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ABSTRACT 

This thesis focuses on the security of Short Message Service (SMS) and 

the Global System for Mobile communication (GSM) network, and the use of 

encryption to protect SMS messages. A detailed study of the GSM network, the 

SMS protocol and various encryption schemes was conducted to understand the 

properties of different encryption schemes and their applicability to SMS 

messages. An experiment was conducted to measure the actual performance of 

various encryption schemes on a modern smart phone. An analysis of the 

encryption scheme properties and the performance measurement was then 

conducted to select a suitable scheme for SMS encryption. The selected scheme 

was implemented in the form of a Secure SMS Chat application to validate the 

viability of the selected encryption scheme. Potential applications of secure SMS 

in military settings are also discussed.  
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I. INTRODUCTION 

A.  BACKGROUND 

Short Message Service (SMS) is a text message service that enables 

users to send short messages to other users on the Global System for Mobile 

communication (GSM) network. SMS uses a store-and-forward mechanism 

similar to SMTP mail service. Instead of mail servers, SMS Centers (SMSC) are 

used to store the SMS messages before they are forwarded to the mobile user's 

service provider or another SMSC. Although the network connections between 

the SMSC and nodes in a GSM network are usually protected by Virtual Private 

Network (VPN) tunnels, the SMS messages are stored unencrypted at the 

SMSC. This means that employees of SMSC operators, or others who can hack 

into the system, can view all the SMS messages passing through the SMSC. 

Many SMSCs also retain a copy of the SMS messages for audit, billing and 

dispute resolution purposes [1]. If an attacker manages to compromise the 

SMSC, the attacker can also read the SMS traffic. One of the more high profile 

victims of such an attack in recent years was England football captain David 

Beckham, whose SMS exchange with his personal assistant Rebecca Loos was 

intercepted and published in a tabloid [2]. Two employees from European phone 

operator mmO2 were dismissed for helping their friend obtain copies of his 

girlfriend’s SMS messages [3]. 

 

B. STATEMENT OF PROBLEM 

Encryption provides a means of protecting sensitive communications over 

a public network but it imposes overhead in terms of additional computing. 

Mobile devices are generally faced with constraints on computational power and 

battery life. These constraints impose limits on the amount of encryption 

operations that can be performed without seriously affecting the usability of the 

device. Therefore, symmetric encryption is commonly used in mobile devices 
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because of its efficiency relative to asymmetric encryption, such as PKI.  That is 

why most current commercial SMS encryption solutions use password-based 

symmetric encryption. Passwords are used as a key distribution mechanism to 

synchronize the encryption keys. However, the use of passwords reduces the 

strength of the cipher to the strength of the password when open algorithms, 

such as Data Encryption Standard (DES) or Advanced Encryption Standard 

(AES), are used. The onus is on the user to select a strong password. 

Although asymmetric encryption offers the additional advantage of simple 

key distribution and strong encryption, asymmetric encryption is not used 

because it is computationally demanding. 

However, mobile devices have experienced dramatic improvements in 

computing speeds and memory capacity, matching those of desktop computers a 

few years ago. Advances have also been made in battery technology and the 

energy efficiency of components, thereby extending the operating life of mobile 

devices. Given these developments, it remains to be shown whether or not 

modern devices are still limited in their ability to harness the advantages of 

asymmetric encryption to secure messages like SMS. 

 

C. SCOPE OF RESEARCH 

This thesis focuses on the use of encryption to secure SMS messages. 

The encryption requirements of voice traffic and other data traffic will not be 

discussed. The characteristics of different encryption schemes and their 

performance on a modern mobile device are presented. The properties of SMS 

were assessed with respect to their impact on encryption selection.  Based on 

the measurement results, a suitable encryption scheme for SMS is selected, and 

deployed. A typical application is used to validate the selection.  
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D. RESEARCH OBJECTIVES 

1. Primary Research Question 

The primary research objective is to compare the performances of 

different encryption schemes on a modern mobile device and determine a 

suitable scheme, or combination of schemes, for protecting SMS messages. The 

aim is to determine if there are better ways of protecting SMS messages than 

just using symmetric encryption, thereby alleviating the constraints imposed on 

encryption use by the difficulties of symmetric key management. 

 

2. Subsidiary Research Questions 

Based on actual measurements, it will be possible to determine the 

overhead, such as power consumption, timing, and transmission, associated with 

encryption operations for different schemes. With this information, it may be 

possible to devise combinations of encryption schemes to meet different security 

requirements for different applications. 

 

E. RESEARCH METHODOLOGY 

The research comprises of two major areas, namely the comparison of 

different encryption schemes and the identification and deployment of a selected 

scheme.  

The available encryption schemes will be studied and compared based on 

their security properties and characteristics through literature research. The 

properties of SMS will be studied in detail to understand its characteristics and to 

determine security requirements. The comparison of the performance of different 

encryption schemes will be done using results from actual measurements. An 

experiment will be set up to measure the power consumption, timing overhead 

and transmission overheads associated with encryption. Conclusions can then 

be drawn taking into consideration these factors. 
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The demonstration application selected to validate the choice of 

encryption is a “Secure Chat” application based on SMS. The application was 

chosen because it has practical applications and is demanding in terms of real 

time user interactivity.  

 

F. THESIS ORGANIZATION 

The remainder of the thesis is organized as follows.  Chapter II provides 

an overview of the security issues surrounding SMS, from the GSM infrastructure 

to the mobile device. This Chapter also highlights some applications where the 

security of the SMS is of paramount importance if it is to be used as a delivery 

mechanism in the application. 

Chapter III discusses the issues surrounding the use of encryption in 

mobile devices. It highlights some of the key considerations when choosing a 

suitable encryption scheme. The results of an experiment to measure some of 

the performance metrics are also discussed in this Chapter. 

Chapter IV describes the Secure Chat demonstration application that was 

developed to show how SMS messages can be secured using encryption.  

Chapter V concludes the thesis and provides recommendations for further 

research in this area. 

 

 



 5

II. OVERVIEW 

A. OVERVIEW 

The GSM network has grown rapidly since its introduction in the early 

1990s, with the second billionth GSM user connected in Q2 2006 [4]. The 

number of SMS messages sent has also seen explosive growth, with an 

estimated one trillion SMS messages sent globally in 2005 [5]. With the vast 

amount of information transacted using SMS, it is important the SMS text 

messages be adequately protected against eavesdropping and modification.   

A discussion on SMS security is especially challenging because SMS 

messages transverse across different transmission media, undergo multiple 

protocol translations, and are processed by different devices operated by 

different organizations. As such, the overall security of SMS will be only as strong 

as the weakest link in the whole chain.  

This Chapter discusses the security of SMS in three parts: at the GSM 

infrastructure level, at the SMS application layer, and at the mobile device. The 

last section of the Chapter discusses other potential uses of SMS if its security 

can be assured. 

 

B. GSM SECURITY 
1. GSM Technology 
 The standards for GSM are governed by the European 

Telecommunications Standards Institute (ETSI) [6]. A typical GSM system is 

comprised of three subsystems: the Mobile Station, the Base Station Subsystem 

and the Network Subsystem. Figure 1 provides an overview of a typical GSM 

network with the key components and the SMS Center (SMSC). 

 

 



 6

 
Figure 1.   Overview of the GSM Network 

 
The Mobile Station is the mobile component of the GSM system and 

includes the Mobile Equipment (ME) and the Subscriber Identity Module (SIM).  

The Base Station Subsystem includes Base Transceiver Stations (BTS) 

and Base Switching Centers (BSC). On one end, the Base Station Subsystem 

interfaces with the Mobile Station and manages the mobility of the Mobile 

Equipment across different Base Transceiver Stations. On the other end, the 

Base Station Subsystem interfaces with the Network Subsystem to connect to 

the external networks and other services.   

The Network Subsystem is the core of the GSM system and provides 

functionalities such as call connections, management of subscribers, mobility, 

and interfaces with the other networks such as Public Switched Telephone  
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Network (PSTN), Internet and other data networks.  These functionalities are 

implemented through the core components: Mobile Switching Center (MSC), 

Home Location Record (HLR), Visitor Location Record (VLR), Authentication 

Center (AuC) and Equipment Identity Register (EIR). 

 

2. GSM Security Features 
From the initial conception, GSM was designed with security in mind.  

However, the primary motivations were to eliminate cellular fraud, which was 

prevalent in analog cellular systems, and to protect communications against 

interception over the air [7]. The security aspects of GSM are described in ETSI 

GSM 02.09 [8] and the four basic security services that were expected to be 

provided were subscriber anonymity, authentication, signaling data and voice 

protection against eavesdropping, and identification of user and mobile 

equipment [9].  In order to achieve these security objectives, several security 

components were required:  

• Authentication Algorithm  (A3) 

• Authentication Center (AuC) 

• Ciphering Algorithm (A5) 

• Ciphering Key Generating Algorithm (A8) 

• Ciphering Key Sequence Number (CKSN)  

• Ciphering Key (Kc) 

• International Mobile Subscriber Identity (IMSI)  

• Individual Subscriber Authentication Key (Ki) 

• Location Area Identity (LAI) 

• Random Number (RAND) 

• Signed Response (SRES) 
 

 

 

 



 8

These components are implemented in three different system elements; the 

Subscriber Identity Module (SIM) [10], the GSM network [11] and the GSM 

handset. Figure 2 shows the distribution of these components in the GSM 

network.  

 

BSCBTS MSC
HLR

VLR

A3 - Authentication Algorithm  
A5 - Ciphering Algorithm 
A8 - Ciphering Key Generating Algorithm
AuC – Authentication Center
BTS – Base Transceiver Station
BSC – Base Switching Center
CKSN - Ciphering Key Sequence Number
HLR – Home Location Record
IMSI - International Mobile Subscriber Identity 

AuC

Kc - Ciphering Key 
Ki - Individual Subscriber Authentication Key 
LAI - Location Area Identity
ME – Mobile Equipment
MSC – Mobile Switching Center
RAND - Random Number 
SRES - Signed Response
SIM – Subscriber Identity Module
VLR – Visitor Location Record

SIM ME

A3, A8,
IMSI, Ki, TMSI/LAI, 

Kc/CKSN

A5 TMSI/IMSI/Kc Set of RAND, 
SRES, Ki

A3, A8, IMSI, 
Ki

Set of RAND, 
SRES, Ki

A5

 
Figure 2.   Security Components in a GSM Network (After Ref. [12])  

 

The application of these components to achieve the security objectives 

are described in detail in the following Subsections.  
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3. GSM Authentication  
The GSM network uses a challenge-response mechanism for 

authentication [12]. Figure 3 shows the authentication process.  

 
Figure 3.   GSM Authentication Mechanism 

 

A 128-bit random number (RAND) is generated by the HLR and sent to 

the Mobile Station (MS). The MS encrypts the RAND by using the authentication 

algorithm (A3) and the individual subscriber authentication key (Ki). The output is 

a 32-bit signed response (SRES) that is sent back to the network.  Upon 

receiving the signed response (SRES) from the subscriber, the GSM network 

repeats the same computation to produce SRES’. If SRES and SRES’ are the 

same, the identity of the subscriber is authenticated. If SRES and SRES’ do not 

match, the connection is terminated and an authentication failure message is 

sent to the MS. 
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Throughout the entire authentication process, the individual subscriber 

authentication key (Ki) is never transmitted over the radio channel. Ki is only 

present in the SIM, AuC, HLR, and VLR.  The calculation of the signed response 

is processed within the SIM to protect confidential subscriber information such as 

the IMSI or Ki.  

 

4.  Data Confidentiality 
Data confidentiality is achieved through the use of the key generation 

algorithm (A8) and the encrypting algorithm A5. Figure 4 illustrates the encryption 

process.  

 
Figure 4.   GSM Encryption Mechanism 

 

The SIM uses the random number (RAND) used in the authentication 

process and the individual subscriber key (Ki) to generate the 64-bit cipher key 

(Kc) based on the key generating algorithm (A8).  Once generated, the cipher 

key is used as the key to the A5 algorithm for subsequent encryption of data 
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between the Mobile Equipment (ME) and the Base Transceiver Station (BTS). 

On the network end, the Kc is generated in the same manner by the HLR and 

passed to the BTS. After the authentication process, a cipher mode request is 

sent to the ME to decide on the cipher to use. Once the cipher is agreed upon, all 

subsequent radio traffic between the ME and the BTS is encrypted using Kc. The 

same Kc is used for the entire session of communication. The GSM standard 

allows for regular key change through re-authentication of the ME for added 

security. However, this is not implemented for many systems. As a result, the 

same Kc may be used for days. Similar to the authentication process, the 

computation of the ciphering key (Kc) takes place within the SIM. Therefore, the 

individual subscriber authentication key (Ki) does not leave the SIM. 

 

5. Subscriber Identity Confidentiality 
The confidentiality of the subscriber identity (IMSI) is achieved through the 

use of the Temporary Mobile Subscriber Identity (TMSI). When the ME is first 

switched on in a new MSC/VLR area, the real identity (IMSI) is used and a TMSI 

is assigned by the network to the ME. Thereafter, the TMSI is used for all 

subsequent communications between the ME and the GSM network. Both the 

IMSI and TMSI are stored in the SIM. Figure 5 shows the TMSI allocation 

process.  
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BSCBTS MSC

HLR VLRAuC

SIM ME

TMSI Reallocation 
Confirmation

Decrypt 
Request

TMSI Reallocation Request
Encrypt 
Request

Decrypt 
Confirmation

Encrypt 
Confirmation

 
Figure 5.   TMSI Reallocation 

 
 

After the authentication and encryption process is complete, the TMSI is 

sent to the MS. The MS responds by confirming reception of the TMSI. The TMSI 

is valid in the location area in which it was issued. To support roaming of 

subscribers to other networks, the Location Area Identification (LAI) is used in 

addition to the TMSI to determine the location and identity of the subscriber.  

 

6. SIM Security 
Although the Subscriber Identity Module (SIM) physically resides with the 

Mobile Equipment (ME), it is regarded as an important part of the GSM 

infrastructure because it is the piece of hardware that represents the subscriber. 

As described in the previous sections, the SIM houses many of the security 

components for the GSM Network. All authentication operations take place within 

the SIM and none of the keys or ciphers leaves the SIM. The SIM may also be 

protected with a Personal Identification Number (PIN). SMS messages are also 

stored in the SIM. Generally, the SIM is considered a piece of tamper-proof 

hardware. Although hacks against smart cards are available, extraction of 
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information directly from the card is generally difficult and it requires physical 

access to the card and specialized equipment.  It is easier to make a clone of the 

card by making use of information on the key generating algorithm. The following 

Section describes this vulnerability in greater detail. 

  

7.  GSM Network Vulnerabilities 
Several vulnerabilities in the GSM network have been exposed over the 

past years. Most of them involve the breaking of the encryption algorithms used: 

A3, A5 and A8. These encryption algorithms were originally developed in secrecy 

and were not subjected to public review [13]. Subsequently, when the codes for 

the algorithms were leaked or crypto-analyzed, vulnerabilities were found in 

these algorithms or in their implementations [14].  

The A3 and A8 algorithms were mainly broken because most GSM 

providers use the COMP128 algorithm to implement A3 and A8. COMP128 is a 

hash algorithm that takes a 128-bit key (in this case Ki) and a 128-bit input (in 

this case the random number challenge issued by the HLR) and produces a 96-

bit output. The first 32 bits are used as the signed response (SRES) and the 

remaining 64 bits is used as input for the A5 algorithm. Once the 128-bit key for 

COMP128 can be derived, the SIM card can be cloned. If the SIM card can be 

cloned, the entire GSM authentication mechanism falls apart because the GSM 

network can no longer differentiated between the different users. The most 

recent attack on COMP128 used a partitioning attack and reduced the attack 

time to less than a minute [15]. This means that an attacker only needs a minute 

of physical access time to derive the key and clone the SIM. Over-the-air cloning 

was accessed to be technically feasible by building a fake base station at a cost 

of about US$10K [14]. For the determined attacker, this is certainly achievable. 
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The A5 encryption algorithm is a stream cipher that protects the over-the-

air transmission between the ME and the BTS. The A5 algorithms are available 

in different versions: 

• A5/0 utilizes no encryption. 

• A5/1 is the original A5 algorithm used in Europe. 

• A5/2 is a weaker encryption algorithm created for export and used 
in the countries outside Europe 

• A5/3 is a strong encryption algorithm that is created as part of the 
3rd Generation Partnership Project (3GPP) for the 3G systems.  

 

Attacks against the A5 algorithm have been published as early as 1997. In 

2003, a group of researchers from Israel published practical attacks on the 

stronger A5/1 algorithm that could be carried out in real-time [17].  This showed 

that the GSM network can no longer be relied on to provide confidentiality of 

information even on the radio links. The GSM standards do not impose security 

requirements for land line connections. Therefore, the implementation of any 

form of encryption on the land lines is left up to the telecommunications 

operators.  

The GSM network can be subjected to Denial of Service attacks using 

electronic jammers. Since the GSM operating frequencies are known, generating 

a stronger radio signal to overwhelm the BTS and MS is trivial. However, a 

recent paper published by Pennsylvania State University described how a remote 

Denial of Service attack can be conducted on a GSM network by using SMS [18]. 

The idea was to flood the control channel of a particular GSM cell with SMS 

messages. When the control channel is overwhelmed, call establishments and 

roaming are severely impacted in the targeted cell. 
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8. SMS Center (SMSC) Security 
The SMSC is often considered an integral part of the GSM network. 

However, with the rapid growth in SMS applications, many independent SMSC 

operators have sprouted in the industry. They lease connections from the 

telecommunications service provider and provide services such as SMS 

advertising, news broadcasts, chats, etc. In terms of security, this has huge 

implications.  

 

a.  Policy Enforcement 
Originally, the GSM network could be considered a relatively closed 

network with connections only to other telecommunications operators. The 

telecommunications operator owns the infrastructure, including the radio links. 

Thus, a unified security policy could be applied across the entire network, 

assuming that the operator has a minimal set of security policies that make a 

difference.  Any security breaches from employees in the network could be 

investigated easily. With a connection to a third party SMSC, the trust is 

essentially extended to the SMSC. However, the telecommunications operator 

does not own the SMSC. Therefore, there is no way of ensuring that the same 

level of security can be enforced at the SMSC. Even though the connection may 

be secured with a Virtual Private Network, the host security of the SMSC cannot 

be determined.  

 

b. Host Security 
Although SMSC provides a specialized service, the applications are 

usually hosted on platforms that run general purpose Operating Systems, like 

Unix or Windows. These Operating Systems have their own set of security 

vulnerabilities and require regular patching.  Security mechanisms, such as 

access control, physical security, policy enforcement, and security administration, 

need to be in place to ensure the security of SMSC.   
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c. Network Security 
The SMSC usually rides on the Internet infrastructure for cost 

reasons and to tap into the huge number of Internet users. By connecting to the 

Internet, the SMSC has essentially bridged the GSM network with the Internet 

and introduced the vulnerabilities and threats of the Internet to the GSM network. 

One can argue that many GSM operators already support General Packet Radio 

Service (GPRS), which is also connected to the Internet. However, the key 

difference is that the GSM operator owns the GPRS infrastructure. Therefore, the 

telecommunications operator can decide on what the defensive mechanisms are 

required to enforce the security policy. However, the GSM operator cannot 

mandate what mechanisms the SMSC must have in order to be connected to it.  

 
C. SMS APPLICATION LAYER SECURITY 

1.  SMS Protocol 
The Short Message Service (SMS) was created as part of the GSM Phase 

1 standard. Each short message is up to 160 characters in length when Latin 

alphabets are used and 70 characters in length when non-Latin alphabets, such 

as Arabic and Chinese, are used [19].  

SMS is a store and forward service.  In other words, SMS messages are 

not sent directly from sender to recipient, but always via an SMS Center (SMSC). 

Each mobile telephone network that supports SMS has one or more messaging 

centers to handle and manage the short messages.  Some of the features of 

SMS that have led to the popularity of SMS are [20]: 

• SMS supports confirmation of message delivery. The sender of the 
message can choose to receive a return message back to indicate 
whether the SMS has been delivered or not. 

• SMS can be sent and received simultaneously with other traffic. 
SMS uses the control channel as a transport mechanism, unlike 
voice, data and fax calls which use dedicated radio channels for the 
duration of the call.  

• SMS compression and concatenation have been defined and 
incorporated into the GSM SMS standards. As such, the original 
160 character limitation can be overcome.  



 17

• SMS is not bandwidth intensive. This allows telecommunications 
service providers to offer attractive pricing plans, which includes 
free SMS messages. Packages with 900 free SMS messages are 
offered for under USD20 in some service plans in Singapore [21].  

 
Besides the technological properties, the attractive social aspect of short 

text messaging has also contributed to the success of SMS. Text messaging is 

non-intrusive and discreet, and is particularly suitable in certain social settings 

like meetings or social gatherings. Therefore, SMS has become the primary 

mode of communications for many.  Besides the casual exchange of information 

among friends, the use of SMS has also expanded to other industries such as 

gaming, banking, education, remote sensor monitoring, advertising, voting, etc. 

Further potential applications using secure SMS are discussed in last Section of 

this Chapter. 

 

2. SMS Security Specifications 
The technical specifications for SMS and SIM are described in ETSI TS 

03.48. The intent was to spell out the specifications required to achieve end-to-

end security between Mobile Stations and SMS Centers. However, all the 

specifications did was to define additional fields that could be used in the user-

defined portion of the SMS Transfer Protocol Data Unit (TPDU) to describe the 

security properties that the SMS will have.  

The SMS application server or the SIM can set the first byte of the User 

Data Header to a value of Ox70 to indicate that the User Data Header will be 

followed by a Command Header, which in turns describes the security 

parameters used to secure the data. The first two bytes of the Command Header 

denote the total length of the Command Header and the Secured User Data. The 

next byte is the length of the rest of the Command Header. Figure 6 shows the 

SMS_SUBMIT TPDU structure when the security headers are used. 
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Figure 6.   SMS_SUBMIT TPDU with Security Headers (After Ref. [19]) 

 

The Command Header essentially describes how the user data is being 

encrypted. The Command Header consists of seven fields as follows: 

• Security Parameter Index (SPI)  

• Ciphering Key Identifier (KIc)  

• Key Identifier (KID)  

• Toolkit Application Reference (TAR) 

• Padding Counter (PCNTR) 

• Integrity Value (RC/CC/DS) 
 

Figure 7 is a graphical representation of the Command Header. 

 
Figure 7.   Structure of Command Header 
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The SPI is a collection of flags used to describe the security parameters. 

This provides the recipient with sufficient information to undo the sequence of 

operations to recover the data. The byte value coding for the SPI is shown in 

Figures 8 below, where PoR refers to Proof of Receipt and RE is the Receiving 

Entity, who will create the PoR. 

 

 
Figure 8.   Security Parameter Index Coding [After Ref. [22]) 
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The KIc describes the key and the ciphering algorithm used. The 

specifications allow for the implementation of proprietary encryption algorithms.  

Figure 9 shows the coding of the KIc values. It can be seen that no key exchange 

mechanism is built into the specifications. It is assumed that the agreement on 

the key to be used has already been established. 

 

 
 

Figure 9.   KIc Coding (After Ref. [22]) 
 

The KID refers to the key and algorithm used to compute the redundancy 

check (RC), cryptographic checksum (CC) or digital signature (DS) of the 

secured data. The coding is very similar to the KIc and is shown in Figure 10. 

 
 

 
Figure 10.   KID Coding (After Ref. [22]) 

 



 21

The Toolkit Application Reference (TAR) is used to indicate which 

application should handle the secured data, similar to the use of port numbers in 

Transmission Control Protocol (TCP). However the definition of its use is very 

fuzzy in the specifications. The official description is “coding is application 

dependent.”  

The Counter (CNTR) indexes the messages between the application 

server and the SIM. The main purpose is to create a nonce to prevent replay 

attacks. However, the management of the counter value is challenging if the 

application or the SIM needs to keep track of the counter values in conversations 

with multiple parties. As such, a weaker method of counter was implemented in 

some applications using time stamp values in the CNTR field.  

The Padding Counter (PCNTR) is the number of padding bytes at the end 

of the secured data. This is typically required in block ciphers, where the data is 

encrypted in fixed block sizes. If the data is not in multiples of the block size, the 

last block needs to be padded to the block size. 

A Redundancy Check (RC), Cryptographic Checksum (CC) or Digital 

Signature (DS) is used to verify the integrity of the secured data.  

It is apparent that the SMS application layer only provides options for 

describing the security context between the SMS applications and SIM. Data 

confidentiality protection, integrity protection, and anti-replay mechanisms can be 

described. However, the specific implementations of all these mechanisms are 

left to the application developer. No specific requirements were placed at the 

application layer to secure SMS. Ultimately, SMS still rides on the security 

provided by the GSM network. The specifications merely provide application 

developers with options to describe the security measures that are implemented. 
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D. MOBILE DEVICE SECURITY 
As the SMS message arrives at the mobile device, it is subjected to 

another set of threats. This Section highlights some of the threats and risks in a 

mobile device. 

  

1. Physical Security 
One of the biggest threats for cell phones and mobile devices is physical 

theft or loss due to their high value and small size. In an independent survey 

conducted by The Ponemon Institute in August 2006, 81% of the surveyed 

companies experienced one or more lost or missing laptop computers containing 

sensitive or confidential business information in the past 12 month period [23]. A 

recent data breach involved the loss of a United States Veteran’s Administration 

(VA) employee’s laptop computer containing the names and Social Security 

numbers of almost 27 million living veterans. The laptop was stolen from the 

employee’s home office. As cell phones become more portable and powerful in 

terms of processing power and memory storage capacity, it can be expected they 

will be subjected to the same types of threats and losses as laptops today.  

 

2. Security Features 
 Mobile devices are also restricted by their input devices. Small keypads 

or touch panels are used to reduce the overall size of the device. Security 

mechanisms such as password protection may be implemented. However, the 

input of the passwords is not as efficient compared to a desktop computer. The 

choice of password is often reduced to numbers for the purpose of convenience. 

This severely reduces the password space that an attacker needs to go through 

in a brute force attack. The use of a complex password, comprising upper and 

lower case alphabets and special characters, will affect the usability severely on 

a mobile device. That is why many access control mechanisms are reduced to a 

Personal Identification Number (PIN) on mobile phone devices. 
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3. Information Leakage 
Most modern smart phones have huge memory capacities. Many of them 

feature expansion slots for memory devices like Secure Digital (SD) cards. 

Today, a four gigabyte SD card can be bought for less than US$80. Using  

 

expansion slots, the amount of memory available to the mobile device is virtually 

unlimited. This means that huge amount of data can be stored, and potentially 

lost.  

Furthermore, the modern mobile devices feature a rich set of connectivity 

options including high speed connections, like 802.11g. If the mobile device is 

connected to the corporate network, a huge amount of information can be leaked 

to the mobile device in a very short time.  

Besides sensitive corporate data, personal information, such as address 

books, phone books, email correspondences, all reside on the mobile device. 

Once the data is compromised, the owner, family members, and friends may be 

subjected to identity theft, depending on the type of information kept by the 

owner in his address book.   

 

4. Operating System 
All popular Operating Systems for mobile devices today implement a 

monolithic kernel without protection ring or domains. This means that any user 

gaining physical access to the device has access to the supervisor mode. There 

is no separation between user mode and supervisor mode. The access control is, 

at best, enforced via password or PIN protection. Therefore, anyone holding the 

device has access to all the information on the device and all the networks that 

the device is authorized to connect to. A common overlooked connectivity is the 

HotSync function, which is activated when the phone is being charged at a 

docking station connected to a laptop or Personal Computer (PC). A network 

connection is automatically established to the laptop or PC for synchronization of 

data. Usually this connection bypasses all of the device password protections. By 
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connecting to the laptop or PC, the mobile is also connected to the rest of the 

network to which the laptop or PC is connected.  

 

E. SECURE SMS APPLICATIONS 

The previous Sections have shown that the entire SMS system is riddled 

with security issues. Yet, many businesses are accepting the risk because the 

benefits of SMS far outweigh the potential cost of information compromise. If the 

security of SMS can be improved and the security risk reduced, many more 

applications may be able to reap the benefits of the matured GSM networking 

technology and SMS messaging system. The rest of this Section discusses why 

security is required in applications such as IMAS and some potential uses of 

SMS in military operations. Chapter IV describes the implementation of one such 

application. 

 

1. Integrated Mobile Alert System (IMAS) 

The IMAS [25] project was conceptualized at the Naval Postgraduate 

School (NPS) and is currently under development. The aim of the project was to 

provide a common method for people to stay connected in order to receive alerts 

across a wide variety of platforms. The project uses an extended online calendar 

to capture user’s context information. Besides the date, time, location and event 

information in the online calendar, the user can also describe how he can be 

reached when certain events occur, what events to which he would like to be 

alerted, and what he needs to know about the event.  

Although the objective sounds logical and straightforward, the project 

makes use of some key concepts that are crucial for enabling true mobile 

computing. First, the system must possess information value awareness by 

which to recognize, first of all, what is urgent or important to the user. Second, 

the system must be aware of the device that the user is holding and the network 

connectivity of that device. Based on these factors, the IMAS can then repurpose 
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the content and deliver the alert to the user in its most usable form. The IMAS 

architecture is shown in Figure 11.  

 
Figure 11.   Integrated Mobile Alerts System Architecture (From Ref. [25]) 

 

Currently, the online calendaring and user profiling part of the system 

have been implemented and tested [26]. The User Profile allows the user to 

specify devices available during his various context settings. For example, a user 

may state that when he is in an off-site meeting the only way of contacting him is 

his cell phone. In this mode, he would like to receive urgent emails as SMS.  

SMS as an alert delivery mechanism in IMAS has also been implemented. In this 

case the security of SMS is of paramount importance because urgent emails that 

require immediate attention are likely to be sensitive in nature and need to be 

protected against eavesdropping.  



 26

2. SMS for Military Applications 

Military organizations are particularly concerned with the confidentiality, 

integrity and availability of information in conventional military operations. Given 

the GSM and SMS vulnerabilities described in the previous Sections, none of the 

current security properties is sufficient for military high assurance applications. 

However, the emergence of asymmetric threats and the increased participation 

of the military in Humanitarian Aid Disaster Relief (HADR) operations have 

resulted in the need for the military to work closely with civilian institutions or 

Non-Government Organizations, such as Red Cross. Military communications 

devices and networks may not be suitable for civil-military communications 

because of Operational Security (Opsec) limitations. Furthermore, the civilians 

are not trained to operate the military communications devices. GSM and SMS 

may be able to fill this void in the civil-military communications network. 

The military has recognized the pervasiveness of the GSM network and 

the need to leverage successful mature Commercial-Off-The-Shelf (COTS) 

technologies, such as GSM. Secure phones that are Type I certified have been 

developed and are in use in the military today [27]. However, the use of these 

phones is limited to voice traffic or modem connections, and the distribution of 

phones is limited due to cost and key management concerns.  The rest of this 

Section discusses some current concerns of the military on the use of SMS and 

potential SMS applications that may be useful for the military, if the security of 

SMS messages can be assured. 
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a. Current Concerns about SMS Usage 
The key concerns in the military are the confidentiality and integrity 

of SMS messages. It is often perceived that all military information must be 

protected with the highest level of assurance. However, security must be viewed 

in the context of the mission and the value of the information that needs to be 

protected. Not all information needs to be protected to the same level as national 

secrets. Overprotecting the data results in a waste of resources and places 

unnecessary constraints on the system. Besides the value of the content, the 

volatility of information is also very important when considering the security 

solution. A classic example is information on D-Day; the value of information is 

extremely high before D-Day. After D-Day, the information no longer needs to be 

protected. Tactical information on troop location is another example. The exact 

geographical position only needs to be protected from the enemy for the duration 

of the operation, assuming the operation is not a clandestine one.  Therefore the 

issue of confidentiality and integrity protection must be viewed in the context of 

the value and volatility of information. 

Another area of concern is availability of service. GSM frequency is 

well known and electronic jamming is trivial. However, the same concern applies 

to GPS. GPS are known to be vulnerable and commercial GPS jammers are 

readily available. However, the military continues to rely on GPS for its 

operations. The key is to ensure that GPS jammers can be located and 

destroyed. The same can be applied to GSM. Just as GSM jammers can be 

bought, GPS jamming locators are also commercially available. They are 

typically used by GSM service providers to locate radio interference sources and 

to maintain a certain level of Quality of Service. The effective and creative use of 

such devices is the key in maintaining superiority in the frequency spectrum. 

With vendors constantly marketing high bandwidth devices, the 

bandwidth provided by SMS is perceived as insufficient for dynamic, fast moving, 

military applications. Again, the bandwidth usage must be viewed in context of 

the operation. A SMS message can be delivered end-to-end in seconds. A SMS 
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message is sufficient to encode the position, course, speed and status of a 

soldier or unit. Not every soldier is required to stream video. Therefore, SMS can 

still fulfill the needs of some applications.  

The physical loss of mobile devices is a concern for all mobile 

communications equipment. What happens if the soldier is captured? What if 

device falls into the hands of the enemy? Can the enemy masquerade as an 

insider of the network and foil the operation? These are questions that constantly 

arise during the development of any military mobile communication system or 

device. The same questions apply of GSM handsets.  

The following Sections highlight the advantages of SMS over 

conventional military communications devices and specific scenarios where the 

SMS may be useful for military applications. 

 

b. Advantages of SMS 
Besides being private and non-intrusive, GSM and SMS also offer 

the following advantages from a military perspective: 

• GSM infrastructure and handsets are cheap as compared to their 
military counterparts.   

• GSM handsets are commercial commodity and do not project a 
military look. In the realm of Information Warfare and Signature 
Management, this is a good alternative for secure communications 
in scenarios where the use of military equipment may be 
complicate working relationships with civilian organizations or Non-
Government Organizations (NGOs). 

• GSM has global coverage and is expected to cover 90% of the 
world population in 2010 [24]. The military can ride on the existing 
infrastructure for initial quick response.   

 

c. Intelligence Collection 
The intelligence community has special interest in maintaining 

secure clandestine communications networks. Secure SMS provides another  

 



 29

option to the existing communications options. However, other mechanisms to 

ensure the anonymity of the source of the message must be in place for such 

deployments to be effective. 

  

d. Civil-military / HADR Operations 
In some scenarios, a nation may require aid from the US military 

after a natural disaster strikes. However, due to political sensitivities, the US 

military may not want to be seen playing a dominating role in the HADR 

operations. This is where the use of commercial networks may seem more 

acceptable to the host nation. NGOs are also more receptive towards the use of 

commercial handsets compared to a military communications device. However, 

the military may still want to provide some level of information assurance in the 

communications with the civilian counterpart. 

 

e. Low Data Rate Urban Communications 
Communications in build-up areas with tall concrete buildings is 

challenging. Satellite communications are limited because they require line-of-

sight to the satellites in order to operate properly. SMS is especially useful in 

such environments because of its store-and-forward mechanism. The SMS is 

held in the system and delivered once the device comes online. Therefore, SMS 

can complement any existing communications setup by providing an effective 

backup communications for low data rate applications such Blue Force Tracking 

in urban environments. The message delivery notification has been built into the 

SMS specification to ensure reliable delivery of SMS messages. However, there 

are no message priority mechanisms to prioritize urgent messages. Therefore, 

SMS may be suitable for use the primary war fighting net. 

 

f.  Secure Chat 
The ability to conduct secure text chats among tactical units may be 

useful in certain missions. Current tactical military communications are still 
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largely voice-based. Voice communications may be effective in a dynamic 

combat situation when real time conversation and feedback is crucial, and the 

soldier may be required to be constantly on the move. However, secure chat may 

be useful in silent surveillance operations or for an exchange of quick updates 

among tactical commanders. Text eliminates any ambiguities and 

misunderstandings in voice communications.  

 
g. Encryption for Every Soldier 
It has been reported that soldiers and sailors send sensitive, 

hopefully unclassified, data such as ship movement and troop deployment to 

their love ones over the public communications network. It is important that such 

information be denied to the adversary as far as possible because the soldiers 

are likely to be deployed in other countries and using a foreign GSM 

infrastructure. Therefore, a simple application layer software encryption solution 

for SMS can provide an added level of security. The aim is not to encourage 

soldiers to divulge sensitive information over public networks. Suitable OPSEC 

policy must still be enforced. Even if the messages are non-sensitive, inferences 

can be made from a collection of such messages. Adding a layer of encryption 

makes such inferences difficult as it is less likely the unintended recipient of the 

information will be able to analyze it when it is encrypted.  
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III. ENCRYPTION SCHEME SELECTION 

A. OVERVIEW 

Encryption is the process of disguising information in such a way as to 

hide its substance [28].  Modern encryption methods can be divided into 

symmetric key algorithms and asymmetric key algorithms. The One Time Pad is 

unique because it is the only encryption scheme that is unbreakable even in 

theory. The discussion in the rest of this Chapter will focus on these three types 

of encryption. 

This Chapter is comprised of four main parts. The first part of this Chapter 

provides an overview of the different schemes of encryption and their relevance 

to securing SMS. The second part discusses the key considerations when 

selecting an encryption scheme for deployment. The third part describes an 

experiment that was conducted to measure the performance of symmetric and 

asymmetric encryption schemes on a modern cell phone. The final part 

summarizes the findings in a selection matrix that may be useful for application 

developers, who plan on deploying encryption for SMS messages. 

 

B.   ENCRYPTION SCHEMES 

1. Symmetric Cryptography 

 In symmetric encryption, the sender and receiver must have a pre-shared 

key that is kept secret from all other parties. The sender uses the key for 

encryption, and the receiver uses the same key for decryption. The key 

advantage of symmetric encryption is that it is computationally fast and efficient. 

This makes symmetric encryption the ideal choice for mobile devices. The A3, A8 

and A5 algorithms used in GSM are all symmetric encryption algorithms.  Other 

strong symmetric algorithms available today include Triple Data Encryption  
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Standard (TripleDES) and Advanced Encryption Standard (AES), which have 

been approved for use by National Institute of Standards and Technology (NIST), 

and are publicly available. 

The key disadvantages of symmetric encryption are the need to pre-share 

the keys among the senders and recipients and the keys must be exchanged 

securely via some trusted communications channel or through some key 

exchange mechanisms. In an infrastructure setup like GSM, this is manageable 

because all the subscribers share common keys with the service provider. If the 

subscribers need to communicate with each other, the service provider acts as 

the middleman and encrypts/decrypts the messages, as required. However, if 

symmetric encryption were to be used at the application layer, the key exchange 

would have to be managed separately and this can be quite a challenge because 

all the users of a group must use the same key. If the key is compromised, a new 

key must be redistributed to every user. If there is a need to partition the 

communications into sub-groups, different sets of keys must be created and 

distributed for each sub-group. A separate key is still required for the entire 

group. This complexity grows as the number of users and sub-groups increases.  

Secure key exchange mechanisms, such as Internet Key Exchange (IKE) 

and Secure Socket Layer, have been developed to facilitate key exchanges 

across public networks. However, these protocols assume relatively high 

bandwidth, real-time connectivity between the sender and recipient. For example, 

the set up of an SSL session requires an exchange of at least four messages, as 

shown in Figure 12, before the secure session is established. For SMS, sending 

each message may take a few seconds. The exchange of four SMS messages 

for each session will affect the usability severely. 

Therefore, the ability to deploy symmetric encryption at the application 

layer for SMS will depend on the ability to exchange keys securely. The key 

exchange can take place through physical transfer via storage devices, or if the 

device is cradled and connected to a PC, with a VPN connection. In order to 

reduce the key distribution complexity, a star topology may be adopted, such that 
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all the clients will send all SMS messages to an application server for relay. The 

disadvantage of such a set up is the delay in transmission of messages because 

each message is effectively transmitted twice. However, it offers the advantage 

of simplifying key exchange. 
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Figure 12.   Secure Socket Layer (From Ref. [29]) 

 

2. Asymmetric Cryptography 

In an asymmetric key algorithm, there are two separate keys: a public key 

and a private key. The public key is published and enables any sender to perform 

encryption; the corresponding private key is kept secret by the receiver for 

decryption. The key exchange in asymmetric encryption is much simpler because 

the public can be freely distributed. There is no requirement for separate keys for 

sub-group communications. The sender will encrypt the messages with the public 

keys of the recipients. This provides extreme flexibility when the group 

composition may change dynamically, such as in military operations.  

However, the key disadvantage of asymmetric encryption is that it is 

computationally more expensive than symmetric encryption because of the long 

keys. Therefore, asymmetric encryption is seldom used in mobile devices. Even 
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on desktop computers, asymmetric encryption is used together with symmetric 

encryption for performance reasons.  Section D of this Chapter attempts to shed 

some light on the resource consumption of asymmetric encryption on a modern 

Smartphone device through actual measurements. 

The more commonly used asymmetric algorithms are Rivest Shamir 

Aldelman (RSA) and the Digital Signature Algorithm (DSA). Elliptic Curve 

Cryptography (ECC) is another approach to asymmetric algorithm that allows 

shorter key lengths to be used, making it suitable for mobile device applications. 

However, ECC is still under active research and has not been widely deployed in 

systems.   

For the encryption of SMS messages, the use of asymmetric encryption 

alone may be feasible due to the short message length. The measurements 

described in Section D also provide indications of the feasibility of such 

implementation. 

 

3. One Time Pad 

One Time Pad (OTP) is a unique form of cryptography because it is the 

only unbreakable cipher, even in theory. OTP operation is straightforward and 

simple. The key is a string of random numbers that is as long as the message 

itself. Each key is used for only one message; the key is never reused and 

assumed to be perfectly random.  A random key sequence added to a non-

random plaintext message produces a completely random cipher text [28]. 

Therefore every plain text message is possible and there is no way for the 

cryptanalyst to determine which plaintext is the correct one. 

The biggest challenges in using OTP are the generation of truly random 

key sequences and the key exchange. Similar to symmetric encryption, all 

parties in the secure conversation must have the same key. Furthermore, the key  
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is now as large as the amount of data that is to be exchanged in the whole 

network. Furthermore, the use of keys must be synchronized among users such 

that the keys are never reused. 

The use of OTP may have great potential for SMS encryption because of 

the recent advances in memory technology. Mobile devices are now equipped 

with memory card slots for external memory devices such as Secure Digital (SD) 

cards. Memory capacities for SD cards have grown and the prices have dropped 

tremendously. A four gigabyte SD card may be purchased online at a price of 

less than US$100. Assuming that a 160 byte key sequence is used to encrypt 

every SMS message, 25 million messages can be encrypted using OTP. If 10 

messages are exchanged every minute in a network 24 hours a day, a four 

gigabyte key bank is enough to sustain 4.7 years of usage without the need for a 

key change.  Therefore, the use of OTP may have great potential in applications 

where the content of the SMS is highly confidential. 

 

C. KEY CONSIDERATIONS 

There are several key considerations when choosing a suitable encryption 

scheme for an application. The most important consideration is the deployment 

scenario for the use of the encryption scheme. The value of the information to be 

protected, the expected threats and the physical disposition of the users are key 

considerations when deciding on a suitable encryption scheme. However, due to 

the varied nature of the deployment scenarios, these factors are not discussed 

here. This Section assumes that the risk assessment has already been 

conducted and SMS is assessed to be a viable communications channel based 

on the security policy. The rest of this Section highlights the important 

considerations when choosing an encryption scheme for mobile devices. 
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1. Algorithm Strength 

The strength of an algorithm is derived from the mathematical properties 

of the algorithm. For example, RSA derives its strength from the difficulty of 

factoring large numbers. If a method that radically speeds up the factoring of 

large numbers is discovered, the RSA algorithm can be broken [29]. This is the 

fundamental assumption behind the use of algorithms. Since, nobody can predict 

the breakthroughs in mathematical methods, developers writing applications that 

use encryption must be mindful of the assumptions behind the algorithms and be 

updated of the latest developments. 

While no one can be absolutely certain about the strength of an algorithm, 

it is generally accepted that an algorithm that has been subjected to public peer 

review is more secure, except against the most determined and resource rich 

state agencies [29]. The GSM A5 encryption algorithm is an example of a failure 

in encryption algorithm that has been developed in secrecy.  Once the closed 

algorithms are leaked or reverse engineered, they will be crypto-analyzed. 

Therefore, secret algorithms only provide added security if they are as closely 

guarded as the secrets that they are meant to protect, and the algorithm is 

designed by cryptography experts who know exactly what they are doing, and 

the algorithm has gone through some internal, independent reviews. 

 
2. Key Length 

The other vital component in the security of an encryption system is 

encryption key. If the encryption algorithm is publicly available, then the strength 

of the encryption is only dependent on keeping the key secret.  An attacker can 

conduct a brute force attack by trying all possible key combinations. The 

challenge is then deciding on the suitable key length, such that a brute force 

attack will not be successful in a timeframe shorter than the lifespan of the 

message that it is protecting. In Table 1, Denning summarized the effort and time 

required for such an attack based on the rate at which the attacker is able to test 

each key [30].  
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Row Rate Second Hour Day Week Month Year 
1 105 17 28 33 36 38 42 
2 106 21 32 36 39 41 45 
3 107 23 35 40 42 45 48 
4 108 27 38 43 46 48 51 
5 109 30 42 46 49 51 55 
6 1010 33 45 50 52 55 58 
7 1011 37 48 53 56 58 61 
8 1012 40 52 56 59 61 65 
9 1013 43 55 60 62 64 68 

10 1014 47 58 63 66 68 71 
11 1015 50 62 66 69 71 75 
12 1016 53 65 70 72 74 78 

Table 1.   Length of Key That Can be Broken [After Ref. [30]) 
 

The Rate column shows the number of keys the attacker can try in a 

second.  The entries under the Second, Day, Week, Month, Year columns 

correspond to the number of bits of keys that can be broken.  

For example, the first row corresponds to a search rate of 100,000 keys 

per second (i.e. if a machine is able to test 100,000 keys per second); in which 

case, a 17-bit key can be broken in seconds, a 28-bit key in hours, a 33-bit key in 

days, a 36-bit key in weeks, a 38-bit key in months and a 42-bit key in years. The 

entries were calculated based on the worst case assumption that it was 

necessary to try each possible bit combination before finding the correct key. On 

an average-case assumption, the key can be found halfway through the key 

space.  

The shaded cells in Table 1 show the successful efforts of cracking that 

have been demonstrated. The 56-bit key was cracked in 1999 in less than 23 

hours, corresponding to a search rate between Rows 7 and 8 in the table.  
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According to Moore’s law, each successive row, representing a tenfold 

improvement in processing speed, corresponds to a five year timeframe. Based 

on this projection, the present key search rate should roughly correspond to Row 

9.  

The values in Table 1 are relevant for symmetric encryption, where the 

key length is the main determining factor of the strength of the key. The common 

key lengths for symmetric encryption in use today are in excess of 100 bits: 192 

bits for TripleDES and 128 or 256 bits for AES. Therefore, the key lengths can be 

regarded as safe against a brute force attack. The weaker link in the entire 

system goes back to the strength of the algorithm. However, there are also other 

crypto attack techniques such as statistical attacks and side channel attacks1 that 

reduce the key space through which the attacker needs to search. Once the key 

space is small enough, a brute force attack may prove effective. 

  Unlike symmetric algorithms, the asymmetric encryption algorithms 

derive their strength from the difficulty of factoring large numbers that are the 

product of two large prime numbers. Therefore, although the key lengths used in 

asymmetric algorithms are much longer than symmetric encryption, the attacker 

does not need to try every possible key combination. If the factoring difficulty of 

asymmetric encryption algorithm is taken into account and compared to the 

difficulty of brute force attack against symmetric encryption, Schneier [28] 

proposed a comparison between symmetric and asymmetric key lengths, shown 

in Table 2. 

                                            
1 Side channel attacks refer to attacks based on information gained from the physical 

implementation of a cryptosystem, such as timing information, power consumption or 
electromagnetic leaks [32]. 
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Symmetric Key 
Length 

Asymmetric Key 
Length 

56 bits 384 bits 
64 bits 512 bits 
80 bits 768 bits 
112 bits 1792 bits 
128 bits 2304 bits 

Table 2.   Symmetric and Asymmetric Key Length Comparison 
 

Table 2 provides a reference for relative comparison of key lengths. 

However, this is still based on the current mathematical knowledge regarding 

factoring large numbers. Once a newer and faster method of factoring is 

discovered, the values in the table no longer hold. 

 
3. Key Management 

Key management is an important part of any encryption solution. The 

strongest algorithms and the longest keys are useless if the keys are not 

generated, distributed and destroyed in a secure manner. Stealing keys is an 

attractive option for the attacker because the attacker does not need to expend 

resources to break the encryption algorithm, if he can break the key generation 

algorithm.  The attack of the COMP128 algorithm is an example of an attack on 

the key generation algorithm.  

A big challenge in key generation is ensuring that the keys generated are 

truly random and thus not predictable. The difficulty depends on the key lengths 

and the frequency of key change. For One Time Pad, the keys are as long as the 

messages and the keys must never be repeated. This may be extremely difficult 

depending on the volume of traffic.  

There are also known weak keys in certain algorithms. Therefore, after the 

key generation process, it is important that the keys be checked to ensure that 

they do not belong to the pool of known weak keys.  
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After the keys have been generated, they must be distributed via a trusted 

communications channel. Key distribution for a large network can be 

cumbersome.  For symmetric encryption, the number of key exchanges required 

in a network with n users is n(n – 1)/2. The key exchange for asymmetric 

encryption is simpler because the public key can be exchanged via a public 

network. However, mechanisms must be built into the system to ensure the 

authenticity of the public keys. 

 

4. Power Consumption 

Power is a key constraint for mobile devices. Therefore, most mobile 

devices have extensive power management features to conserve battery power 

as much as possible. Encryption operations are computationally intensive. 

Therefore, the power consumption of encryption operations must be taken into 

account when deciding on an encryption scheme. Section D of this Chapter 

describes an experiment that was conducted to measure the power consumption 

of different encryption operations.  

Although the power consumption associated with each encryption 

operation may be small, encryption operations occurs very frequently in network 

encryption. For example, in Internet Protocol Security (IPSec), every Internet 

Protocol (IP) packet is signed and encrypted. This translates to three encryption 

operations per IP packet that is transmitted or received: one for confidentiality 

protection, one for hashing, and one for digital signature. The cumulative 

consumption can be quite significant, depending on the amount of network traffic.  

 

5. Speed 

The speed and efficiency of the encryption operation has a direct impact 

on the network bandwidth and the usability of the system. Saltzer and Schroeder 

[31] wrote about psychological acceptability as one of the security design 

principles. Security solutions that are implemented must be usable and as 
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transparent to the user as possible. If the solution affects the usability, the user 

will not use it or may even try to disable or bypass the security solution. In the 

case of SMS encryption, the users are used to a nominal time required to send 

an SMS message, typically less than 10 seconds to receive a “Message sent” 

reply from the SMSC. If the encryption slows down the sending process 

significantly, the users will be frustrated and may choose to disable the 

encryption.  

 

6. Overheads 
Encryption operations add overhead to the length of the original message. 

Many encryption algorithms encrypt data in fixed block sizes. If the data is larger 

than the block size the last part of the message is usually padded to the full block 

size and encrypted. The overhead for padding may not be significant for large 

messages. However, it may be quite significant for short message, such as those 

using SMS. For asymmetric encryption, the block sizes are relatively big because 

they are related to the key lengths. For example, the encryption of a single byte 

of data using RSA with 1024-bit key length yields a 256-byte output; a 2048-bit 

key length yields an output of 344 bytes. These overheads translate to additional 

transmission overheads, which in turn increases the power consumption.  

Therefore, the choice of an appropriate key length may reduce the overall power 

consumption without compromising the security.  

  

D. PERFORMANCE MEASUREMENTS 

The previous sections described the power consumption, speed and 

overhead considerations for encryption solutions. The aim of the measurements 

is to provide a means to assess an actual performance experiment of some 

encryption schemes on a specific modern device. Due to the varied hardware 

and software implementations on mobile devices, this set of measurement 

figures cannot be taken as definitive. However, it provides a comparison among 
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the different encryption schemes and a coarse estimate for programmers 

planning to implement software-based encryption in their applications.   

The main tasks of this experiment were collect empirical data on the 

power consumption, the time associated with encryption and the data size 

overheads imposed by selected symmetric encryption and asymmetric 

encryption schemes. 

 

1. Instrumentation Setup 

a. Hardware 
The mobile device used for this experiment is the Eten-M600 

Smartphone. The hardware specifications for the device are listed in Table 3. 

This phone was selected because it has most of the features that can be 

expected to be found in future mobile devices. The Operating System used is the 

latest Windows Mobile™ 5.0 with a rich Application Programming Interface (API) 

support for application developers. 

 

Operating System    Windows Mobile™ 5.0 software for Pocket PCs 
Processor  Samsung S3C 2440 400 MHz Processor 
Memory  256 MB Flash ROM, 64 MB SDRAM 
Display  2.8", 240 x 320, 65,536 colors LTPS TFT- LCD 
Dimensions 
(LxWxH)  

111.7 x 60.7 x 22 mm 

Weight  174 g 
Communications  GSM quad-band 850/900/1800/1900 MHz, GPRS 

Class B / Multi-slot Class10 Bluetooth v2.0 compliant, 
WiFi IEEE802.11b  

Camera  Built-in 2.0 Mega Pixels, up to 1600 x 1200 resolution 
Expansibility  SDIO/SD/MMC card slot 
Interface/Audio  Built-in microphone and speaker, external stereo 

headset jack 
Interface/Data  USB Sync, headset jack, Cradle with 2nd battery 

charger 
Table 3.   E-TEN M600 Hardware Specifications 
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Figure 13.   E-TEN M600 (From Ref. [33]) 

 
b. Software Development 
The development environment used was Visual Studio 2005, 

together with the Windows Mobile 5.0 Software Development Kit (SDK) for 

Pocket PC, as recommended by Microsoft [34]. ActiveSync 4.2 was also required 

for debugging and deployment of the solution to the mobile device. The 

programming language used was C#.  

 

c. Performance Measurement Application 
Different approaches were tried to obtain accurate measurements 

of the performance data. However, due to the limitations imposed by resolution of 

power measurement in the API, and the failure in the State and Notification API 

(SNAPI), the approaches did not work. The details on the failed approaches are 

attached at Appendix A. In the final approach, the program flow is as shown in 

Figure 14.  

The encryption process uses Microsoft’s implementation of 

RijndaelManaged and the RSA algorithms in the Microsoft CryptoAPI (CAPI). 

The program code is attached at Appendix A. The performance measurements 

for One Time Pad operations are not measured because the mathematical 



 44

operation of OTP is very simple, comprised by a few XOR functions. Therefore, 

the time and power consumption requirements are assumed to be significantly 

lower than symmetric encryption.  

Start

Log data

Read Clear 
Text Input

Set Number 
of Iterations

Check battery 
level

Record Start time

Generate  
Key Pair

End of loop?

End

No

Yes

Type of Encryption
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Check battery 
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Record Start time

Generate 
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End of loop?
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AES encryption

Record End time
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Check battery 
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Yes

Record End time

No No

RSA AES Baseline

 
Figure 14.   Flow Diagram for Performance Measurement Application 
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d. User Interface 
The main screen captures for the application is shown in the figures 

below. 

 
Figure 15.   Performance Measurement Application Main Screen 

 
The Mode field indicates the current encryption mode setting, which 

can be RSA, AES or Baseline. The Key field displays the current key length 

setting. The Input Size field is selectable from 160 bytes, 10 kb and 100 kb. 

However the measurements are conducted using inputs of 100kb only. The 

Iterations field allows users to key in the number of iterations for the encryption. 

The Duration field shows the time that has elapsed since the start of the first 

encryption. The Power fields, from left to right, show the starting battery power 

level, the current battery power level and the power consumption, respectively. 

The scrolling text box below is used to display status and other debugging 

information.  
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Figure 16.   Performance Measurement Application Menu 
 

The left menu has the option to Generate Files. This function 

generates input text files, which are exactly of the sizes of 160 bytes, 10kb and 

100 kb, and filled with random ASCII characters. The same function is also used 

to create and refresh log files after the measurements. The right menu shows the 

current mode of encryption selected and allows users to change the mode as 

desired. 

 

2. Assumptions and Limitations 
a. Battery Properties 
The data collection requires multiple charging and recharging of the 

battery. It is assumed that the chemical properties of the battery remain constant 

throughout the measurement process. A Lithium Ion battery like the one used in 

the experiment typically lasts 300-500 discharge/charge cycles [36]. 

 



 47

b. Linearity 
It is assumed that the discharge of the battery is linear and that the 

battery strength provided by the API is accurate. In actual fact, battery discharge 

is almost never linear.  Typically, the discharge characteristics are more linear in 

the mid range. Therefore, in this experiment, only the middle bands between 

40% and 80% are used as measurement data. 

 

c. Hidden Processes 
The manual checklist to disable processes can only disable user 

accessible processes. There may be other system processes that may be 

running the background that are invisible to and inaccessible by the user. It is 

assumed that the demands placed by such processes are constant and can be 

eliminated by subtracting the baseline measurement data from the other data. 

 

d. Correct Algorithm Implementation  
The experiment is based on Microsoft’s implementation of the 

encryption algorithm. It is assumed that these implementations are correct and 

representative of the types of encryption schemes. 

 
3. Data Collection 
Before the start of each measurement, a checklist was used to ensure that 

the critical settings that may affect the readings are consistent. For example, the 

wireless access for Wifi and GSM are turned off because they may introduce 

variable power consumption figures based on the detected infrastructure signal 

strength. The number of active process running on the device is also kept 

consistent so that the available memory and CPU demands are kept consistent. 

The detailed checklist is attached at Appendix A. 

The log file that is generated was manually analyzed to determine the 

number of iterations that will result in the change in battery power levels. Figure 

17 shows a sample of the output file. 



 48

 
Figure 17.   Sample Output Log File 

 
In the log file in Figure 17, the battery power level changed from the 81%-

100% band to the 61%-80% band at the 151st iteration and moved on to the next 

band of 41%-60% at the 447th iteration. Therefore, 296 iterations of iterations 

consumed 20% of the battery power level. 

However, the total consumption figure includes the logging of the data for 

each iteration. Therefore, another set of baseline results, comprising all 

operations not related to encryption, was collected, and subtracted from the 

measurement results to derive a more accurate indication of the power 

consumption attributed to the encryption operation. 

Sufficiently large sample sizes were collected to ensure that each set of 

reading is statistically robust. The mean and standard deviation is then calculated 

based on a normal distribution.  The raw data collected are attached at Appendix 

A. A summary of the results is shown in Table 4. 

 

4. Analysis of Results 

Table 4 shows a summary of the performance measurement results. The 

input size for the clear text was arbitrarily chosen as 100kb for comparison. The 

respective key lengths chosen for the encryption represent typical key lengths in 

use today that are generally regarded as secure. 
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  Key 
Length 

Block 
Size 

Input 
Size 

Time  
(ms) 

Power 
Consumption 

(mAH) 
 (bits) (bytes) (kb) Mean Std Dev Mean Std Dev 

RSA 1024 117 100 16212.31 164.44 107.00 15.77
RSA 2048 117 100 25643.18 40.16 157.68 34.96
RSA 2048 245 100 11458.50 1172.65 80.02 24.34
AES 128 16 100 536.53 3.74 2.41 0.57
AES 256 16 100 586.59 3.45 2.91 0.39

Table 4.   Performance Measurement Results 
 

The baseline measurement results are shown in Table 5. 

 Time  
(ms) 

Power Consumption 
(mAH) 

 Mean Std Dev Mean Std Dev 
Baseline 128.61 26.65 0.56 0.21

Table 5.   Baseline Measurement Results 
 

Table 6 shows the adjusted performance results, after excluding all other 

operations not related to the encryption operation, such as data logging. 

  Key 
Length 

Block 
Size 

Input 
Size 

Time  
(ms) 

Power 
Consumption 

(mAH) 
 (bits) (bytes) (kb) Mean Std Dev Mean Std Dev 

RSA 1024 117 100 16083.70 191.09 106.44 15.98
RSA 2048 117 100 25514.57 66.81 157.12 35.17
RSA 2048 245 100 11329.89 1199.29 79.46 24.55
AES 128 16 100 407.92 30.39 1.85 0.79
AES 256 16 100 457.98 30.10 2.35 0.60

Table 6.   Adjusted Performance Measurement Results 
 
a. Performance Differences at Different Key Lengths 
For a fixed input block size of 117 bytes for RSA encryption, the 

timing performance for RSA encryption using a 2048-bit key length was about 58 

percent more compared to a 1024-bit key length, and consumed about 33 

percent more power. 

However, a larger block size of 245 bytes can be supported with a 

2048-bit key length, resulting in less number of encryption cycles required. With a 
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245-byte block size, the timing performance was actually approximately 23% 

better than the performance at 1024-bit key length. The impacts of the key length 

and input size will be discussed further in a later Section. 

For AES encryption, the timing performance at 128-bit key length 

was approximately 12 percent faster than at 256-bit key length and consumed 

about 22 percent less power. The block size for AES encryption is fixed at 128 

bits (16 bytes). Therefore the total number of encryption operations to encrypt 

100kb of data is the same. However, the internal mixing cycles of AES algorithm 

increases with longer key lengths. 

 

b. Timing Comparison between RSA and AES 
According to Table 2, the strength of 128-bit symmetric encryption 

is close to 2048-bit asymmetric encryption.  From the timing results in Table 6, it 

can be seen that the time required for RSA encryption, using a 1024-bit key 

length and a block size of 245 bytes, is approximately 30 times longer than 128-

bit AES encryption. In contrast to claims that asymmetric encryption is many 

orders of magnitudes slower than symmetric encryption, the empirical data 

showed that the actual time required for asymmetric encryption may not be 

significantly longer than symmetric encryption. In absolute terms, the difference 

is even less for smaller input lengths. Based on the results, encryption of a 100kb 

clear text using RSA with a 2048-bit key length and a 245-byte block size 

required approximately 12 seconds. For an SMS text of 160 bytes, the time 

required is significantly less, on the order of hundreds of milliseconds. The time 

required for symmetric encryption is even shorter. In terms of SMS 

communications, where the transmission of an SMS typically occurs in orders of 

seconds, the timing overhead imposed by symmetric and asymmetric encryption 

may not be perceivable by the user. 
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c. Power Performance Comparison between RSA and AES 
Each encryption operation using RSA 1024-bit key length 

consumes approximately 106mAH of power, when encrypting 100kb of data. As 

compared to AES encryption, the consumption for RSA encryption is about 48 

times higher. The battery capacity of the E-TEN M600 is 1440mAH. The battery 

capacities for similar devices available today are generally between 1200mAH 

and 1550mAH. This means that the E-TEN M600 will consume about 10 per cent 

of its battery power after encrypting 800 SMS messages using RSA encryption. 

The criticality of the power consumption will depend on the deployment scenario. 

If a user sends an encrypted SMS message and decrypts a SMS reply every 

minute, 800 SMS messages would be sent in 6.5 hours, and consume 10 per 

cent of the battery power.  If the user is expected to be able to recharge the 

battery within this time frame, then the power consumption is not an issue.  

   

d. Overheads Comparison 
Table 7 summarizes the overheads incurred in terms of size when 

encrypting a 160-byte SMS message using the RSA encryption algorithm with 

different key lengths. Figure 18 provides a graphical representation of the data. 

The output sizes are categorized in terms of the number of SMS messages that 

are required to transmit the output. In Microsoft’s implementation of RSA, the 

maximum key length is 16384 bits. The data in Table 7 stops at 4096 bits for 

ease of analysis. Data for the remaining key lengths can be extended easily. It is 

expected that the same pattern will continue and repeat itself.  The overhead 

figure is calculated in percentage terms of the eventual SMS output size against 

the input size of one SMS message. 
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Key Length 
(bits) 

Absolute 
Output Size 

(bytes) 

Output Size 
(No. of SMS)

Overhead 

768-936 264-320 2 100% 
690-1344 328-448 3 200% 

1368-1920 228-320 2 100% 
1928-2880 324-480 4 300% 
2888-3832 484-640 5 400% 
3856-4096 644-684 6 500% 

Table 7.   RSA Encryption Overheads at Different Key Lengths 
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Figure 18.   RSA Encryption Overhead for One SMS Message 

 
From Figure 18, it can be seen that the length of the output 

increases with the length of the key. However at key lengths of 1360 bits and 

below, the maximum input size allowed is less than 160 bytes (one SMS 

message length). Therefore, the message has to be separated into two blocks of 

data and encrypted twice. The total output size is the results of the concatenation 

of two encryption outputs. At key lengths of 1368 bits and above, the maximum 
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input size is equal or greater than 160 bytes. Therefore, the entire SMS message 

can be encrypted in one cycle. This explains the larger output sizes at key 

lengths shorter than 1360 bits.  

This result shows that if the number of transmissions is to be 

minimized for a 160 byte input, the optimal key length is 1368 bits. The graph 

may be extended for different input sizes and key lengths.  

In contrast, the output size for AES encryption does not vary with 

the key length for an input of 160 bytes; the output is fixed at 236 bytes and two 

SMS messages are required to transmit the entire output. This is because AES 

encrypts the data in block sizes of 128-bit blocks. This translates to 10 blocks of 

clear text that is encrypted individually. The key length affects the internal rounds 

of mathematical operations in AES but it does not affect the eventual size of the 

output.  

 

E. SELECTION MATRIX 

Table 8 summarizes the security properties of the various encryption 

schemes and their performances for SMS encryption. The aim of the table is to 

assist application designers in choosing a suitable encryption scheme to encrypt 

SMS for a particular deployment scenario. It is assumed that the suitability for 

SMS as a transport mechanism has already been considered. 

The next Chapter of the thesis describes a simple chat application that 

was implemented using only asymmetric encryption to verify the practicality of 

such an implementation.  
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 Confide

ntiality 
Integrity Key Management Power Time Overhead 

Symmetric Good No. 
 
Yes, if used 
with 
hashing. 

Easy key generation. 
 
Difficult key 
distribution.  

Low Fast Low 

Asymmetric Good No. 
 
Yes, if used 
for digital 
signature 

Easy key generation. 
 
Easy key distribution 
but need to ensure 
authenticity of public 
key 

Acceptable for 
short key 
lengths. 
Depends on 
usage and 
accessibility to 
charging station. 

Acceptable for 
short key 
lengths 

High for long 
key lengths 

OTP Perfect No Difficult key 
generation. 
 
Difficult key 
distribution. 

Very Low Very fast No overhead 

Table 8.   Encryption Scheme Selection Matrix 
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IV. DEMONSTRATION APPLICATIONS 

A. OVERVIEW 

The measurement results of the experiment in Chapter III showed that the 

use of asymmetric encryption for SMS is not prohibitively high in a modern 

mobile device. The implementation of asymmetric encryption for SMS allows for 

confidentiality and integrity protection without complex key exchanges, and 

provides opportunities for many applications requiring secure exchange of SMS 

messages. This Chapter describes the implementation of a Secure Chat 

demonstration application that uses asymmetric encryption to encrypt and 

digitally sign SMS messages.  

 

B. SECURE CHAT  

1. Aim 

The aim of this application was to verify the feasibility of providing 

confidentiality and integrity protection for SMS messages by using asymmetric 

encryption. Observations were also made with regard to the practicality of such 

an implementation. 

 

2. Security Requirement 
Every SMS message sent from the device is digitally signed and 

encrypted. The messages are decrypted by the recipient and the digital signature 

is also verified by the recipient to detect any modification of the message. 

 

3. Assumptions and Limitations 

The algorithm used is the RSA algorithm provided in the Microsoft Crypto 

API. RSA was selected because it provided native support for encryption and 

digital signature. It is assumed that the RSA algorithm with a 1024-bit key length 



 56

for both encryption and digital signature is sufficient for the required 

confidentiality and integrity protection. 

A trusted channel for key exchange is assumed to be available. This could 

be in the form of physical transfer using SD card or a VPN connection to a 

trusted server. 

 

5. Design and Implementation 

The design of the application adopted a user-centric approach and began 

with the design of the user interface.    

 

a. User Interface 
The main screen of the application is shown in Figure 19. 

 
Figure 19.   Secure Chat User Interface (Main Screen) 
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The Recipient Phone Number area of the screen is comprised of a 

drop down combo box that lists available phone numbers and a text box for the 

user to key in a new recipient number. The checkbox beside the free text box 

must be checked in order for the application to accept the text box input as the 

recipient phone number. 

There are two Send Buttons: one for sending secure messages and 

one for sending the message in clear. The aim is to provide a single interface if 

the user needs to send unencrypted messages to parties outside the secure 

conversation. This option should be removed in more secure applications to 

prevent the user from accidentally sending the message in clear text. However, 

all incoming unencrypted messages will be transferred to the default Windows 

Outlook Mobile, and not be trapped by the Secure Chat application. 

The SMS Message box allows the user to key in the message to be 

sent. The maximum length is 117 bytes because that the maximum input length 

accepted by RSA with a 1024-bit key length. Expanding the length beyond 117 

bytes will result in another round of encryption and more overheads. It is 

assumed that 117 bytes is a sufficient length for the purpose of this 

demonstration application. 

The Conversation Box displays the ongoing conversation in a 

typical chat application. Outbound messages are prefixed by “Me:” and the 

inbound messages are marked by the last four digits of the sender’s phone 

number. The user can use the scroll bars to scroll through the history of the 

conversation. 

The System Messages text box displays system messages such as 

key generation status, and the encryption, signature and sending processes. 

The Option Menu offers two selections for generating RSA Public-

Private key pair and for sending the Public Key via SMS. It should be noted that 

the sending of Public Keys without additional authentication is subject to man-in-

the-middle attacks. 
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b. Program Flow 
The flow chart for the application is shown in Figure 20. 

 

 
Figure 20.   Flow Diagram for Main Program 

 

A key requirement in the application is to be able to trap the 

specially marked incoming SMS messages as it arrives at the cell phone. This 

service is provided by the SMS Message Interception Service provided by the 

SNAPI under Windows Mobile 5.0. This service allows developers to selectively 

intercept SMS messages programmatically. This is especially useful in a Secure 

Chat application because it allows encrypted messages to be processed and 

stored separately from normal SMS messages. 
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For sending encrypted SMS messages, the user selects the 

recipient phone number, types in the message in to the SMS Message box, and 

clicks the “Send Secure” button. The SEND_MSG procedure is executed. Figure 

21 show the flow diagram of the SEND_MSG procedure. 

 

Create Instance of RSA

Read own Private Key 
and sign SMS message

Read in Recipient Phone number 
and SMS message to send

Read Recipient Public Key 
and encrypt SMS message

Compose and send final 
message

Update Dialog Box

End

Start

 
Figure 21.   Flow Diagram for SEND_MSG Process 

 
All encrypted SMS are marked with “*” at the beginning. Once an 

SMS message meeting this criterion is met, the MSG_RECEIVED procedure is 

activated and the message is processed. The flow diagram for the 

MSG_RECEIVED procedure is shown in Figure 22. 
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Create Instance of RSA

Read own Private Key to 
decrypt SMS message

Decompose message

Read Sender Public Key 
and verify Signature

Update Dialog Box

End

Start

 
Figure 22.   Flow Diagram for MSG_RECEIVED Process 

 
The encryption and decryption processes in the Microsoft .NET 

Framework make use of the System.Security.Cryptography namespace. The 

CryptoStream class is one of the many classes that is provided and is used as a 

buffer to encrypt and decrypt the content as it is streamed out to a FileStream or 

a MemoryStream. The following Section describes in detail the code used for 

encryption and signing in the SEND_MSG process. Similar steps are used in the 

MSG_RECEIVED process. 

After the appropriate declarations, a new instance of the RSA 

CryptoServiceProvider with 1024 bit key length is created. An instance of the 

SHA1 hash algorithm was also created to facilitate the digital signing later. 

 
RSACryptoServiceProvider TxRSA = new RSACryptoServiceProvider(1024); 
SHA1CryptoServiceProvider TxSHA = new SHA1CryptoServiceProvider(); 
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The Private Key is read from a key file that has been created earlier 

using the Generate Key Pair function. The Private Key is read as a FileStream, 

converted to a byte array and then imported into the RSA Instance. 

 
FileStream TxReadPrivfs = File.OpenRead("Program Files\\SecureChat\\" + 
MyPhoneNumber + ".prv"); 
BinaryReader TxReadPrivbr = new BinaryReader(TxReadPrivfs); 
TxPrivKeyBlob = TxReadPrivbr.ReadBytes(596); 
TxReadPrivbr.Close(); 
TxReadPrivfs.Close(); 
TxRSA.ImportCspBlob(TxPrivKeyBlob); 

 

A hash is created using the SHA1 algorithm and the hashed data is 

encrypted with the RSA algorithm using the sender’s Private Key.  

 
Signature = TxRSA.SignData(dataToEncrypt, TxSHA); 

 

The recipient’s Public Key is read from the key file and imported 

into the RSA instance. 

 
FileStream TxReadPubfs = File.OpenRead("Program Files\\SecureChat\\" + 
ToPhoneNumber + ".pub"); 
BinaryReader TxReadPubbr = new BinaryReader(TxReadPubfs); 
TxPubKeyBlob = TxReadPubbr.ReadBytes(148); 
TxReadPubbr.Close(); 
TxReadPubfs.Close(); 
TxRSA.ImportCspBlob(TxPubKeyBlob); 

 

The message is then encrypted by the RSA algorithm using the 

recipient’s Public Key. The Optimal Asymmetric Encryption Padding (OAEP) 

parameter was set to false because it is not supported under Windows Mobile 

5.0. 

 
encryptedData = TxRSA.Encrypt(dataToEncrypt, false); 
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The message is finally completed by encoding the encrypted data 

stream using Base64 encoding and adding a marker in front of the data. The type 

of encoding used is crucial in ensuring that the encrypted data is accurately 

encoded as the SMS message undergoes different protocol translations across 

networks. The “**” is used as the marker to differentiate encrypted data from 

normal SMS messages.  The choice of the marker character is purely arbitrary, 

as long as the characters are seldom used in normal SMS text exchanges. 

 
FinalMsg = "**" + 
Convert.ToBase64String(encryptedData)+Convert.ToBase64String(Signature) 

 

The SMS sending service in Windows Mobile 5.0 is provided by the   

Microsoft.WindowsMobile.PocketOutlook namespace. A new instance of the 

SmsMessage class is created to send the SMS. 

 
SmsMessage MsgToSend = new SmsMessage(ToPhoneNumber, FinalMsg); 
MsgToSend.Send(); 
 

The last stage of the sending process is to update the display to 

provide feedback to the user as to the status of the sending process. The typed 

message is moved to the Conversation Box to indicate that the message has 

been sent successfully. The system status box indicates whether the SMS 

message has been successfully signed, encrypted and sent. The length of 

message is included as an additional check. 
 
this.textBoxDialog.Text += "Me:" + this.textBoxMsgToSend.Text + "\r\n"; 
 
// Clear the "Message" edit box 
this.textBoxMsgToSend.Text = ""; 
this.textBoxDump.Text += "sent.[" + FinalMsg.Length.ToString() + 
"]\r\n"; 
 

 



 63

C. OBSERVATIONS 
It was observed that the signing and encryption process was fast from a 

usability perspective as compared to the time required to send the SMS. In this 

case, a 1024-bit key length was used for both encryption and signing. The 

encrypted data produced an output of 172 bytes. The signature is also 172 bytes. 

This resulted in a final message length of 346 bytes, if the two marker character 

markers are included. This means that three SMS messages are required to 

send the final message.   

The waiting time for sending three SMS messages appeared very long as 

compared to the encryption processes, probably because the system status 

message is only updated when all three messages have been sent. During the 

process, nothing is seen to be happening. This may be unnerving for some users 

because the time taken to send a message is now significantly longer than 

sending a normal unencrypted message.  

To improve the user interface, more feedbacks could be provided to the 

user with regard to the sending progress. The other way is to reduce the 

signature length by using a shorter key length. For example, an 840-bit key 

length will produce a 140 byte signature. This will reduce the total length of the 

message to 314 bytes, which can be sent with two SMS messages. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSION 

In this thesis, a detailed vulnerability study was conducted on the GSM 

Network and the SMS protocol. It was concluded that application layer encryption 

is required to protect the confidentiality and integrity of SMS messages. A study 

of the different encryption schemes was conducted to understand their 

properties. Several considerations were drawn up with regard to the 

implementation of an encryption scheme on a mobile device. Of particular 

concern are the efficiency and power consumption requirements of encryption 

operations. Therefore, empirical measurements were taken to compare the 

performances of symmetric and asymmetric encryption on a modern mobile 

phone device. It was discovered that asymmetric encryption for SMS is no longer 

prohibitively expensive in terms of timing and resource consumption in a modern 

mobile device, due to advances in CPU performance for mobile devices.  

A demonstration Secure Chat application was developed to validate the 

feasibility of implementing a pure asymmetric encryption solution for SMS. It was 

discovered that the overheads generated by asymmetric encryption is a key 

factor in deciding the suitability of asymmetric encryption. The long output 

lengths generated by an asymmetric encryption algorithm resulted in messages 

that are many times longer than the original message. For SMS, this is significant 

because the low bandwidth is further exacerbated.  

 

B. RECOMMENDATIONS 

The SMS and GSM technologies are matured after being in operation for 

more than ten years. Although they are not secure by design and 

implementation, their pervasiveness and low cost may be leveraged to improve  
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other aspects of security.  Following are several areas of potential exploration 

which may prove to increase the utility of the SMS protocol for sensitive 

communications. 

 

1.  Remote Device Termination by SMS 
By using SMS interception, a remote device that is physically lost may be 

remotely locked and the contents encrypted to prevent loss of sensitive 

information such as address book and personal information. However, the 

address book and sensitive information such as emails are locked for access by 

the Pocket Outlook application. The challenge will be to explore ways in which 

the information can be accessed and encrypted. 

 
2. One Time Pad (OTP) for SMS Encryption 
 The advantages and possibility of using OTP for SMS encryption was 

discussed in Chapter III. This possibility can be further explored. The key 

research area would be to design an architecture for the key management and 

key synchronization for a OTP encryption scheme. 

  

3. SMS-based Two-factor Authentication 
Some banks are already using SMS as an additional authentication 

mechanism for online banking. This idea could be further extended by using the 

cell phone as the second factor of authentication. The cell phone is connected to 

the laptop via Bluetooth and the laptop is connected to the server via Internet. A 

challenge and response authentication mechanism can be built such that either 

the challenge, or the response information is sent via SMS through the cell 

phone, and the information is relayed to the laptop. The sending of the challenge 

and response on different channels makes it virtually impossible for the attacker 

to conduct a man-in-the-middle attack. The attacker has to be able to monitor, 

correlate and respond on two channels in order to carry out the attack. For the 

user, it is a two-factor authentication. If the laptop is lost, access to the server is 
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denied even if the attacker has the password. The key research question is the 

synchronization and the timing requirements for such a setup. 

  

4. SMS Blue Force Tracking (Personnel) 
Personnel tracking in an urban area is difficult because the “concrete 

jungle” is not a favorable environment for radio frequency propagation. GPS 

information may also be affected due to lack of line-of-sight to satellites. 

Research has shown that a pure client-based GSM localization system can 

achieve median localization accuracies of 5 and 75 meters for indoor and 

outdoor environments, respectively [37]. If the information can be further 

correlated with the Base Transceiver Stations (BTS), better accuracies may be 

achieved. Currently small portable GSM BTS are commercially available that can 

be set up quickly. If a few of such BTS can be set up near the area of operations, 

the mini-GSM network can be used to provide positional information for individual 

soldiers. The information can then be sent back to the Command Post to provide 

a situation of the Blue Force disposition. The key research question is the 

positional accuracy that can be achieved using portable GSM BTS.  
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APPENDIX A. POWER CONSUMPTION EXPERIMENT 

A. PRE-MEASUREMENT CHECKLIST 

The following settings are checked prior to each measurement to ensure 

consistency of measurements: 

Feature Setting 
Wifi OFF 
GSM OFF 
Bluetooth OFF 
Active Processes File Explorer is the only process 

running. This is because File Explorer 
is required to start the application 

LCD Backlight Setting: Battery Power “Turn off backlight if device is not used 
for “ – 30 sec 

LCD Backlight Setting: Battery Power “Turn on backlight when a button is 
pressed or the screen is tapped” – 
Enabled 

LCD Backlight: Brightness Level 6 / 10 
 “Auto adjust backlight level by battery 

level” – Disabled 
 “Auto adjust backlight level by idle time” 

- Disabled 
Power Management: Sleep Mode 
Settings: On Battery Power 

“Turn off device if not used for” - 
Disabled 

Power Management: Sleep Mode 
Settings: On External Power 

“Turn off device if not used for” - 
Disabled 

Table 9.   Pre-Measurement Checklist 
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B. FAILED APPROACHES 
Figure 23 illustrates the logic associated with the original intended 

program flow. However, the program flow below cannot be implemented due to 

certain software limitations, which will be discussed in the following Sections. 

 

Start

Write time taken and 
power consumption 

data to log file

Read Clear 
Text Input

Set Number 
of Iterations

Check battery 
level

Start timer

Start 
encryption

End of loop?

End

No

Yes

Check battery 
level

Stop timer

 
Figure 23.   Flowchart for Performance Measurement (Original 

Approach) 
 

1. Power Measurement Resolution 
The battery power level was accessed through the 

SystemState.PowerBatteryStrength property using the State and Notification API 

(SNAPI). However, the returned value was expressed as power levels in 5 

distinct bands: Very Low (0-20%), Low (21%-40%), Medium (41%-60%), High 

(61%-80%), Very High (81-100%). This resolution was clearly insufficient and 

another approach was required. 

 



 71

2. Failure in SNAPI Notification Service 
Another approach was adopted to make use of the notification feature of 

the SNAPI to detect the changes as the battery levels as it changes from one 

band to another. By noting the number of iterations of encryption that causes 

battery level to change by a 20 per cent range, the consumption figure for each 

iteration of encryption can be approximated. The program was coded according 

to the flow chart in Figure 25.  

 

Start

Write start & stop 
loop counters & 

timing data to log file

Read Clear 
Text Input

Start Battery 
Power Notification 

Service

Start 
encryption

Notification 
triggered ?

End

No

Yes

Set Stop flag

Note loop 
counter & time

Start loop 
counter

Reset Stop 
flag

Stop flag 
set?

No

Yes

 
Figure 24.   Flowchart for Performance Measurement (Second 

Approach) 
 

However, this approached also failed because the Notification Service in 

the SNAPI failed to trap the power changes while the application was  

executing the loop. As the result, the program executed till the end of the loop 

without any interruptions and all the system notifications appear after the loop 

termination. 

 



 72

C. RESULTS 

The results of the baseline measurement are shown in Table 10. The 

results of the RSA performance measurements are shown in Tables 11 and 12. 

The results of the AES performance measurements are shown in Tables 13 and 

14. 

 
S/No Iteration 

Number 
Time Duration Time/ 

100kb 
Consumption 

 Start End Start End (ms) (ms) (mAH) 
1 43682 83792 4931000 9591000 4660000 116.2 0.718 
2 83792 118124 9591000 15994000 6403000 186.5 0.344 
3 118124 175326 15994000 23692000 7698000 134.6 0.503 
4 80408 107952 9242000 15603000 6361000 230.9 1.046 
5 107952 136765 15603000 21262000 5659000 196.4 0.267 
6 83340 124493 9241000 14062000 4821000 117.1 0.700 
7 65970 105149 7938000 12779000 4841000 123.6 0.735 
8 105149 137708 12779000 17158000 4379000 134.5 0.274 
9 57900 90260 8116000 12757000 4641000 143.4 0.890 

10 90260 129587 12757000 18477000 5720000 145.4 0.319 
11 52458 89864 6305000 10924000 4619000 123.5 0.770 
12 89864 122644 10924000 15085000 4161000 126.9 0.320 
13 817 43773 87000 4727000 4640000 108.0 0.670 
14 43773 82268 4727000 8967000 4240000 110.1 0.658 
15 73978 114330 8073000 12714000 4641000 115.0 0.714 
16 114330 151178 12714000 17053000 4339000 117.8 0.252 
17 7242 49880 776000 5418000 4642000 108.9 0.675 
18 49880 88666 5418000 9738000 4320000 111.4 0.577 
19 76174 116348 8344000 12983000 4639000 115.5 0.717 
20 69876 110292 7687000 12387000 4700000 116.3 0.713 
21 110292 153096 12387000 17466000 5079000 118.7 0.261 
22 3538 44852 387000 5008000 4621000 111.9 0.697 
23 44852 80860 5008000 9147000 4139000 114.9 0.642 
24 80860 144264 9147000 16768000 7621000 120.2 0.454 
25 20004 61282 2189000 6829000 4640000 112.4 0.698 
26 61282 99840 6829000 11310000 4481000 116.2 0.470 
27 99840 164968 11310000 19170000 7860000 120.7 0.442 
28 52493 89505 6432000 11073000 4641000 125.4 0.778 
29 89505 123909 11073000 15453000 4380000 127.3 0.322 
30 123909 190592 15453000 24159000 8706000 130.6 0.432 
31 55518 94798 6260000 10900000 4640000 118.1 0.733 
32 94798 132716 10900000 15499000 4599000 121.3 0.304 
33 132716 197653 15499000 23579000 8080000 124.4 0.444 

        
     Mean 128.61 0.56 
     Std Dev 26.65 0.21 

Table 10.   Baseline Measurements 
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S/No Iteration 

Number 
Time Duration Time/ 

100kb 
Consumption 

 Start End Start End (ms) (ms) (mAH) 
1 152 447 2478000 7303000 4825000 16355.9 97.627
2 567 851 9249000 13873000 4624000 16281.7 101.408
3 851 1074 13873000 17501000 3628000 16269.1 129.148
4 59 334 974000 5593000 4619000 16796.4 104.727
5 334 567 5593000 9209000 3616000 15519.3 123.605
6 570 867 9265000 14086000 4821000 16232.3 96.970
7 867 1077 14086000 17493000 3407000 16223.8 137.143
8 162 459 2648000 7473000 4825000 16245.8 96.970
9 459 711 7473000 11567000 4094000 16246.0 114.286

10 583 881 9449000 14273000 4824000 16187.9 96.644
11 881 1107 14273000 17932000 3659000 16190.3 127.434
12 49 347 811000 5637000 4826000 16194.6 96.644
13 347 582 5637000 9444000 3807000 16200.0 122.553
14 108 406 1763000 6586000 4823000 16184.6 96.644
15 406 629 6586000 10195000 3609000 16183.9 129.148
16 505 803 8203000 13037000 4834000 16221.5 96.644
17 803 1024 13037000 16621000 3584000 16217.2 130.317
18 595 893 9651000 14477000 4826000 16194.6 96.644
19 893 1172 14477000 18997000 4520000 16200.7 103.226
20 300 599 4868000 9707000 4839000 16183.9 96.321
21 599 851 9707000 13788000 4081000 16194.4 114.286
22 659 956 10690000 15502000 4812000 16202.0 96.970
23 956 1292 15502000 20947000 5445000 16205.4 85.714
24 317 614 5165000 9989000 4824000 16242.4 96.970
25 614 825 9989000 13420000 3431000 16260.7 136.493
26 639 935 10372000 15167000 4795000 16199.3 97.297
27 935 1262 15167000 20464000 5297000 16198.8 88.073
28 250 549 4062000 8903000 4841000 16190.6 96.321
29 549 760 8903000 12320000 3417000 16194.3 136.493
30 285 582 4636000 9453000 4817000 16218.9 96.970
31 582 905 9453000 14693000 5240000 16222.9 89.164
32 681 979 11021000 15840000 4819000 16171.1 96.644
33 979 1252 15840000 20256000 4416000 16175.8 105.495

   
   Mean 16212.31 107.00
   Std Dev 164.44 15.77

Table 11.   RSA 1024-bit key length (Block Size 117 bytes) performance data 
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S/No Iteration 

Number 
Time Duration Time/ 

100kb 
Consumption 

 Start End Start End (ms) (ms) (mAH) 
1 95 275 2468000 7088000 4620000 25666.7 160.000
2 275 451 7088000 11608000 4520000 25681.8 163.636
3 451 727 11608000 18704000 7096000 25710.1 104.348
4 284 464 7321000 11934000 4613000 25627.8 160.000
5 464 605 11934000 15548000 3614000 25631.2 204.255
6 605 829 15548000 21287000 5739000 25620.5 128.571
7 305 485 7855000 12472000 4617000 25650.0 160.000
8 485 626 12472000 16088000 3616000 25645.4 204.255
9 626 854 16088000 21943000 5855000 25679.8 126.316

10 132 314 3400000 8050000 4650000 25549.5 158.242
11 314 456 8050000 11678000 3628000 25549.3 202.817
12 456 721 11678000 18457000 6779000 25581.1 108.679
13 152 305 3919000 7840000 3921000 25627.5 188.235
14 305 546 7840000 14020000 6180000 25643.2 119.502
15 58 237 1523000 6121000 4598000 25687.2 160.894
16 237 388 6121000 10003000 3882000 25708.6 190.728
17 388 646 10003000 16639000 6636000 25720.9 111.628
18 367 548 9456000 14097000 4641000 25640.9 159.116
19 548 689 14097000 17714000 3617000 25652.5 204.255
20 689 909 17714000 23361000 5647000 25668.2 130.909
21 355 536 9129000 13772000 4643000 25651.9 159.116
22 536 676 13772000 17362000 3590000 25642.9 205.714
23 676 909 17362000 23341000 5979000 25660.9 123.605
24 158 299 4077000 7693000 3616000 25645.4 204.255
25 299 551 7693000 14159000 6466000 25658.7 114.286
26 349 530 8971000 13607000 4636000 25613.3 159.116
27 530 676 13607000 17346000 3739000 25609.6 197.260
28 676 936 17346000 24002000 6656000 25600.0 110.769
29 72 252 1870000 6483000 4613000 25627.8 160.000
30 252 400 6483000 10277000 3794000 25635.1 194.595

 400 655 10277000 16818000 6541000 25651.0 112.941
   
   Mean 25643.18 157.68
   Std Dev 40.16 34.96

Table 12.   RSA 2048-bit key length (Block Size 117 bytes) performance data 
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S/No Iteration 

Number 
Time Duration Time/ 

100kb 
Consumption 

 Start End Start End (ms) (ms) (mAH) 
1 427 796 5354000 9969000 4615000 12506.8 78.049
2 796 1085 9969000 13583000 3614000 12505.2 99.654
3 1085 1332 13583000 16672000 3089000 12506.1 116.599
4 98 389 1239000 4860000 3621000 12443.3 98.969
5 389 747 4860000 9319000 4459000 12455.3 80.447
6 637 1007 7989000 12622000 4633000 12521.6 77.838
7 1007 1296 12622000 16241000 3619000 12522.5 99.654
8 1296 1565 16241000 19611000 3370000 12527.9 107.063
9 561 929 7052000 11662000 4610000 12527.2 78.261

10 929 1218 11662000 15283000 3621000 12529.4 99.654
11 1218 1427 15283000 17903000 2620000 12535.9 137.799
12 719 1089 9006000 13632000 4626000 12502.7 77.838
13 1089 1378 13632000 17244000 3612000 12498.3 99.654
14 1378 1609 17244000 20133000 2889000 12506.5 124.675
15 15 386 212000 4847000 4635000 12493.3 77.628
16 386 679 4847000 8510000 3663000 12501.7 98.294
17 679 1091 8510000 13662000 5152000 12504.9 69.903
18 594 1047 6076000 10700000 4624000 10207.5 63.576
19 1047 1421 10700000 14517000 3817000 10205.9 77.005
20 1421 2089 14517000 21335000 6818000 10206.6 43.114
21 898 1352 9156000 13778000 4622000 10180.6 63.436
22 1352 1767 13778000 18001000 4223000 10175.9 69.398
23 1767 2445 18001000 24904000 6903000 10181.4 42.478
24 885 1338 9045000 13664000 4619000 10196.5 63.576
25 1338 1697 13664000 17323000 3659000 10192.2 80.223
26 1697 2388 17323000 24367000 7044000 10193.9 41.679
27 406 761 4153000 7769000 3616000 10185.9 81.127
28 761 1429 7769000 14572000 6803000 10184.1 43.114
29 829 1283 8468000 13084000 4616000 10167.4 63.436
30 1283 1639 13084000 16704000 3620000 10168.5 80.899
31 1639 2272 16704000 23147000 6443000 10178.5 45.498

   
   Mean 11458.50 80.02
   Std Dev 1172.65 24.34

Table 13.   RSA 2048-bit key length (Block Size 245 bytes) performance data 
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S/No Iteration 

Number 
Time Duration Time/ 

100kb 
Consumption 

 Start End Start End (ms) (ms) (mAH) 
1 18133 29156 9588000 15448000 5860000 531.6 2.613
2 29156 40045 15448000 21288000 5840000 536.3 2.645
3 40045 56872 21288000 30347000 9059000 538.4 1.712
4 16904 27734 8977000 14758000 5781000 533.8 2.659
5 27734 37644 14758000 20098000 5340000 538.8 2.906
6 37644 54905 20098000 29437000 9339000 541.0 1.669
7 11818 21695 6267000 11526000 5259000 532.4 2.916
8 21695 32419 11526000 17266000 5740000 535.2 2.686
9 32419 48912 17266000 26164000 8898000 539.5 1.746

10 19087 30221 10180000 16160000 5980000 537.1 2.587
11 30221 41359 16160000 22201000 6041000 542.4 2.586
12 41359 57622 22201000 31060000 8859000 544.7 1.771
13 19244 29995 10208000 15948000 5740000 533.9 2.679
14 29995 41360 15948000 22068000 6120000 538.5 2.534
15 11771 22799 6213000 12053000 5840000 529.6 2.612
16 22799 34265 12053000 18213000 6160000 537.2 2.512
17 34265 52263 18213000 27850000 9637000 535.4 1.600
18 19041 30461 10110000 16209000 6099000 534.1 2.522
19 30461 41140 16209000 21969000 5760000 539.4 2.697
20 41140 57323 21969000 30709000 8740000 540.1 1.780
21 4938 16042 2611000 8511000 5900000 531.3 2.594
22 16042 24714 8511000 13132000 4621000 532.9 3.321
23 24714 42192 13132000 22532000 9400000 537.8 1.648
24 19409 30121 10269000 15969000 5700000 532.1 2.689
25 30121 40626 15969000 21609000 5640000 536.9 2.742
26 40626 58036 21609000 30987000 9378000 538.7 1.654
27 77 7167 40000 3803000 3763000 530.7 4.062
28 7167 24327 3803000 12983000 9180000 535.0 1.678
29 18064 28927 9611000 15431000 5820000 535.8 2.651
30 28927 40416 15431000 21632000 6201000 539.7 2.507
31 40416 56692 21632000 30452000 8820000 541.9 1.769

   
   Mean 536.53 2.41
   Std Dev 3.74 0.57

Table 14.   AES 128-bit key length performance data 
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S/No Iteration 

Number 
Time Duration Time/ 

100kb 
Consumption 

 Start End Start End (ms) (ms) (mAH) 
1 17281 27538 10188000 16287000 6099000 594.6 2.808
2 27538 36329 16287000 21527000 5240000 596.1 3.276
3 10136 19033 5949000 11189000 5240000 589.0 3.237
4 19033 26385 11189000 15529000 4340000 590.3 3.917
5 17530 28232 10243000 16524000 6281000 586.9 2.691
6 28232 37855 16524000 22183000 5659000 588.1 2.993
7 16135 26423 9376000 15375000 5999000 583.1 2.799
8 26423 38162 15375000 22235000 6860000 584.4 2.453
9 18174 28065 10589000 16389000 5800000 586.4 2.912

10 28065 39241 16389000 22969000 6580000 588.8 2.577
11 17655 28125 10285000 16406000 6121000 584.6 2.751
12 28125 37310 16406000 21786000 5380000 585.7 3.136
13 17395 30272 10125000 17672000 7547000 586.1 2.237
14 30272 37627 17672000 22003000 4331000 588.9 3.916
15 8713 17713 5056000 10295000 5239000 582.1 3.200
16 17713 26078 10295000 15175000 4880000 583.4 3.443
17 15222 26039 8944000 15325000 6381000 589.9 2.662
18 26039 34803 15325000 20503000 5178000 590.8 3.286
19 15192 26443 8824000 15383000 6559000 583.0 2.560
20 26443 36196 15383000 21084000 5701000 584.5 2.953
21 17779 27824 10359000 16259000 5900000 587.4 2.867
22 27824 38035 16259000 22280000 6021000 589.7 2.820
23 13456 23916 7818000 13917000 6099000 583.1 2.753
24 23916 34522 13917000 20117000 6200000 584.6 2.715
25 8027 16554 4654000 9613000 4959000 581.6 3.378
26 16554 28627 9613000 16653000 7040000 583.1 2.385
27 17659 28183 10274000 16435000 6161000 585.4 2.737
28 28183 38155 16435000 22296000 5861000 587.7 2.888
29 15800 26946 9177000 15678000 6501000 583.3 2.584
30 26946 37758 15678000 21997000 6319000 234.5 1.069
31 17558 27870 10215000 16256000 6041000 585.8 2.793
32 27870 38002 16256000 22215000 5959000 213.8 1.033

   
   Mean 563.95 2.81
   Std Dev 89.24 0.60

Table 15.   AES 256-bit key length performance data 
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D. PROGRAM CODE 
using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Text; 
using System.Windows.Forms; 
using System.IO; 
using System.Security.Cryptography; 
using Microsoft.WindowsMobile.Status; 
 
namespace PowerEncryption 
{ 
    public partial class MainForm : Form 
    { 
        public MainForm() 
        { 
            InitializeComponent(); 
        } 
 
        private void menuExit_Click(object sender, EventArgs e) 
        { 
            Application.Exit(); 
        } 
 
        private void MainForm_Load(object sender, EventArgs e) 
        { 
            this.menuBaseline.Checked = true; 
            this.textBoxCurrentMode.Text = "RSA"; 
            comboBoxClearTextLen.SelectedItem = "100KB"; 
            textBoxIterations.Text = "3000"; 
        } 
 
        private void button1_Click(object sender, EventArgs e) 
        { 
            int n = Convert.ToInt32(textBoxIterations.Text); 
            TimeSpan ts;  // Create a TimeSpan instance 
             
            this.textBoxPowerStart.Text = ""; 
            this.textBoxDuration.Text = ""; 
            this.textBoxPowerEnd.Text = ""; 
            this.textBoxPowerDiff.Text = ""; 
 
            if (this.textBoxCurrentMode.Text == "RSA") 
            { 
                #region RSA 
            
            this.textBoxPowerStart.Text = 
SystemState.GetValue(SystemProperty.PowerBatteryStrength).ToString(); 
            DateTime dtStart = DateTime.Now; //Capture Start time 
            this.textBoxDump.Text = this.textBoxDump.Text + "Encrypt using RSA... "; 
 
            //Create byte arrays to hold original, encrypted data. 
            byte[] RSAClrData; 
            byte[] RSAEncryptedData; 
             //Create a new instance of RSACryptoServiceProvider to generate public and 
private key data. 
            RSACryptoServiceProvider RSAKey = new RSACryptoServiceProvider(2048); 
            this.textBoxKeyLength.Text = RSAKey.KeySize.ToString(); 
 
            for (int i = 0; i < n; i++) 
            { 
               //Read input file  
                FileStream RSAinStream = File.Open("Temp\\" + 
comboBoxClearTextLen.SelectedItem.ToString() + ".txt", FileMode.Open); 
                StreamReader RSAsReader = new StreamReader(RSAinStream); 
                string RSAClrTxt = RSAsReader.ReadToEnd(); 
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                System.Text.Encoding ByteEnc = System.Text.Encoding.ASCII; 
 
                    //Create a new instance of RSACryptoServiceProvider. 
                    RSACryptoServiceProvider RSA = new RSACryptoServiceProvider(2048); 
 
                    //Import the RSA Key information.  
                    RSA.ImportParameters(RSAKey.ExportParameters(false)); 
 
                    System.Text.Encoding enc = System.Text.Encoding.ASCII; 
 
                    string RSAEncryptedTxt="";  
  
                //Encrypt individual blocks of data.  
                //Max input for 1024-bit key length is 117bytes. 
                //Max input for 2048-bit key length is 245bytes 
                 
                    int j = 0; 
                int MaxInput = 245; 
                    while ( j+MaxInput < RSAClrTxt.Length) 
                    { 
                       RSAClrData = ByteEnc.GetBytes(RSAClrTxt.ToCharArray(),j,MaxInput); 
                        RSAEncryptedData = RSA.Encrypt(RSAClrData, false); 
                        RSAEncryptedTxt += Convert.ToBase64String(RSAEncryptedData); 
                        j = j + MaxInput; 
                    } 
 
                //Encrypt last block 
                    RSAClrData = ByteEnc.GetBytes(RSAClrTxt.ToCharArray(), j, 
(RSAClrTxt.Length - j)); 
 
                RSAEncryptedData = RSA.Encrypt(RSAClrData, false); 
                    string temptxt =  Convert.ToBase64String(RSAEncryptedData); 
                    RSAEncryptedTxt += temptxt; 
 
                //Write encrypted data to file 
                    FileStream RSAoutStream = File.Open("Temp\\encrypted.txt", 
FileMode.Create); 
                    StreamWriter RSAWriter = new StreamWriter(RSAoutStream); 
                    RSAWriter.Write(RSAEncryptedTxt); 
                        
                RSAWriter.Close(); 
                RSAoutStream.Close(); 
                RSAinStream.Close(); 
 
           //Get time and power settings after encryption and calculate difference 
 
                DateTime dtEnd = DateTime.Now; 
            textBoxPowerEnd.Text = 
SystemState.GetValue(SystemProperty.PowerBatteryStrength).ToString(); 
 
            //Calculate Duration 
            ts = dtEnd.Subtract(dtStart).Duration(); 
            textBoxDuration.Text = ts.TotalMilliseconds.ToString(); 
 
            //Calculate Power Consumption 
            int PwrDiff = Convert.ToInt32(textBoxPowerStart.Text) - 
Convert.ToInt32(textBoxPowerEnd.Text); 
            textBoxPowerDiff.Text = Convert.ToString(PwrDiff) + "%"; 
 
            // Write readings to log file 
 
            StreamWriter logStreamWriter = null; 
            try 
            { 
                string time = DateTime.Now.ToString(); 
                // Create a StreamWriter using a static File class. 
                logStreamWriter = File.AppendText("Temp\\RSAlog.txt"); 
                logStreamWriter.Write(i.ToString()); 
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                logStreamWriter.Write("\t"); 
                logStreamWriter.Write(this.textBoxCurrentMode.Text); 
                logStreamWriter.Write("\t"); 
                logStreamWriter.Write(this.textBoxKeyLength.Text); 
                logStreamWriter.Write("\t"); 
                logStreamWriter.Write(this.comboBoxClearTextLen.Text); 
                logStreamWriter.Write("\t"); 
                logStreamWriter.Write(this.textBoxIterations.Text); 
                logStreamWriter.Write("\t\t"); 
                logStreamWriter.Write(this.textBoxDuration.Text); 
                logStreamWriter.Write("\t\t"); 
                logStreamWriter.Write(this.textBoxPowerStart.Text); 
                logStreamWriter.Write("\t\t"); 
                logStreamWriter.Write(this.textBoxPowerEnd.Text); 
                logStreamWriter.Write("\t\t"); 
                logStreamWriter.Write(RSAEncryptedTxt.Length.ToString()); 
                logStreamWriter.Write("\r\n"); 
 
                logStreamWriter.Flush(); 
            } 
            catch (Exception exc) 
            { 
                // Show the error to the user. 
                MessageBox.Show("File could not be created or written to. Exception: " + 
exc.Message); 
            } 
            finally 
            { 
                // Close the object if it has been created. 
                if (logStreamWriter != null) 
                { 
                    logStreamWriter.Close(); 
                } 
            } 
 
 
            } 
                #endregion 
            this.textBoxDump.Text += "done.\r\n"; 
            } 
 
             
            if (this.textBoxCurrentMode.Text == "Baseline") 
            { 
                 
                //Capture Start time and Power Level 
                this.textBoxPowerStart.Text = 
SystemState.GetValue(SystemProperty.PowerBatteryStrength).ToString(); 
                DateTime dtStart = DateTime.Now;  
 
                this.textBoxDump.Text = this.textBoxDump.Text + "Encrypt using AES... "; 
 
                for (int i = 0; i < n; i++) 
                { 
                    FileStream AESinStream = File.Open("Temp\\" + 
comboBoxClearTextLen.SelectedItem.ToString() + ".txt", FileMode.Open); 
                    StreamReader AESsReader = new StreamReader(AESinStream); 
                    string AESClrTxt = AESsReader.ReadToEnd(); 
                     
                    // Create or open the output file. 
                    FileStream AESoutStream = File.Open("Temp\\encrypted.txt", 
FileMode.OpenOrCreate); 
 
                    AESsReader.Close(); 
                    AESoutStream.Close(); 
                    AESinStream.Close(); 
 
                    // Get end time and power level 
                    DateTime dtEnd = DateTime.Now; 
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                    textBoxPowerEnd.Text = 
SystemState.GetValue(SystemProperty.PowerBatteryStrength).ToString(); 
 
                    //Calculate Duration 
                    ts = dtEnd.Subtract(dtStart).Duration(); 
                    textBoxDuration.Text = ts.TotalMilliseconds.ToString(); 
 
                    //Calculate Power Consumption 
                    int PwrDiff = Convert.ToInt32(textBoxPowerStart.Text) - 
Convert.ToInt32(textBoxPowerEnd.Text); 
                    textBoxPowerDiff.Text = Convert.ToString(PwrDiff) + "%"; 
 
                    // Write readings to AES log file 
 
                    StreamWriter logStreamWriter = null; 
                    try 
                    { 
                        logStreamWriter = File.AppendText("Temp\\Baselinelog.txt"); 
                        logStreamWriter.Write(i.ToString()); 
                        logStreamWriter.Write("\t"); 
                        logStreamWriter.Write(this.textBoxCurrentMode.Text); 
                        logStreamWriter.Write("\t"); 
                        logStreamWriter.Write(this.textBoxKeyLength.Text); 
                        logStreamWriter.Write("\t"); 
                        logStreamWriter.Write(this.comboBoxClearTextLen.Text); 
                        logStreamWriter.Write("\t"); 
                        logStreamWriter.Write(this.textBoxIterations.Text); 
                        logStreamWriter.Write("\t\t"); 
                        logStreamWriter.Write(this.textBoxDuration.Text); 
                        logStreamWriter.Write("\t\t"); 
                        logStreamWriter.Write(this.textBoxPowerStart.Text); 
                        logStreamWriter.Write("\t\t"); 
                        logStreamWriter.Write(this.textBoxPowerEnd.Text); 
                        logStreamWriter.Write("\t\t"); 
                        //logStreamWriter.Write(AEScStream.Length.ToString()); 
                        logStreamWriter.Write("\r\n"); 
                        logStreamWriter.Flush(); 
                    } 
                    catch (Exception exc) 
                    { 
                        // Show the error to the user. 
                        MessageBox.Show("File could not be created or written to. 
Exception: " + exc.Message); 
                    } 
                    finally 
                    { 
                        // Close the object if it has been created. 
                        if (logStreamWriter != null) 
                        { 
                            logStreamWriter.Close(); 
                        } 
                    } 
 
                } 
                this.textBoxDump.Text += "done.\r\n"; 
            } 
         
         
          
            if (this.textBoxCurrentMode.Text == "AES") 
            { 
                 
                //Capture Start time and Power Level 
                this.textBoxPowerStart.Text = 
SystemState.GetValue(SystemProperty.PowerBatteryStrength).ToString(); 
                DateTime dtStart = DateTime.Now;  
 
                this.textBoxDump.Text = this.textBoxDump.Text + "Encrypt using AES... "; 
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                for (int i = 0; i < n; i++) 
                { 
                    FileStream AESinStream = File.Open("Temp\\" + 
comboBoxClearTextLen.SelectedItem.ToString() + ".txt", FileMode.Open); 
                    StreamReader AESsReader = new StreamReader(AESinStream); 
                    string AESClrTxt = AESsReader.ReadToEnd(); 
                     
                    // Create or open the output file. 
                    FileStream AESoutStream = File.Open("Temp\\encrypted.txt", 
FileMode.OpenOrCreate); 
 
                    //Create a new instance to create keys 
                    RijndaelManaged AESalg = new RijndaelManaged(); 
                    byte[] AESabytIV = AESalg.IV; 
                    byte[] AESabytKey = AESalg.Key; 
                    this.textBoxKeyLength.Text = AESalg.KeySize.ToString(); 
 
                    // Create a CryptoStream using the FileStream and the key and 
initialization vector (IV). 
                    CryptoStream AEScStream = new CryptoStream(AESoutStream, 
                    new RijndaelManaged().CreateEncryptor(AESabytKey, AESabytIV), 
                    CryptoStreamMode.Write); 
 
                    // Create a StreamWriter using the CryptoStream. 
                    StreamWriter AESsWriter = new StreamWriter(AEScStream); 
 
                    // Write the data to the stream to encrypt it. 
                    AESsWriter.WriteLine(AESClrTxt); 
  
  
                    AESsReader.Close(); 
                    AESsWriter.Close(); 
                    AESoutStream.Close(); 
                    AESinStream.Close(); 
                    AEScStream.Close(); 
 
                    DateTime dtEnd = DateTime.Now; 
                    textBoxPowerEnd.Text = 
SystemState.GetValue(SystemProperty.PowerBatteryStrength).ToString(); 
 
                    //Calculate Duration 
                    ts = dtEnd.Subtract(dtStart).Duration(); 
                    textBoxDuration.Text = ts.TotalMilliseconds.ToString(); 
 
                    //Calculate Power Consumption 
                    int PwrDiff = Convert.ToInt32(textBoxPowerStart.Text) - 
Convert.ToInt32(textBoxPowerEnd.Text); 
                    textBoxPowerDiff.Text = Convert.ToString(PwrDiff) + "%"; 
 
                    // Write readings to AES log file 
 
                    StreamWriter logStreamWriter = null; 
                    try 
                    { 
                        logStreamWriter = File.AppendText("Temp\\AESlog.txt"); 
                        logStreamWriter.Write(i.ToString()); 
                        logStreamWriter.Write("\t"); 
                        logStreamWriter.Write(this.textBoxCurrentMode.Text); 
                        logStreamWriter.Write("\t"); 
                        logStreamWriter.Write(this.textBoxKeyLength.Text); 
                        logStreamWriter.Write("\t"); 
                        logStreamWriter.Write(this.comboBoxClearTextLen.Text); 
                        logStreamWriter.Write("\t"); 
                        logStreamWriter.Write(this.textBoxIterations.Text); 
                        logStreamWriter.Write("\t\t"); 
                        logStreamWriter.Write(this.textBoxDuration.Text); 
                        logStreamWriter.Write("\t\t"); 
                        logStreamWriter.Write(this.textBoxPowerStart.Text); 
                        logStreamWriter.Write("\t\t"); 
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                        logStreamWriter.Write(this.textBoxPowerEnd.Text); 
                        logStreamWriter.Write("\t\t"); 
                        logStreamWriter.Write("\r\n"); 
                        logStreamWriter.Flush(); 
                    } 
                    catch (Exception exc) 
                    { 
                        // Show the error to the user. 
                        MessageBox.Show("File could not be created or written to. 
Exception: " + exc.Message); 
                    } 
                    finally 
                    { 
                        // Close the object if it has been created. 
                        if (logStreamWriter != null) 
                        { 
                            logStreamWriter.Close(); 
                        } 
                    } 
 
                } 
 
                this.textBoxDump.Text += "done.\r\n"; 
 
            } 
         
         
        } 
 
 
        private string RandomString(int size) 
        { 
            StringBuilder builder = new StringBuilder(); 
            Random random = new Random(); 
            char ch; 
            for (int i = 0; i < size; i++) 
            { 
                ch = Convert.ToChar(Convert.ToInt32(Math.Floor(26 * random.NextDouble() + 
65))); 
                builder.Append(ch); 
            } 
            return builder.ToString(0,size); 
        } 
 
        public void CreateTxtFile(string FileName, string content) 
        { 
            StreamWriter myStreamWriter = null; 
 
            try 
            { 
                // Create a StreamWriter using a static File class. 
                myStreamWriter = File.CreateText(FileName); 
 
                // Write the entire contents of the txtFileText text box 
                //   to the StreamWriter in one shot. 
                myStreamWriter.Write(content); 
                myStreamWriter.Flush(); 
            } 
            catch (Exception exc) 
            { 
                // Show the error to the user. 
                MessageBox.Show("File could not be created or written to. Exception: " + 
exc.Message); 
            } 
            finally 
            { 
                // Close the object if it has been created. 
                if (myStreamWriter != null) 
                { 
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                    myStreamWriter.Close(); 
                } 
            } 
        } 
 
        private void menuItemGenerateFiles_Click(object sender, EventArgs e) 
        { 
                        
            this.textBoxDump.Text = this.textBoxDump.Text + "Generating text files.... "; 
            CreateTxtFile("Temp\\160B.txt", RandomString(160)); 
            CreateTxtFile("Temp\\1KB.txt", RandomString(1000)); 
            CreateTxtFile("Temp\\10KB.txt", RandomString(10000)); 
            CreateTxtFile("Temp\\100KB.txt", RandomString(100000)); 
            string LogFileHeader = "Loop\tMode\tKey\t 
Input\tIterations\tDuration\tPowerStart\tPowerEnd\tOutput 
Length\r\n===============================================================================
=============================== \r\n"; 
            CreateTxtFile("Temp\\Baselinelog.txt", LogFileHeader); 
            CreateTxtFile("Temp\\RSAlog.txt", LogFileHeader); 
            CreateTxtFile("Temp\\AESlog.txt", LogFileHeader);  
 
            this.textBoxDump.Text = this.textBoxDump.Text + "done.\r\n "; 
        } 
 
        private void menuItem1_Click(object sender, EventArgs e) 
        { 
            this.menuItemRSA.Checked = true; 
            this.menuBaseline.Checked = false; 
            this.textBoxCurrentMode.Text = "RSA"; 
        } 
 
        private void menuItemAES_Click(object sender, EventArgs e) 
        { 
            this.menuItemRSA.Checked = false; 
            this.menuBaseline.Checked = false; 
            this.menuItemAES.Checked = true; 
            this.textBoxCurrentMode.Text = "AES"; 
 
        } 
 
        private void menuBaseline_Click(object sender, EventArgs e) 
        { 
            this.menuItemRSA.Checked = false; 
            this.menuBaseline.Checked = true; 
            this.menuItemAES.Checked = false; 
            this.textBoxCurrentMode.Text = "Baseline"; 
 
        } 
 
 
    } 
} 
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APPENDIX B. SECURE CHAT 

A. PROGRAM CODE 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Text; 
using System.Windows.Forms; 
using System.Security.Cryptography; 
using Microsoft.WindowsMobile.Forms; 
using Microsoft.WindowsMobile.PocketOutlook; 
using Microsoft.WindowsMobile.PocketOutlook.MessageInterception; 
using Microsoft.WindowsMobile.Status; 
using System.IO; 
using Microsoft.Win32; 
 
namespace SecureChat 
{ 
    public partial class MainForm : Form 
    { 
        private MessageInterceptor SMSInterceptor = new 
MessageInterceptor(InterceptionAction.NotifyAndDelete, true); 
        private MessageCondition msgCondition = new MessageCondition(); 
        string ToPhoneNumber = ""; 
        string FromPhoneNumber = ""; 
        string MyPhoneNumber = "+14250010001"; 
        string FinalMsg = ""; 
 
 
        public MainForm() 
        { 
            InitializeComponent(); 
        } 
 
        private void SMSMessageReceived(object sender, MessageInterceptorEventArgs e) 
        { 
            byte[] RxencryptedData; 
            byte[] RxdecryptedData; 
            byte[] RxPrivKeyBlob; 
            byte[] RxPubKeyBlob; 
            byte[] RxSignature; 
            byte[] RxPubKeyData; 
            ASCIIEncoding ByteConverter = new ASCIIEncoding(); 
 
            SmsMessage msg = (SmsMessage)e.Message; 
 
            this.textBoxDump.Text += "Msg Rx [" + msg.Body.Length.ToString()+"], "; 
            FromPhoneNumber = msg.From.Address.ToString(); 
 
            //Create a new instance of RSA 
            RSACryptoServiceProvider RxRSA = new RSACryptoServiceProvider(1024); 
            SHA1CryptoServiceProvider RxSHA = new SHA1CryptoServiceProvider(); 
             
            if (msg.Body.Substring(0,2)=="**") 
            { 
 
            //Decompose Message 
            RxencryptedData = Convert.FromBase64String(msg.Body.Substring(2, 172)); 
 
            string t = msg.Body.Substring(174, 172); 
            RxSignature = Convert.FromBase64String(t); 
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            //Read private key for decryption 
            FileStream RxReadPrivfs = File.OpenRead("Program Files\\SecureChat\\" + 
MyPhoneNumber + ".prv"); 
            BinaryReader RxReadPrivbr = new BinaryReader(RxReadPrivfs); 
            RxPrivKeyBlob = RxReadPrivbr.ReadBytes(596); 
            RxReadPrivbr.Close(); 
            RxReadPrivfs.Close(); 
            RxRSA.ImportCspBlob(RxPrivKeyBlob); 
 
           //Decrypt Message 
            RxdecryptedData = RxRSA.Decrypt(RxencryptedData, false); 
            this.textBoxDump.Text += "decrypted, "; 
 
            //Read Public Key from Sender public key file 
            FileStream RxReadPubfs = File.OpenRead("Program Files\\SecureChat\\" + 
FromPhoneNumber+ ".pub"); 
            BinaryReader RxReadPubbr = new BinaryReader(RxReadPubfs); 
            RxPubKeyBlob = RxReadPubbr.ReadBytes(148); 
            RxReadPubbr.Close(); 
            RxReadPubfs.Close(); 
            RxRSA.ImportCspBlob(RxPubKeyBlob); 
 
            //Verify signature 
            string temp = ByteConverter.GetString(RxdecryptedData, 0, 
RxdecryptedData.Length); 
            byte[] tb = ByteConverter.GetBytes(temp); 
            if (RxRSA.VerifyData(tb, RxSHA, RxSignature)) 
            { 
                this.textBoxDump.Text += "verified.\r\n"; 
                this.textBoxDump.ScrollToCaret(); 
            } 
            else 
            { this.textBoxDump.Text += "NOT VERIFIED.\r\n"; } 
          
            //Display Message 
 
            this.textBoxDialog.Text += FromPhoneNumber.Substring(8,4) + ":" + 
ByteConverter.GetString(RxdecryptedData, 0, RxdecryptedData.Length) + "\r\n"; 
            } 
 
 
            if (msg.Body.Substring(0,2)=="*x") 
            { 
                //Extract public key 
                RxPubKeyData = Convert.FromBase64String(msg.Body.Substring(2, 200)); 
 
                textBoxDump.Text += "Public Key from " + FromPhoneNumber + "\r\n"; 
                FileStream Pubfs = File.Create("Program Files\\SecureChat\\" + 
FromPhoneNumber + ".pub"); 
                BinaryWriter Pubbw = new BinaryWriter(Pubfs); 
                Pubbw.Write(RxPubKeyData); 
                Pubbw.Close(); 
                Pubfs.Close(); 
            } 
 
        } 
 
        private void MainForm_Load(object sender, EventArgs e) 
        { 
            // Intercept SMS starting with * 
            msgCondition.Property = MessageProperty.Body; 
            msgCondition.ComparisonType = MessagePropertyComparisonType.StartsWith; 
            msgCondition.ComparisonValue = "*";   
            SMSInterceptor.MessageCondition = msgCondition; 
 
            //set up event handler to process incoming messages 
            SMSInterceptor.MessageReceived += new 
MessageInterceptorEventHandler(SMSMessageReceived); 
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            this.comboBoxToPhoneNumber.SelectedItem = "+18319175596"; 
            this.textBoxMsgToSend.Focus(); 
            this.textBoxToPhoneNumber.Text = "+1"; 
        } 
 
        private void menuItemExit_Click(object sender, EventArgs e) 
        { 
            Application.Exit(); 
        } 
 
        private void buttonSend_Click(object sender, EventArgs e) 
        { 
            byte[] dataToEncrypt; 
            byte[] encryptedData; 
            byte[] TxPrivKeyBlob; 
            byte[] TxPubKeyBlob; 
 
            byte[] Signature; 
            ASCIIEncoding ByteConverter = new ASCIIEncoding(); 
 
            dataToEncrypt = ByteConverter.GetBytes(this.textBoxMsgToSend.Text); 
 
            //Set Recipient phone number 
            if (checkBoxToPhoneNumber.Checked) 
            { 
                ToPhoneNumber = this.textBoxToPhoneNumber.Text; 
            } 
            else 
            { 
            ToPhoneNumber=this.comboBoxToPhoneNumber.SelectedItem.ToString(); 
            } 
 
            //Create a new instance of RSA 
            RSACryptoServiceProvider TxRSA = new RSACryptoServiceProvider(1024); 
            SHA1CryptoServiceProvider TxSHA = new SHA1CryptoServiceProvider(); 
 
            //Read private key from file 
            FileStream TxReadPrivfs = File.OpenRead("Program Files\\SecureChat\\" + 
MyPhoneNumber + ".prv"); 
            BinaryReader TxReadPrivbr = new BinaryReader(TxReadPrivfs); 
            TxPrivKeyBlob = TxReadPrivbr.ReadBytes(596); 
            TxReadPrivbr.Close(); 
            TxReadPrivfs.Close(); 
            TxRSA.ImportCspBlob(TxPrivKeyBlob); 
 
            //Sign Data 
            Signature = TxRSA.SignData(dataToEncrypt, TxSHA); 
            this.textBoxDump.Text += "Msg signed, "; 
 
            //Read Recipient public key 
            FileStream TxReadPubfs = File.OpenRead("Program Files\\SecureChat\\" + 
ToPhoneNumber + ".pub"); 
            BinaryReader TxReadPubbr = new BinaryReader(TxReadPubfs); 
            TxPubKeyBlob = TxReadPubbr.ReadBytes(148); 
            TxReadPubbr.Close(); 
            TxReadPubfs.Close(); 
            TxRSA.ImportCspBlob(TxPubKeyBlob); 
 
            //Encrypt Message 
            encryptedData = TxRSA.Encrypt(dataToEncrypt, false); 
            this.textBoxDump.Text += "encrypted, "; 
 
            //Compose final outbound message 
 
            FinalMsg = "**" + 
Convert.ToBase64String(encryptedData)+Convert.ToBase64String(Signature); 
 
            // Send the SMS message 
            SmsMessage MsgToSend = new SmsMessage(ToPhoneNumber, FinalMsg); 
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            MsgToSend.Send(); 
 
            // Update the dialog box 
            this.textBoxDialog.Text += "Me:" + this.textBoxMsgToSend.Text + "\r\n"; 
            // Clear the "Message" edit box 
            this.textBoxMsgToSend.Text = ""; 
            this.textBoxDump.Text += "sent.[" + FinalMsg.Length.ToString() + "]\r\n"; 
 
        } 
 
 
        private void menuItem2_Click(object sender, EventArgs e) 
        { 
 
           RSACryptoServiceProvider RSAKey = new RSACryptoServiceProvider(1024); 
            byte[] MyPubKeyBlob = RSAKey.ExportCspBlob(false); 
            byte[] MyPrivKeyBlob = RSAKey.ExportCspBlob(true); 
             
            this.textBoxDump.Text += "Generating Key Pair... "; 
             
            //Write Keys to files 
 
           FileStream  Pubfs = File.Create("Program 
Files\\SecureChat\\"+MyPhoneNumber+".pub"); 
            BinaryWriter Pubbw = new BinaryWriter(Pubfs);  
             Pubbw.Write(MyPubKeyBlob);  
            Pubbw.Close();  
            Pubfs.Close(); 
 
            FileStream Privfs = File.Create("Program Files\\SecureChat\\"+ 
MyPhoneNumber+".prv"); 
            BinaryWriter Privbw = new BinaryWriter(Privfs); 
            Privbw.Write(MyPrivKeyBlob); 
            Privbw.Close(); 
            Privfs.Close(); 
            this.textBoxDump.Text += "done. \r\n"; 
 
        } 
 
        private void menuItemSendPubKey_Click(object sender, EventArgs e) 
        { 
 
            //Read my public key from file 
            FileStream ReadMyPubfs = File.OpenRead("Program Files\\SecureChat\\" + 
MyPhoneNumber + ".pub"); 
            BinaryReader ReadMyPubbr = new BinaryReader(ReadMyPubfs); 
            byte[] MyPubKeyBlob = ReadMyPubbr.ReadBytes(148); 
            ReadMyPubbr.Close(); 
            ReadMyPubfs.Close(); 
            string TxPubKeyString = "*x" + Convert.ToBase64String(MyPubKeyBlob); 
 
            //Send my public key; 
            //Set Recipient phone number 
            if (checkBoxToPhoneNumber.Checked) 
            { 
                ToPhoneNumber = this.textBoxToPhoneNumber.Text; 
            } 
            else 
            { 
                ToPhoneNumber = this.comboBoxToPhoneNumber.SelectedItem.ToString(); 
            } 
 
            SmsMessage KeyToSend = new SmsMessage(ToPhoneNumber, TxPubKeyString); 
            KeyToSend.Send(); 
 
            this.textBoxDump.Text += "Public key sent to " + ToPhoneNumber + "\r\n"; 
 
        } 
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        private void comboBoxToPhoneNumber_SelectedIndexChanged(object sender, EventArgs 
e) 
        { 
 
        } 
 
        private void buttonSendClear_Click(object sender, EventArgs e) 
        { 
            if (checkBoxToPhoneNumber.Checked) 
            { 
                ToPhoneNumber = this.textBoxToPhoneNumber.Text; 
            } 
            else 
            { 
                ToPhoneNumber = this.comboBoxToPhoneNumber.SelectedItem.ToString(); 
            } 
 
            SmsMessage SendClear = new SmsMessage(ToPhoneNumber, 
this.textBoxMsgToSend.Text); 
            SendClear.Send(); 
 
            this.textBoxDump.Text += "SMS sent to " + ToPhoneNumber + "in CLEAR!\r\n"; 
 
        } 
 
    } 

} 
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