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PREFACE.

Since the appearance of Culmann's work, which

marked an epoch in the history of graphical statics,

the graphical method has attained pretty general

dissemination in engineering circles ; its advantages

over the analytical have been recognized more and

more, and its further development kept constantly

in view. It is universally applied in the design-

ing of stationary structures,— such as bridges,— for

determining the requirements of the individual parts.

In machine design, also, the graphical method gives

valuable aid in finding the moments to which the

machine parts are subjected, and in determining di-

mensions. Accordingly courses in graphical statics

have been introduced in all technical schools. The

graphical method has also been adapted with advan-

tage to certain departments of dynamics, as in

Radinger's " Dampfmaschinen mit hoher Kolbenge-

schwindigkeit," and Pröll's " Versucht einer graphischen

Dynamik." *

* Radinger' s Steam-engines with High Piston Speed, and Pröll's

An Attempt at Graphical Dynamics.
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IV PREFACE.

In all these determinations, however, friction and

the special hurtful resistances to motion have not

been taken into account. Heretofore all attempts to

ascertain these hurtful resistances in machines, and

to determine the efficiency which is dependent upon

them, and is of such great importance in practice,

have been confined to the analytical method, which

is often awkward and at times utterly inapplicable.

No method is as yet known to me by which the

frictional resistances and efficiency of any desired

mechanism can be graphically determined. In my
lectures on machinery in the polytechnic schools of

this place I have endeavored to show the relations

existing between the forces in mechanism in a simpler

form than that offered by the analytical method. Out.

of that endeavor has grown the following treatise,

which in reality amounts to nothing more than a

wider application of the long known but little used

angle of friction.

My object in the present treatise was principally

to facilitate study for the students of the technical

schools, upon whose time and industry increasing

demands are made from day to day ;
perhaps the

work may also be of interest and value to those more

advanced.

GUSTAV HERRMANN.

Aix-la-Chapelle, May, 1879.



TRANSLATOR'S PREFACE.

The following translation was undertaken from a

belief that a knowledge of Professor Herrmann's

work on— w^e might almost say discoveries in— this

subject should not be bounded among English and

American engineers by an ability to read German or

French; the treatise having already been translated

into the latter language. The original has been fol-

lowed faithfully. There is one word that perhaps

needs explanation. The German expression im Sinne

seems to have no technical equivalent in English, and

has been literally translated "in the sense of," and

coupled with " direction," the latter being used loosely.

"Acting in the sense of a force Q" means producing

a similar result to Q. Thus, suppose a force P applied

to a crank tangentially to the crank-circle at every

point of revolution. The load Q is suspended from

a rope wound on the windlass drum turned by the

crank. Then if the rope is being wound on to the

drum, the force P acts at every instant in an opposite

" sense " to Q, while there is only one point in each

revolution at which it acts in an opposite direction.
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To complete the definition, suppose the windlass to

turn stiffly in its bearings, and the weight Q to be

so small that when the crank is released the weight

will not run down. To lower the weight, then, a

force (P) would have to be applied to the crank to

turn it in the opposite direction. This force (P)

would then act in the same " sense " as Q at every

instant, though it would have the same direction as

Q but once in each revolution. " Sense," then, has

reference simply to the effect produced through no

matter what amount of intervening mechanism, and

is entirely distinct from " direction" in its stricter

meaning.

A few of the terms of Professor Kennedy's transla-

tion of Reuleaux's " Kinematics " have been employed,

because there are no other well known equivalents,

but they will be easily understood even by those who

are not as yet familiar with that work.

The great advantage which the method presents is

its simplicity. By the use over and over again of a

few easily mastered principles, the most complicated

problem may be solved. No knowledge of higher

mathematics is required in its mastery, and no hand-

ling of lengthy and involved algebraic formula is

necessary in its use. A few lines are drawn in accord-

ance with easily understood rules, and the result

stands out so clearly on the paper that every bright

mechanic ought to understand it at a glance. This,
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with the additional merit of rapidity and accuracy,

should soon render its use common in every class-

room and drafting-office.

The respectful thanks of the translator are due

to Professor J. F. Klein of Lehigh University and to

Mr. T. M. Eynon, recently of the same institution, for

their critical revision of the manuscript.

A. P. SMITH, M.E.
United States Patent Office,

Washington, D.C.
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THE

GRAPHICAL STATICS OF MECHA

§ 1.— THE EFFICIENCY OF MECHANISE

The object of every mechanism is to transfer 3

in a certain way, from one particular machine

another. In this transfer the magnitude and di

of the motion may remain unchanged, or the re:

motion may vary in either or both of these res

and the rate of variation in either magnitude 01

tion may be constant or not. In the steam-e

for instance, the straight-line motion of the pis

communicated continuously to the cross-head

piston-rod unchanged in magnitude and

while this right-line motion generates a motion i

crank-pin, through the agency of the connectin

whose direction varies constantly, and whose magi]

differs in its relation to the magnitude of the

head's sliding motion at every instant. In the ca

two cylindrical toothed wheels of equal diameter, ^

ing together, the rotation of one is transformed ii

rotation of the other, equal, but in an opposite direc

The ratio between the lengths of the paths thn

which the two pieces move depends upon the :

which exists between the force P working upon

driving member of the machine, and the resistanc

1
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3 driven member encounters. If no hurtful

?s or hinderances, such as friction, appeared in

)ii under consideration, the mechanical work of

Qg-force, for any period of time, would exactly

t done during the same period in overcoming

ance presented to the driven member, under the

on of uniform motion. This follows from the

wn principle of virtual velocities. If p and q

he distances over which the points of applica-

P and Q travel along the directions of these

md if we let Pp and Qq— i.e., the product of

ito distance— represent the mechanical work
r the respective forces, we have the equation

Pp = Qq, or Pp - Qq = 0.

jr the supposition, on the other hand, that one

. of the machine parts does not have a uniform

according to the law of kinetic energy, again

ill hurtful resistances, the equation becomes

Pp - Qq = L,

L represents the amount of work which the

I mass M has either absorbed or given out in the

*ed time. According as the above value of Pp —
positive or negative, the moving masses have been

crated or retarded ; and from Pp — Qq z= there

-

rs evidently a uniform motion during the assumed

i. From the preceding it follows, that, always

Aug hurtful resistances, in no machine construction

hatever form is there either a loss or gain in

lanical work ; for if, in the case of an inequality
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between Pp and Qq, the masses M are accelerated, this

acceleration represents a storing-up of mechanical work,

which, later in the period, is available to its full amount.

But there can be, in reality, no movement between

two bodies in contact without certain hinderances aris-

ing ; which hinderances, since they always have the char-

acter of an impediment to the desired motion, are gener-

ally known as hurtful resistances, in opposition to the

useful resistances in the overcoming of which the useful

work of the machine consists. In every case, such hurt-

ful resistances arise only where one body has a motion

relative to another: as, for instance, the friction of a

journal turning in a bearing which is stationary, or

rotates at a different speed ; the resistance of the air to

arms or wings in rapid motion, etc. These resisting

forces disappear with the cessation of relative motion

between the two bodies assumed. Therefore, we must

admit that no loss of work occurs when tensile or

compressive forces act on a solid body, so long as the

elastic limit is not exceeded, since their effect is only to

increase or diminish the distance between the molecules

of the body,— there being no contact between these

molecules,— and the contraction of the body gives out

again the work used in expanding it; at any rate,

experience has not yet proved the contrary. That no

one may bring forward the example of the resistance

due to the stiffness of ropes as an exception to the

above generalization, it should be remarked, that, when
a rope is bent around a pulley there occurs a relative

motion between any two threads or strands which are

at different distances from the axis of the pulley.

A certain amount of mechanical work, Ww, is necessary

to overcome the hurtful resistances TT during a period
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of motion in which the distance w is traversed. This is

not only lost as far as the work proper of the machine

is concerned, but exercises a further and evil influence,

in that it is transformed into molecular work, whose

effect is evident in the wear of the moving parts.

Taking into account the hurtful resistances the equa-

tion becomes

Pp — Wto = Qq + -L, or Pp — Wiv = Qq,

if, in the last equation, we suppose the useful work Qq
to include the positive or negative quantity L repre-

senting the work done in the acceleration or retardation

of the masses M. The last assumption, which will be

taken as the basis of all that follows, is always admissi-

ble, because, as before remarked, ail work stored up in

the acceleration of the masses will be given out again

in the performance of useful work when the velocity of

the masses sinks to its previous value. But these regular

or periodic accelerations and retardations characterize

the state of permanency (or normal running condition)

of the machine, which is the only state or condition

taken into consideration in the present case.

From what precedes it follows without further ex-

planation, that in all machines, without any exception

whatever, the useful work done is less than the work

expended by the driving-force in producing motion, by

an amount exactly equal to the work required to over-

come the hurtful resistances. The smaller these latter

are, the more completely will the machine accomplish

its object ; that is, the work of the driving-force will be

transferred to its point of useful application with the

greater economy. We may therefore regard the ratio
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of the accomplished useful work Qq to the work Pp
expended by the driving-force as the efficiency of the

machine ; and the ratio

Qq_

Pp- 71

is known by this name, or by that of " useful effect."

The efficiency of a machine— which will always be

represented by rj hereafter— is, according to what pre-

cedes, less than unity in every case except the ideal

one, in which all hurtful resistances, TF, disappear. The

value of r) will evidently grow smaller as the number

and magnitude of the hurtful resistances increase; and,

since the latter occur wherever there is relative motion,

it follows that, in general, the simpler a machine is in

its construction the more economical will it be in work-

ing, since every additional moving piece reduces the

efficiency by the addition of a new hurtful resistance.

Tt is hardly necessary to remark that the value of the

useful effect depends not only upon the number, but

upon the magnitude, of the hurtful resistances, which

magnitude varies greatly according to the kind of

resistance offered. Thus there are not a few machines

whose efficiency, on account of the resistances incurred,

sinks to a small percentage ; in fact, the value of 77 may
even become equal to zero or negative. The numerator

of the fraction __l = y becomes zero in all cases where
Pp

a weight Q is moved in a horizontal plane, — for instance,

in the rolling of an object along a horizontal track, in

the turning of a crane, of a turn-table, etc.,— because the

distance q passed over in the " sense,
1
' or direction, of

the load Q (i.e., the line of direction along which it
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would -tend to move if left without any support what-

ever) is equal to zero. In such cases the entire work

of the driving-force P is employed in overcoming the

hurtful resistances W; and we have for these cases, for

such mechanisms, the equation

Pp = Ww.

If, further, we suppose that in a certain case Ww>Pp,
there follows, from the general equation,

Pp — Ww = Qq,

a negative value for Qq ; i.e., in order to render motion

possible in such a case the force Q must work in a

direction,— y, opposite to its usual " sense " or direc-

tion.* The force Q is no longer a resistance to be

overcome through the agency of the machine: it is, on

the contrary, to be regarded as one of the forces

necessary to produce motion, and working in the same
" sense," or direction, as P. There can no longer be

any question of useful work, and machines of this

nature are never used to produce motion : they find

their application in those cases where it is required to

hinder an undesired motion. Every screw the pitch-

angle of whose thread is not sufficiently great to cause

it to turn backwards under the influence of the load

upon its nut, is a machine with negative efficienc}' for

the case of backward motion ; and the same is true of

the differential jail ley as generally constructed. The

* Thus, if it was a weight to be lifted, the attraction of gravitation

would have to be reversed, or overcome by an opposite and greater

force before motion would occur. — Trans.
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clamps, so common in practice, which never release

their hold under any strain whatever, and of which we
shall treat more particularly hereafter, may always be

regarded as machines with negative efficiency.

We may define efficiency in another way which is

often used, and in many cases is more convenient. If

in any mechanism where, as before, a driving-force P
expends the work Pp in order to move a load Q along

the path q, we neglect the hurtful resistances, there

would evidently be necessary to accomplish the useful

work Qq, under this supposition, only a driving-force

P , of a less value than P, but working along the same

distance /?, at the same point of application, and in the

same direction. In the case of this force P we have of

course, through the neglect of all hurtful resistances, the

equation

from which the expression for the efficiency becomes

v — pp - Pp — p-

If, for brevity, we call P the theoretic, and P the

actual, driving-force, the efficiency becomes the ratio of

the theoretic to the actual driving-force ; and this value

accordingly represents that percentage of the driving-

force which serves to overcome the useful resistance.

If, on the other hand, under the assumption of fric-

tionless motion we regard the force P as working along

the path p, it would overcome a resistance Q along the

path q, which theoretic resistance Q would have a larger

value than the useful resistance Q actually overcome

;
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and, from the equation Pp = Q q, we should have the

efficiency,

__Qq_ __Q± _ Q_*- Pp~ Q q~ Q >

that is to say, equal to the ratio which the actual useful

resistance Q bears to the theoretic one Q .

If, in the case of any particular mechanism with the

useful load Q, the driving-force becomes less than P,

there can be no motion in the " sense " of P; the

mechanism remains at rest. The same thing continues

until the driving-force approaches the theoretic P in

value. If, then, there were no hinderances to motion to

be taken into account, the slightest further diminution

of P below the value P would result in a backward or

reverse motion of the mechanism, the load Q becoming

the driving-force. But since certain hurtful resistances,

which may be represented by ( IF), oppose the backward

motion, that backward motion can only occur from that

moment when the force _P, through further diminution

below P , has sunk to a value (P), for which the

relation

Qq — ( W)w = (P)p

holds. The force (P) which is just able to prevent the

backward motion, or running down, of the mechanism,

is smaller than the theoretic driving-force P by an

amount which increases with the magnitude of the

resistance (IT) offered to the backward motion of

the mechanism. Thus, in speaking of the efficiency

for backward motion, we will hereafter understand the

ratio

«

=

<p,
x

o
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which the force (P), actually necessary to prevent

backward motion, bears to the theoretic force P . This

definition evidently corresponds to that previously given

for the efficiency rj for forward motion, if we regard the

load Q as the driving-force, and the force (P) opposed

to backward motion as the useful resistance. From the

foregoing considerations it follows that the two values

P and (P) form the two limits between which the

driving-force may lie without any motion occurring in

the mechanism, and that every increase of the force

over P will result in motion in the " sense," or direction,

of P, and that every diminution under (P) will result

in motion in the " sense," or direction, of Q. The

discussion of the backward motion is of importance in

all those mechanisms in which the useful resistance Q
may assume the role of a driving-force ; thus, for exam-

ple, in all hoisting-gear where the value of (P) repre-

sents the brake-force through whose application the

undesired sinking of the vload Q is to be prevented.

On the contrary, backward motion is impossible in all

machinery in which the useful resistance Q is called

forth by the very motion produced, as is the case,

among others, with all those machines whose object it

is to change the form of bodies, — mill machinery and

the like.

For the efficiency (^7) of the backward motion the

same remarks apply as in the case of the forward

motion. (??) is always less than unity, and, in certain

cases, can become negative in value. In the last case,

it is evident that automatic backward motion, under the

influence of the load Q, cannot occur ; or, in other

words, that the machine is self-locking. The ordinary

screw hoisting-gear and differential pulley-blocks are
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examples of this kind. Such self-locking mechanisms

are of great convenience as hoisting-gears, and give

great security against any running down of the ma-

chine ; but there is always the accompanying disadvan-

tage of a small efficiency. Therefore, on this account,

they are not to be recommended in cases where a large

amount of mechanical work is to be delivered. That

with the property of being self-locking, i.e., with the

condition (77) < 0, there is always united a small effi-

ciency ??, will be seen from the following considera-

tions :
—

>

From
(,) = i|) =

it follows that (P) =2 0, and therefore

since (P)jp + QW)w — Qq.

On the other hand, for forward motion,

Pp — Qq + Ww.

If the hurtful resistances (TT) for the backward

motion are equal to those W for the forward, the

substitution of the former for the latter in the last of

the above equations would give

Pp = Qq + (Tf> = Qq + Qq=z 2Qq

;

from which

Pp 2Qq
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The assumption that W= (TF) is a sufficiently close

approximation, since the hurtful resistances are the

result of both P and Q* Moreover, since TT> ("FT),

it follows that 2Qq < Pp, and consequently that the

efficiency rj must always be less than |. Therefore we

may lay down the principle that every self-locking

machine has an efficiency of less than fifty per cent, a

conclusion which experiments with screw hoisting-gear

and differential pulley-blocks confirm.

Machines met with in practice consist generally of a

collection of elementary mechanisms, so that the driving-

force P r

necessary to overcome the useful resistance Q
of the first mechanism must be regarded as the useful

resistance Q' of the second mechanism, for the overcom-

ing of which in the second mechanism another driving-

force P" is required, and so on. Take, for example, an

ordinary warehouse hoist : here the rope with its drum
is one mechanism, in which the load hanging from the

hook on the end of the rope is the useful resistance $,

to overcome which a force Pf must be applied at the

circumference of the toothed wheel connected with

the drum. As regards the toothed gearing which forms

the second mechanism, the force Pf becomes the useful

resistance Q\ which must be overcome by a force P"
applied at the circumference of the second large gear

* The force of this reasoning lies in the fact that

W\ (W) :: friction of (P and Q) : friction of (P) and Q,

in which Q is generally much the larger factor; and hence the differ-

ence between IF and (W) is much less than it would be if they were

dependent solely upon P and (P), and the relation W : ( W) :: friction

P : friction (P) existed. — Trans.
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upon the axis of the pinion. In the same way, this

force P" is the resistance Q" for the third mechanism,

represented by the second pair of gears and the crank.

To overcome this resistance Q", a force P is necessary

at the crank-handle. When, as in the case of a crane,

the load Q does not hang directly from the drum, but

the rope, or chain, is first led over one or more pulleys,

each of these pulleys is to be regarded as a separate

mechanism. In the same manner, every machine,

however complicated, can be resolved into its simple

elementary mechanisms. Such a resolution greatly

simplifies the determination of efficiency of machines,

inasmuch as the number of common mechanisms is

small, while the diversity between complete machines

is almost endless.

One general law may be established for the efficiency

of a machine consisting of any desired number of ele-

ments. If we let Q again represent the load, and q the

path described by it in a slight movement, and let Pv
P

2
. . . Pn denote the driving-forces for the separate

mechanisms, and pv p2
. . . pn the corresponding paths

of these forces, we may understand by rjv rj
2

. . . rj
n the

efficiencies of the individual mechanisms. For the first

machine, we have

-&- = Vl .

For the second, in which P
x

is the useful resistance,

and P
2
the driving-force, we have
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and so on for each separate mechanism. From the

multiplication of all these equations, there results

QV PiPi PjiPn -Pi.-iPi.-i - v v v v

or Qq
jr = v = v t . v2 • % • • • %.

That is to say, the efficiency of a machine composed of

any number of mechanisms is equal to the product

of the efficiencies of all the separate mechanisms.

From the fact that the efficiency of a simple mech-

anism is always less than unity it follows, as before

remarked, that in general the useful effect of a machine

decreases as the number of its constituent elements

increases.

Since, furthermore, the above product cannot be

negative as long as all the factors are positive, it

follows that a machine can only be self-locking when
this property belongs to at least one of its elementary

mechanisms.
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§ 2.—THE EQUILIBRIUM OP MECHANISMS.

Although mechanisms, by their very nature, can only

effect their object while in motion, or by virtue of the

same, yet, for the ascertaining of the relation existing

between the various forces, we may always assume as a

basis that condition of equilibrium which corresponds

to the limit where the slightest increase of the driving-

force would produce a motion in the "sense*-" or direc-

tion, of that force. In what follows P will again

represent the driving-force and Q the useful resistance.

Neglecting for the present any acceleration of the

masses, we will suppose a uniform motion in which,

at each instant, the work of the force during a small

portion of time is just sufficient to overcome the useful

resistance Q after the hurtful resistances W have been

disposed of. It will then easily appear in what way the

accelerating force working upon the mass M in the case

of variable motion can be ascertained.

The exterior forces P and Q working upon any

mechanism, call forth certain internal forces, or re-ac-

tions J2, between the members of the machine wherever

two parts come in contact. These re-actions are to be

regarded as two equal and opposing forces occurring at

every surface of contact. Every pair of forces thus

arising at the same point is, therefore, in equilibrium.

We must imagine such re-actions wherever two bodies

come in contact, whether the bodies move relatively to

each other or not. We can, therefore, in every case

neglect the bodies in-contact and think only of the
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re-actions offered by those bodies. Under this supposi-

tion, any member of a machine which is acted upon by

certain exterior forces P and Q, and which is supported

at certain points by neighboring bodies, must be under

the influence of the exterior forces P and Q, and of the

re-actions Ä, which are sufficient to replace the imagined

supports, in order to be in the supposed limiting con-

dition of equilibrium. The conditions of equilibrium

furnish us, in general, with a means by which from the

known elements,— direction and magnitude of indi-

vidual forces,— we may ascertain the unknown. In

the majority of cases the intensity of the re-actions of

the supports is unknown ; of the exterior forces, there

is, as a rule, one element— the direction, or intensity,

of one force— unknown at first. As regards the direc-

tion of the re-action replacing a support, it is deter-

mined empirically by the condition that it shall be

inclined to the supporting surface at a certain determi-

nate angle whose magnitude depends upon the nature

of the two bodies in contact, as to smoothness, hardness*

etc. The hurtful resistances to motion, W, which, as

previously remarked, arise only at the point of contact

between two bodies (i.e., at the supporting surfaces),

depend on the nature of the material, and of the sur-

faces constituting the supports. The size of the angle

at which the surfaces of contact will be cut by the

direction of the re-action existing between them de-

pends closely, as will be shown in what follows, upon

the amount of hurtful resistance generated between the

surfaces.

If we suppose, in the next place, that no hurtful

resistance W exists,— a condition of affairs which, of

course, never occurs in practice,— the angle formed by
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the direction of re-action and the supporting surface

would be a right angle ; in other words, when there are

no hurtful resistances a supporting surface can only

re-act, at each of its points, in the direction of a normal.

With the assumption which thus entirely ignores all

hurtful resistances, it is a simple matter to determine

the proportion of power and load at every point in a

machine ; and, for this purpose, a graphical method can

be used to good advantage. A few examples will serve

to illustrate this procedure.

Let J-, B, and (Fig. 1, plate I.) be the centres of

the three pins on a bell-crank, the middle one of which,

67, turns in the fixed bearing Cv while the end pivot A is

enclosed by the eye or end bearing A
x
of the rod A

X
AV

and the other pivot B is attached in the same way to

the rod B
X
BV If, now, a force Q acts upon the lower

end A
2
of the rod A

l
A

2
in a certain direction, the rod

A
1
A

2
must, according to the preceding principles, be in

equilibrium under the influence of the force Q, and the

re-action M
1
replacing the pivot or journal A ; and this

latter re-action, being perpendicular to the surface of

the journal, must pass through its centre. Two forces,

however, can only be in equilibrium when they are

equal, and work in opposite directions along the same

straight line ; from which it follows immediately that

the line of direction of the force Q must pass through

the centre of A, or, if it does not, there wiH be a turning

of the rod A
1
A

2
about the journal A until this condition

is fulfilled. In the same way, it follows that the direc-

tion of the force P acting on the rod B
X
B

2
must pass

through the centre of JS, and that the journal B must

exert upon the rod B
X
B

2
a re-action R

2
which shall be

equal and opposite to P. The rods A
X
A

2
and B

X
B

2
will
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be subjected to tension by the forces Q, M1
and P, P

2 ,

respectively ; i.e., there will be called forth internal

elastic stresses in the material of each section of the

rods, which will be in equilibrium one with another, and

with the exterior forces at the ends of the rods. These

interior strains are of great importance in determining

the dimensions of cross-sections of the separate machine

parts, but have no direct influence upon the conditions

of equilibrium of the machine. We shall not, however,

go into the determination of dimensions here, or in

the remaining portion of the treatise. For all that the

reader is referred to the well-known works on machine

construction and the resistance of materials. Regard-

ing now the lever ABC alone, we have the external

forces Q and P acting upon it at the points A and B ;

and we can also suppose the bearing C
x
to be replaced

by a re-action P
3 , whose line of direction passes through

the centre of C. For the condition under consideration

these three forces must be in equilibrium. This can

only occur when the three forces intersect at the same

point ; and therefore the re-action P
3 , exerted by the

bearing C\ upon the journal C, must also pass through

the intersection of the lines of the forces P and Q.

Moreover, the relative intensities of the three forces, P,

$, and P
3 , are easily determined if we let OD == Q, the

load, and complete the parallelogram ODFE, whose

other side falls upon OP, and whose diagonal coincides

with 00. We have then in OE the force P, and in

OF the pressure of the journal O upon its bearing, and
the equal but opposite re-action P

3
of the bearing C

x

against the journal C.

The relative intensities of P, Q, and P
3 correspond

to the oft-mentioned limiting condition in which the
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slightest increase of Q or P would cause motion in the

"sense/
1

or direction, of the force so increased, as can

be at once seen from the figure ; for, if we increase Q
until it is equal to OD\ the diagonal 0F\ which repre-

sents the pressure of the journal upon its bearing goes,

to the left of the centre Ö. This points to a motion of

the lever in the "sense," or direction, of Q. On the

other hand, an increase of P to the value 0E f
gives a

journal pressure OF", in consequence of which there

would be a right-handed revolution of the lever.

As a further example, the slider-crank mechanism

(Fig. 2, plate I.) may be adduced. The force acting

from the piston-rod AA' upon the pin A of the cross-

head is transferred through the connecting-rod A
1
B

1
to

the crank-pin B; and, under the supposition of entirely

frictionless motion, the force T must pass through the

centres of A and B since it is perpendicular to the

surfaces of contact of the journals A and B with their

bearings. Since the forces P and T have different

directions, the pin A cannot be in equilibrium under

their influence alone : a re-action It
1
exerted by the

guide jPjDg upon the cross-head J) is necessary. For

the condition of equilibrium this force acting jierpen-

dicularly upon the supporting surface D^D^ must pass

through the intersection A of the piston-thrust P and

the connecting-rod resistance T. From this we can

easily find the forces R
x
and T by drawing AF equal

to P, the piston-thrust, and completing the triangle

AFGr, in which FGr is parallel to Rv i.e., perpendicular

to the guide D
X
DT If, now, the axis C of the crank

meets a resistance Q at the distance CV7,— as though a

gear-wheel, with the radius CJ was on the axis C and

meshed with another gear-wheel JK, whose resistance
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would be represented by Q,— it must be in equilibrium

under the influence of the connecting-rod thrust acting

at jB, the resistance Q acting at J, and a re-action R.
2
of

the bearing Ov The direction of the latter again coin-

cides with the line joining and (7, if represents the

intersection of Q and T. By constructing upon the line

AG, already determined as the value and direction of

the force T, the triangle AGH, whose sides AH and

GH are parallel to the direction of the resistance Q,

and of the re-action Rv respectively, we have in GH
the value of the re-action iü

2 , and in AH that of the

resistance Q overcome at J, at the instant under consid-

eration. It will be seen that the ratio of P to Q varies

for every instant, and that, with a constant piston-

thrust the amount of resistance Q overcome at J will

vary between zero at the dead points and a maximum
at some intermediate position. When, therefore, as in

the ordinary case, the resistance which the gear JK
presents to the motion of the crank is constant, this

resistance must have a mean value between zero and

the maximum value of Q ; and there will result an

acceleration or retardation of the masses (of fly-wheel)

according as the value of Q, determined as above, ex-

ceeds, or falls short of, this average value of the resist-

ance between the gear-wheels. This peculiarity of

slider-crank mechanism is well enough known to render

a further discussion of it here superfluous.

In the same way as in the two examples shown we
can obtain in every case the ratio of the force P to

the resistance Q. In nearly all cases the graphical

method offers great advantages over the analytical on

account of its simplicity and plainness. The analytical

method frequently leads to involved expressions, espe-
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cially when it is attempted to bring the hurtful resist-

ances into the calculation ; when, in other words, it is

no longer a question of determining P or $ , but of

P or Q. Since the economic value, or efficiency, of any

machine depends directly upon the magnitude of the

hurtful resistances connected with it, it is evident that

the determination of the ratio actually existing between

the forces when these resistances are taken into account

is of vastly more importance in practice than any deter-

mination of the merely theoretical forces. We have

been accustomed in the past to the use of only the

analytical methods. The graphical methods for the

determination of the friction in, and hence the effi-

ciency of, mechanisms have hitherto been rarely em-

ployed ; at any rate, in all the text-books only the

formulse for these determinations have been given.

How complicated such investigations often became

even in the simplest machine as soon as any exact

calculation was attempted, is well known. Thus, for

example, we could only obtain an expression for the

journal friction of a bell-crank, as in Fig. 1, plate I., or

of a pulley where the ropes were not parallel, through

a long radical,— a circumstance which compelled the

assumption of parallelism in all cases of pulley friction,

even when there was a marked inaccuracy in the same.

For the same reason it is the custom to assume an

infinite length of connecting-rod in all cases of crank-

gear, in order to render less unwieldy the expressions

in which the angle of crank to piston-rod occurs. From
the well-known advantages which the use of the graph-

ical method offers in the designing of machine elements,

as in the determination of the moment to which axles,

cranks, etc., are subjected, arose the idea of finding an
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expression for friction by the same method. From that

idea has sprung the following treatise. In the course

of the same, it will be shown that we can obtain a

graphical determination of the actual proportion exist-

ing between the forces in the same simple and sure way
as was done in the preceding examples where all friction

was neglected; and it is evident, that, by comparing

the values obtained for P or Q with those of P or # >

we have immediately an expression for the efficiency,—

'

, = £.= £

The methods used do not differ from those indicated

in the determination of the theoretical forces ; and in

nearly every case the drawing of force polygons suffices

to attain the desired result. The main question will

therefore be to express the separate hurtful resistances

graphically. The solution of this problem will be at-

tempted in what follows.

The hurtful resistances in mechanisms which are to

be taken into consideration are few in kind and consist,

if we neglect the resistance of the medium in which

they work, only of friction, which may occur as sliding

and rolling friction, journal friction, chain friction, and

the friction of toothed wheels. The stiffness of ropes

may be considered as equivalent to chain friction. In

the following pages these simple resistances will be

taken up one by one. The resistance of air or water is

here neglected because in ordinary machines it may
be left out of account as insignificant, and in most

cases is not regarded. In individual cases and in

particular machines where such neglect is not allow-



22 THE GRAPHICAL STATICS OF MECHANISM.

able, where (as in ventilators) the moving of this

medium is the principal object, its resistance should

be determined by the rules of hydraulics. It has

ceased to be a hurtful, and become a useful resistance.
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§3. — SLIDING FRICTION.

A load which presses upon a horizontal surface (7(7

(Fig. 3, plate I.) with its weight Q = AB calls forth,

while at rest, an infinite number of re-actions from points

in that surface, whose resultant is equal to the weight

Q, and opposite in direction. This re-action passes,

therefore, through the same point I) in the supporting

surface as the weight Q (the term " weight " being here

used in its meaning of a resultant of the forces of

gravitation acting upon each particle of the body ^4).

Now, it is known that a force P = pQ, acting parallel

to the plane (7(7, is necessary to produce a horizontal

sliding of the body A along that plane, where fx repre-

sents the co-efficient of friction. If, now, a force P,

represented in the figure by A C, acts upon the body J.,

the body is under the influence of the two forces P and

Q, which must be in equilibrium with the re-action R
of the supporting surface ; it being always remembered

that we are assuming that limiting condition of equi-

librium where the slightest increase of P would cause

motion. This condition of equilibrium requires, there-

fore, a re-action R = EA of the supporting surface

equal to the resultant of P and Q, and opposite in

direction. From the equation P = ^Q is determined

the angle $ = EAB which this resultant makes with

the normal AB to the supporting surface, since

/* = — = tan <j>

;
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and this is called the angle of friction for the materials

composing the bodies A and GG. If we suppose the

force P to increase gradually from zero to the value

AC, the re-action R, given forth by the supporting

surface, would gradually deflect from its original direc-

tion BA to HA; and for all positions between these

two the conditions of equilibrium would be satisfied.

In this way the point of intersection D of the re-action

Avith the surface would move from D to F; but in

every position it is to be regarded as the point of

application of the resultant of all the elementary sur-

face re-actions. These relations evidently hold what-

ever the direction of the horizontal force P. For

example, it is true that when P has the direction

ACV the re-action of the supporting surface coincides

with the line E
X
A. By a complete revolution of the

force P in the horizontal plane the re-action would

describe a conic surface concentric to AB. This is

called the cone of friction, and limits the space within

which the re-action of the surface GG may exist with-

out motion resulting. We must therefore regard the

supporting surface as re-acting against the supported

body in certain directions whose angles of intersection

with the normal are less than the angle of friction

;

motion commencing from that moment at which this

angle of intersection exceeds, by the slightest amount,

the angle of friction. We may employ this property of

surfaces in the graphic representation of sliding friction

under the following rule :
—

If two bodies having plane surfaces in contact under-

go relative motion along that plane of contact, we may
completely replace each of these supporting planes by

a re-action which is inclined to the normal at an angle
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equal to the angle of friction, and so situated that its

component parallel to the plane of contact will work in

the direction of the motion which the supporting sur-

face has relatively to the body supported.

The necessity and correctness of the last part of this

can easily be seen from the figure. If, for instance, the

supported body A is moved by the force P in the direc-

tion from A to (7, the relative sliding of the support, or

bearing, GG to the body A is evidently in the opposite

direction CA; and the re-action R, by which GG is

replaced, has, according to previous demonstration, the

direction EA, whose component CA works in the direc-

tion of the sliding of GG upon the body A.

By virtue of this general law we can easily obtain

in every case the value of the sliding friction called

forth by the relative motion of one body upon another.

If, for instance, in the case of the slider-crank gear

(Fig. 2, plate I.), we wish to determine the influence of

the friction existing between the slipper-block D of the

cross-head and the cross-head guide, we have only to

draw the re-action Rv passing through A, in the direc-

tion E
X
A) making the angle E

X
AE = <£ with the normal

to the cross-head guide. If, then, we draw through F
the line FG

X
parallel to E

X
A, we have in AG

X
the actual

thrust T of the connecting-rod ; while the value pre-

viously obtained by neglecting friction was AG = T .

The thrust of the connecting-rod has been reduced,

through the sliding friction of the cross-head i>, by the

amount GG
X ; and we have the value

AG, T „
AG T V

for the efficiency of the right-line motion in the slider-
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crank gear. It is unnecessar}^ to explain that the value

of this sliding friction and its dependent efficiency

varies for every position of the gear.

By the use of the angle of friction in the manner

discussed above, the efficiency of a great number of

machines may be easily determined, as will be shown in

a few examples. Let ABC (Fig. 4, plate I.) be the rack

of an ordinary jack, upon whose lug, or claw, A the load

Q = Io
l
acts vertically downward ; while at the pitch-

line DD of the rack, the force P acts vertically upward.

In consequence of the fact that the load Q acts in one

direction only, the rack is continually pressed against

the casing at B and C; and we may regard it as being

supported by the resultants b and c of the re-actions R
x

and 7t
2

. The four forces Q, P, Rv and R
2
must be in

equilibrium, which can only be the case when the

resultant of any two is equal to that of the other two,

and opposite in direction. If, therefore, o
x
is the inter-

section of Q and Rv and o
2

is that of P and Rv the line

o
x
o
2

is the direction of the resultant of Q and R
1
as well

as of P and R
2

. From the given load Q, we can now
determine the forces P, Rv and R

2
by drawing the

force polygon. Make Io
x
= Q; draw III parallel to

Rv and intersecting o
x
o
2 ; and then construct the tri-

angle II III

o

x
by drawing II III parallel to P, and

III o
x

parallel to R
2

. We have, then, in II III the

force -P, which must be applied at the pitch-line of the

rack to lift the load Q. Without friction, Po = Q, and

therefore the efficiency of this mechanism

- ^2V P
is known.
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The figure has been constructed with a co-efficient

of friction ^ = 0.2, and a corresponding angle of fric-

tion </> = 11° 20', and gives P = 122.3 for Q = 100;

therefore

100

122.3
= 0.817.

It should be here remarked, that in this and all

following cases the numerical results are not taken

from the lithographed plates, but from the original

drawings of the author, which were on a much larger

scale. In drawing the direction of the re-action it is

not necessary to know the angle of friction in degrees

and minutes ; a knowledge of the co-efficient of friction

is entirely sufficient, and both accuracy and simplicity

recommend the construction of the angle of friction,

through the geometric method, from its tangent == (jl

rather than taking it direct from the table. The effi-

ciency rj as determined above is, of course, only the

efficiency of the rack in its casing. In order to get at

the efficiency of the entire jack we must take into

account the friction of the gears and of their journals,

in the manner hereafter to be explained.

For the case of backward motion in the jack, that

is, when the load Q is the cause of motion, the same

construction holds, with the assumption that the re-

actions (.ßj) and (i£
2) are inclined to the opposite side

cf the normal by an amount equal tQ the angle <£,

and we have the force polygon / 2 3 ov shown in

broken and dotted lines in the figure, where the

diagonal 2o
1

is parallel to (oj) (<?2), and the line 2 3

gives the amount of force (P) which must be applied

as a brake to prevent the accelerated downward motion
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of the load Q. For the same value of /x = 0.2, we
have

(P) = 79.1 .-. 0?) = ^p = 0.791.

o

In this connection it should be remarked that the

points b and <?, in which the bearing surfaces of the rack

are pierced by the re-actions R
x
and i£

2 , are not com-

pletely determined by the geometrical character of the

mechanism ; and, consequently, it is necessary to start

with the supposition that the points of application of

the forces are at the middle of the supporting sur-

faces. Any variation upon this point would affect the

efficiency of the mechanism.* In the preceding case of

the movement of the cross-head (Fig. 2), such an inde-

termination was excluded by the requirement that the

re-action of the guides must pass through the inter-

section of the forces T of the connecting-rod, and P of

the piston-rod thrust. In the present case (Fig. 4),

equilibrium is also possible if R
1
and R

2
do not pass

exactly through the central points b and c of the sup-

porting surfacco. But with any other position of b and

c the values of R
x
and R.

2
would be changed ; and it is

easily seen that R
x
and R

2
will have the smallest value,

* Tims, if, in the figure b and c were brought nearer together by
raising the former, and lowering the latter, the points of intersection

0| and o-i would be correspondingly raised and lowered, and the diag-

onal O] o 2 would be inclined more from the perpendicular direction

of (<), so that the line I II would have to be produced farther before

intersecting it; the result being that the sides of the parallelogram

which represent the forces B u P, and R 2 would be increased, and the

efficiency

Po

diminished. — Trans,

v = p
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and friction be least appreciable, when the vertical dis-

tance between the points b and c is the greatest possible.

If the guiding surfaces were perfect planes, and the

material would not wear away, it would be correct to

assume as points of application for R
x
and i£

2 , the outer

edges b
x
and cv With this assumption the frictional

resistance would be the least possible ; and this choice

of points would correspond with the law, so well estab-

lished by experience, that nature always works along

the line of least resistance. But since the outer edges

would soon become rounded away by wear, on account

of the great pressure concentrated upon them, the pre-

vious assumption, by which the re-actions act at the

centres of the surfaces, corresponds best to the actual

condition and assures a sufficient degree of accuracy of

determination.

In the same way, we may determine the force P
(Fig. 5, plate I.) which must be applied to the rope

attached at the point D in order to lift the platform

of an ordinary elevator as it occurs in grist-mills. In

this case also, the platform at the bearings B and C is

pressed against the guide EE by the force acting at A,

which is the centre of gravity of the load and platform

combined ; and, as before, these supporting surfaces

may be replaced by the re-actions R
t
and R

2
making

the angle </> with the horizontal. Taking the points of

application of these re-actions at b and c, the centres

of the sliding surfaces, we have again, in the line con-

necting the point of intersection o
l
of Q and Ii

1
with

the intersection o
2
of P and Rv the position of the re-

sultants of these two pairs of forces. If, then, we make
Io

x
equal to the total load, and draw I II parallel to

Rv and o
x
III parallel to Rv and through the point of
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intersection II the vertical II III, we have in the last

the necessary driving-force P, and in II /and o
1
III

the re-actions R
x
and HT The force Z =: o

x
II is the

one which acts directly upon the platform. For back-

ward motion the necessary brake force (P) is given by

the line 3 2 of the diagram 1 2 3 ov From the propor-

tions given in the drawing, with a co-efficient of friction

ix — 0.16, we have, for

Q — P = 100, P = 105.9

;

therefore

V = 105.9 = °-944
'

and

(P) = 93.5

;

therefore

0» = ~ = 0-935.

It can easily be seen that the friction grows less, and

the efficiency increases, as the horizontal distance be-

tween the forces P and Q becomes less, and that between

the sliding surfaces B and C greater. In practice, there-

fore, the height BO should not be taken too small, and

the line of force P should be brought as near as possible

to centre of gravity A by bending outwards the iron D
to which the hoisting-rope is attached. For the same

reason, in lifting a weight it should be placed as near

the guide EE as possible, while in descending the strain

can be partially taken off the brake by placing the

weight far away from the guide.

The influence which the ratio of the distance between

P and Q to the distance between the guiding surfaces
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B and C has upon the relative magnitudes of P and Q
can be seen in the simple clamping device shown in

Fig. G, plate L, a mechanism commonly used in saw-

mills to hold the block upon the carriage. The log is

held firmly upon the carriage, or table, simply by the

wrought-iron clamp AB which rests upon it and runs

loosely up and down the fixed standard DE. If from

any cause, as the upward stroke of the saw, a force Q
acts vertically and tends to slide the clamp AB upward

along the cylindrical standard DE, there is a resultant

tendency to rotate on the part of AB which presses the

outer edges b and c of the eye hard against the standard.

The latter re-acts at these points with the forces R
x
and

i?2> which, under the supposition of an actual slip of

the bushing, act downward at an angle
<f>

to the hori-

zontal, and oppose such slipping motion. The force R
x

acts from b toward 0, and B
2
from toward <?. Their

resultant passes through 0, the point of intersection.

In the case of motion just beginning, when Bv B2 , and

Q are in equilibrium, the point mast fall on the line of

force Q. If, therefore, from any point A in the line

of Q we draw the two lines Ab' and Ac parallel to the

re-actions B
1
and Rv we have in V and c' the points

of application at which R
x
and R

2
must act when the

desired condition of motion is fulfilled ; that is, the eye

of the clamp must have an axial dimension equal to

Vc as shown in dotted lines in the figure. In that case

even the smallest force Q would cause a loosening of

the clamp's hold upon the log.

But when, as shown in the figure, the eye of the

clamp has a less height, so that the point of intersection

of the re-actions falls between the standard and the

line of force Q, there can only be motion when a fourth
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force P is added to Q, Rv and R
2
in such a way that

the resultant of P and Q passes through o. Such a

force may be applied in numberless ways. If we take

the force P parallel to Q, and suppose it to act along

the axis of the sleeve or eye, it can be easily deter-

mined. Since the resultant of P and Q must pass

through o, we have by the well-known law for parallel

forces P . Bo = Q . Ao ; and by construction we get P in

JB if BF = AGr = Q, and a line is drawn through F
and o intersecting Q in IT; after which JB is made
equal to ÄA, since by similar triangles

AH or JB : FB or AG:: Ao: Bo;

from which

P . Bo = Q . Ao.

This force P evidently must work in the direction of

Q as long as the point of intersection of the resultant

forces lies between P and Q ; and in such case, there-

fore, no single force Q, however great, can loosen the

clamp ; but to accomplish this object a special force P
acting in the " sense," or direction, of Q is necessary.

It is clear, also, that the slightest force acting at B
alone will lift the clamp if it can overcome its weight.*

* This statement is slightly inaccurate, since there would be friction

to overcome in lifting the clamp when the lifting force is applied at

B\ for the weight of the clamp would act at its centre of gravity, a

point to the right of B, and would form a couple with the lifting

force. This couple would be balanced by that formed by the resist-

ances Pt
l
and J?2, which would act on the opposite sides of the stud

ED, and be inclined to the opposite side of the normal from that

shown in Fig. 0. The determination would, in fact, be exactly the
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For fixing the log in j^lace, a slight pressure or blow

upon the clamp is sufficient.

That kind of mechanism which we have previously

designated as self-locking finds extended use in practice

where it is the object to prevent an undesired motion

by means of clamp-gearing. The well-known hold-fast

of the planing-bench works upon this principle, as do

also certain kinds of ratchet-gear.

Sliding friction plays an important part in wedges,

whose efficiency is greatly reduced thereby, becoming

less as the wedge grows thinner ; i.e., as the angle of the

wedge becomes more acute. For an example we will

choose the wedged device for adjusting the pivot-bearing

of the upright shaft W shown in Fig. 7, plate I. The

bearing L supports the shaft W and rests upon the

wrought-iron key K, while any side motion is prevented

by the sides of the casing N. The re-actions R
x
of the

wedge, and R
2
of the casing, will be called forth by

the load Q = IA ; all three forces acting upon the cap

i, and necessarily in equilibrium. Of the two re-actions

R
x
and i2

2 , we only know the directions, which must be

inclined to the normals of the surfaces in contact at

the angle of friction <£, but we do not know their points

of application. If we assume that the re-action R
x
of

the wedge against the bearing acts at the point A,

where the weight Q is supposed to take effect, the

re-action R
2
of the casing must also pass through this

point. In the present case it does not matter, as far as

the result of the construction is concerned, where the

same as that shown in Fig. 5; and as there proved the lifting-force

would have to be more than sufficient to "overcome the weight" of

the clamp before motion could result. — Trans.



34 THE GRAPHICAL STATICS OF MECHANISM.

points of application A and C of R
i
and R

2
are taken.

If we assume the point of application of the re-action

RA in a the re-action R
2
would lie along the line cb

which passes through 6, the point of intersection of R
l

and Q. The value of these re-actions is given in any

case by the sides of the force polygon A II and III,

supposing that IA is made equal to Q, and the sides

mentioned are drawn parallel to R
x
and R

2
respectively.

If a horizontal force P acts upon the wedge K by

means of the screw S, the wedge must be in equilibrium,

for the case where motion is about to commence, under

the influence of the re-action —R
x
of the cap X, the

re-action R
s
of the support H and the force P. The

position of the force R
s

is determined by the require-

ment that it must pass through the intersection o of P
and Rr To get the value of P we have only to com •

plete the force polygon by constructing upon IIA, or

—Rv the triangle II III A, in wdiich the side A III

parallel to P represents that force, and IIIII the

direction and value of the re-action given forth by

the support H against the wedge K. In order to

determine the theoretical force P it is only necessary

to draw R
x
in the direction A II perpendicular to the

surface of the wedge, and R
2

in the direction I II
perpendicular to the axis of the shaft. If we then

construct the triangle II III A, whose sides are paral-

lel to P and perpendicular to HII respectively, we
have in A III the force P which would suffice to

raise the bearing if there were no friction. In the

same way we find the forces acting in the backward

motion of the wedge from the force polygon I 22 A, in

which A 2 is drawn on the opposite side of the normal

A II to the wedge surface at the angle 2 A II
Q
= <j>.
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Also the re-action (i2
2) of the casing which holds in

equilibrium the forces Q and (Ü^) must come from the

opposite side of the casing in the direction from ((7) to

A. Further, the position of the re-action (i2
8) of the

support H is fixed by the condition that it must pass

through (0), the point of intersection of the re-action

(iüj) with the force (P), which acts along the line of

P, but in an opposite direction. To complete the force

polygon for backward motion we draw A 3 parallel to

(P), and 2 3 parallel to (i£
3) ; and in the former we

have the value of the force (P) necessary to withdraw

the wedge from under the bearing. Since this force

(P) acts from A toward 3 in the same "sense," or direc-

tion, in which the load Q tends to move the wedge it

is evident that a backward motion of the wedge cannot

result from the action of Q alone, and we must regard

the efficiency (jf) = ^—- as being negative. With a

value /a = 0.16, and a taper of 1 in 9 for the wedge,

we get from the drawing, for

Q = 100, P » 11.1, P = 45,

and therefore

V =^ = 0.247, also (P) == -19.8,

Hence

W - TiT = - 1 '78'

It may be remarked here, to avoid repetition, that, as

in Fig. 7, the lines of force and the force polygon will
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be drawn in full lines for the forward motion, those for

backward motion in broken and dotted lines, and those

for the theoretical force P in broken lines. All con-

struction lines will be simply dotted.

The resistance which the foot-journal of an upright

shaft encounters from the plane surface FF (Fig. 8,

plate I.) upon which it rests may be deduced by the

methods of sliding friction. We may suppose the ele-

ments of friction which arise at every point in the sur-

face of contact to be concentrated in the circumference

of a circle A
x
A

2 , whose radius A A
2
= §r, r being the

radius of the journal AF. If we imagine the load Q to

be replaced by two equal forces CA, each equal to | Q,

which act at diametrically opposite points A
x
and A

2
of

the circumference, we can replace the re-action of the

bearing by two forces R
l
and R

2
at these points A

x
and

A
2

. These forces will be inclined to the axis AC by

an amount equal to <£, the angle of friction, and will lie

in planes perpendicular to the plane of the forces ~

passing through A
x
and A

2
. The horizontal projections

A
X
E

X
and A

2
B

1
represent the resistances of this species

of pivot friction concentrated at A
x
and A

2
. To over-

come these an equal and opposite couple with forces

E
x
A

x
= DiA 2

= P must be applied at the extremities

of the lever-arm A
1
A

2
. When, as is always the case

in practice, the driving-force P is applied only at one

point the journal will press against one side of the

bushing in which it runs on account of its one-sided

working, and there will result a certain amount of neck-

journal friction beside the pivot friction already taken

into account between the end of the shaft and its sup-

porting surface. The determination of this neck fric-
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tion corresponds to journal friction, which will be dis-

cussed in another chapter.

In the same way we can ascertain the amount of

friction in the thread of a screw. Suppose SS (Fig. 9,

plate I.) to be a screw provided with both right and

left handed threads, as occurs in certain forms of coup-

ling for railway-cars ; and suppose that each of the nuts

M
t
and M

2
is drawn outward with a force Q = AB;

Ave may then obtain the force necessary at the lever N
to turn the spindle of the screw in the following way :

Each of the two nuts is regarded as acting upon the

screw in two diametrically opposite points of a central

helix (or pitch line) whose diameter d is equal to the

arithmetic mean 1
"t"—2 of the inner and outer helices
2

of the screw. And letting A represent that point of

the first pair, and C that point of the second pair,

nearest the observer, we have in the two lines AO
and CO drawn at the angle $ from the normals A0
and C0 to the direction of the screw-thread Aa and

Cc, the direction of the re-actions at A and C. Now
draw from the point of intersection the line OJ
parallel to the axis and equal to ^Q. Then in the

line KL drawn perpendicular to JO we have the value

of the force P which is in equilibrium with the two

re-actions of the nuts M
x
and M

2
against the screw.

Since the same construction holds for the two other

points diametrically opposite to A and 6y, it follows

that for the turning of the screw a couple of forces,

each equal to P = KL, is necessary ; the arm of the

couple being twice the radius r of the helix in which

the action of the nuts upon the screw is supposed to

be concentrated. Without friction we have the force
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P =£ 2fL
i
the re-actions being assumed in the direc-

tion of the normals O A and C. For a co-efficient

of friction /x = 0.1, and a pitch of screw n = ^ we
have, with %Q = 100,

and
P ~ 37.8, P = 16.67,

^^ = 0.441.

The construction remains the same when the pitch of

the two screws is different, as in differential screw-gear-

ing ; or when the pitch of one screw equals zero, as in

the much-used tension mechanism (Fig. 10, plate I.)

where the thread of one screw is merged into a ring

and swivel in which end-journal friction only occurs.

Here, as before, we make OJ = J$, and have in KL
one force of the couple necessary to turn the nut M ; it

being understood that the line of re-action OK is drawn

at an angle
<f>
= the angle of friction to the axis of the

rod Sv Without friction the force P would be given

in JL
Q

. For a pitch n = TV, and a co-efficient of fric-

tion ix = 0.1, the construction gives, for \Q = 100,

P = 28.9, P s 8.33,

and

v = ^ = 0.288.

The application of the turning-force at one side only

of the mechanisms (sketched in Figs. 9 and 10, plate I.)

causes a certain amount of neck friction which may be

determined by methods to be explained in the following

chapter.
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§ 4.—JOURNAL FRICTION.

If a cylindrical journal (Fig. 11, plate I.) is pressed

bj' a force BE = Q perpendicular to its geometric axis

into a bearing A v that bearing re-acts at B with a force

equal to Q and opposite in direction, the same as any

other supporting surface would do. If the journal

revolves in the direction of the arrow a certain force

is necessary which does not go through the axis. Let

BG be such a force acting at i?, and of such value P
that it is just sufficient to hold the journal in equilib-

rium, and by the slightest increase to cause a turning.

Under this supposition the journal is in equilibrium

under the two forces P and Q, and of the re-action R
exerted upon it by the bearing. This last re-action

must be equal and opposite to OJ, the resultant of P
and Q. The bearing A

i
acts upon the journal at the

point If with the force BK == JO. By that we do not

mean that the re-action is actually exerted at the point

K, but that the resultant of all the re-actions of the

elements of the bearing against the journal passes

through the point K of its surface. . We have to

assume that the resistance to turning offered by the

bearing is friction at the point K. This friction is

exerted in the direction of motion of the supporting

surface, as previously laid down in a general law, and

has a value //JV; N being the normal pressure at if, and

/x the co-efficient of friction. If we resolve the re-action

BK into components at right angles, one normal and
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the other tangent to the surface of contact at K, we

have in the component &fiT the normal pressure, and in

the tangential component LS the friction al resistance

T V
at the circumference of the journal. Since, now, —— =

J SK
fj,
— tan

(f)
we find that the angle LKS or OKA which

the re-action makes with the radius drawn to its point

of application equals the angle of friction
<fi

of the

materials of journal and bearing. If, then, we drop

from the centre A the perpendicular AT upon the

direction of the re-action KO the value of this per-

pendicular, or arm of the re-action in reference to the

centre, is given by the equation

AT = p = rsin (/>,

where r is the radius of the journal. The same value

for this arm TA will be obtained in every case wherever

the turning-force P is applied ; and if Ave suppose the

force F to occupy, one after another, all possible posi-

tions about the axis A the re-action of the bearing will

in each case be tangent to a circle described about the

centre A with a radius AT = p = r sin </>.

We can therefore regard the journal bearing, in its

action upon the journal, as entirely replaced by a re-

action which is tangent to a circle drawn about A with

the radius r sin </> ; and the direction and situation of

this re-action will be known as soon as any other condi-

tion is settled, as, for instance, in the present case, that

it must pass through the point 0. This circle of a

radius p == r sin </>, which for brevity will be called the

Friction circle through analogy to the nomenclature, fric-

tion angle, friction cone, etc., oilers a convenient means
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for the graphic expression of journal friction. Since,

under the supposition of an entirely frictionless motion,

the re-action of the bearing passes through the centre

of the journal, we may regard it as being tangent to

the friction circle, which has become equal to zero in

this case.

It is evident from the figure that the second tangent

drawn from to the friction circle, shown in the dotted

line OIF, corresponds to a revolution of the journal

opposite to the arrow, and that in this case, when the

turning-force acts in the direction OB^ the point of

application of the bearing against the journal is to be

assumed at W. Either If or IF may represent the point

of support of the journal, according to circumstances.

If we further assume that the journal A is fixed,

and that the bearing is acted upon by the forces P and

Q like the hub of a wheel running loosely upon an axle,

we must then regard the point K
A
or W

x
as the point

at which the hub is supported by the fixed axle ; the

point K
1
corresponding to a left-handed revolution like

that indicated by the arrow, and the point W
1
to an

opposite revolution. The amount and direction of the

re-action R are not affected by these changes, there

being merely a transfer of the point of application from

if to if
x , and from W to W

x
.

On the contrary, if we suppose the force P and Q,

and consequently their resultant, to act in the opposite

directions OF\ 0H\ and OJ\ the point of support will

fall upon K
1

, while the journal will have a revolution in

i\ right-handed * direction opposite to the arrow. We

* In general right-handed revolution is to be understood hereafter

as meaning revolution in the direction of the hands of a watch.
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must determine, therefore, in every case, which of the

two tangents is the line of direction for the re-action in

that case. This determination is rendered much less

difficult here, as in the case of sliding friction, if we
keep resolutely before us the principle that each of the

two pieces exerts upon the other a re-action which coin-

cides in direction with the motion of that piece relative

to the other. Even if both parts, journal and bearing,

have absolute motion, as is the case in all link connec-

tions, it is still not difficult to determine the relative

motion of one part with respect to the other. Later

remarks will serve for the further elucidation of this

law.

To determine graphically the friction circle of a jour-

nal, we have only to draw any radius AB (Fig. 12,

plate I.) of the journal, and lay off the angle of friction

</> := BAC. When this angle is not given directly, but

only the co-efficient of friction /x, draw BO perpendicu-

lar to AB and equal to /x . AB. Then draw BE through

-Z), the point of intersection of the hypothenuse AG
with the circumference of the journal, parallel to AB.
We have then, in the circle drawn about A tangent to

the line DE, the desired friction circle of a radius

AE = p = r sin </>.

Rods, or links, provided with two pins, or eyes, con-

necting them with other machine parts, often occur in

mechanisms. Such a rod, or link, as AB (Fig. 13, plate

I.) would, in the absence of friction, simply transmit

force from journal to journal along the line AB con-

necting their centres. A force applied to either journal,

AC iov instance, would call forth in the other, BD, an

opposite force with which it would be in equilibrium.

Since, when friction is neglected, the pressure of the
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journal upon its bearing in the rod can only be perpen-

dicular to the surface of contact, both these equal and

opposing forces must necessarily pass through the cen-

tres A and B. This would also occur in reality when
there is no motion of the journal relative to its bearing,

as, for instance, in the joints of a linked chain which,

loaded with a weight, is drawn vertically upwards.

When, on the contrary, a turning of the journal rela-

tive to its bearing occurs friction enters into the consid-

eration of the motion ; and according to preceding prin-

ciples force can only be transferred from journal to

bearing along lines which are tangent to the friction

circle. Therefore, in the present case, a transfer of force

between the journals AC and BD can only take place

along one of the four possible tangents to both friction

circles AE and BF. We can easily determine which

of the four tangents is to be regarded as the line of re-

action in any particular case by the application of the

rule previously given. With it we have only to decide

in what direction, whether to the right hand or to the

left hand, the turning of the journal occurs in its bear-

ing, and in what direction the journal acts upon the rod
;

i.e., whether the latter is in tension or compression.

The action of the link on a pin or journal must then

have such a direction that, in consequence of this action,

the eye of the link will assume relatively to the pin the

rotation which actually does take place. This rule

holds also for the action of the pin on the link ; for

not only the direction of the force, but the direction of

rotation, will be reversed in this case.

In Fig. 13 the four tangents are denoted by the

figures 1, 2, 3, and 4, for brevity. For still greater

clearness there are shown in Fig. 14, plate I., four sepa-
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rate mechanisms in which a rod AB of the type under

discussion unites two swinging levers MA and NB. In

these four cases, I., II., III., and IV., the heavy arrow

drawn at one lever denotes not only the motion of that

one lever, but of the whole system ; the other lever is

therefore always a resisting body. By the little arrows

drawn at each joint is shown the motion of the rod, or

link, relative to that lever with which it is there united.

We may regard the journal as forming a part either of

the link or the lever, since, as before explained, such

assumption has no effect on the direction and amount

of the re-action, merely shifting the point of application

to another position on the same line. If we suppose

the link AB to be in tension in the cases I. and III.,

and in compression in II. and IV., it will be readily

seen that tangents 1, 2, 3, and 4 in Fig. 13 correspond

respectively to cases L, IL, III., and IV. in Fig. 14.

This correspondence of Fig. 13 to Fig. 14 holds also for

the opposite motion on condition that the driving-force

is applied at the same lever, for then both the nature of

the force acting in the link and the direction of the

turning will be reversed.

In a similar way we can determine the direction of

re-action of a journal upon its bearing in every particu-

lar case. This is in reality all that needs explanation

or demonstration in the method of calculating journal

friction, since the further graphical determinations con-

sist simply of the application of well-known principles

in regard to the resolution and composition of forces.

The method above referred to may be shown in a few

examples for the sake of clearness.

Let ABC (Fig. 15, plate II.) again represent a bell-

crank for which we are to determine the force P that
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must be applied to the arm B to lift the load acting

upon the pin A of the arm CA. Drawing the friction

circles for the journals A, B, and C we have, in the

tangents ao and bo parallel to the lines of force Q and

P, the lines of direction for these forces. Because of

the turning of the bell-crank to the right as shown

by the arrow, the rod grasping the journal A has a left-

handed turning about that journal, and the tangent oa

must be drawn, according to the principles previously

established, touching that side of the friction circle

farthest away from C; so that one might say that the

arm of the resistance to be overcome is increased by

journal friction. It follows, in the same way, that the

line of direction for the re-action of journal B against

its rod, which also has a left-handed turning, must be

tangent to the inner side of the friction circle, so that

the arm of the force P is shortened by journal friction.

The re-action of the supporting bearing against the

journal C must pass through o, the intersection of oa and

ob. There being a turning of the bell-crank to the right

hand the re-action R of the bearing to the journal C
will lie along the line oe, passing through o and tangent

to the friction circle of 0. Since P, P, and Q are in

equilibrium we have, by making ol ~ Q and completing

the parallelogram ol II III the force P in oIII and

in oil, the re-action of the bearing equal and opposite to

the journal pressure. Without friction we should obtain,

as in Fig. 1, plate I., the force P = III ; i.e., if the

direction of the forces passed through the centres of

the pins and OI — Q. In the case under consideration,

with a co-efficient of friction /* = 0.1, the drawing gives,

for Q = 100,

P = 91.3, P = 87.8,
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and
r, = ^0 = 0.962.

For another example we will choose the ordinary

slicler-crank train (Fig. 16, plate II.) as used in steam-

engines. The downward pull P of the piston is exerted

by the piston-rod JTupon the pin A of the connecting-

rod. We shall endeavor to determine how great a

resistance Q at the distance CE from the shaft can be

overcome by this piston force in the position of the

mechanism shown by the drawing, friction being taken

into account. By the force P we do not represent the

entire pressure of steam upon the piston, but simply

that really acting upon the cross-head after piston and

stuffing-box friction have been deducted. The pressure

variations caused by the acceleration and retardation of

the piston will also be taken into account in the value

of P. The line of this force P must pass through the

centre A of the cross-head pin, since this pin is rigidly

fixed to the cross-head and piston-rod, and no relative

turning can occur between them. There is such turn-

ing, however, between the pin A and the end A
2
of the

connecting-rod A
2
B

2
. The line of direction of the force

S acting in the same will therefore lie along the tangent

ab to the friction circles of the two journals A and B.

(Which of the four possible tangents is to be here taken

is shown by the little arrows which indicate the direc-

tion of turning of the connecting-rod ends about the

journals A, B, and enable us to apply the principles

explained in Figs. 13 and 14, plate I.) The cross-head

pin cannot be in equilibrium under the influence of the

two forces S and P alone, which have different direc-

tions. Equilibrium requires a third force which must
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be exerted by the guide D in the re-action li
1

. The

direction of this re-action is fixed by the condition that

it must be inclined at the angle </> to the normal to the

guide, and its situation by the requirement that it must

pass through the intersection o
x
of the forces P and S.

Accordingly the guide D exerts upon the cross-head a

re-action along the line do
1

. Further, the force S will

be transmitted without loss by the connecting-rod from

the pin A to crank-pin B along the line ha ; and we find,

as in the case of the bell-crank (Fig. 15), that the force

iS'and the resistance Q acting at E are held in equilib-

rium by a re-action R
2
exerted by the bearing upon the

shaft C. We have the direction of the latter in the line

o
2
c which is drawn from the intersection o

2
of the forces

S and Q tangent to the friction circle of the shaft 0.

To determine each force we have only to draw the force

polygon in which Io
1
— P,I II is parallel to o

{
d, II III

is parallel to o
2
c, and o

1
177 is parallel to Q or FE, The

line o^II =. Q gives the resistance acting at E, and

II o
x
gives the tension S in the connecting-rod, while

II I represents the re-action of the guides, and II III

the pressure upon the bearing of C; the determination

of the latter forces being of especial importance in pro-

portioning the parts under consideration. For the

determination of the theoretical resistance Q = o
x
III^

it is only necessary to draw the re-action R
1
normal to

the guide 7>, and the directions of aS^ and R
2
through the

centres of A, 7?, and (7, as is shown in the force polygon

drawn in broken lines. With the assumption of a co-

efficient of journal friction /x r= 0.1, and sliding friction

at the guides /x z= 0.16, the drawing gives, for P = 100,

Q = 48.4, Q = 52.5

;
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therefore

v = Q- = 0.922.

It is, of course, self-evident that for any other position

of the mechanism there would be a different efficiency.

If we turn now to the diagram for the oscillating

engine (Fig. 17, plate II.) it will be observed that the

force S acting in the piston-rod B
X
D is tangential to

both journals B and C\ as in the preceding case, and

falls along the line be. The demonstration of this fact

is as follows : If P is the force exerted b}^ the steam

pressure upon the piston E, and which acts along the

line of centres BC, this force must be in equilibrium

with the other forces which act upon the piston-rod.

There are besides P only three forces to be considered

:

the re-action >S' of the crank-pin B, the only known con-

dition of which is that it must be tangent to the friction

circle of i?, and the re-action ll
x
exerted by the stuffing-

box D
1
against the piston-rod at the point rf, together

with that, R
2 , of the cylinder against the piston E at the

point e. These re-actions are inclined at an angle
<f>

to

the normal to the geometric axis of the cylinder, and

act from the cylinder toward the piston and piston-rod

respectively.

If we now regard the relative motion of cylinder to

piston-rod only we may imagine the piston and piston-

rod to be held fast, while the cylinder with its bearing

moves a short distance along the piston-rod under the

pressure of the steam upon the cylinder-head. Here

also the various forces acting upon the moving cylinder

must be in equilibrium. These forces are the following:

First, the pressure of the steam upon the cylinder-head,
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which is of course equal to the steam pressure upon

the piston, and acts along the line of centres CB, but in

the opposite direction, and is therefore to be denoted by
— P ; next, the re-actions which formerly acted upon

the piston and piston-rod at e and d now act at the same

points, but in opposite directions, against the cylinder

and stuffing-box, and are to be denoted by — R
1
and

— i?
2 ; finally, there is the re-action Z exerted by the

bearing C
x

against the trunnion-journal (7, the only

known condition of this re-action being that its line of

direction must be tangent to the friction circle of 0.

Since, then, the condition of equilibrium exists between

the four forces P, Rv Rv and S\ and also between — P,
— Rv — P2 , and Z, it is evident that P, Rv and R

2
will

balance — P, — Rv and — R
2
respectively, thus leaving

S = — Z; i.e., the forces /S
r and Z are equal and act

in opposite directions. The force &\ therefore, must

coincide with the tangent cb to both friction circles.

For the condition of equilibrium between the forces

P, Rv R
2 , and S, it is necessary that the resultant of

any two, as P and P
x , shall be equal and opposite to

the resultant of the other two, S and R
2

. By joining

ov the intersection of P and P
1 , with o

2, the intersection

of # and P
2 , we get in o

l
o
2
the direction of these result-

ants. If we make C I = P, and draw C II parallel to

JK
1 , ///parallel to o

2
ov /////parallel to Jc, and I III

parallel to P
2 , the line II III gives us the value of the

force S which tends to pull the crank-pin around. Of
equal value, as has been demonstrated above, is the re-

action which the bearing C\ exerts upon the journal C
of the trunnion. The further determination of the

acting forces is carried out in the usual manner. If a

resistance Q acts at the radius AF from the shaft we
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have in the line o
s
a drawn from the intersection o

s
of Q

and S tangent to the friction circle of A the direction

of the re-action i?
3
exerted by the bearing upon the

shaft journal A ; and to determine the value of this re-

action and of the resistance Q we have only to resolve

II III into UIVand IIIIV parallel to the directions

osa and o
s
F of the re-action and resistance Q respec-

tively. Without friction we should have P = S, and

the triangle CIIV would give immediately the value

of Q = I IVq, CI being resolved in the directions of

Q and OA.

For a co-efficient of journal friction fx = 0.1, and of

friction in the stuffing-box and cylinder a = 0.16, the

drawing gives, for P = 100,

Q = 61.0, Q = 64.2,

and

= -£
Q,

0.950.

It should be remarked that the friction here consid-

ered as existing between the piston and cylinder, and

between piston-rod and stuffing-box, is only that arising

from one-sided or lateral pressure. The friction winch

is caused by the pressure of piston and stuffing-box

packing must be estimated in other ways, and deducted

directly from the piston pressure.* We have, therefore,

* The " one-sided or lateral forces " to which the author here refers

are those resulting from the non-coincidence of the opposing forces S
an 1 P. They arc. in other words, the re-actions which keep the

piston-rod and cylinder in the line BC, their tendency being to arrange

themselves along the line of tension be. If Ave imagine the piston,

piston-rod, and cylinder to be made of some elastic material which
would bend at the slightest application of a deflecting force, they would
so arrange themselves when the steam pressure P was applied that
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in the value of y\ given by the figure, not the efficiency

of the steam-engine, but only the efficiency ot those

parts composing the mechanism.

The same slider-crank motion which lies at the basis

of the oscillating engine finds frequent application in

planing-machines for the production of a quick return

motion. Fig. 18, plate IL, represents an arrangement

of this kind, where the slide HGc bearing the tool M is

moved back and forth in a prismatic guide by the link

F
1
F

1
which receives its reciprocating motion from the

lever D
l
E

l
oscillating about the fixed journal D. The

oscillation of the latter is produced by the crank AB,
whose crank-pin B works in the block C sliding along

the slot Cv of the oscillating lever F
X
I)V The resistance

Q offered by the material to the cutting-tool M produces

the re-actions M
1
and li

2
at the points g and h ; and these

three forces, Q, Mv and Iiv must be in equilibrium with

the force 8 acting in the reciprocating link E
X
FV The

the line passing through the centres of piston and cylinder-head would

coincide with the line be of tension between trunnion and crank-pin.

There is another class of "one-sided or lateral forces" which the

author has omitted to mention; namely, those arising from the oscilla-

tions of the cylinder. Taking the case when the crank is upon either

dead-point, with the engine running at a high rate of speed, Ave have

the entire mass of the cylinder, by no means small in practice, in rapid

motion in one direction; passing to the other dead-point we find it in

equally rapid motion in the opposite direction. Between the two the

inertia of this mass moving at this rate of speed has twice to be over-

come byre-actions of the nature of Tt 1 and R>, but vastly greater than

II C and I III. The resultant of these re-actions applied at the crank-

pin is of the nature of those accelerations and retardations to which

reference is made in the first chapter, and have no effect on the work
done, since the work stored up in the quadrant on one side of the dead-

point is given out in the quadrant on the other side; but the friction

at the points e and a, or their opposites, represents a loss of energy

never given back again. — Trans.
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direction of the force S is given by the tangent ef to

the friction circles of E and F. If we therefore connect

o
x , the intersection of Q and _B

X , with o
2 , the intersec-

tion of S and i2
2 , we have in the side II III of the

force polygon o
x
I II III, the value of the force S acting

in the link B
1
F

1 , under the supposition that o
x
I'= Q,

1 II is drawn parallel to B
x , II III parallel to ef, and

o
x
III parallel to B

2
. The crank-pin B acts upon the

sliding bearing C, and through it upon the guide C
1
of

the oscillating lever, in a direction o
3
c which must be

tangent to the friction circle of B and inclined at the

angle </> to the normal to the slot Cv The line of this

re-action T is therefore o
s
c, and similarly the line do

s

drawn from the intersection o
s
of T and S tangent to

the friction circle of D is the direction along which the

journal D re-acts against the lever B
l
B

1
. If, further,

the driving-force P is applied at the end if of the radius

AH from the shaft A we can get the direction of the

re-action exerted upon the crank-shaft A by its bearing,

in the line o^a drawn tangent to the friction circle of A
from 6>

4 , the intersection of T and P. Completing the

force polygon by resolving the force # = II III into

IIIVMid IV III, parallel to o%c and o
s
d, and drawing

IT ["parallel to o
4
a, and IV ^parallel to o

4
ff, we have

in VIV =. P the force which must be applied at H to

overcome the resistance Q = o
x
I at 31. Assuming a

co-efficient of journal friction /x = 0.1, and of sliding

friction ^ ^= 0.16, the construction gives, for Q = 100,

P = 84.1, P = 66.6,

and

v = 5) z= 0.792.
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In the case of a steam-engine with single beam

(Fig. 19, plate II.) the investigation is pursued as

follows: The steam pressure P acting upwards upon

the piston-rod AB coincides with the geometric axis of

the cylinder, and passes through the centre of the jour-

nal A. On the other hand is the thrust S of the rod,

i.e., the re-action of the beam upon A, which must lie

along a line tangential to the friction circle at A. These

two forces, S and P, cannot be in equilibrium, since

they do not act along the same line. For this a third

force is necessary, which is found in the re-action Il
1
of

the stuffing-box against the piston-rod. By drawing

through a middle point b in the stuffing-box the direc-

tion of M
1
at an angle with the normal we have, in

the intersection o
x

of R
i
with P, the point through

which the thrust S must pass; this force then acts

along the line o
x
a. If we make o

Y
I'
= P, and draw

through I a parallel to P
x , we have in o

x
II the force

S exerted upon the journal A of the beam. It may not

be uninteresting to remark that the stuffing-box P
a

is

exposed, according to the above demonstration, to a

certain side thrust II I This side thrust is not the

result of an inaccuracy in the parallel motion, as is

the case in approximate motions like that of Watt,

for the Evans motion here represented is well known for

its absolute accuracy. This side thrust is directly the

result of the journal friction occurring at A. For a

clearer understanding of this fact we may imagine the

piston-rod to be bent to the left by a force equal to

the journal friction of the beam applied at its upper end,

and tending to revolve toward the right. Such a force

would evidently call forth in the stuffing-box the re-

action which we have been considering. It is also
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evident that the side thrust R
x
will act in an opposite

direction and from the other side of the stuffing-box

when the piston makes a down-stroke, since at each

change of motion the direction of the journal friction at

A is reversed. On the other hand, the piston-rod thrust

or pull S in upward and downward stroke remains

always in the line of the tangent o
x
a, since at each

reversal of motion, i.e., at each dead-point, the direction

of turning of the journal A, as well as the direction of

the force S, is reversed. We may therefore regard the

effect of journal friction at A as being in every case to

diminish the lever-arm of the force S. Beside the force

S three other forces act upon the beam ; they are the

re-actions of the radius-rod DE, of the connecting-rod

FG, and of the guides K
X
KV We find the directions of

the force L in the radius-rod, and T in the connecting-

rod, according to previous rules, in tangents to the

friction circles at D and E, and at F and G. Recol-

lecting that the radius-rod is under compression while

the connecting-rod is in tension, and noticing the direc-

tion of turning at each journal as indicated by the

arrows, we decide upon cle and fg as being the desired

tangents. The sliding-block C
x
exerts upon the journal

C a re-action which must be tangent to the friction

circle, and upon the guide K
X
K

2
a re-action which must

be inclined at an angle $ to the normal ; these two con-

ditions fix the position of R
2
as coinciding with the line

he. In Fig. 19a the sliding-block C
x

is shown in detail.

We first observe that during up-stroke the lower guide

I^K.2 exerts the re-action, and during down-stroke the

upper guide K^K^ is under pressure. In further ana-

lyzing the re-actions exerted upon the sliding-block O
x

we must remember that it has a double reciprocating
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motion ; that is, it makes a complete stroke out and

back for every half-stroke of the piston. Beginning

then at the lower dead-point with the beam in the posi-

tion CA
1
we have, during the first half of the up-stroke,

a motion of C
x
toward the right, and right-handed turn-

ing of the journal (7, which gives k
1
c
1
as the direction

of the re-action R 2
. When the beam reaches the posi-

tion CA
2
the radius-rod DU is parallel with it, and any

further motion will, by the action of the radius-rod DE,
cause G

x
to move to the left. During the second half

of the up-stroke, therefore, k
2
c 2 is the direction of the

re-action R
2

. At the beginning of the down-stroke,

when the beam is in the position CA^ the sliding-block

C
x
again reverses its motion and moves to the right;

but it now presses against the upper guide K
x

fK
2 \ and

the direction of turning at the journal has also been

reversed, and the re-action lies along the line from Jc
s

to c
2
or Jc

2
. Similarly, during the last half of the down-

stroke, there is sliding toward the left, and left-handed

turning of the journal ; so that k
4
cv or kv is the line

of re-action. In every case, therefore, the re-action is

so applied as to lengthen its lever-arm and render the

force #less effective, which is entirely in keeping with

the obstructive action of friction.

In order that the four forces S, L, T, and R
2
acting

upon the beam shall be in equilibrium the resultant of

the two forces L and R 2 intersecting at o
2 , and the

resultant of the two forces T and S intersecting in <?
3 ,

must both lie along the line o
2
o
s
uniting these points.

In the figure, as a result of the proportions assumed,

the point of intersection falls beyond the limits of the

plate. In determining the direction of the line o
2
o
s

the following construction may be employed to advan-
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tage. Draw any line, o
2
a, intersecting 8 and T in the

points a and ß; draw any other line, o-w, parallel to o2
a,

and intersecting S and T in the points o- and r. If,

now, we assume the third point, w, on the line o-w, so

that the proportion

a/3 : a*T : : /3o9 : tw

is true, we know from geometry that the three lines o
2
o>,

yör, and ao- will intersect in one and the same point : but

the intersection of ßr (the line of the force T~) and ao-

(the line of the force >S
r

) is the "desired point o
3

. There-

fore the line o
2
w gives the desired direction o

2
os . The

point w can easily be located by drawing any line, aS,

making a8 equal to <xr, connecting 8 and /?, and drawing

from
2
a line

2
S parallel with 8/3, and intersecting aS in

the point § : the distance &S is then to be laid off on the

line o-w from r, and thus locates w, it being of course evi-

dent that #8 =. rw. We next resolve the force 8 = tfjZZ

into components parallel to J
7 and to o 2 o3, the resultant

of the two remaining forces L and /i
2 , and we have

o
x
in=T and IIIII=o

2
o„.

Resolving II III into components parallel to R
2
and i

we have

II IV = R.
2

and IVIII=L.

If, finally, we suppose the resistance Q to act upon the

crank-shaft ÜT with the lever-arm JH, o
4
h gives the direc-

tion of the re-action üu of the bearing against the shaft

H, and a resolution of the force T into components

parallel to the direction of Q and B
s
gives us in }

r
o

l
the

value of #, and in V III the value of fi
3 .
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With a value ^ == 0.1 for journal friction, and /x = 0.16

for sliding friction, the drawing gives, for P = 100,

Q = 49.5, Q = 54.9,

and

V = -£ = 0.902.

In the mechanism of the ordinary eccentric (Fig. 20,

plate III.) the determination of the relation of power

to load is accomplished in the same way as with the

crank. In this case the driving-shaft A has to move

the rod ED working in the guide and stuffing-box U
1

and D
{
through the medium of the eccentric B and its

rod BC. There are, then, acting upon the rod ED the

working-resistance Q which coincides with the geometric

axis, the thrust of the rod BC which lies along the tan-

gent be to the two friction circles at B and C\ and the

re-actions B
2
and R

{
of the guide E

x
and of the stuffing-

box and gland Z>
1

. Taking these re-actions at e and d

inclined at the angle (/> to the normal we have again, in

the line joining the point of intersection o
x
of B

Y
and Q

with that o
2
of R

2
and S, the direction of the resultants

of these pairs of forces. If we therefore make o
x
I — Q,

and draw / II parallel with o
x
o^ and II III parallel to

be, and I III parallel with R
2 , we have in III II the

thrust aS' exerted in the eccentric-rod. If, further, the

motion of the shaft A is caused by a force P applied at

the end F of the lever-arm AF we have again in ao« the

direction of the re-action B
s
exerted by the bearing

against the shaft A ; and by resolving III II into

III IV and II IV parallel to ao
z
and P we get in

IV lithe value of the force P which must be applied
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to overcome the resistance Q. For /* == 0.1 and /x = 0.16

the drawing gives, for Q ~ 100,

P = 36.2, P = 22.8,

and

v = ^ = 0.630,

a small value for 77, due to the large radius of the friction

circle of the eccentric B.

An interesting application of the crank-train is found

in the ordinary Blake crusher shown in Fig. 21, plate

III. The crank-rod BC is here connected with two

links DE and FG, forming a knee, by the pressure of

which the materials fed in at L are crushed, through the

intervening plate JH swinging from the centre II. It

is evident that as turning occurs at both ends of each

link the pressure can only be transmitted through them

along the tangents de and fg to the friction circles.

Furthermore, the force S of the crank-rod or pitman

which is tangent to the friction circle at B must also

pass through the intersection o
2
of the forces jPand T

x ;

i.e., act along the line o
2
b. And also the re-action R

x

against the journal H of the swing-plate must pass

through o v the intersection of the thrusting-force T in

the link DE with the working-resistance Q. If the

motion of the crank-shaft A is caused by a force P
applied at iTwo have, according to well-known methods,

the re-action of the bearing against the shaft in the line

o3a tangent to the friction circle of A. Then draw

the force-polygon as follows: Make o
1
I equal to Q, the

crushing-resistance of the material; draw / II parallel

to öjA, and IIo
l

is the thrust T sustained by the link
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BE. In III II we have the thrust T
x
in Fa, if III II

is drawn parallel to fy, and öjZZZ parallel to 6o
2

. Finally,

by resolving IIIo
1
= #, the strain in the pitman, into

Oj/F parallel to o
8
a, and IIIIV parallel to P, we have

in III IV the value of the force P which must be

applied at K to crush the material at L. The broken

lines again indicate the construction by which the theo-

retic force P = HI
Q
IV is obtained.

the drawing gives, for

= 12.3,

rj = ^ = 0.80.

Another example of toggle-joint mechanism is the

hand-punch shown in Fig. 22, plate III. Two bent

levers, A
1
CD

l
and B

1
CE

1 , are here connected by a

hinge or bolt at (7, so that when their ends D
t
and E

x

approach each other under the action of the screw FGr

the head HJis forced down, and the punch L forces the

metal under it through the die K. To produce this

result the screw FGr is turned by a long wrench applied

at its square head F, and its right and left threads draw

the nuts D 2 and F2 together with a certain force P, as

was the case in the coupling shown in Fig. 9, plate I.

On account of the turning of the levers the nuts are

connected to them by the journals D and E, from which

it follows that the force P by which they are drawn

toward each other acts along the tangent de to the two

friction circles of D and E. If we now suppose one of

the levers (the under one, for instance) to be at rest

it must be in equilibrium under the forces acting



60 THE GRAPHICAL STATICS OF MECHANISM.

upon it. The forces consist of the driving-pressure

P acting along de, and the two re-actions R
1
at and

R
2

at B. For the first re-action R
1
exerted by the

upper lever A
1
CD

X
we have the direction ac tangent to

the two friction circles of A and G7, the lever A
1
CD

l

turning toward the right hand ; while the direction of

R
2
must pass through ov the intersection of P and R

x ,

and be tangent to the friction circle of B. It lies, there-

fore, along the line o
x
b. If, then, wT

e make o
x
I = P,

and resolve it parallel to the two re-actions by drawing

I II parallel to o
x
b, we have in IIo

x
the re-action JR

1

exerted by the upper lever upon B
x
OE

x , and in I II

the re-action R
2
offered by the journal B.

The head HI must, in its turn, be in equilibrium

under the influence of the force R
2
acting along bo

x ,

the resistance Q which the metal offers to punching

acting along the axis of the punch Z, and the two re-

actions R
s
and i2

4
of the guide-bushing H^^ If we

assume h and i at a sufficient distance (say 5 mm., or

\ inch) from the edges as the points of application for

the re-actions Ii
s
and R

4
which are drawn at the angle

of friction <£ to the normal, the line connecting o
2 , the

intersection of JR
S
and R

2 , with o
3 , the intersection of

72
4
and $, furnishes us with the means of completing

the force polygon in the usual way. Resolving II I
— R

2
into III I parallel to R

s
and II III parallel to

o
2 3, and then II III — o

2
o
s
into III IV parallel to R±

and II IV parallel to Q, we have in IV II = Q the

resistance which can be overcome by the application of

the force J? upon the nuts D
1
and JEV It is also evident

that the side IV
Q
II of the force polygon drawn in

broken lines normal to the surfaces, and passing through

the journal centres, is the value of the theoretic' resist-
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anee # which should be overcome by the same force P.

With the usual values /* = 0.1 and /x
x
= 0.16, the draw-

ing gives, for P = 100,

Q = 194, Q = 350,

and

V = -^ = 0.554.

Vo

It will be seen that the ratio of P to # would remain

the same whether we use the arrangement shown, or

whether we suppose the force P to act only upon one

arm B
l
U

1 ^ while the nut D
2

is replaced by a cylindrical

eye and spindle so arranged that no sliding can occur

in the direction of the axis of the spindle, as in the

swivel, Fig. 10, plate I. The ratio between P and Q
would not be changed, because if the driving-force P
was applied only at JE

X
there would arise at i)

1
an

opposite equal re-action which would be transmitted by

the swivel-ring to D. The only difference between the

two arrangements is that by the movement of both

levers the space traversed by the head HJ for any

given portion of a revolution of the screw FGr is double

that which would result if only one lever moved while

the other was held fast. The work done by the turning-

force for this portion of a revolution is, of course, twice

as great in one case as in the other. The above remarks

apply exactly only in the case of frictionless motion
;

for with the arrangement giving a re-action — P of a

iixed point, as in the swivel, a new friction enters which

must be determined in the same way as in Fig. 10, plate

I. The investigation of the present mechanism has not

included the determination of resistances arising in the
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screw ; such a determination would be made in the

manner shown in Fig. 9, plate I.

The amount of resistance Q which can be overcome

by a certain force P, as well as the efficiency of the

mechanism where knee-joints are employed, depends

upon the angle which the centre lines of the links form-

ing the joint make one with another. It will be readily

seen that this resistance Q becomes greater, and the

efficiency ?] smaller, as this angle approaches 180 de-

grees. If we assume this last value, or one which differs

from it by an infinitely small amount, as in Fig. 23,

plate III., a force P acting upon the journal C would

be able, in the absence of friction, to overcome an

infinite resistance

M=^w =cc
)-

On account of journal friction, however, these lines

of force are to be found in the tangents ca and cb to

the friction circles ; and we therefore find the actual

forces in the parallelogram acblii we let cl = P. The
greatest resistance Q which can be overcome is therefore

given by the equation

Q = P tan ^#,

where 2w is the obtuse angle acb of the two directions

of pressure. The efficiency rj = -¥- in this case where

Q = oo is equal to zero.

If we further suppose tlie knee to be in the condition

of backward motion, i.e., if we assume that the tendency

of the re-actions at ^1 and B is to force the joint C out
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to one side or the other, it is evident that such backward

motion can only begin at that instant in which these

re-actions coincide in one straight line. If, therefore, we
draw such a case (Fig. 24, plate III.) in which the tan-

gents ac and be to the friction circles fall upon the same

straight line we have the limiting position at which the

knee is self-locking. The angle 2(w) = ACB, which

differs from the angle 2w in Fig. 23 only by an inappre-

ciable amount, determines on both sides the limiting

position within which a backward motion, i.e., an open-

ing of the press by the re-action offered by the material

within its jaws, is impossible. As Qtv) depends on the

proportions of links assumed, the limits within which

the mechanism is locked become greater as the distance

from journal to journal becomes smaller, and as the

radius of the journals increases. The knowledge of

these proportions is of special importance in the design-

ing of mechanisms in which the knee-joint is employed

to grip an object and hold it fast, as in certain forms of

vise.

The methods heretofore employed in determining the

efficiency of machines can also serve the purpose of

determining friction as applied to useful ends in many
machines and processes. Thus friction serves to produce

the necessary tension in all spinning-machinery, and is

employed also in sewing-machines and water-frames or

throstles.

Let Fig. 25, plate III., represent the ordinary spindle

with the Arkwright flyer 00 which rotates with the

rapidly moving spindle. The thread F passing through

the stationary glass eye at D with a certain velocity u,

and leading to the loose spool L after several turns

about the arm of the flyer, serves as a driver to the
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spool, which is caused by the thread to revolve in the

same direction as the spindle and the flyer. The spool

holds back on account of the frictional resistance offered

to it, and at each instant the portion of thread running

out is unwound by this difference between spool revolu-

tion and flyer revolution. The friction of the spool by

which the tension in the thread is determined occurs

principally in two places,— at the circumference of the

spindle as journal friction, and as pivot friction where

the under surface of spool at Gr rests upon the bobbin-

frame EE which slowly rises and falls. This friction

must attain a certain value in order that the tension

of the thread shall be sufficient for a certain amount of

twist, and in order that the thread shall not belly out

between B and I) under the influence of centrifugal

force, and become entangled with the thread of the

neighboring spindle. The tension S of the thread may

be determined as follows: If 6r = HA is the weight of

the spool with the quantity of yarn already upon it, it

produces friction upon a ring-shaped portion of the

surface of the bobbin-frame EE. We may therefore

suppose the bobbin-frame EE to be replaced by re-

actions which are uniformly distributed over an average

circle of contact whose diameter is EE* all these re-

actions making the angle <£ with the normal in the

direction prescribed by the motion. As was shown in

* The radius p of the circumference of contact is =

where r, and r 2 represent respectively the radii of the outer and inner

circumference of the supporting surface.
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the case of pivot friction (Fig. 8, plate I.) we can here

suppose all re-actions to be concentrated in two diamet-

rically opposite points, a\ and a
2

. From the parallelo-

gram AJHK we get in AJ and AK the re-actions

exerted by the bobbin-frame, and in their horizontal

components a
x
i and a

2
k the frictional resistance offered

by these re-actions to the revolution of the spool. If

the thread draws the spool in the direction fa at a cer-

tain moment with a tension S the spindle re-acts with

equal force along a line ab drawn parallel to the direc-

tion fc, and tangent to the friction circle of the spindle.

The question then is of the equilibrium of the spool

under the influence of the two frictions a
x
i and a

2
k,

the tension S, and the re-action of the spindle along the

line ab. Joining the intersection o^ of the thread-

tension S with the friction a
2
k, with that o

2
of the

friction a
x
i with the spindle re-action, we have the ten-

sion $ given in value by the line IIo
2

if Io
2
= a

x
i and

I II is drawn parallel to o
x
o
2

.

So far in these investigations it has been tacitly

assumed that the journal friction was only exerted

upon one bearing. This is never the case in practice.

Every shaft has at least two supporting points or bear-

ings, and at these the forces P and Q will call forth

certain pressures and re-actions of a value proportional

to the distance of the point of application of the forces

from the bearings. If we suppose the shaft supported

by the bearings A
t
and A

2
(Fig. 26, plate III.) to

encounter a resistance Q acting through a wheel or

pulley placed at C, with a radius q — AG, we can

resolve this fpvce into two components parallel to Q,

and having the same lever-arm q, lying in planes passing

through the points A
x
and Av and normal to the shaft.
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The forces are determined by the well-known rela-

tions

Qi = qaa~
and Q*

= qja:12 12

and can easily be found by construction.

If the same construction is carried through for the

determination of the driving-force acting at each bear-

ing we have in P
x
and P

2
the forces which, lying in the

planes through A
x
and A

2 , act upon the parallel lever-

arms AH = p to overcome the resistances Q x
and Q 2

.

It follows that under the supposition of equal journal

radii and equal co-efficients of friction, i.e., with equal

friction circles, at A
x
and A

2
these forces P

1
and P

2

must be in the same ratio one to another as Q Y
to Q 2 ;

so that if P
x
and P

2
were compounded in one result-

ant P it would have to lie in the same plane, passing

through 6y
, in which Q acts. Therefore we should obtain

by this method the same value of P which has hereto-

fore been determined directly from Q by the employment

of friction circles.

It follows from the above that the preceding construc-

tions for the determination of journal friction can be

entirely accurate only when the driving-force P lies in

a plane perpendicular to the same axis as that to which

the plane of the resistance Q is perpendicular, and when
the diameters of the journals are equal. In reality the

first condition is seldom fulfilled, and the journals also

are seldom of the same size in a shaft. It therefore

remains to bring this influence within the scope of cal-

culation by force polygons.

With this object in view let us suppose that the

driving-force P (Fig. 26, plate III.) which is to over-
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come the resistance Q is applied at P, a point outside

the bearings A
1
and J.

2 , as is frequently the case in

practice. It is further assumed that the resistance Q at

C acts with a lever-arm A Cr = q, and the force P with

a lever-arm AH = p at the point P. If no friction

came into account we could assume P
Q
and Q as work-

ing in the same plane, and get

p = Olp

in the well-known way by uniting the intersection o
t

with centre A, and then resolving o
x Q into this direction

and that of P. Then imagine Q to be resolved into the

forces Q x
= Q~r~

2
~i~

acting at Av and Q 2 = Q *

A
2
A

1
A^A

2

acting at ^4
2

. Then lay off these forces equal to o
1 Q 1

and o
1 Q2

in the direction of Q. In the same way P
can be resolved into two parallel forces, P

x
and P

2 ,

acting at the points A
x
and A

2
with the lever-arm

AH — p. Their values are given by the equations

Pi = p
°f

2f and p
« = p

»f
a

f-^l
1
yi

2 ^1^2

Since P acts outside of the supporting points ^L
x
and

J.
2 , P

1
and P

2
act in opposite directions o

1
P

1
and 0^2

along the line of P. We find the resultant of P
1
and

Q x
in the diagonal o

1
Z>, and this force acting in the

plane through A
x
will call forth an equal and opposite

re-action of the bearing Av This re-action R
x

does

not act along the same line o
1
D as the resultant, how-

ever, since among the forces acting at A
x
alone equilib-

rium does not exist. The position of R
x

is found by



68 THE GRAPHICAL STATICS OF MECHANISM.

drawing the line a
x
a

x
tangent to the friction circle at

A
x
and parallel to o

x
D. Similarly we get the journal

pressure at A
2
in the diagonal o

x
E, and in the line a.

2
a
2

parallel to o
x
E and tangent to thp friction circle at A

2 ,

the position of the re-action R
2
which the bearing A

2

exerts. We now see that the shaft is in equilibrium

under the couple o
x
D and Rv and the couple o

x
E and

R
2

. Since we may suppose the couples to be slid along

the axis until they lie in the same plane we can immedi-

ately find P by uniting o
x
and the intersection o

2 of

R
x
and R

2 , and resolving the resistance o^ Q parallel to

the diagonal o
x
o
2
and the direction of P. We have

therefore in o
l
P

x
the necessary turning-force P. In

Fig. 27, plate III., the friction circles of A
x
and A

2
are

drawn to a larger scale, and we see that the direction

of R coincides nearly to the direction of a line drawn

through o
x
tangent to a mean friction circle shown in

dotted lines. We can therefore employ this simple con-

struction with sufficient accuracy in the generality of

cases, and especially in those where both P and Q fall

within two bearings not far apart. But for exact deter-

mination, and in cases where a force is applied outside

of the bearing, the full construction is necessary. It

will be noticed that the latter has still a slight inaccu-

racy, since the component forces P
x
and P

2
are obtained

from P instead of P. The error is quite inappreciable,

however, and a correction unnecessary; though such cor-

rection could be obtained by determining P
x
and P

2

anew from the value of P as deduced, and repeating the

construction.

We can now determine all the friction al resistances

which occur in a screw. In Fig. 28a ,
plate IV., S

2
S

S
is

the direction of a helix at a mean distance from the



JOURNAL FRICTION. 69

axis. Srs x
and Svs

2
are the directions of re-action at

two diametrically opposite points of the helix, so drawn

as to make the angle BS
l
s
1
= BS

x
s 2
= $ -f- a with

the axis of the screw, a being the pitch-angle of the

screw. We then obtain the resistance q x
= CB acting

perpendicularly to the axis at each of these points by

making BA
X
= Q, the load upon the screw, and draw-

ing through A
x
and B the lines A

X
B and DB parallel

respectively to S
l
s
l
and S

x
s 2 , and intersecting at B.

The load Q also presses the nut M down upon the

standard, and produces friction against the ring-shaped

surface of contact A
2
A

S
. As pivot journal friction we

can suppose this concentrated at a mean circumference

A
2
A

S , and acting at two diametrically opposite points.

If, therefore, we draw the corresponding lines of re-

action A
l
a

1
and A

x
a
2
inclined at the angle of friction

</> to the axis A
1
B we have in CE = q 2

the amount of

friction at each of the supporting points in the ring-

shaped surface A
2
A

S
if the line BE is drawn parallel

to A
1
a

2
. We can imagine these couples qxq x

and q 2 q 2

as acting at the points bj)
2

(Fig. 286 , plate IV.) and

c
x
c
2

respectively, and by compounding them get the

resultant couple

d
l
e
1
— qs and d 2 e 2

= qs .

If the nut M is revolved by worm-gearing, we must

represent the worm TFas acting upon it along the line

w
x
w

2
with a force w applied at a mean helix of the

worm. This one-sided working of the force w presses

the nut M up against the sides of the standard K
where the latter is bored out above A

2
A

S , and calls

forth a re-action parallel to w
2
w

x
and tangent to the
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friction circle of M in mm. To find w we join o
x
arid

2 , the points of intersection of the couple qsqs with m
and w respectively, and making o

2
e = <i 2 e 2

== ^3 com-

plete the parallelogram o
% egf, getting

o
2f = w.

For the sake of clearness let Fig. 28c represent in FO
the force necessary to cause a revolution of the worm
on a scale five times larger. It follows, in the next

place, that the re-action w offered to the worm along

the line TFJFof its axis requires a turning-force px
to

overcome it, which acts at w
x
(Fig. 286) perpendicularly

to the plane of the paper, and whose value is given by

FH = p t
(Fig- 28c) if H is the intersection of a per-

pendicular at F with the line HO drawn through at

an angle FOH = a
x + ^>, a

l
being the pitch of the

screw on the worm.

The worm W in its turn is forced by the load to

against its bearing i, and friction results along the

mean circumference of the ring L
1
Lr This friction

can be supposed to act at two opposite points of this

circumference, as at A
2
and A

s
in the case of the screw

S. We have, therefore, a resisting couple TJ = p 2

(Fig. 28c) where TJ is obtained by drawing FJ and

OJ through and F at the angle <j> to OF.

Finally, the load w upon the worm will also call forth

frictional resistances at the bearings of the two neck-

journals L and iV, since the one-sided action of w thrusts

the journals against their bearings with a certain press-

ure, the value of which, equal and opposite in the two

cases, we have from the equation of moments

w . W
l
w

1
= ps

. iiV,
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from which

ps
: w : : W

x
ii\ : LN : : LK

X
: K

X
KV

From the last proportion we see that we can get ps

by drawing through F (Fig. 28c ) a parallel to LK
2

(Fig. 28
6 ), when OiT will represent the value of ps , the

neck re-action exerted at L and N.*

In order to determine the force P to be applied at a

crank W
s
to the worm W, we must first unite the one-

sided resistance p x
and the two couples p2 p% and p^Pz-

This can be done in the following way : First draw the

two tangents l
x
and l

2
to the friction circle of the jour-

* Throughout this discussion the author has assume! that the

thrust w of the worm is applied along the line w
x
w, parallel to its

axis. This is neither true in practice, nor does it correspond to that

case shown in the figure. The thread of a rack is not square, but has

the sides of its profile inclined at an angle of 75 degrees to the axis.

The normal to the surfaces of contact would then be inclined at an

angle of 15 degrees to the axis. The line of re-action would fall short

of this inclination by an amount equal to </> — 5° 43' with a co-efficient

ß = 0.10, so that its actual direction would be inclined 0° 17' to the axis.

The re-action Oiin of the nut would be parallel to it, and the shape of

the parallelogram o 2 ejf would be changed, and a different value for

of = iv obtained. But since that component of this real value of to

parallel to the axis WW would only differ from o 2/by an inappreciable

amount, which increases and decreases with the radius of the friction

circle at A, and since the component perpendicular to the axis merely

adds to the throat-friction at L an amount which it takes from that at

N (its tendency being, of course, to thrust the worm bodily over to

the right), the accuracy of the final result is practically unaffected.

Moreover, as the gear may work in either direction, and as in the case

of backward motion the condition of affairs would be exactly the

reverse of that pointed out in the first part of this note, it is probable

that the author assumed the average position, i.e., the one parallel to

the axis, in order to have a general discussion applicable to all cases.

— Trans.
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nal L representing the direction of re-action of p%, and

then at a distance equal to the radius of the mean helix

of the worm draw the vertical tangent tv
s

. Now lay-

off from 6>
3 , the intersection of ws and Z

x , the distance

oJ: x
= p x (= FH'm Fig. 28c) and o^K

l
= p3 (= OBT

in Fig. 28c) ; then the diagonal o
3
x gives the resultant of

the forces p x
and jp3, which latter acts along the tangent

?
x

. This resultant, when compounded with the other

force 2h acting along l
2 in the opposite direction, gives a

force passing through o
4
parallel and equal to o^i

x
=

_pr
We see from this that the influence of the two frictions

pz
produced by the neck-journal re-actions only causes

the resistance to turning of the worm to act in the same

direction and with equal force, but at a longer lever-arm,

since it passes through o>
4
instead of o

3
. This corre-

sponds to the well-known principle that the composition

of a force and a couple merely effects a parallel shifting

of the force unchanged in value. In the same way, by

uniting the force p x
going through #

4
with the couple

P2P2 which corresponds to the friction offered by the

ling-shapecl supporting surface L
X
L

2
(Fig. 286), we ob-

tain merely a shifting of the force p x
always parallel

with itself from o
4
to o

Q
. It is done as follows : Draw

the two forces p 2 p 2
(TJ in Fig. 29

c ) as two parallel

tangents ?
3
/
4
to a circumference of the diameter L

1
L

2
.

Then lay off from the point of intersection o~ of one of

these tangents with the force p x
now passing through

o
4
the distance o

b
i = p 2

and o
b
h
2
= p v and the diag-

onal o
5y cuts the second tangent Z

4
in the point o

6

through with the force p x
must pass. The further

construction is familiar. Through the intersection o
1
of

the resistance p x
with the driving«force P the re-actions

of the journal-bearings L and N must pass. This re-
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action R is therefore acting along the line o
7
l
5
drawn

tangent to the friction circle at L. If we then make

o
7
ä

3
= p t<i

and draw through A
3
a line parallel to o

7
W

s ,

we have in h
z
h± the force P which must he applied at

the crank Ws
to cause revolution.

Assuming a co-efficient of friction </> = 0.1 for journal

and thread friction, the construction gives, with a pitch

n — tan a = Jg of the screw & for (> = 100,

iv = 67, w = 11.8,

and

rit
—^ = 0.176,

w

where to is the force to be applied at the pitch-line of

the worm. With a pitch n = tan a
t
= ^ for the worm,

for w = 67,

P = 12.56, P = 4.3,

and

,2
= 5q = 0.342.

For the efficiency of the entire jack we have then

t; :zz rj
1

rj
2
= 0.060.

In the same way we can determine the efficiency for

backward motion by finding the force (P), which must

be exerted in the same " sense," or direction, as Q to

produce a sinking cf the load.*

* To fix the method to be followed in every case firmly in mind, it

miy not be amiss to briefly sketch here the general aspect of the
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problem encountered in all these examples, giving the known quanti-

ties in every case, and the way in which they are to be combined to

determine the unknown, so that the student, in attempting to solve

an outside problem, will know just what he has to work with, and

just how to set about that work. First, by means of the friction angle

and friction circle we can always draw the direction of the forces

transmitted longitudinally through links joining two turning pairs,

acting at sliding surfaces, or in links joining a sliding and a turning

pair. Sometimes in the last case the exact position of the force is

fixed, after its general direction has been determined by the angle of

friction, by the requirement that it shall pass through the intersection

of two others, instead of being tangent to a friction circle as in the

simplest case. An example of this is the ordinary cross-head, Fig. 2,

plate I. The line of the re-acting force at a lever or crank or bell-

crank bearing is found by drawing a line from the intersection of the

two other forces acting upon the lever, crank, or bell-crank tangent to

the friction circle at its journal. The directions of P and Q are always

given as the force of gravity, a piston-thrust, etc. We then have

given, or can determine by these elementary methods, the direction

of all the forces in any problem. We also have given the intensity of

either P or 0.

With these data the problem is solved as follows: Draw the force-

polygon of all the forces acting upon the same piece as the known
force, and dependent upon it. These can only be three in number if

there is circular motion of the piece to which it is applied, and four

if there is right-line motion. In the first case it is a question of

drawing a triangle of forces, knowing the directions of all and the

amount of one. In the second case combine the forces two and two,

join the points of intersection thus obtained, getting in the line thus

drawn the direction of the common resultant of the two pairs. Then
resolve the known force in the direction of that force with which it

is paired, and of the common resultant which here represents the com-

bined effect of the other two forces. Having thus obtained the value

of the resultant resolve it in the direction of the two forces making
up the second pair, and all the forces are known in direction and
amount. One of these becomes the known force acting on the next

link in the mechanism, and by repeating the process all the forces

acting throughout the machine may be determined.

Whenever there are more than four forces acting on one piece they

will be of such nature that they can be reduced to four; and generally

where the limit is exceeded, as in the condensing beam-engine, and

still further in the compound condensing beam-engine, it will be the
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result of a compounding of several chains of mechanism, and in each

simple chain either P' or Q' will be given, so that its resultant action

on the common link can be determined, and combined with the P or

Q of the main chain, their resultant action being regarded as one force.

In the case of the condensing beam-engine the resistance of the air-

pump (/would be known, and, as shown in plate VII., combined with

the thrust of the piston to get the resultant force acting upon the

beam. In the compound engine, P', the steam-pressure in the second

cylinder, would be known. — Trans.
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§5.— ROLLING FRICTION,

The resistance which is opposed to the rolling of a

cylinder along a smooth path is of such small value that

it may be left out of account in most cases in comparison

with sliding and journal friction. We are accustomed,

when it is taken into consideration, to assume it propor-

tional to the pressure Q with which the roller is forced

down upon the bearing surface, and inversely propor-

tional to the radius r of the roller. For rollers and

surfaces of iron and hard wood the formula

P = 0.02^

will generally give the resistance, r being expressed in

inches. If r is expressed in millimetres the formula

becomes

P = 0.5^.

In order to get a graphic representation of this resist-

ance let A (Fig. 29, plate IV.) be the centre of a cross-

section of a cylinder, with radius AB ~ r, which is

supported at B by a horizontal track. Let the load

resulting from its own weight, and acting at the axis A,

be represented by the vertical line AC — Q. To cause

d rolling of the cylinder a horizontal force P = c .
~

must be applied at the axis A, AI) representing the
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intensity of this force. If we assume, as heretofore,

the ' limiting condition of equilibrium for which the

slightest increase of P will cause motion, the cylinder

must be in equilibrium under the influence of the

exterior forces P and Q, and of the re-action R offered

by the surface GG. This is only possible if the re-

action R is equal to the resultant of P and Q, and acts

along the same line in the opposite direction. The

surface GG then re-acts upon the cylinder with a force

whose direction and value are given by the line PA.
The cylinder, therefore, will remain at rest as long as the

surface GG re-acts upon it along any line inclined to

the normal at a less angle than that of PA as was the

case in sliding friction. The plane surface then opposes

the same character of resistance to the motion of the

cylinder as in sliding friction, with this difference, how-

ever, that while in the case of sliding friction the great-

est possible deflection angle of the re-action depends

only upon the nature of the material, and is constant

for a given material, being, of course, the angle of

friction for the same, in the case of rolling friction it

depends both on the material and on the form, i.e., upon

the size of the cylinder. From the expression given

for the resistance to rolling

r

it will be readily seen that the co-efficient € is capable of

geometric representation, since it follows that

Q : r : : P : «,

giving us directly in the figure BF = .e; which is, in
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other words, the greatest possible distance between the

point of application F of the re-action and the theoretic

point of contact B of roller and track. While in the

case of sliding friction we have a constant angle for

the friction angle <£, in the case of rolling friction we
must deal with a linear value € which, for the same

material, remains the same for rollers of all sizes. If it

was of sufficient interest we could follow out the parallel

still farther, showing that the friction cone in the case

of sliding friction corresponds to the wedge-shaped

space whose cross-section is FAFV whose edge is the

axis A, and whose sides, shown in projection at FA and

F
X
A, cut the supporting surface at the distance c to

each side of the perpendicular AB* It follows that

with P acting in the opposite direction the track would

re-act from the other side of AB in the direction F
1
A.

We can make this connection clear if we assume that

in reality the roller is not supported on a line passing

through B parallel to the axis, but upon a surface of a

width e from each side of the normal AB, produced by

a flattening of the roller and a corresponding indenta-

tion of the supporting surface under the pressure of the

load Q. This view corresponds also to the assumption

of a fixed fulcrum for the roller at the constant distance €

from the normal plane (that is, at the point F), and this

should be kept in mind during the following discussion.

The value of e, according to the above, is from 0.02 to

0.03 in inches, or from 0.5 to 0.75 in millimetres, for

metals and hard wood. In the case of yielding materi-

* For the connection between sliding and rolling friction see O.

Reynolds, Philosophical Transactions, vol. 1C0, and Zeitschrift des

Vereins deutscher Ingenieure, Jahrg., 1877, S., 417.
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als, as, for instance, carriage roads, the value of € is

much greater, and in all such cases the correct value

must be estimated.

If a body KK (Fig. 30, plate IV.) rests upon a roller

A which rolls along the horizontal track GG rolling

friction occurs at both KK and GG. If Ave therefore

draw through the centre A of the cross-section of the

roller the normal DB to the two surfaces, we have,

according to what precedes, the point of support of

the fixed track in F at the distance BF = e from B,

and also in E at the distance DE =z e from D the

point at which the downward pressure of the moving

body KK acts. If, therefore, EC := Q denotes the

load upon the roller A, and P denotes the force acting

in the horizontal plane KK necessary to move the body,

these forces P and Q must be in equilibrium with the

re-action R exerted by the track GG through the roller

A upon the body KK, which re-action of courses takes

the direction FE. We then have in the side EJoi the

parallelogram ECHJ the necessary force P to produce

motion.

Equally well can be determined the force P (Fig. 31,

plate IV.) necessary to move the load Q upon the wagon-

wheel AB, by means of the value BF = e for rolling

friction upon GG, and the friction circle of the journal

AE upon which the load Q rests. The direction of the

re-action B of the track GG against the axle-bearing

of the wagon is along the line Fa drawn from F tan-

gent to the friction circle of A, Therefore, by making

AC = Q, and drawing through C a parallel CD to

Fa, we get the driving-force

P = AD.
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The investigation is practically the same when the

track GG for the wheel has any desired inclination to

the horizon, as in Fig. 32, plate IV. If we here draw the

line AB through the centre A of the axis, and perpen-

dicular to the track GG, make BF = e, and draw

through .J
7

the tangent Fa to the friction circle of A, we

have in this tangent the direction of re-action of the

track GG against the axle-bearing. If, then, we make
CA = Q, draw through C a parallel to the line of re-

action R, and through A a parallel to the line of P, we

get in AE the value of driving-force necessary,

P = AE = DC.

Without hurtful resistances the re-action of the track

would lie along the normal BD , and we have in D C
the theoretical driving-force P . With the grade or

inclination of 1 in 3 for the track the drawing gives,

for Q ad 100,

P = 34.8, P = 33.3,

and

v = £j = 0.957.

In the manner shown the resistance to running-gear

of every description, upon both horizontal and inclined

tracks, can be easily determined. As a further example

we may take the roller-bearing for a swinging crane

(Fig. 33, plate IV.). In this case the cylindrical sur-

face of the stationary post or mast A serves as a track

for the rollers B and C united to the brace L. If we
connect the centres B and C with A, and make FI) z=

GE = e, the lines Db and Sc drawn through B and E
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tangent to the friction circles of B and G7, and intersect-

ing one another in o v will give the directions of the

re-actions R
t
and R

2
of the mast. If, now, a turning

of the brace is produced by a force P acting in the

direction HJ, and intersecting the line of pressure Q of

the boom in o
2 , we have only to connect o

x
and o

2 , make

Io
2
= Q, and draw through / a parallel to o

x
o
2
in the

well-known way. We have thus determined in o
2
H

the necessary turning-force P. In order to get the re-

actions R
1
and R

2
of the mast against the rollers, resolve

the resultant I //parallel to o
x
b and o

x
c^ and we have

R
x
= III I and R2

= II III

A later example will show in what way the re-action in

the bearing at the upper part of the mast is to be con-

sidered.

As already remarked rolling friction in most cases

of mechanism is quite inappreciable as compared with

other hinderances.

At first thought it may not be clear how the geometric diagrams

(Figs. 29 and 30, plate IV.) will always give the value FB constant

and equal to e for any one material, whatever the load or size of

roller, as stated on p. 78. The following analysis will render it

clear that such a result does follow from the assumed relation

r

and the supposition that the roller is always a solid homogeneous

cylinder. FAB being the angle made by the re-action R to the

normal AB we have

(1) tan FAB = - = —

.

From the second value we get

(2) FB ^ r tan FAB.
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There are three ways in which the conditions may change : First,

the size and consequent weight of the roller may remain constant,

but a varying superimposed load acting upon a surface as KK
(Fig. 30) may be applied. If in this case Q' represents the sum of

the varying load and the constant weight of the roller we have,

from the fundamental relation,

r

and, from equation (2),

F'B = r tun F'AB,

F'AB being the angle the new re-action R' makes with the normal.

By supposition both e and r are constant, and therefore P' varies

directly as Q'
; or, to put it in another form,

F _. e P
Q' r Q

Evidently

tan F1AB = — = - = tan FAB,
Q' Q

and therefore

F'B = rtan FAB = rtan FAB = FB.

That is, F'B, the distance of the intersection of R' with line GG
measured from the foot of the normal, is equal to the value first

obtained, FB or c.

In the second case there is no superimposed load, but the roller

varies in size and consequently in weight. The weight will vary

as the cross-section of the cylinder, and r will vary as the square

root of the cross-section or weight. If Q" is the varying weight

we have

O" P"P"= e.M-, tun F"AB = —

,

Q" 7

and

F'B = r" tan F"AB.

If m is the ratio of Q" to Q we have

r" = \/mr
y

and Q" = mQ.



ROLLING FRICTION. 83

Substituting these values in the three equations above,

P"*=..J*SL=*-fa* to>F»AB =
e

sJTn r r — r^m
7)1Q

F"B - rSjm . ~= = e.

r\m

In this case also there is no variation from the original value e or

FB.

Thirdly, where both superimposed load and size of roller vary

we have

Q! = mQ,

the former variable quantity, and

Q" = m'Q,

the latter ; while

Q» = Q' + Q",

their sum. As before

r'" - r\[m\ and Q'" = mQ -f m'Q.

Substituting in the three equations we have

D,„
Q'" wzQ + w?'Q Q (m + m')

r'" r

£

tan F'"AB = -

Q (m + m')

r ' \jm' £

Q(m + m') r\Jm!

and F,„B _
rV
/- £

the same result as in previous cases.

This may seem like begging the question, since if £ is assumed

to be a constant, and a certain line FB is found once to be its

graphic equivalent, this intercept FB must always remain the

same ; but the analysis may be of use in showing how the diagram

adapts itself to this requirement under all conditions. — Trans.
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§ 6.— CHAIN FRICTION.

When a chain is wound on to or off of a drum or

pulley there occur certain hurtful resistances on account

of the change of direction in the links, which resistances

may be determined in exactly the same manner as jour-

nal friction. Let A (Fig. 34, plate IV.) be the journal

of a chain-pulley whose radius AB = AD is represented

by a. At the left side a weight Q is attached to the

chain BC; and we are to ascertain the force P which

must be applied to the other portion DE in order to

cause a revolution of the pulley in the direction of the

arrow, and a lifting of the weight Q. If we neglect

friction of the journal A, it is evident that on account

of the equality between the lever-arms AB and AD the

forces P and Q must also be equal for the condition of

equilibrium if there were no hurtful resistances at the

points B and D where the chain winds on to and off of

the drum, as would be the case if we suppose the chain

replaced by an infinitely fine thread of perfect pliability.

In this case there would be no slipping of the strands

of the thread over one another, since the thread has no

appreciable thickness ; and therefore the causes of fric-

tion would be wanting, because the latter can only

occur, as remarked in the introduction, where there is

motion of two elements relative to one another. But

as the links of the chain have a certain thickness, rela-

tive motion will occur at the point of connection of two

links at the instant of winding on or off, at the point B
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or D respectively, and this motion must be regarded as

a turning. If we imagine the link B
X
B to be in motion

from C to jB, it has evidently no relative motion toward

the preceding link B
2
B

S
in which it hangs as long as

the latter rises in the same straight line CB. At that

instant when the preceding link B
2
B

S , adjusting itself to

the circumference of the pulley, begins to share in the

latter's motion, there occurs relative motion between

the links B
1
B and B.

2
B^ which is, as shown by the

arrow in the figure, a left-handed turning of the link

BB
X
about the link B

2
B

S
. In this turning the end of

the link B
X
B serves as a journal, and the eye or loop

of B
2
B

S
as a bearing. It is now clear, according to the

laws of journal friction, that these links can only act

upon one another along the tangents to the friction

circles of these journals. Since the portion of chain

i?G7 is subjected to tensile strain we have the direction

of this re-action in the tangent he which touches the

friction circle at B on the opposite side from the centre

J.. In other words, the lever-arm of the weight Q is

increased through chain friction by an amount equal to

the radius x of the friction circles at the chain joints.

In the same way the link D
2
D

Z
about leaving the pulley

at the point D on the other side undergoes left-handed

revolution about the link DD
X

still upon the pulley, as

shown by the arrow. Therefore the force P in the

portion ED
2
of the chain will act along the tangent de

to the friction circle at D. In other words, the lever-

arm of the driving-force P is shortened through chain

friction by an amount equal to x-> the radius of the

friction circles. The two forces P and Q acting verti-

cally downwards must be in equilibrium witli the re-

action R offered by the bearing A
i
to the journal A.



86 THE GRAPHICAL STATICS OF MECHANISM.

This re-action on account of journal friction can only

act tangent to the friction circle of A, and on the same

side as P. The investigation is now resolved, therefore,

into the determination of two parallel forces P and Q,

which have such relative values that their distances

from the resultant lying between them shall be

a — p — x ancl a + P +X

respectively ; in which expressions p is the radius of

the friction circle for the journal A, and x the radius

of friction circles of the chain. We have, according to

this,

p = Q
a + P + *

This value can be readily constructed by drawing at

any point the horizontal line (?5, making GrK — Q,

drawing the horizontal line KJ, and then a line through

J and L to M. We then have in MG = NH the

necessary driving-force P, and in KM the re-action of

the bearing R — P -j- Q.

Since the links rub one another while in a dry condi-

tion we assume a co-efficient of friction /x = 0.2. With
this assumption, and that of /* = 0.1 at the journal, the

figure gives, for Q = 100,

P = 105;

and since P = Q = 100 we have, for the fixed pulley,

v = £) = 0.952.
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The investigation is the same if the directions of the

chains are not parallel one to another. For the guide-

pulley ABO (Fig. 35, plate IV.) we draw first the

medial lines 00 and OB of the chain, and then the lines

ob and oc along which the tension of the chain acts. We
then have in the line ao drawn through the intersection

c>, and tangent to the friction circle at A, the direction

of the re-action R of the bearing. So that by making

ol equal to Q, and drawing I II parallel to oc, we get

III=P and oIIzzzB.

For /x =: 0.1 and /x
2
= 0.2, the figure gives, for Q = P

= 100,

P = 104.4 and ^^^^ 0.958.

In the same way may be determined the friction of

an idler, or guide-pulley, which serves merely to support

the chain and keep it from sagging (Fig. 36, plate IV.),

and is often so employed in cranes. Draw the lines

BE and BF (shown in dotted lines) along which the

chain rolls off and on to the pulley, and draw parallel

to them, at a distance equal to x-> the radius of friction

for the chain, the lines of tension oc and od. Then the

re-action of the journal A is given by the tangent oa to

its friction circle passing through the point of intersec-

tion 'o. By making ol equal to the resistance Z
1
acting

in the portion BD of the chain, and drawing through I
the parallel I II to oc, we have in I II the force Z

2

which is transmitted to the portion BO of the chain.

In the case of the loose pulley (Fig. 37, plate IV.)

upon whose journal the load Q hangs, and where one
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end of the chain is fastened at -Z), we have to determine

the vertical force P acting at the other end of the chain

CE. To do this we draw^ the directions of tension bd

and ce parallel to the chain, and at the distance x of the

friction radius of the chain, and also the vertical tangent

ag to the friction circle at A Then draw through the

centre of the journal, or at any other convenient place,

the horizontal line BAC, make AG = Q, draw through

Gi the line b^ parallel to BC, join B with c
x , and draw

through H the line JK parallel to BC We now have,

as will be readily seen, in e
x
K = b

x
J the tension Z of

the fast end of the chain, and in KG the force acting

in the portion CE of the chain.

By means of friction circles for journal and chain,

whose radii will be denoted as heretofore by p and x

respectively, the proportions of the various forces in all

kinds of block and tackle and pulley gearing can be

easily determined, as a few examples will show.

Fig. 38, plate V., represents an ordinary block and

tackle with two blocks, within each of which are three

pulleys of equal size, and ranged side by side on the

bolts A and B. When, by raising the load, the pulleys

are turned in the direction shown by the arrows, and

the chains wind on at E and D, and off at F and (7, it

is evident that the pull of the load hanging on the hook

üTacts upon the journal B of the lower block along the

vertical tangent o
2
b to the friction circle at J5, while

the re-action transmitted by the support Gr to the jour-

nal of A acts along the tangent o
x
a to its friction circle.

The forces of tension in the chains also will act at a

distance x, the radius of friction of the chain, nearer to

the centre of the pulleys at F and C, and at a distance

increased by the same amount at E and D. Since the
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lower block B swings free, and opposes no resistance to

side motion, it will shift its position a distance 2\ to the

left when motion begins, so that the line of tension in

the chain shall be vertical ; otherwise equilibrium could

not exist. In the figure such a side movement of the

block B is supposed to have taken place, so that the cen-

tres A and B do not lie in the same vertical line, as

would be the case when they are at rest. It is equally

evident that with an opposite motion (that is, with a

sinking of the load) a corresponding shifting of the

block B to the opposite side must occur. We now
denote the tension in the separate portions of chain by

Zv Z2
. . . Zv in such way that Z

x
is the tension of the

first portion which hangs from the stationary block A
and winds on to the first pulley of the block B at E,

while Z
1

is the force which is to be applied to the free

end of the rope to raise the load Q. It is then evident

from foregoing principles that the relation existing

between the tension of each portion of the chain and

that of the next following is

Zn {r + p -f x) = Z„+1 (r - p - x)

if r is the distance from the centre of the chain to the

centre of the pulley.

If, now, we draw at any convenient point a horizontal

line which cuts the directions ce and fd of chain tension

at J and K, and the directions of journal re-action at o
l

and o
2 , we know from the figure that

JK — 2r, Jo
{
== o

2
K = r — p — x,

and

Jo
2
= o

x
K = r + p + x-
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From this follows immediately the construction given

below for the determination of Z*. or Pv Make J I
equal the tension of the first portion Z

x , draw through

Zand o
1
the line cutting KD in II; K His then the ten-

sion of the second portion Z
2

. From II draw through

o
2
the line cutting off the distance J III, which is the

tension in Z
s

. In the same way the lines IIIo^IV,

IVo
2
V, Vo

x
VI, and VIo

2
VII give the tensions

Z, = KIV, Z, = J V Z, = K VI,

and

z
1
= j vn.

The load to be lifted is given by the equation

Q = Z, + Z
2 + Z

3 + Z
4 + Z

5 + Z
6,

while Z
1

is the force P to be applied to the free end of

the rope in order to lift it. In the figure the sum of the

tensions from Z
x
to Z

Q
is shown by NL, and MO = Z

7

is the force P. By the construction here chosen we
start with a value of Zv while in reality Z

x
is yet

unknown, since only Q is given; but the method lends

itself with equal ease to the solution under the latter

condition. "We can assume Z
x
= J I oi any convenient

length, and get, in the manner shown,

NL = Z, + Z
2 + Z

3 + Z
4 + Z

5 + Z
6

and

MO = Zr
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We then find from the given value of Q, and the pro-

portion between NL and MO, the force

v
ivr

which in reality only amounts to the assumption of a

particular scale of force. On the contrary, a construc-

tion direct from the value of Q would be unnecessarily

tedious.

This construction also holds for the backward motion

of the tackle if only we regard the force P applied at

the end of the rope to prevent any accelerated motion

of the load Q as the tension in the first portion of

the chain, and every following tension as increasing

in the ratio —"*" p ~*~
. Then regarding JI as (P) or

r — P — X

Zv we have by the same construction the tension Z
Q ,

Z
h

. . . Zv each one of which is greater than its prede-

cessor, so that the tension Z
x
of the chain attached to

the stationary block A is now the largest. Here also

Q = Z, + Z
2 + Z

s + Z
4 + Z

5 + Z
fl
,

and

Z, = (P).

In the figure the sum of the series Z^ to Z
6

is shown by

SB, and (i>) = Z
1
by TU.

For forward motion, and Z
x
= 100, the figure gives

§ = 682.7, P = 134.6,-
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and since P = — = 113.8

v = 5d = 0.845.

For backward motion, for Z
7
= (P) = 100,

£ = 717.4;

and since P = — = 119.6

(,) = iEi. = 0.837.
^0

If the pullej^s in the blocks are not of equal size, and

therefore the ropes are not parallel, as when the pulleys

are arranged on different centres in the block, the above

determination for parallel ropes will in general have

sufficient exactness on account of the slight divergence

from parallelism in the case under consideration. An
absolutely correct determination can be made, however,

by taking into account the points of intersection of the

ropes produced. An example in which this is done is

shown in Fig. 40, plate V.

We will next take up the differential pulley (Fig. 39,

plate V.). Here also the load Q, hanging upon the hook

ÜT, acts in the direction of the vertical tangent bit to the

friction circle of B, while the re-action of the support

G- to the journal A lies along the tangent ag. The

direction of tension in the portion Z
x
of chain unwind-

ing from the smaller pulley at 6\ and winding on to the

loose pulley at L\ h again given in direction by ce, as is
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also the direction of tension in the portion Z
2
winding

on and off at D and F respectively, by the linefd. The
two tensions Z

x
and Zv which in the ordinary differ-

ential pulley can be assumed as parallel, stand in the

following relation one to another

:

ZJr - p - x) = Z^r + p + x)

where r is the radius of the pulley JEF, and

Q = Z
x + Z2 .

If we then draw through any convenient point o of

fd the line oM perpendicular to fd, and make MI = #,

we have in the intersection b
2
of the line ol with the

direction b
x
b of the load Q a point which will give us

the proportion of Z
l
to Z

2 ; for, drawing through b
2
the

horizontal b%N, we have the proportion

bfa : Nil : ob
x

: b
x
M : : (r - p - X) : (r + R + x) 5

from which we get

b
x
b
2
= MN= Z

x
and NI = Zv

These two forces 2\ and Z
2
must be in equilibrium

with the tension Z
z
or force P applied to the free end

of the chain JK along the line iK, and the re-action R
given forth against the journal A along the line aj.

We can most easily find the condition of equilibrium

for these parallel forces through the drawing of an equi-
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librium polygon.* For this purpose let us regard o as

the pole of the force polygon MNI, then draw through

£ the line a£ parallel to oM, and ßt, parallel to oN\ then

draw through ß the line ßti parallel to ol, and we have

in the closing line a8 of the polygon the direction of the

polar ray o II, which gives us in I II the driving-force

P applied at i, and in II If the re-action of the journal

A against the pulley.

f

The theoretic driving-force P can be determined by

a similar construction, or more easily from the relation %

p = Q^nA = q
AD - al

v 2E
1

V DJ

In order to determine the proportion between the.

forces for backward motion we have only to remember

* For a more complete explanation of the principles here employed

see Fart I. of The Elements of Graphic Statics by Karl Yon Ott. —
Trans.

t The figure &fö« is the funicular or equilibrium polygon, and it

will be readily seen that the forces P, Z,, Z 2 , and the re-action at A
acting upon the vertices r, C, /3, and a respectively of the polygon would

keep it in equilibrium.— Trans.

t This is, of course, derived as follows: Without friction

*, = *, = $

so that the equation of moments about A becomes

PoB, + {hi 2
= Sßl

transposing

PoRl = Q(^i ~ J* 2 ) or Po = qäi^zÄ2
t

— Trans. .



CHAIN FRICTION. 95

that the chain tensions and journal re-actions coincide

with the broken lines in the figure. For backward

motion also

Q = (Z,) + (Za ),

but now

(Z
2)0 + P + x) = (Z

x
)(r - p - x) ;

therefore the tension (Z{) of the chain CE is exactly

equal to the tension Z
2
of the chain FD for forward

motion, and also

(Z
2)
= zv

If, then, we make MQN) = NI in the force polygon,

and draw the polar ray o(N), we can construct the

funicular polygon (a) (£)(/?) (8) for backward motion

by drawing (")(£) parallel to' oM, (ß)(0 parallel to

o(N), and 08)(8) parallel to oL Then (a)(8) is the

closing line of the funicular polygon, and the polar ray

o(II) drawn parallel to this gives us the force

which must be applied at J during backward motion.

Since this force is here acting upwards it is self-evident

that the tackle cannot of itself commence backward

motion, but that it is self-locking.

The figure gives, for fi - 0.1 for journal friction, and

fx
x
= 0.2 for chain friction, with a ratio -1 =

and for Q = 100,

Rl== AD _ 10

R'AL' 9 '

P = 12.8 and (P) = -2.7.
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Since P z= 5 we have

—̂ = 0.391 and (y) =^ = -0.54.
F P

As another example we wall investigate the arrange-

ment of pulleys often employed in hydraulic lifting

machinery.* In this case the chain upon which the

load Q hangs is first led over guide-pulleys supported

by the roof timbers at A and B (Fig. 40, plate V.), from

which it hangs down in a loop containing the loose

pulley (7, and then, after passing around the fixed pulley

i>, comes back and is attached to the journal of C.

Under the supposition of parallelism between the chains

this arrangement would cause, for any distance trav-

elled by (7, an elevation of the load Q through exactly

three times that distance. The downward motion of

is produced by aid of a second chain, one end of which is

fastened to the journal of (7, and the other, after pass-

ing around the loose pulley E and the fixed pulley F,

returns again to the journal of E. The movement of

the journal E is produced by the aid of the vertical

piston-rod of a hydraulic cylinder, not shown in the

drawing as not entering into the calculation. With
the supposition again of parallelism between the ropes

a downward motion of the piston wrould cause the

pulley C to traverse three times as great a distance,

and the load Q to be raised by an amount equal to nine

times the piston travel. Without hurtful resistances,

therefore, the piston force F would equal 9$; and it is

* See Weisbach, Ingenieur- und Maschinenmechanik, III., Theil;

also, Rühlman, Allgemeine Maschinenlehre, IV., Bd.
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evident that this arrangement would find its only appli-

cation where, as in hydraulic apparatus, the travel of

the driving-force P is necessarily small, while the force

itself is of great power. The proportion given above

for travel of power and load under the assumption of

parallelism would in reality vary but little from the

actual result. On account of the non-existence of

complete parallelism we will, however, follow out the

investigation, taking this inclination of the chains one

to another into account for the sake of showing the

general method.

The direction of the forces Zv Z
2

. . . Z
7
acting in

the separate portions of the chain can easily be deter-

mined by increasing the lever-arm by the radius x of

chain friction at every point where the chain winds on

to a pulley, as at A
x

, B x , C\, Dv E^ and Fv and by

diminishing it by the same amount wherever the chain

unwinds from a pulley, as at A
2 , B2

. . . F2
.

The direction of re-action R
1
of the bearing of the

fixed pulley A is given by the line o
x
a drawn through o

x

tangent to the friction circle at A. Its value is ascer-

tained by making 01 = Q, and drawing through a

parallel to o
x
a, and through I a parallel to o

x
o
2

. We
have, then,

III=ZV

the tension in the chain A
2
BV In the same way the

bearing re-acts against the journal B of the second

guide-pulley along the line bo
2 ; therefore a resolution

of the tension Z
x
= I II in the direction of bo 2 and o

2
o
s

will give in I III the tension Z
2

in the portion B 2
C\ of

the chain, and in III II the re-action R
2
of the bearing

at B. There are now acting upon the loose pulley C
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four forces ; namely, the tension Z
2
of the chain in the

direction o
3
o
2 , that Zz

of the portion G
2
D

l
in the direc-

tion o
5
dv that Z± of the end of the chain in the direction

o
5
d
2 , and finally the tension Z

5
of the second chain in

the direction ce
x . The lines of the two last, Z

4
and Z

h ,

in ust evidently be tangent to the friction circle at C.

Z and Zo intersect in o
3 , Z4

and Z. in o4 . The line OoO
3
V
4

joining the two is therefore the line of direction for the

resultant of Z
2
and Z

3
as well as of Z± and Z

5
. If we

then draw through I the line /.ZF" parallel to o
s
o±, and

through ZZ7 the line III IV parallel to 2d^ we have

IIIIV= Z^

and in IVI the resultant of Z± and Z
5

. By resolving

this resultant IVI into IV V parallel to d
2
o
5 , and / V

parallel to cev we get in VIV the tension Z
4
between C

and D
2 , and in / Fthe force Z

5
with which the second

chain pulls down upon the journal of the loose pulley

C. We also have the re-action of the bearing against

the journal D of the fixed pulley in V III, the resultant

of Z
s
and Z

4
.

We also know that the four forces Z
5 , Z6 , Z7 , and P

acting upon the loose pulley E must be in equilibrium.

The force Z
b
acts along the line cev that of Z

6
along

f1
e
2

- Their intersection is at o
Q

. The force of tension

in Z
7
and the piston-force P are tangential to the fric-

tion circle of E. These last two forces intersect in ov
The line o

Q
o
7

is then the direction of the resultant of Z
6

and Z& and that of Z
7
and P. We therefore draw

through /the line I VI parallel to o
Q
o
7 , and V VI par-

allel to fx
e
2 , to get in VI V"the tension Z

6
of the portion

E
2
F

X
of the chain; while VII represents the resultant
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of Z
x
and P

8
. Revolving this force VI /parallel to f2

o
s

or Zv and parallel to P, we have in VI VII the tension

Z
7 , and in 2" VII the force P acting upon the piston-rod.

The re-action of the bearing upon F is given by VII V,

the resultant of Z
6
and Zv

In apparatus of this kind the directions of the ten-

sions in the chains vary but slightly one from another,

so that their points of intersection o often fall without

the limits of the drawing. This difficulty can be sur-

mounted by the employment of the method used in

Fig. 19, plate IL, in which the direction of the lines is

obtained without having their points of intersection

located. We must proceed, according to this method,

when the points <9
3 , o

5 , o-, and ö
8 , fall beyond the limits

of the drawing. When the position of the chains

approaches parallelism there is the difficulty also that

the point of intersection of two such lines cannot be

determined with any degree of exactness. A sufficient

degree of accuracy can, however, be obtained with the

aid of the following construction : If the force Z
2
= IIII

is to be resolved into the directions IIIIV parallel to

J?
3 , and IIV parallel to #

3
6>
4 , we can imagine this system

of forces to be acted upon by two opposite and equal

forces aß and a
lßl

along the line C
X
CV which would

not disturb the equilibrium. Let la represent a/3, and

Ilia be the resultant of this force, and

z
2
= mi

Compound also the opposite force a
1 ß 1

with the yet

unknown force Z
3 , and there will be another resultant

whose direction my be determined. For when the

resultant of Z
2 and aß is compounded with that of Z

z
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and a
1
^8

1
they will give a resultant which must coincide

with o
s
o±. If, therefore, we draw through a a parallel

to Ilia, to the point of intersection w with o
s
o^ the

resultant of Z
3
and a

1ß 1
must also pass through w, and

is given by <*>a
1

. So that by resolving the force Ilia

parallel to o
s
o^ and wa

1 , by drawing the triangle IIIm
1 ^

we get the point a
1
from which the point IVcslu be

accurately determined by drawing through a
x

a line

parallel to a
1ß1

intersecting a line from / parallel to

o
3

6>
4

. The auxiliary forces aß and a^ may be chosen

of any convenient value, but should be assumed so that

the lines which are to determine the desired point by

their intersection should be nearly at right angles one

to another.

In the same way the point of intersection VI can be

determined by the application of two opposite and

equal forces along the line E
X
E^ Instead of resolving

the force Z
5
= VI directly parallel to o

Q
o
7
and Z

6 , the

force F"S is substituted for Z
b
and resolved in the direc-

tions o
Q
o
7
and wßy

In this and similar ways we can employ upon every

diagram constructions in which the lines will diverge

sufficiently to determine accurately the points of inter-

section.

For Q ~ 100 the figure gives

P = 1295;

and since, with the assumption of parallelism, the theo-

retic force IJ = 900 ~ 9$, we have

7) = :5j} = 0.G95.
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In this value of the efficiency no account is taken of

the resistances within the hydraulic cylinder. These

latter must be determined in each case by a special

investigation. It is evident, moreover, that the value

of the piston and stuffing-box friction must be added to

the force P already found to get the necessary pressure

to be exerted upon the piston by the water from the

accumulator.

Any calculation for backward motion would have to

take into consideration the weight of the chains, loose

pulleys, and piston ; and we would get in the force

which would have to be applied at the free end of the

chain A
x

the counter-weight, which in this species of

hoisting-gear is attached to the hook in order to render

the backward motion automatic. In some cases the

weight of the platform or cage is sufficient of itself to

do this.
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§ 7.— STIFFNESS OF ROPES.

When pliable ropes and cords are wound on and off

a pulley or drum there are certain hurtful resistances

called forth, in part by friction between the strands of

the rope produced by bending it, and in part by the

resistance of these fibres to the expansion and contrac-

tion which they are compelled to undergo. We can

bring this resistance into the calculation in the same

manner as chain friction by assuming that, in conse-

quence of it, the lever-arm of the load is increased at

the point where the rope winds on, and that lever-arm

of the power where the rope runs off the pulley is

decreased by a similar amount. This value has to be

determined by a special investigation, and is generally

expressed by an empirical formula. By such investi-

gation it has been proven that this resistance is propor-

tional to the tension in the rope, that it is inversely

proportional to the radius of the pulley, and that it

increases with the thickness d of the rope, not in the

simple ratio, but as some higher power. For hemp
ropes we assume that the resistance increases as the

square of the thickness, and is given by the equation

d 2

S = k-Z
r

where Z is the tension in the rope, and k is a constant

co-efficient.
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That the resistance due to stiffness of ropes really

causes a lengthening and shortening of the lever-arms

of the load Q and the force P respectively can be proven

as follows : Let A (Fig. 41, plate V.) be the centre of a

pulley, and AB = AC = r be the radius of the same

extended to the centre of the rope. A load Q hanging

on the rope at D produces a certain tension in the ele-

ments of any section of the rope which wr

e majr assume

as equally distributed over the cross-section, so that the

resultant of all these elementary tensions acts in a result-

ant passing through the centre of the cross-section, and

coinciding with the geometrical axis BD of any portion

of the rope. In the condition of rest, therefore, as long

as there is no turning of the pulley, the rope BD will

arrange itself in such a position that the line of force Q
will pass through the centre M of the section at B. If,

however, we suppose an exterior force to be applied to

the pulley which tends to cause a revolution of the

same in the direction of the arrow, and a winding-up of

the rope at B, there will be a bending of the rope at

that point, and only the strands in the neutral plane

M
1
31

2
will retain their original length, while those lying

in the outer semicircle M
X
3I

2
will be stretched, and

those in the other semicircle 3I
1
31

2
J will be shortened

by a force of compression. Each strand in the half 031
will now receive, beside the strain due to Q, a certain

elastic tension o- which is proportional to the distance of

that strand from the neutral plane 31
X
3I

2
. We may

suppose all the elementary tensions in the half-section

M
1
3I

2
to be combined in one resultant s which shall

be applied at some point a. In the same way each

strand of the inner half-section M
1
M

2
J will experience

a certain compression which will also be proportional to
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its distance from the neutral plane M
X
M^ and if these

are combined in one resultant we have a certain press-

ure p acting at some point ß. In the bending of rigid

bodies, as beams, it is known that the assumption s = p
is made. It is not necessary here, however. We know
from the preceding consideration that the rope BD upon

which the exterior force Q acts at D is under the influ-

ence of three forces at the section B: namely, the ten-

sion Z acting upwards at the centre B, the force 6* also

acting upwards at a, and that. p. acting downward at /?.

These three forces must have a resultant which is equal

and opposite to the force Q. It will be readily ^een that

the resultant S of Z, *, and p which is to be equal to

Q must be at a greater distance from A than that at

which the centre 31 of the rope section is ; and this fact

is proven when we combine Z and g, and then com-

pound their resultant with p. From the relative posi-

tions of B and a the resultant of Z and s must lie at

a greater distance from the axis A than the radius r

of the pulley, and the composition of this resultant with

the opposite pressure p gives the point of application b

of the final resultant S still farther off. For all pur-

poses of the following demonstrations it is sufficient to

represent the distance IB simply by o- which evidently

corresponds to the value x used in chain friction.

A demonstration similar to the preceding would show

that friction shortens the lever-arm of the force acting

in the portion CE of the rope. In that case also there

would be acting in the section at C : First, a tension Z
x

opposite to P, and beside that a force s
1
acting upward

at some point 8 of the inner semicircle X
l
N.

2
K, and the

force p l
acting downward at some point 8 of the outer

semicircle. It follows, then, that by the unwinding of



STIFFNESS OF ROPES. 105

the rope from the pulley at C the strands of the inner

half-section N^^K are stretched, and those of the

outer half N
l
N

2
L are pressed together. Therefore

the resultant aS^ of Zv sv and pv equal to P, must

have its point of application c between C and A, and

the lever-arm of the acting-force is reduced by an

amount

Go = o-.

If we suppose the ends of the rope BD and CE
to swing free with weights suspended from them the

weights will be shifted to one side or the other, accord-

ing to the direction of revolution, by an amount a- as

was shown for a similar case in the chain pulley. In

every case of rope pulleys where p represents the radius

of the friction circle at the journal the equation

Q(r + P + cr) = P (r - P - cr)

is true, which becomes the same as that for chain friction

when x is substituted for o-.

The investigation of all rope-gearing proceeds, there-

fore, in the same way as for chain friction, and it only

remains to get a graphic equivalent for the quantity o-.

The way in which this value o- is to be applied can easily

be determined in every case where the direction is known
in which the forces act by remembering that the lever-

arm of the unwinding rope is always shortened, and

that of the winding-on rope always lengthened by this

amount cr. If, for instance, a load Q (Fig. 42, plate V.

)

hanging from the drum CITis to be raised by a revolu-

tion of the pulley A we have the directions cle,fy, and

hh for rope tensions at once.
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We have now to obtain a graphic representation for

a- from some of the empiric formulae for the stiffness of

ropes. Of the different formulae * the one most gener-

ally used in practice is that of Eytelwein, which is

simple in form and sufficiently accurate, at least in the

case of hempen ropes and with large forces. This for-

mula will then be assumed as the basis of our calcula-

tions. It should be remarked, however, that in special

cases, as with wire ropes, other formulae should be used,

from which the value of o- can be determined in the

same way as from Eytelwein's formula.

According to this formula the entire resistance S due

to stiffness of the rope at both winding-on and unwind-

ing points is given by the expression

d2

S = 0.0186-0

where d is the thickness of the rope, and r the radius

of the pulley, both in millimetres, and Q the tenison of

the rope. S merely represents the force which is suffi-

cient to overcome the stiffness of the rope at both sides,

omitting journal friction. In order to produce motion,

therefore, a force

P = Q + S = Q(l + 0.0186^)

must act upon the other end of the rope.

Now, according to foregoing principles, in the absence

* See Weisbach, Lehrbuch der Ingenieur- und Maschinenmechanik,

Theil 1.
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of journal friction there is the following relation between

Panel Q:

Q(r + a) = P (r - <r) ;

therefore

P =
r~^Q,

which, from the small value of o- when compared to r, is

given with sufficient exactness as

P = (l + 2;)*0.

By equating these two values for P we get

d2
a-

1 + 0.0186- = 1 + 2-,

or

o- = O.OI86-5.

To get this in a convenient form for construction it

may be written

6? cZ 1 rf d
o- = 0.03*2

2 2 = 2678 2 2"

We may represent this value graphically as follows :

Draw through the centre A of the circular cross-section

* The expression within the parentheses will be recognized as

simply the first two terms of the development of
? a

. All succeed-
r — o

iijg terms would contain higher powers of the fraction -, and be of
r

consequent small value. — Trans.



of the rope (Fig. 43, plate V.) two lines A C and JjFat

right angles; make AC = 26.8, or, in round numbers,

27 millimetres ; join C and B, and draw through D the

line BE parallel to CB. We then have in AE the value

of a- ; for, according to the construction,

ATAB dd 1
AE = AD-'AC ~22* 26.8 - *'

There is a certain analogy between this construction

and that of x for chain friction ; for, if the circle about

A were the cross-section of the link, we would have in

AE the value of x if we made the angle ABE equal

the angle of friction $ for chain links. In this sense

also we may call the angle ABE the angle of friction,

since its tangent gives the ratio of o- to the radius of the

rope's cross-section. The difference between rope and

chain lies only in this, that with the latter the angle

ABE, like the angle of friction, is constant for all thick-

nesses of link ; while the same angle, in the case of the

rope, is directly dependent upon this thickness, since its

tangent varies with the value of d. From this it results

that the resistance due to stiffness increases so much
more rapidly with thick ropes than that due to friction

in heavy chains, for the angle ABE is evidently equal

to 45 degrees, and

d

d
when ^ becomes equal to 26.8 mm. ; that is, for a rope

about 54 mm., or 2 inches, in thickness.

It is also of interest to know in what relative sizes of

rope and chain the values o- and x are equal. This con-
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clition is determined by making the tangent of ACB
equal to the co-efficient 0.2 for chain friction, as fol-

lows :

AB _d__

AC - 2.26.8 - °-2 '

which gives a value

d = 10.7 mm.

A rope of this thickness would offer the same propor-

tional resistance, on account of its stiffness, as a chain,

the iron of whose links was of the same diameter, sup-

posing the pulleys to be of equal radius in both cases.

With the assumption of another formula for stiffness

the construction for the determination of o- must be

modified accordingly.
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§ 8.—TOOTH FRICTION.

In the transmission of turning motion from one axis

to another by means of toothed wheels there arises,

besides the journal friction in the bearings of the axes,

still other frictional resistances at the point where the

teeth come in contact. This resistance, like all other

friction, is a consequence of the relative sliding of the

two surfaces in contact, and does not occur where there

is no such sliding. Therefore is there no friction be-

tween two teeth working together at that instant when
their point of contact falls in the line joining the centres

of the wheels, that is, at the point of contact of the

pitch circles A and B (Fig. 14, plate V.) ; for at that

moment, and only at that moment, the teeth of both

wheels have motions exactly corresponding in amount

and direction. This is not the case as soon as the point

of contact of any two teeth falls outside the central line

O
x T as a glance at the figure shows. For, if two teeth

on the wheels A and B, of which A is the driving-wheel

and turns in the direction of the arrow, have contact at

the points a
x
and 6

X , the point a
x
has motion in the direc-

tion ^
i
a

1
drawn perpendicular to the radius at that

point, while l\ is moving along the line ß x
b

x
drawn in

the same way. From this it follows immediately that

when motion occurs the surfaces of the teeth must slide

one upon the other. The direction of this sliding, which

is foreshadowed by the lines a^ and ßx
h^ is further

determined by the fact that, after such an amount of
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turning that the point of contact of the teeth is between

a and b of the pitch circles in the line of centres at 0,

the two portions of surface a
x
a^ and 5

1
6 of the teeth

must have so moved one over the other, that, while at

first a
x
and b

x
were in contact, now a and b are in that

position. We can imagine the relative motion of the

two teeth to have taken place as follows: First, the

shorter arc a
1
a to roll upon the larger b

r
b without any

slipping ; then to slide upon it an amount equal to

Mo — a
i
a0'

thus bringing the points a and b together. The direc-

tion of sliding between tooth surfaces is such, therefore,

that the tooth of one wheel slides along the flank of the

other wheel's tooth toward its axis.

This condition only exists, however, until the point of

contact reaches the line of centres
X V the direction

of sliding becoming reversed as soon as that point is

passed. For, if two teeth are in contact at points a
2

and b
2
behind the line of centres

1 v we know, from

the direction of motion a
2
a
2
and b

2ß2
of these points,

that the sliding is now of such kind that each tooth

tends to move along the flank of its companion away
from the axis of the wheel upon which the latter is

fixed. This also follows from the fact that, while at

first the points a and b were in contact, now a
2
and b

2

are in that position ; the change being brought about by
a rolling of the shorter arc 5 5

2 , and a sliding through

the distance

a a
2
— b b

2

in the direction mentioned above. In accurately con-
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structed teeth the normal to the surfaces in contact

should always pass through the point of contact be-

tween the pitch circles ; therefore, by joining the points

a
1
b
1
or a

2
b
2
with 0, we have in the line so drawn the

desired normal along which the re-actions of the teeth

would work if there were no sliding friction. But on

account of friction the direction of re-action must be

inclined at an angle <£ to this normal. Referring to the

directions of sliding previously determined we see that

the direction of pressure at a point of contact before the

line of centres is along the line a
i
b

1
C, while for a con-

tact point beyond the line of centres it is given by the

line Ca
2
b
2

.

In designing toothed gearing the dimensions are so

chosen that the arc of contact (i.e., the arc within which

the teeth mesh one with another) is always greater

than the pitch £, since a smaller value than t would ren-

der continuous transmission of motion impossible. The

value of this arc varies in ordinary cases between 1.2t

and 1.7 1, occasionally going as high as It, In the latter

case motion will always be transmitted by two pairs of

teeth at the same time, as shown in the figure at a
1
b

1

and a
2
b
2

. When the arc of contact only equals t the

transmission of motion takes place only through one

pair of teeth, and for all intermediate values there are

sometimes one and sometimes two pairs of teeth in con-

tact. We will first assume that two pairs of teeth a
t
b
x

and a
2
b
2

are in contact, and have an equal pressure

upon them. We will further suppose them to be invo-

lute teeth, for which the normals Oafi l
and Oa

2
b
2

coin-

cide in one and the same straight line GH, which makes

the angle a = CrOO
x
of about To degrees with the line

of centres
2 Ov Suppose, now, that a certain resist-
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an ce Q opposes the revolution of the wheel B which

acts at in the direction OG\ then, without friction of

the teeth, the wheel A would act upon B at the points

a
l
b
1
and a

2
b
2
with a force P

Q
along the line GH, this

force P being exactly equal to Q. But on account of

friction the wheel A acts upon B with two forces, the

direction of one of which is a
x
C, the other Ca

2
. The

resultant of these two forces goes through the point of

intersection (7, and under the supposition of equal press-

ures at a
1
b
1
and a

2
b
2
bisects the angle 2^> which the

forces make one with another. If we imagine this

pressure R of one wheel upon the other to be laid off

on the lines CD and CE we have in the diagonal CF of

the parallelogram the necessary driving-force P. Under
the supposition again of equal pressures on the two

pairs of teeth this resultant CF is parallel to the com-

mon normal GH, and lies at a distance

£ = \a
x
a
2

. tan 4>

from the latter. If we now make the permissible

assumption a
x
a 2
= £sina, a being the angle of the

normal GH to the line of centres
X 2 , we get, by

substituting ^ = tan$, the desired distance

fit .

£ = -g sin a.

The value of £ is therefore independent of the posi-

tion of the two points of contact <(
1
b
1
and a

2
b
2
with

reference to (9, it being supposed that they lie on oppo-

site sides of 0, so that the lines of pressure may intersect

at an angle 2$. According to these considerations we
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may conceive of tooth friction acting in the following

way : While in the case of Motionless motion the force

is transmitted from one wheel to the other in the direc-

tion of a normal to the surfaces in contact, from which

it results that the force P must be exactly equal to the

resistance Q acting along the same line, in the case

where friction is taken into account there is a parallel

shifting to one side of the driving-force through a dis-

tance £: so that the lever-arm of the driving-force with

respect to the axis of the driven wheel B is shortened

by an amount £, while with respect to the axis of the

driving-wheel A it is increased by an equal amount.

Since the line FC represents the re-action of the load Q
for the wheel ^4, and OF = P is the driving-force with

reference to the wheel B, we may say, as in chain and

rope friction, that the arm of the power is diminished,

and that of the resistance increased, by the amount £.

In order to get a graphic representation of tooth friction

Ave have only to determine the value £, and to then shift

the line of force to one side of the theoretic line, so

that it shall be parallel to the latter, and at the distance

£ from it.

It will not be difficult to show that the result of this

shifting corresponds to that which we have been accus-

tomed to find in practice by calculation, and which is

given by the formula

z = qM~ + -).

Here Z is the force which" must be applied at the

point of contact of the pitch circles to overcome tooth

friction alone, and n
1
and n

2
are the number of teeth on
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the wheels respectively. To show this coincidence let

r
t
be the radius of the pitch circle A, and r

%
that of B,

and a = GrOO^ be again the inclination of the normal

pressure to the line of centres. A resistance Q acting

at along the line 0(7 to the wheel B has the lever-arm

r2 shia, to overcome which a force CF must be applied

at G7, which, from the relation r 2 sin a and r
3
sin a — £

between the lever-arms, would be given by the equation

_ n r
2
sinaX =Q

r Sill a

This force X must be exerted by the driving-wheel

A at the point C in the direction CF, with a lever-arm

rjsina -f- £; therefore, there must be applied at the

point of the wheel A a force in the direction Off

given by the ratio of lever-arms in the equation

V — Y r
!
sin <* + £ _ q r 2 s^n a r

i
sin a -f- £

r
x
sin a r

2
sin a — £ r

x
sin a

Substituting here

—l, r 9 = -h% and £ = ^-<
2tt

2
2tt 2

we get, after reduction,

y = £_^l_
.

w
i + p* = q(1 + ff . ffY

>*
2
— /X7T w

x \ w
x

' w 2 /

Since without friction § = P it follows that the
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value of the tooth friction, the force which must be

applied at in the direction of Q, is

z = r - p = qJ± + IX
\n

l
n

2 /

It may be remarked here that the latter formula,

which is commonly used in calculating tooth friction,

is deduced * under the supposition, employed in the pre-

ceding investigation also, that the pressure is trans-

mitted equally by two pairs of teeth. In the analytic

determination of tooth friction it is customary to employ

as Q the resistance which acts at the contact point of

the pitch circles, normal to the line of centres, in order

to avoid the value sin a. Even if such an approximation

is permissible (sin a = sin 75° = 0.9659 approaching

unity) it will be seen that it is unnecessary in the

graphic method, as that loses nothing of its simplicity

by drawing Q in its proper direction. It follows also

that the construction remains the same when teeth of

any other than the involute form are employed. If we

only know the profiles of the teeth in contact the re-

action is always inclined at the angle
(f>

to the normal

to the surfaces where contact is taking place. In the

case of profiles laid out by auxiliary circles the chord of

the auxiliary circle passing the point of contact of the

teeth, and that of the pitch circles at 0, is the desired

normal. Of course in cycloidal and most other than

involute profiles the normal will vary in its direction
;

* Weisbach-Hermanu, Ingenieur- und Maschinenmechanik, Theil

III., 1.
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for such cases we should assume that position of the

teeth for the determination of £ at which the angle a of

the normal with the line of centres has an average

value. The variations of £ will only be small, how-

ever, and can well be neglected as compared with

the uncertainty which clings to all co-efficients of fric-

tion.

So far the investigation has been carried out on a

basis of the equal transmission of power by two pairs of

teeth. If there is contact between only one pair, which

occurs when the arc within which the teeth mesh is less

than f, the friction is somewhat less. In explanation let

us suppose the teeth in Fig. 44, plate V., to be limited

by the circles a
2
a
s
and b^^; then contact would exist

between only one pair at a time, beginning in a
1
J

1
at

the moment it ceased at a
2
b
2 . ^ that instant the tooth

of the wheel A would act at the point a
x
with a force

R in the direction a
x
C upon the wheel B. As long as

motion continued the force R would remain parallel to

a
x
C until the point of contact between the teeth came

into the line of centres at 0, at which instant there

would be no friction. In this case, as in all preceding

ones, the arm of the power is diminished by an amount

£, and that of the load increased by the same amount.

Here we understand by £ the perpendicular distance of

the point from the line a
x
G \ that is,

£ z=z a ! 0. tan <£ ~ ^e
x

if the distance a
x
= e . Since this value of £ grows

less and less, becoming equal to zero when the point of

contact is at 0, we see that the friction has its maximum
value when contact occurs at a

x
bv and its minimum
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when at 0. If we wish a mean value we have such an

one at a point midway between and a
1
in

£i = ¥i^

In the same way for motion from to a 2 we find the

friction starting at zero, and reaching its maximum
value at a

2 , where

£ = Oa2 tan ^ = /xe 2

if e
2
= 0a

2
. For this also we have the mean value

Q 2 — 2/^2*

There is this difference, however, in that after the point

is passed the pressure acts along the line Ca 2 . If we
suppose a

x
= 0a 2 , and consequently^n^- |£sin a,

we get for an average value of £ the equation

This value of £ is only half as large as that

£ = ±[d sin a

obtained for the preceding case, where two pairs were in

contact ; and, further, the arc of contact was twice as

groat, =z 2f, in the first case discussed as here where it
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equals t. If, therefore, we denote the entire arc of con-

tact on both sides of the line of centres by o> we have

the general equation for both cases

£ = l/xwsilla.

This equation holds for all intermediate values of the

arc of contact between t and 2t, when the transmission

of force occurs part of the time through one pair and

part through two pairs of teeth.

We can then find the value of £ in every case by the

following simple construction : Lay off on any straight

line the distance OA —
-J«

(Fig. 45, plate V.) where w

is the length of the arc of contact between the wheels

;

draw the line OB at an angle a with the normal 00
x
to

OA, a being 75 degrees for involute teeth, and 80

degrees for cycioidal profiles ; then draw AB perpen-

dicular to OB, and lay off the angle OBJD equal to the

angle of friction $. We then have in the perpendicular

OB to BO the value of £. We may assume ^ between 0.1

and 0.12. By making OA = ^w — ^t we get the same

value for the friction that the formula /xr.( 1

)

\n
t

n 2 /

gives.

Having gotten the value of £ the tooth friction is

readily determined. Suppose the load Q (Fig. 46, plate

V.) to act upon the drum AB by means of a rope at

B; it is then required to find the force P which must

be applied in the direction EF to the crank EB in

order to turn AB by means of the gear-wheel AC and

the pinion CB, and lift the load. First find the direction

in which Q acts, which is, of course, along the line o
x
b

drawn at a distance o- from the mean circumference of



120 THE GRAPHICAL STATICS OF MECHANISM.

the drum AB. The line of pressure Z between the

teeth is given by the line o
x
c drawn at an angle of 75

degrees or 80 degrees to the line of centres AD, and

intersecting the latter at a distance £ from the point of

contact of the pitch circles. Then draw through ov
the intersection of Z and Q, the line o

1
a tangent to the

friction circle at A, and giving the direction of re-action

at that journal. In a similar way we get the re-action do
2

of the journal D. The force polygon can now be drawn

by making o
x
I = Q, and drawing I II parallel to Z,

then resolving I II = Z in the direction of P and o
2
d.

I III gives us the value of the force P which must be

applied at the crank. To determine the theoretic force

P we have only to draw the broken lines, as shown,

through the centres of the journals, and perpendicular

to AD through C. The drawing gives, for /x = 0.1, and

Q = 100,

P = 30.4, P = 28.1

;

and therefore

^^ 0.924.

Tt will be readily seen that if in Fig. 44 the driving

was done by the wheel B, but in such a manner that the

points of contact remain at a
1
5

1
and a 2 b 2

(that is, if

the motion was in an opposite direction to that shown

by the arrows), the direction of pressure between the

teeth would remain parallel to GH\ but the force Z
would lie on the opposite side of this line, and would

pass through C
x
between GrH and the axis of A, at a

distance £ from the former. This case corresponds to

the backward motion of the windlass ( Fig. 40) under the
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influence of Q. When, however, the wheel B (Fig. 44)

is driven in the opposite direction to the arrows by the

wheel A the investigation is similar in all respects,

except that the direction of pressure is now along the

line H'G'.
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§ 9.—BELT GEARING.

The principal source of loss in the transmission of

rotary motion from one axis to another by means

of belting is the friction which the axes suffer from

being pressed against their bearings by the tension in

the belt, since the resistance clue to stiffness where the

belts wind on and off the pulleys is so small that it

cannot be taken into consideration. But, on the con-

trary, the journal friction is much greater for the trans-

mission of a given force than by toothed gearing, since

in belt gearing only the difference of tensions in the

two portions of the belt represents force transmitted,

while journal friction is caused by the sum of these two.

The investigation of this resistance, with the determina-

tion of the tension in the belt, is pursued in the follow-

ing manner :
—

Let the shaft A (Fig. 47, plate V.) be driven from

the shaft B by means of the belt and pullej^s CD and

EF. We are to find the force P which must act on B
with the lever-arm BK to overcome the resistance Q
acting upon A with the lever-arm AL. If the belt

surrounding the two pulleys is stretched to a certain

tension this tension S is the same in both portions of

the belt DE and CF while at rest. If, then, the pulley

EF is acted upon by a force tending to revolve it in

the direction shown by the arrow, the tension in the
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belt OF increases to a value Sv and at the same time

that in DE diminishes to a value $
2 , until

#1 —
'
^2

is sufficient to overcome the resistance Q at the axis A,

It being supposed that no slipping of the belt upon the

pulleys occurs, the condition for such slipping is given

by the formula

S
1
= S

2
e»a

,

where S
r

is the tension in CF, S
2 that in DE, e is the

base 2.71828 of the natural system of logarithms, jm is

the co-efficient of friction between belt and pulley, and

a the arc of contact between the same, the radius being

unity. The greatest resistance W, therefore, which can

be overcome with a tension 8% of the belt ED, when it

(the resistance W) acts with a lever-arm AC from the

axis A is

W = S
t
-S2 = 82(e^- 1).

The tension 8 in the belt when at rest must be deter-

mined according to this relation, and is usually assumed

8 = l(S, + SJ,

If we then suppose the two tensions S
x
and 82

to have

a resultant Z we can draw the force polygon, as in pre-

vious cases, by substituting this resultant for the tension

in the two portions of the belt. The direction of the

resultant is obtained by determining the proportion
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of the two tensions for the limiting condition of slip-

ping

—1 z= e^'
S2

so that by laying off from the intersection of the belts

the distances OGr and OH of any convenient lengths,

but in the ratio

OH S
x

OG ~ S
2
~ etX%

we have in the diagonal OJof the completed parallelo-

gram the resultant Z which may be substituted for the

belt tensions themselves. To determine the value of

this resultant, and of the belt tensions S
x
and S

2 , draw

through o
x
and o.v the intersections of the resultant

with P and Q, the tangents o
x
a and o

2
b to the friction

circles of the journals A and B. Then make ol = (),

and by drawing I II parallel to o
x
a we get the resultant

Z = ojl

of the belt tensions, and those tensions S
1
and #2 , by

resolving o
x
II in the directions o

x
IV parallel to CF,

and IIIV parallel to DE. From o
x
II = Z we get also

the value of P by drawing o
i
III parallel to o

2
K, and

II III parallel to o
2
b. In order to find the theoretic

force P which would be sufficient to overcome Q in the

absence of friction we can either employ the direction

OJ of the resultant Z, and draw the re-actions o
x
A and

<>
2
B through the centres of the journal, or take the

intersections
X
and 2 of the forces Q and P with OF,
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regarding the latter as a force acting at and F with-

out friction.

In Fig. 48, plate VI., the logarithmic spirals are drawn

for the commonly occurring co-efficients of belt friction

,1 = 0.12, 0.18, 0.28, 0.38, and 0.47,

in order to give a graphic representation of the ratio of

belt tensions

If we take the radius of the circle OA as unity, the

radius vector OB drawn to the spiral, constructed with

the particular co-efficient of friction /x, at the angle

AOC = a, the angle of contact, gives the value e^a .

Therefore, if the tension S2
of the slack side is repre-

sented by OA, we have in OB the tension S
1
of the

driving side, and in

CB = aSj — >&2

the force transmitted.

From the preceding it is easy to draw a comparison

between the relative efficiencies of belt and toothed

gearing. For this purpose we shall investigate the

motion of a millstone, since these are as frequently

driven by belts as by gearing. Let A (Fig. 49, plate

VI.) be the mill-spindle, and BD the pulley on the same,

which has the arc BMD in contact with the driving-belt.

With the aid of the spiral for ^ = 0.28, as given in

Fig. 48, plate VI., we find the ratio

S2 :S1
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from that of OA : OB, having laid off the angle of con-

tact

BAD = a

from the radius OA. Laying off these distances in KL
and OK (Fig. 49) we have in OL the direction of the

resultant Z of the two belt tensions which act upon

the mill-spindle A as driving-force P. Since the resist-

ance of the millstone upon its grinding-surface is exactly

equal to this we must represent this resistance by a

couple of forces Q and Q acting in the directions _ff/and

FGr. This couple will not cause any side pressure of

the mill-spindle against its bearing ; the re-action of the

bearing will be that called forth by the resultant Z, and

will therefore be equal to that resultant, and opposite in

direction. We then draw R in the tangent ao
2

of the

friction circle at A parallel to OL. For the existence

of equilibrium between the four forces Q, Q, R, and Z,

the resultant of any two must be coincident with and

opposite to that of the remaining two. Uniting o
x
and

ov making o
x
I = Q, and drawing I II parallel to o

x
ov

we have in ^ 77 the resultant of the two tensions S
x
and

aS
y

2 ; and by resolving o
x
II into IIIo

x , and II III parallel

to the directions of the belt, we get

IIIo
x
= S

x
and II III = S

2
.

Without friction we should assume the direction of re-

action at the bearing parallel to OL, and passing through

the centre of A along the line A0
2 ; then drawing I II

through /parallel to o
x 2 , we should get

P ^ 11,0,.
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From the figure, with the assumed value /* = 0.28, and

a journal friction of 0.1, we get, for Q = 100,

P = 401.6, P = 379.2,

and

77 = *~* = 0.944.

If, on the other hand, we suppose the stone to be

driven by gearing from the upright shaft B (Fig. 50,

plate VI.), A again being the mill-spindle, Ave have the

pressure transmitted by the gearing along the line o
x
c

inclined at the angle of 75 degrees to the line of centres,

at the distance £ from (7, and in the parallel line o
2
a the

direction of re-action at the bearing of the spindle.

Making Io
1

z=z Q, and drawing ///parallel to
x
ö
2 , we

find P in o
x
II. To determine P we assume the thrust

of the gearing along the perpendicular to AC passing

through (7, and the re-action of the bearing parallel to

this and passing through A. Then, if I O
1
= Q, we

have in O
1
II the theoretic force P acting perpendicu-

lar to AC through C In order to determine the effi-

ciency we must compare, not the force P acting along

o
x
c, but that component Pf

parallel to P , with the

latter force. Let w be the point of intersection of

the two directions, then we must resolve

o
x
II = P

in the direction of
1
C and wJ5. Draw o

x
III parallel

with O
x
C, and II III parallel to uB, and we have in
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o
x
IH the force I" which must act at C perpendicular

to the line of centres AB, thus giving the efficiency

17 = ^A1

P'

From the drawing we get, for Q = 100,

P' = o
x
III = 226.4, P = 217.8,

and

v = 5; = 0.962.

From these two examples we draw the conclusion

that belt gearing is less economical than toothed gear-

ing, as would have been expected from previous consid-

erations. It is also evident that the result for belt

transmission would be more unfavorable if the co-

efficient of friction of belt upon pulley is less than

0.28, or if the arc of contact between the belt and the

pulley of the mill-spindle subtends a less angle a, since

the belt tension and resulting journal friction would

then be much greater. In the foregoing comparison the

journal friction of the main shaft is omitted in both

cases, because in the general arrangement of several

stones about one central shaft the opposing tensions or

pressures would counteract one another, and the shaft

would run freely in its bearings. If this were not the

case, but only one stone was driven from the shaft, then.

on account of the greater belt tension, the friction of the

shaft in its bearing would be greater than in the case of

toothed gearing.



BELT GEARING. 129

The tensions in brake bands are to be estimated in

the same way as with belt gearing. Here also there are

two different tensions S
±
and S

2
in the two ends of the

band which have the relation

one to the other, the greater tension S
x
being that which

opposes the sliding of the brake pulley within the band.

We can therefore introduce the resultant Z of the two

tensions S
1
and S%, and regard it as a force preventing

the motion which tends to occur. Let A (Fig. 51,

plate VI.) be the axis of a drum on which is the brake

pulley BC, whose brake band is fastened at one end to

the stationary bolt E, and at the other to the bolt D of

the brake-lever EDG which turns about E. We get the

ratio of S
x
to S2

from the spiral in Fig. 48, which corre-

sponds to the co-efficient of friction for brake bands

fi = 0.18,

by making the angle a == CMB the arc of contact, and

lay off the distances so determined along the direction

of the ends of the band from their intersection in

OUT and OJ. The diagonal OK of the completed par-

allelogram gives the direction of the resultant Z. As
regards the direction of tension of the brake band we
see that the end CE fastened at E pulls in a line passing

through the centre of E, since there is no relative turn-

ing of the band about this point. But the line of

tension in the end DB attached to the moving journal

D would be tangential to the friction circle at D.

If, now, a force Q acting with a lever-arm AF tends
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to turn the shaft A in the direction of the arrow the

direction of journal pressure at A will be given by

the line o
x
a drawn through the intersection o

1
of Q and

Z tangent to the friction circle at A. Therefore, by

making o
x
I = Q, and drawing through I a parallel to

OK, we get in I II the necessary resultant Z of S
x
and

>S
f

2
. Resolving this parallel to HO and JO, we have

III II = S
1

and IUI = S
2

.

To determine the force P applied to the brake-lever G
to produce the tension

S
2
= IUI

in the band BD we first draw from o
2 , the intersection

of S
2
and P, the line o

2
e tangent to the friction circle at

E to get the re-action of that bearing ; then a resolu-

tion of I III = S
2
into I /{^parallel to o

2
e, and IV III

parallel to o
2
G or P, gives us in IV III the force P

which must be applied at Gr.

The determination of the driving and brake forces in

a whim or windlass, such as is shown in Fig. 52, plate

VI., is of especial interest. Here two ropes FD and

EC lead from the windlass-drum G- in such manner,

that, if the drum is revolved in either direction (say,

that indicated by the arrow), the rope EC is wound
up, and that BD unwound ; and, in consequence, the

weight Q consisting of useful load, and the weight Gr of

cage, hooks, etc., hanging upon the rope ECB, is lifted,

while the weight G of the empty cage hanging on

the rope FDB sinks, and thus aids the revolution

of the drum. If there were no hinderances to this

motion we should at once assume that the working of
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the entire apparatus amounted simply to lifting the

useful load Q, since the cages balance one another and

could be left out of consideration. Such an assumption

is, however, not permissible on account of friction ; and

Ave must regard the machine as a combination of two

hoisting-gears, one of which burdened with the load

Q -f- G- on the rope ECB is in forward motion, while

the other is running backwards under the influence

of the load G attached to the rope FDB. Accordingly

the investigation would be pursued as follows : The line

of tension in the ascending rope BCE must be assumed

on account of stiffness in the rope along the lines b
1
o
1

and ce in such manner that the lever-arms at B and E
shall be greater than the radii of the pulley and drum
respectively by an amount o-, and at C less by an equal

amount. On the other hand, the directions of tension

for the rope FDB are given in fd and o
2
b
2 ; the lever-

arms at D being increased, and those at F and B dimin-

ished, by an amount o-. The direction of re-action at

the bearing of the pulley A CB which revolves toward

the left would be given in the line a
x
o
x , while that of

ABB revolving in the opposite direction would be along

o
2
a

2
. Making o

x
I= Q -f- Gr, and o

2
III = Gr, and draw-

ing through I a parallel i" II to ce, and through III a

parallel IIIIV to df, we have in

III = S
t

the tension in the rope EC, and in

IV III = S2

the tension in FD, The resultant Z of these tensions
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is given by VI if we draw II V equal and parallel to

III IV, and complete the triangle. This resultant

passes through the intersection o
z
of ec and fd, and

Ave must therefore draw o
3
<9
4
parallel to / V

If the drum is driven by a pinion HJ meshing with

the gear-wheel GrJ we draw the line ii inclined at an

angle of 75 degrees to GrH, and at a distance £ from J,

for the direction of pressure between the teeth, and then

draw from o
4 , the intersection of this line with that of

Z, the tangent o±g to the friction circle at Gr. This

gives us the direction of re-action at the bearings of Gr.

Then resolve the force / V into I VI parallel to o±g,

and VI V parallel to o
4
i, and we have in VI V the

pressure on the teeth of the pinion HJ, or the necessary

driving-force P.

To determine the theoretic force P we have, as pre-

viously remarked, only to lay off a distance equal to the

useful load Q along the medial line of the rope EC from

the intersection of that line with the common tangent

JO to the pitch circles, so that OI = Q. Then draw

through the radius 0(7, and through I the line IU
parallel to the latter, and we have

II = P .

To determine the efficiency we must again compare P
with that component of P obtained by resolving

nv=p

in the direction of P and WÄ This force P f

is given

by VI VII if VI VII is drawn parallel to OJ and V VII
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parallel to wff. From the figure we get, for Q ~ 36 and

G = 24,

Pf = VI VII = 47.3, P
Q
= 40.1,

and therefore

r, = £} = 0.848.

For convenience, in order to use the same lines in

the figure, we will suppose in determining the brake

force that the loaded cage is now upon the rope FDB.
Accordingly we lay off the broken and dotted lines

o
2
(III) equal to (Q + Gr), and o

{
(I) equal to Gr; draw

(ill) (IV) parallel to fd, and (I) (II) parallel to ce;

we then have

(JF)(1ZZ) = (£,) and {1-){I1) = (^).

And by drawing tf
3(JO equal to (III) (IV), and mak-

ing (F)( VI) parallel and equal to (I)(II), we get in

(VI)o
s
the resultant (Z) of (aS^) and (S

2). If the

brake is applied by means of the brake-lever NLKM
turning on the fixed point K, and attached to the ends

of the brake band at iVand L, we first draw the lines of

force W
x
n and W

2
l tangential to the brake jmlley T^IF

2

and to the friction circles of the bolts N and L. From
the intersection o

5
lay off the distances o

h
TJ and o

5
T

proportional to the tensions s
2
and s

t
in the brake band,

which have been determined from Fig. 48. The diag-

onal of the completed parallelogram then gives the

resultant z of these tensions. If we now draw from o
6,

the intersection of z and (Z), the tangent o
Q </ to the

friction circle of Gr, and resolve the force (Z) = ( JT)tf3
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parallel to o
5
o$ and o^g, we get in (TTI)( VI) the value

of the resultant z which may be substituted for the two

tensions s
t
and s.

2
in the brake band. To determine the

force p to be applied to the brake-lever at M draw from

o
1 , the intersection of this force with o

6
o
5 , the tangent

o
7k to the friction circle of K, and resolve the force

(IT/) (FT) = z in the direction of o
7
k and Mov thus

getting

(F//j)(r/)= P,

the force to be applied at the brake-lever.

It has been heretofore tacitly assumed that the driving-

force P has been applied in just sufficient amount to

overcome the resistance of Q. This condition would be

fulfilled, for instance, if a water-wheel acted upon by

equal impulses at equal moments drove a millstone

whose working resistance is constant. It is also ful-

filled in most hoisting apparatus. But in many cases

in practice either the moment of the power, or the

moment of the load, or both, vary periodically ; but in

such a way, if continuous motion is supposed, that for

any such period the work done by the driving-force

exactly equals that overcome in the shape of useful and

hurtful resistances. This is always the case in the

slider-crank motion. Thus in the ordinary steam-engine

the steam pressure transmitted through the piston-rod

and connecting-rod to the crank-pin has an extremely

variable moment, which is reduced to zero at the dead

points, and reaches a maximum value somewhere be-

tween these two. On the contrary, the resistance Q
which probably acts at the circumference of some pulley

or wheel keyed upon the shaft has a constant value.

It is therefore clear that the moment of the resistance



BELT GEARING. 135

Q must have a mean value between the greatest and

least moments of the power if the motion is to be con-

tinuous. Consequently there will be, on account of the

periodical variation of the moments, an alternate accel-

eration and retardation of the moving masses of the

machine in such way that, during the time when
the moment of the power exceeds that of the resist-

ance, the excess of work done by the former is stored

up in the moving parts in the form of living force, from

which it is again given out when the moment of the

power sinks below that of the resistance. A similar

state of things exists when, on the contrary, a resistance

acts upon a crank with varying moment, while that of

the power is constant, as when pumps are driven by

water-wheels.

The manner in which the motion of such a mechanism

would be investigated may be learned from the example

of a jig-saw (Fig. 53, plate V.l.). Here the shaft A
which gives the saw-frame EF a reciprocating motion

through the crank AC and the connecting-rod CD is

driven by a belt on the pulley B^B^ ; it also has the ffy-

wheel U keyed on to it, which tends to render the

motion uniform, as shown in the preceding paragraph.

Let the vertical resistance which the teeth Z of the saw

encounter from the log K on the downward stroke be

represented by Q, and laid off in o
x
L The connecting-

rod acts upon the grate in the direction dc of the com-

mon tangent to the friction circles of D and (7; and,

furthermore, the bearings Gr
x
and H

x
of the grate act

upon the guide GH at the angle of friction from the

normal with the re-actions H
x
and J?

2
. Joining ov

the intersection of Q and Rv with ö
2 , the intersection

of li
2
and T, we get the various forces by drawing o^III
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parallel to dc, and ////parallel to Rv ///then equals

Rv II III

R

2 , and o
x
III the necessary force T in the

connecting-rod. Next, suppose the belt which half

encircles the pulley B
X
B

2 , and whose ends are therefore

parallel, to have in the slack side the tension

$2 — ^2^2'

and in the other the tension

S
x
= B

1
LV

these tensions aS^ and S2 having been determined by the

aid of Fig. 48. The resultant Z then equals

BL = S
x -f- S2

= B
l
L

1 + B.
2
L

2 ;

and its position is determined, according to the laws of

parallel forces, by making

B
2
l 2
= B

l
L

1
and B

1
l
1
= B

2
L

2 ,

and drawing l
x
l
2 , when the intersection I of this line

with B
1
B

2 gives the point of application of the result-

ant Z. Now lay off from o
1
of the force polygon the

line o
x
IV parallel and equal to 5/, and we have in

the line IV III the resultant of the belt tension Z,

and the pull T of the connecting-rod, which together

act upon the shaft A. For equilibrium there must be a

re-action R of the bearing upon J., whose direction and
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magnitude is given in III IV. The position of this re-

action It is then given by the tangent aa to the friction

circle of A parallel to III IV. This line aa cuts the

force T in 0, a different point than that B, the intersec-

tion of Z and T, from which we see that the three forces

Z, T, and R cannot be in equilibrium ; for in that case

the force Z must act along OJ instead of BL. The

moment of the belt tension Z is here less than that of

the resistance, and therefore at this moment living force

must be given out by the fly-wheel to render motion

possible. On account of the equable distribution of the

masses of the fly-wheel about its axis we are not to

regard its action in the light of that of a single force,

but as a couple whose forces M, M are applied at any

two diametrically opposite points m
1
and m% of the cir-

cumference, whose radius Am
x
= Am

2
is equal to the

radius of gyration p of the fly-wheel. The value of

the forces M,M is determined by the condition that the

resultant of the couple and the belt tension Z or BL
must be a force passing through 0, parallel to BL, and

equal in value to

Z =0J = BL.

To construct this value of Mwe join o
s , the intersection

of BL and m^M, with ö
4, that of OJ and m

2
M, and

then resolve the force Z = BL in the direction of <?
3
o
4

and of M. We therefore draw through IV in the force

polygon a parallel to o
s
o
4 , and through o

x
a parallel to

M (M being here assumed as acting vertically, parallel

to $), and have in o
x
V the value of the two forces of

inertia 31, which, applied at m
x
and m

2
in the fly-wheel,

aid the motion of the shaft in the moment under con-
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sicleration. It will be readily seen that the same values

of M would be obtained in whatever direction they

were supposed to act, if always their distance apart

m
x
m t

:= 2;j. But if we assume this distance to be of

another value 2Pl we get a different value itfj for the

forces of inertia, so that the moment of inertia is always

constant,

•23fP = 2MlPv

From the preceding it follows that the action of moving

masses may be represented by couples when they are

not arranged eccentrically, and that the influence of

such a couple is to produce a parallel shifting of the

driving-force Z or P without any consequent increase

of journal pressure and friction. It is also evident that

the couple acts in the opposite direction, opposed to the

driving-force, if the moment of the latter becomes greater

than that of the resistance. This would be the case if

in the present example the arm Al of the belt driving-

force was greater than AN. In that case the action of

the couple would result from an acceleration of the

motion ; while under the condition investigated above,

where the fly-wheel acts in the " sense, " or direction, of

the desired motion, there is a retardation of the masses.

It is well known that acceleration and retardation occur

in regular periods of continuous but non-uniform motion.

The amount of these momentary accelerations and re-

tardations in the masses can be readily ascertained for

every case by this method of couples, but as such an

investigation lies without the object of this work we
will not pursue it farther.

Two examples corresponding tu commonly occurring
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machines will serve, in closing, for the further discussion

of those conditions more fully investigated in the pre-

ceding chapters, which are principally influential in

determining the efficiency of machines. These exam-

ples are the crane in plate VII., and the beam-engine

in plate VIIL
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§ 10.—EXAMPLES.

In the crane (Figs. 54 to 58, plate VII.) the revolving

jib or outrigger turning about the post or mast L has

at its outer end the guide pulley B (Fig. 57), over

which the hoisting-chain is led ; one end of the latter

is fastened at (7, while in its loop hangs the pulley A
supporting the load Q. From B the chain is led over

the supporting pulleys D and D
x

to the drum EE
X ,

which receives motion from the crank UK (Fig. 54) by

means of the gearing at F and J. Drawing the direc-

tion of the forces according to well-known laws we

have the load Q acting along the tangent aa (Fig. 55)

to the friction circle of the journal A of the loose

pulley, while the tension S
x
of the chain fastened at C

is along the line a
1 a 1 , and the tension S

2
of the portion

A
2
B

X
of the chain acts along the vertical a

2
a
2 , so that

the lever-arm at A
x

is lengthened, and that at A
2
short-

ened, by an amount x* If«» then, I II =; Q, and Ia
x

is

drawn parallel to IIav the line adjoining these points

gives, by its intersection III with Q, the tension

11111= S
x

in A
X
C, and

IIII = #
2

in A
2
BV Drawing in the well-known way the direction

of forces b
x
o
x
and b

2
o

x
in the chain over the pulley B
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we get the re-action of its journal in the tangent o
x
b to

the friction circle at B. A resolution of the chain

tension

IUI = &,

in the direction of o
x
b and b 2 o 1

gives us in

TV III = S
s

the tension in the portion BD of the chain. The direc-

tion of the portion of the chain passing over the pulley

D is shown (Fig. 56), which is drawn to a larger scale.

From this we see, without further explanation, that the

journal re-action of this pulley * is in the direction dor
We therefore draw through the point III in the force

polygon the parallel III V to do
2 , and from IV the

parallel IV V to e
x
o^ and get

IV V = S„

the tension in the portion of the chain between D
and the drum Ev which has such a direction e

1
d

l

(Fig. 54) as to increase the lever-arm at E
x , and

decrease it at Z), by an amount \. Draw now at the

distance £ from F, the point of contact of the pitch

circles, the direction of pressure fos
between the first

pair of gear-wheels at 75 degrees to the line of centres

EGr, and also the tangent z
x
e to the friction circle at E,

* The slight resistance of the pulley D, is neglected. If it was

desired to bring it into the calculation it could be done as shown in

Fig. 36, plate IV.
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so that it shall pass through the point of intersection of

d
1
e
1
and fos ; and we can then resolve

IV V = s±

parallel to fos , and e
x
e into

IV VI = zv

the pressure between the teeth at F, and V VI equals the

re-action of the journal bearings of the drum. It should

be remarked here that the direction e^
1
of the journal

re-action is drawn by the aid of the auxiliary construc-

tion previously given, since the intersection of fos
and

d
1
e
1
lies beyond the limits of the drawing. We draw

through E a line /3e8, and any parallel line j8 1
8
1 ; then

locating C]L , so that

/?€ : c8 : : ß 1
z
x

: ^Sj,

we have in e
x
a point in the desired line of re-action,

c is here the point of intersection of the line /38 with

the friction circle, this being a sufficiently close approxi-

mation if the line ße is drawn perpendicular to what is

judged to be about the direction of the re-action e
x
e.

In the same way we draw the line of pressure o
s
i

between the teeth of the second pair of gear-wheels

HJ and GrJ^ and from o
s
the tangent to the friction

circle of G-. Then a resolution of

11IV = Z
x
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in the direction of o
s
i and o

zg gives us in

VI VII = z
2

the pressure with which the pinion HJ acts upon the

wheel GrJ along the line o
s
i. Finally, draw from o

4 ,

the intersection of P and Zv the tangent oji to the

friction circle of H, and through VII a parallel to P,

and through F7a parallel to o
4
h, and we have

VIII VII = P,

the force which must be applied at the crank K in the

direction Ko±. Since this value becomes very small in

the figure, the triangle VI VII VIIUs drawn on a scale

five times greater in VI VII VIII\ in which

vi vir = 5 . vi vii,

according to which

p =
i

- . vnrvir.

To determine the theoretic force P we can suppose

the tension in the chain as it winds on to the drum at

E
x
equal to -—, and therefore make VIV = \IIL Then

draw, as before, the force polygon IV V VI VII VIII
,

taking the pressure between the gear-wheels perpen-

dicular to the line of centres at F and J", and the journal

re-actions as passing through the centres of the journals
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at E. G\ and H. Thus is constructed the polygon shown

hi broken lines, which gives

p = riii vn = i . viii
(
;vii

(;.

The drawing gives, for Q = 100,

P = 1.155, P = 0.833,

and therefore

r, = £> = 0.722.

To determine the brake force p which is to be applied

at W in the lever WU we must take the backward

motion of the crane into consideration. In this case it

is evident that the load Q = I II hanging upon the

loose pulley causes, in sinking, a tension S
{
of the chain

fastened at C equal to III I, and a tension

S
2
= IIIII

of the portion between A
2
and B

x
; in other words, the

strains in the two chains are reversed by backward

motion. It will also be readily understood that the

lines of tension in the chain at the pulleys B and D
and at the drum will be those shown in broken and

dotted lines ; that is, (o
x ) (b^) and (o^) (6 2 ) at B,

(fl2 ) (^2) and (°2 ) ( e \) at A an d ( e \) (^1) a* the drum,

while the journal pressures at B and B take the direc-

tion (oj) (7>) and (02)OO- TJie direction in which the

pressure (Z
x ) of the teeth of the wheel ET now acts

upon the pinion GF is given by the line (/) (/), which
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cuts the line of centres EG at 75 degrees, and at a dis-

tance £ from the point of contact F of the pitch circles

toward the side of the driven axis G-, as was shown

formerly in the discussion of tooth friction. The direc-

tion of journal re-action at E corresponding to (/) (/)
would vary but little from that, e£

X
, found for forward

motion ; it may therefore be assumed as the same.

Taking these things into account the force polygon

would be drawn as follows : Make

(I)(III) = IIIII = (£,) ;

draw (J) {IV) parallel to (oj) (ft), and (III) (IV)
parallel to (o{) (6 2 ), also (IV)( V) parallel to (o

2 ) (<?j)

and (III) ( V) parallel to (o
2 ) (d) ; then resolve

(IV)(V) =, (S
t)

in the direction of (/) (/), and e^ into the forces

(IV) (VI) and (FT)(F).
One end of the band surrounding the brake pulley

Br is fastened at U; the direction of tension therefore

passes through the centre of U. The tension in the

other, which is attached to the bolt V, is along a line

tangent to the friction circle at V. The two intersect at

(o
4). Making the distances (o

4) V2
and (o

4) V1
propor-

tional to the tension

$
2

and s
{
= s

2
^ a

gotten from Fig. 48, plate VI., we have in the diagonal

(o
4 ) Vs

the direction in which the brake acts. This line
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cuts that of the pressure between the teeth in (o
3), and

therefore the tangent (o
3) (g} to the friction circle at G

gives the re-action of the bearing at G. Now draw

through the point ( VI} of the force polygon a parallel

to (o
s} (o

4), and through (IV} a parallel to (o
s} (#),

and we have

the pressure of the brake, which may be resolved into

(VI}(VIII} and (VII}(VIII} parallel to s
t
and s

2
.

The greater tension s
x

is from the fixed point U, the

less s
2

is produced by the brake-lever. Drawing the

tangent (o
5
}u from the intersection (o

5 } of s
2
and p to

the friction circle of U we resolve the force

s
2
= (VIII} (VII}

in the direction of p and (o
5
}u. For the sake of clear-

ness the distance (VII} (VIII} is laid off ten times

greater in ( VII} (X}, so that the necessary brake force

p = ± . (ixxvii).

Figs. 57 and 58 show the mechanism for turning the

crane. The swing-arm of the crane, together with

the load (>, are supported by the pivot L in the head

of the mast or post. This pivot has a side thrust upon

it from the bearing Lv while the two friction rollers

W
x
and W2

press upon the base T of the post. The

pressures at L and T are determined from Fig. 57 as

follows: Suppose S to be the centre of gravity of all

the swinging portion of the crane, windlass, pulleys,

chain, etc., and suppose G the weight of all these parts
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acting downwards at S. This force may be combined

with the weight Q hanging at A into one resultant

force,

acting at M. Now lay off on this line the distance

in = Q + a,

and draw the horizontal re-action R of the cylinder T
through the middle of the rollers W. The re-action R

x

of the pivot L must then pass through the intersection

of R and Q + (?, and must take the direction OL drawn

through the centre of the bearing Lv To determine R
and R

x
we therefore resolve III in the direction of

OT and OL, and have

IUI - R,

the re-action against the rollers TT, and

II III = Rv

the combined re-actions at L. This latter may be

resolved back into horizontal and vertical components,

/ZZ7 and IIL The vertical re-action equal to G -f" Q
produces end journal friction upon i, which may be

regarded as the action of a couple, each force of which

equals

MQ + #)*

and whose arm equals |c/, if d is the diameter of the

journal. The horizontal component of the re-action R
x
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is equal and opposite to the re-action R of the post

against the rollers in the direction TO, so that these

two forces form a couple in equilibrium with that

formed by the vertical re-action Z, and the weight

Q -\- Gi at M. To determine the turning-force p wr

e

draw, in Fig. 58, the horizontal pressure 1 2 equal to

IUI in Fig. 57, and in such direction that it shall be

tangent to the friction circle at L. Also lay off the

two end journal frictions

F = F
X
= l-^Q + G)

at the distance \d on each side the centre of X, and in

opposite directions, so as to bring this end journal fric-

tion into the calculation. The compounding of this

couple F, F
l

with the horizontal re-action 1 2 will

simply result in a parallel shifting of that re-action

undiminished in value to the position 4 5. To fix the

amount of this shifting make 2 3 = jP, draw 3 1, and

through ov the intersection of 1 2 and F, draw a parallel

to 3 1 ; this will cut F
x
at a point o

2 , through which the

resultant 4 5 of 1 2 and FF
X
must pass. The correct-

ness of this construction is shown by the equilibrium of

the four forces 1 2, F, Fv and 5 4. Now draw the re-

actions u
l
w

1
and u2w2

of the post against the friction

rollers in such way that they shall be tangent to the

friction circles of W
1
and TF

2 , and shall pass to one side

of the contact points L\ and U
2

of the rollers at the

distance e determined previously for rolling friction. If

the turning of the crane is produced by a pinion on the

vertical shaft V, and working with a circular rack or

internal gear Y on the base plate, we draw finally the

direction vv of pressure between the teeth at 75 degrees
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to the line of centres VL, and at the distance £ on the

outer side of the contact point of the pitch circles.

This line intersects the resultant of journal pressure 4 5

in o3, the two re-actions of the post against the rollers

intersect in o
4 ; therefore o

s
o
4
must be the common

resultant of these pairs of forces. Draw 5 6 parallel to

vv, and through 4 a parallel to o
4
o
s , and we have

5 6 = Z,

the pressure which the teeth of the pinion on the shaft

V must exert along the line vv. The method by which

the force necessary to turn V by means of a crank

would be determined is sufficiently well known from

previous examples.

In conclusion we will explain the diagram for the

condensing beam-engine shown in plate VIII. Let

I II = P, the force acting upon the piston (Fig. 59).

This force acts along KC\ the geometric axis of the

piston-rod, since the latter is rigidly fixed to both

the piston and the cross-bar (7, and there can be no

relative motion between those elements. If, then, we
consider the piston, piston-rod, and cross-bar C to form

one piece, we have at the point C three forces, P the

piston force, and S
x
and S.

2
exerted by the link BC and

the parallel rod EC respectively. In the present posi-

tion of the engine these forces are in compression, and

act along the tangents hc
x
and e^ shown on a larger

scale in Fig. 60a . The intersection of these forces is at

ov and since P does not pass through this point the

three forces P, Sv and S
2
cannot be in equilibrium.

There must therefore be a fourth force, which with P
will give a resultant passing through ov and which must
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tend to produce right-handed revolution about ov since

P alone would produce left-handed turning. This

fourth force is the re-action R
x
exerted by the stuffing-

box against the piston-rod ; it passes through the centre

of the stuffing-box, is inclined at an angle cf> below the

horizontal, and acts from the right toward the left.

This re-action cuts the piston force in the point o
2 ; and

therefore, as frequently shown before, the line o
x
ov not

drawn in the figure, must be the common resultant of

S
x
with aS'

2 , and P with R. So that, drawing through

/ a parallel to Rv and through II a parallel to o
1
o
2 ,

we get in

IUI = B
1

the re-action of the stuffing-box against the piston-rod.

This indicates that in spite of the right-line motion

there is a certain side thrust against the stuffing-box, as

shown in Fig. 19, plate II., which is due to journal fric-

tion on the cross-arm C\ and not to any inaccuracy in

the parallel motion. This side thrust, which, as pre-

viously shown, reverses its angle at every change in the

direction of piston motion, is, however, so small that it

is generally left out of account. Draw, next, through

II and III the parallels IIIV and IIIIV to e
x
e
2
and

c
x
b, and we get the forces

S2
= IIIV and S

1
= III IV.

The last force

S
x
= IIIIV

is transmitted directly to the beam through the link

CB. A second force, partly due to the resistance of
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the air-pump L attached at F, and partly to the influ-

ence of the radius-rod ED, acts upon the beam at G.

This force is the next to be determined. Let II

V

represent the resistance L of the air-pump, which acts

upon the link FG in the tangent to the friction circle

of F passing through the point of intersection o
s
of the

piston force L of the air-pump and the stuffing-box re-

action R
2

. This small re-action R
2 , and its inappreci-

able influence on the resistance L, will not be further

taken into account.

Looking at the link FGr we have acting upon it three

forces : L the air-pump resistance in the direction fos

(see also Fig. 60^) ; the pressure aS
y

2
of the parallel rod

OF in the known direction c
2
ev and of the known value

IIIV; and finally a force aS
y

3 exerted by the radius-rod

ED upon the pin E, and which acts in the known direc-

tion e
2
dv tangent to the friction circles at E and D.

These three forces must be held in equilibrium by a

force S
4
exerted by the journal G upon the link GE,

and which remains to be determined. For this purpose

we combine the two known forces

of the air-pump, and

II V

S
2
= IVII

of the parallel rod GE, in a resultant IV V. This

resultant must pass through the intersection o
4
of its

components (Fig. 606) ; and by drawing through o
4
a

parallel to IVVwe get in o
5 , its intersection with the

force #
3
acting along e 2dl

in the radius-rod DE, a point
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through which the desired re-action of the journal Gr

must pass. If we draw the tangent o
bg through o

5
to

the friction circle of (2, the direction of #
4 , the resultant

of S
2 , aS'

3 , and L is then found. In the force polygon

we now resolve IV V, the resultant of L and #
2 , in the

direction IV VI parallel to o
5#, and VI V parallel to

e %d x , thus getting

V VI = ss,

the tension in the radius-rod, and

IV VI = sv

the pressure of the link EG upon the journal Gr of the

beam. There are now acting upon the beam from

the two links the forces

S\ = IIIIV

in the direction c
x
b, and

#
4
= IV VI

in the direction go rQ . The resultant S of these two is

given in value and direction by the line III VI of the

force polygon. To determine the position of this re-

action we must draw through the intersection of c
x
h

and ohg a parallel to III VI Since this intersection

lies beyond the limits of the drawing we can draw a

funicular polygon derived from the force polygon in the

well-known way to determine the position of S. Choose
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any convenient point for the pole of the force poly-

gon, and draw the polar rays IV, VI, and III,

and construct the corresponding funicular polygon *

a/38. Then the vertex 8 of the polygon is a point of

the resultant $ which must be drawn through 8 parallel

to VIIII To check the construction a second funicular

polygon ei
1 /5 1

8
1
has been drawn, the line 88

x
giving

the direction of the resultant S of the pressure S\

in the link OB, and the tension &\ in that GrE. If the

construction is accurate 88
x
will of course be parallel

to Villi
The other end of the beam acts upon the crank MJ

with a force T in the connecting-rod HJ, the line of

force T coinciding with hi, the common tangent to the

friction circles at H and J, To determine this force T
we must know the direction in which the bearing of the

beam journal A re-acts against it. This re-action passes

through the intersection of T and S, and is tangent to

the friction circle at A. Since this point lies beyond the

limits of the drawing we must employ the construction

shown in Fig. 19, plate II. For this purpose draw a

line through the centre of the journal A perpendicular

to the supposed position of the desired re-action, cutting

the directions of T and S in S and c, and the friction

circle of A in v. Then draw a parallel to this line,

cutting T and S in 8
X
and ev and so locate the point v

x

that

Oji/| * €^v^ • • o:V

We then have in v x
a point in the direction of the re-

* The principles of the funicular polygon referred to here and in

previous chapters are clearly set forth in Karl von Ott's little book on

Graphic Statics. — Trans,
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action R which may be drawn through v
1
tangent to

the friction circle at A. To locate the point v
1

so

that the above proportion shall be true we have only

to draw through 8
X
and ^ any two parallel lines S

1
8
2
and

e
1
€
2 , make

8-^2 = 81/ and E l€2
— C]/,

and the intersection of 8
1
€
1
and S2 *r

2
is the desired point

vv Having thus obtained the direction of the re-action

It we resolve the force

S = IIIVI

in the direction VI VII parallel to /«', and VIIIII
parallel to v

x
a, thus getting

T = VIIVI and B= VII III.

If X is the point of contact of the two pitch circles

of the wheels MX and NX by which the driving-force

is transmitted from the engine shaft M to a line of

shafting N we draw first the direction of pressure

between the teeth in the line xx at 75 degrees to the

line of centres MN, and at a distance £ from X. Taking

the weight of the fly-wheel, which acts downward and

increases the journal friction at M, into consideration

we lay off in the force polygon the weight Gr equal to

VI VIII, and have in VII VIII the resultant of con-

necting-rod thrust T and weight Gr in direction and

value. By drawing through o
6 , the intersection of the

forces T and G, a line parallel to VII VIII, we get

the intersection o
7
of their resultant with xx, the line of
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pressure Z between the teeth of the gear-wheels. The
tangent o

7
m drawn through o

7
to the friction circle of

M gives the re-action of the fly-wheel bearing. We
have finally to resolve the force VII VIII into VIIIIX
parallel to xx, and VIIIX parallel to #

7
m, thus getting

Z -IX VIII

the force exerted by the teeth of the gear-wheel MX
upon those of NX along the line xx. If r is the lever-

arm NN
1
of this force Z with reference to the shaft iV,

and if this shaft N encounters at the moment under

consideration a resistance whose moment is Zr, the

power of the steam-engine is sufficient to overcome

that resistance. If, on the contrary, the moment of

the resistance to be overcome has any other value Zr
x

there will be a moment

Z(r — r
x)

either expended in the acceleration of the moving masses

when r — r
t

is positive, or given out by those masses

if r — r
x

is negative. The discussion and investigation

ill the case of the saw-grate (Fig. 53, plate VI.) apply

also here.
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CONCLUDING REMARKS.

The graphical determination of forces and of the

resulting efficiency, as explained and applied in the

foregoing chapters, will not present great difficulties in

any form of mechanism, since in each case it is merely

a question of determining the direction of the forces

involved, and from them drawing the corresponding

force polygon. This method possesses all the general

advantages of graphical determinations over the ana-

lytical methods until now alone employed. It rests

upon the elementary laws of mechanics, does not re-

quire a knowledge of analytics, leads to the desired end

by a quicker and surer route, and has in nearly every

case a sufficient degree of accuracy. To meet the last

requirement it is only necessary to draw the diagrams

to a sufficiently large scale, and in practice it would

be well to employ a scale from six to ten times larger

than that of the diagrams attached to this work. For

the sake of clearness, and in consequence of the reduced

scale of these plates, certain dimensions were chosen

greater than they should be ; for instance, most of the

friction circles will be found to be larger than the cor-

responding co-efficient of friction would give. And
therefore, as before remarked, the numerical results

given for forces and efficiencies in the various examples

were not taken from the figures in the plates, but from

much larger drawings in which all dimensions were cor-

rectly proportioned. That with large but manageable
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drawings sufficient accuracy for practical purposes is

obtained is evident when we consider the uncertainty

there is about the co-efficient of friction itself which

is determined empirically. A co-efficient of friction is

never given with certainty beyond two decimal places,

as a glance over the tables of these co-efficients shows,

and it is safe to assume that in the average case there

is an uncertainty of several per cent. In the light of

these facts how worthless is the determination of forces

carried out to many decimal places, to hundred-thou-

sandths even, as is the case in many analytical deduc-

tions ! At any rate it follows from what has been said,

that with moderately large drawings and with fine lines

the attainable accuracy is all-sufficient. Supposing, for

instance, that an untrained e}r
e would permit an error

of one millimetre in laying off distances, the error would

be at the most only one per cent if the shortest line of

force was one decimetre.

In reference to the accuracy of results obtained by

graphic methods we may also remark that in such

determinations there is no temptation to employ certain

approximations which are generally introduced in ana-

lytic calculations to render the formulae less unwieldy,

and, in fact, often have to be employed to render further

progress possible. Many of the preceding examples

correspond to just such cases. Thus in pulleys where

the ropes are not parallel such parallelism has to be

assumed in determining the journal pressure ; in slider-

crank gearing the inclination of the connecting-rod is

neglected, etc. All such assumptions are unnecessary

in graphic methods. In the determination of the force

acting upon the lever of a brake-band the friction of

the journal by which the band is connected to the lever
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is neglected in analysis, while in the graphic method it

simply amounts to drawing the friction circle of that

journal, and the determination is in no way complicated

by thus taking it into consideration. Even though, as

it may be urged, such small resistances may be safely

neglected as inappreciable, it goes to strengthen the

assertion that the graphic method is more accurate in

such cases than the analytical.

A special advantage of the graphical method is its

great clearness. This is of the highest importance to

the designer or engineer. Take, for instance, the

graphical analysis of a hoisting-gear. It presents to

the eye the position, direction, and intensity of all the

forces at one glance ; and having these it is not difficult

to determine by the laws of graphical statics the mo-

ments at any section of any piece, and from that the

necessary dimensions. All such determinations are

without the scope of the present work, however ; they

will be found in the standard works on machine design

and graphical statics.
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