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ABSTRACT 

A study conducted by Carpenter, O’Brien, Hagerman and McCarl in 2011 estimates the 

economic impact of a foot and mouth disease (FMD) epidemic in the United States to be 

$2.3–$69.0 billion. We simulate an outbreak of FMD across central California using the 

InterSpread Plus simulation package. We use an experimental design that produces 102,400 

epidemic simulation runs. Using the data from the simulations, we identify 16 critical disease 

and control parameters that have the greatest effect on the spread of FMD. A statistical model 

based on these 16 parameters and their interactions captures approximately 85% of the 

variability of the simulation model. 

The main takeaways of our analysis of FMD spread are as follows. The two most 

critical disease parameters are initial condition and local spread. The most critical disease 

control parameters are market movement and surveillance. Our experimental results indicate 

that if a typical premise sends an animal to market every 2.2 days instead of every day, we 

will see a 25% reduction in the mean number of cattle infected. Similarly, if there is less than 

a three day delay in between suspecting an FMD outbreak and declaring an FMD outbreak at 

dairy-like facilities, we see a 50% reduction in the number of infected cattle. Control 

measures cannot be taken in isolation. Our models show significant interaction effects 

between the most effective control measures—market movement, and surveillance—and 

other control measures such as tracing, vaccination and depopulation.   
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EXECUTIVE SUMMARY 

Foot and mouth disease (FMD) has a devastating impact on a country’s economy. The FMD 

containment process demands considerable efforts in vaccination, monitoring, trade 

restrictions, quarantines, and, historically, the elimination of millions of animals. Although, 

no incidence of FMD has been reported in the United States (U.S.) since 1929, there is a 

chance of its introduction as the disease is prevalent in two-thirds of the world. The United 

Kingdom (U.K.) had been free of FMD for more than 30 years before a major epidemic 

occurred in 2001. The epidemic resulted in the slaughter of approximately 7 million animals 

and had an estimated economic impact of $11.9–$18.4 billion by direct and indirect losses. A 

study conducted by Carpenter, O’Brien, Hagerman and McCarl in 2011, estimate the 

economic impact of a Foot and mouth disease (FMD) epidemic in the U.S. to be $2.3–$69.0 

billion.      

The U.S. Department of Agriculture is the lead agency for coordinating the response 

plan during an FMD outbreak. The national response plan is detailed in the Red Book (2012). 

The planning for the containment of the disease involves prior investments in control 

options, which determine the availability of response measures.  

We simulate an outbreak of FMD across central California using the state of the art 

disease modeling Interspread Plus simulation package. We explore the epidemic’s response 

to varying disease and control parameters using an experimental design. We carry out 50 

replications of 2,048 design points to produce 102,400 epidemic simulation runs. We execute 

the simulation runs on a cluster of computers. Using the data from the simulations, we 

identify 16 critical disease and control parameters that have the greatest effect on the spread 

of FMD. A statistical model based on these 16 parameters and their interactions captures 

approximately 85% of the variability of the simulation model. 

The main takeaways of our analysis of FMD spread are as follows: 

 Initial Condition: The initial condition of the disease plays a significant role in 

the spread of the disease. We consider four starting scenarios: high animal density 

region, high premise density region, market, and port of San Francisco. Among the 

scenarios, the disease spread is almost twice as high when the infection originates in 



 xviii

high animal or high premise dense areas. Detection time is, however, 28% shorter if 

the initial infection originates in high premise or high animal dense areas.  

 Local Spread:  The local spread parameter captures the proximity-based 

spread of FMD between premises. Out of all disease and control parameters, 

epidemic progression has the highest sensitivity to local spread. Interaction and non-

linear effects are significant for this parameter. Restricting local spread to less than 

4,000 meters results in a 1.42 fold reduction in the mean number of cattle infected; 

however, the extent to which we can restrict local spread in a real-world scenario is 

unknown. 

 Market Movement:  Market movement of cattle is a major contributor towards 

the spread of the disease. Interaction and non-linear effects for market movement are 

significant for this parameter. Our experimental results indicate that if a typical 

premise sends an animal to market every 2.2 days instead of every day, we will see a 

25% reduction in the mean number of cattle infected. 

 Surveillance:  Surveillance measures at dairy-like facilities are highly 

significant. We observe high positive interactions between surveillance and other 

control measures such as tracing and depopulation. Among the control measures, 

surveillance has the maximum impact towards reducing the spread of the disease. If 

there is less than a three day delay between suspecting an FMD outbreak and 

declaring an FMD outbreak at dairy-like facilities, we see a reduction in mean 

detection time for a novel epidemic of 32%. A delay of less than two days in the same 

parameter reduces the average number of infected cattle by half.  

Control measures cannot be taken in isolation. Our models show significant 

interaction effects between the most effective control measures—market movement, and 

surveillance—and other control measures such as tracing, vaccination and depopulation. In 

addition, our model suggests that restricting local spread and controlling direct, indirect and 

market movements can be decisive towards controlling the spread of the disease in 

California. Furthermore, surveillance measures and movement control in adjoining zones, in 

addition to the primary outbreak zone, may help in reducing disease spread.  
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 1

I. INTRODUCTION 

A. PURPOSE 

Foot and mouth disease (FMD), also called hoof-and-mouth disease, is an 

infectious and sometimes fatal viral disease that affects cloven-hoofed animals. Foot and 

mouth disease virus (FMDV) is highly contagious and causes significant reduction in the 

productivity of many species, with substantial mortality in the young (Steven, 2010). 

Outbreaks in FMD free regions pose immediate challenges for policy makers. As seen in 

Figure 1, FMD exists in almost two thirds of the world. There is always a chance that 

FMD can either accidentally or through agricultural terrorism be introduced into the 

United States (U.S.).  

 

Figure 1. FMD status map issued by Organization of International des Epizooties 
(OIE)—an animal World Health Organization. OIE  recognized the FMD 
Status of nations in the 80th General Session in May 2012. The FMD 
status map shows only one third of the world (highlighted in dark and light 
green) to be free from FMD with or without vaccination. 

Livestock animals are highly susceptible to FMD virus (Steven, 2010). If an 

outbreak occurred in the U.S., this disease could spread rapidly to all sections of the 
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country through direct contact between susceptible and infected livestock or through 

fomites, such as footwear, clothing, and equipment. Under favorable conditions, air borne 

spread through aerosol could also be a carrier of the disease. 

 FMDV is an extremely robust virus that can persist for weeks or months given 

favorable environmental conditions. The FMD containment process demands 

considerable efforts in vaccination, strict monitoring, trade restrictions and quarantines, 

and occasionally the elimination of millions of animals. Susceptible animals include 

cattle, water buffalo, sheep, goats, pigs, antelope, deer, hedgehogs, elephants, llama, 

alpaca and bison. FMD is only rarely transmitted to humans; however, it does indirectly 

affect human health through increased incidence of clinical depression and post-traumatic 

stress (USDA APHIS, The Red Book, 2012).  

The loss of revenue for a country due to an FMD outbreak can be extensive. The 

epidemic of FMD in the United Kingdom (U.K.) in 2001 provides one example. The 

epidemic spread rapidly and infected more than 2,000 farms throughout Britain. Around 

seven million sheep and cattle were killed before the authorities could halt the spread. 

Estimates place the cost of the epidemic at £8 billion ($16 billion) to the agricultural and 

support industries (Alderson, 2001). Detailed study indicates that the epidemic was 

probably caused by pigs that had been fed garbage containing remains of infected meat 

that had been illegally imported to Britain (DEFRA, 2002).  

 No case of an FMD outbreak has been reported in the U.S. since 1929. However, 

given the susceptibility of an outbreak, U.S. can suffer extensive financial losses. We 

undertake simulation of the outbreak using the state of the art disease modeling 

InterSpread Plus (ISP) software. We use a Nearly Orthogonal Nearly Balanced Design of 

Experiment to derive meaningful outputs for cost effective control, early detection and 

eradication of the disease. The experimental design ensures low pairwise correlation 

amongst any two factor columns so that the first order effect estimates are nearly 

independent. Based on the output of the simulation runs we evaluate control strategies. 

We analyze the factors that contribute towards the spread of the disease and identify 

control measures that can be used to reduce the spread. 
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B. BACKGROUND 

1.  History and Global Relevance  

The earliest description of what was probably FMD was given by Hieronymi 

Fracastorii, an Italian physician (1546). He described the disease, which occurred in 

Northern Italy in 1514, as being unusual and affecting only cattle. The cause of FMD was 

first shown to be viral in 1897 by Friedrich Loeffler, a German bacteriologist at the 

University of Greifswald. Since then, detailed studies have been undertaken, as FMD is 

recognized as a highly contagious disease, capable of infecting nearly 70 species within 

20 families of mammals (Knowles, 1990). Amongst the host, cattle are the most 

susceptible and pigs spread the virus most rapidly. Pigs produce 30 to 100 times as much 

virus in aerosols as sheep or cattle (WRLFMD, 2011). After World War II, the disease 

spread throughout the world. As seen in Figure 2, FMD exists in two thirds of the world 

and is endemic in parts of Africa, Asia, Eastern Europe, Middle East, and South America. 

North America, Central America, Western Europe, Australia, and New Zealand are free 

of FMD.  
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Figure 2. Conjectured Status of FMD Endemic Nations World Map—FAO FMD 
World Reference Laboratory issued a Conjectured Status of FMD World 
Map in 2010 indicating the FMD Status of the nations. Countries 
highlighted in red are still endemic to the disease. The picture shows that 
FMD exists in almost two thirds of the world. 

The FMDV generally does not affect humans. Amongst the seven variations of 

the species of the virus, serotype O was responsible for the outbreak in Taiwan in 1997, 

later spreading to Korea and Japan in 2000, and for the outbreak in the U.K. in 2001. 

Figure 3 shows FMD outbreaks that have occurred in 2011 in countries including Japan, 

China, Kazakhstan, Botswana, Bulgaria, Nigeria, Zimbabwe, South Africa, South Korea, 

Namibia, and North Korea. Many of these outbreaks occurred outside endemic infection 

zones (DEFRA 2011).  
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Figure 3. Recent FMD Outbreaks in Africa, Asia and the Middle East in 2011 
(From DEFRA 09, released on 14 Apr 2011). The map represents the 
prevalence of the disease in the contemporary world. We also observe that 
serotype O was the most common cause for the spread of the disease in 
Africa and Asia in 2011. In our simulation, we model serotype O to be the 
cause of the initial infection in the U.S. 

Since 1870, the U.S. has had nine FMD outbreaks. Among these, the most 

economically devastating outbreak occurred in 1914. The FMDV originated in Michigan, 

but soon entered the stockyards in Chicago. Over 170,000 cattle, sheep and swine were 

infected across the U.S.. It cost the country $4.5 million to earn a FMD free status. 

Another FMD outbreak occurred in California in 1924 which resulted in the slaughter of 

109,000 farm animals and 22,000 deer. The last FMD outbreak in the U.S. was in 

Montebello, California in 1929. The virus originated in hogs that had eaten infected meat 

scraps. Over 3,600 animals were slaughtered. It almost took a month to contain the 

disease (CSR Report, 2001). Since 1929, U.S. has rigorously maintained FMD free 

status. 

2. Impact of an FMD Outbreak 

Economic impacts can be direct and indirect. The direct cost can be subdivided 

into primary and secondary costs. Direct primary costs are disease management costs and 
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carcass disposal costs. Consequences of agricultural contamination could affect other 

sectors of the economy as well. Such losses are termed secondary losses. An example of 

direct secondary loss is international trade impacts where exports of livestock and 

livestock products will have impacts reaching into infected regions not infected by FMD. 

Indirect cost is primarily concerned with the consumer and employment effects and 

losses to related industries such as the tourism industry. 

History has been testimonial to the fact that countries that were FMD free for 

decades suddenly found themselves plagued with the disease. In 1997, prior to the 2001 

U.K. outbreak, Taiwan encountered this epidemic in spite of being FMD free for sixty-

seven years. In this case, FMDV was highly virulent in swine but was less effective in 

other cloven hoofed species. Within six weeks, FMDV infected a total of 6,147 pig 

farms, hitting the country’s swine industry. Taiwanese hog prices dropped 60 percent 

within a week. The pig industry suffered a loss of $1.6 billion as the pork export market 

to Japan was almost shut down. Approximately 4 million animals were slaughtered and 

approximately 65,000 workers lost their jobs (Carpenter, O’Brien, Hagerman and 

McCarl, 2011). The country lost more than $6 billion as direct and indirect losses to 

recover from the disease. So devastating was the effect that before the 1997 outbreak, 

Taiwan was one the worlds leading pork exporters, but today it is a net importer. There 

are several other examples that imply the devastating consequences of this highly 

contagious disease. However, we will restrict ourselves to the impact due to an outbreak 

of FMD in California. 

A 2007 FMD simulation model predicts that if an outbreak of FMD originates in 

California, then national trade losses would exceed $700 million with an overall 

economic impact of $8.5 billion to $13.5 billion depending on the diagnostic delays 

(Carpenter, Christiansen, Dickey, Thunes and Hullinger, 2007). International agriculture 

product markets would be worst hit. Simulation models establish direct correlation 

between the delay in detecting the presence of the FMDV and delays in implementation 

of appropriate control and eradication measures. Countries that are FMD free are likely to 

experience more diagnostic delays as farms and markets will not suspect contamination  
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until clinical signs show. Several simulation studies have been undertaken to cater for 

diagnostic delays. We carry out a literature review in section D to understand the 

previous work undertaken in this field.  

3. Causality and Diagnosis   

The FMDV is a member of the genus Aphthovirus and belongs to the 

Picornaviridae family. The USDA APHIS, Veterinary Services defines FMDV as “an 

etiologic agent of an acute systemic vesicular disease affecting cloven-hoofed animals 

worldwide.” There are seven immunologically distinct serotypes—O, A, C, SAT 1, SAT 

2, SAT 3 and Asia 1 with over 65 strains within these serotypes. As seen in Figure 4, 

FMDV serotypes and strains are specific to geographic regions. Immunity to one 

serotype does not provide any cross-protection to others (USDA APHIS 2012).  

 

Figure 4. Regional distribution of serotypes of FMD worldwide (From USDA 
APHIS FMD Response Plan: The Red Book, June 2012). We observe that 
serotype O is the most common and has been diagnosed in almost all parts 
of the world followed by serotype A.  
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The disease is highly contagious as all types of secretions and excretions from 

infected animals can spread the virus. FMDV can be spread by infected animals up to 

four days prior to the onset of clinical signs. Vesicle rupture is the most infectious route 

of virus transmission. FMDV transmissions occur due to direct or indirect contact with 

infected animals and contaminated fomites. The common routes of contracting the 

disease include inhalation of the aerosolized virus, ingestion of contaminated feed, and 

entry of the virus through skin abrasions or mucous membranes (Aftosa, 2007). FMDV 

can also spread via aerosol transmission under favorable environmental conditions. Pigs, 

particularly, excrete large amounts of virus through their respiratory tract, which can lead 

to infectious aerosols that can be inhaled by other animals (typically cattle) in their 

proximity. FMDV also spreads through windborne transmission. The distance of 

windborne transmission depends on the atmospheric conditions and the concentration of 

the virus in the air. FMDV may spread up to 6—90 km over land in favorable conditions 

such as high relative humidity, steady wind, minimal convection currents, and lack of 

topographical obstructions (Donaldson, 2002).  

FMD is not considered a public health threat, as cases of FMD in humans are very 

rare. The disease in humans is mild and transient. In humans, FMDV may be carried in 

the nasal passages for about 24 hours allowing people who have been in close contact 

with infected animals to potentially serve as a carrier of the virus. However, good 

personal hygiene and strict biosecurity protocols may totally restrict the transmission. 

(USDA APHIS, 2012)  

Early diagnosis is critical in restricting the spread of FMD. It is therefore expected 

that all producers, farm owners and veterinarians are familiar with the clinical signs of 

FMD as they are the ones who are likely to be the initial detectors of the disease. 

Depending on the intensity of the virus, type of species and the medium of spread, the 

FMDV incubation period may vary between 2–14 days (WRLFMD, 2011). The 

incubation period for pigs is two days or more, but in some cases they have been 

documented to be as short as 18–24 hours. For sheep, the period varies from three to 

eight days.  
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The symptoms and severity of the disease vary with the species of animals, the 

serotype and the strain of FMDV. As seen in Figure 5, vesicles on the feet, in and around 

the mouth, and on the mammary glands, accompanied with fever, are the general 

symptoms for FMD. At times, vesicles may occur at the vulva or at pressure points on the 

legs. Rupture of vesicles cause tremendous pain and discomfort that leads to depression 

and anorexia. FMDV leads to excessive salivation and lameness amongst the affected 

animals. In some cases, abortion may occur in pregnant animals. Two to three weeks is 

the normal recovery time for most adults. Some cases with secondary infections may 

have a longer recovery time. FMD may lead to temporary or permanent decrease in milk 

production, chronic lameness and weight loss.  

 

Figure 5. Clinical Signs of FMD. (From FAO, U.N., Issued in public interest for an 
early identification of the lesions of FMD. Early identification is 
istrumental in reducing the spread of FMDV  
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C. CURRENT PREPEREDNESS AND RESPONSE 

1. Framework  

Successful emergency preparedness and response to FMD is achieved by 

seamless integration between the National Response Framework (NRF), the National 

Incident Management System (NIMS), and the National Animal Health and Emergency 

Management System (NAHEMS). The NRF provides a guideline for the conduct of an 

emergency response at the national level. NIMS bind departments and agencies at all 

levels of government with private sector and non-governmental organizations through a 

seamless proactive approach plan (USDA APHIS, 2012). NAHEMS provides a 

functional framework for responding to foreign animal disease (FAD) emergencies. 

Federal response to the detection of a FAD such as FMD is based on the response 

structure of NIMS as outlined in the NRF.  

United States Department of Agriculture (USDA) APHIS has the primary 

responsibility and authority for animal disease control. It serves as an important link 

between federal states, tribal, and local partners in FMD eradication and control efforts. 

In addition, it operates several National Veterinary Services Laboratories (NVSL) like the 

Foreign Animal Disease Diagnostic Laboratory (FADDL) for the detection of FMDV 

(USDA APHIS, 2012). 

USDA APHIS conducts multiple preparedness exercises that simulate an FMD 

outbreak. A federal level response effort is simulated across the U.S. These exercises 

allow various agencies to discuss and practice measures such as movement control, and 

to evaluate the social and economic impact of a potential outbreak. Multi-state mock 

exercises increase coordination between the states themselves and between states and the 

federal government. Following sections of the USDA enforce stringent measures to 

protect the country from an outbreak of FAD:  

 Smuggling Interdiction and Trade Compliance (SITC). SITC 

conducts risk evaluation checks and anti-smuggling drives to prevent 

unlawful ingress and further distribution of contaminated agricultural 
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products. It keeps all the domestic markets under surveillance that may 

have illegal imported animal products. 

 National Center for Import and Export (NCIE). NCIE ensures 

proper medical disease free certification of animals presented at the border 

and also regulates the import and export of animals and animal products. 

According to regulations, before export to the U.S., all cattle must be 

quarantined for 60-days. In addition, all cattle (except those from Canada 

and Mexico) are kept for a 30-day quarantine at a USDA Animal Import 

Center. U.S. does not import livestock from countries affected with FMD. 

2. Response Goals and Strategies  

USDA APHIS (2012) defines:  

The goals of an FMD response are to (1) detect, control, and contain FMD 
in animals as quickly as possible; (2) eradicate FMD using strategies that 
seek to stabilize animal agriculture, the food supply, the economy, and 
protect public health; and (3) provide science- and risk-based approaches 
and systems to facilitate continuity of business for non-infected animals 
and non-contaminated animal products. 

 
  The primary aims of these three goals are to facilitate earliest resumption of an 

FMDV free livestock industry in the country through an economically viable response 

effort that causes lesser disruption and financial losses as compared to the FMD outbreak 

itself. There are four recognized strategies for the control and eradication of FMD in 

domestic livestock following an outbreak. 

 Stamping-Out. Stamping—out involves depopulation of clinically 

affected and in-contact susceptible animals. This strategy is adopted when 

it is confirmed that the outbreak is restricted to a jurisdictional area or a 

region in which the spread of FMDV can be readily contained and further 

dissemination is unlikely.  

 Stamping-Out Modified with Emergency Vaccination to Slaughter. 

This strategy includes depopulation of affected and in-contact susceptible 

animals and vaccination of at-risk animals. Vaccinated animals will 
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subsequently be slaughtered. This strategy is adopted when the goal is to 

restrict the virus replication in high risk susceptible animals. This is 

achieved through the use of emergency vaccination followed by 

slaughtering of the vaccinates at pre-determined stages and locations 

under consultation with the U.S. Chief Veterinarian Officer (CVO) and the 

State Animal Health Official (SAHO). 

 Stamping-Out modified with emergency vaccination to live. This 

strategy includes depopulation of affected and in-contact susceptible 

animals and vaccination of at-risk animals. Vaccinated animals will not be 

subsequently slaughtered. Vaccinated animals intended for breeding, 

milking, or other purposes can be allowed to live their useful lives. 

 Emergency vaccination to live without stamping-out. Vaccination 

is used without depopulation of infected animals. Vaccinated animals will 

not be subsequently slaughtered. This strategy is generally adopted when 

the disease becomes widespread and enough resources are not available 

for stamping out. This strategy will not be implemented at the start of the 

outbreak but may be adopted midway if the disease becomes widespread.  

3. Factors Influencing Selection of a Response Strategy 

Selection of a response strategy or strategies during an FMD outbreak is based on 

the following factors: 

 Impact of the Outbreak. The impact of the outbreak in terms 

economic losses, losses due to response measures, disruptions to trade, 

and other associated sectors with livestock industry. 

 Social and Diplomatic Issues. Response policies selected should be 

socially, politically and diplomatically acceptable at state, national and 

international levels. 
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 How Big is the Outbreak? The number of animals, species and 

premises that are already infected, and the ones which are susceptible for 

infection or are at high-risk of infection will account for the scale of the 

outbreak. 

 Spread Rate. The spread rate is a significant indicator of the scale 

of the outbreak in terms of number of premises and animals infected 

(Bates, Carpenter and Thurmond, 2003). 

 Availability of Quarantine Facilities. The availability of FMD 

vaccines and other veterinary services is an important factor 

 Capability, Resources and Limitations in Implementing Response 

Strategies. Readiness for swift response in terms of availability of 

resources and expertise and understanding of limitations can be a critical 

factor for selection of a response strategy. 

4. Implementing a Response Strategy 

During an outbreak, one or more of the response strategies may be adopted to 

control the spread of FMD. The strategy may vary for each geographical region, species, 

and other defining factors. The strategy to be implemented must be weighed in terms of 

the factors discussed above. Any response strategy requiring emergency vaccination 

requires the approval of the U.S. CVO in consultation with a SAHO. In the eventuality of 

FMD detection, the USDA and the affected states will work under a unified command to 

swiftly enforce a response strategy. 

D. LITERATURE REVIEW 

DEFRA (2002) gives an account of the results of the investigations conducted on 

the outbreak of the 2001, UK FMD epidemic. In the opening notes, the paper enumerates 

the difficulties experienced in establishing exact timelines for the outbreak. Uncertainties 

about parameters like the incubation period, first display of clinical signs, identifications 

and reporting of the disease add complications to the mathematical model. Therefore, the 

inputs as to when the infection entered a premise are based on an estimate either by the 
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farmers or by the veterinarians. The predictive capacity is directly proportional to the 

authenticity of the inputs received. The paper highlights the origin of infection and the 

possible causes that led to an inordinate delay in the detection of the disease. The huge 

economic impact of the outbreak reiterated the devastating capability of the world’s most 

contagious disease.  

Based on the background, several simulation models have been undertaken. Bates 

et al. (2003), evaluate several control scenarios during a hypothetical FMD breakout. 

Basic tools of baseline eradication strategy and control strategies such as slaughter or 

vaccination were dynamically simulated. Results of the study provided useful insight in 

understanding the advantages of various strategies for control and eradication of FMD. 

The study identifies that preemptive slaughter of the highest-risk herds and vaccination of 

all animals are important contributory factors that significantly reduced the size and 

duration of an epidemic. Preemptive slaughter and vaccination were identified as more 

economically viable strategies as against baseline eradication. 

The 2001 epidemic was modeled in Uruguay using geo-referenced data (Chowell, 

Rivas, Hengartner, Hyman and Castillo-Chavez., 2005). The paper provides useful 

insight towards modeling techniques and its applications in disease simulation. The paper 

uses a least squares fit to study the epidemiological and control parameters and evaluates 

the impact of time delays on the implementation of movement restrictions.	The paper 

concludes that	 secondary outbreaks can be triggered from long distance sparks of 

infection. These outbreaks are of higher intensity and take longer time for detection. 

Carpenter et al. (2007) studies the impact of an introduction of FMD at the 

California State Fair. The spread was simulated through separate index cases at the fair. 

The model estimated with a probability of 0.8 that no animals would be clinically 

infected by day five. It is assumed that clinical signs of FMD would first be detected by 

the exhibitor with a high probability that it will not be further reported to the state 

veterinarian. The paper concludes that if FMD was introduced at the California State 

Fair, infection may go undetected till the animals leave the fair. The consequential 

outbreak would spread rapidly influenced by the unrestricted movement of the livestock 

and through indirect transmissions from humans, vehicles and fomites in contact. 
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Pineda, Carpenter, O’Brien and Thunes (2008) study the potential impact of an 

introduction of foot-and-mouth disease from wild pigs into commercial swine and dairy 

premises in California. The study uses a spatial stochastic simulation model to simulate 

epidemics of FMD. The paper concludes that the geographic region was a major 

discriminatory factor significantly contributing towards variance in epidemic duration, 

magnitude and infectivity of the outbreak. The paper acknowledges the rapidity with 

which the disease can spread over a large area. A statewide movement ban was identified 

as a significant strategy for reducing the spread of the disease. 

Based on a simulated outbreak in California, a study was undertaken to analyze 

the epidemic and economic impact of the delayed detection of FMD (Carpenter et al., 

2011). The economic impact was assessed for the entire U.S. The median economic 

impact was estimated to be in the range of $2.3–$69.0 billion, considering a detection 

window of 7 to 22 days. This study was instrumental in highlighting the importance of 

reducing diagnostic delay through sustained surveillance and control measures.  

The extant Foreign Animal Disease Preparedness and Response (FAD PReP) 

materials have been revised and the USDA, APHIS has released an updated FMD 

Response Plan (USDA APHIS Red Book, 2012). The book illustrates the response goals 

and strategies and accounts for the logical progression for remedial actions that need to 

be prioritized for complete FMD eradication. We tabulate key definitions as defined by 

the USDA in Table 1 and Table 2 and provide a pictorial depiction of zones, premises 

and areas in Figure 6. 
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Table 1.   The USDA APHIS provides the definition of premises, zones and areas and 
establishes the boundaries for standard reference throughout U.S. We tabulate 
the information provided in the USDA APHIS (2012) and define premises and 
zones with specifications in Table 1 and Table 2, respectively. A pictorial 
depiction of the areas is shown at Figure 6 (After USDA AHIS, 2012). 

Premises Definition Zone 
Infected 
Premises 
(IP) 

Premises where positive case or confirmed positive 
case exists based on laboratory results, compatible 
clinical signs, FMD case definition, and 
international standards. 

Infected Zone 

Contact 
Premises 
(CP) 

Premises with susceptible animals that may have 
been exposed to FMD, either directly or indirectly, 
including but not limited to exposure to animals, 
animal products, fomites, or people from Infected 
Premises 

Infected Zone, 
Buffer Zone 

Suspect 
Premises 
(SP) 

Premises under investigation due to the presence of 
susceptible animals reported to have clinical signs 
with FMD. This is intended to be a short-term 
premises designation 

Infected Zone, 
Buffer Zone, 
Surveillance 
Zone, 
Vaccination Zone 

At-Risk 
Premises 
(ARP) 

Premises that have susceptible animals, but none 
of those susceptible animals have clinical signs 
compatible with FMD. Premises objectively 
demonstrates that it is not an Infected Premises, 
Contact Premises, or Suspect Premises. At-Risk 
Premises seek to move susceptible animals or 
products within the Control Area by permit. Only 
At- Risk Premises are eligible to become Monitored 
Premises. 

Infected Zone, 
Buffer Zone 

Monitored 
Premises 
(MP) 

Premises objectively demonstrates that it is not an 
Infected Premises, Contact Premises, or Suspect 
Premises. Only At-Risk Premises are eligible to 
become Monitored Premises. Monitored Premises 
meet a set of defined criteria in seeking to move 
susceptible animals or products out of the Control 
Area by permit. 

Infected Zone, 
Buffer Zone 

Free 
Premises 
(FP) 

Premises outside of a Control Area and not a 
Contact or Suspect Premises. 

Surveillance 
Zone, Free 
Area 

Vaccinated 
Premises 
(VP) 

Premises where emergency vaccination has been 
performed. This may be a secondary premises 
designation. 
 

Containment 
Vaccination 
Zone, Protection 
Vaccination Zone 
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Table 2.   Tabulation of terms related with Zones and Areas as defined by  USDA APHIS 
(2012). 

Zone/Area Definition 
Infected Zone (IZ) Zone that immediately surrounds an Infected Premise. 

Perimeter should be at least 3 km (~1.86 miles) beyond 
perimeters of presumptive or confirmed Infected Premises. 
It will depend on disease agent and epidemiological 
circumstances. This zone may be redefined as the outbreak 
continues.  

Buffer Zone (BZ) Zone that immediately surrounds an Infected Zone or a 
Contact Premises. Perimeter should be at least 7 km (~4.35 
miles) beyond the perimeter of the Infected Zone. Width is 
generally not less than the minimum radius of the 
associated Infected Zone, but may be much larger. This 
zone may be redefined as the outbreak continues.  
 

Control Area (CA) Consists of an Infected Zone and a Buffer Zone. Perimeter 
should be at least 10 km (~6.21 miles) beyond the 
perimeter of the closest Infected Premises. This area may 
be redefined as the outbreak continues.  
 

Surveillance Zone (SZ) Zone outside and along the border of a Control Area. 
Width should be at least 10 km (~6.21 miles), but may be 
much larger.  
 
 

Free Area (FA) Area not included in any Control Area. 
Vaccination Zone (VZ) Emergency Vaccination Zone classified as either a 

Containment Vaccination Zone (typically inside a Control 
Area) or a Protection Vaccination Zone (typically outside a 
Control Area). This may be a secondary zone designation. 
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Figure 6. Pictorial Depiction of Premises Zones and Areas (From USDA APHIS, 
Red Book, 2012) 

E. RESEARCH OBJECTIVE 

1. Problem Statement 

Given the susceptibility of an FMD outbreak in U.S. that may lead to extensive 

financial losses, we undertake simulation analysis using disease modeling software and 

experimental design for identification of factors contributing to the spread of the disease 

and evaluation of control strategies.  

2. Research Questions 

We use the outputs from our simulation and statistical analysis to answer the 

following research questions so as to provide additional insights for developing effective 

policies for controlling the spread of FMD in California. 

a. Does the simulation of an FMD outbreak in California produce plausible 

outputs, in terms of numbers of animals infected, and impact of infection parameters on 

disease progression?  
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b. What are the disease spread parameters that significantly contribute to the 

outbreak?  Is it possible to explain most of the simulation results by just a few parameters 

and their interactions?  

c. Which are the critical control measures that can affect the disease 

progression?  What are the effects of market, direct and indirect movements on the spread 

of the disease? Do movement restrictions reduce the size of the outbreak? If yes, then 

what is the smallest restriction that would be sufficient to reduce the spread?  

3. Assumptions and Limitations of the Study 

We assume that the outbreak is essentially caused by FMDV O serotype 

(as was the case for the UK FMD) and all the parameters, variables and conditions 

remain constant throughout the study (Brown and Deshpande, 2007). We also assume 

that all FMDV susceptible species are unvaccinated.  

We limit our study to Zone 3 in Central California. Zone 3 is the 

subdivision of Central California as given in the California Coordinate System 

83 (CCS83). Zone 3 is divided in counties as shown at Figure 7. We base our model 

parameters and output analysis on the inputs from subject matter experts and literature 

available on this subject. However, we do understand that inbound and outbound 

movement of livestock will take place between farms and markets beyond Zone 3. We 

include the coordinates of markets throughout the state of California. We do not model 

intra state movements of the livestock. 
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Figure 7. Map of Zone 3 in the California Coordinate System 83 (from California 
Department of Transportation, 2004). The map shows all the counties in 
the Zone 3. 
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II. METHODOLOGY 

We simulate an outbreak of FMD across Zone 3 in Central California using the 

state of the art disease modeling ISP simulation package. In this Chapter, we explain the 

basics of the simulation software we employ, and the necessary disease and control 

parameterization. 

A. INTERSPREAD PLUS–STOCHASTIC AND SPATIAL EPIDEMIC 
MODEL 

We use ISP version 2.1.12.15 for the study. ISP is a stochastic spatial model of 

FMD written in C++ (Stevenson, 2003). The model uses geographic coordinates of farms 

and markets within a defined area or a control zone to create a spatial environment. Each 

farm is defined by the number and type of animals it contains. ISP uses a state transition 

model where the status of each farm at any given time can be one of (Stern, 2003 and 

Stevenson, Sanson, Stern, O’Leary, Moles-Benfell and Morris, 2007):  

 Susceptible: Species present at a location are susceptible to infection. 

 Infected: Species present at the location have already been exposed to 

infective agents. The disease is either incubating or clinical signs are visible.  

 Waiting and Processing: Sub-categories of the infected and susceptible 

state include Waiting (farms are awaiting sanitary measures) and Processing 

(sanitary measures have been in force on location).  

 Not at Risk: Sanitary measures render individuals incapable of becoming 

infected.  

 Depopulated: A depopulated state implies that the location is no longer 

infectious as all the species have been removed from the location.  

 Vaccinated: A vaccinated state implies that after a sufficient time has 

elapsed from the last vaccination, the location ceases to be susceptible and 

infectious.  
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ISP uses a simulation time step of one day. All time references in the model for 

input and output are in terms of days. The users define disease parameters through 

specifying probability distributions on the chance of occurrence of various events.  

B. MODEL PARAMETERIZATION  

This section briefly describes the various files that are used in ISP to set up the 

simulation model.  

1. The Farm File   

We modify the data set used in Axelsen (2012) to include only Zone 3 of Central 

California. The density of farms in Zone 3 is pictorially depicted in Figure 8. We observe 

that certain areas have a higher density of farms as highlighted in darker shades of green. 

Figure 9 depicts the distribution of different types of farms in Zone 3. 

 

Figure 8. The density map of farms in Zone 3. The density index increases with 
lighter to darker shades of green. This map highlights that certain locations 
in Zone 3 have larger concentrations of  farms highlighted in darker 
shades of green.  
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Figure 9. Histogram of types of farms in Zone 3. We observe that almost 66.7 % of 
the total number of farms are cattle farms and only 4 % of the total farms 
are swine farms in Zone 3. We highlight this observation because control 
measures such as dairy-like surveillance, which are implemented in cattle 
farms, are effective in Zone 3 (see Chapter IV). 

ISP carries out the FMDV spread simulation through a heterogeneous population 

of spatially defined farms (Moles- Benfell, 2007). The farm file defines the attributes of 

the farms under study. Each farm is defined in terms of its location in latitude and 

longitude, size of herd population, and the type of livestock. Coding nomenclature for 

farms is retained from Axelsen (2012). 

Table 3.   A section of the farm file that is used in the model is tabulated below. Each row is 
dedicated to a separate farm. The colums define the attributes of the farm. 

Type Premises  ID Size FIPS Lat Long Zone Cattle 
33 Dairy(L):3429 3429 506 6099 37.67433 120.733    3 506 
33 Dairy(L):3430 3430 512 6099 37.33906 121.063    3 512 

 

 

2. Control File 

This is the basic file that sets up the simulation in ISP. ISP has a graphical user 

interface which is used to input the disease parameters and the geographical area under 

study. It is mandatory to define the population at risk, the initial subset of the population 
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that is infected, and the spread mechanism of the disease. The control file also assigns the 

number of replications and terminating conditions. We run 50 replications of our 

simulation model. The terminating condition is set as 40 days from the day of initial 

infection. The control file also allows the user to define additional transition states, on top 

of those described in Section B. We retain the same user-defined states as Axelsen 

(2012), pp. 31–32. 

3. Epidemic History 

 The epidemic history gives the initial condition of the infection. We use the term 

‘infected’ to indicate the day when the premise is infected. The term ‘clinical signs’ 

indicates the day of onset of clinical signs. ‘Detected’ indicates the day when the disease 

is diagnosed. For the simulation to start, we define a subset of a population that is initially 

infected by the disease. The model then simulates the spread of the disease in accordance 

with the parameters specified in the control file.  

4. Initially Infected Subset  

For our model we created four starting scenarios to cover a range of infection 

probabilities.  

 Port_SF: We simulate that a farm in the port of San Francisco is 

targeted by terrorists. The San Francisco port was chosen due to its impact 

in the livestock industry and its prominence in the state of California. A 

beef farm is randomly infected in this region and the impact is studied 

through the simulation. 

 High_Animal: We rank the farms according to the number of 

animals within 10km of the farm, and originate the infection in a farm that 

is at or above the 90th percentile in the ranking.  

 High_Premise:  We rank the farms according to the number of 

farms within 10km of the farm, and originate the infection in a farm that is 

at or above the 90th percentile in the ranking.  



 25

 MarketStart:  We originate the infection in a market in Zone 3 to 

study the effect on the spread of FMDV due to movement of livestock 

from market to farm and market to market. 

C. SPREAD MECHANISM AND SELECTION OF DISEASE PARAMETERS  

After we define the initially infected and susceptible population, ISP simulates the 

spread of infection. Our parameterization does not include airborne spread, only spread 

based on movement and proximity.  

1. Movement Type  

Movement type refers to a movement that occurs from farm to farm, farm to 

market, or market to farm. We include direct, indirect and market movements in our 

model. We modify the model used in Axelsen (2012) to include only those movements 

identified as significant contributors to the spread of the disease (Axelsen, 2012, Figure 

10, p. 51). The Appendix lists the parameters included in our DOE. Movement types not 

included in our DOE are removed from the control file. In addition, we add farm to 

market movement in the DOE to study its effect in greater detail. For the retained 

movement types, we also retain the associated parameters. The simulation assumes that 

infected animals do not transmit the virus during movement, only at their destination. 

2. Local Spread  

Local spread is a significant factor for the spread of FMDV. Stevenson (2007) 

defines local spread as “the mean disease spread between livestock holdings when there 

is no clear linkage other than a geographical proximity spread mechanism to model short 

distances.” The likely causes of the spread could be an aerosol dispersion of infectious 

agents, undocumented movement of fomites and neighbor-to-neighbor across the fence 

contact (Stevenson et al., 2007). 

During the 2001 U.K. FMD outbreak, the source of infection for 1,802 out of 

2,030 infected premises was attributed to local spread (Stevenson, 2007). The study 

revealed that the source premises were those infected premises that were within 5 km of 
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the recipient premises. We reduced the distance up to which the FMDV can travel due to 

local spread to 5,000m based on recommendations in Axelsen (2012). 

3. Infectivity 

Stevenson et al. (2007) defines infectivity to be “a factor that determines the 

behavior of the disease, once individuals at a location become infected.” It includes the 

length of time from infection to the onset of clinical signs (incubation period) and the 

length of time from infection to the onset of infectiousness. Intuitively, infectivity defines 

the likelihood that an infected farm spreads the disease, and the likelihood that a 

susceptible farm becomes infected. 

4. Disease Control Parameters 

We use various options such as surveillance, movement restrictions, vaccination, 

tracing and depopulation measures for restricting the spread of the disease in our model. 

We use similar definitions and terminologies for all control parameters as explained in 

(Axelsen, 2012. p. 41)   

a. Zonal Control  

 Zonal boundaries of adjoining states of Zone 3, i.e., Zone 2 and Zone 4 are 

included in the model for enforcing control measures. Though Zones 2 and 4 only include 

markets in our model, surveillance and control in those markets may significantly reduce 

the spread in Zone 3. 

b. Surveillance  

Upon transition from an infected state to a detected state, control measures 

may be applied for limiting the spread of the disease. Surveillance zones may be enforced 

in a buffer area around an infected and detected premise, as described in Figure 6. 

Surveillance cycle begins at the start of the simulation run when the farm gets infected. 

Each farm is assigned a probability for inclusion in the surveillance list. We model the 

distribution describing the number of time periods that will pass between visits to a farm 



 27

and the periods from when the visit occurred to when that farm will receive the detected 

state as a Poisson process. For our model, detection is based on the clinical signs. 

c. Resources 

A resource within ISP includes all of the state veterinary services that can 

be called upon to handle epidemics of various sizes and durations. There are two main 

types of resources, vaccination resources and depopulation resources. Depending on the 

availability of resources, farms are processed faster or slower for vaccination and 

depopulation.  

d. Depopulation 

 This section of the ISP model is used to specify the depopulation strategy 

as discussed in Chapter 1, Section C. We choose to depopulate only those premises that 

have been detected with the disease. We do not model alternative preemptive 

depopulation in zones as it is against USDA guidelines (USDA APHIS, The Red Book, 

2012).  

e. Vaccination 

The vaccination section of the ISP model enables the user to define which 

farms require vaccination. The type of species to be vaccinated is specified. For our 

model, we specify that the vaccination control will be activated for all farms that are 

detected with FMDV. The vaccination resources are available from the start of the 

simulation. We also specify an immunity value that is applied to the farm’s resistivity to 

infection. Vaccination strategy is taken from the USDA guidelines as discussed in 

Chapter 1, Section C.  

f. Tracing 

Tracing can be of two types, backward or forward, depending on what 

event or period is being used to track the contacts that cause the spread of the virus.  
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Tracing is said to be backward tracing if it involves studying past events to identify 

contacts that occurred between the estimated date of infection and the start of the 

epidemic.  

Tracing is said to be forward tracing when it involves identifying contacts 

made by the detected farm during the infectious period. This ensures identification of 

farms potentially exposed to infection, and therefore likely to develop the disease 

(Stevenson et al., 2007). Interview of the staff of the detected premise provides useful 

information for tracing. ISP has both forward and backward tracing features. For our 

model, we use forward tracing as we set the reference for starting the tracing activity 

when the first infected farm is detected. We also assign a probability that the specified 

movement type or route in the specified direction may be forgotten by the farmer and 

therefore may never be traced. We retain the tracing parameters used in Axelsen (2012).   

g. Movement Restrictions 

Once infection on a premise is detected, movement restrictions may be 

enforced. As the days from detection increase, the movement restrictions become stricter. 

Stevenson et al. (2007) gives an estimate that from 0 to 10 days after detection, 

movement restrictions may be imposed. It is expected that up to 10 days, the movements 

of animals, humans and fomites will be restricted by about 80% and from day 10 

onwards, as the effectiveness of controls increase, probability of movement restriction 

may increase up to 100%.   

For our model, we impose movement restriction when the first infected 

farm is detected. We specify the type of movement, and the specific zones and areas in 

which the restrictions would be applied. These restrictions are continued throughout the 

simulation.  
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D. MODELING ASSUMPTIONS AND LIMITATIONS 

We make the following modeling assumptions which remain present throughout 

the study.  

 The strain for the FMD Virus is FMDV O (as was the case for the 2001, 

U.K. FMD outbreak).  

 All animals are considered to be unvaccinated, and are susceptible to 

infection initially. 

 Each farm has only one type of species.  

 Following the construction of ISP, between-herd disease progression is the 

focus of the simulation, as opposed to within-herd progression. 

 The data set pertaining to Zone 3 is plausible (Axelsen, 2012). The 

locations of farms and markets are representative of the real world. 

 Model parameters, variables and conditions remain constant throughout 

the simulation (Brown et al., 2007). 

Our model is constrained by the following limitations: 

 We terminate simulation at the 40th day from the start of the simulation.  

 We limit the range of high and low values in the DOE for probability of 

spread, distance covered, and spread rate based on past work (Axelsen, 2012). We 

do not consider parameter values beyond this range for our simulation runs. We 

could not physically validate the spread parameters and accuracy of the data set 

by carrying out a field trip to farms and markets in Zone 3 of Central California.  
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III. DESIGN OF EXPERIMENT 

 Design of Experiments (DOE) techniques enable simultaneous evaluation of 

individual and interactive effects of numerous factors that could affect the output of a 

simulation model. DOE gives useful insight into the interaction effects of the design 

elements and provides an organized approach to data gathering (Jsifri, 2009). We use 

statistical tools such as regression and partition tree models to obtain valuable 

information from our simulation runs.  

A. METHODOLGY FOR CREATION OF THE EXPERIMENTAL DESIGN 

The broad aim of the model is to simulate the spread of FMD in a regional 

geographical set up and to identify critical disease and control parameters. As a starting 

point, we use the parameter settings for 46 out of 72 parameters that are the most 

significant in Axelsen (2012). We adopt the recommendations of Axelsen (2012) and 

compare our zonal results to the state-wide model of Axelsen. Following a key 

recommendation, we add market movement in our zonal model as we expect this 

parameter to be a significant contributor towards the spread of the disease.  

We focus on the most explanatory parameters out of the 46 initial parameters 

using regression analysis and a Nearly Orthogonal Nearly Balanced Mixed Design (from 

the Simulation Experiments and Efficient Design (SEED) center for data farming, Naval 

Postgraduate School, Monterey). Simulations on the design points are run in parallel on a 

cluster of 52 computers. Before we run the simulation for 50 replications on each design 

point, we carry out plausibility testing of the model. We formulate MOEs for quantitative 

analysis of the simulation output. 

The design is called nearly orthogonal as it has very low absolute pairwise 

correlation between any two design columns. The maximum absolute pairwise 

correlation of the design used is around 3.56%. Nearly balanced means that for any factor 

column, the number of occurrences of each factor level is nearly equal (Vieira, 2012). 

Each row of the design matrix represents one simulation run and is designated as a design 

point.  
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Every column represents a certain parameter in the simulation model, called a 

factor. For our model, all factors that affect FMDV infection, disease spread and control 

are arranged in columns for the experimental design. These factors have different 

possible values called levels. The NOB Mixed 512 design worksheet has nearly 

independent first-order factor effect estimates (Vieira, 2012).  

We assign the upper and lower bounds for each of the factors in the experimental 

design along with the level of decimal precision. In the experimental design, the last two 

factors, Resource 1 and Resource 2 are dependent on the time when the use of the 

resources commenced and are therefore correlated.    

We create a separate excel spreadsheet where each row indicates one starting 

scenario and cross it with the 512 design points. This multiplies 512 design points with 

four starting scenarios to produce a total of 2,048 total design points with the name of the 

starting scenarios in the first column. We replace the header rows to indicate the lower 

bound values, upper bound values, number of decimal points, discrete levels and the 

factor names. The above methodology creates the design of experiment required for the 

simulation run. We carry out 50 replications in total by creating 102,400 design points. A 

few of the initial rows and columns of the DOE are tabulated as Table 4. 
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Table 4.   A section of the DOE with four rows for each starting scenarios. Each row 
represents one design point. The columns are the factors used in the model. The 
factors could either be categorical, continuous or discrete. We use the 
NOB_Mixed_512DP worksheet from Naval Postgraduate School SEED Center 
to create the DOE. 

low level x 0 0 0.01
high level x 1 0.99 0.15
decimals x 0 2 4
factor name EpidemicHistory:StateFileName Vaccination1 MovementRestriction3 MovementType1

1 .\STATE_Animal_High.txt 1 0.99 0.0201
2 .\STATE_Animal_High.txt 0 0.99 0.079
3 .\STATE_Animal_High.txt 0 0.99 0.0604
4 .\STATE_Animal_High.txt 0 0 0.0727

513 .\STATE_Port_SF.txt 1 0.99 0.0201
514 .\STATE_Port_SF.txt 0 0.99 0.079
515 .\STATE_Port_SF.txt 0 0.99 0.0604
516 .\STATE_Port_SF.txt 0 0 0.0727

1025 .\STATE_Premise_High.txt 1 0.99 0.0201
1026 .\STATE_Premise_High.txt 0 0.99 0.079
1027 .\STATE_Premise_High.txt 0 0.99 0.0604
1028 .\STATE_Premise_High.txt 0 0 0.0727
1537 .\STATE_MarketStart.txt 1 0.99 0.0201
1538 .\STATE_MarketStart.txt 0 0.99 0.079
1539 .\STATE_MarketStart.txt 0 0.99 0.0604
1540 .\STATE_MarketStart.txt 0 0 0.0727

 

B. VALIDATION OF THE DESIGN OF EXPERIMENT 

We expect to see good space-filling properties as we have used a NOLH based 

experimental design. We expect to see a comprehensive coverage of the input space due 

to the space-filling attribute of the NOLH design. We validate this attribute of our 

experimental design and observe that we have comprehensive coverage of the input space 

as shown in Figure 10. 
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Figure 10. We present a section of the scatter plot of the correlation matrix and 
observe the space-filling property of the design of experiment. We observe 
that we have a comprehensive coverage of the input space which validates 
our experimental design. 

Next, we check the correlation between the various input parameters. If the DOE 

was correctly formatted, then we expect to see negligible correlation amongst the input 

factors. Figure 11 shows the correlation among the input parameters. 
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Figure 11. Correlation diagram of all the input factors. As seen, there is almost 
negligible correlation amongst the input variables except for the two 
parameters as shown in the circle which are dependent on other resource 
utilization factors. We observe a maximum absolute correlation of about 
2.5%  among the independent variables.   

Figure 11 indicates that there is indeed very low correlation, almost negligible, 

amongst the input parameters. Factors indicating the time period when resources would 

be available for full utilization do come up with higher correlation values as they are 

linear transformations of other factors. We plot the histogram of the correlations amongst 

the factors and summarize it in Figure 12. 
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Figure 12. Histogram of correlation among the input variables. We observe that the 
mean value is -0.002 which indicates almost negligle correlation. 

We observe a maximum absolute correlation of about 2.5% among the 

independent variables. Based on these findings, we conclude that our experimental design 

is appropriate for analyzing our scenario.  
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IV. DATA ANALYSIS 

We set up the simulation at the SEED center and carry out a sanity check by 

running two replications of the model for each design point. Each replication of 2,048 

design points took an average time of about 2.5 to 3 hours to run. This gave us an 

approximate idea that the whole simulation for 50 replications would take around 125–

150 hours or approximately 5–6 days to run.  

A. PLAUSIBILITY TESTING  

 Our main aim of the plausibility testing is to check whether the model is 

establishing the correct relationship between the cause and the effects, i.e., whether we 

see the expected impact of our chosen factors on our response variable. We use infected 

number of cattle as our response variable and study the impact of various input factors on 

the response variable. Figure 13 shows the relationship between the inputs and the 

response variable.  

 

Figure 13. Plot depicting impact of factors on the number of cattle infected. On the 
X-axis we have the factors contributing to the spread of the disease and on 
the Y-axis we have the response variable. The smoother line indicates the 
effect of the factors on the response variable. 



 38

We observe number of cattle infected increases as the surveillance delay 

increases. A similar but more prominent effect is seen as the local spread multiplier 

increases, i.e., when the distance to which the virus can travel due to local spread 

increases. The number of infected cattle also increases as the probability of market 

movement increases. However, when we enforce control measures, the number of 

infected cattle decreases when the radius of the surveillance zone increases. We observe 

that factors are having the expected impact on the response variable. Based on the 

observations above, we conclude that our model is plausibile.  

B. MEASURES OF EFFECTIVENESS 

The main aim of the simulation study is to identify factors that can either be 

controlled or restrained to reduce the spread of the disease. We identify measures of 

effectiveness to help us quantify the effect of disease and control factors. The measures 

of effectiveness (MOEs) we consider are: 

 Detection Time: OIE (2012) highlights that effective surveillance, early 

detection and early warning are instrumental in reducing the spread of FMD. This 

measure of effectiveness indicates the time duration between the start of the 

infection, i.e., when the simulation starts with a trigger from the starting scenario, 

to the time when the disease is detected at a farm.  

 Number of Infected Farms: DEFRA (2002) gave useful insight on the 

scale of the 2001, U.K. FMD outbreak and how it was related to the number of 

infected farms. This MOE counts the number of infected farms during the 

simulation. 

 Number of Infected Cattle: Initial exploration of the data set highlighted 

that cattle density was highest in farms in Zone 3 of Central California (refer to 

Figure 9). We also observed that spread of the disease in cattle was strongly 

correlated with the spread in other species as shown in Figure 14. Correlation in 

excess of 0.98 between species indicates that the results for cattle would also be 

applicable for other species. We use the number of cattle infected as a MOE to 
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study the effect of control options in reducing the spread of FMDV in cattle. We 

generalize those measures for all the species. 

 

Figure 14. Scatterplot of the mean number of animals infected during the simulation 
run. The plot indicates high correlation among the number of cattle 
infected with the number of other species infected.  

We use the mean of the 50 simulation runs for these MOEs. This reduces the size 

of the output file from 102,400 data points to 2,048 means of 50 data points. This method 

helps in achieving an approximate normal distribution for the mean value of the MOEs 

by employing the Central Limit Theorem. We observe in Figure 15 that the MOEs other 
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than detection time are highly positively correlated with each other. This implies that the 

independent regressors will have similar impact on these MOEs except on detection time.  

 

 

Figure 15. Color map of correlations between the MOEs. The range of correlations is 
from -1 to 1. The map shows that all the MOEs except detection time are 
highly positively correlated indicating similar responses to various 
independent regressors.  

We initially choose one factor that is expected to have a large contribution on the 

spread of FMDV and study its effect on our chosen MOE. We expect to see similar 

effects on all our MOEs except detection time. Figure 16 shows the effect of market 

movement on all our MOEs. The smoothers for each graph indicate that market 

movement has similar effect on all our MOEs except detection time. The density index 
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indicates the concentration of observations for the given MOE. We include all three 

MOEs in our study so as to cater for a wider range of statistical inference that may look at 

either farms infected or animals infected. 

 

Figure 16. Graph depicting the effect of market movement on the three MOEs. On X-
axis we have the probability of  market movement between zero and one 
and on Y-axis we have the mean values of the three MOEs. We see that 
the effect of the independent variable is approximately constant for the 
detection time MOE and is similar for the other two MOEs, i.e., number of 
infections for both farms and cattle is increasing with the increase in the 
probability of the market movement. 
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C. MULTIPLE REGRESSION MODEL 

We use a multiple regression model to answer our second research question, i.e., 

is there a significant relationship between the response variable and one or more of the 

factors? The model has the basic form as indicated by the equation below (Faraway, 

2002): 

0 1 1 2 2 ...      1, ...,i i i k ik iY x x x fo r i n          
 

where,  

Let iY  be the dependent response random variables. We study our chosen MOEs 

as the dependent response random variables one at a time. 

Let ix  be the independent regressors or input factors. In our study, these are the 

disease and control factors.   

Let   be the coefficients of independent predictors that are nonrandom unknown 

quantities. 0  is the intercept term. 

Let i  be the errors terms which are random variables. They are typically 

modeled as independent and identically distributed and are assumed to have normal 

distribution with zero mean and a constant standard deviation.  

1. The Basic Model 

We use our MOE of infected number of cattle as the response variable and carry 

out a linear regression with all the independent factors in the model. We observe that the 

model has an R2 value (or a coefficient of determination) of 0.699 and an adjusted R2 

value of 0.6918 which means that the model can explain approximately 70% of the 

variability in the data. We carried out model diagnostics using the plots as shown in 

Figure 17. 
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Figure 17. Diagnostic plots for the multiple regression model. Looking at the residual 
vs fitted plot we can say that there is nonconstant variance or 
heteroscadaticity in the model. The normal quantile plot indicates that the 
errors are almost normally distributed. None of the Cook’s distance values 
(Faraway, 2012) are more than one which suggests that there are no 
influential points. 

Heteroscedasticity is expected in our simulation model due to the large difference 

among the sizes, i.e., the number of animals, in each farm. The mean of the error terms, 

however, are driven by the Central Limit Theorem, so we expected the errors to be 

almost normally distributed. We carry out a Box-Cox transformation as shown in Figure 

18 for the response variable to correct the heteroscedasticity and observe that a square 

root transformation may work for the response variable. 
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Figure 18. A graph showing Box-Cox transformation of the response variable , i.e., 
the number of cattle infected. We observe that the lambda value is 
between 0.5 and 0.7 indicating a requirement for a square root 
transformation. 

We fit a model with the square root of the response variable and all the main 

effects in the model, and observe that the problem of non-constant variance is resolved as 

seen in Figure 19. The adjusted R2 value also goes up from 0.6918 to 0.714. 
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Figure 19. Graph of residuals against fitted values. The left graph is for the mean 
number of cattle infected without the square root Box-Cox transformation 
and to the right we have the graph with the square root transformation. We 
can see that the problem of heteroscedasticity appears to be resolved. 

Since we used an NOLH experimental design, we are sure that the autocorrelation 

is low among the factors. Nonetheless we carry out a Durbin Watson test for 

reconfirmation that the autocorrelation is zero. The Durbin Watson statistic value of the 

test is 1.9315 with a p-value of 0.8096 which is higher than α = 0.05. Thus, we say that 

we do not have sufficient evidence to reject the null hypothesis that the autocorrelation is 

zero. 

2. The Saturated Model  

Gerbier (1999) studied the interaction effects of various factors with a main 

emphasis on the effect of animal density on FMD spread. We develop an understanding 

that the model may require higher order terms and interaction effects amongst the 

predictors. Validation of all the assumptions enables us to carry out hypothesis tests and 

ANOVA tests. We fit a model with all the interaction effects and compare with a model 

without interaction effects. We hope to see the adjusted R2 improve when interaction 

effects are included. The ANOVA p-value is 2.2e-16 which is much less than the 

significance level of α = 0.05, thus we reject the null hypothesis that the unsaturated 
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model is better and say that interaction effects provide an improvement to the model. The 

model with interaction effects has an adjusted R2 value of 0.8456. 

Similarly we add nonlinear effects, i.e., quadratic and cubic effects of the terms in 

the model. We carry out a stepwise regression control and minimum BIC method of 

selection of variables. We see that the quadratic term for market movement and cubic 

term for local spread are also significantly contributing to the model. The saturated model 

with interaction and non-linear terms has an improved adjusted R2 value of 0.8571. The 

statistics for the saturated model are shown in Figure 20. We present the first 20 factors 

in the order of their significance level in Table 5 and observe that interaction effects also 

appear in the list. 

 

Figure 20. Graph highlighting the statististics of a model including interaction, 
quadratic, and cubic effects. We observe that when we include interaction 
effects, quadratic and cubic effects, the R2 value goes up to 0.8606. The 
analysis of variance p-value is less than 0.0001 and shows that there 
appears to be significant differences in the means of the different models. 
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Factors with a high t-ratio as shown in Table 5 contribute more towards the 

explanatory power of the model. We use a partition tree in section D of this chapter to 

quantify the contribution of factors towards the overall explanatory power of the model. 

The major contributors for the number of cattle infected are the epidemic history, local 

spread, market movement type 13, surveillance delay in dairy-like farms, Zone 4 

boundary, indirect movement type 15, market movement restriction and depopulation 

resources. We carry out sensitivity analysis for the significant contributors and highlight 

their effects in section C (4) of this Chapter. 

Table 5.   The table highlights sorted order of significance with which a factor contributes 
towards  the response variable, i.e., the number of infected cattle. We see that 
epidemic history, local spread multiplier and market movement are the biggest 
contibutors to the disease. 
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3. Metamodel 

We present two separate multiple regression models that use a smaller number of 

factors without losing the explanatory power. This approach provides more flexibility in 

carrying out detailed analysis of reduced subset of the problem. The first model is 

applicable to all the MOEs except detection time. We present a separate model for 

detection time as it is not strongly correlated with other MOEs. 

a. MOEs Other than Detection Time 

This model is applicable to all MOEs except detection time. Given the 

costs involved in analyzing a vast number of factors, we seek to reduce the size of the 

model without degrading the predictive capacity. We use the adjusted R2 method to 

identify what combinations of factors are contributing most to the basic model. We 

observe in Figure 21, that the adjusted R2 almost flattens from eight to ten factors. This 

gives us an indication that main effects, interaction, quadratic and cubic effects of only 

eight to ten factors out of 47 may actually contribute towards the explanatory capacity of 

the model for a given MOE. This aligns with the 80/20 Pareto’s principal. Koch (2012) 

explains the Pareto’s 80/20 principal as: 

“There is an inbuilt imbalance between causes and results, inputs and outputs, and 

efforts and rewards. Typically, causes, inputs or effort divide into two categories (a) the 

majority, that has little impact and (b) a small minority that have a major, dominant 

impact.”   
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Figure 21. The adjusted R2  plot for the choice of factors to be included in the model. 
We observe that there only eight to ten factors that are significantly 
contributing to the predictive capacity or the variance explanatory power 
of the basic model. On gaining insights, we add factors in the order of 
Table 5. For a given set of factors, we use a model that includes all 
interaction, quadratic, and cubic effects. 

  The model with highest adjusted R Squared value includes the following 

factors: epidemic history, movement restriction for all markets in Zone 3, surveillance 

delay in dairy-like facility, depopulation resources, local spread distance multiplier, all 

movements distance multiplier, market movement type 13, direct movement type 3 in 

sheep from farm to farm, indirect movement type 15and Zone 4 boundary for enforcing 

control.  

  We similarly develop a reduced sized model for the number of farms 

infected MOE. We take the union of the relevant factors for cattle infected, and farms 

infected. This reduced the overall number of factors to be studied to 16. In addition to the 

10 factors above, we also include: tracing effectiveness, Zone 2 boundary for enforcing 

control, surveillance visit frequency for detection, full resources available for 

depopulation, infectivity and probability of transmission applied to all markets and to all 

farms. We explain the implications of these factors on the outcome of the study in section 
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5 of this chapter. Description of factors has been retained from Axelsen (2012) and is 

attached as the Appendix for reference. We carry out a stepwise selection based on the 

BIC method to study the factors that are statistically significant. We present the statistics 

of the reduced model in Figure 22. The reduced model has an explanatory capacity of 

84.9%. Thus, we conclude that the smaller saturated model with 16 factors is producing 

similar quality in the results as the saturated model with 47 factors which had an R2 value 

of 85%. We are now able to condense the study from 47 factors to 16 factors without 

degrading the performance of the model. The sorted order of significance of each factor 

is depicted in Figure 23. 

 

Figure 22. Graph highlighting the statististics of the reduced saturated model after the 
square root transformation. The saturated model includes interaction, 
quadratic, and cubic effects. We observe that even after reducing the 
model to 16 factors and including all interaction effects, quadratic and 
cubic effects, the R2 value does not degrade beyond 85%. The analysis of 
variance p-value  < 0.0001 shows that the model is approximately valid. 
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Figure 23. The graph highlights the sorted order of significance with which a factor 
contributes towards the response variable for the reduced, 16 factor, 
saturated model. We see that epidemic history, local spread multiplier and 
market movement (movement type 13) are still the biggest contibutors of 
the disease in the reduced model. 

b. Detection Time  

This model is applicable to the detection time MOE. We follow similar 

stepwise BIC selection procedures for significant factors as we did for the mean number 

of cattle infected MOE. We get an R2 value of 0.8695 with all the main effects, 

interaction and nonlinear quadratic and cubic effects. But we observed heteroscedasticity 

in the data, as was the case in the previous original model of mean number of cattle 

infected with the transformation as seen in Figure 24. 
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Figure 24. Graph highlighting the statistics of the reduced saturated model before the 
square root transformation for the detection time MOE. We observe that 
the reduced saturated model for detection time MOE includes all 
interaction, quadratic and cubic effects. The R2 value is 0.869. The 
analysis of variance p-value  < 0.0001 shows that the model is plausible. 
However, when we see the residual against fitted plot, we observe non-
constant variance in the model. 

With insights gained from the earlier model we did a square root Box-Cox 

transformation to resolve the problem of nonconstant variance. We fit the model again 

with square root of detection time and observe that the heteroscedasticity appeared to be 

removed from the model as seen in Figure 25. The statistics for the transformed detection 

time model is depicted in Figure 26. 
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Figure 25. A graph showing requirement for Box-Cox transformation of the response 
variable , i.e., the detection time. We observe that the lambda value is 
between 0.4 and 0.5 indicating a requirement for a square root 
transformation. After the correction, the residual by predicted plot shows 
constant variance. 

 

Figure 26. Graph highlighting the statististics of the reduced saturated model after the 
square root transformation for the detection time MOE. We observe that 
the reduced saturated model for dtection time MOE with all interaction 
effects, quadratic and cubic effects has an R2 value is 0.8759. The analysis 
of variance p value  < 0.0001 shows that the model is plausible.  
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We observe that main, interaction and nonlinear effects as highlighted in 

Figure 27 are significant at α = 0.05. Surveillance is highest in the list of sorted factors, 

highlighting its contribution towards the control of the disease. We observe that for the 

detection time MOE only about five to six factors, with t-ratio value more than 10, are 

contributing towards the explanatory power of the model, as shown in Figure 27. This 

indicates that even a smaller metamodel may work for this MOE as only a few factors 

have a high t-ratio. We use a partition tree in section D of this Chapter to quantify the 

contribution of the factors towards the overall explanatory power of the model. The major 

contributors for the detection time response are surveillance, epidemic history, local 

spread, market movement and the quadratic effect of infectivity. We carry out sensitivity 

analysis for the significant contributors and highlight their effects in section C (4) of this 

chapter. 

 

Figure 27. Factors that are significant in a reduced regression model, using the same 
16 factors as Figure 23, at α = 0.05.   Tests involving additional factors, on 
top of these 16, did not produce a better explanatory power. We observe 
that in addition to main effects, several interaction effects and nonlinear 
effects are significant at α = 0.05. 
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4. Sensitivity Analysis based on MOEs 

Figure 28 describes the sensitivity of the response variable to varying values of 

the independent variables. The figure includes a sensitivity index in the form of a 

triangle. Higher sensitivity to the factor results in a larger triangle. Triangle with apex up 

indicates that the value of the chosen MOE would increase as the value of the factor is 

increased from low to high and vice versa. Sensitivity is essentially the slope of the line 

of the response variable vs. the independent variable. We present the analysis for two 

MOEs that are not strongly correlated: the number of cattle infected and the detection 

time. 

 

Figure 28. A sensitivity graph for the response of the mean number of cattle infected. 
We include the sensitivity index in the graph. The area of the triangle is 
proportional to the sensitivity of the factor. A triangle with apex up has a 
positive slope and a triangle with downward slope has a negative slope. 
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We use the worst case initial condition, high animal density, to carry out the 

analysis. Sensitivity analysis is based on extreme values of the independent factors. For 

instance, we can never practically ensure zero market movement or 100% market 

movement. Practically, the probability of market movement will be between zero and 

one. But for sensitivity analysis purposes, we use extreme values for the factors. The 

number of infected cattle MOE is most sensitive to the following factors that may be 

targeted to reduce the spread of the disease: 

 Movement Restriction:  Movement restriction is a binary variable 

indicating whether the movement restriction is enforced on all the markets in 

Zone 3 or only in control and surveillance zones. This factor has a negative slope 

indicating that as the movement restriction increases the mean number of cattle 

getting infected with the virus significantly decreases. Comparing extreme values 

of the market movement restriction parameter, the number of cattle infected is 

reduced by 25%.  

 Market Movement: Market movement type 13 has a large sensitivity 

index as can be seen from the size of the triangle in Figure 28. This factor is 

relevant for all types of livestock. In addition to the main effect, several 

interaction effects, quadratic and cubic effects of this factor are observed to be 

statistically significant. When we vary the probability of movement from 0 to 1, 

we see a 1.25 fold increase in the number of cattle infected. This factor however 

did not have such a large impact on the detection time. Figure 29 depicts a scatter 

plot of the market movement parameter vs. the number of cattle infected, grouped 

by initial condition. We observe that more cattle are infected if the infection starts 

in a high animal or high premise dense farm. The start of infection in the market 

has a bigger spread than at the San Francisco port. 
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Figure 29. Mean number of infected cattle plotted against the market movement  
grouped by their epidemic history. We observe that more cattle are 
infected if the origin of infection is a high animal dense farm or from a 
high premise dense area. 

 Local Spread Multiplier:  The local spread multiplier has the largest 

sensitivity index in our model indicated by the largest size of the triangle with the 

apex up as compared to other factors. This is expected as local spread is one of 

the most common causes of transmission of the virus at close distances. During 

the 2001 U.K. FMD outbreak, the source of infection of 1,802 out of 2,030 

infected premises was attributed to local spread (Stevenson, 2007). When we vary 

the local spread multiplier between 0.2 and 2, we see that there is a 4.5 times 

increase in the number of cattle infected. We also observe interaction, quadratic 

and cubic effects of local spread to be significant in the model. This factor has the 

biggest potential of turning the disease into an epidemic as seen by the 4.5 times 

increase between the high and the low value of the sensitivity index. Figure 30 

depicts a scatter plot of the local spread parameter vs. the number of cattle 

infected, grouped by initial condition.  
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Figure 30. Mean number of infected cattle plotted against the local spread multiplier  
grouped by their epidemic history. We observe that more cattle are 
infected if the origin of infection is a high animal dense farm or from a 
high premise dense area. 

 Surveillance:  Surveillance measures at dairy-like facilities are highly 

significant in controlling the spread of FMDV. Smaller time periods between 

visits at the farms placed in surveillance zones result in smaller detection delays 

and consequently a smaller mean number of infected cattle. There are seven 

surveillance factors in the DOE, but only dairy-like surveillance shows as 

significant because there are much more cattle in Zone 3 as compared to other 

livestock. We also observe high interactions between surveillance measures and 

other control options such as tracing, as indicated by the significant interaction 

effects. Increasing the dairy-like surveillance delay from one to five days 

increases the number of cattle infected by approximately 42%.  

 Resource Utilization: Initially, in the simulation control measures, only 

2,000 animals per day can be depopulated. The full resource capability of 

depopulating 20,000 animals per day is not available until a certain time after 

detection. Changing this parameter from 7 to 21 days results in an increase of 

20% in the number of cattle infected.  
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 Tracing: Tracing delay caused due to forgetfulness or due to unavailability 

of resources increased the mean number of infected cattle by 20%. We assume 

that manual tracing is required. This control factor cannot be studied in isolation 

as we observed statistically significant interaction effects between tracing and 

surveillance, as well as tracing and control measures in Zone 4.   

 Zonal Boundary:  We observe that the MOEs in Zone 3 are more sensitive 

to the control measures in Zone 4 as compared to Zone 2. This may be attributable 

to the fact that a larger area is being surveilled or controlled in Zone 4. Also, there 

could be more intra-zonal market movement between Zone 3 and Zone 4. 

However, control measures in both adjoining zones had statistically significant 

impact on the MOEs. This factor also had interactions with other control 

measures applied in Zone 3.  

For the MOE of detection time, surveillance delay is the only parameter, other 

than epidemic history, with high sensitivity, as can be seen in Figure 31. Greater 

delay in enforcing dairy-like surveillance results in bigger detection times. We 

observe a 75% increase in the detection time if surveillance delay was five days as 

compared to one day.   

 

Figure 31. The sensitivity graph for the detection time MOE. We observe that only 
two factors have a large sensitivity index (surveillance delay and the 
epidemic history), as indicated by the slope of the lines. 
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D. PARTITION TREE ANALYSIS 

We use a partition tree to further our analysis and gain useful insights. A partition 

tree is an analytical tool that iteratively splits the data to maximize the difference in the 

mean of the response variables of two distinct groups of the predictor variable. Each split 

uses the independent variable and split threshold that gives the greatest difference in 

means for the response variable (SAS, 2010).   

1. Partition Tree Model for Detection Time  

For the regression model with the detection time as the response variable, we had 

identified dairy-like surveillance to be the most significant contributor towards reducing 

the detection time. We expected to see the split first to occur for this factor in the model. 

We ran the partition trees for the detection time MOE and, as expected, the first split is 

placed at the surveillance delay of 3.2857 days, as seen in Figure 32. This means that if 

the surveillance delay is less than 3.2857 days, we expect to detect the infection in an 

average of 4.36 days. On the other hand, if surveillance delay is greater than 3.2857 days, 

then detection time increases to an average of 5.75 days, a 32% increase. 

 

Figure 32. Statistics of the partition tree model for the detection time MOE. We 
observe that the first split occurs for the dairy-like surveillance parameter 
indicating that surveillance has the biggest impact on the detction time. 
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The next split occurs for the type of epidemic history. If the initial trigger of the 

infection was in high animal or high premise dense locations, then the mean detection 

time was 5.04 days and if it was in a market or in the San Francisco port then the mean 

detection time was 6.46 days. We do 15 splits to achieve a R2 value of .815 and observe 

that only five factors contribute to the splits, as shown in Figure 33. The most significant 

effect in the partition tree model was due to surveillance delay. The partition tree model 

further validates our observation that a smaller metamodel with only five factors may be 

sufficient to explain most of the variability in the system. 

 

Figure 33. Factor contributions in terms of explanatory power in a partition tree 
model for the detection time MOE. We observe that six out of 15 splits 
occur due to dairy-like surveillance, indicating its significance in the 
partition tree model.  

2. Partition Tree Model for Mean Number of Cattle Infected 

In our regression model for the mean number of cattle infected we observe that 

the epidemic history, local spread multiplier, market movement and surveillance delay 

are the most significant contributors for the spread of the disease based on the sensitivity 

index (see Figure 28). We expected to see these factors also contributing in the partition 

tree model. 

We run the partition tree model for this MOE and observe that the first  

split occurs for epidemic history followed by the local spread multiplier as shown in 

Figure 34.  
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Figure 34. Statistics of the partition tree model for the number of cattle infected. We 
observe that the first split occurs for epidemic history, followed by local 
spread. 

We observe that epidemic history has the highest impact on the mean number of 

cattle infected. If the origin is market or the San Francisco port, then the average number 

of infected cattle is approximately 301,426, whereas if the origin of infection is in an 

animal or premise dense location, then the average number of cattle infected is 731,861. 

The next split occurs due to the local spread multiplier at a value of 1.2877, indicating 

that the average number of cattle infected will be approximately 1.42 times less when the 

local spread is restricted to 4,000m as compared to when the spread goes beyond 4,000m. 

We carry out 15 splits to get a R2  value of 0.681. All the significant factors are shown at 

Figure 35.  
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Figure 35. Factor contributions for the number of cattle infected. We observe that 
five out of 15 times, the split occurrs at local spread.  

We gather following information from the partition tree model of infected cattle: 

 Initial infection at a market place has a greater impact than infection 

originating at the San Francisco port. 

 If the surveillance delay can be kept below 2 days than the average 

number of infected cattle can be reduced by half as compared to a surveillance 

delay of more than 2 days. 

 If the overall market movement of all livestocks is kept under 45% as 

compared to no market movement restriction, then the number of cattle infected 

can be reduced by 25%. 
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V. CONCLUSIONS 

We divide this Chapter in three subsections. In the first section, we summarize the 

critical insights that we gain from our analysis. In section two, we discuss the main 

differences that we observe in a regional model of Zone 3 against the full model for entire 

California (Axelsen, 2012). Finally, we submit our recommendation for future work. 

A. CRITICAL INSIGHTS GAINED 

The main results of our analysis of FMD spread are as follows: 

 Initial Condition: Initial condition of the disease plays a significant role in 

the spread of the disease. We consider four starting scenarios: high animal density 

region, high premise density region, market, and port of San Francisco. Among 

the scenarios, the disease spread is almost twice as high when the infection 

originates in high animal or high premise dense areas. However, the detection 

time is 28% shorter if the initial infection originates in high premise or high 

animal dense areas. The impact of initial starting condition on the mean number 

of cattle infected is depicted in Figure 36. 

 

Figure 36. Spread of FMDV in cattle based on the starting scenario. We observe that 
infections originating from high animal and premise dense farms, and 

from market  are significant contributors.  
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 Local Spread:  The local spread parameter captures the proximity-based 

spread of FMD between premises. Out of all disease and control factors, epidemic 

progression has the highest sensitivity to local spread. Interaction and non-linear effects 

are significant for this parameter. Restricting local spread to less than 4,000m results in a 

1.42 fold reduction in the mean number of cattle infected; however, the extent to which 

we can restrict local spread in a real-world scenario is unknown. 

 Market Movement:  Market movement of cattle is a major contributor 

towards the spread of the disease. Interaction and non-linear effects for market 

movement are significant for this parameter. Our experimental results indicate 

that if a typical premise sends an animal to market every 2.2 days instead of every 

day, we will see a 25% reduction in the mean number of cattle infected. 

 Surveillance:  Surveillance measures at dairy-like facilities are highly 

significant. We observe high interactions between surveillance and other control 

measures such as tracing and depopulation. Among the control measures, 

surveillance has the maximum impact towards reducing the spread of the disease. 

If there is less than a three day delay in between suspecting an FMD outbreak and 

declaring an FMD outbreak at dairy-like facilities, we see a reduction in mean 

detection time for a new epidemic of 32%. A delay of less than two days in the 

same parameter reduces the average number of infected cattle by half.  

Our models show significant interaction effects between the most effective 

control measures—market movement, and surveillance—and other control measures such 

as tracing, vaccination and depopulation. In addition, our model suggests that restricting 

local spread and controlling direct, indirect and market movements can be decisive 

towards controlling the spread of the disease in California. Furthermore, surveillance 

measures and movement control in adjoining zones, in addition to the primary outbreak 

zone, may help in reducing disease spread. 
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 B. COMPARISON OF ZONAL MODEL WITH THE STATE MODEL 

One of the major aims of the thesis was to determine if a regional model can 

establish more detailed relationships between the response MOEs and the factors 

contributing to the spread of FMD by incorporating the recommendations from Axelsen 

(2012). We observe that the zonal model differs from the state model in terms of 

parameter settings and the output from the simulation runs as enumerated below. 

1. Parameter Settings and Modeling Approach 

In addition to selecting only the statistically significant factors from 

Axelsen (2012) and reducing the size of our base model to 47 factors from 73 

factors, we made the following changes to the structure of the model: 

 Market Movement: Due to the huge dimension of the problem both 

in number and space, market movement could not be studied in adequate 

detail for the state model. However, for the zonal model, we introduce a 

factor for market movement and study its effect on the response MOEs in 

greater detail.  

 Local Spread:  For the zonal model, we study the effect of 

reducing the local spread distance to 5,000m against 6,000m in the state 

model. This reduces the run time for the replications without degrading the 

explanatory capacity of the model.  

 Sensitivity Analysis: For the zonal model we carry out sensitivity 

analysis for all the 16 factors quantitatively. The same could not be 

achieved for the state model, probably due to higher number of factors.  

2. Comparison of Statistical Outputs 

We observe the following differences between the zonal and the state 

model that stem out from our analysis: 

 Explanation of Variance:  The state regression model with 72 

factors explains 40% of the variability in the data with an R2 value of 0.40, 
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whereas the zonal reduced saturated regression model with 16 factors 

explains 85% of the variability in the model.  

 Explanation of Interaction and Non-linear Effects: Using 

metamodeling techniques, we reduce the scope of the zonal study to only 

16 factors. This facilitates study of interaction and non-linear effects of 

each factor in greater detail.  

 Boundary for Control Area and Surveillance Zone:  Axelsen 

(2012) highlights that sizes of the control area and surveillance zones were 

not significant in the state model. However, for the zonal model, both 

Zone 4 boundary and Zone 2 boundary are significant in controlling the 

spread of the disease in Zone 3. Intra-zonal movement between farms and 

markets may have interaction effects on control measures in Zone 3. Also 

Zone 4 has a higher sensitivity index in comparison to Zone 2. We will 

require better local knowledge of farms and markets and intra-zonal 

movements to do any causative analysis. We conclude that 10km is a good 

starting point for controlling the disease initially. But as the days to 

detection increase, interactions between the zonal boundary, local spread 

and surveillance measures indicate that increasing the radius of both 

control areas and surveillance zones (not only for the zone under study but 

also for adjoining zones) may reduce the number of animals infected 

considerably. 

 Depopulation. For the state partition tree model, the size and 

availability of depopulation resources is one of the largest contributory 

factors for controlling the spread of FMD. Axelsen (2012) states “this is 

surprising as our model does not use preemptive depopulation” and 

suggests sensitivity analysis to be conducted for depopulation measures. 

For the zonal model, depopulation resources though significant, appear 

much later in the hierarchy of control measures (refer to Table 6). 
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C. RECOMMENDATIONS FOR FUTURE RESEARCH  

Our model could not capture a few of the important aspects of the spread of 

FMDV essentially due to a lack of data available on the subject or due to incompatibility 

with ISP. We highlight those aspects as future research work in this field. 

 Airborne Spread:  We could not parameterize airborne spread in our 

model. Under favorable conditions the aerosolized virus can cover distances 

beyond the local spread distance and may need separate parameterization. We 

used a distance multiplier to achieve this as a surrogate to the airborne spread. We 

observed that the distance multiplier was significant for all the MOEs. Accurate 

data for the parameterization of airborne spread can produce better results in this 

field. 

 Infectivity: Nonlinear terms of infectivity are significant for the detection 

time both in the regression model as well as in the partition tree. However, the 

main effect of infectivity is observed to be very low in the prioritized significance 

list as seen in Figure 27. We expect that the probability to infect a particular farm 

increases the detection time decreases. The same was not seen in the model as we 

observed that after about 3.1 days of infection the detection time becomes almost 

constant. The first split occurs at 3.1 days from infectivity in the partition model. 

This factor may need further research.  

 Large Scale Epidemic: A large scale epidemic is not an MOE in the model 

as we understand that there is no fixed criterion for defining an epidemic. We use 

the MOE of number of cattle infected as a surrogate to understand the scale of the 

outbreak. Future work in consultation with subject matter experts may provide a 

better tool for quantifying when the outbreak may be classified as an epidemic. 

In addition, the following may be undertaken to improve the model and analysis for the 

spread of FMD in California. Market movement is observed to be a significant 

contributor towards the spread of FMD in the zonal model. Based on the parameter 

settings, it is recommended that this factor may be introduced in the state model and its 

interaction with all the 72 factors from Axelsen (2012) may be studied in greater detail. 
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Significant interactions with market movement other than those observed in the zonal 

model may need further elucidation. Additionally, future work may apply the principal of 

robust design that uses loss functions to minimize the effect of causes of variation 

without eliminating any of the factors (Shyam, 2002). Robust design will reduce the 

sensitivity of the model towards factors that cannot be controlled such as airborne spread, 

infectivity, and local spread. 
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APPENDIX. DESCRIPTION OF THE DESIGN OF EXPERIMENT  

Factor name Low 

Level 

High 

Level 

Factor Description 

MovementType1:NumberPerTimePeri

od[114|214|314|24|34] 

0.01 0.14 Movement_Farm_Farm_Backyard

:  Direct Contact movement rate from 

backyard premises (All Species). 

Poisson Distribution with means 

varied between low and high levels. 

Types affected:  114|214|314|24|34  

MovementType2:NumberPerTimePeri

od[310] 

0.01 0.56 Movement_Farm_Farm_Goat:  

Direct Contact movement rate from 

Goat premises. Poisson Distribution 

with means varied between low and 

high levels. Types affected:  310 

MovementType3:NumberPerTimePeri

od[211|213] 

0.01 0.6300 Movement_Farm_Farm_Sheep:  

Direct Contact movement rate from 

Sheep premises. Poisson Distribution 

with means varied between low and 

high levels. Types affected: 211|213 

MovementType7:NumberPerTimePeri

od[33] 

0.4000 0.7000 Movement_Farm_Farm_DairyL:  

Direct Contact movement rate from 

Large Dairy premises. Poisson 

Distribution with means varied 

between low and high levels. Types 

affected:  33 

MovementType8:NumberPerTimePeri

od[41] 

0.01 0.0370 Movement_Farm_Farm_Calf_Heif

erS:  Direct Contact movement rate 

from Small Calf/Heifer premises. 

Poisson Distribution with means 

varied between low and high levels. 

Types affected:  41 
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MovementType9:NumberPerTimePeri

od[43|73] 

0.01 1.96 Movement_Farm_Farm_Calf_Heif

erL:  Direct Contact movement rate 

from Large Calf/Heifer premises. 

Poisson Distribution with means 

varied between low and high levels. 

Types affected:  43|73 

MovementType13:NumberPerTimePer

iod[24|31|32|33|34|41|43|51|53|61|63|73|2

11|213|214] 

0.01 1 Movement_farm-market:  Market 

movement with probability of 

transmission constant = 0.8. Poisson 

Distribution with means varied 

between low and high levels. Types 

affected (All types of animals in 

Zone 3):   

24|31|32|33|34|41|43|51|53|61|63|73|2

11|213|214 

MovementType14:NumberPerTimePer

iod[41] 

0.01 0.046 IDMovement_Size1: Indirect 

Contact movement rate for Small 

Calf/Heifer premises. Poisson 

Distribution with means varied 

between low and high levels. Types 

affected: 41 

MovementType15:NumberPerTimePer

iod[24|34|114|214|314|310|211|213|51|61|

53|63|121|131|151|161] 

0.01 0.314 IDMovement_Size2: Indirect 

Contact movement rate for a group of 

premise types that have the same 

order of magnitude mean rate. 

Poisson Distribution with means 

varied between low and high levels. 

Types affected: 

24|34|114|214|314|310|211|213|51|61|

53|63|121|131|151|161 

MovementType16:NumberPerTimePer

iod[153|163] 

0.01 1.63 IDMovement_Size3: Indirect 

Contact movement rate for a group of 

premise types that have the same 

order of magnitude mean rate. 
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Poisson Distribution with means 

varied between low and high levels. 

Types affected: 153|163 

MovementType17:NumberPerTimePer

iod[31|32|43|73] 

0.01 2.0340 IDMovement_Size4: Indirect 

Contact movement rate for a group of 

premise types that have the same 

order of magnitude mean rate. 

Poisson Distribution with means 

varied between low and high levels. 

Types affected: 31|32|43|73 

MovementType18:NumberPerTimePer

iod[33] 

0.862 1.0413 IDMovement_Size5: Indirect 

Contact movement rate for Large 

Dairy premises. Poisson Distribution 

with means varied between low and 

high levels. Types affected: 33 

AllMovements:MovementDistance 0.25 2 A multiplier applied to the distance 

bands for all movement types 

simultaneously.   

AllFarms:ProbabilityOfTransmission 0.1 0.5 The constant to be used as the basis 

to calculate the probability of 

transmission for all farm to farm 

movements (Direct and Indirect). 

This number is an input to functions 

to calculate the probability of 

transmission for different species. 

AllMarkets:ProbabilityOfTransmission 0.5 1 The constant to be used as the basis 

to calculate the probability of 

transmission for all farm to market 

and market to farm movements. 

   

LocalSpread1:Multiplier 0.25 1.5 A multiplier applied to the distance 

bands for local spread. .   
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LocalSpread1:RelativeSusceptibility[sw

ine] 

0.001 0.1 Suceptability of swine to local spread 

relative to cattle. 

LocalSpread1:RelativeSusceptibility[sh

eep] 

0.005 0.5 Suceptability of sheep to local spread 

relative to cattle. 

Infectivity1:TimeToClinicalSigns 1 8 The Beta value of a LogLogistic 

Curve with parameters (2, Beta, 

4.1436) describing the time until 

clinical signs are evident on the 

premise. 

Zone2:OutsideRadius1:ControlArea 1 20000 Control Measure:  Outside radius of 

the control area in meters. 

Zone3:OutsideRadius1:VaccZone 0 20000 Control Measure: Outside radius of 

the vaccination zone in meters. 

Zone4:OutsideRadius1:SurvZone 0 50000 Control Measure: Outside radius of 

the Surveillance zone in meters. 

Resource1:PerTimePeriod 0.5 2 DepopResource:  a multiplier 

applied to the number of animals able 

to be culled in a day. When multiplier 

= 1, the animals culled per day 

(regardless of species) = 20,000 

animals after full utilization day, and 

2000 animals until then.   

Resource1:TimePeriodStart2:FullUtiliz

ation 

2 21 DepopResource:  Day that all 

Resources are available. Up until this 

day, resources are available at 10% of 

full capacity. 

Resource2:PerTimePeriod 0.5 2 VaccinationResource:  a multiplier 

applied to the number of animals able 

to be vaccinated in a day. When 

multiplier = 1, the animals vaccinated 

per day (regardless of species) = 

20,000 animals after full utilization 
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day, and 2000 animals until then.   

Resource2:TimePeriodStart2:FullUtiliz

ation 

2 21 VaccinationResource:  Day that all 

Resources are available. Up until this 

day, resources are available at 10% of 

full capacity. 

Surveillance1:VisitFrequency:GenSurv 3 10 GeneralSurveillance:   A probability 

distribution describing the number of 

time periods that will pass between 

visits to a farm following the first 

visit (described by the VisitDelay) 

prior to a farm being placed on the 

surveillance list. Poisson Distribution 

with means varied between low and 

high levels. 

Surveillance1:DelayToDetection:GenSu

rv 

2 7 GeneralSurveillance:  A probability 

distribution returning the number of 

time periods from when the visit 

occurred to when that farm will 

receive the detected state (prior to a 

farm being placed on the surveillance 

list). Poisson Distribution with means 

varied between low and high levels. 

Surveillance1:DetectionProbability[][][]

:GenSurv 

0 0.99 GeneralSurveillance:   A function 

describing the probability of an 

infected farm being detected at each 

visit by the number of time periods 

since the farm was infected. In our 

case, the function is constant, but 

would vary between the Lo and Hi 

values shown. 
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Surveillance1:DetectionProbability[][][

sheep]:GenSurv 

0 0.95 GeneralSurveillance:   A function 

describing the probability of an 

infected Sheep farm being detected at 

each visit by the number of time 

periods since the farm was infected. 

In our case, the function is constant, 

but would vary between the Lo and 

Hi values shown. 

Surveillance2:VisitDelay:GeneralAfter

FirstDetection 

2 7 GeneralSurveillance_AfterDetect:  

A probability distribution describing 

the number of time periods that will 

pass before a farm is visited after 

being placed on the surveillance list 

following a detected farm in the area. 

Poisson Distribution with means 

varied between low and high levels. 

Surveillance2:VisitFrequency:General

AfterFirstDetection 

2 7 GeneralSurveillance_AfterDetect:  

A probability distribution describing 

the number of time periods that will 

pass between visits to a farm 

following the first visit (described by 

the VisitDelay) while a farm is on the 

surveillance list. Poisson Distribution 

with means varied between low and 

high levels. 

Surveillance3:VisitFrequency:GeneralS

urv_Dairy_before 

0.5 3 GeneralSurv_Dairy_before:  A 

probability distribution describing the 

number of time periods that will pass 

between visits to a farm following the 

first visit (described by the 

VisitDelay) while a farm is on the 

surveillance list. Poisson Distribution 

with means varied between low and 

high levels. 
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Surveillance3:DelayToDetection:Gener

alSurv_Dairy_before 

1 5 GeneralSurv_Dairy_before:  A 

probability distribution returning the 

number of time periods from when 

the visit occurred to when that farm 

will receive the detected state. 

Poisson Distribution with means 

varied between low and high levels. 

Surveillance3:DetectionProbability[][][]

:GeneralSurv_Dairy_before 

0.5 0.99 GeneralSurv_Dairy_before:   A 

function describing the probability of 

an infected farm being detected at 

each visit by the number of time 

periods since the farm was infected. 

In our case, the function is constant, 

but would vary between the Lo and 

Hi values shown. 

Surveillance4:VisitDelay:GeneralSurv_

Dairy_after 

0.5 2 GeneralSurv_Dairy_after:  A 

probability distribution describing the 

number of time periods that will pass 

before a farm is visited after being 

placed on the surveillance list 

following a detected farm in the area. 

Poisson Distribution with means 

varied between low and high levels. 

Surveillance4:DelayToDetection:Gener

alSurv_Dairy_after 

0.5 3 GeneralSurv_Dairy_after:  A 

probability distribution returning the 

number of time periods from when 

the visit occurred to when that farm 

will receive the detected state. 

Poisson Distribution with means 

varied between low and high levels. 

Surveillance4:DetectionProbability[][][]

:GeneralSurv_Dairy_after 

0.8 0.99 GeneralSurv_Dairy_after:   A 

function describing the probability of 

an infected farm being detected at 

each visit by the number of time 
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periods since the farm was infected. 

In our case, the function is constant, 

but would vary between the Lo and 

Hi values shown. 

Surveillance6:VisitDelay:SurvZone 2 5 Surv_Zone:  A probability 

distribution describing the number of 

time periods that will pass before a 

farm is visited after being placed on 

the surveillance list following a 

detected farm in the area. Poisson 

Distribution with means varied 

between low and high levels. 

Surveillance6:VisitFrequency:SurvZon

e 

2 7 Surv_Zone:  A probability 

distribution describing the number of 

time periods that will pass between 

visits to a farm following the first 

visit (described by the VisitDelay) 

while a farm is on the surveillance 

list. Poisson Distribution with means 

varied between low and high levels. 

Surveillance6:DetectionProbability[][][

sheep]:SurvZone 

0.7 0.95 Surv_Zone:   A function describing 

the probability of an infected Sheep 

farm being detected at each visit by 

the number of time periods since the 

farm was infected. In our case, the 

function is constant, but would vary 

between the Lo and Hi values shown. 

Surveillance7:VisitDelay:Trace 1 7 Surv_Trace:  A probability 

distribution describing the number of 

time periods that will pass before a 

farm is visited after being placed on 

the surveillance list following a 

detected farm in the area. Poisson 

Distribution with means varied 
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between low and high levels. 

Surveillance7:DelayToDetection:Trace 1 5 Surv_Trace:  A probability 

distribution returning the number of 

time periods from when the visit 

occurred to when that farm will 

receive the detected state. Poisson 

Distribution with means varied 

between low and high levels. 

Tracing1:ProbMovementForgotten[][] 0.05 0.8 Tracing:   a probability that the 

infectious movement will be 

forgotten by the farmer and therefore 

never traced. Here, this is the same 

for all movement types. 

Binary Variables 

Vaccination1:FarmClasses:DairyOnly 0 1 Vacc_Zone:  Binary. If 0, then all 

cattle will be vaccinated. If 1, only 

Dairy premises, Dairy calf ranches, 

and feedlots will be vaccinated. 

MovementRestriction3:ProbMovement

Restricted:StopMarkets 

0 0.995 StopMarkets:  Binary variable 

defining the movement restrictions 

put on the market will be set for all 

markets (hi value) or only markets in 

a control area or surveillance zone. 

COLOR CODE 

PARAMETERS FOR All FACTORS HIGHLIGHTED IN GREEN HAVE BEEN 

RETAINED FROM AXELSEN (2012) 

PARAMETERS FOR All FACTORS HIGHLIGHTED IN BLUE HAVE BEEN EITHER 

MODIFIED OR ADDED  
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