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Gonadotropin-releasing hormone (GnRH) neurons form the
final pathway for the central neuronal control of fertility.
GnRH is released in pulses that vary in frequency in females,
helping drive hormonal changes of the reproductive cycle. In
the common fertility disorder polycystic ovary syndrome
(PCOS), persistent high-frequency hormone release is
associated with disrupted cycles. We investigated long- and
short-term action potential patterns of GnRH neurons in
brain slices before and after puberty in female control and
prenatally androgenized (PNA) mice, which mimic aspects
of PCOS. A Monte Carlo (MC) approach was used to
randomize action potential interval order. Dataset
distributions were analysed to assess (i) if organization
persists in GnRH neuron activity in vitro, and (ii) to
determine if any organization changes with development
and/or PNA treatment. GnRH neurons in adult control, but
not PNA, mice produce long-term patterns different from
MC distributions. Short-term patterns differ from MC
distributions before puberty but become absorbed into the
distributions with maturation, and the distributions narrow.
These maturational changes are blunted by PNA treatment.
Firing patterns of GnRH neurons in brain slices thus
maintain organization dictated at least in part by the biologic
status of the source and are disrupted in models of disease.
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1. Introduction

Reproduction is controlled by interactions among the brain, anterior pituitary and gonads. Gonadotropin-
releasing hormone (GnRH) neurons in the ventral diencephalon secrete GnRH near the hypothalamo-
pituitary portal vasculature [1–3]. GnRH induces the anterior pituitary to synthesize and secrete luteinizing
hormone (LH) and follicle-stimulating hormone (FSH) [4,5]. These hormones activate the gonadal functions of
gametogenesis and steroidogenesis. Steroidsprovide feedback regulation tomodulate theGnRHreleasepattern.

Inappropriate patterns of GnRH release can cause infertility [6,7]. One example is polycystic ovary
syndrome (PCOS), the leading cause of infertility in women. Diagnosis requires two of the following three
symptoms: absent/infrequent ovulation, elevated androgens and/or polycystic ovarian morphology [8].
Despite its high incidence (approx. 20% of women [9]), the root causes of PCOS are unknown. The present
work is guided by findings that women with hyperandrogenemic PCOS, about 50% of affected women
[7,10], have persistently high-frequency LH release, indicative of high-frequency GnRH release [11–13].
Action potential firing in neuroendocrine neurons like GnRH neurons is correlated with hormone release
[14,15], thus a greater understanding of the activity of GnRH neurons in healthy versus PCOS states may
identify mechanisms underlying increased GnRH/LH release frequency in PCOS.

Investigations of GnRHneuron physiology are not possible in humans. Prenatal exposure to androgens
is a commonly used animal model to study this disorder. Prenatally androgenized (PNA) mice, rats, sheep
and primates exhibit phenotypes that are similar to symptoms of women with PCOS, including disrupted
reproductive cycles, increased androgens, and high LHpulse frequency [16–19]. Further, prenatal exposure
to anti-Müllerian hormone (AMH) in mice elevates maternal neuroendocrine drive, resulting in increased
prenatal androgen exposure and similar outcomes; AMH is elevated during gestation in women with
PCOS [20]. While ovarian morphology aspects of PCOS in the rodent species have limitations [21],
probably attributable to the polyovulatory nature of these species, the neuroendocrine phenotypes
studied here are strikingly similar among species [22] and to the elevated LH pulse frequency observed
in women [11–13]. In brain slices from adult PNA female mice [16], overall GnRH neuron firing rate is
increased compared with controls, consistent with elevated LH pulse frequency observed in vivo [23].
Before puberty, however, firing rate is reduced in cells from PNA mice [23–25]. These observations
suggest the postulate that PNA programmes a different developmental trajectory for GnRH neurons
that results in different action potential firing output.

This research had twomain goals. First, to address the overarching question of the validity of usingGnRH
neuron firingactivitydata tounderstandbiologicalmechanisms, specifically if short- and/or long-termGnRH
neuron firing activity is organized in a non-randommanner. While GnRH release in vivo is clearly organized
into discrete pulses [1–3], these occur in the context of the whole animal’s physiology. Making brain slices
removes both peripheral and central inputs to GnRH neurons that may contribute to this organization.
Work has examined if physiologic state of the originating animal alters the fairly simple measure of mean
firing rate of these cells in brain slices [20,26–30]. More formal investigations of pattern organization are
limited [31–33], however, and whether or not these patterns differ from a distribution of possible datasets
with the same inter-event intervals has not been examined. The second goal was to determine if elements of
pattern organization differ with reproductive state. To achieve these goals, we used Monte Carlo (MC)
randomization [34] to perform additional analyses on a subset of the data from Dulka and Moenter [25].
MC is a quantitative method that generates multiple randomizations of an aspect of the original dataset
(here, intervals) to create a distribution of possibilities to which the original dataset can be statistically
compared. Randomization tests like Monte Carlo analyses provide power by reducing the constraints of
small samples, distributions and unequal variance. These methods do not make assumptions about data
distribution and can be used to address questions such as how likely it is to achieve a specific outcome.
2. Material and methods
2.1. Data used
Data were from [25]; collection of those data was approved by the Institutional Animal Care and Use
Committee of the University of Michigan (protocol 6816). We focused on female control and PNA
mice at three weeks of age (3wk) and in adulthood (adult, 17–38 wks). These groups were chosen as
they exhibited the greatest difference in mean firing rate, interspike intervals and burst patterning and
thus made interesting points to examine if GnRH neuron firing activity is organized, and if any
organization changes with development or disease model.
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Action currents, the currents associated with action potentials, were recorded from green-fluorescent-

protein-identified neurons in acutely prepared brain slices [25]. Action currents (events) were detected and
confirmed, and inter-event intervals obtained. These intervals, and the MC randomizations thereof (below),
were analysed in two ways. The Cluster algorithm examines what we define as long-term patterns. Cluster
was originally designed to find patterns in the release of hormones such as LH [35], which is typically
sampled at 5 to 10 min intervals from the blood of experimental subjects. Electrophysiological data are
collected at sub-millisecond intervals and are thus oversampled for this analysis aimed to detect long-term
patterns that may be associated with hormone release. To format our data more suitably for use with the
Cluster algorithm, data were divided into 120 s bins. Multiple sequential bins are compared with one
another to detect peaks and nadirs in firing rate. The vary burst window (VBW) algorithm examines what
we define as short-term patterns. This algorithm works on raw intervals, determining if an event can be
grouped with the previous event based on a user-determined inter-event interval [25,36–38]. VBW
automates iterative changes in the user-defined interval, and groups of events are referred to as bursts.

2.2. Monte Carlo approach
To address whether or not short- and/or long-term GnRH neuron firing activity is organized in a non-
random manner, we used a Monte Carlo approach in which we generate random permutations of the
original data to create surrogate datasets (referred to as MC datasets below). Because we were
interested in the organization of action potentials, we randomized the order of event intervals. This
approach has the advantage that we do not need to have a priori knowledge about the underlying
distribution of GnRH neuron firing activity with these interval characteristics. Using the surrogate
data, we are then able to test the null hypothesis that the firing intervals and the resulting groupings
of events observed (individual spikes, bursts and clusters) are generated by chance.

2.3. Permutation generation
To generate the permuted data for the MC approach, the ordering of the intervals between events of each
original recording was randomized using a version of Durstenfeld’s shuffle algorithm [39] implemented
in IgorPro. Random values were obtained through the language’s standard library functions using the
ran2 algorithm as the underlying pseudo-random number generator [40]. This process was repeated
1000 times for each cell [41,42]. Original data and the 1000 randomized MC datasets were subjected to
the two analyses described above. Limitations to MC approaches include: (i) readily available pseudo-
random number generators cannot generate all possible permutations for all of the cells studied,
(ii) 1000 is lower than the maximum permutations possible in the data being analysed, and (iii) the
number of permutations is different among the biological groups examined because action potential
frequency is altered, leading to different numbers of intervals in similar length recordings.

2.4. Long-term patterns
In vivo, GnRH pulse frequency is modulated by steroids and varies from once every several minutes to
once every few hours during the female reproductive cycle [43,44]. Frequency can also change in
response to experimental manipulation [45–47], to disease states such as PCOS [11–13] or to natural
changes in fertility such as in seasonal breeders [48]. Peaks and nadirs within the firing rate data are
of interest as they are hypothesized to be associated with neurosecretion, based on their interval being
similar to that of LH pulses in vivo [31,32]. Peaks were identified using a version of the Cluster
algorithm [35] implemented in IgorPro [37]. Based on previous studies of LH and GnRH pulses and
GnRH neuron activity [31,32,44,49], Clusters of 2 × 2 bins (for peaks and nadirs, respectively) with a
t-score of 2 were used to identify increases and decreases, and the local standard deviation was used
to estimate error. Proximal variations in these parameters (cluster sizes of 1–5, t-scores of 1–3, local
versus global errors) were tested but did not alter the outcomes. Cluster output parameters analysed
include number of peaks in firing rate, peak frequency, amplitude and duration. These outputs and
the methodology are well described and illustrated in the following reviews [50,51].

2.5. Short-term patterns
Whereas Cluster analysis gives insight into the long-term organization of the cell’s activity, burst
properties characterize comparatively short-term patterns within the data. Bursts are groups of action
potentials separated by short (millisecond to second) intervals and are often characteristic of neurons
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[33,52–58]. Bursts are of interest as they are correlated with neurosecretion [14,15]. Bursts were detected

using burst windows from 0 to 2000 ms in 10 ms increments. Based on the distribution of number of
bursts detected (see below), most analyses were confined to burst windows at 150 ms intervals from
60 ms to 810 ms as these span the burst windows at which the highest number of bursts were
detected, as well as intervals used for previous studies of GnRH pattern analysis (210 ms and 360 ms,
[25,53]). Burst parameters analysed include burst frequency, spikes/burst, burst duration, inter-event
interval (bursts and single spikes included as events), intraburst interval and single-spike frequency.

2.6. Analyses
Cluster and VBW algorithms were run as described on each of the 1000 MC datasets, yielding frequency
distributions for the output parameters (Cluster: frequency amplitude and duration of elevated firing;
VBW: burst frequency, inter-event and intra-event intervals, burst duration, spikes/burst, single-spike
frequency). Given the large number of datasets and their randomized nature, we assume these
distributions are representative of the underlying probability distribution of data with these interval
characteristics. Because these analyses account for the original data as well as the MC datasets, we
refer to these as total datasets (1000 MC runs plus original data). Initially, the proportions of total
datasets with a parameter greater than or equal to versus less than or equal to the corresponding
parameter of the original data were calculated to test if the original falls towards the upper or lower
tails of the distribution, respectively. The inclusion of values that were equal to the result from the
original data in these calculations revealed a high percentage of overlap for some parameters,
particularly in the number of peaks detected with Cluster (attributable to their whole number nature
and limited number of possible values), as well as burst parameters at burst windows that were
shorter than the majority of the observed intervals within the original data. Datasets were thus
divided into three additional classifications: those with the parameter being less than that of the
original, those with parameters equal to that of the original and those with parameters greater than
that of the original. Because these analyses include original data plus the MC datasets, the label for
the ordinate was changed from %MC datasets to %total datasets.

Additional analyses were then performed to quantify the relationship between the original data
and the generated frequency distributions, and to determine if there were differences among
treatment groups.

2.7. Permutation tests
Permutation tests estimate the likelihood that the order of inter-event intervals in the original data is
arbitrary by comparing it to a distribution estimated by the MC datasets [59–62]. This approach is
non-parametric and does not require assumptions about whether or not the distributions are normal
or had equal variance. Permutation tests were thus used to determine if two sets of data have
different distributions for any of the parameters quantified by Cluster or VBW analysis. Random
values used in the permutation tests were generated using Python’s standard library functions for
generating random numbers, using Mersenne twister [63] as the underlying pseudo-random number
generator. These tests were independently run using medians and means. Results were similar and we
chose to use medians because not all data were normally distributed, indicating non-parametric
methods are more appropriate.

In brief, to generate permutations, the difference of medians for two sets A and B was calculated and
the observations from each set combined. Two new sets A’ and B’ (the size of A and B, respectively) were
then constructed by randomly assigning each observation to one of the sets. The difference of medians
for A’ and B’ were recorded, and this process repeated 1000 times. The number of times the difference of
medians for the generated sets A’ and B’were greater than or equal to the difference of medians for A and
B was divided by 1000 to obtain a true two-tailed p-value.

2.8. Cell versus itself permutation test
To determine if the original data differ from the distribution of MC datasets generated from it, we used
the above permutation test method, taking the original data and 1000 MC runs from each cell as the
two sets to be compared. In this design, we test the null hypothesis that intervals in the original data
are random.



royalsocietypublishing.or
5
2.9. Pairwise group permutation test

To generate p-values for comparing effects of age and treatment, the above permutation method was
performed between the development and treatment groups (i.e. all 3wk versus all adult; all control
versus all PNA). Logical individual pairwise comparisons within this two-by-two design (e.g. adult
control versus adult PNA) were then compared (i.e. <, >, =, ≤, ≥ corresponding original data) when
justified. In this design, we test the null hypotheses that age and/or treatment does not affect
the proportion of MC datasets that are <, >, =, ≤, ≥ the corresponding original data for any of the
parameters quantified by Cluster or VBW analysis.
 g/journal/rsos
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2.10. Binomial exact tests
To identify trends within a group for the number of cells with differences to the MC distribution as
determined by the cell versus itself permutation tests, binomial exact tests were used to compare the
proportions of cells in each group with p-values less than 0.05 and with p-values≥ 0.05 to the
proportion of values in groups of this size that would be expected to fall into these categories if
distribution were random. Expected proportion for p < 0.05 was defined as 1/n for each group (range
7.7–14%), with the assumption being that typically one value in groups of these sizes would fall
towards a tail of the distribution. This expectation was validated by performing the same cell versus
itself analysis (100×) on a set of randomly generated datasets of similar value ranges; p-values were
distributed fairly evenly across the possible range. Outcomes did not change when the expected
proportion off cells with p-values less than 0.05 was set to 10% for all groups, thus the variation
between 7.7 and 14% did not affect outcomes. Binomial exact tests are suitable for this comparison as
they allow for the testing of deviations from an expected distribution of observations into two
categories and are not subject to the same limitations on sample sizes as other related tests
(Chi-squared test).
3. Results
3.1. Do long-term firing patterns of gonadotropin-releasing hormone neurons differ from the

Monte Carlo distribution?
To examine if the firing patterns generated by GnRH neurons differ from random, the cell versus itself
analysis was used to compare the original data from each individual cell to its own MC datasets.
Figure 1a–d shows the distribution of number of peaks detected by Cluster analysis of the 1000 MC
datasets from four representative recordings from each group (black bars) and the position of
the original data (magenta line). The p-values from the cell versus itself analysis for each cell for the
Cluster parameters examined are shown in figure 1e. In cells from control mice, the original data had
fewer peaks in firing rate than in the MC datasets and are thus located towards the left end of the
distribution in most examples in figure 1a and c. By contrast, in PNA mice original data were
typically within the distributions (figure 1b,d ). Cell versus itself analyses also indicated differences
between the original data and distributions for amplitude and duration of these peaks in firing rate
(figure 1e). In three-week-old and adult vehicle (VEH) control mice, a higher than expected proportion
of cells had original data that were different from its MC distribution for both frequency and duration
of peaks in firing rate (binomial exact test, table 1). Amplitude was also different from the MC
distribution in all groups except adult vehicle.

The relationship of the MC datasets to the original data for Cluster-detected peak frequency,
amplitude and duration is shown in figure 2. Each dot shows the percentage of total datasets
from a cell that is less than, equal to or greater than the original data’s value for that particular
parameter. Unlike the cell versus itself permutation test, this analysis reveals not only if the
original data are different from the distribution of MC values for a particular parameter, but also the
direction of change. This analysis supports the above conclusion that the long-term patterns
arising from the original data exhibit fewer, longer duration peaks than the MC distributions.
For amplitude, however, differences revealed by binomial exact tests may be attributable to the spread
of data, rather than a specific directional shift as was observed for peak frequency and
duration. These observations suggest long-term GnRH neuron activity is organized to generate fewer,
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indicated are from cell versus itself analysis comparing original data to its MC dataset distribution. (a) three-week-old vehicle;
(b) three-week-old PNA; (c) adult vehicle; (d ) adult PNA. (e) p-values for each cell from cell versus itself analysis comparing
original data to its MC distribution for frequency of peaks (left), peak amplitude (centre) and peak duration (right).
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longer peaks than random activity, and that PNA treatment disrupts this organization both before and
after puberty; we thus reject the null hypothesis that intervals in the original data are random for
long-term patterns.
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Table 1. p-values from binomial exact test comparing the proportion of cells that were different from their MC distributions by
cell versus itself permutation tests to the expected proportion for Cluster analysis outputs. Italics, p≤ 0.05; bold, 0.05 < p < 0.1.

peak parameter 3wk vehicle (n = 13) 3wk PNA (n = 9) adult vehicle (n = 9) adult PNA (n = 7)

frequency 0.073 0.612 0.069 1

amplitude 1.11 × 10−6 0.070 0.264 0.065

duration 0.001 1 0.069 1
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3.2. Do age and/or prenatal androgen treatment affect long-term firing patterns of
gonadotropin-releasing hormone neurons?

In the original experiment [25], Cluster analysis to assess differences among groups in long-term firing
pattern was not performed. This analysis revealed no difference in number of peaks in firing rate,



Table 2. p-values generated by pairwise group permutation tests of median values for main effects of age and treatment on
Cluster-detected peaks in firing rate. Bold, 0.05 < p < 0.1.

Cluster parameter, relation of randomized (R) to original (O) data p-values age p-values treatment

frequency

R = O 0.671 0.386

R > O 0.381 0.217

R≥ O 0.205 0.359

R < O 0.217 0.347

R≤ O 0.396 0.213

amplitude

R = O 0.550 1.000

R > O 0.934 0.393

R≥ O 0.950 0.391

R < O 0.937 0.400

R≤ O 0.949 0.381

duration

R = O 0.098 0.574

R > O 0.079 0.188

R≥ O 0.081 0.364

R < O 0.067 0.391

R≤ O 0.082 0.181
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although the main effect of age approached the value traditionally set for significance (mean ± s.e.m.: 3wk
vehicle 2.9 ± 0.5, PNA 3.8 ± 0.4; adult vehicle 4.1 ± 0.8, PNA 4.4 ± 0.3; main effect of age F1,36 = 2.901, p =
0.0972). Interestingly, the mode did increase with age (mean ± s.e.m.: 3wk vehicle 4.0 ± 0.4, PNA 4.3 ± 0.4;
adult vehicle 5.1 ± 0.3, PNA 5.4 ± 0.3; main effect of age F1,36 = 8.637, p = 0.0057). Permutation tests also
revealed that neither age nor treatment affected the rank of the original data versus the total data
distribution of the Cluster parameters (table 2). A tendency for peak duration to be increased at three
weeks of age was observed (combined 3wk versus combined adult) as p-values ranged from 0.06 to 0.1.
Because there was no main effect of age or treatment, pairwise comparisons were not evaluated for
Cluster parameters, and we accept the null hypothesis that age and/or treatment does not affect the
proportion of MC datasets that are <, >, =, ≤, ≥ the corresponding original data for long-term patterns.

3.3. Burst window analysis of short-term firing patterns
MC datasets were next examined using the VBW algorithm. How VBW identifies bursts is shown in
figure 3a and the relationship between interval duration and number of occurrences in the original
datasets is in figure 3b. As burst window increases in duration, the number of bursts detected
increases to a peak, then declines as bursts are merged with one another (figure 3c). The median per
cent of total datasets with different relationships (<, =, >, ≤, ≥) to the original data for burst frequency
is shown for all burst windows examined up to 1 s in figure 4. Original data from adult vehicle
controls did not exhibit any differences from the corresponding total MC dataset distributions. This is
in contrast with the other three groups, in which burst frequencies of most MC datasets were greater
than in the original. This suggested the postulates that (i) burst frequency changes with typical
development, and (ii) development of adult burst patterns is disrupted by PNA treatment, as adult
PNA mice more closely resemble three-week-old mice from either group than adult vehicle controls.

3.4. Do short-term firing patterns of gonadotropin-releasing hormone neurons differ from
the Monte Carlo distribution?

To examine these postulates in a more rigorous manner, selected burst windows (every 150 ms from 60
to 810 ms, figure 3c) were examined as above. VBW parameters of a cell’s original data were first
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compared with those of its MC datasets. Binomial exact tests revealed a higher than expected proportion
of cells for which the cell versus itself permutation tests demonstrated that the original data were
different from its MC distribution for several burst parameters (table 3). In the physiologic range of
burst windows (210, 360 ms [25,53]), GnRH neurons from most groups generated fewer, longer bursts
and had fewer single spikes than the MC datasets (figure 5). Consistent with the first postulate above,
the exception was cells from adult vehicle (VEH) mice, for which the original data were not different
from the MC datasets for any parameter at 210 or 360 ms burst windows. This age-dependent shift in
control mice was associated with a narrowing of the range (maximum minus minimum) of the data
distributions (mean ± s.e.m.: 3wk control 65.3 ± 11.9, PNA 44.3 ± 8.7; adult vehicle control 9.9 ± 3.8,
PNA 16.1 ± 3.2; main effect of age F1,36 = 18.66, p < 0.0001). This suggests the intervals extant in the
original datasets from adult controls constrains the range of possibilities for bursts. Of note, only four
cells in the adult vehicle control group exhibited bursts as defined by the 210 ms window, this
lowered the number of observations for burst characteristics to unacceptable levels for analysis for
parameters other than burst frequency, single-spike frequency and inter-event interval. Together these



Table 3. p-values from binomial exact test comparing the proportion of cells that were different from their MC distributions by
cell versus itself permutation tests to the expected proportion for VBW analysis outputs. Italics, p≤ 0.05; bold, 0.05 < p < 0.1.

210 ms burst window parameter
3wk VEH
(n = 13)

3wk PNA
(n = 9)

adult VEH
(n = 9)

adult PNA
(n = 7)

burst frequency 1.80 × 10−5 1.22 × 10−5 0.610 0.010

inter-event interval 1.80 × 10−5 0.002 1 0.065

intraburst interval 1 0.614 0.603

burst duration 5.98 × 10−7 1.22 × 10−5 0.010

spikes/burst 5.98 × 10−7 1.22 × 10−5 0.010

single-spike frequency 1.80 × 10−5 0.001 1 0.264

360 ms burst window parameter 3wk VEH
(n = 13)

3wk PNA
(n = 9)

adult VEH
(n = 9 or 8)

adult PNA
(n = 7)

burst frequency 3.76 × 10−11 5.98 × 10−7 1 0.264

inter-event interval 0.001 0.002 1 0.010

intraburst interval 1 1 1 0.603

burst duration 3.76 × 10−11 5.98 × 10−7 1 0.264

spikes/burst 3.7 × 10−11 5.98 × 10−7 1 0.264

single-spike frequency 3.76 × 10−11 5.98 × 10−7 1 0.264

510 ms burst window parameter 3wk VEH
(n = 13)

3wk PNA
(n = 9)

adult VEH
(n = 9)

adult PNA
(n = 7)

burst frequency 0.002 0.001 0.012 0.065

inter-event interval 0.001 0.002 1 0.065

intraburst interval 1 0.614 1 0.603

burst duration 0.002 0.002 0.264 0.065

spikes/burst 0.002 0.002 0.264 0.065

single-spike frequency 0.001 0.002 0.012 0.065
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observations suggest the developmental trajectory of short-term firing is different in VEH and PNA mice.
This results in a split decision on the null hypothesis that intervals in the original data are random for
short-term patterns, with acceptance for adult controls but rejection for other groups.
3.5. Do age and/or treatment affect short-term firing patterns of gonadotropin-releasing
hormone neurons?

Comparing the effects of age and treatment on the MC distributions of these VBW parameters using
pairwise group permutation tests revealed an effect of age on burst frequency, duration, spikes/burst
and single-spike frequency but no effect on inter-event or intraburst interval (table 4 and figures 6–8).
These differences were observed in the physiologic range of 210–360 ms burst windows. The 60 ms
burst window failed to detect any bursts, not surprising as this is shorter than most intervals between
action potentials in GnRH neurons. Differences with age were largely lost at the 510 ms burst
window, reappearing at 660 and 810 ms. These three burst windows are past the peak of interval
durations (figure 3a) and past the peak of bursts/group as a function of burst window (figure 3c).
Pairwise analysis was thus confined to 210, 360 and 510 ms burst windows. These analyses revealed
differences between 3wk and adult VEH mice for burst frequency, duration, spikes per burst and
single-spike frequency (supporting the first postulate), and between adult VEH and adult PNA for
burst frequency and duration (supporting the second postulate, table 5). We thus reject the null
hypothesis that age and/or treatment does not affect the proportion of MC datasets that are <, >, =,
≤, ≥ the corresponding original data for long-term patterns.
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4. Discussion
Episodic, frequency-modulated GnRH release is critical for fertility. In vivo, this output is typically
monitored as LH release frequency, as direct monitoring of GnRH requires access to the vasculature
connecting the brain to the pituitary. In reduced preparations, such as brain slices used for
electrophysiology, other parameters such as action potential firing rate become available for study. Here,
we used MC analysis to examine both short- and long-term patterns in GnRH neuron firing rate. The
present studies revealed that GnRH neurons have lower frequency, longer duration bouts of firing
activity for both short- and long-term firing patterns than would be expected if activity was random.
They further revealed that elements of these patterns change with age, and that this maturation is
incomplete in PNA mice.

The Cluster algorithm was used to study long-term firing patterns. Cluster was originally designed to
analyse the patterns in serum hormone levels and has been used to examine LH [35] and GnRH [44]
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release. Cluster does not rely on hormone half-life to establish peaks, thus is appropriate for time-series
data, such as firing rate, that do not have a half-life component. When the original data from individual
cells were compared with that cell’s total data distribution, the contribution of GnRH neuron physiology
to long-term firing patterns was evident. Specifically, original data from both the 3wk and adult vehicle
groups featured fewer peaks of longer duration than their respective MC datasets. Such a shift in vivo
would be expected to facilitate an episodic pattern versus more continuous release. Treatment with a
continuous GnRH regimen downregulates pituitary response, essentially shutting off the downstream
reproductive system [64]. This phenomenon has been used to develop long-acting GnRH analogues
for treatment of conditions such as precocious puberty [65] and illustrates the critical nature of the
episodic GnRH release pattern. Interestingly, the long-term patterns of individual cells are not
different from their MC distribution in PNA mice. This may help explain the high-frequency LH
release in these mice and potentially the same phenomenon in women with PCOS.

Cluster has been used to examine patterns in firing rate of GnRH neurons [29,31,32] and arcuate
kisspeptin neurons [37], which are putative upstream drivers of episodic GnRH release [66,67].
In those studies, Cluster revealed increased frequency of firing peaks in castrated mice versus
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castrated mice in which homeostatic feedback was replaced via steroid implants, mirroring in vivo
changes in LH pulses and validating this approach. Cluster analysis failed to reveal differences among
groups in the present study when only the original data were examined. This may be attributable to
the recordings being of shorter duration for the present study, precluding a rigorous estimation of
long-term firing patterns from raw data alone and re-emphasizing the utility of the MC analysis.

The contribution of GnRH neuron physiology was also evident in analyses of short-term patterns, or
bursting. Burst firing is thought to facilitate neurosecretion as repeated arrival of depolarizing action
potentials in nerve terminals prolongs and enhances the rise in intracellular calcium required for
vesicle fusion [38,68–71]. As with long-term patterns, GnRH neurons organize their bursts to be
longer and less frequent than the MC dataset distributions. The exception was adult vehicle controls,
for which burst frequency did not differ from the MC dataset distributions. This is also the only
group examined that exhibits typical reproductive cycles, suggesting the hypothesis that maturation
of GnRH neurons, and subsequent successful reproduction, involves a shift in short-term burst
organization. The median percentage of MC datasets with parameter values less than or greater than the
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original data for adult controls is repeatedly different from that of three-week-old control mice. By contrast,
values for adult PNA mice are intermediate between three-week-old and adult controls. Consistent with
this, pairwise comparisons of groups at the physiologic burst windows revealed differences with
maturation between three-week-old and adult controls, and differences with treatment in adults between
control and PNA mice. The failure of adult PNA mice to undergo a similar transition suggests PNA
treatment programmes a failure of maturation of the reproductive neuroendocrine system.

These observations are of interest with regard to LH release relative to sleep stage and how this
relationship changes in women with PCOS and with puberty. Women with PCOS [72] and normal
(male and female) pubertal subjects [73,74] exhibit similar relationships between sleep stages and LH
pulse initiation. Specifically, LH pulses are more typically associated with slow-wave sleep patterns.
By contrast, in normal mature mid–late follicular phase women, LH pulse initiation is more often
preceded by increased wake episodes and fewer REM epochs compared with randomly selected time
points. Wake and REM were not associated with LH pulse initiation in women with PCOS [72].
LH pulse initiation in the early follicular phase of the cycle is also preceded by brief awakenings [75].
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LH pulse initiation in women with PCOS is thus more comparable to the immature state, as are GnRH

neuron burst parameters in adult PNA mice in the present study.
Differences in burst parameters among groups were dependent upon the burst window chosen to

define bursts. Given there are more bursts at the 360 ms burst window, intentionally set near the peak,
increased observation of differences could reflect an increase in observations, thus statistical power.
The MC approach should minimize this caveat by repeatedly permuting the intervals. Further arguing
against the number of bursts contributing to the findings, low p-values were also observed across
many categories for the 210 ms burst window, in which fewer bursts are detected. Of note, the
increase in number of bursts detected when moving from the 210 to 360 ms burst window was similar
to the decrease in the number of bursts detected when moving from the 360 to 510 ms burst window;
despite a similar number of bursts, differences were typically not observed at 510 ms. This supports
the concept that physiologic ranges for GnRH burst generation are more appropriate for these analyses.

The phenomena that generate episodic GnRH release, the ‘GnRH pulse generator’ are still not
understood, although evidence is mounting for a possible location within the arcuate nucleus
kisspeptin neurons [37,66,76]. The present work confirms action potential firing patterns of GnRH
neurons in coronal brain slices, which would not be subject to ongoing input from this region, exhibit
both long- and short-term patterns that change with age and a disease model. These observations
suggest the biologic state of these cells contributes considerably to their output patterns.
Understanding the intrinsic and synaptic properties that underlie this biology and how important
inputs such as a pulse generator sculpt these properties are topics of interest for future studies.
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