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Capillary orbits
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Millimeter-sized objects trapped at a liquid surface distort the interface by their weight, which
in turn attracts them towards each other. This ubiquitous phenomenon, colloquially called the
“Cheerios effect” is seen in the clumping of cereals in a breakfast bowl, and turns out to be a
highly promising route towards controlled self-assembly of colloidal particles at the water
surface. Here, we study capillary attraction between levitating droplets, maintained in an
inverse Leidenfrost state above liquid nitrogen. We reveal that the drops spontaneously orbit
around each other - mirroring a miniature celestial system. In this unique situation of neg-
ligible friction, the trajectories are solely shaped by the Cheerios-interaction potential, which
we obtain directly from the droplet’'s dynamics. Our findings offer an original perspective on
contactless and contamination-free droplet cryopreservation processing, where the Leiden-
frost effect and capillarity would be used in synergy to vitrify and transport biological
samples.
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he Cheerios effect is an everyday-life phenomenon that can

be seen in the clumping of cereals in a bowl or that of

bubbles at the surface of a sparkling liquid. The origin
of the interaction between floating objects lies in the distortion
of the liquid surface!=3, which typically generates attractive
forces*-8. As such, the Cheerios effect offers a simple strategy for
self-assembly of colloids®1?, controlled by tuning the shape!! or
wetting properties of the particles!?. Capillary interactions also
play a crucial role in the life of water walking creatures and pond
vegetation®>, and are used to reach food, escape predators!'> and
disperse seeds'4. The interaction between two particles placed on
a liquid-air interface depends on a subtle equilibrium of gravity,
buoyancy, and surface tension. In the limit of small interfacial
deformations, however, the attractive potential energy is simply
expressed as the product of the weight of one floating particle by
the surface deformation caused by the second one®. In other
words, each particle warps the space around it (the bath surface)
proportionally to its mass and evolves in the gravitational
potential landscape generated by its counterparts. Thus, the
floating bodies form an intriguing microcosm that is reminiscent
of general relativity. Such a comparison has been suggested
before, and the long-range interaction between colloids has been
proposed as a way to mimic the gravitational collapse of galax-
ies!>. The substantial drag experienced by floating objects, how-
ever, fundamentally distinguishes them from their celestial
counterparts.

Here, in by-passing the drag we push the comparison further:
we show that levitating particles submitted to capillary attraction
follow a variety of intricate orbits. The trajectories, shaped by the
Cheerios interaction potential fundamentally differ from the
usual Newtonian conics. Making use of the absence of friction, we
directly derive the Cheerios interaction potential from the particle
dynamics, and model the experimental trajectories. We finally
discuss the possibility of obtaining bounded orbits.

Results
Orbiting trajectories of frictionless droplets. We observe the
motion of two silicone oil drops (with radii R; and R, between
250 um and 1.4 mm) gently released above a quiescent bath of
liquid nitrogen. As illustrated in Fig. la, each drop is kept in an
“inverse Leidenfrost” state above the liquid surface, a levitating
state that is enabled by the continuous vapor flow produced by
the cryogenic bath!9-1°. A unique feature of this system is that, in
the absence of any physical contact with the bath, friction forces
remain extremely small?’-22, and the rapid motion resembles
usual Leidenfrost drops that are highly mobile when placed into
external fields23, In addition, in our experiment, this small drag is
almost perfectly compensated by a small propulsion force caused
by a symmetry breaking within the film sustaining the drops!®.
The drops thus behave like nearly frictionless “cryogenic skaters™:
they glide in perfectly straight trajectories and, once frozen, they
keep a constant velocity v, ranging from 1 to 3 cm s~ 1. Levitation
and propulsion are maintained as the drops cool down, gen-
erating frozen marbles subjected to capillary interactions only.
Figure 1b, d, f provides top-view images of close encounters of
such skaters, illustrating the trajectories of each particle. The
arrows indicate the direction and magnitude of the initial
velocities. On the right, the panels ¢, e, and g represent the same
trajectories as in b, d, and f, respectively, plotted in the center of
mass frame. The color code indicates the drop velocity which
typically varies between 0 cms™! (blue) and 5cms™! (yellow).
Figure 1b provides an example of a small deflection between two
particles of similar size (Supplementary Movie 1). The fast
particle (orange) is deflected by 35°, while the slow particle (blue)
almost performs a U-turn. The trajectory becomes more intuitive
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Fig. 1 Orbiting trajectories of two cryogenic skaters. a Two silicone oil drops
with radii Ry and R,, deposited on a liquid nitrogen bath, are maintained in
an inverse Leidenfrost state and spontaneously self-propel. We study their
dynamics as they approach each other, in conditions of negligible friction.
b Deflection between two drops (Ry = 410 pm, in blue and R, =360 pm, in
orange), as seen experimentally. See also Supplementary Movie 1. The
arrows indicate the initial direction of motion and velocity of the particles,
and the scale bar corresponds to 3 mm. ¢ Same experiment as in (b), now
plotted in the center of mass frame. The scale bar indicates 3 mm. d
Deviation of a small drop (R, =390 pm) when approaching a bigger drop
(Ry =810 pm). See also Supplementary Movie 2. e Drop trajectories of (d)
in the center of mass frame. f Collision trajectory between two frozen
marbles (Ry =820 pm, R, =260 pm). See also Supplementary Movie 3.

g Drop trajectories of (f) in the center of mass frame. The scale is the same
in panels b, d, and f, and panels ¢, e, and g. In panels ¢, e, and g the color
code indicates the drop velocity, from O cm s~ (dark blue) to 5cms~!
(yellow). The dotted lines show the corresponding theoretical trajectories
calculated from the capillary potential E(r)

in the reference frame of the center of mass (Fig. 1c), with a
deflection angle (measured relatively to the incoming direction)
of 58+2° for both droplets. At first glance, the trajectories
resemble a miniature version of the hyperbolas of classical
gravitational orbits. However, deflections often exceed the
maximum value possible for open orbits in Newtonian gravity,
namely 180° as in Fig. 1d. In the center of mass frame (Fig. le),
the small particle is indeed deflected by 220 + 3°. In this case the
drop masses differ by a factor 10 and only the smaller skater is
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deviated (Supplementary Movie 2). More generally, deflection
angles can exceed 360° and the drops do more than a complete
revolution before escaping. The highest deflection observed is
close to 3 full revolutions, although most of the particles that
experience a deviation exceeding 270° eventually collide. Figure 1f
provides an example of such a collision for a mass ratio of 30
(Supplementary Movie 3). Here as well, only the smallest particle
is substantially deflected. It follows the other in a spiral trajectory
and eventually collides with it after more than a turn. Depending
on the droplets velocity and impact angle, a collision can
eventually lead to a capture (as in Fig. 1g), but not always. A
durable contact can happen after multiple small rebounds
(Supplementary Movie 4), but collisions can also lead to rebounds
large enough for the drops to eventually escape their mutual
attraction (Supplementary Movie 5). In addition, “gravitational
assist” events (Supplementary Movie 6), were observed where a
small drop is accelerated as it passes near a large drop.

Interaction potential. Interestingly, the absence of friction in our
experiment offers a direct measure of the capillary interaction
potential E. In the Nicolson approximation where the deforma-
tions are small, the interaction potential between two nonwetting
objects (with a contact angle of 180°) at a distance r and with
masses m; and m, reads’

(pg)’ K,(r/a) = Cmym,K,(r/a), (1)

Er) = mm 25
N

which can also be viewed as an interaction between point parti-
cles?4. In this expression g stands for gravity, and y, p, and py are
the surface tension and the densities of the particle and the bath,
respectively. The function K,(r/a) is the zeroth-order modified
Bessel function of the second kind, and reflects the distortion of
the interface induced by m;, which is felt by m, (and vice versa).
The lengthscale a = \/y/pyg is the capillary length of the bath.
At distances r < a, the function K,(r/a) diverges logarithmically
in analogy with two-dimensional Newtonian gravity and elec-
trostatics. For r>a, however, the interactions decay exponen-
tially. To experimentally verify this formula, we consider a system
of two drops with masses m; and m, moving toward each other.
We reformulate the two-body system into a one-body problem

with a reduced mass m, = ;%2 In the absence of dissipation,
1

the capillary potential E(r) can then be directly inferred from the
kinetic energy E; of the reduced particle, using
E(r) = E, — E(r = 00).

In Fig. 2, we selected four head-on collisions and two small
deviations, and plotted the dimensionless capillary potential
E(r)/(m;m,C), as inferred from the particle dynamics. Each
experiment is represented in a different color, as indicated in the
inset. The particle radii are systematically varied between 290 um
and 1.4 mm. All experimental data collapse onto a single curve, in
excellent agreement with the theoretical prediction K,(r/a),
without any adjustable parameters, demonstrating that the far-
field expression of the interaction potential (1) still holds when
the droplets are close enough to collide. The small deformation
criterion is indeed valid even for the largest drops, that can only
interact at distances r>R;+ R,. At these relatively large
distances, the bath deformation is always smaller than 100 pm.

Capillary orbits. With the expression for E(r) in hand, we can use
Eq. (1) to compute particle trajectories such as reported in Fig. 1.
Like gravity, the potential is proportional to the product of the
two masses, but depends on particle distance in a different
manner. Here, we systematically explore how the well-known
celestial orbits are affected upon replacing the 1/r-potential by
this unusual, Bessel-shaped form K,(r/a).
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Fig. 2 Experimental measurement of the Cheerios potential. The
experimental (nondimensional) potential E(r)/(Cm;m,) is extracted from
the dynamics of a pair of particles. Each color corresponds to a different
experiment, with particles radii and mass ratio systematically varied.
Experimental data are compared with the theoretical shape of the potential
Ko(r/a), plotted as a black line

As a test, we first numerically integrate the equations of
motion, using the initial conditions corresponding to the
experiments in Fig. 1. The initial velocity (taken within values
compatible with the noise in the experimental data) is chosen to
obtain the best fit, by root mean square error minimization. The
obtained trajectories are superimposed as dotted lines and
compared directly to the experiments. The resulting predictions
provide an almost perfect fit for the experimental trajectories in
Fig. 1c, e. However, it fails to reproduce the dynamics in Fig. 1g:
the calculated trajectory predicts a large deflection without
collision. More generally, it turns out that the model accurately
describes the majority of our experiments for small deflections
and collisions, while it systematically underestimates the
amplitude of the deflection when the particles are deflected by
more than 270°. As we will discuss below, we attribute this to a
small but nonnegligible loss of energy by friction, occurring when
the drops experience substantial changes in velocity.

A systematic classification of the capillary orbits (without
friction) is obtained following the standard approach for central
force fields?>. We introduce the effective capillary potential U of
the associated particle with reduced mass m,

2

L
Uyfg=——+E 2
Ly + E(r), (2)

accounting for the orbit’s angular momentum L = m,r*6.
Figure 3a shows Uy with varying L, for typical experimental
conditions (see caption). In contrast to scale-free algebraic
potentials, U.g exhibits a minimum only for sufficiently small L,
which for the chosen parameters (reduced mass m, = 9.1078 kg,
and initial distance 7, = 4.1 mm) corresponds to an initial angular

velocity @, < 1.6 rad s—L. This restriction is a direct consequence of
the screening of the interaction beyond the capillary length a.
Bounded orbits are possible when a minimum is present, an
example of which is given in Fig. 3b (and Supplementary Movie 7).
The bounded states exhibit flower-like patterns rather than closed
trajectories which are, according to Bertrand’s theorem?%?7, a
special feature of the —1/r and r? potentials. A prime example of
this effect is given by the precession of mercury’s perihelion, due
to relativistic corrections to the 1/r potential. In the example of
Fig. 3b, the precession angle is equal to 109°.

We now provide in Fig. 3¢ a classification of orbits for typical
initial conditions. Figure 3c is roughly divided into two regions,
illustrated by experimental trajectories. The upper part corre-
sponds to deflections, for which U does not have a minimum.
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Fig. 3 Classification of capillary orbits. a Effective potential Ug; as a function
of distance r, for varying initial angular velocity 90. The particle masses and
their initial distance are kept constant (m, = 9.10~8 kg, and ro = 4.1mm).
b Example of a bounded orbit for this potential, with initial conditions 90 =
1.465 rad s~1 and oy = 0. See also Supplementary Movie 7. ¢ Phase diagram
to classify orbits, expressed using the initial conditions ro, 90 for

m, = 9.10~8 kg. The upper region corresponds to deflections and the lower
region to collisions, both illustrated by experimental trajectories. Bounded
orbits without collisions are only observed in a narrow band plotted in
shades of gray, for varying radial velocities ry. The initial conditions of (d)
are indicated by a red cross. d Experimental trajectory close to a bounded
orbit in the center of mass frame. See also Supplementary Movie 8

In the lower quadrant, bounded orbits are theoretically possible:
however, the trajectories cross the “collision radius” R; + R,, and
the particles come into contact. Bounded trajectories that stay
outside the collision radius appear only in a very narrow window
illustrated in shades of gray (for thee different initial radial
velocities 7). As 7, increases, the thin gray area shrinks even
further and eventually disappears (for 7,>1.5cms™!), which
illustrates the extreme experimental difficulty in attaining
bounded capillary orbits. We could nonetheless observe trajec-
tories in the vicinity of the bounded orbits region, an example of
which is given in Fig. 3d (Supplementary Movie 8). Initial
conditions are indicated by a red cross in the phase diagram. The
angular momentum and radial velocity are just a little too high to
allow for a bounded trajectory, and the particle indeed undergoes
an impressive deflection, close to three full rotations (1065 + 3°),
but eventually escapes the attractive field.

Discussion

Though friction is in itself small, the accumulated loss of energy
during strong deflections can ultimately turn a deflection into a
collision. An example of this is given in Fig. 4 and Supplementary
Movie 9 for a case at the upper limit of the region of bounded
orbits. The two frozen drops (highlighted in blue and orange in
Fig. 4a) eventually collide after a long spiral lasting two and a half
turns. The total energy E,,, which is constant when the particles
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Fig. 4 The effect of energy loss. a Experimental trajectory of two particles
with radii Ry =360 pm and R, = 340 pm. See also Supplementary Movie
9. b Energy loss AE,, of a two-drop system as a function of time (in blue).
The modeled AE is plotted with a dotted line. € Trajectories of the two
particles in the center of mass frame, with two different color codes for
their velocities. The dotted lines are the modeled trajectories, calculated
numerically by integrating (for each particle) a small friction force with
magnitude F = mf (V —vg) and a direction opposite to the particle
velocity V

are far, decreases slowly but steadily prior to collision (Fig. 4b).
We interpret this as the effect of an additional friction, occurring
as the particles accelerate. Indeed, before approaching each other,
the self-propelled drops glide at their terminal velocity v,, for
which propulsion and friction cancel out. They thus behave as
perfectly frictionless objects and keep a constant energy. How-
ever, once accelerated (at a velocity V >v,) by the attractive
potential, each particle experiences an effective friction force F
arising from the increased hydrodynamic drag within the sup-
porting vapor film. In the laboratory frame, this effective drag
force has a magnitude F = oc””}f2 - (V—v,) and a direction
opposite to the particle velocity V. Here 7, is the viscosity of
nitrogen vapor, h the thickness of the vapor film, and « a
numerical prefactor. In Fig. 4, the drops are frozen to liquid
nitrogen temperature, and h is fixed by the spontaneous eva-
poration of the bath, which maintains them in levitation. Fol-
lowing!®, h is calculated: it is close to 10 um for the two (almost
identical) drops considered here. Integrating the equations of
motion with this friction force provides a very good fit to the
spiraling trajectory of Fig. 4c, with a prefactor « equal to 1. The
color code (in blue and orange) indicates the velocity of each
drop, and the dotted lines are the best numerical fit. A similar
agreement is also obtained when fitting the collision trajectory of
Fig. 1g (see Supplementary Fig. 1). In addition, Fig. 4b shows that
our model also nicely reproduces the loss of energy in time. Small
friction forces, as discussed here, arise as the drop accelerates but
only become significant for large deviations. This is why, upon
selecting simple trajectories such as in Fig. 2, one can accurately
measure the capillary potential without any hindrance from drag.
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Our results unveil the capacity of frictionless particles to act as
sensitive probes, which can be used for the direct measurement
of the forces that govern capillary self-assembly. Control over
capillarity as demonstrated in the current study is of paramount
importance for rising applications in, e.g., drop cryopreserva-
tion?8-30: cryogenic levitation provides a unique method for rapid
droplet vitrification!®!8 with minimal contamination hazards,
while at the same time offering a highly versatile procedure to
remotely select, manipulate and organize such biological samples
for optimal handling and conservation.

Methods

Experimental procedure. Silicone oil drops (with a density p=930kgm~3 and
viscosity 7 =9.3 mPas) are release a few centimeters above the surface of a still
liquid nitrogen bath. Large drops (with radius R > 750 um) are generated using
calibrated Hamilton needles, while smaller ones (250 pm < R <750 um) are
obtained using stretched glass capillaries. The smallest drops (R <500 um) are
generated by transferring the liquid attached to a larger capillary on a thinner one,
from which it slides and fall. The liquid nitrogen bath is contained in a small beaker
with characteristic size 5cm. To avoid boiling, the small beaker is placed on a
copper disk at the center of a sacrificial bath of liquid nitrogen!71°. The sacrificial
bath has a diameter of 19 cm and is filled with 5 cm of liquid nitrogen. The boiling
of the sacrificial bath generates a nitrogen atmosphere and partially insulates the
central bath, which keeps a still surface. Both beakers are placed in a homemade
polystyrene cryostat, with internal size 20 x 20 x 15 cm3 and 4 cm thick walls.
Experiments are filmed from the top, at typically 500 fps using a high-speed camera
(Photron Mini UX-100). The box cover is removed for each experiment (that
typically lasts 1 min), and then put back to ensure insulation. Drop trajectories are
finally tracked using a home-made Python algorithm.

Data availability
The data that supports this study is available upon request from the corresponding
author.
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