RC 268.5 U55 nal Cancer Institute NO.148 1978 cal Report Series 48

BIOASSAY OF 1-PHENYL-2-THIOUREA FOR POSSIBLE CARCINOGENICITY

CAS No. 103-85-5

NCI-CG-TR-148

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

L Nutri I instituti of Health Refigue March and 20014

BIOASSAY OF

1-PHENYL-2-THIOUREA

FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention MrS, National Cancer Institute National Institutes of Health Bethesda, Maryland 20014

Carcinogeners Lechnerd apart de vier

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

DHEW Publication No. (NIH) 78-1704

REPORT ON THE BIOASSAY OF 1-PHENYL-2-THIOUREA FOR POSSIBLE CARCINOGENICITY

CARCINOGENESIS TESTING PROGRAM DIVISION OF CANCER CAUSE AND PREVENTION NATIONAL CANCER INSTITUTE, NATIONAL INSTITUTES OF HEALTH

FOREWORD: This report presents the results of the bioassay of 1-phenyl-2-thiourea conducted for the Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland. This is one of a series of experiments designed to determine whether selected chemicals have the capacity to produce cancer in animals. Negative results, in which the test animals do not have a significantly greater incidence of cancer than control animals, do not necessarily mean the test chemical is not a carcinogen because the experiments are conducted under a limited set of circumstances. Positive results demonstrate that the test chemical is carcinogenic for animals under the conditions of the test and indicate a potential risk to man. The actual determination of the risk to man from animal carcinogens requires a wider analysis.

CONTRIBUTORS: This bioassay of 1-phenyl-2-thiourea was conducted by Litton Bionetics, Inc., Bethesda, Maryland, initially under direct contract to the NCI and currently under a subcontract to Tracor Jitco, Inc., prime contractor for the NCI Carcinogenesis Testing Program.

The experimental design was determined by the NCI Project Officers, Dr. N. P. Page (1,2), Dr. E. K. Weisburger (1) and Dr. J. H. Weisburger (1,3). The principal investigators for the contract were Dr. S. M. Garner (4,5) and Dr. B. M. Ulland (4,5). Mr. S. Johnson (4) was the coprincipal investigator for the contract. Animal treatment and observation were supervised by Mr. R. Cypher (4), Mr. D. S. Howard (4) and Mr. H. D. Thornett (4); Mr. H. Paulin (4) analyzed dosed feed mixtures. Ms. J. Blalock (4) was responsible for data collection and assembly. Chemical analysis was performed by Midwest Research Institute (6) and the analytical results were reviewed by Dr. N. Zimmerman (7).

Histopathologic examinations were performed by Dr. J. F. Hardisty (4) at Litton Bionetics, Inc., the pathology narratives were written by Dr. J. F. Hardisty (4), and the diagnoses included in this report represent the interpretation of this pathologist. Histopathology findings and reports were reviewed by Dr. R. L. Schueler (8). Compilation of individual animal survival, pathology, and summary tables was performed by EG&G Mason Research Institute (9); the statistical analysis was performed by Mr. W. W. Belew (7,10) and Mr. R. M. Helfand (7), using methods selected for the Carcinogenesis Testing Program by Dr. J. J. Gart (11).

This report was prepared at METREK, a Division of The MITRE Corporation (7) under the direction of the NCI. Those responsible for this report at METREK are the project coordinator, Dr. L. W. Thomas (7), task leader Ms. P. Walker (7), senior biologist Mr. M. Morse (7), biochemist Mr. S. C. Drill (7), and technical editor Ms. P. A. Miller (7). The final report was reviewed by members of the participating organizations.

The following other scientists at the National Cancer Institute were responsible for evaluating the bioassay experiment, interpreting the results, and reporting the findings: Dr. K. C. Chu (1), Dr. C. Cueto, Jr. (1), Dr. J. F. Douglas (1), Dr. D. G. Goodman (1,12), Dr. R. A. Griesemer (1), Dr. M. H. Levitt (1), Dr. H. A. Milman (1), Dr. T. W. Orme (1), Dr. R. A. Squire (1,13), Dr. S. F. Stinson (1), Dr. J. M. Ward (1), and Dr. C. E. Whitmire (1).

- 1. Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- 2. Now with the U.S. Environmental Protection Agency, 401 M Street S.W., Washington, D.C.
- 3. Now with the Naylor Dana Institute for Disease Prevention, American Health Foundation, Hammon House Road, Valhalla, New York.
- 4. Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland.
- 5. Now with Hazleton Laboratories America, Inc., 9200 Leesburg Turnpike, Vienna, Virginia.
- Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri.
- 7. The MITRE Corporation, METREK Division, 1820 Dolley Madison Boulevard, McLean, Virginia.
- 8. Tracor Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland.

- 9. EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland.
- Now with the Solar Energy Research Institute, Cole Boulevard, Golden, Colorado.
- 11. Mathematical Statistics and Applied Mathematics Section, Biometry Branch, Field Studies and Statistics Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- 12. Now with Clement Associates, Inc., 1010 Wisconsin Avenue, N.W., Washington, D.C.
- 13. Now with the Division of Comparative Medicine, Johns Hopkins University, School of Medicine, Traylor Building, Baltimore, Maryland.

SUMMARY

A bioassay of 1-phenyl-2-thiourea for possible carcinogenicity was conducted using Fischer 344 rats and B6C3F1 mice. 1-Phenyl-2-thiourea was administered in the feed, at either of two concentrations, to groups of 50 male and 50 female animals of each species. The high and low concentrations of 1-phenyl-2-thiourea utilized in the chronic bioassay were, respectively, 120 and 60 ppm for rats and 300 and 150 ppm for mice. Twenty animals of each species and sex were placed on test as controls. A 78-week period of chemical administration was followed by an additional observation period of 26 weeks for rats and 13 weeks for mice.

Adequate numbers of animals in all groups survived sufficiently long to be at risk from late-developing tumors. Distinct dose-related depression of mean body weight gain was observed in male and female mice when compared with their controls, but growth retardation was not observed in any dosed rat group. In addition, since no significant accelerated mortality or other toxic effects were associated with the dietary administration of 1-phenyl-2-thiourea to rats, it is possible that the compound was not administered to these animals at the maximum tolerated concentrations.

There were no tumors in either sex of rats or mice for which a significant positive association could be established between chemical administration and tumor incidence.

Under the conditions of this bioassay, 1-phenyl-2-thiourea was not carcinogenic to Fischer 344 rats or B6C3F1 mice.

TABLE OF CONTENTS

D . .

				Page
Ι.	INT	RODUCT	ION	1
II.	MAT	AND METHODS	4	
	C. D. E. F.	Animal Animal Select Exper: Clinic	ry Preparation	4 5 6 7 9 12 14
III.	CHR		ESTING RESULTS: RATS	19
		Surviv		19 19 19 22
IV.	CHR	ONIC TH	ESTING RESULTS: MICE	30
		Surviv Pathol		30 30 33 33
V.	DIS	CUSSION	1	39
VI.	BIB	LIOGRAF	РНҮ	40
APPEN	DIX .	A	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS TREATED WITH 1-PHENYL-2-THIOUREA	A-1
APPEN	DIX	В	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE TREATED WITH 1-PHENYL-2-THIOUREA	B-1
APPEN	DIX	С	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS TREATED WITH 1-PHENYL-2- THIOUREA	C-1
APPEN	DIX	D	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE TREATED WITH 1-PHENYL-2- THIOUREA	D-1

LIST OF ILLUSTRATIONS

Figure Number		Page
1	CHEMICAL STRUCTURE OF 1-PHENYL-2-THIOUREA	2
2	GROWTH CURVES FOR 1-PHENYL-2-THIOUREA CHRONIC STUDY RATS	20
3	SURVIVAL COMPARISONS OF 1-PHENYL-2-THIOUREA CHRONIC STUDY RATS	21
4	GROWTH CURVES FOR 1-PHENYL-2-THIOUREA CHRONIC STUDY MICE	31
5	SURVIVAL COMPARISONS OF 1-PHENYL-2-THIOUREA CHRONIC STUDY MICE	32

LIST OF TABLES

Table	Number		Page
	1	DESIGN SUMMARY FOR FISCHER 344 RATS 1-PHENYL-2-THIOUREA FEEDING EXPERIMENT	10
	2	DESIGN SUMMARY FOR B6C3F1 MICE1-PHENYL-2- THIOUREA FEEDING EXPERIMENT	11
	3	ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN MALE RATS TREATED WITH 1-PHENYL-2-THIOUREA	23
	4	ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN FEMALE RATS TREATED WITH 1-PHENYL-2-THIOUREA	26
	5	ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN MALE MICE TREATED WITH 1-PHENYL-2-THIOUREA	34
	6	ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN FEMALE MICE TREATED WITH 1-PHENYL-2-THIOUREA	36
	A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS TREATED WITH 1-PHENYL-2-THIOUREA	A-3

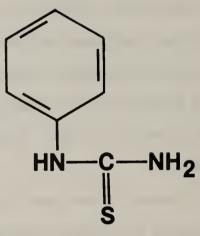
LIST OF TABLES (Concluded)

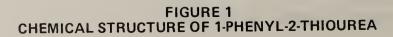
Table Number		Page
A2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS TREATED WITH 1-PHENYL-2-THIOUREA	A-7
B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE TREATED WITH 1-PHENYL-2-THIOUREA	в-3
B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE TREATED WITH 1-PHENYL-2-THIOUREA	в-6
C1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS TREATED WITH 1-PHENYL- 2-THIOUREA	C-3
C2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS TREATED WITH 1-PHENYL- 2-THIOUREA	C-8
D1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE TREATED WITH 1-PHENYL- 2-THIOUREA	D-3
D2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE TREATED WITH 1-PHENYL- 2-THIOUREA	D-7

I. INTRODUCTION

1-Phenyl-2-thiourea (Figure 1) (NCI No. CO2017) was selected for bioassay by the National Cancer Institute because of the structural similarity of this compound to ethylene thiourea, a tumorigen in hybrid mice (C57BL/6 x C3H/Anf and C57BL/6 x AKR) (Innes et al., 1969), and the widespread oral exposure to this compound.

The Chemical Abstracts Service (CAS) Ninth Collective Index (1977) name for this compound is phenylthiourea. * It is also called phenylthiocarbamide; 1-phenylthiourea; N-phenylthiourea; and PTU.


The ability to perceive the bitter taste of 1-phenyl-2-thiourea is genetically determined; consequently, this compound has been used extensively as a test substance in genetics research and in demonstrations of genetic polymorphism (Gosselin et al., 1976; Winchester, 1966). The gene responsible for 1-phenyl-2-thiourea tasting ability is dominant and is present in about 70 percent of the U.S. population (Winchester, 1966).


1-Phenyl-2-thiourea is also used occasionally as a rodenticide but its effectiveness in this application is limited by the compound's bitter taste (Gosselin et al., 1976).

Specific production data for 1-phenyl-2-thiourea are not available; however, this compound is produced in commercial quantities (in excess of 1000 pounds or \$1000 in value annually) by two U.S. companies (Stanford Research Institute, 1977).

The CAS registry number is 103-85-5.

+

As 1-pheny1-2-thiourea is frequently used in classroom demonstrations of genetic polymorphism in taste, a substantial number of people are exposed to small amounts of this compound via ingestion (Wheatcroft and Thornburn, 1972). Chronic intake of 1-pheny1-2-thiourea is thought to lead to enlargement of the thyroid gland (goiter) and other glandular problems in humans (Wheatcroft and Thornburn, 1972).

II. MATERIALS AND METHODS

A. Chemicals

1-Phenyl-2-thiourea was purchased from Eastman Chemical Company, Rochester, New York. Chemical analysis was performed by Midwest Research Institute, Kansas City, Missouri. Although the melting point (149° to 150°C) was somewhat different than that reported in the literature (154°C [Weast, 1977]), the narrow range close to the reported value suggested a compound of high purity. Thin-layer chromatography was performed utilizing two solvent systems (chloroform:dichloromethane:ethyl acetate:formic acid and chloroform:acetone). Each plate showed only one spot. Infrared analysis was consistent with the structure of the compound and nuclear magnetic resonance analysis was consistent with that reported in the literature (Sadtler Standard Spectra,a). Ultraviolet analysis yielded a λ_{max} of 265 nm with a molar extinction coefficient of 1.45 x 10⁴. This value agrees quite well with the value reported in the literature (1.39 x 10^4) (Sadtler Standard Spectra, b). The data suggest that the compound was of extremely high purity. Stability studies performed by thin-layer chromatography at six-month intervals indicated no degradation, as detectable by the method employed.

Throughout this report, the term 1-phenyl-2-thiourea is used to represent this material.

B. Dietary Preparation

The basal laboratory diet for both dosed and control animals consisted of Wayne Lab-Blox[®] (Allied Mills, Inc., Chicago, Illinois).

1-Phenyl-2-thiourea was administered to the dosed animals as a component of the diet.

The chemical was removed from its container and a proper amount was blended with an aliquot of the ground feed using a mortar and pestle. Once visual homogeneity was attained, the mixture was placed in a 6 kg capacity Patterson-Kelley standard model twin-shell stainless steel V-blender along with the remainder of the feed to be prepared. After 20 minutes of blending, the mixtures were placed in double plastic bags and stored in the dark at 4°C. The mixture was prepared once weekly.

The stability of 1-phenyl-2-thiourea in feed was determined spectrophotometrically. Ten days after preparation of diets containing 60 and 120 ppm concentrations of 1-phenyl-2-thiourea, 93 ± 6 percent of the initial concentrations were recovered from the feed.

C. Animals

Two animal species, rats and mice, were used in the carcinogenicity bioassay. Fischer 344 rats and B6C3F1 mice were obtained through contracts of the Division of Cancer Treatment, National Cancer Institute. All rats and mice were supplied by Charles River Breeding Laboratories, Inc., Wilmington, Massachusetts.

Rats and mice were approximately 4 weeks old when received. Upon receipt, animals were examined for visible signs of disease or parasites. Obviously ill or runted animals were culled. The remaining animals were quarantined for 2 weeks prior to initiation of

test. Animals which did not manifest clinical signs of disease were placed on test at this time. Animals were assigned to groups and distributed among cages so that the average body weight per cage was approximately equal for a given species and sex.

D. Animal Maintenance

All animals were housed by species in temperature- and humiditycontrolled rooms. The temperature range was 22° to 26°C and the relative humidity was maintained between 45 and 55 percent. Incoming air was filtered through HEPA filters (Flanders Filters, McLean, Virginia) at a rate of 12 to 15 complete changes of room air per hour. Fluorescent lighting was provided 8 hours per day (9:00 a.m. to 5:00 p.m.).

All rats were housed four per cage by sex and all mice five per cage by sex. Throughout the study dosed and control animals of both species were housed in polycarbonate cages (Lab Products, Inc., Gar-field, New Jersey) suspended from aluminum racks. Racks were fitted with a continuous stainless steel mesh lid over which a sheet of filter paper was firmly secured. Filter paper was changed at 2-week intervals, when the racks were sanitized. Clean cages and bedding were provided twice weekly. Ab-sorb-dri[®] hardwood chip bedding (Wilner Wood Products Company, Norway, Maine) was used in polycar-bonate cages for the entire bioassay.

Acidulated water (pH 2.5) was supplied to animals in water bottles filled by an automated metering device that was checked daily

for diluting accuracy. Water bottles were changed twice weekly and sipper tubes were washed at weekly intervals. During the period of chemical administration, dosed and control animals received treated or untreated Wayne Lab-Blox[®] meal as appropriate. The feed was supplied in hanging stainless steel hoppers which were refilled three times per week and sanitized weekly. Food and water were available ad libitum for both species.

All dosed and control rats were housed in a room with other rats receiving diets containing^{*} dibutyltin diacetate (1067-33-0); amitrole (61-82-5); zinc acetate (57-34-6); and copper acetate (80-12-5).

All dosed and control mice were housed in a room with other mice receiving diets containing Michler's ketone (90-94-8); 4,4'methylenebis(N,N-dimethyl)-benzenamine (101-61-1); trimethylthiourea (2489-77-2); p-chloroaniline (106-47-8); dibutyltin diacetate (1067-33-0); 2-nitro-p-phenylenediamine (5307-14-2); 3-chloro-p-toluidine (95-74-9); 5-chloro-o-toluidine (95-79-4); and N-phenyl-p-phenylenediamine hydrochloride (2198-59-6).

E. Selection of Initial Concentrations

In order to establish the maximum tolerated concentrations of l-phenyl-2-thiourea for administration to dosed animals in the chronic studies, subchronic toxicity tests were conducted with both rats and mice. Rats were distributed among six groups, each

CAS registry numbers are given in parentheses.

consisting of five males and five females. 1-Phenyl-2-thiourea was incorporated into the basal laboratory diet and supplied <u>ad libitum</u> to five of the six rat groups in concentrations of 45, 70, 100, 145, and 215 ppm. The sixth rat group served as a control group, receiving only the basal laboratory diet.

Mice were distributed among ten groups, each consisting of five males and five females. 1-Phenyl-2-thiourea was incorporated into the basal laboratory diet and supplied <u>ad libitum</u> to eight of the ten mouse groups in concentrations of 25, 37, 55, 80, 120, 375, 680, and 810 ppm. The two remaining groups served as the control groups, receiving only the basal laboratory diet.

The dosed dietary preparations were administered for a period of 4 weeks, followed by a 2-week observation period during which all animals were fed the basal diet. Individual body weights and food consumption data were recorded twice weekly throughout the study. Upon termination of the observation period, all survivors were sacrificed and necropsied.

At the end of the subchronic test, mean body weight gains among male rats dosed with 215, 145, 100, 70 and 45 ppm were, respectively, 73, 72, 1, 29, and 2 percent less than the mean body weight gain of their controls, while female rats receiving the same concentrations displayed respective mean body weight gains of 19, 20, 2, 11 and 8 percent less than that of their controls. The high concentration

selected for administration to dosed rats in the chronic bioassay was 120 ppm.

At a dietary concentration of 810 ppm, 2 male and 2 female mice died. At the end of the subchronic test, mean body weight gains among male mice dosed with 810, 650, 375, and 120 ppm were, respectively, 3 percent less than, 3 percent more than, 3 percent more than, and 6 percent less than the mean body weight gain of their controls, while female mice receiving the same concentrations displayed respective mean body weight gains of 10 percent less than, 9 percent more than, 1 percent more than, and 5 percent less than that of their controls. Mean body weight gains among male mice dosed with 80, 55, 37 and 25 ppm were, respectively, 5, 7, 4, and 1 percent greater than the mean body weight gain of their controls, while female mice receiving the same concentrations displayed respective mean body weight gains of 1, 2, 3, and 2 percent less than that of their controls. The high concentration selected for administration to dosed mice in the chronic bioassay was 300 ppm.

F. Experimental Design

The experimental design parameters for the chronic study (species, sex, group size, concentrations administered, and duration of treated and untreated observation periods) are summarized in Tables 1 and 2.

All rats were approximately 6 weeks old at the time the test was initiated and were placed on test simultaneously. The dietary

TABLE 1

DESIGN SUMMARY FOR FISCHER 344 RATS 1-PHENYL-2-THIOUREA FEEDING EXPERIMENT

	INITIAL		OBSERVATION PERIOD	
	GROUP SIZE	l-PHENYL-2-THIOUREA CONCENTRATION ^a	TREATED (WEEKS)	UNTREATED (WEEKS)
MALE				
CONTROL	20	0	0	103
LOW DOSE	50	60 0	78	26
HIGH DOSE	50	120 0	78	26
FEMALE				
CONTROL	20	0	0	104
LOW DOSE	50	60 0	78	26
HIGH DOSE	50	120 0	78	26

^aConcentrations given in parts per million.

) || | | |

TABLE 2

DESIGN SUMMARY FOR B6C3F1 MICE 1-PHENYL-2-THIOUREA FEEDING EXPERIMENT

	INITIAL GROUP SIZE	1-PHENYL-2-THIOUREA CONCENTRATION ^a	OBSERVAT TREATED (WEEKS)	ION PERIOD UNTREATED (WEEKS)
MALE				
CONTROL	20	0	0	91
LOW DOSE	50	150 0	78	13
HIGH DOSE	50	300 0	78	13
FEMALE	•			
CONTROL	20	0	0	91
LOW DOSE	50	150 0	78	13
HIGH DOSE	50	300 0	78	13

^aConcentrations given in parts per million.

concentrations of 1-pheny1-2-thiourea utilized were 120 and 60 ppm. Throughout this report, those rats receiving the former concentration are referred to as the high dose groups and those receiving the latter concentration are referred to as the low dose groups. Dosed rats were supplied with feed containing 1-pheny1-2-thiourea for 78 weeks, followed by an additional observation period of 26 weeks.

All mice were approximately 6 weeks old at the time the test was initiated, and were placed on test simultaneously. The dietary concentrations of 1-phenyl-2-thiourea utilized were 300 and 150 ppm. Throughout this report, those mice receiving the former concentration are referred to as the high dose groups and those receiving the latter concentration are referred to as the low dose groups. Dosed mice were supplied with feed containing 1-phenyl-2-thiourea for 78 weeks, followed by an additional observation period of 13 weeks.

G. Clinical and Histopathologic Examinations

1.

Animals were weighed immediately prior to initiation of the experiment. From the first day, all animals were inspected twice daily for mortality. Food consumption data were collected at monthly intervals from 20 percent of the animals in each group. Body weights of rats were recorded once a week for the first 6 weeks, every 2 weeks for the next 12 weeks, and at monthly intervals thereafter. Body weights of mice were recorded at monthly intervals throughout the bioassay.

All moribund animals or animals that developed large, palpable masses that jeopardized their health were sacrificed. A necropsy was performed on each animal regardless of whether it died, was sacrificed when moribund, or was sacrificed at the end of the bioassay. The animals were euthanized by carbon dioxide asphyxiation, and were immediately necropsied. The histopathologic examination consisted of gross and microscopic examination of all major tissues, organs, and gross lesions taken from sacrificed animals and, whenever possible, from animals found dead.

Tissues were preserved in a 10 percent neutral buffered formalin solution, embedded in paraffin, sectioned, and stained with hematoxylin and eosin prior to microscopic examination.

Slides were prepared from the following tissues: skin, subcutaneous tissue, lungs and bronchi, trachea, bone marrow, spleen, lymph nodes, thymus, heart, salivary gland, liver, gallbladder (mice), pancreas, esophagus, stomach, small intestine, large intestine, kidney, urinary bladder, pituitary, adrenal, thyroid, parathyroid, testis, prostate, tunica vaginalis, uterus, mammary gland, and ovary.

A few tissues were not examined for some animals, particularly for those that died early. Also, some animals were missing, cannibalized, or judged to be in such an advanced state of autolysis as to preclude histopathologic interpretation. Thus, the number of animals for which particular organs, tissues, or lesions were examined microscopically varies and does not necessarily represent the number of

animals that were recorded in each group at the time that the test was initiated.

H. Data Recording and Statistical Analyses

Pertinent data on this experiment have been recorded in an automatic data processing system, the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969). Data tables were generated for verification of data transcription and for statistical review.

These data were analyzed using the statistical techniques described in this section. Those analyses of the experimental results that bear on the possibility of carcinogenicity are discussed in the statistical narrative sections.

Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) when testing two groups for equality and used Tarone's (1975) extensions of Cox's methods when testing a dose-related trend. One-tailed P-values have been reported

for all tests except the departure from linearity test, which is only reported when its two-tailed P-value is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been given as the ratio of the number of animals bearing such lesions at a specific anatomic site (numerator) to the number of animals in which that site was examined (denominator). In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions prior to histologic sampling (e.g., skin or mammary tumors), or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the numbers of animals necropsied.

The purpose of the statistical analyses of tumor incidence is to determine whether animals receiving the test chemical developed a significantly higher proportion of tumors than did the control animals. As a part of these analyses, the one-tailed Fisher exact test (Cox, 1970, pp. 48-52) was used to compare the tumor incidence of a control group to that of a group of treated animals at each dose level. When results for a number of treated groups, k, are compared simultaneously with those for a control group, a correction to ensure an overall significance level of 0.05 may be made. The Bonferroni inequality (Miller, 1966, pp. 6-10) requires that the P-value for any comparison be less than or equal to 0.05/k. In cases where this correction was

used, it is discussed in the narrative section. It is not, however, presented in the tables, where the Fisher exact P-values are shown.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971, pp. 362-365), was also used when appropriate. Under the assumption of a linear trend, this test determined if the slope of the dose-response curve is different from zero at the one-tailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend was a positive dose relationship. This method also provides a two-tailed test of departure from linear trend.

A time-adjusted analysis was applied when numerous early deaths resulted from causes that were not associated with the formation of tumors. In this analysis, deaths that occurred before the first tumor was observed were excluded by basing the statistical tests on animals that survived at least 52 weeks, unless a tumor was found at the anatomic site of interest before week 52. When such an early tumor was found, comparisons were based exclusively on animals that survived at least as long as the animal in which the first tumor was found. Once this reduced set of data was obtained, the standard procedures for analyses of the incidence of tumors (Fisher exact tests, Cochran-Armitage tests, etc.) were followed.

£

When appropriate, life-table methods were used to analyze the incidence of tumors. Curves of the proportions surviving without an observed tumor were computed as in Saffiotti et al. (1972). The week

during which animals died naturally or were sacrificed was entered as the time point of tumor observation. Cox's methods of comparing these curves were used for two groups; Tarone's extension to testing for linear trend was used for three groups. The statistical tests for the incidence of tumors which used life-table methods were one-tailed and, unless otherwise noted, in the direction of a positive dose relationship. Significant departures from linearity (P < 0.05, twotailed test) were also noted.

The approximate 95 percent confidence interval for the relative risk of each dosed group compared to its control was calculated from the exact interval on the odds ratio (Gart, 1971). The relative risk is defined as P_t/P_c where P_t is the true binomial probability of the incidence of a specific type of tumor in a treated group of animals and P_c is the true probability of the spontaneous incidence of the same type of tumor in a control group. The hypothesis of equality between the true proportion of a specific tumor in a treated group and the proportion in a control group corresponds to a relative risk of unity. Values in excess of unity represent the condition of a larger proportion in the treated group than in the control.

The lower and upper limits of the confidence interval of the relative risk have been included in the tables of statistical analyses. The interpretation of the limits is that in approximately 95 percent of a large number of identical experiments, the true ratio of the risk in a treated group of animals to that in a control group

would be within the interval calculated from the experiment. When the lower limit of the confidence interval is greater than one, it can be inferred that a statistically significant result (a P < 0.025one-tailed test when the control incidence is not zero, P < 0.050when the control incidence is zero) has occurred. When the lower limit is less than unity but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates that there is a theoretical possibility of the induction of tumors by the test chemical which could not be detected under the conditions of this test.

III. CHRONIC TESTING RESULTS: RATS

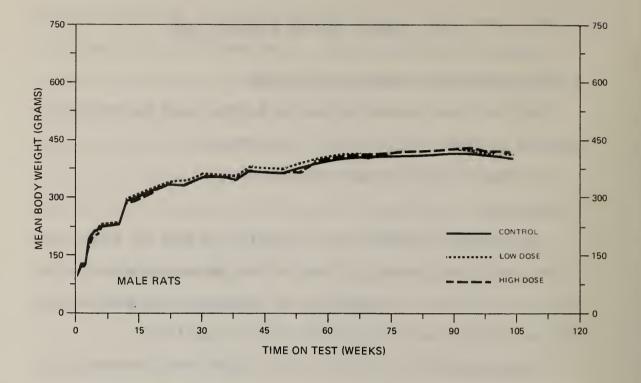
A. Body Weights and Clinical Observations

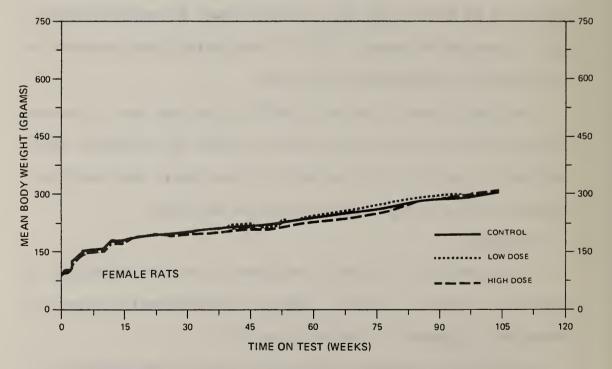
No evidence of compound-related mean body weight depression was apparent in either male or female rats (Figure 2).

No abnormal clinical signs were recorded.

B. Survival

The estimated probabilities of survival for male and female rats in the control and 1-phenyl-2-thiourea-dosed groups are shown in Figure 3. For both males and females, the Tarone test for positive association between dosage and mortality was not significant.


Adequate numbers of male rats were at risk from late-developing tumors, as 86 percent (43/50) of the high dose, 82 percent (41/50) of the low dose and 90 percent (18/20) of the control group survived on test until the termination of the study.


For female rats, 78 percent (39/50) of the high dose, 74 percent (37/50) of the low dose, and 80 percent (16/20) of the control group survived on test until the termination of the study, thus providing adequate numbers at risk from late-developing tumors.

C. Pathology

Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables A1 and A2); findings on nonneoplastic lesions are summarized in Appendix C (Tables C1 and C2).

A variety of neoplastic lesions was seen with approximately equal frequency in the control and dosed rats. The most frequently

FIGURE 2 GROWTH CURVES FOR 1-PHENYL-2-THIOUREA CHRONIC STUDY RATS

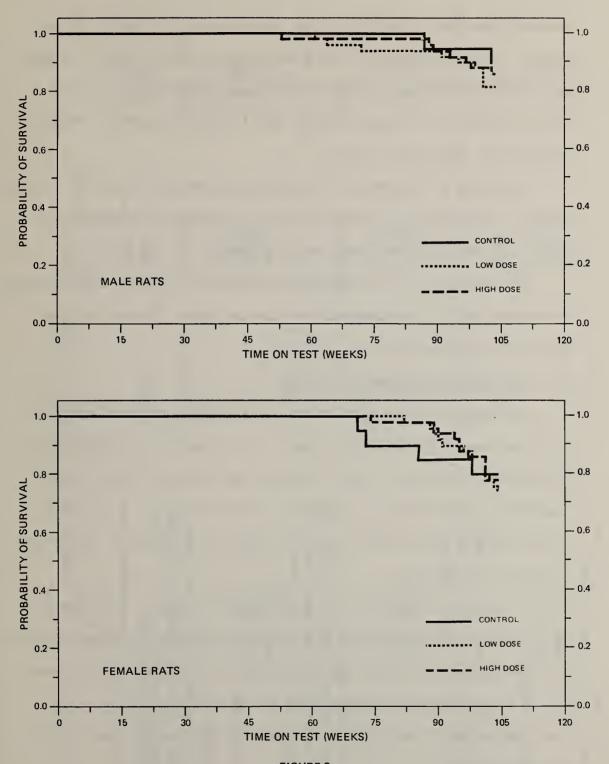


FIGURE 3 SURVIVAL COMPARISONS OF 1-PHENYL-2-THIOUREA CHRONIC STUDY RATS

observed neoplasm in male rats was interstitial-cell tumors of the testis. A high incidence of this neoplasm is characteristic of aged male Fischer 344 rats. Chromophobe adenomas of the pituitary and fibroadenomas of the mammary gland were the most frequently observed neoplasms in the female rats.

A variety of inflammatory, degenerative and proliferative lesions commonly seen in aged Fischer 344 rats was seen with approximately equal frequency in dosed and control animals.

The results of this pathologic examination indicate that 1-phenyl-2-thiourea was not carcinogenic to male or female Fischer 344 rats under the conditions of this bioassay.

D. Statistical Analyses of Results

The results of the statistical analyses of tumor incidence in rats are summarized in Tables 3 and 4. The analysis is included for every type of malignant tumor in either sex where at least two such tumors were observed in at least one of the control or l-phenyl-2thiourea-dosed groups and where such tumors were observed in at least 5 percent of the group.

For female rats the Fisher exact test indicated a significantly (P = 0.030) higher incidence of pituitary chromophobe adenomas in the low dose group than in the control group. This result was not supported by the Cochran-Armitage test or the high dose Fisher exact test and is above the P = 0.025 probability required by the Bonferroni inequality.

TOPOGRAPHY : MORPHOLOGY	CONTROL	LOW DOSE	HIGH DOSE
Lung: Alveolar/Bronchiolar Adenoma or Alveolar/Bronchiolar Carcinoma ^b	2/20(0.10)	0/49(0.00)	4/50(0.08)
P Values ^C	N.S.	N.S.	N.S.
Relative Risk (Control) ^d Louisr Limit		0.000	0.800
Upper Limit		1.372	8.436
Weeks to First Observed Tumor	103		104
Hematopoietic System: Leukemia or Malignant Lymphoma ^b	1/20(0.05)	5/50(0.10)	6/50(0.12)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d		2.000	2.400
Lower Limit Upper Limit		0.249 92.596	0.325 108.021
Weeks to First Observed Tumor	87	91	93
Pituitary: Chromophobe Adenoma ^b	2/19(0.11)	4/44(0.09)	5/47(0.11)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d		0.864	1.011
Lower Limit		0.139	0.187
Upper Limit		9.058	10.082
Weeks to First Observed Tumor	103	104	104

TABLE 3

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN MALE RATS TREATED WITH 1-PHENYL-2-THIOUREA^a

	LOW HIGH DOSE DOSE	6/48(0.13) 2/49(0.04)	N.S. N.S.	2.500 0.816 0.330 0.645	7	104 104	2/46(0.04) 3/46(0.07)	N.S. N.S.	Infinite Infinite 0.133 0.272	Infinite Infinite	104 104	43/48(0.90) 39/49(0.80)	N.S. N.S.	0.995 0.884	0.872 0.771	1.255 1.186	91 89
-	CONTROL	1/20(0.05)	N.S.			103	0/20(0.00)	N.S.			-	18/20(0.90)	N.S.		•	 .	103
	TOPOGRAPHY : MORPHOLOGY	Adrenal: Pheochromocytoma or Pheo- chromocytoma, Malignant ^b	P Values ^c	Relative Risk (Control) ^d	Upper Limit	Weeks to First Observed Tumor	Pancreatic Islets: Islet-Cell Adenoma or Islet-Cell Carcinoma ^b	P Values ^c	Relative Risk (Control) ^d Lower Limit	Upper Limit	Weeks to First Observed Tumor	Testis: Interstitial-Cell Tumor ^b	P Values ^c	Relative Risk (Control) ^d	Lower Limit	Upper Limit	Weeks to First Observed Tumor

TABLE 3 (CONTINUED)

		TOW	HOIH
TOPOGRAPHY: MURPHULOGY	CONTROL	DUSE	DUSE
Thyroid: C-Cell Adenoma or C-Cell			
Carcinoma ^b	2/19(0.11)	3/45(0.07)	2/44(0.05)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d		0.633	0.432
Lower Limit		0.081	0.034
Upper Limit		7.210	5.669
Weeks to First Observed Tumor	103	104	104
^a Treated vrouns received doses of 60 or 120 ppm in feed.	20 ppm in feed.		

TABLE 3 (CONCLUDED)

ITEATED Broups received upses of ou of 120 ppm

^b_{Number} of tumor-bearing animals/number of animals examined at site (proportion). 25

given beneath the incidence of tumors in the treated group when P < 0.05; otherwise, not signifithe control group when P < 0.05; otherwise, not significant (N.S.) is indicated. The probability ^cThe probability level for the Cochran-Armitage test is given beneath the incidence of tumors in level for the Fisher exact test for the comparison of a treated group with the control group is cant (N.S.) is indicated. For both Cochran-Armitage and Fisher exact tests a negative designation (N) indicates a lower incidence in the treated group(s) than in the control group.

^dThe 95% confidence interval on the relative risk of the treated group to the control group.

SPECIFIC SITES IN FEMALE RATS TREATED WITH 1-PHENYL-2-THIOUREA ^a	ATS TREATED WITH	1-PHENYL-2-THIOUREA ^a	et .
TOPOGRAPHY: MORPHOLOGY	CONTROL	LOW DOSE	HIGH DOSE
Hematopoletic System: Leukemia or Malignant Lymphoma ^b	1/20(0.05)	4/50(0.08)	4/50(0.08)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d Lower Limit		1.600 0.175	1.600 0.175
Upper Limit		77.169	77.169
Weeks to First Observed Tumor	73	101	101
Pituitary: Chromophobe Adenoma ^b	5/19(0.26)	26/47(0.55)	18/50(0.36)
P Values ^c	N.S.	P = 0.030	N.S.
Departure from Linear Trend ^e	P = 0.014	400 ADD - 100	
Relative Risk (Control) ^d	900 MIN 000	2.102	1.368
Lower Limit Upper Limit		0.978 6.009	0.595 4.173
Weeks to First Observed Tumor	98	82	94
Adrenal: Pheochromocytoma or Pheo-			
chromocytoma, Malignant ^D	3/17(0.18)	1/45(0.02)	3/50(0.06)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d		0.126	0.340
Lower Limit		0.003	0.052
Upper Limit		1.468	2.369
Weeks to First Observed Tumor	103	104	89

TABLE 4

41

al

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT

		T ATT	
TOPOGRAPHY: MORPHOLOGY	CONTROL	DOSE	H1GH DOSE
Thyroid: C-Cell Adenoma or C-Cell Carcinoma ^b	1/20(0.05)	1/45(0.02)	4/47(0.09)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d Lower Limit		0.444 0.006 24.140	1.702 0.186
upper Limit Weeks to First Cbserved Tumor	103	104 104	101
Mammary Gland: Fibroadenoma ^b P Values ^c	3/20(0.15) N.S.	15/50(0.30) N.S.	5/50(0.10) N.S.
Departure from Linear Trend ^e	P = 0.022		
Relative Risk (Control) ^d Lower Limit Upper Limit		2.000 0.662 9.943	0.667 0.147 4.014
Weeks to First Observed Tumor	103	101	94
Uterus: Endometrial Stromal Polyp ^b P Values ^C Relative Risk (Control) ^d Lower Limit Upper Limit Weeks to First Observed Tumor	0/18(0.00) N.S. 	1/48(0.02) N.S. Infinite 0.021 Infinite 104	3/50(0.06) N.S. Infinite 0.227 Infinite 104

27

TABLE 4 (CONTINUED)

ŧ

No other tests for any site in either male or female rats were significant. Thus, based upon these statistical results, there was no conclusive evidence that 1-pheny1-2-thiourea was a carcinogen in Fischer 344 rats under the conditions of this bioassay.

To provide additional insight into the possible carcinogenicity of this compound, 95 percent confidence intervals on the relative risk have been estimated and entered in the tables based upon the observed tumor incidence rates. In many of the intervals shown in Tables 3 and 4, the value one is included; this indicates the absence of statistically significant results. It should also be noted that many of the confidence intervals have an upper limit greater than one, indicating the theoretical possibility of tumor induction in rats by 1-pheny1-2-thiourea that could not be established under the conditions of this test.

IV. CHRONIC TESTING RESULTS: MICE

A. Body Weights and Clinical Observations

Distinct dose-related mean body weight depression was apparent after week 30 in both male and female mice (Figure 4).

No abnormal clinical signs were recorded.

B. Survival

4.8

The estimated probabilities of survival for male and female mice in the control and 1-phenyl-2-thiourea-dosed groups are shown in Figure 5. For both male and female mice, the Tarone test for positive association between dosage and mortality was not significant.

Adequate numbers of male mice were at risk from late-developing tumors, as 92 percent (46/50) of the high dose, 92 percent (46/50) of the low dose and 85 percent (17/20) of the control group survived on test until the termination of the study. One male mouse was missing from the low dose group in week 12 and one was missing from the control group in week 65.

For female mice, 88 percent (44/50) of the high dose, 74 percent (37/50) of the low dose, and 95 percent (19/20) of the control group survived on test until the termination of the study, thus providing adequate numbers at risk from late-developing tumors. Five low dose females were missing in week 38 with three additional low dose females missing in week 58.

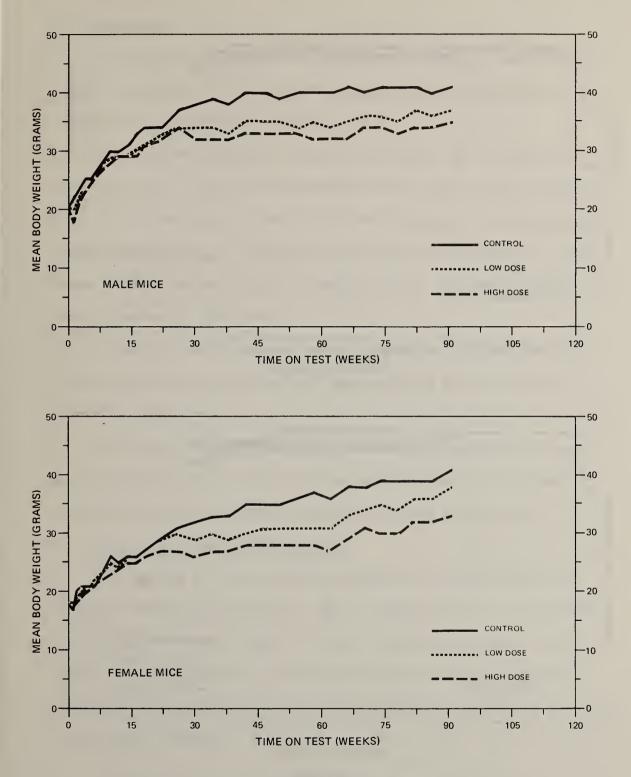


FIGURE 4 GROWTH CURVES FOR 1-PHENYL-2-THIOUREA CHRONIC STUDY MICE

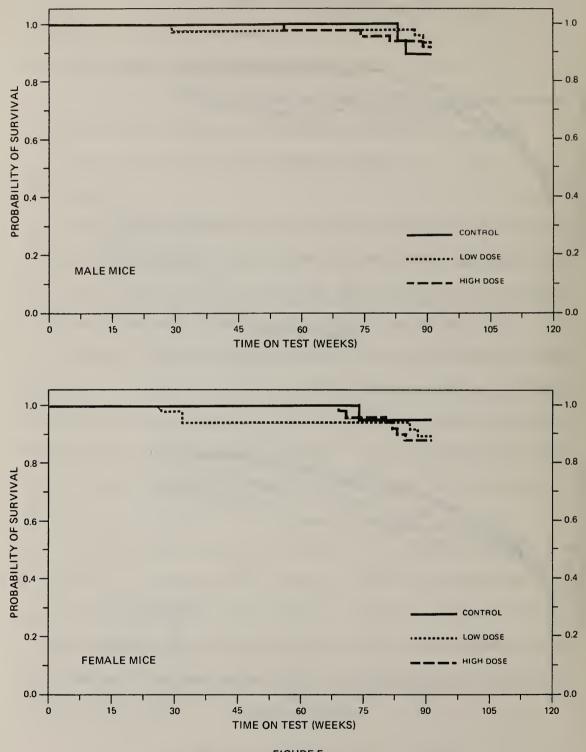


FIGURE 5 SURVIVAL COMPARISONS OF 1-PHENYL-2-THIOUREA CHRONIC STUDY MICE

C. Pathology

Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables Bl and B2); findings on nonneoplastic lesions are summarized in Appendix D (Tables Dl and D2).

A variety of neoplastic lesions was present in the dosed and control groups. There were instances in this study where neoplastic lesions occurred only, or with increased frequency, in dosed mice as compared with controls. These lesions were all of types which are known to occur spontaneously in B6C3F1 mice at incidences similar to those observed in this study.

A variety of inflammatory and proliferative lesions commonly seen in B6C3F1 mice occurred with approximately equal frequency in dosed and control mice.

The results of this pathologic examination indicate that under the conditions of this study, dietary administration of 1-pheny1-2thiourea was not carcinogenic to B6C3F1 mice of either sex.

D. Statistical Analyses of Results

The results of the statistical analyses of tumor incidence in mice are summarized in Tables 5 and 6. The analysis is included for every type of malignant tumor in either sex where at least two such tumors were observed in at least one of the control or 1-pheny1-2thiourea-dosed groups and where such tumors were observed in at least 5 percent of the group.

ZNYL-2-THIOUREA ^a	LOW HIGH DOSE DOSE	6/49(0.12) 6/49(0.12)	N.S. N.S.	0.776 0.776	0.191 4.463 4.463	91 91	5/49(0.10) 2/50(0.04)	N.S. N.S.		7	87 91	15) 3/4	2.771 1.163 0.401 0.103		91 91
IN MALE MICE TREATED WITH 1-PHENYL-2-THIOUREA ^a	CONTROL	3/19(0.16) 6/	N.S.	!		91	1/19(0.05) 5/	N.S.			91	05)	• • • • • •	1	83
SPECIFIC SITES IN MALE M	TOPOGRAPHY : MORPHOLOGY	Lung: Alveolar/Bronchiolar Adenoma or Alveolar/Bronchiolar Carcinoma ^b	P Values ^C	Relative Risk (Control) ^d	Lower Limit Upper Limit	Weeks to First Observed Tumor	Hematopoietic System: Leukemia or Malignant Lymphoma ^b	P Values ^C	Relative Risk (Control) ^d	Upper Limit	Weeks to First Observed Tumor	Liver: Hepatocellular Adenoma or Hepatocellular Carcinoma ^b c	r values Relative Risk (Control) ^d Lower Limit	Upper Limit	Weeks to First Observed Tumor

TABLE 5

6 81 81

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT

C

^aTreated groups received doses of 150 or 300 ppm in feed.

^b_{Number} of tumor-bearing animals/number of animals examined at site (proportion).

given beneath the incidence of tumors in the treated group when P < 0.05; otherwise, not signifithe control group when P < 0.05; otherwise, not significant (N.S.) is indicated. The probability ^cThe probability level for the Cochran-Armitage test is given beneath the incidence of tumors in level for the Fisher exact test for the comparison of a treated group with the control group is cant (N.S.) is indicated. For both Cochran-Armitage and Fisher exact tests a negative designation (N) indicates a lower incidence in the treated group(s) than in the control group.

d_{The} 95% confidence interval on the relative risk of the treated group to the control group.

HIGH DOSE	3/49(0.06) M S	Infinite 0.243 Infinite	85	5/49(0.10) N.S. Infinite 0.511 Infinite 85 85 85 N.S. 0.667 0.147 4.014 71
LOW DOSE	0/40(0.00) N S			3/40(0.07) N.S. Infinite 0.298 Infinite 91 6/42(0.14) N.S. 0.952 0.233 5.450 88
CONTROL	(00.0)41/0	· · · · · · · · · · · · · · · · · · ·		0/19(0.00) N.S. 3/20(0.15) N.S. 74
TOPOGRAPHY : MORPHOLOGY	Lung: Alveolar/Bronchiolar Carcinoma ^b P Values ^c	Relative Risk (Control) ^d Lower Limit Upper Limit	Weeks to First Observed Tumor	Lung: Alveolar/Bronchiolar Adenoma or Alveolar/Bronchiolar Carcinoma ^b P Values ^C Relative Risk (Control) ^d Lower Limit Upper Limit Weeks to First Observed Tumor Hematopoietic System: Leukemia or Malignant Lymphoma ^b P Values ^C Relative Risk (Control) ^d Lower Limit Upper Limit Upper Limit Upper Limit

TABLE 6

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN FEMALE MICE TREATED WITH 1-PHENYL-2-THIOUREA^a

	CONTROL	LOW	HIGH
TOLOGINE UT . FIONE INVESTIGATION	TOWTWOD	4004	9000
Liver: Hepatocellular Adenoma or			
Hepatocellular Carcinoma ^b	0/19(0.00)	0/39(0.00)	4/48(0.08)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d			Infinite
Lower Limit			0.383
Upper Limit		!	Infinite
Weeks to First Observed Tumor			91

"Treated groups received doses of 150 or 300 ppm in feed.

^b_{Number} of tumor-bearing animals/number of animals examined at site (proportion). 37

given beneath the incidence of tumors in the treated group when P < 0.05; otherwise, not signifithe control group when P < 0.05; otherwise, not significant (N.S.) is indicated. The probability level for the Fisher exact test for the comparison of a treated group with the control group is cant (N.S.) is indicated. For both Cochran-Armitage and Fisher exact tests a negative designa-^cThe probability level for the Cochran-Armitage test is given beneath the incidence of tumors in tion (N) indicates a lower incidence in the treated group(s) than in the control group.

^dThe 95% confidence interval on the relative risk of the treated group + the control group.

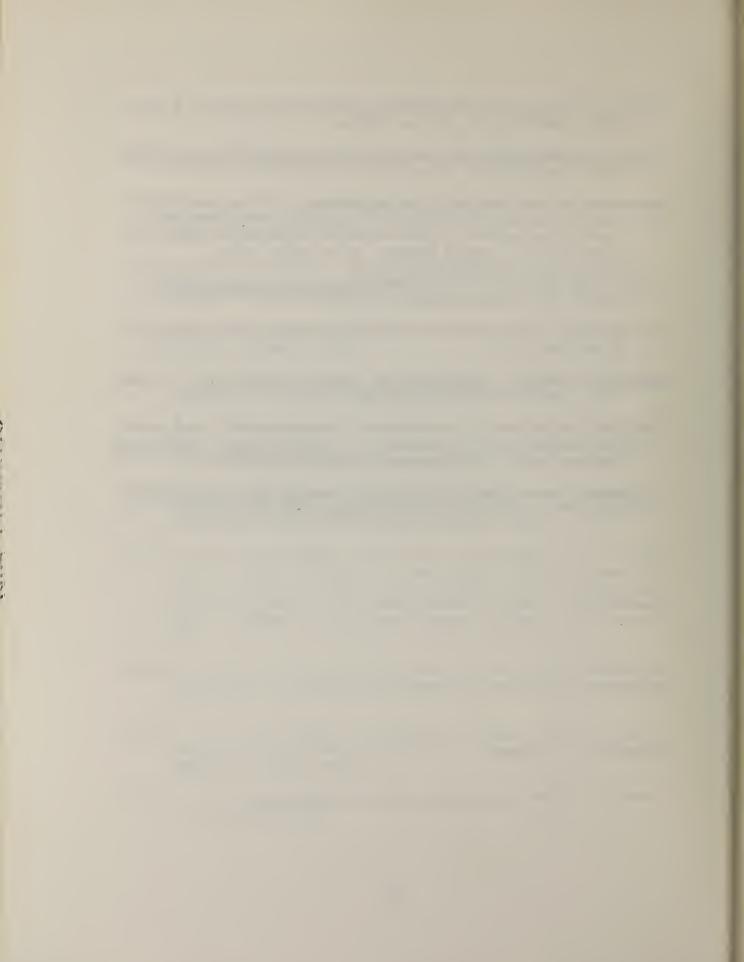
TABLE 6 (CONCLUDED)

None of the statistical tests for any site in mice of either sex indicated a significant positive association between the administration of 1-pheny1-2-thiourea and an increased tumor incidence. Thus, at the dose levels used in this experiment, there was no evidence that 1-pheny1-2-thiourea was a carcinogen in B6C3F1 mice.

To provide additional insight into the possible carcinogenicity of this compound, 95 percent confidence intervals on the relative risk have been estimated and entered in the tables based upon the observed tumor incidence rates. In many of the intervals shown in Tables 5 and 6, the value one is included; this indicates the absence of statistically significant results. It should also be noted that many of the confidence intervals have an upper limit greater than one, indicating the theoretical possibility of tumor induction in mice by 1-phenyl-2-thiourea that could not be established under the conditions of this test.

V. DISCUSSION

Adequate numbers of animals in all groups survived sufficiently long to be at risk from late-developing tumors. Distinct dose-related depression of mean body weight gain was observed in male and female mice when compared with their controls, but growth retardation was not observed in any dosed rat group. In addition, since no significant accelerated mortality or other toxic effects were associated with the dietary administration of 1-pheny1-2-thiourea to rats, it is possible that the compound was not administered to these animals at the maximum tolerated concentrations.


No neoplasms in either sex of either species occurred for which a significant positive association between chemical administration and tumor incidence could be established. All observed neoplasms were of types and incidences known to occur spontaneously in Fischer 344 rats or B6C3F1 mice.

Under the conditions of this bioassay, 1-phenyl-2-thiourea was not carcinogenic to Fischer 344 rats or B6C3F1 mice.

VI. BIBLIOGRAPHY

- Armitage, P., <u>Statistical Methods in Medical Research</u>, Chapter 14. J. Wiley & Sons, New York, 1971.
- Berenblum, I., editor, <u>Carcinogenicity Testing</u>. International Union Against Cancer, Technical Report Series, Vol. 2. International Union Against Cancer, Geneva, 1969.
- Chemical Abstracts Service, <u>The Chemical Abstracts Service (CAS)</u> <u>Ninth Collective Index</u>, Volumes 76-85, 1972-1976. American <u>Chemical Society</u>, Washington, D.C., 1977.
- Cox, D.R., <u>Analysis of Binary Data</u>, Chapters 4 and 5. Methuen and Co., Ltd., London, 1970.
- Cox, D.R., "Regression Models and Life-Tables." Journal of the Royal Statistical Society, Series "B" 34:187-220, 1972.
- Gart, J.J., "The Comparison of Proportions: A Review of Significance Tests, Confidence Limits, and Adjustments for Stratification." International Statistical Institute Review 39:148-169, 1971.
- Gosselin, R.E., H.C. Hodge, R.P. Smith, and M.N. Gleason, <u>Clinical</u> <u>Toxicology of Commercial Products</u>, 4th edition. The Williams and Wilkins Company, Baltimore, Maryland, 1976.
- Innes, J.R.M., B.M. Ulland, M.G. Valerio, L. Petrucelli, L. Fishbein, E.R. Hart, A.J. Pallotta, R.R. Bates, H.L. Falk, J.J. Gart, M. Klein, I. Mitchell, and J. Peters, "Bioassay of Pesticides and Industrial Chemicals for Tumorigenicity in Mice: A Preliminary Note." Journal of the National Cancer Institute 42(6):1101-1114, 1969.
- Kaplan, E.L. and P. Meier, "Nonparametric Estimation from Incomplete Observations." Journal of the American Statistical Association 53:457-481, 1958.
- Linhart, M.S., J.A. Cooper, R.L. Martin, N.P. Page, and J.A. Peters, "Carcinogenesis Bioassay Data System." <u>Computers and Biomedical</u> Research 7:230-248, 1974.
- Miller, R.G., <u>Simultaneous Statistical Inference</u>. McGraw-Hill Book Co., New York, 1966.

- Sadtler Standard Spectra, a. Sadtler Research Laboratories, Philadelphia, Pennsylvania. NMR No. 10626m.
- Sadtler Standard Spectra, b. Sadtler Research Laboratories, Philadelphia, Pennsylvania. UV No. 1273.
- Saffiotti, U., R. Montesano, A.R. Sellakumar, F. Cefis, and D.G. Kaufman, "Respiratory Tract Carcinogenesis in Hamsters Induced by Different Numbers of Administration of Benzo (a) Pyrene and Ferric Oxide." Cancer Research 32:1073-1079, 1972.
- Stanford Research Institute, <u>1977 Directory of Chemical Producers</u>, U.S.A. Menlo Park, California, 1977.
- Tarone, R.E., "Tests for Trend in Life-Table Analysis." <u>Biometrika</u> 62:679-682, 1975.
- Weast, R.C., editor, <u>CRC Handbook of Chemistry and Physics</u>, 58th edition. CRC Press, Cleveland, Ohio, 1977.
- Wheatcroft, P.E.J. and C.C. Thornburn, "Toxicity of the Taste Testing Compound Phenylthiocarbamide." <u>Nature (London), New Biology</u> 235(55):93-94, 1972; Chemical Abstracts 76, 122574.
- Winchester, A.M., <u>Genetics: A Survey of the Principles of Heredity</u>, 3rd edition. Houghton Mifflin Company, New York, 1966.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS TREATED WITH 1-PHENYL-2-THIOUREA

APPENDIX A

TABLE A1

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS TREATED WITH 1-PHENYL-2-THIOUREA

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 (2%) 1 (2%) (49) (50)
(50)
2 (4%) 2 (4%)
1 (2%) 1 (2%)
(50) (50) 1 (2%) 3 (6%) 3 (6%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
(47) (49)
(48) (50) 1 (2%)
(4

* NUMBER OF ANIMALS NECROPSIED

**EXCLUDES PARTIALLY AUTOLYZED ANIMALS

	CONTROL (UNTR) 11-1035	LOW DOSE 11-1033	HIGH DOSE 11-1031	
DIGESTIVE SYSIEM				
#LIVEP HEPATOCELLULAR ADENOMA NEOPLASTIC NODULE	(20)	(48) 1 (2%) 1 (2%)	(50) 1 (2%)	
RINARY SYSTEM				
NONE				
NDOCRINE SYSTEM				
*PITUITAPY CHROMOFHOBE ADENOMA	(19) 2 (11%)	(44) 4 (9%)	(47) 5 (11%)	
#ADRENAL PHEOCHROMOCYTOMA PHEOCHFOMOCYTOMA, MALIGNANT	(20) 1 (5%)	(48) 5 (10%) 1 (2%)	(49) 2 (4%)	
*THYROID C-CELL ADENOMA C-CELL CARCINOMA	(19) 1 (5%) 1 (5%)	(45) 2 (4%) 1 (2%)	(44) 1 (2%) 1 (2%)	
#PANCPEATIC ISLETS ISLET-CELL ADENOMA ISLET-CELL CARCINOMA	(20)	(46) 2 (4%)	(46) 2 (4%) 1 (2%)	
EPRODUCTIVE SYSTEM				
* MAMMARY GLAND FIBROADENOMA	(20) 1 (5%)	(50)	(50) × 1 (2%)	
# IESTIS INTERSTITIAL-CELL TUMOR	(20) 18 (90%)	(48) 43 (90%)	(49) 39 (80%)	
NERVOUS SYSTEM				
NONE		-		
SPECIAL SENSE OFGANS				
<u>NON E</u>				

* NUMBER OF ANIMALS WITH TISSOF * NUMBER OF ANIMALS NECROPSIED

TABLE A1 (CONTINUED)

	CONTROL (UNTR) 11-1035			
MUSCULOSKELETAL SYSTEM				
NONE				
BODY CAVITIES				
*ABDOMINAL CAVITY MESOTHELIOMA, NOS	(20)	(50)	(50) 1 (2%)	
*TUNICA VAGINALIS MESOTHELIOMA, NOS	(20)	(50)	(50) 1 (2%)	
ALL OTHER SYSTEMS				
*MULTIPLE ORGANS FIBROSARCOMA	(20)	(50) 1 (2%)	(50)	
ANIMAL DISPOSITION SUMMARY				
ANIMALS INITIALLY IN STUDY	20	50	50	
NATURAL DEATHO MORIBUND SACRIFICE SCHEDULED SACRIFICE	1 1	6 3	4 3	
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	18	41	43	
INCLUDES AUTOLYZED ANIMALS				

* NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	•	R) LOW DOSE 11-1033	HIGH DOSE 11-1031	
TUMOR SUMMARY				•]
TOTAL ANIMALS WITH PRIMARY TUMORS*	19	47	45	
TOTAL PRIMARY TUMORS	30	68	67	4
TOTAL ANIMALS WITH BENIGN TUMORS	18	45	42	y
TOTAL BENIGN TUMORS	27	58	54	
TOTAL ANIMALS WITH MALIGNANT TUMORS	3	9	11	,
TOTAL MALIGNANT TUMORS	3	9	11	
TOTAL ANIMALS WITH SECONDARY TUMORS#		2	1	
TOTAL SECONDARY TUMORS		2	1	
		-		
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BEVIGN OR MALIGNANT		1	2	1
TOTAL UNCERTAIN TUMORS		່ 1	2	1 12
TOFAL ANIMALS WITH TUMORS UNCERTAIN-				
PRIMARY OR METASTATIC				
TOTAL UNCERTAIN TUMORS				
* DETWARY MUNORS, MI MUNORS EVERDO CE	CONDADY THM	202		
* PRIMARY TUMORS: ALL TUMORS EXCEPT SE	CONDARY TUMO	DRS		~

SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE A2

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS TREATED WITH 1-PHENYL-2-THIOUREA

	CONTROL (UNTR) 11-1036	LOW DOSE 11-1034	HIGH DOSE 11-1032
NIMALS INITIALLY IN STUDY NIMALS NECROPSIED NIMALS EXAMINED HISTOPATHOLOGICALLY**	20 20 20	50 50 50	50 50 50
ITEGUMENTARY SYSTEM			
*SKIN SQUAMOUS CELL CARCINOMA	(20)	(50) 1 (2%)	(50)
* SUBCUT TISSUE CYSTADENOMA, NOS SARCOMA, NOS	(20)	(50) 1 (2%) 2 (4%)	(50)
FIBROMA		2 (4%)	1 (2%)
ESPIRATORY SYSTEM			
*LUNG CARCINOMA, NOS, METASTATIC C-CELL CARCINOMA, METASTATIC	(19) 1 (5%)	(50)	(50) 1 (2%) 1 (2%)
PHEOCHROMOCYTOMA, METASTATIC	1 (5%)		
EMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, HISTIOCYTIC TYPE	(20)	(50) 1 (2%)	(50) 2 (4%)
LEUKEMIA, NOS	1 (5%)	2 (4%)	1 (2%)
	(17)	(41)	(41) 1 (2系)
*MEDIASTINAL L.NODE MALIGNANT LYMPHOMA, NOS	· · ·		

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED **EXCLUDES PARTIALLY AUTOLYZED ANIMALS

	CONTROL (UNTR) 11-1036	LOW DOSE 11-1034	HIGH DOSE 11-1032	
DIGESTIVE SYSTEM				
*SMALL INTESTINE ADENOCARCINOMA, NOS	(20)	(45) 1 (2%)	(49)	
JRINAPY SYSTEM				
NONE				
ENDOCRINE SYSTEM				
#PITUITARY CHROMOFHOBE ADENOMA	(19) 5 (26%)	(47) 26 (55%)	(50) 18 (36%)	
#ADRFNAL ADENOMA, NOS	(17)	(45) 1 (2%)	(50)	
PHEOCHROMOCYTOMA PHEOCHPOMOCYTOMA, MALIGNANT	2 (12%) 1 (6%)	1 (2%)	3 (6%)	
*THYROID C-CELL ADENOMA	(20) 1 (5₹)	(45) 1 (2%)	(47) 2 (4%)	
C-CELL ADENOMA C-CELL CARCINOMA	1 (5系) 1 (5系)	1 (2%)	2 (4%) 2 (4%)	
REPRODUCTIVE SYSTEM				
*MAMMAPY GLAND FIBROADENOMA HEMANGIOMA	(20) 3 (15%)	(50) 15 (30%) 1 (∠%)	(50) 5 (10%)	
*CLITORAL GLAND	(20)	(50) 1 (2%)	(50)	
SQUAMOUS CELL CARCINOMA SEBACEOUS ADENOMA		1 (2%)	1 (2%)	
# UTERUS SARCOMA, NOS	(18)	(48)	(50) 2 (4%)	
ENDOMETPIAL STROMAL POLYP		1 (2%)	3 (6%)	
#OVARY SERTOLI-CELL TUMOR	(18)	(45)	(47) 1 (2%)	

NONE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY # NUMBER OF ANIMALS NECROPSIED

_----

TABLE A2 (CONTINUED)

	CONTROL (UNTR) 11-1036	LOW DOSE 11-1034	HIGH DOSE 11-1032	
SPECIAL SENSE ORGANS				
*ZYMBAL'S GLAND EPITHELIAL TUMOR, NOS, BENIG	(20) N 1 (5%)	(50)	(50)	
USCULOSKELETAL SYSTEM		-	i se	
NONE				
BODY CAVITIES				
LL OTHER SYSTEMS				
ADIPOSE TISSUE LIPOMA		1		
NIMAL DISPOSITION SUMMARY				
ANIMALS INITIALLY IN STUDY	20	50	50	
NATURAL DEATH@ MORIBUND SACRIFICE SCHEDULED SACRIFICE ACCIDENTALLY KILLED	2 2	5 8	4 7	
TERMINAL SACRIFICE ANIMAL MISSING	16	37	39	
INCLUDES AUTOLYZED ANIMALS				

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	CONTROL (UNTR) 11-1036			
TUMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	12 15	37 59	30 42	
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	10 12	34 50	26 34	
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	3 3	9 9	8 8	
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMOPS	2 2		2 2	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN OR MALIGNANI TOTAL UNCERTAIN TUMORS				
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS				
* PPIMARY TUMORS: ALL TUMORS EXCEPT SEC * SECONDAPY TUMORS: METASTATIC TUMORS C		IVE INTO AN AD	JACENT ORGAN	

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE TREATED WITH 1-PHENYL-2-THIOUREA

TABLE B1 SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE TREATED WITH 1-PHENYL-2-THIOUREA

	CONTROL (UNTR) 22-2035	LOW DOSE 22-2033	HIGH DOSE 22-2031	
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	20 1	50 1	50	
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY**	19	49	50 50	
INTEGUMENTARY SYSTEM				
*SUBCUT TISSUE SARCOMA, NOS	(19)	(49) 1 (2%)	(50)	
RESPIRATORY SYSTEM				
*LUNG ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA	(19) 3 (16%)	(49) 5 (10%) 1 (2%)	(49) 5 (10%) 1 (2%)	
HEMATOPOIETIC SYSTEM				
*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS LEUKEMIA,NOS UNDIFFERENTIATED LEUKEMIA	(19)	(49) 2 (4%) 1 (2%) 1 (2%)	(50) 1 (2≴)	
*LYMPH NODE MALIGNANT LYMPHOMA, NOS	(13) 1 (8%)	(34) 1 (3%)	(32)	
*MESENTERIC L. NODE MALIGNANT LYMPHOMA, NOS	(13)	(34)	(32) 1 (3%)	
CIRCULATORY SYSTEM				
NONE				
DIGESTIVE SYSTEM				
*LIVER HEPATOCELLULAR_ADENOMA	(19) 1_(5%)	(48) <u>6_(13%)</u>	(49) <u>3 (6%)</u>	
* NUMBER OF ANIMALS WITH TISSUE EXAMIN * NUMBER OF ANIMALS NECROPSIED **EXCLUDES PARTIALLY AUTOLYZED ANIMALS	ED MICROSCOPICA	LLY		

Τ.

	CONTROL (UNTR) 22-2035	LOW DOSE 22-2033	HIGH DOSE 22-2031	
HEPATOCELLULAR CARCINOMA HEMANGIOMA		1 (2%) 1 (2%)	1 (2%)	
*SMALL INTESTINE ADENOMA, NOS	(19) 1 (5%)	(23)	(48)	
JRINARY SYSTEM				
NONE				
ENDOCRINE SYSTEM				
NONE				
REPRODUCTIVE SYSTEM				
NONE				
NERVOUS SYSTEM				
NONE				
SPECIAL SENSE ORGANS				
NONE				
MUSCULOSKELETAL SYSTEM NONE				
BODY CAVITIES NONE				
NON2				
ALL OTHER SYSTEMS				
<u>NONE</u>				

* NUMBER OF ANIMALS NECROPSIED

	CONTROL (UNTR) 22-2035	LOW DOSE 22-2033	HIGH DOSE 22-2031	
NIMAL DISPOSITION SUMMARY				
ANIMALS INITIALLY IN STUDY	20	50	50	
NATURAL DEATH@ MORIBUND SACRIFICE SCHEDULED SACRIFICE ACCIDENTALLY KILLED	2	2 1	3 1	
TERMINAL SACRIFICE	17	46	46	
ANIMAL MISSING	1	1		
INCLUDES AUTOLYZED ANIMALS				
TUMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS*	6	16	12	
TOTAL PRIMARY TUMORS	6	20	12	
TOTAL ANIMALS WITH BENIGN TUMORS	5	11	9	
TOTAL BENIGN TUMORS	5	12	9	
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	1 1	8 8	3 3	
TOTAL ANIMALS WITH SECONDARY TUMORS TOTAL SECONDARY TUMORS	ŧ			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN OR MALIGNANT TOTAL UNCERTAIN TUMORS				
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS				
* PRIMARY TUMORS: ALL TUMORS EXCEPT SI * SECONDARY TUMORS: METASTATIC TUMORS			ADJACENT ORGAN	

TABLE B2 SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE TREATED WITH 1-PHENYL-2-THIOUREA

	CONTROL (UNTR) 22-2036	LOW DOSE 22-2034	HIGH DOSE 22-2032	
NIMALS INITIALLY IN STUDY	20	50	50	
NIMALS MISSING NIMALS NECROPSIED NIMALS EXAMINED HISTOPATHOLOGICALLY**	20 * 20	8 42 41	50 50	
NTEGUMENTARY SYSTEM				
NO N E				
SPIRATORY SYSTEM				
LUNG ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA	(19)	(40) 3 (8%)	(49) 2 (4%) 3 (6%)	
EMATOPOIETIC SYSTEM				
MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS LEUKEMIA,NOS	(20) 2 (10%) 1 (5%)	(42) 4 (10%) 1 (2%)	(50) 2 (4%) 3 (6%)	
*SPLEEN HEMANGIOMA	(18) 1 (6%)	(40)		
LIVER MALIGNANT LYMPHOMA, NOS	(19)	(39) 2 (5 %)	(48)	
IRCULATORY SYSTEM				
NON E				
IGESTIVE SYSTEM				
*LIVER HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINOMA	(19)	(39)	(48) 3 (6%) 1 (2%)	

**EXCLUDES PARTIALLY AUTOLYZED ANIMALS

	CONTROL (UNTR) 22-2036	LOW DOSE 22-2034	HIGH DOSE 22-2032
URINARY SYSTEM			
#URINARY BLADDER LIPOMA HEMANGIOSARCOMA	(19) 1 (5%)	(41) 1 (2%)	(47)
ENDOCRINE SYSTEM			
*PITUITARY CHROMOPHOBE ADENOMA	(16)	(31)	(30) 1 (3%)
REPRODUCTIVE SYSTEM			
# UTERU S LEIOMYOMA	(20)	(41) 1 (2%)	(50)
‡OVARY TERATOMA, NOS	(16)	(33) 1 (3%)	(45)
NERVOUS SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
NONE			
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
*ABDOMINAL CAVITY LIPOMA	(20)	(42) 1 (2%)	(50)
ALL OTHER SYSTEMS			
<u>NONE</u>			
 NUMBER OF ANIMALS WITH TISSUE EXAM NUMBER OF ANIMALS NECROPSIED 	INED MICROSCOPIC.	ALLY	

	CONTROL (UNTR) 22-2036	LOW DOSE 22-2034		
ANIMAL DISPOSITION SUMMARY				
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE ACCIDENTALLY KILLED	20 1	50 5	50 3 3	
TERMINAL SACRIFICE ANIMAL MISSING	19	37 8	44	
D INCLUDES AUTOLYZED ANIMALS				
TUMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	4 5	11 14	15 15	
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	2 2	4 5	6 6	
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	3 3	6 8	9 9	
TOTAL ANIMALS WITH SECONDARY TUMORS TOTAL SECONDARY TUMORS	*			
TOTAL ANIMALS WITH TUMORS UNCERTAIN BENIGN OR MALIGNANT TOTAL UNCERTAIN TUMORS	-	1		
TOTAL ANIMALS WITH TUMORS UNCERTAIN PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS	-			
* PRIMARY TUMORS: ALL TUMORS EXCEPT S * SECONDARY TUMORS: METASTATIC TUMORS			ADJACENT ORGAN	

* SECONDARI IDHORS. METASIATIC IDHORS SA IDHORS INVASIVE INTO AN ADDREEM ONCH

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS TREATED WITH 1-PHENYL-2-THIOUREA

TABLE C1 SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS TREATED WITH 1-PHENYL-2-THIOUREA

	CONTROL (UNTR) 11-1035	LOW DOSE 11-1033	HIGH DOSE 11-1031
IMALS INITIALLY IN STUDY IMALS NECROPSIED IMALS EXAMINED HISTOPATHOLOGICALLY**	20 20	50 50	50 50 50
TEGUMENTARY SYSTEM			
SKIN EPIDERMAL INCLUSION CYST	(20)	(50) 1 (2%)	(50)
SPIRATORY SYSTEM			
LUNG EDEMA, NOS INFLAMMATION, INTERSTITIAL	(20)	(49) 1 (2巻) 2 (4巻)	(50)
PNEUMONIA, LIPID PNEUMONIA, CHRONIC MURINE PNEUMONIA INTERSTITIAL CHRONIC HYPERPLASIA, ADENOMATOUS	1 (5%) 1 (5%)		1 (2%) 12 (24%) 2 (4%) 2 (4%)
MATOPOIETIC SYSTEM	``		
BONE MARROW NYELOSCLEROSIS	(19) 1 (5%)	(44)	(48)
SPLEEN CONGESTION, NOS	(20)	(47) 1 (2%) 8 (17%)	(49) 1 (2%)
HEMOSIDEROSIS HEMATOPOIESIS	5 (25%) 4 (20%)	8 (17%) 3 (6%)	5 (10%) 5 (10%)
SPLENIC RED PULP DEPLETION	(20)	(47) 1 (2%)	(49)
*MESENTERIC L. NODE HYPERPLASIA, LYMPHOID		(45)	(40) 1 (3秀)
IRCULATORY SYSTEM			
	(20)		(49)

* NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED **EXCLUDES PARTIALLY AUTOLYZED ANIMALS

11-1035 11-1033 11-1031 (20) #MYOCARDIUM (49) (49) INFLAMMATION, NOS INFLAMMATION, CHRONIC 1 (2%) 1 (2%) 3 (6%) FIBROSIS 1 (2%) FIBROSIS, FOCAL (2%) DEGENERATION, NOS 5 (25%) 11 (22%) 12 (24%) DIGESTIVE SYSTEM #LIVER (20) (48) (50)1 (5%) CYST, NOS DEGENERATION, NOS 1 (2%) NECROSIS, NOS 1 (2%) METAMORPHOSIS FATTY 2 (10%) 1 (2%) 1 (2%) BASOPHILIC CYTO CHANGE 5 (10%) 1 (5%) 1 (2%) CLEAR-CELL CHANGE 1 (2%) 1 (2%) HEP ATOCYTOMEGALY 1 (2%) 2 (4%) (20) #LIVER/CENTRILOBULAR (48) (50) CONGESTION, NOS 1 (2%) #LIVER/PERIPORTAL (20)(48)(50) FIBROSIS 1 (2%) (48) #BILE DUCT (20)(50)INFLAMMATION, NOS HYPERPLASIA, NOS 1 (2%) 10 (21%) 7 (14%) 2 (10%) **# PA NCREAS** (20)(46) (46) 1 (2%) FIBROSIS FIBROSIS, DIFFUSE NECROSIS, FAT 1 (2%) 1 (2%) 1 (2%) ATROPHY, FOCAL 1 (2%) (47) #STOMACH (20)(50) HYPERPLASIA, ADENOMATOUS 1 (2%) (49) #SMALL INTESTINE (20)(46) 2 (4%) HYPERPLASIA, LYMPHOID #LARGE INTESTINE (20) (47) (49)

2(10%)

* NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

* NUMBER OF ANIMALS NECROPSIED

____NEMATODIASIS___

CONTROL (UNTR)

LOW DOSE

12 (26%)

7 (14%)

HIGH DOSE

TABLE C1 (CONTINUED)

	CONTROL (UNTR) 11-1035	LOW DOSE 11-1033	HIGH DOSE 11-1031
RINARY SYSTEM			
*KIDNEY	(20)	(49)	(50)
INFLAMMATION, NOS INFLAMMATION, CHRONIC	1 (5%) 12 (60%)	1 (2%) 29 (59%)	1 (2%) 21 (42%)
CALCINOSIS, NOS			1 (2%)
PIGMENTATION, NOS	1 (5%)	3 (6%) 1 (2%)	4 (8%)
LIPOMATOSIS		1 (2%)	
*KIDNEY/TUBULE BASOPHILIC CYTO CHANGE	(20)	(49)	(50) 2 (4%)
*KIDNEY/PELVIS Hyperplasia, epithelial	(20) 1 (5%)	(49)	(50)
ENDOCRINE SYSTEM			
*PITUITARY	(19)	(44)	(47)
CYST, NOS	1 (5%)		
*PITUITARY/BASOPHIL	(19)	(44)	(47)
HYPERPLASIA, NOS Hyperplasia, focal		1 (2%) 1 (2%)	1 (2%)
	(20)		
#ADRENAL HEMORRHAGIC CYST	(20) 1 (5%)	(48)	(49)
METAMORPHOSIS FATTY		1 (2%)	
CYTOLOGIC DEGENERATION HYPERPLASIA, NOS		1 (2%)	1 (2%)
	·		
#ADRENAL CORTEX HYPERPLASIA, NOS	(20)	(48)	(49) 1 (2%)
*ADRENAL MEDULLA Hyperplasia, Nos	(20) 5 (25%)	(48) 7 (15%)	(49) 7 (14%)
are an anothy Ros			
*THYROID PIGMENTATION, NOS	(19) 1 (5%)	(45) 4 (9%)	(44) 4 (9%)
GOITER COLLOID	. (5%)	4 (5%)	1 (2%)
HYPERPLASIA, C-CELL Hyperplasia, follicular-cell		5 (11%)	2 (5%) 1 (2%)
*PANCREATIC ISLETS	(20)	(46)	(46)
HYPERPLASIA, NOS		1_(2%)	

* NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

-

- 1.

a training which all the second secon

	CONTROL (UNTR) 11-1035	LOW DOSE 11-1033	HIGH DOSE 11-1031	
REPRODUCTIVE SYSTEM				
* MAMMARY GLAND Abscess, Nos	(20)	(50) 1 (2%)	(50)	
#PRO STATE HYPERPLASIA, EPITH E LIAL	(20) 1 (5%)	(44)	(47)	
#TESTIS ATROPHY, NOS	(20) 2 (10%)	(48) 2 (4%)	(49) 1 (2%)	
NERVOUS SYSTEM				
#BRAIN HEMORRHAGE	(20)	(47) 1 (2%)	(50)	
SPECIAL SENSE ORGANS				
NON E				
MUSCULOSKELETAL SYSTEM				
NONE				
BO DY CAVITIES				
*ABDOMINAL CAVITY STEATITIS	(20)	(50) 1 (2%)	(50)	
*PERITONEUM INFLAMMATION, FOCAL GRANULOMATO	(20) U	(50)	(50) 1 (2%)	
* PLEURA FOAM-CELL	(20)	(50)	(50) 1 (2%)	
ALL OTHER SYSTEMS				
ADIPOSE TISSUE <u>NECROSIS. PAT</u>			1	
<pre># NUMBER OF ANIMALS WITH TISSUE EXA * NUMBER OF ANIMALS NECROPSIED</pre>	MINED MICROSCOP	CALLY		

TABLE C1 (CONCLUDED)

	CONTROL (UNTR) 11-1035	LOW DOSE 11-1033	HIGH DOSE 11-1031	
PECIAL MORPHOLOGY SUMMARY				
NO LESION REPORTED AUTO/NECROPSY/HISTO PERF AUTO/NECROPSY/NO HISTO		1	2	

TABLE C2 SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS TREATED WITH 1-PHENYL-2-THIOUREA

		LOW DOSE 11-1034	HIGH DOSE 11-1032
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY**	20 20 20	50 50 50	50 50 50
INTEGUMENTARY SYSTEM NONE			
RESPIRATORY SYSTEM			
#LUNG THROMBOSIS, NOS HEMORRHAGE INFLAMMATION, INTERSTITIAL PNEUMONIA, LIPID PNEUMONIA, CHRONIC MURINE PNEUMONIA INTERSTITIAL CHRONIC	(19) 1 (5%) 2 (11)	(50) 1 (2%) 1 (2%) 9 (18%)	(50) 1 (2%) 1 (2%) 14 (28%)
PNEUMONIA INTERSTITIAL CHRONIC GRANULOMA, NOS LIPOGRANULOMA GRANULOMA, FOREIGN BODY FOAM-CELL HYPERPLASIA, ADENOMATOUS	2 (11%)	1 (2%)	1 (2%) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
HEMATOPOIETIC SYSTEM			
#BONE MARROW OSTEOSCLEROSIS	(17)	(43)	(45) 1 (2%)
# SPLEEN CONGESTION, NOS HEMOSIDEROSIS ERYTHROPHAGOCYTOSIS	(20) 6 (30%)	(47) 10 (21%)	(48) 2 (4%) 7 (15%) 1 (2%)
HYPERPLASIA, LYMPHOID HEMATOPOIESIS	6 (30%)	1 (2%) 10 (21%)	1 (2%) 4 (8%)
*CERVICAL LYMPH NODE HYPERPLASIA, PLASMA_CELL	(17)	(41) <u>1_(2悉)</u>	(4 1)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

.

* NUMBER OF ANIMALS NECROPSIED

**EXCLUDES PARTIALLY AUTOLYZED ANIMALS

TABLE C2 (CONTINUED)

	CONTROL (UNTR) 11-1036	LOW DOSE 11-1034	HIGH DOSE 11-1032	
IRCULATORY SYSTEM				
#MYOCARDIUM PIBROSIS FIBROSIS, FOCAL	(19)	(47)	(49) 1 (2%) 1 (2%)	
DEGENERATION, NOS	1 (5%)	10 (21%)	15 (31%)	
IGESTIVE SYSTEM				
*SALIVARY GLAND INFLAMMATION, NOS	(17)	(44)	(48) 1 (2%)	
*LIVER HEMORRHAGE NECROSIS, NOS	(20)	(48) 1 (2%)	(49) 1 (2%)	
NECROSIS, FOCAL METAMORPHOSIS FATTY BASOPHILIC CYTO CHANGE	1 (5%) 2 (10%) 5 (25%)	1 (2%) 3 (6%) 13 (27%)	3 (6%) 15 (31%)	
EOSINOPHILIC CYTO CHANGE HYPERPLASIA, LYMPHOID		1 (2%)	1 (2%)	
*HEPATIC CAPSULE HEMORRHAGIC CYST	(20) 1 (5%)	(48)	(49)	
*LIVER/PERIPORTAL INFLAMMATION, CHRONIC	(20)	(48)	(49) 1 (2%)	
*BILE DUCT DILATATION, NOS HYPERPLASIA, NOS	(20) 1 (5%)	(48) 1 (2%) 2 (4%)	(49) 1 (2系) 4 (3系)	
*PANCREAS FIBROSIS ATROPHY, FOCAL	(19) 1 (5%) 1 (5%)	(47)	(48) 1 (2%)	
*SMALL INTESTINE PARASITISM HYPERPLASIA, LYMPHOID	(20)	(45) 2 (4%)	(49) 1 (2%) 1 (2%)	
*LARGE INTESTINE NEMATODIASIS	(20) 4 (20%)	(46) 9 (20%)	(44) 9 (20%)	
*COLON HYPERPLASIALYMPHOID	(20)	(46) <u>1_(2%)</u>	(44)	

* NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

TABLE C2 (CONTINUED)

		LOW DOSE 11-1034	HIGH DOSE 11-1032	
URINARY SYSTEM				
<pre>#KIDNEY GLOMERULONEPHRITIS, NOS GLOMERULONEPHRITIS, MEMBRANOUS INFLAMMATION, CHRONIC NEPHROSIS, NOS PIGMENTATION, NOS</pre>	(18) 4 (22%) 2 (11%)	(47) 1 (2%) 1 (2%) 18 (38%) 2 (4%) 6 (13%)	(50) 28 (56%) 2 (4%)	
*URINARY BLADDER HYPERTROPHY, NOS HYPERPLASIA, EPITHELIAL	(15)	(40) 1 (3系) 1 (3系)	(40)	
ENDOCRINE SYSTEM				
*PITUITARY RETENTION PLUID CYST, NOS	(19) 1 (5%)	(47) 1 (2%) 5 (11%)	(50) 5 (10%)	
*ADRENAL CYST, NOS LIPOIDOSIS	(17)	(45) 1 (2%) 2 (4%)	(50)	
#ADRENAL CORTEX CYST, NOS HEMORRHAGIC CYST HYPERPLASIA, NODULAR	(17) 1 (6%)	(45) 1 (2%) 1 (2%)	(50) 1 (2%)	
HYPERPLASIA, NOS Hyperplasia, Focal		1 (2%) 1 (2%)	1 (2%)	
*ADRENAL MEDULLA Hyperplasia, Nos	(17) 3 (18%)	(45) 4 (9%)	(50) 4 (8%)	
*THYROID PIGMENTATION, NOS	(20)	(45) 1 (2%)	(47)	
HYPERPLASIA, FOCAL HYPERPLASIA, C-CELL HYPERPLASIA, FOLLICULAR-CELL	1 (5%) 2 (10%)	6 (13%) 1 (2%)	1 (2%) 1 (2%)	

REPRODUCTIVE SYSTEM

* MAMMARY GLAND	(20)	(50)	(50)
DILATATION/DUCTS	2 (10%)	2 (4%)	

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECPOPSIED

.

TABLE C2 (CONTINUED)

	CONTROL (UNTR) 11-1036	LOW DOSE 11-1034	HIGH DOSE 11-1032	
A DE NOSIS LACTATION	1 (5%)	2 (4%)	1 (2%)	
#UTERUS HYDROMETRA ABSCESS, NOS	(18)	(48) 1 (2%)	(50) 1 (2%)	
CERVIX UTERI ABSCESS, NOS	(18)	(48)	(50) 1 (2%)	
DEGENERATION, MUCOID UTERUS/ENDOMETRIUM CYST, NOS	1 (6%) (18)	(48)	(50) 1 (2%)	
INFLAMMATION, NOS ABSCESS, NOS HYPERPLASIA, NOS	1 (6%)	1 (2%)	1 (2%)	
HYPERPLASIA, CYSTIC		1 (2%)	2 (4%)	
#OVARY CYST, NOS FOLLICULAR CYST, NOS PAROVARIAN CYST	(18) 1 (6%)	(45) 1 (2%) 1 (2%) 1 (2%)	(47) 2 (4%)	
CONGESTION, NOS			1 (2%)	
ERVOUS SYSTEM				
BRAIN HYDROCEPHALUS, NOS HEMORRHAGE	(20) 1 (5%)	(49)	(49) 1 (2%) 1 (2%)	
ATROPHY, NOS ATROPHY, PRESSURE	1 (5%)	1 (2%) 1 (2%)	2 (4%)	
PECIAL SENSE ORGANS				
EAR EPIDERMAL INCLUSION CYST	(20)	(50)	(50) 1 (2%)	
USCULOSKELETAL SYSTEM				
NONE				
DDY CAVITIES				
* PLEUPA FOAM-CELL	(20)	(50) 2(4%)	(50) <u>4 (8%)</u>	

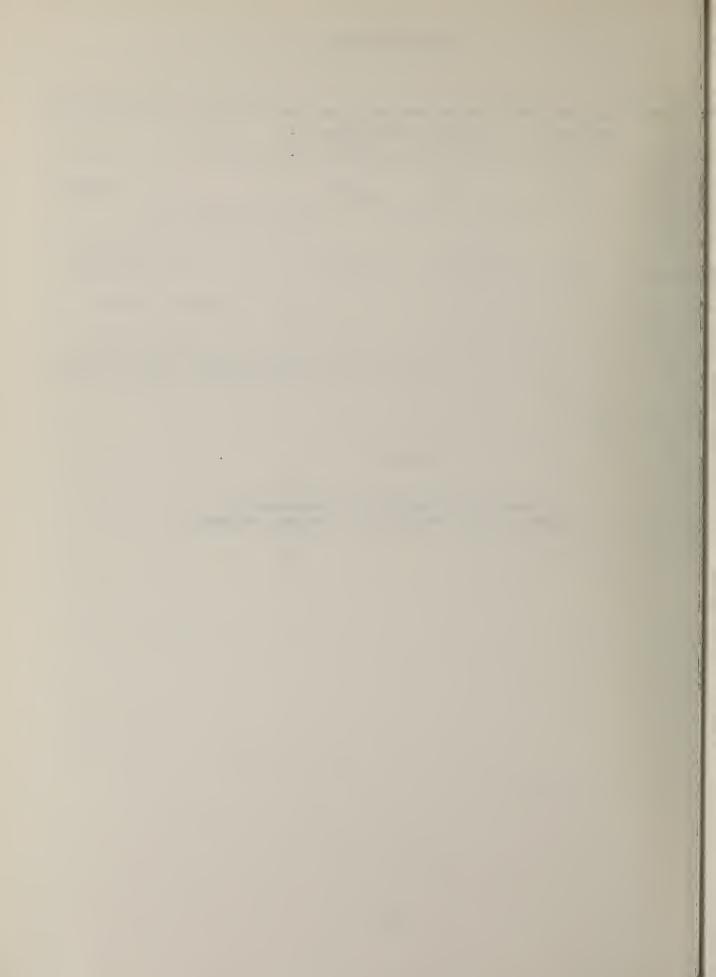

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE C2 (CONCLUDED)

	CONTROL (UNTR) 11-1036	LOW DOSE 11-1034		
* MESENTERY NECROSIS, FAT	(20) 1 (5%)	(50)	(50)	
ALL OTHEP SYSTEMS				
* MULTIPLE ORGANS PIGMENTATION, NOS		(50) 2 (4%)	(50)	
SPECIAL MORPHOLOGY SUMMARY				
NO LESION REPORTED	2	2	1	
<pre>* NUMBER OF ANIMALS WITH TISSUE * NUMBER OF ANIMALS NECROPSIED</pre>	EXAMINED MICROSCOPIC	ALLY		

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE TREATED WITH 1-PHENYL-2-THIOUREA

TABLE DI SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE TREATED WITH 1-PHENYL-2-THIOUREA

	CONTROL (UNTR) 22-2035	LOW DOSE 22-2033	HIGH DOSE 22-2031
NIMALS INITIALLY IN STUDY NIMALS MISSING		50	50
NIMALS NECROPSIED NIMALS EXAMINED HISTOPATHOLOGICALLY**	19	1 49 49	50 50
TEGUMENTARY SYSTEM			
*SKIN CYST, NOS	(19)	(49)	(50) 1 (2%)
*SUBCUT TISSUE INFLAMMATION ACTIVE CHRONIC	(19)	(49) 1 (2%)	(50)
ESPIRATORY SYSTEM			
#LUNG/BRONCHUS HYPERPLASIA, EPITHELIAL	(19) 1 (5%)	(49)	(49)
LUNG/BRONCHIOLE INFLAMMATION, NOS INFLAMMATION, ACUTE	(19) 1 (5%) 1 (5%)	(49)	(49)
LUNG THROMBUS, ORGANIZED	(19)	(49) 1 (2%)	(49)
EDEMA, NOS HEMORRHAGE	1 (5%)	1 (2%) 1 (2%) 1 (2%)	2 (4%)
PNEUMONIA, ASPIRATION		1 (2%)	1 (2%) 2 (4%)
PNEUMONIA, CHRONIC MURINE PERIVASCULAR CUFFING		1 (2%)	2 (4%) 3 (6%)
FOAM-CELL HYPERPLASIA, ADENOMATOUS		1 (2系) 1 (2系)	
EPITHELIALIZATION		1 (2%)	
EMATOPOIETIC SYSTEM			
*SPLEEN HYPERPLASIALYMPHOID	(19)	(47) 1 (2%)	(46)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

**EXCLUDES PARTIALLY AUTOLYZED ANIMALS

	CONTROL (UNTR) 22-2035	LOW DOSE 22-2033	HIGH DOSE 22-2031
CIRCULATORY SYSTEM			
# MY OCA RDIUM DEG EN ERATION, NOS	(19)	(48) 1 (2%)	(49) 2 (4%)
DIGESTIVE SYSTEM			
# SALIVARY GLAND PERIVASCULAR CUF PING	(17) 1 (6%)	(45) 3 (7%)	(44) 2 (5%)
#LIVER HEMORRHAGIC CYST INFLAMMATION, ACUTE FOCAL PERIVASCULAR CUPFING NECROSIS, NOS	(19) 2 (11%)	4 (8%) 1 (2%) 1 (2%)	(49) 1 (2%) 1 (2%) 2 (4%)
METAMORPHOSIS FATTY BASOPHILIC CYTO CHANGE	1 (5%)	1 (2%) 1 (2%)	
#STOMACH INFLAMMATION, ACUTE SUPPURATIVE	(19)	(45)	(47) 1 (2%)
#SMALL INTESTINE HYPERPLASIA, LYMPHOID	(19)	(23) 1 (4%)	(48)
#LARGE INTESTINE NEMATODIASIS	(19) 4 (21%)	(43) 5 (12%)	(48) 1 (2%)
URINARY SYSTEM			
#KIDNEY HYDPONEPHROSIS PYELONEPHRITIS, NOS INFLAMMATION, CHRONIC PERIVASCULAR CUFFING	(19) 3 (16%) 2 (11%)	(48) 1 (2%) 8 (17%) 14 (29%)	(49) 1 (2系) 3 (6系) 4 (8系)
#KIDNEY∕PELVIS HEMORRHAGE	(19)	(48) 1 (2%)	(49)
ENDOCRINE SYSTEM			
<u>NONE</u>			

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECPOPSIED

	CONTROL (UNTR) 22-2035	LOW DOSE 22-2033	HIGH DOSE 22-2031
EPRODUCTIVE SYSTEM			
#PROSTATE Hyperplasia, cystic	(19) 4 (21%)	(46) 4 (9%)	(44) 3 (7%)
*SEMINAL VESICLE DEGENERATION, NOS	(19)	(49) 1 (2%)	(50)
TESTIS DEGENERATION, NOS	(19)	(48)	(48) 1 (2%)
ERVOUS SYSTEM			
#BRAIN COPPORA AMYLACEA	(18) 9 (50%)	(47) 9 (19%)	(46) 11 (24%)
PECIAL SENSE ORGANS			
NONE			
USCULOSKELETAL SYSTEM			
NONE			
ODY CAVITIES			
* PLEURA FOAM-CELL	(19)	(49) 1 (2%)	(50)
* MESENTERY STEATITIS	(19)	(49) 1 (2%)	(50)
PERIARTERITIS NECROSIS, FAT	1 (5%)		1 (2%)
LL OTHER SYSTEMS			
*MULTIPLE ORGANS <u>PERIVASCULAR_CUFFING</u>		(49) <u>9_(18悉)</u>	(50) // (8%)

	CONTROL (UNTR) 22-2035	LOW DOSE 22-2033	HIGH DOSE 22-2031	
SPECIAL MORPHOLOGY SUMMARY				
NO LESION REPORTED ANIMAL MISSING/NO NECROPSY AUTO/NECROPSY/HISTO PERF	2 1	8 1	17	
# NUMBER OF ANIMALS WITH TISSUE EX.	AMINED MICROSCOPICA	LLY		

* NUMBER OF ANIMALS NECROPSIED

-

TABLE D2 SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE TREATED WITH 1-PHENYL-2-THIOUREA

	CONTROL (UNTR) 22-2036	LOW DOSE 22-2034	HIGH DOSE 22-2032
IMALS INITIALLY IN STUDY IMALS MISSING	20	50 8	50
MALS NECROPSIED MALS EXAMINED HISTOPATHOLOGICALLY**	20	42 41	50 50
EGUMENTARY SYSTEM			
NONE			
PIRATORY SYSTEM			
UNG	(19)	(40)	(49)
INFLAMMATION, INTERSTITIAL PNEUMONIA, CHRONIC MURINE		1 (3%) 1 (3%)	5 (10%)
PERIVASCULAR CUFFING			1 (2%)
ATOPOIETIC SYSTEM			
SPLEEN	(18)	(40)	(46)
HYPERPLASIA, LYNPHOID HENATOPOIESIS		1 (3%)	2 (4%)
	(16)	(36)	(42)
HEMORRHAGE	1 (6%)		
ESENTERIC L. NODE HYPERPLASIA, LYMPHOID	(16)	(36)	(42) 1 (2%)
CULATORY SYSTEM			
NYOCARDIUM INFLAMMATION, NOS	(19)	(40)	(47) 1 (2%)
PULMONARY ARTERY	(20)	(42)	(50)
HYPERTROPHY, NOS	1 (5%)		
ESTIVE SYSTEM			
IVER	(19)	(39)	(48)
INFLAMMATION, FOCAL	3_(16%)		

	CONTROL(UNTR) 22-2036	LOW DOSE 22-2034	HIGH DOSE 22-2032
INFLAMMATION, ACUTE FOCAL INFLAMMATION, ACUTE/CHRONIC PERIVASCULAR CUFFING NECROSIS, FOCAL PIGMENTATION, NOS GLYCOGENIC CELL ANGIECTASIS	1 (5%) 1 (5%)		5 (10%) 1 (2%) 2 (4%) 2 (4%) 1 (2%)
# PA NCR EA S CYSTIC DUCTS	(19) 1 (5%)	(39)	(46)
#STOMACH INFLAMMATION, SUPPURATIVE	(18)	(39)	(48) 1 (2%)
*SMALL INTESTINE HYPERPLASIA, LYMPHOID	(19) 1 (5%)	(40)	(49) 2 (4%)
URINARY SYSTEM			
<pre># KID NEY HYDRONEPHROSIS INFLAMMATION, NOS INFLAMMATION, CHRONIC PERIVASCULAR CUFFIN3 NEPHROSIS, CHOLEMIC</pre>	(20) 1 (5%) 3 (15%) 1 (5%)	(40) 1 (3%) 6 (15%) 3 (8%)	(48) 1 (2%) 2 (4%) 3 (6%) 1 (2%)
#URINARY BLADDER HYPERPLASIA, LYMPHOID	(19)	(41)	(47) 1 (2%)
ENDOCRINE SYSTEM			
*ADRENAL CORTEX METAMORPHOSIS FATTY	(19) 1 (5%)	(38)	(45)
#THYROID GOITER COLLOID	(16)	(32) 1 (3%)	(43)
REPRODUCTIVE SYSTEM			
# UTERUS H YDROMETRA CYSTNOS	(20) 1 <u>(5%)</u>	(41) 1 (2%) 2 <u>(5%)</u>	(50) <u>1_(2%)</u>

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE D2 (CONTINUED)

	CONTROL (UNTR) 22-2036	LOW DOSE 22-2034	HIGH DOSE 22-2032
PYOMETRA DECIDUA	1 (5%)	2 (5%) 1 (2%)	3 (6%)
UTERU S/ENDOMETRI UM	(20)	(41) 11 (27%)	(50)
CYST, NOS	6 (30%)		1 (2%)
INFLAMMATION, NOS INFLAMMATION, SUPPURATIVE	1 (5%)	1 (2%)	3 (6%) 1 (2%)
INFLAMMATION, ACUTE	2 (10%)	1 (2%)	1 (2%)
HYPERPLASIA, NOS	• •	1 (2%)	1 (2%)
HYPERPLASIA, CYSTIC	1 (5%)		17 (34%)
#UTERUS/MYOMETRIUM	(20)	(41)	(50)
INFLAMMATION, NOS			1 (2%)
*OVARY/OVIDUCT	(20)	(41)	(50)
INFLAMMATION, NOS		1 (2%)	
*OVARY	(16)	(33)	(45)
CYST, NOS	ُ 5 (31%)	4 (12%)	3 (7%)
FOLLICULAR CYST, NOS	1 (6%)		1 (2%)
PAROVARIAN CYST	1 (6%)	3 (9%)	
INFLAMMATION, NOS PIGMENTATION, NOS		1 (3%)	1 (2%)
ERVOUS SYSTEM *BRAIN/MENINGES INFLAMMATION, NOS	(20) 1 (5%)	(40)	(49)
# BRAIN	(20)	(40)	(49)
CORPORA AMYLACEA	4 (20%)	11 (28%)	7 (14%)
PECIAL SENSE ORGANS			
NONE			
USCULOSKELETAL SYSTEM			
NONE			
ODY CAVITIES			
* PER IT ONEUM	(20)	(42)	(50)
INFLAMMATION_ NOS			1 (2%)

	CONTROL(UNTR) 22-2036	LOW DOSE 22-2034	HIGH DOSE 22-2032	
ALL OTHER SYSTEMS *MULTIPLE ORGANS	(20)	(42)	(50)	
PERIVASCULAR CUFFING	3 (15%)	4 (10%)	9 (18%)	
SPECIAL MORPHOLOGY SUMMARY				_
NO LESION REPORTED		6	2	
ANIMAL MISSING/NO NECROPSY AUTO/NECROPSY/NO HISTO		8 1		
* NUMBER OF ANIMALS WITH TISSUE EX	AMINED MICROSCOPIC	LLY		

Review of the Bioassay of 1-Phenyl-2-Thiourea* for Carcinogenicity by the Data Evaluation/Risk Assessment Subgroup of the Clearinghouse on Environmental Carcinogens

June 29, 1978

The Clearinghouse on Environmental Carcinogens was established in May, 1976, in compliance with DHEW Committee Regulations and the Provisions of the Federal Advisory Committee Act. The purpose of the Clearinghouse is to advise the Director of the National Cancer Institute (NCI) on its bioassay program to identify and to evaluate chemical carcinogens in the environment to which humans may be exposed. The members of the Clearinghouse have been drawn from academia, industry, organized labor, public interest groups, State health officials, and quasi-public health and research organizations. Members have been selected on the basis of their experience in carcinogenesis or related fields and, collectively, provide expertise in chemistry, biochemistry, biostatistics, toxicology, pathology, and epidemiology. Representatives of various Governmental agencies participate as ad hoc members. The Data Evaluation/Risk Assessment Subgroup of the Clearinghouse is charged with the responsibility of providing a peer review of reports prepared on NCI-sponsored bioassays of chemicals studied for carcinogenicity. It is in this context that the below critique is given on the bioassay of 1-Pheny1-2-Thiourea for carcinogenicity.

The reviewer agreed with the conclusion in the report that 1-Phenyl-2-Thiourea was not carcinogenic under the conditions of test. After a brief description of the experimental design, he commented on the studies' deficiencies. Among those noted were the inadequate control group size, the lack of analytical data on the dietary concentration of the test substance, the conduct of the study in a room in which other chemicals were under test, and an improperly run subchronic study. Despite the shortcomings, the reviewer said the study was still adequate enough to form a conclusion on the carcinogenicity of 1-Phenyl-2-Thiourea. He moved that the report on the bioassay of 1-Phenyl-2-Thiourea be accepted as written. The motion was approved without objection.

Clearinghouse Members present:

Arnold L. Brown (Chairman), Mayo Clinic
Paul Nettesheim, National Institute of Environmental Health Sciences
Verne Ray, Pfizer Medical Research Laboratory
Verald K. Rowe, Dow Chemical U.S.A.
Michael B. Shimkin, University of California at San Diego
Louise Strong, University of Texas Health Sciences Center

* Subsequent to this review, changes may have been made in the bioassay report either as a result of the review or other reasons. Thus, certain comments and criticisms reflected in the review may no longer be appropriate.

U.S. GOVERNMENT PRINTING OFFICE: 1978-260-899/3190

Library National Institutes of Health Perhesda, Marvland 20014

10 Center Drive Bethesda, MD 20892-1150 301-496-1080

DHEW Publication No. (NIH) 78-1704