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ABSTRACT

The optimal minimum time control (i.e. bang-bang controller) is applied to

the fast reaction missile defense problem. From Pontryagin, the optimal control

was determined to be a function of the adjoint in the minimization of the

Hamiltonian. The control may also be posed either as a function of time or as a

function of the states. The state space can be partitioned into regions, surfaces

and curves where the optimal control action is either its maximum plus or minus

N.

In missile simulation problems, the method of adjoints is often used in

parametric studies of errors and miss distance. This technique is developed

both graphically and mathematically, and is used here to help one visualize the

solution trajectory and families of optimal trajectories for all possible initial

conditions.
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I. INTRODUCTION

In this era of technological advancement, more and more effort is being

devoted to automation to increase speed and efficiency. Everything is

becoming faster, smaller, more efficient and more effective, from fuzzy logic

controlled appliances to smart weapon systems. As our engineering and design

of physical systems improves we are able to generate faster and more accurate

mechanical devices, and the control systems for such devices must improve as

well. In pushing to develop the fastest, most efficient controller for whatever

our application, we introduce the bang-bang controller.

Many of our current defensive missile systems were designed to be used

against threats that are no longer of greatest importance. A point defense

missile may now be required to bring down a target that has a significant speed

advantage, and be able to do it in such a way as to control the fallout after the

impact.

Even if we redesign our systems, current economic conditions make it

unlikely that we could build up an arsenal of new weapon systems. However,

we could upgrade our currently existing arsenal by replacing the original control

logic with a newer, more capable controller.

In this report we will develop second and third order minimum time optimal

controllers and apply them to a fast reaction missile defense problem. While we

are using the missile defense problem as our example, it should be noted that

the controllers are not limited to this example and may be applied as generic

controllers for a wide variety of systems.



II. SECOND ORDER CONTROLLER

A. MINIMUM TIME OPTIMAL CONTROL

Designing a control system is frequently a hit-and-miss process using a

variety of design techniques to iteratively create a system that meets specific

criteria. The performance of the system may be defined in the time and

frequency domain in terms of overshoot, setding time, etc., or it may be defined

by some externally measured criteria. For example, a satellite control system

may be designed to minimize fuel consumption.

"The objective of optimal control theory is to determine the control signals

that will cause a process to satisfy the physical constraints and at the same

time minimize (or maximize) some performance criterion." [1]

1. Problem Definition

The system and optimization problem is defined as

x = Ax-hBu (2.1)

with x(0) = c, and x(tf) = 0, while minimizing

J = jdt. (2.2)

Let us consider the simple example with

'0 r
x +

"0"

o_ _1_

x= x+ u. (2.3)

From Pontryagin [1], we find we can minimize J by minimizing the Hamiltonian

H = l-f-piX2 + P2U. (2.4)



This is minimum when u is operating at its maximum possible value and with

opposite the sign of the adjoint p2. Thus we have

u = -N-sign(p2) (2.5)

where

P = -1

This has a solution

P2=-Cit + C2.

A typical solution would appear as seen in Fig. 2.1.

(2.6)

(2.7)

(2.8)

J

^2 u
+N

-N
t

^^^^^^

"^^
Figure 2.1 Solution to Minimized Hamiltonian

Note that from the adjoint solution, the control may change sign only

once. We would like to solve this problem for all possible initial conditions and

only one terminal condition (x(tf) = 0). Hence it makes sense to look at this

problem in negative time (adjoint), starting from the end point of motion. From

the uniqueness theorem in ordinary differential equations, only two trajectories



can emanate from the origin; one for u = -N and one for u =: +N, as shown in

Figure 2.2. In this second order example, our solution is constrained to the xi,

X2 plane. These negative time trajectories divide the state space (here a plane)

into two parts. Solution trajectories emanating from these curves constitute all

possible solutions for all possible initial conditions.

-N

^2

-N

+N

Figure 2.2 Zero Trajectory Curves

2. Minimum Time Trajectories, Second Order

Consider the system

x =
"0 r

X +
"O"

|_o oj _lj
(2.9)

This can be represented in flow diagram form as

1

s s



The control, u, may be defined for a bang- bang control system as +N, where N

is some constant. Given any starting values for the states, there are only two

possible paths for the states to take; one corresponding to u = +N, and one

corresponding to u = -N. If we desire to drive all states to zero, and we know

that we can only apply u = ±N, Figure 2.3 shows the paths followed by the

states given various starting values.

^ X2

1 . . >-

(^

Figure 2.3 Minimum Time Trajectory Solution Curves

3. Second Order Solution Trajectories

This system has a solution

x(t) = (/)(t,0)x(0) + A(t,0)u(0)

where

= e^S

(2.10)

(2.11)

and



A^fe^'Bdt
Jo

(2.12)

At
Expanding e , we get

6-^' = I + At + -IaV
2!

+...

=
^1 0"

1

+
'0 r 1

t +—
2!

"0 r ro r
t'+...

=
"1 0'

1

+
"0 t" 1

+—
2!

"0 0"

.0 oj^
'+,..=

'1 t"

1

(2.13)

Since A^ is the zero matrix, all higher orders of A will also be the zero matrix

and we may drop them. Evaluating A (for u fixed) we find

A ^fe^^^-^^Bdl^f
Jo J(

1 t-T

1

t-x

1

dT =
1tT- jT

T
Jo

'0

1

^t^

dx

(2.14)

The solution for this system is

x(t)-
1 t

1

x(0) +
4-t"

u(0), (2.15)

or in scalar equations

Xj(t) = Xi(0) + X2(0)t + ^u(0)t^ (2.16)

X2(t) = X2(0)+u(0)t. (2.17)

These equations describe the states as a function of time given any initial

conditions and the fixed control effort, u.

B. ANALYTIC SOLUTION FOR SECOND ORDER SWITCHING
TIME

We may now treat this system as a boundary value problem and

analytically solve for switching times of the control effort.



1. Solving Boundary Value Problems

Since the control is piecewise constant, (±N), we can separate the

problem into two pieces and match boundary values at the point where u

changes sign. In other words, if the system moves from point x(to) through

point x(ts) to point x(tf), we can solve the problem in two parts. Each of our

boundary value problems can be stated in such a way as to supply simplifying

boundary conditions, i.e., setting initial or final values to zero. Optimal control

theory tells us that for a second order system there will be at most one

switching time, the change from u = +N to u = -N, or visa versa. Let us

consider first the solution for our system with some initial condition fxi(O),

X2(0)], as shown in Figure 2.4.

)
' ^2 x/0), Xp)

ts

Figure 2.4 Minimum Time Trajectory From a Fixed Initial

Condition

The time from t=0 to U is the length of time before the control effort

changes sign. We cannot solve directly for ts because we do not have enough

information on the boundary values. Since we are solving this problem for



arbitrary initial conditions, xi(0) and X2(0), xi(ts) and X2(ts) are unknown. We

do know, however, that the final states, xi(tf) and X2(tf), will be zero, and from

this we can determine the zero-trajectory curve in negative time from the

origin. This curve, shown in Figure 2.5., is the only curve that will go through

the origin with u = +N. Therefore the switching time will occur when the path

of a u = -N curve intersects this curve. There are an infinite number of u = -N

curves intersecting this curve, however, only one curve will go through any

particular set of initial conditions.

To simplify the problem, we will start with initial conditions on the Xi

axis. Define xi(0) = Ci, X2(0) = 0, xi(tf) = X2(tf) = 0, and u = -N. This situation

is described in Figure 2.6 where ti may be defined as the time from to to tj.

Equation (2.16) may now be written

Xi(t) =Xi(0) + x2(0)t + ^ut^ = Xi(0)-iNt^ (2.18)

Since the curves for u = -i-N and u = -N are symmetric, it can be noted that

xi(ti)-ixi(0) (2.19)

and therefore

lxi(0) = Xi(0)-iNti2 (2.20)

and finally

t,=^^. (2.2,)

This is valid for any initial conditions such that xi(0) > 0, X2(0) = and u = -N.



)

Figure 2.5 Simplified Boundary Value Problem #1

i
' 2

Figure 2.6 Simplified Boundary Value Problem #2



The next simplification involves getting from the positive X2 axis down

to the positive Xi axis as shown in Figure 2.7. Given xi(0) = 0, X2(0) = positive

real, xi(tf) = positive real, X2(tf) = 0, and u = -N.

Equation (2.17) may be written

X2(t) = X2(0)-Nt. (2.22)

At t = t2 , X2(t2) = giving

and

= x,(0)-Nt.

U =
X2(Q)

N

(2.23)

(2.24)

The final stage is to translate the initial condition off of the X2 axis to

some unknown initial condition. The time required for the states to get from

some initial condition X2(0) to X2(t) is not based on the xi state, and is therefore

always equal to t2, as seen in Figure 2.8.

We solve (2.16) for xi(t2)

Xi(t2) -Xi(0)+X2(0)t2-iNt^

= X,(0)+X2(0)'
''2X2(0)^ iJ^iiO)
N ;

^N
\2

V N ;

= xi(0) + ^x^(0). (2.25)

10



>

C2

.^2

1 >^

xi

Figure 2.7 Simplified Boundary Value Problem #3

> X2

^2 ^^
nX

:\
X̂,

Figure 2.8 Simplified Boundary Value Problem #4
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Finally we combine these solutions to determine the switching time, ts,

for any initial conditions such that xi(0) > and X2(0) > with u = -N. From

Figure 2.3 we see that Xi(0) for the ti solution is the same point as Xi(t2) from

the t2 solution so that

ti
=

^ x,(0) ^ x,(t,)

N V N

lx,(0) + ^x^(0)

N

'x,(0)_^^fx,(0)^

N 2 V N J
(2.26)

and

These equations were derived for specific initial conditions and are

only valid where the initial conditions lie above the zero trajectory curves of

Figure 2.2. In order to expand the capabilities of the control system for all initial

conditions we re-derive the switching time equations for initial conditions

Xi(0)<0, X2(0)<0, and u(0) = 4-N for the solution

, .JzMO)^irMO)Y_x^_
^

V N 2l N J N

This equation is valid only when the initial values are below the zero trajectory

curves of Figure 2.2. For this discussion we will limit ourselves to initial

conditions above the zero trajectory curves and use the solution (2.27).

12



2. Simulation of Analytic Switching Time Controller

Using a computer simulation, we test the accuracy of the solution by

choosing initial conditions and observing the response to our control effort. We

simulated the example system of (2.9) with xi(0) > 0, X2(0) > 0, and N = -1.

The control effort, u, changes sign to -N at the calculated switching time, tg.

The results show that the states pass through the origin of the state space and

the error at the origin is associated with the discretization of the simulation, as

shown in Figures 2.9 and 2.10. The switching time shown in Figure 2.10 is the

calculated value. The control effort actually switches at the first sampling time

following the caluculated switching time, tj. If we increase the sample rate for

the simulation we reduce the terminal miss error. Upon reaching the origin

some additional control logic must be devised to maintain position.

While the switching time solution is a minimum time solution for driving

the states to the origin, or any desired values, it must be shut off at tf. The

switching time solution cannot adapt to a time varying situation as the switching

time is defined solely on the initial conditions.

13



Phase plot - Switching Time

1

X

-1

_0

>
x^ :x,(0),X2(0)

^
N. h y

U = N\: J^./^

10 12
XI

3

Figure 2.9 Simulation of Analytic Switching Time Solution

1.5

1

0.5

-0.5

-1

-1.5

Control Effort - Switching Time

: u = -^N ;

u = -N ^ tj =2.581 sec

1 2 3

Time (sec)

Figure 2.10 Control Effort for Analytic Switching Time
Simulation
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C. SOLUTION TO SECOND ORDER SWITCHING CURVES

An option for improving the capabilities of the second order controller is to

remove the time dependancy of the control effort. The control problem may be

posed as a function of the states instead of a function of time for some simple

systems. By defining the control effort as only a function of the states the

control effort is updated continuously and may change immediately in response

to a change in the system parameters.

There are only two possible control efforts, -N and +N. Therefore, any

position in space will have either +N or -N control effort to drive it along its

unique path to the origin, and we can solve this system for the second order

switching curves that divide the state space into two parts, see Figure 2.2.

1. Second Order Switching Laws

Given the system

—

1

"0 r '^\~ "0"

>2_
—

.0 o_ M.
+

1_
(2.29)

we can integrate the state equations. Setting u = ±N

X2(t) = jx2(t)dt = j udt = ±Nt + Ci (2.30)

Xi(t) = Jxi(t)dt = jx2dt = j±Nt + Cidt = ±^Nt- + Cit + C2. (2.31)

Choosing the boundary values so that Xi(tf) = X2(tf) = we may rewrite the

equations as

Xi(tf) = ±^Nt? + X2(0)tf + Xi(0) (2.32)

X2(tf) = ±Ntf+X2(0) (2.33)

or

0-±^Ntf + X2(0)tf + Xi(0) (2.34)

15



= ±Ntf + X2(0). (2.35)

Solving for tf

Then for any value of t

N

Substituting this into equation (2.34)

U=T^^^. (2.36)

t = +^^^. (2.37)

= x,(t) + x,(t)[+^]±lN(T^] (2.38)

N ^ N
= xi(t) +^±i^ (2.39)

= xi(t) +i^. (2.40)

We make the substitution

+ x^(t) = -X2(t)|x2(t)| (2.41)

so that

= Xi(t)-2i^X2(t)|x2(t)|. (2.42)

Equation (2.42) describes the two parabolic trajectories referred to as

the zero trajectory curves because any states on these curves will, with the

appropriately signed control effort, be driven to the origin. These zero

trajectory curves divide the state space into two regions of opposite control

effort. If the states are above the curves then u = -N, but if they are below the

curves then u = +N. Therefore our control effort, u, may be defined

u = -N-sign(xi(t)-2^X2(t)|x2(t)|). (2.43)

16



With this switching law we drive the states from any initial conditions to the

origin with at most one change of the control effort.

For example, let us define the initial conditions of the states to be

above the zero trajectory curves so that xi(0) < and X2(0) > 0, as shown in

Figure 2.11. From (2.43) the control effort is u = -N, which drives the states

along the parabolic trajectory shown in Figure 2.11.

When the states intersect the zero trajectory curve, the control effort

changes, according to (2.43) to u = +N, and follows the zero trajectory curve

into the origin.

2. Limit Cycles

The control effort, u = +N will not only drive the states to the origin, it

will, in fact, become confused there. It is a point of indecision and chatter or

limit cycle motion ensues as in Figure 2.12. The magnitude of the limit cycle

depends on the sampling rate or time delay for the control effort. If the sample

rate is low, the states will penetrate far into the opposite control region before

the control effort can change, and the limit cycle will swing widely around the

origin. If the sample rate is high then the states will not travel far away from

the origin before the control effort corrects the direction of travel.

Since a heavy chatter mode is not desirable for many real systems,

control logic for reducing or removing the chatter mode may be developed,

however, it will not be included in this paper.

17



Xi(0),X2(0)

\
1

X2

\ u = -N

u = +N

V 1 ^^'

+N

Figure 2.11 Solution Trajectory From Fixed Initial Condition

>

^
'^2

u = +N \

+N^"^

Figure 2.12 Limit Cycle on Second Order Solution Trajectory
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3. Simulation of the Switching Law Controller

To test the switching law (2.43), we simulate the system of (2.29)

using a maximum control effort of N = 1 and initial conditions Xi(0)>0,

X2(0) > 0. The output of the simulation, shown in Figure 2.13, demonstrates the

control effort driving the states first to the zero trajectory curve, then along the

zero trajectory curve to the origin. Once at the origin, the control effort goes

into limit cycle as shown in Figure 2.14.

19
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Phase plot - Switching Law

Possible Chatter

or Limit Cvcle

x,(0), x,(0)

1

XI

Figure 2.13 Simulation Using Second Order Switching La>v

Control Effort - Switching Law

Figure 2.14 Control Effort for Second Order Switching Law
Solution
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III. APPLICATION OF A SECOND ORDER CONTROLLER

A. MISSILE/TARGET INTERCEPT MODEL

An application for Minimum Time Optimal Control is an anti-missile defense

system, where the incoming target has a speed advantage over the defensive

missile. In this case the missile control system must operate in saturation mode.

The bang-bang controller, where control effort is either maximum-positive or

maximum-negative, has a faster response capability than the standard

Proportional Navigation guidance system, A simple model of a missile to target

engagement can be described by Figure 3.1 where a is the line of sight (LOS)

angle from missile to target, Ym is the angle of the missile velocity, yi is the angle

of the target velocity, and all angles are relative to an inertial reference.

Figure 3.1 Missile/Target Geometry

21



It is assumed that the target is on the final leg of it's flight and is now on a

straight, non-maneuvering trajectory. The control is to drive the line of sight

rate (d) and it's derivative (a) to zero in minimum time.

For our models we will be using only two dimensional scenarios. The

system dynamics use second order models for each dimension. The target

dynamics are non-maneuvering so that the acceleration, at, is zero. The missile

acceleration, am, is assumed perpendicular to the velocity vector y^i- The

system dynamics are shown in the signal flow graph in Figure 3.2.

1

->^ > •—>-

A

Observer
Switching

Function

I. y
Missile cos(7^) y,_^nr^ ^ ^ i-

r\ -sin(7„) iim ' ' m /s x„ /S X,

1

Target cos^7^) Yt X Yt> •-
X

a,=0
•—>-

pv -si"(^t) X, A X, A X,

Figure 3.2 System Dynamics of the Intercept Model
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The LOS angle, a, and it's derivatives, a and o, may be derived analytically

from the available states. We define the geometry of the system as in Figure

3.3.

Figure 3.3

with

Geometry for Angle Definitions

Ri = Range of the Target.

Rm = Range of the Missile.

Vi = Velocity of the Target.

Vm = Velocity of the Missile,

at = Acceleration of the Target,

am = Acceleration of the Missile.

Vj. = Closing Velocity.

so that

a = tan (3.1)
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R V _R .y
• imx tmy imy imx //, /^^a = 5 (3.2)

and

R .o 4-9V V -R -a 2V (r V -R V \

where

V,=-R (3.4)

In an actual application Kalman or Luenberger Observers may be used to

obtain estimates of a and 0.

f'

B. APPLICATION OF THE SWITCHING LAW

The switching law from (2.43) is applied to our scenario where 6 and o

form the state space of this simulation, and is implemented as

f
u = N-sign 6 +—— \. (3.5)

2N J

The sign convention of (2.43) was changed to conform to the geometry of our

scenario.

We set the simulation with the initial conditions

Rmx(O) = ft Rn,y(0) = ft

Vmx(O) = 2000 ft/sec Vniy(O) = ft/sec

an,x(0) = ft/sec2 amy(O) = ft/sec2

Rtx(O) = 10000 ft Rty(O) = 1000 ft

Vt^(O) = 2000 ft/sec Vty(O) = ft/sec

atx(O) = ft/sec2 aiy(O) = ft/sec2

tfinai = 2.25 sec dt = 0.01 sec
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Running the simulation we find that the controller does drive 6 and d to

zero, and maintains them about the origin until intercept is reached (Figure 3.4).

Once the states reach the origin, the system controller goes into chatter mode,

see Figure 3.5, and the trajectory chatters back and forth about the desired

intercept path.
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C. COMPARISON WITH PROPORTIONAL NAVIGATION
CONTROLLER

The system dynamics for the proportional navigation controller simulation is

basically the same as that in the previous section, except that the control effort
,

u, is proportional to a, which is obtained with an estimator, shown in Figure 3.6,

where p = 6. We limit the acceleration so that u is bounded by ±N. With only

the change in the controller we ran the simulation for the same initial conditions

with the results shown in Figures 3.7 and 3.8.

This Proportional Navigation system is effective at intercepting the target

only when the missile/target geometry and kinematics are sufficient that the

missile has time to maneuver. The delay in saturation of the control effort

caused the missile to turn too slowly so that the Proportional Navigation

Controlled system was unable to maneuver quickly enough to intercept the

faster, although non-maneuvering, target.
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IV. THIRD ORDER CONTROLLER

A. FORWARD TIME SYSTEM

The second order controller is effective at intercepting a target that has

speed advantage. Previously we have controlled the system by driving a and

a to zero, and thereby maintaining a constant LOS angle, a, until impact. But

what about controlling the LOS angle itself? There are situations in which we

would like to be able to attack a target from a particular angle, or perhaps have

multiple missiles, each with it's own pre-defined attack angle.

Consider a point defence system in which the missile, launched from some

point away from the target's final trajectory, would try to position itself in

minimum time onto a "head-on" collision course with the target, as shown in

Figure 4.L In such a situation we would use a third order minimum time

controller to drive a, a, and a to zero.

1. System Definition

Our third order example is

X =

"0
1 0' "0"

1 x-l-

0_ 1

Minimizing the Hamiltonian and solving the system we find

H = l + PiX2 + P2X3-Hp3U

and

u = -N-sign(p3)

(4.1)

(4.2)

(4.3)
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Figure 4.1 Application of Third Order Minimum Time Controller

where

so that

an

ax

0'

-1

-1_

Pl=Ci

P2 =-Cit + C2

P3=^Cit^-C2t + C3,

(4.4)

(4.5)

(4.6)

(4.7)
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From the adjoint solution the control may switch sign no more than

twice. Again tracing this problem in negative time we may follow the zero

trajectory curves out from the origin with control efforts of ±N. These curves

are now in three dimensional space residing in their own plane which intersects

the origin. Intersecting these zero trajectory curves are an infinite number of

curves making a surface, and leading off from this surface the infinite number of

trajectories lead to the initial conditions. Therefore in forward time we may

start with an initial condition such that u = -f-N will drive the system to intersect

with the surface at tgwi as shown in Figure 4.2. Switching the control effort to

u = -N will drive the system along the surface to intersect with the zero

trajectory curve at tsw2 where the control effort switches again. Finally u = +N

will drive the system to the origin.

ii

Zero Trajectory

Curve

Starting

Point

Curved
Surface

Figure 4.2 Three Dimensional Switching Curves
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2. Third Order Switching Curves

We have determined from the second order system that solving for the

control switching times is not as widely applicable as defining the control as a

function of the states; so we now move on to defining the third order switching

curves.

Starting with the state equations (4.1) we discretize and expand the

equations so that

(j) = e
At

I + At +
A^t^ A^t^

+
91 3!

+ ,

1 0"

1 +

1

1 0"

1

0_

1

t +—
2!

r

o_

i'+.

1 t
]

t'

1 t

1

A3 is the zero matrix so it and all higher terms of A are dropped.

(4.8)

A- fe^^'-^^Bdx- f
Jo Jo

1 t-T ^(t-x)^

1 t-T

1

dx

-fJo
t-x

1

Combining these we obtain

dx =

ii^-itx^ + ix^

tx-lx'

t

\W]
= It^

t

(4.9)
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x(t) =

1 t {i"' fit^l

1 t x(0) + it^

1 t

u(0) (4.10)

or in scalar equations

x,(t) = Xi(0) + tX2(0) + ^tS(0) + it3u(0)

X2(t) = X2(0)+ 1X3(0) + ^ t^u(O)

X3(t) = X3(0)+tu(0).

(4.11)

(4.12)

(4.13)

B. NEGATIVE TIME SYSTEM

The third order system, being piecewise continuous, is easily broken into

several simple boundary value problems. In order to solve the systems of

curves we must determine some boundary values for the intersections of these

families of curves. We start at the origin and run the system in negative time to

determine our other boundary conditions.

In negative time we have

X =

-1 0' '0'

-1 x +

-1_

(4.14)

Discretizing we find

At
(|) = e"^ =

1 -t ^t^
2

^

1 -t

1

(4.15)

and
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so that

A = reA(t-.)

Jo
Bdi =

-it'

-t

(4.16)

x(t) =

'l -t
2

* \-b'
1 -t x(0) + it^

1 -t

u(0),

or in scalar equations

1 .2, 1 *3.
Xi(t) = xi(0)-tx2(0) + ^t%(0)-it^u(0)

(4.17)

(4.18)

(4.19)

(4.20)

X2(t) = X2(0)-tX3(0) + it2u(0)

X3(t) = X3(0)-tu(0).

1. Solving for Negative Time Boundary Points

To develop a complete solution we solve the equations for several

different points along the zero trajectory curve. Setting u = -N and traveling out

along the zero trajectory curve for 1 second we find

x,(\) = -lui' = -l{-N) = lN (4.21)

X2(l) = {ut'=^(-N) = -|N (4.22)

X3(l) = -ut = -(-N) = N. (4.23)

Similarly we run the system in negative time for 2 and 3 seconds to

obtain other boundary points as shown in Figure 4.3, and listed in TABLE 1.
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Figure 4.3 Boundary Values in Negative Time Solution

NEGATIVE TIME BOUNDARY CONDITIONS, u = -N

u = -N t = 2 t = 3

xi(t)
IN fN

X2(t) -2N -fN

X3(t) 2N 3N

TABLE 1.

The control effort may also be u = +N, traveling away from the origin

on the other zero trajectory curve giving the boundary conditions in TABLE 2.

36



NEGATIVE TIME BOUNDARY CONDITIONS, u = +N

u = +N t= 1 t = 2 t = 3

xi(t)
-IN |N |N

X2(t) IN -2N -fN

X3(t) -N 2N 3N

TABLE 2.

We may now solve the equations for the family of curves that intersect

the zero trajectory curves. Specifically, we solve for the equation of the one

curve that travels from some point xi(0), X2(0), X3(0), to the point Xi(t) = -^N,

X2(0 = ^N, X3(t) = N. Since the control effort on the zero trajectory curve for

this intersection point is u = -N, the control effort for the curve we are solving

for must be u = +N, and the forward time equations may be written as

Xi(t) = lN = Xi(0) + tX2(0) + lt%(0) + it^N

X2(t) = -^N = X2(0)+tX3(0) + ^t2N

X3(t)=N = X3(0) + tN

Solving (4.26) for t we find

X3(0)

(4.24)

(4.25)

(4.26)

t =
N

+ 1, (4.27)

Substituting (4.27) into (4.24) and (4.25), and after a bit of algebra we obtain

X3'(0)
-N = x2(0)-

2N

= .^(0).x2(0)-^^^i^^^^-^^^ +^^
N 2N 3N^

(4.28)

(4.29)

Using the other boundary values from TABLE 1 and TABLE 2 as

well, we may generate a family of equations representing both sides of the zero
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trajectory curves, and different points of intersection along the curves (see

TABLE 3). The control effort, u, in TABLE 3. is the control effort for the zero

trajectory curve that is intercepted. The time, t, is the time out from the origin

to the intercept point for the negative time system.

To combine all the equations from TABLE 3 into one solution we

define

w = sign

and

X2 +
V

2N
(4.30)

f = X2+w-^ (4.31)^ 2N

so that our family of curves is defined as

= x,(0) +^.w.^ili2W0)^f (I
^

3N^ N VN

Equation (4.30) determines which signs are to be applied based on which

direction the zero trajectory curve is on; Equation (4.31) adjusts the magnitudes

of the equation depending on the distance of the intersection of the zero

trajectory curve from the origin. Each curve intersecting the zero trajectory

curve will have a different value of the function f, and f will remain constant all

along that curve.
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FAMILY OF SOLUTION CURVES

u = -N

t= 1

-N = x2(0)-
X3^(Q)

2N

= x,(0).x,(0)--^<»>-3(0)_Ji3!(0),x^0)
N 2N 3N^

u = -N

t = 2

-4N = x2(0)-
2N

= M0H2.,i0)-!^2mjh(^.^i(21^-^'(0)
N N 3N^

u = -N

t = 3

-9N = x2(0)
X3'(0)

2N

= x.(0).3x,(0)-''^^»>-3^°)-^^^^.^^
N 2N 3N^

u = +N

t= 1

N = x2(0) +
X3^(0)

2N

= „(0).x,(0) + ^^l^°>^^ +
^^^^.''''<«)

N 2N 3N'

u = +N

t = 2

4N = x2(0) +
X3'(0)

2N

= x.(0).2x,(0)^-^^°)-3(0)^i^3!(0)^x^0)
N N 3N

u = +N

t = 3

9N = x2(0) +
X3'(Q)

2N

= x.(0).3x,(0).'-^<»>-3'°^^^^^^.''3''°'
N 2N 3N^

TABLE 3.
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C. THIRD ORDER SWITCHING LAW

Using (4.30), (4.31) and (4.32) we can break up space into areas of

opposite control effort. The control effort is defined by which of these volumes

contain the states. Therefore, the third order switching law is defined as

u = -Nsign^,(0).ii^ + w.^ill%i^.f.,|ll. (4.33)
3N^ N VN

D. THIRD ORDER CONTROLLER SIMULATION

A simulation of this third order model shows that the third order switching

law, (4.33), drives the states to the origin with only 2 changes is the control

effort. In application some means of shutting off the control effort will be

required for the system to avoid entering chatter mode upon reaching the origin

(see Figure 4.4).

An examination of the functions (4.30), (4.31), and (4.32) in Figure 4.5

shows that f is a smoothly increasing curve until the states intercept the

switching surface. Once the states are following the surface, f remains a

constant value. When the states reach the zero trajectory curve, f becomes

approximately zero.
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V. MISSILE ADJOINTS

Given a time varying system

x = A(t)x + B(t)u (5.1)

y = C(t)x. (5.2)

it can be shown that the impulse response of the adjoint system

p = A(tf-t)'^p + C(tf-t)''r (5.3)

y = B(tf-tfp (5.4)

is the response of the original system, at time t, to an impulse applied at time

tf
- 1 before t. [2] For a time invariant system the transfer function for the

original system is identical to the transfer function of the adjoint system, i.e.,

they are self-adjoint.

A. CONSTRUCTION OF AN ADJOINT

Given the mathematics of the adjoint method, we now need to define some

rules to create and understand the adjoint system with real systems and block

diagrams. [3]

1. Rule 1: Convert All System Inputs to Impulses

In constructing the adjoint it is necessary that all system inputs be

impulsive. Since this may not be the case with the block diagram, all system

inputs and initial conditions must be converted to impulsive inputs via block

manipulations and extensive use of integrators.. Figure 5.1 shows that step

inputs and initial conditions are equivalent to the output of impulse driven

integrators.
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2. Rule 2: Replace t With tf - t in the Arguments of All Time

Varying Coefficients

In many linear systems it is possible to express a gain as a function of

time. The adjoint system operates in negative time and Figure 5.2 shows the

conversion of functions of time into the adjoint domain.

Figure 5.1 Conversion to Impulsive Inputs

Original Svstem Adioint Svstem

Time K(t) = at + b K(t-tf) = a(t-tf) + b

Varying

Gain V ( t\- V /' * ^

a(t-tf) + b
K(t tf)-

at + b

Figure 5.2 Convert Functions of Time to the Adjoint Domain

3. Rule 3: Reverse the Direction of all Signal Flow

The direction of all signal flow must be reversed, redefining nodes as

summing junctions and visa versa. Notice that all system outputs become
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inputs and all system inputs become outputs. This last rule allows for the simple

graphical creation of the adjoint system by first drawing the block, or flow,

diagram of the original system, then redrawing it with the arrows reversed.

Figure 5.3 shows some examples f converting nodes to summing junctions and

visa versa.

Original Svstem Adjoint Svstem

>

1 ( 1

G(s)
. b(t) >^b(t-t,)

G(s)
• -^ • ^•

Figure 5.3 Converting Nodes to Summing Junctions

B. DEVELOPMENT OF A SECOND ORDER ADJOINT SYSTEM

This adjoint formulation lends itself well to analyzing some optimization

problems, those where tf is free and the terminal state is constrained to a point,

curve or surface. From Pontryagin the control is a function of the homogeneous

adjoint (see (4.2) and (4.3)). The missile adjoint form gives also a particular

solution of the adjoint (i.e. system impulse response).

The adjoint allows one to generate optimum solutions (i.e. switching

surfaces) for all possible initial conditions. The forcing impulses passed through

an integrator gives our saturation type of optimal control (±N).

As an example for the application of the method of adjoints we will apply

our adjoint rules to our second order controller. The system described by (2.9)

has a time dependent control input where
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u(t) =

and, from our second order example.

-N t<t,

+N t>t.
(5.5)

^^Jx(0)^lfxWY^x(0)
(5.6)

N 2V N ; N

1. Apply Rule 1 to the Second Order Example

For this example we will define N = 1. We first draw out the original

signal flow diagram, showing all the inputs and initial conditions. In order to

apply the impulsive inputs we expand the second order system to the third

order state equations

1 0] ro"

x=0 1x+0u (5.7)

OJ [l_

y-[l 0]x. (5.8)

Converting all the inputs to impulsive inputs and initial conditions we get the

flow diagram in Figure 5.4.
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Original System Showing All Inputs

x(0) = C2 x(0) = Ci

u(0_

V
System With Impulsive Inputs

5(t) C2 6(t) ci
•—>^-* •—>-

5(t)-5(t-t3) X u(t) 1
X XV ^ \

Figure 5.4 Application of Rule 1 on Second Order Example

2. Apply Rule 2 to the Second Order Example

We replace t with t - tf in the arguments of all time varying coefficients

to obtain the flow diagram in Figure 5.5.

Changed Time Reference

5(t-tf) c2S(t-tf)ci

5(t -tf)-5(t)^ /(u{i-i,)^l X ^\ ^ \

Figure 5.5 Application of Rule 2 on Second Order Example
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3. Apply Rule 3 to the Second Order Example

Finally we reverse the direction of the signal flow, redefining nodes as

summing junctions and visa versa, thereby changing the system inputs to

outputs and the system outputs to inputs as shown in Figure 5.6.

.^

Adjoint System

c

P3 Xu(t-tf) 1 p2 X
•—< •—< • <

1 6(t-tf)-6(t)
-< •

Figure 5.6 Application of Rule 3 on Second Order Example

The mathematical definition of the Adjoint System is

p = A'^P + C'^u (5.9)

(5.10)

Using the A, B, and C matrix from (5.7) and (5.8) we obtain

u(t-tf)

Pi Pi 1

P2 = 1 P2 +

P3. 1 0_ .P3.

y = [0 1]]P

(5.11)

(5.12)

which corresponds to Figure 5.6.

C. SIMULATION OF THE SECOND ORDER ADJOINT

1. Forward Time Second Order Simulation

In the forward time second order simulation we set N = 1, and the

initial conditions x(0) = 2 and x(0) = 0. Using impulses through integrators we
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apply the initial control effort at t = 0. A second impulse, opposite in sign and

twice in magnitude, is applied at the switching time, as defined in (5.6), driving

the states through the origin.

The simulation length is 4 seconds with a sample step of .05 seconds.

The results are shown in Figure 5.7. Starting at the initial conditions the system

is driven through the origin with a minimum miss distance of 0.003344 at a time

of 2.83 sec.

2. Adjoint Solution for Second Order System

In the adjoint domain the system will travel in negative time starting at

the origin and traveling outward to the initial conditions for the forward time

system. Because this is a time invariant system the trajectory for the adjoint

solution will be the same as the forward time system but in the opposite

direction. From our second order example, the optimum switching in negative

time from the terminal state at the origin is

tf-ts=^-^. (5.13)

The trajectory constraint yields

xi(ts) = - ^'^ • (5.14)

A reverse impulse of twice the magnitude is applied and the trajectory

proceeds out to the desired initial conditions given. The negative time impulse

response is thus prescribed by using the switching times

1

tf-t, = -^N-Xi(0) + lx2(0)' (5.15)
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tsw-to =^VN-^i(0) + i^2(0)' +^^- (5-16)

The parameters for the adjoint solution are the same as for the

forward time, but the initial values for the states are at the origin. The output

of the adjoint system, according to (5.12), is p3, so the phase plot of Figure (5.8)

plots -p2 and ps. The adjoint solution traces almost the same path as the

forward time solution, switching at U = 1.582 sec, and missing the point (2,1) by

0.002733 at tf = 2.83 seconds. By changing the initial sign of the control effort,

and adjusting the switching time, we could drive the adjoint system to any

desired point in the phase plane, and therefore know the optimal solution for the

forward time system.
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Figure 5.7 Simulation of Forward Time System
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Figure 5.8 Simulation of the Adjoint Solution
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D. MISSILE SIMULATION WITH ADJOINTS

The method of adjoints can be extremely useful when dealing with time

varying systems. By using the adjoint solution we are able to see how the

forward time system behaves for all times.

1. Missile/Target Model

We will simplify our scenario of missile/target engagement in order to

present an uncluttered example of the method. The target will have zero x-

velocity and constant y-velocity, and will start on the x-axis at a distance, R,

from the origin (see Figure 5.9). The missile will start at the origin with a

constant x-velocity by zero initial y-velocity.

Y >

^^^^ < Target

Missile R X

Figure 5.9 Geometry of Missile/Target Adjoint Solution

Since R is large and y^ - ym is small we use the small angle

approximation and define

a = tan

I R )

Yi-yr

R

The closing velocity is constant so we note that

R = V,(tf-t)

(5.17)

(5.18)
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where tf is the length of the simulation.

2. Signal Flow Diagram

Because the x-velocities are constant we need only to model the y-

dimension. We develop the flow diagram in Figure 5.10 from the geometry of

Figure 5.9. We use proportional navigation control and impulsive inputs are

used for initial conditions.

ymis

S(t) X y. X y.

1

Ve(tf-t) a—> •

—

>

>.-l

Estimator

or

Observer

^^ y

nV. K ^ ^

Figure 5.10 Signal Flow Diagram for Missile/Target Model

The estimator used was developed from the mechanics and dynamics

of a seeker head system, however, it can be shown to be equivalent to a

Kalman Estimator or Luenberger Observer. This estimator in Figure 5.11 has a

time constant of 0.1 seconds. The primary interest in this model is to determine

the miss distance at the final time, t = tf, so the output of the system is ymiss-
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Figure 5.11 Signal Flow Diagram of the Estimator

3. Forward Time Simulation

We define our states to be

'>^l' "Ym'

X2 Ym

X3 P

X4 P

^5 Yt

.^6_ .Yi .

and the system state equations are then

nV,

1

-100

tf-t
-100 -20

100

tf-t

1

x +

0'

1

(5.19)

(5.20)

y = [-l 1 0]x (5.21)
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Since the x-velocities are constant we know approximately when the

point of closest approach will occur, and therefore about how long to run the

simulation. The LOS angle, o, is a function of t and tf, so that different values of

tf will result in changes to the control effort and system response. Because this

state matrix. A, is time dependent , it must be redefined at each time step of the

simulation. We define our proportionality constant, n, to 4, the closing velocity,

Vc, to 5000 ft/sec, so that with tf = 4 sec. the initial range is 20,000 ft. The

output of the simulation is shown in Figure 5.12.

To study the effect of different values of tf, or to locate the optimal

value, we may have to run the forward time simulation many times, which

could be a very tedious process, especially since we are only interested in the

final value of t = tf.

4. Adjoint Solution

An alternative to running the forward time system over and over again

would be to run the adjoint solution once to generate the final values of the

family of forward time solutions. This time we generate the adjoint system

using matrix algebra instead of the graphical method. The solutions to the

adjoint system are, from (5.9) and (5.10)
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p =

-100

tf-t

1

-100

nV, 1 -20

100

tf-t

1

p+

-1

1

(5.22)

y = [0 l]p. (5.23)

This system generates a curve whose value at any time, ta, is the final

value of the forward time system where tf = ta. Figure 5.13 shows four curves

from the forward time solution corresponding to tf = 1,2,3, and 4 sec. Each

curve end exactly on the adjoint solution curve at the corresponding adjoint

time.
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Forward Time Simulation

Figure 5.12 Forward Time Simulation

Adjoint Solution with Forward Time Curves

Figure 5.13 Adjoint Solution Curve
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VI. CONCLUSIONS AND COMMENTS

We have developed the second order minimum time optimal controller and

applied it to the fast reaction missile defense problem with both the closed form

analytic solution, and the open form switching curves solution. In comparing

our open form solution with a standard proportional navigation controller

solution we demonstrate an increased maneuverability enabling our missiles to

defend against faster, more capable threats. The accuracy at intercept is a

function of the control logic used to shut off the control effort when desired

conditions are met. This is a subject that should be explored in future projects.

We introduced a third order minimum time controller which promises to not

only improve reaction time and maneuverability, but also presents us with the

ability to control and define a desired attack angle for an improved destructive

potential. A model for a practical third order controller should be developed

and evaluated.

Having introduced the method of adjoints and shown some of its functions,

we hope to stimulate some more practical applications of this technique. We

are excited at the possibilities of using the method of adjoints in determining

optimal, closed form solutions to forward time problems at speeds fast enough

for practical implementation.
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APPENDIX A. PROGRAM CODE

All of the simulations for this project were run on both IBM-AT^ class and

Macintosh IP computers using the matrix manipulation language MATLAB^.

For IBM-AT compatibles MATLAB, version 3.5f was used, and on the

Macintosh II computers version MAC II-MATLAB, version 1.1b. This

appendix contains the source code for all of the simulations and functions

written in support of this project.

Only a limited background in programming is required for understanding

these files. While MATLAB is similar to FORTRAN, MATLAB's control

structures are much less complex, and with matrix manipulation built into the

system, vector definition and storage are greatly simplified. Comments are

started by the percent sign (%) and continue to the end of the line. Ellipsis (...)

at the end of a line indicate the continuance of the logical line onto the next line

of code.

Each file will begin on a new page to assist those who are interested in

examining or reproducing the code. Although an analysis of these files is not

necessary to understand this report, readers are encouraged to examine them

closely for further information.

The code is presented in the order of usage in the main text with all

supporting functions grouped with the main program of interest.

^ IBM and IBM-AT are registered trademarks of IBM.

2 MAC II is a registered trademark of APPLE.

^ MATLAB is a registered trademark of The MathWorks, Inc. [4]

58



1. BB2NDST.M

% BB2NDST.M 11 Mar. 1991

% BB2NDST.M is a simulation of the 2nd order bang-bang controller with an analytic

% solution for the Switching Time of the control effort. The signs of the control effort

% must be matched with the initial conditions to have convergence.

% written by Colin R. Cooper

% Define the State Equations.

A = [0 1;0 0];

B = [0 1]';

C = [10];

xl0 = 2;

x20=l;

N = 1 ; % Maximum control effort.

aN = abs(N);

Tf = 4.17;

dt = .005;

[Phi,Del]=c2d(A,B,dt);

% xl initial condition.

% x2 initial condition.

% Length of simulation.

% Time increment for simulation.

% Discretized System.

% Create the storage vectors.

kmax = Tf/dt+ 1;

X = zeros(2,kmax);

y = zeros(l,kmax);

time = zeros(l,kmax);

x(:,l) = [xl0;x20]; % Set initial conditions for x.

% Define the Switching Time for the control effort.

tsf = abs(x20)/aN + sqrt(abs(xlO + x20*abs(x20)/(2*aN))/aN);

% Begin simulation loop.
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for i = 1 :kmax - 1

if time(i)<tsf

u = -N;

else

u = N;

end

x(:,i+l) = Phi*x(:,i) + Del*u;

y(l,i+l) = C*x(:,i+l);

time(i+l) = time(i)-i-dt;

end

% Plot the output of the simulation.

clg,plot(x(l,:),x(2,:),'-w'),grid

title('Phase plot - Switching Time')

xlabel('Xl'),ylabel('X2')
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2. BB2NDSL.M

% BB2NDSL.M 11 Mar. 1991

% is a simulation of the 2nd order bang-bang controller using a Switching Law for the

% control effort.

% written by Colin R. Cooper

A = [0 1;0 0];%

B = [0 1]';

C = [10];

xl0 = 2;

x20=l;

N = 1 ; % Maximum control effort.

Tf = 4.5;

dt = .01;

[Phi,Del] = c2d(A,B,dt);

Define the State Equations.

% xl initial condition.

% x2 initial condition.

% Length of simulation.

% Time increment for simulation.

% Discretize the System.

% Create storage vectors.

kmax = Tf/dt+ 1;

X = zeros(2,kmax);

y = zeros(l,kmax);

u = zeros(l,kmax);

x(:,l) = [xl0;x20]; % Set initial conditions for x.

% Begin simulation loop,

for i = 1 :kmax - 1

u(i) = -N*sign(x(l,i) + .5*x(2,i)*abs(x(2,i))/N);

x(:,i-i-l) = Phi*x(:,i) + Del*u(i);

(l,i+l) = C*x(:,i+l);

end
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% Plot the output of the simulation.

clg,plot(x(l,:),x(2,:)),grid

title('Phase plot - Switching Law')

xlabel('Xr),ylabel('X2')
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3. SIM2SL.M

% SIM2SL.M 2nd Order Switching Laws Control 08 Apr. 1991

% Simulation of the missile/target simulation.

%
% -> Uses analytic values for sigma-dot,sigma-ddot for calcultion of the control effort

% using the 2nd order switching curves.

% -> The Target makes no evasive maneuvers.

% -> Calculates the Quantization Error based on the average velocities for the crossover

% endpoints.

% -> Calls INTERP.M function which takes the states at the crossover endpoints, creates

% 100 point straight lines to connect the points, and determine the minimum miss

% distance.

% -> Allows delay time for missile conu-ol.

% -> Target is now on level flight with Beta = 0.

% written by Colin R. Cooper

% Define states.

N = 1000;

Am = [0 1 0;0 0;0 1;0 0];

Bm = [0 0;10;0 0;0 1];

At = [0 1 0;0 0;0 1;0 0];

Bt = [0 0;10;0 0;0 1];

Tf = 2.25;

dt = .01;

% Maximum control effort.

% Missile State Equations.

% Target State Equations.

% Total time of simulation.

% Sample step size.

% Descretize the states.

[Phim,Delm] = c2d(Am,Bm,dt);

[Phit,Delt] = c2d(At,Bt,dt);

% Discrete Missile System

% Discrete Target System
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% Define storage vectors.

kmax = Tf/dt+ 1;

xm = zeros(4,kmax);

xt = zeros(4,kmax);

time = zeros(l,kmax);

sig = zeros(3,kmax);

am = zeros(l,kmax);

um = zeros(2,kmax);

Rtm = zeros(l,kmax);

xm(:,l) = [0;0;0;2000];

xt(:,l) = [1000;0;10000;-3000];

% xm =
[ y yd X xd ]'

% xt = [ y yd X xd ]'

% Initial Conditions for Missile.

% Initial Conditions for Target.

Rtm(l) = sqrt((xt(l,l)-xm(l,l))^2 + (xt(3,l)-xm(3,l))^2); % First value for Range,

acm = 0.0; % Initial acceleration for the missile.

act = 0.0; % Initial acceleration for the Target.

% Begin the Simulation Loop,

fori = l:kmax-l

% Define angles.

beta = atan2(xt(2,i), xm(4,i)); % Velocity angle for the Target,

gam = atan2(xm(2,i), xm(4,i)); % Velocity angle for the Missile.

sig(l,i) = atan2(xt(l,i)-xm(l,i), xt(3,i)-xm(3,i)); % LOS angle.

sig(2,i) = ((xt(3,i)-xm(3,i))*(xt(2,i)-xm(2,i)) - (xt(l,i)-xm(l,i))...

*(xt(4,i)-xm(4,i)))/Rtm(i)^2;

sig(3,i) = ((xt(3,i)-xm(3,i))*(act*cos(beta)-acm*cos(gam))-...

(xt( 1 ,i)-xm( 1 ,i))*(act*sin(beta)+acm*sin(gam))+...

2*(xt(4,i)-xm(4,i))*(xt(2,i)-xm(2,i)))/Rtm(i)/^2;

sig(3,i) = sig(3,i)+2*(xt(4,i)-xm(4,i)+xt(2,i)-xm(2,i))*sig(2,i)/Rtm(i);

% Acceleration = Max value perpendicular to gamma.

am(i) = N*sign(sig(2,i) + sig(3,i)*abs(sig(3,i))/(2*N));

um(:,i) = [am(i)*cos(gam); -am(i)*sin(gam)];

xm(:,i+l) = Phim*xm(:,i) + Delm*um(:,i);

xt(:,i+l) = Phit*xt(:,i) + Delt*[0;0];
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time(i+l) = time(i) + dt;

Rtm(i+1) = sqrt((xt(l,i+l)-xm(l,i+l))^2 + (xt(3,i+l)-xm(3,i+l))^2);

acm = am(i);

end

% Evaluation of Miss distance,

iflag = 0;

rm = find(Rtm==min(Rtm));

if rm == kmax

iflag =1;

It = rm- 1;

elseif Rtm(rm+ 1 )<Rtm(iTn- 1

)

It = rm;

else

It = rm - 1

;

end

% Index of the niinimum range value.

% Determine whether the crossover occurs

% before or after the min range value.

% Average Velocities in Intercept Area.

Vm = .5*(sqrt(xm(2,It)^2+xm(4,It)^2) + sqrt(xm(2,It+l)^2+xm(4,It+l)^2));

Vt = .5*(sqrt(xt(2,Il)^2+xt(4,It)^2) + sqrt(xt(2,lt+l)^2+xt(4,It+l)^2));

QE = .5*dt*(Vm + Vt); % Quantization Error.

if iflag ==0

r = interp(xm(:,It:It+l),xt(:,It:It+l)); % Interpolated minimum miss distance.

rstr = ['Inter Miss = ' num2str(r) '

ft'];

else

rstr = ['Crossover never reached'];

end

% Plot the output of the simulation with results.

plot(xm(3,:),xm(l,:),'-w',xt(3,:),xt(l,:),'-w')

text(. 15,.85, ['Intercept Time = ' num2str(time(rm)) ' sec'],'sc');

text(.15,.81,['Min. Miss = ' num2str(Rtm(rm)) ' ft'],'sc');

text(.15,.77,['Quan. Err = ' num2str(QE) ' ft'],'sc');

text(.15,.73,rstr,'sc');
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text(.15,.69,['N = •,num2str(N)],'sc');

titleCControl: 2nd Order Switching Laws (sig, sigd)')

xlabeK'Direction 1 (ft)'),ylabel('Direction 2 (ft)')
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4. SIMPRNV.M

% SIMPRNV.M simulation of the missile/target simulation.

% Proportional Navigation Guidance.

% written by Colin R. Cooper

% Define states.

As = [0 1; -64 -16];

Bs = [0; 64];

Am = [0 1 0;0 0;0 1;0 0];

Bm = [0 0;10;0 0;0 1];

At = [0 1 0;0 0;0 1;0 0];

Bt = [0 0;10;0 0;0 1];

Tf = 2.25;

dt = .01;

maxac = 1000.0;

% Estimator for sigma-dot.

% Missile State Equations.

% Target State Equations.

% Simulation Time.

% Sample step size.

% Descretize the states.

[Phis,Dels] = c2d(As,Bs,dt);

[Phim,Delm] = c2d(Am,Bm,dO;

[Phit.Delt] = c2d(At,Bt,dt);

% Estimator System.

% Missile System.

% Target System.

% Create strage vectors.

kmax = Tf/dt-h 1;

xm = zeros(4,kmax);

xt = zeros(4,kmax);

um=zeros(2,kmax);

time = zeros(l,kmax);

Rtm = zeros(l,kmax);

b = zeros(2,kmax);

% xm =
[ y yd X xd ]'

% xt = [ y yd X xd ]'
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xm(:,l) = [0;0;0;2000]; % Missile Initial Conditions.

xt(:,l) = [1000;0;10000;-3000]; % Target Initial Conditions.

Rtm(l) = sqrt((xt(l,l)-xm(l,l)r2 + (xt(3,l)-xm(3,l))^2); % First value for Range.

% Begin simulation loop,

fori = l:kmax-l

Vm = sqrt(xm(2,i)^2 + xm(4,i)^2);

ub(i) = atan2(xt(l,i)-xm(l,i), xt(3,i)-xm(3,i));

b(:,i+l) = Phis*b(:,i) + Dels*ub(i);

gam = atan2(xm(2,i), xm(4,i));

if Vm*b(2,i)<=maxac % Apply Thrust limitation,

am = Vm*b(2,i);

else

am = maxac;

end

um(:,i) = [am*cos(gam); -am*sin(gam)]; % Acceleration is perpendicular to gamma.

xm(:,i+l) = Phim*xm(:,i) + Delm*um(:,i);

xt(:,i+l) = Phit*xt(:,i) + Delt*[0;0];

time(i+l) = time(i) + dt;

Rtm(i+1) = sqrt((xt(l,i+l)-xm(l,i+l))^2 + (xt(3,i+l)-xm(3,i+l))^2);

end

rm = find(Rtm==min(Rtm));

if Rtm(rm+ 1 )<Rtm(rm- 1

)

It =rm;

else

It = rm- 1;

end

r = interp(xm(:,It:It+l),xt(:,It:It+l));

Vm = sqrt(xm(2,It)^2 + xm(4,It)^2);

Vt = sqrt(xt(2,It)^2 + xt(4,It)^2);

QE = .5*dt*sqrt(Vm^2 + Vt^2);

% Index of minimum range value.

% Determin whether crossover occurs

% before or after the min range value.

% Obtain the Interpolated min miss distance

% Quantization Error.

% Plot the output of the simulation.

axis([0 10000 1400]); % Same scale as the Optimal Control Sim.
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plot(xm(3,:),xm(l,:),'-w',xt(3,:),xt(l,:),'-w')

text(. 15, .85, ['Intercept Time = ' num2str(time(rm)) ' sec'],'sc')

text(.15,.81,['Miss distance = ' num2str(Rtm(iTn)) ' ft'],'sc');

text(.15,.77,['Quant Error = ' num2str(QE) ' ft'],'sc');

text(.15,.73,['Inter Error = ' num2str(r) ' ft'],'sc');

text(.15,.69,['Sigma(It) = ' num2str(ub(It)*180/pi) ' deg'],'sc');

text(.15,.65,['Max Ace. Limit = ' num2str(maxac) ' ft/sec^2'],'sc');

title('Control: Proportional Navigation')

xlabeK'Direction 1 (ft)'),ylabel('Direction 2 (ft)');
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5. BB3RDORD.M

% BB3RDORD.M

% This is a simulation of a 3rd order system, forward time.

% This version allows varied N values.

3/7/91

% written by Colin R. Cooper

xlO=-.5;

x20=0;

x30=0;

N=l; % Set the magnitude of the control effort.

% Define initial conditions

Tf=2.5;

dt=.002;

% Set maximum time of simulation.

% Set the simulation step size.

A=[0 10;0 1;0 0];

B=[0 1]';

C=[10 0];

% Define the State Equations

[Phi,Del]=c2d(A,B,dt);

kmax=Tf/dt+l;

% Discretize the system.

% Max integer value for the simulation.

% Prepare storage vectors.

u=zeros(l,kmax);

x=zeros(3,kmax);

y=zeros(l,kmax);

w=zeros(l,kmax);

f=zeros(l,kmax);

time=zeros( 1 ,kmax);
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x(:,l)=[xlO;x20;x30]; % Define initial conditions in state vectors

% Begin loop for simulation,

for (i=l:kmax-l)

w(i)=sign(x(2,i)+x(3,i)*abs(x(3,i))/(2*N)); % Defining the switching law.

f(i)=x(2,i)+w(i)*(x(3,i)^2)/(2*N);

u(l,i)=-N*sign(x(l,i) + (x(3,i)^3)/(3*N^2) + w(i)*x(3,i)*x(2,i)/N +...

f(i)*abs(f(i)/N)^.5);

x(:,i+l) = Phi*x(:,i) +Del*u(l,i); % Calculate the state values.

y(l,i+l) = C*x(:,i+l);

time(i+l)= time(i) + dt; % Store time vector,

end;

% Plot the switching law and its components.

clg, axis([0 2.5-1.5 1.5]);

plot(time,u,time,.75*w,time,f) % w is scaled to distinquish it from u.

title('Control Laws vs Time')

pause

% Plot the 3-Dimensional view of the simulation from 45 deg. azimuth

% and 45 deg. elevation angle. (Pos. xl vector is out of the screen

% and towards the left, Pos. x2 is out of the screen and towards right,

clg, axis;

plot3d(x(l,:),x(2,:),x(3, 0,45,45);
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6. ADJOINT.M

% ADJOINT.M is a simulation of a controlled system using foimard time simulation

% and reverse time or adjoint solution.

% written by Colin R. Cooper 11 Mar. 1991

A = [0 10;0 1;0 0];

B = [00 1]';

C = [10 0];

xl0 = 2;

x20 = 0;

N = 1 ; % Maximum control effort.

Tf = 4;

dt = .005;

tsf = x20/N + sqrt(xlO/N + .5*(x20/N)^2);

tsa = sqrt(xlO/N + .5*(x20/N)^2);

kmax = Tf/dt + 1;

% Define Forward Time State Equations

% xl initial condition.

% x2 initial condition.

% Length of simulation.

% Time increment for simulation.

% Forward Time Switching Time

% Adjoint System Switching Time

% Max length of storage vectors.

% Define the Storage Vectors

X = zeros(3,kmax);

y = zeros(l,kmax);

time = zeros(l,kmax);

imp = zeros(l,kmax);

imp(l) = -N/dt;

imp(round(tsf/dt)+l) = 2*N/dt;

x(l:2,l) = [xl0;x20];

[Phi,del]=c2d(A,B,dt);

% States of the system

% Output state vector

% Impulse vector for control times.

% First pulse at t =

% Second pulse at t = tsf

% Set initial conditions for x.

% Discretize the state equations

for i = 1 :kmax - 1

x(:,i+l) = Phi*x(:,i) + del*imp(i);

y(l,i+l) = C*x(:,i+l);

% Begin the simulation loop

72



time(i+l) = time(i)-Klt;

end

miss = min(sqrt(x(l,:).^2 + x(2,:).^2));

tff = time(find(sqrt(x(l,:).^2 + x(2,:).^2)==

min(sqrt(x(l,:).^2 + x(2,:).^2))));

clg,plot(x(l,:),x(2,:);-w'),grid

title('Forward Time Phase plot')

xlabel('Xl'),ylabel('X2')

text(.6,.80,['min miss = ' num2str(miss)],'sc')

text(.6,.77,['tsf = ' num2str(tsf) ' sec.'],'sc')

text(.6,.74,['tff = ' num2str(tff) ' sec.'],'sc')

pause

% Find the min. miss distance

% Find the time of the min. miss

% Plot the Phase Plane

% Lable the graph and display the desired

% information

% Now for the Adjoint System.

xa = zeros(3,kmax);

time = zeros(l,kmax);

impa = zeros(l,kmax);

impa(l) = N/dt;

impa(round(tsa/dt)+l) = -2*N/dt;

[Phi,del]=c2d(A',C',dt);

% Define storage vectors

% First impulse

% Second impulse

% Discretize the Adjoint System

for i = 1 :kmax - 1 % Begin the simulation loop

xa(:,i+l) = Phi*xa(:,i) + del*impa(i);

ya(l,i+l) = B'*xa(:,i+l);

time(i+l) = time(i) + dt;

end;

missa = min(sqrt((xa(3,:)-xlO).'^2 + (xa(2,:)-x20).^2)); % Find the min. miss distance

% from the initial conditions

tfa = time(fmd(sqrt((xa(3,:)-xlO).^2 + (xa(2,:)-x20).^2)== ... % Find the time of the

min(sqrt((xa(3,:)-xl0).^2 + (xa(2,:)-x20).^2)))); % min miss distance

plot(xa(3,:),-xa(2,:),'-w'),grid

tide('Adjoint Solution Phase plot')

xlabel('X3'),ylabel('X2')

% Plot the Phase Plane

% Label the graph and display the desired

% information.
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text(.6,.8,['min miss = ' num2str(missa)],'sc')

text(.6,.77,['tsa = ' num2str(tsa) ' sec.'],'sc')

text(.6,.74,['tfa = ' num2str(tfa) ' sec.'],'sc')
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7. ADJSIM.M

% ADJSIM.M Adjoint solution to missile intercept problem.

% written by Colin R. Cooper 11 Mar. 1991

n = 4;

V = 5000;

B = [0 00 00 11';

C = [-10 00 10];

Tf= 1;

dt = .01;

% Proportionality Constant

% Closing Velocity

% Define State Matrices

% Set first value for incremented times

% This outer loop runs the complete forward time system for each value of Tf, storing

% the output into vectors at the end of the loop.

forj = l:4

kmax = Tf/dt +1; % Maximum index for storage vectors

imp = zeros(l ,kmax); % Create vector for impulsive input

imp(l) = 1/dt; % Define the pulse at t =

X = zeros(6,kmax); % Create storage vectors for states

y = zeros(l,kmax);

time = zeros(l,kmax);

% Forward Time Simulation,

count = 0;

for i = 1 :kmax - 1

count = count + 1

;

ki = l/(v*(Tf - time(i) + le-12));

A = [0 1

OOn*vOOO

000100

% Counter to indicate the computer is busy

% Begin simulation loop

% 1/Range

% Define the time varying A matrix
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-100*ki 0-100 -20 100*kiO

00000 1

00 00];

Phi = eye(6) -i- A*dt -t- .5*A^2*dt^2; % Discretize the matrix with 2nd order

% expansion - drop higher terms

x(:,i-f-l) = Phi*x(:,i) + B*dt*imp(i);

y(:,i+l) = C*x(:,i+l);

time(i+l) = time(i) + dt;

if count == 50 % Counter indicates computer is busy

dispCworking');

count = 0;

end

end % End simulation loop

Tend(j) = Tf;

yendG) = y(length(y));

eval(['y',num2str(j),' = y;']);

eval(['t',num2str(j),' = time;']);l

Tf = Tf + 1

end

% Record fmal time

% Record corresponding fmal value ymiss

% Save output vector

% Save corresponding time vector

% Increment to next Tf

% End outer forward time loop

% Adjoint Simulation.

Tf = 4.25;

kmax = Tf/dt + 1;

imp = zeros(l,kmax);

imp(l) = 1/dt;

xa = zeros(6,kmax);

ya = zeros(l,kmax);

time = zeros(l,kmax);

count = 0;

for i = 1 :kmax - 1

count = count + 1;

ki = l/(v*(time(i) + le-12));

A = [0 1

% Set a simulation time

% Maximum index for vectors

% Create vector for impulsive input

% Define the impulse at t =

% Create storage vectors

% Begin simulation loop

% 1/Range

% Define the time varying A matrix
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OOn*vOOO

000100
-100*ki 0-100 -20 100*kiO

000001
00 000 0];

Phi = eye(6) + A'*dt + .5*A'^2*dt^2; % Discretize the matrix

xa(:,i+l) = Phi*xa(:,i) + C*dt*imp(i);

ya(:,i-i-l) = B'*xa(:,i-i-l);

time(i-i-l) = time(i) + dt;

if count == 50

dispCworking');

count = 0;

end

end % End adjoint simulation loop

plot(tl,yl,'-w',t2,y2,'-w',t3,y3,'-w',t4,y4,'-w',time,ya,'-w') % plot output

xlabel('Time (sec)'),ylabel('Ymiss (ft)'), grid
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8. INTERP.M

function r = inteq5(xm,xt)

% INTERP.M will return an interpolated value for the min.miss distance given the states

% for the two intercept values.

% Written by Colin R. Cooper 26 Mar 1991

% Increase the sample rate by a factor of 100 in crossover region,

dax = (xm(3,2)-xm(3,l))/100;

day = (xm(l,2)-xm(l,l))/100;

dbx = (xt(3,2)-xt(3,l))/100;

dby = (xt(l,2>xt(l,l))/100;

% Define the storage vectors for 100 data points,

ax = zeros(l,100);

ay = zeros(l,100);

bx = zeros(l,100);

by = zeros(l,100);

% Set initial values for each vector.

ax(l) = xm(3,l);

ay(l) = xm(l,l);

bx(l) = xt(3,l);

by(l) = xt(l,l);

% Assuming a straight line trajectory with constant velocity in the crossover region, create

% the interpolation data sets.

fori= 1:99

ax(i+l) = ax(i) + dax;

ay(i+l) = ay(i) + day;

bx(i+l) = bx(i) + dbx;
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by(i+l) = by(i) + dby;

end

% Find the closest point of approach of the two line segments,

r = min(sqrt((ax - bx).'^2 + (ay - by).'^2));
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9. PLOT3D.M

% PLOT3D is a 3d plotting function allowing rotation and elevation adjustments. The plot

% shows a 3-D curve and its projection onto the X-Y Plane.

% X,Y,and Z data must be passed, and if no azimuth or elevation values are passed

% they default to AZ = 45°, EL = 30°. The Azimuth is the angle of rotation of the view

% angle about the Z-Axis. AZ = 0° is looking straight down the X-Axis at the Y-Z Plane.

% The elevation is the angle from which the plot is viewed. EL = 90° is looking down the

% Z-Axis at the X-Y Plane. The elevation angle can vary from -90° to 90°.

% The tick marks on the axis will default to 10 marks per axis and the values will be

% displayed on the screen. To define the values of the tick marks a three element vector

% must be passed containing [dx dy dz];

% Axis values will be calculated and fixed unless an axis vector is passed to the

% program: [xmin xmax ymin ymax].

% The Transformed 2-D vectors V and Vs are returned, where V is the 3-D curve and

% Vs is the Projection on the X-Y Plane.

%
% Example : [V,Vs] = plot3d(x,y,z,-45,30,dx,Ax)

% written by Colin Cooper 4/26/91

function [V,Vs]=plot3d(x,y,z,az,el,dx,Ax)

if nargin < 5, el = 30; end

if nargin < 4, az = 45; end

az=-az*pi/180; el=el*pi/180;

alpha = 45*pi/180; beta=30*pi/180; % Angles for mapping onto 2D

% alpha = rot. Beta = elv.

Sl=[sin(az) cos(az)

-sin(el)*cos(az) sin(el)*sin(az) cos(el)];

S2=[sin(az) cos(az)

-sin(el)*cos(az) sin(el)*sin(az) 0]; % Trans for Projection.
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[r,c]=size(x);

ifr>l

X = x'; y = y'; z = z';

end

V = Sl*[x;y;z];

Vs = S2*[x;y;z];

if nargin < 6

dx(l) = (max(x)-min(x))/10;

dx(2) = (max(y)-min(y))/10;

dx(3) = (max(z)-min(z))/10;

end

axl = [min(x) max(x); 0; 0];

ax2 = [0 0; min(y) max(y); 0];

ax3 = [0 0; 0; min(z) max(z)];

axlt = [fliplr(0:-dx(l):min(x)) 0:dx(l):max(x)

zeros([0:-dx(l):min(x) 0:dx(l):max(x)])

zeros([0:-dx(l):min(x) 0:dx(l):max(x)])];

ax2t = [zeros([0:-dx(2):min(y) 0:dx(2):max(y)])

fliplr(0:-dx(2):min(y))0:dx(2):max(y)

zeros([0:-dx(2):min(y) 0:dx(2):max(y)])];

ax3t = [zeros([0:-dx(3):min(z) 0:dx(3):max(z)])

zeros([0:-dx(3):min(z)0:dx(3):max(z)])

fliplr(0:-dx(3):min(z))0:dx(3):max(z)];

axl = Sl*axl;

ax2 = Sl*ax2;

ax3 = Sl*ax3;

axlt = Sl*axlt;

ax2t = Sl*ax2t;
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ax3t = Sl*ax3t;

minx = min([V(l,:) Vs(l,:) axl(l,:) ax2(l,:) ax3(l,:)]);

if minx == 0, minx = -
1 ; end

maxx = max([V(l,:) Vs(l,:) axl(l,:) ax2(l,:) ax3(l,:)]);

if maxx == 0, maxx = 1 ; end

miny = min([V(2,:) Vs(2,:) axl(2,:) ax2(2,:) ax3(2,:)]);

if miny == 0, miny = -
1 ; end

maxy = max([V(2,:) Vs(2,:) axl(2,:) ax2(2,:) ax3(2,:)]);

if maxy == 0, maxy = 1 ; end

clg

axis('square');

if nargin < 7,

axis([minx-.3*abs(minx) maxx+.3*abs(maxx) miny-.3*abs(miny)

maxy+.3*abs(maxy)]);

else

axis(Ax);

end

b = axis;

hold on

plot(axl(l,:),axl(2,:),'-w',axlt(l,:),axlt(2,:),'+w',...

ax2(l,:),ax2(2,:),'-w',ax2t(l,:),ax2t(2,:),'+w',...

ax3(l,:),ax3(2,:),'-w',ax3t(l,:),ax3t(2,:),'+w')

Iv = length(V);

plot(V(l,:),V(2,:);-w',Vs(l,:),Vs(2,:),'-w',...

[V(l,l:15:lv);Vs(l,l:15:lv)],[V(2,l:15:lv);Vs(2,l:15:lv)],':w')

plot([b(l) b(2) b(2) b(l) b(l)],[b(3) b(3) b(4) b(4) b(3)];-w');

hold off

text(.22,.08,['AZ = ' num2str(-az*180/pi) '°'],'sc');

text(.72,.08,['EL = ' num2str(el*180/pi) '°'],'sc');

text(.22,.88,['dx = ' num2str(dx(l)) ],'sc');

text(.50,.88,['dy = ' num2str(dx(2)) J/sc');

text(.72,.88,['dz = ' num2str(dx(3)) ],'sc');
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