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I. 1 .Introduction 

The move m e nt of combat units and support elements from bases i n 

t he United States t o a combat area overseas requi r e s t he utili zation of s carce 

transportati on resources. A movem ent plan is a tentative allo ca tion of 

resour ce s t o ea ch shipm ent in the deploying force . Its value lies in t he 

fact t hat it provides decision makers with a guide for i ssui ng move m ent 

o r ders for units, supplies , and transportation resources. Note that t he 

movement plan is a s imulation of a potential deployment. It does not have 

t he authority of a movem ent order and i t i s used p rimarily t o tes t t h e feas i ­

b ility of p r oviding t h e required transpo rtation resources in suppo rt of an 

area contingen cy plan21 

The m ilita r y effective ne ss of a deploying force is d ependent upon t he 

ind ividual units which comprise t he force and the rate and sequence of 

arrivals of t hese unit s in the combat t h eater. The process of determ in ing 

how t h e i ndividu al units of a moveme nt plan are t o be shipped i s known as 

routing a nd scheduling. Thus, t h e m ilita ry effectiven ess of a deploym e nt i s 

dependent upon the routi ng and s cheduling process . 

Routing and s cheduling of individual shipments is t h e c ore of all 

strategic mobility p r obl e ms. At t h e m os t detailed level of a nalys i s, a c om ­

plete movem e nt s c hedule is generated for each unit in the d eploying force. 

T h is s chedul e follows t he shipment from it s o ri gin th r ough the ports of 

e mbarkation (POE) and d ebarkation (POD) to the combat zone . (See F i g. l, 1) 

.It i n cludes such i nf or mation as mode of transportation on each link, t ime over 

each link, tim e th rough each terminal, the shipment's r outing, a nd t he 

s pecific veh icle o r vehicles assi gned t o each unit. 2 

In contrast, even the most general analysis of capa b ilitie s requ ires 

c onsideration of t h e r outing and sch e duling problem. For example, a basic 

single resou rce model might b e described as having a 10 00 short t on per 

day capability. The r outing and scheduling p r ocess is i mplicit in t h i s 
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fi gure because assumptions about types of a i r craft , op erating policies, 

turn - around tim es , and crew availabilities mus t b e m ade . 3 

R outing a nd s ch eduli ng is trad itionally done under a n assumed set of 

operating conditions. The movem ent p l an is ge nerated assumi ng t hat a i r 

s uperi ority will o r w i ll not b e m aintain ed, t hat e it her good or b a d weath er 

wi ll b e e n countered, o r t hat ea ch po rt will have a specific capability. The 

assumptions m ay b e usefu l in simulating what t h e p lanne r can expe ct at th e 

very least o r, if h is assumpti ons are optim istic, at t h e very b est; but t hi s 

p r o cedu r e clearly lim its the deci s i on maker's a bility t o adj ust t o cha nges 

i n t he deploym e nt var ia bles. For i nstan c e, i s sues s u ch as t he pol itical 

atmosphere surroundi ng a d ep l oyme nt, variations in warni ng tim e, a nd 

c oncu r rent m ilitary operations make it unlikely t hat any set of assumptions 

will accu rately describ e a particu lar deploym ent. 

The traditional procedure i s c onvenient b e cause it allows p lanners 

t o mode l t he proble m a nd it lea ds t o a feas ib l e movement plan under t he 

assumptions. Thi s app roach i s inadequate for two reasons. F irs , 

clo s ure tim e s today are m easu re d i n hours or days rath er than week s a nd 

mont hs. Any unfo reseen delay represents a potent ia l roadb lock t hat ca nnot 

b e d e oured by t h ree o r four days of ext ra travel t im e. Suc h a delay coul d 

s eriously decrease t h e effectiveness of th e e n tire deployment . Every 

effo rt must b e made t o detect critical areas of t he deployme nt s o as not 

t o stall t h e e ntire deploym e nt . 

The second reason w hy t h e traditional approa ch is not adequate by 

t oday's standards is t hat it lim it s t h e decis i on maker 's flex ibility . A s soon 

as h e a ssumes a condition under whi ch th e d e ployment w ill o ccu r, h e has 

committed h imself to a s et cou rse of a ction. It would be much more 

realisti c t o give t h e p la nne r a t ool t hat allows h im con s iderable free dom 

i n t h e choi ce of move m ent plan s a nd offers th e n eeded flexib ility to d ea l 

wi h unexpected o ccu rren ces. The obj ectives of t h is work a re t o de v elop 
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a p rototyp e operational t ool wh i ch gives the p lanner the n eed e d flexib ility 

i n movem ent p l anning, and t o pre sent a fram ew o r k fo r choice among 

a lternative mov em ent pl ans i n view of t he complex goal s tru ctu re of t he 

dep l oym e nt p r ob lem. B efo re w e can consider t hes e obj ectives in more 

deta il , it i s necessary t o fu rther defin e t he r outing a nd s ch e duling problem 

by i de ntify i n g t h e criter ia for movem e nt p l anning . 

. L 2 Criteria fo r Movem ent P lanni ng 

T h e p rim ary objectiv e of d eploying a m ilitary f o rce i s t o m a xim i ze 

t he Comma nder- in -€h ief ' s ~C.INC) ab ility t o wage war. T here i s , however, 

no s ingle , d irect measu re of t he m ilitary effectiveness of a de p l oy ing fo r ce . 

In o r der t o clarify t h i s poi nt, let u s consi der t h e rout i ng a nd s c hedulin g 

p r oblem t hat p recedes t h e movem ent of each unit of t h e d ep l oyme nt . 

T he ove rall goal, as s t at ed above , i s to m axim i z e t he m ilita ry 

effectiv e n ess of t h e d ep l oy i ng f orce. But m ilitary effect ive n ess i s a m a ny 

facete d m easu re. .If we defin e "maxim ize m ilitary effectiv e nes s " as t h e 

overall goal for each s hipme nt of the deploym ent, t he n we ca n use t h e 

tree-like stru ctu re of F i g. 1. 2 t o grap hically p resent t h e relationships 

among t h e goal varia b les . 4 

F i gure 1. 2 s hows t hat t h e ass i gnme nt effect i vene ss of transpo rta ·ion 

res ources t o a s hipm e nt is composed of tw o part s. F irs t , t he exp ected l oss 

of effectiven es s in ot her s h ipm ents due t o t h e assi gnm e nt of t h e resource , 

and second, t he expected m ilitary effectiveness of t he s h ipment . The l oss 

of effectiveness ca n b e expressed at a mo re detailed level as: 1) t h e added 

vul n erab ility due t o concentration simply b eca u s e t he ass i gnme nt of t he 

resource m ay ca u se a ggre gation o r con centration of unit s in a particula r 

a rea , a nd 2 ) t he l oss of poten ial transportation capability due t o the as s i gn ­

m e nt of t h e resou rce fo r a fixed e r i od of tim e . 
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The valu e of lost resources dep e nds upon how t hos e resources woul d 

b e u sed. At level 4 in Figure 1. 2 it is shown that t h e m ilita ry effect ive ne ss 

of t he dep loying force is sacrificed if t h e transportation resources c oul d b e 

used to move s h ipme nts which make up th e for ce . Even if t he resou rces 

were n ot us ed t o move units of t he dep loying force, there woul d still be a 

l oss of effectiveness due to t h e sacrifice of essential service such as t h e 

movem ent of ret r ograde cargo o r evacuees. 

T u r ni ng now t o t he b e nefit side of the goal s tru ctu re, it i s shown t ha t 

t he goal of expected m ilitary effectiven ess of the s h ipment is composed of 

fou r goals at level 3. The goal certainty of arrival of th e s h ipment on 

sch edule i s t he p redictability of s u ch o c cur rences as weather delays and 

delays due to excessive handling i n congested term inals, and the vulner ­

a bility of t h e shipment t o e n em y action, sabotage, or accide nt . 

T h e second goal a t level 3 of t he benefit s i de i s m axim iz i ng th e va lu e 

of m oving a pa r ticular unit a t a particular tim e. The maximum effe ctiv e­

ness w ould o ccu r by p la cing eve r y unit at its destination at exactly t h e 

tim e required b y t he CINC. Si nce t h i s is seldom poss ib le, t he planner 

attempts t o c oordinate each s h ipment's arrival with that of the oth er units 

i n t he for ce . For in stan ce , it woul d b e improp er p lanning to sche dule an 

armored batt alion fo r arrival i f mai ntenan ce units and fu el s hipme nts 

could not b e sche dule d as support elem ents. 

Unit effectiveness is t he next goal at l evel 3 and is composed of tw o 

goals a t level 4. The first goal at level 4, unit i ntegrity, i s i nten ded t o 

reflect t hos e conditi ons wh ere t he command structure of a unit i s fragm ented 

i n shipme nt o r where the matchup of personnel a nd cargo is not p r operly 

c oor dinated. The ideal situati on would be to have each unit travel i n one 

vehicle o r group of v e hicles w it h its command structu re i nta ct. Sin ce t hi s 

is n ot always p o ssible , a small i nte g r al unit s houl d b e identified (su c h as 

a company) and every effort made to route it intact and coo rdinate t h e 
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mat chup b etween pass engers and cargo. The s econd goal at level 4 i s 

t he tim e spent in t ransit•.: Ea ch day a unit spends in transit away from its 

normal train ing routine reduces the effectiveness of the unit. 

The fou rth goal at level 3 is flexibility. Since a deployment o ccurs 

in a dynamic atmosphere, it i s to the CINC's advantage to b e able t o a lter 

the deployment a t any time in r esponse to a shift in the m ilitary t h reat. 

For instance, assume a particular unit is scheduled for arrival on D+2 0 

and is routed via sea on D+12 for an ei ght day ocean transit. If the CINC 

should require t h e unit any time during those eight days i n response to a 

shift in t h e m ilitary situation, t he unit could not be delivered b ecaus e it 

i s at sea. However, if the unit had originally been s cheduled to depa rt by 

a ir on D+18 to arrive on D+20, then the CINC 's need for the unit to c ombat 

t he new threat cou ld have been met. 

Based upon t he above cons iderations, three conclusions can b e made 

concerning the routi ng and scheduling problem. First, the assignme nt of 

scarce transpo rtation resource s t o a unit of a deploying force is not deter ­

m i n ed by c onsidering only a single measure of effectiveness. In fa ct, not 

only are t here many variable s to consider, but each i s d epende nt to some 

e xtent upon t he othe rs. Second, t he problem is further compounded becaus e 

many of t he goals are not easily quantified. Consider the problem of evalu ­

a ting the effect iveness of a transportation resource in its next best 

assignme nt. In t h e commercial m a r ke t , competitive p ricing a nd r ate 

r egulation comb in e to determ i ne ma r k et prices for transportation 

r e sources . However, in the d ep l oyment s ituation where values m ay 

s hift dramatically as th e m ilitary situation changes, no effective m eans 

of p lacing values on t h e resources use d for a shipment exists. 5 The t h ird 

c on clu s i on we can draw con cerns t h e effectiveness of the deployment a s a 

wh ol e. Sin c e each shipme nt of t h e dep l oying force i s subje ct to the many 

considerations of t he goal structure of F i gure 1. 2, then it follows t hat t he 
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effectiveness of t he movement plan as a whole is depende nt t o some d e gree 

on t hese same variables. I n ot her words, t he m ilitary effectiveness of a 

movem ent p lan cannot b e expre ss ed as a function of one varia b le o r g r oup 

of qua ntifiabl e variables. It is a vector of related variables . Ea c h goa l 

v ector elem e nt and each combi nation of t he elem e nts must b e c ons i d ered 

b efore t he m ilitary effectiven ess of a movement pla n can be determ in ed . 

I. 3 Alternative M easu res of Effective ness 

The p receding section has shown that t he grea t difficulty in e s t ab ­

lishing a m easure of effectiven ess for a d eployment is our i nability t o 

a ccurately quantify t h e vari ous goal elem ents and t o clarify their i ntera ctio n 

In order t o model t he p r oble m , planners have traditionally accepted t he vi ew 

t hat s ome measure of t he closure time of a deployme nt i s the most c ritical 

compone nt of t h e goal vector. 6 Thi s approach i s comfo rtab le a nd , t hrou gh 

various a nalytic or hueri stic techni ques, p r oduces feas ib le movem e n t 

plan s. 

The ob jective i n s u ch an appr oa ch i s most likely t o be that of m ini­

m i z ing d e p l oyment closu re tim e (delive ring t he entire force pa ckage t o t he 

CINC i n t he shortest possib le tim e ). There are ot her related mea s u re s of 

closure tim e. A very interesting app r oach is take n by Gr oninger 7 w he re 

h e develops t he concept of t h e "tim e weighted tonnage delivere d " as a 

s ingle m eas u re of effective ness. He us es th e f o llowi ng wei ghting fun cti on 

t o weigh early arri vals i nt o t h e t h eater heavier t ha n later a rri vals: 

where 

T 
v = ( 1 + i)t 

v i s t h e wei ghted valu e of T t ons delive r e d 

on day D + t. 

T is t he number of s hort t ons delivere d. 

- 14 -
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t i s t h e tim e after D day that t he shipment arri ves 
in t h e t heater. 

i i s t h e discounting facto r, O<i <1 , and no r m ally, 

. 01 < i <. 10. 

A wei ghting fun ction of t hi s typ e says t hat it i s not only what unit s ar r ive 

i n t he t heater but how soon t hey get t here t ha t d eterm i nes t h e effect ive­

n e ss of t h e d eployment. An armored battalion a rriving on D + 3 is a 

grea ter asset t o t h e C.INC 's abiliity t o wage war t ha n the sam e unit 

arrivi ng on D+ 10. 

Si n ce t h e ba s i s f o r t h e tim e weighte d t onnage d elivered fa cto r 

(T W T D ) i s t h e tim e elem ent of the goal vecto r , it i s s ubject to th e 

criticis ms made earlier concern i ng th e u se of a single m easure of effe c­

tiveness . .In fact , if two movem e nt plans have n ea r ly e qual T WT D 's, 

t here i s no gua rantee t hat t he effecti ven e ss of one p lan w i ll b e greater 

t han t h e effectiv en ess of t h e ot her p l a n. T he value of t h i s m ea s u rem ent 

i s b est appr e ciated w he n alternative plans have greatly differe nt T WTD !s. 

The most effective p lan will have a TWTD that t h e exp eri e n ced pl a nne r 

i s a bl e t o id e ntify as significa ntly grea ter than t he a lterna tive. .In t h i s 

case , t he pl a n with t h e s m a ller T WTD p r oba b ly need not b e evalua ted in 

term s of t he ot h er goal s . 

.In s ummary, we can con clude t hat it i s p r obably true t hat some fo r m 

of clo s u re tim e m easu re i s th e most s i gnificant elem e nt of t he goal v ector . 

Any plan wit h a clo s u re t im e m easu re signifi ca n tly less t han optim a l need 

not b e e aluated i n terms of t h e ot her variab les . The difficulty a ris es 

whe n two or more feas ib le plans have n early equal clo s u re tim e m easu res 

t ha t are n early optimal. In t his case, t he ent ire range of t he goa l v ecto r 

m u st b e cons idered, ea ch plan must b e evaluated, and t h e trade- offs be­

tween t he multip le criteria noted. Only after a ll of t h e goal s have b een 

i den tified can a ri gor ou s choi ce p r o cedure b e applied . 
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.I. 4 Movement P lanning Cons i derat i ons 

The preceding sections have e s tablished t h e n e c e ss ity fo r cons i dering 

a com plex s et of goal va riable s whe n attempting t o evaluat e t h e m ilitary 

eff e ctiven ess of a deployment. The obj ect ives of t h is s e cti on a re to define 

each goal variable in more detail and t o develop a greate r apprecia tion 

of t he int e ra ctions t hat must be cons idered. 

T h e goal structure for movement planni ng i s shown i n F i gu re 1. 3. 

(Th e a ctu a l m echani cs of de ciding exactly w hat vari abl e s s houl d b e i n ­

clu ded in t h e goal s t r u ctu re will b e des c r ib e d in Chapte d iU) } 

T h e goal of vulnerabil ity reflects t h e delays a deploym ent ca n e n ­

c ounter b ecause of congestion , e nemy action, sabotage, accide nt, or 

weather. The p lanner must continually monit o r term i na l fa cil i t i e s a nd 

shipment fl ows so that capa cities a re not exceeded. If t here i s a possi­

b ilit y t ha t a term inal o r link capa city m ay be exceede d , t he n ca re m u st b e 

e xercis e d t o ensur e t hat not a ll of t h e units of a particular t yp e a r e s cheduled 

via t h e r oute of possibl e congestion. For ins tan ce, i f two a r mored units a r e 

r e quired by t he CINC , it i s preferab le t o s chedul e them over two different 

r out e s . .If t hey are bot h s cheduled t h r ough t h e sam e te r m i na·l , and t hat 

t e r m inal becomes hopelessly congested, t hen t h e CIN C w ill receiv e n o 

armor e d support. If, however, one unit w.a~se sch e dul ed t h rough anot he r 

term ina l, t h e n the CINC woul d recei ve half of t h e n eeded armo red suppo rt 

on tim e . The important poi nt is t hat t he units that compri s e a s ingl e 

p hase of t he CINC ' s capabil ity (armored, fire suppo r t , i n fa nt r y ) s hou ld 

not b e s c h edul ed over a single netwo r k pat h. A delay a nywh er e a l on g t ha t 

path woul d delay an e nti re phase of t he CINC ' s war maki n g capab ility . Thi s 

aspect of vu lnerab ility i s impo rtant b e caus e som e units may requ · re sp ecia l 

t e r m ina l cha r acteristi cs not common to a ll t h e te r m i nal c hoices ope n t o t h e 

p lanner. An example m ay b e heavy duty c ran es to sp e ed the l oadi ng of a n 
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armored battalion. If the re are four poss ible POE ' s and only one of t he m 

has th e h e avy duty capacity, (but ea c h POE could handle t he armo r e d uni" 

w ith s maller e quipme nt in a l onge r time peri od ) th e n t he u nwa r y p lanne r 

may s c he dule all of t he neede d armored unit s through th e h eavy duty POE 

i n o r de r to shorten deploym ent closure time. Howeve r , we have s een t hat 

a ny conge sti on of this POE will reduce the chances of th e s e unit s arr ivi ng 

on t im e . The congestion coul d be caused by many fa ct ors such as poor 

s ch e duling p r actices, reduction of port capa city du e t o e n em y action, 

adverse weather conditions , s abota ge, o r a c ombination of a ll of t hese 

fa ctors. Regardless of the cause, t he planne r must c ons i der t he possi ­

bility of delay and att e mpt to d eterm ine how mu c h it woul d c os t in clo s u re 

tim e m easure to ship part of the armored units t hrough one (o r more ) of 

t he POE's l ess ideally equipped. 

Anot her closely related consideration is the pos s ib ility that un its m a y 

be lost i n transit due to weat h e r or e n e m y action. Let u s a s s ume t he CINC 

e xp r e sses a requirement for two infant ry bri gades , one of t he two t o be a 

regula r i nfantry brigade for defense a nd o ccupa tion, and th e ot her a 

m echaniz ed b rigade t o b e used a s part of a st rik e fo rce. If t h e planne r 

sch e dule s each unit t o move as an e nt ity, t he n t h e CINC will lose s ome 

phase of h is capability if e i t he r unit is de laye d or d est r oyed. T ha t i s, 

as s ume t h e me c ha nized i nfantry b rigade i s sche dule d to move by c onvoy 

f r om port A to port B. If t he convoy encounters he avy w eathe r o r e n em y 

forces, t h e CINC' s strike capability woul d b e se riously weake n ed. 

It i s possible , t hough, to s hip th e unit s in combi nation, one - half 

b ri gade of infa nt ry a nd one-half b ri gade of m e chani ze d i nfa ntry t o ea ch 

s hipment . Then, i f one s h ipm ent is de layed, t h e CINC s till reta ' n bot h 

t he occupat i on and strike capab iliti es (to a more limited extent} . On ce 

agai n, the vu ln e rability of t he deployme nt ha s b een de crea sed and t h e 

p a nner must decide wha t it cost in t e r ms of t he ot h er goals. For in s a n ce, 
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closure tim e would probably increase b ecaus e one- half of each unit would 

be r outed to a different POE from t he other half of the unit. Also, unit 

i nte grity is obvi ously sacrificed as the b rigades are phys ica lly s epar a ted 

during the deployment and unit i nte grity is m aintain ed only a t a lower 

level. 

The s econd goal variable of F i gure 1. 3 i s deployment flexib ility. 

Thi s goal is intended to model the uncertainty s urrounding any m ilitary 

ope ration due to limited intelli ge n ce concerning the e nemy's ca pa b ilitie s . 

As an example, assume that i ntelli gence reports indicate a poten tial 

e ne m y to have no strong defensive lines in a potential crises area . On t he 

s trength of this information, the CINC may decide t hat h e w ill not ne ed 

a r mored unit s in the early stages of the deployment. L et u s say t he mo e­

m ent p lanner sche dules t he unit to depart on D+ 10 via ship and arriv e i n 

t he theate r on D + 2 0. 

If the C.INC finds that op D + 11 h e has e nc ountered a s trong poi nt 

in the en emy's lines, he w ould want t h e armore d equipme nt imme di a tely 

t o car ry the en e m y's defenses. But since th e unit i s at sea, t h e CINC 

coul d expect t o receive it no earlier tha n D + 20. His campaign w oul d b e 

delayed n ine days (from D+11 t o D+2 0) in front of t he en e my's lin es. If, 

however, t h e arm ored unit was sch eduled to depart v ia a ir on D+ 18 and 

arrive on D+ 20, then the C.INC could have request e d it w he n h e e n coun­

tered t he un exp ected defen ses on D+ 11 a nd r eceived the needed capa ­

b ility by D + 14 or D+ 15. His attack w ould b e stalled only t h r ee o r four 

days . Clearly, flexib ility i n a m ovem e nt plan i s greatly desired. Here 

agai n, th e movem e nt p lanner must decide how much flexibility costs in 

terms of the other goals . 

By sch eduling a re latively h eavy unit lik e a n arm ored battalion t o 

scarce a ir resources, t h e planner will require many a irc raft simply to 

complete th e one shipme nt. Ot h er units may b e for ced to find other 
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modes of tranpsort ation with t he end result that closure time will be 

a ffected. Vulnerability will also be affected to some degree because 

other unit s may have to be combine d and shipped over r outes that are not 

t he most favorable . This i ncreas es the chan ces of de lay due t o term inal 

a nd link congestion. Only by considering these var iables in thei r inter­

dep endent role can the planner decide if t he goal of fl exib ility i s wor th 

a chieving for any particula r unit of t he deployment pa cka ge. 

The thi rd element of the goal tree of Figur e 1. 3 is unit effective­

ness. Unit effectiveness i s pe r haps the most easily recognized of t he 

goals cons ide r ed. Mi lita ry effectiveness is sacrificed ea ch day a unit 

i s away from it s t raining base in a trans it status. Al s o, the more f r ag­

m ented a unit is in shipment, t he more tim e will be require d .to .. re - or gani ze 

a nd matchup personnel a nd equipment at its destination. Unit effe ctivenes s 

i s optim i z ed by completing a shipment in as s ho rt a t im e as pos s ibl e 

utilizing vehicle s that m a intain as nearly a s possib le t he un 't comma nd 

s tru cture . 

As with a ll the el em ents of the goal ve ctor , i t i s not a lways possible 

to achiev e m aximum unit effectiveness in r outing a nd s cheduling. F or 

example, a divi s ion of troops would ideal y b e t ranspo rted by a i r f r om its 

hom e base t o its theater de stination. However, it i s ofte n not pos s ibl e 

t o a ir- lift t he logistic r equirem ents of an ent ire division of m en s imply 

becaus e t he number of a ircraft required exce eds the m aximum ava ilable . 

Thus , it may b e ne cessary to decr ea se unit effect iveness by r outing s ome 

elements of t he division by sea, a nd by do ing so increase clos u r e tim e. 

Also, by r outing pa r t of t he divi s ion by ai r and part by s ea, the planner 

has dispe rse d the unit over tim e and space so t hat t he vul nerab ility of th e 

divi s ion has been decreased. In thi s example , one be gins t o s ee the com­

plex natu re of the goal st r u ctu r e . 
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Just as it is in error to assume only clos u re tim e as a meas u re of 

effectiveness, it is e qually s o t o assume m erely that each goal of th e goal 

vector must b e considered in turn. The goal vecto r is mor e a goal fab r ic. 

Va riations i n each element can only b e m e a s u re d by observing how that 

elem e nt causes t h e others t o vary. The fabric is i nter-woven a n d a 

deform ation at one lo cation must p r odu ce a cha nge at ev e ry location. 

I . 5 The Concept of Partial O rde ring 

I. 5. 1 Introducti on 

In t h e p receding se ct i on t h e complexities of t h e goal vect or 

were more fully develop ed. It was shown that w he n alternat iv e 

movem ent p lans have relatively equal clo s u r e tim es , t he entire 

range of the goal vector must b e evaluated b efore t h e cho ice p r ocess 

can be applied and t h e b e st plan selected . 

.In Chapters II a nd .III, t he evaluation and choice p r o cesses 

will be p r e sented i n som e deta il. T he evaluation p r ocess i s based 

upon a linea r p r ogrammi ng model of t h e r outing and s che duling 

problem. The input t o t his model can b e g r aphically rep re s ented 

by a n e twork fo r mulation of t h e mov em ent p lan; and t h e netw or k 

is c onstru cted by considering a partially ordered set of requ ·re­

m ents fu r nished by t h e CIN C. Since this p r o ce dure is a depart u re 

f r om t he CINC's traditional m ethod of p resenting h i s requirem ent s, 

i t i s n ecessary to consi der t he partially o r dere d sequ e nce of arriva l s 

con cep t b efore p r oceedin g to t he models based upon it. 

I. 5. 2 P artial O rdering 

Si n ce the optimum sequen ce of arr ival of units int o t he com­

b at area i s d ep e ndent upon t he ar rival rate , t he CINC cannot specify 

a single b est arrival sequ e nce wh en sta ting h · s n eed for trans or­

tation r e sources unless t he arrival rate i s known. Th e cu rrent 
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p r o cedure i s for the CINC t o assume the arrival rate will b e as 

p redicted in certain planning documents and develop a sequenced 

troop list based upon t he p redicted build - up rate. T h i s sequen ce of 

arrivals in clud e s each requi rement i dentified by the CINC as n eces­

sary t o t he operation and states t he exact s e quence in which th e 

CINC desires these units to arrive i n t he combat t h eater. The trans­

port a tion planne rs must m eet t he de mand of t hi s fu lly or dered se­

quence of ar rivals. If the build-up rate p red iction s are a ccu rate, 

a nd if unit availab ility i s unrestricted, then t he m ilitary effective­

n ess of the d eployment w ill be a m aximum. 

Issues such as the political atmosphere sur r oundi ng th e 

d ep l oy ment, varia tions i n warning tim e, and con current m ilitary 

operati ons make it extrem ely unlikely t hat t h e CINC will be able t o 

a ccu rately predi ct t h e arri val rate. As a result, t he troop list m ay 

b e i mp r operly seque n ced. Furthermo re, s p ecifica tion of a fixed 

sequ e n ce of a rrivals leaves t h e transportation planners little flexi­

b ility. Transportation and unit availab ility constraints can delay 

t he arrival of specifi c units but should not delay th e overall flow rate. 

In order to overcome the se diffic,ulties, the partially ordered s equence 

of arrivals has been propos ed as a new app r oach to t h e rout i ng a nd 

scheduling p r oblem. 8 

Instead of b ein g bound by t h e ri gid de m a nd of a fixed se­

quenc e of arrivals based upon an assumed build - up r ate, t h e CINC 

i s asked to take t h e more flexibl e a pproa ch of express ing a pair­

wi se. preference over k ey unit s of h i s requ irem e nts list . Thus, 

i nst ead of forward i ng a fixe d list of a rrivals t o t he planners, t h e 

CI NC forwards a partially ordered list indicating t h e sequ e n ce in 

which he would p refe r particular units t o arrive . T h e combination 

of t he partial ordering and un it availab ility results in a scheduling 
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network suc h as t hat shown in F i gure 1. 4. Note t hat in t he fi gure, 

(A < B ) m eans that t h e C.INC p r efers A to arrive b efo r e B arrive s 

and that (E < F ) indi cates t he CIN C's desire for Unit E b efore Unit B ..... . 

The p referen ce orderings show n i n F i gu re 1. 4 m i ght represe nt 

the follow ing strategy t o t h e CINC . At t h e outb reak of hostilities, h e 

moves in t h e air-bor n e infantry b ecaus·e ,.they are i n a hi gh s tate of 

readin e ss and can b e deployed imme diate ly. At the sam e tim e , t h e 

e ngine e rs and terminal s e rvice p e ople a re deploye d t o ready po rt and 

a ir fa cilities. After some delay, o( 1 , t h e fa cilities are ready to 

r eceiv e m echani z ed support groups . A fter ( o( 1 11- c::.l... 2} days , the 

e ngi ne e rs have t he fa c iliti es ready to receiv e t h e h eavy equ ipment. 

At thi s point t he CINC desires re gular i nfantry to gain a st r ong 

position, and then requi res armo red a nd m echanized units t o b e g ·n 

t he offen s ive. The p receding example , as s i m ple as it m ay b e , is 

d e s i gne d t o b ring out s ome of t he kinds of s t rategic c ons i dera tions 

wh ich m i ght b e inv olved in determ in ing t h e p recedence relati.ons 

among for ce units for a particular deployment . 

L et us cons ider for a m om e nt t h e set of seven el e m e nt s 

(A, B, C , D, E, F , G) of F i gure 1. 4. T h ere are 7! = 5040 dif­

ferent fixed orderings fo r t his set . If we cons i der t h e p refe r e n ce 

o r derings exp ressed by the CI NC over t his seven e l em-tent s et, th e n 

t here are som ewha t less than 504 0 feasib le orde r ings . In fact, t h e 

f easible orderings (those which satisfy the c onstrai nts of t he pair­

wis e p r efere nces made by t he CINC) have been r educed t o twelve: 

A A A A A A A A A A A A 
B c B B B B B c c c c c 
c B c c c c c B B B B B 
E E D D E D E E D E D D 
D D E E F G D D G F E E 
F F F G D E G G E D G F 
G G G F G F F F F G F G 
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PAIR- 'w'asf' hE"FERENC~.S 

A < e D < G 
A < G E < F 

B L.. E c <: E 

8 < D C ~ D 
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a nd th e s e fe a s ib le or derings a re best illu s t rated by t h e n etwo r k of 

F i gur e 1. 4 . Not e t hat t h e d irected a r cs represent t h e ele m en s of 

t he set a nd t hat t hey i nte r conn ect in su ch a way t ha t t h e CINC' s p re­

ced en ce r e l a tion s a re satis fie d a t t he n odes . 9 

Investiga tion of t h e netwo r k y iel ds two i mpo rtant re s ult s. 

F irst, t he tra n s portation p l a nn e r s a r e not re strict e d t o a s i ngl e fixed 

sequ e n ce of a r r ival s . Second, t h e sch e du ling n etvJ o r k a i ds i n i de nt i­

fyi n g t he lim ited numbe r of fe a sib le move m e nt p lan s t hat must b e co n ­

s idered . The p r oblem ha s now b ecom e on e of evaluat "on a nd c ho-"ce 

f or t h e tran s po r ta t ion p la nners. They must d ecide which of t h e a lter­

nativ e movement p lan s will yield t h e m a ximum m ilita ry effe ctive n e s. 

Chapte r II will p res ent th e eval uation p r o cess i n som e detail 

based upon t he c onside rations of t he co m plex goal stru cture de e l o e d. 

i n Cha pter I. Chapte r HI will t h e n b e add ressed t o th e p r ob lem of 

choice . 
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Chapter .II 

Movem ent P lan Evaluation 
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.II. 1 I ntroduction 

The n etwo r k fo r mula tion of t h e r outing a n d s c hedu ling p r obl e m ca n b e 

adapted t o tw o gen eral t ypes of technique s , t h e hueristic models base d upon 

critical pat h techni qu es a nd t h e a nalytic approa ches su ch a s lin ear p r o­

g ramming. T h e objectiv e s of Se ct i on II . 2 are t o ou tl ine t he vari ous eval­

uation m ode ls c onsid ered for solution t o t h e r outin g and s ch eduling p r ob lem , 

a nd t o p r esent t he reasons why t h e line ar p r ogramm' ng model i s c on s i d ered 

t o b e t he best a pp r oa c h t o t h e proble m . 

In Se ction II . 3 t he deta iled lin ear p r ogrammi ng model will b e 

developed us ing m i ni mum closure tim e a s t h e objecti e fun ction. In 

Section .II. 4 t he input data of t h e l 'n ear progr a mmi ng p r oblem will b e 

modified variously t o reflect the complexities of t h e goal vecto r d e scrib ed 

i n Chapter .I. The objectives of Section H . 4 a re to dete r m i n e t he trade- offs 

i m p lied by evalua ting a mov e m ent plan over t he e ntire range of t h e goal 

vector a nd t o p r odu ce alte r na tive movem ent p la n s based upon t ho s e 

trade - offs . 

11. 2 C r itical Pat h T ech ni ques 

In t he mo st common ers i on (tim e- only) of t h e PERT / Critical P ath 

M ethod s ch e duling p r ob lem , a p r oject is repres ented by a n etwo r k of 

p receden ce c onstrain ed a ct ivities a nd e e nts . The critical p t h t h r ough 

t he netwo r k i s f ound s olely f r om t he compone nt tem p o r al r ela tions , with ­

out re gard t o resource requirem ent , a nd a n initial schedule i s set f o r 

each activity t o a c hieve a given p r oject com pletion date. 

At t hi s point, t h e question of r e ources must be considered. If t h e 

resources availa b le must b e c onstrain ed t o certain lim its , 't m ay b e t hat 

t he s c h ed uling of t he availab le re s ource s to m et t hese c onstraints (and 

still m ain tai n n ea r m i nimum clos ure tim e} is a m aj or probl~m . Con ­

sider t he ne wo r k p r oblem shown in F i gure 2. 1. The critical pat h has 
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b e e n i d e ntified a nd labe l e d as suc h. The solu t i on techni que fo r t h i s 

proble m , suitable for hand comput a ion and computer p r ogrammi ng, wa s 

d evel ope d b y G. H. B r ooks of Pur due Uni v e rs ity , and i s describ e d i n 

Mode r a nd PhHJJ:Lp;s-. 2 In order- tG us e t h i s prob l em as an exampl e , we 

fix t h e maxi mum resour ce a vailabili t y at s even. 

The r e sults of t hi s ex ample s how t hat t h e p r oj e ct c oul d b e com­

plet e d in ni n etee n day s w it h the fo llow i ng a i r c r a ft util i zat ion: 

DAY: 

#A /C: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

667744466 6 6 5 5 5 6 2 2 2 2 

Note t hat only on day s t h ree and f our i s t h e max i mum number of a i r craft 

a ailable a ctua lly us e d . On ot he r day s , as many as five a i rcraft s i t i d le. 

Thi s observati on lead s one t o suspect t hat t h i s m ethod ha s not led t o a n 

opt i m a l s ol ution. .In fa ct , if w e c ons id er t he fo r ce packa ge, w e s e e t ha t 

t h e re a re a t otal of 9 1 a i r c raft -days that mus t b e s ch e dul e d {F i g. 2. 2 }. 

If t h ere are s e v en a i r craft p er day a va ila b l e, t h en t he s h ipment c oul d 

t h e o r etica lly b e move d i n : 

9 1 A/C - day 

7 A/C - da y 
day 

= 13 days 

T hi s i s t h e m i n i mum tim e i n w hich t h e de p loy ment could o ccu r . 

Clearly, t h e hue r i s ti c appr oa c h has p r odu c e d a f easib l e , but fa r from 

optim a l sol u t ion. 

( 2. 1) 

The reasons why t here are no ge n ral i z ed p r ocedu r e s fo r p r oducing 

a n optim a l s ch e dul e s tem fr om t h e d ifficu lti e s e n c ount e r e d i n a ttempt -

i ng a m a t h e m atical fo r mula tion of t h e p r ob lem. 

These diffi cu ltie s a r e d e s crib e d b el ow. 
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F irst, it may b e true that t he a ctivity tim e estimates a re influenced 

s ubjectively by the estimato r 's know l e dge of availabl e re sou rce s. In t h i s 

case, s ubdiv id ing an a ctivity may i nvalidate t he original tim e estim ates. 

In fact , t h e functional r elations h ip b etween tim e e stimates and res ource~ 

availab ilities i s an unknown quant ity. Eve n if t h e relationship were 

known, the r e is no provi s ion i n t h e hueristic appr oach f o r i n corpo r a ting 

it i nto t h e model. 

The s econd difficulty in obtain ing an optimal s oluti on is t hat th e 

obviou s approa c h when c onflict s i n r esou r ce usage occu r is to s hift t he 

s la ck a ctivit i es in or der t o remove t he conflict s. In som e case s , 

activities can al so be divide d. It i s evide nt that t h e alternativ e s a vail= 

a ble fo r sch e duling the various a ctivities amount t o a combi nat orial p r ob ­

lem of fo r m i dab le magnit ude f o r p ractical s i z ed problems. 

These difficulties were app r oa ch e d by J ohnson3 in his work on t h e 

resour ce const r a in ed optim i zation prob lem. The p r oble m he considere d 

was t o find a s chedule fo r a known s et of t ask s t hat m i nim i z es t he tim 

required t o complete all work, while observing a c omplex set of logi cal 

task p reced e n ce requ i rem ents a nd stated lim its on res ou r c e u s e i n each 

tim e p eri od. The basis for his work i s t h e CPM /PERT t echnique s 

de scribed a bove, but John son a tta ck s th e problem of resource con ­

s t raints a nd optimality. 

His approach is t o vi ew t he p rob l em as a non -sto chastic seque nt ial 

d ecision p r o cess w here all s ch e dules can b e enumerated u i ng a decisi on 

tree . However, since practical p r oble m s typ ically offer m a ny feasib le 

a lte rnati es at any gi ven decision point, a nd a ls o c ontai n a lar ge number 

of s u ch decision points , complete e numeration is diffi cult for real life 

problem s . 

The a l go r ithm developed by Jolmsan i s based on t h e "b ran ch and 

bound" techniqu e u sed by Little, et al 4 , f o r t he traveling salesm an 
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p r oblem a nd employs t h e concep t of "pa rtial solution dom ina n ce " de s ­

crib e d by Weingart ner a nd Ness . 
5 

T h e basic i dea is t o efficie ntly s ear ch 

t he decision tree of a ll feasib le s ch e du les , avoi d in g i nvestigation of 

b ran c h es t hat cannot possib ly y ield a s horter sche dule t ha n one a lready 

obt a in e d. This i s done by calculating a m i nimum bound for all compl ete 

s ch e du l es t hat can fo llow f r om a particular s equ en ce of d ecisions, a nd 

te r m i nating t he s earch a long t hi s f rout e " if t he m i n imum bound i s 

greate r t ha n or equal t o a n exi sting complete s c hedule . In addition, t h e 

unboun de d alterna tives are exp lored in a n efficient manner by hueris­

tically selecting a likely alterna tive and p r oceed ing on to t h e resu lti ng 

n ew de cision point (if it is not bounded ). Only w he n a better c omplete 

sch edule is found, o r wh e n a ll b r an c he from a given decision poi nt are 

bounded, do es t he a l gorithm retu r n to con sider b r anch es fro m earlier 

decision points. 

T h e resu lts s how t hat t h e extrem ely r api d gr owth of t h e decis i on 

tree w ith p r oblem size oft e n outstrips t he al gor ithm 's ability. Hence , 

J ohnson c oncludes t hat t h e techni que is not a reliab le optim i zation p r o ­

cedure fo r projects of realistic s ize a n d c omplexity . Howe v e r , optim al 

s olutions were found for p r ojects of fifty task s w .. t h very s ho rt compu ­

t ation tim es. 

T h e technique as it stand s can b e consi dered an economically 

reliab l e optim i zation pro cedure for less t ha n fifty task s, but m ay b e u s e d 

only as a n approximate s ol ution m ethod for larger p r oblem s . On ce 

a gain, fo r problem s of p ractical size , t he alterna tives availab le fo r 

s ch e duling the variou s t asks a m ount to a c ombi natorial p r ob lem of 

f r m i da b le m a gnitude. 
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II. 3 The L i near Progr a mming Model 

In view of t h e lim itati ons of t h e hueristic app r oa ches, a lin ear 

p r ogramming formulation of t he routin g and sch eduling problem was 

developed by Groninge r. 6 T his met hod i s based upon a rather uniqu e 

app r oach t o t he problem which lend s itself to lin ear p r ogrammi ng tech­

niques qu ite easily . In t his s ection, t h e linear p r ogr a mming model will 

b e p resented and an exa mple problem solved with t he obj ective of m i ni­

m i z ing d eployment closu r e tim e. The results of t h i s example will t h en 

b e u sed i n t h e sen sitivity analysis of Sect ' on II. 4. 

T o develop t he mode l, we start with t he s ch eduling n etwor k por= 

trayal of a m ovem ent plan. The netwo r k a nd th e CINC 's pair-wise 

p ref eren ces are s hown in F igur e 2. 3 . We lable ea ch node by a non­

n e gative i nte ger s u ch that w he n n ode i precedes nod e j , the n i < j . In 

particular , t he s ou r ce is labe l e d 0 and t h e sink is labeled n . Each 

a rc is de s ignate d by t he numb e r of its p redecessor a nd s u cces s or nodes. 

If node i i s a t t he arc's tail a nd node j at t he a rc' s head, t he n t he arc 

will b e de noted by t h e number pair (i , J }. 

Now we cons ider t he di m en sion of tim e . The tim e required to per= 

form any task in t h e movem ent plan i s a fu nction of t h e amount of trans ­

portation r esource allocated t o it . Let u s call the time-res ou rce 

trade- off a du ration fun ction, g j (x), w h e re: 

gi (x ) = t he m inimum amount of t i m e required t o 

perfo r m task i if an amount of r esource x is 

allo cated to it. 

An impor tant assumption of t h e model , as reflect e d i n t h e above 

d finition, is that t he distribution of re ou rce use over t h e duration of 

t he task is uniform a nd e qual t o x. l n genera l , the form of t he durat' on 

function w oul d be non-in creasing. It is natu ral t o assume t hat t he 
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greater amount of transportati on resource a ssigned to a task the l es s 

tim e required to complete it. If we consider, for example, a single re­

sou rce capability such as a irlift , t he time required to transport a m ove­

m e nt package is inversely p roportional to t he number of aircraft e mployed; 

whe r e: 

g(x) = 
T d 
X p 

T = siz e of movement package (s hort tons ) 

d = distance it m ust be transported (n - mi) 

x = number of aircraft employed 

p = productivity of a single aircraft (ST- n - m i/day ) 

T he typical duration function fo r airlift is shown in Figure 2 . 4 (a) . 

(2. 2 ) 

The shape of t he dur a tion function suggests that the shipm e nt could 

b e complete d in the shortest tim e by ass i gning more and more trans= 

por tati on res ources until congestion of te r minal facil ities o ccu r s . 

However, t his is not a practical approa ch to the problem because we 

m ust consider the trans portation resource as a sca rce commodity and 

assume the lift capability during a deployment · s constrained by a fixed 

maximum. 

In certain instances, the du ration function for an airlift capa­

bili t y may have an entirely different s hape . Consider the activity (1 , 2) 

in the network shown in Figur e 2. 3. R ecall from Chapter I , Section 

.I. 5. 2 t hat this activity represents a time delay of o(l days required 

for t he engineers to ready the fa cility to receive suppo rt elements . 

The s hape of the duration curve for this dummy activity is shown in 

Figure 2. 4(b ). 

Note that re gar dless of the resou rces assigned to this a ctivity, 

t he duration time remai ns a constant. 
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lem: 

We see now t hat we have t h e makings of an optim i zati on p rob-

1. We would like to com plete t h e movement as quick ly as 

pos s ib le where 

2. The tasks of t he movem ent a re t o b e perfo r m e d i n t he 

s equence portr ayed by t h e sch e duling netwo r k a nd 

3. Transportation resources do not exceed t h e stated 

availab ilities . 

The optim izati on p rob lem can b e concisely stated as follows: 

For a given s cheduling networ k, determ i ne th e a llocation 

of resou rce x t o t he a r cs t hat m inimi zes th e du ration of 

t h e l ongest tim e cha ins t hrough th e network from s ource 

t o sink where the tim e t o perfo r m ea ch task is governe d by 

its asso ciated duration fun ction, g (x), and t he a mount of 

re source e mployed does not at any tim e exceed a s p ecified 

leve l. 7 

In orde r t o formulate t h e model base d upon t h e above considera t i ons , 

we define : 

gij(xij) = the durati on function for arc (i , J) 

xij = t he amount of r e source x allocated t o arc (i , j) 

X = the total amount of resource x available 

ti = t he tim e at w hich node i is reach e d (i.e . , all 

arcs in cident to node i have been traversed) 

We set t 0 , t h e time a t w hich t h e movem ent b e gins, equal to zero; a nd t n, 

t h e tim e a t w hich the s ink node is r ea ch ed, i s equal t o t h e closure tim e of 

t he movement . 

Sin ce e a ch node rep resents an event in time (t he completion of all 

task s leading into it) , then all tasks in cident to a node must b e com-
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pleted before any tas ks e mana ting from a node can be gin. T hu s , t he 

ope rating r ules of t h e s c he duling networ k can b e stated as f ollows: 

1. All task s i n t h e network must b e p erfo r med. 

2. A t a s k can b e started only after its p recedi ng node 

has b een rea che d. 

3 . A node i s cons i dere d reache d only af er all of it s 

i n cid ent t asks are c ompleted . 

If w e d enote th e set of a rcs in a n etwor k by A a nd t he set of node s 

by N, t he n t h e following constrai nts guarantee t h at t he operating r ules of 

t he networ k a re s a tisfied: 

( 2. 3) 

Equation (2 . 3) says t ha t t h e tim e of r e a ching node i, ti, p lu s t h e dura­

tion of a ctivity (i,j), g ij (xij) , must b e less t ha n o r equa l t o t h e tim e at 

which node j is rea che d, t j . There i s one of th se cons raints fo r e a ch 

a rc in t he n e tw ork. 

Now t hat t he tim e constr aints of t he optim i zation p r oblem ha e been 

modeled, we must ensure t hat t h r esou rce lim it w· 1 not b e exceede d. 

We can w rite t h e following constraint f o r e a ch node: 

<.. 0, j =f. 0, n 

:2_ xik- £_ X .. 
{2 . 4 ) lJ <: X, j = 0 

k i X, j = n ~ 

T hese constraints say t hat we require t h t otal amount of resource allo = 

cated t o arcs e m a nati ng from node j (J not t h e source or sink) t o b e l e s 

t han o r equal t o t h e tota l a mount of r esource allocated t o arcs incid nt 

to node j . At t h e s ource and sink we re qu i r e t hat t he t otal a mount of 

resou r ce out and in , respectiv ely, b e less t ha n o r equal t o X. T h e e 
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constraints (2. 4 ) gua r antee that t he sum of the amount of r e s ou rce com­

m itted to ind ivi dual tasks at any one tim e during t he deployment will be 

less than or equal to the r esou rce lim it . 

Groninger points out a more gen eral fo r m of th e r e source con­

straints. 8 He states that t h e constraint on r esource availability m i ght 

b e written in the following way 

where 

~ x ij c:: X , x ij ;:;:: 0 , 0 ~ t < tn 

( i , j) E. T (t) 

T {t) = t he set of all tasks {i , j) active at tim e t 

(2. 4b) 

Thi s expression says that the s um of the amount of resource commit ted 

t o i ndiviqual tasks at any t im e during a deployment must be less than 

o r equal to t he resou rce lim it. Of course , det e r m i ning the m e mbers of 

t he set T(t) at any tim e is a diffi cult problem, s i nce the con cu rrent t asks 

ca n be known only after t hei r x ij are determ i ne d. In fact, Groninger 

shows that for a network of r easonab le s i z e the number of constra ints 

required t o define (2. 4 b ) is unmanageable . Thus , t h e need fo r t he 

alt ernative approa ch defined i n (2. 4 ). Notice t hat t he fo r mulation (2. 4) 

i s more restricting than (2. 4 b ) and t hat t h e space of feasible s olutions 

to (2. 4 ) i s enti rely contained i n the space of feas ib le s olutions to (2 . 4 b ). 

A result of t he more r est rictive res ource constraint e quation i s 

t hat the r e source utilization rate for ea ch activity is a constant. In 
'\" 

othe r wor ds, t h e model will a llo cate a resour ce level of x units t o an 

a ctivi ty and the allocation will rema in constant t h r oughout t h e a ctivity 

du r a t ion. 

As an example of the const r a int e quations (2. 3) and (2 . 4 ), let us 

consider t he scheduling network s hown in F i gu re 2. 3, and i n pa rticula r , 

nod e 4 and arc (3, 4 ). The time constraint equation fo r a rc (3. 4) is 
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written as f ollows 

(2. 5) 

a nd t he r e s our ce c onstr a int e qua tion f o r node 4 would b e : 

2. 6) 

T h e complete s et of const ra int s fo r thi s p r oblem woul d c onsist of one 

e quation of type (2. 5) fo r ea ch of t he t e n a rcs and one equ a t i on of typ e 

(2. 6) for each of t h e seven nodes . 

The re i s one specia l ca se t hat must b e considered i nvolving th e 

res ource constrai nt e quations . L et u.s write t he resource constr a int 

for node of F i gure 2. 3 . Note t ha t nod e 3 is p recede d by a dummy 

activity (2, 3 ) t hat r equires no resource . It rep res ents a d e lay of one 

day required by t h e e ngi neer b atta lion to ready t he area t o receive t h e 

i nfantry u nit s. Th e res ource constraint fo rt his node would b e 

(2. 7 ) 

A ctivity (2 , 3) i s a dummy a nd requires no r e source (see F i gure 2. 4 b ). 

If no resource i s u s e d, x 23 is equal to zero; and since we cannot ass i gn 

n e gative resource s to a ctivities 3 , 4 ) a nd (3 , 6), equation 2 . 7) is 

clearly infe a sible . 

.In o r der t o gai n a f ea s 'ble f or mulation, it has b een necessa r y t o 

s a crifice s ome de gree of optim a l ity. The appr oach t o fea sibility i s t o 

not re uire t he dummy resou rce a llo cation t o b e equal t o zero . 

Instead, t he dummy activity w ould b e allocated i s s hare of t he re­

sou rce from t h e resource constra int equation of t he p receding node , 

a nd t hese resources would sit idle f o r t he du ra ion of the dummy 

activity. In t h is way, t h e dummy resou rce allocation is not zero. 

However, i n order t o ga i n feasib ility, we have required t he resources 



ass i gned to the dummy to remain idle f or s ome period of time. As a 

r esult , t h e solution will be s omewhat less than optimal. The fol ­

l owing example fr om Figure 2. 3 i s i nt ended t o furt her clarify thi s 

p r ocedure . 

L e t us cons ider node 1 first. The resourc e constraint i s : 

< 0 ( 2. 8) 

A ctivity (1, 2) is a dummy with du ration of one day . It s duration 

fun ction (Fi g. 2. 4 b ) is constant rega rdless of the amount of resou rce 

a llo cated to it. Therefore, we ca n a ssi gn to the dummy a ct iv ity any 

resource allocation, 0 ~ x12 ~ X, and st ill maintain a one day 

duration. In the specific case of (2. 8), x 12 = xo1· 

We the n p r o ceed t o node 2. The resour ce constrai nt equation is: 

(2 . 9 ) 

Once again, activi ty (2, 3) i s a dummy with a du ration of one day and 

a duration function lik e F i gure 2. 4 (b ). Inst ead of ass i gni ng a valu e of 

z ero t o x 23 , it i s allowed to take on a ny pos' tive value b etween z ero 

and X. In t his particular case , a ctivity (2, 5) would b e allocated 

f i rs t and activity (2, 3) w ould b e allocated the rem aining resources: 

X 23 = X 02 + X 12 - X2 5 

The resources, x 23 , would then sit idle fo r one day in orde r t o b e 

available for allocation at node 3 . The re sou rce const raint at node 

3 is : 

However, x 23 i s no longer zero a nd the s olution, although not 

optimal , is feas ib le. 
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The conse que n c e s of t his a s pect of t h e lin ear p r ogramming fo r m u ­

lati on have not be en investiga t ed to date and a re not with i n t he s c ope of 

t his pa per. It s houl d b e noted that dumm y a ctivities are en c ounte r e d i n 

m a ny r outing and s cheduling p r oblem s . Si n ce there a r e only t wo dummi e s 

i n t h e example network of Figu re 2. 3 and each has a du ration of one day , 

t he maximum devi a tion f r om the optimal is only two days . In a p ractica l 

s i z e d p r oblem, the number and duration of the dummy a ctivities woul d 

p r obably b e greate r . As a r e sult , there c oul d b e a m ean in gful d e ­

partu r e from the optimal solut ion. 

It is esp ecially impo r tant t o r ealize that this inconsisten cy i s not 

due t o t h e linear programmi ng routi ne but t o the parti cu l a r fo r m of t he 

resou r ce constra int s. Thi s s hort comi ng will have t o b e a n s wered 

b efore t h e line a r progr amming formulation will a c cu ratel y model the 

r outing and s ch eduling problem . 

Now let us retu r n t o the optim i zation p r obl em . F i gure 2. 5 s hows 

t he p r oblem formula tion writ ten out fo r the s ample network of F i gure 

2. 3 . Not i ce that the probl em is linear exc ept fo r t he du r a tion fun ct i ons, 

g i j (x i j ) . Gr oninger's 9 approach t o the s olution of a p roblem of t hi s 

type is t o app r oxi mate t h e durat i on functions by a piece~wis e linear 

f unction and us e t h e t echni que of separabl e p r ogr a m m i ng presented i n 

Hadley. 1 0 

Not e that the problem s hown i n F i gure 2. 5 is of th e following 

form: 

n 
MIN t n 

g · · (x ·) ..:::: b i lJ J -
j = 1 

Z Xik 
k {

!: o 
"-x 
~X 

i = 1, ... , m 

, j :f 0, n 

' j = 0 
' j = n 

j = 1, . .. , n 
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wh ere th e duration functions, gij {x j) , a re non-linear. The app r oxi­

mation technique replace s t he g ij (x j) fun cti ons by polygonal appr oxi­

mations, t hereby reducing the problem t o a form w hich can be s olved 

by t he s implex m ethod. 

The approxi mat ion functions are obta ' n ed i n t he fo llowing way 

{see F i gu re 2. 6 ). Se l ect r + 1 points, _ k (th ey n eed not b e e qually 

s pa ced). The n compute t he value of t h e o r dinat e at t he e points, 

gk = g (x k ), and c onnect (xk, gk ) and (xk+ 1, gk+ 1 ) by a s tra i ght line . 

T h e dash e d cu r ve or polygonal appro i mation to g{x) will b e denoted 

by g (x ). Notice t hat g (x) ca n b m ade arb itrarily good by s e lect i ng t he 

xk p r operly and s ubdividing t h e i nt e rvals. 

We ca n now replace t h e ori ginal p r oble m (2. 12 ) by 

n 

z_ 
j ::: 1 

~ 
k 

MIN t n 

A 
g . . (xJ.) < b i 

lJ -
i= l, ... , m 

<:: 0 
' 

ik - z: X ij 
-

<x 
' 

>x 
' 

x . ~ O, j= 1, ... ,n 
J-

j 4 0, n 

j = 0 

j = n 

which we s hall call i h e app roxi m a tion p r ob lem for (2. 12 ). 

(2 . 13) 

Now t hat vve have constr u ct ed t he ne cessary app r oxim ati on, we 
1\ 

must s how how t o e p ress g ij (x j) analytically b efo r e we can d e ter -

m i n e a n optimal s olution of t h e a proxim ating p r oblem. 

L et us r e t ur n t o F i gure 2. 6. 

k < < x k+ 1, we a ppr oxim ate g 

Whe n lies in t he in t h e i nterval 
/\ 

) by g(x}, w h ere 

(2 . 14) 
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Not e that any x in the interval xk ~ x s_ x k+ 1 can b e written 

x =A xk+ 1 + (1 - ~)xk for some )., 0 .£.A~ 1. The n, (x- x k ) = 

" ).. (xk+ 1 - x k ), so that ( 2. 14) can b e w ritten g(x ) = A gk+ 1 + (1 - A) gk . 

.If we n ow write .A. = ~ k+ 1, (1 - A ) = A k ' it follows t hat wh e n 

xk ~ x ~ Xkf 1, there exists a uni que A k and ~ k+1 such that 

x = A k xk + A k+1 x k+1 

>t k + "A k+ 1 = 1, A. k, A. k+ 1 > 0 · 

Fo r a ny x , 0 < x <::X, we can writ e 
r 

x = ..:i!E_ A k xk 

k = 0 

r 

; (*> = z._ ) k gk 
k=O 

k = 0, .. . , r 

provided t hat we requ ire that no more t han tw o of t he Ak s hall b e 

positive, and if two (say A s , 'A k) are p ositive, it mus t be true t hat 

( 2 . 15) 

(2. 16) 

(2.17 ) 

(2. 18) 

(2. 19) 

(2. 2 0) 

k = s+ 1, that i~, t hey are adjacent A's. With this d::scripti on, t he Ak 
A 

are uniqu e ly determined, a nd for an x given b y (2. 18), g (x) determined 

by (2 . 19) will be on t h e dashe d cu rve of F i gure 2. 6 and will be an 

an;lytic representation of g (x). By allowing no more t han two of t he 

'A k to b e positive , and then requir ing that t h ey b e adjac ent , we e ns u re 

t hat t h e points of (2. 18 ) a nd (2. 19 ) will b e on th e da s h e d curve . 
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We have now a pp r oximated the duration functions a nd obtained t h e 

mat he m atical representations (2. 18) through (2. 20) for t h e lin e. With 

t hi s infor m ation we return to the approximating proble m (2. 13 ). Assume 

t hat the maximum value which t h e variable xj can take on i s o<. j (th i s is 

our maximum airlift capab ility p er day) . We t h en subdi vide the i nterval 

0 ~ x j ~ ~ j into r j s ubintervals by the r j + 1 points x kj, x oj = 1 and 

xrj = <><. j. Then, for all t he functions g i j (xj) we can write 

k=O 
i= 1, ... ,m (2.2 1) 

wh ere rj 

xj = £ A kj xkj (2 . 22) 

k = O 

r · 
1_ ). kj = 1, A. kj ~ o a ll k j (2. 23 ) 

k=O 

and for a given j, no more than two A. kj are allowe d to b e positive and 

these must be adjacent. 

1\ 

We can now us e (2. 21) t o eliminat e the function gij (xj) in (2. 13), 

to y ield the following representation of t h e approximat ing p roblem i n 

terms of the variables .A kj rather than th e variables kj: 

n 
.2_ 
j = 1 

g kij ). kj ~ b i , i = 1 , . . . , m 

;£.. xik- Z xij 
<:: 0 ' j =I 0, n 

k ~X 
' 

j = 0 

>x 
' 

j = n 

r · 
2._ Ak - = 1,j = 1, ... ,n 
k = O J 

Akj > 0 

MIN tn 

all k, j 
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It s hould be noted t hat s ome of t h e variabl e s x j enter i nt o t h e p r oble m 

linearly. L et u s consider t he resou rce variab le xo1 i n F i gur 2. 5. 

Notice t hat it enters t he first c onstraint e quation non-lin e a rly as g 0 1 (x o1> 

and l' n ea r ly in t he el event h and twelfth equ ations as xo 1 a nd - x 01 re­

s pectiv ely. It i s important t o ob serve that if a particu lar va ria ble x j 

e nters int o t he p r oble m only linearly t h en it is unnecessary t o w rite 

in term s of t he A kj· We s im ply us e Xj a s t h e ariable . T h is ob s e rvation 

i s particu larly important when w e consider t hat t h e fa irly s m all p r oble m 

(2. 12) has given rise to t he mu ch larger a pp r oxi m atin g p r ob lem (2. 24 ). 

Sin ce it will often b e t r ue t hat a sizab .e nu mb er of variabl s will e nter 

t he p r oblem linearly, t his ob ervation may mak e it possible to redu ce 

t he s i z e of t h e app r oxim ating problem. 11 

F i gure 2. 7 s hows t he appro imation problem (2 . 24 ) written out 

f or t h e case wh ere each g ij (x ij) is approximate d by t hree linear seg­

m e nts . Thi s prob lem would b e linear if we d id not requi r e t hat f o r each 

arc (i , j) no mo r t ha n two A ij k b e pos itiv e a nd t he n only if t hey are 

adjacent. 

In t his p r oblem t h e du ration functions a re a ssume d hyperbolic 

and tak e t he fo r m 

g (x) = 
T d 
x p (2. 25) 

T hi s i s t h e same fun ction d efin ed :ii1(2 . 2). The function is approximated 

by t hree lin ear s gme nts as s hown i n F igure 2. 6. The x k (1 , 1. 82, 

4. 299, 20 ) have b een chosen s o as t o m inim i z e t he vertical error between 

g( ) a nd g(x ) fo r e a ch lin e segme nt . 12 Note t hat the lim iting number of 

resource units (a ircraft) fo r t h e exam le has been set at twenty. Thi s 

fi gure {o<.. j) rep resents t h deployment a i rlift capab ility p er day. 

Now ha t t he du ration fun c i on of an a ctivity has been d fined, it 

is n ecessa:ry t o clarify it use in t he m odel. A duration fun ction 
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rep resent s a fa m ily of cu r es: 

g (x) = 
T d C 

= -- (2 . 2 6) 
xp x 

wh ere, fo r a p a rticular unit of t h e dep l oyme nt a nd cons i deri ng a s ingle 

resource of on e t y e of a ircra ft, 

T d ::: c on s tant ::; C 
p 

(2. 27 } 

T hu s, t he family of cu rves i s hyperboli c moving up with i n creasi ng C 

valu es (F i gu re 2. 8 ). 

The m ethod of a lying t he du r a tion function i s t o defin e t he 

C values as a m easu re of he wo r k t hat m us t b e done to transport a 

particular s h "p m e nt t o its destination. s ·n ce bot h t he aircraft 

p r oductivity , , and t h e de pl oy m ent di s t a n ce, d , rem ain c onstant 

i n t hi s s imple r oblem, t h e m easu rable variable from s h ipment t o 

s hipment is t he wei ght of t he unit ex ressed i n s ho rt t ons. In ot her 

words, (2. 27 ) can b e written as : 

T .......- C ; , d con s tant { 2. 2 8) 

In o r der t o b e cons -"stent, unit total wei ght was t ak e n t o b e t ha t lis ted i n 

STRATMAS T M 43. 13 The "'e weights a re s hown in F i gure 2. 9. As a 

r ela tive m easu re, t h e i nfa nt r y battalion of 550 s ho rt t ons was a r b itrari y 

ass i gned a C valu e of 10 and ea ch unit scaled a ccor dingly. T hus, for t h e 

armored batta lion of 3 8 0 0 s ho rt t on 

a nd 

3 8 00 ST 
550 ST 

-.J 

- 7 

7 1 ) -= 70 = C a l ue 

(2. 29) 

(2. 3 0) 

The complete ist of C va ues is s hown wi h t he unit weigh s in F i gure 2. 9 . 

- 50 -



~ (x) 

FiGuRE 2 .8. St=iT Or- DuRATION CuRVES 

- 51 -

C=-3 

C=Z. 

C= I 



SHIPMEN/ UNrr NuHBU We:IG"Hr c 
U~~J rrJ ( SHoiZr ~~J) VALIJ!. 

V-l AIR BoRN£ IAJFAIIITfl'i BArr 2 ~00 Zo 

B [' tJ 6/IVEcflS BA-rr I '-1 ('}{') 8 

C T ERHhJAL SEtNI<..f RATT I Ma J-1 

D SuPPoRT R,bnj 2 looo 20 

E I NFAtn"~Y BAiT 2 loco l.D 

F ARMoR En BAiT l 39~ 70 

G MEcHMt c£D )t-JFiv.tr"-'1 Bmr "1.. 2200 Yo 
H Fi Rf r u ffO(l:r BA1T 2 I ~oo 3~ 

(FRoM SIRATMAJ TM 4 3 ) 

- 52 -



In ge neral, t he s eparable p r ogramm ing technique w oul d lead us 

to obtain a l o cal m in i mum of t he approx im ating p r oblem by applyi ng t he 

sim l ex m ethod i n th e u s ua l m a nner except t hat we would restrict entry 

int o t h e basis i n s u ch a way t hat we would ne v er allow mo re t ha n two 

). ijk t o b e p os itiv e for a given 0., j) . Furthermore, t wo A ijk c oul d b e 

positiv e o nly if they were adjacen t. However, t he constrai nts of 

F i gure 2. 7 have t he c onven ient form t hat t he set of fe a sib l e solutions 

which t hey define i s convex. T his w oul d not nece ssarily be so if t he 

duration functions had not b een c onv ex . T he ob jective function, M in t n• 

is also convex. For t hi s special s"tuation , it can b e s hown t ha t t h e 

strai ght simplex technique yields t h e glob a l optimum. 14 It s houl d b e 

note d t hat, i n general, we are not gua rant e ed t hat t he solution t o t he 

app r ox im ating p r oblem will b e a feasib le s olu tion to t h e o r i gina l p r oblem . 

How-ever, s i n ce 
/\ 

g ij (x) <. g ij ¥ x , ij ( 2. 31) 

by observing t h e constraint equati ons we can see t ha t t he solution t o t he 

* * * ap r oximating problem (2 . 24 ) I· .. , x ij , ... , t 1 , .. . t n] , also satisfies 

t he o r i g"nal non-linear c onstraint equa tions a nd i s t hus a fe a sible 

sol ut" on. 1 5 

It was state d above that t he formula tion of a n approxim ating 

probl e m freque ntly gi ves rise t o a very la r ge linear programming p r ob-

lem. i gure 2. 10 s h ows t h e number of c onstraints and varia b les of t he 

line ar r ogra mming p r oblem as a fun ct"on of netwo r k size a nd number 

of p · ece- wise linear s ections of t he du ra~ ion functio n. 16 

As a n exa mple of t he gr owth i n p roblem size, cons i der t h e exa m e 

p r oblem of i gure 2. 3 written out i n the general fo r m of (2. 12 (F i gu r e 

2. 5 show s t h e prob lem formu lat i o n i n d etail. ). Not "ce in F i gure 2 . 5 

t hat the o rigi nal p r ob lem has 17 row s, 16 col umns, and 4 7 m a trix 

elem e nts . However, t h e appr o i mating problem written out a cco rdi n g 

- 53 -



P = NUMBER 0:- Re:<.e:W/ SE Ln.JcAR St:'-TION..S Or: E~H Du~ AT"/ ow 

Fut-IC.II o iJ 

li-tt: Or<IGt~AI.. No,. LIN EA 

~OGilAM11/N6 ~oD~~M 

E XA H PL. ~.S 

N A 

~ s 
II lb 

\00 ISO 

fi I Pe-R A~<:.. 
I PER No()~ 

ll't\'\= N+A . 

~ 1\N\)..= N .. 2..A 

IW\;A. 

ll./ 
.. L.f 3 

'-/ DD 

Nut-t&tt 0,: 

VMIAOL. ES 

I PE"rt AR~ I 'X A.~ 
1 Pe-~ ~oDEj ;t;... 

M= N-I+A 

1Y1 :;t= N-1 +A( 1- P) 

(Y):l 

P=3 P=S 

Z3 33 
7'1 lo' 

(c~~ ~~~ 

FI '-UR£ 2, ID . THe f?I!LAr/O ioJSHJPS BETYJEctJ Nrrw~R I<. sl 't£ AMJ:J 

PRll(~Lf1'1 sl ec 
- 54 -



to (2. 24) and shown in F i gu r e 2. 7 has 28 rows, 56 columns, and 

17 6 matrix e nt ries. 

A p r ob lem t h e s i z e of the app r oximati ng problem can b e solved by 

t he lin ear progr ammi ng rout in e us e d in t h is report in under two minutes. 

One of realisti c s i z e, say 2 00 r ows, 30 0 columns , a nd mor e than 1000 

e ntries, can b e solve d i n five m i nut e s. 

The general form of t he tablea u presented in F i gure 2. 7 i s shown 

in Figu r e 2. 11. The activities c onsis t of two majo r groups, the 

app r oximating variable s and t h e node t i m e va riable s. There is one 

tim e va riable c olumn for e ach node in the network, and the number of 

A v a riable columns wi ll b e l e ss than or equal t o (p + 1 ) N, whe r e p 

e qua ls t h e number of p i ece-wi s e l inear s e ctions and N is the number 

of a rcs in t he n et w or k . The number of A. variab le columns can be less 

t han (p + 1 ) N be caus e it i s convenient to r ep res e nt dummy a rcs by on ly 

one piece - wise s ect ion (see .i\.12 columns in F i gure 2. 7). 

The constra i nts a re div i de d into three major s e ct" ons. A t ime 

c ons t r a int i s w ritten fo r each a r c in t he n etwo r k and e nsure s that t h e 

ope rating r ules of t h e netwo r k a re follow e d. The r esource constr a int s 

e nsur e t hat t he sum of the r e source s utiliz ed a t any particu lar tim e does 

not exceed t he maximum availabi lity. T h ere is ge nerally one of the s e 

e quations for e a ch node. The third s ect ion of the constr a int s e nsu res 

t hat the sum of th e A variables is e qual t o 1 (see equation 2. 24 ). 

The ri ght-hand s i d e va lu es a r e divided into the s a m e three s e c ­

tions as t h e constra ints. The right-hand side valu e s opposite t he time 

c onstraints a re exp re ssed i n units of time (days in Figure 2 , 7 ). T h e 

va lues oppos ite th e resource cons t r a int equations a re numb ers repre ­

senting resou rce ava ilab i ity (a ircraft i n t he example). The bottom 

s ection of t he right ha nd s id e va l u es is composed of pure numbers . 
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The units of the vari ous s ubmatrices a r e as f ollows, The s ub ­

m atrix( ;\ variable s , tim e c onstraints) conta i ns elem e nts, gkij (k = 0, rj 

where r j i s t he number of p iece-wis e linear sections ; i = l, m where m 

equa ls th e numb er of netwo rk arcs; j = 1, (p+ l)N ). The dim e n sion of 

t hese elem e nts is in units of tim e . This d im ension sati sfies t he app r oxi­

m ating p r ob lem const raint equa tion (2. 24 ) 

n r · 
z___L 

j= l k =O 

where A k j is a di m e nsionless numb er defin e d by (2. 2 2) 

rj 

X . = ;;[_ A k j X kj 
J k=O 

(2. 32) 

(2. 33 J 

T h e dim e ns ion of the elem e nt s of th e submatrix (ti m e a ctiv ities , time 

c onstrai nts ) i s a lso tim e . The elements of t h e o ther s ubmatrices a r e 

p u re numbers. 

Notice that many of t h e elem e nts of t he tableau are ze r o values . 

This s uggests t he possib ility of a com puter p r ogr am to i nterp ret an 

i n ut n etwork a nd f ill t he tableau a ut omatically. Si n ce most o'f th i s wo r k 

is r outin e , s u c h a capability wou ld b e a great time saver . A l so, we 
• 

ha e s uggested t hat t h e mo re p iece-wise a pp r oximations a re m a d e t o 

t he duration fun ctions, t he mo re acc u r ate t he results will b e . T hus, a 

loading capab ility that w oul d a llow t h e p la nne r to vary th e nu mb er of -. , 

ap r oxim ations wit hout t he bur den of ha ving t o manually fill t h e i n ­

creasing t a b lea u w oul d b e of g reat valu e . 

Granted, s u c h a ca ability would require additional p r ograms and 

adde d computer execution tim e . However , t h e i nput phase of a lin ear 

p r ogr ammi ng p r oblem is very tim e-consuming. If th 's model were 

u sed extensively, s u c h a capab ility w ould b e a n asset. 
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Now t ha t we ha e developed t h e linea r p r ogramming model i n 

de a il, we a re i n a pos ition t o utiliz e t h e mod el fo r ana ly s i s. The 

e a m le problem of F i gures 2 . 5 a nd 2 . 7 has been solv e d a s a lin ear 

p r ogram m i ng p r ob l em with t he ob jecti e function of m in im i z ing de pl oy­

m ent clo s ure tim e . T his p r obl e m a nd t he p r oblem s of t h e following 

s ection were r un on t he IBM 3 60 I 40 of t he Ci r En gin eering Sy s tems 

La borato ry at M. I . T . T hey w e r e r un under t he control of t he Inte grat e d 

Ci vil E n gi neeri ng Syste m (ICES)17 , us i ng t he linear p r ogramming cap­

a bilities of t he Optim i za tion T echni ques ~OPTECH) 18 s ub sy e m. 

T he i nput fo r m at fo r he e a m le p r oblem ~Fi gu re 2. 5 with t he 

C valu e s of F i gu re 2. 9) i s s hown in App endi A. The results of t h e 

exam le r un ha e been c onden sed and are shown i n t he n etwor k of 

F i gure 2 . 12. Note t ha t t he numbe r i n t he ci r cle asso ciated with e a c h 

a rc i s t h e a mount of resou r ce ass i gned to t ha t a c i v ity o achi eve 

m i n imum clo u re tim e . The number i n t h e r ecta ngle associa e d wi h 

ach node i s t h e tim e at which t h e node i s reache d . 

The result s how t ha t t h e m in imum clo su re tim e fo r t he exampl e 

p r oblem i s 16. 17 days. T h e objective of he next ect· on w ill b e t o 

c ons i der t he exam le de l oym ent in th e light of t he goal fab ric con ­

s idera tions of Cha ter I in order t o clarify t h e relati ons h ip s exis tin g 

a m ong h e va riables of t he goa l vee · or . T h e echni que o b e e m l oye d 

i n t he next section will b e s im ilar t o a post- o tim a li y a nalysis . The 

o r i ginal netw o r k (F i gure 2. 12) will b e eva l uated in term s of vul ner­

a bili y, flex ib i ity, a nd uni effe ct ~ venes and netwo r k adj us t m e nt m a de 

variou sly o mode t he se cons i derations. Th e modified r oblem w ill 

t h n b e r un unde r t he model de s crib e d i n t his s ection a nd h e optim al 

n etwo r k as s i gnme nts com pared. 

Before p recedi ng o t e ne t s ection, it s houl d b e oi n · e d out ha 

t her is a n i n c ons i s tency i n h e resu t of i gure 2. 12 . Cons i der 
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activity (0, 1 ). T h e resu lts show t hat ~ 2 =.3 7 a nd ). 3 =. 63 (see 

App e n dix A} s o t hat x, t he amount of r esou rce allo cated to (0, 1 ) i s, 

from (2. 15) 

x = ). k x k + Ak+l xk+l 

= • 37 4 . 29) + . 63 (20) (2. 34) 

= 14. 15 resou rce units 

The n, from the du r a tion function 

g (x) = 
c 
X 

wh ere C equals 8 , 
8 

g (x)= 14 . 15 

= • 566 days 

(2. 3 5) 

(2 . 36) 

However, TMOl (the tim e at w hich node 1 is rea ch ed) is . 95 days in 

t he optimal s olution s hown in Figure 2. 12 . T he reason for the dis­

crepancy is t hat t h e du ration function u sed in t h e p r ob lem solution is 

an approx imat ion d efined by (2. 16) 

( 2. 37 ) 

If (2. 37) is u sed to compute TMOl, t he results are as follows (note 

t hat gk i n t h is case equals 8 /4.2 9 o r 1. 86 and gk+l equal s 8 / 20 o r 0 . 4 ) 

g (x) = • 37 (1. 8 6) + . 63 (0 . 4) 

= 0. 945 days 
(2. 3 8) 

Thus, the clos u re t i m es shown i n t h e problem resu lts of F i gure 2. 12 

a r e based upon t h e appr oxi mating duration function and w ill a lways b e 

gre ate r than or equal to t he a ctual values computed from (2, 34 ) a nd 

( 2. 3 5). Of course , t hese results could be made more n early e qual 

t hroughout by s ubdivi d ' ng t h e app r oximating i ntervals. 
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Thr oughout t he following secti ons results will cons i s tently b e 

s hown as t h ose to t he approximating p r ob lem . 

II. 4 P ost-optimality Considerations 

Ill. 4. 1 Network Adjustments 

B efore we can impl ement a ny of t h e i d eas c oncern ing t h e 

variou s m embers of the goal vector develop e d in Section .I. 4 , 

we must first d ecide how t hese i d eas can be physica lly modeled . 

in t he sch eduling n etwor k. 

Cons i der first t h e goal of vul nerab ility. Thi s goal r eflects 

t he delays a de p loyme nt can e n counter becau se of c ongestion , 

e ne my a ction , s abota ge, a ccid e nt, or weather. It was pointed 

out in Section I. 4 t ha t thi s goal is maxim ized wh en units com­

p ris ing a s i ngle phase of t he C.INC's capability are sp lit and 

s ch e duled over d"fferent r outes. Us ing t h i s sch edulin g app r oa c h , 

if one of t he units is delaye d o r lost becau se of term i nal congestion 

or e ne m y action, t he CINC can still exp ect to receive som e 

m easu re of t he particula r capability. 

We can use t h e fo llowi ng techni que s t o model t hese c on ­

siderations. F i rst, t he a ctiv 'ty i n question can be split. That is, 

i nstead of r outing two i nfantry battalions as a unit, each could b e 

r outed s epara tely. The network modification necessary would b e 

t o add on e arc a nd possibly on e node . Anothe r a pp r oa ch to opti ­

m izing v u lnerab ility is t o re- defi n e particular acti v ities. For 

exam ple, if one a ctiv ity consists of two i nfantry battalions and 

a not her c onsis ts of tw o me c ha nized i nfantry battalions, then 

vulncr . b ility c on s id erations wou l d b e i m proved if t hese activitie s 

were re-defined s o t hat one infa nt ry and one m echani zed infa ntry 

battalion comp r ised each activity. Of cou rse, t he only network 
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modificat i on necessa r y to model t his appr oa ch is to re - defin e t he 
• 

n ew a ctiv ity du r ation fun ctions . 

The next goa t o consider i s that of flexib ility. Th ' s goal 

is i ntende d to model t he un certainty surrounding any m ilitary 

operat i on du e t o lim ited intelli ge n ce concerni ng t h e e nemy's capa­

b ilities. F lexib il i ty of a de ploym ent i s opt im ized w hen t he CINC 

or the move m ent planner m a intains t he ab ility to reschedule t h e 

mo ements of any pa rticular shipme nt at any tim e du r 'ng t h e 

p lanning process. Of c ourse, t h e CI NC can always d emand a 

particular unit a t a ny tim e --- a nd, if physi cally possible, it w ill 

b e del' vered . The important poi nt is t hat t h e CINC and t he plan­

ner must know how muc h it costs t o mod ' fy t h e s ch edu le; t h ey 

mu st b e able t o determ i n e what a pa rt i c ular d e gree of flex' b ility 

is w orth i n term s of t he oth er goa ls . 

There a re tw o ways of modifying t h e s c he duling network t o model 

t he flexib ility p r oblem . The u se of dummy a ctiviiies e na bles t he 

planner t o estab lish certai n p rio r'ties a m ong the units of a d ep l oy­

i ng fo rce . For instan ce, i n F i gu re 2. 13 t he m echani z ed ' nfantry 

(5, 6) m i ght arrive at a late date b ecaus e it is competing f or 

resource s with t he armo red unit ( , 8). However, t he addit i on 

of the dummy a rc (6, 7 ) guarantee s t hat (5, 6) must b e com plete d 

b efore (7 , 8) comme n ces (Fi gure 2. 14}. 

The sec ond m ethod of modeling flexib ility i s t o mai nta ·n 

a ca a bility t o adj u s t t h e resou rce allocation of each acti ity . 

T hus , if a unit is o rigina y allowed a long eriod of tim e i n tran­

sit at a low resou r e lev el b ecau se its priority is c ons id ered s m all, 

t he p anner c oul d adapt t o a change i n t he m 'litary situ a tion by 

directly ass i gning t he a ct' v ity in uestion to o erate at a hi gher 

res ource l e el, a nd, as a resu lt of the s hape of t h e du ration curve , 
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a l ower duration tim e. Thi s cap a bility ca n b e a ch ieved by add ing 

an extra c onstraint row t o t he lin ear progr a mmi ng p roblem i n 

which t he level of t he resource is fixed (th is procedure i s appl ' ed 

i n p r oblem 4 , b elow) . 

The t hird goa l t o co ns i der is that of unit effe ctiveness. 

I n order t o m aximize unit effectiveness , t he planner should attempt 

t o s ch e du le a unit i n as s ho rt a tim e as possib l e wh il e utiliz i ng 

tran sportation resou rces th.a t m a i nta in as nearly as possible t h e 

u nit c ommand stru ctu re . 

The a pproach t o m o deling th is goal is twofold. As with th e 

flexib ility consideration s, a h igh e r resou rce leve l can b e assi gne d 

to eac h s h ip m e n t by i ntrodu cing additi onal constrai nt equati ons. In 

t his way, t h e planner can assure t hat t h e s hip m e nt will b e in tran ­

sit a specified number of days . 

Anot her app r oa c h i s t o introduce dummy a ctivities w ith con ­

stan t dur a tion functions equal to zero. These a ctiv iCe s wi ll ser e 

t he pu rpo se of d iverting additional resources t o t h e a ctiv ity in 

question. For exa mple, i n F i gu re 2. 15, the dummy a rc (4. 5) is 

s u plying additional r esources t o a ct ivity (5, 6) (see P rob l e m 3, 

b elow ). 

B efore pro ceedi ng t o t h e application of thes e modeling 

t echniques, a few comments are i n o r der con cerning t he sched­

uling n etwork c once t. As t he re s u lts of t his c hapter have s hown, 

the s c hedulin g n etwor k is a powerfu l t ool i n the a naly s is of t he 

routing a nd s ch eduling p rob lem . The netw or k stru ctu re is the 

basis of t he line ar r ogr a mming m odel fo r mulated by Groninger. 

Also, we have seen t hat sim le n etwor k m odificati ons give t he 

lanne r t h e ca ability to model t h e goal v ecto r variables. 
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However , one must always b ea r in m i nd th e fa ct t hat thi s is 

an elem e ntary example of t he s ingle resou rce problem. Cons i der­

a tions of two o r more resources greatly c omplicate t h e problem 

fo r mulation and no solution m ethod has be en develope d t o date. 19 

Anot her problem a rea t hat must not b e overlooke d i s t hat 

t his fo r mulat ion does not model t he physica l netwo r k. Great 

energy must b e exp ende d by t h e pla nners t o d etail t he move m e nt 

of e a ch s h ipment from o rigi n to destination (see F i g. 1. 1, Chapter 

.0. Then, t h e r outing of t h e m a ny s h ipme nts mu st b e c oo r di nated 

s o a s to m in im i z e te r m inal a nd link congestion. Thus, the us e of 

a model sim ila r t o t hi s p r ototyp e will lead t o th e t h e o retical m i ni ­

mum closure tim e; but t he post-optimality a nalysi s t hat we have 

describ e d above and will apply b elowJ requ ires a grea t amount of 

detailed c ons iderations . Thi s poi nt s houl d b e fu rth er cla rif i ed. 

In or der t o utHiz e t h e linear p r ogrammi ng model, t h e 

planner n eeds only t he partially o r dere d s e u en ce of arrivals 

from the CINC a nd t he durati on function for each act" vity. After 

solving t h e p r oble m w ith t h i s formulati on, t h e planner has s u c­

ceeded i n o tim i z ing deployment closu re t" m e . The n ext logical 

step wou l d b e t o c onst r u ct t he detailed move m e nt p lan (F i g. 1. 1) 

for ea ch s hipme nt util iz ing t he resource levels allo cated a nd t h e 

tim e data from t h e opt im al solution. (This information i s s hown 

i n F i gure 2. 12 for t he example p r oblem. ) 

It i s at thi s point t hat t he lann er b e gi ns t o consi der t h e 

p hysical c onstraints of t he transp rtat" on netwo r k. After rou i ng 

and s c he duling ea ch un"t , h e must coor dinate t h e flows over links 

a nd th r ough termi nals . It i s only after he ha s rea c he d t his stage 

of t he a nalys i s tha t h e can determ in e what modifica tions are neces­

sary t o t h e n etwo r k t o redu ce vul nerab "lity due t o c ongestion o r 
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a cc-" de nt . The n, a fter the adju stm e nts have b een m ade a nd a n ew 

optimal s olution ob tained , t he entire p r ocedu re must b e rep ea ted. 

T h e i mportant point of t h i s a r gum e nt i s t hat t h e l ' near p r o ­

gramm ing model is not a n e nd in itself. It is a s ingle step i n t he 

a naly s i s p ro cedure , a nd the other elem e nt s of t he p r o cedure w ill 

p r obably dem a nd a s mu c h, if n ot mo re , tim e and e nergy t o a ccomplish. 

II. 4. 2 Analy sis of Adju stm e nts 

We b e gin t h is s ection by c ons idering t he r e ults of t he 

example p r oblem i n Section H . 3. T his netwo r k a nd t h e results a re 

s hown in F i gure 2. 12 . Note t hat t here are tw o a ir-bo r n e (0, 4 ), two 

i nfa ntry (3 , 4 }, two fire s uppo rt (3 , 6 , and two m echa n i z e d infa n ­

t ry (5, 6} batt ali ons sche duled t o b e s hipped as singl e units. Thi s 

v io la tes t he vul nerability criteria and s uggests t hat t h ese activities 

cou l d b e re- define d . L et us choose a ctiv ities (3 , 4 ), a nd (5, 6) a nd 

re - define th e m as shipme nts c omposed of one ' nfantry battalion 

a nd one m echa n i z e d i nfa ntry batta lion. Thi s results i n t h e sch ed ­

uling n etwork s hown i n F i gure 2. 16. We will call t his n etwo r k 

P roblem 2. 

After re-d efin ing t h e duration functions for t hese act'vities 

(th e C value in crea ses from 20 to 3 0 for (3 , 4) a nd decreases f r om 

40 t o 30 for (5, 6 , t h e p r oblem was solved with t h e results s hown 

i n Tab le 2. 1. T h e results of t he o ri ginal example (P rob lem 1} 

a re al so s hown in t he Ta ble . 

The n ew p r ob lem has decrea sed t h e v ulnerability of t he 

de p l oyme nt by s plitting t he tw activities and in creasi ng t he 

c hances t hat th e CI:~c will receive at least one- half of t h e par­

ticu lar ca a b ilities . Now we must c onsider what t h e de reased 

vu n era b · ity has c ost . Ii is im m ediately a pparent t hat t h E dep loy-
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TAB L E 2. 1 

PROBLEM 1 PROBLEM 2 

Allo ca tion Duration A llo ca tion Duration 
{A / C ) (Days ) ( A/C) (Days ) 

0, 1 14. 15 . 95 14 . 15 . 9 1 
0, 2 2.3 1 1. 94 2 . 3 9 1. 90 
0, 4 3. 51 6. 54 3 .03 7.9 
2 , 5 4. 3 4. 7 5 3 . 7 7 6.01 
3, 4 9. 01 3. 62 10. 1 1 4. 9 6 
3 ' 6 3 .2 13. 026 3 . 1 13. 14 
4,6 12 . 3 9. 64 13 . 04 9. 13 
5, 6 4. 3 9.42 3 .77 9.00 

C L T M 1 6. 17 16 . 9 5 

PROBLEM 3 PROBLEM 4 

0' 1 14. 2 . 91 8 . 3 8 1. 49 
0 , 2 2. 39 1. 90 1. 68 2. 50 
0 , 4 3 . 03 7.90 10. 0 2. 0 
2,5 3 . 43 6. 99 3. 41 6. 9 6 
3, 4 1 0. 4 2 4. 86 4. 05 7.95 
3 ,6 3. 1 13. 14 2.56 15 . 3 2 
4, 6 11. 9 9. 29 14. 03 8 . 35 
5, 6 4. 9 8 8. 23 3 .41 10.42 

CL TM 17.00 1 9.8 5 
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ment c losure t i m e has b een i n creased (fr om 16. 17 t o 16. 95 days). 

Also, t he in creased C value of activity (3, 4) of F i gure 2. 16 has caused 

more resou rces to be allocated t o t h e path 0-2-3-4 with t he result 

that t h e e ngineer and terminal se r vi ce battalions arrive in slightly 

less tim e (. 91 vs. . 94 a nd 1. 90 vs. 1. 94 days ). However, the 

a rrival date of the critical air-borne units has b een i n creased from 

6. 54 to 6. 90 days. 

Also, s in ce the C valu e of t h e activity (5, 6) wa s redu ced, 

less resou rce is allocated to path 0 -2-5- 6. The resu lt i s t hat t he 

a ctivity (5, 6) s p ends 9. 00 days in transit. Table 2. 1 shows that 

the activity (5 , 6) spends 9. 42 days i n tran sit in P roblem 1. Since 

t hese activities rep resent units that are vital to th e military effo rt, 
'.. 

their transit times s hould b e redu ced. 

T h e unit effectiveness of a ctivity (5 , 6) can b e increased by 

d ecreasing t he tim e t h e unit spends i n transit . As s hown above, 

we can decrease t he tim e a unit spends in transit by increasin g its 

resource allocation. In Elgure 2. 17, t h e dummy a rc (4 , 5) serves 

the purpose of d ivertin g needed resources t o a ctivity (5, 6). 

F igure 2. 17 represents P roblem 3. 

P rob lem 3 ha s been solved for m inimum clo s u re time and 

{h e results shown i n Table. 2. 1. Note that the duration tim e of 

a ctivity (5, 6) has indeed been decreased to 8. 23 days. The unit ' s 

closu re dat e ha s remained virtually unchanged at 17. 00 (up . 05 

from 1 6. 95) if compared with P roblem 2, but up . 83 day s from the 

16. 17 of P roblem 1. T hus, we can conclude that it cost. 7 8 days 

(16. 95- 16. 17) to dec rease unit v ulnerab ility, but the ma r ginal 

price of i ncreasing the unit effectiveness of activity (5, 6) is only 

. 05 days. 
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Thr oughout t he t h ree exampl e s considered, t h e du ration of 

t he mo st critica l a ctivity, t he a ir-bo r n e units , has range d from a 

l ow of 6. 54 days to a hi gh of 7 . 90 days . T he C.INC ha s expre ssed 

t he u r ge n cy f or t h ese units in hi s partially o rdered set of arrival s 

a nd it i s apparent t hat t hese fi ghting fo rces s hould have i mmediate 

p rio rity. In P r oblem 4 we have et t he closure date for the s e unit s 

to day 2 by addi ng a n additional r ow constra i n · setting Xo4 (the 

amount of resource allo cat e d t o a ctivity (0 , 4 ) equa l t o 10 units . 

This p r oble m i s s hown in F i gure 2. 18 and t he re s ults tabu ­

lated i n T a ble 2. 1. 

Si n ce a closu r e date of 2 i s a r a dical cha nge fo r t he closure 

date of t h e sam e a ctiv ity i n P r ob lem 2 (7 . 9 days }, we s houl d 

exp ect ot her m a jo r change s i n t h e results . Note, fo r example , 

t hat t h e closu re tim es of {0 , 1) and{IJ. 2 ) in c r eas e fo r t he first t i m e 

t o 1. 4 9 and 2. 50 days resp e ctively. Th's is beca u s e res ources 

are diverted from t h ese a ctivities i n o r der t o a llocate 10 un its t o 

t he air- bo r n e units . 

It is esp ecially i mpo rtant that t h e oth er combat s h ip m e nt s 

(3, 4) and (5 , 6) have bot h b een de laye d becaus e of t he resource 

allocat ion. A ctivity (3 , 4 ) w ill now arrive at day 11. 4 5 up 3 . 65 

days from t h e 7 . 8 of P r obl e m 2) and a ctivity (5 , 6) does not arriv e 

unt il day 19. 85 (up t o 2. 90 day s from t he 16. 95 of P rob lem 2 ). 

T hu s , t h e l a nner and CINC must deci de if i t i s worth a d ela y of 

up t o 3 . 65 days in t he main for ce combat unit s t o ga i n 5. 9 days in 

t he a rrival of t h e i nit i al fighting force. 

T here is a n oth er possib le appr oac h to t h e p r ob lem of t h e 

trade- off b etwee n a par ti cu lar unit c losure tim e a nd t h e d ep l oyme n 

c lo s ure tim e . It 'm i ght b e feas ib le t o i n clude a second term in t h e 
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objective function t o ref ect t h e clos u r e tim e of t he particular s hip~ 

m ent . Then, by arying t h e co- efficient of t h e a dditiona l te r m · o 

refle ct diffe r ent clos u re tim es fo r t h e s hipme nt , t h e r a nge of t h e 

depl oy m e nt closu re tim e woul d trace out t he trade - offs . 

T his app r oach was not u s e d i n t hi s r epo r t , but i s offere d 

as a n i nteresting modifica tion technique . 

II. 5 Summary 

In Section .II. 2 t he hueristic app r oaches w ere outlin e d and t heir 

d rawb a ck s noted. T h e n , i n Section H. 3 t h e linear programmi ng model 

wa s de ve lop e d i n deta il and applied t o a n e a m le prob lem with t h e 

objectiv e of m in im i z i ng clos u re tim e . Secti on II . 4 s h owed he input 

data being modified va riously o a id in determ i n i ng th e trade-offs im ­

p lied by eval uat 'ng a move m e nt plan over t he entire r a nge of t h e goa l 

vector. T he n a set of four a ternative mo e m e nt p lan s was develope d 

base d upon t he trade -off . 

In Cha pte r .III a ch oice p r o cedu r e will b e d evelop ed t o a i d t h e 

la nner i n selectin g t h e o tim al movem en p l an from among a s et of 

a lternativ e s. Sin ce thi s r ocedu re is designe d t o w or k over com le 

goals a nd to a ccept o r delete goa l s a t any time i n t h e choice process, it 

is i deally s u ited fo r app ica i on o t he r out ing and s ch e duling prob lem . 
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IlL 1 .Introdu c ·i on 

In t h e precedi ng chapter w e have d ev elop ed s eve ral a l e r na tiv e 

mov em ent p lans base d upon cons i deration s over t h e e nt i r e range of he 

goal fab ric. The p rin cipal p r ob l e m left t o overcom e i s t ha t of m a ki ng 

a choice among th e a lternat ives. The r oble m of c ho i ce is grea ly 

complicated by the fa ct t hat t h e transpor a tion p lanner mus t consi de r 

m a ny varie d a nd com lex goal s. If he were con cerne d with one goal, 

say clo su re tim e, t here woul d b e U.ttle cau s e fo r conce r n. T h e p l a nner 

w ould s i mply i m lem ent t ha t p lan with t he smallest clos u re t i m e. In 

t h e real w o rld situ a tion, howev er, t h e CINC wants not only a r ap i d 

d ep l oyme nt but a lso one t ha t most guarantees unit arrival on t im e a nd 

p erm it s s ome d e gree of fr e e dom in t he ev e nt of unexpected e n e my opera­

tions. Some of t h e goa ls, s u c h as clos u r e tim e, a re tradit." ona l and 

e asily m e asu re d; but ot her goal s a re extrem ely di ffic u lt t o quantify a nd 

t here i s no relia b l e t e chni qu e for consi dering t h e m in choi ce. 

Ma nheim a nd Ha ll 1 have d ev e lo e d a m et hod fo r c hoice t hat 

e na bl es t h e p lanner t o consi de r n ew goal as well as t he tradi · i ona l. 

Thi s chapter w i ll d e s c r ib e t he m e t hod i n som e detail and th e n show it s 

ap lica t i on o t h e cho i ce r obl e m face d by th e m o e m e nt p lanner. The 

objec ive will b e t o d e velo a fra m e wo r k f o r choos i ng th e optim al plan 

r om among s everal a ltern tiv e s . The mo e m e n p lans d ev e l ope d i n 

Section H . 4 of Chapter II will b e resente d a examples t o a id i n 

cla r ifying h e c hoi ce p r o cedure. 

Ill. 2 The Ch oice P rocedu re 

The r o ce of choice us e d by mov e m en pla nn er mus · 

meet fi v e specifi c re uirem e nt . irs t, it mu t de a l s y e m -

a· ica lly w it h multi le goal s. e cond, t h e procedu re mus t b e a b le 
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t o w o r k with i n c ompl ete informati on about t he relative values 

of t h e different goals to t h e m ovem ent p lanne r . T hird, t he 

p r ocedu re us e d mus t clarify, not c onfus e o r hi de , t h e i ssues 

of ch oice a nd poi nt out t h e trade - offs i mplied by certa in decisions . 

F ourth , th e p rocedure must b e dyna m ic. Change s in t he e nv i ron ­

m ent surrounding a de loyme nt must b e accepted as t h e r u le a nd 

n ot the exception. F ifth, th e m ethod s houl d p r ovide an ob jec-

tive report of what i s la r gely a subjectiv e p r o cedure, so t hat th e 

l ogic of a d ecis ion ca n b e understood by a s econd pa rty . The 

m ethod dev elop e d by Ma nhei m and Ha ll meets t he s e requi r em ents 

t o vary i ng de grees a nd i s described b elow i n detail. 

III. 2. 2 Goal F a b ric Analys i s 

The r o cedure has t wo p r i ncipal part s. T h e first i s 

t h e goal fab ric a na lysi s a nd it cons i s ts of listing all t he known 

goals fo r t h e p r oject a nd t hen i d en t ify i ng th e va r· ous relations 

a m ong t he m . The s eco nd i s t h e p rocedu re util i z i ng he goal 

fa b ric a nalys i s t o rank t h e alterna tives. Thi s entails mappi ng 

e a ch new alterna tive ont o t he goal fab ric (i. e . , predicting t h e 

p erfo r m an ce of t he alternati e vv.i. t h re sp ect to s ome of t he 

goals) a nd t he n, us ing t he m app ed i nfo r m at i on and t h e stru ctu re 

of t h e goal fab ric , c om pare t he new a lte r nativ e w ith on e p re­

v i ou s ly r a nke d. The m ethod o e rate s on only two a lternative s 

a t a tim e . 

The list of goa ls i develo e d by c onsi dering t h e 

most ge neral goal va riab le , such as m axi m i z e m ilita ry 

effect ivenes , a n d t hen a s ki ng u ch qu e tions as, "What do 

w e m ea n by t ha t goal ? How c n we ac om Ush it ? What does 

it ha e i n common w it h t h e ot er goals? " An wer·ng t hese 

que tions w ill enab le th~ ·a ner t o decid e whether one goal 
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i s a more detailed s p ec-"fica t i on of a higher level goal o r a 

m ean s to a chiev i ng t he ne xt h i gher level goal. F or example, a 

m ea n s to a chieving t he end of i n creasin g unit effecti en e ss · s 

t o redu ce t he tim e a s h ipm ent s p e nd· in tra nsit . Bu t a speci­

fication of t he goal vulnerabil ity i s th e p r ob ab il 'ty of delay due 

to congestion. 

Afte r t h e list of goals has been expand e d a nd t h e 

relationship s b etween t he goal s deter m in e d, a hierarchical 

t ree typ e stru ct u re ca n b e p r odu ced with t h e ge neral goa l s on 

t op, p r o ceedin g dow n t hrou gh the s ecification a n d m eans -en d 

relation s hips t o t he lowest l evel goals , t ho s e for which we hope 

to predict a nd m easu re t he p erfo r m a n ce of t he alterna tives . 

This step t erm inates the first part of the method . 

.It is worthwhi e t o sto a n d c on s ider what the a pp li­

cation of t h i s pro cedure has accom lished t o this point. Most 

i mpo rtant, it has f o rced t he planner t o ask hi m self exa ctly w hat 

it is he wishes t o accom lish. He s houl d not b e c onten t with 

vague goals t hat a re m eanin gless i n c on s e qu en ce , but shoul d 

pursu e eac h goal chain t o 'ts most elem e ntary level. Thi s 

p rocess s houl d help t o cla rify t h e overall object~ve . 

Secondly, and perha p s ju t as important in an ex ­

trem ely com plex r oblem, t he m ethod has h elp ed t he lanner 

to systematically structu re the r ob e m . T he hiera rchical 

stru ctu re is indispensa ble in r oviding a physical fram ework 

fo r t h e a nalysis to f llow. 

III . 2 . 3 Alternativ e Ranking 

T he secon d part of the analysis b e gin s by m apping 

t h e a lternative ont o t he goal fab ric . This r o cedu re entails 
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p redicting t he performance of t hat alte rnative with respect to 

some of t he goals . It is n ecessary to determin e which goal s 

can b e p re dicted a nd m easu red with s ome accu racy. The s e goa ls 

will n ot a lway s b e t h e l owest level goals, but every b r anch of the 

t ree must c ontai n a p redi ctab le goal. If there is a b ran ch of t he 

tree t hat cannot b e p redicted , t h en the goals of t hat b r anch must 

b e delet ed f r om t he decision pro ce s s . A lso, if there is a par­

t icular goal that cannot be a ccu r a tely pre dicted, the n that goal 

cannot enter t he decision. 

'l'ne predicted data is t he n converted i nto p referen ce 

info r mation on e a ch goa l. Thi s ent a ils d eciding which a lter­

nativ e i s p ref e rred on t hat goal a nd the de gree to wh ich it i s 

prefe rre d . The m easure of p r efe ren ce r anges from s u ch abso­

lute quantities as days fo r t h e m easu re of clo sure time, to 

re la t i ve m e a s ures like '.'good" or "po o r t o fair" f o r such goal s 

a~ unit effectiven ess a nd flexib ility. 

The las t step is t o conden se a ll of t he availabl e data 

into a choice. The i nf o r m ation available to th e movem ent 

p lanner at t his point consists of t h e fo llowi ng: 1) t h e CINC ' s 

pa r t ia lly o r dered list of requ irem e nts rep resenti ng his build - up 

strate gy ; 2 ) t h e goa l relation s h ip s po rtrayed by t h e hierarchical 

tree-typ e stru ctu re ; 3) refe ren ce inf or mation on each p re ­

di ctable goal; 4 ) data already accumulated a bout t he CINC' s 

p referen ce over t he vari ous goals a nd a mong each goal com­

b i nation; 5) a ny additiona l preferen ces as ked of h e C.INC fo r the 

parti cu l a r deploym e nt . 
2 

Note esp ecia lly t he last tw o s ources of info r m ation. 

Cons i der t h e data already a ccumulate d. T h is pro cedure is d e­

signe d t o build a dat a bank w hich g r ows each tim e it i s used. 
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Subse quent choice p r ocedures wou l d t he n b e nefit from any per­

tin ent information s to r e d i n t he data bank. A simple example of 

t h e data s t o ra ge m i ght b e a s follows. Assume th e p lanner makes 

the decision du ring a p articu lar deploym ent t hat a closu re tim e 

i n crease of one day is a c c eptable if the unit effective ness of a 

shipm e nt is in c r eased by dec r easing t he t i m e t hat s h ipment 

sp ends i n transit by t h ree days . If t h e pro cedu re were a ut omated, 

t h e routine would record t hat a one day depl oy m e nt i ncreas e i s 

worth a th ree day decrease i n a ny parti cula r s hipme nt. This 

infor mation w ould t hen b e sto r ed f o r f ut u re use . 

N ext , consi de r the possib ility of additional p refer­

e n ces as ke d of t h e CINC. Many t i mes it will b e difficult, if not 

imposs ibl e , fo r t he planner to mai ntai n dire ct contact with an 

area C.INC du ring t h e choice p r o cess . Thus , t he need for a 

m ethod t hat w or k s despite in complete infor m a tion is appar ent . 

A l so, thi s sou r c e of inf o r m a tion is a m easu re of the flexib ility 

of th e choice p r o cedure . Even at t hi s late date i n t h e decision 

process t h e CINC a nd t he move ment p lanner maintai n the cap­

ab ility t o a dapt t o change s in t h e e nvi ronme nt . 

The last step i n t he metho d i s t o u s e t he available 

information to mov e f r om one level t o anothe r 'n t he goal tree, 

from t h e p red · ctabl e goals to the next lev e l goals . Manhe i m a nd 

Hall outline t h ree t e chniqu es that can be us e d t o c onden se t he 

data . 3 All t h e t echn iqu e s op e r ate t o give info r mation on one 

h i gher level goal a a time , wo r king with t hos e goal s w hi ch com­

pri se t h e h i ghe r one . The t h r ee t echniques a r e de s c r ib ed be l ow. 

1) Dom'na n ce: t he sam e alte r nativ e i s preferred 

on a ll the goals compr 'sing he new one; he n ce, 

t hat s a m e a lte rnativ e is p r eferred on t h e new 

goal. ·. 
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{2} Explicit choice by th e planner: faced with 

a small subset of goals , t he planne r may b e 

able to evaluate trade~ offs and choice m n­

taUy , a nd give an answer. 

{3 ) Compar i son of in · erval.s: find the i nterval 

between the a lternat"ves on each goal , and t he n 

decide how t hese interval compare with each 

other. 

T h ese t echniques will b further c larified :i.n Section HI. 3 where 

the alte r native move m e nt p ans developed i n Chapter II will b e 

a nalyzed by the choi ce p r o cedu re. 

B efo re moving to t he next section and the a ctual mechan­

ics of applyin g t he goal fab ric concep · described abov e , it is neces­

sary to b riefly s umma riz e t h e b en efits a moveme nt planne r m ight 

en j oy i f he were to apply t his m ethod to t he routing and scheduling 

problem. t s greatest advantage i s that it p rovides a fram ework 

for t h e solution of com lex p r oblem s . The de gree of t he frame ­

wo r k can vary from a simple hand computation sche m e condu cted 

by a single movement p lanner, to an elaborate autorm. ted r outin e 

to allow fo r t h e information sto rage necessary to handle large , 

full s ca le problems. In eithe r case, the m ethod p r ovi des a 

rational appr oach which allows ample r oom for s ubjectivity in 

choice, but also poi nts out t h e rea s ons fo r the choice . 

Another advantage of t he rocedure is that it is a 

dynamic m ethod that is designe d! to adapt t o revision, addition, 

o r dEletion of goals . H flexibility permits a h igh d e gree of 

direc lanner participation; or i can use previou sly gathered 

p referen ce data to indicate cons"stent choices without p lanner 

participat ·on. 
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Ill. 3 Applica t ion of t he Choice P rocedure 

III . 3 . 1 Goal Analysi s 

Now t hat we have seen h w t he m ethod o e rates, we ca n 

describe the particulars of t he appl 'cat:i.on of t his m ethod t o t he 

r outing and s che duling p roblem . The first step is t h e goal fab ric 

a nalysis . 

We can say that t he overall goal of deploying a for ce 

pa ckage is to m axim i ze t h e military effectiveness of th e deploy­

m ent . But we m ust de ine what we m ean by m ilitary effective­

ness ; and once we defin e th term we m u s t de ide how to m a x imi ze 

it. In fa ct, w e s hould even become s o basic in our a pp r oa ch t hat 

we ask ourselves who -' t is t hat decides t he m easure of m ilitary 

effectivene s s . Cl ar y , t he CXNC is concerned with thi s a bility 

t o wa ge wa r . He woul d like t o g've l' tle t hought t o considera 'ions 

of transporta tion re ource a vailability and term inal congestion. 

To t he CINC, m aximum m il"tary effectiveness m eans delivering 

ea ch unit of t h e force pa ckage a t t he re u ested time a nd a t the 

requ e ste d place. 

On t h e ot her ha nd, the movem ent planner may find it 

impossible t o meet t he CINC's exac ing requests . His concep­

tion of maxim i zing m ilita ry effectiven es · may be to deliver ea 

unit as closet t he desired delivery date as possible while ob ­

s erving th e resource constraints imposed by · im i ed moveme nt 

capa bility. T he planner m ay a lso attem pt to r oute as many units 

t h r ough the desirtd ports of debarkation as ossible while ob serv= 

ing t he ca a 'ty constraint s of t he term ina sand links ' n t he 

transportation network. 
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There a re ot her _. ndivi dual s who view t he p r ob lem from 

othe r po "nts of view. Fo r example , hos e responsib le for t rans­

po rtati on r esource m aintena n ce m ay ee t he n e e d fo r periodic 

mai nten a n ce c hecks if t hey are to guarantee a ny r e s ource avail ­

ab ility. Thus, t h e planner a nd t he CI:;.\J"C m ay have t o a c ce t a 

redu ced capab ility i n o r der t o a llow for t he maintena nce checks. 

A lso, a port cap tain m ay see the prob lem only as one of 

re ceiving each unit, p rocess i ng it, and arrangi ng for shipme nt. 

He may accept each un:t as it a rriv es in t h e port a r e a with little 

or no regard for p rioritie s . T h e resu lt bei ng t hat a critical 

s h ipme nt cou l d b ecome de layed due to p o rt congestion. 

The s e are s ome of the considerations a n d the p eople 

t hat d efine t h e term mil~tary effe ctive ness. The i mportant p o int 

is that no one m easu re of t his variab le c ould possib ly please a ll 

t hose affected by t he deploym ent . The approac h :i.n t h choice 

process is t o const r u ct t h e goal tree out of a ll th ese consider­

ations a nd viewpoints. 

We have now decide d t hat the objecti v e of t h e choic 

p r o c e dure is to select t hat movem e nt plan w hich m axim izes 

m ilitary effecti e ness . T he ne xt step , as p r esented in Section 

III. 2. 2, i s t o expand t h e list of goals fr om t he ge ne ral goal t o 

t h e n ext level goals (sh own as leve l 1 in F i gure 3. 1). In o r der t o 

e xpand t he list w e ask t he qu estions, "What do es m axim ize 

m ilitary effectiv e ness mea n ?" A nd , "How do we ace mplis h 

t his goal?" 

The first goal at l evel 1 is fl exibility. T h is goal ·· s 

i m portan t o both t h e mov e m ent planner a nd the CINC o r t he 

r easons detailed in Cha t er I. Aft e r establishi ng flexib il-"ty as 
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a l ev el 1 goal , t h !C p lanner mu t ask on ce again what the goal 

m eans and how "t can b e a chieved. The a nswers t o t hese ques i ons 

e nable t he p anner t o m ove t o le ·e of 2 of he goal tree {F i g. 3. 1) . 

No ice t hat t he evel 2 goa l s under flexib ility say t hat t he effective­

ness of a d ep loym e nt i s artially dep e nde nt u on, 1) t he m ilitary 

valu e of each s hipment aga ins a pa rticular stage of t he enemy 

t h reat (thi s goal m odels t he CINC 's desire t o reta in t he capa b ility 

t o a dj ust t o unforeseen circums t a n ces), a nd 2} t h e value of t hat 

shipme nt with resp ect t o a ll t he ot he r shipments { here i s where 

t he pl a nne r decides what it " co ts " t o p r ovide t he requ ested 

fl exib i" ity ). T hi s e ample s hows t hat constru cting t h e goal tree 

do e s indeed defin e m i ita ry effectivenes s in term s of all t hos e 

parties con cerned with th e deployment . 

Now we move t o each leve l 1 goal i n u ccessi.on and ask 

what it mea ns a nd how i can be a chieved. (Each of t he se goals 

i s shown i n F i gu_ e 3 . 1 and is define d in Cha pter I. ) 

In considering t he goal of vulnerab ili y , we determ in e 

two areas of importa n ce. F irst , w e must consider t he p r obability 

of individual unit delays due to conge s tion of term ina ls and links . 

T h e dela y m ay b e unavoi dabl e in som e case s , but at other tim e s 

re- r outing of critical units m ay relieve the congestion. 

T h e s ec ond area of concern is t he loss of s ome pha s e 

of t he CINC 's capa b ility due t o e ne m y a c t ion o r weathe r. The 

planner must cons i der the possibility of splitting units i n o r der 

t o in crease t he probability that the C.INC will reta in at least s ome 

de gr ee of ca ab ·· i yin a 1 t he phases of h is war~making effort . 

Usin g i s sam e pro cedure and cons ideri n g t he details 

of Chapter I, Section I. 4, the p lanner can m ove t h r ough t he 
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level 1 goal s and establ ish t h e goal tree of Figure 3. 1. Notice 

the descrip tion "completed goal tree" i s not u sed. This m ethod 

is de s i gne d t o a ccep t cha nges in t h e goal st r u ctu re a nd t he addition 

o r de le t i on of goals at any tirre . The goal fab ric t ree pre s ented 

h ere represents the aut hor's concepti on of the r outing and sch e d ­

u ling choice p r oblem goal st r ucture. T h e goals d escrib ed a nd 

t h e i ntera ctions defined s h ou ld b e que s tione d a nd refined as 

more exacting techniqu e s a re develop e d to m easu re the va riables . 

It must b e s tressed t hat regardless of t h e s hap e o r c on ­

t e nt of t he goal fab ric, t h e choice p r o cedure can b e a pplied t o 

s elect t h e p referred alternati ve . The particulars of t h e example 

p r oble m a r e offered p rim arily as a stimulu s for fu rther resea r ch 

in t h e p r ob lem a r ea of complex goals . 

III. 3 . 2 Ma pping t h e A lternatives 

T h e next s t ep in t he choice p r ocess is t o m ap t he a lter­

nativ e s ont o t he goa l fab ric. T h is entails d eciding W1 ich goal s 

can b e p redicted and t h en listin g t h e p redictions (see F i gure 3. 2). 

Note that m apping a n alternative onto the goal fab ric require s a 

unit of m easu re over each goal. I n s ome cases t h e m ea s u re is 

qua ntifiable and directly applie d . For exam ple , clos ure tim e i s 

m easured in days. Under t h e goa l of unit effectiveness , t h e tim e 

a particular s hipme nt spends in trans it can be m easured i n days . 

A lso, a m easu re of t h e fragm e ntation of th e s h ipm e nt is t h e 

numb er of veh i cles r equired to tran s port it . 

.In m a ny cases the m easu re over t h e goals cannot b e 

qua ntified. When t h is occur , t he planner must exercise his 

s ubjective i m ress i on of t he goal as a m easu re of t h e goal ' s 

valu e. T h e goal, valu e of tha t shipment with r e spect to other 
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s hipm e nts , i s difficult if not im pos sib le t o qua ntify. However, 

t he pl anner can rank t he a lternative over t hat goal s ubjectively 

with rankings s u ch as "good" or "p oor to fair ". In most i nstances, 

t h i s typ e of ranking will be s uffi cie nt t o mov e t o t he next hi ghe r 

level. If at any time t he planner feels unce r tain about t he r a nk ­

ing, he s hould delete that goal from th e decision pro cess . 

B efo re m apping the alternative s ont o t he goal fab r ic, 

we m ust note a few particula rs of t he singl e resou rce mode~ 

Notice , fo r exam ple , t hat th e goal flexib ility i n F i gure 3. I doe s 

not reflect quite t he sam e m eaning as it di d in Chapter I . In 

t hat chapter, t his goal was intended t o reflect t he cos ts in curred 

by shipping a unit by one m ode vice a not her mode in or de r t o 

guara ntee t hat it would be available t o t h e CINC at a ny tim e. In 

t he s ingle r e s ource m odel , we cons i der only one mode {aircr a ft) . 

Therefo r e, each shipm ent will always b e available if neede d 

unexpectedly. 

Si nce we have on ly one m ode in thi s m odel, t he l evel 2 

goal t hat reflects t he cost in curred by shipping over one m ode 

v ice another mode has been deleted from t he a nalysis. As a 

result, t he goal of flexib .. lity will m odel only t h e effectiveness 

of ea ch shipment of th e deploym ent with respect t o t h e m ilita ry 

t h r eat a nd the va l ue of each s hipme nt t o t he s hipments that com­

plim e nt it . 

We b e gin mappin g t h e alternatives ont o t he goa l fa b ric 

by cons i dering first P r oblem 1 and P r cblem 2. The pre dictable 

goal s have been listed i n F i gure 3 . 2 a ong with t h e m easu re over 

each goal. Notice t hat som e m easures can be quantified w hile 

ot hers are subjective and express the pa rticular experien ce of 

the planner . 
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In selectin g t h e b e st plan betwee n 1 and 2, we conduc t 

a pair-wise compar i son over all t he goals. Consider first t h e 

goal of vulnerab ility. Over t he l evel 2 goal of p r obability of 

delay due to congestion, t he planne r feels t hat P roblem 2 is 

prefe rred. His reasoning may b e a s f ollows. In P roblem 1 

both of the heavy units (armor and me chanized infantry ) are com ­

p eting for those fa ciliti es t hat offer heavy duty equipment. How ­

ever , in P r ob lem 2, half of the m echanized units are s h ipped in 

activity (3, 4), b efore the a r mored s hipment b egln s. As a result , 

there s houl d be l ess conge st i on at the heavy duty terminals . 

Movi ng t o t he next goal of F igure 3 . 2, probability of 

capability loss, t he planner prefe r s 2 over 1. Thi s is b eca use 

t h e two infa ntry capabilities have b een re-defined and combi n ed. 

We now move a cross t h e leve l 2 goals t o th o se consi der­

a tions under fl exibi lity. With respect t o ea ch of the two goals 

(value against m ilitary t h reat and valu e to ot her shipme nts ), the 

planner fe els t he alternative s are equally effectiv e . 

In considering the goal of comma nd stru ctu r e under 

un it effectiven ess, we see that the tw o a lternativ es are again 

consi de red equal. However, the tim e i n t rans i t goal has bee n 

affected and the planne r p refers a lternativ e 1 over thi s goal. 

Notice t hat the cl osure tim e of t he air-bo r n e units i n creases from 

6. 54 to 7. 9 days for P roblem 1 t o P r oblem 2 . ~hown in Tab le 2. 1 ). 
·' Since these units ar t he first line of defen se, t h e CINC would 

want t h e m as quickly a s poss ib le. 

A lso, re - d efin ing the i nfantry units has i ncreased t h e 

closure t i m e of a ctivity (3 , 4), the first i nfantry- m echa niz e d 

i nfant ry combination, from day 6. 54 to day 7. 87. Si m i arly, 

a ctivity (5 , 6) doe s not close until day 16. 95 (vice 16. 17 for 
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Probl em 1 ). T hus, in regard t o tim e in transit and clos u re 

tim e, the p lanner refers P rob lem 1 t o P roblem 2. 

Afte r t h e pair-wise comparisons over each goal a re 

completed, t he next step is to move up one level in t he goal 

stru ctu r e f r om t he predi cte.ble goal s t o t he next level goals. 

In F i gure 3 . 3, h e prefe r ences deter m ined in F i gure 3. 2 have 

b een recor ded on t he p redictab l e goals of t he goal fab ric. Note 

t hat a 1 m eans t hat P roblem 1 is p referred and a 2 m eans that 

Problem 2 i s p referred. An = m ea ns that both p lans a r e e qual= 

ly effective . 

In moving t o the next hi gher l evel we utilize t he tech ­

ni ques p r esented in Section III. 2. 3 fo r condensing t he data into 

a choice. Referring t o F i gure 3 . 3, it is apparent t hat we ca n 

transfer the p references directly t o t h e level 1 goal s beca use 

one alternat ive i s domi nant over each br an ch of t h e tree at 

l evel 2 (see T echni ques (1) in Section III. 2. 3, Dominance) . 

Fo r example, Problem 2 · s p refer red over both the probab ility 

of delay du e to congestion and h e p r obability of loss due to enem y 

a ction. Th erefor e , P r ob lem 2 must b e p referred over th e next 

hi gher goal of vulnerab ility. 

It is not quite so apparent what alte r native should be 

transferred f r om level 1 to level 0. We see in F i gure 3 . 3 tha t 

both are equally effec ive over flexibility, but P r oblem 2 i s pre ­

ferre d over vulnerabil"ty. However, Alternative 1 is preferred 

ov e r bot h unit effect"veness a nd closu re tim e. 

At t his level, th e planner may have t o m ak e an explicit 

choice as t o which is t he preferred alternative (T echnique (2)) . 

Fo r i ns tan ce, intelli ge nce data may i ndicate t hat t he enem y 

does no possess the capabil"ty t o inflict losses on our units 
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w h:i e t h ey a re i n trans it. Based upon t hi s i nfo r m ation, t h e 

planner may decide t hat t h e overridi ng c on sideration i s "t o 

get t h ere fa ste st with t he mostest ". L et u s assume t hi s i s 

i n deed t he cas e . Thus , a lternati e 1 is transferred to t h e 

level 0 goa l a nd i s t he p referred movem e nt plan. 

Now t ha t Alterna tiv e 1 has b een ide ntified a s a 

lik ely choice f or th e optimal plan, we compare it in t he sam e 

way with a new a lternative , P roblem 3. F i gure 3. 4 s h ows t h e 

p redictabl e go·a ls for t his choi ce p r ob lem a nd the pa ir-wis e 

comparisons. 

Notice that alternati ve 3 i s p referred to alternativ e 1 

over t h e vulnerab ility goals for t h e sam e reasons t hat a lter­

na tiv e 2 was p referred. Also, t hese two alterna tive are no 

l onge r equally p referred over flex ibility. The value of activ ity 

(5, 6) with resp ect to t h e m ilitary situ atio n has decreased i n 

alterna tive 3 b ecaus e it does not clos e until day 17. 00 (vs. day 

16. 17 i n P r oblem 1 ). This o ccurs even t hough t h e unit effe c ­

tiven es s of t h e activ ity has i n creased beca u s e it spends le s s 

tim e in transit {8. 23 vs . 9 . 4 2 days ). Thi s decrease in trans it 

tim e causes an in creas i n t h e goal of command st r u ctu re m a i n ­

tained for a ctivity ( 5, 6). 

However, b efo re we can say t ha t 3 i s p referred ov r 

t hat goal , we must c heck t he other critical units. .In Alter­

native 1, a ctivity (0, 4 ) closes at 6. 54 days (vs . 7. 90 fo r 

Alterna tiv e 3 ). Also, a ctivity (3 , 4) closes at day 6. 54 with a 

du ration of 3. 62 days (vs . 7 . 77 and a durat -" on of 4. 86). Thus, 

even though 3 is p referred over activity (5 , 6), P rob lem 1 i s 

p referred o er t h e goals of comma nd stru ctu r e a nd tran s it tim e 

b eca u se th e p rim ary considera tion is s till t he delivery of t he 
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fi ght ing units a s qui ckly a s pos sible . 

Based upon F i gu r e 3. 4, t he p references have been 

m apped ont o t he goal fabric of F igure 3. 5. On ce a gain we 

move t o the l evel 1 goa ls be caus e a ll bran ches of t he tree a r e 

dominat ed by one of the a lter native s . Also, the p lanner must 

make t he explicit choi ce of a lternative 1 to move t o t he level 0 

goal be cause t he vulne r abi ity advantages of Alte r native 3 coupl ed 

wi th the de cr eased durat ion t :i.m e of a ctiv ity {5, 6) a re not e nough 

t o offs et t he fact that t he critical units a ctually r ea ch t he com ­

bat a r ea s la.ter t han in Alternative 1. 

Once again, P r oglrm 1 has p r oven to be the better 

plan. Now we condu ct a pair-wise compa r i s on of 1 a nd 4. 

F i gur .e 3. 6 shows t he pre dictabl e goa l s a nd the pair-wise com­

pa ris on over t he goals . 

Over the goal of vulnerability we see that Alte r native 4 

i s preferr ed fo r t he sam e reasons 2 and 3 were p r eferred. Now 

we conside r t he two goals a · level 2 under flexibility. F i rst, the 

m ilitary value of tha t s hipment w i:th r espect t o the enemy' s 

threat. Cl early, Alternative 4 is p refer red t o a great degree 

because the firs t combat units a r rive at day 2 instead of day 

6. 54 a s in Alt er native 1. However, t he value of t he shipment 

with respect t o other s hipments is less for Alt e r nat ive 4 t han 

Alt e r na tive 1. This i s becaus e allocating s o much resource to 

{0, 4 ) has dive rted resources from (0, 1}, (0, 2} , (3 , 4) , and (5, 6) 

a nd increased their duration tim es . 

We move now to t he goa ls at level 2 under unit effective ~ 

ne s s . Clearly, Alt e r native 1 is p r efe rre d over command st r uc­

ture and tim in t rans ' t beca us e , even t hou gh t he duration of 

(0, 4) and (4 , 6) have de creased, the du r a tion of (0 , 1), (0 , 2), 
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(3, 4 ) , (3, 6), (2, 5) and (5, 6) have i ncreased. Also, t h e closu re 

t i m e of 4 is 19. 85 days (vs. 16. 17 for 1 ). 

These p r eferences have b e en m apped ont o t he goal 

fabr ic shown i n F i gu r e 3. 7. 

We can use t he technique of dominance to move fro m 

level 2 t o level 1 under the goals of vu lnerability and unit effe cl:-­

tivenes s. Under flexib ility, Alternat ive 4 i s preferred over one 

goal and Alternative 1 over the ot her. 

In order t o move up t o th e level 1 goal of flex i-

b ility, the compa rison of intervals technique must b e used. 

We apply t h i s techni que by finding the interval bet w e en t he 

alternatives on each goal and then dec ide how the intervals com­

pare wi t h each other. From F i gure 3. 6 th e int erval over t he 

goal of m ilitary valu e agai ns t e n em y t h r eat i s Low for Alterna ­

tive 1 t o Hi gh for Alte rnative 4. A nd over t he goal of valu e with 

respect t o t h e ot her shipments, the in t erval i s Hi gh for Alt e r ­

native 1 t o Medium for Alternative 4. 

The next step i s to d ecide how the i ntervals compar e 

w ith ea ch ot h er. F i rst consider t h e i nte r val Low to Hi gh over 

the fir s t goal. Thi s interval rep resen ts the fa ct t hat Alte r na tive 

4 delivers t he first comba t capability in two days ve rsu s 6. 54 

days in Alternati ve 1. The second interval of Hi gh to Medium 

ove r the goal of value of the s hipment with r espect to t he othe r 

shipme nt s rep resents the in crease in t h e du r a tion times of t h e 

critica l a ctiv ities (3, 4 ) and {5, 6) i n Alte r nat iv e 4 over t he du r a­

tion times of Alt e r native 1. The i n cr eas e s are 3 . 65 day s f or 

(3, 4 ) and 2. 9 days fo r ( 5, 6). T he planner must decide how 

thes e i nterva l s compare with ea ch other. 
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. e 

III. 4 

L et us assume once again tha t t he ove rridi ng concern 

exp ressed by t he CINC is t o stop t h e e ne m y as quickly as pos ­

s ib le. Based upon t hi s criteria , t h e p la n ner determ i nes . t hat, t he 

i n t erval of 4. 54 days b etween t h e arrival of activity (0 , 4 ) i n 

A lternative 1 a nd A lternative 4 s hould govern t h e decision. As 

a result , h e accepts t he delays i n t he combat units of (3, 4 ) a n d 

( 5 , 6) a n d choose s A lterna tive 4 over t he goal of flex ibility. 

The fina l s tep is t o move from level 1 t o le v el 0. Note 

t ha t A lte r native 4 is p referred over v ul n e rability a nd flexibility, 

a n d A ltern a tive 1 is referre d o ver unit effectiven es s a n d closu re 

tim e. Sin ce h e i s n ow faced with a s m a ll subset of goal s, th e 

p lanner ca n evaluate t h e trade- offs a nd choices m entally and 

exp ress a refe r en ce at t h e level 0 . 

.If he were cons i stent i n h i s a pproa ch t o t he choice p r o ­

cess , h e woul d recogni z e t ha t h e CINC must receiv e s om e com ­

bat units as u ick ly as possib le ' n order t o de ny he en e m y t h e 

in itiative. A s a result, h e woul d relu cta ntly a c cept t he in ­

creased clo s u re tim e of A lterna tive 4 in o r der t o put fi ghting 

units in to t he field a t t h e e nd of day 2. 

P lan num ber 4 is t h e optimal of t h e four a lterna tive s 

consi dered. 

Summary 

Thi cha ter has resented in s ome deta il a p r opo sed approa ch 

t o t he problem of choice in light of t he complex goal stru ctu re of t he 

r outing a n d sch eduling p r oblem . In Section HI. 3 t h is p r o cedure was 

a pplied t o t h e alte r natives develope d i n Chapter II a nd a n optimal p lan 

s elected . 
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.It i s i mportant t o r e a liz e t hat the c hoice p r o cess does not occur 

i n t he qu iet a nd o r der of t he acade m ic a t mosp he r e. It i s a dynamic p r o ­

cedu re capab le of a ssuming many fo r m s a s t h e p riorities of a d epl oyment 

change in re spon se t o m a ny i nflu ences . Thus, it is espe cially important 

o note Section IlL 2. 3 concern in g the in fo r m ati on availa b le t o t he move­

m e nt p lanner. 

It i s evide nt i n t h e examp l e of t h e p reced in g secti on t hat the 

p r oblem of choice is s i mplified i f t h e lanne r i s continua lly awar e of 

t he CIN C 's a pp r a isa l of t h e m ilita r y sit ua tio n. Si n c e t h e m ili­

tary s ituation can b e expected t o change r api dly , t h e p la n ner must m oni­

t or t h e i nfor m ation sources at a ll times in order t o b e aware of s h iftin g 

p rio r itie s. 

We can con clu de, t h en, t hat the m a jo r importance of t he choice 

p r o cess is it s ability t o effectively d ea l w ith changing goal s . A lso of 

im ort a n ce is t he fact t hat t he p r ocess off e r s a f r a mewo r k f or con­

s id e r i ng c omplex goal p r oblems. 
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IV. 1 Introduction 

The overall ob jective of t h i s cha pt er i s t o pre s ent t h e necessary 

e nvi r onment for t h e a pplica t i on of t h e result s of Chapt e r s II and IH t o t h e 

problem of movem ent p lanning. In particula r , t hi s c hapter wi ll fo cu s 

upon s u ch aspe cts as t he l o gi ca l pro cesses, t he capabiliti es and lim i­

tati ons of t h e deta iled evaluat i on a nd choice p r o cedures, a nd the a lter­

na tive s fo r t he move m ent p lanne r . 

.In Se cti on IV. 2 t hese aspect s wi ll b e c onsi dered fro m t h e s t a nd­

poi nt of t oday' s move m ent p lanne r. The obj e ctive will b e t o s how how 

t he describ e d choice and evaluation p r o cedures can b e i mplemented 

using ava ila b le ha r dware a nd software. 

Se ction IV. 3 will cons i s t of a p r esentation of the author's con ­

cep tion of t h e i deal movem e nt p la nni ng pro cess . Most of these concepts 

are availabl e t oday in varyi ng de gr ees but m a ny r e qui re compl ex set - up 

pha s es. T h e ob je ctive of t h i s section w ill be to ind icate t he potentia lities 

of t he system and t o i ndicate a ge neral direction of travel t owa r d ful­

filling t he potentia lities. 

IV. 2 System Implem entation 

Cons i der t h e eval ua tion procedu re p re s e nted i n Chapter II. It 

i s impo r t ant t o note t hat t he m ath em atica l fo r mula tion of t h e move m ent 

planning model could se r ve as input to any lin ear p r ogr amming routine. 

The essentia l elem ent of t h e fo r mulation i s t h e mat he matical app r oa ch 

t o t h e p r oblem tak en by Gr oninger a nd not t he comput er hardwa re us e d 

fo r a sol ution. 

Although it may p r ove difficult t o b reak s ta n dard p r o cedure, t he 

c on cept of parti a l orde ring (which fo r ms t he foundati on of t h e e ntire 

p r o ced ure ) i s availab le t oday. In fa ct, wh en a CIN C p repares his fully 
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o r dered set of requirem ents , it i s i mp era ive t hat he make t he pa i r-wise 

c omparisons of t h e movem ent packa ges involve d i n th e deploy m ent . 

Therefore , i t w oul d be w rthw hile t o r eco r d t hese p receden ce relations 

b efo re t h ey get lo st i n t h e a ggregati on of a fixed ordering so t hat t he 

r out ing a nd s ch edu ling p r o cedu res ca n capita liz e on t heir i nherent 

flx ib ility . 1 Thus, t h e basic bools fo r i mp l em entation of th i s model 

a re availab le t oday. These tool s are t h e con cept of pa rtial o r dering 

which lea ds t o t he sch e duling n etwork and th e approximat ion t e chnique s 

used by Groninger in t h e model f o r m ul a tion. 

T h e model , i n its p res ent state, does have its lim ita tions . It 

was em phasized i n Chapter II that t h i s i s a single resource model. In 

a real world a t mosph ere, t he p lanner c oul d expect to en c ounter a 

multip le res our ce ty e proble m w here h e has vari ous lift capa b ilitie s 

at h i s di sposal. T he resou rce m ix coul d range f r om a l and, sea, a nd 

a ir capab ility it h va r y i ng du r a tion cu rve s hape t o m ixe s of d iffere nt 

a ircraft types. .In t h e latte r cas e , t he differe nt a ircraft r oductivit ie s 

wou ld cau se t h e C constant t o l ose it s effec iveness , 

c ::: Td 

p 
(4. 1 ) 

If p, a ircra ft produ ctivity, is allowed t o vary , t h en we no longer have 

a constant C value o m easu r e t h e w or k needed t o m ove a s h ipment . 

Thi s qu estion has b een con s i dered by Groni nger and wo r k t o 

date in dica es t ha t a -iable fo r mulat ·on i s pos ib e . 2 

Anot her lim itati on of t h e model has b een poi nte d out in 

Chapter II a nd i nvolv es t he scheduling of dummy a ctiviti es. I n or der 

t o a chiev e truly optim al re sults, t here s ho ul d b e no i dle re s ources p er 

tim e unit . However, even with t h is in c on s i en cy, th i s model p r odu ces 

h i ghly a cce tab le r esults. In a ddition , as long as t he pl a nner a nd th e 
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CINC are aware of t h e i dle resources , t hey can be used to move retro ­

grade cargo a nd evacuees; bot h of t h e s e tasks a re necessary during an 

ongoi ng d eployment. 

In Section II. 4. 1, t h e linear p r ogrammi ng model was s hown not 

t o b e an e nd in itself but ju s t one s tep in t h e evaluat ion p r ocess. It was 

shown t hat each move m e nt p lan must b e evaluated. f or consi d e rations of 

vuln erabil 'ty, flexibility and unit effect iveness. 

The output capab ility describ ed in Phase IV of th e p r opo sed 

Batch Pro cess i ng Mo ck - up compute r program (BPM) wa,u ld greatly 

a i d in evaluating a movem ent p la n. 3 This phase of t h e BPM woul d 

sort a nd p r o ces s he re sults of earlier phases and produce a numb er of 

d iffe rent reports. The p lanner c oul d sele ct t he report h e desires by 

means of an i nput ca r d. 

The types of r epo rts t hat would be useful i n determ i n ing t h e 

goa l trade-offs m i ght b e a s follows: 

(1) O r i gin , POE, a nd destinat i on tabulations---

For each of t hese l ocations, a tab le i s produ ced, c ontain i ng 

t he un 'ts moving t h r ough each point with a total of t onnage 

and pax fo r each D - day. 

(2 ) Subt otals f or ea ch ori gin, POE , and destination- =-

Thi s repo r t would b e th e same as in (1) except t hat only 

t ota l t onna ge and pax pe r D - day w oul d b e s hown. 

(3 ) Near capa city repo rt- =- -

(4 ) 

T hi s r eport wou ld s how only t hose figures in t h e (2) 

report wh ere above 90 o/o (o r a ny chos en pe rce ntage) capa ­

city i s used. 

repo rt - --

Thi s r eport wou ld contai n the number of rail cars and ships 
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b y area and tim e . 

As t he model now stands, only t he lin ear p r ogramming s t a ndard 

output i s availa ble. The a bove capabilit:es would b e of grea t b en efit t o 

t he pl a nne r . 

Notice t hat t h e choi ce p r o cedure of Chapter III is complet ely 

i ndepe ndent of t he m ethod f or ge nerat 'ng t he alte r natives. Thi s pro ­

cedure i s not subj ect t o t he lim itations of t he model formulation. T h e 

only lim itatibns .t h. choice pro G:e ss e ncounters are tho se imposed by 

t he decis i on make r . The p r o cedu re ca n only b e as good as t he goal 

fab ric constru cted by th e p l anner . And t h e planner's choice of a lter ­

natives can only b e as good as his use of t he availabl e information. 

Once agai n, th e need to continually m onit o r the deployme nt atmos­

p here i s imperativ e . 

To date , n o computer r out in e has b e e n develop ed to model t h i s 

pro ce dur e . However, t h e e xample of Chapter IH has shown that t he 

general fram ework of t h e p r o cedu re i s quite adaptable t o hand com­

put a tion. In fa ct, t h i s i s a pa r of the pro cedure's s trength. It 

e n coura ges t he p anner t o approa ch a com l ex goal problem from t h e 

most basic e lem ents hr ough t he goal tree t o the event ual choice. Any 

c oding of t h e p r ocedu re s houl d retain the planner interacti on capa­

b ility a nd remove only t h e bur densome calculations and provide con­

venient stor age facilities . 

In Se ction IV. 3 we shall s ee how t hese capabilities can b e 

a ccomplishe d. 

IV. 3 The Ma n - Machi n e In eraction 

The objective of a m i 'tary dep loy m ent is t o maxi m ize the 

m ilita ry effe ct'veness of the deploying f orce a nd to obtai n t hat effec-
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tivenes s from t he pool of available res ources . The refore, t he basic 

pla nning problem i s how t o de cide between alternative ways of us in g 

r es ources s u ch that t he maxim um m ilitary effectiveness ca n be obta ine d. 

T hese decis i ons are difficult to make becau se t he complexitie s of 
I 

a dep oym ent overwhelm . t he l ogic of t he huma n m i nd. Even the mo st 
I 

experien ced pla nner will find h 'm se lf unable t o cope with th e complex 

projects created by a dvance s in technol ogy. The precedence con­

s tra ined optim i zation approa ch a nd t he result ing scheduling networ k , 

coupled with the u se of computers t o a na ly ze the network , are answers 

t o t he planners need t o extend hi s knowledge and more firm ly exerci se 

hi s control over t he deploym ent . Th e l ogic of t h e p la nnin g networ k a nd 

t he sp eed of t he computer e nab le t he pl anner to evaluate alte r native 

pla ns before m a king a choice. 

It i s unwis e, how ever, t o expect a compute r to produce a com plete 

s olution t o a pl a nni ng p r oblem . The com puter can pre dict accor ding to 

t he r ules it has been taught , but s ome p r ovis i on must be made so that 

t he planner can gui de the ca l culations a long p refer r ed pat hs . F o r t h i s 

r eason, t he m ost effective way of m axim i z ing t he effect'ven e s s of a 

dep l oyment requi res a comb ' nation of t he pla nners judgment over th e 

areas of uncerta inty a nd the compute r's lo gic t o analyze t he im pa ct of 

t he uncer t a inty on t he fa ctua l data . 

A fl ow chart of a possib le dynamic p a nning model i s s hown in 

Figure 4. 1. Notice t hat the evaluati on and choice p r ocedures of 

Chapte r s I a nd II are shown in t he iteration p r ocess of Ge neration of 

Alternatives - Ana lysi s - Impl em entation of Al ernatives - Observa­

tions on t he System. Note t ha t t he Observation of t he Syst em m ay a lso 

lea d t o a revi s i on of t he deploym ent ob jectives. T his revis ion of ob j ec ­

tiv e s i s an extrem ely importa nt featu re of the model because it a l ows 
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t he planner t he be nefit ofleaming th r ough exp er ien ce. As a result , a t 

any s t a ge during t he evaluation and choice process , t he p lanne r has t he 

capability t o re-define t he objectives in terms of new info r m ation. The 

new objectiv e s can t hen be us ed t o genera t e new alternative s, t o a lter t he 

criteri:a · for s election in the choice p r ocess, or t o do bot h. 

It may be feas ible t o p r ogr am a computer t o make t hese de cis ions 

a ccor ding t o some fixed logic over a pa rticul a r sch eduling network. In 

fa ct , it i s p referred t hat standard values b e provi ded s o t hat t he p lan -
4 ner need not delay the computer when t he s e quen ce proc e eds as expe cted. 

How eve r, one cannot possib ly fores ee t he many peculiarities of ea ch 

depl oyment . The planner should be able t o "manage by exception" and 

repl a ce t he s tandard va lues where necessa ry. 5 

This typ e of man-machin e int era ction requires a hi ghly int e r­

a ctive tim e-sharing, remote a ccess computer capab 'Uty. T he planne r 

s houl d ha ve a cces s t o t h e computer at each stage of t he p r ob lem , but 

need not always interrupt t h e p r ogr a m. By u s ing a t im e-shar ing system, 

he ca n do thi s most economica lly . 

The i dea l system woul d have a p r obl em o r i e nted langua ge capa­

b ility t o a llow t he p anner greater flex 'bil'ty and more rapi d uti i zation 

of t he system. Al so, t he i deal system would in clude a graphi c output 

capabi ity t hat would p resent information t hat i s diffi cult t o convey in a 

print ed line, Such a capab · 'ty would enhance t h e unde r s tanding of t he 

p lanner as he r eads t he output and a s o enab le him to interpret it s 

m eaning mu ch more rapi dly. 

It i s im port ant t o note t hat t he i deal capabilitie s descr' bed above 

would be desir e d only if t he sys e m were t o b e fully implem ented and 

use d extens ively. It i s fairly exp ens ive and tim e consuming t o develop 

gr aphic and p r ob em - oriented anguage capa b ili ies. Al so, r a t he r t han 
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purchase a tim e-sha r ing capability fo r a lim ited number of move m ent 

p lanning p r oblems , it woul d b e l ess expen s ive and mo re di rect to use a 

dedica t ed m a ch ine and operat o r combination. 

The s e t rade - offs, of course, could not b e i dent:i.f:i.ed i n thi s 

r eport and must b e decided by th e i ndiv idual planni ng agency. 
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V. Summar y and Conclusi ons 

The obje ctive of thi s repo r t was to p resent a new app r oach 0t o th e 

r outing and sche duling p r ob lem. T he n e ed fo r suc h a d epartu re f r om the 

traditional p r o cedu r e s has b een crea ted b y the g rea t s tride s a c hieved i n 

t he t e c hnol ogy of dep l oy m e nt hardwa re. B e caus e it is pos s ible t o move 

a d iv ision of troops i n a matter of day s today, i nstead of week s or mont hs 

as in t he early 50's , closure tim e i s no longe r the s o le m easu re of a 

d ep l oy m e nt's e ffe ctiv e ness . The dep l oyment atmosphere is dy namic, 

and th e movem e nt p l anne r m ust c onsid e r the whole r ange of goal 

variab les if he i s to adapt to the constantly changing d ep l oy m e nt e nvir­

onme nt. As a result, goal s su ch as vul ne rab ility, flexib i lity, and unit 

e ff e ctive n e ss have assumed new importance. Si n c e th e s e goals a r e 

difficu lt t o quantify and measure, t h e new manage m ent t e chnique s 

n ece ssa ry t o fu lly exploit adva n ce s i n te chnology must a c ce pt t heir 

sub jective na tu re and i n clude the m i n t h e decision p r o ce s s . 

.In Chapter I t he goa l v ecto r wa s d e veloped i n some d etail a nd 

the concept of t he goal fab ric was introdu c ed. The goal f ab ric i s i ntended 

t o s how t hat each of t he goal variab les is d ep endent upon th e others. A 

change a t one l o ca tion of the fab ric wi ll produce some distortion t h r oughout 

t he fab ric . 

.In or der to give t he C.INC and the movement planner more flexib ility 

i n the planni ng p r oces s , t he c oncept of a p artia lly o r d ered set of require­

ments wa s p resented in Chapter .I. It was show n that s u ch a n o r dering 

is b en eficial fo r several reasons . F irst, t h e C.INC i s not depende nt upon 

any p redicted build - up r ate. He exp res s es pair-wise p references over 

t he crit ' cal elem e nts of the de ploying f o rce a nd the plann er m eets th ese 

p referen ces with the ava ilab l e r e s ou rce capa b ility. The s e c ond b e n efit 

of partia l ordering is t hat the planne r is n ot tied t o a sin gle fixed s equ e n ce 
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of a rr·vals whi ch he must m eet. He i s free t o wor k within t he lim it s of 

resource and unit ava ilability a s l ong as he delivers t he unit s in a ccor d­

ance with the CINC 's partia lly ordered list of requirem ents. 

A result of he pa r t ially ordered lis t of requi rements and unit and 

resour ce availability is t he sche duling networ k. .In Chapter II, t he 

networ k was presented as t he basi s for s everal eva luation m et hods 

including the hueri stic app r oa ches of t he critica l path techn · que s. 

After a study of t he s e m ethods , it was decided t hat the analytic appr oa ch 

of t he linear p rogr amming for mulation best modeled t he r outing and 

schedu ing p r ob em. It was shown, however, t hat t he model describ ed 

must b e refine d before i t can b e cons ide r e d operationa l. The major 

lim itations of t he model are t hat it does not satisfa ctor· ly handle 

dummy a ctivities a nd a multipl e res ource capability is not fully devel op ed. 

Since t he linear p r ogramming model i s de s i gne d t o m inim i ze deploy­

m ent closure tim e , it wa s necessary t o apply certain post -optim al adjust­

m ents to t he scheduling network in o r der to reflect cons·derat ·ons over 

t he entire rang of t he goa l fab ric. In t hi s way, a lternative move m e nt 

plans were dev eloped that reflected he r elationships and trade-offs 

among the goal varia b les . 

The next step in t he process i s he choi ce procedu re. In Chapter IH, 

t he m ethod of choice a mong t he a lternativ e moveme nt plans was p res ented. 

Thr oughout t he chapter t he importan ce of t he dynamic nature of t he pro= 

cedure was e mphasi z ed. It was s hown that t he p r oces s was capable of 

adjusting to t he addition, deletion, or revision of t he goa ls at any tim e 
' during the choi ce p r o cess. 

The p r im a r y b enefi t that t h p anner gains from t he choi ce p r ocedure 

i s t hat it give him a fra m ework f or analysis in an ot herwise complex 

p r oblem. Hopefu ly, t he p r ocedu re will cause t he planner t o go t o t he 
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center of t he p r ob l em and, as he works hi s way th r ough t he goa l fab ric, 

to develop new insights i nt o t h e complexit:es of t he goal var'ab les. 

The conclu s ions to be r ea ch ed c on cerning t h e e aluation a nd choice 

p r o cedure a re p re sented in Chapter IV. It i s impo rtant t o note t hat the 

basic con cep ts are available a nd could b e imp leme nted t oday. Although 

t he model i s in ne e d of further refin e m e nt, t h e i de a of par ial ordering 

and t h e constru ction of a s cheduling network could b e -' m p lem e nted 

_.mmed:l.ately. Also , t he aut hor has no knowledge of a ny attempt s t o 

code t h e choi ce p r o cedur e. Howeve r, t he basic structure rem ains a t 

the planners disposal t o a id in orderin g a n ot herw:i.se overwh elm ing 

choice problem . 
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