
royalsocietypublishing.org/journal/rspa

Research
Cite this article:Mackay TG, Zhou C,
Lakhtakia A. 2019 Dyakonov–Voigt surface
waves. Proc. R. Soc. A 475: 20190317.
http://dx.doi.org/10.1098/rspa.2019.0317

Received: 22 May 2019
Accepted: 22 July 2019

Subject Areas:
electromagnetism, optics

Keywords:
Dyakonov surface waves, Voigt waves,
singular optics

Author for correspondence:
Tom G. Mackay
e-mail: T.Mackay@ed.ac.uk

Dyakonov–Voigt surface waves
Tom G. Mackay1,2, Chenzhang Zhou2 and

Akhlesh Lakhtakia2

1School of Mathematics and Maxwell Institute for Mathematical
Sciences, University of Edinburgh, Edinburgh EH9 3FD, UK
2NanoMM—Nanoengineered Metamaterials Group, Department of
Engineering Science and Mechanics, Pennsylvania State University,
University Park, PA 16802-6812, USA

TGM, 0000-0003-4330-1754; AL, 0000-0002-2179-2313

Electromagnetic surface waves guided by the planar
interface of an isotropic dielectric medium and a
uniaxial dielectric medium, both non-dissipative,
were considered, the optic axis of the uniaxial medium
lying in the interface plane. Whereas this interface
is known to support the propagation of Dyakonov
surface waves when certain constraints are satisfied
by the constitutive parameters of the two partnering
mediums, we identified a different set of constraints
that allow the propagation of surface waves of a new
type. The fields of the new surface waves, named
Dyakonov–Voigt (DV) surface waves, decay as the
product of a linear and an exponential function of
the distance from the interface in the anisotropic
medium, whereas the fields of the Dyakonov surface
waves decay only exponentially in the anisotropic
medium. In contrast to Dyakonov surface waves, the
wavenumber of a DV surface wave can be found
analytically. Also, unlike Dyakonov surface waves,
DV surface waves propagate only in one direction in
each quadrant of the interface plane.

1. Introduction
The planar interface of two dissimilar mediums, labelled
A and B, supports the propagation of electromagnetic
surface waves. A variety of different types of such
surface waves can be guided by planar interfaces,
depending upon the nature of the two partnering
mediums [1,2]. In this paper, the focus is on the
planar interface of two dielectric mediums, medium A
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being anisotropic and medium B being isotropic. For certain constitutive parameter regimes,
this interface supports the propagation of Dyakonov surface waves, as is well established both
theoretically [3,4] and experimentally [5]. Unlike other types of surface waves, such as the widely
studied surface–plasmon–polariton waves [2,6,7], Dyakonov surface waves propagate without
decay when both partnering mediums are non-dissipative [8,9]. Accordingly, these surface waves
represent attractive propositions for applications involving long-range optical communications.
Generally, these surface waves can propagate only for a small range of angular directions
parallel to the interface plane, typically only a few degrees [8,10], albeit much larger angular
existence domains for Dyakonov surface waves can be achieved using dissipative partnering
mediums [11,12].

A convenient formalism for analysing electromagnetic surface waves involves a 4 × 4
characteristic matrix denoted by [M] [2]. The dispersion relation for surface waves is obtained
by equating the determinant of [M] to zero. The characteristic matrix comprises four column
vectors. Two of the column 4-vectors are eigenvectors of a 4 × 4 propagation matrix [PA] for
medium A, and the remaining two are eigenvectors of a 4 × 4 propagation matrix [PB] for
medium B [13]. These eigenvectors are chosen to ensure that the fields of the surface wave decay
with distance from the planar interface. In the well-established case of Dyakonov surface-wave
propagation [2–4], both column 4-vectors provided by [PA] are linearly independent of each other
and both column 4-vectors provided by [PB] are linearly independent of each other.

In this paper, we consider surface-wave propagation when the two column 4-vectors provided
by [PA] are not linearly independent of each other. As is shown in the following sections,
the corresponding surface wave—which we call a Dyakonov–Voigt (DV) surface wave—is
fundamentally different from a Dyakonov surface wave insofar as the amplitude of a DV surface
wave decays in a combined exponential–linear manner with increasing distance from the interface
in medium A. Also, a DV surface wave propagates in only one direction in each quadrant of the
interface plane, unlike a Dyakonov surface wave that propagates for a range of directions in each
quadrant of the interface plane [8,9].

We decided to name these new surface waves after both Dyakonov and Voigt, because
the surface-wave fields in the partnering medium A are closely related to a singular form
of planewave propagation known as Voigt-wave propagation [14]. A Voigt wave propagates
in an unbounded anisotropic medium when the corresponding propagation matrix cannot
be diagonalized [15,16]. Unlike the conventional plane waves that propagate in unbounded
anisotropic mediums [17,18], the amplitude of a Voigt wave is the product of an exponential
function of the propagation distance and a linear function of the propagation distance. Early
experimental and theoretical studies on Voigt waves were based on pleochroic crystals such as
iolite [14,15,19]. More recently, the greater scope for realizing Voigt-wave propagation in more
complex mediums [20,21], including bianisotropic [22] and non-homogeneous mediums [23],
has been reported. In particular, through judicious design, engineered materials can be used to
allow control over the directions for Voigt-wave propagation [24–28]. An essential requirement
for Voigt-wave propagation is that the host anisotropic medium is either dissipative [16,19,
29] or active [30]; but in the case of DV surface-wave propagation, as described in greater
detail the following sections, the two partnering mediums are both non-dissipative and
inactive.

In the following sections, the theory of DV surface-wave propagation is developed by solving
a canonical boundary-value problem to formulate [M]. In order to provide context, a brief
description is also provided of Dyakonov surface-wave propagation [2,4]. Constraints on the
constitutive-parameter regimes that allow DV surface-wave propagation are established and
explicit analytic solutions of the dispersion relation for DV surface waves are presented. These
theoretical results are illustrated by means of representative numerical results. Some closing
remarks are offered in the final section.

As regards notation, 3 × 3 dyadics are denoted by double underlining and 3-vectors are
denoted by single underlining; 4 × 4 matrixes are denoted by double underlining and square
parenthesis and column 4-vectors are denoted by single underlining and square parenthesis. The
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triad of Cartesian basis vectors is {ûx, ûy, ûz}. The identity 3 × 3 dyadic is I = ûxûx + ûyûy + ûzûz.

The permittivity and permeability of free space are ε0 = 8.854 × 10−12 F m−1 and μ0 = 4π ×
10−7 H m−1, respectively. The free-space wavenumber is written as k0 =ω

√
ε0μ0, with ω being

the angular frequency; the free-space wavelength and impedance are λ0 = 2π/k0 and η0 = √
μ0/ε0,

respectively. Also, i = √−1.

2. Canonical boundary-value problem
We specialize a general formalism [2] to develop the canonical boundary-value problem for
surface-wave propagation guided by the planar interface of a uniaxial dielectric medium A and
an isotropic dielectric medium B. Filling the half-space z> 0, medium A is characterized by the
relative permittivity dyadic [17,18]

εA = εs
AI + (

εt
A − εs

A
)

ûx ûx, (2.1)

with the unit vector ûx pointing in the direction of the optic axis of medium A. The dyadic εA
has two eigenvalues: εs

A of algebraic multiplicity [31] equal to 2 and εt
A of algebraic multiplicity

equal to 1. When medium A is considered to fill all space, the propagation of ordinary plane
waves is governed by εs

A, while the propagation of extraordinary plane waves is governed by
both εs

A and εt
A [32]. The isotropic medium B fills the half-space z< 0 and is characterized by the

relative permittivity dyadic εB = εBI. Both mediums are non-magnetic and non-magnetoelectric
[18,22,33]. A schematic of the canonical boundary-value problem is presented in figure 1.

The electromagnetic field phasors of a surface wave can be written for all z as [2]

E(r) = e(z) exp
[
iq
(
x cosψ + y sinψ

)]
and H(r) = h(z) exp

[
iq
(
x cosψ + y sinψ

)]
,

}
(2.2)

where q is the surface wavenumber. The angle ψ ∈ [0, 2π ) specifies the direction of propagation in
the xy-plane, relative to the x-axis. The auxiliary phasors may be written as

e(z) = ex(z)ûx + ey(z)ûy + ez(z)ûz

and h(z) = hx(z)ûx + hy(z)ûy + hz(z)ûz.

⎫⎬
⎭ (2.3)

The spatial profiles of the field phasors (2.2) are governed by the source-free, frequency-
domain Maxwell curl postulates [17]

∇ × H(r,ω) + iωε0εA · E(r,ω) = 0

and ∇ × E(r,ω) − iωμ0H(r,ω) = 0

⎫⎬
⎭ , z> 0 (2.4)

and

∇ × H(r,ω) + iωε0εBE(r,ω) = 0

and ∇ × E(r,ω) − iωμ0H(r,ω) = 0

}
, z< 0. (2.5)

When combined with the phasor representations (2.2), the Maxwell curl postulates (2.4) and (2.5),
respectively, yield the 4 × 4 matrix ordinary differential equations

d
dz

[
f (z)

]
= i[PA] ·

[
f (z)

]
, z> 0, (2.6)

and
d
dz

[
f (z)

]
= i[PB] ·

[
f (z)

]
, z< 0, (2.7)
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Figure 1. A schematic of the canonical boundary-value problem. The optic axis of mediumA is parallel to the x-axis. Surface
waves propagate parallel to the interface plane z = 0, at the angleψ relative to the x-axis. (Online version in colour.)

where the form of the 4 × 4 propagation matrix [P
�
], � ∈ {A,B}, depends upon the form of ε

�
. The

column 4-vector

[
f (z)

]
=

⎡
⎢⎢⎢⎣

ex(z)
ey(z)
hx(z)
hy(z)

⎤
⎥⎥⎥⎦ , (2.8)

contains the x-directed and y-directed components of the auxiliary phasors. These components
are algebraically connected to the z-directed components of the auxiliary phasors [18].

(a) Half-space z> 0
Relevant to the half-space z> 0,

[
PA

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
q2 cosψ sinψ

ωε0ε
s
A

k2
0ε

s
A − q2 cos2 ψ

ωε0ε
s
A

0 0
−k2

0ε
s
A + q2 sin2 ψ

ωε0ε
s
A

−q2 cosψ sinψ
ωε0ε

s
A

−q2 cosψ sinψ
ωμ0

−k2
0ε

s
A + q2 cos2 ψ

ωμ0
0 0

k2
0ε

t
A − q2 sin2 ψ

ωμ0

q2 cosψ sinψ
ωμ0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.9)

while the z-directed components of the auxiliary phasors are given by

ez(z) = q
[
hx(z) sinψ − hy(z) cosψ

]
ωε0ε

s
A

and hz(z) = q
[
ey(z) cosψ − ex(z) sinψ

]
ωμ0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, z> 0. (2.10)
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(i) Non-singular case

In the non-singular case, [PA] has four eigenvalues, each with algebraic multiplicity 1 and
geometric multiplicity 1. We name these ±αA1 and ±αA2, where

αA1 = i
√

q2 − k2
0ε

s
A

and αA2 = i

√
q2
[(
εs
A + εt

A
)− (

εs
A − εt

A
)

cos 2ψ
]− 2k2

0ε
s
Aε

t
A

2εs
A

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

In order to conform to a surface-wave representation, the signs of the square root terms in
equations (2.11) are selected such that Im{αA1}> 0 and Im{αA2}> 0. A pair of eigenvectors of
the 4 × 4 matrix [PA] corresponding to the eigenvalues αA1 and αA2 are

vA1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

k0αA1

q2 sinψ cosψ

cot 2ψ
η0

+ csc 2ψ
η0

(
1 − 2k2

0ε
s
A

q2

)

η−1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and vA2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − q2 (cos 2ψ + 1)

2k2
0ε

s
A

−q2 cosψ sinψ

k2
0ε

s
A

0
αA2

ωμ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

respectively. Thus, the general solution to equation (2.6) for fields that decay as z → +∞ is
given as [

f (z)
]
= CA1vA1 exp (iαA1z)+ CA2vA2 exp (iαA2z) , z> 0, (2.13)

wherein the constants CA1 and CA2 are determined by the boundary conditions at z = 0.

(ii) Singular case

The singular case arises when

q = σ
k0
√
εs
A

cosψ
, (2.14)

where the sign parameter σ = +1 for ψ ∈ (0,π/2) and σ = −1 for ψ ∈ (π/2,π ). Then [PA] has only
two eigenvalues, each with algebraic multiplicity 2 and geometric multiplicity 1. We name these
±αA, where

αA = iσk0

√
εs
A tanψ , (2.15)

with the square root selected to have a positive real part in order to achieve Im{αA}> 0, which
is essential for surface-wave propagation [2]. Since Im{αA} ≤ 0 for ψ ∈ {0,π}, DV surface-wave
propagation is not possible for ψ = 0 and π .
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An eigenvector of matrix [PA] corresponding to the eigenvalue αA is

vA =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
iσ√
εs
A

0

η−1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

; (2.16)

and a corresponding generalized eigenvector that satisfies [34]([
PA

]
− αAI

)
· wA = vA (2.17)

is

wA = 1
k0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
εt
A − εs

A
tanψ
εs
A

(
cot2 ψ − 2

εs
A − εt

A cot2 ψ

εs
A − εt

A

)

2iσ
√
εs
A

η0(εt
A−εs

A)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.18)

Thus, the general solution of equation (2.6) for fields that decay as z → +∞ is given as[
f (z)

]
= [

CA1vA + CA2
(
iz vA + wA

)]
exp (iαAz) , z> 0, (2.19)

wherein the constants CA1 and CA2 are determined by the boundary conditions at z = 0.

(b) Half-space z< 0
The 4 × 4 matrix [PB] is given as [2,17]

[
PB

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
q2 cosψ sinψ

ωε0εB

k2
0εB − q2 cos2 ψ

ωε0εB

0 0
−k2

0εB + q2 sin2 ψ

ωε0εB
−q2 cosψ sinψ

ωε0εB

−q2 cosψ sinψ
ωμ0

−k2
0εB + q2 cos2 ψ

ωμ0
0 0

k2
0εB − q2 sin2 ψ

ωμ0

q2 cosψ sinψ
ωμ0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.20)

while the z-directed components of the auxiliary phasors are given by

ez(z) = q
[
hx(z) sinψ − hy(z) cosψ

]
ωε0εB

and hz(z) = q
[
ey(z) cosψ − ex(z) sinψ

]
ωμ0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, z< 0 . (2.21)

The 4 × 4 matrix [PB] has two eigenvalues, each with algebraic multiplicity 2 and geometric
multiplicity 2. We name these ±αB, where

αB = −i
√

q2 − k2
0εB. (2.22)
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For surface-wave propagation, the sign of the square root in equation (2.22) is selected such that
Im{αB}< 0. A pair of independent eigenvectors of the 4 × 4 matrix [PB] corresponding to the
eigenvalue αB are

vB1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − q2 cos2 ψ

k2
0εB

−q2 cosψ sinψ

k2
0εB

0
αB
ωμ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and vB2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q2 cosψ sinψ

k2
0εB

−1 + q2 sin2 ψ

k2
0εB

αB
ωμ0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.23)

Thus, the general solution of equation (2.7) for fields that decay as z → −∞ is given as

[
f (z)

]
= (

CB1vB1 + CB2vB2
)

exp (iαBz) , z< 0, (2.24)

wherein the constants CB1 and CB2 are determined by the boundary conditions at z = 0.

(c) Canonical boundary-value problem
(i) Dyakonov surface waves

The continuity of tangential components of the electric and magnetic field phasors across the
interface z = 0 imposes four conditions that are represented compactly as

[
f (0+)

]
=
[
f (0−)

]
. (2.25)

Substitution of equations (2.13) and (2.24) in the foregoing equation leads to

[
M
]

·

⎡
⎢⎢⎢⎣

CA1
CA2
CB1
CB2

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎦ , (2.26)

wherein the 4 × 4 characteristic matrix [M] must be singular for surface-wave propagation [2].
The dispersion equation |[M]| = 0 is equivalent to the equation

k2
0ε

s
A
(
εs
AαB − εBαA1

)
(αB − αA2) tan2 ψ = αA1 (αB − αA1)

(
εs
AαBαA2 − εBα2

A1

)
, (2.27)

which can be solved numerically for q. The symmetry of equation (2.27) is such that if a Dyakonov
surface wave exists for angle ψ =ψ�, then Dyakonov surface-wave propagation is also possible
for ψ = −ψ� and ψ = π ± ψ�.
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(ii) Dyakonov–Voigt surface waves

The continuity of tangential components of the electric and magnetic field phasors across
the interface z = 0 gives rise to equation (2.25). Substitution of equations (2.19) and (2.24) in
equation (2.25) can be represented compactly as

[N] ·

⎡
⎢⎢⎢⎣

CA1
CA2
CB1
CB2

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎦ , (2.28)

wherein the 4 × 4 characteristic matrix [N] must be singular for surface-wave propagation. The
dispersion equation |[N]| = 0 simplifies to

[
2εs

A
(
εB + εs

A
)+ (

εs
A − εB

) (
εs
A + εt

A
)

cot2 ψ
]

+ 2
√
εs
A
(
εs
A + εB

)√
εs
A + (

εs
A − εB

)
cot2 ψ = 0.

(2.29)

Notice that equation (2.29) cannot be satisfied for εs
A = εB, except in the pathological case

εs
A = εB = 0 which we disregard as unphysical. The symmetries of equation (2.29) mirror those

of equation (2.27); that is, if a DV surface-wave solution exists for angle ψ =ψ�, then DV
surface-wave solutions also exist for ψ = −ψ� and ψ = π ± ψ�.

(d) Constraints on Dyakonov–Voigt surface-wave propagation
In keeping with the context in which Dyakonov surface waves are usually considered [3–5,8], let
us concentrate on the crystal-optics regime for wherein all relative-permittivity parameters are
real and positive; thus,

εs
A > 0

εt
A > 0

and εB > 0.

⎫⎪⎪⎬
⎪⎪⎭ (2.30)

Since the possibility of εs
A = εB has already been discounted, the only remaining possibilities are

εs
A < εB and εs

A > εB. However, by inspection, the dispersion equation (2.29) for DV surface waves
cannot be satisfied for εs

A > εB. Therefore, the only remaining possibility is εs
A < εB.

The term enclosed in square brackets in equation (2.29) must be negative. Accordingly,

cot2 ψ >
2εs

A
(
εs
A + εB

)
(
εB − εs

A
) (
εs
A + εt

A
) . (2.31)

Also, the argument of the square root in equation (2.29) must be positive. Accordingly,

cot2 ψ <
εs
A

εB − εs
A

. (2.32)

By combining inequalities (2.31) and (2.32), we obtain

2εs
A
(
εs
A + εB

)
(
εB − εs

A
) (
εs
A + εt

A
) < εs

A
εB − εs

A
, (2.33)

which reduces to 2εB < εt
A − εs

A. Also, for DV surface waves we have

αB = −ik0

√
εs
A sec2 ψ − εB. (2.34)

Therefore, a DV surface wave exists only when the inequality εs
A > εB cos2 ψ is satisfied.
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Figure 2. Portions of theεsA − εtA plane that support DV surface-wave propagation and that donot support DV surface-wave
propagation, forψ ∈ {25◦, 50◦, 75◦}with εB = 2.15. (Online version in colour.)

To summarize, it is essential for DV surface-wave propagation that the three inequalities

εs
A > εB cos2 ψ

εt
A − εs

A > 2εB

and εB > εs
A

⎫⎪⎪⎬
⎪⎪⎭ (2.35)

are satisfied. These three inequalities impose quite severe constraints on the two partnering
mediums to jointly support DV surface-wave propagation. The portion of the εs

A − εt
A plane in

which DV surface-wave propagation is allowed forψ ∈ {25◦, 50◦, 75◦} and εB = 2.15 is identified in
figure 2. It is clear that a strongly uniaxial medium A is needed for DV surface-wave propagation.
In addition, the range of εs

A that supports DV surface-wave propagation

— decreases continuously as ψ decreases, vanishing in the limit ψ → 0, and
— extends to (0, εB) in the limit ψ → π/2.

For comparison, analysis of the dispersion equation (2.27) for the non-singular case reveals
that the inequalities [2,4]

εt
A > εB > ε

s
A (2.36)

must be satisfied for Dyakonov surface-wave propagation.

(e) Analytical solutions of the Dyakonov–Voigt dispersion equation
The dispersion equation (2.29) can be solved analytically for one of four variables as follows.

— If εt
A, εB, and ψ ∈ (0,π/2) are fixed, then DV surface-wave propagation is possible only if

εs
A = sec2 ψ

12

[
t1 + 2t2(

2t3 + 48
√

6t4t5
)(1/3)

+
(

2t3 + 48
√

6t4t5

)(1/3)
]

, (2.37)

wherein the parameters

t1 = 10εB − 12εt
A + (

4εt
A − 6εB

)
cos 2ψ , (2.38)

t2 = 71 (εB)2 − 126εBεt
A + 67

(
εt
A
)2 − 4

[
15 (εB)2 − 34εBεt

A + 15
(
εt
A
)2]

cos 2ψ

+
[
−3 (εB)2 + 6εBεt

A + (
εt
A
)2]

cos 4ψ , (2.39)
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t3 = 2
[
475 (εB)3 − 1359 (εB)2 εt

A + 1365εB
(
εt
A
)2 − 441

(
εt
A
)3]

− 3
[
345 (εB)3 − 1061 (εB)2 εt

A + 1023εB
(
εt
A
)2 − 347

(
εt
A
)3]

cos 2ψ

+ 6
[
15 (εB)3 − 51 (εB)2 εt

A + 65εB
(
εt
A
)2 − 21

(
εt
A
)3]

cos 4ψ

+
[
27 (εB)3 − 63 (εB)2 εt

A + 45εB
(
εt
A
)2 − (

εt
A
)3]

cos 6ψ , (2.40)

t4 = 2
[
105 (εB)4 − 151 (εB)3 εt

A + 17
(
εBεt

A
)2 + 67εB

(
εt
A
)3 + 6

(
εt
A
)4]

+
[
−263 (εB)4 + 547 (εB)3 εt

A − 225
(
εBεt

A
)2 + 49εB

(
εt
A
)3 + 16

(
εt
A
)4]

cos 2ψ

+ 2
[
23 (εB)4 − 97 (εB)3 εt

A + 135
(
εBεt

A
)2 − 43εB

(
εt
A
)3 + 2

(
εt
A
)4]

cos 4ψ

+
[
7 (εB)4 − 19 (εB)3 εt

A + 17
(
εBεt

A
)2 − εB

(
εt
A
)3]

cos 6ψ (2.41)

and t5 = − (εB − εt
A
)2

cos4 ψ sin2 ψ ; (2.42)

— If εs
A, εB and ψ ∈ (0,π/2) are fixed, then DV surface-wave propagation is possible only if

εt
A =

εs
A
(
εs
A − εB

)+ 2
(
εs
A + εB

)√
εs
A tanψ

(√
εs
A tanψ +

√
εs
A sec2 ψ − εB

)
εB − εs

A
. (2.43)

— If εs
A, εt

A and ψ ∈ (0,π/2) are fixed, then DV surface-wave propagation is possible only if

εB = 1
32εs

A

{
4t6 − (

εs
A + εt

A
)

csc2 ψ
[
4
(
εs
A + εt

A
)−

√
2 (t7 + t8)

]}
, (2.44)

wherein the parameters

t6 = (
εt
A
)2 + 6εs

Aε
t
A − 3

(
εs
A
)2 , (2.45)

t7 = cos 4ψ
[(
εt
A
)2 + 10εs

Aε
t
A − 7

(
εs
A
)2] (2.46)

and t8 = 4 cos 2ψ
(
εt
A − 3εs

A
) (

5εs
A + εt

A
)+ 75

(
εs
A
)2 − 2εs

Aε
t
A + 3

(
εt
A
)2

. (2.47)

— If εs
A, εt

A and εB are fixed, then DV surface-wave propagation is possible only if

ψ = arccot

⎡
⎣ 2
εs
A + εt

A

√
εs
A
(
εB − εt

A
) (
εB + εs

A
)

εs
A − εB

⎤
⎦ . (2.48)

The surface wavenumber q for a DV surface wave is given by equation (2.14).

3. Illustrative numerical studies on Dyakonov–Voigt surface-wave propagation
We now examine the analytical solutions of the dispersion equation (2.29) for DV surface waves
by means of representative numerical examples. For these computations, it is necessary to choose
relative-permittivity parameters for mediums A and B such that the three inequalities (2.35) are
satisfied. Owing to the symmetries of the dispersion equation (2.29), results need be presented for
only 0<ψ <π/2.

Let us begin with the the phase speed

vp = k0
√
εB

q
, (3.1)

relative to the phase speed in unbounded medium B. In figure 3, vp is plotted versus ψ ∈ (0,π/2)
for εs

A ∈ {1, 1.5, 2} with εB = 2.15, using q determined from equation (2.14). The DV surface
wave exists for ψ ∈ (47.00◦, 90◦) when εs

A = 1, for ψ ∈ (33.36◦, 90◦) when εs
A = 1.5, and for ψ ∈
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Figure 3. Relative phase speedvp andnormalized penetration depths�A and�B , plotted versusψ ∈ (0,π/2) forεsA = 1
(solid curves), 1.5 (dashed curves) and 2 (dash-dotted curves), with εB = 2.15. (Online version in colour.)

(15.32◦, 90◦) when εs
A = 2. The relative phase speed steadily approaches zero as the angle ψ

approaches π/2. Furthermore, in the limit as ψ approaches its smallest value, we have vp → 1.
Also provided in figure 3 are corresponding plots of the normalized penetration depths in

mediums A and B, namely [2]

�A = k0

Im {αA}

and �B = k0

−Im {αB} ,

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

respectively, with αA determined using equation (2.15) and αB determined using equation (2.22).
Both penetration depths steadily approach zero as the angle ψ approaches π/2. In the limit ψ →
π/2, we have �A =�B = 0 and also vp = 0. Furthermore, as ψ approaches its smallest value, �B
becomes unbounded, whereas �A increases but remains bounded.

In figure 4, the solution for εB given in equation (2.44) is plotted versus ψ for 0<ψ <π/2,
with εs

A ∈ {1, 1.5, 2} and εt
A = 6.5. When εs

A = 1, the DV surface wave exists for ψ ∈ (0◦, 52.91◦),
and εB uniformly increases from 1 to 2.75 as ψ increases. When εs

A = 1.5, the DV surface-wave
propagation is possible for ψ ∈ (0◦, 39.23◦); furthermore, as ψ increases, εB uniformly increases
from 1.5 to 2.5. When εs

A = 2, the DV surface wave propagates for ψ ∈ (0◦, 19.47◦), and as ψ
increases the value of εB uniformly increases from 2 to 2.25.

The solution for εs
A provided in equation (2.37) is plotted in figure 5 versus ψ ∈ (0,π/2) for

εt
A = 6.5 with εB ∈ {1, 1.5, 2}. The DV surface-wave propagation is possible for all values of ψ ∈

(0,π/2). Furthermore, εs
A decreases uniformly as ψ increases, taking the value of εB in the limit

ψ → 0, and becoming null valued in the limit ψ → π/2, for all values of εB.
Next we turn to the solution for εt

A provided by equation (2.43). In figure 6, εt
A is plotted

versusψ ∈ (0,π/2) with εs
A ∈ {1, 1.5, 2} and εB = 2.15. When εs

A = 1, DV surface waves exist forψ ∈
(47.00◦, 90◦); asψ increases, the value of εt

A uniformly increases from 5.3 and becomes unbounded
as ψ approaches π/2. When εs

A = 1.5, the solution exists for ψ ∈ (33.36◦, 90◦) and, as ψ increases,
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Figure 4. Relative permittivity εB plotted versus ψ ∈ (0,π/2) for εsA = 1 (solid curve), 1.5 (dashed curve) and 2 (dash-
dotted curve), with εtA = 6.5. (Online version in colour.)
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Figure 5. Relative permittivity εsA plotted versusψ ∈ (0,π/2), for εtA = 6.5 with εB = 1 (solid curve), 1.5 (dashed curve)
and 2 (dash-dotted curve). (Online version in colour.)
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Figure 6. Relative permittivityεtA plotted versusψ ∈ (0,π/2), withεB = 2.15 forεsA = 1 (solid curve), 1.5 (dashed curve)
and 2 (dash-dotted curve). (Online version in colour.)

the value of εt
A uniformly increases from 5.8 and becomes unbounded asψ approaches π/2. When

εs
A = 2, DV surface-wave propagation is possible for ψ ∈ (15.32◦, 90◦); the value of εt

A uniformly
increases from 6.3 as ψ increases, becoming unbounded as ψ approaches π/2.

In order to shed further light on the features of DV surface waves, spatial profiles of the
magnitudes of the Cartesian components of the electric and magnetic phasors are provided in
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figure 7 for εs
A = 2, εt

A = 6.5 and εB = 2.15. From equation (2.48), the corresponding propagation
angle is ψ = 15.32◦. The amplitude CB1 = 1 V m−1 is fixed. The magnitudes of the components
of the electric and magnetic field phasors show an apparent exponential decay as the distance
|z| from the interface increases. The rate of decay is considerably faster in medium A than in
medium B. Thus, we infer that the linear term in equation (2.19) is dominated by the exponentially
decaying terms. The localization of the DV surface waves can also be appreciated from the spatial
profiles provided in figure 7 of the Cartesian components of the time-averaged Poynting vector

P(r) = 1
2 Re

[
E(r) × H∗(r)

]
, (3.3)

where the asterisk denotes the complex conjugate. We observe that there is no energy flow in
directions normal to the interface z = 0; that is, energy flow is restricted to directions parallel to
the interface plane.

4. Closing remarks
A new type of electromagnetic surface wave—called a Dyakonov–Voigt (DV) surface wave—has
been found theoretically. The propagation of these surface waves is guided by the planar interface
of an isotropic dielectric medium and a uniaxial dielectric medium whose optic axis lies in the
interface plane, provided that certain constraints on the constitutive parameters of the partnering
mediums, specified by inequalities (2.35), are satisfied.

The DV surface wave has some features in common with the Dyakonov surface wave [3,4].
Most notably, surface waves of both types are guided by the planar interface of non-dissipative
dielectric mediums, one of which is anisotropic. But there are fundamental differences between
them too. Most notably, the decay in the amplitude of DV surface waves with distance from
the interface in the anisotropic partnering medium involves a linear term per equation (2.19)
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(as well as exponential terms), whereas the corresponding decay for Dyakonov surface waves
only involves exponential terms per equation (2.13). Furthermore, the constitutive-parameter
regime that supports DV surface waves, as characterized by inequalities (2.35), is not the same
as the constitutive parameter regime that supports Dyakonov surface waves, as characterized by
inequalities (2.36). And, whereas Dyakonov surface waves propagate for a range of directions in
each quadrant of the interface plane [8,9], DV surface waves propagate in only one direction in
each quadrant of the interface plane.

Voigt-wave propagation is possible in an unbounded anisotropic dielectric medium only if
the relative permittivity dyadic of that medium is non-Hermitian [31]. The non-Hermitian nature
of the relative permittivity dyadic may reflect the dissipative [15] or active [30] nature of the
medium. On the other hand, DV surface-wave propagation can be supported by partnering
dielectric mediums whose relative permittivity dyadics are Hermitian but the matrixes [PA] and
[PB] are both non-Hermitian, as reported in the preceding sections.

Lastly, while the canonical boundary-value problem investigated herein is a useful
idealization, it does not directly shed light upon the excitation of DV surface waves in a practical
configuration, such as the prism-coupled configuration [2]. This is a matter for future study, which
will deliver insights into the polarization states of DV surface waves.
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