DUKE
 UNIVERSITY

LIBRARY

$$
=
$$

Digitized by the Internet Archive in 2015

EARLY SCIENCE IN OXFORD VIII

EARLY SCIENCE IN OXFORD

BY

R. T. GUNTHER

VOL. VIII
THE CUTLER LECTURES OF ROBERT HOOKE

OXFORD
PRINTED FOR THE AUTHOR
I93 I

PREFACE

THE reissue of these six tracts by Robert Hooke is to be justified by their rarity. Although not so scarce as his first little booklet on Capillary Attraction the complete series of Lectiones Cutlerianae has become one of the rarities of scientific literature, and few physicists now have the opportunity of reading in the original these papers written 250 years ago by their predecessor. With the great monograph Micrographia, they present a good picture of the many-sided character of his scientific studies and of the ingenuity of his mechanical genius.

The text has been reproduced by Messrs. Percy Lund's Replica process with the addition of a continuous pagination. It is unfortunate that Hooke's own tables of contents to Tracts II and IV, on pages 3I-7 and 213-16, have thus been rendered less helpful than they would otherwise have been, but it is hoped that the provision of a short comprehensive index may be some compensation.

I have been informed that Hooke's Diary in the Guildhall Library, to which reference was made in the Preface to Vol. VI of this series, may be published at no distant date with another important Diary for I688 to February 1690 recently recognized as his by Mr. W. H. Robinson. This work, MS. Sloane 4024, was disguised under the title of 'Petiver's Diary'. Although there are only 96 small leaves, measuring

PREFACE

$3 \frac{1}{2} \times 2 \frac{1}{2}$ inches, Hooke managed to pack a vast amount of information on all manner of topics into them. They give one a vivid picture of the busy life he continued to lead even in his sixty-fourth year.

In conclusion it may be reaffirmed that much of the success of the Royal Society in its infancy was due to Robert Hooke. No one more richly merited some share of the eulogium which the poet Cowley addressed to that precocious body:

With Courage and Success you the bold work begin ;
Your Cradle has not idle bin:
None e're but Hercules and you could be At five years Age worthy a History.

R. T. GUNTHER.

THE OLD ASHMOLEAN, OXFORD,
January I93I.

ADDENDA TO VOLS. VI AND VII

To p. 246.
Variation of Magnetic Needle.
June 8, 1665. Prof. Robert Hooke with Mr. William Mar, Mr. Richard Shortgrave, a gentleman since deceased and Henry Bond, sen. in the King's Private Garden at Whitehall observed the Variation and found it to be $1^{\circ} 22^{\prime} 3^{\prime \prime} \mathrm{W}$,-showing a marked decrease since Mr. W. Burrowes' Observation in 1580.
(Henry Bond, Longitude Found. 1676.)
To p. 717.
Patent for Glass-making for ten years.
May 19, 1691. There was granted to Robert Hooke Esq. and Christopher Dodsworth, merchants, their exors, administrators and assigns, "the license and privilege for the sole use of mixing metal, so as to make glass for windows of more lustre and beauty than that heretofore made in England, red crystal glass of all sorts, and also the art of casting glass, particularly looking-glass plates, much larger than ever blown in England or foreign parts'.

Oct. 7, 1691. A warrant was signed to prepare a bill for incorporating a company for making glass, to be called the Company of Glass Makers. Power was given to the Company to hold property 'not exceeding in value $£$ fooo per annum'. Robert Hooke was nominated Warden.

Calendar of State Papers Domestic. 1690-I.

Lectiones Cutlerians,

 ORACOLLECTION O F
LECTURES:

$$
\left\{\begin{array}{l}
\text { PHYSICAL, } \\
M E C H A N I C A L, \\
G E O G R A P H I C A L, \\
A S T R O X C O M I C A L .
\end{array}\right.
$$

Made before the Royal Society on feveral Occafions át Gresham Colledge. To which are added divers

Miscellaneous Discourses.
By ROBERT HOOKE, S.R.S.
LONDON:

Printed for Fobn Martyn Printer to the Royal Society, at the Bell in S. Pauls Church-yard. 1679.

The Titles of the feveral TRACTS.

I. $N A T \mathcal{T} E P T$ to prove the Annual MOTION of the EARTH, by Observations made with accurate Inftruments: woberein is Shewon the Impoffibility of doing it, by the moft exact Indtruments and wowys ufed by preceding Aftronomers. The Inftruments and metbod ufed in these Obfervations: The way of feeing the fixed Stars in the Day time; and a nero Hypotbefis for Solving the motions of the Heavenly Bodies is binted.
II. A NIMADVERSIONS on the Machina Coelettis of Mr. Hevelius, wherein is detefted the imperfection of Aftronomical Instruments bitherto ufed, ard divers wayys of reforming and perfeciting thofe and feveral otber Inftruments are explained and defcribed. And jeveral otber new Inventions are added and explained, as particularly Water-Levels : The Circular Pendulum, the Perfection of Wheel-work for Clocks and Watcbes, \&xc. together woith their ufes, and the great advantage of thefe above otber Inventions of the lhe nature.
III. $A \operatorname{DESCRIPTION}$ of Heliofcopes with other Inftnuments. Wherein are Difcovered and Defcribed., Several new woays of miking Glaffes to lookupon the Body of the Sun woithout offence to the Obfervers. Eye. 2. A Shortning Reflective and Refractive Telefcope. 3. A may of ufing a Glafs of any length woithout moving the Tube. 4. An Inftrument for taking the Diameter of the Sun, Mion and Planets, or other Small Diftances in the Heaven, to the certainty of a Second. 5. An Inffrument for defcribing all manner of Dials by the Tangent Projection. 6. The ufes of the faid Inftrument, Firft, for adjufting the Hand of a Clock, So os to make it move in the 乃badoro of a Dial, whoreS Stile is parallel to the Axis: Or, Sccondly, in the Azimuth of any Celeftial Body, that is, in the Shadows of an upright, or any other way inclining ffyle, upon any plain. Thirdly, for nsaking a band move according to the true 生quation of Time. Fourtbly, for making all manner of Eliptical Dials, in Mr. Fofter's woay, \&cc. Fifthly, for communicating a circular motion in a Curve Line, without any ßaking: And for divers other excellent purpofes. To wobich is added an Obfervation of the Eclipse of the Moon, Jan. I. 167 s. And a Poffcript concerning the Invention of regulating Watchees, by Springs applyed to their Ballances: togetber woith a Decade of otber uffeful Inventions, part difcovered, part defcribed in Anagrams.

The Titles of the feveral T R A C'TS.

IV. L A MP AS, or Defcriptions of fome Mecbanical Improvements of Lamps and Water-poijes, with other Pbyfical and isechanical Difcoveries. Wherein are difcovered befides the roays of obviating the inconveniencies of other contrivances of Lamps, Eight feveral ways of making Lamps $\int o$, as to regulate the flame of them for various ufes: Several of robich are therein mentioned and explained: Befides wohich, varimus ways and ufes are defcribed of prying liquors, by the by, feveral Ibeories and Explications are inferted, particularly alout Flame and Burning, about Ligbt, Colour, Gravity, Local Mition, Pref́fure of Fluids, \&c. in Anfwer to Some Objections of Dr. More, againlt Some former Dijcourfes publifhed by the Author. To the Se are added the D_{C} cription of a news fort of Clep§ydra or Water-Clock. 2. A nem Principle for regulating Pocket Watches. 3. Several Microfcopical Obfervations about the Seeds, of Moffe, Mulbrooms, all kieds of Ferns, Wall-Rue, HartsTongue, Ofmund Royal, \&xc. 4. An Obfervation offpots in the Sun.
V. C O M ETA, containing Obfervations on the Comet in April, 1677. Alfo fur the years 1664. 1665. Sir Chriftopher Wren's Hypotbefis and Geometrical Problem about thoje Comets. A Difcourse concerning the Comet, 1677.
Mr. Boyl's Obfervation made on two new Phofphori of Mr. Baldwin, and Mr. Craft.

Mr. Gallet's Letter to Mr. Callini, together moith bis Observation of | fub | . |
| :---: | :---: | Mr. Caffini's Reflections upon tbofe of Gaffendus and Hevelius, and upon this. Mr. Hally's Letter and Obfervation of the Same made at St. Helena.

Mr. Calfini's Obfervation of the Diurnal motion of $\boldsymbol{\Psi}$, and other Changes bappening in it.
MICROSCOPIUM, containing Mr. Leeuwenhoecks two Letters cuncerning fome late Microfcopical Difcoveries.
The Author's Difcourfe and Defcription of Microfcopes, improved for difcerning the nature and texture of Bodies.
P. Cherubines Accufations Anfwered.

Mr. Yonge's Letter containing feveral Anatomical Obfervations.
VI. LECTURES de Potentia Reflitutivà or of Spring, Explaining the

Power of Springing Bodies. To wobich are added Some Colleciions, viz.
A Defcription of Dr. Pappins Wind-Fountain and Force-Pump.
Mr. Yong's Obfervation concerning nataral Fountains.
Some otber Confiderations concerning that Subject.
Capt. Sturmy's Remarks of a Subterraneous Cave and Cijecrn.
Mr. G. T. bis Obfervations made on the Pike of Teneriff, Anno 1674.
Some Reflections and Conjectures occafioned tbereupon.
A Relation of a late Eruption in the Ifle of Palma.

A N

A T
 T

 P
 T

To prove the

$$
\text { MOT } \underset{\substack{\text { Ofthe }}}{T} \mathrm{I} \text { ○ }
$$

FROM

Obfervations

MADE BY

ROBERT HOOKE Fellow of the Royal Society.

Senec. Nat. Qu. lib. 1. cap. 30.
No miremur tam tardè erri qua tam altè jacent.

$$
L O N D O N
$$

Printed by T. R. for Fohn Martyn Printer to the Royal Society, at the Bell in St. Pauls Church-yard. 1674.

TOTHE

TRULY HONOR ABLE

Sir John Cutler

KNIGHT and BARONET,

My Worthy

P

$S I R$,

Mong feveral Eminent Marks of your Greatnefs of Mind for promoting the Publick Good, that of your Bounty for the Advancement of $E x$ perimental and Real Knoopledge; by the Founding a Pbyfico-Mecbanical Lecture, A 2 deferves

The Epifle Dedicatory.

deferves to be Recorded as One, and more efpecially by me whom you have honoured by eftablifhing your firft Lecturer. As an Earneft of others more confiderable fhortly to follow, I here prefent you with one of my Difourfes in that Employment, which though fhort and plain , conteins fomewhat of Information which the Learned have hitherto defired, though almolt with defpair. As I hope their kind Acceptance will produce their thanks to you to whom they are jufly due, fo your Acceptance will incourage me in the further profecution of thefe Inquiries to approve my felf,

Noble Sir,

From Grefham Colledge, March 25. 1674.

Your most obliged, and
most bumble Servant

Robert Hooke.

R E A D E R,

IHave formerly in the Preface of my Micrographia given the World an account of the founding a Phy-fico-Mechanical Leeture in the Year 1665 , by Sir John Cutler,for the promoting the Hiflory of Na ture and of Art. In profecution thereof, I bave collecied many Obfervations both of the one and the other kind, and from time to time (as obliged) I bave acquainted the Royal Society at their Publick Meetings, botb at Grefham Colledge and Arundel Houfe therewith, by Difcourfes and Leaures thereupon.

Now in order to the further promoting the End and Defign of this Lecture, I bave complyed, with the defire of feveral of my Friends (though otherwife not thereunto obliged) to commit divers of thofe Difcourfes to the Publick, though of themfelves for the most part incompleat, and Effayes or Attempts only upon fereral Subjects wbich have no dependencie or coberencie one with another. In the doing bereof, I defign to avoid any kindof Metbod or Order. that may require Apologies, Prefaces, or needleß Repetitions of mbat is already known, or might bave been faid upon that Occafion, or may neceffitate me to follow this or that Subjert, that doth not fome way or otber offer it felf as it were, and
prompt the to the confideration thereof. But becaufe they may pojfibly adnit of fome better order bereafter, I defign to print them all of the fame Volume, that fo they may be, when ranged, eitber fitched or bound togetber, and may, as occafion requires, be referred to under the Title of their Number and Page. This may I cbuje as the best for promoting the Defign of this Lecture; for as there is fcarce one Subject of millions that may be pitched upon, but to write an exact and compleat Hiftory thereof, would require the whole time and attention of a mans life, and fome tboufands of Inven. tions and Obfervations to accomplifh it: So on the other fide no man is able to fay that be will compleat this or that In. quiry, whatever it be, (The greatest part of Invention being but a luckey bitt of chance, for the most part not in our own power, and like the wind, the Spirit of Invention bloweth where and when it lisfeth, and we fcarce know whence it came, or whether 'tis gone.) 'Twill be much better therefore to imbrace the influences of Providence, and to be diligent in the inquiry of every thing we meet with. For we foall quickly find that the number of confiderable Obfervations and Inventions this way collecfed, will a bundred fold out-flrip tbore that are found by Defign. No man but batb Some luckey bitts and wfeful thoughts on this or that Subject be is converfant about, the regarding and communicating of which, might be a means to other Perfons bighly to improve them. Whence 'twere much to be wifbed, that others would take tbis Metbod in their Publications, and not torment their Readers with fuch nuufoous Repetitions, and frivolous Apologies,

To the Reader.

Apologies, as Metbod and Volumes do neceffitate them to; But would ratber inrich the Store-boule of Art and Nature with cboice and excellentSeed, freed from theCbaff and Drofs th.at do otbermife bury and corrupt it.

The communicating fucb bappyThougbts and Occurrences need not mucb take up a mans time to fit it for the Pre β; the Relation being $f 0$ mucb the better the plainer it is. And matter of F all being the Kernel Readers generally defire(at leaf in tbefe Subjecis) it will be fo much the readier for ufe if it be freed from the thick and bard Jhell of Trapertinences. This way alfo is more grateful both to the Writer and the Reader, who proceed with a frefh foomach upon variety, but would be weary and dull'd if neceffitated to dwoll too long upon one Subject. İbere are otber conveniencies alfo in this Metbod of Communication not le β confiderable then the former, among \AA the reft the fecuring of Inventions to their first Autbors, which 'tis bardly pofible to do by any other means; for there are a fort of Perfons that make it their bu [ine β to pump and 乃yy out otbers Inverntions, that they may vend them to Traders of that kind, who tbink they do ingenuoufly to print them for their own, fince they bave bought and paid for them. Of this there have lately been fome Instances, and more may be expected, if this way prevent not.

When tbings cannot be mell explained by words only (which is frequent in Mathematical and Mechanical Difo courfes) I adde Scbemes and delineatious Defcriptions of that kind being eafier to be made and understood. As near as I can I omit the repeating things already printed,

To the Reader.

and indeavour to deliver fuch as are new and my own, being my felf bef pleafed with fuch ufage from otber Autbors.

I bave begun with a Difcourfe compofed and read in Grefham Colledge in the Year 1670. mben I defigned to bave printed it, but mas diverted by the advice of fome Friends to ftay the repeating the Obfervation, rather then publifh it upon the Experience of one Tear only. But finding that Sicknefs bath bitberto bindered me from repeating the Tryals, and that fome Pears Obfervations bave already been lof by the firf delay: I do ratber baft it out now, tbough imperfect, then detain it for a better compleating, boping it may be at leaft a Hint to others to profecute and compleat the Obfervation, wbich I much long for.

This frit Difcourfe is upon an Obfervation of Nature, and may therefore be properly referred to that Head, tbough it contein alfo fomewhat of the Improvement of Art: The fecond peedily to follow, will more properly be referrable to Artificial Improvements, thougb it will contein alo many Obfervations of Nature; and I defign alwayes to make them follow each otber by turns, and as 'twere to interweave them, being apart but like the Warp or Woof before contexture, unfit either to Cloth, or adorn the Body of Philofophy.

ATTEMPT

To prove the Motion of the

$$
\begin{gathered}
\text { EA } \underset{\mathrm{Br}}{\mathrm{R}} \mathrm{~T} H \\
\text { OBSERVATIONS. }
\end{gathered}
$$

 Hether the Earth move or fand fill hath been a Prob'em, that fince Copernicus revived it, hath much exercifed the Wits of our beft modern Aftronomers and Philofophers, amongt which notwithftanding there hath not been any one who hath found out a certainmanifeftation either of the one or the other Doctrine. The more knowing and judicious have for many plaufible reafons adhered to the Copernican Hypothefis: Buc the generality of others, either out of ignorance or prejudice, have rejected it as a moft extravagant opinion. To thofe indeed who underfand not the grounds and principles of Aftronomy, the prejudice of commen converfe
doth make it feem fuabfurd, that a man thall as foon perfwade them that the Sun doth not Thine, as that it doth not move; and as eafily move the Earth as make them belitve that it do's fo already. For fuch Perfons I cannot fuppofe that they fhould underftand the cogency of the Reafons here prefented, drawn from the following obfervations of Parallax, much lefs therefore can I expect their belief and affent thereunto; to them I have only this to fay, 'Tis not here my bufinefs to inftruct them in the firft principles of Attronomy, there being already Introductions eno gh for that purpofe: But ratber to furnifh the Learned with an experimentum crucis to determine between theTychonick and Copernican Hypothefes. That which hath hitherto continued the difpute hath been the plaufiblenefs of fome Arguments alledged by the one and the other party, with fuch who have been by nature or education prejudiced to this or that way. For to one that hath been converfant only with illiterate perfons, or fuch as underfand not the principles of Aftronomy and Geometry, and have had no true notion of the vartnefs of the Univerfe, and the exceeding minutenefs of the Globe of the Earth in comparifon therewith, who have confined their imaginations \& fancies only withIn the compaifs and pale of their own walk and profpect, who can fcarce imagine that the Earth is globous, but rather like fome of old, imagine it to bea round plain covered with the Sky as with a Hemifphere, and the Sun, Moon, and Stars to be holes through it by which the Light of Heaven comes down; that fuppofe themrelves in the center of this plain, and that the Sky doth touch that plain round the edges, fupported in part by the Mountains; that fuppofe the Sun as big as a Sieve, and the Moon as a Chedder Cheere, and hardly a mile off. That wonder why the Sun, Moon, and Stars do not fa! I down like Hail-ftones; and that will be martyrd rather then grant that there may be Antipodes, believing it abfolutely impoffible, fince they muft neceffarily fall down into the Abyfs below them: For how can they go with their feet towards ours,and their heads downwards, without making their brains addle. To one I fay, thus prejudiced with thefe and a thoufand other fancies and opinions more ridiculous and abfurd to knowing men, who can ever imagine that the uniformity and barmony of the Celeftial bodies and motions, fhould be an Argument prevalent to perfwade that the Earth moves about the Sun: Whereas that Hypothefis which thews how to

Falve the appearances by the rett of the Earth and the motion of the Heavens, feems generally fo plaufible that none of thefe can refift it.

Now though it may be faid, 'Tis not only thofe but great Geometricians, Aftronomers and Philofophers have alfo adhered to that fide, yet generally the reafon is the very fame. For moft of thofe, when young, have been imbued with principles as grofs and rude as thofe of the Vulgar, efpecially as to the frame and fabrick of the World, which leave fo deep an iurpreflion upon the fancy, that they are not without great pain and rrouble obliterated: Others, as a further confirmation in their childifh opinion, have been inftructed in the Ptolomaick or T_{i-} chonick Syftem, and by the Authority of their Tutors, over-a wed into a belief, if not a veneration thereof: Whence for the moft part fuch perfons will not indure to hear Arguments againft it, and if they do, 'tis only to find Anfisers to confute them.

On the other fide, fome out of a contradiding nature to their Tutors; others, by as great a prejudice of inftitution; and fome few others upon better reafoned grounds, from the proportion and harmony of the World, cannot but imbrace the Copernicars Arguments, as demonftration; that the Earth moves, and that the Sun and Stars ftand fill.

I confefs there is fomewhat of reaion on both fides, but there is alfo fomething of prejudice even on that fide that feems the moft rational. For by way of objéction, what way of demonftration have we that the frame and contitution of the World is fo harmonious according to our notion of its harmony, as we fuppofe? Is there not a poffibility that the things may be otherwife? nay, is there not fomething of probability? may not the Sun move as Ticho fuppofes, and the Planets make their Revolutionsabout it whilft the Earth ftands ftill, and by its magnetifin attrađts the Sun, and fo keeps him moving about ir, whilf at the fame time \varnothing and $\$$ move about the Sun, after the fame manner as h and 4 move about the Sun whilft the Satellites move about them? efpecially fince it is not demonfrated without much art and difficulty, and taking many things for granted which are hard to be proved, that there is any body in the Univerfe more confiderable then the Earth we tread on. Is there not much reafon for the Hypothefis of Ticho at leaft, when he with all the accuratenefs that he arrived to with his vaft Inftru-
ments, or Riccioli, who pretends much to out-Atrip him, were not able to find any fenfible Parallax of the Earths Orb among the fixt Stars, efpecially if the obfervationsupon which they ground their affertions, were made to the accuratenefs of come few Seconds? What then, though we have a Chimera or Idea of perfection and harmony in that Hy pothefis we pitch upon, may there not be a much greater barmony and proportion in the conftitution it felf which we know not, though it be quite differing from what we fancy? Probable Arguments might thus have been urged both on the one and the other fide to the Worlds end ; but there never was nor could have been any deternination of the Coneroverfie, without fome pofitive obfervation for determining whether there were a Parallax or no of the Orb of the Earth; This Ticho and Riccioliaffirm in the Negative, that there is none at all: But I do affirm there is no one that can either prove that there is, or that there is not any Parallax of that Orb amongt the fixt Stars from the Suppellex of obfervations yet made either by Ticho, Riccioli, or any other Writer that I have yet met with from the beginning of writing to this day. For all Obfervators having hitherto made ufe of the naked eye for determining the exact place of the object, and the eye beingunable tu diftinguifh any angle lefs then a minute, and an obfervation requifite to determine this requiring a much greater exact nef, then to a minute, it doth neceffarily follow that this experimentum crucis was not in their power, whatever either Ticho or Riccioli have faid to the contrary, and would thence overthrow the CopernicanSyftem, and eftablifh their cwn. We are not therefore wholly to acquiefs in their determination, fince if we examine more nicely into the obfervations made by them, together with their Inftruments and wayes of ufing them, we flall find that their performances thereby were far orherwife then what they would feem to make us believe. The Controverfic therefore rotwithfanding all that hath been faid either by the one or by the other Party, remains yet undetermined, Wherher the Earthmove above the Sun, or the Sun about the Earth; and all the Arguments alledged either on this or that fide, are but probabilites at beft, and adnit not of a neceffary and pofitive conclufion. Nor is there indeed any other means left for humane induftry to determine it, fave this one which I have endeavoured to make; and the unqueftionable certainty
certainty thereof is a moft undenyable Argument of the truth of the Copernican Syfteme; and the want thereof hath been the principal Argument that hath hitherto fomewhat detaned me from declaringabfolutely for that Hypothefis, for though it doth in every particular almoft feem to folve the appearances more naturally and eafily, and to afford an exceeding harmonious conltitution of the great bodies of the World compared one with another, as to their magnitudes, motions, and di. flances, yet this objection was alwayes very plaufible to moft men, that it is affirmed by fuch as have written more particularly of this fubject, that there never was any fenfible Parallax difcovered by the beft obfervations of this fuppofed annual motion of the Earth about the Sun as its center, though moved in an Orb whofe Diameter is by the greateft number of Aiftronomers reckoned between II and is hundred Diameters of the Earth: Though fome others make it between 3 and 4 thoufand; others between $;$ and 8 ; and others between 14 and 15 thoufands; and I am apt to believe it may be yet much more, each Diameter of the Earth being fuppofed to be between 7 and 8 thoufand Englifh miles, and confequently the whole being reduced into miles, if we reckon with the moft, amounting to 120 millions of Englifh miles. It camot, I confers, but feem very uncouth and ftrange to fuch as have been ufed to confine the World with lefs dimenfions, that this annual Orb of the Earth of fo vaft a magnitude, thould have no fenfible Parallax amongft the fixt Stars, and therefore "twas in vain $t 0$ indeavour to anfwer that objection. For it is unreafonable to expect that the fancles of nioft menthould be fo far ftreined beyond their narrow dimenfions, as to make them believe the extent of the Univerfe fo immenlly great as they mult have granted it to be, fuppofing no Parallax could have been found.

The Inquifitive Jefuit Ruccioli has taken great pains by 77 arguments to overthrow the Copernican Hypothefis, and is therein foearneft and zealous, that though otherwife a very learned man and good Aftronomer, he feems to believe his own Arguments; butall his other 76 Arguments might have been fpared as to moft men, if upon making obfervations as 1 have done, he could have proved there had been no fenfible Parallax this way difcoverable, as I believe this one Difcoverv will anfwer them, and 77 more, if fo many can te thought of and
produced againft it. Though yet I confefs had I fail'd in difcovering a Parallax this way, as to my own thoughts and perfwafion, the almolt infinite extenfion of the Univerfe had not to me feem'd altogether fo great an abfurdity to be believed as the Generality do efteen it; for fince 'tis confeffedly granted on all hands the diftance of the fixt Stars is meerly hypothetical, and not founded on any other ground or reafon but fancy and fuppo. fition, and that there never was hitherto any Parallax obferved, nor any other confiderable Argument to prove the diftances fuppofed by fuch as have been moft curions and inquifitive in that particular, I fee no Argument drawn from the nature of the thing that can have any neceffary force in it to determine that the faid diftance cannot be more then this or that, whatever it be that is affigned. For the fame God that did make this World that we would thus limit and bound, could as eafily make it millions of millions of times bigger, as of that quantity we imagine ; and all the other a ppearances except this of Parallax would be the very fame that now they are. To me indeed the Univerfe feems to be vaftly bigger then 'tis hitherto afferted by any Writer, when I confider the many differing magnitudes of the fixt Stars, and the continual increafe of their number according as they are looked after with better and longer Telefcopes. And could we certainly determine and meafure their Diameters, and diflinguilh what part of their appearing magnitude were to be attributed to their bu'k, and what to their brightnefs, I am apt to believe we fhould make another diftribution of their nagnitudes, then what is already made by Ptolomy, Ticho, Kepler, Bayer, Clavius, Grienbergerus, Piff, Hevelius and others.

For fuppofing all the fixt Stars as fo many Suns, and each of them to have a Sphere of activity or expanfion proportionate to their folidity and activity, and a bigger and brighter bodied Star to have a proportionate bigger fpace or expanfion belonging to it, we flhould from the knowledge of their Diameters and brightneffes be better able to judge of their diftances, and confequently affign divers of them other magnitudes then thofe already ftated: Efpecially fince we now find by obfervations, that of thofe which are accounted fingle Stars, divers prove a.congeries of many Stars, though from their near appearing to earh other, the na-
ked eye cannot diftinguifh them; Such as thofe Stars which are called Nebulous, and thofe in Orion Sword, and that in the head of Aries, and a multitude of others the Telefcope doth now detect. And pofibly we may find that thore twenty magnitudes of Stars now difcovertd by a fifteen foot Glafs, may be found to increare the magnitude of the Semidiameter of the vifible World, fourcy times bigger then the Copernicans now fuppofe it between the Sun and the fixt Stars, and confequently fixty four thoufand times in bulk. And if a Telefcope of double or treble the goodnefs of one of fificen thould difcover double or treble the faid number of magnitudes, would it not be an Argument of doubling or trebling the former Diameter, and of increafing the bulk eight or twenty feven times. Efpecially if their apparent Diameters fhall be found reciprocal to their Diflances (for the determination of which I did make fome obfervations, and defign to compleat with what fpeed I am able.) But to digress no further, This grand objection of the Anticopernicans, which to moft men feen'd so plaufible, that it was in vain to oppofe it, though, I fay, it kept me from declaring abfolutely for the Copernican Hypothefis, yet I never found any abfurdity or impoffibility that followed thereupon: And I alwayes fufpected that though fome great Aftronomers had afferted that there was no Parallax to be found by their obfervations, though made with great accuratenefs, there might yet be a poffibility that they might be miftaken; which made me alwayes look upon it as an inquiry well worth examining: firft, Whether the wayes they had already attempted were not fubject and lyable to great errors and uncertainties: and fecondly, Whether there might not be fome other wayes found cut which Thould be free from all the exceptions the former were incumbred with, and be fo far advanced beyond the former in certainty and accuratenefs, as that from the diligent and curious ufe thereof, not only all the objections againft the former might be removed, but all other whatfoever that were material to prove the ineffetualnefs thereof for this purpofe.

I began therefore firf to examine into the matter as it had already been performed by thofe who had afferted no fenfible Parallax of the annual Orb of the Earth, and quickly found that (whatever they afferted) they could never determine whether
there were any or no Parallax of this annual Orb; efpecially if it were lefsthen a minute, which Kepler and Riccioli hy pothetically affirm it to be: The former making it about twenty four Seconds, and the latter about ten. For though Ticho, a man of unqueftionable truthinhis affertions, affirm it pomble to oblerve with large Inftruments, conveniently mounted and furnithed with fights contrived by himfelf (and now the cummon ones for Altronomical Inftrunents) to the accurateners of ten Seconds; and though Riccioli and his ingenious and accurate Companion Grimaldi affirm it poffible to make obfervations by their way, with the naked edge to the accurateners of five Seconds; Yet Kepler did affirm, and that jufly, that 'twas impoffible to be fure to a lefs Angle then 12 Seconds: And I frommy own expérience do find it exceeding difficult by any of the common fights yet ufed to be fure to a fuinute. I quickly concluded therefore that all their endeavours mult have hitherto been ineffectual to this purpofe, and that they had nor been lefs impofed on themfelves, then they had deceived others by their miftaken obfervations. And this miftake I found proceeded fom divers inconveniencies their wayes of obfervations were lyable to. As firt from the Ihrinking and fretching of the materials wherewith their Inftruments were made, I conceive a much greater ang'e then that of a minute may be miftaken in taking an: altitude of fifty Degrees. For if the Inftruments be made of Wood, 'tis manifeft that moyt weather will make the frame ftretch, and dry weather will make it thrink a much greater quantity then to vary a minute: and if it be Metal, unlefs it be provided for in the fabrick of the Inftrument accordingly, the heat of Summer, when the Summer obiervations are to be made, will make the Quadrant fwell, and the cold of Winter will make it fhrink much more then to vary a minute: Both which inconveniencies ought to be removed. Next the bending and warping of an Inftrument by its own weight, will make a very confiderable alteration. And thirdly, the common way of Diviffon is alfo lyable to many inconveniencies: And 'tis hardly poffible to afcertain all the fubdivifions of Degrees into minutes for the whole Quadrant, though that be not altogether imporfible. But I will fuppofe that they did forefee, and in fome manner prevent all thefe inconveniencies, efpecially $T i c h o$ and Riccieli, who feem to have been aware thereof. But there was
one inconvenience which was worle then all the reft, which they feem not to have been fufficiently fenfible of, fung whence proceeded all their own miftakes, and their impofing upon others, and that was from their opinion that the fight of the naked eye was able to diftinguith the parts of the object as minutely as the limb of the Quadrant (of what largeners rjever) was capable of Divifions; whereas'tis hardly poffible for any unarmed cye well to diftinguilh any Angle nuluch finaller then that of a minute: and where two objects are not farther diftant then a minute, if they are bright objects, they coa'efs and appear one, though I confels, if they be dark objects, and a light be interpofed, the diftance between them gall be vifible, though really much lefs then a Second; and yet notwithftanding, my firf affertion ftands good; for though a bright object, as a candle or light at a diftance, or a Star, or the like, can be feen by the eye, though its body do really not fubtend an Anglé of one tbird, yet it proceeds from a radiation (that is, from reflection and refraction together) in the air and in the eye, whereby the body thereof is reprefented to the naked eye fome hundred times bigger then it really is. That this is ro, any one that will but carefully examine will find it true.

It was, I doubt not, their extraordinary defire and care to be exact, that caufed them to make their Inftruments fo large, and to fubdivide them to fuch an exactnefs, as to diftinguifh, if pofible, to Seconds; And I quertion not but that they ufed their utmoft indeavour in directing the fight to the object: but fince the naked eye cannot diftinguifh an Angle much fmaller then a minute, and very few to a whole minute, all their charge and trouble in making and managing large Infruments, and in cal. culating and deducing from them, was as to this ure in vain. Hence I judged that whatever wens eyes were in the younger age of the World, our eyes in this old age of it needed Spectacles; and therefore I refolved to affift my eyes with a very large and good Telefcope, inftead of the common fights, whereby I can with eare difting uifh the parts of an objett to Seconds: and I queftion not but that this way may be yet made capable of diftinguifhing much more curioully, poffibly even to fome few Thirds. This invention removed that grand inconvenience which all former obfervations were fpoiled with: but there re-
mained yet further this difficulty, How to make an Inftrumene large enough for this purpofe, that I might be affured did not nirink, nor warp, nor ftretch fo much as to vary a Second; for fuch is the nature of all Materials that can be made ufe of for Intruments of the bigners I defigned this, that 'tis almoft imponible to make a moveable Inftrument that fhall not be fubject to a variation or divers Seconds: It was therefore my next inquiry where I might fix this Archimedean Engine that was to move the Earth. For the doing of which, I knew 'twas in vain to confulc with any Writer or Aftronomer, having never then heard of any perfon that had ever before that time had any thoughts thereof: and when I firf propounded it to the Royal Society, 'twas look'd upon as a new thought, and fomewhat extravagant, and hardly practicable, until upon hearing my explication, and the various wayes how it might be reduced into practife, it was at length judged pofible, and defirable to be tryed. I propounded therefore to them the feveral ways that it was pofible to be performed, and what method was to be obferved in every one of them, and fomewhat of the conveniencies and inconveniencies in each of them; for baving ferioully meditated upon the Inquiry, I quickly thought of many expedients tor the doing thereof. As firit, I had thoughts of making u'e of fome very great and mafly Tower or Wall that were well fetled, or of fome large Rock or Hill whereunto I might fix my Glaffes, fo as to take the exact altitude of fome eminent Star near the Pole of the Ecliptik, when at its greatef. height, at two differing times of the year ; to wit, about the Summer and Winter Solltice, to fee if poffibly I could difcover any difference of altirude between the firft and fecond obfervation. But to accomplifh this (befides the vaft difficulty there would have been to have meafured fuch an Angle to the accuratenefs requifite, if at leaft it were defired to have the Angle of aititude to Minutes añd Seconds, which ought alfo to have been repeated as oft as any obfervation had been made for fear of fetling or (welling, \&c.) I was deftitute of fuch a convenience near my habitation; befides, had I had my wifh, I found that 'twas lyable to an inconvenience that would wholly overthrow my whole defign, which I knew not well how to avoid: Namely, to that which hath hitherto made even the very
beft obfervations of Parallaxes ineffectual and uncertain, the refraction of the Air or Atmofphere, which though it could have been but very litt'e at the greateft altitude of the Pole of the Ecliptick, yet it might have been enough plaufibly to have fpoi'ed the whole obfervation, and to have given the Anticopervicans an opportunity of evading the Arguments taken from it, efpecially upen the account of the differing conftitution of the Atmofphere in Fune and December, which might have caufed fo much a greater refraction of the fame altitude at one time then another, as would have been fufficient to have made this obfervation ineffectual for what it was defigned. Adde to this, that it would have been no eafie matter to have fet the Glaffes or Telefcope exaCtly againft the Meridian, foas to fee the higheft altitude of any Star near the Pole of the Ecliptick diftinctly to a Second.

The like difficulties I found if obfervations were made of the greateft altitude of the Pole of the Ecliptick in Fune and December, or the leaft altitude of the rame in December and June. For befides all the uncertainries that the Infruments, be they what they will, are liable to, the grand inconvenience of the refraction of the Air, which is enough to fpoil all obfervations if it be intermixed with uncertainty, in the former is confiderable, and in the later intolerable.

Having therefore examined the wayes and InAtruments for all manner of Aftronomical obfervations hitherto made ufe of, and confidered of the inconveniencies and imperfections of them; and having alfo duly weighed the great accuratenefs and certainty that this obfervation neceffarily required: I did next contrive a way of making obfervations that might be free from afl the former inconveniencies and exceptions, and as near as might be, fortified againft any other that could be invented or raifed againt it. This way then was to obferve by the paming of fume confiderable Star near the Zenith of Greflam Colledge, whether it did not at one time of the year palk nearer to it, and at another further fromit : for if the Earth did move in an Orb about the Sun, and that this Orb had any fenfible Parallax amonght the fixt Stars; this muft neceffarily happen, effecially to thofe fixt Stars which were neareft the Pole of the Ecliptick. And that this is fo, any one may plainly perceive if he
conifder the annexed Scheme, Fig. I. where let S reprefent the Sun placed as it were in the center of the PlanetaryOrbs, A B C D an imaginary Orb of the fixt Stars of the firft magnitude, whore center for demonftration fake we will fuppore the Sun. Let visins reprefent theOrb in which theEarth is \& ppofed to move about the Sun, obliquely projected on the Paper. Let reprefent the Earth in Capricorn, and so the Earth in Cancer, let 1 2. I 2. reprefent the imaginary Axis of the Earth, keeping continually a parallelifm to its felf, and let wAFCD so reprefent an imaginary Plain paffing through the center of the Star at D in the Solftitial Colure, and the two centers of the Earth in w^{2} and s, and C reprefent the Zenith point of Grefbam Colledge at noon, when the Earth is in Cancer, and A the Zenith point of the faid Colledge at midnight in the aforefaid Orb ABCD when the Earth is in Capricorn, 'tis manifeft therefore that fince the Poles of the Earth, the Poles of the Ecliptick, and the Zenith points of the Earth at noon, when in Cancer, and at midnight, when in Capricorn, are all in the fame Plain; and that the Axis of the Farth keeps alwayes its parallelifin, and that the Angles made by the Perpendiculars of Greflam Colledge, with the Axes are alwayes the fame, that the aforefaid Perpendiculars of the faid. Colledge thall be parallel alfo one to another, and confequently deno e ont two points in the abovefaid Orb A and C as far diftant from each other as the parallel Lines A wand C sare, and confequently the point A Thall be farther from the Star in D, and the poine C Thall be nearer to it, when in the Meridian near the Zenith of London, and confequently if the faid Star be obferved when in the Meridian of the place abovefaid, if there be any fuch difference confiderable, it may be found if convenient Inftruments and care be made ufe of for the obfervation thereof : and the difference between the Angle A w D, and the Angle $C=\mathrm{D}$, will give the parallaatical Angle vo D of the Orb of the Earth to the fixt Star D of the firf magnitude. The fame demonftration will hold mutatis musuandis, fuppofing the Star be not in the Meridian or Plain abovefaid, but in fome other Meridian, as any one upon well confidering the nature of the thing it felf may eafily prove, if the obfervation be made when the Zenith paftes by the Star at midnight, and at mid-
mid-day. But the nearer the Zenith of the place of obfervation paffeth to the Pole point of the Ecliptick, the betters The Angle of Parallax being ftill the more fenfible. Therefore the beft place to compleat this obfervation were in fome place under the Polar Circles, as in IJeland, where the Ze= nith of the place at the times abovefaid, muft confequently pafs at one time to the North fide of the Pole of the Ecliptick, and at the other on the South fide, and the Zenith of March and Sept. mult pafs through the very Pole-point it felf. Now it falling out fo, that there is no confiderable Star in that part of the Heavens nearer the above faid Plain, and nearer the Zenith poiat of Grefbam Colledge in that Plain, then the Bright Star in the head of the Dragon, I made choice of that Star for the object by which I defigned to make this obfervation, finding the Zenith point of Grefbam Colledge to pafs within fome very few minutes of the Star it felf; the declination thereof according to Riccioli being 51°. 36^{\prime}. $7^{\prime \prime}$. and the Plain the Star and Pole of the World, making an Angle with the aforefaid Plain but of $2^{\circ} .52 .36$, the right afcention thereof being according to Riccioli $267^{\circ} \cdot 7^{\circ} \cdot 24^{\prime \prime}$.

And that this may be made a little plainer, let us fuppore in the third Figare, the North part of the Heavens projected ftereographical upon a Plain to which the Axis is perpendicular. Let p reprefent the Pole, e the Pole of the Ecliptick, 1 the bright Star in the head of Draon, and let accc reprefent an imaginary Circle defcribed by the Zenith of Grefbam Colledge among the fixt Stars in Fune, and bddd a like Circle defcribed by the faid Zenith in December, and efff a like Circle defcribed as above in March, and ghh h in September. It is very evident that the true diftances of the Zeniths in that part of the Meridian which is next thePole of the Ecliptick, to wit; in the head of the Contellation Draco, fhall be to the true diflances of the faid Zeniths in that parc which is furtheft from the faid Po'e, to wit, near the conflellation of Auriga in confequentia, as the fign of 75 degreés to the fign of $14^{\circ} \cdot 54^{\prime}$, and the variation of the Zeniths, or the Angle of Parallax here at Grefham Celledge, to the Angle of Parallax in Ifeland, or any other place under the Pole of the Ecliptick, or Artick Circle is, as the fign of feventy five to the fign of ninety or the Radi-
us. This will be very evident if we confider in the fecond Scheme; AB to reprefent the Diameter of the grear Orb: AC and BD the perpendiculars of Jeland, or fome other place under the Polar Circle. GA, HB the perpendiculars of Grefbam Colledge in Draco: and LA, MB the perpendiculars of the fame place to the Soltitial Colure near Auriga, the feveral difances $\mathrm{CD}, \mathrm{GH}, \mathrm{IK}, \mathrm{LM}$, will be as the figns of $\rightarrow \mathrm{O}^{\circ} 175^{\circ}\left|66^{\circ}+30^{\prime}\right|$ $14^{\circ} \cdot 54^{\prime} \%$. to wit, as the Lines or Cords A B. A O. P B.QB.
[might have made oblervations of the diftances of the tranfits of our Zenith from any other Star as well as froms this of Draco, and the fame Phenomena inight have been obferved, taking care to make one of the obfervations when the Star is in the Zenith at midnight, and the other when the fame Star is in the Zenith at noon or mid-day; and upon this account when I next obferve, I defign to obferve the tranfits of our Zenith by Benenaim, or the ultima caude urfemajoris, it being a Star of the fecond magnitude, and having almoft as much declination as Grefbams Colledge hath latitude. The principal dayes of doing which will be about the 4 of Spril, when our Zenith paffeth by the faid Star at midnight, and the 7 of OCtober, when it pafferh by it at noon or mid-day: the reafon of all which will be fufficiently manifert to any one that flall well confider the preceeding explanation.

This Star I would the racher obferve, becaufe as it is placed fo as that the Parallax thereof will be almoft as great as of the Po'e of the Ecliptick in Ifeland, or under the Arrick Circle, fo it being a Star of the fecond magnitude, and confequently perhaps as near again as one of the fourth, the Angle of Parallax will be near about twice as big, and the Star it felf much more eafie to be feen in the day time. This will be very eafie to be underfood, if we confider in the firt Scheme the differing diftances of the Orb $A B C D$, in which we may fuppofe the Stars of the fecond magnitude to be fixt, and of the Orb a $B * \pi \Omega$, in which we may fuppofe the Stars of the fourth magnitude, and abcd in which we may fuppofe thofe of the third magnitude, and ABC D in which we may fuppofe thofe of the firft; for if the Stars are further and further remuved from the Sun, according as they appear lefs and lefs to us, the parallactical difference found by obfervation muft neceffarily
be lefs and lefs, according as the obfervation is made of lefs and lefs Stars.

The reafons then why I made choice of this way of obferving will be eafie to any one that fhall confider that hereby, firft, I avoid that grand inconvenience wherewith all ancient and modern obfervations have been perplext, and as to Parallax infignificant, and that is the refraction of the Air or Atnof phere. How great an inconvenience that was is obvious, fince 'tis certainly much greater at one time then another, ard never at any certainty; and fecondly, 'Tis not equally proportionable, for fometimes the refraction is greater at fome diffance above the Horizon, then in or nearer to the Horizon it felf, and fonetimes the quite contrary, which I lave very eften ckferved; and this to fo exorbitant a difference, as to confourd all Hy pothetical Calculations of Tables for this purpofe. This arifeth from the uncertain and fudden variations of the Air or Atmofphere, either from heat and cold, from the thicknefs and thinnefs of Vapours, from the differing gravity and levity, from the winds, currents, and eddyes thereof, all which being not fo we.l underfood by what way, and in what degree, and at what time they nork and operate upon the Air, muft needs wake the refraction thereof exceedingly perp'ext, and the reduction thereof to any certain theory fit for practice, a thing almoft impoffrble. Now if we are uncertain what part of the obferved Angle is to beafcrited to refraction, we are uncertain of the whole obfervation as far as the poffible uncertainty of refraction. Let me have but the liberty of fuppofing the refraction what I pleafe, and of fixing the proportional decreafe thereof according to the various elevation of the Rayes above the Horizon; I will with eare make out all the vifible Thenomena of the Univerfe, Sun, Noon, and Stars, and yet not fuppofe them above a.Lhameter of the Earth diftant. Now in this obfervation there is no refraction at all, and conifeçueritly te the Air thicker or thinner, heavier or lighter, botter or colder, be it in Summer or Winter, in the night or the day, the ray continually paffeth dirétly, and is not at all refracted and deffected from its ftreight paffage. In the next place, by this way of obferving I avoid all the difficulties that attend the making, mounting, and managing of great Inftruments: For I
have no need of Quadrant, Sextant, oı Octant, nor of any os ther part or Circle bigger then a Degree at moft; nor have I need to take care of the divifions and fubdivifions thereof, nor of the fubftance whether made of Iron, Brafs, Copper, or Wood, nor whether the parts thereof fhrink or fwell, or bend or warp, to all which the beft Inftuments hitherto made ufe of, have been foase wayes or other lyable. And notwithftanding the vaft.care and expence of the noble Ticho about the making, fixing, and ufing his great Inftruments; yet I do not find them fo well fecured from divers of thefe inconveniences, but that they were ftill fubject to fome confiderable irregularities. Nay, notwithftanding the feemingly much greater curiofity and expenfe of Hevelizu, and his infinite labour and diligence in the compleating and ufing of his vaft Apparatus of Aftronom cal Inftruments, I do not find them fo well fecured, but that fome of the caufes of errors that I have before merltioned, may have had a confiderable effect upon them alfo; efpecially if they were fuppofed to meafure an Angle to fome few Seconds, as I thall hereafter perhaps have more ocsafion tomanifeft. Now, if the Intruments of Ticho and Hevelius, (who had certainly two of the moft curious and magnificent Collections of Aftronomical InAruments that were ever yet got together or made ufe of) were fubject to thefe uncertain. ties, What fhall we fay of all that other farrage of trumpery that hath been made ufe of by moot others? We fee therefore the neceflity of the conjunction of Phyfical and Philorophical with Mechanical and Experimental Knowledge, how lamerand imperfect the ftudy of Art doth often prove without the conjunation of the ftudy of Nature, and upon what rational grounds it was that Sir Fohn Cutler, the Patron and Founder of this Lecture, proceeded in joyning the contemplation of them both together.

The next thing was the Inftrument for the making of this obfervation, fuchaoneas fhould not be lyable to any of the former exceptions, nor any other new ones that were conflide able. To this purpofe I pitched upon a Telefcope, the largeft 1 could get and make ufe of, which I defigned to to fix upright, as that looking direstly upwards, I could be able. certatnly to obferve the tranfits of any Stars over or near
the Zenith, and furnifhing it with perpendiculars and a convenient dividing Inftrument, I fhould be able not only to know exactly when the Star came to crofs the Meridian, but alfo how far it croffed it from the Center or Zenith point of Grefham Colledge, either towards the North, or towards the South. All which Particulars, how I performed, I fhall now in order defcribe, and this fomewhat the more diftinctly, that fuch as have a defire to do the like, may be the more ready and better inabled to proceed with the fame.

Firft then (finding a Tube would be very troublefome to the Rooms through which it paft, efpecially if it were p'aced pretty far in the Room, and that one wanted fo free an accefs as was neceffary if it were planted nigh the wall, and that there was no abfolute neceffity of fuch an intermediate Tübe, fuppofing there were a cell to direct the eye fixt to the Eye Glafs, and that there were fome fhort cell to carry the Object Glafs in at the top, fo as to keep it fteady, when raifed upward or let downwards, the light in the intermediate Rooms not at all hindring, but rather proving of good ufe to this purpofe for feeing the Menfurator) I opened a paffage of about a foot \{quare through the roof of my lodgings (fee the Fourth Figure) and therein fixt a Tube a a perpendicular and upright, of about ten or twelve foot in length, and a foot fquare, fo as that the lower end thereof came through the Ceiling, and was open into the Chamber underneath: This Tube I covered with a lid at the top q, houfed fo as to throw off the rain, and fo contrived, as I could eafily open or fhut it by a fuall fring no p, which came down through the Tube to the place where I obferved. Within this perpendicular Tube a a, I made another fmall fquare Tube b b, fit fo as to flide upwards and downwards, as there was occafion, and by the help of a skrew to be fixt in any place that was neceffary: Within this Tube in a convenient cell c, was fixt the Object Glafs of the Telefcope (that which I made ufe of was thirty fix foot in length, having none longer by me, but one of fixty foot, and fo too long to be made ufe of in my Rooms) the manner of fixing which was this: Tre Glafs it felf was fixed into a cell or frame of Brafs, fo exadly fitted to it, that it went in ftiff; and to fill up all the Interftitia's, there was melted in hard Cement ; this cell had a
fwall barr that croffed under the center of the Glafs, or the aperture thereof; in which barr weie drill'd two fimall holes at equal diftance from the middle of the Glais, thro gh which the upper ends of the two perpendiculars dd were faftned; and in the fixing this brafs cellor fame into the fquare Tube that was to flide up and down, care was taken to make the barr lye as exactly North and South as could be, though that were not altogether fo abfolutely neceffary to this obfervation. Thefe perpendiculars dd faftned to the barr hung 36 foot and better in length, and had at the lower ends of them two balls of lead ee as big as the Silks could bear, by which the loweft parts of this Intrument were adjufted, as I flall by and by explain. But firf, I muft acquaint the Reader, that I opened a fo perpendicularly under this Tubea hole rr a foot !quare in the floor below, which with hutters could be clofed or opened upon occafion; by this means I had a perpendicular Well-hole of about forty foot long, from the top of a to the lower floor ss. Upon the fecond floor ss I fixed the frame that carried the Eyeglars and the other Apparatus fit to make this obfervation. I made then a Stool or Table, fuch as is defcribed in the fame Fourth Figure i hhi, having a hole through the top or cover thereof $h \mathrm{~h}$, of about nine inches over; the middle of which I placed as near as I could perpendicularly under the middle of the Object Glars in the cell above, and then nailed the frame faft to the floor by the brackets i i, that it could not ftir ; underneath the cover of this Table I made a nlider $\mathrm{g} g$, in which was fixed in a cell an eye Glafs f, fo as that I could through the eye Glafs moved to and fro, fee any part of the hole in the Table that I defired, withous firring the ftool from its fixtnefs. This was neceffiary, becaufe many Stars which were forerunners of this Star in Draco, and ferved as warning to prepare for the approaching Siar, went pretty wide from the parallel that paffed over our Zenith; by this means alfo I took notice of the Star it felf, at above half a degree diftance from the Zenith to the Eaft, and fo followed the motion of it with my eye Glafs, and alfo with my meafuring Clew, and at the fame time told the Seconds beat by a Pendulum Clock, and fo was very well prepared to take notice of all things neceffary to compleat the obfervation, but might have been otherwife furprifed
prifed by the fuddain approach and fwift motion of the faid Star, The meafuring Infrument or Menfurator was a round thin plate or circle of Brafs, delineated in the Seventh Figure, the aperture ab of which was about nine inches over, crofled in the middle by two very fuall hairs $a b$ and $c d$, which ferved to fhew the Zenith point at e, by which the Star was to pafs; there were alfo two other fmall hairs fg and i h drawn parallel to that which was to reprefent the Eaft and Weft line, that paft under our 'Zenith, thefe cut the Clue that reprefented the Meridian, or North and South Line at the places k and 1 , where the perpendicular points were made by the two long plumb lines: This Inftrument was produced on the fide a to n, n e being made fifteen times the length of em , fo that $\mathrm{e} m$ being one inch and two thirds, en was twenty five inches: at n the line $n e$ was croft by a rule of about $3_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ foot long op, which from the point n was divided each way into inches and parts, each inch being fubdivided into thirty parts, which ferved to determine, though not precifely, the Seconds on the line cd, for a minute of a degree to a thirty fix foot Glars, being very neas one eighth part of an inch, and this eighth part, by the help of the Diagona!, being extended to two whole inches upon the three foot Rule op, it became very eafie to divide a part of cd , which fubtended a minute into fixty parts, and confequently to fubdivide it into Seconds. Now though the fixtio eth part of an eighth of an inch be very hardly diftinguiflable by the naked eye, yet by the help of looking through the Eyeglafs placed in the cell, and fo magnifying the Objects at the Menfurator more then fixteen times, 'tis eafie enough to diftinguifh it. But to proceed, I had one fnall arm $m t$ in the Menfurator, to which the Diagonal thred was faftned at the point m , which ferved for the more nice fubdivifions into Seconds; The other Diagoral thred which was faftned at u, ferved for fuch obfervations where fo great nicenefs was not fo neceffary, diftinguifhing only every four Seconds. The points where thefe Diagonal threds were faftned, were exactly over the line a b, and the diftances em and eu were an inch and two thirds, and five inches.

There is fomewhat of nicenefs requifite to the fixing thefe Diagonal threads (which is very material) at mand u, and that
is that there be a fmall foringing flit to pinch the hair faft exactly over the line $a b$, fo that the point of its motion may be precifely in the faid Eaft and Weft line, and not fometimes in it, and fometimes out of it, which it is apt to be, if the Diagonal line be fixt in a hole, and move round in it.

This was the Menfurator by which I meafured the exact difrance of the Stars from our Zenith: it may be alfo made ufe of for the meafuring the Diameters of the Planetsfor the examining the exact diftances of them from any near approaching fixtStars; for meafuring the diftances of the Satellites of fupiter and Saturn from their difcks, for taking the diameters and magnitudes of the fiors of the Moon, and for taking the dißances of approaching Stars, and for many other menfurations made by Telefcopes or Microfcopes, if it be fo placed as to be in the focus of the Object Glafs and Eye Glafs. I could here defcribe at leaft thirty other forts, fome by the help of fcrews, others by the help of wedges, fome after the way of proportionalCompaffes, others by wheels, others by the way of the Leaver, others by the way of Pullies, and the like; any cne of which is accurate enough to divide an inch into $100,1000,10000$ parts if it be neceffary; but I muft here omit them, they being more proper in another place, and fhall only name one other, becaufe I fometimes made ufe of it in this obfervation, which is as fimple and plain as this I have defcribed, and altogether as accurate; but for fome accidental circumftances in the place where I made my obfervation, was not altoget her fo convenient as the former. This Menfurator then is made thus: take a Rule of what length it feemsmoft convenient for the prefent occafion, as two, three, or four foot long, reprefented by ab in the Eighth Figure, divide this into $100,1000,10000$ equal parts ${ }_{3}$ with what accuratenefs'tis poffible,tetween the points ab. On the top of this Rule, at each end fix two crofs pieces gh and ef, then from the two crofs pieces ef and $g h$, ftrain two very fine and even clues, as Silkworms clues, curious finall siairs, or the like, fo as that they crofs each other at n , and be diftant at o and p, an inch, or any other certain meafure defired. Let this Rule, bezelled on each fide, flip in a frame between two cheeks q and r, upon the top of which ftrein another finall hair as $\mathrm{s} t$. This frame muft be faftned to the Te -
lefcope,
lefcope, fo as st may lye in a due pofition to the Eye Glafs of it. Now in the time of obfervation the frame $q \mathrm{r}$ being fattned to the Telefcope as above, by nliding the Rule ab to and fro, you give upon the line st any length defired, which is noted out by the line st upon the rule; for if o p be put one inch, then xy will be $\frac{924}{1000}$ of an inch, and if op be the fubtenfe of ro minutes, then $x y$ will be the fublenfe of 494 ; this is fo plain, fimple, and cafie, that as any ordinary Workman will be able to make it, fo I doubt not but every Reader wilh, without more application, underfand both the defcription and ufe thereof. If fhall return therefore to the defcription of the former Menfurator.

The next thing then is the way of fixing this Menfurator, fo as to fet the threads in their due pofture, that is Eaft and Weft, and North and South; and that they cut each other under the middle of the Glafs. This laft was that which had the moft of difficulty in the whole Experiment. For the performing of this, I removed the flider underneath the Table that carried the Eye Glafs, and alro the Menfurator, and fuffered the plumb lines to hang down throngh the apetture of the Table, and that the Balls might come the fooner to their perpendicularity, I fuffered them to hang into a veffel of water, deep and wide enough, that they might not touch either fide or bottom.

This expedient of hanging the plumbats in water I mention, becaufe without it 'tis not to be imagined how much time is loft by expectation of the fettlement of the faid perpendiculars, and how very apt they are to be made to vibrate by the little imperceptible motion of the Air, and by any finall hair or other impediment how apt to be fut out of their perpendicularity: which by the way makes me very fearful that all common Inftruments have hitherto been lyable to very great errors, by the unaccurate hanging of their plumb lines, being made for the moft part to hang and play againft the fide of the Inftrument. By this means they would foon come to hang perpendicularly, and be fo detained when in that pofture; not being apt to be ftirred by the motion of the Air, or theip own fwing; and whilft thus fteady, I fixed two finall arms of Braf, fuch as are defcribed in the Seventh Figure by $z z, z z$, which had fmall holes at the extreams, with a fimall flit on the fide to admit
admis or enit the plumb line as there was accafion; one of there is more at large defcribed in the Sixth Figure. Now the plumb line being let into the middle of this, I did with all the accuratenets I couid fo fix the faid arin, that the plumb line palt exadly through the middle of the hole y. When I was fufficiently fatisfied that the plumbline paft exactly through the middle of the try ing arms, I fixed thofe arms $z z, z z$, and removed the plumb lines, then I laid the Menfurator 11 in the Fourth Figure, upon the furface of the Table, and took great care that the croffes k and 1 in the Seventh Figure, lay exactly under the middle of the holes in the arms, which having done by the help of certain fcrews, I fixt the Menfurator falt to the Table, and prepared for the obfervations, putting in the lider gg in the Fourth Figure, that carried the cell f, and lying down upona Couch (k of the Fourth Figure) nade purpofely for this obfervation, I could look direetly upward, and with my left hand move the Cell and Eye Glafs fo as to find any Star which paffed within the hole of the Table, and at the fame time with my right hand I could move the Diagonal thread (r mof the Seventh Figure) ro as to find exactly how far diftant from the Zenith e, either Northwards or Southwards, the Stars paft the Meridian dc, and giving notice to my Affiftant to prepare, he upon the fign given took notice exadtly by a Pendulun Clock to the parts of a second when the faid Stars palt, and alfo took notice what divifion the Diagonal thread mr cut upon the Rule op.

With all there difficulties I was forced to adjuft the Inffrument every obfervation I made, both before and after it was made, which hath often made me wifh that I were near fome great and folid Tower, or fome great Rock or deep well, that ro I might fix all things at once, and not be troubled continually thus to adjuft the parts of the faid Inflrument; for whoever hath that opportunity will, I queftion not, efpecially if the lines of his Menfurator be made of the fingle clues of a Silkworm, with inuch eafe difcover plainly a change of the diftance of Stars of the gieater magnitude from the Zenith, in a much fhorter time then fix moneths. This variation alfo will be much more eafie to be difcovered, if inftead of a thirty fix foot Glafs, there be made ufe of one of four times that length,
length, to wit, one of one hundred fourty four foot; and if inftead of a Tower fome deep and dry Well be made ufe of, fuch as I have feen at a Gentlemans houfe not far from Banfed Donrns in Surry, which is dugg through a body of chalk, and is near three hundred and fixty foot deep, and yet dry alinoft to the very bottom: For fuch a one is much lefs fubject to any kind of alceration, either from the fettling towards this or that fide, which moft Towers and high Buildings, whether new or old, are lyable to: This alfo is fafe from bending and fhaking with the wind, which 1 find the ftronget Houres, Towers, and Walls, if of any confiderable height, are apt to do, nor would the wind have any power to fwerve the perpendiculars, which 'tis almoft impoffible to prevent in high Buildings above ground. But this I can only wifh it were performed, but cannot hope to have any opportunity of Doing it my felf. But certainly the difcovery of the oblervation will abundantly recompenfe thofe that have the curiofity to make it.

Having thus refolved upon the way, and prepared the InAtruments fit for the obfervation, I began to obferve the Tranfits of the bright Star in the head of Draco; and alwayes both before and after the obfervation, I adjufted the Menfurator by the Perpendiculars, that I might be the more cerrain of the exactnefs of the Inftrument; for I often found that when I came to examine the Inftrument, a day, or two, or three, or more, after a former obfervation, that there had keen wrought a confiderable change in the Perpendiculars, in fo much as to vary above a minute from the place where I left them, which I afcribe chiefly to the warping of the Tube that rofe above the roof of the Houfe, finding fenfibly that a warm day woud bend it confiderably towards the South, and that a moift Air would make it bend from the quarter of the wind: But yet I am apt to think there might be fomewhat alfo of that variation afcribable to the whole Fabrick of the Roof, and porfibly alfo to fome variation of the Floors; but vet I never found thefe variations fo fudden, as to be perceptible in the time of a fingle obfervation, finding alwayts the preceding and fubrequent adjuftings to anfwer.

The firf obfervation I made was the Sixth of July, 5669 . when I obferved the bright Star of Drace to pafs the Meridian Northwards

Northwards of the Zenith point of the Menfurator, at about two Minutes and twelve Seconds.

The fecond obfervation I made was upon the Ninth of fuly following, when I found it to pafs to the Northwards of the faid Zenith or crofs of the Menfurator, near about the fame place, not fenfibly differing.

The third obfervation I made upon the Sixth of Auguft following; then I obferved its tranfitus North of the aforefaid Zenith, to be about two Minutes and fix Seconds.

The laft obfervation I made upon the One and twentieth of October following, when I obferved it to pals to the Northof the Zenith, at one Minute and about 4 S or 50 Seconds.

Inconvenient weather and great indifpofition in my health, hindred me from proceeding any further with the obfervation that time, which hath been no fmall trouble to me, having an extraordinary defire to have made other obfervations with much more accuratenefs then I was able to make there, having fince found feveral inconveniencies in my Inftruments, which I have now regulated.

Whether this Zenith fo found out upon the Menfurator, be the true Zenith of Grefbans Colledge, is not in this inquiry very material (though that alfo I defigned to examine, had not an unhappy accident broken my Object Glafs before I could compleat the obfervation) for whether it were, or were not, it is certain that it al wayes had the fame pofition to the true Zenith, the Object Glafs and Perpendiculars having not been in all that time removed out of the Cell, whence if the faid Object Glafs were thicker upon one fide then upon the other (which is very common and very feldome otherwife) and confequently defleCed the ray towards the thicker fide, and fo made the Perpendicular of the Menfurator to lye on that fide of the true Perpendicular, that the thicker fide of the Objeet Glafs refpected, yet it being alwayes fo if the tranfitus of the Star varied from this falfe Perpendicular, it muft alfo vary from the true one. The manner how I defigned to examine and find out the true Perpendicular, is this, which is the way alfo of adjufting of Telefcopical fights, as I thall afterwards have orcafion to thew. Having marked the four fides of the Glafs, the North with N, the Eaft with E, the South withS, and the Weft with W, about the firft
of fune I begin to obferve and meafure the true diftance of fone remarkablefixt Star, as of this of Draco from the Zenith found one night when the fide N of the Glafs ftood North. Then I change the fide of the Object Glafs, and put the North fide Southwards, and the South, Northwards, and oblerve the Tranfitus of the fame Star the next nighr, and note down the fame; the third night following I put the Eaft fide or E North, and obferve the tranfit of the fame Star over the Meridian; and the fourth night I put the Weft fide or W North, and obferve the tranfit of the faid Star. Now by comparing all thefe together, it will be very eafie to deduce what the falfe refiaction of the Object Glafs is, and which way it lyes, and confequently to regulate the apparent Zenith by the true one. But this only by the by.
'Tis manifeft then by the obfervations of July the Sixth and Ninth: and that of the One and twentieth of OCtober, that there is a fenfible parallax of the EarchsOrb to the fixt Star in the head of Draco, and confequently a confirmation of the Copernican Syftem againft the Ptolomaick and Tichonick.

Before I leave this Difcourre, I mult not forget to take notice of fome things whichare very remarkable in the laft obfervation made upon the 2 I of OCtober. And thofe were thefe. Firft, that about 17 minutes after tirree a-clock the fame day, the Sun being then a good way above the Horizon, and Thining very clear into the Room where I lay to obferve, and having nothing to fcreen off the rayes of light, either in the Room where I was, or in the next Room through which I looked, I obferved the bright Star in the Dragons head to pafs by the Z.enith as diftinctly and clearly as if theSun had been fet, though I muft confefs it had loft much of the glaring brighenefs and magnitude it was wont to have in the night, and its concomitants were vanifht: The like I found it divers other dayes before, when I obferved it, the Sun fhining very cleer into both the aforefaid Roons, which by the way I fuppofe was the firft time that the fixt Stars were feen when the Sun fhin'd very bright, without any obfcuring of its light by Eclipfe or otherwife. And though we have a great tradition that the Stars may be feen with the naked eye out of a very deep Well or Mine in the day, yer I judge it imponfible, and to have been a meer fiction, without any ground: For the being placed at the bottom of a Well doth not at all take away the light of the Atmo. fphere from affecting the eye in and near the Axis of vifion, though
indeed the fides thereof may much take off the lateral rayes; but unlefs the radiation of the falfe rayes of the Star be brighter then that of the Air, the true rayes from the body are fo very fimall, that'tis impofible the naked eye fhould ever be affected by then. For in the fecond place, by this obfervation of the Star in the day time when the Sun fhined, with my 36 foor Glafs I found the body of the Star fo very fmall, that it was but fome few thirds in Diameter, all the fpurious rayes that do beard it in the night being cleerly fhaved away, and the naked body thereof left a very fimall white point.

The finalnefs of this body thus difcovered does very fully anfwer a grand objection alledged by divers of the great Anti-copernicans with great vehemency and infulting; amonglt which we may reckon Riccioles and Tacquet, who would fain make the apparent Diameters of the Stars fobig, as that the body of the Star fhould contain the great Orb many times, which would indeed fwell the Stars to a magnitude vaftly bigger then the Sun, thereby hoping to make it feem fo improbable, as to be rejected by all parties. But they that thall by this means examine the Diameter of the fixt Stars, will find them fo very finall, that according to thefe difiances and Parallax they will not much differ in magnitude from the body of the Sun, fome of them proving bigger, but others p oving lefs; for the Diameter of the parallactical Circle among the fixt Stars, feems to exceed the Diameter of the Star almoft as much as the Diameter of the annual Orb of the Earth doth that of the Sun. And poffibly longer and better Telefcopes will yet much dimiwifh the apparent bulk of the Star's by bringing fewer falfe rayes to the eye that are the occafion of the glaring and magnifying of the faid bodies. It may for the prefent fuffice to fhew that even with this Glafs we find the Diameter of this Star confiderably fmaller then a Second, and the Parallax we judge may be about 27 or 30 Seconds. It will not therefore be difficult to find many Stars whofe Diameters fhall be lefs then a two hundredth part of this Parallax, as pomb'y upon more accurate obfervation this very Star may be found to be. Now we find that the Diameter of the Orb of the Earth is but two hundred times bigger then the Diameter of the Sun in the Center thereof; and therefore if the parallacical difference be found to be two hundred times more then the vifible Diameter of the Star, the Star will prove but of the fame magnitude with the Sun.

This

This Difcovery of the porfibility and facility of feeing the foxt Stars in the day time wher the Sun fhines, as I think it is the firft inftance that hath been given of this kind, fo I judge it will be a difcovery of great ufe for the perfecting Aftronomy; as firft , for the rectifying the true place of the Sun in the Ecliptick at any time of the year; for fince by this means 'tis eafie to find any Star of the firft, fecond, or third magnitude at any time of the day, if it be above the Horizon, and not too near the body of the Sun: And fince by a way I thall fhortly publifh any Angle to a Semicircle in the Heavens, may be taken to the exactneifs of a Second by one fingle obfervator: It will not be difficult for filture Obfervators to rectifie the apparent place of the Eun amongh the fixt Stars to a Second, or very near, which is one hundred times greater accuratenefs, then has hitserto been attained by the beft Aftronomers. The like ufe there may be uade of it for obferving any notable appulfe of the D, ψ, \hbar, δ, and 9 , to any notable fixt Star that fhall happen in the day time, which may ferve for difcovering their true places and parallaxes. The Refractions alfo of the Air in the day time may by this neans be experimentally detected.

I hould have here defcribed fome Clocks and Time-keepers of great ufe, nay abfolute neceffity in thefe and many other Aftronomical obfervations, but that I referve them for fome attempts that are hereafter to follow, about the various wayes I have tryed, not without good fuccefs of improving Clocks and Watches, and adapting them for various ufes, as for accurating Aftronomy, compleating the Tables of the fixt Stars to Seconds, difcovery of Longitude, regulating Navigation and Geography, detecting the proprieties and effects of motions for promoting fecret and fwift conveyance and correfpondence, and many other confiderable fcrutinies of nature: And thall only for the prefent hint that I have in fome of my foregoing obfervations difcovered fome new Motions even in the Earth it felf, which perhaps were not dreamt of before, which I thall hereafter more at large defcribe, when further tryals have more fully confirmed and compleated thefe beginings. At which time alfol fhall explain a Syftem of the World differing in many particulars from any yet known, anfwering inall things to the common Rutes of Mechanical Motions: This depends upon three Suppofitions. Firf, That all Cœleftial Bodies whatfoever, have an attradion or gra-
vitating power cowards their own Centers, whereby they attrad not only their own parts, and keep them from flying from them, as we nay obferve the Earth to do, but that they do alfo attract all the other Coleftial Bodies that are within the fphere of their activity; and confequently that not only the Sun and Moon have an influence upon the body and motion of the Earth, and the Earth upon them, but that ${ }^{\text {q alfo }} 8,8,5$, and 4 by their attractive powers, have a confiderable influence upon its motion as in the faine manner the correfponding attractive power of the Earth hath a confiderable influence upon every one of their motions alfo. The fecond fuppofition is this, That all bodies whatfoever that are put into a direct and fimple motion, will fo continue to move forward in a freight line, till they are by fome other effectual powers defleded and bent into a Motion, deferibing a Circle, Ellipfis, or fome other more compounded Curve Line. The third fuppofition is, That thefe atcractive powers are fomuch the more powerful in operating, by how much the nearer the body wrought upon is to their own Centers. Now what thefe feveral degrees are I have not yet experimentally veritied; but it is a notion, which if fully profecuted as it ought to be, will mightily affit the Aftronomer to reduce all the ColeftialMotions to a certain rule, which I doubt will never be done true withour it. He that underftands the nature of the Circular Pendulum and Circular Motion, will eafily underfand the whole ground of this Principle, and will know where to find direction in Nature for the true ftating thereof. This I only hint at prefent to fuch as have ability and opportunity of profecuting this Inquiry, and are not wanting of Induftry for obferving and calculating, wifhing heartily fuch may be found, having my felf many other things in hand which 1 would firft compleat and therefore cannot fo well attend it. But this I durf promife the Undertaker, that he will find all the great Motions of the World to be influenced by this Principle, and that the true underfanding thereof will be the true perfection of Aftronomy.

LONDON,

Printed for Fobn Martyn, Printer to the Royal Society. 1674.

ANIMADVERSIONS

On the firft part of the

MACHINA COELESTIS

Of the Honourable,Leamed, and defervedly Famous
Aftronomer
FOHANNES HEVELIUS CONSULOF
DANTZICK;
Together with an Explication of fome
instruments
MADE BY
ROBERT HOOKE, Profeffor of Geometry in Grefbam College, and Fellow of the Royal Society.

$$
L O N D O N \text {, }
$$

Printed by T.R, for fobn Martyn Printer to the Royal Society, at the Bell in St.Pauls Church-yard. 1674°

THE

CONTENTS.

THe Reafon of the prefent Animadverfions.
page r. How far Hevelius has proceeded. That bis Inftruments do not much exceed Ticho. The bignefs, Sights and Dio vifions, not oonfiderably differing. Ticho not ignorant of bis new wasy of Divijion.

$$
\text { p. } 2 .
$$

Proved by feveral paffages out of his Works. p.3,4*
That Jo great curriofity as Hevelius firives for is needlefs without the ufe of Telefcopical Sights, the power of the naked eye being limited. That no one part of an Inglrumest fbould be more porfoit then another.
p.4,5.

Hevelius his Letter of 1665 . with his opinion of Telefcopical Sights.

$$
\text { p. } 5,6 \text {. }
$$

That if Hevelius could bave been prevail'd on by the Author to bave ufed Telefcope Sights, bis Obfervations might have been 40 times more exact then they are.
p.6,7.

That Hevelius bis Objections againft Telefope Sights are of no validity; but that Sights mithout Telefoopes cannot diftinguiba lefs Angle thenhalf a Minute.
p. 7.

That an Inftrument of 3 foot Radius with Telefcopes, will do more then one of 3 fore foot Radius with common Sights, the eye being unable to difinguijb. This is proved by the undifcernablenefs of Spots in the Moon, and by an Expervment with Lines on a paper, by wobich a Standard is made of the poweer of the eye. p.8.

That it had been much to be wijbt that Ticho and Hevelius bad, and that Objervators for the future would, well confider this.

The Contents.

That Altitudes of the Sun and fome of the Moon may have been taken to greater exactnefs, but fill Joort of what may be done with Telef copes.
ibid.
The Author's Engagement for defcribing an Inftrument more perfect in 7 particulars.

A more particular Examination of Hevelius bis Inftruments, and firft of bisforf $\operatorname{lnffrument}$, being a brafs $Q_{\text {Qudrant. Hevelius }}$ having a very, great averfion to Glafs. Sights, ufed commons. P. I I .

Tookgreat pains in the dividing it himjelf.
p.I2.

Of which be might have (pared almof $f \frac{\text { EO }}{01}$, if he had known eisher the firft way of Diagonal Divifions, diefcribed in p. 12,13. or the fecond rpay defcribed and exemplificd.
p.14, 15 .

Some inconveniences in the Contrivances about bis firfilnfirument.
p. 16.
A Defcription of bis fecond, third, fourth, fifth, and fixth Infruments, and Sonse of their conveniences and inconveniences noted.
p.16,17.

Hevelius wholiy rejecting all woodden Inftruments, made better of Erafs and lron.
p.is.

That notwithfanding there may be a good ufe made of Wood for the material of Inftruments. Proved by the Experiment of an Inftrumint made long fince br Sr. Ch. Wren. ibid.

Hevelius bis Reafon for rejecting the ufe of wood-Infiruments, not without fome exceptions. p.19.

Animadverfions on the Defoription of three fmaller metalline Infiruments, one of 24 , a fecond of 18 , and a third of 12 inches, and particularly about the new way of Divifion, which be aforibes to Benediđus Hedreus.
p. 20.

That Hevelius nons mifaken in fuppofing Hedreus bis way more aapable of Demonftration then Ticho's by Diagonals. p. 2 I .

Ticho Brahe's Calculation of the quantity of Argles, made by Diagonals and equidiftant parallel Circles. p21,22.

- I is ftrange that Ticho and Hevelius Jbould not think of putting the parallel Circles at unequal Diftances.
ibid.
How to calculate, and what thofe unequal Difancesare.p. 23.
Dr. Wallis bis Letter to Hevelius about the fame Subject, rherein that Doctrine is largely and fully handled.p. 23, 24,25,26

The Diagonal Divjifons more eaffe to be fecn then thofe of Hedreus or Nonnius. Ticho's Defoription of Nonnius his wasy of Divifion. P. 27.

Hevelius

The Contents.

Hevelius bis Defcription of the way of Hedreus.
p. 28.

That this way of Hedreus is subject to great inequalities, prored by the Divisions on the Plate T. of Hevelius his Book. A practicable way of enlarging the small Divifions. p.29.

That Hedreus was not the firft inventer of this way of Divisor, but Pierre Vernier was before him.

A second, third, and fourth Objection arainft this way of $D i-$ vifions, drawn from a Supposed unequal poise of the Plumb-Rule, caused by its unequal make or duff, or from the unpracticable way of hanging it either on a faller or bigger Pin or Hole. ibid.

Hevelius bisinvention for feadying the $Q^{\text {Quadrant ingenious, }}$ but the convertible Frame more eafle for use.
p. 3 ז.

Some Remarks in the Description of bis large braß Quadrant, wherewith be took many Meridian Altitudes of the Sun. ibid.

A new way hinted for making a Table of the fixed Stars, and regulating their places, by the help of a Mural Quadrant, Some parts whereof are deforibed as the may of Dividing, and of the Sights, and of poyjing the Tube and ObJervator, and of keeping the Tube from bending, \&c.

Some Difficulties therein saw obviated, and Some Objections answer'd ibid.
That this Subject deserves to be better enquired into, and to be promoted by forme Prince.
p.34-

Some Animadversions on the Description of Hevelius his large Quadrant of Braß. That the Inftrument is good in its kind, but yet far Short of wobat it might have been, if Glades had been used for the Sights.

How very fall Seconds are even upon large Infiruments, and bow uncertain the Penumbra of the Sun's light is, contrary to the general Principles of Optical Writers, being fometimesbigger, Sometimes le β, according to the fmalnefs and bigness of the bole through which it is trajeited.

$$
\text { p. } 35 .
$$

The curiosity of this linftrument further expreft by Hevelius, in the multitude of its parts and Contrivances, in the proper Curret for it, in the make and great use of Screws, for mowing, fixing and dividing the Quadrant.

$$
\text { p. } 36 .
$$

Some Objections and Emendations propounded, and a Conclus firn on the roble $\operatorname{lnftrument}$ and Apparatus. p.36,37.

Some Aximadverfons on the large Sextant, and the way of

The Contents.

ning it, and on the difficulty acknowledg'd of taking Stars Di-乃axces from the Moon and Sun, and a way promifed of doing them with more cafe.
p. 38.

The feerning difficulty and even impoffibility of taking 8 feveral Difances in the Heavens, without failing one Second, and the reafor why's is more likely that there could not be a greater certain$t y$ then of 4 Minutes in the whole.
ibid.
Hevelius bis Letter concerning my Animadverfions, and about Telefcopical Sights.

$$
\text { p. } 39,40,41 \text {. }
$$

An Answer to it.
p.4I,42,43.

A Conclufion of the Animadverfions. That the learn'd World is oblig'd to Hevelius for robat be bath done, but noould bave been more, if he bad ufed other Inffruments.
p.43,44.

That the Animadvertor bath contrived fome hundreds of $1 n$ Aruments, each of very great accuratenefs for taking Angles, Levels, \&c. and a particular Arithmetical inftrument for performing all Opcrations in Arithmetick, with the greateft eafe, fwiftnefs and certainty imaginable.

That the Reader may be the more certain of this, the Autbor defcribes an Ingtrument for taking Angles in the Heavens, whole perfection more then common conjats, I. In the manifefting of the Sights. 2. In the Divifons. 3. In the reflective conftruition of the Sights. 4. In its exait Pcrpendicularity. 5. In itsfixation and motion fit for Obfervations. 6. In its facility for make; and 7. In its cheapne/s.
p. 45,46.

An Explication of the make and fingular conveniences of the fe new Sights.
P.46;47,48.

An Explication of the new way of Dividing, and the great advantages of it above others.
p. $48,49,50$.

Made more eafie by the Explication of the Delineation in the 1,2,3,4,5,6, 8,9,10, and IIth. Figures, exprefing the Frame, bollow Center, Moveable arm, Screw-Frame, and Screw for the Divifions. The Obliquity of it to the Plain of the Quadrant, and the reafon thereof.
p51,52.
The way of certainly determining the Obliquity, and the refolving the whole Quadrant thereby into one grand Diagonal, and the magnifying thercof in a duple, triple, decuple, \&ic. Proo portion.

Then follows a more particular Defaription of the Screwn. Frame,

The Contents.

Frame, its Collers, Centers, Screws, Handles, Indices, Pinnion, Divifions, \&c.
p.53.54.

Hoos by thefe Indices is pointed out the Meajure of the angle, in Degrees, Minutes, Seconds, \&cc.
p. 55.

The great advantage of thefe new mays of ordering Sights taken notice of.
ibid.
And the whole Contrivance more particularly deforibed. p. 56.
And explaind by a Delineation, and the manner bow they are applicable to a Quadrant or other inftrument. p.57.

How they are made wfe of for taking an angle bigger then a Quadrant, is farther deforibed, and made mere intelligible by a Delineation.
p. 58.

The roay of adjufting the two fist Sights, fo as to look formards and backwards exactly in a right Line, and how to adjuft and fix the Sight-Threads in the Tubes, with the reafon thereof. P.59,60.

A Defription of the Water Level, for fetting the Inftrument exactly Horizontal. Some Difficulties, and the may of preventing thempropofed.
p. $61,62$.

This lngtrument farther explain'd by a Delineation, and the reafon of its accuratene/s manifefted. p.63.

Some Difficulties about the make of the Glaffes for thefe Levels, aiad Jome Expedientspropounded, together with other ways and forms of Levels.
p.64,65.

After the Difficulties of Obfervations made the old ways are taken notice of, follows the Defcription of a new Method of mov. ing and fixing Inftruments for Objervations, fo as to prevent and obviate them.
p.66,67,68.

This is made more plain by aDelineation and Explicationop.69.
When the Circular Pendulum sras firft invented and publijbt.
p.69,70.

Here by the sway is publifbed a Defcription of Wheel work, which may be called the perfection of Wheel-work, baving the perfecteft ldea that toothed Wheel-woork is capable of, performing the fanse effect as if the Wheel and Pinnion had an indefinive number of Teeth.

$$
\mathrm{p} \cdot 70,7 \mathrm{r}
$$

A farther Explanation of the Pole or Consasl bole of the axis.

$$
\text { p. } 72
$$

A Defoription of the Frame for keeping the Infrument in its Perpendicularity, and yet almays in the azimuth of the celeftial

SOME

ANIMADVERSIONS

 On the firft Part of
HEVELIVS

His MACHINA COELESTIS, \&c.

園A V IN G lately perufed a Difcourfe of Hevelims, newly publifhed, entituled, ${ }_{2}$ Johannis HeveliiMachina Caeleftis, pars prior Organographiam free infirumentoram Aftronomicorum omnium quibus Autor bactenw fodera rimatus o dimenfus eft accuratam delineationem of deforiptionem, plurimis Iconibus ari incijes illuffratam \& exornatam espbibens, \&c. and finding it a Difcourre about practical and mechanical Knowledge, and of that kind wherein Geometry feems to be more then ordinarily concerned; I thought it might not be ungrateful to my Auditory, (nor improper to the Subject of Sr.JOHN CUTLER's Lecture, which is partly Mechanical and partly Phyfical) to confider a little the Contents thereof : And fomewhat the rather too, becaufe having heretofore communicated to him fomewhat of this SnbjeCt, which I had occafion to read in this place in one of my former CUTLER1AN Lectures, I find he hath made fome Animadverfions and reflections thereupon.

I find then that this excellent Perion hath been for the moft part exceedingly circumfpect, to find out the inconveniences and difficulties that do accrew to the beft Obfervators, even with the beft intruments, and has net been lefs induftrious to find out ways to obviate and overcome them; In the doing of which, he feems not to have fpared either for labour and vigilancy, or for any coll and charges that might eifect his purpore, for which he hath highly merited the encen ofall foch as are lovers of that Science: But yet if he had profecuted that way of improving Aftronomical infruments, which 1 long fince communicated to him, Iam of opinion he would have done himielf and the learned World a much greater picce of fervice, by faving him lelfmore thes $\frac{1}{10}$ of the charge and trouble, and by publifhing a Catalogue ten times more accurate. For though I doubt not in the lealt but that he hath by his own extraordinary diligence, care and coft, corrected feveral miftakes anderrors committed by the afiftants of the Noble Ticho: yet I am not fat isfied that his Inftruments are capable of making Obfervations more accurately then thofe of $\mathrm{l}^{\prime} i \mathrm{ch}_{\mathrm{h}}$, though'tis poffible they may do it with fomewhat lefs trouble and inconvenience. Forfirt, I find that thofe of Ticho were as large as thofe of Hevelius, and confequently were capable of as accurate and minute divifions, and of as .ong and convenient Sights. Secondly, I find that the Sights made ufe of by Herodius are the very fame, at leaft not at all materially differing from thofe of Ticho, being only naked Sights, made by a flit and edge, ferving only to regulate the direction of the naked eye, but no ways capable of affifting the eye to diftinguifh more accurately the objee. Thirdly, If find that though the way of Divifion made ure of by Hevelius, be a very ingenious invention, and that which is Geometrically true and certain, yet if we confider the great difficulty there is in Mechanically performing it, we thall find it not much preferrable, if altogether as good as that of Ticho. And 'tis plain enough that Ticho himfelf was not ignorant of it, though his particular reafons why he made no more ufe of it, we certainly know not: 'Tis very probable, becaufe he tho ught it not altogether fo accurate, as that he did make ufe of. For fomewhat to this purpofe he fays himitlf, in the fecond Book of his Obfervations of the Comet of
1577. pâg. 461 Hanc gradsum in firguia minusa, meaning the Divifion by Diagonal Lines; © etiam horum in dena forupu.a fecunda fubdivifionem in omnibus meis machinis Aferonomicis ujurpo, eo quodillama mult is ab binc annis exquifitififimams expertus fum. Licet enim cjus demonftratio in Rectiline is parallelogrammis pro prie conveniat, nibilominus arcualibus etiam in tam exili interffitio quod i recta linea infenfibiliter differt, citra omne erreris vetezzum convenienter applicatur. 'Tis true, Ticho's ObjeCtion againft this way of Divifion by Diagonals is material, as to a Ge ometrical accuratenefs, but his Anfwer to it is alcogether as material, that thoughit be not exactly true, yet it doth infensbiliter differre, and fo long as the error is not difcovered by fenfe, there can be no errur committed in obfervation; and indeed the whole matter both one way and the other is infignificant, and but a vain curiofity to endeavour to divide an inftrument into feconds, or parts fmaller then a minute, for 1 hall by and by thew that the eye can hardly diftinguith minutes in the objed: But were fuch nicenefs of Divifion of any ufe, 'tis eafily enough to be done to Mathematical truth; for as I fhall anon fhew, there is a certain diftance of each of the parallel Circles, which being given, the ftraight Diagonal Lines will divide the degree, by the interfection with thofe parallel Cirales, into exactly equal parts, which would have better anfwer'd Ticho's Objection, had he known it, which 1 wonder, 1 confefs, how he could over-fee, fince he feems to have fipent many thoughts on the matter; but this only by the By, becaure I hall fpeak more at large of it afterwards. But he proceeds to this other way of Divifions, which he, as well as Hevelius, afcribes to Nonnius, whereas the other that he approves of came firt from England, as it appears by a paffage in another Book of his, where he difcourfes fomewhat of the fame Subject.

Altera Divifio ad clarifimi Mathematici Petri Nonnii in Libello de crepufculis propofitione tertia imitationem per plures quadrantis arcus introrfum defcriptos, \& diverfimode jubdivijos pricedit; etfíautem in bac ipfa apprime ingenzofa Nonnii inventione aliquid Auctuarii loco expeditius is abbis additum eft, itaut exiterior arcus in plurimas partiunculas dividatur, neq; is ordos aut nsmeres archum fefe introrfum concomitantium quem ille prafinivit

Sed multo expeditior of perfection ob fervetur ; (I am apt to think he knew this very way, and here hinis it:) Tamsen quia hae fubtilitas cum ad praxin deventum eft plus babeat laboris quam fruEtus, neque id in receefu, praffet quod prima frontepollicet ur, wt alibi plenius oftendemus, idicirco apud nos dudum in ufou effe defiit. From which words, and alfo from what he fays in his firf Book of the new Star in 1572 . pag. 67 I. fpeaking of the comparifon between thefe two ways of Divifions, to wit, Sit cujufcunq; velit ingeniofa certe \&o apprime utilis eft diftributio,quam Or ego poftea arcualibus graduum divifionibus in quadrantibus Sexstantibus Ow armillis, non inconcinnè aut infrugiferè applicui. Liset enim demonftratio ejus in \int olis recitilineis fuperficiebus ad unguem Se babeat; tamen cum quinorums vel denorwm minutorum (patium in circumferentios majufculis à rectilineo inferfbibiliter differat, hic quoq, ejus ufus fatis commodus \& ratus e efe poterit, multoq; Nonniana plurimorum arcuum instricata of defficili fubdivifione expeditior aptiorq; deprebenditar. From his Difcourfe I fay in there two places, and from feveral others difpers'd up and down his Works, which 'twould be too long now to quote, 'tis evident that Ticho was not ignorant of this way of Sub-divifion, fo much applauded by Hevelius, invented by Petrus Nonnius, and promoted by Ticho himfelf; and yet we fee he prefer'd that way of Diagonals, firt made ure of in England by the moft skilfulMathematician Richard Camtzler, before ir, rejecting the one and making ufe of the other in all his Inftruments. But either of them will do well enough if the Divifions be done with great circumpetion and care, and inftruments of the fize of thofe larger ones both of Hevelius and Ti_{i} cho, are capable of Divifions ten times more accurate then are needful for common Sights, be they never fo long, withour making ufe of either Ticho's or Hevelins's way of Divifion, the eye being unable to diftinguifh a finaller Angle. To what purpofe therefore is it to make the Divifions fo fine, or any one part of the inftrument or obfervation more accurate then another? fince the power of diftinguifling by the naked eye is that which bounds and limits all the other nicenefs, and whatever part is more curious then that can equalize, is of no fignificancy. For inftance, in taking the altitude of a Star, is would be but labour loft to diftinguifh by the Diagonals, or otherwife
otherwife to Seconds, whilf in the mean time you are not certain that the Plumb-line is true to a minute, or whilft you are not able to direct the Ruler, bearing the Sights to a greater certainty then to that of a minute. And the like might be faid of the extraordinary curiofity in any two parts, and the failure in any third, that is effential to an obfervation; as fruitlefs it is to calculate to feconds, when the obfervations are not true to minutes, or to be certain by the Sights and Divifions to feconds, and uncertain in the Plumb-line to minutes.

There is therefore one thing in Hevslius his Intruments, that though they be never fo large, never fo accurately divided, of never fo choice and convenient materials, and never fo tradable for ufe, and never fo skilfully and induftrioully ufed, will notwithftanding make them all equal as to ufe, with one of about two or three foot radius of mettal with Ticho's Sights and Diagonal Divifions, which is occafioned by the limited power of dittinguifhing by the naked eye.

Something to this purpofe 1 communicated to Hevelius in the year 65. and hoped that 1 might have thereby fomewhat affifted him in his great and laborious Work, firft by eafing the eye, and next by making it capable of diftinguifhing more exactly, I having hinted to him the way how to reform and obviate that inconvenience by Telefcopical or Perfpective Sights, as alfo the way of making inttruments of much lefs bulk, to do ten times more then'twas poffible to do with the largeft inftruments made the comuon way. In anfwer to which he returns me this Difcourfe, in a Letter to the Royal Society, in the year 65 .

MO D U S ille obfervandi per Telefcopia adminiculo Sextantis vel Quadrantis, videtur mibi vix adeo tutus, quam vulgaris, $\sqrt{2}$ pinaacbdia rectè ac jufte fint affixa. Hecenim fust immobilia; Telefcopia verò nullâ ratione adej firmiter affgi po $\iint u n t$ ut loco baud dimoveantur ; etiamof omvi diligentiâ juxta methodum deforiptumper totuna Horizontem experiundo $\sqrt{\text { int }}$ Semel collocata. Adbuc quàm arduum fit, eâ ratione verum corum locum indagare, fatis fuperq; expertus fum; fout vixx videam, an alicui
circa refit itutionem Fixaram Plancrarumq; adminiculo ofle poffint; in majoribus foilicet illis diffantiis capiendis: In minoribus, largior, poffe atiquid praftari; fed an lnffrumenta, unius Spithame vadio inftructa, elaborari poffent mestiv exaEtius, quam optima qua. vis, vulgares Diopsras habentia, licet 60 pedum radio elaborata, nollem adbuc affeverare. Multa namq; in Theoriâ videntur certifima, que in prasi fatis longe notnnunquams à vero recedunt. Si quis mibi certas abjorvationes quarunàm diftantiarmm quidem Fixarum, ciro Eelipticam o eltquatorem exijfentium, ife Lis ipfos Infirumentis, Dioptris Telefoopicis inflruit is babitas exbiberet: (utpote diftantiam Lacider à Palilicio; Paliliciii à Pobluce; Pollucis à Regalo; Reguli à Spicàn ; Spicen部à Boreal. finift. manus Serpentarii; Boreal. finif. manus Sexpentarii ab Aquilâ ; Aquila a Marcab; © Marcub ì Lucidâ Arietis) vellem prot inus de res illius certitudine of meum quale quale judicium ferm $r e ;$ fed antequam eas obfervationes obtineam, judicium funfeendo. Interea utiq; fateor; $\sqrt{3}$ quis adminiculo minoris cujusdams Infirumsstiobfervationes corporum Coleftiumperagere poteft, wultô fane illum elje feticiorem, variis de cauflis, eo, qui per majora id prefare allaborat. Rationes dividendi inftrumenta, diver faquidem mibi probè cognite funt; eafg; etiam in uffum tranfulit; num antem fint eadem quas Clari \int Insus Domisus Hookius novit, ac invenit, me prorfus latet: Si illi non adverfum eft, rogo, ut precipuas communicet, egout meas ivselligat rov jus fudebo.

Since which time I have not fent any other defcription of inftruments, fave that of the manner of making and ufing a Tube for a 60 foot Glafs, which 1 ammach pleas'd to find he makes ufe of, and fhould gladly have communicated any thing further, if l had not found they were efteemed infignificant. It did nuch trouble me, I confers, that I could not prevail with him to make ufe of Telefcopical Sights at leaft, fince with lefs trouble he would have afforded the World Obfervations, and a Catalogue of the Stars, ten times more exact. And I am the more forry to find that he hath proceeded to finith his Machina Caieffis, by inftruments not more accurate then thofe of Ticho, and that he ftill remains in the fame opinion of Telefcopical Sights, and other iuprovements of infruments. For pag.293. of this forft Part of his Machina Caleftis, fpeaking concerning Sights,

Sights, he fays, Poffibly fome may wonder that I do not make ufe of Teiefcopical Sights, fince they are by fome accounted better and more accurate, infomich that there is one in the World hath proceeded fo far, as to fuppore Telefcopical Sights to be ten, iwenty, thirty, nay forty times more acsurate then the common Sights; and that 'tis pofible to make an inftrument of a Span Radius to do more with Telefcopical Sights, then an inftrument of 60 foot with the common Sights. 'Twould be athing of much moment could it be done, and not to be valued by money, but many things do feem true in the Theory, which do not anfwer upon Experience. You may perceive by comparing this flender Refutation with his Letter before, who he means by the Affertor of Telefcopical Sights. But I am troubled he fhould think them fo night as not to deferve one tryal in feven years time, efpecially fince by explaining the manner of making ufe of them much in the fame fenfe with that which 1 fent him, he feems to have underftood enongh of the way to have made ufe of it if he would. As to his Objection, That the Glaffes are apt to be broke, and the Pins or Threadsare apt to be bent and broke, there is not the leaft colour for it, for they cannot without much labour and defign be broken or put out of order, but if they were, it might as well be faid, that the Plumb-line of any of his inftruments may be broken, or his Sights bended, and the like, and therefore thofe inftruments were not to be ufed. But thefe Objections 1 fhall not urge againft his inftruments, nor a great many other I could produce of leffer moment, but only this one which is very fundamental, and cannot any ways be helped but by the help of Glaffes, and that is, "Tis impolfible with Sighes nade after Ticho's or Hevelius his way, to diftinguifh any diftance in the Heavens lefs then half a minute, or thirty Seconds, and hardly one of a hundred can diftinguifh a minute.

And this being proved, what will become of all the machinations and contrivances for greater inftrments, to thew the Divifions of fingle or double Seconds? May not fingle minutes, nay half minutes, by the help of Diagonal Divifions, be fufficiently diftinguifhed in an inftrmsent of three foot Radius? What need is there then of all the other cumber? Certainly any one that will but try with the one and the other inftrument,
will ind himfelf able to do as much with an inftrument of three foot, as with one of threefcore, fince the eye cannot diftinguifh a lefs Angle, at leait none that I have yet met with hitherto. Who is there that by his bare eye can dittinguifh any of the Te lefcopical fpots in the Moon, though fome of them are above a minute in Diameter? As for inftance, Who can fee Mount Simai, fo call'd by Hevelius, which is a bright fpot in a dark field, and confequently muft appear pear two minutes in Diameter to the naked eye? Or who can fee the Palus Mareotis, or the Lacus niger, which are two dark fpots in light fields, and each more then a minute in Diameter: Now if the eye cannot diftinguith a fmaller object then appears within the angle of half a minute, "tis not poffible to make any obfervation more accurate, be the inftrument never fo large.

Now that any one may prefently fatisfie himelf of the truth of what 1 affert, concerning the limited power of the naked eye, as to the diftinguifhing of Angles; Let him take a theet of white Paper, and thereon draw ewo parallel Lines, as $\mathbf{O O}$, and P P, in the 28 th. Figure, at four or five inches diftance, then draw as anany other fmall lines between them at right angles to them, and parallel one with another, as he think convenient, as $\mathrm{a} a, \mathrm{bb}, \mathrm{c}, \mathrm{dd}, \mathrm{ee}, \mathrm{ff}, \mathrm{gg}$, hh, i i , of. and let them be drawn diftant fromeach other an inch, then let him alternately blacken or fhadow the fpaces between them, as berween $\mathrm{a} a$ and bb , between $\mathrm{c} c$ and dd , between ee and $f f$, between $g \mathrm{~g}$ and hh , between ii and kk , between II and $m m$, orc. leaving the other alternately white, then let him expofe this Paper againft a Wall open to the light, and if it may be fo that the Sun may thine on it, and removing himelf backwards for the fpace of $287^{\frac{1}{3}}$ feet, let him try whether he candiftinguifh it, and number the dark and light fpaces, and if his eyes be fo good that he can, then let him ftill go further backwards and backwards from the fame, till he finds his eyes unable any longer to diftinguifh thofe Divifions, there let him make a fand, and meafure the diftance from his eye to the aforefaid Paper, and try by calculation under what Ang'e each of hofe black and white fpaces appears to his eye, for by that means it will be manifett how fmall an Angle his eye is capable of diftinguifhing, and beyond which it cannot reach: Which
being once known, he hath a Standard, by which he is able to limit the bignefs and exactnefs of his Inftruments, if he make ufe of common Sights, beyond which all magnitude and curiofity is not only ufelefs, but of much detriment upon many accounts.

This is that Confideration which I could wifh had occur ${ }^{\circ} \mathrm{d}$ both to Ticho Brabe and to Hevelius, efpecially to the latter, who hath fo earneftly endeavour'd to out-do the former, and for the accomplifhment thereof, feems to have fpared no charge, labour, or endeavour he was able to expend. I hope at leaft that this publick notice will for the future engage all fuch as thall attempt this Work, to be as follicitous about affifting the Eye in the difcovery of the parts of the Object, as of diftinguifhing the Divifions of the Inftrument, for the doing of the one without being able to reach the other, will avail nothing.

Thofe therefore that defire or need Inftruments to make Obfervations to Seconds, muft take another courfe then any that I know yet defcribed. 'Tis true indeed, That Altitudes of the Sun may be taken, with the Sights commonly ufed for that purpofe, to what accuratenefs is defired, if the Inftrument be large enough, becaufe the Image of the Sun being tranfinitted by the upper Sight through a finall round hole, is reprefented within a Circle upon the lower Sighr, and by means of the eyes approaching near that Sight, "tis poffible by Inftruments la rge enough, to arrive at the accuratenefs of a Second, in Obfervations made of that kind. And fomewhat of this may be done alfo by the Moon, when very bright and clear, but in all the other celeftial Bodies it has never yet been done.

But then if we compare even this way with that of Telefcopes, ceteris paribus, we fhall find it much fhort, bothas to clearnefs and diftinfnefs, and therefore even here alfo Teler. copical Sights are to be preferred, as I thall fufficiently manifett hereafter more at large, when I cone to defcribe my own Inftruments for this purpofe; for I doabt nor but to make it fufficiently plain, That by the help of an Inftrument I have contrived, of three foot Radius, I will be able to make all Obfervations whatfoever, ten times more accurate, excepting thore of the Sun, then any one can make with the largeft In-
ftrument, defcribed either by Ticho or Hevelius, and to manage the fame with a quarter the trouble, clutter, and apparatus neceffary to either of theirs, and to make the Divifions as accurate and fenfible as can be defired.

For the doing of which, I will fhew, Firt, How to make the Plain of the Inftrument, that it fhall not be fubjedt to bending or warping, and yet be fo light as to be eafily manageable. Secondly, How ro make the Divifions on that Inftrument, fo as to d:ftinguifh certainly and exactly to Seconds, without any trouble, or wearying the fight. Thirdly, I will thew how to make the Sights of that Inftrument, fo as to diftinguifh the parts of the Object to Seconds, if need be, even by thofe who cannot diftinguifh to Minutes with common Sights, certainly, and without fallacy or error. Fourthly, How to make the Sights, fo as to fee two Objects, though never fo far diftant, with one glance of the eye. And Fifthly, I will hew how to adjuft the Perpendicular, fo as to fet it exactly upright and płain to a Second, fo that if it meets with a diligent, accurate, and experienced Obfervator, it will ferve to make as curious Obfervations as are hitherto defirable. Sixthly, I will thew a way how to fix this Inftrument, either for taking Altitudes or Azimiths, fo as to be manageable with the leaft trouble imaginable, for Obfervations of that kind, and to be ahways fteady and fixt in any Perpendicular pofture, to whatever Azimith it beapply'd. Seventhly, I will explainan exact way for fixing the Inftrument, fo as to take the Diffances of any two Stars, or celeftial Object, and feveral other contrivances of the like nature. But of each of there hereafter, after I have examin'd over the feveral particulars mention'd by Hevelius, in his Defriptions of the Inftruments and Contrivances made ufe of by himfelf.

To pafs by then his long Preface, and the Difcourre of Inftruments in general, which he hath premifed in the firt Chapter; I fhall proceed to an examination of thofe Inftruments of his own, which he doth more fully and particularly defribe.

The firft of which kind I find to be a Quadrant of Brafs, which he defcribes in the fecond Chapter, and begins with that firft, as being an Inftrument which he leaft efteem'd, and which
whichat length he made no ufe of, though for many Reafons I think of a quantity big enough, to be as good, nay better, then any he made ure of. But of that anon.

This Brafs Quadrant was of three foot Radius, and fo well fitted with crofs Bars, and Atrengthned, that it was not fubject to warp or bend; it had alfo a convenient Pedeftal, and was made eafie to be removed from place to place; it was furpended by a Cylinder placed on the back-fide, in the Center of Gravity of the Quadrant, and could by this means more eafily be moved to and fro to take any Altitude, then that way of Ticho's, who fixt his Cylinder at the upper corner: But it hath this of inconvenience that Ticbo's hathnot, namely, That the Plumb-Line or Perpendicular will be longer before it fettle, and the Inftrument fomewhat more apt to warp The Sights of it are the fame with that of Ticho, and indeed the beft of Common Sights, now commonly every where made ufe of in Inftruments of that bignefs, but far inferior to thofe which are made of Glaffes, as I fhall afterwards prove.

The way of Sights which he defcribes, pag.98. for taking the Altitude of the Sun, is verv good, but yet far inferior to one fitted with the Object-Glars of a Telefcope, though he had omitted the Tube, for he might thereby have enlarged the hole of the upper Sight to what bignefs he pleafed, and confequently have made the image of the Sun as bright as it Thould be thought convenient, and that without any manner of Penumbra, if the lower Sight were placed at the due diftance of the Focus of that Object-Glars. And therefore I do wonder at his carefulnefs to inform his Reader aright, for fear he fhould underftand a Telefcope by the Tube he made ure of, to keep off the adventitious light from the lower Sight, faying, pag. 99 Per Tubum autem mi Lector non intelligo Telefoopium aliqued lentibus inftructum, Sed plane nudum ex charta conffruct um Tubulum, as if he had fome dread of making ufe of Glaffes in any of his Sights. Whether it were, that he fuppofed Glaffes to have fome hidden, un-intelligible, and myfterious way of reprefenting the Obje\&t, or whether from their fragility, or from their uncertain refraction, or from a fuppofed impoffibility of fixing them to the Sights, or whether from fome other myfterious caufe, which \boldsymbol{I} am not able to think of or imagine, 1 cannot
tell. Sure 1 am , that none of there I have named, are any thing at all confiderable Objections againft their ufe, and I have been fo fully fatisfied of the exceeding great ufe, nay abfolute neceffity of them in curious and exact Obfervations, that I do affure him there is not, nor can be any confiderable Objection againft them, which cannot eafily be anfwer'd, nor any inconvenience, which cannot with eafe be obviated and rectified; of which I Thall fay more hereafter.

The Divifions of it were made wholly by himfelf, with extraordinary labour and curiofity, infomuch that he fays, he could not only diftinguifis eachminute of a Degree, but almoft every quarter of a minute, fufficiently accurate for his Common Sights, if he could have only diftinguifhed every half minute, and indeed much more then moft mens eyes are able to reach. He feems to have been at infinite trouble and pains, to perform the Divifions made by the help of Diagonals, cutting parallel Circles, a way made ufe of by Ticho, and now fo commonly known, that 1 think Ineed not fpend time in the Explication thereof; only \mathbf{l} muft take notice, That whereas he fuppofes there Circles to be equally diftant, he ought to have placed their Diftances according to the Proportions of the differences of the Secants of fome ten minutes, next fucceffively following one another in fome Degree of the Quadrant, which is eafie to determine, from the Diftance of the two extream or bounding Circles; of which more hereafter.

Now though the Circles ought not according to the ftrict Rules of Geometry, to be equally diftant from each other, as Hevelius feems to fuppofe, yet l confefs, unlefs the fpace wherein there Circles lye be very large, and the parts of a Degree that are to be diftinguifht, very fmall, there is no neceffity of fo curioufly diftinguifhing thofe unequal Diftances, but they may ferve well enough for ufe, if they be taken equal, as Hevelius fuppofes, and indeed much more accurate, then 'tis poffible to diftinguifh the Object by the bare eye; and therefore 1 thall not need to infift upon the further Explication thereof, efpecially becaufe when 1 come to thew a more accurate way of Sights, 1 thall alfo thew a much more accurate way of Divifion, then either of thofe two of Ticho Brabe, or this fet down by Hevelius, which is much the fame with one of thofe which
which was 100 years fince made ufe of by Ticho, and defcri. bed, and is by him attributed to an Englifh Mathematicians.

But becaufe this induftrious and careful Perfon pat himfelf to the tromble, of making and examining the Divifions himfelf, I could heartily have wifhe he had thought upon fome fuch way as this, which I here defcribe, and call a Compendium of Diagonal Divifions, it being a way; whereby as $\frac{90}{90}$ of the trouble is raved, in performing the manual operation thereof, fo I judg it to be much more certain, exact and plain, then the other way of Diagonals. My Reafon for the firft is plain, The Divifion of one Degree ferving for the whole ninety: And my Reafons for the fecond are, Firft, Becaufe it is much plainer to be diftinguifhed, then by the help of the edge of a Ruler, lying over the Diagonals, one being able to fee but one part of the Diagonal. And Secondly, Ithink it much better then a fimall fiducial Thread, which is very apt to be bended and broken, if it lyes clofe to the Superficies of the Diagonal, and if it lyes at a diftance, a skew glance of the eye will much alter the feeming interfection of the Diagonals, which in this way are borh. prevented. The way then in fhort is nothing but this; Take a thin piece of clear Looking-glafs Plate, well fmoothed and polifhed on bath fides, and large enough one way to cover the whole breadth of the Rim of the Quadrant, on which the Diagonals were to be made, and the other way to cover two or three Degrees, (this I do the bigger, that the fides of the Arm may not fhadow or darken the Divifions and numbringe.) Suppofe a a a a in the 29th. Figure, Plate 2. to reprefent fuch a Plate, upon this Plate defcribe with great care a Degree of the Quadrant you would have divided, and compleat it with all its parallel Circles and Diagonals, as you would have done any one Degree upon the Quadrant, and if the Rim of the Quadrant be very broad in proportionto its Radius, you may by the Table of natura! Secanss or Tangents, fet the parallels at their due Diftances, but.if the Rim be narrow, 'twill be fufficiently accurate to wake their Diftances equal. Thefe Divifions mult be done with Compaffes, pointed with fmall Diamant Poinis, in the manner of thofe wheren ith Glafiers cut their Glafs. The Glafs being thus divided and lined, number the

Diagonals,

Diagonals, and place it in the Frame of the Ruler, with the lined fide next the Quadrant, fo that moving it to and fro, the fide of the Glafs may immediately touch the Brafs Rim of the Quadrant. This Brafs Rim muft be divided into 90 equal parts or Degrees, and at each Divifion ftraight Lines drawn from the Circuinference towards the Center, the whole breadth of the Limb, (at leaft as much as is made ufe of for the GlarsPlate, for the breadth of the Diagonals) the Frame to carry this Plate is a convenient Cavity, left in the moveable Arm of the Quadrant, the whole manner of which will be better underftood by the Dekineation thereof, to which I thall therefore refer the Reader. The Diftances of the parallel Circles if unequal, may be eafily fet down trie, according to the numbers of naturai Tangents or Secants, with a pair of Compaffes, contrived like Bea'n-Compaffes, but having its Points to be fet at any diftance, defired by the help of a Screw, moving upon one fide of the Bean, which I may have occafion to defcribe elfewhere more properly, and therefore will hereonnt it.

Next, If this way had not pleafed, I could have wifhed he had known this following, which is altogether as eafie, and as Geometrically true, which I have contrived, and have made fimall Inftruments thereby to fhew very minute Divifions, very eafily and very plainly. Iftrike then upon the Limb of the Quadrant I would divide, being firft made exceeding fmooth and plain, a Circue very.fine, and as lighty as poffibly I can, fo it be but difeernable, and by the help of a very large Quadrantal Eividing Plate of ten foot Radius, I divide the faid Quadrant in the faint Circle above-mention'd, into 90 parts or Degrees, then by a peculiar contrivance of a very curious Point that ftrikes with a Spring, which I defcribe in another Difcourfe, the faid Degrees are marked upon the Plate by curious, finall, round and deep holes, thefe are by another Line without it, which is divided and figured the Common way, diftinguifled and numbred by Figures, according to the Comb mon manner. Then for the fub-Divifions, I make a finall Hold-faft by a Screw, which is fixed on to the moveable Arm of the Quadrant, this ferves to hoid the end of a Diagonal Hair, the other end of which is frain'd over the Supplementary Degree, tillit lyeth direatly over fome prickt-Hole of the curi-
ous Divifions, on the Limb of the Quadrant, this gives me the fub-Divifions of the Quadrant, to what accuratenefs I defire. The Supplementary Degree is a Degree of a very large Circle, put on upona fuall Rule, fixed on to the fide of the moveable Arm, whofe Magnitude and Diftance is found by this Proportion, as the Diftance between theend of the finall Hold-faft and the pointed Circle, is to the Radius of that Circle, fo make the Diftance between the faid End and the Supplementary Circle to the Radius of that Circle. This will be more plain by a Scheme.

Let aaa in the 3oth. Figure reprefent a Quadrant, bbb a very fine Circle, fruck on the Limb of the Quadrant, from the Center 1, which by a large Quadrant of so foot Radius, I divide into Degrees, and by a fpringing Point ftrike fo many fmall Points, and number them to 90 . beginning at m , and numbring towards i . Let dd reprefent the moveable Arm, c c the ho d-faft. fixed upon the fide of that Arm, which by a finall Screw pincherh and holds falt a very fine Hair at k, ee the finall Ruler fixed at right Angles, with the Line 1 kf , in this Line (through the Points I and k) I take a Point, as f, and through f I ftrike a part of a Circle fg, whofe Center is fome where in the Line $f k!$ produced, which I find by refolv. ing this Proportion, as ki is to li, fo will kf be to the Radius of the Supplenentary Circle fg , which will fall romewhere in fkl produced, towards l, then take a Degree of that Circle, which will extend from f to g , and divide it into as minute Divifions as are neceffary, and number them from f to g. Now to find what Angle the Sight $d d$ maketh with the Sight mm , I ftrain the Hair hk , till I find it lye over the nest Divifion Point towards the right hand, and obferve in the Ruler e e, what part of a Degree is there marked, and on the Circle $b b b$, what Degree is marked, the fum of both which gives me the true Meafure of the Angle d d 1 m . Buc this only by the By, and I will not now further enlarge on the Explication therenf, defigning it for another Difcourfe, where I fhall defcribe various, Mechanical and Practical ways, of accurately dividing Lines, into any affignable number of equal or proportional parts.

To proceed then where T left off, to the examination of
the Inftruments of Hevelius, I find that together with the Brafs Quadrant I was fpeaking of, he defcribes two Contrivances about it; The firf is, How to fet it prefently to an upright, without the trouble of turning the Screws in the Pedeftal, which is plain enough, and fo much the better; but it hath this of inconvenience, that it mult be altered for every Azimith, which is a very great one, and which by another way altogether as eafie and plain, may be avoided; of which more hereafter.

Another Contrivance about this Intrument, is a fuall Screw, for moving it and keeping it fteady in any pofture in the fame Azimith, which is convenient enough, but will not perform what he afterwards fuppofes it capable of, as 1 hhall afterwards thew.

The fecond Inftrument, which in the third Chapter, pag. 102,103, © σ. 108. he defcribes, is a Sextant of Brafs, of three foot Radius, carefully made, and divided with the fame care and after the fame way as the former. The Sights alfo are much the fame, only whereas in the Quadrant he makes ufe of a Plate, with parallel edges for the Sight that is at the center, and furtheft from the eye ; in this he makes ufe of a Cylinder, which way alfo Ticho made ufe of roo years ago, and hath been ever fince madeufe of. The other Sights next the eye are the fame with the former: There is nothing fingular in the Pedeftal, nor in the Ball and Socket, only 'tis fomewhat bigger then ordinary. His way of moving and fixing the Rule of it is convenient enough, and the fame with his Inftrument for moving and fixing his Quadrant, but'tis not capable of performing what he promifeth for it.

The third Inftrument, which in the fourth Chapter he defcribes, is a Sextant of Iron, of four foot Radius, to be managed only by one Obfervator, by putting the Center next the eye. The whole Inftrument is little differing from the former, fave only that the Cylinder at the Center which is here next the eye, is coverd with another hollow Cylinder, which is voluble and convertible about the former, and carries two fuall Slits for the Sights, which performeth the fame as the other Sights, but nothing more, and as the Auhor himfelf affirms, is not fo accurate for ufe as the other Sextant, where
there are two Obfervators, and therefore was feldom made ufe of by him. But I thall anon thew a way by which one Obfervator alone thall be able to take any Diftance to a Semicircle with much more accuratenefs and conveniency then any two Obfervators can; and therefore will be an Inftrument of the beft ufe for Aftronomical and Nautical affairs,for the perfecting both which I defign it.

The fourth Iaftrument, which in the fifth Chapter, from pag. II 4, छ c. to I23. he defcribes, is a Quadrant of fix foot Radius, whofe Frame was all uade of dry Oak, but the Limb;Sights, Sockets, F_{c} were made of Brafs, divided ro as to fee every quarter of a Minute diftinctly, the Sights the fame as in the firt Quadrant, and the way of furpending it not much differing, rave only, whereas in the former the Pedeftal was moveable, in this it is fixt, which is much better. And the Inftrment is kept in an eEquilibrium, by the help of counterpoifes hung at the end of a ftring, and caft over a Pully, as is more vifible by his Defription. But this (as all other wooden Inftruments do) he found to fhrink and warp, and confequently to lofe its exactnefs, and therefore he made little or no ufe thereof, but laid it afide, and madehimfelf better of Brafs.

The fifth Inftrument defcribed in the fixth Chapter, from pag. 123. to 132 . is a Sextant of Wood of fix foot Radius, urade in all particulars like the former Sextant of Brafs of threefoot; nor has it any other contrivance about it confiderable, §ave only a reft made to flip up and down for the Obferva'ors to reft their Elbows upon. But this Inftrument alfo he found to be vitiated by the fhrinking and warping of the Wood, and there fore he laid that by alfo, and feldom made ufe of it.

The fixth Inftrument is a large Octant of Wood of eight foot Radius; this is made exactly according to the Form of Ticho's Octant, and ferves for taking any Diftance not exceeding 45 degrees. The Sights near the eye are made exactly as the former, but moveable, fo as to flipupon the Limbs of the Octants the Divifions of it are performed by Diagonals as before, and givesa greater nicenefs of Divifion then the Eye is capable of diftinguifhing in the Object, and therefore of little ufe.

And thus far the Author proceeded in Ticho's way: But finding thefe Inftruments which were made for the moft
part of Wood to be fubject to faileur, he afpired to get better Inftruments made all of Brafs or Iron, and wholly laid afide the reft as altogether ufelefs. And I cannot but very much approve of his Judgment in fo doing, for certainly cateris paribus Inftruments, well made of Brafs or lron, are much to be preferred before the beft of Wood. . But yet neither are all manner of Wooden Inftruments to be rejected; nor are all forts of Metalline Inftruments free from error, though'tis confeffed, if they be made and ufed withskill, they fuffer not any confiderable or fenfible variation. Firft, I fay, Wooden Inftruments may be fo contriv'd as very near to equalize thofe of Metal, the Joynts and Plates for Divifions only being made of Metal, they being very eafie to be rectified before, and examined after every time of ufing. Such a one was contrived by Sir Chrijfopher Wren, being two fquare Wooden Tubes or Telefcopes, joyn'd together at the end next the Object by a Joynt of Brafs, and the Ang'e made by the opening of them, meafured by a fraight Rule equal to half the Radius, diyided by Diagonals into 5000 equal parts, which will by the help of a Table of natural Signs or Subtenfes, thew the parts in Degrees, Minutes, and Seconds, of which I think I acquainted Hevelias fome years fince. Next Brafs and Metalline Inftruments, if they be not very carefully fortified againft it, are more apt to bend then even thofe of Wood. And the beft way I have found to fecure them true and plain in all poftures, is to lay them on a Table or Frame of Wood, well fortified underneath againft bending, and by the help of finall Screws in feveral parts of the Inftrument to adjuft it upon that Frame; the whole Table and Quadrant being. ro counterpois'd, as to be eafily moveable and fixt-in any poAture. But Hevelius is pleas'd, as $\$$ faid before, wholly to lay afide all manner of Wooden Inftruments as ufelers, and to indeavour the obtaining of Inftruments of Brafs or Iron. Nam (fayes he pag. 136.) cum longâ experientiâ probe tandem didicerim, multo fecurius effe ex jolido prorfus metallo obtinere Ingtrumerata, tum quo majora © ampliora eo effe accuratiora © abfolutiora, adbac prioribus admodum Tichonicuns condtruct is plurima deeffe quibus ditari merito deberent, oi quod iifdem de caulis omnino neceffums fit, ut parte corrigerentur \& meliorentur, tam quì eorum materiam fructuram commotionem facilisandam divelionem quam
alia diverfa fubfodia ©o adminicula, quo fo aptius, exquifitius, prombtuus, minorique labore, ${ }^{\circ} \mathrm{c}$ c. ac temporis dipendio pofferst Aftris ex. posi ob ServationéSque peragi., Idcirco omnem curam atque operang pro ternvi ingenii mei facultatúnsque mearum modislo à Deo conceffo (reliqua füblimioribus ingeniis atque ampliori fortunâ Viris, five paftertati nofira relinquens) adsibui: quo minora, tam lignea wniver fa ab Afris plane removerem, atque in ejus Locuro ex pare fulidóque metallo, organa mihicompararem: \mathcal{O} quidem ejujmodr, que infigniamplitudine effent conjpicua, fimul oommoditate egendi, Jimal aliquanto accuratioribus adbuc diviforibus, ad paulo Jubtaliores obfervationes obtinendas qauderent. His Reafoning indeed is very good, that fince be had from much and long experience learn'd, that Inttruments of Wood after Ticho's manner, were not to be trufted to by reafon of their warping and Thrinking, and confequently that Inftruments of folid Metall were much to be preferred before them, and alfo that the larger the Inftruments were, the more exactly they could be made and divided, and that the more eafie they were to be moved, and the more fteddy and fure they were to be fixt in any pofition, the more convenient they were for ufe, he had therefore reject. ed all thofe Inftruments which he had made after Ticho's way; and had indeavoured to procure for his own ufe fuch as were compleat, both for their matter and form, having caufed them to be made of Mettal that which could not be fubjeet to the inconvenience of warping, fwelling, or fhrinking, with the variety of Weather, orlength of Time: And likewife of fuch a bignefs as was capable of receiving more nice and curious Divifions; and in the dividing them had found fuch contrivances, and ufed fuch diligence, that they were more then ord 1 narily true and exact. As far as he has gone on with there Defigns, he feems to have been ever profute in his expences, and exceeding bountiful of his own care, labour, and diligence; but I could have wifh'd hearrtily that it had been fome other way imploy'd. Thofe Inftruments which he chiefly laboured to perfect, he profeffes to be Quadrants, Sectants, and Octants, after Ticho's manner, rejecting allother Inftruments of whatfoever Figures, whether Radii, Aftrolabs, Zodiacal or eEquinoEtial Rings, Parallactical lnftruments or Hoops, as more troublefome, and lefs accurate. But whether he hath in this his C 2
choice
choice been rightly advifed, I fhall hereafter trave more ccca fion to examine when I conte to defcribe an Apparatus of Inftruments neceffary for fuch a one as defigns to promore and perfett the knowledge of the Cœieftial Bodies and their motions; wherein I fhall thew that of fome Inftruments rejected by him, there is a ufe abfolutely neceffary.

The Inftruments therefore that he begins with are three fmall Uuadrants of Brafs; the firft of t wo foot, the fecond of eighteen inches, and the third of one foot Radius. Fach of thefe Inftruments, he fayes, were made fomewhat larger then common Quadrants, to wit, of an arch of ino degrees, which is to no other end, but only in order to thew the fubdivifions of each degree of the Quadrant, by the help of a new invented Perpendicular of Brafs wherewith each of them was furnifht. This Invention is by him highly extoll'd for moft excellent and ufefull; and to that end is made ufe of for the divifion of all his other Inftruments, both great and fimall. Hear what he fayes of it: Quifcunque bujus rei (to wit, the new way of fubdividing the degrees of the Quadrant) primus fuerit repertor, fublimes profecto cogitationes exercuit, boc ipfo ad congruentem effectum deducendo, \& inter praftantifima inventa meritiflimo refertur, quod etiam minora Inftrumesta remotis omnibus tranfverfalibus Lineis, in singula minutacorúmque particulas minimas fubdividi liceat. He feems indeed both here, and elfewhere in many other places of his Book to be highly poffeft with admiration of the fublimity, fubtilty, and extream ufefulnefs of this invention, and feems very much concern'd that the Author thereof fhould not certainly be known, but dares not father it upon any one pofitively. He fayes that one Benedictus Hedreus in a Work of his which he publifhed Anno 1643. about the new and accurate Structure of the Geometrical Afirolab, defcribes it ; but he gathers that he was not the Inventor himfelf, but rasher that he got both this Invention and the whole Quadrant, which be defcribes out of the Obfervatory, or rather Repofiory of Ticho Brabes Inftruments, for that it feems Ticko was the Inventor of this way of divifion; and yet, as I noted before, he prefer'd the way by Diagonals much befure it, whatever Reafon Hevelius, had to be of a contrary Judgment. What this tray is I mall by and by explain. But in the mean time I am forry
forry to find Hevelius joyning with Hedreus in the Opinion or Demonftration, as Hevelius calls it, that the Sub-divifions by Diagonals is not capable of a Geometrical demonftration, efpecially in leffer Inftruments, which have need of many Circles. I confefs I underftand not their meaning nor reafoning, nor why it thould be lefs demonftrable in leffer then in greater Inftruments ; fince 'tis very eafily demonftrable both in greater and leffer Inftruments, and as Geometrical as any other way of Divifion whatfoever: the Diagonal Line being alwayes a piece of a Tangent Line, that is to fay, the fpaces between the Parallel Circles upon the Diagonals arealwayes to be in proportion to the difference of fome Tangent Lines, and the different diftance of thofe Circles from the Center are alway in proportion of fome Secants: And the way of finding what thofe Tangents or Secants are, and confequently what muft be thofe Diftances of the Parallel Circles I mentioned briefly before, and thall now more fully demonftrate. From which I will make it evident, that the Theory was not as Hedreas and Hevelius have fuppofed, uncapable of Calculation or Mechanical Demonftration.

But firt give me leave to Thew you what way Ticbo Brabe made ufe of to demontrate, or rather to find out the true Angie unto each equal Diftance, which I find fet down at the latter end of his Mechanicks, as a Supplement to the reft. Divifionis puncta babentis tranfuerfalia modus talis eft, ut 34 exprimit figura in qua fingula denominata per Lincolas in decem interfitia aqualia diferiminatum puncters notata funt, ficque regula fiducie quodcunque horum inter obfervandum tranfiens ipfum minutum gradus, quod querebatur promit aut aliquotam ejus partem, prout ab hoc vel illo puncto removeri difcernitur. Ut vero boc etiam demonfiratum bic addam ob fciolos fortè quofdam qui ea que non Satis capiunt carpunt féc habe.

In Figura 34. Sit A centrum Inframenti cjufaue Semidiams. ter A O, afjumitur autem O I, l’articula in qua divifio iffaper $l i$ neas tranfver Jas fit ea proportione qua eft I ad 48. qualis in meis Infirumentis ut plurimum ufurpatwr. Cumque A I ponatur partion 10000000000 . integri canonis majoris Rbetici, crit cartundem OI 208333333 utpote pars quadragefima octava radii Arcits I E fit 20': OG I V. I o'.borum finus 29088779 Y I. Sinus autem fecundus
co undem $42308 . \mathrm{V}$ Y. qui additus NV quod equale eft OI facis NY 20837564 . In trangulo igitur NYI ad Y rectangulo nota fuart diso Lateran NY © Yi. quare datur bafis I N 210396208. snat cum amgulo NIY 82. $3^{\prime \prime}$. $10^{\prime \prime} .47^{\prime \prime \prime}$. sui additees YIA $89^{\circ} \cdot 50^{\prime}$. confficit N I A. $171^{\circ} .53^{\prime} .10^{\prime \prime} .47^{\prime \prime \prime}$. Bafis verò $\mathrm{N} I$ in triangulo rectangulo N V 1 dividatur in decem partes aquales ut conveniant sin minnto 2103962 I reprefentate per I B. Moxque in triangulo ebliquergulo BIA. danturi! duos latera IB \& IA. radius, una cum angulo BlA, qui idem oft cum NIA $171^{\circ} \cdot 53^{\prime} \cdot 10^{\prime \prime} \cdot 47^{\prime \prime \prime} \cdot$ prius reperto:
 ret, itia ut major lit faltem $\mathrm{I}^{\prime \prime} .7^{\prime \prime \prime}$. differentia fanè insengbibil: $\sqrt{2}$. militer for I a fumatur, noven particularum erunt ee I89356587 babebimurque rurfis triangulum FI A in quo dantar duo latera FI modo dictum una cumradio I A. ob angulo F I. A ab ijdem comprebenfo velut antea exurgitque angulus I'A F 9^{\prime}. $\mathrm{I}^{\prime \prime}$. $6^{\prime \prime}$. qui debebat effe s' exsctie deficiente in ultimo minuto E N. $1^{\prime \prime} .6^{\prime \prime \prime}$. Porrò ut circa medium idem tentetur quod nunc apud extremitates fecimus ī̄reniustur eadem qua antea primo Angulus I AH $5^{\circ} \cdot 3^{\prime \prime} \cdot 6^{\prime \prime}$. abundans $3^{\prime \prime} .6^{\prime \prime \prime}$. Secundo angulus N A H $4^{\prime} .56^{\prime \prime} .55^{\prime \prime \prime}$. deficiens $3^{\prime \prime} \cdot 5^{\prime \prime \prime}$. Patet itaque quod maxima differentia, five adjectiva; five ablativa in bac pragmatia proveniat minimum quid ultra 3". quam fubtilitatem vifus acumess difcernere in quocunque tandem irffrumento nullatenus fuftinet, que etiam per je otiofa eft, quare fruftra nodum in Scirpo quarunt, $\sqrt{\text { o qui banc nof tram Satis accuratam }}$ diffributionis formam cavillari prefumant. By which 'tis evident that Ticho underftood an inequality, and what it was, and that it was infenfible, and fo not to be regarded. Now 'tis to me very wonderful indeed that Ticho having thought of a way of calculating this inequality. Thould not think of an eafie expediens of reforming it by putting the Parallel Circles at unequal, but their due proportionate diftances. And stis much more ftrange that Hevelius thould ftillaffirm it to be a way not Geomerrical: Forto any one that confiders this proportion, the inclination of a Diagonal Line being given to find the true diftances of the Parallel Circles that thall divide any affignable part thereof in any proportion affigned: Nothing can be more eafie : and for more expedition ufe may be made of the Table of Natural Tangents which is ready calculated to hand. For inftance: Let $\overline{\mathrm{C}}$ C reprefent a Diagonal Line fubtending an an-
gul of $1 \mathrm{o}^{\prime}$. at the Ceter A, produce the faid Lime $B C$ to E, and fet falla Perpendicular, from the Center A to E: Suppofe then the Angle at B to be ore Degree, then is BE the Tangent of 89°. to the Radius A E. and EC is the Tangent of 88. 50°. and the differences between the Tangents of 88.50 , 88,51. 88,52. 88,53. $88,54.88,55.88,56.88,57$. 88, 58. 88, 59. and 89. gives the Diftances of the feveral Cirs cles, C. 123456789 B. defired.

Since the Reading of this Lecture, Dr. Wallis hathalro defcribed another way of finding there Diftances, which he hath conmunicated in a Letter to Hevelizs, and I have prewailed with the faid Doctor to pernit it to be here printed, being very ingenious and accurate, and proceeding by a differing method.

Dr. Wallis his Letter to Hevelius.

-S$E D$ \& eft cur commenni omnium Literatorium nomine rebus praeertion calicis addictorum reddam gratias, tum ob immensfos in tanto apparatu fumptos erogatos, tam pratiofum conquirendo fupellectilem Aftrononoicam, grapbice hic defcriptam, ium ob indefeffos labores, infomnes noites diefq; occupatifimos caleftis acquirendis obfervationibus impenfos; quarum vim ingentem, Thefauyum fupra aurum \&o margaritus pratiofum erudito orbi jam ante dederis, plura daturus indies, verum non eft ut Jperem me verbis aquare polfe twa merita, qui ex privatopenu fumptos plane Regios erogafti; onufq; fufcepifti non infeliciter, Herculeis Humeris (ne Atlanteis dicam) formidandum.

Operis partem maximam jam evolvi, miratus inibi tanta molis Inftrumentorum ingeniofifimum regimeen, ơ fubtilifimam áivtfonum adminiftrationem, sum pari diligentia conjunctam in $R e$ gulis © Dioptris Solicite curandis, \& quidem fi hoc dee \int Jet reliquus in caffum cederet labor: quippe exiguus of vix evitabilis in Regulis aut Dioperis error, zotum Inforumentum vitiaret, omnefq; inficeret ob fervationes, fed fingulis immorari nor licet, unum tamen eft quod attingam breviter, nempe divifiones per Lineas Diagonsles, circulos in limbo concentricos oblique fecantes. Hanc dividendi methodum jam diu receptam, ipfe retines ơ quidem merito, circulosq; hos conceritricos aqualibus intervallis disjunctos babes, quod quamvis in exiguorum aut etiam mediocrium Inffrumentorum
limbis
limbis latioribus aliquid erroris pofit inducere in tuis tamen tante amplitudinis Inftrument is cum limbis exigue latitudinis (quod ©o tu xecte mones) aibil quicquam erit dijcriminis quod in (enfus occurrere pofit. Hactamen occafine libtt bic Jubjicere, quod ea de re jam olim (circa A. 1650. aut 165 I .) meditatus Jum, atq; apud aaverfaria mea nuac reperio: nempe fo quis vellet minoris lnftrumenti Limbum latiorem Lineis Diagonalibus fic dividere, quibus intervallis oporteat concentricos illos circulos diponere ut angulos invicem aquales defignarent illa cum tranverfali interfectiones calcute Trigonometrico determinare.

Divijio arcus in limbo quadrantis (aliusvé ejufmodi Inftresmenti) per circulos concentricos of rectam Diagonalem, fot latitudo limbi $(\mathrm{R} L=\mathrm{L}$, Radius circuli intimi $(\mathrm{AR} \Rightarrow \mathrm{R}$, extimi ($A Z=A L \Longrightarrow) L \pm R=Z$ continentes angu'um ($R A Z \Rightarrow A$. dividendumi in partes quotlibet equales (quarum numerus n) rectis $\mathrm{a}, \mathrm{b}, \mathrm{c}$, occ. (quarum longitudo querisur) facientibus ad RZ diagonalem, angulus $a, \beta, y, \delta, \delta \in c$. adeoque angulus $K A a=\frac{1}{\square} A, R A B=\frac{3}{n}$. $A \cdot R A C=\frac{3}{n} A$, orc. fitque $A R Z=O \& A Z R=V$. Datis ergo crucibus R, Z cum angulo sontento A. (adeoque reliquorum fumma $\mathrm{O}+\mathrm{V}$) inveniuntur reliqui O obtufus V accutus.) Nam $\mathrm{Z}+\mathrm{R}$ 。 $Z-R:$: Ita tangens $\frac{o+v}{2}$. tangentem $\frac{0-v}{2}$ \& $\frac{o+v}{2}+\frac{0-v}{2}=0$. deinde cognitis angulis $\mathrm{O} \propto \frac{1}{\square} \mathrm{~A}$ (adeoque reliquo a) cum trajecto latere R babetur latus a. nempe fina, R:: Jinus O. a. \& pari

Praxis fit $\mathrm{K}=\mathrm{I} . \mathrm{L}=0,2 . \mathrm{Z}=\mathrm{r}, 2 . \mathrm{A}=\mathrm{rc}$. . ergo $\mathrm{O}+\mathrm{V}=$ $179^{\circ} 50^{\circ} \cdot \frac{0+v}{2}=89^{\circ} .55^{\circ} . \operatorname{tum} \mathrm{Z}+\mathrm{R}=2,2 . \mathrm{Z}-\mathrm{R}^{\circ}=0,2,::$ $\frac{0+v}{2}=687,5488683.62,5044427=$ tang. $\frac{0-\mathrm{v}}{2}$ cui refpondet angulus $89^{\circ} \cdot 5^{\prime} \cdot 0^{\prime \prime} \cdot 17^{\prime \prime \prime} \cdot$ proxime. Ergo $\frac{0+\mathrm{v}}{2}+\frac{0^{2}}{2} \cdot \mathrm{v}=0=179^{\circ}$. $0^{\prime} \cdot 0^{\prime \prime} .17^{\prime \prime \prime}$. fere cujus finus 0 , 017451 I . nempe idem qui finus $0^{\circ} .59^{\prime} \cdot 59^{\prime \prime} .43^{\prime \prime \prime}$.

Deinde fecanoius fit A in io partes quarum qualibet fit I^{\prime}.qua vuntur igitur $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}$, nemple.

Sin.

 Siror(0 $056.59 .43 \cdot$) 0.0165780.$)$ Sin. ${ }^{\text {s }}(055 \cdot 59.43$. 0.0162877 .) Sin.e($054.59 .43 \cdot$) 0.0159969.) Sin. 5 ($053 \cdot 59.43 \cdot$) 0.015706 c .) Sinin($052.59 .43 \cdot$) 0.0154152.) $\operatorname{Sin} .9(051.59 .43 \cdot$) 0.0151243.$)$ Sin.1 (0 50.59.43.) 0.0148335°)
$0.0174511\left(1.05^{264}=c_{1}^{188} 180\right.$ $0.0174511\left(1.07144=\mathrm{d}^{188}{ }^{18}\right.$ $0.0174511\left(1.09091={ }^{1} 1947\right.$ 0.0174511 (1111110 $=\mathrm{f}_{0}{ }^{2019}$ $0.0174511\left(1.13206=\right.$ g. $^{2} 196$ $0.0174511\left(1.15383=\mathrm{h}_{0} 2264\right.$ 0.01745 II ($1.17647=\mathrm{i} .2353$
$1.20000=Z$.
 179,50. $\frac{0+v}{2}=89^{\circ} .55^{\prime}$.cujus tangens 687,5488693, © 2 , I. $0, \mathrm{I}:: 687,5488693 \cdot 3^{2}, 7404223^{\frac{1}{2}}=$ tang. $18^{\circ} \cdot 15^{\circ} \cdot 1^{\prime \prime}$.
 mentum ad Semicirculum $I^{\circ} \cdot 49^{\prime} \cdot 58^{\prime \prime \prime} \cdot 2^{\prime \prime \prime \frac{3}{4}} \cdot$ cajus finus $0,0319827$. ergo
 Sin.6-1.47.50.2 $\frac{3}{4}$) $=314013$)319827(1.01852 $=$ b 93417 $\left.\operatorname{Sin} \gamma\left(\mathrm{I} .46 .58 .2 \frac{3}{4}\right)=3 \mathrm{II103}\right) 319827(\mathrm{r} 02803=\mathrm{c} 95 \mathrm{I} 19$ Sin. $\delta\left(\right.$ I.45.58. $\left.\left.\frac{3}{4}\right)=308198\right) 319827(\mathrm{I} .03773=\mathrm{d}$

97019 Sim.t(1.44.58.2 $\frac{1}{4}$) $=305290$) $319827\left(\mathrm{~T} .04762=e^{989} 18\right.$ $302343) \quad(\mathrm{I} .05769=\mathrm{f} 100720$ 29947s) 296567) 293660) 290752) ($\mathrm{I} .10000=\mathrm{k}_{\mathrm{k}}=\mathrm{Z}$

Hactesus adverfaria, ubi duos cafus experidimus, nempe cum latitucio limi ponetur pars quin a \& pars decima Radiibrevioris,
 tuns feret vulg virs canon Trigonometricus: © quidem uitima io tas in ambiguo eft nunc jufto major nunc jufto minor. Radium autem (ut ego foleo) facio L (non ut plerumg; fit 10000000 .) quo onnes multiplicationes © Divifinnes per Radium faciende precidantur: Adeoq. Jinushabeo propartibus decimalibus, quibus itaq; cum opus eft, siphras prensitto quo de unius integri loco conffet.

Simili proceffu wtendum erit mutatis mutandisfi latitudo limbi fumatur in alia quavis proportione ad Radii longitudinem. Sed commodius erit (ad vitandam moleftiam toties quarendipartem proportionalcm) ut fumatur angulus O commode magnitadinis (juftis minutus primis determinande abfq; annexis fecundis tertiif(ve) atq; ita quaratur Radii maximi Z longitudo, codem modo que Reliquar um $\mathrm{a}, \mathrm{b}, \mathrm{c}$, © 6 . puta $\sqrt{\text { a }}$ is praxi ipoferiori fumpto ut prius $\mathrm{R}=1$ ©r angulo $\mathrm{A}=10^{\prime}$ Jumatur angulus O non qui illic prodit 178, 10', $\mathrm{I}^{\prime \prime}, 57^{\prime \prime \prime} \frac{1}{4}$ Sed potius 178 . 10'。cujus complementum ad duosRectos eft $\mathrm{r} 0.50^{\circ}$.bujus finus in ipfo canone babetur 0,0319922 or reliquor um item a, $b, \gamma, \delta, \& c_{0}$ finus fimiliter ibidem babebuntur, ut una tantum divifione opus fit pro fingulis exbibendis ipfaque RadiiZ Longritudo babetur non quidem precijeut prius, I, I; fed proxima (qua itaque fumenda erit) 109996 nempe.

$$
\begin{array}{rr}
(\mathrm{I} .00000=\mathrm{R} \\
\text { Sin. } \alpha(=\mathrm{I} .49)=317015) 319922(\mathrm{I} .00917=\mathrm{a} \\
c=1.48)=314108) 319922 \mathrm{I} .0185 \mathrm{I}=\mathrm{b} \\
\& \mathrm{c}_{\mathrm{c}} & 311200)
\end{array}
$$

$\operatorname{Sin} . x(=1.40)-290847) 3199221.09996=k$

$$
=\mathrm{Z}
$$

fimiliter omnino res fuccedit fi fumptis Radiis $R \mathbf{L}$ cum angulo A quaramus \downarrow or Radios intermedios, aut fumpto Radio L cum angulis $A V$ querantur R \& Radii intermedii.

Verumbla limbi latitudo fit Radii non nifipars trigeffima quadraa gefima, quinquageffima ant adbuc minor, atq; angulus dividendus non quidem Io minuta prima Jed totidem Jecunda, aut minor adbuc, Subtilior yes eft quam ut canon vulgaris Trigonometricus hic adbibeatur; © que omnem fenfum fugit, ipfiq; circuli concentrici diftantiis aqualibus quantum fenfu polfumws diffinguere invicem difjuncti: quippe unius pollucis pars mille finsa nedum decies aut centies millefima minor eft dijcrepantia quam ut fenfu percipi poffit. Sed nimius fum in re levi felicem itaq; exseuntem ansum sibi comprecatus longa Sequentium Serie contrivandum, valere jubeo.

But to proceed. In the next place I think it will be fuffic. ently plain, to any one that fhall try both the ways, that theDivifions are by Diagonals much eafier diftinguifhed by the eye, then by this way foapplauded by Hevelins, and therefore I cannoe choore but conclude with Hevelius, (pag. 140.) though to a quite differing end and fenfe: Sunt igitur 乃lendidifime tantum (peculationes mentisq; idee quecunq; de Nonianis vel Hedrianis Divifionibus proferuntur. But becaufe perhaps there may be feveral perfons that have not yet perufed this Book of Herelius, nor that of Benedictus Hedreus, printed in 1643. nor Ii. cho's Mechanicks, of a much longer ftanding, and thence may perhaps not fo well underftand what this way of fub-dividing is; give me leave a little to explicate it, and fhew you plamly what it is.

The way then as it is defcribed by Ticho Brabe, and afcribed by him to Petrus Nonius, that excellent Spanifh Mathematician, who publifht it in his learned Book, de Crepufculis, fuppofing it alfo to have been heretofore ufed by Ptolomy, but(as Ticho is of opinion) without much reafon, is this; Ut ducantur intra extremum quadrantens alii minores numero 44. Succeffive Sefe comitantes, quoram extimus in 89. Seqwens in 88 . tertius in 87. \& fic deinceps dosec ad ultinum © intimum perventum fuerit qui 46 , portiones babebit. To which Defcription publifhed in his Mechanica, he adds in the fecond Book, de MundieAtherei recenforibus Phenomexis, pag. 46 I . Altera Di. vifio ad Clarifomi Matbermatici Petri Nonii-imitationemper plures quadrantis arcus intror fum defcriptos or diverfimode fubdivifos procedit. Ettriatem in bac ipfa imprimis ingeniofa Nonii inventione, aliquid auctuarii loco expeditius à nobis additwn eft, ita st ex erior arcus in plurimas portiunculas dividatur; neque is ordo aut numerus arcuum Sefe intror fum contomitantium, quem ille prafinivit jed mu'to expeditior \&o perfectior obfervetur, tamen quia bac fubtilitas cum ad praxin deventum eft plus babeat laboris quam fruitus, neq: it in rece \int a preftet quod prima fronte pollisetur, ut alibi plenius offendemus, idcirco apud nos dudum in ufu effe defiit. [See more of his, pag. 62. Epifolarmm Aftronomicarsm.]

From which way of Divifion, this of Hevelius (which he afcribes to Hedreus, but is more properly afcribable to Pierre Vernier, as I Thall afterwards fhew) is fomewhat different,
and pofibly might be the fame that Ticho Brabe contrived to compendifie that of A^{\top} onius.

The way then is this, defcribed by Hevelius, pag. 141: Q uadrantes contractiores ita à me funt adornati, ut limbos corums tantum in integros © Jemıyradus dijfinxer im; que ut hac dificinitio non nemini admodum rudis videatur, fufficit tamen affatim commonft andis fingulis minut is primis; dummodo perpendiculi ex centro appenfie extremitas limbumb fringens in certas particulas fit Jubdivifa, imzo quod magis de quo non nemo jane mirabitur, non jolums hac rudior limbi fubdivifio fufficiens exhibendis fingulis minutis primis Jed etiam pro denis quinis quinet iam fingulis feckndis in majoribusarganis videlicet noftrum inftrumentum direitorium adhibeas. Oportet ut inferior illus pars cur iofifime \& leviffime fit $l i$. mata \& levigata, ut limbum totum squabilifime quidem tangat, Sed nulliói nimis adhereat; tum quovis loco liberrime pendeat atq; divifionis tam quadrantis quam perpendiculi obfervator rite differnere valeat. Dividitur autem iftud perpendiculum hac ratione, fividelicet (Bat uum 31 Semigraduum in limbo perpendiculi accuratiffime denotes; idq; primum in tres aquales partes, rur fum quamlibet trientem in decems dividas; atq; ita obtinebis patiola paulo admodum ampliora quam Jpatiola unius Semijradîs, quia intercipedo 3 r partian in 30 tranfmutata neceefario fiunt modice ampliores. Attamen fo divifones perpendiculi ad limbum quadrantis accedast circa extremitates perpersdiculi, difcrepantiola illa ${ }^{\text {divifio- }}$ num ab invicem vix ac ne vix cognofitur ; circa-medietatem vero perpendiculi fatis evidenter. In medio limbo perpendiculi of diwifionum parvulus index ej quidem inter 15 On 16 Paciolum confittuitur prodifcernendis integris oo lemi gradibus; quos accurate dictus index indicat, quando totum \patiumperpendiculi in 30 partibus divifums in ipfolimbequadrantis patium 31 partium exquifite fubtendit. Ea tamen expreffa lege for ototum inftrumentumabsolute ab omni parte fit conftructum; quando vero ifte index pauxillum promotior exifit integro aliguo vel femurrdain certifimum eft indicium, observation iminut quidem adberere aut integro aut femigradui adnumeranda, fi indexs huic vel illi vicinior eft. Cognofcitur autem minutorum numerus exs eo, quando lineola aliqua divije. onum in perpendiculo cum una aliqua in limbo quadrantis pror fies in unam eandernq coincidit rectam. Nunquam eninn nifi unicalineola in perpendiculo cum altert in quadirante, $\sqrt{2}$ exquifste peraciza

Junt
funt omnia omnino concurrit. In ifo igitur utriufg; lineole concurfu ubi una eaderiq; videlicet conjtituitur linea eft terminus ip forum minutortm vel integro gradwi vel femi gradui adhareritusm.

This fame way is alfo made ufe of by Hevelius, for the Divifion of all his larger Inftruments, as well as for the Divifion of this fmalier, by fixing it upon the Perpendicular, as he alterwards.mentions, cap.s 5. pag. 307. where he alfo gives a fuller defcription ofit, to which 1 refer the Reader.

The way indeed is exceeding ingenious, and very much improved by Hevelius, but yet at the very beft it is very difficult, both to make the Divifions, and much more d fficult to diftinguith them, as may be plainly enough feen even by that very Specimen publifhed by Hevelius, in the firft and fecond Figure of the Plate T. efpecially if it be viewed with a magnifying Glafs or Lens; and I do wonder that Hevelins did not all this while think of making ufe of a Lens, to make the Divifions and Diftinctions appear more plain, without which Seconds are not to be diftinguifhed, by thofe kinds of Divifions even in an Inttrument of 10 foot Radius, and by the help of it they may be made and diftinguihed, in Inftruments of a quarter that bulk, as he may find, if he pleafe to make ufe of the thalloweft Objeet-Glafs of that Microfcope which he had from London; he may, I fay, by looking upon the Divifions of the firft and fecond Figures of che Table T. with his Microfcope, plainly deteet how far thofe Divifions are fhort of accuratenefs, and how many faults and inequalities the nakedeye and unmachined hand do commit.

It is therefore one of my ways for dividing and diftinguifhing Divifions, to make ufe of one, two, or three Lenfes, whereby not only the eye is very much eafed, but the judgment is very much augmented, and the hand directed, as I thall afterwards explain, when I come to thew fome particular ways of making Divifions.

Bur becaufe this Beriedictus Hedrews, from whom Hewelius affirms he received this invention of dividing the Limb of the Quadrant, was not fo ingenuous as to confefs that he received this invention from another, and becaufe perhaps the Beok being fmall, may have been long fince loft and forgotten, having accidentally
accidentally met with one, I fhall acquaint Hevelius, that one PierreVernier (as he calls himfelf) Capitain eo Chaftelain pour fa Majefté au Chafieaus Dornans, Confeiller, of General de fes Monnoies au Conté de Bourgongne, printed at Bruffels, by Francis Vivien, 1631. (to wit 12 years before Hedreus) a Treatife in French, which he calls, La confiruction l'usage ©́ les Proprietes du quadrant nouveaus Mathersatique, comme auffi la conftruEtion de la table des finus de ninute en minutes fucceßivensent par un feu: maxime. Deplus un abregé de ddicts tables en une petite demi page avec fon ufage: oj finallement la methode de trouver les angles äun triangle par lacognoiffance des coffez bo les coftes par les angles'fans l'ayde d aucune table. In which he hath at large and very plainly defcribed this way of dividing the Quadrant, to what accuratenefs is defired, and pretends it to be, as poffibly it was, an invention of his own.

But to return where I left to Hevelius his Divifion on the Quadrant by the help of the Brafj arm, I fay, againft this way, belides what I have already mention'd, I have a fecond Objection, and that is, that it requires a moft exceeding great curiofity and care to make that Metal Pendulum or Plumb of Brafs, fu as to be exactly of equal weight and make on both fides of the fuppofed middle Line, for if it be not fo, it may eafily vary not only fome Seconds, but even fome Minutes from its exact Perpendicularity, and if fo, 'ris to little purpofe all the former curiofity about Subdivifions.

Thirdly, The Perpendicular ought alwayes to be kept very clean from Duft, for if a little more Duft fettle on the one fide then on the other, the Perpendicularity will be vitiated, and all the curiofity elfe abour the Obfervation will be loft.

Fourthly, If the Bin on which this Brafs Perpendicular hangs be not of fome bigneis, it may eafily warp, or bend; and if it be of a confiderable bignefs, it will not move eafily, and confequently the Plumb will not hang tender, bur ftiff; in both which cafes it can be of no ufe in the World for Aftronomical Obfervations. Further, if it hang loofe upon the Center, which it muft do to hang tender, then there will lye as material an Objection againft it, for its not moving true upon the Center of the Inftrument; and therefore upon the whole matter I conclude it to be an fivention indeed of great fublimity and fubclenefs
fubtlenefs, but of little or no ufe for Aftronomy, to which Hevelius applies it. He had much better therefore have been content to have followed Ticho Brahe, and made ufe of a common Plumb Line and Diagonal Divifions, where there is occafion for them, for that is true and practicably capable of exhibiting the Subdivifions of a Degree, as Minute, as are neceffary to commonSights.

In the next pace, before he leaves the Defcriptions of thefe three fimaller Quadrants, he mentions an Invention of his whereby he fixes the Quadrant in any altitude, and eafily moves it fteadily into any pofture defired by the help of Screws This Invention of his own contrivance he doth indeed very highly applaud, infomuch that he believes no good Aftronomical Obfervations canbe made without it. But he muit pardon me if I am not altogether of his mind; I grant indeed the thing is exceedingly convenient, in comparifon with any yet ufed, if it be well made, and that the way of applying it to the Quadrant be very facil and eafie. But'tis not alway fo neceffary, but that Obfervations may be as conveniently made without it, as I thall afterward thew, in the Defcription of the moveable Axis, for continuing the Inftrument in the Plain of the Object, whether a Diftance or an Altitude be to be taken.

In the next place he proceeds to defrribe his large Quadrant of Brafs adjufted foas to take Altitudes and Azimuths, of which he makes a full and particular defcription; but the moft confiderable thing that isnew in it is, that inftead of a Screw ufed by Iicho for lifting and moving the Arm with Sights, he makes ufe of two Lines poys'd with Plumbets, by the pulling of this or that of which he is able to raife or fink the Ruler with Sights, a!l the reft of the contrivance being to make it fand perpendicularly in any Azimuth, which I think may be done to greater certainty with lefs trouble, by a way I fhall afterwards thew : As an Effential part of this Inftrument, he takes occafion to give the defcription of the Turret or Obfervatory which he built for it, and the reveral contrivances abour it, which I now omit.

The ufe he made of this Inftrument was for the taking the Meridian Altitudes of the Sun, of which he affirms to have takena very great number, efpecially fuch as were of princi-
pal ufe for the regu'ating the motion of the Sun: Such as the Solltitial and Equinoctial Akitudes, of which 1 hope we may expect an account in the fecond and third Parc of his Macthina Celeffis. I know not to what exadnefs he baih proceeded in taking his Meridian Altitudes of the Sun; but had he proceeded in the way by Telefcopes, he might have taken all his Altitudes of that kind to a fingle Secoud, with great cafe and certainty.

And upon this occafion I hope it will not be unacceptable to any Aftronomical Reader to hint a very expedirious and exceeding accurate way of making a Catalogue of all the vifibie, as well as the moft confiderable Telefcopical Stars of the Heaven. For the doing of which there will not need a tenth part fo much time as for the other wayes that have already been made ufe of, and yet will very much exceed them all in accuratenefsand certainty. The way then in thort is nothing but this: Let there be made a very large mural Quadrant, or rather Semicircle, of 3 gont Radius, fixed exactly in the Meridian againft a Wall made of fquared Stones, well joynted and cramped together, and fetled on a foundation very firm and folid, to prevent all manner of flaking and fwarving. Let the rim of this be made of Brafs Plates, ftayed in their due pofture by cramps or bars of Iron fixed in the Wall, by running them with Lead : then having divided this Semicircle into 180 Degrees, and fubdivided each Degree by the help of Diagonals, on a flat and well polifht Plate of Glafs, according to the way I before defcribed into Minutes and Seconds: adapt to it a 30 foot Te lefcope, fo that the Tube fhall not warp, nor the Glaffes deviate out of their true pofture; the Focus of the Object Glafs make to be exactly upon the edge of the Brafs Limb, fo that by the help of the Eye-glafs, which is a deep Convex, the pundual place or a'titude of a Star to a quarter of a hairs breadth, even to Seconds of a Minute, may be difcover'd : the tromble of dividing this Quadrant will be no more then of one of an ordinary fize, the fubdivifion of one Degree fubdividing and examining all the reft. The way of making the Tube of the Telefcope fo as not confiderably to bend, may be done fomewhat after that way of Atffing the Tubes of very long Telefcoper, which I communicated to Hevelius, and you will find
at large defcribed in this Treatife of Hevelius: Save only, that inftead of Ropes which I firft made ufe of, 1 rather commend. fo many Braces of Wood. Now though notwithftanding all the Diligence that can be this way ufed, the Tube do fomewhat bend in the middle, yet it can be of no manner of fignificancy as to the vitiating theObfervation; fince firft, theObject Glafs always ftandeth in the fame pofture as to theCenter, and fecondly, the Focas thereof is exactly in the edge of the Liimb.

Further, to prevent the inconvenience of looking up or inany other uneafie pofture by the help of a reflex Metal one may always look Horizontally, that is, perpendicularly to the plain of the Wall or Mural Quadrant.And to prevent the trouble and labour of moving or lifting the Tube by the help of a long yard poyfed upon Centers on a Frame before the faid Inftrument, boin the Tube \& Arm for theSight, and the Seat on which theObfervator fits, may be counterpoifed, fo that by turning a Windle, he may eafily raife himfelf with the Tube to any pofture defired. The Object Glars is juft before the Center, and the Eye Glafs looketh directly on the Divifions of the Limb, and there is nothing to ftrain or fir the Inftrument it felf, nor can the warping of the Tube, if there flould be any, have any effect on the Obfervation: Of this I may fay more on another occafion. By this means (in one Nights Obfervation) the Declinations of fome hundreds of Stars may be taken to a Second by one fingle Obfervator, having only one or two Affiftants to write down the Obfervations as faft as made. And at the fame time the right Afcenfion of every one of them may be taken by the help of a very accurate Compound-circular Pendulum Clock, which I thall elfewhere defcribe, denoting even to of a Second of time the appulfe of the Star to the Meridian: There needs indeed great exactnefs in every part of this Apparatus, and 'twill nor be done without a confiderable charge, and much labour and diligence in the performance thereof; but if we compare it with the methods and wayes that have been hitherto ufed, we fhall certainly find that the Obfervations will be near 30 times more accurate, the charge not a quarter, and the labour not near a tenth pare fo much as in other wayes made ufe of by Ticho and Hevelius. And though it may be objected againft this way (which indeed may be much more fo againft
any other) that the refration of the Air will confiderably vary the Declination of fuch Sars as are very far South, yet fince the fame Initrument affords a way beyond any in the World for the difcovering the feveral Refractions of the Air at feveral Altitudes above the Horizon, to the accuratenefs of a Second, by taking the Altitude of fuch Stars as never fet in the North, in the greateft and leaft Altitude above the Horizon; a Table of fuch Refractions will eafily redifie the Declination of the other Stars to as great accuratenefs. This Subject doth deferve a much larger and more particular Defcription of every Branch thereof, and the Incouragement of fome Prince, whofe Name and Honour will thertby be Regiftred among thofe glorious Celeftial Bodies to all Pofterity, and the fucceeding Learned World will be obliged to celebrate his memory. But I fear this Age will hardly yeild another Alphonjus, another Ticho, or another Hevelirs, who have not fpared to expend their utmoft Indeavours in performing this task, though by other methods. But leaving this.for another time, I fhall proceed.

In the third place then he goes on to defcribe his great $\mathrm{H} 3-$ rizontal voluble Brass Quadrart, of which he fays, he does not believe that ever the like was made by any, if the fplendid Apparatus and the whole Fabrick thereof be confider2d. It is in Diameter fix foot and an half, and ferves, as he affirms, to take Altitudes to Seconds; but yet he is neceffitated to allow, that it is fhort both of Ticho's large wooden Quadrant, and of his large mural Quadrant; nor do I fee any reafon why Ticho's mural Quadrant fhould not take Meridian Altitudes fomewhat more accurately, fince I believe his Sights every whit as good, and his Divifionsaltogether as exact ; what he might fail in diligence, I cannot fay. Ido believe this Inftrument to be an exceeding good one of the kind, and that he hath from much practice and experience found out many conerivances, in order to the making it convenient to makeObrervations, and he hath not fpared for coft, pains, ftudy and induftry, for the comspleating thereof; but fill whether he bearrived to the great $\in \mathbb{f}$ perfection, or to fo great as to take Altitudes to Seconds, feenis to me very dubious, and ifhe made ufe of the Sights before-defcribed, wholly imponfible. For firft, a Degree upon the Limb is but about $\frac{\pi}{3}$ of ansich, and confequently a Minate is
but the 50th. part of an inch, and a Second but the 3000th. part of an inch, which he that can diftinguith with his naked eye, hath better then I, or I fear, any man now living. Shortfighred men, I grant, can do much toward the diftinguifhing very minute Divifions, by being able to bring the Object very near the eye, but the moft fhort-fighted muft be yet very much fhortned by Glaffes, before he will be able to diftinguifh the 3000th. part of an inch, and when he hath diftinguifhed it, which he may poffibly do with a Microfcope, how will he diftinguifh of the Penumbra, which is not certain even to a Minute? And though it may be faid, it is the fame, round the Circle, and the Circle is the true bignefs of the Sun, so that if a Circle of a bignefs, anfwering to the Diameter of the Sun, and the Diftance of the lower Sighe from the upper be defcribed on the lower Sight, it muft bound the Limb of the Sun, and that confequently it will be eafie to diftinguifh when that Circle is perfectly filld with the figure of the Sun, admitted through the hole in the upper Sight. I anfwer, That this feems very probable and eafie, and is indeed believ dand afferted fo by Optical Writers: But yet 'tis quite otherwife; for not to mention that there is confeffed by all, that the Penumbra of this Circle munt be as big at leaft as the Diameter of the hole above, through which it is trajected, which cannot be lefs then a Minute; I fay, that experience doth demonftrate that it is quite otherways, and that the Limb of this Image painted on the lower Sight is terminated with a Penumbra, which is fometiues five or fix times bigger then the Diameter of the hole, and which is yet ftranger, the fualler the hole be, the bigger is the Penumbra, and the bigger (to a certain Degree) the lefs, but there is no bignefs which will take it off quite, and the Diameter of the Sun that way taken, is fometimes bigger and fometimes lefs then it ought, and that to a very confiderable quantity: Of which, and feveral other very ftrange proprieties of Light, I fhall hereafrer fay more on another Subject.

But to proceed. That he hath made this Inftrument his chiefeft, you may perceive by his pathetical defcribing thereof; for he fays of it, pag. 184. Ad commodiorem bujus quadrantis ufum, tot ac tot adminicula recens excogitata atq; buic organo applicata fuere, ut nefciam ì quibus primum inchoare debeam. Imo

[^0]etiamfi vel maxime velim, nullo tannera modo omnia ef fingula adeo perfpicue vel delineare vel deforibere potero, ut univerf ipraprimis qui Smilia haud ipfemet oculis ufurparunt quavis recte ac plane intelligant, quinetiam credas velim utut aliis funt attentiores atq; bujus rei bene gnaros, aliquoties fane bocce Inffrumentum vijuros antequam dimidiam tantam partem debite animadvertant ac ple. nifime comprehendant. Quippe Ou verum fateor nec ipfe ego, licet fingula exs meo folo cerebro prodierint ac confecta fuerint, poffem adeo diftincte tibi eum fub ajpectum ponere mija mibi bocce orgae num fub oculis a!fidue verfaretur. Nibilotames minus dabo opesam, ut quantum fieri poterit, dilucide ommia proponam, reliqua veri exercitatis cali metaloribus ulterius rimanda © perquirenda. commit am, \&c.

And fo he proceeds with the Defcription of this Quadrant, and the Apparatus about it, and firlt, hetells us of the weight of this $\operatorname{Inftrument}$, that it was 80 l . Next, of the fhape of the Turret in which it was fixt, which is indeed very convenient and ingenious, it being fo contrived, as to be voluble or convertible upon Truckles, having one only fide open, and inclos'd on all fides elfe, fo that neither the Obfervator nor the Quadrant was much expos'd to the injury of the weather, which is indeed of no fmall ufe in Aftronomical Obfervations. But this may be done many other ways alfo. He tells us further of the admirable and prodigious ufe of Screws, in order to the fetting and fixing the Quadrant. Next, As to the giving a motion to it, in order to follow the Sun and fixed Stars in their diurnal motion. Thirdly, As to perform all the Subdivifions of a Degree, not only into Minutes but into fingle Seconds. To all which I fay firft, As to the ufe of the fimall Hand-fcrews, I do grant, that in fome cafes they may have their conveniency, as to the moving and ftaying the Inftrument. But then fince he is fain to make ufe of two Screws, whereby both the hands mult be imploy'd to manage thefe Screws, I judge them too troublefom for that ufe, and that there is a much better way, whereby the Quadrant being once fer into the Azimuth of the Stars, it thall continue to be fo, and to move along with it, without any trouble to the Obfervator, fo long as the Obfervator hath occafion to have it remain fo, which (that I may hint that only now by the By) is a
finall Automaton, which fhall continue it for many hours exadty, in the Azimuth of the Star defired, of which more hereafter.

Next, Whereas he affirms this way capable to thew Seconds as well as Minutes, I grant it may be capable; but tnen 1 muft further affirm, that he hath not at all thewed how that can be done, nor is it indeed feafible in his way, for he Thews us not any way how to fet it, that is, fix it certainly to any Degree: Now if he be not fure in the fixing it exactly to a Second, upon that Degree where he would begin his Divifion, 'tis a vain thing to be fo accurate in the other Dimenfion, for he cannot be more certain, (let him be never fo curious in the Subdivifion with his Screw) then he is certain in the firt fixing of his Screw to the Degree, for whatever he varies from the Degree in the fetting, he varies at leaft as much in the Subdivifions, and confequently unlefs that be fome ways taken care of, which I do not find, 'tisa nicety without ufe.
To conclude therefore, I fay, the Frame of this Infrument is extraordinary good, and by the help of fume additions, as to the Sights, Divifions, Perpendicular and Erection, might be made as good as need be defired for any ufe in Aftronomy, and 40 times better then what it is now made and defcribed by Herelius, or then any I have yet heard of to be made in the World. But as it is, it is not more exadt then the large Inftruments of the Noble Ticho Brabe, which he ufed 100 years fince, and much thort of his mural Quadrant, for taking Meridional Heights.

He proceeds to the Defcription of his new and large Brals Sextant offix foot Radius: The Sights and the Divifions thereof are in nothing differing from thofe of the Quadrant, nor do I find any thing very confiderable in the Defcription thereof; it was made ufe of by two perfons in the fame manner as the former Sextant, and like that of Ticho; but whar grand inconveniences do attend that way of Obfervation, I thall afterwards fhew, when I come to explain how one perfon alone may be able to do it with leîs trouble by half, and $t \in n$ times more exatnefs.

But by the way, I cannot but take notice of what Hevelius ingenioufly confeffes, of the great difficulty there is in taking
the Diftance of fixt Sars from the Moon, which is from nothing elfe but the imperfettions of his Common Sights, and all that difficulty vanifhes, if the Sights be made another way. Next, He feems to make it a much more difficult bufners, to take the Diftance of the Sun from Vemus, when the is feen in the day-time; but by a way I thall hereafter fhew, it will not only be eafie to take the Diftance of the Sun in the day-time from $V_{c}-$ nus, but from e Wats, from Fupiter, nay, frous feveral of the fixt Stars.

I thall pars by therefore his Apparatus, which feems very great and chargeable, fince I fhall elfe-where thew a fingle, plain way, without any trouble or perplexity, how the matter may be quite otherwife ordered, much to the advantage of the Obfervator.

As to what he afferts of his extraordinary care, diligence and pains, in dividing and examining the truth of his Inftrument, I do no ways doubt it, but that he hath proceeded as far as it was poffible for one to do in that way he made ufe of, but might have faved much of it, if he had thought of the way by Diagonals on Glafs, which I have already defcribed. Yet I fhould have been very glad to have feen the Diftances, which he mentions to have taken of eight fixt Stars near the Ecliptick, to wit, Lucida Arietis or Palilicii, Palilicii of Pollucio, Pollucis \& Reguli, Reguli of Spice, Spice orin manu Serpentarii, in manu Serpentarii \& Aquila, Aquila o Marchab, Marchab \& Lucide Arietis, and that to fo great exaCtnefs, as not to mifs one fingle Second in the whole Circle of the Heavens, taken at eight Obfervations. For to me indeed it feenis one of the greatef affirmations.I ever met withal, and not lefs then humanely impoffible, were there no Refration in the Arr, and did all the Objects fand ftill in the Horizon, but the Refrattion of the Air, were it much lefs then it is granted by all, would neceffarily caufe a variety of a great number of Seconds. And I durft undertake to demonftrate it to any, as plainly as any Geometrical Propofition, that it was wholly impofible for him, withall or any of the Inftruments he hath defcribed, to make any one of thefe Obfervations, to the cerrainty of $30 \mathrm{Se}-$ conds, whence if that uncertainty be 8 times multiplied, it will follow, he cannot be certain in the whole Circle to 240 Seconds,

Seconds, or 4 Minutes, which how much it is differing froun one ingle Second, any one may judg.

I had many other things to bave added, which have occurr'd tome in the perufing of Hevelius his Book. but I will fay no more at prefent by way of Objeition, having, I fear, wearied the Reader, with thewing him my doubts and fcruples, efpecially about the imperfection of that way of Sights and Divifions made ufe of by him: Only, to make my Reader fome mends for his patience, I thall defcribe a thort Apparatus, which I have contrived for this purpofe, and in the doing thereof, thall be as plain and brief as poffible the matter will bear.

Since the reading thefe Lectures, the Author having been acquainted, that fome confiderable Objections had been made againft the certainty and accuratenefs of his Infruments, and. that I had affirmed it impoffible to perform what he had promifed in his Book, he returns his Sentiments thereof inaLetter to Mr. Oldenburg, to this effect :
-Cuterum percipio veffrates non omnes mibi adffipulari in ifto Dioptrarum negotio, de quibus in machine mea caleftis Organographia tractavi, verum etiamfi Cla. Hookius \& Cla. Flamftedius aliiq; plane aliter fentiant, experientia tameen quotidiana me edocuit.atq; etiamnum docet, xem longe aliter Je babere in magnis illis organis, quadrantibus failicet fextantibus of octantibus imprimis quadrantibus Azimuthalibus aliisq; quadrantibus regulis conftructis, que nempe adeo procliviter commoveri \& inverti (dum Dioptre Telefoppica examinantur) imo nullo modo polfunt, ut quidem Inftrumenta illa trium quatuorve pedum perperidiculo conffructa. Rei cumprimis in eo confifitit, quod susllam plane obfervationem furfcipere poofint fuis Dioptris Telefoopicis nifip; ius denuo eas examinent ac rectificent; in quo tamen examine varia viâ, tum jugiter utut fundiofíSime illud fufcipjatur hallucinari datur. Adbac in quadrantibus Azimuthalibus, oitantibus of Sextantibus, qua ratione examen iftud adeo accurate nunquam non baud magno negot io temporifq; dijpendio infitui po Sit, profecto nondum capio, vix mibi per fuadeo ullibi adbuc ullum aliguem maqnum quoddam $\operatorname{lnffrumentum} 6$ vel 9 pedum utpote Sext. octant. vei qua. drantem cum regula vel quadrant. Azim.cum pinnacidiis Dioptricis conftruiffe; eumpq; ad calum felici aliquo fucceffu adbibuijfe, ©ro quicquam Jolide obfervalfe; fitentafet as per annos aliquot obfervationibus
vationibus continuo invigilaffer fine dubio aliter fentiret. Hoc negotiam enim non Solum in coconffitit quod felle aliquanto diffinctius conpiciantur (quanquam fixe ab eo qui vifupollet $*$ exercitatus eft aquè bene nudis oculio difcernantur) Sed an Inftrumenta ab omni parte correcte commonjtrent, an pinnacidia Telefcopica Inftrumentis toties ad quafuis obfervationes rite imponi of tuto confervariqueant; ae quibus quidem id omni tempere aque pracije fieri poffa valde dubtto. Quare Clariflimos illos vires bumanijsime rogacos rolo ni if jampoßßideant ejufmodi vaftifima organa utporesext. octant. ©́ quadrant. Azim. Dioptris Telefcopicis munita, eaq; cxlo continuo admoncant, füpendant judiciums panlubsm, donec longa annorum ferie expertifuerint baud fuife multoties egregie elufos. Nam ex una alterave ab fervatione quadrant. aliquo levioriperpendiculo gaudenti obtentî, res hec non eft decidenda, fedfi quis per In © amplius annos affidue obfervaverint, tum ab ovo feriam felLarum reftitutionem per diftantiass fusciperit, poterit quedams certiora in medium bac de re proferre. De reliquo fatis mirari nequeo, eas omnes qui ejufmodi Dioptris Telefcopicis gardent, nondum locorum fuorum, elevationem poli ubi deguat © obfervationes peragunt, quantum fciam recte of omnino pracife determinaffe oo flabiliviffe. Hucufq; ersimad aliquot minuta integra Parijis elevatiopoli nondum eft definita, alii quippe canden obfervationems 48. 49^{\prime} alii 50°. aliii 51^{\prime}, alii 52^{\prime}, aliii 53^{\prime}, alii $54^{\circ}, 55^{\prime}$ imo ampliorem adhuc fatuerunt: ficuti legere eft ex difcertatione Perri Petiti de latitudine Lutetix, fed nolo in his prolixiun effe; ad obfervationes ipfas provoco, tempus aliquando docebit quorum objervationes univerfas accuratiores fuerint, $\sqrt{2}$ modo nonnulli cenfur ans fuam co ufq; rejicere poffent. Nam video aliquos inter ques etiama Cl . Fl acuitedit simvenitur, prout ex Epittola ad Caninuma apparet, ja ${ }^{\text {j }}$ judicium de softris qualibus obforvationibus tuliffe, priusquam illas adhuc viderant examinarunt vel quicquam de iis cognoverunt. No lo quidem vanus effe rerum mearum jartator, nec unquam mibi imaginatus fum rem in omri ifto negotio sircafcilicet reftizutienem \approx llarum fixarum acm omnino tetiviffe vel tangere poffe. Sed bocce penitus mibi imaginor fitotum iffud negotium Dioptris Telefcopicis fufcepiffem, quod non folum plurimos annos examinibus triviffem, jed jpe fine dubio varia via (de qua bic non eft difcerendi tocus) cecidiffem. Exinde gratulor mibi me ad cam fententiam nondum tranfirfe, at me mea methodo univer \int a perfecijfe fe quicquid prafitum
prefititum Dei beneficio erit: an nibil amplius (ut putat Clarif. Flamftedius) quam bactemus \& quoufq; progreffum fuerit, iliberum erit cuiq; cum deinde viderit judicium fuum exponere quinetiam integrum crit alium novum integrum catalogum Juperadditis tot ac tot centenis noxis fixis, hactenus neglectis alia ratione conffruere. Verum nondum vadeo an curá bec moleftifima, tediofilfina ac laboriofffima, qua non nifi multorum annorum vigiliis fufcipr ơ peragi poteft, aliquem adbuc ferio tangat. Ulnam aut alteram Jtellam ope Telefcopii vel Dioptrarum Telefsopicarum, dum pracipuas ac majores fixas carumq; intercapedines fupponimus cirrectas ad debitum locum deducere, tum nonnurquams difiantias nonnullas feellarum capere hac ludicra funt; fed omnes conjunctim fecundums longim or latum reffituere, tum ductu continuo fingulis ferenis diebris ac noEtibus, tam altitudinum folarium quam reliquarums fecllarum obfervationibus operams dare, eas q; orbi exponere at pateat motuums. barmonia atq; 1nftrumentorum certitudo, hoc artis boc laborzs eft. Quando obfervationes 20 vel 30 annorum fpatio continuatas ab utraq; parte aliquando babebimus, nimirum tam quie Dioptris T_{e} lefcopicis quam qua folummodo noftris ex calo deprompta funt res omnino clavior erit. Interea quilibet fruatur fuo ingenio, ac fua. ratione pro libiturem tentet. Honorificum nobis omnibus erit pro modulo noftro à Deo conceffo, rei literarice incrementum varia via promovere.

To this Letter of Hevelius I have this to anfwer, That the Author neither hath, had, nor can have any experience, to fhew Telefcopical Sights not to be as good as the Common, or that they are lefs applicable to large Quadrants, Sextants, Octants, or Azimuth Quadrants, or to any other Quadrants furnifhed with Rules, and fo fixt, that they cannor be eafily inverted, or turned, then they are to Quadrants or Inftruments of 3 or 4 foot Radius. Nor is his Reafon againft them of any validity, that no Obfervation can be made, without a repeated previous examination and rectification of the Sights, in which, fays he, notwithftanding all the care and diligence, there is a Reafon of failure and miftake. For frif, I fay, There is lefs need of rettifying the Inftruments or Sights, af. ter they have been once adjufted, then of Inftruments with Common Sights; all things being perfectly fixt, and fo ftrong
as not eafily to be iturred or removed. I now begin to fear, that he hath not a true notion of the manner of performing the fame, utherwife he would never have propounded fuch an Objection ; and indeed he feems to fay as much in the following words, Qua ratione examen illud omsni tempore commode of fine magno temporis dijpendio infitui pofkit profecto nondum capio. Though I am very forry that he fhould be fo:for firft, I thoughe I had about 9 years fance, explain'd to him the way, when I exhorted him by all means to the ufe thereof; at leaft if he had not underftood it thereby, I Thould, upon his defire, have fent him a more ample and particular Defcription thereof, or have procured an Infrument of that kind made and fitted for him here. But I fear, he had been fome ways or other prepoffeft or prejudiced againft them, before I writ firft unto him concerning them, at leaft before he writ that Anfwer, which I have before printed in the 5 and 6 Pages, for thereby it appears, that he was then of the fame opinion he feems now to continue of. And whereas he thinks, that no tryal hath ever been made of Telefcopical Sights, to a large Inftrument of 6 or 9 foot, I do affure him, (and I mif-remember. if I did not then acquaint him with as much) that I had then by mefeveral, and particularly one of Sr. Chriffopher Wren's invention, furnifhed with two Perfpective Sights of 6 foot long each, which I madeufe of for examining the motions of the Comet, in the year 1665. And it the fame thing can be better done with a Quadrant of 6 inches Radius, then he can perform with one of 6 foot the common way, I think he might have concluded at leaft, that the fame thing would be 10 times better done in one of 6 foot Radius, made after the fame manner; of this, I amfure, I gave him then an account. Now it is not with thefe kinds of Infruments, as it is with Common Inftruments, where'tis not poffible to make any better then one may be made of 3 foot Radius, becaufe that is capable of Divifions, accurate enough to reach the power of the naked eye; but Infruments with Telefcopical Sights, are capable to be made to diftinguifh minutes, feconds, nay fingle thirds, if they be proportionably augmented. Nor is there any need that a man mult make 7 years tryal of an Inftrument, before he can be certain of the greater excellency thereof, for I can be as certain with
with 3 or 4 times viewing an Object through a Telefcope, and with my naked eye, that I can fee it better, and diftinguifh many more and much fraller parts in it through the Telef. cope, then I can with my naked eye, as I could be, fuppofing I had been viewing it 20 years together. But yet I muft affure Hevelius, my experience hath not depended upon 3 or 4 tryals only; I cannot choofe but wonder why he fhould be of thatopinion, who hath not been lefs exercifed in the ufe of the Telefcope, then any at prefent in Europe: Poffibly indeed his Telefcopes were not altogether fo good as now they are made, yet fure $I \mathrm{am}$, he faw more with them then any one can fee without them, as will fufficiently appear by his Phafes of the Moon, Fupiter and Saturn. But I hope he will not wonder at me, though I do now venture to affirm, without ftaying Io years or more to make Obfervations, that I can do more with a Quadrant, Sextant or Octant, of I foot Radius, furnifhed with Telefcopical Sights and Screws, then can poffibly be done with any other Inftrument, furnifhed only with Common Sights, though $10,20,30$, nay threefcore 100t Radius; nor does it at all follow, that the Latitude of Paris is not yet exadly known, becaufe Monfieur Petit was ignorant of it; but it rather fhews, that Obfervations made with Common Sights, (fuch as I fuppofe Monfieur Petit's Intruments and others, before the publifhing of his Book were) are no ways capable of certainty to a minute or two.

But I have done, and am forry I have been forced to fay fo much in vindication of Telefcopical Sights; and that in the doing thereof, I have been neceffitated to take notice of the imperfections, that are the infeparable concomitants of Inftruments made with Common Sights. Nor fhould I have publifhed thefe my thoughts, had Inot found them fo highy decryed by a perfon of fo great Authority, fearing that hereby other Obfervators might have been deterrid from making any ufe of them, and fo the further progrefs of Altronomy might have been hindred. Nor would I willingly be thought to depretiate or undervalue the Works and performances of a perfon, fo highly meriting the thanks of all the learned World, both for his great and liberal expence, and for his vaft pains, care and diligence, in the performing a Work fo highly ufefull to

Aftronomy and Navigation, and of fuch infinite tedium, trouble, labour and coft, to the undertaker. I do not in the leaft doubt, but that it will be a Work worthy fo excellent a perfon, of perpetal efteem and fame, and much preferrable to any thing yet done of the like kind in the World, and that he hach gone as far as it was poffible for humane induftry to go with Inftruments of that kind, and that his Infruments were as exact, and complear, and fit for ufe, as fuch lnftruments with Common Sights could be made, and that he hath calculated them with all the skil and care imaginable, and deliver'd them with all the candor and integrity. But yet I would not have the World to look upon thefe as the bound or non ultra of humane induftry, nor be perfwaded from the ufe and improvement of Telefcopical Sights, nor from contriving other ways of dividing, fixing, managing and ufing Inftruments for celeftial Obfervations, then what are here prefcribed by Hevelius. For I can affure them, that I have my felf thought of, and in fmall modules try'd fome fcores of ways, for perfecting Inftruments for taking of Angles, Diffances, Altitudes, Levels, and the like, very convenient and manageable, all of which may be ufed at Land, and fome at Sea, and could defcribe 2 or 3 hundred forts, each of which fhould be every whit as accurate as the largeft of Hevelius here defcribed, and fome of them 40,50 , nay 60 times more accurate, and yet everyone differing one from another in fome or other circumftantial and effential part. And that this may not feem altogether fo Atrange, I will affure them, that I have contrived above 20 ways for dividing the Inftrument, each of them as much diftinct from each other as this of Hevelius, and that of Diagonals, and yet every one capable of as great certainty and exactnefs at leaft, and fome of them 100 times more. Ihave above a dozen feveral ways of adjufting the Perpendicularity or Horizontality of Inftruments, all as exad as the common Perpendicular, and fome of them very much more, even to what accuratenefs fhall be defired, and yet each of thefe very differing one from another. I have as many differing kind's of Sights, for improving, directing, adjufting and afcertaining the Sight, fome of which are applicable to fome particular ufes, but fome for all, by means of which that part alfo may
be improved to what accuratene \int; is defired. I have various ways of fixing thofe Inftruments, and appropriating them for this, that, or the other particular ufe. I have various mechanical ways for making and working the feveral parts of them with great expedition and certainty, which is a knowledge not lefs ufeful then the knowledge of the theory and ufe of them wheu made, there being fo very few to be found in the World that canor will perform it. I have a mechanical way of calculating and performing Arithmetical operations, much quicker and more certainly then can be done by the help of Logarithms, which compleats the whole bufinefs of meafuring Angles. Thefe I mention, that I may excite the World to enquire a little farther into the improvement of Sciences, and not think that either they or their predeceffors have attained the utmoft perfections of any one part of knowledge, and to throw off that lazy and pernitious principle, of being contented to know as much as their Fathers, Grandfathers, or great Grandfathers ever did, and to think they know enough, becaufe they know fomewhat more then the generality of the World befides: Reptat bumi quicunq; vult, Calo reftat itur, Calo tentabimus ire. Let us fee what the improvement of Inftruments can produce.

And now to make my Reader fome amends for his patience, I thall give a Specimen or two, of each of the Several parts that belong to the perfecting of celeftial Inftruments: And this I thall do, in the Defcription of an Inftrument for taking ail manner of Angles and Diftances in the Heavens, which if increafed in bulk, is capable of as great accuratenefs, as the Air or Atmofphere will ever permit celeftial Obfervations to be made. Its perfection confifts in feven feveral particulars. 1. In the Sights, which are fuch as may be made to difcover the minuteft part difcoverable in an Object, they do no ways ftrain the eye, and are fit for all Sights, whether fhort-fighted or old, \& $6 . \quad 2$. In the Divifions, which are fuch as will diftinguifh the Angle, as minutely as the Sights will diftinguifh the parts or Objects. 3 Inthe Sights, being fo contrived, that with one glance of the eye, both the Objects though a Semicircle diftant, are at once diftinguthed and feen together. 4. In the method of fetting it exactly perpendiculat to a Se-
cond,
cond, if need be. 5. In its fixation and motion, it being fo fixed and moved, that if once fet to the Objects, it continues to move along with them, fo long as 'tis neceffary to continue, or be very certain of any Obrervation. 6. In its not being difficult to be made andadjufted, and its not being without induftry and defign put out of order, and its being prefently, and with all imaginable eafe rectified and again adjufted. 7. In its not being very chargeable. Firft, For the Sights, They are no other then plain Telefcopes, made with two convex Glaffes, an Object and an Eye-Glafs, of what length and charge fhall be thought mof convenient, fixed into fquare Boxes or Tubes of Iron or Brafs, and having crofs Clews at the Focus, made with very fine Hair, or filk-Worms Clews. One of there is fixed upon the fide of the moveable Bar or Plate of the Quadrant, the Object-Glafs of which is next the Rim, and the Eye-Glafs is next the Center. The other of thefe is fixed upon the fide of the Quadrant by feveral Screws, and care is taken to keepit from bending or fagging. This Tube is made of twice the length of the former, and hath at each end an Object-Glars, each of them of the fame length with the former, and hath two Eye-Glaffes in the middle, the manner of ordering which Ifall thew by and by under the third head.

But firf I thall explain the manner of fitting a Telefcope for a Sight. Let a a bbinthe i2th. Figure reprefent a Tube, in which let p reprefent the part toward the Object-Glafs, whofe Focus is at o , and let n reprefent the Eye-Glafs, whofe Focus alfo is at o, let s reprefent the point, where the eye being placed, the whole Eye-Glars n will be enlightned and filld with the Object, then make a fmall Tube about an inch in length, and of fuch bignefs as it will juft flide within the hollow of the Tube a a b b, and crofs the Cavity of that ftrain two very fine Hairs or filk-Worms Clews, which may crofs each other in the Center of the Cavity, by.the means of which Box, the faid croffing Clews or Hairs may be moved to and fro, till they are exactly placed in the very Focus both of the Object-Glais and Eye.Glais, for if they be not there, the moving of the eye to and fro over the hole at s, will make the Threads feem to move upon the Objects, bat if they be exact-

Iy in both the aforefaid Focus's, the moving of the eye will not at all make the faid Threads feem to move upon the Object, but they will appear as fteady and fixt to the Object, as if they were ftrained and fafned to it. And though they are exceeding fmall, even as fimall as the Web of a Spider or SilkWorm, they will appear very big and diftinct, and much plainer and bigger then a Thread in the Common Sights, at the further end thereof, will to the naked eye, thoughabove 100 , nay 1000 times the bignefs, which at the firft glance will fufficiently difcover the vaft advantage there kind of Sights have above the Common ones. Nor is this way of Sights at all confined, but may be made to diftinguifh the fimallett part of the Object defirable, even the parts appearing to the naked eye, under the Angle of a fingle fecond or third of a Degree, which is fome hundred of times more curious then the naked eye can diftinguifh, without the help of them, for the Telef. cope can be made longer, and the Eye-Glars can be made deeper, and according as the Telefcope is longer, and the EyeGlafs deeper, fo will the Object appear bigger, and more minute parts be diftinguifhed, the power of the eye being in. creafed propurtionably to the length of the Object Glass, and the charge of the Eye-Glafs, and the goodnefs of them both. Now as Sights this way made, are capable of the greateft accuratenefs defirable, fo they are fo appropriated to the eye, that they no ways ftrain it, for they may be fo ordered, as to makeall thofe parts that are to be diftinguifhed, to appear to the eye under the Angle of 3 or 4 minutes, which mofteyes are able well to diftinguifh, without ufing too much attention or fraining to difcover them. This is no fmall convenience, to one that is to make many Obfervations one after another, for the eye by too much attention is apt to be fuddenly weary'd, and it doth very much harm and weaken the Sight, to endeavour to diftinguifh parts fo fmall, as appear to the eye under the Angle of a minute, very few eyes being able to reach it at all, and moft others not without much difficulty and endeavour. 'Tis furcher confiderable upon this account, that 'tis filted for all kinds of Sights: For a fhort-fighted perfon, the Eye-Glafs may be made to flide a little nearer the Crofs in the Focus; and for an old or decayed Sight, the Eye-Glais may be moved
moved a little longer or further off from the faid Crofs or Focus; for a dint Eye, the aperture of the Object-Glafs may be auguented, and the Eye-Glafs made shallower, or of a lefs charge; and for a weak, tender and curious Eye, the charge of the Eye-Glafs may be augmented, and the aperture of the Object-Glafs made lefs. And according to the feveral conftitution of the Obferyators eyes, the manner of Sights may be accommodated, which the other Common Sights without the help of Glaffes, are no ways capable of.

The fecond thing wherein the perfection of this Inftrument confifts, is the way of making the Divifions, which I think, is far beyond the Commori way, both for the certainty and eafe of making, and fecondly, for the plainnefs and certainty of $\mathrm{ir}_{\text {, }}$ in being diftinguifhed; nor is it capable of lefs accuratenefs for meafuring, then the Sights are for diftinguifhing. And it excels all the Common ways of Divifion in thefe particulars: 1. That it is made certain and not by gueff, we being not at all to depend uponthe care, credit and diligence of the Inftru-ment-maker, in dividing, graving or numbring his Divifions; for the fameScrew makes it from end to end, as you will fee by and by. 2. That the Divifions are not at all difficult to bediftinguifhed, and there is no uncertainty in the Fabrick, nor can there be any reafon of miftake, there being nothing to be looked after, but the Numbers expreffed in Figures at large, fufficiently plain to any one that can read the Print of a large Church-Bible. It excels the Common ways thirdly, upon the account of its Compendium ; for whereas by Ticho's or He velins's way, the \ln frument muft be made of 150 foot Radius at leaft, eafily and certainly to difcover and diftinguifh Seconds, in this way it may be made to do it within the compafs of 3 foot Radius. And whereas ineither of their ways, even in an Inftrument of 150 foot Radius, the Divifions are not eafily diftinguifhed and difcover'd without the help of Glaffes, in this way they are made fo eafie and plain, that a man cannot miftake, that is able by his naked eye to diftinguifh Decimals of an inch. Now that this is fo, as I affirm, the Reader will eafily underftand, if he confiders, firft, that the bignefs of a minute is hardly half an inct, in an Inftrument of 150 foot Radins, and confequently the bignefs of a fecond is but $\frac{1}{20}$ of an inch,
inch, which to a good eye is but barely a vifible point at the beft advantage, and to moft eyes is not diftinguifhable without much difficulty, and to very many not at all without the help of Glaffes. Now though Hevelius pretends to be able to do much by the help of the new way of Nonnius, Vernier, or Hedreus, yet if he confiders what I have now faid, he will be of much another mind, a Radius of ro foo: being but a 5 th. part of one of 150 , and confequently every 120 th. pari of an inch, being no lefs then 15 whole Seconds. At leaft, I am fure, he will be convinced that his own is not true, if he look upon that Specimen of it which he hath printed in his Machina Caelefits, in the Plate Γ. with a moderately magnifying Glafs, as I hinted to him before. He will further underftand the truth of my Affertion, ifhe confiders in the next place, that by the help of the Screw, I amable to make the bignefs of a Minute as much as I pleare; for fince in an Inftrument of 5 foot Radius, a Degree is fomewhat better then an inch, 'tis eafie enough to underftand, that there may be 30 Threads of a Screw in the length of an inch, and confequently there will be but $2 \mathrm{Mi}-$ nutes to fill up the whole Circle of the Index-Plate, and confequently if the Circle be 7 inches Diameter, the Circumference will be almoft 22 inches about, and confequently the bignefs of a Minute not lefs then It, and the bignefs of a Second not much lefs then the 5 th. part of an inch. Now the Index-Plate e in the firft and IIth. Figures, fhews exactly the number of Revolutions, and the Hand δ in the fame Figures, Thews the parts of a Revolution, and both thefe in Characters large and diftinct enough ; and therefore the certainty and truth of this Affertion cannot be further doubted.

The way then for thefe Divifions is this: Make a Frame of a Quadrant of hammer'd Iron, after the manner expreffed in the firft Figure, and in the Center thereof fix or raife a hollow Cy linder, whofe hollow may be about a 40 th. part of its Radius, and whofe convex part may be about a 30 th ; leave this ftanding above the Plain of the Quadrant about $\frac{1}{50}$ part of the Radius, let the out-fide of this Cylinder be made as exactly round as 'tis poffible to be turned or wrought, then make a Ruler or Plate, with a round hole in it at one end, turned, groun'd and fitted exactly about the above-mention'd Cylinder, and as
long as you defign the Telefcope for the Sights of the Quadrant, this by a Screw on the top thereof muft be kept clofe and fteady upon the faid Cylinder: Upon the end next the Limb is to be fitted a Socket or Frame with Screws, to carry the Screw-Frame fteady and firm, according to the contrivance expreft in the firft and ir Figures; this Plate muft be filed or bended at that part of it which touches the Limb of the Quadrant, fo as to lye obliquely to the Plain of the Quadrant, and to be parallel to the Plain of the Frame which carries the Screw, and upon the part beyond the Limb muft be fixt with a Screw k , the Frame hhh, which carries the Screw 999 , and the Index Plate $t t$; the contrivance of this Frame $h \mathrm{~h}$, is to keep the Screw 999 clofe againft, and very fready to the Limb of the Quadrant, and is moved to and fro upon the Limb of the Quadrant bbb, by the help of the Screw turning upon and againft the edge of the Quadrant; and this Screw by reafon of its diftance from the center and eye, (the reafon of the placing of which in that place you will undertand by and by) being too far off to be reached by the hand, is turned by a fimall Rod of Iron, 000 in the firt and If Figures lying by the fide of the Ruler or Plate, which hath a fmall Wheel q 9 , at the end next the Limb, by which the Screw is turn'd round with ir, and hath a forall Handle or Windle p p next the Center, by which it is made convenient to be fo turned round. Upon the end of the above-mention'd Screw-Frame $h \mathrm{~h}$, is fixed a round Plate $\mathrm{t} t$, which is divided into $\mathrm{r}, 2,3,4$, or 5 hundred equal parts, according as it is in bigners, and as it thall be thought convenient, which Divifions are numbred and marked accordingly, ferving to thew what part of a Revolution is made of the aforefaid Screw; for the end of the Screw 999 coming out through the middle thereof, and a Hand 8 being faftned upon the faid end, every turn of the Screw doth make a Revolution of the Index upon the faid Plate; and confequently the motion of the arm made by one turn of the Screw, is actually and fenfibly divided into $1,2,3,4$, or 5 hundred equal parts, which is fo exceeding exant, and withal fo Mathematically and Mechanically true, that 'tis hardly to be equallized by any other way of proceeding. This Defcription will be mach beter underftood by
the Explication of the Figure, and the feveral parts thereof.

Let aaaad, frc. reprefent the Frame of the Quadrant, confifting of 5 Bars, radiating from the Center, fteadyed all of them by a Quadrantal Limb, and a ftraight fubtending Chord Bar; this whole Frame is to be made of very good Iron, partly welded and partly fodered together with Brafs; the breadth of the Bars may keep the fame Proportions exprefs'd in the Figure, and the thicknefs may be about 180 part of the Radius in large Inftruments. In the Center of this, out of the folid Bar, is to be raifed a Cylinder, as d d, expreffed above more plainly in the 2d. Figure; the out-fide of this Cy linder is to be turned and wroughr, as Founders do their Stopcocks, as exactly as pollibly it can be, and the end of the Iron Plate or moveable arm c c c c, thaped as is expreffed in the 3 doand firft Figure, mult be bored and wrought upon it very well, fo as they may turn exactly true, evenly and finoothly, without any manner of fticking or fhaking, which a good Workman will eafily perform. This arm being put on the Cylinder, is fcrewed down faft by the help of a ScrewPlate, exprefled in the 4th. and firt Figures by ee, which hath two notches in it ff, by means whereof a Handle gg in the 6th. Figure, doth readily fcrew and unferew it, as there is occafion. Between this frew'd Plate and the hole of the Plate cccc, is a thin Brafs Plate, let on upon an 8 fided part of the Cylinder, that fo the furning of the Plate c c cc, may not have any power to unfcrew the Plate ee, whichotherwife it is very apt to do. Why this Center is thus made, and a bole left in the middle thereof, you will thordly undertand more plainly. Upon the Iron Limb of the Quadrant laft mention'd, is fcrew'd and rivetted a Limb of fine Brafs, firft caft into that thape, and then very well hammer-hardned and Giled, reprefented in the Figure by bbbb: This, as I faid, by many holes drilled through the Iron and the Brafs , is fcrewed and rivetted upon the iron Limb, fo as about half an inch in 2 Quadrant of 5 foor Radius doth over-hang the iron Limb, and the ends thereof extend a confiderable deal longer then the Quadrant, the reafon and ufe of which you will by and by underfand, when I give the Defcription of the Screw-Frame.

The edge of this Brafs Limb mult be, by the help of the Plate cccc, and a File or Plain, cut very exactly round, to anfiwer the Center of the Quadrant, and the upper fide thereof muft be plained exactly fmooth and flat, upon which Plain-fide the Loop-holed Plate cccc muft move, as is vifible in the Figure. This Plate at ii mult be wrenched or wreithed, fo that the Plain thereof muft ftand parallel to the Plain of the Index. Frame, and by the wreithing of itat i i, as aforefaid, there is room left for the Screw to lye obliquely, without the Sciews touching the aforefaid Plate, or grating againft it. The reafon why I put the Screw obliquely tu the Plain of the Quadrant is, that that part of the Thread which toucheth the edge of the Limb, may be exactly at right Ang'es, or perpendicular to that Plain, and confequently that the Teeth upon the faid edge, may likewife be exactly crofs or perpendicular alfo, and confequently that no bending of the Rule cecr, (to the end of which the Frame of the Screw is fafned) may at all vary the Angle, nor any unequal thicknefs in the Limb of the Quadrant, but that the turning only of the Screw fhall produce a variation, and that exactly proportionate to the number of Revolutions, and the parts thereof, Thew'd by the Index.

The way to know exactly what the obliquity of the Screw ought to be, to make the Teeth upon the Limb perpendicaJar, is to number how many Threads of the Screw there are in a known length, and what the Compafs of the faid Screw, or the Cylinder out of which it is made is, and multiplying the faid Compais by the number of Revolutions into a Product, the Proportions of that Product to the known length, will give the obliquity of the Screw, the Product being the Radius, and the known length the Tangent of cbliquity, thus; Suppore in the length of 4 inches, there be 83 Threads of the Screw, and that the Compars of the Cylinder of the Screw be 192 Centefms of an inch, Imultiply the 22 by 83 , the number of Revolutions, and it giveth me 76136 , that is 76 inches, and 36 Centefms of an inch, making this Product the Radius, and the known length, viz. 4 inches, the Tangent of the obliquity of the Thread of the Screw to the Axis thereof, or of the Axis of the Screw to the Plain of the Quadrant. The demonfration
monfration of this is Yoplain, that Ineed not infift uponit, for the length of the Thtead of the Screw is the Secant, the Compars of the Cylindet is the Radius, and the bignefs of the Thread, or the Diftance between two Threads, is the Tangent, in a right angled Triaggle, and the Screw is fuch a right angled Triangle, wound about a Cylinder, putting the Tangent thereof parallel to the Axis of the Cylinder, and confequently in the Mechanical tryal of thefe Proportions, the more Threads are taken to make that comparifon or meafurement, the more exat is the inclination found. The confideration of which doth'plainly thew, how exact a way of Divifion this by the help of the Screw is, far the whole Quadrant is thereby refolved into one grand Diagonal, the fame with the Triangle, the length of the Thread upon the Compafs of the Cylinder being the Diagonal, and the Diftance of the two ends of thofe Threads, in a Line parallel to the Axis, being the fpace to be divided by it, and confequently by augmenting the bignefs or Compals of the Cylinder, and diminithing the Thread, you may augurent the Diagonal in any Proportion affigned. Or by making the Hand or Index upon the end thereof, of double, treble, quadruple, decuple, erw. of the femi-Dianeter of the Cylinder, out of which the Screw is made, you may duplicate, triplicate, quadruplicate, decuplicate, \&r. the faid length of, the Diagona!, in Proportion to the fpace to be divided.

The next thing then to be defcribed is the Screw-Frame, made of Iron, much of the fhape reprefented by $\mathrm{h} h \mathrm{~h}$, in the firft and if Figures: This Frame, by the help of a Screw through the aforefard Plate, whofe head is expreffed by the round head k , is fixed on to the long Plate from the center, and by the help of the Screw 1 , is forced and kept down very clofe, upon the edge of the Limb of the Quadrant ; the Frame hath 4 Collers for the Screw-Pin to run againf, which are indeea but half Collers, ferving only to keep the Screw fteady; two of thefe are made with moft care, marked with mm , in the irth. Figure againft $m \mathrm{i}$, doch reft the Shoulder of the Screw Pin 3, which is kept clofe home againit it, by the Cylinder gg, in the iotand II Figures; the fharp Conical Point of this Screw 9-9, goeth into the Conical hole, at the
end of the faid Cylinder ggg . The fhape of this Cylinder, and the Screw by which it is forced againft the end of the Screw 99, is reprefented in the roth. Figure; 7 in the 9 th. Figure reprefents the Conical Point; 3 the place lying againft the Col er mi; 6 the Screw that moves upon the edge of the Limb of the Quadrant; 5 the Nut or Pinnion by whith the Screw is turn'd by a Rod from the Center, expreft alone in the 8th. Figure, but the manner how it lyes in the Frame, is expreft by pp 000 in Fig. r. ooo reprefenting the Rod; p p the Handle by which it is turned; qq the Nut or Pinnion that turneth the Pinnion 5 of the Screw; sr the Collers or Holes that hold it falt to the moveable Plate or arm of the Quadrant; ss reprefentech two finall pieces that clip the edge of the Limb, and ferve to keep the Screw-Frame fteady and true in its oblique pofture, and move equally on the Limb, by a frong fpringing of one fide of it; tt reprefenteth the Index-Plate, which is divided into what number of parts are thought necerfary, 1, 2, 3, 4, or 5 hundred parts, according to the bignefs of the Thread of the Screw a! 6, a greater Thread requiring a more minute Divifion, and a fmaller Thread requiring a more grofs. There Divifions are pointed at by the Index 8 at the end of the Screw, and the number of Revolutions or Threads are marked on the Limb of the Quadrant, and pointed at by the Tongue e e, upon the which is fafned a fmall Pin f, ferving to carry a Lens over the Point of the Tongue, which maketh the number of Threads appear more plain and big: The manner of doing which upon the Frame of the Screw, is fo eafie, that I thall not fpend more time in the Explication thereof, and the manner of making the whole hufrument, will be eafie enough to any ingenious Workman; but if any perfon defire one of them to be made, without troubling himfelf to direct and overfee a Workman, he may imploy Mr. Tompion, a Watchmaker inWater-Lane near Fleetfleet; this perion I recommend, as having imploy'd him to make that which I have, whereby he hath feen and experienced the Difficulties that do occur therein, and finding him to be very careful and curious to obferve and follow Direations, and to compleat and perfect his Work, fo as tomake it accurate and fit for ufe.

By the help of thefe Indices, 'twill be eafie and plain to fee how many Revolutions of the Screw, and what parts of a Revolution make a Quadrant of a Circle, and confequently 'iwill be eafie to make a finall Table, which fhall thew what parts of a Quadrant, divided into Degrees, Minutes and Seconds, will be defigned by the Revolutions, and parts of the Revolutions of the Screw. As for inftance, If I find that 1600 Revolutions and 1912 make a Quadrant, then 171788 Revolutions make a Degree, and 1296 Millefus of a Revolution make a Minute, and about 5 Millefms make a Second, thence'twill be eafie to find (if you obferve) an Angle to contain 294358, that is, 294 Revolutions, and 358 Millefins of a Revolution, that the Content of that Angle in Degrees, Minutes and Seconds, is 16 Degrees, 32 Minutes, and 47 Seconds, which is plain enough, and much lefs fubject to miftake, then the common way made ufe of. I thall therefore proceed to

The third particular, wherein this'Inftrument excels all others, and that, is, That oneObfervator with a fingle glance of his eye, at the fame moment doth diftinctly fee, that both theSights of the Inftrument are exacaly directed to the defired points of the two Objects, and this, though they be removed by never fo great an Angle, nay, though they are oppofite to each other directly in a Line. This, I queftion not, will by all that know any thing of Initruments, or celeftial Obfervations, be accounted one of the greateft helps to fuch Obfervations, that was ever found out. For whereas other Inftrumentsrequire two Obfervators, for taking a Diftance in the Heavens, and Ticho generally made ufe of four, amongt which there was neceffary fo unanimous a concurrence in their readinefs and certainty, that the failure of any one fpoyl'd all the reft, and made the Obfervation become uncertain and of no ufe; and fuch Inftruments as were contrived for one Obfervator, were accompany'd with fo great difficulty, in the adjufting to both the Objects, being both in a continual and fwift motion, and but one to be feen at once, that they were generally left off and dif-ufed, there being fo vaft a trouble and fatigue of looking now upon one, then upon another, by many repeated tryals, and fo many new fettings of the Inftrument to the Objects in motion, before the Sights could be adjulted, befides the
great uncertainty at the beft, of feveral Minutes of the truth In this way, the Obfervator has no farthertrouble, then firft, to fet the Plain of the Quadrant in the Plain of the Objects, and by the Screw to move the arm of his Inftrument, till he perceive both the Objects to toucheach other, in thofe Points he would meafure the Diftance between. That this is fo, he will eafily perceive, when he underfands the method of fo adapting two Telefcopes, that by looking in at ont fmall hole in the fide of one of them, he will be able to fee both thore Objects diftinclly to which they are diretted, how much foever reparated. The way then of doing it is in flhort this.

Joyn them together at one end, by a hollow Joynt that has a hole through it, about $\frac{3}{4}$ of the hollow of the Tubes, prepare two fquare Tubes of Wood, Brafs, Iron, \&r. of what length you pleafe, and directly againft the Center of this hole in the Joynt, make a finall hole, about the bignefs of the blackef partor pupil of the eye, fo as the eye looking in at that hole, may fee perpendicularly into the lower Tube, then obliquely place two pieces of reflecting Metal, very well and truely poo lifht, fo as to reflect the Axis of both thofe Tubes, perpendicular or at right Angles, which is by fixing the Plain of the Plates, inclined to the faid Axis, in an Angle of 45 Degrees, let the upper reflex Plate reach from the upper fide of the Tube, fo low as to touch the Axis or middle of the Tube, and let the lower extend over the whole Tube, from the top to the bottom, and from one fide to the other. Thefe will be known to be duely placed, if looking in at the fmall hole againft the Center of the Joynt, the two round holes of the Tube do appear to the eye to coallefce into one, and that the eye fees direally through the lengths of them both alike. Then into thefe Tubes fic two Telefcopes, with convex Eye-Glaffes, and crofs Threads for Sights in their Foci, that they may be both of them at due diftance from the eye, looking in at the fidehole, then opening thofe Tubes upon the faid joynt to any Angle, and looking in at the fide hole, you shall plainly diftinguifh atonce both the Objects, thar are brought into the Tubes directiy, and reflected up to the eye.

That this may be the plainer underflood, I thall add a Delineation thereof in plano.

Let

Let $\mathrm{a} a \mathrm{~b}$ b in the r 2 th. Figure reprefent the upper Tube, and cece the lower Tube, and let dd reprefent that part of the Joynt, which belongs to the lower Tube, at one ead, by which they are joyn'd together, and can be open'd in the manner of a Sector. Let i reprefent the hollow or center of this Joynt, which communicates the Cavities of the two Tubes. Let e e reprefent that part of the faid Joynt which belongs to the upper Tube, being only a hole through the lower fide, big enough to incompars the Cylinder $d d$ of the lower Tube; and let r r reprefent a Plate fcrew'd or pinn'd on, to keep the parts of the Joynt together inftead of rivetting. Let s reprefent the hole in the fide, by which the Eye h is to look in, and f the reflex Mettal in the upper Tube, reaching only half way the Tube, and $\mathrm{g} g$ the reflex Metral in the under Tube, reaching over the whole Cavity; then will $n o$ and p reprefent the Eye-Glafs, Sight-Threads, and Object-Glafs of the upper Tube, and kl and m the fame parts in the lower, and whatever Angle the Tubes make to each other, whilft they open upon the before-mention'd Joynt, the Eye h looking in at s, will fee direetly by the Axis of them both, and fee the Sight-Threads diftinctly croffing the Points of the Objects, whofe Diftances are to be meafured.

There being thus explain'd, I fuppore, it will be no difficult matter for any man to conceive, how there may be apply'd to the above-defcribed Quadrant; for 'tis but cuppofing c c, the upper fide of the under Tube in this Figure, to reprefent a p a p, the fixt fidearm of the Quadrant, and dd the Joynt of this, to reprefent dd the Joynt ofthe Quadrant, and bb the under fide of the upper Tube, to reprefent ccc the moveable arm of the Quadrant, and applying two Tubes to there parts, and fitting them with refleding Plates, Eye-Glaffes, Sight-Threads, and Object-Glaffes, at due Diftances, the whole will be performed.

Thefe Tubes thus fitted, will ferve to take any Angle lefs then a Quadrant, to what exactnefs i; defired, but for bigger Angles, the Contrivance muft be fomewhat varied, the Defcription of which I hall now add.

Let either of the two Tubes for the Sights, be made of double the length of the other, that is, let it be as long behind the

Center as before it, and make the Reflex. Glars, that it may be turned round, and reflect the Ray exactly backwards, as before it did forward, then fix into shis other half of the Tube a Telefcope-Sight, in all things fitted, adjufted, and like the other two, then adjuft them, that they may look forwards and backwards in the fame like, which being done, the Reader will eafily underftand how any Angle may be taken, even to the extent of two right ones: For'tis plain enough, that the two Tubes I firft defcribed, apply'd to the Quadrant, will meafure any Angle to a Quadrant or right Angle ; and 'twill be as eafie to underftand, how by the help of the Reverfe-Tube, any Angle between a Quadrant and two right Angles may be meafured.

To make this a little plainer to the Reader, let cecce in the 12 th. Figure reprefent the under Tube or fixed Sight, s the hole or Eye-cell, $t r$ a round piece carrying the reflex Mettal gg ; this is made to turn round, and the reflecting Mettal g g being fixed to it within the Tube, is carried round alfo with it. Let siklmx reprefent the Ray paffing forwards by the Eye-Glafs, Thread-Sight, and Object-Glafs; then this round piece tr being turned and made rt , as in the 13th. Figure, is reprefented, and with it the reflecting Mettal gg_{g} here marked qq , being turned alfo: the Line sq klmy will reprefent the Ray reflected, and paffing backwards by the reflex-Mettal q q, Eye-Glafs k, Thread-Sight l; and ObjectGlafs y.

The meafure of the Angle is found by the fame Apparatus or Screw-Plate; for as much as the Screw-Plate would thew the Angle lefs then a Quadrant, if the fore-part of the Tube were ured, by fo much is the Angle more then a Quadrant, if the reverfe or back part of the Tube be ufed; and the fame reafon of the accuratenels and certainty for the one, is good for the other, without being lyable to any manner of Objection or Inconvenience.

It remains therefore now only to thew, Firft, How thefe two Perfpedive or Telefcope Sights, placed within the fame Tube, may be made to look exactly forwards or backwards in the fame Line. And fecondly, How they fhall be adjutted to the Telefcope, fixt upon the moveable arm of the Quadrant,
fo as to know when the Divifion-Angle begins, and when they are open'd to a Quadrant, right Angle, or 90 Degrees; for unlefs there be afcertain'd, and fixt to as great a meafure of accuratenefs, as the contrivance of the Screw is capable of dividing, or the Telefcope-Sights are capable of diftinguifhing, or the Perpendicularity afcertain'd, all the pains, care, induftry, and curiofity, beftow'd about the other, are of no ufe.

Firft then, For fixing the Thread-Sights of the two Telefcopes within the fame Tube, fo as to look directly forward and backwards, care mult be taken, that every one of the four Glaffes, that" is to fay, the two Object-Glaffes, and the two Eye-Glaffes, muft be fo fteadily and fecurely fixt into the Tube, that they cannot by any means be ftirr'd or removed; the manner of doing which, I fuppofe, fo exceeding eafie, that I need not fpend time in defcribing a way to do it. Next, Sufficient care mult be taken of the ftiffnefs of the Tubes, that they may not warp or bend. Thirdly, One of the ThreadSights muft be fixt as finnly and fecurely as the Glaffes, and fo, that the croffing of the Threads may be, as near as polible, in the Axis of the Object and Eye-Glars, the other Thread-Sight mult be left free, till by feveral tryals it be found to ftand exadly in the fame Line with the firt ; the manner of doing which, I hall now defcribe.

There being two Threads which crofs each other, the one Perpendicular and the other Horizontal, care muft be taken, that both there lye exadty in the fame Lines with the Horizontal and Perpendicular Threads in the othec Sights; and in order thereunto, there mult be two Frames of Brafs, reprefented in the. 29 and 30 Figures of the 2d. Plate, of the bignefs of the hollow of the Tube; thefe muft have groves made in the Tube fit to receive them, in which they may by the help of Screws be moved, and made to flide to and fro, as there is occafion, for their adjufting. Next, They muft lye fo clofe together, that the Hairs may touch each orber. And thirdly, They mult crofs exactly in the Focus of the Object and EyeGlafs. One of thefe Frames muft carry the Perpendicular Thread, and by a Screw in the fide of the Tube, muft be moveable to the right or left fide, as there is occafion; the other

Frame muft carry the Horizontal Thread, and by a Screw in the top of the Tube, mult be made to rife or fall in the Tube, as there is need. The Mechanical Fabrick of which is fo eafie, that, I hope, I need not fpend time in the further Defcription thereof, but refer the Reader to the 29 and 30 Figures.

Thefe things being thus done, from the top of fome Turret, or any other Station, where two oppofite places at a confiderable diftance, as half a mile, or a mile or two, can be plainly feen, find out two Points, which, at the firft looking through your Glaffes, you find to be thewn out by the Croffes of the Thread-Sights, then note thofe Points very diligently, that you may be fure to find them and know them again, when you have removed the Glaffes; this done, turn the ends of the Tube, and (if you were looking Eaftwards and Weetwards) turn that part towards the Eaft which before looked Weftwards, and vice verfa, and find out the two Points you faw in the former Obfervation, then direeting that part.that hath the fixt Threads, to the Point that was feen before by the moveable Threads, find out the other Point, which you will be fure to fee within the compafs of your Eye-Glafs, and obferve how far the crofs Threads are now removed from it, either Northwards or Southwards, upwards or downwards, then, as near as you can, by your judgement halfthat Difference, and by the Screws move the Frames, that the Threads may fland in the middle between the two Points, then take notice again of the Points thewn by the Threads, and curn the Tubeagain: Do this fo many times, till you find upon converting the Tubes, that you fee the fame Points to be marked by the Croffes of the Thread-Sights, with which end foever you look on them, and then the Tube will be exadt and fit for ufe.

The reafon of this adjufting will be fufficiently plain, to any one that thall confider the isth. Figure: Where let v reo prefent the middle of the Tube $t u b$, or the place of the Eye, and let w reprefent the Object feen Weftwards, and e the Object Eaftwards, at the firft view; then keeping the middle of the Tube exacily upon the fame Point u, turn the end of the Tube t towards the Eaft, and the end b towards the Weft, and find out firf the Eaftern Object e, and finding the
other Crofs to direct now to the Point p, and not to w, divide the Diftance between the Point w, and the Point p, as exactly as you can, in half, which if you chance to hir exactly at firft, it will be the middle Point m, but if you do not, but ynu rectifie it only to r, then by the next turning of your Tube you will find s, where you muft again rectifie to half the Difo ference between s and r; now the Difference being grown yet lefs, you will a 3d. or 4 th. time fet it fo exattly, as to fee the Points m and e, which lye in the ftraight Line with the Center of the double Tube.

The 4th. thing wherein this Ouadrant exceeds the Common, is for its accuratenefs for taking Atitudes; and this is done by the help of a Water-Level, for adjufting the exact Perpendicularity thereof. This Level may be made and fixed fo exadly, that any Dbfervator may be fure of the Level of his Inftrument to a Second or two. The Level it felf is norhing but a fhort Tube of Glars, about 6 or 8 inches long, Hermerically fealed at each end, and filled with a Liquor that will not freeze nor grow foul with ftanding.

The Glafs, as near as can be gotten, thould be Cylindrical and ftraight, it being the better the nearer it be to a ftraight, provided it have a fenfible bending or fwelling in the middle, the gibbous part of which fhould be fet upwards, and a proper Cell and Box made for it of Brafs.

This Glafs is to be filled almoft full of diftill'd Water, to whichabout 23 d . part of good Aqua-fortis or fpirit of Niter hath been pur, to keep the fame from freezing, and alfo from growing foul, then carefully fealed up Hermerically, and p aced in its Box of Brafg, and with hard Cement fixed into the fame, which by Screws is fixed to that fide of the Quadranr, that is to lye Horizontal.

The Brafs Box being thus fixed to the right fide of the long fixt Tube ap ap ap, and underneath the Quadrant, fo as not to hinder the free movement of the arm c c c, as at xx ; the next thing to be done, is by it to fet the Quadrant truly Horir zontal, which is thas performed.

Setting the fide apapap Horizontal, and the Limb of the Quadrant upwards, and looking in at the Center, take notice of two Objeds in the Horizon opfofite to each other,
obferve the limits of the bubble of Air on the top of the Liquor, on each fide of the middle of the Level, and make a mark, then turning the ends of the Quadrant, retit, till the ends of the bubble ftand as in the former Obfervation; then Jook again at thofe Objects in the Horizon, and find what the difference is between thefe oppofite Objects, and thofe in the former Obfervation; then halve the difference between them as near as you can, and by your eye fet the Sights to the middle between them, by inclining the Quadrant, then by the Screw that rectifies the Level, fet the Glars-Level fo, that the ends of the bubble may be equally diftant from the middle, and convert the Quadrant again, and fee if the ends of the bubble ftanding at the fame marks, the two oppofite Telefcopei-Sights do fee the fame Objects, for if fo, you are affured of the perfect Horizontality of the Sights, upon the fixt arm of ap ap; but if you do not find it to direct to the fame Objects, continue examining and converting, till you find it perfect.

Now this way of Perpendicular being fubject to the inconvenience of heat and cold, which doth rarifie and condenfe the Liquor, and confequently make the bubble of Air lefs or more, care muft be taken, to mark all the varieties of thofe kinds of the bubble, that are caured by the degrees of heat and cold, which you may thus eafily effect.

Reduce the Liquor in the Tube of the 24th. Figure, by the belp of Ice and Salt, to as great a degree of cold as you can, then by the method newly directed, fer the Quadrant Horizontal, and mark the two ends of the bubble with 44, then by gently applying heat to the ambient Air, warm likewife the Water, and obferve the expanfion thereof at both its ends, and mark them on the Glafs with the point of a Diamant, as 33.22.11.OO. which beng done, it will be exceeding eafie at any time, to adjuft the Quadrant to any accuratenefs defired, by being careful to fee, that the two ends of the bubble be proportionably extended, as to 00. I. 22.33 .44 , \&oc. or to any intermediate fpace.

The Coneri vance of faftening and adjufting this Level to the Quadrant or other Inftrument, will be very eafily underftood, by the Delineation thereof in the 24 th. Figure.

Let a a a a reprefent the Frane or Plate of Brafs, which by four Screws $d d d d$, is fixed to the Tube, as before. This Plate hath 4 upright Cheeks, b b, c c, between which the Brafs Box eeee, (into which the Cylindrical Glafs-Level ff, is fixed with bard Ceusent) is held fteady, without any manner of fhaking. This Brafs Box, at the end of it near the right hand, harh a Pevors, which are fitted exactly into 2 finall holes in the Cheeks cc, and at the other end next the left hand, hath a finall Screw-Pin g, which holds it down fatt to the bottom Plate, and keeps it from rifing out from between the Cheeks $b \mathrm{~b}$, which a very ftrong Spring lying underneath it, between the Plate a^{2}, and the Box ee, would otherwife force it to do. Ey this Screw the Level is to be adjufted to the Sights of the Quadrant, by the way I juft now defrribed, and being once thus adjufted and fixed, "tis not eafily put out of order, without moving or altering the Screw g, which may eafily be prevented by too Contrivances.

The Rearon of the accurateners of this kind of Level, will be eafily difcover'd, if we confider, that the upper part of the Tube being very near to a fraight Lithe, is confequently either a part of a Circle of a very gieat Radius, or of fome irregular Curve, very near of the fame nature with a Circle, as to this bufinefs of Levelling, and confequently a Degree of the fame will be proportionably large, and the flexure of the Tube may be made of a Curve of fo large a Radius, that every Second of Inclination may caure a change in the Level of a very fenfible length,

This can hardly be performed by the ordinary way of Plumbers, without hanging from a valt height, which is not practicably to be performed, without almoft infinite trouble, expence and difficulty, and when done, can be of no ufe in the World, as any one will grant, that confiders the vaft Apparatus that is requifite to obviate the great unfteadinefs of Buildings, the motion of the Air, and amultitude of other incumbrances.

Now the Curmature this way made may be a portion of a Sphere of 1000 foot Radius, or more, if it be defired, and confequently a Minute of the fame will not be lefs then $\frac{29}{100}$ of a foot, and every Second will be almoft half a Centefm of a foot,
foot, which is fufficiently diftinguifhable to the raked eye. So if the Glafs Cyliader be 9 inches long, it may contain two whole Minutes of fucha Circle between f and f_{1} and one between 4 and 4 , and confequently the faid Glafs may be fet Horizontal to the certainty of a Second, which is hardly to be afcertain'd any other way.

Bus there remains yet one great Difficulty, how to be able tomade fuch a Curviture, for though the thing be true in theorys yet is it not trithout fome trouble, put in practice. Very few Glafs Canes are fo conveniently bent, as is defirable, and 'tis as difficulc to find them true ftraight.

To prevent this, If Glais Canes be ufed, there mutt be much care taken, and many tryals made, for the finding what pieces, and what fide of thofe pieces will be moft fit for this purpore, for our Glafs-Houre Workmen know not yet a way, certainly to draw them of this or that curviture or ftraightnefs, nor are they eafily ground into a ftraightnefs or curviture by the Glafsgrinder aftervards, though that can be done with fome trouble. But diligence and tryal will quickly find fome piece or other, that will be fufficiently exad for any tryal, among thofe which are only drawn at the Glars-Houte. I made ufe of one of another form, fuch as is defcribed in the 25 th. Figure, whichI I found to do exceeding well, the dark part reprefenting the Water, and the lighter part the Air. This was made of two Glafes, drawn in diftinct Pipes at the Glafs-Houre, but joyn'd together in the Lamp, and the upper part of the larger or under Tube, was incurvated with its convexity downwards, fo that the Water touched the middle part, and the bubbles of Airat each end thereof, communicated together by the fimall Pipe above. I tryed alfo amother way, by which I was more certain of the truth of the Curvity, and could make the Curvity of a greater Circle: This was by a long piece of a Looking-Glafs-Plate, ground very fimooth and polifhed, which by the help of Screws I bent upon the circular edges of a brafs prifmatical Box, and cemented the fame very tight, with hard and foft Cenuent; this Plate had a hollow Channel ground in it the length thereof, which fervid to keep the bubble in the middle. By this means, "tis not difficult to bend fuch a Plate, into the Curviture of a Circle of 50 .
$60,100,1000$ foot Radius, and the Brafs Box can eafity be made to fill or empty, as there fhall be occafion for the ufe thereof, fo that the Bubble may be at any time left, of what bignefs flall be defired. It will be conventent alfo to varnith the in-fide of this Brafs Box with Lacker-Varnffh, very thick and clore, both to keep it from rufting, and alfo to preferveit from being corroded by Aqua-fort1s, whenfoever there fhall be occafion to pur it in, for the cleanfing the inward tarnifh and foulnefs of the Glafs-Plate. This? urvity of the upper fide of the Level may be made, by grinding the under fide of fuch a long Platé of Looking Glafs, upon a Convex G afs-Tool of $50,60,100$, ro00 foot Radius, and polifh:ng the fatue ac* cordingly of that Figure: The Curvity of the faid Plate isexprefs'd in the 26 th . Figure. Now what by this way may be done with Water and Bubbles of Air, the fame may be done with the fame Glaffes turned upfide-down, by the help of an exactly round and polifhe Cylinder or Globule of Glaiss, Chryftal, Cornelian, Agate, or other exceedingly hard and clofe Stone, after the manner reprefented in the 27 th. Figure, for the Ball or Cylinder will naturally roll to the loweft part of the Concavity, and there ftand. But in the doing of this, great care muft be taken, that the Globule be exactly round and polifht, and that the Concavity of the Plate be as fmooth and well poiifht, and that they be both very clean and free from duft, otherwife the Cylinder or Globule will be apt to ftand in a place where it fhould not, and confequently produce confiderable errors.

And here I cannot omit to take notice of a very curious Level, invented by Sr. Cbr. Wren, for the taking the Horizon every way i_{n} a Circle. Which is done by a large Concave, ground and polifht on a very large Sphere, and the Limb of it ground and polifht on a flat, for by placing the fame Horizontal, and rectifying it by a finall quantity of Quick-filver, poured into the Concavity thereof, 'twill be eafie, by looking by the flat polifht Limb, to difcover the true Horizon. The only inconvenience I find in it is, that the $\$$ hath fame kind of ficking to the Glafs, but a fimall Chryftal Bowl, I fuppofe, may remedy that inconvenience, and make it fit for ufe.

The 5th. thing wherein this Inftrument is made to excell
others, is in its eafineffes to be adjufted to the Objects, and in this, that being once adjufted, the whole Inftrument is fo order'd, as that it will remain conftant to thofe Objects, though they are moved. The want of this is fo great an inconvenience, in all other Infruments hitherto made ufe of, that almoft all Oblervations have been thereby vitiated. And Hevelius, to prevent and obviate this, hath found out many Contrivances, but they are fuch, as though they do it in part, yee 'tis but in part, and that with much rouble and inconvenience. I need not fpend time to thew, how many inconveniences his way by 4 feveral Hand-Screws, to be managed by 2 Obfervators at the leaft, is fubject to; they are indeed fo many and fo great, that it was not without very good reafon, that he fo often appeals to experience, for the truth is, there was great need of long practice and much experience, to be able to make an Obfervation in that way well, the removal of every one of thofe Screws, having an influence upon every one of the other, fo as no Screw could be turn'd, but the whole Inftrument was put out of its due fituation, and both the Objects being continually in motion, the wholeInftrument was to be rectifi'd every moment. There was therefore neceffary fo great a judgement and dexterity, to manage every one of thofe Screws, that without an acquired habitude and handinefs by long practice and experience, nothing could be done to any certainty, nay, not even to that little accuratenefs that the common Sights are able to reach. But this, though it were a very great unhappinefs to Hevelins, that he was not furnifhed with better Contrivances, yet it no ways tends to his difpraife, for his moft extraordinary and indefatigable care, pains and induftry, is fo much the more to be admired, efteem'd and honour'd, and will be fo much the more, by fuch as have by experience found the difficu'ty, of waking any one Obfervation certain in that way.

But that he or any other, that hath a mind to make further Tryals and Obfervations, may be freed from this incollerable trouble and difficulty, I have thought of this following Inftrument, by means whereof the Quadrant being once adjufted, and fet to the Objeets, will continue to befo, for as long a time as thall be defired, without at all requiring the help of any one hand of the Obfervator, though he be but one.

My way then in fhort is this: I make an Axis of very dry and firong Dram-Fir, of a bignefs thick enough for its length, to defend it from bending; at the lower end of this, I fix into the middle of it, (well bound and hoop'd about with Iron) a Center or Point of Seel, very well turn'd, hardned and hharp, which is to move ina conical hole fit to receive it, of as good and well hardned S eel ; at the other end of this Rod, I fix another piece of Steel into the middle thereof, that, immediately contiguous to the Wood, hath a Neck very weli turn'd and hardned, a little tapering from the Wood outward, which is to be moved in a Coliar fir for it, as I thall Thew by and by $;$ and at a convenient Diftance from the fald Neck, as at fomewhat more then half the Radius of the Inftrument, is made a Cylindrical Neck, fitted with a Collar of Brass, with a Joynt, and other Apparatus, large enough to carry the Table and Inftrument firm and true, without fliding or yielding in its Socker, after it be once fet. This Axis by the Collar and conical hole below, I place parallel to the Axis, which by fome tryals is eafily enough adjufted; about the Cylindrical Neck, at the upper end of this Axis, is a Socket of Brafs faftned with a Screw. which Socket clafpeth in a Joynt, a fhort Arm, which hath at one end a Ball that is fitted into a Socket, that is fixed under the Table and Frame of the Quadrant, and at the other end a Counterpoife of Lead, to ballance the weight of the whole Apparatus, about the Quadrant, upon the middle Line of the long Axis, then the Table and Quadrant is rectifi'd, fo as to lye in the Plain of the two celeftial Objects, whether Planets or fixt Stars, and by the fmall Screws in the Sockets it is fixt in that Plain. What further adjufting is requifite, is done by the help of fimall Screws in the Quadiant it felf, which are eafio ly enough conceiv'd without Defcription. The Table being adjufted to the Plain of the Objects, with the Quadrant on it, and all counterpois ${ }^{\circ}$ d pretty near by the paifes underneath the Table, and the fixed Sight directed to one of the faid Objeats, the faid Table and Inftrument continues to be in that Plain, fo long as is defired, without any farther trouble to the Obferver, though the Objects continually change their places, and the fixt Sight remains directed at one of the Objeets, till the other can be found by the moveable Sight. To effect which
motion of the Table and Inftrument, a Watch-work is fitted to the Axis, foas to make it move round in the fame time, with a diurnal revolution of the Earth, and confequently to keep even pace with the feeming motion of the fixt Stars; the manner of doing which is thus: About fome part of the Axis, where 'tis moit convenient for the Roon in which 'tis to be ufed, fix an Octant of a Wheel of 3 foot Radius, let the Rim of this be turn'd true to the Centers of the Axis, and cut the edge thereof into 360 Teeth, there being fo many half minutes of an hour in the 8th. part (f a whole Revolution, though there minutes and hours which refpect the fixt Stars, will be confiderably fhorter then the fotar hours; then fit a Worm or Screw to thefe Teeth, that one revolution of the Worm being made in $\frac{x}{2}$, a minute may move one Tooth forward; the revolution of the Worm is adjufted by a circular Pendulum, which is carried round by a Flie, moved in the form of a one wheel'd Jack, from a fwafh too hed Wheel, faftned upon the fhank of the Worm or Screw above-mention'd; the weight that carries round this Wheel mult hang upon the fhank of the Worm, and muft be of about a 3d. or 4th. part of the weight of the Quadrant and Table, that it may carry it round fteadily and ftrongly; and the circular Pendulum mult be fo order'd, that the Obfervator may at any time of his Obfervation either fhorten or produce the length thereof, fo as to make it move quicker or flower, as there thall be occafion, which is done, by fliding the hole upon which the Pendulum makes its conical motion, a little higher or lower, without lifting up or letting down the Pendulum, or elfe by winding up the Thread.of the Pendulum a lictle fhorter, or letting it down a little longer, by the help of a Cvlinder, above the hole or apex of the Cone, in which the Pendulum is moved.

This whole Conerivance will be fomewhat better underftood by a Delineation. Let $a b$ then in the 15 th. Figure reprefent the Axis of Fir or Iron, c the conical Point at the Eottom, d the conical center or hole in which it is to move, e the Collar above, in which the tapering Neck of the iron Par f is to be moved. The Axis of this is to be placed as exactly as may be, parallel to the Axis of the Earth: at the end or head of the Iron $f g$, is fitted a Socket $h h$, with aScrew $4 ;$ which
will fix it to the head in any pooture. This Socket $h \mathrm{~h}$ in the 15 and 16 Figures, hath a large Joynt to be ftiffied by a Screw 5, in which Joynt is moved a ftrong Bar of Iron, about 4 foot in length, to wit, 2 foot on each fide of the Joynt, the one end 6 hath a large weighe or counterpoife of Lead 8, which ferveth to counter-ballance the whole weight of the Frame and Inftrument upon the otfor, and can be fcrew'd either nearer to or farther from the Joynt, as there fhall be occafion for poifing; at the other end of the Iron is a large Ball of Iron 7, to which is fitted alfo a Socket of Brals 9, with a-Screw to fix it and move it, as there fhall be occafion. This Socket is faltned under the middle of a Table ss, upon the plain fide of which the Quadrant is to lye. Upon fome convenient part of this Axis is fixed an Octant or Sextant of a Circle, reprefented in the 15 th. Figure edge-ways, and in the 17 th. Figure broadways, by 33 ii , whofe circular edge 33 is cut into Teeth, as before is diretted; unto thefe is adjufted a Worm or Screw k, which is the Axis or Arbor of the Wheel 111; this Wheel is moved round by the weight x, whofe Line is coiled round the Barrel $\mathrm{u} u$, and with it it turneth round the Flie nn , by the help of a Screw m, fixed upon the Arbor oo, in the manner of the Flie of a one wheel'd Jack; this Flie moveth circularly the Fendulum p p, in the r 5 th. and 29 th. Figures, which is fhortned or lengthned, by flipping up and down the Cylinder $q \mathrm{q}$, the Thread of the Pendulum being faftned at r .

I fhall not now fpend any more time in the Explication of the making or contriving the circular Pendulum, referving it for another opportunity and Difcourfe, wherein I thall thew feveral ufeful Contrivances and Inventions about the fame, and particularly about this and fome other Experiments of motion, which was the caufe of the Invention thereof by me long fince, in the vear 65 . Upon which occafion, I cannot but take notice of a Publication, made by Cbrifianus Hugenus Zulichemius Conft. F. in his Book call'd, Horologium O Coillatorium five demotu Pendulorum ad Horologia aptato demongirationes Geome trice ; containing a fhort Defcription of a circular Pendulum. with fomewhat about the Explication of ir, without naming, me at all, as concern'd therein, though I invented it, and brought it into ufe in the year 1665 , and in the year 1666 , I
communicated it to the Royal Society, at their publick Meetings, boch as to the Theory and Practick thereof, and did more particularly explain the Ifocrone motion of the Ball of a Pendu'um, in a parabolical Superficies, and the Geometrical and Mechanical way of making the fame move in fuch a Superficies, by the help of a Paraboloeid, which I caufed alfo to be made and thew'd before the fame Society, upon feveral days of their publick Meeting, where befides many of the Society, were divers ftrangers of forreign parts. This many of the Royal Society can bear me witnefs, and the publick Regifters thereof do ceftifie and make appear, and I was told by Sr. Robert M_{0} ray, that he did then write to Monfieur Zulichem concerning the fanse. But of this more hereafter, when I examine fome other things in that Book, about finding the defcent of heavy Bodies, and of finding the Longitude of places, and publifh fome more certainand pradicable ways of doing them.

This puts me in mind of publifhing an Invention, which I made and produced before the Royal Society, in the fame year 1666, much about the fame time that I produced the Theory and Experiment of the circular Pendulum complear, which I call'd the perfection of Wheel-work, as being indeed founded on a principle capable of the greateft perfection can be iunagined. It is in fhort, Firft, To make a piece of Wheelwork fo, that both the Wheel and Pinnion, though of never fo finall a fize, fhall have as great a number of Teeth as thall be defired, and yet neither weaken the Work, nor make the Teeth fo finall, as not to be practicable by any ordinary Workman. Nest, That the motion thall be fo equally communicated from the Wheel to the Pinnion, that the Work being well made, there can be no inequality of force or motion communicated. Thirdly, That the Point of touching and bearing, thall bealways in the Line that joyns the a Centers together. Fourthly, That it thall have no manner of rubbing, nor be more difficalt to be made then the common way of Wheel-work, fave only that Workmen have not been accuftomed to make it.

Firtt then, If there be a certain number, and no more ot Teeth required to be made in a frall Wheel, then muft the Wheel and Pinnion confift of feveral Plates or Wheels, lying one befides the other, in the manner they appear in the 2oth.

Figure.

Figure. Where fuppofe it be required, that the Whee! fhall have 1000 Teeth, and the Pinnion 100 , and yet that the Teeth both of the Wheel and Pinnion have fufficient firength: rake ro Plates all of equal bigneis and thicknefs, and by 2 or more Screws fix them firmly together, as if one Wheel, cut this Wheel into 100 Teeth, and compleat it, then fit the middle hole upon the round neck of an Arbor, then unfcrew the Plates, and place them in fuch order, that the Teeth may gradually follow each other, much after the manner as is expreft in the 20th. Figure, (though it be there very ill expreft, by reafon of the miftake and failure of the Graver) and with fuch fteps, that the laft Tooth of one Degree, may within one ftep anfwer to the firft Tooth of the next Degree. I call the to Teeth comprehended within the ligbter part, abcd, or efgh, or iklm, a Degree of Teeth in fteps, and dcfe, or hgki, are Degrees of Notches between the Teeth, and the Tooth b c, which is the latt towards the right hand, fhould have been placed within one flep as low as eh, the firft of the next Degree on the left fide, (though it be much otherwife here graven) whence all the inequality in the touching, bearing or rubbing, in a Wheel-work thus well made, would be no more then what could be between the 2 next Teeth in one of the Degrees, which would be much lefs then a 1oth. part, of what muft neceffarily happen in a Wheel ofone Plate of 100 Teeth only.

Secondly, If it be defired, that the Wheel and Pirnion fhould have infinite Teeth, all the ends of the Teeth in the Degrees of the 2oth. Figure, muft by a Diagonal flope be filed off, and reduced to a Atraight, as in the 21, which may indeed be beft made by one Plate of a convenient thicknefs, which thicknef, muft be more or lefs according to the bignefs of the floped Tooch. And this is to be always obferved in the cutring thereof, (though it be otherwife and very fally expreft in the 21 Figure) that the end of one flope Tooth on the cne fide, be full as forward as the beginning of the next Tooth on the other, that is, that the end bc of one Tooth on the right fide, be fult as low as $e h$, the beginning of the next Tooth on the left fide, (though by the Gravers miftake it be here quite otherwife expreft.) I thall not fpend more time in explicating the Pinnions, rstu, rstu, of the 20 and 21 Figures, whichare toan-
fwer the Teeth of the Wheels, tney being plain enough to any perfon a litcle verfed in Wechanicks, and becaufe the further and more full Explication of the form and reafon of this and other Wheel-work, is comprifed in another Difcourfe, which I may afterwards publifh.

But to proceed where I lefr at this Digreffion, to the finifhing of the Defcription of the Inftrument for moving the Quadrant, fo as alway to refpect the Object. The conical hole, in which the end of the Axis is to move, may be made after the form expreffed in the r8th. Figure, where aa a reprefents an iron Frame fcrew'd faft to the Floor, b b b b the iron piece, conraining the conical fteel hole, c c c c 4 long Screws, by which the piece is moved and fixed in any part of the fpace, included within the Frame aaaa; this by a ftrong fpringing Frame underneath, is kept down clofe to the Superficies of the Floor, and cannot in any wife totter or thake. There is no great difficulty in the Contrivance, and therefore I fhall proceed.

In the next place then, having fhew'd the way how to keep the Inftrument, in the Plain of two Objects that are to be obferv'd, I Thall thew, by what means a Quadrant may be kept always Perpendicular, and in the Azimuth of the celeftial Object. And this I do, by a finall addition to the former Contrivance; that is, Let $a b$ in the 22 Figure, reprefent the Axis defcribed in the former Contrivance, accommodated with all the Contrivances of the moveable Center below, of the Clock-work of the circular Pendulum, to keep it moving equally round in the middle, and of the Collar e above. But unto the finall Neck f muft be joyn'd a femi-circular piece of Iron $c d$, with a Center-hole ineach arm at c and d, to receive the Pevots i i, of the circular piece of Iron x, in the 22 and 23 Figures; upon the fecond Floor o 0 , muit be ftedfaftly fixed a Bow or Frame of Iron h h, which muft have a hole through it, exactly over the middle of the Plate x, this is to be a Collar for the Neck k, of a perpendicular Axis Ik, which by means of a moveable Center fixed in the cieling, in which the Point 1 moves, may be exadly adjufted to a Perpendicularity; to this Axis at right Angles is Gixed a Frame $m \mathrm{~m}$, fteadied by the Brakets or Braces nn ; upon this Frame the
the fixed Sights of the Quadrant, are laid and adjafted to an exat Horizontality, and the Plain of the Quadrant being once adjufted to the Plain of the celeftial Object, will by the circular Pendulum moving the Axis ab, in an equal motion with that of the ObjeCt about the Axis of the Earth, be always kept in the Plain of the Object, whole Azimuth and Altitude is to be obferved. Now the mation of the under or inclining Axis ab, is commanicated to the perpendicular Axis 1 k , by means of the circular Plate x, in the 22 and 23 Figures, for the femi-circular Arms cd of the lower Axis, taking hold of the Points ri of the Plate x, and the femi-circular. Arms of the upper Axis, taking hold of the Points $2 \boldsymbol{z}$ of the faid Plate, the perpendicular Axis is moved in a proporionate motion with the inclining Axis a b , which Proportion is Geometr1cally and ftrictly fuch as it ought to be, to keep the Plain of the Quadrant exactly in the Azimuth of the celeftial Object, as any one never folittle verfed in Geometry, will eafily find; and I fhall hereafter more at large demonftrate, when I come to fhew, what ufe I have made of this Joynt, for a univerfal Infrument for Dialling, for equalling of Time, for making the Hand of a Clock move in the Shadow of a Style, and for performing a multitude of other Mechanical Operations.

The next thing I have to explain, is the way of finding how many Revolutions of the Screw, and what parts of a Revolution go to make a right Angle, or 90 Degrees upon the Quadrant. For the doing of which, I mult, in a place where I can have a good Profpect for a femi-Circle, firft diredt both the Sights of the Telefcopes directly at the fame Object, and the fame Poine thereof, and then rectifie the Indices to o, or the beginning of the Divifions; then I turn the Screw, till as near as I can meafure with Compaffes, the moveable Telefoope hath moved a Quadrant, and through the three Telefcopes take notice of three Points in the Horizon, that is to fay, two Points exactly oppofite one to another, in refpect of the Center of the Quadrant, and a third pretty near the middle between them, in the fame refpect, which I further adjuft thus; I thew'd before how I rectifid the fixed Sights, fo as to look exactly forwards and backwards, which being accordingly done, I obferve the fuppofed rightAngle, with the moveable Sight ontheQuadrant,
and with the Sight fixt on the Quadrant looking forwatds, and note diligently the twoObjects pointed at; then withour moving the Screw, or moveable Arm upon the Quadrans, I find thofeObjeits through thenioveableSight, and the fixtSight, lookingbackwards, and directing one of the Sights exactly to one Point, I obferve, howmuch the other doth wary from the otherObject,either by being within it or without it; then I half that Difference, as near as I can judge by my Sight, and move the moveableSight by the help of the Screw, fo as to refpect the middle Point: Then I obferve this fecond found Angle, by the fixt Sight looking forwards, and by the moveable Sight, and fee whether there be any Difference, and if I findany, as near as polfible, I adjuft it again, to half this laft Difference, and fo continue to examine and adjuft, till I am certain, that the Angles on each fide of the moveable Tube, between the fame and the Sights, looking forwards and backwards, are equal to each other, and confequently are both right Angles, or Quadrants of a Circle. Which when I have found, I obferve, by the Indices on the Screw-Plate and Limb, how many Revolutions, and what part of a Revolution, the Screw hath been turned to open that Angle; this Number I fet, as the Number anfwering to 90 Degrees, and dividing that Number into 90 equal parts, I have the Numbers that belong to every Degree, and dividing the common Differeace between them into 60 parts, I find the Numbers anfwering to the Minutes of the Quadrant, and dividing the common Difference between the Minutes into 60 parts, I eafily make the Numbers anfwering to the Seconds; but there will be needlefs, for fubducting the next Number, lefs then it in the Table from the Number obferved, you have the Degree and Minute, and fome Number perhaps over, which may prefently be found by one finall Table of the common Differences of Seconds. See page 55.

Hexe methinks I hear fome object pollibly, That the Divifyons on the Quadrant, do notexaclly correfpond to the Divifions madeon the Plate. 1 anfwer, That in past they do, and in part they do not. Firf, They concur, in that all the Divifions made by whole Revolutions, thew exactly the fame by the Indices, that they do upon the Quadrant. Secondly, I fay, in part they do not, that is, the parts of any fingle Revolution,

Lution, are not exaaly and Mathematically the fame pointed out by the Index, upona Ring equally divided, that are made upon the Limb of the Quadrant. But yet, I fay, they are fenfibly equal even to the fenfe, affitted by a 60 foot Telefcope, and confequently need no manner of rectification; but yet if any one will be fo curious and nice, he may make the Divifions on the Index-Ring, according to the proportion of the Differences of the Tangents, that are fubtended within balf the compafs of the diftance of the two next Threads. As ruppofe in the above-mention'd inftance, half the Diftance of two Threads be the Tangent of three Minutes, or thereabout; if we examine any large Table of Natural Tangents, we fhall find the Differences between the Minates themfelves, even till fix Minutes, (which is much more then double three) doth not differ above one or two parts of a thoufand thoufand, which is ro00 times more nice, then our Sight, even with Glaffes, can arrive to, much lefs then will be the difference between the Differences of the Seconds; and therefore it will be a nicenefs meerly notional, and of no ufe, and as fuch, ought to be omitted, and the plain and equal Divilions made ufe of, they being as to all fenfe true and perfect, and proper Divifions, though as to curiofity of Theory and Calculation, unequal.

Now I have done, poflibly fome may fav, To what purpofe all this curiofity? To which I anfwer, That though poffibly in many common cafes stis of but litrle value, yet I conceive in general, that it is of infinite value, to any that fhall defign to improve Geography, Aftronumry, Navigation, Philofophy, Phyficks, efrc. And to inftance in fome particulars, I conceive,

Firft, That one ufe of this Inftrument, may be for taking the exad Refraction of the Air, from the Horizon to the Zenith ; by which we fhall be able not only to rectifie all Ob fervations, and clear them from Refractions, which in fome Obfervations, efpecially thofe of Parallax, is abfolutely neceffary, but it may give us a new means to judge of the qualities and conftitutions of the Air, as to the feafons of the year, and the semperature of the weather, which are to fucceed. For'tis molt certain, that there is as great a variety in the re-
fractivenefs of the Air, as there is in the heat and cold, gravity and levity, drynefs and moifture, rarefaction and condenfation thertof, and fometimes when none of thofe do feem at all to be fenfiblyalter'd, its refractivenefs hath been very much varied, which change does feem to proceed from fome alterations in the upper Regions thereof, far removed from the Superficies of the Earth, and is fometimes many days in defcending and fermenting, as it were deeper and deeper; into the lower Regions of the Air, before it defcend ro low as the bottom thereof next the Earth. But of this much more in another place.

A fecond ufe is for regulating the places of the fixt Stars, as to their Longitudes and Latitudes, and Diftances from one another, efpecially thofe within the Zodiack, by which we fhall in a fhort time be able to judge, whether thofe Bodies that we account fo fixt and conftant, do not vary their Pofitions one to another, which I have very good grounds to believe they do.

A third ufe of this Inftrument, is for regulating the places of the Planets, by their Appulfes to thofe fixt Stars, fo that not only Aftronomy will be perfected, but the Longitude of places upon the Earth, (a thing fo highly advantagtous for Trade and Navigation) will of confequence follow, which without fuch an Infrument as this, is in vain expedied from the Heavens.

A fourth ure of this may be for ftating the exact Latiude of places to a Second, whereby we thall quickly know, whether thofe Latitudes do vary, as well as the variation of the Loadftone, which hath been conjectur'd, not without fomewhat of probability, but is bardly to be determined, without fome fuch accurate way of Tryal, as this Infrument is capable of performing.

A fifthure of it may be, for examining what influence the approach or recefs of the other Planets have upon the Earth, as to its Periodical motion, and what influence the Earth hath upon them as to theirs; for I have good ground to believe, each of thefe to have influence upon one another, and to caule fuch motions, as have hitherto much confounded all Afronomical Hypothefes and Calculations: Of which I flall fay more on another occafion.

A fixth ufe may be for meafuring the quantity of a Degree upon the Earth; the beft Experiment of that kind, that is yet publick to the World, is that of Mr. Norwood, made between London and York: But if we examine with what Inftruments he made it, we fhall find, that he was not certain in either of his Latitudes to a Minute, and confequently could not be certain of the quantity of the Earth, anfwering to his fuppofed wark to two miles, and confequently it could not be made the common ftandard of all meafure. But by the means of this Quadrant, all Latitudes may be certainly taken to a Second, and confequently the error in 150 miles, cannot be more then the 3oth. part of a mille, and confequently a foot, or yard, or rod, this way fated, cannot varyabove a 6000 part of its length, which is fufficiently accurate for a univerfal and common ftandard of all meafure and quantity, to which all other meafures in the World fhould be referred and proportioned. This was the occafion of the contriving and making theresf; His Sacred Majefty having commanded me to fee that Experiment accurately performed, and to give Him a true Account thereof, which had been before this performed, had not my indifpofition of health prevented.

A feventh ule may be for meafuring the Diftance bet ween two places, exadly in a ftraight Line. This it will perform to admiration, by the exactnefs of taking the Angles, if fome leng h be exactly meafured at the place that is to be the Object, infomuch that 'cis hardly poffible, by any other means in the World, to come to that exadnefs, nay, though there were a continued Plain extended between the two places, whofe Diftances are to be found, and the fame were carefully meafured with Chains, Rods, or Wheels. By this means the Diftance of a Ship on the Sea, can be found more exactly, then any other way whatfoever, by one or two Stations, and a multitude of Philofophical Tryals under this Head, which are not practicably to be done with any tolerable accuratenefs, by other way's.

An eight ufe may be for taking the exact Diameters of the Sun, Moon, and Planets, even to a Second, and the Diftance of the fimaller appearing Planets from the fixt Stars, near adjoyning. Now becaufe for this Defign, itmay perhaps feem a little too
cumberfon, and by reafon of its fhort Tubes, fonewhat too finall, I have therefore contrived an 1nftrument of 6 times the length or radius, which will take in an Angle of about 5 Degrees, and yet take in the whole Angle by one glance of the eye, and determine the meafure thereof to lefs then a Second. I have likewife invented and made a new Heliofcope, by which the Body of the Sun may be look'd on as inoffenfively to the eye, as a fheet of white Paper; of great ufe for fuch, as will make Phyfical Obfervations of that glorious Body. Thefe I will in fome enfuirg Papers defcribe.

A ninth may be for exatly taking the Level, for the conveyance of a River or Water from place to place; and under that Head of performing infinite of Philofophical Experiments, which can hardly be try'd by any other way in the World, about the Refractiveners of the Air near the Earth, whereby diftant places fometimes appear, and fometimes difappear, under the Horizon. By this means alfo the Rotundity of the Earth may be truely found, vaftly furpafing any thing performed by the beft Levels yet known. To this we may add, the height of Hils, if their diftance be known, or their diftance, if their height be known.

I could have enlarged upon thefe, and have named divers others; but defigning it only as an Anfwer to fuch, as may captioully put fuch a Queftion, I fhall rather leave the pleafure of finding them, to frich as fhall really feek them, to be afo fifted thereby in their own undertakings.

$F I N I S$

Errata.

P
 r.Fig.32. p.13. 1.28, r. Fig.3 1. p.181.39. r.fruciuram. p.2 1.1.26. r.dexa minuta. p. 2 I.l. 27 .r.dif criminatim. p.22.1.3.r. Fig. 35 p. p. 8.1 .1.34-
 radmoveant. p.40.l.39.dele \int e.

A

 DESCRIPTION

 DESCRIPTION}

O F

HELIOSCOPES,

And fome other

INSTRUMENTS

MADE BY
ROBERTHOOKE, Fellow of the Royal Society.

Hos ego, \&c.
Sic vos non vobis-..
LONDON,

Printed by T. R. for Fobw eVartyn Printer to the Royal Society; at the Bell in St, Pauls Church-yard, 1676.

A

DESCRIPTION

0 F

HELIOSCOPES

And fome other
INSTRUMENTS.
 HE neceffary avocations of bufinefs, and the urgent importunity of fome, for the fpeedy publication of my Animadverfions, made we conclude them in the Eleventh fheet, without ftaying to Explicate Reveral things which I defigned to go along with thenl. But having now retrieved a little more of leafure, both for Delineation and Defcription, for a further elucidation of what I have faid, I thall make it my third Attempt, to explain:

Firt, \mathcal{A} Heliofcope tolook upon the body of the Sum, without any offence to the Obfervers eye.

Secondly, A way of fbortning reflective and refractive Telefcopes.

Thirdly, A way for afing a; Glafs of ang length, withowt noving the Tube.

Fourthly, An Inffrument for taking the Diameters of the Sun, Moon and Planets, or for taking any other Diftanses, to fire or ten Degrees, to the certainty of a Second. Two of there I promifed in the 78 th . or laft page of my Animadverfions, and the other fall in as analogous to them.

Fifthly, An Inftrument for defcribing all manner of Dials, by she tangent projection.
-I. For sdjufting the Harsd of a clock, fo ns to make it move in the Sadono of a Dial, pobofe fitle is parallel to the Axis: Or,
2. In the Azimuth of any Celefitial Body, that is, in the Jbadow of ass upright, or any other mpay inclining

Sixthly, The ufes: thereof: Style, upon any plain.
3. For making a Hand move according to the truciaquation of Time.
4. For making all manner of Elliptical Dials, in Mr. Folter's poay, obc.
5. For communicating a circular motion in a Curve Line, woithout any baking: And for divers other excellent purpofes.

And firt, For a HELIOS CO P E which Jball So take of the brightnefs of the Sun, as that the weakeft ege may look upon it, at any time, without the leaff offence. My contrivance is, By often reflecting the Rayes from the furfaces of black Glaffes, which are grownd very exaally, flat, and very well polifhed, fo to diminifh the Radiations, that at length they become as weak and faint as thofe of the Moon in the twilight, fo that one may with eafe, and very much pleafure, view, examine and defcribe the phafe of the Sun, and the macula and facule thereof, if any fuch happen to appear when the Obfervation is made, and it gives a good opportunity of difcovering them, before we have any advertifement thereof from others. The reafon of which will be fufficiently plain tofuch as confider, how great a quantity of the rays of Light
is loat by every reflection, and that every reftetion doth duplicate, triplicate, quadruplicare, quintuplicate, \&c. the firtt proportion of lofs. For Inftance:

Suppofe I have a Heliofoope made of an Objec: Glars, an Eye Glafs, and four Refiecting Glaffes, and that, by the firft refletion, I lofe $\frac{3}{4}$ of the Dired light, I affirm there will remain but $\frac{1}{356}$ part of the Direct rays of the Sun, which can fall upon the eye at the laft, for if every reffection doth lofe $\frac{3}{4}$ of its Rays, and reflect but $\frac{5}{4}$, and that quarter lofeth $\frac{5}{4}$, and refletts only $\frac{1}{4}$ of its received Light, there will remain but $\frac{1}{16}$ part of the whole, and if this fixpeenth part lofeth three quarters of its Rays, and reflects only a fourch, it will follow, the remainder will only be $\frac{1}{a 4}$ part of the whole, and if that be once more reflected, the Ray will return but with $\frac{2}{2,6}$ part of its firft lighr.

This, although it be obvious, and eafie enough now it is known, yet I do not find that any Perfon hath yet bad thoughts of applying it to this ufe. The generality of Obfervers have hitherto made ufe of, either fome very opacous and thick Glaffes next the Eye, whether of red, green, blew, or purple Glafs; others have diminithed the Radiation, by covering the Glaffes with a very thick and clofe coat of the foot of a Lamp; others, by cafting the figure upon a piece of white Paper, whence 'tis reflected to the eye; Others have contraated the Aperture into a lefs circle, and thereby let in lefs Light, and fo make ufe of one fingle Ray inftead of a pencil of Rayes; Others have expanded the figure of the Sun, by the help of Eye Glaffes, into a circte of ten, twenty, or an hundred times its Liameter. But none of all thefe waies do come near this which I now detcribe by the help of three, four,or more Reflections, as any one upon trial will very plainJy difcover.

Firft, As to the coloured Glaffes, 1 cannot at all approve of them, becaufe they tinge the Rayes into the fame colour, and confequently take off the truth of the appearance, as to Colour; befides, it fuperinduces a hazinefs and dimnefs upon the Figure, fo that it doth not appear fharp and diftinct. The fame inconvenience is alfo produced by Monfieur Hugenius's way, of covering the Glafs with the foot of a

Lamp, though not to fo great a degree. The Figure on paper, or 2 fmooth white furface is not magnified enough, nor the difference of Thadows fo very diftina, though that doth very well, if the furface be very frooth, and the Objed be magnified by a Hand Glars. That by the contratied Aperture is the worft of all, by reafun of a certain propriety of Light not taken notice of yet by Optick Writers, the edges of Objects feeming ragged, of which I have hinted fomewhat in my Animadverfions, pag. 35, and thall fhortly fay much more, the whole ground of Opticks depending thereon.

The way of expanding the figure of the Sun by the Eye Glafs, to me feems the beft of all the reft, But that is apt to vitiate the Figure, to fuper-induce fomewhat of Colour, and doth not give the fmalleft diltintions of lights and Ghadows, without fomewhat of colour, and fomewhat of hazinefs and. dimners.

The Glaffes of this HELIOSCOPE may be made either by refraeting or reflecting Spherical Glaffes. The beft way for raking in a large Angle, is, the ufing refracting Glaffes, both for the Object and Eye Glaffes; but the belt way for taking in a finall part, and for avoiding hazinefs, dimnefs. and culuurs, is, by Reflection, either in part, or in whole; that is, either to make the Object Glars only by way of RefleCfion a and the Eye Glafs by that of Refraition, or, both the Objed-glafs and Eye Glafs alfo by reflection, and to have no refraction at all. The feveral waies of doing which I have reprefented in the adjoyning Table, wherein I have expreffed tenfeveral waies of placing the feveral Glaffes, fo as to be fit. forthe ufe defigned.

The firl way reprefented in the firf Figure, is, a fixty foot Objec-Glafs, contracted into a twelve foot Tube, by the help of four reveral Refleding-plates placed between the ObjectGlars and Eye-Glars. The Experiment of doing which, I produced and thewed before the Royal Society, at divers of their publick Meetings at Arundel boufe, in the year 1668, and it remains upon their Regifter.

This (as I then thewed) would be of exceeding great. ufe. in all manner of Perfpectives and Telefcopes, if we could find a good material that would make the Reffections very ftrong
and full. And that would nor be fubjea to lofe ies Figure, whichall our fpecular Metrals are very apt to do 3 for, by ir, 'twould be poffible to contract the Tubes for long Glaffes into very fhort lengths, and fo make them of eafie ufe and wa. nage.

This I attempted with feveral forts of Mettal, made with 4, if, δ, Antimony and Arfenick, but moft of thefe compound Mettals I found to be very fipongy, and confequently in the laft polifh to receive, though a very glaring polifh, yet fuch as did much confound the Object by a kind of hazinefs, efpeo cially if Putty be ufed to glafe it, and, for this purpofe, Putty muft not in any wife, that I yet know of, be ufed, it heing fo very apt to round off the edges of pores or ficratches, which does much contribute to the hazinefs and confufion of the Ob ject.

If I made ufe of Glaffes foil'd with Quickflver, which I found to give much the beft reflection, yet I found this inconvenience, that a confiderable part of the Flay was loft, by the double reflection at the unfoil'd fuperficies of the Glafs. The firf from the furface of the Glafs before it entred; this, as it weakned the Ray, fo mingling with the other refleetion that came from the bottom, it created fome kind of hazinefs and confufion, if the two fuperficies of the Glafs were parallet, but if they were not parallel, it fuperinduced fomewhat of Colour, unlefs it were helped by a contrary refraction in a fecond Reflecting-glafs, after the manner of that which is delineated in the fifth Figure, where let a b reprefent the ObjectGlafs, cg the firf Reflecting plate, whore thinnett fide is to σ_{i} and d the fecond Reflecting-plate, whofe thinneft part is towards θ, which doth thereby take off the firft Refraction of $\operatorname{g} g$, and deltroy the Colours fuperinduced by the firf. The Ray alfo was weakned mach more from the fecond reflection it fuffered at the unfoil'd fuperficies of the Glafs, from the refle Aion of the Air, or ather, which is much fronger than that of Glafs, at its re-entring into the Air. Befides this, I find that the fubftance of moft Glafs is fo imperfectly mixt, that there is in the very beft much of veinynefs and inequality of Refraction in the parts thereof, and thence, though
there
there wereno vifible vein appearing in the body of the Glafs, and though both the furfaces thereof were very truly figured and polibed, yet there was fome kind of dimnefs fuperinduced upon the Objects, by the rays paffing through thore Glaffes. But this was not in all, for I found fome that did very well anfwer my expectation, and I am very apt to believe, that if a pot of Glafs were made on purpoie, by a way I know, the body thereof might be made perfealy clear, uniform, and tranfparent, without blebs, veins, or fands, which, when I have leafure and opportunity I defign to experience farther But this only by the by, in relation to the fhortaing the Tubes of Telefcopes for the Moon, Planets, and other Objects, becaufe it is notat all to our prefent purpofe of making a Heliofoope, where we make ufe only of the reflection of the firt fuperficies of the Glars, and where our main aim and defign, is, the lofs of the ftrength and brightnefs of the Rays, and net for preferving the ftrength and brisknefs of the Rays, or augmenting them. And therefore for this ufe, the beft material I have yet met with, is, black Glafs, black Marble, and Glafs of Antimony. For there fubftances being very dark and opaque, do reflect but a very fmall part of the Raies that fall upon it, and none of thofe that penetrate into it,efpecially if they be thick; and being of a very hard and permanent fubftance, are capable of receiving a very curious and exact polifh, and qualified fufficiently to retain and keep it, withou: receiving injury from the Air, or ordinary wiping.

But in the making of thefe Glaffes for Long Telefoopes, very great care and diligence muft be ufed to make them of a true tlat, and fo much the more, by how much the nearer they are placed to the Object-Glars, and the further from the Eye-Glars; a little errour at a great diftance from the eye being vally magnified to the eve at that diftance, whereas a greater becomes infenfible, if it be near the eye. Let $a b$, in the firf, reprefent a fixty fion Glafs, whofe focus is at θ; let $a c d \in f o$, and 6 gbik o, reprefent the wo fide Rayes of the pencil of light, this Pencil, by the four Refleaing furfaces ($\gamma, \delta \theta, \Leftrightarrow, \zeta x$) is broken into five fhorter lengths ($n \delta$ anf wering to $c d, \gamma \theta$ to $g b, \delta \in$ to $d e, \theta \in$ to $b i, \quad \zeta$ to $c f$, and $\& x$ to $i k$, and Jaftly,
lafty, $\}$ • and $\times 0$, to $f \circ$ and $k y$ as will befufficiently plain to any one that will but zonfider the Scheme

By this way four fifths of the length of the Tube is taken away, which is the molt that can be taken away by four Reflections, every reflection running the whole length of the Tube, a leffer part of the length may be rakenaway in any proportion affigned, as in the fecond contrivance, defcribed in the fecond Figure, two thirds are taken off, when the fame Letters anfwer to the Object-Glars, Eye-Glafs, the flexures of the fide Rays of the Pencil, and the Reflecting-plates that maise thofe flexures. The third and fourteenth Eigures seprefent the Tube Shortned by two or three reflections, and f_{0} ferves to florten the Tube by two thirds only. Thefe are of ufe for a very frong Eye and with a finall aperture of the ObjectGlafs, and when the Sun is near the Horizon, or its light is a little diminifhed, by a Fogg, thin Clouds, or the like.

If it be thought more convenient to have this long Tube to lie alwaies Horizontal, and confequently, that there fhould be no need of having a Pole or Engine to raife the Tube: It may be framed fomewhat like that in the fourth Figure, where the fame Letters anfier to all the parts above-wentioned, or elfe like that in the fixth Figure, the Letters of both which being the fame with the former, will eafily explain them.

Now in all thefe, and 20 other contrivances of this nature, with one, two, three, or four Reflecting-plates which may te prefently thought of, the fight is diretted exactly at the Sun, fo that there will be little difficuity of finding it afier the Glaffes are fixt to their due lengrths and pofitions.

I explained alfo at the fame time to the Royal Society, at their publick Meeting at Arundel-boufe, feveral other waies of facilitating the ufe of very long Glaffes, for otber Objects in the heaven, by the help.of one Reflecting plate only, and that was by a Tube fized, either perpendicularly, horizontally, or obliquely, for it mattered not whether as to the feeing the Object in any part of the Heaven, fuppofing other circumflances hindred not, and the object could be as eafily found as by the common Telefoopes of the fame length. But of thefe elfewhere.

Thefe contrivances with four Reflecioions, may be made ufe
of by fuch whore fight is weak, but fuch as can endure it fomewhat brighter, and would fee the parts more Atrong, may make ure of one of three Reflections only, like that of Fig. r4. which doth beft fuit my eye.

Next, this Heliofoope may be made by Refleczion only, without any Refraction, and that may be done either in the manner of that in the feventh Figure, when a 6 reprefents a concave furface of a black Glais, whofe focus is o, which, for Inftance, we will fuppore at the diftance of forty foot, $6 d$ reprefents a clear plate of Glais of two flat furfaces, which are made not parallel but a little inclining, fo as the reflection from that fide which is furtheft from the concave may be caft another way, and not fall at all upon the third Reflecting-plate : \}, and becaufe the wedg like form of this tranfparent plate of Glafs, $c d$, will caufe a refraction, and confequently a coloration of the Ray; therefore there mult be another wedg-like Plate exactly as may be like the former, which at fome diftance, as at $m p$, where the reflection will not come tc fall upon the Plate, : ζ muft be fo fixed that the thinneft part of this may lie juft upon the thickeft part of $c d$, and the thickeft of this over the thinneft of that, by which means both the falfe refleitions and refractions will be removed. From a $\}$ the Rays are reflected to $\gamma \theta$, and from $\gamma \theta$ to o the focus, and fo through the lens, z, to the eye x. This I take to be the beft by Reflection; but it may be twenty other waies contrived, which I Ihall not now fpend more time in defcribing, it being fo eafie a matter from the confideration of thefe I have mentioned, to make an hundred other variations of the principle.

To this Meliofcope may be fitted Inftruments for meafuring the Macule, facule, and Nebule, vifible in the body of the Sun, as alfo the fpaces piffed by them in a day, two, three, ten, Bxc. together with the variation of their Figures and Magnitudes; but the diamester of the body of the Sun will be betrer taken by the fo owing Inftroment. And by reafon that it will be oftem seceffary to draw their figures more exactly, the Engine that I have deferibed in my Animadverfooss, in the 67, 68, and 69 pages,may be made ufe of to keep the Heliofsope al waies directed ai the body of the Sun, which will be no fmall tafe to an Obferver, that is to delineate the figures on Paper.

When the brightnefs and radiation of the eMoon, Venus or fupiter, do fomewhat offend the eye, they will prefently lofe their beards and look very diftinct, if one reflection from glafs be made ufe of in the Telefope.

Another Inftrument I promifed to defcribe, is, for taking any fuch Diameters tranfits, or diftance to the certainty of a fecond Minute, by which more may be done for the finding the Parallax of the fuperiour Planets, and the Longitude on the Earth, then hath been ever yet done by all the Infruments that have been ufed in the World.
I. This is made exactly, in all particulars like the Quadrant, as to its hollow centre, Screwd-limb, Screw-frame, and long Rod to turn the Screw from the Centre; and that the Screw-frame may be kept down the truer, upon the edge of the Limb, there fhould be made a finall Arm to clafp behind the inward limb of the Inftrument, after the manner reprefented in the 8 th. Figure by w, by which means the Screw will be kept clore, fteady, and eaven to the outward edge of the Limb. The Letters in this 8 th. Figure being the fame with thofe of the I and I 1 th. Figures of the Animadwerfons, and reprefenting the fame parts, need no further explanation.
2. Inftead of this Screw upon a circular Limb, a Screw may be made to move upon a ftraight Limb, or Ruler; the end of which muft move upon Centres or Rowlers, the centres or axes of which Rowlers muft be exactly in the fame line, when both the Perfpective-fights are adjufted to the fame Object, and the divifions began, The fame thing may be done by a ftraight Screw, in the manner of a pair of dividing Compaffes, where the fame care muft alro be had, that the axes of the Rowlers muft be exactly in the fame line, and the fides of the Incompaffing-fcrew, being made of fteel, muft be made to fpring about the long Straight-fcrew; this long Screw muft bemade of fteel of half an inch of diameter at leaft, if it be made 18 inches long, and 'rwill be bell to fcrew it with a finall thred, otherwife it will be apt to be moved out of a fraight by fcrewing a large thred; and the thred, whether greater or lefs, muft be made by degrees with a pair of cutting-ftocks, that may be fet clofer every time of fcrewing.

The manner of contriving the Centres and Sockets may be feen in the 12 and ${ }_{13}$ Figures, where the 13 reprefents it in an end-way Profpect, and the 12 in alateral or fide-Profpect; 1 is the Rowler of the upper Tube, and 2 of the under, 33 the Screws to fatten them in the holes, 44 the incompaffing or Socket-fcrew which fpringeth clofe to the Cylinder ${ }_{1}$, 6 the Cylinderical fmooth Socket which guides the Cylindricalfcrew, fo as to make its Axis pafs exadly over the center of the Rowler 22, and which, by means of a Ring 7 on the fcrew, keepeth the pointed-end thereof 8 againtt the flay or portance 9 ; 'tis not difficult how to makea Dividing. plate, and an Hand or Index thereunto, nor how it may be turned from the centre of the two Tubes by a long Rod, as in the 8th. Figure; nor vill it be difficult, after it is known by Obfervation, how many Revolutions, and vwhat part of a Revolution aniwers to five whole degrees, to calculate a Table of Subtenfes, which fhall thew vobat part thereof goeth to make the fubtenfe of every Minute and Second of the faid angle.
3. The fame thing in the year 1665 , I performed by a Rowler, rowling upon the limb of the Quadrant, by the help of two Wires vvhich vvere coyledabout thofe Rowlers, and the ends thereof were faftned upon the limb of the Quadrant; for, by a large index on the end of this Rowler, I was able to move the arm of the Intrument to any fifth Second of the Qumdrant, ovith great eafe and certainty.

I alfo at the fame time made another Frame with a fraight Screw, vvhich opened to five degrees only, wvith Tumbrels or Rowlers like a pair of dividing Compa afes (after the rame manner vvith this I have newly defcribed, for taking Diameters or Diftances to five degrees) and by the help of very curious Lines drawn upon a fmooth Glafs-plate, and Points very curioully made at every five degrees on the limb of the 2. madiant, or Inftrument on vohich it vvas fixt, and the help of a very deep Plano convex lens, wwhofe plain fide vas turned downwards towards the Plate, and the convex fide towards the eye, the faid Frame was moveable from five degrees to five degrees, upon the whole limb of the Quadrant or Infrument, by vohichl Inftrument I could wvith great eafe actually and accurate divide an angle into every five Seconds,
and confequently take any angle to the accurateners of five Seconds; for, removing the Frame to the rext divifion, lefs than the Angle defired, and then by the Glafs, fixing one of the Arms that had the plate, exadly over the hole or point of divifion, by the Screw the remaining part of the Angle could be exactly meafured.

As to the method of dividing any of there, the beft vvay vvill be to meafure upon fome Plain 1000,1500 , or 2000 foor in length, by two Rods of twenty foot long a piece, or elfe by Wires ftrained vvith veeights, the vvay of which I thall fhortly defcribe: Beginning from the very centre of the Infrument, and at the end thereof, to Set up fomany Dealboards joyned to the end of each other in a ftreight line, or elfe to ftraina pretty big Line, wwhich thall cut the meafured line of diftame from the center of the Inftrument at Rightangles, and then by a Table of natural tangents, according to. the diffence from the centre of the Quadrant, put as Radius, to fet and mark off upon thofe Boards or Limes the divifions of Degrees and Minutes, by Compaffes or Rules, as exaClly as may be, and mark them accordingly, that the Degrees may be diftinguifhed very plainly from the Minutes : Then having adjufted the Inftrument, fo as to fee the beginning of thofe Divifions through both the Tubes at once, to fet both the Indices to θ, or the beginning of the divifouss, then keeping the undermoft of the two Tubes fixt to the fame place, fo as ftill to refpect the fame point or beginaing of the Divifions upon the Boards or Line, by the help of the Rod to turn the Screw or Rowl, till you find the upper Tube to refpect the firft m nute, and then the firit degree, and fo till you fee the laft minute of the five vvhole degrees, or vwhatever Angle elfe you defign it to take in; then (for the firft and third way) reckon how many vuhole Revolutions, and vwhat part of a Revolution goeth to make up that vvhole Angle, and fubdivide the fame by a finall Table into Minutes anid Seconds, and you vvill prefently find by the Trial, that you vvill be able ta divide to a ftrange accuratenefs upon thofe Boards, by the help of your Tubes and Screw, even at the diftance of 1000, 1500, or 2000 foot, and even almoft to equalize-the Divifions by your Compaffes, when at the very Boards. And by this you
may eafily examine, whether your Inftrument doth make the fub-dizifions exactly or not, which will be a great confirmation of the certainty and truth of your Inftrument. But for the fecond way, by ftreight Screws, the Table of Sub-divifion into degrees, minutes, and feconds, mult be proportioned according to the length of Subtenfes anfwering to the Radius, which is the diftance of the centre of the Roolers from the centre of the Inftrument.

Now, becaufe in an Inftrument of this bignefs it will be fomewhat troublefome to turn the whole Angle by the help of the Scress upon the Limb, wohich I find alfo is fomewhat troublefome in the Inftrument of three foot Radizes, wwhen the Angle is large, therefore for preventing of that trouble, and to be able immediately to open the Inftrument to the Angle defired, or very near it. The Screws l (in the firft Figure of my A A nimadv.) at the end of the moveableArm, is made, by unferewing, to draw off the long Screw from touching the threds on the Limb, which being done, the Arm is at liberty to be moved to any part of the \mathscr{Q} uadrant, when by returning the Screw l, the Screw-frame and Screw is brought down again to take hold of the Threds of the Limb of the Inftrument. The only care to be taken in this action, is, that neither the Index ee be at all moved out of its pofture to the Index-frame $h h$, nor the Index 8 be moved at all about the rod of the Screw 999. It matters not at all though the Screw-rod 999 be turned round or moved, fo as it $b \in$ done by the Rod 000 , and the handle thereof $p p$, or by the fmall handle x at the end of the Screw-rod, and that the Index 8 being very ftiffly fixt to the faid Rod, be moved round with it by the fame motion, without varying its pofition to the Rod; for being again brought down by the return of the Screw l, to take hold of the Threds of the Limb, into which it muft be fteadily guided by hand, the Index ee will thew upon the Limb the number of Threds or Revolutions from the beginning, and the Index 8 will fhew what part of a Revolution there is to be joyned to it.

I hope I fhall not need to fpend time to explicate, how the Centre of thefe Tubes are to be made, nor how the Glaffes and Thred-fights are to be fixt, nor need I much to fhew, how the Twbes may be fiffined to keep them from warping very much;
much; A fmall matter of zoarping not creating any fenfible errour, I am not much concerned to prevent.

If it be defired to make the Screw lefs, and only longenough to fubtend one whole degree, which is enough in InItruments of fifty or fixty foot Radius, it may be done by a Itraight Screw very well, if care be ufed, which will very exacily take Diameters and Tranjits to a fingle Second.

Another thing I promifed further to explain, was, the contrivance of the Arms and Foynt, mentioned in page 73, as a Univerfal Inftrument for defcribing all manner of Dials. For adjufting the Hand of a Clock, fo as to make it move in the Sbadow of the Style of a Dial, that is, in the Plain of the right afcenfon of any Point, of the Ecliptick, or of the Heaven; or fecondly, in the Jbadono of a perpendicular, or inclined Style: For dividing and defcribing all manner of Ellipfes in any Analematical projection; and alfo, For making all manser of Elliptical Dials in ©Mr. Fofter's may. For commuxicating a round motion through any irregularly bent way, without faking or variation, and the like.

Firft, The Inftrument for defcribing all manner of Dials by the Tangent projection, muft be made in this manner, defcribed in the $1 \mathrm{t} t \mathrm{t}$. Figure, in which there are two Axes or rods of Wire that are joyned together by a Joynt, which from the applicability of it to, and fitnefs for all kinds of motions and flexures, I call a Univerfal foynt. One of there Rods $6 b$, is, by the help of a Frame a a , placed perpendicularly over the centre of the Dial, the Tharp or pointed end thereof c being fuuk into the Centre, about which it is to be moved according as it thall be guided by the motion of the fecond Rod or Axis d d. This fecond Rod or Axis, is, by its Frame, to be moved and fet fo as to be parallel to the Axis of the World; then the Hand $e e$ of this laft being turned to the hour of Twelve on the Plate $f f$, the Hand of the firft $g g$ will point out upon the Dial-plain, the Meridian or Twelve of Clock Line.

And fo for defcribing any manner of Dial, you have nothing to do but to find the Subfile, and the altitude of the Stile above the Plain, and to put the Axis in its due fcituation accordingly, that is, parallel to the Axis of the Earth: and then
then by the Plumbet at the end thereof to rectifie the Meridian or Twelve of clock point: For then, by turning round the Axis or Rod dd by the handle, till you fee the Index ee on the Axis to point at thofe Hours, halfs, quatcers, or minutes you have a mind to take notice of in your Dial; by the fecond Indexgg, you are directed to the true correfponding point in the Plain of the Dial ic felf. Bue in fuch Dials as are in or near a Polar-plain, it will be convenient to make ufe of a finall Tbred to extend from the Crofs, till it touch the Plain in the feveral hours, halfs, quarters, minutes, our. The Arms of the Joynt in this Operation are to be fo fixed, that the axis of the Plate may crofs the axis of the Rod at right Angles.

The Univerfal Joynt for all thefe manner of Operations, having not had time to defcribe the laft Exercife, I Thall now more particularly explain. It confifteth then of five feveral parts, each of which I Thall defcribe in the 9 and ro Fig.

The two firft parts are, the Rods and Axes A and B, on which the Semicircular Arms are faftned, which are to be joyned together f 0 , as that the motion of the one may communicate a motion to the other according to a proportion, which, for diftinctions fake, I call Elliptical or Oblique.

The two next parts are, the two Semicircular Arms C C and $D D$, which are faftned to the ends of thofe Rods, which ferve to take hold of the four Points of the Bell, Circle, eMe. dium, or $C r o ß$ in the middle, X; each of thefe pair of Arms have two Centre-holes into which the fharp ends of the Medium are put, and by which the Elliptical or oblique proportion of Motion, is fteadily, exadty, and moft eafily communicated from the one Rod or Axis to the other. Thefe Centre-holes I call the Hands.

The fifth and laft thing, is, the Ball, Round-plate, Croß, or Medium X in the amiddle, taken hold of by the hands boin of one and the other pair of Semicircular Arms, which, for diftinctions fake, I henceforth call the elredium, and the two Points ir, taken hold of by the Hands of the Axis, I call the Points, and the other two Points 22, taken hold of by the Cecond pair of Arms. I call the Pivots.

Firft,

Firf, for the Rods, they may be made of what bignefs you think fit, according to the ufe for which you defign the Infrument. The only care to be taken in the making of them, is, firf that they may be exactly Cylindrical in thofe parts that move in Collers, and fecondly, that the Axis or middle line of thendo cut each other exactly in one point, which point muft not vary upon any alteration or change of the Joynt by bending the angle they make with each other, more or leff, nor with the inclination of the Semicircular-arms to any de. fired obliquity, nor with the rotation or turning round of the whole Intrument. They require therefore a very dexterous, and a very knowing Artift, to make them as they ought to be, to perform their motion with exattnefs. Let ab then reprefent one of thofe Ruds, and c a fecond, which are turned exactly cylindrical within the Collers ef g and h, and thefe Collers are fo difpofed and fixed on fome frame, that the middle line or axis of both thefe Cylinders may cut each osher in the point e; if then both their necks and collers be wrought true and exact, the Axis or middle lines of them will alwaies cut each other in the fame point, howfoever they be turned round within their Collers; nor muft this point $:$ be varied, howfoever thofe two Axes are inclined to each other, fo that though $c d$ be inflected to $l \mathrm{~m}$. or no , and fo make either an obtufer or acuter Angle, yet the point i mult be the centre of the Medium, where both the Axes concur and cut each other.

Secondly, The Sensicirculararms may be made of what bignefs, thicknefs, or ftrength, the occafion for which they are defigned thall require; that is, if they are only to carry the Hand of a Clock in the fhadow of a Common Dial, whether made after the Orthographical, Stereographicai, or Horological projection; or if they are by an Annual motion to fhew the motion of the Sun in the Ecliprick, or the æquation of Time, a very fuall Atrength is fufficient; but if they are for carrying. round a great $\mathscr{Q}^{2 u a d r a n z}$, fuch as that I have heretofore defcribed, there they muft be made ftronger and more fubftantial. Care alfo mult be had, that the inclining the Arms to any angle may not vary the centre of the Bail or Ciofs our of the point, where the two Axes cut eachother. Both thefe

Arms are to be made fo as to be inclined to any angle ; that is, that the Axis of the Medium, taken hold of by the Arms of Iron, may be made to incline to the axis of the Rod, on which they are in any angle defired, and being fet to that Angle, to be fteadily fixed, which may be done by a pin, fcrew or wedge; the way I make ufe of for the Azimuth. Inftrument, defcribed in the 73 p . of my Animadverfores, is this which is delineated and explained in the $9 t h$. Fig., where G reprefents a focker of Brafs, movable cylindrically round about the end or neck B, of the Axis or $\operatorname{Rod} B B$, the fame with $a b$, in the 22 Fig. of my Animadverfions, and fixable in any polture defired, by help of a fide Screw b, fuch as is very commonly made ufe of for moft Infruments that are fixed upon the end of a three legg'd Staff, and is commonly called a Cylinder and Socket; this Socket of Brafs hath a fmall Rod of Iron, k, fixed into it at k, which is near the middle of its concave part, through this Rod there is made a fruall eye or hole, and through that hole a wedge-like pin m being thrtuf, ferves to keep the Semicircular Iron-arms $C C$, fteady and fixed in any pofture they thall be rectified to. The Semicircular-arms $C C$, are to be made of very good Iron, or rather Steel, and to have a channel or grove quite through the middle of one of them, and extending the whoie length of a quadrant of a Circle, namely from x to a, becaufe, according to the variety of occafions, it may be varied to any point between n and o; and 'tis to be obferved, that the Iron-rod k muft be fo far fixed out of the axis of the Socket g, as n is diftant from i, or o from p the middle of the Iron-arms between i and i, that fo when there is occafion, the Centre-hole or hands i may be moved to p and faftned. At q wnt be made a Joynt in the Senicircular-arms, fo that when the end z of theArms is fixed in or near k, the other arm C may fall back from the point i, otherwife the circular motion, in many cales, cannot be continued quite round, and communicated from one Rod to the ocher, by help of the Medium or Plate x. The feveral piects of this Joynt, as they are apart and diftinct, you may fee in the 9 th. Figure, and as they are joyned all together fit formotion you may fee in the tenth Figure, to which alfo the defcription of every part is adjoyned in words referred to by the help of Literal marks, which
which, I hope, will make it fufficiently plain to any Artilt to underftand.

Thirdly, The medium Ball or Crofs \boldsymbol{X}, mutt be made of a bignefs fuitable to the Arms and Cylinders, and great care muft be had that all the ends, points, or handles, lie exactly in the fame plain, and that they be all equally diftant from their Center, at leaft, that any two oppofite ones be fo made, becaufe it is not abfolutely neceffary that they fhould be fo all four, though in moft cafes it be beft; and farther, the Handles or Pivots ought to be exactly round, conical, or cylindrical, and the middle lines of them to cut each other at right angles, or upon a fquare; and in general, that all things about the faid Joynt be fo contrived and wrought that the Axis of the two Rods may alwaies cut each other in the centre of the medium Crofs or Plate, and that the faid Centre, whatever change happens to the Joynt, may alwaies keep exadly in the fame very point, without any al:eration.

The flape of this Medium may be either, a Crofs whofe four ends hath each of them a Cylinder, which is the weakert way, 'tis defcribed in the 9 and 10 th. Figures by the Crofs X; or fecondly, it may be made of a thick plate of Brafs, upon the edge of which are fixed four Pivots, which ferve for the handles of the Iron-arms to ake hold of; this is much better than the former, but hath not that ftrength and fteadinefs that a large Ball hath, whieh is the way I moft approve of, as being frong, fteady, and handfowe ; thefe are delineated in the aforefaid Figures, by $\mathrm{X} x$, and $\mathrm{X} x x_{x}$.

If it be an Elliptical Dial to be defcribed by the Orthegraphical projection, the former way for defcribing Tangerat Dials, gives the lines that divide the Ellipfis of the Equinox in its true proportions: and if you wou'd have the Lines that divide the Ellipfis of either Tropick, or of any other parallel Circle, you muft rectifie the Semicircular Arms CC of the Axis $B B$, to the degree of the declination of that Parallel, and them proceeding as before, you have the Lines which from the aforefaid Circle divide the Ellipfis of that Parallel accordingly. Perpendiculars alfo, let fall from the ends of the Crofs I I , give the true Ellipfis in the Orthograptical projection anfwering to that Parallel.

Thefe Lines thus found, are the true azimuth Lines of the points or divifions of that Parallel, and are this way traced out exadly, without any trouble of Calculation, which for fome purpofes, in Surveging, Navigation, \&c. are of very great ufe, as I thall afterwards thew.

The Univertality of this Contrivance, for refolving almoft all Spherical 2 meftions, makes it of very great ufe in Navz. gation, if it be adapted as it ought to be, efpecially for the Common Sea-mans ufe, who, with a very few Rules, will be able immediately to find the bour, and azimuth of any point in the Heaven, fufficiently accurate for moft Obfervations that can be madeat Sea; of which more hereafter.

For making the Hand or Indess of a Clock move in the tha. dow of the Style, made upon the Face of the Dial, and expofed to the Sun, this Foynt, being made to joyn the arbor of the Wheel that goeth round in twenty four hours, with the arbor of the hand, performeth ic without any other Wheel or Pinion in the Dial or Face part of the Clock; if the Arbor of the Clock that fhould have carried the Hand round in twenty four hours, be made to have the fame inclination to the plain of the Dial that the Axis hath, whether parallel to the Axis or not, it matters not at all, fo that the Hand be rectified accordingly as it ought to be, and that the Style of the Dial arifeth from the centre of the Dial, out-through which the Arbor is produced for carrying the Hand, and placed in its Paralle] refpett to the Axis, as it ought to be for a Tangent Dial. For the fhadow-Line of the Axis upon the plain of the Dial, being alwaies carried round the centre of a Dial in a plain, which paffeth through the Δ xis or Style, and maketh equal progreffions about it in equal fpaces of Tiune, and unequal progreffions upon the Dial-plain, according to the proportion of Inclination, and the whole Revolution being performed in twenty four hours, and the Hand of the Clock upon the Face of the Dial being alwaies moved in a plain which paffeth through the Arbor of the Clock, and maketh equal progreffions in equal fpaces about the faid Arbor, but unequal progreffion about the Centre of the Dial, according to the differing Inclinations: And thofe Inclinations being both in the Sun-Dial and Clock-Dial the fame, it will follow, that she

Hand

Hand of the Clock muft alwaies move in the thadow of the Style, if the Hand be once rectified to the true Plain, and the Axis or Arbor make its Revolution as it ought to du in twenty four hours.

If it be further defired, for the eafe of taking Azimuths and Altitudes, that the Arm of the Azimuth quad. ant that is once adjufted to the CalefitialObject, fhould, by the aforefaid Joynt or Inftrument, be kept alwaies reipecting and following the faid Object in its Diurnal motion, it may be very eaifly performed by the help of a fnall perpendicular Ruler, whofe lower end is Joynted into either of the Arms I I , of the circular Plate X, in the 22 and 23 . Figure of my Animadverfions, and the upper end joynted into the movable Arm, at the fame diftance from the Centre of the Quadrant that the lower end is from the centre of the Plate \boldsymbol{X}, and that the centre of the Quadrant be fet exactly perpendicular over the centre of \boldsymbol{X}; but then the divifions by the help of the Screw cannot be made ufe of, becaufe the Clock-work it felf is to turn and movethe Arm: But it may be done by any Quadrant, where the minute Divifions are performed by the help of Diagonals. For the Arms of the Circular-plate in being alwaies moved in the fuperficies of the Cone defcribed, by the radiation from the Cœe?ftial Object to the centre of the Plate \boldsymbol{X}, that is to fay, the Line that paffes through the Centre of the faid Plate, and through the two Points I I, being al waies directed to the Cœleftial Object, if the Arm of the Quadrant be moved perpendicular over it, and parallel to it, that alfo muft be alwaies direfted to it. And hence it may very eafily be conceived, how the aforefaid Semicircular Arms may be readily and certainly rectified to any Ceeleftial Object; that is, by fixing Telefcopes or Common-fights upon the Circular-plate, fo as the Axis of them may be parallel to the Line through I I, and loofing the Screw b to rectifie it to the Object by the fighr, and then immediately to fix it in the faid pofture by the aforefaid Screw; the Clock-work of the faid Inftrument having been before that put into motion. The reafon of all which will eafily appear to any one that throughly confiders, that all Celeftial Objects feem, by the diurnal motion of the Earth, to move equally from Eaft to Weft about the Axis of it, and
would'all do exactly fo, were they not fomewhat varied by their own proper periodical revolutions, which though is doth indeed make a real difference between their velocities about the Axis of the Earth, yet that difference is but fmall; and the fame circular Pendulum will ferve both for the Sun, elroon, Planets, and Stars, if at leaft the Pendulum p, in the fifteenth Figure, be a little lengthened or fhortened, by lifting up or letting down the Rod $q q$, in proportion as the Body k moves fwifter or flower. And 'twill not be difficult to mark upon the Rod qq, the appropriated length of the Pendulum for the Sunn, CNoon, or Stars; but this only by the by.

If in the next place it be defired, that the Hand of the Clock flould be alwaies carried round upon the face of the Clock, in the fhadow of a Style perpendicular to that plain, by reaicn that the declination of the Sun daily varieth, the angles of the fhadow about that Style varieth alfo, and confeguently the inclination of the plate of the Joynt to the Ax's or Arbor mult vary alro, and that variation muft alwies be the fame with the variation of the declination of the Sun, which is twenty waies mechanically performable in Clock-work, fo that the motion thall be performed by the Clock-work alone, without touching it with the hand. All the other directions that are requifite to adjuft the Clockwork to fuch a Dial, is, only to make the Arbor of the Clock-work to have the fame inclination to the plain of the Dial, that the Axis of the Earth, or a line paralel to it hath; and rectifying the Hand into the true plain of the Axis, or Inclined-arbor, the equality of the motion of the Clackwork, according to the diurnal and annual motion of the Sun, we fuppofe alfo to be provided for.

If the Hand of the Clock be defired to be moved in the thadow of any other Atreight Style, howfoever inclined to the plain of the Dial, then muft there be another Joynt like the former, added to the end of that Axis which was perpendicular to the plain of the Dial, and all the three Axes mult be fcituate in refpect of the Plain, in which the Hand on the end of the laft is to move, that the inclination of the faid Axes to each other, may reprefent the inclination of the Axis to the perpendicular axis of the Plain, and of
that perpendicular Axis to the axis of the Seyle. Or, which is fomewhat fhorter, and may be made handfome enough, Let the two ends of the Hand reprefent the two points of the fecond circular Plate or Globe, extended long enough to reach to the hour Circle, then let the axis of this fecond Arm be placed in the axis of the inclined Style, and let the axis of equal motion, reprefenting the axis of the diurnal motion of the Earth, be placed with fuch inclination to it, as the axis of the Earth hath to the oblique Axis or Style of the Dial, and the motion will be moft exactly performed mechanically, and according to the truih of Geometry and Calculation.

Now, in all thefe motions, caremult be taken, to provide that the inclination of the declination of the Sun from the Equinottial, be expreft by the ends II, in the 22 and 23 Figures of the fecond Plate of my Animadverfons, of the Crofs, taken hold of by the femicircular arms $c d$, upon the end of the firft Axis; that is, that the faid arms may, by their revolution, make the line of the Crofs defcribe fuch a cone about the firft Axis, as the motion of the Sun doth about the axis of the Earth, making the centre of the Earth the apex of that Cone; which will be done, if the faid femicircular Arms be moved, and fet to the declination of the Sun for that day. Or, that an additional motion be added to the firft Axis, that the Clock it felf may perforus it. This may be done twenty waies eafily enough, which I fuppofe will be fufficiently obvious to any knowing Mechanick, and that without the help of Tooth-wheels or Pinions, which in works of this nature are in no wife to be made ufe of, by reafon of their fhaking and uncertainty, which I thall elfewhere defcribe.

There is one only difficulty in this motion, and that is only in fuch Objects as pafs over, or very near the Zenith or Nadir of the place, for in thofe cafes, when the Object comes very near the Zenith, the obliquity of the motion of the one to the other is fo very great, that the firft Axis doth not move the fecond without fome difficulty: But to remedy this, the expedient is as eafie, and that is, by having a little barrel about the perpendicular Arm, to carry it forward as far and. as faft as the firft Inclined axis will pernit it; which weighe

Appendix

Concerning the Eclipfe of the Moon, obferved in London.

JAnuary the firft, $167 \frac{4}{5}$, being at Sr . Fonas Mores in the Tower of London, and making ufe of a Telefcope of eighe foot, and my pocket-Warch, whofe ballance was regulated with fprings, I obferved the Eclipfe of the Moon, which began at about twenty minutes after five, the penumbra very much cheating the naked eye; for the Penumbra had darkned that fide of the Moon, next the fpot Grimaldi, about half an hour before, and grew darker and darker towards the edge where the $U_{m b r a}$ entred, fo that if the light of the Moon were diminifhed either by reflection upon dark Glars, or looking through a fmall hole, between a quarter and a third part of the Moon feemed eclipfed before the Umbra entred; but the Telefcope difcovered it plainly to be no true umbra, but penumbra.

This I note, becaufe fuch Perfons as do not make ure of a Telefcope, but only of their naked eye, are very apt to be much deceived in their eftimation of the beginning and end of the Eclipfe.

At 5. 4^{8} we judged by the Teiefcope that the Moon was eclipfed fix digits, or half; at 6. 19, the total Eclipfe began, when the Moon appeared of a very red colour, efpecially towards that part of the Limb where the direct Raies left it, which was at the Mare Crijumm, which is oppofite to Grimaldi. Now the Skie being fomewhat clearer, it being before hazy, with the Telefcope I began to difcover a great number of fmall Stars about the Moon, which appeared yet much more confpicuous, after I had taken off the apperture from the Object-glafs, and amongt the reft, one feemed very confpicuous, and lay in the way of the Moon, which I diligently watched and obferved, that it was juft covered by the eMoon at $6^{\mathrm{h}} \cdot 47^{\circ} \cdot 30^{\prime \prime}$. the Moon firft covering it with that part of it which
may be removed as foon as the Object is a little way paft the Zenith.

The next ufe that may be made of this, is, for carrying the Hand of a Clock fo, as alwaies to move over that point of the Ecliptick in which the Sun is, in a Stereographical projection of the Sphere upon the Plain of the Equinoctial, or in an Orthographical projection of the faid Sphere upon the fame Plain, fo as to exprefs thereby not only the differing right afcenfions, but the anomaly ailo of the Suns motion in the excentrick of the Ecliptick. And by this neans the Face of the Clock may be made by a Rlanifpherical projedtion, to reprefent the motion of all the Stars appearing in any Horizon that is not too near the Equinoctial, their Rifings, Jettings, culminatings, azimuths, and almicauters: Rifings and fettings of the Sur, the lengths of the Days and Nights and of the Twilights and Davonings, and many other Problems of theSphere. And, which is a confequent of this, it may be made to fhew the equation of Time, which is neceffary to be made ufe of for retting a pendulun Clock by the Sun, the manner of doing which I muft refer to another opportunity, as I muft alfo the ufe of this Joynt, for drawo. ing Elliples, drilling and boring of bending Holes, for turning Elliptical and Swafboroork, till I publifh my defcription of a Turning Engine, capable to turn all manner of Conical Limes, and Conoeidical; all manner of Foliage and Flowerowpork, all variety of Basket or Breaded-woork, all variety of Spiral and Helical.2pork, ferving for the imitation of the various forms and carving; of all forts of Shells; for cylindrical and conical Screws; all variety of Embo ßments and Statues; all variety of edged and Whee-like woork; all variety of Regularly Japed Bodies, whether the five Regular bodies of Plato, or produced from thofe by various fections or additions, of which the variety is infinite; all variety of bended Cylinders or Cones, and thore whether round, in the manner of an Oxes-born, or compreffed and angular, like thofe of a Ram or Goat; for all manner of Swafft-zoork, Compreft.zoork, G.6. every of which principal parts hath a raft variety, and the compound and decumpound principles have a variety almoft infinite.
which was almoft perpendicularly under the centre of the Moon.

About three quarters of an hour after the total immerfion, the body of the Moon was exceeding dark, and almoft unperceivable, being then near the centre of the $U_{m b r a}$, and afterwards the Eaftermoft or foremoft part of the Limb of the Moon began to be inlightned, whereas before the Weftermoft Limb had been the brighteft. This was alfo very notable, that that part of the exfoon that was towards the North-Pole, a pretty while before the emerfion of the Moon out of the total Eclipfe, and even till the very emerfion, and fomewhat afrer too, appeared inlightned with a much brisker light than any other part of the body, except that which was next the Limb where the light again entred. From what caufe this Should happen, I know not ; pombly it might be caufed by a greater refraction of the Air near the NorthRole of the Earth, and I am much troubled, that I had no taken notice whether the like phenomenon had not happened to the body of the Moon before it had paft the centre of the timbra. It was very manifett, that there was a confiderable quantity of light that kept that Limb of the Moon which was next the light, confpicuous by the Telefcope all the time of the total Eclipre; and 'tis very rational to afcribe it to the Raies of the Sun, refracted by the Air, or atmofphere of the Earth.

I was very well pleafed to obferve the Moon to cover feveral finall Stars that lay in its way, but I kept no account of them, but only watched diligently when the Star that entred behind the Moon at 6.47 .30 . would come out again, which I found it to do at $7 \cdot 30^{\circ}$. feeing it at the very moment of time that it began to appear again. And it was alro at the fame inftant difcovered by Sr. Fonas More, who was expecting it with another Tibbe.

At 7. 58. the body of the Moon firft energed out of the Umbre at the fpot Grimaldi, and foon after all thofe fmall Stars that were confpicuous before abour the body of the Moon, vanifhed. However I had, before its firft emerfion out of the fhadow, taken a little draught of the fimall Stars, according to their feveral pofitures and magnitudes, only by guefs,
guefs, that I might a week after, when the Moon was gone farther off, inquire what that Star was that had fuffered so confpicuous an Eclipfe, and that thereby I might the more certainly determine the true place of the Sun and eMoon at that inftant, which I found to be that in Bayer, touching the Ecliptick, in about $21^{\circ} .40^{\prime}$. of Cancer. The $\mu_{m b r a}$ ceafed wholly at eight of the Clock and five minutes, though the Penumbra then poffeffed almoft a third of the Moons Diameter, and lafted near half an hour after, before that fide of the Moon was perfect!y inlightened like the other.

There was one Phenomenon very remarkable, which I-took more efpecial notice of, as feeming to me very confiderable for the determining that controverfie, whether the Moon have an atmofphere or not, like that of the Earth? And that was, that after the eMoon was entred wholly into the Umbra of the Earth, that part of the Limb of the CRioon which was laft enlightned, continued for a confiderable while to have a very great brightneis upon it, which extended on each fide that part of the Limb, borh northwards and fouthwards, to about a quadrant of the eMoons Limb,making a re prefentation almoft of a New Moon abour a day or two old, and as the body of the Moon was immerged deeper into the fhadow, io this brightnefs or light grew fainter and fainter, buil, ftill feemed to fpread it felf very far upon the Limb of the Moon only, and not upon the body thereof. That which was fpread into the body being much fainter and weaker, and feeming (as I before noted) to proceed from the refraction of the Atmofpheres of the Earth. Nor was this only confpicuous at the Moons entring into the total darknefs, bur as remarkable allo at the exitus thereof out of the fame, infomuch that fome of thofe Perfons, who at the fame time viewed the fame with me, verily believed the Moon was not wholly eclipfed ro foon as really it was, nor conrinued fo long in that obfcurity, as very vifibly it did by the fpace of two or three minutes. For I took efpecial notice when this inlightning of the Limb began again to appear, and 1 obferved its increafe, and fpreading about the Limb, till the very inftant that the mmediate light of the Sun touched the very extremity of the LImb it
felf, which was indeed fo very briskly bright and ftrong, that it did not oniy foon make the other light difappear, but alfo all the Telefcopical Stars that were near to it, and towards the end alfo many of the more confpicuous Stars, ef. pecially fuch as were not far from the body of the Moon.

Poftcript.

IShould have here taken leave of my Reader for this sine, but that finding in the Tranfactions a paffage inferted out of the French Journal de Scavans, about the invention of applying a Spring to tbe Ballance of a Watch, for the regulating the motion thereof, without at all taking notice that this Invention was firff found out by an Englijb-man, and long firase publijbed so the World. Imuft beg the Readers patience, whilfs I, in vindication of my own right againt fome unhandrome proceedings, do acquaint him with the flate of this matter.

About feventeen years fince, being very inquifitive about the regulating the meafure of Tinze, in order to find the Longttude, I did from an Art of Invention, or mechanical Algebra (which I was then Mafter of) find out and perfett this cone trivance, both as to the Theory and Experimental verification thereof, of which I then difcourfed to divers of my Friends, but concealed the modus.

About fifteen years fince, to wit, in the year 1660 , prefently after his Majefties happy Refauration, I was in treary with feveral Perfons of Honour (fome of which are yet li. ving, though one of them is jirce dead, but I have fufficient evidence to produce in his own writing that he was one) for the difcovery thereof, upon propofed Arricles of encouragement. This I can prove by undeniable Witneffes yec living, and I have ftill all the Papers, Articles, and Tranfactions of this matter by me, in their own hand-writing.

In order to bring this Treaty to pais, I was neceffitated to difcover fomething of Invention about meafuring Time, which was, this way of applying springs to the arbor of the Ballance of a Watch, for the regulating the vibrations thereof in all poftures. And this I did, to the end that I might gain fomewhat of belief in thofe Noble Perfons (with whom I was to treat) That I had fomewhat more than ordinary, and was not one of the heard-of Pretenders to that Invention: which effect it had, and their Treaty withme had finally been concluded for reveral Thoufand pounds, had not the inferting one Claufe broke it off, which was, Thas if after 1 had difcorered my lnventions about the finding the Longitude by Watches, or otberwife (though insthemjelves sufficient) They, or any other Per Jon (bould find a way of improving my Prisciples, be or they jbould bave the benefit thereof, dwring the term of the Patsent, and sot 1. To which Claufe I could no waies agree, knowing 'twas eafie to vary my Principles an hundred waies, and 'twas not improbable but that there might be made fome addition of conveniency ta what I fhould at firft difcover, it being facile lnventis addere. And judging it moft unrearonable to be deprived of the benefir of my Inventions, in themfelves fufficient, becaufe others might vary them, or any other ways improve them, of which it was very probable they would have no thought, if they had not the advantage of being inftructed by my difcovery, it having lain hid fome thoufands of years already, as indeed the effect hath made evident and certain, there ha. ving been nothing done by any body elfe upon that matter for thefe fifteen years.

Upon this point our Treaty was broken off, and I concealed the farther difcovery of any of the other more confiderable parts of my Inventions, for the regulating of Timekeepers, as hoping I mighe find rome better opportunity of publifhing them together with my way of finding the Longitude of Places, for which I hoped to have liad fome benefit for all the labour, ftudy, and charge I had been at for the perfecting thereof. Upon this I was told, That l badbetter bave then dif foverediall, fince there were others that would find E 2
it out witbin fix months; to which I anfwered, that 1 roould try them one feven years; and it is now above twice feven, and I do not find it yet found out. Indeed Mr. Hugens hath made ufe of that part I difcovered, and fomewhat Mr. Leibnitz hath hit upon, but both of them are imperfect as I flall hereafter thew.
'Tis true, I was alarum'd by one of thofe Perfons about two years after thar, who told me, That he had news that the Longitude was found out by a Perfon of Honour, by a way of carrying Mr. Hugens's Pendulum-Clock, at Sea, by the help of a Ball and Socket, bung to the underfide of the Deck of a ship. Bne having a defcription of it, I prefently told that Perfon, That that lnvention would do mine no harm; and indeed we experimentally found it ufeleis to that effect not long after, upon a trial made of carrying the faid Clocks off to Sea in one of His Majefties Pleafure-Boats, in the year 1662.

The Invention indeed in it felf was ingenious, and did much more than what Mr. Hugers did expect, as I was then informed by the Right Honourable the Earl of Kincardine, rhe Author and perfecter of that part of the Invention. But wanting a little addition (which I concealed, and Mr. Hwgenshath not got yet that I hear of) it failed of the effect that was expetted. Notwithftanding this, it was not long after publifhed in Low Dutch, and prefently after in Englift; wherein what made for it was related, but what made againft it was concealed, though they were both equally known.

But on the otherfide, all that I could obtain was a Catalogue of Difficulties, fir f t, in the doing of it, fecondly, in the bringing it into publick ufe, thirdly, in making advantage of it. Difficulties were propounded from the alteration of Climates, Airs, beats and colds, temperature of Springs, the nature of Vibrations, the wearing of Materials, the motion of the ship, and divers others. Next, it would be difficult to bring it to ufe, for Sea-men knew their way already toany Port, and Men would not be at the unneceffary charge of the Apparatus, and obfervations of the Time could not be well made at Sea, and they would no where be of ufe but in Eaft
and Weft India Voyages, which were fo perfectly under. ftood that every Common Sea-man ahnoft knew how to Pilot a Ship thither. And as for making benefit, all People loft by fuch undertakings; much had been talkt about the Premiums for the Longitude, but there was never any fuch thing, no King or State would ever give a farthing for it, and the like; All which I let pars.

At the earneft importunity of a Dear Friend of mine, fince deceared, I did, in the year 1664, read feveral of my firf Gutlerian Lectures upon that Subject, in theopen Hall at Grefbams Colledge, at which were prefent, befides a great number of the Royal Society, many Strangers inknown to me. I there thewed the ground and reafon of that application of Springs to the Ballance of a Watch, for regulating its motion, and explained briefly the true nature and principle of Springs, to fhew the Phyfical and Geomerrical ground of thems And I explained above twenty feveral ways by which Springs might be applied to do the fame thing, and how the Vibrations might be fo regulated, as to make their Durations either all equal, or the greater flower or quicker than the lefs, and that in any proportion affigned. Some of thefe ways were applicable to leffer Vibrations, others to greater, as of $2,3,4,5,6$. or what number of Revolutions were defired; the models of which I there produced, and I did at the fame time thew wherein the aforefaid Sea-Clocks were defective.

All thefe particulars alfo were at feveral other times, at the Publick meetings of the Royal Society, difcourfed, experimented, and feveral Models produced. I did alfo, at the earneft defire of fome Friends, in the year 1664 and r 665 , caufe fome of the faid Watches to be made, though I was unwilling to add any of the better applications of the Spring to them, as waiting a better opportunity for my advantage.

Of all thefe things the Publifher of the Tranfactions was not ignorant, and I doubt nut but Mr. Hugens hath had an account, at leaft he might have read fo much of it in the Hiftory of the Royal Society as was enough to have given him notice
notice of it, for page 247 of that Hiftory, amongtt other Ex. perimented Inventions, there are recounted feveral new ways of Pendulum Watches for the Pocket, wherein the motion is regulated by Springs, \&c. The account of the feveral ways was given fomewhat larger to the Learned Author of that excellent Hifory, though he, as judging it more proper to his defign, was pleafed to give only this fummary account. Mr. Hugens might therefore, if he had pleafed, have mentioned the firft Inventer, Nam ingenuum eft fateri; as he mightalfothat of the Circular Pendulum, which is uentioned in the fame page of the aforefaid Hiftory.

But though he would not pleafe to confefs he knew my publifhed Invention, yet 1 am fure he hath wanifefted, that he knows no more than what I had formerly difcovered, he naving not in leaft mentioned the othe Contrivance, which is the principal, and without which the firt part of the Invention is but lame and imperfect, and doth but limp on one leg, and will fome time hobble?, and fumble, and fand ftill. And the faid Watches will not betres fufte, nor fhew the Longitude at Sea or Land, but, on the conerary, they will be fubject to moft Inequalities of motion and carriage, and with many of thofe motions will be apt to ftand ftill, whatever to the contrary is affirmed in the French fournal, or in the Englifb Tranjactions.

I forbear now to mention any further the carriage of the Writer of the Tranfactions in this Affair, and begging my Readers excufe for this digreffion, I thall conclude this Tratt with a fhort communication of the general ground of my Invention for Pocket-Watches, the number of pacticular ways being very great, which (that the true Lovers of Art, and they only may bave the benefic of I have fet down in the Univerfal and Real Character of the late Reverend Prelate, my Honoured Friend Dr. Fobs Wilkins, Lord Bihop of Chefer, deceafed. In which I could wifh, that all things of this nature were communicated, it being a Character and Language fo truly Philofophical, and fo perfectly and thoroughly Methodical, that there feeweth to be nothing wanting to make is have the urmoft perfection, and higheft Idea of
any Charatter or Language imaginable, as well for Philorophical as for common and conftant ufe. And I have this further to defire of my Reader, who will beat the pains to decipher and underftand this defcription, that he would only make ufe of it for his own information, and not communicate the explication thereof to any that hath not had the fame curiofity with himfelf.

This I do, not fo much to hinder the fpreading of this Defcription here delivered, as to revive, and, if polfible, bring into ure and practice that excellent Defign: It being a Character and Language perfectly free from all manner of ambiguity, and yet the moft copious, expreffive and fignificative of any thing or Notion imaginable, and, which recommends it moft to common ufe, the moft eafie to be underftood and learnt in the World. see Table the third.

To fill the vacancy of the enfuing page, I have here added a decimate of the centefme of the Inventions I intend to publifh, though poffibly not in the fame order, but as I can get opportunity and leafure; moft of which, I hope, will be as ufeful to Mankind, as they are yet unknown and new.
I. A way of Regulating all forts of Watches or Timekeepers, fo as to make any wayy to equalize, if not exceed the Pendulum-Clocks nown ufed.
2. The true Mathematical and Mechanichal form of all manner of Arches for Building, with the true butment neceffary toeach of them. A Problem which no Architectonick Writer hath ever yet attempted, much lefs performed. abccc

3. The true Theory of Elafticity or Springinefs, and ap,articular Explication thereof in feveral Subjects in which it is to be found: And the may of computing the velocity of Bodies moved by them. ceiiinossstulu.
4. A very plain and praticical may of counterpoijing Liquors, of great ufe in Hydraulicks. Difcovered.
5. A new fort of Object-Glaffes for Telefcopes and Microfcopes, much outdoing any yet ufed. Difcovered.
6. A wen Selenoficope, cafle enough io be made and mfod, whereby the fmalleft inequality of the Moons furface and limeb may be mofl plainly diftinguifhed. Difcovered.
7. Anew fort of Horizontal Sayls for a Mill, performing the moft that any Horizontal Sayls of that bigness are capable of; and the various ufe of that principle on divers other oceafions. Difcovered.
8. A new way of Pof-Charriot for travelling far, without musch wearying Horfe or Rider. Difcovered.
9. A new fort of Philofophical-Scales, of great ufe in Ex. perimental Pbilofophy. cdeiinnoopsssttuu.
10. A new Invention in Mechanicks of prodigious ufe, ex. ceeding the chimera's of perpetual motions for feveral ufes. a a aæbccddeceeeegiiilmmmnnooppgrrers tttuuluu.
aaeffhiilillnrrsstur.

FINIS.

人
[LAMPAS]

L A MPAS: or, DESCRIPTIONS OF SOME

Alechanical 7 Inpzovements

$$
\text { Lamps \& }{ }^{\circ} \mathrm{W} \text { aterpoifes. }
$$

Together with fome other
PHYSICAL and MECHANICAL DISCOVERIES.

MADE BT
 R OBERTHOOKE,

 Fellow of the Royal Society.
LONDON,

Printed for John Martyn, Printer to the Royal Society, a the Bell in St. Paul's Clurcl-yard. 1677.

$L \subset \mathcal{A} \mathcal{P} \mathcal{A}:$ O R, A
 DESCRIPTION OF SOME
 Mechanical Improvements O F
 LAMPS.

 He Hypothefis of Fire and Flame I did about eleven years fince publifh in the 16. Obfervation Pag. 103, 104, and 105. of my Micrographia, which hath fo far obtained, that many Authors have fince made ufe of it, and aflerted it; nor have I yet met with one confiderable objection againft it. It fhall not therefore be my bufinefs at prefent to difcourfe of, or farther explain that Theory, which any one upon a frrict inquiry into, I queftion not, will find caufe fufficient to confirm him in, but rather to mention fome pleafant and beneficial ufes thereof; and to hint fome Mechanical contrivances for the fupplying the Pabulum Oyl or Spirit by the fame Degrees by which it is confumed in the flame of a Lamp, that great diffolvent.

I do not here defign to fhew a way how to make a perpetual Lamp, that being a Chimera which my Hypothefis of flame doth feem to deftroy, for the diffolvend muft intime be diffolved: But to fhew a way how to make
the Receptacle of a Lamp in fuch manner as that it fhall continue to fupply the Pabulum to the flame equally and for a very long time till it be all confumed. The confideration of which Problem firft put me upon the enquiry after a counterpoife for Liquors or Fluids, which is alfo of very great ufe in Hydraulicks, as I fhall hereafter have occafion to manifelt.

This I can do by very many contrivances, depending from very differing Principles, all and every of which may be fitted fo as to fupply the Oyl or Pabulum of the Lamp in fuch quantity, and after fuch manner and proportion as fhall be defired. Ithall now omit all the other ways of performing this effect, though divers of them are as much or more confiderable than any of thefe I here mention. And having promifed in the 32 Page of my defcription of Heliofcopes to publifh a Counterpoife for Liquors, I fhall only explain feveral ways by the help of thefe Counterpoifes to do whatfoever can be required, as to the manner and quantity of fupplying Oyl to the flame.

The chief defign of the Counterpoife in this inquiGition is to keep the Superficies of the Liquor (whether Oyl, Spirit of Wine, Oyl of Turpentine, or the like) whatever quantity there be in the Veffel, always to the fame height, fo that the faid Pabulum fhall always be. equally diftant from the bottom of the flame, and the Wick or flame being once placed at a convenient height or diftance above the Superficies of the Oyl, fhall not be deferted by the faid Superficies till the whole quantity be confumed; but it is as eafie to contrive it, to fupply it by decreafing or increafing degrees, which are conveniences that none of all the Lamps I have ever yet met with have had, that was tolerable for ufe. The moft ingenious is that which is commonly known by the name of Cardans Lamp, as being publifhed and very probably invented by Cardan, which doth in fome manner fupply the wafting and decay of the Oyl caufed by the flames Confumption. But then it is fubject to a great many inconveniences,
veniences, which make it intollerable and difufed : The firft is, though it doth fupply the defects of the Oyl to the Wick, yet it doth it notconitantly and equally, but by ftarts and gluts; for after the receptacle by the Wiek is filled, the Superficies of the Oyl continues to fink by degrees a confiderable fpace below the flame, before there be any more fupply added from the great Magazine or Repofitory, and till the Air can break in, (which itdoth very unequally) fo that there fometimes comes downfo great a quantity that the receptacle is over-filled, and the flame extinguifhed, and thefe gluts are more unequal the bigger the Magazine be in proportion to the Receptacle by the flame, and the more the quantity of the Oyl be that is fufpended, and the more the Air fpace be above the Oyl , and the more tenacious or fluggin the conftitution of the Oyl is.

The fecond inconvenience of Cardans Lamp is that the Air is apt to rarifie it with heat, fo as fometimes to drive down fo much Oyl as to overflow the receptacle, and choak the flame.

The third Inconvenience is, that the Wick by the finking of the oyl doth fooner decay the flame, being fometimes a little higher and fometimes lower upon the Wick; for if the Wick rife up into the hollow dead part of the Cone of the flame, the ftreams and coals of the Oyl will be fo caked together as to dead the flame and much to diminifh the light and heat thereof, whereas if the Wick be but fhort, and fuffered only to go but a very little within the under-Superficies of the flame, it will not be fo ftopped and caked with thofe feculencies. Thereafon of which is evident, for the flame, as I formerly proved, being nothing but the parts of the Oyl rarified and raifed by heatinto the form of a vapour, fmoak, or fteam, the free Air that incompaffeth this feam keepeth it into a Cy lindrical form, and by its diffolving property preyeth uponor diffolveth thofe parts of it that are outwards and next to the Air, fo as by the faid diffolution it continueth the heat, and produceth the light which we obferve; but
thofe parts of the body offteams that rife from the Wick, which are in the middle, and not contiguous to the outward Air, are not diffolved or turned into fhining flame by the Air till they rife towards the top of the Cone of flame where the free Air can come to reach, and fo to diffolve them, and thence gathering about the.Wick in the Center of the Cone of flame they choak, clog, and quite ftifle it that the flame will quickly go out. That this is fo, any one may eafily find if he examine the flame of a Lamp or Candle by the help of a piece of glafs: For by the tranfparency thereof he will plainly perceive thatall the middle of the Cone of flame neither fhines nor burns but only the outward Superficies thereof that is contiguous to the free and unfatiated Air, and that the middle parts may be collected in the form of Soot, or very fine powdered coal duft.

Take then a piece of Glafs, whether Window-Glafs, Looking-glafs Plate, or the fide of a Viol, it matters not, or, which is beft of all, a thin Plate of Selenitis or Mufoovia Talk, and hold it Horizontally in the middle of the flame, fo as to cut off the top or upper part of the Cone thereof, then prefently, before it be choaked with foot, look down upon it, and you fhall plainly fee that all the middle parts of the Flame and the Wick have no fhining power or light at all; nor are they diffolved by the Air, but remain in the form of Soot, but that only the Superficies or outfide of the faid Cone doth burn, fhine, and confume into and mix with the ambient Air.

In the fame manner, if you hold the Glafs or Selenitis perpendicularly, and apply the fide of it fo as to cut the flame per axin coni, that the Air cannot come to one fide thereof, you may plainly perceive that the fhining part of the flame is only that which is contiguous to, and preyed upon by the fice and unfatiated Air, and that where that Air cannot come free without being glutted and fatiated in its way, there neither the confumption of the Oyl , nor the heat and light of the flame is produced, but only a footy, choaking, and ftifling fubftance.

To make then the reafon of the Phanomena obfervable about the lafting or ftilling of the flame of a Lamp the more clear and eafie to be underfond and comprehended, give me leave to explain the manner of its production and continuation by a Scheme, delineation, and defcription thereof.

Let A A then in the fecond Table reprefent a body of Oyl, or any other combuftible fluid fubftance, the Superficies. whereof B B is Horizontal, and pretty near plain. [I fay, pretty, near, becaufe it is always either Concave, or Convex, more or lefs according to feveral circumftances; to wit, the capacity and the nature of the Veffel EE, in which it is contained; for if the Veffel be fmall, and that the Oyl hath a greater congruity with it than the Air, the Superficies of the Oyl will be very much concavated. efpecially towards the fides of the Veffel as at C C; but if the Veffel beincongruous to Oyl , the Superficies will be Convex as at D D, the reafon of which I have long fince explained in another place.]

Let F F then in the third figure reprefent the Wick, which confifts of a great number of very fine Cylinders or hairs of Cotton ffftwifted and laid very clofe together, into, and between which the Oyl (having a very great congruity therewith) doth readily infinuate it felf and adhere, and is by the preffure of the Air (much greater without than between thofe Cylinders or hairs)forced up to a confiderable height between them, (as to the heightof an inch and half, or two Inches) and if by any means the Oyl be taken out at the top thereof, the remaining part of the Oyl in the Veffel will afcend to fupply the vacancy of the part drawnoff, which is evident in Filtration. About the fides of this Wick the Oyl will be fure to afcend, and the Superficies thereof will be concavated as at G G, becaufe unlefs there be a congruity between the Oyl and the Wick there will be no afcent of the Oyl therein, and therefore that fubftance that the Oyl doth not readily adhere to cannot be a fit material for that purpore

Now

Now to this Wick thus filled with Oyl apply the flame of a Lamp or Candle, or any other fubitance extremely hot, as a glowing piece of Iron, Copper, or the like, and by this means the parts of the Oyl in the Wick will be very much heated, and expand themfelves in vapours into the contiguous Air by the fteams hhhh h ,and fill all the Ambient face of the Air HH therewith, which vapours being very much rarified, and confequently lighter than the incompaffing Air, are by the greater gravity and preffure thereof carried upwards by the Curvelines hik. Thefe at firft gufh out of the Wick at Right Angles, but by the protrufion of the Air are quickly turned into a kind of Parabolick Curve hik The motion of the Particles in which is fwiftelt in kk , that is to a certain degree of Altitude. The motion of afcent increafing fomewhat after the nature of the motion of defcent in heavy bodies, I fay fomewhat in that nature, for if the afcending bodies were uniformly lighter than the Ambient they would be the fame, but becaufe the rarefaction and nature of them is varied by Circumftances, therefore it hath but part of that Analogy.

To proceed then with the Explication: I fay, there freams of the Oyl thus afcending, if they are heated to a fufficient degree of heat are preyed upon, and diffolved or burned by the Ambient Air; which diffolution hath this effect, firft, that it produceth light; next, that it produceth heat enough to make the fucceeding parts of the freams that rufh out of the Wick and follow after it to befufficiently heated for diffolution by the Air, the heat of which produceth the fame operation upon a third, and that upon a fourth, and that upon a fifth, and fo fucceffively fo long as there are fteams of Oyl to be diffolved, and plenty of frefh and unfatiated Air to diffolve. The action alfo of this diffolution caufeth heat fufficient to raife up the fucceeding parts of the Oyl into the Wick, and expand theminto vapours, and fo to make them fit to be further heated and diffolved. It is further oblervable in the llame of a Lamp, that thofe vapours
that iffue out of the Wick are by degrees diffolved, and not all in a moment, for the parts of the flame that are lowermoft about H have a kind of faint blew light until they cometo I, where they feem to have their brighteft and cleareft light and heat, the faid vapours not being heated to that degree at their firt breaking out that they afterwards acquire by the farther action of the Air upon them.At I they feem to be in their highelt degree of diffolution, and from thence upwards are made one with the diffolving Air, fo that they are not but by other means difcernable to the eye of the obferver ; fo that the fhining part of this Conical fhaped face of the flame is only the outfide of the Cone, it being that part where the Ambient Air preys upon the afcending eruptions of the Oyl , namely, where the Chain of fmall Circles intercept the Curve lines of the motion of the afcending eruptions.

This Figure and fhape of the flame and vapours may be plainly feen by the help of a Metalline Concave placed at a certain diftance and Pofition, and allo by obferving the fhadow of the Candle caft by the beams of the Sunupon a fheet of white Paper, or white Wall, but that way of a Concave \int peculum is incomparably beyond it, becaufe it doth fo very plainly fhew the form and manner of the fteams rifing above iiii, as about kkkk , \&c.

The Air after it hath performed the action of Diffolution, and is fatiated and incorporated with the parts of the Oyl at ii i, afcend by $k \mathrm{kk}$, but fhine not. All the fteams or eruption of the vapours of the Oyl out of the Wick fff thine not between the Wick ff and ii, but begin to be diffolved, and to thine as they approach the frefh Air at ii, where the diffolution is compleated.

The upper parrs of the flame fline more than the lower, the parts having been heated to a much greater degree by the longer fpace of paffage they have had through the hot Concave part of the flame, and contiguous or very near to the glowing fides thereof at i ii.

All the under parts of the Wick neither fhine nor
burn, but are as it were charkd by the extremity of the heat of the Conical Superficies of the flame, they are defended from burning at the bottom by the frefh accefs of new Oyl from the Veffel underneath; and the middle parts are defended from burning or thining by reafon the Air cannot approach them before it be fatiated at the Conical Superficies i i i by the diffolution of the freams of the Oylit there meeteth with. But the upper parts of the Wick do burn and fhine, if they be high enough, into the fmaller part of the Cone of flame that the Air before it be fatrated can reach at them. And if any part of the Wick fall into the faid Conical and Chining Superficies of the flame, it doth both thine and confume, and fuffers the fame diffolution into the Air as the fteams of the $\mathrm{Oyl}_{\text {, }}$ and if any part of this Wick be without this Conical Superficies at iii, it is prefently confumed and reduced to Athes; as by many experiments differing ways made is very plainly vifiblé.

This plainly gives the caufe why knots and Tophus's do asit were grow to the Wick of the Lamp like fo many Mufhrooms on a rotten Tree, which as foon as they are removed out of the middle and dead part of the flame are immediately confumed by, and diffolved into the Air, and thine like a coal of fire, as being indeed nothing elfe.

Hence we may give a plain Reafon why upon applying any cool Superficies very low into the flame of a Lamp, there is immediately condenfed upon it a great quantity of foot, namely, that the middle parts of the Cone of flame, being nothing but a great number of oyly fteams afcending, are not fired nor confumed by the Air, till they can come to be wroughtupon by the free and unfatiated Air. Now if the Air be fo intercepted that it cannot come at them, and the fteams be cooled by the plates coldnefs that the Air is not able to prey upon or diffolve them for want of a preparatory heat fufficient, they muft remain in the form of burnt Oyl , or Lamp-black.

I have been fomewhat the longer and more particular
in this defcription and explanation of my Theory of the flame of a Lamp or Candle, that fo the Reader underftanding the nature and caufes thereof the more fully and plainly, he may the eafier difcover the inconveniences that may occur in the burning, heating, fhining, duration, ©c. thereof, and the fooner and more readily and fcientifically find a cure and prevention of thofe inconveniences, which he that is ignorant of can but hoodwinked grope after, and at beft can but hope poffibly after long puzling himfelf in vain attempts and blind trials, nothing to the purpofe, he mayat length ftumble upon that which had he been inlightned by the true Theory, he would have readily gone to at the firft glance.

I could have further expatiated into the contemplation of this moft admirable Phenomenon of flame, producing heat and light, the two moft fpirituous and moft potent Agents in Nature, and the ways of Intending and Diminifhing them, and the ufes that may be made of them, but that it is not my prefent defign to annex a difcourfe on thofe fubjects, which doth more properly belong to another Lecture I thall fhortly publifh. I fhall therefore at prefent proceed only to Thew fome Mechanical contrivances for counterpoifing Liquors in Veffels, fo as to keep them running or fupplying a ftream always with equal fwiftnef, whatever quantity there be of the faid Fluid; which as they are very convenient for perfecting Lamps for divers ufes, which they could not otherwife perform, fo in Hydraulick they are of moft admirable benefit for divers effects, hardly to be performed without them, as I fhall hereafter manifeft. But firt, I will explain fome few ways by which more conveniences may be obtained, and more inconveniences prevented in the ufe of Lamps for Chymical, Mechanical, and Philofophical ufes than by this way of Cardan, or any other I have met with: For this I look upon as one of the Tools to be made ufe of in the Work-houfe or Elaboratory of Nature, without a good Apparatus of which, be the Workman otherwife
never fo well accomplifhed, he will never be able to produce any very confiderable effect; and with them, even a Bungler otherwife, will, if well furnifhed, do wonders to fuch as know not the means by which they are done.
It may poffibly feem very ftrange to fome to hear,that by the flame of a Lamp Plants may be made to grow, bear Leaves, blow Flowers, ripen Seeds; that the Eggs of Fowls and Infects may be hatched, and brought to life and perfection; thatMetals, even the hardeft, Glafs, Stones, ecc. may be almoft in a moment melted, foft. ned, liquified, hardned, cic. that thoufands of feparations of conjoyned and naturally united bodies may be effected, and they referved diftinct ; and as many other bodies, naturally diftinct, and very differing, may be united and compounded into Homogeneous mixtures, fome fcarce feparable afterwards; that Glafs may be fhaped and moulded like Wax; that almoft all the fenfible qualities of bodies may be increafed, diminifhed, annihilated, and created; and fome alfo of the qualities infenfible (otherwife than by the effiects;) and yet even thefe, and many more, may be effected by this Tool or Inftrument, if rightly ufed, as I could manifeft if I had now time. But I fhall not here any further expatiate on it, poffibly I may hereafter but at prefent I fhall only proceed to the defription of one fort of thofe Inftruments which ferve to fupply the Oyl or Pabulum of a Lamp conveniently by any degrees, and in what quantity is defired. This fort doth depend upon fome contrivance of Counterpoifes for the Liquor in the Receptacle that is to feed the Lamp, and may be made ufe of in Hydralicks as well as Lamps to feed and continue any running ftream any time defired.
Thefe Counterpoifes then of Fluids might be made to feed the flame of a Lamp equally for any time affigned, and confequently would make a kind of Perpetual Lamp, but the Pabulum it felf will be fome ways or other unapt for fuch an effect ; as Oyl hath a foulnefs whereby the Wick

Wick is choaked or ftopped, fo as that it will no longer afcend in it ; Spirit of Wine will in length of time evaporate and lofe much of itsnature; and other Oyls have their feveral defects which make them uncapable of continuing the flame very long. But there are none of there that I have met with but may be in great meafureavoided by the help of fome Chymical or Mechanical contrivances, fome inftances whereof I fhall hereafter give, which the Theory of Fire and Flame doth readily hint.

The firt way then I fhall now defribe is by a round Box, the inward Cavity of which is divided by a Diaphragm into two equal parts, and fitted with a proper Counterpoife, the Axis of whofe motion lieth Horizontally. The contrivance of which will be more plainly underftood by the Delineation thereof in the firft place, where the fecond Figure reprefents the whole Inftrument, with its Globe, Frame, Pedeftal, Socket, and lighted Lamp.

A reprefents the Pedeftal or foot upon which the Inftrumentftands, which may be made of Silver, Brafs, Wood, or the like. BCDE F, the Frame faftned to the Pedeftal, and fhaped in the form of a Snake, perforated at B and D to receive the Pivots or Gudgeons of the Lamp G H, and hollow from E to F to ferve to convey the Oyl or Spirit of Wine from the end of the hollow Gudgenn H to the Wick I, to feed the Flame K ; the hole at E to receive the end of the hollow Gudgeon; H is made a little tapering, and the end of the Gudgeon H is ground fit into it, fo as to turneafily, and yet fo true, as not to let any Oyl there leak out, the faid Gudgeon being kept clofe home by the feringing of the Arm B; the Superficies of the Oyl or Spirit for the Pabulum is always kept by the motion of thefaid Globe uponits Axis GH , exactly in the Line L M, untill it be all confumed, which how it is done will be better conceived by fhewing the contrivance of the infide of the aforefaid Globe, how the fame is divided, how filled, and how counterpoifed.

Suppofe then the aforefaid Globe cut in funder by the middle Line or Circle N O, and difcovering the In fide or Cavity thereof to be reprefented in the firft Figu re, where PAHRZP reprefents the aforefaid Circle, or half fhell of the Globe; O reprefents the middle of the hollow Gudgeon H , which is the Pole or Axis about which the faid Globe doth move. HOZ reprefents the Horizontal Line or Plain paffing through the aforefaid Axis; PR the Perpendicular to that Plain. Let HZ then reprefent a Diaphragm or Partition of the fame material with the Globe, by which the Concavity thereof is divided into an upper Hemifphere H P Z OH, and into an under Hemifphere HRZ OH. Let the under Hemifphere be filled with Oyl, Spirit of Wine, erc. or the like fit material for a Lamp to burn; and let the upper pare be filled with fome material of half the weight of the Oyl, Spirit, or other material, or becaufe that will be fomewhat difficult to do, let there be a counterpoife of Lead or other ponderous matter fixed fomewhere in the Line PO, fo that the faid upper Hemifphere fhall have half the gravity of the under Hemifphere upon the Center of motion O. I fay, whatever quantity of the Fluid Pabulum is in the Cavity of the faid under Hemifphere, the Superficies thereof fhall always be in the Horizontal Line or Plain O Z, the counterpoifed upper Hemifphere keeping it always up to that height. For inftance, fuppofing the faid Hemifphere full, there is no doubt but that the under Hemifphere being double the weight of the uppermoft will be lowermoft, and that Horizontal Line will lie Horizontally, fince it is evident that the Center of gravity of the whole will be below the Center of motion O , and fomewhere in the Line OR, which is Perpendicular to the aforefaid Plain. Next, fuppofe fo much of the aforefaid Liquid Pabulum confumed as to leave enough only to fill the face COZBRC, and the Diaphragm be moved from its Horizontal Pofition HZ , and placed in the Oblique Pofition COD. I fay, the faid upper Hemifphere CHAPDOC

C HAPDOC fhall exactly counterpoife the faid under Hemifphere CR B Z D O C, fo as the Superficies of Liquor thall be in the Horizontal Plain OZ. Make AP equal to PD, and draw the Line AOB through the Center O, it is manifeft then that the Wedge COR of the-Liquor doth counterpoife the Wedge R OB on the other fide the Perpendicular, and that the Wedge POD of the upper Hemifphere doth counterpoife the Wedge POA on the other fide of the Perpendicular, fo that neither of thefe have any prepollency to move the Globe out of this Pofture. Next, it is plain that the Wedge BOO of the Liquor will be counterpoifed by the Wedge AOC, which is double the bignefs of BOZ , and confequently of equal weight, the parts of the upper Hemilphere being put of half the gravity or weight of the under Hemifphere.

Next, fuppofe half the Oyl be confumed, and there be only left enough to fill the quadrantal Wedge Z O R, Ifay, the Superficies thereof fhall be in the Horizontal Line OZ ; for fince the upper Hemifphere is half the weight of the under, thetwo quadrantal Wedges POH and H OR muft neeeffarily counterpoife the quadrantal Wedge R O Z of the Oyl.

Thirdly, Suppofe that more than half the faid Oyl or liquid Pabulum be confumed, and that there be only left enough to fill the Wedge B OZ, I fay, the counterpoifing upper Hemifphere now made the under, and placed in the Pofition AHCREOA fhall exactly counterpoife the faid Wedge of Liquor, fo as that the Superficies thereof fhall be in the Line O ; for the Wedge R OB of the aforefaid upper Hemifphere doth counterpoife the Wedge C OR on the other fide of the Perpendicular, and the doubleWedge AOH and HOC will counterpoife the Wedge B O Z.

Nor can the Superficies of the Liquor be any whit higher or lower than the Line O Z, for if it be any whit higher as at EF, the Liquor muft necellarily overpoife the aforefaid Wedge A O C, by all the weight of the

Liquor contained in FGOZF. And if it be any whit lower as at IK, the Wedge KIB muft be too light for the counterpoifing Wedge AOC by the weight of the Liquor contained in the fpace ZOTKZ, fince I juft now thewed that AOC did juft counterpoile ZOB , which was the thing to be proved.

Now though in this Inftance I have chofen to explicate I have made choice of a Globe, yet that form is not neceflary, but it may be made of any Figure whatfoever that is turned upon an Axis or Poles, fo as wherefoever the faid Figure be cut by a Plain to which the Axis is Perpendicular, the Superficies of the faid Figure fhall defcribe a Circle, the Center whereof is in the faid Axis, whether the faid Figure be a Cylinder Cone, or any other Conoeidical, mixt, or otherwife, regular, or irregular figure. Such as the Figures A B C D E F G, which reprefent the Section of the faid Veffel through the Axis.

The fecond way for the poyfing the Liquor, and keeping the Superficies thereof always to an equal height, is this:

Make a Concave Receptacle for the Oyl or Liquor of a Hemifpherical, Semicylindrical, Semiconical, or of any other half-round hollow Figure, where the turned Figure is cut in two parts per Axin, and whereof the Axis is placed Horizontal, and the plain Section per Axin likewife Horizontally, fo as it may be filled with any Liquor up to that Plain; and that the Liquor may not be apt to dafh, be fhaken, or filter over, it will be convenient to extend the brims of that Receptacle (omewhat above the half-Round, that there may be about half or three quarters of an Inch of fpace above the Superficies of the Oyl vacant or empty. And that upon whatever Plain the foot ftand, the Plain per Axin may ftand Horizontal, it will be good to fufpend the Receptacle in the fame manner as a Sea-mans Compafs is fufpended, within a frame :

Fix this Receptacle, or the Frame that is to keep the Receptacle, Horizontal upon a convenient Pedeftal; and fit within the Hollow or Concavity of the Receptacle a half-round folid poife, turned of the fame form with the hollow of the Receptacle, and cut exactly through the Axis in two equal parts. Let this folid poife be made exactly half the weight of the Liquor that is to be poifed, and fit to it two Pivots or Pins at each end of the Axis, which may be exactly in the Poles of the half-Round, and fit to thofe Pins make two holes in the Centers of the Ends of the Concave Receptacle, in which the Pins may freely move, and fuffer the halfRound poife to move round within the hollow of the Receptacle, according as the quantity of the Oyl or Liquor is increafed or diminifhed. Fit to this Receptacle a neck and focket fit for the Wick and flame of the Lamp, and the fame operation will be performed by this as by the firft contrivance; to wit, the Oyl will be kept allways to the fame height in the Receptacle.

This will be eafier underftood by explaining a Defignation thereof which is fhadowed forth in the fourth Figure: Where

A A A reprefents a Pedeftal, which may be made with three claws or toes to make it ftand the fteadier and evenner upon any Plain or Table.

B B reprefent one of the Semicircular Arms that are fix'd to the top of the Pedeftal, this hath two holes in it at the ends or extremities, as at C is one, the other hole being in the other arm which goes behind the Globe, and therefore cannot be feen, is fuppofed to be Diametrically oppofite to this at C. Thefe two holes are the Center holes in which two fmall Pins or Centers, faftned into two oppofite points of the Hoop or Frame are made fit to move, by which means the faid Hoop is preferved in an horizontal Pofition.

D D is this Hoop or Frame, which is made to incompals theVeffel or Receptacle of the Oyl, and is fhaped exactly like it. This is made ftrong enough of Brafs, Iron,

Iron, Silver, or other material to bear the Receptacle, Poife and Oyl without bending, and hath, as I faid before, two Pins or Gudgeonsat C, and oppofite to it Di ametrically, or Semicircularly, upon which the faid Hoop always hangeth Horizontally. It hath alfo on each fide in the middle between the aforefaid Pivots, two Centers as at F and E to receive the ends of the Axis of the Receptacleappearing at F and E , by which the faid Receptacle is always free to hang plumb or in its Perpendicularity, fo as that the upper edge thereof at F F will always lie Horizontally.

One of thefe Pivots, namely, that on the Right hand is the Pipe to convey the Oyl to the Socket of the Lamp I, in which is fitted a Wick of Cotton to rerve for the flame, K G G reprefents the Veffel or Receptacle of Oyl, which is here defcribed Hemifpherical, that being the moft capacious uniform Figure, but may be of any other, qualified as thofe I mentioned in the firft contrivance. The Brims of this are extended fomewhat higher than a Semicircle, namely, to F F, to keep the Oyl from flanhing or filtring over. This is always kept full with Oyl or other Liquor to the Horizontal prick'd Line L L, which paffeth through the Center or Axis of its Cavity by the Counterpoife moved on the Center C.

H H H reprefentsthat Counterpoife which is made exactly half the weight of the Oyl or Liquor, and the Center of gravity of it muft be fomewhere in the Line MM; and it ought to befitted as exactly into the hollow of the Receptacle as it is poffible, that there may be left aslittle fpace as may be between its convex fides and the Concave of the Receptacle, but yet fo much muft be left that it may movevery freely upon its Center C a whole Semicircle. This done, and the Receptacle being filled with Oyl, the fame effect will follow as in the firft contrivance, and the Demonftration of it being much the fame, I fhall not now fpend time to explain it. But rather proceed to the defcription of a third way of keeping the Liquor counterpoifed to the fame level.

The third way then is :

Take any round Veffel, whofe Concavity and Convexity is turned upon an Axis, and fulpend that Veffel upontwo fmall Pivots (but yet big enough to bear the faid Veffel filled with $\mathrm{Oyl}, 0 c_{0}$) faftned in the Poles of that Axis; and leave or cut open a fixth part more or lefs as you pleafe of the fide thereof, that thereby any thing may be put into or taken out of the Cavity of the Veffel; then poife the Veffel exactly on thofe Centers, that no fide be heavier than the other; then fit into it a lloat of Brafs, Silver, Tin, Lead, Orc. Convex on the under fide, fo as juft to fill to the Cavity of the Veffel. And on the upper fide, Plain, or Convex, or any other convenient Figure, it matters not much. Make this float as heavy as you can at the bottom, and as light as may be at the top, but yet of fuch weight as may well float upon the top of the $\mathrm{Oyl}, \mathcal{O}_{\mathrm{c}}$. Let one end of this be faftned by a wireor ftring, fo as that end thereof may always touch that point of the Concave of the Veffel to which it is tied, and that the reft thereof may turn and follow the finking of the Oyl ; and through the end of it, near the place where it is faftned, let a Pipe go through it to receive the Wick, which Pipe hath no communication with the Cavity of the hollow float. This done, fill the Veffel as full as convenient with Oyl , and light the Wick, and you fhall find that as the fire confumeth the Oyl, the Veffel will turn upon its Poles and keep the Superficies of the Oyl always at the fame diftance from the flame that it was put at at firft till the whole be confumed.

This will be made more conceivable by a figure and explanation thereof, which therefore take as follows in the fifth figure.

A CB B reprefents a hollow Veffel, the Cavity whereof is very exactly turned upon an Axis whofe Poles are in P , the face between A and B in the fide thereof is left open into the Cavity of it. This Veffel is fufpended
uponits Poles at P, fo as to be free to move round upon them, and exactly poifed as no one fide thereof beheavier than another. To the hollow of this Veffel is fitted a float D of Brafs, Latton, Silver, Lead, erc. whofe underfide is made of a Convesity juft fit for the Concavity of the Veffel, as may be feen at $\mathrm{K} \mathrm{D} \mathrm{I}$, or Plain. Let this float be made fomewhat lighter than the Oyl or Liquor on which it is to fwim, fo that a part thereof may float above the Superficies thereof. Let one end thereof E be faftned to the fide of the Veffel a little below the Brim B; through the end of this float is put a Pipe and Wick h, for the flame i, then pouring in Oyl by the openfide A QB, fill the fame till it carry the float up to touch the hollow of the Veffel; then light the Wick, and you will find that the Lamp will confume the Oyl, and this contrivance will continually fupply it till the whole be confumed, and the Poife be moved to touch the Concave of the aforefaid Veffel ; for when the Veffel is filled up to $f g$, the float D will touch at O and E_{0}, and the Cavity above fg being empty, the Veffel will be as is defcribed in the Figure, the open part A B being upwards. And as the flame confumeth the Oyl , the fide of the Veffel B will defcend downward towards $B 1$; and f o by $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$, to B_{4}, where the whole quantity of Oyl will be confumed, and the bottom of the float will touch the hollow fide of the Veffel; in all which gradual wafting of the Oyl the Superficies thereof will lie at the fame diftance below the upper fide of the float D that it had at firt, and confequently at the fame diftance from the bottom of the flame. The reafon of all which will be very eafie to be underfood by any one that fhall ferioully on this Delineation confider that the float D muft neceflitate the Veffel A CB to move on its Axis B according as its Oyl wafts,becaufe one end thereof E being faftned to thebrim of the Veffel B, the other end Obeing loofe will as the Oyl wafts defcend towards N , whence the end E muft hang heavier on the brim B, and confequently muft move it down towards B, till the upper
fide
fide fg of the float be reduced to a Parallelifm with the Superficies of the remaining Oyl, and the end E have no gravitation on the brim B , which motion will be continued as the Oyl wafts, and the brim B will be moved downwards by the points $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$, to B_{4}. I fhall not therefore fpend any more time in the Geometrical demonftration thereof, but proceed to explain a fourth way by which the Flame and Superficies of the Oyl keep always at the diftance they were firft put at.

TheFourth way then is, the making the Socket of the Wick to fwim upon the top of the Oyl, fo that the Socket may fink as well as the Oyl, by reafon it is fuftained by that, and by that only. The Veffel or Receptacle is generally made of Clafs, and it is beft of a Hemirpherical Figure, the light cafting it felf through the body of the Oyl as well as of the Glafs. This is fo plain and obvious, and fo commonly ufed and practifed, that I need not fpend more time in the explanation or demonftration thereof, but proceed to defcribe a Fifth way.

The Fifth way then is much upon the fame principle with the Fourth, but avoids feveral inconveniences to which that is fubject: For whereas the Flame in the Fourth is neceflitated to be within the capacity or the Receptacle in this Fifth, it may be at any diftance, and fo is made much more convenient to be come at, and to be dreffed and trimmed. Take then a Veffel of Glafs, Cylindrical is beft, as a Glafs Bottle, and fit to it a Siphon,long enough to draw the Oyl from the bottom of the faid Veffel, make the one end of this Siphon extend at what diftance you think convenient for the placing the flame of the Lamp, and fo order it that it may always draw from the Receptacle by its arms to feed the flame, which it will do if the end of the Siphon be made where the Socket of the Lamp is placed to return or bend upwards again. So that the Plain of the upper Superficies of the Oyl may cut that end of the Siphon where the flame is
between the top of the mouth of it next the Socket and the return thereof upwards; then by a counterpoife fo fufpend this Siphon that it may follow the Oyl as it wafts, and fit into the return of the Siphon a Socket and Wick for the flame to be continued. A contrivance fomewhat of this kind you have in divers Authors, and therefore I Thall fpend lefs time in the defcription thereof. Let AAAA in the Sixth Figure then reprefent a large Cylindrical Viol of Glafs through the mouth B of which the Cavity thereof may be filled with Oyl, and alfo the end D and float C of a convenient Siphon may be put in. This Siphon D D D P G mult be made long enough that the float C may reach the bottom of the Veffel when the Oyl is fpent, and the other end thereof mult be fo curved that the knee of the Siphon P may be below the Superficies of the Oyl E F, and yet that the Socket H made for holding the Wick for the flame I may be fomewhat above it, this Siphon DDDPG with its Socket and float fhould be fo counterpoifed with a weight M, hung over a Pulley K, by a fring L, that the float may not fink deep into the Surface of the Liquor, but fwim as it were at the top. This done, if the Wick I be lighted, the Surface of the Oyl will be kept always at the fame diftance below the flame that it was firft put at.

In the firft, third, fourth, and fifth ways the flame of the Lamp defcends equal fpaces with the Superficies of the Oylin the Veflel, and therefore though for fome ufes it be very convenient, as in annealings, where things are to be cooled by degrees, yet for many other it is not; Efpecially in Lamp Furnaces, wherethe fame heat is to be continued, and in fome cafes gradually increafed. For fuch cafes therefore the firft and fecond ways will be very convenient. In fome other cafes the fixth and leventh ways, which do much the fame thing.

The fixth way then is this: Through an arm or Siphon (like the Branch of a Lamp hung againft a Wall) fixed in any convenient place, the Oyl from the Receptacle is continually
continually and equally fupplied to the flame of the Lamp by the raifing of the Receptacle as faft as the Oyl wafts, fo asto keep the Superficies of the Oyl alway in the fame Horizontal Plain. The Receptacle is raifed by a Counterpoife hung upon a Fufey, which Fuley is a part of an Archimedean Spiral.
Let C C then in the feventh Figure reprefent the Receptacle for the Oyl, being a Cylindrical or Prifmatical Veflel, of what Bignels or Length you pleale; to this by two Ears at LL faften two Lines or Ropes K K, the ends of both which are faftned to the Wheel or Pulley G, though one of them do run over the Pulley F. Fit into this Receptacle is made a Cylindrical or Prifmatical Plug A A, which is fixed in fome convenient place, fo as not to rife or fink, and through the middle thereof paffeth a Siphon BBB, the one end whereof extended like the branch of a Candle or Lamp fuftains the Socket D for the Flame E, which is fed with Oyl through the Siphon B B B by the rifing Receptacle C C.

To the fide of the Pulley \mathbf{G} is faftned a Fufey H, made with very great care of one Revolution of an Archimedean Spiral, not beginning from the Center, but from fome convenient diftance from it, where the weight I hanging, may juft counterpoife the Receptacle $\mathbf{C C}$, when quite empty of Oyl , the other hanging counterpoife (Tangent to the largett part of this Spiral) muft be fo far diftant from the Center of the Wheel G, that the fame weight I may juft counterpoife the faid Receptacle filled top-full of $\mathrm{Oyl}^{\text {, }}$, and the Fuley muft be filed true to a Spiral, drawn with great care of one Revolution between thofe two points. I fay here of one Revolution, becaufe I have fuppofed the Wheel or Pulley G big enough, by one Revolution of it to draw up the Receptacle the whole fpace it is to be raifed; for if the faid Pulley be fo fmall as to require two, three, four, or more Revolutions, then muft the piece of the Spiral between thofe points be drawn of two, three, four, ormore Revolutions proportionably, which being
being very Artificially and Mechanically performed, the Receptacle C C will be raifed by the fame Degrees by which the Oyl is confumed at E, and the upper Superficies thereof fhall always be in the fame Horizontal Line MM. The Geometrical and Mechanical Reafon of which being fo very plain, I hope I fhall not need to fpend any more time in the explication thereof than only to fay, that by means of the Archimedean Spiral-Fuley the Power of the weight I upon the Pulley G decreafeth in the fame proportion as the weight of the Oyl in the Receptacle C C is diminifhed by its confumption.

The feventh way then is, by a Cylindrical or Prifmatical Plug fitted into a Cylindrical or Prifmatical Receptacle, and let down into it by a Counterpoife, hung upon a Spiral Fufey, the Oyl is fo raifed in that Receptacle as always to ftand Brimfull, or to the fame Horizontal height till the whole Oyl be confumed.

The contrivance of this way will be very eafily underftood by any one that fhall perufe the Delineation in the eighth Figure, and examine it by this following defcription.

Let A A in the eighth Figure then reprefent a Cylindrical or Prifmatical Receptacle, ftanding fixt upon a Table or Pedeftal, from the fide of which ilfues a hollow Arm or Branch B B, bearing the Socket for the Wick C , where the flame D is continued. Into the Ca vity of this Receptacle is fitted a Cylindrical or Prifmatical Plug EE, big enough to fill the whole capacity thereof, and yet not fo clofe but that it may freely flip up and down the Cavity of the faid Receptacle without finking. Let this Plug be made confiderably heavier than the Oyl of the Receptacle; that is, let the Counterpoife L, hangingupon the little Wheel M juft reduce its gravity to be equal to that of the Oyl ; then let the point I , where the Perpendicular toucheth the Spiral, be fo far removed from the Center of the Wheel H , that the counterpoife
terpoife \mathbf{L} may juft take off its whole gravity, and fuffer it to have no degree of gravity or preffure downwards. Then draw the Spiral nopaccording to the direction I gave in the former way, and the effect will be produced. The Geometrical and Mechanical Demonftration of which is very plain to any one that fhall confider, that, As the Plug E E by finking into the Receptacle A A fo far as to raife the Oyl to the Horizontal Superficies M M will lofe its gravity by the fame Degrees by which it finketh into the Receptacle, and that is alway proportionable to the diminifhing of the Oyl in the Receptacle by the flame: So the weight L will lofe its power upon the Wheel H, by the fame degrees by which the Plug defcendeth, by reafon the Line by which it is fufpended becomes a Tangent to a proportionately fhorter Radius of the Spiral, of the Rays of the Spiral.

I know indeed that both in this and the former Fufey there lies an objection againft the true form of the Spiral, becaufe the Line K K of the weight L doth not touch the Spiral in a point level with the Center, but in one fomewhat above it, and in this latter fomewhat beneath it ; but though that be a feeming material one, yet as to practice it fignifies very little. For firft, it will not be difficult to prove that this may be Mechanically drawn true enough, that there fhall be no fenfible error,and if the errorbe not fenfible, it is no error in practical Mechanicks. Next, were it the true Spiral, yet it would not be more Geometrically Delineated than this which is here required, and at beft it would prove but a Mechanical approach, which is fufficient for the effect to be produced by it.

Thefe two laft contrivances do keep the flame of the Lamp always inthe fame place, and of the fame ftrength and fulnefs. But the fucceeding ways, though they maintain the flame in the fame degree of ftrength and nourifhment, yet by their motion upwards they may be made to increafe, and intend the heat produced by them in the bodies polited above them, which is of great
ufe in many Chymical and Philofophical Experiments.

The eighth way then is this: Make a Cylindrical or Prifmatical Receptacle for the Oyl cxactly like the former, with its Arm, Socket, Wick, Ơc. and fit into it a Cylindrical or Prifmatical Plug, as in the former, that may be able to fill the faid Receptacle. Fix this Plug faft into fome Wall or Standard, fo that it fhall not be able to ftir; Then by the help of two Lines faftned to a Counterpoife at one end, and the other to the Ears of the Receptacle, fo counterpoife the faid Receptacle that it fhall have no weight or gravity downwards, but hang in a perfect equilibrium; I fay, whatever quantity of Oyl there be in the faid Veffel, the Superficies thereof fhall always be in the Plain which is equal to the top of the Oyl when the Veffel is filled as high as is defired, which will very plainly appear to any one that fhall examine and confider well this following defcription, and compare it with the Delineation of the Inftrument in the ninth Figure, where A A reprefents a Receptacle for the Oyl of any convenient capacity, made Cylindrical or Prifmatical, to which is faftned a hollow Neck or Arm B E for bearing the Socket C, to which through its Cavity (being made hollow) is conveyed the Oyl or Pa bulum for the continuance of the Flame D; into this Receptaclefit a Cylindrical or Prifmatical Plug, fo as it may pretty equally fill the faid Cavity of the Receptacle, yet not fo as any ways to hinder the fliding on upon it of the Receptacle. Let this Plug then be fixt by the top in any convenient place Perpendicularly, and fetting the Receptacle underneath it, Counterpoife the fame when filled up with Oyl by a Counterpoife I, which is faftned to the two ftrings FFFF, by which the Receptacle is to hang, which two flrings for their more eafie fliding to and fro move upon the two Pulleys orTruckles G G, that are fixed to the lame frame to which the Plug EE is fixed; which being fo adjufted, as faft as the flame D confumeth the Oyl out of the Receptacle A A, the

Counterpoife I raifeth the faid Receptacle on upon the Plug fo far till the top of the Oyl be equal to the height it was at firft counterpoifed at, to which height it always keepsit till the whole be confumed.

Thislaft way of poiling the Liquor or Oyl doth make the Superficies thereof run higher and higher as the quantity thereof is more and more confumed, which for divers Expedients in Mechanicks, Natural Philofophy, and Chymiftry is of excellent ufe, as I may hereafter have opportunity to manifett upon many occafions where I fhall make ufe of them; and it would be, I fear, too tedious to the Reader to have them here enumerated.

Butbecaufe it may not poffibly be ungrateful to him to have fome ufes of this Principle here hinted, I fhall now fpecifie a few, and hereafter add many more, together with a great number of other Poifes for Liquors which ferve for very differing effects in their kinds, not lefs confiderable, but rather fomewhat more ftrange, as being yet farther removed from the common practices and difcourfes of Hydraulicks.

The firft ufe then that I fhall mention of this Liquorpoife fhall be in Hydraulicks, viz. to make a Ciftern of whatever bignefs and depth is required to deliver all its water at the top, or fo near unto it as it fhall be defired: By which means nothing of the Defcent of the water falling into the Cifternis loft, but without any labour or trouble the whele quantity of warer that is delivered at the top into the Ciftern is re-delivered again out of the Ciftern at the top. This may be done by the firft, fecond, and feventh ways of poifing Liquors; this, that, or the other, of which may be more convenient to this, that, or another effect or operation to be performed by it, which muft be cholen and applied with judgment, according to the occafion, and the circumftances of it. Every of the three, though they all agree together in the producing the effect of keeping the Su-
perficies of the water to the fame Level, and there delivering it, have yet each of them their feveral proprieties, which maketh fome one of the three more proper and adapted to one defign than either of the other two, and each of the other two in fome other effects and applications may be much more ufefully applied than the firlt. By this means the whole depth of the Ciftern is gained, and all that water thar was ufed to be delivered at the bottom is now delivered at the top, and confequently gains the advantage of the Perpendicular height of the Ciftern to be imployed, for any ufe, for turning an Automaton, or conveying the Stream farther, or to a higher level.

A fecond effect performable by there Poifes may be for delivering any quantity of water with an equal degree of fwiftners, to as to continue an equal fupply of water till the whole Ciftern or Receptacle be emptied, the fpending of the water in the Ciftern not at all abating the ftream without, the Counterpoife always kecping the Ciftern full, and maintaining the current till the laft. This may be ufeful for fawing or grinding ftones by an Engine; for gauging of Glafs. Tools, or grinding glafles by an Automaton, in all which cafes there is need of a conftant and equal fupply of water and fand; as alfo for wafhing and Fulling of Cloth; it may alfo ferve for various forts of Cleplydras, or meafuring the quantity of time by the quantity of the current of water, as I fhall by and by fhew. And thirdly, for maintaining any flow and conftant motion, as that of a Jack, or Clock; an Engine for continually ftirring, of a liquid body, or thaking, tumbling, and turning of dry Solids and powders, of which fort there are a great number of ufes in Chymiftry for the operations of Digeftion, Calcination, Pounding, Grinding, Trituration, Scarcing, and the like; which operations being certainly, evenly, and conftantly performed by an Engine fupplied by fuch a flyeam of water will far exceed the fame kind
of work done by the hands of men, efpecially in fuch operations where the Labour and Diligerce is to lat divers days and nights together without any intermiffion, which are Requifites not at all ftrange to Chymiftry, and which will weary the diligence of the beft Laborant and his Attendants.

A third effect performable by theere Poifesis the makirg a perpetual and conftant ftream in imitation of that of a natural Spring or Fountain in the Earth. This may be done if the Ciltern be once in twenty four hours recruted and fupplied with a new accefs of water from fome Pipes, which is ufual enough here in London, and elfewhere, where there are Waterworks and Conveyances of water. For as the wafting of the water in the Ciftern does no ways abate or diminifh the ftream of the water from the Ciftern, fo the new accels of other water for a fupply to refill the Ciftern does not at all accelerate it, but the fream remains equal; And hence, confequently conftant, and, as it were, perpetual

A fourth effect is, the delivering any quantity of water to any degree of fwiftnefs, and the whole quantity of the water by the fame degree. This is performed by tapping the Ciftern at any part of the depth thereof, for according as the Vefiel is tapp'd lower under the Surface, fo will the motion of the water be fwifter; and here the depths muft be in a duplicate proportion to the Velocity defired : Asfor inftance, the Ciftern being tapped with a hole of a quarter of an Inch bore, at the depth of an Inch below the Surface, is found to deliver a certain quantity of water in a minute; if it be defired that through a Tap of the fame bore there fhould be delivered twice that quantity, the Ciftern muft be tapp'd at four Inches deep; and if thrice that quantity in the fame time, it muft be tapp'd at nine Inches deep; and fo forwards, as is already demonftrated by Merfennus, and other Authors. For fince the preffure of Fluids upon the partsthereof increafe, in the fame proportion E 2
with
with the depth below the Surface. And fince the forces requifite to accelerate motions muft always be in duplicate proportion to the Accelerations, it follows, that the perpendicular depths of the Tap under the Superficies of the water muft be always in duplicate proportion to the Velocities required.

The plainnefs and certainty of this truth in Hydroflaticks, long fince fo fully and excellently demonitrated by Stivinus of all Fluids, and fo highly improved of late in the particular applications thereof by many more modern Authors, who have writ moft learnedly and clearly thereof, as well as experimentally and practically, makes me much admire at the learned Doctor More, who in his Enchiridion Metaphyficum, in the 11, 12, and 13 Chapters, and in a Book, newly publifhed, called, Remarks upon twoo late ingenious difcourfes, \&c. does not only deny this Gravitation in the parts of Air, but of Water, quickfilver, and other Liquors. And inftead thereof, to folve the Phenomena, would introduce into the World a Principle, which he terms an Hylarchick Spirit, which at command acts and performs whatloever is neceffary to folve all the Phenomena of Mechanical, Hydroftatical, and, in a word, all Phyfical motionsand effects.

In anfwer to whofe Doctrine about Hydroftaticks I fhall only urge this one Experiment of the Velocity of the current of Fluids, tapp'd and running at feveral depths under the Superficies of that Fluid, which can no ways be folved by the Hylarchick Spirit, and we muft be fain to come to the Mechanical and plain Rules of motion, and to allow every particular of that Fluid to prefs with its own gravity where ever placed. And this I will prove from his own words in his Enchiridion Metaphyficum, pag.113. where explaining very ingenioully the Hypothelis of Gravitation of the parts of Fluids one upon another by the fimilitude of fix men ftanding in a Line, and preffing againft a Wall, (which men he marks with ABCDEF, and the Wall with G) He fays, that A the fulf man cannot prefs F the laft againt the Wall

G, but by preffing B againft C, and C againft D, and D againft E , and E againft F ; nor can A prefs Bagainft C , nor C prefs D againft E, nor E prefs F againft the Wall G, but at the fame time it mult be underfood that E prefles D towards F, and D preffes F towards the Wall G,for A C and E,fays he, are here put for Des Cartes Materia Caceffis, prefling the parts of the water within the pores, and B D and F for thofe parts of the water prefling the bottom of the Veffel. But, fayshe, that E preflies D, and D preffes F appears from this, that cafting out E and F, D doth run to the Wall G, and cafting out CDE and F, B alfo will run to the faid Wall. And fo, fayshe, theftate of the matter would be if Gravity did proceed from the meer Mechanical motion imparted to the Terreftrial parts of the Fluid by the Materia Caleftis of DesCartes, to wit, the Elements would actually gravitate in their proper places. But fince there is no fuch thing, it is a fure fign that Gravity doth arife from a higher caufe, which higher caufe he elfewhere fuppofes to be an Hylarchick Spirit. This from fo plain reafoning is a ftrange Conclufion, and contrary to all experience.

Now though, I confers, I fuppofe Gravity to be otherwife performed than as Des Cartes has fuppofed, yet do I believe his Suppofitions fo Rational and Ingenious, and fo much above the Objections brought againit them, and fo much better than any other I have yet met with, as no wife to deferve to be efteemed fada deliria, as the learned Doctor is pleafed to term them,pag. 125.

It fhall not be my bufinefs to defend Des Cartes Principles at the prefent, nor to fet up any new Hypothefis inftead thereot, but only to urge this Experiment of the running of a Liquor fwifter and fwifter, according as the hole through which it runs is decper and deeper placed below the Surface of the faid Liquor or Fluid, and that the Velocities of thofe ftreams are always in a fubduple proportion to the Altitude of the Fluid above thofe holes; whence it is evident, that the force that makes that Fluid run is always in the fame proportion with
with the Altitude of the fluid parts above thofe holes; and confequently, that the motion of them is exactly according to the plain and obvious Rules of Mechanical motions. And confequently for the folving all the Phenomera of Hydroftaticks there is no need of any other Principles than the plain Mechanical Principles, which fuppofeth every Terreftrial Body to have a Gravity in it, which is always the fame, and always communicates its Gravity to the Terreftrial Bodies fubjected under it, and not only its own, but the Gravity of all other Bodies above it, which have communicated their Gravity to it, and that this Gravitation is always the fame, and acteth continually by continual repetitions indefinitely 1wift. And that this gravitating or communicating of its weight, together with the weight of all other Bodies communicated to it, is no ways differing from all other communications or propagations of motion, which the Doctor muft confefs to be meerly Mechanical, if at leaft he will admit of any fuch thing as Mechanical mation. For I cannot conceive any Reafon why the Doctorfhould not allow for inftance the parts of a Cylinder of Lead to prefs upon one another as much when they are kept melted in an Iron Cylnder into a Cylindrical form part over part as when the Lead is cold and divided into feveral parts, and laid one over another in the fame form that they were kept in by the incompaffing Iron Cylinder. Since if the Iron Cylinder and melted Lead, and the Iron Cylinder and cold Lead be weighed, it will be found that they have both the fame weight or gravity downwards, and do communicate continually the fame force, preffure, indeavour, impetus, ftrength, gravity, power, motion, or whatever elfe you will call it to the Scale. And I fuppofe the Doctor will grant, that if the cold Cylinder of Lead, weighing ten pounds, be divided into ten fhorter Cylinders, that are each a tenth part of the whole, and do each weigh a pound alone, every one of the upper fhall gravitate upon every one of the lower; and that the tenth, with the other nine
upon
upon it, fhall prefs the Scale with ten pound weight, and confequently, that the tenth doth not only communicate its own gravity of one pound, but the gravity of all the other nine above it, which is nine pounds; and, if the tenth be taken away, and the ninth be put to touch the Scale, with the other eight uponit, it is certain that the ninth will not only communicate its motion, or prefs the Scale with its own weight of a pound, but will communicate the motion to, or prefs the Scale with the weight of eight pounds more, or of all the eight Cy linders fuperincumbent, and the like Ratiocination may be upon the eighth, feventh, fixth, fifth, fourth, and fecond, but the laft will only prefs the Scale with itsc:yn weight, unlefs we take in the confideration of the weight of the Air, which in this Ratiocination is not necero fary. Since then I think it cannot be denied but that the whole tenftanding in a Cylinder one over another, the tenth is preffed by nine, and preffes with ten pound weight; the ninth preffes with nine, and is prefled with eight; the eighth is preffed with feven, and prefles with eight, and fo onwards, and that the preflure of the loweft downward is always proportionable to the height of this Cylinder. Suppofing thefe to be all melted in an Iron Cylinder, but kept in the fame pofition and fituation, and finding the whole to keep the fame weight, why fhould we not believe that each of thofe parts will exert the fame effects, as to gravity, on thore beneath it as the fame parts cold, and in the fame pofture did; fince if the Cylinder of the Fluid be fhortned by $1,2,3$, or 4 , tenths of its height, the fame abatement of weight or gravity will appear. Having ferioully perufed all the Ratiocination that the Doctor hath produced, both in this late Book, and in his Enchiridion Metaphy (f) cum, I cannot find any convincing reafon againft it, but what feems grounded upon fome pre-conceived Notions and Hypothefes which I cannot underftand; and I cannot fee how he can avoid acknowledging this to be a Mechanical motion, if at leaft he will allow any Mechanical
chanical motion at all, fince it doth fo perfectly, and in all circumftances fo exactly conform and agree with the Laws of Mechanical motion, that I do not know any difference, nor any one Phenomenon of Hydroftaticks or Gravity but what may be clearly folved by the common Rules of Mechanicks.

But to pafs by all other Mediums to prove this Gravitation or preflure of the parts of Fluds one upon another, I thall only infift upon this one Experiment of the Velocity of Fluids, vented or running at feveral depths below the Superficies of that Fluid. In which it is obfervable, that the quantity of water running within a certain fpace of time is always in a Subduple proportion to the height of the preffing Fluid above the hole. That is, the quantities of water are in proportion to one another as the fquare Roots of the reveral Altitudes. As for inftance, it is the obfervation of Merfennus in his Hydraulicks, that a Tap of an Inch bore, four foot under the Superficies of the water will yield a pound or pint of water in 13 Seconds of time; now, if it be defired to make the water run through a Tap of the fame bore twice as faft, that is, to yeild a quart or two pounds of water. This new Altitude muft be made to the former Altitude, as the fquare of two to the fquare of one, that is, as four to one; whence it will follow, that the Altitude of the water above the Tap muft be made fixteen foot to make the Tap run a quart of water in 13 Seconds of time. And it it bedefired to have the Tap run a Gallon or eight pints in 13 Seconds, the proportion of the new Altitade to the firt muft be as the fquare of eight to the fquare of one, that is, as 64 to I , whence the Altitude of the water multbe 256 foot, and the like for any other quantity or Velocity defired. As if it be defired that the Tap thould only run half a pint in 13 Seconds, the Tap muft be placed at one foot under the Sunerficies, which is a quarter of the former Altitude. Now this is exactly according to the General Rule of Mechanicks. Which is, that the proportion of
the ftrength or power of moving any Body is always in a duplicate proportion of the Velocity it receives from it ; that is, if any Body whatfoever be moved with one degree of Velocity, by a determmate quantity of ftrength, that body will require four times that ftrength to be moved twice as faft, and nine times the frength to be moved thrice as faft, and fixteen times the ftrength to be moved four times as faft, and fo forwards. This is moft certainly true in the motion of Bullets fhot out of Cannons, Muskets, Piftols, Wind-guns, Crofsbows, Spitting-Trunks, and the like; as likewife in the motion of Arrows fhot with Bows or Ballifte ; of Stones thrown by the hand, or with Slings; of Pendulums moved by Gravity or Weights; of Mufical Strings; of Springs, and all other vibrating Bodies; of the motion of Wheels, Flies, erc. drawn and turned by Weights or Springs; of the motion of Perpendicularly or Obliquely falling Bodies; and in a word, of all other Mechanical and Local motions, allowance only being made for the impediment of the Air or other Fluid Medium, through which the Body is moved. Now if the Doctor will contend for an Hylarchick Spirit to perform all thefe, he may plaufibly enough contend for it allo in the Experiment of the Gravitation of the parts of Fluids one upon another.

We fee then how needlefs it is to haverecourfe to an Hylarchick Spirit to perform all thofe things which are plainly and clearly performed by the common and known Rules of Mechanicks, which are eafily to be underftood and imagined, and are moft obvious and clear to fenfe, and do not perplex our minds with unintelligible Idea's of things, which do no ways tend to knowledge and practice, but end in amazement and confufion.

For fuppofing the Doctor had proved there were fuch an Hylarchick Spirit, what were we the better or the wifer unlefs we alfo know how to rule and govern this Spirit? And that we could, like Conjurers, command this Spirit, and fet it at work upon whatever we had occa-
fion for it to do. If it were a Spirit that Regulated the motion of the water in its running fafter or flower, I am yet to learn by what Charm or Incantation I fhould be able to incite the Spirit to be lefs or more active, infuch proportion as I had occafion for, and defired; how fhould I fignifie to it that I had occafion for a current of wates that fhould run eight Gallons in a minute through a hole of an Inch bore? If the Doctor fhould tell me, that I muft make the Tap at fuch a depth under the Superficies of the water, and then the Hylarchick Spirit will make the water run as I defire, I would then inquire how he comes to call that an Hylarchick, or matter-governing Spirit, which is rather commanded by matter, and fubjected to irs Laws, and is neceflitated to act exactly according to the quantity and pofition of matter, by what means foever it be fo placed? This Principle thereforc at beft tends to nothing but the difcouraging Induftry from fearching into, and finding out the true caufes of the Phenomena of Nature: And incourages Ignorance and Superftition by perfwading nothing more can be known, and that the Spirit will do what it pleafes. For if all things be done by an Hylarchick Spirit, that is, I know not what, and to be found I know not when or where, and acts all things I know not how, what fhould thould I trouble my felf to enquire into that which is never to be underftood, and is beyond the reach of my Faculties to comprehend ? Whereas on the other fide, if I underftand or am informed, that chefe Phenomena do proceed from the quantity of matter and motion, and that the regulating and ordering of them is clearly within the power and reach of mans Induftry and Invention; Thave incouragement to be ftirring and active in this inquiry and fcrutiny, as where I have to do with matter and motion that fall under the reach of my renfes, and have no need of fuch Rarified Notions as do exceed Imagination and the plain deductions of Reafons there from.

For what is clearet to be feen and tried by Experiment:
ment, and what more eafie to be imagined and under. ftood than that a Cylinder of water, or any other Ho mogeneous fubftance of twice the height thould have twice the gravity or prellure : of thrice the height, thrice the preffure : of ten times the height, ten times the preffure: of 100 times the height, 100 times the prellure, and confequently, toimagine that as in all other Mechancalmotion, four times the prefliure will double the Velocity, nine times the preffure will treble it, fixteen times will quadruple it, and 100 times will decuple it, and $\sqrt{ } \mathrm{o}$ forward; So in this Experiment the fame preffure will perform the fame effect, and a proportionate preffure a proportionate effect. And fince we find that the effect does moft exactly anfwer the Theory (as moftcertainly, evidently, and undeniably it doth) why fhould we doubt of the caufe which is fo certain and Regular a Concomitant, that it is always prefent when the effect is performed? And where ever it is prefent, (if other Circumftances hinder not) the effect certainly follows. I could have gone over all the other Ratiocinations of the Doctor for an Hylarchick Spirit to perform the effects which do clearly belong to Mechanical motions and powers, and are performed and regulated exactly according to the quantity and quality of matter, and ac cording to the general and univerfal Laws of motion, and not otherwife. But that is not my prefent bufinefs, but rather to explain how this contrivance of Poifes doth ferve to make a Ciftern or Vefiel to run any quantity of water required in any fpace of time. And that to run the whole quantity either with an equal Velocity or Itream, or by any defired degrees to be accelerated or retarded from the beginning to the end, which for fome occafions in Mechanicks is of great ufe, and hath not been explained by any Writer of Hydraulicks hitherto.

I hould have here left this Digreffion, but that I find a little further in the aforefaid Doitors Enchiridion, to wit, in the nincteenth Chapter, in the fifth, fixth, feventh
and eighth Sections, continued from the 246 . to the 256 . Page, fome Animadverfions upon an Explication of Colours which I did formerly publifh in my Micrographia, from the confutation of which he endeavours to affert this HylarchickSpirit. But in this he doth Canere triumphom ante vifloriam, and feems to make very fight of that which he neither hath hitherto by all he hath faid in his Enchiridion Metaphyficum, nor can by all other Argue ments he can produce anfwer. For if the Doctor had pleafed to have confidered the Objections I made againft the Hypothefis of the Rotation of the Cartefian Globuli, with a little more ferioufnefs and deliberation, he would not, I conceive, have believed that one that underfood the Objection would be fatisfied with fo llight and infignificant anfwers, as he is pleafed to make to them. His Anfwer then to the firft Objection which I brought againft this Hypothefis, which was raifed from Experimentsmade with thin plated bodies, producing colours, though the refracting Superficies were parallel, is no more but this: That it is not every fecond Refraction of the Ray in a Parallelipiped that doth deftroy the Rotation generated by the firft, but only that which entring at one fide, pafleth through, and goeth out again with the fame refraction it entered. In which cafe only, fays he, the Rotation of the Globuli, generated in the firt Superficies, is deftroyed in the fecond. But, fays he, a Ray falling upon a Parallelipiped, and being reflected from the fecond Superficies, fufters a double Refraction in the fame Superficies, the one at entring, and the other at going out again; both which Refractions, fays he, do promote the Rotation of the Globuli the fame way. This he fays very politively, but gives no reafon for it. Nor indeed could he, fince it is exprefly contrary to Des Cartes Principles, and to all the Phenomena of fuch Parallel fided bodies, until they come to a certain degree of thinnefs: For if his Affirmation were true, then muft all Reffections from the Quickfilver, or foil of Lookingglaffes, efpeciaily if' a little oblique, make the Object fpread,
fpread, and become coloured in the fame manner as Ob . jects do which are look'd at through Primes. But this is contrary both to Experience, and the Laws of Reflection; for the Refractions in the Parallelipiped B are the very fame with the Refractions in the Parallelipiped A, the Reflectionat D making the Ray to be refracted at F, in the fame manner as if it were refracted at G by GH , and the Parallelipiped were twice as thick, and confequently the colour generated in E muft be deftroyed in F, and confequently produce no colours, as really it doth not in plates beyond fuch a thicknefs; whereas if the Refraction at F did promote the Rotation, as he affirms, then mult the reflected Supericies I K not be Parallel to EF, but inclined to it with an Angle at LM. Then GN would reprefent FO, which is impoffible, and contrary to the Laws of all reflection, as he might have underftood if he had confidered my Demonftration about the Reflections of a Globe. Nor will theDoctors adding, Sed de has prima objectione non eft quod jomus adeo foliciti, cum fit in materia magis incerta ac inequalicujus interna contextura videatur Globuloruse motus varizs modis poffe mutari. For fince all tranfparent bodies whatfoever produce the fame effect; that. Subterfuge of fuppofing fome ftrange invifible texture in the body of $M u \int$ cory Glass, differing from that of other tranfparent bodies, will prove but a lame help, for this interna contextura muft be common to all tranfparent Bodies. And why it fhould do it at one time, and not at another, the Doctor doth no wherefhew, nor feems to underftand.

Next, whereas in the feventh Section of the faid nineteenth Chapter he fays, Verum in materia illa idonea Gutta foilicet Pluvia, fi nullus Demonftrationis Scopo fubfit error, actum eft de Globulis Cartefienis. Sed videtur ((ayy he) ingeniofus demonfrator non jatis intellexife fopium quo collinneare debeat ipfius Demonjtratio. To which I anfwer, that I perceive by the Learned Doctors endeavours to refute it, that he neither underfood that, nor the Laws of Reflection and Refraction according
to Des Cartes Hypothelis. Neque enim fatis erat probare (quod agnof co eum feciffe coite eb eleganter) Refralitiones in gutta pluvia ita fieri, wt fo in duobus pellucidi Parallelipipedi Lateribus oppofitis, facta effent, fed oportebat preterea evitiffe quod codem modo refringatur radius in utrifque Locis quo in Payalletipipedo A refringitur, hoc eft ut Radius B C suanvis oblique, perpetuo tamen currat verfus candeme extremitatent tam in F quam in D Parallepipedi A puta verfus sxtrenitatem E , name in boc cafur Rotatio ad D difolvitur itcrume ad F ut fupra diclums eft; fed Demonftratio Ingeniofi Micrographibuc non attingit; Sed probat Jecrizedam refractionenz in oppofito Latere fieri ad modum refractionis in Parallelipipedo C ubi Radius B N primo refrimgitur in D or procurrens verfus extremitatem E ibique inflexus pergit poftea verfus alterame extremitatem G Refringitur in F, que refractio non diluit Rotationens prioris refraltionis in D , quippe quod tendentia Radii fet in partem oppofitam. If the Learned Doctor had better confulted Des Cartes Doctrine, or the common Laws of Reflection and Refraction, he would have been of quite another mind, and would not fo politively have afferted a Propofition fo pofitively contrary to the Principles of Des Cartes, and all Experiments. For if what he affirms were fo, then (as I urged before) according to Des Cartes Doctrine, and the Doctrine he would defend, the Image from a Looking-glats mult be returned coloured, and the Came alfo froma plain fided Prifme, where the refracting fides are $\mathrm{Papendicular} \mathrm{or} \mathrm{equally} \mathrm{inclined}$, to the Reflecting Superficies. But this is contrary to Experiment, he mult therefore once again confider how to find out a Reafon why there is no colour generated, where, according to his Affertion, there is fo great a refraction, and a doubly promoted Rotation made in both the refracting Superficies the fame way, and both fo much promoting the faid Rotation of the Glubuli. He might therefore, if he had plealed, have fufpended his Conclufion. Adeo ut Docirina Cartefiana de Globulis eoramque Rotationibus nibul periclitetwr ab bac Demonftra-
tione que quamvis fatis elegans fit eo concinna, debitum tamen feopum non omnino attingit, until he had a little farther confidered the nature of Reflection and Refraction. Now, becaufe I find that the Learned Doctor is not the only perfon that hath not rightly apprehended this Theory, give me leave to explain a little more particularly the manner thereof: Suppofe we then in the three Figures D E and F, that the Sace between the two Parallel Lines a c and bd doth reprefent a Ray or Radiation of light; Not a Mathematical Line, but a Phyfical one of fome Latitude, between which Lines is propa. gated a motion, or fomething equivalent thereunto, which ferves to produce the effect of light. This motion we fuppofe to be propagated by a Pulfe or Wave in all uncoloured Rays at Right Angles with the Line of Direction, but in coloured Rays more or lefs obliquely ac. cording to the greater or lefs refraction. We will fuppofe the ftroke of the Pulfe to be the length of the fpace between 1 and 2 , or 2 and 3 , or 3 and $4,0 \%$. and confequently, in a uniform medium the pulfe will continue the fame, and the expanfion of it will be Perpendicular to the Line of Direction or progrefs; but when it comes to the Refracting Superficies cd , Obliquely the fide of the Pulfe c touches the refracting Superficies firlt, and being propagated into the refracting medium by a longer and quicker Pulfe, it is propagated to 4 below c before the other fide of the Pulfe touches the Superficies at d, the Pulfe therefore $44,55,66,60$. becomes Oblique to the tendency of the Radiation; and by the Saperficies ef it is reflected by $77,77,77$, till it touches the fecond refracting Superficies gh ; where it is obfervable, that the fame fide of the Ray that entred firft the Super* ficies c denters firf into the Superficies $g h$, in the fame manner as if it had proceeded on by the ltraight Lines $f m$ el till it met with a Parallel Superficies 1 m to the firl cd ; for the Ray between the two Parallel Lines fh , e g , hath the fame inclination and refpect to the Refracting Superficies hg , that the Ray between fm and el wonld
have to the Superficies ml, fuppofing there were no Reflecting Superficiesat e f. I thall not need, I hope, more particularly to demonftrate every part of this Explanation, the very obferving the Delineation of the Scheme being enough to make it plain to any one never lo little verfed in Geometry, from which he will plainly perceive that what I endeavour to demonftrate was really fo, and that I did underftand what fcope my Demonftration aimed at, fo far as to hit the Mark, which was to fhew that Colours were generated, where, according to DesCartes own Principles, there could be no Rotation of the Globuli. Now, though the Learned Doctor would not admit of this Demonftration to be fufficient to do the work, yet he fays, Pag.252. Vermn. tamen diffzmulandum non cft, non pauca me meapte opera. excogitajle quibus pro perfrafiffimo kabeo corum motus or rotationes modis pure mechanicis femper fieri non poffe. And in profecution of the deftruction of this Rotation of the Globuli, which he hath hitherto feemed to defend, he adds four feveral Arguments, I fhall not now ftay to repeat them. But whofoever will pleafe to read what the Learned Doctor hath fuapte opera excogitated againft the Cartefian Hypothefis, and fet down in the 252, 253, 254 and 255 . pages. And compare them with what I have faid in the forementioned place, to wit, at the latter end of the 60 . and the beginning of the 61. pages of my Micrographia, may plainly find the Arguments brought bythe Doctor do very little, if at all, differ from thoie I there publifhed.

I could heartily therefore have wifhed that the Learned Doctor had made ufe of fome other Mediums to prove the Exiftence of an Hylarchick Spirit, and not have medled with Arguments drawn either from Mechanicks or Opticks; for I doubt, that fuch as underftand thofe fubjects well, will plainly fee that there is no need of any fuch Hylarchick Spirit; and if there be no need of it, but that all the Phenomena may be done without it, then it is probable that there is none there, for

Natara

Natura nibil agit fruftra. It had been much ealier to have proved the exiftence of it by Arguments drawn from fubjects we lefs perfectly underftand, as from the generation, nutrition, vegetation, and propagating of Vegetables, and animal fubftances; for there the manner of the progrefs of Nature being infinitely more curious and abftrufe, and further removed beyond the reach of our fenfes and underftandings, one may more boldly affert ftrange things of this Hylarchick Spirit without fear of controul or contradidion, and from whence poffibly it may never lie within the power of Reafoning to banifh him.

But to leave this Digreffion, and return to the ufe of thefe water-puifes.

A fifth effect may be for walhing and refining of Earth, Clays, Powders, and the like; the clear water by thefe contrivances being made to run over gently at the top, and fo leaving all the fettlement from the water at the bottom.

By any one of thefe, with a receptacle Ciftern added to it, the ftream of water from that Ciftern may beaccelerated or retarded by any degrees defirable. This doth depend partly from the proportion of the Tap of the Receptacle Ciftern to the Tap of the counterpoifed Ciftern, and partly from the fhape and make of the Receptacle Ciftern, by the proportion and fhape of which the-ftream of $\mathrm{Li}-$ quor through the Tap of the Receptacle Ciftern may be modulated at pleafure, as any one, a little verfed in Hy droftaticks, will eafily perceive and demonftrate.

A fixth effect may be for governing the heat of Lamps for Diftillations, Digeftions, Fermentations, Putrefactions, Diffolutions, hatching the Eggs of Birds or Infects; accelerating, and feafoning, or timing the growth of Plants; nealing of Glaffes and Metals by the gradual accefs of the heat, fo as to make them fit for ftronger
degrees, or by the gradual recefsto bring them out of the greater degrees to make them tough and capable to receive the cold of the Air.

It would be toolong to give inftances of contrivances for every of thefe operations but the skilful Mechanift, Philofopher or Chymift will eafily fupply his own defires by fome one of thefe I have inftanced in, or at leaft by a compofition of them. I thall therefore only add a defcription of a Clepfydra or time-keeper or two, and foleave this fubject for the prefent.

A defcription of a new fort of Clepfydra.

THis contrivance is nothing elfe than that Two of the fecond fort of Veffels are fo contrived as to run into each other and to empty themfelves and be filled alternately, and their bignefs or capacity and the hole through which the Liquor is vented are fo proportioned as to be emptying the fpace of an hour, which is eafie enough, and may be adjufted to what accuratenefs is defired. Then the convex Superficies of the Cylindrical poife is divided into fixty equal parts by ftraight Lines drawn upon its Surface Parallel to the Axis, and to each other; thefe lines by the finking or turning of the faid poife denote the minutes, and if fmaller Divifions of time be defired, the fpaces between them may be divided by other fmaller Parallel Lines denoting the parts of each minute to what nicenefs is defired. One of thefe Cylindrical Receptacles may be fixt, and the other by an cafie apparatus may be made to rife a little when it is topfull, and fall a little when quite empty below the Level of the other that is fixt: The Chanel between them, through which the water is to run out of the one into the other, may be a fmall pipe with a hole in it of a bignefs proportioned, as I faid above, to let the Iiquor run out
of one into the other in the time defired, and its ends may be faftned to the two Receptacles by a part of the neck of a bladder or gut, fo that it may be limber, and may always have a Declivity into the Veffel that is to be filled; the Declivity need not be above half an Inch. The Liquor ufed in it may be Water, Oyl , or any other Liquor that doth not eafily evaporate: But the beft of all is Quickfilver, becaufe it doth not with keeping evaporate at all fenfibly, which I have carefully obferved for thefe fifteen years laft paft. Nor doth it grow thick or foul by the alteration of the Air, nor do I find it fenfibly alterby the heat and cold, at left not comparable to the great changes which other Liquors fuffer by the alterations of thofe qualities. It is an excellent material for meafuring time in a ftanding Machine; and there may be hundred of ways contrived to make it meafure the fpace thereof as accurately as a Pendulum; and I have many times admired that Tycho Brabe, who was otherwife fo curious and exact in the contrivance and make of his Engines and Inftruments, was yet fo defective in his contrivances of meafuring time by Quickfilver, when there were fo many obvious and eafie ways of doing it, as he feems to complain in his works. I have made trial of feveral with very good fuccefs, and found fome of them even beyond expectation certain, of which I may hereafter upon an other occafion add the defriptions, when I publifh the various ways of making exact Time-keepers or Watches. In the mean time, being now fpeaking of. Time-keepers, for variety fake I thall mention.

A New Principle for Watches.

THis is a way of regulating both ftandingWatches, and movable Watches, either for the Sea, or the Pocket, which fome ten or twelve years fince I hewed the Royal Society, when I fhewed them my contrivances of the Circu-
lar Pendulum, which is fince publifhed by Monfieur Huge* niws, which is alfo mentioned in the Hiftory of the faid Soreety, p. 247 .lin. 20 .This was by a fly moving Circularly inftead of a ballance, whofe motion was regulated by weights, flying further and further from the Center according as the ftrength of the Spring of the Watch had more and more force upon its Arbor. The Weights were regulated from flying out further than they ought to do by the contrivance of a Spiral Spring, drawing both the faid Weights to the Center of the motion or Ely , in the fame proportion as I then demonftrated Gravity to attract the weight of a Circular Pendulun, moved in a Parabolical Superficies, towards the Center or Axis of its motion. The Weights were fo contrived as always to counterpoife each other. The Skeleton of this fly you have reprefented in the Figure. The particular explanation of the parts, and the Geometrical Demonftration of the Principle both of the Springs, and of the flying from the Center, I fhall explain in the Theory of Springs, and inthedefeription of Time-keepers and Watches.

 $\delta^{\prime 2}$ ajfiov, ásinخov. Arift. Quaft. Mechan.

An Obfervation about the Seed of Mofs.

SInce the publihing of my Micrography, I have met with an Obfervation, which though it be ofone of the fralleft compound bodies I have hitherto taken notice of, yet does it afford a hint of very great concern in Natural Philofophy; And it does feem to make clear the caufe of a Phænomenon, that hath appeared dubious, not only to me, but to many other more knowing Naturalifts. I have often doubted, I confefs, whether Mofs, Muhhroms, and fereal other Imall Plants (which the Earth feems to prom
 and I have been apt to believe, that they were rather a fecondary production of Nature; being fomewhat the more inclimed to that opinion, becaufe having formerly examined the fmall knots or Seed-cods of Mofs with a fingle Microfcope, I could not perceive any thing in them that I could imagine to beSeed, at leaft not fo great a quantity as feemed neceffary to maintain fo numerous a Progeny, as was every where to be found of it; that, which then came out of them, feeming to be rather a pulp or pith, than any thing like the Seeds in other fimilar Cods. But being fince fomewhat more inquifitive, I did examine feveral of the above-mentioned Knobs or Seed-veffels, and found that there were feeds in them, no lefs wonderful for the greatnefs of number, than the fmalnefs of bulk. Taking then fome of the ripe and brown or reddifh ones of them, and preffing them pretty hard, I found, that there was a fmall duft went out of them, which feemed to vanifh into the Air. Prefling and fqueezing others of thefe upon a black plate, and examining the powder with a Microfcope, I found it to be a great heap of excceding fmall Seeds, Globular, and pretty tranfparent. It is the fmalleft, I confefs, I have yet feen, and, it may be, that has hitherto been difcovered. And, unlefs that be a plant, which I difcovered growing on the blighted leaves of Rofes, and that thofe fmall bodies be feed veffels; or; unlefs thofe Knobs, I have difcovered on the top of mould, be the like; I cannot prefently imagine where there fhould be found a faller. For, I find, that there will need no lefs than thirty lix hundred of them to be laid one by another in a line, to make the length of an Inch; and, to cover the Superficies of an Inch-fquare, there will need no lefs than nine hundred and threefcore thoufands, befides twelve millions, of fingle Seeds if laid quadrangularly, but if laid triangularly, there will need no lefs than two hundred and fourfore thoufand, befides leventeen Millions of fingle grains. And the number in a grain weight of them cannot be Nels
lefs than one thoufand three hundred eighty two Millions and four hundred thoufand lingle grains, about eighty of thefe fquare Superficies of Seeds being laid one upon another in the Trigonal order, making, as near as I can guefs, the thicknefs of a piece of fine Paper, a fquare Inch of which weigheth a grain. And though this may feem a moft incredible narration; yet I would defire fuch as are apt to be too cenforious, to take the pains to gather a few of thefe Seed-veflels, and examine them as I have done, and then §peak what they tind, and believe no more than their own renfe and reafon will inform them, and they may eafily fee; that what I have afferted, will be rather fhort of than exceed the real numbers. Now if this shell of the Seed be thus fmall, how much fmaller muft needs be the rudiment of the Plant that lies enclofed within it? And how eafily may fuch Seeds be drawn up into the Air, and carried from place and place. even to the tops of the higheft Towers, or to places moft remote, and befowed by the paffing Air, or falling drops of Rain, on the boughs or branches of Trees, fides and tops of Walls, Houfes, or Steeples? And it is not in the Art of man to leave Earth expofed to the common Air, and to exclude the entrance, or prevent the fowing of thefe imperceptible Seeds; and therefore it is not to be wondred at, that, if any earth, though never fo pure, be expofed to the Air and Rain, though at the top of a Steeple, it will produce Mofs.

Further inquiry may poffibly inftruct us, that there may be Seeds of Mufbroms, Mould and other Vegetables of as fmall, if notfmaller, bulk, which may be difperfed and mingled with the Air, and carried to and fro with it, till wafhed down by the falling drops of Dews or Rains; which, if they chance to light on a convenient foyl, do there Vegetate and fpring up; but dye and perih, if the ground, they light on, be not natural and agreeable. But whether this conjecture hit right,further oblervation muft determine.

This difcovery I made the year after the late Fire of London, to wit, in the year 1667 . there being then valt quantities of it to be found every where difperfed among the Ruines left by that Fire, which made me, I confefs, very much wonder at firft how fuch vaft quantities fhould come to be then fo fuddenly rooted, and was the occafion of my more ftrict examination of it. This I prefently fhewed to many of my Acquaintants, and the next year 1668. upon the eleventh of fune Ibrought an account of it into the Royal Society, where I fuppofe it may yet remain upon their Regifter; and it was not a little furprifing to all that faw it, when they confidered how exceedingly fmall each particular Seed was, and yet how infinitely vaft the number of them was produced by each Plant. How prodigioully fmall the firft beginning and rudiment of that Plant muft be that was produced by it; now, though indeed the Plant it felf be one of the fmalleft, yet this Seed of it was much fmaller in comparifon to the Plant than the Seeds of moft other Plants compared with theirs. But about two years after this I received from a very good friend of mine at Briftol, the Ingenious and Inquifitive Mr. W.C. a Relation of fome later difcoveries of his, which feemed much to outtrip even this, whether the comparative magnitude of the Plant, and of the Seeds, or the number of the Seeds, or the curiofity of the Seed-boxes, or the ftrange way of fowing and difperfing, or the place and manner of the Seeds production be confidered. As they were fent to me by him in a Letter from Briftol, dated September 30. 1669. take them in his own words and defription.

N^{0}Otwithfanding my many cther Avocations, variety of dijcoverzes do almof every day inlarge my experience; but more efpecially this laft Week I mas very bappy in the detecting of that mbich all the Pbilosophers and Pbylicians of former Ages, bave been ignorant of. as me may well imagine from vobat remains wee have of them. My Dijiovery in Short mas this, that all the kinds or Jpecies of Ferns together with
with all the likeCapillary Plants their Congeners are (though generally denied to have any at all) more abundantly prolifical in Seeds than any other Plant befide, efpecially the common Fiemale Ferns or Brakes, and thofe more elegantly formed (Imean chiefly in the little Veficles conteining the Seed) than many others, among the bundreds Ihave obferved. To make it demonftrable to you, I bave nows fent you both the Plants with the Seeds on them, and the Seeds of the Same Plants apart in Papers by themfelves, which I took. off from other Plants of the fame kind, baving plentiful parcels of each (excepting of rohat Ibave not fent you) this being the feafon of perfecting their Seeds. I thought to bave fent you draughts of the Seed Veffels, as they appeared prefently after gathering, but could not. I prefume fome of the Veficles or little boxes may remain wobole, fo that by your Microfcobe you may fee their true figures and diftinetions, fome of thembeing mare flatted on each fide the little ring or emboffed girdle encompalfing them, others more freelling.

Alfo thofe little rings or bands encompalJing the boxes are different, in Some of the kinds broader and flatter, in others rounder, and ftanding up bigher, yet all agreeing in: the principal parts of their form. Ipurpofe to draw the figures of them all. as they appear by the Microf cope, together with their Seeds, and to add defriptions of all circumfances confiderable, and joyn them to the reff of my dranghts of that kind. Some particulars moft sonfiderable I now give you in the folfollowing account.

1. The little boxes containing the Seeds are in moft of thefe Plants not balf, and in fome not above one third, or one quarter as big as a very fmall grain of cammon wobite fand; appearing like little bladders infolded withrings or bands, flaped like certain little roorms I bave met with, which may be referred to the Teredo's and Eruca's.
2. As near as I could compute, fome of thefebladders contained about 100 Seeds, wobich weere fo exceeding fmall, as to te wobolly invijbble to the nakedeye, and indifcover able mithout a Microfcope.

3. The

3. The Leaves of both the Ferns, efpecially the common Female Fern, (wobich is more abundantly fored with Seed than any of the reft) and the other I nows fend you, being kept clofe mithout brujing, and foon after gathering expofed to the Sun, or dry Air, the bands of as many of them as are ripe, will contrait themfelves and break, and gling their Seeds all about, after the Jame manner as Some other fmall Plants, fuch as the Perficaria Siliquata, and Some of the Cardaminas are obferved to do. This I bave obferved with a fingle convex glafs as woell as with the Microfcope, but with the latter only I could difoover the falling of the Seed. And a pretty quantity of the Seed being rubbed or brufied off from the Leaves upon a fine piece of Paper or Parchment, and fopeeped together into a beap, many of thoje boxes breaking together, and jufling one another would make the beap Seem, as it were, full of Mites or living Creatures, even to the bare eye; and if the place be free from noife, and the Ear be clofe applied, the crackling of them upon breaking may eafily enough be beard, and upon running over the Paper woith a Microfcope the Seeds will be found dijerfed, and thrown at a great diftance.
4. The figures of the Seed-vefjels, as alfo of the Seeds of all the Ferns and thofe their Congeners, called Capillary Plants, are very near of the fame frape and fize, notwithftanding the vaf diffroportion between them, as particular common Fern, Wall Rue, Harts Tongue, and Ofmond Royal, the firft thrce of which being very remarkable for their unlikenefs to each other, and the laft chiefly for its excelling fo many thoufand times in magnitude that of Wall Rue. Which obfervations may feem to confirm the opinions of fome learned Botanifts that the affinity of Plants are to be judged by the figures of their Seeds.
5. That Ofmund Royal, which excelleth all the other Ferns both in greatnefs, comline f, and vertues, and which bath been accounted barren, woith the reft bath Veffelsand Seeds of the fame figure with the other, and very near of the Same lize, the extreme Smalnefs of which, even to invifibility, and the greatnefs of the Plant, one root whereof, with all the grownth out of it, I kave found weighing ten pounds and bet-
ter, is furpafingly more noonderful than that of Mefs Seedse, of which I bave fome kinds of them bearing Seeds; that a-great number of them, with their Roots, Stalks, Leaves, and Seeds, do not weeigh a Grain. Befides, I bave found of the commona Female Fern fome which have been from the Roots to the utmoft top of the Leaf nine foot bigh, and woithin thefe three days meafured the common broad-leaved Male Fern fix foot and an balf long; Some of the Leaves, of which are among thofe I roow fend you.
6. But that which appeared mof admirable, both to me and Some other Gentlemen that woere witneffes of it with me, was the many differing kinds of fmall. living Creatures, wobolly invifible to the naked eye, and even through largely magnifymg Jpectacles, though fome of theme were to be jeen through a deep Conuexglafs; but with a Microfsope, when the Plant was newply gathered, they might be feen wimbly running up and down among the Seed-veffels, and fome of them wpere fo fimall as not to be above twice as big as the fmall Seeds ina the bladders; a decription of fome of wobich I may bereafter jend you.

I bave inclofed in the box fent you tmelve forts af Plants of this tribe, being the greateft part of the number, and only Jeven. forts of the Seeds; thoferpanting are the Cetrach. Wall Rue, Maiden-bair, and Polypody, of which notwithftanding you may fatisfie your felf in the mean time till I can fend them green by thofe Small parcels of the Plants which you will find amongft the reft, though by keeping they are spitkered.

The Seeds of the Ferns througls a very excellent Microfiope appeared of the bigness of a fmall Wetch or Seed of Lentiles to the naked eye, and fome of them flrink like the fides of white Peafe, with fmall regular knobs and bollows. Thofe of Polypody are differing in colour and Sbape being yellowijh, as the others are brown, red, and formed like the Seeds of the fmaller Medicas that is of a Kidney Shape. All the rejt I found very near of the fame form. I cannot omit what I obferved in Cetrach, which Plant I bave beretofore often cont fidered, and wondred at the ill-favoured roughnefs on the un-
der fide of the Leaf, appearing like the flefhy fide of tann'd Leather, being wholly ignorant what Nature meant in it, but now by my Microfcope I find it a very pleaSant object differing from all the reft, orberein the curiofity of Nature (in a Plant $\int 0$ abject as that appears) is (1emn beyond imaginatiox. This, when frefh gathered, and not bruijed, appears through the Microfcope like fine thin Membranes, fuch as the Wings of Flies, chequered woith figures after the manner of Honeycombs woben the cells are fuill of honey, and clofed with Membranes, amongf which, as in fo many Cells, lie the Seedveffels, Joaped as before is mentioned. I doubt not but yout bave read the ftrange fories and fabulous conceits of $A u=$ thors about Fern Seeds. But Parkinfon is moreOrthodox in fome things than any of them: For be pofitively concludes from Gen.I.I I, 12. that all Plants bave their Seeds, and confequently Fern; wobere if he had ftaid, he had afferted a general truth: But in coming to particulars, be affirms as great an untruth, in faying, fol. 1036, and 1037. that the Seed is ripe at Midfummer, according to the old traditional Fable, and tells how it may be gathered; whereas now is the very Jeafon of their Seeding, and at Midfummer this and the reft are not come to their full growth, before which no Plant feeds. That dufinefs robich be speaks of, and calls the Seed, is no other than wohat is found on divers other Plants, being ann irregular Duft, and is not found on the borders of the dents of the Leaves on the under fide, on wobich the Seed grows, but allover 乃prinkled on both fides, and not found wokien it is fullygrown, This be affirms of the Male Ferns, which are all differing very notably from the common Female Fern, concerning which the fabulous tradition is beld. But after in the following Chapter of the Ferns and their Relatives nowo Sent you, be feems to give over bis Scripture Propofition, and, Speaking of the Seeds, fays no more but that they bave Spots, dafhes, fcales, or marks on their back-lides. And of the Ofmund Rosal (, peaking of the buflo at the top of the Plant) fays it is accounted as the Flower and Seeds. And of the Lochitis afpera Says plainly they bave none at all. Of this laft I am yet to cnquire, but doubt not I hall find that it bath H 2 Seed

Seed like the reft. Of all which Gerrard and Johnfon bis Carrigitor gravely concludes (baving indeed no demonftrable ground to the contrary) that fome bave been too rafh in affirming Ferns to bave Seed. I intend next Summer to obferve whether thefe bitherto unknown Seeding Plants have

Flowers. In the mean time
Briftol. septem-
ber 30. 1669.

I am, ơc.

Macula in Sole.

DUring this laft great heat of weather in Fune I obferved a very confpicuous Macula with its immediatly incompaffing Nubecula, and fome other lefs confpicuous Spots at a further diftance pafs over the Disk of the Sun, and found that it was neareft the middle when the heat was greateft, that the heat increafed as it came nearer the middle, and decreafed as it departed from it. It may be therefore worth obferving for the future whether the like weather do not happen upon the next appearance of the like Macula, fince it feems not very improbable to fuppofe that the body of the Sun it felf may be much hotter when fuch eruptions appear, thofe Maculæoften times ending in Fæculæ. And the rather becaufe I am informed that this extraordinary heat hath not been peculiar only to England, but very general to Europe; what it hath been to other parts of theworld further intelligence will informus.

Upon a fecond appearance of Spots in the Disk of the Sun at the latter end of Fuly and the beginning of Augu/t, when at one time, to wit, July 29. there appeared about fix greater and fmaller in one knot with their proper Nubecules or Umbras, the heat of the weather again increafed to a very great degree, and abated as they drew toward the Limb, and grew fainter. But it hath now fince the difappearing, viz. on the fourth of Auguft, been exceeding hot alfo, though I do not find any Spots this feventh of Auguft, it may therefore poffibly be thatother parts of the body of the Sun may have an extraordinary inflammation
inflammation which may caule fo fervent and lafting heats as have hapned this Summer. At leaft this Hint may deferve fome farther Inquiry, for though probably it may not be attained to predict the appearances of thofe Spots, yet poffibly the appearances of the Spots may ferve to predict the future conftitution of the weather. At leaft it feems worthy remarking that the greateft heat that hath beenin the Air this year was on that day of Fune when the firft Spot was near the middle of the Sun.

POSTSCRIPT.

THe Publifher of Tranfactions in that of Odtaber 1675. indeavours to cover former injuries done me by accumulating new ones, and this with fo much paffion as with integrity to lay by difcretion; otherwife he would not have affirmed, that it was as certain that none of my Watches lucceeded, as it was that I had made themfeveral years ago : For how could he be fure of a Negative? Whom I have not acquainted with my Inventions, fince I looked on him as one that made a trade of Intelligence.

Next whereas he fays I made them without publifning them to the world in Print, he prevaricates, and would have it believed that they were not publifhed to the world, though they were publickly read of in Sir John Cutlers Lectures before great numbers at feveral times, and though they were made and fhewn to thoufands both Englifh and Foreiners, and writ of to Ceveral perfons abfent, and though they were in the year 1665°, in the Hiftory of the Royal Society publifhed to the world in Print, becaufe, forfooth, they were not printed in his Tranfactions.

Thirdly, whereas the Publifher of Tranfactionsmakes a long ftory of my feeing his Journal De fcavans, and my defiring to tranfcribe that part of it which concerned this matter, as if I had requeited fome fingnlar favour thereby. I anfwer,

Firft,

Firft, that he knew I defigned prefently to have printed it with Animadverfions, but he endeavoured to prevent me, defigning firft clancularly to get a Patent of it for himfelf, and thereby to defraud me.

Next, I lay, I had a right without.his favour to have feen, perured, and copied it, as I was one of the Royal Socie$t y$, the intelligence hethere brings in being the Societies.

Then it is denied that the Defcriber of Heliofcopes well knew that the Tranfcriber of Intelligence would publifh it in his Tranfactions, though it was believed if the publifhing it would mjure me it would not be long concealed; which wasthe fole reafon of Printing inthe fame Tranfactions, viz. 112. a Letter which he had feveral years before.

Thirdly, Whereas he afferts that feveral difooveries of the Accufer had been vindicated from the ufurpation of others. It is anfwered, the clean contrary is upon good grounds fufpected from the Publication of a Book about Earthquakes, Petrifations, 6 or. Tranflated and Printed by $\mathrm{H} . \mathrm{O}$. the manner of doing which is too long for this place. Such ways this mifinformer hath of vindicating difcoveries from the ufurpation of others.

To his upbraiding me with his having publifhed fome things of Mine; I anfwer, he hath fo, but not fo much with mine as with his own defire, and if he fend me what I think worth publifhing I will do as much for him, and repay him in his own coyn.

Laftly, Whereas he makes ufe of We and Us ambiguoully, it is defired he would explain whether he means the Royal Society, or the Pluralities of himelf. If the former, it is not fo, as I can prove by many Witneffes; if the later, I neither know whar he is acquainted with, or what has been imparted or explained to him.

So not defigning to trouble my felf any further with him, unlefs he gives me occafion, I difmifs him with his

> Speque metuque
> Procul binc procul ito. Ho.

> FIN I S.

Tab. III

LECTURES A ND
 COLLECTIONS Made by

ROBERT HOOKE, Secretary of the Royal Society.

COMETCA.

CONTAINING

rObfervations of the Comet in April, 1677.
Fragments of feveral Lectures about thofe of 1664 . and 1669 . Sir Cbr. Wren's Hypothefis and Geometrical Problem about thofe Comets,
A Difcourle concerning the Comet of 167%.
Mr. Eoyle's Obfervation made on two new Phofphori of Mr. Baldwoin, and Mr. Craft.
Mr. Gallet's Letter to Mr. CaJIni, together with his Obfervation of
Mr. Cafini ' Reflections upon thofe of Gaffendus, and Hevelius, and upon this.
Mr. Hally's Letter and Obfervation of the fame made at St. Hellena.
Mr. Cafini's Obfervation of the Diurnal motion of ψ, and l other changes happening in it.

MICROSCOPIUM. CONTAINING

rMr. Leeurvenboeck's two Letters concerning fome late Microfcopical Difcoveries.
The Author's Difcourfe and Defcription of Microfcopes, improved for difcerning the nature and texture of Bodies.
P.Cberubine's Accufations anfwered.

Mr. Young's Letter containing feveral Anatomical Obfervations.

LONDON:

Printed for $\mathrm{F}_{\text {. Martyn, }}$, Printer to the Royal Societys, at the Bell in St. Paul's Church-yard, 1678.

VIRO PERILLUSTRI

D ${ }^{\text {no }}$ fOSEPHO WILLIAMSON equiti aurato,
Sereniffimo C AROLO II°. Mag. Britan. Fran. \& Hibern.

$$
R \quad \mathrm{E} \quad \mathrm{I} \text {, }
$$

A Confiliis Secretioribus, et a Secretis Status,

Nec non

SOCIETATIS REGALIS LOXNISNENCIS,

Ad Scientiam Naturalem promovendam

PR Æ S I D I DIGNISSIMO.

- $E C$ potur, nec debui, Nobiliffime Vir, cujufquam alius nomen bis Chartis infcribere, prater Tuum.Sub Te natr, Tibi vitam debent; Ti-

$$
\text { A } 2
$$

bi
bi quoque debebunt quod lucem afpiciant. Egregius ille Tuus animus ad inftaurandam Pbioofophiam artefque adeo omnes utiles, mibi bomini, alioquin jabtimido, audaciam bujus dedicationis fecit. Ego qua nunc potui, profero,magis ad Gratulationem oftendendam,quam Eruditionem. Spero autem, quemadmodum Jub Tuo PRESIDIO majora indies Augmenta Scientiarum in bâc gente fiunt, ita exoritures vires doctos, qui Tibi jufta praconia laudum perfolvant; quod ego pre tenuitate ne corari quidem audeo, quanquam cum. primis fim

Dignitatis \& Honoris Tui

Studiofiffimus,

Robertus Hooke.
$\operatorname{SYN} 0$.

STNOPSIS.

THE Comet feen April 21. 1677. between the Triangle and the Cloud of r, its tail not directly oppofite to the -, its Magnitude, Brightnefs, Head, Nucleus, Blaze, (1.) Why fometimes horter, fometimes longer; without fenfible motion of parts, Explanation of the firff figure, as feen by the cye. (2.) Of the fecond Figure, as feen through a glafs, of a parabolick termination, differing from the reprefentations of Mr. Hevelius. (3.) The Medulla, and blaze with the manner of fhortning and lengthening, explained by the third figure; not feen the 22 d . but the 23 d. The bignefs of the Nucleus and Head through a Telcfcope, compared with the top of a Tower. (4.) The place it then appeared in. Why the motion was not more exactly obferved. Its blaze fill not oppofite to the Sun. The 24 th. not feen,nor 25 th. (5.) though the Sky clear by reafon of the height of Vapors. How they do lengthen the Crepufculum. Why Phylical Remarks only werc made. (6.) Publifhed in order to underftand Objections, and propound pertinent Queries. Some Obfervations, Notes, Queries, ofc. concerning the Comets in 1664 . and 1665 . here. Collected out of feveral fcattered Papers and Lectures of them formerly read here imperfect. Queries of its fubftance, magnitude, denfity, mutability, diffolution, fluidity, gravity, light, figure, motion bended or frraight, (7.) with equal or unequal velocity, in the Atmofphere of Ether, above or below the Moon. Whether it wafts, or lafts to return. The Star of a compacted light (8.) varied poffibly from pofition, partly from real change, Tail tranfparent, Body fuppofed more denfe, fide toward the Sun evenly defin'd, Encompaffed with a fluid yielding to motion,but diffolving its parts. Its light from its' felf. (9.) Its Nucleus fuppofed denfe poffibly as the middle part of the Earth, of which fome conjectures. Diffolved by the Æther as in our Atmofphere. (io.) Argument for the loofenefs of the central parts of the Earth from the variation of magnetical direction. (ii.) The Nucleus of Comets poffibly the fame. Internal motion may weakengravitation. Parts feparated may be agitated by the gravitation of the \odot. Tail made not fo much by the particles receding as the Stars approaching the Sun. (12.) How the Comet may firt lofe its Orb in the Univerfe, and paffing through the

STNOPSIS.

fpheres of Activity of feveral central bodies is deflected and attracted by them, and the Blaze raifed to a prodigious length. (13.) The bodies being ateracted by fome gravity, Blaze expelled by levity, explained by Imoke, and fteams. Somewhat for politive levity. (14.) A digreffion concerning the method of fpeculating the great and firft principles of the Univerfe. The Coma and Blaze like fmoke or flames. (15.) Shining particles a fhining point, not a line of light. Confiderations and Experiments about the ways light is augmented by, as by fwift motion, adjacent dark medium, Flame explained. Why the Particles coalefce into a ftream. (16.) Enquiry about the magnitude and place of Co mets. Many fuppofed them fublunary. Tycho and Kepler proved them coeleltial. How far we may rely upon Obfervations for Pa rallax. Parallax and its effects defcribed. (18.) Tycho fuppofed the Comet of 1577. to move about the Sun. Kepler that of 1607. to move in a ftraight line; that of 1664 . had no fenfible Parallax by what means it was found. (19.) Refraction in this way varies little. Theory of Comets defective as to Parallax hitherto. Parallax not to be enquired from the Obfervations of feveral men. Errors creep in from the Prefs and the Graver, as in P. Gottignies Plates. (20.) Nothing to be concluded from Oblervations made by perfons in differing places for want of accurate Inftruments, and Obfervations. (2I.) Even the beft as Hevelius, Gottignies, Petit, or Auzout err. Some reafon for this affertion. Moft of the reft altogether infignificant. (22.) Want of Obfervers, Intruments, and Tables the caufe. How thefe wants are to be fupplied. What the world expects from Mr. Hevelius. (23.j And of how great ufe his Tables and Projections made by them will be. Parallax from diurnal motion failing. (24.) Other Parallaxes arifing from other hypothefes of the proper motions cither of the Earth, or Comet, or both together confidered arife to a certainty. (25.) Others depending upon other fuppofitions define nothing of the magnitude or diftance of Comets. The inconvenience of Tycha's, and allo of Kepler's Hypothefes explained. A third way I have taken. What confequences follow from it, (26.) As that it moves in a Circle that comes within the Earth Orb in Ωl, and without 24. Orb in An, a fextant in 130 days, orc. This not relied on, becaufe there may be other hypothefes to folve the phromomena; as that the Earth is unmoved, and the Comet moved in a Circle, whore convex fide is toward the Earth. (27.) This hypothefis explained by the fixth figure. (28.) The diftance and bignefs of the Circle of the Comet undeterminable this way without a diumal parallax, fince the appearances may befolved by Circles of any bignefs, proved by the eighth tigure, (29.) Allowing inequality of motion, or

STNOPSIS.

more compound curve lines, nothing can be determined. The circular Orb it feemed the moft probable folves Kepler's acceleration, according to the increafe of a line of Tangents. (30.) A gravitation towards the Sun makes out the motion of the Comet, and Planets, and of the Blaze. The Blaze explained by experiment of δ diffolved in oyl of Virt. (3I.) This experiment and hypothefis farther explained,and applied to explain the Blaze which is from thence bent, brighter on one fide than the other, not direct from the Sun. (32.) Cometical body and motion as old as the world, yet waffing in the Æther; explained by fire. Diffolution by menffrumms. (33.) Thence the proprieties of Comets conjectured, and the fum of the foregoing difcourfe repeated, being the end of a Lecture. Recourfe to Tycho Brabe's Obfervation (34.) for makirg out theComets Orb. His fuppofing its motion unequal without reaifon a fhift. Mr. Horrox his hypothefes in the ninth figure a product of chance. (35.) A difcourfe on it, and fome objections againft Tycbo'so (36.) Kopler's hypothefis examined by thefe Obfervations of Tycbo's, found the mof likely, but with fome alteration. Line of Trajection bent a little. Motion accelerated towards the Sun, retarded from it. (37.) The fwifter and further off the Comet from the Sun, the lefs the bend, explained by the tenth figure. (38.) The way of enquiring parallax by Telefcopes, (39.) further explained. A fecond way by two Obfervers in diftant places propounded. The third way of Sir Cbr.Wren his Majefties Surveyor-General, (40.)Set down and demonftrated by a Ceometrical Problem. (41.) How exactly all thofe Obfervations he had were made out by it,together with his own Schemes ; both which I had in the beginning of Feb. 166 ${ }_{6}^{4}$. (42.) Some other Papers about Comets added, being reflections on Mr. Deffartes and Kepler's hypothefes, from particular tracings of the Comets of 1664. and 1655 . A Scheme of the later Obfervations of that of 1664 . added, and fome reflections, being all the papers could be forrad about thofe Comets. (43, 44.) Animadverfions on this of April laft. Why the former conjectures were adhered to concerning the light of Comets. (45.) Several forts of thining bodies enumerated. (46) To which the light of the Comet feems to have moft affinity, and how produced. (47.) Further defcribed and explained. (48.) The reafon of its parabolick figure demonifrated from the propricties of motion from or toward a gravitating body, as the Sun. (49.) Concerning the wafting and lafting of the Cometical body. The bignefs and nature of the Particles that compofe the Blaze. (50.) Some difficulties in this fuppofition concerning the action of the Æther in levitation and afcent, diffolution, fhining, *oc. cleared and explained by Experiments. ($51,52,53$.) But would have been further examined by

STNOPSIS.

Obfervation if there had been opportunity. (54.). That thefe affertions am bout the light of Comets may not feem too paradoxical, fome further Confiderations and Obfervations about light are added, and fome new ways propounded. (55,56 .) Mr. Boyle's Mernorial concerning a Phofphoros, wrycten for his own ufe, inferted i in which he firft names the Author of it, and defcribes his Apparatus. $(57,58$.) Then the abfervables. 1. Two fpoonfuls of matter enlighten a large glais fphere. 2. A little enlightens a large. Cylinder. 3. Liquor fhaken had a fmoke and flafin. 4. A dry fubftance affirmed to have conrinued thining 2 years, flafhed. (59.) 5. Some duft of this on a Carper twinckled like Stars. Writing on paper with it fhin'd, and fmelt of Sulphur and Onions. (60.) 7. The hand on which it was rubbed, Shin'd, but felt no heat. (61.) It fired Gun-powder firft warm'd. (62.) And white paper held over coals.Other tryals propounded, but refufed.(63.) some Experiments made on the Phofphoros Baldwini in vacuo, and in the open air. (64.) Preferved in Vacho, but deftroyed in Air. (65,66 .) Monfieur Gallet's Letier to Monfieur Caffini, acquainting him with his Appar atus for obferving \underline{Y} in \odot. $(67,68$.) His Obfervation of four fpots in \odot. (69.) The particulars obferved. ($70.71,72$.) Monfieur Caffini's Retlections on thefe Obfervations. ($73,74$.) Mr. Hally's Letter to Sir Fonas Moor\&, containing an account of his Obfervations of $\underset{y}{ }$ fub fole, three Southern Stars. The two Nubesule, efr. ($75,76,77$.) Mr. Caffins farther difcoveries about the diurnal motion, and reveral new appearances in $7 \boldsymbol{r} \cdot(78,79,80$. $)$

A fecond Difcourfe called Microfcopium, or fome new difooveries with Microfcopes, in a Letter of Mr. Leeurenboeck. (81.82.) A confirmation of fome of them by Obfervations here. (83.) Mr. Leeumenboecle's fecond Letter, containing Obfervations of the Globules of Blood, Milk, Flegm, Gums firt diffolved, then precipitated out of the Spirit of Wine; Eels a thoufand times thinner than a hair. $(84,85,86,87,88,89$.) The ways how thefe difcoveries were made here. 1- By holding the liquor in Imall pipes, how filld, how made. The Lamp, Pipe, Oyl, Manner, Materials for making them defcribed. ($89,90$.) Mufcovy-glats ufed inftead of thele Pipes, and how the Microfcope was fitted for this purpofe. (9I.) What light convenient. Surfaces of bodies not perfettly Hluid apt to delude an Obferver. (92.) Plates removing, that deluding caufe, and what farther ufe of them. (93.) How to find the figure and texture of Animal and Vegetable parts. Inftance in a ligament of Heef. (94.) The figure of Mufcles hinted, and an inftrument ftretching them before the Glafs defcribed. (95.) A defcription of the Microfcopes ufed, I. Of the fingle Microfcope, and its advantages and difficulties. (g6.) another fort more eafie defcribed, and the ways how to make and ufe it explained. (97.) Caufes that vary the diftance of objects from the Globule. The ufe of Selenites and Looking-glafs-plares, for holding the fiquor. A Microfcope of one fingle refraction. (98) The only inconvenience of them hinted, how prevented by double Microlcopes. Where thefe are made. (99.) The double Microfcope, and its parts, ufes, and advantages defcribed. (Ioc.) The benefit of a dark Room, and appiopriated lights. And a digreffion in anfwer to P. Cherubizes Accufation. (IOI.) Some Obfervations made with this Microfcope hinted. Animalcules in the fteeping of other Grains befides Pepper. Their fmallnefs eftianated, and compared to a Whale. Mufcular fabrick hinted. Milk, Blood, Fat, Sugar, Allum, efc, viewed. (IO2, 103.) Mr. Young's Letter of one who trying to cure a Colick by leaden Pills, nipt one into his Lungs; grievous fymptoms enfuc. (105.) Helps of skilful Phyficians in vain attempted, and particularly of Dr. Mayow, of fufpending with the head downward; though in the interim he married and had Children, yet it kill'd him. (106, 107.) His body diffceted, and remarkables raken notice of, and their caufes explained by Mr. \%oung, (from Io7. to ir2.)

COME.

C OMETA,

 O R,
Remarks about Comets.

 N Saturday morning, April 2 I. 1677. I firft faw the Comet, of which I had been advertifed the day before. It appeared in the Sign Taurus, between the bafe of the Triangle, and the unformed Stars in the Cloud of Aries; dignified by P. Pardies, with the figure of the Flower-de-luce. The head of it was in a right line, with the heart of Caffiopea, and Alamak, or the South foot of Andromeda. and as near as I could judge by my naked eye (having no Inftrument or help by me) it was $\frac{5}{6}$ of the diftance between the feet and the Girdle of Andromeda, diftant from the faid Alamak towards the South.

Its tail fometimes as the Air was clearer and darker, extended about three quarters of its diftance from the aforefaid Alamak, and pointed directly at the Star in the nofe of Casfiopea of the fourth Magnitude, and confequently the head of the Comet pointed not directly at the Sun (the Sun then being about the eleventh degree of Taurus) but rather towards the fourteenth degree of the fame Sign. Its appearance was very fmall and flender, and as people commonly ghefied, about two yards long; and the head about the bignefs of a Star of the firft magnitude, but of a much fainter and duller light. Its blaze about three o'the clock feemed to rife ftraight up-
ward, before that about half an hour after two it leaned a little Eaftwards, or towards the right hand, and after three, as it rofe higher, inclined towards the left fide or Weftwards. The head to the naked eye was brighter than the blaze, and feemed to be fomewhat bigger than that part of it which immediately joyn'd to the head; butthofe parts of it which were farther diftant, were of a much greater breadth; fpreading wider and wider, as they were more remote from the head, and in the fame proportion alfo growing fainter and fainter in their light, efpecially towards the outfides: but the middle parts or medulla appear'd much longer, and the brightnefs much greater, which made the whole blaze to feem to taper, or be pointed towards the top.

The length of the Blaze appeared fometimes fhorter, and fometimes longer, by feveral viciffitudes; and as the day-break, or dawning increafed, fo the Blaze thortened, and efpecially towards the fides near the top, and fhortly after before the Sun rofe, difa ppeared.

But notwithftanding this fhortning and lengthening of the Blaze, I could not perceive any kind of motion in the parts of it, fuch as is obfervable in Hame, fmoke, or other feams rifing from a burning or hot body: but the fame parts of the Blaze feemed to appear and difappear in their proper places as if they had been fixed and a folid body.

The firft Figure I have here annexed will with fome fhort explications, reprefent the appearance of it to the eye, more plainly than by a multitude of words, without it 'tis poffible to exprefs.

A, reprefents.the head of the Comet, the middle of. which appeared brighter than any other part; about which was a hazy light fomewhat like the fhining of a Star through a thin cloud; the lower part of which was pretty round and defined. B, the neck of it, which feemed to the naked eye of lefs Diameter, and lefs bright than the head, but through a fix-footglafs, as I
fhall mention by and by, it appeared bigger, though not fo bright. The middle of this was very bright, and feemed to iffue from the Nucleus or Star in the middle of the head. C, the brufhy parts which were fainter and paler towards the fides, efpecially nearer the top, which made the whole feem to taper and refemble the Figure here expreft: Obferving it with Telefcopes (one of which was fifteen foot, and the other fix foot long) I found the fhape of it much like this, which I have reprefented in the fecond Figure.

It had a pretty bright Star (if I may fo call it) near the middle of the head, feeming much about the brightnefs of 15 when near the Horizon, and was about 25 feconds in Diameter; as is reprefented by A, not perfectly defined, but hazy; the cloudy part or beard of the body encompaffing it on all fides: but that part of the Coma B , which was next towards the Sun, was the narroweft: nor was this Coma well defined, but the outward parts of it were fainter and fainter. However they were regularly enough terminated to make the outwardmoft bounds of it of a kind of Parabolical figure; the moft bent part of which was towards the Sun, and moft defined: And the bright Star of it was, as I have expreffed it about four of its Diameters diftant from the faid parabolical limb. The light parts of the ambient Cloud feemed to \{pread gradually towards that fide of it, which was oppofite to the Sun ; but thofe which were next the middle were the brighteft : and always as they were farther and farther from the Star in the head, the fainter and paler they were.

I could not obferve any reprefentations like thofe which are givenus by Mr. Hevelius, in his Cometography, neither in the Head, nor the Blaze, no more than I could in thofe which appeared in the years 1664. and 1665. as may be eafily taken notice of by comparing thefe which I have here delineated with thofe.

The middle part of the Blaze CC, which afcended from the Star in the middle, feemed the brighteft, and B 2
of this medulla or ftem, thofe parts were brighteft which were neareft fituated to the faid Star. The fides of it grew fainter and fainter, as they were farther from the head; and though they had brightnefs enough to make them appear in a dark and clear sky, yet the dawning quickly made them vanifh, and difappear, as did any hazinefs of the Sky : and according as the light increafed, fo was the Blaze diminifhed, after the order of the tapering prickt lines expreft in the third Figure by a aa, bbb, c cc, ddd, ofc. and even in a clear and dark Sky, towards the farther end of the Blaze they often difappeared for fome fhort fpace of time, though the middle or ftem continued; and fo it caufed the remaining appearance to refemble the figure of a very flender birchen whisk or brufh, much like that reprefented in the firlt figure.

The 22. from half an hour after two, till half an hour after three, the North-ealt part of the Heavens to me was cloudy, and the Sky between the Clouds was hazy , and the dawning ftruck much higher than the day before, fo that I could not find it.

The 23. with feveral friends I obferved it again, the Sky being clear, and confirmed my felf in all my former obfervations, taking again diligent notice of all circumftances remarkable, both with my naked eye, and with Perfpective-glaffes. And I had this morning a very notable obfervation in order to meafure the bignefs of the Star and its Coma which encompaffed it, by comparing it with fomewhat fixt : for fome few minutes before three of the Clock the head of it paft juft behind the type or top-poft of a tower not far diftant, and was quite eclipfed by it; and as foon as it appeared to have paft it, feeming yet contiguous, I obferved it with my fix foot Telefcope, and found the Coma or whole head to appear full as big as the faid typeor timber poft, and the Nucleus orStar in the middle of it, to be very near of the fame bignefs of the iron fpindle, upon which the weather-cock was fixt. Whence upon examining the bignefs
bignefs of the faid parts, fince by an accurate Inftrument I judge the head or Coma was about $4 \frac{1}{6}$ minutes in Diameter, and the Nucleus or Star about 25 feconds. I took notice this morning that it had much altered the pofition in the Heavens, which it had upon Saturday morning, and that the Blaze of it was very much deflected out of the line it appeared in the laft time. And with a fmall crofsftaff, taking the diftance of it from Alamak, and from Genib, in the left fide of Per feus. I judged it to'be in the mid-way between the Flower-deluce aforefaid, and Algol, or the head of Medufa, that is, about 14 degrees of \succ, and 17 degrees of Northern Latitude : fo that I judged its motion almoft Eaft, buta little deflecting South. I was not much folicitous of making obfervations of its true place, as not defigning my prefent enquiry to be for what kind of motion it had, conceiving its motion to be towards the Sun, and fo of very little duration: and expecting to hear anaccount of that from other places, and perfons that were better furnihhed with Inftruments and conveniences for oblervations of that kind than I was then.

The Blaze extended it felf in a right line towards the Star in the right thigh of Ca/Jiopea, being a Star of the third magnitude. Its length at firft was about 7 or 8 degrees, and did fometimes feem longer, fometimes fhorter, as I noted before, without feeming to have any other motion in it but the Diurnal motion, the fame with the fixt Stars on Earth. Whence I collected, that the head of it pointed towards the feventeenth degree of Taurus in the Ecliptick, though the Sun at that time was about the thirteenth degree of the fame Sign.

The 24. with feveral others, I attended the appearance of it, but the Sky in that part of the Heavens was over-caft with Clouds.

The 25. I expected to have a farther Obfervation of it from half an hour after two, till a quarter after four; but notwithfanding the South-eafterly wind, and the clarifying quality of the air, which before half an hour
after three had partly carried off, and partly diffolved the black thick Clouds (with which the North-eaft parts of this Horizon was over-caft about three of the Clock) and left that part of the Heavens where the Comet fhould have appeared clear, and without Clouds. Yet the air being very high and heavy, as the Barometer fhewed, the upper parts of it were fo filled with the dawning light of the morning, that neither the Blaze head or Star of the Comet appeared to me in the leaft : nor had I any fight of it fince.

The like appearance of the great height of vapors in the air, when it is very heavy, I have often taken notice of, and have obferved, that the twy-light and dawning between the night, and appearing of the Sun is very much altered thereby. And that a heavy air, when the vapors are raifed high, will make the length of them much greater, and confequently the night fhorter. And a light air, on the contrary, fhortning them, doth 1engtherr the night.

Thefe were the moft remarkable circumftances I took notice of in this Comet, being altogether Phyfical, and defigned only for enquirng into the conftitution of thefe wonderful bodies: the accounts and opinions we have hitherto had of them of that kind, being very unfatiffactory. Though other Obfervations, to wit, Mathe. matical, of the way, celerity, and magnitude of Comets have been profecuted with very much care, and great skill; fuch as thofe of the noble Tycho, and the learned and diligent Hevelius, infomuch that I could not expect to have better; yet as to Phyfical remarks, I wanted much information to be able to fatisfie many difficulties that occurr'd to my thoughts, upon enquiry into the particular natures of them. I did therefore, as I defigned, employ all the time I could get of obferving this Comet, in taking notice of fuch circumftances as I judged would be pertinent to refolve any of thofe Queries 1 had formerly made, in order to find out the nature of Comets in general. And though the little oppor-
tunity I now had, and the difadvantageous appearance of this laft were very fhort of giving me that fatisfaction in manyparticulars which I wifh'd for, and expected at firt, yet fince they may poflibly ferve for hints to others that may hereafter have better oportunity than I, and that I might underftand what material objections could be made by obfervers from preceding Comets, and that they might for the future more diligently take notice of what from thefe queries and hints may be judged fignificant to thisdefign, fuch as they are I have here publifhed as I had done formerly by my Lectures in Grar Sham-Colledge, thofe which I had made of thofe in 1664 and 1665.

Now before I come to make reflexions upon thefe remarks, I thought it might not be improper to add fome few of thofe things concerning thofe two former Co mets obferved by me in the faid years. I fay, fome few, becaufe it would be needlefs to fet down all, efpecially fuch of mine as do agree with others fince publihed. I did therefore foon after I had feen the firlt Comet, to wit, December 23. 1664, propound to my felf certain Queries neceflary to be anfwered, in order to find out a true theory of them, and directed my Obfervations accordingly; and they were thefe.

Of what fubftance its body, beard, and blaze is? and next, of what magnitude each of thofe parts appear, and of what real magnitude they are?

Other Queries were concerning its denfity and rarity, its mutability or immutability; that is, whether it diffolved and wafted or not? whether it were fluid or folid? whether it participated of gravity or levity?

Whence it had its light, colour, erc.
What was the figure of the Star,Radiation,Blaze,ero
Whether the Blaze were always oppofite to the Sun, or deflected? whether ftraight or bended, coc.

What kind of motion it was carried with? whether in a ftraight or bended line? and if bended, whether in a circular or other curve, as elliptical or other com-
pounded line, whether the convex or concave fide of that curve were turned towards the earth? Whether in any of thofe linesit moved equal or unequal fpaces in equal times?

Through what parts of the univerfe it moved, and how far diftant it was at feveral times? Whether in the lower Regions near the Earth in the Atmo!phere, or near it, or in the Heavens, or fluid Æther, with which the fpace of the Heavens is filled? Whether above or below the Moon, ©rc.

Whether it wafts, and is difperfed and confumed ? or whether it lafts and endures for a longer time ? If it lafts, Whether it ever appears again, bein!g moved in a circle; or be carried clear away, and never appear again, being moved in a Itraight or paraboloeidıcal line? Whether itbe collected or generated when it firlt ap* pears? and diffipated or deftroyed when it difappears; or whether the feveral diftances of it do not make that appearance ?

Whether it may not have fome fuch propriety, as the Star in Cete, whereby it may fhine and appear for a certain period, and again lofe its light, and difappear by feveral viciffitudes ? and whether that may not give fome account of the appearance of fo many Comets about Aries?

Firft, As concerning the matter or fubftance of the Nu sleus Star or body, of the hazy fhining part encompaffing it, and of the Tail or Blaze: I fay, that by comparing all the circumftances that I was able to rake notice of from the beginning to the end, I found that the Star in the head was of a very compacted and denfe light, and almoft equalled that of Saturn; though it were not like that confined by an equal limb: that there were fome parts diftinguifhable in this body, fome having a brighter, others a fainter light. That thefe parts did not continue the fame, but confiderably varied, which might in part be caufed by the differing pofition of thofe parts which were feen before, from the fame feenafterwards,
in refpect of the eye, fituate on the furface of the Earth, moved one way, and the Comet moved another; though I do not conceive it wholly afcribable to that, but partly alfo to a real alteration of the parts of the Comet. That I did very diligently watch to obferve if it were poffible, when it pafs'd over any fix ${ }^{2} d$ Star to find whether it were tranfparent; as I had leveral times obferved the tail of it to be even in its brighteft parts, but I had not the opportunity; but that I did feveral times obferve the tail of it tranfparent, not only with the naked eye, but through a Telefcope: if at leaft the fixed Stars be above it, which I think few doubt, that the light diminifh'd by degrees towards the extremes of the hazy part encompaffing it; and yet. the extremes of it as to that part of it which refpeEted the Sun, feemed pretty evenly and fmoothly defined, efpecially through a Telefcope: From all which remarks, and from the veiocity of its motion, I conjecture it to be made up of folid matter, not fluid; that the body of it efpecially, is confiderably denfe, but that the hazinefs or Coma about it is much more rarified, and the tail thereof is moft of all. That this body is encompaffed with a body moft fluid, and eafily permeable, and which doth with very little refiftance give way to the motion of it, or any other body through it, that it doth eafily admit at leaft (if not actually take into it felf) the parts of this body, Coma, and Blaze. I fay, admit at leaft, (though there may be many reafons alledged that it doth actually prey upon, and diffolve thofe parts into it felf, as I hhall fhew by and by) becaufe that we find that the extreme parts do extend but to fuch a diffance, and beyond that there is no appearance of light, and that the light is from it felf, and not produced by refraction or reflexion of the beams of the Sun, I fhall fhew reafons by and by.And confequently , where there is moft light appears, there are the greateft number, and there is the greateft denfity of the Cometical parts. The middle of the body may be as C denfe
denfe as the body of the earth; and I have not obferved my felf, nor met with any body elfe that hath taken notice of any thing to the contrary: If I could have feen any Comet to have covered any Star in its way, it would have afforded a very circumitantial information, efpecially if for this purpofe it had been taken notice of with a good Telefcope. What the denfity of the innermoft parts of this Earth we live on is, none knows; for though we find the parts on which we tread to be very compact, and thoagh by the induftry of Miners it hath been proved fo alfo to the depth of many hundred foot, as Georgius Agricola relates: and though it hath been found fo even to a greater depth by the foundings of the bottom of the Sea, yet none can bring an undeniable proof that the fame is fo folid to 25 miles deep; much lefs that it is fo to the center: if therefore the external fhell of this Globe were broken, and removed, 'tis not impoffible but that the middle parts thereof may be of the fame nature with the middle parts of the Comets body; and that thofe parts (were the fuperficial parts or fhell removed) might, like thefe of Comets expand themfelves into the encompaffing, Æther. Nay we find, that notwithftanding the compactednefs of the fuperficial parts of this Earth, yet the 厄ther is able to take upinto it felfvaft quantities of them, and to keep them fufpended, fome of them, even to the height of many miles, if any argument may be drawn from the height or length of the dawning or Cripuf6ulum; and this, notwithitanding the attraction of the Earth in its perfect vigor, or the gravitation of thele parts thus taken up, or their endeavour towards the center of the Earth. How much more frecly then might we imagine the encompafing 厌ther to prey upon, and take up into it felf the internal parts, if they were of a loofe and pervious texture, and almoft in a Itate of fluidity, like a heap of Sand, or a veffel of Ala-bafter-duft in boyling, and were not fo firmby united by the bonds of gravity, and the vinchilum of petrifaCtion,
etton, as we find the fuperficial parts of the earth now are. There is one argument to prove to us, that there may be fuch a loofenefs of the internal parts of the earth, and that is that the magnetical virtue varies, which virtue without controverfie diffufed through the whole body of the Earth, and which hath a relation to the whole Globe, and to every magnetical jart thereof. For by obfervation 'tis found, that the magnetical virtue acts upon a needle without it, as the magnetical virtue of a round Loadftone doth on a Needle applied without that, which, as I may elfewhere fhew, hath a refpect to the center of the ftone differing from all the refpects that Authors have hitherto afcribed to it, even of Gilbert, Kepler, Kircher, Defcartes, and our Countryman Mr. Bond, who I think was the firft man that endeavoured to reduce the variations obferved by Wright, Gellibrand, Cofter, \&c. into a Theory and calculation. Now this magnetical virtue, (which may be called one emanation of the Anima mundi, as gravity may be called another) being diffufed through every part of it, and reeming to be, as it were Tote in toto ero tota in qualibet parte, and to be more fpiritual, and to act more according to Magical and Myftical Laws than Light, Sound, or the like, it giving to every magnetical body, and every piece of it, though infinitely divided, the fame proprieties it hath it felf; This magnetical virtue, I fay, having fuch a relation, and being forced thus to vary, 'tis very probable that the internal parts to which it hath a refpect, have a variation likewife; and confequently, that thefe internal parts which are fuppofed generally very denfe, compact, and very clofely and folidly united, may be notwithitanding more loofe, and ununited, and movable from certain caufes.

To proceed therefore, I fay, that it feems very probable to me, that the body of Comets may be of the fame nature and conflitution with that of the internal parts of the Earth, that thefe parts may, by the help of the C 2
ether, be fo agitated and blended together, as to make them work upon, and diffolve each other in the fame manner, as we have often had examples of fome of the parts of the Earth; a late inftance of which was at Mongibel or \mathbb{E} tna in Sicily, where the Fire continued for a long time, and produced very confiderable effects. That this internal agitation may confound the gravitating principle, and foleave the parts in a greater freedom to be diffolved by the encompaffing Æther, which is the agent that lets the other two at work to deftroy each other, that it may at length prey upon both, and diffolve them both into it felf; and confequently, not only the parts thus diffolved are elevated to a greater diftance from the center of the Star or Nucleus, or the fuperficies of it, whofe gravitating or attractive principle is much deftroyed, the Coma being in this Comet four or five Diameters of the Star or Nucleus : but having given thofe parts leave thus far to ramble, the gravitating principle of another body more potent actsupon it, and makes thofe parts feem to recede from the center thereof, though really they are but as it were, left behind the body of the Star, which is more powerfully attracted than the minuter fteaming parts: for, I fuppofe the gravitating power of the Sun in the center of this part of the Heaven in which we are, hath an attractive power upon all the bodies of the Planets, and of the Earth that move about it, and that each of thofe again have a refpect anfwerable, whereby they may be faid to attract the Sun in the fame manner as the Load-ftone hath to Iron, and the Iron hath to the Loadfrone. I conceive allo that this attractive virtue may act likewife upon feveral other bodies that come within the center of its fphere of activity, though 'tis not improbable alfo but that as on fome bodies it may have no effect at all, no more than the Load-ftone which acts on Iron, hath upon a bar of Tin, Lead, Glafs, Wood, Grc. fo on other bodies, it may have a clean contrary effect, that is, of protrufion, thrufting off, or driving away, as
we find one Pole of the Magnet doth the end of a Needle touched on the oppofite part; whence it is, \mathbb{E} conceive, that the parts of the body of this Comet (being confounded or jumbled, as 'twere together, and fo the gravitating principle deftroyed) become of other natures than they were before, and fo the body may ceafe to maintain its place in the Univerfe, where firft it was placed. Whence inftead of continuing to move round fome central body, whether Sun or Planet, as it did whilft it maintained it felf entire, and fo had its magnetical quality (as I may fo call it) unconfounded, it now leaves that circular way and by its motion (which always tends to a ftraight line, and would be fo were it not bended into a curve by the attractive virtue of the central body) it flies away from its former center by the Tangent line to the laft place, where it was before this confufion was caufed in the body of it. In this line ('tis probable) it paffes from one part of the Heavens to another, and fo paffes through the fpheres of the activity of multitudes of central bodies; in the pafling through which fpheres, tis not improbable that thofe parts which by their diffolution are made of a nature differing from the body in the center, are rather expelled from, than attracted towards it; and fo being by this diffolution rarified, and loofened from the middle, and by their acting upon one another, and diffolution of the 庄ther made of another nature, after they have every way difperfed themfelves to a confiderable diftance from their proper body, are converted and driven in a way almoft oppofite to that expelling body, and fo continue to be driven away to fuch a vaft diftance, as to make out that prodigious length of the tail or Blaze of fome Comets (fuch as was that of 1618. which,as Kepler reports, was extended to 70 degrees from the body or head of it) till at, laft they are diffolved alfo, and commixed with the Æther within them. So that though I fuppofe the attractive power of the Sun, or other central body may
draw the body towards it, and fo bend the motion of the Comet from the ftreight line, in which it tends, into a kind of curve, whofe concave part is towards the Sun, by reafon that there are fome central parts of it, which are not yet deftroyed, and fo retain fomewhat of its gravitating principle: yet I conceive that all thofe parts of the Comet which are thus wrought upon by the other, and changed into another ftate, and are very much rarified, and produce light, are of a clean contrary nature, and recede from the center of the Sun : much after the fame manner as we find any combultible body with us; as Coal, erc. where we find that the body of the Coal, before'it be refolv'd into fnoke, is a very denie, and very heavy body, and tends to the center of the earth; but the parts thereof agitated by the Air and 压ther into fteams and fnoke, and thofe yet farther diffolved into flame, do tend upwards, and from the center of the earth. Now though one caufe of the recefs of flame from the center of the Earth be the gravity of the ambient Air. Yet 'tis not impoflible, but that there may be fomewhat alfo of pofitive levity conjoyned therewith. Moft certain it is, that there mult be a tendency of receding, as well as a tendency of approaching the center of the Earth, and other attracting body. And there may be much faid for the fuppofition, that the recefs of the pureft Æther, from the center, is the caufe of the motion of the groffer Æther, and of all other bodies towards it, though there are alfo very confiderable arguments againft it. But this difcourfe is not my prefent bufinefs, though it may hereafter be the fubject of a Lecture in this place; for upon it do depend fome of the greatelt operations in the univerfe. And as in the Hiftory of the Creation, we have an account of the production of light, immediately after the making of matter, which is a motion of recels from the center of the thining body. Next that, a Firmament which divided between the waters or the fluids of the one, and the fluids of another part of
the world. And in the third place, the collections of particular fluids to one center, as the center of the Earth : and laftly, out of that collection of fluids appeared the dry and folid land. So I conceive the moft proper way of fpeculating on thefe great productions of the omnipotent Creator, may be to begin with the confideration of light, or the motion of recefs from the center of a body. Next, with the confideration of the caufe of the feparating of fluid from fluid, as \mathbb{x} ther from Æther, as I may fo call differing 厌thers; becaufe we have not yet diftinct names in ufe, and the reafon of their conglobation, the 厄ther from the Air, the Air from the Water, the Water from Quickfilver, Oyl , or other fluid. Thirdly, the caufe of the conglobating property of each of thefe fluids when reparated, how they accept and embrace Homogeniea, and reject or expel Heterogenea. And fourthly, how they condenfe and fettle together, and produce a folid body : whence proceeds the confirmation of attraction or gravitation, orc. But to digrefs no further ${ }_{3}$ but conclude this part of enquiry in fhort, I fuppofe the Nu cleus or Star of the Comet may be much of the like nature with the central parts of the Earth, Moon, Mars, Fupiter, Saturn, or other Planets, but much impaired in its attractive or gravitating power.

Next, that the Coma or Hazy Cloud about it, may be of the nature of the Atmofphere or Air about the Earth, or the Smoke or fteams about a heated or burning body, before they arequite kindled, converted into Flame, or diffolved into the ambient Air.

Thirdly, that the Tail or Blaze is much of the nature of the parts of Flame, though with thofe differences I conceive, that the parts of thefe fteams are not fo clofe together, as are thofe of Smoke : nor doth the motion of them, though much fwifter upwards than that of our Flame, ferve to make them appear a fhining line; but being at that diftance, they appear much nower to the eye, and fo difcontinue the appearance; whence every

Chining

Thining particle appears only a fhining point, though in the parts of flame (where notwithftanding the motion be much llower, yet being nearer, and fo varying the pofition to the eye much quicker) each of the fhining parts makes an appearance of a line of light, and all of them paffing pretty near together, make the appearance of a continued fluid flame; though that indeed be nothing but a great number of fingle parcels of the burning body, railed up in the particles of Smoke. This will appear evident if we confider the appearances eaflly to be taken notice of in light: for tis obvious from multitudes of experiments, that any fhining body, as a candle or brands end, being moved very quick, makes the fame impreffion on the eye, that a line of light doth ftanding ftill : And as obvious alfo that any very light body incompaffed with a dark medium appears to the eye under an angle bigger than really it is, and a dark body encompafied with a light medium much lefs. This any one may prefently find, if he make a fmall hole through a thin plate of metal, and holding it firft between the light and the eye, and fo feeing the light appear through it, and then placing it fo as there is nothing but darknefs appears through the faid hole, for he will plainly perceive that the fame hole will appear much bigger in the former pofition than in the latter. Upon this account indeed each of the fhining parts of the Comet feems to fill and occupy a much greater face than really it doth: and fo , as 'tis obfervable in the milky way, a great number of thefe fmall fhining bodies though difperfed at a pretty diftance one from another, yet by reafon of the imperceptiblenefs of each of them they all feem to coalefce into a fream or Blaze of light, the brightnefs of which is yet farther augmented by a clear and unenlightened air, and by fuch a part of the Heaven wherein there appears feweft of the Stars, whether they be greater or leffer.

To the Query, Of robat magnitude the Body, Coma, and Blaze of Comets may be? No anfwer can be given until another queftion be firft anfwered; and that is, What is the place of Comets, and what is their diftance from the Earth? It was the opinion of moft Modern Writers before Tycho Brabe and Kepler (I know divers of the Antients thought otherwife) that Comets were fublunary Meteors, drawn up into the higher Regions of the Air, and there fet on fire, and fo continued burning till the Meteor were confumed; and as the matter increafed, or wafted, fo did the appearance of the Comet. But this noble Dane, and feveral others about that time found by accurate obfervations made, that its Parallax was lefs than that of the Moon'; and confequently, that it was farther diftant from the earth : that it muft be a body of another magnitude, and nature, than moft before that time had imagined; and therefore that it ought to be otherwife thought of than the generality of mankind believed concerning it. Many had been the attempts of former Writers concerning them, to find out their parallax ; and whether from their unaccurate inftruments, or from their lefs skill and diligence in ufing them, or from an imagination of the folidity, and impenetrability of the Colleftial Orbs, or from error in their calculations, or from comparingOblervations made at diffant places, one or both whereof were unaccurate, or from a prepoffeffion of Tradition or common Fame, or from what other caufe foever it were is uncertain; but 'twas generally concluded by them, that all Comets were fublunary Meteors : and there are not even at this day wanting fome of the fame opinion, though for what reafon I know not. 'Twill be hard to convince fome of thefe, that the opinion they have hitherto received for good, is not fo, becaufe they will hardly give themfelves the trouble of examining ftrictly into the matter: And to underftand the nature of Parallaxes, and how fignificant they are in determining the diftances of bodies from the furface of the

Earth, to certain degrees thereof; beyond which, by reafon of the imperfections in Inftruments, and Obfervations, and the exceeding nicenefs and curiofity neceffary, they fignifie very little. It is not my prefent defign to explain what Parallax is, that I would fuppofe my Reader to underftand; otherwife there can be no reafonfhewn him to convince him that 'tis poffible to prove that this or that Comet was not nearer than fo many femidiameters of the Earth, nor farther off than fo many. There are then two ways, by which we may come to fome certainty of what diftance a Comet is $;$ and thofe are, firft the Parallax of its Diurnal motion, or its Parallax caufed by the Diurnal motion of the Earth. And fecondly, the Parallax of its proper motion compared with the Periodick or Annual motion of the Earth. The firt of thefe may be obferved two ways; either by two Obfervers at parts of the Earth very far diftant from each other, but as near as may be under the fame Meridian: as fuppofe the one in London, the other in St . He lens; both confpiring in their obferving of the place of the Comet amongft the fix'd Stars at the fame time. Or fecondly, by one Obferver in the fame place, by obferving the place of it amongft the fix'd Stars, in its rifing or fetting, and in a greater, or if it may be, its greateft height: The noble Tycho by very accurate Obfervations of the Parallax, proves the Comet of 1577. to be above the Moon. Kepler by his own Obfervations proves that of 1607 . at its beginning to be four times farther diftant;and I doubt not but fome may have been above forty times farther.But I do not yet find that any Obfervations have accurately determined that which is indeed the great help by which we are inabled to judge of the nature, and all the o* ther accidents and proprieties of Comets. The Ariftotelian Philofophy for a long time prevailing, made the world believe themto be nothing but Exhalations from the Earth, drawn upinto the higher Regions of the Air. But Ty ho by his Obfervations of their Parallax, raifes
them out of that confinement, but yet he feems to place them in an Orb about the Sun. But Kepler frees them from that confinement, and affigns them the Univerfe to expatiate in. But none of all thefe do accurately prove the true diftance of them, their Parallax being for the moft part fo very fmall, that I fear Inftruments with common lights will hardly reach them. But we muft expect from future obfervations made with Telefcopical Inftruments to receive a certain Anfwer to this Query. Certain I am, that the Comet which began to appear in November 1664. and difappear'd in March following, was far removed beyond the diftance affigned by Kepler. For by my own Obfervations divers times repeated, I could not find any fenfible Parallax, though I endeavoured by a new method to make my Obfervations more accurate. Now though I had not the convenience of making ufe of a Quadrant, or any fuch Inftrument, to obferve its place when near the Horizon, yet the way I took, would, I think, be as good; which was this: With a very good fix foot Perfpectiveglafs or Telefcope, I obferved the place of the Comet, in refpect of the adjacent fmall Stars, as foon as it appeared, and fo traced its way till it difappeared in the vapors of the Horizon: the like I did feveral other days fucceflively, taking notice by what degrees, in what times it made its progrefs, to fee whether by its Parallax, when near the Horizon, it would have been depreft below that line of its motion, which it kept, when at a greater height above it. But though I tried this feveral times, yet I was not able to difcern that the Parallax of it caufed either any fenfible bending of the line, or any fenfible inequality in its progrefs, by which I fhould have fooner found it,than by taking its altitudes with common Inftruments:though I confefs thefe Obfervations were made when the motion of the Comet was flow, and confequently, when in probability it was far diftant from the earth. To me there feems no doubt but that it was a long way removed above the Moon
when I made thefe Obfervations: for had it been of an equal diftance with that they allow the Moon, it muft this way have manifefted a very fenfible Parallax of divers minutes: but whereas I could not certainly diftinguifh any fenfible at all, it muft be many times higher than the Moon. Now that this way is abundantly to be preferred before an Obfervation made with a Quadrant for the taking of its altitude, is pretty evident; becaufe, by this means the greateft part of the irregularity, caufed by the refraction or inflection of the Air is removed; for by this means, though the Parallax be very large, yet the refraction or inflection of the Air will not amount to many feconds, both the objects being almoft equally raifed by refraction, efpecially when 5 or 10 degrees high; nearer than which the fmall Stars vanifhed out of fight by the thicknefs of our air. It follows therefore that a Semidiameter of the Earth mult be a very inconfiderable meafure in its diftance.

This part therefore of the Theory of Comets hath been much defective hitherto. If we enquire the Parallax of them from the Obfervation of divers men made in differing places. we fhall find them fo differing one from another, that there is great reafonto furpect them all: Nay, not only fo, but in this Comet of 1664 : by comparing two Tables or Charts of the Stars, and Conftellations of that part of the Heavens, through which the Comet paft, on which was alfo markt out its way and place from day to day, both of them Printed from Copper Plates, If find that ftrange errors and miftakes may be created, notwithftanding all the Authors care and accuratenefs poffible,from the carelefnefs or neglect of the Graver: This I noted in the two Tables of the learned and accurate Mathematician,
 care from other works of his and other Oblervations of this Comet I am fufficiently affured of) and found that by the firft table upon the $\frac{2}{3} \frac{2}{2}$ of December, 1664. it
was in $4^{\frac{1}{2}}$ of III in Longitude, and in $33^{\frac{2}{3}}$ of Southern Latitude; but by the fecond it is placed at the fame time in 4° II for its Longitude, and in $34^{\frac{2}{2}}$ of South Latitude. And this error is not only committed in the place of the Comet, but alfo in the place of the fix ${ }^{\circ} \mathrm{d}$ Stars: for Riget in the firf Table is placed in $30^{\frac{3}{4}}$ South Latitude, and in $12 \frac{x}{4}$ II for Longitude, but in the fecond in $31 \frac{1}{2}$ South Latitude, and in II $\frac{2}{2}$ II for Longitude : both which differ confiderably from the place of it afligned by Riccioli and Grimaldi; according to whofe Obfervations it fhould be in 3 I. II South Latitude, and $12^{\circ} .11^{\prime} .40^{\prime \prime}$. II in Longitude.

Now if there bethefe differences to be remarked in the Obfervations of one, we cannot but expect that much more difagreement fhould be found between thofe which have been made by differing perfons in differing places, and with differing ways, and differing Inftruments. And upon examination I have found it no better : for from comparing fuch Obfervations as I have received from feveral parts of the world, even of thore which have feemed more than ordinarily exact, I find them for the moft part fo unaccurate, that though they fufficiently manifeft that the Comet of 16649 which lafted above four months, was vifible in molt parts of the world, and feen to pafs in all thofe places pretty near in the fame way amongft the fixed Stars, Yet they are fo far from manifefting the Parallax, that fome of them make the place of the Comet to be quite contrary to what Parallax would make it; fome of the Southern Obfervators placing it much more Southwardiy than thofe of the North. Others indeed of them make the Parallax fo great, that one might ghefs it to be not fo far removed from the Earth.Something indeed in the general might be gheft of the way of that Comet amongtt the fix'd Stars, efpecially when it approaches them pretty near:but for exactnels of Calculation for Parallax, they were no way ufeful. And even
in the former ufe too it feems very doubtful for comparing the Charts of the Comets way amongft the fix'd Stars publifhed by that diligent and unwearied Obferver Mr. Hevelius of Dantzick, the above-mentioned P. Gottignies, Profeffor at Rome, and Monfieur Petit of Paris, I find, that the two former make the way of the Comet to liebelow the Star in the Bill of Corvus; whereas the later, though in a Latitude interpofed between the parallels of the former, makes it to lie above, or to the North of it: and with himagree fome Obfervations which I have feen of Monfieur Hugenius. Other differences I found between thofe Tables in the way of the Comet of 64 . near the middle of its arch; wherein Monfieur Hevelius all the way places it more Southward than either Monfieur Petit, or P. Gottignies: for whereas both P. Gottignies, and Mounfieur Petit makeit pafs above the Star of the third magnitude in the right fhoulder of Lepus, Monfieur Hevelius makes it move below it, which feem to be afcribable to Parallax. But I fear much cannot be concluded of certainty from them.

I hall not trouble the Reader with a multitude of other Hiftories, which I have received concerning that Comet of 64 . nor with the difagreements of them one with another, and perhaps of moif with the truth. They have given me fufficient trouble in the examination of them, having little other benefit from them, fave only this, that I was thereby informed what a man might think of a great number of Aftronomical Obfervations that have been made : for, faving the exact Obfervations of fome few fuch, as Mr. Hervelius, Mr. Aurout, P. Gottignies, orc. truly diligent and accurate men, the greater the Collections of Obfervations are, the more trouble and difficulty is created to the Examiner; they not only confounding one another, but perplexing thofe alfo which are real and perfect.

Now the reafons or caufes of thefe inconveniences feem to be thefe.

Firft,

Firft, the want of accurate and knowing Obfervators.
Secondly, The fcarcity of convenient Infruments.
Thirdly, The Imperfection of the Tables of the fix'd Stars.
For the Obfervators, 'tis not enough to know how to manage an inftrument, or to have a good eye, or a dextrous and fteady hand; but with thefe there muft be joyned a skilfulnels in the theorical and fpeculative part, and add to all a love and delight in the thing it felf; and even all thefe will fignifie but little, without convenient and accurate Inftruments, fuch as may be eafily manageable and fufficiently exačt.
The firft of thefe the love of the ftudy being in it felf the mof excellent, or the encouragement of Princes, Noblemen, and other Patrons of this Learning muft procure: and where both of thefe concur, thence moft is to be expected, and moft fruit hath hitherto been proceeded; though there are not wanting divers eminent inflances where the firft reafon hath been the only inducement.
As to the fecond, I have already in fome of my former Lectures defrribed feveral convenient ones for thefe purpofes; and therefore I hall not here add any more concerning it.

But asto the third, I hope the indefatigable labour and skill of Monfieur Hevelius will hortly fupply the prefent defect, though it had been much to be wifh'd, that the Inftruments he had made ufe of had been fitted with Telefcopical fights. Thefe Tables, if well done, will alone (as to the bufinefs of Comets at leaft) fupply the place of all other Inftruments almof, fave only a thread, erpecially if they be fo delineated in Tables after the Tangent projection, as that the minutes of every degree may be very diftinguifhable, which will not fwell the Maps of the Heavens into an extraordinary large volume, and may poffibly be the cheapeft Inftrument for this purpofe an Aftronomer can be furnifhed withal:
withal; for having fuch a volume of Tables, it will be very eafie' with a thread and one's eye, fcreen'd only with a fectacle made of a thin plate of Brafs, with a fmall hole through it, inftead of a glafs, to obferve what place the Comet poffefleth amongtt the fixt Stars: for having by the help of the faid thread obferved what two Stars lie in the fame line with the Comet on one fide of it, and what other two Stars lie in a line with it, which is at right angles (as near as may be) with the former line, by finding out thofe four Stars in the Tables, ordered according to the Tangent projection, and with a Ruler, drawing lines over them refpectively, where thofe lines do interfect, there will be the true place of the Comet, from which it will not be difficult to find out the true Longitude and Latitude of it by a Sector with Tangents. Now as thefe Tables of all the fixt Stars vifible to the naked eye, would ferve for finding its place whilft very big and fwift of motion; fo the like Tables of the fmall Telefcopical Stars that lie near its way, whenalmoft difappearing, and moving very now, will by the help of a pair of meafuring Compafres placed within the eye-glafs of the Telefcope, and a ftraight line or hair drawn crofs it, ferve to find the true motion and way of it, when only vifible with a Telefcope: according to which method I made the annexed Schemes, and Oblervations of the laft appearances of the Comet.

Now fince neither from my own, nor from any other Obfervations that I have hitherto met with, there can be any certain conclufion drawn of the diftance of thefe Comets, rave only this, that their diftance was very great, and much higher than the body of the Moon, becaufe elfe there mult have been a confiderable Pa rallax caufed by the Diurnal motion. The next enquiry will be, what other ways there are of knowing its diftance. Now though none could be more demonitrative than the Parallax found this way by the Diumal motion, yet there are fome other which feem more eafie arifing
arifing from the confideration of the motions that may be thought to be concern'd in the producing the appearances. And though they be wholly hypothetical, and fo need fome other arguments to prove the ground and principles on which they are founded, yet fince there are not very many confiderable ones wanting to make them probable and rational, I fhall here add fomewhat of my inquiries after the diffance, pofition, motion, magnitude, σc_{0} of thele Comets by thefe means.

Of thele ways there are feveral depending upon feveral fuppofitions which produce very differing effects, as to the magnitude, diftance, motion, and way of the fame Comet.

The fuppofitions are thefe:
Either that the Earth moves in an annual orb about the Sun, as the Sun is fuppofed by others to move about the Earth: Or that the Earth is perfectly fix'd, and hath no fuch motion.

Next, that the Comet moves either in a ftraightline, or in a curve line; and the curve is either a circle, or fome other regular or irregular curve.

Further that the motion of the Comets in thefe lines is either by equal or unequal fpaces in equal times.

Now according as we take this, or thofe of thefe.differing fuppofitions, and compound them together, fo will the product of them be ftrangely differing. Amongtt the great variety of compofitions of thefe principles or fuppofitions, thefe feem the moft fimple, and confequently being any otherwife proved, will beft determine the true diftance and way of the Comet.

Firft, To fuppofe the Earth to ftand ftill, and the Comet to move equal fpaces in equal times in a circle.

Secondly, To fuppofe the Earth to move in an annual Orb about the Sun, and the Comet to move through the Æther or Expanfum, equal fpaces in equal times in a ftraight line.

Thirdly, To luppofe the Earth to move (as above)
in its annual Orb, and the Comet alfo to move equal fpaces in equal lines in a circle.

The other are indeterminate and infinite, and nothing can be concluded from them as to the diftance, magnitude, motion, cijc. of Comets; for the line or way of the Comet may be placed at any diftance, if we will fuppofe it moved in an uncertain curve, with unequal degrees of velocity: And indeed, upon a fuppofal of an inequality of motion, nothing of its way or diftance can by any of thefe fuppofitions be found out. This fault had that of Tycho Brabe, where he fuppofed anunequal motion of it in its Orb about the Orb of $V_{\text {enus, }}$ which was founded upon the firft Hypothefis, but had introduced into it fome inequality of motion; befides his own fuppofition, that it was moved about the Sun, and the Sun about the Earth. See the fifth Figure. Keplers way, which was after the fecond Hypothefis, had the fame fault; for he fuppofed the annual motion of the Earth, and the motion of the Comet in a ftraight line, but introduces an acceleration of motion in the Tangent towards the latter end.

The third way I have here taken, and from the beft obfervation I could meet with, I have delineated its refpects or angles to the Sun: and accordingly fuppofing it to move equal fpacesin equal times, in a curve which for fo much of it as the Comet was obferved to pafs was very near a Circle, I found this Circle would fall as it is exprefs'd in the feventh Figure, where 'tis obvious to take notice, that when the Comet was neareft to the Earth, namely, about the 19. or 20 . of December, that it was not nearer than an eleventh part of the difrance of the Sun; that on the 23 , it was twice as far, that on the 29. it was four times as far ; that on the 15 . of January it was as far as the Sun, and on the 14. of February it was above twice as far diftant as the Sun. That this way or Orb of the Comet is here bended fo as (if it were an entire Circle;) one part of it would
go without the Orb of Fupiter, as the other which is here delineated comes within the Orb of the Earth; that the plain of this Orb is inclined to the plain of the Ecliptick about 18 degrees, that if from feveral parts this Orb perpendiculars be let fall upon the Plain of the Ecliptick, thofe perpendiculars fhall fall in an Ellipfis, part whereof thall fall within the Orb of the Earth in ρ_{s} and the oppofite without the Orb of $\frac{y}{}$ in \approx.iv. That the Comet moves a Sextant of this Orb in about 130 days, and confequently if its motion fhould continue the fame in fuch a Circle, it would appear about $F e-$ lruary, March, or April, 1667 . but being fo far removed towards the South Pole, will here hardly be feen: but by thofe that live towards the South, it may appear to have fome fuch motion by the South Pole, as that of 1618 . had by the North. And "tis notimpofible, but that the Comet of 1618 . might be the fame with this, if we fuppofe the Nodes of it to have a motion contrary to the order of Signs: and that the fame Node which in this Comet, according to this fuppofition was in II, was then about 碞 or \mp : but thefe as conjectures I fhall not infift on, be ${ }^{\mathrm{c} a u f e}$ neither in this, nor in that have we Obfervations fufficiently accurate to build any Theory upon. Now though upon the ef fuppofitions the motion and appearances of the Comet feem to be very regularly, and very naturally made out, yet 'tis not the only Hypothefis for that defign: nor do I believe it fo evident a demonftration for that end, as fome would fuppofe; though for other reafons I am apt enough to think that opinion of the Earths motion very probable : but the motion of this Comet is fo well made out, by the contrary fuppofition, that I think it may be alledged for a greater argument againft the motion of the Earth, than for it : for if we only grant one of the former poftulata, namely, that the body of the Comet is moved equal fpaces in equal times, and a quite contrary poffulatum to the former; namely, that the Earth remains fix'd as to an annual motion, we may E 2 find
find all the obfervations of this Comet, efpecially the moft accurate of them, to happenfo, that the Comet being fuppofed to be moved in a great Circle, whofe convex fide isturned towards the Earth, whofe center is extended towards the fix'd $*$ in s; ; and whofe Semidiameter is about fixfore times the neareft diftance of the Comet from the Earth, and the Comet be fuppofed to be moved very near equal fpaces in equal times, we fhall find, I fay, all the appearances moft exactly folved, and indeed much more exactly than by the other fuppolition I was able to find any; for by this fuppofition both the magnitude, longitude, latitude, retrogradation, ftation, and direction of the Comet is moft exactly made out as any one might have found that fhould have by this means examined with me the obfervations I have hitherto either made or met with : and indeed all the Obfervations hitherto have fo well anfwered this Hypothefis, that I do almoft promife my felf to be able to fee this Comet a month or fix weeks hence, after the Sunhas paft by it; if by its exceeding clongation it be not quite grown out of fight, as it is now indeed already fo exceeding dim, and faint, that it cannot be feen without a very good glafs, which will endure an exceeding big aperture : nor could I thele two laft nights perceive it, though the Air were clear ; but the reafon I attribute to its nearnefs to a fixed * of r : This Hypothefis is explained in the feventh Figure. By this fuppofition the return of the Comet will be much longer, and the time of feeing of it much more uncertain; becaufe the curvature is fo little that the making the circle a twentieth, or a fixteenth part bigger or lefs, does not much alter the regularity; whence 'tis exceeding difficult, unlefs we had much more accurate Obfervations than I have hitherto met with, to determine exactly the bignefs of the circle, and confequently the time of the return. And by this fuppofition the Comet may be fuppofed either nearer or farther from the Earth at any diftance, which is not
contradicted by a Diurnal Parallax ; that is, it may be fuppofed either above Saturn, or below the Moon, or in any place between; by fuppofing only, that the farther the neareft part of the Circle is diftant from the Earth, the greater muft that Circle be, and the fwifter the motion of the Comet in it : to prove which affirmation, let in the Eighth figure A be the Earth, BCD the Orb of the Comet fuppofed very near the Earth, and E F G the Orb of it fuppofed at a greater diftance: let H be the center of B CD, and I of E FG, and let A C, be to CH , as A F , to FI , all the lines drawn from the point A, fo as to cut the Circles B CD and EFG, fhall divide thofe Circles E F G, and B C D, into fimilar fegments: as let ABE be a line drawn cutting thofe Circles in Band E: I fay, the Arch B C fhall be fimilar to E F. In which Hypothefis if we have together with the place of the Comet when flationary, the place of it when in its greatelt celerity, perige, or the places of it when of the fame celerity on each fide of its perige, we have from thence the proportion of the Radius of its Orb to the perigean diftance, and confequently all the other diftances, the line in which it appears when ftationary, being the Tangent to the Circle in which it moves, as A BE, to which a Perpendicular raifed at BBE , and produced till it cut the line AC , (produced) at H HI, it gives the Center of its Orb HHI , and the proportions of the lines $\mathrm{AB}, \mathrm{AC}, \mathrm{BH}$ $=H C$, or of AE, AF, EI=FI, the Angle BAC, being given by obfervation. So that by this Hypothefis the Phxnomena of the motion and bignels of the Comet will be folved, though fuppofed of any diftance. Nor are thefe the only Hypothefes by which the hitherto obferv'd Phænomena may befolv'd : for if we will admit an unequal motion, fuch as is now granted to all the Planets: and if further we will admit it to be moved in an Elleipfis, or other fuch like curve, there may be divers other Hypothefes that will folve the Phanomena; fo that the Comet may be fuppofed to E 3 have
have no motion at all as to Longitude, but only as to Latitude : that is, it may be fuppofed to be moved in an Elleipfis, defcribed in a plain which fhall be at right Angles with the plain of the Ecliptick, and the ways of the Earth in it : it may be fuppofed alfo to have been mov'd direct, according to the order of the figns, that is, to have been firlt about Gemini, in refpect of the Sun, and to be now in fome part of Leo: And it is not impoffible to folve the phænomena of its periodick or proper motion, though it be fuppofed not fo high as the Moon, and that the motion of the Earth paffing by it did really alter its motions, had there not been made fome Ob fervations about the Parallax of it, which prove it higher: fo that according to this or that Hypothefis which we take, the time of its return, if permanent, will be longer or fooner.

And thefe Hypothefes may be fo various, that till regulated by very exact Obfervation of the Parallax, "tis not to be hoped that the appearance of a Comet can be certainly predicted: So that I fear the prophetick faying of Seneca, Erit qui demonftret aliquando in quibus Cometa partibus errent, cur tam Seductia cateris eant, quanti qualefque fint, will hardly be verified at this time by the help of this prefent Comet. Though intruth I cannot find by the examination of feveral of them, but that they all feem to promife very fairly a return of it: for all the Calculations I have hitherto made of its motion, feem to caft it into a circular, and not a into ftraight line, as Kepler fuppofed; and indeed upon examining even Keplers own Calculations of thofe Comets which he obferved, and has endeavoured to make to move in a ftraight line, I cannot find that any of them will be found to move equally in fuch a line: but to folve the appearances, he is fain to make them move in fuch fuppofed ftraight lines, by a line of Tangents, that is, to make the motion of Comets accelerated the further they are moved; all which Phænomena may be very eafily rolved by fuppofing them to have moved equal faces
in a curve or circle. The phyfical reafon indeed feems pretty difficult, by what means it fhould be confin'd or bound fo as to move in a Circle: but this is no more than is ufually fuppofed in all the Planets, and without fuppofing a kind of gravitation throughout the whole Vortice or Calum of the Sun, by which the Planets are attracted, or have a tendency towards the Sun, as terreftrial bodies have towards the center of the Earth. I cannot imagin how their various motions can withany fatisfaction be imagined, but that being granted (for which had I now time, I could alledg many reafons, and may do it hereafter on another occafion) not only the realon of all the irregular motion of the Planets may be eafily found, but the reafon alfo of the ftrange and various motions of the Comets. The reafon why its Beard is for the moft part oppofite to the Sun, which was another Query, of which I have already faid fomewhat of my fuppofitions, and fhall now add, that the brighter fpot or kernel in the middle did feem to be fome kind of body, which though it be not actually burnt, may yet by the encompaffing fluid Æther be diffolved and wafted, and thofe diffolved parts may afcend upwards, or from the center of the Sun, (which feems indeed to be the center of gravitation throughout the whole fyfteme of it.) To illuftrate which explication, I could produce feveral experiments which would make a perfect reprefentation of the phænomena of the body, and beard of the Comet : I fhall only inftance in onc. Take a very clear long Cylindrical Glafs, which may hold about a quart of water; fill it three quarters full with water, and put into it a quarter of a pound of Oyl of Vitriol, and in the midft of this fufpend by a fmall filver wire, a fmall wax-ball, rould in filings of iron or fteel, and you may plainly obferve a perfect reprefentation of the Head, Halo, and Beard of the Comet; for the menftruum falling on, or diffolving the iron, there is a continual eruption of fmall bubbles, and diflolv'd particles from all the
fides of this body; and after the eruption they all afcend upwards from the center of the earth; for being of a much lighter confiftence than the anbient liquor, they are by the greater gravity of that, continually protruded upwards. The fame appearance may be made with any kind of menftruum, and a convenient diffoluble body fufpended init; fo that if we fuppofe the 厄ther to be fomewhat analogous to a menftruum, and that there is a gravitation towards the center of the Sun, if the Nucleus or head of the Comet be fuppofed fuch a dilfoluble fubftance, the phænomena of the fhape of the Comet may, I think, be rationally explained. Now that the 不ther may have fuch a kind of propriety, feems tome to be argued from this, that the Air about the Earth feems to owe its original to it, it being only a diffolution of terreftrial bodies into the Æther, the Æther being the principal fluid body, and greateft part of this diflolution; and the fubftance of the Air, Oome very few and fruall faline and earthy particles: of which elfewhere. By this Hypothefis the phænomena of the Comet may be folved; for hence "tis eafie to deduce the reafon why the Beard grows broader and broader, and fainter and fainter towards the top: why there is a Halo about the body; for this will appear clearly in the experiment : why the Beard becomes a little deflected from the body of the Sun; for if the diffolving Ball be by the wire mov'd either this way or that way, the arifing ftream or bubbles will bend the contrary: and to countenance this fuppofition, both in thofe Comets obferved by Tycho, Kepler, and alfo in this laft the beard was contrary to the motion; fo that the head or body going falter, feemed to leave the beard or tail fomewhat behind: by this fuppofition alfo 'twill be eafie to explicate why the beard is fometime bended, and not ftraight, and why it is fometimes brighter upon one fide than upon another ? why the bottom of it is more round, and the other fides more undefin'd; and divers of the like phænomena. Againft
this fuppofition it feems difficult to conceive whence fo vaft a body fhould be generated; next, how it fhould be able to fupply fuch a conftant ftream of afcending parts, and yet laft fo long as this has done, almoft a quarter of a year. Thirdly, Whence fuch a newly generated body hould receive fo great a degree of motion. In anfwer to which, I fay, 'tis not impoffible but that the body of it may be as old as the world, and that it may have then received its firft determination, or laws of motion, and may have ever fince preferved them, that it may have been all this time alfo in diffolution, and yet not be quite wafted;and that it may continue yet for many ages before it be quite diffolved into the Æther. And to make this probable, divers experiments and reafons might be alledged, as that of the flownefs of the wafting of many bodies, by the diffolution made on them by the fire: the flownefs allo of the diffolution of multitudes of bodies in menftruums. And I have already fhewn how fmall a quantity of diffolved particles will be able to make as great a fhew of light : befides that, the motion of the afcending ftream or beard being but flow, there needs no very quick fupply of other parts. We fee alfo into what a valt quantity of fmoke a fmall parcel of a combuftible body may be turn'd. From all which particulars, 'tis not unlikely but that the Comet may be a body moved with a regular circular or elliptical motion as the Planets are, that it may be a body of fuch a conftitution, as that the fluid Æther through which it paffes, may diffolve it much after the manner as a menftruum; (fuch as Aquafortis,Spirit of Niter, δ doc.) does a diffoluble body; that by this meansthere may be a flow, but continual eruption of fomewhat opacous parts, which may by their diffolution afford a lufficient quantity of light to make asgreat an appearance as any of the Comets, that this ftream or beard may by the refiftance of the 厌ther be a little deflected backwards in the fame manner as an afcending ftream of fmoke will be by the refiftance of
the Air, if the bumingbody be mov'd this or that way through it, that the body of the Comet may be both as ancient and aslafting as the world ; and that this which has lately appeared may have appeared heretofore, and may likewife hereafter appear again ; that 'tis probable the neareft diftance of it was much greater than that of the Moon, that the length of its Beard was longer than its diftance from the Earth, and confequently feveral times longer than the diftance between the Earth and the Moon; that its vifible way among the Stars was very differing from a great circle, efpecially towards the latter end, when it became retrograde; that its way through the 庄ther could not be fuppofed equal in a ftraight line, though it might be fuppofed equal in a curve or circle, that the exact way of it could not be certainly determined by the beft Obfervations I have yet met with: and that therefore the beft help we have to ghefs of its way and diftance, isby its manner of moving, as to appearance among the fixed Stars, which I have already fhewn to be explicable by various Hy pothefes: for both the Earth and Comet may be fuppoled to be moved, either both one way, or contrary ways, or crofs ways, the Earth may be fuppofed to ftand ftill, and the Comet only to be moved, and the like.

There Requifites therefore being hitherto wanting in the Obfervations I have met with of this Comet, all that can be faid of it will at beft be but conjectural and hypothetical ; fince nothing can be reafonably built upon thofe Obfervations where the truth of them is dubious; wanting therefore found materials to work upon in this Comet, I had recourfe to the Obfervations of the noble Dane Tycho Brabe, being fufficiently fatisfied both of the ability, induftry, and veracity of that excellent Author, who left nothing unattempted for the perfecting of fuch Obfervations as feem'd to him requifite for the compleating a Hiftory of that Comet which appeared in 1577. And from thofe Obfervations of his

I endeavoured to trace the way of it according to feveral hypothefes; and found, that fuppofing the Earth not to be moved with an annual motion, but only a diurnal about its own Axis, the way of Comets will fall in a line very near approaching the nature of a circle, though neither into an exact circle, nor an exact ellipre; and therefore feemsirregular, and not at all probable. Again, fuppofing it moved about the Sun, as Tycho has done, we find from his Calculation of it, he was fain to allow it a quicker and flower motion in its Orbit, to folve the Phænomena, which feems to me buta fhift, that will ferve to help out any lame Hypothefis whatfoever: And that granted, and the Parallax of the Comet unknown, I will undertake very eafily to make out almoft any Hypothefis, which is the fault alfo of Mr. Horox his Hypothefis, wherein he fuppofes the Earth to be moved about the Sun, and the Comet like a Rocket to be fhot out of theSun, and by degrees to return to it again; in which Hypothefis indeed there feems to be much more reafon for aninequality of motion, though not in the manner as he has placed it; 'twas very rational that the motion of it at firft, if caft out of the Sun, fhould be very fwift; but then it ought likewife to have accelerated its motion in the fame manner in its return back to it again, which it does not in his Hypothefis; for a floneor any other heavy body being fhot up into the Air, does make its return back again to the Earth, almoft by the fame degrees of velocity, by whichit afcended from it: almoft, I fay, becaufe the refiftance of the Air does fo far impede the motion of the body through it, that it never fuffers it to acquire the fame degree of velocity with which it was firt thot upward. This is fufficiently evident from a Pendulum, which if it be thrown upwards, and be fuffered to return back, it will never rife again on the oppofite fide to an equal height, with that it defcended from, on that fide towards which it was thromn: but befides, in his Hypothefis he feems to take no notice at
all of the Latitude of the Comet, which feemed to carry it much farther off from the Sun, when he fuppofes it to be returning nearer. And indeed upon the whole his Hypothefis feems rather a product of chance than of any contrivance. For he in endeavouring to fet off the Longitude of the Comet according to Tycho's Tables, and to trace its way by fuppofing the Earths annual motion, making ufe always of the fame Radius to fet off the afpect, or apparent angle of it with the Sun, his line of Chords he made ufe of did always direct the point of his Compaffes to the place where he fituates the Comet, as may be eafily found by examining the ninth figure; where you may find that he places the Comet always equally diftant from the Earth, and that diftance is always equal to the diftance of the Sun, which has fo many inconveniencies and improbabilities, that I fhall not infift farther on it ; efpecially fince I'do not find that he beftowed any farther pains in explicating or cultivating this his Hypothefis, than only the bare delineation of this ninth figure. But to return to Tycho's Hypothefis, if that be true, why did not the Comet again appear after a certain fpace of time? and why could not he have foretold when it fhould again appear, as well as he could predict the appearance of Venus, about whofe Orb he fuppofes it to circulate? I thall pafs by feveral other very material objections that might be made againft that his fuppofition, becaufe many of them might be made alfo againft his Hypothefis of the Heavens in general, which I thall the rather omit, becaufe I do not find he has many followers in that fuppofition; the generality of Aftronomers embracingrather the CopernicanSyftem, efpecially as it is refined and rectified by the ingenious Kepler.

Laftly, I endeavoured to trace the way of the Comet from Tycho's Tables, according to Keplers Hypothefis; which was, that the appearances of the motion of the Comet were afcribable to two caufes; namely,
namely, the motion of the Earth about the Sun in its annual Orbit, and the motion. of the Comet in a ftraight line, not accelerated according to the proportion of the increafe of Tangents; but upon fuppofifion that it mov'd equal fpaces in equal times: (for I cannot imagine what reafon he had to fuppofe its motion to be accelerated, and much lefs why he fhould affert it to be according to the proporton of Tangents, which in a little time muft neceflarily come to move infinitely fwift: than which nothing is more hard to be granted.) And I found it after many trials and eflays to fall in a ftraight line, inclining to the plain of the Ecliptick by anangle of 47.40. and cutting it in 9 degrees of Scorpio, if computed out of the Sun, and moved fafter by half than the Earth in its Orb; and this to fo great an exactnefs to anfwer all the Obfervations of Tycho, that froma very large Scheme which I drew of it on a plain, I could never find many minutes difference; fo that I concluded that to be the moft likely Hypothefis for that Comet, it feeming to folve all the feveral Phænomena of the motion and magnitude of the Comet, with the leaft imaginable difficulty, and to be moft agreeable with my phyfical notions of Comets: For, firt it only fuppofes a folid body moved in a lluid, with an almoft direct motion. I fay, almoftdirect, becaufe for fome phyfical reafons, as I have faid before, I imagine it not exactly ftraight, but inflected a little towards the curvity of a circle, which I fhall prefently endeavour to explain farther in this Comet. Next, it fuppofes that body to move in that line almoft equal fpacesin equal times; I fay, almoft equal, becaufe fome of thofe equal fpaces may be increafed by an accelerating caufe or principle, fuch as that of a gravitation towards the body of the Sun, placed in the center of its Vortice or Syftem, when the motion of the Comet carries it towards the Sun, and may be diminifh'd from other impeding caufes, fuch as the impediment of the fluid medium through which it paffes, and the attraction of the

Sun operating on it when its motion carries it farther and farther off from it : befides, 'tis not unlikely, but that the atrraction of the Earth, or fome of the other Planets may have fome kind of influence on it, efpecially, when its line of Direction does fomewhat nearer approach thofe attractive points. But the deflection from a ftraight line is always fo much the lefs by how much the fwifter the body is moved, and by how much the farther off its line of trajection is perpendicularly diftant from thofe attracting bodies. According to this fuppofition of mine, I have endeavoured to make out all the appearances of this laft Comet, taken notice of in the beft obfervations I have yet met with, amongft which I find no one of the Parallax fatisfactory, as in the tenth figure, let S reprefent the Sun, OR B, the Orb of the Earth, ACDEF, a bended or curve line in which the Comet is fuppofed to move: the Comet then coming into the Sphere of the attractive power of the Sun, by the ftraight line PAG, at A, the power of the Sun worketh on it, and by degrees attracting it towards its own Center by that time the Comet hath moved to C , the attractive power hath deflected its direct courfe from P A G, to C H, and fo the Comet would continue to move in that ftraight line C H, but it is fill deflected fo, that at D, it movestowards I, but the gravitation of the Sun attracting it, deflects it from that line towards E, and fo from E to F, when it begins again to Jet out of the attractive beams of the Sun, and fo it will continue to proceed, as if it had come to that point by the line MF L, the reafon of which is the great velocity of thefe bodies, which are generally much fwifter in their motions than the Earth or other Planets are fuppofed to be, in theirs. We muft feek out fome other way therefore of finding of the diftance of Comets than the commonly ufed : I hall therefore fomewhat further explain the contrivance I newly invented for this purpore, by which not only the Parallax of the Comet but of the Pla-
nets allo may be found with great faciility and exactnefs.

Having a large Telefcope prepared (as I formerly directed) with Eye-glaffes capable of taking in an Angle of about two degrees at once, and furnifhed with a dividing Scale, obferve when the motion of the Comet or Planets is not too faft, the pofition and diftances of the fmall fixed Stars which are next adjoyning to the moved body whofe Parallax you would find; of thefe fmall fixed Stars you fhall feldom mifs a fufficient number, which will be taken into the glafs at once, if atleait the object-glafs be allowed a very large aperture; and having found fuch Stars as will be convenient for your purpofe, be very diligent in taking, by the help of the dividing Scale, the exact diftance of them one from an other, and when the body is higheft above the Horizon, viz. in or near the Meridian, by the fame means take the exact diftance of it from two or three of the neareft and moft confpicuous fixt Stars about it, and by the help of a plumb-line, hung likewife within the cell, near the dividing Ruler, find exactly the pofitions of all thofe bodies you take notice of to the Perpendicular or Horizon, which may be eafily enough done, if together with a Plumb-line or Perpendicular plac'd within the glafs you have alfo a fmall Diagonal thred faftned to a ring, whofe circumference is divided into 360 degrees, and moveable fo as by the finger eafily to be turnd any way, by which means this Diagonal thred may be made to crofs over any two of the bodies you oblerve, and by obferving what divifion of this divided limb the Perpendicular cuts, it will be eafie to determine the exact pofition of thofe Stars to the Horizon; this fame may be done by the dividing Scale alfo, if that be fixt in a divided Circle which is movable, in the fame manner as the thred is fuppofed to be. This Obfervation, with all other circumftances of it is likewile to be repeated at the fetting or rifing of the Planet or Comet, and a-
gain the next night when it comes to the Meridian, and in each of thofe obfervations the exact time is to be noted by a time-keeper, and the altitude by fome of thofe I have before defcribed, for by comparing thefe three obfervations together it will be very eafie to find what irregularity in its motion is alcribable to its Parallax. And this will be fo much the eafier becaufe the examination and reduction of it may be done (with as great exactnefs as the obfervation can be made,) by the help only of Ruler and Compalles, for all the diftances will be fet off by equal divifions of ftraight lines, the line alfo of the periodick motion, whether of the Comet or Planet, efpecially if the obfervations be made when the body is near an oppofition with the Sun, which is much the beft time, will be with fufficient exactnefs taken for a ftraight line, and the motion in that line may be fuppofed by equal fpaces in equal times; for the difference between the Tangents of the centefms of a degree to two degrees is not increafed much more then $\frac{2}{17+5}$ that is not a quarter of a centefm of the hundredth part of a degree, which is much more exact than I fear our obfervations will ever be.

Another way of finding the Parallax may be by the help of exact obfervations made by feveral perfons at the fame time, in places much differing in Latitude, though as near as may be under the fame Meridian (becaule of faving the trouble of Calculation, and for being affured that the obfervations were both made exactly at the fame time) each perfon by the help of very long Telefcopes obferving the exact diftance of the body from the fmall fixt Stars next adjoyning.

A third way of finding the Parallax of Comets is wholly new, and though hypothetical (as fuppofing the annual motion of the Earth, and the motion of the Comet in a right line through equal fpaces in equal times) yet 'tis founded upon a Problem in Geometry (invented by the incomparable Mathematician, Doctor C. Wren) which is truly noble and wholly new, and though
though it had been of no ufe in Aftronomy, deferves none of the meaneft places in Geometry, by the help of which (which is much more than either of the other ways is capable of) one may cafily find the true parallax of the Comet, from any four exact obfervations of it, made at differing times in the fame place: Nor does it require fo nice and accurate Inftruments and Obfervators as are altogether neceffary in the other ways. The Problem as I received it, is this.

Problema.

Datis quatuor lineis utcunque duct is (quarum nee tres funt parallele neque ab codem puncto ducte) quintam ducere que à quatuor prime datis in tres partes fecetur ratione O- politione datas.

Sint in Figuris 13, 14, 15, 16, 17, ©r 18, quatuor recta $A D C, B E C, A E, B D$, producte verjus $\mathcal{K}, \gamma, \varphi, M$, aportet quintam ducere ut $K M$, que fecetur à primo dat is in fegmenta K N, NO, O M, Secundumz datas rationes R, S, T. Fiat ut R ad $S_{2} T$, fimul fumptas zta $C D$, ad $C F$. Rurfus ut T ad S, R, fimul fumptas, ita $E C$, ad $C G$, ductis autem AGH,BFH, à mutua interfectione H, ducantur $H_{\gamma} K$, $H \varphi M$, parallele nimirum lineis $A C, B C$, qua medic interjacent inter extremac, $B D, A E$. Denique inter puncta extremarum K M, ducatur Rect a fecans medias in NO. Dico fegmenta KN: NO, OM, effe in Data ratione R ST.

Quoniam $F D$, parallela eft ipf $H K$, ergo ut $C D$, ad
 $H M$, ergo, ${ }^{\prime}$ ut K_{γ} ad $2 H$, ita $K N$, ad $N M$, ergout K N, ad N.M, ita C D, ad CF; Sed C D, ad CF, eft ut R ad S, T, fimul. Jumptas, ergo $K N$, eft ad $N M$, ut R, ad $S T$, fimul fumptas. Similiter quoniam $E G$, parallela eft ip $\bar{l} M H$, \& φO, ip $\sqrt{2} H K$, demonftratur $M O$, effe ad $O K$, ut T ad S, R, fimul fumptics. Quare tres $K N, N O, O M$, erunt ad invicem ut R, S, T, ergo ducitur linea K M, cujus tria Segmenta à quatuor lineis datis intercepta funt in data Ratione R, S, T, Q fervata qui-
dem pofitione five rationum ordine R, S, T, quod erat faciendum.

From the invention of which Problem twill be very eafie by any four obfervations Graphically to defcribe, or Geometrically to calculate the true diftance of the line of the trajection of the Comet, and confequently to anfwer all thofe queftions that can be demanded concerning the bignefs of the body and head, and concerning the bignefs and length of the blaze, and concerning the diftance of it from the Earth in every part of its way when it was neareft the Earth, when neareft the Sun, where it cuts the Plain of the Ecliptick, feen from the Sun, and where feen from the Earth, with what Angle it was inclined to the faid Plain, how fwift the motion was, that is, what length it paffed, in what time, when it mufl appear Stationary, when Retrograde, when difappear, and the like.

According to this method I received at the fame time, (whilft it yet appeared very vifible to the Eye, and was not Retrograde,) the way of the firt Comet delimeated by the faid perfon, which did very near folve all the appearances preceding and fublequent, which I have therefore here annexed in the Table expreffed in the 19.20 and 21 . figures, where in the 19 . is delineated the Place of the Sun in the Center of the Circle r, N, $\mathrm{D}_{8} \mathrm{I}, \bumpeq$, which reprefents the annual Orb of the Earth about the Sun, the points between N and D reprefent the places of the Earth in that Orbit in the days of Nowember, and the lines drawn from them to the points in the ftraight line, reprefent the lines in which the Comet appeared in refpect to the Sun; in like manner the points between D and I, the places of the Earth in December, and the lines drawn from them to the ftraight line, as before the vifible places of the Comet at thofe times, ofc. The 20. figure reprefents fingly the feveral Longitudes of the Comet at feveral times feen from the Earth. And the 2 r . reprefents the feveral Latitudes, at the feveral times, together with the
true diftances of the Comet at thofe times, both which are made out of the 19 .figure, where E at the end of the line reprefents the Center of the Earth, from which to the figures in the prickt curve-line, are the true diftances of the Comet, the Perpendiculars from thofe figures to the line E C are the figns of the Latitude of the Comet from the plane of the Ecliptick E C 2 the aforefaid diftances being made the Radii.

Now though according to my former Delineation the Comet feemed to take a circuit, as if it would within three years return to its former pofition, yet I am not wholly convinced that it moves in a circle or Ellipfe, but I rather incline to the incomparable Keplers opinion, that its natural motion tends towards a ftraight line, though in fome other fuppofitions I differ from him.

As firft that the Comet perfeveres exactly in a ftraight line. Secondly, that after it has paft its $\mathrm{Pe}-$ rige it accelerates its motion in proportion to Tangents of equal Angles. Thirdly, that it either is extinguifht diffipated, broken in pieces, or burnt out into afhes. Fourthly, that it receives all its light from the Sun. Fifthly, that if the blaze were not made by the beams of the Sun paffing through the head of the Comet, and fo carrying the parts along with them, the blaze would not be oppofite to the Sun. Sixthly, that the caufe of the bending of the blaze is the refraction of the Suns raies in the body, and their being bent by the Æther as with a wind (which is the opinionthat the Ingenious Defcartes follows alfo.) To thefe I cannot confent, and I have many objections to feveral other of his opinions concerning this matter, which would be too tedious to infert; only I fhall add, that having traced feveral of the Comets according to the beft obfervations I could get, I found it very difficult to make their motion fall in a ftraight line, unlefs it be granted that their motions are really accelerated and retarded in that line, which feems not fo probable, at
leaft not in thofe parts of their tranfit where he places them. And particularly by tracing the way of this Comet of 1664. it is very evident that either the obfervations are falfe, or its appearances cannot be folved by that fuppofition, without fuppofing the way of it a little incurvated by the attractive power of the Sun, through whole fyftem it was paffing, though it were not wholly ftayed and circumflected into a Circle, as I have already mentioned.

That it is not extinguifht or quite burnt out, when it ceales to a ppear, I argue from this, that I was able to fee it with a Telefcope above a month after it difappeared to the naked Eye, as may be feen by the obfervations I have annext in Fig.4. and had not the cloudy weather and the light of theMoon, and nearnefs of the Crepufculum hindred, I fuppofe I might have feen it much longer, as I am apt to believe the great one in 1618 . might have been feen feveral months longer, if it had been diligently followed with Telefcopes, it difappearing in fuch a part of the Heavens as might have been feen every clear night between the Crepufculum and Dawning.

Nor can I fuppofe it to receive all its light from the Sun, fince if fo it would follow, that the Nuclens in the head, would have a dark fhadow oppofite to the Sun, the contrary of which has always been obferved. Nor can I well underftand that the Sun beams are like a ftream of water, carrying the parts of the Comet along with them fo as to make its blaze, fince no fuch effect is found of them here with us upon the Earth Nor how they fhould come to be bended like fmoke, fince we obferve no fuch property of light in a uniformmedium, fuch as in probability the Æther is.

Thefe were my thoughts about thofe Comets which appeared in 1664 . and 1665 . which I have found in feveral loofe papers of Lectures, read in the beginning of 1665. And I have not had the opportunity of making many obfervations fince, concerning Comets, lave thefe two laft, in which I had
not the convenience of obferving any thing certain concerning its motion or Parallax. And therefore I applyed my felf to mark as near as I could the true figure of it, through a fix foot Telefcope, and to take notice of as many circumftances as the fhort time I had would permit, which though they were very fhort and tranfitory obfervations, and I wanted time to repeat them fo often as I could have defired, yet even from them I was fufficiently fatisfied, that I had reafon to adhere to my former conjecture, that the light of the Comet did not depend wholly from the reflection of the Sun beams, from the parts thereof, but rather from its own light, for upon well confidering of the form of this Comet, I manifeftly faw that the middle of the blaze was brighter than the fide parts thereof, and efpecially that part which was immediatly oppofite to the Sun, was the brightelt of all, which would have been otherwife if the light had depended wholly from the deflection of the rays of the Sun, for one might rationally conclude that the Nucleus or Star in the middle, which reflected fo great a quantity of light fhould have cauled a darknefs in the parts behind it, as we fee all ftrong reflecting bodies do, and confequently that the middle part of the ftream or blaze, efpecially that which was next the body fhould not have been fo bright as thofe other parts to which the light of the Sun had a more tree accefs, unlefs it may be faid that even the Star it felf, though it feem fo bright, is notwithftanding not fo Denfe, but that it admits rays enough to pafs through it unreflected, to inlighten the parts behind it. But this feems not fo likely, fince be the body of the Star fuppofed a thoufand times thinner than a Cloud (which yet tis hard to fuppole, fince it gives fo confiderable a reflection,) yet it being in all probability ten thoufand times bigger in bulk, the rays in paffing through fo great a bulk, muft needs meet with more obitruction than in the thinnelt Cloud, and yet we find that there is no Cloud fo thin, but cafts
fhadow oppofite to the Sun, and therefore in probability this would do the like, but I diligently obferved that there was no fuch appearance here, but the contrary, that is, that where the fhadow fhould have been, there was the lightelt part of all the blaze, and confequently in probability it did depend upon fome other caufe than a reflection of light.

It is a hard matter to aflign the particular caufe of its light, but it feems from thefe circumftances to be very probable that it was (in part at leaft) from its own nature, whether that might be fomewhat of that of the Sun and Stars, or of that of our fire, or of that of decaying filh, rotten wood, glow-worms, σc. or of that of the Ignis Fatuus, at Land or Sea, or like that of Sea-water, or a Diamond, or like that of the falling meteors, or Star-fhoots, it will be very hard to determine, unlefs one had a much greater ftock of obfervationsto build upon. But it may poffibly be fomewhat of the nature of them all, though it agree not in all particulars with any one of them. All thefe ways that I have named feeming to agree in one particular, and that is an internal motion of the parts which fhine, whether that motion be caufed by fome external menftruum diffolving it as in fire, and Ignes fatui, or an external motion, Atroke, or impulfe as in a Diamond, Sea-water, and poffibly fome Ignes fatui, or from the parts of the bodies working and diffolving one another, as in decaying filh, rotten wood, glow-worms, or whether it be fefceptible of a much more fubtil impulfe, even from light it felf, as the Bononian ftone, and Bladwines Phfophorus, which feems to be fo harmonious (as I mayifo fpeak) to the motion of light, that a new motion is thereby raifed in it, and continues for fome time to move of it felf after the impulfe or influence ceafes, not much unlike the unifon ftring, or other founding body, which in Mufick receives a tremulation and found from the motion and found of the unifon body, or ftring that is ftruck.

To me It feems moft probable that the body and parts of the Comet are in a ftate of diffolution，whether that diffolution be caufed by the parts of the 压ther through which it paffes，after the manner as a Torch is diflolved by the air，or whether by the internal working of the conftituent parts one upon the other， as in Gun－powder，hhining Fifh and rotten Wood，I can－ not determine；but I rather guefs it to be in fome things analogous to the one，and fomewhat to the other， though not exactly the fame with either．And this I conceive from the figure and make of the fhining parts， for if it had been of the fame nature with a Torch， the blaze would have refembled that of the flame of a Torch or Candle，that is，the fides would have been brighter，and the middle darker，as I have fhewn in my Lampas；whereas it was very manifert that the mid－ dle of the blaze was brighteft，and of that blaze that which was next the Star or Nucleus was brighter than that which was further off：whereas in flame the con－ trary is very obfervable，as I have in the faid Trea． tife Thewn．

From the fhape of the figure，the manner of its diffo－ lution feems to be thus．The Star or Nuclers in the mid－ dle，feems to be the fones or fource from whence all the light proceeds：this we fuppofe to be a denfe body en－ compaft with a very fluid body（fuch as the 㕍ther feems to be）but of fuch a loofe and fpongy nature，as that the 压her doth caufe thofe parts which are contiguous to it，to be diffolved and expanded into it felf．This diffolution and expanfion I conceive doth generate or caufe the light that feems to proceed from it，that diffolution caufing fuch a motion of the 不ther，as is neceffary to produce the appearance of light；now fo long as any part thereof remains in diffolution，fo long doth it continue to Phine，as is alfo obfervable in the flame of any body burning in the air，but when the part feparated from the body is quite diffolved in－ to the 厄ther，the effect of Chining ceales，as it doth
alfo in the parts of flame. Now I have obferved that the blaze is fo very much rarified, that firlt the 巴ther I conceive comes very freely to every particle of the body after it is feparated from it, but efpecially to the outermoft, and continues to be incompaffed with it folong as till it be quite diffolved into it, which I conceive to be at a little farther diftance from the head than the greateft length of the blaze feems to be to our fight. And further I conceive that the outward parts being thus incompaffed more perfectly with the free and undifturbed \nVdash ther, are fooner diffolved into it than thofe of the middle, and confequently the fides feem firft to difappear, and the middle parts continue their fhining to a much greater diftance from the Star in the head, though fomewhat allo of that appearance may be afcribed to the difperfing and rarity of the parts near the fides.

The Nucleus or Ball in the middle of the head, which I have called the Star, I conceive to be diffolved equally on all fides, and the parts which are diffolved or feparated fromit, I conceive to fly every way from the center of it, with pretty near equal celerity or power, like fo many blazing Granadoes or Fire-balls, thefe continue their motion fo far toward the way they are fhot, till the Levitation from the body of the Sun deflect them upwards, or in oppofition to the Sun into a Parabolick curve, in which Parabolick curve,every fingle particle continues its motion till it be wholly burnt out, or diffolved into the Æther. Thefe are continually fucceeded by new feparations from the aforefaid body in the fame manner as tis obfervable in a burning, fteaming, or lmoaking body in our air, or a diffolving body incompaffed with its proper menftruum, as I before mentioned, and will fo continue until the whole be at length diffolved into the Æther, through which it paffes.

It hath been demonitrated by Torricellius, of bullets or other bodies caft or fhot upwards, that the fame
or equal bullets difcharged or fhot out from the fame point, with the fame degree of ftrength, but with differing degrees of inclination to the Horizon, each of them fhall be moved in a parabolical line, and every one of thofe parabolical lines fhall touch a parabolical line, whofe axis is the perpendicular, and whofe apex is diffant from the faid point, the full altitude of the perpendicular fhot: So that fuppoling in the twenty fecond figure, A to be the point from whence all the fhots are made with equal velocity, A C the greateft height of the perpendicular fhot, and A D the greateft Horizontal random at 45 degrees of inclination, and fuppofe EDCDE a parabola pafling through thofe points D C D, all the fhots made with equal bullets, with equal velocity from A, but with all variety of inclination between the perpendicular upwards, and the perpendicular downwards that touch the faid parabolical line, and confequently if there be an indefinite number of fuch balls continually flowing out of the point A, with equal degrees of celerity every way difperfing themfelves equally in orbem, the whole aggregate of fuch an emanation will make a folid parabolical conoeid EDCDE. Now about the point A, if we fuppofe a Sphere as B BBB, and from this Sphere an indefinite number of fuch equal Balls be thrown off perpendicularly to the fuperficies of it, from every point thereof, with equal celerity at their leaving it, thofe emanations will form alfo a conoeid, which will be very near the fame with the former: And if this Ball in the middle be fuppofed a burning and fhining body, and that all thefe emanations have every one of them equal light in proportion to the Globe BBBBA, the effect produced hereby will perfectly refemble the appearance and figure of Comets, if at leaft the Parabolical conoeid be inverted; which will fomewhat explain the manner how I conceive the figure of the Cometical body is naturally, and moft proportionably formed; for if the effect of
fuch an emanation of flining bodies be examined, it will very plainly exhibit the exact and true apparent figure of Comets, as they may be feen through a good Telefcope, which is to me a very great argument, that 'tis the genuine caufe of its flape and figure: Now though the Comets appearance be this way caufed, and to a man might conceive the Globous body would in a little time (by fo copious an emanation) be confumed, yet I do not believe that it doth in a fhort time waft and difperfe the whole Ball, nor can I conceive that the difappearing of thofe blazing bodies toward the latter end, does depend upon their diffolution (though poffibly that may fomewhat diminifh them) but that rather is to be afcribed to their diftance and pofition in relpect of us: Though this I remember I obferved very manifeflly in that of 1664 . that the body toward the latter end of its appearing was very much lefs in proportion to the radiations about it, than it feemed to be at the beginning, but whether that might not be partly alcribed to the great diffance it then was fromus, and the turning of the head pretty near towards us, and thence the fpreading of the Tail (appearing beyond it,) might add to the breadth of the radiation about the Nuclews, I will not pofitively determine. Now though for explication fake, I have compared the parts feparated from the body of the Comet to blazing Granadoes or Fire-balls, yet I would not be underftood to fuppofe thefe parts fo feparated to be of any very large bulk, for I fee no neceffity to fuppofe them bigger than the Atoms of fmoke, or the particles of any other fteaming body, or than the parts of the Air, which make the body of it appear thick and hazy; nor do I believe that all the light of the Star, head, and blaze, does depend only upon the fhining of the diffolving body and particles thereof: but I do fuppole that it doth proceed both from the reflection of the Sun-beams from thofe parts, and alfo from an innate and momentaneous light produced by
the
the action of diffolution wrought on the parts by the incompalfing 压ther．

It may poffibly feem very dificult to fuppofe that the difflolution of the parts of the Nucleus，by the in－ compafing 厄ther，fhould caufe or imprefs fo violent a motion into the feparated parts，as to make them depart from it to the face of four or five Diameters， before it be over－powered by the power of Levitation from the body of the Sun，and fo deflected into a pa－ rabolical line upwards．It may likewife feem ftrange to fuppofe that the 厄ther fhould have fuch power in it，as firft to diffolve a body into it felf，and fecondly to caufe a thining，and thirdly to caufe a Levitation of the diffolved parts upwards；whereas I fuppofed be－ fore（and I think＇tis very manifeft）that they caufe a gravitation downwards，towards the Center of the Sun：But to thefe for explication，I anfwer that we need not go far for inftances to make thefe things probable，the Atmofphere about the Earth，as I have formerly mentioned in my Micrographia，I take to be nothing elfe but the diffolution of the parts of the Earth into the incompaffing 厄ther；for the proof of which，I could bring many arguments，were it here a proper place，by which I could moft evidently de－ monftrate the thing to be as I have afferted．It is here evident that this 危ther doth take up the particles of bodies to a very great diftance from the furface from which they were feparated，and it doth not only raife them but fufteins them at thofe heights，nor is this pecu－ liar only to the Æther when a menfruum，but to all diffolving menftruums in general．

As to give one inftance，in fread of many，we find that Gold（the heavieft of all Terreftrial bodies we yet know，）being diffolved by Aqua Regis，is taken up in－ to it，and kept fufpended therein，though the parts of the Gold be fifteen times heavier than the parts of the Aqua Regis．So Pit－coal though very heavy，is yet taken up into the Air，and kept fufpended there－
in, though it will be found to be fome thoufands of times more ponderous than the menftruum of the Air that keeps it fufpended.

Many reafons I could produce to thew the great power of the 不ther, and the univerfality of its activity almoft in all fenfible motions, but referving them for another Difcourfe hereafter, I fhall at prefent, only mention thofe fuppofitions which feem to have the greatelt difficulty, in this Theory, viz. how the diffolution of the parts of the Star by the incompafling Æther fhould caufe light, and fecondly how it fhould caufe an actual Levitation of the diffolving particles upwards. For the explication of thefe two difficulties, I mult at prefent crave favour to explain them by examples taken from operations of Nature in the Atmofphere wherein we live, very fimilar and analogous to them. Firft, for the production of light, we find that the Air incompaffing the fteams of bodies prepared by heat or otherwife, and made fit for diffolution, doth fo operate upon them, as to make them fly and part afunder with a very impetuous motion, infomuch that the fmall particles or Atoms of the diffolved bodies, do notonly leaveone another, but depart and dart out with fo great an impetuofity, as to drive off all the incompafling Air from their Center from whence they flew, and this I take to be the caufe not only of their Light, but alfo of their Levity upwards, this may be feen very plainly by the fmall parts of crackling Char-coal, which upon the blowing them with Bellow.s, and fo crowding a great quantity of the frefh menftruum on them, fly and dart afunder with great celerity and noife, but is abundantly more evident in the kindling of Gun-powder, where the impetuofity is fo very great as to drive away not only all the incampaffing Air but all other bodies, though never fo folid, that hinder its expanfion, in the performing of which operation the Æther hath a great fhare, as I may hereafter fhew, 'tis very probable that the压ther

Ether in the fame manner diffolving the particles of the Star，caufeth the Atoms thereof to fly afunder with fo great an impetuofity as to leave a vacuity even of the parts of the 压ther，which flying afun－ der doth not only caufe light by impreffing on the Æther a ftroke or pulfe which propagates every way in Orbem，but maketh fuch an agitation of the the 压ther，as caufes a rarefaction in the parts thereof， whilft the parts that are once actually feparated，by continuad rebounding one againft another before they come to be at reft and quietly to touch each other，prolong that firf feparation or vacuity be－ tween them．

This Explication，though it be fomewhat difficult， yet I hope it is intelligible，and may be，with proba－ bility enough，fuppofed to be the true caufe of the appearance，whilft there is nothing therein fuppofed which is not manifeftly the method of Nature inother operations；and though the fuppofition even of the世ther，may feem to be a Chimera and groundlefs； yet had I now time，I could by many very fenfible and undeniable experiments，prove the exiftence and reality thereof，and that it doth actually produce not only as fenfible effects as thefe I have named，but very much the fame，and many others much more cofidera－ ble，which by Philofophers have hitherto been afcri， bed to quite different caufes．

Had I been able to have made fome other obfervati－ ons（which I defigned，if I had had the opportunity of feeing it，fome of the fucceeding Nights，I（hould have hoped to have explained reveral other difficulties con－ cerning the nature of the body and blaze of Comets， but being therein prevented，I muft leave them till I can make fome further obfervations on fome Comets that may hereafter appear．

In the mean time that what I have difcourfed con－ cerning the light of Comets，may not feem fo altoge－ ther paradoxical and unintelligible as fome may ima－
gine, I have here added an account of fome trials and obfervations made on fhining fubftances of natures exceedingly differing from thofe that are commonly to be met withal. And this I the rather do, not only becaufe it affords an inftance of fhining where there is no Air, but that hereby I may enlarge the limits of their imagination, who thall confider of this fubject. For nothing is more apt to milguide our reafoning than a narrow and limited knowledg of caules, we are not to conclude the body of a Comet a fulphureous vapour exhaled from the Earth and kindled above, becaufe here are fuch vapours obferved and fuch effects produced, nor a collection of Sun beams made by a Lentiformed vapour, after the manner of a Burningglafs (as fome eminent Writers have lately done,) becaufe fome fuch appearances may be Artificially produced in a fmoaky or thickned Air; fince if we diligently inquire, we may find that light which is the mof fenfible quality of Comets that affects our fenfes, may be, and really is produced by very many, and thofe very differing ways. In Nitre and Sulphur kindling each other by heat, we have one way; in a body burning in the Air a fecond, in a heated Iron or Glafs a third, in a piece of Iron hammered till red hot a fourth, in rotten Wood and decayed Fifh a fifth, in Glow-worms, Scolopondras. and other living Worms, and in the fweat and excrements of other living creatures a fixth, in a Diamond rubbed a feventh, in Dews Ignes fatui, erc. an eighth, in Sea-water a ninth, in the Bononian ftone, and in the Phofphorus Baldwini (which I take to be much of the fame nature) a tenth, in the Phofphorus of Mr. Kraft an eleventh, and polfibly wholly differing from all thefe, may be the light of the Sun, a twelfth, and that of the Star may differ from that of Sun, and the Comet may be differing from all the reft. Whether they be fo or not, the being acquainted with the feveral propricties of them will the better enable one to judg of what is pertinent
nent to be obferved in Comets, in order to find out which is concerned.

The Phænomena of moft of there fhining bodies are very common and obvious, and therefore needlefs to be added; but that of the Bononian ftone prepared, and that of the Pbofphorus Baldmini (lately difcovered by Mr. Baldwoine) are rare and hard to be got, and the effects of themare wholly differing from all the ways I have yet met with, and will therefore prove Experimenta Crucis, highly influctive in the Theory of Light, of which more hereafter. As for the Pbejphoros Fulgurans of Mr. Kraft (more fcarce and rare than the other) 'tis wholly differing from any of the reft, and very ftrange and furprifing, at leaft it appeared fo to me, who had the good fortune to be prefent at a good part of the experiments made by the Author in the prefence and at the Chamber of the Honourable Robert Boyle, Efq; that great Judg and Promoter of all curious inquiries into Nature and Art, who at my earneft intreaty, was not only pleafed to commit to writing what he obferved, but (for the information of Curious and Inquifitive Naturalifts, to give me liberty here to publifh it.

A Short Memorial of fome Obfervations

 made upon an Artificial Subftance, that Jbines mithout any precedent Illujtration.
September, 1677.

 N Saturday the fifteenth of this month I was after fupper vifited by Mr. Kraft, a famous German Chymift, who was pleafed to come and thew me a ftrange rarity he hath newly brought into England, to the fight whereof he allowed me to invite feveral members of the Royal Society, he being defirous, becaufe the matter he imploys is very coftly and of difficult preparation, to be a good Husband of it, and by fhewing it to feveral curious perfons at once, to exempt himfelf from the need of fhowing it often. The Company being met, the Artift took out of a pretty large box he had brought with him, divers Glafs Veffels and laid them in order on the Table. The largeft of them was a Sphere of Glafs, which I gueffed to be four or five Inches in Diameter, being hollow and intire, fave that in one place there was a little hole, at that time ftopt with fealing wax, whereat to pour in the Liquor, which feemed to me to be about two Spoonfuls or fomewhat more, and to look like muddy water made a little reddifh with brick-duft or fome other powder of that colour, he alfo took out of his Box three or four little pipes of Glafs fealed, or o-
therwife
therwife fopt at both ends, being each of them fomewhat bigger than a Swans quill, and about five or fix. Inches long, and having at one end a fmall fragment or two of that matter that was to fhine in the dark.

He likewife laid upon the Table three or four Vials of feveral fizes, but none of them judged capable to hold above very few Ounces of water: in each of which Vials there was fome Liquor or other, that was neither tranfparent nor well coloured, which Liquors I confefs uponhis making no particular mention of what they were to do, I was not curious to compare together, either as to quantity or as to colour. Befides all thefe fubftances which were fluid, he had in a fmall Cryftalline button Bottle, a little lump of matter, of which he feemed to make much more account than of all the Liquors, and which he took out for a few moments to let us look upon it, whereby Ifaw that it was a confiftent body, that appeared of a whitifh colour, and feemed not to exceed a couple of ordinary Peafe, or the kernel of a Hafel Nut in bignefs, fome otherthings 'tis poffible Mr. Kraft took out of his Box, but neither I or (for ought I know) others of the Company took notice of them, partly becaufe of his haft, and partly becaufe the confufed curiofity of many fpectators in a narrow compafs, kept me from being able to obferve things as particularly and deliberately as I would gladly have done, and as the occafion deferved. Which Advertifement may I fear be but too applicable to a great part of the following Narrative.

The forementioned Claffes being laid in order upon the Table, the windows were clofed with woodenthuts, and the Candles were removed into another Room by that we were in; being left in the dark we were entertained with the enfuing Phænomena.

1. Though
I. Though I noted above that the hollow Sphere of Glafs had in it but about two Spoonfuls (or three at moft) of matter, yet the whole Sphere was illuminated by it, fo that it feemed to be not unlike a Cannon bullet taken red hot out of the fire, except that the light of our Sphere lookt fomewhat more pale and faint. But when I took the liberty to hold this Glafs in my hand and fhake it a little, the contained Liquor appeared to thine more vividly, and fometimes as it were to flafh.
II. I took one of the little pipes of Glafs formerly mentioned, into my hand, and obferved that though the fhining matter had been lodged but at one end, yet the whole Glafs was enlightened, fo that it appeared a luminous Cylinder, whore light yet I did not judg to be always uniform, nor did it laft like that which was included in the Vials.
III. In the largeft of the Vials next the Spherical already mentioned, the Liquor that lay in the bottom being thaken, I obferved a kind of fmoke to affcend and almoft to fill the cavity of the Vial, and near the fame time there manifeftly appeared as it were a flafh of lightning that was confiderably diffufed, and pleafingly furprized me.
IV. After this I took up that fmall Cryftaline Vial that I lately called(by a name familiar in our Glafs-fhops) a Button-Bottle, wherein was contained the dry fubftance which the Artift chiefly valued, as that which had continued luminous about thefe two years, and having held that Vial long in my hand, in the fame pofition in reference to my eye, and lookt attentively at it, I had the opportunity to obferve (what I think none of the Company did) that nor only this ftuff did in proportionto its bulk, Shine more vividly than the fluid fubftances, but thaat which was the Phænomenon I chiefly attended) though I could perceive no fmoke or fumes afcend from the luminous matter, yet I
could plainly perceive by a new and brisker light that appeared from time to time in a certain place near the top of the Glafs, that there muft be fome kind of flafhy motion in the matter that lay at the bottom, which was the caufe of thefe little corufcations, if I may fo call them.
V. The Artift having taken a very little of his confiftent matter, and broken it into parts fo minute, that I judged the fragments to be between twenty and thirty, he feattered them without any order about the Carpet, where it was very delightful to fee how vividly they flined; and that which made the fpectacle more taking, efpecially to me, was this, that not only in the darknefs that invironed them, they feemed like fixt Stars of the fixth or leaft magnitude, but twinkled alfo like them, difcovering fuch a fcintillation as that whereby we diftinguifh the fixt Stars from moft of the Planets. And thefe twinkling fparks without doing any harm (that we took notice of) to the Turky Carpet they lay on, continued to fhine for a good while, fome of them remaining yet vivid enough till the Candles being brought in again made them difappear.
VI. Mr. Kraft allo calling for a fheet of Paper and taking fome of his fuff upon the tip of his finger, writ in large Characters two or three words, whereof one being DOMINI, was made up of Capital Letters, which being large enough to reach from one fide of the page to the other, and being (at leaft as Iguefled) invigorated by the free contact of the external Air, fhone fo briskly and lookt fo oddly, that the fight was extreamly pleafing, having in it a mixture of ftrangenefs, beauty and frightfulnefs, wherein yet the laft of thofe qualities was far from being predominant. And this Phxnomenon did in more fenfes than one afford us the moft of light, fince not only the Characters fhone very vividly upon the white Paper, but approaehing it to my Eyes and Noftrils, I could difern
difcern that there afcended from them a fume, and could fmell that fume to be ftrong enough, and (as it feemed to me) to participate of the odour of Sulphur and of that of Onions. And before I paft from the mention of thefe refplendent Characters, I muft not forget that either by their light, or that of the Globe, or both by the one and the other a man might difcern thofe of his fingers that were neareft the fhining ftuff, and that this being held to the face though without touching it, fome of the confpicuoufeft parts, efpecially the Nofe, were difcoverable.
VII. After we had feen with pleafure, and not without fome wonder, the fore-going particulars, the Artift defired me to give him my hand, which when 1 had done, he rub'd partly upon the back of it, and partly on my cuff, fome of his luminous matter, which as if it had been affifted by the warmth of my hand fhone very vividly, and though I took not notice of any thing upon my skin, that was either unctuous or rough, yet I often times tried in vain by rubbing it with my other hand to takeit off, or manifeftly diminifh its fplendor, and when I divers times blow'd upon fome of the fmaller parts of it, though they feemed at the inftant that my breath beat upon it, to be blown out, yet the tenacious parts were not really extinguifht, but prefently after recovered their former fplendor. And all this while this light that was fo permanent, was yet fo mild and innocent that in that part of my hand where it was largely enough (pread, I felt no fenfible heat produced by it.

By that time thefe things were done 'twas grown late, which made Mr. Kraft, who had a great way to go home, take leave of the Company after he had received our deferved thanks for the new and inftructive Phænomena, wherewith he had fo delightfully entertained us.

I 3 Becaufe.

Becaufe Mr. Kraft had twice attempted to fire heated Gun-powder with his Phofphorus, but without fuccefs; probably bccaufe the powder was not very good (as by fome circumftances I conjected) and becaufe it was not fufficiently heated before the matter that fhould fet it on fire was put upon it, he promifed me he would come another time to repair that unfuccesfulnefs: And accordingly, On the two and twentieth of September in the Afternoon I recived a vifit from Mr. Kraft, who told me he came to make good his promife of letting me fee that his fhining matter was able to kindle heated Gun-powder, and becaufe no ftrangers were prefent, I had the fairer opportunity to view it, which I was able to do better by day light, than I had done by its own light, for when he had taken it with a new Pen out of the liquor with which he kept it covered to preferve it, I perceived it to be fomewhat lefs than the nail of one of my fingers, and not much thicker than a fhilling, and I obferved that when it had lain a little while upon a piece of clean Paper and difcharged it felf from its fuperfluous moifture, it began to emit whitifh fumes which feemed to be very ponderous, fince for the moft part they did notafcend but furrounding the matter whence they iffued, by their ftagnation made as it were a little Pond or fmall Atmofphere about it ; fo that left it fhould waft too faft, he was obliged as foon as he had cut off a little corner lefs than half a pins head, to put the ftuff nimbly back into the Vial out of which he he had taken it; where I obferved it for a very fhort time to fend up exhalations into the liquor that covered it, and quickly after, as it wert, quencht it. This done the Artift divided the little corner he had cut off into two parts, one of which he fpread as far as it would reach upon a piece of white Paper, which he prefently after held at a diftance over a chafing-difh of burning Coals, by whofe heat being excited it prefently flafht and burnt away, and I having perceived that there was another part of the

Paper which though not heeded by him, had been lightly befmeared by the fame matter, I held it over the Coals, but at a confiderable diftance from them, and yet this little matter nimbly took fire and burnt a hole in the Paper. And to fatisfie my felf that the heat did but excite the luminous matter, and that twas this its felf that lighted the Paper, I held the reft of the fame piece of Paper far nearer the fire and kept it there a pretty while without finding it at all fcorched or difcoloured. Laftly, the other part of the divided fratement of the hitherto mentioned matter, Mr . Kraft put upon the tip of a quil, and having at a diftance from the fire, very well dryed and warnsed fome Gun powder upon another piece of Paper, he laid that Paper upon the ground, and then holding his quill upon it, as if it had been a match, within half a minute (by my guefs) that powder took fire and blew up.

Twill not perhaps be impertinent to add that on occafion of the operation I obferved the Air to have on the fhining fubftance when freely expofed to it. I took a rife to tell Mr. Kraft that I prefumed it might be worth while to try whether his Phofphorus did fhine by virtue of a kind of real or (if I may fo call it) living flame, which like almoft all other flames required the prefence and concourfe of the Air to maintain it, or whether it were of fuch a kind of nature as the Phofphorus of the learned Baldovinus, which I fufpected to fhine not like a flame or a truly kindled fubftance; but like a red hot Iron, or an ignited piece of Glafs, wherein the fhining parts are not repaired by fewel, as in other burning bodies, but are put by the action of the fire into fo vehement an agitation as whilft it lafts fuffices to make the body appear luminous. This conjecture Mr. Kraft reemed much to approve of when I told him that the way I propofed to examine his noctiluca by, was to put a little of it into our Pneumatick Engine, and Pump out the Air, whofe abfence
abfence, if it were of the nature of other flames, would probably extinguifh, or very much impair its light, but yet fince he offered not to have the trial made; probably becaufe he had but very little of his thining fubftance left, I thought it not civil to prefs him. But to countenance what I faid of the nature of Baldroinus Phofphorus, I fhall recite an Experiment that I purpofely made, to examin whether the prefence of the Air were neceflary to the fhining of this Phofphorus, as I had long fince found it to that of fome pieces of fhining wood.

We expoled for a competent time to the beams of a vigorous light, a portion of matter of about the breadth of the palm of ones hand, which we had prepared to be made luminous by them. And then caufing the Candles to be removed (for we chofe to make tryal by night) we nimbly conveyed the matter into a receiver that was kept in readinefs for it, prefuming (as the event (hewed we might) that by ufing diligence the light would laft as long as the experiment would need to do; making haft therefore to Pump out the Air, we heedfully watched whether the withdrawing of it would, contrary to my conjecture, notably diminifh the light of the fhining matter. And after we had thus withdrawn the Air gradually, we tryed whether by letting it return haftily, it would produce a more fenfible change in the matter (which had been purpofely put in without any thing to cover it, that it might be the more expofed to the Airs Action.) But neither upon the gradual recefs of the Air, nor yet upon its rulhing in when it was permitted to return, could we certainly obferve any manifeft alteration in the luminoufnefs of the Phofphorus, other than that now decrement that might well be imputed to the time during which the experiment was making. It being well known that this luminous fubftance requires no long time to make it decay, and by degrees to lofe all its light; fo that though once there feemed to one
or two of the by-ftanders, upon the return of the Air, to be fome recovery of part of the loft fplendor, yet after repeated experiments it was concluded that the prefence of the Air was not at all neceefary to the fhining of our matter, and it was judged molt probable that the abfence or prefence of the Air, had no manifeft operation on it. I might add to this that perhaps the prefence of the Air is rather hurtful than advantagious to this fort of lights, fince for having had a large Phofphorus that was much efteemed, and, whilft I kept it, exactly protected from the Air did very well; a part of the Glafs that covered it, having by mifchance been fomewhat crackt, though none of the fplinters appeared difplaced, yet it feems fome of the Corpufcles of the Airmade a hift to infinuate themfelves at thefe chinks (as narrow as they were) and in not many days made the matter ceafe to be capable of being made luminous as before. I cannot ftay to inquire whether this unfitnefs or indifpofition may be imputed to the bare moifture of the Air, or to fome other fubftance or quality that alone or in conjunction with the moifture, may fooil that peculiar texture, or conftitution that fits the matter of the Phofphorus affifted by the impreffions of external light to become luminous. This, I fay, I cannot ftay to examine, though, That this Phofphorus is of a nice and tender conftitution, and eafily alterable, I was induced to think, by finding that the want of circumftances, feemingly flight enough, would keep it from being made ; and I guefs that a convention of circumftances did more contribute to the production than any peculiar and incommunicable nature of the matter: Becaufe having had the curiofity to make fome trial upon fo obvious a material as quick Lime, though the fuccefs did not anfwer my defigns, yet, neither was it fo bad, but that fome luminous quality was produced in the Lime by the action of the fire, and a faline Liquor; and I fcarce queftion but other materials will be found

K capable
capable of being made luminous by the fame or the like operation, that is imploy'd by Baldoinus, when that learned man fhall think fit to communicate his way to the Publick. But to return to what I was faying, that the contact of the Air might be rather hurtful than advantagious to the Phofphorus, I Chall only add here as matter of fact, (for my conjectures about Light belong to my yet unpublifht Notes, of the Origine of Qualities) that whereas the contact of the Air, though it were not free, did in a few days deftroy the luminoufnefs of a good Phofphorus, yet having included another in a Receiver, whence we afterwards pumpt out the Air, this matter though inferior to the other in vividnefs was fo little fpoiled by lying open in our Vacuum, that at the end of not only fome weeks, but fome months, I found that the beams of a Candle pafling to it through the Receiver, would notwithftanding the Vacuum it yet continues in, fuffice to re-excite in it a manifeft light.

Thus far was the communication of this excellent perfon, who it's hoped may be further prevailed with to communicate thofe other accurate obfervations, and curious refearches he hath made concerning the light of the Bononian Stone, and the Phofphoros Baldvoini, which are indeed truly admirable, and very much differing from the ufual procefles of Nature for the exhibiting of light.

Before I take leave of my Aftronomical Readers, I fhall here acquaint them with fome Collections I have made of other Aftronomical matters and difcoveries, which I hope will not be lefs pleafing to them than they were at firft to me. The Difcoveries are new, and not lefs fignificant. The firft is,

A Letter from Johannes Carolus Gal-

 let, L.L.D. and Provof of the Cburch of St. Symphorean at Avignon, directed thus.CLariffimo Eruditij/imoque viro D. Fobanni Dominico Cafjino Mathejèos ProfèJori Celeberrimo, Aftrom nomo praftantiffimo con Academie Regie Scientiarum alumno meritijfimo.

Conteining an account of his obfervation of Mercury paffing under the Sun.
Mr. Gallet then acquaints Mr.CajJini with his obfervation of $¥$ fub \odot and the whole method and procefs of his obfervation. Firft, he fitted two excellent Telefcopes, the Glaffes of which were given him by Mr. Fac. Borrellius, one of the Academy Royal of Paris. The one of twenty three foot, he fitted with a Glafs covered with fmooke, placed in the outward focus of the Eye-Glafs: The other of three foot he fixt to the Arm of his Quadrant of the fameRadius, this was fo exquifite that compared with one of Divini, which was chofen by the care of Honorato Fabri, and procured by Monfieur de Beauchamps, it was found to reprefent the objects clearer: By this the figure of the Sun was calt on an oppofite Table, on which he had drawn a Circle of the bignefs proper to the Diftance and Magnifying of the Glaffes to contain the whole Face of the Sun, and by Parallel Circles had fubdivided the fame into digits and Sexagefimals, he had alfo placed three threds in the interior focus of the Glafles, that the middlemoft went through the Center, and the two outward touched the Limb of the Sun by their fhadow on the Table, he had alfo a Pendulum Clock that vibrated thrice in a fecond.Thus accoutred he watched the fifth K_{2} ard
and fixth day, from Sun rifing to Sun fetting, and the reventh after the Cloudy Sky had reemed to delude his curiofity till Eleven a Clock almoft, it then began to open and difcovered to him Mercury got within the Eaftern Limb of the Sun, about $\frac{1}{6}$ of its Semidiameter; at length the Clouds being difperfed, the Sun being $27^{\circ} 45$. high, or at $10 \mathrm{~h} .54^{\prime}$ 宇 it felf marked out its own place in the disk of the \odot by its own fhadow caft on the Table by the fhorter tube. Then he difpofed the thadow of the aforefaid thred fo Pa ralel to the Equator, that this figure of the Sun fhould move between the outward ones, and that the middle fhould mark out the Paralel defcribed by the Center of the Sun in motion, at the fame time he took the declinar tion of $\not \ddagger$ from this middle Parallel and the right Afcention, by the number of Vibrations of the Pendulum, from the Weftern Limb of the Sun, taken by the fhadow of a Perpendicular Crofs-line to the other 3. by the fame means, alfo he meafured the Diameter of the Sun and of Mercury.

Then to the end he might give lefs caufe of doubt,according to his ufual cuftom, he procured feveral friends who were prefent and witneffes of all the obfervations after the fourth mentioned in the Table. During the obfervation he took notice of thefe remarkable accidents. Firft, that Mercury through the long Tube was very black, and of an Elliptical figure whofe longeft Diameter was Parallel to the Equator, but in the Species through the leffer Telecope, it appeared round and of a dusky red (like a foot obferved by him in the Sun from the Ninth to the Fifteenth of April.)Secondly, that the Diameter of Mercury going out of the Dife of the Sun, when it toucht the periphery feemed to be of four times the Diameter it appeared of through the whole Phafe, fo that Mr. Beaucbarap, who watched the exit with the longer Tube, whilft he himfelf minded the Quadrant in order to take the Altitude of the Sun, at the time of the exit cried out, O how large do

I fee the Diameter of Mercury now, it does not only leave the Sun, but is confufed with it, or as it were melts into it, and prefently it vanifht, the Sun being then 13.23^{\prime}. high.

He further adds that before he leaves to fpeak of the Sun, he will here infert an obfervation that he had made of four fpots he had feen in the Sun in the firft of October laft (St. No.) with this his longer Telefcope, one only of which was vifible by the Species caft with the leffer Glafs.

Octob. Die. hora	Dectinat.macule principalis à paral. Centri ©.	Differentia termp. inter limbum (Occident.'゚ maculam.	Tempus tranf tus difci So laris.
1100	444 auftr.	1420	2100
2100	243 auft.	490	21020
31030	12 I auft.	3540	21020
41035	- 40 auft.	2540	21030
6100	3 O berea	320	210

Thus fubmitting his method to the judgment of the Learned Cafini, and earneftly defiring his thoughts thereon, he ends his Letter, and Dates it from Avignon, Nov. 2 I. 1677.

To this Letter he fubjoins the obfervation it §elf, $_{\text {, }}$ Intituled,

Mercurius fub Sole vifus Avenione die 7. Noverab. 1677. Obfervante me Joanne Carolo Gallet, F.V. D. Prapofito Ecclefize Sancti Symphoriani Avenionenfis.

The Contents of which are,
That defigning to obferve this paffage of $\stackrel{+}{x}$ under © he with his Tube watchfully looked for it in the Suns place, from the 5 th to the 7 th. day, with a Telefcope of K 3

23 foot

23 foot (as above) he obferved a fpot of an elliptical figure which had already gotten a 16 th. part of the femidiameter of the Sun within the limb, and declined a little to the South in refpect of the parallel of the不quator drawn through the Suns center, at 10 hours 26 min. but the Clouds hindering he could not obferve its motion till it had afcended as high as the parallel : when the Suns altitude was 27.45 . or 10 a Clock 54 minutes. From the quicknefs of its motion he foon found it to be $\underset{y}{ }$ and not a fpot, and therefore he forfook not his Quadrant to which was fitted his three foot Telefcope and Table to receive the figure of the \odot but obferved the times of the Immerions and the Emerfion of 0 by the help thereof, being affifted by feveral of his friends who were witneffes of what paffed, and particularly by the Illuftrious Monfieur De Beauchamp, who with the twenty three foot Glafs determined the Exit of Mercury, whileft he himfelf took the Altitude of the Sun with his Quadrant, as in the tenth Obfervation.

The Order of the Obfervations of Mercury feen under the Sun.

From this Obfervation he had the Declination of Mercury in refpect of the Parallel through the Center of the Sun, and thence its abfolute Declination from the Equator, fuppofing the place of the Sun according to Hecker, and the obliquity of the Ecliptick, 23, 30 the right Afcenfion alfo of \varnothing appeared by the difference of time between the Tranfit of and the Welt limb of the Sun by the fame meridian. Then from the Declination and right Afcenfion of $\stackrel{\psi}{\text { g }}$ given by Trigonometrical Calculation, he found out the Longitude and Latitude of it in every Obfervation, and the time of itstrue Conjunction.

Therefore the time of the true conjunction of the Sun and Mercury at Avignon, was Nov. 7. Hor. 2. Min. 39. Sec. 14. Afternoon.

To this he hath adjoyned this enfuing Table, to fhew how much the Heavens do differ from the Aftronomical Tables.

Tempus datumex Tabulis Novemb.

Differentia ab obfervata conjuntione.
D. H. M.

Rudolphinis Rey- $\} 78300724$ exceffus.
Calculis Heckeri. $7 \quad 6 \quad 9 \quad 0 \quad 5 \quad 9$ exceffus. Lansbergianis. $\begin{array}{lllllll}6 & 1 & 12 & 0 & 23 & 27 & \text { defectus. }\end{array}$ $\begin{array}{lllllll}\text { Philolaicis Bullialdi } & 7 & 4 & 18 & 0 & 3 & 39\end{array}$ exceffus. Ricciolinis juxta calculum.
R.admodum Patris 7817 $\begin{array}{lllll}8 & 17 & 38 & \text { exceffus. }\end{array}$ Bonifa. Societatis Jefu.

Thefe Obfervations are delineated in the 23 . Figure.

Upon this Obfervation I find in the twenty third fournal de Scavans of the Year 1677.Mr.Caffini made thefe Reflections,

THat having compared this Obfervation of Monfieur Gallet, of 1677. with that of Mr. Gaffendus, of 163 I . the fame day of the year, to wit the feventh of November, he found that the Latitudes of $\underset{\sim}{\text { to }}$ at its leaving the Difc of the Sun, determined by thefe two Aftronomers were equal, even to the fixth part of a minute. And by confequence that $\underset{\tau}{ }$ was both in the one and the other Obfervation at the fame diftance from its North node, and that it traced in the Difc of the Sun an equal line: And for that $\emptyset \underset{\sim}{ }$ was here at the like diftance from its Apoge; as the Sun was alfo pretty near, the fwiftnefs of its apparent motion in the Sun was equal. By the Obfervation of Mr. Gallet it is found confiderably more flow than that which Mr. Gafendus hath fuppofed from the Rudolphin Tables of which he made ufe for the determining of it, not having beenable to make Obfervation immediately by reafon of the Clouds. He believes then that Ψ fpent more then five hours in running through the Difc of the Sun, fince by the Obfervation of Mr. Gallet, it hath fpent 5 hours and 35 minutes, which may ferve for an Advertifement for determining more exactly the time of the true conjunction of $\stackrel{\psi}{\text { w }}$ with the \odot in the year 163 I .
The fame equality of Latitude at Mercury's leaving the Sun fhews that the Sun was equally diftant from the Node of Mercury at the time of thefe two Obfervations. And as the Sun was more advanced in that of this year from 63 to 64 minutes, than in that of the year 1631, So it follows that the feptentrional

Node of Φ is advanced from 63 to 64 minutes in the Pace of 46 years, as precifely as by the Rudolphin Tables, which agree alfo exactly in the Epochas of the Nodes: a matter of no fmall Importance in Aftronomy, which hath not a little difficulty to determine with precifenefs the Nodes of the Planets and their motions.

But having compared the obfervation of Mr. Gallet, with that of Mr. Herelius, in 1661. which hapned the third of May, in a place of the Zodiac oppofite to that of this year, he hath found the feptentrional Node of $\stackrel{+}{\text { l }}$ lefs advanced than the Meridional was in the preceding Obfervation; fothat if the Nodes of \wp in regard of the Sun are precifely oppofite the one to the other, it appears that they have gone backward fince the year 1661. as do thofe of the Moon, and by confequence their motion is fometimes direct,fometimes retrograde : But if their motion is fuppofed uniform, it will follow that the Line of the Nodes of $\$$ not pafs at all through the center of the Sun, but that it is removed from it towards the feptentrional limit about a two hundredth part of the Semidiameter of the Orb of Mercury.

Thus far this knowing and accurate Aftronomer Monfieur Calfini, who we hear hath fince farther difcourfed concerning this matter, which we hope to procure fo foon as he fhall make it publick; and to add fome other curious Oblervations made by other hands, I have as yet been able to procure but one more; but that is one fo confiderable, that it will excite the skilful Aftronomers anew to ply their Calculations, to fee what the comparing of this with the reft will produce; which as they come to my hands, I defign to publinh, as I hall alfo fomewhat of my own Obfervations thereupon: and therefore I omit to make any reflections at prefent. This Letter is of Mr. Edmund Hally, now refiding at St. Helena, directed to Sir Jonas Moore, Surveyor of his Majefties Ordnance; a perion to whom
the Learned world is very much obliged for his patronizing and promoting thefe Coleftial enquiries; who hath not been fparing of his own pains and purfe in providing the beft apparatus of inftruments and other conveniences for fuch Obfervations the world ever had; from whom we may with good reafon hope a great advancement towards the perfecting thereof.

St. Helena, \mathcal{N} (ovemb. 22. 1677.

H^{2}Onored Sir, You may with reafon woonder that I Brould fo long be negligent to worite to your Worffip, to give you an account of my proccedings fince my departure from you, feeing that in the bulinefs I am now engaged upon, the Honorable Sir Tofeph Williamfon, his Majefties Principal Secretary of State, and your Self are my only Patrons: but Ibave not been ummindful of my Duty in this particular, only I delayed, that what I fent you might not be al. together inconliderable. I hoped ftill that we might bave fome clear weather when the Sun came near our Zenith, that fo I might give you an account that I bad near band finifhed the Catalogue of the Southern Stars, mbich is my principal concern; but fuch hath been my ill foriune, that the Horizon of this Ifland is almoft almays covered 20th: a Cloud, which Sometimes for Some arceks together bath bid the Stars from us, and when it is clear, is of fo fruall continuance, that we ciannot take any number of Obfervations at once; So that now, when I expected to be returning, I bave not finibsed above balf my intended work; and almoft defpair to accomplifh what you ought to expecit from me. I will jet try two or three months more, and if it continue in the fame conftitution, I ball then, I hopebeexcufable if in that time I cannot make an end. However it mill be a great grief to be fo far fruftratedin my firft undertaking: I bave notwithfanding bad the opportunity of obferving the ingrefs

$$
\mathrm{L} 2 \text { and }
$$

and egrefs of 和 on the \odot, which compared with the like Obfervations made in England, woill give a demonftration of the Suns Parallax, wobich bitherto was never proved, but by probable arguments. Likewife I bave Seen thofe twoo Eclipjes, one of the Sun, the other of the Moon in May laft, both nobich I fend you, but the mighty winds, and extraordinary fwift motion of the Clouds bindred the exactnefs of the Obfervations. That of the Moon may help for the difference of our Meridians, wobich is about 7 degrees to the Weftroards of London: but it may more curioully be found by Mercury fub Sole. There are three Stars of the firjt, Magnitude that never appear in England, but none near the South Pole of any brightnefs, except one of the third Magnitude, which is about ten degrees diftant from it. The two Nubecule called by the Saylors the Magellanick Clouds, are both of them cxacily like the whitenefs of the millky woay lying within the Antartick. Circle; they are fmall, and in the Moon Sbine, fcarce perceptible; yet in the dark the bigger is very notable. I need not relate unto you the temperature of the Weather for beat and cold here in the Torrid Zone, you your felf having long fince bad experience of a Latitude little different: only this I Ball certifie you, that ever Ince I came to this 1 Iland, we bave had no weather that is hotter than the Summer of England is ordinarily. Mr. Clark is a perfon woonderfully aljoftant to me, in wobofe company all the good fortune I have bad this Voyage confifteth, to me all other thizgs having been crofs: neverthelefs I de fpair not of his Honors and your Worjhips favour, which alone is Sufficient to encourage me to bear with patience thefe difappointments, and expect fome fitter opportwxity.

I am your Worfhips moft obliged Servant, and true Honorer,

Ednurd Halley.

St．Helene，Latitudo Auftralis， 15.55.

Anno 1677°

Octobris 28．die © mane 宁 applaruit intra \odot ．
h．m．s．
$9 \quad 26 \quad 17$ Pars aliqua corporis $\begin{aligned} & \text { ̛̣ii intraffet Solem }\end{aligned}$ decem gradus à nadir ad dextram．circiter．
92730 Formabat angulum contactus totus $\stackrel{+}{\circ}$ Scilicet．intus
23839 Limbus 豸̧ii proximus difjiti ì limbo Solis fui Diametro．
2408 Limbus 甬ītetigit limbim \odot ．
24 O Centrum $き$ exiit è Sole 30 grado circi－ ter à Nadir ad dextram．
$24154 \odot$ limbus integer factus．

Longitudo ©r．Latitudo trium Stellarum illuftrium
prope polum anfrinum．
Long．Latit．

Canopres	II	3	²	75	49
Centauri pes	25	24	m	42	22
Alcarnar．	10	31	7	59	$18 \frac{1}{3}$.

The Period of the Reablution of Jupiter upon it Axis; verifeed by new Obfervations made by Monfeur Caffini :

Extracted out of the fournal de Scavans.

THE Globe of Jupiter, whore Revolution about its Axis was determined by the Obfervations of Monfieur Cafjini, in the Year

This Revolution of the body of \% upon its $A x$ is I firf difcovered in May 1664. and publifhed in the firf Tranfation, which was a confiderable time before it was difcovered by Monfieur Calf $n i$; but we are obliged to him for the perfeating the Theory, as we are alfo for many o ther rare Difcoveries and excellent improvements in Aftronomy. 1665. to be 9 hours, and 56 minutes, is as it were a watch for vifibly pointing the hours and minutes to half the Earth at once; fo that it fhews the fame time to allunder the fame Meridian, and a different time to different Meridians, according as they differ in Longitude.
It hath for an Index of its motion one principal fpot, which is very neatly diftinguifhed from the reft of its furface, and feems from its figure and fituation to have fome refemblance to the Cafpian Sea of the Terraqueous Globe. By the help of good Glaffes it may be fern paffing the under Hemilphere of it, from the Eaft to the Weft, with a velocity fo fenfible, that one may determine to one or two minutes, the time that it comes to the middle of the Dife, which is the place the mort fit for eftablifhing of the Epochas, and for finding the difference of Longitude There may be a great number of fuch Revolutions obferved, fince in one year of 365 days
days there are made 882 Revolutions. But it doth not appear in every year, but as it it were fome kind of Marifh which is dried at certain times, and fo difappears during two or 3000 Revolutions; and after it hath remained thus imperceptible for fome years, it returns again to its former ftate. After it had been obferved the laft fix months of the year 1665 . and fome months of 1666 . it became invifible till the beginning of the year 1672. then being returned to its former appearance, Monfieur CalJini compared the intervals of the fix years, and limited the revolution to be made in 9 hours, 55 minutes, 5 I feconds; and continuing his Ob fervations to the end of the year 1674. he found by thefe two years that it was too flow by two feconds and a half: fo that it appeared to be in 9 hours, 55 mi nutes, $33^{\frac{1}{2}}$ feconds.

This fpot hath been invifible in 1675 and 1676 . during which face there happened other very confiderable changes in the body of fupiter; for the clear inter-Itice which was between the two dark belts of Fupiter was feparated into many little parts, in the manner like fo many Iflands; as if the two obfcure belts had been two great Rivers broken one into the other, and had left thefe parts which appeared like IIlands, which yet were at laft all effaced, and the two dark belts, and the interjacent fpace at length all coalefced into one large belt. Butafter the coming of fupiter out of the Rays of the Sun in the year 1677. the belts again took their form, and fituation which they had heretofore; to wit, the fame which is defcribed in the 24 figure. The principal fpot appeared anew after the beginning of July laft. Monfieur Caffini found this pot in the middle of Fupiter the night after the eighth of the faid month, at 13 minutes after one at night; and hath hitherto ever fince obferved it at the hours proper to its revolution. Having compared many Obfervations of this year with as many others made the fame days of the year 1665 . for avoiding the feruples which may a-
rife from the inequality of times, be hath found by the intervals of twelve years that thofe revolutions compared the one with the other, complete themfelves in 9 hours, 55 minutes, 52 feconds, and 5 or 6 thirds. And becaufe that in the years 1672,1673 . they appeared more flow by 2 feconds and a half, during the time that Jupiter was in its greateft elevation from the Sun. Monfieur Calfizi inclines to fuppofe that thefe revolutions have fome little inequality depending on the variation of the diftance of ψ from the \odot, and that they are a little flower when $\%$ is more removed, and fomewhat fafter when nearer approached that body; the fame which feveral great Aftronomers have fuppofed to happen to the Diurnal Revolutions of the Earth in the Copernican Hypothefis.

In this account he hath feparated the inequality which doth refult from the variation of the two equations of fupiter (as he hath explained in divers Letters in 1665.) the which may amount to one halt hour, befides the inequality of natural days, which according to his Hypothefis may amount to 16 minutes.

For the finding then of the return of the principal Spot to the middle of ψ for many years to half an hour or thereabout, there uteds nothing but adding ftill the time of the period to the Epoche of the 8. of Fuly, 1677. and for the finding precifely, even to tome minutes, the two inequalities of fupiter muft be obferved according to the following Rule.

Differentiam inter mediuna locum 'Jovis or apparintem converte in tempus danedo fingulis gradibus min. I ${ }_{3}$. hoc tempus adde tempori reftitutionis macule fupputato, filocus apparens Jovis exceßerit medium: fubtrabe vero fis defeceril à medio.

We have then the mean time of the return of the fpot, and to get the apparent time the, equation of days according to the method of Monfieur Cafjini (of which a Table is inferted in the Ephemerides of Monfieur Flaminio de Mezzavachr) muft be madeufe of.

MICROSCOPIVM:

> O R,

Some new Difcoveries made with and concerning Microfopes.

A Letter of the Ingeniows and Inquijitive Mr. Leeuwenhoeck of Delft, Sent to the Secretary of the Royal Sosiety, OCFOber 5. 1697.

TN this Letter after the Relation of many curious Obfervations made with his Microfcope, he adds, 'By fome of my former Letters I have related what an ' innumerable company of little Animalcules, I have ' difcovered in waters; of the truth of which affirma' tions, that I might fatisfie the Illuftrious Philofophers ' of your Society, I have here fent the Teftimonials of 'eight credible perfons; fome of which affirm they 'have feen 10000 , others 30000 , others 45000 little ' living Creatures, in a quantity of water as big as a ' grain of Millet (92 of which go to the making up the ' bignefs of a green Pea, or the quantity of a natural 'drop of water) in the defiring of which Teftimonials 'I made it my requeft that they would only juftifie ' (that they might be within compafs) half the number 'that they believed each of them faw in the water, and 'even fo the number of thofe little creatures that would ' thereby be proved to be in one drop of water would ' be fo great, that it would exceed belief. Now where'as by my Letter of the 9th. of October, 1676.1 affirmed ' that there were more than 1000000 living Creatures 'contained in one drop of Pepper-water. I fhould not
"have varied from the truth of it, if I had afferted that 'there were 8000000 ; for if according to fome of the 'included teftimonials there might be found in a quan'tity of water as big as a millet feed, no lefs than 45000 ' animalcules. It would follow that in an ordinary drop ${ }^{\text {c }}$ of this water there would be no lefs than 4140000 'living creatures, which number if doubled will make ${ }^{\prime} 8280000$ living Creatures feen in the quantity of one ${ }^{6}$ drop of water, which quantity I can with truth af'firm I have difcerned.
'This excceds belief. But I do affirm, that if a larger 'grain of fand were broken into 8000000 of equal ' parts, one of thefe would not exceed the bignefs of one ' of thofe little creatures; which being underftood, it ' will not feem fo incredible to believe that there may ' be fo great a number in the quantity of one drop of 'water.

Upon the perufal of this Letter,being extremely defirous to examine this matter farther, and to be afcertained by ocular infpection as well as from teftimonials. I put in order fuch remainders as I had of my former Microfcopes (having by reafon of a weaknefs in my fight omitted the ufe of them for many years) and fteeped fome black pepper in River water, but examining that water about two or three days after, I could not by any means difcover any of thofe little creatures mentioned in the aforefaid Letter: though I had made ure of fmall glafs canes drawn hollow for that purpofe, and of a Microfcope that I was certain would difcover things much fmaller than fuch as the aforefaidMr Leeumenhoeck had affirmed thefe creatures to be; but whether it were that the light was not convenient (the reafon of which I fhall fhew by and by) having looked only againft the clear sky, or that théy were not yet generated, which I rather fuppofe, I could not difcover any. I concluded therefore either that my Microfcope was not fo good as that he made ufe of, or that the time of the
year (which was in November) was not fo fit for fuch generations, or elfe that there might be fomewhat afcribed to the difference of places; as that Holland might be more proper for the production of fuch little creatures than England. I omitted therefore farther to look after them, for about five or fix days, when finding it a warm day, I examined again the faid water; and then much to wonder I difcovered vaft muititudes of thofe exceeding fmall creatures, which Mr . Leeuroenboeck had defcribed; and upon making ufe of other lights and glaffes, as I fhall by and by fhew, I not only magnified thofe I had thus difcovered to a very great bignefs, but I difcovered many other forts very much fmaller than thofe I firft faw, and fome of thefe fo exceeding fmall, that millions of millions might be contained in one drop of water. I was very much furprized at this fo wonderful a fpectacle, having never feen any living creature comparable to thefe for fmallnefs: nor could I indeed imagine that nature had afforded inftances of fo exceedingly minute animal productions. But nature is not to be limited by our narrow apprehenfions; future improvements of glaffes may yet further enlighten our underftanding, and ocular infpection may demonftrate that which as yet we may think too extravagant either to feign or fuppofe.

Of this, A later Difcovery of Mr. Leeuwenboeck does feem to give good probabilities; for by a Letter of his fince fent (the which is hereunto annexed) it appears he hath difcovered a certain fort of Eels in Pepperwater, which are not in breadth above one thoufandth part of the breadth of a hair; and not above a hundredth part of the length of a vinegar Eel.

Mr. Leeuwenhoecks Second Letter.

SIR, 'Yours of the thirtieth of November I received ' not till Fanuary, whereby underftanding the kind 'reception of my former by the R.S. I here return my ${ }^{\text {' }}$ acknowledgment to that illuftrious Company for their 'great civility: but I wonder that in your Letter I find ' no mention made of my Obfervations of the fecond of ${ }^{\text {a }}$ December, St. No. which makes me doubt whether the - fame came to your hands.
' Since you affure me that what I fend of this nature ' will be acceptable to the renowned Society, I have ad' ventured again to fend you fome of my farther Enqui' ries, to be communicated to that learned Philofophical ${ }^{\text {'Company. Since I wrote of the Blood of Eels, and }}$ ' of young Eels, I have not been idle to view Blood, ' but efpecially my own, which for fome time I have in'defatigably examined, after that I had put it into all ${ }^{\text {c }}$ conceivable motions. Among which Obfervations I ' well faw that the globuli of my own blood took the - fame figure which I formerly mentioned, that the Glo'bules of the blood of Eels appeared of to the eye: ' upon feeing which I doubted again at the caufe of the ' fmart which the blood of the Eels caufes in the eye.
' Thefe my many times repeated Obfervations of my cown blood I made to no other end, than if it were pof'fible, to obferve the parts out of which the Globules c of the blood confifted: With obferving this, I found 'the globulous blood much more pliable than I did ima'gine the fame before. I have at feveral times bended ' thefe Globules before my eyes, that they were three 'times as long as broad, without breaking the Veficule ' of them: and befides I faw that the Globules of blood ' in paffing by and through one another, did, by reafon "of their pliablenefs receive many forts of figures, and ${ }^{s}$ coming thence into a larger place, they recovered their former

- former globulofity which was a very great pleafure ' to obferve: and withal, that the Globules of blood 'coming many together, and growing cold thereby, 'came to unite, and made a matter very fmooth, ' wherein there were no more parts diftinct to be taken ' notice of, much after the fame manner as if we fup'pofed a Difh filled with balls of wax fet over a fire, 'by which they would quickly be melted together, and 'united into one mafs; by which uniting of the Glo'bules, I concluded this to be the reafon of the acci'dent which is called the cold fire, and of that alfo ' which caufes the hands or fingers to be loft by cold: 'but Ileave this to others. And I did very clearly alfo ' difcover that there were fix other fmaller Globules of - blood contained within each of the former and lar'ger Globulous Veficles: and withal, I took much ' pains to obferve the number of the fame very fmall ' globules, out of which the greater Globules do con' fift: that at laft Ifrongly imagined, that every of the ' greater Globules confifted of fix fmaller Clobules, no ' lefs pliable than the aforefaid: for oftentimes I faw 'very clearly how the fmall Globules joyned and ada'pted themfelves according to the figure the Veficle ' or larger Globule ftretched at length had taken, being ' themfelves ftretched after the fame manner : and thus 'made one of the larger Globules ftretcht out, to ap' pear by the lefler within it ftretched alfo with it, 'as if it confifted of long threads. Moreover, I ' put the greater Clobules into fo violent a motion, that 'their Veficles burft in pieces, and then the leffer Glo' bules appeared plainly to be fcattered. This firft 'Globule I can fee as plainly and great, as with the na' ked eye one fhould look upon the eggs or fpawn of a 'Cod-fifh.
${ }^{6}$ About nine or ten years fince Dr. Graff opened in 'my prefence the vein of a Dog, and let out fo much ' blood that the Dog grew faint; then he opened the ${ }^{6}$ Artery of another Dog, and by a pipe transfured the M 3
blood
- blood of this fecond into the firft, whereby the firft ' was recovered, the fecond was faint. Then the faid Do' Ctor injected back into the Artery of the fecond, a 'quantity of Cows milk, fuppofing thereby to preferve ' the fecond dog alive, faying, milk was blood: but ${ }^{6}$ no fooner was the milk put into the artery, but the 'dog died. And whereas 'tis commonly faid that milk ' is Blood, therefore I fhall relate of what parts the 'Milk confifts, fo far as I have hitherto difcovered. I 'have faid heretofore that the Milk doth confift of ' Globules fwimming in a thin clear watery matter ${ }^{6}$ which we call Whey: but as the great Globuli of ${ }^{6}$ Blood are all of the famebignefs, fo in the Milk they ${ }^{6}$ are quite differing, being of as many fizes and nagni' tudes as we can imagine, between the fmalleft fand, ' and a barley corn; all of them being as clear as Cry'ftal; fave only that through and between the fame 'drive fome irregular particles for the moft part roun' ded: thefe had a fatty fubftance, which I imagined ' to be the latter : their irregularity I imagined came 'from the impreffion of the encompaffing Globules ' made on them, in which pofture they grew cold.
'Viewing the aforefaid differences of the Milk Glo'bules, I fuppofed that the Milk veffels have no ' other parts included but the matter out of which they ' are all made; and that the fame matter, fo long as in' cluded in the veflels, confifted of one uniform matter, ' fo that one could not diftinguifh parts; and that the ' fame veffels difcharging this uniform matter into other 'veffels, containing a fubftance of a quite differing na'ture, which I luppofe to be the Whey, comes to be ${ }^{6}$ reparated into thefe Globules of fo differing magni'tudes. This may bereprefented by having two vel${ }^{6}$ fels filled, the one with Fat, reprefenting Whey; the - other with Quickfilver, refembling the uniform mat'ter of the Milk : thefe blended together, the Quick' filver will be feparated into fmall Globules of differing 'magnitudes, and kept diftinct by the fat.
© Or further, it may be explained by a diffolution of 'fome gums in Spirit of Wine, a drop of which being 'put into rain water (which I compare to Whey) the 'Gum becomes feparated immediately into an incredi' ble number of fmall clear Clobules, which makes it ' appear alfo as white as Milk it felf: and thence I fup' pofe that the whitenefs of Milk hath the fame caufe.
' I have been often minded by fome, that flefh was ' nothing elfe but clodded blood; yet for all my en' deavours I was neverable to find the firft particles of 'blood inthe fibers of the flefh, but only fuch as are ' contained in the firft Globules.
'The laft Summer being fickly for fome weeks, I ' voided much Flegm, which was green, tough, and ' acid in the throat, which yet continues; but nothing 'near fo much as before : and fome of it which I void'ed in the morning was of fo heavy a matter, that it 'funk in the water: the ponderofity of it I found to ' proceed from its not being filled with airy bubbles, ' which moft Flegms are mixed with. By this means I 'obferved my Flegm very often, and found it to con' fift of tough flimy moifture, mixt with many Globules; ' and the tougher the Flegm was, the greater was the ' quantity of Globules; and from them allo proceed'ed the green colour of it. All thefe Globules were of ' one and the fame bignefs with the firft Globules of 'the blood; and indeed the blood is of the fame ' make, but only of a different colour: for as I ob' ferved the greater blood Globules to confift of fix ' leffer, fo here I could fee them more plain; only they ' feemed more flender and tender than in the blood: ' the reafon whereof I fuppofe to be that the veficules of 'the Flegm Globules had already received fome kind ' of corruption : befides, there was mixt with the tough 'part of the Flegm great quantity of very thin cuti'cles: and in the fame manner as I have heretofore ex'plained how our cuticle is fupplied underneath, as the ' upper part is rubbed off in feurf, ro I fuppore the in-
' ner cuticles of the gullet afperaarteria, and other vef-
' fels are taken off by the Flegm. There drove alfo,
'through the Flegm fome other particles, which from
' their fmallnefs I could not affign them a figure, but I
' conceived them rather cubical than round. I did laft
${ }^{\text {' Summer fhut up fome Caterpillers to fpin Webs, and }}$
${ }^{\text {c }}$ within thefe few days I broke fome of thefe Webs,
' when from each of them came out a flie, which froms ${ }^{\text {' }}$ the cold were very weak, and were unable to ftand; 'by which I conceive that thofe which came not out in ${ }^{6}$ the latter part of the year, remain the whole Winter ${ }^{6}$ in their Webs, till the warmth makes them come out. 'I was pleafed to underftand that your felf and the 'Society had feen in fo fmall a quantiy of water as a ' fand, fogreat a number of Creatures; as alfo, that I ' fhall be partaker of what you fhall obferve, which I - fhall with longing defire expect. I cannot but men'tion that that fmall fort of Creature which I hereto' fore could give no defcription of, I now fee their fi'gure. And for the pleafure I take in the various plea' ling fhapes, with their motions, which do now and ' then appear in the water, I have the fourth of this ' month, when it froze hard, taken a third part of beat${ }^{6}$ en pepper, and $\frac{2}{3}$ of high rain water in a clean glafs, ' which I fet the firftnight in my Bed-chamber; the next 'day, the weather being milder, I fet it in my Counting'houfe, and in three times 24 hours difcovered fo 'great a number, and fo unexpreffible fmall Creatures, 'that 'tis hard to be conceived; and according to my ' judgment, the moft of them were much lefs than a ' thoufandth part of the thicknefs of the hair of ones ' head, and three or four times as long as thick; the ' which made, with the hinder part of their body, oft'times fo fwift a progrefs, as when we obferve a Pike ' fhooting through the water, and every fhoot was in 'length moft times about half a hairs breadth; the ' other forts or kind of which were yet fmaller, whofe ${ }^{6}$ fhape for brevity I omit; only I fhall fay, that ofttimes
'times in pepper-water which hath food fomewhat ${ }^{\prime}$ long, among the very fmall Creatures, I have feen a ' fort of fmall Eels which had their fhapes and moti'ons as perfect as great ones: thefe were to my ' appearance a thoufand times thinner than the hair of ' ones head, and that if 100 of thefe fmall Eels were ' laid in length one behind another, the whole length ' would not extend to the length of the Eel in vine' gar : Whether you have allo obferved thefe fmall - Creatures with your Microfcope, I fhall be glad to un' derftand. I would willingly allo be informed whether ' my Letter of the fecond of December mention'd above 'be come to your hands, and how thofe Obfervations 'do pleafe the Gentlemen of your Society; and alfo ' to underftand the receipt of this.

The manner how the faid Mr.Leenwenhoeck doth make thefe difcoveries, he doth as yet not think fitto impart, for reafons beft known to himfelf; and therefore I am not able to acquaint you with what it is: but as to the ways I have made ufe of, I here freely difcover that all fuch perfons as have a defire to make any enquiries into Nature this way, may be the better inabled fo to do.

Firft, for the manner of holding the liquor, fo as to examine it by the Microfcope, I find that the way prefrribed by Mr. Leeureenhoeck is to include the fame in a very fine pipe of glafs, and then to view it by the heln of the Microfoope; for by placing that at a duediftance, whatever is contained in the faid liquor will moft eafily be difcovered: The liquor will moft eafily infinuate it felf into the cavity of the faic pipe, if the end thereof only be juft put within the liquor. This as it is exceedingly convenient for many trials, fo is it not very difficult to prepare; bat becaufe every one is not inftructed how to proceed in this matter, and it may caufe him more trouble than needs to procure them, I will here defcribe the way; and fo much the rather, becaufe the fame apparatus will
ferve for the preparing of Microfcopes: as I fhall afterwards fhew.

Provide then a box made of tin, with a flat bottom, and upright on all fides; let this have fixed within it to the bottom a fmall piece of tin, hollowed like a ridg tile, fo that the wiek of the Lamp may lie and reft upon it, and let the Tin-man fix on it a cover of tin, fo that there may be only left one part of the aforefaid box open, to wit, where the bent tin piece and the wiek do lie and come above the fides: this cover may be turned back on its hinges when there is occafion to raife the wiek, or put in more oyl, Of. but for the moft part ought to lie fat and covered; for whilft it is ufing, it is neceffary to keep the flame from fpreading too much, and taking fire all over. This box muft ftand within another box of tin, made large enough to contain it; the ufe of which is to keep the former Lamp Box from fowling the board or table on which it Itands : This ftandsupon a board about one font fquare, into which is faftned a ftandard or ftick upright, cleft fo.as to pinch and hold the fodering pipe between its elefts, which may be faftned with a ferew, or a llipping ring; through which pipe, blowing with your breath, the flame will be darted forward with great fwiftnefs and brightnefs: if then into this flame you hold a fmall piece of a glafs pipe, made of white glafs, (for green glafs, or coarfer glafs will not be melted eafily in this flame) and keepit turning round between your fingers and thumbs, you fhall find that the flame will in a very fhort time melt the middle part of the faid pipe; fo that if you remove it out of the flame, and draw your hands one from another, you may eafily draw the former pipe into a very fmall fize, which will yet remain hollow, though drawn never fo fmall. The beft Oyl for this purpofe is good clean Sallat Oyl, or Oyl Olive; but high rectified Spirit of Wine is yet better, and cleanlier, but much more chargeable; and for moft ufes the Oyl Olive will ferve. This I have fer down, becaufe
caufe many who are far off in the Country cannot have the convenience of going to a Lamp-blower as oft as they have occafion for fuch pipes; which if they provide themfelves with fmall white glafs pipes from the Potters, they may accommodate themfelves withal, though they have nothing but a large candle, and a to-bacco-plpe, inftead of the aforefaid apparatus, though not altogether fo conveniently. But I would rather advife them to have a Lamp made, which moft Tin-men know how to fit and prepare; and fo it will not need much nore defcription.

Bur this way of Mr. Leembenhoecks, of holding the liquors in fmall glafs pipes, though it be exceedingly ingenious, and very convenient for many examinations, yet for divers others 'tis not fo well accommodated as this which I contrived my felf for my own trials, at leaft for thofe Microfcopes I make ufe of; what it may be for thofe which Mr. Leeupenheeck ufes I know not.

I take then inftead of a glass pipe a very thin plate of Mufcovy glafs, this ferves inftead of the moveable plate which is ufually put upon the pedeftal of Microfcopes; but becaufe the common pedeftal hitherto made ufe of in Microfcopes is generally not to convenient for trials of this nature, I lay thofe by, and inftead thereof I fix into the bottom of the Tube of the Microfcope, a cylindrical rod of Brafs or Iron. Upon this a little focket is made to flide to and fro; and by means of a pretty ftiff fpring, will ftand faft in any place. This hath faftned to it a joynted arm of three or four joynts, and at the end a plate about the bignefs of a half crown, with a hole in the middle of it about three quarters of an inch wide; upon this plate I lay the Mufcovy glafs, and upon that I fread a very little of the liquor to be examined; then looking againft the flame of a Candle, or a Lamp, or a fmall reflection of the Sun from a globular body; all fuch parts of the liquor as have differing refraction will manifeftly appear. By this means I examined the water in which N_{2} I had

I had fteeped the pepper I formerly mentioned; and as if I had been looking upon a Sea, 1 faw infinite of fmall living Creatures fwimming and playing up and downin it, a thing indeed very wonderful to behold.

If the flame of the candle were directly before the Microfcope, then all thofe little Creatures appeared perfectly defin'd by a black line, and the bodies of them fomewhat darker than the water; but if the candle were removed a little out of the axis of vifion, all thofe little Creatures appeared like fo many fmall pearls, or little bubbles of air, and the liquor in which they fwimmed appeared dark; but when the water began to dry off, the bending of the fuperficies of the liquor over their backs, and over the tops of other fmall motes which were in the wateir made a confufed appearance, which fome not ufed to thefe kind of examinations, took to be quite differing things from what they were really; and the appearances here are fo very ftrange, that to one not well accuftomed to the phrnomena of fluids of differing figures and refractions, the examinations of fubftances this way will be very apt to mif-inform, rather than inftruct him; efpecially of fuch fubftances as are not perfectly lluid, and will not readily and naturally fmooth their own fuperficies, fuch as Tallow, concreted Oyls, Marrow, Brains, Fat, infpiffated juyces, 盾c. for if thofe fubftances be fo examined by fpreading them upon this plate, and be looked upon againft the candle, or other fmall defined light, all the inequalities left on the furface by the fpreading do by the refractions of the rays of light render fuch odd appearances, that they will eafily deceive the examinator, and make him to conceive that to be in the texture of the part which is really no where but in the make of the fuperficies of it. This therefore as another great inconvenience to be met with in Microfcopical Oblervations, I prevent by thefe enfuing methods: Firft, all fuch bodies as Fat, Oyl , Brains, Rhobs, Pus, tough concreted Flegm, and the like, whofe furfaces
are irregular, and ought to be reduced to fmoothners before they can be well examined, I order in this manner: Firf, I provide a very clear and thin piece of looking-glafs plate very fmooth and plainon both fides, and clean from foulnefs: upon the furface of this 1 lay fome of thofe fubftances I laft mentioned, then with fuch another piece of Looking-glafs plate laid upon the faid fubftance I prefs it fo thin as not only to make thefurfaces of it very fmooth, but alfo to make the fubftance of it very thin; becaufe otherwife, if the fubftance be pretty thick, as fuppofe as thick as a piece of Venice paper, if it be a whitifh fubftance, the multitudes of parts lying one upon another in fuch a thicknefs, do fo confound the fight, that none of them all can be diftinctly feen: but if by fqueezing the faid plates hard, and clofe together, it be reduced to a twentieth part perhaps of that thicknefs, the fubftance may be well looked through, and the conftituent parts may be very plainly difcovered. Thus alfo 'tis very vilible in the Globules of milk and blood, difcovered by the ingenious Mr. Leeupenhoeck, for when either of thofe fubftances are thick, the multitude of thofe little Globules confound and thicken the liquor fo as one cannot perceive any thing until it be run very thin; for then all the remaining Globules with their motions may very diftinctly be apprehended. This therefore is an expedient by which thoufands of fubflances may be examined; and therefore the more fit to be communicated, that there may be the greater number of obfervers well accommodated for fuch trials. Thefe plates therefore may be contrived fo as to be pinched together by the help of fcrews, and a frame, that thereby they may be forced the clofer and the evener together, as there fhall be occafion; and may be kept firm and fteady in that pofture, and then, that it may fome ways or other be conveniently faltned to the former plate, foas to be moved this way or that way fteadily, as there fhall be occafion.

But there are other fubftances which none of thele ways I have yet mentioned will examine, and thofe are fuch parts of animal or vegetable bodies as have a peculiar form, figure, or fhape, out of which if it be put, the principal thing looked after is deftroyed: fuch are the Nerves, Mufcles, Tendons, Ligaments, Membranes, Glandules, Parenchymas, Ooc. of the body of Animals, and the Pulps, Piths, Woods, Barks, Leaves, Flowers, \&rc. of Vegetables. Some of thefe which are not made by diffection or feparation from other parts may be viewed alone; but there are others which cancot be well examined unlefs they be made to fwim in a liquor proper and convenient for them: as for inftance, the parts of flefh, mufcles and tendons: for if you view the fibres of a mufcle encompaffed only with the air, you cannot difcover the fmall parts out of which it is made: but if the fame be put into a liquor, as water, or very clear oyl, you may clearly fee fuch a fabrick as is truly very admirable, and fuch as none hitherto hath difcovered that ever I could meet with; of which more hereafter, when I fhew the true mechanical fabrick thereof, and what caufes its motion. Thus if you view a thred of a Ligament, you fhall plainly fee it to be made up of an infinite company of exceeding finall threads fmooth and round, lying clofe together; each of which threads is not above a four hundredth part of the bignefs of a hair: for comparing thofe of Beef with a hair of my head, which was very fine and fmall, viz. about a 640 . part of an inch, I found the Diameter thereof to be more than twenty times the Diameter of thefe threads; fo that no lefs than 163 millions, befides 840 thoufands of thefe muft be in a ligament one inch fquare. I fhall not here enlarge upon the admirable contrivance of Nature in this particular, nor fay any thing farther of the reafon of the greater ftrength of the fame fubftance drawn into fmaller than into greater threads; but only this in general, that the mechanical operations of thefe minute
bodies are quite differing from thofe of bodies of greater bulk, and the want of conlidering this one thing hath been the caufe of very great abfurdities in the Hypothefes of fome of our more eminent modern Philolophers: For he that imagines the actions of thefe leffer bodies the fame with thofe of the larger and tractable bodies, will indeed make but Ariftotles wooden hand at beft. This put me in mind likewife of advertifing the Experimenter that he provide himfelf with inftruments, by which, to ftretch and pull in pieces any fubftance whilft the fame is yet in view of the Microfope, of which there may be many which any one will eafily contrive, when he hath this hint given him of the ufefulnels thereof in the examination of the texture of feveral fubftances; as of Tendons, Nerves, Mafcles, erc. thofe I have made ufe of were made to open like a pair of Tobacco Tongues, by two angular plates of thin brafs rivetted together, which by pinching the oppofite end, would either open or fhut at the other, as I had occafion. Thefe having a part extended between the two tops, were fixt at a due diftance from the object-glafs that the body extended between them might be diftinctly feen; thet with my finger fqueezing together the oppofite ends, the other ends opened, by which means how the parts ftretched and thrunk might be plainly difcovered. Now as this is of ufe for fome kind of fubftances fo the two glafs plates are for others, and particularly for fqueezing of feveral fubftances betweer, them, fo as to break them in pieces, as thofe little Creatures in pepper-water, or the Globules in blood, milk, flegm, ofc. whereby the parts within them may yet farther be enquired into, as Mr. Leeuzenhoeck I find hath done by his lateft Obfervations. Whether he makes ufe of this way, or fome other, I know not.

Having thus given a defcription of the appurtenances, it remains that I come to the defcription of the Mi-
crofcope it felf, which is the principal inftrument, and without which all the reft are infignificant.

The Microfcopes then I defign here to defcribe, are only of two kinds, either fingle or double.

The fingle Microfcope I call that which confifteth only of one glafs, though it have a double refracting fuperficies; and the double one I call that which is compounded of two glaffes, though it hath for the moft part a quadruple refraction of the Rays.

The fingle Microfcope then confifteth of one fmall lens fo faftened into a cell, that the eye may come conveniently to look through the middle part or $A x$ is of it; of thefe there are various forts, as double Convexes, or plain Convexes, or perfectly fpherical.

I hall not need to defcribe the common lenfes which are every where made ufe of for this purpofe, being plano-convexes of Spheres about half an inch Diameter, fave only this, that 'tis beft to turn the plain fide towards the object, and the convex to the eye: nor fhall I fay much concerning thofe double Convex Glaffes, there being no great difficulty in the making or ufing of them; but that the fmaller the fphere is in which they are made, the nearer do they bring the object to the eye; and confequently the more is the object magnified, and the better and truer they are polifht in the Tool, the more clear and diftinct doth the object appear, but to make any of a Sphere lefs than $\frac{1}{10}$ of an inch in Diameter is exceeding difficult, by reafon that the glafs becomes too fmall to be tractable; and 'tis very difficult to find a cement that will hold it faft whilft it be completed; and when'tis polifht, 'tis exceeding difficult to handle and put into its cell: befides, I have found the ufe of them offenfive to my eye, and to have much ftrained and weakened the fight, which was the reafon why I omitted to make ufe of them, though in truth they do make the object appear much more clear and diftinct, and magnifie as much as the double Microlcopes : nay, to thofe whofe eyes can
well endure it, "tis poffible with a fingle Microfcope to make difcoveries much better than with a double one, becaufe the colours which do much difturb the clear vifion in double Microfcopes is clearly avoided and prevented inethe fingle. The fingle Microfcope therefore which I fhall here defcribe, as it is exceeding eafie to make, fo is it much more tractable than the double Convex glaffes made the common way by working them in a hollow Hemifphere with water and fand; for thofe, fuppofing them made with all the accuratenefs imaginable, will be far fhort from being fo well polifht as there; and wanting the ftem or handle which thefe have, they are infinitely troublefome to remove, or place, or to cleanfe when there fhall be occafion.

Take then a fmall rod of the cleareft and cleaneft glafs you can procure, free if poffiblefrom blebbs, fands, or veins; then by melting it in the flame of a Lamp made with Spirit of Wine, or the cleaneft and pureft Sallet Oyl , draw it out into exceeding fine and fmall threads; then take a fmall piece of thefe threads, and in the fame flame of the aforefaid Lamp melt the end of it, till you perceive it to run into a little ball or globule of the bignefs defired; then fuffer it to cool, and handling it by the aforefaid thread of glafs, which is as it were a handle to it, fix it with a little wax upon the fide of a thin plate of Brafs, Silver, or the like, that the middle of it may lie directly over the middle of a fmall hole pricked through the faid thin plate with a needle: then holding this plate clofe to the eye, look through the faid little hole, and thereby you may alfo fee very clearly through the aforefaid Globule, fixed with wax on the fide that is from the eye: if then either by a little joynted arm, or by a little foft wax, and a needle, or a thin plate of Mufcowy glafs, you fix the object you would examine; fo that it may be at a due diftance from the faid little Globule, you will perceive the minute parts thereof very diftinct. The focus of a fphere looked on by the naked eye, is about half the radius of the
fphere, without the fuperficies of it; but this is varied much by the age of the eye that looks through it, by the imagination alfo of the perfon, and by the differing fpecifique refraction of the glafs made ufe of.

By this means I have prodigioully magnified fome fmall bodies, infomuch that I have been able to fee and diftinguilh the particles of bodies, not only a million of times fmaller than a vifible point, but even to make thofe vifible, whereof a million of millions of them would hardly make the bulk of the fmalleft vifible fand; fo prodigioully do thefe exceeding little Globules of glafs inlarge the profpect of humane fight into the moreprivate receffes of nature.

If the things to be viewed be liquors, they may be included either in thofe little pipes of Mr Leenpenhoeck I newly mentioned, or elfe they may be put upon exceeding thin plates of Mufcovy glafs or Selenites, and the other fide of the plate may be made to touch the Globule, or at leaft be fixed at fuch diftance, as may make the parts of the liquor diftinct: If you make ufe of a Looking-glafs plate to fpread theliquor upon you would examine, you may rurn the liquor towards the Globule, and you may therein eafily fee all the parts very diftinctly, without at all hurting the profpect by the interpofition of the Muycovy glafs; which though it be exceeding clear, efpecially if the plates be very thin, yet hath it fome flaws, and fome opacoufneffes in it, which do fomewhat cloud the profpect.

If further, you would have a Microfcope with one fingle refraction, and confequently capable of the greateft clearnefs and brightnefs that any one kind of Microfcopes can poffibly be imagined fufceptible of, when you have fixt one of thefe little Globules as I have directed, and fpread a little of the liquor upon a piece of Looking-glafs plate, then apply the faid plate with the liquor, next to the Globule, and gently move it clofe to the Globule, till the liquor touch; which done, you will find the liquor prefently to adhere to the

Glo-

Globule, and ftill to adhere to it though you move it back again a little; by which means, this liquor being of a fpecifique refraction, not much differing from glafs, the fecond refraction is quite taken off, and little or none left but that of the convex fide of the Globule next the eye; by which means as much of the inconvenience of refraction as is poffible is removed, and that by the eafieft and moft practicable expedient that can be defired. I could add various other ways of making thefe Globular bodies both of glafs and other fubftances which will yet farther advance our profpect into nature, and are pleafant to admiration; but thofe I fhall yet referve till I fee what effects the publifhing of thefe may produce, and to the end to excite other perfons to be inquifitive into this matter : for let me affure them, very much more may yet be done by a way I know, than by this I have here publifhed. And I confefs I have very often wondered that no farther improvement had been made of this Principle, fince I publifht it in the year 1664. in the 20 . page of my Preface to Micrographia: for though fome other reafons difcouraged me from profecuting thofe enquiries, yet I hoped that others might long before this have carried it much farther.

The only inconvenience in thefe kinds of Microfcopes, is, that the object is neceffarily brought fo near the glafs, that none but fuch as are tranfparent, and to be viewed by a through light are capable of examination by them: fuch therefore are to be examined by the double Microfcope; which, as it is abundantly more tractable, fo doth it much lefs ftrain the eye; and from the eafinefs of its ufe, when well fitted, is much more pleafant : and if ordered as it ought, will magnifie as much more than the common ones hitherto made, as thofe did more than the naked eye.
Both thefe Microfcopes I have directed Mr.Chrifopher Cock, in Long-Acre, how to prepare, that fuch as will not trouble themfelves in the making of them, may know
where to be accommodated with fuch as are good,
And of the improvement of this kind of Microfcope, I fee no limits, efpecially as to the augmenting the vifible appearance of fuch objects as are capable of enduring the increafe of light; for fince 'tis demonftrable that light may be augmented upon any one object fufceptible to any given degree, and that by the double Microfope the image can be augmented to any affigned magnitude, what but the difficulty of making all things correfpondent flould limit the power of fuch an inftrument. Now the making of this double Microfcope, though it be fomewhat more difficult than of the lingle one, yet the tractablenefs thereof when well fitted, and its eafinefs to be cleanfed, and applied to ufe, makes amends for the extraordinary charge, efpecially the fituation of the object; which being capable of any reafonable diftance from the object glafs, fo as to be fit for examınation, makes it very defirable. Now as in all other mechanical contrivances, that is beft which is plaineft., and moft fimple : fo is it in this, wherein nothing more is required, but two plano Convex glafles, the one for the object-glafs, and the other for the eyc-glafs: the lefs the fpheres of the glaffes be, the more do they magnifie the object; and the thinner and clearer the fubftance of them be, and the more exactly fhaped, and the brighter they are polifht, the clearer do they reprefent it; and the longer the glaffes are diftantfrom each other, the more is the image magnified, ceteris paribus, though indeed the fame thing is performed by glaffes of very differing magnitudes, due proportions of allthings about it being kept and obferved. For if as the diftance of one object from the object-glars is to the diftance of another object from another object-glafs, fo the diftance of the firlt image be to the diftance of the fecond image, the image in both mult be equal : if therefore this image be viewed with equal glafles the image mult be equally magnified at the bottom of the eye; fo that in this way the object is capable
capable of a double way of augmenting, viz. firf, the augmenting the figure in the Tube, by the fmallnefs of the object-Glafs, and lengthof the Tube: and fecondly , by the augmenting that image in the bottom of the eye, and that is by the Eye-glals; give therefore light enough to the object, and you may increafe the image at the bottom of the eye to what proportion you fhall defire. And by a way I fhall fhortly fhew, the objects may be perceived diftinct, defined, and colourlefs, as if feen by the naked eye. In all thefe ways the manner of applying the light is very fignificant, and provided it be very ftrong, the fmaller the point be it proceedeth from, the more diftinctly doth it exhibit the difference of refraction in the tranfparent bodies viewed by it, and the plainer will their parts be difcovered: The light therefore of the Sun either reflected from a Spherical Convex body, or Spherical Concave body, the object being placed beyond the focus, or Refracted through a Concave or through a Convex, if the object be placed beyond the focus, do exceedingly well. But thefe with the help of a dark Room do yet better, the object being placed in a Table againft the Light, and all other Light fcreen'd from the Eye by the Dark Room. Much the fame thing is done by the Light of a Lamp or Candle in the Night, which is indeed the moftsconvenient Light, where Colour is net fo much looked after.

Whileft this Difcourfe was Printing I cafually met with a Treatife of P. Cherubine, Printed at Paris, 1677. Entituled, LAVISIONPERFAITE, ou les concours des deux axes de la Vifion en un fceul point de l' object; Wherein the Author pretends amongft other things to have promoted Microfcopes extreamly byfo joyning two together, as through them to fee the fame object diftinct with both the Eyes at once, and to fee a large object all at one view, by which he affirms to have difcovered fome miftakes and untruths in fome of thofe figures I have formerly publifhed in my Micrography. But if he had plealed to have read
the Defcription as well as looked on the Figure, he might have been better informed than by his Preface he would feem to be. I deny not but that there are many failures in fome of thofe draughts, fome of my own and fome of the gravers committing. Humanum eft. But thore which he charges for fuch are not, as hemight have feen if he had madeufe of better glaffes than thofe which he defcribes, for they are fo far fhort of equalling thofe I ufe, that I can demonftrate from his own Defcription of them, that thofe I made ufe of did magnifie 10000 times more than that with which he pretends to have made thefegreat Difcoveries. Nor is it any thing more than common to fee as large an Area as he mentions, with a glafs that magnifies no more than his doth. But I could have thewed him how he might fee the whole Creature at once, and yet much more magnifie than that which I have defcribed, nay though the Creature were twice as big, and that with one Eye only, which is much to be preferred before thar with two. However I fhould be very glad to hear what Difcoveries he doth make with his binocular Microfoopemore than was feen before. As alfo that he would pleafe to demonftrate the truth of Parallelogram prefrribed for certain ufes, pag. of Dioptrique Oculaire, and in the Fourth Chapter of the Fourth Part of this Book. But to digrefs no farther from what I was defcribing. I muft add that with both there kinds of Microfcopes have I examined feveral fubftances; as particularly the fteepings of feveral grains and feeds in rain-water. And though I have not yet found any one tincture more prolific than this of Pepper; yet 'tis not the only tincture in which they do both breed and increafe.I have feen feveral forts in the fteeping of Wheat, Barly, Oats, Coffee, Annifeeds, Peafe, Orc. fome not above a third part of a hair in thicknefs; others not above the twentieth part of the breadth of a hair, and fome not more than a thirtieth part of that breadth; fo that no lefs than 900 of thefe leaft muft go to make an
area as bigas that of an hair cut tranfverlly, and 27000 to make a Cylinder as big as the hair of oneshead, and of equal height with the Diameter of that hair, which one may juft call a vifible point, and no more; few eyes feeing things diftinctly much fmaller: Now the Diameter of a hair of my head being by examination found but the 640 part of an inch, it follows that no lefs than 19200 or to ufe a round fumm about 20000 of them may lie in the length of an inch, and confequently, that a circle an inch Diameter will be to the area of one of thefe cut tranfverlly as 400000000 to 1 . four hundred millions to 1 and a Cylinder one inch Diameter, and one inch high, will be to one of thefe mites, as 8000000000000 to one, eight millions of millions to one. If therefore we compare the magniturde of one of thefe animals to the magnitude of other creatures living in the water, we fhall find that thefe will be found much fmaller in comparifon to the body of an ordinary Whale, than the body of the fame Whale will be to the body of the whole Earth; which may prove an argument for an anima mundi perhaps to fome. But let every one make his own inferences, and believe his own eyes, for they will make the beft impreffion on his reafon and belief. Now if the Creature be fo exceeding fmall, what muft we think of the Mufcles, Joynts, Bones, Shells, ooc. certain it is, that the Mechanifm by which Nature performs the mulcular motion is exceedingly fmall and curious, and to the performance of every mufcular motion in greater Animals at leaft, there are not fewer diftinct parts concerned than many millions of millions, and thefe vifible, as I fhall hereafter fhew through a Microfcope; and thofe that conceive in the body of a mufcle, little more curiofity of mechanifm than in a rope of the fame bignefs, have a very rude and falfe notion of it; and no wonder if they have recourfe to Spirits to make out the Phænomena : but of this hersafter more.

Further, I have examined the conftitution of Blood, Milk,

Milk, Flegm, orco and found them much the fame with what Mr. Leenvenhoek has declared. A little fat laid upon the glafs plate whilft warm, melts, and becomes tranfparent, but obferved in a convenient polture againft the light of a candle, orc. till it congeals, and Thrinks, make a pleafant fluid, and thews how confiderably a fluid and folid body do vary, and may give us a good hint to conjecture at the reafon of the fwelling and greater lightnefs of Ice than of Water. The firft beginnings alfo of the Thooting or cryftallifing of Sugar into rectangular parallelipipeds, Alum, Salt, Vitriol, \&cc. are ftrangely furprizing and inftructive, I could enumerate multitudes of thefe.
But (that I may not detain the Reader toolong in the perufal of thefe anatomical defcriptions of the minute and invifible parts of animal fubftances) to eafe both his eyes and imagination I fhall proceed to acquaint him with fome Anatomical Obfervations more fenfible, and which do feem more nearly to concern us. And thofe are contained in the enfuing Difcourle, being

A Relation communicated to me in a Letter by that ingeni= ous and experienced Chirurgion Mr. James Young of Plimouth, in the beginning of January laft, of the fatal Symptoms caufed by a Bullet fwallowed into the Lungs.

SIR, In the beginning of April, 1674. one Mr. Anthony Williamjon of Lifcard in Cornvoal, aged about 65 years, of a brisk, firm habit, became (after a too liberal drinking of Cyder) afflicted with the Colick, of which in four days he cured himfelf, by fwallowing two Musket Bullets, and receiving fome Carminative Clyfters. On the 12 . of the fame month, his pain returning fomewhat fmarter than before, he attempted to fwallow three Piftol Shot, and fuppofing it the eafieft way, he lay on his back, and threw them all at once into his throat; where they choaking, had almoft ftrangled him; conftraining him to vomit, ofc. When they were paft down, he became feized immediately with a violent Cough, Wheafing, pain in the left fide of his Breaft, a great noife in relpiration, more efpecially after a fit of Coughing, for then his Brealt would hifs, like the fucking of a Pump, when the Air defcends through the boxes.

There accidents fo fuddenly occurring, without any manifeft caufe, did much furprize him, and the more, becaufe he was naturally of a found breaft; the Colick was cured by Clyfters,Potions of Manna, ol.amyg.d. erc. and two of the Shot were foon ejected, ex ano, and maugre the other accidents, he became indifferently well, and able to walk about houfe.

Five or fix weeks after this, thofe fymptom s became morefierce, depaupering his fipirits, proftrating his appetite, difquieting his fleep with dreams, a $D_{y / j}$ pncea, and rutling violent Cough; a ftraitnefs and load in his Breaft kept him inbed, extenuated his body (which without help of Milk Clyfters, was coftive) he frequently fainted with fweats and a tickling fleepinefs in both legs.

Under the tyranny of this legion of fymptoms, our Weftern Apollo, Dr. Bidgood of Exeter was confulted, who affirmed them all to be caufed by the remaining Bullet, which paffing through the Larynx, was fallen into one of the branches of the Trachea, where it would abide, in defpight of any endeavours to eject it : yet to alleviate the violence of the accidents, he directed to the ufe of emollient Eclegma's, temperate Cordials, orc. by help of which, and fome other propitious circumftances, he not only recovered his legs, becoming able to walk, and ride a fmall Journey, but alfo confummated Marriage with a young woman of $25--$ who afterward brought him two Children, whereof one isnow alive, and very lufty; and was feven months gone with a third, when hedied: the more wonderful if the woman were juft to him (of which there appeareth no reafon to doubt) becaufe a very little motion would foincreate his difficulty of breathing, as to make him faint.

After Matrimony he had divers lucid Intervals, at times would be very brisk, and at others very languid, and faint, like a dying man : he continually expectorated, fometimes grumous coagulated Blood, otherwhiles very recent; now purulent foetid matrer, then laudable pus. His natural averfion to Medicine caufed him to reject what wasadvifed by Dr. Bidgood, Dr. Lawer, Dr. Sprage, $\sigma^{c} c$. faving a few of the more flight mixtures: And although Sack had been formerly very familiar to him, he was now forced to fhunit,and all frong Drinks, becaufe they would infallibly produce a Cardialgia, a pulfant throbbing of the Heart, and labouring in his Breaft: the firft of thefe perhaps proceeded from his Conftitution, which inclined to Choler ; but the latter undoubtedly, from the effervefeency, and warm motion, to which it enforced the Blood, which the obftruction and preffure the Bullet occafioned in the Pneumatick organs, could not peaceably admit of: wherefore he refolutely fixed to fmall Drink, and fhunned, as much as poffible, all evitable Exercile, faving that of
his hands, which he frequently employed in making Net-work.

In the Year 1676. he applied himfelf to our ingenious and learned Country-man, Dr Mayono of Bath, who agreed with Dr. Bidgood, that the remaining Bullet lodging in the Lungs, was the occafion of all thofe ill fymptomes under which he laboured; but feemed to diffent from his prefage, by hoping he might expectorate it: to atchieve which, he directed to have the body fufpended head downwards, and fumes of Storax, Ben ${ }^{-}$ jamin, © c c. to induce expullive Coughing, together with concuffions of the body, and all preceded with an opening courre, to relax, and dilate the veffels of the Breaft; all which were ufed to no purpofe, lave to verifie Dr. Bidgoods Prognoftick, that no efflation, how violent foever, would be able to extrude it, and inhaunce the Patients defpair of being ever cured; from which time he never attempted it: fo that thofe fymptomes before mentioned, continuing until the Winter, and then gaining confiderably onhim, efpecially the Hrmopty $i s, \omega^{*} c$. he languifhed till the ninth of December lait, and then died.

The tenth Ditto (affifted by his Son-in-law) I opened the Thorax, in prefence of two other Chirurgions of the place, together with divers perfons of Quality, whote curiofity led them to fee the examination; becaufe the Bullets being there, was fo much doubted by many, and difputed as impoffible by others. In the diffection the following particulars wereobfervable,

The Body was extenuate and tabid,
The right lobes of the Lungs were replete, found and well coloured.
The Serum in the Pericardinm was almoft all abfumed,
The Hearr ftrangely fhrivelled and very fmall.
Under the Pericardıum (the Body being fipine) we found a lump of coagulated Blood, as big as a Pigeons Egg; near which lay alfo a fubftance, fraped like an

P 2 obtufe
obtufe headed mufcle, having a Tendon-like tail, which infinuated to the Pendant Lobe: Its body was above an half inch thick. Its other dimenfions and fhape exactly like that of the figure X , of which A fheweth the head or upper end, B the tail, which in drawing out of the rotten Lungs (being alfo corrupted) broke afunder. Its Texture feemed fibrous, like that of the Kidneys, being white one half way through, the reft of a dark red: it was very foft and plum, having a firm fmooth tegument, and felt very much like a Sheeps kidney.

The left Lobe of the Lungs was cadaverous, and hollow, by an abfcefs which had difcharged near a pint of very foetid and purulent matter, into that fide of the trunk where it lay immured up, by the adhefion of the Lungs on that fide, to the Pleura, which with the Diaphragma, as far as the matter extended, was livid, and eroded.

We examined this rotten part of the Lungs, with what exactnels and curiolity we were capable of, amidft fuch a crowd as were prefent; and the more troublefome ftench of the Cadaver; and found though the whole Parenchyma were rotten, and no firmer than coagulated Blood (with which it had very near refemblance) yet the branches of the Trachea continued into it were uncorrupt, and found; nor inany of them could we find what we very confidently prefumed to be there, viz. the Bullet.

Wherefore I refolved to feek it the way by which it mult have entred; and accordingly dividing the Trachea at its infertion to the Lungs, I thruft in a bended Probe to the left branch, and there felt him, lying loofe about two inches within it, which with my fingers I eafily expreffed at the divided end of the pipe: to do which, I laid it bare fo far as where the Bullet had lodged; and l proteft, to my wonder, I found it not any way injured, or altered, by hardnefs, erofion, drc. though the Bullet had divers impreflions from the later.

The

The fanguiferous veffels, though lacerated, and cut in the diffection, did yield little or no Blood, either fluid or coagulate.

Thus far is true Hiftory, and matter of fact; I muft now beg your pardon, if I prefume to give my fenfe, and apprehenfion of fome of thofe Phxnomena here related.

The extenuation of the body, the abfumption of the ferum in the Heart-bag, and the contraction of the Heart, were the effects of the Tabes; and that occafioned by the Bullets injuring the Lungs, and pectoral vefiels.

The lump of coagulateblood found under the Heartbag was extravafate from the rotted veins, and arteries of the I.ungs.

That ftrange fubftance lodged between the Pericardium, and the Bullet, waseither a Polypus, and the excrefcence of fome part, or it was generated by nature, and fubftituted for a cufhion to defend the Heart from injury, by fo uneafie a neighbour. That Polypufes have been found in the Heart, is affirmed by Nicolas Tulpius, Marcellus Malpighius, G. Garnarus, \&c. but their Thape and texture differing vaftly from that of ours, giveth reafon to believe this to be none; efpecially confidering that they all excrefcing from the Heart, or fome carneous part, are infeparably united and radicated to their original, and are fpungy; whereas this was nothing lefs, having no root, nor fo much as an adhefion any where, faving at the tail; the fmall end of which, being rotted by the Lungs, into which it continued, did eafily divide upon my endeavour to draw it out: the body of italfo lay loofe in the aforefaid interftice, and as eafily flipped out, as a Wen, or a Struma, when the containing parts are opened. Its fubftance was not fungous, but of a foft firmnefs, like a Kidney; and in what ever circumftances it may refemble a Polypus, as it doth the figure of that of the Nofe, vide N. Tulpii ob.med.lib.r.obf. 26.yet it allo differs from all other excref
crefcences, befides, in what hath been mentioned, in that it was not rooted in any flefly, bony, or mufculous part; and fuch the Lungs are well known not to be : it mult therefore be the ftupendious effect of Natures induftry, and laid as a cufhion to defend the Heart, orc. Its compofition being fo delicately foft, and yet firm enough for fuch a purpofe: Its magnitude, fituation, Orc. $^{\text {ch }}$ concurring alfo to confirm this opinion concerning it; befides which, I do almoft remember, and believe (though I cannot be pofitive) that the pulfant pain he had fo violently in his Breaft, toward the left fide, decreafed gradatim, from the time of the deglutition: if that be true, whatever the fubftance were, or its caufe, its effects were very propitious, manifefting nature to be, not only a diligent fupplier of her own defects, but as induftrious to produce ftrange and unaccountable relief, in fuch emergencies as this before us: A refembling ftory we have from A Pareus, lib. 8. cap. I 5.

The abfcefs was without doubt from a Phlegmon of the Lungs; and becaufe for the moft part it was below, or beyond the Bullet, it proceeded rather from its obftructing, and fo ftagnating the Blood, and recrements in that Lobe, than from extravafation. What occurred of the latter, was expectorated, or remained in fuch Coagulums as that found under the Heart.

The caufe of the Bullets falling, rather into the left than the right Ramus of the Trachea, is obvious from the more fupine and direct figure thereof, correfponding with the trunk, as the figure doth manifeft : which confideration, together with the Bullets being loofe in the pipe, renders the unfuccefffulnels of Dr. Mayow's attempt very wonderful: I am inclined to believe it was fo, either for want of a more early trial, or a more skilful tryer, than him who was employed about it. The way was ingenioully contrived, and (as the Doctor himfelf told me) had been fuccelsfully experienced in the like occafion. Certainly, had not the diftance of the Doctors abode, and very important avocations,
tions, denied his perfonal affiftance : or had any other perfon skilled in Anatomy, erc. been fubftituted, the Bullet from his own favourable fhape, and more propitious gravity, and particularly from the frong efflations they provoked, together with the affiftant pofture of the body, would have been extruded. Had they inftead of hanging him perpendicular, made him incline a little to the right fide, to have made the left Ramus more prone; and at the fame time made him diftend the pipes by fucking in as much breath as they could contain, their other means might have been effectual; which I am induced to prefume from the profperous effects of the like attempt, and yet wanting many of their advantages; I mean the reverfion of a Stone, when fticking, and not able,to pafs through the Urinary Channels. Let any Phyficiansferioully perpend the difficulty of this, with the advantages for the former, and they will juitifie my opinion.

The erofion of the Pleura, and Diaphragme, was from the acidity of the matter, gnawing and corrupting them; for though the Irachea wonderfully efcaped fuch impreffions, the Bullet difcovered on its fuperficies, divers marks of erofion, which all acids produce with much facility, upon the faccharous or faline parts of Lead; as is to be feen by immerfing it in vinegar.

And now Sir, to relieve your patience (no lefs than my own) perhaps already wearied with the prolixity of this Narrative, give me leave to conclude, with fuggefting, that I am of a belief (having perufed moft of the publick accounts of this kind) that fcarcely a rarer accident, and accompanied with fuch ftupendious circumftances, hath occurred to the prefent age than this; that an extraneous body, folarge, fo heavy, fo hard, fhould flip down that difficult, and unulual way of the Weafon, and abide fo long in the organs of refpiration, in fo aged a perfon, admitting after it fuch exercifes, as he performed, Riding, Marriage, erc. that nature fhould fo unaccountably provide fuch a pertinent
fence
fence againft injuries accidentally accruing, and that eventhe fmalleft Ramifications of the Trachea, though immerfed in fuch a Cadaver, fhould be preferved from injury thereby. I am fure in the voluminous Obfervations of Schenckius, Horftius, Riverius, Bartholine, Burnet, \&c. nor among all the ftories in Mr. Oldenburg's Tianfactions, or the Mifcellanea Curiofa of the Leipfoick Doctors, hath it a Parallel.

This, and whatever is elfe contained in this Hiftory, as my diok, I fubmit to the better fenfe, and reafon of the Learned, not prefuming to be politive in any thing, fave in affirming my felf, ooc.

fAMES YOUNG.

P. S.

For the plainer underftanding where the Bullet lodged in the Wind-pipe, I have drawn and fent you an exact figure of the Trachea, excarnified; as its to be be found in Gerrard BlajJius, Syntagma Anatomicume ff, Vefingi. See figure Y in the II I. Table.
C points to the Trachea divided under the Larynx.
D the right Ramus of the Trachea. E the left.
F the place where the Lungs adhered to the Pleura. $\mathrm{ggg}, \mathrm{E}_{6}$. the extremities of thofe branches of the Alpera arteria, divaricated into the rotten Lobe. H the Bullet in the pipe where it was found.

$E R R A T A$.

PAge i. line 17. foot. p. 2.l.6.joyned, p.8.1. 2 I. Cete, p.II.1.5.is diffufed, p.I r. l. 17 .Foftor, p. 12 al. 33 .within the Spbere of its aitivity, p.i 2.1.34.dele as, p. 14 . 1.3.ether, p. 1 9.1.7.common Jights, p.22.1.3 1. Auzout, P.23.1.I 9.been produced, P 24 . 1.27. and fee fig 4.p.27.1.5.of this orb, p.27.1.21.M1, p.28.1.27. Ixith figure, p. 29.
 fream of bu:bles, p.35.1.29.add fig.9. P.38.1.28.to get out of, 1.340 of finding the, p.46.1 3 1. Baldwoines p.49.1.17.downwards (hall touch, p. 54.1.26. Scolopendra, p. 69 l.ult. 5 uns phafe, p. 7 1.l.25. for 43 put 34, p.83.1.8.to my zoonder, p.9301.3.blot out
 1.17.magnified, 1.2 ž.tise paralellogram, 1.24, pag: 241 , P.IO4.l.6. for fluid pur frild.

LECTURES
 De Potentia Refitutiva, OR OF

 SPRING

 SPRING}

Explaining the Power of Springing Bodies. To which are added fome
COLLECTIONS
Viz.

A Defcription of Dr.Pappins Wind-Fountain and Force-Pump. Mr.Young's Obfervation concerning natural Fountains. Some other Confiderations concerning that Subject. Captain Sturmy's remarks of a Subterraneous Cave and Ciftern. Mr. G. T. Obfervations made on the Pike of Teneriff, 1674. Some Reflections and Conjectures occalioned thereupon. A Relation of a late Eruption in the Ifle of Palma.

By ROBERT HOOKE. S.R.S.

LONDON,

Printed for Jobn Martyn Printer to the Royal Society, at the Bell in St. Panls Church-Yard, 1678.

Potentia Refitutiva,
 OR

S P R I N G.

 publifhing thereof.

About three years fince His Majefty was pleafed to fee the Experiment that made out this Theory tried at White-Hall, as alfo my Spring Watch.

About two years fince I printed this Theory in an Anagram at the end of my Book of the Defcriptions of Heliofcopes, viz.c c iiinossstur,ideff, Ut tenfio fic wis; That is, The Power of any Spring is in the fame proportion with the Tenfion thereof: That is, if one power ftretch or bend it one fpace, two will bend it two, and three will bend it three, and fo forward. Now as the Theory is very fhort, fo the way of trying it is very eafie.

Take then a quantity of even-drawn Wire, either Steel, Iron, or Brafs, and coyl it on an even Cylinder into a Helix of what length or number of turns you pleafe, then turn the ends of the Wire into Loops, by one of which fufpend this coyl upon a nail, and by the other fuftain the weight that you would have to extend it, and hanging on feveral Weights obferve exactly to what length each of the weights do extend it beyond the length that its own weight doth ftretch it to, and you fhall find that if
one ounce, or one pound, or one certain weight doth lengthen it one line, or one inch, or one certain length, then two ounces, two pounds, or two weights will extend it two lines, two inches, or two lengths; and three ounces, pounds, or weights, three lines, inches, or lengths; and to forwards. And this is the Rule or Law of Nature, upon which all manner of Reftituent or Springing motion doth proceed, whether it be of Rarefaction, or Extenfion, or Condenfation and Compreflion.

Or take a Watch Spring, and coyl it into a Spiral, f_{O} as no part thereof may touch another, then provide a very light wheel of Brafs, or the like, and fix iton an arbor that hath two fmall Pivots of Steel, upon which Pivot turn the edge of the faid Wheel very even and fmooth, fo that a fmall filk may be coyled uponit; then put this Wheel into a Frame, fo that the Wheel may move very freely on its Pivots; faften the central end of the aforefaid Spring clofe to the Pivot hole or center of the frame in which the Arbor of the Whecl doth move, and the other end thereof to the Rim of the Wheel, then coyling a fine limber thread of filk upon the edge of the Wheel hang a fmall light fcaleat the end thereof fit to receive the weight that fhall be put thereinto; then fuffering the Wheel to ftand in its own pofition by a little index faftned to the frame, and pointing to the Rim of the Wheel, make a mark with Ink, or the like, on that part of the Rim that the Index pointeth at; then put in a drachm weight into the fcale, and fuffer the Wheel to fettle, and make another mark on the Rim where the Index doth point; thenadd a drachm more, and let the Wheel fettle again, and note with Ink, as before, the place of the Rim pointed at by the Index; then add a third drachm, and do as before, and fo a fourth, fifth, fixth, feventh, eighth, erc. fuffering the Wheel to fettle, and marking the feveral places pointed at by the Index, then examine the Diftances

Diftances of all thofe marks, and comparing them together you fhall find that they will all be equal the one to the other, fo that if a drachm doth move the Wheel ten degrees, two drachms will move it twenty, and three thirty, and four forty, and five fifty, and fo forwards.

Or take a Wire ftring of twenty, or thirty, or forty foot long, and faften the upper part thereof to a nail, and to the other end faften a Scale to receive the weights: Then with a pair of Compaffes take the diftance of the bottom of the fale from the ground or floor underneath, and fet down the faid diftance, then put in weights into the faid fcale in the fame manner as in the former trials, and meafure the feveral ftretchings of the faid ftring, and fet them down. Then compare the feveral ftretchings of the faid ftring, and you will find that they will always bear the fame proportions one to the other that the weights do that made them.

The fame will be found, if trial be made, with a piece of dry wood that will bend and return, if one end thereof be fi x_{1} in a horizontal pofture, and to the other end be hanged weights to make it bend downwards.

The manner of trying the fame thing upon a body of Air, whether it be for the rarefaction or for the compreffion thereof I did about fourteen years fince publifh in my Micrograpbia, and therefore I ihall not need to add any further defcription thereof.

Each of thefe ways will be more plainly underftood by the explanations of the annexed figures.

The firf whereof doth reprefent by A B the coyl or helix of Wire, C the end of it, by which it is fufpended, D the other end thereof, by which a fmall Scale E is hanged, into which putting Weights as F G H I K LM N, fingly and feparately they being in proportion to one another as 12345678 , the Spring will be thereby equally ftretcht to $0, p, q, r, r, s, t, u_{2}, 2 w$,
that is, if F fretch it fo as the bottom of the Scale defcend to θ, then G will make it defcend to p, H to q, I to $r, \mathrm{~K}$ to $s, \mathrm{~L}$ to t, M to u, and N to $w, \& \mathrm{c}$. So that $\times 0$ fhall be one fpace, $\times p, 2, \times q, 3, \times r, 4$, $\mathrm{x} s, 5, \mathrm{x} t, 6, \pm u, 7, \mathrm{x} m, 8$.

The fecond figure reprefents a Watch Spring coyled in a Spiral by CABBBD, whofe end C is fixed to a pin or Axis immovable, into the end of which the Axis of a fmall light Wheel is inferted, upon which it moves; the end D is fixed to a pin in the Rim of the Wheel y y y y, upon which is coyled a fmall filk, to the end of which is fixed a Scale to receive the weights. To the frame in which thefe are contained is fixed the hand or Index z; then trying with the former weights put into the Scale E, you will Gind that if F put into the Scale E finks the bottom of it x to ρ, then G will fink it to p, and H to q, I to $r, \mathrm{~K}$ to $s, \mathrm{~L}$ to t, and z will point at $\mathrm{i}, 2,3,4,5,6,7,8$ on the Wheel.

The trials with a fraight wire, or a ftraight piece of wood laid Horizontal arc fo plain they need not an explication by figure, and the way of trying upon Air I have long fince explained in my Micographia by figures.

From all which it is very evident that the Rule or Law of Nature in every fpringing body is, that the force or power thereof to reftore it felt to its natural pofition is always proportionate to the Diftance or fpace it is removed therefrom, whether it be by rarefaction, or feparation of its parts the one from the other, or by a Condenfation, or crowding of thofe parts nearer together. Nor is it obfervable in thefe bodys only, but in all other fpringy bodies whatfoever, whether Metal, Wood, Stones, baked Earths, Hair, Horns. Silk, Bones ${ }_{r}$ Sinews, Glafs, and the like. Refpect being had to the particular figures of the bodies bended, and the advantagious or difadvantagious ways of bending them.

From

From this Principle it will be eafie to calculate the feveral ftrength of Bows, as of Long Bows or Crofs-Bows, whether they be made of Wood, Steel, Horns, Sinews, or the like. As allo of the Balifte or Catapulte ufed by the Ancients, which being once found, and Tables thereof calculated, I fhall anon fhew a way how to calculate the power they have in fhooting or cafting of Arrows, Bullets, Stones, Granadoes, or the like.
From thefe Principles alfo it will be eafie to calculate the proportionate ftrength of the fpring of a Watch upon the Fufey thereof, and confequently of adjufting the Fufey to theSpring fo as to make it draw or move the Watch always with an equal force.

From the fa me alfo it will be eafie to give the reafon of the IJochrone motion of a Spring or extended ftring, and of the uniform found produced by thofe whofe Vibrations are quick enough to produce an audible found, as likewife the reafon of the founds, and their variations in all manner of fonorous or fpringing Bodies, of which more on another occafion.

From this appears the reafon, as I fhall fhew by and by, why a Spring applied to the balance of a Watch doth make the Vibrations thereof equal, whether they be greater or fmaller, one of which kind I fhewed to the right Honourable the Lord Vifcount Brounker, the Honourable Robert Boyle Efq; and Sir Robert Morey in the year 1660 . in order to have gotten Letters Patents for the ufe and benefit thereof.

From this it will be eafie to make a Philofophical Scale to examine the weight of any body without putting in weights, which was that which I mentioned at the end of my defeription of Heliofcopes, the ground of which was veiled under this Anagram, cediinnoopssttuu, namely, Ut pondus fictenfio. The fabrick of which fee in the three firft figures.

This Scale I contrived in order to examine the gravitation of bodies towards the Center of the Earth,
viz. to examine whether bodies at a further diftance trom the Center of the Earth did not lofe fomewhat of their power or tendency towards it. And propounded it as one of the Experiments to be tried at the top of the Pike of Teneriff, and attempted the fame at the top of the Tower of St. Pauls before the burning of it in the late great Fire; as alfo at the top and bottom of the Abby of St. Peters in Weftminfer though thefe being by but fmall diftances removed from the Surface, I was not able certainly to perceive any manifeft difference. I propounded the fame alfo to be tried at the bottom and feveral ftations of deep Mines; and D. Pomer did make fome trials to that end, but his Inftruments not being good, nothing could be certainly concluded from them.

Thefe are the Phenomena of Springs and fpringy bodies, which as they have not hitherto been by any that I know reduced to Rules, fo have all the attempts for the explications of the reafon of their power, and of fpringinefs in general, been very infufficient.

In the year 1660. I printed a little Tract, which I called, An Attempt for the explication of the Phenome$n a$, ojc. of the rifing of water in the pores of very fmall Pipes, Filtres, Orc. And being unwilling then to publifh this Theory, as fuppofing it might be prejudicial to my defign of Watches, which I was then procuring a Patent for, I only hinted the principle which I fuppofed to be the caufe of thefe Phænomena of frings in the 31 page thereof in the Englifh Edition, and in the 38 page of the Latine Edition, tranflated by M. Behem, and printed at Amfterdam, 1662. But referred the further explication thereof till fome other opportunity.

The Principles I then mentioned I called by the names of Congruity and Incongruity of bodies. And promifed a further explanation of what I thereby meant on fome other occafion. I fhall here only explainfo much of it as concerns the explication of this prefent Phænomenon.

By Congruity and Iscongruity then I underftand no. thing elfe but an agreement or difagreement of Bo. dys as to their Magnitudes and motions.

Thofe Bodies then I fuppofe congruous whofe particles have the fame Magnitude, and the fame degree of Velocity, or elfe an harmonical proportion of Magnitude, and harmonical degree of Velocity. And thofe I fuppofe incongruous which have neither the fame Magnitude, nor the fame degree of Velocity, nor an harmonical proportion of Magnitude nor of Velocity.

I fuppofe then the fenfible Univerfe to confift of body and motion.
By Body I mean fomewhat receptive and communicative of motion or progreffion. Nor canI have any other Idea thereof, for neither Extention nor Quantity, hardnefs nor foftnefs, fluidity nor fixednefs, Rarefaction nor Denfation are the proprieties of Body, but of Motion or fomewhat moved.

By Motion I underftand nothing but a power or tendency progreffive of Body according to feveral degrees of Velocity.

Thefe two do always counterballance each other in all the effects, appearances, and operations of $\mathrm{Na}-$ ture, and therefore it is not impoflible but that they may be one and the fame; for a little body with great motion is equivalent to a great body with little motion as to all its fenfible effects in Nature.

I do further fuppofe then that all things in the Univerfe that become the objects of our fenfes are compounded of thefe two (which we will for the prefent fuppofe diftinct effences, though poffibly they may be found hereafter to be only differing conceptions of one and the fame effence)namely, Body, and Motion. And that there is no one fenfible Particle of matter but owes the greateft part of its fenfible Extenfion to Motion whatever part thereof it ows to Body according to the common notion thereof: Which is, that

Body

Body is fomewhat that doth perfectly fill a determinate quantity of fpace or extenfion fo as neceffarily to exclude all other bodies from being comprehended within the fame Dimenfions.

I do therefore define a fenfible Body to be a determinate Space or Extenfion defended from being penetrated by another, by a power from within.

To make this the more intelligible, Imagine a very thin plate of Iron, or the like, a foot fquare, to be moved with a Vibrative motion forwards and backwards the flat ways the length of a foot with fo rwift a motion as not to permit any other body to enter into that face within which it Vibrates, this will compofe fuch an effence as I call in my fenfe a Cubick foot of fenfible Body, which'differs from the common notion of Body as this fpace of a Cubick foot thus defended by this Vibrating plate doth from a Cubick foot of Iron, or the like, throughout folid. The Particles therefore that compore all bodies I do fuppofe to owe the greaceft part of their fenfible or potential Extenfion to a Vibrative motion.

This Vibrative motion I do not fuppofe inherent or infeparable from the Particles of body, but communicated by Impulfes given from other bodies in the Univerfe. This only I fuppofe, that the Magnitude or bulk of the body doth make it receptive of this orthat peculiar motion that is communicated, and not of any other. That is, every Particle of matter according to its determinate or prefent Magnitude is receptive of this or that peculiar motion and no other, fo that Magnitude and receptivity of motion feems the fame thing: To explain this by a fimilitude or example. Suppofe a number of mufical frings,as A B C DE, $\& c$. tuned to certain tones, and a like number of other ftrings, as a, b, c, d, e, \&c. tuned to the fame founds refpectively, A fhall be receptive of the motion of a, but not of that of b, c, nor d; in like manner B fhall be receptive of the motion of b, but not of the motion
of a, c or d. And fo of the reft. This is that which I call Congruity and Incongruity.

Now as we find that mufical ftrings will be moved by Unifons and Eighths, and other harmonious chords, though not in the fame degree; fo do I fuppofe that the particles of matter will be moved principally by fuch motions as are Unifons, as I may call them, or of equal Velocity with their motions, and by other harmonious motions in a lefs degree.

I do further fuppofe, A fubtil matter that incompaffeth and pervades all other bodies, which is the Menftruum in which they fwim which maintains and continues all fuch bodies in their motion, and which is the medium that conveys all Homogenious or Harmonical motions from body to body.

Further I fuppofe, that all fuch particles of matter as are of a like nature, when not feparated by others of a differing nature will remain together, and ftrengthen the common Vibration of them all againft the differing Vibrations of the ambient bodies.

According to this Notion I fuppofe the whole Univerfe and all the particles thereof to be in a continued motion, and every one to take its thare of fpace or room in the fame, according to the bulk of its body, or according to the particular power it hath to receive, and continue this or that peculiar motion.

Two or more of thefe particles joyned immediately together, and coalefcing into one become of another nature, and receptive of another degree of motion and Vibration, and make a compounded particle differing in nature from each of the other particles.

All bulky and fenfible bodies whatfoever I fuppofe to be made up or compofed of fuch particles which have their peculiar and appropriate motions which are kept together by the differing or diffonant Vibrations of the ambient bodies or fluid.

According to the difference of thele Vibrative motions of the Incompaffing bulks. All bodies are more or lefs powerful in preferving their peculiar fhapes.

All bodies neer the Earth are incompaffed with a fluid fubtil matter by the differing Velocity of whofe parts all folid bodies are kept together in the peculiar fhapes, they were left in when they were laft fluid. And all "fluid bodies whatfoever are mixed with this fluid, and which is not extruded from them till they become folid.

Fluid bulks differ from folids only in this, that all fluids confift of two forts of particles, the one this common Menftruum near the Earth, which is interfperfed between the Vibrating particles appropriated to that bulk, and fo participating of the motions and Vibrations thereof: And the other, by excluding wholly, or not participating of that motion.

Though the particles of folid bodies do by their Vibrative motions exclude this fluid from coming between them where their motions do immediately touch, yet are there certain fpaces between them wich are not defended by the motion of the particles from being pervaded by the Heterogeneous fluid menftruum.

Thefe fpaces fo undefended by the bodies and Vibrative motion of the particles, and confequently pervaded by the fubtil incompaffing Heterogeneous fluid are thofe we call the infenfible pores of bodies.

According to the bignefs of the bodies the motions are, but in reciprocal proportion: That is, the bigger or more powerful the body is, the flower is its motion with which it compounds che particles; and the lefs the body is, the fwifter is its motion.

The fmaller the particles of bodies are, the nearer do they approach to the nature of the general fluid,
and the more eafily do they mix and participate of its motion.
The Particles of all folid bodies do immediately touch each other; that is, the Vibrative motions of the bodies do every one touch each other at every Vibration. For explication, Let ABC reprefent three bodies, each of thefe bodies I fuppofe to have a Vi brative motion on either fide of it, A be-
 tween D and E,B between E and F, and C between F and G. I fuppofe then that B in every one of its Vibrations doth meet A at E , and C at F , and fo the motionsare continually interchanged : That is, B communicatesits motion to A at E ,and A at the fime time and place communicates its motion to B , which returning to F meets there with C , and communicates its received motion to \mathbf{C}, which at the rame inftant and place communicates its own motion to B , which returns it back to E : So that the Velocity of thefe bodies is always the fame, and each body impreffeth on the contiguous bodies fuch a deterninate number of pulfes within a certain fpace of time. Suppofe for inftance, in every fecond of time B communicates to A and to C one million of pulfes, and hath received as many from each of them, by which means each of them doth preferve its own fpace of Vibration, according to the power of its Vibration, that neither of the contiguous bodies can enter into it. The extreme particles A and C are repercuffed by the motion of the ambient Heterogeneous fluid, whereof though the bodies are of differing magnitudes, yet the body and motion of the one are equivalent to the body and motion of the other, fo that whatever the body be lefs, the motion is quicker; and where the body is bigger, the motion is lefs. But the Particles of fluid C 2
bodies
bodies do not immediately touch each other, but permit the mixture of the other Heterogeneous fluid near the Earth, which ferves to communicate the motion from particle to particle without the immediate contact of the Vibrations of the Particles.

All folid Bodies retain their folidity till by other extraordinary motions their natural or proper motions become intermixed with other differing motions, and fo they become a bulk of compounded motions, which weaken each others Vibrative motions. Sa that though the fimilar parts do participate of each others motions, whereby they indeavour to joyn or keep together, yet do they allo participate of an Heterogeneous motion which endeavours to feparate or keep them afunder. And according to the prevalency of the one or the other is the body more or lefs fluid or folid.

All bodies whatfoever would be fluid were it not for the external Heterogeneous motion of the Ambient.

And all fluid bodies whatfoever would be unbounded, and have their parts fly from each other were it not for fome prevailing Heterogeneous motion from without them that drives them more powerfully together.

Heterogeneous motions from without are propagated within the folid in a direct line if they hit perpendicular to the fuperficies or bounds, but if obliquely in ways not direct, but different and deflected, according to the particular inclination of the body Atriking, and according to the proportion of the Particles ftriking and being ftruck.

All fpringy bodies whatfoever confift of parts thus qualified, that is, of fmall bodies indued with appropriate and peculiar motions, whence every one of thefe particles hath a particular Bulk, Extenfion, or Sphere of activity which it defends from the ingrefs of any other incompaffing Heterogeneous body whilf,
in its natural eftate and balance in theUniverfe. Which particles being all of the fame nature, that is, of equal bodies, and equal motions, they readily coalefce and joyn together, and make up one folid body, not perfectly every where contiguous, and wholly excluding the above mentioned ambient fluid, but permitting it in many places to pervade the fame in a regular order, yet not fo much but that they do wholly exclude the fame from paffing between all the fides of the compounding particles.

The parts of all fpringy bodies would recede and fly from each other were they not kept together by the Heterogeneous comprefling motions of the ambient whether fluid or folid.

Thefe principles thus hinted, I fhall in the next place come to the particular explication of the manner how they ferve to explain the Phænomena of fpringing bodies whether folid or fluid.

Firft for folid bodies, as Steel, Glafs, Wood, ©rc. which have a Spring both inwards and outwards, according as they are either compreffed or dilated beyond their natural ftate.

Let $A B$ reprefent a line of fuch a body compounded of eight Vibrating particles, as $\mathrm{I}, 2,3,4,5.6,7,8$, and fuppofe each of thofe Particles to perform a million of fingle Vibrations, and confequently of occurfions with each other in a fecond minute of time,
their motion being of fuch a Velociry impreffed from the Ambient on the two extreme Particles 1 and 8. Firft, if by any external power on the two extremes I and 8 , they be removed further afunder, as to $C D$, then fhall all the Vibrative Particles be proportionably extended, and the number of Vibrations, and conrequently of occurfion be reciprocally diminifhed, and confequently their endeavour of receding from each other be reciprocally diminithed alfo. For fuppofing this fecond Dimenfion of Length be to the firt as 3 to 2, the length of the Vibrations, and confequently of occurfions, be reciprocally diminifhed. For whereas I fuppoled 1000000 in a fecond of the former, here can be but 666666 in this, and confequently the Spring inward muft be in proportion to the Extenfion beyond its natural length.

Secondly, if by any external force the extreme particles be removed a chird part nearer together than (the external natural force being alway the fame both in this and the former inftance, which is the ballance to it in its natural ftate) the length of the Vibrations fhall be proportionably diminilhed, and the number of them, and confequently of the occurfions be reciprocally augmented, and inftead of 1000000 , there fhall be 1500000 .

Having

Having thus explained the molt fimple way of fringing in folidbodies, it will be very eafie to explain the compound way of fpringing, that is, by flexure, fuppofing only two of thefe lines joyned

together as at GHIK, which being by any external power bended into the form $\mathrm{LNNO}, \mathrm{LM}$ will be extended, and NO will be diminifhed in proportion to the flexure, and confequently the fame proportions and Rules for its endeavour of reftoring it felf will hold.

In the next place for fluid bodies, amongtt which the greateft inflance we have is air, though the fame be in fome proportion in all other fluid bodies.

The Air then is a body confifting of particles fo fmall as to be almoft equal to the particles of the Heterogeneous fluid medium incompaffing the earth. It is bounded but on one fide, namely, towards the earth, and is indefinitely extended upward being only hindred from flying away that way by its own gravity, (the caufe of which I hhall fome other time explain.) It confifts of the fame particles fingle and feparated, of which water and other fluids do, conjoyned and compounded, and being made of particles exceeding the reft of the earthy bodies) is exceeding fwift, and its VibrativeSpaces exceeding large, comparative to the Vibrative Spaces of other terreftrial bodies. I fuppofe that of the Air next the Earth in its natural flate may be 8000 times greater than that of Steel, and above a thoufand times greater than that of common water, and proportionably If uppofe that its motion muft be eight thoufand times fwifter than the former, and above a thoufand times fwifter than the later. If therefore a quantity of this body be inclofed by a folid body, and that be fo contrived as to comprefs it into lefs room, the motion thereof (fuppofing the heat the fame) will continue the fame, and confequently the Vibrations and Occurfions will be increafed in reciprocal proportion, that is, if it be Condenfed into half the fpace the Vibrations and Occurfions will be double in number : If into a quarter the Vibrations and Occurfions will be quadruple, ofr.

Again, If the conteining Veffel be fo contrived as to leave it more fpace, the length of the Vibrations will be proportionably inlarged, and the number of Vibrations and Occurfions will be reciprocally diminifhed, that is, if it be fuffered to extend to twice its former dimenfions, its Vibrations will be twice as long, and the number of its Vibrations and Occurfions will be fewer by half, and confequently its indeavours outward will be allo weaker by half.

Thefe Explanations will ferve mutatis mutandis for explaining the Spring of any other Body whatfoever.

It now remains, that I fhew how the conftitutions of fpringy bodies being fuch, the Vibrations of a Spring, or a Body moved by a Spring, equally and uniformly fhall be of equal duration whether they be greater or lefs.

I have

I have here already fhewed then that the power of all Springs is proportionate to the degree of flexure, viz. one degree of flexure, or one fpace bended hath one power, two hath two, and three hath three, and fo forward. And every point of the fpace of flexure hath a peculiar power, and confequently there being infinite points of the face, there mult be infinite degrees of power.

And confequently all thofe powers beginning from nought, and ending at the laft degree of tenfion or bending, added together into one fum, or aggregate, will be in duplicate proportion to the fpace bended or degree of flexure; that is, the aggregate of the powers of the Spring tended from its quiefcent pofture by all the intermediate points to one fpace (be it what length you pleafe) is equal, or in the fame proportion to the fquare of one (fuppofing the faid fpace infinitely divifible into the fractions of one;) to two, is equal, or in the fame proportion to the fquare of two, that is four; to three is equal or in the fame proportionto the fquare of three, that is nine, and fo forward; and confequently the aggregate of the firt fpace will be one, of the fecond fpace will be three, of the third fpace will be five, of the fourth will be feven, and fo onwards in an Arithmetical proportion, being the degrees or excefles by which thefe aggregates exceed one another.

The Spring therefore in returning from any degree of flexure, to which it hath been bent by any power receiveth at every point of the fpace returned an impulfe equal to the power of the Spring in that point of Tenfion, and in returning the whole it receiveth the whole aggregate of all the forces belonging to the greateft degree of that Tenfion from which it returned; fo a Spring bent two fpaces in its return receiveth four degrees of impulfe, that is, three in the firft fpace returning, and one in the fecond; fo bent three fpaces it receiveth in its whole return nine
degrees of impulfe, that is, five in the firf fpace returned, three in the fecond, and one in the third.

So bent ten faces it receives in iss whole return one hundred degrecs of impulfe, to wit, nineteen in the firft, feventeen in the fecond, fifteen in the third, thirteen in the fourth, eleven in the fifth, nine in the fixth, feven in the feventh, five in the eighth, three in the ninth, and one in the tenth.

Now the comparative Velocities of any bodymoved are infubduplicate proportion to the aggregates or fums of the powers by which it is moved, therefore the Velocities of the whole fpaces returned arealways in the fame proportions with thofe faces, they being both fubduplicate to the powers, and confequently all the times fhall be equal.

Next for the Velocities of the parts of the face returned they will be always proportionate to the roots of the aggregates of the powers impreffed in every of thefe fpaces; for in the laft inftance, where the Spring is fuppofed bent ten fpaces, the Velocity at the end of the firft face returned fhall be as the root of 19 . at the end of the fecond as the Root of 36. that is, of $19+17$. at the end of the third as the Root of 51 . that is of $19+17$ +15 . At the end of the fourth as the Root of 64. that is of $19+17+15+13$. at the end of the tenth, or whole as the Root of 100 . that is as $\sqrt{19}+17+15+13+11+9+7+5+3$ +1 , equal to 100 .

Now fince the Velocity is in the fame proportion to the root of the ipace, as the root of the face is to the time, it is eafie to determine the particular time in which every one of thefe fpaces are paffed for dividing the fpaces by the Velocities correfponding the quotients give the particular times.

To explain this more intelligibly, let A in the fourth figure reprefent the end of a Spring not bent, or at leaft
counterpoifed in that pofture by a power fixt to it, and movable with it,draw the line A B C, and let it reprefent the way in which the end of the Spring by additional powers is to be moved, draw to the end of it Cat right Angles the Line $C \delta D d$, and let $C D$ reprefent the power that is fufficient to bend or move the end of the Spring A to C,then draw the Line D A, and from any point of the Line A C as BB . Draw Lines parallel to $C D$, cutting the Line $D A$ in E, E, the Lines BE, B E, will reprefent the refpective powers requifite to bend the end of the Spring A to B, which Lines $\mathrm{B} E, \mathrm{BE}, \mathrm{C} D$ will be in the fame proportion with the length of the bent of the Spring A B, A B, A C.

And becaufe the Spring hath in every point of the Line of bending A C, a particular power, therefore imagining infinite Lines drawn from every point of AC parallel to C D till they touch the Line AD, they will all of them fill and compofe the Triangle A C D. The Triangle therefore A C D will reprefent the aggregate of the powers of the Spring bent from A to C, and the leffer Triangles A B E, A BE will reprefent the aggregate of all the powers of the Spring bent from A to B, B, and the Spring bent to any point of the Line A C, and let go from thence will exert in its return to A all thofe powers which are equal to the refpective ordinates B E, B E, in the Triangles, the fum of all which make up the Triangles ABE, A BE. And the aggregate of the powers with which it returns from any point, as from C to any point of the fpace CA as to BB, is equal to the Trapezium $\mathrm{CDEB}, \mathrm{CDEB}$, or the exceffes of the greater Triangles above the lefs.

Having therefore fhewn an Image to reprefent the flexure and the powers, fo as plainly to folve and anfwer all Queftions and Problems concerning them, in the next place I come to reprefent the Velocities appropriated to the feveral powers. The Velocities then being always in a fubduplicate proportion of

$$
\text { D } 2
$$

the
the powers, that is, as the Root of the powers imprefled, and the powers impreft being as the Trapezium or the excefs of the Triangle or fquare of the whole fpace to be paft above the fquare of the fpace yet unpaffed; if upon the Center A, and face AC, (C being the point from which the Spring is fuppofed let go) a Circle be defcribed as C G G F, and ordinates drawn from any point of $C A$ the fpace to be paft, as from B, B, to the faid Circle, as B G, B G, thefe Lines B G,B G,will reprefent the Velocity of the Spring returning from C to B, B, orc. the faid ordinates being always in the fame proportion with the Roots of the Trapeziums CDEB, CDEB for putting AC= to a, and $A B=b, B G$ will always be equal to $\sqrt{a} a-b b$, the quare of the ordinate being always equal to the Rectangle of the intercepted parts of the Diameter.

Having thus found the Velocities, to wit, B G, B G, A F, to find the times correfponding, on the Diameter A Cdraw a Parabola C HF whofe Vertex is C,and which paffeth through the point F. The Ordinates of this Parabola $\mathrm{BH}, \mathrm{B} \mathrm{H}, \mathrm{AF}$, are in the fame proportion with the Roots of the fpaces C B, C B, C A, then making $G B$ to $H B$ as $H B$ to $I B$, and through the points CIIF drawing the curve CIIIF, the refpective ordinates of this curve fhall reprefent the proportionate time that the Spring fpends in returning the faces C B, C B, C A.

If the powers or friffnefs of the Spring be greater than what I before fuppofed, and therefore muft be expreffed by the Triangle C de A. then the Velocities will be the Ordinates in an Ellipfe as $\mathrm{C}_{2} 2 \mathrm{~N}$, greater than the Circle, as it will alfo if the power be the fame, and the bulk moved by the Spring be lefs. Then will the S-like Line of times meet with the Line AF at a point as X within the point F .But if the powers of the Spring be weaker than I fuppofed, then will C fee A reprefent the powers, and $\mathrm{C}_{\gamma 2} \mathrm{O}$ the Ellipfis of Velocity,

Velocity, whofe Ordinates $\mathrm{B}_{\gamma}, \mathrm{B}_{\gamma}, \mathrm{A} O$ will give the particular Velocities, and the S-like Line of time will extend beyond N . The fame will happen fuppofing the body (moved by the Spring) to be proportionately heavy, and the powers of the Spring the fame with the firf.

And fuppofing the power of the Spring the fame as at firft, bended only to $B 2$, and from thence let go $\mathrm{B}_{2} \mathrm{EA}$ is the Triangle of its powers, the Ordinates of the Circle Bg L are the Lines of its Velocity, and the Ordinates of the S-like Line BiF are the Lines of time.

Having thus fhewed you how the Velocity of a Spring may be computed, it will be eafie to calculate to what diftanceit will be able to fhoot or throw any body that is moved by it. And this mult be done by comparing the Vclocity of the afcent of a body thrown with the Velocity of the defcent of Gravity, allowance being alfo made for the Refiftance and impediment of the medium through which it paffes. For inftance, fuppofe a Bow or Spring fixed at 16 foot above a Horizontal floor, which is near the face that a heavy body from reft will defcend perpendicularly in a fecond of time. If a Spring deliver the body in the Horizontal line with a Velocity that moves it 16 foot in a fecond of time, then thall it fall at 16 foot from the perpendicular point on the floor over which it was delivered with fuch Velocity, and by its motion thall defcribe in the Air or fpace through which it paffes, a Parabola. If the Spring be bent to twice the former Tenfion, fo as to deliver the body with double the Velocity in a Horizontal Line, that is, -with a Velocity that moves 32 foot in a fecond, then fhall the body touch the floor in a point very near at 32 foot from the aforefaid perpendicular point, and the Line of the motion of the body, fo fhot thall be moved in a Parabola, or a Line vely near it, I fay very near it, by reaton that tile

D 3 Impediment

Impediment of the medium doth hinder the exactnefs of it. If it be delivered with treble, quadruple, quintuple, lextuple, $\dot{\sigma} c$. the firft Velocity it fhall touch the floor at almoft treble, quadruple, quintuple, fextuple, ovc. the firft diftance. Ithall not need to thew the reafon why it is moved in a Parabola, it having been fufficiently demonftrated long fince by many others.

If the body be delivered by the Spring at the floor, but fhot by fome Angle upwards, knowing withwhat Velocity the fame is moved when delivered, and with what Inclination to the Perpendicular the fame is directed, and the true Velocity of a falling body, you may eafily know the length of the factus or fhot, and the time it will Spend in paffing that length.

This is found by comparing the time of its afcent with the time of the defcent of heavy bodies. The afcent of any body is eafily known by comparing its Velocity with the Angle of Inclination.

Let $a b$ then in the fifth Figure reprefent 16 foot, or the face defcended by a heavy body in a fecond minute of time. If a body be fhot from b, in the Line $b f$ with a Velocity as much fwifter than that equal motion of 16 foot in a fecond, as this Line $b f$ is longer than $a b$ the body fhall fall at e; for in the fame face of time that the oblique equal motion would make it afcend from $b d$ to $a c$, will the accelerated direct motion downward move it from $a c$ to $b d$, and therefore at the end of the fpace of one fecond, when the motions do equal and balance each other, the body muft be in the fame Horizontal Line in which it was at firft, but removed afunder by the face $b e$, and for the points it paffeth through in all the intermediate fpaces this method will determine it.

Let the Parallelogram $a b p q$ then reprefent the whole Velocity of the afcent of a body by an equal motion of 16 foot in a fecond, and the Triangle pqr reprefent the whole Velocity
of the accelerated defcending motion, $p b$ is then the Velocity with which the body is fhot, and p is the point of reft where the power of Gravity begins to work on the body and make it defcend. Now drawing Lines parallel to $a q r$, as $s t u$, $s t$ gives the Velocity of the point t aicending, and $t u$ the Velocity of the fame point t defcending.

Again, $p b s t$ fignifies the fpace afcended, and $p t u$ the fpace defcended, fo that fubtracting the defcent from the afcent you have the height above the Line $b d$, the confideration of this, and the equal progrefs forwards will give the intermediate Velocities, and determine the points of the Parabola.

Now having the faitus given by this Scheme or Scale, appropriated to the particular Velocity, wherewith any body is moved in this or that line of Inclination, it will be eafie to find what Velocity in any Inclination will throw it to any length; for in any Inclination as the fquare of the Velocity thus found in this Scale for any inclination is to the fquare of any other Velocity, fo is the diftance found by this Scale to the diftance anfwering to the fecond Velocity.

I have not now time to inlarge upon this fpeculation, which would afford matter enough to fill a Volume, by which all the difficulties about impreffed andreceived motions, and the Velocities and effects refulting would be eafily refolved.

Nor have I now time to mention the great number of ufes that are and may be made of Springs in Mechanick contrivances, but fhall only add, that of all fpringy bodies there is none comparable to the Air for the vaftnefs of its power of extention and contraction. Upon this Principle I remember to have feen long fince in Wadham Colledge, in the Garden of the learned Dr.Wilkins, late Bifhop of Chefer, a Fountain fo contrived as by the Spring of the included Air to throw up to a great height a large and lafting
fream
fream of water: Which water was firt forced into the Leaden Ciftern thereot by two force Pumps which did alternately work, and fo condenfe the Air included into a fmall Room. The contrivance of which Engine was not unknown to the Ancients, as Hero in his Spiritalia does fufficiently manifett, nor were they wanting in applying it to very good ufes, namely, for Engines for quenching fire: As Vitruvius (by the help of the Ingenious Monfieur Claude Perraults interpretation) hath acquainted us in the Twelfth Chapter of his Tenth Book, where he endeavours to defcribe Ctefibius his Engine for quenching fire. Not long fince a German here in England hath added a further improvement thereof by conveying the conftant ftream of water through Pipes made of well tanned and liquored Leather, joyned together to any convenient length by the help of brazen Screws. By which the ftream of water may be conveyed to any convenient place through narrow and otherwife inacceffible paffages.

The ingenious Dr. Denys Pappin hath added a further improvement that may be made to this Ctefibian Engine by a new and excellent contrivance of his own for making of the forcing Syringe or Pump, which at my defire he is pleafed to communicate to the Publiqueby this following Defcription, which he fent me fome time fince.
$-\quad$

Dr. Pappins Letter containing a Defcription of a Wind-Fountain, and bis own particular contrivance about the forcer of its Syringe.

SInce the Artificial Fountain you have feen at Mr. Boyles (which was of my making upon his defire) hath been fo pleafing to you as to make you defire to fee my defcription thereof, I cannot doubt but the fame will be as grateful alfo, and well received by the Publick, efpecially when they thall therein find a remedy for one of the greateft inconveniences of forcing Pumps, which are of fo great ufe for raifing of water, and quenching of fires. This was the occafion of my fending you this prefent defcription, which would not have been thus prolix had it been only for your felf.

In the Figure then A A is the Receptacle or body of the Fountain careful fodered in all places, B B is the Pump, C C the Plug or forcer, D a Pipe in the middle of the Plug, which is perfectly fhut and ftopped when the Plate E E is forced down upon it, E E is the Plate with a hole in the middle, upon which is fodered a Pipe F, which ferves for a handle to move the Plug up and down.

G is a Cock at the top of the Pipe, which ferves to moderate the Jetto or ftream.

H H is a Valve at the bottom of the Pump, which openeth outward for the paffage of the water out of the Pump into the Fountain or Receptacle.

II is a Crofs at the top of the Plug to hinder the Plate E E from being drawn or Feparated too far E from
from the hole D in working it to and fro.
K K are two Pins ferving both to force down and keep open the Valve H H.

LL are two Appendices fodered unto the top of the Pipe F F, ferving both for a handle to the Rod of the forcer, and alfo to keep down the forcer.

M M are two other appendices or buttons fafted at the top of the two fmall pillars NN , fo as to turn upon the fame, and ferve to hafp or button down the ends LL of the handle of the forcer that it be not drivenup again.

OO is the Bafin for receiving the water that falls from the Jet or ftream from which it may beforced againinto the Fountain or Receptacle.

For charging this Machine the Bafin O O muft firft be filled with water, and then the Pump mult be worked to and fro. In doing of which, when the Plug is drawn upwards the water in the Bafin runs in through the crofs (through which the Rod F F paf(es,) where finding the hole Dopen it fills the fpaces of the bottom of the Pump; then the Pump being thus filled, the Plug is to be forced downwards, whereby the Plate E E being clofely applied to the brims of the hole D hinders the water from returning back again through the fame, but is forced through the valve $\mathrm{H} H$ into the Fountain A A. And by repeating this operation all the water of the Bafin $O O$ is eafily forced into the aforefaid Fountain, whereby all the Air that was therein contained iscompreffed more or lefs according as more or lefs water is forced in, and kept in that compreffion by the valve $\mathrm{H} H$, which hinders the water that it cannot return through the fame.

But when you defire to have it return, you force down the Plug hard againft the bottom or plate, which by the help of the aforefaid Pins or Appendices K K force, and keep open the valve HH , and the Rod F being kept faft down in this pofture by the aforefaid
aforefaid Buttons or Halps M M, upon opening the Cock G the water returneth through the valve HH , fokept open, through the hole D, and through the whole length of the Pipe F.

This way of putting a valve into the Plug of forcing Pumps will be of great ufe for all fuch as ferve for fupplying Towns with water, and for quenching of fire, as preventing a great inconvenience to which the common Pumps are ufually fubject from the Air which is apt to be generated within them, which Air upon working the faid Pump remaining below the forcer, and by its Expanfion when the Plug is drawn upwards, hindring the water from filling the whole Cavity beneath it, and by its Condenfation when the Plug is forced downwards, lofing a great part of the ftrength of the force, much of the effect of the faid Machine is fruftrated.

For preventing of which Inconvenience care is to be taken that the water in all thefe forcing Pumps be admitted by the top thereof as in the prefent Machine, whereby whatever Air fhall be generated below the Plug, will readily rife into the hole D as being the higheft place next the Plate EE, from whence when by the drawing up of the Plug the Plate is lifted from the brims of the hole D the Air will readily flip up, and the water as readily defcend and fill all the parts of the Pump below the Plug. As I have often experimented in this prefent Machine.

Some Perfons may object againft there kind of valves, asfuppofing the preffure of the water to be on the wrong fide thereof. But it is eafie to be noted that this objection is groundlefs, fince it is the fame thing whether the Plate be preffed againft the Rim of the valve, or the Rim of the valve againft the plate. In common valves the Preffure of the water forceth the Plate againft the Rim: But in this the Rim againft the Plate; for the remaining folid Rim of the valve, being made thrice as big as the hole or Cavity thereof, E 2 the
the preffure of the water againft that Rim forceth the faid Rim againft the Plate in the middle three times harder than if the preffure of the water lay only on the plate of the value, the fame would be preffed againft the Rim.

To this Difcourfe of an Artificial Fountain I thought it not improper to add an ingenious Difcourfe of M. Fames Young of Plimouth conteining his own Obfervations and Opinion concerning natural Fountains and Springs.

SIR

HAving now gained time, from my other avocations, I have drawn up thofe obfervations, I told you I had made in my travels, which had confirmed in me the opinion of my Lord Bacon, that Fountains and Springs were the Percolation of the Sea; not (as your felf, Mr. Ray, Orc. do affert) from the rains defcent into the Earth, I now reprefent them to your confideration, rather as an Apology (becaufe they feem rational) to excufe, than Arguments to juftifie and avow the prefumption of my diffent.

The firt fhall be the Phænomena, I obferved at Ille de Mayo, which lieth in the Torrid Zone, about thirteen degrees and 30 minutes, North from the Equator. It's about fix Leagues long, and four broad, the wind bloweth conftantly North Eaft, or thereabout, and without rain, except three weeks in July, when it hath many fhowers; I here fend you a Map of the Illand, as exactly as I could draw it. I was there two Voyages, and each remained a full month, the beft part of which I fent in hunting, and ranging the Illand; there runneth through the middle of it a Rivulet, of very pure water; It takes its rife from
from the bottom of two Hills, which lie on the North Eaft end; The ftream at the place marked D, is about fourteen foot wide and two deep; other than which there is no frefh water on the whole Ifland, except what our people dig out of the fand between the Ocean and the falt Pond.

The faid Pond is in a large Bay, at the Weft fide of the Illand, which hath from one point to another a bank of Sand, about two or three foot above water, covering the Bay like a ftring to a Bow, the faid bank in the Flemifh Road is about 1 go foot wide, at the Englifh Road it is as broad again; there is never any fenfible ebbing or flowing of the Sea, only at full Moons, or a day before. It rifeth in high Billows, which break over the Bank, at the North end of the Pond, where it is loweft : By which means the Pond is replenifhed with water, which condenfeth into Salt in two days.

The Sand dividing the faid Pond and the Sea is very fine and loofe. Now becaufe the before-mentioned Rivulet difembogues far from the Roads at an inconvenient place for Boats, they are conftrained to dig Wells, in the midft of the bank of Sand, between the Pickle of the falt Pond and the Sea, the manner thus: They firlt dig a pit about eight foot deep, and therein lay two Hogheads, the one on the top of the other, the head out of both fave the lowermoft of the deepeft; the fides of both are alfo full of Gimlet holes, and the fand laid clore to them: After twenty four hours they have three or four foot of very clean water in them, which being dipped out, you plainly fee the new water ftraingently through thofe holes in the fides of the Cask: After which, in a days time, ore man attending it, may draw about ten Hogheads or more of water, a little tafting of Salt, not fo much but that it is drinkable, and very fit to boyl meat in, and is ufed by thofe that come there to load Cattle, for their
common drink. I have in the Map placed the Sign O where our Well was made.

The next obfervations, pertinent to this fubject I made at the IIland Lipari, near Sicily, about fixteen Leagues from Melfina; it is famous for the beft Raifins in the Mediterranean; there is on it a large Ca ftle, a fmall Town, many Vineyards, and about one hundred Families, befides fome Religiofe I judge it wants a fifth part of the bignefs of the Ille de Mayo, it is moftly very high Land, efpecially one Mountain, on which ftands a Watch Tower, whence a man may fee a monftrous diftanceatSea, as is confirmed by de Ruyter. In the relation he gives the States of Holland, wherein he tells them, that from that place they difcerned the French Fleet's approach long before they could from any other part, either of their own or the other Illand. I am fure it is much higher than either that at the Ifle de Mayo, or any I have feen in England, and yet on this fair fruitful Ifland fprings not one drop of water, the Inhabitants floring themfelves with rain, which falling very frequently, they are careful to preferve in Cifterns, divers effays have been made in the moft promifing part of it to find Springs by digging Wells, one of thofe which I faw was without doubt the deepeft in Europe, I remember not the exact profundity as they related it, but I have not forgot, that throwing in a flone it was long ere it got to the bottom, and then returned fuch a noife as it had been the difcharge of a Mufquet.

The caufe of this drinefs was by the people thought to be fubterranean heats, abfuming the water, but no fuch thing appearing, to the fenfe of thofe that digged the Wells, I gave no faith to that perfuafion; they fancy fuch heats partly from the want of water, but moftly becaufe the four adjaceṇt Illands, Stromboli, Vulcano, Vulcanella, and M. Ætna, are conftantly burning, and very near them.

The

The obvious earth of this place is loore, and in all apparent qualities very good, but by the heaps that had been thrown up, in digging the Wells, I faw the inferiour earth was clammy, or like clay, that had fome greafie gummous matter commixed, This the Religious told me was the very kind of Sulphur which conftantly boyled out of the burning Cranny on Vulcanella; and wherewith all thofe Inlands abounded, not excepting their own, though it were notyet kindled.

For my third obfervation, I will go no farther than the place of my prefent abode, Plimmouth, in which on a kind of Piazza, commonly called the Newo-key, (a plat of ground got in from the Sea) is a Well, which (before the ever famous Sir Francis Drake by cutting a Rivulet of thirty miles procured us water in great plenty) was of common ufe, having (as at this day) a Pump in it; about feven years fince (being before the Key was inlarged) the Well was not above eight foot from the edge thereof, over which the Sea would frequently flow, when a high outwind and a Spring Tide concurred, I fay this Well. though fo near the Sea, yieldeth clean water, and as fweet as a mixture of three parts frefh and one of falt water would be. About an hundred yards from that, onground a little rifing, is a very large Well, which fupplieth three or four Brew-houfes, by whofe drink it is evident that the water hath not wholly quitted its falt. It is to be noted, that Plimmonth lieth on a Peninfula three miles long, and two broad, the IIthmus about two thirds of a mile wide, and not very high from the furface of a full Sea. There are many Wells in it, thofe near the Sea are faltifh, thofe farther from it the lefs fo.

My fourth obfervation I take from the late famous French Traveller Monfieur Taverner, who in his firt Volume, difcourfing of the Coaft of Coromandel, \&c. he faith they there. want frefh water, and are con-
ftrained
ftrained to make pits of two foot deep in the fand by the Sea to find it.

The fifth obfervation, and which I would call the moft fignificant, were I affured of its truth, I had from a very ingenious Chirurgeon, who had ufed the Weft Indias, that there is in that Sea an Illand called Rotunda, of a figure agreeable to its name, which, though very fmall, hath on it, arifing in the middle, a Spring of a very large ftream of water, at which our Ships frequently furnifh themfelves in their Navigation, he affirmed that it raineth there but once a year, as at the Ille de Mayo; faying withal, that the Illand is fo fhort of a proportion big enough for the ftream, that if it conflantly rained, it could not be fupply enough to maintain folarge an Efflux.

My fixth and laft, is the relation of Dr. Downes concerning Barbadoes, viz. thatall their Springs were formerly very near the Sea; that up in the Country they fupplied themfelves from the rains by digging pits in the earth, able to contain great quantities, and there preferving it; which they did a very long time (the rains being there as unfrequent as at the life de Mayo) and that without any fenfible diminution by penetrating and defcending into the earth; and to prevent the lofs thereof by the exhalations of the Sun they covered it with leaves, © σ c. but that now by digging deeper they find Springs fo plenty that no Plantation is without one.

From all thefe obfervations the following confectaries do mechanically refalt.

From the firt it appeareth that fome Springs have manifefly their fource from the Sea; that fand fweetens tranfolated Sea-water, and that even pickle ftrained through it lofeth much of its faltnels thereby, all which is evident from the Well therein mentioned, whofe water could not poffibly be other than what foaked in from the Pond and the Ocean.

Hence

Hence alfo is manifeft, that conftant and large Fluxes of water may be made for eleventh months without rain to refill the fubterranean Cifterns, fuppofed by you to fupply them; this appears from the River running through the Ifland, by whofe banks I found (it being April when I was there, at which time they had been ten months without rain) thth after their thowers it could run but little larger that it did after fotedious a want of them. I had forgot to intimate in the relation, that thofe two Hommets, A. are craggy Rocks, whereon live a great number of Goats, and are confequently very unfit, if not incapable, either to receive, or contain the Magazine for the fupply of the Rivulet.

From the fecond it is manifeft, that higher Mountains of earth, and confequently more likely to receive and contain fufficient quantity of rain-water to beget and fupply Springs and Rivers have not always that effect, although there was one great advantage more added here, viz. a clammy tyte earth in the bottom to make the fuppofed Ciftern the better able to contain the ftore. I fay, that frequent rain to fill, high Mountains to contain, loofe pervious earth to receive, and a well luted bottom to fupport and retain (being all the qualifications and circumftances fuppofed neceffary to make and continue Springs according to the-modern Hypothefis) though all here concurred, did notwithftanding fail of producing that effect.

From the fame it is alfo manifeft, that where Springs fail, without want of the caufes that Hypothefis fuppafeth neceffary to produce them, the occafion hath been from an apparent defect in theother (that is the impervioufnefs of the earth through which the water muftpafs before a Spring can be produced) both thefe appeared at Lipary, where the general effect a Spring or fountain was wanting, together with the caufes of our Hypothefis, though thofe of the other were
manifeftly exiftent, and with all the advantages neceffary: It feeming to me a very rational conjecture, that the greafie clammy Sulphur, wherewith that earth was impregnated, did by oppilating it hinder the infinuation of the Sea into it.

From the third obfervation you have the firf deduction confirmed, viz. That Springs are fometimes manifeftly from the Sea; That earth fweetens Sea-water by Percolation; And that the nearer Springs are to the Sea, the more they retain of their priftine faltnefs, and lofe it by fenfible degrees, as they infinuate farther through it.

By the fourth the fame is confirmed.
The fifth proveth, that large ftreams flow without any poffibility of being fupplied by rain, both for want of fuch rain, and of dimenfions to receive and contain it.

The fixth doth evidence, that rain doth not penetrate the Surface of the earth, even in a very dry parched Country, and in the Torrid Zone, and yet that Springs are under it, which at once proves ours, and refutes the other opinion; the former appears by the water in thofe made Ponds, lying there for a long time without any fenfible lofs thereof by its leaking into the earth: The later by the Wells near the Sea, and thofe found fince under that impervious Land.

He that is not altogether a ftranger to the weight, preffure, and Elafticity of the air, the afcenfion of liquors through Filters, and fome other refembling Phænomena, would not account the like motion of the tranfcolated water to high hills, to be an objection of any force againft this Hypothefis, but fure fuch folutions are no lefs beyond my ability than defign.

Finding I have Paper enough left, I will prefume to trouble you with one rare appearance more, that occurred to one Mr. Brafey of this Town, an aged
and very fat man, who by taking Spirit of Vitriol in his mornings draughts (to which he was advifed as a remedy to allwage the exuberance of his belly) found that it had no effect on his body; but that a bundle of Keys, which he ufed to carry always about him, and that wonted to be very fmooth and bright, of a fudden became black and rufty, though he never handled the Spirit, nor carried it in his pocket, fo that we concurred in opinion that the fudorous Effluvia of his body, impregnated with the Acid Spirit, had occafioned it.

If fo, It's very wonderful, that fo fmall a quantity thereof, when diluted with fo much juice as is contained in fuch a corpulent man, fhould even infteam and the infenfible Emanations make impreffions on fmooth Iron, mauger the perpetual attrition, by carrying them in his Pocker, whereby fuch an effect (one would think) fhould be prevented, or foon rubbed of. - I was going to make fome reflections on this notable accident, but I confider, $\epsilon^{\circ} c$.

Plimmourh
May 5.1678.

Fiames Young.

TH E Original of Springs is that which hath exercifed the Pens of many learned Writers, and very various have been the conjectures concernning it. But amongft all I have met with I conceive none more probable than that which feems to fetch its original from the Hiftory of the Creation mentioned in Holy Writ ; that is, that there is a Magazine of waters above as well as a Receptacle of waters upon or beneath the Surface of the Earth: And that the Air is that Firmament which feparates between the upper and lower waters, and between thefe two is the circulation of waters (or bloud of the Micro$c^{c o f}{ }_{2}$ if Imay focall it) performed. The water being fometimes by a particular conftitution of the Air affifted by heat, rarified and feparated into minuter parts, and fo reduced into the form of Air, and thereby being divided into Particles really fmaller than thofe of the air in compaffing, and agitated with a greater degree of motion, they take up more fpace, and fo become lighter than the Ambient, and are thereby elevated and protruded upwards till they come to their place of poife or Equilibrium in the Air: At other times by a differing conftitution of the Air and deficiency of heat they lofe their agitation, and many of them again coalefce, and fo having lefs motion they condenfe and revert into water, and fo, being heavier than the incompaffing Air, defcend down again to the Earth in Mifts, Rain, Snow, Hail, or the like.

That there is fuch a Circulation I think there is none doubts; but ftill it remains a difficulty (with thofe perfons that grant this) that all Rivers and Springs fhould have their original from the water that falls or condences out of the Air.

To perfuadefuch perfonsit may not poffibly be unfuccesfful to mention;

Firf

Firf, That the great inundations or overflowing of Rivers manifertly proceed either from the Rain that immediately falls, or from the melting of Snow or Ice that hath formerly fallen on the more eminent parts of Mountains; to confirm which. Hiftories enough might be brought were it neceffary of Nilus, Niger, \&c.

Secondly, That it hath been obferved and computed that communibus annis ers locis; there falls water enough from the Sky in actual Rain,Snow, or Hail upon the Surface of England to fupply all the water that runs back into the Seaby the Rivers, and alfo all that may befuppofed to evaporate; nay, though the quantity of the firft be fuppofed twice as much as really it is. This I have been allured by thofe that have both experimented and calculated it.

Thirdly, That there is not yet certainly (that I know or have heard of) any other way of making falt water frefh, but by Diftillation; which, had there been fuch an Art, it would in all probability have been made ufe of, and fo there is little probability that the Springs at the top of a high Hill hould proceed from the Sea-water ftrained through the earth. But were therefuch a filtration known I hinted in my Attempt, publifhed anne 1660 about Filtration, how fomewhat of that kind might be explained.

Fourthly, That this Operation is conftantly and moft certainly performed by Nature both in exhaling and drawing up frefh freams and vapours from the Sea, and all moylt bodies, and in precipitating them down again in Rain, Snow, Hail, but of the other we have no certainty.

Fifthly, I have obferved in feveral places where a Tree hath ftood upon an high Hill, fingly and particularly at the brow of Box Hill near Darking in Sur$r y$, that the body of the Tree is continually wet, and at the root fome quantity of water, which is always roaking and gliding down from the Branches and body of the Tree, the leaves, fprigs, and branches of
the faid trees collecting and condenfing continually the moylt part of the Air, the fame being indeed a true and lively reprefentation of a River. Nor has it been my obfervation alone, but the fame is mentioned by divers Authors: And it is affirmed by fome Authors, that there are fome Inands in the Torrid Zone which have no other water in them than what is condenfed out of the Air by the Trees at the tops of the Hills, and converted into drops of Rain.

Sixthly, That it is generally obferved, whereever there are high Hills there are generally many Springs round about the bottoms of them of very frelh and clear water, and often times fome which rife very near the tops of them, which feems to proceed from their great elevation above the other plain fuperficial parts of the earth, whereby the Air being dafhed and broken againft them, they help to condenfe the vapours that are elevated into the higher and cooler Regions of the Air, and fo ferve like Filtres to draw down thofe vapours fo condenfed, and convey them into the Valleys beneath, And hence it is very ufual in Countries where there are high Hills to fee the tops of them often covered with clouds and milts, when it is clear and dry weather beneath in the Valleys. And in the paffing through thofe clouds on the top I have very often found in them very thick mifts and frall rain, whereas as foon as I have defcended from the higher into the lower parts of the Hills, none of that mift or rain hath fallen there, though I could ftill perceive the fame mifts to remain about the top. Confonant to this Obfervation was one related to me by an ingenious Gentleman Mr. G.T. who out of curiofity with other Gentlemen whilft he lived in the Inland of Teneriff, one of the Canaries made a journey to the top of that prodigious high Mountain, called the Pikc. The fubftance of which (to this purpofe) was, that the Caldera or hollow Cavity, at the very
top thereof he obferved to be very flabby and moyfto and the earth to flip underneath his feer, being a very moyft foft Clay or Lome like mortar. And farther, that at a Cave, not far from the top, there was a great quantity of very frefh water, which was continually fupplied, though great quantities of Ice were continually fetch'd from thence, and carried down into the Ifland for cooling their Wines. Confonant to which Obfervation was that which was related to me by the Inquifitive Mr. Edmund Hally made in St. Helena whillt he ftayed there to obferve the places of the Stars of the Southern Hemifphere, in order to perfect the Coleftial Globe. Having then placed himielf upon one of the higheft Prominences of that fmall Ifland, which he found to be no lefs than 3000 foot Perpendicularly above the Surface of the Sea next adjoyning, fuppofing that might be the moft convenient place for his defigned obfervation; He quickly found his expectation much deceived as to that purpofe for which he chofe it; for being gotten fo high into the Air the motion of it was fo violent as much to difturb his Inftruments; but which was more, he found fuch abundance of mifts and moyfture that it unglued the Tubes, and covered his Glaffes prefently with a Dew; and which was yet more, the foggs and mifts almolt continually hindred the fight of the Stars. But upon removing to a lower ftation in the Illand he was freed from the former Inconveniences.

I could relate many Hiltories of this nature, whereby it feems very probable, that not only Hills, but Woods allo, do very much contribute to the condenfing of the moyfture of the Air, and converting it into water, and thereby to fupply the Springs and Rivulets with frefh water: And Iam confident, whofoever fhall confider his own obfervation of this nature, and compare them with this Theory, will find many arguments to confirm it. However, Nullius in verba,
verba, Let Truth only prevail, and Theories fignifie no further than right reafoning from accurate Obfervations and Experiments doth confirm and agree with them.

Having thus delivered here fomewhat of my own thoughts concerning Springs and Rivers, finding among fome of my Papers a Relation, whereina very ftrange fubterraneous Ciftern is mentioned, I have here fubjoyned it as I received it from Mr.Thomas Alcock from Briftol who together with Sir Humphry Hooke was by whilt Captain Samuel Sturmy made this inquiry, and who by interrogatories made to him, penn'd this Relation for him as it follows verbatim.

IN purfuance of His Majefties Commands to me at the prefenting of my Mariners Magazine, I have with much diligence, fome charge and peril endeavoured to difcover that great Concavity in the earth inGlocefterfire, four miles from Kingrade, where His Majefties great Ships ride in the Severn. And I find by experience that what has been reported of that place is fabulous, whilf I thus defcribe it.

Upon the fecond of Guly 1669. I defcended by Ropes affixt at the top of an old Lead Oare Pit, four Fathoms almoft perpendicular, and from thence three Fathoms more obliquely, between two great Rocks, where I found the mouth of chis Spacious place, from which a Mine-man and my felf lowerd our felves by Ropes twenty five Fathoms perpendicular, into a very large place indeed, relembling to us the form of a Horfe-fhoo; for we ftuck lighted Candles all the way we went, to difcover what we could find remarkable; at length we came to a River or great Water, which I found to be twenty fathoms broad, and eight fathoms deep. The Mineman would have perfwaded me, that this River Ebbed and Flowed, for that fome ten fathoms above
the place we now were in we found the water had (fometime) been, but I proved the contrary by flaying there from three hours Floud to two hours Ebb, in which time we found no alteration of this River; befides, it's waters were frefn, fweet, and cool, and the Surface of this water as it is now at eight fathom deep, lies lower than the bottom of any part of the Severn Sea near us, fo that it can have no community with it, and confequently neither flux nor reflux, but in Winter and Summer, as all Stagna's, Lakes, and Loughs (which I take this to be) has. As we were walking by this River thirty two fathoms under ground, we difcovered a great hollownefs in a Rock fome thirty foot above us, fo that I got a Ladder down to us, and the Mine-man went up the Ladder to that place, and walk'd into it about threefcore and ten paces, till he juft loft fight of me, and from thence chearfully call'd to me, and told me, he had found what he look'd for (a rich Mine;) but his joy was prefently changed into amazement, and he returned affrighted by the fight of an evil Spirit, which we cannot perfwade him but he faw, and for that reafon will gothither no more.

Here are abundance of ftrange places, the flooring being a kind of a white ftone, Enameled with Lead Oare, and the Pendent Rocks were glazed with Salt-Peter which diftilled upon them from above, and time had petrified.

After fome hours ftay there, we afcended without much hurt, other than fratching our felves in divers places by climing the fhare Rocks, but four days together after my return from thence 1 was troubled with an unufual and violent Headach, which I impute to my being in that Vault. This is a true account of that place fo much talk't of, defcribed by me

Samuel Sturmy.

Having

Having given you a Relation of fomething very low within the bowels of the Earth, I now Thall add,

An account of a fourney made to the bigheft part of the earthby my Ingenious Friend Mr.G. T. as I collected it out of the Memorials wobich be worit at the time of making it; The particulars whereof were,

THat Auguft the twentieth, 1674,about Nine in the morning, in company with Dr. Sebaftian de Franques, Mr. Chriftopher Prancis, Mr. Thomas Proudfoot, together with a Guide, and two other men with horles to carry themfelves and neceffary provifion for the Journey, he fet out from

They paffed up a Hill, which was very fteep, till they came to the Pinal or Wood of Pines. This Wood lieth very high in the Illand, and extendeth it felf from one end of the Illand to the other, and is in many places of a great Breadth, and is very frequently covered with a Bruma, fog, or mift, which is fo thick as to darken and hinder the appearance of the Sun through it, and fo moylt as to make one wet in paffing through it.

Through this Wood they rode by a pretty fteep afcent near two Leagues, crofling it till they came to the further or fide, where alighting they refted themfelves under a Pine, and Dined. And the fog, which had accompanied them through the whole Wood, here left them, and the Sun appeared.

From hence they parted about one in the Afternoon, and after an afcent of about half a mile of very bad ftony way they came to a fandy way, which for about the length of a League was pretty plain; but then they began to afcend a fandy hill, which for half a League farther was pretty fteep, which having paffed they arrived at the foot of the Pike.

Here they alighted, and then refted themfelves forfome time, then taking horfe again, they began
to afcend the Pike it felf. This part of it was fo fteep that the way up it is made by feveral turnings and windings to and tro to eafe and alleviate the fteepnefs of the afcent, which were otherwife unpaffable for horfes. All this part feems to be nothing elfe but burnt ftones and athes, which may have formerly tumbled down from the higher parts of the $P_{i k e}$.

At this place they alighted, and unloaded their horfes of the Provifion of Victual and water which they were forced to carry with them for their own accommodation, as alfo of the Provender for their horfes. And prefently fet themfelves to provide againft the inconveniences of the enfuing night by getting together in the firft place a good quantity of the wood of a fmall frubub, called Retamen, not much unlike our Englifh Broom, which grows there pretty plentifully, and when dry burns very well; then, having gotten wood enough, they endeavoured to fhelter themfelvesagainft the piercing cold wind by heaping up a wall of ftones on the windward fide, and making a good fire of the dry fhrubs they had collected to warm themfelves.

But fo furious was the wind which came pouring down from each fide of the Mountain that it blew the froak and afhes into their eyes, and forced them (though much to their Regret by reafon of the extreme piercing coldnefs of the Air) to remove their fire farther off. And to keep themfelves as warm as they could by lying down upon the ground very clofe together. Thus they paffed the night together as well as they could, but with very little fleep, partly by reafon of the cold, and partly for the continual expectation they had of the moment when their Guide would call them to be mounting up the Pike, which is ufually about two or three hours before day, to the end that they may get up to the top before the rifing of the Sun. For at the rifing of the Sun the Air is the moft clear, and all the Iflands of
the Canaries round about may be then plainly difcovered.

But at two a clock, when they fhould have been on their Journey, the wind continued to blow with fuch violence, that their Guide would by no means venter to go up for fear leaft in the climbing up fome fteep places the wind fhould encounter any of them, and hurl them headlong down, fo that they were forced to continue and fhelter themfelves in their bad Lodgings till the Sun arofe, and had got fome maftery of the wind.

About fix a clock therefore they fet forwards on their enterprife, having firlt taken each of them his difh of Chocolatte to fortifie their ftomachs the better againft the cold, fo with their Bottle of Strongwater in their Pockets, and Staves in their hands, they began to mount the Pike, the way being juft fuch as they had paffed the night before, but much more fteep, and continued on till they came to the Mal pays, or ftony way, which may be about half a mile from the place where they lay; This ftony way lieth upon a very fteep afcent, and is compounded of abundance of ftones which lie hollow and loofe, fome of them of a valt prodigious bignefs, and others of them fmaller, in fuch manner as if they had been thrown up there by fome Earthquake, as the Author conjectures with very great probability. In the clambring up thefe ftones they took great care in placing their fteps on fuch of themas were more firm for fear of flipping or tumbling fo as to break their Legs or Arms.

With this difficulty they afcended till they came to the Cave which he conjectures to be about three quarters of a mile diftant from the beginning of the ftony way.

At this Cave they found feveral perfons who were come thither to get out Ice to carry down into the Illand, fome of which were below in the Cave, digging
digging Ice which was very thick, others remained above. They found the mouth of the Cave about three yards high, and two yards broad; and being all of them defirous to defcend intoít, by a Rope faftned about their bodies under their armpits they were all one after another let down into it till they came to fet their feet upon the Ice, which is about fixteen or eighteen foot from the mouth.

The Cave is not very large, but full of water and Ice, which at the time when they were there lay about a foot under the Surface of the water; though the men that ufually go thither faid that at other times they found the Ice above the water, which makes many to fuppofe that it ebbs and flows by means of fome fecret entercourfe that it may have with the Sea, they averring that they have feen it emptying of it felf.

But this Centleman fo foon as ever he came down fixt his eye upon a ftone that lay juft above the Superficies of the water, and obferved very diligently but could not in all the fpace that he ftaid there, which was half an hour, find it either increafe or diminifh, which makes him believe that the fulnefs or emptinefs of the water may rather proceed from thole thick fogs and mitts which are generally on the top, and which hinder the Pike from being feen fometimes for twenty, thirty, nay, forty days together, except only juft at the rifing or fetting of the Sun, though at fome other times it happens alfo that the Air is clearer, and the Pike may be feen perhaps for a month together. From thefe mifts he conceives at fome times much water may be collected at the upper parts of the Pike, and foaking down may not only fupply, but increare the water in the Cave; and confonant to this Hypothefis he obferved whilft he was there, that there was a continual gleeting and dropping of water mfix or feven places from the fides of the Cave, which droppings he fuppoles may be greater or lefs according as G 3 thofe
thofe fogs do more or lefs encompafs it, or flay about it a longer or fhorter time; He judges allo that there may be fome other more fecret ways both for the conveying water into and out of the faid Cave than thofe droppings, but fuppofes them to proceed from the aforefaid fogs. Hence he concludes when the Air is clear, and none of thofe fogs condenfed about the Hill, the water in the Cave muft neceffarily decreafe. And that wich confirmed him the more in this opinion was that when he came to the very top of the Pike, he found the earth under him fo very moyft, that it was like mud or morter, and might be made into Pafte as by experiment he found which he conjectures could no ways be caufed by the wind or clear Air, which is rather drying and confuming of moilture, but muft proceed from the fogs or milts which are above the very top of the Pike.

He further took notice in the Cave that upon the fides and top thereof there grew a fnow-white furring like Saltpeter, which had a kind of faltiff tafte, fome of which he gathered and brought back with him to England to have it examined.

After about half an hours ftay in the Cave, which they found warmer than without in the open Air, they were all pulled up again, and proceeded forward in their Journey by continuing to clamber up the ftony way, which lafted till they came to the foot of that part of the Mountain which is called the Sugar-loaf, by reafon that at a diftance from the Ifland it appears of that fhape, as it doth alfo even when you are at it. The diftance of this place from the Cave they judged to be about half a mile, but the way much more fteep and afcending than the former part of the ftony way, and extreme troublefom to pafs, their feet finking and flipping down again almoft as much as they could ftride upwards, io that they concluded it the moft painful of all; however, perfifting in their endeavours, after many times refting themfelves, they
gained the top, which they conceive might be about halfa mile higher.

The very top they found not plain, but very Rocky and uneven, and in the middle thereof a deep hole; the outfide of this top this Gentleman conceived might be about a quarter of a mile round about on the outfide.

This hole he conceived to be the mouth of a Vulcano which hath formetly been in that place, for even at that time whillt they were there much fmoak afcended out of feveral holes and chinks of theRocks, and the earth in divers parts was ftill fo very hot as to be very offenfive to their feet through their Chooes, and he obferved Brimftone thrown up in Ceveral places, of which he collected fome, and brought back with him to England.

From this place may be feen in a clear day all the fix adjacent Iflands, but the weather being then fomewhat thick and hazy, they could difcover none but the grand Canaries, Palm, and the Gomera, which laft, though diftant near eight Leagues from the bottom of the Pike feemed yet fo near unto them as if it had been almoft under them. The reft of the Illands they could difcover whereabout they lay by means of a kind of white cloud hanging on them, but they could not difcern the fllands through thofeclouds.

Here they tried their Cordial Waters which they carried in their Pockets, but found them not to abate of their ufual ftrength, and become cold and infipid as fair water, as feveral had pofitively averred to him that they had found it, but he conceived them to be very much of the fame nature and ftrength that they were of before they were carried up, which he fuppofes to beby reafon of their arriving at the top fo late.

After they had ftayed on the top about an hour, and fatisfied themfelves in obferving fuch things as they were able, they defcended again with very much facility,
facility, and came to the Stancia about eleven of the clock, where they dined, and thence about one in the Afternoon fet forwards for the Villa, where they arnved that afternoon about five that Evening.

After their return they found their faces (by reafon of the heat of the Sun, and the parching fubtil wind) to caft their skins.

He did not meafure the Perpendicular height of the Hill himfelf, but fays that he hath been informed by divers skilful Seamen, (who by their beft obfervation have taken the height of it) that it is between three and four miles perpendicularly above the Sea.

IN this Relation it is very remurkable : Firt, that this prodigious high Hill is the Product of an Earthquake, and feems heretofore to have been a Vulcano, or burning Mountain, like thofe of Ætna, Vefuvius, Hecla, \&c. though at prefent it hath only fire enough left to fend forth fome few fulphureous fumes, and to make the earth of the Caldera or hollow pitat the very top thereof in fome places almoft hot enough to burn their fhooes that pafs over it. And poffibly in fucceeding Ages even this little fire may be quite extinct, and then no other fign thereof may be left but a prodigioufly high Rock or firing Mountain, which in tract of time may by degrees wafte and bediminifhed into a Hill of a more moderate height.

Now as this Hill feems very evidently to be the effect of an Earthquake, fo I am apt to believe that molt, if not all, other Hills of the world whatever may have been the fame way generated. Nay, not only all the Hills, but alfo the Land which appears above the face of the waters. And for this I could produce very many Hiftories and Arguments that would make it feem very probable, but that I referve them in the Lectures which I read of this fubject in Grefham Colledge in the years 1664, and 1665 , which when I can have time to perufe I may publifh. Therein

Therein I made it probable that mof Inlands have been thrown up by fome fubterraneous Eruptions. Such is the Illand of Afcenfion, the Moluccoss, \&c.

Secondly, that moft part of the Surface of the Earth hath been fince the Creation changed in its pofition and height in refpect of the Sea, to wit, many parts which are now dry Land, and lie above the Sea, have been in former Ages covered with it; and that many parts, which are now covered with the Sea, were in former times dry Land. Mountains have been funk into Plains, and Plains have been raifed into Mountains.

Of thefe by obfervations I have given inftances, and fhewed that divers parts of England have in former times been covered with the Sea, there being found at this day in the moft Inland parts thereof futficient evidences to prove it, to wit, Shells of divers forts of Fifhes, many of which yet remain of the animal fubftance, though others be found petrified and converted intoftone. Some of thefe are found raifed to the tops of the higheft Mountains, others funk intothe bottoms of the deepeft Mines and Wells, nay, in the very bowels of the Mountains and Quarries of Stone. I have added alfo divers other inftances to prove the fame thing of other parts of Europe, and have manifefted, not only that the lower and plainer parts thereof have been under the Sea, but that even the higheft Alpine and Pyrenean Mountains have run the fame fate. Many Inftances of the like nature I have alfo met with in Relations and obfervations made in the Eaft as well as in the Weft Indies,

Of all which ftrange occurrences I can conceive no caufe more probable than Earthquakes and fubterraneous Eruptions which Hiftories do fufficiently affure us have changed Sea into Land, and Land into Sea, Vales into Mountains fometimes, into Lakes and Abyffes at other times; and the contrary - unlefs we may be allowed to fuppofe that the water or fluid H part
part of the earth which covered the whole at firt, and afterward the greateft part thereof, might in many Ages and long procefs of time be wafted, by being firft raifed into the Atmolphere in vapours, and thence by the diurnal, but principally by the annual motion thereof be loft into the ather, or medium through which it pafles, fomewhat like that wafting which I have obferved to be in Comets, and have noted it in my Cometa: Or unlefs we may be allowed to fuppofe that this fluid part is wafted by the petrifaction and fixation of fuch parts of it as have fallen on the Land and Hills, and never returned to fill up the meafure of the Sea, out of which it was exhaled, for which very much may be faid to make it probable that the water of the earth is this way daily diminifhed.

Or unlefs (fince we areafcertained by obfervations that the direction of. the Axis of the earth is changed, and grown nearer the Polar Star than formerly; that the Magnetilm or Magnetical Poles are varied, and do daily move from the places where they lately were, and that there are other great and noted changes effected in the earth) we may be allowed to conceive that the Central point of the attractive or gravitating power of the earth hath in long procefs of time been changed and removed alfo farther from us towards our Antipodes, whence would follow a recefs of the waters from thefe parts of the world to thofe, and an appearance of many parts above the furface of the water in the form of Illands, and of other places formerly above the Sea now in the form of Mountains, fo to continue till by the libration or otherways returning motion thereof it repoffefs its former feat and place, and overwhelms again all thofe places which in the interim had been dry and uncovered with the return of the fame water, fince nothing in nature is found exempt from the flate of change and corruption.

Further,

Further, it is probable that Earthquakes may have been much more frequent in former Ages than they have beenin thefe latter, the confideration of which will poffibly make this Affertion not fo Paradoxical as at firft hearing it may feem to be; though even thefe latter Ages have not been wholly barren of Inftances of the being and effects of them, to convince you of which I have hereunto fubjoyned a Relation and account of one very newly which hapned in the Inle of Palma among the Canaries.

Next, the clearnefs of the Air is very remarkable, which made an Illand which lay eight Leagues off to look as if it were clofe by. To this purpofe I have often taken notice of the great difference there is between the Air very near the lower Surface of the Earth, and that which is at a good diftance from it; That which is very near the earth being generally fo thick and opacous that bodies cannot at any confiderable diffance be feen diftinctly through it: But the farther the eye and object are elevated above this thick Air, the more clear do the objects appear. And i have divers times taken notice that the fame object feen from the top and bottom of a high Tower hath appeared twice as far off when feen at the bottom as when feen at the top: For the Eyedoth very much judge of the diftance of Objects according as the Denfity of the Air betweenthe Eye and Object doth reprefent them. Hence I have feen men look of Gigantick bignefs in a fog, caufed by reafon that the Fog made the Eye judge the Objeck much farther off than really it was, when at the fame time the vifible Angle altered not. This great thicknefs of the lower Air is fufficiently manifeft in the Coeleftial bodies, few of the fixt Stars or fmaller Planets being vifible till they are a confiderable way raifed above the H_{o-} rizon.

The third remark about the moitnefs of the fogs, and the production of water at that height I have beH_{2} fore
fore infifed on. Only the almoft continual fogs that this Gentleman obferved in the Wood they paffed is very remarkable for the origine of Springs.

Nor fhall I fay any thing concerning the vaft perpendicular height of the fame, but for a clofe of this prefent collection I fhall add the fhort account of the Eruption which lately hapned in the Palma.

A true Relation of the Vulcanos which broke out in the Ifland of the Palma Novemb.13.1677.

SAturday the thirteenth of November 1677. aquarter of an hour after Sun fet hapned a fhaking or Earthquake in the Ifland of St. Michael de la Paima; one of the Canary Illands, from the lower Pyrenna, and within a League of the City unto the Port of Taffacorte, which is accounted thirteen Leagues diftant along the Coaft, but more efpecially at or about a place called Fuencaliente, being feven Leagues from the Town to the Southwards. The trembling of the earth was obferved to be more frequent and violent than elfewhere, and fo it continued till Wedncfday the 17. ditto. The People thereabouts were much affrigheed, for befides the Earthquake there was often heard a thundring noife as in the bowels of the earth on a Plain called the Canios, which isbefore you come to the great defcent towards the Sea, where the hot Baths ftand, or the holy Fountain; likewife at the afcent from the aforefaid Plain upwards at the great and wearifom Hill, called Cuefta Canfada, and until the Mountain of Goatyards, and the fame day in and about the faid places mentioned, the Earth began to open feveral mouths, the greateft of them upon the faid Goat Mountain, being diftant from the Sea a mile and an half, and from the faid opening came forth a very
great heat and fmell of Brimftone; and the fame day, an hour before Sun-fet at one of the mouths of the wearifom Hill was a trembling thereabout with more violence than any of the four days before; and a great and black fmoak came forth with a terrible thundring noife, opening a very wide mouth, and throwing out much fire, with melted Rocks and ftones; and immediately after at another place eighty paces below hapned the like terrible noife and fight, and in Yefs than a quarter of an hour after there opened to the quantity of eighteen mouths towards the foot of the faid Mountains, and there iffued out fire, melted Rocks, and other bituminous matter from all the faid mouths, and was prefently formed into a great River of fire, which took its courfe over the firft mentioned Plain, llowly going down towards the taid holy Fountain; but it pleafed God, being come within eight fpaces of the Brink of the faid great defcent, it turned a little on the right fide, and took its courfe with a very great fall towards the old Port, which is that which was firft entred by the Spaniards when they took the Iflands.

Friday the nineteenth at two a clock in the afrernoon in the aforefaid Mountain of Goats, on the other fide of Taffacorte, there opened another mouth with much fmoak and frones of fire, and fo clofed again. But the next day (the twentieth) it began again to fmoak, and continued with great trembling and noife in the bowels of the Earth until Sunday the twenty firlt at noon, when with many flafhings of fire, and a greater thundring noife it finifhed that opening of that monftrous birth, cafting up into the Air both fire and ftones, and at night the froak ceafing, the thundring noife, fre and fones increafed, forcing great fiery ftones fo high into the Air as we loft fight of them, and with fuch violence fent them upwards that according to the beft judgmant they were five times longer in falling down, H 3 which
which ftones or Rocks were obferved to be bigger than a Hoghead, ; and what was moft to be admired was, that thefe breaking in the Air, and changing into many feveral fhapes, diftinctly appearing, yet notwithftanding did reunite again in falling down.

Munday the twenty fecond it began again to calt forth black froak for two hours time, and after to thunder, and throw up fire and ftones with great violence. Tuefday the twenty third at noon it fmoaked again, and from thence until night there was terrible thundring noife, and cafting up of fire and fones more fierce than before; and about nine of the clock at night a very great trembling of the earth was felt, and prefently after followed three great ftones of fire in the form of Globes which were forced about half a League in height, and then like Granadoes broke in the Air with very great noife. Wednefday the twenty fourth it was for an hours time very quiet, and after it began with greater force than ever before, by reafon that fome of the lower and firft mouths were partly ftopt, with which the aforefaid River of fire ceafed from running, after it had dammed up the Bay of the old Port, with burnt and melted Rocks and Stones, and other matter wherewith the faid River had run, and had forced the Sea backward above a Muqquet fhot at random, and near twice as much in breadth. It ran into the Sea above fixty paces. What fell into the Sea went congealing with a great fmoak, what came after, forced and ran over that which went before, fo that the fmoak was very great many paces within the Sea, as far as feven fathoms depth, which caufed many men to imagine that fome fuch like Vulcano had opened under the Sea in the faid feven fathoms depth. This night it caft up fome ftones like great fiery Globes as the former.

Thurfday the twenty fifth it proved yet more violent than ever with thundring noife and flafhes of fire.
fire. Friday the twenty fixth, the mouth that was at the foot of the Mountain began again to caft up as much fire and ftones as ever, and formed two other Rivers; the one taking its courfe to Leeward of the firtt River leading toward the Rocks called de los Tacofos; and the other took its way to windward of the firtt, directly towards the Bathes or Holy Fountain; and in this entrance the mouth of the Monntain was obferved to be more quiet, though it caft up much afhes like black fmall land. What dammage appears to have been done from its beginning to this day the twenty fixth of Noveraber, being of thirteen days continuance, hath been about nine or ten Country Houfes burnt, befides Out-houfes, and great Cifterns for water, which are the poor Peoples only Remedy in thole parts, and upwards of three hundred Acres of ground are quite fpoiled, being covered with Rocks, Stones, and other Rubbifh and Sand; and if, (which God defend) the faid Vulcano do longer continue, the damage muft be far greater, efpecially if any other mouth fhould break out higher, as it is much feared, by reafon the earth in fome places doth open with appearances as at firt, fo that all about that circuit of the Fuencalliente will be loft; and for what already hapned, and yet continues with much terrour, befides the fears of more in other parts thereabout, the Inhabitants do leave their Habitations, and like poor diffreffed people feek relief at the City, and many leave the Ifland to feek their fortunes in the others.

From the twenty fixth of November, that the aforefaid Relation was fent for Teneriff by the Chamber of this Illand unto the General, the faid Vulcano continueth fierce and without ceafing, rather more thanlefs, with a terrible thundring noife, cafting up Fire, Stones, Rocks, and black Afhes, and the three Rivers of Fire ftill running into the Sea, and hath now dammed up all the Baths and holy Fountain, to
the great detriment of the illand, that yearly received a great benefit thereby, befides many damages dayly added to the former. Several other mouths have fince opened in the like dreadful manner near about the fame place, we fee the great fmoak by day, and hear the thunder and noife, like the fhooting offof many Cannons, and by night fee allo much of the fire very high in the Air from this City, which is one and twenty miles from it.

We are now at the eleventh of December, and fear we fhall have more to write to youby the next.

Other Letters of the thirtieth of December mention, that it then contined much at one as before; and fince others of the nineteenth of January fay, it is yet as dreadful as ever, and little likelihood of ceafing ; from the thirteenth of November that it began to the nineteenth of Fanuary is about ten Weeks that it hath burnt; and the laft Letters mention abundance of Afhes orblack Sand forced into the Air, and carried all over the Ifland, falling thick like Rain, and frequently gathered in the City, in the Streets, Houfes, and Gardens, though feven Leagues off.

FINIS.

$E R R A T A$.

[^1]

152
Moon, Spots on 44Moray, Sir R.106, 337
, B.114, 119
Hero 趽„ Instruments47
Hooke, Sir Humphry 251
Hughens 148Incubator195
Instrument of 3 ft . radius54
Iseland 13
Isochrone MotionPappin, D. ...384
Parallax 2
Pareus205
Pendulum, Circular ,
Perrault, C. 356
Petit282
Pike of Teneriffe20
Plummets hung in water 21
Post Chariot 152
Potentia Restitutiva338
Prancis, Chr. 374Ptolomaic Hypothesis3
Quadrant, Divisions of 68
Horizontal $6 \frac{1}{2} \mathrm{ft}$. 70
Reflection and Refraction11, 15
Retamen26
Riget 237Royal Society Transactions207
Ruyter, de 362

INDEX (continued)

	PAGE		8
St. Helena	291	Transits	3
Scales, Philosophical	... 152	Tulpius	.. 325
Seed	203	Turning Swash-work	143
Selenite	158, 307	Tycho Brahe	38, 233, 250
Selenoscope ...	152	Tycho's Instruments	16
Severn	372	Tychonick System ...	- 3
Sextant of 3 ft . radius	47		
4	52	Universal Joint	33
, " 6	73		
Silkworm Clues	20	Venice Paper	. 309
Sprage, Dr.	322	Vernier, P.	... 66
Spring	331-356	, Method	of
Springs, Natural ...	360	dividing Quadrants	... 66
Star Catalogue ...	291	Vibrating Bodies ...	43
" in head of Draco	13	Vitruvius 356
, " of 1572, New ...	40	Volcano	379, 384
Stars visible in day	27	Vulcanella	363
Stivinus	182		
Sturmy, Sam.	372-3	Wadham College	355
Sun Spots ...	206	Wallis Letter to Heve	
T., Mr. G.	370, 374	Watch Balance Spring	g. 146, 333
Tacquet	37, 26	Watches, New	
Taverner	363		197, 207
Telescope, 6 ft .	220	Waterworks	181
$8{ }^{8}$ " \ldots	142	Wells	363
23 ft ., Borelli	283	Wheel-work	106
	283	Wilkins, Dr. J.	150
36 ft .	22	Wilkins' Fountain ...	355
60 "	42	Williamson, A. ...	321
Hooke's	16		211
Sights	41	Wren, "Sir Ch.	54, 78, 101
Telescopes, Reflecting	... 124	$\begin{aligned} & \text { Wren, sir Cn. } \\ & \text { Wright } \\ & \text {... } \end{aligned}$... 227
Teneriffe of Wood			
Thenerife Sights	370, 974	Young, James	321-8, 360-7
icho, see Tycho	95		
Tompion	90	Zulichem, M.	106

Printed by
Percy Lund, Humphries \& Co. Ltd
London and Bradford

Date Due

509 G891 V. 8
371953

[^0]: E 2
 etiamf

[^1]: PAge 10. line 15. read the other, viz the vibrating. l. 16 . participates. l.17.\& 18. r. Vibration thereof, but all Solids do exclude that menftruum, or participate not of its morion. p. $14,1.1$. for length r. number. 6.12. r. occafions will be. p.15. 6.6. r. L M N O. b. 12. r. have of Elafticity is. p. 18. l. 29. r. equal to ten. p.42.l.i2. r. from Oratava. l.1 2. r. or Southcalt fide. p42. l.9. for Prancis r. Francis.

