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ABSTRACT

An analysis of infrared background scenes generated by the

Naval Postgraduate School Infrared Search and Target

Designation (NPS-IRSTD) System, and captured with a DT-2861

frame grabber board, was conducted using a FORTRAN program

developed to facilitate image enhancement, clutter suppression

and visual target discrimination. The developed FORTRAN

program, incorporating the X-arRAY subroutine library to

provide access to the DT-2861 memory buffers in the 80386

extended memory, provides access to pre-defined spatial

frequency filters for image processing. The program was used

to process image data obtained concurrently with the NPS-IRSTD

and an AGA 780 Thermovision system operating in the same (3-

5gm) waveband. Image histograms and qualitative features of

the two image types have been compared. Application of image

enhancement and edge detection filters to IRSTD scenes with

and without background clutter is considered. Visual target

enhancement is observed, together with additional generation

of image noise.
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I. INTRODUCTION

A. BACKGROUND

The development of infrared systems for detection and

tracking of airborne targets has long been an interest of the

military, with advantages over radar of being a passive sensor

and less susceptible to countermeasures [Ref. 1]. The AN/SAR-

8 Infrared Search and Target Designation System (IRSTD) is

such an infrared system with a primary function of search,

track and target designation of all types of antiship

missiles, while being insensitive to jamming, radar cross

section (RCS) reduction, and anti-ship missile (ASM) guidance

mode. The Advanced Demonstration Model (ADM) of the AN/SAR-8

was delivered to the Naval Academic Center for Infrared

Technology (NACIT) at the Naval Postgraduate School (NPS) in

1985 to facilitate further research. Following numerous

modifications and necessary repairs to the ADM, including

bypass of the background normalization unit, the modified ADM

or NPS-IRSTD is capable of measuring background radiance

signals from a variety of background scenes under varying

atmospheric conditions. Evaluation and design of infrared

detection systems relies heavily on prior knowledge concerning

the characteristics of the background scenes in which they

will be employed [Ref. 2].
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The primary focus of research conducted using the NPS-

IRSTD in the past several years has been the real time display

of background scenes generated from the IRSTD, with the

development of some processing techniques to enhance image

resolution, thereby accentuating distinguishing features of

background scenes. This facilitates further research in

determining clutter suppression and target discrimination

algorithms, as well as development of matched spatial

frequency filters to enhance the target detection and tracking

capabilities of the AN/SAR-8 [Ref. 3]. A significant

development in the real time imaging of the IRSTD was

accomplished by Bernier [Ref. 4] through the implementation of

a 32-bit assembly language program capable of acquiring and

processing data from the IRSTD within the system's 2 second

rotation period. This development has enabled the rapid

acquisition of data as well as the ability to selectively

locate background scenes of interest for further analysis.

B. RESEARCH OBJECTIVES

With an efficient means to acquire background scene

information from the NPS-IRSTD already established, the focus

of current research is the analysis of background scenes in

route to the development of techniques to enhance image

resolution, suppress background clutter and improve target

discrimination. Additionally, since the IRSTD is an ac

coupled infrared system, and therefore not radiometric,
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comparison of background scenes taken with the IRSTD and a

radiometric infrared imaging device, the AGEMA AGA 780

Thermovision system, is performed to establish any correlation

between the two intrinsically different infrared systems.

Data was acquired with the two systems on 24 September, 1991

to facilitate the scene comparison.

In support of the scene analysis and comparison, a

software processing package was developed capable of

manipulating background scenes from both the IRSTD and AGA

systems. The package includes basic statistical routines,

image manipulation functions, and a number of common filtering

kernels. Additionally, a slight modification to Bernier's

data acquisition routine was made to further enhance the data

collection process. The remainder of this work will present an

overview of the NPS-IRSTD and AGA 780 Thermovision systems,

describe the processing package developed, and conduct an

analysis of the scenes acquired with the two systems, with

emphasis on techniques employed to enhance the imaging and

target discrimination properties of the IRSTD system.
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II. SYSTEM OVERVIEWS

The analysis of background scenes acquired with the NPS-

IRSTD and comparison with those of the AGA Thermovision is

dependent on the imaging properties of each system. The IRSTD

system, for example, was not designed as an infrared imaging

device, but rather it was optimized for detection of small

aspect targets in a variety of flight profiles. The IRSTD and

AGA are two intrinsically different infrared devices, the

IRSTD being an AC coupled system, and the AGA a radiometric

device. It is equally important to realize the differences in

data acquisition, as each process invokes some limitations in

the ability to compare background scenes. With this in mind,

a brief overview of each system is provided including a

description of the data acquisition process.

A. NPS-IRSTD

1. System Description

The NPS-IRSTD is a modified ADM of the AN/SAR-8,

designed for the passive detection of targets in a full 3600

by 10.50 (0.5" below horizon to 100 above) field of view

(FOV). It is comprised of a scanner assembly located on the

roof of Spanagel Hall at NPS, and associated electronics,

including analog-to-digital converters and control panels,

located in room 703 of Spanagel Hall. The scanner assembly
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houses a Schmidt F/I telescope, two parallel vertical detector

arrays comprised of 90 Indium Antimonide (InSb) detectors

.'-erating in the 3-5 gm range, a cryogenic cooler, pre-

amplifier bandpass assemblies, multiplexing hardware, slip-

rings and position-in-rotation signal generating hardware.

The detector arrays, termed the lead and lag arrays, are

positioned with an approximate 1/2° horizontal separation, and

each detector provides a 2.0 by 0.3 mrad FOV. [Ref. 4, 5]

The 90 detectors are connected to six analog multiplexers,

whose outputs are sent through a set of slip rings and routed

via six analog lines to the six 8-bit analog-to-digital

converters. Each detector is sampled 60,000 times per

revolution, or approximately once every 0.1 mrad, with a

rotation rate of 2.16 seconds, producing a data rate of 5

Megabytes per second for the 180 detectors. In the system's

current configuration, however, only the lag array is

operational, providing data from 90 of the 180 detectors.

Data is then transferred via coaxial cable to room 210 of

Spanagel Hall where it is stored on an Ampex HBR 3000i twelve

channel tape recorder [Ref. 4].

2. Data Acquisition

Data sent to the HBR 3000i tape recorder can then be

processed immediately for real-time analysis, or stored for

analysis at a later date. The software developments of Bernier

have enabled both the real time analysis of data and an

5



efficient means for post-collection processing. Data from the

tape recorder is sent via an interface circuit to the external

input port of a DT-2861 Frame Grabber board installed in an

80386 33 MHz computer. The DT-2861 consists of 4 Mbytes of

on-board memory and an 8-bit Arithmetic Logic Unit (ALU)

providing the capability to capture, manipulate and display up

to 16 512x512 8-bit images at a rate of 30 frames per second

[Ref.6]. Using Bernier's 32-bit protected mode assembly

language program, 184,320 bytes of data is read into a frame

buffer on the frame grabber board. The 184,320 bytes

corresponds approximately to two 10.5 by 30 images; each

detector is sampled 60,000 times per revolution, and 512

pixels is approximately 3°. However, the data is formatted in

accordance with the sampling order of the detectors and must

be unscrambled prior to image display. The detectors are

sampled starting with the second detector from each of the 12

multiplexers (6 for each detector array). The input data is

unscrambled in an adjacent frame buffer, resulting in two 30

wide images, separated by a dark zone representing the

unprocessed lead array. The two images are offset by

approximately 1/2°, representing the separation of the arrays,

and are therefore combined to form a 6* image. Since each 2.0

by 0.3 mrad detector of the array is represented by one pixel,

the final image is only 90 pixels high and is not

proportionally correct. Therefore, the program expands the

final image by a factor of 5 in the vertical for a final
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512x450 8-bit image representing 10.5° by 6* scene. Images

are displayed on a dedicated RGB monitor. All of these

processing operations are done on the frame grabber memory

buffers, and therefore, upon termination of the program,

images are available for further manipulation and storing. A

more in depth review of the Bernier's "loadup.exe" program is

available in Reference 4.

3. Imaging Properties

The IRSTD was designed to maximize the sensitivity of

detection of small angular extent targets at the expense of

imaging resolution (Ref.7]. Subtracting the average value of

the background by coupling the detector output to a

preamplifier circuit which blocks low frequency components of

the signal can increase the apparent contrast of the infrared

scene. The IRSTD is AC coupled with a low frequency cut-on at

approximately 100 Hz. The IRSTD system is therefore not a

radiometric device. Rather than measuring the apparent

temperature of objects in a scene, the IRSTD detects

temperature differences and contrasts in the scene. Hence,

gradients are only shown in an IRSTD image if a temperature

difference exists through the horizontal scan of the detector

array. Thus, background scenes acquired on an overcast day

and a clear day would appear the same provided no temperature

fluctuation across the scan is present [Ref. 4].
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Additionally, IRSTD images are subject to variations due

to the responsivity of individual detectors. Engel [Ref. 5)

corrected for these difference in his processing routines

based on the calibration results of Ayers [Ref.8]. A number

of dead detectors were found by Ayers and will appear in an

IRSTD image as dark horizontal bands. Corrections for

detector responsivity have not been directly targeted in this

work, although many of the processing routines implemented

correct for the sensitivity differences.

Another phenomenon inherent in the IRSTD system is

referred to as droop and undershoot response [Ref. 5]. Droop

is a product of the AC coupling scheme employed by the IRSTD

and is the result of scanning extended regions of high

temperature. Undershoot, on the other hand, occurs when

quickly scanning from a high temperature region to a low

temperature region and results in a dark or cold region to the

right of an object detected by the IRSTD.

B. AGA 780 THERMOVISION

1. System Description

The AGEMA AGA 780 Thermovision is a fourth generation

thermal imaging system designed for image recording and

analysis. The system consists of a dual scanner, a

Black/White monitor chassis for each scanner unit, a color

monitor, and an AT computer configured with AGEMA system cards

and software. The dual scanner consists of two systems: a
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shortwave system (SW) using Indium Antimonide (InSb) detectors

and operating in the 3-5.6 pm band, and a longwave system (LW)

using Mercury Cadmium Telluride (HgCdTe) and operating in the

8-14 lm band [Ref.9]. Each scanner unit consists of an

electro-optical scanning mechanism, infrared detector, liquid

nitrogen Dewar, and control electronics and preamplifier

[Ref.10]. Electro-magnetic energy is focused by an infrared

lens into a system of vertical and horizontal rotating prisms

to produce a raster pattern. The rotating prisms provide 400

horizontal scan lines per frame, representing four fields

interlaced for one frame. However, only 70 of these lines per

field, or 280 lines per frame are used as active imaging

lines. One frame is produced in 6.25 seconds, corresponding to

a scan rate of 25 fields per second. [Ref. 10] The signal is

then amplified and processed within the Black/White (B/W)

monitor chassis and applied to the display screen. The

monitor chassis contains the necessary controls to adjust

image brightness, contrast, thermal level and thermal range.

2. Data Acquisition

The amplified analog video signal from the B/W monitor

chassis is sent to an AT computer configured with the AGEMA

system cards and software. The computer, denoted the Thermal

Image Computer (TIC-8000), is used for real time image display

and processing, as well as storage of data in binary files.

The input signal, converted to an 8-bit digital signal, is

9



displayed on a RGB monitor as a 140x140 pixel image [Ref.ll].

The 140 pixel height represents horizontal scan lines from the

first and third field of the 280 line interlaced frame.

Additionally, each pixel represents a 0.050 field of view

(FOV). The installed software supports a wide range of image

analysis functions including thermal chopping, image

subtraction, statistical calculations including histograms,

and some spatial filtering.

3. Imaging Properties

Unlike the IRSTD, the AGA is a radiometric device

which measures the scene radiance. Each pixel is assigned a

thermal value proportional to the received photon radiation.

Temperatures are measured either directly or relative to an

external source [Ref. 11]. The 8-bit value representing the

radiance is then displayed in a 140x140 image gray scale or

color image.
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III. IMAGE PROCESSING

The requirement to process and compare images produced

from two different infrared systems necessitated a decision

concerning the most efficient and effective means by which

images could be manipulated, stored and reproduced in a

uniform fashion. Both the IRSTD and AGA systems, as currently

configured, provide sufficient resources for image processing.

However, little or no correlation could be made if the data

was not displayed and processed using the same hardware and

software tools.

A. HARDWARE CONSIDERATIONS

There were essentially two choices concerning the hardware

to use for the desired image processing: the TIC-8000 system

incorporated into the AGA imaging system, or the 80386

computer system with the installed DT-2861 frame grabber board

used with the IRSTD. The decision to use the 80386 system and

frame grabber was an obvious choice based on processing power,

speed, and storage capacity. In addition to the DT-2861 frame

grabber board with its 4 Mbytes of memory and dedicated

Arithmetic Logic Unit (ALU), the 80386 33 Mhz system is also

installed with 8 Mbytes of Random Access Memory (RAM), an

80387 math co-processor, a 300 Mbyte hard drive, a 44 Mbyte

Bernoulli Disk drive, a tape drive, and a 5h" High Density
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floppy disk drive. With each image file stored from the frame

grabber occupying 262,656 bytes of memory, the large storage

capacity of the IRSTD 80386 system was a major advantage over

the TIC-8000 system.

B. SOFTWARE CONSIDERATIONS

Two basic options were available for processing the AGA

and IRSTD data; employ a commercial image processing package

which was compatible with both the AGA and IRSTD file formats,

or develop a custom program to perform all required

operations. Several commercial software packages were used by

Engel and Bernier to process the IRSTD images. VGAIPS was one

such program used by Bernier for image analysis. VGAIPS is an

image display program available through a host of computer

bulletin boards as a shareware program. It is specifically

designed as an infrared imaging program supporting 8-bit

binary files from LANDSAT and EOSAT satellites, as well as a

number of imaging FLIRS. It provides some filtering

functions, histogram display and equalization, and direct

look-up table (LUT) specifications. The program is capable of

displaying images in gray scale or pseudo-color in standard

VGA modes, 640x480 in 16 colors or 320x200 in 256 colors. Any

8-bit image file can be used with VGAIPS provided the size of

the file header is known (Ref. 12]. The primary disadvantages

of the VGAIPS program are the limited number of processing

functions available and the requirement for image data to be

12



adapted to conform with standard display modes. Another

processing option was to use the DT-IRIS and IRIS Tutor

packages provided with the DT-2861 frame grabber board. DT-

IRIS and IRIS Tutor are similar image processing software

packages designed specifically for the DT-2861 arithmetic

frame grabber board. IRIS Tutor is a self-contained program

which accesses all of the available functions of the frame

grabber board using command line syntax. DT-IRIS, on the

other hand, is a subroutine library image processing package

implementing the same functions, while supporting FORTRAN, C

and PASCAL high-level languages. Both methods provide easy

access to frame buffer operations (addition, subtraction,

offsets, multiply, divide), statistical operations (histograms

and summation of pixels), logical operations (AND, OR, XOR),

convolution with four available filters (Highpass, Lowpass,

Laplacian and Vertical Edge detectors), as well as windowing

and look-up table specifications [Ref. 13]. Use of the IRIS

Tutor limits the processing capabilities to only those

operations supported by the command syntax. Development of a

custom program using the subroutine libraries of DT-IRIS, such

as the FORTRAN routines "IMAGE.FOR" and "DISPLAY.FOR"

implemented by Engel and Bernier, offers access to all

available frame grabber operations, while offering the

flexibility to implement custom functions. However, the DT-

IRIS subroutine libraries for FORTRAN are no longer supported

by Data Translation Inc. and many functions are incompatible
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with Microsoft FORTRAN 5.0 and 5.1. The solution to meet all

processing requirements was therefore to develop a custom

program encapsulating the functions of the Data Translation

programs while providing the flexibility to implement

additional processing routines as required.

C. SOFTWARE DEVELOPMENTS

1. General

Since a decision was made to process the IRSTD and AGA

data using the DT-2861 frame grabber board, the ability to

access the frame buffer memory area was essential. However,

the frame grabber board and its buffer memory are located in

the extended memory area of the computer, requiring a switch

to protected mode operation using a DOS extender. This was

the strategy employed by Bernier in the real time display of

IRSTD data [Ref. 4]. However, a FORTRAN callable library "X-

arRAY" from Davis Associates, Inc, providing access up to a

gigabyte of extended memory, is a viable alternative to using

a DOS extender or 32-bit compiler. Using the "X-arRAY"

routines, the memory area of the frame grabber board is easily

accessed for transferring image data to and from frame

buffers. Additionally, through the use of port calls to the

control registers of the DT-2861, the ALU functions which

implement basic frame operations such as addition,

subtraction, etc., can be easily accessed providing execution

of frame processes in 1/30th of a second. This strategy, and
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initial implementation, was developed by W.J. Lentz, and

provides the foundation on which the processing package

developed for this research was developed.

2. X-arRAY Library

The X-arRAY library is specifically designed to

allocate portions of extended memory dynamically, carry

extended memory allocations between job steps, and move data

arrays to and from conventional and extended memory

[Ref. 14]. Operations requiring protected mode

access are performed by the X-arRAY routines and are

transparent to the programmer, although a subroutine is

available which alerts the user that a protected mode

operation has occurred. The library supports array processing

routines such as array addition, subtraction, and

multiplication as well as integer and floating point unary

operations. The library supports arrays of varying data type

including real, integer, complex naturally ordered or complex

decimated. Of the many callable routines provided in the X-

arRAY library, three are particularly useful in accessing the

frame grabber memory buffers and manipulating data : BUFXTD,

GETXTD, and A2AXTD.

a. BUFXTD

This routine allocates fixed memory buffers beyond

extended memory to access memory mapped hardware, i.e., the

frame grabber board. An address of the fixed buffer location

15



is passed to the routine, as well as the array dimensions and

length. The routine returns a "key" which encodes the

absolute address in the specified memory area [Ref. 14). This

address key can then be passed within program subroutines, and

may be offset to provide access to appropriate segments of the

memory area as desired. The start address of the frame

grabber memory is "AOOOOO" in the system's current

configuration. Since the DT-2861 only provides access to two

contiguous frame buffers at a time [Ref. 13], parameters are

passed to the BUFXTD routine to encode an address key for a 2

dimensional array consisting of 524,288 bytes or two frame

buffers. Using this configuration, access to the start of

even numbered frame buffers is accomplished with the "key"

parameter, while access to odd numbered buffers is

accomplished by offsetting "key" by 262,144 bytes.

b. GETXTD

This routine allocates extended memory that lies

within available RAM that is under the control of an extended

memory manager (XMS) or Modified LIM [Ref. 14]. As in the

BUFXTD routine, this routine returns an address "key" marking

the start of the allocation in extended memory. Arrays may be

allocated of varying dimensions and size, provided the memory

block can lie entirely within the available RAM, 8 Mbytes for

the 80386 system as currently configured. Either the

Microsoft XMS or Modified LIM method may be specified to
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allocate the extended memory area, or the programmer may elect

to allow the GETXTD routine to determine which allocation

method is in use and allocate memory accordingly [Ref. 14].

c. A2AXTD

This routine provides the transfer of data arrays

between extended memory or extended and conventional memory

using encoded address keys from other X-arRAY routines or

local variables. Arrays may be completely or partially

transferred as specified by the dimensionality and length of

the data array, in conjunction with any offset applied to the

address key of the memory location. This routine is

implemented extensively in the developed processing program to

enable image manipulation in conventional memory; the image

data from a desired frame buffer encoded by an associated

address key is transferred to a local 2 dimensional (2-D) data

array, the 2-D array is manipulated as desired, and the

results are transferred back to a frame buffer either in one

transfer operation or in several implementations to allow

display of results as processing occurs. A similar routine

called A2FXTD operates in the same manner, but allows transfer

of data from frame buffers to file and vice versa, enabling

analysis of stored data.

3. DT-2861 ALU Funotions

As described previously, the DT-2861 frame grabber

board is equipped with an 8-bit ALU which provides routine
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processing functions between frawe buffers in 1/30th of a

second. This high execution speed was the primary advantage

of using the DT-IRIS subroutine ±ibrary or IRIS Tutor program

for the processing of images. However, by setting the

appropriate bits in the control registers of the frame grabber

board, any desired ALU function can be accessed while

realizing the same speed of execution.

The DT-2861 functions are controlled and monitored by

thirteen 16-bit read/write registers. Register addresses are

relative to a user-configurable base address, 592 hexadecimal

in the current configuration [Ref. 6]. Access to these

registers is conducted via the routines "iport" and "oport"

from the PCTOOLS subroutine library [Ref. 15] which

allow the reading and setting of input/output (I/O) ports

respectively. ALU functions are controlled through

manipulation of bits 12-15 of the Video Input Control/Status

Register 1 (INSCRI) at address 592 hex. Inputs to the ALU

can be from one of four combinations of display feedback,

dedicated feedback and A/D input data. By selecting the

appropriate feedback and display paths, the function selected

by the ALU bits is performed on the selected frame buffers.

Selection of the feedback and display paths typically requires

manipulation of the Video Input Control/Status Register 2

(INSCR2) and YPAN Register (YPAN). Chapter 3 and Appendix D

of Reference 6 thoroughly describe the available ALU functions

as well as a bit description of each control/status register
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for the frame grabber board. Interfaces to the X-arRAY

subroutine library are included in the external file

"INTERFCE.INC" and listed in Appendix A of this document.

Additionally, review of the X-arRAY primitives [Ref. 14] may

also be beneficial in understanding specific subroutine

operations.

4. Final Product

Incorporating the extended memory routines supported

by the X-arRAY library, the DT-2861 ALU functions, and some

specialized routines run in conventional memory, a custom

processing package written in Microsoft FORTRAN 5.1 was

developed to support processing of both IRSTD and AGA image

files for analysis. The program -- ;ides the required

interfaces with the frame cratber memory buffers to enable

access to any of the 16 nemory buffers. A source code listing

of the processing program "PROCESS.FOR" is included as

Appendix A for reference. A description of the program

capabilities follows.

a. Initialization/Frame Display

The initialization routines consist of the

subroutines "POWERUP" and "INITIAL". These subroutines were

written by W.J. Lentz and initialize the frame grabber control

registers for operation as well as initializing the input and

output LUT's. This program uses a 256 monotonically

increasing grey scale LUT, although color LUT's can be

19



programmed for use. Upon initialization, frame buffer 0 is

displayed and the user can select the desired frame for

display. Input of a negative value will display a menu

consisting of various frame operations.

b. Frame/File Utilities

Menu items numbered "0" through "3" offer

utilities to copy images between frame buffers, load a stored

image file to any available frame buffer, or save an image in

any buffer to file. The initial implementation of these

routines was provided by Lentz, but they have been modified to

provide more flexibility. For example, initial implementations

of the "frame-to-file" and "file-to-frame" utilities only

allowed read and write operations to be performed to frame

buffer 0. This was due to the access restriction to the

memory area of the frame grabber board. While the DT-IRIS

manual states that "Any buffer can be accessed from the bus at

any time without restrictions," [Ref. 6], this is only true

when incorporating ALU functions. So in a case such as frame-

to-frame copies, a procedure which is implemented using the

DT-2861 ALU function, access to any frame buffer is available

by setting the appropriate bits in the control/status

registers. But to enable access to a memory area for read or

write operations, only two frame buffers can be accessed at a

time as designated by the "BUSBUF" bit in the OUTCSR (bits 9

-irough 11). Through implementation of a subroutine
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"SETBUSBUF" in the process program, the BUSBUF bits are set

based on which frame requires access, and an offset of either

0 or 262,144 bytes is applied to the address key specifying

the start of the memory allocation. So, to load an image from

file to frame buffer 7, for example, the BUSBUF bits are set

to "011" to allow access to frames 6 and 7, and an offset of

262,144 bytes is applied to the address key so that the start

of the memory location being accessed is the start of frame

buffer 7. To enable storage of an image being displayed to

file, a similar call to "SETBUSBUF" is prefaced by a call to

the subroutine "GETDISBUFF", which determines which frame

buffer is being displayed by accessing the "DISBUF" bits of

the YPAN register. The current frame is then accessed by

setting the correct BUSBUF bits. Once the X-arRAY address key

and the frame grabber board memory buffers are initialized,

the actual loading and saving of files is accomplished through

the X-arRAY routines "A2AXTD" and "A2FXTD" as described

previously. Images are saved in IRIS Tutor format [Ref. 13]

with a 512 byte header to enable compatibility with the IRIS

processing program.

c. Frame Operations

Basic frame operations such as frame addition and

subtraction are covered by menu items 3 through 10 in the

process program. Frame clears, negation or inverting frames,

addition, and subtraction are performed in approximately
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1/30th of a second by implementing the appropriate ALU

function. The X-arRAY library does support subroutines which

perform these functions as well, but take longer to execute

(about 2 seconds). The frame offset, frame scale, frame

multiplication, and linear frame operations are all

implemented using X-arRAY routines. The most unique of these

operators is the linear frame operations function. This is an

X-arRAY subroutine which performs a linear combination of 2

arrays, or images in this implementation, including offset by

a constant (The frame offset routine actually uses this

routine as well). This is also one of the more complex

routines presented in the program since access to as many as

three memory locations could be required, i.e., two different

source locations, and a third unique destination. For this

reason, the "GETXTD" routine is required to allocate

additional memory for intermediate calculations. In short,

the linear operations routine performs the function described

by C=(Cl*A)+(C2*B)+K where "C" is the destination frame, "A"

and "B" are the source frames, "C1" and "C2" are real

coefficients, and "K" is an integer offset. The source and

destination frame buffers may be distinct, equivalent, or

overlapping memory areas [Ref. 14]. While elementary in

concept, this function allows image contrast adjustment or

histogram equalization such as that described by Bernier [Ref.

4] with one function call.
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d. Filtering Operations

Selection of this option provides access to the

basis for this program, image processing. A secondary menu

will appear which prompts the user to select a predefined or

user defined filter kernel to process the image. The

predefined filters (28 in total) are primarily convolutionary

filter kernels common in image processing applications, and

are defined in the external files "INTFILT.INC" and

"REALFILT.INC". These external files are included with the

source code provided as Appendix A. The implementation of the

convolution and other routines used in this section were

presented in detail in Lindley [Ref. 16) and

translated from C source code to FORTRAN. The general

operation of these routines consists of the following steps:

"• determine which filtering process to implement

"* determine the kernel size, allocate memory accordingly,
and retrieve the appropriate kernel

"• transfer the image to be processed from the frame grabber
memory area to conventional memory using "A2AXTD"

"* call the appropriate processing routine such as "INTCONV"
for integer convolution or "RECONV" for real convolution

"* perform the required operation, and in most cases, write
processed data to the destination frame one row at a time

"• display the final results and release memory allocations

The filters were selected to provide a variety of

processing operations, and in some instances, several

implementations of the same filter function using different
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filter kernels. Additionally, the user can create specialized

f ilter kernels of varying sizes as desired. The filtering

functions included with DT-IRIS and IRIS Tutor have been

duplicated and results from the "PROCESS" program have been

validated with the IRIS routines. Speed of execution for the

filtering functions is slower than that of the IRIS routines,

but acceptable considering the variety of kernels available

(only 4 with IRIS Tutor). IRIS Tutor convolutions are

described as requiring approximately 3 minutes for execution

(512x512 image) [Ref. 13], but take as little as 20 seconds on

the 80386 33 MHz machine. The convolutions implemented in the

"PROCESS" program have been timed at 25-35 seconds depending

on whether the filter kernel is real or integer valued. Other

processes such as median filtering or Sobel edge detection

which require sorting a "neighborhood" of pixel values or

other operations, can take over a minute to complete depending

on image extent, "neighborhood" size, and the complexity of

the arithmetic operation required. Processes were optimized

as well as possible without resorting to assembly language

implementation or excessively encrypted source code. Early in

the development of the "PROCESS" program, convolution routines

were implemented through the direct read of a 9 pixel

neighborhood from the image, followed by one pixel write (10

total operations) which required over 40 minutes to execute.

Use of the frame grabber control registers to window an

appropriate area to be processed could be a possible approach
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to decreasing processing times. All filtering routines

implemented in "PROCESS" allow the user to select a window

within the 512x512 image to process, thus decreasing execution

times dramatically for small windows. While filtering only a

portion of an image is of questionable value in most cases, it

is required to process AGA and IRSTD images properly. This

will be discussed shortly.

e. Statistics

This option calculates a histogram, mean and

standard deviation for the displayed image or a user defined

portion of the displayed image. The total number of pixels in

the defined window, the summation, mean and standard deviation

are written to the screen once calculated, but unfortunately,

a routine to plot the calculated histogram was not written.

As an alternative, the option to write all calculated data to

an external file for manipulation with another program is

provided. A MATLAB script file was written to import the

calculated data, including histogram, compute the data median

based on the histogram, and plot the results. A histogram is

used to approximate the probability density function of the

image and determine the relative brightness and contrast

characteristics of the image (Ref. 17].

f. Image Expansion/Compression

The final utility provided in the processing

program is to expand AGA and IRSTD images or compress IRSTD
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images. As mentioned earlier, this must be accomplished to

obtain a true representation of the filter effects.

(1) AGA Expansion

The AGA image files as saved by the AGA system

software are not compatible with the IRIS file format and must

be manipulated by software to be properly displayed. An AGA

image file (with an 1MG file extension) consists of 20,446

bytes, the first 846 of which comprise the file header. The

image data follows, but is organized so that the even number

lines of the 140x140 pixel image are stored in the first part

of the data region, followed by the odd number lines. The

first line of the image is therefore located half way through

the data region of the file. The data is unscrambled into the

center of a 512x512 data area and saved, maintaining IRIS

compatibility and preserving all image attributes. A number

of utilities were written for the AGA file conversion and are

reviewed in Appendix B.

The AGA image can be expanded to a 512x512 image in order

to locate particular features. This is accomplished by

cropping the AGA image as specified by the user and expanding

by a factor of 4. This effectively reduces the FOV of the AGA

image from 7* by 7* to approximately 6.4* by 6.4*, but also

reduces the image resolution since each pixel is expanded both

vertically and horizontally. While this file expansion could

be implemented (and initially was) as part of the file
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conversion process, distinguishing and locating features of

the image could be lost. Even more significant, however, is

that an expanded AGA image can not be properly filtered with

the 3x3 predefined filter kernel with accurate results since

the extent of the kernel does not encompass the extent of the

expansion process. Therefore, any processing to be

accomplished on an AGA image, must be accomplished either by

specifying a large kernel to cover the extent of the expansion

process or by processing the image in the centered or

compressed state. The latter method is recommended. Then by

defining the appropriate window to encompass the AGA data for

filtering, the execution time for the filtering process can be

drastically reduced. The filtered image can then be expanded

as desired. The expansion process is performed in less than

2 seconds. An AGA compression routine is not available since

the expansion process discards image data and therefore an

expanded image can not be restored to its initial state.

(2) IRSTD Compression/Expansion

During the process of acquiring IRSTD data

from tape or in real time using Bernier's assembly language

routine [Ref. 4), the final image is expanded vertically by a

factor of 5 to add visually pleasing proportions to the IRSTD

image. As in the case of the expanded AGA image, a 3x3

filter kernel lies within the extent of the expansion process.

Therefore, for accurate filtering, the image can be compressed
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to 90x512, filtered with an appropriate window, and expanded

back to a 450x512 state. The compress routine executes in

under 2 seconds, most filters can be realized in less than 10

seconds, and expansion executes in approximately 5 seconds.

While the expansion of an image usually results in a decrease

in image resolution, as is the case with the AGA image

expansion process, a reduction in resolution with IRSTD images

which have been expanded is not readily apparent. Since IRSTD

images have a vertical extent of only 90 pixels, scene

features are difficult to identify; therefore, IRSTD images

are expanded in order to identify distinguishing features of

a scene at the expense of image resolution.
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IV. IMAGE ANALYSIS

A. DATA COLLECTION

An experiment was conducted on 24 September, 1991 for the

purpose of gathering infrared scene data using the AGA 780

Thermovision shortwave (SW) scanner and the NPS-IRSTD. The

goal of the experiment was to collect data such that images

obtained with the AGA and IRSTD could be compared and

analyzed. Over 100 image files were captured with the AGA,

and two AMPEX tapes recorded from the IRSTD. A number of

events occurred thr)ughout the course of the experiment

including the 4-d' -off and landing of several propjets from

the Monterey airport.

The selection of suitable images from both the AGA and

IRSTD was not a trivial undertaking. While the AGA image

files are time and date stamped upon storing, the IRSTD data

played back from tape is equipped with no such feature. To

select an appropriate portion of the recorded data for

viewing, a time approximation was made based on the occurrence

of a significant event. Once the corresponding event was

found in the AGA image files, the tape counter was noted and

labeled with the approximate time. Needless to say, not all

significant events seen with the IRSTD were recorded with the

AGA. The field of view (FOV) for the two systems also
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complicated the image selection process. The IRSTD has a

vertical FOV of 10.5", representing 0.5" below the horizon and

10.0' above the horizon. The AGA provides a 7" FOV

representing 3.5' above and below the scanner aimpoint.

Therefore, unless the AGA scanner has an elevation angle of

3.0' above the horizon, the scenes imaged with the AGA will

contain different features than those imaged by the IRSTD for

a corresponding sector. Analysis of the AGA images acquired

in this experiment indicate that the scanner was focussed at

or near the horizon, thus providing significantly more scene

features below the horizon than images obtained with the

IRSTD.

In order to improve the image selection process for the

IRSTD, a slight modification was made to Bernier's assembly

language program which loads and unscrambles recorded IRSTD

data to the frame grabber board [Ref. 4]. The last processing

step in Bernier's program was to copy the final image from

frame buffer 0 to frame buffer 2 for display. This occurred

for each rotation of the IRSTD, so previous images were lost.

By replacing this routine with one which accesses the frame

grabber control registers to determine the current display

buffer, increment that buffer, and then execute a copy, up to

14 consecutive rotations may be stored from any sector.

Further description of the replacement routine is included as

Appendix C.
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The images used for analysis in the remainder of this

section are some of the more closely paired AGA and IRSTD

images, but unfortunately represent only a small percentage

of the data collected.

B. SCENE ANALYSIS

1. AGA / IRSTD Scene Comparisons

Comparison between AGA and IRSTD scenes is of particular

interest since the infrared systems are intrinsically

different, the AGA Thermovision being a radiometric device,

while the IRSTD is AC coupled and therefore not radiometric.

During the discussion of the imaging properties of the IRSTD,

several anomalies were presented which adversely effect the

representation of IRSTD images. Figure 1 is an annotated

IRSTD image depicting some of the unique imaging properties of

the IRSTD. Dead or low responsivity detector lines are

labeled with the corresponding detector number. Low

responsivity detectors tend to partition various features of

the IRSTD image such as the non-uniform cloud structure about

detector lines 13 through 16. Also quite noticeable is the

presence of the dead detector, number 76, depicted by a solid

black line. Though not particularly obvious in the figure, a

vertical noise pattern is evident in the bottom third of the

image. The source for this noise has not been determined, but

it is believed to be introduced by the last two multiplexers

(Ref. 4]. Also evident is the undershoot characteristic,
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particularly noticeable in the center of the image.

Undershoot, a product of the AC coupled system, is the dark

region to the right of the imaged cloud formation. Finally,

the large black band at the bottom of the image is not a

product of the imaging process, but is a result of the display

and reproduction of the image. IRSTD images, in expanded

form, consist of 450 lines of data. The memory area of the

frame grabber board is designed for a full 512 lines of

information. Rather than cropping the memory buffer and only

producing images of extent 450x512, full 512x512 images are

presented, of which the excess pixels are shown uniformly

dark.

Figure 2 presents an AGA and IRSTD image of Herrmann Hall

at NPS, taken at approximately the same time with a comparable

FOV. While Herrmann Hall is not of particular interest from

an imaging or targeting standpoint, it does provide a good

base to display the differences in the two imaging systems.

The AGA image provides an excellent visual representation of

the scene, providing good definition at each topographical

interface, i.e., trees to bay, bay to shore, etc. The IRSTD

image provides the same definition, although not in a visually

pleasing fashion. The IRSTD image does, however, clearly

indicate the presence of three antennas on the roof of

Herrmann Hall. The same antennae are barely discernable in

the AGA image, and in fact, may be indistinguishable in some

representations of the same FOV. The IRSTD's ability to
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detect and display the presence of a small change in contrast

is a significant advantage. Also note the definition within

the cloud structure depicted in the IRSTD image. This cloud

structure is presumably not within the FOV for the AGA

scanner, and therefore not shown. Lastly, Figure 2 is a good

example of the difficulties experienced in the image selection

process. While similar horizontal FOVs are realizable,

differences with respect to the vertical FOV make comparative

scene analysis difficult. A statistical comparison of the

images depicted in Figure 2 is attempted in Figures 3 and 4.

Figure 3 consists of histograms for both the AGA and IRSTD

images, calculated over the entire image, excluding the unused

portion of the 512x512 window in the case of the IRSTD. The

AGA image is clearly a high contrast image, with a complex

distribution function. The IRSTD, on the other hand is a low

contrast image, closely following a Gaussian distribution.

While histogram equalization or direct LUT editing will

increase the contrast of the IRSTD scenes, the shape of the

distribution remains the same. Figure 4 is an attempt to

window each image to contain only data from the sky region of

the images of Figure 2. While the numerical differences in

the case of the IRSTD image using a full and partial window

are severe, the overall shape of the distribution remains

constant. The partial histogram for the AGA reveals that the

distribution within the sky region of the image is largely
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responsible for the non-Gaussian shape of the distribution

function.

The absence of clearly identifiable antennae of the roof

of Herrmann Hall as depicted in Figure 2a, but more evident in

some comparable AGA scenes, introduced some thought as to the

impact of direct and indirect sunlight in an AGA scene.

Figure 5a depicts another aspect of Herrmann Hall under what

is believed to be indirect sunlight. Figure 5b represents a

similar FOV, but taken later in the experiment, under what

appears to be more direct sunlight. The antennae are more

readily apparent in Figure 5b. Review of the constants

recorded in the header portion of the AGA files revealed no

apparent deviation in system parameters during the recording

of these two images. However, since the detected radiance is

a function of the emitted and reflected radiance over a scene,

the appearance of the antennae in direct sunlight would

indicate an increase in the reflected component of radiance

such that some objects are more evident against the

background. This effect is evident in many of the AGA images

recorded during this experiment, but goes unnoticed in similar

IRSTD scenes due to the AC coupling design of the IRSTD

system. Consequently, t--':qets with low reflected radiance

components and emitted radiance components similar to that of

the background, may be indistinguishable using the AGA system.

Figure 6a and 6b are comparable AGA and IRSTD images

overlooking Monterey Bay in the vicinity of Lover's Point.
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These particular scenes were chosen due to the noticeable

cloud structures in each image. The IRSTD image, however,

depicts contrast differences within the cloud formation and

displays these changes quite noticeably. The AGA image also

depicts the changes within the cloud formation, but they are

not readily apparent. While this may not seem particularly

alarming, a key to successful operation of an infrared system

such as the IRSTD, designed for detection and tracking of

small target, is the ability to suppress background noise and

clutter and detect small angular extent targets. It can not

be determined, based on the data acquired during this

experiment, whether a target within significant clutter will

be detected and imaged with the AGV Investigation of the

clutter suppression abilities of the IRSTD will be discussed

shortly. Figure 7 shows the corresponding histograms of the

images in Figure 6, calculated over the full extent of the

image, excluding the unused portion of the IRSTD window.

2. IRSTD Processing

Determination of suitable techniques for clutter

suppression and target discrimination is a significant goal in

the IRSTD project, and the emphasis of the processing program

presented. It was not possible to display the filtering

effects of each of the 28 pre-defined filter kernels on

various background scenes in this document. Rather, the

effects of a few selected filters applied to interesting
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scenes are presented with some comments as to the behavior of

other filters on the same scene.

As described during the discussion of the "PROCESS"

program, filtering of the IRSTD images requires compression of

the data to its original state prior to processing. Figures

8 and 9 illustrate this requirement using both a median filter

and a Sobel edge detector. Figure 8a is an IRSTD image of an

aircraft shortly after take-off from the Monterey airport.

The background consists mainly of tree tops and a distant

hillside. The aircraft, positioned within the boxed region of

the image, is trailed by the characteristic dark region caused

by system undershoot. The median filter was employed with the

hope of smoothing some of the vertical noise structure in the

bottom third of the image as described earlier, and also of

suppressing some of the undershoot phenomena characteristic of

the IRSTD images. A 3x3 filter kernel was applied to the

image in its expanded form, with the results shown in Figure

8b. The overall filtering effect was a slight blurring and

smoothing of the image, much like that expected of a lowpass

filter. Figure 8c depicts the results when the same filter is

applied to the image in its compressed state, and then

expanded. Quite noticeable is the absence of the target

aircraft in Figure 8c. As will later be shown, this effect is

not an inherent property of the median filter when applied to

IRSTD images, but its occurrence highlights a significant

difficulty in the determination of clutter suppression
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techniques. If the spatial extent of a target does not

sufficiently exceed that of its background, it may be

undetected or suppressed by the chosen filtering process.

Closer examination of the original aircraft image, Figure 8a,

reveals that the aircraft is in a region close to some low

responsivity detectors and the frequency content of the area

immediately above and below the area is relatively low. The

median filter, which finds the median value in a 9x9

neighborhood, therefore suppresses the target.

Figure 9 depicts the same aircraft of Figure 8, only this

time a Sobel edge detector is applied to the image, first in

its expanded state (Figure 9b), then in its compressed or

original state (Figure 9c). There are a number of notable

characteristics in these filtered images which are

characteristic of many of the edge detectors defined in the

"PROCESS" program. First is the detection of low or dead

responsivity detectors as horizontal edges. This

significantly reduces the ability to discern between targets

and imaging-produced noise, although the target of interest

does appear to be of slightly higher frequency content. If a

thresholding algorithm were employed after this particular

edge detection process, an high false alarm rate would surely

have occurred. The vertical noise pattern present in the

images is also adversely enhanced, thus adding considerably

more clutter to the filtered image. Based on these

consequences, use of spatial filters which inherently detect
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horizontal or vertical edges was routinely avoided. However,

if a smoothing filter can adequately suppress the adverse

image attributes of the IRSTD, or the responsivity and noise

problem is eliminated, directionally oriented edge detection

may be quite useful.

The next sequence of images is used to test the ability of

some of the spatial filters to suppress background clutter and

detect a target. Figure 10 depicts a two frame sequence. of an

aircraft entering a cloud formation. In Figure 10a, the

aircraft, positioned within the boxed region, has not yet

entered the cloud formation. Figure lob is a frame captured

approximately 4 seconds later with the aircraft in the middle

of the cloud formation, positioned within the boxed region of

the image. Three distinct filters are applied to these images:

a 3x3 median filter, a highpass filter, a Laplacian edge

enhancement filter, and finally a combination of the Laplacian

edge enhancement applied to the output of the highpass filter.

Figure Ila is the filter output from processing Figure 10a,

the aircraft before the cloud formation, with a 3x3 median

filter. The vertical noise pattern and dead detector line are

effectively eliminated, and the effects of the low

responsivity detectors are reduced. Even more important is

the presence of the target. This particular implementation of

the median filter did not suppress the target as was the case

in Figure 8c. While this filtering process did little to

enhance the target, the general hope was that by effectively
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eliminating some of the noise generated from the IRSTD imaging

process, better results would be achieved after processing

this image with some form of edge detector or edge enhancement

technique. An appropriate "post-median" filtering combination

was not successfully determined. The next filter applied was

a highpass filter as shown in Figure 1lb. While the

processing program has 3 highpass filters to choose from,

"HP3" provided the best results. The definition of this

kernel can be found in the source listing of "INTFILT.INC" in

Appendix A. While implementation of this filter did enhance

the representation of the target, the filter also introduced

some noise in the image. Nonetheless, the target is readily

distinguishable. The third filtering process was a Laplacian

edge enhancement technique, shown in Figure 11c. Once again,

three kernels are available which implement this technique,

but the best performance was achieved through "LAP3". The

reproduction of this image is not as flattering as the actual

display of the results. The target is readily apparent, with

some noise present in the region of the cloud formation. Once

again, however, the vertical noise in the bottom portion of

the image becomes a significant problem. Application of a

thresholding technique to the filtered image may help enhance

the target and suppress the vertical noise. The final process

applied to Figure 10a was a Laplacian edge enhancement applied

to the output of the highpass filter, and is shown as Figure

11d. The reproduction of this image detracts from the actual
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filtering process, yet it accurately depicts the large amount

of clutter -sulting from implementation of the highpass

filter. The target, however, displays a greater frequency

extent than that of the other implemented processes.

The final step was to apply the same filter kernels to

Figure 10b, that of the aircraft among the cloud formation.

Figure 12a shows the results from the median filter. The

target is slightly enhanced in this implementation, but not

enough to be able to accurately discriminate a target out of

the cloud formation. The highpass filter, Figure 12b,

enhances the target within the cloud formation, but not

without introducing some additional noise. The Laplacian edge

filter, Figure 12c, once again suppresses the clutter enough

to detect the presence of a target, but may require some

thresholding to ensure accurate detection. Finally, the

Laplacian edge enhancement is applied to the output of the

highpass filter, Figure 12d. The results are very similar to

those of Figure lid, however the presence of the target is

less noticeable due to the significant increase in noise in

the vicinity of the target.

3. General Comments

While limited success in clutter suppression and

target detection was demonstrated above, it must be mentioned

that the aircraft imaged in these scenes were extremely

cooperative targets, moving across the IRSTD scan line
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providing maximum relative motion at very close range. The

IRSTD is optimized for detection of small angular extent

targets at significantly greater ranges than those realized

during this experiment. A target at long range will be well

within the 2.0 by 0.3 mrad detector FOV. It is unknown

whether a target meeting this size criterion would be of

sufficient pixel extent to be imaged and not rejected as a

random noise pattern. Additionally, the targets processed in

this analysis were all above ground clutter. An infrared

search and designation system like the IRSTD would be most

beneficial in a nearland/overland environment. However, due

to the noise pattern evident throughout the bottom portion of

the image and the dead detector approximately in line with the

horizon, processing targets of this nature is not feasible.

41



~. 13

424



............

(a)

..... .. :.....

(b)

Figure 2. Comparison of AGA (a),
and IRSTD (b) infrared scenes of
Herrmann Hall at NPS.
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Figure 3. Histograms of AGA and IRSTD scenes depicted in
Figure 2. Histograms over full image. (a) AGA (b) IRSTD
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Figure 4. Histograms of AGA and IRSTD scenes shown in Figure
2. Histograms calculated over sky portion of image only. (a)
AGA (b) IRSTD
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Figure B. Effects of filtering IRSTD image in expanded and
compressed form. (a) Original image, (b) original image with
median filter, (c) original compressed, filtered, and expanded
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Figure 9. Effects of filtering IRSTD image in expanded and
compressed form. (a) Original image, (b) Original image
filtered with Sobel edge detector, (c) Original image
compressed, filtered, and expanded
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Figure l0. IRSTD images of
propjet aircraft before (a) and
after (b) entering cloud
format ion.
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(a) (b)

(C) (d)

Figure 11. Filtered images of Figure 10a, aircraft before
entering cloud formation. (a) Median filter (b) Highpass
filter (c) Laplacian edge detector (d) Laplacian edge
detector applied to results of highpass (b)
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Figure 12. Filtered images of Figure lob, aircraft within
cloud formation. (a) Median filter (b) Highpass filter
(c) Laplacian edge detector (d) Laplacian edge detector
applied to results of highpass (b)
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V. CONCLUSIONS AND RECOMMENDATIONS

The recent development of real time imaging with the NPS-

IRSTD has provided an efficient means of data collection for

the purpose of determining appropriate processing techniques

to enhance image resolution, suppress background clutter and

improve target discrimination with the IRSTD. The unique

imaging properties and data acquisition process required by

the IRSTD system necessitated development of a custom

processing package which enables access to the DT-2861 frame

grabber board memory area and its image processing

capabilities. An initial processing package has been

developed in support of IRSTD scene analysis, providing some

basic statistical functions, image processing routines, and

file manipulation and storage. The FORTRAN program uses the

extended memory subroutine library X-arRAY to provide the

interface into extended memory areas of the 80386 computer,

and incorporates use of the DT-2861 control/status registers

and onboard ALU to optimize execution of routine functions.

The program ensures compatibility of IRSTD image files with

IRIS Tutor processing programs and provides sufficient

routines to display and process image files obtained with the

AGA Thermovision.

Comparison of AGA and IRSTD image files indicates that the

IRSTD system is better suited for the detection of small
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contrast changes within a given region, but does so at the

expense of image resolution. Additionally, it could not be

determined from the experimental data whether a target could

be detected within a clutter region with the AGA Thermovision.

Preliminary analysis of IRSTD scenes with appropriate

processing techniques indicates that application of omni-

directional spatial filters such as the Laplacian edge

enhancement filter can provide the most effective means of

clutter suppression and target enhancement.

Several recommendations come to mind concerning future

research with the IRSTD and comparison with AGA scenes. First

and foremost is the conduct of another AGA/IRSTD experiment.

Several difficulties were encountered finding suitable scenes

for comparison due to conflicting FOV of the two systems,

caused by the difference in elevation angle of the AGA

scanner. Additionally, an attempt was made to record a

sequence of AGA images corresponding to a specific event, much

like that acquired by the IRSTD. This was probably over

ambitious given the requirements for acquiring and recording

an AGA image file. Analysis may be better served by

collecting data from a few regions in which it is known that

events will occur, such as along the approach line to the

Monterey Airport. This would help ensure compatibility of

target-rich scenes. Once more comparable scenes are obtained

with the AGA and IRSTD, a detailed analysis of scene

attributes between the two systems is required.
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From an IRSTD perspective, several items require further

attention. The question of whether a long range target would

have sufficient spatial extent to be displayed by the IRSTD

system warrants further investigation. An experiment

conducted with the IRSTD and a cooperative air target,

preferably with a ranging device, may be able to provide an

answer. Also, with the capability to display infrared scenes,

it would be interesting to compare scenes obtained with the

Background Normalizer Unit (BNU) installed with scenes

obtained in the systems current configuration. If nothing

else, a determination of the contribution of the BNU overall

system performance may be established. Furthermore,

elimination of the noise patterns evident in the IRSTD images

is essential for proper development of system filter

parameters. Efforts to correct or offset with software

routines, dead and low responsivity detectors also requires

further attention.

A number of modifications to the processing program would

certainly enhance research capabilities and program

flexibility. The program lacks the necessary tools to perform

a detailed statistical analysis of background scenes,

including the capability to display ir" rmation graphically.

The X-arRAY subroutine library provides the capabilities to

process selected IRSTD images without the requirement of

having a frame grabber board. Data could be collected in

real-time using established routines for image acquisition and
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unscrambling, then saved as image files for post-collection

processing and analysis. The use of frame grabber memory

areas for processing and analysis as implemented in this

thesis is not required, but rather provides an efficient means

of image processing using available resources. In theory, as

long as a computer system has extended memory and a means to

display IRSTD formatted images on a VGA screen, an unlimited

amount of research can be conducted without using a frame

grabber board. The required modifications to the processing

program to make this realizable include replacing all

references made to the frame grabber memory areas with

appropriate memory allocations in extended memory using the X-

arRAY routines, and implementing display routines designed to

handle IRSTD images on a standard video monitor. Appropriate

display routines are already being developed by Bernier for

use in this research.
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APPENDIX A

The following is the source code for the processing

program "PROCESS.for".

"c This program implements a host of image processing
"c routines utilizing the memory areas of the DT-2861 frame
"c grabber board. Extended memory areas are accessed via
"c routines from the X-arRAY library and basic frame
"c functions are performed using ALU functions of the
"c framegrabber board
c

$INCLUDE:'interfce.inc'

integer*4 d,n,lmnt,ihndl,key,kb,ier
integer*4 mthd,addr,arrl(2),arr2(2)
integer*2 iret, ier2,ibit,idisp
integer*l iy(512,512)
real*4 y(65536)
common /y/iy
equivalence(y(l),iy(l,l))

c initialize board after computer power down
call powerup

c initial clears up LUTS to display gray scale
call initial

1 print *,'input frame to display or -1 to continue'
read *,idisp

if(idisp.ge.0) then
call display(idisp)
goto 1

endif
print *,'Input Desired Selection'
print *, 0 frame copies'
print *, 1 file to frame'
print *, 2 frame to file'
print *, 3 clear current frame'
print *, 4 invert current frame'
print *, 5 add two frames'
print *, 6 subtract two frames'
print *, 7 offset frame'
print *, 8 scale frame'
print *, 9 multiply frames'
print *,1 0 linear 2 frame ops'
print *, 11 filtering ops'
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print *'12 statistics'
print *,13 expand/compress image'
read *,ibit

c open a non contiguous frame buffer
c (with arr2, gets memory for 2 full frame buffers)
addr=10485760
c n is the size of the memory in fg for read/write

n=6 5536
arr (1) =256
arrl(2)=256
arr2 (1) =512
arr2 (2) =512
d=2
lmnt=4
mthd=- 1
call bufxtd(d,arr2,lmnt,addr,ihndl,key,kb,iret,ier2)

if(ier2.ne.O) then
print *,'error in bufxtd - ',ier2,iret
print *,Ibufxtd ier,iret,kb = ,ier2,iret,kb
goto 88

endif
select case(ibit)
case (0)

call framecopy
case(l)

call fiie2frame(key,arrl,y)
case (2)

call Irame2file(key,arrl,y)
case (3)

call clear
case(4)

call negate
case(5)

call add
case (6)

call subtract
case (7)

call offsetfrm(key,arr2)
case (8)

call scale(key,arr2)
case (9)

call multiply(Jcey,mthd,arrl,arr2,y)
case(I0)

call linear(key,arrl,arr2,mthd,y)
case(ll)

call filterselect(key,arrl, iy)
case(12)

call stats (key, arrl, iy)
case(13)

call adjust(key,arrl,iy)
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case default
goto 88

end select
88 call relxtd(ihndl,iret,ier)
c release the memory above

if(ier.ne.0) print *,'relxtd error = ',ier,iret
goto 1
end

subroutine framecopy
"c Routine written by W.J. Lentz
"c copies images between frames

integer*2 iframes(16),ibuffs(16)
integer*2 idisp, istop,ibit,word

print *,'Input frame to display'
read *,idisp
call display(idisp)

44 print *,'Input number of frames to copy'
read *,istop
if(istop.gt.15) then

print *,'Error of too many copies'
goto 44

endif
do 55 i=l,istop

54 print *,'input source frame,destination frame'
read *,iframes(i),ibuffs(i)
if(iframes(i).lt.O.or.iframes(i).gt.16) goto 54
if(ibuffs(i).lt.O.or.ibuffs(i).gt.16) goto 54

55 continue

c Timing call for test of copy rate
call gettim(ihour, imin,isec,ihn)

do 66 i=l,istop
ibit=iframes(i)
word=ibuffs(i)
call cmetra(ibit,word)

66 continue

call gettim(nhour,nmin,nsec,nhn)
seconds=nsec*100+nhn-isec*100-ihn
if(istop.gt.0) print *,'hundredths= ',seconds
call display(idisp)
return
end

subroutine file2frame(key,arrl,y)
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c original implementation W.J.Lentz, modified by Heiss

integer*2 idisp
integer*4 Jcey,bytes, ier,arrl(2)
real*4 y(65536)

pause
call rbfile(y)
print*, 'Destination Frame?'
read*, idisp
call setbusbuff(idisp, irem)
call a2axtd(2,arrl,4,locfar(y) ,key+irem,bytes,ier)
if(ier.ne.O) then

print *,'a2axtd error= ',ier
print *,'bytes,ier= ',bytes,ier

endif
call display(idisp)
return
end

subroutine frame2 file (key, arrl, y)
c original implementation W.J.Lentz, modified by Heiss

integer*2 idisp
integer*4 key,bytes, ier,arrl(2) ,irem
real*4 y(65536)

call getdispbuff (idisp)
call setbusbuff(idisp, irem)
call a2axtd(2,arrl,4,key+irem,locfar(y) ,bytes,ier)
if(ier.ne.O) print *,'a2axtd error= ',ier
call display(idisp)
pause
call sbfile(y)
return
end

SUBROUTINE SBFILE (y)
c original implementation W.J.Lentz, modified by Heiss

character filename*64
real*4 y(65536)
integer*l iheadl(23) ,ihead2 (B),ihead3(461)
integer*2 dimen
integer*4 datasize
character*8 name
data datasize/2621441/
data dimen/512/
data name/' DT-IMAGE' /
data iheadl /1,4,0,7,9*0,9*0,1/
data ihead2 /1,1,0,1,1,1,8,1/
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data ihead3 /461*0/

print *,'Input filename'
read (*,'(A)') filename
open (3 ,file=filename, form=' binary')
write(3) name
write(3) iheadl,datasize, ihead2,dimen,dimen,
* ~dimen,dimen, ihead3
write(3) y
close(3)
return
end

SUBROUTINE RBFILE (y)
c original implementation W.J.Lentz, modified Heiss

character filename*64
real*4 y(65536)
integer*l idummy(512)
print *,'Input filename'
read (*,'(A)') filename
open (3, file=filename, form='binary')
read(3) idummy
read(3) y
close (3)
return
end

subroutine powerup
c Written by W.J. Lentz
c Begins initialization of frame grabber board

integer*2 words (8) ,word,word2 ,nport,nportl
data words/O,O,28800,32639,-12800,1536,2,-2/
data nport /592/

call oport (nport,word2)
c above clears busy

do I=1,8
nportl=nport+ (1-1) *2
word=words (I)
call test (nport,word2)
call oport (nportl ,word)

end dc
return
end

subroutine initial
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c initial clears display after power down works 2-10-92
integer*2 nportl,nport,word,ibit,word2

c setup for data acquisition and copy
nport=592
call oport(nport,word2)

c initialize lut input 0 lut output 0 and busy off

c initialize outscr with display off
nportl=nport+4
call test(nport,word2)
call oport(nportl,word)
word=0

c stop modes
nportl=nport+2
call test(nport,word2)
call oport(nportl,word)

c initialize the look up tables
c set mode ldinlut (mode 2; LDRLUT is mode 3 shift 3)
c

c Mode Idinlut
call ldinlut

c
c clear luts for inlut

do 55 i=1,256
call idinlut
nport=592

c p4-19 Index is offset 8 low byte
nportl=nport+8
word=i-I
call test(nport,word2)
call oport(nportl,word)

c setup inlut at offset base 10 low byte
nportl=nport+10
word=i-i
call test(nport,word2)
call oport(nportl,word)

55 continue

ibit=0
call rcarry(ibit)

c carry bit set to 0

do 57 i=1,256
c Mode LDRLUT

call LDRLUT
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c p4-19 Index is offset 8 low byte
nportl=nport+8
word~i-l
call test (nport ,word2)
call oport(nportl,word)

c write nlut register
word~i-l
nport l=nport+ 10
call test (nport,word2)
call oport (nportl,word)

57 continue
ibit=l
call rcarry(ibit)

c carry bit set to 0

do 58 i=1,256
c Mode LDRLUT

call LDRLUT

c p4-19 Index is offset 8 low byte
nportl=nport+8
word~i-l
call test (nport, word2)
call oport (nportl, word)

c write rlut register
word=i-l
nportl=nport+lO
call test (nport,word2)
call oport(nportl,word)

58 continue

ibit=0
call rcarry(ibit)

c carry bit set to 0

do 59 j=1,256
i~j-l.

c Mode LDRLUT
call LDRLLJT

c p4-19 Index is of fset 8 low byte
nportl=nport+8
word=i
call test(nport,word2)
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call oport (nportl, word)

c red/green registers

word=i
wrisft(woishf,8) +i
nport l=nport+ 12
call test (nport,word2)
call oport (nportl, word)

c write Blue register
word=i
nport l=nport+ 14
call test (nport,word2)
call oport (nportl, word)

59 continue

c set port 0 for display
word=-2 2520
nportl=nport
call test (nport, word2)
call oport(nportl,word)

c set port 4 for display
nportl=nport+4
word=12448
call test (nport, word2)
call oport (nportl ,word)

c set port 2for bit 7on
nportl=nport+2
word=128
call test (nport,word2)
call oport(nportl,word)

nportl=nport+10
word=153 6
call test (nport,word2)
call oport (nportl,word)
return
end

subroutine ldinlut
c sets mode ldinlut

integer* 2 nport, nportl ,wr,word2
word=2
nport=59 2
word=ishft (word, 4)
nportl=nport+2
call test (nport, word2)
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call oport(nportl,word)
return
end

subroutine LDRLUT
c sets mode idriut

integer*2 nport, nportl,wr, word2
word=3
nport=59 2
word=ishft(word, 4)
nportl=nport+2
call test (nport, word2)
call oport (nportl,word)
return
end

subroutine rcarry (ibit)
c if ibit is 1, carry bit is set

integer*2 nport,word,word2, ibit
if(ibit.eq.O) then

word=O
else

word=256
endif
nport=592
call test (nport, word2)
call oport (nport,word)
return
end

subroutine display(ibuff)
c sets mode display

integer*2 nport, nportl ,wr, word2, ibuff
word=0
nport=5 92
nportl=nport+2
call test(nport,word2)
call oport(nportl,word)

c initial setup
nportl=nport+4
word=12448
call test (nport, word2)
call oport(nportl,word)

c select the actual port viewed
nportl=nport+2
word=ibuff
call test (nport,word2)
call oport (nportl, word)
nport 1=nport+ 10
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word=ibuff
word=ishft(ibuff,12)
call test(nport,word2)
call oport(nportl,word)
return
end

SUBROUTINE test(nport,word2)
c Written by W.J. Lentz
c test busy bit for board operations

integer*2 nport,word2
j=1

65 call iport(nport,word2)
j=j+l
if(j.gt.32000) then

print *,'32000 test'
return

endif
if(iand(128,word2).ne.0) then

goto 65
else

return
endif
end

subroutine cmetra(iframe,ibuff)
c Written by W.J. Lentz
c subroutine copies any frame to any buffer whether c
displayed or not

integer*2 nportl,nport,word,ibit,wordl,word2
integer*2 iframe,ibuff

c port address base for board
n2ort=592
nportl=nport+2

c the frame number is shifted to bits 8-11
iframe=ishft(iframe,8)

c 128 sets the feedback to B rather than the pan input
wcrdl=128+iframe+ibuff

c are we busy?
call test(nport,word2)

c when we are not busy, set up transfer addresses
call oport(nportl,wordl)
call test(nport,word2)

c do the copy
ibit=7
ibit=2**(ibit)
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word=ibit+word2
call oport (nport,word)
return
end

subroutine setbusbuff(idisp, irem)
c Sets correct busbuff bits for desired frame

integer*2 nport, nportl,wr, word2, idisp
integer*4 irem

word=28832
nport=592
nport l=nport+4
irem=mod(idisp,2) *262144
if(idisp.gt.l) then

word=word+ (512*int (idisp/2))
call test (nport, word2)
call oport (nportl ,word)

else
call test(nport,word2)
call oport(nportl,word)

endif
return
end

subroutine getdispbuff (idisp)
c Determines the frame currently being displayed

integer*2 nport,nportl,word,wordl,word2 ,word3, idisp

nport=5 92
nport l=nport+ 10
word=-4 096
call test (nport,word2)
call iport(nportl,wordl)
word3=iand (wordi ,word)
idisp=ishft(word3,-12)
return
end

subroutine negate
c Inverts frame being displayed using fremgrabber ALU

integer*2 nport,nportl,word,word2, idisp
integer*2 itemp, itempl

nport=592
nportl=nport+2
call getdispbuff(idisp)
word=ishft (idisp, 8) +idisp
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call test (nport,word2)
c save registers

call iport(nportl, itempi)
call iport(nport, itemp)

call oport(nportl,word)
word=2 184

c ALU=OOOO ALUM=l ASEL--l BUSY=l
call oport (nport,wod
call display(idisp)

c restore registers
call oport(nportl, itempi)
call oport(nport, itemp)
return
end

subroutine clear
c Clears frame currently being displayed

integer*2 nport, nportl,wr, word2, idisp
integer*2 itemp, itempl

nport=59 2
nportl=nport+2
call getdispbuff (idisp)
word=ishft (idisp, 8) +idisp
call test (nport,word2)

c save registers
call iport(nportl, itempl)
call iport(nport, itemp)

call oport(nportl,word)
word=12424

c ALU=O0ll ASEL=1I ALUH=l BUSY=l
call oport (nport,word)
call display(idisp)

c restore registers
call oport (nportl, itempl)
call oport(nport, itemp)
return
end

subroutine add
c Adds two frames using ALU with No CARRY

integer*2 nport,nportl,word,word2, idisp
integer*2 itemp, itempl, ioper

69



nport=59 2
nport l=nport+ 2
call getdispbuff(idisp)
call. test (rport,word2)
print*, 'Input Frame to ADD to current display'
read*, ioper
word=ishft (ioper, 8) +idisp

"c save registers
call iport(nportl, itempi)
call iport (nport, itemp)

call oport (nportl,word)
word=-26496

"c ALU=lOO1 ASEL--l ALUM=O BUSY=l
call oport (nport,word)
call display (idisp)

"c restore registers
call oport(nportl, itempl))
call oport (nport, itexnp)
return
end

subroutine subtract
c Performs subtraction of any two frames using ALU

integer*2 nport,nportl, nport2 ,word,wordl,word2, idisp
integer*2 itemp, itempl, joper

nport=592
nportl=nport+2
nport2=nport+lO
call getdispbuff (idisp)
call test (nport,word2)
print*, 'Input Frame to SUBTRACT from current display'

read*, ioper
word=ishft (idisp, 8) +idisp
wordl=ishft(ioper, 12)

"c save registers
call iport(nportl, itempl)
call iport(nport, itemp)

call oport(nportl,word)
call oport (nport2 ,wordl)
word=2 6768

"c ALU=Ol1O ASEL--l ALUM=O CARRYINl1 BUSYl1
call oport (nport,word)
call display(idisp)

"c restore registers
call oport(nportl, itempl)
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call oport(nport, itemp)
return
end

subroutine linear(key, arri, arr2 ,ithd,y)
c Implements a linear combination of arrays

integer*2 iret, ier2, idisp
integer*4 ihndll,key,key2,kb,bytes, jer
integer*4 mthd,arrl(2) ,arr2(2) ,K,irem
real*4 y(65536) ,C1,C2

print *,'Input parameters Cl, C2, K for the equation
print I, F = (C1*Fx) + (C2*Fy) + K
read *,Cl,C2,K
print*,'Frame Fx ?I
read*, idisp
call setbusbuff(idisp, irem)
call a2axtd(2,arrl,4,key+irem,locfar(y) ,bytes,ier)
print*,'Frame Fy ?I
read*, idisp
call setbusbuff(idisp, irem)
call getxtd(2,arrl,4,mthd,ihndll,key2,Jcb,iret,ier2)
if(ier2.ne.O) then

print *,,error in getxtd - ',ier2
call relxtd(ihndll, iret, ier)
if(ier.ne.O) print *,'relxtd error = 1,ier,iret else
call a2axtd(2,arrl,4,key+irem,key2,bytes,ier)
call getdispbuff(idisp)
call setbusbuff (idisp, irem)
print*,'Result will be put in current frame',idisp

call ilnlum(2,arr2,Cl,locfar(y) ,C2,Jcey2,K,key+irem,ier)
if(ier.ne.O)print *,'ilnlum error=',ier

call relxtd(ihndll, iret, ier)
if(ier.ne.0) print *,'relxtd error = ',ier,iret

endif
return
end

subroutine scale (e, arr2)
c Multiplies a frame by a real number

integer*2 idisp
integer*4 irem,arr2(2) ,ier,key
real*4 xscale

call getdispbuff (idisp)
print*,'Input scale value
read*, xscale
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call setbusbuff(idisp, irem)
call ismlum(2,arr2,key+irem,xscale, ier)
if(ier.ne.O)print *,'ismlum ier= ',ier,xscale
call display(idisp)
return
end

subroutine offsetfrm (key, arr2)
c Adds a constant to all pixels of a frame

integer*4 arr2(2) ,irem,K,ier
integer*2 idisp
real*4 Cl,C2

print *, 'Input desired offset
read *,K
Cl=l.0
C2=0.0
call getdispbuff (idisp)
call setbusbuff(idisp, irem)
call ilnlum(2,arr2,Cl,key+irem,C2,
key+irem,K,key+irem, ier)
if(ier.ne.O)print *, 'ilnlum error=',ier
call display(idisp)
return
end

subroutine multiply(key,mthd, arrl, arr2 ,y)
c Multiplies two frames

integer*2 iret, ier2, idisp
integer*4 ihndll,key, key2 ,kb,bytes, ier
integer*4 mnthd,arrl(2) ,arr2(2) ,irem
real*4 y(65536)

print*,'Frame #1 ?1
read*, idisp
call setbusbuff(idisp, irem)
call a2axtd(2,arrl,4,key+irem,locfar(y) ,bytes,ier)
print*,'Frame #2 ?1
read*, idisp
call setbusbuff(idisp, irem)
call aetxtd(2,arrl,4,mthd,ihndll,key2,kb,iret,ier2)
if(ier2.ne.O) then

print *,'error in getxtd - ',ier2
call relxtd(ihndll, iret, ier)
if(ier.ne.O) print *,'relxtd error = ',ier,iret else
call a2axtd(2,arrl,4,key+irem~key2,bytes,ier)
call getdispbuff(idisp)
call1 setbusbuff(idisp, irem)
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print*,'Result will be put in current frame',idisp
call implum(2,arr2,locfar(y) ,key2,key+irem,ier)
if(ier.ne.O)print *,'implum error=',ier

call relxtd(ihndll, iret, ler)
if(ier.ne.O) print *,'relxtd error = ',ier,iret,

endif
return
end

subroutine intconv(key,arrl, jy,
*kernelno, kerrow, kercol, of fcol, of frow, rowstart, rowextent,

*colstart~colextent, idisp, irem,buffsize)
c Implements integer convolution

integer*2 error,errorl, idisp,time
integer*4 key, ier,arrl(2) ,bytes, irem,ndx
integer*2 buff[ALLOCATABLEJ (:), kernel [ALLOCATABLE] (:)

integer*2 rowextent, rowstart, isum, colextent, coistart
integer*l buffsize,kernelno,iy(512,512) ,result(512)

integer*l kerrow,kercol ,offcol,offrow,pix

if(kernelno.ne.O) then
ALLOCATE (buff(buffsize) ,stat=error)
ALLOCATE (kernel(buffsize) ,stat=errorl)
call igetfilter(kernelno,kerriel,buffsize)
print*,'This will take a few minutes'
call gettim(ihour, imin, isec, ihn)
call a2axtd(2,arrl,4,key+irem,locfar(iy) ,bytes,ier)
if(ier.ne.o)print*, 'a2axtd error(iy) 'I,ier
call setbusbuff(idisp, irem)
do I=rowstart, rowextent
do J=colstart, colextent

pix=l
i sum= 0
do M=O,kercol-l
do N=O,kerrow-l

buff (pix) =iy (J+M, I+N)
if(buff(pix) .lt.O)buff(pix)=256+buff(pix)
isum=isum+ (buff (pix) *kernel (pix))
pix=pix+l

end do
end do
if((kernelno.lt.4).or.(kernelno.gt.6)) then

if(isum.gt.255) isum=255
if(isum.lt.O) isum=O

else
isum=abs (isum)

endif
result (J+offcol) =isum
ndx= (512* (I+offrow-l) +offcol)
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end do
call a2axtd(l, 128,4,locfar(result) ,key+irem+ndx,

bytes, ier)
if(ier.ne.O)print*, 'a2axtd error(result) =I,ier
end do
call gettim (nhour, nmin, nsec, nhn)
call display(idisp)
tixne=(nmin-imin)*60 + (nsec-isec)
print*,time,' secs'
DEALLOCATE (buff, Stat=error)
DEALLOCATE (kernel, Stat=errorl)
endif
return
end

subroutine reconv(key,arrl, jy,
*kernelno, kerrow, kercol, of fcol, of frow, rowstart, rowextent,

*colstart,colextent, idisp, irem,buffsize)
c Implements real convolution

integer*2 error,errorl, idisp,time
integer*4 key, ier,arr1(2) ,bytes, irem,ndx
integer*2 rowextent, rowstart, colextent, colstart
integer*l buffsize,kernelno,iy(512,5l2)
integer*l kerrow,kercol,offcol,offrow,pix,result(512)

real*4 rsum
real*4 buff(ALLOCATABLEJ (:) ,kernel [ALLOCATABLE) (:)
if(kernelno.ne.O) then
ALLOCATE (buff(buffsize) ,stat=error)
ALLOCATE (kernel (buffsize) ,stat=errorl)
call rgetfilter(kernelno,kernel ,buffsize)
print*, 'This will take a few minutes'
call gettim(ihour, imin, isec, ihn)
call a2axtd(2,arrl,4,key+irem,locfar(iy) ,bytes,ier)
if(ier.ne.O)print*, 'a2axtd error(iy) =',ier
call setbusbuff(idisp, irem)
do I=rowstart, rowextent
do J=colstart, colextent

pix=l
rsum=O. 0
do M=O,kercol-1
do N=O,kerrow-l

buff (pix) =iy (J+M, I+N)
if(buff(pix) .lt.O.O)buff(pix)=256.O+buff(pix)
rsum=rsum+ (buff (pix) *kernel (pix))
pix=pix+l

end do
end do
if(rsum.gt.255.O) rsum=255. 0
if(rsum.lt.O.O) rsum=O.O
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result (J+of fool) =rsum
end do
ndx= (512* (I+offrow-l) +offcol)
call a2axtd(l,128,4,locfar(result) ,key-Iirem+ndx,

bytes, jer)
if(ier.ne.O)print*, 'a2axtd error(result) =' ,ier
end do
call gettiin(nhour, nmin, nsec, nhn)
call display(idisp)
ti-me=(nmin-imin)*60 + (nsec-isec)
print*,time,' secs'
DEALLOCATE (buff, Stat=error)
DEALLOCATE (kernel, Stat=errorl)
endif
return
end

subroutine igetfilter (kernelno,kee, buffsize)
c Sets the approriate integer kernel

iLnteger*l kernelrio,buffsize
integer*2 kernel (*)

$INCLUDE: 'intfilt.inc'

select case (kernelno)
case(l)

do I~l,buffsize
kernel (I)=HPl (I)

end do
case (2)

do 1=l,buffsize
kernel (I) =HP2 (I)

end do
case (3)

do I=l,buffsize
kernel (I)=HP3 (I)

end do
case (7 )

do I=l,buffsize
kernel (I) =LEl (I)

end do
case (8)

do I=l,buffsize
kernel (I)=LE2 (I)

end do
case (9)

do I=l,buffsize
kernel (I)=LE3 (I)

end do
case(IO)
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do I=1,buffsize
kernel (I) =HLE (I)

end do
case(l1)

do I=l,buffsize
kernel(I)=VLE(I)

end do
case(12)

do I=l,buffsize
kernel (I) =MVE (I)

end do
case(13)

do I=1,buffsize
kernel (I)=MHE(I)

end do
case (15)

print*,'Input filter coefficients in COLUMN MAJOR
order!'

do I=l,buffsize
read*,kernel (I)

end do
case (16)

do I=l,buffsize
kernel (I)=SVE(I)

end do
case(17)

do I=1,buffsize
kernel (I) =SHE (I)

end do
case(1B)

do I=1,buffsize
kernel (I)=SHV(I)

end do
case (19)

do 11l,buffsize
kernel(I)=NGE(I)

end do
case (20)

do I=l,buffsize
kernel (I)=SGE(I)

end do
case (21)

do 11l,buffsize
kernel (I)=EGE(I)

end do
case (22)

do I=l,buffsize
kernel (I)=WGE(I)

end do
case (23)

do 11l,buffsize
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kernel(I)=NEG(I)
end do

case (24)
do I=1,buffsize

kernel(I)=SEG(I)
end do

case (25)
do I=l,buffsize

kernel(I)=SWG(I)
end do

case (26)
do I=l,buffsize

kernel (I)=NWG(I)
end do

case (29)
print*,'Input filter coefficients in COLUMN MAJOR

order!'
do I=l,buffsize

read*, kernel (I)
end do

case default
kernelno=O

end select
return
end

subroutine rgetfilter (kernelno,kee, buffsize)

integer*l kernelno,buffsize.
real*4 kernel(*)

$INCLUDE: 'realfilt.inc'

select case (kernelno)
case (4)

do I=l,buffsize
kernel (I) =LP1 (I)

end do
case (5)

do I=l,buffsize
kernel(I)=LP2(I)

end do
cast,6)

do I=1,buffsize
kernel(I)=LP3(I)

end do
case (27)

do I=1,buffsize
kernel (I)=USM(I)

end do
case (30)
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orderPprint*, 'Input filter coefficients in COLUMN MAJOR

do I=l,buffsize
read*,kernel (I)

end do
case default

kernelno=O
end select
return
end

subroutine filterselect e, arri, iy)

integer*l kernelno,kerrow,kercol, iy(512, 512)
integer*l buffsize, of fcol ,of frow
integer*2 rowextent, rowstart, colextent, colstart, idisp

integer*4 key,arrl(2) ,irem

call filtermenu(kernelno)
select case (kernelno)

case(l: 11, 14, 16:28)
kerrow= 3
kercol=3

case(12)
kerrow=-3
kercol=5

case(13)
kerrow=5
kercol=3

case(15,29,30)
pririt*,'Input f of filter COLUMNS and ROWS'
read*, kercol ,kerrow

case default
kernelno=O

end select
if(kernelno.ne.O) then
call params (kerrow, kercol, colextent, rowextent,

coistart, rowstart)
offcol=intl (kercol/2)
offrow=intl (kerrow/2)
call getdispbuff (idisp)
call setbusbuff (idisp, irem)
print*, 'Destination frame'?'
read*, idisp
buffsi ze=kerrow*kercol
select case(kernelno)
case(1:3,7:13,16:26,29)
call intconv(key,arrl, iy,kernelno,kerrow,kercol,offcol,
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*offrow,rowstart,rowextent,colstart,colextent, idisp, irem,buf
fs iz e)

case (4:6, 27, 30)
call reconv (key, arri, iy,kernelno,kerrow,kercol, of fcol,

*offrow, rowstart, rowextent, colstart,colextent, idisp, irem,buf
fsize)
case(14)

call sobel (key,arrl, iy,kernelno,kerrow,kercol,offcol,

*offrow, rowstart, rowextent, colstart,colextent, idisp, irem,buf
fs i ze)
case(15)

call median(key,arrl,iy,kerrow,kercol,offcol,offrow,
*rowstart, rowextent,colstart,colextent, idisp, irem,buffsize)
case (28)

call homo (key, arri, iy,kerrow,kercol,
of fcol, of frow, rowstart,

* ~rowextent,colstart,colextent, idisp, irem,buffsize)
end select
end if
return
end

subroutine filterinenu (kernelno)

integer*l kernelno

print*,'Input Kernel *
print*,' 1 -HPl High Pass 1 16 -SVE

Shift an *d Diff Vertical Edge'
print*,' 2 -HP2 High Pass 2 17 -SHE

Shift an *d Diff Horizon Edge'
print*,' 3 -HP3 High Pass 3 18 -SHV

Shift an *d Diff Hor/Vert Edge'
print*,' 4 -LP1 Low Pass 1 19 -NGE

North Gr *adient Edge'
print*,' 5 -LP2 Low Pass 2 20 -SGE

South Gr *adient Edge'
print*,' 6 -LP3 Low Pass 3 21 -EGE

East Gra *dient Edge'
print*,' 7 - LE1 Laplacian Edge 1 22 - WGE

West Gra *dient Edge!
print*,' 8 - LE2 Laplacian Edge 2 23 - NEG

North/Ea *st Gradient Edge'
prinit*,' 9 - LE3 Laplacian Edge 3 24 - SEG

South/Ea *st Gradient Edge'
pri~nt*,' 10 - HLE Horizon Line Enhance 25 - SWG

South/We *st Gradient Edge'
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print*,' 11 - VLE Vertical Line Enhance 26 - NWG
North/We *st Gradient Edge'

print*,' 12 - MVE Matched Vertical Edge 27 - USM
Unsharp *Masking'

print*,' 13 - MHE Matched Horizon Edge 28 - HIMO
Homomorp *hic Filter'

print*,' 14 - SOB Sobel Edge Detection 29 - USRI
USER DEF *INED - INTEGER'

print*,' 15 - MED Median Filter 30 - USR2
USER DEF *INED - REAL'

read*, kernelno
return
end

subroutine median(key,arrl, iy,
*kerrow,kercol ,offcol,offrow,rowstart,rowextent,
*colstart,colextent, idisp, irem,buffsize)

integer*2 idisp, error, time
integer*4 key,ier~arrl(2) ,bytes~irem,ndx
integer*2 pix, colextent,colstart, rowextent, rowstart
integer*2 buff(ALLOCATABLEJ (:) ,iret, ierl
integer*l iy(512,512) ,kerrow,kercol,offcol
integer*l buffsize,buffmed,offrow,result(512)

ALLOCATE (buff(buffsize) ,stat=error)
buffmed=intl (buffsize/2) +1
call getxtd(2,arrl,4,-l,ihndl,keyl,kb,iret,ierl)
if(ierl.ne.0) then

print*, 'getxtd error=' ,ierl
goto 99

end if
print*,'This will take a few minutes'
call gettim(ihour, imin, isec, ihn)
call a2axtd(2,arrl,4,key+irem,locfar(iy) ,bytes,ier)
if(ier.ne.O) print *,'ia2axtd error = ',ier
call setbusbuff(idisp, irem)
do I=rowstart, rowextent
do J=colstart, colextent

pix=l
do M=0,kerrow-l

do N=0,kercol-l
buff(pix) =iy(J+N, I+M)
if(buff(pix) .lt.0)buff(pix)=256+buff(pix)
pix=pix+l
end do

end do
call sort(buff,buffsize)
result (J+offcol) =buff (buffmed)
end do
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ndx= (512 *(I+offrow-l) +offcol)
call a2axtd(l,128,4,locfar(result),

key+ irem+ndx,bye, er)
if(ier.rie.o)print*,'a2axtd error =',ier
end do
call display(idisp)
call gettim(nhour,nmin,nsec,nhn)
DEALLOCATE (buff, Stat=error)
time=(nmin-imin)*60 + (nsec-isec)
print*,time,' secs'

99 call relxtd(ihndl,iret,ier)
if(ier.ne.O) print *,'relxtd error = ,ier,iret
return
end

subroutine params (Jerrow, kercol, colextent, rowextent,
* colstart, rowstart)

integer*l kerrow,kercol
integer*2 rowstart, rowstop, colextent, rowextent
integer*2 colstart, colstop
character*4 ians

print*,'Default window is 512x512 image'
print*,' Accept Default ? (y/n)'
read(*,'(A)') ians

1 if((ians.eq.'n').or.(ians.eq.'N')) then
print*,'Input COUIM Start and Stop'
read*, coistart, colstop
print*,'Input ROW Start and Stop'
read*, rowstart, rowstop

if( (colstop.le.colstart) .or. (rowstop.le.rowstart))
goto 1

colextent= (colstop-colstart) -kercol+l
rowextent= (rowstop-rowstart) -kerrow+l

else
colextent=512 -kercol+l
rowextent=512 -kerrow+ 1
col start=l
rowstart=1

endif
return
end

subroutine sort (ibuff, imax)
integer*l switch, limit, imax
integer*2 ibuff(*) ,itemp

limit = imax
do while( limit .ne. 0)
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switch = 0
do I = 1, limit-i
if(ibuff(I).gt.ibuff(I+l)) then

itemp= ibuff(i)
ibuff(i) = ibuff(I+l)
ibuff(i+l) = itemp
switch=I

end if
end do
limit = switch

end do
return
end

subroutine sobel (key,arrl, iy,
*kernelno,kerrow,kercol ,offcol, of frow, rowstart,
*rowextent,colstart,colextent, idisp, irem,buffsize)

integer*2 error, idisp,time
integer*4 key, ier,arrl (2) ,bytes, irem,ndx
integer*2 rowextent, rowstart, colextent, coistart
integer*l buffsize,kernelno, iy(512,512)
integer*l kerrow,kercol,offcol,offrow,pix,result(512)

real*4 above,below,AEI,BEH,DEF,CEG,maxdif
real*4 buff[ALLOCATABLE) (:)

ALLOCATE (buff(buffsize) ,stat=error)
print*,'This will take a few minutes'
call gettim(ihour, imii, isec, ihn)
call a2axtd(2,arrl,4,key+irem,locfar(iy) ,bytes,ier)
if(ier.ne.o)print*,'a2axtd error(iy) =',ier
call setbusbuff(idisp, irem)
do I=rowstart, rowextent
do J=colstart, colextent

pix=l
rsum=0. 0
do M=O,kercol-l
do N~=0,kerrow-l

buff (pix) =iy (J+M, I+N)
if(buff(pix) .lt.0.O)buff(pix)=256.O+buff(pix)
if(buff(pix) .eq.O.O)buff(pix)=l
pix=pix4-l

end do
end do
above=real(buff(4)+buff(7)+buff(8))/3
below=real(buff(2)+buff(3)+buff(6))/3
AEI=abs (below-above)
above=real(buff(l)+buff(4)+buff(7))/3
below=real(buff(3)+buff(6)+buff(9) )/3
BEH=abs (below-above)
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above=real(buff(7)+buff(8)+buff(9) )/3
below=real (buff(1)+buff(2)+buff (3) )/3
DEF=abs (below-above)
above=real(buff(6)+buff(8)+buff(9))/3
below=real(buff(l)+buff(2)+buff(4))/3
CEG=abs (below-above)
maxdif=max (AEI, BEH)
maxdif=max (CEG, maxdif)
maxdif=max (DEF,maxdif)
if(maxdif.gt.255. O)maxdif=255. 0
if(maxdif.lt.0. 0)maxdif=0. 0
result (J+offcol) =maxdif
end do
ndx=(512* (I+offrow-l)+offcol)
call a2axtd(1,128,4,locfar(result),

key+irem+ndx,be, ier)
if(ier.ne.O)print*, 'a2axtd error(result) =' ,ier
end do
call gettim(nhour, nmin, nsec, nhn)
call display(idisp)
time=(nmin-imin)*60 + (nsec-isec)
print*,time,' secs'
DEALLOCATE (buff, Stat=error)
return
end

subroutine homo(key,arrl, iy,kerrow,kercol ,offcol, of frow,
*rowstart, rowextent,colstart,colextent, idisp, irem,buffsize)

integer*2 error,errorl, idisp,time,kernel [ALLOCATABLE] (:)
integer*4 key, ier,arrl (2) ,bytes, irem,ndx
integer*2 rowextent, rowstart, colextent, colstart
integer*l buffsize, kernelno, iy(512, 512)
integer*l kerrow,kercol,offcol,offrow,pix,result(512)

real*4 buff[ALLOCATABLE) (:)

ALLOCATE (buff(buffsize) ,stat=error)
ALLOCATE (kernel(buffsize) ,stat=errorl)
kernelno=l
call igetfilter (kernelno,kee, buffsize)
print*, 'This will take a few minutes'
call gettim(ihour, imin, isec, ihn)
call a2axtd(2,arrl,4,key+irem,locfar(iy) ,bytes,ier)
if(ier.ne.O)print*,'a2axtd error(iy) =',ier
call setbusbuff(idisp, irem)
do I=rowstart, rowextent
do J=colstart, colextent

pix=l
rsum=O. 0
do M=0,kercol-1
do N=0,keerrow-1
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buff (pix) =iy (J+H, I+N)
if(buff(pix) .lt.O.O)buff(pix)=256.O+buff(pix)
if(buff(pix) .eq.O)buff(pix)=1.O
rsum=rsum+(log(buff(pix) )*kernel (pix))
pix=pix+l

end do
end do
result (J+offcol) =exp (rsum)
end do
ndx= (512* (I+offrow-l) +offcol)
call. a2axtd(l,128,4,locfar(result),

key+irem+ndx,be, ier)
if(ier.ne.O)print*, 'a2axtd error(result) =' ,ier
end do
call gettim(nhour,nmin,nsec,nhn)
call display(idisp)
time=(nmin-imin)*60 + (nsec-isec)
print*,time,' secs'
DEALLOCATE (buff, Stat=error)
DEALLOCATE (kernel, Stat=errorl)
return
end

subroutine stats (key,arrl, iy)
c Calculates histogram, mean, std

integer*2 idisp, error, pix, colstart
integer*2 rowstart, colextent, rowextent
integer*4 key, ier,arrl (2) ,bytes, irem,total
integer*4 hist(allocatab].e] (:) ,sum
integer*l iy(512,512) ,itemp
real*4 mean,var,std
character*64 fileout
character*4 ans

call getdispbuff (idisp)
call setbusbuff(idisp, irem)
call a2axtd(2,arrl,4,key+irem,locfar(iy) ,bytes,ier)
if(ier.ne.O) print *,'ia2axtd error = ',ier
allocate (hist(O:255), Stat=error)
do I=0,255

hist(I)=0
end do
itemp= 1
call params(itemp, itemp,colextent,

rowextent, colstart, rowstart)
total=(rowextent-rowstart+1) *(colextent-colstart+l)
sum=O. 0
var=O. 0
do I=rowstart, rowextent
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do J=colstart, colextent
pix=iy (J, I)
if(pix. it. 0) pix=256+pix
hist (pix) =hist (pix) +1
sum=sum+int4 (pix)
var=var+ real (pix) *real (pix)
end do

end do
mean=real (sum)/real (total)
std=sqrt((var -

real (sum) *real (sum) /real (total) )/real (total-i))
print*, 'Sum=' ,sum
print*, 'Pixels=' ,total
print*, 'Mean=' ,mean
print*, 'Std Deviation=' ,std
print*, 'Do you wish to save stats and histogram to file?

(y,n)'
read(*,'I(A)'I) ans
if((ans.eq.'y').or.(ans.eq.'Y')) then
print*,'Input filename to store HISTGRAM data'
read(*, '(A)') fileout
open (3, file=fileout, form=' formatted')
do I=0,255

write(3, '(18)') hist(I)
end do

write(3, '(110)') sum
write(3,'(18)') total
write(3,'(FB.4)') mean
write(3,'(F8.4)') std

close(3)
endif
deallocate (hist, stat=error)
return
end

subroutine expandaga (key, iy)
C expand AGA image by 4

integer*2 idisp, colstart, L, rowstart
integer*4 key, ier,bytes, irem,total
integer*l iy(512,512) ,itemp(512)

call getdispbuff(idisp)
call setbusbuff(idisp, irem)
print*, 'Input COLUMN Start of AGA Image (1-12)'
read*, colstart
print*, 'Input ROW Start of AGA Image (1-12)'
read*, rowstart
print*, 'Destination Frame?'
read*, idisp

85



call a2axtd(l,65536,4,key+irem,locfar(iy) ,bytes,ier)
if(ier.rie.O) print *,'a2axtd error = I,ier

call setbusbuff(idisp, irem)
total=irem
do I=185+rowstart, 185+rowstart+l27

L=-O
do J=185+colstart, 185+colstart+127
itemp(L+1)=iy(J,I)
itemp(L+2)=iy(J,I)
itemp(L+3)=iy(J,I)
itemp(L+4)=iy(J,I)
L=-L+4
end do

call a2axtd(1,128,4,locfar(itemp) ,key+total,bytes,ier)
if(ier.ne.O) print *,'a2axtd error(l) = ',ier

total=total+int4 (512)
call a2axtd(1,128,4,locfar(itemp) ,key+total,bytes, jer)

if(ier.ne.O) print *,'a2axtd error(2) = ',ier
total=total+int4 (512)
call a2axtd(1,128,4,locfar(itemp) ,key+total,bytes, ier)

if(ier.ne.O) print *,'a2axtd error(3) = ',ier
total=total+int4 (512)
call a2axtd(1,128,4,locfar(itemp) ,key+total,bytes,ier)

if(ier.ne.O) print *,'a2axtd error(4) = ',ier
total=total+int4 (512)
end do
call display(idisp)
return
end

subroutine compress(key,arrl, iy)
c Compresses an IRSTD file by a factor of 5

integer*2 idisp
integer*4 key,bytes, ier
integer*4 arrl(2) ,irem
integer*1 iy(512,512) ,coxnpact(512)

call getdispbuff (idisp)
call setbusbuff(idisp, irem)
call a2axtd(2,arrl,4,key+irem,locfar(iy) ,bytes,ier)
if(ier.ne.O) print *,'a2axtd error= ',ier
print*,'Destination Frame V'
read*, idisp
call setbusbuff(idisp, irem)
K=O
do I=1,450,5
do J=1,512

compact (J) =iy (J, I)
end do
ndx=K*512
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K=K+l
call a2axtd(l,128,4,locfar(compact),

key+iremA+ndx,bye, er)
if(ier.ne.0) print *,'a2axtd error= ',ier
end do
call display(idisp)
return
end

subroutine expand(key,arrl, iy)
c Expand an IRSTD image by a factor of 5

integer*2 idisp
integer*4 key,bytes, ier
integer*4 irem,arrl (2)
integer*l iy(512,512) ,temp(5l2)

call getdispbuff (idisp)
call setbusbuff(idisp, irem)
call a2axtd(2,arrl,4,Jcey+irem,locfar(iy) ,bytes,ier)
if(ier.ne.O) print *,'a2axtd error= ',ier
print*,'Destination Frame ?I
read*,idisp
call setbusbuff (idisp, irem)
ndx=O
do I=1,90
do J=1,512

temp(J)=iy(J,I)
end do
call a2axtd(1,128,4,locfar(temp) ,key+irem+ndx,bytes,ier)
if(ier.ne.0) print *,'a2axtd error= ',ier
ndx=ndx+ 512
call a2axtd(l,128,4,locfar(temp) ,key-wirem+ndx,bytes,ier)
if(ier.ne.0) print *,'a2axtd error= I,ier
ndx=ndx+ 512
call a2axtd(1,128,4,locfar(temp) ,key+irem+ndx,bytes,ier)
if(ier.ne.O) print *,'a2axtd error= ',ier
ndx=ndx+ 512
call a2axtd(l,128,4,locfar(temp) ,key+irem+ndx,bytes,ier)
if(ier.ne.0) print *,'a2axtd error= ',ier
ndx=ndx+512
call a2axtd(l,128,4,locfar(temp) ,key+irem+ndx,bytes,ier)
if(ier.ne.O) print *,'a2axtd error= ',ier
ndx=ndx+512
and do
call display(idisp)
return
end

subroutine adjust (key, arrl, iy)
c Supplies menu to expand/compress AGA/IRSTD files
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integer*4 key, arri (2)
integer*l iy(512,512) ,iaris

prirlt*, 'Enter 1 to expand AGA image'
print*,' 2 to compress IRSTD image'
print*,' 3 to expand IRSTD image'
read*, ians
select case(ians)
case(l)
call expandaga (key, jy)
case (2)
call compress(key,arrl, iy)
case (3)
call expand(key,arrl, iy)
end select
return
end
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INTERPCE.INC

c This file contains to appropriate 'interface' statements
c for the x-arRAY subroutines used in the processing c
program

interface to subroutine a2axtd (d,n,lmnt,key~value],
*keyl~valueJ ,bytes,ier)

integer*4 d,n,lmnt,key,keyl,bytes~ier
end

interface to subroutine getxtd (d, n, lmnt, mthd, ihndl,
*key,kb,iret,ier)

integer*4 d,n,lmnt,key,kb,mthd,ihndl
integer*2 ier, iret
end

interface to subroutine ssmrnm(D,N,key~value] ,xscale, ier)
integer*4 d,n, ier,key
real*4 xscale
end

interface to subroutine ismlum(D,N,key~value] ,scl, ier)
integer*4 d,n,ier,key

real*4 scl
end

interface to subroutine implum(D,N,key~value] ,keyl [value],
*key2 [value] ,ier)
integer*4 d,n, ier,key,keyl,key2
end

interface to subroutine ilnlum(D,N,Cl,key~value] ,C2,
keyl~value] ,K,key2[value] ,ier)

integer*4 d,n,ier,key,keyl,key2,k
real*4 cl,c2
end

89



FILTER DEFINITIONS

c INTFILT.INC

integer*l HPI(9),HP2(9),HP3(9),MVE(15)
integer*l SVE(9),SHE(9),SHV(9),MHE(15)
integer*l LE1(9),LE2(9),LE3(9),HLE(9),VLE(9)
integer*1 NGE(9),SGE(9),EGE(9),WGE(9)
integer*1 NEG(9) ,SEG(9),SWG(9) ,NWG(9)

c Filter data below is in column major order
data HP1/ -1#-,1 19,-1,-,--1
data HP2/ 0,-1,0, -1,5,-l, 0,-l,0/
data HP3/ 1,-2,1, -2,5,-2, 1,-2,1/
data SVE/ 0,-1,0, 0,1,0, 0,0,0/
data SHE/ 0,0,0, -1,1,0, 0,0,0/
data SHV/ -1,0,0, 0,1,0, 0,0,0/
data LEl/ 0,1,0, 1,-4,1, 0,1,0/
data LE2/ -,,1,-1,8,-1,-,--/
data LE3/ 1,-2,1, -2,4,-2, 1,-2,1/
data NGE/ 1,1,-1, 1,-2,-1, 1,1,-1/
data SGE/ -1,1,1, -1,-2,1, -1,1,1/
data EGE/ -1,-1,-l, ,-2,1, 11,-1/
data WGE/ 1,1,1, 1,-2,1, -1,2,-l/data NEG/ ,1,1 1,-2,-1, 1,1,1/
data SEG/ databelo -1,-2,1, 1,1,1/
data SWG/ 1,1,1, -11,-.11 -1,-1,1/
data NWG/ 1,1,-1, 1,-2,-1, 1,1,-i/data MVE/ -,i--,-,0,0,0,0,0, iiIIi
data MHE/ -1,0,1, -1,0,1, -1,0,1, -1,0,1, -1,0,1/
data VLE/ -, ,i,2,2,2,-i -, /
data HLE/ -1,2,-l, -1,2,-1, -1,2,-1/

"c REALFILT.for

real*4 LPI (9), LP2 (9), LP3 (9) ,USM(9)

"c Filters data below is in column major order
data LPI/.11111.1111,1111,

data LP2/.1.,1.1.,1.,../
data LP3/ .0625,.125,.0625, .125,.25,.125,

* .0625,.125,.0625/
data USM/ -. 125,-.125,-.125, -. 125,1,-.125,

* -. 125,-.125,-.125/
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APPENDIX B

A number of useful utility programs were developed for

converting AGA image files to a format compatible with the

IRIS Tutor processing programs. A brief description of each

function is provided.

" AGA2IMG - This utility converts a 20,446 byte AGA image
file into a 262,656 byte IRIS image file by centering
the 140x140 AGA data area in a 512x512 array, then
adding an appropriate file header. An AGA image file
has a 846 byte header, followed by 19,600 bytes of image
data. An IRSTD image file contains a 512 byte header,
followed by 262,144 bytes of data. The conversion
program discards the 846 byte AGA header since the IRIS
file format does not incorporate similar header fields
in its 512 byte header. The 19,600 byte data area of
the AGA file is then read into a blank 512x512 array, so
that AGA data is centered within the 512x512 array. The
resulting data array (19,600 bytes of good data and
242,544 bytes of blanks) is written to a new file along
with a 512 byte header, and an IRIS compatible image
file is created.

"* AGA2IMG1 - Same basic utility as in AGA2IMG, however
the image is automatically expanded to 512x512 by
disregarding 6 lines on all sides of the image.

"* AGAHDR - This file extracts the header information
from an original AGA image file, and writes the
information to a user specified location. This routine
can be command-line-accessed by input of the name of the
file to be processed followed by the filename for the
resulting header information.
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APPENDIX C

The following assembly language code replaces the final

copy routine in Bernier's 'LOADUP' program [Ref. 4] to

enable the load of images to consecutive frame buffers, thus

eliminating the need to halt the acquisition program every

time a file of interest is created. By first determining

which frame buffer is currently being displayed, and then

executing a copy to the next sequential frame buffer, up to

14 consecutive rotations can be acquired without halting the

program (the program sequences from buffer 15 to buffer 2 so

as not to disturb the sorting process). The determination

of the correct display buffer and the actual copy are

performed using the DT-2861 control/status registers rather

than executing a word-by-word copy as was done previously.

One consequence of this implementation is the loading of an

extra 90 lines of data, but this has not shown any adverse

effects. The program which fully implements this feature is

entitled 'MULTLOAD'.

Subroutine buffcpy.pm
by J.C. Heiss
MASM 5.1
19 May 1992

;********** BUFFCPY ROUTINE

curfrm: mov dx, YPAN
in ax, dx ;get current frame number
shr ax, 12
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cmp ax, OOOFh ;check to see if at 15 yet
jl cont
mov ax, 0001h ;if at 15, go to frame 1

cont:inc ax ;advance to next sequential frame
push ax ;save new frame number
mov dx, INCSR2 ;set register for FEEDBACK frame 0
bts ax, 7 ;BSEL set, BUFFSEL=new frame number
out dx, ax

mov dx, INCSRI ;set register for ALU=I010
mov ax, 00A0h
shl ax, 8 ;BUSY set, ALUM set
add ax, 0088h
out dx, ax ;results in ALU function F=B

pop ax
shl ax, 12 ;sets display buffer to next frame
mov dx, YPAN
out dx, ax

skip4:
mov ax, BUS01 ;restore buffer 0 at base address

OA00000h
mov dx, OUTCSR
out dx, ax

busy2:mov dx, INCSR1 poll BUSY bit til operation completed
in ax, dx
bt ax, 7
jc short busy2

;Perform absolute 16 bit jump (in a 16 bit segment)
JMP32S nextfrm

;End of program
quit:mov ax, 21h

mov PINTFRAME.VMINT,eax
mov edx, OFFSET endmsg ;display end of prog message

mov ah, 9
mov ebx, OFFSET PINTFRAME
VM86CALL

pop ecx ;clean up stack
popad ;restore all 32-bit registers from stack
BACK2DOS

USER ENDP
PROTCODEEND
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