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PREFACE.

Tue following work contains treatises on the sciences of Statics
and Hydrostatics, comprising the whole theory of EqQuiLiprium. It
was intended as the first volume of & course of Natural Philosophy, for
the use of those who have no knowledge of Mathematics, or who have
made but little progress in their mathematical reading. !

The Theoretical principles of Statics are comprised in the rirst
THREE CHAPTERS of the work; the remaining chapters contain little
more than a practical application of these punclples. ,

It is impossible to arrange the parts of & demonstrative science in
the order of their difficulty; these first chapters will probably be
found to present more difficulties to the student than any other por-
tion of the work. A thorough knowledge of the elementary principles
discussed in them, is, nevertheless, a mccessary introduction to the
more practical parts of the science of Mechanics.

Into every practical question of equilibrium, there enters the con-
sideration of weight; the mass held in equilibrium, whatever other
forces may be applied to it, being necessarily subject to the action of
the force of Gravity.

A discussion of the influence of the weight acting in every portion
of the mass of a body, upon the conditions of its equilibrium ; and of
the properties of its centre of gravity through which this weight may
be supposed, in every position of the body, to act ; constitutes, there-
fore, the subject of the next, or Fourth Chapter of the work,

There is scarcely any case of equilibrium, among the forces com-
posing which, there do not enter two or more resistances of #ke
surfaces of bodies in contact. The question of the resistances of the
surfaces of bodies, constitutes, therefore, the subject of the Fifth
Chapter. The method of treating it is altogether new.

It is shown, that force applied to the surface of one body by the
intervention of the surface of another, is destroyed, however great it
may be, provided its direction lie witkin a certain right cone ; having
its vertex at the point of contact, and its axis perpendicular to the
touching surfaces: and that it is 5ot destroyed, however small it may
be, provided its direction lie without that cone.

It is by means of this property, that allowance is made for what
is usually termed, friction—which is in reality, no other than the
difference of the case of the resistance of a surface, as it actually obtains
in nature, from the Aypothetical case of resistance only in the direction
of a normal: which hypothetical case, introduced in the infancy of
the science, and intended to facilitate its first deductions, has been
most unaccountably retained as a principle of equilibrium.

The nature and properties of the forces from whence the equili-
brium of material bodies commonly results, having been thus ascer-

B



10 PREFACE.

tained, the next EIGHT CHAPTERs present the application of these to
the Inclined Plane, the Wedge, the Lever, the Wheel and Axle, the
Screw, and the Pulley ; usually termed the Mechanical Powers.

Chapters Fourteen and Fifteen contain the theory of the equili-
brium of systems of variable form. It is shown, that the conditions
of the equilibrium of a rigid system are necessary to the equilibrium
of the same system, when made to admit of variation in its form, but
not suficient. And from this principle are deduced certain conditions
of the equilibrium of polygons and frames of rods and cords, of the
catenary, and finally, the conditions of the equilibrium of bodies in
contact, including the Arch.

Chapter Sixteen contains aDiscussion, of Dr. Young’s theory of the
strength of materials, and a table of moduli of elasticity and extension.
In Chapter Kighteen, will be found Lagrange’s celebrated Demonstra-
tion of the principle of Virtual Velocities, which it has been attempted
to bring within the comprehension of ordinary readers; and Chapter
Nineteen, which contains the theory of Resistances and a demonstra-
tion of the new principle of Least Resistance, completes the theory of
Statics.

The theory of ITydrostatics or the Equilibrium of Fluid Bodies,
presents the extreme case of the equilibrium of a system of variable
form. Any portion of such a fluid mass in equilibrium, is therefore
subject to the same conditions, as though it were a solid ; together
with such other conditions as result from its fluidity. It is on this
principle, that the whole theory of Hydrostatics is built,

In the First Chapter is discussed the principle of the equal
distribution of fluid pressure; in the Second, the conditions of the
equilibrium of a heavy fluid; in the Third, the oblique pressure of a
heavy fluid, the forms of embankments, the centre of pressure, &e.;
the Fourth Chapter treats of the conditions of the equilibrium of
floating bodies; the Fifth, of specific gravity, and the imstruments
used for determining it: and the last, treats of the Science of Pneu-
matics, or the Equilibrium of Elastic Fluids, and the Hydraulic
Instruments dependent upon it.

Throughout the whole, an attempt has been made to bring the
principles of exact science to bear upon questions of practical appli-
cation in the arts, and to place the discussion of these within the
reach of the more intelligent of that useful class of men who are con-
meoted with the manufactures of the country,

The Author has to acknowledge his obligations to the work of
M. Dupin, entitled Méchanique appliguée aux Arts, for several of
the illustrations of the Parallelogram of Forces, and the Centre of

Gravity ; and te the popular work of Dr. Larduer on Hydrostatica, for
the rules stated to be those which govern the velation of the changes
of the barometer, to the changes of the weather,



INTRODUCTION TO THE STUDY

OF

NATURAL PHILOSOPHY.

It is essential to the developement of the energics of that
intellectual principle which is within us, that an intercourse be
established between it and the material existences without.
The immaterial and undying soul is, in this, our present state,
so wrought around and entrammelled by its material appen-
dages, as to be incapable of any availing exercise of its powers
until they have first been schooled and disciplined by that in-
tercourse, Withont it, reasoning there could be none, where
there would be no data,; memory none, where nothing had been
perceived; imagination none, where there was no reality. The
body might combine all the existing elements of its power and
beauty ; the blood of life might flow through it; the soul might
hold in it her accustomed seat; and the senses, her ministers,
might be disposed around, ready to do her bidding; but were
there no external objects whereon to occupy those senses, or
were the sentient principle careless or unable to avail herself of
their ministry, the whole would present the emblem of a death-
like repose, of a perpetual and dreamless sleep.

For the carrying on of this intercourse, man is provided, in
the organs of sense, with means, of boundless application, and
of most exquisite contrivance. The Hand, for instance, is
capable of moving accurately to any point; of varying the
quantity and direction of its motion and pressure in every con-
ceivable way; and, by habit, it may be made to measure and
to take notice of this power and direction with inconceivable
minuteness. The manual skill acquired by painters, sculptors,
and operative mechanics, is no other than the application of a
knowledge of the effects of different, and of exceedingly minute,
developements of force, accurately measured, both as to their
quantity and direction, in the mechanism of the hand, and
treasured, with these results, in the memory. It is beyond the
power of imagination to conceive the variety and cBo;:plexity of
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its operations. Writing is one of the simplest of them, and yet,
in the formation of every written character, there takes place
a certain minute developement of force, varying in quantity,
and direction; which is accurately poised in the hand as to its
quantity, measured as to its direction, and remembered, and
may be re-produced, the same, even without the assistance of
the sight.

The Iland serves further as a probe, to measure the degrees
of the hardness or softness of bodies, and the smoothness of
their surfaces; as a balance, to compare their weights; as a
thermometer, to estimate their temperature, *

The Ear estimates for us the motions of the minute atoms
.of that form of matter (the air,) which is among the most sub-
tile; regular vibrations of the atmosphere, when made with
different velocities, producing distinct sounds. And, similarly,
the Eye notes the motions of the still more minute particles of
light, indicating their different relations in the varieties of
colour. How exquisite must be the mechanism which enables
a1s thus to measure the force of impulses of whose existence the
Tightest body we can conceive, however delicately suspended,
will, when opposed to them, give no perceptible evidence ; im-
pulses of atoms so minute, as to be incomparably less than the
-smallest portion of matter whose distinct existence we have ever
been able to recognise !

Exquisitely wrought as are the senses of hearing and sight,
who will assert that any superfluous contrivance has been be-
stowed on their construction? Were it not for the perfect
.sympathy thus established between our organs of sensation,
and those subtile fluids of air and light which pervade the space
in which we exist, all that we see, having distinctness and
form, and all that we hear of modulated sound, would have
been lost to us. There might, with less of contrivance in the
.eye, have been the perception of light, but there could have
been none of those exquisite varieties of shade and colour which
enable us to appreciate the objects we look upon; and so, with
a less delicate mechanism of the ear, there might have been
hearing, but all distinction of the rapid and evanescent varieties
in articulate sound would have been impossible, and there could
have been no perception of measured harmony. .

Not only has man the means of carrying on the intercourse
thus essential to all that constitutes his active existence, but he
is irresistibly impelled to the use of those means, and to the
establishment of that intercourse; for, the circumstances in
which man is placed, impel him, of necessity, to acquire the
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knowledge which he has thus the means of acquiring. He is
8o constituted as never to be capable of deriving entire satis~
faction from anything which he may obtain. Not only is he
gifted with senses enabling him to distinguish the minutest
differences of external things, but each of the perceptions which
he thus obtains is coupled with an emotion equally delicate and
varied, of pleasure or pain. Thus exquisitely sensitive, he finds
himself urged perpetually by wants which nothing in the world
he inhabits offers ilself to gratify, liable to calamities which
nothing, of itself, intervenes to screen him from ; and he is
never without the hope of some enjoyment, or the terror of some
suffering.

This apparent destitution of man is the great element of his
intellectual and physical superiority; inasmuch as it forces him
to the acquisition of that KkNowLEDGE in which he finds the
secret of supplying his wants. Nature has so ministered to the
comforts of inferior animals as to limit the wants they are them-
selves called upon to supply to a definite and an exceedingly
small number ; and limited as these wants, are their means of
perceiving the qualities of the external things which are neces-
sary for their gratification.

Man is a creature of boundless desires and wants, and he is
thus intellectually and physically great, because his desires and
his wants are thus boundless. Urged on in a perpetual round
of new sensations, every dne of which is more or less perma-
nently registered by the memory, and rendered an element of
knowledge ; he may be called emphatically, as distinguished
from all others, a learning animal. Had he possessed no other
distinctive qualification than that of organs infinitely better
suited than those of any other class of animals, to convey to his
mind distinct perceptions of the material world in all its modi-
fications, coupled with equally acute emotions of pleasure and
pain, together with unlimited desires for the enjoyment of ‘the
one, and for exemption from the other ; and, thus constituted,
had he been placed as we find him in a world where nothing
was supplied to his hand, for the gratification of these desires;
where every desire and every suffering pointed to the xNow-
LEDGE of some class of material existences, through which that
desire might be satisfied, or that pain avoided : were there no
higher attributes of humanity than these, it is scarcely possible
to affix a limit to the superiority which might, even with these
aids, be acquired by it in the scale of existence.

Here, then, is evidence of wisdom and goodness even in the
wants and the sufferings which have been allotted to man, emi-
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nently calculated to reconcile him to the discomforts which it hasg
pleased Heaven to place around him—the restlessness of those
desires which are implanted in his bosom, and his apparent
destitution in creation—elements, as these are, of that which
constitutes his pre-eminence. 'With power almost creative over
the material existences around him—with knowledge, the secret
of applying that power—with senses, admirably adapted for
acquiring that knowledge—and with necessities, impelling him
to its acquisition—Ilet us combine the godlike faculty of REasON,
a principle of life to the whole, and we behold in man a being
created for dominion in this lower world. “ Thou, O God, hast
made him a little lower than the angels, and hast crowned him
with glory and honour. Thou madest him to have dominion
over the works of thy hands.”

Thus furnished for combating with the physical evils around
him, how complete is his triumph over them! He piles up for
himself a dwelling in which, surrounded by an artificial heat,
he endures the storm, and may, if he chooses, scarcely be sen-
sible of the variety of the seasons. One animal he strips of its
coat for his covering, the life of another is sacrificed for his
food, and a third bears his limbs in luxurious ease. The earth
no longer produces the variety of her own spontaneous fruits,
but yields her increase under the exercise of his skill. Her
natural boundaries impose no restraint upon him, the inequalities
of her surface vanish from his path, and he harnesses the winds
to his chariot and traverses her scas. No distance removes her
stores beyond his reach. 'Within the boundaries of civilization
it is to be doubted whether there be any individual so destitute
or so wretched that the four quarters of the globe do not daily
minister to his necessities or his comfort.

When, in obtaining for himself the objects of his desires, his
own strength fuils him, he seizes upon the forces inherent in
matter, and brings them, in all their stupendous energy, to co-
operate with his feebleness. He can accumulate the weight or
attraction of inanimate matter to any extent, and direct its
combined operation to any point; that power, as existing in
fluid matter, he can cause to transfer itself any where, dis-
seminate itself through any space, and exert itself in producing
effects, however minute, or however powerful; in sweeping
away the smallest particle of dust, or causing to revolve a vast
complication of machinery. He holds in equal mastery that
force of repulsion which also pervades matter as universally as
attraction, and which we call heat. He can ualoese it from
the mineral substances amidst whose atoms it lies bound. He
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can infuse it into others whose parts are held together by forces
inconceivably greater than any we can appreciate ; he can over-
come those forces, and separate those parts. He can cause it
to insinuate itself, for instance, within the pores of the diamend,
scatter the cohesive power which constitutes it the hardest of
material bodies, and dissolve it in air. In its combination with
fluids, in the form of steam, he can accumulate and concentrate
this repulsion to any extent, and cause it to transfer itself to
any point where it may suit him to avail himself of its energies.

No less complete is his control in the application of these
powers when acquired. DBy the intervention of machinery he
can vary their quantity and direction in any way; concentrate
them so as to cause forces, acting through ever so large a space,
to exert themselves through ever so small a one, with energies
greater as that space is less, Ile can again dilute these in any
degree, so as to cause them to exert a feebler influence over a
larger space. The same quantity of power which, with infinite
lightness, but inconceivable rapidity, fines the point of a needle,
may thus, under another form, be made slowly to lift the ham-
mer of a forge. To carry on the analogy of a fluid, he can pour
this force from one body to another, accumulate successive in-
fluxes, and then throw their united energy wherever he chooses
to avail himself of it. How wonderfully is it seen acting in the
different parts of a manufactory, moving as it were through
huge channels along its centre, thence diffused in smaller veins
to its extremities, and yielding there to each workman a foun-
tain of power proportioned to his wants !

It is not, however, in respect to his physical nature alone
that he is thus elevated in creation. In respect to his moral
and religious nature also, man enjoys a high privilege in the
converse which it is permitted him to hold with the Most High
in his works. However a knowledge of the truths of Natural
Science may offer to him the means of augmenting his temporal
welfure, did the study of them produce an influence pernicious
to him in regard to that welfare which is eternal, who would
not wish that they should for ever be to him as a sealed book?
But it is not so. The principles of physical science, if rightly
viewed, point directly to some of the great and most important
truths of ReveLaTioN; above all they lead directly to an assured
knowledge of the existence and attributes of God. “For the
invisible things of him from the creation of the world are clearly
seen, being understood by those things which are made, even
his eternal power and Gopmeap*.”

* Romans i, 20.
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The following are some among those numerous processes of
inductive reasoning by which this great truth of revelation may
be arrived at. :

It is an early operation of the mind, when it turns to the

consideration of its own perceptions, to make a distinction be-
tween such as it derives perpetually the same, when the senses
are directed to the same objects, and those which are in their
nature momentary, or at least transitory. The former, .it classes
as properties or qualities; the latter, as facls or aclions. Of
these facts or actions, it is among the first perceptions of every
one, that some are subjzct to his own volition, that it depends
upon himself to produce their existence or not. Himself thus
acting he designates a cause; and the fact or thing done, an
eflcct.  Further, among the facts or actions themselves, to
which he thus stands in the relation of cause, he traces a
similar dependency, so that each fact is connected with some
other or others, by a relationship, essential to its existence.
This necessary relationship, like the other, he calls by the name
of cause and effect. The difference of the cases lies only in this,
that the one is voluntary and the other necessary. To the
class of facts which are dependent, is given the name of effects;
and of causes, to those on which they depend. When the
actions of which he is himself the immediate cause, become in
their turn the causes of others; to these last, they are said to
stand in the relation of secondary causes, and himself of primary
cause. These secondary causes may in their turn become causes
of others, and these of others, and so on through an infinite
sequence, to the whole of which he stands in the relation of
primary cause.

Now, turning from the facts which are thus linked with hig
own volition, to those which are independent of himself, he
traces a similar sequence. There is a perpetual chain of cause
and effect visible through all Nature. 'Wherever he directs his
investigation, he finds causes which are but the effects of others,
and these of others in a perpetual chain. Is it wonderful, that
here too (to complete the analogy) he should look for a first
cause? A first cause, to which this infinity of sequences stands
in the same relation that he does to such as are the creatures of
his own volition. Although his search for that first cause among
the beings whose existence is made known to him through the
medium of sensation, be in vain, yet, ascending through the
chain of causes, he has a distinct consciousness that he is
approximating to the first cause. The number of facts which he
perceives to stand in the relation of causes to the rest, continually
diminishes as he proceeds, until at length, he arrives at certain
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of them, beyond which his senses refuse to carry him ; and these
seem to him to stand next in order to the first cause. They may
be classed under the heads of TimE, SpAcE, MATTER, and Force.
The consideration of these in all their relations, and through the
whole chain of effects which grow out of their combination, con-
stitutes the science of NaTturaL Paivosoruy, or PHysics,

The science of MrcnaNiIcs, which, perhaps, properly includes
the whole, has been limited to those general principles which
govern the operations of force, in combination with matter,
whatever may be the nature of that force. Natural Philosophy
includes with this the investigation and discussion of the forces
themselves, as to their nature and distinctive properties.

Time and Space are, in their nature, one, and indivisible..
We can conceive no separation of their parts, such as that, in
their interval, there should be no time or no space. These the
mind readily admits to be primary effects and secondary causes.
Of Matter and Force, there are numerous varieties already
known, and many may remain to be discovered. It is impos-
sible, with any confidence, to rank all these varieties in the list
of primary effects. The number of existences, believed to stand
in immediate relation to the first cause, has hitherto continually
diminished, as science has advanced; philosophers having, in
each succeeding age, contrived to establish a dependence between
causes, which those of some preceding age had deemed second-
ary and independent. .

Every thing then leads to the conclusion, that the real num-
ber of secondary existences is exceedingly small. Does not this
look like the mode of the operation of a single agent? Why
this apparent economy in creative energy? Why these traces
of singleness of effort? Is it not precisely the manner in which
we seek to exert our own energies as far as we are able, within
the little sphere of operation which is allotted to us? Supposing
our finite wisdom, knowledge and power, to become infinite, our
nature remaining in other respects the same, should we not
thus seek to economize our efforts, in obedience to a law of
that nature, by which we are now perpetually impelled to a
like economy?

Are we not then led to the conclusion, that these few primary
existences, thus endued with a power of infinite reproductiom,
spring from the hands of a Being, to whose nature our own
bears some infinitely remote, but still distinct resemblance?
The truth thus indicated by reason, is confirmed by Revelation.
“God created man in his own image, in the image of God
created he him,”

B3
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In considering the relations of Time, Space, Matter, apd
Force, one of the first things that strike us, is the uniformity
of those relations. Such that the same cause shall, under the
same circumstances, always produce the same effect. This uni-
formity constitutes a Law; and each particular relation of cause
and effect, thus uniform, is a Law oF Narture. It is evident
that the science of Natural Philosophy mainly consists in the
study of these laws. It may be defined as the science whose
province it is, lo trace the chain of causes and effects in natural
things, and to determine the laws of their relations.

Of Natural Lamws, there are different orders, as there are of
‘causes. Primary laws, or principles, are placed with primary
causes beyond the sphere of scnsation. The term principle is,
however, used relatively; any cause being designated a prin-
ciple in reference to causes lower in the chain of sequence.

With regard to the actions which are the immediate sub-
jects of his own volition, every one perceives that he has the
power of modifying and varying them, together with the se-
quence of cause and effect growing out of each, in every con-
ceivable degree, and that he has also the power of adjusting his
effort as first cause, so as to produce a certain remote effect, and
neither more nor less than that effect. This adaption of the
primary cause (and with it of all the intermediate causes,) to
the remote effect, he calls pEsiGN.

It is this power of design, or conlrivance, which distinguishes
the relation of cause and effect, in living and intelligent beings,
from that which exists in the operation of inanimate agents and
unintelligent beings. Wherever we trace this relation of cause
and effect, coupled with design, there we therefore conclude the
existence and operation of an intelligent being. Now this de-
sign is ManiFest throughout Nature. Every blade of grass,
every bud, every leaf, every blossom that the wind strews
.around us, every one of those organized and living beings which
crowd the interstices of matter, each of these, in its order, pro-
claims design in the operation of that first cause to which it
owes its being; and thus it proclaims the existence of a living
and intelligent Creator.

This argument from design has been rendered familiar to
every one by the admirable work of Paley.

Turning again from the contemplation of the works of God
in the universe, to the consideration of his omn powers, man
Perceives that not only can he render those powers available for
the production of certain remote effects, but further, that he can
render those other external powers, over whose action he has ng
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control, available to the same end. Not in any way modifying
those powers, for that is impossible,~the mode or law of their
action being by the will of the great First Cause, but applying
them. Thus, he can avail himself of the gravitating force, or
weight, of a stone, to produce either pressure or impact; the
action of the slone is the same, but in the one case the impulses_
of gravitation which it continually receives are as continually

destroyed, whilst in the other, their accumulated energy is de-
stroyed altogether. Nay, further, he has power to bring about
the action of these natural causes upon one another. He can

bring, for instance, matter under the action of force; he can

subject these in every variety to the influence of time and space.

He can, further, induce the operation of these combinations in

every possible degree upon one another.

Now looking into the natural world, he perceives that there
must have taken place in it some such operation as that of which
he thus finds himself capable. All that now exists, might then
have existed as it does now; there might have been every atom
of matter, every particle of force, and the same space occupied
through the’same time, and these subject to the same laws; and
yet had not these been brought under the operation or influence
of one another, there would have remained a state of things,
the disorder of which it is beyond the power, or even the pro-
vince, of imagination to conceive. The whole would have re-
mained without form and void, replete with the elements of
disorder, and the subject of perpetual change. Here, then, we
trace again, evidence of the operation of a First Cause, bringing
together what we have termed second causes, and thus applying
their combined action according to the laws which he has him-
self first imposed upon them, according to a method of operation
to which man finds something similar, but inconceivably inferior
in degree, in his own power.

Tnere is yet another proof of the existence of the Deity,
drawn from strictly scientific considerations, and founded indeed
in the very principles of science, so striking, and yet so little
generally known, that it cannot be here misplaced, although in
calling the attention of the reader to it, it will be necessary, as
the argument is of some difficulty, to bespeak his attention.

Force, considered as a principle, or cause, of motion, resides
permanently in every particle of matter, whether it be animated
matter or not, the subject of an invariable law, and coNsTANTLY
in action. In animated beings a further portion of it is lodged
under the implicit direction of the will; at one time active, at
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another inert. Now the effects of this principle of force, in
commaunicating motion to bodies capable of movix}g ‘freely. in
space, differ, according as the cause is thus constant in its action,
or intermiltent. In Dboth cases the velocity communicated by
each impulse is relained; but in the one case the impulses are
continually repeated, and the velocity resulting from each is ac-
cumulated in the moving body; whilst, in the other, there is not
necessarily any repetition of the impulse, and the resultant
velocity, if there be no such repetition, is uniform. If, there-
fore, we can trace, in nature, the existence of free motion unac-
celeraied, we are assured that it cannot have resulted from the
operation of any of the permanent forces now acting in matter,
and that it must have sprung from a principle no longer appa-
rent in it, similar to that we find residing only in animated
beings. Now there 18 that motion. Looking into the system of
the universe, we behold motions, which the existing force of
gravily is not sufficient, alone, to account for; we find effects,
which cannot have resulted except from the operation of a prin-
ciple whose action has ceased; an impulsive force, similar to
that which we find placed under the direction of our own voli-
tion. Were there no other cause in action, the planets would
each direct its course towards the sun, and all matter would,
long ago, have collapsed in his substance.

There is no force acting now to draw them obliquely in
space, for, if it act nom, it must have acted from all eternity,
and be a permanent force. The orbit and the quantity of
motion of each planet would then, demonstrably, be other than
it is. Here, then, is proof that at some previous period, there
acted a Power impulsively upon each, by which it was projected
into space in a direction other than that which it would, by its
own inherent attraction, bave taken. “We understand, then,
that the worlds were framed by the word of God, so that, the
things which are seen were not made of the things which do
appear*.” 'We know that when the universe assumed its posi-
tion in space, there was there a Being endued with power
similar to that which we find residing in animated beings, and
which we call life. 'We know that “ there was a hand by which
the heavens were stretched forth, and a spirit by whom their
hosts were commanded.”

Not only, however, do the planets revolve round the sun,
Lut about certain axes within themselves, producing thereby the
alternations of day and night; and these axes are inclined at
certain angles to the planes of their revolution, thereby bringing

* Heb. ii. 3.
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about the variety of the seasons. Now to effect all this, as we
find it effected, the one original impulse must have been made
with a certain force, in a certain direction, and at a certain point,
on the surface of each planet. Here, then, is design. And
when we consider that the whole of Animated Nature is con-
trived with a view to the alternations of light and heat,—the
green leaf, the bud, the blossom, and the fruit, in vegetables;
the clothing, much of the internal organization, and the energy
and duration of the principle of life, in animals—do we hesitate
to admit that design to be the emanation of infinite wisdom ?

It may be asserted, that these are evidences indeed of the
operation of a creative power, but of that power acting in sub-
mission to pre-established laws of force, and that it remains to
ascertain the existence of a Being in whom those laws have
their origin. To this argument, again, science furnishes us with
a direct answer. Although this principle of force is shrouded
from our view with a mystery, which Nature throws about no
other of her operations, yet here too, are we enabled to see far
enough to distinguish infinite contrivance in the laws by which
it is governed; and contrivance is indubitable evidence of crea-
tive wisdom.

There is observable throughout nature, a wonderful economy
of this principle of force. Animal beings, in whom it is placed
in subjection to the will, are impelled to that cconomy, (under
the direction of instinct, or reason,) by the sense of weariness
and exhaustion. 1In every particle of inanimate matter, it is
implanted, directed to the same object, by infinite wisdom.
Accordingly, we find in the former class of beings, perpetual
efforts at the economy of force, which are necessarily feeble and
erring; and in the latter, that economy perfect. Throughout
inanimate nature, all is done with the least possible action; no
developement of force, however minute, is thrown away. -

The nature of the principle to which reference has been
made will, perhaps, be better understood from the following
illustration. If I wished to ascend or descend a hill, or pass
from one portion of it to another, with the least possible mus-
cular exertion, or expense of force, a slight consideration would
show me that the precise path to be pursued, would be depen-
dent on the form and inclination of the diffgrent parts of the
hill; upon the nature of my own muscular energies ; and upon
other data, of which I could scarcely by any possibility acquire
a knowledge, and on which when known, my intellectual powers
would be quite insufficient to enable me to found a conclusion.
Under these circumstances, the chances are infinitely greater,
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that I should select the wrong than the right path. Now, if I

_were to project a stone up the hill, or obliquely across it, or
suffer it to roll down it, whatever obstacles opposed its motion,
whether they arose from friction, resistance, or any other cause,
constant or casual, still would the stone, when left to itself, ever
pursue that path in which there was the least possible expendi-
ture of its cfforts; and if its path were fixed, then would its
efforts be the least possible in that path. This extraordinary
principle is called that of least action; its existence, and uni-
versal prevalence, admit of complete mathematical demonstra-
tion. Every particle of dust blown about in the air, every
particles of that air itself, has its motions subjected to it. Every
ray of light that passes from one medium into another, deflects
from its rectilinear course, that it may choose for itself the path
of least possible action; and for a similar reason, in passing
through the atmosphere, it bends itself in a particular curve
down to the eye. The mighty planets, too, that make their
circuits ever within those realms of space, which we call our
system; the comets whose path is beyond it; all these are alike
made to move 50 as best to economize the forces developed in
their progress.

Now, those forces which are not developed by living beings,
are planted in the substances in which they reside, by the hand
of God, and subjected to the laws which he from the beginning
imposed upon them. It has pleased the Almighty, then, that
the works of Ais hands should ever be wrought in accordance
with that principle of least effort which he has also implanted as
a principle of our nature in us, and which, thus impelled, we
ever develope more or less, in our own feeble effords. The
difference lies only in this, that in him this principle acts con-
trolled by infinite wisdom, and therefore, its operation is peryfect:
with us it manifests itself under the guidance of a limited
knowledge and most erring judgment, and its developement par-
takes in their imperfection. In the adjustment of bis efforts,
50 as to produce the required effect with the least possible ex-
pense of force—it has been shown, then, again, that (according
to a great truth of revelation) man is created in the image of
God, and that he retains the resemblance. The principle of
force lodged in each particle of matter, has been believed to be
but a direct emanation of the Deity, there acting continually,
and at every moment. The scrupulous economy of force, the
wonderful store (if the expression may be used) which Nature
sets by it, strongly points to that conclusion.

,  Man was created in the image of God, And it has been
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shown, that, in the possession of a power, almost absolute, over
the material existences around him; and, in' the exercise of an
intellect whose resources no effort would seem to exhaust—and,
in the manner in which he exercises that power and that intel-
lect—he may yet be said to retain traces of that original from
which he first sprung, and that image wherein he was first
created.

Do not these reflections at once suggest the contrast of his
moral condition? What does this description of his majestic
bearing in creation, the extent of his physical powers, the
resources of his inteHect, and his resemblance, in respect to his
physical nature, to the God who made him, so forcibly present
to the mind as the degradation of his moral nature, and its fall
from that perfect image in which we may reasonably conclude
that it too, as well as his physical nature, was first created?

Here, then, is another great truth of revelation suggested by
the reasonings of Natural Science.

It has been deemed expedient to be thus full in endeavour-
ing to show the direct and necessary tendency of the study of
Natural Philosophy, to strengthen our belief in some of the first
and fundamental truths of revelation, because an opposite ten-
dency has been attributed to it.—Were it not an impiety to
discuss the manifestations of infinite wisdom and goodness in
created things, otherwise than with seutiments of gratitude to
the Creator, and of deep humility before him, it could at best
be considered but as an affectation or a folly. It is impossible
to consider a course of iustruction complete, which, having for
its object to develop the relation of cause and effect in those
portions of the sequence of natural things which lie within the
scope of sensation, does mot point out their dependence upon
that First Cpuse which is beyond it. To be taught correctly,
the truths of Natural Science must be taught with a frequent
and direct reference to the wisdom, the goodness, and the power
of the Author of Nature, The study of Natural Philosophy
and Natural Theology, if rightly pursued, are one; and true
science but a perpetual worship of God in the “firmament of
His power.”

It may be asserted that we are sufficiently assured of the
existence and attributes of the Deity, by that revelation which
He has been pleased to make of Himself in bis word; and that,
even were this not the case, yet that the proofs of it are mani-
fest and every where; that they require no study, and constitute
no science. But, alas! although it be true that the ecarth is
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“full of the goodness of God,” and that His existence, power,
and wisdom, are every where to be traced, yet, (erring and feeble
as we are,) the very abundance and repetition of that proof
have a tendency to render us insensible to it. Now science
opens to us, on these points, new views infinitely more striking
than any that can be seen by the untutored intellect; views
calculated to impose gratitude on the most insensible, and to
bend in worship the minds of the most stubborn.

It has been attempted to point out the physical advantages
which man derives from a knowledge of the laws which govern
the relation of cause and effect, in inanimate nature. This
attempt will probably be met by the assertion that the know-
ledge necessary to secure to us these advantages demands no
study, and constitutes no science; that it is necessarily attained
or readily attainable by all of us. That all the knowledge of
natural things which is really practical and useful is given by
every man’s experience.

It is true that there is a vast fund of knowledge which is
acquired by us all in common, and in which Nature herself is
our instructress; a fund of knowledge, in comparison with which
all the extraordinary and artificial acquirements of any of us
above our fellow-men is probably as dust in the balance. The
whole sum of knowledge which a savage, for instance, must
have acquired, before he could frame together the materials of
his hut, or hollow out his canoe, is perhaps greater than the
additional knowledge requisite to convert that hut into a man-
sion, or replace that canoe by a ship of the line. But it is
equally true that this common knowledge has long ago exhausted
itself in our common comforts. If we would add to the well-
being of society we must know more. It is a great but a pre-
valent mistake to suppose that the inventions which have of
late so greatly augmented our physical happiness, have resulted
either from chance, or from the speculations of men untaught in
science. The very reverse has been the case. There is scarcely
a valuable mechanical discovery of modern date, which is not
in its nature essentially scientific, and dependent upon principles
either not generally known, or not to be acquired without con-
siderable research.

If it be urged that men eminent for their inventions have at
any rate advanced but little beyond mere principle, it may be
answered that it was because those applications of science to
the arts which constitute their inventions were to be found even
in its principles, and on its threshold, not because there were
not other and even more veluable applications beyond it.
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Science, in all its departments, is rich in knowledge appli-
cable to the wants of society. It is when practical men add to
their experience sound views in theory, that it is made to con-
tribute its resources to the public welfare. This is, however,
an exceedingly rare union. The arts are, consequently, vastly
behind philosophy. The practical man imagines unreal diffi-
culties in the attainment of scientific knowledge, and consoles
himself by underrating the advantages which science has to offer
him. The man of science, wrapt up in the pride of abstract
reasoning, will not trouble himself to encounter practical diffi-
culties. His vocation is to discover; to smooth the paths and
to extend the domains of knowledge; it belongs to the other to
follow in his steps, and to apply it. The considerations which
have been here stated have suggested the plan of the following
work.

The object of the work, then, is to make known to practical
men, and others whom it may concern, those great principles,
which abstract science has shown to determine the conditions
of the equilibrium and the motion of material bodies, subjected
to the operation of force in all its modifications. And to do
this, as far as it may be possible, by direct experiment, or by
elementary reasoning directly founded upon experiment.

The author is convinced that much sound and useful me-
chanical information may thus be communicated to those who
have acquired no previous mathematical knowledge. And most
valuable of all scientific knowledge as he holds that to be, yet
does he think it in the highest degrce desirable that all such
scientific truths as admit of application to the wants of life, and
of being soundly (that is, demonstratively,) communicated, with-
out reference to abstract principles, should so be communicated.
At the same time he begs to state, that he can offer a knowledge
of the subject of which he is about to treat, to no one who is
not gifted with a certain share of intellectual aptness, and who
does not possess an inquiring spirit,—a disposition to attend to
that which is taught him, and an ability to think for himself.

There is no method of acquiring sound scientific informa-
tion, without thought and persevering attention on the part of
the student; and there is no other than sound information
which can be useful, either as a discipline and high accomplish-
ment of the mind, or as practically applicable in the arts, The
business of philosophy is with the understanding. That know=
ledge is falsely and meretriciously called scientific knowledge,
which is intended for the memory, and takes its standing there”
exclusively, and which, consisting in no real acquirements in
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any science, is commonly accompanied by great presumption
inall. This is a knowledge which can have no other earthly
use than to enable men, by adroit management, to take a certain
position in society as men of science to which they have no
legitimate claim, and to make them egregiously vain of their
suceess. .

The influence of the study of Physical Science, considered as
8 branch of general education, directed to the ultimate forma-
tion of character, is this, that it inspires in the student an ab-
stract love of truth, whenever and wherever it is to be met
with; an intense pleasure in the pursuit of it; and an insuper-
able contempt for sophistical reasoning, and unfounded preten-
sion. By dint of continually applying himself to the search, he
at length comes to be possessed with an ardent love for the
thing sought. And his efforts in the search of it go not unre-
warded; he finds it with certain evidence, he is penetrated with
its beauty, he stores it as a gem of inestimable price, and soon
acquires correct ideas of his own power to develope it, together
with an intuitive perception where it may certainly be foupd,
and where not.

When the ingenuous mind of youth has thus once been im-
bued with a true estimate of its own resources, and the humility
which is ever the result of that knowledge, with that unmeasured
dislike for presumption and error, that indomitable love of truth,
that passion for its investigation, and that unwearied patience in
separating it from falschood, which science mnever fails in a
greater or less degree to give; how does it go forth into the
business of life? It may be deficient in that promptitude and
readiness of wit which, although it have no sort of alliance with,
and in fact seldom accompanies, sound intellectual endowments,
may yet bave its use, as passing current for them in society.
This science may not give, but there are nene of the high and
honourable avocations of life, for which such a discipline of the
mind will not have abundaatly prepared it.
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CHAPTER 1.
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1. Force is that which tends to cause, or to destroy motion.

2. The direction of a force is, that in which it tends to
cause or destroy motion in the point to which it is applied.

3. It is found by experiment, that the effect of a force
acting in a given direction on a solid mass, is the same at whai-
ever point it is applied to it, provided only that point lie in the
direction of the force,

Thus, if forces act in the
directions p,p,, P.p,, Psp,, upon
the solid mass anc, these all
produce the same effect as »
though they were applied to
it any where in the lines r,p,
PyD,, P,Pg, OF in these produced.
Thus, for instance, they produce the same effect as though they
were applied to it in o; provided that, as in the figure, they
intersect in o.

4. Any number of forces, which being applied to a body,
destroy one another’s tendency to communicate motion to it,
and thus hold it at rest, are said to be in equilibrium,

5. When a body is held at rest by two forces, these are
said to be equal to one another*.

6. It is found by experiment, that two forces cannot hold
a body at rest, unless they act in opposite directions, and in the
same straight line,

* The body is supposed here to be acted upon by no other forces what-
ever, besides these two.
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#. 1f, instead of applying the two forces whi‘ch are thus
equal in opposite directions, we apply them both in the same
direction, the force which must be applied in an opposite direc-
tion to sustain the (wo is said to be double of either of them.
If we take a third force, equal to either of the t\yo first, and
apply the three in the same di'rection, the' force which ‘mus't be
applied in the opposite dircction to sustain the three, is said to
be triple of either, and so for any number. .

8. Thus, fixing upon any one force, and ﬂscertm.nmg. how
many forces equal to this are necessary, when applied in an
opposite direction, to sustain any other force, we shall arrive at
a true conception of the amount of that other force, in terms of
the first, and may compare it with any third force whose amount
has been ascertained by reference to the same standard.

9. The single force, in terms of which the amount of any
other force is thus ascertained, is called an unit of force.

10. Forces, whose amount is ascertained in terms of some
known unit of force, are said to be measured.

11. The units of force which it is found most convenient
to use, are the weights of certain portions of matter, or the
forces with which they tend towards the centre of the earth.
The quantities of matter whose weights are used as units of
force are different in different countries.

12. With us the unit of force, from which all the rest are
derived, is the weight of 22-815% cubic inches of distilled water,
called one pound troy. This being divided into 5760 equal
parts, the weight of each is a grain troy, and 7000 such grains
constitute the pound avoirdupois.

13. When we wish to represent the value of a force, we
usually write down the number of the units contained in it; and
annex to the figures expressing that number, the designation
of each unit. Thus, 15 pounds avoirdupois, represents a force
eguivalent to fifteen units; each unit being one pound avoirdu-
pois; that is, each being the weight of a quantity of distilled
water, found by dividing 2285 cubic incles of it into 5760
equal parts, and taking one of these parts 7000 times.

14. Another method, however, of representing the value of

a force may be conceived.
va If we take a line A B, com-

posed of any number of
equal parts, and suppose each part to represent an unit; then

Br Y T T T T T

* This standard is fixed by an Act of Parliament, bearing date June
25, 1824. The temperature is supposed to be 62° Fahrenheit, and the
barometer to stand at 30 inches.
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will the whole line convey to the mind an acurate idea of a-
force of as many units as there are such parts in it. Now it
is evident that on this P
hypothesis, the actual
length of the line is im- 8 ~——r—————1—T——1A
material. Two lines A5

and cp of different lengths may, in fact, represent the same
force; the lengths of the parts P and P/, representing units,

being different*. For in- ¥
stance, p and »’ each re- -
presenting one pound, p T ¢

either line will represent
seven pounds.

15. Lines taken as above, to represent forces in magnitude,
bave this futher advantage, that they may be made to repre-
sent them also in direction. Thus, if two forces act upon a
point in directions inclined to one an-
other at a certain angle, and two lines
A0 and Bo be drawn inclined to one
another at that angle, then taking any
line b, to represent an unit of either
force, and measuring o P 50 as to contain B _
D as many times as there are units in
the one force, and o qQ so as to contain
it as many times as there are units in the other; these lines ro
and qo will represent accurately not only the relative magni-
tudes of the forces; but their relative directions. And the con-
ception we shall obtain of them from the diagram will be com-
plete, if when they act lowards o, they be supposed to be repre-
sented by ro and qo; and by or and 0 @, when they act from
it. po and qo taken as above, are said to represent the two
forces concerned in magnitude and direction.

16. It is quite clear that these two forces will not hold the
point to which they are applied at rest, not being equal to one
another, or acting in the same straight line, and in opposite
directions. (See Art. 6.) A third force is necessary to the
equilibrium. The magnitude and direction of that third force
may be determined as follows.

* The lines or parts, taken as above, to represent units of force, are
in the following treatise, called units of length. It is evident that if we
fix upon the length of the line to represent a force, we shall find the unit
of length by dividing the line into as many equal parts as there are units in
the force ; and conversely, if we fix upon the unit of length, we shall find
the length of the line representing the force, by repeating that unit of length
as many times as there are units in the force.
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147. Through the extremities » and q of the lines Qo and
P o, draw two other lines, Q R and p r, one of them QR paraflel
to o p, and the other R parallel
to oq. The four will then form
a parallelogram poQr. Join its
two opposite angles o and R
by the straight line ‘o . Then
this line o R, called the diagonal
of the parallelogram, represents
the force which will hold the
other two at rest, in magnitude and direction. Or, in other
words, if we take a force containing a number of umits equal to
the number of times the line » is contained in o R, and apply
this force at o in the direction o R, it will just be in equilibrium
with the other two.

This remarkable law of the Parallelogram “of Forces, which
governs the equilibrium of any three forces of whatever kind,
may be stated as follows. If three forces acling upon a point
are in equilibrium, and lines be measured from this point in the
directions of the forces, so as lo contain, each, a given unit of
length, as many times as there are units in each jforce; then
these lines will form the adjacent sides and diagonal of a
parallelogram. It may be shown to be a necessary consequence
of a few exceedingly simple and self-evident principles. Un-
fortunately, the deduction requires, however, considerable ma-
thematical knowledge, and lies beyond the scope of a work like
the present*.

18. It is, nevertheless, easy to assure ourselves of the
truth of this law by experiment. The accompanying figure
represents a circular frame or ring of wood, supported firmly in
an upright position, upon a stand. Moveable pulleys p,, p,, P,
are 5o contrived as to admit of being fastened at any points of
the circumference of this ring, having their wheelst parallel to
its surface. Weights w,, w, w,, are then attached to fine
siken cords passing over these pulleys, and knotted together in
a point 0. The system being left to itself, will, after a time,
assume a position in which it will rest. The three forces
acting at o, having in that position the directions necessary to
their equilibrium. Now, if the hollow portion of the ring be
filled up by a board, slightly receding from its -anterior surface,
80 as to allow the system of strings to move perfectly free of it,

* See Appendix A.

+ These wheels must be made with every precauton against friction;
the axle should be fixed in the twheel.
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end upon this board (which may be cevered with paper, or
blackened, so as to admit of having lines drawn upon it with
pencil or chalk), we draw lines in the directions of the strings
oP, 0P, and o P, ; then, taking any line » for an unit of length,
and setting off this lme p (with a pair of compasses) as many
times along the line op
(beginning from o) as
there are units of weight
(ounces for instance) in
the weight wy, and along
oP, as there are of these
units in we; and com-
pleting the parallelo- P
gram o PR Q, by drawing
lines upon the Loard,
from F and @, parallel
to oq and oP respec-
tively; we shall find
that o will be contained
as many times in the
diagonal oR as there
are units of weight in
w,, and that this dia-
gonal will be in the
same straight line with

or,, Now, the lines (FHIHETEEES
op and 0Q represent

two of the forces acting at o in magnitude and direction; and
these are held at rest by w,, acting in the direction o p,, which
last is shown to be represented by or in magnitude and
direction: and this is true, whatever be the magnitudes of the
weights w,, w,, w,, or the positions of the pulleys p, »;, p,:
whence the truth of the proposition is apparent*.

* Among the apparatus of the class of Natural and Experimental
Philosophy in King’s College, is a parallelogram o P » @, made of thin slips
of box-wood, divided into inches and tenths. These are connected together
at the angles by moveable joints, and each of the points p and a .80 con-
trived that it may be made to slide along either of the sides which it
connects together. A slip of wood, R’ ¢, of sufficient length to form a
diagonal to the parallelogram, moves freely with o » and 0 @, on the joint o.
—From the extreme lightness of the materials, the weight of the whole is
exceedingly small.

This instrument is thus applied to prove the proposition stated in the
text: An inch, half, quarter, or eighth of an inch, being fixed upon as the
most convenient unit of length, the joint p is made to slide along o P, until
that line contains as many of these units as there are units of weight in w3
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.. 19. If, instead of the forces o and o0q, we apply ato a
force represented in magnitude by the line o ®, and acting in
that line from o towards R, it is clear that the point o will
remain at rest, the forces applied to it being equal and opposite.
The same effect resulting from the action of the single force,
O R, as from that of the two op and oq, (viz. the support of
the force in the direction o p,, and the equilibrium of the point
0,) it is said to be their resullant, or and oq being called its

components.
20. Conversely, if a force, represented in magnitude and

direction by the line o R, sustain a force acting in the direction
of the line oPpy; and we take forces acting in any two other
directions, o p, and or,, and represented in magnitude by lines
op and 0 q, determined by drawing from the point R lines r p
and R q, parallel to the directions o P, and op,; then, if these
forces be made to replace the single force or, the equilibrium
will remain under the same circumstances as before. The force
oR is then said to be resolved into the two op and oq, and
these are said to be equivalent to it. The directions or, and
o p, are any whatever. A given force may, therefore, be resolved
into two others, in any given directions whatever.

and, in the same way, o @ is made to contain as many units of length as
there are units of weight in wy. » R and @ R are then made, by means of
other sliding joints at ¥ and @, to be of the same lengths with o @ and o p.
Strings are then fastened
to the extremities A, B, and
c, of the slips 0 A, 0 B, and
oR’; and these are passed
over the pulleys p,, p,, and
Py, (see p. 31), and attached
to the weights w,, w,, w,.
The system being now left
to itself, the equilibrium
will take place under the
same circumstances as be-
fore; and the slip o R’ will
be found to have assumed
the position of the diagonal
OR, and to contain as many
of the assumed units of length
as there are of the units of
weight in wg.

We may vary the ex-
. periment by altering the
‘weight wy; W, and w, remaining the same. The system will then take up
a new position; but still or’ will be found to coincide with the diagonal
OR, and the length of this diagonal to have been increased or diminished by
the same number of units as the weight w,. '
c This instrument was made by Messrs. Watkins and Hill, of Charing

TOSS.
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& It is clear, that, whatever be the number of forces acting
upon the point o, we may replace any one of them, o ®, by two,
op and o q, into which it is resolved; and conversely, we may
replace any two, o p and 0 g, by their resultant, o r.

21. Knowing the directions of the three forces which hold
a point at rest, and the magnitude of one of them, we can
delermine the magnitudes of the other two forces. For we
know that lines representing the three in magnitude and
direction, will form two adjacent sides and the diagonal of
a parallelogram ; taking, therefore, a line representing the
known force for any one of these parts of the parallelogram, we
have only to complete it so that the two other parts may be in
the directions of the two remaining forces. These parts will
then represent those forces in magnitude, and they will conse-
quently be known to us.

Thus, if three forces act upon the point o, in the directions
oP, 0Q, RO, (fig. page 30,) and the magnitude of that which
acts in o p be known ; then, representing this force by op, in
order to determine the magnitudes of the other two, we have
only to form a parallelogram, of which op is one of the sides,
and which has its other side and diagonal in the directions of
oq and or. Such a parallelogram will evidently be formed
by drawing through P a line parallel to oq, until it intersects
the direction of oR, in R, and through R, a line parallel to op,
intersecting o q in Q.

22, If a body be acted upon by three forces, and these
hold it at rest, the lines in which they act will, when produced,
meet in the same point. Let p,p, P, p,, P, p; (see fig. page 27),
be the directions in which three forces act upon the body*
A B, being applied to it at the points p, p,, p,. Produce
P, p,, and P, p,, to meet in 0. Now, the force », p, will produce
the same effect, at whatever point we suppose it to be applied
to the body, provided that point be in the line p, 0, in which
the force acts (Art. 3); and the same is true of the force », p,.
The forces P, p, P, p,, produce, therefore, the same effect upon
the body as though they were applied to it in o. They have,
therefore, for their resultant, a force acting through that point.
Now, supposing them to be replaced by their resultant, it is
clear that the body will be acted upon only by two forces,
namely, this resultant and the third force, p, p,; and, since it
is at rest, these must act in the same straight line, but in
opposite directions (Art. 6); that is, the resultant of the forces
P, p, and P, p,, which passes through o, must be in the same

* The body is to be supposed without weight.
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straight line with »,p,. »,p,, when produced, must, therefore,
pass through o.

The above demonstration applies, strictly, only to that case
in which the directions of the forces, when produced, meet at
some point within the body; it may, however, be applied to
the equally common case, in which they meet at some point
without it. For let us sup-
pose P, and Py, when produced,
to meet in a point o, without
the body. Then, although we
cannot at present suppose the
forces to be applied to the body
in o, the body, in fact, not ex-
isting there, yet we may suppose it to be extended, so as to
include that point, without altering the conditions of the
equilibrium; provided, that by so extending it we do not in any
way add to or diminish the forces which already act upon it.
The forces and their points of application remaining the same,
it is clear, that if they were in equilibrium before, they will be
80 now. Now conceiving the body to be thus extended, so as
to include the point o, the case will resolve itself into that
which we have before considered.

APPLICATIONS OF THE PRINCIPLE OF THE PARALLELOGRAM
orF ForoEes.

THERE is scarcely any case of equilibrium, in which the
principle of the composition of forces acting upon a point does
not find its application. Out of the variety of illustrations
which present themselves, we shall select the following:—

23. Let us suppose a given weight, w, to be supported, as
in the accompanying figure, by means of a
horizontal beam, Ac, abutting in a vertical
wall at A, and sustained at its opposite
extremity by an oblique stay, Bc; and let it
be required to determine the thrust* and
strain upon the timbers Ao and Bo, and
upon the wall at A and B. Draw Bp paral-
lel to Ac, and oD to AB; divide ¢p into as
many equal parts as there are units of
weight in w, and find how many such parts
there are in ca and ¢B. The numbers thus obtained will equal

# A thrust is that force which, acting in the direction of the length of a
timber, tends to oampress it. A strain, that which tends to. lengthen it.
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those of the units of weight in the pressures in A ¢ and Bo.
For the point ¢ is held at rest by forces in the directions ¢p,
04, and Bc. These, therefore, are represented in magnitude
and direction by the sides and diagonal of a parallelogram.
(Art. 17.) Now, (Art. 14,) cp represents one of these in
magnitude and direction, and c 4 and Bc are in the directions
of the other two. If, therefore, we construct a parallelogram,
having op for one of its sides, and having another in the direc-
tion ¢ A, and its diagonal in the direction cB, this will be the
parallelogram of forces acting at ¢. (Art. 21.) The only such
parallelogram which can be formed, is manifestly A B¢ p.

If, ¢ remaining the same, we cause the point B to move
towards A, giving to ¢ B a more inclined position and shortening
it, cp will be diminished; and, dividing it as before into as
many parts as there are units in w, each of these parts must be
less than before; the number of parts equal to them in Ac
must, therefore, be greater than before, and, therefore, the
number of units of weight in the pressure on Ac must be
greater ; and similarly it may be shown, that the pressure on
cBis increased. In the above investigation we have neglected

the weight of the timbers themselves. A
The Russel Press—a o and B0
represent two bars jointed together at | ?

the point ¢; these being placed be-

tween two surfaces, A and B, on one

or both of which pressure is to be B

produced, a force is made to act upon the joint ¢, in the d rec-
tion of Q. The tendency of this force to increase the angle
AcB is resisted by the surfaces at A and B; this resistance is
propagated along the rods Ac and Bo, and when there is an
equilibrium, the point ¢ is held at rest by forces acting in the
directions Ac, Bc and Q. To determine the first two forces,
knowing the last, we have, therefore, only to complete a paral-
lelogram, A ¢BD, and to divide its diagonal, ¢, into as many
parts as there are units in Pq; the numbers of these parts
contained in Ac¢ and Bc will ascertain for us the pressures
required. (Art. 21.) It is clear that as ¢ is less, or the angle
Acs greater, 0 will be less, and therefore the magnitude of
each of the parts into which ¢ is divided, will be less, and the
numbers of these in A ¢ and B e greater; the pressures in these
directions will, therefore, be greater. Also when ¢p is exceed-
ingly small, or A c and 0 B nearly in the same straight line, these
parts being exceedingly small, the number of times they are
contained in Ac and Bc will be exceedingly great. Thus the

Cc2
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pressures on A and B may be increased without limit by bringing
40 and B c more nearly into the same right line.

25. The mechanical contri-
vance to which the strings of
harps are attached, enables the
tuner to distend them with a
force equal to four or five times
that of his wrist*; yet a child
has in its fingers sufficient power
to sustain their tension when
but slightly deflected. This is
readily explained :—If A QB re-
present the deflected string, and
we complete the parallelogram
emno, of which the equal sides
am and Qn represent, each, the
tension of the cord, the diagonal
oq will represent the disturbing
force, when it just sustains these
tensions (Art. 17); and this is,
manifestly, exccedingly small, compared with the former, pro-
vided the deflexion be small.

26. A very simple illustration of the principle may be
drawn from the method usually adopted in tightening the cord
of a package. A por-
tion of the cord having
been  passed trans-
versely round it, in the
direction ABE and
pulled tight by means
of a slipping-knot on
the opposite side to
that shown in the figure, the remainder is made to traverse it
longitudinally, and, being passed under the cord AB, is pulled
backwards; and it is found, that, however tight ABE may
before have been drawn, a very slight force thus applied in the
direction pp is sufficient to produce a considerable deflexion of
the cord between A and B, and thus increase the tension upon
that cord, and tighten it throughout its whole length. The
amount of this tension may readily be determined. Completing
the parallelogram A pBm, we have only to divide the diagonal
Pm into as many equal parts as there are units in the force we

* It has been calculated by M. Prony, that the strings of a piano are
stretched by a force equivalent to that of four horses. ¥ F
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exert in the direction P p, The number of these parts contained
in P A or P B will give us the number of units of force in the
tension (Art. 17).

27. Suppose an arrow
to be drawn back into the
position E F ¢, immediately
before it is released from the
bow; the force which is ex-
erted by the hand of the
archer at @, to resist the
expansion of the bow, is
that with which the arrow
is discharged. Now, the
point @ is held at rest by
this force, and the tensions
of the string in the directions
@ ¢ and ¢ p.—These tensions
are equal, if the string be
drawn by the right hand,
and the bow bent by the left, each precisely in ils middle point.
Taking, then, two equal lines, ¢ m and @ », to represent these
tensions, and completing the parallelogram m % n g, the resultant
(Art. 19) of these, being that force with which the arrow is
discharged, will be represented by the diagonal @ # (Art. 17).
It is clear that @ k is greater as the bow is more bent.

28, The direction in which « body acled upon by any
number of forces first mores, is manifesily that in which a single
Jorce of sufficient magnitude might be applied, so as to hold it
at rest. Such a force is cqual, and opposile lo the resultant of
the forces which act upon the body. Hence, thercfore, con-
versely, the direclion in
which a body moves is
that of the resullant of
the forces which act
upon it.

29. The resistance
of the air to the motion
of each of the wings of a
bird is perpendicular to
the surface of the wings.
And the force with
which the bird urges
itself forward with each
wing, is in a direction
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opposite to this resistance. Draw p A and p B, perpendicular to
the surfaces of the two wings; then » A and » B are the direc-
tions of the forces by which the bird impels itself forward with
each wing. Take the lines p E and D F to represent these
forces in megnitude, and complete the parallelogram E ¢ F;
their resultant p @ (Art. 19), thus determined, is in the direc-
tion in which the bird is made to move. If the wings be
similarly extended, and the force which the bird exerts with
each the same; the lines A p and B p, will make equal angles
with the line P D passing through the centre of the bird's body,
and £ p and F D being equal, p ¢ will coincide with that line.
So that the motion of the bird will be directly forward.

29. The forces by which a swimmer impels himself, are in

dircctions perpendicular to the soles of hLis feet, and the palms
of his hands. If these

be equal on either side
of his bedy, his motion
is in the direction of
its length, the result-
ants of both forces
lying in a line passing
through the centre of
his body. If the force
with which he moves
one foot be greater
than that with which
he moves the other,
) one of the adjacent
sides of the parallelogram, A'B'c'D!, being greater than the
other, the diagonal will tend towards the greater side, and the
motion of the lower part of the body will be in that direction.
If he use greater force with that hand which is on the same
side the body, the resultant of the forces on the hands will, on
the contrary, be from that side; and the head will move towards
that side, and thus his body will
be turned round.

30. The rowing of a boat
presents another case of a body
impelled by forces applied ob-
liquely on either side; but having
their resultant in the direction of
its length.

31. The sails of a ship may
be so placed, as to cause it to move in a direction greatly
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different from that in which the wind blows; and in fact, if
required, to hold a course directly in opposition to it. Suppose
the wind to come in the direction P q, and (Fig. 1)
one of the sails of the vessel to be placed
obliquely to it in the direction of ¢ p. Take
P Q to represent the force of the wind, and
complete the parallelogram PR @ T; having the
side Tq parallel to the sail, and @ R perpendi-
cular to it. The force P q is then equivalent
to the two (Art. 29), T @ and Rq, of which
T Q being applied in a direction parallel to the
surface of the sail, takes no effect upon it.
The only effective force is, therefore, R Q.
Draw oM parallel, and @ s perpendicular to a
line passing through the centre of the vessel,
and complete the parallelogram @ MR8. Then the force rq is
again equivalent to the two Mq and s @, of which the former
tends to give the vessel a motion in the direction of its length,
and the latter sideways. The latter force is opposed by the
action of the fluid on the broadside of
the vessel; the former, by its resist- (g, o)
ance on the sharpened prow. Hence, )
themotionsideways, called its lee-way, ¢
is exceedingly small, compared with
that in the direction of its length.

It is clear, that if the wind blew
in the direction B o (fig. 1), it could
not be made to fall upon that surface
of the sail ¢cp which is towards the
stern of the vessel, on which surface p
it must evidently fall, so as to impel !
the vessel, in any degree forwards.
To cause the wind to fall on this sur-
face of the sail, we must incline the
position of the vessel to its direction.

Suppose it to be required to sail
from B to A (fig. 2); the wind blowing
directly from o to B, and let the vessel be brought round
with its head in some direction B P inclined to B A. The
sails may then be so placed, as that the wind may fall obliquely
upon them, and it will move in the direction Br. Having
sailed for a time on this tack, its course may be altered to P q;
and a third tack will bring it to a.
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CHAPTER II.

32 The Equilibrium of any number 34 Illustration of the Polygon of
of Forces applied to a point. Forces.
33 The Polygon of Forces.

32. To determine the conditions of the equilibrium of any
number of forces acting upon a point. Let the lincs o p,, 0 P,
&c., represent in
magnitude and di-
rection any number
of forces* acting
upon the point o.
Through the points
P, and P, drawp, p,
and p, p, parallel to
o p, and o P, re-
spectively, and join
op,. Then thetwo
forces o P, and o P,
are equivalent to a
single force repre-
sented in quantity
and direction by
or,. (Art. 19.)
Through p, and p,
draw lines p,p, and
p.P,» parallel to o p, and o r, respectively, and joino p,. Then
o p, represents in magnitude and direction a force equivalent
to o p; and o P,; and, therefore, to o p,, 0 Py and o B,; since
o p, is equivalent to the two first of these. Similarly, if we
draw through the points p, and p, lines parallel to o p, and o p,
respectively, and join o p,, that line will represent a force equi-
valent to the two o p, and o p,; that is, to o P,, 0 Py, 0P, and
o p,; that is, to 0p, 0 P,, 0 P,,and op,. Inlike manner, it may
be shown, that if pp,and p,p, be drawn parallel to o p, and
o p, and o p, be joined, this last line will represent a force equi-
valent o P, 0 P,, 0 Py, OP,, O P,

Since, then, the force o p, is equivalent to all those which act
upon the point, excepting only the force o py; if the point be
kept at rest by these, the forces o p, and o P, must be such as
would hold it at rest; that is, they must be equal and opposite.

* It is immaterial whether the forces be in the same plane or not.
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Thus, knowing the directions and magnitudes of any number of
forces, op,, op,, &c., and finding a force o p,, equivalent to
them, as explained above, we know the magnitude and direc-
tion of another force, o ps, sufficient to complete the equilibrium,
and keep the point o at rest. The force o p, is the resultant of
the five,op, 0P, 0P, 0P, 0P,

It will be observed that the line oPp,, represents the first
force, and that p, p,, which is equal to or,, (being opposite
sides of a parallelogram,) represents the second in magnitude,
and is parallel to its direction; and, similarly, that the lines
P: Py PPy P, Py Tepresent the other forces in magnitude, and
are parallel to their directions. Now, these lines form the sides
of a polygon, o p, p, p; p, ps Which the resultant, o p,, completes.

33. Ience, therefore, if any number of forces act upon a
point and we take a polygon, one of whose sides is formed by the
line representing one of the forces, and the other sides in succes-
sion by lines representing the other forces, in magnilude, and
parallel to their directions, then the line which completes the
polygon will represent the resultant of the whole. This proposi-
tion is called that of the polygon of forces. Its discovery is
attributed to Leibnitz.

34. The following is an instance, among many others, of
the action of more than three forces. Great bells, which it is
beyond the power of one man to
move, are rung by the joint ef-
fort of several men. These pull
each a rope, attached to the
main rope of the bell, the force
upon which is the resultant of
their individual efforts. The
amount and direction of this
resultant may, in all cases, be
readily found.—Let o P, op,
o P, &c., represent the direc-
tions in which the forces of the °
different ringers are exerted. I
Draw, parallel to these, the
lines p, p,, p,, p,» &c., represent- B /p, |Ps
ing in magnitude the force ex-
erted by each, and forming sides .
of a polygon. The line p, p,,
completing the polygon, will represent the magmtude and direc-
tion of the resullant force,

The ringers at each bell are commonly place% a; equal dis-
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tances round the circumference of a circle, having a point im-
mediately beneath the main rope for its centre. Supposing the
forces they respectively exert to be equal, their resultant will be
in the vertical direction of the main rope itself, and will have no
tendency to communicate a lateral or oblique motion to it.

CHAPTER IIL
On the Equilibrium of a number of in a Body, but acting all in the
Forces applied to different Points same Plane.

35. O~ a smooth horizontal table, let a flat board A B ¢ be
laid*, and let there be fixed any where round the edge of the
table a series of pulleys, p,, P, P,, &c., (in planes at right angles
to its plane),
each having the
highest portion
of its circumfe-
rence on a level
with the surface
of the board.
Attach strings
to the points p,,
Py Py Po> Po» 1Y
where taken on
the surface of
the board, and
having  passed
them over the
pulleys p, P, P,
&c., fasten to
theirother extre-
mities weights,
which we will suppose to be represented also by the letters
P, P, Py, P, P,*.  Let the system now be left to itself; when it
bas attained a state of equilibrium, there will be found to exist
the following remarkable relation between the quantities and

* To prevent friction, the board should be made to rest on three small
ivory balls, so placed as not to be brought into contact. It is a yet better
expedient to floht the board in a vessel of water, so that its surface may rise
slightly above the edges of the vessel, on which the pulleys are to be fixed.

T The weights are not shown in the figure. Experiments of this class
are the more accurate, as the weights, and the diameters of the pulleys,
are greater, and the rigidity of the cords, and the friction opposed to the
metion of the beard, less.
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directions of the forces applied to it. If from any point M, in
the plane of the surface of the board, we draw perpendiculars
Mm,, M mg, M my, &c.,upon the directions e, p,, », py, P, py &e.,
of the different forces acting upon it, and multiply the number
of units in the length of each perpendicular by the number of
units in the force on whose direction it is drawn; then the sum
of these products, taken in reference to those forces which tend
to turn the system about that point, in one direction, will be
found to be equal to the sum of those taken in reference to the
forces tending to turn it in the opposite direction*, Thus, in
the figure, if the force P, be multiplied by M m,t, p; by M m,,
and p, by M m,, and the sum of these products taken, it will be
found that this sum will equal that of the products, p, by M m,,
and p, by mm, The product of the force, by the perpendicular
upon its direction upon any given point, is called the moment of
that force about that point. Hence, therefore, the law may be
stated thus,

* Experience proves to us the following important law of statics; that
if any system of forces be applied to a body, so as to be in equilibrium,
and a second system of forces be applied to the same body also in equi~
librium, then the conditions of this last equilibrium shall be precisely the
same as though the first system of forces did not exist; the two sets of
forces not interfering in any way with one another. Thus, if there be two
sets of forces, and either of them will keep the body at rest, when applied to
it separately, then the two will keep it at rest when applied together ; and
conversely, if two sets of forces applied to a body, hold it at rest, and it is
known that the forces composing one of these are in equilibrium with one
another, then it is also known that the forces of the other set must be in
equilibrium amongst themselves. In the investigation of the laws of statics
by experiment, it is of great importance to bear this fact in mind. The
great obstacle to the experimental method of investigation consists in the
impossibility of our obtaining any portion of matter, whereon to apply the
forces, the conditions of whose equilibrium we wish to investigate, which is
not already acted upon by the force of gravity; the nature and amount of
whose action upon it we must be supposed not to know. The difficulty is
got over at once, by causing the body on which we are about to experiment,
to be acted upon by forces which will just neutralize its gravity or weight.
The conditions of the equilibrium of the forces we then apply, will be pre-
cisely the same as though no others acted upon it. The experiment in the
text presents an example of this, The board is, in point of fact, acted upon
by two sets of forces : its weight and the resistances of the balls in directions
perpendicular to the plane of its surface ; and the tensions of the strings in
that plane. Now we know, that the forces of the first set are in equilibrium
with one another, for if we take away the cords, so that its weight and the
resistances of the balls may be the only forces which act upon the board, it
will remain at rest. Hence, therefore, we conclude, that the forces of the
second set, which are those acting in the plane of the board, are also in equili-
brivm. The principle stated above is called that of ZAe superposition of forces.

+ In this and in other parts of this treatise, where force is spoken of as
multiplied by a line, the number of units in the force is to be nnderstood as
muitiplied by the number of units in the line.
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86. Any number of forces, acting any where in the same
plane, and any point being taken in that plane, the sum of the
momenls of the forces tending to turn the system in one direclion
about that point, is equal {o the sum of the moments of those
tending to turn it in the opposite direction.

37. This is not, however, all; it will further be found, tAat,
if the forces acting upon the different points of the system be
transferred to a single point, and applicd to that point parallel to
their present directions, they will hold it at rest. There must,
therefore, further exist between them, that relation which is ne-
cessary to the equilibrium of forces acting upon a point.

38. On the whole, then, forces ucting as above, upon any
number of different points in the same plane, are subject, first,
to the same condilions which govern the equilibrium of forces
acling upon a point: and, secondly, to this furlher condition,
that the sums of their opposite moments about a point any where
taken, are equal to one another.

39. These conditions do not only obtain wherever there is
an equilibrium, but wherever they do obtain, we are sure that
there must be an equilibrium. They are not only necessary, but
sufficient. Hence, therefore, if we have a system of forces not
in equilibrium, and we would wish to equilibrate, or place it in
equilibrium, we have only to add such other force or forces, as
will cause the above conditions to obtain in the system.

Let us suppose the system represcnted in the figure to be
acted upon by the forces r, »,, P, P, and let it be required to
determine the amount of the force py, and the direction in which
it must be applied, so as to produce an equilibrium. Take any
point N in the plane of the surface of the board, and through it
draw a line N n,, parallel to », p,, representing the force p, in
magnitude (Art. 14); and through », aline, n, n,, parallel to
P, ps, and representing p, in magnitude. Draw n, n, and n, n,,
similarly representing the forces r, and », in magnitude, and
parallel to their directions; then joining N 2, this line must re-
present the remaining force, P; in magnitude, and be parallel to
its direction, (Art.33.)

We have now determined Py to be of such a magnitude,
and parallel to such a direction, that it may cause the system to
satisfy the first condition of the equilibrium; namely, that the
forces should be such as, if applied to a poiné, would hold it at
rest. It remains to apply this force to such a point of the
system, as to cause that equalily of the moments which constitutes
the second condition. With this view, let us take any point M,
and ascertain the sums of the opposite moments of the forces
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P, P,, P, P, about that point. Comparing these sums with one
another, we shall know how much is wanting to their equality.
‘We have only then to apply p; parallel to its proper direction,
Nn, at such a distance from M, as that its momentum shall just
make up the equality.

We shall at once find this distance, if we divide the differ-
ence of the sums of the moments about », by the force »,, de-
termined as above,

The easiest method of determining the line in which p, is
to be applied, will be to draw through M, a line M m, equal in
length to the distance found above, and perpendicular to the
direction of N #,. A line p,p,, perpendicular to this through its
extremity, is that in which the force must be applied.

40. If any number of forces be in equilibrium, « force
equal and opposile lo any one of them is the resultant of all
the rest. For if all the rest were taken away, and this one put
in their place, the equilibrium would manifestly remain ; since
it would exactly sustain that single force to which it would,
under these circumstances, be opposed. There would result,
therefore, from the action of this single force, the same effect as
resulted from the action of those which have been taken away,
or it is their resultant. Hence, then, in finding the force neces-
sary to produce an equilibrium among the forces in the last
article, we have, in fact, found their resultant; for we know that
that resultant will be a force equal and opposite to this which
we have found.

4]1. One of the conditions of equilibrium may obtain
among a number of forces without the other. Thus the equality
of moments may obtain among the forces, and yet these may
not be such as, applied to a point, would hold that point at rest
(See Art. 38.) In this case we may find the amount of the
force Py necessary to produce equilibrium in the system as be-
fore, also the line N #, parallel to its direction. Now, in order
to produce the equilibrium, this force must be placed in the
system, so as not to destroy the equality of moments which at
present exists; it must, therefore, have no moment about m; for
if it had any, it would increase the sum of the moments, tending
to turn the system one way, or the other. The perpendicular
from M upon the direction of this force must therefore equal
nothing, or its direction must pass through M. And the direction
of the resultant is opposite to that of this force.

42, The resultant of any number of forces, the sums of
whose moments aboul a given point are equal, passes, therefore,
through that point.
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43. Let us suppose any one of the forces of a system in
equilibrium to be represented in magnitude, as well as in direc-
tion, by a line, P p, containing as many

M, units of length as there are units in that

/ force, and draw lines from p and p to m,
/ / forming, with e p, the triangle M p p. Now,

i
e | Dby a well-known proposition in geometry,
/"’ / i twice the area of this triangle is equal to
/ H i theproduct of the number of units in the
» 3 / __1 base pp, by the number in the perpendi-
F 2 cular M m. But this product is the mo-

ment of the force. That moment is, there-
fore, equal to twice the area of the triangle. Hence, therefore,
if we take as above a
series of lines, P, p,,
P, ps, P, p,, &c., to re-
present the forces of
the system, and join
their extremities with
the point M; the areas
of the triangles thus
formed being doubled,
will respectively equal
the moments of those
forces; and, since the
sums of the moments,
in respect to forces act-
ing in opposite directions, are equal, the sums of the areas of
the triangles, being doubled, are equal; and, therefore, the
halves of these, or the sums of the areas of the triangles them-
selves, are equal®.
44. Thus, then, we have the following important law. If
we represent any number of forces acting in the same plane,
and being in equilibrium, by lines, and join the extremities of
all these lines with any point in the plane, then the sum of the
areas of the iriangles thus formed, which have for their bases
Jorces tending lo turn the system in one direction, shall be equal
1o the sum of those having for their bases forces lending lo turn
it in the other direction.
45, If all the forces acting upon the system be parallel to

* Thus if the forces in the figure be in equilibrium, (their directions
being represented by the directions of the arrows,) then the areas of the
triangles P, M p, and P, M p, must equal, when added together, those of the

triangles P, M p, and p, M p;.
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one another, the same line which is perpendicular to one of
them, will, when produced, be perpendicular to all the rest. The .
moment of each force is, therefore,
its distance from the point M, mea-
sured along this line, multiplied by
the number of units in the force. In
order that there may be an equili-
brium, the sum of these moments, in
reference to the forces tending to turn
the system in one direction about M,
must be equal to their sum, in refer-
ence to those tending to turn it in the
other direction.

46. Further, the forces themselves must be such as, being
applied parallel to their present directions to a single point, they
would hold that point at rest. (Art. 37.) But being so applied,
they will manifestly all act in the same straight line. But forces
acting in the same straight line cannot be in equilibrium, unless
the sum of those acting in one direction be equal to the sum of
those acting in the other. Hence, therefore, in the case of
parallel forces, the condition that the forces should be such as
would hold a point at rest, resolves itself into the following:—
that the sum of those tending to turn the system one mway, shall
equal the sum of those tending to turn it the other*.—Thus,
if the forces P, P, P, P, be respectively 1Ib.,, 2lb,, 31b,,
4lb,, and the perpendiculars Mm,, Mm, Mm, Mm, respect-
ively 6, 5, 2, 1 inches; then the force, p,, necessary to hold
these in equilibrium must equal the sum of 1lb. 2Ib., 3ib.,
diminished by 41b:; that is, it must equal 6lb. diminished by
4lb., or 2Ib.; and this must be applied parallel to the direction
of the rest at a distance from M, such as, being multiplied by
2, will give a product equal to the difference.

(6x1+5%2+2+3)—(1x4);or 18.

Now, since the product of 2 multiplied by the distance m,
is 18, it is clear that that distance is 9.

* Thus, in the figure, the forces and direptions must be such, that

and P) ¢ Mm, +Pg X Mg+ Py X MMz =P,
These conditions are necessary and sufficient.
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parallelism in all positions of the mining it.
body to which they are applied, 55—57 Illustrations of the Centre of
their Resultant passes always Gravity.

through the same point in it.

47. LEr us now endeavour to find the guantity and dircc-
tion of the resullant of any number of forces acting in directions
parallel to one another, but not in the same plane—~In the first
place, let it be observed, that any two parallel lines, being
necessarily in the same plane, the directions of any two forces
which we may take in a system of parallel forces are essen-
tially so.

48. Let us then, in the first place, find the resultant of two
such forces. Then considering this rcsultant as a new force
replacing the first two, let us find its resultant with a third
force. 'This last resultant will be that of the three first forces
of the system, and may similarly be combined with a fourth.
And thus we may find the direction and the amount of the
resultant of all the forces of the system.

49. It is clear that the amount of the resultant force is the
sum of the component forces, if they all act to move the body
in the same direction. (Art. 46.) For the resultant of the first
two is their sum, and that of this resultant and the third force,
is their sum; that is, the sum of [the three first forces. This
again, combined with the fourth force, gives a resultant equal
to ‘the sum of the first four, and so on; the resultant of the
whole being the sum of all the components,

50. If some of these components, however, act to move
the body in a direction opposite to the rest, these must be sub-
tracted from the sum of the rest, to obtain the resultant force;
as may be shown in the same manner.

51. If a body be acted
upon by any number of
parallel forces, which are
such that its position being
altered in any way, these
Jorces shall continue to act
upon the same points in it,

¢ always in_directions paral-
r," lel to their first directions;
there is a point in
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through which the resultant of these forces always passes in
every possible position of the body.

For, let p and P’ be the points of application of two such
forces; join p ¥, and divide it in ; so that the products of the
forces » and »/, by the lines ¢ » and @ P’ respectively, may be
equal; then will the products of these forces, by the lines ¢ M
and @ M, draw perpendicular on their directions, be also equal.
For it is an elementary principle of geometry, that since the
triangles ¢ M p and ¢’ M ¥ are similar, whatever part, ¢ M is of
G P, the same part is ¢ M’ of @ . Whatever part, therefore, the
product of @ M and » is of the product of & P.and p, the same
part is the product ¢ m” and ¥ of ¢ ¥ and p. But the products
G pand p, and ¢ P, and p, are equal. Therefore, also, the pro-
ducts of @ M and p, and G M, and p, are equal; that is, their
moments about G are equal. The resultant of p and »’ passes,
therefore, through @. (Art 42.) And this is true, whatever be
the position of the line p r’, in reference to the directions of the
forces r and »’. Whatever position, therefore, this line may,
in the motion of the body, be made to assume with respect to
those forces, their resultant will always pass through the same
point, @, in it.

Now, a point through which the resultant of the first two
forces almways passes being thus found, let this point and the
point of application of the third force be joined. And the re-
sultant of the first two forces being supposed to replace those
forces, let a point, through which the resultant of this resultant
and the third force of the system elways passes, be found as
before. The point so found will be one through which the
resultant of the first three forces always passes. And, by con-
tinuing this operation, a point through which the resultant of
all the forces of the system always passes, may be ascertained.

52. Now, the forces with which the parts of all bodies at
the earth’s surface tend to descend, may be considered parallel
to one another; since they converge towards a point, the earth’s
centre, whose distance is infinite, as compared with the dis-
tances of the parts of these bodies themselves. Hence every
such body may be considered as acted upon by a system of
parallel forces whose resultant may be found; and these forces,
in all positions of the body, act upon the same points in it, in
directions parallel to their first direction; there is, therefore, in
each such body a point through which the resultant always
passes, in whatever position it is placed. That point is called
tke centre of gravity of the body.

The centre of gravity, therefore, of a body is a point through
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swhich the resultant of the meights of ils elements always passes,
in every position of the body. If the whole of these weights
could be extracted from them and concentrated in this point,
the partsof the mass still retaining their volume and solidity,
the same effects would, under all circumstances, be produced.

53. Although the process explained in Art. 51, is sufficient
to assure us of the existence of a point in all bodies possessing
the properties of the centre of gravity, yet it does not enable us
to determine the actual position of that point. And manifestly
for this reason: that the points of application of the gravity of
a mass being infinite in number, and infinitely near to one ano-
ther, that process must be infinitely repeated to bring us to any
result; and the divisions, which it supposes, must be made in
lines which have no appreciable lengths. The position of the
centre of gravity may, however, always be fixed upon by the
methods of the integral calculus. In a great number of cases
its position may, also, be determined by a much easier process,
as will be shown hereafter, and the following experimental
method is applicable to all.

54. Let the body be suspended by a string
A p, fron any point in it, P; ahd let PM be
the direction which a plumb-line would take
hanging freely from this point. Now the
only forces by which it is acted upon, are the
weights of its different parts and the tension
of the string in the direction P A, Also the
former may be replaced by their resultant,
The body will then be acted upon by fmwo
forces only, viz., the resultant of the weights
of the different parts of the mass, and the
tension of the string. And, since it is in
equlibrium, these are in opposite directions, and in the same
straight line. The resultant of the weights of
the parts of the body acts, therefore, in the direc-
tion of the line p M. But this resultant passes
always through the centre of gravity., The
centre of gravity is, therefore, in the line » m.
Having marked the direction of p p, suspend
the body from any other point, @. It may be
shown, as before, that when it rests, the centre
of gravity is in the line @ M. It is, therefore, in
both the lines @ g and P p. These lines, there-
fore, intersect; and the cemtre of gravity is in
their intersection, a.
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§5. A body, when placed upon & horizontal plane, will
fall over, unless its centre of gravity be above its base. For
the forces which impel the body downward being equivalent to
a single vertical force, acting through that point, cannot be
sustained unless the plane supply a resistance in a direction
opposite to that force; which it manifestly cannot, unless this
direction pass through the base of the body.

Thus if @ be the centre of gravity of either of the masses
represented in the accompanying figures; the forces acting
upon that mass are equivalent to a single force acting in the
direction of the vertical ¢ g, and cannot be sustained by the
resistance of the plane A B, unless that single force can be so
sustained; that is, unless
the plane can supply a re-
sistance in a direction op-
posite to @ g; but this it
manifestly cannot, unless
G g pass through A B. In
fig. 1, therefore, the solid
will stand; in fig. 2, it will
fall over. If attention be
paid to this fact, buildings
may be constructed so as to
stand safely, although they
lean considerably from the
vertical. Thus there is to be
seen at Pisa, a tower called
the Hanging Tower*, which
so far inclines from the

* The dimensions of this tower contract as you ascend it, and the
thickness of its walls is greatly less at the top than at the bottom. Both
these causes have a tendency to bring its centre of gravity below the middle
point in the height of the tower; and thus, the vertical through that peint,
further within the boundary of the base.
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vertical as to fill strangers with a terror lest it should fall.
The vertical line through its centre of gravity does not,
nevertheless, fall without the boundary of its base, and it
stands firmly.

56. It is not necessary to the equilibrium of a solid body,
resting upon a horizontal plane, that the vertical through its
centre of gravity should intersect that plane at some point
where it is actually in contact with the Dbody. All that is
requisite is, that the direction of this vertical should be such
that the pressures on the various points of the surfaces in
contact may have for their resultant a force in a direction
opposite to that line. Now this is manifestly possible if several
distinct portions of the body be in contact with the plane, and
the vertical from the centre of gravity lie betmeen them. Thus
in the accompanying figure, there will be an equilibrium if ¢ g
lie between the surfaces of contact A and B. And, in the
tripod, if it lie between the three points A B c.

o L S,

And, generally, if we draw lines joining the extreme points
where a body is in contact with the plane on which it rests, the
area included within these lines is virtually the base of the
body, and there will be an equilibrium, if the vertical through
the centre of gravity intersect the horizontal plane any where
within this area.

57. The human body is virtually supported upon a base
whose boundaries are the outside edges of the feet, and lines
e joining the heels and toes : and every change in
/ its position is governed by the law, that its

% g centre of gravity shall lie immediately above
--32.LZ.__ some point in this narrow base. The motion of
any one portion of the body is thus always

accompanied by the motion of some other portion in the opposite
direction, and thus each action of every part requires an appro-
priate attitude of the whole. In that wonderful selection of
attitudes by which we bring about this nice adjustment of the
weight of the body over its base, we cannot, nevertheless, be
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said to exercise any skill, each position being, for the most
part, taken up instinctively and unconsciously. The adaptation
of each attitude with the least possible displacement of the
body, constitutes what is called grace of movement and position;
and in the knowledge of the attitudes appropriate to different
kinds of action, consists much of the skill of
the painter and statuary. Thus, in the beau-
tiful statue of the Flying Mercury, of which
the accompanying figure is a sketch; the god
being in the act of bounding from the earth,
his body and left arm are thrown forward;
and, with them, the centre of gravity is carried
beyond the vertical, passing through the ex-
tremity of the right foot, on which the figure
rests. To bring it into that vertical again, the
sculptor has thrown the left leg and right arm
back; and thus the statue assumes a position
of stability, into which the human figure would involuntarily
throw itself, under the same circumstances.,

58. A man who supports a load, so adjusts its position
and the attitude of his body, as that, the resultant of the
weights of these, shall fall within the area spoken
of before, as that on which he supports himself.
Thus a porter, (fig. 1,) bearing a load upon his
back, <o inclines himself forward as to bring the
common centre of gravity, g, of his body and the
load, within the area bounded by his feet. This
point g lies in the line joining the centres of
gravity, @ and m, of his body and the load; and
its position is such that ga multiplied by the
weight of the former equals gm multiplied by
that of the latter. (Art.45.) If he stood upright,
as in fig. 2, it is clear that (although the weight
of his load bore only a small proportion to that of his body,)
the vertical through g would intersect the ground
beyond his heels, and he would fall backwards.
All this every porter knows well enough by ex-
perience; and thus in taking his load on his
shoulders he inclines himself forwards, that he
may bring the resultant, of its weight and that
of his body, within the prescribed limits. If he
can in any way distribute the parts of his load
8o as to vary its external form, the shape he
selects is the flattest possible, that he may bring

Y
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its centre of gravity as near as he can to the vertical, passing
through the centre of gravity of his body,
and produce an equilibrium with the least
possible inclination. )

A weight carried before the body, produces
the contrary effect, causing it to be thrown
back. Thus, if the tray which the woman
carries before her, in the accompanying figure,
contain any considerable weight, the point g
will be brought so far forward as to lie beyond
her toes, and she will then inevitably fall.
She avoids this, by throwing the upper part of
her person back, as in fig. 1, and she inclines
her arms backwards, resting them upon her sides. Again, in
stooping to place a weight upon the ground,
her position necessarily throws the head
and shoulders forwards. To compensate
this, the rest of the body is bent backwards,
beyond the line of the heels: and this, the
more, as the weight to be deposited is
greater, and the position more curved.
Still, in stooping, the line of gravitation is
necessarily thrown much more forward,
than in any of the upright positions of the
body ; and accordingly, it is in this position
that the body is most likely to be overthrown.

For reasons analagous to the above, stout persons incline
the upper part of the body as far back as possible. A woman

(Fig. 2.)

carrying a child on one arm, inclines her body in the opposite
direction; and thus brings the common centre of gravity of
herself and the child above her feet. A person carrying a
package on one shoulder, or carrying a water-bucket in one
hand, leans the other way. But a nurse carrying children on
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each arm, or a water-carrier buckets in each hand, stands
npright.

59. When a man stands upright, the vertical through his
centre of gravity falls in the middle, between his feet. If,
therefore, he lift one of them, this line will lie wholly without
the area covered by the other foot, and he must fall. To avoid
this, at the same time that he lifts his foot, he inclines his
body towards the opposite side, and thus keeps his centre of
gravity above the narrow base on which he has to support him-
self, when standing on one leg. In walking, a man thus
supports himself alternately upon his feet; he is, therefore, seen
perpetually to move the upper part of his body from one side
to the other.

60. The centre of gravily of a slraight line of uniform
thickness, a metal rod, for instance, is in its middle point. For,

suppose the rod A B to be divided

& $ into two equal parts in the point G,

and let g and g’ be the centres

of gravity of these parts respec-

tively. Now since the parts G A

— and ¢ B are equal and similar in

every respect, it is clear that their

centres of gravity g and g’ are similarly situated; so that if the
part ¢ B were turned over, and made to coincide with @ A, the
points g and g’ would coincide. & g is therefore equal to ¢ g’.
Now the resultants of the forces acting on G A and G B, passing
always through g and g’ (Art. 52), also these resultants being
always equal to one another; tkeir resultant must always pass
through the middle point @ between g and .g’ (Art. 42). And
this resultant is that of the forces acting on the whole line A B.
Since then the resultant of the weights of the different parts of
a straight line passes always through its middle point; such a
line will balance in every position, if suspended by its middle

SV
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61. Any geometrical figure whick is symmetrical with re-
gard to a certain line, has its cenire of gravily in that line.
For, first, suppose the figure to lie all
in the same plane. Let it be repre-
sented by A » B c, and let it be symme-
trical about A B, so that the parts ADB
and A ¢ B may be equal and similar in
every respect. Takegand g’ the cen-
tres of gravity of these parts. Then,
as before, if the part Ap B be turned
over and laid upon AcB; the figures
themselves coinciding, their centres of
gravity g and g’ will coincide. Therefore, joining g g’ which in-
tersects A Bin 6, G g and 6 g’ are equal. Also the forces acting at g
and g’, being the weights of the equal figures ApBand A ¢ B, are
equal. Their resultant passes, therefore, always through a, (Art.
42,) which point isin A B. That is, their centre of gravity isin A B.

62. If a figure, as above, have two
lines of symmetry; its centre of gravity
is in both of them, and lies, therefore, in
their point of intersection, that being the
only point which is common to both lines.
Thus, a parallelogram being symmetrical
about its diagonals, its centre of gravity
lies in their intersection.

63. A figure is said to be symmetrical about a point, when
it is symmetrical about all lines drawn through that point.
Such a point is, therefore, manifestly the centre of gravity of the
figure. Thus a circle and an ellipse, being symmetrical about
their centres, have their centres of gravity in those points. And
for this reason, a wheel being supported upon an axis passing
through its centre, rests into whatever position it is turned
round upon it.

64. If we suspend a body freely by one extremity of its line
of symmetry, it will not rest until that line is in the vertical.
For the centre of gravity is in thatline, and it is has been shown,
that a body suspended freely cannot rest, until its centre of
gravity is in the vertical passing through the point of suspension.
The frames of pictures are commonly of an ob-
long form. Now an oblong is a symmetrical
about a line joining the middle points of two of
its opposite sides. If, therefore, it be suspended
from the middle point of one of its sides, it will
hang with that line vertical, and, therefore, its
two ends which are parallel to that line will also be vertical
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65. A curved surface, or a solid, is said to be symmetrical
about a certain line, called an axis; when being intersected by
a plane perpendicular to that axis, the section is symmetrical,
and its centre of symmetry lies in that axis. Hence, therefore,
the solid or surface, being intersected by a series of such planes
exceedingly near to ome another; the centres of gravity of the
thin slices, or rings, between each two adjacent planes, are in the
axis of symmetry: and the whole solid or surface being made up
of these, the centre of gravity of the whole is in that axis. If,
therefore, a solid have two axes of symmetry, since its centre of
gravity lies in each of these, they must intersect, and that point
lie in their intersection. Thus the figure, called a parallelo-
pipedon, represented in the accompanying diagram, which is
contained by six planes, of which each
two that are opposite are parallel, and
which is symmetrical about a line
joining any two of its opposite angles;
has its centre of gravity in the inter-
section G of two such lines, and how-
ever it be suspended, that point will
lie when it rests immediately bencath
its point of suspension.

A sphere is symmetrical about
its centre; that point is therefore
its centre of gravity. A cylinder
is symmetrical about its axis, and
about a line bisecting its axis perpen-
dicularly. The bisection of its axis
is therefore its centre of gravity.

66. We shall now proceed to consider the positions of the
centres of gravity of certain bodies which are not symmetrical
about a point. 7o find the common cenltre of gravity of any two
lines AB and A’B’. Bisect AB and A’B’ in ¢’ and 6¢”. These
points are then their centres of gravity, and the resultants of the
forces which act upon them,
pass always through those points.
These resultants are the weights
of the lines AB and A"B'. Join
therefore, 6" G”, and take a point
G, 5o that &’ X (weight of A B)
may équal Ga” x (weight of A’%").
Then will the resultant of the
forces acting at 6" and @”, that is,
the resultant of all the forces on
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the system; act, in every position in which it can be placed,
through 6. (Arts. 42 and 51.) And ¢ is the centre of gravity.

67. To find the centre of gravity of three lines forming a
friangle—Take half the sum of the weights of ac and Bc, and
balf the sum of those of A1 and B¢, and find a point ¢" in B¢, S0

that the first sum multiplied by ¢’ ¢

Y shall equal the second multiplied by

{ ¢’B. And find a second point ¢” by

a similar process in AB. Join A ¢’

and cc6”, and the point @ is the
centre of gravity to the whole.

For the lines have the same
cenfres of gravity as though their
weights were divided, each into two
equal parts, and collected in their cxtreme points. Suppose
them to be so collected in A, B, and ¢. The centre of gravity of
the weights collected in B and ¢ will then be at ¢". Therefore,
the centre of gravity of all the weights collected in 4, B, and c,
will be in the line joining A and ¢’. Similarly, the centre of
gravity of all the weights may be shown to be in the line cc”.
Since, therefore, it is in both these lines, it must be in their
intersection @.

68. To find the centre of gravity of a thin plate or lamina,
in the form of a triangle—Tct ABc be the triangle. DBiscet
its side Bc in ™, and join Am. Sup-
pose the triangle to be divided by lines
parallel to Bc, and exceedingly near
to one another. Let pq be the por-
tion included between any two such
lines. The centre of gravity of pq is
in its middle point g. Now the bisec-
tion ¢ of » q, and of every other similar
clement, is in the line AM. Each element has, therefore, its
centre of gravity in the line Am; and the centre of gravity of the
whole triangle is, therefore, in that line.

In the same manner, if A B be bisected, and ¢~ joined; it
may be shown, that the centre of gravity of the triangle is in
that line. It is, therefore, in G, the intersection of Ao M and ¢N.
A G is equal to two-thirds of A a1,

69. To find the centre of gravily of a pyramid ARcD; in-
tersect it by planes, rqr, exceedingly near to one another,
and parallel to either face Bcp. Take o', the centre of gravity
of this face, and join ac’. This line intersects all the sections of
the pyramid in points similarly situated in each, and it passes
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through the centre of gravity of the
section adjacent to ncp, therefore, it
passes through the centre of gravity
of each other section; aund the centre
of gravity of the lamina lying between
any two sections, is in it. Now the
whole pyramid is made up of such
laminze. The centre of gravity of the
whole pyramid lies, therefore, in A ¢”.
Similarly, if we take ¢”, the centre of
gravity of the face ABc, and join ne”,
the centre of gravity of the whole
pyramid will lie in this line. It is,
therefore, in the interscction G of the lines pg” and ac/. Aq
equals three-fourths of A 6.

CIIAPTER V.

The Resistance of a Surface not ex- tion.—The Limiting Angle of
clusively in a Direction perpen- Resistance.—Illustrations.
dicular to that Surface.—Fric-

70. WEg shall, for the present, suppose, that the parts of a
solid body cohere, so firmly, as to he incapable of separation, by
the action of any force which may be impressed upon them.
The limits within which this supposition is true, will be dis~
cussed hereafter. The question we are about to enter upon has
reference to the direction in which the surface of one body can
be pressed upon that of another so as not to slip along it.

71. Let us suppose a mass A to be pressed upon another s,
by means of a force », acting in a direction perpendicular to the
common surface of the two bodies. And let a second force ¢
act also upon it, in a direction parallel to this surface. Then,
since the forces P and q act in direc- &
tions perpendicular to one another,
they manifestly cannot counteract one
another, and one would expect, that
the body should move in the direction
of the second force. This, however, is
not found to be the case. So long as
the force @ does not exceed a certain limit, no motion ensues.
Some new force F, therefore, has been produced in the system
counteracting the force @. That force is called friction, It
acts, always, in a direction parallel to the surfaces in contact, and

Do
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is always for surfaces of the same nature, the same fraction, or
part, of the force » by which these are pressed logether, what-
ever be the amount of that force, or whatever the extent of
the surfaces in contact. This fraction is called the co-efficient
of friction. Whilst it is thus the same for the same surfaces,
whatever be the extent of the surfaces or the force with which
they are pressed together, it is different for different surfuces.
Thus when the surfaces are both of brass, the co-efficient of
friction is represented by the fraction 53 ; whilst, if one be of
brass, and the other of steel, it is 7.

72. Let us now suppose the force p instead of having its
direction perpendicular to the surfaces in contact, to have been
impressed obliquely. Draw Mp’ per-
pendicular to these surfaces from the
point M where the direction of p
meets them. Draw pp’ perpendicu-
lar to Mm¥, and complete the paral-
lelogram peMr’. The force » being
{  then represented by the line px is
equivalent to two others represented
by »’m and @M. The former is that

EEERL"""" by which the surfaces are pressed to-

gether. Their actual friction upon
one another ig, therefore, a certain given fraction of this force
M. Take Mq’ equal to this given fraction of ¥’ M, complete
the parallelogram ¢’ o’ and draw its diagonal p” M. Since then
M Q' represents the friction of the body upon the plane, or the
force called into action by rm, which opposes the motion of the
body. Since, moreover, QM represents the force tending to
produc® motion in it upon the plane; it follows that the body
will ' move or not according as @M is greater or less than @’ M, or
as PP’ is greater or less than P” P, or as the angle PMB is
greater or less than c M B,

This angle cMB may be called the limiting angle of resist-
ance. It depends upon the co-efficient of friction, having for
its tangent the fraction p-f; or Jar, which is equal to that co-
efficient®. It is, therefore, the same for surfaces of the same
nature, whatever be the actual amount of the impressed force »;
but different for different surfaces.

73. From the above, then, it appears that force impressed

* The properties of the limiting angle of resistance were first given by
the autbor of this work in a paper published in the fifth volume of the Cam-
bridge Philosophical Transactions.
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upon the surface of a solid body, at rest, by the intervention of
another solid body, will be destroyed, whatever be its direction,
provided only the angle which that direction makes with the
perpendicular to the surface do not exceed a certain angle, called
the limiting angle of the resistance at that surface. And that
this is true, however great the force may be. Also, that if the
direction of the force lie without this angle it cannot be sustained
by the resistance of the surfaces in contact, and that thisis true,
however small the force may be.

In works upon mechanics, the direction in which the resist-
ance of a surfuce is exerted, is usually stated to be that of the
perpendicular at the point of contact. This is altogether a phi-
losophical abstraction, introduced originally to simplify the con-
ditions of equilibrium, and diminish the difficulties which attend
the theory of statics. It is much to be doubted, whether, in
the present state of science, any of the reasons for introducing
an hypothesis, directly opposed to the facts of the case, remain.
The data being false, the results are, of course, opposed to ex-
perience ; and all propositions, thus established, are subject to
correclions for friction.

On the whole it appears, that whereas surfaces perfectly
polished and free from friction, (if such existed,) could destroy
by their resistance, only such forces as were impressed in direc-
tions perpendicular to their surfaces; bodies, such as are actually
found in nature subject to friction, destroy all forces incident
at any angle with the perpendicular less than the limiting angle
of their resistance. In the following treatise, the resistance of
a surfuce will, therefore, be considered as exerted equally in
any direction within that angle.

74. In walking, the weight of the body is thrown at each
step upon the fork of the legs, and their tendency to separate is
resisted by the friction of the feet against the ground. ~As long
as the inclination of the legs does not exceed the limiting angle
of resistance, the feet will not slip, whatever be the weight of
the mass they support, or the muscular force with which they
are brought to the ground. Most of those substances which
form the surface of the earth are, in their nature, hard and
rough, having a large limiting angle of resistance. So long as
the ground on which we tread is a horizontal plane, we may
incline our legs at a very considerable angle from their natural
position, without danger of slipping, as may be sufficiently ob-
served in running or leaping. But if the ground be inclined, so_
that the direction in which the weight of the body is sustained
by the legs is already inclined to its surface, a very slight fur-
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ther inclination of them, is sufficient to bring the direction of
the pressure without the limiting angle, and cause the body to
slip. In cases where the limiting angle of resistance is small, a
slight inclination is sufficient to cause a fall. Thus, a mau’s legs
readily slip from under him when he walks upon ice; the limit-
ing angle of resistance between ice and the leather of his shoes
being small; he is, therefore, careful to take short steps, so as
to inclinc his legs at the least possible angle. On the same
principle he would fall still more readily, if shod with iron.

75. If his feet be supported upon the edge of a thin piece
of iron, like the iron of a skate, the portion of the surface of
the ice which ultimately sustains the pressure being exceedingly
small, yields, and the iron sinks into it. Its motion sideways
is then opposed by a ridge of the abraded ice, extending through-
out its whole length ; and lengthways by a similar ridge, whose
length is, however, only cqual to the thickness of the skate-iron.
His feet, therefore, readily slip in the direction of their length;
but there is little danger of their yielding laterally.

76. The muscular force which a man exerts in walking is
the same at every step, being wholly destroyed by the resistance
of the earth when one foot comes to the ground, and reproduced
when the other foot is raised: a portion may be considered to
be exerted in a vertical direction, and another horizontally; the
latter is wholly resisted by the friction of the earth.

77. There is scarcely any thing which would produce
greater inconvenience to us ‘than the loss of that friction, which
we complain so much of when we find it robbing us of the
force which we apply to artificial uses. Yet, were it not for the
existence of some principle, acting everywhere and at every
instant to destroy the forces which we are ourselves perpetually
producing in excess, and which are generated around us, when
they have produced their effect, this world of ours would
scarcely be habitable. Were there, for instance, no friction, it
would be impossible for « man to move from any position in
which he might be placed, without the aid of some fixed ob-
stacle by means of which he might push or pull himself forward.
And were there no horizontal power of resistance in the ground
on which he treads to destroy the forward motion which he
gives himself at every step, he would retain that motion until
some obstacle interposed to destroy it; so that the principal
part of his time would be spent in oscillating about between
the obstacles, natural or artificial, which the earth’s surface pre-
sented to his motion ; an oscillation which would be common to
all the objects, animate or inanimate, about him. The slightest
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wind would sweep him before it; the slightest inclination of his
hody would bring him to the ground: every thing he put out of
his hand would start away from him, with the lateral force
which he could not fail to communicate to it, in releasing his
hold. If he attempted to sit down, his chair would slip from
under him; and when he sought to lie down, his couch would
glide away from him. He would, in all probability, be driven
to forsake the land, and dwell upon the waters as the more
stable element.

78. The following table contains a list of the principal sub-
stances whose friction upon one another has been determined ;
anncxed to each is the constant fraction which the friction is of
the insistant pressure; and beyond it the limiting angle of resis-
tance, corresponding to this fraction.

Nature of Surfaces in Contact. Col“e‘t‘l.iii‘e nt of L;;n,l;' ing Angle
1 [¢) ’
Steel and Ice ... ... .o oo . §oB1 0 49
1
Ice and Tce T3 1 35
Hard Wood and Hard Wood ... 7,13 r 7 43
1
Brass and Cast Iron.... 11 3 0
Brass and Steel.... 7 EQ o 7 54
9 l -
Soft Steel and Soft Steel ..., ... ... e 8 18
Cast Iron and Steel ... ... .. .. ufo - 8 36
Wrought Iron and Wrought Iron ... o]- T 9 5
Cast Iron and Cast Iron ... ... .. _0.17; 9 17
Hard Brass and Cast Iron ... ... . luo 9 27
Cast Iron and Wrought Iron ... ... 5" = 9 40
Brass and Brass ... .. .. . 1 9 57
570
Tin and Cast Iron ... ... ... ... ! 10 8
359
Tin and Wrought Iron ... .. ... _’_5_‘ 10 15
553
Soft Steel and Wrought Iron ... ... T',_.& 10 43
S+ 2
Leather and Iron 14 2
4°00
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Nature of Surfaces in Contact. Co‘;::;f::d I;l‘m ﬁz:ﬁmj’
—
Tinand Tin e oo oo o oo | 3 14 49
Granite and Granite... ... .. . '3—1.53 16 52
Yellow Deal and Yellow Deal ... ... | 3755 19 9
Sand Stone and Sand Stone .. .. |  FT7F 19 59
Woollen Cloth and Woollen Cloth ... 5 23 30

Note.—The above Table is calculated from experiments made by Mr. Rennie, under
pressures of thirty-six pounds to the square inch. The co-efficients of friction would
be somewhat less for greater, and greater for less, pressures. ‘T'he constant ratio of the
pressurc to the friction, although excecdingly near to the true law of resistance, does
not, therefore, it would secem, accurately enunciate that law.

CIIAPTER VI.

The Inclined Plane. 81 The best Direction of this Force
79 The Equilibrium of a Mass placed so that it may be upon the point
upon an Inclined Plane, and not of giving Motion to the Mass
supported otherwise than by the upwards.
Resistance of the Plane. 83 The Equilibrium of a Cylinder on
80 Of a Mass partly supported by an Inclined Plane.
another Force acting in any di- | Independent of Friction.
rection upon it. The Carriage Wheel.

79. LEr us suppose a heavy mass,
whose centre of gravity is G, to be placed
on an inclined plane A B; and let it be re-
quired to determine under what circum-
stances this mass will just be upon the
point of slipping down the plane.

Draw the vertical line @ M: the whole
pressure of the mass may be supposed to act in the direction of
this line ; and this pressure will just be destroyed by the resist-
ance of the surface of the plane, when the angle G pq, which
G P makes with the perpendicular pq,is equal to the limiting
angle of resistance. (Art.73.) Now, it is easily seen that the
angle o p g, is equal to the angle Bac. A mass of any substance
will, therefore, just be sustained on an inclined plane, without
slipping, when the inclination of the plane is equal to the limit-
ing angle of the resistance of the surfaces in contact.
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80. If the mass, besides the resistance of the surface of
the plane, be sustained by a force, equal to the weight N, acting
in the direction @ ; we may deter-
mine under what circumstances it ¥
will remain at rest, by producing pq
to meet the vertical e, through
the centre of gravity, in @, and
tuking a d and a b, to represent the ﬁN
weights of M and N.  For, completing
the parallelogram a b c d, so as to
have a d for its diagonal ; ac will re- i
present the quantity and direction of ,{;, !
the force requisite to sustain the two
others in equilibrium. (Art. 21.) If this direction be not inclined
to Ac, beyond the limits of resistance, the requisite force will be
supplied by the resistance of the plane, and the body will rest. If
it lie beyond that limit, the resistance of the plane is inadequate
to supply the force required to sustain the other two; and the
mass will descend.

If the direction of the force a ¢ be upwards, the tendency
of the mass will be to slide
up the plane, instead of
down it: and provided a ¢
be inclined in this direc-
tion, just within the limit
of resistance, motion will
be upon the point of taking
place.

81. Now let us con-
sider in what direction the
force N must be made to
act, so that it shall preserve
the equilibrium under these
circumstances, and be the
lcast possible force that will
do so. Tuke a d as before,
to represent the weight of the mass, and draw a c in the limiting
direction of the resistance upwards. (Art.73.) Through d draw
d b parallel to @ ¢. Then any line « b, drawn from & meeting
d b, will represent, in quantity and direction, a force, such as
would just maintain the equilibrium (Art. 21); for drawing d ¢
parallel to @ b, any such force, together with the force a d, will
have for their resultant a ¢, which is in the direction in which it
will just be destroyed by the resistance. Now of all these lines

) D3
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which can be drawn from @ to 6 d, that which is perpendicular
to it is the least. That line is, thercfore, in the direction of the
least force, and represents it in magnitude. It is in this direc-
tion that a given force, the force of a horse for instance, would
be cxerted with the greatest advantage to drag the mass upwards.

82. There is a further condition nccessary to the equilibrium,
namely, that the resultant of the forces acting upon the mass
should pass through that portion of its surface KL, by which it
touches the plane. (Art. 55.) It will manifestly be upon the
point of turning over, if « ¢, being produced, pass through either
of the points X or L.

83. If the body rest upon the plane, only by a single point,
the resultant must pass through that point. Suppose it a cylinder,
whose centre is g, and let the
force x, applied to the point g,
be that which will just hold it
in cquilibrium. Then since two
of the forces holding the mass
at rest, (namely, the force N,
and the weight of the mass
itself,) act through the point g,
thercfore, the resistance which

\ is ecqual to their resultant, acts
B A through the same point. (Art.

H £2.) But this resultant acts
also through 1. Joining, therefore, 6 1, it acts in the direction
LG. If the force N be ever so liltle increased, the resultant will
be brought within the angle L ¢ p; and if the mass be moveable
about &, it will thus be made to roll up the plane. L, being a
radius of the cylinder, is essentially perpendicular to the plane,
which it touches in the point L. In this particular case, there-
fore, its resistance is exerted only in a direction perpendicular to
its surface, so that the conditions of the equilibrium are not
affected by the friction of the surfaces. Thus a carriage-wheel
might, if there were no obstacle in its path, and no friction. at its
axle, be made to move up an inclined plane, by means of any
force however small, provided it were greater than that which
would be necessary fo support it upon the plane.

84. Take G a to represent the weight of the mass, and draw
a ¢ parallel to G p, and ¢ b parallel to a ¢, Then & b will repre-
sent the magnitude of the force N, neccssary to produce equili-
brium, on the same scale on which G a represents the weight,
and 6 ¢ the resistance.

85. If 6 p be parallel to 4 ¢, (sce fig. above,) a ¢ will coincide




THE INCLINED PLANE. 67

with aL; and* if, in this case, we take a ¢ to represent the
weight of the mass supported, B¢ will, on the same scale (or to
the samec unit,) represent the weight N, nccessary to support it,
and A B the resistance. If G P be parallel to the base, o B, of the
inclined plane; Bc being taken to represent ¢

the weight of the mass 6, o B will represent
that of the weight x+. In the first case,
dividing A ¢ into as many units of length, as
there are units of weight in ¢, so many of o
these units as there are in B ¢, will there be

units in the weight ~; and in the other case, g \
dividing B ¢ into as many units as there are N B H

in the weight g, the value of N will be determined by the number
of these units in A B.

G

o

CHAPTER VIIL

The moveable Inclined Plane. limiting angle of resistance.

86 The circumstances under which 89 Circumstances under which the
it will be upon the point of slid- Wedge cannot be started by any
ing upon a mass which is pressed pressure of the mass into which
against it by given forces. it is driven on its sides.

87 The Wedge. 90 Examples of the use of the

88 Its angle must not exceed the Wedge.

We have supposed the plane ¢ A B to be fixed in its position;
let us now suppose it to be moveable. The force requisite to hold
it at rest, is equal and opposite to the resistance it sustains.
That is, it is equal to the force a ¢, (fig. page 65,) and in the
direction s a.

86. Let us suppose all the
forces which act upon a mass 1, to
have for their resultant a force act-
ing in the direction p@. DProduce
P Q to m, and take Q 2 to represent
the resultant force. A force repre-
sented in quantity and direction by m.q, will then just hold the
plane at rest. Draw @z perpendicular to nc. The forces re-
presented by m n and n q are then equivalent to that represented
by m q. These would, therefore, hold the plane at rest. DBut if
it be placed with its base A B upon a horizontal plane, the verti-
cal force, mn, will be supplied by the resistance of that plare.

* By reason of the similarity of the triangles c a L and A ¢ B.
+ By reason of the similarity of the triangles Gac and A B c.
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To keep the plane at rest, all that is requisite is¥, therefore, to
apply to the back of it », a force n’n, represented in magnitude
and direction by = q.

The angle which pq makes with the perpendicular q=r, to
the surface of the plane, will always equal the limiting angle of
resistance, whatever be the force »” n, applied to the back of the
plane, provided the force rq be supplied by the resistance of
some fixed mass, of which M forms a part, or against which it
abuts; and provided the direction of 2 @ be mithout the limiting
angle of friction at @. For it is manifest that, if the direction
of n @ had been mithin the limiting angle of resistance, that force
would have been wholly counteracted by the resistance of the
mass M, so that P Q and n @ would have been in the same straight
line, and no reaction of the plane A B on which the body rests
would have been necessary to the equilibrium; also, that if the
force n @ be without the limiting angle of resistance at @, so that
the resistance of M is insufficient alone to sustain it, only so
much reaction will be supplied by the planc A B as is necessary
to render it sufficient, or to produce together with n Q, a resultant
force m q, just within the required limits.

If the force »’ n be so far increased as to cause the force m q
to be greater than any resistance which the mass M, or that of
which it forms a part, is capable of supplying; the equilibrium
will be destroyed, the plane will move in the direction m q, the
reaction of the plane A B will cease, and by the action of the
force n q, whose direction is supposed to be without the limiting
angle of resistance, and which is the only one now acting upon
it, the plane will be made to slide along the surface of M, until
its base is again brought in contact with the plane A B. When
thus employed, the action of the plane is precisely similar to that
of a wedge.

Tae WEenGE.

87. Ler m and »’ be portions of
a solid, pressed upon the sides of a
wedge ¢ A ¢, by equal forces acting in
the direction rq and r'q’. Take @ m
and Q' m’ to represent these forces, and
resolve them into nm, and qn, n' m'
Q' n.  Of these, nm and »’m’ are
equal, and act upon the wedge in op-
posite directions, They therefore de-
stroy one another, The forces qn

The horizontal plane A B is supposed to be without friction.
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and '’ are sustained by a force r, applied perpendicularly to
the middle of the back of the wedge, and equal to their sum.
By the last article, it appears that the directions of pq and '@’
will, under these circumstances, make, with the perpendiculars
to the surfaces A ¢ and A’ ¢’, angles equal to the limiting angle
of resistance. .Also that when the forces m @ and m’ @' are made
to exceed the resistance of m and M’ the wedge will slip forwards,
and thus produce a still further separation of the solid, against
which it acts.

88. Returning to the case of a
mass held in contact with the sur-
face of an inclined plane, by the re-
sistance of an immoveable obstacle.
Let R @ 8 equal the angle of fric-
iton. And draw Q p parallel to the
base of the plane. Then, if the
angle rqs be greater than rRQP,
the direction of m q is within the
angle of resistance, and no force, however great, applied to the
back of the plane, can cause it to move on the mass m. Now
the angle R @ P is equal to the angle A c¢B. The plane cannot,
therefore, be moved, if the limiting angle of resistance exceed
that which it makes with its back.

89. Let us now suppose the wedge to be driven, and let us
consider the pressure which the substance into which it is driven
must exert upon its sides, in order to force it out. Let rq be
the direction of the resultant of the forces
acting upon the face a ¢’, which being
propagated through the mass of the wedge,
tends to cause the face A ¢ to slide upon
the surface with which it is in contact.
Draw q R perpendicular to the surface in
this point. Then if P QR be not greater
than the limiting angle of resistance, no
force with which the mass into which
the wedge is driven tends to collapse, can expel it.

Although we can very well understand how a substance,
into which a wedge is driven, may oppose a resistance, in any
direction, to its motion forwards, yet it is difficult to conceive,
how this substance should exert an effort to collapse, and to
throw it out, otherwise than in a direction perpendicular to the
sides of the wedge, especially if it be of a fibrous nature. PQ
being thus supposed perpendicular to A ¢, the angle c A ¢’ will
equal PQR. On this hypothesis, therefore, if the angle of the

AK
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wedge e not greater than the limiting angle of resistance, it
will remain firmly fixed in the substance into which it is
driven.

90. This property of the wedge renders it eminently use-
ful in carpentry. The following may be taken as one out of a
vast variety of applications. Suppose it were required to fix
two pieces of timber A B and A’ B' together; and that, either by
reason of the greater economy of wooden fastenings, or the
Jiability of the timber to occasional damp, and consequently to

Fig. 1.

corrosion, by contact with iron, it is desirable to avoid the use

. of iron bolts. Let two wedge-shaped
(Fig. 2.) . . . ]
P mortises be made in the timbers, repre-

= ¢  sented by acc’a’and bec’ /s being of
cqual size at their smaller extremities.
Let the timbers be laid together, these
extremities of the mortises coinciding.
: Let two pieces of bard wood be formed
into the shape represented, fig. 2; the
face « ¢ b corresponding with the side ac b of the mortise, fig. 1;
but the upper extremity a being somewhat narrower than b.
Let these two pieces of timber be placed in the mortises, the
corresponding faces coinciding. The space between them will
then have the form of a wedge, by reason of their being nar-
rower at the top than the bottom. Let a wedge of the proper
dimensions be driven in between them. If the angle of the
wedge be sufficiently small, no possible force exerted on its
sides can start it; no possible force, therefore, can separate the
timbers. {This method is used in fixing together the timbers
of the immense wooden bridges which have been erected in
America.

91. There is scarcely any instrument whose applications
are more numerous than those of the wedge. Nails, awls,
needles, axes, sabres, &c., all act on the principle of the wedge.
As illustrative of the great power of the wedge, it may be
stated that ships, when in dock, are easily lifted up by means of
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wedges driven under their keels. An engineer, who had built
a lofty and heavy chimney for a furnace, found that, after a
time, owing to the dampness of the foundation, it was beginning
to incline. He succeeded in restoring it to its uprightness by
driving wedges under one side*.

92. The resistance to the motion of a wedge depends) not
only upon the angle at its vertex, but on the depth to which
it is driven, and, consequently, the extent of surface which
sustains its pressurc; and further, it depends upon the quantity
by which the particles of the mass are displaced: for being
elastic, these particles will tend to come together with a force
proportional to their displacement. These are all reasons why
a wedge is driven with difficulty, when it is driven deep.

The wedge acc’ having been driven,
by the action of a force p, a certain Z
distance into a mass whose surface is
MN; let us suppose a second force q,
to be made to act upon it, its upright |
position being otherwise preserved. g
This force @ will press the surface Ac
against the mass lying hetween M and
M, and bcing sufficient, it will remove
that muass, so that the vertex of the
wedge will encounter a mew surface A
M'N’, parallel to MmN, and may be made
to enter it as before by the action of the force ». I, instead of
acting separately, the forces p and @ be made to act together,
the effect will be precisely the same, their directions being at
right angles to one another. Such is the theory of the common
saw. It is formed of a series of such wedges cut in the edge of
a thin lamina of steel, and tends, by its weight, perpetually to
drive the points of these wedges into the substance on which it
acts, and Dy its longitudinal motion to present a fresh surface
continually to their action. When the teeth are small, the
portions of matter, lying between each two, are small, and the
force requisite to remove each is proportionately small. Thus
saws with large teeth are used for soft, and saws with small
teeth, for hard substances. The majority of cutting instruments

Q

7
N
N--

* The enormous power of the wedge is principally owing to its being
driven by émpact. The resistance on its sides is of the nature of pressure ;
and it is a fundamental principle of dynamics, that a pressure, however
great, necessarily yields af the moment of impact to an impinging force,
however sinall. The momentary separation of the mass thus produced is
rendered permanent, by the forward motion of the wedge.
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act as saws; the asperities produced in their edges, by sharpen-
ing, acting as so many wedges, To this class belong scythes,
table-knives, sabres, &c.

93. In sawing stones, nothing but a simple blade of soft
metal is used; the small angular particles of the substance to
be sawn, or the powder of some harder substance mingled with
them, are, by the action of this blade, moved backwards and
forwards on the stone, and act as so many wedges in cutting it.
The hardest stones may, by this means, be sawn asunder. Ior
cutting granite, emery is used. In cutting glass, emery is
mingled with water, and made to drop upon a sharp-edged
wheel, put rapidly in motion; and in engraving gems, diamond-
powder, mingled with water, is made to drop on the point of a
slender piece of soft iron, revolving with great velocity, upon its
axis., The glass or gem to be engraved, being held, under these
circumstances, against the instrument, is cut with wonderful
facility, by the action of the minute wedges into which the
crystullized substances used, form themselves, when powdered.
Files are commonly rods of steel, having their surfuces studded
with small wedges, and acting on a principle precisely analo-
gous to that of the saw.

The carpenter’s plane is no other than a wedge, which, instead
of being formed like the teeth of a saw, in a slender lamina of
metal, is of considerable width, and has its axis slightly inclined,
that the longitudinal motion which is given to it may drive it
into the substance to be planed. Its action is otherwise precisely
analogous to that of a tooth of the saw.

CHAPTER VIII.

‘The Lever. 104 The Balance used for determi-
95 Conditions of its Equilibrium. ning the Standard Bushel.
96 Reaction of its Fulcrum. 105 The Bent Lever Balance.
97 Applications of the Lever. 106 On Compound Levers.
99 Effect of the weight of the Lever. 107 The Weighing Machine.
100 The Roman Statera. 108 The Fulcrum of a Lever.
101 The Steelyard. 109 The Axis of a Lever.
102 The Danish Balance. 110 The Carriage Wheel,

103 The Common Balance.

Tre lever is an inflexihle rod, which rests by one point
against an immoveable obstacle, and sustains a force called the
resistance at one of its extremities, by the action of another
force called the power applied at the other. .
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94, Levers are of three kinds. In the first kind,. fig. 1,
the power r and resistance R are applied on opposite sides of

z (Fig. 1.) (Fig.2) Ry,

the fulerum c. In the second, fig. 2, the resistance risbetween
the power » and the fulerumn. In

the third, fig. 3, the power P is (Fig. 3.) R
between the resistance R and the
fulerum,

95. In all these the equili-
brium of the power and resistance,
if we conceive the lever to be with-
out weight, is governed by the
following simple law. That the
power multiplied by the perpendi-
cular from the fulcrum upon its
direction, shall cqual the resistance
multiplied by the perpendicular
upon its direction. This law is
easily deduced from a general prin-
ciple which we have established. (Art. 35.) Tt is this:—“When
any number of forces, acting in the same plane, are in equili-
brium, if any point be taken, and the moments of the different
forces of the system about that point ascertained, then the sum
of the moments of those forces which tend to turn it one way,
shall equal the sum of those which tend to turn it the other
way.” In each of the above cases, let the fulcrum be fixed
upon, as the point from which the moments are measured. In
each case, drop the perpendiculars ¢M and cn, from the
fulerum c¢*, upon the directions of the force and resistance,

* The lever is held at rest by Ziree forces; but, if we select the point
of application of one of them for the point about which we measure the
moments, we shall get rid of the moment of that force; since the perpen-
dicular upon its direction will be nothing, and therefore its product by that



74 THE LEVER.

respectively. Then by the principle of the equality of moments
it will follow that in all the three cases PX cM=gr X CN.

Hence it is apparent that if cN be less than cm, & is greater
than p, or the resistance greater than the power, and this
inequality may be carried to any extent by diminishing the
perpendicular cN. Thus we may increase the resistance which
a given power will produce to any extent, by diminishing that
arm of the lever to which it is applied, or causing its direction
more ncarly to approach the fulcrum. In levers belonging to
the first and second classes, the resistance commonly exceeds
the power; in the third class it is less than it. There is a
popular error arising out of this fact, which it is worth while to
notice, It is believed that, by the intervention of the lever, the
greater vesistance is made to be sustained by the lesser power.
This is not the case. A greater force can, under no circum-
stances, be supported by a less. The fact is, that by the
contrivance of the lever, a portion of the resistance is made to
be borne by the fulerum, the whole of it being divided between
that point and the point of application of the power. And the
same remark applies to all the various cases in which, by the
aid of a machine, a less force is made to hold a greater in
equilibrium.

96. Since the lever is, in each case, held at rest by three
forces, vis., the power, the resistance, and the reaction of the
fulerum, it follows, that the directions of these three forces
must meet in a point. (Art. 22.) In all three cases produce the
directions of r and R, to meet in z.  Then the direction of the
third force, that is, the reaction of the fulerum, is through that
point. Also in each of the cases it acts through c. Join,
therefore, zc, and this line will be in the dircction of the
reaction. To determine its amount; from either of the ex-
tremities A or B, drop perpendiculars, one upon the direction of
the force at the opposite extremity, and the other upon zc.
Then, as before, by the principle of the equality of moments,
the product of the first perpendicular, by the force; shall equal
that of the other, by the reaction of the fulcrum; thus, if the
perpendiculars Bk and BL be drawn from B (fig. 1),

P X BK == (reaction at ¢) X BL.
From the two couditions stated above, we can readily solve

perpendicular, nething, Thus, sclecting the point c, the principle of the
equality of moments gives us a relation between p and R, independent of
the reaction of the fulcrum. If we had taken any other point, this relation

;vould have been dependant upon that reaction, which we are supposed not to
now.
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the following problems. First: Knowing the quantity and
direction of the force applied to one extremity of a lever, to
determine that which must be applied in a given direction to
the opposite extremity, so as just to sustain it. Second :
Knowing the forces applied to the arms of a lever, to find the
pressure upon its fulerum.

(Fig. 4.) 2

b

97. The conditions we have established obtain, whatever
be the form of the lever; the proportion of the equality of mo-
ments being true, for systems of every form. Its shape may
be angular as in the lever used for altering the direction of a
bell-wire, fig. 4. Curved as in the crow-bar, fig. 5, and the
pump-handle, or it may combine these forms as in the common
hammer. In the crow-bar, fig. 5, the power is applied by the
hand; the fulcrum is some hard substance against which the
bent portion of the lever rests, and the resistance is the weight
to be raised. The crooked
lever is applied with suc-
cess to the sawing of wood
by machinery. A lever
PBAC, is fixed by means
of a joint to the rod c b,
and this again is jointed
to the saw in p; and the power is applied at r, in the direction
BP. The fulerum is placed at A, and as ¢ is made to deseribe
a circle, on or about this point, the saw is moved alternately,
backwards and forwards. A pair of pincers, when used in
drawing a nail, combines a double action of the lever. The two
arms being acted upon at their extremities by forces, each
represented by P, grasp the nail at R, with a force as much
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greater as AR is less than A m or such that P X AM =R X RA.
Again, the pincer acting to draw the nail upon the principle
of a lever, whose fulcrum is
c; if we draw upon the
direction of the resistance
of the mail, and upon the
direction in which the pres-
sure of the hand tends to
force it downwards, per-
pendiculars ¢N and c¢N’;
the latter force will be less
than the former, in the
proportion in which ¢~ is
less than c¢nN.  Scissors,
shears, and nippers, a com-
mon poker, a scale-beam,
and a steelyard, &c., are
all levers of the first class, having the power and the resistance
on cpposite sides of the fulcrum.

The following belong to the second class of levers, baving
the power and resistance both upon the same side of the ful-
crum, but the former being at the greater distance from it. The
wheel-barrow—in which the axis of the wheel is the fulcrum;
the weight of the barrow and load, the resistance; and the
force of the labourer, the power. The oar of a boat—where
the obstacle of the water to the motion of the blade of the oar,
forms the fulerum ; the resistance is supplicd by the rower of
the boat; and the power, by the bLands of the rower. Thus,
the force with which the boat is impelled, is to that exerted by
the rower, as the distance from the middle of the blade to the
point where he grasps the oar, is to the distance from the same
point, to the side of the boat. Common nut-crackers are
examples of levers of the same kind, the fulcrum being in the
hinge, the resistance in the shell of the nut, and the power in
the fingers. To the third class of levers, in which the power is
applied between the fulerum and the resistance, belong the
limbs of animals. Their fulera are in the joints, the power is
supplied by muscles, which apply it by the intervention of
tendons, whose attachments are exceedingly near the fulcra,
and the direction of their tensions very oblique to the direction
of the limb. An arrangement which is necessary to preserve
its compactness and symmetry. Hence, it is apparent, that the
perpendicular from the joint, upon the direction of the tendon,
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is necessarily exceedingly small, and, therefore, that the power
of the muscle to sustain even the weight of the limb, must be
enormously great.

The muscular powers of animals are probably among the
greatest forces that exist. The great albatross has at his com-
mand a power, which, acting in a direction whose perpendicular
distance from the joint of his wings cannot exceed half an inch,
enables him to extend them through fourteen feet, and thus
extended, to strike them fiercely against the air. To this class
belong all those levers in which a small motion of the power
produces a greater in the resistance, and in all of these, the
power is less than the resistance. The treddle of a turning-
lathe, a pair of tongs, or a pair of shears, such as are used in
the shearing of sheep, are instances.

98. If the power and resistance act both perpedicular to
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the arm of the lever; the perpendiculars upon their directions
from the fulcrum, are their distances from that point measured
along the arm : and the conditions

of equilibrium resolve themselves Rj I
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into the following. That the
force and the resistance, being

each multiplied by the distance % A‘l
of its peint of application from P
the fulcrum, the products shall be

equal, or

P X CA=RXCB.

The pressure upon the fulcrum is manifestly equal to the sum
of the power and resistance, when these act upon the opposite
sides of it, as in levers of the first class: when they act upon
the same side, as in levers of the second and third classes, it is
equal to their difference.

99. We have hitherto considered the only forces acting
upon the lever, to be three ; namely, the power, the resistance,
and the reaction of the fulcrum. Every lever is, however, in
fact, acted upon by an infinite number of other forces, in the
weight of its parts. It has been shown, that these influence the
equilibrium of the system, precisely as they would, if they were
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collected in its centre of gravity. Let then the weight w of the
lever A B be supposed to be collected in
its centre of gravity . The lever, in
addition to the forces P and R at A and
B, will now be acted upon by a third
force w, in a vertical direction at @.
Let cx be a perpendicular upon the
vertical through . Then it is neces-
sary to the equilibrium, that the mo-
ments of p and w, should together
equal that of » (Art. 35), or _
P PXCM+ WXCK=R XCN

It is clear, that the weight of the lever increases or diminishes
the resistance, according as the centre of gravity lies on the
opposite side of the fulerum to it, or on the same side. It is
also clear, that if the lever be so constructed as to bring its
centre of gravity immediately over the point of support, or
cause it to balance freely on that point, its weight will bave no
influence whatever upon the equilibrium, and may be supposed
not to exist.

ToeE RoMAN STATERA.

100, Tuis was the case in the Roman statera, or steel-
yard. A scale-pan having been sus-
pended from the shorter arm, that
arm was rendered so heavy, as to
cause the whole system to balance
upon its fulerum r. The effect of
the weight of the balance was thus
neutralized. The longer arm was then divided into parts each
equal to the length of the shorter arm, and then again equally
subdivided. And a weight p, was suspended to a ring, moveable
along it. According as this weight was placed upon the first,
second, third, &c., divisions of the arm, its moment would
manifestly equal that of the same weight in the scale-pan, or
be double of it, treble of it, &c. And, therefore, it would just
balance an equal weight, or twice, or treble the weight, &e., in
the scale-pan. Suppose the subdivision to be into tenths.
Now each of these subdivisions over which p is moved further
from F, being equal to one-tenth of r B, will increase its moment
by ome-tenth of p+Fu. To preserve the equilibrium, the
moment of the weight in the scale-pan, must be increased by
the same quantity ; but the distance Fn remains the same,
therefore, the weight itself must be increased by one-tenth p;
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in which case, the moment will be increased by one-tenth
P X FB, as was required. Hence it is apparent that if p be
made to move over any fractional part of one of the greater
divisions, the weight in the scale-pan must be increased by the
same fractional part of F, in order that the equilibrium may be
preserved. And hence, that to whatever fractional parts of the
greater divisions the subdivision is carried, to the same frac-
tional part of the weight P, may any article placed in the scale-
pan be weighed,

Tnr STEELYARD.

101. Tue steelyard now in use, is somewhat different
from this. There are two fulcra, from
either of which it may be suspended,
and two scales of division corresponding
to these, and marked on opposite cdges
of the longer arm., The instrument is
seldom made so as to balance itself on
either of its fulern; the error which
would result from the unequal action of
its weight, being corrected, by commencing the divisions from
that point, where the weight P would just balance the instru-
ment, by itself. The division is then made as before, into parts
equal to the distance of the fulecrum from the point where the
object to be weighed is to be suspended; and these parts are
equally subdivided. It is apparent, that since, when p is at the
commencement of the division, the moments on either side of
the fulerum are equal; if it be moved onward through any
fraction or multiple of the less arm, the same fraction or multiple
of the weight itself must be suspended from the less arm to
preserve this equality. Each division or subdivision of the
greater arm, corresponds, therefore, to a weight equal to the
same multiple or fraction of the moveable weight, which that
division or subdivision is of the less arm,

THE Danisn BALANCE.
102. Tre Danish balance differs gm
from the steelyard, in having a move- BoX AV,
able fulerum instead of a moveable
weight. It surpasses all others in the
simplicity of its construction, being, in fact, nothing more than
a straight rod with a weight fixed at one end, a hook at the
other, and a ring moveable along it, which serves as a fulcrum,
from which the whole is suspended. The object to be weighed
is suspended from the hook, and the fulcrum moved about,
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until there is an equilibrium. The weight is then read off on a
division marked along the arm for that purpose *.

Toe ComMoON BALANCE.

103. TrE common balance consists of a rigid mass called
the beam, in which are fixed transversely, at its extremities,
and through its middle point, three axes, s,¢’, and F; that, F, in
the centre, serving to support the beam, and the two others, s
and &/, carrying the scale-pans. The beam is commonly sym-
metrical, as to two lines, onc traversing it longitudinally, and
the other transversely.

The forces acting upon the beam are:—First, Its own
weight.—Secondly, The weights of the scale-pans, and the
weights they contain.—Thirdly, The reaction of the fulcrum.

The first may be supposed to be collected in the centre of
gravity 6, which ma-
nifestly lies in that
line of symmetry A B
which cuts the beam
transversely. — The
second, act upon the
beam in the points
s and s, and when
they are equal may
be supposed to be
collected in x, the
point of intersection
of the line ss8’, which
joins them, with the
vertical line of sym-
metry. 'When they are unequal, their resultant lies nearer to
the point of suspension of the greater weight.

The resistance of the fulcrum is in the point of its contact,
with the surface which supports the balance. Let x, F, and q,
be the points in which it has been shown that the forces acting
upon the beam may be supposed to be collected. The resultant

" If B and p represent respectively the weight of the balance and the
weight suspended from it, then, when the point of support x is in the position
of equilibrium, we shall have, by the condition of the equality of moments, -

PXAX=BXBX;0r,PXAX=BXAB—AX;and, . P+nx;=nxn;;

B N
and, AX=-—:f—_:-:.; whence it appears that for equal increments of » the

distances of the divisions on the arm from A must increase in harmonical
progression.
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of the weights in the scale-pans, acting through k, that of the
weight of the beam, through 6, and the reaction of the fulerum,
in 7. The two former may then be considered as forces acting
upon a lever, moveable about 7. There will be an equilibrium
when their moments about that point are equal. If the weights
in the scale-pans be unequal, so that the point x does not lie in
the line of symmetry a8, (see the figure in the next paragraph,)
it is manifest that this equality of moments can only exist in an
inclined position of the beam, when the product of the perpen-
dicular Fm by the sum of the weights in the scale-pans, being
the force which acts through k, equals ¥z multiplied by the
weight of the beam.

That balance is said to be the most sensible, which, for a
given inequality of the weights, causes the greatest deflexion of
the beam from its horizontal position. Now this deflexion will
manifestly be greater, first, as the distance through which the
point K is moved from an by the given inequality of the weights
is greater—and that is greater as the whole length of the beam
is greater. Also, secondly,
the deflexion will be greater 2
as the point x” (where the line
joining the points of suspen-
sion cuts AB), is more distant
from r*. And, thirdly, the
deflexion will be greater as the .
weight of the beam, acting &
through @, is less, and that \i
point nearer to the fulcrum.

In all good balances the line 88’ joiming the points of suspen-
sion of the scale-pans is made to pass a little beneath the
fulcrum.

It is apparent that, in the horizontal position of the heam,
if it be symmetrical, the moment of its weight, collected in ¢,
vanishes; since it acts in the vertical AB passing through r.
The beam cannot, therefore, rest in that position, unless the
moments of the weights acting at s and 8" be equal, or, if the
distances ks and ks’ be equal, unless the weights themselves
are equal. Such a balance will, therefore, ascertain correctly
whether the weights placed in its opposite scales be equal to one
another, and is a true balance. If, however, the distances xs
and x s’ be unequal, the beam will only remain horizontal, with

™ This elevation of the points of suspension on the beam must not,
however, exceed certain limits, or the slightest inequality in the weights
will cause the beam to upset. E
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unequal weights in the scale-pans, and although it poise itself
accurately when no weights are placed in the scale-pans, yet is
it a false balance. We may, however, weigh as accurately with
it as with any other, if, after having placed such weights in
either of the scales as shall accurately balance the article to be
weighed in the other, we then remove the latter and observe
what weights, placed in the pan from which it is removed, will
restore the equilibrium. These precisely equal its weight. And
this method is, perhaps, the most accurate that can be employed
to ascertain the exact weight of any portion of matter.

104, There are few things in practical mechanics more
dificult than the construction of an accurate balance; especially

B s

if it be required for ascertaining the weights of heavy masses.
The combination of strength in its parts, and delicacy in its-
adjustment, is only to be brought about by great skill and per-
severance, on the part of the artist.

The accompanying wood-cut represents a balance made by
Mr. Bate for determining the weight of the standard bushel,
combining these qualities in a remarkable degree.—Lightness
being essential to the sensibility of the balance, the beam of this
is made of dry wood; and that form is given to it, which sup-
plies the greatest strength with the least quantity of material,—
The beam is pierced through, mear its centre of gravity, and
through the aperture thus made, there is placed, transversely,
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@ solid mass of brass 1, in which is fixed a wedge-shaped
piece of polished steel, called a knife-edge*, the section of
which is represented at Fin the smaller figure,
and which extends completely across the beam.
This knife-edge is adjusted so as to be accu-
rately at right angles to the surface of the
beam, by means of screws which are represented
in the figure, and so as to be slightly above the
centre of gravity of its mass by means of other
screws, which are not shown,

Dassing through the same aperture, but
wholly detached from the beam, and resting
upon columns cc’ on ecither side of it, is ano-
ther mass of brass, on which is fixed a plane of steel M, tra-
versing the beam, and sustaining the knife-cdge, throughout
its whole length.—When the balance is in action this plane
sustains the whole of its weight, and that of the masses weighed
in it, and the knife-edge is the fulecrum upon which the whole
turns.

In the cross-piece which is supported by the columns c ¢’
and which carries the steel planc M, is an aperture through
which passes a fork-shaped piece of brass N, forming part of the
frame-work pED’, which is> wholly dectached from the beam
when the balance is acting, but admits of being raised by the
motion of the handle 11, so as to cause the fork N to catch a pro-
jecting piece L in the mass which carries the knife-edge and is
fixed in the beam. By continuing the motion of the handle,
the beam, and with it the knife-edge, may Dle lifted from the
plane on which it rests, and thus the injury which could not
fail to arise from a continual pressure of the plane upon it, is
prevented.

On pieces projecting from the extremities of the heam, and
precisely at equal distances from its fulcrum, two other knife-
edges ¥ are fixed across its upper edge, and like the former,
at right angles to the plane of its surface. These are adjusted
like the former, but they have their edges turned upmards.
The scale-pans are attached, each, by a hook, to a piece repre-
sented at &', and composed of two parts, each somewhat in

* It was at first imagined that sharpness in the edge of the fulcrum was
essential to the sensibility of the balance, and for this reason the edges of
knives were not unfrequently used as fulcra, It has since been ascertained
that a very considerable angle may be given to the edge of the fulcrum,
without at all impeding the rotation ; whilst the chence of injury to it, is
thereby greatly diminished.

F o
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the form of a stirrup, receiving the projection of the extremity of
the beam between them, and connected above by a steel plane
o', which rests on the knife-edge; and at
bottom by a cross-piece on which the scale-
pan is hooked. Thus is obtained that
perfectly delicate suspension of the scale-
pan upon the beam, than which nothing is
more essential to the sensibility of the
balance ; for it is manifest that if with the
inclination of the beam there be not a
simultancous revolution of both scale-pans
about their points of support; the effect
of that, carried by the ascending extremity,
will be the same as though it were suspended from some point
more distant from its fulecrum than its actual point of suspen-
sion ; whilst the effect of that carried by the descending ex-
tremity, will be the same as though it were suspended from
some nearer point, Both these causes existing in ever so slight
a degree, will have a tendency to impede the motion of the
beam, and may seriously affect its sensibility.

The frame DED’ carries at its extremities two fork-shaped
pieces of brass ', similar to those at 1, one on each side of the
beam. These, when the frame is sunk to its lowest point, stand
some inches clear of the extremities of the beam, allowing it to
vibrate freely ; but when the frame is raised by the motion of
the handle B, they catch projecting pieces L’ and L in the stir-
rups, and lift the planes which these carry, from the knife-edges
on which they rest. Thus the knife-edges are protected from
injury when the balance is not in use, and the scale-pans may
be loaded before their weight is thrown upon the beam ; an ar-
rangement affording great facilities in the use of the instrument¥.
The adjustment of the knife-edges to their proper positions, is
made by means of small screws by which they may be moved
horizontally or vertically. That of the knife-edge in the middle
to a point immediately above the centre of gravity of the beam,
which is the most difficult, is facilitated by means of small
weights which screw upon wires represented in the figures as
projecting horizontally from the extremities of the beam. These

* An improvement has recently been made by Mr. Bate in this part of
the arrangement. By a very ingenious contrivance, the beam and scale-pans
are first of all made to be suspended ypon cylindrical axes, and then, by a
further motion of the handle H, to rest upon the knife-edges. Thus an op-
portunity is afforded of bringing the weight in the scale-pans very nearly to
an equality, before that extreme sensibility is given to the balance which
renders the adjustment difficult.
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being screwed nearer to, or further from, the fulerum, gwe a
corresponding but very slight motion to the centre of gravxty of
the beam, thus causing it to take up the required position in
respect to its fulerum. The balance used by Capt. Kater for
determining the standard pound weight was on this construc-
tion. With a weight of 2501bs. in each scale, the addition of a
single grain caused an immediate deflexion of 4;th of an inch;
so that the balance was sensible to the addition of the yys§g55th
of the weight it contained, and would weigh accurately to that
fraction. This was, perhaps, the most perfect balance ever
made for weighing considerable weights. Mr, Robinson adjusts
his small balances so that, with 1000 grains m each scale, the
index varies perceptibly by the addition of the y!;5th of a grain.
So that his balances are sensible to the millionth of the weight.

Mg. RoBinsoN’s BALANCE.

105. Tre most important peculiarities of this balance con-
sist in the circumstance, that plane surfaces and knife-edges
alone are brought in contact, and in the contrivances by which
they are detached from each other, and again restored to contact
at the same point of bearing. Fig. 1, represents the balance.
The axis is a continuous knife-edge, firmly attached to the
beam. DBeneath this axis passes an agate surface, which is
fastened to the fixed upright, a.

I
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Fig. 4, represents one end of the beam, and the suspending
piece for the pan. The knife-edge is fastened to the beam
by the screw a, and is pressed by two screws, one of which is
shown in the drawing. The object of these screws is to adjust
the knife-edge parallel to the axis, which is done by relaxing
one of these screws and tightening the other. The termina-
tion of the beam, to which the knife-edge is attached, is con-
nected with the beam itself at the upper part. Through it passes
a screw b, the point of which presses against the contiguous
part of the beam. By screwing in the screw, the knife-edge
would be removed farther from the axis, and also be raised,
and the contrary by unscrewing it. By means, then, of these
adjustments, the end knife-edges are placed parallel to, equidis-
tant from, and in a right line with the central knife-edge.
Each end of the end knife-edge, is terminated by a short cylin-
der. The suspending pieces of the pans have also similar
cylinders, but longer, which, when the pans are suspended, are
parallel to, and immediately over, the knife-edges. By mcans
of these cylinders, and the frames b, b, fig. 1, at each end of
the support, the beam is raised from the central surface, and the
pans are raised from the knife edges.

Fig. 4.

The sides of these frames are inclined outward, and their
inner sides are formed as shown in figs. 2, 3. Fig. 2hasa’Y on
each side, to receive the cylinders of the suspending piece, and

Tig. 7.
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beneath are shoulders on which rest the cylinders of the knife-
edge. Fig. 3 has similar Ys, and on one side a similar shoulder,
but on the other side is a Y to receive one of the cylinders of the
knife-edge. These frames are fastened to the support, which
terminates in a tube fitting on a pillar. This tube is pressed
upwards by an interior spring, and is drawn down to bring the
balance into action, by a lever which passes through the tube
and pillar as shown at figs. 5, G.

On the index of the beam screws a ball, by which the centre
of gravity of the beam is adjusted. Fig. 7, shows the arrange-
ment for steadying the pans. Each arm is furnished with two
upright pins; these are to be pressed against the pans previous
to the support being drawn down, and are to be withdrawn
after the edges and surfaces are brought in contact.

Tonr BeNT-LEVER BALANCE.

106. Tue instrument represented in the accompanying dia-
gram is called the bent-lever balance. A bent lever, ABc, to
whose extremity c, a weight is fixed, and
to its extremity a, a hook, carrying a
scale-pan, is moveable about an axis B.
It is clear that the moment of the arm
B¢, varies with the perpendicular B on
the direction of the weight ¢, and, there-
fore, with the inclination of Bc. Every
different weight placed in the scale-pan
will, therefore, produce an equilibrium in
some new position of ¢. The positions
corresponding to different weights may be
determined by experiment or calculation,
and these being marked upon the qua- € 7 :
drant F @, ¢ will always point to the weight in tlne scale-pan.

O~ Comrounp LEVERs.

107. Levers may be made to act upon one another, and the
povwer of a system thus combined may be increased to any extent.
Let oP and Br” be two
levers, acting round fulera r j
and F”; and over their ex- ¥’
tremities let a third »" »” De
laid, the resistance of whose f
fuleram ¥ is in a direction op- |
posite to that of the others. A
power P applied at A will produce at ®’ a resistance as much

SN



88 THE WEIGHING MACHINE.

greater, as A F is greater than P'F; and this resistance actf,ng as
a power upon the lever ¥’ ¢”, will produce a resistance at ?”, ora
power upon the lever P”R, as much greater than that at »’, as
P’ ¥ is greater than »” ¥, and thus, by continuing the levers,
the resistance which a given power will produce, may be in-

creased without limit,
Two levers of the first and

second classes are sometimes con-
nected by a rod »'R’, jointed to

* , & Vi both, as in the accompanying

¥ figure, The resistance R, pro-
(= duced at ¥’, by the action of the
P B force p, is such that

PXPF=R X R F.

And the resistance produced at R, by the action of »" at ¥/, is
such that R” X P ¥ =RF’ X R.
‘Whence, multiplying these equations together, and striking out
the factor ®/, which occurs on both sides, we have

PXPFXPF=RXRFXRF.
‘Whence the power necessary to produce a given resistance may
be known, or conversely. The levers used for raising carriages,
to take off their wheels, are of this class.

Tue WEIGHING MACHINE.

108. A vERY ingenious combination of levers is used for
determining the weights of carriages. An oblong platform of
sufficient dimensions to receive upon its surface the carriage to
be weighed, is supported at its angles upon a system of four
levers whose fulcra are fixed in solid masonry, a short distance
beyond the angular points, and which converge, in the direc-
tions of the diagonals of the oblong, towards a point in its centre.
They there rest upon another lever, whose fulecrum is at a short
distance from the point of convergence, and which passes under
the road, and has its opposite extremity in the weighing-house.

Let us suppose the distance of the point, where each of the
angles of the platform rests upon a converging lever, from the
fulerum of that lever, to be one-tenth of the length of the lever,
and let the distance from the fulerum of the great lever to the
point where it supports the extremities of the smaller levers, be
one-tenth of the distance from the fulerum to the extremity of
the lever in the weighing-house. Also let us suppose a weight
of 4000 pounds to be placed upon the platform; this being
divided equally between the points of support, each will bear
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one-fourth of it, or 1000, Also a pressure of 1000 pounds
applied at that point of each converging lever, where it sustains
the platform, will be held in equilibrium by a pressure of 100
pounds applied at that extremity of it which is under the centre
of the platform. The whole would, therefore, just be borne by
400 pounds at the centre of the platform; and this pressure
again being thrown on one extremity of the great lever, will be
borne by 40 pounds at the other extremity of that lever, in the
weighing-house. Thus 4000 pounds may be weighed by means
of a weight of 40 pounds.

Tue FuLcrA oF LEVERS,

109. Tae fulcrum of a lever is usually made in the form of
a triangular prism, and sustains the pressure upon one of its
angles, thereby opposing no appreciable resistance to the motion
of the lever about its line of support. It
either forms part of the lever, and rests
upon horizontal planes fixed in an upright
pillar on cach side of it, or (as in the balance
described, Article 104,) piercing it, or it is
itself so fixed, sustaining the surface of the lever on a plane
placed across it. 'We have hitherto supposed the fulerum to
supply a reaction, equal and opposite to the resultant of the
forces upon the lever, in every position which it is made to as-
sume.’ This is, however, only possible within certain limits. If
the resultant make with the perpendicular to the surface on
which the fulerum acts, an angle, greater than the limiting angle
of resistance, it will clearly slip upon that surface, and the equi-
librium will be destroyed. This condition brings the possible
cases of equilibrium under the circumstances described in the
preceding propositions, within comparatively narrow limits.

110. If we would extend these limits, we must, by some
mechanical contrivance, counteract the tendency of the lever to
slip, under certain circumstances, upon its point of support. To
effect this, the fuleram may be converted from a triangular prism
into a cylinder, and instead of resting on a plane, may be made
to rest upon the interior surface of a cylindrical aperture in the
mass which is to sustain its reaction. Thus formed, it becomes
an axis of rotation. This axis, like the fulcrum, may either be
fixed in the lever, and moveably inserted at each extremity in
uprights projecting from a supporting column; or it may be
fixed itself, in these supporis, and moveably inserted in the
lever. It will be apparent, hereafter, that the first arrangement
possesses many advantages over the other. Whils]; 2)' this con-
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trivance, we manifestly gain the advantage of a constant position
of the point of support, whatever be the position of the lever,
or whatever the forces which act upon it; we lose that perfect
freedom of rotation which the other arrangement gave us. This
will be readily understood. Where the surfaces of the lever
and its support are in contact, in a single point, as in the case
of the triangular fulerum, it is manifestly necessary to the equi-
librium, that the resultant of the forces acting upon it, should
pass accurately through that point; otherwise the reaction of
the support which takes place only there, could not sustain that
resultant; and the lever having been thus placed in equilibrium,
the slightest alteration made in the forces which act upen it,
changing the direction of their resultant, would be sufficient to
communicate motion to the whole. "Whereas, in the other case,
the lever and its support are in contact throughout the whole sur-
face of the cylindrical aperture or socket, and if the resultant of
the forces acting upon the lever pass through this surface, they
will be sustained, whatever be the direction of that resultant, pro-
vided only that direction do not make with the perpendicular to
the surface an angle greater than the limiting angle of resistance.
Thus, if P& be the direction of the resultant, and we join ¢ E (¢
being the centre of the axis, and c E being, therefore, perpendi-
cular to its surface), this resultant will be sustained by the re-

Y action of the support, whatever be its
' direction, provided only the angle E ¢ be

' D
& less than the limiting angle of resistance.
£ g Sngle ol 18
-~  Hence, therefore, the forces acting upon
4 % the lever may be varied infinitely within

certain limits, both as to quantity and
direction, without causing it to revolve. The greater the length
of the lever, the greater is the distance through which a given
variation of the forces acting upon it will move their resultant,
the narrower, therefore, are the limits within which this varia-
tion is practicable—the dimensions of the axis being supposed
to continue the same. It is manifest that by diminishing these
dimensions, we can contract the possible limits, within which a
variation of the force docs not produce a corresponding motion
of the lever, to any extent. That is, we may thus diminish, as
far as we like, the effects of the friction of the axis,

Tur CARRIAGE-VWIEEL.

111. FromM the above considerations, we shall be enabled
to explain the theory of the axis of the carriage-wheel. Let us
suppose that, instead of being moveable round a small axis in its
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centre, it were moveable round an axis having a diameter nearly
equal to its own, so that the wheel constituted, in fact, a thin
ring, just encompassing the axis. It is clear that the friction
would then be the same as though the wheel were locked, and
it were dragged along a road of the same material as the ring.
Now we have pointed out the difference between the friction of
an axis of these dimensions and a smaller axis, such as that of
a carriage-wheel, the same difference is there, therefore, between
the friction of a carriage drawn without wheels or with its whecls
locked, and a carriage rolling freely on its wheels*.

In overcoming obstacles, the action of a carriage-wheel is
that of a lever of the first class.  Let A represent the obstacle,
cp the linc of traction, c®r a vertical through ¢. Then the
forces acting upon the wheel are the reaction of the obstacle at
4, the weight of the car-
riage sustained by the axle,
and acting on the wheel in
the direction c¢mr, and the
traction of the horses in
the direction cr. From a
let fall the perpendiculars
AM and AN upon cr and
CR; then there is an equi-
librium when the force of
the horses is such, that its
product when multiplied by
A M, is cqual to that of the weight multiplied by an. A force
slightly greater than this will be sufficient to draw the carriage
over the obstacle.

CHAPTER IX.

112 Irregularity in the action of a Axle, by which its power may be
Force applied to the extremity increased without limit.
of a Lever, whose direction 117 The Windlass.
passes always through the same 118 The Capstan.

point. 119 Tread Wheels.
Method of remedying it. 121 Tread Wheels worked by horses.
113 The Wheel and Axle. 122 The Fusee.

115 Modification of the Wheel and

112. THE effect of a force applied to the extremity of alcver
being dependant upon the length of the perpendicular from the

* If there were no friction upon the axle, the theory of the carriage.
wheel would be the same with that of the rolling cylinder. (Art. 83.)
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fulerum upon the direction of that force, necessrily varies
continually with the motion of the lever, provided the force be
not in every position made to act at the same perpendicular
distance from its fulcrum. Thus, a man who, standing in the
same position, applies his strength, by means of a rope, to one
extremity of a lever, and thus raises a weight attached to the
other extremity®, camnot produce the same effect in different
positions of the arm of the lever by the same expense of muscular
energy. He will find continually that his efforts must be
grealer, as the perpendicular from the fulcrum upon the direc-
tion of the cord which he pulls, is less.

A very simple contrivance will, however, enable him to give
uniformity to the effect of his strength thus applied. Letrra
’ represent a lever, which may be of any
form ; and let there be fixed at its ex-
tremitics, P and @, two arcs of circles
AB and c¢p, which have, both, their
centres at the fulcrum or axis . Let
these form part of the mass of the lever,

N ey and let the cords to which the forces p
o and Q are to be applied, be attached to
------------ the upper extremities of these arcs.
As either cxtremity of the lever is
pulled down, the cord will then unroll from this are, so that its
direction will always be that of a tangent to it, and the perpen-
dicular upon that direction from the ful-
crum will be a radius of the are, and,
therefore, always the same, whatever be
the position of the lever. The perpen-
dicular upon the direction of the force
being thus always the same, the effect of
the force will be the same.

This principle has been used to convert
the vibrating motion of the beam of a
steam- engine to the longitudinal motion
requisite for working pumps, as represented
in the accompanying diagram.

2
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Tue WHEEL AND AXLE.

113. IN communicating motion, the action of the lever is
necessarily limited and intermittent. Thus, if a weight be
attached by means of a cord to the extremity of a lever, we

* As in the case of a drawbridge, or in the contrivance used for raising
water in gardens near London.



THE WHEEL AND AXILE, 93

can raise that weight by the action of the lever only to & given
beight, equal, at the utmost, to twice the length of the arm to
which it is attached. The wheel and axle is a contrivance for
extending the action of the lever to any distance, and rendering
it continuous; these advantages being combined with the uni-
formity of effect spoken of in the last article.

"~ Conceive the circular arcs ABand cp (see the first fig. in
the preceding article) to be continued round, so as to form
complete circles; and instead of the end of the cord being
attached to the circumference in B, let it be any number of
times coiled round it. The cord at the extremity of which q is
made to act, being then of the requisite length, the action of »
in giving motion to Q may be continued through any distance.
The value of P necessary to effect this must be greater than that-
which, being multiplied by rp, gives a product equal to the
product of @ multiplied by Q. It is manifestly immaterial, so
far as these conditions of equilibrium are concerned, what are
the widths of the edges of the two circles, round which the
ropes are coiled. The smaller is commonly widened into a
cylinder, called the axle. The other is made narrower, and is
called the wheel.

114. The wheel and axle is principally used in the eleva-
tion of weights. It cnables us, by means of a small force or
weight, to raise a much larger.
Since, in order that the power
and _weight may sustain one
another, the power multiplied by
the radius of the wheel must
equal the weight multiplied by
the radius of the axle, and that
the radius of the wheel is greater
than that of the axle; it is clear
that the power must be less than
the weight, or this equality could
not exist. Thus, if the wheel be 18 inches in radius, the axle
3 inches, and the weight to be raised 361bs.; since 3 inches,
multiplied by 361bs. (which product is 108) must equal 18
inches, multiplied by the power; it is clear that the power
must cqual 6lbs., since that number, multiplied by 18, will
make 108. It is manifest, that theoretically we may increase
the power of the wheel and axle to any extent, by increasing
the radius of the wheel, and diminishing that of the axle.
Practically, however, this is impossible. For if the radius of the
wheel be greatly increased, it will be found difficult, and at
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length impossible, to apply the power to it; and if the radius of
the axle be greatly diminished, it will become so slender, as to
be incapable of supporting the weight.

115. The following contrivance appears, however, to meet
this difficulty, and enable us to increase the power of the wheel
and axle without limit. Let us suppose three circles, turned
upon the same block of wood, to have their common centre in
c; and let a rope attached to the circumference of the second
circle in A pass round the pulley q, and be coiled in an opposite
direction round the least of the three
circles. The weight is attached to
the centre of the pulley q, and the
power applied to a rope coiled round
the largest circle. Now it is clear
that the forces at A” and A”, acting on
the same side the centre, both tend to
support the force acting at A. Also,
since the pressure of R is equally sus-
tained by the two strings q A and Q' 4’,
each bearing one-half of it; it is clear
that the force acting at A’is equal to
that at A, and would sustain it with-
out the assistance of p, if the distance
c A’y at which it acts, were equal to
¢ A; also that it will more nearly sus-
tain it, as these distances are more
nearly equal; so that we may make
the] additional force to be supplied by p, as little as we like, by
diminishing the difference of the radii ¢ A and ca*. Thus the
force p necessary to produce the equilibrium may be diminished,
and the power of the machine increased to any conceivable
extent.

116. All the condi-
tions of the equilibrium
will manifestly be the
same, if the circles be not
in the same plane. The
two interior circles are
commonly cylinders on the
same axis, and the force p
is applied asin the wind-
lass.

Sometimes the cords

ety S
¢ '

* Mr. Saxton has applied the principle explained above to the con-
struction of a very ingenious pulley.
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are coiled on different cylinders, and the same motion com-
mupnicated to both by the intervention of a cog wheel. As more
rope is coiled on the axle, the point from which it is suspended
moves along it, and has a tendency to collect at its extremity,
and encumber its revolution upon its axis. This tendency is
sometimes counteracted by giving a curved form to the surface
of the axle. This curvature rapidly increases towards the ex-
tremities of the axis; and as the coil approaches those points
causes it to slip towards the centre.

Toe WiNDLAss.
117. THE power,
instead of being ap-
plied to the axle, by
the intervention of the
wheel, is sometimes
applied by means of a
lever fixed in its ex-
tremity, and terminat-
ing in a handle paral-
lel to its axis. It is
then called the wind-
lass. If the power be
applied by the hand of the labourer in a direction” perpendicular
to the arm of this lever, the conditions are the same as where
the wheel is used.

Tne CAPSTAN.

118. Ir the cylinder, instead of having its axis horizontal,
is placed vertically, it becomes a capstan. The power is applied
to the capstan by means of a series of levers, placed at equal
distances round it, in the
direction of radii. To
each of these the force of
one or more individuals
is applied at the same
time.

The capstan is prin-
cipally used for raising
the anchors of ships, A
few turns of the cable are
coiled upon the cylinder; these are sufficient to prevent it
slipping; and as one extremity coils itself, the other rolls off,
and is stowed away. It is evident that in this operation the
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coil will have a tendency to move continually from one end gf
the cylinder to the other. To prevent this, a conical form is
given to it, as represented in the figure; and towards the lower
extremity its thickness increases very rapidly, and by this means
the coil, when it approaches that extremity, is made continually
to slip back again up the inclined plane of the sides of the cone.

TrEAD WHEELS.

119. Tur muscular strength of the legs being much greater
than that of the arms, various methods have been contrived for

applying fread wheels to 'give motion to the axle. The
accompanying diagrams represent two of these. In the last
the weight of the body, and the muscular
force developed by the individual in
raising himself (the reaction of which
is borne by the machine), combine to give
the motion. In the first, which is that
commonly used in our prisons, the re-
action of this muscular force is princi-
pally borne by the bar which the prisoner
grasps. The last contrivance appears to
possess great advantages over the other
in the economy of force, space, and ma-
terials.

120. Numerous methods have been contrived, for com-
bining the action of the weight and muscular force of horses, in
giving motion to machines. The annexed figure represents one
of these. The fore-feet of a horse rest upon a fixed platform,
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and his hind-feet upon
the circumference of a
cylinder, which a portion
of his weight, and the
muscular energy of his
hind legs, combine to put
in motion.

121. If the weight
or force to be overcome
be constantly the same,
and it be required to
overcome it by the action
of a variable power; it is
clear that this power must be applied at different distances from
the axis. To effect this, the wheel, instead of being a cylinder,
may be a cone of such a form that—imagining it to be cut at
equal distances transversely—
the radii of its different sec-
tions may increase or diminish
exactly in the proportion in
which the power to be used
diminishes or increases; S0
that the small power, when
thus placed, by the coiling of
the string along the cone, at
the greater distance, may produce the same effect as the greater
power at the less distance.

122, The conical wheel of a watch, called the fusee, is
constructed upon this principle. The force of the spiral spring,
which in uncoiling itself gives
motion to the watch, is great-
est immediately after it is
wound up, and diminishes
perpetually as the coil ex-
pands; the difference of force,
corresponding to different de-
grees of expansion, being
exceedingly great.  Hence,
thercfore, if there were mno
check upon the variable action
of the spring the watch would
continually move slower, from the period when it was first
wound up. And unless the dial-plate were unequally divided,
we could not tell the time by it. The fusee obtains from this
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variable power a more cquable one, which becomes the imme-
diate moving power. The spring, in uncoiling, carries round
with it the hollow cylinder in which it is enclosed, and which
is called the barrel. To the outer surface of this cylinder a
chain is attached, the remainder of which is coiled along a
spiral groove cut on the surface of the fusee, and fastened at
the larger extremity. When the watch is wound up, the chain
occupies the whole of the groove on the fusee, and passes from
its smaller extremity to the circumference of the barrel. The
spring is then acting with its greatest force; but the chain,
communicating its motion to the fusee, is acting upon its least
extremity, and, therefore, with its least leverage, and with its
least effect. As the spring further uncoils, and its force dimi-
nishes, the chain perpetually acts on portions of the surface of
the fusee more distant from its axis, and, therefore, with a
greater leverage, or effect. As the power of the spring, there-
fore, diminishes, its action on the watch is increased; and by a
proper adjustment of the form of the fusee to its strength, it is
manifest that this action may be thus rendered uniform.

The conical form of the fusee is sometimes given to the
barrel of a windlass. The rope being fastened to the smaller
extremity, the power acts at the greatest mechanical advantage
when the whole is unwound, and the weight of the rope added
to that of the mass to be raised. As, however, the weight of
rope to be raised diminishes, it continually winds itself on a
portion of the barrel of greater diameter.

CIIAPTER X.

123 System of Cog Wheels, a Mo- 125 Conditions of the Equilibrium
dification of the Compound of a System of Cog Wheels.
Lever, 126 Friction got rid of by diminish-

ing the size of the teeth.
123. WE have explained the advantages arising from the
combined action of two or more levers upon one another. The

!
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difficulty of communicating motion by means of a combination
of levers, is, however, such as to render its practical application
to any useful purpose scarcely possible. A very slight motion
of either lever is sufficient to disengage its extremity from that
of the next to it in the series, and the chain thus once broken,
the system is destroyed, a catastrophe which it is scarcely pos-
sible to avoid, since little or no perceptible motion of the weight
can be produced without a considerable motion among the first
levers of the series.

124. Let us suppose two levers A B and a6, of which
AB gives motion to a b, to be upon the point of disengaging
their extremities from one
another, after which their
action upon one another
would, of course, wholly
cease. To continue the
motion, let us suppose two
other levers A B and a'd/,
to be fixed at such angles
to the first, that when they
are upon the point of disengaging, these may just be coming
into contact.

The action of the two systems upon one another will then
be continued by this second pair of levers until they are dis-
engaged; it may then be taken up by a third ao”B” and a” b,
and afterwards by a fourth pair, and so continued throughout a
complete revolution; and similarly through any number of
revolutions, of both systems. And in the same way, instead of
two, any number of similar systems may be combined, and their
combined action continued through any number of revolutions.
"The portions of the levers which act upon one another lie near
their extremities. All the remaining portion of euch system
may, therefore, form a continuous solid. It then becomes a
cog wheel.

Coc 'WHEELs.

125. Ler us suppose two such wheels to be fixed on two
axles, having the same centres ¢ and ¢’ with them. And round
these axles let ropes be coiled in the same direction, carrying
weights P and w. Let T and 7" be two cogs at any instant in
contact in the point @; and let ¢ MM be the direction in which
they press upon one another. From ¢ and ¢ draw the perpen-
diculars ¢ M and ¢’ M’ on this line.

Then, in order that the wheel, whose centre is ¢, may just
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be hLeld at rest; the moment of the pressure at @, must equal
that of the weight p;
or being multiplied by
cM, the pressure at Q
must equal P multi-
plied by ca. (Art. 36.)
Hence it follows, that
the pressure at @ must
equal the product of p
and ca, divided by
cMm. And, similarly
we shall find it to be
necessary to the equi-
librium of the other wheel, that the force at @ should equal the
product of w and ¢’ o’, divided by ¢'m’. So that the pressure at
Q cquals both the qumtities.

CAXP A X w
—=—= and —===— Wherefore these quantities equal one
cM oM
. CAXP cAxXW - dA'XeM
another, or —==— = —=—— and hence, pP—= =————=, X W,
cCM c M CA¥XC M

Now it is evident that the cog T cannot give motion to T/,
without at the same time slipping along its surface at . And
it cannot so move along its surface, unless the direction of M,
in which it presses upon it, be without the limiting angle of
resistance (Art, 72), and, therefore, considerably inclined to the
face of the tooth ; but the more M @ is inclined towards @ T°, the
less is the perpendicular ¢’ a, and the greater is ¢ M; the greater,
therefore, is the fraction

(ﬂ—C—M,, and the greater is the
CA X G

power P, necessary to give motion to a given weight w.—Hence,
therefore, there arises a great loss of power in the machine, from
the sliding of the cogs on the surfaces of one another. This
loss of power would be avoided if they could be so contrived as
that in the motion of the machine they should roll, and not slide
upon one another. With this view various curved forms have
been given to them. Any geometrical discussion of the nature
of these is beyond the scope of an clementary work. It may,
however, be stated generally, that they are asserted to belong to
that class, which are generated by the motion of a point in the
circumfercnce of one circle, rolling upon that of another, and
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called epicycloidal or hypocycloidal, according as the moveable
circle rolls on the outside or inside of the fixed one.

There is still another object, with a view to the attainment
of which, it is most important to modify the forms of the tecth
of wheels.—It is casily seen, by an inspection of the figure in
the preceding page, that an uniform motion of the wheel ¢ round
its axis, does not by any means necessarily produce an uniform
motion in the wheel ¢. The angular velocity communicated
to ¢’ diminishes, in fact, from that position in which the edges
of the tceth arc in the same right line until they finally leave
one another. After all, however, it is scarcely possible to con-
struct wheels such as will satisfy all these conditions; and were
they so constructed, the unequal wear of the machine would soon
alter their forms.

126. Friction is best got rid of, and uniformity of motion
most completely produced, by making the teeth exceedingly
small, and proportionately numerous. And when the strain is
not considerable, this may be so far done as to render any irre-
gularity in the motion almost imperceptible.

When the teeth are thus small, it is evident that any two
which are in contact leave onc another almost immediately after
they pass out of the line which joins the centres of the wheels,
and may be considered to
touch only while they are in
that line. Now whilst the
surfaces of the tecth are in
this line, the motion of the
point of contact is perpendi-
cular to both; they have, there-
fore, no tendency to slide
upon one another, and there
is no friction. Iere, there-
fore, the pressure of one on the other is perpendicular to their
common surface. And the perpendiculars ¢m and ¢ M’ coincide
with cq and¢’@’. So that the conditions of the equilibrium
become

P= ——-—E—:/ ‘-f—Q.

cAa.c’qQ
Where ¢ @ and ¢'Q’ may be considered, since the teeth are very
small, as equal to the radii of the wheels. Ilence the following
rule to find the power of a combination of two cog wheels.
Multiply the distance at which the power is applied, from the
centre of the first wheel, by the radius of the second wheel, and
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multiply the distance at which weight acts from the centre of
the second by the radius of the first. The quotient of these
products will give the ratio of power to the weight, or the power
of the machine.

127. And generally, if any number of cog wheels act upon
one another, and we suppose the distances at which the power

and weight act, from the centres of their respective wheels, to
form the extreme terms of a serics, of which the intermediate
terms are the radii of the wheels in succession; then taking the
product of the odd terms of this series, and dividing them by
the product of the even ones, the quotient will represent the
power of the system.—Thus, in the figure, the forces r and w
act at distances, ¢ A and ¢, B, from the centres of the wheels to
which they are respectively applied; writing these, thercfore, as
the extremities of a series, of which the intermediate terms are
the radii of the other wheels taken in order, we have the series
CA, OB, C, A,y C; By, Cy Ag, C3By, Cy Ay, O, By,
IIcnce, dividing the product of the odd terms of this series by
the product of the even terms; we obtain, for the power of the
machine the fraction

CAXC A XC A XCy A

CBX (3B XC;:B; XC;3B3

CHAPTER XI.

128 The Crank. 131 The Stanhope Press Lever.
130 The Eccentric. 132 The Camb.

Tue CraAnk,

128. To t.he end, M, of alever, cM, moveable about the
centre ¢, conceive a rod, MN, to be attached by a joint, allowing
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it to revolve freely about that point. This arrangement is that
of the crank, The two forces applied to ity act one in the direc-
tion of the rod
N M, and the other
P (by means of a
wheel or other-
wise) on an axle,
in which cm is
fixed by its ex-
tremity ¢, and
which axle, ¢Mm N
carries round

with it. The conditions of the equilibrium are, (Art. 36,) that
the moment of the force p should cqual the_ product of the force
in N M multiplied by the perpendicular cm.

Now as the positions of cm and N alter, so as to come
more ncarly into the same right line, the perpendicular ¢ m con-
tinually diminishes; and when they attain
that position, it vanishes. The force inM N
must, therefore, continually increase, in
order that the equality of moments may
remain; and eventually no force, however
great, will be sufficient to prescrve this
equality. For the moment of the force p
applied to the axle, has a finite value; but 3
no force multiplied by cm can have a S
finite value, when that line is evancscent. The equilibriumn
becomes, therefore, under these circumstances impossible ; and
there is a certain position of the crank in
which it will sustain the action of no force
P, howeyer small, When the muscular force
of the arms is applied, in giving rotatory
motion to a wheel, as in the accompanying
figure, or as in the windlass, the action is
precisely analogous to that of the crank.

129. By means of the crank, longitu-
dinal may be converted into circular motion.
Suppose the rod = M to admit of motion only
in the direction of its length. At its ex-
tremity M, let a second rod M N be attached
by means of a joint, and let this again be
jointed to a third rod ¢ ~; which carries, at
right angles to its extremity, an axle move-
able at ¢ in a socket or bush. Therod cn
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being made to revolve by means of the force p acting round
this axle will carry the extremity N of the rod M x round with
it, and thus communicate an alternate longitudinal motion to
MR, Or, conversely, such a motion being by any means given
to MR, the rod ¢~ will be made to revolve about ¢, and the
axle carried round with it.

Tue EccexTric.

130. Is another contrivance for converting continued cir-
cular into alternate rectilinear motion. A circle is fixed to the
axis of the wheel or crank which carries the power, in a point
¢ which is not its centre: LN is a frame in which is a circular
aperture precisely of the size of the former circle, and which is
placed upon it, or made to contain it. The extremity N of this
frame may be jointed on a rod moveable only in a longitudinal
direction, and intended to apply the force of the machine.

The tension upon the frame is manifestly in the direction of
the line MmN, passing through the centre M of the circle, about
which line it is symmetrical. Taking, therefore, ¢, the centre
AN

L

X4

of the motion, and drawing the perpendicular ¢k upon MN, if
the force p, applied to turn the circle about its axis ¢, remain
the same, the strain, multiplied by c¢ x, must remain the same.
As, therefore, ¢ kK diminishes, the strain will increase, and con-
versely. The force R, necessary to the equilibrium, may be con-
sidered to vary nearly as the strain upon the frame.

The power of the eccentric is greater as the axis about which
the circle is made to revolve, is less distant from its centre.

Tue StaNmOPE PRrESS LEVER.

131. TaERE are some facts with regard to the combination
of two cranks, which are worthy of attention. Let us conceive
two cranks, connected by the common rod M N, to have their
centres of motion in ¢ and ¢.  And let a given force act to give
motion to the system by causing the revolution of cm. Now
it has been shown that the strain produced by this force, in the
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rod M N, will be greatest when ¢ M and MmN are nearly in the
same right line. (Art. 127.) This strain is transferred to N, and
tends to give motion to ¢’N. If, thercfore,
the system be so contrived that when cm
and M N are nearly in a line, M N may be per-
pendicular to ¢’ N so as to act upon that lever
at the greatest advantage, it is evident that
we may produce an enormous force tending
to cause revolution in the axle to which that
dever is attached. This arrangement of levers
is that used in the Stanhope printing press.
The axle ¢’ there drives a screw, pressing the
paper to be printed, with enormous force
apon the type.

Tur Cams. °

132. TeE camb is an instrument which under various
forms, enters largely into the construction of machinery. Its
office may be defined to be that of converting
an uniform rotatory motion, into a varied
rectilinear motion. cE is a rod admitting of
motion in the direction of its length, and
held in contact with the edge of the irregular
mass A D, either by its own weight or by the
pressure of a spring. This rod carries with
it that portion of the machinery by which
the irregular motion required is to be ap-
plied, and the irregularities upon the cdge of
the mass A D are such, as it is aseertained by
trial, will communicate this motion, when the mass is made to
revolve uniformly upon an axis B, round which it is moveable.

Some of the most ingenious of the combinations of this
instrument are to be found in the machinery for making lace.
The extreme variety and intricacy of the motions there derived
from the regular motion of the piston of a steam-engine, or the
continued revolution of a water-wheel, together with their ex-
treme rapidity, precision, and accuracy, rank among the greatest
wonders of the science of practical mechanics.

The relation betwecen the power applied to give a rotatory
motion to the camb, and that by which the slide is, in any of
its positions, driven forwards, may be estimated as follows
Through the point where the slide is in contact with the edge
of the camb, draw a line inclined to the perpendicular to its sur-
face, at an angle, equal to the limiting angle of resistance, and

F
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from the axis of the camb let fall a perpendicular upon this line,
The resistance between the camb and slide will be found (Art.
36) by dividing the moment of the force applied to turn the
camb (i. e, in the figure its product by the length of the handle,)
by this perpendicular., But the whole resistance of the camb
and slide on one another is not effective in giving motion to the
latter; part of it being borne by the surfaces between which it
moves, and which serve to guide it. To obtain the portion of
the whole force effective in moving the slide, we must multiply
the resistance by the cosine of the angle which the line of re-
sistance makes with the direction of the slide.

From what has been said above, it is apparent that such a
form may be given to the edge of the camb, that it shall be im-
possible to turn it, however slight the pressure of the slide may
be upon it.

CHAPTER XII.

The Theory of the Screw. The Endless Screw.
The Clamp. The Conical Screw.
The Winch. Hunter’s Screw.

The Micrometer Screw.
Tue Screw,

133. TuE screw presents a combination of the moveable
inclined plane and the lever. It is clear that the equilibrium of
the mass M (fig. page 67), depends upon the forces which act
upon it, and the inclination of that portion of the inclined plane
with which it is in contact; and has nothing whatever to do
with the form or inclination of the other portions of the inclined
plune. Now let us suppose the portion of the plane with which
M is in contact to be exceeding small, and that portion of the
plane remaining unaltered, let us suppose the rest of it to be
bent round a vertical cylinder, the
line A B just reaching round its base,
and the two extremities A and B
being brought to meet. The plane
| ““l'“} will then assume the form repre-
mf” gented in the accompanying figure.
The points A and B coinciding in A 3
AEC being the surface, and A ¢ the
back of the plane.

Suppose the whole to be made moveable about a fixed axis
00, coinciding with the axis of the cylinder. And let the

7
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force n'n be applied to the back of the plane in a direction
round this axis. This force will be propagated to q, and act
upon that point parallel to the base of the plane, precisely as it
did before the plane was curved ; the equilibrium will, therefore,
remain under the same circumstances.

‘We may suppose the force »” n to be generated by means of
a lever, having its fulerum at L in the axis of the cylinder, and
acted upon by a force P in the direction »’Pp at its extremity.
The requisite pressure at » would be generated by a much
smaller force at p. It has been shown (Art. 86) that the effect
of a force n’n applied to the back of a moveable inclined plane,
upon an obstacle M, opposing itself to the motion of the plane,
and acting on its surface, is always in the limiting direction of
the resistance of the plane, that is, inclined to a perpendicular
to its surface, at an angle, equal to the limiting angle of resist-
ance. Knowing, therefore, the amount of the force n'=n or q,
which acts parallel to the base of the plane, and also the direc-
tion of the resistance g, we can find the amount of the latter.
(Art. 80.) When the forces which hold the mass M in its
place, (commonly its cohesion to the other parts of the mass of
which it forms a part,) are not sufficient to produce this re-
sistance, the mass M will yield, and move up the surface of the
plane.

Let us now suppose a second inclined plane to be wound
round the cylinder, beginning from the point ¢, and having its
base parallel to the base of the cylinder. The equilibrium of a
mass similarly pressed upon this, will be precisely similar to
that upon the other. Suppose a series of such masses all pressed
upon the plane by equal and similar forces, to occupy the whole
length of the plane, and be in contact with every portion of it.
The conditions of the equilibrium of each will be the same, and
may be brought about by the action of a lever similar to P 1L ;
or a single lever placed at the top or bottom of the cylinder,
may be made to do the work of all these separate levers. Thus
constructed the instrument will form a screw; A D is its base,
AEc is one of its threads, and A ¢ the distance between its
threads. The force impressed upon the lever will be upon the
point of giving motion to the whole, when it is such as to cause
the direction of the pressure upon the different points of the
thread of the screw, to make angles with the perpendicular to
it, equal to the limiting angle of resistance.

134. The screw which we have described is called a male
screw. If, instead of being wound round the outside of a solid
cylinder, the inclined plane had been wound roun%‘ the inside of

2



108 THE SCREW.

a hollow one, its surface would have formed the thread of a
female screw. If the diameters of the two cylinders and the
dimensions of the planes be, in both cases, the same, these two
screws will exactly fit; and their threads may be made to co-
incide. If either be then fixed, and the other be turned round
upon its axis, it will be made, besides its rotatory motion, to
move also in the direction of its axis.

135. The clamp and the winch, represented in the two first
of the accompanying engravings, present instances of these ap-
plications of the screw. In the first the female screw is fixed
and the male moveable: in the second, the female screw is
moveable and the male fixed. If one be so fixed that it cannot
move in the direction of its length, but may revolve round its
axis, and the other admit only of motion in the direction of its
length ; then a rotatory motion being given to one, a longitu-

Tig.1. dinal motion will be communicated to
the other. Of motions of this class,
the instrument represented in fig. 3
presents an instance; it is called the
Micromeler Screm.

136. The substances to which
great pressures are required to be ap-
plied, arc, for the most part, in their
nature, more or less yielding and com-
pressible; under every variation to
which their form is thus subjected,
it is, nevertheless, required to act on them with the same force
and without intermission. Of all the mechanical powers, the
screw is the best caleulated to generate this kind of pressure.
The action of the lever alters continually, as its position alters
-by reason of the yielding of the surface on which it is made to
act, and the pressure is necessarily intermittent. The screw acts
continually, with the same pressure, in the same direction, and
ncever releases its hold.

137. The power in the screw is greater as the inclination
-of the plane which forms its thread, and the limiting angle of

resistance on its surface are less, and as its radius is less, in
comparison to the length of the lever at whose extremity the
power is applied to it. Hence, therefore, if the friction be the
same, and we use the same lever, the power of the screw will
be greater as its diameter is less, and the distance between its
threads less, or the thread finer.

138. As, however, we diminish the diameter, and increase
the fineness of the thread, we diminish its strength ; there would,

~all
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otherwise, be no limit to its powers. An arrangement of the
screw has been contrived by Mr. Hunter, by which these diffi-
culties are in a great measure obviated. It consists in the
combination of two screws, one of which works within the
other. The power of this compound screw does not depend
upon the actual distances between the threads of the simple
screws of which it is composed, but upon the difference of those
distances. Hence, therefore, the threads themselves may be of
any thickness and strength, provided only they do not greatly
differ in thickness from one another.

Simple screws, however, are readily made of prodigious
power. The first motion which the huge hulk of a ship receives
when she is launched, is from the action of a small screw. A
screw first sends the cradle, in which she rests, forward on the
slips, and these being inclined, she then glides down by her own
weight into the water. Under the action of the screw a huge
bale of cotton, of which a few would fill up the hold of a vessel,
shrinks into a small package, and from being the lightest and
most buoyant of substances, becomes heavy enough to sink in
water. Its uses are innumerable. It compels vegetable sub-
stances to yield up their juices. It is the great agent in pack-
ing, in coining, in printing, and in stamping. There is no
timber so hard that a screw will not penetrate it, and when
once fixed, there is no power acting in the direction of its length
that can tear it out. It may thus be made to hind two pieces
of wood together as firmly as though they werc one. Great
piles of building have been raised from an inclined to a vertical
position, by means of a small screw, acted upon by a compara-
tively small force.

138. The screw is sometimes combined with the cog wheel,
and it then constitutes what is called the Endless Screw. This
combination may be produced by placing the axis of the screw
in the plane of the wheel, as in the
figure, or at right angles to that
plane, as in the American endless
screw. In either case the cogs
must have a conformation suited to
the inclination of the thread. The
distance between any two threads
of the screw must exactly equal the
width of one of the teeth of the
wheel ; so that a complefe revolu-
tion of the screw is necessary to move the circumference of the
wheel, through a distance equal to one only of its cogs.
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139. Sometimes the screw, instead of acting on cogs
raised upon the edge of the wheel, is made to
act upon the thread of a female screw sunk in
its edge, as in the accompanying figure; an
arrangement which presents the advantage of a
more convenient form, and a steadier action of
the screw on the circumference of the wheel.
Tt has been shown that a cog wheel constitutes,
in fact, a series of levers, and that the screw is
no other than a winding inclined plane. The
endless screw is, therefore, a combination of the inclined plane
and Jever.

140. Instead of being generated by the winding of a plane
about a cylinder, the thread of a screw may be formed by
winding an inclined plane about a cone. A screw
thus formed, combines, with the pressure of a
cylindrical screw, the action of a wedge, and its
power to make its way into any solid substance is
materially increased by reason of its terminating in
a point. The gimlet and auger are instances of

the application of this form of the screw.
A screw of this form will readily be
extracted.

CHAPTER XIIIL

141 On Flexibility. 150 The First System of Pulleys.
142 On Tension. 151 The Second System of Pulleys.
143 On the Friction of a Cord. 1562 Combinations of the Two Sys-
144 On the Pulley. tems.

145 The Single Fixed Pulley. 156 Smeaton's Pulley.

147 The Single Moveable Pulley. 157 White's Pulley.

148 The Spanish Barton

141. A rFexiBLE body differs from a solid in this, tkat it
resists the action of a jforce lending lo alter its form or separate
its parls in certain directions only, whereas a solid exerts that
power in every direction. A cord is a flexible body, in the
form of a slender cylinder. It is commonly formed of the
fibres of certain vegetable substances twisted together. It is
said to be perfectly flexible when it resists the action of such
forces as are applied to it only in the direction of its length.
This power of resistance is called its tension. The tension on
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every part of a rope, acted upon by forces at its extremities, is
the same. For, suppose the rope
A A" to be at rest, the forces acting
upon its extremities are then equal.
(Art. 5.) Now the tension at A/,
being the resistance which the rope opposes to the action of the
force at that point, is equal to that force ; and, therefore, to the
force at A. And this is true wherever in the rope, A" be taken;
the tension, therefore, is everywhere equal to that at a.

A cord when stretched in a right line thus furnishes us with
an easy method of transmitting force from one point to another,
It is not, however, only, when stretched in the same right line,
that a cord has the property of transmitting force from one
point to another ; it retains this property when curved. A line
when curved may, in fact, be conceived to be made up of an
infinite number of short siraight lines, whose inclination to one
another is so exceedingly small, that each may be considered to
be in the same straight line with the two which adjoin it.
This being the case, it is very clear that whatever is the tension
on the first of these lines, will be transmitted to the second, and
so on, all through the curve.

Hence, therefore, the cord, also supplies us with the means
of transmitting force in a curved line, and producing it at one
exiremily of that line, whatever be its form
or length, with the same energy with which
it is impressed at the otker. The difficulty,
however, lies in curving it. It is clear that,
by reason of its flexibility, it cannot rctain
any curved form which is given it, except by
the action of certain forces. The most con-
venient method of supplying these, is to cause it to be stretched
over some solid body, by the reaction of whose surface it may
be made to retain the curvature required. If this reaction were
exerted, everywhere, only in a direction perpendicular to the
surface, it would not destroy that equality of the tension, of
which we have spoken. In fact, acting everywhere perpendi-
cular to the tension, it could not affect it. But, unfortunately,
there is no surface, whose reaction is thus exerted. (Art. 73.)

142. The resistance of a surface may always be resolved
into two, one in the direction of the perpendicular and the
other in the direction of the surface itself. This last resistance
opposes, and diminishes, continually, the tension of the cord,
with such rapidity, that there are few tensions sufficiently
powerful not to be wholly destroyed by two or three coils.

A
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This being the case, it becomes impossible to transmit force by
the means we have stated, except at a great loss™®,

* The following facts with regard to the friction of ropes are of sufficient
importance to claim a place here, although the principles on which they
are established cannot be explaincd.

If a cord be wound round any portion of a cylinder, the friction will be
the same whatever be the radius of the cylinder, provided only the angle
subtended at the centre by the arc, about which it is wound, is the same.
Thus, if the cord be wound half round the cylinder, so as to subtend 180°
at the centre, or entirely round, so as to subtend 360° it matters not what
the radius of the cylinder may be, the friction will always be the same. If
we coil a rope half round a cylinder; once and a half round it ; twice and
a half round it, and so on, the corresponding frictions will be represented
by a series of numbers, any one of which is equal to the preceding, multi-
plied by the square of the first term of the series.

In general the index of friction upon a rope wound half round a
cylinder, may be considered equal to 3 ; the indices for one coil and a half,
two coils and a half, &c., will therefore be, 3X9or 27; 27 X9 or 243;
213%9 or 2187, &c.

So that if R represent the resistance acting at one end of
| (Fig. 1) the rope, and r be the power necessary to overcome it at the
other. Then, coiling the rope as above, we shall have in

P the several cases: for § a coil P=3R; for 1} coils P=27 R ;
N for 2} coils P=243 R ; for 3} coils P=2187 R, &c.
We may, from what has been stated above, readily
R

explain the reason why a knot connecting the two extremities
of a cord, effectually resists the action of any force tending to
separate them. If a cord be wound round a cylinder as in
fig. 1, and its extremities be acted upon by two forces » and
R, from what has been said above, it appears that p will not
overcome R, unless it equal somewhere about nine times that
force. Now if the string to which R is attached, be brought underneath the
other string so as to be pressed by it, against the surface of the cylinder, as
at m, fig. 2; then, provide the friction produced by this pressure, be not
less than one-ninth of r, the string will not move even although the force
R cease to act. And if both extremities of the string be thus made to pass
between the coil and the cylinder, as in fig. 3,a still less pressure upon
each will be rcquisite. Now by diminishing the radius of the cylinder, this

(Fig. 2.) (Fig. 3.) R (Fig.4)

RER
E’ R

pressure can be increased to any extent, since, by a known property of
funicular curves, it varies inversely as the radius. We may, therefore, so
far diminish the radius of a cylinder, as that no force however great shall
be able to pull away a rope coiled upon it, as represented in fig. 3, even
although one extremity were loose, and acted upon by no force.

Let us suppose the rope to be doubled as in fig. 4, and coiled as before.
Then it is apparent, from what has been said before, that the cylinder may

_‘w
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143. The pulley is a contrivance to obviate this difficulty,
and serves to transmit the tension of a rope without sensibly
dimi.nishing it, when bent or curved in any direction we may
require. It is a narrow cylinder, having a groove cut in its
edge, and being made moveable about its centre, by means of
an axis, which is supported in a frame represented in the
accompanying figure, and called its sheaf or block. The axle is

(Fig. 1.) . (Fig. 2.)

sometimes fized by both its extremities in the block, and made
to pass though a hole in the pulley, and sometimes, it is fixed
in the pulley, and turns with it in holes which pierce the sides
of the block.

Tne Fixep PuLLey.

144. Ler us suppose two forces P and R, to act in any
directions at the extremities of a cord passing over a pulley
having its sheaf fized, and thence called a Fired Pulley. The
friction between the cord and the surface will, as we have
explained, prevent its slipping over that surface. The forces
and R will therefore tend, each, to communicate motion to the
pulley about its axis, and since they act at equal perpendicular
distances, oM and ¢ M, from that axis, this tendency can only

be so small, that no forces p and »’ applied to the extremitics of either of
the double cords, will be sufficient to pull them from it, in whatever direc-
tions these are applied.

Now let the cylinder be removed. The rope then being drawn tight,
instead of being coiled round the cylinder, will be coiled round portions of
itself, at the points 7 and n, and the cord, instead of being pressed at those
points upon the cylinder by a force acting on one portion of its circam-
ference, will be pressed by a greater force acting all round it. All that has
been proved before, with regard to the impossibility of pulling either of the
cords away from the coil, will now obtain in a greater degree. In short,
no forces P and ¢’ acting to pull the cords P and ¢’ asunder, can separate the

the knot,
F3
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be destroyed when they are equal to one another*. We have
thus, then, a means of transmitting a force without injury or
diminution from one direction to another inclined at any angle
to the first, and acting at any distance from it. From a force
acting upwards, we can change it into one acting downwards, as
in fig. 2, on the preceding page; and conversely, as in fig. 1.
By combining two or more pulleys, there is no path, however
long or tortuous, through which we may not thus transmit
pressure unimpaired. When the forces acting upon a pulley
are in parallel directions, it is evident that the pressure upon its
axis is equal to their sum, (or, to twice the amount of either of
them,) added to the weight of the pulley.

¢ 146. When their directions are mnot parallel, the pressure
upon the axis is equal to their resultant. This resultant may
be determined as follows. Let M and M’ (see
figures, p. 113) be the points where the cord
leaves the pulley. Join ¢M and ¢, these
lines are perpendiculars to »M and xn’, the
latter being tangents to the points m and ™',
Join MM, this line is also perpendicular to
cz. Hence, therefore, it appears that the
three lines cm, c™’, and MM/, forming the
triangle ¢ M ™', are perpendicular to the direc-
tions of the three forces which hold the pulley
at rest, and are therefore proportional to those
forcest, so that if one be taken to represent
one of the forces, the other two will represent
the other forces. Thus if ¢M be taken to
represent the power p, MM’ will represent the
resistance R, and this resistance may be deter-
mined by the proportion, ,

cM:MM ::P:R.

* No account is here taken of the friction of the pulley upon its axis, or
against the sides of its sheaf.
+ This property may be
proved as follows: Let A B, Ac,
AD, represent, in magnitude and
direction, three forces holding a
mass at rest ; and forming, there-
fore, (Art. 16,) the sides and
diagonal of a parallelogram.

" From any points P, @, R, in
the directions of these lines,
draw perpendiculars, pe¢, aa,
rb; and continue them until
each intersects the other two,
and they form, together, the
triangle, a b c.
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- Employing the same power, but causing different portions of
the string to be wound upon the pulley, it is clear that we shall
increase or diminish the pressure upon the axis in the same
proportion in which we increase or diminish the chord m m’ of
the arc in which it touches the pulley, And that the greatest
value of the resistance is that for which » and R becoming
parallel, MM’ becomes a diameter of the circle (see fig. page 114),
and equal to twice cM; so that the greatest resistance is equal
to twice the power.

147. In considering the conditions of the equilibrium of the
fixed pulley we have neglected the weight of the cord. In
practice, however, this weight constitutes an important element
in the calculation. In the first place, the whole of this weight
is clearly to be added to the pressure upon the axis. In the
next place, if the length of string on either side this axis exceed
that on the other, the weight of the excess must be added to
that of the two forces on the side on which it acts. In almost
all cases there exists this excess. Thus if a single fixed pulley
be applied, as it frequently is, to raise the materials used in
building to the top of a house, one end of the cord being held
by a person at the level from which the weight ie raised; it is
clear that as it is drawn up, the excess of the weight of the
string is on the side of thc power, and tends to assist it; so
that, when the weight approaches its greatest height, the cffort
necessary to raise it is considerably diminished. The weight of
the string may, indeed, be such as to draw it up, after it
has attained a certain height, with inconvenient rapidity. To
prevent this, the end of a rope is sometimes attached to the
weight, which uncoils itself as it ascends, and always balances
the weight of the rope acting with the power.

Now it is a known principle of geometry, that if two lines be inclined
to one another, at any angle; then any two lines drawn perpendicular to
these, are inclined to one another at the same angle,

Hence, therefore, Pc and ac are inclined to one another at the same
angle that A » and A c are; or, the angle Pca is equal to the angle p A c.
For the same reason, the angle cal is equal to the angle cAB. Now the
angle c AD is equal to the alternate angle A ¢ B. (Euclid. Prop. 22, B. 1.)
Therefore the two angles c A B and A ¢ B, are equal to the two cab and acd
respectively ; and therefore, the triangles are equiangular and similar.
{Euclid. Prop. 4. B. 6.) Wherefore, if we divide A ¢ into any number of
equal parts, and a ¢ info as many ; there will be as many parts, of the same
length with the first, in A B and B¢ respectively, as there are of the same
length with the second, in a4 and bc. Now B c is equal to A D, being
opposite sides of a parallelogram. Hence, therefore, it appears, that if any
side a ¢, of the triangle ac ), be taken to represent the force A c, to which it
is drawn perpendicular, in magnitude; then, the other two sides ab and & ¢
will represent, also in magnitude, the other two forces A B and A p to which
they are respectively drawn perpendicular.
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TRE SINGLE MoVEABLE PuLLEY.

148. In the single moveable pulley (see fig. 1, page 118),
instead of the power and resistance being applied to the
extremities of the rope, one of these extremities is made fast to
an immovecable obstacle ; the power P acts on the other, and the
resistant R is the resultant of these, being applied to the sheaf.
In the same way as before it may be shown that if the radius
of the pulley be taken to represent the power, the chord M M’
(see fig. page 113) of the arc of contact, will represent the
resistance. Thus the greatest possihle resistance, being that
where the strings are parallel and the chord double the radius,
is twice the power. Hence, by this pulley, a force of one
hundred weight will raise a weight of two.

In practice the fixed and moveable pulley are commonly
combined : the same cord passing over both, as in the accom-
panying figure (1).

(Fig. 1)

(Fig. 2))
h i

" Tug SpanNisn BARTON.

149. Tue figure (2) represents o system of three pulleys,
one of which is fixed and the other two moveable, called the
Spanish Barton. The two moveable pulleys have their sheafs
attached by the same cord ¢z’ p", passing over the fixed pulley
z'. The power r is made to act upon a second string passing
over the first pulley, under the third, and fixed immoveably
in z. The tension upon the cord PP’ Q@  z is everywhere the
same (Art. 141), and equal to the power p; whilst the tension
upon the cord ¥’ 2, and, thercfore upon »¥” 2/, is equal to twice
the power. Hence, therefore, the third pulley is supported by
three forces, the tensions of ¢'Q, z q, and z’ »”; two of which
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are equal to the power p, and the third to imice the power.
On the whole, therefore, the force which sustains the resistance
equals four times the power, or R =4Pr. The two moveable
pulleys being here suspended at the extremities of the same
string, manifestly balance one another.

150. Another system, consisting of two fixed and one
moveable pulley, is represented in the accompanying diagram
(1). The same string here pasees round all three, carrying the
power at one of its extremities; passing over the first fixed
pulley 4, round the moveable pulley p,, and the fixed pulley p,,
then returning to be attached to the sheaf of the moveable
pulley in p,. The resistance R being here sustained by the
equal tensions of the three strings, AP, Py, ¢, and p; P, equals
three times the tension of any one of them: that is, it equals
three times p, or R=3 p.

(Fig.1.)

Toe First SystEM of PuLLEys.

151. A number of moveable pulleys may be combined so
ag to increase the power of the system to any extent. Let the
first pulley c, fig. 2, round which is passed a cord ¢ ¢, having
one extremity acted upon by the power p and the other fastened
to the immoveable obstacle p, be attached, by its sheaf, to a
second cord P, c,, passing round a second moveable pulley, and
attached to a second fixed point b, ; also let a third pulley be,
similarly connected with this, and so on. Suppose the fourth
pulley to carry a weight ». Since the strings c¢,p; and ¢, D,
sustain the weight R equally between them ; therefore each
bears half of it, and the tension upon the string P, ¢, is half the
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weight R. Now the strings c; b, and ¢, p, sustain this tension
equally ; each, therefore, bears one-half of it, or }th of . And,
similarly, p, ¢, and ¢, p, equally divide the tension upon p,c,,
each bearing 1th of R, and cP and ¢ p each one-half of this, or
P5th of R, which is, therefore, the amount of the force p
necessary to the equilibrium, or R=16r. And so we might
find the power necessary to sustain the weight, whatever was
the number of the intermediate pulleys, by dividing the weight
by the number resulting from the multiplication of 2 as many
times by itself as there are such pulleys.

We have here neglected the weights of the pulleys them-
selves ; the additional power, however, necessary to support each
of these, is easily calculated by considering the weight of each
as a separate force applied to that pulley. Thus, to support the
first pulley, half its weight must be added to the power. To
support the second Jth its weight is requisite, for the third Jth,
and for the fourth 3;th. These being added to the power give
the whole necessary to the equilibrium.

The pulleys are made, in the figure, to increase in diameter
from the first. The reason of this is, that, the pressures upon
the axes continually increasing, if we make the axis of the first,
only of the requisite strength, that of the second must be of
greater diameter that its strength may be sufficient ; and that of
the third of still greater, and so on. The axes thus increasing
in diameter, the frictions upon them must also increase. The
diameters of the pulleys should, therefore, increase, that each
may act with the same power to overcome this friction.

ToE Seconp SysTeEM oF PULLEYS,

152. In the system of pulleys we have just been describ-
ing, the resistance upon the cord of the last pulley, and the
weights of the different pulleys, act against the power, or tend
to increase it. We are about to describe a system, in which the
tensions of the cords of all the pulleys act immediately on the
resistance, and in which the weights of the pulleys favour, or
act with the power.

P,, Py, Pg are moveable pulleys, and P, a fixed pulley. A
string passing over the pulley p, is attached by one of its ex-
tremities to a bar bearing the weight R, and by the other to
the sheaf of a moveable pulley p,, over which passes a second
string acting similarly upon R, and carrying a third pulley P, ;
and the number may thus be increased to any extent. The
string which passes over the last pulley sustains the action of
the power ».
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Now, the power p, by means of the cord PP, p,, sustains a
portion of the weight R equal to p ; and further, it produces upon
the cord P, p,, by which the pulley », is suspended, a tension
equal to 2 p, and, therefore, it thus sustains at p, a further por-
tion of the weight, equal to 2p. This tension of 2P upon
P; pe produces, again, upon P, p, a tension equal to 4 p and
sustains, therefore, at p, a portion of the weight equal to 4 p.
And similarly it may be shown that the portion of the weight
sustained at p, is equal to 8 p. Thus the weight  is made to
sustain at the points p,, ps, p,, p., portions of the weight r equal
to p, 2P, 4 p, 8 p, respectively ; and the whole weight sustained
equals 15p, or R = 15p. And in the same manner the relation
of the power and weight may be calculated, whatever the num-
ber of pulleys of which the system is composed. We have here
neglected the weights of the pulleys; it is evident that they
all act to support the weight R. Their effect in doing so may
be calculated precisely as before. The pulleys should increase
in size from that which carries the power, for reasons assigned
in the last article. Unless the weight r be suspended from that
particular point in the har though which the resultant of the
tensions at p,, ps, p,, &c., passes, the bar will be deflected from
its horizontal position, and the system will become useless. This
point is easily found by trial.

153. The two systems we have last described, are some=~

LT
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times modified by combining with each moveable pulley, a fixed
pulley, of half its diameter. Its string is made to pass over this,
and returns to be attached to its sheaf. Each moveable pulley
then, instead of being sustained by the equal tensions of two
strings, is sustained by the equal tensions of three; and the
tensions upon the successive strings, instead of being, in ordex
double ; are triple of one another.

The relation of the power and resistance may, regard being
had to this difference, be calculated precisely as before.

154. In practice the systems of pulleys we have been de-
scribing are of little or no use. Pulleys are commonly applied,
not only to overcome great resistances, but to produce a greater
or less degree of continued motion. Now turning back to fig.
1, page 119, it is apparent that by shortening any string which
passes over a pulley by a certain quantity, we shall move the
pulley itself and shorten the next string to which that pulley is
attached only by half that quantity, and thus by giving a certain
motion to the power, we shall cause the different pulleys,
beginning from the first, to move over spaces each equal to half
that moved over by the preceding pulley. Thus the pulleys
will quickly be separated from one another. The one which
carries the power will rapidly be brought down, and encumberced,
and the tackle will become useless, almost before the resistance
has been perceptibly overcome. For these reasons another class
of pulleys has becn invented, and is commonly
used, not possessing, with the same number of
pulleys, the same power, or the same freedom
from friction; but admitting of a far easier
application in practice.

155. A and B are two blocks, in each of
which are inserted a series of pulleys arranged
beneath one another, and each moveable upon
a separate axis, The upper block is fixed and
the lower moveable, and connected with the
weight R. A cord carrying the power, passes
round the highest pulley in the upper block,
and the lowest in the lower, and then round the
two mnext of these in order, and so on con-
tinually ; until at length its extremity is fixed
in the extremity of the highest block. The
tension of this cord is the same throughout;
and, therefore, throughout, equal to the power.
Now the effect of these tensions upon the lower
block is, if they he parallel to one another,
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equal to their sum, or to as many times the power P as there
are strings passing to the lower block. Thus, if there be six
such strings, as in the figure, R ==6Pp. There is a practical in-
convenience in the use of this system, arising from the length
of the two blocks, rendering it impossible to raise the weight to
within a considerable distance of the point to which the system
is suspended.

156. To obviate this difficulty a system has
been contrived, in which the pullcys, instead of
being arranged beneath one another in each block,
(thus rendering it necessary that considerahle
length should he given to the blocks,) are placed
in separate sheaves side by side, and may be made
to revolve upon the same axis. This system is
represented in the accompanying diagram. An in-
convenience in the use of it arises from the neces-
sity of the ropes changing their plane, in passing
from one block to another ; so that although those
on either side of each block are parallel to one an-
other, yet they are not parallel respectively to
those on the opposite side of the same block.
The result of this is an oblique action of the
ropes upon the pulleys, tending greatly to in-
crease their friction and to wear their axes.

SmeaToN’s PuLLEY,

157. A system of pulleys has been con-
trived by the celebrated Smeaton, the ar-
rangement of which is exceedingly ingenious.
The two blocks each contain ten pulleys, ar-
ranged in two rows beneath one another ; and
a single cord is made to pass over them in the
order marked by the figures 1, 2, 3, 4, 5, 6,
&c. The tension upon the strings being the
same throughout, each acts upon the resistance ~§ D5 g7
with a force equal to the power, and the whole
action equals the power taken as many times as there are strings.

To the use of the systems of pulleys last described, there
is this objection, that each pulley turning upon a separate axis,
the cord loses a portion of its tension in passing over each® ; so
that the tensions on the strings continually diminish as we
proceed from that on which the power acts, and their sum is

* The whole loss by friction may easily be determined. We have shown
(Art. 109) that the pulley cannot be put in motion until the resultant z
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considerably less than it has been determined in the preceding
calculation.

‘Wuite's PuLLEy.

158. Wnite's pulley is a con=-
trivance for causing all the pulleys on
each block to turn upon the same axis.
A and B are blocks in which the pul-
leys, instead of being arranged beneath
one another, or side by side, are placed
upon one another, so as to have a com-
mon axis. The same string is passed,
in succession, round all, beginning with
the largest pulley of the higher block ;
and it is eventually fastened in the
centre of the lowest block.

Let the two blocks be supposed to
be made to approach one another
through any space. Then none of the
strings being supposed to become loose,
the string ¢ ¢, will then be shortened
by a length equal to that space, and
this length of string will pass over the
pulley ¢,, and also over the pulley c, ;
but there will further pass over the
pulley cs, the length of string by which ¢, c; is shortened, which
is equal to that by which cc, is shortened. On the whole, then,
there will pass over c; twice the length that passes over c,.
Again, there will pass over ¢; a length of string equal to that
which passes over c,, together with the length by which c, ¢, is
shortened. That is, there will pass over it three times the
length which passes over c,; and so of the rest. The lengths
of string which pass over the pulleys respectively will, there-
fore, be as the numbers 1, 2, 3, 4, 5, &c. Those which pass

of the power and resistance passes through
a point N, such that ¢ N z equals the
limiting angle of resistance. Ience, there-
fore, ¢ N being drawn inclined to the direction
of 8P and A R, at an angle equal to the
limiting angle of resistance ; and ¥ M drawn
tlﬁrough N parallel to BP or AR; R is such
that

P xﬁ=nx MA,

whence R isknown. The difference between
R and P is the loss by friction.—(See Ap-
pendix.)
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over the pulleys in the upper block, being as the odd numbers in
the series, and those which pass over the others as the even num-
bers*. It is manifest that certain dimensions must be given to
the pulleys, that each in succession may thus take up all the string
thrown off by that which preceded it in the series. It is easily
shown that, to effect this, their radii must be in the upper block
as the numbers 1, 3, 5, and in the lower as 2, 4, 6, &e.

There is considerable difficulty in making the pulleys pre-
cisely of these dimensions, especially as the radius of the string
must, in each case, be added to that of the pulley. So great,
indeed, is the difficulty, as to render any general use of this
very ingenious pulley nearly impossible. The slightest deviation
from the rule, such even as that produced by a trifling difference
in the thickness of different parts of the string, is sufficient to
render the tension on certain strings greatly less than that on
others—some being looser and some tighter than others; and to
destroy all the advantages which the arrangement offers.

CHAPTER XIV.

159 The Conditions of a Rigid Sys- 170 The Upright Polygon of Rods.
tem necessary to the REquili- 174 On Framing of Rods, or Netting

brium of a System of Variable of Cords.

Form, but not sufficient. 177 On the Rigidity of Frames of
163 The Suspended Polygon of Rods. Timber.
165 The Catenary. 180 On Wooden Arches.

O~ THE EQUILIBRIUM OF A SYsTEM OF VARIABLE FoRM.

159. TaE conditions of the equilibrium of a rigid system
are necessary to the equilibrium of a system of variable form,
but they are not sufficient. For, let us imagine a system which
admits of variation in the distribution of its parts, to be in equi-
librium, by reason of certain forces which act upon it, and cer-
tain resistances among its parts. And let us then suppose
those parts to be connected together, so that the whole may
become solid, leaving the forces which act upon it, the same as
before. Then, the additional power of resistance thus given to

* Now whilst the two blocks are thus approached, all the pulleys on
each (being fixed together,) revolve through the same angle. These dif-
ferent lengths of cord are, therefore, thrown off arcs subtending the same
angles in the pulleys, and the lengths thrown off are equal to these arcs
Arcs subtending the same angle in the different pulleys of each block, are,
therefore, to one another, in the upper block, as the numbers 1, 3, 5, and
in the lower, as 2, 4, 6, &c. But the arcs subtending equal angles are as
the radii. The radii of the different pulleys are, therefore, in the same
proportion.
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the parts of the system not taking away from the power of
resistance which they before possessed, and which was sufficient
to maintain an equilibrium among the forces applied to them,
also those forces remaining the same, it is clear that the equi-
librium which existed before will remain. But the system isnow
rigid. The forces which acted upon it and held it at rest, when
its form was variable, are, therefore, such as would produce an
equilibrium in it when rigid. They are, therefore, subject to
the conditions of the equilibrium of a rigid system.

160. The converse of this proposition, however, manifestly
does not hold. It does not follow, that if a certain number of

forces be in equilibrium on a rigid system,
1 they will remain in equilibrium when
T R 1 the form of the system is made to admit

<

of variation. Thus the forces P and
may be sufficient to hold in equilibrium
the force R, so long as the rod PrQis
inflexible ; but if we introduce a joint at R, the equilibrium will
manifestly cease.

161. Again, if a solid mass* A B be acted upon by two

, equal and opposite forces p and q,
it will remain at rest. But if it
be intersected in the direction M N
the equilibrium may be destroyed,
cither by reason of the upper por-
tion turning upon its angle M, as
in fig 1, the direction of the forces
P and Q being without the common
surface MN, by which the masses
act upon one another (see Art. 55),
or by reason of the upper portion
sliding upon the surface of the
lower, the direction of the line pq
being without the limiting angle of
resistance, as in fig. 2.

162. The above are examples
taken from two important classes
of bodies of variable form ; viz. 1. Systems formed of rods or
cords, the parts of which are connected together, at their angles,
but moveable about them. 2. Systems of solid bodies in contact,
whose common surfaces are not othermise held together, than
by their mutual pressures. To the first class belong polygons
of cords or rods, nettings, frame-work, and hanging curves, such

* Supposed without weight.
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as those used in suspension bridges. To the latter belong struc-
tures of all kinds. With regard to all these, the principle holds,
that the forces which keep them at rest when their form admits
of variation, would also keep them at rest if they were rigid.

ON toE EquiLiBriuMm oF THE PorLycoN oF Rops or Corbps.

163. Eer r, P, »,...P,,
represent a polygon of rods /4
or cords, supposed without \ ;
weight, and acted upon at its ™
angular points by the forces
P, P, P, &c. Now the forces
? P P, &c., would hold the
system at rest, if it were rigid.
Hence, therefore, if these
forces were removed to a single point, and applied to that point
parallel to their present directions, they would be in equilibrium
with one another. (Art. 37.) All the forces p, P, P,, being
applied, parallel to their present directions, to any angular point
of the polygon, would, therefore, hold that point at rest. Dut
further, it is clear, that if we suppose to be applied to any side
of the polygon, in the direction of its length, a force equal to the
tension on that side, and remove all that portion of the polygon
which lies towards the direction of this tension, the remainder
of the polygon will remain in equilibrium. Thus if we apply in
the direction of the side p, p,, a force equal to the tension on
that side, we may remove the portion p, P, P, of the polygon,
without disturbing the equilibrium of the remainder of it.
Hence, therefore, the forces applied to pp, p, p, would hold it
at rest if it were rigid. And if they were collected in p;, they
would hold that point at rest. Ience,
therefore, the forces acting on any por-
tion PP, p, of the polygon, are such as if
applied to its extreme point P, would be
in equilibrium with the tension on the
side Py, P,, terminating at that point.

164. This most important proposi-
tion, directs us to several conclusions of
great practical importance. Let us sup-
pose the forces p, p,, &c., to be supplied
by weights suspended at the angles of the
polygon. It follows from the above, that
if the weights »,P,, P, were all suspended
from the point p,, as represented in the
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figure by », P, and p, and the force p also applied at that
point, in a direction P/, parallel to its present direction ; then
these would produce precisely the same tension in the string
P,, P,, as already exists there; and would indeed have that
tension for their resultant. Hence, therefore, the greater and the
more numerous are the weights on the branch pp, p, p, of the
polygon, the greater the tension upon the side py P, The ten-
sion on such a polygon, is, therefore, greatest about its points of
suspension, and least towards the middle point between them.

Tur CATENARY.

165. All this is true, whatever be the number of the sides
of the polygon, and therefore if their number be infinite. In
this case, the polygon will become a curve, and if the weights
be equal to one another, and suspended at equal distances, it
will be that formed by a rope or chain of uniform thickness,
suspended by its extremities. Such a curved line is, therefore,
more liable to break near its points of suspension than about its
lowest point ; and to be of equal strength, it should be made
thicker there. It is called the catenary or chain curve. It is
that formed by the cable of a ship at anchor. The force acting
upon the ship or the
tension upon that
part of the chain at-
tached toit is, on the
principles explained
above, the same as
though the horizon-
tal resistance, sup-
plied by the anchor,
were  immediately
applied to that point, and also the whole weight of the cable*
suspended freely from it. The curve of a line used for towing
a barge, is a catenary. The force effective on the barge, is the
same, as though the force exerted by the horse, were immedi-
ately applied to it in a direction parallel to that in which he
draws, and, in addition to this, the weight of the cord suspended

* The buoyancy of the water is not here taken into the account. Strictly, it
is the weight of the cable, diminished by the weight of water which the cable
displaces. In hempen cables this weight of water is nearly equal to that of the
cable. In chain cables it is greatly less. The hempen cable scarcely, then,
hangs in a curve at all, and can only yield to the motion of the ship as she
rides at anchor by its elongation, whilst the chain cable hangs in a deep
curve, and yields to the motion of the ship by tightening this curve. In
this fact is a great advantage of the chain cable.
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from it ; the effective force is, in fact, the resultant of these two
forces.

166. We have stated one condition of the equilibrium of a
polygon of rods or cords, resulting from its identity with the
equilibrium of a rigid system. There is this further condition,
that if we take all the forces, excepting those which act upon
the extremities of the polygon, and find the direction of their
resultant, then the two extreme sides of the polygon, being
produced, shall meet this direction in the same point. The
reason of this is evident, for the system becoming rigid, we may
substitute for the forces spoken of, their resultant, and the equi-
librium will remain. The forces will then be reduced to three,
two of which act in the directions of the extreme sides, and the
third in that of the resultant; these must, therefore, meet in the
same point (Art. 22.). Thus in the polygon, represented in the
figure (1) loaded with the weights r, »,, p,, if we find the ver-
tical R T passing through the centre of gravity of these weights,
and produce pA and p; B, these will meet r T in the same point T.

167. Similarly, in the funicular curve or catenary (fig. 2),
if we draw tangets at the points of
suspension A and B, these being in the
directions of the forces sustaining the
curve at those points, will meet when
produced in the vertical line ¢ T pass-
ing through the centre of gravity a of
the curve.

Let us take ¢ T to represent the
weight of the curve A B,and draw ¢N
and G M parallel to the sides BT and
AT. The lines NT and mT will then
represent the tensions, (Art.21.) Thus
G T being divided into as many equal
parts as there arc units of weight in the
cord or chain B4, 80 many of those
parts as there are in MT and NT will
there be units of weight in the tensions
at Aand B. Now, as the cord is drawn
tighter, the point ¢ continually ap-
proaches it more nearly, and the line
G T continually diminishes, And cT
being divided always into the same
number of equal parts (viz., as many
as there are units of weight in AB), it
is clear that these parts will continually diminish in magnitude.
If, therefore, MT and NT remained the same, the numbers of
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these parts contained in those lines respectively would continu-
ally increase, and the tensions at A and B would increase. But
as AB is more stretched, the tangents AT and BT come con-
tinually more into the same right line. &~ and a M, which are
parallel to these, approach then more nearly to a right line
parallel to the first. And the distances T M and TN continually
increase. Since, therefore, the tensions would incrcase if T™
and TN were constant, much more will they increase since T M
and T N increase.

168. Now if a T were infinitely small, its parts would be
infinitely small, and the number of these in MT and NT in-
finitely great. Infinite tensions at A and B would, thercfore, be
required to bring the curve straight. In other words, no flex-
ible line acted upon, at its extremities, by forces of finite magni-
tude, can be so stretched by them as to be straight*.

169. The properties of the catenary have of late years ac-
quired vast importance from the general use of that curve in the
construction of bridges.

The curve, however, of a chain supporting the road-way of a
bridge, is not strictly a catenary. In the catenary the weight
is supposed to be distributed so that cach equal length sustains
an equal portion of it. Now the weight of the road-way of a

A * The two following properties of
the catenary cannot be demonstrated
otherwise than by reference to prine
ciples, no knowledge of which is sup-
posed to be possessed by the readers
of this work. Their great practical im-
portance claims for them, however, a
lace here.
¢ M N D P™Find the length of chain » 1, which
being hung over a pulley at any point, p, of the curve, would just sustain the
tension at that point. And through its lowest point » draw the horizontal
line cMp. Then the tension at any other point @ will be sustained, by the
weight of a portion of the chain @ M, hanging similarly from Q down to the
same horizontal line ¢ p.
The following is an easy method of finding, geometrically, the distance
of the line ¢ p from the lowest point E of the catenary. Draw the horizontal
lines AL and HE K and the ver-
L tical LEFN. Tuke a straight
L line L M, equal in length to the
- curve E B, and set it off from L
e until it meet & k in M. Through
M draw M N perpendicular to
S ML, and bisect NE in ¥. The
< AY horizontal line ¢ » will pass
.. F through r. This line once de-
~, termined, the tensions of all the
*, points in the curve are !mown
\'*JN by the property stated in the
beginning of this note.

A B
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bridge is not so distributed on the chains. The suspending
rods are, indeed, placed along it, at equal distances from one
another, but the lengths of the portions of the curve included
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between these, are different; those about the lowest points of
the chain only being equal to the included parts of the road-way,
whilst those near the extremities are greater. Hence, therefore,
the chains used in supporting the road-way of a bridge do not
assume strictly the form of the catenary. Were the chain
without weight, the pressure of the road-way upon it would,
indeed, cause it to assume the form of the parabola. In reality
it is a curve intermediate between the catenary and parabola,
partaking of the properties of both.

* Tae Upricar PorLycoN oF Robs.

170. WE have hitherto, in our discussions of the polygon
of rods loaded with weights, supposed it to be suspended. All
that has been stated obtains, however, equally with regard to a
polygon in an upright position. All the difference in the cases
consisting in this, that the strain upon the rods in the suspended
polygon tends to lengthen them, whilst in the other it tends to
compress them. Now, the rod is supposed to have the power of
resisting one kind of strain, as firmly as the other.

In the one case the forces all
act_from the angles of the polygon,
whilst in the other, they all act ’
lowards them. The case of the = A< €&-- ..
upright polygon is, therefore, pre-
cisely the same as though all the
forces at each of its angles had
their directions reversed. If they
were in equilibrium before, that
equilibrium will, therefore, re-
main,

171. Hence, then, we deduce this important conclusion,
that the position in which an upright polygon, loaded with
weights, will stand, is that which it will assume for itself when
loaded with the same weights and suspended.
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172. We have supposed the rods of which the polygon is
composced to be without weight. This can never be the case.
Our supposition will not, however, introduce any inaccuracy in
the calculation, if we add to the weight acting at each angle of
the polycon, half the weights of the two rods which terminate
there. For the weight of each rod (supposing it to be of
uniform thickness,) has for its resultant a force acting in the
vertical, passing through its centre of gravity, and this may be
resolved into two other equal forces passing through its
extremities.

173. We have thus a very easy way pointed out to us of
determining, practically, the positions in which any number of
beams should be arranged in a polygon so as to support one
another. Let a cord be taken, and distances being measured
along it, cqual, respectively, in length to the sides of the polygon;
let weights be attached to these, cqual, cach, to one-half the
sum of the weights of the two adjacent sides. Then, the two
ends of the string being held at a distance equal to the length
of the base of the polygon, the form which the string will assume,
when hanging freely, will be that in which the beams should be
arranged.

O~ TnE EQuILIBRIUM oF A JoINTED FRAME oF Robs, OR A
NrrTiNG or CoRrbg.

174. PrEcisELY in the same manner as before, it may be
shown that since all the conditions of the equilibrium of a rigid
system must obtain in one of variable form; the forces acting
upon the frame or netting ought to be in equilibrium if applied
to a single point of it. (Art.37.) And hence that those portions
of such a netting or frame-work, loaded with weights, as are
nearest the points of suspension are most liable to yicld. Also
that whatever form a jointed frame of rods takes when sus-
pended, is that in which it will rest when placed in an wupright
position.

175. When a jointed frame or polygon of rods, loaded with
weights, is suspended, its centre of gravity is at its Jowest point,
and its equilibrium is said to be stuble; so that being moved
out of its position it will return to it. It is not, therefore,
necessary to the permanence of such a structure that its parts
should be made rigid, or its angles stiffencd. But if this figure
be inverted, its centre of gravity will be at its kighest point,
and its equilibrium will become unstable, so that, being moved
out of its position, it will not return to it, the whole figure col-
lapsing, and falling to the ground.
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To the continual equilibrium of an upright frame-work, it is
therefore essential that its joints should be stiffened. Now this
cannot be brought about by any peculiarity in the joint itself,
for the different parts of such a joint, being situated exccedingly
near to the centre about which each rod tends to move, are,
on the principle of the lever, readily crushed by the action of a
force, however slight, acting at the extremity of the rod. It is,
therefore, requisite that each joint should be stiffencd by sub-
sidiary framing. And out of the necessity for this strengthening
arises the greater economy of the suspended, than the upright
polygon or framing. In the suspended polygon, or curve,
the only precaution necessary, is that the parts should not
tear asunder. In its upright position, their flexibility, as well
as the chance of their compression, must be guarded against.
Thus chain-bridges of iron contain less materials, and are far
cheaper than iron arches. On the other hand, a serious diffi-
culty arises in the use of the suspension-bridge, from its liability
to motion. This will be explained when we come to treat of the
science of Dynamics.

176. Besides its economy, arising from the small quantity
of materials necessary for its construction, it is a prominent
quality of the suspension-bridge, that it is independent of the
bed of the river which it erosses. Ilence it can be thrown over
an opening where it is impracticable, cither from the rapidity of
the current, or from the altitude of the banks, to erect that
frame-work called the cenlering which is necessary for supporting
the parts of a slone or upright iron bridge, whilst the whole is
being put together.

177. The methods of giving rigidity to a system of rods
are various. They all of them, however, resolve themselves
dircctly or indirectly into the arrangement of the component
rods in riangles.  Of all simple geometrical figures, the triangle
is the only one which cannot alter its form without, at the same
time, altering the dimensions of its sides*; and which cannot
therefore, yield, except by separating at its angles, or tearing its
sides asunder. Hence, therefore, a triangle, whose joints cannot
separate, and whose sides are of sufficient strength, is perfectly
rigid. And this can be asserted of no other plane figure
whatever. Thus a parallelogram may have sides of infinite
strength, and no force may be sufficient to tear its joints asunder,

* This at once follows from the proposition of Euclid, ¢ that upon the
same base, and upon the same side of it, there cannot be two triangles
hauing their two sides terminated at one extremity of the base equal to one
another, likewise their sides tcrminated at the other extremity.”
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and yet may it be made to alter its form by the action of the
slightest force impressed upon it. And this is true in a greater
or less degree of all other four-sided figures and polygons. It
is for these reasons that in all framing care is taken to combine
all the parts, as far as possible, in triangles. Which being once
done we know that the rigidity of the system may be ensured by
giving the requisite strength to the timbers and joints,

The framing of a gate pre-
sents a very simple illustration
of this principle. The outline
of the form of the gate is that
of a retangular parallelogram.
If, as in the accompanying
figure, the parts which compose
it had been arranged indirec-
tions parallel to its sides only,
so that the whole frame should
have been composed of ele-
mentary parallelograms; each
component parallelogram, and,
therefore, the whole frame of
the gate, would readily have
altered its form.

A bar placed diagonally
across the gate remcdies the evil, converting the elementary
parts of the gate from parallelograms into (riangles, and thus
giving perfect rigidity to the frame.

178. In the large frames called centres, used for supporting
the stones which compose an arch, as they are separately put
in their places, and before, by the introduction of the key-
stone, they are rendered capable of sustaining one another, in
the positions in which they have respectively been placed, by
their mutual pres-
sure; it is of the
\\WH MU_UU[U | utmost importance

/ that the most per-
fect rigidity should
be ensured, under
/] the enormous and
unequal pressures
to which the sys-
tem is subjected.
All this is effected
by giving great strength to the timbers of the centre, and ar-
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ranging them in triangles well jointed together at their angles.
The accompanying cut represents one of these employed in
supporting the voussoirs of the great arch of London Bridge,
whilst it was in the course of construction.

179. A trian-
gular form is some-
times given to the
parts of a frame-
work supporting the
parts of a wooden
bridge, or a roof of
wide span, by com-
bining two or more
polygons of beams, as in the preceding cut, which represents a
principal, or supporting frame of the roof of a shed in the dock-
yard at Cherbourg. It is of very large span.

180. If we conceive the number of such polygons to be
infinitely great, and the dimensions of the sides of each, infinitely
small, our frame will become a continuous wooden arch, formed
of short timbers bolted together, whose joints cross. This arch
has of late years been largely introduced in the construction of
roofs and bridges of large span.

In the roof of the military riding-house at Moscow there is
one, which is 235 feet in span; and a bridge has been built over
the Regnitz, at Bamberg, by Weibeking,* which is 235 feet in
span: this bridge is represented in the engraving. The largest
wooden  bridge
ever erected ap-
pears to have
been that over
the Limmat, near
the Abbey of Wit-
tengen; it was
dhree hundred and
ninély feel inspan.
It was built in 1778, by two carpenters, brothers, of the name of
Grubenmann, and was destroyed in the campaign of 1799. This
extraordinary bridge was constructed upon the principle of the
wooden arch.

Bridges of this kind may be built exceedingly flat. The
bridge called the Oéte, in Picardy, built by Coffenette, is 126
feet in span, and its crown is only 6 feet 3 inches above its
springing. The bridge over the Schuylkill, in Philadelphia,

* Some of the bridges of Weibeking are said to have fallen.
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called the Colossus, is of the extraordinary span of 340 feet.
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Its elevation above the springing is only 20 feet, and the width
of the wooden framing of the arch at the crown 7 feet.

A bridge was built over the Piscatagua, near Portsmouth, in
the United States, in 1796, which is supported by a single
wooden arch 250 feet in span, and 27 in height.

CHAPTER XYV.
182 Equilibrium of Solid Bodies in 192 The Fall of the Arch.

Contact. 193 The Settlement of the Arch.
185 The Arch. 194 The Groin and Dome.
187 The Line of Pressure. 195 The Ilistory of the Arch.

190 The Points of Rupture.

Lgr a solid body be acted upon by any number of forces,
P Py Py P,, &c., and let these be such as would hold it in equi-
librium. The resultant R of any
number of them, r,, p,, &c., being
equal and opposite to that x, of the
remainder pg, P,, &c.

161. Supposc the body now
to be intersccted by a plane M M, ;
a question then arises as to the
Jurther conditions necessary, that
the forces which held the parts of
the body at rest when forming the
same continuous solid, should con-
tinue to do so, now that it is di-
vided into two separate solid bodjes.
This question is of vast importance in
the theory of construction, and we shall
procced to discuss it at some length.

182, Let the forces, which act
upon the two parts of the body, be
supposed to be replaced by their resul-
tants » and 1;, which are, by supposi-
tion, equal and opposite.” Now the
first condition requisite, is that the line
in which r and R, act should, when
produced, pass through the plane of
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intersection M. For if it fall without that planc, as in the
second diagram, it is quite evident that both portions of the
body will revolve about the point M. The forces r and =,
are, in fact, to be sustained by the pressures on the different
points of the surfaces in contact. These surfaces must, there-
fore, be such as that the resultants of the pressures upon their
different points may be in a direction opposite to the forces R
and r.. Now these resultants manifestly lie witkhin the boundary
which includes the pressures themselves. If] therefore, the di-
rections of r and R, lie without this boundary, they cannot be
sustained.

That the resultant of the pressures upon the surfaces which
are in contact in M M, should be opposite to the direction of R
and R, it is not nccessary that these surfaces should be con-
tinuous; they may, in fact, be applied to one another at any
number of isolated points, the resultant of the pressures upon
them having its direction, as stated above, through the space
enclosed by a series of straight lines joining the extreme points
of application ; all that is requisite is that the direction of the
forces r and R, should be through this space. (Art. 56.) Thus
the mass may be hollow, the surfaces of contact forming a
continuous ring; or the one surface may rest upon projections
from the other.

183. The above condition is not, however, the only one
necessary to the equilibrium of the two bodies. It is further
cvidently necessary, that the direction of the resultants r and R,
should not make, with the perpendicular to the plane m M, an
angle greater than the limiting angle of resistance ; otherwise
no resistance of the one surface can sustain the force impressed
upon it by the other, and the two surfaces will slip along one
another. (Art. 72.) These two conditions being satisfied (and
the forces being further subject, according to our supposition,
to the conditions required for the equilibrium of a continuous
solid), the equilibrium will be complete. The applications of
the principle we have stated are exceed-
ingly numerous. Let us take one of the
simplest.

184, Let it be required to determine
in what directions the cylindrical shaft AB
may be intersected through a given point p,
so that the parts may retain their posi-
tions. In the first place, it is plain that
the resultant of the forces acting upon the
higher portion infersects the plane MM ;
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those forces being no other than the weights of its parts, and
their resultant acting through its centre of gravity. There is,
therefore, no possibility of this upper portion turaing over on
the edge of the lower.

To prevent the upper portion slipping on the other, no more
is requisite than that the resultant, whose direction is thus verti-
cal, should not make with the perpendicular to mM,, an angle
greater than the angle of resistance. We have before shown
(Art. 79), that this will not be the case, so long as this plane is
not inclined to the korizon at an angle greater than that angle.
Draw then through the given point the planes MM, and M" ™',
inclined to the horizon in opposite directions, at angles equal to
the limiting angle of resistance. Then the cylinder, being inter-
sected in any direction intermediate between these, its upper
portion will rest steadily upon the lower.

185. Next let us suppose the mass A, ABB, (see the
figure below), whose centre of gravity is in @, immediately
above its base, and which, therefore, stands firmly when forming
one continuous solid, to be intersected in the directions A, B,
A, B,, and let it be required to detcrmine under what circum-
stances the system of stones, thus formed, will rest. Take a,

the centre of gravity of the highest stone,and ¢,

A, the common centre of gravity of this stone and
the one beneath it. Then it is necessary to the
equilibrium ; First,That the vertical ¢, g, through
@, intersect the joint A, B:, and that its direction
a lie within the limiting angle of resistance ; or in
other words, that ¢, g, do not lie beyond the
point B, or A; B, be inclined to the horizon, at an
angle greater than the limiting angle of resistance

(Art. 79); for if this be not the case, the stone

A, B, By A, will turn upon B, or slip down A, B,

Secondly, This being satisfied, so that the first
stone may rest firmly upon the second, it is further necessary,
that the vertical g, g,, through the common centre of gravity 6,
of the first two stones, should intersect the plane 4, B,, and that
this latter plane should also be inclined to the horizon at an
angle less than the limiting angle of resistance, otherwise the
two upper stones will turn over on the point B, or slip down
the surface A, B,. And, similarly, it may be shown, if the divi-
sion be made into any number of parts, that taking the centre
of gravity of the highest stone, the common centre of the two
highest, that of the three highest, &c., and drawing vertical lines
through these, such vertical lines must, in the First place, inter-
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gect the lowest joint in each of the systems so formed; and,
Secondly, That none of the joints must be inclined to the horizon
at an angle greater than the limiting angle of resistance.

186. Let us suppose the highest stone of such a system to
be acted upon by a horizontal force p (see fig.). The conditions
of the equilibrium will thus be rendered considerably more com-
plex. To determine them, let us take the horizontal line MN of
unlimited length, and the vertical line ab. And let us divide
ab into as many units as there are in the force p, and take & &,
containing as many of these
units as there are units
in the weight of the key-
stone. Then if a b, be
joined it will contain as
many of the above units of
length as there are units in
the pressure upon the sur- ' ; : g
face A, Bs, and will be per- ‘ { ; St
pendicular to the direction - . _1\
of that pressure (see mote —- , ~T >y i AT
to Art. 146). For the first s ’/
stone is held at rest by three :
forces ; viz. the force p, its
weight, and the pressure® : :
upon the surface 4,B;; these, : i
therefore, meet in the same
poict, and would hold that point at rest; they are, therefore,
proportional to the sides of a triangle formed by lines drawn
perpendicular to their directions. Now a6 and b5, are drawn
perpendicular to the directions of two o_f the forces, viz., the
force p and the weight of the stone acting thropgh 6, Also
they are taken so as to represent these two forc.es in magnitude ;
therefore the line a b,, which completes the tr'langle, represents
the third force in magnitude, and is perpendicular to its direc-
tion. Produce, then, the direction of P to meet the.vemcal
through 6, in m; ; and through m, draw m, m,, pe_rpel{dxcular to
the direction of @ b.. This line will be in the direction of the
resultant of the pressures upon A, B,. .

In the same manner if b, b, be taken, containing as many ?f
the above-mentioned units of length as there are of weight in
the second voussoir; since that line and a b, represent two of

* It would, perhaps, be more correct ‘to call this force the resultant of
the pressures upon the different points of the common surface of the vous-

soirs, a3
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the forces acting upon the second voussoir in magnitude, and
are perpendicular to their directions; therefore, if a b, be joined
it will represent the third force, viz., the pressure upon a; B, in
magnitude, and be perpendicular to its direction,

If, then, m m, be produced to mect the vertical through 6,
in m,, and m,m, be drawn perpendicular to a b,, then will this
line be in the direction of the resultant of the pressures upon
A,B,. And thus lines m; m,, m, wy, mym,, &c. may be drawn
in the directions of the resultants of the pressurcs on the dif-
ferent joints, These form, together, a polygonal line, called the
line of pressure. 1f the points n, n,, n,, n,, &c. where the direc-
tions of the resultants m, m,, m, m,, m, m,, &c. intersect the con-
secutive joints of the arch, be joined, the lines joining them will
form the polygonal figure » »n, 2, n; n,, called the LiNne oF
ResisTancr*,

187. 1t is nccessary to the equilibrium of the structure,
First, That the line of resistance Yie wholly mwithin the mass of
the arch. For if at any point, as n,, it cut the plane of any
joint A B without the mass of the arch, the whole pressure of the
superincumbent structure acts in the direction m, n,, to turn it
over on the joint A B, about which it will, thercfore, necessarily
revolve.

It is further nccessary to the equilibrium, that the dircctions
of the lines m, my, mymy, &ec., in which the pressures at the
different surfaces act, and which form together the line of pres-
sure, should lie within the limiting angles of resistance at those
surfuces. Now the lines @ b,, a by, &c., and the lines 43 B, 4, B,,
&ec., would, if produced, make respectively with one another,
the same angles which the lines w, ney, my m,y, &e. make with the
perpendiculars to the surfaces of the joints, the former lines
being respectively perpendicular to the latter.  The above con-
dition resolves itself, thevefore, into this, that the lines ab,
abs, &c., and A; B, Ae By, &c., being produced, shall make
respectively with one another, angles not greater than the limit-
ing angle of resistance. If they are parallel to one another, or
make no angles with onc another, then the directions of the
pressures m, mg, ms My, &c, are perpendicular to the respective
surfaces. And the stoucs would not slip even if there were no
friction between them. That proportion in the dimensions of

* The properties of the line of resistance were first given by the author
of this work, in a paper read before the Cambridge Philosophical Society, in
June, 1837. The analytical determination of it, and of the line of pressure,
are contained in that paper, and in a paper published in the fifth volume of
the Transactions of that Society, Part 111,
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the stones by which this direction of the pressure is brought
about, is best calculated to ensure the stability of the structure.

188. To determine these dimensions, having taken the line
a b, as before, to represent the horizontal force ; dividing it into
as many units of lengths as there are of weight in that force, we
have only to draw through a lines a b,, a by, &c., parallel to the
Jjoints in succession, and ascertain the numbers of the above
units of length in bb,, b,bs b,bs, &c. respectively. These
numbers will give the units of weight which the voussoirs re-
spectively must contain.

189. If the lines a b, ab,, &c., be drawn, m:ﬂ\lng, with
the joints, angles equal to the limiting angle of resistance, and
the voussoirs be taken, as before, contammg as many units of
weight respectively as there are of length in the lines b0, b, b,
&c. ; then the directions of the pressures m, my, m, ma, &c. W 111
make, with the perpendiculars to the surfuces of the joints,
angles each cqual to the limiting angle of resistance, and the
stones will be upon the point of slipping upwards, if a b, a by,
make their angles with the joints, nearer to the vertical ; and
downwards, if further fiom it. The stones being taken of these
dimensions, the structure is said to be in one of its states border-
ing upon motion. It will stand, so far as the friction is concerned,
with any system of stones intermediate between these.

190. If we imagine the arch to be intersccted by an infi-
nite number of joints, the lines of resistance and pressure from
polygons will become curves. The intersection of the line of
resistance with each joint, will mark the point where the resull-
ant of the forces whick act upon that joint, intersects it; and a
litic drawn from this intersection so as to be a tangent to the
line of pressure, will show the direction in which that resultant
intersects it It is evident that the situation of the line of re-
sistance is dependent upon thc magnitude of the force r. If
that force be too great it will cut its exterior, and if too small,
its interior, surface ; and in either case, destroy the equilibrium.
The greatest value of p, consistent with the equilibrium, is that
which causes the line of resistance just to touch the cxterior
surface ; and its least value that which causes it just to touch the
interior surface. This last is the force which will just counteract
the tendency of the structure to fall over towards . Suppose
this force » to be supplied by the equal tendency of another
similar structure o fall in the opposite direction ; the two will
then constitute an arch.

191. The conditions of the equilibrium of the arch are then
precisely those stated above, with this additional condition, that
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the line of resistance fouches its interior surface called the in-
trados, in certain points R and R called the points of rupture,
and that the pressure upon the key is the least possible which
would support either semi-arch*. The line of resistance can-
not cut the intrados of the arch; for, if it were, the whole of
that part of the semi-arch which is above the point of intersec-
tion would turn upon the joint next below that point. But this
is impossible, for with whatever force this portion tends to re-
volve, it is resisted by an ecqual tendency to revolution in the
other semi-arch.

Although the line of resistance cannot cut the intrados, yet
it may be made to cut the extrados, or exterior surface of the
arch.

192, Suppose it to cut the extrados in the points s and 8"
The mhole force
upon the arch, (in-
cluding its weight,)
acting as though it
were concentrated
in the resultants
which pass through
these points, it is
manifest that the
two portions of the
arch above sand &',
yielding at the crown, will revolve outwards about the joints
immediately below those points. But the arch thus yielding at
the crown, its upper stones or voussoirs will have a tendency
to descend, turning
about their inferior
angles, and this ten-~
dency will be greatest
at those points R and
R’ where the pressure
is least effective to
prevent that revolu-
tion. Thus, then, the
arch will separate at
the crown, and at the joints immediately beneath r and r’ and
sand 8.
This is precisely what has been observed to be the process

* This theory of the points of rupture and of the minimum pressure, was
first given by the author of this work, in a paper published in the Transac-
tions of the Cambridge Philosophical Sociely, Vol. V.
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of the fall of the arch, in experiments made for the purpose of

\.ascertaining it, by Monsieur Gauthey and Professor Robinson.
x'he former gentleman caused the piers of old arches to be, on
several occasions, cut through. Their fall was invariably ob-
served to be attended with the phenomena described above.
Professor Robinson caused models of arches to be made in
chalk, and loaded them at the crown until the line of pressure
cut the extrados, and they fell. These experiments were attended
with precisely the same results.

It is evident that the material of the arch is most likely to
yield at those points where the line of resistance most nearly
approaches the intrados. Accordingly in Professor Robinson’s
experiments, the material was observed to chip and fall off there,
before the final rupture. Having loaded his arches at the crown
until they fell, he observed, however, that the points where the
material began to yield, were not precisely those where the rup-
ture finally took place. This fact presents a remarkable confir-
mation of the theory which has been stated in this chapter. It
is manifest that, according to that theory, with any variation in
the least force P (see fig. page 137), which would support the
semi-arch if applied at its crown, there would be a correspond-
ing change in the position of the point »r and R’. Now, as the
load on the crown is increased, this force p is manifestly increased.
The result is, a variation in the form of the line of pressure
tending to carry its point of contact with the intrados lower down
upon the arch. This is precisely what Professor Robinson ob-
served. The arch began to chip at a point about half-way between
the crown and the point where the rupture finally took place.

The existence of points R and R’ about which the two upper
portions of the arch have a tendency to turn, and about which
the material is first observed to yield, has long been known to
practical men. The French engineers have named these, points
of rupture of the arch, and the determination of their position
by a tentative method, forms an important feature in the very
suspicious theory which they have applied to this branch of
statics. .

193. 1t is apparent, by reference to the fig. page 140, that
above the points R and R, the direction of the line of resistance
is such, as to indicate a direction of the pressure which would
produce in the arch-stones a tendency to slide downwards upon
one another, whilst below that point the tendency is to slide
upmwards., Hence, therefore, it might be expected that when
the centre of an arch was removed, the motion of the arch-
stones (since they would then admit of some degree of motion
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among one another, by reason of the yielding of the cement, or,
if no cement be interposed, by reason of the closer degree of con-
tact into which the additional pressure would not fail to bring
them,) would be slightly downwards in reference to those voussoirs
which are above the points r and R, and upwards in reference to
those which are below those points. This motion of the voussoirs
amongst themselves, on the removal of the centre, produces what
is called the settlement of the arch,and this settlement is observed
to take place precisely under the circumstances above described.

The celebrated Irench engineer, Perronet, has left us a de-
tailed account* of the circumstances which attended the striking
of the centres of a number of large arches constructed under
his directions. At the bridge of Nogent, before removing the
centre of the arch, he caused three lines to be cut upon the face
of it; one horizonially, immediately above the crown, and the
other two lying obliquely from the extremities of this, on either
side, towards the springing of the arch. After the striking of
the centre, these lines were observed greatly to have altered
their forms, and even their relative positions on the face of the
arch. All of them had, from straight lincs, become curves.
The horizontal line had sunk throughout its whole length; its
greatest deflexion being immediately above the key, thus indica-
ting a downward motion in all the voussoirs on which this line
was traced. The oblique lines, too, had, on either side, deflected
from their first position fowards the intrados of the arch, or
downmwards, up to cerlain poinls corresponding to r and r';
beneath these points the deflexion was from the intrados of the
arch, or upwards.

Thus, among the voussoirs on which the oblique lines were
cut, there was shown to be a downmard motion in respect to
those above the points corresponding to R and r’, and an uprrard
motion in respect to thosc beneath those points. Precisely the
same phenomena were observed to attend the settlement of the
other great arches constructed by DPerronet, especially those of
the Pont de Neuilly.

Tne GroiN axp DoME.

194. Tue theory of the cquilibrium of the groin and that
of the dome are precisely analogous to the theory of the arch.
In the groin a mass springs from a small abutment, spreading
itself out symmetrically with regard to a vertical plane passing
through the centre of its abutment, until at length it meets an

* Mémoire sur le Cinirement el Decintrement des Ponts.
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equal and similar mass springing from an opposite abutment. It
is, in fact, nothing more than an arch whose voussoirs vary as
well in breadth as in depth, The centre of gravity of the dif-
ferent elementary voussoirs of this mass lie all in its plane of
symmetry. The line of pressure is, therefore, in that plane,
and its theory is embraced in that which we have already
laid down.

Four groins commonly spring from one abutment, each
opposile pair being addossed, and each adjacent pair uniting
their margins. They thus lend onc another mutual support, and
form a continued covering. The groined arch is of all arches
the most stable, and, could materials be found of sufficient
strength for its abutments, and the parts about its springing, it
might safely be built of any required degree of flatness, and
spaces of enormous dimensions might readily be covered by it.

It is remarkable that modern builders, whilst they have
crected the common arch on a scale of magnitude nearly perhaps
approaching the limits to which it can be safely carried, have
been extremely timid in the use of the groin.

195. If, instead of the mass springing from a small abut-
ment, and gradually spreading out its surfuce, so as to cover a
wider space, we suppose it to spring from an extended base, and
to contract its lateral dimensions as it ascends, until, as in the
groin, it mects and rests against the crown of asimilar and equal
mass springing from an opposite abutment ; and if we suppose a
number of such masses to spring from different abutments placed
side by side, and to unite their margins, the whole will form a
dome. The theory of the dome is thus clearly analogous to that
of the arch and groin.

Tue llistory orF THE ARCIL.

196. Tux first bridge was probably a tree which had fallen
from one bank to the other of some mountain-torrent. The
method of communication thus supplied by accident, men would
soon learn to obtain for themselves, by the rude resources of art ;
and ere long the opposite banks of rivers would come to be con-
nected by means of timbers, or flag-stoncs, supported upon piers.
The application of this notion of a bridge seems to have consti-
tuted the whole art of bridge-making up to a comparatively
recent period in the history of mankind. Yet it is altogether
inadequate to the passage of deep or rapid currents, and fatal to
navigation. Accordingly, we find that the Egyptians, although
they swarmed along both banks of the Nile, never built for
themselves a permanent bridge across it. The Tigris, too, and
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the Euphrates, on whose banks dwelt that other enterprising
and highly-polished nation of remote antiquity, the Chaldees,
were bridgeless*. And even in the age of Pericles, there was
no stone bridge over the river Cephissus, at Athens.

Necessity is said to be the mother of invention : there are
certain matters in which she has been exceedingly slow in
coming to the birth. The discovery of the arch is a memorable
example. The Egyptians, Chaldees, and Greeks, were all admi-
rable masons ; yet they never learned how to make an archt.
Of Europeans, the first who appear to have made the discovery
were the Etruscans ; and the euarliest existing specimen of the
arch is said to be found among the ruins of the Etruscan town
of Volaterraf.

To the Chinese, the secret of the arch appears to have been
known from time immemorial. In fact, it is difficult to fix
upon any useful contrivance which is not at present, in some
degree, known to that singular people ; or any period in history
when they did not know it. They certainly used the arch long
before it was thought of in Europe. It covers the gateways in
their great wall ; they availed themselves of it in the construc-
tion of monuments§ to their illustrious dead, and in the forma-
tion of their bridges. Xircher, in his China Illusirata, tells us
of stone bridges in China three and four miles long, and an arch
of the incredible span of six hundred feet.

From the Etruscans, the secret of the arch passed to the
Romans; and was soon employed in the construction of bridges
over the Tiber. Of these several remain; they are, however,
but awkward specimens of the art of bridge-making. Their
narrow arches are supported upon huge unsightly piers, which
form a serious obstruction to the current ; and they thusinvolve
a principle of weakness in their very strength. The Romans

have, nevertheless, left us, in other parts of their dominions,

* They had bridges of boats.

+ It is necessary to qualify this assertion. Brick arches are said to have
been found buried in the tombs of Thebes. Mr. Hoskins describes one
eight feet six inches in span, and regularly formed. Among the ruins of
Meroé, the ancient capital of Ethiopia, he found a semicircular arch of
stone covering a portico, and at Gibel el Berkel a pointed arch, forming
the entrance to a pyramid. It is most remarkable that the secret of the

arch should not have passed from Ethiopia, or from the tombs of Thebes,
into the architecture of Egypt.

1 Micali, Antichi Monuments,

§ Monumental and triumphal arches are said to be scattered in such
numbers over the face of the country as to give a character to the scenery.
It is remarkable that the arch should have been erected in honour of illustri-
ous men both by the Chinese and the Romans.
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bridges of extraordinary strength and great beauty. Of these,
that of Alcantara is perhaps the most remarkable : its road-way
is 140 feet above the level of ihe stream which it crosses, and
its arches 100 feet in span. It was built by Trajan; under
whose reign was also crected a bridge over the Danube, of which
many incredible things are told by Dion Cassius; and of which
nothing is to be geen, but now and then the foundation of a
pier. He built it that he might conquer the Dacians ; his suc-~
cessor destroyed it, that he might restrain their incursions into
the empire.

In those troublesome times which succeeded the fall of the
Roman empire, no bridges were built. Rivers were, for the
most part, passed by fords or ferries; these frequently became
subjects of contention betwcen neighbouring barons, or were
taken possession of by outlaws; and travellers, in availing
themselves of an insecure method of transfer, were subjected
to the certainty of being heavily taxed, and the chance of being
plundered.

It was about the commencement of the {welfth century, that
one Benezet, a cow-herd, appeared in the Cathedral of Avignon,
and announced to the multitude a special mission from heaven
for the erection of a bridge over the Rhone at that city. DBy
efforts little less than miraculous, this singular enthusiast con-
trived, in the course of a few years, to ercct a bridge which,
whether we consider it in reference to its enormous dimensions,
or the local difficulties to be overcome in its construction, clairos
to be ranked among the most remarkable monuments that have
ever been raised by the skill and ingenuity of man. Unfortu-
nately, a flood of the Rhone carried it away. The labours of
Benezet did not, however, altogether disappear with his bridge ;
he obtained a place among the saints of the Roman Culendar,
and became the founder of a religious order, called the Brethren
of the Bridge, by whom some of the finest bridges in Europe
have been erected.] Of these, that of Suint Esprit on the Rhine,
is not far short of a mile in length, and that called La Vieille
Brioude*, over the Allicr, is a single semicircular arch of 180
feet in span, and until the erection of the Chester Bridge, which
is 200 feet in span, the largest arch.  Of the same date was the
old London Bridge, the work of Peter of Colechurch : it would,
however, greatly suffer by comparison with the labours of the
Brethren of the Bridge. From this period up to the present,

* This bridge, inconvenient by reason of its marrowness and its great

elevation, has of late years been replaced by a more commodious, but not a
bolder or more remarkable structure.
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the art of bridge-making has continually progressed, and most
of the rivers of the Continent are now spanned by arches, with
which the labours of former ages will bear no comparison, either
as it respects the boldness and grandeur of their design, or the
perfection of their detail.

The art appears to have attained its perfection in the magni-
ficent structures which have of latc been erected across the
Thames, and in the great arch of Chestcr. These have no
parallel.
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ON TaE STRENGTH oF MATERIALS.

197. I~ the preceding part of this work we have supposed
the various solid bodics, the conditions of whose equilibrium we
have discussed, to be composed of parts incapable of separation
or displacement. A solid body thus defined, has, however, no
existence in nature, and is altogether a philosophical abstraction.
The bodies around us are all, in their nature, more or less
yielding and compressible* ; and the parts of all of them appear
to admit of a certain degree of displacement and separation.

From numerous experiments which have been made upon
the strength of materials, it appears that the displacement of the
particles of solid bodies is subject to the following laws :—

* The incompressibilily of certain substances has been asserted, and
among the rest, of water. It is told of certain academicans of Florence,
that baving enclosed water in a hollow sphere of gold, and closely soldered
up the opening by which it was introduced ; they hammered the sphere,
and found, that rather than diwinish its bulk, the water forced its way
through the minute pores of the metal. It has since been complety ascer-
tained, that water admits of compression. (Ersted has, by a most ingenious
contrivance, succeeded in measuring the amount of this compressibility ;
and there is everyjreason to believe, that it possesses this property of com-
pressibility in common with all other material substances.
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198. Tirst, That when this displacement does not extend
beyond a certain distance, each particle tends to return to the
place which it before occupied in the mass of which it forms a
part, with a force exactly proportional to the distance through
which it has bheen displaced. Secondly, That if this displace-
ment be carried beyond a certain distance, there is no tendency
in the particle to regain its former position, and it remains
passively in the new position which it is made to take up, or
takes up some other position different from that from which it
was originally moved.

The cffect of the first of these laws, when exhibited in the
Joint tendency of the particles which compose any finite portion
of a mass, to return to any position in respect to the rest of the
mass, or in respect to one another, from which they have been
displaced, is called elasticity. There is every reason to believe
that it exists in all bodies, within the limits, more or less
extensive, which are imposed by the second law stated above.

199. It is impossible, by any direct process, so to displace
any one of the particles of a body, through a portion of that
very minute space within which the law of perfect elasticity
obtains, as to measure the force with which it cndeavours to
return to its first position, and ascertain, directly, whether that
force be, or be mot, proportional to the displacement. There
are, however, several indirect methods by which we may pro-
duce the requisite displacement, and measure the force produced
by it.  Of these, the following is, probably, the simplest and the
best.

200. Let a thin cylinder, or wire, of the substance to be
examined, be taken, and let it be conceived to be divided into
any number of exceedingly narrow elementary cylinders, or
lamine, formed by imaginary transverse sections of the wire
made exceedingly near to one another. Let the wire then be
twisted once round ; it is evident that each of the lamina will
be made, by the twisting of the whole wire, to move through the
same distance on the lamina immediately above it. For there
is no reason why one should thus be moved further than the
other. Also, it is evident that, if we take the displacement of
each lamina upon that above it, beginning from the top, and add
all these displacements together, their sum should be exactly
the one revolution which the lowest lamina of the wire is made
to describe. Thus the angle through which each lamina is
made to revolve upon the surface of that above it may be
found by dividing one revolution, or four right angles, by the



148 ELASTICITY OF TORSION.

number of lamina*, Or the actual distance through which each
particle on the surface of the wire is made to move may be
found by dividing its circumference or girth by its length ; and
supposing the thickness of the wire to be made up of similar
cylindrical surfaces concentric with its external surface, the
actual displacement of a particle contained in any of these will
be found by dividing ifs circumference similarly by the length.
Thus it is apparent, that when the wire is twisted, each of its
particles sustains a certain displacement dependent for its mag-
nitude upon the depth of that purticle beneath the surface of
the wire.

Now if the whole of a mass so twisted when left to itself,
relurn to ils first position, it follows that each particle, whatever
the distance through which it may have been moved, must have
returned also precisely to its first position in respect to the par-
ticles immediately adjacent to it. Also if the whole mass tend
to return to the position out of which it has been distorted with
a force proportional to the angle of torsion ; it follows, that each
particle in it tends to return to the position out of which it has
been displaced, with a force proportional to the distance through
which it has been displaced. For suppose the whole to be
made up of hollow concentric cylinders or tubes, and consider
any of these separately; it is evident that the actual dis-
placement of each of its particles is the same; therefore, the
whole displacement is proportional to the displacement of any
one particle of the cylinder. It is also evident that the force
producing the displacement of each particle of the cylinder is
the same ; therefore, the whole force displacing the cylinder, is
proportional to that producing the displacement of each particle.
It follows, that if the mhole force be proportional to the mhole
displacement which it produces, then each component force is
also proportional to that portion of the whole displacement which
il produces.

Now the whole displacement of the parts of the hollow eylin-
der or tube, is proportional to the angle through which the tube
is twisted. If, therefore, the twisting force is proportional to
this angle, it follows, from what has been said, that the force
producing the displacement of each particle, is proportional to
that displacement. Let us suppose tubes, similar to the above,
to be placed within one another, so as to fill up a cylinder, and
let forces be applied to each of these, twisting it through the

* From this it is evident, that by increasing or diminishing the length

of the wire, we may vary the amount of the displacement of each particle
to any extent we may choose.
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same angle. Then if the sum of these forces be proportional to
that angle, it follows that each of them is proportional to it;
and if this be the case, it follows, from what we have just said,
that each particle is displaced with a force proportional to its
displacement. But the sum of the forces producing the dis-
placement of the elementary tubes is the same as the force dis-
placing the solid cylinder. Hence, therefore, it follows, that if
this force be proportional to the angle of torsion, the law of
perfect elasticity obtains with regard to the particles which
compose the cylinder, each endeavouring to return to its first
position with a force proportional to the distance through which
it has been moved.

201. The conditions supposed above, and shown to imply
that condition of perfect elasticity within certain limits, which
we have stated at the commencement of this chapter; are pre-
cisely those which have been proved to obtain with regard to
all those solid bodies which have hitherto been submitted to
experiment. There are certain bodies in which they are at once
recognized, as for instance in steel, and in various kinds of
wood ; there are, however, others, in which elastic propertics are
by no means so apparent. We will take an example from this
latter class.

202. Let a leaden® wire be taken, one-fifteenth of an inch
in diameter, and ten feet long; fix one end firmly to the ceiling,
and let the wire hang perpendicularly; affix to the lower end
an index like the hand of a watch; on some stand immediately
below, let there be a circle divided into degrees, with its centre
corresponding to the lowest point of the wire. Now let the
wire be twisted twice round, and then let go. The index which
was twisted with the wire twice round the circumference of the
circle will be at once observed to return and make almost four
revolutions, that is, two revolutions backwards, or beyond its first
position ; it will then again return in the direction in which it
was distorted, and after oscillating backwards and forwards a
considerable time, each oscillation diminishing in amplitude, it
will finally rest precisely in its first position. Further, if the
forces with which the needle, when twisted through different
angles, tends to return to its first position, be accurately

* Experiments have been made of a similar kind to that described above,
with a great variety of different substances, and these tend to show the ex-
istence of elastic properties, where it would be least expected. A thin cylin-
der or wire of pipe-clay, for instance, will, when subjected to torsion, as
described above, exhibit properties showing the existence of as perfect an
elasticity among its particles as can be found among those of the hardest
steel. The limits of elasticity being, of course, different in the two cases.
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mcasured, these will be found to be accurately proportional to
the angles of distortion*.

203. Now let the wire be twisted round four times instead
of twice. If then left to itself, it will oscillate, as before, and
finally rest; but it will be found not now to have rested in the
position out of which it was first displaced, but to be short of
that position by nearly two revolutions, The particles of the
wire have, therefore, now, some of them been displaced so far,
that they will not return to their original positions, and a new
arrangement has taken place among them: those about the
centre, having been only slightly displaced, have probably mholly
returned; those more remote from it have continually suffered
more and more permanent displacement, until, at the circum-
ference, the displacement is equal to twice the circumference of
the wire divided by its Iength. The wire is, under these circum-
stances, technically said to have taken a set.

204. It is remarkable, that after this alteration of the re-
lative positions of the particles, they seem to have retained the
same relation to one another as before.  Each particle is affected
by the particles among which it has now taken up its position,
precisely as it was by those which it has left, for if, after it has
taken a set, we twist it again, and thus try its elasticity, we shall
find that elasticity as perfect as at first. This property by
which the particles of a mass may be moved among one another,
passing in ecach new position into the same relation with respect
to the particles which surround them in that position, as they
had in reference to the particles which were adjacent to them
in any previous position, is called Ductility. The preceding
experiment thus exhibits to us two of the most important pro-
perties of solid bodies.

First, their elasticity, resulting from the tendency of each
particle to return to any position out of which it has been dis-
placed, with a force proportional to the displacement. Secondly,
their ductility, being that property by which this displacement
when it is made to take place within certain limits, and under
certain circumstances, becomes in a measure permanent, the
displaced particles taking up new positions in the mass, and
entering into the same relation in reference to the particles
which now surround them, as obtained in regard to those which
surrounded them before.

205. We have stated, that the displacement, which calls

* So accurately is this the case, that balances intended to measure forces
far too minute to be measured by the common balance, have been constructed
on this principle. These are called Torsion Balances.
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into existence this property of ductility, must take place within
certain limits, and under certain circumstances. If the dis-
placement be less than is neccssary to bring it within those
limits, the particle will, in virtue of its property of elasticity,
return accurately to its first position, and rest there. If the dis-
placement of the particle be too great to lie within the limits of
ductility, it will not again enter into the same kind of relation
with the particles lying in the direction from which it has
moved as it had before its displacement; a partial separation of
the mass will, in fact, take place, so far as this particle is con-
cerned, and a permanent alteration in its internal structure.
This alteration of internal structure occurring in reference to any
considerable number of the particles which compose the mass,
will materially affect its strength. It may, nevertheless, take
place without there being presented on the surface of the mass,
any indications of the change which have taken place within it.
Thus, if a cannon be fired with a charge of powder, producing a
strain above* the elastic force of certain portions of the material
of which it is composed, a permanent alteration of its structure
will be the result, and a second discharge will burst it. It has
been stated, that a cannon of large dimensions, so overstrained
Ly an excessive charge, may be broken in pieces by a single
blow from a sledge-hammer. On the same principle, a wire
may be broken by frequently bending it backwards and for-
wards. At each flexure, a permanent altcration of structure
takes place with regard to certain of the particles which com-
pose the section about which it is bent. Certain of these sepa-
rate from one another; and by repeated flecxure, this separation
may be extended completely across the whole wire. An altera-
tion of internal structure, appears to be brought about in some
bodies by the influence of time alone. Thus sfoneis exceedingly
uncertain in strength; an alteration of this kind proceeding con-
tinually in it, the effects of which arc not apparent until after a
great number of years.

206. The properties of clasticity and ductility, in virtue of
which the particles of bodies may be made to suffer displace-
ment without any permanent alteration of the internal structure,
are practically, among the most valuable properties they possess.
We have before remarked, that the destruction of force of that
kind which is contained in a moving body, and which is exerted
in impact, cannot take place, except with a certain degree of

* The strain which produces permanent alteration of iitern:l structure
varies from one-fourth to two-fifths of that necassary to prodvce absolute
rupture.



152 OF STRUCTURE.

yielding in the parts of the mass on which it is made to impinge.
Since, therefore, the parts of bodies necessarily yield to every
force in the nature of impact which is impressed upon them, it
follows that were any such yielding or displacement of their
particles, necessarily attended with a permanent alteration of
structure, few of the masses around us could for any consider-
able time retain their form; since there are few, if any, which
are not occasionally subjected to the action of certain impinging
forces, A shower of hail, or even of rain, would be suffi-
cient to reduce every thing on the earth’s surface to powder;
nothing we put out of our hands would be able to sustain the
slight impact which it could not fail to receive when we released
our grasp, and the substance on which we placed it, would be
dashed to atoms; substances might be found sufficient to sustain
the pressure of a man's weight when sfanding on them at
rest; he could not, however, move about upon them with
safety.

207. The best method of bringing into operation the pro-
perty of ductility, is probably that of impact. By varying the
amount of the impinging force we may readily produce that
amount of displacement in the particles of a body, which is just
necessary to give them what is technically called a se/; and the
body having, under these circumstances, precisely the same pro-
perties as before, the blow being repeated, a further displace-
ment within the limits of ductility may be produced, and thus
it may be moulded into any required form, and spread over
almost any required surface. The property of ductility, when
thus developed by impact, is called malleability. It may be
exhibited in certain of the metals, as for instance, gold, to a
wonderful extent.

208. Another method of calling into action this property
of bodies, and especially of metals, is that adopted in the making
of wires. The following is an example, taken from the works
of Réaumur. The gilt threads used in his time in embroidery,
and in gold lace, were thus made. A cylinder of silver, of the
weight of 360 ounces, was covered with a plate of gold, weigh-
ing, at most, six ounces. The whole mass, thus weighing 366
ounces, was then drawn through a series of holes made in broad
steel plates, and gradually diminishing in diameter; until pass-
ing through the last, it was converted into a wire of such a
length, that 202 feet* of it weighed only 1-16th of an ounce, so
that its whole length was 1,182,912 feet, or 98,576 French
leagues. This wire was then passed between rollers, which

¥ All the above are French measures.
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flattened, and, at the same time, lengthened it 1-7th. Thus its
length became 1,351,900 feet, 112:66 French leagues; being
more than the distance from Paris to Lyons. The thread was
then 1-96th of a line in midtk ; and, admitting with Réau-
mur, that a cubical foot of gold weighs 21,220 ounces, and a
cubical foot of silver 11,523 ounces, we find that its thickness
could not be more than 1-3108th part of an inch. What, then,
must be the thickness of the stratum of gold which covers its
sides and its edges? By calculations analogous to the above,
we find that the thickness of this layer of gold cannot be more
than the 1-713,136th part of an inch. Nevertheless, gilt wire
is made, in which only one-third of the quantity of gold which
we have supposed ig used. It is impossible to carry our
notions of the ductility of matter further than this. It in pro-
bable that all bodies possess more or less of the properties
of elasticity and duectility : the proportions, however, in which
these properties exist in them, arc exceedingly various¥.
Those which are the most elastic, are by no means the most
ductile ; the contrary seems, in fact, to be the case; those
bodies which are the most ductile being commonly the least
elastic.

209. It has been shown that the particles of solid bodies
tend to return to any position out of which they have been
moved, with a force p.oportional to their displaccment; if,
therefore, we represent by the letter m, the force requisite to
displace the particles composing an unit of the bulk of any
given solid body through a distance equal to unity?, then the
force requisite to produce a displacement of the same unit
through a distance of D units or parts of unity, will equal D
times M ; call this force /i f=mp. As will be shown
hereafter, there are a great variety of ways of determining the
amount of the force M. The following, when it can be effected,
may very well answer the purpose. Let a rod be made of the
substance whose modulus M is to be determined, having a section
equal to K square units, and being L units in length. And, any

* TItis a curious fact, that by forging a metal, or drawing it frequently like
a wire, its cokesion (that is, the force with which it resists abdsolute rupture)
is greatly increased. Thus lead, although it is muade Zess dense by drawing,
may have its cohesion ¢ripled.

+ That is, the force sufficient to cause one solid unit to occupy a space
equal to two solid units. Or, which would equal that force, provided the
material could be displaced through that distance, subject to the same law
which at present governs its tendency to recover its position. With this
condition the force M may be understood to apply to the case of compression
as well as extension.

H
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given force F being applied to lengthen or compress this mass,
let the corresponding alteration of length be observed ; call this
I. Now the tension throughout the mass is the same. Every
trangverse section of it is, therefore, acted upon by a force equal
to that force F, which is applied to its extreme section. And
every unit of such a section is acted upon by a force equal

to Tl:— Also the extension or compression of the whole L units

of length being /, eack unit of length is extended or compressed
1

t.hrough a space equal to Now m is the force producing each

unit of extension or complesswn on an unit of area, and an unit
of length. Ience, therefore, the force necessary to produce the
whole of it on such an unit is, Ml

L.

But the force really acting on an unit of the area of each
section and producing this extension or compression, has been
shown to be F

K
r__ Ml FL
= and .. M=—
K L Kl
If E be the height in feet of a prism, or bar of any substance,
the weight of which prism equals the value of the force m cor-
responding to the elasticity of that substance, and which has
transverse section of one unit in area, then calling m the weight

of one foot of this bar, we have, @wE=M .. E=

¥, being thus taken, is called the MopuLus of ErasticiTy.

The table at the end of this chapter contains the values of
the Moduli of Elasticity and of the force M, as determined by
experiment from a variety of different substances. It is found
that for compression, these are generally less
than for extension.

210. Let us suppose an elastic mass A B
¢ p, terminated by a rigid plane 4 B, to be
acted upon by a force P, causing this plane to
move parallel to itself into the position A’ B',
Each unit of the mass being then equally
displaced, the whole force p necessary to pro-
duce this displacement, will equal the force »,
multiplied by the units in the space between
ABand A’ B, or if K be the area of the

plane MXKX AA =P;
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whence it follows that, A A" = d
MK

Since the force acting upon every point of the plane a’8’ is pro-
portional to the compression of the material immediately beneath
it, and that this compression is every where equal to A A’; it
follows that the pressure upon every point of that plane is the
same. Hence, therefore, an uniform plate of any heavy sub-
stance might be taken of such a thickness, that having precisely
the same form and dimensions with the plane o’ B/; the weights
of its parts should be precisely analogous and equal to the
pressures sustained by the different points of that plane. Now
the resultant of the weights of the parts of the plate would pass
through the centre of gravity of the plane o'’ ; the resultant of
the pressures upon that plane passes, therefore, through the same
point ; hence, therefore, the force p must act through that point.
To produce, therefore, that motion of the plane A B, parallel to
itself, which we have supposed, it i§ necessary that the force p
be made to act through the centre of gravity of that plane. If
the force p do not act through the centre of gravity of the
gection A B, the latter will be made to take up an oblique
position A’ B'.

211. This oblique position may intersect its previous hori-
zontal position. Throughout the line of intersection the mass
will sustain neither extension nor compression, and it is thence
called the newtral axisof the section. Its pro-
jection is represented in the accompanying
figure at N. In altering its position, the plane \
A B has compressed the material lying between
~B and N8/, and extended that between N A
and Na’. If the mass be bent throughout its
whole length, every transverse section of it will
thus be made to intersect, in the new position
which it is thus made to take up, with the posi-
tion which it occupied before* ; every such sec-
tion has thus a neutral axis, and the surface in
which all these lie, is the newtral surface of the
mass. The strength of the material would not,

* It does not follow that the points which lie in any plane transverse sec-
tion of the mass before it is bent should be also in a plane after it is bent ;
the general case appears to be that they will not, A B in the figure must
then be supposed to represent, not a plane, but a curved surface. This con-
sideration is opposed to the theory of deflexion, usually given in mathematical
works, and it would seem, fatal to it.

H2
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evidently be essentially impaired, by removing that portion of
it which lies immediately contiguous to this surface.

2]12. Let us now consider the circumstances which may
enable us to determine the position of the neutral axis. It will
be observed that the forces which hold the plane A’ »'at rest,
are the force », and the elastic forces called into action by the
compression of the mass between xB and N B), and the exten-
sion of that between AN and a’N. Now these elastic forces
are, at the several points of A’/ proportional to the distances
through which the extension or compression has at those points
taken place; that is, drawing lines from these points perpen-
dicular to the plane A B, the corresponding forces are severally
proportionate to those lines. Now a heavy mass, precisely of
the dimensions of the space included between the planes N B
and N B, would press upon the different points of the latter
plane, by reason of its weight, with forces exactly proportional
to the lines of which we’have above spoken. Such a heavy
mass might, therefore, be taken, as would, by its weight, exactly
replace the elastic forces upon NB’. And, similarly, a heavy
mass exactly of the dimensions of the space included between
N A and N A/, might be so taken as to replace the forces acting
on N A’; only its gravity must be supposed to act upmards in-
stead of downwards. Each of these masses will be of uniform
density throughout, but the two will be of somewhat different
densities, by reason of the inequality of the moduli of extension
and compression,

Since, then, the forces acting upon the different points of
A’ are identical with the weights of the parts of certain uni-
form masses, of the dimensions of the spaces included between
that plane and 4 B; it follows that the resultants of these forces
pass through the centres of gravity of those masses. Thus, the
resultant of the forces upon the plane N B, passes through the
centre of gravity of the mass N8B/, and the resultant of the
forces upon N A" passes through the centre of gravity of the
mass AN A", Let @ and b be the points where the resultants of
the forces upon N A’ and N B, respectively, intersect the plane
A B; also let the direction of p intersect this plane in p, (sec the
figure on the next page,) and let 3 be the centre of gravity of
the plane. Then calling m and m’ respectively, the weights of
units of the masses which may be taken to replace the forces
upon N A’ and N B, respectively, we have, by the general condi-
tions of the equilibrium of a system of parallel forces, (Art. 46.)
P+mx (mass NAA) = m' x (mass NBY); also (Art. 45.)
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PXMp = mX(mass NAA')XMa+m'X (mass NBB')X M 0.
‘Which two conditions are sufficient for the mathematical deter-
mination of the position of the neutral axis.

213. If the mass be rectangular, or the section AB a rec-
tangle, and if A" 8’ be considered a plane (an hypothesis generally
made), M will coincide with the intersection of its diagonals and
lie in the axis of the mass, and it will be found that M N, or the
distance of the neutral axis from the axis of the mass, equals
the square of the lize A o divided by twelve times the distance

M p, or AB®

Henceif Mp= i MB,or = } AB; then MN =L aB==MA,
In this case, therefore, the neutral axis isin the surface of the
beam at A, Since here the mass N A A" vanishes, it follows that,

p=m x(massNp); .. p= L m ABXBY,
where BB’ is the greatest compression. Now in the case of
direct compression, (Art. 210.)
P = m’ X A B X (direct compression,)

therefore the oblique compression, when the direction of the
disturbing force p is such that the neutral axis is in the surface of
the mass, equals twice the direct compression ; that is, the com-
pression produced by the same force r acting through the centre
of gravity, (see Art. 210.) If mp be less than im B, the
neutral axis is swithont the surface. In either of these cases the
material is evidently compressed throughout the entire width of
the beam.

It appears, then, that in order that the beam may sustain
compression in one portion of its transverse section, and exten-
sion in another, by the action of a force in the direction of its
length ; that force must not be applied at a
depth beneath its surface, greater than one-
third its whole depth.

214. If the force P, instead of being
applied in the direction of the lemgth of the
mass, be applied, as in the accompanying figure,
in the direction of its midlh, then, supposing
the mass to be held at rest by forces applied
at its extremities, also in the direction of its
width, since the forces acting upon it may be
resolved into two sets, of which one set, com-
posed of those in the direction of the width,
is perpendicular to the forces of the other,
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which result from the extension and compression of the material
about the plane A B, and act in the direction of the length of
the beam, it follows that the resultant of the forces of the first
set must equal zero, and also the resultant of the forces of the
other set. For taking these resultants, they will manifestly be
in directions at right angles to one another, and must, if botk
resultants do not vanish, have a common resultant, which will be
the resultant of all the forces of the system. That is, all the
forces of the system will have a resultant of finite magnitude :
which they cannot, since they are in equilibrium.

215. The parallel forces of compression and extension,
acting upon the section A’ B/, have, therefore, a resultant equal
to zero. Hence, therefore, it follows that the sum of the forces
produced by compression, is equal to the sum of the forces
produced by extension. (Art. 46.) And thus, by what has
been said before,

m X (mass N & A’) = m’ X (mass N BB'.)

If the modulus of elasticity were the same for compression
as for extension; and the mass were symmetrical about a
certain plane to which the direction of the force P was perpen-
dicular, then this plane would be the neutral plane of the mass.
Thus, the neutral plane of a rectangular heam would divide it
equally, and the neutral plane of a cylinder would be any plane
passing through its axis.

216. Since the parts of the material in the neighbourhood
of the neutral plane, sustain but an exceeding small portion
of the whole pressure, and supply but an exceeding small
portion of the forces which produce the equilibrium, their form
and dimensions being but little altered; it follows that the
strength of the cylinder would not be materially impaired by
cutting these parts away. Also, if the mass be required to
sustain pressure equally, not in one direction only, but in any
direction round its surface, then those parts may be cut away
which lie about the neutral plane, in every position which that
plane is made to take up, as the direction of the pressure
changes. Now the parts of the cylinder which thus lie about
every possible position of its neutral plane are the parts about
its axis, through which the neutral plane has been shown always
to pass, or from which it can, at any rate, only be made to
deviate by a small quantity resulting from the inequality of the
moduli of compression and extension.

Thus, then, the strength of a solid cylinder to resist a trans-
verse strain is not greatly diminished by cutting away the parts
about its axis, or hollowing it. And its strength will be greatly
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increased if the material taken from the interior be accumulated
on its exterior surfice. Now having to construct a mass
capable of sustaining transverse strain equally in all directions,
it is evident that we must form it into a cylinder; and having to
construct it (with a given quantity of materials) of the greatest
possible strength; it follows, from what has been said above,
that we must form it into a Aollow cylinder.

It is thus that nature works, when, with the least possible
quantity of material she would give the greatest possible
strength. The bones of animals are hollow cylinders. In the
structure of birds, where it is especially important that very
little material should be used, that the weight may be the least
possible, and where great strength is required; the thinness of
the substance of the bone is remarkable. The stems of plants
are commonly hollow cylinders, varying in thickness from one-
sixth to one-tenth of their diameters. Similarly, the feathers
of birds are hollow cylinders in that part where, acting as the
smaller arm of a lever, the feather sustains the effort of those
powerful muscles which put the wing in motion. And the
lightness of these feathers, as compared with their strength, has
passed into a proverb.

The arts have availed themsclves of this principle of
strength, copying it from nature. Iron columns, destined to
support great weights, are cast hollow. And on the same
principle, iron beams are made deep, in the direction in which
they sustain the pressure, and narrom in the direction at right
angles to this; and they are not unfrequently pierced about their
neutral surface.

217. In the case of a rectangular section, the masses N A A’
and NBB are to one another in the ratio of the squares of Na
and NB. Now the extent of the compressed and extended
surfaces may be readily ascertained by experiment. 'We have
only to support the beam horizontally, by means of props or
otherwise, and load it with weights; as it yields to the load,
those portions of the section which compress, and those which
extend, may readily be distinguished on its surface. Also the
masses NA A’ and NBB' are to one another as the quantities
m and m’, by the preceding equation. We have thus, therefore,
a practical method of ascertaining the ratio of m to m'. This
ratio is the same with that of the forces of extension and com-
pression at equal distances from the neutral point.

When a piece of timber is broken asunder, the compressed
and extended portions of the section are easily distinguished by
the appearance of the fibre.  Where extension has taken place,
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it presents a series of broken and projecting points; where the
rupture has been by compression, the section is comparatively
smooth. In the immediate neighbourhood of the neutral point
there is no apparent change in the structure of the material.

218. The following ingenious method of exhibiting the
effects of the compression and extension of the fibres of timber
by the action of a transverse strain, was contrived by Duhamel.
In the middle of a beam he made an incision with a saw,
to three quarters of its depth; and inserted in the cut an ex-
ceedingly slender wedge of hard wood. The timber being then
supported at its extremities with that face in which the incision
had been made upwards, it was loaded with weights, and it was
found that although thus sawn three quarters through, it was as
strong as before.

The following Table contains the values of the quantities M
and £ (see Art. 209), for a variety of different substances
arranged alphabetically. Also the pressure which each will bear
on a square inch of surface without permanent alteration of
structure ; and the fraction of its length through which it may
be extended.
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CHAPTER XVIIL

219 On the Stability of Masses | 221 When the Surface on which the
whose Bases are Plane Surfaces. Base rests is a Curved Surface.
220 On the Stability where the Bases | 222 On Surfaces of Unrest.
are Curved Surfaees.

O~ THE StaBmIry or Heavy Bobiks.

219. Ir a body be held at rest in any position by the
action of certain forces impressed upon it, and by the action of
some other force, it be moved out of that position; then it
becomes a question whether, when this last force is removed,
it will, by the action of the forces before impressed upon it,
tend to return towards its first position, or to recede further
from it. In the first case its equilibrium is said to be stable, in
the second unstable. The mass A BcD is in equilibrium in both
its positions represented in the accom-
panying diagrams. The vertical from the
centre of gravity G, passing, in the first,
through a point & in the base of the body,
and in the other through its angle A’, and
the resultant of the weights of its parts
being thus in both cases sustained by the
opposite resistance of the surface on which
it rests. There is this important differ«
ence, however, between the two positions,
‘The first is & position of stable equili~
brium ; since, if the body be inclined into
any position between that and the second
position of equilibrium, it will, hy the
action of its weight, tend to returm, and if
left to itself will return to it, But in the
second pesifion, if -moved either way, it
will mamfeulymd to recede from that
position, and, if left te itself, will receda
from it, until by this revolution it is-brought at length into some
stable position, )

It is practically, perhaps, impossible to placea body 200
rately into the position represented in the second figure. Aly’
when left to itself, not being in that position, it nllnnmﬂ
but:recede continually frem it. Since, then,, the
huﬁw in & position of unetables
when pl
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as to rest in it. Thus if there were not certain of its positions
in which its equilibrium is stable, it would be perpetually in a.
state of unrest. ,

220. If A ¢ be drawn perpendicular to the plane on which
the body rests, the angle @ o ¢ will be that through which it is
made to revolve between its first and second positions; or it will
be its inclination in its second position. Now the angle cac
is equal to the angle AGH. To be brought from its first into
its second position of equilibrium, the body must, therefore, be
inclined through an angle equal to that made by the line joining
its centre of gravity with the angle about which it is made to
turn, and the vertical through its centre of gravity. Now, the
higher the centre of gravity of the body is, the less is this
angle. Thus, if the centre of gravity had been at g instead of
G, the angle would have been A g u instead of AaH, and the
first of these is evidently /ess than the other. Hence,
therefore, the higher the centre of gravity of a body is above
its base, the less is the angle through which it will bear to
be inclined without passing into a position of unstable equi-
librium. )
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body will remain at rest in its second position; if it do not,
it will revolve [from that position in the direction fowards
which the centre of gravity lies. That is, it will revolve
towards its first position, or from it, as the centre of gravity
lies in respect to the point of support lomwards or from that
position. In the first case the equilibrium is stable, in the
other unstable.

Now it is evident that ¢ lies, in respect to A, fowards the
first position of the body, or from it, according as A G is less or
greater than A o0; this condition determines, therefore, the
character of the cquilibrium. If A @ be less than Ao it is
stable; if greater, it is unstable, If the mass rest, as in the
figure, upon a horizontal plane, the vertical through the point
of support is perpendicular to the surface of the body at that
point.

222. Suppose that portion of the surface of the body which
rests upon the plane, to be part of a sphere. Then since the
lines A o0 and A’ o arc perpendicular to the surface of the sphere
in the points A and A’; the point o, where they meet, is its
centre. Hence, therefore, it follows, that the equilibrium of
such a mass is stable or unstable, according as its centre of
gravity is below or above the centre of the sphere, of which its
base is a segment. If the centre of gravity of the mass, coincide
with the centre of this sphere, the equilibrium will be neither
stable nor unstable, and is said to be indifferent. Into whatever
position it is moved, the vertical through its centre of gravity
will in this case pass through its point of support; it will,
therefore, rest in that position, and will have no tendency
either to approach again to, or recede further from, the position
which it previously occupied. If the body have not only a
spherical base, but be a complefe sphere; its centre of gravity
will manifestly coincide with its geometrical centre; and,
therefore, in whatever position it is placed, it will rest in-
differently in that position. But if the upper portion be a
cylinder, and the lower a sphere, then, provided the former be
of such a height, as to raise the centre of gravity of the whole
above the cenire of the sphere, of which the lower portion
is a part, the equilibrium will be unstable, and the body will
not be found to rest every where upon its spherical base. The
cylinder might be taken of such a height, as to make the centre
of gravity of the whole figure coincide with the centre of the
sphere; the equilibrium would then be indifferent: or it might be
taken of such a height, as to make the centre of gravity fall
below the centre of the sphere; it would then be stable. If the
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base of the body be a kemisphere, and the upper portion a right
cone, whose height is equal to a radius of the hemisphere,
multiplied by the square root of three, it will rest on any point
of its hemispherical base on which it is placed.

223. In order to determine the character of the equilibrium
at any point in its surface, on which a body will rest, we bave
only to displace it the least conceivable distance from that
position, for when thus displaced, however slightly, if its equili-
brium be unstable, it will revolve continually further from
its first position; if it be stable, it will revolve towards it.
Thus, then, all that we have said above, with regard to the
character. of the equilibrium at A is true, however near A’ be
taken to it. Now, whatever the form of that part of its surface
on which the body rests may be; a sphere may be taken of
such dimensions, and in such a position, as accurately to coin-
cide with that surface, immediately abou! any given point in it.
Thus a sphere may be taken accurately to coincide with the
surface immediately about the point A. This sphere is called
the sphere of curvature, and its radius, the radius of curvature;
the length of the radius of curvature may, in all cases, be
expressed by certain algebraical formule. Now, if A’ be im-
mediately adjacent to a, it lies on the surface of the sphere
of curvature, at that point; and A o and A’ 0 are perpendicular
to the surface of this sphere, therefore o is its centre. The
general proposition may then be enunciated as follows: “ The
equilibrium at any point on which the body will rest, is stable
or unstable, according as the centre of gravity is below or above
the centre of the sphere of curvature at that point.”

224. If the body, instead
of resting upon a horizontal
plane, rest upon a surface in g
any way inclined, or on another
curved surface, as in the accom-
panying figure, the vertical A’ o
through the point of support in
its second position, will no
longer be perpendicular to its
surface at that point, and o will
ccase to be the centre of the
sphere of curvature at A. As
before, however, if @ lie nearer
to A than o, the body, when left to itself, will roll dack into its
first position ; if it lie further off] it will roll still farther out of
its first position. Thus, if the surface on which it rests be

L
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convex, as in the figure, it may be made to roll of its own
weight upmards, or contrary to the direction in which its weight
acts. Since the equilibrium is stable or unstable, according
as A G is less or greater than A o, it becomes of importance
to determine the magnitude of 4 0. Suppose A’ to be exceed-
ingly near to 4, and draw c A’ ¢ perpendicular to the surface of
either body in 4”:c and ¢ will be the centres of the spheres of
ourvature of the two surfaces at A and a. Now since the body
is exceedingly little deflected from its position of equilibrium,
A and a very nearly coincide, and the figure formed by the
lines A ¢, ac, and c¢c, may be considered a complele triangle.
This being the case, we have, by the known property of similar
triangles, cc: cA’:: cA: A0,

Now cc is equal to the sum of the radii of curvature at a
and a; for since ¢ and c ‘are the centres of the spheres of
curvature at A and @, and A being very near A and a is in both
these spheres, it follows, that c A’ and ¢ A’ are radii of the
spheres. Also ¢ A/ is the radius of curvature at a, and c A that
at A, Thus all the terms in the above proportion are known,
except the last; this may, therefore, be found by that simple
arithmetical operation called the Rule of Three. If the propor-
tion be thrown into an equation and reduced; the following
simple relation will be found to exist between A o and the radii
of curvature at A and . The latter being represented by r
and »,

AO R r

225. A portion of the surface of a body may be so con-
trived, that the vertical through its centre of gravity, shall not,
in any position in which it can be placed on a horizontal plane,
pass through its point of support. If a surface could be thus
formed, which would return into ilself, so as completely to
.envelop or contain a solid mass, or any portion of it; then such
a mass, when placed on a horizontal plane, would be in a state
of perpelual unrest: it would roll on for ever, and the problem
of perpetual motion would be solved. There exists, however,
no such surface. A surface possessing the properties of which
we have spoken, is essentially a spiral surface; it does not
return into itself, and cannot be made complelely to contain any
solid mass, or any portion of it. Nevertheless, such a surface
may be made to form part of the surface of a solid; and
a8 long-as it is supported upon that part of its surface, the solid

. continue to revolve.
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296. A surface may be generated, answering these condi-
tions by unwinding a sheet from a cylinder. Keeping the part
unwound continually stretched, its edge will describe in space a
spiral surface, called an involute. The accompanying figure re-
presents such an involute, ABa being
the cylinder called the generating a—
cylinder, from which the surface BpP é \
has been unwound. The characteristic A,
property of the surface BpPp is this, PN
that any line pa drawn perpendicular i *
to any point p in it, if produced far H )
enough, necessarily louches the surface \\ P »
of the cylinder. The vertical through
the point of support », therefore, touches
the surface of the cylinder, since it is perpendicular to the surface
of the spiral at that point, being perpendicular to the horizontal
plane which is a tangent to it there.

Now, since the vertical P A Zouckes the surface of the cylin-
der, it cannot, when produced, pass through any point mithin
it. If, therefore, the mass be so loaded, that its centre of
gravity, 6, may lie within the generating cylinder, then the
vertical through the point of support, can never pass through its
centre of gravity; and conversely, the vertical through its
centre of gravity, can never pass through its point of support;
the mass, therefore, can never rest upon its spiral surface. It
will, in fact, roll on, until one end of the spiral, coming in con-
tact with the plane, supplies a second point of support, and
stops its further revolution.

CHAPTER XVIII,

O~ THE PrINCIPLE oF VIRTUAL VELOCITIES.

227. Ir any number of forces applied to the different
points of a system be in equilibrium ; and these points admit of
displacement, the circumstances of their mutual relation and
dependance remaining unaltered ; and further, if the nature of
the system, and the forces applied to it, be such, that the points
of application, being thus altered according to certain conditions,
the equilibrium remains; then there will exist the following
remarkable relation between the forces and the distances
through which their points of application have been made to
move. If from either extremity ¢’ of the line ¥/, representing
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the exceeding small displacement of any point of application P,
a perpendicular " be drawn upon the direction
o P of the force before its displacement; and the
line pm intercepted between the foot of the per-
pendicular m and the point P, be called the virtual
velocity of the force P; then each force of the
system being multiplied by its wiriual velocily,
similarly taken; the sum of these products in
mp---. AP respect to the points of application which are
made by the displacement of the system, to move
lowards the direction of the forces impressed
upon them, shall be equal to the sum of those
taken in respect to those points which are made
to move from that direction. This very important principle is
called that of virtual velocities.

228. It may be proved as follows. Each point of applica-
tion of a force may be supposed to be held at rest by the action
of two equal and opposite forces, one being the force r actually
applied to that point, and the other p, the resultant of the re-
sistances or tensions upon it arising out of its connexion with
the other parts of the system. Now, let us suppose these re-
sistances and tensions to be all removed, and their place sup-
plied by the intervention of a system of pulleys in which the
same string is made to pass over all the pulleys. The most con-
venient, probably, that can be conceived, is a system similar to
‘White’s pulley (Art. 158) ; the separate pulleys must not, how-
ever, be all fixed in the same block, but each separately move-
able about a common axle. Let each system have as many
strings as there are uuits in the force which it is intended to re-
place, then the tension on each string will equal one unit. Let
the same string pass over all the different systems; then if one
end of the string be fixed to the centre of the first moveable
block, and the other hang freely over the extreme pulley of the
last fixed block ; a weight equal to one unit of force, attached to
this last extremity of the string, will keep the whole at rest under
the circumstances supposed. Each system of pulleys supplying
a force equal to the resistance or tension which it is made to

replace.

The arrangement of pulleys which has been described, is re-
presented in the accompanying figure: p,, P, P, P,, are the
points of application of . the forces of the system, and the resist-
ances or tensions upon those points are supposed to be replaced
by the systems of pulleys A, B, 4,B,, A, B, A,B,, of which 4, 4,,

']
A, A, are the fized, and B,, B,, n:, 1;:, the moveable blocks. All
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these are of course supposed to be without weight; and each
contains as many separate pulleys as there are units in the cor-
responding force. A string is attached to the centre of the first
block B,, and passed as many times round the pulleys of that

block, and the block A,, as there are units in the force p,.
It then passes to the block A¢, and as many times round the
pulleys of that block and the block B,, as there are units in the
force »,: and from thence, to the system A, B;, supplying there
again as many strings as there are units in the force ;. To the
extremity of the string which hangs over the last pulley of the
block A, a weight p is attached equal to one unit. Now since
we suppose no rigidity in the cord, and no friction on the axles
of the pulleys, it is evident (Art. 142) that the tension upon the
cord is every where the same, and, therefore, every where equal
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to one unit. Also the tension upon the first point p, is equal to
the tension upon any string of the system 4, B, multiplied by
the number of strings, And the tension upon each string has
been shown to be one unit, therefore the whole tension upon
the point P, is equal to as many units as there are strings; but
there are (by hypothesis) as many strings as units in the force
acting at p,; there are, therefore, as many units in the tension
at P, as in the force applied there; and the tension is in a direc-
tion opposile to the force: the point P, is, therefore, in equili-
brium ; and the action of the system of pulleys A, B, correctly
replaces the resistances and tensions which were supplied by
the connexion and reaction of the different parts of the system
at the point to which the force p, is applied. The same may
be proved of the other points of application »,ps P, The sys-
tem of pulleys we have supposed, supplies, therefore, at all the
points of application, forces exactly equivalent to the resistances
and tensions before sustained at those points.

Now let us suppose the points P, P, P, P,, &c., to move
through any small distance, and in any direction, subject only to
this condition, that in the new position which they take up, and
in every intervening position, they may be in equilibrium, and
the resistances or tensions upon their several points of applica-
tion remain the same. Since the tensions upon the points p »,,
&c., remain the same throughout this motion, the tensions upon
the strings of the systems applied to these points remain the
same, and the tension upon every part of the length of the
string which goes round them all remains the same. Since,
then, the tensions upon that part of the string which sustains p
does not alter, it follows that p is always balanced by it, and
does not move. It follows, also, that the string thromn off by
those of the systems 4, B, A, B,, &c., in which the blocks are
made, by the motion of the points p, »,, &c., to approach one
another, is {aken up by those systems in which the blocks re-
cede from one another; for otherwise some portion of the string
would be thrown off the last system, and p would move. Thus
the sum of the portions of string thrown off by certain of the
systems is equal to the sum of those laken up by the remainder.

Now the approach or recession of the blocks of any system,
by reason of the motion of the corresponding point of applica~
tion, is in fact the virlual velocity of that point. Referring to
the figure (page 168), we shall perceive that the distance of
the point- P from o, which may represent the centre of the fized
block 4, is diminished, when the distance PP, through which
it moves is small, by a quantity equal to pm, since the angle



ON THE PRINCIPLE OF VIRTUAL VELOCITIES. 171

m o P’ being small, o m may be considered equal to o P
Also this equality will obtain accurately for any distance
through which the points of application may be moved, pro-
vided we suppose the forces applied to them always remain
parallel to their first direction. In which case the fixed blocks
A, Ag A, must be situated at infinile distances from the moveable
blocks ; an hypothesis which will not, in the least, affect the
demonstration, the length of the string being entirely arbitrary.
Under these circumstances the virtual velocities may, therefore,
be supposed to have reference to any motions of the points of
application however great those motions may be.

Since, then, the quantitics by which the blocks approach or
recede from one another, are the virtual velocities of the forces
which the strings passing round those blocks sustain; and since
the string thrown off by these blocks is equal to as many times
this change in the distance of the blocks as there are strings pass-
ing from block to block ; also, since this number of strings equals
the number of units in the corresponding force ; it follows, that,
representing this number in units of the force applied at p, by
P, and the virtual velocity of that force by n,, the quantity of
string thrown off by the first system is P, ;. Similarly, that
thrown off by the second is P, 7, ; P,representing the number of
units in the force applied at p,, and =, its virtual velocity ; and
so of the rest. Also, the sum of the quantities of string thrown
off by the blocks which approach one another, equals the sum of
those thrown off by the blocks which recede from one another ;
therefore, the former being understood to be taken with a nega-
tive sign, we have p,n,+Pyny+Psn,+....=o0. This per-
haps may be better understood when it has been applied to a
few examples.

229. Let us take the case of the wheel and axle (see Art,
114). It is apparent that if the power and weight be in equi-
librium in one position of either, that equilibrium will also exist
in any other position. Also, that their directions preserve
always their parallelism. The system, therefore, belongs to
that class in respect to which the principle of virtual velocities
has been proved to obtain, whatever be the extent of the motion
communicated to it. Also, the virtual velocity of either is, in
this case, the space actually described by it, since either, in its
second position, occupies a point in the line in which the force
impressed upon it acted, in its first position*. Hence, there-

* This will readily be seen by reference to the fig. page 168, where p

must be supposed to move in the line P o, the point P’ being in the line, and
P P’ coinciding with p m.
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fore, supposing the power P to give motion to the weight P,
calling », and 2, the spaces described by these respectively, and
writing the latter negatively, since it is deseribed in a direction
opposite to that in which the force to which it corresponds acts,
we have P, 2 —P,n,—=o0..P n,=P,n,. Hence it appears
that the power multiplied by the space which it describes is
equal to the weight multiplied by the space which ¢ describes.
And as many times as the power is less than the weight, so
many times is the space through which it moves greater.

The spaces #,, #, are manifestly equal to those portions of
the circumferences of the two circles off and on which the string
is wound ; now these being opposite to equal angles at the
centre (each equal to the angle through which the axle has
been turned), they are to one another as their radii. Thus » and
n, are to one another as the radii of the wheel and axle re-
spectively, and we have as before (Art. 114),

P, X (radius of wheel) =», % (radius of axle).

230. Let us take the inclined plane for our second ex-
ample, and suppose the force N (see fig. Art. 80) to act parallel
to the plane, and also the consideration of friction to be omitted.
Suppose the mass M to be made to descend the wkole length of
the plane. Being in equilibrium in one position, it would
manifestly be in equilibrium if allowed to rest in any other posi-
tion ; the forces preserving always their parallelism. The case
comes, therefore, under that for which the principle of virtual
velocities has been demonstrated, whatever be the extent of
motion. Also, the virtual velocily of the weight M is, in this
cage, the height of the plane ; and the virtual velocity of N is the
length of the plane,

.*. N % (length of plane)=m x (height of plane),
which agrees with what has been before proved (Art. 85).

231. As a third example, let us take the case of the single
moveable pulley (see fig. page 116). It is evident that the
system is of that class for which the principle of virtual velo-
cities has been proved, and that the virtual velocities of P and =
are the spaces they actually describe ; calling these, therefore,
n, and n,, we have

Also n,=2 n, for each of the two parts of the string which sus-
tain R, are shortened by a distance »,; therefore the whole of
the string sustaining the moveable pulley is shortened by twice

* This principle is well known to workmen ; they enunciate it, however,
thus: ¢ What is gained in power, is lost in velocity.’””
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that distance. The power moves, therefore, through twice that
distance ; or,
w=2n  P2n,—Rn=0 . .2P=R.

232. Similarly it may be shown, in the first system of
pulleys, (Art. 151), that each moveable pulley in succession,
counting from the last, moves through twice the distance of the
preceding pulley, and that the power p moves through twice the
distance of the firs¢t moveable pulley, so that calling », the space
described by the last moveable pulley, and, therefore, by the
force R, the spaces described by the others in order, are 2 n,,
4 n,, 8n, &c., and if there be four such moveable pulleys, the
space described by the power equals 16 n,, or n,=16n,. Now,
as before, by the principle of virtual velocities,

Pn,~Rn,=0 .. Pl6n,~RrRn,=o0 ..16P=Rr;
a result which is the same as that we have before obtained. A
similar method of reasoning may be applied to all the systems
of pulleys.

The principle of virtual velocities readily applies itself to
the solution of every question in statics, into the consideration
of which the resistance arising from friction does not enter. In
fact, the principle of the equality of moments, and that of the
parallelogram of forces, on which the whole science depends,
may be readily deduced from it.

233. We have proved this principle of virtual velocities
on the supposition that the forces impressed upon the system
remain in equilibrium, whatever be the position which their
points of application are made to take up. And on this hypo-
thesis we have shown it to obtain, whatever may be the distances
through which these points are made to move, provided only
the forces impressed upon these, retain always their parallelism.
The same principle, however, obtains generally, whatever be the
circumstances of the equilibrium, and the directions of the
forces, or the motions of the points of their application; pro-
vided, only, those motions be exceedingly small, so that the
resistances and tensions of the parts of the system may not be
thercby sensibly changed. This last hypothesis being made, the
proof is precisely the same with that we have already given.
In fact, the absence of all change in the tensions or resistances
of the parts of the system is that supposition on which the
whole demonstration rests, and it matters not under what cir-
cumstances it is made.

‘When virtual velocities are spoken of, they are usually under-
stood to have reference to these indefinitely small motions of the
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parts of a system. The principle of virtual velocities may, there-
fore, be stated under its most general form as follows., “If any
number of forces be, under any circumstances, in equilibrium,
and to any or all of their several points of application, there be
communicated indefinitely small motions in any direction ; then
the several virtual velocities of these points, multiplied by their
corresponding forces, and added together, shall give a result
zero ; those which are moved fowards the directions of their
forces being taken with a nmegative, and the remainder with a
positive, sign.” It is of the highest importance that the prac-
tical man should obtain a clear notion of the application of this
principle, in its most general form. The ideas which workmen
usually have of it are erroneous.

CHAPTER XIX.

234 Difficulty of determining me- 236. Where there are Two Resisting
chanically the amount of any Points.
Statical Resistance. 237 Whbere there are three Resist~
235 Theory of Resistances where ing Points.
there is only One Res’sting 239 Principle of Least Resistance.
Point.

ON THE THEORY OF RESISTANCES IN STATICS.

234. A cerTAIN number of the forces which hold a body at
rest may be, and in the great majority of cases actually are, sup-
plied by the resistances of certain fixed points, or surfaces. It
appears to be nearly impossible to contrive any method, gene-
rally applicable to a measurement of the amounts or magnitudes
of these resistances. The mechanical contrivances commonly
used to estimate the amount of pressure, are applicable only to
the state immediately bordering upon motion. Now, when any
of the forces which hold a body at rest are resistances, these, any
or all of them, admit of being infinitely varied, without com-
municating motion to it.

Thus, to take a familiar example, we may vary the weights
placed upon a table sustained by four legs, infinitely, without
producing motion ; we may even remove the portion of the floor
on which one of the legs is supported, and place that leg in one
of the scale-pans of a balance, and although the weight upon the
table remain the same, we shall find that we may vary the weight
placed in the opposite scale of the balance infinitely (within
certain limits), without communicating motion to the beam.
Now, there was clearly a certain resistance, and no other, sus-
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tained by the leg of the table, before the portion of the floor on
which it rested was removed ; but which of the pressures shown
by the balance, was that pressure, it is altogether impossible to
determine. A similar difficulty presents itself in the use of
weighing-machines made with springs ; these estimate pressures
by the greater or less degree of yielding in the points at which
they are applied ; thus, one of the feet of the table being attached
to such an instrument, would sink until the pressure sustained
by it was equipoised by the elasticity of the spring. But this
liability to yield would take the pressure completely out of the
class of the pressures supposed, which are those supplied by
Jized points and fired surfaces.

235. Not only is there, however, this difficulty in mea-
suring the amounts of statical resistances mechanically. The
theory of statical resistances presents almost equal difficulties.
If there be any number of forces in equilibrium, amongst which
there enters one resistance only ; we could determine the amount
of that one; for, knowing all the other forces of the system, we
can find the magnitude and direction of their resultant ; and we
know that this resultant must pass through the resisting point:
that it must be opposile to the resistance in direction, and equal
to it in magnitude. The amount and direction of the single
resistance thus becomes known to us.

If there be two resistances in the system, and we know their
points of application, and the direction of one of them ; we can
also find the direction of the other, and the magnitudes of both.
For let us take the resultant of those forces of the system which
are nof resistances, and suppose these forces to be replaced by
it. The whole will then be held at rest by three forces, the
resultant and two resistances ; the directions of these are, there-
fore, in the same plane, and meet, when produced, in the same
point. Now the direction of one of the resistances is known, let
it be produced to meet the resultant; then a line drawn from
their point of intersection, to the point of application of the
other resistance, will be in the direction of thatresistance. And
the directions of both resistances being known, also the magni-
tude and direction of their resultant being known, the magni-
tude of each resistance may be ascertained by the principle of
the parallelogram of forces.

If the points of resistance be fized points, capable of supply-
ing resistance in every possible direction, it will be shown here~
after that the direction of the resistances is necessarily parallel
to that of the resultant force, If the points of resistance be
points capable of motion upon a given surface, which surface
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will supply resistance only in certain directions ; then the direc-
tions of the resistances are those which approach the nearest
possible to parallelism.

236. Let us suppose the points of resistance p, and P, to
be fized, and let R be the resultant of
any system of forces in equilibrium, of
which the resistances of these points
form a part; then are the resistances

“  at p, and P, parallel to R. Draw from
/f either of the points p, a line p, M N,

eyt
/ perpendicular to the direction of R,
and intersecting the direction of that
/ force and p, in M and N.  Then, since

the moments of the forces of the sys-
tem about any poini, as P, are equal, we have

—

P,XP N=RXP M
Now, since the dzreclzons of P; and R are known, the lines p N
and p, M are known, also R is known, therefore p, is known
from the above equation ; also p 4 r,=R. ’lherefore, P may
be found.
. As a practical application of what has been stated above, let
us suppose a weight w to be sup-
- ported upon two fixed points p,
#, ® " &:  and r, by the intervention of a rod
P, P, supposed without weight.
By the principle of the equ'lhty of moments,
similarly, p, X P P,=W X P, W.
Thus p, and p, are known.

237 If instead of fmo there be three points of resistance,
there is one and only one case, in which the amounts of the
resistances on these points can be ascertained by any of the rules
of statics which have hitherto been laid down, The case is that
in which the resistances are those of points which are fired in both
surfaces, and whose directions are, therefore, parallel to that of
the resultant of the other forces impressed upon the system.

Let us suppose a plane to
be drawn perpendicular to the
direction of the resultant R, and
intersecting the directions of the
three resistances of the system
in the points P, Py, Ps which
points we will, for the Present, suppose not to be in the same
right line, Let the points p, p,, P, be joined by lines forming
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the triangle P P, P,. Also let lines be drawn from the safhe
points to R, dividing the whole triangle p p, p, into three ele-
mentary triangles RP, P,, R P, P,, and R P P,.

Then the magnitude of each resislance will be lo the resultant
of the whole, as the elementary (riangle on the side opposile lo
that resistance is lo the whole Iriangle®. Thus the resistance at
P is to r as the triangle R p, p, is to the triangle », P, »,.

This may be easily proved. Let the forces p, and R be sup-
posed to be replaced by their resultant, and also the forces p,
and p, by their resultant. These resultants are necessarily equal
and opposite. (Art. 6.) Now, the direction of the former result-
ant is through some point in the line r r produced, and the
direction of the latter, through some point in the line p, P,
Both resultants pass, therefore, through the point of intersection
M of these lines.

Since, then, the resultant of p, and R pagses through ».

PXMP = RXMR

S P MR
R ;17] ;
A triangle P, R P,
2 = Tunglo e v, Pa

A similar demonstra‘ion applies to the other resistances.

If r be the centre of gravity of the triangle rir, py, MR will
be cqual to one-third of mp, . p, = 4R. Similarly each of
the other resistances will equal one-third of R ; these resistances
are, thercfore, all equal to one another. Thus a triangular
table of uniform thickness, supported by legs at its corners, will
press with equal force on all of these, whatever be the shape of
the triangle ; since the resultant of the weights of the parts of
the triangle, which are the only forces impressed on it, passes
through its centre of gravity. Also, if a weight be placed upon
the table over ils centre of gravity, the pressure of that weight
will be equally divided between the legs.

238. A given weight r being thus always placed upon the
centre of gravity of the triangle, let us suppose the side p, p,
to revolve about the point r,, until it is made to coincide with
r,®,. The centre of gravity r will throughout this variation be

* This very elegant property of the resistances of three points, was first
discovered by Luler, and given by him in the commencement of a paper
entitled De pressione ponderis in planum cui incumbit, in the Memoirs of the
Academy of Sciences al S8t. Petersburgh, Novi Commentarii, tom. 18, in
which the question of resistance is discussed at great length.
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found by joining the point p,, with the bisection  of the side
p,P,, and taking MR equal to one-third of M p,, also the pressure
of ® will, throughout, be equally divided between the points
e, P, and P ; this equal division will, therefore, continue when
e, v, takes up its final position coincident with r,r, In this

ultimale position, therefore of p, P

217
8@ @ 3¢ if MR equal one-third of Mmp,, M being
Oou R  the bisection of p, P, the pressure of

anyforce applied at R will divide itself
cqually between the points v p,p,. It is easily shown, that
when the point ® is taken according to the above conditions,
P,R = '} (Pl P2+P2 Pa)'

239. When the number of points of resistance exceeds three,
the problem does not admit of solution by any of the principles
hitherto laid down, and recourse must be had to another prin-
ciple, called the principle of least resistance®*. That principle
may be stated as follows, If there be a system of forces in
equilibrium, among which are a given number of resistances,
then is cach of these a minimum, subject to the conditions
imposed by the equilibrium of the whole.

This principle is easily proved; although the application of it
presents considerable analytical difficulties. Lect us suppose the
forces of the system which are mot resistances, to be represented
by the letter A, and the reststances by B; also let any other

-system of forces which may be made to replace the forces B, and
sustain A, be represented by c. Suppose the system B to be
replaced by c; then it is apparent, that each force of the system
¢ is equal to the pressure propagated to its point of application,
by the forces of the system A; or, it is equal to that pressure,
logelher with the pressure so propagated to it by the other forces
of the system ¢. In the former case, it is identical with one of
the resistances of the system B; in the latter case, it is greater
than it. Ilence, therefore, it appears, that each force of the
system B is a minimum, subject to the conditions imposed by the
.equilibrium of the whole.

All the resistances of any system of forces being subject to
this condition, the magnitude and direction of cach may be
determined in terms of the other forces which compose it, by
the ‘method of the maxima and minima of any number of
variables, ’

240. From this determination it results that when the

. * The principle of least resistance was first published by the author of
this work, in the Pkil. Mag. for October, 1833,
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resistances are parallel, there is a certain axis, about which their
moments are all equal. When they are all in a straight line,
this axis resolves itself into a point. The condition that any
number of parallel resistances in the same right line have their
moments about a certain point equal, leads at once to a deter-
mination of the position of that point, and to a comparison of
the amounts of the several resistances of the system. If these
resistances be equal, the point about which their moments are
equal, will be found to pass to an infinite distance*.

241. It manifestly follows, that since these resistances are
the least possible so as to sustain the resultant of the other
forces impressed upon the system, they are as nearly as possible
in directions parallel to the dircction of that resultant. And,
therefore, that if each resisting point be capable of supplying
resistance in any direction, they are all accurately parallel to that
direction. And if not, that they are inclined at the least pos-
sible angles to_it. Thus in the wedge (Art. 87), since the force
impressed upon the back is sustained by the resistances on the
sides, these last have their directions inclined at the least pos-
sible angles to the former, and are, therefore, in the limiting
directions of the resistances of the surfaces; as is there shown on
other principles. (Sce the Appendix.)

* This is found to be the case wherg a given force is sustained by ¢hree
equal resistances in the same straight line, under the circumstances stated in
a preceding article.
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242. Or all substances, a fluid is that with whose pro-
perties, as distinguished from a solid, we are probably most
familiar, yet it is exceedingly difficult to define those properties.
Tluids are usually said to be those bodies whose parts may be
made to move among one another, or be separated from one
another, by any assignable force, however small. Nature, how-
ever, presents us with no fluid answering to this description,
Were there no resisiance opposed to the motion of the particles
of fluids among ore another, having been once put in motion,
they would never return to a state of rest; and the state of a
body whose particles might be separated without any effort,
would approach more nearly to the state of an impalpable pow-
der, than to that of a fluid.

243. The distinctive character of a fluid appears to be its
power of propagating pressure applied to it, not in that direction
only in which it is applied, as is the case with solids; or in
directions limited within a certain angle, as in the case with
bodies composed of detached particles, sand for instance ; but in
every possible direction. To (kis may be traced all those other
properties which enter into-our notion of a fluid body, as dis-
tinguished from a solid.
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. :‘ﬂ there be taken a vessel 4 5, whose sides are perfectly
rigid, and let it accurately enclose a fluid body of any conceiv-
able form. Suppose
two solid prismatic
masscs, called pistons,
pe and gaq, to be in-
scrted to any depth in
it through apertures in
its sides, to which they
are accurately fitted,
and in which they
move with perfect free-
dom ; also let such
forces be applied to
these as will just keep
them in their places. An equilibrium being thus established,
let any other force F be applied to either piston ; it will be found
that wherever the other piston is situated, an additional force will
instantly become necessary to keep that piston at rest. The
pressure from the first piston is, therefore, instantaneously pro-
pagated to the sccond ; and this being the case, wherever the
second piston is situated, it follows, that pressure applied to one
part of a fluid, is propagated in every possible direction, and to
every other part in it.

If, instead of a fluid, the vessel had contained a mass of
sand or earth, the piston @ would be found to be affected by a
force applied to p, only so long as it was situated within a space
enclosed by lines drawn at a certain angle from r, and repre-
sented in the figure by the dotted radiating lines. Bodies of
this kind, of which there is a vast variety, are sometimes
called imperfect fluids.

244. From the property that pressure applied to a fluid is
propagated in cvery direction, may be deduced this other, “that
it is propagaled LQUALLY in cvery direction.” This is usually
cited as the principle of the equal distribution of fluid pressure.

What is meant by it is this,—that a pressure applied to any
surface or area, situated in one portion of a fluid, generates a
precisely similar and equal pressure upon any equal and similar
surface or arca, situated in any other portion of it; thus distri-
buting itself equally and similarly throughout the whole fluid
mass. Thus, if there be two portions of the sides of the vessel
spoken of above, which are of precisely the same form and
d.imensions, and any pressure be applied to one of them, pre-
cisely the same pressure will be produced upon the other. Or
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if a golid piston, whose extremity is of any given form, be thrust
to any depth into the fluid, so as to produce a given pressure
upon a surface any where within it, of the same form and
dimensions with the extremity of the piston; then a similar
and equal pressure will thus be produced upon an equal and
similar surface, situated any where in the sides of the vessel*.
It is clear that the principle stated above, will follow, provided
we can show that pressure applied to a plune surface any where
situated in the fluid, is propagated to any cqual and similar plane
situated elsewhere; for every surface may be considered to be
made up of indefinitely small planes, and force applied to this
surface, as distributed over these planes; now, if the force thus
applied to each plane in one surface, be accurately propagated
to cach cqual and corresponding plane in the other, it follows,
that the whole pressure of the one surface is accurately propa-
gated to the other.

Let us suppose, then, in the preceding figure, the pistons r
and Q to be terminated by plane surfaces, and let any forces p,
and p, be applied to these pistons, such as will be in equilibrium
with one another. This being the case, let a slight additional
pressure be for an instant communicated to one of them, r, so
as just to disturb the equilibrium ; that additional pressure will
be propagated to the cther piston; and since both were accu-
rately in equilibrium before, both will now move. ILet their
motions be represented by », and ny; then, by the principle of
virtual velocitiest, p, #, =»,n,. Now since pressurc on a fluid
is propagated in every direction, it is clear, that throughout the
motion of the pistons, the fluid will be kept accurately in con-
tact with their surfaces; for if there be, any where, no contact
between the fluid and the surface of cither piston, there will,
there, be a free surface of the fluid, and nothing to sustain the
pressure which has been propagated through it, to that surface;
which is impossible.

The fluid being thus accurately in contact with the surfaces
of the pistons throughout the motion, and being considered in-
compressible, it follows, that the motion of one of the pistons

* This last case, in point of fact, resolves itself into the first, since the
sides of the solid piston may be supposed to form a portion of the sides of a
second vessel differently shaped from the first.

+ It will be seen by reference to Art. 227, that the principle of virtual
velocities, as proved there, applies accurately to the case of a machine consti-
tuted as that described in the text. The demonstration given there is, in fact,
perfectly general. 1f we conceive the fluid to be without weight, the above
reasoning holds for any extent of motion that may be communicated to the
pistons,
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must be such o8 jt.xst to make room for the fluid displaced by
the other. Now, if we call k, and K. the transverse sections of
the pistons, the quantity of fluid which that, p, which moves
forward, will displace, will manifestly be that contained in a
prism whose base is K, and length 2, ; and the space deserted
by the other piston, by a prism having x, for its base, and #, for
its length. Now the volumes of these prisms are respectively,
K, Xn, and K, X n,. ..K X% =K, X 7. And dividing the
preceding equation by this, we obtain,
g Eand.‘.-P—'=1<—’.......(]).
K, K3 P, Kq
If K, be equal to K, P, is equal to p,; that is, if the plane
areas to which the pressures are applied arc equal, the pressures
themselves are equal. Hence, from what we have said in the
preceding article, the principle of the equal distribution of pres-
sures is proved, whatever be the form of the surface to which it
is applied.

245. From the above equation (1), it appears, that pressure
applied to a plane surface in any one portion of a fluid, is to
the pressure produced by it on a plane in any other portion of
that fluid, as the area of the first plane is to that of the second.
Thus, if the first area be very small as compared with the second,
the force applied will be very small as compared with the force
produced ; and this increase of the produced pressure, in com-
parison with the producing pressure, may be carried to any cx-
tent, by increasing the disproportion between the two areas.

246. Itis on this principle
that Bramah’s HydrostaticPress
is counstructed. It is repre-
sented in the accompanying dia-
gram. A B and cp are hollow
cylinders, whose sides are of
great thickness and strength.
The diameter of c¢p is much
less than that of A B, and they
communicate through a pipe
BD. AMisa strong solid pis-

| ton,working in the hollow cylin-
der A p, by means of a water-
tight collar, through which it
passes at A, and terminating in
a platform or extended surface,
GFH, vsh_ich carries the substance to be pressed. Kcq is
another piston similarly applied to the other cylinder ¢, and
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moveable in it by means of a lever nx L, whose fulerum is at x.
Immediately below the point b is a valve closing downmwards, and
beyond it, the cylinder ¢ p is made to communicate by means of
a pipe, with a reservoir containing water at E. The channel
BD contains a valve opening inlo the cylinder AB. The lever
UKL being raised, the valve below p opens, and the water is
made to ascend as in the common pump, from the reservoir &
into the cylinder ¢ », The lever being then pressed down, the
valve below » closes, that at B opens, and the water is forced
through the channel p & beneath the piston M. When the whole
of the fluid has been expelled from b, the operation is repeated ;
and thus the piston AMm is made continually to ascend. The
substance to be compressed is placed between the platform ¢ F B
and a cross-piece 1 which is fixed in the uprights @ and .

By what has been stated before (Equation 1, page 184), it
appears, that the pressure upon the base of the piston m, is to
that upon q as the area of the former is to that of the latter.
Now the pistons being solid cylinders, the areas of their trans-
verse sections are to one another as the squares of their dia-
meters. Hence, therefore, calling these diameters p, and b,
and the pressures upon them P, and p,, we have,

P2 — P_’:
P Y
Suppose, as an example, that the cylinder Q is one quarter
of an inch in diameter, and » twelve inches,
n_ (2144
r T G e
= 144 % 16
= 2304
Sopy =2304. p .
Now let us suppose the force p, to be produced on the pis-
ton q, by the action of a force p applied at the end of the lever
KL, and let the length of that lever be 48 inches; and the
distance of the point k from its fulerum 1, 4 inches: then
(Art. 95), :
4.7 48 r
Sop,=12p
Sop,=2304 x 12.r
— 27648 P.
If the force p applied to the extremity of the lever be one

hundred-weight ; the pressure Ps thus generated on the base of

the piston M will be 27648 cwt., or more than 1382 tons, By
I3
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the mere weight of a man’s body, when leaning on the ex-
tremity of the lever, a pressure may be produced by such an
instrument as we have described, of upwards of 2000 tons. Tt
is the simplest and the most easily applicable of all contrivances
for increasing human power; and the only limit to the force
which may be called into action by it, is the want of materials
of sufficient strength to enable us to apply the enormous pres-
sures which it generates. IHad Archimedes been acquainted
with it, he certainly would have preferred it to the lever, for
raising the world with,

There is a beautiful contrivance of the late Mr. Bramah, for
rendering the collars of the two pistons water-tight, under the
enormous pressures to which the contained fluid is subjected.
A portion of the leather with which the metal collar is lined, is
made to cxtend beyond its edge into the fluid; one surface of
this leather being thus presented to the action of the fluid, and
the other to the surface of the piston, the pressure of the fluid
causes it to clasp the piston more tightly than it otherwise
would ; and by this very simple contrivance, as the tendency of
the fluid to escape is increased, by reason of the increase of the
pressure upon it, the collar is continually tightened, and its
escape more effectually prevented. The principle of the press
had long been known*; it was, however, the invention of this
collar by Mr. Bramab, that first rendered it applicable to any
useful purpose. It is used for the extraction of oils, for press-
ing paper, and for packing. Iay intended as provender for
cattle on ship-board is reduced under this press to the state
almost of a solid, and enormous quantities are thus brought into
an inconceivably small compass. Besides the facility of stowing
the hay thus compressed, there is this further advantage, that it
may be kept without injury almost for any required time.
There would seem to be no force known to us which may not
be made to yield under this press; it requires but one of its
least efforts to tear a tree up Dby its roots, or to break asunder
a beam. It is somctimes used for extracting piles, and for
trying iron cables. In this case it acts not by compression, but
by traction; a somewhat different arrangement is therefore re-
quired to apply the pressure it generates. The jframe of the
machine is here fixed, and a rod, by which the force of traction
is to be applied, is made to pass through a water-tight collar in
the base of the cylinder M B, and attaclied to the extremity of

* The discovery of it is usually attributed to Pascal; it belongs, how-
ever, to the celebrated Stevin, mathematician to the Prince of Nassau, the
inventor of decimals.
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the piston M, which in its motion carries this rod with it. The
action of the machine is immediately relieved by turning a screw
at N, by which the water is allowed to occupy a larger space, or
to escape.

247. We have shown that pressure being propagated by the
intervention of a fluid from one plane surface to another plane
surface, these pressures are to one another as the areas of the
planes. Now let us suppose the second surface not to be a
plane, but a curved surface. Conceive it to be divided into an
exceedingly great number of equal parts. Each of these may
then be considered a plane. TLet n represent their number.
The pressure upou the first-mentioned surface which is a plane
will be to the area of that plane, as the pressure upon either of
the elementary planes to its area; and thercfore as n times the
pressure upon either of the clementary plancs, is to n times the
area of either of them, or as the whole pressure upon the curved
surface to the whole area of that surface.

248. The pressure of a fluid upon the surface of a solid, is
necessarily IN A DIRECTION PERPENDICULAR TO TUAT SURFACE;
for if it were not, then it might be resolved into two other
pressures, one of which was perpendicular to the surface, and
the other parallel to it; and this last would take effect upon
the adjacent particles of the fluid, and cause motion among
them. It follows, therefore, that the pressure of a fluid at rest
upon the surface of a solid, is in a direction perpendicular to
that surface.

CHAPTER II.

O~ ™iE Equinisrivm or A Hiavy Fruip.

‘WE have laid down, in a preceding part of this work (Art.
159), as the fundamental principle of the equilibrium of a
system of variable form; first, That the same conditions must
obtain, with regard to such a system, as though its form were
invariable. Sccondly, That these must obtain together wilk
such other conditions as arise out of the nature of the variation
to which the system is subject.

249. Thus, a fluid, or any portion of a fluid, being a system
of variable form held at rest by certain forces; the same con-
ditions must obtain, with regard to these forces, as though its
form were invariable—or in other words, as though it were
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a solid; logether with such other conditions as result from its

fluidity, Let A B represent a por-
Q tion of the surface of a heavy fluid.
Take a portion QP constituting a

N \\q\u vertical column of this fluid having
\) %

% \\:k

&\\‘&M\Qﬁ for its base a horizontal pl
HTK N or its base a horizontal plane P,

\\\\ \\X\\\\\\\‘E\\\ and let us consider the condition;

\
&\\ \

\i\\ \
\\\\‘\\ N\ of the equlibrium of that portion

N
‘\\
\\\B WY
of the fluid. By the first con-

dition of the equilibrium of a system of variable form, it follows
that the same conditions must obtain, with regard to the forces
acting upon this column of fluid, as though it were a solid.
The sum of the forces impressed upon it in opposite directions
vertically, must, therefore, cqual one another; and also the
sum of those impressed horizontally.

Now, supposing the surface A1 of the fluid to be free of all
pressure, the only vertical pressure upon the column QP down-
wards is its weight ; and the pressure upwards upon it is the
upward pressure of the fluid upon its base p. These are,
therefore, equal to one another. That is, the pressure upon the
base p of the column of fluid qp is equal to its weight; and
this is true for every other column of the fluid similarly taken.
Thus, then, it appears that the pressure upon a horizontal plane,
any where taken in the fluid, is equal to the weight of the column
reaching from that plane to the surface of the fluid.

250. Now, by the principle of the equal distribution of
fluid pressure, the pressure upon such a plane would, if the
fluid mere without weight, be propagated accurately, without
increase or diminution, to every other surface of equal area in
the fluid. )

The fluid is, however, nol without weight ; every particle of
it is acted upon by the force of gravity, which force of gravity
varies continually the amount of the pressure in its propagation
from one portion of the fluid to another, provided the direction
of that propagation be in any degree upwards or downwards,
that is, in the vertical ; but does not affect it, if its direction
be horizontal, that is, perpendicular to the direction of gravity.
Since, it is a principle of Statics, that forces, acting at right
angles to one another, do not mutually counteract or augment,
or, indeed, in any way affect, each other, This being the case,
it follows that the pressure upon the plane P is accurately pro-
pagated, without increase or diminution, to any other surface p’
of the same area, in the same horizontal plane with it. And,
similarly, that the pressure upon »’ is propagated to . Hence,
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_therefore, we conclude that the whole pressure upon P’ is pre-
cisely equal to that upon r.

For if it be not equal it must either be greater than it,
or less. Let the pressure upon P’ be greater than that on P.
Then, since the pressure upon ®'is transmitted to r, acting
upwards on that plane, and exceeds its own pressure upon
p downwards, it must give motion to it; but i/ does not, since
the fluid is at rest.

Again, let the pressure upon p” be less than that on »; then
is the pressure upon P greater than that on ¥’, and for the
same reason as in the first case, the plane »’ must move ; which
it does nol, since the fluid is at rest. The pressure upon P is,
therefore, neither greater nor less than that on p; that is, it is
equal to it

251. From the above, then, it appears that THE PRESSURES
UPON ANY TWO EQUAL AREAS, ANY WHERE TAKEN IN A HEAVY
FLUID, ARE EQUAL TO ONE ANOTHER, PROVIDED THEY BE IN THE
sAME HOR1ZONTAL PLANE¥, This is a fundamental proposition
of 1Iydrostatics, and serves to explain the most important of the
phenomena observable in the equilibrium of fluids on the earth’s
surface.

252. The pressure upon the surface »’ being equal to that
upon the surface p, also the latter pressure having been shown
to be equal to the weight of the superincumbent column q P, it
follows that the pressure upon P’ is equal to the weight of that
column, AND TIIAT THE PRESSURE UPON ANY IIORIZONTAL AREA
18 EQUAL TO THE WEIGHT OF A COLUMN OF THE FLUID WHICH
WOULD REACH FROM THAT AREA To THE FREE SURFACE OF THE
FLUID. From this consideration we shall readily perceive
that the pressure of a fluid upon the sides and base of the

* There is another method of proving this important proposition, which
although by no means so elementary as the above, will perhaps, be con-
sidered more intelligible.

Let P and P’ represent equal and similar areas
in the same horizontal plane, any where sitnated
in a fluid; and let pa P’ be an imaginary tube of
any symmelrical form, and terminated by the
planes P and P’ which form its extreme sections.
Suppose the whole mass of fluid, excepting only
that contained in this tube, to become solid. The
conditions of the equilibrium of the fluid contained in the tube will not be
altered by this change, since it neitler adds to the forces acting upon that
fluid nor takes away from them, but merely supplies a power of resisting
Jurther pressure. Now, since the tube is symmetrical, it is apparent that
the fluid in it cannot rest until the pressures upon its two extremities »
and »’, be equal. Now P and P’ are any where taken in any horixontal
plane. The truth of the proposition is, therefore, apparent.
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vessel which contains it may be increased enormously beyond
the actual weight of the fluid.

253. Thus let A B represent a shallow vessel closed on every
side except at the insertion r of a
slender vertical tube qp. Let this
vessel be filled with fluid, by pouring it
into the tube until it stands in it at Q.
The pressure upon the Jowest section r
of the tube is then the weight of the
column qr. The pressure upon any
surface equal to this section, and in the
same horizontal plane, A B, with it, is,
therefore, equal to the weight of this
column Pq; that is, it is cqual to the
weight of an imaginary column of the same height as p q, and
having the surface spoken of for its base; also the sum of the
pressures upon all the similar surfuces, composing the plane
A1, is cqual to the sum of the weights of such imaginary
columns. That is, it is cqual to the weight of an imaginary
mass {of the fluid occupying the whole space between an
and A" B”.

The pressure thus produced upon the upper surface A B of
the vessel is as much greater than the actual weight of the
water in the tube pq producing it, as that surface is greater
than the section of the tube. Thus, if the tube were an inch
square, and the surface A B contained one thousand square
inches, or somewhere about seven square feet, then water
poured into the tube weighing only a single pound, would pro-
duce upon A B a pressure upwards of one thousand pounds. A
cask of almost any conceivable strength might thus readily be
burst, by inserting in it a pipe, and filling the pipe with water
to a considerable height. To whatever height we filled the
pipe, we sheuld in fact get a pressure, upon the head and base
of the cask, equal to the weight of the column of water which
it would contain if its height were continued to the level of the
fluid in the pipe, retaining, in other respects, the same dimen-
sions as at present.

The pressure which might be produced by this means is
evidently without limit. It has been imagined possible that
some of the great geological changes which have taken place
on the earth’s surface may fhus have been brought about.
Thus, if we conceive a huge cavern to occupy the heart of
a mountain communicating, by means of a narrow fissure, with
its surface at some point near its summit, or at any rate at
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some point considerably above the level of the water in the -
cavern ; and this cavern in the course of time becoming filled
with water, if we conceive some mountain torrent accidentally
to take a direction over the mouth of the fissure so as to fill it
also—or, as is possible, if we suppose the fissure to become
filled by the continual oozing of the waters of the mountain into
the cavern—the upward pressure thus produced upon the roof
of the cavern may exceed the whole weight of the mountain,
and, further, be sufficient to overcome its adhesion to its base.
It will then be overthrown.

Tar FrREe Surrack oF A FLuID Is EVERY WHERE ON THE
SAME LEVEL.

254. The pressures upon equal areas in the same hori-
‘zontal plane in a fluid being equal (Art. 162) ; also the pressure

upon each of these areas being equal to the weight of any
column, having a base equal to that area, and reaching to the
free surface of the fluid ; it follows that all such columns must
be of the same weight, and therefore of the same lheight. Thus
then, it appears that all vertical lines drawn, from the same
horizontal plane, to points in any portion of the free surface of
the fluid, (that is, to any portion of the surface not retained in
its position by the resistance of the sides of the vessel,) are
equal to one another; that is, all such points are at the same
height above the horizontal plane spoken of. They are,
therefore, themselves in the same horizontal plane, or, according
to a technical expression, they are on the same level. Thus, in
the figure page 188, the different points in the surface A B
which is supposed to be free, are on the same level, or in the
same horizontal plane ; and the fluid being supposed to be con~
tinued towards M, if there be any other portion of it whose
surface is also free, that surface will be in the same horizontal
plane, or on the same level, with A B,

255. The common surface of two fluids of different densi-
ties is a horizontal plane ; for the free surface of the upper fluid
is a horizontal plane; also, if a horizontal plane be taken in
the lower fluid, the pressure upon every equal area of this plane
is the same, and is equal to the weight of a vertical column
extending from it to the surface of the fluid ; hence the weights
of all such columns are the same. Now they are of equal
length, since they extend to the free surface of the upper fluid,
which is shown to be a horizontal plane, Since, then, they are
of equal length and of equal weight, each must contain the same
quantity of each fluid ; and the heights of the lower columns,
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that is, the distances of different points in the common surface
of the two fluids from a given horizontal plane, must be the
same ; and, therefore, that common surface must itself be a
horizontal plane. Thus the common surface of liquids on the
earth’s surface, and the atmosphere which surrounds it, is a
horizontal plane.

256. There is no conceivable variety in the form of the
containing vessel to which the reasoning on which these con-
clusions are founded is not applicable.

Thus, the whole may form a sysiem of pipes, connecting
different reservoirs with one another ; and it follows, from what
has been said, that whenever the water has attained a statc of
equilibrium in these reservoirs, its surface, in all, will be in the
same horizontal plane, or it will stand at the same level, in all.
The fluid will be in motion until this is the case. Whilst thus
in motion, it is said to be seeking its level.

257. This property of a fluid, by reason of which it seeks
its own level, is that property by which it is made to diffuse
itself with such wonderful facility through the streets of our
crowded cities, overcoming every obstacle which the varying
elevation of the ground presents to its motion ; ascending fre-
quently into the higher apartments of the houses, and feeding,
at stated intervals, a reservoir which supplies to each house a
fountain abundantly sufficient for all the purposes of cleanliness
and health. To effect this, all that is necessary is to cause
the whole system of pipes to communicate with a reservoir of
the fluid, whose surface is above the highest level to which it is
required to be raised. If a sufficient supply of water cannot be
made to flow of its own accord into such a reservoir, it must be
raised into it by action of pumps or otherwise; this is dome,
in the water-works which supply the metropolis, by the aid of
steam-engines.

It is remarkable that this important property of fluids, on
which the health and comfort of a crowded population so much,
nay, so essentially depends, should have been so long a sccret
in the world. It would seem not to have become known until
within a few centuries. That the Romans never suspected its
existence, or, at any rate, that they never thought of applying
it to those grcat purposes by which, in our day, it is made to
contribute so largely to the well-being of society, is evident from
the great number of stone aqueducts erected by them, at im-
mense labour and expense, in the neighbourhood of all their
great cities, of which the ruins are among the most striking
monuments at once of their power, their wealth, and their
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ignorance, that remain to us. The aqueducts which supplied
Rome alone were, together, several hundred miles in length,
and the aqueduct built by them in the neighbourhood of
Nismes, called the Pont du Gard, is one of the most lofty and
massive existing specimens of masonry. All these aqueducts
were artificial channels made, upon the same level, from the
top of one eminence to that of another, and supported upon
pillars over the intervening valley. It is inconceivable that
they should not have spared themselves the erection of these
gigantic structures, had they been awarce that a closed channel,
however tortuous or irregular its direction, and however varied
its level, would carry a stream as certainly from one point to
another, at the same clevation, as though its whole course were
made to be a horizontal straight line.

258. The property of fluids by which they seek their own
level may be strikingly illustrated by means of the instrument
represented in the accom-
panying engraving. A va-
riety of vessels of different
forms arc made to commu-
nicate with a common re-
servoir which is closed on
every side, Iowever varied
and irregular the forms of
these vessels may be, it will be found that water poured into
the reservoir through one of them, and more than filling it, so
as to occupy a certain space in each vessel, will not rest until it
stands at the same height, or on the same level, in all. This ex-
periment may be varied by pl.\cmg stop-cocks in the necks of
the different vessels, as shown in the figure. The reservoir
being filled, and these stop-cocks closed, the fluid should be
poured into each vessel so as to stand in cach at a different
level ; the stop-cocks being then opened, the surface of the
fluid in each vessel will be observed to be instantly in a state
of motion ; and after some time oscillating about their positions
of equilibrium, all the surfaces will be observed, finally, to rest
in the same horizontal plane.

259. The locks used on canals present another illustration of
this principle. Since a fluid will rest only when its surface has
attained, every where, the same level, it is evident that the
waters of a canal will remain stagnant only so long as its
channel is such as to admit of this equality of level in its
surface ; or in other words, only so long as its channel is
such that a horizontal plane; made to pass through a point
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at which the surface of the fluid in the canal is intended to
stand, in one place, and being produced in the dircction of
its course, shall every where else cut its banks, or the sides
of its channel, in some point or other ; no where lying above or
beneath them. For the surface of the fluid being at one point
in this horizontal plane, will not rest unless it be every where
clse in the same plane; if, therefore, the plane be any where
above the banks of the canal, the surface of the fluid will there
ascend above the banks, or the canal will overflow ; and if the
plane lie any where beneatl the' sides of the channel, so as to
interscct the bottom of the canal, the surface of the fluid will
there also intersect the bottom, or the canal will there be dry.

Now it is sometimes impossible to construct the channel of
a canal so as to be subject to this condition, by reason of in-
equalities in the surface of the country through which it passes.
Two distinct portions of the channel arc then made on different
levels; one, for instance, is on the level of the top of a hill,
while the level of the other is that of the surface of the valley
beneath it. The two branches of the canal being thus wholly
distinet and separate from one another, the difficulty lics in
transferring the barges which ply upon it, from one branch to
the other. This is sometimes effected by making a railroad
down the side of the intervening hill, floating the barge upon
a sort of cradle, which may be made to move upon wheels,
or otherwise, upon the railroad, then lifting the whole out of
the water by means of a steam-engine ; and by the aid of the
same power, allowing it to slide down the inclined plane into
the channel in which it is to continue its course, or raising it
up the plane into the channel which is upon the higher level, if
its course be in the opposite direction. Omne loaded barge is
thus, sometimes, made to draw up another.

The more common, and by far the most conveunient con-
trivance for transferring the barges from one branch of a
canal to the other, is, however, that of the canal lock. Let

A @ A Brepresent the surface of the
hill lying between the two
branches of the canal., If the
difference of levels be not con-
siderable,an excavation is made
from the summit A perpendi-
cularly downwards in the direc-
~ : tion A P to the level PB of the

P B bottom of the hill, and at the
same time a mound is raised on -either side of this excavation,
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the top of which @ A is on the same level with o, And this
bheing done on both sides of the egcavation, a great trough or re-
servoir is formed whose bottom is on the same level with the
hottom of the lower branch of the canal, and its top on the same
level with the top of the
upper branch. The extre-
mities of this reservoir are
closed by gates K ¢ and 1D,
hung upon hinges at the
side. A barge is brought
from the kigher level A B to
the lower EF, thus; the
gates are closed, and a sub-
terraneous channel between the upper branch of the canal and the
lock, is at the same time opened ; through this channel the water
flows into the lock until its surfuce ¢D rises to the level of the
surface B A of the water in the higher canal; the gate 1 p is then
opened, which may be readily done, since the water standing
on the same level on either side the gate, presses equally on
both sides; and, therefore, does not, by reason of its pressure,
oppose any obstacle to the motion of the gate, or in any way
accelerate it. The gate being thus opened, the barge is drawn
into the lock, and the gate closed again behind it. The lock
thus becomes a closed vessel of fluid supporting the barge on its
surface. A communication is now opened hetween it and the
lower level of the canal, and its surface is thus made gradually
to descend, carrying with it the barge, until its level is the
same with that of the water in the lower canal; the gate x ¢ is
then opened and the boat floats out of the lock into that canal.
260. The process of raising a barge from the lower to the
upper level is just the converse of this. The lock being, as it is
termed, empty, the level ¢p of the water in it is the same with
that £ F of the lower canal; the gate k ¢ being, therefore,
opened, a barge may be floated from that canal into the lock.
This having been done, the gate is closed again, and the channel
communicating between the lock and the upper canal is opened;
the lock is thus gradually filled, and as the surface of the water
in it rises, it carries with it the barge until it has at length
lifted it to the level A B of the surface of the water in the upper
canal; the gate 1p being then opened, it is at once floated into
that canal.
vy If the difference of levels he considerable, it is found im-
practicable to excavate and embank a single lock of sufficient
depth to effect the tramsfer of the boat at once. A series of
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locks are, in this case, constructed, and the boat is made to
pass immediately from one into the other, until it has been
moved, as though by so many distinct steps, up or down the
side of the intervening hill. A barge might thus be made to
ascend on one side of a hill, and descend on the other, or in
other words, to float over it, were there a sufficient supply of
water at the top of the hill to supply the loss which takes place
at every transfer.

It is evident that whenever the lock is emptied, a lock full
of water is transferred from the higher canal to the lower, and
since, every time a boat descends, this emptying must neces-
sarily take place, and no two successive ascents can take place
without it, it follows that unless there be a continual supply of
water to the upper canal, so as to replace the water which is
thus continually taken from it, that canal must soon be empticd
and rendered useless. This is the great obstacle to the use of
locks; it is of course difficult, in many cases, to obtain the re-
quisite supply of water at the higher level of a canal, and some-
times it is impracticable.

261. The water level presents a very useful application of
the property of fluids, by which they scel their own level. It
is necessary in certain operations of drainage and levelling to
ascertain the exact point of an objeet, a bank or wall for
instance, which is in the same horizontal plane with another
point at some distance from it. This is sometimes done as

follows; a tube A B of the curved
-2 form represcented in the figure,

and having the extremities A and

B of glass, is fixed on a stand, and

placed so that a small quantity of

fluid being poured into the tube
the point P by which the level of
the other is to be fixed, shall appear
to an eye looking over the two sur-
faces A and B of that fluid, in the
same right line with them. If the
observer now look in the opposite
direction from B, over the surface

A, the point @ of the object which
he ‘sees in the same right line with B and 4, is in the same
horizontal line with p. This is the instrument commonly used
by labourers in drainage. It is easily made and applied, and no
instrument can exceed it in theoretical accuracy.
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O~ tHE OBLIQUE PRrESSURE oF A Heavy Fruip.

262. Ler p @ be a planc surface situated obliquely in a
fluid; and let » @' be another planc taken in the fluid precisely
of the same dimensions as p q but situated horizontally. The
pressure upon r @  will then, by what has been said before
(Art. 248), be cqual to the weight of a column of the fluid
having that plane for its base, and reaching to the surface M.
Now all this pressure will, by
the principle of the equal distri- M
bution of fluid pressure, be trans- .
mitted to the surface pq, aug-
mented by the pressure arising
from the weight of the fluid PqQ’
between the two planes. If,
therefore, » @ be infinitely small,
since this last-mentioned portion
of the fluid will be infinitely
small, it follows that its weight
may be neglected, and the pressure upon the plane pq con-
sidered accurately equal to the weight of a column of fluid
having that plane for its base, and a height equal to the depth
P M of the plane,

Now the pressure of a fluid upon a surfuace is in a direction
perpendicular to that surface. (Art. 248.) Taking, then, a
column p M” perpendicular to pq, having that plane for its base,
and being of a height P M’ cqual to pM; the pressure upon rq
will act in the direction of that column, and be cqual to its
weight. The surface P @ being supposed exceedingly small, the
column P M may be represented by the line p M.

263, Let us suppose PP, P, to be points in the interior
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surface of a vessel containing fluid. Draw pu/, P, M/, P, M/},
perpendicular to the surfuce in
MM these points, and equal seve-
= rally to their depths ™, P, M,
p, M, These perpendiculars
will then represent the pres-
sures upon exceedingly small
portions of the surface about
those points. (Art. 262.) It is manifest that these lines increase
as the points are decper beneath the surface; if, thercfore, the
vessel is 10 be constructed so that it shall have no more ten-
dency to yield to the pressure of the fluid at one portion of its
surface than at another, its thickness must be greater towards
its lower portions than its upper. Also, if we suppose the
strength of the vessel to be proportional to its thickness, itis clear
that we must take the thicknesses P q, P, @, P, q,, at the points
P, P,, P,, proportional to thelines » M’, 2, M/, v, M/, that is, to the
Jines v, P, M, P, M,. Jf we would have the thickness every
where just that which will sustain the pressure of the fluid and
no more, we must ascertain, by expcriment, what thickness of
the material will just sustain the pressure at any one point, as
for instance P, and then take the thicknesses at all the other
points to their depths in the same ratio that this thickness is to
its depth
264. If the side of the vessel, or any portion of it be a
plane instead of a curved surface, the law of the variation of the
pressure is very casily determined. Suppose AP D to be a ves-
sel of whose interior surface, the
proportion P ¢ is a plane. Let A B be
the surface of the fluid, and let it be
imagined to be produced, so as to
meet the plane pc produced, in N,
Through any point p, in pe, draw
the vertical P M to the surface of the
\ fluid, and draw p M’ perpendicular to
B rc, and equal to M. Then, if from
N there be drawn a line N L passing
through the point M’, a perpendicular » /', drawn from any
point P; in P c to this line, will represent the pressure upon that
point; being equal to the height of a column P, M, whose weight
equals that pressure. If we fix upon pq for the thickness of
the vessel at p, and draw from N a right line ~ x through q;
then, if the outside surface of the vessel be made to coincide
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with this line, its power to sustain the pressure upon it will be
the same at every other point of P, as at p: that is, the vessel
will be equally strong throughout; for p, @ has to p, m’ the
same ratio which p q has to » m’.

265. It is on this principle that embankments and dams,
—which are mounds of earth or other material intended to sup-
port the pressure of a fluid,—are not
built up perpendicularly, and all of
the same thickness, but made to have
their ouler surface uniformly sloped.
A perpendicular p M being drawn from
any point ¥ of the interior surface A B
of the dam, and made equal to the
depth P A of that point, also a line A L
being drawn from A through M*; per-
pendiculars drawn from all the other points in A B terminated
by this line, will equal the respective depths of those points; as
that from p equals its depth. Also, if any line A ¥ be drawn
from A, the distances betwecn this line and the different points
of A1 will be all proportional to the depths of those points; an
embankment, then, terminated by any such line A N would be
every where of the same strength to resist the tendency of the
fluid to burst through it}. Embankments are, of course, usually
made as represented in the figure, wider than is requisite to give
them an uniform strength, in order that allowance may be made
for any variation in the resistance of the material of which they
are composed.

266. From the above it will be apparent that surfaces of
all kinds sustaining the pressures of heavy fluids should be
made stronger towards their lower than their upper parts, the
strength necessary for the latter being thrown away upon the
former. Thus, flood-gates and lock-gates should have heavier
beams and fastenings, and barrels and vats should be more
strongly hooped, at the bottom than at the top.

Toe CENTRE OF PRESSURE.

267. Ler us now return to the case of the pressure upcn
a plane surface forming part of the sides of a vessel, as repre-
sented in the figure preceding the last; a question arises as to

* This line will evidently be inclined to the surface of the fluid at an

angle of 45”. .
+ The tendency of the pressure of the fluid to overfurn the embankment
is not here taken into account. It materially infinences the form which

should be given to it.
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what is the amount of pressure sustained by the whole of that
plane; and mfere a single force should be applied so as to sus-
tain that pressure, and hold the plane at rest; even although it
were entirely detached from the rest of the vessel. The point
which possesses this property is cilled the centre of pressure;
it may be defined generally to be that point in a surface sustain-
ing the pressure of a fluid where a single force might be applied
30 as lo suslain the whole of that pressure and keep the surface
at rest. Its position may, where the surface is a plane, be very
rcadily determined. It has been shown that the pressures upon
the several points of the plane pc (see the figure page 198,) will
be represented by lines drawn perpendicular to that plane and
terminated by N £, and will, in fact, be equivalent to the weights
of columns of the fluid of the same lengths with those lines;
the whole pressure is, therefore, equal to the weight of the
whole figure P ¢ EM’, which may be supposed to be made up of
such lines, and its effect upon r ¢ is precisely the same as would
be produced by the weight of such a figure if it were placed
upon it in a horizontal position. Now the resultant of the
weights of the parts of this figure would pass through its centre
of gravity; the resultant of the pressures of the fluid upon pc
passcs, therefore, through this centre of gravity. We have only
then to find the centre of gravity of the figure pc EM (called a
trapezium), and draw a perpendicular from this point upon rc;
the point where this perpendicular meets it, will be its centre of
pressure.

268. If the plane » ¢ extend to the surface of the fluid at
N, the determination of the position of the centre of pressure
will be very easy, for then the point p will coincide with ~, and

the trapezium P ¢ EM' will become the tri-
m B aungle Nc D (see the accompanying figure).
The centre of gravity of this triangle we
know how to find, by the method ex-
plained in Art. 68. Now the position of
the point @ in the figurc of that article is
distant from the vertex A of the triangle by two-thirds of the
whole length of the line A, which is drawn from A bisecting
the opposite side B . Ilence, therefore, if in the abore figure we
draw N M bisecting ¢ in M, and take N 6 equal to two-thirds of
N M, ¢ will be the centre of gravity of the triangle, and drawing
G 1 a perpendicular upon N ¢, 1t will be the centre of pressure of
that plane. Now, since N G equals two-thirds of N w, it is evi-
dent that ¥ # must equal two-thirds of ¥ c. Hence, therefore,
it follows that the centre of pressure of a plane, reaching to the
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very surface of the fluid whose pressure it sustains, is at a dis-
tance from its upper extremity equal to two-thirds of its whole
length. Of course the plane is supposed to be composed of
lines throughout its whole breadth of the same length with xc
and parallel to it ; or in other words, it is supposed to be a rect-
angle ; and this being the case, whatever be its inclination, its
centre of pressure will be distant from its higher edge by two-
thirds of its whole length, and a single force, as, for instance,
the pressure of a rod, applied at that distance, and in the middle
of its breadth, would hold the plane at rest. And the same
would manifestly be the case if the rod, instead of being applied
to it longitudinally at a single point, were placed across it over
that point. All that is required to the equilibrium being that
the centre of pressure should have a sufficient force applied to it.
269. We have stated the centre of pressure of a rectangular
plane to be at two-thirds the length of the plane from the sur-
face of the fluid, whatever may be its inclination : this is true,
therefore, if the plane be vertical, Thus, a sluice or flood-
gate, might be held in its place by
the pressure of a single force against B o
it (the end of a rod for instance), N,
at two-thirds of the depth of the ! q
fluid, and in the middle of the g ==
breadth of the gate. Also, if the s
gate turned upon a horizontal axis |
passing across it at that point, it T
would keep itself closed notwith-
standing the freedom of motion which it admits of about that
axis. And if the reservoir contained too much water, having
allowed that water to escape down to the proper level, it would,
by its own pressure, close itself.

The beams and hinges of a lock-gate should manifestly be
placed, not at equal distances from the top and bottom of the
gate, but at equal distances ahove and below its centre of pres-
sure, which is at two-thirds its depth. This arrangement is of
great practical importance, nevertheless it does not seem to be
attended to. On the same principle it appears that the staves
of a barrel or vat would be held together by a single hoop, if
that hoop were situated at two-thirds the depth of the contained
fluid. I, as is commonly the case, the lower extremities of the
staves be prevented from revolving inwards by the resistance of
the bottom of the cask, the hoop may be placed anywhere
beneath the centre of pressure; it will, however, be best placed
when nearest it, and must not be above it. Where, as in the

K
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cage of a vat, the vessel is always to remain supported on one
extremity ; the hoops should be placed symmetrically with re-
gard to the centre of pressure. In the case of a barrel, which is
supported sometimes on one extremity and sometimes on the
other, we may divide its whole height into three parts, and place
the hoops at the divisions. If more hoops be required,"they
should be placed half-way between the others. The strongest
hoops are of course required at the extremities. In the above
we have supposed the staves to be straight. If this be not the
case, the results stated above will require to he slightly modified.

THE WHOLE AMOUNT OF PRESSURE SUSTAINED BY THE
SipEs oF VESSELs.

270. Wg have shown that the pressure of a heavy fluid
upon an exceedingly small plane, however situated, is equal to
the weight of a column having for its base the area of that plane,
and for its height, the depth to which the plane is immersed.
(Art. 262.) Now the volume of such a column is equal to the
product of its base by its height. Hence, therefore, it follows
that the pressure upon any small plane p, whose depth is b, is
equal to the weight of a quantity of fluid whose volume is repre-
sented by the product r X . Also, if we suppose a surface
sustaining the pressure of a fluid, whatever may be its form, to
be made up of any number of such planes ; then the whole pres-
sure upon that surface is equal to the sum of all such products ;
that is, to the sum of the products obtained by multiplying each
elementary plane by its depth, or rather to the weight of a
volume of fluid equal to this sum. Now the sum of these pro-
ducts is equal to the product of the whole surface multiplied by
the depth of ils centre of gravily. Hence, if we suppose the
whole surface to be spread out, and a column taken having this
surface for its base, and for its height what was before the depth
of the centre of gravity of the surface, then the whole pressure
will equal the weight of this column filled with fluid.

‘We bave thus a very casy method of determining the whole
pressure of a fluid upon a surface, if we know the position of its
centre of gravity. For instance, if a sphere be immersed in a
fluid ; since we know that the depth of the centre of gravity of
its surface is that of its centre, we know also that the pressure
upon it is equal to the weight of a quantity of fluid which would
be contained in an upright vessel having a base equal to the
surface of the sphere, and having for its height the depth of the
centre of the sphere.

. Suppose the sphere only to be just immersed, or just covered
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with the fluid, the depth of its centre of gravity will then equal
its radius ; hence, therefore, by what has been said above, the
pressure upon it will equal the weight of an upright column of
the fluid having a base equal to the surface of the sphere, and a
height equal to its radius. Now the volume of the fluid which
the sphere will contain is known, by the principles of geometry,
to equal a similar column having the same base, but having a
height equal to two-thirds the radius. Hence, therefore, it ap -
pears that the pressure upon the sphere is greater than the
weight of the fluid it would contain ; being to that weight in the
ratio of 1 to the fraction 4, or in the ratio of three to two.

It is evident that all the above reasoning, and all the con-
clusions made to depend upon it, apply to the case of a kollow
sphere filled with fluid; the pressure being here from within,
ouimards, instead of from mithout, inwards. The pressure upon
such a spherical vessel is, therefore, greater than the weight of
the fluid it contains, in the ratio of three to two.

Let us now suppose a vessel, in the shape of a pyramid, to
be placed upon its base, and filled with fluid to its vertex. We
have seen before (Art. 268,) that the distance of the centre of
gravity of one of the triangular faces of such a pyramid, from its
vertex, is equal to two-thirds of the length of a line drawn from
the vertex to the bisectirn of the base. Hence it is casily seen
that the vertical depth of the centre of gravity of the face, be-
neath the vertex of the pyramid, is equal to two-thirds the
whole height of the pyramid. The pressure upon each face is,
therefore, equal thc weight of an upright column of the fluid,
whose base is that face, and its height two-thirds the height of
the pyramid. The base of the pyramid has its centre of gravity
at a depth beneath the surface of the fluid equal to the whole
height of the pyramid; the pressure upon it is, therefore, equal
to the weight of an upright column of the same base and height
with the pyramid.

If the faces of the pyramid be all equal, the sum of the
pressures on the sides will equal the weight of three columns,
each having a base equal to either face, and a height equal to
two-thirds the height of the pyramid, or it will equal a single
column having that base, and being in height, twice the height
of the pyramid. Now the pressure upon the base has been
shown to equal the weight of a column of the same base, and
having the same height as the pyramid. Hence, then, the
pressure altogether upon the sides and base is equal to the
weight of a vertical column having a base equal to either face of
the pyramid, and being three times its height. KThe pyramid

2
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will contain a quantity of fluid, whose volume is equal to that
of a column of the same base, and of one-third the height.
Hence the pressures upon the sides and base of the pyramid are
together greater than the weight of the contained fluid in the
ratio of three to one-third, or nine to one.

It follows, from the principle stated in the commencement
of this article, that a vessel intended to be so shaped as to
contain a given quantity of fluid, with the least possible pressure
upon its surface, should have that surface the least possible, so as
to contain the fluid, and its centre of gravity the highest possible.
A sphere appears of all figures best to satisfy these conditions.

O~ TuE CoMPOSITION AND RESOLUTION OF THE PRESSURE OF
A Heavy Frum.

271. Lgr r qrepresent any portion of the surface of a mass
sustaining the pressure of a fluid. Suppose ¥’ P Q’  to represent
a vertical column of the fluid imme-
diately superincumbent to pq and
reaching to its surface. Now (Art.
249), the fluid mass P’ Q'Q being
in equilibrium, the forces acting upon
it are such as would hold it at rest
if it were solid. The sums of the
forces acting upon it in opposite di-
rections, wverlically, are, therefore,
cqual to one another; and the sums of those acting upon it
horizontally. Now the sum of the forces acting upon it in the
vertical downwards is manifestly the weight of the column p ¢’
@ @; and the sum of the forces acting upon it upmards is the
whole vertical pressure upon the surface pq. These are, there-
fore, equal—that is, the verlical pressure upon P q is equal to
the weight of the column p P’ @’ Q.

Again, if ” Q” be the projection of P upon any vertical plane,
and we suppose P P” Q” @ to represent the column of fluid lying
immediately betmeen p @ and p” Q" : then, since the forces acting
upon this portion of the fluid would hold it at rest if it were
solid, it follows that the sums of those which act upon it kori-
zonlally, in opposite directions, are equal ; and also those which
act upon it vertically. Now, since p” Q” is vertical, the pres-
sure of the fluid upon it is wholly horizontal. Also the whole
pressure upon the column p¥” @’ q, from p” towards p, is the
pressure upon ” Q" ; and the whole pressure in the opposite
direction is the resolved portion of the pressure upon Pq in
that direction. Hence, the resolved portion of the pressure
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upon P q in the direction p p”; that is, in a direction perpendi-
cular to a given plane, is equal to the pressure upon the pro-
jection »” Q” of P q upon that plane.

272. Now all that has been said above is true, whatever
be the magnitude of the portion of the surface p q. Let, then,
Ppq and P g g be those two portions
of the surface of the mass which have
the same projection p” Q”. The pres-
sure of the fluid upon P q q, resolved
in a direction perpendicular to the
given plane, is then, by what has
been said before, equal to, and iden-
tical with, the pressure upon »"Q";
and it manifestly acts in a direction fowards »” Q”. Again the
resolved pressure upon P g @ is equal to, and identical with,
the pressure upon »” Q”, but acts in the opposite direction, or
Jrom »” @”. The mass is, therefore, pressed in directions per-
pendicular to the given plane, by forces which are in every
respect equal, and identical, and opposite to one another. It
does mnot, therefore, move by reason of these pressures either
towards or from that plane; and that plane is any vertical
plane. The pressure of a heavy fluid upon a mass immersed
in it, or upon the sidcs of the vessel which contains it, has,
therefore, no tendency to give motion to it, towards or from
any vertical plane which can be taken in the fluid; that is,
to causc motion in it in any korizontal direction whatever.
And such we find, by experience, to be the case; if we plunge
a body, however light, or however irregularly formed, into a
fluid, we experience no tendency of the body to move either to
the right hand or the left ; provided the fluid be at rest, and it
sustain no other pressure than that which is supplied by the
fluid itself.

273. The actual amount of the horizontal pressure upon
any portion of the surface of a body, and in every direction, we
can readily ascertain. From the intersection A of the plane of
projection with the surface of the fluid, let a plane AQ”’ be
drawn, inclined at an angle of forty-five degrees to the surface.
It has been shown (Art 267) that the pressure upon any por-
tion of the plane p” @” will equal the weight of the fluid lying
horizontally between that portion of the plane and AQ™. Thus
the whole pressure upon " Q”, that is, the whole horizontal
pressure upon either side of the mass P q, is equal to the
weight of the column p”’ P” @” Q. And, similarly, the pres-
sure upon any portion of the surface, as ¢ r, whatever be its
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magnitude, is equal to the weight of the eolumn ¢’ ¢" 7",
Since the pressures upon the several portions of the mass are
equal, each to the weight of a corresponding column of the
mass P’ P Q" Q”, it follows that the resultant of the pressures
is equal and opposite to the resultant of the weights. The
resultant of the pressures upon the different parts of the mass,
resolved in directions perpendicular to »” @”, passes, therefore,
through the centre of gravity of »” P @ @”.

274. There are some cases in which this consideration will
enable us, very readily, to fix upon the direction of the hori-
zontal resultant. Thus, if the sur-
face P @ had been that of a cone, the
projection ” Q" and also the section
P” @” would have been triangles ;
and if the vertex p of the cone, had
coincided with the surface of the
fluid, then the figure »” »” @” Q"
would have resolved itself into a
pyramid ; whose centre of gravity
would have been at a distance from its vertex, equal to three-
fourths the height of the pyramid. In the same manner if the
surface P g had been a sphere, the mass »” "’ @/ ” would have
been the frustum of a cylinder, the position of whose centre of
gravity is easily ascertained by the known rules. In both these
cases we may, therefore, determine the direction of the re-
sultant of the horizontal pressures upon the surface. Thus,
if a hollow cone, or a hollow sphere, were to be sunk in a
fluid, and we would wish to know where pieces should be
placed across in its interior surface, so as best to strengthen
it, we might determine, as above, the directions of the result-
ants of the horizontal pressures all round it, and it would mani-
festly be in these directions, or symmetrically with regard to
them, that the cross pieces should be placed.

275. All that has been proved above applies, whether we
suppose the pressure of the fluid to be from within the surface
P Q oulmwards, or from mithout, inwards. The former is the case
of a vessel containing fluid ; the latter of a body immersed in
it. Thus, then, if a cone-shaped vessel were filled with fluid,
we know that the resultant of the horizontal pressures upon its
sides passes through a peint distant from its vertex by three-
fourths of its height ; and if we applied two forces, of sufficient
magnitude, horizontally, on opposite sides of it, at this distance
from its vertex, and a sufficient force downwards at its vertex,
then cutting the vessel asunder from the vertex downwards, we
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should find that the parts would not be forced asunder. Simi-
larly, we might cut a sphere, filled with fluid, vertically, through
the middle, and hold the parts together by means of two hori-
zontal forces,

276. These principles have manifestly a great variety of
useful practical applications. They will guide us in fixing the
beams of ships, in strengthening the parts of large vessels in-
tended to contain fluid—the vats, for instance, used by brewers
and distillers—in the building of dykes, locks, &c. In fact,
there is no branch of Hydraulic Architecture which can he
attempted, on a large scale, with common safety, by a person not
thoroughly versed in the principles of Hydrostatics.

277. We have hitherto supposed the fluid to press upon
.every portion of the solid immersed in it, or upon every portion
of the vessel which contains it. And on this hypothesis we
have shown that the horizontal pressures of the fluid will mutu-
ally destroy one another. The hypothesis which forms the
basis of this conclusion does not ne-
cessarily obtain in all cases; for let
us suppose the body to be hollow,
and a portion of its surface as P q to
be removed, and let P’ @" be that
other portion of the sarface which
has the same vertical projection as
®q. The surface p @ being removed .
the pressure upon it will be removed, and the horizontal pres-
sure upon P’ Q’ will no longer be sustained by any equal and
opposite pressure; it will, therefore, communicate to the body
a tendency to move in the direction »' r; and this tendency will
continue, in a greater or less degree, until, by the influx of the
fluid at the aperture P q, the vessel is filled, or at any rate until
the level of the fluid within is the same with that without it*.
So that a vessel, with an aperture in it, being plunged in a fluid,
will tend to move towards the direction in which that aperture
lies;. a ship, for instance, which has sprung a leak, will be found
to have a motion sideways fomards the direction of the leak;
and this will be the more observable if she be continually emptied
by the pumps. If the leak be of large dimensions, the motion

* The fluid during the whole of its influx exercises a certain pressure upon
the edges of the aperture, and when it has attained, internally, the level of
the aperture, there is a further pressure of the influent upon the contained
fluid, both of which fend to sustain the pressure upon P’ @’; so that we can-
not consider that, by removing the portion P a of the surface, we entirely
remove from the body the pressure which it before sustained on that pertion
of its surface.
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arising from this cause will be found to constitute an important
item in the ship’s reckoning. Indeed, a vessel might be impelled
onwards through the water, with no other impelling force than
that arising from an unequal pressure of the water upon her
head and stern, produced by breaking a hole under her bows,
and continually pumping out the water which flowed into her
hold.

278. All the above reasoning is applicable to a vessel con-
taining fluid ; the only difference lies in this, that in the case of
such a vessel the pressure is from within outwards, whereas in
the other case it was from without imwards. Thus, if pq and
P’ Q' represent portions of the sides of
such a vessel having the same projection
P”Q” upon any given vertical plane ; then,
from what has been said above, it appears
that the horizontal pressures upon these
planes perpendicular to the given plane
are equal, each, to the pressure of the
fluid upon the projection ” ", and that
they are in opposite directions. Since,
then, the opposite portions pq and ¥ @’
of the sides of the vessel are acted upon
by equal and opposite horizontal forces, these have no tendency
to communicate motion to it; but if eithay of these portions of
the vessel b2 reiioveaq, the horizontal pressure upon its opposite
and corresponding portion will be unsustained, and will tend to
overthrow it; and this will continue to be the case, in a greater
or less degree, as long as the surface of the fluid remains above
the level of the aperture. The vessel may thus be upset.

279. We may experimentally put this fact of the horizontal
pressure produced by opening an
aperture in the side of a vessel of
fluid to the test, by causing such
a vessel to float on the surface of
a fluid by means of another empty
vessel, as in the accompanying cut.
The floating vessel and its contents.
will be found to move in a direction
opposite to that of the eflux.

The celebrated Bernouilli conceived the idea of propelling
ships in this manner. Water was to be raised in them by
pumps, or otherwise, and then allowed to flow from a reservoir
in a direction opposite to that of the intended course of the
ship. If allowed to enter under the bows, and (after baving
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been raised) allowed to escape by the stern, the vessel would
be propelled both by the influr and the efffuz, for the reasons
explained, as well in this as the preceding article.

280. There is an exceedingly valuable instrument called
Barker’s mill, which acts upon a principle analogous to the
above. AB is a hollow
cylinder moveable about
a vertical axis MN ; PP'is
another cylinder placed
at right angles to the
former, and communi-
cating internally with it.
Near its extremities,
which are closed, two
apertures are made in
the sides of this hori-
zontal cylinder, opening
in opposite directions.
That at p is supposed to
front the reader; that
at P’ is supposed to lie
on the opposite side of the tube from that on which he looks.
Let us now suppose the whole to become filled with fluid up to
a certain height in the vertical tube, the apertures P and. 4
being both closed. The horizontal pressure upon every portion
of the horizontal cylinder p ¢’ will then, by the last article, .be
sustained by an equal and corresponding pressure on an opposite
portion of it; and the cylinder will, therefore, have no tend?ncy
to motion arising from the pressure of the fluid upon its sides.
But if one of the apertures, as p, be opened, the pressure upomr
that portion of the surface which is removed to form the_aper-
ture, will be removed, the pressure upon the opposite portion of
the surface will be unsuslained, and the cylinder will tend to
move in the direction of that pressure—that is, round its axis
MN; also, being free to move about that axis, it will continue
to revolve round it in a direction opposite to the efflux as long
as any fluid remains in the cylinders. If the other aperture be
opened at the same time, it is evident that on the same prmcxpl?,
that aperture will tend to give motion to its branch of the hori-
zontal cylinder in an opposite direction, or to the whole cylinder,
in the same direction as the former. Thus a rapid and powerful
motion will be given to the machine, and being made to commu-
nicate with a system of machinery, it may be si}{apged, as the
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moving principle, in mechanical operations of any required
extent and variety.

This machine is said to be the most effective known for
applying the power of a given quantily and a given fail of
water to the working of machinery. Not only does it apply
the pressure of the water arising from its height, but it ap-
plies it to the greatest possible advantage ; for by lengthening
the horizontal branch » P/, this pressure may be made to act at
any required distance from the axis of motion; that is, the
leverage of the pressure may be increased to any required
extent. There is a still further advantage in this application of
the force of a fall of water arising out of the centrifugal force
produced in the fluid of the horizontal cylinder, by its revolu-
tion, which tends very greatly, and, indeed, almost without
limit, to increase its pressure upon the sides of that cylinder,
and, therefore, to increase the rotating power. So that by the
lengthening of the horizontal arm not only is the leverage
of the unsustained, or moving pressure increased, but that
pressure itself is also increased. The only drawback upon these
advantages consists in the expenditure of force required to
give a rotatory motion to the continually ckanging mass of
fluid in p P

It is a very remarkable fact, and one by no means creditable
to those interested in works of Hydraulic Architecture, that this
admirable machine, which is by no means a modern invention,
should never, it would seem, yet bave received a fair trial.
Such a trial can, however, only be made on a scale of con-
siderable magnitude, and under the direction of a person pro-
foundly acquainted with the theoretical principles of Hydraulics.
There can be little doubt that a trial thus conducted would
establish the fact, which has been so continually asserted by
those competent to judge of the theory of this instrument, that
it is superior to any other for applying the force of a fall of
water to the turning of machinery.

281. It matters not whether the pressure of a fluid upon the
interior of a vessel which contains it be produced by its weight
or by any other cause ; so long as the mhole surface of the vessel
sustains that pressure, it will have no tendency to give motion
to it; but if the pressure upon any portion of the surface
be removed, by removing that portion of the surface of the
vessel itself, the pressure on some corresponding opposite por-
tion of the vessel becoming unsustained, a tendency to motion
will be the result. Thus, if we were to take a vessel containing
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a fluid which tends to expand itself*, and, therefore, presses
every where upon the sides of the vessel ; so long as this vessel
remained on all sides closed, this pressure of the fluid would
have no tendency to communicate motion to it, being every
where counteracted by some equal and opposite tendency. But
if we make, any where, an aperture in the vessel, there will
immediately be some opposite portion of it, the pressure upon
which is unsustained; and there will ensue a tendency to
motion in the direction of that pressure. Thus, if an aperture
be made in the under part of the vessel, it will tend to ascend ;
and if the elasticity of the eontained fluid be sufficiently great
to produce the requisite pressure, the meight, of the vessel and
of contained fluid, will be overcome, and the whole will ascend.
as long as the pressure on the interior of the vessel continues,
1t is on this principle that rockets are made to ascend.

The combustible materials of a rocket are contained in a
hollow cylindrical case usually made of paper, which when wet
is partially closed at its extremity A, so as to leave there a
narrow neck. This neck is bound tightly round
with string, so as to preserve the contraction. When
dry, this case is forced into a mould, in the bottom
of which is fixed vertically a rod of metal p @, which
is of dimensions suited to the size of the rocket, and
which enters at the narrow neck of which we have
spoken, moulds that neck to the requisite form and
dimensions, and then occupies a portion of the mid-
dle of the cylindrical case. The combustible mate-
rials of the rocket are then driven into the case
from the top, with such force as to form them into a
hard and almost solid mass. At the top of the case
are placed the materials which are to be discharged
when the rocket has completed its flight; the whole
being then closed by the conical cap B, the rocket is
drawn out of its mould, and there remains in its
centre a hollow space P q, of the dimensions | |
of the rod which was forced through its neck.—
A stick is then attached to the rocket, the ob-
ject of which is to keep it in an upright position,
and which is of great length, that its centre of gravity
may be as low as possible, and thus the greatest pos-
sible stabilily given (Art. 294) to the upright posi-
tion of the rocket. A light being then applied to the aperture

* Fluids possessing this property are called elastic fluids. There is a great
variety of them ; the air we breathe is one.
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P, the whole internal surface of the hollow cylinder pq becomes
ignited, a very great quantity of highly elastic and rarefied gas
is produced, and a powerful pressure on the whole unoccupied
space in the interior of the rocket, is the result. Were the aper-
ture at p closed, this pressure would produce no tendency
whatever to motion in the rocket, the pressure upon every
portion of the internal surface being counteracted by some equal
and opposite pressure; but this aperture being open, the pres-
sure upwards on q is wholly unopposed, except by the weight
of the rocket and stick ; and if the proper dimensions be given
to the parts of the rocket, and the charge be of sufficient
strength, this pressure will be sufficient to overcome that weight,
and cause the whole to ascend. The weights thus raised by the
Congreve rockets are enormous, It is a distinctive characteristic
of the rocket as compared with other projectiles, that it carries
its impelling force with it. A bullet receives its impulse from
the sudden expansion of the gases generated in the inflammation
of the powder which constitutes the charge of the musket from
which it was fired. The impulsive force, or force of motion
thus communicated, may be wholly destroyed by the intervention
of any sufficient obstacle; and this borrowed force once de-
stroyed, the bullet will fall harmless to the ground, all power of
motion being utterly extinct in it. Not so with the rocket. If
it meet an obstacle sufficient to destroy its forward momentum,
yet the principle of its motion still remains in it ; and acquiring
almost certainly an oblique direction by reason of the opposition
presented to its forward motion, it will glance off in that oblique
direction, and become again as formidable in that direction as
before. Thus, too, a ball losing, in passing through any resisting
body, a portion of its impelling force, will afterwards be com-
paratively ineffective; whereas a rocket quickly renews again
any momentum which it may have lost. Rockets have thus
been known to pass through whole files of men.

It is precisely upon the same principle that fire-works of
another class are made to revolve on their axes.
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CHAPTER IV.

282 The Weight of a Floating Body 291 Stability of Floating Bodies;

equals the Weight of the Fluid Stable, Unstable, and Mixed
it Displaces. Equilibrium.

283 Its Centre of Gravity and that 295 Remarkable Analogy between
of the Part Immersed are in the Conditions of Equilibrium of a
same Vertical. Floating Body and those of a

289 Equilibrium of a Triangular Body supported on a Smooth
Prism. Plane,

290 Of a Pyramid.

Ox THE CoONDITIONS OF THE EQUILIBRIUM AND STABILITY OF
Froating Bobies.

WE have shown, in the preceding chapter, that the hori-
zontal pressure of a fluid, when at rest, does not produce any
tendency whatever to motion in a body which is immersed in it,
or in a vessel which contains it. 'We shall now show,

282. First, That the vertical pressure of the fluid upon a
body partly or wholly immersed in it tends to raise the body
with a force equal to the weight of a quantity of the fluid whose
volume is equal to that of the portion of the mass immersed ; or,
in other words, with a force equal to the weight of the fluid
which is displaced. Secondly, that the resultant of this excess
of the upward over the downward pressure of the fluid upon the
body passes through the centre of gravity of the part immersed.

To establish the first of these propositions, we have only to
refer the reader to Art.271. It is there shown that the vertical
pressure upon any portion of the surface of a
body immersed in a fluid, is equal to the weight
of a column of the fluid immediately superincum-
bent to that portion of surface, and reaching to
the surface of the fluid ; also, that this is true
wherever the surface may be situated ; so that
the pressure upon the surface P q, in the accom-
panying figure, is the weight of the column
PP’ Q" q; and the pressure upon ¢’ @, which has
the same projection »”” @” with the other, the
weight of the column ' P” Q” @. Now this is
also true, whatever be the magnitudes of the surfaces rq and
P’'qQ’; hence, therefore, increasing these so as to coincide with
MPqN and Mp’ Q'N, it follows that the pressure upon the for-
mer equals the weight of the column M P @ N N” M”, and that upon
the latter surface, the weight of the column Mp’Q'NN”M”. Now
the difference of the weights of these two columns is, manifestly,
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the weight of a mass of fluid equal to the whole solid immersed ;
and the difference of these two weights is also the difference of
the pressures of the fluid upon the surfaces MPQ N and MP' Q' N,
of which the former is downmards, and the latter upwards.
Hence, therefore, it follows, that the upward pressure of a fluid
upon the surface of a body immersed in it, exceeds the downmward
pressure by the weight of a quantity of the fluid of the same di-
mensions with the body. This surplus upward pressure tends to
support its weight, and it is technically said to lose a portion
of its weight equal to the weight of the quantity of fluid it
displaces.

Not only, however, is this true when the body is tolally, but
also where it is only partially immersed. For it is evident,
that if the surface of the fluid M” N”, instead of being wholly
above the body, had intersected it, so that only a portion of the
body had lain beneath it, then the weights of the columns
M’ MPQNN' and M"MP @' NN’ would still have equalled the
Ppressures upon it upwards and downwards, and their difference
would also still have equalled the weight of that quantity of
fluid which the body displaced ; so that in all cases the excess of
the upmward over the downmward pressure of the fluid upon a body
wholly or partly immersed in it, equals THE WEIGHT OF THE
FLUID DISPLACED.

283. The second proposition stated above, at once follows
from the consideration that the excess of the pressure upon e @
over that upon P’ @’ is the weight of the column P®’Q’q, and
the same is true of all other corresponding elements of the sur-
face; hence, therefore, the resultant of all these excesses of pres-
sure, that is of the whole excess of pressure, must equal the
resultant of the weights of all the columns similar to P»" @ Q";
which resultant manifestly passes through the centre of gravity
of the whole mass, if it be folally immersed, or of the part of it
immersed, if it be only partially immersed.

Hence, therefore, the resultant of the effective upward pres-
sure of the fluid, or of the excess of its upward over its down-
ward pressure, acts always through the centre of gravity of the
part of the body immersed. Now the weight of the immersed
body whose resultant acts also through its centre of gravity tends
to counteract this upward pressure of the fluid; and may be
such as to be accurately in equilibrium with it. To this equi-
librium the two following conditions are manifestly necessary.

First, that the weight of the body should equal the upward
pressure of the fluid; or, in other words, that it should equal
the weight of the fluid which it displaces. Secondly, that the
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resultant of the upward pressure of the flaid sheuld have its
direction in a direction opposite to the resuliant of the weight
of the body; or, in ether words, that the vertical through the
centre of gravity of the part of the body immersed should also
pass through the ceatre of gravity of the bedy itself. When
both these conditions are satisfied, the immersed body will be
in equilibrium, and is said to float.

284. The last condition is mecessarily satisfied whatever
the form of the body may be, provided omly it be tolally im-
mersed ; for in this case the centre of gravity of the part im-
mersed is the centre of gravity of the whole body; the resultant
of the upward pressure necessarily acts, therefore, in a direction
opposite to that of the weight, since one acts upwards, and the
other downwards, and they both act through the same point,
viz., the centre of gravity of the mass. If, therefore, a body be
totally immersed, the pressure of the fluid cannot produce in it
any tendency to rotation; it may sink, or it may rise in the
fluid, but it will not be made to turn round upon itself. If,
however, it be allowed to rise to the surface, and a part of it
emerge from the fluid, since the centre of gravity of the body
and that of the part of it immersed no longer necessarily co-
incide, it may, and in all probability mifl, occur that the vertical
through the latter does not pass through the former; thus the
second condition of the equilibrium will cease to be satisfied ; a
fact which will at once become apparent in the rotation of the
body. Hence, then, it appears, that whilst the body is tolally
immersed, any position is a position of equilibrium, provided
only the first condition of equilibrium be satisfied; but that
when the body is only partially immersed, there are certain
positions in which alone the equilibrium is possible.

The principles stated above, explain a vast number of pheno-

mena of common occurrence and of great practical importance.

285. If a body be totally immersed, and its weight be
such as just to equal the weight of an equal bulk of the fluid, it
will float in any position in which it is placed. If its weight be
greater than that of an equal bulk of the fluid, it will sink to
the bottom ; and if it be less, it will ascend to the top of the
fluid, and a portion of it will continue to emerge until that
which remains immersed displaces just so much of the fluid as
is equal to the weight of the body; turning, at the same time,
round upon itself so as to adjust its position to the second con-
dition stated above; viz., that the vertical through the centre of
gravity of the body should pass through that of the part of it
immersed, Thus, it appears, that any body whose weight is
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less than that of an equal bulk of the fluid, if immersed and
left to itself, will at length find out for itself, on the surface of
the fluid, a position in which it will rest, called its position of
equilibrium.

286. If the material of which a mass is composed admit of
being extended, so as to be formed into a vessel, whose exter-
nal surface is of any given dimensions, however great, then it is
apparent that any such mass may be made to float, however
heavy it may be ; for we may form it into a vessel whose sur-
face is of such dimensions that it shall necessarily, before it
can admit the fluid into its interior, displace a volume of that
fluid, whose weight is greater than its own weight ; its tendency
to sink will then be counteracted, and it will float. Thus barges
are not unfrequently made of iron, and a ship might be built of
stone.

287. Of all possible geometrical forms, a sphere is that
whose solidity being given, its surfuace is the lcast; or, in other
words, wishing to form a body of a certain known volume, if we
would form it so as to have the least possible surface which it
can have, having that volume, we must make it a sphere. Now
if we would form a floating body, which shall be just capable of
supporting a given weight, we know that we must form it so as
to displace a quantity of fluid, whose weight shall equal that
given weight ; also this quantity of fluid is equal to the solid
content of the body. The solid content of the floating body is,
therefore, in this case given; and it follows, that if we would
form such a body with the least possible surface exposed to the
action of the fluid, we must form it into a sphere.

288. The second condition of the equilibrium of a floating
body ; viz., “that its centre of gravity, and that of the part of it
immersed, should be in the same vertical line,” is necessarily
satisfied, however much of the body be immersed, provided it
be symmetrical about a certain line, and be immersed with that
line in a vertical direction. For being thus immersed, the part
of it immersed will be symmetrical about the axis of which we
have spoken, as well as the whole body. Now (Art. 61), the
centre of gravity of a body, symmetrical about a given line or
axis, is necessarily in that line or axis. Hence, therefore, it fol-
lows that the centre of gravity of the body, and of the part of it
immersed, are both in the axis of which we have spoken, and
therefore both in the same vertical. Thus, a cylinder immersed
with its axis vertical, will have the second condition satisfied to
however great a depth it be sunk, since the centre of gravity of
the part of it immersed (being that of a portion of the cylinder
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formed by cutting it across transversely, or perpendicular to its
axis) is also itself in the axis of the cylinder. Thus, too, a
sphere being immersed in a fluid, the second condition of equi-
librium will be satisfied to whatever depth, and in whatever
position, it is immersed, since a sphere is symmetrical about any
diameter, and in whatever position it is immersed, one of these
diameters must be vertical. If a body be prismatic, that is, if
its sides be straight, and it be such that all sections made across
it, perpendicular to its sides, are similar and equal; then it is
clear that there is a certain line parallel to these sides, in which
are the centres of gravity of all the parts which can be cut off
from it by such sections as we have spoken of. Provided, then,
the body be immersed with this lie or axis vertical, the centre
of gravity of the part immersed will always be in it, and also
the centre of gravity of the body itself, to whatever depth it be
sunk. The body represented in the following figure is one of .
this class. Its centre of gravity,
and that of any portion cut off
from it across, or in a direction
perpendicular to its sides, will
manifestly be in the line ox,
which is parallel to its sides. If;
therefore, the body be immersed
with this line, or with its sides,
vertical, the second condition of equilibrium will be satisfied.
If, however, instead of immersing the body vertically, we im-
merse it with its sides in an oblique position, this will be no
longer the case, and we must have recourse to the

GENERAL CoNDITIONS OF THE EQUILIBRIUM AND STABILITY
or Froating Bobpigs.

Berorg, however, we proceed to discuss these, let us take
two particular cases, which will serve, perhaps, to put in a clearer
light the principles we have stated above.

289. Let us first of all imagine a solid body in the form of
a triangular wedge, to be im-
mersed in a fluid, with one of its
angles downwards. It is evident
that the conditions of the equili-
brium of this body will be pre-
cisely the same, whatever be its
length ; and therefore they will be the same as those of a very
narrow section or lamina of it.

Let oBc, (fig. 1,) represent one of these sections. Take &
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its centre of gravity. This point is evidently (Art. 68) in the
line ¢ b, joining the point ¢ with a bisection D of the base;

the distance ¢ @ being equal to two-thirds of cp. Suppose the
triangle to be so immersed that A B may be horizontal, and let
Pcq be the part of it immersed ; the plane pq is then called
the plane of flolation. Since pq is parallel to A B, therefore
cD bisects pq in d, as well as A Bin p. Ilence therefore, the
centre of gravity of the triangle » ¢ q is in ¢ d, ata point g distant
from ¢ by two-thirds of cd. Since, then, the points ¢ and g
are both in the line ¢p, and that these are the centres of
gravity of the body, and the part of it immersed ; itis necessary
to the equilibrium by the second condition, that the line ¢ » be
itself vertical. But A B is horizoutal by supposition, ¢ p must,
therefore, be perpendicular to o . But since c¢» bisects A B,
it cannot be perpendicular, also, to that line, unless the triangle
be isosceles, or have its two sides, ¢ A and c¢B, equal. Hence,
therefore, it appears that the triangle cannot, under any other
circumstances, rest with its base in a horizontal position.

Suppose A Bc, (fig. 2,) to represent a triangle partially im-
mersed in any given position; pcq being the part immersed.
Bisect AB in p and PQ in d; join ¢p and cd, and take cq
equal to two-thirds of ¢p, and cg equal to two-thirds of ¢ d ;
then @ and g are the centres of gravity of the triangle, and the
part of it immersed. Join g, then, in order that there may
be an equilibrium, this line ¢ g must be vertical ; that is, it
must be perpendicular to @, which being a continuation of the
surface of the fluid, is necessarily horizontal. This is the
second condition of the equilibrium. The first is, that the
weight of the fluid displayed by the part immersed, P ¢ q, should
equal the weight of the whole triangle. These two conditions
are sufficient to determsine geometrically what must be the posi-
tion of the triangle*.

* For a theoretical discussion of the conditions of the equilibrium of a
floating body, the section of the immersed portion of which is a triangle or
a rectangular parallelogram ; the reader is referred to a treatise on Hydro-
statics and Hydrodynamics, by the aunthor of this work, pp. 67, 78.
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290. Again, let us take the case of a pyramid immersed in
a fluid with its vertex downwards. Take E the centre of
gravity of its base, and join A E;
and take A @ equal to three-
fourths of AE; then will ¢ be
the centre of gravity of the py-
ramid. Let A P @ R be the part
of the pyramid immersed, and e
the centre of gravity of ils base.
doin A ¢, and take A g equal to
three-fourths of 4 ¢; then will g
be the centre of gravity of the
part immersed. It is necessary to the equilibrium that ¢ and
g be in the same vertical line. If, therefore a and g be joined
by the straight line ¢ g; when the body is in a position of
equilibrium, this line must be vertical. But P R q is horizontal,
being the plane of flotation, ¢ ¢ must, therefore, be perpendi-
cular to PR @. This condition, coupled with the first condition
of equilibrium, namely, that the weight of the fluid displaced
by A P q should equal the whole weight of the pyramid, is suffi-

cient to determine, by known rules of geometry, the exact
position of the pyramid.

ON THE StaBILITY OF FroATING BoDiES.

291. Let either of the figures beneath, represent a body
partially immersed in a fluid. Let ¢ be its centre of gravity,
and g that of the part of it immersed; pq the section of it,
which would be made by the surface of the fluid is there con-
tinued through it, and called the plane of flotation. Suppose the
body to be turned about its centre of gravity 6, continually in
the direction indicated by the curved arrows; and let it at the

(Fig. 1) X, (Fig.2.)

same time be moved upwards and downwards in the vertical
K L, which passes through a, so as to satisfy, in all its positions,
the first condition of equilibrium, namely, that its weight shall
be equalled by that of the fluid it displaces. Suppose further
this revolution to have been commenced when the body was in
a position of equilibrium, and when the point g was, therefore,
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in the vertical x L. When the body begins to revolve out of
this position, the point g will, of course, move out of the
vertical. Now if, as in fig. 1, its motion be fomards the
direction in which the body is revolving, it is clear that there
will be a tendency in the body to continue its revolution in the
direction in which it has already been made to revolve, that is,
Jrom its position of equilibrium; for the whole of the weight of
the body may be supposed to act downmards at G, and the
whole pressure of the fluid upwards at g: and these are the
only forces which act upon the body; now, subjected to the
action of these two forces, the body would clearly be made to
revolve in the direction towards which it has already begun to
revolve; that is, from its position of equilibrium; that position
is, therefore, one of unstable equilibrium,

Now let us suppose the revolution of the body to be con-
tinued in the same direction as before. The point g will con-
tinue for a certain time to move from the vertical, in the direc-
tion of the revolution, the greater portion of the part immersed
lying on that side of the vertical; but, by degrees, this will begin
to be exchanged for the lesser portion, from the other side the
vertical; the parts LR @ and L r P* will begin to approach more
nearly to an equality, and the point g will then approach the
vertical again, describing a curve indicated by the dark line.
At length g will be found again in the vertical, and the centre
of gravity of the body being in the same vertical, the second
condition of equilibrium will again be satisfied.  Also the first
condition is supposed to be satisfied in every position of the
body. We have, therefore, a second position of equilibrium.
Let the revolution of the body now be still further continued in
the same direction as before. The point g will now either cross
the vertical, continuing to move in the direction in which it
was last moving, or it will relurn, receding again from the
vertical as at first. If it cross the vertical, it will lie on the
opposite side of it to that towards which the body is moving,
as shown in fig. 2, and this being the case, if we consider that
the weight of the body, and the upward pressure of the fluid
act as though they were collected in ¢ and g, we shall perceive
that their tendency is nom to cause a motion in the body
towards the opposite direction to that in which it is moving,

* This will, perhaps, be better understood by a reference to the next
figure, where the body is shown in one of its obligue positions. The posi-
tion of g, with respect to the vertical, manifestly depends upon the relative
magnitudes and positions of the parts LR P and L B @ ; it necessarily lies
towards the greater, and the more distant of these parts.
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or towards its last position of equilibrium. Here, therefore, the
equilibrium is sfable. If, according to our other supposition,
the point g does not cross the vertical, the curve described by
that point not cutting, but foucking it, then the tendency of
the body is still to revolve towards the direction in which it has
hitherto been revolving. If we move it, however, from this
position slightly backmards, it will still tend to move in the
same direction as before, that is, opposite to its last motion.
Under these circumstances, therefore, the position of equilibrium
possesses these remarkable properties, that move it out of that
position in one direction, and it tends to recede from it; move
it in the other, and it tends to return to it. The position is,
in this case, said to to be one of mixed equilibrium. From the
above, then, it appears, that turning the body continually round
in any given direction, and causing it in every position to
satisfy the first condition of equilibrium, we shall find that if no
position of mized equilibrium intervene, its positions will be
alternately stable and unstable. Also, that this law of the
alternation of the positions obtains, leaving out the positions of
mixed equilibrium, if any such occur.

292. It is clear, from what has been said above, and from
an inspection of the figures, that the character of the stability
of any position of equilibrium, is determined by the direction
of the motion of the centre of gravity g of the part immersed,
when the body is made to revolve out of that position. If the
point g move {owards the direction of the revolution, the equi-
librium is unstable, if it move from it, it is stable; the gravity
of the body, and the upward pressure of the fluid tending, in
the first case, to continue the revolution, and in the other to
counteract, and ultimately to destroy it.

203. Let the accompanying figure represent any oblique
position, into which the body has
been moved out of a position of
equilibrium, and let A B represent
what mas the direction of the
vertical through the centre of
gravity G of the body, when it
was in that position, and kK L the :
present direction of that vertical; these lines intersect, therefore,
in @, the centre of gravity of the body; and from what has been
said before, it follows that the equilibrium is stable or unstable
according as the motion of the centre of gravity g of the part
immersed has been from the direction of the revolution of the
body or tomwards it; that is as g lies on the side of p, from the
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vertical KL, or on the side of @. Draw through g the vertical
g c intersecting AB in c. It is clear that g lies from X%
towards P, or towards g, according as c is above or below a. If,
therefore, ¢ be above ¢ (Art. 292,) the equilibrium is stable. If
it be below G it is unstable. And this is true however small
the angle g ¢ B through which the body has been made to re-
volve may be. If this angle be the least possible, so that ¢ may
be the first intersection of the vertical through g, when the body
is moved out of its position of equilibrium, with A B, then ¢ is
called the metacentre. The position of this metacenire, in
reference to any position of equilibrium, may be determined by
known rules of geometry. And it it is thus ascertained, curiously
enough, to be wholly independent of the form of the part of the
body immersed ; and to depend wholly upon the form and di-
mensions of its plane of flotation @ and the volume of the part
immersed. This connexion between the position of the meta-
centre and the form and magnitude of the plane of flotation will
be explained in Article 295. The determination of the position
of the metacentre is absolutely necessary to a knowledge of the
conditions and character of the stability of a floating body.

294. Not only, however, does it inform us whether the
character of the equilibrium be stable or unstable, but further
we learn from it the degree of the body’s stability; whether it
resist any force, tending to defleet it from its vertical position,
with a greater or less degree of force. To show this let p be
the force necessary to deflect the body into the position repre-
sented in the figure, and let it act at 4, in the direction repre-
sented by the arrow. Take G for the point about which the
moments are measured, draw G m perpendicular to g ¢, and let
G A be supposed perpendicular to p. Then, since the system is
supposed in equilibrium, we have, by the principle of the
equality of moments, (Art. 36,)

p %6 a=(upward pressure of fluid at g) x ¢ m.

Now the upward pressure of the fluid at g equals the weight
of the fluid displaced, that is, it equals the weight of the body
(Art. 283.) Hence, therefore, if we can conceive a number of
different floating bodies to be all of them inclined, as represented
in the figure, the weights of all being the same, and also the
distances at which the disturbing forces p are applied; it follows,
that, since an equality of moments, similar to the above, must
obtain in all the cases, where ¢ m is greatest there p must be
the greaicst. The magnitude of the force necessary to produce
the disturbance depends, therefore, upon the magnitude of G m,
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Now, if all the bodies be inclined at the same angle, the mag-
nitude of @m is manifestly greater as @ c is greater. The
greater, therefore, is the distance @ c, of its metacentre above
its centre of gravity, the greater force is there required to move
a floating body of a given weight through a given angle. The
greater, therefore, is the stability of the body. There can be
no question that very many vessels have been lost through
a neglect of this most important principle in the theory of their
construction, To be safe, it is clear that every vessel should be
so constructed that when carrying a certain known quantity of
lading and ballast, and for this reason sinking to a given and
observed depth in the water, her metacentre should be so high
above her centre of gravity that the force of the winds, when
acting upon her mast and rigging with their greatest known
velocity, should not be sufficient to incline her beyond a certain
given angle. It is also quite apparent that a vessel might be
constructed according to these conditions.

Before the principles stated above were known to naval archi-
tects, vessels were not unfrequently found after their construction
to be of unstable equilibrium; except, perhaps, when heavily
laden, so as to bring the point @ to its greatest possible depth.
Others again, although their equilibrium appeared stable under
the slight derangement to which their position was subjected in
port; yet when they came to be deflected by the wind, were
found to have their true position of stable equilibrium on one
side. Others again wholly upset*. Science has now taught
men to protect themselves against these evils. The secret of
the metacentre no experience or observation could ever have
developed ; it was a discovery reserved for the systematic inves-
tigations of the mathematician.

205. There is another view of this important question of
the stability of floating bodies which as it is not generally
known, is in some respects new, and leads directly to results of
great practical value; we mnow proceed to lay it before our
readers. Let us imagine an infinite number of planes to be
taken, cutting off, all of them, an equal volume from the mass A B;
also let this volume equal that of a quantity of water whose
weight is the same with that of the mass A B. Let the centres

* Vessels laden with sugar, and taking in water in rough weather, have
been lost by the solution of the sugar, then pumped away with the water.
The weight of the lading, and the position of the plane of flotation, the
centre of gravity and the metacentre, have been so altered, as to make the
equilibrium unstable. It is to govern the relative positions of the centre of
gravity and the metacentre, that the vessel takes in ballast.



224 STABILITY OF FLOATING BODIES.

of gravity of all the parts cut off by these planes
be taken. These centres of gravity (infinite in
number,) will all lie in a certain surface, which
suppose to be represented by c¢’. Let g be any
one of the planes spoken of above; then if the
portion PBQ of the body be immersed the first
condition of equilibrium will be satisfied.

Let g be the centre of gravity of PBq, g is then in the
surface 6 °.  Also it may be shown* that the tangent plane to
that surface at g is parallel to the plane Pq. Now pq is the
plane of flotation, when the portion pBq of the body is im-
mersed ; pQ is, therefore, horizontal, and the tangent to the
surface G 6" at g is horizontal. Now the pressure of the fluid
acting at that point upwards is vertical. It is, therefore, per-
pendicular to the surface ¢’ at g. Its effect is, therefore,
precisely the same as though the surface ¢ " rested upon a
perfectly smooth horizontal plane at g&. And the same is true
of every other of the body’s positions, and of every other point
in the surface ca’. In each of its positions the effect of the
forces acting upon the body is, therefore, the same as though
its weight were collected in its centre of gravity and it were
supported upon a horizontal plane by the intervention of the
surface c 6". The conditions of the equilibrium and stability of
a floating body reduce themselves, then, to those of a solid body
supported on a horizontal plane by means of the swiface ad';
and it follows that there are as many positions of equilibrium
as can be drawn perpendiculars from the centre of gravity of
the body upon that surface. Also that these (Art. 223) are
slable or unstable, according as the centre of gravity of the body
is in those positions below or above the centre of curvature of
the surface G @, at the point of that surface in which the centre
of gravity of the part immersed is then found. This centre of
curvature of @ ¢’ is the metacentre.

Since the plane of flotation P q is parallel to the tangent to
the surface 6 6" in g; and this is true for every other plane of
flotation and corresponding position of g; it is apparent that the
surface which is foucked by all the planes of flotation, is similar
to the surface @ ¢’ and only differs from it in magnitude. Hence
we can readily understand how the position of the centre of
curvature at any point g of a6’ should be dependent upon the
form and dimensions of the plane of flotation.

* The proof of this property is given in the Appendix,
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Table of Specific Gravities.

Seeciric GRAVITY.

206, Tuar force which exists in all matter fixed there
elernally and inseparably, under the name of gravity or weight,
is not distributed so through it, as that each portion of equal
dimensions or volume should contain the same amount or quantity
of it. Nature presents us, in this respect, with an infinite
variety, there being an infinity of substances of which equal
bulks or volumes being taken, these are found to have different
weights. Thus a cubical inch of iron and a cubical inch of gold,
would be found to weigh differently. So of a cubical inch of
water and the same volume of alcohol. This difference of weight
under the same volume constitutes one of those sensible proper-
ties by which substances are principally distinguished from one
another, as of different kinds or of the same kind ; and it forms
a most important elemenc in the conditions of their equilibrium.
The term weight, as used in common conversation, has two very
different meanings; we speak sometimes of the weight of a
body or portion of matter, meaning merely the whole force with
which that body or portion of matter tends to the centre of the
earth. 'We speak at other times of its weight, meaning thereby
the quantity of such force in each equal portion of it. In the
former sense, we speak of the weight of a certain known
mass of any substance, as a piece of iron, for instance. In the
latter sense, we use no term describing the magnitude, or fixing
the identity of the substance spoken of, we say, the weight of
iron. In the first case, we mean the precise number of units of
weight in the whole body of which we speak. In the other
case, we mean the number of units of weight in a certain known
volume of the mass, a cubical inch for instance, or a cubical foot.
It is in this sense, that in speaking of a mass of lead and a
mass of iron placed in opposite scale-pans of a balance, and in
equilibrium with one another, we should say, that this lead is
of equal weight with that iron, nevertheless, lead is heavier
than iron: the whole mass of the lead contains as many units
of weight as the whole mass of the iron ; nevertheless, a cubical
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inch, or cubical foot of lead contains more units of weight than
a cubical inch or cubical foot of iron. In the common inter-
course of life these different ideas are made to attach themselves
to the same word without any great practical inconvenience.
The language of science requires, however, greater precision.
We thercfore confine the term weight or gravity, to its first
sense; and speaking scientifically of the weight or gravity of
any body or substance, we mean the number of units of weight
contained in the whole of that hody or substance.

297. In its second sense, namely, that in which it implies
the weight or gravity of a given volume or portion of the sub-
stance, we apply to it the term specific gravily. The specific
gravity of a substance is, therefore, the number of units of
weight contained in a certain known wvolume or bulk of it ;
which known volume or bulk is usually taken to be one unit of
the whole volume or bulk. The units of weight used in mca-
suring the specific gravity ot a body, are not the same with
those used in determining its ordinary weight. Thus we do not
say, that the specific gravity of a body is so many pounds in the
cubical foot or inch, meaning by the term, one pound, the
weight of a certain quantity of water determined as explained
(Art. 12.) But to measure the specific gravity of a body we
always take for our unit of weight, the weight of a quantity of
water of the same volume with one unit of the volume of the
body, whatever that unit may be. Thus, if the volume is
measured in cubic inches, the unit of weight used in fixing its
specific gravity, is the weight of one cubical inch of water.
And the specific gravity of the body is in point of fact, no other
than the number of cubical inches of water equal in weight to
one of ils cubical inches. So if the body be measured in cubical
feet, its specific gravity is the number of cubical feet of water
whose weight shall equal one of its cubical feet. Thus in the

-table of Specific Gravities which will be found at the end of
this chapter, the number 8900, stated as the specific gravity of
Copper, means that each cubical inch or cubical foot of copper
weighs the same with 8900 cubical inches or cubical feet of
water. Thus knowing the number of cubical feet in a body,
and knowing its specific gravity, we can tell how much water it
is equal in weight to, by multiplying this specific gravity by the
number of cubical feet—this specific gravity being in fact, the
number of cubical feetof water equal in weight to each cubical foot.

208. The unit of weight used in determining the specific
gravities of bodies being the weight of an unit, of volume of
water, that unit of volume of water is of course supposed to
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have always the same weight. It is, therefore, supposed to be
free from all impurities, which would subject its weight to
variation. Thus the specific gravity of a body determined by
means of water taken out of the Thames would differ from the
specific gravity of the same body taken by means of water from
the Severn. And both waters being impure, neither would give
the true specific gravity—the impurities increasing the weight
of one unit of the volume of the water in both cases. Again,
the bulk of the watcr varies with its temperature, so that there
is not so much water, or 8o great a weight of water in an unit
of volume at one temperature as at another, and thus the varia-
tion of temperature may produce a variation in the standard
unit. To remove these causes of error, the water is supposed
to be cleared of all its impurities by distillation. And to be
brought at all times to the same temperature, namely, 62> Fah-
renheit. At this temperature one cubic inch of it weighs,
according to Captain Kater, 252,458 grains. Knowing then the
volume and specific gravity of a body, we can tell its actual
weight or gravity. Multiplying its volume in cubical inches by
its specific gravity, we shall get the number of cubic inches of
water of equal weight with it; and multiplying this again by
252,458, we shall get its actual weight in grains. At the end
of this chapter will be found a table of the specific gravities of
a great variety of different substances, detcrmined by methods
which we are now about to explain,

Mzeruovs or DeTERMINING THE SPECIFIC GRAVITIES OF
SorLip Bopigs.

299. We know that if a solid body be immersed in a
fluid, the wpmward pressure of the fluid will just equal the
weight of the fluid which is displaced by the solid, and which
is therefore precisely of the same volume with it. Hence,
therefore, the downward pressure or weight of a body immersed
in a fluid, will be diminished by the weight of a volume of
water precisely equal to its own volume. If, then, we ascer-
tain how much the downward pressure or weight of the body
is diminished by its immersion, we shall know what is the weight
of the same volume of water. Now, dividing the actual weight
of the body out of the water by this weight, the result will be
the specific gravity required. For the specific gravity is the
number of times one unit of volume of the water must be
repeated, to equal in weight an unit of the body; and there-
fore it is equal to the number of times any given number of
units of the water must be taken to equal the same number

L2
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of units of the body ; and therefore, to the number of times any
given bulk of water must be taken to equal in weight the same
bulk of the body.

300. Now, if we divide the whole weight of the body by
the weight of an equal bulk of water, we manifestly get the
number of times that the latter is contained in the former ; that
is, we get the specific gravity.

301. For determining the weight lost by the body in its
immersion, the following is a simple method*. In one scale of
a balance let there be placed
a vessel of distilled waterAs,
and let such a weight o be
placed in the other scale-
pan as will just produce an
equilibrium.  Let the solid
whosespecificgravityistobe
determined be suspended by
a fine wire or thread, or a
hair from a stand repre-
sented in the figure, so as
to admit of being made to descend into the vessel of water;
and it will be better if there be introduced some mechanical
contrivance for giving it a gradual descent. Immediately that
the immersion has commenced, the equilibrium of the balance
will be perceived to be destroyed. The scale-pan containing
the vessel of fluid will preponderate. Let such a weight »” be
placed in the other scale-pan as will just restore the equilibrium
when the body is totally immersed.

The weight »’ is that lost by the body in its immersion,
and is equal to the weight of the fluid it displaces ; for by
the immersion of the body, the tension upon the string—which
is just that necessary to support the body—is diminished by
the weight of the fluid it displaces. Now, the downward pres-
sure of the body is equal to its whole weight: of which the
string supports a quantity less than this by the weight of the
fluid displaced ; the fluid itself supports, therefore, the remain-
der, and its pressure downwards is increased by the weight

* This method, although readily applied, is not an accurate one. The
sensibility of a balance is always less as it is more heavily loaded. In this
case, the balance is laden with the weight of the vessel and its contained
liquid, in addition to that of the body. In the methods afterwards to be
described, it is the body only which is placed in it. It is, moreover, a cus-
tomary, and a very necessary precaution, to boil the body whose specific
gravity is to be determined in the water to be used, to drive off the obsti-

nately adhering bubbles of air. This precaution could not, in this case, bs
taken, by reason of the loss by evaporation,
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of the fluid displaced. Thus the equilibrium cannot be pre-
served, except by putting into the opposite scale-pan a weight
equal to that of the fluid displaced. 'We may verify this fact
very readily, by placing in the opposite scale-pan, instead of m,
another vessel, precisely of the same dimension with A B, and
pouring fluid into it until there is an equilibrium. Marking the
height at which the fluid stands in both vessels, then immersing
the body in A B as before, and pouring fluid into the other
vessel, so as to preserve the equilibrium—we shall find that the
fluid so poured in, will cause the surface of the fluid to rise in
the one vessel by precisely the same quantity that the immersion
has caused it to rise in the other. The quantity of the fluid
displaced is, therefore, precisely equal to the quantity of fluid
whose weight equals the weight lost by immersion.

Tae HyprostaTic BALANCE.

302. Ir a body, having been weighed in the scale of a
balance, be then suspended by a fine thread beneath it ; and, thus
suspended, if it be allowed to descend
into a vessel of water placed beneath
to receive it, when completely im-
mersed it will be buoyed up with a
force cqual to the weight of a mass of
water of the same bulk with itself.
A less weight in the opposite scale-
pan will now, then, be required to
balance it—less by precisely the weight
of this bulk of water. Thus, then, by
observing what is the difference of
the weights necessary to balance it,
now that it is immersed, and before; or
what weight it has lost by immer-
sion—we know what is the weight of
a quantity of water exactly of the
same bulk with it. Dividing the
weight of the body by this weight, we
have the specific gravity. The ba-
lance used for thus determining the
specific gravities of bodies, is called the Hydrostatic Balance.
It is simply a balance of great delicacy, one of whose scales may
be removed when it is thus to be used, and replaced by a scale-
pan suspended from shorter strings, and to the bottom of which
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is fixed a hook, from which is suspended by a hair the body
whose specific gravity is to be determined.

It is evidently necessary that we suspend the body w by
means of some very slender substance ; otherwise allowance must
be made for the quantity of that substance immersed. When,
however, g w is exceedingly slender (a human hair, for instance),
it becomes incapable of sustaining a mass of any but very small
dimensions. To remedy this inconvenience, we may suspend
with it a glass bubble, the weight and quantity of water displaced
by which, has been before accurately ascertained. This glass
bubble will help to support the body, and thus diminish the
tension upon the hair. Proceeding precisely as before, we may
ascertain the weight of the compound body, made up of the sub-
stance under examination and the bubble, and the weight which
it loses by immersion, if we then deduct from the first of these
the weight of the bubble, and from the second the weight of the
fluid it displaces, we shall obtain the weight of the body and the
weight of the fluid it displaces, and dividing one of these results
by the other, we shall have, as before, the specific gravity. (Art.
300.) The bubble must not of course be so large as to prevent
the body from sinking. If the body be specifically lighter than
water, so that it will not sink in it; then instead of attaching
it to a bubble, so as to support it, we must attach it to a meight,
which will sink it, having first ascertained the number of grains
in the weight, and the weight of the water it displaces ; proceed-
ing then precisely as in the last case we shall determine accu-
rately the specific gravity of the body.

If the substance whose specific gravity is to be determined,
be composed of small detached pieces, we may suspend a metal
dish from the scale @, and having first ascertained, as before, the
weight of the dish, and the weight of water displaced by it; we
may then place in it any number of pieces of the substance
under examination, ascertain the weight of the whole, and the
weight lost by its immersion, and then proceed as before. If
the substance be in its nature soluble in water, we may deter-
mine its specific gravity, by ascertaining the weight which it
loses when immersed in alcohol, oil, or some other liquid in
which it is not soluble. Knowing the specific gravity of this
liquid, we can then tell what is the weight of an equal bulk of
water to that portion of the liquid which it displaces. This
weight of an equal bulk of water, divided by the weight of the
body, is the specific gravity required.

Substances of the same kind are found to have the same
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specific gravity, whatever portions of them we submit to examina-
tion*, Thus every portion of pure cast gold placed in the Hy-
drostatic Balance, will be found to have the specific gravity 19:23,
and every portion of copper, 8:900. But if the substance be
compounded with any other, then the specific gravity of the
compound will differ from that of either of the component parts ;
the quantity of water it displaces being not the same with the
quantity which would be displaced by the same weight of either
of those parts. Hence, it follows, that we may tcll by the
Hydrostatic Balance, whether any substance be alloyed or not,
provided we know what ought to be its specific gravity. This is
a most uscful method of determining whether metals be alloyed
or pure ; we may even thus ascertain pretty nearly what is the
proportion of the alloy !

It is told of Hiero, king of Syracuse, that having a erown
made for him, into the gold of which he suspected the maker to
have put some alloy, he referred the question to Archimedes.
The philosopher, as he one day lay in his bath, and considered
the nature of the support which the fluid gave to his body, taking
away from it apparently a considerable portion of its weight, was
struck with the idea that this supporting force must just equal
the weight of the water which would have run over the edges of
the bath, if it had been full when he got into it; that is, that it
must equal the weight of the water displaced by his body. This
idea constitutes the first and great secret of the theory of floating
bodies, The powerful mind of the philosopher carried him
at once through the train of reasoning which we have been
labouring to develope through this chapter of our work, its con-
nexion with the question of the crown occurred to him ; and he
rushed naked from the bath, exclaiming, Evpnxa! Evpnra!
I have found it! I have jound it! Archimedes is the dis-
coverer and founder of the theory of floating bodies; the funda-
mental and, practically, the most important branch, of the
theory of Hydrostatics. He has expounded that theory with
wonderful accuracy and power in his treatise, entitled “ De
humido insidentibus.” The theory of the Lever owes also its
origin to Archimedes, and this theory stands in the same relation
to Statics, that the theory of floating bodies does to Hydrostatics
‘We thus owe to that admirable philosopher the most important
and valuable of our knowledge in the two fundamental branches
of Physics.

* This is the general rule; it holds accurately under the same circum-
stances of temperaturc with regard to by far the greater number of bodies.
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O~ THE METHODS OF DETERMINING THE SPECIFIC
GraviTies oF FLuips,

303. Ler a vessel be weighed and then filled with distilled
water, and weighed a second time. The weight of the mater
it will contain, will then be known. Let it now be filled with
the fluid whose specific gravity is to be determined, and weighed
again, The weight of the quantity of the fluid it will contain,
will then be known. We shall know thus, the weight of the
water the vessel will contain, and the weight of the fluid it will
contain ; that is, we shall know the weights of equal volumes of
the fluid and water; dividing these weights, therefore, by one
another, we shall know its specific gravity. (Art. 300.)

There is a very ingenious instrument, whose application to
the determination of the specific gravities of liquids is even
casier and simpler than the method described above ; it is called

Tue HYDROMETER.

304. Tae principle of this instrument may be explained as
follows, A body when it floats at rest in a fluid, has been
shown to displace such a quantity of that fluid, as shall have the
same weight with itself. If, therefore, the same body be made
to float in different fluids, the quantities of these fluids which it
displaces when it floats at rest, will depend on their specific
weights or gravities. It must displace more of the lighter fluid
to float upon it, than of the heavier. It must, therefore, sink
deeper in the lighter fluid than the heavier.

Thus to every fluid of a different specific gravity, there cor-
responds a different depth to which the same body will sink,
before it float in it. Now the specific gravities corresponding
to all these different depths of immersion may readily enough be
calculated by formul® which it does not consist with the ele-
mentary character of this work to explain.

Any number of different depths of immersion being there-
fore marked as divisions upon the side of the body, and the
specific gravity corresponding to each, being ascertained by the
proper formule, and annexed to its division or registered in an
accompanying table, we may, by placing the body in any fluid
and observing to what division it sinks before it finally rests,
and then referring to the table, accurately determine the specific
gravity of the fluid.

305. Sikes’ Hydrometer—which is that ordered, by Act of
Parliament, to be used in collecting the revenue upon ardent
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spirits, is an instrument of this class. It is represented in the
accompanying figure. A is a hollow sphere of brass, FB and
cp are two stems fixed in it in the direction of one of its
diameters produced both ways. BF is of a
conical form, being thicker towards its lower
than its upper extremity. It is about one
inch and an eighth long. »is a bulb which
is loaded 5o as to be much heavier than an
cqual volume of any other portion of the in-
strument. The object of this loading is to
bring the centre of gravity of the instrument
as low as possible, so that it may be as far as
possible beneath the metacenire (see Art, 294),
and thus the instrument may have the greatest
possible stability. The use of the ball 4 is to
cause the body to displace such a quantity of
fluid, that in the lightest fluid in which it is
to be used, the weight of that quantity of
fluid may, when it is totally immersed, at
least equal its own weight; the fluid in
that case just reaching the top c¢ of the stem
c¢Dp. This stem is of brass; it is flat, of uniform thickness and
width, and is three inches and four-tenths in length. Tt is
divided on both sides into eleven equal parts, each of which is
subdivided into two.

The instrument is plunged into the fluid whose specific
gravity is to be determined by it, until it is wetted to the highest
degree of the scale; it is then left to itself, until at length it
rests in its position of equilibrium, The division of the scale
which is intersected by the surface of the fluid is then observed,
and by reference to the table, the specific gravity corresponding
to that division at once becomes known. A correction is re-
quired for the temperature, for the application of which, rules

»are given accompanying the tables. Eight circular weights, of
which one is represented at E, accompany the instrument. In
each of these is a slit terminated by a circular aperture.
Through this slit they may be made to slide upon the stem ¢ p
at its thinner extremity, they then fall down to the thicker end,
and become fixed there, that extremity being too wide to slide
through the slit.

The use of these weights is to adapt the instrument for use
in fluids whose specific gravity is so great, that it would not sink
in them, to the level of the lowest division on the stem ¢ p without

L3
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being thus loaded. Of course a different table of specific gravi-
tics i3 required for each different loading of the instrument.
The accompanying cut represents an improved
form of Sikes’ Hydrometer, as constructed by
Mr. Bate, and recommended in a report of the
Excise Committee in 1836. The stem is four
inches in length, and contains 900 divisions,
which are so made as lo correspond successively lo
equally-increasing specific gravities. There are
eight poises, or detached weights, of which some
are shown in the figure, and which fix in a
stirrup at the bottom of the instrument. These
poises are so adjusted as to sink the instrument
to its last division successively, when immersed
in fluids whose specific gravities are *820, ‘840,
-860, -880, ‘920, ‘940, ‘960, 980, which have a
common difference of -02. This adjustment
being made, it results, from a mathematical in-
vestigation of this instrument made by Mr. Lub-
bock, that the same division of its stem suits

j  itself to every poise. 'When, for instance, the
poise corrcspondmg to ‘920 is attached, the specific gravities
corresponding to successive divisions, ascend by the same in-
crements from that specific gravity to ‘940, as when the poise
for ‘820 was attached, they ascended from that specific gravity
to '840. This property obtains at least practically, the error in
no case excceding ‘0001 when the instrument is accurately
divided for the poise 0°900. The instrument as thus made for
the purposes of the excise, possesses this beautiful and charac-
teristic property, with this accuracy, only for specific gravities
less than that of water, and within the range here assigned
to it. It may, however, no doubt, be adapted to a more gene-
ral use.

The sensibility of an Hydrometer is the variation in the®
depth of its immersion which any given difference in the specific
gravity of the fluid, in which it is immersed, will produce. It
is greater, as the weight of the portion beneath the stem is
grealcr, and as the specxﬁc gravity of the fluid and the section
Of the stem ara less. 1t is also greater as the length of the stem
beneath the zero of thescale is greater. An Hydrometer should,
therefore, be made as heavy, and with as long and slender a stem,
as possible.  So that when placed in water, it may sink to the
greatest convenient depth upon the stem.

)
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Tur AREOMETER.

306. AN instrument constructed by M. de Parcieux, and
called by him the Areometer, is said to have possessed extra-
ordinary sensibility. It is, in fact, an Hydrometer, whose
sensibility is produced by giving extreme slenderness to its stem.
It is represented in the accompanying figure ; ¢ B is
a vial partially loaded with shot, to keep it steadily
in an upright position, bringing its centre of gravity
beneath its metacentre. (Art.294.) In the cork of this
vial is inserted a straight wire a B, about one-twelfth
of an inch in diameter, and thirty inches long, at
the top of which is a cup a. The loading is so ad-
justed, that when the instrument is placed in water
of a medium temperature, it will sink to a point on
the wire about an inch above B. Being placed in
any lighter fluid it will continue to sink, until the
additional immersion of the stem causes such an
additional displacement of fluid, as shall again make
the whole weight of the fluid displaced equal to
the weight of the instrument. It is clear that the
more slender the stem, the greater the additional depth to which
the whole must be sunk to bring about this displacement. A
scale is placed by the sid., and the division on this scale, corre-
sponding with the edge of the cup or the top of the wire being
observed, and referred to an accompanying table, determines the
specific gravity of the fluid.

This instrument was invented for the purpose of comparing
the specific gravitics of different kinds of water. Such is its
extreme sensibility, that the variation of density produced by
the falling of the sun’s rays on water of the common temperature,
will instantly cause it to sink some inches; and the throwing of
the smallest conceivable quantity of a soluble substance into
the water, will produce a visible effect upon it. An objection
to its use is found in the elevation of the liquid by capillary
attraction round its slender stem, which is different in different
liquids. By means of the cup, the Areometer may be loaded
so0 as to sink always to the same depth, and thus act on the
principle of Fakrenheit's Hydrometer, now about to be described.

Fanrrnaeir’s M YDROMETER.

307. THE principal obstacle to the use of the simple Hy-
drometer, is the inconvenience and difficulty of calculating and
marking against the different divisions of the stem of each in-
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strument, or registering, in a table attached to each, a different
scale of specific gravities; and constructing the stem of that
perfectly uniform thickness, which is necessary to the accuracy
of the observations*. To obviate these difficulties, Fakrenheit
conceived the idea of sinking the Hydrometer always to the same
depth, by means of weights to be placed in a cup at the end of
the stem.

Let the weight necessary to sink such an instrument to the
given depth in water, be observed. This weight, added to the
weight of the instrument itself, will equal the weight of the

> water it displaces when floating at that depth.
Let it now be placed in the fluid whose specific
gravity is to be determined ; and let weights be
placed in the cup until it is sunk again to the

same depth as before. The weights placed in
the cup together with the weight of the instru-
) ment, will then equal the weight of the fluid

which it displaces. But, having been sunk to
the same depth in the water as in the fluid, it
displaced as much of the water before, as it does
now of the fluid. We know, therefore, the
weights of equal volumes of the fluid to be ex-
amined, and water. Dividing, therefore, (Art.
300,) one of these by the other, we obtain at
once the specific gravity of the fluid. The ac-
companying figure represents one of these instru-

ments, made by Mr. Bate, for the Excise Committee, and called
Dby him the Gravimeter.

NiceoLson’s I YDROMETER.

308. THis instrument is so contrived as to determine the
specific gravities of solid as well as fluid bodics. Its application
to the determination of the specific gravities of fluid bodies, is
precisely that of the instrument last described. 4 is a hollow
ball, in continuation of one of the diameters of which, is fixed
an exceedingly slender steel wire Bc, about one-fortieth of an
inch in diameter. To the opposite extremity of this diameter
of the ball, is fixed a stirrup b F carrying a heavy brass dish F.
The wire ¢ B supports also at its extremity a light dish B. The
weight of the dish F is such, as to preserve the stability of the
instrument, and is further so adjusted as to cause it to sink to

* This difficulty would evidently be got rid of, if after having fixed a scale
of specific gravities for one instrument, we could construct others precisely of
the same form, dimensions, and weight,
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& point k ; marked about the middle of the stem, whep the in-
strument is placed in distilled water at the temperatuye of 60°,
and loaded with a weight of 1000 grains in
the dish B. To determine the specific gravity
of a solid by means of Nicholson’s Hydro-
meter, let it be allowed to float in distilled
water at temperature 60°. Let the solid be
placed in the upper dish, and as many grain
weights thrown in with it, as will cause the
instrument to sink accurately to the given
division x. These grain weights, together
with the weight of the solid, are then equal
to 1000 grains. For 1000 grains, together
with the weight of the instrument, sink it to
K ; also, the weight of the solid, together with l

the grains thrown in, and the weight of the n)!
instrument, sink it to k; the first-mentioned \

weights are, therefore, equal to the others;

and taking the weight of the instrument from

both, it follows, that the weight of the solid AN

and the grainsadded to it equal together 1000 - F

grains.

Hence, therefore, it also follows, that the weight of the solid
is 1000 grains, diminished by the grains thrown in with it. We
therefore get accurately the weight of the solid by subtracting
from 1000 grains, the number of grains which must be added
to the solid in the cup B, to sink the instrument to k. Let the
solid be now placed in the lower dish; and again sink the in-
strument to K, by means of grain weights placed in the upper
dish. These weights then, together with the weight or down-
ward pressure of the solid in the water, will for the same reasons
as before, equal 1000 grains. Diminishing, therefore, 1000 grains
by the number of grains thrown into the upper dish, we have
the weight of the solid in water. The difference between this
and its actual weight, will be the weight of the water it displaces ;
and the quotient of its actual weight by the weight of water it
dispalces, is its specific gravity. (Art. 300.)

The accuracy of the results given by this instrument, de-
pends upon the accuracy of the observed coincidence of the
division K, with the surface of the fluid. Now the wire B¢ is
made so thin, that an inch of it displaces only one-tenth of a
grain of water. ence, therefore, the 100th part of a grain
too much or too little in the upper cup, will cause the mark to
sink below or rise above the surface of the fluid one-tenth of an

B




of the limits within which an error is possible, further than
this. On the same principle, that by measuring their specific
gravities, we may determine whether metals be alloyed or pure,
we may also find whether fluids be adulterated or not, and in
some cases, fix the amount of the adulteration. It is for this
purpose, that the Hydrometer is principally used. All the
varieties of ardent spirits are mixtures of pure alcohol with
other ingredients, of which the principal is water. On the pro-
portion in which the alcohol enters into their composition de-
pends, in most cascs, their value. It bccomes, therefore, a
matter of the highest importance, to commerce, and to the re-
venue, that some easy method should be devised for ascertaining
this proportion. Sikes’ Iydrometer is expressly constructed
with this view.

. 309. The following remarkable example of the commercial
advantages which have resulted from the use of the Hydrometer,
is mentioned by M. Dupin in his work entitled, Mécanique
appliquée aux Arts. DBrandies have, according to their greater
or less degrce of concentration, a greater or less specific gravity.
The French, who first measured these degrees of concentration
by means of Hydrometers, first gained by this means the ad-
vantage of being able to make their brandies always, and with
certainty, of those precise degrees of strength which were re-
quired by the different markets to which they carried them.
The Spaniards, whose strong full-bodied wines are eminently
suited to distillation, endeavoured to enter into competition with
the French, in the sale of brandies. But as they were not ac-
quainted with the method of measuring their degrees of concen-
tration by means of IIydrometers, they were obliged to content
themselves with the following clumsy and awkward substitute.
A drop of oil was allowed to fall from a given height on the
surface of the brandy to be examined, and as it was seen to sink
in it, to a greater or a less depth, the brandy was concluded to
be of a greater or less strength. This measure failed them per-
petually, and the result was, that their foreign market was sup-
plied with brandies on the strength of which no reliance could
be placed.
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Spanish brandies having thus acquired a bad reputation in
the market, they were purchased by the French merchants, con-
centrated to the requisite degree, as shown by the Hydrometer,
and eventually resold as French. By the sale of this description
of brandy in the northern market alone, the French, before the
revolution, realized an annual profit of four millions of francs.
The Spaniards now at length understand the use of the Hydro-
meter, and carry their brandies to market themselves.

TABLE OF SPECIFIC GRAVITIES.

Acid, Acetic....curnrernrernrirnnnns
Arsenic
Arsenious :
Benzoic . .0
Boracic, crystallized.... 1°479
Do. fused ... 1-803
Citric...... 1-034
Formic . 1116
Fluoric .... 1060
Molybdic 3:460
Muriatic.... .. 1200
NitriC..ccvirerieesreininnne 1-271
Do. highly concentrated 1°583
Phosphoric, liquid........ 1-558
Do. solid ... 2800
Sulphuric .......... 1-850
Agate ..o 2:590
Alcohol, Absolute . ..... w0797
Do. highly rectified .. 0-809
Do. of commerce 0835
Al e 1-714
Amber...... ...from 1:065 to 1-100
Ambergrls ........ from 0-780 to 0°926
Amethyst, common................ 2:750
oriental ................ 3:391
Amijanthus ........ from 1000 to 2:313
Ammonia, aqueous ................ 0-875
Arragonite ............ . 2°900
Azure-stone ............c.ouecreuerien 2:850

Barytes, Sulphate of, from
4°000 to 4°865

Do. Carbonate of, from
' 4°100 to 4600
Basaltes ............ from 2°421 to 3000
Beryl, oriental ........coecneninenne 3549
Do. occidental 2:723

Blood, human ......ooeeeeeee 1053

Blood, crassamentum of ........ 1245

Do. human, serum of....... 1:030
Borax ......... [T 1-714
Butter ... . 0942
Camphor ......cooeiivvieinncnne . 0-988
Caoutchouc, or India rubber 0:933
Carnelian, speckled................ 2:613

Chalcedony, common, from
2 600 to 2:650

Chalk ......ccooeenee from 2°252 to 2:657
Chrysolite 3:400
Cider ...ococvvvvniniineciiiniinnn, 1018
Cinnabar, from Almaden 6:902

Coals............... from 1020 to 1-300
(07,7 :) SR S 1-045
Coral, re om 2:630 to 2857

wlute,, ...from 2:540 to 2°570
Corundum ......coovererninniennne 3:710
Crystalline Lens of the Eye 1-100

Diamond, oriental, colourless 3-521

Do. coloured varieties,
from 3°523 to 3:550
Do. Brazilian................ 3444
Do. coloured varieties,
from 3518 to 3-550
Dolomite ............ from 2-540 to 2°830
Dragon’s Blood (a resin) 1-204
Ether, Acetic ........ccou... 0-866
Muriatic . 0-729
Nitric .... 0-908

Sulphuric om 0-632 to 0-775

Emerald

........... from 2°600 to 2:770
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Felspar ............from 2438 to 2700
i 2:582
1-222
Garnet, precious, from 4-000 to 2:230

Do. common, from 3:576 to 3:700
Gases,—Atmospheric Air ... 1-000
Ammoniacal ............ 0-590
Carbonic Acid . 1527
Carbonic Oxide......... 0972
Carburetted Hydro-
P35 | WO 0972
Chlorine........cooeuneee 2:500

Chlorocarbonous Acid 3-472

Chloroprussic Acid.. 2:152
Cyanogen ................ 1-805
Euchlorine ..... 2440
Fluoboric Acid ........ 2371
Fluosilicic Acid ........ 3:632
Hydriodic Acid ........ 4-340
Hydrogen ..... 0:069
Muriatic Acid . 1-284
Nitric Oxide ..... 1-041
Nitrogen ..... 0-972
Nitrous Acid. 2638
Nitrous Oxide . 1627
Oxygen ... 1111
Phosphuretted Hy-

drogen ......... 0°902
Prussic Acid 0937
Sub-carburetted Hy-

drogen ................ 0555
Sub-phosphuretted do. 0°972
Sulphuretted do. 1'180
Sulphurous Acid ... 2222

Glass, crown

green ...
flint ...
plate :
Granite........ from 2:613 to 2:956
Gum arabic ... 1452
cherry-tree ., 1-481
Gunpowder, loose 0-836
shaken.. 0932
N solid ... 1-745

Gypsum, compact, from
1:872 to 2:288
crystallized, from
2:311 to 3-000
Heliotrope, or Bloodstone,
from 2:629 to 2:700
Homey ...ovinnieinineneniinnenns 1:450
Honeystone, or Mellite, from
1:560 to 1666
Hornblende, common, from
3+250 to 3'830
basaltic, from
3°160 to 3333

TABLE OF SPECIFIC GRAVITIES.

Hornstone ........ from 2-533 to 2:810
Hyacinth ............from 4000 to 4-780
Jasper .. from 2358 to 2816
Jet oorivrieerenernrssssennnsnnes 1-300
Indigo ............ 1-009
Ironstone from Carron ....... 3-281

Do. Lancashire.... 3573
Isinglass .....ccoceeniinninennnin 1111
Ivory .o 1-825
Lapis Nephriticus .. 2894
Lard ....ooooieveveneeiieieenes s 0947

Lead, Glance or Galena, from

Derbyshire ....from 6565 to 7+786

Limestone, compact, from
2:386 to 3000
Magnesia, native, Hydrate of 2:330

Do. Carbonate of,

from 2220 to 2612

Malachite, compact, from

3572 to 3994

Marble, Carrara......ccoeueee 2:716

white Italian.. 2:707

black-veined .. 2:704

Parian ....... 2:560

Mastic (a resin) .......cccoeveenns 1074
Melanite, or black Garnet,

from 3:691 to 3800

Metals, Antimony o 6702

Arsenic ... 5763

Bismuth .......ccoeevrinen 9-880

Brass ...from 7°824 to 8:396

Cadmium .......cceenne . 8600

Chromium ., 5900

Cobalt.......... 8:600

Columbium.. 5°600

Copper .. 8900

Gold, cast ...... . 19°25

Do. hammered........ 19:35

Iridium, hammered .. 23-00

Iron, cast at Carron. 7°:248

Do.bar hardened or not 7:788

Lead ... 11-35
Manganese .. 8:000
Mercury, solid,
low 0 of Fahr ........ 15-61
Do. at 32° of Fahr.... 1361
Do. at 60° of Fuhr.... 13-58
Do. at 212° of Fahr. 1337
Molybdenum ..... 8:600
Nickel, cast...... 8:279
forged 3666
Osmium and Rbo-
dium, alloy of........ 1950
Palladium ..... vveereeees 11°80
Platinum .eceevecviinenee 2147
Potassium at 59° Fabr, 0-865
Rhodium........ccoerensrene 10°68
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Metals, Selenium.......covereenee 4300
SHIVEr ...covcvrrirrcrriannne . 10-47
hammered ... 1051
Sodium at 59° Fahr, 0°972
Steel, soft ......ccccvnnne 7-833
tempered 7-816
hardened 7840

tempered and
hardened ... 7818

Tellurium, from

5700 to 6°115
Tin, Cornish ... . 7°291

Do. hardened... 7-299
Tungsten.... . 17-40
Uranium......cococvrerenene 9:000

from 6-900 to 7-191
from 2:650 to 2:934

Mineral Pitch, or Asphaltum,
from 0°905 to 1°650

Mineral Tallow .....cooovivineee . 0770
Myrrh (a resin) ... 1-360
Naphtha ............ from 0700 to 0-847
Nitre .

Obsidian ............ from 2°348 to 2:370
Oils, Essential—Amber ........ 0868
Anise-seed ... 0°986
Caraway-seed. 0°904

Cinnamon ... 1'043

Cloves 1-036

Fennel ... 0-929

Lavender ........ 0:894

Mint, common 0-898

Turpentine ... 0'870

‘Wormwood .... 0:907

Expressed—Sweet Al-

monds.... 0932

Codfish............ 0923

Filberts ........ 0:916

Hempseed 0926

Linseed .... 0-940

Olives ............ 0:915

Poppyseed ... 0°939

Rapeseed ........ 0913

‘Walnuts, from
0°923 to 0:947

Opal, precious
common....
Opium
Orpiment...........from 3:048 to 3500
Opyster-shell..........cccouvivennnn. 2-092
Pearl, Oriental....from 2:510 to 2750
Pearlstone 2340
Peat from 0-600 to 1-329
Peruvian Bark... . 0
Phosphorus ...........c.
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Pitchstone ........ from 1°970 to 2:720
Plumbago, or Graphite, from
1-987 to 2-400
Porcelain from China ............ 2384
Sevres . 2°145
Porphyry ............ from 2 52 to 2:972
Do.  Seltzer......ccoevurenns 1.003
Proof-spirit ...oeieviencinniinnns 0923
Pumice-stone ....from 0°752 to 0-914
QuUArtz .......oeveres from 2°624 to 3750
Realgar ............ from 3:225 to 3-338
Rock-crystal ...from 2-581 to 2'888
Ruby, Oriental . 4283
Sal Gem ......oceveeerrrirennennen 2143

Sapphire, Oriental, from
4+000 to 4200

Sardonyx ............ from 2:602 to 2 628
Scammony of Smyrna
Aleppo :

Schorl ....... .from 2:922 to 3:452
Serpentine ..from 2:264 to 2999
Shale ....ccoovenvvcrieniniinenes 2600
Silver Glance ....from 5°300 to 7-208
Slute (drawmg) ................ v 2°110
Smalt ..o 2:440

Spnr, Fluor ........ from 3:094 to 3:791
Do. calcareous ...from 2:620 to 2:837
Do. double refracting from
Castleton
Spermaceti
Spodumene or Triphane, from

3:000 to 3-218
Stalactite ............ from 2:323 to 2°546
Steatite from 2°400 to 2:665
Steam of water ..o 0-481
Stilbite................ from 2:140 to 2:500
Strontian, Sulphate of, from
3:583 to 3:958
Do. Carbonate of, from
3:658 to 3675
Stone, Bristol ...

from 2510 to 2:640

cutlers’........ 2:111
grinding . 20142

hard ..o 2460
paving ....from 2:415 to 2:708
Portland .......ceevvenne 2:496

rotten ... 1-981

Sugar ... 1:606
Sulphur, native 2:033
fused.......ccovvneererinnns 1-990

from 4010 to 4°061

Tourmaline ........from 3°086 to 3:362
Turquoise..... from 2:500 to 3000
Ultramarine.........ooevne 2:360
Uranite ..o RN 2:190
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TABLE OF SPECIFIC GRAVITIES.

Vesuvian ............ from 3:300 to 3'575 Wood, Elder-tree ................ 0-695

Vinegar ............ from 1013 to 1-080 Im-tree ....... . 0671

Water, distilled ..........cccoeneu. 1-:000 Filbert-tree 0-600

-1 SN 1-028 Fir, Male.... 0-550

of Dead Sea 1-240 Do. Female 0-498

Wax, bees’ ........... 0-964 Hazel ........... 0-600

white ........ 0-968 Jasmin, Spanish .. 0770
shoemakers’ 0-897 Juniper-tree . ...

Whey, cows’ ... 1-019 Lemon-tree . ............

‘Wine, Bourdeaux 0-993 Lignum Vite ......... 1:333
Burgundy.... 0-991 Linden-tree ........ ...... 0604
Constance 1-081 Mastick-tree e 0°849
Malaga 1-022 Mahogany 06
Port ... coccvvveer i . 0997 Maple-tree )
White Champagne ... 0-997 Medlar............ ¢

Wood, Alder ......coecevienne 0-800 Mulberry, Spanish .... 0897
Apple-tree 0793 Oak-heart, 60 yearsold 1-170
Ash ... 0-845 Olive-tree 0
Bay-tree 0-822 Orange-tree
Beech ... 0:852 Pear-tree ........

Box, French 0-912 Plum-tree
Dutch ...... 1:328 Pomegranate-tree ... 1:351
Brazilian, Red.. 1:031 Poplar-tree ................ 0-383
Campcachy ... 0-913 Do. White Spamsh 0-529
Cedar, Wild... 0596 Quince-tree.......... 0705
Palest ... 0613 Sassafras .. . 0°482
Indian ...... 1-315 Vine ........ . 1-327
American .. 0-561 Walnut. . 0681
Cherry-tree ....... 0715 Willow ........ 0585
Citron ........... 0:726 Yew, Dutch .. . 0788
Cocoa-wood... 1:040 Spanish ... 0807
Crab-tree ... 0-765 Knot of 16 years old. 1760
Cork .......... 0-240 Woodstone ........from 2:045 to 2:675
Cypress, Spanish ....... 0644  Zeolite ...from 2:073 to 2:718
Ebony, American ... 1-331 Zi from 4385 to 4700

Do.

Indian

1-209




PNEUMATICS.

310. AiL the fluids of which we have hitherto treated,
belong to the class called liquids. These fluids we at once
recognise to be such; indced they are those material substances
from which the very notion or idea, which we attach to a fluid,
is drawn.

There is, however, another class of fluids, whose fluid pro-
perties are by no means so easily recognised, and from which
indeed we derive so few of the sensations that come to us from
other material substances, that we scarcely admit them to be
matter. These are called Airs or ArrirorM FLuips, and the
science which treats of them, is called PNEuMaATIcS. With the
properties of one fluid of this class we are far more intimately
concerned than with those of any other material substance; we
are, in fact, perpetually immersed in that fluid, it enters most
intimately into the composition of our bodies, we swallow a
huge volume of it at every inspiration, and the very principle of
life within us appears to feed upon it. One of its constituent
elements is indeed so necessary to the sustenance of the power
of living, that to cease to breathe, and to cease to live, have
come to be used as synonymous expressions. This fluid is the
atmosphere. It surrounds the globe of our earth on every side,
forming a continuous spherical shell of vapour, which encloses
the earth itself, as its solid portion, or nucleus.

Were it not that we are endued by nature with a tendency
to speculate on the phenomena around us, and to reason upon
the sensations to which we are subjected, we might pass on
from infancy to the grave without, perhaps, even recognising
the existence of this fluid, certainly without distinguishing any
of its propertics.

But few of those scnsations by which we are accustomed to
recognise the existence of external things, appear to come to
us from the air. We do not see it as we do other material
substances, we cannot touch it as we do them, we are not con-
scious that it has weight as they have; it does not appear to
require any force to move it as it does to move them ; in short,
there does not seem to be a single sense affected by it; although
it unquestionably enters largely into the constitution of every
single sensation,
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One great cause of the deception under which we thus
labour, is that we are born into the air. Our senses are sub-
jected continually to those affections which, if the mind took
notice of them, would constitute perceptions of its existence
from that period when it takes notice of nothing*. There are,
however, other causes arising out of the conditions of the equi-
librium of fluids as explained in the preceding chapters, which
enter largely into the explanation of this mystery.

The first of these is that, by the nature of that equilibrium,
when a solid body, of whatever form, is immersed in a heavy
fluid, the pressure of that fluid when at rest, produces in it no
tendency whatever to move korizontally; there being, for each
horizontal pressure on one side of it, an equal and opposite
horizontal pressure on the opposite side, which two pressures
neutralize one another. Also the vertical pressure of the fluid
produces in the body, a tendency to move upwards, equal only
to the weight of the fluid it displaces.

From the above it follows that the air in which we are im-
mersed does not, by reason of its pressure when at rest, tend
to move us /orisontally, in one direction more than another ; it
presses us equally in all directions, and this is the case in
every position into which we can throw our bodies; also that
the force by which it presses us upmwards, or buoys us up
towards the higher regions of the atmosphere, is so small, being
only the weight of the air we displace, that it is entirely
neutralized and greatly surpassed by our weight; whilst,
moreover, we are at any time altering our position, the fluid pres-
sure adjusts itself so rapidly into a state of equilibrium that we
are unconscious of that state being for an instant destroyed.

But it will be said that although this equality of the pres-
sure of the air all round us, be sufficient to account for our not
being called upon to oppose any effort to it in any particular
direclion, and for its opposing no obstacle to a change of our
position; yet it is not sufficient, to account for our not being
conscious of its tendency to press the different parts of our

* It seems to be a law of our nature, that the mind should not take
notice of those affections of the organs of sense which are constantly
repeated, and, therefore, @ fortiori, of those which are continual., Examples
of this are exceedingly numerous, and must present themselves to the mind
of every one. Were it not for this kabif of the mind how many secrets of
nature would be laid open to us! May it not, for instance, be possible that
all the internal operations of the human body, each affecting some nerve or
organ of sense, would, if the mind did but take notice of the affection, present
itself to its eye, as completely as the parts of a piece of mechanism to the
external organ.
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bodies together, and crusk them; since the opposite and equal
forces which have been spoken of above, whilst they neutralize
and destroy one another, tend, at the same time, to destroy the
organization of the parts between them by compressing those
parts; thus, the pressure on the opposite sides of one of the
fingers should, it may be asserted, tend to destroy that delicate
ramification of arteries, veins, nerves, and muscles which cover
the bones of the finger; and the perception of that pressure
ought to be transmitted by the nerves. Similarly, the pressure
on opposite sides of the upper portion of the body, must tend to
impede the motions of the lungs, and to break in the cavity of
the thorax. This objection is of great importance, and deserves
particular attention, especially as it leads to a striking view of
the economy of the human frame.

311. The parts of the body are either hollow, as the chest;
they are composed of solid parts or bones; of fleshy or muscular
parts; of mnerves and tendons; or of vessels filled with liquids,
ag veins and arteries. The parts called hollow are not in reality
80, but are filled with the same fluid, the air, in which the
whole of the external portion of the body is immersed; and
this air contained internally, has a direct "communication,
through the passages of the wind-pipe and the cesophagus, with
the external air; so that, in fact, the air contained internally
and the external air, form different portions of one continuous
fluid. Hence, therefore, by what has been said before, the
pressure of this fluid horizontally, upon any given portion of
the cavity of the chest from mithin, must be precisely equal to
that upon a corresponding portion of the convex surface of the
ribs from mithout; these two corresponding portions forming,
in fact, opposile sides of a body immersed in a fluid. - Thus the
pressure of the air externally upon the ribs, is borne always, by
a corresponding opposite pressure of the air within; and neither
pressure is felt to have a tendency to alter the form of the cavity
of the chest.

If, however, we exhale any portion of air from the chest,
we become immediately conscious of a diminution of the internal
pressure outwards, and an excess of the external pressure; the
chest becomes oppressed, and by a peculiar mechanism supplied
by nature for that purpose, its dimensions contract, until the
included air is again sufficient in quantity to supply the requisite
pressure from within.

It is for reasons similar to those assigned above that divers,
when at a great depth, experience a severe pressure upon the
ribs ; the external pressure upon the chest being increased by
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the great weight of the superincumbent fluid, and thus made to
exceed the opposite internal pressure of the contained air.

Those portions of the body which do not communicate with
the external air and thus become filled with it, are all, whatever
be their nature, completely saturated and permeated by fluids.
Thus the bones are porous, and their pores are, every where,
occupied by certain fluid secretions; the muscular portion of
the body, or the flesh, is every where saturated by the blood ;
the nerves and sinews are fascicles of tubes, cach being appa-
rently a canal serving as the conduit of a fluid.

From the above then it appears that the mass of the human
body may be considered as an accumulation of solid atoms,
each scparately immersed in a fluid. This being the case, it
follows that the pressure upon any portion of the external sur-
face of the body is propagated equally throughout its substance.
(Art. 244.) by the intervention of the fluids which permeate it,
and that each solid particle thus sustains pressures equal in
every possible direction; so that, by reason of these pressurcs,
it can have no tendency to move either in one direction or
another. The pressures upon each particle thus separately neu-
tralizing one another, it follows that the particles do not press
upon one anolher®., Thus then we sce a reason why the ex-
ternal pressure of the atmosphere, which is exceedingly great,
being altogether little short of 30,000 pounds on each individual,
does not, nevertheless, tend to press any of the component parts
of the body upom, or against, one another, and producing,
therefore, no excitement of the ncrves, is not felt.

‘We may also see a reason why, when the body is immersed
to a great depth in the water, (by means of a diving-bell or
otherwise,) and the external pressure upon it, is thus rendered
very far greater than the atmospheric pressure; yet, by reason
of the equal distribution of that pressure over the surfuce of the
body, through the medium of the fluid in which it is immersed,
and also by reason of the equal lransmission of the pressure
through the system, by the intervention of the fluids which are
contained in, and which pervade it ; there results no perceptible
pressure upon those delicate nerves which are every where in-
terwoven in our frame, and which the slightest unequal pressure
is sufficient to irritate.

Were the enormous pressure of the atmosphere any other-
wise applied to our bodies, than by the intervention of the fluid
in which we breathe, it would be utterly impossible that the

* Of course it is here supposed that the external pressures spoken of do
rot alter the external form of the body.
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motions of the parts of the body, constituting life, should pro-
ceed; the slender and fragile mechanism, indeed, of its organs
could not fail to be destroyed. By that admirable property,
however, of the equal distribution of fluid pressure, not only are
we enabled to sustain the 30,000 pounds’ weight of atmospheric
pressure without feeling it, but that pressure may be doubled
by immersing the body thirty-six feet under water in a diving-
bell, and yet no single nerve, not even the most delicate of the
millions which overspread the body will, by reason of that
pressure, experience the least perceptible excitement ; although
these nerves are of such sensibility as to enable us not only
to perceive, but to appreciate, to measure and compare, the
slightest pressures which (being unequal) tend to alter the form
of the surface of the body. Even the chest will, under these
circumstances, suffer no oppression; for the pressurc of the
water being transmitted through the medium of the air in the
diving-bell, equally to the external and internal surface of the
chest, these external and internal pressures will neutralize one
another, however great the weight of the superincumbent water
may be.

Such are the effects which result from the body’s being im-
mersed in a fluid, and from its parts being (according to an
expression of Paley,) packed m fluids. We now see plainly how
the air may be (as it really is) a fluid possessing weight, and,
therefore, pressing heavily upon us, and yet we be altogether
unconscious of the pressure.

We may, however, very readily put the matter to the test
of cxperiment. Let us destroy the equality of atmospheric
pressure, spoken of above, let us remove the air from any
onc portion of the body; we shall then at once be conscious
of the existence of pressures upon the other portions, and o.
the great advantages we derive from an absolute and entire
immersion in it. This removal of the air may be effected by
various means; there is, however, a machine called the air-
pump, which is commonly used and expressly intended for that
purpose, and of which the principles and action will, in the
course of this work, be fully explained. By means of this
machine, the air may be removed from any given portion of the
body ; its pressure upon the rest of it will then at once be
perceived. If, for instance, the hand be applied so as to cover
the open top of a vessel, of which the lower portion communi-
cates with the air-pump; and if the pump be then put in action
s0 as to remove the air from the vessel, and, therefore, from
the under surface of the hand, the pressure of the air upon the
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upper swrface will at once beoome apparent; the hand will be
firmly pressed down upen the cdges of the vessel, and, at
mhﬂh Miﬂpodhh to move it; the blosd-vessels

‘bocome distended, the back of the hand will be bent

‘ bwoqnxthﬁodonwilnpmum
s " to the weight of a column of thirty inches of
& weight probably sufficient to rupture the mechani
of the } i ptu anism
The prooess of cupping is an example of this partial removal
of pressure from the surface of the body. A small portion of
alcohol is put into the cupping-glasses and lighted; by the heat
thus produced the air which before occupied the glass isin a
great measure expelled, and its place supplied by a highly-atte-
nuated vapour of alcohol. In this state the open extremity of
the glass is applied to the surface of the skin ; the flame is ex-
tinguished, the vapour becomes condensed again into a liquid,
the air loses its heat, and with its heat its tendency to expand ;
thus its pressure upon the surface of the body (underneath the
glass) becomes less than before, and less than the pressure upon
other portions of the body; and the result of this unequal pres-
sure is an immediate disorganization of the surface beneath the
glass ; the flesh and muscular parts swell out in a surprising
manner, the vessels become distended, and blood is at length
seen to gush from the peres of the skin. The escape of the
blood is however commonly assisted by first puncturing the
surface of the skin.

Suction presents another striking example of the partial re-
moval of pressure. There is a certain operation of the muscles
by which the air may be removed from the cavity of the mouth;
if this exhaustion takes place when the lips are applied to any
portion of the skin, the result will be a removal of the pressure
from that portion of the surface of the body, and a consequent
displacement of the skin beneath: moreover, the exterior surface
of the lips sustaining the atmospheric pressure, whilst the interior
portion in contact with the skin is free from it, the two are
brought closely in contact and pressed together.

It is thus that snails attach themselves firmly to walls or to
the trunks or boughs of trees, and may be seen even to crawl
with their bodies suspended beneath them. The under portion
of their bodies is furnished with powerful muscles, which enable
them to form a hollow space or cavity in any portion of its
length. Their method of fixing themselves to any surface is to
raige their bodies into a hollow or cavity, producing a vyacuum
underneath this cavity, the edges of which are closely pressed

i
1
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upon the surface, and the whole body suspended to it by the
external atmospheric pressure. Attaching in this manuer, dif-
ferent portions of their bodies successively to different parts of
the surface on which they wish to move, they may be seen
walking suspended not only as to their bodies, but the shell
which serves them as a habitation, not only up perpendicular
walls, but along the smooth surface of the ceiling of a room.

There is a plaything of children called a sucker, which acts
precisely upon the principle we have been explaining. It con-
sists of a circular piece of leather, which is exceedingly soft and
pliable, and suspended by its centre-from a string. If this be
wetted and applied to the surface of a stone or any smooth
heavy mass, and then an attempt be made to remove it by pull-
ing the string, it will be found to oppose a powerful resistance
to separation from the surface on which it has fixed itself; and
rather than yicld, it will, if the weight of the mass be not consi-
derable, carry it away with it.

The reason of this is obvious. The string being pulled, the
leather is slightly raised in its centre, and the cavity beneath it
is a vacuum, no air having been allowed to enter by reason of
the close contact of the edges of the wet leather with the stone.
This being the case, the pressure of the air is removed from that
portion of the stone which is beneath the surface of the leather ;
its pressure upon the opposite side of the stone is, therefore,
unsustained ; the stone is, therefore, by that unsustained force,
pressed towards the leather; again, by the pressure of the
atmosphere on the caternal surface of the leather it is pressed
against the stone. Thus then, the leather and stone are attached
to one another.

It is precisely upon the principle explained above, that flies
are enabled to fix themselves upon a perpendicular pane of
glass or upon the ceiling of a room. They have a contrivance
in their feet by which they arc enabled to raise the central por-
tions of these, as the centre of the sucker is raised by the string;
a vacuum being thus formed underneath the foot, it becomes
fixed upon the surface on which it is planted.

312. Tt has been proved that any substance immersed in a
heavy fluid, besides those lkorizontal pressures, which acting
equally in opposite dircctions produce no tendency to horizontal
motion, sustains further certain vertical pressures whose effects
are not thus neutralized, and which produce in it a tendency to
upward motion, equal to the weight of fluid it displaces.

Our bodies then being immersed in the air, sustain, each, an
upward pressure equal to the weight of air which they displace.

M
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Why, then, it may be said, are we not conscious of that upward
pressure 2 The answer is obvious; it is hecause the weight of
the body exceeds the weight of the air it displaces. The down-
ward pressure, therefore, exceeds the upward pressure ; and we
ave, therefore, only conscious of weight.

This, however, is not only true of the aggregate of the up-
ward pressures upon different parts of the body, but of each in
particular. If, for instance, we imaginc the body to he divided
into any number of slender vertical columns, then the wpward
pressure upon that portion of its surface which forms the base
of any one of these will equal the weight of a column of air
precisely of the sume dimensions with that column; and the
downward pressurc of the column will equal its weight, and,
therefore, will excced the upward pressure ; we shall thus be
unconscious of any upward pressure upon the surfice spoken
of ; and the samc is truc of cvery other portion of the surface
of the hody.

Also, it has been shown, that when a body is tolally im-
mersed, the resultant of the pressures of the fluid upon it neces-
sarily passes through its ceatre of gravity, and acts in a vertical
direction ; and the resultant of the weights of the parts acting
also there, exceeds this upward resultant; we are, therefore,
unconscious of the existence of the latter pressure. This we
certainly should not be, if its direction were not thus always
through the centre of gravity of our body ; there would be cer-
tain, and only certain positions of equilibrium, as in the case of
floating bodies ; and our bodies could assume no positions, other
than these, without a certain expense of muscular energy. When
we inclined the body, for instance, the upward pressure of the
air would tend to bring it back into its previous position, or to
cause it to recede still further from that position, and would
thus be a perpetual source of annoyance to us.

313. If we could by any means lighten the substance of
our bodies so as to render them lighter than the air they dis-
place, we should immediately ascend and float in the air. We
have seen that fishes have the power to expand certain portions
of their bodies so as to cause the quantity of water they dis-
place, to exceed the weights of the quantities of fluid they dis-
place, or be less than them, according as they wish to rise to
the surface of the water, or to sink to any required depth be-
neath. Some of them would seem to have the power of carrying
this expansion still further, so as to pass from the water into
the air, and displace of the latter, a quantity weighing nearly
the same with themselves ; these are called Flying-fish. And
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in the same manner there are certain birds which would seem
to be able so to contract their dimensions, as to sink in water to
any depth they may wish. We may easily construct bodies
lighter than the air they displace ; its upward pressure upon
such bodies will then exceed their weight, and they will ascend
in it.

It is thus that balloons are made. Certain fluids may be
produced artificially which arc greatly lighter than the air they
displace. These fluids are of the kind called gases or elastic
fluids. If a light vessel, capable of containing one of these
fluids—as, for instance, a bag of glazed paper, or of thin silk—
be filled with that fluid, and then left to itself, it will imme-
diately begin to ascend, provided the weight of the vessel be not
such, as together with that of the contained fluid to equal or
exceed the weight of the air displaced.

Fluids lighter than the air may be obtained from a variety
of different substances, and in a variety of different ways. The
gas commonly burnt in our streets is a fluid of this kind; and
large silken bags filled with this gas displace a quantity of air
whose weight is greater than their own weight; and are for
that reason made to ascend by the upward pressure of the air.
They will carry with them a weight nearly equal to the differ-
ence between their own weight and that of the air which they
thus displace.

Not only, however, can we make artificially other liquids
lighter than the air, but we can make any one portion of the air
lighter than the rest. This we may do by heating it. All
bodies expand or increase their dimensions by the application of
heat, and of all bodics the air is probably that which expands
most readily, or is most sensitive to the variations of heat. If]
therefore, we take any portion of the air around us, which is
precisely of the same nature as the rest, and therefore, displaces
a portion of it exactly equal in weight to itsclf; and expand
that air, by the application of lheat, then will it displace a por-
tion of the surrounding air, greater than itself in bulk, and the
result will be, that on the principles we have explained, it will
he made to ascend. This expansion of certain portions of the
air and their consequent ascent through the surrounding air is a
process which we observe to be continually going on around us.
The smoke which ascends through our chimneys, is air rarefied
by the heat of the fire, and carrying with it small portions of
unconsumed coal. The operation takes place, however, on a
much more magnificent scale under the influence of the sun.
Within the tropics, where its power is greatest, the air is conti-
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nually undergoing rarefaction, and is thus rendered lighter than
that on either side of them; it is, therefore, weighed up, and
made continually to ascend by the pressure of that air, which as
continually occupies the space which it leaves. As the heated
air ascends, it loses its heat, and therefore contracts its dimen-
sions, and moving off towards the poles eventually descends to
the earth’s surface, to return again to the equator in its turn.
Thus, there is a continual circulation of air kept up between the
polar and equatorial regions of the earth ; combining with the
rotation of the earth to constitute that prevailing direction of the
wind towards the tropics, so well known to sailors under the
name of the Trade Wind.

Similar effects to these, produced on the surface of the earth
by local variations of temperature, constitute winds. Thus a
sudden fall of rain or snow, at any particular spot, may there so
increase the weight of the air, as to make it weigh up all the
surrounding air: high winds will be the result, having on the
earth’s surface a direction from the spot where condensation has
thus taken place.

314, We have shown it to be possible that the air which
surrounds us may be a heavy fluid exercising great pressure
upon the surfaces of our bodies, attended by all the phenomena
observable in other cases of fluid pressure, and yet we ourselves
be altogether unconscious of that pressure. We may be living
in a fluid at the bottom of an occan, as we see fish to be living
in the sea, receiving large quantities of it at every instant into
our bodies, and exhaling it, as we observe a current of water to
pass through the gills of fishes, and yet perceive but few of its
properties, scarcely even be made aware of its existence. And
accordingly, philosophers reasoned and speculated for two thou
sand jyears on the subject of the atmosphere before they dis-
covered that it was material, a fluid, and had meight. This is
ensily explained, there are no direct observations which lead us
to the conclusion that air has weight. There is, indeed, little
or nothing in the phenomena which establish that conclusion, to
guide us to the connexion between those phenomena and the
question of atmospheric pressure. A link is wanting. The
theory of hydrostatic pressure establishes that link. Thus, a
man ignorant of the principles of hydrostatics can perceive no
relation between the ascent of water in a tube by suction and
the weight of the external air. But let him acquire a knowledge
of the principle that a heavy fluid cannot rest until the pressure
upon cvery point in the same horizontal plane is the same, and
this connexion will at once establish itself in his mind.
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Thus it was that philosophers endeavoured in vain, for some
2000 years, to account for the ascent of fluids by suction, until,
hopeless of a solution, they pronounced it to be an anomaly—
a freak of Nuture—an unaccountable antipathy, which she had
taken to an empty space. They asserted, for instance, that
when the air was removed from a tube, one end of which was
immersed in water, Nature, abhorrent of a vacuum, thrust the
water immediately into it, to fill up the vacant space ; and that
she did this, notwithstanding the opposite tendency of the water
to descend by reason of its weight.

It having, however, happened to some engineers at Florence
to discover that water could not be raised in a pump, suck out
the air as much as you would, above the height of thirty-two
feet, this principle of the wiler abhorrence of Nature for a va-
cuum was found to require some qualification ; and its limits
were accordingly fixed by Galileo, at a height of thirty-two feet.

315. One Torricelli, a pupil of Galileo, doubting the ex-
planation of his master, reasoned upon the question somewhat
in this way. Since by the absolutc removal of the air above it,
a column of water can be supported at the height of thirty-two
feet, and no higher, it would seem that the force whatever it
may be which supports it, should be precisely equal to the
weight of such a column; and that, therefore, that force would
not probably have supported so high a column, had the liquid
been some other, heavier than water, so that the abhorrence of
Nature would not in th. case of a heavier liquid extend so
high as thirty-two feet. He tried mercury ; and he found that,
however perfect the vacuum made above its surface, it would
not stand at above twenty-eight or thirty inches. This column
of mercury, he then ascertained to be precisely of the same
weight, with a column of thirty-two feet of water, of the same
diameter.

Hence, therefore, it became apparent to him, that the cause,
whatever it was, was subject to this law, that it should always
develope a force equal to the weight of the liquid supported,
whatever that liquid might be. This abhorrence of Nature for
a vacuum was therefore no freak, but like every other deve-
lopement of her energies in unorganized matter, the subject of
a fixed and invariable law. Reasoning further upon his
experiment, and applying to it certain principles of hydro-
statics, which had by that time become known, he at length
perceived its connexion with the external pressure and weight
of the atmosphere, arrived at its true explanation, and constructed
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THE BAROMETER,

by which we are enabled to measure at any time the exact
pressure of the atmosphere upon a given surface at the place
where we make our observations; and which, whether we
consider it in reference to the importance and accuracy of its
indications, or the remarkable simplicity of its construction,
deserves to be ranked among the most valuable of our instru-
ments.

316. The Barometer is thus constructed : a glass tube B g,
somewhat more than thirty inches in length, of which one end
is closed, is filled with mercury; and the finger being then
applied to the open end, so as to prevent the escape of any
portion of the mercury, the tube is inverted in a cup of mer-
cury ¢ p, the open end being plunged beneath its surface; the
finger is then withdrawn, and a free communication left between
the mercury in the tube and that in the cup. The former is
immediately perceived to descend, until it finally takes up a
position of equilibrium ; somewhere between twenty-eight and
thirty inches above the level of the mercury in the cup.

Now let us consider the circumstances under which this
equilibrium takes place. It has been shown (Art. 251), to be a
necessary condition of the cquilibrium of a
continuous fluid, that the pressure upon every
equal area in the same horisonlal plane, any
where taken in it, shall be the same. Thus
then, taking that horizontal plane B F which
passes through the lower extremity B of the
tube, it follows that the pressure upon every
cqual portion of that plane is the same.
Hence, therefore, the pressure upon that area
or portion of the plane which lies immediately
under the bore of the tube, is the same with
the pressure upon an equal area elsewhere,
The pressures upon these areas are respec-
tively equal to the weights of columns of the
fluids in which they are contained, continued vertically upwards
from those areas, respectively, to the free surfaces of these
fluids. (Art. 252.) Now the space a1 being a vacuum, the
free surface of the fluid in the tube is at ¢. But without the
tube, in order to arrive at the free surface of the fluid, we must
continue our column, fhrough the mercury, to the extreme
limits of the atmosphere.
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Hence, therefore, it follows, that the column B @, within the
tube, is equal in weight to any other column without it, having
an equal base in the same borizontal plane ¥ E, and reaching,
through the mercury, to the top of the atmosphere. This last
column is composed partly of the column of atmosphere spoken
of, and partly of a column of mercury of the same dimensions
with AB, and having, therefore, the same weight with it.
Taking, therefore, from each of the above-mentioned equals, the
weight of the column, A B it follows, that the weight of the column
AG in the tube, above the surface of the mercury in the cup, is
equal to the weight of a column of the atmosphere of equal base,
continued to the very surface of the atmosphere. Thus then, by
means of this simple little instrument, the Barometer, not
more than thirty-one inches in length, we mecasure the pre-
cise weight of a column of the atmosphere reaching to its
very surface, a distance certainly not less than filty or sixty
miles.

It was thus that Torricelli explained the suspension of the
mercury in his tube; and he confirmed the conclusion which
he had arrived at, by causing his barometer to be carried to a
great clevation above the carth’s surface, the top of the Puy de
Déme, near Auvergne; it was found that the mercury sunk
there considerably beneath the level at which it had stood in
the plain below. This was a nccessary consequence of the
theory: for by carrying the instrument to the top of the moun-
tain, the height of the superincumbent column had been con-
siderably diminished; and since the suspended column of mer-
cury could not rest until it had the same weight with such a
column of atmosphere, it must necessarily descend, as the column
of atmosphere was thus diminished*.

Thus, at the top of Mount St. Bernard, the barometer stands
at only fourteen inches, whilst at the level of the sea its usual
height is twenty-eight inches.

* If every equal portion of the atmospheric column were of the same
weight, by whatever fraction, in his ascent, the obscrver diminished the
height of that portion of this cclumn which was above him; by the same
fraction only would he find the whole height of the column of mercury in
his barometer to be diminished; and thus, supposing the height of the
atmosphere to be fifty miles, a barometer carried to the height of five miles
(which is probably greater than any height to which it could be carried,)
would sink only by one-tenth of its whole beight, or about three inches.

The atmospheric column is not, however, throughout of the same
weight; its lower portions are greatly heavier than the higher; and thus
it happens that ascending through only a small fraction of its whole height,
as for instance at the top of Mount St. Bernard, we nevertheless get through
the heaviest portion of it; so as to diminish the weight of the superincum-

bent column, and consequently the height of the barometer, more than one-
half,
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317. The barometer has since been applied on this prin-
ciple to the determination of the heights of mountains. By
wethods which it does not cousist with the elementary cha-
racter of this work to explain, the precise elevation above
the earth’s surface, corresponding to each height of the column
of mercury in the tube, may be calculated. Thus, then, carry-
ing a barometer with us to the top of a mountain, and observ-
ing the height at which the mercury stands in it, we may
know, the requisite calculations having been made, exactly
what is the height of the mountain. Formulx are given, and
tables have been constructed, which very greatly facilitate this
calculation.

The determination of heights by the barometer is certainly
the most simple and easy method known, and it is probably the
most accurate. In order, however, to obtain this accuracy,
numerous precautions must be taken. In the first place, the
precise height of the column above the surface of the mercury in
the cup must be ascertained. This is no easy matter., Itis clear
that a scale of inches and parts, fixed as it usually is, by the
side of the tube, and numbered from the surface of the fluid in
the cup upmards, will not serve us to effect this measurement
with accuracy. For the surface of the mercury in the cup
necessarily varies its position continually, as more or less of it is
contained in the tube; if, therefore, at one height of the column,
the zero, or first division of the scale, coincided with the surface
of the mercury in the cup, it could not possibly do so at any
other.

Various methods have been contrived to remedy this incon-
venience. Among the best, probably, is the following. The
cup of mercury is constructed accurately in the form of a
cylinder, as shown in the figure. Its bottom, which is turned
accurately to fit the internal surface of this cylinder, admits of
having a slow motion communicated to it by means of a screw,
50 as to raise or depress the whole mass of mercury above it in
the cup. There is an ivory index with a fine point turned
downwards, which is fixed precisely on the level of the first
division of the scale. When the instrument is to be used, the
screw* spoken of is to be turned until the surface of the mer-

* The contrivance of a moveable bottom to the cup seems to be in a
great measure unnecessary; any thing by which a portion of the fluid
might be displaced, would serve equally well to elevate its surface. We
might, for instance, simply insert a screw into the side of the cup near its
bottom ; as this screw was moved further info the cup, or out of if, the
surface of the mercury would be raised or depressed.
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cu} in the cup is brought just to touch the ivory point. This
being accomplished, the height shown by the scale is accurately
that of the top of the column above the surface of the mercury in
the cup.

318. Not only does a variation take place in the height of
the mercury in the barometer when it is moved to different ele-
vations above the earth’s surface, but also when it is kept in the
same position, there are scarcely any two periods of time when
its height is accurately the same; and this is not only the case
when the air is in motion, but also at periods when it is appa-
rently at rest. The heights of the barometer are perceived under
these circumstances to be different at different times of the day,
and at different periods of the year. From the careful comparison
of a great number of observations made in the Royal Observa-
tory at Paris, the following general conclusions have been drawn
by M. Bouvard.

Dividing the day into two periods, the first extending from
nine in the morning to three in the afternoon, and the second
from three in the afternoon to nine at night; it will be found that
during both these periods the barometer falls; but that the quan-
tity by which it falls during the first period is much greater
than that by which it falls during the second. In respect to the
Jirst period, a considerable regularity is apparent in the varia-
tions of the barometer, as well from year to year, as from one
month to another. From an average of eleven years, it
appears that the mean annual descent of the barometer between
nine in the morning and three in the afternoon, is *02976
inches.

By a comparison of the variations of the first period from
month to month, the following remarkable fact was established:
that during the three months of November, December, and
January, these variations were greatly less than during the other
months of the year; and that they were greatest during the
months of February, March, and April. The variations during
the remaining six months of the year were intermediate between
these, but apparently subject to no law. In respect to the varia-
tions of the second period, no law could be traced; they were
usually less than one-half those of the preceding period.

By a comparison of the diurnal variation of the barometer at
different places on the earth’s surface it appears, that it is at all
places between the tropics nearly the same, and that it is there the
greatest; that it rapidly diminishes as the latitude increases, and
is not perceptible in latitude 74° north.

It has been observed, that the diurnal variations of the baro-

M3
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meter are subject to the influence of the wind; that thefb are
scarcely perceptible during the prevalence of winds from the
south, and attain their maximum when the wind is from the
north.

319. The weight of the suspended mercurial column always
equalling that of a column of the atmosphere, it follows that a
variation of the former can only take place when there is a cor-
responding variation inthe Jatter. These variations in the weight
of the superincumbent column of atmosphere at any place are
supposed to indicate changes in the weather; an opinion which
has, it is said, of late received a remarkable confirmation from the
discovery made by Professor Dove, of Berlin, of a direct relation
between the height of the barometer and the hygrometrical
state of the atmosphere. The difference between the greatest
and the least heights of the barometer does not exceed three
inches.

It is customary to observe it, as indicating changes in the
weather with considerable accuracy. In order to preserve the
tube from injury the whole of it, excepting the three inches within
which the variation takes place, is inclosed in a tube of brass, to
which is fixed a scale whose divisions cxtend only along the
three inches of which we have spoken. Annexed to certain of
these divisions may be seen the words Fair, Rain, &c., specify-
ing the description of weather which is supposed to be indicated
by the corresponding heights of the mercury.

The only indications of the barometer which can be relied
upon as connected with the state of the weather, are its changes.
The following rules are said to be founded in observation.

1. A rising of the barometer indicates the approach of fine
weather; a falling, shows the approach of foul weather.

2. In sultry weather, the fall of the barometer indicates
thunder. In winter, the rise of the mercury shows frost. In
frost, its fall indicates thaw; and its rise indicates snow.

3. Whatever change in the weather suddenly follows a change
in the barometer may be expected to last but a short time. Thus,
if fair weather follow immediately the rise of the mercury, there
will be very little of it; and, in the same way, if foul weather
follow a sudden fall of the barometer, it will last but a short
time.

4. If fair weather continue for several days, during which the
mercury continually falls, a long succession of foul weather will
probably ensue: and again, if foul weather continue for several
days, while the mercury continually rises, a long succession of
fine weather will probably succeed.
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5. A fluctuating and unsettled state in the mercurial column
indicates changeable weather.

6. There is another rule which is founded upon the princi-
ples of Ilydrodynamics, and which may, therefore, be taken as
nearly, if not absolutely true; it is this: That a low state of the
barometer indicates the prevalence of high winds, somewhere not
very remote from the place of observation.

320. A column of mercury having a base of one square
inch, and a height of thirty inches, weighs about fiftecn pounds.
Now, supposing the barometer to stand at thirty inches, the pres-
sure of the atmospherc will just be sufficient to support such a
column, and will, therefore, just equal its weight. Under such
circumstances, then, the atmospheric pressure is just fifteen
pounds on each square inch of surface. Thus taking the sur-
face of a man’s body to contain somewhere about 2000 square
inches, it follows that the whole pressure of the surrounding air
upon it is of the enormous amount of 30,000 pounds.

321. In the use of the barometer, considerable difficulty
arises from the extreme smallness of the variations in the height
of the mercury corresponding to each change in the atmospheric
pressures. The whole space through which this variation takes
place, corresponding to the extreme cases of the density and
rarefaction of the air at the carth’s surface has hecn stated to be
three inches. It is, thercfore, manifest that the intermediate
states, of which there is an infinite varicety, sensibly different
from one another, can be indicated only by minute fractions of
an inch in the variation of the height of the column. To ob-
viate this difficulty, various forms of the barometer have been
contrived,

322. Of these, one of the simplest and most ingenious is
called the

Di1acoNAL DBAROMETER.

It is simply a barometer of which the tube is bent, as
represented in the accompanying figure, somewhat below the
lowest point to which the mercury can sink. This tube
being filled, like the common barometer, with mercury, whose
surface rests at some point @ in the bent portion of the tube
ABG, every variation in the density of the atmosphere will be
found to be indicated by a much more considerable motion
of the mercury along the tube than though the tube were
straight.

This is very easily explained. The pressure upon the base
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€ of the column, is not equal to-the weight of the whole bent
column Q B¢, but to what would be the weight of the column
BC if it were continued in the same vertical direction to the
level o of the surfuice @. Thus it is equal
——2  to the weight of the column of mercury which
i'»  would fill the tube pc. If, therefore, the
column of atmosphere alter its weight by any
2 quantity, say by a quantity equal in weight to
a column of mercury reaching from p to P,
so that its weight now becomes equal to that
of the column cr’, then is the surface of the
mercury in AB on the same level with »/, or
at @'; it has, thercfore, moved through the
space @@/, which is greater than r 1, and may
be made as much greater than it, as we choose,
el by increasing the inclination of AB. Thus the
motion of the surface of the mercury along the tube A8 for any
given variation in the weight of the atmosphere, is much greater
than it would have been in the straight barometer.
323. Another contrivance for effecting the same object is the

L O ]

WHEEL BAROMETER.

A BT represents a barometer-tube bent at B, so that both the
branches o und FB are vertical. This tube is filled with
mercury, and inverted in the position shown in
the figure. It is manifest that the mercury will
rest when the pressure of the atmosphere upon the
surface E is equal to the weight of the column of
mercury F K, which stands in the other branch of
the tube above the level of E. Now any descent
of the surface E will produce an equal ascent of sur-
face F; and the surface E being depressed, and F
elevated by the same quantity, the distance of these
two surfaces, or the difference of their levels, will
be increased by double that quantity. Hence,
therefore, the variation of the column rx is double
that of the position of the surface &. But Fx is
the height of the barometer, that column being
equal in weight to the corresponding column of at-
mosphere. The variation in the position of ® is,
therefore, half the variation in the height of the
barometer.

To measure the variation in the position of E,
the follewing method is adopted. A small iron ball is made to
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float* on the surface of the mercury. To this ball is attached
a string which passes over the circumference of a wheel or
pulley at g, and carries at its other extremity a weight r, which
is less than the weight of theiron ball. The wheel q carries an
index = pointing to the equal divisions of a larger cirle L.

It is clear that, by the descent of the surface E, the iron ball
becoming immersed to a less depth in the fluid, will be less
supported by it (Art. 282) than before, and since when so sup-
ported it was just balanced by the weight R, the equilibrium
will now be destroyed, the iron ball will descend, and the string
carry with it the circumference of the circle and the index. By
the distance moved over by this index the actual descent of the
surface of the mercury may easily be ascertained.

Suppose, for instance, the circumference of the wheel @ to
be one inch and a half; a descent of the surface &, through one
inch and a half, causing the string to move through that dis-
tance, will produce a complele revolution of the circle and its
index. If, thercfore, we divide the circumference of the outer
circle into 300 equal parts, a motion of the index over any one
of these parts will indicate a motion of the surface 1 through
the 300th part of an inch and a half, or through the 200th
part of an inch. But this motion of the surface E corre-
sponds to double that variation of the barometer—that is, it
corrcsponds to a barometric variation of the 100th part of an
inch. 8o light a variation as this may be therefore readily per-
ceived by means of a wheel barometer. There are, however,
numcrous causes of error introduced by the mechanical part of
the arrangement; and the instrument has no pretensions to the
accuracy of the simple barometer.

The actual height of the column xF is somewhat influenced
by the weight of the iron ball at E. The variations in its
height, for observing which this instrument is principally used,
are, however, unaffected by it.

The wheel barometer is the instrument commonly known
under the name of the weather-glass. Particular positions of
the index are supposed to be connected with particular states of
the weather, and the names of these are annexed to the cor-
respondipg divisions of the circle. These indications of the
weather, rank in authority with the predictions of the alma-
nacks. It is not in any known positions of the index, but in
the changes of its positions, that it really sympathizes with the
state of the weather.

* A mass of iron plunged in mercury displaces a volume of it whose
weight exceeds its own weight. Iron, therefore, floats in mercury.
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Tue Sipoox,

324, Toe Siphon is another instrument of exceeding sim-
plicity ; its application is not, however, like that of the baro-
meter, to the purposes of science, but to the commonest uses
and occasions of life, By means of this instrument a fluid may
be made to ascend, apparently of its own
accord, out of the vessel which contains it,
1o pass over the edge of that vessel, and
then to descend and empty itself into
another adjacent vessel; all that is re-
quired is that the level of the fluid in the
second vessel shall be beneath that in the
first.

The bent tube Arm represented in
the accompanying figure constitutes a si-
phon. It is, in the first place, filled with
fluid, the open ends being stopped; one of
them A is then plunged in the fluid of the
vessel c1r which is to be emptied, and the
other passes into that 1x which is to be
filled. The two extremities of the tube
being then opened, the fluid is immediately found to flow from
one into the other.

The reason of this will easily be understood. The pressure
of the fluid within the branch of the tube r A upon its lowest
section A, tending to cause it to flow out of the tube, is equal
to the weight of a column A p reaching from o to the level of
the Aighest portion of the tube; also the pressure of the exter-
nal fluid at A tending to cause it to flow info the tube, is equal
to the weight of a column of the height a ¢, together with that
of a superincumbent column of air; hence, therefore, on the
whole, the fluid is pressed at A, inwards, by the weight of a
superincumbent column of atmosphere, diminished by the weight
of the column of fluid c . Similarly it may be shown that at B
the fluid is pressed into the tube, by the weight of a superin-
cumbent column of the atmosphere diminished by the weight of
the column of fluid pe. So long, then, as the column b q is
greater than the column c p, the fluid is pressed into the extre-
mity A of the tube with greater force than it is pressed into the
extremity B. It is, therefore, made, by these unequal pressures,
to move through the tube in the direction A F B, until the surface
¢ comes on the same level with b,

The pressures at A and B, tending, both of them, to force the
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fluid into the tube, keep its parts together, causing them to form
one continuous column. That continuity will, however, be
broken, when the column cp is more than thirty inches in
height, if the fluid be mercury, and when it is more than thirty-
four feet in height, if the fluid be water. For if c» exceed
those limits, under the circumstances supposed, its weight will
exceed that of a superincumbent column of air; and, therefore,
by what has been said above, it appears that the aggregate pres-
sure upon the section at A, will not be info but out of the siphon.
Much more, then, will its tendency at B be out of the siphon,
since @ B is greater than pA. Since, then, the fluid tends to
flow out of the siphon at both ends, the column will separate,
and the siphon will cease to act. Thus a siphon cannot be made
to raise water more than thirty-four feet, or mercury more than
thirty inches; or to raise it at all in a vacuum.

After filling the siphon, we have supposed both of its extre-
mities to be stopped before they are plunged beneath the surfaces
of the fluid in the two vessels. It is manifestly only necessary
to stop one of them; the atmospheric pressure being sufficient,
under those circumstances, to support the column in the other
branch, even when it is inverted.

In the siphons commonly used in drawing off spirits, there
is a cock supplied for thus stopping one extremity of the siphon;
and it may thus be kept continually full.

325. The Wurteaburg Siphon is another, and still more
simple contrivance, for thus keeping the tube full and ready for
use. It is composed of two branches which are precisely alike,
and which are furned up at their extremities; the pressures upon
the surfaces of the fluid in the small portions of the tube, thus
turned up at the extremities of its two branches, are, when
the branches are held in a vertical position, precisely the
same. The fluid, therefore, remains at rest in the tube.
‘When, however, one of the extremities is immersed in a fluid,
the surface of which is above the level of the fluid in the
other branch of the tube, the inequality spoken of before is
immediately reproduced, and the fluid flows through the siphon.
The theory of this is precisely the same with that of the simple
form of the siphon.
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O~ TuE LELnasticiTY oF AIR.

326. TuHose properties of fluids which we have hitherto
discussed, result exclusively from their fluidity, and are, there-
fore, common to all of them. Fluids are, however, of two
kinds; these are, inclastic fluids or liquids, and elastic fluids or
gases. To the latter class belongs the atmosphere, and although
it partakes, as we have stated before, in all those properties
which have been shown to belong to other fluids, and all the
resulting phenomena are common to it and them, yet there is
another class of phenomena resulting from its fluidity which are
peculiar to it, and of equal, if not superior importance, to the
former.

All those atmospheric phenomena which we have hitherto
discussed would, in point of fact, occur precisely as they do, if
the air which surrounds us had been a liquid like water, instead
of a highly elastic and expansive fluid, as we know it to be. It
is our present object to treat of those further properties which
result from its elasticity.

327. We may thus, by a very conclusive
experiment, convince ourselves of the elas-
ticity of the air. The accompanying figure
represents a bent glass tube ABc, at one
exiremity ¢ of which is fixed a stop-cock.
The stop-cock being opened, and a small
quantity of mercury EBE’ poured into the
tube, it will be found to stand at the same
level Ex” in both of the branches; the at-
mospheric pressure at £ and 1’ being the
same; and those portions of a fluid of which
equal surfaces sustain equal pressures, being
necessarily in the same horizontal plane (Art.
251.

Now let the stop-)cock ¢ be closed. It will be found that
by the stopping of the cock, although the pressure of the
superincumbent column of atmosphere, on that contained in
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the portion of the tube ¢, is taken off, yet will the resist-
ance of this air to the, K upward tendency of the surface E
(arising out of the atmospheric pressure upon E/,) remain un-
altered; for E will not move. Now this would occur, exactly
in the same way, if the fluid contained in Ec were a liquid
like water, or even a solid; but let us pour more mercury
into the branch AB of the tube, and we shall at once per-
ceive a difference between the two cases. Suppose that when
additional mercury has Deen poured into the tube A B, its
surface is at D; the pressure upon 1 will now be increased
by the weight of the column pr’. Now if rc¢ had contained
a liquid, this additional pressure, however great it might have
been, would have produced no motion of the surface E: the
liquid supplying, always, an increased resistance, precisely equal
to the increascd pressure. DBut ¢k containing air, it will be
found incapable of supplying this increased resistance in its
present state ; it will immediately yield to the increased pres-
sure, the surface E will ascend, and the fluid in ®c¢ will not
be found to have acquired a power of resistance adequate to
this new demand upon it, until the space it occupies has been
considerably diminished. Now there is a remarkable relation
between this increased power of resistance and the diminution
of volume under which it is attained. It is this; the pro-
portion in which the volume of the fluid is diminished is pre-
cisely that in which its power of resistance is increased. Thus,
if the volume be diminished one-half, the resisting power is
doubled; if the fluid be contracted into one-third its bulk, its
power of resistance is tripled ; and so on.

Thus, as in the experiment above described, more mercury
is poured into the tube A B, thereby increasing the pressure
upon the surface E, it will be found that that surface will
continually ascend, compressing the air above it; and when
this compression has thus been continued until the space Ec
is diminished oné-half, or to ¥ ¢, it will be found that the mer-
cury rests at such a height in the other arm A B as to double the
pressure upon the surface E. Also the surface & rests at r.
The fluid in ¢ supplies, therefore, a resistance double of its
former resistance; or its power of resistance is doubled. Now
the pressure upon E we know to be doubled when the height of
the column b ¥ between the levels of the two surfaces, equals
the height at which the barometer stands at the time of the
experiment. For before the additional mercury was poured into
the tube, the pressure upon E was that of the atmosphere, and,
therefore, equalled the weight of the barometric column; and
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now it is increased by the weight of » ¥’; if, therefore, the
weight of D ¥ equal that of the barometric column, it is doubled.

Similarly, by making the column ¥’ » three times the baro-
metric column, we may triple the pressure upon E, the space ED
will then be found to be diminished to one-third of its former
dimensions, and so on.

Hence, therefore, it follows, on the whole, that the volume
of any given portion of air is diminished as the pressure upon
it is increased; and that this relation of the pressure and
volume is governed by the remarkable law that the increase of
the pressure is exactly proportional to the diminution of the
volume.

328. Now the converse of all this is also truc; that is to
say, the volume of any given portion of air is increased, as the
pressure upon it is diminished ; and the diminution of pressure
18 precisely equal to the increase of volume. To prove this, let
the stop-cock be opencd, and a portion of the mercury used in
the last experiment having been pourcd out of the tube, let it be
inverted, the cock having been first closed. The pressure upon
E will now no longer be increased, but diminished by the weight
of the column &’ p; and the pressure upon ® being thus dimi-
nished, that surface will be found to move in an opposite direc-
tion to its former motion along the tube, the air in Ec¢ now
expanding itself so as to occupy a greater space in the tube;
also, if the quantity of mercury in the tube be so
adjusted as to cause the air in E¢, thus to double
the space which it occupied before, it will be found
that the length of the column is now such as to
cause the pressure upon £ to be just half what it
was before. That is, the surface & will have moved
to a point ¥, such that the length of the column
¥'p will be just half the height of the barometric
column, Similarly, if the quantity of mercury
contained in the tube be such as to cause the
space ¢ F to be tripled, the distance F'D between
the levels of its two surfaces, will be found to be
two-thirds of the barometric column, showing the
pressure upon F to have been diminished to one-
third, and so on. Hence, therefore, it follows that
as we diminish the pressure upon any mass of air,
it expands its bulk, and that the diminution of pressure is
exactly proportional to the increase of bulk.

That force by which air thus expands itself, and resists pres-
sure applied to it under these conditions, is called its ELasTICITY.
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Generally, then, the elasticity of any portion of air is increased
as its volume is diminished; and the contrary.

329. The density of air is the quantity of it contained in a
given space. Now,as the volume of any given quantity of air is
diminished, the quantily of it contained in a given space, say one
cubical inch, is increased. And this diminution and increase
are in exac! proportion. Hence, therefore, it follows that the
elasticity of air increases exactly in the same proportion as its
density increases, and vice versd.

These properties of the air by which it may be compressed
into a smaller space or expanded over a greater, enter largely
into the explanation of that infinite varicty of atmospherical
phenomena which are daily occurring around us; they have,
further, suggested the construction of some of the most valuable
and useful instruments which science has supplied to the arts.
‘We shall proceed to describe some of these.

THE CONDENSER,

330. Is an instrument for forcing into a certain space a
greater bulk of air than would, under the ordinary pressure of
the atmosphere, be contained in that space. A section of an
instrument of this kind is represented in the
accompanying figure. EF is a hollow cylinder, A
is a solid circular mass of metal which accurately *
fits the interior surface of the cylinder, and may
be moved freely along it.

The bottom of the cylinder communicates
with the vessel b, called the receiver, into which =
the air is required to be compressed. Over the
small aperture cby which this tube communicates
with the receiver, is fixed, loosely, a picce of
oiled silk extending a considerable distance be-
yond the edges of that aperture. This picce of
silk is called a silk valve, aud its operation will shortly be
explained. The piston 4 is pierced by a small channel whose
under surface is also covered by a silk valve, similar to that
at c.

Now suppose the piston A to be driven down; the air under-
neath it will then be compressed, the force necessary to retain
it under compression will, therefore, be increased (Art. 329),
and will now exceed the elasticity of the air in »; the silk
valve loosely covering the aperture c will, therefore, be pressed
unequally above and below, and will be driven away; the
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compressed air in the cylinder thus finding its way into the
receiver.

Whilst the air is thus allowed to pass freely from the
cylinder through the aperture c¢ it will be observed that its
escape through B is rendered impossible. The clastic force of
the air compressed beneath the piston instead of removing the
obstacle opposed by the valve which covers B will only tend, by
pressing its edges against the under surface of the piston, to fix
it more across that aperture. Hence, therefore, it appears that
when the piston has completed its descent, the whole of the air
before contained in the cylinder will have been forced into the
receiver. When the piston is drawn back, if the valve ¢ remained
open and B closed, the pressure being again diminished, as it
was before increased, this air would, by the properties we have
stated in a preceding article (Art. 328), again expand itself over
the space it before occupied, returning from the receiver into the
cylinder; and things would thus resume the state in which they
were before the piston was first put in motion. Such is, how-
ever, not the casc; when the pressure upcn the piston is in the
slightest degrce diminished, it becomes insufficient to retain the
expansive power of the condensed air in the recciver; the
pressure upon the valve ¢ again becomes unequal, but that from
beneath, instead of that from above, has now the preponderance.
The result is that the edges of the silk are pressed tightly
against the inner surface of the receiver, and it becomes an air-
tight covering firmly fixed across the aperture. Thus the return
of the air from the receiver into the cylinder is rendered impos-
sible. Again, after the piston has been drawn up a very short
distance, that small portion of compressed air which was con-
tained in the upper portion of the tube which joins the piston
and receiver, and in the small space which may have intervened
between the piston and bottom of the cylinder, becomes ex-
panded over so large a space that its elasticity is less than that
of the atmosphere without the condenser. The valve B' will,
therefore, be now pressed downmwards with a greater force than
it is pressed upmards. It will, therefore, be thrust firom the
aperture, and the air from without will find its way into the
cylinder, and will thus ease the ascent of the piston.

‘When the piston has been drawn to its highest point, and
the cylinder beneath become filled with air, the operation may
be repeated; and thus successive volumes of air, each equal to
the content of the cylinder, may be compressed into the receiver;
thereby continually increasing its density, and in the same pro-
portion, its EvasTICITY (Art, 329.)
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It is desirable to have some instrument by means of which
the degree of elasticity thus communicated to it may be
measured. Such an instrument may readily be supplied. It is
called

A GAUGE.

331. ABD is a bent glass tube, having a stop-cock at a,
and being made to communicate through the branch A with the
interior of the recciver. A small quantity of mercury is com-
tained in the portion B¢ ¥ of the tube BcD.
The stop-cock A being open bhefore the con-
densation, the surfaces B and F will stand at
the same level, and will retain this level after
the enck is closed again, so long as the density,
and, therefore, the elasticity of the air in the
receiver is the same with that of the external
air, or that in the branch ¢p which is the
same with it. So soon, however, as the air in
the receiver becomes denser, and, therefore,
more elastic (Art. 329) than that in r b, the
cquality of the pressures upon the two surfaces B and F will be
destroyed; the surface r will be made to ascend, until the
increased elasticity of the air thus compressed in the space F b,
together with the weight of that portion of the column cr
which is above the level of B, cquals the elastic force of the air
in A B, or in the receiver.

Observing the height at which the surface r is thus made
to stand, we may readily calculate what is the elasticity of the
condensed air. Thus if 7 stand at such a height as to have
compressed the air above into half its original space, we know
that its elasticity must have been doubled, and, therefore, that
it must have hecome equal to the weight of a mercurial column
twice the height of the barometer, and deducting from this
height the difference between the levels of B and v, (which is
twice the elevation of the latter surface, or the depression of
the former,) we know that the remainder is the height of
a column of mercury whose weight equals the pressure at B, or
the elasticity of the air in the receiver.

The gauge might be so graduated that these results should
at once be given by inspection.

TaE A1r Gon,

332. Is, as its name indicates, a gun from which bullets
may be projected by means of condensed air. A strong spheri-
cal receiver is constructed, which admits of being screwed upon
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the breech of the gun, and also upon the extremity of a con-
densing syringe. By the action of this syringe a large quantity
of air is condensed into it, and it is then unscrewed and fixed
upon the gun, Connected with the receiver, when thus applied
to the gun, is a contrivance for opening a valve by means of a
trigger, and thereby producing a communication between the
interior of the receiver and that of the barrel of the gun.
Through this channel, when opeued, the air rushes with great
force, carrying with it whatever missiles may have been placed
there., There is a very simple mechanism by which, after cach
discharge, a new bullet may be instantaneously slipped into the
barrel of the gun, and the discharge repeated.

The force with which missiles may thus be propelled has
manifestly no other limit than the degree of condensation which
can be produced, and the strength of the receiver. The strongest
form for the receiver is that of a sphere, that being the form
under which a given volume is contained with the least possible
surface.

THE EX17AUSTING SYRINGE.

333. Ir instead of the valves E and ¢, described in the
condensing syringe, opening downwards and closing upwards,
they had closed downwards and opened upwards, as shown in
the annexed figure; the instrument, instead of a condensing
would have become an exhausting syringe.

Its action will readily be understood. Suppose the piston to
be at the bottom of the cylinder; and let it be raised; the air
beneath it will then be expanded; its
elasticity will thus be diminished, and
rendered less than that of the external
air. The pressure upon the valve E
from without will thus be rendered
greater than that from within; it will,
therefore, be tightly closed, and prevent
the entrance of the air through the
aperture which it covers. Again, the
air in the cylinder being rendered rarer
than that in the receiver a, the pressure
upon the valve ¢ from below will be
made to exceed that from above, and it
will be opened, the air in the receiver
passing through it into the cylinder, and
thus expanding itself. 'When the piston
has thus completed its ascent, the air in
A will have been expanded over the
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whole of the interior both of the receiver and the eylinder.
Thus, if the cylinder equal the receiver, the elasticity and density
will each have been diminished one-half.

Let now the piston be made again to descend. Immediately
that the space beneath it in the cylinder is diminished, the
elasticity of the contained air will be increased, and will be
made to exceed that in the receiver; the valve ¢ will, therefore,
now be pressed downwards with a greater force than it is
pressed upwards, and consequently it will be tightly closed,
and the air in it will remain in that expanded or rarefied state
to which it was brought at the instant when the piston was at
its greatest height. As the descent of the piston is continued,
the air bencath it will gradually become more and more con-
densed, until at length it attains again the same density, and,
thercfore, elasticity, with the external air. When this is the
case, the valve B will be pressed equally from without and
within; as, however, the condensation is continued, by the still
further descent of the piston, this equality will cease, the pres-
sure from beneath will exceed that from above; the valve will
open, and the air will escape, and thus the piston will be
allowed to descend freely to the very bottom of the cylinder;
when the operation of exhaustion may be repeated by causing
it to ascend a second time, and thus we may theoretic.lly con-
tinue the rarefaction of the air in the receiver without any limit.
Practically, however, there is a limit opposed to this continual
exhaustion, by the weights of the valves.

334. It is clear that in order to lift either valve, the pres-
sure from bencath must cxceed that from above by a quantity
greater than the weight of the valve. Now, when the exhaus-
tion has been carried on to a very great degree, it may become,
and practically does become, impossible to bring the piston so
closely in contact with the bottom of the cylinder as to render
the elasticity of the air beneath it by this mcans greater than,
or even equal to, that of the external air.

There is a similar source of error arising from the weight of
the valve c. Thus, if there be any weight at all in the valves,
a limit is affixed to the possible exhaustion, and that limit is
more remote as this weight is less. The great points to be
attended to in the construction of an exhausting syringe are,
therefore, as will appear from what has been stated above, that
the weights of the valves should be the least possible, and that
when the piston is at its lowest point, the space which can be
occupied by the air beneath it may also be the least possible.

335. There are numerous contrivances for getting rid of
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these difficulties, and exteading.the lisnits €0 Wiioh sxbwiition -

may be carried., Of theae, one of the best is, My.« x
which we are enabled to do without one of ‘the valves o;u.
The contrivance by which this is effected, will
be understood by an inspection of the accom-
panying diagram. The piston A is here solid.
The top F of the cylinder is closed, and the
piston-rod moves in it through an air-tight collar.
An aperture K supplies & communication between
the upper part of the cylinder and the receiver,
and in the bottom of the cylinder is a valve
opening downwards.

Suppose the piston to be at the boltom of the
cylinder and to be forced up, a vacuum will thus
be produced Leneath it, or between the under
surface of the piston and the bottom of the cy-
linder, the valve E being closed by the pressure
of the external air; the ascent of the piston
having been continued until it has passed the aperture k, a
communication will be formed through the apertare between
this vacuum and the air contained in the receiver, and thus the
latter will be expanded over the space which it occupied before
together with that portion of the cylinder through which the
piston has passed, which when it has descended to the bottom,
will be the mhole cylinder. The piston being then made again
to descend, the communication between the air now contained
beneath it in the cylinder and the receiver, will, when it has
passed the aperture K, be cut off, and the density of the air in
the space Ac will continually increase, until at length it sur-
passes that of the external air; the valve E in the bottom of
the cylinder will then open, and the air beneath the piston will
escape. This operation may he repeated, an additional degrec
of exhaustion being produced at every stroke of the piston g,
until as before, the rarefaction is so great that the air contained
in the cylinder after the pision has ascended, being compressed
by its descent into that small space which cannot fail to exist
between its under surface and the bottom of the cylinder, is
yet not of sufficient elasticity to force down the valve. This
difficulty is sometimes in a measure removed by placing upon
this valve a rcceiver connected with another exhausting syringe,
by which a portion of the atmospheric pressure upon the under
surface of the valve may be removed. The solid piston is cer-
tainly, in every point of vicw, a great improvement on that
commonly used.




In the first place, the exhaustion may be rendered more
rapid by the use of two cylinders instead of one. In the next
place we may communicate motion to the piston so as to cause
the force we apply to act at a mechanical advantage, and lastly,
we may produce the exhaustion in a receiver capable of being
moved, so that the apparatus of any experiment which we may
wish to make in vacuo, may readily be introduced beneath it.

The following figure represents the section of a machine
containing all these properties, and called an

A1r Pume.

336. B and B’ are two cy-
linders, the tops of which are
closed, except that they admit
the piston-rods FE and ¥ E
through air-tight collars.

r and P’ are solid pistons
moveable in these cylinders, to
which they are fitted with great
accuracy, 8o as in every po-tion
to be air-tight. The rods of these
pistons terminate in racks EF
and E'F which are applied on
either side of the circumference
of a cog-wheel w, moveable by
means of a hand-winch ' w. At
the bottoms of the cylinders are
small apertures closed by valves
v and V', which open downwards.
Near their upper extremities
they communicate, by means of
orifices 0 and o in their sides,
with a system of tubes TT7
forming a communication with
the receiver r. This receiver is
commonly of glass, its shape is
that of a cylinder with a curved
top terminating by a ball of glass,
which answers the purpose of a
handle. Its lower portion is = vy
open, s0 as to form a sort of
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mouth, of which the edges are ground so as to be perfoctly
smooth, and in the same plane. This receiver rests upon a
horizontal plate, s/, of brass, whose surface is also ground with
great care 0 as to be accurately a plane. If the edges of the
receiver and the surface of the plate be thus ground se as to be
very accurately in the same plane, their contact will be air-
tight. The accuracy of the contact may be increased by smearing
tallow on the ground edge of the receiver.

These precautions being taken ; let us suppose the wheel to
be turned, ome of the pistome # will then be made te ascend,
and the other to descend. By the ascent of P a vacuum will
be produced in the cylimder beneath it; the valve v being
closed by the pressure of the external air. When » has passed
the aperture o, the air in the receiver will be made to communi-
cate with this vacuum; and thus to expand itself over the
cylinder B, in addition to the space which it before occupied.
The piston ¢’ will, in the mean time, have been forced to the
bottom of the cylinder 8" in which it moves. Let the wheel
then be turned in a direction opposite to its former motion.
The operation of exhaustion will now be performed by the
piston ¢’ as it was before by P, and, by turning the wheel thus
continually backwards and forwards, it may be carried on, until
the whole of the rarefied air contained in either cylinder, being,
when the piston is forced to the bottom of it, condensed into
the small space between the bottom of the piston, the bottom of
the cylinder, and the surface of the valve, has not sufficient
elasticity to open the valve or overcome the pressure of the
external air, although the tendency of the elasticity to over-
come that pressure is kere increased by the weight of the valve.
It is by this circumstance, that a limit is placed to the cxhaust-
ing power of the air pump. There is an ingenious modification
of it by Cuthbertson, in which the opening and shutting of the
valves is effected not by the condensation and rarefaction of the
included air, but mechanically by the motion of the piston ; by
this contrivance the limit of exhaustion is somewhat further
removed.

The figure on the next page represents an Air Pump con-
structed on the principles we have described in perspective. All
the parts of the instrument are represented in this drawing.

H L is the gauge; it is merely a glass tube, of which the
upper extremity communicates with the receiver, and the lower
is plunged in a cup of mercury. When the air in the receiver
is rarefied, its elastic force being diminished, that portion of
the surface of the mercury in the cup which is mitkin the tube
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sustains less pressure than that witkout it. The equilibrium is,
therefore, destroyed (Art. 251), and the mercury ascends in the
tube until the requisite equality of pressure is restored ; the
weight of the suspended -column of mercury and the elastic
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pressure of the air above it now equalling the pressure.of the
air without; that is, equalling the weight of the barometric
column. Hence, therefore, it follows, that if we diminish the
beight of the barometric column by the height of the column of
mercury suspended in the tube, the remainder will be the
height of a mercurial column which would be sustained by the
elasticity of the air in the receiver. .
. N 2
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ExrerimeNts wite THE AR Pume.

337. Tae state in which every thing around us exists, and
the manner in which every action is carried on, are more or less
influenced by the fact of our constant immersion in the atmo-
sphere. To become perfectly conscious of this, we have only to
remove the air by means of the machine which we have just
been describing, and observe the state in which the same bodies
exist, and the same things occur, in vacuo.

338. Thus a vessel which appears to us empty, is in reality
filled with a heavy fluid ; and when we weigh it, supposing our-
selves only to weigh the empty vessel, we weigh also the fluid
which it contains.

To convince ourselves of this, we have only to extract the
air from it, which, if it be in the form of a bottle the neck of
which is provided with a stop-cock, we may readily do, by
screwing this neck to the orifice x of the air pump, and ex-
tracting the air as from the receiver. If after this exhaustion,
the bottle be again weighed, it will be found to be considerably
lighter than before. Again, the air presses upon every portion
of the sides of a vessel, and yet does not crush it, however
fragile the material out of which it is constructed may be,
simply because it occupies the inside of the vessel as well as
the outside, and presses it outwards from within, with the same
force that it presses it inwards from without.

339. To render this evident, let two hollow hemispheres,
such as those represented in the figure, have their edges accu-
rately ground, and fitted to one another so as when pressed
together to render them air-tight. Let a tube communicate
with one of these, and admit of being screwed upon the orifice
k of the air pump. Let the air then be taken from within the
space enclosed by the hemispheres, and it will be found that
although before the air was thus extracted,
they admitted of being separated by the
slightest force applied to them, yet now the
pressure of the external air being counter-
balanced by no infernal pressure, it will hold
the two together so firmly, that supposing the
diameter of the sphere be six inches, a weight
of four hundred pounds will not be found
sufficient to separate them. This is the cele-
brated experiment of the Madgeburg Hemi-
. . _spheres, and is one of the earliest made with
the air pump. * Otto Guericke, the inventor of that instrument,
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constructed a pair of hemispheres one foot in diameter, requiring
a force of 1700 pounds to separate them. If the hemispheres
when exhausted, be removed from the orifice K of the pump,
a stop- cock in the tube having been first closed, so as to prevent
the return of the air into the space which they enclose, and if
they be then laid on the plate 71" of the pump and the glass
receiver placed over them; then by working the pump, and
thus removing the air from the outside as well as the inside of
the hemispheres, we shall very soon cause them again of their
own accord to fall asunder.

340. Not only, however, is the air a heavy fluid, but it is
an eclastic fluid, and tends perpetually to expand itself, and
thus to burst asunder any vessel in which it may be confined.
‘We are altogether unconscious of such a tendency, and per-
ceive none of its effects, because the outward pressure of the
air upon the vessel is just equal to this elastic tendency of the
contained air, and neutralizes it. To assure ourselves, however,
of the fact, we have only to take a phial containing nothing but
air, and cork it firmly, fixing down the cork by wire, or other-
wise, and rendering it air-tight, and place this phial of air under-
neath the receiver of the air pump; as long as it is surrounded
by the air in the receiver, its tendency to burst the sides of the
phial will not be apparent, but as soon as this is removed, it will
take effect, and the phial will be broken to atoms.

Tue Sucrion Pump.

341. A secrioN of the Common Suction Pump is repre-
sented in the accompanying figure.

ABD is a cylinder called the barrel, in
which a piston A is moveable by means of a
piston-rod A L, connected, above, with the
extremity of a lever called the brake or
pump-handle. In the piston is a valve
opening upwards as in the exhausting
syringe ; to which, indeed, the whole ap-
paratus bears a close resemblance both in
form and principle. E is a second valve
closing the bottom of the barrel, and open-
ing upmwards. From the bottom of the
barrel a tube ED, called the suction-tube,
passes into the well or other reservoir from
which water is to be raised.

Suppose the barrel and tube to contain
nothing but air, and let the piston A be put
in motion. It is evident, that on the prin-
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ciple of the syringe, a portien of the air will at each stroke be
exhausted from the tube BD. The elasticity of the air over the
susface of that portion of the water of the well whick is mithin
the tube, will then become less than that withont it. The equi-
Librium, which requires the pressure on the same horizontal
plane to be the same, will therefore be destroyed, and the water
will asecend in the tube, until by its weight, and the increased
elasticity of the air above it, now reduced into a less space, the
equality of pressure in the same plane is restored, and it finally
rests at some point » of the suction-tube. Another stroke of
the piston will produce a still further exhaustion, and again
destroy the equality of the pressure upon equal pertions of the
plane M D N, within and without the tube; the result will be a
still further elevation of the water, until at length it is brought
to the lop of the tube, and passes into the barrel.

Here a new operation of the pump takes place; on the de-
scent of the piston, the valve E closes, and the fluid is retained
in the barrel beneath it, occupying a portion of the space A K,
until, the piston continuing to descend, it is at length plunged
into the fluid, and the latter is made to pass through the valve
in it. It new occupies a portion of the barrel above the piston.
.And by the next ascent of the piston, it is raised with it to the
level of the spout , by which it is discharged; the space be-
neath the piston filling continually with water as it ascends, and
this water passing to its upper surface at its next descent, to be
then discharged as before.

If a perfect vacuum were formed by the action of the piston
above the surface of the water in the suction-tube; it could not
be raised to the top of it, and so into the barrel, provided that
the tube were more than thirty-four feet in length. For it is
raised by the pressure of the air on the surface of the water in
the well, and that pressure would, in our country, support a
column of mercury of only from twenty-eight to thirty inches in
length ; now such a column is equal in weight to one of some-
where about thirty-four feet of water. In reality, however,
however perfectly the piston and barrel may be constructed,
they will not produce a vacuum ; and no pump is so constructed
as to raise water so much as thirty feet. When it is raised
from a greater depth, as in mines, a series of pumps are used.
These each discharge the water into a reservoir, from which it
is taken by the next above it in the series.

S

_ Toe Lirtine Pume.
342. A B represents an open cylinder immersod vertically
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in the reservoir from which water is te be rmised. c» is a
pipe communicating with this cylinder
through which the water is to be
raised; at B, where these unite, is a
valve, opening wpwards. In the cylinder
a water-tight piston A is made to move
by the intervention of a frameDEFe@
to which the piston-rod A His fixed. In
the piston isa valve A, opening upwards.

The wayin which this pump works is
easily seen; by the ascent of the piston
the fluid above it in the cylinder is
forced from it through the valve at B, inte
the pipe c¢. As the piston descends the
water upon its inferior surface, pressed -
by the external air, from which pressure the water upon its
superior surface is free, raises its valve, and the water rushes
above it into the superior part of the cylinder, whilst the return
of the water from the forcing-tube ¢ B is prevented, by the
closing of the valve at B. The next ascent of the piston will
thus take place under the same circumstances as the first.

The force neeessary to move the piston is manifestly (Art.
252) equal to the weight of a vertical column of water of the
same area with itself, reaching from it to the height to which it
is raised.

Tue Forcineg Pume.

343. Tuis pump presents a combination of the suction and
lifting pumps; it raises water from a rescrvoir below its own
level, on the principle of the suction pump, and then raises it to
any height above that level, on the principle of the lifting pump.

B F 18 a shction tube passing into the reservoir from which
water is to be raised. A B is a vertical cylinder in which there
works a solid piston A. Between this
eylinder and the suction tube is a valve B,
opening upwards; and from the side of the
cylinder there passes a branch tube c p,
through which the water is to be forced to
the higher level, and which contains the
valve c. h

To understand the action of this pump
let the suction tube B F at first be supposed
to contain only air, and let the piston be
made to ascend; the air undernesath it in
the space B, and in the branch tube » ¢ be-
neath ¢, will then be erpanded ; and, its
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elasticity becoming less than that of the external air, the valve ¢
will be tightly closed, and the fluid will ascend in the suction
tule.

As the piston descends again, the valve B will close, and
when the air in cp B has acquired, by the contraction of the
space in which it is contained, a density, and, therefore, an
elasticity, greater than that of the external air, the valve ¢ will
be raised, a portion of air will be expelled, and the next ascent
will, therefore, produce a still further rarefaction and ascent of
the water in the suction tube, until at length it will find its
way through the valve B and into the space ¢ pB. When this
is once the case, the descent of the piston will force the water
from the cylinder A B into the tube ¢ b, and each future ascent
will bring more water into the cylinder, to be, like the last,
forced into the tube ¢ b, through its valve c, and to the level at
which the forcing-tube terminates. It is only at the descent of
the piston that water is made to ascend through the forcing-
tube. The flow of the water through that tube is, therefore,
intermitlent.

344. There is a very ingenious contrivance by which it
may be made to flow conlinually, although not always with the
same force. The arrangement of the suction tube, cylinder,
piston, &c., are precisely as before, but the branch forcing-tube
¢k is made to communicate immediately with an air-tight
reservoir, in the top of which is inserted the pipe through which
the water is ultimately to be raised, and which passes nearly to
the bottom of the reservoir. The water being forced, by the
action of the pump, into this reservoir, compresses the air in the
space above its surface, and thus renders it more elastic than the
external air. Hence the pressure upon that portion of the sur-
face of the fluid which is witkin the pipe becomes less than that
on an equal portion without it. ‘The equilibrium is, therefore,
destroyed (Art. 251), and the water made to ascend in the tube.
And by continually forcing more water into the reservoir the
compression of the air in it may be carried to any extent, and,
consequently, its elasticity and the elevation of the water in the
tube.

Now the compressed air in the reservoir will tend to expand
itself incessantly, and not only at the moment when it is under-
going compression by influx of the water from the cylinder of
the pump; thus water will be made continually to flow through
the forcing tube. On this principle is constructed

Tae Fire Excine
345. A secrion of this engine is shown in the figure, It
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consists of two forcing pumps A D, BE, whose pistons 4, B, are
worked alternately by the same
lever, to whose extremities their
rods are attached. These forcing
pumps communicate with the same
air vessel H, from which there
passes a metal tube 1K, terminated
by a flexible tube of leather, or
hose, as it is termed. By the in-
tervention of this tube the water
forced into the air vessel by the
pumps, and continually pressed
from thence into the tube, by the
elasticity of the air compressed
above it, is applied in spots remote from the engine itself, and at
considerable distance above the level at which itacts. The great
objection to the use of a reservoir of the kind described above,
called an air vessel, is this, that by reason of the great force by
which the air is pressed upon the water, it is made to be absorbed
by it, so that the air, by degrees, passes away from the reservoir
with the water, and the latter is_filled with water.

346. There is a very ingenious pump which gives a con-
tinued stream without the aid of the air vessel, and is, therefore,
free from the objection we have just stated.

The solid piston A works in a cylinder which communicates
with a system of tubes such as is represented in the figure. b is
the suction tube, and c the tube through which water is to be
forced. There are valves at P, q, R, 8, opening as shown by the
figure. Suppose the whole filled with water, and let the piston
be in the act of ascending; wunderneath
it the pressure will be diminished, and
above it increased; the valves at s and
Q will, therefore, close, and the valves
P and R open. The atmospheric pres-
sure will cause water to ascend through
the suction tube, and by the valve p
into the cylinder beneath the piston;
whilst the water above the piston will, at
the same time, be forced through the valve
R up the tube c.

On the descent of the piston again, the
valves R and P will close, and s and q will
open. The tendency of the piston to pro-
duce a vacuum above it will now, as be-
fore, cause the water to ascend through the
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suction tube, but its direction will not now be through the valve s,
but up the tube p s, along s B, and into the cylinder above the
piston. Again, the water beneath the piston will be driven
downwards and along the channel pq, through the valve q, up
the channel q R, and so into the forcing tube. Thus the pump
will, at one and the same instant, and at every instant, act as
a foreing and a lifting pump, and the water will fiow from it
continually, and always with the same force. This is a very
beautiful contrivance.



APPENDIX.

THE first ten propositions of this Appendix contain the
Mathematical Demonstration of the following Statical Prin-
ciples.—1. The Parallelogram of Forces.—2. The Equality
of Moments.—3. The Theory of Parallel Forces.

The principle of the parallelogram of forces is that on which
the whole science of Statics has in the preceding pages been
made to depend. It is clearly its legitimate basis, inasmuch as
it establishes that relation of unequal forces which is necessary
to their equilibrium in the simplest case under which the equili-
brium of unequal forces is possible, viz., that of three forces
acting upon a point.

The principle of the parallelogram of forces is easily demon-
strated experimentally, "We have, therefore, found no difficulty
in laying it down as a jirst principle in an inquiry into the
general conditions of equilibrium professing to be founded upon
experimeni. 1In respect, however, to a theoretical investigation
of the theory of Statics, the case is very different.

The direct investigation of the principle of the parallelogram
of forces on mathematical principles offers difficulties which
would probably at the very outset discourage a large portion of
those readers for whose instruction this work is especially
intended, and to whom some knowledge of the mathematical
principles of Statics will be found of the greatest practical
value.

Under these circumstances it is judged expedient not to com-
mence the following mathematical investigation of the theory
of Statics, with a demonstration of the parallelogram of forces,
but to arrive at the demonstration of that principle through the
medium of the subordinate demonstration of the equilibrium of
three parallel forces acting upon a rigid body, anywhere in the
same plane; which case of equilibrium would in the proper
order of investigation, be made to depend upon the preceding
case.
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ProrosiTiON 1.
THE resultant of two parallel forces acting upon a rigid
body, passes through a point between them, about which
their moments (Art. 35) are equal.

Let P and r’ represent any two parallel forces acting upon

the points p and »’ of a rigid body. Now the position of the

resultant of the forces p and p’

in reference to either of them,

manifestly is the same in what-

ever direction those forces may

be applied, provided they re-

main at the same distance, and

L --3 be always parallel to one an-

s e | other. Suppose them, then, to

be turned round, so as to be in a vertical direction ; draw any line

MM perpendicular to the directions of both forces, and meeting
them in M and M.

Now the forces P and p’ produce the same effect as though
they were applied at M and " (Art. 3). Suppose them to be
applied at those points.

Again, whatever the forces p and ¥’ may be, two weights
may be taken equivalent to them. Let two such weights be
taken, and let them be formed into two uniform rods AB and B¢
precisely of the same thickness throughout, and of such lengths
that being suspended at » and M" from their middle points,
their adjacent extremities shall meet in B.

The rods A B and Bc being suspended from their middle
points, will clearly hang in a lhorizontal position, for there
is no reason why either should incline more to one side than
the other, The line A Bc is, therefore, a horizontal siraight
line.

Now it has been shown (Art. 159) that whatever conditions
of equilibrium obtain in a rigid and continuous system, the same
must obtain in the equilibriwn of the same system when its form
is made to admit of variation; together with such other condi-
tions as arise out of the nature of the variation to which it is
subjected, and conversely.

Hence, therefore, whatever conditions would exist if the two
rods A B and B ¢ were joined at B, so as to form one continuous
rod, exist also now that they are separate,

Now if A1 and B ¢ formed one continuous rod, the resultant
of their weights would manifestly pass through the middle
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point R of that rod, since the rod would balance on its middle
point. Hence, therefore, it follows, that also in the present
separate state of the two rods, the resultant of their weights
passes through the point R, which is the bisection of the line 4 c.

Now if we divide the weight of A B by the number of units
in its length, we shall get the weight of each unit. But the
weight of A B equals the force p,

P . .
Y weight of each unit of A B;

similarly Bic = weight of each unit of Bc.

But the rods are both of the same thickness; therefore, each
unit of the one is of the same weight with each unit of the
other.

P »

‘AB  BC
“ P X BC=FP X AB.
Nowrec= 1% ac.
Also MM = 1 ac.
S RC=MM;
. taking away r M' from both,
MR=McCc= }BC;
and similarly,
RA=MNM;
and taking away R M from both
MR=AM=72AB;
" 2MR = B,
and 2M'R = AB;
.'.P X2MR=P X2 MR;
.PXMR =P XM R.

That is, the pomt R, through which the resultant of the two
forces p and »’ passes, is such that the moments 'of these forces
about that point are equal (see Art. 45).

The above proof applies to every possible case of parallel
forces.

ProrosiTioN 2.

Tur resultant of two forces, whose directions are oblique
to one another, passes through a point between them about
which their moments are equal.

Let » and @ be any two forces, acting obliquely in the same
plane. Their resultant » passes through a point s about which
their moments are equal. From s draw the perpendiculars s x
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and 5 mupon the directionsof P and ¢ ; and takes ' in the same
straight line with sx, andequal
tosN. At N apply the forces

B ¢ and q”in opposite directions,
perpendicular to s N’ and equal

to one another. These equal
and opposite forces will not in

M any way alter the conditions of

the equilibrium of the forces p

and q,and the direction of their

resultant will remain as before

(see note, page 43).

Now the forces P, q, R, Q’, @” being in equilibrium, it is
evident that the resultant of , @” and R passes through the
same point with the resultant of p and@’. But the resultant of
Q, ” and R manifestly passes through s. For the two first @
and Q” are equal ; their resultant bisects, therefore, the angle at
which they intersect; but a line bisecting this angle passes
through s; the resultant of @ and Q" passes, therefore, through
8; and R passes through s; therefore the resultant of @, @” and
R passes through s.

From the above, then, it follows that the resultant of the
parallel forces @’ and P passes through s. By the last proposi-
tion, therefore,

PXsM=a' X sN';
but @ = q and s¥ = s8N,
S PXSM=Q X SN.
Therefore the moments of the forces P and q about s are equal.

ProrosiTION 3.

IF in the direction of the resultant
g of any two forces p and q, acting
\\. upon a point R, we take any point s,
9L\ ! and complete a parallelogram Pras,
*, \ ;  of which sr is the diagonal, then P r
f and QR are, to one another, in the
\\ p  Same ratio as the forces p and@. For

XN ., \;\ ,,"\: S A SPR=—A SQR;

Soe.., IR ) :‘ -ﬁ. x s_n-::ﬁ x m
but by last prop.» X 5M = @ X 8%,
QR

. dividing the equations—l:;—::—;
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P PR

e = —

e QR
That is, Pr and q B are in the ratio of the forces p and q.

ProrosiTiON 4.

Tue converse of the last proposition is manifestly true.
That is, if P and Q » be taken in the ratio of the forces p
and @, and a parellelogram P s R completed, then its
diagonal s r will be in the direction of the resultant of the
forces p and Q.

ProposiTION 5.

Not only is the resultant of p and q represented in di-
rection by s R, but also in magnitude.

For complete the pa- Bl........R r

rallelogram s r ¥ @, of T N \
which R q is the diagonal
and s one of the sides.
Substitute for the force »’
supposed to act in the di-
rection & P, another equal
force ¢’ acting in P'R. The
equilibrium will then manifestly remain under the same circum-
stances as before.

Thus, then, the forces ¢’and q, together with the resultant r,
which acts in the direction R s, are in equilibrium. q is, there-
fore, the resultant of P’ and . And rq is the diagonal of the
parallelogram sR ¥ q; therefore, by Prop. 3, P» and sr are
proportional to # and R ; or, in other words, on whatever scale
¥ is represented in magnitude by P R, on the same scale r will
be represented by Rs. But P'R is equal to s gq—that is, to PR}
it represents, therefore, ’ in magnitude on the same scale on
which & p represents p. On the same scale, therefore, on which

pand q are represented in magnitude by R and R g, R is repre-
sented by s &,

Lemua,

If from any point, lines be drawn to the extremities of
adjacent sides, and to the extremities of the diagonal of a paral-
lelogram, 80 as to form three triangles having the adjacent
sides and the diagonal respectively for their bases* ; then the
triangle, having the diagonal for its base, shall equal the sum

* This lemma is true for triangles having for their bases lines anywhere
situated in P R, @ R and s B produced, and respectively egwa! to those lines.
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or difference of the other two, according as the point lies
within the vertical angles formed by the adjacent sides of the
parallelogram when produced either way, or without these angles.
Let rras be a parallelogram
A\ and o any point, which we will first
AR suppose to be without the angles
' contained by PR and QR, or these
lines produced either way.
Join the point o with these points
P, q and 5. Then
\s A08R=AO0PR+ A0QR. Join
“. , oRrand draw o i perpendicular to
" OR, and P M, @ N, 8L each parallel
tooR. Then |
PR = Q8;
SeOM = NL;
S 0L = O0M+ON;
SLALOLXOR=}O0OMXOR+] ONXOR;
S AOBR = AOPR+ AOQR.
Next let the point o lie within one of the angles formed by
re and RQ produced. The same construction being made as
before, it appears that

PSS = RQ;
JoML=—ON;
SHLO=MO—ON:

5 }L0.0R=1M0.0R=-}N0.0R;
S A0SR = AOPR— AOQR*

Therefore, generally,
the triangle upon the
diagonal equals the sum
or difference of the tri-
angles upon the sides
according as the point
is without or within the
vertical angles formed
by the sides produced
either way.

Ifprand R be in
the directions of two
forces both acting to-
wards or from R, it is

* The same demonstration would have applied to the case in which
» lay within the angle contained by r r and @ R produced towards ¢’ and Q.
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evident that according as o lies without or within the angles
P R Q and P'R ¢/, the two forces will tend to turn the system of
which they form a part, in the same direction or in opposite
directions about Q.

Applied, then, to the case of the parallelogram of forces,
this lemma gives us the following important property.

ProrosiTIOoN 6.

ANY two component forces and their resultant, being
represented in magnitude and direction by lines, and any
point being taken and made the common vertex of three
triangles, having those lines for their bases; then the tri-
angle, having for its base the resultant force, will equal
the sum or difference of the triangles, having for their
bases the component forces, according as these last act to
turn the system in the same, or in opposite directions, -
about the point.

ProrosiTiON 7.

THE area of each of the triangles described in the last
proposition is equal to one-half the moment of the force
which forms its base. It follows, then, that in the case of
three forces in equilibrium, the moment of the resultang
about any point is equal to the sum, or difference, of the
moments of the components.

ProrposiTiOoN 8.

TrE moment of the resultant of any number of forces,
acting in the same plane, is equal to the sum of the
moments of the components ; the point about which the
moments are measured being any whatever, and the mo-
ments of those forces being taken negatively, which tend
to turn the system in an opposite direction from the rest.

Let pp, P, p,, &c. be the
forces of the system, and o y
any point about which the
moments are measured. Let S
R, be the resultant of p and Ry

E
P EI h A
R, that of R, and p, 3 ri R
R, 5 R, 5 P .0 §
4

R ” R, 5 P
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Then: by the last proposition,
moment of B, = mt. P 4+ mb P *

» E = mt.B +mt. P,

. R = mt. R, +mt. B,

» R, = mi.R, +mt. P,

+c0. = <co.

2 R, = mt. R, +P,
Therefore adding these equations together and striking out
similar terms on the two sides we get

moment R, = mt.r+4mt. p, +mt. p,+..+mt. p,.

R, is manifestly the resultant of all the forees of the system.
Henee, therefore, it follows that the moment of the resultant
force is equal to the sum of the moments of the components, in
all cases.

If the forces be in equilibrium their resultant equals nothing ;
the sum of their moments about any point, therefore, equals
nothing.

The demonstration of this proposition applies to every pos-
sible case of forces in the same plane, and, therefore, to the
case of parallel forces. But in this case the same line drawn
from the point about which the moments are measured, is per-
pendicular to all the forces of the system.

Thus, in the fig. Art. 45, the line Mmm, is perpendicular to
the direetions of all the forces p,, P, P, P,. So that, in the
case of parallel forces, we have only to draw a line from the
point about which the moments are measured, perpendicular to
any one of the forces of the system ; we shall then obtain the
moment of each force by multiplying it by its distance from the
point measured on this line.

Also, if r be the resultant of all the forces, and it intersect
the line M m  produced in a point which we call », we have, by
the proposition.

._'Mr='r, XMm, 4P, XMW, +P X MM, —P, XRMM, —P, X M@,
R

In which expression the moments of p, and p, are taken nega-
tively, because they tend to turn the system in a contrary way
from the rest.

Also, in the case of parallel forees, the resultant n is equal
to the sum of the components (Art. 46); it being here also
observed that those must be taken negatively, whose teadency

* The moments of all’ the forces which tend to turn the system in an
opposite direction are here supposed to be taken negatively.
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would, when all were applied at x, be opposite to thak of the
rest. Thus,
R=P +P,+P —P,+&c.
P, XMm|+P,XMmg+PBXMma—P‘XMm‘—P,,XL-Tm;
P +ry+P;—P —P;

Thus, the precise direction of the resultant R of any number
of parallel forces, in the same plane, may be ascertained.

We may by this means readily find the CENTRE OF GRAVITY
of any number of bodies situated in the same plane.

For the centre of gravity is a point through which the re-
sultant of the weights of the parts of the body passes, in what-
ever position it is placed.

Now, as we alter the position of the body, we alter the
directions of the weights of its parts with respect to it, or through
it, without altering the amount of those weights.

The case is, therefore, that of a system of parallel forces
acting upon a body which alter their directions (still, however,

‘remaining parallel,) without altering their amounts or points of
application.

In this case it has been shown (Art. 51) that the resultant
passes always through the same point. To find the position of
that point we have, therefore, only to find {wo directions of the
resultant ; it will lie in their intersection.

o Mr=

ProposITIiON 9.

TuE positions of the centre of gravity of any number
of heavy bodies, situated in the same plane, may be found
by supposing their weights to act in any two different
directions in respect to the parts of the body, and finding
their resultants in the two cases. It will lie in the inter-
seetion of the resultants.

Suppose the parallel forces p,, Py, &c., to be applied at the
points M,, M,, &c., in the same plane, and from amy point o
draw o x perpendicular to their directions. Then the direction
of their resultant R may be found by the formula.

P, 6;:7+P,om,+&c.

0N e

Now let the directions of all the forces be turned, so as to
be at right angles to their former directions. And draw oy
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perpendicular to o x, it will, therefore, be perpendicular to the
forces in their new directions p,” M,, Py’ Mg, &c.

% ¢
é”’.-—-)é'u. B‘ » “é‘ Ji
Lk -

PR S — -
B i, !
sty ¢

i

N

. Hence the position of the resultant R/, in this direction of
the forces, is determined by the formula
ON = P, 6;171 4Pz 0y -l—&c.
P, +r,+&c.
Now having thus found the values of o~ and o N’ we know
the position of the point ¢ where the resultants R and R’ inter-
sect. This point is the centre of gravity.

om/=m,m om/=M;m; & ON=NG,

NG =P M7 +P, My mo P, M, M 4. . -
P‘ +P2+Pg+o .o
P, M, m, 4 Pe My iy’ 4 Py Mg g 4. o
P +P+Pat. ..

Hence the distance N @ of the centre of gravity, or any num-
ber of bodies in the same plane, from any line o z in that plane,
is obtained by taking the sum of the products of all the different
bodies composing the system, each multiplied by its distance
from the line, and dividing that sum by the sum of the bodies
themselves.

Now there is a property precisely analogous to this in re-
spect to the centre of gravity of any number of bodies not in the
same plane.

similarly N6 =

ProrosiTiON 10.

Ir there be any number of bodies, anywhere situated
in space, the distance of their centre of gravity from any
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planeis equal to the sum of the products obtained by mul-
tiplying each body by its distance from that plane, divided
by the sum of the bodies.

Let p, p; Py &c., be bodies anywhere situated in space, and
yox any plane. Draw through any two of the bodies ¢, and
P, and their centre of gravity ¢,, perpendiculars ». p, », p,, and
G, g« upon the plane

Then since p, P,, and the line p,, p,, are in the same plane
P. p, Py p, it follows, by the last proposition, that

G g P t+P==P I p +P.P D,
Suppose the bodies p, and p, to be collected in their centre
of gravity 6,, and find @, the common centre of gravity of these

bodies, thus collected, and p,.
Therefore precisely as in the last case, it appears that since

@, and p,, and the line g, p,, are in the same plane,
56,8, P +P,+P =P +P ‘G L =PP .
[herefore substituting from the preceding equation,
6,8t HR=REPHEE AR,
And the same process of reasoning may be continued to any
number of bodies ; so that if 6 g represent the distance of the
centre of the whole system from the plane y o x, then
P, 1‘;,7,+Pw,pi+r.r,p.+. ..
Pi+Pe+Py+4. ..

The plane y o x is any plane whatever. 'We may, therefore,

by the means stated above, find the distance of the centre of

gravity from each of the three planes yox, z0x, 20y, These
three distances will determine its exact position.

Gg=
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Ir, instead of a system composed of detached bodies in the
same plane, we wish to determine the centre of gravity of one
continuous heavy body, all the parts-of which are i the same
plane, we may apply the follewing methed.

‘[ake wuy two lines ox end oy at vight angles to one
another, and divide one of them oz into paris m, s, w, m,,
m,m,, equal to one another. Draw lines m,p, m,p, &c-,
dividing the figure into as many distinct parts or elements m, ps,
m, p,, &. Then if the lines mm,, &e., be very small, m, p,,
m, p, may be considered as not differing, each by any appreci-
able quantity, from a rectangle. Each may, therefore, be con-
sidered to have its centre of gravity in the centre of its height.
Bisect, therefore, m, p,, m, p, &c., in g, g &c., and these
points may be considered as the respective centres of gravity of
the elements. In these points, therefore, the weights of the
respective elements may be supposed to be collected.

H
|
H

a3

T
Now the masses, and, therefore, the weights of the elements,
are represeated by the products

m, My R Py My Mg Mg X P, My, &e,
1f, therefore, these weights be supposed to act perpendicular
to 0z, and G be the centre of gravity, we have

—_— —— — — — —

oN':::."m" P, 0, O m iy May P Wy, OM,+. . o
my om0y Mgy Py Mt
or since m m, =, my=m, m,= &c.

Py 0-714'1’1’":0 0—;': +...
P ml+p,m.+. .o

Again, supposing the weights of the elements to act perpen-
dicular to oy,

S ON=
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- oN=""P m.on +m m, .p,m . OR+..

My Mg o Pr My 422, My o Pe meteoe
‘Whence observing that
on=m g =4mp,
0 ny=m, g, =4m, Py &e.
also m, m,=m, m =&e.
we obtain

] N’=1]’I ml'+"f mf“"’n "'s’ Fees
gpi me 4-p.my 4+ Py 4.
This last farnishes an easy practical rule for finding the centre
of gravity of an area of any form, however irregular; and one
easily recollected.

Divide it as above, into elements, by equidistant lines, calted
ordinates, perpendicular to a given axis. Take the sum of the
squares of those ordinates, and divide it by their sum. Half
the quotient will be the distance of the centre of gravity from
the axis

If the forces be now supposed to act perpendicularly to any
other axis at right angles to the former, the distance of the
centre of gravity from thés axis may also be found. And thus
its actual position will be ascertained.

O~ tHE DirECTION OF THE RESISTANCE OF A SURFACE.
(Note on Art. 72.)
LEr the coefficient of friction be represented by f.
Let £pMp'= 0 (see fig. page 43. Art. 72.)
The force P M or P is equivalent to @ M and ¢/ M.
Now oM = p M sin. 8
P'M =P M cos, §
Therefore resolved in the directions of qM and ¥’ M, the values
of p are p sin. 0, and P cos. 6.

Now the power of resistance produced by friction is equal to
the product of the coefficient of friction f; by the perpendicular
force in »' m. It, therefore, equals f'p cos. 6.

Also the force tending to move the body is the force in the
direction of Q M, and equals

psin. 6,
Therefore the body will move, or not, according as
. r
psin. 0 {i;snoot}>“f P cos. 0,
or according as
. 0 {5 T}> S

is not
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Let r be the angle whose tangent is f. Therefore the body will
move, or not, according as
i80r) o .
tan. @ {is not}> tan. F;
or according as
is or
0 {is not}>" ¥

¥ is called the limiting angle of resistance, the body will,
therefore, rest so long as the direction of p is not inclined to the
vertical, at an angle greater than r.

The experimental fact that the friction is always (for the
same bodies,) the same fraction of the perpendicular pressure,
although a very near approximation to the true law of friction,
cannot be asserted accurately to enunciate that law.

It appears, from the experiments of Mr. Rennie, that the
ratio of the friction to the perpendicular pressure is somewhat
greater for high, than for low, pressures. This variation from
the law of friction does not, however, appear to be so consider-
able as to claim for itself a place in the discussion of the
question until the pressure has exceeded a certain limit.
Coulomb found that under pressures, varying from 400 to
1300 kilograms, the coefficient of friction for oak upon oak,
varied only from 3 34 to ¢ 1.

The true law of friction will, perhaps, best be expressed by
considering the coefficient of friction, a function of the perpen-
dicular pressure, which being expanded has for the coefficients
of its terms after the first, exceeding small quantities.

THE INCLINED PLANE, (Note 0w Hrt. 80.)

Ler the inclination of p q to the vertical be represented by 6
Ler ¢=the elevation ¢ A B of the plane;
r=the limiting angle of resistance.
Then, when the mass » is upon the point of slipping down-
wards, since the angle which G ¢ makes with the perpendicular
to A ¢ (Art. 80) equals the angle r, and that the angle which
¢ H makes with the perpendicular to A ¢, equals ¢; therefore the
angle c a d, which is, in this case, the difference of these angles,
equals ¢ —~F.
Similerly, when the mass m is upon the point of slipping
upwards, as in fig. page 49, the angle ¢ a d equals ¢+ .
Therefore, generally, ‘
Zcad=(tt F),
the sign * being taken according as the mass is supposed to be
upon the point of slipping upwards or downwards.
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Nowinadabdd
ab sin.adb
ad” sin.abd
also adb=cad = (¢ + F)
abd=m—cab=m— (. + r+0);
and also Art, 80, a b and a d represent the weights of » and .
N _ sin. (¢ £ F)
M " sin. (¢ + F+0)
sin. (¢ + ¥)
sin. (¢ + F46)°
db sin. 6
ad”sin. L+ F+0)
And d 6 and a d represent the resistance s and the weight .
. M sin. 0
“sin. (0 £ ¥4+ 6)
If we would cause the force N to act in such a direction that
it may be the least possible force which will give motion to the
body ; it is clear that we must take € so that sin. (¢ + ¥ 4 6).

may be the greatest possible; or in other words € must he such
that

.
.o

SN=M

Also

.

t+F4+ 0=

oy -

T
or=——-txF
5 LT

The two states in which M is upon the point of slipping
upwards and downwards, are said to be its two states bordering
upon motion.

If we suppose the direction of the resistance to be perpendi-
cular to the surface of the plane, as in the case of the carriage
wheel (Art. 83), then we must, in the expressions for N and 8
make F = o and we shall have

M sin. ¢

Ne=—=——Fa—

sin. (0 + 1)
_ Msin 6

Tsin. (0 +0)

If the force N act in a direction parallel to the plare
=%—t and 0-!-&:%
SON = Msin. ¢
8 = M sin, 6.
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Tue following demonstration of the theory of the wedge
will probably be better understood than that given in the text.
(page 67.) It will further serve, at once, as an useful illustra-
tion and a verification of the principle of least pressure. .

Let » be the force acting upon the back of the wedge, q
and Q' the resistances upon its sides. Now,
by the principle of least pressure, @ and Q
should be the least possible subject to the con-
dition that their resultant shall be p. It is
manifest that to satisfy this condition these
forces must have a direction parallel to the
direction of P, or one inclined as little as pos-
sible to that direction.

If, therefore, the surfaces in contact at
Q and Q' are such as are capable of supplying
resistancas at those points parallel to r, then
the system will be one of parallel forces, and
the points @ and Q being similarly situated
with respect to P A, cach will sustain one-half of the force p.
But if, by reason of the nalure of the surfuces in contact at
and @/, these be incapable of supplying resistance in directions
,parallel to pa, then will the directions of @ and Q" be those
which the surfaces -will supply nearest to the direction of p a.

Now, as is shown (Art. 72), there is a certain direction
between which and the perpendicular to the surface at either
point, if any force be applied, the surfaces will supply a resist-
ance opposite to that force, but if the force be applied further
from the perpendicular than this direction, then no equal resist-
ance will be afforded by the surfaces in an opposite direction.
The angle which this direction makes with the perpendicular i is
called the limiting angle of resistance. The resistances g and q’
will manifestly have their directions inclined to p A at the least
possible angles, when they are actually in the directions spoken
of above, and make each, with the perpendicular at its point of
application, an angle equal to the limiting angle of resistance.
Such, then, by the principle of least pressure, are the actual di-
rections of the pressure at @ and Q.

Now let us consider what are the conditions of the equili-
brium resulting from this conclusion.

Let F = the limiting angle of resistance,
2 ¢ = the angle A of the wedge.
The angle which @ makes with the side of the wedge is
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——F.

Hence, therefore, the angle Qm A, which makes it with p 4, is
KL
5 .

Hence, therefore, the resolved part of @ in the direction PAis
Q. sin. (F + 1),
and the wedge being symmetrical about p A, the resolved part
of @ is the same. Ilence
2qsin. (F+:) =rp;
. — r
© = Fain (o)

T
If F+L—-*§',
Q=%P.

This is the case spoken of before, in which the directions of
q and @ are parallel.

Now the above results may be arrived at by another and an
entirely independent process of reasoning.

Let ' and »” each equal! one-half of r, and let them be
applied immediately above the points @ and @'; they may then
be made to replace P without in the least altering the circum-
stances of the cquilibrium. Now if the direction of »'q be
within the limits of the resistance of the surfaces at q, the
pressure P’ will be wholly sustained by that resistance, and the
direction of the force @ will be in the same straight line with
P’ q; the wedge sustaining no pressure whatever laterally or in
a direction perpendicular to P A.  But if the direction of ' @ be
wilkout the limits of the resistance at @, then some other force
must be supplied at Q, in order to maintain the equilibrium.
That force can only result from the action of the force p” at Q.
It acts, therefore, in the line @’ q, and, therefore, in a direction
perpendicular to pA. Also, this force, resulting from the ten-
dency of the wedge to motion on the point q’, is only just
equal to that tendency, or in other words, it is equal to the
least force which would keep that point at rest. Since, then,
it is equal to the least force which would keep the point Q" at
rest, it is also equal to the least force which would keep the
point Q at rest: now the least force which would keep q at rest
is manifestly that which will bring the direction of the resist-
ance at  just within the limiting angle of resistance at that
point. Thus, then, it appears that the directions of @ and @’

02
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are inclined to the perpendiculars at those points at angles each
of them equal to the limiting angle of resistance. This is pre-
cisely the result which is given us at once, by the principle
of least pressure.

Tuc Bavance. (Note on Art. 103.)

To determine the mathematical conditions of the equilibrium
of the balance,

Let the weights in the scale-pans of the balance differ by
the small quantity m, one being represented by mand the other
by M 4 m.

Since, then, the resultant of these forces passes through K,
we have (Art. 50,)

M.sK=M+m.¥§K,

orM.sK4+KK = M+m.sK —KK.
Let sk = 8K = «;

SM.A+EE =M+ma—KK;

SEK L2M4m=ma;

— ma

T T 2M4m.

Now if the inclination of s&" to the horizon equal ¢ it is.
casily seen that,

Fm=KX cos.t + FK sin.t
The sign + or — being taken according as k' is above or

Lelow ¥,
Let FX = k,
andrac =rh;
M @ cos. ¢
M+ m
also Fn ksin. ¢.
Let the weight of the beam = B3

SHFm = + ksine

SFMXZMAm=FnX8B;
comacos.s + 2M4mhksin e =Bhsin, o
ma
BRF 2M+m., k.
From this expression it appears that the deflexion ¢ of the

beam, produced by a given difference m in the weights con-
tained in the scale-pans, is greater as the quantity

Stan, b=
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Bhx2Mm4+mk
is less.

Now this deflexion is a measure of the sensibility of the
balance.

If, therefore, as in the figure, the linc 8§’ joining the points
of suspension be above the fulecrum, this sensibility is, the
greatest where the two terms of the above expression approach
most nearly to an equality. This approach to an equality may
be brought about by diminishing both terms of the expression
continually ; for if the two quantities themselves be exceeding
small, their difference must evidently be exceeding small.

For weighing, then, the same weight M, the sensiblity of
the balance is greater as k is less, and as B and %, one or both
of them, are less. That is, we may increase the scnsibility of
the balance by bringing the line s s’ which joins the points of
suspension continually nearer to the fulerum r, provided that
at the same time we diminish continually either the weight B of
the beam, or the distance ra of its centre of gravity g, from the
fulerum .

Or whatever may be the form and magnitude of the beam,
and the position of the fulcrum, we may increase the sensibility
to any extent by so taking the position of the points of suspen-
sion that the difference of

Bhand 2M +mk

may be the least possible, or £ most nearly equal to

2 M4 m.

The line joining the points of suspension is commonly made
to pass accurately ifrough the fulerum, or only so little above
it, as to allow for the deflexion of the beam. There evidently
are cases where it would be advantageous to place it considerably
above it.

The great praciical difficulty encountered in giving extreme
sensibility to the balance is this, that as we increase the sen-
sibility of the instrument we diminish the rapidity of its vibra-
tions.

O~ taE FricrioN oF AN Axte. (Nole on Art. 110.)

Surrose the force p to be the resultant of two other parallel
forces @ and @’ acting at the extremities of a lever, or at the
circumferences of two wheels having the common axis FEp
shown in the figure.
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Let ¢ & = r, and let the arms of the lever be represented by
aand . Also let ,
. LFOE=/PEC=0.
Now in the case supposed P = q + @/, and the perpendicular
distance from ¢, at which it acts, is
r sin. 0;
S QA+ (@+Q)rsin.f=q'a’;
. ,a@ F rsin. 8
ne=a g + rsin. 6°
The upper or lower sign being taken, according as @” a’ or g a
is the greater.
When the lever is in the state immediately bordering upon
motion, € equals the limiting angle of friction (Art. 110.)
,a0 T rsin.p
a+ rsin ¥
The upper or lower sign being taken according as @’ or @ is about
to preponderate.
Let q, be the value of g, on the hypothesis that there is no
friction, or that F = o,

S.Q=Q

. Q’(l’
-.Q1= -
a
! - , ’
a 781 F a
Q—Q; = Q'——+-—.— —q —
a + rsin.F a

_xae'r(ata)sinr
a(a+ rsin¥) ’
which expression represents (taking the upper sign) the quantity
by which @, may be diminished without giving motion to the
system ; and taking the lower sign it represents the quantity by
which it must be increased to give motion to it. On the whole,
then, the above expression represents the effect of the friction of
an axis.

If we suppose both the forces g and @’ to act at equal dis-
tances from the axis as in the pulley,

F2q rsin.p
(a + rsin.¥)’

In the above we have supposed the two forces tending to turn
the system about its axis to be always parallel to one another,
and at perpendicular distances ¢ and a’ from the axis. Where
the forces do not remain parallel, as in the case of the windiass,

capstan, &c., the formula given above, for the effect of friction,
is not applicable.

Q- =
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" In the case of the windlass and capstan thé effect of the forces
p and Q(see fig. Art. 117,) is the same as though they acted in
the circumferences of two concentric circles A P and BQ, whose
common centre is that of the axis 0. If we suppose no friction
to exist, the resultant of the forces
pand.q will pass through ¢. Alsp,
cp and ¢ @ being inversely as the
forces p and q, ¢ g will represent p on
the same scale on which ¢ p repre-
sents @; and these lines are inclined
to one another precisely as they would
be if they were perpendicular to the
directions of the forces which they
respectively represent—that is, as if
cqQ were perpendicular to r, and cp
to @. llence (see note, page 109),
the resultant of p and Q isrepresented
in magnitude by P @. To determine
the direction of the resultant of p and
Q, we have only to produce their directions to meet in R, and
join cr. The resultant acts through both the points ¢ and =,
and, therefore, in the right line ¢ r.

Itisevident that the direction and magnitude of this resultant
vary with the relative positions of » and . It is grealest when
pc and gc are in the same right line, being then equal to their
sum and parallel to both of them. It is least when p is in the
line @ ® and coincides with »’. In this case it is represented in
magnitude by P’ @, and equals

Va =
If we take into account the friction of the axis, it is evident
that motion cannot ensue until the resultant = » of p and ¢
cuts the circumference of the axis at such a point » that the
angle it malkes with ¢ r may exceed the limiting angle of re-
sistance.

Ox tHE ConprrioNs oF THE EquiLisrivM oF Toorsrp WiEELs,
TAKING INTO ACCOUNT THE FricrionN oF TnE Teeri: (Note
on Art. 125.)

Let ¢ be the length of the teeth on either wheel, @ and a
the radii of the wheels.
" Join the points c and ¢’ with @. Then, when motion is
about to ensue—the wheel whose centre is at ¢ moving the
other—the angle which o' makes, with the perpendicular
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to ¢’ @, equals the limiting angle of resistance r. But this angle
also equals the angle ¢’ &',  Therefore, when motion is about
to ensue under these circumstances,

oM = (a' + t) cos. F.

If the cogs be supposed in contact at their extremities,
the lengths of the lines ce and ¢’ q are respectively @ + ¢
and @’ + ¢;

alsocd =a +a + ¢

Knowing the three sidescg, ¢’ q, and c ¢’ of the triangle
c ¢ @, we can find its angle ¢ ¢’ . Let this be found, and let it
equal .

S oW =F—a;
oM+ M =ccd cos.cc' M
= (¢ + d + 1) cos. (F — a);
soeM=(a+ « + t)cos. (r — ) —(a’ + ) cos. F;
by Art. 125, f A’ =0 ca =1
a4+ a +1)cos. (F ~—c)—(a’+1) cos. F
P=1b W
b (a’ + t) cos. F.

The above expression gives the true relation between p and
W in cog wheels, the friction of the wheels being taken into
account, and that on the axes neglected, The expression may
be put under the form

v ) . (F -
r= g} () s

=§: { (1 +T~T—l) (cos. @ + tan. Fsin.G.) — l}w

Now if the teeth be small compared with the radii of the
wheels, ¢ is exceeding small, and cos. ¢ may be taken = 1.
Whence by reduction we get

b , .
P=W'——:*-—T){ﬂ + (@ + a’ + ¢) sin. 6 tan. F}W.

Tae Screw. (Note on Art. 133.)

It has been shown in a preceding portion of this Appendix
that the conditions of the equilibrium in the wedge, or moveable
inclined plane,

%
sin. (¥ +¢)
where ¢ is the inclination of the plane, ¢ the resistance, and

g the force applied to the back of the plane parallel to its
ase.

q=
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Now, in the screw, Q is supplied (see fig. page 106) by the
action of the force P at the extremity of a lever p L.
LetpL=a Ln=b:
*“P.a=q.b;
Pa

"1=3 sin. (¢ 4 ¢)
NortE ox ARrT. 182.

Tue conditions of the equilibrium of a system of bodies in
contact have been fully discussed by the author of this work
in a paper read before the Camb. Phil. Soc. in October, 1833,
on the principles laid down in Chap. XV.; these, together with
the theory of the ArcH dependent upon them, are here published
for the first time.

The theory of the arch presents another illustration of the
principle of least pressure. The pressures upon the surfaces
of the abutment and key-stone should, by that principle, be
each a minimum, subject to the condition that they should
be sufficient to sustain the semi-arch if it formed one con-
tinuous solid, and that the pressure on the key should be
horizontal. Now the weight of the semi-arch being given, as
the pressure upon the key diminishes, that upon the abut-
ment also diminishes.  Also the pressure upon the key tending
to support either semi-arch results from the tendency of the
opposite semi-arch to motion, and just equals that tendency.
It is, therefore, equal to the least force which would support
the semi-arch; or it is a minimum, subject to the con-
ditions, and, therefore, the pressure upon the abutment is alsoa
minimum.

NotEe oN Art. 270.

Supposing the whole surface to be divided into small parts,
represented by P, r, P, &c zmd their depths by

P] Y IR [) o o o
then the sum of the products of these forces by their depths will
be

Pp.P+ P,I—)g_.l’!-}- oo
and calling G g the depth of the centre of gravity, the product of
that depth by the whole surface will be

Gg - P AP, AP A+ ...
But by Proposition 10 of this Appendix,
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Tg'l’,+?,+l’,+=l’xp; ‘P‘+;;7;1‘ 3 e
which is the principle stated in the text.

No1Ee ox Arr. 295.

Irr pq and » @' be positions of the plane of flotation ;
rLqand ¥ LQ being the parts immersed, corresponding to these
positions.

Let g be the centre of gravity of PLg, and g’ that of " Lo,
Also let a be the centre of gravity of pa ¥/, and »’ that of Qe Q”.
Join m a/, and through g draw g & parallel to m m’.
moment of ¥’ L @' aboutg s =mt.qa @’ 4 mt.qLP—mt. Pa P’
Now, moment of Q LPabout g ki = o, since gis in that line,

somt.PLQ =mt.QaQ — mt. PaP.
Also the centres of gravity m and »/, of

e pap and @a Q' are equidistant from g %,
_/J' , and the volumes pa »’ and Q2 Q’ are also

)
. /\y /m ¥ equal to one another, since P L @ is equal to
N P’ L @'; hence, therefore, it follows that the
g moments of these volumes are equal, and,
:X:_Zv y therefore, that the moment of ¢’ L @’ about
L

gh equals 0. The centre of gravity g’ of
P LQ’ is, therefore, in g A.

Now let the angle made by P q and P'Q’ be indefinitely
diminished. The points g and g’ will then approximate inde-
finitely to one another, and the plane in which they lie being
parallel to m m’” will ultimately be parallel to the plane P g or
P Q. But these planes are horizontal; the plane in which g
and g’ are found is, therefore, in its ultimate position, a hori-
zontal plane. This plane is manifestly a tangent plane to the
surface spoken of in the text.
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