To demonstrate the validity and feasibility of BP neural network adopted in the
process of missing data prediction, grey system theory [20] was applied to compare the result of
missing data prediction. The relative error of predictive value was 0.069% based on grey system theory.
The results showed that the predictive value of BP neural network showed more precision than grey
system theory. The composite model proposed in this paper can be used for related research in this field.
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5. Conclusion

A composite optimization and prediction model of sand casting performance parameters was proposed
based on grey relational analysis and BP neural network. The main conclusions were as follows.

First, to avoid the influence of human factors, the weights of evaluation indicators were achieved
based on the objective entropy weight method and the results were 0.252, 0.2475, 0.2495 and 0.251 for
the VQ, WCS, MC and Com, respectively. The weight of performance parameter VQ was the biggest,
indicating that the sand batch had good discrimination in this regard.

Second, the GRDs of foundry sand were obtained according to grey relational analysis after the
weight of performance parameters was determined, and the results showed that sample batch 35
possessed the largest GRD. Thus, it was advised that performance parameters of sand castings refer
to batch 35 to ensure safety casting and improve casting quality.

Third, the performance parameters data were divided into training samples and prediction samples.
The mean square error of training samples was the smallest when the number of hidden neurons was 9
and the epoch 140 when training BP neural network, and the relative error of the prediction samples was
0.054% based on this trained BP neural network. The relevant theory was deduced before predicting
missing data, such that there will be a general understanding regarding the prediction principle of BP
neural network.

Fourth, to demonstrate the validity and feasibility of BP neural network adopted in the process of
missing data prediction, grey system theory was applied to compare the result of missing data
prediction. The relative error of predictive value was 0.069% based on grey system theory. The results
showed that the predictive value of BP neural network showed more precision than grey system theory.
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