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PREFACE

Shortly after its reorganization in 1894 as a national body the

American Mathematical Society inaugurated the plan of holding,

at intervals of two to four years, Colloquia or courses of lectures

given by representative members in their special fields. The

Seventh Colloquium of the Society was held at Madison, Septem-

ber 10-13, 1913.

Before the Society became a national organization, a Collo-

quium was held at Evanston, in 1893, at which Professor Klein,

of Gottingen, was the sole speaker.* Then followed:

The Buffalo Colloquium, 1896

(a) Professor Maxime Bochek, of Harvard University: Linear

Differential Equations, and Their Applications.

This Colloquium has not been published, but several papers

appeared at about the time of the Colloquium, in which the

author dealt with topics treated in the lectures.f

(b) Professor James Pierpont, of Yale University: Galois's

Theory of Equations.

Published in the Annals of Mathematics, series 2, volumes 1

and 2 (1900).

The Cambkidge Colloquium, 1898

(a) Professor William F. Osgood, of Harvard University:

Selected Topics in the Theory of Functions.

Published in the Bulletin of the American Mathematical Society,

volume 5 (1898), pages 59-87.

* The first edition of this Colloquium was exhausted, and a second^edition

was published by the Society. The title is: The Evanston Colloquium,

Lectures on Mathematics; New York, American Mathematical Society, 1911.

f Two of these papers were: "Regular points of linear differential equations

of the second order," Harvard University, 1896; "Notes on some points in the

theory of linear differential equations," Annals of Mathematics, vol. 12 (1898).
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11 PREFACE.

(b) Professor Arthur G. Webstee, of Clark University: The

Partial Differential Equations of Wave Propagation.

The Ithaca Colloquium, 1901

(a) Professor Oskae Bolza, of the University of Chicago: The

Simplest Type of Problems in the Calculus of Variations.

Published in amplified form under the title: Lectures on the

Calculus of Variations, Chicago, 1904.

(&) Professor Ernest W. Brown, of Haverford College: Modern

Methods of Treating Dynamical Problems, and in Par-

ticular the Problem of Three Bodies.

Beginning with the lectures of 1903, the Colloquia have been

published as monographs, and are here numbered accordingly.

I. The Boston Colloquium, 1903

(a) Professor Henry S. White, of Northwestern University:

three lectures on Linear Systems of Curves on Algebraic

Surfaces.

(6) Professor Frederick S. Woods, of the Massachusetts In-

stitute of Technology: three lectures on Forms of Non-

Euclidean Space.

(c) Professor Edward B. Van Vleck, of Wesleyan University:

six lectures on Selected Topics in the Theory of Divergent

Series and Continued Fractions.

Published for the Society under the title : The Boston Collo-

quium Lectures on Mathematics. New York, The Macmillan

Company, 1905.

'--> II. The New Haven Colloquium, 1906

(a) Professor Eliakim H. Moore, of the University of Chicago:

five lectures on an Introduction to a Form of General

Analysis.

(b) Professor Ernest J. Wilczynski, of the University of Cali-

fornia: four lectures on Projective Differential Geometry.
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(c) Professor Max Mason, of Yale University: four lectures on

Selected Topics in the Theory of Boundary Value Problems

of Differential Equations.

Published under the title: The New Haven Mathematical

Colloquium. Yale University Press, 1910.

III. The Princeton Colloquium, 1909

(a) Professor Gilbert A. Bliss, of the University of Chicago:

four lectures on Fundamental Existence Theorems.

(b) Professor Edward Kasner, of Columbia University: four

lectures on Differential-Geometric Aspects of Dynamics.

Published under the title: The Princeton Colloquium Lectures

on Mathematics. New York, American Mathematical Society,

1913.

It is contemplated that the Society will henceforth regularly

publish the Colloquia, and thus the present volume appears as

Volume IV in the series.

IV. The Madison Colloquium, 1913

(a) Professor Leonard E. Dickson, of the University of Chicago

:

five lectures on Invariants and the Theory of Numbers.

(b) Professor William F. Osgood, of Harvard University : five

lectures on Topics in the Theory of Functions of Several

Complex Variables.
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ON INVARIANTS AND THE THEORY
OF NUMBERS

BY

LEONARD EUGENE DICKSON

INTRODUCTION

A simple theory of invariants for the modular forms and linear

transformations employed in the theory of numbers should be

of an importance commensurate with that of the theory of

invariants in modern algebra and analytic projective geometry,

and should have the advantage of introducing into the theory

of numbers methods uniform with those of algebra and geometry.

In considering the invariants of a modular form (a homo-

geneous polynomial with integral coefficients taken modulo p,

where p is a prime), we see at once that the rational integral

invariants of the corresponding algebraic form with arbitrary

variables as coefficients give rise to as many modular invariants

of the modular form, and that there are numerous additional

invariants peculiar to the case of the theory of numbers. More-

over, nearly all of the processes of the theory of algebraic in-

variants, whether symbolic or not, either fail for modular in-

variants or else become so complicated as to be useless. For

instance, the annihilators are no longer linear differential oper-

ators. The attempt to construct a simple theory of modular

invariants from the standpoints in vogue in the algebraic theory

was a failure, although useful special results were obtained in

this laborious way. Later I discovered a new standpoint which

led to a remarkably simple theory of modular invariants. This

standpoint is of function-theoretic character, employing the

2 1



2 THE MADISON COLLOQUIUM.

values of the invariant, and using linear transformations only in

the preliminary problem of separating into classes the particular

forms obtained by assigning special values to the coefficients of

the ground form. As to the practical value of the new theory as

a working tool, it may be observed that the problem to find a

fundamental system of modular seminvariants of a binary form is

from the new standpoint a much simpler problem than the cor-

responding one in the algebraic case; indeed, we shall exhibit

explicitly the fundamental system of modular seminvariants for a

binary form of general degree.

It will now be clear why these Lectures make no use of the

technical theories of algebraic invariants. On the contrary, they

afford an introduction to that subject from a new standpoint

and, in particular, throw considerable new light on the relations

between the subjects of rational integral invariants and tran-

scendental invariants of algebraic forms and the corresponding

questions for seminvariants. Again, I shall make no use of

technical theory of numbers, presupposing merely the concepts

of congruence and primitive roots, Fermat's theorem, and (in

Lectures III and V) the concept of quadratic residues.

The developments given in these Lectures are new, with .

exceptions in the case of Lecture I, which presents an intro-

duction to the theory, and in the case of the earlier and final

sections of Lecture III. But in these cases the exposition is

considerably simpler and more elementary than that in my
published papers on the same topics. The contacts with the

work of other writers will be indicated at the appropriate places.

Much light is thrown upon the unsolved problem of Hurwitz

concerning formal invariants.

In many parts of these Lectures, I have not aimed at complete

generality and exhaustiveness, but rather at an illumination of

typical and suggestive topics, treated by that particular method
which I have found to be the best of various possible methods.

Surely in a new subject in which most of the possible methods are

very complex, it is desirable to put on record an account of the
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simple successful methods. Finally, it may be remarked that

the present theory is equally simple when the coefficients of the

forms and linear transformations are not integers, but are ele-

ments of any finite field.

I am much indebted to Dr. Sanderson and Professors Cole

and Glenn for reading the proof sheets.



LECTURE I

A THEORY OF INVARIANTS APPLICABLE TO ALGEBRAIC AND
MODULAR FORMS

Introduction to the Algebraic Side of the Theory by

Means of the Example of an Algebraic Quadratic

Form in m Variables, §§ 1-3

1. Classes of Algebraic Quadratic Forms.—Let the coefficients of

m

(I

J

C[m = Z—i PijXiZj {Pji
=

Pij)

be ordinary real or complex numbers. Let the determinant

(2) D=*\Pif\ (i,j=l,---,m)

of a particular form qm be of rank r (r > 0) ; then every minor of

order exceeding r is zero, while at least one minor of order r is

not zero. There exists a linear transformation of determinant

unity which replaces this qm by a form*

(3) aixx
2 + • • • + arxr

2
(«i + 0, • • •, aT 4= 0).

Indeed, if j8n =|= 0, we obtain a form lacking XiX2 ,
• • , X\Xm by

substituting

xi - ftf^GSiaafc + • • • + jSwCm)

for Xi. If j8n = 0, j8« 4= 0, we substitute ar< for xx and — x\

for xv, while, if every fikh = 0, and j3i2 4= 0, we substitute

Xi + xi for x2 ; in either case we obtain a form in which the co-

efficient of Xi
2

is not zero. We now have aiXx2 + <£, where

ai + and </> involves only x2 , , *«. Proceeding similarly

with </>, we ultimately obtain a form (3).

Now (3) is replaced by a similar form having ax
= 1 by the

* Note for later use that each ah and each coefficient of the transformation
is a rational function of the /3's with integral coefficients.

4



INVARIANTS AND NUMBER THEORY. 5

transformation

Xi = ai~W, xm = aihxm', Xi = x/ (i = 2, , m — 1)

of determinant unity. Hence there exists a linear transforma-

tion with complex coefficients of determinant unity which

replaces qm by

(4) Xl* + • • • + 4-i + DxJ, a*8 + • • • + x*,

according as r = m or r < m. In the first case, the final co-

efficient is D since the determinant (2) of a form qm equals that

of the form derived from qm by any linear transformation of de-

terminant unity. Hence all quadratic forms (1) may be separated

into the classes

(5) Cm
,
D, Cr (2) + 0, r = 0, 1, • • -, m - 1),

where, for a particular number D 4= 0, the class Cm , D is composed

of all forms qm of determinant D, each being transformable into

(4i) ; while, for < r < m, the class Cr is composed of all forms

of rank r, each being transformable into (42); and, finally, the

class Co is composed of the single form with every coefficient

zero. In the last case, the determinant D is said to be of rank

zero. Using also the fact that the rank of the determinant of a

quadratic form is not altered by linear transformation, we con-

clude that two quadratic forms are transformable into each other

by linear transformations of determinant unity if and only if they

belong to the same class (5).

2. Single-valued Invariants of qm .—Using the term function

in Dirichlet's sense of correspondence, we shall say that a single-

valued function of the undetermined coefficients /?# of the

general quadratic form qm is an invariant of qm if has the same

value for all sets /3'
-, /3^., • • • of coefficients of forms q'm ,

q['m ,
• •

belonging to the same class.* The values vm> D, vr of
<f>

for the

various classes (5) are in general different. For example, the

determinant D is an invariant; likewise the single-valued func-

* Briefly, if 4> has the same value for all forms in any class.
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tion r of the undetermined coefficients ft/ which specifies the rank

of lft/1.

Each consistent set of values of D and r uniquely determines a

class (5) and, by definition, each class uniquely determines a

value of <j). Hence
<f>

is a single valued function of D and r.

Every single-valued invariant of a system of forms is a single-

valued function of the invariants (D and r in our example) which

completely characterize the classes.

3. Rational Integral Invariants of qm .—If the invariant 4> is a

rational integral function of the coefficients ft/, it equals a rational

integral function of D. For, if the fts have any values such

that D 4= 0, <j> has the same value for the form (1) as for the

particular form (4i) of the same class. Hence <f>
= P(D),

where P(D) is a polynomial in D with numerical coefficients.

Since this equation holds for all sets of fts whose determinant

is not zero, it is an identity.

Introduction to the Number Theory Side of the

Theory of Invariants by Means of the Example

of a Modular Quadratic Form, §§ 4-7

4. Classes of Modular Quadratic Forms qm .—Let X\, • • •, xm be

indeterminates in the sense of Kronecker. Let each ft/ be an

integer taken modulo p, where p is an odd prime. Then the

expression (1) is called a modular quadratic form. By § 1, there

exists a linear transformation, whose coefficients are integers*

taken modulo p and whose determinant is congruent to unity,

which replaces qm by a quadratic form (3) in which each aA is an

integer not divisible by p. Thusf each ay, is congruent to a

power of a primitive root p of p. After applying a linear trans-

formation of determinant unity which permutes x?, • • • , xr
2
,

we may assume that a.\, • • • , as are even powers of p and that

aa+i, , cir are odd powers of p. The transformation which

* Perhaps initially of the form a/b, where a and 5 are integers, 6 not divisible

by p. But there exists an integral solution q of qb = a (mod p).

t For p = 5, p = 2, 1 = 2\ 2 = 21
, 3 = 2", 4 = 22 (mod 5).
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multiplies a particular Xi (i < m) by p
h and xm by p~h

is of de-

terminant unity.

First, let r < m. Applying transformations of the last type

to (3), we obtain

(6) xi
2 + • + xs

2 + px)+x + • • + Pl-

under the transformation of determinant unity

Xi = aXt + 0Xf, xf = - pXi + aXj, x^ = (a2 + /3
2)"1Zm ,

x? + Xj2 becomes (a2 + /3
2)(X;2 + X,-

2
). Choose* integers a, /3

so that

(7) pio? + (8
2
) = 1 (mod p).

Hence the sum of two terms of (6) with the coefficient p can be

transformed into a sum of two squares. Thus by means of a

linear transformation, with integral coefficients of determinant

unity, qm can be reduced to one of the forms

(8) xf + • + x'U + x 2
, x,2 +--- +x2

r_ l
+pxr

2 (0<r<m).

Next, let r = m. We obtain initially

xi
2 + • • • + xs

2 + px
2

, +l + • + pa£_! + (Txm2
,

in which a need not equal p as in (6). If there be an even number

of terms with the coefficient p, we obtain as above a form of

type (4i). In the contrary case, we get

f=Xi2 +>--+ Xl_2 + pX2

m_! + p-^BxJ.

If D = p
2l+1 (mod p), f is transformed into (4 t) by

Xm—1 — ~ P -A-m, Xm p -Am_i.

But if D = p
21

, f is reduced to (4i) by the transformation

Xm-i = aln-i + 5p
2 '_1A'm, xm = — bXn-i + apXm,

p(a2 + p
2l~2b2

) = 1,

* If p = 5, p = 2, we may take a = /3 = 2. For any p, either there is an

integer I such that N-l (mod p) and we may take p(a + Ifi) = 1,

a — Iff = 1; or else x2 + 1 takes 1 + (p — l)/2 ineongruent values modulo p,

no one divisible by p, when a; ranges over the integers 0,1, • •, p — 1, so

that a;
2 + 1 takes at least one value of the form p

2"-1
. In the latter event,

a = p~e
, /3 = xa satisfy (7).
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of determinant unity. The final condition is of the form (7)

with /J = p
!-1

5 and hence has integral solutions a, 8.

Hence the classes of modular quadratic forms are

Cm , d> Lr, 1) t/r, —1> ^0
(Q)

(D= 1, ••-,?- l;r= 1, -.,«- 1),

where Cm , z> is composed of all modular quadratic forms whose

determinant is a given integer D not divisible by p, each being

transformable into (4i), where Cr , i and Cr , -1 are composed of

all forms transformable into (81) and (82) respectively, and Co is

composed of the form all of whose coefficients are zero.

Two modular quadratic forms are transformable into each other

by linear transformations with integral coefficients of determinant

unity modulo p if and only if they belong to the same class (9).

Indeed, since D and r are invariants,* it remains only to show

that the two forms (8) are not transformable into each other.f

But if a linear transformation

m

Xi = 2-i oiijXj (i = 1, • • • , m)

replaces / = x? + + x* by F = X? + + XLi + pXr
2
,

then, for j > r,

df _ _ <A dxt dF dxi

dx = 2h Xidx~dxr ' dxr aij = ^ = r>j >r) >

r

Xi = 2~l<XijXj (i = 1, • •
., r).

Hence under this partial transformation on^, • • • , xr, we would
have / = F. Thus the determinant of F would equal \ohj\

2

times the determinant unity of / and hence equal an even power
of p. But the determinant of F is actually p.

* r is now the maximum order of a minor not divisible by p.

f An immediate proof follows from the values taken by the invariant A r

given below. But as the necessity of constructing A, is based upon the fact
that the forms (8) do not belong to the same class, it seems preferable to prove
the last fact without the use of Ar .
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The invariants D and r therefore do not completely characterize

the classes of modular quadratic forms, a result in contrast to

that for algebraic quadratic forms. We shall give a criterion

to decide whether a given form of rank r (0 < r < m) is of class

Cr , i or of class Cr , _i and later deduce an invariantive criterion.

5. Criterion for Classes Cr , ±i.—Such a criterion may be

obtained from Kronecker's elegant theory of quadratic forms.*

We shall make use of the theorem that a symmetrical determinant

of rank r (r > 0) has a non-vanishing principal minorM of order

r, i. e., one whose diagonal elements lie in the main diagonal of

the given determinant, f After an evident linear transformation

of determinant unity, we may set

(10) M= Ifal + (mod p) (i, j = 1, • • • , r).

In the present problem, r < m. To qm apply the transforma-

tion

Xi = Xi + dXm (i= 1, • • •, r),

Xi = Xi (i = r + 1, • • • , m)

of determinant unity in which the c,- are integers. We get

m—

1

m—1 / r \

2^ PijXiXj + 2 /_, BjmXjXm + I 2^ BjmCj + Bmm 1Xm

where
r

Bjm = X) /SyCi + Pim (j = 1, ' • • , m).
i=l

In view of (10) there are unique values of ci, • • • , cr such that

£ym = (mod p) (j = 1, • • • , r).

But the determinant of the coefficients of c\, • • • , cr, 1 in

Sim, Bim, • • , Srm, Bkm (r < k ^L m)

* Kronecker, Werke, vol. 1, p. 166, p. 357; cf. Gundelfinger, Crelle, vol. 91

(1881), p. 221; B6cher, Introduction to Higher Algebra, p. 58, p. 139.

t The most elementary proof is that by Dickson, Annals of Mathematics
,

ser. 2, vol. 15 (1913), pp. 27, 28. For other short proofs, see Wedderburn,

ibid., p. 29, and Kowalewski, Determinantentheorie, pp. 122-124.
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is the minor of ftkm in the determinant

lft/1 (hj= 1, ••-,r,k,m)

and hence is zero, being of order r + 1. Hence i?*™ = 0. Thus

qm has been transformed into

m—1

After repetitions of this process, gm is transformed into*

r

(ii) X) jSw*.*,-.

This form, of determinant M, can be reduced (§ 4) to

*i
2 + • • + ai-i + Mx*

by a linear transformation onaii, • • • , xr with integral coefficients

of determinant unity modulo p. Express if as a power p
2H" e

(e = or 1) of a primitive root. Since r < m, we may replace

xT by p
-z
av and Xm by p

z
a;m and obtain (8i) or (82) according as

e = or e = 1. Now p
(p_15/2 is not congruent to unity, but its

square is congruent to unity modulo p, by Fermat's theorem;

hence it is = — 1. Thus, in the respective cases,

p-i

(12) M 2 = + 1 or - 1 (mod p).

Hence if a form is of rank r and if M is any chosen r-rowed

principal minor not divisible by p, the form is of class CT , i or

Cr , _i according as the first or second alternative (12) holds.

6. Invariantive Criterion for Classes Cr , ±i.—A function which

has the value + 1 for any form of class Cr , +i, the value — 1 for

any form of class Cr , —i, and the value zero for the remaining

classes Cm , D) Co, C*, ±i (k 4= r), is an invariant (§ 2). This

functionf is

* This proof and the results in §§ 4^13 are due to Dickson, Transactions of

the American Mathematical Society, vol. 10 (1909), pp. 123-133.

t Constructed synthetically in the paper last cited.
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A r = {Mi~ + m'~ (1 - M^1
) +

(13)
p_ 1

+ Mn^ii - Mr*) ... (i - M^J)}n(i - dr-i),

where Mi, • • • , Mn denote the principal minors of order r taken

in any sequence, and d ranges over the principal minors of orders

exceeding r. For, if any d ^ 0, the rank exceeds r and A r =
by Fermat's theorem. Next, let every d = 0, so that the rank

is r or less, and the final factor in (13) is congruent to unity.

Then, if every Mt = 0, the rank is less than r and A r = 0.

But, if Mi + 0,
p-i

A T = Mi 2 = ± 1 (mod p),

by (12), the sign being the same as in Cr , ±i. If Mi = 0, Mi ^ 0,

A r = M2
2 = ±1 (mod p),

etc. Note for later use that

(14) Am = /*".

7. Rational Integral Invariants of qm.—The function

(15) Jo = n(l - fir
1

) (i, j = 1, • • • , m; t ^ j)

has the value 1 for the form (of class C ) all of whose coefficients

are zero and the value for all remaining forms qm, and hence

is an invariant of qm . We now have rational integral invariants

(16) D, Ai, ••, A^.u h
which completely characterize the classes (9). Hence, by the

general theorem in § 12, any rational integral invariant of the

modular form qm is a rational integral function of the invariants

(16) with integral coefficients. In other words, invariants (16)

form a fundamental system of rational integral invariants of qm .

If we employ not merely, as before, linear transformations

with integral coefficients of determinant unity modulo p, but

those of all determinants, we obtain at once the classes

CT , *i, Co (r = 1, •••, m),
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and see that these are characterized by A\, • • , Am, Jo. The

latter therefore form a fundamental system of rational integral

absolute invariants. But D is a relative invariant.

General Theory of Modular Invariants, §§ 8-14

8. Definitions.—Let S be any system of forms in X\, - , xm

with undetermined integral coefficients taken modulo p, a prime.

Let G be any group of linear transformations on x\, , xm

with integral coefficients taken modulo p. The particular systems

S', S", , obtained from S by assigning to the coefficients

particular sets of integral values modulo p, may be separated into

classes Co, G\, • • • , Cn-i such that two systems belong to the

same class if and only if they are transformable into each other

by transformations of G.

A single-valued function
<f>

of the coefficients of the forms in

the system S is called an invariant of S under G if, for i = 0, 1,

• • ,.n — 1, the function (j> has the same value Vi for all systems

of forms in the class C,-.

In case the values taken by 4> are integers which may be

reduced at will modulo p and congruent values be identified,

the invariant is called modular. Since this reduction can be

effected on each coefficient of the modular forms comprising our

system S, any rational integral invariant of S is a modular

invariant.

An example of a non-modular invariant is the transcendental

function r defining the rank of the determinant of the modular

quadratic form qm . The values of r are evidently not to be

identified when merely congruent modulo p. However, the

residue of r modulo p is a modular invariant, since

(17) r = A? + 2Ai -\ + mAm2 (mod p).

9. Modular Invariants are Rational and Integral.—Any modular

invariant 4> of a system S of modular forms can be identified with a

rational integral function (with integral coefficients) of the

coefficients ci, • ••, ca appearing in the forms of the system S.
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For, if

4> — »«i, •, *. when Ci = e\, •• •, c, = e s (mod p),

then is identically congruent (as to c\, -
, c„) to

(18) £ ^ e.tlll-ici-ed^1

},

as shown by Fermat's theorem.

10. Characteristic Modular Invariants.—The characteristic in-

variant Ik of the class C* is defined to be that modular inva-

riant which has the value unity for systems of forms of the

class Ci and the value zero for any of the remaining classes.

For example, for a single quadratic form qm, I is given by

(15), while the characteristic invariants for the classes Cr , i and

Cr , -i are

(19) Ir, 1 = JW + ^r), Ir,-l = i(Ar2 -A r).

For any system of forms with the coefficients c\, • • , cs, we

have

(20) /* = ZII{1- {Ci-c^)^},

where the sum extends over all sets of coefficients Ci
(fc\ • • •, cs

(i:)

of the various systems of forms of class C*.. In particular, in

accord with (15),

(21) u = n a - cri
).

11. Number of Linearly Independent Modular Invariants.—
Since any modular invariant I takes certain values vq, • • • , »„_i

for the respective classes Co, • • • , Cn-i, we have

(22) I = vJo + vih + h »—iZ»_i.

Hence any modular invariant can be expressed in one and but

one way as a linear homogeneous function of the characteristic

invariants. Moreover, the number of linearly independent

modular invariants equals the number of classes.
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For example, using (19), we see that a complete set of linearly

independent modular invariants of the quadratic form qm

modulo p (p > 2) is given by

(23) h, A r> A r
2

(r = 1, • •, m - 1), D k (i = 1, • -, p-1).

12. Fundamental Systems of Modular Invariants.—While, by

(22), the characteristic invariants 7 , , 7„_i form a fundamental

system of modular invariants of a system S of modular forms, it

is usually much easier to find another fundamental system. In

fact, certain invariants are usually known in advance, e. g., the

invariants of the corresponding system of algebraic forms. We
shall prove the following fundamental theorem

:

7/ the modular invariants A, B, • , L completely characterize

the classes, they form a fundamental system of modular invariants.

For example, 7 , • • • , 7„_i evidently completely characterize

the classes and were seen to form a fundamental system.

Let Ci, • • -, e„ be the coefficients of the forms in the system S.

Let each d take the values 0, 1, • , p — 1. For the resulting

p' sets of values of the c's, let the rational integral functions

A, B, • • •, L of c\, • , c8 take the distinct sets of values

Ai, Bu •••, Li (i = 0, • -,n — 1).

Thus there are n classes of systems S and by hypothesis the zth

class is uniquely defined by the values A it
• , Li of our invariants.

A rational integral invariant (j>{ci, • • •, cs) takes the same value

for all systems of forms in the ith class, so that this value may
be designated by <£;. Now the polynomial

P(A, B, •, L) = E 0,-{l -{A- A;)*-1
}
... {1 - (i - Li)'-1

}
t=0

is congruent to <£,• when A = A t, , L= Lt (mod p). Hence

<j>(ci, • , cs) = P(A, B, •-, L) (mod p)

for all sets of integral values of clt • , cs . In view of Fermat's

theorem, we may assume that each exponent in <£(ci, • • , cs)

is less than p. If we replace A, • , L by their expressions in
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terms of the c's, P (A, • • • , L) becomes a polynomial, which, after

exponents are reduced below p, will be designated by $ (ci, • • • , cs)

.

Then # and ^ are identically congruent in c\, • • • , c3 , that is,

corresponding coefficients are congruent modulo p. In fact, a

polynomial of type <f>
is uniquely determined by its values for

the p" sets of values of ci, • •, cs , each chosen from 0, 1, • •,

p — 1 (§9). Hence <£ can be expressed as a polynomial in A,

• • • , L with integral coefficients.*

13. Minor R6le of Modular Covariants.—In contrast with the

case of algebraic forms, the classes of modular forms are com-

pletely characterized by rational integral invariants. Such

invariants therefore suffice to express all invariantive properties

of a system of modular forms. In this respect, modular co-

variants play a superfluous r61e. For instance, a projective

property of a system of algebraic forms is often expressed by

the identical vanishing of a covariant. But if C is a modular

covariant with the coefficients ci, • • •, c„, then 7 given by (21)

is a modular invariant of C and hence of the initial system of

forms. We have C = or C ^ (mod p) identically, according

as 7 — 1 or 7o = 0.

14. References to Further Developments.—This general theory of

modular invariants has been applied by me to determine a com-

plete set of linearly independent modular invariants of q linear

forms on m variables,! and a fundamental system of modular

invariants of a pair of binary quadratic forms and of a pair of

binary forms, one quadratic and the other linear, t

The theory has been extended to combinants and applied to a

pair of binary quadratic forms. §

* This correct theorem for any finite field cannot be extended at once to

any field as stated by me in American Journal of Mathematics, vol. 31 (1909),

top of p. 338.

t Proceedings of the London Mathematical Society, ser. 2, vol. 7 (1909),

pp. 430-444.

t American Journal of Mathematics, vol. 31 (1909), pp. 343-354; cf. pp.

103-146, where a less effective method is used.

§ Dickson, Quarterly Journal of Mathematics, vol. 40 (1909), pp. 349-366.



LECTURE II

SEMINVARIANTS OF ALGEBRAIC AND MODULAR BINARY
FORMS

Introductory Example of the Binary Quartic Form, §§ 1-6

1. Comparative View.—Let the forms

/ = a a:
4 + 4aiarty + Qa2x

2
y
2 + i.a3xf + a^,

with real or complex coefficients, be separated into classes such

that two forms /are transformable into one another by a trans-

formation of type

(1) x = x' + ty', y = y',

if and only if they belong to the same class. Then a single-

valued function S(ao, •••, (14) is called a seminvariant of/ if

it has the same value for all of the forms in any class.

By the repeated application of this definition and without the

aid of new principles, we shall obtain a fundamental system of

rational integral seminvariants of /, then on the one hand the

additional single-valued seminvariant needed to form with these

a fundamental system of single-valued seminvarints, and on the

other hand the additional rational integral modular seminvariants

needed to form with them a fundamental system of modular

seminvariants of /. It is such a comparative view that we desire

to emphasize here. In later sections, we shall show that it is

usually much simpler to treat the modular case independently

and in particular without introducing all of the algebraic semin-

variants, which become very numerous and most unwieldy for

forms of high degree. The rational integral seminvariants

S of an algebraic form are of special importance since each is

the leading coefficient of one and but one covariant, which can

be found from S by a process of differentiation. For example,

the seminvariant ao is the leading coefficient of the covariant /.

16
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2. The Classes of Algebraic Quartic Forms.—Consider a quartic

form / in which a* is the first non-vanishing coefficient. Apply

transformation (1) with

(2) t=
(k+l)ak

-

We obtain a form having zero in place of the former a^i- Drop-

ping the accents on x', y', we obtain, for k = 0, 1, 2, 3, the re-

spective forms

(3) a 4= 0: aox* + dao^S^y* + ka^S&y* + a^Stf,

(4) a = 0, oi 4= 0: Aaxx^y + a^Suxy3 + a^Suy4
,

(5) a = oi = 0, a2 4= 0: 6a2a;V + far^y*,

(6) a = ai = a2 = 0, a3 4= 0: 4a3a;t/
3
,

(7) a = oi = o2 = a3 = 0: a^f,

no transformation having been made in the last case. Here

(8) S2 = a a2
— a\, S3 = a 2a3 — 3aoaia2 + 2ai3,]

(9) S4 = a 3
ai — 4a 2aia3 + 6a ai

2a2 — 3ai4,

)Si3 = 4oia3 — 3a2
2
, Su = afa^ — 2a\a2a3 + a2

3
,

S24 = 3a2fl4 — 2a3
2
.

If we apply to one of the forms (3)-(6) a transformation (1)

with t 4= 0, we obtain a form having an additional (second)

term. Hence no two of the forms (3)-(7) can be transformed

into each other by a transformation (1), so that each represents

a class of forms. For example, there is a class (5) for each set

of values of the parameters a2 and <S24 (a2 4= 0).

3. Rational Integral Seminvariants of an Algebraic Quartic.—
First, ao is a seminvariant since it has a definite value 4= for

any form in any class (3) and the value zero for any form in

any class (4)-(7). Next, S2 , S3 , Si are seminvariants, since

they have constant values

(11) S2 = - at
2
, S3 = 2ai3

, S« = - 3ai
4

(if a = 0)

3
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for any form in any class (4)-(7), and constant values for any

form of a definite class (3), for which therefore a has a definite

value =j= and eto
-1^, '"> and hence each Si, has a definite

value. Moreover, these seminvariants a , S2 , S3, Si completely

characterize the classes (3).

Consider a quartic form / in which ao, ffli, 02, as, 04 are arbi-

trary, except that a 4= 0. Any rational integral seminvariant

£(ao, • • •, ai) has the same value for / as for the particular form

(3) in the same class as /. Hence

S — S I a , 0, — , —j , —3 I

\ a a a /

<t>(a , S2, S3, Si)

a,1

where
<f> is a rational integral function of its arguments. We

therefore seek such functions <j> as are divisible by a power of ao,

and hence by (11) in which the terms involving only ai cancel.

The function of lowest degree is evidently

(12) Si + 3S2
2 = a 2

I, I = aoat - 4aia3 + 3o22.

The next lowest degree is 6 and the function is

dS2Si + eS3
2 + (3d + 4e)S2

3
-

The coefficient of d is a<?ISz, that of e is

S32 + 4S2
3 = a 2D

(D = aW — 6a aia2a3 + 4a O23 + 4ai3a3 — 3ai
2a2

2
).

Hence for d = 1, e = — 1, the function is the product of a 2 and

(14) IS2—D= aoJ, J^-a!^Hai—atfiL 2
-\-2a\a2az—a^ai—a2

z
.

We do not retain D since it is expressible in terms of the other

functions. Eliminating D between (13) and (14), we get

(15) S3
2 + 4S2

3 - a 2IS2 + a 3J s 0.

Now I and J are seminvariants. Indeed, if a =1= 0, they are

expressible in terms of the parameters a , Si in (3) and hence

each has the same value for any form in a class (3) ; while

(16) / = - S13, J = -Su (if a = 0),
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so that each has the same value for any form in a class (4);

finally,

(17) I = 3a2
2
, J = - ai (if a = ax = 0),

so that each has the same value for any form in a class (5)-(7).

From <j> we eliminate Si by means of (12) and then the second

and higher powers of S3 by means of (15). Thus S equals

N/aoh
, where N is a rational integral function of

(18) a , $2, S3 , I, J,

of degree or 1 in S3 . If k > 0, we may evidently assume that

not every term of the polynomial N in the arguments (18) has

the factor a . Let P(S2, S3 , I, J) denote the aggregate of the

terms of N not involving ao explicitly. We shall prove that,

if Jc > 0, N/aok
is then not a rational integral function of ao, • • •

,

ai. For, if it be, P vanishes when ao = 0. By (11) and (16),

the terms independent of a in J involve ai, while those in I,

82, S3 do not. Hence J does not occur in P. Then, by (11)

and the term 3a2
2 in I, we conclude that I does not occur in P.

Thus P is a polynomial in S2 and S3 of degree or 1 in S3 and

is not identically zero. By (11), it cannot vanish for a = 0.

Under the initial assumption that a #= 0, we have now proved

that any rational integral seminvariant S equals a polynomial

in the functions (18). The resulting equality is therefore an

identity.

The seminvariants (18) form a fundamental system of rational

integral seminvariants of the algebraic quartic form.*

They are connected by the relation, or syzygy, (15).

4. Invariantive Characterization of the Classes.—By § 3, the

classes (3) are completely characterized by the seminvariants

Co, S2, S3 , I. These with J characterize the classes (4) having

aQ = 0, ai #= 0. For, by (11), S2 and S3 determine ai; while,

by (16), I and J determine the remaining parameters in (4).

* The above proof differs from that by Cayley in minor details and in the

method of obtaining the functions (18) and the verification that they are

seminvariants (the present method being based upon the classes).
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The parameter a2 (a2 =f= 0) in (5) is determined by I and J, in

view of (17).

We have now gone as far as is possible in the characterization

of the classes by means of rational integral seminvariants S,

since the parameters S2i, a3) a4 in (5)-(7) cannot be determined

by such seminvariants. Indeed,* for a = ai = 0, we have

S2
= S3

= by (11), while I and / reduce to powers of o2 by (17).

5. Single-valued Seminvariants.—We may, however, construct

a single-valued seminvariant which shall determine these out-

standing parameters Su, a3 , a4 . To this end consider the single-

valued function V defined as follows by its values in the sense

of Dirichlet. We take V = if aQ H= or if ax 4= 0, and V = S2i,

a3 , a4 in the respective cases (5), (6), (7). Since V has the same

value for all forms in any class, it is a seminvariant. The

seminvariants (18) and V completely characterize the classes

(3)-(7) and hence, by § 2 of Lecture I, form a fundamental system

of single-valued seminvariants of the algebraic binary quartic

form.

6. Seminvariants of a Modular Quartic Form.—Passing to the

number theory case, let the coefficients of the quartic form /

be integers taken modulo p, where p is a prime exceeding 3.

The denominator in (2) is then not divisible by p, so that the

classes are again (3)-(7).

By the general theory in Lecture I, it is possible to character-

ize all of the classes by means of rational integral seminvariants,

and the latter will then form a fundamental system. In par-

ticular, we do not now require the use of such a bizarre function

as that used in § 5.

* A proof of this fact, not based upon the final theorem of § 3, would afford

a better insight into the nature of the last steps in § 3 and explain, in particular,

why we stopped with I and J and did not consider combinations of the Si of

higher than the sixth degree in the a'a. To this end, let S be a seminvariant

homogeneous of total degree i, in the a's, and isobaric, of constant weight w.

As well known, 4i =5 2v>. Thus S cannot have a term a 3
' or at' and cannot

reduce, when a = oi = 0, to a 2
lS2im (m > 0), of degree I + 2m and weight

21 + 6m.
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We shall make frequent use of the abbreviation

(19) P, = (1 - ao^Xl - ax""1
) •(!- ar-1

).

Then P\Su, P2ffl3 and P3CJ4 are seminvariants* since each takes

the same value for all forms in any class. For the classes (5),

(6), (7), their values are S24, a3 and cm, respectively. Hence

the five seminvariants (18) together with P1S24, P2a3 and P3GJ4

completely characterize the classes and therefore form a fundamental

system of rational integral seminvariants of the quartic form f
with integral coefficients taken modulo p, p > 3.

Seminvariants of a Modular Binary [Form of Order n,

§§ 7-13

7. Fundamental System of Modular Seminvariants Derived

by Induction from n — 1 to n.—It is necessary to distinguish the

case in which the modulus p is prime to n from the case in which

p divides n. Binomial coefficients for the form are not per-

missible in the second case and often not in the first case (for

example, if n = 4, p = 3, since (£) is then divisible by p).

Denote the form by

(20) Fn = Aoxn + AiX^y + h A ny\

First, let p be prime to n. For A #= 0, we can transform Fn

into a form lacking the second term and having as coefficients

the quotients of

<r2 = nAoA 2 — h(n — l)Ai2
,

(21)
<r3=n2Ao2A 3-(n-2)nA A 1A 2+Un-i)(n-2)A 1

3
,

•••

by powers of nAo. These may also be obtained from (8) by

identifying P„ with

Ylfvy — 1
j

(22) /„ = aQx
n + na&n~l

y + -^—- a^x^Y+-.

* The first is one-half the discriminant of the semicovariant

Pifly1 - Pi(6a 2a;
2 + ia&y + a42/

2
) (mod p),

and the last two are the seminvariants of P2//2/3 = P2(4a 3a; + aty) (mod p).



22 THE MADISON COLLOQUIUM.

For p prime to n, a fundamental system of seminvariants of Fn

is given by A , <r2 ,
• • • , <rn together with a fundamental system of

the particular form of order n — 1

K. l
= P Fn/y

(23)
=

P

A 1x
n-1+P A2x

n-2y+ • • •+P Any
n~1 {mod p),

where P = 1 — A^1
.

Indeed, A a, <r2 ,
• • • , an completely characterize the classes of

forms Fn with A 4= 0. Since yFn-i = F„ identically, when

A = 0, the classes of forms Fn with A = are completely

characterized by the seminvariants of the fundamental system

for F^-i'.

For example, Aa and PoAi form a fundamental system of

modular seminvariants of AqX + A\y (since these characterize

the classes represented by Aox and Aiy). The corresponding

functions for

Fi' = PoAv + P A 2y
are PoAi and

{1 - (PoAJr-^PoAi = (1 - ^ 1
^1)P ^2 = Pi^2 (mod p).

Hence the theorem shows that, if p> 2,

(24) A , 2<r2 = 4^ ^2 - AS, P AU PXA2

form a fundamental system of modular seminvariants of F2 . For

fi, these are

(24') 2a , S2 = aaa2 — a?, P au Pia2 .

8. Order a Multiple of the Modulus.—Next, let n = pq. By
Fermat's theorem, xp — xy^1 and hence

(25) 4> = Aoix" - xyr-1)*

is unaltered modulo p by any transformation (1). Hence if, for

each value of the seminvariant Aa, we separate the forms

(26) Fr̂ 1 ^{Fn -4>)
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into classes under (1), multiply each form by y and add <£, we

obtain the classes of forms Fn for this value of Ao. Hence, if n

is divisible by p a fundamental system of modular seminvariants

of Fn is given by A and a fundamental system for Fn_i.

For example, if n = p = 2,

Fl = (Ao + AOx + A 2y

can be transformed into x or A 2y by (1), according as A + A\ = 1

or (mod 2). Adding <j> = A (x2 — xy) to xy and A 2y
2
, we obtain

representatives of the classes of forms F2 . Hence the 6 classes

are completely characterized by the seminvariants A and those

(§ 7) of .Fi, and hence by

(27) Ao, Au J = (1 + Ao + AM*
9. Seminvariants of the Binary Cubic Form.—The classes of

algebraic forms /3 are

(28) aocc
3 + Sao^Stxy* + a<T

2S3f,

(29) 3aia;
2
2/ + iar^-Swy3, 3a2xy2

, a^y3
,

where the S's are given by (8) and (10i). The discriminant D
off3 is given by (13). As in § 3, a , S2 , S3 , D form a fundamental

system of seminvariants of /3; they are connected by the syzygy

(13).

Henceforth, let the coefficients off3 be integers taken modulo p,

the excluded case p = 3 being treated in § 15. If p > 3, the

classes are again (28) and (29), and a fundamental system of

seminvariants is given by

(30) a , Si, S3 , D, Pxa2 , P2a3 .

It is instructive to compare this result with that obtained by

the method of § 7. Forming the functions (24) for

fi = Po/3/2/ — 3P aia;
2 + 3P a2xy + P a3y

2 (mod p),

and deleting the factor 3 from the first and second, we get*

Poai, d = P (4aia3 — 3a2
2
) = PoSi3 , Pia2 , P2a3 .

* They characterize the classes (29) of /a with ao = and may be so derived.
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Hence, if p > 3, these four functions and a , S2 , S3 form a funda-

mental system of modular seminvariants of f3 . We may drop

PoGti since

(31) P S2
~ S3 =± 2P„aip = ± 2P ai (mod p).

Hence a fundamental system of seminvariants of f3 for p > 3 is

(32) a , S2 , S3 , 8 = PoS13) Pxa2 , P2a3 .

It is easy to deduce 8 from the old set (30), and D from this new-

set.*

Finally, let p = 2. By § 7, a fundamental system of sem-

invariants for /3 is given by a , S2 , £3 and a fundamental system

for f2 . The latter system is derived from (27) by replacing

A , Ax, A2 by P ai, P a2 , P a3 , and hence is

(1 + a )au (1 + aQ)a2 , (1 + o )(l + «i + a2)a3 .

We may drop (1 + a )ai = (1 + a )S2 .

10. The Binary Quartic Form. For p = 2, we have

P3 = ^i*3 + (^0 + AJa*y + A 3xf + Atf,

whose seminvariants are obtained from those of f3 at the end of

§ 9. They with A give a fundamental system of seminvariants

of P4 :

A , A x> AxA 3 + A + A 2 , (1 + Ax)A 3 ,

AxA 4 + AxA 3(A + A2), K = (1 + ^)(1 + A + A2 + A3)A^

An equivalent fundamental system isf

A , Ax, A 2 + A 3, (l + Ax)A 2 ,

(33)
AxAi + AoA 2 + A 2A 3 , K.

* D = an^W + 4S2
3
) - SS2 (mod p).

For, if ao 4= 0, then isO and this relation follows from (13) ; while, if a = 0,

D = ai2
iSi8 = ai25 = — S2S. Conversely, S can be expressed in terms of the

functions (30). The above relation gives dSi. The product of this by S2 P~*

is congruent to S if £ 2 + 0. Also 5 = if a H= 0. There remains the case

in which £2 = 0, o = 0, whence ai = 0, 8 = — 3o2
2 = — 3(Pia2)

2
.

f Annals of Mathematics, ser. 2, vol. 15, March, 1914. I there give also a

complete set of linearly independent invariants and of linear covariants
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For p > 3, fs' is obtained from /3 by replacing a0) au a<i, 0,3 by

4aiP , 2ffl2Po, §a3Po, a4Po,

respectively. Making this replacement in the second set of sem-

invariants of /3 in § 9, we obtain Poft\, which may be dropped in

view of (31), and the last five functions (34). Hence, for p > 3,

a fundamental system of modular seminvariants of fi is given by

(34) ao, S2, S3 , S4, PqSu, PqSu, P1S24, Pno>3, Pso>i-

Here the three S,y are given by (10). Since the functions (34)

completely characterize the classes (3)-(7), we have a new proof

that they form a fundamental system.

11. Explicit Fundamental System when p > n.—Instead of

employing the above step by step process, we can obtain directly

a fundamental system of modular seminvariants of /„ when the

modulus p exceeds the order n of the binary form (22). Consider

a particular /„ in which aj is the first non-vanishing coefficient:

Z(7 )a.-a;''-y' (ak * 0).

To this we apply transformation (1) and obtain

t £ (

n
: ) (

n 7
*
) ^v-'-y*' = ± Aux'-y,

i=k j=0 \ I / \ J I l=k

where we have replaced j by I — i and set

Take k < n and give to t the value (2). Thus

(n\
dk 1 7 I &kl

(35)
Akl= {(k+l)ak

y-«>

Okl= £ (- l)
!_i

(i) (* + ly-W-^a'^lai.
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In particular,

<rkk=h <rkk+1 = 0, <T i
= g (- I)*"*

(^ i )
do
H

Oi
H

B<,

the last being the algebraic seminvariant designated earlier by

Si. It is obtained from the expansion of (a — «i)' by replacing

a single a in each term by a*. Except for a numerical factor

not divisible by p, au (for < k < I — 1) equals the Sk i in (10)

and in (38) below.

The classes Cfc of forms /„ in which ak is the first non-vanishing

a are distinguished from each other by the value of an if k = re,

and if k < re by the values of the parameters ak , ak i (I = k + 2,

•••, re). Employing the notation (19), we shall verify that

Pk-iak and Pk-i^ki are modular seminvariants of /„. They

vanish for a form C3
-

(j ^ k — 1) since then 1 — af^1 = 0.

For Ci, they reduce to the parameters ak and <xk i of that class.

For a = 0, • • • , ak — 0, the first is zero and the second is the

expression for <rk i when ak = 0, whose non-vanishing terms

(given by i = k and i = k + 1) are constant multiples of

at+*; but ak+i is constant for any class Cj (j > k).

It follows also that the parameter a^i in a class Ck+i is de-

termined by the seminvariants Ph-io-k i (I = k + 2, A; + 3),

provided A: + 3 ^ n. But a„_i and a„, not so determined, are

found from Pk-iak (k = n — 1, re). Hence a fundamental

system of modular seminvariants of fn, for p > n, is given by

ao, 0"oz (I = 2, • •, re),

(36) P*-io-h (4=1, ..., n -2; l = k+ 2, •-,»),

I 71—2fl«—lj Ptlr~ian .

For re = 2, 3, 4, these are (24'), (32), (34), respectively, except

for the difference of notation indicated above. For re = 5, we
see that a fundamental system of modular seminvariants of /s,

for p > 5, is

a°' ' ^3 ' ^4'
^5'

^a^13 > PoSu, P0S15,
\ol)

P1S24, PlSn, P2S35, ^3^4, ^4^5,
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in which the symbols are defined by (8)-(10), (19) and

Si [= ao
4a& — 5ao

s
aiai + 10aoWa3 — 10a ai

3a2 + 4a i
5
,

Sn = 16ai3a5 — 40ai
2a2a4 + 40aia2

2a3 — 15a2
4
,

(38)
£25 = 27a2

2
a5 — 45a2a3a4 + 20a3

3
,

1S35 = 8a3a5 — 5a4
2
.

12. Another Methodfor the Case p > n.—We may formulate the

method of § 7 so that it shall be free from the induction process.

The classes of forms (23) with PoAi 4= 0, and hence the classes

of forms Fn with A = 0, A\ =t= 0, are characterized by the

seminvariants given by the products of P by the functions

<Ti, • • • obtained from <r2 , <r3 , • • • , <r„_i by increasing the subscript

of each At by unity and replacing n by n — 1; indeed, P»2 = P,-

(mod p). When the process of deriving (23) from (20) is applied

to (23), we get

K-2 = [1 - (PoA 1
)*-i]F'

n_ 1/y = (1 - A^PoFjtf

(39) = PiFjy* = PxA 2x
n-2 + P^x^y
+ • + PiAny"-* (mod p).

The class of forms (39) with Pi^4 2 4= 0, and hence the classes of

forms Fn with A = Ai = 0, A 2 4= 0, are characterized by the

seminvariants given by the products of Pi by the functions oV',

• • • obtained from <r2', • • • , <rn-2 by increasing the subscript of

each Ai by unity and replacing nby n — 1. Finally, we obtain

Pn_2^n-i# + Pn^-iAny, characterized by the seminvariants

P„_2^„-i and Pn-\A n . The earlier P^-iA k may be dropped

(§ 11).

For example, if n = 3, p > 3, the fundamental system of P3 is

A , (72, C3, PooV = P (4AiA 3
- Ai), PiAi, P2A 3 .

Changing the notation from P3 to /3 , we see that <r2
' becomes

3(4aio3
— 3a2

2
), so that the resulting seminvariants are (32).

We may of course apply the method directly to/3 ; in £2 we replace

a , ai, a2 by 3ai, fa2 , a3 and obtain |(4aia3 — 3a2
2
).
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Again, to find a fundamental system of /4 for p > 3, we take

ao, S2) S3 , Si and the products of P by the functions fSi3 and

16/Su obtained from S2 and S3 by replacing a , au a2 , a3 by

4ffli, i • 6a2 , i • 4a3 , a4 ; then the product of Pi by the function

2/S24 obtained from S2 by replacing a , ai, a2 by 6a2 , f • 4a3 , a4 ;

then P2a3 and P3a4 , to characterize P2 (4a3a; + a4?/). We again

have (34).

13. Number of Linearly Independent Seminvariants.—Let

p > n and employ the notations of § 11. In the classes Ck (k<n).

Am = ah (£) has p — 1 values, Aki^-i = 0, while Ahk+2 ,
• • • , Ahn

take independently the values 0, 1, • •, p — 1. In the classes

C«, an has p values. Hence there are

71-1

p + Z (p - i)pn
~h~1 = p + p

n - i
k=t>

distinct classes of forms /„. Thus by § 11 of Lecture I, there are

exactly p
u + p — 1 linearly independent modular seminvariants of

fn when p > n.

Derivation* of Modular Invariants from Seminvariants,

§§ 14-15

14. Invariants of the Binary Quadratic Form.—First, let p= 2.

Any polynomial in the seminvariants (27) is a linear function of

1, Ao, Au AoA-i, J, A J = AoAiA 2 ,

since (Ao + A{)J = 0. Since there were six classes, these six

seminvariants form a complete set of linearly independent sem-

invariants. Now a seminvariant is an invariant if and only if

it is symmetrical in Ao and A 2 . But

I=(l-Ao)(l-A 1)(.l-A 2)^a-Ao)(J+l+A 1) (mod 2).

Thus 1, Ai, AoJ and I are invariants. By subtracting constant

* While this method is usually longer than the method of Lecture I, it

requires no artifices and makes no use of the technical theory of numbers.

Moreover, it leads to the actual expressions of the invariants in terms of the

Beminvariants of a fundamental system, thus yielding material of value in the

construction of covariants.
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multiples of these four, any seminvariant can be reduced to

cAo + dAoAi, which is an invariant only when identically zero.

Hence 1, A\, AqAiAh and I form a complete set of linearly inde-

pendent invariants of P2 modulo 2.

Next, let p > 2. The discriminant of /2 is D = S2 . Any
polynomial in the four fundamental seminvariants (24') is a

linear function of

aoW', P ai
1
', iW (t, j = 0, 1, • • •, p - 1),

since the product of PoOi or Pia2 by a is zero, that of Pia2 by

PoOi or D is zero, while DP ai = — Pa^. Further,

Po = 1 - a<T\ P [& - (- a^)'] = 0,

Pi = Po - Poa^1
, a^D' = D* - (- iyP ai

2
',

modulo p. Hence any seminvariant is a linear function of

a<T\ (hW (i = 0, 1, • • -, p - 2; j = 0, 1, • • •, p - 1),

Pom*, Pia2
& {k= 1, ...,p-l).

The number of these is p
2 + p — 1. Hence (§ 13) tffoy /orm a

complete set of linearly independent modular seminvariants of /2

for p > 2.

The invariant A = A\ in § 6 of Lecture I becomes for two

variables

(41) A= {a M+a2
u(l-ao^1)}(l--Dp

-1
) = ao'

1(l-D^1)+PiaA

where ju = (p — l)/2. By the expansion of D^-1 , we get*

(42) A = (ao* + as") ( 1 - Z aW*-2
*

j

* TraTwactiojis of the American Mathematical Society, vol. 10 (1909), p. 132.

To give a direct proof of the identity of the final expression (41) and (42),

note that the product of the final factor in (42) by D equals a^ai — (aoai)^*1

algebraically, so that the product AD is divisible by p. But the product of

(41) by D is evidently divisible by p. It therefore remains only to treat the

case D = 0. Replacing ai2 by O0O2, we see that the final factor in (42) becomes

1 — Ox + l)oo'ia2't . Hence (41) and (42) are now identical if

Oo^aj" (do'1 — ai?-) = (mod p).

But, if a Oj + 0, a^a^t- = a?* = 1, a " = a2" = =•= 1.
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Since (42) is therefore a seminvariant and is symmetrical in

a and a2 and since the weight of every term is divisible by

p — 1, A is an absolute invariant. By (41),

A2 = a,,
2* (1 - D^1

) + Piaj2
", (1 - acT^D*-1 = Pofli^1

,

(43)
A2 + D^-l=-I , h={l-a<r1)0--ar-1)0--ae-1

)-

Hence also 7 is an absolute invariant. Subtracting multiples of

7o= 1-ao^-Poai^1- Piar~\ A, & (j= 0, 1, • • •
,
p- 1),

we may reduce any seminvariant to a linear function of the ex-

pressions (40) other than Piaip~\ Piwf, Dj
(j = 0, • • •, p — 1).

The resulting linear function L is not an invariant. For example,

if p = 3, it is

L= aao2-\-ba -\-caoD-\-daoD2-\-eP ai-\-fPoai
2

(a, • ,f constants).

Interchange ao and a2 , and change the sign of a\. We get

aa2
2 + ba2 + ca2D + da2D2 + (1 — a2

2
)(fai

2 — ea{).

This is to be identically congruent to the invariant L. Taking

a2 = 0, we see that e=f=a=b=0, c = d. Then L
= caoa2 (ao + a2) + caa

2a 2a2 is not symmetric in a and a2 .

Hence L = 0. For any p, a like result may be proved by con-

sidering separately the terms of L of constant weights modulo

p — 1. Hence in accord with § 11 of Lecture I, a complete set

of linearly independent invariants of f2 , for p > 2, is given by Io,

A and the powers of D. In place of D° = 1, we may use A2
, in

view of (43).

15. Invariants of the Binary Cubic Modulo 3.—A fundamental

system of seminvariants of F3 modulo 3 is given by Ao and a

fundamental system of

F2 = Arf + (Ao + A 2)xy + A 3y
2
.

Hence, by (24), a fundamental system for F3 is given by

A , Au t = AU, - (Ao + A 2)
2
, (1 - A?)(Ao + A2),

u = (1 - AflU - (A Q + A 2)
2]A 3 .
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In place of the fourth and third we may evidently use

X = (1 - A?)A 2 , a = A tA 3 + AoA 2 - AM22 =t + A 2 + X2
.

Here a is the discriminant of F3 for p = 3. By § 13 there are

11 classes of forms F2 . Hence, by §8, there are 3-11 classes of

forms F3 . Thus there are exactly 33 linearly independent

seminvariants of F3 . Since

Ar\ s Am =0, &\ = A \2
, n(fr + A<?) = 0,

M(X + Ao) = 0, (1 - A x
2)a = A^,

modulo 3, any polynomial in the seminvariants Ao, A\, a, X, n
of the fundamental system is congruent to a linear function of

(44) io^iUo^io^i^io'^ioV (ii=0, 1,2; 4=1, 2).

Hence these 33 functions form a complete set of linearly inde-

pendent seminvariants of F3 . The seminvariants

P = 1 - A? - X2 = (1 - ^!2
)(1 - A2

2
),

(45) Jo = (1 - A<?)(P - m
2
) = fl (1 - A?),

1=0

E = AoAi(a - a2
) + A otx = A A 3(A A 2- A 1A 3+A 1

2-A 2
2
)

are seen to be invariants as follows.* The weights of the terms of

each are all even or all odd. Moreover, under the substitution

(A0A3) (AiA2), induced upon the coefficients of F3 by the

interchange of x and y, the functions a, P and Io are unaltered,

while E is changed in sign. Hence a, P, I are absolute in-

variants, while E is an invariant of index unity. We now have

7 linearly independent invariants

(46) 7 , E, E2
, <r, «r

2
, P, 1.

Noting that

(47) E2 = AoV + A a\a - a2 + X2
) - ^ X,

* Or by general theorems, Transactions of the American Mathematical

Society, vol. 8 (1907), pp. 206-207. Note that E is the eliminant of F3 = 0,

x* = x, y
3 = y (mod 3).
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we may employ the functions (46) to delete from (44)

M
2
, AoH, A 2

fJL
2
, <r, a2

, X2
, 1

in turn (no one of these terms being reintroduced at a later stage).

There remain 11 seminvariants of odd weight

(48) Ao'Au A<fAi<r, AJAkt2
, p, A 2

n (i = 0. 1, 2),

and 15 of even weight

(49) A* A 2
, Ao{Ai2

, A&, A aa
2
, A 2

<r, Afa2
, A % A \2

, AoW, A&2
.

Now the weight and index of a seminvariant of F% modulo 3

are both even or both odd.* A linear combination of the func-

tions (48) which is changed in sign by the substitution (A A 3)

(A1A2) is seen to be identically zero (it suffices to set A 3 = 0,

A 2 = in turn). A linear combination of the functions (49)

which is unaltered by that substitution is seen similarly to be

identically zero. Hencef a complete set of linearly independent

invariants of F3 modulo 3 is given by (46).

* When the sign of y is changed, a seminvariant is unaltered or changed in

sign according as its weight is even or odd.

t Another proof, using the classes of Fa under the group of all binary linear

transformations of determinant unity modulo 3, and involving a use of more
technical theory of numbers, is given in Transactions of the American Mathe-
matical Society, vol. 10 (1909), pp. 149-154. The case of any modulus p
is there treated.



LECTURE III

INVARIANTS OF A MODULAR GROUP. FORMAL INVARIANTS
AND COVARIANTS OF MODULAR FORMS. APPLICATIONS

Invaeiants of Certain Modular Groups, §§ 1-4

1. Introduction.—Let be any given group of g linear homo-

geneous transformations on the indeterminates x\, • • • , xm with

integral coefficients taken modulo p, a prime. Hurwitz* raised

the question of the existence of a finite fundamental system of

invariants of G. For the relatively unimportant case in which g

is not divisible by p, he readily obtained an affirmative answer

by use of Hilbert's well known theorem on a set of homogeneous

functions, but emphasized the difficulty of the problem in the

general case.

In § 5 I shall consider the relation of this question to that of

modular covariants and formal invariants of a system of forms

and incidentally answer the above question for special groups

of orders divisible by p.

I shall, however, first present a simplification of my own work

on the total group. Its invariants are universal covariants, i. e.,

covariants of any system of modular forms (§13). It was from

the latter standpoint that I was led to the subject of invariants

of a modular group independently of Hurwitz's paper, in the

title of which the word invariant does not occur.

2. Invariants of the Total Binary Group.—Consider the group

G of all modular linear homogeneous transformations with integral

coefficients of determinant unity:

(1) x' = bx + dy, y' = ex + ey, be — cd = 1 (mod p).

The term point will be used in the sense of homogeneous

coordinates, so that (x, y) = {ax, ay), while (0, 0) is excluded.

* Archiv der Mathemaiik und Physik, (3), vol. 5 (1903), p. 25.

4 33
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We do not restrict the coordinates to be integers, but permit

their ratio to be a root of any congruence with integral coefficients

modulo p. A point is called real if the ratio of its coordinates is

rational.

A point (x, y) is invariant under a transformation (1) if

x' = px, y' = py, or

(2) (b - p)x +dy=0, ex + (e - p)y = (mod p).

If these congruences hold identically as to x, y, then

d= c= 0, 6 = e = ± 1 (mod p)

and the transformation is one of the transformations

(3) x' = ± x, y' = ±y (mod p),

which leave every point invariant.

A special point is one invariant under at least one trans-

formation (1) not of the form (3). There are p(p
2 — 1) trans-

formations (1). We shall assume in the text that p > 2 (rele-

gating to foot-notes the modifications to be made when p = 2).

Then there are two transformations (3). Hence any non-special

point is one of exactly*

(4) w = fe(p» - 1)

conjugate points under the group G, while a special point is one

of fewer than w conjugates.

Let (x, y) be a special point and let (1) be a transformation,

not of the form (3), which leaves it invariant. Thus the con-

gruences (2) are not both identities. The determinant of their

coefficients must therefore be divisible by p. Hence p is a root

of the characteristic congruence (in which a = b + e)

(5) p
2 — ap + 1 = (mod p).

First, suppose that (5) has an integral root p. For this value

of p, one of the congruences (2) is a consequence of the other,

and the ratio x : y is uniquely determined as an integer modulo p.

* For p = 2, w is to be replaced by 2(22 — 1) = 6.
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Hence only real special points are invariant under a transforma-

tion [other than (3)] whose characteristic congruence has an

integral root. Moreover, all real points are conjugate under the

group G. Indeed,

x' = bx, y' = x + b~l
y, and x' = — y, y' = x

replace (1, 0) by (b, 1) and (0, 1) respectively. Hence if an

invariant of G vanishes for one of the real points, it vanishes for

all and has the factor

p-i

(6) L = y II (a - ay) = xpy - xyp (mod p),
a=0

the congruence following from Fermat's theorem. Obviously,

any transformation of G replaces a real point by a real point, and

therefore L by kL. The constant k is in fact unity and L is an

invariant of G. Indeed, for

(7) x=aX+bY, y^cX + dY (mod p),

where a, • • •
, d are integers of determinant A = ad — be,

(8)

xp yp

x y

aX'+ bY* cX*+ dY*

aX +bY cX +dY
= A

Xp Yp

X Y
(mod p).

Next, suppose that (5) has no integral root and therefore two

Galois imaginary roots. By (2), each root p uniquely determines

a point (x, y) with y #= 0. We may therefore take y = 1,

whence ex = p — e. The resulting two special points are

therefore imaginary points of the form (rp + s, 1), where r and s

are integers modulo p, and r is not divisible by p. The imagi-

naries introduced* by new transformations are expressible

linearly in terms of this p. Indeed, (2p — a) 2 = A, where

A = a2 — 4. is a quadratic non-residue of p (i. e., is not the re-

mainder when the square of any integer is divided by p). Thus

A = a?v, where v is a fixed non-residue of p. Hence the roots

of all congruences (5) having no integral roots are expressible

in the form k + Wv, where k and I are integers.

* There are no new ones if p = 2, since a = (mod 2).
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Hence the special points invariant under transformations

whose characteristic congruences have no integral roots are all

of the form (rp + s, 1), where r and s are integers, r not divisible

by p, while p is a fixed root of a particular one of these congru-

ences (5).

We next show that these p
2 — p imaginary special points are

all conjugate under the group 0. It suffices to prove that they

are all conjugate with (p, 1), which is invariant under

x' = ax — y, y' = x.

Now transformation (1) replaces (p, 1) by (R, 1), where

B bP +d
li = :

.

cp + e

We are to prove that there exist integers b, c, d, e satisfying

(9) be — cd = 1 (mod p),

such that R = rp + s, where r and s are any assigned integers

for which r is not divisible by p. Denote the second root of (5)

by p' and multiply the numerator and denominator of R by

cp' + e. Using (9), we get

p + N
R = , N = be + de + dca, q = c

2 + ace + e
2
.

We first show* that we can choose integers c and e such that

q = i (mod p), where i is any assigned integer not divisible by p.

If i is a quadratic residue of p, we may take c = 0. Next, let

i be a quadratic non-residue of p. Taking c ^ 0, e = he, we

have

q = oJ(k), f(k) = l + alc+k\

Now f(k) = f(K) if and only if K = h or K = — a — Jc. Hence

the p — 1 values of Jc other than — a/2 give by pairs the same

value of/(A). Thus for k = 0, • • •
, p - l,/(4) takes 1 + J(p- 1)

incongruent values, no one a multiple of p [since (5) has no

* If p = 2, then a = 0; taking c = 1, e = 0, we have q = 1 = i (mod 2).
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1

integral root], and consequently a value which is a quadratic

non-residue of p. Then, by choice of c, q can be made congruent

to any assigned non-residue.

Having made q = i (mod p) by choice of c and e, we proceed

to choose integral solutions b and d of (9) such that N will be

congruent to any assigned integer j. If c = 0, so that e ^ 0,

we take d = j/e. If c ^ 0, we eliminate d from N by use of (9)

and obtain

N = -(bq — e — ca), q = c
2 + «ce + e

2
.

c

Since g ^ 0, we may make N = j by choice of 6.

We have therefore proved that there are exactly p
2 — p

imaginary special points, viz., (rp + 5, 1), r ^ 0, and that they

are all conjugate under the group G. Hence any invariant of

which vanishes for an imaginary special point has the factor

UU; ^
~

X ~ x^ - y^1

Indeed, the numerator of the first fraction vanishes for x=rp-\-s,

y = 1, since

(rp + s)
p2 = rp

p2 + 5, P
p2 — P (mod p),

the last congruence* being a case of Galois's generalization of

Fermat's theorem. We have divided out L, which vanishes for

the real points (s, 1) and (1, 0). Since any transformation of G
replaces one of our imaginary points by another, it replaces Q
by kQ. The constant k is in fact unity and Q is an invariant of

G. Indeed, (8) holds if we replace the exponents p by p
2

.

Hence the quotient Q is invariant! under all transformations (7)

.

* It may be proved by noting that (5) implies

(p
2 - ap + 1)" = P

2 " - up* + 1=0 (mod p),

so that p" is the second root of (5). By the same argument, (p
p
)
p is a root,

distinct from pp , and hence identical with p.

1 1 gave the notation Q to the invariant (10) since it is the product of all

of the binary quadratic forms x2 + • which are irreducible modulo p.

Indeed, the latter vanishes for two points of the form (rp + s, 1) and (rp' + s, 1),

where p and p' are the roots of (5) and r, s are integers, r ^ 0, and conversely.
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We are now ready to prove that any rational integral invariant

I, with integral coefficients, of the group G is a rational integral

function of L and Q with integral coefficients.

After removing possible factors L and Q, we may assume that

I vanishes for no special point. If I is not a constant, it vanishes

at a point (c, d) and hence at the u distinct points conjugate with

(c, d) under the group G. The invariants*

P+l i>0>-i)

(11) q=Q\ l = L *

are of degree w. The constant r, determined by

q(c, d) + r • l(c, d) = (mod p),

is a root of a congruence of a certain degree t with integral coef-

ficients and irreducible modulo p. Now q -{- rl is & factor of I.

Since q, I and I have integral coefficients, I has also the factors

(12) q+i*l, q + rp% ••, q + T^L

For, by Galois's theorem mentioned above,

are the roots of our irreducible congruence of degree t. Since

the conditions which imply that q + zl shall be a factor of I are

congruences satisfied when z = r, they are satisfied when z = tp\

Hence if we multiply q + rl by the product of the invariants

(12), we obtain an invariant T with integral coefficients modulo p.

Since L and Q have no common factor, no two of the functions

q-\- rl and (12) have a common factor. Hence T is a factor of J.

Proceeding in like manner with I/T, we arrive finally at the

truth of the theorem.

f

3. Invariants of STnaller Binary Groups.—We shall later need the

theorem that a fundamental system of rational integral invariants

* If p = 2, we omit the divisor 2 in the exponents.

t Proved less simply in Transactions of the American Mathematical Society,

vol. 12 (1911), p. 1. Still simpler is the proof that various coefficients of an

invariant are zero, Quarterly Journal of Mathematics, 1911, p. 158.
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of the group composed of the p powers of the transformation

(13) x' = x + y, y' = y {mod p)

is given by y and X, where

(14) \ = x(x+y)(x+2y)>--(x+p— ly)=xv— xy1̂ (modp).

Now (1, 0) is the only special point, being the only point

unaltered by (13) or its Mi power, k < p. Hence an invariant

not having a factor y or X vanishes at imaginary points falling

into sets each of p points conjugate under our group. As at the

end of § 2, the invariant is a product of factors yp + tX so

related that the product equals a polynomial in y
p and X with

integral coefficients.

Other results will be merely stated, since they are not pre-

supposed in what follows. Within the group of all transforma-

tions (1), any subgroup of order a multiple of p is conjugate

with one containing (13) and transformations exclusively of the

form

(15) x' = tx + ly, y' = t~ly (mod p),

and having y and X as a fundamental system of invariants.*

The invariants of any subgroup whose order is prime to p have

been found.f

4. Invariants of the Total Group on m Variables.—The functions

(16) Lm =

Xip

Xiv
"

Xip

X!

T P

Xm
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Since Lm is an invariant of Tm and has the factor xi, it follows

from an examination of its diagonal term that*

m p—1

(17) ii,= IIEfe + Ck+xXi^.! + + cmxm) (mod p),

in which occurs one of each set of proportional linear forms modulo

p. A like proof shows that the numerator of Qms is divisible by

each of the linear functions (17) and hence by Lm, modulo p.

Making use of the theorem in § 2, 1 have proved by inductionf

that the m invariants Lm, Qmi, •
, Qmm-i are independent and

form a fundamental system of rational integral invariants of Tm .

A fundamental system of invariants of the group of all modular

linear transformations on two sets of two cogredient variables

has been obtained very recently by Dr. W. C. Krathwohl in his

Chicago dissertation, t

Fohmal Invariants and Seminvaeiants of Modular Forms,

§§ 5-13

5. Formal Modular Invariants.—Consider a binary form

fix, y) = a xr + a1x
r~1

y + • • • + ary
r
,

in which x, y, a0> • • • , ar are arbitrary variables. The transforma-

tion (7) with integral coefficients, whose determinant A is not

divisible by the prime p, replaces / by a form

<t>(X, Y) = A X' + A 1X^Y ++ ArYr
,

in which

(18) A, = f(a, c), A x = ra^ba + , , Ar = f(b, d)

.

A polynomial P(a ,
• • , ar) with integral coefficients is called a

formal invariant jnodulo p of index X of / under the transforma-

* E. H. Moore, Bulletin of the American Mathematical Society, vol. 2 (1896),

p. 189. His proofs do not use the invariantive property. A like remark is

true of the proof that the product (17), in the case xm = 1, is congruent to a
determinant of order m — 1, then obviously equal to Lm , by R. Levavasseur,
Memoires de VAcaMmie des Sciences de Toulouse, ser. 10, vol. 3 (1903), pp.
39-48; Comptes Rendus, 135 (1902), p. 949.

f Transactions of the American Mathematical Society, vol. 12 (1911), p. 75.

t American Journal of Mathematics, October, 1914.



INVARIANTS AND NUMBER THEORY. 41

tion (7) if

(19) P(A , Au , Ar) = AKP(a , au •-, ar) (mod p),

identically as to a ,
• , ar , after the A's have been replaced by

their values (18) in terms of the at. If P is invariant modulo p
under all transformations (7), it is called a formal invariant

modulo p of /.

The term formal is here used in connection with a form/ whose

coefficients are arbitrary variables in contrast to the case, treated

in the earlier Lectures, in which the coefficients are undeter-

mined integers taken modulo p. In the latter case, (19) neces-

sarily becomes an identical congruence in the a's only after the

exponent of each a is reduced to a value less than p by means

of Fermat's theorem ap = a (mod p).

The functions (18) are linear in ao, • • • , ar . It is customary to

say that relations (18) define a linear transformation on ao, • • • , aT

which is induced by the binary transformation (7). Let T be

the group of all of the transformations (18) induced by the group

of all of the binary transformations (7). Making no further

use of the form /, we may state the above problem of the de-

termination of the formal invariants of / in the following terms.

We desire a fundamental system of invariants of group T. This

problem is of the type proposed in § 1; the group T is a special

group of order a multiple of p. Here and below the term in-

variant is restricted to rational integral functions of a ,
• • , ar .

A theory of formal invariants has not been found. For no

form / has a fundamental system of formal invariants been

published. Some light is thrown upon this interesting but

difficult problem by the following complete treatment of a

binary quadratic form, first for the exceptional case p = 2 and

next for the case p > 2, and preliminary treatment of a binary

cubic form.

6. Formal Invariants Modulo 2 of a Binary Quadratic.^Fornix—

Write

(20) / = ax2 + bzy + cy\
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where a, b, c are arbitrary variables. Under the transformation

(21) x = x' + y', y = y',

f becomes /', in which the coefficients are

(22) a'= a, V = I, c'=a+b + c (mod 2).

By § 3, the only invariants under d' = d, c' = c + d, modulo 2,

are the polynomials in d and c(c + d). Take d — a + b.

Hence the only seminvariants of f are the polynomials in a, b and

(23) * = e(c + a + b).

Such a polynomial is an invariant of / if and only if it is

unaltered by the substitution (ac) induced by (xy). Thus

(24) b, k = as, q = b(a + c) + a2 + ac + c
2 = s+ ab + a2

are invariants of /. Introducing q in place of s, we see that any

'seminvariant is a polynomial in a, b, q. Consider an invariant

of this type. Since its terms free of a are invariants, the sum

of its terms involving a is an invariant with the factor a and

hence also the factors c and a + b + c, the last by (22). Hence

this sum has the factor h, and its quotient by h is an invariant.

By induction we have the theorem:

Any rational integral formal invariant of f equals a rational

integral function* of b, q, h.

7. Formal Seminvariants of a Binary Quadratic Form for p > 2.

Write

(25) / = ax2 + 2bxy + cy2,

where a, b, c are arbitrary variables. Under the transformation

(21), /becomes/', whose coefficients are

(26) a' = a, V = a + b, c' = a + 2b + c.

* Replace Xi, x2 , asj, of § 4 by a, b, c ; then

L 3 = bk(h + bq), Q 32 = bl + bk + q\ Q 3l = by + bqk + Vk + k2
.
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Evident formal seminvariants are a, A = 62 — ac, and

p-i

(27) (8 = II (ta + b) = b» - bar-1
(mod p)>

(=0

(28) yk = I[{(t2 -k)a + 2tb + c} (k = 0,l,---,p-l).
(=0

Indeed, the linear function under the product sign in (28) is

transformed by (26) into the function derived from it by re-

placing t by t + 1. As in (27),

(29) [7ft]a=o = C - cfc"-
1 (mod p).

Let S(a, b, c) be a homogeneous rational integral seminvariant

with integral coefficients. Then, by (26),

S(0, b, c) = S(0, 6, 26 + c) (mod p).

Thus, by § 3, S(0, b, c) equals a polynomial in b, c" — ob*"1 .

Hence, by (29),

S(a, b, c) = a<r(a, b, c) + <j>(b, yu) (mod p),

where <r and <j> are polynomials in their arguments. Now

h
n = A1' + a( ), b^2i = /3A1' + o( ).

Hence
(i>-3)/2

(30) 5 = a\(a, 6, c) + *(0, A, 7*) + Z <*,**"V>
»=o

where X and ^ are polynomials in their arguments, and di is

an integer.

When y is multiplied by a primitive root p of p, a, b, c are

multiplied by 1, p, p
2
, respectively. Hence /? is multiplied by p,

while, by (29), 7* and A are multiplied by p
2

. If therefore we

attribute the weights 0, 1, 2 to a, b, c, respectively, and the weight

5 + 2t to cfb'c
1
, we see that the weight of every term of 7& is

congruent to 2 modulo p — 1.

We can now prove that every di is divisible by p. For, if not,

the seminvariant S — \f/
has a term of odd weight, so that every
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term of X is of odd weight and hence has the factor b. Thus

S — ^ has the factor b and therefore the factor /3, so that its

terms free of a have the factor bv . But this is impossible, since

2% + 1 < p and (29) does not have the factor b.

Hence S — \p has the factor a and the quotient is a semin-

variant of the form dk' + \p'. Proceeding in this way, we obtain

the theorem:

Any seminvariant is a polynomial in a, A, /3 and any single jk-

Of these, /3 alone is of odd weight. Hence any seminvariant is

a polynomial in a, A, yk , /3
2 or the product of such a polynomial by

13. But
p-i

(31) p
2 = a"y + A(A 2 - a^1

)
2 (mod p).

To prove this, it suffices to show that the second member is

divisible by b and hence by |8, and being of even weight therefore

by /3
2
, and to remark that each member of (31) reduces to b2p for

a = 0. Now

[7o]6=o = II (fa + c) = c\ II (t
2a+c)\

(=0 I t=l J

p—1 p—1

= c{c
2 — (— a)

2
}

2 (mod p),

p-i

ap[y ]b=o = ac{{- ac)
2 - a^1

}

2 (mod p).

But A reduces to — ac for 6=0. Hence the second member of

(31) has the factor b. We therefore have the theorem:

For p > 2, any formal seminvariant of a binary quadratic form

is a polynomial in a, A, 70 or the product of such a polynomial by /3.

8. Formal Invariants of a Binary Quadratic Form for p > 2.

The product

(32) r = JJ Y;t (k ranging over the quadratic non-residues of p)
k

is an absolute invariant of / under the group G of all binary

transformations with integral coefficients taken modulo p of
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determinant unity. It suffices to prove that this seminvariant

is unaltered by the substit ution

(33) a' = c, c' = a, V = - b,

induced by the transformation x = y', y = — x'. Under (33),

the general factor in (28) is replaced by

(t
2 -k){(T2 -K)a + 2Tb + c\,

where

T = ^r, K L

f-k' (f-kf

Hence K is quadratic non-residue of p when k is. Also,

H(t2-k)=-k\ II (k-f)\ =-k(k 2 -l) 2=-4it (mod p)

if k is a non-residue. To show that the product of the resulting

numbers — 4k is congruent to unity, we set x = in

p-i

(34) H(x-k) = x 2 +1 (mod p),
k

and note that 2P_1 = 1. Hence (32) is unaltered by (33) and is

an absolute invariant of / under G.

It is very easy to verify that

(35) / = ay

is unaltered by (33), so that J is an invariant of / under G.

If an invariant has the factor /3, it has the factor

(36) B = j3Hyr (r ranging over the quadratic residues of p).

For, under the substitution (33), b-\-ra (r=j=0) becomes r{c—bJT).

By choice of r, we reach c + 2tb, where t is any assigned integer

not divisible by p. This is a factor of jk where k = t
2
.

The fact that B is an invariant may be verified as in the case

of (32) or deduced from the fact that

p-i

apHyk = ay - BT
*=0
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is an invariant, being the product of all non-proportional linear

functions of a, b, c with integral coefficients modulo p.

Hence any invariant is the product of a power of B by an

invariant which is a polynomial P in a, A, 70.

Since 7& is a seminvariant not divisible by /3, it equals a

polynomial in a, A, ya (§ 7). But if a = 0, jk — To (mod p), by

(29), and A = V is free of e, so that 7^ is not a polynomial in a

and A only. Hence

(37) 7;b = 70 + 0*K A) (mod p).

For p = 2>, the polynomial P therefore equals a polynomial in

a, A, 72 = T. Now an invariant <j>{a, A, T) differs from the

invariant 0(0, A, T) by an invariant with the factor a and hence

the factor (35). Treating the quotient similarly, we ultimately

obtain the following theorem for the case p = 3

:

A fundamental system of formal invariants of the binary quad-

ratic form f modulo p, p > 2, is given by the discriminant A and

T, J, B, defined by (32), (35), (36). The product of the last three

is congruent modulo p to the product of all the non-proportional

linear functions of the coefficients of f.

To prove the theorem for p > 3, note first, by (37), that T,

given by (32), differs from 70™ by a polynomial in 70, a, A of

degree n — 1 in 70, where n = (p — l)/2. Hence a polynomial in

a, A, 70 equals a polynomial in a, A, 70, T of degree at most n — 1

in 70. Subtract from each the terms of the latter involving

only the invariants A, T. We have therefore to investigate

invariants of the type

w—l re—

1

(38) Z WJPiiA, T) + E 7o%(a, A, T),
i=l i=0

in which the c» are integers, while Pi and #,- are polynomials in

their arguments, and </>, has the factor a. If every a s= 0, the

invariant has the factor a and hence the factor ayo = /, and the

quotient by J is an invariant which may be treated similarly.

The theorem will therefore follow if we show that a contradiction
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is involved in the assumption that a certain cy is not divisible by p.

First, the remaining c» are divisible by p. For if also a ^ 0,

let k{AriT Si be the term of P,- of highest degree in A. Since

7o and T are of degrees p and np, and of weights = 2 and

(mod p — 1), 7o
l
P,- is of degree pi + 2r» + Si^p and of weight

= 2i+ 2r,- (mod p — 1). But p = 1 (mod n). Hence

i + 2r,- = i + 2ry, 2z* + 2r,- = 2j + 2r,- (mod n),

so that i = j (mod ji). But i and j are positive integers < n.

Hence i = j. Multiplying our invariant by a suitably chosen

integer, we have the invariant

(39) 7</Py(A, D +£ 7o<* *(<*, A, T), P, = AT* + • • •

.

t=0

Now — (c — ka)bv
~1

is the term of highest degree in b in yk .

Hence

(40) 70= -<*-*+ •••, r = <r6" (^1>H ,

(41) <7= n{-(c ~ *») J = (- c)" +(-«)" (modp),

where & ranges over the non-residues of p, the last following

from (34) for x = c/a. Since 70 and T are of even weights,

only even powers of b enter (39). Hence an invariant (39) is

symmetrical in a and c. We shall prove that this is not the

case for the terms of highest degree in b. For 7o'P/ this term is

(42) (- c)W, = j(p - 1) + 2r + *»(p - 1).

Let CiaeiAfiTa< be one of the terms of 0,- in which the exponent of

b is a maximum. Then in 7o*0» the highest power of 6 occurs

in the terms

(43) da"(- cY<t<>W<, pt = 2/; + ^(p - 1) + t(p - 1).

Since the weight and degree is the same as for (42),

2» + ft = 2j + jS (mod p - 1),

(44)v

ei + i+g<n + Pi = j + *n + p.
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First, let ft = ft Then i = j,ei=0 (mod ri), whence i = j.

Thus the exponent of a in any term (42) or (43) is divisible by n,

while the exponent of c is not, being congruent to j modulo n.

Hence the coefficient of 6s in the sum of (42) and the various

terms (43), with i = j, is not symmetrical in a and c, unless

identically zero. But (43) has the factor a while (42) does not.

Hence the greatest ft exceeds ft

Next, consider a set of terms (43) and a set of terms of like

form with i replaced by k, all being of equal degree in b. Then

ft = ft. By (44i), 2i + ft = 2k + ft, % = k. Consider finally

terms (43) with ft constant. In them the residue modulo n

of ei is a constant 4= i. For, if ei=i, then 2i + ft — j + |8

(mod n) by (442), so that j = (mod n) by (44i). Hence these

terms (43) are not symmetric in a and c and yet do not cancel.*

Our fundamental invariants are connected by a syzygy; for

p=3,
(45) B2 = AT2 + J (J - A2

)
2
.

9. Formal Invariants of a Binary Cubic Form for p =j= 3.

—

We have seen that the theory of formal invariants of a binary

quadratic form is dominated by the invariantive products of

linear functions of the coefficients. While these products de-

pended upon the classification of integers into the quadratic

residues and the non-residues of p, we shall find that for a cubic

form it is a question not merely of cubic residues and non-residues

of p, but of the larger classes of reducible and irreducible con-

gruences. Write

/ = ax3 + "ibx^y + dcxy2 + dys
,

thus taking p #= 3. Under transformation (21), / becomes /',

whose coefficients are given by (26) and

(46) d' = a + 36 + 3c + d.

* If two are of like degree in c, their g's are equal and hence their /'s are

equal; then, if of like degree in a, their e's are equal. But then we have the

same term of <t>i.
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Hence a, /3 and yu, given by (27) and (28), are again seminva-

riants; also,

p-i

(47) 8,-fc
= II { (<

3 - Mt - j)a + 3(i2 - k)b + 3fc + d}

(j,k = Q, •-,p-l).

Indeed, if Ft (a, b, c, d) is the function in brackets,

F,(a', V, c', d') = F^ia, b, c, d).

Any invariant with the factor o has the factor

(48) aSoo = afi ifa + 3t*b + 3tc + d) = /(l, 0) fi/(«, 1),

whose vanishing is the condition that one of the points (x, y)

represented by / = shall be one of the existing p + 1 real

points (1, 0), (t, 1) of the modular line. To verify algebraically

that the seminvariant (48) is an invariant,* note that it is

unaltered modulo p by the substitution

(49) a' = - d, d' = a, V = c, c' = - b,

which is induced on the coefficients of / by x = y', y = — x'.

The product P of the djk in which j and k are such that

\ = t
3 -dkt- j

is irreducible modulo p is a formal invariant.

The substitution (49) replaces the general factor of (47) by

- a + 3tb- 3(t2 - k)c + \d

= X{ (T3 - ZKT - J)a + 3{T2 - K)b + 3Tc + d},

where

T=
k-^, #=§. J =

jf>
g = ¥ + kf + tj,

h= -2k3 + 6kH2 + Zktj + t
s

j + j
2
.

* For any form, see Transactions of the American Mathematical Society,

vol. 8 (1907), pp. 207-208.

5
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We are to show that there is no integral solution x of

x3 - ZKx - J= (mod p).

Multiply this by X3 and set Xa; = y. Then

y
s — 3gy — h = (mod p).

But the negative of the left member is the result of substituting

r -\- s = — t, rs = — y — 2k

in the expansion of the product

(r
s_ 2,kr- j)(s3 - 3ks-j).

The latter is congruent to zero modulo p for no values of r and

s which are integers or the roots of an irreducible quadratic

congruence with the integral coefficients t, — y — 2k.

For p = 2, P = 5n. For p = 5, P is the product of two

invariants*

(50) 511522832841, 813S24S34S43)

neither of which is a product of invariants. The last property

is true also of the following invariants:

7i8o3j 74802, 72804812S30S20842,

(51)
73S01810823833840, /370S14S21831S44.

The product of these seven invariants and aS o equals the product

of all the linear functions of a, b, c, d, not proportional modulo 5.

For p = 2, each of the 15 linear functions is a factor of just

one of the following invariants (no one with an invariant factor)

:

(52) aSoo, 811, /fyoSoi, K = b + c, (a +b + c)8i .

For any p 4= 3, the cubic form has the formal invariant

(53) G = 3(bcp - bpc) - (adp - a?d),

* In those linear factors of the first which lack c, the product of the coef-

ficients of a and 6 is a quadratic non-residue of 5; in those of the second in-

variant, a quadratic residue.
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and an absolute formal invariant* K of degree p — 1. For

V ~ 5,

(54) K = ¥ + c4 - 62d2 - aV - bc2d - ab2
c + acd2 + a2bd.

Thus, for p = 5, K and the discriminant D are invariants of

degree 4, and weights = 0, 2 (mod 4), while aS o and G are

of degree 6 and weight = 3 (mod 4). It follows from § 10 that

there are no further invariants of degree less than 8. Now the

first and second invariants (51) are of degree 10 and weight = 1

(mod 4). Hence if either is expressible as a polynomial in in-

variants of lower degrees, it must be the product of D by a

linear function of a8 o and G. This is seen to be impossible

either by a consideration of the terms of degree ^ 5 in d or by

noting that D has no linear factor. Thus 7i5 3 or 74802 occurs in a

fundamental system of invariants.

Invariantive products of linear functions of the coefficients

of the cubic form therefore play an important role in the theory

of its formal invariants. Whether or not they play as dominant

a role as in the case of the quadratic form is not discussed here.

We shall however treat more completely the seminvariants.

10. Formal Seminvariants of a Binary Cubic for p > 3.—We
shall first determine the character of the function to which any

seminvariant S(a, b, c, d) reduces when a = 0. Set A = 2b,

2B = 3c, C = d. Then (26) and (46) give

A' = A, B' = A + B, C' = A + 2B+C (when a = 0).

Any function unaltered by this transformation is (§ 7) a poly-

nomial in A, B2 — AC, jo, or the product of such a polynomial

by /3', where 70' and /?' are the functions 70 and ft written in

capitals. But

7o' = II (3<
2
6 + 3fe + d) = [Sd-o,

(=0

|3' = n{f(2tf + c)}^[7*]a=o,
1=0

* Transactions of the American Mathematical Society, vol. 8 (1907), p. 221;

vol. 10 (1909), p. 154, foot-note. Bulletin of the American Mathematical

Society, vol. 14 (1908), p. 316. Cf. Hurwitz, I. c.
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modulo p. Hence

(55) S = a<r(a, b, c, d) + Jk
e
<p{b, q, Syo) (e = or 1),

where k, j may be given any assigned integral values and

(56) q = c
2 - fta, - Zb2q = [Z)]o=0,

2) being the discriminant of/. We use the seminvariants (II, § 2)

(57) St = - b2 + ac, S3 = 2b3 + a(ad - 36c).

First, let p = 5. Then <? = c
2 + 2bd. We have the formal

seminvariants*

<r3 = bq — a(ab + 2cd),

<n = K - Si2 = q
2 + a(a&£Z - 2ac? + &

2
c + cd2),

<r5 = 6g
2 + o(- ad3 - bed2 + Sc3d + abc2 - 2b3c + a3

b),

fft = g
s _j_ a (ad4 _ 2bcd3 - c3d2+ o6c2c? - 2&3cd+ a3bd+ 2ac4

(58) - b2
c3 - 2a3c2 + 064

),

<r7 = g7o + a {2(62 - ac)di+ a2bd3 - bc2d3 - 2c4d2+ 2a2
c
2d2

- 2ae(b2 - ac)d2 - (b
2 - acfd2 - 2a4d2 + 2abc3d

+ 2a3bcd + 2ab4c + 3(b2 - ac)* - a4b2 + 2a3c3 },

while 2G differs from byo by a multiple of a. By (55)-(58), S

differs from a polynomial in the seminvariants

(59) a, D, S2, S3 , <t3 , K, <ii, <r6, <r7, G, 70, 5 o

by a function aX + pbbg
w + aqb

h

a(t ,
in which p and <r are constants

at least one of which is zero (in view of the degree of the terms).

But the increment to bd300 under transformation (26), (46), is

* As the terms with the factor a were taken all of the proper degree and
weight; then a term common to a combination of the seminvariants (59) was
deleted. Finally the coefficients were found by a process equivalent to the

use of a (non-linear) annihilator, Transactions of the American Mathematical

Society, vol. 8 (1907), p. 205. Expansions were made in powers of d and the

terms involving d rechecked. As each remaining term involves a new coef-

ficient, there is no doubt as to the existence of covariants of type o-6, <re, <n,

though the terms free of d were not rechecked.
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aS^ with the term adh
°, while d does not occur to this power in

the increment "to a function X of degree 5g. Again, the increment

to g5„ has the term 2aan+5h, while the increment to a function

X of degree 5h + 1 is of smaller degree in d. Hence p = a = 0.

Then in ah, X is a seminvariant which may be treated as was the

initial S.

A fundamental system of formal semirwariants of the binary

cubic form modulo 5 is given by the functions (59).

11. For p = 2, the method of § 10 fails. In place of c we

now introduce the seminvariant K = b + c. Then the trans-

formation (26), (46), becomes

(60) a' = a, K' = K, V = a + b, d' = a + K+d.
By § 3, any seminvariant S(a, K, b, d) becomes for a = a

polynomial in K, b, d(K-\- d). In place of the last we may
use S 00 . Hence

S = aa+ 4>(b, K, 500), 500 = d{a + K + d).

We make use of the seminvariants

A = ad + be = 5 o + hu )8 = b2 + ab,

(61)
+ A = bK + a{b + d).

Hence S differs from a polynomial in K, 5 o, A, /3 by a function

ap + 6t(/3, Soo). Let (60) replace p by p'. Then p + p' = t

(mod 2). Take a = K = 0; then (60) is the identity and

s= t (6
2
, d2

) identically in 6, d. Hence the function r (j8, 5)

is identically zero. Thus ap and hence p is a seminvariant.

Hence a, K, 8oo, A, fi form a fundamental system of formal semin-

variants of the cubic modulo 2.

Note that A2
is the discriminant, so that A is an invariant.

The invariants (52) may be expressed in terms of our semin-

variants :

5U = I + A, £7o5oi = 0(0 + K2 + aK)(A + 800),

(a + X)8io = (a + K) (a
2 + I) = ahm -\-KI,

where I = a2
-\- aK + Soo is an invariant.
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12. Miss Sanderson's Theorem.*—Given a modular invariant i

of a system of forms under any modular group G, we can con-

struct a formal modular invariant I of the system of forms under

G such that I = i (mod p) for all integral values of the coefficients

of the forms. As the proof does not give a simple method of

actually constructing I from i, it is in place here to give a very

interesting illustration of the theorem with independent veri-

fication. Take as i the fundamental seminvariant (— l)mPm_iam

of a binary form/ (Lecture II). Then I is the quotient Lm+i/Lm,

where Lm is given by (16) or (17) with xi} • • • ,xm replaced by the

first m coefficients a , au • • • , Om-i of the binary form /. Now
x — x' + y', y = y', replaces f(x, y) by a form in which the

coefficient a/ is a linear function of ao, • • • , a
3
: Hence Lj is a

formal seminvariant of / modulo p. First,

u
Li

a p ax
v

ao eti

a = flo
5-^! — a,i"

is a formal seminvariant which reduces to — P <zi for integral

values of a , a\, where P = 1 — ao"
-1

. Compare (27). Next,

L,=

ao"
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to a *oi*. Hence C = Pia2 - Similarly,

Lt/L, = - o3
p8 + a^Qn - a3

pQ3 i + atL, 1̂ 1 (mod p),

where the Q's are defined by (16) and are congruent to*

Q3l = q{LzjU)^ + U*~*, Qn = (X./JW-1 + Qp
,

with Q as above. Hence for integral values of the <x's,

Q3i = (1 - POPit^1 = 0, fe^l- Pj (1 - o,*"1
) = 1 - P2 ,

Li/Li = — P?fis.

13. Modular Covariants.—Extending the usual definition of a

covariant of an algebraic form / to the case in which the group is

the set of all linear transformations with integral coefficients

taken modulo p, we obtain the concepts modular covariants or

formal modular covariants according as the coefficients of /

are integers taken modulo p or are indeterminates. The contrast

is the same as in § 5. The universal covariants obtained in § 2

and § 4 do not involve the coefficients of / and hence are formal

covariants.

I have recently provedf that all rational integral modular

covariants of any system of modular forms are rational integral

functions of a finite number of these covariants. In the same paper

I proved that a fundamental system of modular covariants of the

binary quadratic form (25) modulo 3 is given by the form f itself,

its discriminant A, the universal covariants L and Q, together with\

q = (a-\r c) (b
2 -{- ac — 1), fi = ax4 + bx3

y + bxy3 + c?/
4
,

(63) Ci = (o
26 - b3)x2 + 2(62 + ac) (c - a)xy + (V - bc2)y

2
,

C2 = (A + a2)x2 - 26 (a + c)xy + (A + c
2
)y

2
-

Here fi is a formal covariant, which is congruent to / for integral

* Transactions of the American Mathematical Society, vol. 12 (1911), p. 77.

t Transactions of the American Mathematical Society, vol. 14 (1913), pp.

299-310. The extension to cogredient sets of variables has since been made
by Professor F. B. Wiley, and will be published in his Chicago dissertation.

t No one of the eight is a rational integral function of the remaining seven

even in the case of integral coefficients a, b, c taken modulo 3.
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values of x, y. Also C% and (as here written) C\ are formal

covariants. Note that — q is the invariant (42) of Lecture II.

When q is made homogeneous by replacing — a — c by — a3 — c3
,

we obtain the formal invariant T = 72, given by (32). The

resulting eight formal covariants of / do not form a fundamental

system of formal covariants; not all the formal invariants are

polynomials in A and V (§8). No instance of a fundamental

system of formal covariants has yet been published.

The method of proof will be here illustrated by the new and

simpler case of a binary quadratic form (20) with integral coef-

ficients modulo 2. By § 6 any invariant of / is a polynomial in

(24') 6, abc, q = (b + l)(o + c) + ac,

to which the formal invariants (24) reduce modulo 2. Such a

polynomial is congruent to a linear function of these three and

unity, since

bq = abc (mod 2).

Further, any seminvariant is a polynomial in a, b and q (§ 6),

and hence is a linear function of 1, a, b, ab, q, abc. For,

aq= a + ab + abc (mod 2).

These results are in accord with those obtained otherwise in § 14

of Lecture II. We shall now prove the following theorem:

Every rational integral covariant K of the binary quadratic form f
modulo 2 is a rational integral function of f, its invariants b and q,

the universal covariants

Q = x2 + xy + y
2
, L= x2

y + xy2
,

and the linear covariant

1= (a + b)x+ (b + c)y, P = f+bQ (mod 2).

The leading coefficient S of K is a seminvariant and hence is

of the form I + ra + sab, where r and s are constants, and I

is an invariant, a linear combination of the invariants (24') and

unity.
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First, let K be of even order 2n. Then

Kt = K - IQn - rf
n - sbf

n

is a covariant in which the coefficient of x2n is zero and hence

has the factor y. Thus Ki has the factor L and the quotient is

a covariant of order 2n — 3 to which the next argument applies.

Next, let K be of odd order:

K= Sa?n+1 + S!X2ny + ••.

After subtracting from K constant multiples of lQn and UQn
,

in which the coefficients of x2n+1 are a + b and ab + b, re-

spectively, we may assume that S is an invariant. After also

subtracting from K a constant multiple of IIAj
l

n~x
, where J is a

linear combination of the invariants (24') and unity, we may
assume that <Si = fi\a + fitf, where the /3's are functions of b

only. Then the covariance of K with respect to the trans-

formation (21) gives

Sx""
+l+S1'x"

n
y'+ .=K=Sx"n+1+ (S+S 1)x'

2Y+ • • • (mod 2),

where S\ denotes the function S\ formed for the new coefficients

(22). Hence
SS -Sx

= ft (a + b)

must equal the invariant 8. Since /326 is a function of the in-

variant b, /32a must be an invariant, so that /32 = 0. Thus

S = and K has the factor L as before. Hence the theorem is

true for covariants of order u if true for those of order co — 3.

But it was proved true for those of order zero.

By a similar method I obtain the following theorem:

A fundamental system of covariants of the binary quadratic form

f, given by (20), and the linear form X = a2x-{- aiy modulo 2 is

given by /, A, /,

h = (aa2 + j)x + (cai + j)y,

Q, L and the invariants b, q, (ai — 1) (a2 — 1) and

j = (a + b)ai + {b + c)a2 .
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Since a\ and a2 are cogredient with x and y, the function j

obtained from the covariant I of / is an invariant of / and X.

The reverse of the last process is important. If we adjoin to a

system of binary forms in the variables x' and y' the linear form

yx' — xy' , any modular invariant of the enlarged system, formal

as to x, y, is a modular covariant of the given system with x', y'

replaced by x, y. The theorem of § 12 therefore proves the

existence of certain formal covariants. *

Applications of Invaeiants of a Modular Group, §§ 14, 15

14. Form Problem for the Total Binary Modular Group Y.—
This group is composed of all binary linear transformations (7)

with integral coefficients taken modulo p whose determinant A
is not divisible by p. By (8),

(64) L(x,y) = AL(X,Y), Q(x, y) = Q(X,Y) (mod p),

so that i^-1 and Q are absolute invariants of T. Hence, of the

functions (11), ^is invariant under T, while I is unaltered by certain

transformations and changed in sign by others. Thus a homo-

geneous function of q and I having a term which is a power of q

is a relative invariant of T only when an absolute invariant.

Hence if p > 2, it involves only even powers of I, and by the

homogeneity, only even powers of q. Hence any absolute in-

variant of r is a product of powers of i"
-1 and Q by a polynomial

in q
y
, P, where y = 1 if p = 2, y = 2 if p > 2.

In particular, Lr~1 and Q form a fundamental system of absolute

invariants of T. The so-called form problem for the group T

requires the determination of all pairs of values of the variables

x and y for which J,"
-1 and Q are congruent modulo p to assigned

values X and fi, either integers or imaginary roots of congruences

modulo p. We have therefore to solve the system of congruences

(65) {L(x, y)}^ = X, Q(x, y) = M (mod p).

* After these lectures were delivered, I saw a manuscript by Professor O.

E. Glenn, containing tables of formal concomitants for forms of low orders

and moduli 2 and 3. He employs transvection between the form and the

covariant L of § 2.
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First, let X +
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gruence with integral coefficients is at bottom the problem to

factor it into irreducible congruences with integral coefficients.

When v is an integer, zp — to is a factor of (66) if and only if

v is a root of the characteristic* congruence

(69) 1?- nv + \=0 (modp).

Such a binomial is a productf of binomials zd — 5, irreducible

modulo p, whose degree d is the exponent to which the integer v

belongs modulo p. Since 2p — 1 < p
2
, the function (66) has

an irreducible factor <f>(z) of degree D > 1, not of the preceding

type z
d — 8, and hence with a root r such that rp/r is not congruent

to an integer. Thus every root of (66) is of the form cxr-\-arp,

where the c's are integers. The irreducible factors of (66) are of

degree D except those, occurring only when (69) has an integral

root, of the form z
d — 8, where dis a divisor of D.

To find D, note that by raising (66) to the powers p, p
2
, • * •

,

we can express z
pt

as a linear function lt of zp and z. Now D is

the least value of t for which lt = z. But the coefficients of lt

are the elements of the first row of the matrix of S'
_1

, where

S -c -;>

* Note the analogy of (66) with the linear differential equation

having the solution z = evt if v is a root of d2 — nv + X = 0. Also, (68) holds.

Make dz/dt correspond to z» and hence cPz/dl2 to (z^O*. Thus the differential

equation corresponds to (66), and the integral z = e*' (viz., dz/dt = vz) to

zv = vz.

f Let /(z) be an irreducible factor of degree d. Its roots are

r, rp = vr, f2 stV, • • •, rv
d~x = vd~h-,

where vd = 1, »' ^ 1, < I < d. Thus d is a divisor of p — 1. Hence

z»-i — y = z^
-1 — rp_1

has the factor zd — rd . The latter has a root r in common with /(z). But

(j-dy-l = va == J

Thus 5 = r* is an integer. Hence /(z) = zd — 5.
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But Ij) = z implies that lD+\ = zp . The condition for the latter is

therefore Sv = 1. Hence D is the period of S. But (69) is

the characteristic determinant of S. According as it has distinct

roots Vi and v2 or equal roots v = \\x = X*, a linear substitution

of matrix S can be transformed linearly into one of matrix*

/«i \ /v v\

\0 vj' \0 v)'

According as the characteristic congruence. (69) has distinct {real

or imaginary) roots or a double root, D is the least common multiple

of the exponents to which the distinct roots belong modulo p, or is p
times the exponent to which the double root belongs.

Finally, let X = 0. By (6), either y = or x — ay =
(mod p), where a is an integer. In the first case,

Q = x^p, x
pi - /xxp = 0.

If fi = 0, then x = y = 0. If n =)= 0, the roots x are equal in

sets of p and hence are cxi (c = 0, 1, • • •, p — 1), where x\ is a

particular root not divisible by p. In the second case x — ay = 0,

we take * — ay as a new variable X and conclude from the

absolute invariance of Q that

We thus have the first case with y in place of x.

Using similar methods, I have solved the form problem for

the total group of modular linear transformations on m variables, t

15. Invariantive Classification of Forms.—Let

(70) 4>{x,y) = xm + • (m>l)

be a binary form irreducible modulo p and having unity as the

coefficient of the highest power of x. Let G be the group of all

modular binary linear transformations (1) with integral coef-

* In the second case we use the new variables x and x — vy.

t Transactions of the American Mathematical Society, vol. 12 (1911), pp.
84r-92.
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ficients of determinant unity. Let $1 = 0, <j>2, • • • , <j>k denote

all the forms of type (70) which can be transformed into constant

multiples of
<f>
by transformations of G. Evidently their product

P =
<f>i<f>2

• •
(f>k is transformed into ctP by any transformation

t of G. The constant ct is easily seen* to be congruent to unity.

Hence P is an absolute invariant of G. If m > 2, no <£; vanishes

for a special point. We now apply the theorem in the first part

of § 14. Hence, if m > 2, the absolute invariant P is an integral

function with integral coefficients of the invariants q, I, each ex-

ponent of q and I being even if p > 2. In view of the definition of

the <j>i, this function of q and I is an irreducible function of those

arguments modulo p.

Two binary forms shall be said to be equivalent if and only if

one of them can be transformed into a constant multiple of the

other by a transformation of G. A set of all forms equivalent

to a given one shall be called a genus. Thus <f>i,
• •

, 4>k form a

genus. All of the irreducible forms (70) separate into a finite

number/ of distinct genera; let Pi, • • • ,Pj denote the products

of the forms in the respective genera. Thus wm = P\ • • Pf

is the product of all of the binary forms xm + • • irreducible

modulo p. Hence irm is a polynomial in q, I with integral coef-

ficients. Hence the f genera of irreducible binary forms of degree

m > 2 are characterized invariantively by the f irreducible factors

Pi(q, of irm (q, I) modulo p.

We shall see that wm (q, I) is easily computed. By finding its

factors irreducible modulo p in the arguments q, I, we shall have

invariantive criteria for the equivalence of two irreducible

binary forms of degree m. For example, we shall prove that

7T3 = q — I if p = 2, so that all irreducible binary cubic forms

modulo 2 are equivalent. Further, ir3 = q
2 — I

2
if p > 2, so that

the irreducible cubic factors of q — I are all equivalent, also those

of q + Z, while no factor of the former is equivalent to one of the

latter.

* Transactions of the American Mathematical Society, vol. 12 (1911), p. 3, § 4.

The present section is an account of the simpler topics there treated at length.
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In general, let m be a product of powers of the distinct prime

numbers qi, • • •
, q„., and set

Ft
= (x''y - xy')lL.

From the expression for wm due to Galois we readily obtain

Km
l-l-Tm/gj • lxr m/gj n.jt

in which the first product in the numerator extends over the

iju(ju — 1) combinations of qi, • • •
, q^ two at a time, and similarly

for the remaining products. By the first theorem of this section,

and (11), xm is a polynomial in

J = q
y=Qvn

3 K = P = L^r~» (7 = 1 if p=2, 7=2 if p>2).

We readily verify the recursion formula

Ft =- QF>_
X
- KF?_ 2 (mod p),

since F\ = 1, F2 = Q. In particular,

F3 = J-K, F± = Q(F^ - KJr*).

Now 7T3 = F3 , in = FijQ. Hence

r3 = J-K, Tn^Jr-KP- KJ*-1 (mod p).

The first of these results was discussed above. Next, for

p = 2, ta is the irreducible quadratic form q
2 — I

2 — Iq, so that

all quartic forms irreducible modulo 2 are equivalent. For

p > 2, iri vanishes for K = pj, where

pp = 1 — p (mod p).

Except for p = J, p is a quadratic Galois imaginary since

p
p2 = 1 — pp = p (mod p).

Thus 7T4 is a product of / — 2K and § (p — 1) irreducible quad-

ratic forms in J, K. Some of the latter yield a quartic in q and I

which is irreducible; others yield a quartic which is a product of

two irreducible quadratics modulo p. A simple discussion shows
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that the number of irreducible factors of ir^q, I) is 6k + t + 1

if p = 8k + t (t = ± 1 or - 3), but is 6k + 2 if p = 8& + 3.

We have therefore the number / of genera of irreducible quartics

modulo p. For quintics and septics, the analogous discussion

is simple, for sextics laborious.

We may utilize similarly the invariants (16) of the group on

m variables, obtain expressions in terms of them of the product

of all forms in m variables of specified types (as quadratic forms

transformable into an irreducible binary form, non-vanishing

ternary forms, non-degenerate ternary quadratic forms, etc.),

and hence draw conclusions as to the equivalence of forms of the

specified type.*

* Transactions of the American Mathematical Society, vol. 12 (1911), pp.
92-98.



LECTURE IV

MODULAR GEOMETRY AND COVARIANTIVE THEORY OF A
QUADRATIC FORM IN m VARIABLES MODULO 2

1. Introduction.—The modular form that has been most used

in geometry and the theory of functions is the quadratic form

(1) qm (x) = Zeyavcy + UbiX? (i, j = 1, • • •, m; i < j)

with integral coefficients taken modulo 2. In accord with

Lecture III, we shall use the term point to denote a set of m
ordered elements, not all zero, of the infinite field F% composed of

the roots of all congruences modulo 2 with integral coefficients.

We shall identify such a point (xx ,
• • , a^,) with (px\, • •

, pXm)

where p is any element not zero in F2 . The point is called real

if the ratios of the a;'s are congruent to integers modulo 2.

Let the c„ and 6» in (1) be elements not all zero of the field _F2 .

Then the aggregate of the points (x) = (xi, • , xm) for which

qm(x) — (mod 2) shall be called a quadric locus, in particular,

a conic if m = 3. The locus is thus composed of an infinitude

of points, a finite number of which are real.

While our results are purely arithmetical, we shall find that

the employment of the terminology and methods of analytic

projective geometry is of great help in the investigation. Usually

the proofs are given initially in an essentially arithmetical form.

In case a preliminary argument is based upon geometrical

intuition, a purely algebraic proof is given later. The geometry

brings out naturally the existence of a linear covariant, which is

important in the problem of the determination of a fundamental

system of covariants.

2. The Polar Locus.—The point (/o/i + Xzi, • • • , nym + Xzm)

is on q{x) = if

(2) n
2
q(y) + >&P(y, *) + X2

g(z) = (mod 2),

6 65
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where

(3) P(y, z) = ^caiviZj + ypi) (i, j = 1, • • • , m; i < j).

If (y) is a fixed point, all points (z) for which P(y, z) =
(mod 2) are said to form the polar* locus of (y). For (z) = (y),

each summand in (3) is congruent to zero modulo 2. Hence the

polar of {y) passes through (y). If (z) is on the polar of (y), (2)

has a double root k : X and the line joining (y) and (z) is tangent

to q = 0.

We may write (3) in the form

(3') P(y, Z) = 1*12/1 + • • • + Wm2/m,

where

Ml = C12Z2 + C13Z3 + C14Z4 + • • • + CimZm,

«2 = C12Z1 + C23Z3 + C24Z4 + • • • + C2mZm,

( ' US = C13Z1 + C23Z2 + C3424 + • • + C3mZm,

Um = CimZi + C2mZ2 + C3mZ3 + • + Cm-\mZm-l-

There is a striking difference between the cases m odd and m
even.

3. Odd Number of Variables; Apex; Linear Tangential Equation.

Let m be odd. Then the determinant of the coefficients in (4)

is congruent modulo 2 to a skew-symmetric determinant of odd

order and hence is identically congruent to zero. Hence we can

find values of zi, • • • , Zm not all congruent to zero such that

Ui, • • •,um are all zero modulo 2. Thus the polars of all points

(y) have at least one point in common.

We shall limit attention to the case in which the pfaffians

(5) d= [23 • • • m], C2=[134---m], ••-, Cm=[12 • • • m-1]

are not all congruent to zero. The point (&, • • • , Cm) shall be

* Take k = 1 and let (z) be a point not on q(x) = 0. Then (2) is a quad-

ratic congruence in X with coefficients in F2 and hence has two roots Xi and X 2

in that field. Now the points (y) and (2) are separated harmonically by

(y + Xiz) and (y + X2Z) if and only if Xi = — X2, that is, if Xi = X2 (mod 2).

But the condition for a double root of (2) is P = (mod 2).
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called the apex* of the locus q(x) = 0. Now each w» = if

2is Ci, • • • , Zm= Cm . Hence, for m odd, the polars of all points

pass through the apex.

If (y) is any point not the apex, the line joining (y) to the apex

is tangent to q(x) = (§2). Thus any line through the apex is

tangent to q(x) = 0.

For m = 3, it is true conversely that, if the line

(6) ZuiXi = (mod 2)

is tangent to q(x) = 0, it passes through the apex, so that

(7) k = SC.-M,-

is zero modulo 2. Taking, for example, u3 4= 0, we obtain by

eliminating £3 from (6) and q(x) = a quadratic equation in

Xi and .r2 whose left member is the square of a linear function

modulo 2 if and only if the coefficient of Xix2 is congruent to zero.

But this coefficient is the product of k by a power of u3 . Thus

k = is the tangential equation of q(x) = 0.

The last result is true for any odd m. The spread (6) is said

to be tangent to q{x) = if the locus of their intersections is

degenerate. Taking um 4= 0, and eliminating Xm between (6)

and q(x) = 0, we obtain a quadratic form whose discriminant,

defined by (24), equals a product of k by a power of um , and hence

is degenerate if and only if k = 0.

We thus have geometrical evidence that k is a formal contra-

variant of q(x), i. e., an invariant of q(x) and 2«;.r;.

To give an algebraic proof, note that k is unaltered when x,

and Xj are interchanged, while

(8) Xl = Xi + X2 ', X2 = X2 ', •-, Xm. = Xm'

replaces q{x) by q'{x') in which the altered coefficients are

(9) W = b2 + bi + C12, C2i = c2 i + en- (i = 3, ••-,m).

* After these lectures were delivered, I learned that Professor U. G.

Mitchell had obtained, independently of me, the notion apex (" outside point ")

for the case m = 3, Princeton dissertation, 1910, printed privately, 1913.
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The pfaffians C2, • • • , Cm are unaltered modulo 2, while

(10) Ci'=Ci+Ct , u^=U2+uu ii/sti, (*+2) (mod 2).

Hence k is unaltered modulo 2. Note that

(11)
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of the linear covariant A^SbiXi. We shall see however that there

exists a more fundamental linear covariant.

4. Covariant Line of a Conic.—Since we shall later treat in

detail the case m = 3, we shall replace (1) by the simpler notation

(14) F(x) = a\X2x3 + a2X!XS + a3X!X2 + biXi
2 + b2x2

2 + b 3x3
2

.

Its apex is (oi, a2 , a3). Its discriminant (12) is

(15) A = F(ai, a2 , a3) = aia2a3 + afbi + a2
2b2 + a3

2b3 .

The invariant (13) becomes

(16) A = a\a2a3 (a* = a»- + 1).

Consider a form (14) with integral coefficients and not the

square of a linear function. Then not every ai is congruent to

zero modulo 2. By an interchange of variables we may set

a3 = 1. Replace Xi by Xi + aix3 and x2 by X2 + a2x3 . We get

XiX2 + hXS + b2X2
2 + Ax3

2
.

Let A = 1. Replace x3 by X3 + feiZi + b2X2 . We get

(17) 4> = X1X2 + X3
2
.

The only real points on <j> = (mod 2) are (1, 1, 1), (1, 0, 0),

(0, 1,0). In addition to these and the apex (0, 0, 1), the only

real points in the plane are (1, 1, 0), (0, 1, 1), (1, 0, 1). These

lie on the straight line

(18) Zi + X2 + X3 = (mod 2).

Hence with every non-degenerate conic modulo 2 is associated

covariantly a straight line.

The inverse of the transformation used above is

Xi = X\ + a\x3 , X2 = x2 + a2x3,

X3 = Wxi + b2x2 + (1 + ai&i + a2b2)x3 .

It must therefore replace <j> by the general form (14) having
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a3 = A = 1. It actually replaces (18) by

(h + l)x! + (6, + l)x, + (b3 + «ia2 + 1)*«,

in which, we have added A 4- 1 = to the initial coefficient of X3.

Guided by symmetry, we restore terms which become zero for

a3 = 1 and get

3

,1M L = E (fit + Dxt,
(19) <=i

181 = 61 + a%a3, fa = b2 + aiaz, @3 = b3 + aia2 .

Making the terms homogeneous we obtain the formal co-

variant

(20) L = B&i + B2x2 + B3x3 ,

Bx = &1
2 + 0,20*3 + a2

2 + a 3
2
, B2 = b2

2 + ai«3 + ai
2 + ai,

(21)
#3 = fe3

2 + ai«2 + ai
2 + a2

2
.

Under the substitution (aidj)(bibj) induced upon the coefficients

of F by (xtXj), we see that B t and .By are interchanged. Under

(9), viz.,

(22) b2
' = b2 + bi + a3 , a/ = ai + a2 (mod 2),

there results

(23) Bx
' == 5i, 58

' = £2 + Bi, B3
' = B3 (mod 2).

Hence (20) is a formal covariant of F. For other interpretations

of L see § 8.

5. Even Number of Variables.—The determinant of the coef-

ficients in (4) is congruent modulo 2 to the square of the pfaffian

(24) Am = [123 m].

This is in fact the discriminant of qm , which is degenerate if and

only if Am = (mod 2). I have elsewhere* discussed at length

the invariants of qm .

* Transactions of the American Mathematical Society, vol. 8 (1907), p. 213

(case m = 2); vol. 10 (1909), pp. 133-149; American Journal of Mathematics,

vol. 30 (1908), p. 263; Proceedings of the London Mathematical Society, (2),

vol. 5 (1907), p. 301.
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If Am ^ (mod 2), we can solve equations (4) for the z's.

Substituting the resulting values into q(z), we obtain the tangen-

tial equation Um = of q(x) = 0. For m = 2 and m = 4, we

get

TJi = C12U1U2 + &2W12 + 61M22,

(25)
Ui = [1234]2C34M1M2+S(C23C24C34+62CL+&3CL+&4C23)M1

2
-

Bordering the algebraic discriminant of (1), we find that

2&1 C12 C13 • • Cim Ml

C12 262 C23 • • • Ci„

(26) 2Vm =
U-i

Clm ^2m C$m

Ml M2 M3 Mm

(mod 4).

Finally, let Am = (mod 2). Then all of the first minors of

the matrix of the coefficients in (4) . are zero modulo 2. Hence

the polars of all points have in common the points of a straight

line S. Since its discriminant vanishes, q(x) can be transformed

linearly into a quadratic form in xi, • • • , Xm-\, which therefore

represents a cone with the vertex (0, • • , 0, 1). Let (z) be the

vertex of the initial cone q(x) = 0. If (x) is any point on the

cone, (x + Xz) is on the cone, and, by (2), P(x, z) is congruent

to zero identically in xi, • • •, xm . Hence the linear functions

(4) all vanish. Thus the line S meets the cone in its vertex, and

Zm2
is the discriminant of qm~i(x), while Zj

2
is obtained from that

discriminant by interchanging m and i. For example, if m=4,

Z4
2 = C12C13C23 + bidz + &2C1S + bidi, •,

Zl
2 = C23C24C34 + &2CL + bztii + 64C23.

The product of the general form (1) by 5 = Am + 1 is a quad-

ratic form whose discriminant is zero modulo 2 and hence has

the vertex (Szi, • • • , dzm), where z,-
2 has the value just given.

Hence 8zi
2
,

• • • , SZm2 are cogredient with Xi, • •
, Xm.

6. Covariant Plane of a Degenerate Quadric Surface.—The

product of qi by 8 = [1234] + 1 is a quaternary form / whose
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discriminant is zero and hence can be transformed into a form

(14) free of z4 . With this cone F = is associated covariantively

the plane I = 0, where I is the ternary covariant (19). Hence/

has a linear covariant L which reduces to I when 64 = 0, c i4 =
(i = 1, 2, 3). Relying upon symmetry and the presence of the

factor 8, we are led to conjecture that

L= 5{&!+l + (ci,+ l)(cu+l)(cu+l)}ari+ ••
(271
^

' +5{&4+l+(Cl4+l)(c24+l)(C34+l)}.T4.

It is readily verified algebraically that L is a covariant of q^

There is a simple interpretation of L. If [1234] ^ (mod 2),

then 5=0 and L is identically zero. If [1234] = 0, ?4 is de-

generate and can be transformed into
<f>
= XiXi + cc3

2 or a form

involving only x^. and cr2 . In the former case, L = X\ + x2 + z3 .

Of the 15 real points in space, the seven (100a;), (010a;), (Ilia;)

and (0001) are on the cone <j> = 0, the two (001a;) are on the

invariant line S through the vertex (0001) of the cone and the

apex (0010) of the conic cut out by a;4 = 0, while the remaining

six (101a;), (011a;), (110a;) lie on the plane L = 0. Hence with a

degenerate quadric surface, not a pair of planes, is associated

covariantively a plane, just as a line (19) is associated with a

non-degenerate conic (14).

Every linear covariant is of the form IL, where I is an in-

variant. Every quadratic covariant is a linear combination of

the IL2 and Iq*.

7. A Configuration Defined by the Quinary Surface.—A q$

whose discriminant is not zero modulo 2 can be transformed into

F = xix% + a;3a;4 + x&
2
.

The 15 real points on F = (mod 2) are given in the last column

of the table below. In addition to these and the apex (00001)

of F, there are just 15 real points in space:

1 = (00011), 2= (01001), 3= (01011), 4= (00101), 5= (01101),

6= (00110), 7= (OHIO), 8= (10001), 9= (10011), o= (10101),

b= (10110), c= (11000), d= (11010), e= (11100), /= (11111).
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These lie by threes in exactly 20 straight lines, which occur in the

columns of the table, with the heading " Sides." With these

lines we can form exactly 15 complete quadrilaterals, the three

diagonals of each of which intersect* in a point on F = 0, given in

the last column. The columns, with the heading "Plane," give

the equations defining the plane of the quadrilateral. In each

case, the two equations of the plane have in common with F =
a single real point, the intersection of the diagonals. Thus the real

points on F = are its points of contact with these tangent planes.
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covariant. In particular, if we take (y) = (x), (z) = Or
2
*), we

obtain a covariant of F in the narrow sense used in these lectures.

In particular,

03

(29) K =

a\
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replacement in J and taking t and u t to be integers, we obtain

as the coefficient of t = t
2

w = /3ij32W3 + ftftw2 + ftftwi + (81M2M3

(37)
+ PlU\U3 + $3U\U2 + U\U2U3 ,

a modular invariant of F and X. By the theorem used above,

(38) u= (Mi +1)(«2 +1)(m3 +1)

is an invariant of X. In w + u + 1, we replace ft by the con-

gruent value Bi + 1, and render the expression homogeneous

in the u's and B's separately. We get

(39) co = 2(5^2 + Bj 2 + B2
2W + ^B x

2u2u3 ,

a formal invariant of F, X. For, it is unaltered by the sub-

stitution

induced by (xiXj), and by the substitution (23) and (10) induced

by (8). Let the coefficients of F be integers not all even. Then

(39) becomes

(39') 2(ftft + 1W + 2(01 + \)u2u3 .

Its covariant L is identically zero. Hence, by the table in § 9,

if w is not identically zero it can be transformed into Ui2 + u2
2

+ U1U2 and hence vanishes for a single set of integral values of

Mi, u2 , u3 . These are seen to be w; = ft + 1. Hence* the line

L = is the only line with integral line coordinates on the line

locus (39).

The invariant A for (39) is J (its discriminant is zero, as just

seen). Thus a knowledge of any one of the concomitants L, J,

w implies that of the other two.

The covariance of K in (29) implies that

(40)

x2 x3

xi xi
h

X-i x3

Xi
2 x3

2
£3 =

Xi x2

Xi
2 x2

2

* Also thus: just as the point conic F = determines its line equation (36)

and hence its apex (a), so the covariant line conic (39) determines the point

equation XBi2Xi = 0, which is the line L = for integral values of the coef-

ficients.
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are contragredient with a\, a2 , a3 and hence with X\, x2 , x3 , and

therefore cogredient with uu u2 , uz . Thus (39) yields the formal

covariant

(41') W = 2(5^2 + 5i2 + 52
2
)£3

2 + S^^ls-

From this or (39'), we obtain the modular covariant

(41) W = ZGSjft + 1)£3
2 + S^! + l)fc&.

In these notations (29) become

(42) K = Zc-ff, -M = 2aifi(a;2
2 + x2a;3 + z3

2
).

Finally, by (16) of Lecture III, we have the universal co-

variants

X\ x2 x3

(43) L3 = x-f X? av
Qi — 2.TiW + 2xi4x2x3 + ifeV,

Q2 = 2a;i
4 + Z.riV + aJia^sSaji.

zf z2* xf

The covariant line i = of a non-degenerate conic F = is

determined by the three (collinear) diagonal points of the complete

quadrangle having as its vertices the apex (a) and the three

intersections of F = with its covariant cubic curve K = 0.

Fundamental System of Covaeiants of the Ternary Form F,

§§ 9-32

9. Invariants of F.—A fundamental system of invariants of F
is given by A, A, J. It suffices to prove that they completely

characterize the classes of forms F under the group of all ternary

linear transformations with integral coefficients modulo 2.

This is evident from the following table

Class
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As to the classes, we saw in § 4 that, if F is not the square of a

linear function (i. e., not reducible to Xi
2 or 0), it can be trans-

formed into X\X2 + b\x? + b2x2
2 + Ax3

2 and hence into one of

the first three classes of the table. By means of the relations

(44) AisO, AJ=0, A2=A, A2=A, J2=J (mod 2),

any polynomial in A, A, J equals a linear function of

(45) 1, A, A, J, AJ.

These are linearly independent since there are five classes.

10. Leader of a Covariant of F.—Let S be the coefficient of x3
m

in a covariant of order u of F. Writing (14) in the form

(46) F=f+lx3+b3x3
2
, f=biXi2+a3x 1x2+b2x2

2
, l=a2xi+a1x2 ,

we see that the leader S is a function of b3 and the invariants of

the pair of forms / and I under the linear group on x\, x2 .

In the modular covariants forming a fundamental system for/

(§ 13 of Lecture III), we replace X\ by ai and x2 by a2 and obtain

a fundamental system of modular invariants of the pair/ and I:

(47) a3 , atia2 , q=bib2+(bi+b2)a3 , j=(b 1+a 3)a1+(b2+a3)a2 ,

where a,- = a,
; + 1. By means of the relations

(48) aia2j = 0, qj = j + a3j (mod 2),

any polynomial in the four functions (47) can be reduced to a

linear combination of

(49) 1, a3 , q, a 3q, ava.2 , a\a2a3 , aia2q, aia2a3q, j, a3j.

These form a complete set of linearly independent* invariants

of/,*-

* Instead of verifying as usual that these 10 functions are linearly inde-

pendent, we may deduce that result from the fact that there are 10 classes:

I = Xi, f = atXiXi + atx-? or qxi1 + azx&z + 03X2*,

1=0, f = xi2 + XiXi + X22, xiXi, Xi2 or 0.

Since (47) characterize the classes, they form a fundamental system.
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Hence S is a linear combination of the functions (49) and their

products by b3 . Moreover, S must remain unaltered modulo 2

when a3 and b\ are replaced by

(50) a3
' = a3 + oi, W = b x + b3 + a2 ,

which are the only altered coefficients of the form obtained from

F by the transformation

(51) x-i = Xi, x2 = x2 ', z3 = ^s' + *i' (mod 2).

Both requirements are evidently met by the functions

(52) 1, ai«2i &3, hai<x2

and any invariant of F. We find that

^4 = aia2 (a3 + 1), A = aia2a3 + j + «3&3 + a3 ,

(53) J = aia2 (a3 + l)(&s + 1) + &sj + as&aj + M + aia2?,

AJ = aia2 (a3 + 1)(6,+ 1)(3 + 1).

From these and their products by 63, we see that

(54) 4J, b3J, J, 63A, M, A, A

contain the respective terms

b3aia2a3q, b3aia2q, aia2q, b3j, 6 3aia2a3 , j, ctia2a3 ,

while no one involves an earlier one of these terms. Hence any

linear combination of the functions (49) and their products by

b3 is a linear combination of the functions (52), (54) and

(55) o3 , b3a3 , q, hq, azq, b3a3q, a3j, b3a3j, aia2a3q.

A linear combination of the latter is of the form

a = mi<23 + m2q + m3a3q + miji3 j + maia2a3q,

where mi, • • • , m4 are linear functions of 63, while m is a constant.

The coefficient of a36i is seen to be

p = m2 + m3b2 + m4ai + mb2ai(R + 63 + 1),
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where 2? = 63 + a2 is the increment to 61 in (50). Set

(56) <T=pa3bi+ra3+sbi+t (p, •••, t independent of a3 , b{).

Let the substitution (50) replace a by a'. Then

(57) a' — a = pRa3 + paj>i + pa^R + rai + sR.

This" is zero for every a3 , 61 if and only if

(58) pR = 0, p^ = 0, roi = sR (mod 2).

For p = m2 + - , pa! = gives m3 = 0, m4 = m2 . Then
pi? = gives m2 = 0, m&3 = 0, whence m=0. Thus <r = raia3 ,

so that mi = 0. Hence £Ae leader of a covariant of F has the form

(59) I + 63I1 + c«ia2 + dai<x2b3 ,

where I and Ii are invariants, c and d are constants.

Covariants Whose Leaders are Not Zero, §§11-19

11. Consider a covariant of odd order w:

(60) C = &r3
u + Six,—^ + &*,—V + .

If Si' is derived from Si by the Substitution (50), then, by (51),

(61) Si' = Si + wS = Si + S (mod 2).

Give Si the notation (56). Then S is given by (57) and has no

term with the factor a3b\. Now a3bi enters no term of (59)

except J and A3 of I and* b3J of b3I\, and in these is multiplied by

(62) 63ai + aia2 , aia2 (62 + l)(6s + 1), b3aia2 ,

respectively. Since the latter are linearly independent, neither

J nor AJ occurs in the J, 7i of the leader (59). Also, A and

aia2 occur only in the combinations A+ 1, aia2 + 1, since (57)

has no constant term. The coefficients of x3
" in Lm

, AL",

(A + A)ZM are respectively

(63) b3 + aia2 + 1, Ab3 , A + Ab 3 +53ai«2 ,

* AJ is not retained in 7i, since b3AJ = 0, AJ being (34).



80 THE MADISON COLLOQUIUM.

where L is the linear covariant (19). After subtracting from C
a linear combination of these three covariants, we may set

S = m.i(A + 1) + WI2A + m3b3 + mb3u\a.2 .

Since f53b3ayoi2 = 0, AJ = 0, the leader of the covariant JC is

JS = miAJ + miJ + m3b3J.

Hence m\ = m3 = 0. The coefficient of a3 in S is now

m2(a^a2 + b3) and must vanish for b 3 = a2 since it is of the form

pR by (57). Hence m.2 = 0. Thus S = mb3aia2. For co > 1,

mFL°'~2 has this same leader. For w = 1,

C = m(b3avoL2X3 + bia2a3xi + ^aio^),

which satisfies (61) only when m = 0. Hence e«en/ Knear

covariant is a linear function of L, AL, AL; every covariant of odd

order w > 1 differs from a linear combination of L", AL", AL",

FL"°~2 by a covariant whose leader is zero.

12. In the covariants of order 4ra

(64) IQ^, IF2n
, L4n

, F2n-xU (I an invariant),

the coefficients of x3
n are respectively

I, b3I, b3 + ai<x2 + 1, b3axa2 .

Linear combinations of these give every leader (59). Hence

every covariant of order An differs from a linear combination of the

covariants (64) by a covariant whose leader is zero.

13. In the covariants of order u = in + 2

(65) IQ2
nF, Q2

nL2
, AQ2

nL2 (I an invariant),

the coefficients of x3
" are respectively

bsI, b3 + aia2 +1, A + b3(A + aia2a3).

The sum of the third function and b 3{A + A) is A + b3ona2 .

Hence any covariant C is of the form P + C", where P is a linear
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combination of the covariants (65), while C is a covariant whose

leader is an invariant. For w = 2,

C" = Sx3
2 + Six3xi + SxS + x2<f>.

This is transformed by (51) into a function having Si as the

coefficient of Xi'
2

. Since S is an invariant, Si = S. Thus every

coefficient of C" equals S. Then (51) transforms C into a

function in which the coefficient of xi'x2 is zero, so that S = 0.

Hence every quadratic covariant is a linear function of

(66) F, AF, AF, JF, U, AD.

14. There remains the more difficult case of covariants (60)

of order u = 4re + 2 > 2. If S/ is the function obtained from

Si by the substitution (50), then

(67) SS = Su S,' = S + Si + 8t .

Now Si is unaltered also by the substitutions (22) and

(68) a3
' = o3 + a2 , 62 ' = 62 + b3 + a,i (mod 2),

induced on the coefficients of F by the transformations (8) and

(69) xi = xi, x2 = x2', x3 = x3 + %'.

15. .4 fundamental system of invariants of F, under the group T
generated by the transformations (8), (51) and (69), is given by

A, A, J, a2 , b3 , avoti and

(70) = bi(b3 + a,).

It suffices to prove that these seven functions, which are

evidently invariant under T, completely characterize the classes

of forms F under F. There are six cases.

(i) 63 = a2 = 1. Replacing xi by Xi + a&i and x3 by

x3 + a3Xi, we get

F = jSzi
2 + AxJ + x3

z + xxx3 .

(ii) b3 = 1, a2 = 0, aia2 = 1. Replacing x3 by x3 + a3xu
we get

F = A*!2 + &2z2
2 + ar,« + x2x3 .

7
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If A = 0, then b2 = J. If A = 1, we replace xx by xx + b2x2

and get

x\2 + x£ + x2x3 .

(iii) 63 = 1, a2 = axa2 = 0. Replacing x3 by x3 + biXi + b2x2,

we get

x3
2 + Aa^.

(iv) 63 = 0, o2 = 1. After replacing z3 by a;3 + a3x2 , we

obtain a form with also a3 = 0. Taking this as F, and replacing

x\ by #i + a\X2 , we get

61Z12 + Aa;2
2 + Zi^-

Replacing x3 by x3 + hxi, we get Ax2
2 + xxx3 .

(v) b3 = a2 = 0, aia2 = 1. Replacing x3 by z3 + a3a;i + &2Z2,

we get

/3xi
2 + a;2a:3.

(vi) 63 = a2 = a\a2 = 0. Then F is the binary form/in (46).

The effective part of T is now the subgroup Ti generated by (8).

Now

p=bi, A+l = a3 , J = B + (h + 1)«3 , B = 62(61 + «i).

These seminvariants 61, a3 , 5 of / completely characterize the

classes of forms / under IV For, if o3 = 61,

/ = Mi2 + 5a;2
2 + fei^a*;

while if a3 = 61 + 1, we replace Xi by Xi + 62% and get

61Z12 + (&i + l)a;ia;2.

16. The number of classes of forms F in the respective cases

(i)-(vi) is 4, 3, 2, 2, 6. Hence there are exactly 19 linearly

independent invariants of F under the group T. As these we

may take

1, at, o-\ol2 , A, b3 , b3a2 , b3a\a2 , b3A,

A = bidi + • • • , chA = b\a,\a2 + • • •

,

(71) /3 = 61(63 + a2), «2/8 = 6i63a2 ,
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(71) A@= 61(63+1)^, 63A=6i63aiH , a263A=6i63aia2H ,

J = 616263 + • • • , a^J = 6i6263o2 + • • •

,

63J = 6i6263(aio2 + oi + ai) + • • •, AJ = bibibzA + • • •

.

These are linearly independent since the first eight do not involve

61, while all the terms with the factor 61 in the next seven are

given explicitly, likewise all with the factor 61&263 in the last

four. Hence the 19 functions (71) form a complete set of linearly

independent invariants of F under the group T.

17. Hence, in § 14, Si is a linear combination of the functions

(71). By (672), S + Si is of the form (57) if S2 be denoted by

(56). Now 0361 occurs in J, AJ, 63J, a2J, Afi, but in no further

function (71). In the first three, a36i is multiplied by the linearly

independent functions (62), respectively; in the last two by

630:102 and 0:10:2(63 +1), whose sum is congruent to the first

function (62) . Hence the part of S + Si involving J, • , Aj3

is a linear combination of

(72) (63 + di)J — 6i6263aiO!2 + 6265010:20:3,

(73) J + 63J + A0 = (63 + l)(6i&»ai«j + 62^ + A).

But 61 occurs in just six of the functions (71) other than the

five just considered. Thus the factor pat of 61 in (57) is a linear

combination of the coefficients of 61 in (72), (73), @, arf, A, a2A,

63A, 0263A. Now a\ is a factor of the coefficients of 61 in all except

the second, third and fourth, while in these the coefficients are

(&3 + l)620!ia:2 , 63 + a2 + 1, a263

and are linearly independent. Hence (73), j8, a2/3 do not occur

in S + Si. By (57), the latter has no constant term and hence

involves 1, A only in the combination A + 1. This cannot

occur since the total coefficient of a3 must be of the form pR
and hence vanish for 63 = 02. At the same time we see that

the sum of the constant multipliers of A, aA 63A, a2&3A is zero

modulo 2. Hence S + Si is a linear combination of the functions



84 THE MADISON COLLOQUIUM.

a2 , b3, b3a2 , aia2 , and the last six in (74) below. Like (57), this

combination must vanish for a\ = 0, 63 = a2 . Since all but the

first three of the ten functions then vanish, the sum of the

multipliers of these three must be zero modulo 2. Hence S + Si

is a linear combination of

63 + a2 , a2 (b3 + 1), aia2 , b3a,\a2 , b3A,

A«2 , A(&3 +1), A(a2&3 +D, (&3 + a2)J.

18. Without altering the invariant S, we may simplify Si by

subtracting from C constant multiples of L4"-1 K and its product

by A, where K is given by (29), and hence delete a2 (&3 + 1)

and A(a263 + 1) from the terms (74) of Si. Then

Si = S + mAa2 + miA(63 + 1) + m2 (b3 -4- a2)J

+ m3 (b3 4- a2) + m^axa% + mbb3aia2 4- meb3A.

The coefficient T of x^^xn in C is obtained from Si by applying

the substitution (aia2)(&i&2) induced by (a:ia;2). In view of the

transformation (8), we see that T' = T -\- Si, where T' is derived

from T by (22). Hence

S = (m+ mi)A + mi&3A + m2b3J

+ (m4 + msb3)(aia2 + ai+ a2) + m3b3 + m6b3A.

Let 2 be the sum of the second member and the function ob-

tained from it by the substitution (a2a3)(jb2b3). Thus SsO.
Taking 63 = b2, we get m,i= m5 = 0. Then

2 = (b2 + 63)/, I = m tA + m2J + m3 + m6v4.

Applying to 2 the substitution (68), we get (b2 + ai)I = 0.

Applying (aia3)(6i&3) to the latter, we get (b2 + a3)I = 0.

Adding, we get («i + a3)I = 0. Applying (50), we see that

a3I = 0. Then each aj = 0, so that I = gA, where is a

constant. By 2 = 0, g = 0. Thus mi, ra2 , m3 , me are zero.

Hence S = mA, Si = mAa2 . But

(75) E = F(L* + AF) + (A + A)D = Az3
6 + • • •
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Hence C — Q2
n~1E has the leader zero. Any covariant of order

co = An + 2 > 2 differs from a linear combination of the co-

variants (65) and Q2
n-1-E by a covariant whose leader is zero.

19. Regular and Irregular Covariants; Rank.—A covariant

shall be called regular or irregular according as it has not or

has the factor L3 , given by (43). The quotient of an irregular

covariant by L3 is a covariant. Hence the determination of all

irregular covariants reduces to that of the regular covariants.

If a covariant has a linear factor it has as a factor each of the

seven ternary linear functions incongruent modulo 2, whose

product is L3 . Hence a regular covariant has a non-vanishing

component involving only Xi, x3 . In a regular covariant C
without terms x" (i. e., with leader zero), this component has

the factors Xi, x3 and (by the covariant property) also Xi + x3 .

The product of these three linear factors was denoted by £2

in (40). Let £2
m be the highest power of £2 which is a factor of

the component and let n be the degree of the quotient in the a;'s.

Then C may be given the notation

3

(76) Rm.n = Hf&m + XiX2X3<t>,
i=\

where, if n = 0, f% is a function of the a's and b's not identically

zero, while, if n > 0, f% is a function also of xu x3 in which the

coefficients of X\n and x3
n are not zero; /i is a function of Xi, x3 ;

f3 of Xi, x2 .

The regular covariant (76) shall be said to be of rank m. In

an irregular covariant the component free of x% is zero and hence

is divisible by an arbitrary power of £2 ; it is proper and convenient

to say that an irregular covariant is of infinite rank.

Any covariant of rank zero differs from one of rank greater than

zero by a polynomial in the known covariants

(77) A, A, J, F, L, Q2 .

This is a consequence of the theorems in §§ 11-18, where the

polynomial is given explicitly. Any product, of order co in the
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x's, of powers of the covariants (77) can be reduced by means of

the syzygies

JL = 0, AD = AF, (A + A + J + 1)(FL + K) = 0,

(78) AK = 0, FD + (A + A)D + AF2 + AQ2 = LK,

F* + Q2F = UK+ (A + J)K*+ (A + 1)LG+ (A + 1)Q„

to a sum of covariants of order as given in §§ 11-18 and a linear

function, with covariant coefficients, of K, Qi and

6 = Q2L + D = 2&[ft(ft + 1)*3
2 + (ftft + l)^i

(79) + ft(ft + l)*i*J + anwi:«[08i + ft + ft + 1)

X (xiX2 + xxx3 + x2x3) + 2(ft + l)Xi
2
].

Here (? and K, given by (42), are of rank 1, while Qi= !-
2
2
-\-x2 ( )

is of rank 2. As this theorem is not presupposed in what follows,

its proof is omitted. However, it led naturally to the important

relations (75) and (79) and showed that no new combinations

of the covariants (77) of rank zero yield covariants of rank > 0,

a fact used as a guide in the investigation of the latter covariants.

Regular Covariants Rm0, §§ 20-22

20. A separate treatment is necessary for covariants (76)

with n = 0. Then each /,• is a function of the coefficients a
}; b,.

Since the factor £3
m of the part /3^3

m of iCo free of x3 is unaltered

by every linear transformation on x\ and x2 , f3 is a linear com-

bination of the functions (49) and their products by b3 . Also,

f3 must be unaltered by

(80) xi = xi + x3 : ai = ax + a3 , b3 = b3 + bi + a2 .

Both conditions are evidently satisfied by the ternary invariants

and by a3 and q, in (47). In view of (53), we may employ

AJ, J, asA, A, a3J, qA, A
to replace in turn

b3aia2a3q, b3ai<x2a3 , a3j, j, asb3q, axa2a3q, a\a2a3 ,
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since a term previously replaced is not introduced later. Thus

/3 is a linear combination of these seven functions, a3) q, a3q, and

ona2 , a\onq, b3 , b3a3 , b3q, b3aia2 , b 3aia2q, b3j, b3a3j.

Give to any linear function m\a\a2 + • • • of these the notation

<r = aaib3 + /3ai + 763 + 3.

Call e the increment 61 + a2 to 63 in (80) and employ e to eliminate

b\. Then <r is unaltered by (80) if and only if

ae = 0, aa3 = 0, /3a3 = ye (mod 2).

Since 63 does not occur in q or j, nor 01 in q, we have

a = m6«2 + m-iaiq + m8(e + a2 + a3) + ra9a3 (e + a2 + a3).

Thus ae = gives m6 == #17 = 0, ra8 = rag. Then aa3 =
gives ma = 0. Now

/3 = miQ!2 + m2a2g, 7 = rn3 + m4a3 + ras?,

and fla3 = 76 readily gives <r = 0. .4m/ function of b3 and the

invariants (49) of f and I, which is unaltered by (80), is a linear

combination of the ternary invariants (45) and a3 , q, a3q, a3A,

a3J, qA.

21. For n = and ra even, there exists a covariant (76) in

which f3 is any function specified in the preceding theorem.

For, if J is any ternary invariant, IQimP has f3
= I. By (42)

and (41), Km and Wm '2 are of the form (76) with /, = a3 and

/3i/32 + 1, respectively; they may be multiplied by any invariant.

By (19) and (47), we have

(81) fcft + 1 = q + a3A + A + 1, atf = ot3A + qA + a3J.

Hence we obtain q, then qA, qA, and therefore a3q. Any co-

variant with n = 0, m even, differs by an irregular covariant from a

linear function of

IQrl2
, hKm, I2Wm l* (1= 1, A, A, J, A3; h= 1, A, J; 72= 1, A, A).
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22. For n = and m odd, we may delete the terms a3h from

/3 by use of IiKm. First, let m = 1 and apply transformation

(51) ; we get

?i = !i' + I3', £2 = £2', £s = &'>

(82) ,

iJ' = Mi' +/2&' + (/1 + /.)&' + (Xx'Xity + X!'
2
x2')4>.

Thus = 0. Since f3 = I+ hq, condition fi+f3 = fs' gives

7 = 72(Ol6l + <X2b2 + a3^3 ~H «2«3 + 0102).

Add to this the relation obtained by permuting the subscripts

1, 2. Thus
= 72(&i + b2 + a2a3 + <Jia3).

The increment under (22) is 72 (&i + a3 + a2«3) = 0. Now 72

is of the form x + yA + z^4, where a;, y, 2 are constants. From

the terms in &1&2, we get y = 0. Then a; = z = 0. Tfo only

covariants are therefore IiK.

Second, let m > 1. Then KW^~^I2
is of the form (76) with

h = a3q + a3 , by (8I1). Hence we may set

f3 = I + cq + (&7-4 (c, d constants).

In R given by (76), let g denote the coefficient of

(83) XiX2x3
• x2

mx3
**-3

.

In the function derived from R by the transformation (51), the

term corresponding to (83) has the coefficient g + fu since by

(82) the £,- parts contribute only one such term, that from

Mr~%'- Now

/1 = 7 + cq' + dq'A, q' = b2b3 + (&, + b3)av

When g is given the notation (56), g' — g = /1 is the function

(57). But a3&i occurs in/i only in J and AJ and in them with

the linearly independent multipliers (62). Hence

7 = m{A + 1) + n»A.

The coefficient of a3 in /1 is now

n\a xa2 + n^a^ + b3) + dq'a\a2 = p(63 + a^.
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Taking 63 = a2 , we see that m = n-i = d = 0. Thus /i = cq'.

By (57) for a\ = 0, b3 = a2 , we get c = 0. Any covariant with

n = and m odd differs by an irregular covariant from a linear

function of Km, AKm, JKm and, ifm>\, KW^-1'"2
.

Covaeiants of Rank Unity, §§ 23-26

23. Henceforth let m > 0, n > in (76) and set

(84) /, = Sxt
* + S&f-tx! + S2x3»~W + • (S * 0).

Since S is unaltered by the group T of § 15, it is a linear com-

bination of the functions (71). We may omit the functions

02(63 + 1) and Aa2 (63 + 1), since KmLn
is of the form (76) with

8 = a2 (63 + 1). Thus

(85) S = J+ a2Ii+ b%12+ faavct2+ Jc2bsaia2+hfi+ faa2p+ faA/3,

where I is any invariant, 7i a linear function of 1, A, J; I2 one of

1, A, A, J; while /3 = 61(63 + a2).

First, let m = 1. If T and B are the coefficients of x2
n in f3

and /1, transformation (51) replaces the covariant (76) by a

function in which, by (82), the coefficient of X\'x2
'n

is

(86) T-\-B = T,

where T' is derived from T by the induced substitution (50).

But T is obtained from S by the interchange [23] of subscripts,

and B from T by [13]. We thus find by (86) that

I = 62/2 + (fa + fab2)(ai + a 3a{)

+ £3(0161 + a262 + a3b3 + 0102 + 020:3)

+ ^462(^161 + 0363 + a%a2 + a2a3)-

Let 2 be the sum of the second member and the function obtained

by applying (a2a3){b2b3) to it. In 2 = 0, set 62 = 63 ; we get

{h + Jc3 + h(fa + fa) }
{a 2 + a3)oti = 0, fa = fa, fa = fa.

Then 2 = may be written in the form

(62 + 63)X =0, X = I2 + fa(A + A + 1).
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As in § 18, X = 0. Thus I2 and I are the products of A + A + 1

by k2 , ki, so that

8 = (fci + &263) (A+ ^ + 1) + onh + hOnb,+ ha2+ ova,)
(87)

+ k2bi(a2b1 + aia2) + hA(bib3 + bi).

For n odd, S is the increment to Si under (50) and hence has

no term containing a3bi. If t is the coefficient of J in I\, a3bi

occurs in (87) only in ta^J and in the final part, being multiplied

by tdiciibz and ^50110:2(63 + 1), respectively. Hence t = k& = 0.

Since S is of the form (57), the coefficient of bi must vanish if

at = 0. Thus

h(b3 + 0:2) + k2b3a2 = 0, &i = k2 = 0.

Now S = a2Ii = 0,2(11 + flA) must vanish for ai s= 0, 63 = a2

by (57); then A = a2 (b2 + ^3), so that u = v = 0, S = 0. Any
covariant with m = 1 and « odd differs from one of rank > 1 by

a linear function of KLn
, AKLn

.

24. For m = 1, n = 4v, we may delete a2ii from (85) by use

of IiKQ2". Set /i = Bx2
n

-\ \- Bnx3
n

. Then (51) replaces

(76) by

R' = &[&r,» + /W^i + (-Si + S2)x3"~W +•] + &/,

+ (£1 + fc)[B.(aV + *3
n-V + • • )

+ ^n-i^^a"-1 + z3
"-2

a;i +...)]+ foa^ + Xi
2x2)(f>'.

Since Si is the increment of S2 , it is a linear combination of the

functions (74). By use of Ln~3
Qu Ln~3K2 and their products by

A and A, we may, without disturbing S, delete from Si

&3+a:iO!2+l, 463, A+&3A+63aia2, a2 (63+l), a2A(63+l).

Hence we may set

Si = ti(bs + a2) + t2b3aia2 + tsAa2 + U(b3 + a2)J.

Applying (aia2)(&i&2) to <S and Su we obtain Bn and 5„_i.

Let I be the coefficient of a^"-1
in

<f>.
By the coefficient of
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xixtfcs • a;2a;3
n'~1 in R', we have

Bn + J5^i + I = V.

For I given by (56), Bn + Bn~i is given by (57). By the coef-

ficient of a3bi, we get U = 0. The coefficient of a3 must vanish

for b3 = a2 . Hence

fa<x\ + (fa + ^)«i«2 + faava2b2 = 0, fa= fa = 0, t3 = fa,

S = fab3(A + A + 1 + ai«2 + a2&i).

The coefficient of fa equals that of £2^3" in

GFQ^1 + AKLn + AKQ2
".

Any covariant with m = 1, n = 4v, differs from one with m ^ 2

by a linear function of KLn
, AKLn

, IKQ2", GFQ/-1 (I = 1, A, J).

25. For m = 1, n = 4j> + 2, we may delete a2Ii from S,

given by (87), by use of hQ^M. The coefficient of £2^3" in

Q2
VG is

d = /33 03i + 1) = A + (&i + l)(aia2 + 63) + W^a-

The coefficient of &i in S equals d+ azA + a2 (b3 + 1), the final

term of which was reached in § 23, and a2A above. The coef-

ficients of fa and fa in S equal Ad and

bibs(ai+a2)+b3(a2b2+aia3+a2a3+a2)=Ad+a2(J+l)+a2(b3+l),

respectively. Any covariant with m=l, n = 4? + 2, dijfers

/rom one wiiA m ^.2 by a linear function of KLn
, AKLn

, IQ2 G,

hQ2
vM (J = 1, A, A; Ii = 1, A, J).

For use in § 26, we replace Q2
VM by Q/Fi?, noting that

(88) M={F + D)K

and that Q-i^ differs from KLn by a covariant of rank 2.

26. By the last four theorems, any covariant of rank 1 differs

from one of rank ^ 2 by CK + DG, where C and D are known

covariants of rank zero. Taking as Ci and T)\ arbitrary func-
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tions of the proper degree in the x's, of the generators (77) of

covariants of rank zero, I found the syzygies needed to reduce

CiK+ DiG to an expression differing from the above CK + DG
by a covariant of rank ^ 2, in which those of rank 2 are linear

combinations of K2
, KG, G2

, W, Qi and the new one

V = GF2 + AQ2G + (A + J + 1)Q2FK
(

êre
+ AUK2+ AL'Qi = tfxfr +•-,

(90) v = a2 + b3(l + axa2).

The only new syzygies needed for this reduction are

LG = Q2L2 + Le =Wi FLK = AW + AQi + (J + V)K2
,

(91) (F2 + H+ Q2)K = (A + l)i„

(A + 1)(FG + KL* + KQ2) + JKQ2 = ALQj. + o,L3 ,

in which u is an invariant not computed. Proof need not be

given of these facts since we presuppose below merely the ex-

istence of relation (89) which may be verified independently.

Of course, the fact that V is the only new covariant of rank 2

was a guide in the later investigation.

Covariants of Even Rank m = 2fi > 0, §§ 27-29

27. First, let n be odd. In the covariant (76) replace x3 by

#3 + xi- In view of (82), we get

R' = h'hm + Msm + fi'itf + &T + fax*, + xfrtW.

Using the notation (84) for f2 , we have Si = Si + S in f2 .

Thus, as in § 17, S is a linear combination of the functions (74).

Now Qi"i" and its products by A and A + A are covariants (76)

with S given by (63). Using also KmLn
, in which S = a2 (b3+l),

and its product by A, we may set

S = &i(63 + a2) + k2b3aicx2 + Jc3Aa2 + k4 (b3 + a2)J.

In xix2x3 (j>, let g be the coefficient of

xix2x3 xi»-W*+n-* = (.xtWyx^hn.
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Such a term occurs in neither of the first two parts of R', since

they are functions of only two variables. To obtain such a

term from the third part of R', we must omit terms with the

factor f3
2 (and hence x?) and take (aW) 2" in tf*, so as not to

make the degree in x2 too high. Hence if T be the coefficient of

x3» in fu g' = g+ T. Now (a1a2)(6 162) replaces S by T. The
resulting T must be of the form (57). By the coefficient of

«3&i, fa=Q; cf. (72). By the coefficient faonh of a3 , fa = 0.

Since T = for ax = 0, bz = a2 , we get fa = fa. Hence 8 = fav,

where sis given by (90).

For n = 1, f2 = 8x3 + S1X1. Thus Si = fav', where v' is

derived from v by interchanging the subscripts 1 and 3. Then
Si' = Si + S gives fa s 0.

For n ^ 3, Q^L^W is of the form (76) with 8 = v, since

foe = 0.

Any covariant with n odd, m = 2/x > 0, differs from one of rank

> m by a linear combination of 7Qi"Z" (I = 1, ^4, A), i£mZ",
AIM" and, ifn>l, Q^L^W.

28. For m = 2/x > 0, n = Av > 0, the coefficients of £2
mx3

n in

&*&*, #m&*, QfF», QSL", K*»L»,

Qi^Q^G2
, K^Q^G2

are respectively

1, ag, 63, )8, + 1, a2 (63 +1), d = 0j(j8j + 1), a2d.

These may be multiplied by any invariant. Now

j33 + 1 + a2 + 63 = ai«2,

AO83 + 1) + (A + A + 1)63 + b3a2 + A = haw,

d+A + p3 + a2(A + b3) = h(b3 + a2) = p,

a2d + a2b3
= a2bj)3 = a2f$, Ad = Abi(b3 + 1) = A(i.

Hence we have a covariant (76) in which the coefficient of %2
mx3

n

is any linear combination of the functions (71). Hence the
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covariant differs from one of rank > m by a linear function of the

covariants (92), the products of the first three by any invariant

except 1, the products of the fourth and fifth by A and the product of

the sixth by A.

29. For m = 2ju > 0, n = 4v + 2, the coefficients of %2
mx3

n in

(93) MR*-^,', KmLn
, GK^1

Q,
V
, F* 1^^, LnQS

are respectively

o-i, a2 (b3 + 1), a2b3 (bi + 1), b3 , b3 + ai<x2 + 1.

Linear combinations of products of these by invariants give*

a2 , a^A, a2J, a2b3 , Aa2b3 , a^b^, Ib3 , a\a2 , A + b3ai<x2 .

Since S and Si are unaltered by the group T of § 15, they are

linear combinations of the functions (71). Deleting the above

functions at, a2A, • • from S, we have

S = I + cp + eA/3, = bi(bs + at),

where c and e are constants, and I is an invariant. Set

/i = Bx2
« + Bisc'-h:, + + B^x^"-1 + Bnx3

n
,

and call a the coefficient of

(94) xix2x3 • z2
4 'i+"-V1~1 = feW^"-1

*!

in xix2x3<j>. The coefficient! of (94) in R' of § 27 is B± + a.

Hence
a' - a = Bu

if (50) replaces o by a'. Thus Bi must be of the form (57).

For n = 2, S2 is derived from S by applying (aia3)(bib3).

Then (672) gives /Si. Applying (aia2)(bib2) to Si, we get

Bi = 1+ c(b2b3 + b2ai + b3a{) + eA(b2b3 + b2 + 63).

* For the last two, use the first two of the four equations in § 28.

t The first part of R' is free of z2) the second of x3 , while in the third part

&2 has the factor Xi2, and in /i'fi
2* there is a single term (94) and it has the

coefficient B-i.
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Since this must be of the form (57), we get I = 0, c = e = 0.

A covariant with m = 2\x, n = 2, differs from one of rank > mby a

linear function of

iMKm-\ KmU, AKmD, GKm-\ IFQS, L2QS, AL2Qf

(i = 1, A, J; I = 1, A, A, J).

For n > 2, we may delete A from the part I of S by use of

EQi»Q2
v~1

) where E is given by (75). Without disturbing S we
may delete a2 (bs + 1) and its product by A from Si by use of

K2*+1Ln-3
, since the term of fc

8
*/, with the coefficient Si is

the term of highest degree in x$ in %2
2,1+1(Six3

n~3 + •••)•

Since S -\- Si is a linear combination of the functions (74),

Si = S + ti(b3 + a2) + t2aia2 + hb 3aia2 + hb3A + 4Aa2

(95)
+ tA(bs + 1) + Ub3 + as)J.

Apply (aia2a3)(bib2b3) to Bi, of the form (57). Hence

(96) Si = ppai + pa2b2 + pa2p + ra2 + sp, p = &i + a3-

Now ai&2 occurs in S only in the terms </, AJ of I and in the part

of (95) after S only in the last term, given by (72). In these the

factors of aib2 are linearly independent. Hence t = 0,

I = x(A + 1). The coefficient of ai in Si must vanish for

bi = a3 , and Si itself if also a2 = 0. Hence

c = t2 = x, h = t3 = U = t, ts = a; + t,

Si = 3(4 + 1 + 6163 + ha2 + aia2 + Aa2) + eAbi(b3 + 1)

+ t(b3 + a2 + b3aia2 + b3A + b3A + a 2A).

Call « the coefficient in Xix2x3<}> of

xix2x3
• x2

2lix3
i>i+n-3 = {x2WYxiX2x3

n~2
.

In R' of § 27, the coefficient of this product is e + -S«-i. Hence

5„_i is of the form (57). Interchanging the subscripts 1 and 2

in jB„_i, we get Si. Thus the coefficient of a3 in Si vanishes for

63 = ai. Hence S = Si = 0. ^4ra/ covariant with n > 2 ozjfers



96 THE MADISON COLLOQUIUM.

from one of rank > m by a linear combination of

iMK*-*Qf, jKmLn
, GS^Qt', IFn '*QS, jLnQS, EQfQr*

(* = 1, A, J; j = 1, A; I = 1, A, A, J).

Covaeiants of Odd Rank m = 2ju + 1 > 1, §§ 30-31

30. Replacing x3 by cc3 + x\ in the covariant (76), we get

R' = /2'?2
m +Mf1 + fi'Qi + &)

m + (afiWBs + *iW-
In xix^c^, let jr be the coefficient of (xiXz

2
) (x2

2x3)
m~1X2n. The

coefficient of the corresponding term of R' is g' = g + 5, where

5 is that of a;2
n in /i. Hence jB is of the form (57).

First, let n be odd. Then Si' = Sx + S under (50), so that

S is a linear combination of functions (74) with a2 (b3 + 1) and

its product by A deleted (§ 23). Thus S is the sum of the terms

(95) after the first. Applying (aic^) (bib2b3) to B, of the form

(57), we see that S is of the form (96). By these two results,

S = t(b3 + o2 + b3aia2 + b3A + &3A + OzA).

If I is the coefficient of (x2X3
2
)
mx3

n~1
xi in Zi^a^, that in R' is

l' = I + nB„. Hence, for n odd, Bn is of the form (57). Inter-

changing the subscripts 1, 2 in B„, we get S. Thus the coefficient

of a3 in S vanishes for b3 = a\, so that t = 0. Any covariant vrith

m and n odd differs from one of rank > m by a linear function of

KmLn and AKmLn
.

31. Finally, let m be odd and n even. According as n = 4i>

or 4p + 2, KmQ2
" or Km^1MQ2

" is of the form (76) with 02 as

the coefficient of £2
mx3

n
- Hence we may delete the terms 02/1

in (85) and hence the terms ailx in B of § 23. But (§ 30), B is

of the form (57). Now a3bi occurs in J and AJ of I and in

b2J of 62/2, having in these linearly independent multipliers.

Hence
I=x(A + l) + yA, I2 = e+fA + gA.

Since the coefficient of a3 in B shall vanish for b3 = a2, and B
itself if also ai = 0, we get ki = x = y = k3, k2 = / = g = e.
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Thus

S = x(A + 1 + A + aiaz + 6163 + b\a2) + kia2b^}3

+ g(A + 1 + A + aia2)b3 + hAh(bs + 1).

First, let n = 4v + 2 and write 2;u + 1 for m. Then

have d = /33 (/3i + 1) and a2d as the coefficients of %2
mx3

n
. As

in § 25, the coefficients of x, ki, g, k& in (97) equal respectively

d + a2 (A + 63 + 1), a2rf + a2b3 , Ad + a2(2 + a2J, Ad.

The terms not containing d are combinations of the above a2I\

and a2 (b3 -f- 1) of § 23. ylra/ covariant with m — 2/z + 1 > 1,

n = 4? + 2, differs from one of rank > mby a linear function of

iKmL\ hKr-WQf, IGQfQt', K*GQ^QS

(» = 1, A; h = 1, A, J; I = 1, 4, A).

Next, let n = 4j> > 0. In the last two covariants of the

theorem below, the coefficients of £2
2*+1

a;3
4" are a2bs (b1 + 1) and

5 — &3/83G81 + !)• We had reached covariants in which the

corresponding coefficients are a2I and a2 (b3 +1)1. Thus we

obtain the coefficient of &4 in (97) and 5 + Aa263 + a2bib3 , which

equals the coefficient of g. We may therefore set £4 = g = 0.

Subtracting covariants of the fourth and fifth types in the

theorem, we may take as Si the function in § 24, without dis-

turbing S. Applying (aia2){bib2) to S and Si, we get Bn and

Bn-i. If I is the coefficient of XiX2
m+1x3

2m+n~2 in xix2x3<j>, its

coefficient in R' of § 30 is V = I + Bn + B^. Thus B„ + B„-i

is of the form (57). By the coefficient of a3bi, U=Q. Since the

coefficient of a3 is zero for 63 = a2 , we get x = k& = t3 = 0.

Thus S= 0. Any covariant with m = 2^+l> l,n = 4j>>0,

differs from one of rank > mby a linear function of

KmLn
, AKmL», IKmQ2 ", iL«-sQS+\ iL"-3K^+2

, G^Q^Q^'1
,

FGQf-iQf (i = 1, A, A; I = 1, A, J).
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32. We have now completed the proof of the theorem:

As a fundamental system of modular covariants of the ternary

quadratic form F with integral coefficients modulo 2, we may take

F, its invariants A, A, J, its linear covariant L, its "polar" cubic

covariant K, and the universal covariants Qi» Qz> L$.

Incidentally, we have obtained a complete set of linearly

independent covariants of each order and rank. We might then

find a complete set of independent syzygies. Syzygies whose

members are covariants of low rank are given in (78), (88), (91).

33. References on Modular Geometry.—Other aspects of the

modular geometry of quadratic forms modulo 2 and, in particular,

applications to theta functions have been considered by Coble.*

For a treatment of non-homogeneous quadratic forms in x, y

modulo p (p an odd prime), analogous to that of conies in

elementary analytic geometry, but employing only real points on

the modular locus, see G. Arnoux, Essai de Geom6trie analytique

modulaire, Paris, 1911. The earlier paper by Veblen and Bussey

was cited in § 7. The paper by Mitchell was cited in § 3. Appli-

cations of modular geometries have been made by Conwell.f

The problem of coloring a map has been treated from the

standpoint of modular geometry by Veblen.J

* Transactions of the American Mathematical Society, vol. 14 (1913), pp.

241-276.

t Annals of Mathematics, ser. 2, vol. 11 (1910), pp. 60-76.

t Annals of Mathematics, ser. 2, vol. 14 (1912), pp. 86-94.



LECTURE V

A THEORY OF PLANE CUBIC CURVES WITH A REAL INFLEXION
POINT VALID IN ORDINARY AND IN MODULAR GEOMETRY

1. Normal Form of Cubic.—Consider a ternary cubic form

C(x, y, z) with coefficients in a field F not having modulus 2 or 3.

After applying a linear transformation with coefficients in F
and of determinant unity, we may assume that (1, 0, 0) is an

inflexion point. In particular, C lacks the term xz
. If it lacks

also x2y and x?z, its first partial derivatives vanish for y = z = 0.

But we shall assume that the discriminant of C is not zero. Hence

the coefficient of x2 may be taken as the new variable y. At the

inflexion point (1, 0, 0) the tangent y = is to be an inflexion

tangent, i. e., meet the cubic in a single point. Hence C lacks

the term xz2
. Thus

C = x2
y + 2x(ay2 + $yz) + <j>(y, z).

Replacing x by x — ay — /?z, we see that x2y is now the only term

involving x. If y were a factor, the discriminant would be zero.

Hence the term z3 occurs. Adding a suitable multiple of y to z,

we get

(1) C = x2
y + gy

s + hy2z + 8z* (5 * 0).

2. The Invariants s and t.—The Hessian of (1) is

H = - 35a;
22 - h2

y
z + 98gy

2z + Zbhyz2 .

The sides of an inflexion triangle form a degenerate cubic be-

longing to the pencil of cubics kC + H. The latter has the

factor z only when k = h = and the factor y — Iz only when

kl = 35 (as shown by the terms in x2
), where ft is a root of

¥ + 185M2 + 10882gk - 2752h2 = 0.

Before considering the factors involving x, we note that the
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coefficients of this quartic equation are the values which relative

invariants of a general cubic assume for the case of our cubic (1)

.

Indeed, a linear transformation of determinant unity which

replaces C by a cubic C must replace H by the Hessian H' of C,

and hence replace the inflexion triangle of C given by a root k

of the quartic by that inflexion triangle of C" which is given by

the same number k. We denote the invariants by*

(2) s = - 38h, t = - 108SV

The above quartic now becomes

(3) k4 - 6sk2 ~tk- 3s2 = 0.

The discriminant A of C is such that

(4) 27A = f - Ms3
.

There are four distinct roots of (3) since its discriminant is

- 273A2
.

Our earlier results are that kC + H has the factor z only

when k = s = and the factor y — 3hk~h if & is a root + of

(3) . It has the factor x — ry — pz if and only if

3p2 = I; 9d2kr2 = s2 + tk/12, kp2 - 65pr = s,

GSkpr - 95V - sk - t/4 = 0.

These conditions are satisfied if and only if k is a root of (3) and

p = Jc = 0, 365V = - t (k=0),

3p2 = k, 6dkr = P (k
2 - 3s) (k + 0).

3. The Four Inflexion Triangles.—First, let s = 0. Then

t =j= by (4). The root k = gives the inflexion triangle with

the sides

(5) z = 0, x = ± Tiy (36SV = - t).

* We have s = — 3*S, t = — 36T, where S and T, given in Salmon's Higher

Plane Curves, p. 189, are the invariants of the general cubic with multinomial

coefficients.
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Each root of k3 = t gives an inflexion triangle

(6) y = J z
> * = ± T«(y + p) (3-366V = 0.

Next, let s 4= 0. Each root of (3) gives an inflexion triangle

35
(7) y = -j- z,

, fkf ¥ - 3s \

4. The Parameter 5.—If we multiply x, y, z by p, p
-2

, p, we

obtain from (1) a cubic with S replaced by Sp3
. If F is the field

of all complex numbers, the field of all real numbers, or the finite

field of the residues of integers modulo 2>j + 2, a prime, every

element is the cube of an element of the field [in the third case,

e = (e~~0
3
]> so that the parameter 5 may be taken to be unity.

Although we do not use the fact below, it is in place to state here

that for all further fields a new invariant is needed to distinguish

the classes of cubics (1). Indeed, two cubics (1), with coef-

ficients in F and with the same invariants s and t and discrim-

inants not zero, are equivalent under a linear transformation

with coefficients in F and having determinant unity if and only

if the ratio of their S's is the cube of an element of F.

Criteria for 9, 3 or 1 Real Inflexion Points, §§ 5-9

5. Inflexion Points when s = 0.—Let k be a fixed root of F = t.

Let t\ and n be fixed roots of the equations at the end of (5)

and (6). Then

(ri/r2)
2 = - 3 = (1 + 2co)

2
, co

2 + co + 1 = 0.

Choose co so that t\\t% = 1 + 2a>. Denote the lines 2 = 0,

x = ny, x = — ny in (5) by L\, L2 , L3 . For each value of

i = 0, 1, 2, denote the three lines (6) with k = Kui by Lu, La,

Lzi, that with the lower sign being i3l-. Then the 9 inflexion

points and the subscripts of the 4 inflexion lines through each

are given in the following table

:
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(1, 0, 0)

(8)

(r2 , 1, 0)
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t2 = + 1, k = — 1, we get oj = 2. Thus x2
y — y

3 + 3z3 =0
has the 9 inflexion points (1, 0, 0), (1, 1, 0), (- 1, 1, 0),

(-2, 1, 3 • 20, (2, 1, 3 • 20 (i = 0, 1, 2).

6. Inflexion Points when s 4= 0, A 4= 0.—These are (1, 0, 0)

and

(9)
/ s-k2 35 \

\±2JfeV^]fc' *' /'

where h ranges over the roots of the quartic (3). We seek the

number of real roots k for which V — Ar is real. In order that

the left member of (3) shall have the factors

(10) k2 + wk +1, k2 -wk + m,

it is necessary and sufficient that

(11) I + m — w2 = — 6s, (I — m)w = t, Im = — 3s2
.

Let t 4= (for t = see § 9). Then w 4= and

(12) 21 = w2 - 6s + t/w, 2m = w2 - 6s - t/w.

Inserting these values into (II3), we get

(13) w6 - 12sw4 + 48sV - t = 0.

Set w2 = y + 4s. Then

(14) y
3 = t

2 - 64s3 = 27A.

For the rest of this section, let the field be that of the residues

of integers modulo p, where p is an odd prime 3j -\- 2. Since

any integer e has a unique cube root e~j modulo p, there is a

single real root y of (14).

First, let y + 4s be a quadratic residue of p. Then w is

real and hence also I and in. The product of the discriminants

of the quadratic functions (10) is seen by (Hi) and (11 3) to equal

(15) (w2 - U)(w2 - 4m) = - S(w2 - 4s) 2 = - 3y2

and hence is a quadratic non-residue of p. Thus a single one of

the quadratics (10), say the first, has a discriminant which is a
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quadratic residue and hence has real roots. By (12i),

4l(w2 - 4Z)w2 = - 2w6 - 6wH + 36sw4 - 4*2 4- 48stw - 144sV.

Adding the vanishing quantity- (13), we see that

(16) 4l(w2 - 4l)w2 = - 3(m>3 - 8sw + t)
2
.

Since w2 — 41 is a quadratic residue and — 3 is a non-residue

of p, it follows that £ is a non-residue. Hence a single one of

the roots of the first quadratic (10), and hence a single one of

the roots of the quartic (3), is the negative of a quadratic residue.

Thus just two of the inflexion points (9) are real.

Next, let y + 4s be a quadratic non-residue of p. Then there

is no factorization of the quartic (3) into real quadratic factors.

Nor is there a real linear factor k — r and a real irreducible

cubic factor. For, if so, the roots of the latter are of the form

X, Xp, X
p2

(cf. the first foot-note p. 37). Then

(r-X)(r-Xp)(r-Xp2
), P=(X-Xp)(X"-Xp

2

)(X" -X)=Pp (mod?)

are real, so that the discriminant of (3) is a quadratic residue.

But this discriminant was seen to be — 3(81A) 2
, and — 3 is a

non-residue. Hence (3) is irreducible modulo p. Thus (1, 0, 0)

is the only real inflexion point.

For p = Zj + 2 > 2, a cubic (1) with stA 4= 0, has exactly

three real inflexion points or a single one according as the real

number 3AJ + 4s is a quadratic residue or non-residue of p.

7. Cubic with stA #= 0, p = 3j + 1.—Now — 3 is a quadratic

residue of p and there are three real cube roots 1, u, w2 of unity

modulo p.

In this section we shall assume that A is a cube modulo p.

Then there are three real roots yt of (14). At least one of the

yi + 4s is a quadratic residue of p since

II {Vi 4- 4s) = 2/x
3 + 64s 3 = f.

If yi + 4s is a quadratic residue, while yi + 4s and y3 + 4s
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are non-residues, there is a single factorization of quartic (3)

into real quadratics (10) and hence certainly not four real roots.

The product (15) of the discriminants of the real quadratic

factors is now a quadratic residue of p. If each were a residue,

there would be four real roots. Hence each is a non-residue and

there is no real root. There is a single real inflexion point if

p = Bj + 1, stA 4= 0, A is a cube, and if the three values of 3A5
-f- 4s

are not all quadratic residues of p.

Next, let each yt + 4$ be a quadratic residue of p. Then there

are three ways of factoring quartic (3) into real quadratics (10).

But a root common to two distinct real quadratics is real. Hence

all four roots are real. The discriminant of each quadratic (10)

is therefore a quadratic residue of p. Hence, by (16), I is a

quadratic residue of p; similarly for the constant term of each

quadratic factor. Thus the negatives of the four roots are all

quadratic residues or all non-residues.

To decide between these alternatives, we need the actual roots.

In w? = yi + 4s, let the signs of the Wi be chosen so that

¥ - wjc + mi = (i = 1, 2, 3)

have a common root. As in (12),

2im = Wj2 — 6s — t/wi.

For e =f= 1, we find by subtraction and cancellation of Wi — we

that

2k = Wi + we + t/(WiW c).

Comparing the results for e = 2 and e = 3, we get

(17) W1W2W3 = t.

Hence* the roots of (3) are

§(Wl + W2 + W3), i(W! — W2 — W3),

f(— W!+ W2 — W3), £(— Wi — W2 + Wi)-

The product of the first and (i + l)th roots is seen to equal m,

! In particular, we have deduced Euler's solution by the method of Descartes.



106 THE MADISON COLLOQUIUM.

and hence is a quadratic residue. For given values of p, s, t,

we can readily find by a table of indices the real values of the Wi

and thus a real root and hence decide whether or not it (and

hence each of the four roots) is the negative of a quadratic

residue.

However, changing our standpoint, we shall make an explicit

determination of all sets s, t for which the quartic (3) has four

real roots each the negative of a quadratic residue of p.

By the definition of the w?, or direct from (13),

(19) 2wx
2 = 125, 2wiW = 48s2

, w?w?w£ = f.

Let w be a fixed integral root of w2 + « + 1 = (mod p). Then

= (12s) 2 - 3 (48s2
) = Swi4 - 2wxW

= (lOi
2 + UW22 + 0)

2W3
2)(Wi2 + W2W22 + WW32

).

Interchanging w2 and Wz, if necessary, we have

(20) wi2 + uw2
2 + wW = (mod p).

Conversely, if the w? are any quadratic residues satisfying

(20) and if we define s and t by (19i) and (17), we obtain a quartic

(3) with the four real roots (18). If we permute wu w2, W3

cyclically we obtain solutions of (20) leading to the same s and

t and to the same four roots (18).

Our first problem is therefore to find all sets of solutions of

(20). To this end it is necessary to treat separately the cases

— 1 a quadratic residue and — 1 a non-residue; viz., p = 12q+ 1

and p = 12g-+ 7 (since already p = 3j+ 1).

First, let p = 12q + 1. Then — 1 = i
2 (mod p), where i is an

integer. Set

2p = Wi — iwwz, 2o- = wi + iwwz.

Then (20) becomes

4p<7 = — ww2
2 = (ia2W2)2

,

so that p<7 must be a quadratic residue. Hence we may take
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<r = pi
2
, where p and I are integers not divisible by p. Then

(21) Wl = p (l + P), W2 = 2icoPZ, w3
= ico

2p(l - Z
2
).

We must exclude the values of I which lead to equal values of

two of the Wi2
, and hence to equal y.-'s, since the roots of (14) are

incongruent. Now if any two of the w? in (20) are congruent,

all three are congruent. But Wi2 = w2
2 implies

1 -f I
2 = ± 2icoZ, (Z qF io>)

2 = co
4
, ls± ico + eco

2
(e

2 = 1).

The values Fs0,±l make one of the w* = 0. Hence we must

exclude the 9 incongruent integral values of Z:

(22) 1=0, ± 1, dh i, co
2 ± t», - co

2 ± ia.

Using the values (21), we get

(23) 125 = p
2
{(l - «)(1 + I

4
) - 6co

2
Z
2
}, t = 2p3

Z(Z
4 - 1),

/ iul \ 2

(24)
i(Wl + W2 + w,3)

= |p(l + iw2
)
^

1 + _^__j _

To make the negative of the last a square, we must take

(25) p = - 2(1 + ico
2
)r

2
(r + 0).

Now s, given by (23), is zero only when

(26) Z = co ± ico
2
, - co ± z'co

2
.

r^e desired sets s, t are given by (23) and (25), wAere r is any

integer not divisible by p, while I is any one of the p — 13 positive

integers < p not congruent modulo p to one of the 13 incongruent

integers (22), (26). The minimum p is 37.

Second, let p = 12q + 7. Then X2 = — 1 (mod p) is irre-

ducible. Its roots i and — i = ip are Galois imaginaries. Set

(27) 7T = p + 1, 0- = p - 1.

There exists a linear function R of i with integral coefficients

such that -R™ = 1, while no lower power of R is unity. Any
function of i is zero or a power of R and any integer is a power of
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R", a primitive root of p. Hence we may set

w2w2 = R'l, wi + uw3i = R e
, wi — uwsi = Rpe

,

where ^ 77 < a, ^ e < w<r. Then (20) is equivalent to

R*e + R2"" = 0, ire = 27T7? + %wa (mod w).

The last condition is equivalent to

(28) e = 2V + a\2 + ja (0 ^ j < tt).

We have

w2 = coR"v
, 2wx = Re + Rp e

, 2w3
= - iu2(Re - Rpe

),

2u22w1 = 2R" r
> + (co

2 - iu)Re + (co
2+ iu)R'%

(co
2 — ico)(co

2 + ice) = — 1,

(29)
(co

2 - iu)' = - 1, co
2 - t» = fl""2

(/ odd),

2u22w1
= 2^" + fl«+'^2 - Rpe-fV

— R"U-<.f+l)W (Rn-j+plf+l) 12 _|_ Rpn-pj+V+iil^^

The last binomial is its own pth power and hence is real. We
desire that the root ^2wi shall be the negative of a quadratic

residue and hence a non-residue. Since R" is a primitive root

of p, tbe condition is that j — (/ + l)/2 shall be odd:

(30) / = 21 - 1, ;' - Z = odd.

We must exclude the values making Wi2 = w>2
2

:

= 2R°l\wi =F w2) = iJ2
^^'"-

=F 2uR"
r>+"l2 - &*«->",

the second term having been simplified by use of

ij"/2 = - 1, Ep" = R-'.

Completing the square of the first two terms, we get

(#l+»U+l)/2 zp aftP>l-<rJI2)2 =
(w2 _{_ l)2J2pi-<ri,

Now w2 + 1 = — to = (ciu2)
2
, where c = 1 or — 1. Hence

#i+*(;+l)/2 = (± w + ciw^Rw-'H2
.
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But
(w + ia>

2
)(oo - ico

2
) = - 1, co + io>

2 = Rv"'2
,

o> - io? = - Brv ° i* (Dodd).

Hence we must exclude the four cases in which

(32) ij = j+f(±i>+l), i + |(±z,+ 7r+l) (modTr),

these four values being incongruent.

No one of the w's in (29) is zero, since e is odd by (28), so that

e + 0, tt/2 (mod *). By (190 and (17),

48s = (1 - u)(R2e + R2pe
) + Gu2R2"\

At = - %R">{B?' - R2pe
).

Finally, we must here exclude the cases in which 5 = 0.

Combining 2wi2 = with (20), we obtain the necessary and

sufficient condition w^ = cow3
2 for 5 = 0. But W\ = ± co

2w3 ,

in connection with (29), gives

Re
(l ± ia) = Rpe(- 1 ± «»), fl

e(w ± ico
2
)
2 = Rpe

.

Thus, by (31), the condition is that e ± w = pe (mod xcr) or

e = ± s (mod tt). Then, by (28), t\ is congruent modulo ir

to one of the values (32) decreased by ir/4. Hence the desired

sets 5, t are given by (33), subject to (28), in which the 8 incongruent

q's given by (32) ararf those values decreased by 7r/4 are excluded.

In particular, p > 7.

For p = 19, the only admissible pairs are

5 = 2-22!
, * = 6(-2) 3

' (1 = 0,1, , 8).

For any I, the negatives of the roots of quartic (3) are the products

f _ 3 = 42
}
4?

7 = 82
,
— 8 = 72 by (— 2)

1 and hence are quad-

ratic residues of 19 since — 2 = 62
.

For p = 31, the only pairs are

5=3", Z=5(-3) 3
<; 5=-32

', *=13(-3) 3 < (I = 0, • • •, 15),

the negatives of the roots of (3) being the products of 7, — 11,

— 12, — 15 and — 3, 5, 9, — 11, respectively, by (— 3)', and

hence are quadratic residues of 31.
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8. Case p = 3j + 1, siA + 0, A not a Cube—The roots of (14)

are now Galois imaginaries y, y
p

, yp\ As at the beginning of § 7,

t
2 = (y + 4s) (y

p + 4s){y
p2 + 4s) = (y + 4s)1+p+p2.

Raise each member to the power (p — l)/2. We see that y + 4s

is the square of an element, say w, of the Galois field of order p
3
.

The first root (18) is §(«; + wv + wp") and equals its own pih

power, and hence is real. This is not true of the remaining roots

(18), since wp =j= w, or since a real quadratic factor would imply

that w is real. Hence the quartic has a single real root.

For p — 7, the only cases in which the negative of the single

real root is a quadratic residue are t = — 1 or 3, s = — 1, — 2, 3;

t = 2, s arbitrary =f= 0. For p = 13, the only cases are

±t = 4, 5, 6; s= - 1,-3,4 (s
3 =-l);

±*=1, 5, 6; 5= -2, -5, -6 (s
3 =5);

and ± t = 3, — 5 equals one of the preceding six values of s.

9. Cubic with t = 0, s 4= 0.—In this case, (3) becomes

(k2 - 3s) 2 = 12s2
.

If there be a real root ft, 3 is a quadratic residue of p, and

W = l8, I = 3 ± 2 V3.

First, let p = 3j + 2, so that — 3 is a quadratic non-residue of

p. Then — 1 must be a non-residue of p and hence p = 12r+ 11.

The product of the two l's is — 3, so that a single value of k2
is

a quadratic residue. Since the two real k's are of opposite sign,

there is a single real root k whose negative is a quadratic residue.

For t = 0, s =)= 0, and p = 12r + 5, there is a single real inflexion

point; for p = 12r +11, there are just three real inflexion points.

Finally, let p = 3j + 1, so that — 3 is a quadratic residue of p.

If p = 12r + 7, then 3 is a non-residue, and there is no real k

and hence a single real inflexion point. If p = 12r + 1, the

four roots k are all real or all imaginary. For p = 13, k2 = — 2s

or — 5s, and — ft is a quadratic residue if and only if ft
6 = 1,

ss = 8, s = 2, 5, 6. For p = 37, ft
2 = - 4s or 10s, and - ft

is a residue if and only if s9 = 1.
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TOPICS IN THE THEORY OF FUNCTIONS
OF SEVERAL COMPLEX VARIABLES

BY

WILLIAM FOGG OSGOOD

LECTURE I

A GENERAL SURVEY OF THE FIELD

§ 1. Analytic Functions of Several Complex Variables

In the decades which lay between Cauchy's prime and the

beginnings of the modern French school, the theory of functions

of a single complex variable made rapid progress, the chief

advances taking place on German soil. Simultaneously with

these developments, important problems in the theory of analytic

functions of several complex variables were attacked and the

theorems connected with them divined with an insight worthy

of the genius of a Riemann and a Weierstrass.

The elementary functions of several real variables admit exten-

sion into the complex domain and are seen to be developable

there by Taylor's theorem,— a result to which the elementary

theory of infinite series and an obvious extension of Cauchy's

integral formula alike lead-.

It was natural, then, to define a function of several complex

variables generally with Weierstrass as one which can be de-

veloped by Taylor's theorem in the neighborhood of any ordinary

point of its domain of definition; or, following Cauchy, as one

which is analytic in each variable separately and continuous in

all taken at once.*

* Cauchy, Turin memoir, 1831, = Exercices d'analyse, 2 (1841), p. 55; Jor-

dan, Cours d'analyse, 1, 2d ed., 1893, § 206. The condition of continuity is

introduced to simplify the proofs. It is a consequence of the former condition

;

111
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The Factorial Function and Analytic Continuation. One of

the problems with which mathematicians had occupied them-

selves without obtaining satisfactory results was that of extending

the definition of the function n\ to a continuous range of values

for the argument. This question Weierstrass* took up, exam-

ining the work of his predecessors and showing that a satisfactory

solution could be reached on the basis of the principle of analytic

continuation, the functions considered being dependent on

several variables. Thus these functions contributed at that

early time to the recognition of the importance of the conception

of the monogenic analytic configuration.

Existence Theorems. Cauchy had established the first existence

theorems for ordinary differential equations and implicit func-

tions.! In bis further study of these problems he developed the

method of power series and series majorantes.%

The extension to the case of partial differential equations was

direct, and the results thus obtained were of importance. For,

while much of the theory of these equations appeared plausible

from geometric considerations of a somewhat crude sort or from

analogy with special examples yielding an explicit solution, a

secure foundation had hitherto been lacking.

Weierstrass's Theorem of Factorization. If a mathematical

theory is to gain its independence and take its place among the

powers, it must recognize its own peculiar problems and obtain

methods for dealing with them. One of the earliest distinctive

theorems which became known in the theory of functions of

several complex variables is the theorem of factorization, due to

Weierstrass. §

cf. below, Lecture II, § 5. Such citations will be made in the following pages as

II, §5.

In order not to interrupt the course of the general account with which we
are now engaged, the consideration of a number of detailed consequences

which follow from the definition will be postponed to a later paragraph; cf. II,

§§1,2.
* Journ. fur Math., 51 (1856), p. 1; Werke, 1, p. 153.

t Cf. Enzyklopadie der math. Wiss., II B 1, p. 103, and ibid. II A 4a, p. 201.

t Turin memoir, 1831; Exercices d'analyse, 1 (1840), p. 327.

§ Cf. IV, § 1. The theorem dates from 1860.
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By the aid of this theorem he proved the extension of Riemann's

theorem relating to removable singularities,* at least for the

case that the given function can be expressed, in that part of the

neighborhood of the given point where it is defined, as the

quotient of two functions each analytic at the point.

It would be of interest to know whether Weierstrass ever

considered the theorem in its general form. I recall no passage

in his writings which contains such a reference. Is it possible

that the restricted form just mentioned was sufficient for all the

applications of this important theorem which he met?

§ 2. Jacobi's Theorem of Inversion and the Abelian

Functions

Toward the close of the eighteenth century the way was

paved, through Legendre's researches in the theory of the elliptic

integrals, for some of the most important advances which have

been made in analysis since the invention of the calculus,

—

those which cluster about the elliptic functions and their general-

izations, the Abelian and the automorphic functions. Jacobi,

following a line of thought which Abel had initiated, was led to

formulate the problem of inversion which bears his name.f

The first solutions of this problem which appeared, restricted

to the case p = 2,— those of Gopel (1847) and Rosenhain

(1846-51),— were based on the theta functions of two arguments.^

Weierstrass§ and Riemann|| arrived independently at solutions

in the general case of the Abelian integrals corresponding to an

* Cf. Ill, § 4.

t Jacobi, Considerationes generales de transcendentibus Abelianis, 1832;

Ges. Werke, 2, p. 5. For a statement of the general problem cf. Neumann,

Abelsche Integrate, 2d ed., 1884, Chs. 14, 15; Appell et Goursat, Fonctions

alg^briques, Ch. 10. For an account of the history of this problem cf . Krazer's

Festrede: Zur Geschichte des Umkehrproblems der Integrate, Karlsruhe, 1908.

t Jacobi and Gopel independently extended the elliptic thetas to the thetas

of several arguments; cf. Krazer, 1. c, pp. 17, 18.

§ Beitrag zur Theorie der Abelschen Integrate, Braunsberg, 1849, = Werke,

1, p. Ill; Journ.fur Math., 47 (1854) p. 289 =Werke, 1, p. 133; ibid., 52 (1856),

p. 285=Werke, 1, p. 297. Also Werke, 4.

||
Journ.fur Math., 54 (1857), pp. 101/155 = Werke, 1 ed., p. 81; 2d ed., p. 88.
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arbitrary algebraic configuration. In these investigations both

mathematicians were led to the study of the theta functions of

p arguments,— in fact, Weierstrass, to whom the generalized

thetas were at that time unknown, thus came to discover the

form of these functions.*

The Abelian functions themselves are not single-valued. They

are the roots of algebraic equations of degree p, whose coefficients

are single-valued functions having only non-essential singularities

in the finite region of the space of their p complex arguments and

admitting 2p independent periods; cf. § 3.

Here, then, is a general class of functions of several variables,

to which Jacobi's problem of inversion has directly led,—the

class which corresponds to the doubly periodic functions of a

single variable.

§ 3. Periodic Functions

To state more precisely what is meant by periodicity, it is

this. The function /(zi, • • • , zn) is said to admit the periodf

(P) = (Px, •••,Pn)if

/(*1 + Pi, -2 + Pi, , Zn + P») = f(Zl, , Zn),

where Pi, • , P„ are constants.

We shall restrict ourselves here, unless the contrary is explicitly

stated, to functions which are single-valued and have no other

than non-essential singularities (III, § 2) in the finite region of

space.

If (P) and (Q) are two periods, then (P) + (Q) = (Pi + Qu
•, Pn -\-Qn) is evidently also a period. Moreover, (— P)
= (—Pi, • • •, —Pn) is a period.

A function f(z\, • • , z„) is said to be k-iold periodic if there

exist k periods (P'), (P"), • • • (P(i)
), and no fewer, in terms of

* For their definition cf. § 3.

t Weierstrass uses the term system of periods (Periodensystem), i. e.,

simuUaneous system of periods, to denote this complex, which may be thought

of as a vector in space of 2p dimensions. The briefer term period would seem
to suffice.
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which every period (P) can be expressed linearly with integral

coefficients

:

(P) = m'(P') + m"(P") + h m^iP^).

Such a set of periods is called a primitive scheme, or set, of periods.*

A periodic function which is a constant or which depends on

fewer than n arguments will evidently not come under this

definition. This will also be the case if, on making a suitable

non-singular linear transformation of the arguments, f(z\, • • • , zn )

goes over into a function of fewer than n arguments. All other

periodic functions do come under this definition, the functions

excluded being precisely those which admit infinitely small

periods.

It is a theorem due to Riemannf that a fc-fold periodic function

of p-independent variables cannot exist { when k > 2p. On the

other hand, the Abelian functions have led to 2p-fold periodic

functions of p complex arguments, and such functions can also be

formed by means of quotients of theta functions of p arguments.

Theta Functions xoiih Several Arguments.—The fundamental

theta function of a single argument§ can be defined by a series

as follows

:

00

*(«) = t»(tt, a) = C E e
an'+2nu

, C 4= 0,

where

and
a = r + si

r = 91(a) < 0.

* I avoid the term primitive system of periods because of the confusion which

would thus be introduced, due to the other sense, above mentioned, in which

the words system of periods are used.

jjourn.fur Math., 71 (1859), p. 197=Werke, 1 ed., p. 276; 2d ed., p. 294.

Cf. also Weierstrass, Berliner Monatsber., 1876, p. 680 = Werke, 2, p. 55.

J The maximum number of periods which an integral function can have is p.

Hermite, in Lacroix's Calcul differentiel et calcul integral, vol. 2, 6th ed., 1862,

p. 390.

§ This function appears in Fourier's Theorie analytique de la chaleur, 1822,

p. 333. It is usually thought of as due to Jacobi, who was the first to recognize

its importance in the theory of the elliptic functions; Fundamenta nova, 1829,

=Werke, 1, p. 228.
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It has the properties:

&(u + wi) = #(«),

&(u+ a) = e-2u
~a&(u);

and it has, moreover, a single root of the first order in the parallel-

ogram F, two sides of which are the vectors (0, iri) and

(0, a).

By means of this function, doubly periodic functions can be

formed as follows. Let ai, • • • , a„, /3i, • •
, j8„ be any 2n points

so chosen that
n n

*=i *=i

and that, furthermore, the points of the parallelogram F that

are congruent to them are distinct. Then the quotient

&(u + ai) g(tt + On)

*(« + P0 *(« + Pn)

will evidently represent a doubly periodic function with the

periods iri and o.

The fundamental theta function of p arguments is given by

the following series:

p
r+2 s «»»*

*(«!,•, «p) = C£« *
=1

, C + 0,

where
p

T = T(ni, • , np) = X aunk nh akt = au,
k,l=l

CLkl = Tkl + iSkl,

and the real part of T(xi, • • , xp), where xit • • , xp denote real

variables, namely
p

J2 TklXkXl,
k,l=l

is a definite negative quadratic form.

The function has the following properties, readily deducible
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from the series,* which we write at length for the typical case

p=3.
d(ui + iri, u2 , u3) = #(«i, m2 , Us),

#(«i> m 2 + iri, u3) = &(ui, m2 , u3),

&{ui, Hi, u3 + iri) = #(tti, m2 , u 3),

tf («i + an, w2 + a2 i, m3 + a3 i) = e~
iui~a

"§{ui, u 2 , v 3),

#(ui + an , m2 + a22 , u3 + a32) = e-
2 ""--"a&{uu m 2 , w3),

#(mi + ai3 , m2 + a23 , m3 + a33) = e-
2**-a!a

&(ui, m2 , m 3).

The vectors in 2p-dimensional space corresponding to the 2p

columns in the array

iri

(1) n
li

«n ai2 a,u

a2 i a22 a23

^31 ^32 ^33

form the edges of a true prismatoid, F, and a periodic function

corresponding to F can be formed as follows. Let 2pn = 6n

complex numbers ctki, Phi, k = 1, • • -, p = 3, I = 1, • • •, n, be

so chosen that

«n + • • + OCin = (8n + • • • + |8i„,

«21 + • • • + «2n = ftl + • • • + ft„,

«31 + • • • + «3n = 031 + • • + 03n,

but that these numbers are otherwise non-specialized. Then the

quotient

&(ui+an, M2+<x2 i, M3+«3i) • • • d(.ui+ain , m2+ch2„, u3+a3n)

&(Ul+Pll, M2+|82 l, M3+/33 l) • • • #(Mi+/3i„, M2+/32n , M3+(83„)

will represent a function admitting as a primitive scheme of

periods the above scheme (1). It is sufficient to take n = 2.

As regards the proof of this theorem, it is clear that the above

quotient admits each period of the scheme (1); but it is not

* Cf. Krazer, Lehrbuch der Thetafunktionen, Chap. 1.
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clear that the a's and jS's can be so chosen that this scheme is

primitive for the function. This is, however, the case.*

A second mode of obtaining 2p-fold periodic functions belong-

ing to the scheme (1) is as follows. The functions

^^ k 1 = 1 v
dzk dZl

> M h ,P '

obviously admit the periods of (1), and it is readily shown that

they admit only such periods as are expressible linearly with

integral coefficients in terms of these.f And now it can be

proven that a linear combination of the above functions can be

so chosen as to yield a function belonging to the scheme (1).

This statement is made by Wirtinger, 1. c, but the proof is far

from obvious.J

The number of essential constants on which an algebraic con-

figuration of deficiency p > 1 depends is dp — 3,— the so-called

moduli. For p = 2 and p = 3 this number is the same as the

number of complex constants in the theta function, namely

ip(p + 1)- But for p > 3 the latter number is larger, and hence

the Abelian functions of p arguments,— or rather the symmetric

functions of their multiple determinations,— are not the most

general 2p-fold periodic functions.

§ 4. The Theta Theorem.

Can all 2p-fold periodic functions with only non-essential singu-

larities in the finite region be expressed in terms of theta functions

of p arguments? The answer to this question is affirmative,

and is the noted theta theorem due to Riemann and Weierstrass.

At first sight a mere count of constants appears to discredit

the theorem. For the general theta function of p arguments

depends on but \p{p + 1) complex, or p(p + 1) real constants,

namely, the ak i subject to the equations ak i
= au, while the

region of 2p-dimensional space which is the analogue of the

* Cf. a forthcoming paper by the author. (Note of December 29, 1913.)

t Wirtinger, Monatshefte f. Math. u. Phys., 6 (1895), p. 96, § 16.

% Cf. a forthcoming paper by the author. (Note of January 18, 1914.)
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parallelogram of periods for p = 1 and which forms a funda-

mental region for the function,— the prismatoid, F,— depends,

after reduction to normal form, as we shall presently see, on p
2

complex, or 2p2 real constants.

With reference to this normal form, let z\, • • • ,zp be the original

arguments and let the original 2p periods, which are linearly inde-

pendent, be written in the columns of the following array

:

(2)

Then at least one of the p-rowed determinants taken from the

matrix of the 2p2
co's corresponding to the scheme (2) will be dif-

2l
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general 2p-(old periodic analytic functions of p complex variables

are to be represented by means of quotients of thetas with p
arguments, this means that the prismatoid is here subject to

essential restrictions, since p(p + 1) < 2p
2

.

That this is, in fact, the case was discovered independently

by Riemann and Weierstrass, and thus the first step was taken

toward the establishment of the theta theorem.

Riemann never published a proof of the theorem. He com-

municated his results to Hermite* in 1860. Weierstrass's proof

was not given in detail till the appearance of his collected works, f

though he had published a number of notes bearing on a proof,

and had stated the theorem in a letter to Borchardt.J

In the early eighties Poincare and Picard§ constructed proofs

of the theorem, which, it turned out, were essentially the same

as Weierstrass's. Appell|| gave a proof in 1891 along different

lines. Then came a proof by Wirtinger,TI which has much in

common with Weierstrass's proof, at that time unpublished.

Shortly after, Poincare** gave a new proof, in which the method

is that of potential functions in hyperspace. Kroneckerft had

already surmized that this method would lead to fruitful results

in the theory of functions of several complex variables.Jt Poin-

care had used this method in an earlier paper, in proving the

theorem that a function of two complex variables which has no

other than non-essential singularities in finite space, can be

expressed as the quotient of two integral functions, and that this

quotient, moreover, at any point at which both numerator and

* Cf. Laoroix, Calcul differentiel et caleul integral, vol. 2, 6th ed., 1862,

p. 390.

t Werke, 3, 1903, p. 53.

tJourn. fur Math., 89 (1880), p. 8=Werke 2, p. 133. Berliner Monats-

berichte, 1869, p. 855=Werke 1, p. 46.

§ C. B., 97 (1883), p. 1284. Poincare, Acta, 22 (1898), p. 90.

|| C. R., 110 (1890), pp. 32, 181; Joum. de Math. (4), 7 (1891), p. 157.

f Monatshefte f. Math. u. Phys., 6 (1895), p. 69. Cf . also ibid., 7 (1896), p. 1.

** Acta, 22 (1898), p. 89. Cf. also ibid., 26 (1902), p. 43.

ft Berliner Monatsberichte, 1869, pp. 159, 688=Werke, 1, p. 198.

tt Cf. two memoirs by Baker, Transactions Cambridge Phil. Soc, 18 (1900),

p. 408, and Proceedings London Math. Soc. 2), 1 (1904), p. 14.
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denominator vanish, will be in reduced form.* It is this theorem,

too, on which Appell's proof cited above rests.

All of these proofs involve a considerable amount of analytical

developments. Weierstrass was led, in the course of his analysis,

— and it may be remarked in passing that he edited his proof

with minute care,—to emphasize the importance of an accurate

definition of the monogenic analytic configuration of the mth

grade (Stufe) in the domain of n complex variables. He points

out that it will not do to start with the points for which certain

of the coordinates chosen as dependent variables are analytic in

the remaining coordinates considered as independent variables,

and then adjoin all limiting points to the set thus obtained.

For, in the case of two variables, he says, it may happen that

one would thus obtain all the points of space, f

Furthermore, in the proof as Weierstrass originally conceived

it,— the final proof which appeared in his collected works is

modified in essential respects,— two general theorems relating

to periodic functions play an essential role. They are these. {

I. Any 2p-fold periodic function of p variables is an algebraic

function of p independent 2p-fold periodic functions belonging

to the same prismatoid. Or, otherwise expressed:

Between any p + 1 2p-fold periodic functions of p variables

there exists an algebraic relation.

II. Any 2p-fold periodic function of p variables is expressible

rationally in terms of p + 1 suitably chosen 2p-fold periodic

functions belonging to the same prismatoid.

These theorems have been generalized by Picard and Wirtinger

for automorphic functions of several variables; cf. §§ 5, 6.

Poincare's potential functions undoubtedly form a powerful

instrument of analysis in dealing with the singularities of func-

* Cf. IV, § 1.

t Werke, 3, p. 96.

% Berliner Monatsberichte, 1869, p. 855= Werke, 2, p. 46. These theorems

have been treated by Poincar6, C. R., 124 (1897), p. 1407; Wirtinger, Sitzungs-

ber. der Wiener Akad., 108 (1899), p. 1239; and Blumenthal, Math. Ann., 58

(1904), p. 497; cf. also Math. Ann., 56 (1903), pp. 510, 512.
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tions of several complex variables. He carries his proof through

only to the point of showing that the given function can be written

as the quotient of two Jacobian functions. The latter functions

are defined as follows.

Jacobian Functions. Let coa/3 , a = 1, •
, p; /3 = 1, • • •, 2p,

be a primitive scheme of periods, and let /(zi, • • • , z») be an

integral function of its p arguments. If, for every period from

this scheme, a relation of the form holds

:

f(Zl + «,„ • • •, z, + o,
pe)

= e
L
tw f(zu , zp),

where Lp (z) is a linear (homogeneous or non-homogeneous, but

integral) function of Z\, • , zp , then/ is called a Jacobian function.

The Jacobian functions have been studied at length in two

memoirs by Frobenius,* and in a paper by Wirtinger.f A
Jacobian function can be expressed in terms of theta functions

of p arguments.

§ 5. Automoephic Functions of Several Variables

The brilliant results obtained by Klein and Poincare in the

early eighties, in their researches relating to the automorphic

functions of a single complex variable turned the attention of

mathematicians towards functions of several complex variables

which admit a discrete group of linear transformations into

themselves, and we find from that time to the present day a

steady stream of papers in this field.

Here, however, at the very threshold of the subject, two types

of groups present themselves, corresponding on the one hand

formally to the linear transformations of projective space:

/ a'x+b'y+c' a"x+b"y + c" \
()

\
X

' y ax+by+c' ax + by + c )'

and on the other, to those of the space of analysis

:

* Jmirn. fur Math., 97 (1884), p. 16 and p. 188.

t Monalshefle fiir Math. u. Phys., 7 (1896), p. 1.
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(2)

'/
I ax+b ay + @ \

\'
X

' y
\

cx + d' yy + S )'

( 1 a'y + V a'x + P' \

\
X

' y
\
c'y+d" y'x + d')-

Hypermodular Functions.—The first papers to appear in this

field dealt with groups of the type (1). Picard* began by in-

vestigating a class of functions of two independent variables

analogous to the elliptic modular functions. It is a familiar

fact that a hypergeometric integral

r
dt

Vt{t- l)(t-x)'

where g, h denote any two of the four points 0, 1, oo, x, is a

solution of the linear differential equation

Let o>i, w2 be two linearly independent solutions of this equa-

tion, and set

0)2 j,, .

0)1

Then the equation

/(.r) = u

defines x as a function of u, and this function is analytic through-

out the whole upper half of the w-plane, but cannot be continued

analytically beyond this region.

Picard passes to analogous functions of x, y, namely those

defined by one of the integrals

dt

,»/.
', Vt{t- \){t-x){t-y)

where g, h denote any two of the five points, 0, 1, °o , .r, y. These

functions satisfy a simultaneous system of linear partial differ-

* C. R., 93 (1881), p. 835; ibid., 94 (1882), p. 579; Acta, 2 (1883), p. 114.

Alezais, " Sur une classe de fonctions hyperfuchsiennes," etc., Paris, 1901.

10
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ential equations of the second order, the coefficients being

polynomials in x and y, at most of the third degree, with integral

coefficients.

These equations admit three linearly independent solutions,

wi, w2 , co3 . If the latter be suitably chosen and their ratios set

equal to two new variables,

— — u, — = v,
0)1 Wi

then these equations define x and y as single-valued functions of

u, v. The domain of definition, D, is that part of the four-

dimensional space of the variables u = u' + iu", v = v' + iv",

in which

2v' + u'
2 + u"

2 < 0.

The proof is given by means of the solution of Jacobi's problem

of inversion for p = 3; cf. § 2.

Picard shows that the functions thus obtained admit a properly

discontinuous group of linear transformations of the type (1)

which carry D over into itself, the coefficients being of the form

k + l\, where k and I are integers, and X is a complex cube root

of unity. These transformations are closely related to those of a

ternary group:

Y = M2x+P2 y + R2 z,

Z= M3 x + P3 y + R3 z,

— the coefficients here being also rational functions of X,—which

leave the Hermiteian form

xx + yy+ zz

unchanged, where x denotes, as usual, the conjugate of x.

Generalizations of Riemann's P-Function. The investigations

on which we have just reported suggest, through the hyper-

geometric integral and the hypergeometric differential equation
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mentioned at the outset, Riemann's researches on binary families.

In fact, Appell* had just been engaged in extending these results

to quaternary families of functions of two independent variables,

and Picardf had himself been working in the same field.

§ 6. Continuation. Hyperfuchsian and Hyperabelian

Functions

A further paper of PicardJ deals with functions F(u, v) mero-

morphic in their domain of definition, D, which consists of the

interior of the hypersphere

u'
2 + u"

2 + / + v"
2 < 1,

and admitting a group of transformations into themselves of

type (1). The fundamental domain of the group lies wholly

within D. There is an allied system of simultaneous linear

partial differential equations of the second order.

Between three such functions there always exists an algebraic

relation,— a property corresponding to Weierstrass's first theorem

concerning periodic functions (§4, end), and these functions

serve to uniformize such an algebraic configuration.

Double integrals on the corresponding algebraic configuration!

are studied, being uniformized as functions of u, v, and in this

investigation we have a forerunner of Picard's researches on

algebraic functions of two variables, to which we shall presently

turn.

Functions of the classes hitherto treated, namely, those which

admit a group of transformations of type (1), are called hyper-

fuchsian functions. ||
The definition is not restricted to functions

* C. R., 90 (1880), pp. 296, 731; Journ. de Math. (3), 8 (1882), p. 173.

tC. R., 90 (1880), pp. 1118, 1267; Ann. Ec. Norm. (2), 10 (1881), p. 305.

% C. R., 96 (1883), p. 320; C. R., 99 (1884), p. 852. We note here a paper by

Poincar6, C. R., 94 (1882), p. 840, in which automorphic functions of two

variables are obtained from the theory of numbers. Cf . also papers by Picard,

Acta, 1 (1883), p. 297; ibid., 5 (1884), p. 121; Ann. Ec. Norm. (3), 2 (1885),

p. 357.

§ Cf. Ill, § 1.

||
Picard, Acta, 5 (1884), p. 121.
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for which D is the hypersphere, but includes at least all functions

admitting a properly discontinuous group of type (1) and mero-

morphic in a domain D denned by a relation

g(u', u", v', v") < 0,

where g is a quadratic polynomial. Moreover, the functions

cannot be continued analytically beyond D.

In this same year Picard* began the investigation of functions

which admit a group of transformations of type (2). These

functions he denoted as hyperabelian functions, since the first

problem which he was led to study concerning them was one

related to the Abelian thetas and the Abelian modular functions,

p = 2. The classes discussed yielded functions with properties

analogous to those of the hyperfuchsian functions.

Generalizations. In a systematic development of the theory

of the automorphic functions of several complex variables a

question of first importance is that of the existence of a funda-

mental domain belonging to a properly discontinuous group.

A solution of this problem for such groups of projective trans-

formations in n variables,— groups of type (1),— has been given

by Hurwitz.f

The extension of the two theorems of Weierstrass, § 4, for

the case of automorphic functions in n variables has been treated

by Wirtinger % by the aid of methods of the general theory of

functions.

A systematic generalization of the theory of a class of hyper-

abelian functions was outlined by Hilbert and elaborated by

* Notes in the Comples Rendus for 1884, followed by a systematic presen-

tation in Journ. de Math. (4), 1 (1885), p. 87. Cf. further Bourget, Toulouse

Ann., 12 (1898), p. D 1; Humbert, Journ. de Math. (5), 5, 6, 7, 9, 10 (1899-

1904), and (6), 2 (1906).

\Math. Ann., 61 (1905), p. 325.

tSitzungsber. der Wiener Akad., 108 (1899), p. 1239. For the special case

of hyperabelian functions of to variables cf. Blumenthal, Math. Ann., 56

(1903), p. 510; ibid., 58 (1904), p. 497. Picard had long since used the second

theorem, stated for automorphic functions of two variables; cf. Journ. de

Math. (4), 1 (1885), p. 313.
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Blumenthal.* The group is that in which

1 ~ yi%i + Si'
1= 1, •••, n,

the coefficients being taken as follows. An algebraic domain of

rationality is assumed as given, R = k, where k denotes a root of

an irreducible algebraic equation in the natural domain, R = 1.

Furthermore, all the roots k, k', , /c
(n-1)

, shall be real. The

coefficients a\, • •
, 5i are taken in R = k, and the coefficients

ai, • • -,Si are the corresponding numbers of the domain R= fc
( *-1)

.

Finally, «i5i — ;3iYi is a totally positive unit of the domain

R=k.
The subject of automorphic groups in one and more variables

has been treated systematically by Fubini.f

§ 7. Algebraic Functions of Two Variables

The impetus given to the study of the algebraic plane curves

and the geometry on them, through the researches of Plucker,

Cayley, and Clebsch, in connection with the theory of the

algebraic functions and the Abelian integrals as developed by

Riemann, early made itself felt in the study of algebraic surfaces

and algebraic functions of two variables. Thus we find a paper

by Clebsch f of the year 1868, in which he discovers an invariant

of an algebraic surface analogous to the deficiency p of an alge-

braic curve. The latter invariant may be denned as the number

of essential constants in the general integral of the first kind, i. e.,

in the everywhere finite integral, and this integral can be written

in the form

/ f
^ JV

-
dy :

*Cf. preceding reference. Furthermore Hecke, Gottinger Dissertation,

1910.

t Introduzione alia teoria dei gruppi discontinui e delle funzioni automorfe,

1908.

t C. R., 67 (1868), p. 1238. Clebsch had only the adjoint Q's of degree

m — 4. The everywhere finite double integral is due to Noether, Math. Ann.,

2 (1870), p. 293.
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where f(x, y) = is the equation of the ground curve Cm,

assumed irreducible, and Q(x, y) is an adjoint polynomial of

degree m — 3. If, in particular, Cm has only ordinary double

points, Q = is any Cm^-z that passes through these points.

Consider now an irreducible algebraic surface f(x, y, z) = of

degree m with only ordinary multiple lines and isolated multiple

points. Then the double integral (II, § 2)

//
q{X' y' Z)

dxdy
/.

taken over an arbitrary regular surface, open or closed, lying

in the four-dimensional Riemann manifold corresponding to the

function z of x, y defined by the equation / = 0, will remain

finite provided Q(x, y, z) = is an adjoint surface of degree

m — 4, i. e., a surface which passes through the multiple lines and

has a multiple line of order k — 1 at least in every multiple line

of /of order k; and which moreover has a multiple point of order

q — 2 at least in every isolated multiple point of / of order q*

Such an integral is called a double integral of the first kind. The

number of linearly independent integrals of this class, i. e., the

number of essential constants in the adjoint polynomial Q(x, y, z)

is called the deficiency, or more precisely, the geometrical de-

ficiency,— Flachengeschlecht,t genre geometrique,— in distinc-

tion from the numerical deficiency presently to be considered, and

is denoted by pg . It is an invariant under the group of birational

transformations of the surface:

X=n(x,y,z),, x = R1(X,Y,Z),

{A) Y = r2 (x, y, z), t y= &(X, Y, Z),

Z = r3 (x, y, z)J z = R3(X, Y, Z).

In case the surface / has no multiple lines or points,

(m- l)(ra- 2)(m — 3)
Vq= ;

a
•

* Cf. Picard et Simart, Fonctions alg6briques de deux variables, vol. 1,

1897, ch. 7; in particular, p. 189.

t The invariant is due to Clebsch; the name to Noether.
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The Second Deficiency. There is a second numerical invariant

which can be defined as follows. Consider the linear family of

adjoint surfaces of degree m — 4:

Q(x, y, z) = aiQi + a2 Q2 + + aPa Q Pg .

These surfaces cut the ground surface / = in certain fixed

curves,— including always the multiple curves of /,— and a

variable curve, I. This latter curve will, in general, be irreducible,

and we assume the non-specialized case. It is a twisted space

curve, and it has, as such, a definite deficiency, which can be

defined, for example, as the deficiency of the Riemann's surface

corresponding to the curve. This deficiency is the same in

general for the different curves of the family, and it is this number,

p
(1)

, which is called the second or numerical deficiency,— Kur-

vengeschlecht,* le second genre. It is an invariant under the

group of birational transformations, {A).]

The Line Integral. There is another generalization of the

Abelian integrals possible for the algebraic functions of two

variables, namely,J

fPdx+Qdy,

where P and Q are rational functions of x, y, z, the third variable

being a root of the irreducible algebraic equation f(x, y, z) = 0,

and where, moreover, the condition of integrability is satisfied:

dP _ dQ

dy 6x

'

* This invariant is due to Noether, Math. Ann., 8 (1875), p. 520.

t Cf. Picard et Simart, 1. c, p. 206. Noether introduced a further invariant,

p (2
>, namely, the number of variable points of intersection of two curves I.

In general, pm = p (1) — 1, but for special surfaces pm < pm — 1. Cf.

Picard et Simart, ibid., p. 209.

t Picard, Journ. de Math. (4), 1 (1885), p. 281; ibid. (4), 5 (1899), p. 135.

The latter paper is the memoir to which the prize of the Paris Academy of

Sciences was awarded. It forms the foundation of the later presentation of

the theory of Picard and Simart, Fonctions alg^briques de deux variables,

Paris, 1897-1900.
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Such an integral is a function of two independent variables,

and these may be taken as x, y or y, z or z, x.

A division of such integrals into three classes, corresponding

to the three classes of Abelian integrals, at once suggests itself.

In the first paper above referred to Picard studies the integrals

of the first class, namely, the everywhere finite integrals.* He
finds here a situation diametrically opposite to that in the case

of the Abelian integrals. If f(x, y) = is an irreducible alge-

braic equation of degree greater than 2, there will in general

exist integrals of the first class corresponding to it; it is only

when the curve is highly specialized (unicursal) that this is not

the case.

To the non-specialized algebraic surface of arbitrary degree,

however, there correspond no integrals of the first kind with the

trivial exception of a constant. A special class of surfaces and

integrals is treated, the former being those which can be uni-

formized by means of quadruply periodic functions of two inde-

pendent variables.

It was in these papers that Picard began the study of questions

relating to the connectivity of the surfaces which present them-

selves. The points of an algebraic surface fill a four-dimensional

region,— be that region assumed as a four-dimensional manifold

in space of six or more dimensions, or as a multiple-sheeted

Riemann manifold, or as a fundamental domain, for which the

parallelogram of periods is the prototype. In this four-

dimensional manifold the linear cycles (closed curves) and the

two-dimensional cycles (closed surfaces) are of especial im-

portance. Picard finds the striking result that, in the case of a

non-specialized algebraic surface, any linear cycle can be drawn

together continuously to a point. This fact explains,— or is

explained by,— the non-existence of integrals of the first class

on such a surface.

On the other hand, a non-specialized algebraic surface does

* Pieard's first publication relating to the integrals of the second class

appeared in the Comptes Rendus, 100 (1885), p. 843.
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admit two-dimensional cycles, and it is these that form the

analogue of the linear cycles in the case of the algebraic functions

of a single variable. With these are connected the double

integrals of Noether.

The methods employed in these early geometric investigations

are largely those of intuition and analogy. Picard recognizes

this fact, but points out that his chief object was to throw light

on a theory at that time wholly new.

Geometry on Algebraic Curves and Surfaces. The purely al-

gebraic theory of the geometry of systems of points on algebraic

curves has been extended to algebraic surfaces and systems of

curves lying on them.*

The Point of View of the Theory of Numbers. The methods of

the theory of algebraic numbers, first extended to the algebraic

functions of a single variable, have been used by Hensel t for

the study of algebraic functions of two variables. In his treat-

ment of the theory of the algebraic functions of a single variable

Weierstrass had used purely algebraic methods. Hensel de-

scribes his own methods for algebraic functions of two variables

as the direct generalization of Weierstrass's methods.

In a preliminary study of these functions Hensel deduces

series developments which apply to the neighborhood of a

branch-line or of a multiple-line of the surface. The form of the

development in the neighborhood of a finite point, which we will

take as the origin (0, 0, 0), is the following:

z = e 1 (x)(y - y )
llb + e2 (x)(y - </ )

2/d + ,
where b is a positive integer. The coefficients ek (x) and the

variable y are analytic functions of £, where

and a is a positive integer. In fact, the equation of the branch

* Noether, Math. Ann., 2 (1870), p. 293; ibid., 3 (1871), pp. 161, 547; ibid.,

8 (1875), p. 495. Picard et Simart, Fonctions algebriques de deux variables,

vol. 2.

\Acia, 23 (1900), p. 339; Jahresber. D. M.-V., 8 (1899), p. 221.
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of the discriminant under consideration is

y = y (x) = fox"* + fox21* + .
§ 8. Analysis Situs

In closing we refer briefly to the subject of analysis situs in

the geometry of n dimensions. Riemann was the first to recognize

the importance of this subject for the surfaces which bear his

name. He had also thought about the problem for higher

manifolds.* Bettif considered the simple closed cycles of one

dimension (curves), of two dimensions (surfaces), and, generally,

of m-dimensions, m = 1, 2, • • , n — 1, which can be described

in the ?i-dimensional region under consideration, and he intro-

duced the numbers called after him, which indicate how many

cycles of a given class are needed as a basis to represent a general

cycle of that class.

Attention has already been called to Picard's work on questions

in this field relating to algebraic surfaces, § 7.

Poincare perceived the value of this branch of geometry for

analysis and published a series of papers on the subject.! Fol-

lowing Betti, he considered integrals extended over closed Tri-

dimensional manifolds (cycles) in the n-dimensional region, and

he found the conditions that the value of the integrals be

invariant of a restricted deformation of the manifold; II, § 2.

Such integrals may form the basis for determining the Betti

numbers. §

* Cf. the fragment in his collected works, Werke, 1 ed., p. 448; 2d ed., p. 479.

t Annali di mat. (2), 4 (1870-71), p. 140.

J Cf., in particular, Jown. Ec. Polytech. (2), Cah. 1 (1895), p. 1; also the

account given in Picard et Simart, Fonctions alg^briques de deux variables,

vol. 1, ch. 2.

§ An elementary geometric treatment of the analysis situs of hypermanifolds

has recently been given by Veblen and Alexander, Annals of Math. (2), 14

(1913), p. 163.



LECTURE II

SOME GENERAL THEOREMS

§ 1. Definitions and Elementary Theorems

Let
F(zi, ••,*..)

be a complex function of the n complex variables

Zfc = Xk + iy*,, h = 1, 2, • • • , n,

which is denned uniquely at each point of a 2n-dimensional

continuum T. Of the two current definitions mentioned in I,

§ 1, we will choose the second and say: F is analytic in T if, at

every point of T, it admits a derivative with respect to each of

the complex arguments Zi, • • , z„ and if, furthermore, it is

continuous in T. The latter condition turns out to be a con-

sequence of the former, cf. § 5, and may, therefore, be stricken

from the definition. But it is better to retain it for a time, since

it suffices for a simple proof of the integral theorems, and with

the aid of these all the principal theorems are readily established.

The function F(zi, • • • , zn) is said to be analytic in a point

(oi, • • • , an) if it is analytic throughout some region T containing

the point in its interior. Similarly, F is said to be analytic in a

manifold M of one or more dimensions if it is analytic throughout

a region T containing M in its interior. If M is closed, i. e.,

if M contains its boundary points, then, for F to be analytic in

M, it is clearly sufficient that F be analytic in every point of M

.

The Cauchy-Riemann Differential Equations. The differential

equations which the real part u (or the coefficient v of the pure

imaginary part) of an analytic function satisfies are the following

:

d2u . d2u _
B2u d2u

dxkdxi dykdyi ' dxkdyi dykdx

133
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Thus, when n = 2, there are four equations :*

d2u d2u d2
v). d2u _

~dx~}
+

~dy~?

= °'
~dxj

+ Jy? ~ '

82u B2u d2u d2u

dx\dx2 dyidyi ' dx\dyi dy\dx-i

Cylindrical and B-Regions. A general region of hyperspace

can be described analytically by one or more inequalities. Thus

the interior of the hypersphere of radius r, with its centre at the

origin, is given by the inequality

xi
2 + x2

2 + ••• + xj < r
2
,

or by the pair of inequalities

:

— Vr2 — Xx
2 — • • • — Xm^-l

2 < Xm < VV2 — X-? — • • — X^'.

A particularly simple and important class of regions in the

space of the n complex variables Z\, • •
, zn is the following. Let

Tic, k — 1) • • • , n, be an arbitrary two-dimensional continuum

in the complex 24-plane, and let Zk be any one of its points.

Then the region of 2n-dimensional space whose points (xi, y\,

Xi, •

, yn) correspond to zi, • • • , z„ is called a cylindrical region,

and may be denoted by (T) = {Ti, , Tn), or, more simply,

by T. It is a continuum, and so consists only of interior points.

Let B k , k = 1, • • •, n, be a regular region of the z^-plane, i. e.,

a finite continuum plus its boundary, the latter consisting of a

finite number of regular curves having a finite number of multiple

points and points of intersection; and let zk be any point of B k .

Then the corresponding region of the 2w-dimensional space shall

be called a regular cylindrical region or a B-region; and it shall

be represented as (B) = (B\, • -, Bn), or, more simply, as B.

The boundary of a cylindrical region is composed of those

points (zi, • , zn) for which at least one zj lies on the boundary

of its Tk or B k . It consists of a single piece, and is a manifold

of 2n — 1 dimensions.

* PoincarS, C. R., 96 (1883), p. 238; Acta, 2 (1883), p. 99; ibid., 22 (1898),

p. 112.
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It is sometimes useful to think of a J3-region as a rectangle,

when n = 2, or as a parallelepiped, when n = 3, or as a pris-

matoid in higher space, just as we picture curves and surfaces

to ourselves in the plane or in space, even when the coordinates

are complex; the point being that the variation to which each

coordinate is subject is independent of that to which any other

coordinate is subject.

Cauchy's Integral Formula. A first form for this formula is

that suggested by a 5-region. Let F(zlt
• • , zn) be analytic in

a region T, and let B be a regular region lying in T. For con-

venience, let n = 2. It is at once seen that F is given for any

point interior to B by the formula:

(1) F(zu 22) = j^-jr2 I
-.

I
~. —diz,

where Ck denotes the boundary of Bk and the integral is extended

in the positive sense.

This iterated integral suggests readily a double integral,

extended over a surface, i. e., a two-dimensional manifold,

which lies in the boundary of B. But the complete boundary of

B is a 2n — 1 = 3-dimensional manifold, and so the analogy

with Cauchy's Integral Formula for ft = 1

:

is in so far only partial, that the earlier integral (2) is extended

over the complete boundary of the region for z, whereas the present

integral (1) is extended over a manifold of lower order which lies

in the boundary.

§ 2. Line and Surface Integrals, Residues, and their

Generalizations

In space of three dimensions the surface integral of a contin-

uous real function, f(x, y, z), extended over a curved surface S,

is defined in the familiar manner:
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I I f(x, y, z) d2 = lim Hf(xk , yk, zk)ASk ,

fc/2*/ n=oo k=l

the element of surface, AS*, being taken as an essentially positive

quantity.

Allied with this integral is the other surface integral:

uAdydz + Bdzdx + Cdxdy,

where A, B, C are continuous functions of x, y, z. Here, the

sign to be attached to the differential factor, dydz, etc., requires

special definition, and can be assigned in terms of the sense of an

indicatrix which moves continuously over the surface, or in

terms of the signs of the Jacobians

d(y, g) d(z» x) d(x, y)

d{s,t)
'

d(a,t)
'

d(s,f)
'

where s, t are parameters by means of which x, y, z are expressed.

Such integrals, suitably generalized for manifolds of order k

in space of m dimensions, have been applied by Picard and

Poincare* to analytic functions of n complex variables. Poin-

care develops conditions that the value of such an integral,

extended over a closed manifold, be invariant of slight deforma-

tions of the manifold, and hence also of large variations, provided

the manifold retains its character and does not sweep over a

point in which an integrand is discontinuous or the conditions

in question cease to hold. Cf. also I, § 8.

Residues. The value of any such integral Poincare calls a

residue. Only bilateral manifolds come into consideration,

since an integral extended over a unilateral manifold evidently

vanishes.

As a first application of the foregoing, consider Cauchy's

integral formula. In the form in which it stands above, the

* Picard, C. R., 96 (1883), p. 320; ibid., a series of papers in vols. 102-3

(1886). Poincar<§, C. R., 102 (1886), p. 202; Acta, 9 (1887), p. 321, where

reference to Jacobi and Marie in connection with these integrals is made.
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integral may be interpreted as a residue, the particular surface

over which the integration is extended lying in the boundary of

the cylindrical region B. It appears, however, on comparison

with Poincare's criteria that the surface may be deformed con-

tinuously without altering the value of the integral, and hence

we are led to a generalization of the integral formula. The

integral appears as a residue, the surface of integration being

thought of as a closed surface which is linked in a certain way

with the two singular surfaces

(3) ti — Zi = and t2 — z2 =

after the fashion of a closed curve in space of three dimensions

which is linked with certain right lines of that space. For, the

singular surfaces (3) are manifolds of order 2, not 3, in space

of 4 dimensions, and so they do not cut that space in two.

Poincare establishes the following theorem. If

H(w, z)
R(w, z) = ^t r

G(w, z)

is a rational function of w, z, and if

J J R(w, z) dw dz

is extended over any regular closed surface which has no point

in common with the singular manifold G(w, z) = 0, then the

above integral can be evaluated in terms of the moduli of peri-

odicity of Abelian integrals belonging to the algebraic configura-

tion or configurations

G(w, z) = 0.

He also considers the case that the surface meets the singular

manifold, and obtains here an evaluation in terms of Abelian

integrals with variable limits of integration.

§ 3. The Space of Analysis, and Other Spaces

The space of analysis can be defined as coextensive with the

point set { (zi, • • , z„) } , where each one of the complex variables
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Zk ranges over its extended plane,— the Neumann sphere. A
point of that space lies at infinity if at least one of its coordinates

is at the north pole of its sphere. A function f(zi, • • , z„) is

said to be continuous, analytic, or meromorphic at a point of the

infinite region if, when each coordinate Zk which becomes infinite

is replaced by a new point by means of the transformation

, _ <XkZk + Pk Oik Pk
'"' ykZk + Sk' |7* h * 0, yk * 0,

the transformed function is continuous, analytic, or meromorphic,

— as the case may be,— at the transformed point.

What are some of the reasons for this extension of proper

(finite) space? First, it is natural. In the case of analytic

functions of a single complex variable the reasons are well known

why it is desirable to extend the proper Gauss plane by a single

point,— the point °o. What more natural, then, than to take

as the space of analytic functions of n complex variables the

space defined by the n spheres of the individual variables?

But this reason is superficial. It is formal. The real object

of extending proper (finite) space at all is to secure theorems

which include among their hypotheses some requirement relating

to the behavior of the function when one or more of its arguments

become infinite. It is not essential that ideal elements,

—

points

at infinity,— be introduced. The requirements can be stated in

terms of a transformation, usually linear, though not necessarily

projective, applied to the points of space proper, and the behavior

of the transformed function in the neighborhood of a point or

points for which the latter function is not defined.

Thus a function of a single complex variable, f(z), can be

defined as analytic at infinity without introducing any ideal

element whatever if we proceed in either one of the following

ways. In both cases we shall demand that/(z) be analytic outside

of a certain circle in the z-plane, and finite along this circle.

And now we require further either (a) that f(z) remain finite in

the above region; or (b) that, if we set
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the function <p{z'), which is not defined in the point z' — 0, but

is analytic in the rest of the neighborhood of this point, shall

have a removable singularity in the point z' = 0.

Returning to functions of several variables, let us raise again

the question, why introduce the space of analysis? A con-

tribution toward an answer to this question is to be found in the

two theorems of § 4, below. For simplicity, let us restrict our-

selves to the first one. This theorem is not true if our hypothesis

be merely that the function shall be meromorphic in every point

of finite space. Some further hypothesis relating to its behavior

at infinity, or to the behavior of the function when subjected

to certain transformations, is essential. And now Weierstrass

supplied this condition,— or appears to have done so,— in the

way indicated above.

But is this the only way in which this end can be attained

without doing violence to simplicity or custom? By no means,

as we shall presently see.

Projective Space and the Space of the Homogeneous Variables.—
The space most familiar to the geometers is projective space, and

this space is mapped in a (1, oo)-fold manner on the space of

n + 1 homogeneous variables x , Xi, • • • , xn . This latter space

is the whole finite space whose points are (x , x\, • • , xn), where

each coordinate ranges over its whole finite Gauss plane, the

one point (0, 0, • • • , 0) being excluded. We will speak of it as

the space of the homogeneous coordinates.

The functions considered in this space had their origin in

projective space (itself but an amplification of an ordinary

finite space), and are homogeneous in the n + 1 variables,

—

polynomials, algebraic functions, and such transcendental

functions as are suggested by the names of Aronhold, Clebsch and

Gordan, Klein, and their school.

Might it not have been possible to choose the complementary

hypothesis in Weierstrass's theorem is § 4, not with reference

11
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to the space of analysis, but in terms of projective space? More

precisely, we should demand, as before, that the function be

meromorphic (III, § 2) in all points of the proper space of the

variables (zi, • • • , z„) and we should then add the following

hypothesis: Let a transformation of the type

, «oW + «iwzi + «*W% + • • • + <*»<«*.

* a + aiZi +

a

2 z2 + •• + CtnZn

2±a ai (1W2) ••• an
M + 0,

< |ai| + \at\ + + \an\,

be performed; and let (a[, • • , a'n) be a finite point not corre-

sponding to any finite point of the (zi, • • • , z„) space. Then,

if the transformed function be defined in each removable singu-

larity of the neighborhood of (%, • • • , a'n) as equal to the limiting

value which it approaches in that point, the thus extended function

shall be analytic or meromorphic in (a[, • -, a'n).

Will the function /(zi, • • • , z„) under these conditions be

rational? The answer is affirmative.* And the corresponding

theorem holds for the algebraic case of § 4 also. What reason is

there, then, for preferring the space of analysis to projective

space as the space in which monogenic analytic configurations

are to be studied?

The answer is that, so far as these two fundamental theorems

are concerned, there is none. We shall have two theories of

algebraic functions of several variables, and of the related

transcendental functions,— and, more generally, of monogenic

analytic functions,— according as we extend finite space in the

one way or the other. Moreover, when n > 2, the choice is still

larger, for the variables may then be divided into two classes,

those of one class being transformed protectively, and those of

the other class spherically, i. e., so that the Neumann sphere of

each variable goes over into a Neumann sphere of a new vari-

able. Thus, if z is defined as an algebraic function of x, y by

* Osgood, Transactions Amer. Math. Soc, 13 (1912), p. 159.
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the irreducible equation f(x, y, z) = 0, it is possible to associate

with this function the surface in projective space given by setting

X\ x2 x3
x = — , y = —, z = —.

x x x

It is, however, also possible to put

Xi Xl Z\
x — —, y = —, z = — ;

and still again to set

Xi J/1 2i
x = — , y = — , z = —.

Xq
a

2/o zo

There is another geometry that is well known,— the geometry

of reciprocal radii, or the geometry of inversion. It would, of

course, be a proceeding entirely coordinate with that which has

been set forth above to extend the finite space of n complex

variables to the space of that geometry.

These questions could not arise in the case of analytic functions

of a single complex variable, for there the infinite region of pro-

jective geometry, the geometry of inversion, and the space of

analysis are the same, namely, one point.

For the case of two complex variables, the infinite region of

the space of analysis and the infinite region of projective geometry

are different, and moreover the space of analysis and projective

space can no longer be transformed on each other in a one-to-one

manner and continuously. But the space of analysis is trans-

formable in a one-to-one (but non-real) manner, and continuously,

on the space of the geometry of inversion. When the number of

complex variables exceeds two, all three spaces are distinct.*

* For a detailed treatment of these questions cf. a paper by B6cher,

Bulletin Amer. Math. Soc. (2), 20 (1914), p. 185. We note that the infinite

region of the space of analysis consists of n complex (n— l)-dimensional

manifolds (hyperplanes) which have as their sole common point the point

(«,, oo, ..., 00 ).
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§ 4. Rational and Algebraic Functions

To Weierstrass is due the theorem that a function of n complex

variables which is meromorphic at every point of the space of

analysis is a rational function.*

Weierstrass did not define the space in which the function is

considered. He said " im ganzen Gebiete seiner Verander-

lichen." It appears, however, from more explicit statements

in similar cases f that he thought of each variable as an arbitrary

point of its extended plane.

A similar theorem holds for algebraic functions. If a function

of n complex variables is finitely multiple-valued and if, in the

neighborhood of every point of the space of analysis, the values

of the function can be so grouped as to satisfy one or more alge-

broid relations,

A wm + Aiw"^1 + h Am = 0,

where the A's are analytic in the point in question,— and to be

exhausted in said neighborhood by these systems,— then the

function is algebraic.

§ 5. Sufficient Conditions that a Function of Several

Complex Variables be Analytic

In order that a function of two real variables be analytic it is

not enough that the function be analytic in each variable sepa-

rately when the other is held fast, as is shown by the example:

x2 + 2/
2f(x>y) = ^ i ,,2 >

o < M +

/(0, 0) = o,

the function being considered in the neighborhood of the origin.

When, however, we allow the variables to take on complex values,

the case stands otherwise.

* Journ. fur Math., 86 (1880), p. 5=Werke 2, p. 129. The theorem was
proven by Hurwitz, Journ. fur Math., 95 (1883), p. 201.

f Cf . for example Werke, 3, p. 100, 7th line from end.
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Theorem. Let f(x, y) be defined throughout a cylindrical

region (S, S'), § 1. Let f(x, b) be analytic in S, for every choice

of b in S'; b, when once chosen, to be held fast. Similarly, let

f(a, y) be analytic in S', a being any point of S. Then f(x, y)

is analytic in the two independent variables x, y throughout

the region (S, S').

The theorem is readily proven if the further hypothesis be

added that the function remain finite, and under this restriction

in sufficiently general for many of the cases which arise in prac-

tice.* It is, however, of distinct interest to know that the more

general theorem is true. This latter result has been established

by Hartogs.f

The theorem holds for functions of any number of variables.

Further theorems of the character of those here considered

are given in the next paragraph, Theorems A, B.

§ 6. Sufficient Conditions that a Function be Rational

or Algebraic

Hurwitz's proof of Weierstrass's theorem, § 4, yields more than

is contained in the statement of that theorem. By means of it

the following theorems can be established.

Theorem 1. If /(zi, • • •, z„) is meromorphic at every point of

the coordinate axes; i. e., in each of the points

(0, • • •, 0, zk , 0, • • •, 0), k = 1, • • , n,

where the variable z& ranges over the whole extended z^-plane,

then /(zi, • • • , z„) is a rational function of its arguments.

This theorem can be stated in the following form.

Theorem V. If /(zi, • • • , z„) is meromorphic in each of those

points of the infinite region which corresponds to any n — 1

north poles combined with any point whatever of the ?ith sphere,

then the function is rational.

A special case of this theorem is the following.

* This theorem was proven by the author, Math. Ann., 52 (1899), p. 462

t Math. Ann., 62 (1905), p. 1. Cf. also Osgood, ibid., 53 (1900), p. 461.



144 THE MADISON COLLOQUIUM.

Corollary. If /(zi, • , zn) is meromorphic in every point of

the infinite region of the space of analysis, then / is a rational

function of all its arguments.

These theorems readily suggest others, in which the word

meromorphic is replaced in the hypothesis by analytic; the con-

clusion then being that the function is a constant.

Theorem A. If /(zi, • • • , z„) is analytic in every point of the

coordinate axes, then / is a constant.

The manifold M consisting of the coordinate axes is perfect,

and hence / is analytic in a 2re-dimensional region T enclosing

the axes. It is possible, in particular, to choose a positive number

h so that / is analytic in the region

|zi| < h, • • •, |2jb_i| < h, \zic+i\ < h, • • •, \zn \
< h,

Zk ranging over the whole extended Zfc-plane; k — 1, • • •, n.

Consider / in the region

2: \zk \
< h, k — 1, • • •, n.

Let (oi, • • , a„) be a point of this region. The function

f(ai, • • • , ttn-l, Zn)

is analytic over the whole extended z„-plane. Hence it is a con-

stant. Hence

3/(zi, •,z„)
dzn

=

in the point (aii, • • • , a„). But this was any point of S.

It appears, then, that

and from this fact follows the truth of the theorem.

As in the case of Theorem 1, so here the theorem admits an

alternative statement.

Theorem A'. If f(zi, • • • , z„) is analytic in those points of the

infinite region of the space of analysis which correspond to any
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n — 1 north poles combined with any point whatever of the

?ith sphere, then / is a constant.

As a special case of the theorem we have the

Corollary. If f(zi, • • • , z„) is analytic in every point of the

infinite region of the space of analysis, then / is a constant.

This last result can be stated in a form wholly independent of

any assumption regarding the infinite region.

Theorem B. If /(zi, • • • , z„) is analytic at all finite points out-

side a fixed hypersphere :*

6 < x? + yS + x? + + yn\

and if / is finite in this region, then / is a constant.

Returning now to theorems, relating to rational functions,

we have the following.

Theorem 2. If /(zi, • • , z„) is a rational function of each

individual variable, when all the others are assigned arbitrary

values in the neighborhood of a certain fixed point and then held

fast, then / is rational in all its arguments.

The proof of Theorem I is covered by Hurwitz's reasoning, and

the same is true of Theorem II, provided the additional hypo-

thesis is made that the function be analytic in all its arguments

in the neighborhood of the fixed point in question. In practice,

this further condition appears usually to be fulfilled. For a

proof that this condition is a consequence of the others I am
indebted to Professor E. E. Levi.

Both theorems can be extended to algebraic functions, the

hypothesis then being that the function is iV-valued, and that,

moreover, it is algebroid, where before it was meromorphic.

§ 7. On the Associated Radii of Convergence of a Power
Series

Let

i^^vx^- vn Xl ' ' ' Xn

be a power series convergent for a set of values of the arguments,

* This hypothesis may equally well be written in the form

G < M + • • • + |z„|.
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no one of which is zero.* A set of positive numbers r\, • • • , r„

such that the series converges when

\xk \
< n, k = 1, ••, n,

but diverges when
\xk \

> rk) k = 1, • • • , n,

is called a set of associated radii of convergence.

The numbers n, • • , rn are in general mutually dependent

on each other. Thus in the case of the series

Y.X1X2" = z
1 — XiX2

it is clear that

rir2 = 1.

Geometric Interpretation. Geometrically the associated radii

of convergence may be interpreted as follows. Denote by Tu the

circle \xk\ < pk and by T the 2n-dimensional cylindrical region

T = {Tu ••-, Tn).

Let f(xi, • • • , xn) be analytic at the origin. Then the pk's can

be so chosen that T lies in the region of definition of the element

f(xi, • , xn) in question. And now let the p^'s increase. Any

system of values

Pk = rk , k = 1, • • •
, n,

such that the function is analytic in the corresponding region

T = (Ti, • • •, Tn), but no one of the TVs can be replaced by a

larger circle without diminishing some other Tk and have this

properly preserved, is a system of associated radii of convergence.

Thus we may picture to ourselves a variable cylindrical region

T in the domain of definition of the monogenic analytic function

f(xi, • • , xn). Those regions T that reach out to singular points

of the function and, moreover, are maximum regions in this

* By a convergent multiple series 2w„, ...,.„ we mean a series such that every

simple series formed from its terms converges. If, then, a multiple series

converges, it necessarily converges absolutely.

Other multiple series have been investigated in recent years by Pringsheim

and Hartogs.
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sense, that they cannot be expanded for any one of the variables

x-k without being contracted for others, yield associated radii of

convergence.

Detailed Consideration of the Case n = 2. The mutual relations

between the r's have been studied extensively. Let the number
of variables be two, and let the series be written:

(1) Y.Cm
, n x

m
y
n

.

If, for a pair of values x0) yo, neither of which is zero, the terms

of the series (1) remain finite, then it is well known that the series

converges (and hence converges absolutely), when

I
x

I
< r

> I y I
< s,

where r = |.-r |, s = \y \.

Let r have an arbitrary value in the interval < £ < \x \.

To this value of r may correspond larger values of s,— in fact,

there may be no limit to s. If, however, the latter is not the

case, let <p{r) denote the upper limit of s for the value of r in

question. Then r and <p(r) form a pair of associated radii of

convergence. Also, <p(r) is spoken of as the associated radius of

convergence (i. e., associated with r as independent variable).

If, for a given r, s has no upper limit, the associated radius of

convergence is said to be infinite.*

A necessary and sufficient condition that r, 5 be associated radii

of convergence has been obtained by Lemaire,f who generalized

a familiar theorem of Cauchy's for power series in a single

variable. It is as follows. Consider the points of condensation

of the set of numbers
m+n

^\cmjfv,

where m, n independently range over the positive integers and

zero. Then the condition is that the points of the original set

remain in the finite region, and that the point of the derived set

most remote from the point be situated at 1.

* This is not, of course, the same thing as saying that, for such a value of

r, <p(r), becomes infinite.

t Bull, des Sci. Math. (2), 20 (1896), p. 286.



148 THE MADISON COLLOQUIUM.

The corresponding condition holds for a power series in any

number of variables.

The properties of the function

s = <p(r)

have been investigated, the most important of the results being

the following.* First, some obvious properties.

If, for r > 0, the associated radius of convergence is infinite,

then it is infinite for every smaller value of r: ^ r ^ r .

As r increases, <p{r) decreases or remains constant; i. e., <p(r)

is a decreasing monotonia function of r.f

The domain of definition of <p(r) consists of an interval

0^i? <r< JR1 or ^ R < r < oo,

where, however, it is not obvious whether an extremity of the

interval shall pertain to the interval or not.

The basal theorem relating to <p(r) is the following.

Theorem.t Let

be a double power series, and let

s = <p(r),

0^R <r<Ru resp. ^ R < r < °o,

* The leading results here given were obtained by Phragmen as early as

1883 and published by him in a notable paper cited below. They were extended
to n variables by A. Meyer, Thesis, Upsala, 1887.

t This property, together with the property that <p(r) is continuous, was
given by Weierstrass in his lectures; W. S., 1880/81. Cf. also the next refer-

ence.

tThis theorem in its present form was first given by Fabry, C. R., 134

(1902), pp. 1190, and rediscovered by Hartogs, Thesis, Munich, 1904 and
Habilitationsschrift, 1904=Afott. Ann., 62 (1905), p. 49 and p. 81. By the

aid of it the theorems which follow in the text are easily proven; cf. Fabry and
Hartogs, 1. c.

A third paper closely related to the two just cited and containing a number
of their results, obtained by a different method, was published by Faber,

Math. Ann., 61 (1905), p. 289. Faber's methods apply to power series with

any number of variables, and his paper contains generalizations of theorems

discussed in the text for the case of two variables.
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be the function which corresponds to r as associated radius. Let

n < r2 < rs

be three points of the interval of definition of <p(r). Then

1 log ri log <p(n)

(2) 1 logr2 log^(r2)

1 log r3 log <p(r3)

This is the relation designated by Hartogs as the Fundamental

Property. It was proven by Fabry by means of Lemaire's theorem

cited above. Hartogs gave several proofs, one of which is

based on his function Rx defined below. He has also thrown

Fabry's proof into exceedingly simple form.*

The theorem admits the following interpretation. Let

(3)

Then

(4)

x = log r, y — log s.

< 0.

1
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From this theorem it follows that, when the function <p(r)

exists at all, its interval of definition reaches back to the origin:

^ r < R.

If the function <p(r) exists and is constant in a portion of the

interval of definition, then <p(r) is constant clear back to the

beginning of the interval.

The function a(x) possesses a finite forward derivative and a

finite backward derivative, neither of which is positive. The

same is true of the function s = <p(r).

If xi and Xi are any two points of the interval of definition of

— =o < xi < x2 < log R,

neither of the above-named derivatives in the point x^ exceeds

either one of the derivatives in x\.

From these results it is clear that, if P is any point of the

curve (5), then a straight line whose slope is negative or nil can be

drawn through P, such that the curve nowhere rises above the line.

By means of such lines,— " tangents," as Hartogs calls them,

— Hartogs and Faber* show that the fundamental property (2)

is the only condition which the function <p(r) must fulfil. In

other words : Let <p (r) be any function of r which is defined through-

out an arbitrary interval ^ r < R, is positive there, and is

subject to the condition (2). Then there exists a double power

series

JL*l-'m
t
nX y

to which the numbers r, s correspond as associated radii of

convergence, where
s = <p(r), S r < R.

§ 8. Hartogs's Function Rx

In a number of his investigations Hartogs makes extended

use of a function Rx which can be defined as follows.f Let

* Hartogs, Math. Ann., 62 (1905), p. 84. Faber, 1. c. Since Faber does not

introduce the logarithm, the tangents appear as his 1-F-curves.

t Hartogs, Dissertation, and Math. Ann., 62 (1905), pp. 24, 25. The

notation there used is R'ZQ .
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f(x, y) be analytic in the point {xq, 0) ; let

fix, y) = ZCm,„(a; - x )
m
y
n

;

and let r, <p(r) be the associated radii of convergence corresponding

to this series, if they exist. Then

RXo = lim <p(r).
)-=0

Thus RXa is defined for an arbitrary point (xo, 0) ; and if this

point is designated merely as (x, 0), we write, as a matter of

notation, simply Rx .

The function Rx can also be obtained as follows. The function

f(x, y), analytic in (x , 0), is analytic at all points {xa, y) for

which
| y |

is duly restricted. The upper limit of the radius of

the latter circle, if one exists, is the number RXa .

The geometric interpretation of a pair of complex numbers

as a point of the plane of analytic geometry can here, too, be

used with advantage. The series will then be thought of as

converging throughout a certain rectangle with its centre at

(x0) 0) and its sides parallel to the coordinate axes; such a

rectangle to be a maximum rectangle in the sense that neither

side may be increased without diminishing the other side. And

now, as the base parallel to the z-axis approaches 0, the half-

altitude, if it remains finite, approaches as a limit RXo .

Or, again, we may use the geometric interpretation in terms

of the cylindrical regions of § 1.

It is obvious that, corresponding to any arbitrary point Xo

for which RXo exists, the function f(x, y) has a singular point in

some point (x , y ) for which \y \

= RXo.

The function RX is real and positive, and it is semi-continuous

in this sense. Let x = x be any point in which it is defined, and

let e be an arbitrarily small positive number. Then there exists

a positive 5 such that

Rx ^ RXo
— e, \x — x

\
< e.

Let
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be a double power series with the associated radii of convergence

r, <p(r). Consider the points x of the circle |x| < r, where r

has an arbitrary value in the interval of definition of the function

<p(r). Then the lower limit of Rx for the points of this circle is

equal precisely to <p(r).

On the following theorem Hartogs bases his proof of a number

of important theorems.*

Theorem. Let T be an arbitrary domain of the z-plane, and

let f(x, y) be analytic in the points (x, 0), where x lies in T.

Let B be a regular region lying within T, and let px be a positive

real function of x, such that

(1) log px is harmonic within B :

A log px = 0;

(2) px is continuous on the boundary C of B, and the boundary

values px
\ c

are positive.

If, now,

then, throughout the whole interior of B,

Rx ^px .

Finally, if at a single interior point the lower sign holds, then

Rx = Px throughout B.

Hartogs finds further that if Rx is continuous together with

its partial derivatives of the first and second orders, then Rx

satisfies the differential inequality:

A log Rx £ 0.

The definition and the properties of the function Rx here con-

sidered have been extended to the case that f(x, y) is allowed to

be meromorphic instead of being restricted to being analytic,

in a paper by Levi.f

* Math. Ann., 62 (1905), p. 46.

t E. E. Levi, Ann. di mat. (3), 17 (1910), p. 12.
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§ 9. On the Analytic Continuation of a Logarithmic

Potential

Let

w = /(a)

be an analytic function of the single complex variable z, and let

w = u + vi, z = x + yi-

Then

u = <p(x, y)

is a logarithmic potential function of the real variables x, y.

Moreover, as is well known, u is an analytic function of x, y.

As such, it admits definition for complex values of the arguments,

and thus gives rise to a monogenic analytic configuration in two

independent variables.

For the real values of x and y for which the logarithmic potential

was originally considered, u is real. It is, now, quite conceivable

that we may be able to pass continuously, i. e., by analytic

continuation through the complex domain, to another part of

the analytic configuration in which (.t, y), and also u, are real,

and thus arrive at a new real solution U\ of Laplace's equation,

Am = 0, not obtainable from the earlier one by analytic con-

tinuation along a real path. In particular, the function f(z)

may have a lacunary space, and it is conceivable that u\ might be

defined in that space.

Study* has considered this question, and has shown that the

answer is negative. The only real solutions of Laplace's equation

which can be obtained by analytic continuation are those which

are obtainable by continuation along a path lying wholly in the

real domain.

Study generalizes the question here considered and solves

the corresponding problem, referring at the same time to a paper

of Segre.f

* Math. Ann., 63 (1906), p. 240.

t Ibid., 40 (1892), p. 465, 11. 10-14.
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§ 10. The Representation of Certain Meromorphic

Functions as Quotients

In his noted memoir of 1876 Weierstrass showed that any

function of a single complex variable, which has no other singu-

larities than poles in the finite region of the plane, can be ex-

pressed as the quotient of two integral (rational or transcendental)

functions.

The theorem was later extended by Mittag-Leffler to the case

of an arbitrary region. A function meromorphic in such a region

can be expressed as the quotient of two functions each analytic

in the region. In both cases, the numerator function and the

denominator function never vanish at the same point of the

region.

Furthermore, the region may be any continuum whatever,

and both the zeros and the poles may be chosen arbitrarily in

it. There will always exist a function with the given zeros and

poles and otherwise analytic and different from zero in the given

region.

The first of these theorems admits generalization for a function

of several variables. If ffa, • •

•
, z„) is meromorphic at every

point of finite space, then there exist two (rational or transcen-

dental) integral functions G(zi, • , zn) and H(z\, • • , z„) such

that

H(zi, • , zn)
/(zi, •••, z„) =

G(z\, • • • , z„)

Moreover, at any point at which G and H both vanish, the

representation is a normal one; i. e., G and H have no common
factor in this point; IV, § 1.

This theorem was stated by Poincare for the case of two vari-

ables, and he gave a proof based on harmonic functions in four-

dimensional space.* A more elementary proof, which applies,

moreover, to the general case of n variables, was later published

by Cousin, f

* Ada Math., 2 (1883), p. 97.

t Ada Math., 19 (1895), p. 1.
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In addition, Cousin establishes the general existence theorem

for this case, namely, that the zeros and the singularities may be

chosen at pleasure. More precisely, this condition is as follows.

To each point (a) = (ci, • • • , a„) of finite space shall be assigned

a definite region T( > including this point in its interior, and a

function

H( a)(Zl, -, zn)

/(o)(Zl, • •> Zn) =
G( )(zi, • • •, z„)

where G(a) and H(a) are both analytic in T(a) and where, in case

both functions vanish at the same point of T(a), they have no

common factor there.* When two regions T(a) and T(b) overlap,

the corresponding functions /(<o(zi, • •> z„) and /(6>(zi, • •, zn)

shall be equivalent in the common region, i. e., their quotient,

taken either way, shall remain finite, and so shall have at most

removable singularities there.

Under these hypotheses there exist two integral functions,

G{%\, •", zn), H(z\, • • , z„), such that their quotient

ft \ _ ff(zi» ' '•» z»)m '

'"' Zn)
~G(zx, •••,z„)

is equivalent to /(<o(zi, • • •, z„) in the region T^ for all values

of (a) and that, at all points at which G vanishes, this quotient

is in normal form.

From the theorems of the next paragraph it appears that both

numerator and denominator can be written as the (finite or

infinite) product of prime factors.

But Cousin's methods extend far beyond the scope of this case.

Cousin states the following theorem. f Let S = (Si, •••, Sn)

be an arbitrary cylindrical region. To each interior point

(a) = (oi, • • •, a„) let a region T ia) lying in S and including (a)

in its interior, and a function /(„)(zi, • • •', z«) analytic in (a)

be given. When two regions T(a) and Tm overlap, the corre-

* Cf. IV, § 1. The denominator function (7(a)(zi, • • •, «n) will, of course,

in general not vanish at all, and in that case can be set =1.

t L. c, p. 60, Theorems XIII, XIV.

12
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sponding functions shall be equivalent in the common domain.

Then there exists a function f(zlt
• • • , z„) analytic in S and

equivalent to/(a)(zi, • • •, s„) in T (a) for all points (a) of S.

This theorem carries with it the other one, in which the word

analytic is replaced by meromorphic, and, in the conclusion the

function / is expressed as a quotient

:

.,
N _ Hfa, • • • , zn)m, •-,*.)-

G{Zi> ... )Zn)
,

which, at any point (a) in which both numerator and denominator

vanish, is in reduced form.

Dr. Gronwall* has just shown by an example that the theorem

in this degree of generality is not true. It is true if the region 5

is simply connected, i. e., if each region Sk is simply connected.

One of these regions, Sk, however, may be multiply connected.

§ 11. Integral Functions as Peoducts of Prime Factors

A further theorem which Weierstrass established in the memoir

of 1876 is this. If G(z) be any integral function which does not

vanish identically, but which has an infinite number of roots,

then (?(z) can be written as an infinite product of prime functions

:

where

G(z) = T(z) z
m fi(l- — ) e""

l2)
,

and T(z) is an integral function having no roots.

As has already been pointed out, the zeros may be chosen at

pleasure.

To extend this theorem to integral functions of several complex

variables it is necessary first of all to define a prime function.

An integral function G(zi, • • •, zn), which vanishes for some

point, is said to be prime or irreducible if it is not possible to

* Bull. Amer. Math. Soc. (2) 20 (1914), p. 173.
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write it as the product of two integral functions

:

G(zi, • • , z„) = Gi(zi, • •, zn)G2 (8i, • • •, zn),

both of which vanish.*

The roots of a prime function yield the coordinates of all

finite points of a certain monogenic analytic configuration.

Let G(zi, • • , zB) vanish in a point, but not vanish identically.

Then the equation

G(zu ••-,»„) =

defines one or more monogenic analytic configurations. Let M
denote one of them. By the aid of Cousin's theorem it is possible

to infer the existence of an integral function which vanishes in

the points of M and nowhere else, and which, moreover, is prime.f

6r(zi, • • • , z„) is divisible by this function.

From Weierstrass's factor theorem, IV, § 1, it now follows

that, in the neighborhood of a point and hence throughout any

finite region of 2n-dimensional space, an integral function which

vanishes there, but does not vanish identically, can be written

as the product of a finite number of factors, each irreducible in

the point or in the region, multiplied by another integral function

which does not vanish there.

It is now an easy matter, by the methods used in the proofs of

Weierstrass's and Mittag-Leffler's theorems, to establish the

proposed generalization: An integral function which vanishes,

but does not vanish identically, can be written in one, and

essentially in only one, way as the (finite or infinite) product of

its prime factors.

Moreover, the existence theorem for such functions, whose

prime factors are arbitrary, holds there. Let G\, G2, • • • be an

infinite set of prime functions subject merely to the condition

that at no point of finite space do the monogenic analytic con-

figurations which correspond to their roots have a cluster point.

* GronwaU, Thesis, Upsala, 1898, p. 7.

t This theorem is due to Gronwall, 1. c. It was rediscovered by Hahn,

Monaishefte, 16 (1905), p. 29.
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Then there exists an integral function whose roots are those of

Gi, Oi, • • • and which include no other points.*

This theorem suggests the question, what are the character-

istic properties of a monogenic analytic configurationM, that its

finite points may be identical with the roots of an integral function,

(1) G(zu .-•,*„) ?

First, as regards the function G, it is clear that this must be

irreducible, or a power of an irreducible function.

Next, let (oi, • • • , a„) be any point of finite space which is a

cluster point of points of M. A necessary condition that M be

given by (1) is seen to be that G(ai, • • • , a„) = 0. Hence all

the points of M that he in the neighborhood of (oi, •• •, a„),

and no others, will be given by the vanishing of a finite number

of functions, Gk(zi, • • •, zn), each analytic at (au • • • , an) and

vanishing there, and each irreducible there.

Conversely, this condition is sufficient. More precisely, let

M be a monogenic analytic configuration of the (n — l)st grade

( = (n — l)-ter Stufe) in the domain of the n variables (zi, • • •,

zn), and let it be such that, if (oi, • • •, o„) be any finite cluster

point of points of M, then the points of M which lie in the

neighborhood of (oi, • • • , an) are given by a finite number of

equations, Gk(zi, • . zn) = 0, where each of these functions is

analytic in the point (oi, • • • , a„) and vanishes there, and more-

over is irreducible there. Then the finite points of M are

coincident with the roots of an irreducible integral function

G(Zi, • • •, Zn).

This theorem was stated and proven by Hahnf for the case

n = 2, the formulation there being slightly different. Hahn

also states more general theorems, the four-dimensional space

* Appell, Acta Math., 2 (1883) p. 71. Biennann, Sitzungsber. der Wiener

Akad., 89 (1884), 2. Abteil., p. 266. Biennann also considers the generalization

of Mittag-Leffler's theorem in its more restricted form to functions of several

variables. Certain wider forms of the theorems can be treated in the same
manner.

tL. c.
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of the variables (x, y) not being the whole finite space, but an

arbitrary cylindrical space. His proofs are based on Cousin's

theorem, concerning which we have reported at length, and his

conclusions are, therefore, restricted in the same measure as

Cousin's theorem is restricted. Thus Gronwall's example would

vitiate some of Hahn's theorems in the generality in which Hahn
stated them.



LECTURE III

SINGULAR POINTS AND ANALYTIC CONTINUATION

§ 1. Introduction

F The simplest singular points which an analytic function of a

single complex variable can have are poles, isolated essential

singularities, and branch-points.

A function of several complex variables cannot have an isolated

singularity, if we except the trivial case of a removable singularity,

i. e., a singularity such that the function becomes analytic at

the point in question when a suitable value is assigned to it

there.*

For example, the function of the single variable z,

M = 7

has an isolated singularity at the point z = 0.

But the function of the two complex variables w = u + vi,

z = x + yi-

F{w,z) = \,

has a whole two-dimensional manifold of singularities in the

four-dimensional space of these variables, namely, the points

(«, v, 0, 0).

It is a theorem due to Weierstrass and proven by Rungef

that to an arbitrary continuum T of the complex z-plane there

correspond functions of z which are analytic at every point of T
and which furthermore cannot be continued analytically over

* This result can be obtained directly from Cauchy's integral formula or

Laurent's series. It was stated by Hurwitz in his Zurich address, Verh. des

1. intern. Math.-Kongresses, 1897, p. 104.

t Acta, 6 (1884), p. 229.

160
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a single boundary point of T. This theorem has, moreover,

recently been extended to the most general Riemann's surface.*

It is clear from the foregoing lhat such a theorem cannot

hold for functions of more than one variable.

§ 2. NON-ESSENTIAL SINGULARITIES

The analogue of a pole of a function of a single variable is a

point (oi, • • •, an), in whose neighborhood the function can be

written in the form

(i) -F(zi» • • •
> 2n) = ruz

~

—4rV >

(t(Zi, • •, Zn)

where G and H are both analytic at (oi, • • • , a„), and

G(alt • , o„) = 0, H{au , an) =(=0.

Here, F becomes infinite for all methods of approach to the

point, just as in the case n = 1. We shall denote such a point

as a pole, or as a non-essentially singular point of the first hind.\

But even a rational function can have a more complicated

singularity. Suppose that G and H are polynomials relatively

prime to each other, both vanishing at (oi, • •, an); e. g.,

w
F(w,z) = —, (au a,) = (0, 0).

Here, the function can actually take on any arbitrarily assigned

value in a point of an arbitrarily assigned neighborhood of the

singular point in question.

We are led, then, to a second kind of singularity, the function

still being of the form (1), but H vanishing also at the point in

question, though still being prime to G. Such a point is called

a non-essentially singular point of the second kind. In the

neighborhood of such a point, which we will take as lying at the

* The question has been treated by Koebe, Freundlich, and Osgood; cf.

Osgood, Funktionentheorie, v. 1, 2d ed., 1912, p. 747.

f Weierstrass, Werke, 2, p. 156.
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origin, (0, • •, 0), the function can in general* be written in the

form:

/0\ EV \ ^» "T -"l2n ' r ' ' ' T Am . .

where the coefficients .4, B are functions of (zi, • •, Zn-i), each

analytic at the point (0, • • • , 0) and vanishing there, the two

polynomials in zn being prime to each other; and where, moreover,

Q is analytic and not zero at the origin.

In every neighborhood of a pole there are other poles, their

locus being the (2ra — 2)-dimensional analytic manifold or

manifolds

G(Zl, , Zn) = 0.

But there are no other singularities in the neighborhood in

question. For the special case n = 2 the non-essential singu-

larities of the second kind are isolated points, since two functions

G(w, z), H(w, z) which are prime to each other, like two poly-

nomials having this property, can vanish simultaneously only

in isolated points. But when n > 2, there will be a whole

(2n — 4)-dimensional locus of singularities of the second kind,

—

this locus consisting of a finite number of analytic configurations,

each of the dimension in question. In fact, the necessary and

sufficient condition that the numerator and the denominator of

the fraction in (2) vanish simultaneously is that their resultant

vanish. The latter is analytic in zu • • , z„_i and vanishes at

the origin; but it does not vanish identically.

As regards the poles which lie in the neighborhood of a singu-

larity of the second kind, they are situated on the manifold, or

manifolds,

G(zu • • • , a„) = 0,

and they consist of the totality of such points with the exception

of those for which H also vanishes, i. e., the singularities of the

second kind.

* In any case, a suitable homogeneous linear transformation of zi, • • , zn

will yield a new function for which the statement is true; cf. IV, § 1. The
theorems of the paragraph just cited are assumed in the present paragraph.
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A function which has no other singularities in a given region

or in the neighborhood of a given point than non-essential ones

is said to be meromorphic in the region or in the point.

§ 3. Essential Singularities

An analytic function of a single complex variable z may have

an isolated essential singularity, z = a, of either one of two kinds

:

(a) the function may be analytic throughout the complete

neighborhood of the point a except at the point itself, and there

neither remain finite nor become infinite; (b) the function may
have poles that cluster about the point a, being analytic at all

other points of the neighborhood distinct from a.

It follows from the first theorem of § 1 that the first case has

nothing corresponding to it when we pass to functions of several

complex variables. But may not the second case be realized?

May not a function of several variables, /(zi, • • •, z„), be analytic

except for non-essential singularities throughout the whole

neighborhood of a point (oi, • • • , an), this point alone being

excepted? Weierstrass believed apparently that it can, for he

stated the following theorem.*

To an arbitrary continuum in the 2n-dimensional space of the

variables (zi, • • • , z„) there correspond functions analytic or

having at most non-essential singularities, but having in every

boundary point a singularity of higher order.

This theorem, however, is false, as was shown by E. E. Levif

in a notable paper published three years ago, to which we shall

return later, §§ 8, 9. In particular, it appears that an isolated

essential singularity is impossible.

§ 4. Removable Singularities

In his inaugural dissertation Riemannf stated and proved the

theorem whose practical value is so well known, namely, that

* Journ. fur Math., 89 (1880), p. 5=Werke, 2, p. 129.

t Ann. di. mat. (3), 17 (1910), p. 61. Levi's paper appeared while a paper

of Hartogs, Math. Ann., 70 (1911), p. 217, overlapping to some extent Levi's

paper and showing in particular the impossibility of an isolated essential

singularity, was in press.

t Gottingen Dissertation, 1851, § 12,=Werke, p. 23.
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if a function /(z) is analytic throughout the neighborhood T of

a point z = a with the possible exception of this point itself, and

if /(z) remains finite in T, then /(z) approaches a limit when z

approaches a; and if the function is defined for z = a as equal to

its limiting value there, then it is analytic in this point also.

This theorem admits a number of generalizations or extensions

for functions of several variables. The most obvious one was

stated and proven by Kistler* in the following; formulation. Let

j{zi, • , z„) be analytic throughout a region T consisting of the

neighborhood of a point (oi, • • • , a„) with the exception at

most of the points of a (2n — 2)-dimensional analytic manifold

L; and let the function remain finite in T. Then the function

will approach a limit in the points of L and will be analytic

there if suitably defined there.

Similarly, Riemann's theorem, that a function /(z) which is

analytic in a region 8 except along a simple regular curve C,

where it is continuous, is also analytic in the points of C, can be

generalized. If /(zi, • • • , z„) be analytic in a 2?i-dimensional

region except in the points of a single (2n — 1)-dimensional

analyticf manifold (E, where/ is continuous, then / is analytic in

the points of © also. This theorem is not mentioned by Kistler.

A second generalization was given by Kistler, and is as follows.

Let /(zi, • • • , z„) be analytic throughout the neighborhood of a

point (oi, • • • , a„) with the exception at most of the points of a

finite number of analytic manifolds, each of which is at most

(2n — 4)-dimensional. No hypothesis, however, is now made

regarding the function's remaining finite. Such a function will

be analytic in the excepted points also, if properly defined there.

For n = 2, this becomes the first theorem of § 1.

* Gottingen dissertation, Ueber Funktionen von mehreren komplexen Ver-

anderlichen, § 7, Basel, 1905. This theorem, like the original theorem of Rie-

mann's, is exceedingly serviceable in practice, and was probably used before

Kistler's enunciation and proof of it. An important special case was familiar

toWeierstrass; I, § 1, end. A second proof is contained substantially in Har-

togs's paper, Math. Ann., 70 (1911), p. 217.

t More general manifolds are also admissible.



FUNCTIONS OF SEVERAL COMPLEX VARIABLES. 165

A special case of this theorem was familiar to Weierstrass,

namely, that in which the function/ can be written, in the neigh-

borhood of the point in question, as the quotient of two functions,

each analytic and vanishing there; cf. I, § 1, and IV, § 1.

This latter theorem of Kistler's admits an extension. The
excepted points may fill a (2n — 3)-dimensional manifold, the

latter being such that, if we set zk = xk + iyu, then three of the

In coordinates, as jr„_i, xn , yn , can be expressed as single-valued

or finitely multiple-valued continuous functions of the remainder

in the neighborhood in question. And cases reducible to the

latter by linear transformation of the complex variables are

obviously included.

Related to these theorems more or less closely is a further

theorem stated by Kistler,* but not proven by him. From the

neighborhood T of a point («i, • • • , an) let the points of a set L
be excluded, L consisting of the points of a finite number of

analytic manifolds, each of dimension 2n — 4 or lower; and let

the remainder of T be denoted by T'. In the region T'

f(zi, • • , z„) shall be meromorphic. Then the function can have

in the points of L no higher singularities than removable and

non-essential ones.

The proof of this theorem was later given by Hartogs.f

We note, however, in closing this paragraph an interesting

application which Kistler makes of the latter theorem to a proof

of Jacobi's theorem of inversion, I, § 2.

§ 5. Analytic Continuation by Means of Cauchy's

Integral Formula

During the last few years a number of important theorems on

analytic continuation have been discovered, chiefly through the

* L. c. In the light of Gronwall's recent discovery concerning the scope

of Cousin's theorem, Kistler's proof was even more restricted than appeared

at the time.

t Math. Ann., 70 (1911), p. 217. Kistler appears to have had no substantial

reason for supposing the theorem to be true, for his proof is based on a mis-

understanding of Cousin's results, II, § 9. The chief credit for the theorem

would seem, therefore, to be due to Hartogs.
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researches of Hartogs and E. E. Levi. We begin with the

former.

Hartogs's Theorem* Let B, B' be regular regions of the

a;-plane and y-plane respectively, and let K be the neighborhood

of an interior point y of B'. Let/(a, y) be a function with the fol-

lowing properties, cf. Fig. 1

:

(a) In the interior of the four-dimensional cylindrical region

{By K), f(x, y) shall be analytic; and, moreover, for every point

y' of K, f(x, y'), regarded as a function of x alone, shall be con-

tinuous on the boundary C of B.

(b) For every point £ of C, /(£, y), regarded as a function of y
alone, shall be analytic within B' and continuous on the boundary

C of B'.

(c) In that part of the boundary of {B, B') which is determined

by the points (if, rj) where £ ranges over C and 77 over C',f(!-, rj)

shall be a continuous function of (£, rj).

Then f(x, y) can be continued analytically throughout the

interior of the entire cylindrical region (B, B').

The proof of this theorem is simple. For every interior point

(x, y) of (B, K),f(x, y) can be represented by Cauchy's integral

formula

:

Again, by Cauchy's integral formula,

f&y) = ^7 «—«*'•Am Jc r] — y

"(2«) 2JJ (f-a;)(i7-»)
d€d'7'

where the double integral is extended over the part's of the

* Silzungsber. der Miinchener Akad., 36 (1906), p. 223. The_ formulation
here given is slightly different from that of Hartogs.

Hence
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boundary of (B, B') consisting of the closed surface described

m the condition (c) of the theorem.

This double integral, however, represents a function which is

analytic in the two independent variables (x, y) throughout the

whole interior of (B, B'), and which, furthermore, coincides

with the given function throughout the interior of (B, K).

Hence the proposition is established.

*-PLANE

Fig. 1.

It isjnteresting to notice the nature of the hypotheses, (a)

imposes a condition on the function in each point of a 4-dimen-

sional region; (6) is 3-dimensional, in that it is made up of a

1-dimensional system of 2-dimensional hypotheses; while (c) is

2-dimensional.

Again, the points of (a) form a 4-dimensional piece of the 4-

dimensional cylindrical region (B, B'). The points of (b) form

one or more pieces of the 3-dimensional boundary of (B, B').

This latter manifold, it will be remembered, consists of but a
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single piece. Finally, the points of (c) yield one or more 2-di-

mensional pieces of the 3-dimensional boundary of (B, B') just

referred to, and they also lie in the points of (6)

.

A further aid toward a geometric realization of the hypotheses

is obtained if we picture the cylindrical regional?, B') as a rect-

angle in the plane of analytic geometry. Here, as in the use of

that plane in the study of plane curves when the complex points

are admitted to the discussion, we have, it is true, only a two-

dimensional figure for a four-dimensional set of geometric objects;

and we have to work by analogy.

Fig. 2.

Condition (a) is now seen to refer to the points of a narrow

strip that courses the large rectangle Imno, the latter representing

the region {B, B'). Conditions (6) and (c) have to do merely

with points of the boundary, which lie in the sides lo and ran.

In the conclusion, the function is extended over an enlarged

region dimensionally coordinate with the slender strip of con-

dition (a).

The extension of the theorem in the above formulation to the

case of ?i-variables is obvious.

For three variables, the geometric interpretation last considered

leads to a rectangular parallelepiped, coursed by a slender one

with parallel faces, and the further conditions of the theorem

are interpretable in terms of regions and curves lying in the faces

of the large parallelepiped.

Another form of the hypotheses of the theorem, somewhat

less general, but more compact, consists in requiring the function

/(a;j, • • • . %n) to be analytic
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(a) in every point (xu -, xk , a^.u •-, an), where xu i = 1,

• -,k, ranges over B it and ay, j = k + 1, • • •, n, is a fixed point

in Bj\

(b) in every point (fr, • • •, &, a^i, • • •, a;„), where £,-, t = 1,

• • •, A, ranges over the boundary C,- of 5,- and xj, j = k + 1,

•••,n, ranges over Bj.

The function will then admit analytic continuation throughout

the cylindrical region (Z?i, • • •, B„).

In the foregoing results is contained the remarkable theorem

that a function /(an, • • • , xn) which is analytic in every boundary

point of a cylindrical region (Bu •-, Bn) admits analytic con-

tinuation throughout the whole region.*

This theorem holds for the general case of any four-dimensional

region, whether cylindrical or not. Cf. § 9.

§ 6. Application to the Distribution of Singularities

From the main theorem of the last paragraph Hartogs deduces

the following theorem relating to the distribution of the singu-

larities of an analytic function.

Theorem. Let f(x, y) be analytic in the points (0, y), where

< I y |
< h, and let / have a singular point at the origin, (0, 0).

Then, to each point x' of a certain region B : \x\ < p, will cor-

respond at least one point y' of the region B' : \y\ < h, such that

f(x, y) has a singular point in (x
f

,
y').

Here, again, it is useful to picture the points to ourselves in

the plane of analytic geometry. We assume the function

f(x, y) to be analytic along that part of the y-axis which lies in

the neighborhood of the origin, this latter point alone being

excepted and the function being in fact singular there. The

conclusion is that the projections on the a;-axis of the singular

points of the function which lie in the rectangle (B, B') com-

pletely cover that part of the axis which lies in this rectangle.

We must not, of course, think of the singular points as dividing

the part of the region (B, B') in which the function is considered,

* Hartogs, 1. c, p. 231.
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in two. In this respect, the geometric analogy in the plane is

defective.

Levi has given a similar theorem for the case that f(x, y) is

allowed to be meromorphic instead of being restricted to being

analytic; cf. § 8, Lemma 2. The formulation of that lemma

affords a more precise statement for Hartogs's theorem.

Continuation. Singular Surfaces. The theorem of the pre-

ceding paragraph dealt with functions f(x, y) which have at

least one singular point (x, y) in the neighborhood of the origin

(0, 0) corresponding to every x near x = 0. We turn now to a

theorem which has to do with functions which have a two-di-

mensional assemblage of singular points spread out over a

surface.

Theorem* Let

V = <p(x)

be a single-valued continuous function of the complex variable

x defined throughout a certain neighborhood of the point x = 0.

Let f(x, y) be analytic at all points of the neighborhood of the

origin, (0, 0), with the exception of the points (x, <p(x)), and let

these be singular points of f(x, y) which are not removable

singularities. Then <p(x) is an analytic function of x.

The point of this theorem is the very great restriction to which

the singularities of an analytic function of several complex

variables are seen to be subject. When we consider that the

singular points of an analytic function of a single complex variable

are as arbitrary as the boundary of a 2-dimensional continuum,

the essential change in the situation on passing to functions of

several variables becomes evident.

To this subject belongs a theorem of Levi's, to which we shall

turn in § 10.

In the same paper, Hartogs has generalized this latter theorem

so that it applies to functions of any number of variables, and

these functions may be multiple-valued.

* Hartogs, Acta, 32 (1908), p. 57. The proof of this theorem is complex,

and is based on a series of earlier developments.
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§ 7. Generalizations of the Theorem of § 5

Hartogs has given substantially the following generalization

of the theorem of § 5.

Theorem. Let B and B' be regular regions of the x- and

2/-planes respectively. Letf(x, y) be a function with the following

properties.

(a) f(x,y) shall be analytic in every point (£, y), where £

ranges over the complete boundary of B and y ranges over the

interior and boundary of B'.

(b) f(x, y) shall be analytic in every point (x, tyix)), where

ij/(x) is analytic in every interior and boundary point of B, and

where, moreover, the points y = ^(a;) lie within B'.

(c) B' shall be simply connected. More generally, the points

of B' which correspond to the points of B through the function

y — \p(x) shall be capable of being enclosed in a simply connected

region lying in B''.

Then the function/(a;, y) can be continued analytically through-

out the whole 4-dimensional region (B, B').

The geometric picture of the conditions by means of figures in

the (x, 2/)-plane is here a distinct aid. The hypotheses relate to a

narrow 4-dimensional region which encloses part, but not all,

of the boundary of {B, B'), and which, furthermore, penetrates

Fio. 3.

into the interior of (B, B'). They are suggestively indicated by

the accompanying figure. In one minor respect this represen-

tation is defective, since the part of the boundary of (B, B') to

which the hypotheses relate does not necessarily consist of more

than a single piece.

13
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The theorem admits of generalization to functions of any

number of variables; Hartogs, 1. c.

Levi* has given a similar theorem for the case that fix, y) is

meromorphic in (B, K) and also in the points (£, y), where £

lies on C and y in B'. fix, y) will then be meromorphic in (B, B')

.

§ 8. Levi's Memoir of 1910

We come now to one of the most important contributions of

recent years to the theory we are discussing,—E. E. Levi's

memoir of 1910.* With the aid of two lemmas, each admitting

a simple proof, Levi establishes a fundamental theorem, from

which follows with ease a complete treatment of a number of

questions in our theory which had presented themselves during

the last decade.

Lemma 1. Let f(x, y) be analytic in the cylindrical domain

B: \x\ <, h, k ^ \y\ ^ K;

and let f(x, y) be developed in that domain into a Laurent's series:

(i) /(*, y) = E s»Wf-

In order that the analytic continuation of fix, y) into the

region

|
x

|
5^ h,

| y |
< k

may have there no other singularities than non-essential ones,

it is necessary and sufficient that there exist a system of I + 1

functions Aiix), i = 0, 1, • •, /,— where I may be any positive

integer,— such that

A ix)gn-i(x) + Ai{x) g.^-1+iix) + • + Aiix)gn ix) = 0,

where n = — 1, — 2, •••. Moreover, the functions A^x)

are all analytic in the circle
|
x

|
^ h, and -4 (£) does not vanish

there, f

* Ann. di Mat. (3), 17 (1910), p. 61.

t This latter function may, without loss of generality, be set equal to unity.
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That the condition is sufficient appears at once on multiplying

the equation (1) through by the function

A (x) y
l + A 1 (x)

y*-i+ ...+ Ai{x)

and writing the right-hand side as a new Laurent series in y.

The negative powers of y are seen to disappear, and hence the

function represented by the series is analytic in the domain

\x\£h,\y\£K.
The proof that the condition is necessary, though longer, is

not complex.

Definition. A function f(xi, • , xn) shall be said to be

continued meromorphically from the point A to the point B along

a simple path L of 2n-dimensional space if the function is mero-

morphic at A and if, on enclosing L in a slender simply connected*

2n-dimensional tube, the function, when continued analytically

within this tube, presents no other than non-essential singularities

there. The resulting function will then be single-valued in

those points of the tube in which it is defined.

A function can be continued meromorphically throughout a

region if it can be continued meromorphically along every simple

path lying in the region.

Lemma 2. Let f(x, y) be meromorphic throughout a certain

4-dimensional continuum T containing the points (0, y) where

<
| y |

^ K, but not containing the origin, (0, 0) ; and let it not

be possible to continue f(x, y) meromorphically to the origin

along a path lying, except for its extremity (0, 0), in T.

Then there exists a circle S: \x\ < h, such that (a) the points

(x, y), where x lies in S and
| y |

= K, lie in T, and thus f(x, y)

is meromorphic in each of them; (b) to each point x' of S cor-

responds a point ix', y'), y' = r'e
ei

, r' < K, such that fix, y)

can be continued meromorphically along the path x = x',

y = re
6i
(where r is the independent variable and x', 6 are con-

* By a simply connected region, or more precisely a linearly simply con-

nected region, is meant one such that a simple closed curve lying in it can be

drawn together continuously to an interior point of the region without meeting

the boundary.
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stants, and where, moreover, r
r < r ^K), into the neighborhood

of (a;', y') , but not to this point.

It will be observed that if the conditions of the theorem are ful-

filled for a given K, then they are also fulfilled for any smaller K.

We can picture the loci x = x' = a,
\
a

|
< h, as surfaces which

form afield (in the sense in which this word is used*in the Calculus

of Variations) in the 4-dimensional neighborhood of the origin.

If we make any analytic transformation of this neighborhood, of

the form

u = <p(x, y), v = \p(x, y),

where <p and \p are functions of the complex variables (x, y)

analytic at the origin, and where the Jacobian of <p and \p does

not vanish, we can then state an obvious corollary of Lemma
2 for the surfaces in the (u, v)-space, into which the surfaces

x = a have been carried.

This is all the preparation Levi needs for his main theorem,

to which we now turn.

Theorem. Let E be a perfect set of points in the 4-dimensional

space of the complex variables x, y; and let be a fixed point

of this space. Let r be the distance from to a variable point

of E. If there be a point P of E for which r has a relative maxi-

mum,* then there cannot exist a function f(x, y) which is mero-

morphic in the neighborhood of P except for the points of E,

and in each of those points has an essential singularity.

More precisely stated, the conclusion is this. Consider the

continuum, T, exterior to the hypersphere through P with

as centre and interior to a small hypersphere with P as centre.

Then there cannot exist a function meromorphic in T and not

admitting meromorphic continuation at P.

Since Hartogsf has proven Lemma 2 for the case that /(ar, y)

is required to be analytic instead of being allowed to be mero-

* Maximum is here to be understood as meaning that r shall not, in the

neighborhood of P, take a larger value than at P; but it may attain that

value at other points of the neighborhood.

t S 6, first theorem.
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morphic, it is possible to enunciate the foregoing theorem for the

case that the word meromorphic is changed throughout to

analytic, and moreover essential singularity is replaced by
singularity.

Both the second lemma and the main theorem are formulated

here more generally than in Levi's paper. Levi's proof applies,

however, to the extended theorems.

§ 9. Continuation. Lacunary Spaces

Regular Regions. We will understand by a regular region

of m-dimensional space a finite m-dimensional continuum,

together with its boundary; the latter consisting of a finite

number of simple, regular, closed, non-intersecting, (m — 1)-

dimensional manifolds. It is obvious that this definition can

be formulated more generally, but the above is sufficient for

our present purposes.

Theorem 1. Let f(x, y) be analytic at every point of the

boundary of a regular region, T, of the 4-dimensional space of

(x, y). Then f(x, y) admits an analytic continuation throughout

T, and the resulting function will be analytic * in T.

This theorem corresponds to Levi's Corollary I, 1. c, p. 11,

but is more general. His statement of his corollary is defective.

We will speak of the proof after taking up the proof of the next

theorem.

In particular, then, it follows from the foregoing theorem

that an analytic function of two complex variables cannot have

a finite lacunary region, around which the function is analytic.

Thus, for example, no function f(x, y) exists which is analytic

in the spherical shell bounded by the hyperspheres with centres

at the origin and of radii, r = 1 and r = 1 + 5, 5 > 0, and which

has in the former hypersphere a natural boundary.

As has already been pointed out, the theorem was stated and

proven for cylindrical regions by Hartogs.

Theorem 2. This theorem differs from Theorem 1 solely in

* Cf. II, § 1.
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having the word analytic replaced throughout by the word

meromorphic.

The second theorem can be proven as follows. We may

without loss of generality assume that the boundary of T is

pierced by an arbitrary ray from the origin at most in a finite

number of points. On each ray which enters T there will, then,

be a finite number of segments lying in T. Let AB be such a

segment, and let B be the extremity more remote from the

origin. Continue /(a;, y) meromorphically from B toward A. If

it is possible to reach A on every segment, the theorem is granted.

If not, let Q be the first point on AB that cannot be reached

from B.

Thus, when all segments are considered, a set of points Q
lying in the finite region T are obtained, and this set is, from its

source, necessarily closed. Let P be one of its points whose

distance from is a maximum. Then, in that part of the

neighborhood of P which lies outside of the hypersphere through

P with its centre at 0, f(x, y) is meromorphic. The function

must, therefore, by Levi's theorem, § 8, admit a meromorphic

continuation at P, and here is a contradiction.

The first theorem can be proven in a similar manner by the

aid of Levi's theorem of § 8, stated for functions required to be

analytic instead of being allowed to be meromorphic.

It thus appears that an analytic function of two complex

variables cannot have a finite lacunary space around which the

function is meromorphic.

This latter result is in direct contradiction to Weierstrass's

theorem of § 3, and appears to be the earliest proof that that

theorem is false. From Lemma 2 it follows, however, immedi-

ately that an isolated essential singularity is impossible, and

thus a more elementary proof is afforded of the incorrectness of

that theorem.
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§ 10. Concerning the Boundary of the Domain of

Definition of f(x, y)

Let 2 be a simple regular 3-dimensional manifold of 4-dimen-

sional space. Then 2 can be represented analytically by the

equation

<p(x\, *2, 2/i, 2/2) = 0,

where x = xi + ix*, y = yi -\- iy2 ; where, furthermore, <p is

continuous together with its first partial derivatives; and where,

finally, not all of these four derivatives vanish simultaneously.

We will restrict ourselves to such manifolds 2 as correspond to

functions <p having continuous second derivatives.

Levi raises the question: Can a given manifold of the above

description, or a restricted piece of it, serve as part of the boundary

of a region in which a function f(x, y) is meromorphic, but

beyond which f(x, y) cannot be continued meromorphically

across any part of 2? In other words, can 2, or a piece of 2,

be a natural boundary?

He finds that the answer is, in general, negative; since, for

it to turn out affirmative, <p must satisfy the following necessary

condition. Let <p > on the side of 2 where /(a;, y) is to be mero-

morphic. Denote by &(<£>) the following expression:

( dip dip dip dtp \
Cfo) = A,V Ax'V +VV • A,V - 2

(^ g£ + g£ ^J
/ dy d*ip \

I
dip dtp dip dip \/ d°-ip &tp \

X \dx
x
dyi

~ dx
2
dyj~ V&ci dy~

2
~ dx2 dyj[dx^ ~ dx2dyj

'

where
fdip\ 2 (dip y' d*tp d*ip

AiV = {dx-J + \dx-J '
A^ =

dx^+ dx^'

and where Ai'tp, A2'V denote similar expressions in yu y2 . Then

must £(^>) ^ in all points of 2.

If tp < on the side of 2 where fix, y) is meromorphic, then

must ©(*?) ^ in all points of 2.

From this result it follows that if there is to exist a function
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/ifo y) meromorphic on one side of 2 and having S as a natural

boundary; and also a function f2 (x, y) meromorphic on the other

side of 2 and also having 2 as a natural boundary, then must

6(?) = 0.

How far are these conditions sufficient? In the present memoir

Levi shows that this last condition is sufficient; namely: If

(&(<p) = in every point of 2: <p = 0, then there are functions

analytic on each side of 2, but having 2 as a natural boundary;

—

all this, at least, when 2 is suitably restricted in extent.

In a later paper Levi* obtains the further result, that if

£(p) < in all points of 2 : <p = 0, then there exists a function

f(x, y) analytic on the side of 2 where <p > and having 2 as a

natural boundary;—all this, at least, when 2 is suitably re-

stricted in extent.

§ 11. A Theokem Relating to Characteristic Surfaces

An analytic surface in space of four dimensions may be repre-

sented by a pair of equations:

(1) u(x!, x2 , yi, y2) = 0, v(xu x2 , yu y2) = 0,

where u and v are real functions of the four real variables, analytic

at the point in question, their Jacobian with respect to two of

the variables,—say yu y2 ,—not vanishing there.

Levi-Civitaf raises the following question. Suppose two real

functions, p and q, are given along such a surface, and are analytic

there. Thus p and q may be any functions of xi, x2 analytic

at the point in question, if these are the preferred variables.

Does a function of the complex variables exist:

w(x, y), x = zi + ix2 , y = yi + iy2 ,

* Ann. di Mat. (3), 18 (1911), p. 69.

t Rendiconti Accad. Lincei (5), 14 (1905), p. 492. He prefaces his problem

by recalling the Cauchy problem for two independent variables, x and y, and

an analytic curve C in their plane; an arbitrary sequence of analytic values

being assumed along C.
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analytic at the point in question and taking on the value p + qi

along the surface in question,—all this, at least, in a certain

neighborhood of the given point?

He finds the answer to be affirmative and the function w to

be uniquely determined, provided the surface is not what he
calls a characteristic surface, i. e., a surface along which an analytic

function of two complex variables, which is not identically zero,

vanishes. In the case of a characteristic surface, there will in

general be no solution of the problem. Suppose, for example,

that the surface is y = 0,—and the general case of a characteristic

surface is reducible to this case. Then

w(x, 0) = p + qi,

and it is evident that p + qi must be a function of x analytic

at the given point.

If this condition is satisfied, there will be, not a single, but an

infinite number of solutions.

From these results follow at once the theorems:

If f(x, y) is analytic at a point and vanishes along a non-

characteristic surface through that point, no matter how re-

stricted that surface may be, it vanishes identically.

If f{x, y) and <p(x, y) are both analytic at a point and take on

the same values along a non-characteristic surface through that

point, however restricted that surface may be, they are identi-

cally equal to each other.

Levi-Civita extends the foregoing theorems to functions of any

number of variables.

There is a theorem of Levi's* bearing on these characteristic

surfaces. He shows that any three-dimensional manifold

<p = (§ 10), in every point of which ®(p) = 0, is composed of a

one-parameter family of characteristic surfaces.

The theorems of these last two lectures have brought out clearly

the fact that the analytic functions of several complex variables

' Ann. di Mat. (3), 17 (1910), p. 89.
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are far less capable of adapting themselves to a preassigned region

of definition than is the case with the functions of a single variable.

An explanation is, very likely, to be found in the following fact,

to which we have already called attention (II, § 1) . The real part

of an analytic function of a single variable has to satisfy but a

single linear partial differential equation (Laplace's equation).

In the case, however, of an analytic function of several varia-

bles, the real part has to satisfy a simultaneous system of such

equations.



LECTURE IV

IMPLICIT FUNCTIONS.

§ 1. Weieestrass's Theorem of Factorization

The following theorem is due to Weierstrass.*

Theorem of Factorization. Let F(u; xu , xn) be a function

of the n + 1 variables u, xu •-, xn , analytic in the origin

(0; 0, • • •, 0) and vanishing there. Let

(1) F(u;0, ...,0) +0.

Then, throughout a certain neighborhood of the origin,

T:
|

u
|
< h,

|
xk |

< h', k = 1, • • •, n,

the following equation holds:

(2) F(u; xi, •, xn)=[um+A 1 um
-1

-l [-Am]Q,{u;xi, -,xn),

where Ai is analytic in Xi, •, x„ throughout the region \xk \
<

V

and vanishes at the origin, and fl is analytic in u, X\, • • • , xn

throughout T and does not vanish there.

If f(z , 2i, • • • , z„) is any function of z , Zi, • • • , zn , analytic at

the origin and vanishing there, but not vanishing identically,

it is possible by means of a suitable linear transformation of the

n + 1 variables z , z\, • •
, zn to carry / over into a function

F(u; x\, • • • , xn) satisfying the foregoing conditions.

Irreducible Factors. On the theorem of factorization can be

based a theory of irreducible factors of an analytic function

analogous to the theory in the case of polynomials, f First, as

regards division. If F(z\, •••, zn ) and $(zi, •••,zn) are both

analytic in the point (a) = (ai, • • • , an ) and $ does not vanish

* Lithographed, Berlin, 1879; Funktionenlehre, 1886, p. 105 = Werke 2,

p. 135. In a foot note of the page last cited Weierstrass says that he has

repeatedly given the theorem in his university lectures, beginning with 1860.

t Weierstrass, 1. c.

181



182 THE MADISON COLLOQUIUM.

identically, but does vanish at (a); and if, in the neighorhood of

(o), a relation of the form

F(zu • •, z») = Q(zu , Zn) *(Zi, •
• •, z»)

holds, Q being analytic at (a), then f is said to be divisible by

* in the point (a). If G(zu •••, zn) is analytic in the point

(a) = (ai, • • • , a„) and vanishes there, then G is said to be irre-

ducible at (a) if no equation of the form exists:

G(Zl, • • •, Z„) = Gl(Zi, • • •, Zn) G2 (Zl, • •, Zn),

where 6?i and G2 are both analytic at (a) and both vanish there.

Two irreducible factors are equivalent if their quotient, taken

either way, presents at most removable singularities.

A function G(zi, • • • , z„) analytic at (a) and vanishing there, but

not vanishing identically, can be written in one, and essentially

in only one, way as the product of factors each irreducible in (a).

A factor which is irreducible at a given point is not necessarily

irreducible at every one of its vanishing points which lies in a cer-

tain neighborhood of the point. Hence the expression of a func-

tion at a given point as a product of factors each irreducible at

that point does not always retain this character when that point

is replaced by a second root of the function that lies in the

neighborhood of that point.

The theorem of algebraic geometry that two curves or surfaces

which have ever so short an arc or small a region in common,

must necessarily have a whole irreducible piece in common,

finds its counterpart here. Let F(zi, • • •, z„) and $(zi, • • , zn)

both be analytic at the origin and vanish there, and let $ be

irreducible there. If F vanishes at all points in the neighborhood

of the origin at which <£ vanishes, then F is divisible by <£.

The Roots of an Analytic Function of Several Variables. In

the case of analytic functions of a single variable the roots are

isolated. This theorem appears to be lost for functions of several

variables, since such a function which vanishes at all has an

infinite number of roots clustering about any given root. The

theorem admits, nevertheless, a perfectly good generalization.
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It is not the individual root, but the monogenic analytic con-

figurations which are made up of the roots and which exhaust

the latter, that are the analogue of the roots of a function of a

single variable. And now it is seen from the factor theorem

that the number of such configurations which course the neigh-

borhood of a given root is finite.

Earlier Sources. As appears from the applications already

considered, there are two wholly distinct classes of theorems at

issue. The theorem of factorization asserts the existence of an

identity in n + 1 independent complex variables, the left-hand

side being a function F(u; X\, • • • , xn) vanishing at the origin,

but such that F(u; 0, • •, 0) 4s 0; and the right-hand side being

the product of the two factors described in detail in the state-

ment of the theorem. This theorem is universally admitted to

be due to Weierstrass.

On the other hand, such a function put equal to :

F(u; x\, ••, xn) = 0,

defines an implicit function of n arguments. That the latter

function is given as the root of a polynomial

:

um + Am™-1 + 1- Am = 0,

where the Ak's are all analytic in x\, • • • , xH at the point in ques-

tion and vanish there, follows, it is true, from Weierstrass's theo-

rem. But Weierstrass was not the sole discoverer of this theo-

rem. The theorem is contained substantially in Cauchy's Turin

memoir of 1831.* In that paper, Cauchy showed that, to each

point (xi, • • • , xn) lying in a certain neighborhood of the point

(ai, • •
• , an) in question, correspond precisely m roots of the

equation
F(u; xi, •-, xn ) = 0.

Furthermore, if &(u) be any function of u analytic at the point

u = and vanishing there, and if the above m roots be denoted

by «i, • •, um, then the symmetric function

$(wi) + • • • +*W
* Cf. Exercices d'analyse, 2 (1841), p. 65.
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is expressed by a definite integral which is seen to represent a

function of xi, , xn analytic at the point (a-i, • • , an) and

vanishing there.*

In order, then, to obtain the implicit function theorem it

remains merely to set

$(m) = uk
,

k = 1, • • •, m,

and then express the elementary symmetric functions by the

familiar formulas in terms of the Newtonian sums,

Sk= U1
k + • + Umk

.

Furthermore, Cauchy applied his method to the solution of a

problem in implicit functions, namely, to the development of a

function into a series of Lagrange. Thus this noted series, so

prominent in the early history of the theory of functions, again

makes contact with modern analysis.

There are two other proofs of the implicit function theorem

considered above, both of which antedate Weierstrass's publica-

gion in the Funktionenlehre, namely, Poincare's and Neumann's, f

§ 2. A Tentative Generalization of the Theorem of

Factorization

In the case n = 1, in which F depends on only two variables,

u, x, it is possible to dispense with the condition (1) altogether,

provided F(u, x) does not vanish identically, the relation (2)

being then modified as follows:

F(u, x) = x l (um + A x um
~x + + Am) Sl(u, x),

where I is a positive integer, or 0. Even the proviso just men-

tioned can be avoided if we write

F(u, x) = (A um + Am™'1 + V Am) Q(u, x).

* The work is carried through for the case n = 1, our function F(u; xi, • , x„)

being represented there by f(x, y) and the above function $(u) by F(y).

The proof of the theorem of factorization given by Goursat, Cours d'analyse,

2, § 356, is based on Cauchy's analysis.

t Poincar6, Paris, These, 1879, pp. 6, 7. Neumann, Leipeiger Berichte, 35

(1883), p. 85; Abelsche Integrate, 2d ed., 1884, p. 125.
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Thus we have a form of the factor theorem which holds in all

cases and which does not depend on an eventual change of the

independent variables by a linear transformation.

A corresponding form for the general case, n > 1, would be a

valuable contribution, since it is not always feasible, under the

conditions of the problem in hand, to make the above linear

transformation. The tentative theorem is as follows.

Tentative Theorem. Let F(u; x\, • • , xn) be analytic at the

origin and vanish there. Then, throughout a certain neighbor-

hood of the origin,

T:
j
u

|
< h,

|
xk |

< h', h = 1, • • , n,

the following equation holds:

F(u; xh •-, xn) = (A um+Aium~1
-\ [-Am)Q(u; x x ,

••-, xn),

where A k , k = 0, 1, • •, n, is analytic in xu • •, xn throughout

the region
|

a;,- 1 < h' and vanishes at the origin when k > 0; and

where fl is analytic in T and does not vanish there. A may or

may not vanish.

For polynomials the theorem is obvious. I have not succeeded

in proving it in the general case except when n = 1. But in my

attempts at a proof I have seen nothing that discredits the

theorem and much that renders it probable. I think the chances

are that the theorem is true, and I hope that someone will

investigate this question.

§ 3. Algebroid Configurations

Consider the function defined by the equation

(!) p = um + Aium
~ l

H h Am = 0,

where A k (x!,
, x„) is analytic in the point (x) = (0) and

vanishes there, and the polynomial is irreducible. Such a

function is called an algebroid function.*

* Poincar6, Th&se, 1879, p. 4. It is sometimes desirable to admit the case

that the coefficient of um is a function Ao(xi, ••-, x„) analytic at the point

(x) = (0) and vanishing there.
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Let

A(.Ti, ••,»»)

be the discriminant of F. Then A ^ 0, and to every point (x)

in the neighborhood of (x) = (0) in which A 4= there correspond

m distinct roots of F. These may be so grouped as to yield m
functions v,\, • • • , um, each analytic in a preassigned point in

which A + 0. Moreover, one of these functions can be con-

tinued analytically into every other one, and thus they are all

elements of one and the same monogenic analytic function.

If n = 1, we are led to an ordinary Riemann's surface with a

single branch point in the point x = 0, in which all m leaves hang

together.

If n > 1, it is still convenient to think of a Riemannian mani-

fold $ of m sheets, or leaves, as we will still say; though these

leaves are no longer surfaces, but 2n-dimensional manifolds.

We meet here, however, an entirely new order of relations.

In the case n = 1, there was but a single branch point. That

was fixed, and the junction lines were movable and to a large

extent arbitrary. Here, however, the whole locus

(2) A(jtu --;Xn) =

yields points for which two or more of the Uk's coincide. In

such a point, two u's which coincide may or may not belong to

functions each analytic at the point in question and satisfying

the equation F = 0. In the former case, the Riemann manifold

<£ has a multiple (2n — 2)-dimensional manifold, like a multiple

point of a plane curve at which all the tangents are distinct and

non-vertical, or more generally, at which no two branches are

connected with each other.

In the latter case, however, we have a whole (2n — 2)-

dimensional manifold of branch points, and the corresponding u's

are not analytic in (x) at such a point. In other leaves above or

below such a point it may, of course, happen that the corre-

sponding determinations of u are analytic.

There still remain, in addition, the junctions. These are
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(2?i — 1)-dimensional manifolds, largely arbitrary in location

and character, but necessarily passing through the loci of branch

points, i. e., the branch manifolds, and along these junctions

one branch of the function goes over into another branch, re-

maining analytic all the while.

A simple example or two will serve to illumine the above

relations.

Example 1.

—

u2 — x = 0,

the independent variables being two in number, x and y. Here,

the space of the independent variables is a four-dimensional

real space Ri, corresponding to the two spheres,—the x-sphere

and the ^/-sphere. If we set x = xi + ix2 , y = 2/1 + iyz, the

points of Ri will be (xi, .t2 , y\, 2/2). The Riemann manifold <i>

is two-leaved. The branch manifold consists of the surfaces:

&': (0,0, ^,2/2); S2": (oo,oo, yi,y,),

where the point (t/i, 2/2) ranges over the whole ?/-sphere.

As the junction we may take the 3-dimensional manifold

R*: (xi, 0, 2/1, 2/2), ^ xi ^ °°.

i. e., the point (xi, x2) is any point of the positive axis of reals,

including the points x = and x = 00 ; and (2/1, 2/2) ranges in-

dependently over the extended 2/-plane. There is wide latitude

in the choice of Rz, but it must contain the surfaces S2
' and S2

".

Example 2.

—

u2 — xy2 = 0,

the independent variables again being x and y.

Here, the two values of u become equal, not only in the points

of the above surfaces S2
' and S2", but also in the points

©2': (xi, x2 , 0, 0); ©2": (xi, x2 ,
co, 00).

Nevertheless, in the neighborhood of any point of ©2' and ©2"

which does not lie on <S2
' or S2

" the values of u can be grouped so

as to yield two functions, each single-valued and analytic through-

out the neighborhood in question.

The Riemann manifold $ may be taken precisely as before.

14
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§ 4. Continuation. The Branch Points of the

Discriminant

It is important to notice how the dependent variable behaves

in the points of a (2n — 2)-dimensional manifold of branch

points. If we are at liberty to make, if necessary, a non-singular

linear transformation of the x's, we may assume that

A(0, ,0,xn) + 0,

and hence replace the equation A = by an algebroid equation

in xn . Let

(3) D = xn
l + B 1 xJ- 1 + +B l =0,

where D is an irreducible factor of A; and let Di(xi, • •, x„_i)

be the discriminant of D. Then Di ^ 0. For simplicity in the

presentation, we confine ourselves to the case that A has no

further irreducible factor.

Consider a point P : (a;i°, • • • a;„_i°) in which Di #= 0. In

the neighborhood of this point the roots of (3) can be grouped

to I functions xn ', xn", • • • , xnm each analytic in the above point

and all elements of the same monogenic analytic function.

If we substitute one of these elements, xn ', in the coefficients

of (1), the new polynomial,

F = um + A x um
-X + h Am =

—where Ah{x\, • • • , Xn-i) is analytic in the point (xi°, • • • , Xn-i )

but does not necessarily vanish there,—will have a common
factor with its allied polynomial

du
'

Consider the greatest common divisor of F and F'. Let its

irreducible factors be

Gk (u, Xh , Xn-i), k = 1, • • •, P.

In general, v = 1 and Gi is linear in u.
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This case can always be attained by a linear transformation

:

(4) xn = Xn + au,

where a is a suitable real positive number.

In fact, returning to the arbitrary case of the text, let Pi:

(xi
l
,

• • • , Xn-i1
) be a point of the neighborhood of P in which the

discriminant of no 0^ vanishes; let this be true not merely for the

particular element xn' that was substituted in F, but for each of

the other I — 1 determinations of xn given by (3), xn", , xJ lK

Finally, let Pi be so chosen that no two G's, — whether they

belong to the same xnM or to different ones: a:»
(l) and xn^\ have

equal roots.

Throughout a certain neighborhood of Pi, then, we have I

patches Si, •••, Si of the discriminant manifold (3), and the

points (xi, • • •, xn-i, x„ (i)
), k = 1, • • •, I, thus defined in the

space of (xi, • • , xn) are the totality of the points of so much of

that space as lies in a certain neighborhood of the origin

:

I

Xj
|
< h, j = 1, • • • , n,

for which, first, (xi, • • • , Xn-i) lies in the neighborhood of Pi and,

second, (1) has multiple roots. Let us picture the corresponding

points (u, Xi, •-, x„) in a (2n + 2) -dimensional space, where u

is given by the vanishing of the different Gk(u, x\, • , xn-i),

these functions being taken not merely for xn ', but also for the

other xnw 's. Then these (2n — 2) -dimensional loci,—call them

©i, • • • . ©f.

—

are distinct from one another. They are analogous

to arcs of curves lying on the different nappes of cylinders whose

directrices are the I 2n-dimensional manifolds defined by (3)

:

(.^lj " ' *> Xn—lt Xn ), IC I, * • *, fr,

where (xu •-, z«-i) lies in the neighborhood of Pi.

If now we make the transformation (4), restricting suitably

the positive number a, then the configuration F = will go over

into a new configuration Pi = and at the same time the loci

©i, • • •, ©t will go over into loci ©/, • • •, ©/ which have for
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the transformed configuration Fi = the same meaning that

©i, ••-,©{ have for F = 0, i. e., ©i, •••,©, are invariant of

the transformation. And now, if the neighborhood of Pi is

suitably restricted, the number of the ordinates u corresponding,

for a given (xu •-, z„_i), to the ith region ©»', i = 1, ••••?,

will reduce to unity. Thus the new I will equal t, and to each of

the new points {xlt
-, xn-i, A\ (i)

) will correspond but a single u.

It thus appears, that, in general, on the (2n — 2)-dimensional

analytic manifold or manifolds defined by the equation A =

the multiple roots of F are single-valued and analytic except

along certain (2n — 4)-dimensional analytic manifolds.

We can now proceed to these latter manifolds and prove a

similar theorem for them; and so on.

The reasoning here used is akin to that employed in the proof

of Weierstrass's theorem, § 8.

§ 5. Single-Valued Functions on an Algebroid

Configuration

Let U be uniquely defined in the ordinary points of the alge-

broid configuration (1), i. e., the points in which u is not a multiple

root of (1), and let it be analytic in such points. If, furthermore,

U remains finite, then, in the above points,

G(u, xi, , xn)

F'(U, Xi, • • • , Xn)
'

where G is analytic in the point (0, 0, • • • , 0) and vanishes when

F' vanishes on the manifold. Moreover, U is an algebroid func-

tion of (xi, • , xn) in the neighborhood of the origin.

It would be a mistake, however, to think that when U satisfies

the above hypothesis, the limiting values of U in the singular

manifold behave as did the coordinates, u, xn , etc., in the cases

discussed in § 4. The following example will show what may

arise. Let
F = u2 - x\y2 - z

2
)(y

2 - kh2
) = 0,

where k is real and < k < 1, and the independent variables
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are x, y, z. Let

X
Then

U2 - (y
2 - z

2
){y

2 -k2
z
2
) = 0.

But in the points of the singular manifold x = 0, i. e., in the

points (u, x, y, z) = (0, 0, y, z) the limiting values of U do not

form a function single-valued on that manifold.

Connectivity and the Riemann Manifold. In the preceding

sections we have taken the Riemann manifold $ for granted.

But how do we know that it exists? Even for functions of a

single complex variable this question, in the general case, was

not simple. It is one of the fundamental problems of the theory

to show that, to any monogenic analytic function of several

complex variables, corresponds a Riemann manifold. One

method of attack would be to prove the theorem for a properly

restricted algebroid configuration, and then proceed as in the

case of functions of a single variable.*

Consider so much of the algebroid configuration (1), § 3, as

lies in the region \u\< k, \xi\< hi. The linear connectivity

of the corresponding Riemann manifold is not necessarily

unity, no matter how far k, h be restricted. For, in particu-

lar, F may be a non-specialized homogeneous polynomial, so

that (1) is the equation of a non-specialized algebraic cone of

degree m.

Parametric Representation im Kleinen. One other theorem we

will mention,—the theorem of the parametric representation of

an analytic configuration im Kleinen.

Let G(zu , zn) be a function of zu , zn analytic at the

origin and vanishing there, but not vanishing identically. Then

there exists a finite number of systems of equations

(1) zk = <pk (h, , tn-i), k= 1, , n,

where <pk (h, •-, <«-i) is analytic at the origin (t) = (0) and van-

* Cf. Osgood, Lehrbuch der Funktionentheorie, vol. 1, 2d. ed., 1912, p. 747.
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ishes there, such that, throughout a certain neighborhood of that

point, the numbers Z\, • • • , zn thus defined are roots of 6. And
conversely, to each root of G within a certain neighborhood of

the origin there corresponds at least one system (1) which

yields this point; and in any such system there corresponds but

one point (t) to the given (2), provided (2) =)= (0).

For the case n = 2 the proof of this theorem is readily given

both by the methods of Riemann and by those of Noether (de-

veloped originally for algebraic curves). For n = 3, after an

unsuccessful attempt by Kobb, a proof was given by Black.*

The latter's methods appear to suffice for the general case; but

detailed algebraic work remains to be done. Weierstrass states

the theorem as true in all cases, n = n.\

§ 6. Solution of a System of Analytic Equations.

Weiebstbass's Theoeem

There is a second theorem of Weierstrass'st which is less well

known than the factor theorem, but which deserves a prominent

place in the theory. It is as follows.

Let

(1) Gi(Zi, •-, Zn), -, 6i(Zi, •••, Zn), l< fl,

be a system of functions each analytic at the origin and vanishing

there, but not vanishing identically. Then the roots of these

functions, regarded as simultaneous, which lie in the neighborhood

of the origin can be represented as follows. A suitable non-

singular linear transformation being made:

(2) zk = aki wi + • • • + akn wn, k = 1, • • • , n,

the values of w which correspond to roots of the original functions

(1) will be given by a finite number of systems of equations of

the following type

:

* Proceedings Amer. Acad, of Arts and Sci., 37 (1902), p. 281.

f Werke, 3, pp. 103-i.

X Werke, 3, pp. 79-80.



FUNCTIONS OF SEVERAL COMPLEX VARIABLES. 193

^i(«i, •,wm> Wm+1) = w£+1 + Ai w£+? H 1- Ay = 0,

'

'

!

„, _ Fi(Wl> ,Wm,Wm+1) .

"^ *>i, ,wm, wm+l)' J = 2, ••-,»-«,

where ^ is analytic in wb • • •, wm at the origin and vanishes
there, and Fj is analytic in wt, •-, wm, Wm+1 at the origin and
vanishes there. F^wi, ,wm, Wm+1) is irreducible at the origin,

and

To each root (a) 4= (0) of (1) lying in the neighborhood in

question corresponds at least one system (3) such that F[ does

not vanish in the point (w) which is the image of (z). Con-
versely, each system of values (w) lying in a certain neighbor-

hood of the origin and satisfying (3) yields a root (z) of (1) lying

in the neighborhood of (2) = (0).

When the conditions of the problem are such that all n variables

zij • •
•

, zn are coordinate, so that the transformation (2) is

available, this theorem yields complete and satisfactory informa-

tion regarding the solution of equations (1) im Kleinen.

The proof of the theorem is direct, and is given by means of

the factor theorem and the algorithm of the greatest common
divisor.

§ 7. Continuation. A General Theorem

It may happen that the variables with respect to which it is

desired to solve may not be interchanged with the remaining

variables, so that the factor theorem is not available. In this

case the following theorem may be useful.* The proof is closely

allied to that of Weierstrass's theorem, § 6. The case n = 2 is

covered by a theorem of Bliss's, t

* The theorem is suggested by a theorem of Poincar6's, These, 1879,

Lemma IV, p. 14. It is not clear what Poincar6 meant by the words: "... si

les Equations <pi = <pi — • • • = <pr = restent distinctes quand on annule

tous les x. . .
."

t Princeton Colloquium, 1909, published, 1913, p. 71.



194 THE MADISON COLLOQUIUM.

Theorem. Let the functions

(1) $fc(«i, • • •, uf, xh , xp), k = 1, • • •, I,

be analytic in the point (u; x) = (0; 0) and vanish there. Fur-

thermore, let the I equations

(2) **(«!, •••,«!; 0, ••,0) = 0, k=l,---,l,

admit no other solution than (u) = (0) in the neighborhood of

this latter point. Then, to each point (x) in a certain neighbor-

hood of (x) = (0), with the exception of those which lie on a

locus D presently to be considered, there will correspond N
distinct points, (wi0) ,

• • •, uiU) ), j = 1, • • •, N, and hence N
distinct points («i

0)
,

• • • , «;0) ;x\, -,xv), such that the equations

(3) *t(«i, • • •, uf, xi, , xp) =

are satisfied in these points. N is a fixed positive integer.

Moreover, these are the only points of the neighborhood of

(w; a;) = (0; 0) in which these equations are satisfied and for

which (x) does not lie on D.

These points are determined as follows, tii is given by an

algebroid equation having no multiple factors,

(4) uf+ A, uf"1 + + AN = 0,

where Ak(xi, ••, xp) is analytic in the point (x) = (0) and

vanishes there. If (x) does not lie on D, the roots of (4) are all

distinct, and analytic in (x), and the further functions U\, •

,

wj_i which enter to form the roots of (1) are also single-valued

and analytic on the analytic configuration, or configurations,

(4) except at most for points for which (x) lies on D.

The points of D are those whose co-ordinates satisfy at least

one of a finite number of equations

Sifai, • • • , xp) = 0, ••-, D q (xu •••, xp) = 0,

where Dk is analytic in the point (a;) = (0) and vanishes there,

and is irreducible.



CORRECTION

The Madison Colloquium

p. 195, lines 3 and 4, omit the words "of D and likewise distinct

points," and replace the second paragraph by the following

:

"These points are determined as follows: One or more

algebroid configurations are given by equations of the type

(5) Xm + B, X™" 1 + . . . + Bm = 0, 2m = M,

where Bk (;i\, . . . , r
p _ 1 ) is analytic at the origin and van-

ishes there. If (x\, . . . , xp _ 1 ) does not lie on E, the roots

of (5) are all distinct and analytic in (xu . . . , xp _ 1 ), and

the further coordinates «t lf . . . , u
t , xp which enter in (u; x)

to form the roots of (1) are single-valued and analytic on the

configuration ( o )
."

Wm. F. Osgood.
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We can go further and say : To each point (xi, • • • , a^-i) of

the neighborhood of the origin, which does not lie on a certain

exceptional manifold E, there correspond M distinct points of D,

and likewise M distinct points of the neighborhood of (u; x)

= (0; 0), for which the equations (1) are satisfied.

These points are determined as follows. xp is given by an

equation having no multiple factors:

(5)
'

xv
M+ B^- 1 +...+BM =0,

where Bk(xi, • • , Xp-{) is analytic at the origin and vanishes there.

If (xi, • • • , Xj,_i) does not lie on E, the roots of (5) are all distinct

and analytic in (x\, • • , Xp-{) and the further functions u\, • ,ui

which enter to form the roots of (1), are also single-valued and

analytic on the analytic configuration or configurations (5)

except, at most, for those points for which (xi, • • • , xp-i) lies

on E.

The points of E are those whose co-ordinates satisfy at least

one of a finite number of equations

Ei(xu • •, Xp-i) = 0, • • •, Ek (xu , Xp-!) = 0,

where Ek is analytic in the point (xu , arp_i) = (0, • • , 0)

and vanishes there, and is irreducible.

We can now proceed to treat the points of E in a similar way,

and so on.

The foregoing formulation is deficient in one respect. In

excepting, as the first step, all points whose (x) belongs to D

some points were lost which have not later been regained.

Consider the multiply sheeted Riemann manifold corresponding

to (4). For a given point of D one point at least of this manifold

is to be excluded. But it may happen that points above or

below this one, in other sheets, are such that u t and the other uk's

will be analytic there. The number of such systems, (wi, • • •, ui\

x\, • • • , xp) will, however, be less than N.

It would be possible to give to this theorem a formulation more

closely resembling that of Weierstrass's theorem, § 6.
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Poincare has given a further theorem,* which he regards

merely as another form of the theorem of his Lemma IV, cited

above. Under the hypotheses of the last-named theorem he

states that the system of equations (3) can be replaced by an

equivalent system:

^k(uu -, ui; xi, ••, xp) = 0, k = 1, • • •, I,

in which tyk , in addition to satisfying the conditions imposed on

$s-, is a polynomial in u\, , ui.

Special Cases of the Foregoing Theorem. A special case of

this theorem has recently been investigated by MacMillan. t It

is evident, in the light of Weierstrass's theorem, that no one of the

functions #,•(«:, • •, U\; 0, • • •, 0) can vanish identically. Let

#f(wi, • ",Ui; 0, • • •, 0) be developed into a series of homogeneous

polynomials of ascending degrees, and let the polynomial of

lowest degree,—the characteristic polynomial, as MacMillan calls

it,—be denoted by p
(fa)

(wi, • • , U}), its degree being &,-. Mac-

Millan considers the case that the resultant R of the characteristic

polynomials does not vanish. J

Bliss§ has also given a treatment of this case and has obtained

the result that, when R =(= 0, the number N has the value:

N = t[ki.

Another special case of the main theorem, has been investigated

by Clements.
||

Let the Jacobian J vanish in the point (w; x)

= (0; 0), and furthermore let J\ = J,

d(Ji, $2, • • • , $i) n , . ._ n,

d{Ui, u2 ,
• • •, Ui)

* M6canique celeste, vol. 1, p. 72.

t Math. Ann., 72 (1912), p. 157.

J Cf. Bliss's critique of Poincar6's theorem and the results obtained by

MacMillan, Transactions Amer. Math. Soc, 13 (1912), p. 135.

§L. c.

||
Bulletin Amer. Math. Soc. (2), 18 (1912), p. 451; Transactions Amer. Math.

Soc, 14 (1913), p. 325.
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J
*
=

"a(«x, «,,•,««) + °' (M; x) = (0; 0) -

Then the hypotheses of the above theorem are fulfilled, and

N = ft.

§ 8. The Inverse of an Analytic Transformation

Let

'Xi = fi(Ui, -, Un),
(1)

/„(«!, • • , Un),

where /a(wi, -, un), ft = 1, ••,«, is analytic in the point

(u) = (0) and vanishes there. If the Jacobian J of the /'s does

not vanish, it is well known that the equations can be solved

uniquely for the u's in terms of the x's, the resulting functions

being analytic at the point (a;) = (0).

To pass to the other extreme, if the Jacobian vanishes iden-

tically, there is a relation between the /'s. More precisely, let

T:
|
uh \

< h, ft = 1, • •, n,

be an arbitrary neighborhood of the point (u) = (0). Then there

is a point (a) of this neighborhood and a function F(x\, • • • , xn)

which is analytic in (x) at the point (x) = (b), bk = /&(ai, • • • , an),

ft = 1, • • • , n, and which has the following property:

(2) F(fu ---,fn)^0,

where (u) is any point of the neighborhood of (a).

Thus the n functions /*(«i, • • •, un) are connected by an iden-

tical relation* (2).

The intermediate case, that J vanishes at the point (u) = (0),

but does not vanish identically, has been an object of investiga-

tion in recent years.

* Peano-Genocchi, Calcolo differenziale e integrate, p. 162. Bliss, Prince-

ton Colloquium, p. 67, where it is shown that, when n = 2, the point (a)

may be taken at (0).
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First, let us observe, a general solution of the problem is given

by the theorem of § 7 for all transformations (1) which are such

that the point («) = (0) is the only point in this neighborhood

which corresponds to (x) = (0).

For the case n = 2 Clements discussed completely the above

transformation under this last-named hypothesis. Moreover,

his theorem cited in § 7, and Bliss's results apply to certain classes

of transformations of the kind under consideration. Urner* and

Dederickf have also studied the problem from a different point of

view,—that of the effect of the transformation on certain curves

which abut on a point where the Jacobian vanishes. DederickJ

introduced the determinant Ji (§ 7) in the case I = 2, and Urner

extended the definition to the higher J's.

* Transactions Amer. Math. Soc, 13 (1912), p. 232.

t Ibid., 14 (1913), p. 143.

{ Harvard Thesis, 1909.



LECTURE V

THE PRIME FUNCTION ON AN ALGEBRAIC CONFIGURATION

§ 1. The Algebeaic Functions of Deficiency 1 and the

Doubly Periodic Functions. Generalizations

1. The Riemann's Surface as Fundamental Domain. The

algebraic functions of deficiency unity and their integrals are

closely allied to the doubly periodic functions and their related

functions, the theta and the sigma functions. It is one of the

leading ideas which Riemann introduced into the theory and which

has been further developed by Klein and his school that these

two classes of functions, from a higher point of view, may all be

considered as functions on one and the same foundation (Sub-

strat), the Riemann's surface, idealized as a fundamental domain.

Thus the n-leaved surface of deficiency 1 (or, more particu-

larly, the two-leaved surface with four branch points) and the

parallelogram of periods are, when regarded as fundamental

domains on which functions with familiar properties may be

defined, equivalent.

The Theta Function. The single function in terms of which

the group of functions considered in this theory can be expressed

is, when we make the parallelogram of periods and its congruent

repetitions the domain of the independent variable, the theta or

the sigma function. The characteristic properties of this func-

tion are:

(a) that it is single-valued and analytic within and on the

boundary of the parallelogram;

(6) that its values in corresponding points of the boundary

are related to each other in a simple manner, namely,

n(
a(u+ u) = — e

K Ja(u),

|'(«+V) , N

ff(u+a) = — e (t{u);

199
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(c) that it has a single root of the first order in the parallelo-

gram.

These properties can be followed with ease when the function

is transplanted to the two-leaved (or n-leaved) algebraic surface

F, spread out over the z-plane. If a system of cuts is made in

F so that a simply connected surface F' with a boundary is

generated, a branch of the theta function will be single-valued

in F'. This branch will be analytic in all the ordinary points

of the surface and continuous in the branch-points, and its

values on opposite sides of a cut will differ from each other by

a factor always finite and different from zero. The point <x> plays

no exceptional role. Finally, the branch in question will have

a single zero of the first order in F'.

If the function is considered on F, it will be infinitely multiple-

valued. But in the neighborhood of any point its values can

be grouped to branches each single-valued there, analytic in the

ordinary points, and continuous in a branch point.

The Independent Variable. I spoke above of the single function

in terms of which the group of functions considered in this theory

can be expressed. But a function implies an independent, as

well as a dependent, variable, and the theta function in the ordi-

nary, restricted, sense is simple because of a felicitous choice of

the independent variable. If we follow this variable over the

fundamental domain taken now as the n-leaved surface F' , we

find in it a function on this domain,

(a) which is everywhere analytic in the ordinary points and

continuous in the branch-points and at infinity;

(b) which takes on boundary values differing by an additive

constant across a cut; and

(c) which maps the neighborhood of any point,—even though

this be a branch point,—on a smooth single-leaved patch in the

other plane.— The function happens to be in this case the every-

where finite integral of the algebraic configuration.

Generalizations for p > 1. On an w-leaved algebraic surface

of deficiency p > 1 the algebraic functions and their integrals
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present themselves without difficulty. But they do not yield a

transition to a new fundamental domain on which a function

with the essential properties of the theta function is readily

defined. Riemann constructed functions in a measure akin to

the elliptic thetas by means of the theta functions of p arguments.

But, aside from the fact that his functions have in general p
roots,—never a single simple root,—they may in particular

vanish identically.

Weierstrass, on the other hand, introduced functions which

are single-valued and in general analytic on F, but which have a

finite number of essential singularities.

A way out was found by Klein in the use of homogeneous

variables, already employed by Aronhold and Clebsch in the

study of transcendental functions.* Klein perceived still greater

possibilities in these ideas and carried through the definition of a

function which, considered on the allied manifold in the space of

the homogeneous variables,—allied, I mean, to the Riemann's

surface, F,—is a generalization of the elliptic theta function,

namely, his prime function^ fi(£i, x2 ; y\, y2). The latter is a

function, not of two variables x, y corresponding to two points

of the given algebraic configuration, one of which, y, may be

thought of as a parameter, x being the variable; but of four

independent variables xi, x2 , yi, yi. It is homogeneous in x x , x2 ,

and also in y\, y2 .

In Klein's investigations there are two very distinct things

which he desires to accomplish. He wishes, it is true, to find a

generalization of the elliptic theta function. But he also wishes

to obtain a function which will formally be invariant of certain

linear transformations,—often the collineations of the space in

which the basal algebraic configuration (Grundkurve) is inter-

preted.

To accomplish the latter end, the value of the homogeneous

* This method was expounded systematically in Clebsch and Gordon's

Abelsche Funktionen, of the year 1866.

tGottingen lectures on the Abelian functions, S.-S., 1888, to S.-S., 1889;

Math. Ann., 36 (1889), p. 1.
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variables he employs is unquestioned. But in so proceeding,

the former object is made secondary,—at least, the homogeneous

variables must be accepted from the outset, and he does not

obtain in the end a function of a single variable and a single

parameter, like the elliptic theta transplanted to the surface F.

I propose to give here a direct solution of the former problem.

What has all this to do with functions of several complex

variables? Just this, that the methods of that theory yield

proofs where proofs, in the theory as developed by Klein, are

lacking.

One word as to the importance of this mode of treatment.

The algebraic functions and their integrals occupy a central

position in analysis through their relation to the geometry of

algebraic curves and surfaces, the theory of linear differential

equations of the second order with algebraic coefficients, and the

automorphic functions of one and of several variables, including

the periodic functions of several variables. The progress of

mathematics in the future, even more than in the past, will de-

pend on the rapidity with which the recruits can be despatched

to the frontier. As a result of the theorems of uniformization

now rigorously established an improved treatment of the alge-

braic functions and their integrals has become possible and, by

reason of its simplicity and generality, appears suited to super-

cede the methods hitherto used. In this treatment, the prime

function as developed in the following paragraphs is the domi-

nating factor and may be made the basis for the whole theory.

§ 2. The Pkime Function Defined as a Limit

Generalizing from the elliptic case considered by Aronhold

and the hyperelliptic case, which he himself had treated at

length, Klein introduced, for an arbitrary algebraic configura-

tion, reduced by birational transformation to a normal form,

an expression which he called an " everywhere finite differential,"

and which he writes as do>x . It is sufficient for our present

purposes to know that this expression is analogous, for the neigh-
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borhood of a given point of the configuration, to what would
appear in Weierstrass's theory as x(t)dt, where t denotes the

parameter by means of which the neighborhood in question is

uniformized, and x(0 is analytic and does not vanish there.

Let P
iv(x) be an Abelian integral of the third kind with its

logarithmic discontinuities in the points x = £, x = rj, and let

P% = P^x) - P
(v (y).

Moreover, P|,(cc) shall be so chosen that

p*y _ ph
* tl L xy-

Klein defines his prime function Q(xu x2 ; ylt y2) as the follow-

ing limit:

pX+dx, y+dy
dux do}y e

x
' y

*e=0, dy=0

We can now state the definition of the prime function which

we propose to develop in detail in the following paragraphs. Let

the algebraic configuration be an arbitrary one of deficiency

p > 1, and let it be uniformized by automorphic functions with

limiting circle in the f-plane.* Let the integral P, transferred

to the tf-plane, be written

T>l', t'

Then

V
pt+At,r+AT

AfAre '"

In form, then, the definition is identical with Klein's.f But

whereas Klein's dwx is single-valued on a homogeneous configura-

tion corresponding to the given algebraic configuration, our dt

is not invariant of the transformations of the automorphic group.

Transferred to the surface F it is infinitely multiple-valued.

On the other hand, ti(t, r) is a function of the two independent

variables t, r, each being chosen arbitrarily in the fundamental

* The details of this uniformization are set forth in the second edition of the

author's Funktionentheorie, vol. I, 1912, ch. 14.

t Math. Ann., 36 (1889), p. 12. Cf. also Klein's account of the relation of his

prime function to Weierstrass's E{x, y) and Schottky's 2?(£, 17); ibid., p. 13.

15
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domain corresponding to the given algebraic configuration, and

not on an allied configuration in the space of the homogeneous

variables. Here, r plays the r61e of a parameter, t being the

(single) independent variable.

It is, however, important to know the nature of the depen-

dence of ft on both arguments, regarded as independent variables.

So far as the analytic character of the dependence is concerned,

theorems in the newer theory of functions of several complex

variables afford precisely the tools that are needed.

§ 3. The Existence Theorems

It is evident that, if we are to deal with such a limit as the one

here considered and infer the analytic properties of the limiting

function, it will not suffice to study the function PfJJ or P*'T
T

merely in its dependence on one variable at a time. The theorem

of II, § 5, combined with the existence theorems as developed by

Neumann, enables us to obtain with ease the foundation needed.

Let us consider first, as lying nearest to the theory of Neumann,*

an arbitrary algebraic Riemann's surface F and two points £, ??

of the same. Moreover, £, i\ shall be ordinary points, and it

shall be possible to enclose them within a circle K not including

any branch-point in its interior or on its boundary.

Let £, 7] be joined by a right line L, and let F be cut along L.

Then there exists a logarithmic potential function v, single-valued

and finite in the severed surface, harmonic at all ordinary points

and continuous in the branch-points and at infinity, admitting

harmonic continuation across L from either side, and such that

1>\l+ = fllz- + 27T.

Let 6 be defined in the region consisting of K cut open along

L as follows:

= arc (z — £) — arc (z — rj)

= tan 1 Z7 — tan L

x — i, x — 7]

- 7T < 6 < TT,

i y

* Abelsche Integrate, 2d ed., 1884, chs. 16-18.
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where z = x + yi, £"= £' + %'i, 77 = rj' = 77' + t/'i. Then

(2) * =«+/(*,»),

where /(a;, j/) is harmonic throughout iL

By means of this function:

v = Hx,y,?;t;";r,',v"),

2p everywhere finite logarithmic potentials can be constructed,

each admitting the modulus of periodicity 1 across one of the 2p

cross cuts, but being single-valued across each of the others.

In fact, let C be a loop cut not passing through a branch point.

Mark on C n points £%> k = 1, • • •, n, so chosen that about two

consecutive points a circle K can be drawn. The function v

being formed for each pair of consecutive points, the sum of

these n functions will be an everywhere finite logarithmic poten-

tial with modulus of periodicity 2x across C.

These 2p functions are seen to be linearly independent. Out

of them a normal system of p everywhere finite integrals can

now be constructed:

(3)

where au = a>ik-

Furthermore, if we denote the conjugate of the above function

v by — u, then

u + vi

is an integral of the third kind. Such an integral can be obtained

for an arbitrary pair of ordinary points £, 77 of the surface by

joining these points by a curve L, interpolating on i re - 1

points so that two consecutive points lie in a circle K, forming

the foregoing function for each pair of consecutive points, and

adding these n functions together.
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Finally, this integral can be reduced to a normal integral

II^(z) with vanishing moduli of periodicity across the A cuts:

(4)
n«,(«)

At Br B%

2wf" 2io|"
'

•••

where Wk(z) denotes a branch of the function taken in the simply

connected surface F', and

(5) wp = wk (£) — v>k(v).

The integral II^(z) is completely determined save as to an

additive constant, which is any function of £, 17.

If we set

= n
f
,(z) - n

t,(wO,(6) n£
then*

(7) ^
The scheme of the moduli of periodicity of the function H*y

, when

regarded as a function of one variable at a time, is as follows, f
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where <Pk(z) denotes the integrand of the normal integral Wk(z):

wjb(s) = I <Pk(z) dz + const.

§ 4. Dependence on the Pakameter

The function v of § 3, (2) has hitherto been considered solely

in its dependence on x and y. It has the following further

property, as is seen directly from the existence proof. Let K'

be a circle concentric with K and of smaller radius, and let the

points |, 7] be restricted to the interior of K'. Then f{x, y),

which now becomes a function of £'', £", 77', i\" as well as of x, y,

remains finite when [x, y) ranges over K and (£', £"), (»?', v")

range independently over K', provided that we complete its

definition by demanding, for example, that it vanish in a fixed

point of K exterior to K'. The function is defined only when

the points (£', £"), (1?', 77") are distinct.

It is now readily inferred from the well-known properties of

the logarithmic potential that the function conjugate to f(x, y)

also remains finite when (ar, y), (£', £"), W> v") vary as above,

the definition of this function being completed, for example, by

demanding that it vanish in the same fixed point of K.

Finally, it is seen that v remains finite in the part of F exterior

to K when £, rj range over K'. Hence a branch of u + vi, con-

sidered in a simply connected region S of F, remains finite there,

provided £, 17 are exterior to S and, moreover, that their minimum

distance from the boundary of S does not fall below a certain

positive constant. Similarly, the moduli of periodicity of

u + vi across the A and the B cuts remain finite when £, t\ range

over K'.

Let £0) ?7o be two distinct points of K', and let z , w be two

ordinary points of F distinct from £ , Vo- Consider the cylindrical

region T = (7^, Tv Tz , Tw) corresponding to small circles about

each of the points £ , Vo, z , w . If three of the four variables

are assigned arbitrary values in their circles and then held fast,
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while the fourth is allowed to range over its circle, it appears

from (6) and (7) that II|™ is analytic in this variable alone.

Furthermore, from the considerations which have just preceded,

it is seen that when all four variables range over their circles,

II|" remains finite in T. We infer, then, from the theorem of

II, § 5, in its restricted form that II is analytic in all four variables

regarded as simultaneous.

Next, let us consider the function II when z = £ , the point z

lying in the circle about £ - The points £o, vo, w are distinct

ordinary points. But it is necessary now to demand that 3 shall

not coincide with £. If we write

(11) III? = log (* - + H(*, w, i, v ),

then 21 is defined at all points of T except those of the locus

z = £, and 21 is finite. It follows here, as in the earlier case, that

21 is analytic in those points of T in which it is defined. And

now comes a typical application of the theorem of III, § 4,

relating to removable singularities. From it we infer that 21

approaches a limit in each of the excepted points, and that, if

21 is defined there as equal to its limit, then 21 will be analytic

there.

Similar formulas hold for other coincidences of the points

Zo, Wo, £o, Vo- Thus, when all four points coincide,

(12) lit, = log
(2
_

^)(w
_ q

+ Aiz, to, |, v),

where A is analytic in all four arguments, regarded as simul-

taneous, in the point in question.

§ 5. The Functions in the Automoephic Fundamental
Domain

We proceed now to transfer all the functions from the n-leaved

Riemann's surface of the z-plane to a fundamental domain g
in the unit circle of the <-plane. The relation between z and t

shall be expressed by the equation

(13) z = <p(t), or t = w(z).
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The fundamental domain g for the automorphic group G in

question can be chosen as a circular polygon of 4p sides joined

in pairs. In the canonical system of cuts in the w-leaved surface

the positive direction of a JB-cut shall be oriented to the positive

direction of an ^4-cut as the positive axis of ordinates to the

positive axis of abscissas; and the left bank of each cut, when

the latter is described in the positive sense, shall be taken as the

positive bank. The four banks appear, then, in the i-figure as

indicated. We shall regard the points of the curves A~, B~
as pertaining to 5; those of A+, B + as not pertaining to %.

Fig. 4. Fig. 5.

The Normal Integral of the Third Kind. In building up the

integral of the third kind we have excluded the case that £, t\

lie at a branch point or at infinity. Such points present no

peculiarity in the f-figure. We can remove this exception in

either one of two ways : (a) we can go back and extend the earlier

considerations to the cases excepted, or (6) we can establish the

existence theorems directly for the case of the fundamental

domain %.

There is no difficulty in carrying through the first method.
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The second method,* however, yields the desired results with

essentially the same machinery as that used for the n-leaved

surface, but with no excepted cases whatever.

The final result in either case is that the formulas for which

(11) and (12) are representative hold unchanged for the f-plane.

Thus, for example, if t, t, t', r' be any four distinct points of

%, we shall havef

(H) n%, = log
^Z^ll'j'J) + »& t; l'> *')>

where 21(2, r; t', t') is analytic in its four arguments throughout

the cylindrical region (g, gf, %, %) inclusive of all boundary

points.

The Transformations of the Functions. Let

(15) ta =La(t), a = l,---,p,

be the linear transformation of G which carries A~ into Aa
+

;

and let

(16) tp+a = Lp+^t), a= 1, • • •, p,

carry B~ into 2?a
+

. The inverse,

t' = LrKf),

will carry A^ into A~; and similarly for (16).

The transformations (15), (16) together with their inverses

constitute a system of generators for the automorphic group G.

Any single-valued function on F which has no other singularities

than poles goes over into a single-valued function of t having no

other singularities than poles within the unit circle
1

1
\
< 1 and

(with the single exception of a constant) having the circumference

of the circle as a natural boundary.

The Abelian integrals of the first and second kind also go over

into single-valued functions of t having no other singularities

* Cf. Fricke-Klein, Automorphe Funktionen, vol. 2, chap. 1.

t The notation for the dependent variable here and in the following is the

same whether the arguments are taken in the i-circle or on the z-surface. It

will be clear from the context each time which is meant.
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than poles within the circle. Those of the third kind have

logarithmic singularities.

Consider, in particular, a normal integral of the first kind,

WjT
, where t, r correspond respectively to z, w. Then, if the

transformation (15) be performed on t,

(
w)f = <, k*a;

1 w'a«
T = w'a

r + wi.

Corresponding to a transformation (16) we have

(18) «#+"•'=< +<**..

If, on the other hand, t is transformed and t held fast, the

sign of the additive term is reversed.

It appears, then, that the scheme (3) applies to the integrals

Wj
c

T
, k = 1, • •

, p, when regarded as functions of t alone, the

transformations being those of (15), (16). When these integrals

are regarded as functions of r alone, each term in the scheme

(3) is replaced by its negative.

The scheme (8) applies, with the requisite changes in the

letters, to the transformed integral Ii.'JT'-

Homomorphic Functions. Any Abelian integral u, when sub-

jected to a transformation of the group G, experiences a trans-

formation of the type

(19) u' = u + A,

where A is a constant. These functions come under the general

class of functions which undergo a transformation of the form

(20) H^f). *«-«•+*

where M, • • •
, Q are constants. The general class of functions

which have this property are called homomorphic functions.*

To the algebraic functions on F correspond functions u of t,

for which (20) reduces to the identity. These functions are

* Klein, Ueber lineare Differentialgleichungen zweiter Ordnung, Gottingen,

S.-S., 1894 (lithographed), p. 492.
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absolute invariants of the group G, and are automorphic func-

tions of t.

§ 6. An Auxiliary Function

Let t, r be any two distinct points of the fundamental domain

3r. We can, without loss of generality, think of them as interior

points, since the precise boundary of % can at any point P be

modified slightly by what is known as an " erlaubte Abande-

rung," the choice of the boundary as circular arcs being made

merely for simplicity and definiteness.

Let t' = t -\- At and t' = t + At be two variable points of

the neighborhoods respectively of t, t. Form the function

X'(t, t, At, At) = AtAt i'*****
1 t+At

.

Then, by (14)

:

X'(t, r, At, At) = (t - t - AT)(t - r + A0«* i""( ',Ti '
+A'' T+dT)

.

But the function §!(£, r, t', t') is analytic in the point (t, t, t, r),

and hence X'(t, t, At, At) approaches a limit when At, At inde-

pendently approach as their limit. We have, then,

lim X'(t, t, At, At) = (t - r)V'-*^ T
'

« T) = X(t, t).

The excepted points, t = r, are seen to be but removable

singularities for the function X, and thus X(t, r) is defined and

is analytic throughout the cylindrical domain (5, §)• H we
regard t as a parameter, X, considered as a function of t, van-

ishes twice in the point t = t and nowhere else in %.

To obtain the function X(t, r) throughout its entire domain

of definition we could use the same limiting process as above,

subjecting t and r independently to transformations of G. It

is sufficient, however, to know how X behaves on the boundary of

$> or (5> S)- In order to ascertain these relations, we will

employ the method which is familiar when one is dealing with

fundamental domains.*

' Osgood, Funktionentheorie, vol. 1, chap. 10, § 8.
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The Behavior of X(t, r) on the Boundary. Let r be an interior

point of %, and let c be a point of B~, ca its image on Ba
+

:

(21) c„ = Lp+a(c).

Then, by (8),

n>; = w,%, + 2<T '

= n, T(0 - n CT (r') + 2WrT '.

Let c' = c + Ac be a second point of B~ near c, cl = ca + Aca

its image on B„+. We have, then, by the aid of the last equa-

tion, and (18), (8):

w
cfT,

= nCT (cl) - n CT (r') + 2wT

= WJr' + 2<T + 2<v + 2aaa .

Turning now to the functions

X(c„ r, Aca, At) = AcaATe~
n^,

X(c, r, Ac, At) = AcAre
-""'

it is seen that

X(ca, r, Aca, Ar) =
ff r^-f"*•

X(c, r, Ac, At).

Let Ac, At approach as their limit. Then

(22) X(c„T)=^e-<
T-2a

-X(c,T).

If c, ca had been chosen on A~, A+, where now

ca = £a(c),

we should have had, corresponding to (22)

:

dc
(23) X(ca, t) = -£ X(c, t).

2"Ac Monogenic Analytic Function X(t, t) and its Transforma-

tions under the Group G. We are now in a position to show that

X(t, r) can be continued analytically throughout the domain
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(K) = (K, K), when K refers to the unit circle. Since the details

are precisely parallel to those in the treatment of the (r-function,

Funktionentheorie, Chap. 10, § 8, they may be left to the reader.

We thus obtain a function analytic throughout this domain and

not admitting analytic continuation beyond it. This function

has the following properties.

(i) X(*, r) = X(r, t);

(ii) X(t, t) = (t - t)
2
*(*, r),

where ~$r(t, t) is analytic throughout (K) and

*(t, t) + 0;

(hi) X(ta, t) = L'a(t)X(t, t), a = 1, • , p;

(iv) ; X(W« t) = L'p+a (t) e-<
T~2a

">X(t, r), a=l,---,p;

(v) X(t, ra) = L'a(r)X(t, t);

(ri) X(«, ip+a(r)) = i;+a (r) ^-'^-Xft r).

If the transformation

ta = La(t), a = 1, ,p,
is replaced by its inverse,

t' = LrKt) = Ma (f),

formulas (hi) and (v) become:

(vii) X(Lr\t), t) = Ml(<) X(«, r),

(viii) X(*, irKr)) = M'a(r)X(t, r),

K{t) = L'a[L-Ht)V
But if

£P+« = Lp+a (t), a— 1, • • •, p,

is replaced by its inverse,

t' = L;Ut) = ^WO,

formulas (iv) and (vi) are replaced by the following:
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(ix) X(L~Ut), r) = Mp+a (t) e^'J-^Xit, r),

(x) X(t, L-Ut)) = M'p+a(r) e-K
T-2a««X(t, t) ,

KUt) = K+a[L-pUt)Y

It will be observed that L'Jj), L'p+a(t), a — 1, •••, p, are

analytic and different from zero throughout K.

§ 7. The Prime Function Q(t, t)

The prime function fl(£, r) is now denned as follows.* The

two square roots of the function X(t, t) can be so grouped as to

yield two functions each single-valued and analytic throughout

(K). Let one of these functions be denoted by \X(£, r). Then

(A) Q(fi, r) = CaS^V),

where C denotes a constant not zero.

This function has the following characteristic properties, which

are easily proven from its definition and the developments of

the last paragraph.

(a) Q(t, t) is analytic in the cylindrical region (K) = (K, K)

and has the boundary of this region as a natural boundary.

(6) Q,(t, t) = - Q(t, t).

(c) %r)= (t-r)Q(t, T),

where Q(t, t) is analytic in (K) and

Q(t, t) =1= 0.

More generally, let

f = L(t)

* In the definition of X(t, t) it is not essential that the normal integral UjT>

be used. Any other integral of the third kind, P'j7 >, which permits the inter-

change of parameters and arguments would serve equally well. Thus a

prime function $2P (J, t) would result which has the same properties (a), (6), (c),

but for which (d{) is replaced by a pair of similar equations, each right hand

side having an exponential factor whose exponent is a linear function of

VJi
tT

,
• • •, wJt.
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be any transformation of 6. Then

Sl(t,T)=(t-T')Q'(t,T),

where Q'(t, t) is analytic in (K) and

Q'(t, t) * 0.

J
fi(i„r)=VZnO%r);

lfife+„ r) = Vi;+a (<) e-*<
T-<w Q(t, r)

.

Here, each square root denotes a function of t analytic in K and

different from zero there. The value of these functions is given

below.

Furthermore

f 0(*,t„)=V£W«(*,t),

[Q(t, rv+a) = Vi;+a(T)e
s»i

T-°M Q (*, r),

where the square roots denote the same functions as above, in (d)

.

These square roots have the following determination. The

transformations

t' = La (t), f = Lp+a (t)

are hyperbolic. Let them be written in the form

t'-u~ A t-w 0<A -

The fix points f , fi lie on the circumference of the fundamental

circle. Then

where L(t) is any one of the functions La (t), Lp+a (t).

§ 8. The Detekmination of Q(t, t) by Functional

Equations

The properties (a), (b), (c), (d) or (d') serve to characterize the

function fi completely. For, let ty(t, t) be a second function
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having the same properties. Let r be an arbitrary point of 5,

and let it be held fast. Form the function

*(*, t)

Q(t, r)

Then this function, regarded as a function of t, will be analytic

in K except for removable singularities in the points t = r and

in the images of this point under the group G. Let it be defined

in these points as equal to its limit. The new function is analytic

without exception in K, and does not vanish there.

From (d) it follows further that this function is invariant of

the transformations of G. It is, therefore, a constant, as can be

seen at once by transforming it to the n-leaved surface F. Hence

|^4=/(r), *ftT)=/(r)Q(tT), /(r)*0.

This last relation is an identity in t, r, and hence can equally

well be written in the form

¥(t, t) = /(*) 0(t, t).

Now apply the property represented by (b). It follows that

-¥(f,r) = -/WQftr).
Hence

fit) = /(r),

and this completes the proof.

From the foregoing result it is seen that the properties (a),

• •
•

, (d) can serve as the basis for an independent definition

of the prime function Q(t,r). Thus the function might be

represented by an infinite product, as Weierstrass defined his

elliptic a-function. And just as Weierstrass made the latter

the basal function for the whole theory of the elliptic functions,

so the algebraic functions of deficiency p > 1, and their integrals,

can be represented in terms of Q(t, r). We proceed to give the

fundamental formulas.
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§ 9. The Abelian Integeals in Teems of the Peime

Function*

The Functions n„(0, K'r- From (c) and (d) of § 7 it is seen

that the formula

T TT U\ i
n& °0

L n- (<)
= l0g

^77)

gives a particular normal integral of the third kind, the general

integral differing from the above by an additive term which is

an arbitrary function of a, t. In the absence of any reason to

the contrary we set this term equal to zero, i. e., we lay down

arbitrarily the definition I. Thus this integral is completely

determined.

If we set

*. = 1.(0, tp+a = LP+a (t), a = 1, • •, p,

dta. _ , dtp+a _ ,

dt ~ %"
U dt ~ P+a'

we find

r n„(o = n„(o,
An ]

[ iiZiM = n„(0 + 2<-

fn^(0 =n„(0 + liog(r:,

I
nap+a, T (0 = n„(0 + \ log <71>+a + 2w</ - aaa ;

f n„ ra(0- =n<rT(<)-|iogr:,

[ n,, TjH .a(0
= n„(<) - | log r'p+a - 2wl

T + oM .

The function H"JT is now represented as follows:

tt n" 1

-i.-.g
Q(j'

g)a(f> T)

* T S
12(5, r) Q(f, ff)

"

For this function, regarded as a function of s alone, the formulas

(Ai) hold without modification. When t is the sole independent

* The deductions of this paragraph are suggested by corresponding formulas

in the case p = 1, the function U(t, r) corresponding to d(t — t) or <r{t — t),

Cf. Klein, Math. Ann. 36 (1889), p. 11.
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variable, the second term on the right of the second formula in (Ai)
is reversed in sign.

On the other hand, the formulas (A 2) are simplified.

f W = II"

Ln;;+aiT = n;(

T + 2<'.

The new formulas (As) are similar, the last term being reversed

in sign.

The Functions w s

J, $a (i). From (A 2') and II. we obtain:

TTT „„"< - l i
r

Q(*iCiHJfl(*, c)
AH- W„ = f log prr. z-pr; r2 s

Q(t, cp+a) Q(s, c)

or

w
« = - los

Q(«, C) Q (af CjH-
J = * logW + const-

The expression on the right-hand side is multiple-valued, but

the different values can be grouped so as to yield single-valued

functions each analytic in K. We choose that one of these

functions which vanishes when t = s, or t = a.

A second expression for w°a
l

as the integral of a single-valued

function is given below, Formula VII.

Let $a(t) be defined as follows:

*.«> = ^. «r-jf*.w.)dt.dt Jt

Then

x
d

,
Jl(t, Cp+a)

IV. *.(0-*
F<

log
QAc)

T^e Functions YT (f), Y'T\ Let

v. Y,(0 = |: n„(f) = - £ log o& t) = ~-
r
+ W, t).

If we differentiate (4i) with respect to t, we obtain

ft(0 = yT(o,

16
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If, furthermore, we differentiate (^3) with respect to r, we have

(Si)

FT.(0 = irr(0-4^r,

*«(r) 7~P+a^+„(0 = d- Yr® +2^-h-*?,
TP+« Tp+a Tp+a

where the accents denote differentiation.

Let Y*T ' be defined as follows:

y;« = Fr(«) - yT(o.

For this function, regarded as a function of s, formulas (Bi)

hold unchanged. When t is taken as the sole variable, the last

term in these formulas is reversed in sign.

On the other hand, (52) is replaced by

(5,0
y*t ,£_ y«( -yet __ * Yat

" T„
T*+« Tp+a

From (5i) it follows that

VI. $a(r) = |{FT(0-FT«p+a)}.

VII. «:' = *jT{Fr(c)- Yr (Cp+a)}dr

The Derivatives of &(t, t). Let

or* -\

8Q{t' T)
Qi(«, t) =

5Q(«,t)

From V. it follows that

VIII. Q»{t,T) = - Q{t, t)Ft («).

From (&) we have:

Qi(<, r) = - 0,(t, 0.

Hence

IX. dft r)= -a(<,T)y,(T).
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The Functions Yf\t). From the relations

8t
~

(
fZT^2+ Ut, r),

^yT(Q = (m-l)l

where 8L-1& t) is analytic within and on the boundary of (g, %),

we are led to define Yf\t) as follows:

* T W (m- 1)1 drm~l
-

Here,

From (i?i) we obtain the formulas:

r YtxQ = nm)
(o,

(C)

| r^j = y«(o - ^-A_*f-»(T).

§ 10. The Integral of the Second Kind on J"

The function rT (£), when transferred to the n-leaved surface

F, is an integral of the second kind with a simple pole and with

its moduli of periodicity corresponding to the ^4-cuts all zero.

It differs, however, from the integral there taken as the normal

integral, namely Z^(z), as follows.

We denoted by
z = <p{t)

the function which maps the w-leaved bounded surface F' on

the fundamental domain %. Let r be a point of % corresponding

to an ordinary point £ of F'. Then

z&) = 7=^+ »(*)» Y^ = r^r+m
where 21 (z) and 33(£) are analytic respectively in the points

2 = £ and t — t.



222 THE MADISON COLLOQUIUM.

It follows, then, since

z - S = <p'(r)(t - r) +^ (t - r)
2 + • •,

and <p'(r) 4= 0, that

XL Z
t(z)= n̂ YT(t)+f(r).

This last result is fundamental in. showing the unfortunate

choice made in the earlier case in defining the normal integral

of the second kind, whenever it is a question of the dependence

of this integral on the parameter.* As £ approaches a branch

point of F, the integral Z%(z) is seen to approach no limit, and

its moduli of periodicity across the 5-cuts,—the integrands of

the everywhere finite integral on F,—or certainly some of them,

become infinite. Nevertheless Z^(z) has a perfectly definite

value when £ lies in a branch point, and the relation of the integral

in this case to YT (f) is obtained from the formulas

(z-W^(») = ,._tti/. + g(*).

^^J YT (t) + const.

There is, then, complete discontinuity in the dependence of

Z
t
(z) on £ at a branch point, and this discontinuity does not

correspond to any important property of the integral of the second

kind. On the other hand, the points r for which p'(r) = are

in no wise exceptional points for the function YT (t).

It appears, then, that the earlier integral should have been

normalized so as to correspond to Yr (f). This can be attained

without reference to YT (t) by replacing the earlier Z^z) by

W(l),
* The present modification is analogous to the one introduced by Klein

through the use of his " everywhere finite " differential da,.
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Nor is this the only point at which this factor enters. We
turn next to the functions which correspond to the adjoint C„_3 ,

namely, the integrands of the everywhere finite integrals, and
we shall find the factor reappearing there, also. In § 14 we shall

discuss at length the nature of this factor.

§ 11. The Integrands of the Integrals of the First Kind
If we write wa(z), considered on the surface F, in the form

wa(z) = I <pa(z) dz,

and recall that, when w„ is considered in K,

K" = I #a(0 dt + const.,

we see that

XII. «.M-~*.<0, or *.(«)/(£) = *.(*).

The function <pa(z) is single-valued on F, and its only singu-

larities are poles, which are situated in the branch points of F.

&a(t), on the other hand, is analytic without exception in g,

or in K. Here again, then, it is the factor l/(dt/dz)=<p'(t) that

removes the singularities from an earlier function.

The functions $„(£) are not invariants under the group G,

nor are they even homomorphic. They take on a factor which

is finite and different from zero. In fact,

(D) **W = z^) ;
*k{t^)

=
KuFy

where k = 1, • • , p and a = 1, • , p.

In the treatment of Abel's Theorem and the theorem of

Riemann-Roch, when the functions entering were considered on

F, there were exceptional cases that required special consider-

ation, due to a function's becoming infinite. When the same

theorems are treated on the fundamental domain g and the

method of contour integration is used, the results are completely

general, no exceptions whatever occurring.
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Noether's normal curve C is given by the equations:

pxa = $a(t), a= 1, , p.

The hyperelliptic case being excluded, the curve has no multiple

points. The treatment by means of the functions $a (t) is

simple and complete.

By the aid of these functions, too, a canonical Riemann's

surface which Klein* has introduced can be treated satisfactorily,

analytic proofs replacing the customary algebraic assumptions.

Klein projects the curve C on a pencil of planes, i. e., he sets

z = —

,

where
w, = iii*i(i) + • • • + up$p (t),

the Uk's and Vk's being non-specialized constants. As the other

variable, s, he takes the following:

d /w*\

dt \ »j, /
s = .

A further application is one that Kleinf has given. The

principle of correspondence in algebraic geometry, due to Charles-

Cayley-Brill, was proven under suitable restrictions by Hurwitz J

with the aid of the theta functions of several variables. Klein

constructs a proof by means of his prime function along the

lines of Hurwitz's proof, and the present prime function Q(t, t)

yields the same results. Both in Hurwitz's and in Klein's proofs

details are omitted which can be satisfactorily supplied by the

theorems above considered in II, § 6.

* Math. Ann., 36 (1889), p. 23. This particular canonical surface is obtained

from Noether's normal curve and was given by Klein in his lectures on Abelian

Functions, Gottingen, W.-S., 1888/89.

t Gottingen lectures on Abelian Functions, W.-S., 1888/89, Lecture IX,

Dec. 15, 1888.

t Math. Ann., 28 (1887), p. 561.
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§ 12. The Algebraic Functions

A single-valued function on F having no other singularities

than poles yields an absolute invariant of the group G, the new

function, considered in K, being analytic except for poles.

The necessary and sufficient condition which 2n points of %,

ajc and Tk, k = 1, • • , n, must satisfy if they are to be the zeros

and poles of such a function F(t), is found by contour inte-

gration* to be the following

:

(i) wa(<ri)H \-Wa (<7n)=wa(Ti)-l r-Wa(Tn) (mod. periods),

i. e.,

n p

(iO X) <*Ti = At.« + X) Vj aaj,
*=1 3=1

where a = 1, • •
, p and the jxa , vj are integers.

If one of the above points, as r„, be replaced by an equivalent

point under the group G, the coefficients ixa, Vj will thereby be

modified. It is evidently possible to choose the latter point so

that these coefficients will all be zero, and we suppose this done.t

n

(i") E«£m = 0,

where, now, <r\, • , <rn and n, • • • , t„~-i lie in %, while t„ may

not.

More generally, the points <ri, • • •, cr„ and n, • • •, t» may be

any 2rc points satisfying (i") and such that the points of g
equivalent under 6? to <r\, , crn are all distinct from the points

of % equivalent ton, • • , rn .

To express the function F{t), or to prove the existence of such

a function, the procedure is similar to that in the elliptic case,

where a(t — t) corresponds to the present Q(t, r). Form the

* The integrals which are to be extended round the boundary of a are

-i-. f d log F(i), -U f wa(t)d log F(t).
2inJc zmJo

t It is sufficient for the application which follows that merely the t>,- be

reduced to zero.
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function

flfe (Ti) • Off, <T»)

*W
fife Tl) • • • Q(f, T»)

'

This function has the desired zeros and poles. Moreover,

2 2 io„°'*T*

*(W = « fc
' #(0 = *(0,

where a = 1, • • •, p, and this completes the proof.

§ 13. Paeametric Representation of a Homogeneous

Algebraic Configuration
Let

(1) F(w, *) =

be an irreducible algebraic equation. Let homogeneous variables

be introduced. If, for example, we wish to regard (1) as a curve

in the projective plane, we shall set

(A) z = — , w = —

.

Xi Xi

On the other hand, we may regard (1) as a curve in the plane

of analysis, and set*

(B) z = —, w = —

.

Let (1) be uniformized as above by the function

z = <p(t).

Then we can express z, w in terms of t by the aid of the prime

function as follows:

= W, h) W, K) = Q(f, ft) • • Q(f, ft.)
{Z) Z

Q(t, Ol) • • • Q(t, On)
' W

W, Oil) Q(t, dm)
'

Here, the points of % equivalent to oi, • • • , an are distinct from

those of ^ equivalent to b\, • , bn ; and similarly for on, • •, <Xm

and ft, ••jftn.

*Cf. Riemann, Abelsche Punktionen, §6; Werke, 1. ed., p. 103.
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To uniformize the homogeneous configuration corresponding

to (B) it is sufficient to set

zi = pQ(t, a{) •
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the configurations in the space of the homogeneous variables

which are allied to a given algebraic configuration.

§ 14. Linear Differential Equations on an Algebraic

Configuration, and the Factor <p'(t)

In his further development of Riemann's programme relating

to the determination of linear differential equations by their

monodromic group Klein has studied differential equations of

the type

(A) ^+ P(u, z)^+Q(u,z)U = 0,

where the coefficients P and Q are single-valued functions on a

given algebraic Riemann's surface F corresponding to the irre-

ducible algebraic equation f(u, z) = of arbitrary deficiency p;

the coefficients having no other singularities on F than poles, and

being, therefore, rational in u, z. Let P and Q be further so

restricted that the singular points of (A) are all regular, and let

p > 1. Among such differential equations the subclass is of

especial interest whose members have no singular points what-

ever. If Ui and U2 be two linearly independent solutions of

such an equation and we set*

(1)
Wi

=s,

then the neighborhood of an arbitrary point of F is mapped by

this function on the smooth neighborhood of a corresponding

point of the extended s-plane (or sphere).

The function s is multiple-valued on F. When z describes a

closed path on F, a given determination of s, continued analyti-

cally along this path, goes over into a linear function of the initial

determination:

* The notation s was used by Schwarz in similar cases, to whom are due the

earliest investigations in this field which appeared after Riemann's fundamental

memoirs. Klein uses the letter 17 in this sense.
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as+0
ys + 8

Thus s is homomorphic, § 5.

The present class of equations contains 3p — 3 parameters,

and it is a problem conceived in the spirit of Riemann's theory

to find a vital property of the solutions which shall suffice com-

pletely to determine these parameters and thus single out from

the class a unique member.

Klein* has given the following solution of this problem.

Let F be rendered simply connected by a system of cuts, the

bounded surface being denoted by F'. Then the function (1)

will map F' on a simply connected region of the s-plane. This

region will have no branch points; but it may overlap itself, and

even if this were not the case, the further regions obtained by

allowing z to cross the boundary of F' and then describe F' again

may conceivably overlap one another. Let the totality of such

regions be denoted by 2.

As a first restriction on the present class of differential equations

Klein demands that 2 shall be simple, i. e., consist of a single-

sheeted region.

To state the requirement in another form, it is this. The

function * is multiple-valued on the closed surface F. And now

we demand that the values which s takes on in a given point of

F shall all be distinct, no matter where this point be chosen.

We arrive, then, at a class of differential equations among

those under consideration whose allied function s is such that,

by means of it, the algebraic configuration f(u, z) = can be

uniformized. The functions of s that here present themselves,

namely u and z, are single-valued automorphic functions. But

the differential equation (A) is still not uniquely determined.

The final requirement is this. The region 2 shall consist of the

interior of a circle. It is still possible to pass from one circle in

* Math. Ann., 19 (1882), p. 565; 20 (1882), p. 49; 21 (1883), p. 141. Cf.

also Klein's Gottingen lectures, Ueber lineare Differentialgleichungen zweiter

Ordnung, 1894 (lithographed).
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the s-plane to any other by a linear transformation of s. If,

however, we regard all such differential equations (A) as equiva-

lent,—their Schwarzian resolvent

[«],= R(u,z)

will in fact be the same for all,—we have the result that the

differential equation (A) is uniquely determined by the above

requirements.*

Thus it appears that, when an algebraic function of deficiency

p > 1 is given, a differential equation corresponding to it can be

so chosen that s is precisely the function which we obtained by

conformal mapping as t, namely (13) in § 5.

From the foregoing developments we conclude that the

Abelian integrals corresponding to F, when considered in their

dependence on their parameters, form a class of functions which,

in important respects, is incomplete. The factor <p'(t) = l/(dt/dz)

is an essential accessory, and this constituent is supplied by the

linear differential equation (A), whose parameters are determined

in the spirit of Riemann and from a point of view similar to that

which has dominated a long line of important researches in

another branch of modern analysis,—I refer to the theorems of

oscillation of Sturm and Klein.

* The demand that 2 be a circle is not the only one which leads to familiar

functions. Thus we might have demanded that the boundary of 2 consist of

a discrete set of points,

—

discrete, as this term is defined in the author's paper
in the Annals of Math. (2), 14 (1913), p. 143. We should then have been led

to the automorphic functions of the Schottky type. Again, the differential

equation (A) would have been uniquely determined.
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