$$
\begin{aligned}
& \text { Dourr } \\
& \cdots \text { - } \\
& 3
\end{aligned}
$$

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

ABSOLUTE ELECTROACOUSTIC MEASUREMENT OE TEMPERATURE OSCILLATIONS IN SUPERELUID HELIUM BY THE RECIPROCITY METHOD

by

$$
\begin{gathered}
\text { Bradley Ray Ogg } \\
\text { and } \\
\text { James Valdivia Jr. } \\
\text { December } 1983
\end{gathered}
$$

Thesis Advisor S. L. Garrett

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER ${ }^{\text {a }}$ 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG Number
4. TITLE (mand Subtille) Absolute Electroacoustic Measurement of Temperature Oscillations in Superfluid Helium by the Reciprocity Method	5. TYPE OF REPORT \& PERIOD COVERED Master's Thesis December 1983
7. AUTHOR(s) Bradley Ray Ogg James Valdivia Jr.	8. COntract or brant numatrat
9. peaforming organization name and adoress Naval Postgraduate School Monterey, California 93943	10. PROGRAM ELEMENT. PROJECT, TASK AREA WORK UNTT NUMEERS
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, California 93943	12. REPORT OATE DECEMBER 1983
	13. NUMBER OF PAGES 160
T4. MONITORING AGENCY NAME A ADORESS(Il difterant from Controiling Oflice)	15. SECURITY CLASS (ot thit foport) Unclassified
	15. OECLASSIFICATIONTOOWNGRAOING

16. DISTRIQUTION STATEMENT (OF thle ROPOII)

Approved for public release; distribution unlimited
17. DISTRIEUTION STATEMENT (OI the ebetrect miered in Block 20, If different from Report)
18. SUPPLEMENTAAY NOTES
19. KEY WORDS (Conilnue an reveree alde If neceeeery and ldenilty by block number)

Superfluid Helium
Reciprocity
Quantum Fluid

Thermal Oscillation
Second Sound
Plane-wave Resonator
20. ABSTRACT (Conlinue on reveree alde If neceseary and ldentlty by block number)

An experiment will be described which has verified for the first time an extension of the reciprocity calibration technique to reversible thermal transducers in superfluid helium. A plane-wave resonator of circular cross-section was capped at both ends by reversible teflon slit-electret diaphragms to generate or detect thermal waves. The resonator also incorporated a heater and a d.c.-biased carbon resistance thermometer to set independent upper and lower limits on the thermal excursions within the resonator. The temperature excursions measured by the reciprocity method
fell between the upper and lower limits, which, for lower modes, were separated by only a few percent. For higher modes, the lower limit departed from the upper limit due to the thermal inertia of the resistance thermometer, but the reciprocity result remained only a few percent below the upper bound set by the thermophone over nearly a decade in frequency. The "slitelectret" transducers had sensitivities in excess of $100 \mathrm{~V} /{ }^{\circ} \mathrm{K}$, and temperatur oscillations as small as $10-{ }^{20} 0 \mathrm{~K} /\left(\mathrm{Hz}^{12}\right)$ were detected.

$$
--\frac{1}{2} \quad-\frac{3}{3}
$$

Approved for pubiic release; distribution unlimited.

Absolute Electroacoustic Measurement
of Temperature Oscillations in Superfluid gelium by the Reciprocity Method

b Y

Bradey Ray Ogg
Lieutenant, Uṅted'States Navy
B.S., University Of Louisvilie, 1977
and

Submittedin partial fuifillagen= of the
MASTER OF SCIENCE IN ENGINEERING ACOUSTICS
from the

NaVAL POSTGRADUATE SCHOOL

$$
\text { Decembec } 1983
$$

ABSTRACT

An experiment will be describea which has verified fo＝ the first time an extension of the reciprocity calibration tecinique to reversible thermal transducers in superfiuid heliun．A plane－wave rescrator of cifculaz cross－section was capped at both ends by reversible teflon sliこ－elミctret diaphragms to generate or detect thermal waves．The Ieso－ nator also incorporated a heater and a d．c．－biased carbon reṡstance thermometer to set independent upper and lower limits on the thermal excursions within the resonator．The tミmperature excursions measured by こhe reciprocity method fell $t \in \pm \in \in n$ the upper and lower limits．which．for lower modes，were separated by only a few percent．For higher modes，the lower limit departed inom the upper limit due to the thermal inertia of the resistance h hermometer，but the reciprocity result remained only \exists few percert bミiow the upper bound set by the thermophone over nearly a decade in frequency．The＂sliさ－electret＂こransducers had sensitivi－ ties in excess of $100 \mathrm{~V} / 0 \mathrm{~K}$ ，and təmperature osciliations as smail as 10－10 $0 \mathrm{~K} /\left(\mathrm{Hz}^{1 / 2)}\right.$ were derected．

TABLE OF CONTENTS

I. INTRODUCTION 11
A. CLASSICAL RECIPROCITY 11

1. Reciprocity Relarions 11
2. Acoustical Transfer Impedance 17
3. E氏ciprocity Caiibraこion 18
B. HISTORY OF SUPERFIUIDITY 24
C. TWO-FLUID MODEL 30
D. FIRST AND SECOND SOUND 33
E. OUTIINE OF EXPERIMENT 37
II. TBEORY 40
A. INTINODUCTICN 40
B. ACOUSTIC TRANSFER IMPEDANCE 41
C. SECOND SOUND ACOUSTICAL TRANSFER IMPEDANCE 43
D. SECOND SOUND RECIPROCITY CALIBRATION
CCNSTANT 45
III. APPAÑIUS 49
A. CRYOSTAT 49
4. The Probe 50
5. Dewa= System 34
6. Temperatu=e Control (Pressure Con=rol) 55
B. TRANSDUCTION 58
7. The Resonator 58
8. Transducers 60
C. ELECTRONICS 75
9. Electret/Elecrret 76
10. Thermal/Electret 77
11. Thermal/Thermar 78
12. Line Loss 79
13. Calibration O it the Syzthesice: 81
14. In-Lins filters 82
IV. RESULTS 83
A. PROC EDURES 83
15. Cooidown 83
16. Liquia Helium Transíer 84
17. Pump Dowr 84
B. DATA $A Q U I S I T I O N$ 85
C. data reduction 86
D. ERROR ANAIYSIS 87
V. CONCLUSIONS 89
a. Validity of reciprocity in a quantum fiuid 89
b. SENSITIVITY OF SLIT-ELECTRET transduCERS 92
AFPENDIX A: DATA AQUISITION PROGRAMS 97
APPENDIX B: Data analysis computer paograms 116
appendix C: Raw data 134
aprendix D: Reduced data 145
LIST OF REFERENCES 155
INITIAL DISTRIBUTION LIST 159

LIST OF TABLES

I. Notation for Determining Z 19
II. Second Sound Reciprocity Constant 47
III. Thermometer Calibratior Constant 75
IV. Heater Displacement Correction (I = 1.530 K) . . . 92
V. Experimental Calioration Constant Data 94

LIST OF FIGURES

3.12 Thermometer Calibration Curve 74
3.13 Electret/Electret Electronics Block Diagran . . 76
3. 14 Thermal/Electret Electronics Block Diagraa. . . 77
3.15 Thermal/Thermal Elecronics Block Diagram . . . 78
3.16 Line Loss Circuit Diagram 80
3.17 Operating Capacizance Measurement Circuit . . . 81
5.1

ST / ST_{r}. 90
5.2
5.3

Experimental/Theoretical Dezerminaこion of M^{\prime}. . 93
Electret Sersitivity vs Temperature 96

ACKNOWLEDGEAEMT

The successful completion of this thzsis owes much to the continuous encouragement of our advisor D. . Steven L. Garrett. His unbounded enthusiasm was contagicus. we would also like to extend a special thanks to hin for le*ting us make our own mistakes and for having the confidencein our ability to learn from this experienae.

We also thank Kerry Yarber for his invaluable assistance at every step if this experiment: especially at the beqinning when two out of the three of us were usualiy corfusea. Machinists Maris and Moeller deserve special acknowledgement for the critical parts they manufacturea for us and for their many time saving suggestions. They are ceřainly outstanding individuals in thein profession.

This work is dedicated to ou= wives. Gwen Montano-Valdivia and Diane 1 . Ogg, ard $=0$ nur children James and Trini valdivia and Todd and Christopher ugg. This experiment started almost two years ago and thzoughnur this time their faith in cur abilíy to succeeed and their encouragement to persevere, despite sowe set-backs and mandatory separations, made the completior cithzs unesis a Ieality.

-20

I．INTRODUCTION

A．CLASSICAL RECIPROCITY

Before addressing the subject of this thisis，the exter－ sion of the acoustical reciprociry technique to thermal （second）sound in superfluid helium，it will be useful tc review the development of the classical technique wlitch has been central to the progress of acoustical scienct uver the last fč゙ィy years．The specific extensior of these ideas to the calibraさion $0 f$ second sound rransducers in superfluid helium will be rreated in chapter II．

1．Reciprocity Relations

 calibration of micruphores，KacLear［Ref．1］anc incepen－ dently cook［Ref．2］，have deronsrrated that it is possible to determine the absclute sensitivity of an electroacoustic transducer by making cniy electrical measurements，without reference to a primary acoustic scandard．

To illustrate the technique，consider the linear， passive，four－pole $n \in t w o r k$ of Figure 1．1．

Pigure 1．1 A Linear Passive Four－pole Network．

The system response can be described by the following peir cf ininear equations,

$$
V(1)=a i(1)+b i(2)
$$

(こqn 1.1)

$$
V(2)=c i(1)+d i(2) .
$$

(eqn 1.2)

The above network, whether it serves $=0$ model an acousticai, electrical, mectanical, electroacoustical or electecmechanical system, will satisfy the Reciprocity Theorem whenever

$$
b= \pm c .
$$

Capacitive micropiones were used in chis experiment; therefore, for cur purposes, $b=+c$ in equations 1.1 and 1.2 [Ref. 3]. If we let our network model an electroacoustic system consisting of two revessible transducers (Figure 1.2) then,

$$
V(1)=a i(1)+\dot{b} i(2)
$$

(eqn 1.3)
$V(2)=b i(1)+d i(2)$.
(eqn 1.4)

Figure 1.2 rransducers 1 and 2 Coupled by an acoustic field.

It should be foted that equation 1.4 =epresents the zəceiver, or microphcne, side of our network, while equation 1.3 represents the scurce, or speaker. Also note that $c=b$ must exist since our transducers are electrostatic dievices.

For contiaued compatability with existing literature concernlng the Reciprocity Theorem by Budnick [Ref. 4] and Swift [Ref. 5], the notation of Maclean [Ref. 1]will also be used in this report:

$$
\begin{aligned}
& M=\text { Sensitivity as a microphone } \\
& S=\text { Strength as a source }
\end{aligned}
$$

therefore,

$$
\text { Mo }=0 \underline{1} \text { circuit volts/pressure } \exists t \text { mic }
$$

$$
\text { Ms }=\text { short circuit current/fressure at mic }
$$

$$
\text { So }=\text { pressure at mic/current into speaker }
$$ short circuited, equations 1.3 and 1.4 become

$$
V(1)=a i(1)+b i(2)
$$

$$
\begin{equation*}
0=b i(1)+d i(2) \tag{eqn1.10}
\end{equation*}
$$

which leads =0

$$
V(1) / i(2)=b-(a d / b)
$$

Zero appears at the left side of equation 1.10 because transducer 2 's output terminals have been short circuited. When the same short circuit measurements are again made on our network, but with the roles of the transducers reversed, we find that equations 1.3 and 1.4 now yield

$$
0=a i(1)+b i(2)
$$

$$
V(2)=b i(1)+d i(2)
$$

which leads to

$$
\begin{equation*}
V(2) / i(1)=b-(a d / b) \tag{eqn}
\end{equation*}
$$

From equations 1.11 and 1.14 we see that

$$
V(2) / i(1)=V(1) / i(2)
$$

(eqn 1.15)
which is the Helmholtz/Rayleigh statement of the Reciprocity Theorem [Ref. 6]. By equations 1. \quad add 1.8

$$
i(2)=P(2) \quad M s(2)
$$

(eqn 1.16)

$$
P(2)=V(1) \quad S s(1)
$$

(eqn 1.17)
thereforき

$$
i(2)=v(1) \quad \operatorname{ss}(1) \quad u s(2)
$$

and
$[V(1) / i(2)]=[S s(1) M s(2)]^{-1}$.
(eqri.19)

Similarly

$$
[V(2) / i(1)]=[S s(2) \quad M S(1)]^{-1}
$$

(eqr 1.20)

Using equation 1.15 we obtain

$$
\begin{equation*}
\mathrm{Ss}(2) \mathrm{Ms}(1)=\mathrm{Ss}(1) \mathrm{Ms}(2) \tag{eqn1.21}
\end{equation*}
$$

which finally leads to

$$
M s(2) / S s(2)=M s(1) / S s(1)
$$

Wher a similar analysis is performed, using equations 1.5 ard 1.7 (microphone output terminals open) we see that [Ref. 1].
$M \circ(1) / S O(1)=M O(2) / S O(2)$

$$
=M s(2) / S s(2)
$$

$$
=M s(1) / S s(1)
$$

(eqn 1.23)

Therefore, the ratio of a transducer's sensitivity as a microphone to it's strength as a source is deperdent only on the properties of the space through which the souna must propagate. It should be noted that 20 mez nion of $I \in \leq O-$ nator gecmetry has been made, and in fact, the above ratios are independent of the physical aspects of the resonator [Ref. 4], of any other geometric boundary condition.

If we let both transducers be identical and ideal then Mo(1) $=M \circ(2)$ and we can define

$$
\mathrm{MO} / \mathrm{SO}=1 / 2
$$

(eqn 1.24)
where "Z" is the quantity which characterizes the acoustic geometry, and has the units of acoustical impedarce.

From the open cincuit receiver case where i(1) is used to drive side 1 and the ou=puz of side 2 is $V(2)$. then equations 1.5 and 1.7 yield

$$
\begin{equation*}
V(2) / i(1)=\text { So (1) MO(2) } \tag{eqn1.25}
\end{equation*}
$$

Multiplying the right side of equarion 1.25 by (MO(2)/Mo(2)) and using equation 1.24 yields

$$
\begin{equation*}
V(2) / i(1)=2(10)^{2} \tag{eqn1.26}
\end{equation*}
$$

cr

$$
M 0=[V(2) /(i(1) \quad Z)]^{1 / 2} \text {. }
$$

(eqn 1.27)

[^0]This says that once the acoustical impedance Z is deter－ mined，the absolute sensitivity of our identical and idea工 transducer can be calculated from equation 1．27．

2．Acoustical Transfer Impedance

To investigate the parameter 3 de first drive the ideal transducer of side 1 with voltage $V(1)$ and current i（1）．A volume velocity U（1）will appea工 at 工he speakes and

$$
V(1)=a i(1)+B U(1)
$$

（eqr 1．28）

$$
\begin{equation*}
P(1)=B i(1)+D U(1)=0 \tag{eqn1.29}
\end{equation*}
$$

where $P(1)$ is the pressure at the source．Here，P（1）must be equal to zero since no external pressure is being applied to transducer 1 and the ideal souraz cannot＂Eeel＂it＇s cwn generated fressure．With trarsducer 2 as the short Circuized miceophone we find

$$
V(2)=a i(2)+B U(2)=0
$$

（eqn 1．30）

$$
\begin{equation*}
P(2)=B i(2)+D U(2) \tag{eqn1.31}
\end{equation*}
$$

where $P(2)$ and $U(2)$ are the pressure and volume velocity． From equations 1.28 to 1.31 こt is clear that

$$
V(1) / U(1)=B-(a D / B)
$$

（eqn 1．32）

$$
\begin{equation*}
P(2) / i(2)=B-(a D / B) \tag{eqn}
\end{equation*}
$$

Therffore, we obtain the following ratios

$$
P(2) / i(2)=V(1) / U(1)
$$

(eqn 1.34)

Utilizing equations $1.6,1.8$ and 1.24 results in

$$
Z=P(2) / O(1)=S(1) / M(1)
$$

(eqn 1.35)

Therefore, Z represents the acoustical transfer impedance (units $=g m / c m 4-s e c)$ relating the acoustic pressure at the micrcphone to the volume velociry at the speaker.

3. Reciproci̇y Calib=aさion

With the parameter z now defined by equation 1.35 it is possible to use equation 1.27 to deremmine our ideal transducer sensitivities. The parameter Z takes on a variety of forms depending on the geometry of che rescnator [Ref. 4]. For the plane-wave resonacor of figure 1.3 equation 1.27 becomes

$$
M_{0}=\left[\begin{array}{ll}
V(m) /(i(s) & Z
\end{array}\right]^{1 / 2}
$$

Figure 1.3 Plane-wave ResonatoI.

TABLE I

Notation for Determining Z

variable

A
C
E
f
ρ
L
n
P
Q
V
meaning
cross-sectional area
sound speed
energy
frequency of $n-t h$ mode
meḋum densizy
Iesonator length
mode number
pressure (エms)
qualicy factor
\quad Elocity (Ims)

The determination of the acoustical rransfer impedance Z for our resonator, using the notation of rable I, is as follows:

$$
E(s t o r \in d)=\langle K E(\text { max })\rangle=1 / 2\left(\text { PALV }{ }^{2}\right)
$$

and since $P=P C V$ and $L=n C / 2 f$ then,

$$
\begin{equation*}
E(s t o r \in d)=\left(D A P^{2} / 4 \rho C f\right) \tag{eq.1.38}
\end{equation*}
$$

and since power radiared is the product of the in-phase pressure and volume velocity, then

$$
\mathrm{E}(\text { lost/cycle) }=\mathrm{PU} / \mathrm{f} .
$$

By definition [Ref. 7].

$$
Q=2 \pi E(\text { stored }) / E(\text { lost } p \in I \text { cycie) } \quad \text { (eqn 1.40) }
$$

then we have

$$
Q=(P / O)(A n \pi / 2 \rho C)
$$

(eqn 1.41)

Combining equations 1.35 and 1.41 yields [Bef. 4],

$$
Z=(2 \rho C Q) /(A n \pi)
$$

(eqn 1.42)

By direct substitution of equarion 1.42 into equation 1.27 we finally cbtain a viable method of establishing the absolute sensitivities of our iacal transducers:

$$
M O=10-7 / 2[(V(\mathbb{R}) / i(s))(\mathrm{An} \pi / 2 Q \rho C)]^{1 / 2} \text { (eqL 1.43) }
$$

The factor $10-7 / 2$ occurs if the electrical parameters are in units of voits and amps and the mechanical paramezers are in cgs units.

So the acoustical transfer function z can be determined using both measured values of Q and a as well as the a pİ으́́ quantities f and C. Armed dith this informaticn, we can now use equaticn 1.43 to conduce a calibration of our transducers using the Reciprocity Theorem.

The reciprocity calibratica requires tyo sets of measurements to be taken on the acousicical plane-wave resonator of figuze 1.4. The dimensions of the transaucers T, S and M and the lateral dimensions of the resonator are small compared to the acoustic wavelength.

The actual resonator of our experiment consisted of a brass body and "slit" electret transducers. More will be said about cur experimertal resonator in chapter III.

Figure 1.4 Plane-wave Rescnator for Reciprocity Calibration.
For the first set of measurenents, the reversible transducer T is driven at a resonart frequency of the chamber. The driving voltage $V(1)$ and current $I(1)$ are measured and again, as in equations 1.28 and 1.29, the system response is

$$
\begin{aligned}
V(1) & =a i(1)+B U(1) \\
0 & =B i(1)+D U(1) .
\end{aligned}
$$

The open circuit voltage $V(\mathbb{m})$ at receiver M, used here only as a microfhone, is also recorded (refer to Figure 1.5). This voltage corresfonds to the pressure P at the ends of the chamber. Proll equation 1.35 we know

$$
P=Z U(1) .
$$

(egn 1.44)

Pigure 1.5 Reciprocity Calibration: first measurement set.

For the second set of measurements (refer to figure 1.6) speaker S is driven with suificient curreat i(s) to again produce $V(\mathbb{I})$ at receiver M. This now ensures that the acoustic pressure P has been reproduced within the chamber. The short circuit current $i(2)$ is measured first, giving us equations 1.30 and 1.31

$$
0=a i(2)+B U(2)
$$

$$
P=B i(2)+D U(2) .
$$

Finally, the open circuit roltage $V(2)$ is measured resulting in。

$$
V(2)=B \quad U(3)
$$

$$
\begin{equation*}
P=D U(3) \tag{eqn1.46}
\end{equation*}
$$

Where $U(3)$ is the vciume velocity which corresponds 00 the "open circuit" voitage at the receiver T.

Pigure 1.6 Reciprocity Calibration: second measurement set.

The above equations 1.28 to 1.31 anà equations 1.44 to 1.46 form a set cf seven simultaneous equations in the seven unknown quantities $a, B, D, U(1), U(2), U(3), a n d$, The equations can be combined to yield the following expressions [Ref. 5] for P.
$P^{2}=|V(1) i(2) z|$
$P^{2}=|V(2) i(1) \quad 2|$.
Therefore, the sensitivities of microphone M and zeversible transducer T are given by the following set of equations (Note that the reciprocity calibration has been accomplished without reference to a primary standard and with cnly easily obtainable electrical and geometric measurements)。

$$
\begin{aligned}
& \operatorname{Sens}(M)=V(M) / P \\
& S \in \operatorname{So}(T)=V(2) / P .
\end{aligned}
$$

0
14

B. HISTORY OF SUPERFLUIDITY

Now for a fundamental look at our experimertal medium liquid helium. Probably it's strangest characteris=ic is its appaient ability to =emain in a liquid state, under its own vaçor pressure, when temperature is reduced, and with an apparent preference to stay that way =Ight on down to absolute zerc. Io produce the solid phase requires application of a high pressure, 25 atmospheres or more (figure 1.7).

The reluctance of helium to solidify resultsfom a combinarion of two factors: (1) the extremely weak van der Wals force between the atoms and (2) their low mass. The forces are weak because of the simpiiciry and symmetry of the helium atom with its closed shell of two electrons and the absence of dipole moments for its nucleus. The effect of the low mass is to ensure a high value of zero-point velocity. To see this, consider an atom in the liquid as a free particle located ir a small "cage" formed by the adjacent aさcms.

The total zero-point energy per mole of the lowest state is $t h \in[$ [Ref. 8] (Nh2/8m) $(4 \pi / 3 V) 2 / 3$, where \quad is the mass of the atom, Vis the molar volume of the cage, h is Planck's constant and N is Avogadro's number. At absolute zero the total energy of the liquid is just the sum of the potential and zero-point emergies, and London's [Ref. 8] estimate for this zero-point energy (assumed to be the same for both solids and liquids) indicates that it is lowest at a molar volume of approximately $30 \mathrm{~cm}^{3}$. London then showed that at such a volume liquid helium has a lowez energy then it does as a solid; therefore, it is in a stable form as a liquid at absolute zero.

Helium has the lowest boiling point of all known substances. For $H \in 4$ it is 4.2 ok at STP. Betyeen this temperature and 2.172 ok this liquid behaves like an
ordinary fluid. But as the temperarure is lowered it r=arsforms into a second fluid phase which exhibits very different dynamical properties.

During early experimentation it was iound that a plot of the specific heat of liquid helium versus temperãure indicared a sudden discontinuity at a temperature of about $T_{\lambda}=2.170 \mathrm{~K}$. This temperature is oftea called the lamida temperature due to the similarity of the siape of the specific heat curve to the Greek letter "lambda". There is an abrupt change in all the p=operたies of liquid helium at the lambda-point. This change isknown as the lambda transition. A very imfcrtant point $=0$ be brought our at this time is that the Iegion above the lambda-point is referred to as haiium I (He I) and the region belowas heiium II (He II).

The difference in behavior is visibly apparent when observing a dewar vessel of liquid de4 which is cooled through the lambda-point by boiling under reduced pressure. In the He I region, the liquid is grearly agitated by bubbles of vapor which form throughout the liquid and eagerly escape the surface. Yet. immediately as the lambda-point is passed, the liquid becomes extremely calm and no more bubbles are formed. Below the transition temperature the liquid refuses to boil. As pointed out earlier, liquid helium has many unasual properties, one of which is a very high thermal conductivity and this is the cause for the absence of boiling below the lambda-point. If a bubble forms below the surface of the liquid, 5 he pressure inside the bubble must be greater than the vapor pressure above the surface by an amount equal to the hydrostatic pressure head plus the surface tension pressure. Vapor at this increased pressure cannot be formed from the liquid unless the temperature of the fluid below the surface is higher than the temperature at the surface.

Pigure 1.7 Phase Diagram of He4.

The thermal conductivity of He II is so large that such a temperature gradient cannot be set up，and so the boiling （agitation）is prevented ara allor the evaporation takミs place at the surface．

That something strange happens to liquid heiium below this lambda temperature was also noticed by Kamerlingh onnes as early as 1911 ［Ref．9］．He found that when the liquid was cooled below this mysterious tempera亡ure it starts expanding instead of continuing to contract，thus deviating from the behavior of most substances．Almost 30 years later Allen and Misener［Ref．10］and Kapitza［Ref．11］found that at these low cempezatures liquid heliun could flow through narrow capiliaries（about $10^{-4} \mathrm{~cm}$ ̇n diameter）with no meas－ ureable resistance．This observation led kapitza to refer to the liquid as a＂superfluid＂．

Superfiuid seems an appropriate name for this unique substance since measurements of flow have been made of he II passing through very fine cracks and ext＝emely narrow slics and capillaries，which for normal liquids are，in effect． impassable．Liquic helium can overcome such obstacles freely even without requining a moticeabie pzessure differ－ ence，and，strangely enough，亡t seems to leave its entropy behind．

The superfluid flow phenomenon leads one to question the viscosity of HeII．Measurements by Keesom and Ende ［Ref．12］of flow through the aforementioned capillaries seem to indicate that the viscosity of HeII is 106 times less than that of He I ：however，measurements of the viscosity by Keeson and Machood［Ref．13］using the rotating disk showed that the viscosiey of liquid helium below the lambda－point，although it decreased with decreasing tempera－ ture quite considerably，nevertheless varies continuously and is certainly not very different from the viscosity of He I．Wher Allen／Misener and Kapitza reported their
measurements based on the capillary flow method, it showd. the viscosiry of liquid helium dropping by many oraers cé magnitude to an immeasureably small value when the tempezature was lowered through the lambda-point. Th三apparent contradiction between Keesom/Macwood and Allen/Misener and Kapitza is really no contradiction. The former was merely cbserving the effects of the "normal fluid" component of the helium solution while the latter was observing the affects
 be discussed in the next section.

Although liquid helium has been used in experimental laboratories for many years as a refrigerant, irs unique behavior and unusual properties were not realized until the early $1930^{\circ} \mathrm{s}$.

One of the most unusal features of He II is that variations of temperature propagate through the liquid not according to the usual Fourier equation, but as a true wave motion whose velocity is independert of the frequency. These temperature waves are entirely analogous to ordinary sound waves, except that the tiermodynamic variables are temperature and entropy and not pressure and density. Therffore we can excite temperature waves with a heater in a resonance tube, and pickup standiag waves using a thermometer as a detector. This very unusual type of heat propagation is known as second scund [Ref. 14].

A very strange phenomenon was discovered in 1938 by Allen amd Jones [Ref. 15]. They werき interested in helium conductivity measurements and what thəy observed was truely unexpected. The experiment consisted of a reservoir anda smaller vessel, both filled with lifuid helium and connected by a very fine capillary. The set up is shown in figure 1.8.

When heat was applied to the inner vessel, they cbserved that the inner heliual level rose slightly above that of the reservoir.

Figure 1.8 Fountain Effect.

In a subsequent experiment, using a narrower inner vessel. they observed a jet of liquid helium rising from the upper end of this narfow vessel to a height of several centimetたrs. This became known as the "fountaineffect", of thermcmechanical effect.

What Allen and jones demonstrated is that you cannot trust intuition to predict the behavior of liquid heliun. In the fountain effect, contrary to expectations, the heat current goes in a dizecrion just opposite to the heliun current. It would seem that in liquid helium, heat and mass transfer are strongly joined. The inverse of ihis fountain effect, or the mechanocaloric effect. predicted by tisza [Ref. 16] and discovered by Daunt and Mendelssohn [Ref. 17]. consisted of allowing liquid beliun to gravity flow out of its cootainer through a capillary filled with a fine emery powder. $A s a$ result, the temperature of the liquid above the capillary rose while the temperature of the liquid helium below the capillary dropped. What this implies is that the liquid which passed through the capillayy is different than the buli $1 i q u i d i n$ the container from which it came. Again, this alludes to tie existance of a two fluid behavior, where one is capable of passage through restricted areas while the other is not, and the thermal properties of these two components are very diffezent.

C. TWO-FLUID MODEL

It should be pointed out at the onset that the phenomenological picture known as the "two-fluid model" is able to correlate the unusual froperties of he II with the thermodynamic functions as long as the heat and mass currents are not too large. This requires that we deal with heat fluxes that are linearly proportional to the Eemperature gradients. Even in this linear ragion the heat flow is far greater than that observed in other substances.

As mentioned in the previous section, two methods were used to determine the viscosity of He II. One consisted of measuring the viscous resistance to flow (Keesom/Endel and the other the viscous drag or a body moving in the liquid (Keesom and MacWood). These two methods produced two seemingly different results that would indicate He II is capable of being both viscous and non-viscous at the same time. This apparent contradiction is the basis of the two-fluid model. first suggested by Tisza [Ref. 16]. It is in terms of this model that $\pi a n y$ of the properties of $H \in$ II can be explained.

The two-fluid model proposes that helium II behaves as if it were a mixture cf two fluids freely intermingling with each other without any viscous interaction. The two parts are referred to as the normal fluid and superfluid compogents. This does not imply that it is a mixture of two real physical fluids. The liquid is $\exists \mathrm{n}$ assembly of $H \mathrm{H}_{\mathrm{a}}$ atoms which are all identical. so that it is not possible to regard some atoms as belonging to the normal fluid and che remainder to the superfluid.

The assumptions of the model adj very important. Below the lambda-point liquid helium is capable of two different motions at the same time. Each of these has its own local' velocity denoted $V n$ and $V s$ respectively for the normal fluid and the superfluid. Furthermore, each has its own effective mass density, ρ_{n} and ρ_{s}. The total density ρ of the He II is therefore given by

$$
\begin{equation*}
\rho=\rho_{n}+\rho_{s} \tag{eqn1.47}
\end{equation*}
$$

and the total current density by

$$
\begin{equation*}
\bar{J}=\varphi_{n} \bar{v}_{n}+\varphi_{s} \bar{v}_{s} . \tag{eqn}
\end{equation*}
$$

It is important to note that since the superfiuid flow has no viscosity it therefore does not involve dissipation and is truly thermoaynamicaliy reversibie. The aormal fluia flow does have viscosity and undergoes dissipation, bu= only at a rate proporticnal to the gradient of its velocity according to Landau and Lifshitz [Ref. 14].

London [Ref. 18] always believed in the macroscopic nature of liquid helium. He drew atcention to the fact that the behavior of liquid helium could at least be understcod in terms of Bose-Einstein condensation. Simpiy statad, B-E condensetion maintains that at a critical temperature (lambda-point for liquid helium) a 프드으응́́́ fraction of an ideal quantum gas's molecules condense into the same single partical quantum state (the ground state). This
 lambda- point temperature for liquid belium. London hypothesised that liquid helium couid in fact fit the qualitative features of the $B-E$ condensarion mechanism, ミven though it is not an ideal gas, due to its discontinuity of character at the lambda-point. Tisza stated that the B-E condensed particles correspond to che superfluid component while the remaining excited particles correspond to the normal fluid. Furthermore, a single discrete momentum stata would mean that there is no continuous reduction of momentum, which would imply zero viscosity. The normal component then carries all of the entropy and is expected to have a viscosity comparable to that of He I. The fraction of the fluia which is in the superfluid state, $\mathrm{i}_{\mathrm{s}} / \mathrm{\rho}$, is expected to increase as the remperature is decreased.

It should be clear that this model contains an explanation of the viscosity paradox. In the capillary flow experiment only the superfluid is mobile so the liquid exhibits no viscosity. The damping of the rotating disk was due to the drag exerted by the normal component. The observed
decrease in the damping as the temperature decreased is attributed in part to the decrease in the amount= of normal fluid available.

D. FIRST AND SECOND SOUND

That in liquid helium a new kind of wave propagation should be possible, was predicted by Tisza [Ref. 16]. He suggested the there should be the pressure wave of ordinary sound where the tic components move in phase with each other. Additionally, there should be another wave in which the motion of the two components are 180 degrees out of phase. This second wave would be a compression wave of entropy accompanied by periodic flucuations of the temperature, and the mass density would remain almost constant. This new wave would have to be excited by periodic heating of the fluid and the consequence would be that entropy density and temperature could be che oscillatory parameters in a wave equation.

For ordinary sound the conservation of mass gives us

$$
\begin{equation*}
(\partial \rho / \partial t)+\operatorname{div} \vec{J}=0 \tag{eqn1.49}
\end{equation*}
$$

where \bar{J} is the center of mass momentum (equation 1.48), and from the linearize-inviscid Euler equation of hydrodynamics

$$
\begin{equation*}
(\partial \vec{J} / \partial t)+\operatorname{grad} P=0 \tag{eqn1.50}
\end{equation*}
$$

Eliminating J leads to

$$
\begin{equation*}
\left(\partial 2 \rho / \partial t^{2}\right)-\nabla^{2} p=0 \tag{egg1.51}
\end{equation*}
$$

and for adiabatic processes.

$$
\left(\partial 2 \rho / \partial t^{2}\right)-(\partial P / \partial \rho)_{s} \nabla^{2} p=0
$$

This is the ordinary sourd equation, a wave equation for mass density or pressure wave, where

$$
\begin{equation*}
U(I)^{2}=(d P / d \rho)_{S} \tag{eqn1.52}
\end{equation*}
$$

is the square of the ordinary sound velocity.
For the development of the wave equation for thermal waves we follow the derivation of Gogate and pathak [Ref. 19] but still neglect non-linear teams and corfine ourseives once again to the reversible process. Starting with the equation for the conservation of entropy

$$
\begin{equation*}
(\partial \rho S / \partial t)+\operatorname{di\nabla }\left(\rho S \bar{V}_{n}\right)=0 \tag{eqn1.53}
\end{equation*}
$$

which explicitly contains the assumption that the entropy flow follows the normal fluid.

The kinetic energy density of this two-fiuid system car be expressed as

$$
\begin{equation*}
E=(1 / 2)\left(\rho_{n} \vec{V}_{n}^{2}+\rho_{s} \bar{V}_{c}^{2}\right) \tag{eqn1.54}
\end{equation*}
$$

$$
\begin{equation*}
E=(1 / 2 \rho)\left(\rho_{n} \bar{V}_{n}+\rho_{s} \bar{V}_{s}\right)^{2}+E^{\prime \prime} \tag{eqn1.55}
\end{equation*}
$$

Where $E^{\prime \prime}=\left(\rho_{n} \rho_{s} / 2 \rho\right)\left(\bar{V}_{s}-\bar{V}_{n}\right)^{2}$.
The term $E^{\prime \prime}$ is called the kinetic energy of internal convection while the first term is considered to be the kinetic energy of the actual mass transfer.

If work is done reversibly by transferring the heat (Q) from temperature T to ($T-d T$). the second law of thermodynamics requires that work (W) be expressed as

$$
W=(\mathrm{QdT}) / \mathrm{T}
$$

$-=1=-2$

a.

Considering a thin layer of helium of thickness dx in which the temperature varies by dr, the heat current becomes

$$
\begin{equation*}
q=\rho S T \bar{v}_{n} \tag{eqri1.56}
\end{equation*}
$$

and is assumed to propagate perpendicularly through the layer. It carries the heat (q dr) through a square centimeter of the layer in a finite tine (di). As stated earlier, this process must be reversible, therefore the work

$$
q(d t)(d T / T)=\rho S \cdot \bar{V}_{n} d T(d t)
$$

has to be done. Tisza proposed that this work would be required to change the kinetic energy of internal convection (E") per unit area of the layer of thickness dx:

$$
d E \| \cdot(d x)=-\rho S \bar{V}_{n} d T(d t)
$$

(eqn 1.57)

OI

$$
\begin{equation*}
d E " / d t=-\rho S\left(\bar{V}_{n} \cdot g r a d T\right) \tag{eqn1.58}
\end{equation*}
$$

Due to the fact that the thermal expansion coefficient is so small we can say that for thermal oscillations

$$
\begin{equation*}
\bar{J}=\rho_{n} \bar{v}_{n}+\rho_{s} \bar{v}_{s}=0 \tag{eq1.59}
\end{equation*}
$$

and

$$
\begin{equation*}
d \rho / d t=0 . \tag{eq1.60}
\end{equation*}
$$

which yields

$$
\begin{equation*}
e^{\prime \prime}=\left(\rho \rho_{n} / 2 \rho_{S}\right) \bar{\nabla}_{n}^{2} \tag{eqn}
\end{equation*}
$$

Substituting equation 1.61 into equation 1.58 we see that
$\left(\rho \rho_{n} / \rho_{s}\right) \bar{V}_{n} \cdot\left(d \bar{V}_{n} / d t\right)=-\rho S\left(\bar{V}_{n} \cdot \operatorname{grad} T\right)$
(eqn 1.62)

OI
$\left(d \bar{V}_{n} / d t\right)+\left(\rho_{S} / \rho_{n}\right) S \operatorname{grad} T=0$.

We consider terms like \bar{V}_{n}, grad T, grad $S, d S / む=$, atc., as small of first order, and neglect products of any two of these quantities. This allows us to eliminate \bar{V}_{n} in equations 1.53 and 1.63 and $g \in t$

$$
\begin{equation*}
\left(\partial^{2} S / \partial t^{2}\right)-\left(\rho_{S} / \beta_{n}\right) S^{2} \operatorname{div}(g r a d T)=0 . \tag{eq.1.64}
\end{equation*}
$$

When the process occurs at constant pressure then we are left with a very interesting equation which does have a familiar "form".

$$
(C p / T)\left(\partial^{2} T / \partial t^{2}\right)-\left(\rho_{s} / \rho_{n}\right) S^{2} \operatorname{div}(g r a d T)=0 . \quad(e q n 1.65)
$$

This is a wave equation for the temperature. The same equaltion also holds for the entropy (S). When we compare this equation to that for ordinary sound we are struck by the similarity in format. Therefore, we know that the propagation velocity for these thermal waves can be expressed as

$$
U(I I)^{2}=\left(\varrho_{s} / \rho_{n}\right)\left[S^{2} T / C P\right] .
$$

E. OUTLINE OF EXPERIMENT

This experiment enables us to obtain the absolute sensitivities of thermal transducers, in situ. A cylindrical plane-wave resonator has been constructed which is closed at either ena by capacitive porous diaphragm transaucers [Ref. 20]. In adَition, one ond also has an acoustically transpa=ent "spizal web" electrical heater (thermophore) and che other end has a low mass carbon compositior electricai resistance thermometer. A figure of the resonator, and its components, is shown below.

Figure 1.9 Schematic of Experimental Resonator.

At a variety of temperatures the following procedure was used tc calibrate one of the three reversible transducers (two electrostatic, one resistive). The \quad ransducer to be calibrated (designatedi R for reversible) will be driven at resonance with current I and used as a speaker. One of the other two reversible transaucers wil be used as a microphone (M) to determine the resonar= fIEquency $f(n)$ ara $Q(n)$ of the n-th plane-wave resonance. Then, while monitoring the output of M, a thira transaucer will be driven at $f(n)$ until the output of M is again the same value observed wher R was beirg used as the source. In this way the sound field has been recreated. The open circuit voltage of R will then $\mathrm{b} \in \mathrm{recorded}$.

This will be sufficient to dezermine the sensizivity of R at $f(n)$ from the reciprocity relation and known thermodynamic parameters [Ref. 21]. A comparison of the output voltages of the other two teversible transaucers to the now calibrated third transducer will determine their sensitivity. It is then possible to repeat the zeciprocity sequence using one of the other reversible rransducers and in 5 hat way make a "round robin" consistercy check. This was done at a variety of temperatures for several plane-wave resonance modes.

To determine whether the reciprocity resules are both consistent and absclutely correct, it is necessary to compare the calibrations obtained by the above procedure against a "Erimary" standard. This is done in two ways:
(1) Knowing the electrical power being gererated in the heater and the resomance Q, the theory of superfluidity allows us to calculate the second sound amplitude in the Iesonator [Ref. 22] if we assume all of the heating (at twice the frequency of the driving curreat) results in the generation of second sound. Alchough most of the oscillating eaergy appears as seconc sound, a small fraction ilil leak out along che electrical leads and therefore the sound amplitude obtained in this way will de an upper bound.
(2) The carbon resistor, biased with a constant current scurce $I(b)$. will generate an oscillating voltage of amplitude

$$
\rho_{V}=(a R / d T) \rho_{I} I(b)
$$

where $S T$ is the amplitude of the temperature nscillations generated by the second sound resonance [Ref. 23]. Since (dR/dT) can be determined in a static calibration, the finite frequency effects due to the thermometer heat capacity and thermal conductance and Kapitza resistance will make the sound amplitude measured in this way a lower bcund.

The sensitivities of the above transducers are expected to fall within the upper and lower bounds if the reciprocity methodis correct. We will show in chapters IV and V that these bcunds form a fainly close ceiling and floo= limitation on these sensitivities.

II. TEEORI

A. INTRODOCTION

The principle of reciprocity was first introduced into acoustics by aayleigh in 1873 when he derived the reciprocity relation for a system of linear equarions and gave "a few examples [to] fromote the comprehension of a theorem which, on account of its extreme generality, may appear vague" [Ref. 6]. He cited physical exampies in acoustics, optics and electricity and credited Helmholtz with a derivation of the result in a uniform, inviscid fluid in which is immersed ang aumber of rigid, fixed solids, pointing out that the principle "will not be interfered with" even in the presence of damping. The first physical example of tie reċprocity theorem given by Rayleigh, azd the most relevant for the discussion of the calibration of microphones, is the following:

Let A and B be two parts of a uniform or variable stretched string. If a periodic transverse fcrce acts at A, the same vibrationwill be produced at B as would have ensued ar A had the force acted at B.

This technique has beer central to the developement of acoustical science [Ref. 24]. As previously pointed out in Chapter I(A) the work by yaclean and cook [Ref. 1] [Ref. 2] has been instrumental in the determination of absolute sensitivities of electroacoustic transducers.

Until fairly fecently, the vast majority of the applications of the reciprocity method have been restricted to two standard geometries [Ref. 25]: The far field of a spherically radiȧing point source, and a pressure coupler whose

dimensions are small compared to the wavelength of the sound involved. In 1978 Rudnick [Ref. 4] demonstrated that the acoustical transfer impedance provided the necessary calibration constant and calculated the reciprocity relation for calibration in planewave and Helmholtz resonators. The validity of the expression in a planewave resonator has been demonstrated experimentally [Ref. 5] [Ref. 26].

Recall from chapter $I(B)$ that thermal waves, iritiated by variations in temperature and earropy, propagate withir He II. This was referred to as second sound [Ref. 14].

The purpose of this section is to extend the technique, long recogrized as the method of cioice for absolute calibraticn of acoustic transducers, to reversible, linear, second scund transducers, and thereby provide a method for precise, absolute lueasurement of temperature oscillations in superfluid helium without use of a primary standard.

B. acoostic transfer impedance

Recall from chapter $I(A .2)$, equation 1.35 , that

$$
Z=S / M=\text { constant. }
$$

Also, the absolute sensitivity can be found by \&quation 1.36

$$
M 0=[V(2) /(I(1) \quad Z)]^{1 / 2}
$$

It then follows that

$$
S=[V(2) Z / I(1)]^{1 / 2}
$$

In chapter $\operatorname{I}(\mathbb{A} .2)$ it was statea by equation 1.35 that Z represents the acoustical transfer impedance. Then, referring to Figure 2.1,

$$
\begin{equation*}
Z=P(2) / U(1) \tag{eqn2.2}
\end{equation*}
$$

where $P(2)$ is the Fressure at the iace of transducer 2 caused by the volume velccity, $u(1)$, generated by transducer 1.

Figure 2.1 Reversible Transducers Coupled by acoustic Medium.

The volume velocity is simply the aass flux divided by the mass density oí the medium coupling the transducers, \bar{J} / ρ. This acoustical transfer impedance can, in principle, be calculated for any geometry. It is the ratio of the specific acoustic impedance of the medium, ρc, to a geometrical factor with the units of area. Here, cis the thermodynamic speed of sound in the medium.

For a spherically sadiating source in free space [Ref. 1] this geometrical factor is $2=\lambda$. where λ is the wavelength of the sound and $=$ is the separation of the acoustical centers of the source and receiver. For two transducers enclosed in a rigid walled enclosure [Ref. 4]. all dimensions of which are much smaller chan λ, the geometrical factor is $2 \pi V / \lambda$, where V is the enclosure volume. For plane wave procagation in the rigid walled tube
[Ref. 27] of cross-ssctional area A, the factor is simply A. Under resonant conditions, the geometrical factor will include the resonant quality factor, Q, and the mode number, n. if there is a spectrum of resonances. For a Helmholtz Iesorator [Ref. 4] the equivalent area is [$4 \pi \mathrm{~V} / \mathrm{Q} \lambda$]: for a plane-wave tube[Ref. 5] of cross-sectional area "al the geometrical factor is

$$
n \pi A / 2 Q(n)
$$

We now know from the calibration procedure giver in chapter $I(E)$ that "round robin" measurements can be obtained $亡 0$ determine the semsitivity (M) and souzce strength (S) of the reversible rransducers of Figure 1.9.

It should be noted that equations 1.52 and 1.66 make clear the symmetry which exists between pressure and density for first sound and temperature and entropy for second sound. It is this symmetry which will be exploited in the following section to create the expression which will permit reciprocity calibraticn of second sound transducers.

C. SECOND SOUND ACOOSTICAL TRANSPER IMPEDANCE

In the previous section (B) of this chapter, it was shown that the acoustical transfer impedance was required to be constant for reciprocity calibrations in classical fluids, andthat quantity was the ratio of the pressure to the mass flux. To incorporate differant geometries, this constant was written as a specific acoustic impedance divided by a geometric factor with the units of area. To write the expression necessary to perform the same =ype of absolute calibration of a reversible second sound transducer, one need onlywrite the analogous expressions for
 impedance, $Z(2)$, appropriate to second sound.

As second sound is a temperaturə-entropy disturbance, the logical definiticns for sensitivity and source strength are

$$
\begin{aligned}
& M(2)=x d u c e r \text { open ckt volts/ST at surface } \\
& S(2)=S T \text { at mic locetion/ driver current }
\end{aligned}
$$

or their conjugate short circuit current sensitivity ara vcltage source strength. If heat flux rather chan entrcpy flux is more practical, then $S(2)$ can simply be multiplied by the amoient temperature, $T(0)$.

As before, the Reciprocicy Theorem requires that if the transducer is reversible and linear.

$$
\begin{equation*}
S(2) / M(2)=Z(2)=T(2) / \rho S \vee(1) \tag{eqn2.3}
\end{equation*}
$$

where $T(2)$ is the amplitude of ramperature oscilations at the receiver created by ar entropy fiux ($\left.\rho \mathrm{s} V_{n}(1)\right)$. generated by the transmitter.

The transfer infedance can be evaluated by expressing both the temperature oscillations and the normal fluid velocity in terms of the superfluid velocity. The necessary relations for second sound are given by Landau [Ref. 14]

$$
\begin{aligned}
& T(2)=-U(I I) \quad V_{s} / S \\
& \bar{V}_{n}=-\left(\rho_{s} / S_{n}\right)\left[1-\left(B \rho / \rho_{n} S\right)\left(U(I)^{2 U(I I}\right)^{2 /\left(U(I)^{2}-C(I I)^{2}\right\} \bar{T}_{S}}\right. \\
& \bar{V}_{n}=-\left(\rho_{s} / S_{n}\right)[1-\infty] \bar{V}_{s}
\end{aligned}
$$

where \propto reprasents the second term inside the brackets, Cp is the specific heat at constant pressure and β is the isobaric coefficient of thermal expansion. Substituting equation 2.3 yields

$$
\begin{equation*}
Z(2)=T(0) /[A \rho U(I I) C p(1-\infty)] \tag{eqn2.4}
\end{equation*}
$$

For all temperatures between 1.00 K and $2.170 \mathrm{~K}, \mathcal{C}$ is less than one percent. It is worth pointing out thar this
result differs from that of other authors due to the choice of entropy flux as the conjugate to temperature. Atkins [Ref. 28] derives an equivalen $\begin{aligned} \text { resule which difsers by a }\end{aligned}$ factur of $T(0)$ in the limit that $\beta=0$ since he $a \equiv$ fines the characteristic impedance as the ratio of temperature to heat flux. Pellam [Ref. 29] chooses the less practical but equivalent definition of impedance as the ratio of "osmotic pressure" to counterflow velocity and again treats $\beta=0$. Using equation 2.4, we can now write the absolute sensitivity of a reversibie and linear second sound transducer as

$$
\begin{aligned}
& M(2)=M^{1}[V(2) /(A I(1))]^{1 / 2} \\
& M^{1}=[U(I I) C P(1-\infty) / T(0)]^{1 / 2}
\end{aligned}
$$

where 'A' is again scme effective area which depends upon the acoustic geometry which couples the source and receiver as discussed in section (B) of this chapter. in is the temperature dependent calibration conssant.

It is worth pointing out that a previous atrempt to derive this result [Ref. 30] has bean shown to be incorrect [Ref. 31] because the resulting expression contained a transducer dependent guantity.

D. SECOND SOUND RECIPROCITY CALIBRATION CONSTANT

The calibration constant, M', has been evaluated using the UCLA second sound speed data [Ref. 32] and the derived hydrodynamics [Ref. 21] in Table II and Figure 2.2 for the saturated vapor pressure. The behavior of chis conscant in the region from 1.20 K to 1.90 K has the experimentally convenient feature of being linear in temperature. The points in Figure 2.2 are the data of Table II. The straight line is a least square fit to the points between tae temperatures 1.20 K and 1.9 ok , given by

$$
M^{\prime}(T)=2.176 \mathrm{~T}-1.775
$$

Figure 2.2 Second Sound Reciproci亡y Constant.

TABLE II

Second Sound Reciprocity Constant

T (${ }_{\text {O }} \mathrm{K}$)	M1 [Watts $1 / 2$ mm-ok $]$
1.00	5.31
1.05	6.05
1. 10	6.85
1. 15	7.60
1. 20	8.45
1.25	9.42
1.30	10.44
1.35	11.51
1.40	12.69
1.45	13.73
1. 50	14.86
1. 55	16.00
1.60	17. 14
1.65	18.26
1.70	19.39
1.75	20.46
1.80	21.49
1.85	22.45
1.90	23.30
1.95	24.02
2.00	24.44
2.05 2.10	24.74
2. 10	24.38
2.15	21.66

with units cf [wates ${ }^{1 / 2 /(m m-0 K)] . ~}$
The correlation coffif cient of the fit is 0.9997 which corresponds to a standard deviaticn of less than 0.7% over the 15 こemperature points. The linear behavior can be understood as a consequence of the thermodynamics of an ideal Bose-iinstein gas and the "Tisza approximation". Neglecting the smali correction due to the expression coefficient, $Z(2)^{2}$ can be written

$$
Z(2)^{2}=\rho^{2}\left(\rho_{S} / \rho\right)\left(\rho S / \rho_{n}\right) S \quad[\partial S / \partial T] .
$$

For the ideal Bose-Einstein gas $S=1.284(T / T C)^{2 / 3}$ where Tc is the condensaticn (transition) temperature [Ref. 33]. so $S(\partial S / \partial T)$ is prcfortional to P^{2}. If the entropy is carried only by the normai component and the entropy of the
normal component is assumed constant, then $S=\rho_{n} S_{n}$ and ($S \rho / \rho_{n}$) is temperature independent. This is knowr as the Tisza approximation [Bef. 34], which is found to be correct above 1.20 K . Although ρ_{s} / ρ is a strong function of temperature near the lambda-point, the square root of its value rapidly approaches one below 1.9 oK. The total density is $v \in I y$ neariy temperature independent.

A. CBYOSTAT

Figure 3.1 is a diagran of the dewar and associated support piping systems. The pifing and tubing systems are primarily copper with silver brazed joints, although rubber vacuum tubing is used in siuall sections.

Figure 3.1 Dewar Support Piping Systems.

1. The Rrobe

The probe pictured in figure 3.2 provides mecharical support for the experimentinside the dewar, tlectrical connections between the transducezs and the room temperature electronics and a means of introducing liquid heiium into the dewar.

The liquid helium fill tube is made in two sections. The first section is the portion that resides outside the dewar area in atmospheric conditions (Heliua Recieving Tube). This section is an 8 inch (20.32 cm) long, 15 mil (0.038 cm) well and 0.662 inch (1.68 cm) outside àiameter stainless steel tube. The second sectioa is that porticn inside the dewar. This section is $583 / 8$ inches (148.27 cm) long, $9.8 \mathrm{mil}(0.025 \mathrm{~cm})$ wall and $1 / 2$ inch (1.27 cm) out side diameter stainless steel tubing. The two sections are joined inside the top-plate. The difference in tubing size was necessirated in that the atmospheric section must be large enough and strong enough to accept and support the heliull transfer tube, while the dewar portion of the fill tube has thin wall size which was choosen to reduce the heat leak (thermal conduction) from the top-plete which is at room temperature.

The dewar portion of the fill tube, which also acted as the main support tube, has $1 / 8$ inch (0.32 cm) diameter holes placed approximately every 8 inches (20 cm) along its length $=0$ prevent Taconis oscillations [Ref. 35]. The fill tube has 4 heat shield assemblies that are attached to the central tube to reduce the heating of the helium due to Stefan-boltzman, σT^{4}, radiation from the top-plate which is ar room temperature. At the bottou of the fill tube is a Bakelite plałe which supports the experiment.

The top-plate is a $411 / 16$ inch (11.9 c⿴囗 diameter, $1 / 8$ inch (0.32 cm) thick brass plate.

Figure 3.2 The Probe.

The top-plate provides support as well as proviaing the seal ketween the low pressure low temperature experimental area inside the dewar and the atmosheric conditions outside the dewar. The top-plate has the following penetrations:
(1) fill tube (helium recieving tube)
(2) hermetically sealeā, dual BNC recepticle box which allows two way electronic communication between Ioom temperature electronics and the two capacitive end plates of the resonator
(3) a BNC connection which provides a signal path to the resonator resistor
(4) a 1 inch (2.54 cm) high $9 / 16$ inch (0.46 cm) outside diameter brass tube whici contains 4 twisted pairs of wire which is passed chrough a hermetic seal in the tube.

The 4 twisted pairs are used for a 4 terminal connection to a calibrated resistor used for temperature monitoring during cooldcwn and the second sound drive heater in the experimental cell (rescnator).

The heat conducted to the $n \in l i u m$ by the thin walled stainless steel tubirg supporting the experiment was calculated by using the following information from Goodall [Ref. 36]. For a 10 cm length of stainless steel tubing of $1 / 2$ inch (1.27 cm) O.D. with a wall thickness of 6 mils (0.002 cm), runging from 300 oK to 40 K , will conduct 184 mwatts of heat. As the distance from the helium surface to the top-plate was typically 110 cm , the central tube contributed a heat load of 27.9 matts.

The heat calculated for the 4 Ewisted pairs (8 wires total) of \#32 gauge (Brown and Sharp) copper wire (164.5 cm/wire) was performed using the following data from Reference 40. A 10 cm piece of $\# 34$ British wire gauge with
a crossectional area cf $0.429 \mathrm{X} 10^{-3} \mathrm{~cm}^{2}$ ，with one end at 3000 K and the other end at 40 K ，provides a hear leak of 65.2 mwatts．Multiplying by a चrossectional area ratio between \＃34 gauge and \＃32 gauge wire and the number of wi＝es and then dividing by the length ratio results in the twisted pair heat lcad of 23.7 mwatts ．

The two coax cables，with crossectional area of $0.0065 \mathrm{~cm}^{2}$ and length of 110.9 cm were modeled as thin walled stainless steel tubes since no beat load information for coax cabling was readily available and che contribution of the teflon insulation is insignificant．Again follcwing Goodall［Ref．36］the following calculation was made．A 10 cm long piece of $1 / 2$ inch（ 1.27 cm ）O．D．stainless steel tubing with a crossectional area of ． 0098 c距 Iunning from 300 0K to 40 K conducts 30 muatts．Scaling the 30 matts by the crossectional area ratio divided by the length ratio times the number of coax cables yielded a heat leak of 3.6㥸atts．

The calculation of heat input（worst case）due to the contributions of the individual elements discussed above is summarized as follows：

THIN WALL TOBE	27.9 mwatts
THISTED PAIRS	23.7 m以aことs
COAK CABLE	3.6 mWatts
TOTAL	55.2 nWatts

A Iun was conducted on 27 october 1982 to determine an actual system heat leak．A plot of Helium Height（cm） verses Time（minutes）over a perioi of 400 minutes resulted in a slope of $-11.6 \times 10-3 \mathrm{~cm} / \mathrm{min}$ with a correlaticn cofffi－ cient of 0.997 ．This slope was converted into a boil－off rate and multiplied by the latent heat of vaporization of
heliumat 1.65 oK (L=3.27 Joules/Cc) [Ref. 37] to yield experimentally calculated heat leak. For this case the leak is 51 matis, which is in excellent agreement with the previous analysis. This heat leak rate permitted 82.2 hours of run time and a mimimum temperature of 1.4 ok using the 15 CFM pump assuming no energy input to the system. The fact that our worse case calculations exceeded the observed dミplєtion rate, hence power input, indicates no significant unkfown beat leaks exist within the dewar.

2. Dewar system

All experiments were performedin a glass double dewar system. The inner dewar is 4 inches (10.16 cm) inside diameter. The temperature of the heliua bath is reduced by pumping away its vafor with a kinney vacuum pump, Model KC-15. The connecticn between the pump ard the dewar is by means of a $21 / 4$ inch (5.7 cm) outside diameter pipe which tapers to a $1 / 2$ inch (3.8 c (四) outside diameter pipe. The $11 / 2$ inch 0.D. line has an isola=ion valve which isolares the pump from the dewar.

The helium bath temperature is determined by measuring the vapor pressure of the helium and converting it to temperature by Cubic Spline interpolation [Ref. 38] using tables based on the 1958 He temperature scaie [Ref. 39]. The pressure is measured by a kks Baratron, head type 370 H , with a $0-1000 \mathrm{mmHg}$ range. An analog voltage output which is froportional to the pressure is sent to the computer controlled data aquisition system. The reference side of the differential head is backed by a diffusion pump so the pressure reading can be regarded as absolute.

A vacuum drop test of the dewar, covering a three day period resulted in the following:
(1) first 24 hcur period leak rate was $0.154 \mathrm{mmHg} / \mathrm{hr}$
(2) three day period leak rate was $0.120 \mathrm{mmHg} / \mathrm{hr}$.

Since the volume of the inner dewar space is 12.15 liters this corresponds to a leak late of 0.0048 standard cc/sec. This rate is sufficiently small to allow operation of the experiment for periods in excess of 50 hours. No icing of the inner dewar space was visible at any time.

3. Temperature Control (를ssure Control)

Temperature was controlled by controlling dewar fressure and thereby controlling the vapor pressure of the helium contained within. The pressure is controllad by the use of a manostat [Ref. 35]. The manosこa= is located in the dewar vacuum system between the $11 / 2$ inch (3.8 cm) O.D. isolation valve and the dewar itself (see Fig 3.1).

The manostat shown in figure 3.3 is a 6 inch (15.24 cm) inside diameter 3 inch (7.62 cm) deep cylindrical aluminum vessel. The top is constructed out of $1 / 4$ inch (0.635 cmi) thick clear polyethylene. The manostat has four piping penetrations. Two are $1 / 8$ inch (2.86 cm) O.D. which are used to placa the mancstaz in the vacuum systen between the vacuum isclation valve and the dewar. The penetrations protrude $1 / 2$ inches (3.8 cm) into the vessel radially from opposite directions leaving a 3 inch (7.62 cm) gap between them. A condom (Shiek Reservoir End Sensi-Creme Lubricated) with the end cut ofi was placed over the ends of the two protrusions and is held on each end by ar o-ring. This flexible membrane acts as an extremely sensitive coarrol valve. The other two penetrations are $3 / 8$ inch (0.95 cm) cutside diametar. One connects to a reference flask and the other connects through an isolation valve to the dewar side vacuum line to sense dewar pressure.

With the isolation valve in the open position, the pressure inside and outside the membrane are equal. allowing the membrane to remain in an uncollapsed state. This permits the vacuum fump to continue to evacuãe the dewaI. When the desired pressure is reached (2.5-30.0 maHg) the isolation valve is shut. The pressure in the aewar at the tine the isolation valve is shut is the pressure felt and maintained on the outside of the memorane. The inside of the membrane is sensing present dewar pressure. If the dewar pressure drops below the desired pressure, the pressure inside the membrane drops beiow that maintained on the outside of the membrane causing it to collapse and thereby isolating the $v a c u u m$ pump from the dewar. As the liquid helium evaporates and vapor pressure increase tine pressure inside the membrane also increases. When the derar fressure exceeds the pressure maintained on the outside of the membrane the condom begins to expand and once again opens a path $k \in t w \in e n$ the vacumn pump and the dewar to allod the pressure to be decreased and thereby decrease the system temperature.

This manostat was found to be quiこe reliable and was able to maintain a constant pressure to within 0.025 mmg over a one hour period. This reiares to an approximate 0.004 degree Kelvin temperature cảnge over the same time pericd in our temperature range of concern.

The choice cf condom was found to be suprisingly important. Several different types and brands were used but the Shiek Sensi-Creme Lubricated was found to be most pressure sensitive and capable membrane for maintaining a desired pressure.

B. TRANSDUCTION

1. The Resonator

A cylindrical plane-wave resonator gecmet=y was determined to be the best choicefor testing second sound reciprocity calioration. The siow speed of second sound U(II) is less than $20 \mathrm{~m} / \mathrm{s}$ and the consequent shortness of wavelengths limits the frequency range of a coupler to inconvenient dimensicns. While rミst=icting our experiment to a limited number of operating feequencies, at a given temperature, the plane-wave resoator guarantees a weli defined geometry, plane wavefronss below cut-off for higher order modes [Ref. 40], and simplicicy of design.

A schematic diagram of our zesonator, previously illustrated in chapter $I(E)$, is repeatad here in Figure 3.4. A picture of the actual experimental resonator is shown in Figure 3.5.

Figure 3.4 Schematic of Experimental Resonator.
$+$

Figure 3.5 Experiqental Resonator.

The resonator is made of brass (5.0 cmin length and 2.54 cm OD) and has been longitudinally bored (1.43 cm ID). The two cylindrical endcaps contain epoxy (slanted lines) insulatミd metal "buttons". When combined with transauction elements which incorporate electret Eechnology [Ref. 41]. they form two reversible, mechanical and alectrostatic second sound transducers. Micro-dot connectors on each end provide an electrical interface to make positive electrical connection to the grounded endcaps and the electrically "hot" buttons. The button faces have been lighrly sandblasted to improve their sensitivity when they are used as the hot electrode in an electret microphone consisting of the button as a backplate and the əlectrec as the pressure sensitive diaphrag』. The endcaps con=ain a very narrow and shallow trougi on their face which mates with the resonator body, thus providing a free flooding port for liquid helium to completely fill the experimental chamber.

The heater has been constructed from insulated \＃41 manganin wire．The wire $(0.0057 \mathrm{~cm}$ diameter）was found to Offer 51.66Ω／ft using an $H P-3456 a$ multimeter with gull． The wire was fashicned into an acoustically transparent ＂web＂．It is used to generate thermal waves（second sound）． A picture of che heater is provided in figure 3．5．

The＝hermometer has been fabricated from ar Allen－Bradley carbon composiṫon 工esistor（1／10 watt）which has been sanded to form a thin siab．This type resistor was chosen due to its high differentiai 工esistivity［d（ln R）／dT］ in the 1－2 ok range．It can be calibこated against the vapor pressure curve［Ref．39］and then used as a detector（micro－ phone）of second sound．In a later section（Transducers： Thermometers）we discuss our aこtempt＝o improve on the Allen－Bradley thermcmeter and our motivation for improve－ ment．A picture of our resistive thermometer is provided in Figure 3．6．

2．Transducers

a．Electret－type

In our resonator the pressure disturbances，as well as the counterflow of the supar and rormal components， are detected using the electret microphone［Ref．42］which consists of an aluminized sheet of $1 / 2$ mil（ $12.7 \mu \mathrm{~m}$ ）thick FEP teflon laid on the endcaps with the aluminized surface away from the button．A large quasi－permanent charge density，σ ，of the crder of $10-7$ coulomb／cm²［Ref．43］is deposited in the aluminized teflon by placing it in an elec－ tric field．The membrane is polarized by placing it， aluminized side up，on a sheet of ordinary window glass and applying 12－18 KVDC across the aluminized surface ard a conducting plate under the glass．The electric field is maintained for approximately $1-3$ aours．Then the flectret

$4-2=0.0-20$

Figure 3.6 Resistive Thermometer.
is removed from the glass and placed over the sandblasted electrode (butzon) tc which it adheres due to electrostatic forces. Holes for the fastening screws, which tightly sandwich the endcap to the resonator body, and random slits, for passage of $H e$ II, are cut in the electret with a scalpel. This can be sean in the following figures which show pictures that were taken of our slit-electrets using an electron microscope. Figure 3.7 gives an overvieu of a typical electret showing the randon number of arbitrarily placed slits. In Figura 3.8 it is possible to see the detail of the slits, especially noticeable is the jaggedness of the slits and the areas of apparent arcing that has occurred during testing. Prom such slit-electret resonators we were still able to consistantly obtain spectral diagrams which clearly shoved multiple resonances, as illustrated in figure 3.9 .

Figure 3.7 Overall View of Electrets (x20).

Figure 3.8 Close-up 0n Electret (x120) and Slit (x600).

T/EB T=1.95K

plot of relative amplitude vs frequency (full spectrum)

When an oscillating voltage of frequercy ω is applifd between the electret and the butcon, the driver acts like an electrostatic speaker coupled directly in=o the resonator. Since the electret has a stored charge which has been found to have an equivalent bias vcltage ranging from 150-210 volts [Ref. 44] the sound generated by the driver will also be at w without anexternal biasing voltage.

Within the resonator, pressure and super/normal fluid component counterflow are detected using the electret device as a microphone. Therefore, a voltageis generated tetween ground (Iescnator body) and the button whenever there is an oscillation of the membrane. This causes the membrane to deviate from its equilibrium position and thereby changes the capacitance between the electrode and the aluminized surface. The charge on the electret is fixed and $Q=C V$, where $Q=\sigma A$ and A is che surface area of the button (almost $0.25 \mathrm{~cm}^{2}$). C and V a工e the capacitance and equivalent voltage across the aluminized surface and the rackplate. Wher the membrane is displaced by a small amount we can let

$$
\begin{equation*}
C=C(0)+S C(t) \tag{eqn}
\end{equation*}
$$

and

$$
\begin{equation*}
V=V(0)+S V(t) \tag{eqn3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
[\rho C(t) / C(0)]=[-\rho V(t) / V(0)] \tag{eqn3.3}
\end{equation*}
$$

where $\nabla(t)$ is the time varying voltage generated by the membrane displacement and $V(0)$ is the equivalent bias voltage across the transducer due to the stored charge density in the electret. As scated before, this equivalent bias voltage is approximately $150-210$ volts for our typical electrets. This value was determined utilizing the circuit of figure 3.10.

Pigure 3.10 Determination of Electret Equivalent Bias voltage.

While ariving the elecret of side A with the d.c.-bias voltage, the relative microphone (side B) response is monitored. After plotting the relative response as a function of the increased bias voltage, a linear extrapolation of the reiative response to a "zezo volt" condivion yields, experimentally, the equivalent bias voltage, $V(0)$. of the electret microfhone (side B). Figure 3.11 shows some typical data taken at 2930 K . It is worth pointing out that this technique of measuring bias voltage worked equally well in helium or at room temperature.
During the experiment it was mecessary to deter- mine, to as high a degree of accuracy as possible, the capacitance of these electrostatic transducers. In addition
侸

Figure 3.11 Back-bias Volts vs. Received Acoustic Signal.
to correcting for the inherent capacitances of peripheral equipment and leads, covered in a later section, it was also necessary to account for the dead capacitance of the endcap-button ensemble. This dead capacitance is the transducer's capacitance without the electret in place. For our electrets the average value of dead capacitance was found to be $12.7 \pm 1.4 \mathrm{pf}$.

The process of driving an electret source (A) and picking up on an electret microphone (B) is denoted EA/EB. This process was used in tho experiment to determine the product of sensitivities [M(A) M(B)] by the Reciprocity Theorem
$M(A)$
M (B)
$=$
[V
(i (s)
2) $]$

where

$$
i(s)=V(s)(2 \pi f C)
$$

(eqn 3.4)
"f" teing the resonant frequency and C the driver capacitance. The parameter 2 , as previously mentioned, depends on the measured values of Q and A [area] as well as some thermodynamic quantities [specific heat, second scund speed. He II density and temperature]. Therefore, the $\operatorname{lesulting~}$ equation appears as
$M(A) M(B)=[d 2 \pi U(I I) C p \rho / 16][V(m) a /(V(S) \& I C T)]$ (eqn 3.5)
where d is the experimental chamber diamerer, and the other parameters havebeen previously $j \in f i n \in d . \quad$ The units of equation 3.5 are (volts/ 0K) ${ }^{2}$, as expected.

In oraer to obrain the absolute sensitivity oE our individual electret transducers we need to conclude the reciprocity procedure. We will choose to drive 工hermally (heater) and pick up on electret. This is denoted T/EA or T/EB, depending on which electretad side is to play the role of the microphone. The results of this approach will be the ratío of the sensitivities.

We now take great care to drive the heater with a voltage $V(i)$ that is necessary to produce an equivalent response from side B as obtained when electreted side A was being driven ${ }^{2}$ (the chcice of A or B is a=bitrary).

After the input and output voltages are recorded, the output response of side A is recorded, while the heater drive remains the same.

[^1]$$
M(A) / M(B)=[T / E A] /[T / E B]
$$
where for the vaiues cbrained from I/EA we get
$$
T / E A=V(0) / V(i)^{2}
$$
(eqn 3.7)

For the different set of values obtained for $T / E B$ we get

$$
T / E B=V(0) / V(i)^{2}
$$

Therffore by equation 3.6,

$$
\begin{equation*}
M(A)=M(B)[T / E A] /[T / E B] . \tag{eqn3.9}
\end{equation*}
$$

Aftar substituting equation 3.9 inco equation 3.5 we find that

$$
M(A)=(\text { constant })[\text { available data }]^{1 / 2}
$$

and now $M(B)$ can be determined from equation 3.9. As will be pointed cut later, there is sufficient data to determine $M(B) \quad u s i n g$ equation 3.10 and $M(A)$ can be measured by comparison (equation j.6). This provided a self-consistancy check of our procedure.
b. Thermophore

The heater element is made from a 1.2 ft length of insulated manganin wire which has been folded in half and twisted. As previously stated this wire offers $51.6 \Omega / f t$. The twisted wire was spirally-threaded through hole: located in a mylar crossbar arrangement whose arms are only slightly shorter than the diameter of the resonator chamber. This is
to ensure a saug fit when the spiral heater is epoxied into place just within the chamber (recessed less than 2 man) and literally cut of touch with the aluminized side of the electret transducer. Figure 3.6 shows the heater.

The heater is driven by a sinusoidally timevaying voltage at half the frequency of thedesired second sound. Since the heating is proportional to the square of the applied voltage the generated second sound is at twice the frequency of the applied voltage according to peliam [Ref. 22]. That this is true can $b \in$ seen from the trigoncattric identity,

$$
\cos ^{2}(\omega t)=(1 / 2)[1+\cos (2 \omega t)]
$$

(eqn 3.11)

Which shows that only half of the elect=ical signal delivered to the heater gees into creating second sound (at 2ω) and the other half goes into d.c. heating of the fluid.

In the previous discussion on \in lectrets we were adle to use the Reciprocity Theorea $=0$ calculate the absolute sensitivities of our transducers without the use of a primary standard and with only easily obtainable parameters. But how good are these sensitivities?

In order to determine whether these values are absolutely correct we must $a t$ least compare our calibrations against some standard. The thermophone principle can be used to set an upper limit for our calibratior if we make the fcllowing assuption. Although only half of the signal delivered to the heater is instrumental in generating second sound. we calculate the temperature swing that would cccur if $\mathfrak{a l l}$ of this power that is available (at 2ω) goes into the production of seccnd sound. Pellam has shown us hcw to calculate the second sound amplitude: however, we know that there is always energy leakage at least along the electrical leads, and so calculations derived from this assumption are
surely upper limits for expected temperature swings necessary tc produce a given output.

The derivation of the necessary equation to determine this temperature swing for the thermophone follows from previously stated relationships which will not be restated here. The electrical power that is available for the production of second sound will be equal to $I^{2 R}$ where I is the rms current supplied to our hearer of resistance R. A reinforcement factor of ($2 Q / a \pi$), used for classical respnato systems (and used by Pella for $n=1$). Will be used to enhance the temperature oscillation amplitude due to resonance. If we define

$$
\text { power/Area }=\rho S \nabla_{n} T(0)
$$

(qr 3.12)

$$
\begin{equation*}
V_{n}=-\rho_{s} V_{s} / \rho_{n} \tag{eq3.13}
\end{equation*}
$$

$$
\text { Power/area }=-\rho S T(0) \rho_{s} V_{s} / \rho_{n}
$$

therefore,

$$
\begin{equation*}
V_{s}=-(\text { Power }) \rho_{n} /\left(\rho_{s} \rho S T(0) \text { Area }\right) . \tag{eqn3.15}
\end{equation*}
$$

From chapter II and according to Landau [Ref. 14].

$$
\begin{equation*}
S T=-U(I I) \quad V_{S} / S \tag{eqn3.16}
\end{equation*}
$$

$$
\begin{equation*}
S_{T}=U(I I)\left[(\text { Power }) \rho_{n} /\left(\text { Area } \rho_{3} \rho T(0) S^{2}\right)\right] \tag{eqn3.17}
\end{equation*}
$$

the re-enforcement factor $\mathbb{m} u s t$ also be included, therefore,

$$
S T=\left[U(I I) 2 Q \text { (POwEr) }\left(\rho_{n} / S_{S}\right)\right] /\left[\operatorname{area} S^{2} n \rho \pi T(0)\right]
$$

but since the specific heat at constant pressure is

$$
C_{p}=\left(S_{3} / \rho_{n}\right) T(0) S^{2} / U(I I)^{2}
$$

(eqn 3.18)
then,

$$
\left.\int T=8 Q V(i)\right)^{2} /\left[R S \pi^{2} \cap d^{2} C p U(I I) s q=(2)\right] \quad \text { (eqn 3. 19) }
$$

where $V(i)$ is the ras voitage into the heater of resistance R, n is the modal number, and d is the chamber diameter. Therefore, with readily available data we are able to calculate, and thereby ser, an upper bound for our reciprocity calculations made earlier.
c. Thermometry

Thermometry, like the thermophone, is a principle that will be used to again test our reciprocity calibration of thermal transducers within a quantum fluid. However, this time we will use our resistance chermometer to set a lower bound for a temperature suing producing a particular cutput.

The second sound generation (hearer) and pick up by the carbon resistance thermometer is referred to as thermal-thermal and is denoted T / T. The thermometer was fabricated from an allen-Bradley $1 / 10$ watt resistor. It was sanded down until approximately 1 mm thick in order to minimize its thermal inertia. The thermometer has been electrically interfaced with peripheral aquipmert by a micro-dot connector, thus making it modula=, and fully shielded.

The principle employed in the resistance thermometer, for the detection of second sound, is that the resistance (R) is a function of temperature ard if a constant current, I, passes through tie resistor. then the changes in resistance with temperature, dR/dT, appear as an oscillating voltage, $\quad S V(t)$, which is proportional to the temperature swings, $\int T$, in the following way:

$$
\begin{equation*}
S V=I(d R / d T) \quad S T \tag{eqn3.20}
\end{equation*}
$$

ther fore the temperature swing can be derermined by:

$$
\begin{equation*}
S T=S V /[I d R / d T] . \tag{eqn3.21}
\end{equation*}
$$

Typically, cur bias current, I, was set at 2.7 to 3.0 A. The factor of dR/dTwas determined by static califration. The calibration data is obtained while the temperature of the helium bath is being =educed. The vapor pressure and resistance are recorded each time the pressure changed by 0.1 mmig. The tempezature correspording to a given pressure was found using the cubic spline method [Ref. 38]. The differential resistivity was calculated by making a least square best fit to an exponential in the temperature range of interest for each particular helium run. Figure 3.12 gives a sample of the data. The exponential resistance vas motivated by the semiconductivity energy gap activation model: and the exponential form,

$$
R(T)=R(0) \exp [-\infty T]
$$

was convenient for the expression of differential resistivity

$$
\alpha=[1 / R(0)][\partial R / \partial T]
$$

Table III shows tine thermometer calibration constant, α, for specific temperatures used during our experiment.

| |
| :--- | :--- |

Figure 3.12 Thermometer Calibration Curve.

TABLE III

Thermometer Calibration Constant

Temp. (0K)	Resist. (K $\Omega)$	$\propto(0 \mathrm{~K})-1$
1.47	81.44	-3.175
1.53	66.62	-3.387
1.65	46.11	-2.735
1.83	29.59	-1.205
1.95	23.11	

C. BLECTRONICS

Three different methods were employed to generate and detect second sound standing waves. First one electret transducer was driven and the resulting second sound was detected by the remaining electrer transducer. In the remainder of this seport this will be designared as Electret/Electret or E/E. The second method was to drive the heater and detect the generared sound using one of the electret transducers (Thermal/Elečret; T/E). Boti electret transducers were used in dara gataəring. Af:er sufficient data had keen obtained using one Electret transducer as a reciever the output was shifted to the remaining electre: transducer and the data was obtained using that combination. The third method again drove the heater, but this time the thermally generated second sound was detected by its associaied temperature oscillations using a carbon resistor, riased by a constant current, as the receiver (Thermal/Thermal; T/T).

All three methods used a sinusoidal drive signal. Due to the size and symmetry of the electret $\begin{aligned} \\ \text { ananducers and the }\end{aligned}$ heater that gen erated second sound waves, all wave forms were assumed to be planaE, and the harmonicity of the detected modes varified that assumption.

In the following sections on transaucer electronics, Electret/Electret. Thermal/Electret, and Thermal/Thermal HP-3325A Synthesizer/Function Generaror and the eGEG Princeton Applied Reasearch (EAR) Model-5204 Lock-in Anyalyser are the output and input respectively of the data acquisition system which is discussed oriefly in the RESULTS chapt \in.

1. Electret/El륻et

Figura 3.13 is a block diagran of the elactronic set up for the electret drive, electret pick up mode of generating and detecting second sound.

Pigure 3.13 Electret/Electret Electronics Block Diagram.

The drive signal is taken from a HP-3325A Synthesizer/Function Generator. Ihe signal passes thrua nominal 50 chm resistcr which ensures drive sigral amplitude
matching between synthesizer output and the input zo the eiectret driver. rhe drive signai is monitored on a KIKUSUI Dual Channel Oscilloscope Model COS-5060.

The detected or output signal passes thru an ITHACO Model-1201 Low Noise Freamplifier and again is monitored on the remaining channel of the oscilloscope. The output signal continues to the lock-in anyalyser.

2. Thermal<Electiet

Figura 3.14 is a block diagram of the electronic configuration for thermal drive, electzet pick up mode of generating and detecting second sound.

Figure 3.14 Thermal/Electret Electronics Block Diagram.

As can easily be seen by comparing the two block diagrams, there is little difference in the electronics

Letw $\in \in \mathbb{E}$ Electre=/Electret and Thermal/Electret. In fact the only difference is in the drive portion of the circuit. In the T / E method the ncminal 50 ohm resistor has been Eeplaced by the 63 ohm arive heater which again maintains drivo amplitude continuity. Because the heating is quadratic in the heater current (see Transducer Section) the lock-in which was referenced to the synthesizer fiequency was operatad in the $2 n d$ harmonic mode.

3. Thermal 1 Thermal

Figure 3.15 is a block diagram of the $\in l \in c=\Sigma o n i c$ set up for the themmal drive, thermal pick up mode of gene=ating and detecting second sound.

Figure 3.15 Thermal/Thermal Electronics Block Diagram.

The electonics for the drive signal is identical $=0$ that of the Thermal/Electret mode. The second sound signal
is detected by means of the induced temperature swings in a carbon resistor biased by a constant current (2.7 microamps). The Thermal Sound Bias Box (TSBB) is the constant current source for the detaction (thermometer) resistor. The TSBB also has a DC blocking capacitor in the output circuit to ensure that only the $A C$ component of the signal is passed to the preamplifier. From the preamplifier the signal is monitored by the oscilloscope ard the lock-in. simultaneously.

4. Linge Losㅗ

When the outfut signal is electret generated, i.e. T / E and E / E, the electret voltage output is degraded due to the capacitance of the lead between the top of the probe and the preamplifier. Figure 3.16 is an equivelent circuit representing the detecting electret and the preamplifier.
$C(e)$ is the capacitance of the $\in l e c t=\epsilon t$ transducer which is detecting the signal. For simplicity we have defined the effective transducer to include the capacitance of the transaucer (85 pf) plus the capacitance of the coaxial cable (155 pf) which b=ings the signal to the top-
 and resistance of the preamplifier. $C(1)$ is the capacitance of the coaxial lead connecting the probe (electret) and the preamplifier.

$$
\begin{aligned}
& C(i)=49 \mathrm{pf} \\
& C(1)=35 \mathrm{pf} \\
& \text { Total }=84 \mathrm{pf}
\end{aligned}
$$

These values were measured using 2 HP-4261A LCR Meter, therefore,

$$
V g(\mathbb{D})=V(o u t p u t)(\mathbb{D v})[(C(e)+84) / C(e)]
$$

Figure 3.16 Line Loss Circuit Diagram.

Because a precise knowledge of the values of these capacitances was so important to the interpretation of the voltage measured at the lock-in in terms of the voltage at the defined "end" of the electret transducer, a special technique was used to measure the alectret t=ansducer capaci=ance while the system was under rrue operating conditions i.e. between 1 and 20 K . This was accomplished by setting up che circuit in Figure 3.17. This circuit maintained a relatively fixed voltage wile the frequancy was varied from 1 kHz to 10 kHz . The voltage (RMS) and the current were recorded at each frequency and the capacitance at each frequency was determined using the following relationship:

$$
C=I / 2 \pi f y
$$

The capacitance for all frequencies were averaged together to give the operating condition capacitance. The typical electret capacitance, including che coaxial cable to the

Figure 3. 17 Operating Capacitance Measurement Circuit.
top-plate was 241.35 ± 0.41 pf, where the error is the standard deviation of the measurements over the range of frequencies.

5. Calibration cit the Syrthesizer

It was important to determine ayy correction between computer bus specified diive output and actual voltage which appeared at the proper devica (hearaェ, electret, etc.). It was important to know this correction not only as a fuctior. of drive roltage (10 to 150 mv), but also as a furction of drive fzequency (200 to 1500 kz).

First it was noted that there was less than. 02\% difference in actual output voltage over the frequercy range cf concern. Next a plot of bus specified drive voltage verses actual applied voltage was made, and using the method linear regression, the following line equations for synthesizer output weze developed.

1) Synthesizer driving heater ($T / E \in T / T$)
$\nabla($ actual $)=1.04887 \nabla(s y n)+0.029067 \ldots \quad$.... $=0.9999937$
2) Synthesizer using nominal 50-ohm load (E/E)
$\mathrm{V}($ actual $)=0.99319 \mathrm{~V}($ sya $)-0.28676 \ldots \mathrm{I}=0.9999920$
where r is the linear regression correlation value.
(Note: All voltages are in milli-volts)
These equations where then used in the data reduction to convert the bus specified voltage to the actual voltage.

6. In=Line Filters

Filters in the Ithaco preamplifier and the par lock-in analyser were utilized to minimize extrareous noise sources due primarily to pump induced vib=ations.

The 30 Hz High Pass filter and the 10 kHz . Low Pass filters were utilized on the preamplifier while the 50 Hz High Pass filter was utilized in the lock-in anylyzer.

As the 50 Hz high pass of the lock-in dominated the low frequency response and the 10 kHz low pass of the preamplifier dominated the high irequency response, the maximum system reciever respcnse was expected at a frequency which was the geomerric mean of these values, or about 707 Hz . This was observed experimentaliy. At 700 Hz the lock-in output was 0.9997 of the calibrated input. Ar the lowest frequency of interest (400 Hz) this transfer function droppea to 0.9971 while at the highest frequency of concern (1.6 kHz) it was 0.9914 . These attenuation functions were considered regligible in the interpretation of tie results.

IV. RESULTS

A. PROCEDURES

1. Cogid은

Prior to the commencement of cooldown, the innez vacuum jacket is purged with air and then evacuated to Iess than 2 mmHg . This is important to ensure that no helium gas is in the inner jacket.

The probe is placed in the experimental area. Liquid nitrogen is then added to the outer jacket to commence the ccoldcwn. The experimental area is then evacuated to 80-100 mmig.

The temperature of tine experimental area is monitored by three different and independent methods. Quantitative results were obtained by monitoring the fundamental or a harmonic frequency of the ai= filled resonator. This is accomplished by using the $H P$ 3580a spectum Aralyzer to drive and pick-up the resulting signal in the Electrer/Electret mode. The following two equations

1) $f(n)=n c / 2 L$
2) $c^{2}=\gamma R T / M$

Iesults in

$$
T(0 K)=2.48 \times 10-5 f(\pi)^{2} / n^{2}
$$

where the constant is a result of the length of the resonator and the previously presented thermodynamic conscants.

The remaining two methods only present trenas. The first is menitoring the attached carbon resistor on the probe. Although this did not provide quantitative data during the liquid \quad itrogen cooldown phase, it was very useful in determining the point at wich we expected the liquid helium to collect in the dewar during the transfer.

As the temperature decreases the resistance increases.
The remaining method is to monitor the pressure in the inner dewar. Since the volume of the inner dewar remains constant, the pressure will drop as the temperature drops ia accordance with the Ideal Gas Law.

2. Liquid Heliug Transfer

Once the temperature in the experimental area reaches approximately 850 K the transfer of the liquid helium may commence. This transfer of the liquid helium from the shipping dewar to the inner dewar is accomplished via a transfer tube.

The transfer tube is a double walled stainless steel tube. A vacuua is maintained between the two walls to minimize heat conduction to the liquid helium.

Immediateiy prior to the transfer, the rransfer tube is purged with helium gas. This miaimizes the possibility of air and water vapor in the tube condensing and forming a plug in the line, thereby resticting or completly stopping the transfer.

The inner dewar is also broughr to atmosheric pressure by bleeding in helium gas thru the helium purge vaive. Once the inner dewar is at atmospheric pressure, ore end of the transfer tube is placed in the shipping dewar while the other end is placed in the helium recieving tube on the top of the probe. The shipping dewar is then pressurized to approximately 3 psig using helium Jas. This commences the transfer.

3. Pump Down

Once the desired liquid helium level is obtainea, keeping in mind that during the fump down the liquid helium level will drop by $1 / 3$ to $1 / 2$ of its original level at the commencement of pump down, the shipping dewar is venced concluding the
transfer. The transfer tube is removed from the shipping dewar and the helium recieving tube. The helium recieving tube is "capped" using a rubber stopper and the helium purge valve is closed.

The vapor pressure of the belium must be reduced in order to reduce the liquid helium temperature. This is accomplished by using the 15 cfm vaccum pump =efered to in Chapter III to evacuate the inner dewar. The isolation cross-connect vaive in the manostat is opened allowing the pressure inside and outside the membrane to remair equal, thereby allowing an unimpeded flow pach from the inner dewar to the vaccum pump. Once the desired pressure/temperature is obtained, the isolation cross-connect valve on the manostat is shut allowing the manostat to control the pressure.

B. DATA AQOISITION

Data wes obtained and analyzed by means of a computaional algorithm and a data aquisi=ion system. The system utilized an $H P-85$ desk-top computer, an $H P-3325 A$ Synthesizer/Function Generator, an EGEG-5204 Lock-in Anylyzer and an $4 P-3497 \mathrm{~A}$ Data Aquisition/Control Unit. The system automatically measures and tracks the center frequencies, amplitudes and quality factors (() of up to 9 acoustical resonances. A typical spectrum was shown in Figure 3.9.

An in depth explination of the basis for the data aquisition system is contained in a Masters Thesis by D. Conte [Ref. 45]. Due to the fact thar Conte describes a systell in air and uses a thermistor for temperature monitoring, slight modifications where required to the program for the HP-85. This program is listed in appendixa.

A siort and very basic discription of the aquisition system follcws. The $H P-85$ computer directly controls all of the equipment, with the exception of the Lock-in Analyzer, via the Hewlett Packard Interface Bus (HPIB; IEEE Standara 488-1975). The computer sends a value for frequency and amplitude to the HP-3325A Synthesizer/Function Generatcr, which causes an excitation of the aこoustic resonances. The EGEG-5204 is phased-locked to the HP-3325A and generates a D.C. voltage which is proportional to the Pythagorian sum of the amplified in-phase and quadrature components of the signal. This analog amplitude is sent to the Hp-3497A which, when interrogated, sends via the HPIB, a digitiza亡ior of the voltage level.

This system provided excellent resules in a minimum of time. The chi-squared minimization search utilized in the program yielded precisions of better thar 0.1 percent in Q, 0.01 percent in amplitude and 0.1 ppm in frequency.

C. DATA REDOCTION

Our computer controlled data acquisirion system compiles, on magnetic tape, all necessary electrical reading for electret-electret (E/E) and thermal-electret (T/EA and T/EB) configurations. The computer program provided in Appendix B is then used to process this formatted "raw" data, uhich is frovided in Appendix C. The sensitivities (MA and MB) of our slit-elsctret transaucers are then computed using equations 3.5 to 3.10.

From the reciprocity computation of transducer sensitivities we are able to determine the corresponding temperature oscillation r.m.s. amplitude ($\int T_{r}$). which is the ratio of output voltage to transducer sensitivity. The temperature oscillation that defines the upper limit ($\int T_{n}$) is computed from equation 3.19. The ratio of $\int T_{m}$ to $\int T_{r}$ is an
extremely important quantity in our experiment since ats value makes a definite statement about the validity of our computed thermal transducer sensitivities.

It shoula be pointed out that the measurements obtainea for E / E and T / E contain their own values of feequency. amplitude and quality factor, with each dara set occurring at essentually the same temperature. For our calculaticns the average frequency and temperature are used. An assemelage of reduced data is provized in Appendix D.

When looking at the output of the reduced data of Appendix D you will find the $\operatorname{cesonant~modal~number~listed~}$ first. Recall that the necessary electricar zeadings for E/E. T/EA and T/EB were all taken at slightly different temperatures and therefore at slightiy different center frequencies. The average temperature and frequency used for each calculation set is provided along with their standard deviation. The next iter is thき temperature oscillation amplitude calculated by the reciprocity method, followed by the amplitude of the temperature oscillation which has been determined to be the upper iimit. The ratio of these two amplitudes is also provided at tie end of the prigtout. Recall that the upper thermal oscillation by the thermopione principle required us to drive the heater and take the output fromeithər electret A or B. In our calculations the output was taken fromelectret a; however, the upper limit has also been calculated using the output of electret B and the difference between the two is listed (Ua-Ub). Finally. the "slit-electret" seasitivities are provided for side A and B.

D. EBROR ANALYSIS

The final section of this chapter will deal with the inherent errors that are a part of every experiment. The
magnitude of these errors aust be zeasonable and scrutinized with our final results to determine the strength of our analysis. In order to determine the accumulated error which exists in our calcuiated thermal transducer sensitivities we must recall equation 3.5 :
$M(A) M(B)=\left[d^{2} \pi U(I I) C p \rho / 16\right][V(\mathbb{L}) n /(V(S) Q £ C T)]$.
The factors that carry significant inherent errors are second sound speed U(II). helium density ρ. specific heat of helium Cp, Erequency f, Eemperature T, electret capacitance C, quality factor $\&$ and ail voltages.

From the UCLA tiermodynamic data [ref. 21] we find that second sound speed is known to within 0.1%, helium dersity is known to within 0.45\% and the specific heat is known to within 0.2\% - This gives a total error for these three parameters of

$$
\left[(0.001)^{2}+(0.0045)^{2}+(0.002)^{2}\right]=0.5 \%
$$

From our assembled data we have found that the accuracy of the remaining parameters is as follows :

$$
\begin{aligned}
& \text { frequercy 0.5\% } \\
& \text { tєmperature 0.3\% } \\
& \text { capacitance 0.2\% } \\
& \text { quality factor 0.6\% } \\
& \text { voltages 0.5\% } \mathrm{x} \text { sq工 }(8)=1.4 \%
\end{aligned}
$$

The sqr (8) occurs because when equation 3.5 is used to determine the absolute sensitivity of either transducer A "or" B there are eight factors of voltage required. when all of the above errors are combined the resulting toral error is found to be 1.7\%.

- CONCIUSIONS

A. VALIDITY OF RECIPROCITY IN A QUABTOM FLUID

The absolute sensitivities of the slit-electret sransducers were determined using the Reciprocity Theorem. We were able tcmake precise measurements of temperature, resonant frequency, amplitude and qualiたy fačoz. Invoking the assumption that all of the oscillatory heat dissipated in the beater was radiated as second sound, the amplitude of the upper bound for temperature oscillations was calculated.

The ratio of the temperature oscillation for the upper bound to that of recipzocity is plotted as a function of mode number at a temperature of 1.530 K andis shown in figure 5.1 as cizcled data points. The ashed line exists only as a guide to the eye.

In calculating the circled data points of figure 5.1 it was assumed that the thermal driver (webbed heater) was optimally positioned directly against the electretted endcap. Since in reality this would electrically short the electret and heater, the heater was incentionally offset by a distarce that was roughly measured to be 2 mm . He can assume that when our heater is driven the resulting Iesponse is Ieduced by a factcr of
$\cos (2 \pi \pi / L)$
which accounts for the 10 wer effective thermal impedance, where $L=50 \mathrm{~mm}$. is the resonator length. At any temperature, the ratio of the amplicude of oscillation for any two modes must equal a constant such that

$$
\cos (n \pi x / 25) / \cos (\pi \pi x / 25)=C
$$

where, for our data, C is obtained by averaging the ratio of upper limit to reciprocity \quad temperature amplitude oscillations for modes 2 and 6 at all temperatures.

Figure $5.1 \quad \mathrm{St} / \mathrm{St}_{\mathrm{r}}$

This gives us

$$
C=1.217 \pm 0.05
$$

When the above transcendental equation is solved for＂x＂for modes 2 and 6 we find that

$$
x=1.7 \mathrm{~mm}
$$

which indeed supports our rough measurement of heater displacement（2mm）．So we see that the effect of this heater offset is to reduce the circled data of figure 5．1． The corrected data points，the X^{\prime}＇s，in Figure 5.1 are obtained using a displacement of 2 an for ease or calculaこ̇on since the difference cbserved using 1．7an is insignificant． This then requires tie use of the following correction factor：
$\int_{T}(\operatorname{corrrected}) / \int T(\operatorname{cincled})=\cos (n \pi / 25)$ ．
This data is shown in figure 5．1 and we seethar the two methods are in excellent agreement．It is important to note that Table IV shows only a sample of corrected data taken at $T=1.530 \mathrm{~K}$ ．In actuality，Figure 5.1 illustrates the corrected data for data obtained at fipe different tempera－ tures and for many more data points．As indicated in the Table，a total of twelve data poirts were used for each mode to obtain these truly representatıvミ raこio values．

The bars in the lower portion of figure 5.1 represent the ratio of the cemperature oscillation for the lower bound to that of＝eciprocity．The theraal inertia of the resis－ tive thermometer，Kapitza resistance［Ref．22］and geomevry make the temperature oscillation by thermometry a lower limit．Figure 5.1 shows that Laese effects are indeed significant．Data which involved the lower limit was not required for the quantitative verification of the utility of the reciprocity method in a quantum fluid．

TABLE IV

Heater Displacement Correction $\left(T=1.53{ }^{\circ} \mathrm{K}\right)$

mode	\# pts	$\cos (n \pi / 25)$	$\int T_{u} / \int T_{r}$	$\oint_{T_{u}}^{T_{n}} \int_{I_{r}}$
2	12	0.9686	1.057	1.024
3	12	0.9298	1. 109	1.031
4	12	0.8763	1.241	1.087
5	12	0.8090	1. 195	0.967
6	12	0.7290	1.263	0.921
		à V ¢	1.173	>) 1.005

B. SENSITIVITY OF SIIT-ELECTRET TRANSDUCERS

By assuming that the cemperature oscillation amplitude calculated from the thermophone heat current is the true oscillation amplitude, it is possible $=0$ use the temperature amplitude measured by the reciprocity method to derermine the specific acoustic transfer impedance, or the reciprocity constant M^{\prime} (T) which is the inverse of its square \mathbf{I} points flotted in figure 5.2 and connected by the dashed srraight line are the values of $M^{\prime}(T)$ calculated from the UCLA thermodynamic data [Ref. 21] and shown previously in Figure 2.2.

The equation for the dashed line is a least squares fit to the data between the temperatures of 1.2 to 1.90 K :

$$
M^{\prime}(T)=2.176 T-1.775
$$

Pigure 5.2 Experimental/Theoretical Determination of $\mathrm{K}_{\mathrm{\prime}}$.
and the units are (wattsi/2/mm- OK). The maar square devíation of these fifteen (15) points from that line is less than 0.7%. The five bars are the values of $M^{\prime}(T)$ based on all of the thermal and Ieciprocicy measurements maae a= those temperature. Table V is a compilation of the data in Appendix C used to prepare the experimental points in Figure 5.2. Due to the intentional redundancy in our technique we were free to mix various E / E and T / E data sets $a t$ any given temperature. The choice was random and the number of "mixtures" for any given temperature and mode number is given in the rable. The number under the error bars gives the total number of foints used to average M' ar that temperature. The bars are two standard deviations tall. centered around the average. The dotted line connecting four of the five bars is a guide to the eye. At the present time we have no explainatior fior the approximate 10% discrepancy shown in Figure 5.2, but it does appear to be systematic and outside the limits of our uncertainty in the experimentally measured quantities.

TABLE V
Experimental Calibration Constant Data

$T \operatorname{mp}(0 \mathrm{~K})$	$\# p \tau s$	TTu$_{u} / \int T_{r}$	$M^{\prime}(+)$	$M^{\prime}(a v 9)$	$M^{\prime}(-)$
1.453	19	0.844	1.695	1.638	1.594
1.531	60	1.000	1.652	1.550	1.454
1.602	24	0.871	2.246	1.842	1.997
1.808	10	0.885	2.519	2.159	2.365
1.959	34	0.902	2.859	2.410	2.500

In conclusion, we have shown, for the first time, that it is possible to make absolute acoustical measurements of temperature oscillations in superfluid heliun using the reciprocity technique. Also, in addition to illustrating an excellent application of the conte systen of precise acoustical data aquisiticn, we were successful in measuring absolute temperature excursions as small as 10-10 $0 \mathrm{~K} /(\mathrm{Hz})^{1 / 2}$ 。

A sample of the transducer sensitivities as a function of temperature and mode number is shown in figure 5.2. All reduced sensitivities are given im Appendix D. It is worth noting that these sensitivities aze a factor of 2.3 (ie, $240 \mathrm{pf} / 85 \mathrm{pf}$) smaller than the true sensitivity since the "effective rransducer" was defined to include the coax cable which broughe the signal to room temperature [see chapter III (C.4)].

v

Thatilizanayd

APPENDIX A
 data aquisition programs

1) BJ\#2....... Extracts necessary electricai readings; calculares Q, ampiitude and center frequency: formats the output as raw data (Appendix C).
2) TMRCAL..... Monitors pressure and thermometer resistance: converts pressure to temperature: provides necessary information to determine thermometer differential resistivity.
3) COOLIN..... While monitoring a specified resonant mode, this program outputs heliun temperature due to the change in sound sfeed during cooldown.
4) P vs t..... Monitors the performance of our pressure (temperature) regulator.

```
2 CLEAR E PRINTER IS = GUTPUT 7ミニ:"F4MG"
\Xi DISP "REMOVE PROGRAM TAFE AND INSTALL DATA TAFE" q EEEP
4 DISP "WHEN COMFLETED. ENTER 1"
5 INFUT Y
IF Y=1 THEN }7\mathrm{ ELSE CLEAR छ EEEP छ GOTD =
7 CLEAR Q EEEP P DISP "DO YOU DESIRE TO ERASE AND REWIND TAPE?(Y/N:"
INPUT K゙$厅゙ IF K$="N" THEN 11 ELSE 9
9 ERASETAFE E GOTO 9J
10 CREATE 2$, BSO.88 E REWIND Q GOTO 12
11 CLEAR E EEEF Q GOTD 97
12 CLEAR & EEEP i# GOTO 8902
1こ SETTIME 0,O
14 DISF "DO YOU WANT TO SKIP DIFECTLY TO MEASURE?(Y/N)"
15 INPUT KS
16 IF K.$="N" THEN 8J ELSE 17
17 CLEAR % BEEP
18 DISP "Enter amp of driving freg in mv (=<゙ここOO)RMS"
19 DISP "DECIMAL VALUES ARE NOT FEFMMITTED"
20 INPUT A ! amp of frea
I1 IF A`ESOO THEN CLEAR E BEEP ש GOTO 18
コニ FOR N=1 TO 9
Z= AB(N)=A
24 NEXT N.
Z5 CLEAR Q EEEP
26 DISP "Enter largest value of amp ever desured (=<ここ00mv FiMS)"
27 INPUT A1 ! mas future amp
28 IF Al>こ500 THEN CLEAR G EEEP P GOTO 26
29 ! these are the values to set up the Jここ=A
こO A$=VAL$(A)
こ1 Aこ$="AM"
ここ Aこ$="MR"
OUTPUT 717:Aこ.,A$,Aこ$
34 CLEAR G EEEP
ZS DISP "Enter full-scale sensitivity setting from the S204 in volts=FSS/(FREAMF
GAIN*MULTIPL)"
EO INPUT AS ! SENSITIVITY SETTING
37 LLEAR E EEEP
38 DISP "Set and enter new time constant (in milli-sec)"
40 INPUT Y
41 T1=Y
4 2 ~ C L E A R ~ P ~ B E E P ~
4J DISP "How manv modes do you desire to track (MAX OF o)"
44 INFUT M ! NUMBER OF MODES
45 FOR N=1 TO M
4 6 ~ C L E A R ~ E ~ S E E F
47 DISP "What is center fred for mode ":N
48 INPUT FG(N) : CENTER FRED
5% CLEAR G BEEP
EJ DISF "What is the Q for mode ":N
5 4 ~ I N P U T ~ Q ( N )
SS I (N)==4
5 6 ~ C L E A R ~ \& ~ B E E P ~
57 DISP "What is the amplitude of the center freq for-mode ":N
SE INPUT A6(N)
5 9 ~ C L E A R ~ E ゙ ~ E E E F ~ ๕ ~ A G ( N ) = A O ( N ) / A S
6O NEXT N
&1 DISP "I am working on standard Jev. # of pts. i& variance "
62 ! From bこ to B2 is the calc of the noise. st. Jev.. and the number of pts. us
ed.
```

```
63 G,W=O e H1$="HZ" e H2$="FR"
64 F=(Fb(2)-Fb(1))/4+Fb(1)
65 F4S=VALS(F)
66 OUTPUT 717 ;H2$,F4$.H1$
67 WAIT T1:12+100
68 OUTPUT 709; "VT1"
6 9 \text { WAIT 1000}
70 FOR N=1 TO 100
71 ENTER 709; A(N)
7 2 W = W + A ( N )
TJ NEXT N
74 WmW/100
75 FOR N=1 TO 100
76 S=(A(N)-W) n2
77 G=G+S
78 NEXT N
79 G=AS:SQR(G/99)
.80 W=WFAS
81 PRINT "The mean is ";W;" and the standard dev is ";G
82 GOTO 8100
83 CLEAR E BEEP
84 DISP "Entar lower freq"
85 INPUT F1 ! lower frea
86 CLEAR P BEEP
87 DISP "Enter upper freq"
88 INPUT F2 ! upper freq
89 IF F2<=F1 THEN CLEAR E BEEP E GOTO }8
90 T=1/(4*((F2-F1)/\56)) ! time constant
91 CLEAR E BEEP
92 GOTO 1O1
93 DISP "DATA FILE NAME.";
94 INPUT Z$
95 GOTO }1
97 DISP "ENTER NAME OF DATA FILE"
98 INPUT Z$@ GOTO 12
101 DISP "Set time constant on S204 at ";T;" or smaller"
1:1 DISP "When complete, enter value set (in Milli-sec)"
121 INPUT T1
131 IF T1>T&1000 THEN CLEAR @ BEEP @ GOTO 101
141 CLEAR Q BEEP
151 DISP "Enter amp of driving freq in mv (=<3S00)RMS"
161 DISP "DECIMAL VALUES ARE NOT PERMITTED"
171 INPUT A ! amp of frea
1 8 1 ~ I F ~ A > J E O O ~ T H E N ~ C L E A R ~ Q ~ B E E P ~ Q ~ G O T O ~ 1 5 1 ,
182 FOR N=1 TO }
18J AB(N)=A
184 NEXT N
191 CLEAR E BEEP
201 DISP "Enter largest value of amp ever desired (\equiv<<J500mv RMS)"
211 INPUT A1 ! max future amp
2 2 1 ~ I F ~ A l > J 5 0 0 ~ T H E N ~ C L E A R ~ E ~ B E E P ~ 巳 ~ G O T O ~ 2 0 1 ~
230 ! these are the values to set up the Jここ5A
231 AS=VALS(A)
232 A2S="AM"
2JJ AJ$="MR"
240 OUTPUT 717 ; A2S,AS,AJ$
241 WAIT 200
251 FJ=CEIL((F2-F1)/256) ! smallest int >m bandwidth
252 ! SEARCH
253: SEARCH
```

```
254 ! SEARCH
261 ! next group sends freq to J=25A, and gets amp from 5.4074
269 CLEAR
270 DISP "I am working in SEARCH"
271 FOR N=0 TO 256
281 F4(N)=F1+N*FJ
232 ! F4(N) is freq sent
290 F4$=VAL$(F4(N))
291 HI$="HZ"
292 H2$="FR"
300 QUTPUT 717 ;H2$,F4$,H1$
こ10 WAIT 4*T1+100
こ20 OUTPUT 709 ; "UTZ"
こJO ENTER 709 ; A(N)
3SO NEXT N
JS1 ! FS AND FG ARE SCALE FACTORS
352 BEEP
360 F5=F1-.1*(F2-F1)
=70 FG=F2+.1*(F2-F1)
ZBO GCLEAR Q CLEAR
390 SCALE F5,F6.-.1,1.2
400 XAXIS 0,1000,F1,F=
410 YAXIS F1,.1,-.1,1.2
411 FOR N=O TO 256
413 PLOT F4(N),A(N)
414 NEXT N
415 DISP "DO YOU DESIRE A COPY? (Y/N)" ๕ EEEP
416 INPUT K$
4 1 7 ~ I F ~ K ' \$ = " N " ~ T H E N ~ 4 7 7 ~ E L S E ~ 4 1 8 ~
418 GCLEAR Q CLEAR Q BEEP
419 DISP "ENTER FIGURE # TO BE PRINTED"
4 2 0 ~ I N P U T ~ L \$ ~
421 PLOTTER IS }70
422 PEN I
42J SCALE F1-.1*(F2-F1),F=+500,-.こ.1.J
4 2 4 ~ X A X I S ~ O , 1 0 0 , F 1 , F 2
4 2 5 ~ Y A X I S ~ F 1 , . 1 , 0 , 1 . 2 ~
426 PEN 2
4 2 7 ~ F O R ~ N = 0 ~ T O ~ 2 5 6 ~
4 2 9 ~ P L O T ~ F 4 ( N ) , A ( N )
43O NEXT N
4こ1 PENUP P PEN 1
4J2 LDIR O,SIN(90) Q PENUP
4Jこ FOR X=F1 TO F2 STEP 200 @ PENUP
454 MOVE X,-.13
435 LABEL VAL$(X)
4J6 NEXT X E PENUP
440 LDIR O
441 FOR Y=0 TO 1.I STEP . 1 Q PENUP
442 MOVE F1-.O5(FI-F1),Y
44J LABEL VALs(Y)
4 4 4 ~ N E X T ~ Y ~ @ ~ P E N U P ~
450 LDIR O @ FENUP
451 MOVE F1+(Fこ-F1)/こ,-.こ1
4E2 LABEL "FREQUENCY IN HZ"
4EJ LDIR O Q PENUF
454 MDVE F1,-.J
455 LABEL "PLOT OF RELATIVE AMFLITUDE VS FREOUENCY (FLLL SPECTRUM)"
456 LDIR O.SIN(90) © PENUP
457 MOVE F1-.O8*(F2-F1),.J
```

```
45日 LABEL "RELATIVE AMPLITUDE"
459 LDIR O Q PENUP
460 MOVE F1+200.1.2
461 LABEL "FIGURE ":L$
462 PENUP
4 7 6 ~ P L O T T E R ~ I S ~ 1 /
477 CLEAR P BEEP
47日 DISP "Do you desire to rerun exp with different parameters?(Y/N)"
4日O INFUT K$
490 GCLEAR P CLEAR P BEEP
500 IF K'$="N" THEN S10 ELSE 11
510 DISP "Enter decision point for amplitude (O TO 1.2)"
SZO INPUT A4 ! DECISION POINT
SJO CLEAR E BEEP
540 DISP "Enter full-scale sensitivity setting from the 5204 in volts=FSS/(PREAM
P GAIN*MULTIP)"
550 INPUT AS ! SENSITIVITY SETTING
560 PRINT "Amplitude in volts";" Frequency"
570 PRINT
580 FOR N=0 TO 256
590 IF A(N)<A4 THEN 6JO
600 A(N)=AS*A (N)
610 PRINT USING 62O ; A(N),F4(N)
620 IMAGE 1X,D.DDDDDDDD,10X.DDDDDD.DD
GJO NEXT N
6こ1 PRINT USING 6ここ
GEE IMAGE こ/
640 CLEAR Q BEEP
641 ! SORT
O42 ! SORT
64J ! SORT
650 DISP "How many modes do you desire to track (MAX OF 9:"
660 INPUT M ! NUMEER OF MODES
670 FOR N=1 TO M
6日0 CLEAR E BEEP
690 DISP "What is center freq for mode ":N
700 INPUT M(N) ! CENTER FREQ
7 1 0 ~ C L E A R ~ \& ~ B E E P ~
720 DISP "What is freqwidth for mode ":N
7こO DISP "MUST EE GREATER THAN ";2xFJ! FJ IS BW
740 INPUT D(N) ! FREQ-WIDTH
750 NEXT N
760 CLEAR
761 ! From 770 to 960 is the firgt rough try for measuring (SORT)
770 FOR L=1 TD M
771 DISP "I am working in SORT for mode ":L
780 FOR N=0 TD 25
790 F4(N)=M(L)-Q(L)/2+N*D(L)/25
800 F4$=VAL$(F4(N))
810 OUTPUT 717 :H2$,F4$,H1$
日20 WAIT 12*T1+100
日30 OUTPUT 709 : "VTこ"
日こ1 WAIT SO
G40 ENTER 709:A(N)
日SO NEXT N
851 EEEP
G60 GCLEAR Q CLEAR
日70 SCALE F4(O)-.1*D(L).F4(25)+.1*O(L),-.1.1.2
日日0 XAXIS O.O(L)/10.F4(0).F4(Iこ)
日90 YAXIS F4(0)..1.0.1.2
```

```
900 FOR N=O TD 25
920 PLOT F4(N),A(N)
9 3 0 ~ N E X T ~ N
940 MOVE F4(0).-. 1
941 LABEL "MODE ":L:" ":F4(0):" TO ":F4(25)
942 EISP "DO YOU WANT A COPY? (Y/N)" E EEEP
94J INPUT K$
944 IF K$="N" THEN 987
945 GCLEAF Q CLEAR P BEEP
946 DISP "ENTER FIGURE # TO BE PRINTED"
947 INPUT L$
954 PLOTTER IS 705
955 PEN 1
956 SCALE F4(O)-.2*O(L).F4(25)+.1*O(L).-.J.1.J
957 XAXIS O.D(L)/10.F4(0).F4(25)
958 YAXIS F4(O),.1,0,1.2
959 PEN 2
960 FOR N=0 TO 25
962 PLOT F4(N),A(N)
96J NEXT N
9 6 4 ~ P E N U P ~ Q ~ P E N ~ 1 ~
965 LDIR 0.SIN(90)
966 FOR X=F4(0) TO F4(こ5) STEP O(L)/10 E PENUF
967 MOVE X.-.1こ
968 LABEL VAL$(X)
9 6 9 ~ N E X T ~ X ~
970 LDIR O e PENUP
971 FOR Y=O TO 1.2 STEF . }1\mathrm{ E PENUP
972 MOVE F4(O)-.08*O(L).Y
97J LABEL VAL$(Y)
974 NEXT Y
975 LDIR O & PENUP
976 MOVE F4(O)+.1*D(L). -. 21
977 LABEL "FREOUENCY IN HZ"
978 LDIR O E PENUP
979 MOVE F4(O)-.1*O(L),-.こ
980 LABEL "PLOT DF RELATIVE AMPLITUDE VS FREQUENCY, MODE ";L
981 LDIR O.SIN(90) E PENUP
982 MOVE F4(O)-. 17*O(L)..J
98こ LABEL "RELATIVE AMPLITUDE "
984 LDIR O P PENUP
985 MOVE F4(O)+.1*O(L).1.2
986 LABEL "FIGURE ";LS & PENUP Q PLOTTER IS 1
9 8 7 \text { LLEAR シ BEEP}
988 DISP "Do you want to ehange anything?(Y/N)"
989 INPUT K$
990 IF K$="N" THEN 1200 ELSE 1000
1000 DISP "Change sensitivity? (Y/N)"
1010 INPUT K$O CLEAR P BEEP
1020 IF K$="N" THEN 1060
10ミO CLEAR e EEEP
1040 DISP "Enter new sensitivity setting"
1050 INPUT AS
1060 CLEAR P BEEP
1070 DISP "Change freqwidth? (Y/N)"
1080 INPUT Y.$Q CLEAR E EEEP
1090 IF K's="N" THEN 1:20
1100 DISP "Enter new freqwidth"
1110 INPUT O(L)
1:20 CLEAR E EEEF
```

```
11こ0 DISP "Change center freq? (Y/N)"
1140 INPUT K$Q CLEAR P BEEP
1150 IF K$="N" THEN 1180
1160 DISP "Enter new center freq"
1170 INPUT M(L)
1180 GCLEAR Q CLEAF
1190 GOTO 771
1191 ! From 1200 to 1680 is the farst try at getting center freq and the a
1200 CLEAF E GCLEAF
12O1 DISP "I am working on freq and Q for SORT mode ":L
1210 H,B1,B4,H1,H2,Hこ.H4=0
12\Omega0 B2: BJ=50
1230 FOR N=1 TO =4
1240 IF A(N)<A(H) THEN 1280
1241 IF A(N)=A(H) THEN 1242 ELSE 1250
1242 PRINT A(N)
1250 AG(L)=A(N)
1260 F6(L) =F4(N)
1270 H=N
1280 NEXT N
1281 X=A(H)
1282 Y=(A(H+1)-A(H-1))/2
12日Z Z=(A(H+1)-A(H-1)-2*X)/=
1284 F6(L) =- (Y/(2*Z))
1285 AG(L)=X+Y*FG(L)+Z*F*(L)^2
1286 F6(L) =F4(H)+F6(L)*(F4(H)-F4(H-1))
1290 A7(L)=A6(L)/SQR(2)
1300 FOR N=O TO H
1こ10 IF AT(L)=A(N) THEN 1410
1ここ0 IF A7(L)<A(N) THEN 1こ70
1ここO IF A(N)<B1 THEN 1450
1こ40) B1=A(N)
1こ50 H1=N
1こ60 GOTO 1450
1こ70 IF A(N)>B2 THEN 1400
1こ80}\quadB2=A(N
1こ90 H2=N
1400 GOTO 1450
1410 B1. B2=A(N)
1420 H1,H2=N
14こ0 F7=F4(H2)
1440 GOTO 1470
1450 NEXT N
1451 X=(A7(L)-B1)/(B2-B1)
1460 F7=X*(F4(H2)-F4(H1))+F4(H1)
1470 FOR N=H TO 25
1480 IF A7(L)=A(N) THEN 1580
1490 IF A>(L)>A(N) THEN 1540
1500 IF A(N)>BJ THEN 15こO
1510 BJ=A(N)
1520 HJ=N
15JO GOTO 1620
1540 IF A(N)<=B4 THEN 1570
1SSO B4=A (N)
1560 H4=N
1570 GOTO 1620
1580 Bこ..B4=A(N)
1590 HJ,H4=N
1600 FE=F4(HJ)
1610 GOTD 1640
```

```
1620 NEXT N
1621 X=(A7(L)-84)/(BJ-B4)
16=0 FB=-(X&(F4(H4)-F4(HJ)))+F4(H4)
1640 O(L)=F6(L)/(FB-F7)
1641 PRINT "MODE ":L:
164Z PRINT "CENTER FREQ IS ":FG(L);" AND AMP IS ":AG(L)*AS
164こ FRINT "O IS ":Q(L)
1650 IF BI=0 THEN 1655
1651 IF B4=0 THEN :655
16E= IF E==50 THEN 1655
16EJ IF EJ=50 THEN 1655
1654 GOTO 165B
16S5 FRINT "JdS FOINT NOT FOLND. REFEATING MEASLREMENT. MODE ":L
1656 口(L)=2*O(L)
1657 G0TO 771
16E8 IF Ab(L)%.こ THEN 1664
1650 AB(L)=2*AB(L)
1600 Ab(L)=2#Ab(L)
1661 IF AB(L)\AA1 THEN 165B
1662 AB(L)=A1
160J GOTO 1671
1664 IF AG(L)<.9E THEN 1671
1065 A8(L)=AB(L)/=
1660 Ab(L)=Ab(L)/=
1667 GOTO 1664
167! CLEAR
1672 PRINT USING 167=
16Tこ IMAGE E/
1680 NEXT L
1690 CLEAR e gCLEAR
1691 DISP "I am working on tıme constant"
1690 F From :700 to 1740 the largest Time Constant is found
:700 FOR L=1 TO M
1701 T(L)=Q(L)/(PI*Fb(L))
1702 NEXT L
1705 T=T(1)
17!0 FOR L=2 TO M
1711 IF T:P(L) THEN 17こ0
171= T=T(L)
1720 NEXT L
1750 EEEP E CLEAR
1755 PRINT "TIME CONST >= ":T*1000
1760 DISp "Set anc enter new tame constant (in mallı-sec)"
1770 DISP "MUST EE GREATER THAN ";T;" sec"
17B0 INPUT Y
178: T1=Y
1782 IF =5:(T1*12+200)>15こ000 THEN 17BE ELSE 1785
178= D9=1NT(25*(T1*12+200)/51000)
1784 GロTO 1786
1785 D9==
17BS CLEAR
1791 PRINT "# OF FAVINES IS ":D9
1792 FRINT "NEW TIME CONST IS ":T1
179J PRINT USING 1794
1794 IMAGE 4/
1795 : MEASURE
1796 ' MEASURE
1797 ' MEASURE
1798 ' MEASURE
1799 DISF "I am working on standard dev. # of Dts. : variance "
```

```
1800 ! From 1800 to 1924 is the calc of the nosse. st. dev., and the number of p
ts. used.
1801 G.W=O
1BO2 F=(Fb(2)-Fb(1))/4+Fb(1)
1B0こ F4s=UALs(F)
1BO4 DUTPUT 717 :H2$.F4$.H1$
1805 WAIT T1*12+100
1806 OUTPUT 709 ; "VT1"
1807 WAIT 1000
180B FOR N=1 TO 100
1809 ENTER 709:A(N)
1 8 1 0 W = W + A ( N )
1811 NEXT N
1812 W=W/100
1日1J FOR N=1 TO 100
1814 S=(A(N)-W)^2
1815 G=G+S
1816 NEXT N
1817 G=AS*SER(G/99)
1818 W=W*AS
1819 PRINT "The mean is ":W
1820 PRINT "The standard dev is ":G
1821 PRINT USING 182I
1822 IMAGE 4/
1日こ5 FOR L=1 TO M
1830 I(L)=2*Ab(L)*AS/(こ.こ*G)
1日こ\Sigma PRINT "NO. OF POINTS FOR MODE ";L:" IS ":I(L)
1840 IF I(L)<100 THEN 1850
1845 I (L)=100
1850 IF I (L)>50 THEN 1860
1855 I (L)=50
1860 I (L)=IP(I (L))
18b1 I (L)=24
18&4 PRINT "NO. CHOSEN IS ":I(L)
1865 PRINT
1860 NEXT L
1867 CLEAR Q BEEF
1880 PRINT USING 1881
1281 IMAGE 4/
188S PRINTER IS 701.1=2
18日7 DIM F$[こOJ
188B F$="C-G RAVINE"
1889 GOTO 8999
189O PRINT USING 1891 ; "TIME","TEMP","PRES","M #","C. FREQ","AMP."."Q","SNR"."D
-AMP"."# PT".F$
1891 IMAGE 4A,5X,4A,6X,5A,4X, ЗA,6X,7A.9X,4A,14X,1A,9X, =A,5X,5A,4X,4A,6X,10A
1B92 PRINT USING 189J; "(SEC)"."(K)"."(HZ)"."(Vrmg)"."(mV)"
189こ IMAGE SA,4X,5A, 工\XiX,4A,10X.6A.JOX.4A./
1895 CLEAR
1896 ! From 1901 to END :s the calculation for measure including center freq and
    0 and track
1897 07. Q8=1
1901 ON ERROR GOTO &000 & T9=0
1 9 0 2 ~ F O R ~ L = 1 ~ T O ~ M ~
190J DISP "I AM IN MEASURE FOR MODE ":L
1906 F1=Fb(L)-Fb(L)/Q(L)
1907 F2=Fb(L)+Fb(L)/Q(L)
1908 U(L)=(F2-F1)/I (L)
1909 V(L)=(Fこ-F1)/こ
1010 H=0 @ QO=F6(L)
```

```
1921 A$=VAL$(AB(L))
19ニコ OUTPUT 717 ;AZ$.A$,AJ$
19ここ WAIT 2OO
1924 ENTEF 722 ; T6(L)
1925 IF L=1 THEN 1929 ELSE GOTO 7000
1026 GOTD 2650
1929 FOR Y9=0 TO I (L)
19こ0 X8(YG)=Fb(L)+U(L):YG-V(L)
19こ1 F4$=VAL$(X8(YG))
19E2 H1$="HZ"
19ここ H2s="FR"
19こ4 DUTPUT 717 ;H2$,F4$.H1$
19こ5 WAIT 12*T1+100
19こG OUTPUT 709 ; "VTこ"
1937 ENTER 709; X7(Y9)
1958 NEXT YO
1939 ENTER 722 ; TS(L)
1940 FOR N=O TO I (L)
1941 F4(N)=X8(N)
1942 A(N)=X7(N)
194J NEXT N
197J FOR N=1 TO I(L)-1
:974 IF A(N)<A(H) THEN 1978
1975 IF A(N)=A(H) THEN 1976 ELSE 1977
1976 PRINT A(N)
1977 H=N
1978 NEXT N
1970 X=A (H)
1980 Y=(A(H+1)-A(H-1))/\Omega
1990 Z=(A(H+!)+A(H-1)-2*X)/=
2000 Fb(L) =-(Y/(Z#Z))
2010 AG(L) =X+Y*FG(L)+Z*FG(L)^`\Omega
2020 FG(L)=F4(H)+FG(L)*(F4(H)-F4(H-1))
20こO B1. 34.H1.H2,HE.H4=O
2040 B2, BE=50 e PRINTER IS 701.1こ2
2290 AT(L)=Ab(L)/SQR(2)
2300 FOR N=0 TO H
2こ10 IF AT(L)=A(N) THEN 2410
2こ20 IF A7(L)<A(N) THEN ここ70
2ここ0 IF A(N)<B1 THEN 2450
2こ40 B1=A(N)
2こ50 HI=N
ここ60 GOTD 2450
2こ70 IF A(N)>B2 THEN 2400
2380 B2=A(N)
2390 H2=N
2400 GOTO 2450
2410 E1, B2=A(N)
2420 H1.H2=N
24こ0 F7=F4(H2)
2440 GOTO 2470
2450 NEXT N
245! IF B2=50 THEN PRINT "COLLD NOT FIND SdB DOWN PARAMETER" E GOTO bO`ZO
245= IF BI=O THEN PRINT "COULD NOT FIND JdE DOWN PARAMETER" E GOTD GOZO
2459 X=(A7(L)-E1)/(B2-B1)
2460 F7=X*(F4(H2)-F4(H1))+F4(H1)
2470 FOR N=H TO I(L)
2480 IF A7(L)=A(N) THEN =EBO
2490 IF AT(L)>A(N) THEN =540
ISOO IF A(N) >ES THEN こ5こO
```

```
2510 BJ=A(N)
2520 HJ=N
25SO GOTO こ6こO
2540 IF A(N)<=B4 THEN 2570
2550 B4=A (N)
2560 H4=N
2570 GOTO 26=0
2580 BJ. B4=A (N)
2590 HE,H4=N
2600 FB=F4(HJ)
2610 GOTO 26J1
2620 NEXT N
2621 IF B3=50 THEN PRINT "COULD NOT FIND JOB DOWN FARAMETER" E GOTO GOZO
26ここ IF B4=0 THEN PRINT "COULD NOT FIND JdB DOWN PARAMETER" Q GOTO GOZO
2629 X=(A7 L ) -B4)/(BJ-B4)
26こ0 FB=-(X)(F4(H4)-F4(HE)))+F4(H4)
26こ1 Q(L)=F6(L)/(FG-F7)
2632 FOR N=1 TO 24
26こJ E6(N)=F4(N)
26こ4 E7 (N)=A(N)
26J5 NEXT N
2641 PRINTER IS 701.1J2
264こ CLEAR
2645 IF L=1 THEN 2644 ELSE GOTO J420
2644 I5=15+1
2645 [00=F6(1)/09
2646 FOR N=2 TO M
2647 Fb(N)=09*F6(N)*ロ日
2648 NEXT N
2649 GOTO J420
2650 FOR N=0 TO M-1
2651 IF L=Mi-N THEN XI=M-N-1 ELSE 265:
2652 IF X1=0 THEN X1=M
265J NEXT N
2060 FOR N=1 TO 24
2661 E1(N)=E6(N)
2062 E= (N)=E7(N)
266J NEXT N
2664 E==A6(X1)
2665 E4=F6(X1)
2666 E5=0 (X1)
2 6 7 7
2678
2679 ! VARY Q
2680 FOR B=1 TO D9
2685 FOR K=1 TO E
2689 DISF "I AM IN RAVINE FOR Q OF MODE ":XI;" SHOT ":B:".";K
2690 J(1)=E5
2700 J (2)=1.005*ES
2710 J(こ)=.995*ES
2711 R=ES
2720 E(K)=0
27S0 FOR N=1 TO I (X1)
2740C(N)=R/(J (K) SOR((E1(N)/E4-E4/E1(N))へ2+(1/J(K))へこ))
2750 D={E2(N)-C(N))^n
2760 E(K)=E(K) +D
2770 NEXT N
2775 CLEAR
2780 NEXT K
281こV1(X1)=-((E(こ)-E(こ))/(こ*(E(こ)+E(こ)-こ*E(1))))
```

```
2814 ES=J(1)+V1(x1)*.005*J(1)
2876!
2877
2978
2879 ! VARY AMP
Ig80 CLEAR
2881 FOR K=1 TO こ
2880 DISP "I AM IN RAVINE FOR AMPLITUDE OF MODE ":XI:" SHOT;":E;",":k
2890 J(1)=EJ
2900 J (2)=1.002*EJ
2910 J (こ)=.998#EJ
29こ0 E(K)=0
29こO FOR N=1 TO I(X1)
2940 C(N)=J(K)/(ES*SCR((E1(N)/E4-E4/E1(N))へこ+(1/ES)^こ))
2950 D=(E2(N)-C(N))^2
2960 E(K)=E(K)+D
2970 NEXT N
2975 CLEAR
7980 NEXT K
J020V1(X1)=-((E(2)-E(コ))/(こ*(E(こ)+E(こ)-こ*E(1))))
\XiOこO EJ=J (1)+V1(X1) &.00こ#J(1)
こ17í!
Z177
J178
=179 ! VARY FREQ
J180 CLEAR
こ181 FOR K=1 TO こ
Z189 DISP "I AM IN RAVINE FOR FREQUENCY OF MODE ":X1;" SHOT ":B:".":K
こ190 J(1)=E4
こ200 J(2)=.005*E4/ES+E4
Jこ10 J (こ) =- (.005*E4/ES) +E4
2211 R=Eこ
シニニ0 E(K)=0
こここO FOR N=1 TO I (X1)
J240 C(N)=R/(ES*SQR((E1 (N)/J(K)-J(K)/E1(N))^こ+(1/ES)^2))
こ250 D=(E2(N)-C(N))^2
Z260 E(K)=E (K.)+D
Z270 NEXT N
ここ75 CLEAR
Z280 NEXT K
ここ05 V1(X1)==-((E(2)-E(こ))/(こ*(E(2)+E(こ)-こ⿱E(1))))
Z306 E4=J(1)+V1(X1)*.005*J(1)/ES
Zこ07 NEXT S
ここOB
\Xiこ09
ここ!0
S11 ! LAST SHOT RAVINE #
ご12 CLEAR
Jこ14 DISP "I AM IN LAST SHOT R"
ここ16 J1=Eこ
ここ18 E=0
Jこ19 FOR N=1 TO I (X1)
Jこ20C(N)=J1/(ES*SQR((E1(N)/E4-E4/E1(N))^2+(1/ES)~ב))
ここ21 D=(E2(N)-C(N))^2
ここここ E=E+D
ここここ NEXT N
こここ○ J1=J1*AS
こここ7 Y=J1/G
こここる DIM G$[1ここ]
ごSO ASSIGN# 1 T0 2$
```

```
こJ60 T4=TIME
Zこ71 T7={TS(X1)+Tb(X1))/2
ここ日0 P5=-(.00765*((T7-7)ハ2)^2)+.07055*(T7-7)/2+1.6481
ここ日1 Ao(X1)=Eこ
ここ82 Fo(x1)=E4
ごロこ Q(x1)=E5
ここ90 FRINT# 1.:5-1 : T4.PS.T7.X1.E4.J1.EE.Y.A8(X1).,I5-1.E
ここの1 ASSIGN# 1 TO *
```



```
,5X.3D.6X.D.4DE"
ここ9こ PRINT USING G5 : T4.PS.T7.X1.E4.J1.ES.Y.AB(X1),I5-1.E
340J IF X1=L THEN 4981
-405 15=15+1
J406 IF YO<こ4 THEN OFF TIMER# 1 @ GOTO J407 ELSE J415
3407 FOR Y8=Y9 TO I (L)
j408 H2s="FR" e H1s="Hz"
3409 F4$=VAL$(X8(Y8))
3410 OUTPUT 717;H2$.F4%,H1s
2411 WAIT 12*T1+100
こ412 OUTPUT 709 :"VTご"
341こ ENTER 709 ; A(YE)
3414 NEXT Y8
3415 GOTO 1959
こ420 F4s=VALs(F\dot{*}(L))
3421 IF L>1 THEN こ422 ELSE こ4JO
J4こ2 09=Fb(L)/09
こ4ここ IF L=M THEN こ427
34こ4 FOR N=L+1 TO M
3425 Fb(N)=09*Fb(N)*08
326 NEXT N
3277 FOR N=1 TO L-1
3428 Fo(N)=09*Fb(N)*0日
329 NEXT N
3430 AS=VAL$(AB(L))
こ4こ1 07.08=1
3440 OUTPUT 717 :A2s,As,AJ$
345O WAIT }20
Z460 QUTPUT 717:H2$.F4$.H15
J470 WAIT T1$16+100
3480 OUTFUT 709 : "VTこ"
3490 ENTER 709 ; CB(L)
3491 IF T9=M THEN こ492 ELSE 4978
3492 T9=M+1
349J X1=L
3494 G0T0 }266
497日 T9=L+1
4 9 8 0 ~ C L E A R ~
4981 NEXT L
4982 PRINTER IS 701.:ここ
4983 FRINT USINE 4984
4984 IMAGE /
4995 !
4996:
4997 !
4998 : TRACK
5000 T9=0
5010 FOR L=1 TO M
SO11 DISF "I AM TRACKing mOdE ":L
5020 F4s=VAL$(FG(L))
SOEO AS=VAL$(G8(L))
```

```
5040 QUTFUT 717 ;Aこ$,A$.Aこ$
5 0 4 1 ~ W A I T ~ 2 0 0 ~
5050 QUTFUT 717 ;HE$,F4$,H1$
5 0 6 0 ~ W A I T ~ T ~ 1 * 1 6 + 2 0 0 0 ~
5061 QUTFUT 709 ;"VTこ"
5070 ENTER 709 : A9
5080 IF AQ<=.9*C3(L) THEN 5110
5090 IF A9>=1.1*C8(L) THEN 5110
5100 GOTO 5120
5110 T9=L
5120 IF A9>.Z THEN 5=10
S1こ0 AB(L)=2*AB(L)
5140 A9=2*A9
5150 IF A8(L)<A1 THEN 51こ0
5160 A8(L)=A1
5:70 GOTO 5250
S=10 IF AO<.95 THEN Sこ45
Eここ0 A8(L)=A8(L)/2
5250 A9=A9ノこ
5240 GOTO 5210
5245 CLEAR
5250 NEXT L
5260 ENTER 72こ : T8
5270 IF ABS (T8-T7)>=.2 THEN 1901
5290 IF T9<1.THEN 5010
EJO1 T4=TIME
Sこ10 PRINT "GONE TO MEASURE DUE TO AMPLITUDE AT TIME ":T4:" MODE ":TQ
Sこ20 GOTO 1901
6 0 0 0 ~ : ~ E R R O R ~ R O U T I N E ~
6001 OFF TIMER# 1
6010 FRINT "Error detected, mede ":L:" EFRL = ":ERRL;" ERRN = ":ERRN
6OZO H=O
6030 FOR N=1 TO I(L)-1
6040 IF A(N)<A(H) THEN 6080
6050 IF A(N)=A(H) THEN 6060 ELSE 6070
6 0 6 0 ~ F R I N T ~ A ( N )
6070 H=N
6080 NEXT N
6 0 9 0 ~ I F ~ Q 8 = 1 ~ T H E N ~ 6 0 9 5 ~ E L S E ~ 6 0 9 3 ~
609こ ロ7=@8
6095 08=F4(H)
6100 08=0日/FG(L)
6110 Q8=08*07
6:20 F6(L)=F4(H)
6121 F4s=VAL$(F6(L))
6:ここ A$=VAL$(AB(L))
612J QUTPUT 717 :A2$.A$.AJ$
6124 WAIT 200
61こ5 QUTPUT 717 :H2$,F4$,H1$
6126 WAIT T1*16+2000
6127 OUTPUT 709 ; "VTこ"
6128 ENTER 709 ; A9
6129 IF A9>.こ THEN 61こ5
6130 A8(L)=ごA8(L)
61こ1 A9=2*A9
61こ2 IF A8(L)<A1 THEN 6129
61こJ A8(L)=A1
61こ4 GOTO 61こ9
61こ5 IF A9<.95 THEN 61こ.9
61こ6 A8(L)=A8!L)/=
```

```
6157 AO=A9/2
61こ8 GOTO 61こ\Xi
S1J9 CLEAR
6140 OFF ERROR
6141 IF D9>E THEN 6199
6142 CLEAR Q DISP "I AM GOING THROUGH POINTS FOR MODE ":L
614こ OUTFUT 717:Aこ$,AB(L).AJ$
6144 WAIT 200
6145 F1=FG(L)-FG(L)/Q(L)
6146 F2=F6(L)+F6(L)/0(L)
6147U(L)=(F2-F1)/I(L)
6148V(L)=(Fఇ-F1)/2
6149 H=0
6150 FOR N=O TO I (L)
6151F4(N)=F6(L)+U(L)*N-V(L)
615= OUTPUT 717:H2$,F4(N).H1$
615こ WAIT 12*T1+100
6154 OUTFUT 709 : "UTS"
6155 ENTER 709 ; A(N)
6156 NEXT N
6157 FOR N=1 TO I(L)
6158 IF A(N)<A(H) THEN 6160
6159 H=N
6160 NEXT N
6161 IF H=0 THEN CLEAR IP GOTO 6090
6162 IF H=24 THEN CLEAR E GOTO 6090
616J X=.707*A(H)
6164 FOR N=O TO H
6165 IF A(N)<X THEN 616E
6166 NEXT N
6167 CLEAR IP GOTO 6090
6168 FOR N*H TO 24
6169 IF A(N)<X THEN 6172
6170 NEXT N
6171 CLEAR Q GOTO 6090
6172 CLEAR
6199 ON ERROR GOTO 6000
6200 GOTO 190J
7000 FOR YO=0 TO 25
7001 XB(YO)=F6(L)+U(L)*YO-V(L)
7 0 0 6 ~ N E X T ~ Y O ~
7007 Y9=0
7010 F4$=VALs(X8(YO))
7015 OUTPUT 717 ;H2S.F4$,H1$
7020 CN TIMER* 1,12*T1+100 GOSUB 8000
70こ5 GOTO 1926
8000 IF YO>=25 THEN 8025
8001 OFF TIMEF| 1
8005 OUTPUT 709 ;"VTこ"
8010 ENTER 709; X7(Y9)
8015 Y9=Yq+1
8016 H2$="FR" & H1$="HZ"
8017 F4$*VAL$(X8(YO))
8018 OUTPUT 717;H2$.F4$.H1$
8019 ON TIMER# 1.12*T1+100 GOSUB 8000
8020 IF YO<こ\Xi THEN RETURN ELSE BO25
8Oこ5 OFF TIMER# 1
BOこO RETURN
8100 IF こ5*(T1*12+200)>15こ000 THEN 8101 ELSE 810こ
8101 DO=INT(25*(T1*12+200)/51000)
```

```
8102 GOTO 8104
810こ D9=3
8104 PRINT "# OF RAVINES IS ":D9
8105 GOTO 1885
89901 CLEAR G GCLEAR
8901 GOTO 9008
8992 DISP "ENTER THE STARTING # PT FOR DATA"
899こ INPUT Y
8994 I5=Y
8995 GOTO :J
8999 DISP "ENTER PREAMF GAIN" E EEEP
9 0 0 0 ~ I N F U T ~ P S ~
9001 DISF "ENTER FSS FROM S2O4" せ EEEP
9002 INPUT S$
900こ DISF "ENTER MULTIP. FROM E2O4" e BEEP
9004 INPUT M$
9005 PRINT "PREAMF= ";P$;" FSS=":S$:" MULTIP=";M$
9 0 0 6 ~ P R I N T
9007 GOTD 1890
9008 DISP "THE END"
9009 END
```

```
1! ////////////////////1//1/////////////1//////////////////////
2 ! ////// "TMRCAL": THERMOMETER CALIERATION ////////////////////
Ј ! ////////////////////////////////////////////////////////////
2O ! VALID ONLY FOR:
    4mmHg < P< }9\textrm{mmHg
    REQUIRES VOLTMETER (フここ)
    REQUIRES BARATRON-DAU(709)
50!
70 DIM R(150).P(150),V(150),T(150)
80 OUTFUT 709;"F1"
90 OUTFUT 722:"F1"
100 CLEAR Q EEEP 7,JOO Q DISP "THERMOMETER CALIBRATION"
120 WAIT 2500
13O CLEAR E BEEP 7,こOO P DISP " BIAS CURRENT (UA)"
150 INPUT I
160 PRINT "THERMOMETER CALIBRATION"
170 PRINT
180 PRINT
190 PRINT "BIAS CURRENTx":I:"UA"
2 0 0 ~ P R I N T
Z10 PRINT "M V(V) T(K) R(KOHM)"
2こO ! CREATE DATA TAPE
2JO CLEAR E BEEP GISP "STORE DATA ON TAPE (Y/N)"
250 INPUT R$
55 X6=1
260 IF R$="N" THEN X6=0 @ GOTO J60
270 CLEAR Q BEEP 7. JOO DISP "FILE NAME (<ञ्ठ CHAR.)"
280 INPUT F*
290 DISP
OO DISP
JIO DISP "CREATE A NEW DATA FILE (Y/N)"
220 INPUT R$
JJO IF R$="N" THEN J50
U40 CREATE F$.150,40
J50 ASSIGN* 1 TO F$
J60 CLEAR IP BEEP 7,ZOO Q DISP "FIRST DATA PT.#"
70 INPUT A
=80 FOR M=A TO A+149
390 ENTER 722 ; F(M)
400 ENTER 709: U(M)
40: IF M>=2 THEN 402 ELSE GOTO 410
402 IF ABS (P(M)-P(M-1))<.! THEN 448
410 R(M) =V(M)*.001/(I*.000001)
420T(M)=-(.00765* ((P(M)-7)/2)^2)+.07055* (P(M)-7)/2+1.648!
4JO PRINT USING 4=5 ; M,V(M),T(M),R(M)
4J5 IMAGE ZD.1X.1DZ.4D.1X.IDZ.SD. IX. EDZ.5D
440 IF XG*O THEN PRINT# 1,M ; M,P(M),V(M),T(M),R(M)
447 GOTO 450
448 M=M-1
450 NEXT M
46O ASSIGN# 1 TO *
470 END
```



```
2 ! ///////"CODLDN": MONITORS THERMOM ON COOLDOWN //////////////
10: "Cool-down" thermometer
20 ! program. Requires SJlb
J0 ! counter(#720) and こ4こBA
40! multimeter(#フミこ).
50 !
b0!
100 ! Set-up
110 OUTPUT 720 ; "INWA1"
120 DISP "Enter mode number"
1こ0 INPUT N
140 PRINT " Time Temp(K) R(ohms)"
200 ! Data
210!
220 TRIGGER }72
2こO TRIGGER 72*
240 ENTER 7ここ : R
250 ENTER 720 : F
260 T=.000024B*(F*F)/(N*N)
265 T1=TIME
270 PRINT USING 工80 : T1.T.R
2BO IMAGE X.SD, 2X,DDD.DD. IX.DODDD
290 WAIT 300000
こOO GOTD ב=O
400 END
```



```
2 ! /////// "P vs t" : PLDTS PRESS REGULATOR TRENDS /////////////
10 DIM P(100)
12 MAT P=(6.6)
S PRINT " N TIME P(mmHg)"
16 PRINT USING 17
17 IMAGE /
20 FOR N=1 TD 100
25 GCLEAR
JO TRIGGER 709
40 ENTER 709 : P(N)
SO PRINT USING 6O : N.TIME.P(N)
6O IMAGE こX. ZD.5X,5D.4X,D.DDDD
70 G0SUB }30
80 WAIT 240000
9 0 ~ N E X T ~ N '
JOO SCALE 1.100.0.75.7.15
ZOS XAXIS 6.75.10
ZOG YAXIS 1..0S
J10 FOR I=1 TO 100
315 DRAW I.P(I)
Jこ5 NEXT I
JこS RETURN
400 END
```


APPENDIX B
 DATA ANALYSIS COMPUTER PROGRAMS

1) REDUCE..... Uses raw data to calculate upper, lower and reciprucity temperature amplitude oscillations; provides the capability of entering raw daこa by magretic tape, by hand or a combination of both.
2) QUICK...... Like REDUCE, except no lower limits aュe calculated and raw data is entered only by magrecic tape: therefore, a much faster output of raduced data is obtained (Appendix D).
3) KERRY...... EXtracts and prints $=\mathrm{aw} \mathrm{data} \mathrm{from} \mathrm{magnetic}$ tape when a hard copy of this data is required.
4) GETDAT..... A short program used to retrieve and print thermometer calibration data from a magnetic tape.
5) SPLINE.... Incorporates the basic program suggested in reference 38 to compute absolute helium temperature from a given pressure.
```
1 ! //////////// "REDUCE": He DATA FEDUCTION .... WITH T/T
    //////////// THIS PROGRAM DOES NQT HAVE CUBIC SPLINE TEMPS
    ///////////// THIS PROGRAM DOES NQT HAVE E/E INFUT VOLTAGE CORRECTION
    ///////////// THIS PROGRAM DOES NOT AUTOMATICALLY TAKE CARE OF THERMO. GONST
ANT
S ! ///////////// TEMPERATURE SWINGS ARE REFERENCED TD THERMAL DRIVE
10 OPTION BASE 1
2O DIM A(5),M(5),Y(5),X(150.こ)
ZO DIM F(40),M9(40),D(40),T(40),VO(40),V1(40),YZ(40)
40 ! He DATA REDUCTIN PROGRAM
50 X4=1
70 CLEAR & BEEP 7.500
IF X4=1 THEN }10
90 RETURN
100 \times4=0
110 DISP "THIS PROGRAM WILL OBTAIN UPPER AND LOWER THERMAL LIMITS FROM HE DATA.
12O DISP P DISP "RECIPROCITY CALCULATIONS ARE ALSD PERFORMED."
122 WAIT 7000
124 GOSUB 70
1JO DISP "DATA CAN BE ENTERED BY KEYBOARD AND/OR TAPE."
1こ2 DISP 巳 DISP "THERMOM. CALIE.,T/T,E/E,T/E DATA WILL BE ENTERED:"
134 DISP Q DISP
1J5 DISP " (A) BY TAPE (B) BY KEYBOARD (C)
KEYBOARD & TAPE"
1こ6 INPUT L$
1こ7 IF L$="A" OR L$="B" OR L$#"C" THEN GOTO 1JE ELSE BEEP 70. 570 छ GOTO 1こ5
1こ8 IF i$E"A" OR L$="C" THEN BEEP # DISP "INGERT DATA TAPE FOR LATER USE." % WA:
T 5500
1こ9 GOSUB 70
140 DISP "THERMOMETER CALIBR. AND ALL He DATA SHOULD BE ON THE SAME TAPE, BUT I
TS NOT REQ'D."
142 DISP
15O DISP "CHANGING RESONATOR DEPENDENT DATA IS AN AVAILABLE OFTION IN THIS F
ROGRAM."
155 WAIT 8000
160 GOSUB 70
170 DISP "PART 1:FINDING dR/AT FROM THEFMOM. CALIE. DATA."
175 WAIT 4000
18O EEEF Q DISP
190 DISP "PRINT TEMP AND RESIST VALUES ON INPUT. (Y/N)"
200 INPUT RS
210 \&=0゙ Q IF R$="N" THEN こここ
220 IF R$#"Y" THEN 190
2こ0 Xb=1
こコこ IF L$="A" THEN 420
2J4 IF L$="B" THEN 280
2̇6 ClEAR
240 BEEP 7. こ00 Q DISP "TEMP vS RESIST DATA FROM KEYBD OR TAPE. (K/T)"
250 INPUT RS
260 IF R$="T" THEN 420
270 IF R&""K" THEN EEEP 70,こ70 @ GOTO 240
280 IF X6#1 THEN E20
290 PRINT
Z00 PRINT TAB(4):"N":TAE(1こ);"T(N)":TAE(こ7):"R(N)"
こ10 PRINT TAB(1こ);"(K)";TAB(26);" (KOHM)" # PRINT
315 GOSUB 70
ここO DISP "HOW MANY T&R DATA PAIRS. (2-150)"
ここO INPUT NE DISP
```

```
Z40 IF N>1EO OR NK=1 THEN EEEP 70, こ70 E DISP "INVALID NUMEER OF T:RR PAIFS" G GOS
UE こ20
342 GOSUB 70
こ50 FOR I=1 TO N
352 FOR I## TO N
360 DISP "T(";I;"),R(";I;")=":
370 INPUT X(I.1),X(I.こ)
I80 IF XG=1 THEN FRINT USING こ90: I,X(I,1),X(I, ב)
こ90 IMAGE 4D,こX, こDZ.4D.こX.6DZ.4D
400 NEXT I
402 BEEP & WAIT SOO E BEEP
410 DISP "DATA ENTERED" E WAIT 2000 Q GOTO 610
42O EEEP Q CLEAR Q DISP "RESIST. CALIB. DATA FILE NAME":
4JO INPUT F$
440 ASSIGN# 1 TO F$
4SO EEEP E DISP "FIRST ";F$:" DATA PT.#"
4 6 0 ~ I N P U T ~ K 1 ' ~
470 EEEF @ DISP "LAST ":F$:" DATA PT.#"
4 9 0 ~ I N P U T ~ K 2 ~
490 FOR N=K1 TO K.2
500 READ# 1; N.P.V,X(N,1),X(N, Z)
510 NEXT N
SIO ASSIGN* 1 TO *
530 IF XG<>1.THEN 770 ELSE T=1
540 PRINT TAB(4);"N";TAB(1こ):"T(N)":TAB(27):"R(N)"
550 PRINT TAB(1こ):"(K)";TAB(こ6):"(KDHM)" E PRINT
560 FOR I=K:1 TO KZ
570 PRINT USING こ90:I.X(I.1).X(I,2)
5BO NEXT I
590 PRINT
600 IF T=1 THEN }77
610 ! [LEAR Q EEEP 巳 DISP "STORE YOUR!DATA. (Y/N)"
G20 ! INPUT RS
6JO ! IF R$="N" THEN 770
6ここ ! IF R&#"Y" THEN BEEF 70, こ70 # GOTO 610
640 ! DISP Q BEEF E DISP "FILE NAME...\゙7 CHARACTERS"
650! INPUT F$
660; DISP Q EEEP Q DISP "CREATE ";F$:"FILE. (Y/N)"
670 ! INPUT R$
680: IF RS="N" THEN 700
682 ! IF Rs#"Y" THEN 660
690 ! CREATE F$. 150.24
700 ! ASSIGN# 1 TO F$
710 ! DISP Q EEEF @ DISP "FIRST ":F$%" DATA PT,#"
720 ! INPUT K1
7JO ! FOR M=K1 TO K:2
740 ! PRINT# 1 : M,T,R
750. ! NEXT M
760 ! ASSIGN* 1 TO %
770 : SETTING UP dR/dT
800 Y(1),Y(こ)=INF 巨 Y(2),Y(4)=-INF @ A(1), A(こ), A(こ), A(4),A(5)=0゙
805 IF Ls="B" QR R$="K" THEN KI=1 Q K2=N
810 FOR II=K.1 TO K2
820 IF Y(2)<X(I1,1) THEN Y(\Omega)=X(I1.1)
日こ0 IF Y(1)>X(II.1) THEN Y(1) =X(I1.1)
840 IF Y(4)<X(I1, 2) THEN Y(4)=X(I1, 2)
850 IF Y(こ) >X(I1,, こ) THEN Y(こ)=X(I1,こ)
860 A(1)=A(1)+X(I1,1) ¢ A(2)=A(こ)+X(I1,1)*X(I1.1) @ A(こ)=A(こ)+X(I1.こ)
870 A(4)=A(4)+X(I1, 2)*X(I1, こ) 玉 A(5)=A(5)+X(I1,1)*X(I1, こ)
880 NEXT II
```

```
985 N=K.2-K.1+1
890 M(1)=A(1)/N M(こ)=(A(こ)-A(1)&A(1)/N)/(N-1) Q M(こ)=A(こ)/N
900M(4)=(A(4)-A(こ)*A(\Xi)/N)/(N-1) EM(5)=(A(5)-A(1)*A(こ)/N)/(A(こ)-A(1)*A(1)/N)
910 R5=M(5)-M(1)*M(5)
920 GOSUB 70
947 ! EXPONENTIAL REGRESSION BEGINS
950 PRINT G PRINT
960 IF Y(1)<=0 OR Y(こ):=O THEN CLEAR @ EEEP 70. こ70 @ DISP "CAN"T TAKE LOG OF A N
EG. TEMP." 巳 GOTO 970
965 GOTO 990
970 DISP
98O DISP "CHECK RESIST. CAL:B. DATA AND ENTER 'Y" IF YOU WANT TO ENTER NEW D
ATA."
982 INPUT S$
984 IF S$="Y" THEN =15
986 IF Ss#"Y" THEN 980
990 Q1=A(こ) E Q2#A(4) & QJ=A(5) Q A(こ),A(4),A(5)=0
1000 FOR I=KI TO K:2
1010 T1=LOG(X(I,1)) @ T2=LOG(X(I, ユ)) 巳 A(こ)=A(こ)+T2 @ A(4)=A(4)+TこTこ
1020 A(5)=A(5)+X(I.!)*TE
10こO NEXT I
10こ5 N=K2-ki1+1
1040 C=M(5) E D=M(\Xi) 巳 E=M(4) e F=RE & M(J)=A(こ)/N
1050M(4)={A(4)-A(こ)^こ/N)/(N-1) QM(5)=(A(5)-A(1)*A(こ)/N)/(A(2)-A(1)*A(1)/N) Q R
S=M(こ)-M(1) M(S)
1060 S=M(5)*(A(5)-A(1)*A(J)/N)
1070 R2=S/(A(4)-A(こ)*A(こ)/N)
1080 PRINT USING 1090:R2
1090 IMAGE "CCRRELATION COEFF.=".IDZ.8D.2/
1100 PRINT USING 1110: EXF(FS).N(S)
1110 IMAGE "RHAT=".5DZ.4D."EXP(".4DZ.4D."T)"
1:ZO DISP "CARE TO ESTIMATE A RESISTANCE. (Y/N)"
1140 INFUT R$
1150 IF R$="N" THEN 1こ90
1155 IF R$#"Y" THEN 11こ0
1160 PRINT E PRINT
1162 DISP E EEEP
117O DISP "WANT ESTIMATE AND RESIDUALS FOR ALL PREVIOUSLY ENTERED DATA. (Y/N
)"
1180 INPUT R$
1:90 IF R$="N" THEN 1290
1192 IF RS*"Y" THEN BEEP 巳 GOTO 1170
12OO PFINT " T(I) R(I) RHAT RESID"
1210 PRINT
12IO FOR I=K1 TO KZ
12J0 Y=FNV (X (I,1))
1240 PRINT USING "2DZ.ZD,4DZ.2D,4DZ.ZD,4DZ.JD" : X(I,I),X(I, こ),Y,X(I.\Omega)-Y
125O NEXT I
1こ\Xiこ GE=0 P PRINT
1260 CLEAR Q EEEP Q DISP "...EST. FOR ANY OTHER TEMF. (Y/N)"
1270 INFUT RS
1280 IF R$="N" THEN 1こ90
1281 IF RS*"Y" THEN BEEP 70. 570 & GOTO 1260
12g2 IF G8=1 THEN 1こ:0
1290 PRINT " T(I) RHAT"
1こ10 CLEAR छ 日EEP Q DISP "YOU WANT RESIST. AT TEMF,="
1こ20 INPUT T
1Zこ0 Y=FNV (T)
1540 FRINT USING "IDZ.SD.5X.4DI.5D" : T.Y
154こG8=1
```



```
1250 GOTO 1260
1こ60 DEF FNV(X)
1ご70 FNV=EXP(R5+M(S)*X)
1こ80 FN END
1こ90 GOSUB 70
1400 DISF "OBTAINING EXFRESSION FQR dR/OT"
1410 WAIT 1500
1420 Y=EXP(RS)*M(5) E PRINT Q PRINT
14JO PRINT USING 1440: Y.M(5)
1440 IMAGE "dR/dT=",SDZ. SD,"EXF(",4DZ.4D,"T)"
145O GOSUE 7O
1400 DISP "PART =: UPPER & LOWER LIMITS FROM T/T DATA."
1470 ! THE LOWER LIMIT PART
1475 DISF
1480 DISP "ENTER I(BIAS) USED IN THERMOM. CALIB. (LA)"
1490 INPUT B2
1491 IF L$="A" THEN 1790
1492 IF L$="E" THEN 1540
149J GOSUB 70
1500 DISP "TH/TH DATA FROM KEYSD. OR TAPE. (K/T)"
:510 INPUT R$
1520 IF R$="T" THEN 1790
15こO IF Rs#"K" THEN 1500
1540 GOSUB 70
15EO DISP "FIRST T/T DATA PT.#"
1560 INFUT KJ
1570 BEEP I DISP "LAST T/T DATA PT.#"
1580 INPUT K4
1590 GOSUB 70
1600 X6. Z, X==0
1605 DISF "WILL YOU ENTER TEMP OR PRESS VALUES. (T/P)"
1607 INPUT R$
1610 FOR IS=KZ TO K4
1620 CLEAR Q BEEP Q DISP "F(":IE:").Vout(":I5:").Q(":IE:"). Vi(":I5:")="
16こ0 INPUT F(I5),VO(I5),Q(IS),V1(IS)
1640 IF X6=1 THEN 1690
1650 IF Z=1 THEN 1760
1680 IF R$="T" THEN Z=1 E EOTO 1760 ELSE XG=1
1690 GOSUB 1710
1700 GOTO 1750
1701 DISP "PART 1:FINDING OR/dT FROM THERMOM. CALIB. DATA."
1710 EEEP Q DISP E DISP "ENTER PRESSURE"
1720 INFUT P
17こ0 T=ー(.00765*((P-7)/こ)へ2)+.0705S*(P-7)/2+1.6481
17こ2 こ1=1
1740 RETURN
1750 T(I5)=T @ GOTO 1920
1760 DISP "T(":IS:")="
1770 INFUT T(I5)
1780 z=1 Q GOTO 1920
1790 GOSUB 70
1800 DISP "T/T DATA FILE NAME."
1310 INPUT Fs
18ミ0 DISP "T/T....FIRST ":Fs:" DATA PT.#"
1840 INPUT K=
1850 DISP "T/T....LAST ":F$;" DATA PT.#"
1860 INPUT K4
1862 XJ=0
1865 ASSIGN# 1 TO F$
1868 IS=1
```

```
1870 FOR HE=Kこ TO K゙4
1880 READ# 1.H5 ; T1.T.P.M.F.VO.O.S.V1.HS.C
1890 T(IS)=T Q VO(IS)=VO EV1(IS)=V1 E Q(IS)=Q Q F(IS)=F
1920 Y=(I5)=FNU(T (IS))
1922 IF XZ=1 THEN 2420
19J0: THE UPPER LIMIT PART
1940 GOSUB }7
1950 DISF "NOTE:":
1960 DISP " (1)RESONATOF GEOMETRY IAW... LAE BOOK. P. こ9"
1970 DISP " (2)CONSTANTS AFE REF. TO T= 1.65K"
1980 DISP E DISP
1990 G1=2.0564 Q G2=56.406 छ C1=.145J Q C2=2041 ש CJ=1.867
2000 DISP "DIAM.(SQU'D)=":G1:"SQF. cm"
2O10 DISP "HEATER RESIST.=":G2:"Ohms"
2O20 DISP "He DENSITYz":Cl:"g/EE"
2OSO DISF "SPEED (U2)=":C=:"cm/S"
2040 DISP "SPEC. HEAT (CO)=":CJ:"J/(g-k)"
2050 DISP Q EEEP 7. こ00
ZO6O DISP "CHANGE ANYTHING ?? (Y/N)"
2070 INPUT R$
2080 IF RS="N" THEN 2410
2082 IF R$*"Y" THEN 2O60
2090 GOSUB 70
2100 DISP "DIAMETER... (Y/N)"
2:10 INPUT R$
2120 IF R$="N" THEN 2160
2122 IF R&#"Y" THEN こ100
21こ0 DISP "ENTER DIAMETER: (Em)"
2140 INPUT G
2150 G1=G^2
2160 BEEP (E DISP "HEATER RESIST...(Y/N)"
2170 INPUT RS
2180 IF R$="N" THEN エエこ0
2182 IF R$年"Y" THEN 2160
=190 DISF "ENTER HEATER RESIST: (OMms)"
こ200 INPUT G
ここ10 Gこ=G
コココロ CLEAR P BEEF 巳 DISP "IS THAT ALL. (Y/N)"
ミここO INFUT R&
2こ40 IF Rs="Y" THEN こ410
ここ42 IF R&#"N" THEN こここO
2こ50 CLEAR E EEEP P DISP "He DENSITY.... (Y/N)"
2260 INPUT RS
ここ70 IF R$="N" THEN 2ご0
ここフこ !F R$#"Y" THEN ここSO
=280 DISP "ENTER He DENSITY: (g/ce)"
```



```
ここ00 C1=C
Zこ10 CLEAR @ BEEP @ DISP "SPEED (U\Omega)....(Y/N)"
こここ0 INPUT R&
こここO IF R$="N" THEN ここ70
コココニ IF R$#"Y" THEN ここ10
2J40 DISP "ENTER SPEED: (cm/s)"
ここEO INPUT C
ここ60 C2=C
こコ70 CLEAR © EEEP @ DISP "SPEC. HEAT....(Y/N)"
ここ8O INPUT R$
ここ90 IT R&="N" THEN 2410
ここ92 IF F&#"Y" THEN ここ70
ここ94 DISF "ENTEF SFEC. HEAT... J/(g-H:)"
```

```
2こ96 INPUT C
ここの日 Cこ=C
2410 x = =1
2420 I5=15+1
243O NEXT HS
24こ5 ASSIGN# 1 TO *
2440 DEF FNU(T)
2450 FNU=M(5)*EXP(R5)*1000*EXP(M(5)*T)
2460 FN END
2470 GDSUB 70
2480 DISF "PART J: RECIPROCITY" Q DISF
2482 IF L$="A" THEN 2700
2484 IF L&="B" THEN こ5こ0
2490 : THE E/E PART
2492 X7, Z1=0
2494 DISP "E/E DATA FROM KEYBD. OR TAPE (K/T)"
2496 INPUT B$
2500 IF B$="T" THEN 2700
2510 IF B$#"K" THEN BEEP 70. 570 P GOTO 2494
2520 DISP E SEEP E DISF "FIRST E/E DATA FT."#
ZSこO INPUT KS
IS40 DISP E BEEF E DISP "LAST E/E DATA PT.#"
ES42 INPUT KG
IS44 DISP O BEEP E DISP "ENTER DRIVER CAPACITANCE: (Df)"
2546 INPUT G
2552 GOSUB 70
Z5S4 DISP "WILL YOU ENTER TEMP OR FRESS VALUES. (T/P)"
2E5t INPUT Rs
2560 FOR IS=K.5 TO K'G
Z570 CLEAR @ BEEF E DISP "F(":IS:"),VOut(";IE:").O(":IS:"), Vi(":IS:")="
Z580 INFUT F(IS),VO(IS),Q(IE),V1(IS)
2500 IF Z1=1 THEN 2650
2650 IF R$="T" THEN 2670
Z640 IF R$#"P" THEN 2554
2650 GOSUB 1710
2660 T(IS)=T & GOTO 2690
2670 DISP "T(":IS;")="
2680 INPUT T(IS)
2690 GOTO 2800
2700 DISP E EEEP E DISP "E/E DATA FILE NAME"
2710 INPUT F$
2712 CLEAR Q BEEP Q DISP "CAPACITANCE SIDE A"
2714 INFUT P1
2716 BEEP پ DISP E DISP "CAPACITANCE SIDE B"
2718 INPUT P2
2720 ASSIGN* 1 TO FS
27JO DISP G EEEP E DISP "E/E....FIRST ";F$;" DATA PT.#"
2740 INPUT KS
27SO DISP P BEEP P DISP "E/E....LAST ":F$:" DATA PT,#"
2760 INPUT K゙G
I762 DISP @ EEEP Q DISF "E/E...DRIVING SIDE A OR छ. (A/B)"
276S INPUT AS
2764 IF AS="A" THEN G=P1 G US=P2
2765 IF Asx"B" THEN G=P2 Q U9=P1
2767 I S=10
2770 FOR HS=KS TO KG
2780 READ# 1.H5 : T1.T.P.M.F.VO.Q.S.V1.HE.C
2790 F(IS)=F QVO(IS)=VO W Q(IS)=Q V VI(IS)=V1 E T(IS)=T
2795 I5=I5+1
Z8OO NEXT HS
```

```
2860 : DEVELOPING (MA*ME)
2892 IF B$="K" OR L$エ"B" THEN こ910
2900 ASSIGN# 1 TO *
2910 ! EEVELOE ING MA/MB
29ミ0 ! ENTERING T/EA & T/EE DATA
2930 人6=0
2940 GOSUB 70
2941 IF X6=0 THEN N$="A"
2942 IF X6=1 THEN N$="S"
294J IF Lक="A" THEN =100
2944 IF L$="B" THEN =000
2945 IF X6=1 THEN 2960
2950 DISP "T/EA DATA FROM KEYBD. OR TAPE. (K/T)" G DISP
295こ IF Xb=0 THEN =970
2960 DISF "T/EE DATA FROM KEYBD. OR TAPE. (K/T)" Q DISP
2970 INPUT R&
2980 IF R$="T" THEN J100
2990 IF R$#"K" THEN BEEP 70,こ70 @ GOTO 2940
JOOO DISP "FIRST T/E":N$;" DATA PT.#"
JOO2 IF X6=1 THEN INPUT K9P GOTO ZOZO
3010 INPUT K7
ZO2O EEEP Q DISP "LAST T/E":N$:" DATA PT.#"
こ0ここ IF X6=1 THEN INPUT BIP GOTO =040
SOJO INPUT K8
こ040 IF XG=1 THEN こここコ
3042 GDSUB 70
こOSO FOR IS=k.7 TO KB
こ060 DISP "Veut(";IS:").Vi(":IE:")="
3070 INPUT VO(IS),VI(IS)
こ080 NEXT IS
3090 GOTO こここO
\Xi100 DISP "T/E";N$;" DATA FILE NAME"
Z110 INPUT F$
E:120 ASSIGN# 1 TO FS
こ1こO DISP , EEEP @ DISP "T/E":N$:"....FIRST ";F$:" DATA PT.#"
シ1Jこ IF <6=1 THEN INPUT K9世 GOTO こ150
こ140 INFUT K.7
Z150 DISF Q BEEP Q DISP "T/E":Nक:"....LAST ":F$:" DATA PT.#"
こ1E工 IF X6=1 THEN INPUT E1E GOTO こ170
こ160 INPUT KB
J170 IF X6=1 THEN =こ80
3175 I5=20
3180 FOR H5=k:7 TO K8
Z190 READ# 1.H5 ; T1.T.P.M.F.VO.R.S.V1,HE,C
ここ04 VO(IS)=VO & VI (I5)=V1
3205 IS=15+1
こ2O6 NEXT HS
ここ10 ASSIGN# 1 TO *
コここ0 X6=1 @ GOTD 2940
コニコニ GOSUB 70
こコこO FOR I5=k'9 TO B1
=240 DISP "Vaut(";I5:"),Vi(":I5:")="
こ250 INPUT VO(IS),VI(IS)
こ2bO NEXT IS
シ270 GOTO こここ0
こ280 I 5=こ0
こ285 FCR HS=k`9 TO B1
Z=90 READ# 1.HS: T1.T.P.M.F.VO.Q,S.V1.HS.C
ここOO VO(IS)=VO 巳 VI(IS)=V1
ここ05 I5=15+1
```

```
ここ10 NEXT HS
こここO ASSIGN# 1 TO *
ここご年 CALCULATIONS START HERE
ここ40 PRINT Q GOSUB 7O
OESO DISF "NOW TO FUT IT ALL TOGETHER"
ここSこ U=0 凹 WAIT 2SOO
ここ54 GOSUB 70
ここ56 J5=10 @ J6=20 Q J7=30
ここ60 FOR IS=1 TO K4-K.こ+1
=370 W=IP(F(IS)/100) ! T/T
-こ80 L=VO(IS)/(-(B2*.000001*Yこ(IS)))
ここ8S V1(IS)=.0290666007+1.0488675*V1(I5)
ここ90 U=8*Q(IS)*(VI(IS)*.001)へこ/(FI^2*G1*G2*C1*C2*Cこ*SQF(こ)*W)
3400 ! E/E
5410 V1(JS) =.0790666667+1.0488675*V1(J5)
こ412 VO(JS)=VO(J5)*(1+84/U9)
シ420 RO=VO(JS)*W*PI*G1*Cこ*Cこ*C:/(V1(J5)*.001*16*F(J5)*G*.000000000001*Q(J5)*T(J5
))
3430 ! T/EA
こ4こ5 V1(J6)=.0290666667+1.0488675*V1(J6)
こ4こ8 VO(J6)=VO(J6)*(1+84/P1)
Z440 R8=VO(J6)/(V1(J6)*.001)^\Omega
3445 PRINT "V1(";J5:")=":VI(J5)
3446 PRINT "VO(":J5:")=":VO(J5)
2447 FRINT "RO=";RO
2450 ! T/EB
3455 V1 (J7) =.0290666667+1.0488675*V1 (J7)
J458 VO(J7)=VO(J7)*(1+84/PZ)
こ460 R9=VO(コ7)/(V1(J7)*.001)~2
Z470 B6=Fi8/R9
こ47ニ HB=(V1(I5)/V1(J6))^^
ड474 H9=(V1(IS)/V!(J7))^ニ
シ475 PRINT "T/EA...Vout/(Vin)^2=":R8
こ476 PRINT "T/EB...Vout/(Vin)^ミ=";R9
#477 PRINT "V(TA)/V(TB)=";EB
S4B0 M1=VO(J6)/SQR(RO*BB)
Z490 M2=VO(J7)*B8/SQR(RO*EB)
3492 M1=M1*H8
3494 M2=M2*H9
JEOO IF W=0 THEN U=U+1
\XiE10 IF U=E THEN 4O4A
JSIO PRINT @ PRINT " MODE ":W @ PRINT
こS30 PRINT "LDWER LIMIT= ":L/.000001:"uK"
5540 FRINT "delta T(A)= ":MI/.000001;"uk""
JSS(1 PRINT "del\pma T(B)= ":M2/.000001:"uK"
こ\Xi60 PRINT "UPPER LIMIT= ";U/.000001:"uk""
5565 PRINT
Z570 IF L<i=M1 AND M1<=U AND L<=MZ AND MZ<=U THEN FRINT "MODE ":W:" HAS CORRECT D
ISTRIBUTION."
ZSTS IF L>U THEN PRINT "MODE ":W:" HAS REVERSED LIMITS."
\XiS8O IF M1<L OR MI>L THEN FRINT "MCDE ";W;" HAS RECIFROCITY BEYOND LIMITS."
こS81 PRINT "AES. SENS. (A)=":SOF'(RO*E8)
こ\Xi82 PRINT "ABS. SENS.(B)=";SQR(RO*EB)/B8
5585 FOR I=1 TO ここ
こ590 PRINT "*";
I595 NEXT I
4042 IF U#こ THEN 4046
4 0 4 4 ~ I S = K . 4 , ~
4046 JJ=j5+1 @ j6=j6+1 & j7=J7+1
405O NEXT IS
```

```
4OEZ IF U=\Xi THEN BEEF 70, 570 [ DISP "NO MORE DATA."
4 0 6 2 ~ G O S U B ~ 7 0 ~ 0
4064 FOR I=1 TO 5
4 0 7 0 \text { DISP}
4 0 8 0 ~ N E X T ~ I ~
4090 DISF TAE(11):"THAT'S ALL"
5000 END
```

> सT Musen Pwot
> bior.ilat mas 4aok -
cia ocse

```
1 ! ///////////////////////////////////////////////////////////
2 ! ///////// QUICK ......He DATA REDUCTION /////////////1//////////
こ ! ///////// THIS PROGRAM HAS ALL CQRRECTIONS AS DF 7 SEP 日こ
4 ! ////////////////////////////////////////////////////////////
10 DPTION BASE 1
JO DIM F(40),G(1こ), 口(40),T(40),VO(40),V1(40),K(1こ),B(こ5),Z(29),D(4)
35 INTEGER I,J,K
こ日 U$="X"
39 ! //////// SETTING UP (40-100) ////////
40 CLEAR Q BEEP Q DISP "DO YOU DESIRE COLUMN HEADINGS."
42 INPUT US
44 IF U$#"Y" AND V$#"N" THEN 40
SO X4=1
70 LLEAR Q BEEP 7,こ00
72 IF X4=1 THEN 76
74 RETURN
76 x4=0
82 DISP "CHANGING "ONLY" DATA POINTS ? (Y/N)"
84 INPUT P$E IF P$="Y" THEN 108
86 IF P$#"N" THEN CLEAR Q GOTO 82
72 CLEAR Q BEEP Q DISF "E/E AND T/E DATA WILL BE ENTERED:" E DISP E DISF
94 DISP " (A) BY TAPE (B) BY KEYBDARD"
96 DISP " (C) BY KEYBDARD & TAPE"
97 INPUT LS
99 IF L$="A" OR L$="B" OR L$="C" THEN GOTO 100 ELSE BEEP 70, З70 # GOTO 92
100 IF Ls="A" OR L$="C" THEN CLEAR Q BEEP Q DISP "INSERT DATA TAFE." W WAIT 4SOO
10: ! //////// INPUT (102-1:6) ////////
102 CLEAR ๕ BEEP E DISP "ENTER FOUR ARGUEMENTS"
1 0 4 ~ D I S P ~ P ~ D I S P ~ P ~ D I S P ~ " ~ R U N ~ \# . ~ F I L E ~ N A M E , ~ C A P ' S ~ A . B " '
106 INPUT R.F$,P1,FZ
10日 CLEAR Q EEEP E DISP "ENTER S PAIF OF DATA END-POINTS (G AFGUEMENTS) FOR: "
110 DISP E DISF " E/E. T/EA, T/EB"
112 INPUT KE.KO.K7,K゙G.K.9,B1
114 DISP @ BEEP E DISP "DRIVING SIDE A OR B ?"
116 INPUT AS
2=0 X6=1
904 DISP Q DISP
1930 ! //////// SQR. AREA & RESISTANCE ////////
1990 G1=2.0564 E G2=56.406
2410 xJ=1
2720 ASSIGN# 1 TO F$
27ニ5 ! //////// SET CAPACITANCE ////////
27こ0 IF A$="A" THEN G=P1 氏 UQ=P2
2740 IF AS="B" THEN G=P2 E UQ=P1
2750 IS=10
2760 IF U$x"Y" THEN 2770
2765 Y=0
2769 ! //////// READ E/E DATA ////////
2770 FOR HS=KS TO KG
27日0 READ# 1,HS : T1.T,P.M.F.VO.Q,S.V1.HS.C
27日S CLEAR Q DISP "IN SEARCH OF...TEMPERATURE" E GOSUB 6000
2786 Y=4
2790 F(I5)=F Q VO(I5)=VO Q O(IS)=0 i VI(IS)=V1 E T(IS)=T
2705 I5=15+1
2800 NEXT HS
2900 ASSIGN# 1 TO *
2930 X6=0
2941 IF X6=0 THEN NS="A"
```

```
2942 IF X6=1 THEN N$="B"
こ120 ASSIGN# 1 TO F$
3170 IF X6=1 THEN こ280
こ175 15=20 E Y=4
こ178://///// READ T/EA DATA ////////
3180 FOR HS=K.7 TO K8
J190 READ# 1.HS : T1.T,P,M,F,VO,G,S.V1.HE,C
I195 CLEAR @ DISP "GONE FISHIN' FOR...TEMPERATURE" Q GOSUB 6000
こ2O4 VO(I5)=VO Q VI(IS)=V1 Q T(IE)=T Q F(IS)=F Q Q(IS)=0
E205 IS=15+1
Z2O6 NEXT HS
ここ10 ASSIGN* 1 TO *
こここ0 X6=1 E GロT0 2941
3280 I5=30 ¿ Y=4
Z2BS ! //////// READ T/EE DATA /////////
ここ日S FOR HS=K9 TO B1
3290 READ# 1,H5: T1,T.P,M,F.VO,Q,S.V1,HS.C
シ295 CLEAR E DISP "WAIT...FINDING TEMPERATURE" 巳 GOSUB 6000
ZこOOVO(IS)=VO Q VI(IS)=VI E T(IS)=T Q F(IS)=FQ Q(IS)=Q
ここ05 IS=15+1
ここ10 NEXT HE
こここ0 ASSIGN* 1 TO *
こここ0 ! //////// SET HEADINGS (ここコ1-コこ62) ////////
こここ1 PRINTER.LS 701.1ここ
ここここ PRINT CHR$(ご)&"&kこS"
Zここ4 IF V$="N" THEN PRINT Q GOTO Jこ4S
Jड40 PRINT E GOSUB }7
ここ42 PRINT TAB(5B):"RUN # ":R
Zこ44 PRINT TAB(S6):"DATA REDUCTION" @ PRINT Q PRINT
ここ4S PRINT " E/E (";KS:" TO ";KG:")
こJ46 PRINT " T/EA (":K7;" TO ":KB;") ":"T/EB (";K9:" TO ":B1:")"
ここ47 IF V&="N" THEN PRINT Q GOTO ここ6S
ここ50 Bक="Ua - Ub"
Zこここ PRINT Q PRINT USING ここS4: "T","r","F","r","STr","STu".E$."S(A)","S(B)","ST
u/STr",">1"
Zこ54 IMAGE 10X,1A,11X,1A,=(10X,1A), 8X, JA,9X, JA, 7X,7A, =(9X,4A), 8X,7A,7X, =A
Zこ\XiS PRINT USING ここE6: "avg","avg", "avg"
ここ56 IMAGE 9X. こA. IOX. こA, こOX, こA
\Xiこ\Xi7 PRINT USING ここE8: "MODE","(K)","(K)","(Hz)","(Hz)","(uK)","(uK)","(uK)","<
V/K)","(V/K)"
ここ5日 IMAGE 4A,5X, ЗA.9X, ЈA, こ(7X,4A),6X.4A, こ(8X,4A), 10X,5A,8X,5A
こ=60 FOR I=1 TO Iここ
こコ61 PRINT "_":
Zこ62 NEXT I
ごGこ IF U$="Y" THEN =S65
ここ64 U7=0
ここ65 J6=20 @ J7=30
3こ66 ! //////// CALCULATIONS ////////
Jこ67 FOR J5=10 T0 K6-K5+10
Zこ70 W=IP(F (J5) /200) ! ......................... MODE
ここ5 V1 (J6) =.0290666667+1.0488675*V1 (J6)
ここ8日 W9=0 E GOSUB 7000
ここ90 U=8*ロ(J6)*(V:(J6)*.001)^こ/(PI^=*G1*G2*C:*SQR(2)*W)! ............STU(A)
ここケこ W9=2 e gaSUB 7000
J400 U8=8*ロ(J7)*(V1(J6)*.001)^2/(PI^2*G1*G2*C1*SQR(2)*W) ! ........... STu(B)
34:0 V1(J5) =-.28676+.99J19xV1 (J5)
#412 VO(J5)=VO(コ5):(1+84/U9)
3415 W9=1 e GOSUb 7000
S417 ! //////// FROD. of SENS's /////////
こ420 R(1=VO(J5)*W*PI*G1*CI/{V1!J5)*.001*1も*F(J5)*G*.00@000000001*0(JE)*T(J5))
```

```
こ4こ8 VO(J6)=VO(J6)*(1+84/P1)
j440 R8=VO(J6)/(V1(J6)*.001)^2
こ450 ! T/EE
J455 v1(J7)=.0290666667+1.0488675*V1(J7)
こ458 VO(J7)=VO(J7)*(1+84/P2)
ミ.460 R9=VO(J7)/(V1(J7)*.001)^2
3470 B8=RB/R9
2472 H8=1
3474 H9=(V1(J6)/V1(J7))ヘ⿱
こ480 M1=VO(J6)/SQR(FO*B8) ! ................... ST(A)
J490 M2=VO(J7)*E8/SQR (FOO*B8) ! .................SST ST(B)
こ492 M1=M1*HB
3494 MZ=M2*H9
3496 S1=SQR(RO*BR) ! ................. ABS. SENS. (A)
3498 S2=SQR(RO*E8)/B8 ! //////// ABS. SENS.(B)
JE20 F1=(F(J5)+2*F(J6)+2*F(J7))/J
こここO T=(T(J5)+T(Jb)+T(J7))/こ
```



```
こ5こ4 S8=(U+U8)/2 ! ................... avg STu
ごここ C4=SRR((F(Jこ)^2+(2*F(J6))^こ+(こ*F(Jフ))^こ)/JーF1^2) ! ........ st. dev. FREC
こ5こ6 IF Mご=S8 THEN H$="YES"
こ5J7 IF M2>S8 THEN H$="NO"
こ5こ9 59=U-U8
=540 ! //////// QUTPUT ////////
こS41 PRINT USING こSSO ; W,T,Cこ,F1.C4.M2/.000001.S8/.000001.S9/.000001.S1.SI.S8/M
2.HS
```



```
ID,7X, SA
4046 J6=J6+1 E J7=コフ+1
4 0 5 0 ~ N E X T ~ J 5 ~
405= CLEAR E EEEP G DISP "MORE DATA"
4054 INPUT U$P IF US="Y" THEN 40
4056 IF U$#"N" THEN 4OS2
4060 CLEAR
4 0 6 4 ~ F O R ~ I = 1 ~ T O ~ S ~
4 0 7 0 ~ D I S P ~
4OEO NEXT I
4090 BEEP E DISP TAB(11):"THAT:S ALL"
5 0 0 0 ~ E N D
5909 ! //////// CUBIC SPLINE TEMF SUBR. ////////
6000 IF Y=4 THEN 6080
6020 FOR I=1 TO 29
GOEO READ Z (I)
6040 NEXT I
6050 FOR I=1 TO こ5
606O READ B(I)
6O7O NEXT I
6080 P=PW1000
6110 P=LGT(P)
b120 T1=1 P T2=4.215
b:こ0 }x=(T1+T2)/
6140 I=0 E J=22
6150 K=(I+J)/2
6160 IF J-I< =1 THEN 6200
6170 IF X>Z(K+4) THEN 6190
6180 J=K Q GOTO 6150
6190 I=K ש GOTO 6150
G200 FOR I=1 TO 4
6210 D(I)=E(I+J-1)
Gここ0 NEXT I
```

```
GここO FOR K=1 TO こ
6こ40 FOR I=1 TO 4-K
6こ50 PB=x-2(I+J+K-1)
6260 P9=Z(I+J+こ)-x
6270 PJ=1/(Z(I+J+J)-Z(I+J+ドーI))
6580 D(I)=(P8*D(I+I)+P9*D(I))*P=
6290 NEXT I
6こ00 NEXT K
6J10 IF ABS(D(1)-P)<.0001 THEN 6こ70
GここO IF D(1) >P THEN GESO
6ここ0 T1=X
6こ40 GOTO b130
6550 Tコ=x
6こ60 GロT0 61こ0
6こ70 T=X
GEBO RETURN
0:90 DATA 1.1.1.1
6400 DATA 1.15105499.1.2876575.1.4ここ0こ085,1.598ここ71こ.1.74054982.1.89959こ61.2.101
7 8 9 9
6410 DATA こ.17601406.こ.18ここ1995. こ. 28846654, =. 579ゴ75こ. こ.74048ここ5.こ.889599ここ.こ.04
057こ57
*
6420 DATA こ.18965645.こ. こ40566こ6.こ.47966198.こ.\dot{J056679.こ.77966011. こ.92027624.4.07}
64こ0 DATA 4.175.4.125.4.125.4.175
6440 DATA こ.079こ05こ.こ.こ904182.こ.64118049.こ.06764295.こ.43487191.こ.74460242.4.0107
357
6450 DATA 4.26906294.4.45301104.4.55807916.4.62414591.4.76041こ日こ.4.92こ71929.5.07
89こ104
6460 DATA 5.18829011.5.287068こ5.5.こ7948565.5.46こ7457こ.5.54ここ8ここ4.5.618こ6745.5.68
927627
6470 DATA 5.7565こ645.5.82005175.5.8610688こ.5.88081=58
6509 ! //////// THERMODYNAMIC CONSTANT SUER. ////////
7000 IF U7=1 THEN 70BO
7020 FOR I=1 TO Iこ
70こ0 READ G(I)
7 0 4 0 ~ N E X T ~ I ~
7050 FOR I=1 TO IJ
7060 READ K(I)
7070 NEXT I
7080 IF W9=0 THEN WE=T (36)
7090 IF W9=1 THEN W5=T(35)
7095 IF W9=2 THEN W5=T (コ7)
700 FOR I=1 TO 1J
7110 IF WS<G(I) THEN 7145
7 1 4 0 ~ N E X T ~ I ~
7145 L=1
7:SO C1=K(L-1)-(K:L-1)-K(L))/(G(L-1)-G(L))* (G(L-1)-W5) ! ....LINEAR INTERFOL
7155 U7=1
7160 RETURN
7170 DATA 1.4.1.45.1.5.1.55.1.6.1.65.1.7.1.75.1.8.1.85.1.9.1.95.2
7180 DATA こここ.01.こ74.7こ.こここ.0こ.599.こ7.472.97.554.こ7.64こ.58,7こ日.0こ, 日こ7.5こ.9こ9.4こ
7190 DATA 10こ9.44.11ここ.こ4.121こ.4こ
```

```
1 ! ////////////////////////////////////////////////////////////
2 ! //////// "KERRY": TRANSFERS DATA FROM TAPE TO PRINTER //////
こ ! ////////////////////////////////////////////////////////////
10 CLEAR Q PRINTER IS 701.1こ2
2O DISP "REMDVE PROGRAM TAPE AND INSTALL DATA TAFE" E BEEP
DISP "WHEN COMPLETED. ENTER 1"
INPUT Y
IF Y=1 THEN JOO ELSE CLEAR Q BEEP E GOTO こO
F$="C-G RAVINE"
1 PRINT USING 5O : "TIME", "TEMP", "PRES","M #", "C, FREQ","AMF", "Q", "SNR", "D-AMP"
."#PT".F$
O IMAGE 4A, 5X, 4A,6X, 5A, 4X, JA.6X,7A, 9X, 4A, 14X, 1A,9X, JA, 5X, 5A, 4X, 4A, 6X, 10A
60 PRINT USING 70 : "(SEC)"."(Y)"."(HZ)","(VRMS)","(mV)"
70 IMAGE SA, 4X,5A, 25X, 4A, 10X, 6A.
8O PRINT
90 BEEP © CLEAR P DISP "DATA FILE NAME":
100 INPUT H$
110 ASSIGN# 1 TO H$
120 BEEP P DISP "FIRST ":H$;" PT #"
1こ0 INPUT K1
140 BEEP Q DISP "LAST ":H$:" PT #"
150 INPUT K2
160 FOR N=K1 TD K2
170 READ# 1.N ; T1.T.P.M.F.VO.D.S.V1,N.C
```



```
D,4X, こD.7X.D.4DE
181 PRINT USING 180: T1.T.P.M.F.VO.C.S.VI.N.C
190 IF N=K:Z THEN 192 ELSE 191
1 9 1 ~ N E X T ~ N
192 EEEP Q DISP "DO YOU WANT TO LOOK: AT MORE DATA? Y/N"
19J INPUT Z
194 IF Z=Y THEN =O0 ELSE GOTO 195
1OS ASSIGN* 1 TO *
2OO END
ZOO DISP "ENTER PREAMP GAIN" Q BEEP
Z10 INPUT PS
Z2O DISP "ENTER FSS FROM S2O4" 巳 EEEP
ここO INPLTT S$
Z40 DISP "ENTER MULTIP FROM S2O4" Q BEEP
J50 INPUT MS
J6O DISP "ENTER TRANSMIT/RECEIVE" # EEEP
370 INPUT KS
JEO DISP "ENTER RUN NUMBER" \Xi BEEP
Z90 INPUT ZS
400 DISF "ENTER FIG NUMBER" G EEEP
410 INPUT W$
415 FOR I=1 TO 1ここ
416 PRINT "*";
417 NEXT I
420 PRINT "PREAMP=":P$."FSS=":S$,"MULTIP=":M$,K$,"RUN#":Z%,"FIG#":W$
4こO PRINT
44O GOTO 40
```

```
1 ! /////// "GETDAT": PULLS THERMOM CAL DATA FROM TAPE /////////
2 ! //////////////////////////////////////////////////////////
10 ASSIGN# 1 TO "DATAII"
20 FOR I=1 TO 8
ZO READ# 1.I : I,F,V,T,R
40 FRINT USING 45: I,V,T,R
45 IMAGE JD.1X,10Z.4D,1X,10Z.5D, 2X. こ0Z.50
5S NEXT I
65 ASSIGN# : TO *
7S END
```

```
6000 ! //////// "SPLINE": CUBIC SPLINE TEMP FROM PRESS ///////////
6001: /////////////////////////////////////////////////////////////
6005 DIM B(こ5).2(29).D(4)
6010 INTEGER I.J.K
602O FOR I=1 TO =?
OOこO READ 2(I)
6040 NEXT I
6OSO FOR I=1 TO IS
6060 READ B(I)
6070 NEXT I
6072 CLEAR E BEEP P DISP "INPUT VALUE OF PRESSURE(mmHg)."
6074 INPUT P
6 0 7 6 ~ C L E A R ~ 巴 ~ D I S P ~ " I N P L T ~ E X P E C T E S ~ T E M P " ~ Q ~ I N P U T ~ T E ~ T
6077 CLEAF Q DISP
607日 DISP " PRESS TEMP TEMP"
6079 DISP " (TABLE) (SPLINE)"
6080 P=P*1000
6110 P=LGT (P)
6120 T1=1 & T2=4. =15
6150 x=(T1+T2)/2
6140 I=0 ए J=ここ
6150 K=(I+J)/2
6160 IF J-I<=1 THEN 6=OO
6170 IF X>Z(K+4) THEN 6190
6180 J=K e GOTO 6150
6190 I=K @ GOTO 6150
6200 FOR I=1 TO 4
6=10 D(I)=E(I+J-1)
Gこ=O NEXT I
6ここ0 FOR K=1 TO =
6240 FOR I=1 TO 4-K
6=50 PG=X-Z(I+J+K-1)
6I60 P9=Z(I+J+J)-X
6=70 PJ=1/(Z(I+J+J)-Z(I+J+K-1))
6280 D(I)=(PG*D(I+1)+P9*D(I))*PS
Gこ90 NEXT I
6 \Xi 0 0 ~ N E X T ~ K
6こ10 IF ABS(D(1)-F)<.0001 THEN 6=70
GここO IF D(1)>P THEN 6こ50
6ここ0 T1=X
6こ40 GOTO 6130
6こ50 TE=x
6こ6O GOTO 6130
6こ70 D(1)=10^D(1)
Gこ72 DISP LSING 6こ7こ: D(1)/1000.T日.X
6こ7J IMAGE 2DZ.4D, 3X.1D.4D. 6X.1D.4D.7/
6こ74 DISP & EEEP E DISP "ENTERING ANOTHER PRESSUFE? (Y/N)"
6376 INPUT E$
6こ7日 IF Es="Y" THEN 6072
6こ日0 IF E$*"N" THEN 6ST4
GS日2 ELEAR Q EEEP E DISP TAE(10);"THAT"S ALL"
6こ84 END
6=90 DATA 1.1.1.1
6 4 0 0 ~ D A T A ~ 1 . 1 5 1 0 5 4 9 9 . 1 . 2 9 7 6 5 7 5 . 1 . 4 こ 2 0 2 0 8 5 . : . 5 9 8 こ こ 7 1 J . 1 . 7 4 0 5 4 9 8 9 . 1 . 8 9 0 5 9 5 6 1 . 2 . 1 0 1 \% ~
7899
```



```
O57こ57
O420 DATA こ.19965645. こ. .40566こ6.こ.4796619日. こ.65056679. J.77966011. こ.920こ76こ4.4.07
```

```
64こO DATA 4.125.4.125.4.125.4.125
6440゙ DATA こ.079205こ, こ. 29041日2.こ.64118049.こ.06704295,こ.4こ487191.こ.74460こ42.4.0167
55
6450 DATA 4.26906294.4.45701104.4.55807916.4.6=414591.4.76041こ82.4.92こ71929.5.07
89こ104
6460 DATA 5.18829011,5.287068ここ.5.こ7948565.5.46こ7457ミ.5.54ここ8こ24.5.61826745.5.08
927627
6470 DATA 5.7565こ645,5.8200こ175.5.8610688こ.5.88081こ58
```

> APPENDIX C
> RAW DATA

```
8 xtugansit
    *Tan:40%
```


$P R E A K P=1000$
 $F S S=100 \mathrm{NV}$
 MLLTIP=11
 EA/ES
 RUNB14
 F16!1

TIME (SEC)	$\begin{aligned} & \text { TEMP } \\ & (K) \end{aligned}$	PRES	M	C. FREE (H2)	AMP (VFHS) (sV)	0	SNiR	D-AMP	PT	6-6 Ravilie
1178	1.647	6.955	1	410.541	S.J723E-005	447.257	1,859.24	250.0	1	8.0810E-005
1374	1.647	6.970	2	615.491	1.24085-004	69.055	4,294.21	250.0	2	1.8422E-001
1570	1.648	6.985	3	817.549	9.7666E-005	427.357	3,379.97	250.0	3	こ.5885E-004
1766	1.648	6.997	4	1020.198	6.1003E-005	314.598	2,111.18	250.0	4	1.9276E-004
1962	1.649	7.016	5	1222.494	4.8319E-005	216.189	1,672.20	250.0	5	1.9017E-005
2149	1.649	7.017	6	1426.145	3. $3346 \mathrm{E}-005$	189.206	1,257. 85	500.0	6	4.9347E-004
2494	1.649	7.035	1	410.563	5.3656E-005	445.411	1,856.91	250.0	7	4.5311E-005
2688	1.649	7.032	2	614.967	1.2348E-004	124.968	4.273 .28	125.0	8	1.50こ2E-001
2988	1.649	7.032	2	614.957	1.2573E-004	133.229	4.385 .94	125.0	9	1.4070E-001
3190	1.650	7.053	3	817.591	4.3743E-005	427.026	1,686.86	125.0	10	2.073EE-005
3396	1.650	7.058	4	1020.239	6.1393E-005	323.198	2.124 .67	250.0	11	9.7127E-005
3582	1.650	7.064	5	1227.538	4.8375E-005	216.047	1,674.13	250.0	12	7.5379E-006
3775	1.650	7.066	6	1426.188	3.6416E-005	188.323	1,260.26	500.0	13	4.6697E-004
4114	1.651	7.079	1	410.575	5.3616E-905	447.244	1,855.52	250.0	14	2.05185-005
4314	1.651	7.079	2	614.773	1.229EE-004	260.071	4,255.97	62.5	15	7.99415-002
4517	1.651	7.085	3	917.608	4.8641E-005	424.482	1,683.36	125.0	16	1.2699E-005
4713	1.651	7.088	4	1020.358	6.1308E-005	323.038	2,:21.73	250.0	17	8.8040E-005
4913	1.651	7.092	5	1227.553	4.8405E-005	216.394	1,675.30	250.0	18	$7.4657 \mathrm{E}-006$
5108	1.652	7.099	6	1426.203	I. $6482 \mathrm{E}-005$	187.411	1.262.57	500.0	19	4.3042E-004
5451	1.652	7.103	1	110.581	$5.3560 E-005$	446.828	1,353.57	250.0	20	2.4242E-005
5650	1.652	7.106	2	614.752	9.9822E-005	485.800	3.419 .98	31.3	21	6.55435-004
5854	1.652	7.112	3	817.619	4.8637E-005	424.922	1,683. 20	125.0	22	$9.7365 \mathrm{E}-005$
6052	1.652	7.115	4	1020.270	6.1225:-005	322.555	2,119.95	250.0	23	8.6329E-005
6252	1.652	7.118	5	1222.566	4. B410E-005	216.157	1,675.35	250.0	34	B. 1967E-006
6448	1.652	7.123	6	1426.215	3.6530E-0.05	195.845	1,264.20	500.0	25	4.4379E-004
7004	1.653	7.130	1	410.589	5. $3720 \mathrm{E}-005$	454.124	1,859.13	250.0	26	6.1117E-005
7302	1.655	7.130	1	410.539	5.3710E-005	453.850	1.853 .77	250.0	27	6.0964E-005
7504	1.653	7.140	2	614.756	4.9895E-005	492.187	1,726.73	15.6	28	2.5261E-005

PREAMP $=100$		Fss=100\%V		MULTIP $=110$		E3/EA	RUN:14		FISt2	
ting (SEC)	$\begin{aligned} & \text { TEMP } \\ & (\mathrm{K}) \end{aligned}$	PRES	\%	$\begin{aligned} & \text { C. FREQ } \\ & \text { (K2) } \end{aligned}$	AMP (URRS) (sV)	2	SkR	D-AKP	1 PT	C-i ravine
482	1.659	7.302	1	410.603	1.0100E-004	458.394	210.62	500.0	34	4.915EE-004
1102	1.659	7.302	1	410.603	1.0102E-904	458.561	210.65	500.0	35	4.9141E-004
1307	1.659	7.326	2	614.78	1.0187E-904	489.885	212.42	31.3	36	4.27825-003
1716	1.659	7.326	2	614.778	1.0197E-004	491.223	212.63	31.3	57	4.268EE-003
1921	1.660	7.345	3	817.650	9.3640E-005	431.947	195.27	250.0	38	9.3867E-005
2125	1.660	7.348	4	1020.332	1.0787E-004	316.011	224.95	500.0	39	4.9950E-004
2325	1.660	7.356	5	1222.748	8.3212E-005	220.554	173.52	500.0	40	8.1658E-006
2519	1.661	7.363	6	1426.063	3.4822E-005	192.996	72.61	500.0	41	3.9978E-003
2869	1.661	7.372	1	410.598	4. $9565 \mathrm{E}-005$	456.920	103.36	250.0	42	1.8618E-004
3073	1.661	7.379	2	614.769	5.13E5E-0C5	507.340	107.11	15.6	43	$2.1820 \mathrm{E}-003$
3571	1.661	7.579	,	614.768	5.1009E-005	495.331	106.37	15.6	44	$2.0143 E-003$
2583	1.662	7.789	3	817.640	9. $36235-005$	431.475	195.23	250.0	45	4.4685E-004
3781	1.662	7.399	4	1020.310	5.7315E-005	324.568	119.52	250.0	46	1.132EE-004
3978	1.662	7.402	5	1222.729	3.33515-005	221.071	173.81	500.0	47	1.2129E-005
4175	1.662	7.408	6	1426.220	3.4679E-005	185.698	72.32	500.0	48	3.1921E-004

 PREAMP=100 FSS=100NY T/EE FULTP=Y10 FIG13

$\begin{aligned} & \text { TIME } \\ & \text { (SEC) } \end{aligned}$	$T E M P$ (x)	PRES	*	C. FRED (H2)	AMP (VPMS) (sW)	1	5*ค	D-AmP	1 PT	c-6 ravine
3761	1.664	7.474	1	205.292	9.9649E-005	456.198	274.82	50.0	53	$2.0665 E-005$
4064	1.664	7.474	1	205.292	$9.9640 E-005$	456.048	274.79	50.0	34	2.05J0E-005
4267	1.664	7.476	2	307.375	3.4645E-005	497.076	95.55	12.5	65	6.3169E-005
4470	1.665	7.479	3	408.304	2.6297E-005	431.030	72.52	25.0	66	7.7832E-006
4672	1.665	7.479	1	510.112	6. 58315-005	326.220	181.55	50.3	67	4.32825-006
4877	1.665	7.493	5	611.375	3.4846E-005	216.959	96.10	50.0	68	2.5225E-004
5083	1.665	7.485	6	713.348	6.0512E-005	187.141	166.89	100.0	69	4.8786E-004
5278	1.665	7.488	7	814.221	3.2539E-005	299.613	89.74	100.0	70	2.6419E-004
5845	1.665	7.491	1	205.290	2.47975-005	460.469	68.39	25.0	71	7.2761E-1006
6149	1.665	7.491	1	205.290	2.4789E-005	460.006	68.36	25.0	72	7.1876E-006
6351	1.665	7.499	2	307.372	3.4751E-205	503.714	95.85	12.5	73	2.6717E-005
6556	1.665	7.497	3	408.799	1.0596E-004	+40.636	292.21	50.0	74	3.21385-004
6759	1.665	7.199	4	510.108	6.5763E-005	326.922	181.36	50.0	75	1.41108-005
6959	1.665	3.477	5	611.369	3.48105-005	216.79	96.00	50.0	76	2.3568E-004
7166	1.665	7.496	6	713.347	6.0480E-005	186.958	166.80	100.0	77	4.6135E-004
7362	1.665	7.496	7	814.270	3.24885-005	299.538	89.60	100.0	78	2.6949E-004

 PREAMP $=100$

F35＝100月V

T1ME （SED）	TEMP （K）	POSSS	n	C．FRED （HI）	Aifp （VRMS）（sV）	8	SNR	D－AMP	1 PT	E－G RAv！ME
1844	$1.47!$	2.886	1	225.944	$6.97305-005$	180.979	63.86	500.0	146	4．3409E－002
2473	1.471	2.886	1	225.945	6．0848E－005	181.755	63.99	500.0	147	4．3405E－002
2680	$1.47!$	2.896	2	397.614	1．1540E－004	533.124	121.35	500.0	148	4．4630E－004
2886	1.471	2.900	3	596.191	1．2393E－004	39.305	130.32	250.0	149	$1.79315-001$
3095	1.471	2.900	4	791.859	1．2109E－004	217.721	127.34	250.0	150	4．4149E－002
3305	6.472	2.908	5	988.613	6．5895E－005	226.324	69.27	250.0	151	2．3545E－003
3510	1.472	2.909	6	1185.286	5．7196E－005	198.548	60.15	1000.0	152	8．5665E－005
3717	1.472	2.914	7	1381.342	3．0711E－005	223.312	32.30	500.0	153	5．7340E－005
3916	1.472	2.914	8	1576.916	S．5456E－905	295.109	37.29	1000.0	154	1．7420E－005
4282	1.472	2.919	1	1558.791	5．23225－005	2.176	55.02	3500.0	155	3．7910E－003
4593	1.472	2.919	1	1558.861	5．2226E－005	2.176	55.03	3500.0	156	C．7910E－003
4798	1.472	2.922	2	397.791	5．7572E－005	339.016	60.54	250.0	157	2． $38655-004$
5007	1.473	2.928	3	595.991	1．25315－004	70.520	129.67	125.8	158	1．7590E－001
5218	1.473	2.932	4	792.129	1．1855E－004	194.539	124.66	250.0	159	8．3403E－002
5428	1.473	2.934	5	989.097	6．6080E－005	232.583	69.49	250.0	160	4．795！E－004
5634	1.473	2.940	6	1185.884	5．3519E－005	199.139	61.54	1000.0	161	7．68さむ玉゙－005
5837	1.474	2.945	7	1282.569	了．0626E－005	222.414	32.21	500.0	162	6．4057E－005
6038	1.474	2.947	8	1577.790	3．5444E－005	294.717	27.27	1000.0	163	1．8516E－005

 $P R E A M P=100$

FSS＝100NY
MULTIP $=110$
EB／EA
RLW 14
F1644

$\begin{aligned} & \text { Time } \\ & \text { (} \mathrm{SEC}) \end{aligned}$	$\begin{aligned} & \text { TEMP } \\ & (K) \end{aligned}$	－PRES	H	C．FREQ （H2）	$\begin{aligned} & \text { AMP } \\ & \text { (VRHS) (aV) } \end{aligned}$	3	SKR	D－AMP	－PT	［－5 RAU］NE
1627	1.471	2.899	1	212.541	－． $60552-004$	－59．023	－77．52	125.0	136	4．2126E－001
2057	1.471	2.399	1	212.295	－．5502E－004	－43．071	－71． 75	125.0	157	3． $3478 \mathrm{E}-001$
2247	1.470	2.867	2	297．580	1．1617E－004	344.826	148.78	500.0	178	$1.07515-003$
245	1.469	2.862	3	595.712	1．2426E－004	72.429	159.14	125.0	159	1．5640E－00！
2764	1.469	2.862	3	595.582	1．275\％5－004	77.147	163.32	125.0	140	1．424E－001
2976	1.469	2.352	4	791.493	7．7214E－005	314.226	98.89	125.0	141	4．1177E－004
3184	1.469	2.847	5	987.916	6．6476E－005	235.701	85.13	250.0	142	1．6505E－004
3386	1.468	2.843	6	1184.371	5．540E－005	199.161	71.00	1300.0	143	$9.6177 \mathrm{E}-005$
3595	1.468	2.82	7	1380.659	3．0825E－005	223．321	39.48	500.0	144	6．0150E－005
5795	1.468	2.840	8	1575.466	3． 559 在－005	296.500	45.58	1000.0	145	1．1072E－005

TIME (SEC)	TEMP (K)	PRES	H:	C. FREI (HI)	AMP (VRMS) (aV)	1	SKR	D-Alt	i PT	c-g ravine
1808	1.476	2.997	.	398.422	6.067TE-005	358.268	2,192.74	250.0	79	6.9689E-005
2013	1.475	2.976	2	597.511	1.2370E-004	44.878	4.470.62	250.0	80	1.3991E-001
2216	1.474	2.954	3	792.865	1.2212E-004	226.171	4,413.66	250.0	81	4.69725-002
2422	1.474	2.946	4	989.720	7.0541E-005	229.346	2,549.40	250.0	82	
2627	1.473	2.938	5	1187.178	3.0973E-005	222.857	1,119.38	500.0	83	5.647E-003
2826	1.472	2.915	6	1722.358	3.73025-005	228.557	1.348.12	500.0	84	4.9271E-004
3023	1.471	2.899	7	1576.943	4.0116E-005	303.478	1,449.81	1000.0	85	1.8448E-006
3700	1.468	2.842	1	397.275	6.0897E-005	340.619	2,200.86	250.0	86	b. $0304 \mathrm{E}-005$
3907	1.468	2.835	2	595.190	1.22935-004	72.068	4,442.68	125.0	87	1.7150E-001
4213	1.468	2.855	2	595.171	1.2638E-004	77.307	4.567.53	125.0	88	1.5931E-001
4421	1.467	2.820	3	790.949	8.0349E-005	304.479	2,903.82	125.0	99	2.0261E-004
4627	1.467	2.819	1	987.305	7.0328E-005	233.870	2,541.68	250.0	70	1.4932E-004
4931	1.467	2.821	5	1184.615	5.1898E-005	217.713	1,875.63	1000.0	91	1.14TJE-002
507	1.467	2.823	6	1280.018	3.7731E-005	222.172	1,363.60	500.0	92	9.2207E-005
5232	1.467	2.825	7	1574.881	4. $0059 \mathrm{E}-005$	294.543	1,447.74	1000.0	93	2.1634E-606
5906	1.469	2.847	1	397.369	6.1000E-005	336.283	2,204.58	250.0	94	7.7867E-005
6113	1.469	2.852	2	595.081	1.2295E-004	144.024	4,443.36	62.5	95	9. $5399 \mathrm{E}-902$
6418	1.469	2.852	2.	595.083	$1.25615-904$	151.762	4,539.73	62.5	96	8.9233E-002
6624	1.470	2.870	3	791.731	7.9090E-005	299.873	2,858.57	125.0	97	9.3958E-005
6931	1.470	2.870	3	791.732	$7.9066 E-005$	299.523	2,557.48	125.0	98	9.2976E-005
9139	1.470	2.881	4	988.581	6.9696E-005	233.717	2,518.87	250.0	99	5.6483E-004
7450	1.470	2.831	4	988.580	6.98145-005	234.983	2,523.13	250.0	100	$5.456 E E-004$
7652	1.471	2.891	5	1186.274	5.501E-005	218.639	2,013.06	1000.0	101	$1.6162 \mathrm{E}-002$
8064	1.471	2.891	5	1186.267	$5.5910 \mathrm{E}-005$	221.328	2,020.62	1000.0	102	1.6098E-002
8271	1.471	2.901	6	1282.031	7.4883E-005	330.499	2,706. 32	1000.0	103	2. $9229 \mathrm{E}-003$
8467	1.471	2.901	7	1577.121	3.9999E-005	297.281	1,445.59	1000.0	104	4.7321E-006
9143	1.472	2.908	1	397.322	6.0913E-005	341.071	2,201.44	250.0	105	6.2201E-005
9451	1.472	2.908	1	397.222	$6.0919 \mathrm{E}-005$	341.160	2,201.63	250.0	106	6.2170E-005
9656	1.472	2.912	2	595.726	1.2005E-004	53.575	4, 358.81	31.3	107	$9.0220 \mathrm{E}-003$
9961	1.472	2.912		595.725	1.2096E-004	239.594	4,571.64	31.3	108	8.4295E-003
10173	1.472	2.919	3	792.433	7.7971E-005	207.668	2.817.91	125.0	109	1.9590E-004
10376	1.472	2.919		989.290	1.1TJTE-004	162.714	4,241.65	500.0	110	4.2809E-002
1058!	1.472	2.922	5	1186.996	9.92625-005	216.426	3,587.10	2000.0	11.1	5.0562E-002
10998	1.472	2.922	5	1186.992	9.9521E-005	218.274	3,596.74	2000.0	112	5.0464E-002

$$
T=1.5^{-3^{\circ}} \quad E A / E B^{-\Omega}
$$

PREAMP= 100 FSS=100aV MLIIP=110

gome to measure ole ta anplitnae at time 1588.492 moje 1 COULD KDT FINO JOB COMM PARANETER

GONE TO MEASURE DLE TO AHPLITUDE AT TIME 3130.296 RODE 1

SONE TO REASURE DE TD AMPLITUEE AT TIFIX 4467.397 MODE 1

Run 15

PREAMP: 100 FSS=100aV MILIIP=110

$$
T=1.53 \cdot K
$$

T|E8?

6ONE TO MEASURE DNE TO AKOLITUE AT TIME $4155.6 T 3$ NODE 6

PREAMP: 100 FS		Salocer mult	TIP $=110$	EA/EB		$T=$	Sk		n	5
T14E (5EC)	$\begin{aligned} & \text { TEMP } \\ & (K) \end{aligned}$	PRE5	11	C. FRED (HI)	AnP. (Vtas)	0	SNR	$\begin{aligned} & \text { D-AnP } \\ & \text { (av1 } \end{aligned}$	1 PT	C-¢ RAYIME
1668	1.77	$2.042 \mathrm{~F}+001$	1	360.89830	1.2132E-004	623.7043	1.801	500	71	9. $8875 \mathrm{~T}-005$
1872	1.77	2.041E+001	2	540.45590	6.6918E-005	546.1371	995	500	72	1.7490E-002
2075	1.77	$2.041 \mathrm{E}+001$	3	718.28436	1.0440E-004	476.6407	1,552	500	7	1.9352E-003
2281	1.777	$2.042 \mathrm{E}+001$	4	896.85800	6.6851E-005	252.3626	994	500	74	1.3144E-002
2486	1.77	$2.045 E+001$	5	1.076. 3 295	3.9063E-005	293.8991	531	1000	75	3. 6082F-004
2681	1.77	$2.043 E+001$	6	1,254.92225	J.4875E-005	363.7131	517	2000	76	1.2858E-003

Error detected, aode 1 ERRL $=1980$ ERPM = 55										
3246	1.776	$2.046 E+001$	1	360.67858	6.7934E-005	765.7112	1.010	250	77	2.7818E-004
3451	1.776	$2.0478+001$	2	539.83214	6.5029E-005	529.9967	967	\$00	78	5.1524E-003
3556	1.776	2.047E+001	J	717.38728	5.944TE-005	513.8104	884	250	79	8.4790E-005
3662	1.776	2.048E+001	4	895.78256	6.6711E-005	245.4899	992	500	80	6. $0520 \mathrm{E}-003$
4066	1.776	2.049E+001	5	1,075.07730	3.9366E-005	294.5354	585	1000	81	3.1494E-004
4263	1.776	$2.0505+001$	6	1,253.46822	3.4869E-005	J59. 3887	519	2000	82	$1.4347 \mathrm{E}-003$

4827	1.776	2.0595+001	Courd not Fimb jds down phrankter							
Could xct fikd jdB dour paramiter										
5134	1.776	2.052E+001	1.	360.28706	6.7355E-005	757.4534	1,005	250	84	5. 1981E-004
5341	1.775	$2.0535+001$	2 "	53.15315	6.4J41E-005	523.2318	957	500	85	5. $26568-003$
5548	1.775	$2.054 E+001$	3.	716.51035	b. 0024E-005	521.8238	893	250	86	1.3995E-004
5754	1.775	$2.054 E+001$	$4{ }^{\prime}$	894.69600	6.6748E-005	242.6665	993	500	87	$6.6777-003$
5959	1.775	2.0555+001	5 -	1,07J.82880	3.9722E-005	294.8095	591	1000	88	3.1860E-004
6158	1.775	$2.055 E+001$	6	1,252.04177	3.4941E-005	558. 3107	520	2000	89	1.5672-003
6309	1.775	$2.056 E+001$	1	359.96680	6.7246E-005	766.9375	1,000	250	90	1. $39195-003$
6713	1.775	$2.057 E+001$	2	538.76764	6.4055E-005	230.1303	95	500	91	5.7108E-003

	$5 B / E \sim \quad-I=1.95 \%$									
	-			\forall						
6920	1.775	2.057E4001	3	715.99789	6.0505E-005	522.2449	897	250	92	1.2295E-004
7123	1.774	$2.058 E+001$	4	894.10242	6.0792E-005	322.0081	904	500	93	8. 2292E-002
7329	1.774	2.058E+001	5	1,075.11317	5.0729E-005	266.1861	754	1000	94	4.5066E-004
7528	1.774	$2.059 E+001$	6	1,251.21594	4.1617E-005	53.1528	619	2000	95	7.0670E-003
									.	.
7881	1.774	2.060E+001	1^{n}	359.71076	5.5179E-005	767.2260	821	200	96	1.5945E-003
8086	1.774	2.060E+001	$2 *$	533.40319	5.6699E-C05	527.1866	843	500	97	4.4594E-003
8292	1.774	$2.061 E+001$	3	715.50319	5.7593E-005	545.1621	856	250	98	$7.1486 E-005$
8499	1.774	2.061E+001	4:	893.42434	5.9592E-005	220.5541	886	500	99	5.9354E-003
8707	1.774	$2.0625+001$	5.	1,072,38714	5.0981E-005	265.1808	758	1000	100	5.5928E-004
8904	1.774	$2.062 \mathrm{~L}+301$	6	1,250. 23289	4.2070E-005	354.4867	626	2000	101	$1.62485-002$
9260	1.774	$2.065 E+001$	1	359.47747	5.1578E-005	763.6972	812	250	102	4.0731E-004
9467	1.774	$2.0635+001$	2	538.06841	5.6073E-005	514.7377	834	500	103	4.5694E-003
9670	1.773	$2.064 \mathrm{E}+001$	3	715.05769	5.7870E-005	544.4851	861	250	104	3.1696E-004
9875	1.773	2.065E+001	4	892.84067	9.9858E-005	233.1621	890	500	105	8.0660E-003
10076	1.773	$2.0655+001$	5	1.071.73192	5.1225E-005	266.2014	762	1000	106 !	6.0749E-604
10272	1.773.	. $2.065 E+001$	6	1,249,59783	4.1934E-005	\$51.2061	624	2000	107	1.7715E-002

Run 15

$$
T=1.3^{\circ} \mathrm{l}
$$

$$
T=1.50 \mathrm{~K} \quad T / E B
$$

APPENDIX D

reduced data

RUN 114
data rebuctich

E/E 182 TO 851
T/EA (17! TO 174) T/EB (215 TO 2:8)

HODE	1	†	F	「	57r	STu	Hz - H	S(A)	¢181	STu/STe	8
	avg		avg			avg					
	\|x1	(K)	(Hz)	(Hz 21	lux1	14×1	lux	(W / K)	(V/x!		
5	1.4543	. 0042	497.137	1.688	2.183	2.433	. 184	42.55	68.16	1.115	res
6	1.1540	. 0039	1184.183	2.140	1.461	1.649	. 066	46.89	12.95	1.129	YES
7	1.4535	. 0031	1380.016	1.726	5. 485	6. 560	-. 038	25.09	29.35	1.198	YES
8	1.155	. 0027	1571.573	1.767	5.891	7.158	-. 220	18.70	16.54	1.215	YES

E/E (89 TO O3)
T/EA (185 10 187: T/E3 (222 TO 226)

| 4 | 1.4528 | .0029 | 790.835 | .612 | .911 | .938 | .004 | 67.94 | 71.27 | .997 | W0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 1.1539 | .0042 | 987.468 | 1.119 | 2.193 | 2.150 | -.362 | 40.01 | 67.51 | .981 | MO |
| 6 | 1.4541 | .0043 | 1184.367 | 1.004 | 1.583 | 1.592 | .022 | 12.34 | 12.91 | 1.005 | YES |
| 7 | 1.1513 | .0045 | 1380.522 | 1.505 | 1.314 | 1.466 | -.530 | 55.72 | 30.73 | 1.116 | YES |
| 8 | 1.4546 | .0048 | 1575.323 | 1.640 | 5.847 | 7.308 | .100 | 18.87 | 16.59 | 1.250 | YES |

E/E 195 TS 981
T/EA (182 TO 182! T/E (22! TO 221)

E/E 1100 TO 10: 1
T/EA (184 in 185 : T/E3 (283 TO 224)

| 5 | 1.1553 | .0057 | .997 .893 | 1.215 | 2.168 | 2.150 | -.362 | 40.46 | 68.28 | .992 | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 1.4557 | .0057 | 1184.920 | 1.376 | 1.519 | 1.592 | .022 | 44.11 | 12.15 | 1.048 | YES |

EJE 1 102 TO 1041
T/EA 1 185 TO 187) T/E3 (216 TO 218)

6	1.4552	.0043	1184.675	1.709	1.524	1.609	-.012	43.97	13.38	1.056	rES
7	1.4557	.0044	1300.948	1.922	1.338	1.468	-.354	25.25	30.05	1.097	res
8	1.4560	.0047	1575.780	2.182	5.844	7.313	.090	18.88	16.08	1.251	res

E/E (106 TO 107)
T/EA (201 TO 202: T/E i 220 TO 22!)

2	1.4555	.0032	397.021	.567	2.290	2.039	.026	69.04	24.06	. 898	Wo
3	1.1522	.0035	594.157	.920	.109	.376	-.005	204.65	132.57	.918	No

E/E $1: 108$ TO 105 :
T/EA (203 TO :OA) T/EB (213 TO 214)

3	1.1518	.0039	594.329	.987	.112	.079	-.010	203.52	131.66	.920
4	1.1519	.0041	790.552	1.350	.962	.958	-.003	67.62	70.19	.975

RIM - 14
data reduction

					$\begin{aligned} & \text { RUM } \\ & \text { dATA } \end{aligned}$	14 action					
E/E (57 10 41) T/EA (5 TO 61) T/EB (65 TO 694											
	T	?	F	'	Str -	STu	$\mathrm{Ha}_{2}-\mathrm{lb}$	S(A)	¢(8)	STu/5T\%	11
	av9		avg			arg					
ขคE	(X)	(X)	(Hz)	(H_{2})	(uk)	(uK)	(ux)	(V/X) ${ }^{\text {P }}$	(V/K)		
3	1.6633	. 0023	614.755	. 016	. 243	. 237	-. 012	142.55	196.04	. 975	40
1	$1.66{ }^{\circ} \mathrm{b}$. 0020	817.627	. 017	2.434	2.527	. 012	61.06	59.43	1.058	YES
5	1.6636	. 0019	1020.260	. 051	1.429	1.580	. 008	45.11	63.41	1.071	YES
6	1.6557	. 0019	1222.684	. 093	. 776	. 846	. 000	5:.23	61.84	1.090	YES
7	1.6639	. 0018	1426.408	. 261	2.073	2.507	. 015	33.75	40.18	1.209	YES
								,			
E/E (44 TO 48)											
T/EA (57 TO 61) T/E8(73 TO 77)											
3	1.6641	. 0017	614.731	. 013	. 243	. 239	-. 014	142.41	196.74	. 901	mo
4	1.6643	. 0015	817.620	. 017	2.438	2.553	-. 040	60.98	59.82	1.047	res
5	1.6644	. 0014	1020.250	. 013	1.401	1.531	. 008	46.02	64.62	1.092	YES
6	1.664	. 0013	1222.673	. 086	. 774	. 845	. 002	52.34	61.91	1.091	res
7	1.6646	. 0012	1426.159	. 193	2.034	2.504	. 020	28.48	40.94	1.231	res
E/E (16 T0 19)											
T/EA (51 T0 54) T/E3 (74 T0 77)											
1	1.6606	. 0061	817.610	. 011	2.452	2.561	-. 033	60.72	59.48	1.044	res
5	1.6607	. 0061	1020.235	. 018	1.396	1.532	. 011	46.17	64.84	1.097	YES
6	1.6607	. 0061	1222.617	. 086	. 75	. 847	. 006	54.20	65.21	1.152	YES
7	1.6609	. 2060	1426.45	. 200	. 517	. 629	. 011	28.17	10.30	1.218	YES
EJE (10 TS 13)											
I/EA (51 TO 54) T/E3 (S6 TO 69)											
1	1.6600	. 0065	817.608	. 014	2.150	2.536	. 028	60.78	59.03	1.075	YE5
5	1.6501	. 0064	1020.232	. 007	1.399	1.552	. 011	46.10	64.81	1.096	MES
6	1.6603	. 0064	1222.615	. 096	. 36	. 818	. 004	54.13	65.20	1.152	YES
7	1.6603	. 0054	1426.451	. 208	. 519	. 650	. 009	37.97	40.11	1.213	YES
E/E $\left.\begin{array}{llll} & 20 & \text { T0 } \\ \text { 25 }\end{array}\right)$											
T/EA (56 T0 61) T/E3 (72 TO 771											
2	1.6609	. 0059	410.584	. 004	1.404	1.356	-. 019	77.38	24.31	. 952	W0
\%	1.6611	. 060	614.745	. 005	. 253	. 239	-. 014	136.68	198.82	. 942	40
4	1.6611	. 0059	817.613	. 010	2.448	2.555	-. 040	60.70	59.58	1.043	VES
5	1.6612	. 0058	1020.257	. 024	1.295	1.531	. 009	46.33	64.91	1.097	YES
,	1.6612	. 0058	1222.619	. 085	.703	. 845	. 002	58.19	65.35	1.152	YES
7	1.6614	. 0057	1426.457	. 195	2.052	2.504	. 020	38.14	40.58	1.220	YES

RIM - 14
data keduction

T/EA (56 io 61) 1/EB (64 10 69)

MODE	$\begin{aligned} & \mathrm{T} \\ & \mathrm{avg} \\ & (\mathrm{~K}) \end{aligned}$	P ($\begin{gathered} \text { F } \\ \text { avg } \\ \text { (Hz) } \end{gathered}$	(Hz)	5ir (uk)	$\begin{gathered} \text { jifu } \\ \text { avg } \\ \text { (QKK) } \end{gathered}$	$u_{2}-u_{0}$ $\left(u^{\prime}\right)$	S(A) (V/X)	5(3) (V/K)	STu/ETp	\%
2	1.6607	. 0058	410.585	. 003	1.408	1.331	-. 010	77.16	24.38	. 915	N0
3	1.6608	. 0058	614.347	. 006	. 253	. 257	-. 012	136.89	188.52	. 978	vo
1	- 1.6609	. 0057	817.616	. 005	2.438	2.527	. 012	60.99	59.33	1.057	1 C 5
5	1.6610	. 0057	1020.240	. 022	1.395	1.530	. 208	46.20	64.94	1.097	YES
6	1.6611	. 0057	1222.623	. 090	. 734	. 846	. 000	-54.16	65.28	1. 153	YES
7	1.6612	. 0058	1426. 158	. 197	2.052	2.507	. 215	23.13	40.59	1.221	YES

RUM 115
data reductiox

EJE (13 TO 18)
T/EA (45 TO 50) T/EB (59 TO 64)

	I	P	F	r	57r	57u	Ua-ub	3(A)	5(3)	5Tu/STr	11
HODE	avg	(X)	$\begin{gathered} \text { avg } \\ (\mathrm{Hz}) \end{gathered}$	(3) ${ }^{\text {a }}$	(uk)	$\begin{gathered} \text { avg } \\ \text { (uK) } \end{gathered}$	($\mathbf{u k}^{\text {K }}$)	(V/X)	(V/K)		
2	1.5326	. 0034	405.048	.152	8.599	1.768	-. 017	59.63	21.17	1.106	YES
3	1.5324	. 0036	606.308	. 242	1.142	1.282	-. 005	124.10	22.14	1.123	YES
4	1.5323	. 0038	806.591	. 360	. 553	. 705	. 055	78.19	8.87	1.276	YES
5	1.5523	. 0038	1007.053	. 528	. 510	. 480	. 030	105.56	5.69	. 941	no
6	1.5324	. 0039	1208.020	. 438	1.569	1.645	. 050	, 41.90	5.18	1.048	YES
7	1.535	. 0038	1408.967	. 761	4.490	6.115	. 174	16.18	4.94	1.262	YES

E/E $\left.\begin{array}{llll}120 & \text { TO } & 25\end{array}\right)$
T/EA (52 TO 57) T/EB (65 TO 70)

2	1.5327	. 0038	405.094	. 180	1.601	1.784	-. 020	59.70	21.23	1.115	YE5
3	1.5227	. 0057	606.386	. 27	. 279	. 520	-. 002	126.97	22.99	1.149	YES
4	1.5327	. 0038	806.67	. 104	. 544	. 693	. 028	77.37	9.05	1.275	Y5
5	1.5727	. 0038	1007.165	. 551	. 509	. 464	-. 011	105.20	5.14	. 915	MO
6	1.5228	.0038	1208.170	. 484	1.569	1.644	. 031	41.97	5.19	1.049	YES
9	1.5827	. 0039	1409.065	. 807	4.47	6.119	. 261	16.52	4.95	1.366	YES

E/E (27 TO 32)
T/EA (5 TO 50) T/EP (59 TO 64)

2	1.5078	.0036	. 405.094	. 217	1.780	1.768	-. 017	53.55	18.98	. 993	W
3	1.5318	. 0027	606. 295	. 224	1.179	1.282	-. 005	120.26	21.75	1.088	YES
4	1.5312	. 0022	806.195	. 231	. 572	. 705	. 055	75.61	8.58	1.234	YES
5	1.5306 *	. 0014	1006.736	. 190	.350	. 480	. 030	119.40	3.05	1.352	YES
6	1.5302	. 0007	1207.623	. 141	1.208	1.645	. 230	54.12	6.73	1.362	YES
7	1.5299	. 0001	1408.17	. 294	3.788	6.115	. 174	19.54	5.86	1.614	YES

E/E (3 TO 58)
T/EA (52 TO 57) T/EB (65 TO 70)

2	1.505		. 0007	404.965	. 014	1.704	1.784	-. 020	56.06	19.94	1.047	YES
3	1.5505		.0006	606.222	. 052	. 289	. 320	-. 002	122.80	22.24	1.109	YES
4	1.5299		. 0002	806.305	. 180	. 578	. 693	. 028	74.63	8.51	1.199	YES
5	1.5297		. 0005	1006. 619	. 278	. 56	. 464	-. 011	150.06	8.18	1.305	YES
6	1.5296	,	.0006	1207.538	. 432	1.201	1.644	. 031	54.71	6.7	1.369	YE5
7	1.5295		. 0006	1408.230	. 467	3.747	6.117	. 061	19.74	5.92	d. 5 ± 2	VE5

E/E $\left.\begin{array}{lll}(39 & 70 & 44\end{array}\right)$
T/EA (45 TO 50) T/ES (59 TO 64)

2	1.5298	.0008	404.888	.075	1.664	1.768	-.017	57.29	20.31	1.063	YES
3	1.5296	.0005	606.060	.109	1.167	1.282	-.005	121.50	21.97	1.099	YES
4	1.5294	.0003	806.225	.189	.567	.705	.055	76.22	8.65	1.244	YES
5	1.5294	.0003	1006.559	.224	.752	.480	.030	153.04	8.25	1.365	YE5
6	1.5296	.0002	1207.516	.285	1.191	1.645	.030	55.19	6.82	1.381	YES
7	1.5297	.0033	1408.199	.778	3.742	6.115	.174	19.78	5.93	1.634	YES

RUN 15
SATA REDUCTION

RUN - 15
data reduction

EJE (27 TO 32)
T/EA (52 TO 57) T/EB (59 TO 64)

2	1.5325	. 0039	405.097	. 215	1.782	1.776	-. 003	53.61	18.96	. 996	*0
3	1.5318	. 0028	606.307	. 216	. 295	. 321	-. 003	120:87	21.76	1.086	YES
4	1.5313	. 0022	805.502	. 222	. 571	. 693	. 029	75.56	9. 58	1.213	res
5	1.5307	. 0014	1006.799	. 130	. 339	. 462	-. 007	148.71	8.09	1.287	YES
6	1.5303	. 0006	1207.649	. 148	1.808	1.645	. 029	54.43	6.75	1.361	VES
7	1.5299	. 0000	1408.212	. 292	3.787	6.088	.118	19.53	5.86	1.609	YES

EJE (33 TO 38)
T/EA (45 TO 50$)$ T/ER (65 TO 70 1

2	1.5508	. 2004	404.963	. 016	1.703	1.777	-. 034	56.00	19.96	1.044	res
3	1.5306	. 0006	606.210	. 067	1.153	1.291	-. 003	:22.89	22.22	1.111	rES
4	1.5299	. 0002	806.298	. 183	. 579	. 706	. 054	74.67	8.50	1.220	YES
5	1.529b	. 0005	1006.576	. 284	. 577	. 482	. 026	150.75	8.14	1.350	YES
6	1.5295	. 0006	1207.513	. 423	1.201	1.644	. 032	54.76	6.77°	1.309	res
7	1.5294	.0006	1408.196	. 469	3.748	6.14	. 116	19.75	5.92	1.639	VES

EJE (39 T0 14)
T/EA (S2 TD 57) T/E3 (S9 TO 64)

2	1.5295	.0004	404.390	.077	1.666	1.776	-.003	57.36	20.28	1.066	YES
3	1.5295	.0004	606.072	.117	.292	.221	-.003	121.11	21.99	1.097	Y55
1	1.5295	.0003	806.255	.189	.567	.693	.029	7.17	8.65	1.222	YES
5	1.5295	.0004	1006.602	.214	.350	.462	-.007	152.53	8.29	1.319	YES
6	1.5297	.0003	1207.542	.298	1.191	1.645	.029	55.20	5.32	1.280	VES
7	1.5298	.0003	1408.227	.774	3.740	6.088	.118	19.77	5.93	1.628	YES

SUM 115
oata reductian

	1	r	5	r	57%.	Siu	$\mathrm{Va}_{2}-\mathrm{Ub}_{3}$	$5(A)$	S(8)	STu/STr	11
	av9		av9			av9					
node	(k)	(K)	(id)	(Hz)	(uk)	(ax)	(uk)	($\mathrm{V} / \mathrm{K})^{\circ}$	(V/K)		
2	1.5350	. 0035	405.091	. 182	1.599	1.77	-. 034	59.63	21.26	1.111	Vs
3	1.5328	. 0057	606.374	. 287	1.116	1.281	-. 003	127.06	22.98	1.149	YES
4	1.5326	. 0038	806.669	. 412	.544	. 706	. 054	79.42	9.04	1.298	res
5	1.5326	. 0039	1007.:23	. 595	. 510	. 182	. 026	105.69	5.71	. 946	mo
	1.5326	. 0059	1208.145	. 509	1.567	1.644	. 032	41.96	5.19	1.049	YES
9	1.5326	. 0039	1409.028	. 843	4.478	6.144	.116	16.53	4.95	1.372	YES
E/E	127 T0	321									
T/EA	(52 \%	51 Ti	165 To	70)							
2	1.5527	. 0038	405.112	. 205	1.787	1.784	-. 020	53.46	19.01	. 998	mo
3	1.5320	. 0026	506.531	. 201	. 295	. 320	-. 002	120.18	21.76	1.085	YES
4	1.5315	. 0020	806.534	. 219	. 772	. 693	. 028	75.63	8. 60	1.212	YE5
5	1.5309	. 0013	1006.831	. 153	. 339	: 464	-.011	148.55	8.10	1.292	YES
6	1.5304	. 0005	1207.705	. 209	1.209	1.644	. 031	54.42	6.73	1.360	YES
7	1.5999	0.0000	1408.293	. 393	3.785	6.117	. 061	19.54	5.86	1.616	YES
E/E	(39 50	441									
T/EA	115 TO	50, 1	165 io	701							
2	1.5299	. 0008	404.903	. 087	1.669	1.77	-. 034	57.13	23.36	1.065	res
3	1.5298	. 0006	606.685	. 122	1.167	1.281	-. 003	121.50	21.97	1.098	YES
4	1.5296	. 0005	806.257	. 228	. 568	. 706	. 254	76.09	8.66	1.243	YES
3	1. 5296	. 0004	1006.592	. 268	. 352	. 482	. 026	152.87	8.26	1. 569	yes
6	1.5897	-.0003	1207.572	. 344	1.191	1.644	. 032	\$5.19	6.32	1.380	res
9	1.5297	. 0002	1408.273	. 287	5.741	6.14	. 116	19.79	5.93	1.643	YES

2. Cook,R.K... "Absolute Pressure Calibration of yicrophones", J. E-Es. Natl. Bur. Stand.. v.25, p.489.
3. McMillan, E.M. "Violation of the Reciprocity Theoren in In inear Passive Electyomechan
Acoust. Sog. A.. v. 18 , P. 344 , 1946
4. Rudnick, I. "Unconventional Reciprocity Calibration 연 78

5

11. Kapitza, Po Leq "Viscosity of Liquid, Helium Below the
12. Keesomy. H. and van den Ende, J.N., Proc. Roy. Acad.

13. Keesomow. He and Machoodg J.E. "Viscosity of Liquid Helium", physica, v.5, p.737, 1938

15.
16.

Tisza，L．＂Transport Phenomena in Helium II＂，NatuEs， マ． 141 ，p． 913 ． 1938

17．Daunt．J．G．and Mendelssohn，K．＂Surface transport in Iiquid Helium II＂，Nature．V．143．P． 719 ， 1.939

18．London，F．＂The Landau－phenomenor of Liquid Helium and the Bose－Einstein Degeneracy＂，Nature．v．141．p．643．

19．Gogate．D．V．and Pathak．P．D．＂The Landau Veiocity in

 Williams，R．Beaver，E．A．Eraser，J．C．

22．Pellam．J．R．and Hanson，W．B．＂Thermal Rayleigh Disk Measurements in Liquid ielium II＂，phys．REV．．v．85． p．216． 1952

24.
25.
26.
 J．ACoust．Soc．A．， $\mathbf{\text { I．}}$ ． 74 ，p．S98， 1983

28．Atkins．K．R．，Liguid $⿴ 囗 十$ Elium，p．144，Cambridge， 1959
29.

Pellam．J．R．
Phenomena Phenomena in
p．608， 1948
＂Wave Transmission and Reflection Liquid Helium II＂，Phys．

Hofmann. A. Keck, K. and Schubert, G. U. ${ }^{\text {H. }}$ " Coupling

 1983
 "precision Sound-Velocity Measū
phys. Rey. ∇. Bi4, p.3862, 1976
33. Londci,F. Superfluids, V. II, P.48, Dover, 1964
34. Ibid., p. 64

 Cullham Labora Łory
37. Donnelly.R.J. Experimental Superflujdity. Univ. Chicago. 1967
38. Barenghi, C.F., Donnelly,R.J. aní Hills,R.N.. "Cubic Spline Fit to the 1958 Hé Scile of Temperatures". J. 오 Lo는 Teqp. phys. v.51, p.319. 1983

41. Sessler.G.N. Electrets, Springer-Verlag, 1980
42. Sessler.G.M. and West.J.E.. "Electret Transducers: a review", J. Accust. Soc. A.. v.53. p. 1589. 1973
43. SESSlez, G. M. and West.J.E. "Production of high

No．Copies
1．Iibraこy＇code 0142 school Naval Pcsigraduate
Monterey．CA 93943

2．Defense Technical Information Center

> Cavon
> Alexandat va 22314

405 Hilgard ave
Los Angeles．CA 90024
4．Prof N．Giordano
Physics Department
West ia fayette．In 47907

Naval Postgraduate School
Monterey．CA 93943
6．Prof．E．C．Crittexden Jrode 61 こと）
Naval Pcstgraduate school
Monterey，Ca 93943
7．icdr．E Mrs．J．Valdivia Jr．

9．Dr．L．E．Hafgrove（code 412）
Office of Naval Research
800 N．Quincey St．
A＝lington，VA 22217
10．Prof．J．D．Haynard
Department of Pnysics
pennsyivaniastate University
University park．PA 16802
11．Prof．R．J．Donnelly Dept．Of Physics
University Of
Eugene．OK 97403

12．PIof Ia M．Khalatnikov \quad L．Dandau Institute for Theoretical Physics Academy of Sciences，U．S．S．R． 117334 MOSCOW
Vorobyévskoe Shosse 2
U．S．S．R．

```
13. DriB.M. Esel son
Academy of Sciences of the Ukiaina
Lenin's prospect 47
Kharkov-96
U.S.S.R.
```


18. Col. C. Bridge

4325 Corte sano
La Mesa, CA 92041

20. Lcdi. D. V. Conte

NUSC FOrt TIUMbull

23. K. Yarber
Department of physics (code 61)
Naval postgraduate School
Mcnterey. Ca 93943

Mcnterey. CA 93943

```
24. MF̈je Mrs. \(\ddagger\). Las vegas. NV 89121
```

25. Mᄃ: 9 Venzs. Stephen W. Taldivia 1
Richmond. Ca 94805
$121=302$

32768001969371
DUDLEY KNOX LIBRARY

[^0]: ${ }^{1}$ The transducer is small compared to a wavelength of sound and is so non-compliant presence at a point within the sound the sound pressure at that point. it's volume velocity is independent of the acoustical load.

[^1]: 2 We have found that. this is an unpecessary restriction since for typical drive voltages of interest to us and and within the power

