Rob 501 - Mathematics for Robotics Recitation #10

Nils Smit-Anseeuw (Courtesy: Abhishek Venkataraman, Wubing Qin)

Dec 4, 2018

1 Set Theory

- 1. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$,
 - The distance from vector $x \in \mathcal{X}$ to vector $y \in \mathcal{X}$ is defined as d(x, y) := ||x y||.
 - The distance from a vector $x \in \mathcal{X}$ to a set $S \subset \mathcal{X}$ is defined as $d(x, S) := \inf_{x \in \mathcal{X}} ||x y||$.
- 2. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, let $P \subset \mathcal{X}$ be a subset.
 - A point $x \in P$ is an interior point of P if $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset P$. The interior of P, denoted as \mathring{P} , is the set of all the interior points of P.
 - A point $x \in \mathcal{X}$ is a closure point of P if $\forall \epsilon > 0$, $B_{\epsilon}(x) \bigcap P \neq \emptyset$. <u>The closure of P, denoted as \overline{P} , is the set of all the closure points of P.</u>
 - P is open if $P = \mathring{P}$.
 - P is <u>closed</u> if $P = \overline{P}$.

Remark:

- The interior of P is the largest open set contained in P.
- The closure of P is the smallest closed set containing P.
- P is open $\iff P = \{x \in \mathcal{X} \mid \exists \epsilon > 0 : B_{\epsilon}(x) \subset P\}$ $\iff P = \{x \in \mathcal{X} \mid \exists \epsilon > 0 : B_{\epsilon}(x) \cap (\sim P) = \emptyset\}$ $\iff P = \{x \in \mathcal{X} \mid d(x, \sim P) > 0\}$
- P is closed $\iff P = \{x \in \mathcal{X} \mid \forall \epsilon > 0, B_{\epsilon}(x) \bigcap P \neq \emptyset\}$ $\iff P = \{x \in \mathcal{X} \mid \forall \epsilon > 0, \exists y \in P : ||x - y|| < \epsilon\}$ $\iff P = \{x \in \mathcal{X} \mid d(x, P) = 0\}$
- 3. **Proposition:** In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$,
 - A finite intersection of open sets is open.
 - A finite union of closed sets is closed.
 - An arbitrary union of open sets is open.
 - An arbitrary intersection of closed sets is closed.

Remark:

An infinite intersection of open sets can be either open or closed, or neither. An infinite union of closed sets can also be either open or closed, or neither.

- 4. Ex: In the following examples, I denote the set of irrational numbers.
 - (a) In $(\mathbb{R}, \mathbb{R}, |\cdot|)$, $d(\sqrt{2}, 1) = ? d(\sqrt{2}, \mathbb{Q}) = ?$ If given $x \in \mathbb{I}$, $d(x, \mathbb{Q}) = ?$
 - (b) Are the sets below open or closed?
 - In normed space $(\mathbb{R}, \mathbb{R}, \|\cdot\|),$ $P_1 = \{0\}$ $P_2 = [0, 1]$ $P_3 = (0, 1)$ $P_4 = [0, 1)$ $P_5 = \mathbb{R}$ $P_6 = \emptyset$ • In normed space $(\mathbb{R}^2, \mathbb{R}, \|\cdot\|),$ $P_1 = (0, 1) \times (0, 1)$ $P_2 = [0, 1] \times (0, 1)$ $P_3 = \{(x, y) \in \mathbb{R}^2 | y = 2x + 1\}$
 - (c) Recall from recitation 2, we have shown that the set of rational numbers \mathbb{Q} with standard + and \times operation is a field, and a field over itself is a vector space, so (\mathbb{Q}, \mathbb{Q}) is a vector space. If we define the norm in (\mathbb{Q}, \mathbb{Q}) as ||x y|| = |x y| for all $x, y \in \mathbb{Q}$, then $(\mathbb{Q}, \mathbb{Q}, || \cdot ||)$ is a normed space.
 - In normed space $(\mathbb{Q}, \mathbb{Q}, \|\cdot\|), \overline{\mathbb{Q}} = ? \mathring{\mathbb{Q}} = ?$ Is \mathbb{Q} open or closed?
 - In normed space $(\mathbb{R}, \mathbb{R}, \|\cdot\|), \overline{\mathbb{Q}} = ? \mathring{\mathbb{Q}} = ?$ Is \mathbb{Q} open or closed? $\overline{\mathbb{I}} = ? \mathring{\mathbb{I}} = ?$ Is \mathbb{I} open or closed?

,

,

2 Completeness and compactness

1. A sequence (x_n) in a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ is a Cauchy sequence if

 $\forall \epsilon > 0, \exists N(\epsilon) < +\infty : \forall n, m \ge N, ||x_n - x_m|| < \epsilon.$

2. A sequence (x_n) in a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ is a convergent sequence if there exists an $x^* \in \mathcal{X}$ such that

$$\forall \epsilon > 0, \exists N(\epsilon) < +\infty : \forall n \ge N, ||x_n - x^*|| < \epsilon.$$

- 3. A normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ is complete if every Cauchy sequence in \mathcal{X} converges to a limit in \mathcal{X} . A complete normed space is called Banach space.
- 4. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, a subset $P \subset \mathcal{X}$ is a <u>complete set</u> if every Cauchy sequence in P converges to a limit in P.
- 5. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, a subset $P \subset \mathcal{X}$ is <u>(sequentially) compact</u> if every sequence in P has a convergent subsequence whose limit belongs to P.

6. Theorem:

- In a finite dimensional normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, a subset of \mathcal{X} is compact if and only if it is closed and bounded.
- In a finite dimensional normed space, every bounded sequence has a convergent subsequence.
- In a normed space, any finite dimension subspace is complete.
- Any closed subset of a complete set is complete.

7. Ex:

(a) Consider the sequence (x_n) below.

•
$$x_n = \left(1 + \frac{1}{n}\right)^n$$

• $x_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1}$. Considering Taylor series $\arctan x = \sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k-1} x^k$.

- (b) Is the normed space $(\mathbb{Q}, \mathbb{Q}, \|\cdot\|)$ complete? How about normed space $(\mathbb{R}, \mathbb{R}, \|\cdot\|)$?
- (c) In normed space (ℝ, ℝ, || · ||), whether the following sets are compact and complete?
 [0, +∞)
 - [0, 1)
 - [0,1]