Rob 501 - Mathematics for Robotics Recitation $\#10$

Nils Smit-Anseeuw (Courtesy: Abhishek Venkataraman, Wubing Qin)

Dec 4, 2018

1 Set Theory

- 1. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|),$
	- The distance from vector $x \in \mathcal{X}$ to vector $y \in \mathcal{X}$ is defined as $d(x, y) := \|x y\|$.
	- The <u>distance from a vector $x \in \mathcal{X}$ to a set $S \subset \mathcal{X}$ </u> is defined as $d(x, S) := \inf_{y \in S} ||x y||$.
- 2. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, let $P \subset \mathcal{X}$ be a subset.
	- A point $x \in P$ is an interior point of P if $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset P$. The interior of P, denoted as $\overset{\circ}{P}$, is the set of all the interior points of P.
	- A point $x \in \mathcal{X}$ is a closure point of P if $\forall \epsilon > 0$, $B_{\epsilon}(x) \cap P \neq \emptyset$. The closure of P, denoted as \overline{P} , is the set of all the closure points of P.
	- *P* is open if $P = \overset{\circ}{P}$.
	- P is closed if $P = \overline{P}$.

Remark:

- The interior of P is the largest open set contained in P .
- The closure of P is the smallest closed set containing P .
- P is open \iff P = { $x \in \mathcal{X} \mid \exists \epsilon > 0 : B_{\epsilon}(x) \subset P$ } $\iff P = \{x \in \mathcal{X} \mid \exists \epsilon > 0 : B_{\epsilon}(x) \bigcap (\sim P) = \emptyset\}$ $\iff P = \{x \in \mathcal{X} \mid d(x, \sim P) > 0\}$
- *P* is closed $\Leftrightarrow P = \{x \in \mathcal{X} \mid \forall \epsilon > 0, B_{\epsilon}(x) \cap P \neq \emptyset\}$ $\Longleftrightarrow P = \{x \in \mathcal{X} \, | \, \forall \, \epsilon > 0, \, \exists y \in P : \, ||x - y|| < \epsilon\}$ $\Longleftrightarrow P = \{x \in \mathcal{X} \mid d(x, P) = 0\}$
- 3. Proposition: In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|),$
	- A finite intersection of open sets is open.
	- A finite union of closed sets is closed.
	- An arbitrary union of open sets is open.
	- An arbitrary intersection of closed sets is closed.

Remark:

An infinite intersection of open sets can be either open or closed, or neither. An infinite union of closed sets can also be either open or closed, or neither. 4. Ex: In the following examples, I denote the set of irrational numbers.

(a) In
$$
(\mathbb{R}, \mathbb{R}, |\cdot|)
$$
, $d(\sqrt{2}, 1) = ?$ $d(\sqrt{2}, \mathbb{Q}) = ?$ If given $x \in \mathbb{I}$, $d(x, \mathbb{Q}) = ?$

- (b) Are the sets below open or closed?
	- In normed space $(\mathbb{R}, \mathbb{R}, || \cdot ||),$ $P_1 = \{0\}$ $P_2 = [0, 1]$ $P_3 = (0, 1)$ $P_4 = [0, 1)$ $P_5 = \mathbb{R}$ $P_6=\emptyset$ • In normed space $(\mathbb{R}^2, \mathbb{R}, \| \cdot \|),$ $P_1 = (0, 1) \times (0, 1)$ $P_2 = [0, 1] \times (0, 1)$ $P_3 = \{(x, y) \in \mathbb{R}^2 \mid y = 2x + 1\}$
- (c) Recall from recitation 2, we have shown that the set of rational numbers $\mathbb Q$ with standard $+$ and \times operation is a field, and a field over itself is a vector space, so (\mathbb{Q}, \mathbb{Q}) is a vector space. If we define the norm in (\mathbb{Q}, \mathbb{Q}) as $\|x - y\| = |x - y|$ for all $x, y \in \mathbb{Q}$, then $(\mathbb{Q}, \mathbb{Q}, \| \cdot \|)$ is a normed space.
	- In normed space $(\mathbb{Q}, \mathbb{Q}, \| \cdot \|), \overline{\mathbb{Q}} = ? \overset{\circ}{\mathbb{Q}} = ?$ Is \mathbb{Q} open or closed?
	- In normed space $(\mathbb{R}, \mathbb{R}, \| \cdot \|), \overline{\mathbb{Q}} = ?\mathbb{Q} = ?$ Is \mathbb{Q} open or closed? $\overline{\mathbb{I}} = ?\mathbb{I} = ?$ Is \mathbb{I} open or closed?

(d)
\n
$$
\bigcap_{n=1}^{\infty} \left(-1 + \frac{1}{n}, 1 \right) = ,
$$
\n
$$
\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n} \right) = ,
$$
\n
$$
\bigcup_{n=1}^{\infty} \left[-1, \frac{1}{n} \right] = ,
$$
\n
$$
\bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = ,
$$
\n
$$
\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, 1 \right) = ,
$$
\n
$$
\bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, \frac{1}{n} \right] = ,
$$

2 Completeness and compactness

1. A sequence (x_n) in a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ is a Cauchy sequence if

 $\forall \epsilon > 0, \exists N(\epsilon) < +\infty : \forall n, m \ge N, ||x_n - x_m|| < \epsilon.$

2. A sequence (x_n) in a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ is a convergent sequence if there exists an $x^* \in \mathcal{X}$ such that

$$
\forall \epsilon > 0, \ \exists \ N(\epsilon) < +\infty : \forall \ n \ge N, \ \|x_n - x^*\| < \epsilon.
$$

- 3. A normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$ is complete if every Cauchy sequence in X converges to a limit in X. A complete normed space is called Banach space.
- 4. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, a subset $P \subset \mathcal{X}$ is a complete set if every Cauchy sequence in P converges to a limit in P.
- 5. In a normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, a subset $P \subset \mathcal{X}$ is (sequentially) compact if every sequence in P has a convergent subsequence whose limit belongs to P.

6. Theorem:

- In a finite dimensional normed space $(\mathcal{X}, \mathbb{R}, \|\cdot\|)$, a subset of X is compact if and only if it is closed and bounded.
- In a finite dimensional normed space, every bounded sequence has a convergent subsequence.
- In a normed space, any finite dimension subspace is complete.
- Any closed subset of a complete set is complete.

7. Ex:

(a) Consider the sequence (x_n) below.

•
$$
x_n = \left(1 + \frac{1}{n}\right)^n
$$

•
$$
x_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1}.
$$
 Considering Taylor series $\arctan x = \sum_{k=1}^\infty \frac{(-1)^{k+1}}{2k-1} x^k.$

- (b) Is the normed space $(\mathbb{Q}, \mathbb{Q}, \|\cdot\|)$ complete? How about normed space $(\mathbb{R}, \mathbb{R}, \|\cdot\|)$?
- (c) In normed space $(\mathbb{R}, \mathbb{R}, \|\cdot\|)$, whether the following sets are compact and complete?
	- $[0, +\infty)$
	- $[0, 1)$
	- $[0, 1]$