
Rob 501 - Mathematics for Robotics

HW #6

Prof. Grizzle

Due Oct. 25, 2018 (Yes, no HW the week of Fall Break)
3PM via Gradescope1

• Remark A) There will be no HW due the week of Exam 1.

• Remark B) While the initial problems are on matrices, the main focus of this HW set is Recursive
Least Squares (RLS), in other words, least squares estimation that can be implemented in a real-time
environment. This is a good way to prepare for the Kalman Filter. The HW set looks long because
lots of details are given for each step in a problem, which should make the work go quickly.

• Remark C) To work the two problems on RLS, read the handouts WeightedLeastSquares_RLS.pdf,
which is typeset and the handout RecursiveLeastSquares_v02.pdf, which is handwritten. They
are basically the same, but the handwritten one has a bit more detail. Read the handout and then
implement the algorithm. This may be a bit tough on you, but when we go through it in lecture, you
will be remarkably well prepared. The hints give you a LOT OF INFORMATION. Read them!

1. The symmetric matrix below has distinct e-values. Factor it as a product OΛO> where O is an
orthogonal matrix and Λ is diagonal. It is OK to use MATLAB.

A =

 2 −1 0
−1 2 1

0 1 2


2. The symmetric matrix below has repeated e-values 2, 2,−1. In lecture, we stated that even with

repeated e-values, we can still diagonalize a symmetric matrix using orthogonal matrices. The objective
of the problem is to see why this is true by working a numerical example. We will follow the proof
attached at the end of the HW set and factor A as a product OΛO>, where O is an orthogonal matrix.

A =

 1 0
√

2
0 2 0√
2 0 0

 .
Each of the steps below is motivated by a step in the proof. Suggestion: Open a script �le in
MATLAB and execute each step of the problem. It will save time.

(a) Verify that v1 = [0, 1, 0]> satis�es Av1 = 2v1, and thus v1 is an e-vector corresponding to λ = 2.

(b) Choose v2 and v3 such that {v1, v2, v3} is orthonormal, and verify that V = [v1 |v2 |v3] is an
orthogonal matrix. In general, you would accomplish this by completing {v1} to a basis of Rn
and applying Gram Schmidt. Here, you can do it by inspection.

1Some of you still have not understood that GradeScope is purposely set to allow a 3 hour grace period. Hence, if you

submit by 5:59 PM, you are �ne; there is no late penalty. At 6:01 PM you are locked out. At 6:00 PM exactly, I have no idea

what happens!
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(c) Form the matrix V >AV and verify that it has the form[
2 01×2

02×1 A2

]
with A2 symmetric.

(d) Use MATLAB to compute the e-values and e-vectors of A2, and verify that they are 2,−1, and
thus distinct2. Find U2 orthogonal such that

U>2 A2U2

is diagonal. It is OK to use MATLAB for this.

(e) De�ne the 3× 3 matrix U by

U =

[
1 01×2

02×1 U2

]
.

Verify that U is orthogonal.

(f) De�ne O = V U and verify that O is orthogonal.

(g) This is the only part you turn in: Report what you get when you compute O>AO. If it is
not diagonal, you have done something wrong.

3. Write an m-file or function in MATLAB3 that implements the Matrix Inversion Lemma

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1.

Your function should assume that A−1 is provided, that is, it should not compute the inverse of the
matrix A, however it should compute the inverse of C. Verify that your function works by using the
data in Prob. 4 of HW # 5. Turn in your MATLAB code (print it out and insert it with your HW
solutions).

4. Download the �le HW06_Data.zip from the CANVASMATLAB folder and load the �le DataHW06_Prob4.mat
into your MATLAB workspace (See also the ReadMe.txt �le). The data �le provides �perturbed or
noisy� data for the model yi = Cix+ ei, 1 ≤ i ≤ N , where N = 500, x ∈ R100 and yi ∈ R3. The data
set contains the measured values yi, the model matrices Ci, and the true value of x. The true value
is given so that you can compare your estimated values to the true value. Of course, in real life, we
would not have x available to us.

For 1 ≤ k ≤ N , de�ne Sk = I3×3 and as in the lecture on Recursive Least Squares,

Yk =

 y1

...
yk

 , Ak =

 C1

...
Ck

 , Rk = diag[S1, · · · , Sk] = I.

(a) Find n such that Ak has at least dim(x) = 100 independent columns for k ≥ n. For each
n ≤ k ≤ N , de�ne

x̂k := arg min||Yk −Akx|| = arg min
√

(Yk −Akx)>Rk(Yk −Akx)

but do not compute anything except n at this step.

2If the e-values were repeated, you would �nd one e-vector, use it to build an orthonormal basis, and decompose A2 to �nd

A3 symmetric that has dimension one less than A2, etc.
3It is OK to use a di�erent programming language but please add enough comments that someone who does not know the

language can still read it and see that it probably works.
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(b) For each n ≤ k ≤ N , compute x̂k in a batch process, that is,

x̂k = (A>k RkAk)−1A>k RkYk,

and, using the standard Euclidean norm, compute

Ek := ||x̂k − x||.

Make a plot of Ek versus k and turn it in. Put a clear title on your plot, such as �Norm error in
x-hat using Batch Process�. Implementing the �for each n ≤ k ≤ N � will require a for loop or

while loop. Use the tic and toc commands to determine how long it takes to compute your
entire set of estimates and report this value. Either write it on your error plot by hand or place
it there with a MATLAB command.

(c) For each n ≤ k ≤ N , compute x̂k using the RLS (Recursive Least Squares) Algorithm. First
implement it without using the Matrix Inversion Lemma. Turn in a plot of Ek versus k, and
record on your plot the amount of time it takes to do your computations.

(d) For each n ≤ k ≤ N , compute x̂k once again using the RLS (Recursive Least Squares) Algorithm,
but this time, implement it using the Matrix Inversion Lemma. Turn in a plot of Ek versus k, and
record on your plot the amount of time it takes to do your computations. Note that this time you
are numerically inverting a 3× 3 matrix and then computing the inverse of the 100× 100 matrix
Qk with the Matrix Inversion Lemma. This is the main point of the Matrix Inversion Lemma.

5. Download the �le HW06_Data.zip from the CANVASMATLAB folder and load the �le DataHW06_Prob5.mat
into your MATLAB workspace. It provides �perturbed or noisy� data for the model yi = Cixi + ei,
1 ≤ i ≤ N , where this time the �state� or �parameter� x that we are estimating is slowly �drifting�
(means that it is slowly varying with time), which is why it has an index xi. We will see that basic
least squares does not work very well when x can drift. We will learn a way to �x it.

In this problem, N = 500, x ∈ R20 and yi ∈ R3. The data set contains the measured values yi, the
model matrices Ci, and the true value of xi. The true value is given so that you can compare your esti-
mated values to the true value. As you know very well, in real life, we would not have xi available to us.

(a) Find n such that Ak has at least dim(x) = 20 independent columns for k ≥ n. For each n ≤ k ≤ N ,
de�ne

x̂k := arg min||Yk −Akx||,

but do not compute anything except n at this step. You should �nd n = 7.

(b) As in Prob. 4, use constant weights, with Sk = I3×3. For each n ≤ k ≤ N , compute x̂k (any
method you wish) and compute Ek := ||x̂k − xk||. It does not matter how fast your MATLAB
code is for the computation of x̂k because in this problem we will not record the time. Make a
plot of Ek versus k and turn it in. Put a clear title on your plot. Note that the error gets pretty
bad.

(c) The forgetting factor: Let 0 < λ < 1 (some number strictly between zero and one). A typical
value for the forgetting factor might be λ = 0.98. The idea is to discount old measurements when
we do the least squares problem. This is done by selecting at time k the weight matrices for
1 ≤ i ≤ k to be

Si = λ(k−i)I3×3.

With this choice, the 3k × 3k weighting matrix Rk is given by

Rk = diag(λk−1I3, λ
k−2I3, · · · , λI3, I3).
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We see that the errors in older measurements are �discounted� by higher powers of λ, and thus the
estimation process � exponentially forgets� them and �focuses� on the more recent measurements.
It is important to note that at each step k, we are rede�ning the weights Rk so that errors in the
newest measurements are penalized the most. This can be done recursively in our for loop, by

Rk+1 =

[
λRk 03k×3

03×3k I3×3

]
.

For each n ≤ k ≤ N , compute x̂k using the Batch Method. Turn in a plot of Ek versus k, and
label your plot appropriately. You can use λ = 0.98 or you can tune the forgetting factor to see
what works best. How can you resist playing with it once you have your code working? :)

(d) For each n ≤ k ≤ N , compute x̂k now using the RLS (Recursive Least Squares) Algorithm, with
forgetting factor. The algorithm (without using the Matrix Inversion Lemma) becomes

• Initialization Step: Set

Qn :=

n∑
i=1

C>i λ
n−iCi

Γn :=

n∑
i=1

C>i λ
n−iyi

x̂n :=(Qn)−1Γn

• Recursion: For n ≤ k < N

Qk+1 :=λQk + C>k+1Ck+1

Kk+1 :=(Qk+1)−1C>k+1

x̂k+1 :=x̂k +Kk+1 (yk+1 − Ck+1x̂k)

• If you want the version with the Matrix Inversion Lemma, see the hints!

• Turn in a plot of Ek := ||x̂k − xk|| versus k, and label your plot appropriately. To be clear,
there are no λ's in the computation of Ek; we are just using the standard Euclidean norm to
see how well we are doing in tracking x as it slowly drifts.

6. Associating data to categories using distance: Data association is a common task across various
�elds of Robotics. For example, if you have several pings from a sonar or radar, how do you know with
which of several objects to associate them? You might enjoy the following YouTube video on the topic
https://www.youtube.com/watch?v=DK1DIcPwCOU.

While doing data association, we look at the distance between a given point (or sample of data) and
the mean (i.e. average value) of a �nite set of possible categories, S = {S1, S2, · · · , SN}. The category
assignment of a point x, called C(x), is given by,

C(x) = arg min
1≤i≤N

d(x, µSi
),

where µSi is the mean of category Si ∈ S. The most common distance used is the Euclidean distance,

dEuc(x, µSi
) := ||x− µSi

||2

where µS1
is the mean of category Si and ||x− µSi

||2 is the standard 2-norm.

While Euclidean distance works well as a coarse estimator, sometimes we have more information than
just the mean of each category. One such form of information is the covariance matrix, which gives the
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uncertainty along every direction of set. A large value of covariance in a direction indicates a larger
uncertainty along that direction. Conversely, a smaller covariance value indicates more con�dence
along that direction.

For example, consider a category Sk with mean µSk
=

[
1
1

]
and covariance ΣSk

=

[
1 0
0 9

]
. This can be

represented as Sk ∼ N (µSk
,ΣSk

), the normal distribution with mean vector µSk
and covariance matrix

ΣSk
. The covariance along the x-axis is Σ11

Sk
= 1, which indicates that the points in this category have

x values that are closer to the µxSk
when compared to the y values and µySk

(since Σ22
Sk

= 9)

When the covariance matrix is available, we use a weighted 2-norm called the Mahalanobis distance.
The Mahalanobis distance between a point and a category is de�ned as

dM (x, µSi) := ||x− µSi ||Σ−1 =
√

(x− µSi)
TΣ−1

Si
(x− µSi),

where µS1
is the mean and ΣSi

is the covariance matrix of category i respectively. We recognize that
we are using

< x, y >:= xTΣ−1
Si
y

, which gives the norm as ||x|| =
√
xTΣ−1

Si
x, as discussed in lecture.

Given 2 categories,

S1 ∼ N
([

4
0

]
,

[
0.25 0

0 2

])
, S2 ∼ N

([
0
2

]
,

[
6 2
2 2

])
Find the association of the following points using (a) Euclidean and (b) Mahalanobis distance

(i) P1 =

[
4
2

]
(ii) P2 =

[
2.8
1

]
(iii) P3 =

[
2
0

]
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Figure 1: Red ellipses are points that have dM = 1 from means of S1 and S2 with corresponding covariances.

Remark: Note that the covariance matrices here are positive de�nite matrices. As mentioned above,
we encountered this kind of matrix norm when we covered weighted least squares. The inverse of a
Covariance matrix is called an Information matrix. We will be learning more about this when we do
Kalman �lters. (And a lot more in EECS 568 - Mobile Robotics)
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Hints

Hints: Prob. 2 The important point here is that when a matrix is symmetric, repeated e-values do not
pose a problem as they do for a general square matrix. The last page of the HW gives a proof by induction.

(a) Base Step: The �rst thing to note is that a 1× 1 matrix can always be factored.

(b) Inductive Step: The induction hypothesis is to assume that (n − 1) × (n − 1) symmetric matrices
can be factored as OΛO> where O is an orthogonal matrix and Λ is diagonal.

(c) To show: Next, you must show that the same is true for n× n symmetric matrices. The key step in
the proof is to show that if A is symmetric and λ is an e-value, then there exists an orthogonal matrix
P such that

P>AP =

[
λ 01×(n−1)

0(n−1)×1 B

]
,

where B is symmetric and (n−1)× (n−1). The orthogonal matrix P is produced by using an e-vector
associated with λ and the Gram-Schmidt process. Hence, if you care to understand the proof, it is
within your means to do so.

Hints: Prob. 4 Recursive Least Squares (RLS)

(a) Basic Version:

• Initialization Step: Choose n such that Qn is invertible (full rank)

Qn :=

n∑
i=1

C>i SiCi

Γn :=

n∑
i=1

C>i Siyi

x̂n :=(Qn)−1Γn

• Recursion: For n ≤ k < N

Qk+1 :=Qk + C>k+1Sk+1Ck+1

Kk+1 :=(Qk+1)−1C>k+1Sk+1

x̂k+1 :=x̂k +Kk+1 (yk+1 − Ck+1x̂k)

(b) Improved Version Using the Matrix Inversion Lemma:

• Initialization Step: Choose n such that Qn is invertible (full rank)

Qn :=

n∑
i=1

C>i SiCi

Pn :=(Qn)−1

Γn :=

n∑
i=1

C>i Siyi

x̂n :=PnΓn
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• Recursion: For n ≤ k < N

Pk+1 =Pk − PkC>k+1[S−1
k+1 + Ck+1PkC

>
k+1]−1Ck+1Pk.

Kk+1 :=Pk+1C
>
k+1Sk+1

x̂k+1 :=x̂k +Kk+1 (yk+1 − Ck+1x̂k)

• How to Derive the Riccati Equation? It comes from the Matrix Inversion Lemma

Qk+1 =Qk + C>k+1Sk+1Ck+1

Q−1
k+1 =

(
Qk + C>k+1Sk+1Ck+1

)−1

=Q−1
k −Q

−1
k C>k+1

[
S−1
k+1 + Ck+1Q

−1
k C>k+1

]−1
Ck+1Q

−1
k

Pk :=Q−1
k

Pk+1 =Pk − PkC>k+1

[
S−1
k+1 + Ck+1PkC

>
k+1

]−1
Ck+1Pk.

• Jacopo Francesco Riccati (1676-1754) http://en.wikipedia.org/wiki/Jacopo_Riccati

Hints: Prob. 5

(a) Rewrite Qk+1 = λQk + C>k+1Ck+1 as

1

λ
Qk+1 = Qk + C>k+1

1

λ
Ck+1

Therefore

λQ−1
k+1 = [Qk + C>k+1

1

λ
Ck+1]−1 (∗)

Using the Matrix Inversion Lemma, we have

λQ−1
k+1 = Q−1

k −Q
−1
k C>k+1[λI + Ck+1Q

−1
k C>k+1]−1Ck+1Q

−1
k .

and thus

Q−1
k+1 =

1

λ
Q−1
k −

1

λ
Q−1
k C>k+1[λI + Ck+1Q

−1
k C>k+1]−1Ck+1Q

−1
k .

If we de�ne Pk := Q−1
k , we obtain

Pk+1 =
1

λ
Pk −

1

λ
PkC

>
k+1[λI + Ck+1PkC

>
k+1]−1Ck+1Pk.

(b) If you are using your m-�le for the Matrix Inversion Lemma, you can stop at (*), apply your function
to get the inverse of [Qk + C>k+1

1
λCk+1], and then divide by the forgetting factor.

(c) The recursion on x̂k is unchanged from the RLS algorithm without the forgetting factor. In case you
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want to see the derivation, the key formulas are:

Qk :=

k∑
i=1

C>i λ
k−iCi

Qkx̂k :=

k∑
i=1

C>i λ
k−iyi

Qk+1 =

k+1∑
i=1

C>i λ
k+1−iCi

=λQk + C>k+1Ck+1

Qk+1x̂k+1 =

k+1∑
i=1

C>i λ
k+1−iyi

=λ

k∑
i=1

C>i λ
k−iyi + C>k+1yk+1

=λQkx̂k + C>k+1yk+1

λQk =Qk+1 − C>k+1Ck+1

and thus, putting all of this together

x̂k+1 =Q−1
k+1

[(
Qk+1 − C>k+1Ck+1

)
x̂k + C>k+1yk+1

]
=x̂k +Q−1

k+1C
>
k+1 (yk+1 − Ck+1x̂k)

Hence, the only change is to the update formula for Qk+1.
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diagonal. Let

Then  is diagonal, as required.

R = .

⎡

⎣
⎢⎢⎢⎢

1
0

⋮

0

0 …

Q

0 ⎤

⎦
⎥⎥⎥⎥

AP RRTP T

Was sich überhaupt sagen lässt, lässt sich klar sagen; und wovon man nicht reden kann, darüber muss
man schweigen.

(Anything that can be said at all, can be said clearly; and whereof one cannot speak, thereon one must be silent.)

– Ludwig Wittgenstein's good advice for forum contributors, in Tractatus Logico-Philosophicus.
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