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1.0 Introduction 

The diagram below shows a system of n lenses, in which the rth lens is denoted by Lr.  
A ray of light AB, parallel to the principal (or optical) axis XY of the system, is refracted 
at B by the first lens, L1, and emerges along BC. The ray is then refracted by 
subsequent lenses (of which only Ln is shown) and then at E by Ln. It finally emerges 
from the system along EF to intersect XY at F. 
AB and EF intersects at D and DH is perpendicular to XY. 
 

 
 
The following are some (established) definitions. 

 F is called the image focus (or rear focal point or back focal point) of the 
system. 

 H is called the image principal point (or image unit point or second principal 
point or second unit point) of the system. 

 The distance between HF is called the image focal length of the system. 
 
If the ray of light AB were to travel in the opposite direction (i.e. from right to left) and 
intersects Ln first and finally emerge from L1, then there would be a corresponding  

 object focus (or front focal point) of the system 

 object principal point (or object unit point or first principal point or first unit 
point) of the system 

 object focal length of the system 
 
The following notations are used in the formulas below for a system of two lenses. 

 The power of  
o the first lens is k1  
o the second lens is k2 
o the lens system is K 
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 The focal length of the lens system is F 

 The distance between  
o the lenses is d 
o the first principal point and the first lens is h1 
o the second principal point and the second lens is h2 
o an object and the first lens is u 
o the corresponding image and the second lens is v 

 The transverse (or linear) magnification is m 
 
The following are well known formulas for a system of two lenses. 

 K = k1 + k2 − dk1k2 

 h1 =
dk2

k1+ k2− dk1k2
  

 h2 =
dk1

k1+ k2− dk1k2
 

 
1

u + h1
+

1

v + h2
= 

1

F
 

 m =
v + h2

F
− 1 

 
Thus: a system of two thin lenses (of power k1 and k2 and separated by a distance d 
apart) is equivalent to a single thin lens of power k1 + k2 − dk1k2, positioned between 

the two lenses and at a distance of 
dk1

k1+ k2− dk1k2
 from the second lens. 

 
This paper generalizes the above formulas to the case of a system of n thin lenses. 
Also, other results are established.  
 
In the below, “lens” means “thin lens”. 
 



pg. 3 

 

2.0 Formula for the Focal Length of a System of n Lenses 

2.1 Image Focal Length of a System of n Lenses (for small 

values of n) 

Let fr denote the focal length of Lr (the rth lens), kr = 1/fr be the power of Lr, dr denote the 
distance between Lr and Lr+1, Fn denote the image focal length of a system of n lenses 
and Kn = 1/Fn denote the (image) power of the system of n lenses.  
 

The formula for K2 is derived by using the equation 
1

u
+

1

v
=

1

f
  together with virtual object 

and similar triangles. The formula is given by K2 = k1 + k2 − k1d1k2 
 
 
By using this very method with three lenses the formula for K3 can be obtained. 
Alternatively, the formula for K3 can be obtained as follows.  
L1 and L2 will be replaced by a single equivalent lens, say L12, so that we are now 
dealing with 2 lenses, L12 and L3. As mentioned above, L12 is of power k1 + k2 − d1k1k2 

and is positioned between L1 and L2 and at a distance of 
d1k1

k1+ k2− d1k1k2
 from L2. Thus, the 

distance D between L12 and L3 is given by D = d2 +
d1k1

k1+ k2− d1k1k2
. 

 

Hence: K3 = K2 + k3 − DK2k3 = K2 + k3 − (d2 +
d1k1

k1+ k2− d1k1k2
)K2k3 

= (k1 + k2 − d1k1k2) + k3 − (d2 +
d1k1

k1+ k2− d1k1k2
) (k1 + k2 − d1k1k2)k3  

= k1 + k2 + k3 − d1k1k2 − d2(k1 + k2 − d1k1k2)k3 − d1k1k3  
= k1 + k2 + k3 − d1k1k2 − d1k1k3 − d2(k1 + k2)k3 + d2d1k1k2k3  
= [k1 + k2 + k3] − [(k1)d1(k2 + k3) + (k1 + k2)d2(k3)]  + [(k1)d1(k2)d2(k3)] 
 
 
Similarly, with four lenses the following formula for K4 is obtained: 
K4 =   [k1 + k2 + k3 + k4] 
          − [(k1)d1(k2 + k3 + k4) + (k1 + k2)d2(k3 + k4) + (k1 + k2 + k3)d3(k4)] 
           +[(k1)d1(k2)d2(k3 + k4) + (k1)d1(k2 + k3)d3(k4) + (k1 + k2)d2(k3)d3(k4)] 
          − [(k1)d1(k2)d2(k3)d3(k4)] 
 
With five lenses the following is obtained: 
K5 =   [k1 + k2 + k3 + k4 + k5] 
          − [(k1)d1(k2 + k3 + k4 + k5) + (k1 + k2)d2(k3 + k4 + k5) 
                + (k1 + k2 + k3)d3(k4 + k5) + (k1 + k2 + k3 + k4)d4(k5)] 
          +[(k1)d1(k2)d2(k3 + k4 + k5) + (k1)d1(k2 + k3)d3(k4 + k5) 
                +(k1)d1(k2 + k3 + k4)d4(k5) + (k1 + k2)d2(k3)d3(k4 + k5) 
                +(k1 + k2)d2(k3 + k4)d4(k5) + (k1 + k2 + k3)d3(k4)d4(k5)] 
         − [(k1)d1(k2)d2(k3)d3(k4 + k5) + (k1)d1(k2)d2(k3 + k4)d4(k5) 
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                +(k1)d1(k2 + k3)d3(k3)d4(k5) + (k1 + k2)d2(k3)d3(k3)d4(k5)] 
          +[(k1)d1(k2)d2(k3)d3(k4)d4(k5)] 
 

2.2 Proposed Formula for Image Focal Length of a System of n 

Lenses 

In the formulas for K3, K4, and K5 the terms having the same number of factors of the d’s 
are grouped together by using square brackets. The sum of the terms in the (m+1)th pair 
of square brackets is denoted by Tm.  
 
The following pattern seems to be developing: 

 Kn is composed of T0, T1, …, Tn-1. 

 The sign preceding Tm is (-1)m. 

 Tm is a sum with each summand being a product of the following factors: m d’s 
and m+1 sums of k’s, with each sum of k’s enclosed in a pair of parentheses, (). 

Note: The k’s in each pair of parentheses are dependent on the choice of the 
d’s. Each summand has m d factors out of a possible of n-1 d’s. Thus, the 
number of summands in Tm is n-1Cm. 

 
A typical summand in Tm is 

(k1 + ⋯+ ka1
)da1

(ka1+1 + ⋯+ ka2
)da2

… (kam−1+1 + ⋯+ kam
)dam

(kam+1 + ⋯+ kn), 

where the ar’s are integers satisfying 1 ≤ a1 < … < am ≤ n-1.  

 = {∏ (kas−1+1 + ⋯+ kas
)das

m
s=1 }{kam+1 + ⋯+ kn}, where additionally a0 = 0 

 = {∏ [(∑ krs

as
rs=as−1+1 )das

]m
s=1 }{∑ krm+1

n
rm+1=am+1 } 

 = ∏ [(∑ krs

as
rs=as−1+1 )das

]m+1
s=1 , where additionally am+1 = n and dn = 1 

 
For a fixed m, by giving the a’s all possible combinations of values satisfying 0 = a0 < a1 

< … < am < am+1 = n, all the summands in Tm are obtained.  
 

Thus: Tm = ∏

[
 
 
 
 

(

 
 

∑ krs

as

rs=as−1+1
0=a0<a1<⋯<am<am+1=n;dn=1 )

 
 

das

]
 
 
 
 m+1

s=1

 

 

In the below, Tm will appear as ∏ [(∑ krs

as
rs=as−1+1

0=a0<a1<⋯<am<am+1=n;dn=1 

)das
]m+1

s=1  

 
 

 Hence: Kn = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

0=a0<a1<⋯<am<am+1=n;dn=1 

)das
]m+1

s=1 }n−1
m=0  
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2.3 Strategy for the Proof of the Proposed Formula 

The above formula for Kn will be assumed to be formula for the Object Focal Length of 
a system of n lenses. This formula (for the object focal length) will be proved by the 
Method of Mathematical Induction and by employing a strategy that is explained in this 
section. 
(Later on, it will be shown that the Object Focal Length equals the Image Focal Length.) 
 
Ln will be replaced by two lenses L`n and Ln+1 (with power k`n and kn+1, respectively) that 
are 

 separated by a distance of dn apart, so that the focal length of the system 
consisting of L`n and Ln+1 is equal to the focal length of Ln 
(meaning that the system consisting of L`n and Ln+1 is equivalent to Ln) 

That is: kn =  k`
n

+ kn+1 − k`
ndnkn+1 

 appropriately positioned so that the object focal length of the new system of n+1 
lenses is equal to the object focal length of the original system of n lenses 
(meaning that the system consisting of the n+1 lenses is equivalent to the system 
consisting of the n lenses) 

 
Ln-1 was at a distance of dn-1 to the left of Ln. The distance d`n-1 (between Ln-1 and L`n) 
will now be determined. 
 
The diagram below shows a ray of light AC, parallel to the principal axis XY of Ln, being 
refracted at C and then intersects XY at F, the object focal point of Ln. 
Ln is replaced with L`n and Ln+1 so as to maintain the same the object focal point and the 
same object focal length. Therefore, the ray AB is refracted at B by Ln+1 and is 
subsequently refracted at D by L`n so as to pass through F. 
Ln+1, Ln, L`n and intersect XY at P, H and Q, respectively. BD intersects XY at G and DF 
intersects AB at C. 
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PQ = dn, PG = fn+1 and HF = fn.  
Let HQ = x. 
 

DQF and CHF are similar triangles. Hence:  
DQ

CH
= 

QF

HF
 

DQG and BPG are similar triangles. Hence:  
DQ

BP
= 

QG

PG
 

Since CH =  BP ⇒
DQ

CH
= 

DQ

BP
⇒

QF

HF
=

QG

PG
⇒

HF−HQ

HF
=

PG−PQ

PG
⇒

fn – x

fn
=

fn+1 – dn

fn+1
  

 ⇒ fn+1(fn − x) = fn(fn+1 − dn) ⇒ fn+1x = fndn ⇒ x =
fndn

fn+1
=

kn+1dn

kn
=

dnkn+1

k`
n+ kn+1− k`

ndnkn+1
 

 
  
 
  
Hence: in the system of n lenses, if Ln is replaced by L`n and Ln+1, satisfying the 
following conditions, then the object focal length of the new system of n+1 lenses is 
equal to the object focal length of the original system of n lenses. 

 L`n and Ln+1 are separated by a distance of dn 

 kn = k`
n

+ kn+1 − k`
ndnkn+1 

 L`n is positioned at a distance of 
dnkn+1

k`
n+ kn+1− k`

ndnkn+1
 from and to the left of where Ln 

was 
 
 
Hence: the distance d`n-1 (between Ln-1 and L`n) is given by 

 d`
n−1 = dn−1 −

dnkn+1

k`
n+ kn+1− k`

ndnkn+1
  

 

 ∴ dn−1 = d`
n−1 +

dnkn+1

k`
n+ kn+1− k`

ndnkn+1
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 ⇒ dn−1kn = (d`
n−1 +

dnkn+1

k`
n+ kn+1− k`

ndnkn+1
) (k`

n + kn+1 − k`
ndnkn+1)  

 
                 = d`

n−1(k
`
n + kn+1 − k`

ndnkn+1) + dnkn+1 

 
                 = dnkn+1 + d`

n−1(k
`
n + kn+1) − d`

n−1k
`
ndnkn+1 

 
 
Hence, if the following replacements are made in the right hand side of the equation   

 Kn = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

0=a0<a1<⋯<am<am+1=n;dn=1 

)das
]m+1

s=1 }n−1
m=0  

 kn is replaced with k`
n + kn+1 − k`

ndnkn+1 

 dn-1kn is replaced with dnkn+1 + d`
n−1(k

`
n + kn+1) − d`

n−1k
`
ndnkn+1 

then we will get the expression for Kn+1. 
 

2.4 Proof of the Formula for Kn 

 Kn = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

0=a0<a1<⋯<am<am+1=n;dn=1 

)das
]m+1

s=1 }n−1
m=0  

 

 ∴ n = 1 ⇒ K1 = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

0=a0<a1<⋯<am<am+1=1;d1=1 

)das
]m+1

s=1 }0
m=0  

 

                        =  ∏ [(∑ krs

as
rs=as−1+1

0=a0<a1=1;d1=1 

)das
]1

s=1 = ∑ kr1

1
r1=1

 
= k1 

 
The formula is trivially true when n = 1. 
 
Assuming that the formula is true for n, it is required to show that it is true for n+1. 
In the below, the square brackets following an expression has the label E# (to identify 
the expression) followed by the applicable constraints [of which 0 = a0 < a1 < ⋯ < am <

am+1 is assumed to always be present]. The red highlight is to draw attention to changes. 
 
 

Let the value of Kn be v. That is: v = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=0 , where 0 = a0 <

a1 < ⋯ < am < am+1 = n; dn = 1 

 
 
Splitting v as E1 (the summand corresponding to m = 0) plus E2 (the summand 
corresponding to m = n-1) plus E3 (the remaining summands), gives 
 

  v = ∏ [(∑ krs

as
rs=as−1+1

 
) das

]1
s=1 [E1; a1 = n, dn = 1] 
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 + (−1)n−1 ∏ [(∑ krs

as
rs=as−1+1

 
) das

]n
s=1 [E2; an = n, dn = 1]  

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−2

m=1 [E3;am+1 = n, dn = 1] 

 
 
In E3, separating out the combinations for am = n-1 (denoted by E4) and for am ≤ n-2 
(denoted by E5), gives 
 

 v = ∏ [(∑ krs

as
rs=as−1+1

 
) das

]1
s=1 [E1; a1 = n, dn = 1] 

 + (−1)n−1 ∏ [(∑ krs

as
rs=as−1+1

 
) das

]n
s=1 [E2; an = n, dn = 1]  

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−2

m=1 [E4; am = n − 1,am+1 = n,dn = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−2

m=1 [E5; am ≤ n − 2,am+1 = n, dn = 1] 

 
 
Recall the condition: 0 = a0 < a1 < ⋯ < am < am+1 = n. 
Therefore: m = n-1 ⇒ ar = r, ∀ r ∈ [0,n] 
In the summand of E4, when m = n-1, E2 is obtained. Hence, merging E4 and E2 gives 
E6. 
In the summand of E5, when m = 0, E1 is obtained. Hence, merging E5 and E1 gives E7. 
  

 ∴ v = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=1 [E6; am = n − 1,am+1 = n,dn = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−2

m=0 [E7; am ≤ n − 2,am+1 = n, dn = 1] 

 
 
Re-writing E6 and E7 as E8 and E9, respectively, gives 
 

 v = ∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1

 
) das

]}m−1
s=1 (∑ krm

n−1
rm=am−1+1 )dn−1kn}

n−1
m=1 [E8; am = n − 1, am+1 = n, dn = 1]  

 +∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1 )das

]}(∑ krm+1
n−1
rm+1=am+1 + kn)

m
s=1 }n−2

m=0 [E9; am ≤ n − 2, am+1 = n, dn = 1] 

 
 
In E8, the constraints am+1 = n and dn = 1 are not needed and will be omitted. 
Also in E8, the constraints am = n - 1 is not needed, but if omitted, it has to be replaced 
with am-1 ≤ n – 2. 
Similarly, in E9, the constraints am+1 = n and dn = 1 are not needed and will be omitted. 
Modifying the constraints gives 
 

 v = ∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1

 
) das

]}m−1
s=1 (∑ krm

n−1
rm=am−1+1 )dn−1kn}

n−1
m=1 [E8; am−1 ≤ n − 2]  

 +∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1 )das

]}(∑ krm+1
n−1
rm+1=am+1 + kn)

m
s=1 }n−2

m=0 [E9; am ≤ n − 2] 

 
 
Ln is now replaced by L`n and Ln+1, so as to have the value v being unchanged.  

That is: kn is to be replaced with k`
n + kn+1 − k`

ndnkn+1, and dn-1kn is to be replaced 

with dnkn+1 + d`
n−1(k

`
n + kn+1) − d`

n−1k
`
ndnkn+1. 

Hence, E8 and E9 become E10 and E11, respectively, as the following shows. 
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   ∴ v = ∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1 )das

]}m−1
s=1 (∑ krm

n−1
rm=am−1+1 )(dnkn+1 + d`

n−1(k
`
n + kn+1) −n−1

m=1

 d`
n−1k

`
ndnkn+1)} [E10; am−1 ≤ n − 2]  

 +∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1 )das

]}(∑ krm+1
n−1
rm+1=am+1 + k`

n + kn+1 − k`
ndnkn+1)

m
s=1 }n−2

m=0 [E11; am ≤ n − 2] 

 
 
Splitting up E10 as E12 + E13 + E14 and E11 as E15 + E16 and dropping the dashes in dn-1 
and kn, for convenience. 
 

 v = ∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1

 
) das

]}m−1
s=1 (∑ krm

n−1
rm=am−1+1 )dnkn+1}

n−1
m=1 [E12; am−1 ≤ n − 2]  

 +∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1

 
) das

]}m−1
s=1 (∑ krm

n−1
rm=am−1+1 )dn−1(kn + kn+1)}

n−1
m=1 [E13; am−1 ≤ n − 2]  

 −∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1

 
) das

]}m−1
s=1 (∑ krm

n−1
rm=am−1+1 ) dn−1kndnkn+1}

n−1
m=1 [E14; am−1 ≤ n − 2] 

 +∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1

 
) das

]} (∑ krm+1

n−1
rm+1=am+1

 
+ kn + kn+1)

m
s=1 }n−2

m=0 [E15; am ≤ n − 2] 

 −∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1

 
) das

]}( kndnkn+1)
m
s=1 }n−2

m=0 [E16; am ≤ n − 2] 

 
 
Re-writing E13 as E17, E14 as E18 and E15 as E19.  
Dropping the dummy variable m by 1 in E16 to give E20. 
 

 v = ∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1

 
) das

]}m−1
s=1 (∑ krm

n−1
rm=am−1+1 )dnkn+1}

n−1
m=1 [E12; am−1 ≤ n − 2]  

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=1 [E17; am−1 ≤ n − 2, am = n − 1, am+1 = n + 1, dn+1 = 1] 

 −∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+2
s=1 }n−1

m=1 [E18; am−1 ≤ n − 2, am = n − 1, am+1 = n, am+2 = n + 1, dn+1 =

1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−2

m=0 [E19; am ≤ n − 2, am+1 = n + 1, dn+1 = 1] 

 +∑ {(−1)m{∏ [(∑ krs

as
rs=as−1+1

 
) das

]}( kndnkn+1)
m−1
s=1 }n−1

m=1 [E20; am−1 ≤ n − 2] 

 
 
Adding E12 and E20 to give E21; as the following shows. 

 E12  +  E20 = ∑ {((−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m−1
s=1 ) ((∑ krm

n−1
rm=am−1+1

 
) dnkn+1 +n−1

m=1

 kndnkn+1)} [E21; am−1 ≤ n − 2] 

 = ∑ {((−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m−1
s=1 ) ((∑ krm

n−1
rm=am−1+1

 
+ kn) dnkn+1)}

n−1
m=1 [E21; am−1 ≤ n − 2] 

 = ∑ {((−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m−1
s=1 ) ((∑ krm

n
rm=am−1+1

 
) dnkn+1)}

n−1
m=1 [E21; am−1 ≤ n − 2] 

 = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=1 [E21; am−1 ≤ n − 2, am = n, am+1 = n + 1, dn+1 = 1] 

 

Splitting E17 as E22 (the summand corresponding to m = n-1) plus E23 (the remaining 
summands). 
Dropping the dummy variable m by 1 in E18 to give E24. 
Splitting E19 as E25 (the summand corresponding to m = 0) plus E26 (the remaining 
summands). 
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 v = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=1 [E21; am−1 ≤ n − 2, am = n, am+1 = n + 1, dn+1 = 1] 

 +(−1)n−1 ∏ [(∑ krs

as
rs=as−1+1

 
) das

]n
s=1 [E22; an−2 ≤ n − 2, an−1 = n − 1, an = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−2

m=1 [E23; am−1 ≤ n − 2, am = n − 1, am+1 = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n

m=2 [E24; am−2 ≤ n − 2, am−1 = n − 1, am = n, am+1 = n + 1, dn+1 =

1] 

 +∏ [(∑ krs

as
rs=as−1+1

 
) das

]1
s=1 [E25; a1 = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−2

m=1 [E26; am ≤ n − 2, am+1 = n + 1, dn+1 = 1] 

 
 
Splitting E21 as E27 (the summand corresponding to m = 1) plus E28 (the remaining 
summands). 
Merging E23 (with am = n-1) and E26 (with am ≤ n-2) to give E29 (with am ≤ n-1). 
Splitting E24 as E30 (the summand corresponding to m = n) plus E31 (the remaining 
summands). 
 

   v = −∏ [(∑ krs

as
rs=as−1+1

 
) das

]2
s=1 [E27; a1 = n, a2 = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=2 [E28; am−1 ≤ n − 2, am = n, am+1 = n + 1, dn+1 = 1] 

 +(−1)n−1 ∏ [(∑ krs

as
rs=as−1+1

 
) das

]n
s=1 [E22; an−2 ≤ n − 2, an−1 = n − 1, an = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−2

m=1 [E29; am ≤ n − 1, am+1 = n + 1, dn+1 = 1] 

 +(−1)n ∏ [(∑ krs

as
rs=as−1+1

 
) das

]n+1
s=1 [E30; an−2 ≤ n − 2, an−1 = n − 1, an = n, an+1 = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=2 [E31; am−2 ≤ n − 2, am−1 = n − 1, am = n, am+1 = n + 1, dn+1 =

1] 

 +∏ [(∑ krs

as
rs=as−1+1

 
) das

]1
s=1 [E25; a1 = n + 1, dn+1 = 1] 

  
 
Merging E28 (with am-1 ≤ n-2) and E31 (with am-1 = n-1) to give E32 (with am-1 ≤ n-1). 
In the summand of E29, when m = n-1, E22 is obtained. Hence, merging E29 and E22 
gives E33. 
 

  v = −∏ [(∑ krs

as
rs=as−1+1

 
) das

]2
s=1 [E27; a1 = n, a2 = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=2 [E32; am−1 ≤ n − 1, am = n, am+1 = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=1 [E33; am ≤ n − 1, am+1 = n + 1, dn+1 = 1]  

 +(−1)n ∏ [(∑ krs

as
rs=as−1+1

 
) das

]n+1
s=1 [E30; an−2 ≤ n − 2, an−1 = n − 1, an = n, an+1 = n + 1, dn+1 = 1] 

 +∏ [(∑ krs

as
rs=as−1+1

 
) das

]1
s=1 [E25; a1 = n + 1, dn+1 = 1] 

 
 
Splitting E33 as E34 (the summand corresponding to m = 1) plus E35 (the remaining 
summands). 
 

  v = −∏ [(∑ krs

as
rs=as−1+1

 
) das

]2
s=1 [E27; a1 = n, a2 = n + 1, dn+1 = 1] 
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 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=2 [E32; am−1 ≤ n − 1, am = n, am+1 = n + 1, dn+1 = 1] 

 −∏ [(∑ krs

as
rs=as−1+1

 
) das

]2
s=1 [E34; a1 ≤ n − 1, a2 = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=2 [E35; am ≤ n − 1, am+1 = n + 1, dn+1 = 1] 

 +(−1)n ∏ [(∑ krs

as
rs=as−1+1

 
) das

]n+1
s=1 [E30; an−2 ≤ n − 2, an−1 = n − 1, an = n, an+1 = n + 1, dn+1 = 1] 

 +∏ [(∑ krs

as
rs=as−1+1

 
) das

]1
s=1 [E25; a1 = n + 1, dn+1 = 1] 

 
 
Merging E27 (with a1 = n) and E34 (with a1 ≤ n-1) to give E36 (with a1 ≤ n). 
Merging E32 (with am = n) and E35 (with am ≤ n-1) to give E37 (with am ≤ n). 
 

  v = −∏ [(∑ krs

as
rs=as−1+1

 
) das

]2
s=1 [E36; a1 ≤ n, a2 = n + 1, dn+1 = 1] 

 +∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n−1

m=2 [E37; am ≤ n, am+1 = n + 1, dn+1 = 1] 

 +(−1)n ∏ [(∑ krs

as
rs=as−1+1

 
) das

]n+1
s=1 [E30; an−2 ≤ n − 2, an−1 = n − 1, an = n, an+1 = n + 1, dn+1 = 1] 

 +∏ [(∑ krs

as
rs=as−1+1

 
) das

]1
s=1 [E25; a1 = n + 1, dn+1 = 1] 

 
 
In the summand of E37, when m = 0, 1 and n, the following are obtained: E25, E36, and 
E30, respectively. 
 

  ∴ v = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

 
) das

]m+1
s=1 }n

m=0 [0 = a0 < a1 < ⋯ < am < am+1 = n + 1, dn+1 = 1] 

       = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

0=a0<a1<⋯<am<am+1=n+1,dn+1=1
 

)das
]m+1

s=1 }n
m=0  

 
 
This expression for v is the same as the expression for Kn, except that n has been 
replaced with n+1. This concludes the proof of the formula for the Object Focal Length 
of a system of n lenses. 
 

2.5 Proof that Object Focal Length equals Image Focal Length 

The Object Focal Length of a system of n lenses is given by 

 Kn(k1, d1, k2, d2, … , kn−1, dn−1, kn) = ∑ {(−1)m ∏ [(∑ krs

as
rs=as−1+1

0=a0<a1<⋯<am<am+1=n;dn=1 

)das
]m+1

s=1 }n−1
m=0  

 
Therefore, the Image Focal Length, say v,  of the system is given by 
 v =  Kn(kn, dn−1, kn−1, … , d2, k2, d1, k1) 
That is: by interchanging dr and dn-r, ∀ r ∈ [1,n-1] and by interchanging kr and kn+1-r, ∀ r ∈ 
[1,n], in the expression for Kn(k1, d1, k2, d2 … , kn), we will get the formula for the image focal 
length, v. 
Note: in order to simplify the algebra, d0 (just like dn) is defined to be 1; and the 
interchanging of dr and dn-r will be done ∀ r ∈ [1,n]. 
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  ∴ v = ∑ {(−1)m ∏ [(∑ kn+1−rs

as
rs=as−1+1

0=a0<a1<⋯<am<am+1=n;dn=1 

)dn−as
]m+1

s=1 }n−1
m=0  

 
In the expression for v, changing dummy variables from r’s to t’s via tm+2-s = n+1-rs, gives 

 v = ∑ {(−1)m ∏ [(∑ ktm+2−s

n+1−as
tm+2−s=n−as−1

0=a0<a1<⋯<am<am+1=n;dn=1 

)dn−as
]m+1

s=1 }n−1
m=0  

 
Changing variables from a’s to b’s via bm+1-s = n-as gives 

 v = ∑ {(−1)m ∏ [(∑ ktm+2−s

bm+1−s+1

tm+2−s=bm+2−s
0=b0<b1<⋯<bm<bm+1=n;dn=1 

) dbm+1−s
]m+1

s=1 }n−1
m=0  

 
Changing dummy variable from s to x via x = m+2-s gives 

 v = ∑ {(−1)m ∏ [(∑ ktx
bx−1+1

tx=bx
0=b0<b1<⋯<bm<bm+1=n;dn=1  

)dbx−1
]1

x=m+1 }n−1
m=0  

 
Interchanging the upper and the lower limits of both the inner sum and the product 

 v = ∑ {(−1)m ∏ [(∑ ktx
bx

tx=bx−1+1
0=b0<b1<⋯<bm<bm+1=n;dn=1  

)dbx−1
]m+1

x=1 }n−1
m=0  

   = ∑ {(−1)m ∏ [(∑ ktx
bx

tx=bx−1+1
0=b0<b1<⋯<bm<bm+1=n;dn=1  

)]m+1
x=1 [db0

db1
… . dbm−1

dbm
]}n−1

m=0  

 

Now, b0 = 0 and d0 = 1.  ∴ db0
= 1 

Also, bm+1 = n and dn = 1.  ∴ dbm+1
= 1 

Hence, db0
= dbm+1

 

 

 ∴ v = ∑ {(−1)m ∏ [(∑ ktx
bx

tx=bx−1+1
0=b0<b1<⋯<bm<bm+1=n;dn=1  

)]m+1
x=1 [db1

… . dbm−1
dbm

dbm+1
]}n−1

m=0  

        = ∑ {(−1)m ∏ [(∑ ktx
bx

tx=bx−1+1
0=b0<b1<⋯<bm<bm+1=n;dn=1  

)dbx
]m+1

x=1 }n−1
m=0  (i.e. the Object Focal Length) 

 
Thus: Image Focal Length = Object Focal Length, and this common value is called the 
Focal Length. 
 
Hence: Kn(kn, dn−1, kn−1, … , d2, k2, d1, k1) = Kn(k1, d1, k2, d2, … , kn−1, dn−1, kn); with d0 = dn = 1. 
That is, if the first lens and the last lens were to interchange positions, the second lens 
and the second to last lens were to interchange positions, etc., then the focal length of 
the system remains unchanged. 
 



pg. 13 

 

3.0 Generalized Formulas for h1 and h2 

The diagram below shows a system of n lenses, in which the rth lens is denoted by Lr. 
The following notations are used 

 the image focus is denoted by In,2 

 the second principal point is denoted by Hn,2 

 the focal length is Fn (the distance In,2Hn,2) 

 the distance between Ln and Hn,2 (i.e. DHn,2) is denoted by hn,2 

 the distance between L1 and Hn,1 (the first principal point) is denoted by hn,1 
 
With Ln being absent, i.e. we are dealing with a system of n-1 lenses, the corresponding 
points and lengths are denoted by n being replaced with n-1. 
 

 
 
In the absence of Ln, an infinitely distant object has its image at In-1,2. Therefore, a 

virtual object at In-1,2 will have its real image (under refraction by Ln acting alone) at In,2. 

Thus:  

 the object distance, u = -(DIn-1,2) = -(Hn-1,2In-1,2 - Hn-1,2D)  

                                   = -(Hn-1,2In-1,2 – {Hn-1,2C + CD}) = -(Fn-1 -  hn-1,2 - dn-1) 

 the image distance, v = DIn,2 = Hn,2In,2 - Hn,2D = Fn - hn,2 

 

Using 
1

u
+

1

v
=

1

f
 (with Ln acting alone), gives 

 
1

−(Fn−1 –  hn−1,2 − dn−1 )
+

1

Fn – hn,2
=

1

fn
 

 

 ⇒ 
1

Fn –  hn,2
=

1

fn
+

1

Fn−1 –  hn−1,2  – dn−1 
=

1

fn
−

1

 dn−1 – (Fn−1 –  hn−1,2)
 

 

 ⇒ Fn –  hn,2 =
1

1

fn
 – 

1

 dn−1 − (Fn−1−  hn−1,2)

, a recurrence relation (referred to as R1 below) for Fn –  hn,2 
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 ⇒ hn,2 = Fn −
1

1

fn
 – 

1

 dn−1 − (Fn−1 −  hn−1,2)

 

 

            = Fn −
1

1

fn
 − 

1

 dn−1 – 
1

1
fn−1

 – 
1

 dn−2 − (Fn−2 −  hn−2,2)

, by application of R1 

               ⋮ 
              =  Fn −

1
1

fn
 − 

1

 dn−1 – 
1

1
fn−1

 – 
1
⋱

              
1

 d2 – 
1

1
f2

 – 
1

 d1 − f1

  

 

Hence: hn,2 = Fn −
1

1

fn
 − 

1

 dn−1 – 
1

1
fn−1

 – 
1
⋱

              
1

 d2 – 
1

1
f2

 – 
1

 d1 − f1

 

 
 
By interchanging dr and dn-r and interchanging fr and fn+1-r, ∀ r ∈ [1,n], in the expression 
for hn,2, we will get the formula for hn,1. 
 

Hence: hn,1 = Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2

 – 
1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

 dn−1 − fn
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4.0 Generalized Gaussian Lens Equation 

Let the distance between 

 an object and the first lens be u 

 the image and the last lens be v 

 the first lens and the first principal point be hn,1 

 the last lens and the second principal point be hn,2 
 

Then, the following holds: 
1

u + hn,1
+

1

v + hn,2
=

1

Fn
 

 
This will be proved by mathematical induction; with the last lens Ln being replaced with 
L`n and Ln+1.  
   
The result is true for n = 1 (where h1,1 = h1,2 = 0).  
It is also true when n = 2 (a standard result). 
 
The diagram below show an object O and its image I formed by a system of lenses.  
 

 
 
Initially, there were n lenses; L`n and Ln+1 were not present. 
Ln is then replaced with an equivalent system of 2 lenses, L`n and Ln+1, meaning that  

 if L`n and Ln+1 are separated by a distance of dn apart, and kn, k`n and kn+1 are the 
power of Ln, L`n and Ln+1, respectively, then 

o kn = k`
n

+ kn+1 − k`
ndnkn+1; or in terms of focal length 

1

fn
=

1

f`n
+

1

fn+1
−

dn

f`nfn+1
 

That is: fn =
f`nfn+1

f`n+ fn+1− dn
; referred to as Result R2, below. 

o L`n is positioned at a distance of 
dnkn+1

k`
n+ kn+1− k`

ndnkn+1
 (or 

dnf`n

f`n+ fn+1− dn
) from and 

to the left of where Ln was 
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That is: DE = 
dnf`n

f`n+ fn+1− dn
 

 the focal length of the new system of n+1 lenses is equal to the focal length of 
the old system of n lenses 

 the position of the image focus G remains unchanged 

 the position of the image I remains unchanged 
 
The idea of the above is to simplify the algebra required to show that if 

“
1

u + hn,1
+

1

v + hn,2
=

1

Fn
” is true for a specific value of n, say when n = c, then the formula is 

also true when n = c+1.  
 
The following notations are used (before the replacement of Ln with L`n and Ln+1) 

 distance between  
o object and L1 (i.e. OA) = u 
o image and Ln (i.e. EI) = v 
o first principal point and L1 = hn,1 
o second principal point and Ln (i.e. CE) = hn,2 
o Ln-1 and Ln (i.e. BE) = dn-1 

 focal length of system (i.e. CG) = Fn 
 
The following notations are used (after the replacement of Ln with L`n and Ln+1) 

 distance between  
o object and L1 (i.e. OA) = u 
o image and Ln+1 (i.e. FI) = v` = EI – EF = EI – (DF – DE)  

= v − dn + 
dnf`n

f`n+ fn+1− dn
 

That is: v = v` + dn − 
dnf`n

f`n+ fn+1− dn
; referred to as Result R3, below. 

o first principal point and L1 = h`n+1,1 
o second principal point and Ln+1 = h`n+1,2 = CF = CE + EF = CE + (DF – DE) 

= hn,2 + dn − 
dnf`n

f`n+ fn+1− dn
 

That is: h`n+1,2 = hn,2 + dn − 
dnf`n

f`n+ fn+1− dn
; referred to as Result R4, below. 

o Ln-1 and L`n (i.e. BD) = d`n-1 = BE – DE = dn−1 − 
dnf`n

f`n+ fn+1− dn
 

That is: dn−1 = d`
n−1 + 

dnf`n

f`n+ fn+1− dn
; referred to as Result R5, below. 

 focal length of system = F`n+1 = Fn 
 
 
With the above arrangement in place, it will now be shown that hn,1 = h`n+1,1 
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 hn,1 = Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2

 – 
1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

 dn−1 − fn

 

 

          =  Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2

 – 
1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

(d`
n−1 +  

dnf`n
f`n+ fn+1− dn

) − (
f`nfn+1

f`n+ fn+1− dn
 )

,  

[Using Result R5 and Result R2, above.] 
 

          =  Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2

 – 
1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`
n−1 +  f`n(

dn − fn+1
f`n+ fn+1 − dn

)  

  

 

      =  Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2

 – 
1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`
n−1 +  f`n

(

 
 1

f`n
dn − fn+1

 − 1
)

 
 

  

  

 

      =  Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2

 – 
1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`
n−1 −  f`n

(

 
 1

1 −  
f`n

dn − fn+1)

 
 

  

  

 

       =  Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2

 – 
1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`
n−1 −  f`n

(

 
 1

f`n
f`n

 −  
f`n

dn − fn+1)
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       =  Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2

 – 
1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`
n−1− 

1
1

f`n
 −  

1
dn − fn+1

  

 

= h`n+1,1 
 
The fact that that hn,1 = h`n+1,1 should not be surprising, since the object focus, the 
(object) focal length and the position of L1 all remain unchanged when Ln is replaced 
with an equivalent system of two lenses, L`n and Ln+1. 
 
 

Now, for the Mathematical Induction, assume that 
1

u + hn,1
+

1

v + hn,2
=

1

Fn
. 

Since hn,1 = h`n+1,1, v = v` + dn − 
dnf`n

f`n+ fn+1− dn
 (Result R3) and Fn = F`n+1, this implies that 

 

 
1

u + h`
n+1,1

+
1

v` + dn − 
dnf`n

f`n+ fn+1− dn
  +  hn,2

=
1

F`
n+1

 

 

 ∴
1

u + h
`
n+1,1

+ 1

v`  + h
`
n+1,2

= 1

F`
n+1

, since h`n+1,2 = hn,2 + dn − 
dnf`n

f`n+ fn+1− dn
 (Result R4) 

 

Dropping the dashes, for convenience, gives 
1

u + hn+1,1
+

1

v  + hn+1,2
=

1

Fn+1
 

 

Thus: the formula 
1

u + hn,1
+

1

v + hn,2
=

1

Fn
 is true for all positive integer values of n.  
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5.0 Other Formulas 

In this section, the following is proved: 
Fn

Fn+1
=

Fn −  hn,2 − dn

Fn+1 −  hn+1,2 
=

hn,2+ dn

hn+1,2
=

fn+1

fn+1 +  hn+1,2 −  Fn+1
 

 
The diagram below shows a ray of light, parallel to the principal axis of the system of 
n+1 lenses, being refracted by the system so as to go through H, the image focus of the 
system. In the absence of Ln+1, the ray would have gone through I, the image focus of 
the system of the preceding n lenses. 
  

 
 

BFH and CGH are similar triangles. Hence: 
BF

CG
=

FH

GH
=

FH

FH − FG
=

Fn+1

Fn+1 −  hn+1,2 
 

Also, ADI and CGI are similar triangles. Hence: 
AD

CG
=

DI

GI
=

DI

DI−DG
=

DI

DI−(DE+EG)
=

Fn

Fn −  hn,2 − dn
 

 
BF = AD.  

Hence, 
BF

CG
=

AD

CG
. 

 ∴
Fn+1

Fn+1 −  hn+1,2 
= Fn

Fn −  hn,2 − dn
  or  

Fn −  hn,2 − dn

Fn+1 −  hn+1,2 
=

Fn

Fn+1
 

 
 

Continuing: (Fn −  hn,2  −  dn)Fn+1 = (Fn+1 −  hn+1,2)Fn 

                    ⇒ (hn,2 +  dn)Fn+1 = hn+1,2Fn 

                    ⇒
hn,2+ dn

hn+1,2
=

Fn

Fn+1
 

 
 

Recall recurrence relation R1: Fn – hn,2 = 
1

1

fn
 – 

1

 dn−1 − (Fn−1 –  hn−1,2)

 



pg. 20 

 

 

∴
1

Fn – hn,2
= 1

fn
 – 1

 dn−1 − (Fn−1 –  hn−1,2)
⇒ 1

 dn−1 − (Fn−1 –  hn−1,2)
= 1

fn
 – 1

Fn – hn,2
= 

Fn – hn,2− fn
fn(Fn – hn,2)

    

 

 ⇒
 dn−1 − Fn−1+  hn−1,2

Fn – hn,2
 =  

fn

Fn – hn,2− fn
  

 

Increasing n by 1 gives  
 dn − Fn+  hn,2

Fn+1 –  hn+1,2
 =  

fn+1

Fn+1 – hn+1,2 −  fn+1
, 

or  
Fn −  hn,2 − dn

Fn+1 –  hn+1,2
 =  

fn+1

fn+1 +  hn+1,2 −  Fn+1
 

 
 

Hence: 
Fn

Fn+1
=

Fn −  hn,2 − dn

Fn+1 −  hn+1,2 
=

hn,2+ dn

hn+1,2
=

fn+1

fn+1 +  hn+1,2 −  Fn+1
 

 
 
Note the following (which will be used in the next section): 

 
 dn+  hn,2 − Fn 

Fn
=

 hn+1,2 − Fn+1 

Fn+1
 ; referred to as Result R6 

   
fn+1 +  hn+1,2 −  Fn+1

fn+1Fn+1
=

1

Fn
; referred to as Result R7 

 
 
Also, by interchanging dr and dn+1-r ∀ r ∈ [1,n], and interchanging fr and fn+2-r, ∀ r ∈ 

[1,n+1], the following is obtained: 
F`n

Fn+1
=

F`n −  h`n,1 − d1

Fn+1 −  hn+1,1 
=

h`n,1+ d1

hn+1,1
=

f1

f1 +  hn+1,1 −  Fn+1
, where, 

in the system of n lenses where the first lens is absent, 

 F`n,1 is the focal length 

 h`n,1 is the distance between the first principal point and L2 (previously the second 
lens) 
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6.0 Magnification Formula 

The transverse magnification Mn of a system of n lenses is given by Mn = 
v  + hn,2

Fn
− 1. 

This will be proved by the method of induction. 
The formula is trivially true when n = 1, since h1,2 = 0. 
Also, the formula is a standard one when n = 2. 
 
The diagram below shown an image In being produced by an object O under the effect 

of a system of n lenses (only the last lens Ln is being shown). 
Therefore, the image distance v = AIn 
 

 

 
In (considered as a virtual object) gives rise to a real image In+1 under the effect of Ln+1. 

Therefore, for Ln+1 

 the object distance, u = -BIn (the negative sign; because of the virtual object)  

                                   = -(AIn – AB) = -(v – dn)  

 The image distance v` = BIn+1 

 

For Ln+1, using “
1

u 
+

1

v 
=

1

f
” gives  

1

−(v − dn)
+

1

v` 
=

1

fn+1
 ⇒

1

(v − dn) 
=

1

v` 
−

1

fn+1
=

fn+1 − `v 

v` fn+1
 

 

 ⇒ v − dn =
v` fn+1

fn+1 − `v 
⇒ v = dn +

v` fn+1

fn+1 − `v 
; referred to as Result R8 

 
 

Assume that Mn = 
v  + hn,2

Fn
− 1. 

Then, Mn+1 = (
v  + hn,2

Fn
− 1) (−{

v`

fn+1
− 1}) 

[Note: the negative sign is because the object for Ln+1 is a virtual object.] 
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 ∴ Mn+1 = −(
{dn+

v` fn+1
fn+1 − `v 

} + hn,2

Fn
− 1) (

v`

fn+1
− 1); using Result R8 

 

            = −(

{dn+ hn,2}{fn+1 − `v} + v` fn+1
(fn+1 − `v)

  

 Fn
− 1) (

v`− fn+1

fn+1
) 

 

            = −(
{dn+ hn,2}{fn+1 − `v} + v` fn+1 − (fn+1 − `v)Fn 

(fn+1 − `v)Fn
) (

v`− fn+1

fn+1
) 

 

            =
  {dn+ hn,2−  Fn}{fn+1 − `v} + v`fn+1

fn+1Fn
=

  {dn+ hn,2−  Fn}{fn+1 − `v}

fn+1Fn
+

v`

Fn
  

             

            = (
 dn+ hn,2−  Fn

Fn
) (1 −

 `v

fn+1
) +

v`

Fn
   

 

            = (
hn+1,2 − Fn+1 

Fn+1
) (1 −

 `v

fn+1
) +

v`

Fn
; using Result R6 

 

            = 
hn+1,2 − Fn+1 

Fn+1
−

(hn+1,2 − Fn+1 )v`

fn+1Fn+1
+

v`

Fn
    

  

           = 
hn+1,2 – Fn+1 

Fn+1
− 

(hn+1,2 – Fn+1 + fn+1)v`

fn+1Fn+1
+

v`

Fn+1
+

v`

Fn
  [adding and subtracting 

v`

Fn+1
] 

            

           = 
hn+1,2 – Fn+1 

Fn+1
−

v`

Fn
+

v`

Fn+1
+

v`

Fn
; using Result R7 

 

           = 
v`+ hn+1,2 − Fn+1 

Fn+1
=

v`+ hn+1,2 

Fn+1
− 1 

 
The induction step is completed. 
 
 


