
AN ADAPTATION OF THE HERSHEY DIGITIZED
CHARACTER SET FOR USE IN

COMPUTER GRAPHICS AND TYPESETTING

Patrick Michael Doyle

nmnimiN*
NAVAL WSTOWWKTI

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
An Adaptation of the Hershey Digitized

Character Set For Use In

Computer Graphics and Typesetting

by

Patrick Michael Doyle

June 1977

Thesis Advisor G. L. Barksdaie , Jr

Approved for public release; distribution unlimited.

T178624

SECURITY CLASSIFICATION OF THIS PACE (Whmn Data ISntarad)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE <md 5u6<irl*.l

An Adaptation of the Hershey Digitized
Character Set For Use In Computer
Graphics and Typesetting

5. TYPE OF REPORT * PERIOD COVERED

Master's Thesis:
June 1977

«. PERFORMING ORG. REPORT NUMBER

7. AUTHOR^

Patrick Michael Doyle

a. CONTRACT OR GRANT NUMBERf*.)

9. PERFORMING ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA * WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME ANO ADORESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE
June 1977
13. NUMBER OF PAGES

170
14. MONITORING AGENCY NAME * AOORESSf/ dilUfnt from Controlling Otilcti

Naval Postgraduate School
Monterey, California 93940

IS. SECURITY CLASS, (ol thla report)

Unc lassified
IS*. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol thla Raport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of In* ibatrmct antarad In Block 30, II dllfarant from Raport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlmia on tararaa aid* II nacaamary and Identity by block numbar)

Computer typesetting, digitized fonts, text processing,
typeface, fonts, vectors, Hershey

20. ABSTRACT (Conllnua an tlWH tlda If nacaaamry and Idantlty by block mtmbar)

Font definitions of 1377 characters of various styles
developed by Allen V. Hershey were used as an initial
data base. His character definitions were first put into a
form suitable for use by vector graphics display processors,
and then these vectors were converted into dot matrix form
in a variety of point sizes. This conversion and digitiza-
tion process was done using the C programming language; the

DD
, BE, 1473

(Page 1)

EDITION OF I NOV St IS OBSOLETE
S/N 0102*014-6601 |

SECURITY CLASSIFICATION OF THIS PAOE (Whan Data Kntarad)

fuCUWlTY CLASSIFICATION OP THIS B»GEf*^«i O-lm EntmfJ

host computer was a PDP-11/50 with the UNIX operating system,
and the computerized typesetting was done on a VERSATEC
1200-A printer/plotter.

As a result, a large data base for use in computerized
typesetting has been developed. In addition, the computerized
typesetting system at the Naval Postgraduate School has been
improved and adapted to make use of the large number of fonts
now available

.

DD Form 1473
. 1 Jan 73

S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGECW**" Data Entarad)

Approved for public release; distribution unlimited.

An Adaptation
of the

Hershey Digitized Character Set
For Use In

Comouter Graphics and Typesetting

by

Patrick Michael Doyle
Lieutenant/ United States Navy

8.S., United States Naval Academy, 1971

Submitted in oartial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

f rom the

NAVAL POSTGRADUATE SCHOOL
JUNE 1977

005

LI l*Wft UDIUUtl

MVAL POSTGRADUATE SCH081

ABSTRACT

Font definitions of 1377 characters of various styles

developed by Allen V. Hershey were used as an initial data

base. His character aefinitions were first out into a form

suitable for use by vector graphics disolay processors? and

then these vectors were converted into dot matrix form in a

variety of point sizes. This conversion and digitization

process was done using the C programming language? the host

computer was a PDP-11/50 with the UNIX operating system, and

the computerized typesetting was done on a VEPSATEC 1200-A

pr i nter/ol otter.

As a result, a large data base for use in computerized

typesetting has been developed. In addition, the computer-

ized typesetting system at the Naval Postgraduate School has

been improved and adapted to make use of the large number of

fonts now availaole.

MM

CONTENTS

i. introduction 8

a. beginnings 8

b. evolution 9

c. font fundamentals 11

1. Character width 12

2

.

Tyoeface 12

3. Size 12

a. Style 13

D. EARLY COMPUTERIZED TYPESETTING 13

1. Phot ot vpeset t ers 13

a. Background 13

b . EquiDment 14

c. Lessons Learned at M.I.T..... 15

2. Hot Metal Machines 16

a. Background 16

b. Equipment lb

c. Expansion and Develooment 17

3. Computer Generation of Characters 18

E. IMPROVED COMPUTER TECHNIQUES 19

1 . Introduction.... 19

2. Photo/Optic Machines 20

3. Photo/Scan Machines 21

4

.

Digital/Scan Machines 22

F. CURRENT CHARACTER DISPLAY TECHNIQUES 23

II. NATURE OF THE PROBLEM 27

5

A. COMPUTERIZED TYPESETTING AT NPS 21

8. INITIAL CONVERSION 28

1 . Original Format 28

2. Converted Format 29

III. DIGITIZING A HERSHEr FONT 31

A. FONT FILE FORMAT 31

B. THE DIGITIZATION ALGORITHM 36

C. CONSIDERATIONS 36

1. Storage Requirements 36

2 . Sizing 37

3. Programming Techniques 38

4

.

Types of Lines 39

5. Floating Point 41

D. LIMITATIONS , 42

1. Time 42

2. Appearance 42

3. Size 43

IV. CONCLUSIONS 44

A. A COMPUTERIZED TYPESETTING SYSTEM 44

B. ADVANTAGES/DISADVANTAGES 45

1. Advantages 45

2. Disadvantages 46

C. PERFORMANCE EVALUATION 47

1'. Testing the Algorithm 47

2. The Execution Profile 47

3. Different Fonts 48

4. Conclusions 50

6

D. POSSIBLE IMPROVEMENTS 51

1 . Better Digitization 51

2. A Faster Algorithm 52

E. FONTS AVAILABLE 53

1. The SAIL Fonts 53

2. The Hershey Fonts 53

APPENDIX A. FONT EDITOR 55

APPENDIX B. VECTOR TC RASTER CONVERSION 86

APPENDIX C. THE DATA BASE 103

APPENDIX D. FONT OUTPUT ROUTINES 127

APPENDIX E. HERSHEY FONTS AVAILABLE 153

APPENDIX F. FONT/CHARACTER DIMENSIONS 159

APPENDIX G. THE 'SAIL' FONTS 162

APPENDIX H. FINDING A FONT 165

LIST OF REFERENCES 168

INITIAL DISTRIBUTION LIST 170

I. INTRODUCTION

A. BEGINNINGS

Early in the I960's* as computer technology began to

develoo more and more raoidly? the influence of computers

expanded into many new areas. As computers became more so-

phisticated/ more available* and easier to use* many dif-

ferent groups began to search for computer applications

within their fields. One field in which several uses were

found for computers was in the publishing industry.

Early systems used oy newsoaper and book publishers in-

volved various methods for character generation and mechani-

cal positioning of those characters? while these systems

were faster than typesetting by hand/ they still left room

for considerable improvement. Current systems electronical-

ly generate and oosition their characters? greatly improving

the speed of the process.

In his recent book on the subject of electronic composi-

tion/ N. Edward Berg states that:

Although the effort to set type by computer has been
underway since the earlv 1 9 6 * s t it has not yet reached
the age of maturity.... Many exciting new developments
have already taken place which are but a prelude to what
will unfold in the future. Prooer computerization of
typesetting now offers very significant cost advantages
over hot metal....

A technology (that of comDuters) and a technological
art (that of typesetting) are being blended together in

a way that is particularly challenging to the computer
technology since the typesetting art must be maintained.
The computer must assist the art-*not dictate or attempt
to eliminate it.

•a hen two disciplines come together there is always a

need for good communications and standardizations --

standardization not in terms of the art or expression/
but in terms of electronic techniques. The development
of these standards allows an orderly application of com-
puter technology ana will not detract even minutely from
the needs of the art and free expression.

The computer technoloqv will not replace creative
human expression but will enable that expression to have
enlarged horizons/ and leave the mundane and repetitious
to the comouter. [Ref. 3/ d. viil

B. EVOLUTION

In addition/ Mr. Berg also mentions a "generation" clas-

sification which was cevelooed to create a rational subdivi-

sion of machines into classes as follows:

1. First Generation. Machines evolved from their hot

metal ancestors but adapted to the photographic pro-

cess.

2. Second Generation. Machines not evolved from previ-

ous concepts embodied in hot metal machines but based

on the new technoloay of setting type from photographic

masters.

3. Third Generation. Machines designed to work in con-

junction with computers at hiqh soeed (greater than

100 characters oer second) and exoose the character

image via a cathode ray tube (CRT).

Since the early experiments with computerized typeset-

ting, the computer has played a more and more important part

in the process. The main direction of this paper has been

to provide these "third generation" machines with a large

collection of tyoe styles in a variety of sizes. One of the

largest data bases available was that digitized by Allen V

.

Hershey in 1967. However, this data was available only in

vector form and current graphics display processors and

typesetters usually require information for their character

displays to be in dot matrix rather than in vector form.

The first step in the conversion process involved ob-

taining the raw data base; and then converting into a form

that was usable for generating the appropriate vectors.

This process is described in Aopendix C. An interesting

by-product of these initial efforts was the program written

for use on the TEKTRONIX 4014 display processor and

described in Appendix D. This program allowed the user to

select a particular font and then to draw a character from

that font on the CRT; the appearance of the characters al-

lowed the verification of the vector data baser and provided

a check on procedures used to that point.

After the data base was confirmed/ the next step was the

conversion of the vector data into bit patterns that would

10

allow the use of these fonts in a dot matrix environment on

raster scan CRTs. The qoal was to produce a program that

could convert a standard size vector definition of a charac-

ter into a dot matrix definition in the size desired by the

user. Anyone using this program gained access to the

Hershey data base anc increased the character set available

for his use by a significant amount.

The next sections orovide the background on some early

experiences with computerized typesetting and on some

current methods used by "third generation" machines.

C. FONT FUNDAMENTALS

A font is a collection of different characters* all of

the same style and height, which are mapped onto a character

set. On the PDP-11/50, the 7-bit ASCII set of 128 character

codes is used. Some fonts have generic names, such as the

Bodoni fonts? others have lost their origins but are named

for their apDearance, like the Gothic English fonts. Some

fonts are recent creations, and have received more mundane

names? SAIL10, for example, is a 10 point font created at

the Stanford Artificial Intelligence Laboratory (SAIL). The

most useful fonts are those that contain both upper and

lower case English letters, Araoic numerals, and a minimal

set of punctuation marks. The more exotic fonts contain

mathematical symbols, characters from foreign languages,

and, occasionally, homemade symbols for very special pur-

poses .

1 1

Some characteristics of fonts which should be mentioned

before proceeding are:

1

.

Character width

A font is either fixed or variable width. When a

font is fixed width/ each character/ whether it is a 'M' or

an 'i'/ will have the same widths. In a variable width

font/ on the other hand/ each character may have a unique

width.

2

.

Typeface

Fonts are generally classified by the stvle of the

typeface used. Bodoni/ h o n i e / C o m d 1 e x / Triplex/ and so on/

are tyoical examples of styles.

3. Size

Together with typeface/ size makes up one of the

most noticeable characteristics of a font/ and provides one

of the most useful methods of classification. Font size is

most often referred to in "point" size/ a measure of the

font's height. A point is a traditional printer's measure/

and is approximately 1/72 inch. On the VERSATEC/ the unit

of measure used is the pixel/ the smallest unit of resolu-

tion possible on the machine. The picture element (pixel or

pel) is 1/200 inch/ about four times the resolution of most

CRTs. At 200 pixels per inch/ point size and raster height

may be converted using the following formula :

raster height = (point size * 2.8) + 1

12

One character width of pixels represents one raster line

holding the "Is", which are dots which must be black, and

the " s "
, which are blank spots? together these binary di-

gits make ud a horizontal slice of a character picture. The

character's height is determined by the point size that is

reguired, and the widths are proportional to the heights.

Appendix F contains a more complete description of font and

character dimensions.

4. Stvl

e

Fonts that use the same tyoeface may apcear dif-

ferent because they have been altered slightly; a standard

font may be regular, it may be slantea to the right (itali-

cized), or it may be thickened (bold face).

D. EARLY COMPUTERIZED TYPESETTING

1. Phot ot ypeset t ers

a . Bac kgrouna

Early in 1961, Michael P. Barnett, the Director

of the Cooperative Computing Laboratory (C.C.L.) at the Mas-

sachusetts Institute of Technology, encountered a tape-

operated ohot o t yoese t t i ng machine and became interested in

the possibility of producing operating tapes for these

machines from the outout of a digital computer. Early pro-

gramming efforts oroduced some interesting results, but none

that were esDecially useful. Following the award of a

i
"*;

research grant in 1962, however, the staff at the C.C.L. was

enlarged and a system of computer programs was completed.

These programs were used in 1963 and 1964 to set many hun-

dreds of pages of material for a variety of reports, papers,

pamphlets, and other publications of interest to Mr. Barnett

and his staff.

b . Equ i pment

The equipment used at the C.C.L. included an IBM

709/90 computer with 32K of memory which produced output

tapes for a PHOTON 560 phototypesetter. Text material was

prepared for the computer using a FKIDEN FLEXO WRITER.

The FlEXOwPITER had a conventional keyboard and

produced cooy that had the apDearance of standard typewrit-

ten material? the type was in a single typestyle and size,

and lines were not justified. A paper tape Punch unit was a

part of the FLEXO WRITER, and striking any key on the key-

board, whether it was a printing key or not, caused a pat-

tern of holes to be punched in the tape and then the tape

was automatically advanced. The paper tape was then run

through the diqital computer to translate the 8-bit F L E X -

WRITER codes into bit patterns on magnetic taoes that could

be used to control the pnototyoesetter. These input tapes

were usually internally cooed to select type fonts, tyoe

size, and so on, in much the same way that input to current

text processinq systems or text formatters such as IPS (Ref.

1] and MROFF [Ref. 71 is aone.

14

The PHOTON machine operated using a glass char-

acter disk/ a small electronic flash unit, a lens turret and

prism, and a disk level selection cam. Each glass disk con-

tained photograDhic negatives of 1440 characters arranged in

eight concentric rings of 180 uniformly spaced characters;

the disk rotated in a vertical plane in front of the flash

unit, and the spindle in which the disk was mounted rested

in a cradle which could occuoy eight parallel positions.

Changing the bosition of the cradle with the cam moved the

disk a small amount in the vertical plane? as the ring of

characters moved oast the flash unit/ the unit flashed at

the appropriate character and the image of that character

was focused onto the film passina beneath the typesetter.

Different disks were used to provide the different type

fonts required, and type size was changed by rotating the

lens turret to change the size of the lens. The film was

then cut into pages and printed usina standard offset print-

ing t ec hn i ques

.

c. Lessons Learned at M.I.T.

As personnel at the C.C.L. gained experience in

computerized typesetting, the advantages of that system be-

came obvious. First of all, t ape-ooe ra t ed typesetting

machines could set computerized output more rapidly than hu-

man operators could, and it could be done without the inter-

vention of keyboard operators and the inevitable human er-

rors that occur. Computers could also sort, update, and

perform other clerical operations on almost any form of in-

15

put. Computers were also used to simplify the keyboard work

involved in setting type from a manuscriot by introducing

t ypoaraph i ca 1 details and styles that did not force the key-

board operators to attend to the smallest details as they

had had to do when using conventional techniaues.

2. Hot Metal Machines

a

.

Bac kgrouno

In the miadle 1 9 6 ' s / the interaction of comput-

ers and various tyoesetting devices was qaining more and

more attention in the publishing industry. Computers were

being installed in typesetting environments for use in the

newspaper and book oublishinq industries. As early as July

of 1963r several newspapers had begun to use computers for

production ourposes. THE WASHINGTON STAR, for example* used

their general Duroose computer for normal hyphenation and

justification of news copy» and also expanded its use to in-

clude the generation of volume ana production statistics and

other accounting functions.

b. Equioment

Using an IBM 1620/1 with 4 K of memory and a

1311 disk file, the WASHINGTON STAR was able to run an ap-

plications orogram that accepted internally coded input and

that could justify every typeface size and line width that

their linecasting eguioment could produce. The computer

stored the widths of the brass mats and the lengths of space

16

band travel? as each character was read by the computer, its

brass width was subtracted from the previously set line

length. This continued until the line was within justifica-

tion range. The computer then searched to see if the next

word soace fell within range? if it did, then the line was

filled and sent to the appropriate punch. If the word space

was too long, the computer could attempt to insert extra

fixed space inter- or intra-word, depending on the desired

hyphenation frequency.

The oaoer used their disk files to store both

type sizes and widths and to store their hyphenation dic-

tionary? when the justification routine could not work, then

the hyphenation routine was called. THE WASHINGTON STAR

maintained an extensive hyphenation dictionary and a set of

programs that attempted to hyphenate any words not located

in the dictionary.

c. Exoansion and Development

Because justification and hyphenation took up

very little of the computer 1

s time* THE WASHINGTON STAR also

used their computer to provide production statistics, to

schedule linecaster operations, and to gather statistics for

editors and compositors to helo them balance their presenta-

tion of the news and to help them lay out the paper. In ad-

dition, they had comoleted the development of a program that

enabled them to take wire service copy as input, run it

through the computer to store it and reprint it, and then

17

edit the computerized orint-out of the story; the stored

version was then re-edited and sent to the linecasting

routine. That method eliminated t^e need to cast a dummy

cage that would then have to be broken up and re-cast after

edi t i ng.

In addition to wire service editing, THE WASH-

INGTON STAR also used the same keyboard and computer to out-

put phot o-comDosed display advertising using a program

developed by IBM and THE MIAMI HERALD. THE WASHINGTON

STAR's use of their computer for "hot metal" typesetting and

for peripheral accounting and editing tasks demonstrated an

effective use of the equipment available at the time.

3. Computer Generation of Characters

Most early uses of computers in typesetting in-

volved computer generation of code to drive either a photo-

typesetting machine or a "hot metal" linecaster. These

processes generally used commands embedded within the text

to be printed. These commands performed such functions as

selecting tyoe font and size, and positioning the characters

on the outout medium. In the late 1960's» interest grew in

increasing the capabilities of computerized typesetting;

there were usually severe limitations on the character sets

available to computer output devices, normally line

printers, but tyoograchers had a wide variety of type styles

and sizes to choose from. what was needed was a system that

would make the advantages of typography available to the

IB

computer? such a system would combine the speed of the com-

outer with the versatility of the 1 inecaster/ and would make

the result available to both machines.

In 1967/ Allen V. Hershey/ a mathematical physicist

at the U.S. Naval vveaoons Laboratory in Oahlgren, Virginia/

developed a set of 1377 occidental characters and hundreds

of oriental characters by hand using only graph paper to as-

sist his work (Ref. 16].. He also developed FORTRAN typo-

graphic and cartographic systems that used his character li-

brary to compose finished pages of text/ maoS/ drawings/ and

mathematical equations. This was one of the earliest ef-

forts made to use the comouter to take over the functions

formerly Derformed Oy slower mechanical devices/ so that

both character generation and position could be handled at

computer soeed.

E. IMPROVED COMPUTER TECHNIQUES

1 . Int roduc t i on

None of the "generations" of typesetting machines

mentioned earlier is now totally distinct/ since even the

simplest devices in use todav may host a mini-computer or a

micro-computer. Therefore/ the general opinion is that

machines should now be classified based on the techniques

used to store a master character and to generate that char-

acter for recording on the outout medium. The classifica-

tions used a re t

19

* Photographic/Optical (Photo/Optic).

* Phot ograph i c /Sc ann i ng (Photo/Scan).

* Digital/Scanning (Digital/Scan).

These classifications include the various graphics display

terminals and CRT terminals familar to most people who use

or who have seen computers.

The Photo/Optic method is fairly well known; it is

the oldest of the three and was the method used by both the

Cooperative ComDuting Laboratory at M . I . T . and THE WASHING-

TON STAR in their offset printing procedures. The two

"scanning" methods are less well known and generally consist

of generating dots or lines on an output medium using a CRT

or some kind of drum and liaht arrangement. The CRT is

perhaps the most familar and its use involves generating a

narrow beam of light and then deflecting the beam so that it

will illuminate a very small area on the screen of the CRT.

As some areas are "turned on" against a dark background/ the

character or oattern desired can be displayed on the screen

as a dot pattern.

2 . Photo/Optic Machines

This category includes the majority of phototypeset-

t i ng devices available today. Usually the master character

is stored phot og

r

aoh i c a 1 1 y and is then generated optically

for recording on the outout medium. Most devices store the

master characters for various fonts in negative form/ since

20

the character must be illuminated after it has been select-

ed. As it is illuminated/ the ootical system, using a

variety of lenses, can produce the required point size and

position the character image on the output medium. The

disadvantage inherent in this system is the mechanical move-

ment required to position the characters and pages? this

movement is very slow when compared to the speea with which

characters can be selected and generated, even when the

mechanical equipment is operating at its fastest. Even the

character selection and generation is slow when compared

with a fully computerized system, since this system must

still use some kina of mechanical apparatus to select the

characters.

3. Photo/Scan Machines

These machines again store the master characters

photographically, but they generate the selected character

using a dot or line generating mechanism to record the char-

acter on the outDut medium. These devices operate much like

Photo/Optic devices until the outout stage is reached; from

that time on, Photo/Optic devices treat the character as a

unit and Photo/Scan devices treat the character as a collec-

tion of "scan lines" which are built up to form the complet-

ed character.

The character is built up on the outout medium using

a series of closely spaced lines or dots which together form

the character, usually using a CRT and an arrangement of

21

mirrors. This speeds up the typesetting process greatly be-

cause the characters are positioned electronically. Because

the characters can also be sized electronically/ there is no

time lost while a lens turret is moved to position a dif-

ferent lens.

4. Digital/Scan Machines

Devices in this category store their character sets

digitally in memory and use a dot or line generating mechan-

ism to produce the characters on the output medium. This

method allows the character definitions to be stored as

binary digits in the computer's memory/ providing rapid ac-

cess to and display of the character information? however/

it does reguire a large amount of storage for each charac-

ter. For example/ as characters become more complex and/or

larger/ more information about beam positioning and switch-

ing is reguired. Mr. Berg estimates that "for 100 printing

characters at 10 point size/ approximately 8000 (16 bit)

words of storage are requi red..

.

.Only 35 characters at 12

point size can be stored in 8000 (16 bit) words. The pre-

cise storage requi rement is dependent on typeface/ point

size/ and character design." [Ref. 3/ p. 6:10]

22

F. CURRENT CHARACTER DISPLAY TECHNIQUES

Digital/Scan techniques are most familar to computer

scientists because alphanumeric CRT terminals and most

graphics display orocessors use this method of character

generation. Both the DATAMEDIA terminals (1500,1520,2500)

and the RAMTEK GX-100 [Ref. 9] display processor/ for exam-

ple* use a bank of ASCII characters stored digitally in 7x12

dot matrices to generate visual displays. Characters for

these aevices all fit within a 5x7 dot matrix and the extra

dot Dositions provide spacing between characters and between

lines. The screen image is renewed 40 times a second; the

electron gun is moved across the rear of the CRT in a side-

to-side, line by line "raster" scan, and each individual dot

is either illuminated or skipped to provide the required

display. Figure 1 is an example of a character represented

digitally and suitable for use by raster scan devices.

. .90003303

.03

v . « » 03 •*<••»•
........ 3..

33
33

• ••«.<).
.... 33

3
>>.'o......o,.,,,
. .333333333

FIGURE 1. Dot Matrix Representation

23

Another example of a raster scan device used as a graph-

ics disday unit is the C0N0GRAPHIO12 Interactive Display

System discussed in Reference 13. This aevice supports a

set of printable characters corresponding to the standard

ASCII character set; standard size characters are drawn on a

grid measuring 22x16 raster units and situated in the lower

left corner of a character block measuring 40x24 raster un-

its. The character block determines inter-column and

inter-line spacing/ normally 85 characters per line and 38

lines per page. Figure 2 provides an example of this tech-

nigue. While the size of the characters on the screen may

be changed^ all characters are still drawn from the standard

size definition.

FIGURE 2. Character Block

The VECTOR GENERAL, AGT-10, and TEKTRONIX graphics

display processors are examples of "refresh graphics"

machines which store character sets d i a i t a 1 1 y r but which

24

operate differently from the raster scan devices to generate

visual displays. The VECTOR GENERAL [Ref. 121 is a highly

sophisticated machine with many interesting capabilities,

including the ability to draw curves. That capability al-

lows the VECTOR GENERAL to store information about each

character in its memory as a sequence of strokes which

create character shaoes. Each character is composed from a

set of basic image elements [Ref. 12, p. 1-20], or draw fig-

ures, and the characters are drawn from these images as a

series of arcs and vectors using that information.

In addition, the VECTOR GENERAL can display several

fonts in four sizes? however, the sizes are all scaled from

the standard size character definition, and the only fonts

available are the standard ASCII character set and a font

consisting largely of Greek characters ana special mathemat-

ical symbo 1 s

.

The ADAGE disDlay processor (AGT-10) stores and gen-

erates its character set in a manner similar to that of the

VECTOR GENERAL. However, because the AGT-10 does not have

circle and arc hardware, all curves must be approximated by

Straight lines.

Both of these refresh graphics processors must re-draw

the entire screen image approximately 40 times a second to

prevent the image from fading or flickering.

TEKTRONIX [Ref. 14] display terminals (4010,4012,4014)

are also Digital/Scan machines, but they differ in some ways

25

from the other refresh terminals. The character set is

stored internally in dot matrix form* but when the charac-

ters are drawn on the CRT by the electron gun/ the beam il-

luminates slightly more of the screen than the precise loca-

tion required. Because of that/ most characters appear as

lines rather than as individual dots. The characters can be

drawn in four sizes* but each size is based on a common

character definition which is enlarged to the size required;

the beam from the electron gun is then intensified so that

an even larger spot is illuminated on the CRT, and the char-

acters aopear to grow both larger and wider.

26

II. NATURE OF THE PROBLEM

A. COMPUTERIZED TYPESETTING AT NPS

This thesis was undertaken as part of an effort to im-

prove the computerized typesetting capabilities at the Naval

Postgraduate School in 1976-1977. Until that time/ these

facilities had been fairly limited and were rarely used.

The programs used were written in the programming language

C and were designed to be run under the UNIX operating sys-

tem on the Computer Science Department's PDP-11/50 comput-

er. The documents set in comDuter type are produced on a

VERSATEC plotter/printer.

The original software to set tyoe under UNIX was

designed and written by Professor G.L. Barksoale* Jr. and

was based on four fixed width fonts with common dimensions.

The information to be set in these fonts was the output from

TROFF, a text orocessor already available under UNIX. The

actual tyDesetting was done by another program, a virtual

typesetter. Professor Barksdale had also designed a "font

editor" that was intended to allow a user to create new

fonts or to modify existing fonts* in a manner similar to

that used by most text editors. However/ this font editor

was not appropriate for use in the large scale digitization

of fonts.

21

In an attempt to improve this situation, 48 additional

fonts were obtained from external sources. Thirty-four of

these fonts were already in digitized form and as a result

were limited in point sizes available. They also required a

great deal of storage in that form. Because the 14 Hershey

fonts were available in vector form rather than dot matrix,

they were acquired in the hooes that they could be adapted

for use in computerized typesetting in a form that required

less storage. The 34 digitized fonts, for example/ required

643 512-byte blocks of storage while the Hershey fonts,

stored in vector form, reguired only 193 blocks.

This thesis was directed toward finding an algorithm

that would allow the Hershey fonts to remain in memory in

vector form but convert them to a digitized form in any

point size required by the user.

B. INITIAL CONVERSION

1. Original Format

The vector definitions of the 14 Hershey fonts were

obtained from a tape available through the National Bureau

of Standards [Ref. 161. The original taoe contained approx-

imately 360K bytes of data representing 8-bit EBCDIC charac-

ter codes. The tape contained just over 4600 card images,

where each card image contained a character identification

number, a card sequence number, and coordinate pairs. As a

result, the data was essentially stored as a stream of

28

numbers .

Hershey's original definitions used integers between

-49 and f49 to reoresent the endpoints of his vectors/ with

a (50/00) coordinate pair representing a "lift pen" command

and a (50/50) representing "end of character". So that all

of the coordinate pairs would fit into four bytes/ negative

values were subtracted from 100 and stored as two-digit

numbers greater than 50 so that they could be differentiated

from a positive integer. For examo)e, (10/10) was stored as

"1010" but (-10,10) was stored as "9010".

2 . Converted Format

The initial steps reouired to read the taper convert

the - records from EBCDIC to ASCII/ strip away unnecessary

characters/ and so on/ are contained in Appendix C. Once

the input files had been properly prepared/ they were put

into a vector form which made it easier to access the vector

definitions for a given character. A header table consist-

ing of 256 1
6 - p i t woras was established? each even numbered

word from to 254 corresponded to the appropriate ASCII oc-

tal codes and contained the character width of the character

at that code location/ while the odd numbered words con-

tained pointers to the character definitions.

Within the character definitions/ each coordinate

oair was stored in a word of storage with the x-coordinate

in the left byte and the y-coorginate in the right byte.

Even the (50/00) and (50/50) pairs were stored in this

29

fashion rather than as "move/draw" and "endlist" bits in the

conventions used by some graphics display processors. Since

each integer used by hershey could be represented in seven

bits, the initial inclination was to use a format with the

x»y coordinate pairs stored in two bytes, but with six bits

used for the integer* one bit for the sign, and the extra

bit used for the "move/draw" or "endlist" bits. This would

have decreased the present storage reauirements for a font

by approximately 25%. That method was not used, however, it

was decidea that the amount of storage that would be saved

was not worth the extra effort that would be reguired to

manipulate the bits satisfactorily. In addition, the time

would increase slightly, which is only a minor concern since

this is usually done only once to a font, but the risk of

introducina or failing to detect errors arising from the bit

operations would also increase greatly.

30

III. DIGITIZING A HERSHEY FONT

A. FONT FILE FORMAT

All digitized font files at NPS follow a modified SAIL

format [Ref. 41 that offers several advantages in memory re-

qui rements and that is tailored to 16-bit processina. The

NPS format is displayed in FIGURE 3 on the next page. The

first 256 16-bit words of each file contain a header table.

Each of the 128 possible characters in a font has two words

in this table which contain its character width and access-

i ng information. Character 000 octal uses the first two

words; character 001 uses the next two words, and so on.

This arrangement provides an easy character accessing formu-

la: twice the character code gives the location of the first

word of information about that character in the header

table. For each character defined* the first header table

word contains the character width in the rightmost byte and

a block counter in the leftmost byte. The maximum character

width permitted is 255 oixels. The block counter contains a

number between and 255; it is a file offset in 512 byte

blocks. The second word contains a byte offset* an unsigned

integer between and 65535, which is added to the block

offset. '

The character definition is accessed by seeking the re-

quired block offset/ if any, and then seeking the byte

•Word

02

16-BITS

BKP CW

• BYP

BKP CW

RYP

A

•
•

0376

0400

0403

~v*
&KE. £*£_:

SXE. J

'J

Character
Definition

.Character
Definition

] cc 000

J
cc 001

Header Table

J
cc 0177

Font Dimensions

Font ASCII
Description

Character

Definitions

FIGURE 3. NPS Font File Format

offset. When accessing any character/ a zero width and a

zero oointer imply the character is not defined in the par-

ticular font. The dynamic aspects of the pointer structure

in the header table allow for individual character accessing

and for font files up to approximately 2 K in size. Howev-

er, a limitation in the "seek" system call limits the ad-

dressable storage to approximately 160K.

This situation is ideal in a minicomputer environment

where core is limited and where large auantities of data re-

side on direct access devices. The three woras following

the header table in the font file contain information on the

font height/ on the width of the widest character in the

font/ and on the logical height of the characters. All di-

mensions are measured in pixels. An ASCII description of

the font begins in word 260 and continues until an end-of-

string delimiter ('\0') is encountered. No description is

normally provided with any of the Hershey fonts.

The remainder of the file is comoosed of the character

definitions oointed to by the information stored in the

header table. Each definition follows the same format/ and

there are no requirements for definitions to begin on word

boundaries. Each character definition is divided into two

parts* the character dimensions and the character bit pic-

ture/ as indicated in FIGURE 4

.

33

-16-BITS

Raster Width

Left Kern

Rows-from-top

Data-row-count

>

Character

Dimensions

3j
Character

Bit

Picture

FIGURE 4. NPS Character Definition

First* there are eight bytes which hold the raster width,

left kern/ rows-f rorr-t oo (rft)/ and the data-row-count

(drc). These terms are defined in Appendix F. Next/ a por-

tion of the character picture is stored in consecutive

bytes, raster line by raster line. Bits that are "on" (l's)

represent sDace to be inked in, and bits that are "off

(O's) represent white space. Each character in a font is

conceptually set in a rectangular frame which is as wide as

the character's raster width and as high as the font's

34

height; hence/ a great many characters have blank raster

lines close to the top and near the bottom of the frame.

These blank raster lines are not stored in the character de-

finition. While the r f t defines the number of blank lines

at the character top* the drc specifies the number of non-

blank raster lines stored in the definition/ anci the number

of blank lines at the bottom is computed.

As an example^ the orocess which "edf" would perform to

display a character would be to access the character defini-

tion through the header table and to read in the four char-

acter dimensions. Now/ if/ for example/ the raster width was

17/ then 3 bytes woulo be required to store a single raster

line/ the third byte having its rightmost 7 bits wasted. The

next three bytes hold the next raster line/ and so on.

"Edf" must display a number of blank lines equal to rft. It

must then read and display the nonblank raster lines stored

in the definition/ and/ finally/ "edf" completes the picture

by filling out the character height with blank lines. This

process is similiar to the Stanford method. A more detailed

explanation and some statistics can be found in Reference 6

and Appendix A. Appendix F illustrates character dimensions

in more detail.

35

B. THE DIGITIZATION ALGORITHM

The digitization algorithm used was based on the stan-

dard slope/intercept formula for a liner y = m*x + b .

After determining the logical top and bottom of a character*

the end-points of each line in the vector definition were

read into the program and the slope and intercept were

determined. Then the line was scanned from top to bottom

and from one side to the other using a "for" loop within a

"for" loop. These integer values were converted to floating

point with an assignment statement? if those values were

within the reauired tolerance of the line being scanned*

then that unique bit was changed from to 1.

C. CONSIDERATIONS

1. Storage Requirements

An important consideration in design ina the computer

typesetting system was the amount of storage that would be

required to hold the oigitized fonts. All of the vector de-

finitions/ for example^ were in the 5-7K bytes range; the

comparative figures in Aooendix B reveal that a 10 point di-

gitized font requires aporox i mat e 1 y that much storage. At

smaller point sizes less storaqe is required for digitized

fonts than for the vectors/ but as Doint sizes increase the

storage requirements rise dramatically.

To minimize the storage requirements/ all programs

designed for this system used the convention mentioned in

36

paragraph A, where only the rows actually containing data

were stored in memory. All rows containing zeros were added

by the various programs as they executed. This technique

reduced the storage requirements significantly/ especially

where most punctuation and lower case letters were con-

cerned.

In addition, only one array of UK words was used to

hold each character individually as it was being digitized;

this size allowed the digitization of the largest characters

allowed/ but was considerably smaller than an array that

would hola the entire font during digitization would have

been. As one character was completed/ its bit picture was

written to the designated file and the array was zeroed out

in preparation for the next character. After the last char-

acter in the font had been digitized and written out/ the

blank (octal 040) was added to the font and the header table

was written at the front of the file. This method used a

minimum of storage/ since only 519 extra bytes (used as a

place-holder for the header table) were stored at any one

time.

2 . Sizing

Every effort was made to make all necessary vari-

ables proportional to the size of the font being digitized.

Since Hershey's vector definitions were equivalent to a 10

point font/ that raster height (29 pixels) was used as a

base for determining the p rooor t i ona 1 i t y constant for modi-

37

fying the widths of the characters approor i a t e 1 y .

Two steps were necessary to determine font and char-

acter heights. First* the tallest upper case letter and one

of the lower case descenders were scanned to obtain a base

line and a logical height for the font. Then the largest

characters in the font were scanned to determine a constant

which would adjust the character heights to fit the desired

raster height. The logical height and base line were ad-

justed by this amount, and the program could begin the di-

gitization process.

3. Programming Techniques

One imoortant consideration was to be able to ad-

dress locations in memory up to the maximum font size al-

lowed. Since even a "char *ptr" declaration allowed only

65K addressable bytes and permitted the possibility of the

left-mo'st bit being interpreted as a sign bit in arithmetic

operations, the address Dointer was declared as a long in-

teger. The 32 bits were not all necessary because other

limitations allowed the use of only 16 bits, but it did

prevent unusual occurrences during mathematical operations.

Shifting oDerations were done in many places rather

than a normal arithmetic operation, especially where the

long integer was involved, for just that reason. Some bit

masking was also necessary, normally to orevent a sign bit

from propagating across a byte.

38

4 . Types of Lines

After the slope of a line was determined* the execu-

tion flow carried the line into four possible sections of

code. Because of the wav that the algorithm was arranged/

it was necessary to treat vertical lines, horizontal lines,

and lines with positive or negative slopes each somewhat

di f f erent 1 y

.

It was difficult to arrive at a group of tolerances

for lines with different slopes that would allow the lines

to mesh smoothly to form a character. These tolerances were

used to determine whether or not a particular bit in the

character picture lay close enough to the line being digi-

tized to be switched from to 1 • A step function was used

to determine the tolerances to be used for lines with slope

values between certain limits? as a result, there is some

overshoot at points where slopes change enough to p-ass from

one set of tolerances to another.

At first, nearly horizontal lines near the tops and

bottoms of curved characters (0, Q, C, etc.) tended to ei-

ther overshoot significantly or to vanish completely. Then

horizontal and vertical lines grew out of proportion to the

rest of the character. Some of these problems are illus-

trated in FIGURE 5. Eventually, the characters became more

and more recognizable. The method used to smooth out the

digitization involved studying the characters digitized with

one set of tolerances with "edf", then graphing the c h a r a c -

39

t e r from the vector definition, deciding how much tolerance

was required for slope values between certain limits, and

beginning the loop over.

HTR36

!"!&'()*+
5
-T/01234

?ABCDEFGHIJKLMN
VWXYZahc de fshi ik
-t-UV" -jkY

FIGURE 5. Problems in Digitization

Horizontal ana vertical lines tended to grow thicker

when digitized, so their widths were reduced programmatical-

ly by approximately half. The tolerances necessary for

these lines were approximately one-half those of the tight-

est tolerances used for slooina lines. Sloping lines had to

be thickened by the same means, but even here there was a

difference? lines with a slope that was very close to hor-

izontal required an even larger assist than did other lines.

Lines with slooes between 0.5 and -0.5 (nearly horizontal)

required very tight tolerances to keeo them from thickening

excessively, while lines between 0.5 and 3.0 and between

-0.5 and -3.0 received somewhat larger tolerances. Lines

with slooes from 3.0 to 7.0 and from -3.0 to -7.0 were

40

essentially left alone/ but lines with slopes greater than

7.0 or less than -7.0 (nearly vertical) required very loose

to 1 erances .

In general » characters such as "A)» A it it M ft n 7 MM", "Z M
* and

others that were essentially composed of straight lines* no

matter what their slopes* transitioned from vector to raster

form clearly and were very clean. This resulted largely be-

cause the same tolerance was used by the algorithm

throughout the line and the character. In other words*

there were very few breaks in the continuity of the lines

that defined the character. There were minor problems such

as notching in the base of the " M " or in the ooint of the

"A" and a thickening in the right foot of the H A " and the

" X "
* these were not immediately obvious* especially at point

sizes that would normally be used for typesetting.

Characters such as "0"* "Q M
* "d M

* "c"* and others

that required the use of many small lines to approximate

curves were usually ragged in places after digitization.

Because different tolerances were used on lines that were

linked* the effect was not as smooth as it was for the

straight line characters. As a result* characters of this

type sometimes aopear somewhat ragged* especially at larger

point sizes where this effect is easily discernible.

5 . Floating Point

Floating point arithmetic was used extensively in

the digitization orocess. while this made the program

Ul

slightly slower, it had been decided beforehand that float-

ing point was necessary to achieve the accuracy required to

prevent holes or extraneous lines and bits from appearing in

the dot matrix.

D. LIMITATIONS

1

.

Time

One of the lesser limitations imoosed upon the user

in this area is the time required to Digitize a Hershey

font. While the time required sometimes seems out of pro-

portion, especially with larger or more complex fonts* many

of the reasons for this seeming slowness have been exDlained

previously. In addition, the time required to digitize the

largest fonts possible is still on the order of approximate-

ly 15 minutes at the worst. The times can be improved by

digitizing fonts at times when system usage is low, and by

digitizing fonts only once and storing them between uses.

This should be the normal mode of operation when using

Hershey fonts.

2. Apoearance

The appearance of most fonts at larger sizes has al-

ready been discussed to some extent and a comparison of the

Duplex Roman font at 10, 20, 30, and 40 point sizes is

available in Aooendix R. On the whole* the program will di-

gitize fonts fairly well uo to the size limitations dis-

cussed in the next section. Fonts with more vectors in the

a?

character definition will not be as ragged as those with

only a few lines.

3 . Size

An initial design decision was made to limit the

fonts to a raster height of 255 d i x e 1 s / which is equivalent

to 91 point. As a result/ the array declared in "makehf" to

hold each digitized character definition as it is converted

is designed to hold one character 255 pixels high by 255

oixels wide at its maximum.

An additional constraint is imoosed by the structure

of the font files. Because the character width and a block

count/ if present/ each occuoy a byte/ the maximum value for

the block counter is 255. As the block counter aporoaches

that figure/ specifically at 253 blocks/ the program will

switch modes and use the same block counter from that point

on/ but the byte counter will be reset and will increase up

to 65535. This will permit the user to approach 200K bytes

for the digitization.

The size of a character that can be edited by the

font editor is arbitrarily set at 42 point* the size of the

largest already digitized font available/ SIGN41. There-

fore/ Hershey fonts larger than this can be created/ but

they cannot be edited. However/ they are still usable by

"prfont" and "signmkr".

IV. CONCLUSIONS

A. A COMPUTERIZED TYPESETTING SYSTEM

The initial computerized typesetting capability at NPS

has been expanded considerably as a result of thesis efforts

described in this paper ana in Reference 6. Specifically,

48 variable width fonts in a variety of sizes, ana styles

have been added. These efforts are incomplete in that a

virtual typesetter that sets variable width fonts has not

yet been imolemented; however, an additional Drogram has

been written which will set these fonts and which performs a

limited number of text formatting functions.

At the present time, this exoanaea typesetting system is

designed to use four programs. The user has "edf" and

"makehf" available to create or modify fonts, and "prfont"

and "signmkr" are available to display his efforts. The

font editor, "edf", has been expandea ana modified consider-

ably; it is documented in Appendix A. The program

"makehf", which is described in the previous chapter, was

the end result of the author's thesis efforts and provided a

substantial contribution to the increased caDability of the

NPS comDuterized typesetting system. This program allowed

the user to convert Hershey's vector definitions into dot

matrix reDresen t a t i ons that could be used Oy the comDuter;

these definitions could be converted to a variety of sizes,

subject only to a few limitations.

The display routines developed for the system, "prfont"

and "signmkr"/ are described in ADpendix D, together with

the vector disolay routine "drawhf". "Prfont" is designed

to display one font at a time by examining the header table

and orinting all defined characters in the desired font.

"Signmkr" is more sophisticated/ and allows the user to

specify a limited set of text processing commands to set

type to his soecifications.

B. ADVANTAGES/DISADVANTAGES

I . Advant ages

The adaptation of the Hershey fonts for use in com-

puterized typesetting has improved both the quality and the

variety of fonts availaole for use. It is now possible for

a user to access more elaborate fonts/ or to access fonts in

several different alphabets. These could now be used for

special purpose aoolications or for accenting or highlight-

ing standard orinting applications.

This scheme also allows the creation of fonts at

larger sizes than are available through the SAIL set. The

algorithm holds uo well at large sizes for most fonts and

leaves very few holes/ especially on Triplex or Gothic fonts

where a large number of vectors are used to make up the

character definition.

U5

For most purposes/ the Hershey fonts digitize ex-

tremely well. There are usually only a few holes* even at

very large point sizes* in most fonts. They tend to break

up at 8 point or smaller (due to pixel size). Above 50

point (because of line spread) some small extraneous lines

may appear. In the range that would include most normal

uses the digitized Hershey fonts are serviceable* with the

exotic fonts looking especially good.

2 . D i sadvan t ages

The vector digitization method has several disadvan-

tages over and above the current lack of a virtual

typesetter previously mentioned. First of all* it is slow*

especially for larger and/or more complex fonts. Therefore*

it is not suitable for on-line digitization of individual

characters. However, this is easily overcome by deciding

beforehand which fonts will be required and then digitizing

them before beainning the tyoesetting process.

Secondly* the alaoritnm is somewhat inefficient. A

large portion of the overhead is incurred through the use of

floating point arithmetic and this was deemed necessary.

However* some time is also lost in array accessing; the

conversion from arrays to pointers could increase the digit-

ization speed somewhat.

In addition* the algorithm begins to leave holes in

the digitization as fonts become extremely large. An excep-

tion is the Duplex Roman font* which begins to break up at a

U6

very small size because of the arrangement of its component

vectors. In general/ this is not a significant problem with

most fonts.

C. PERFORMANCE EVALUATION

I . Testing the Algorithm

To determine which parts of the algorithm reauired

the most execution time* an execution profile was run on the

program under a variety of conditions. A "monitor" system

call was inserted into the beginning of the digitization al-

gorithm so that the entire program could be profiled/ and

the program was then compiled using the shell command "cc -c

-f -0 - S makehf.c"/ the object file resulting from that com-

mand was loaded using "Id /lib/fcrtO.o m a k e h f . o -la -
1

c
"

.

The "a. out" file produced by the load was then used to digi-

tize the Simplex Roman font at multiples of 10 points

between 10 and 70 points. These profiles provided the test

data used below; other fonts were digitized for comparison

ourposed as noted in paragraph 3.

2. The Execution Profile

The execution profile revealed that one section of

the program required/ as a minimum/ approximately 60% of the

program execution time. This section consisted of the four

"for" loop pairs previously described in Chapter III. These

loops are for horizontal and vertical lines and lines with

positive or negative slopes. The majority of the floating

47

point arithmetic was used in these loops to scan each line

in the character defintion and to turn on the appropriate

bits in the character picture.

The table below can be used to compare three Quanti-

ties: the point size of the diaitized font/ the time re-

quired to digitize the font to that point size/ and the to-

tal time that the program spent in the four digitization

loops together. The "real" time required to digitize a font

versus the point size is shown is FIGURE b , as is the "user"

(CPU) time versus point size. The point size versus percen-

tage of time spent in the digitization loops is shown in

FIGURE 7.

%

spent i n

digitization
Real

TIME
User Svs tem

HSR10 63.3 0:2b. 0:10.8 0:08.7

HSR20 73.7 0:59.0 0:35.5 0:08.2

HSR30 78.0 1 :27.0 1 : 12.9 0:09.0

HSR40 80.3 2:44.

o

2 : 4 . 6 0: 12.5

HSR50 80.7 5:22.0 3:14.3 0: 19.5

HSRbO 82. 1 9:33.0 4: 34.6 0:30.3

HSR70 81 .8 14:02.0 6:14.6 0:34.8

3 . D i f f eren t Fonts

Several more complex fonts were digitized at various

point sizes to determine whether or not the performance of

the algorithm would be affected. While the percentages of

time spent in the different digitization loops determined by

48

Time
(Minutes)

10 20 30 50 6040

Point Size

FIGURE 6. Digitization Time vs. Point Size

70

% in
Digitization

Loops

30 40

Point Size

FIGURE 7. Point Size vs. Percentage Of Time In Digitization Loops

49

the slopes of the lines were different/ the overall amount

of time spent in those Dortions of the algorithm remained

approximately the same. If anything/ the total times for

the digitization loops were slightly less for the more com-

plex fonts than for the simpler fonts? however/ the times in

the "read" portions were slightly higher because more lines

had to be read i n

.

4 . Cone 1 us i ons

From the table above and the figures/ it is possible

to arrive at two conclusions. One conclusion is that as

the point size increases/ the "real" time reauired to digi-

tize the font also increases? this increase is non-linear

and is very slow at lower point sizes/ but begins to in-

crease dramatically between 30 and 40 point. This reflects

the time that the user must wait at a terminal for his digi-

tized font file to be created? a second time correlation/

not guite so dramatic as the "real" time required but just

as important/ is the corresponding rise in "user" (CPU) time

as point size increases. This indicates that larger fonts

incur a non-linear increase in CPU time that is reflected as

an even larger increase in "real" time.

A second possible conclusion is that one section of

the alaorithm contributes significantly to the time required

for the orogram execution. The percentaae of time reguired

in the digitization looos was never less than 56 and seemed

to level out at just over 80 for the larger fonts? if this

50

portion of the algorithm could be speeded up the time re-

quired for digitization, especially digitization of the

larger fonts* could be improved.

It should also be noted that as the Doint sizes grow

larger and the percentage of time spent in the digitization

loops increases* the relative amount of time spent in the

"read" portion of the Drogram decreases until it becomes in-

consequential at the larqer ooint sizes. Therefore* the im-

provement of the digitization Drocess becomes the central

problem in making the alaorithm faster.

D. POSSIBLE IMPROVEMENTS

1. Better Digitization

While the present diaitization algorithm is fairly

effective* it could be imoroved in some places. Procedures

to eliminate extraneous bits or overshoots that extend out-

side of the main character definition* or to detect and fill

in small holes or odd oits within the character defintion,

are doss i b 1 e

.

So^e of the raggedness and overshooting in curved

characters may be minimized or eliminated by changing the

tolerance function used. If a function that allowed for

gradual changes in the slope (such as a sinusoid) were used

in place of the step function currently being used* the ap-

proximations of curves could be imoroved and any remaining

raggedness would be more difficult to see. Rather than use

51

sucn a function in the orogram itself/ the values should be

computed once and then put into table form for program use.

An additional alternative might be to use a means

other than the s 1 ooe/ i n t

e

rcept formula for a line to control

the digitization. Cubic solines are one oossible choice;

the use of splines should minimize round-off error* and they

are oerhaps better suited for digitizing the curves that

have presented the majority of problems during this

research. Since splines provide a smoother fit over sparse

data/ they may be ideally suited to font digitization.

2, A Faster Algorithm

Several means to increase the efficiency of the al-

gorithm have already been mentioned/ including minimizing

floating point arithmetic/ switching from arrays to

pointers/ and so on. In addition/ since the vectors are

read in one point (two bytes) at a time/ one "read" opera-

tion that brought in the whole character definition would

somewhat decrease the time required for system calls.

The "for" loops used for digitization are arranged

so that one goes from the logical top of the character to

the bottom/ but the other runs from to the font width.

Since all of the font width is not usually reguired/ this

inner loop could scan only the character width.

52

E. FONTS AVAILABLE

1. The SAIL Fonts

The 34 digitized fonts were acquired from the Artif-

icial Intelligence Laboratory at Stanford University and

were converted to a file format compatible with the PDP-11

[Ref. 61. These fonts were either designed at Stanford or

acquired by them through the A R P A net from other artificial

intelligence centers. SAIL fonts use a 7-bit coae similiar

to ASCII/ however^ the S^IL set uses many of the ASCII con-

trol codes for additional orintahle characters. There are

some additional minor differences in character usage. The

complete SAIL character set is listed in Appendix G with a

complete listing of all SAIL fonts converted for use at

NPS.

2. The Hershey Fonts

The 14 fonts available in vector form were converted

for NPS use from a set of fonts created by Allen V. Hershey

in 1967 [Ref. 16). These fonts offer several type faces in

Roman/ italic/ and scriot/ as well as comolete alphabets in

Greek and Cyrillic/ and in Gothic English, German/ and

Italian. A complete listing of the Hershey fonts is avail-

able in Appendix E/ together with sample listings of the

fonts in digitized form.

The Hershey fonts are stored in vector form ana are

not suitable for use by tyoesetting programs until they are

53

converted to dot matrix form by the user. This can be done

by using either the Hershey font conversion program "makehf"

or the font editor. These fonts may be digitized in any

size aesired by the user* subject to some limitations on the

programs involved. The orograms reguired and their limita-

tions are discussed in Chapter III and Appendixes A and B.

5a

APPENDIX A. FONT EDITOR

A. USING THE FONT EDITOR

1 . Basic St ructure

"Edf H is an interactive program which allows a user

to create new fonts or to modify or maintain existing ones.

It was originally designed by Professor Barksdale to create

and manipulate the fixed width/ 20 x 16 pixel fonts. The

current version of "eaf" is considerably larger than its

predecessor, a growth resulting from the addition of modules

to manipulate the more complex and more dynamic format of

t he new font files.

Creating a font may be accomplished by one of

several means. First, a call to M edf" with no arguments in-

dicates that the user desires to create a font from scratch.

The user must soecify the characteristics of the new font

and then use the M a" (ado) command to create specific char-

acters at each character position. Repeating this process

for 1^8 characters can oecome exceedingly tedious. A more

efficient ootion is to create only a few new characters and

to then use the " i
" (include) command to include other char-

acters from a compatible font. "Compatible", in this case,

means that both fonts have identical heights and logical

heights and that the characters being included are no wider

55

than the maximum character width of fhe font being created.

A third option, somewhat similar to the second/ is to use

the "d" (delete) command to remove unwanted characters from

a selected base font.

To edit an existing digitized font file, "edf" re-

quires an argument consisting of either a font file name or

a complete oath name. In the first case, the font editor

assumes that the font is located on the directory

" /

.

fonts. 01/font/" anc preoends that string to the argument

before issuing a system call to open that file. If a com-

plete path name is used, "edf" will open that font file. If

the font file is missing or if the font file contains in-

valid information, then "edf" will exit with an appropriate

error message .

A Hershey font/ digitized to any desired size and

subject to the limitations aiscussed later/ can also be

created using the font editor. This is done by calling

"edf" with at least one argument. The first argument must

be of the form "-HXY"/ where the minus sign informs the edi-

tor that it must digitize a Hershey font and "HXY" is a

valid font from the list of fonts available found in Appen-

dix E. This argument must contain tnose four characters.

The point size desired may be input as a second argument.

The default point size used is 10 point/ and the editor can

edit up to only 42 point. Whether the newly digitized

Hershey font is written to another directory or not/ the

most recently created Hershey font is normally left on

56

directory "/.fonts. 01" and is named HFONT.

Some examples of valid calls to "edf" are listed

below:

a) edf

This indicates that the user desires to create his own

font. He may give it any name desired when he writes it

out* ending the edit session.

b) edf SIGN 4 1

The user wants to edit font

better exist (and SIGN41

"/.fonts.0l/font/SIGN41".

file SIGN41 , which had

does) on directory

c) edf /usr/doyl e/fonts/HTR42

The user wants to edit an existing Hershey font file

called HTK42, a Triplex Roman font at 42 Doint/ on directory

"/usr/doyle/fonts/ M
.

d) edf HSR20

The user wants to edit an existing Hershey font file

called HSR20, a Simplex Roman font at 20 point* on directory

"/. fonts. 01/font/".

e) edf -HGE 3b

The user wants to create a Hershey font file in the

Gothic English type at 36 point. He may write it to any

57

directory after it has been digitized.

f) edf -HCS

The user wants to create a Hershey font file in Complex

Script type. The point size defaults to 10 point* ana the

font may be written to any directory at the conclusion of

the edit session.

In the edit mode/ the header table/ the font dimen-

sions/ and the font cescription/ if any/ are read into the

program variables. When a specific character definition is

reguired by the orogram/ the bytes containing the dot matrix

definition of that character are read into a character

buffer/ and blank lines are inserted at the top and bottom

of the definition if .required. A character definition

leaves the character buffer and is out on a linked list if

it has been modified aurino the current edit session. As a

new character definition is reauired/ it is read from either

the font file or from the linked list if it has been changed

previously. Characters which are not defined in the font/

such as the control characters below octal code 4 in the

Hershey fonts/ or which are non-printable/ such as the

blank/ are flagged ana may not be disolayed with the font

edi tor

.

Chanqing the current character code will not cause a

character definition to be read into the buffer unless it is

followed bv a command which requires the definition; for ex-

ample/ "-" or "056" will chanae the current character cooe/

58

but no definition is read into the buffer until a command

like "1" (list) or "e" (edit) is given.

Once a character has been modified* its new defini-

tion will not be read from the character buffer to the

linked list until the current character is changed or until

the user gives the "w" (write) command. An attempt to end

the edit session without writing out a file containing

changes will generate one warning. The user must scecify

the name of the file that he is writing to. The editor will

not allow the user to write to the same file that he is

editing from or to write to "HFONT"; nence* no font file is

inadvertantly destroyed. The editor writes to the specified

file* incoroorating character definitions from the linked

list and from the font file* updating the header table as

necessary. As a final gesture* the editor writes out the

size of the file in decimal. Renaming the new font file or

replacing an old file with a new one n emains the responsi-

bility of the user

.

When using "eof" it is most efficient to complete

all desired modifications to one character before proceeding

to anot her

.

2 . Commands

The basic command line consists of three parts: the

Current character selector* the command itself* and argu-

ments* if any* to the command. The current character may be

considered a pointer to a code position in a font. For exam-

5<>

ple^ when the current character is 0101/ then any character

listing or editing will be directed toward "A" which has the

code 0101. Whenever a character picture/ or a portion

thereof/ is displayed/ each raster line is composed of whole

bytes. For example/ if the raster width is 17/ then all 3

bytes required to hola the 17 bits will be disolayed. Chang-

ing the character Dicture to the right of the 17th bit is a

superficial change/ since modifications made outside the

raster width are ignored.

a) <number>

Change the current character to <number>. The

number may be octal (preceded by a zero) or decimal. Any

number greater than 127 is converted to 0/ and anything less

than is converted to 127. Any command may appended to

<number>. The effect is to change the current character

first and then to execute the appended command.

Examples: 0176/ 0/ 161/ 78c 25/ loa.

b) !-

Increment (decrement) the current character. Wra-

paround occurs as in <number> above. Either <t> or <-> may

be used but not both on the same command line. Any command

may be apoended to either/ and the effect is to increment

(decrement) the current character first and then execute the

60

command. Only one "+" or "-" may be used on a command line

Examples: +1/ -* +/ +e» +c0 40.

c) [<number>] ! (+] ! (-]

a

Add a new character to the font at the current char-

acter position. The " a" (add) command is complex. A

"p" (parameter) commano is executed automatically. Follow the

displayed instructions to input the dimensions of your new

character. Remember that your new character is being defined

at the current character. After exiting the parameter com-

mand loop/ you may use the "c" (change)* "
e

" (e d i t)

»

" s "
(s h i f t) * or "

1
"

(1 i s t) commands to *orm the desired char-

acter picture. The character buffer has previously been

zeroed. If you use <number>* "+", or "-" to change the

current character before you are satisfied with the new

character picture* the unsatisfactory picture gets stored!

If this happens* list the character and continue.

Examples: + a* -a* 056a* 19a* a.

d) (<number>) ! [+] ! [-]

c

(<numbe r>) [<number>]

Change lines "s" thru "
e

" *• prompting for each line.

"c" alone sets "s" to and "e" to "heioht-l". "c" followed

by one number sets Doth "s" and "e" to that number, "c" with

61

two numbers sets "s" and "e" accordingly. The numbers may be

octal or decimal* and a space is required between two

numoers

.

Examoles: fc, -cO 10, 077c 1 044, c, +c 10.

e) d[<number>] [<number>] [font file!

Delete characters "
s

" thru "e". "d" alone sets M s"

to ana M e" to 127, effectively deleting the entire font.

"d" with a single number deletes that character code. "
d

"

with two numbers deletes "s" thru "e" inclusive. Numbers may

be octal or decimal, and a SDace is reauired between two

numbe r s .

ExamDles: d, d5, d 0176, d 057.

f) [<number>] ! [+] ! [-] e [<numbe r >] [<number>j

Edit lines "s" thru "e", oromoting for each line.

M s" and "e" are set as in M c"(chanqe). While editing a line,

"cntl-d" completes the line as it was. This command uses

the NPS line-editor functions in the terminal hanaler.

Examoles: e, 077e0 10, +e 3 5, -e, 017e 12

q) t

62

Turn on (off) a flag controlling the display of

character dimensions. Once turned on* character dimensions

are displayed every time a character definition is fetched.

Displaying is turned off by a subseauent "f". "f" may be

prepended to anv command.

Examoles: f , fl* +fe 10, 1 76 f 1 10.

h) i [<number>] [<number>] filename

Include characters "s" thru "e" from the font file

"filename". H
s

H and "e" are set as in the "d"(delete) com-

mand. If the font file being edited or created and

"filename" are not compatible/ then the include will not oc-

cur. Suoseauent uses of "i" do not requi re "filename"; un-

less* of course* you wish to include from another font file.

Examples: i 057 BDJ8* i HCS20* i.

i) t<number>] !(+]![-] 1 [<number>] [<number>]

List lines "s" thru "e" of the current character

M s" and "e" are set as in "c"(chanae).

Examples: +1 10* -1* 1* 0761* 1 12.

63

J) n

Display the font description and a table reflecting

the status of the edit session. The description tells you

what you're editing, if you've forgotten. The table is a

handy way to keep track of how much you've accomplished.

Examp 1 e : n .

k) o

The "p" (parameter) commana executes an interactive

module of "edf" which allows you to modify character and

font dimensions and description. A set of instructions will

be displayed and may be recalled if reaui rea. This module is

auite versatile. Keep in mind that character and font dimen-

sions are being changed/ not character pictures.

Examp 1 e : d

1) g

Quit warns you if you've made changes and have for-

gotten to write them out? otherwise/ it exits* closing any

open files.

Examo 1 e : g

.

64

m) [<number>] ! [+] ! 1-] s 1 ! r ! u ! d t<number>] [<number>]

pixel 1 eft (1) ,

right(r), ud(u)> or down(d). The resulting lines are au-

are set as in

"c" (change)

.

tomatically displayed. "s" and "e"

Examples: +slO 10/ 044su 10, sr, -sd.

n) w f i 1 enarne

Write out the font file being edited or created to

"filename". " w " must have a "filename" and will not allow

you to write to the font file being edited, "w" displays the

byte size, in decimal, of "filename" ana then performs a

"g"(guit). Be oatienti Writing out a font file takes longer

than writing out a normal file.

Examoles: w temp, w /. font s • 1 / font /HCI20

.

o) < rubou t > ! <b reak>

Either key causes an interruot which is trapped,

whatever was going on is stooped, the previous environment

restorea (the command loop is reentered), and you may con-

tinue. N either key undoes anything; they merely give a

mechanism for Killing commands without killing the program.

65

3. Limitations

There are two types of limitations to "edf". First/

there are some commands implemented in the original version

which are not available in the current version. They in-

cluded "nice to have" commands such as folding character

pictures; italicizing fonts* and producing bold fonts.

These commands were not included due to time constraints but

could easily be added in the future. Second* "edf" has not

had a thorough testino. There are many checks throughout

the Drogram which were included to detect bad font files and

to prevent the Drogram from "crashing". "Edf" is good at

screening commands ana at flagging bad ones. Although it is

possible to string some commands together on one command

line* some combinations are bound to produce strange

results. It is safe to combine commands only as described

•' _ J < Min the preceding section. Despite its limitations* "edf i s

an extremely useful tool. It was developed early in the

thesis research and used extensively to purge and inspect

font s

.

66

EDF 30 April 1977 EDF

NAME
edf -- font editor

SYNOPSIS
edf < -Hershey font [point size] > ! < SAIL font >

!

< Hershey font >

DESCRIPTION
"Edf" is an interactive font editor that provides a

means of creating and maintaining fonts. If called
with no arguments it will enter the "create" mode. If

given just the font name/ it will prepend
" /.fonts. 01/font/" . The editor will also accept a

full path name. "Edf" also digitizes hershey fonts to
a specified point size.

Because of the size of the buffer used* "edf" can be
used only for characters below 120 pixels (42 point)

in size. All of the digitized fonts are less than
that size* anc the editor will not create Hershey
fonts o\jer that size.

Command Summary:
< number > Change the current character to <number>

+ !

-

a

c

d

e

f

p

a

s

Inc remen t /dec rement the current character

Add a character

Change a line

Delete a character or a font

Edit a line

Turn on/off character dimensions

Include a character

List the current character

Display the status of the edit session

Modify character and font dimensions

Quit, end the edit session

Shift [l)!(r]!(ul! tdl

67

<rubout >

<break>

l^rite to a file

Reenter the command loop

Reenter the command loop

FILES
/. fonts. 01/HFOMT
/ . f on t s . 1 /makeh f

/. fonts. 01/font/<SAH f ont > <He rshey font>

SEE ALSO
makehf

BUGS
A call to the font editor must contain the correct
name of the font file desired. No input checking is
done? the only errors that will be detected are those
that occur when trying to ooen a non-existant file.

"Edf" tries to tell you that the Hershey Complex
Cyrillic (HCC) font has characters at octal codes 000
and 3, when the characters are in reality at 001 and
004.

68

/* */

/*

/*

edf .c */

*/

tfdefine error return(l);

int readfp» w p i t e f d »

i nt pt s i ze

;

int pi d;

int freenode;
i nt i nf ont ;

int wr f 1 ag

;

int wr

;

int max ;

int h t / maxw» 1 h t ;

int bike? char *by tc

;

int edit?
int de 1 et e

;

int tht/ tmaxw» t 1 h t ;

int dim;
int i nc 1 ude;

int rw/ Ik, r f t ;

i nt bot , by t es t drc ;

'int s / e

;

int in?

int c t peekc ;

int first* last;
i nt chmod;
int *n

;

int sg 1 1 y 1 3]

#

int savetty;
int onintrO;
i nt *charde f , *d;
char cstat;
char des £80] ;

char ibuf 136] ;

char tbuf [40001 ;

i nt hdr [256] ;

int f hdr [256] ',

struct node {

int code;
char *def;
int ns i ze

;

char stat;
st rue t node *ne x t ;

> 11 i st (129]

;

//f i

//He
//Ch
//pt
//cu
//in
//an
//wr
//f 1

//di
//32
//f o

//bl
//se
//f 1

//te
//ch
//f 1

//du
//Ch
//
//CO
//l
//in
//ch
//l i

//l
//in
//0,
//bu
//te
//ad
//en
//ho
//ho
//bu
//ch
//hd
//te
//a
//ch
//ch
//ot
//si
//st
//pt

le d

rshe
i Id
r to
r ren
i t i a

y ch
i t i n

ag t

agno
677
nt d

oc k ,

t to
ag i

mp f

ar d

ag d

r i ng
arac

ii

mman
i f c

cha
arac
ne d

i f c

t ege
Ot h

f fer
rm i n

dres
arac
Ids
Ids
f fer
a rac
r ta
mo h

node
arac
arac
r to
ze o

at us
r to

esc r

y f o

proc
nex

t ch
1 ly,
ange
g
o t u

stic
used
i men
byte

1 w

n c h

ont
i m d

reve
an

t e r

d ar
u r re
rac t

ters
t rs
har
r do
e rw i

for
a 1 s

s of
t e r

stat
font
for

t er
ble
dr t

hoi
t e r

t e r

cha
f ne
of
nex

i pt or

s

nt po i nt size
ess id
t f ree node i n

aracter
. i nc rement e

to flag a au i

rn o

s du
to

s i on
cou

hen
ec k i

d i me
i p 1 a

n t i n

i nc 1

d i me

gume
nt c

e r b

on
i n c

i n

i n t e

se
gtt
tatu

i nt
oo i n

us o

des
rea

buff
of e

ab 1 e

ds i

stor
code
r de
w de
mod i

t no

ff di
r i nq
deno t

s

nt ers
in ed
ng f o
n s i o n

y con
g ace
ude c

ns i on
ii

nt S

ha rac
u f f e r

the c

ha rac
buf f e

r

sp 1 ay
file
e bas

i t mo
r emp
s

t POl

ess t

omman
s

t er d

/ o

omman
t er b

r was

1 1 ist

d on
t without

i ng o f

writing
e node

de
ty fontfiles

switch
o 1 1 i st

d

ef i n i t i on is

t herw i se
d line
u f f er
modi f i ed

y(II)
s

er rupt tra
ters
f char in

c r i pt i on
d(II)
e r

d i t ed/c rea
during an

n f o on a s

ea on the

f i n i t i on
f i n i t i on
f i c a t i o n

de in 1 1 i s

char buffer

ted font
i nc 1 ude

ingle
1 1 i st

69

struct node *head; //Dtr to head of Hist
struct node *avaii; //ptr to next free node
struct node *current? //ptr to node found in FIND
struct node * i nser t () ? //node returned by INSERT
char rfoot.fi le t40]; //fontfile being included from
char w

f

ont f i 1 e [40] ; //file being written to
char sfont f i le [40] {"/. font s . 1 / font /"} ',

//pathname header of fontfile to
//be edi ted

char hf si ze [5] {" 10") ; //default pt size for Hershey font

ma i n

i

i

i

Car
nt
nt
f (

i f

gc / ar
argc ;

i ;

argc
(arg

i f (a

i

>

qv)
char * *argv ? {

> 1) { //a rgumen t s->ed i t mode
v C 1) [] == •-•) {//digitize Hershey
rgc = = 3) {//check any Doint size
f ((otsize = atoi (argv [23)) > 42)
printf("ooint size exceeds 42");
ex i t () ?

font

{

P
f

}

p i d =

i f (

wh i

el se
ex

read

= h f s i ze

;

or (i =0 ; (*p + + = argv [2] ti])
i - i

\ o ' ; i + +) ;

forkO ;

pid I-)

le (oid 1= wai t ()) ;

//create process to digitize Hershey font
eel (

H makehf", M makehf",argvU] , hf si ze,0) ;

fp = ooenCV. fonts. 01/HFONT", 0) }

se if (argvtniO] == '/'
) {//full pathname

readfp = open(argv(l]*0);

}

di t

se {

p = argv (1] ;

for(i=l6;(sfontfiletn = * d + +) i=

readfp = ooen (s f on t f i 1

e

t)

;

= l;

\o ' ; i + +)

;

n i t () ;

ignal(2/onintr);
hi le (1) {

set ex i t () ;

print f (
H \n%3o>

oeekc = (peekc
if (commandC))

print f ("?\n") ',

if (peekc 1= '\n')
>

//set interrupt trao

"linfont);
== '\n') ?

{

oeekc ;

whi le((c=getc ()) i= '\n'

)

>

ini t ()

70

}

i n t i ;

i f (edi t) {

if (readfp > 0) fonthdrO;
else {

ppjntf ("fontfile not found\n");

e x i t () ;

}

1 20 J

1 se { //c reat e mode
z h d r (h d r) ;

print f ("\nfont height ?

whi 1 e((ht=getnum()) < !| ht
peekc = 0; print f ("height ?

printf(H %d l\n",ht);
peekc = ;

printf ("maximum character width ?

wh i 1 e ((max w=ge

t

num ()) < |{ maxw
peekc = 0; pri nt f

("Maxwi dt h ?

p r i n t f (" % d ! \ n "
, m a x w)

,*

peekc = 0;

printf("1ogical height above baseline
whi 1 e((

1

ht=getnum()) < || Iht > ht)
peekc = 0; print f ("1 ht ? "); >

print f(" %d i\n" ,1ht);
peekc = 0;

printf ("TvDe in any one-line")/
orintf(" font description, if desired
get name (des)

;

ax = 32677; wrflag = ;

ead->code = max;
ead->next = 0; chmod = 0;

nclude = l; freenode = l;

nfont = 0; wr = l;

ead = llist; avail = & 1 H s t 1 11 ;

");
> 256)
");

");

i

\n");

zhar(h) //zero a hdr table
int h!]; (

regi s t er int i

;

n = h;

f or (i =0; i <256; i ++) *n++;
}

int getc() {//return next char in command line
i f (peekc) {

c = peekc ;

peekc = ;

>

else I

c = qetchar ()

;

if (c 1= ' '
) peekc = c

;

>

ret urn (c)

;

}

71

fonthdrO {//read hdr table and font dimensions
i nt i ? char t ?

read(readfprhdr,512) ;

read(readfp, &ht /2) ;

print f ("\nHeight %c ",ht);
if (ht > 120 I ! ht < 0) {

print f(H too high"); exitO; >

read(readfp;&Tiaxw»2) ;

p r i n t f (
" Maximum character width %d " , m a x w) ?

if(maxw > 256 || maxw < 0) {

print f ("too wide"); exitO?}
read(readfp*&l ht > 2) ;

printf ("Logical height %d\n",lht);
i f (lht > ht ! ! 1 ht < 0) {

orintf("too high"); exitO;}
seek(readfD, 518,0) ;

p = des ; t = 1

;

f o r (i = ; t 1 = ' \ ; i +) {

read(readfo, &t > 1)

;

*p++ = t;

)

}

int getnumO {//convert numeric string and rtrn value
i nt i i base

;

i = o;

whi le((c = getc ()) == ' ') ;

if (c >= '0' && c <= '9») {

base = (c-'C) ? 10 : 8;

peekc = c

;

if (base == 10) wh i 1 e ((c =get c ()) >='0' JU c <= , 9')

peekc = 0;

i = i*base + c - '0';

}

else whi 1e((c=getc()) >='0' ^& c <='7') {

peekc = ;

i = i*base c - ' 0';
}

peekc = c

;

ret urn (i) ;

}

else{// there was no numeric string
oeekc = ;

if (c == '
') return(-2) ;

if (c == ' -') return (-3) ;

oeekc = c; //c will be Drocessed later
ret urn (- 1) ;

}

>

i n t command () {

/* Process the command line:
upda t e i n f on t

check command arguments
execute command

72

Any problems ? return a 1; otherwise* return a */

regi ster i , j

;

i nt t emo, k , h , hb * lb;

switch(temp = getnumO) {

case - 2 : //increment infont
if (chmod) putdefO;
i nfont+S
in = ; c hmod = ;

break ;

case -3: //decrement infont
if (chmod) putdefO;
infont--;
in = 0; chmoc = 0;

break ;

case -1: break; //no change

default: //infont oets temp
if (chmod) putdefO?
infont = t emp

;

in = ; c hmoa = ;

break ;

}

if (i nf ont < 0) i nf ont = 127;
if (infont > 127) infont = 0;

whi le((c = getc()) == ' ')

switch (c) <

//check for wraparound

//ada a character
instrO; c=getchar(); getdim(); p = tbuf;
for(i=0;i<a000;i++) * o + + = ;

bytes = (rw%8 == 0) ? rw/8 : rw/8 + 1 ;

in+t; wrflag++; chmod++; break;

case
i f

j+o

c 1

: //change lines s thru e

(gch a rde f (read f p)) {

if (set se (h t)) error ;

sbase ()

;

for(i=s; i < e;i++)
for(j=first; j < last+first;

tbuf(i*bvtes+jl = ;

for(i=s; i <= e; i++) {

print f ("%3d "

,

i)

;

for(j=first; j < last+first;j++)
tbuf Ci *by t es+ j 1 = aetdef ()J

>

in++; cstat = '

m

'

}

wrflag++; chmod++;
}

else error;
break ;

73

case 'd': //delete char's s thru e

if (setse(128)) error;
c s t a t = ' d ' ;

f or (i nf ont =s ; i n

f

ont <=e ; i nf on t ++) {

i f (hdr [i nf ont *2] == 0) continue;
hdr [i nf ont *21 = 0; putdefO;

>

in = 0; wrflag++; break;

case 'e': //eait lines s thru e

i

f

(gcharaef (readf p)) {

i f (set se (h t)) error ;

sbase ()

;

gtty(lfSqtty); savetty = s g 1 1 y 1 1 1 ;

f or (i =s; i < = e; i +) {

print f ("\n%3d "
, i)

;

sgttyCll =! 03; st ty (

1

, sgt ty)

;

for(j = fi rst; j<fi rst + last; j +)

1 i st ("%c%c%c%c%c%c%c%c", tbuf [i *bytes+j])

;

sgttytl] = savetty; st ty C

1

r sgt ty)

»

o r i n t f (
" \ n ") ;

for(j = first;j<first + last;j-t- +)

tbuf[i*bytes+jl = getdefC);
} in + + ; wrflag + f; chmod++; est at = '

m
'

;

} else error; break;

case //switch char dimension flag
dim = (d i m)

break ;

1

case
i

g
p
i

>

c

r

r

i

'
i

' : //include char's s thru e from rfontfile
f (setseC 128)) error;
etname(rfontfi le)

;

pend(rfontfi le,"/. fonts. 1/font/") ;

f ((temo = open

(

rf ont f i

1

er 0)) < 0) {

orintfC" cannot open %s" /rfontfile); error;

oyChdrr fhar) ; read(temo,hdr,5l2) ;

ead(temp,&tht,2); read(temp/&tmaxw*2);
ead(temp,&t 1 ht ,2.) i

f (re j ect ()) i

pri nt f
("compat ibl e

H
);

cpy (f hdr / hdr) ; error;

= i nc 1 ude = ;i

est at =

f

w r = ; drc = 1 ;

orCinfont=s; infont<=e; infont++)
if (gcharaef (temo)) outdefC);
else if(drc == 0) putdefO;

1 ose (t emo) ; wr = 1

;

or(i=0;i<s;i++) <

hdr[i*2) = fhdr[i*2); har[i*2+l] = fhar [i *2+l] ;

or(i=e+l;i<128;i*+) {

7a

hdr[i*21 = fhdr(i*2]; hdr[i*2+l] = fhdr[i*2tl];
}

include = 1? wrf

1

ag++» break;

case '1': //list lines s thru e

if (gchardef (readf d)) {

if (set se (h t)) error ;

sbase ()

;

for (i =s; i <= e; i + +) <

printf ("\n%3d ", i);

for(j=first;j < last + first; j++)
1 i st ("%c%c%c%c%c%c%c%c", tbuf ti *bytes + j]) ;

>

i n + +;

>

else error;
break;

case 'n': //display font description and table
p = d e s ;

if(*p == 'NO') orintfC'no descript ion\n") ;

else for(i=0;*p I = ' \ ' ; i++)
putchar(*p++) ;

putchar ('\n ')

;

p r i n t f (
" 1 2 3 4 ") ;

p r i n t f (
H

5 6 7 ") ;

f o r (i = ; i < 1 2 8 ; i + +) {

i f (i%8 == 0) {

if (i == 0)orint f ("\n000")

;

else if (i < 1 00) pr i n t f
(
" \n0%o

"

, i)

;

el se print f (
M \n%o% i) ;

>

p s t a t (i) ;

}

print f("\n\n' ' undefined 'X' unmodified ")/*

printfC'I' included ");
printfC'D' oeleted 'M' modified");
break;

case 'p': //modify font/char dimensions
instr(); c = getcharO;
get di m () ; break ;

case '
q

'

:

//auit/ warn if not written
if (wrflag) {

wr f 1 ag = ;

orint f ("wri te??") ',

error;
}

e x i t () ;

case //shift lines s thru e once
i f (gc harae f

(

readf d)) {

Deekc=0; temo=getc();

75

i f (setseCht)

)

sbase ()

;

switch C t emp)

error;

{

case ' r ' : //right
for(i=s; i<=e; i++)

lb = 0;

for(j=first; i < first+last; j++) <

hb = lb;
i f

*P
i

}

} break ;

case •
1

' : //left
for(i=s;i<=e;i++)

ho = 0; lb = 0;

f o r (j = f i r

:first; i < first+last; j++)
= lb; p = &tbuf ti *bytes + j 1 ;

(*d & 01) lb = l; el se lb =

* p = > > l

;

if(hb) *p =! 0200;else *d =& 0177;

M U — V r I U — \l t

for(j = fi rst + 1 ast-1 ; j> = fi rst ; j--)

p = &tbuf[i*bytes+j];
i f

(

(*p&0200)>>7) hb = 1; else
*o =<< l ; i f (lb) *p =: oi; lb

>

{

hb =

= hb;
o;

> break;

//up
f or(i =s; i < = e; i + +) (

i f (i --) sont i nue

;

for(j=first; j<first+last;j++)
tbuf [(

i -1

)

*bytes + j] = t bu f f i *by t es+ j J

;

}

for(j=first; j<first+last;j++)
tbuf(e*bytes+j] = 0;

b reak

;

case '

a
' : //down

for(i=e;i>=s;i--) {

if (i == ht-1) continue;
for(j=first;j<first+last;j++)
tbuf((i+l)*bytes+j] = tbufti*bytes+jl ;

}

for(j=first;j<first+last;j++)
tbuf [s*bytes + j 1=0;

break ;

default: error;

} //list the shift
for(i=s; i <= e; i + +) {

print f ("\n%3d %i);
for(j=first;j < first+last; j + +)

list ("%c%c%c%c%c%c%c%c% tbuf (i *bytes + j])

;

}

in + + ; wrflag + + ; chmod + + ; est at = ' m ' ;

76

> else error; b reak

;

case
i f

ge
//

i f

i f

>

zh
wr
wr
w r

w r

bl

fo

•w' : //wr
(chmod) du

t name (wfont
no writing
(cmpr (w f on
cmp r (wf on

p p i n t f (
" w r i

((wpi t e f o = c

p r i n t f (" f i

dr(f hdr)

;

i te(wpi tef p
i te(wri tefp
i t e (wr i tefc
i t e (wr i t e f

c

k c = 1 ; b y t

p (i = o ; * p i

write(writ

ite to wfontfile and
tdefO; wp = o;

file);
to file be i ng edited
t f i

1

e, sf ont file) ! !

t f

i

le, H HF0NT")) {

ting to existing file

reatCwfontfi 1 e#0666)

)

1e "); error;

au i t

"); w p = 1 ; error;

0)

}

w p

fo
i t e (wp i

p (i n f on
i f (hd
else i

i f

f hd
f hd
w p i

bum
f re

>

else i

i
=

p =

f hd
f hd
w p i

P =

w p i

bum
}

tefp
t = o;

p [i n

f (f

(cur
p [i n

r C i n

te(w
p (cu
e (cu

f (e
gch
tbu

r(in
p [i n

te(w
by

te(w
p(by

,f hdr, 512); //write olank hdp table
, & h t , 2) ;

/ &max w r 2.) i

, & 1 h t , 2)

;

c = 6; p = des?
= • \ o » ; i + +) {

ef Of d++, 1) ; bumpC 1)

;

,p,l); bump(l); in = o;

infont< 128; infont++) {

font*2] == 0) continue; //no char here
ind(infont)) {//get it from llist
pent->nsize == 0) continue?
font*2]=Chdr(infont*2Ji0377)!(blkc<<8);
f o n t * 2 + 1 1 = byte;
pi tefp/cuppent->deffcuppent->nsi ze)

;

ppent ->ns i ze)

;

rrent ->de f) ;

dit) {//get it from file
arde f C readf p) \

f ;

font*2]=(hdp[infont*21 8.0377) | (blkc<<8);
f o n t * 2 + 11 = byte;
pitefpfpf8); bumo(8);
tes*pft + 8;

pi tefp/p/bytes*dpc) ;

tes*drc)

;

else error;
}

seek (wri tefD f

wri te(wri tefD
delete = 1;

// remove any
for(i=0; i <256
i f (del ete) {b

p p i n t f (
" % 1 \ n "

e x i t () ;

0,0);
, f hdP,512) ;

empt y f on t f i 1

e

;i=+ 2) if(fhdr(i] > 0) delete = 0;

lkc = byte = 0; unlink(wfontfile);}
/bl kc*512+bytc) ;

77

case ' \n ' : break ; // sync

def aul t

:

print f("%C %c);
error?

>

ret urn () ;

}

bump(i) //running count wfontfile size
//in blocks and bytes

i nt i ; {

i f (bytc+i >= 512) {

if ((bike + (bytc+i)/512) < 255)
bike =+ (b y t c + i) / 5 1 2 ;

byte = (bytc+i)%5 12;
}

el se if (bytc+i > 32768) {

print f ("fi le too bia"); exitO;
}

else byte =+ i;

}

else byte =+ i ;

}

int cmpr(pl,p2) //rtn 1 if pi != d2; otherwise,
char *p

1

, *p2 ; {

for(; ;) {

if (*pl != *p2++) return(O);
if (*ol++ == '\0 '

) return(1)

;

>

}

cpy(nl,n2) //copy pi to o2
int *nl / *n2; {

int i ;

for(i=0;i<256;i++) *n2++ = *nl++;
>

ppend(pl,p2) //preoend d2 to pi
char o\[) , p 2 t J ; {

char *bl , *b2, t [401 ;

b 1 = o 1 ; b 2 = t ;

while((*b2++ = *bl++) i= '\0')

b2 = p2; bl = pi;
whi le((*bl++ = *d2 + +) i= 'NO')

b2 = t; bl--;
whi1e((*bl++ = *b2++) i= '\0')

>

int reject () { //rtn 1 if files are incomDat ibleJow/
if(tht 1= ht ! i tlht 1= lht !! tmaxw > m a x w) return(l);
else ret u rn ()

;

>

78

onintrO { //restore environ.
signal (2,onintr);
i f (savet t y) {

sgt t y [1 1 = savet t y

;

savet t y = ;

stty(lrsgtty);
savet t y = ;

reset i nt t rap

}

>

reset ()

?

nt gch
/* G

char
1 an

i nt
regi
reg i

if (

if (

i

}

b

f

f

f

i

r

>

//ge
i f (

D

arde f C

et the
acter;
k rows
fp;

ster i

s ter c

in) re
f ind(i
f (cur

pr i n

ret u

P" = tb
harde f

tp + + =

w =: (

f (rw
pr i n

y tes =

tp + + =

k =: c

tp+t =

ft =:

tp++ =

re =!

f (drc
p r i n

ret u

ot = h

or (i =0

fori
or (i =0

for(
or(i=0

for(
f (wr
et u rn

(

t i t f

hdr [in
ri nt f (

fp)
ch
PU

» a

{

/ j

;

ha r

tur
n f o

ren
tf (

rn (

aracter definition for the current
t it in the char buffer, expand
nd display necessary diagnostics */

*tp;
n(l); //it's already there* rtn 1

nt) 11 include) i //it's on the llist
t->stat == *d') <

"aeleted ") ;

0);

uf ;

= cur rent ->de f

;

rw = *chardef++; rw =& 0377;
*tp + + = *chardef++) << 8;
<= 0) {

tf("%o raster width %d "» infont /rw) ; return(O);

(rw%8 == 0) ? rw/8 : rw/8 +i;
Ik = *charaef++; Ik =& 0377;

*tp++ = *chardef++) << 8;

rft = *chardef++; rft =& 0377;
(*tp++ = *chardef++) << 8;
drc = *chardef +; drc =& 0377;
(*tp++ = *chardef++) << 8;
= = 0) {

tf ("printable ");
rn(0) ;

t - (drc rft);
; i < rft; i + +

)

j=0; j < bytes; j++) *to++ = 0;

; i < drc; i++)

j = ; j < bytes; j++) * t P + + = *chardef + + ;

; i < b o t ; i + +)

j = ; j < bytes; j+ +) *to + + = o;

&& dim) pcha rdi m ()

;

l);

rom the file
font*2J == 0) {

"undefined "); return(O);

79

>

if <(

i

se
se

>

el se
read (

if (r

pr
}

read C

read (

read (

i f (a

pr
re

>

bot =

bytes
tp =

*to + +

*tp + +

*tp + +

*tp + t

*tp + +

f or (i

fo
f or (i

re
fo

}

f or (i

fo

i f (w

ret ur

j= (hdr Mnfont*21 & 1 77^400) >> 8) 1= 0) {

=& 0377;
e k (f d , j , 3) ;

ek(fDfhdr[infont*2+l] , 1) ;

seek(fp,hdr[infont*2+ll ,0)1
fp,&rw, 2)

;

w <= 0) {

intf("%o raster width %d w
r

\

nf ont , rw) # return(O);

f p , & i k r 2)

;

fp#&rf t #2)

;

fpr &drcf 2)

;

re == && wr) {

int f ("pri ntabl e ");

tum(O);

ht -(drc t rft);
= (rw%8 == 0) ? rw/8 : rw/8 t 1 ;

tbuf ;

= rw % 0377;
= (rw & 0177400) >> 8;
= Ik & 0377; * t d + + = (Ik & 0177400) >> 8 ;

= rft & 0377; *tD++ = (rft & 0177400) >> 8;
= drc & 0377; *tp + + = (drc & 0177400) >> 8;

= o ; i < rft; i + +

)

r(j=0; j < bytes; j + +) *tp++ = 0;
= ; i < d r c ; i + +) {

ad(

f

Pt i buf # bv t es) ;

r(j=0; j < bytes; j + +

)

* t p + + = f b u f C

]
']

;

=o; i <bot; i + +

)

r(j=0; j < bytes; j + +) * t p + + = 0;

r && dim) ochardim();
n (1) ;

}

int setse(x) //set command aras s and e

int xl {

peekc = ;

s = getnumO;
i f (s <) {

s = o ; e = x - 1 ;

ret urn () ;

}

e = get num () ;

i f (e < 0) e = s;

if (e < s) error;
if((s >= x

! I e >= x) && x == 128) error;
i f ((s > x

ret urn () ;

e > x) & & x == ht) error;

1 i st (f mt , by t)

80

//list byte, bit by bit, 0=>'.', 1=>'0'

Char *f mt » by t ; (

printf (fmt ,0200&byt?'0 '

ooao&bvt?' o'

OOlO&bytT'O'
0002&byt?' 0'

' ,0100&byt?'0 '

' ,0020&byt?'0'
• ,000<Ubyt?'0 '

' ,0001&byt?'0 '

t

}

i nt f i nd (i)

//if current character is on llist, rtn 1

//current points to correct node? ow» rtn
i n t i ; {

register struct noae *ptr?
pt r = head;
while (i > pt r->coce)

ptr = Dtr->next#
if (i == ot r->code) {

cu rrent = ot r

;

ret urn (1) ;

and

>

else return (0);
}

get name (f i 1 e

)

//get name ending in '\0' and stick it in file
char fileT]; {

whi le((c = getc())==•')
if(c != '\n') <

d = file;
do {

* p + + = c; p e e k c = ;

} whi le((c = getc()) i= '\n') ;

*p = • \o';
)

)

putdefO (

//put definition in char buffer on llist
if (f i nd (i n f on t)) 1 node (cu

r

ren t / i n f on t) ;

else {

lnode(insert(avai 1 » infont) > infont);

i f (f reenode > 128) <

printH" overflow"); exit();
}

avail = 41 1 ist (+ +f reenode) »'

>

}

lnode(ptr,k) //do the work for PUTDEF
struct node *Ptr; int k; {

register int i,j;reqister char *tp;
int clear;
ptr->code = k;

if (est at ==
'

d
') <

ot r->st at = cstat;

81

return;
} //count blank rows at too and bottom
rft = bot = 0;

i = ; clear = 1 ;

while(i < ht && c 1 ear) {

for(j=8; j < bytes + 8; j++)
if Ctbuf ti*bytes+j] != 0) clear =

if (c 1 ear) rft = i + 1 ;

i + + ;

>

i f

<

(i < ht) {

i = ht-1 ; c 1 ear = 1 ;

whi 1e(i > && clear)
for(j=8; j < bytes + 8; j++)

if (tbuf(i*bytes+jl 1 = 0)

if (clear) bot = ht-i;
i —

;

clear = '\0

}

}

drc
i f (

to
*tp
*tp
*tp
*tp
for

}

pt r

pt r

o;= (Ore) ? ht -(rf ttbot

)

drc == 0) rft = Ik = ;

= ptr->def = al 1 oc (by

t

es*drc +8) ;

++ = rw & 0377; *to++ = (rw & 0177400)
++ = Ik & 0377; *to++ = (Ik &

++ = rft & 0377; *tp++ = (rft
+t = drc & 0377; *tp++ = (drc
(i =rf t ; i < rft tare ; i ++) {

f o r (j = 8 ; j < bytes + 8 ; j++)
*tp++ = tbuf(i*bytes+j];

->nsize = 8+drc*bytes;
->stat = cstat;

>> 8;
0177^00) >> 8;
& oi77aoo) >> 8;

& oi77aoo) >> 8;

>

struct node *insert(a/i)
//rtn a node for PUTDEF to use

struct node *a; int i; <

register struct noae *otr,*temp;
t emp = otr = head;
while(i > otr->coae) {

temp = p t r ;

Pt r = pt r->nex t ;

>

f (pt r == head)

a->next = head;
head = a;

{

Ise {

a->next = temo->next;
t emp->nex t = a

;

->stat = a->def = a->nsize
et u rn (a) ;

= o;

82

sbase() { //set horizontal starting ooint for char def
first = 8; last = bytes? //normal char, default
if (bytes > 9) { //too wide/ get a starting pt

orintf ("\ntoo w i de . . . s t a rt i ng where ?");
Deekc = 0;

whileCUast = getnumO) < !! last >= rw) {

peekc = 0; print f ("where ?"); >

oeekc = 0;

last = (last == 0) ? 1 : last/8 + l;

first = first t last-i;
last = ((bytes + 8-f

i

rst) > 9) ? 9 : by

t

es+8-f i rst

;

>

>

getdefO i //get one byte of a definition
int m a s k , i , j ;

peekc = ;

whileUc = getcO) 1= '0' && c i= '.')

peekc = c ;

i = j = o;

mask = 0400;
whi1e((j++ < 8) && ((c=aetc()) == '0'

oeekc = ;

if ((mask = mask>>l) && c == '0')

i = ! mask

;

}

r e t u r n (i) ;

>

i i

ostat(i) //print char status for edit table
int il {

if (f ind(i)) {

sw i t ch (current ->s t at) {

case '

d
' : orintf ("

case '
i

* : orintf ("

case ' m ' : pn'ntf ("

D "
) ; b r e a k ;

I ");break;
M ") ; b r e a k ;

}

>

>

else if (hdrti*23 == 0) printfC
else print f(" X ");

");

ochardimO { //aisDlay char dimensions
int i

/*

if((i = hdr (infont *2] & 0377) == 0) {

Drint f ("undefined") J return;
}

printfC'rw %d cw %d ",rw,i);
if (rw == i) orintf ("Ik %d rk %d M ,\ k,l k) ;

else if (Ik) {

if (lkfi == rw)print f ("1 k %d rk %d",lk,0);
else printf("lk %d rk %d",lk,rw -i-U);

}

83

else print f ("Ik Xd rk %d M
, 1 k , rw-i)

;

print f(" ht %d lht %d H ,ht*lht);
print fC'pft %d drc %d\n " , p f t , drc) ;

ge tdim()

/* Look
a reque
Quit on
i n t i i j

j = hdr
while (

peek
i =

i f (c

i f (c

e 1 se
i

} el

P

P
} el

e 1 se
p

e 1 se
i

>

e

el

i

e

el

i

e

el

i

> el

{

for
st / r

' t
'

t f on
[info
1)

c =

get nu
mo r (

n

mp r (

n

i f (c

n f on t

se i f

r i nt f

eekc
se i f

i f (c

r i nt f

i f (c

f (i >

1 se o

se i f

f (i <

1 se o

se i f

f (i <

1 se o

se i f

f (qch
i f (

> e

e 1 se
se if

f (gc
i f (

>

> el

i

> e

e 1 se
se i f

f (qch
i f (

num
j ec t

nd r

; ch
t*2]
{

pr i

o;
me/"
me, "

or (n
= i ;

cmp p

"%s\
o;

cmpr
pr (

n

"ht
pr (

n

lht
i nt f

cmpr
ht)

i nt f

cmpr
o i

:

i nt f

Cmpr
rde f

< =

dr [1

dr (i

k =

se p

pr i n

cmp r

arde
< =

w =

f (rw
hd
hd
1 k

ber and/or n

i n g invalid
eturn to the
a r name [20];
8,0377; font

n t f (
"

get na
t"))
i "))

ame ,
"

i =

(name
n" ,de
get na
(name
a m e ,

"

%a ma
a m e /

"

) { ht

(" \ n ?

(name
{ lht
(" \ n ?

(name
i >

("\n?
(name
(read
rw

)

n f on t

n f on t

rw- i ;

r i n t f

tf ("

(name
f Ue?i
ma x w)

i ; f o

< j)

r U n f

r [i n f

=

\n%3o->
me (name
break;
i nst r ()

i nfont"
gcharde
t
H d ")

)

s);
me (des

)

,"p"))
f"))
x w % d

h t "
))

= i ; w

");
, " i h t "

)

= i ; w

");

,
" m a x w "

256) {m
");

,"cw"))
fp))

{

*2) =:

font =

("\n? "

Cw now
, "rw"))
dfo))

{

n t = l

;

{

ont *2)

ont *2]

; font

ame • Take both as
request s with a •

?

'

main command loop */

= 0;

"
, i nfont)

;

);

)) {

f (p e a d f p)

;

{

PC ha rd i m () ;

ht %d\n",ht,maxw,lht);
{

r f 1 a q + + ; >

) {

rf 1 aq++; }

)) {

axw = i; wrflaq++; >

{

{

se orintf("\n? "

printf(" rw now
cmor(name, "1 k"))

rde f

(

readf o)

)

w == j) <

17 7 4 0,*

i & 37 7;

l ;

);

%d\n", (hdr linfontl =i));

{

{

a& 0177400;
=! i & 37 7;

= i;

);

%d\n" , (rw = i))

;

{

{

8a

}

i f

>

>

i f (i == 0) {Ik = i ; font
else printf("\n? ") ;

} else if(i <= rw-j) { Ik = i ;

else print f("\n? ");

> else printff" Ik now %d\n",(lk =

else if(cmpr(name,"rk")) {

i

f

(gchardef (readf p)) {

i f (rw == j) {

if (i - 0) J el se print f ("\n?
} else i f (i <= rw-j) {

t f (i + 1 k == rw-j) ?

else { Ik = rw-i; font = 1 ;

} else print f("\n? ");

} el se orint f ("\n? ")
}

else print f("\n? ") ;

= l; }

i ; font = 1 ; >

i));

");

}

(font) <

wrf

1

ag++;cstat = '

m
'

;

du t de f () ; i n = 0;

>

i nst r (

)

print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print

}

//
("Mo
("he
("

("Mo

C"
("Ty
("di
("To
("»

i

("\n
("Mo
("a\
(" '

("\n
("so
(" '

("Yo
("Wh

di sp
di f i

i ght
1 ogi
di f i

st er
left
pe •

mens
mo v

n f on
Get
di fy
n c h

rw '
i

Impo
me e

22 1

u '
1 1

en y

lay
ab 1 e
- • h

ca 1

ab 1 e

w i d

ker
i

' f

i ons
e to
t ' .\

font
f on

arac
'

1 k

ss i b

x amo
ht ',

be
ou a

i nst
FON

t
'

he i g
CHA

th-
n- '

r i

of
ano

n) t

di m

t na
t e r /

•

t

1 e m

1 e i

•06

p rom
re f

ructions for GETDIM
T dimensions are:\n")»
max character width- ' m a x w ' ")

?

ht- 'Iht'NnXn");
KACTER dimensions are:\n");
•rw' character width- , cw'");
Ik' right kern 'rk'\n\n");
nstructions/ 'p' for ");

character in buffer. \n");
ther cnaracter, update ");

ensions with 'f'. ");

me with '

d
' . If you're adding");

make changes in this order only
then ' cw ' .\n") ;

edifications are rejected....")/
nputs might b e \

n
")

;

3 infont ' ,
'

i
'

/ or '0 Ik '\n\n") ;

oted with a ' ->
' .

"
) ;

inished/ tyDe 't'... \n\n");

");

85

APPENDIX 8. VECTOP TO RASTER CONVERSION

A. 'MAKEhF': CREATING A FONT

1 . Bas i c St rue ture

"Makehf" is designed to convert the vector defini-

tions of Hershey's 14 fonts into a digitized form suitable

for use in comouter typesetting. The digitized font file

created matches the format used in the SAIL files and is

compatible with the font editor. This font file format is

described in Chapter III; Hershey font files differ slightly

because no font description is ever generated by "makehf",

so an extra zero byte immediately follows the three words

containing the font height* maximum character width* and

logical height. This zero-word tells " edf" that no descrip-

tion is available.

All fonts digitized from Hershey vector definitions

are variable width fonts. The arguments used to call

"makehf" are described in Chapter II and again in this Ap-

pendi x

.

This Drogram can be used in a stand-alone mode* in

which case the digitized font file created is normally left

on file "/. fonts. 01/HFONT" and it can then be copied to any

other directory. The digitized font may be written directly

to another file* as explained in the next paragraph. When

86

digitizing a font using "edf" > "makehf" is spawned as a

child process? the editor waits until the digitization is

complete and then opens file " / .

f

ont s . 1 /HFONT " for reading

and continues normally.

An additional option has been added and is normally

used for the digitization of fonts larger than 4 2 point.

However^ it may be used whenever the user wants the digi-

tized file written to some location other than the default

file. Since the file space available on the mountable file

is limited/ the user rray include a full path name as a third

argument and indicate a SDecific output file as the destina-

tion for the digitized font. This option should permit the

user to avoid system "write" errors that might occur if the

digitized file were larger than the space available on

"/.fonts. 01". A point size must be included as the second

argument when using this option, even if the default value

i s des i red .

2 . Limitations

Because a decision was made to limit the maximum

raster height to 255 pixels* "makehf" will create fonts only

up to 91 point in size. The user should also be aware that

font files increase in size rapidly as larger point sizes

are reauested. The next pages/ for example/ contain the Du-

plex Roman font digitized to 10/ 20/ 30/ and 40 point

sizes. This allows a comparison of the relative sizes of

both the characters and the font files themselves. The file

87

sizes and the times required to create the fonts are listed

below:

SIZE(bytes)

H0R10 5522

HDR20 15211

HDR30 31757

HDR40 53U58

Real

TIME

User

0:45.0 0:22.8

l sai .o

3:00.0

System

0:19.4

1:10.4 0:25.7

2:26.4 0:28.8

5:18.0 a: 1 l .6 0:U9.6

The three times given were obtained using the "time"

command discussed in Reference 5. The conversion was made

using "edf" with a "w" (write) command waiting for the edi-

tor when it returnea from the call to " makehf". Normally*

the time required to digitize a font will increase notice-

ably as either t^e Doint size desired or the number of lines

per character (the comDlexity) increases. These times were

taken early in the evening , and are somewhat faster for the

larger fonts than a normal time during the work day would

be. If both factors increase* then the time required for

digitization becomes noticeably longer. A comparison of the

times reguired to digitize each of the fonts at 20 point is

gi ven below:

SYSTEM SIZE(bytes)

0:20.4 15461

0:25.3 15211

0:28.6 18327

0:30.8 15856

0:30.8 18936

REAL USER

HSR 1:01.0 0:35.8

HDR 1:41.0 1:10.3

HCR 1:51.0 1 : 12.1

HTR 2:19.0 1 :35.1

HCI 2:16.0 1 :20.9

88

a
\
a
a
V

\

«

\

>

w

tr
a
o
c
E

»*-

a>

"a
u
_Q

O
M
>-

X

>

t-
</)

cc

O
o

-J

o —
o

a
u
m
<

II

»

•

oa

u>

m̂
*

+
*

*
**

1~ x
3:

®

o
S
\
a
a
4)

-
\

O
•9

CD

Ld

Q -

a «

N

X

>
3

<
0-

•

cr
a
o
c

<*.§
oo ^
CO jc

ro a)

CM TJ
r- a
o JD

• N
I
>

* >

w-a:
'- a~ 0.

©

\
-

Cm

\

m
<

t 9\

t f

00

to

tn

CM

o

o
N
X

> N

01

a
CL

o

>

(/)

cr

a
o
c

E

FIGURE 8-1. Increasing Point Sizes--HDR

89

00^

CO ^

ft -

I o
\—
®
4)—

o

+
*

O
Ld

Q
U
CD
<
0-

§ r>

t «

CD

J*

O)

0)

"O
O N

D X
N

CO
a:

O

x 2

0°

FIGURE B-l. (Continuea)

90

HTI 3: 16.0 1:46.6 0:33.5 17063

HSS 1 : 16.0 0:44.7 0:22.6 13393

HCS 1 :a6.0 1 :02.5 0:24.2 13173

HSG 1:13.0 0:37.9 0:21 .5 15302

HCG 2: 13.0 1 : 12.8 0:29.4 18086

HGE 3:4a.

o

1:47.7 0:35.0 16201

HGG 2:42.0 1 :54.7 0:35.0 17560

HGI 2:33.0 1:37.1 0:32.0 16759

HCC 2:06.0 1 :28.3 0:29.8 19802

"Makehf" can address up to 200K in memory, which

Dermits the digitization of fonts up to approximately 91

point in size. However* the font output routines can ad-

dress only 160K, so this limits the size of a digitized font

that can be addressed in its entirety to approximately 65

point. Larger fonts can be digitized if only upper case

letters, digits, and punctuation are desired or required;

some lower case letters may be available (run "prfont" and

see what it prints), but some will be unadd ressab 1 e

.

91

MAKEHF 1 May 1977 MAKEHF

NAME
makehf -- digitize a Hershey font from the vector

de f i n i t i on

SYNOPSIS
makehf -HFT (SIZE] [out Dut file]

DESCRIPTION
This command creates a Hershey font in the point size
reauested by the user. SIZE is an optional parameter;
if no SIZE option is used/ the font will be created in

the default size -- 10 point. The maximum height al-
lowed is 255 oixels (91 point).

A full path name may be used as a third argument to
"makehf". This causes the program to write the digi-
tized font to the specified output file rather than to
the default file, " / . f on t s . 1 /HFONT " . The use of this
option is recommended at point sizes larger than 40-42
ooint. The SIZE must be specified if this option is

used/ even if the default size is desired.

The font requested by HFT must come from the following
list:

HSR -- S i mD 1 ex Roman
HDR -- Dud 1 e x Roman
HCR -- Comp I ex Roman
HTR — Triplex Roman
HCI -- Comp 1 ex Ital i c

HTI -- T r i d 1 ex Hal i c

HSS -- S i mo 1 ex Sc r i ot
HCS -- Comp 1 ex Scr i pt
HSG -- Simplex Greek
HCG -- Comp 1 ex G reek
HGE -- Got h i c Engl i sh
HGG -- Got h i c Ge rman
HGI -- Got h i c Ital i an
HCC -- Comp 1 ex Cyrillic

FILES
/. fonts. 01/hershey/
/. fonts. 01/HFONT

--
. v

SEE ALSO
edf

R2

BUGS
This program will actually convert a Hershey vector
definition to a digitization in a stand-alone mode as
long as the first* third* and fourth letters in the
first argument are correct* i.e.* the second character
need not be an " H " . However* this is the same program
called by the font editor to create a Hershey font*
and if the argument oassed to " e d f " does not begin
with a M -H", the editor will not work.

93

/* */

/* makeh f .c */

/* */

#def i ne FFACTOR .050
fcdef i ne SIZE 8192
#def i ne MODE 0666
«def i ne HELP 1.75
*def i ne NOHELP .ao
#def i ne SOMEHELP .90
#def i ne DELV .60
#def •

i ne DELH .45
fcdef

'

ne DOLLAR 73
*def ne SLASH 95
#def ne CAPM 155

// i

ftdef 1 ne SMALLP 225
//

*def i ne CAPX 177
#def 1 ne SMALLX 241
#def i ne CAPP 81

*def i ne SMALLF 103
*def i ne STDFONT 29.0
#def i ne R

»def i ne W 1

// for height
// also for height

// capital M location
in d i rec t ory
// small p location in

di rectory
// cao x for Greek chars
// smal 1 x for HCG

// cao p for HGG
// smal 1 f for HGG
// 'hei ght

float xj, yi, xx, yy ,

x 1 , y 1 , XT/ y r ,

1 x , 1 y , rx , ry ,

b f m, deltax, xwiae* yhigh,
true, test/ xconst/ yconst, delx;

i n t if j , k ,

f tnt / f tw,
rot r f wp t p /

ym i n , ymax /

x m i n , x ma x ,

kt r,

bytes*
c p t p

;

// counters for "for" loops
// font height/ width
// read and write pointers
// min & max height of font
// min & max widths of font
// counter for arrays
// byte count er

int MC259] // array for chap di rectory

int h t s [4 J ;

1 ong i nt CPOS >

char rpa t h [] {

" /.fonts. 1 /hershey/-
}

Char woat h [] {

"/. fonts. 01/HFONT"
} ;

- _ u "

94

char 1 ep 12) ,

X [144] , Y [144] ,

mask /

num 1 / numd

/

go f flag/ ok ?

char 0M[SIZE] ',

rot r , cot r /)

readchO {

k = seek

(

ktr = ;

numl = num2 = ;

whi 1 e~ ((numl != 50)
k = read (rptr, 1 ep/
num 1 = 1 eo [1] ;

numc? = 1 ep (0] ;

i f (num 1 > 50
i f (num2 > 50
X [kt r] = numl
Y [kt rl = num2
kt r + + ;

}

>

// read in a char def

(num2
2)

= 50)) {

num 1

num2
num 1

num2
100
100

// end reaac h (

)

mi nmax () {

ktr = ;

whi le ((X [ktr] != 50)
if ((X tkt r] > xmax)

xmax = X[ktr] ;

else if (X [letH < xmin
if ((Y [kt rl > vmax) &&

ymax = Y[ktr] ;

else if (Yfktr] < ymin
k t r + + ;

}

} / / end m i nma x C

)

(Y [ktr] != 50))

&d (X [ktr] != 50))

) xmin = X [ktr]
(Y [ktr] 1= 50))

) ymi n = Y [kt r]

ma i n (argc / a rgv)

int argc 7

char *argv U ; {

int i i / j j ,

c» cw» rw/ Dtsize* //
trow/ Irow/ rows/ rowc» maxcw/

//
top/ bot / //
high, //
1 ht/
maxaddr /

rem /block/ //
d r c / r f t ; / /

//
int tndr[259] ; //

// array coun t er

s

font pa rame t ers

row pointers
too & bottom of char
how hign is the char ?

// logical height of char
// highest addr in lb bits

i f font > b5K
data row count /

rows f rom t op
t ennp header for output file

char si ooe / pos i t

/

st rt /

95

zero,
big,

greek ,

got hger ;

// i f font i s > 65K
// flag for Greek alphabet
// flag for Gothic German

if (argc >= 3) {

if ((argv[21[01 < '0') \\ (argv[2][01
orintfC" incorrect argu">ent--\n") ;

printf ("point size not given...\n");
ex i t () ;

} \

else ptsize = atoi(argv[2]) ;

>

el se {

otsize = 10 ;

. >

rpath [19] = argv [1] 12) }

rpath 120] = argv fl] [3] ;

i f (argv 11] [31 == 'G')

i f (argv fl) [2] == 'G'

gothger = l; greek
else { greek = 1

;

>

else { greek = gothger
f tht = (ptsi ze * 2.8)

del x = FFACTOR ;

del tax = ftht * delx ;

block = rem = ;

maxcw = ?

zero = ;

mask = 01 ;

ymin = ymax = }

for (i = ; i

thdr [i] =0
for (i = ; i

DM [i) = ;

'9'
)) {

{

) {

= 0;

go t hge r

0;

1

>

= o;

>

259

SIZE

i++)

i++)

rpt r

i f (

i

e

>

el se
k = r

i f (

pr i

ex i

}

k = s

k = w

k = w

= ooen (roa t h , R) ;

argc = = 4) {

f (argv [3] [01 != •/•
) {

printf ("incorrect outout file name--\n");
printf("full path name requi red\n") ?

e x i t () ;

}

Ise wptr = creat(argv(31, MODE);

wptr = creat(wpath, MODE);

ead(rptr, M, 512)
',

k i= 512) {

ntf ("incorrect read from % s "
, rpath) ;

to;

eek (wptr/0,0) ;

rite(wptr, thdr, 518)
,'

rite(wotr,&zero,l) \

Qf,

epos = 519 ;

i f (ptsi ze >= 36) {

bloc* = coos>>9 8, 0177777
epos & 0777;
l ;

rem -

big =

>

else big =

// use a caoital M and a small d or x to find
// the Highest and lowest points in the font

hts£2] = DOLLAR ;

htsl3] = SLASH ;

i f (greek) {

htstOl = C A P X ;

htsCll = SMALLX ;

>

else if (got hge r) {

htstOJ = CAPP ;

ht s £11 = SMALLF ;

>

else {

hts tOl = CAPM ;

ht s CI 1 = SI^ALLP ;

>

for (i = ; i < a

cotr = M [htstil
readch () ;

m i nmax () ;

if (i ==0
>

; i + +)

] < < l ;

) lht = yma x

// now use the high and low points to find
// the multiplication constants necessary
// to make the standard font larger or smaller

yhigh = ymax - ymin ;

yconst = ftht / yhigh ',

xconst = ftht / STDFONT ;

xwioe = (xmax - xmin) * xconst /

yy = (ymin * yconst) ;

lht = Clht * yconst) - (ymin * yconst) ;

// now walk through the directory and convert
// any non-zero entries (i.e./ characters) from
// vector to raster in the desired Dointsize

for (i = ; i < 128 ; i++) {// controlling loop...
j

= i <<1 ;

if (MIJ] Is) (

c w = M [j] ;

ftw = rw = cw * xconst '»

C P t r = M [j + 1 1 « 1 ;

// don't bother for nothing

97

if ((rw % 8) ==0) rows = rw / 8 }

else rows = (rw / 8) + 1 ;

ymin = ymax = ;

go = ok = 1 ;

MljJ = (rw & 0377) | (block<<8 & 0177400) }

if (big) (

M £ j + 1 J = rem ;

}

else <

M(j+1] = coos ;

}

1 row = ;

t row = 8 ;

i f (rw > maxcw) maxcw = rw ?

readch () ;

minmaxO '>

top = -((-ymin * yconst) + yy) ;

i f (too <) too = ;

rft = top ;

bot = -((-ymax * yconst) + yy) 1 ;

i f (bot > f t ht) bot = f tht ;

drc = high = (bot - top) + 1 ?

ktr = ;

x 1 = X [k t r] ;

yl = -Y [ktrl ;

++ktr ;

xr = numl = X Ckt rl ;

num2 = 1 [kt rj ;

yr = -num2 }

while (go) { // check each line in the character
flag = 1 ;

if (numl == 50) {// check for "move" or end of char
i f (num2 == 50) go = ;

// that's all for this char,
// go on to the next one

el se if (num2 1=0) <

oerror("bad y value for x = 50 ") ;

break ;

>

else {

+ kt r ;

numl = X [kt r] ;

num2 = Y [kt rl 7

if (numl > 50) numl = numl - 100 ,*

if (num2 > 50) num2 = num2 - 100 ;

x 1 = num 1 ;

v 1 = -num2 ?

f 1 ag = ;

>

>

else {

if (y i == yr) { slope = ; m = 0.0 ; >

else if (xr == xl HsloDe = -l; m = -1.0;}
else {slope = 1? m = (y 1 -y r) / (x 1 -x r) ;

>

98

xx = rw / 2.0 ;

rx = xx t (xr * xcons t) ;

ry = yy + (yr * yconst) ;

Ix = xx + (x 1 * xconst) ?

1

y

= yy + (y

1

* yconst) ;

Ok = 1 ;

rowc = trow \

if (slope ==1) { // normal line case
b=ly-(m*lx);
if (Cm > = 3.0) I ! Cm <= -3.0))

{

if (Cm >= 7.0) ! ! Cm <= -7.0)

)

del x = HELP * 1 .50 ;

else delx = HELP;
}

else i if (Cm <= .50) && Cm >= -.50))

del x = NOHELP ;

e 1 se
delx = SOMEHELP ;

}

if C m > 0.0) { // slope is positive
for (ii = too ; ii <= bot+1 ; i i ++) C

y i = - i i ;

if C C (yi >= ly) && Cyi <= ry)) |
',

CCyi >= ry) & & (yi <= ly))) {

t rue = y i ;

for C j j = ; j j < f t m ; j j + +) {

x j = j j ;

test=(m*xj)+b;
if C (test >= (true - de 1 t ax *de 1 x)) &&

(test <= (true + de 1 t ax *de 1 x))) {

c =
j j / 8 ;

posi t = j j
- (8 * c) + 1 ;

DM(rowc*c] = DM[rowc+cl !

(mask<<(8 - posi t)) ;

}

}

}

rowc = rowc + rows 7

}

}

else i // slope is negative
for (ii = too ; ii <= bot+1 ; ii++) <

y i = - i i ;

i f (((yi <= ly) && (yi >= ry)) ! !

((yi <= ry) && (yi >= ly))) {

t rue = y i ;

for (jj = 0; jj < f t w ; jj++) <

x j = j j ;

test=(m*xj)+b;
if ((test >= (true - de 1 t ax *de 1 x)) &&

(test <= (true + de 1 t ax *de 1 x)) H
c =

j j / 8 ;

99

post t = j j - (8 * c) + l ;

DM[rowc+cl = DM[rowc+cl !

(mask<< (8-posit)) ;

rowc = rowc + rows ;

}

}

else if (slope I =) { // vertical line case
for (ii = top; ii <= bot+1; ii+ +) {

y i = - i i ;

i f (C Cyi < 1 y) && (yl > ry)) ! !

((yi < ry) && (yi > ly))) <

for (j j = ; j j < f t w ; j j + +) {

x j = j j ;

if ((xj >= (lx - deltax*DELV)) &&
(x j <= (1 x + del tax*DELV))) {

c = j j / 8 ;

posi t =
j j

- (8 * c) + 1 ;

DMlrowc + c] = DMtrowc + cl !

(mask<<(8 - posit)) ;

>

)

rowc = rowc t rows ;

>

else i // horizontal line case
for (ii = top; ii <= bot+1; ii++) {

y i = - i i ;

if ((y , <= (i y + deltax*DELH)) &&
(y i >= (i

y - del tax*DELH))) {

for (j j = ; j j < f t w ; j j + +) {

x j = j j ;

if (((x j >= 1 x) l& (x j <= rx)) ! !

C(xj >= rx) && (xj <= lx))) {

c =
j j / 8 ;

pos i t =)] - (8 * c) 1 ;

DM(rowc + cl = DM[rowc c] !

(mask<< (8 - posi t)) ;

}

}

}

rowc = rowc + rows ;

>

>

}

i f (f lag) i

x 1 = x r ;

y 1 = y r ;

}

i f (qo) <

+ + kt r ;

100

num 1 = x t k t p i ;

num2 = Ylktr] ;

if (numl > 50 .) numl = numl - 100 •

9

if (num2 > 50) num2 = num2 - 100 •

r

x p = num 1 ;

y'r =

>

-num2 ?

}

DM [1 pow+U
DMtlrowl =

DM [1 pow+21
DM [1 row + 51

DM 11 pow+4]
DM(1 pow+71
DM [1 row + b]

I row = t row

= (rw & 0177a00)>>8 ;

rw & 3 77 ;

= DMMrow + 3] = ;

= (rft & 0177400)>>8 ;

= rft & 37 7 ;

= (dpc & 0177400)>>8 ;

= dpc & 0377 ;

+ (High * rows) ;

epos = cdos + 1 row ;

// insert code to handle large fonts* i.e.*
// fonts that have more than 65535 bytes
// in the character definitions. This
// should haopen around the 40-42 point size

i f (b i g) {

block = cpos>>9 &

rem = coos & 0777
i f (block >= 253

big = ;

coos = rem ;

>

}

0177777

) <

k = w

J = t

i f (

el se
ktr =

while
k

J

k

}

i f (

k

(

D

Pite(wptr,DM,8) ;

row ;

high < 25) bytes = rows ;

bytes = rows * 25 ;

bytes ;

(kt r >= bytes) {

= write(wot r * &DM t j] * by t es) ;

= j t bytes ;

tr = lrow - j ;

for

kt r >)

= write(wptPf&DM [j] ,- ktr)

j = ; j < (lrow+ 2*rows)
M [j] = ;

j++)

// wrap thinas uo-- put the data for a blank in
// the SPACE location so that it will plot on
// the Versatec later... Then write out the
// directory and finish up

101

for
t

M[64
M [64
if (

M

>

el se
k =

M[25
M[25
M[25
k =

k =

>

(k = l ; k < a ; k t 1

)

h d r [k] = ;

] = thdrlO]
] = M [64] !

big) <

(65] = rem

= MI146] & 0377 ;

(b1ock<<8 & 0177400) ;

M[65] = epos;
wr i t e (wpt

r

, & t hdr , 8) ;

7] s maxcw ;

6] = ftht ;

8] = 1 h t ;

seek(wptrrOrO) ;

wri te(wpt r, &M, 518)

10?

APPENDIX C. THE OATA BASE

A. OBTAINING THE OATA BASE

Dr. Allen V. Hershey's complete set of 1377 occidental

characters is available in Reference 16/ where Appendix A

contains the comolete vector representation of each charac-

ter and Appendix B contains a drawing of each character.

The vector reo resent at i on data was also available locally on

a t a d e at the Naval Postgraduate School's W . R . Church Com-

puter Center; that tape , labeled NPS451, provided the data

base for this thesis. The data was read from NPS451 onto

another tape so that it could be used in the PDP-11/50 en-

vironment available in the Computer Science Department's

computer laboratory.

Information regarding the IBNi system utility program

IEBGENER used to reaa from NPSU51 and to write to the tran-

sport tape is contained in Reference 10. The information on

either tape can be printea out for verification or other

purposes using the TAPEOUT utility described in Reference

1 1 .

103

B. CHANGING THE ENVIRONMENT

Once Hershey's data was initially available on the

PDP-11* it was still not ready for manipulation. It was

necessary to convert the EBCDIC characters that were used on

the IBM-360/67 to ASCII characters that could be used on the

PDP-11; fortunately* the "dd" shell command described in

Reference IS made converting the tape a fairly simple pro-

cess. By using "dd" as follows*

dd if=/dev/rmt5 of=digit bs=80 cbs=80 skip=N count=M
conv = asc i

i

where N is the number of records to s k i d before starting to

copy and M is the number of records to be copied* the UNIX

shell would read the EBCDIC taoe in logical records* i.e.*

card images. The EBCDIC characters were then converted to

ASCII* trailing blanks were omitted and ' \n ' Cnewline) was

appended to the line before it was sent to the output. The

resulting file contained a series of groups of ASCII charac-

ters* each group was no larger than 77 characters and no

smaller than 26, and each group was ended by newline.

The first task was to strio the groups* or records* of

unnecessary characters* each record began with "2524" and

could contain up to 24 additional characters that were not

coordinate oairs neeced for the vector generation* but that

were padding characters. The following program* "cnvrt.c"*

took those records and output logical records of the form:

CCCCSSSXlYlX2Y2X3Y3...XiYi...XkYk\n

where

104

CCCC = Hershey character number (describes font/ etc.)

SSS s card sequence number (one card was not
usua 1 1 y enough

)

X i Y i = one endpoint of a vector

and k must be less than or equal to twelver since there was

room for a maximum of twelve coordinate pairs on each origi-

nal EBCDIC input card image.

105

CNVRT 23 February 1977 CNVRT

NAME
cnvrt -- convert a taoe file for initial use

SYNOPSIS
< t aoef i 1 e > cnvrt > < pre-vector Hershey >

DESCRIPTION
After the required number of records have been read
from the taoe containing the vector representations/
this program is used to strio away extraneous charac-
ters from each card image so that only character iden-
tification numbers* card sequence numbers/ and the X/y
coordinate pairs are left. This program is the first
step in the adaptation of the Hershey fonts.

FILES

SEE ALSO

BUGS
The input and output files from this file must be re-
directed at the terminal. The inout files are avail-
able on taoe/ as is the entire original EBCDIC taoe of
the vector definitions.

106

/* */

/* cnvr t .c */

/* */

int o i d » /

/

nid, //

num \ t //
num2 , / /

maxn r

i

//

endf, //
*ptr; //

char temp [4] , //

hold t7]

,

//
card[80]

,

//

ncard [80] , /

/

strip/ //
flag, //

gor //
i , //
n, //

csn f //

cha» //
Chb, //

Che r //

chd, //

che; /

/

old card id or
new card id nr

number of last character + 1

nid of last character in this font
pointer for array oos
temporary holder for characters
another temporary array...
array to hold card images
array for "stripped" card images
flag--to strip or not to strio a card
flag for outoutting characters
flag to stop recursion
counter for "for" loops
card column counter...
card sequence number

char variables for various ops

/*
/*
/*

PROCEDURES
*/
*/
*/

// gets one card image (a logical
// record) at a time

getcard (va 1)

i nt va 1 > {

char j / t 7

i = ;

che = 'A' ;

strip = 1 ?

while ((cardtiJ = getcharO) 1 = '\n')

i + ;

t = o ;

f o r (j = a ; j < = i ; j + +) {

if ((j == 11) && ((card tj] == }
') !

!

(cardtjl == '0')))

i f (card fj] == ' >
') save() ;

if (card(j) == '0'
)

strio = comoar(&card t j 1 1] , ho 1 d)

i f (st r i o) {

f o r C j = 1 1 ? j < = 2 5 ; j + +)

cha = card [j 1 ;

che = cardlj] J

}

e 1 se
{

107

ncardft] = cardtjJ ;

t+ + ;

}

>

e 1 se
<

ncard tt J = card [j 1 ;

t++ ;

>

}

val = conv(ncardft) ;

ret urn (val) ;

>

save() {

char k ;

for(k=0;k<7;k++)
h o 1 d C k] = c a r d (k 1 1 2] ;

>

// holds 7 characters temporarily

compar(arrc^arrh) // compare 2 strings;
char arret 1/ arrht }',{// return 1 if =, if i =

char k ;

k = ;

while (arrcC<3 == arrhtkl) {

k + + ;

if (k == 7) break }

}

if (k == 7)

ret urn (1) ;

e 1 se
ret urn () ',

)

// converts a string of nrs of
// length nr to a decimal value

conv (arr^nr)

char arrt] , nr ; {

i n t) t sum ;

char c h ;

sum = ;

f o r (j = ; j < n r ; j + +) {

C h = a r r [j] ;

sum = sum ((ch - '0')*ten(nr - (jtl))) ;

>

re t urn (sum) ;

>

t en (nr)

i nt nr ; {

i nt j > sum ;

sum = 1 ;

for(j=0;j<nr;jt+)
sum = sum * 1 ;

ret urn (sum)

;

}

// returns 10**nr

108

endch(ch)

char ch ; {

i nt ok ;

sw i tch (ch)

// got all end-points ?

case '

J
' : case •K •

: case •L' : case ' M • :

case ' N ' : case •0'
: case • pi

.

case •Q'
:

case '

R
' : case •} •

:

ok = ;

break ;

def aul t

:

ok = 1 ;

>

ret urn (ok) ;

>

(go)) (

f i nch (n r)

i nt nr ; {

int t ;

whi le ((ncard [nr] i= '\n') &

go = endch(ncardtnr]) ;

n r + + ;

>

i f (go) {

t = getcard() ;

i f (t == nid) go = endchC che) ;

finch() ;

}

}

// removes filler chars

/*
/*
/*

MAIN PROGRAM
*/
*/
*/

ma i n () <

ni d = ;

maxnr = 3927 ;

endf = 3729 ;

while (nid < maxnr
nia = getcard(
ptr = &ncard[4] ;

csn = conv (p t r , 3

flag = 1 ;

go = 1 ;

n = 7 ;

= ncard tn]) I = ' \n

'

i < a ; it+)

ncard fn+ i 1 ;

while C (temolOl = ncardtn]) i= '\n')

for (i = 1 ;

temp [i] =

n = n + a ;

ptr = & temp [2] ;

numl = conv(temp, 2) /

num2 = conv(ptr, 2) ;

if ((numl == num2) && (numl == 50))

f o r (i = ; i < n ; i + +)

put cha r (ncard [i 1) ?

putchar(' \n •) ;

109

f i nch (n) ;

flag = ;

if (nid >= endf) nid = 4000 ;

}

>

if (flag)

for(i=0;i<=n;if+)
put char (ncard C i]) ;

C. VECTOR GENERATION

Once the Hershey cata had been converted to ASCII and

stripped of extraneous digits and characters* it was con-

verted to vector form using the "mkvec.c" program listed

below. The output files from "cnvrt.c" provided the input

to "mkvec.c"* these files had been arranged by font with

upper case letters* lower case letters* and digits and spe-

cial characters grouped in that order. A large "if ... else

..." statement was used to determine whether each character

being processed was a letter or a digit or special charac-

ter? letters were placed into the proper position by an ar"

ray counter* and digits and special characters were run

through a large case statement to determine their position

in the array. Two additional large case statements were

necessary to transliterate the 2^ Greek and the 32 Cyrillic

letters into their English eouivalents.

The transliterations used were taken from Reference 4

and are reproduced on the following cage. The Gothic German

was transliterated into English on a one-for-one basis* with

the three extra lower case letters going into the octal

1 1

H fc
t T
i- a

+xr

Ou T
T *
cc s.

C c

? ?
O £
1 ><O _T

1*1 *
T tX ^

Z r C
t — O^ «x> r-l

M
. <0

T «=- s-

2 t <D

jC »->

<i *-
•.-<

t T
1—1

-J N V)

c

T O
«o

*+ M
T -O <U

9?
co

u

3 T-4

T -Q t 1

x
a * o

NJ T -^. w
r <« T «
r«j >» 3
UJ a X 1—

t

T T t U-,
UJ $ u

T "f

T

a >
T
3

t

b
T
H>

< {- Q.
T T t< D k.

2 T
<» Q.

1°
, T

>» T

U _

5 T

5 b^

41

« T

T tO -

Tf
• _
T 3
> T

o •
T ST

n _t

re

T SS
<z t

K t

T x
n t

?!
r t

T t

O C) —

c
o

•t-(

->
cO

+->

" T -3 T r—

i

IT- Is* T ut en
c^ Q. C
2 * j3 T cO

(Ti t '

x
^_ **
c HJ *"
T

3*^ 3 a O
j3 t

— til

T o •rH

«S t r—

t

, M o i—1

=3 T 3 x •iH

UJ T T
c

»-

=j=*
3

X T ^^ 2

. T

T
«
3"

T
£ •

i£° T
i

_T
i

a. a X— r X T
a;3o > T

X
j£.

T- 13 «= u
i m T

T

V U-.

u. — T< T A~ T >>
S'— < T <n

Z) T T

»• O
T

N V

t
Ci_ <» H- T >

o —

»

^
T
CO t

r
<

=2 5 a. V 3
t=

*
T T T< >- cr o 1

codes 0173, 017a, and 0175, immediately following the M z".

Gothic Italian was transliterated completely on a one-to-one

bas i s

.

This program put the digitization into the form that was

used for the TEKTRONIX program described in Appendix D, and

as the data base from which the dot matrix character

reoresen t at i ons were made.

1 12

MKVEC 17 March 1977 MKVEC

NAME
mkvec -- out file into vector format

SYNOPSIS
mkvec < Her shey font >

DESCRIPTION
The output from "cnvrt" provides the input for this
program; this orogram takes each character identifica-
tion number, goes through each card with that charac-
ter id, and puts each x,y coordinate pair into a

16-bit word. The left byte receives the x coordinate
and the right byte receives the y coordinate.

The program also sets up a 256 word directory for each
font. The even numbered words from to 254
correspond to the ASCII codes from to 0177 and con-
tain the widths of the aoprooriate character. The odd
numbered words contain pointers to the byte at which
the vector definition of the character begins. This
program's output files provided the data base from
which "drawhf" and "makehf" obtain their vector defin-
itions for either display or digitization.

FILES

SEE ALSO
makeh f , cnvrt

BUGS
"mkvec" automatically writes the vector files to
directory "/usr/doyle/hfonts.f", which might not be in

existence at this point in time. If this program must
be used, then a simple modification to the source code
will write the output to any file desired.

113

/* */

/* mk vec .c */

/* */

tfde

#de
#de
#de
#de
Ude
Ude
#de
#de
«de
ttde

Ude
Ude
Ude
tide

Ude
Ude
Ude
tide

Ude
Ude

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

int MC10192] ;

i nt dos i t t

3D0S ,

num3 ,

idh,
ktPf
C w f

x l r

*pt r;

SR
DR
CR
TR
CI
TI
SS
CS
SG
CG
GE
GG
GI
CC
NOTNUM
EOC
EOF
ENDFONT
R

w

MODE

1

2

3

a

5

6

7

8

9

10

1 1

12

13

1

Obaa

//
//
//
//
//
//
//
//
//
//
//
//
//
//

-l
031062
9999
9000

//
//
//

S i mp
Dupl
Comp
Trip
Comp
Trip
S i mp
Comp
S i mp
Comp
Goth
Goth
Goth
Comp

1 ex
ex R

1 ex
1 ex
1 ex
1 ex
lex
lex
1 ex
1 ex
ic E

ic G

ic I

1 e x

Roman
oman
Roman
Roman
1 1 a 1 ic

I tal i c

Scriot
Sc r i pt
Greek
Greek
ng 1 i sh
erman
tal i an
Cyrillic

// octal for "5 050"
// end of font for M[]
// end of font n

open a file for reading
open a file for writing
access to files created

char card [801/
xyval E144]
temp [U]

,

f 1 aq>
Cktr,
num 1 t

num2 ,

csn

;

[21

char i nf i 1 e [1 {

"/.doyle. 01 /fonts/— . out"
char out f i 1 e C 1 {

"/usr/doyle/h fonts. f /--.f

"

char rotr, wctr ;

> ;

} ;

setcar (x , y)

int x , y ; {

1 1U

Mix] = (Mix J & 37 7) ! (y<<8) }

>

setcdr (x , y)

int x / y i {

Mix] = (Mix] & 0177400) ! y ',

}

getcardl) {

i nt *Pr i ?

char buf U , t ;

i = ;

t = read! rpt r , buff 1) ;

while ((cardli) = buMO]) 1= '\n')

<

t = read (rpt r , buf , 1) ;

i ++ ;

>

i dh = conv (card; 4) ;

p = &card(4] ;

csn = conv (p 1 3) ;

} // end get card (

)

start!) {

int j ;

f o p (j = ; j < 2 5 6 ; j + +)

m [j] = o ;

rotP = open! infile* R) ;

wotr = creatl outfile, MODE) ;

idh = ;

ktp = 64
cktr =

flag = 1

apos = 256 ;

} // end start

reset () {

int i J

M I o] = mid = o ;

Mtapos] = EOF ;

fop (i = ; i <= apos ; i+t)

write! wpt r , &M I i) , 2) ;

) // end reset

// is this a number or char?
notnum (val)

i nt va 1 ? {

int ok »

if ((val >= 700) && (val <= 734))

{

if (val <= 715) ok = val - 700 ;

else ok = val ;

> // SR, SG, SS number
e 1 se

if ((val >= 2200) && (val <= 2275))

{

115

if (val <= 2215) ok = val - 2200 ,*

else ok = val ;

) // CR, CG, CI number
e 1 se

if ((val >= 2700) && (val <= 2728))

ok = val - 2700 ;

// DR number
e 1 se

if ((val >= 2750) && (val <= 2778))

ok = val - 2750 ;

// CS number
e 1 se

if ((val >= 3200) && (val <= 3228))

ok = val - 32 00 ;

// TR number
e 1 se

if ((val >= 3250) && (val <= 3278))

ok = val - 3250 ;

// T I numbe r

el se
if ((val >= 3700) && (val <= 3728))

ok = val - 3700 ;

// GE/ GGf GI number
e 1 se

ok = NOTiMUM ;

// it's a character...
ret urn (ok) ;

) / / end not num

cy r (val)

i nt val/ {

i nt ok

;

swi t c h (val) {

case 2801:

case 2802:

case 2803:

case 2805:

case 280b:

case 2807:

// A

ok = 65; break;

// 8

ok = 6b; break;

// V

ok = 86; break;

case 2804: //G
ok = 71 ; break;

// D

ok = 68; break;

// E

ok = 69; break;

// t

k = Pa; break;

1 16

case
ok

2808:
= 90;

// Z

break ;

case
ok

2809:
= 73;

// I

break ;

case
ok

2810:
= 89;

// Y

break;

case
ok

2811 :

= 75;
// K

break ;

case
ok

2812:
= 76;

// L

break ;

case
ok

2813:
= 77; break ;

case
ok

2814:
= 78;

// N

break;

case
ok

2815:
= 79;

//
break;

case
ok

2816:
= 80;

// p

break;

case
ok

2817:
= 82;

// R

break ;

case
ok

2818:
= 83;

// S

break;

case
ok

2819:
= 84;

// T

break;

case
ok

2820:
= 85;

// U

break;

case
ok

2321:
= 70;

// F

D reak ;

case
ok

2822:
= 72;

// H

break;

case
ok

2823:
= 95;

// <-

break;

case
ok

2824:
= 35; break;

case
ok

2825:
= 64;

// 3

break ;

case 2826: // &

117

ok = 38; break;

case
ok

2827:
= 39; break ;

case
ok

2828:
= 30;

// 036
break ;

case
ok

2829:
= 18;

// 022
break ;

case
ok

2830:
= 19;

// 023
break;

case
ok

2831:
= 16;

// 020
break ;

case
ok

2832:
= 17;

// 021
break;

case
ok

2901 :

= 97;
// a

break ;

case
ok

2902:
= 98;

// b

creak ;

case
ok

2903:
= 118;

// v

break ;

case
ok

2904:
= 103;

// q
break;

case
ok

2905:
= 100;

// d

break;

case 290b: // e

ok = 101; break;

case 2907: //
ok = 1 ; b reak ;

case 2908: // z

ok = 122; break;

case 2909: // i

ok = 105; break;

case 291 0: // v

ok = 121; break;

case 291 l : // <

ok = 107; break;

case 2912: // 1

118

ok = 108; break;

case 2913: // m

ok = 109; break;

case 2914: // n

ok = 110; break;

case 2915: // o

ok = 111; break;

case 2916: // p
ok = 112; break;

case 2917: // r

ok = 114; break;

case 2918: // s

ok = 115; break;

case 2919: // t

ok = 116; break;

case 2920: // u

ok = 117; break;

case 2921 : // f

ok = 102; break;

case 2922: // h

ok = 104; break;

case 2923: //
ok = 25

;

break ;

case 2924: // "

ok = 34; break;
case 2925: // 026

ok = 22; break;

case 2926: // +

ok = 43; break;

case 2927: // 0140
ok = 96; break;

case 2928: // =

ok = 61; break;

case 2929: // 004
ok = 4; break;

case 2930: // 037
ok = 31; break;

1 19

case 2931 : // <

ok = 60; break;

case 2912: // >

ok = 62; break ;

}

return(ok) ;

} // end cy r

grkch (va 1)

int val ; {

i nt ok ;

// which Greek character?

swi tch (val) <

case 529: case 2029: // G

ok = 71; break ;

case 532: case 2 32: / / Z

ok = 90; break;

case 533: 'case 2033: // H

ok = 72; break;

case 53a: case 203a: // Q

ok = 81; break;

case 536: ca.se 2036: // K

ok = 75; break;

case 537: case 2037: // L

ok = 76; break;

case 538: case 2038: // M

ok = 77; break;

case 539: case 2039: // N

ok = 78; break;

case 540: case 2040: // X

ok = 88; break;

case 543: case 2043: // R

ok = 82; break;

case 544: case 204a: // S

ok = 83; break;

case 545: case 2045: // T

ok = 84; dreakl

case 546: case 2046: // U

ok = 85; break;

120

case 547: case 2047:
ok = 70; break;

// F

case 548: case 2048:
ok = 67; break;

// C

case 549: case 2049:
ok = 89; break;

// Y

case 550: case 2050:
ok = 87; break;

// H

case 629: case 2129:
ok = 103; break;

// a

case 632: case 2132:
ok = 122; break;

// z

case 633: case 2133:
ok = 104; break;

// h

case 634: case 2134:
ok = 113; brea*;

// a

case 636: case 2136:
ok = 107; break;

// k

case 637: case 2137:
ok = 108; break;

// 1

case 638: case 2138:
ok = 109; break;

// m

case 639 : case 2 1 39 :

ok = 110; break;
// n

case 640: case 2140:
ok = 120; break;

//

case 643: case 2143:
ok = 114; break;

// r

case 644: case 2144:
ok = 115; break;

// s

case 645: case 2145:
ok = 116; break;

// t

case 64b: case 214b:
ok = 117; break;

// u

case 647 : case 2147:
ok = 102; break;

// f

case 648: case 2148: // c

121

ok = 99; break;

case 649: case 2149: // y

ok = 121; break;

case 650: case 2150: // w

ok = 119; break;

default: // A,B,D,E,I,0,P (u & 1)

ok = k t r ; break ;

>

return (ok) ;

>

wh i ch (va 1)

int val ; {

i nt ok ;

if (val < 10) ok = val +48;
e 1 se

swi tch (val) {

case 10: //
ok = 4 6 ; break ;

case 11: // /

ok = 44 ; break ;

case 12: // :

ok = 58 ; break ;

c a s e 1 3 : / / ;

ok = 59 ; break ;

case 14: // 1

ok = 33 ; break ;

case 15: // ?

ok = 63 ; break ;

case 716: case 2216: // '

case 27

:

ok = 39 ; break ;

case 717: case 2217: //

case 28:
ok = 34; break ;

case 18: case 734: // &

case 2272:
ok = 38 ; break ;

case 719: case 2274: // $

case 19:
ok = 36 ; break ;

122

case 720 : case
case 20

:

ok = 47 ;

case 72 1 : case
case 2 1

:

ok = ao ;

case 722 : case
case 22 :

ok = 4 1 ;

case 728: case
case 23

:

ok = 42 ;

case 724 : case
case 24

:

ok = 45 ;

case 725: case
case 25

:

ok = 4 3 ;

case 72b: case
case 2b

:

ok = bi ;

case 723 : case
ok = 124 ;

case 733 : case
ok = 35 ;

case 2223

:

ok = 91 ;

case 2224:
ok = 93 ;

case 2225:
ok = 123 ;

case 222b:
ok = 125 ;

case 224 1

:

ok = b0 ;

case 2242:
ok = b2 ;

c ase 22b2 :

Ok = 94 ;

2220: // /

break ;

2221: // (

break ;

2222: //)

break ;

2219: // *

break ;

2231: // -

break ;

2232: // t

break ;

2238: // =

break ?

2229: // !

break ;

2275: // a

break ;

// (

break ;

//)

break ;

// {

b reak. ',

// >

break ;

// <

b reak ;

// >

break ;

// t

b reak ;

123

case 2265: // «

ok = 95 ; break ;

case 2271

:

// X

ok = 37 H break ;

case 2273: // 5)

ok = 64 ; break ,'

def aul t

:

ok = ; b reak ;

>

return (ok)

// end of which

buildch() {

i nt p/ test ;

int k ;

p = apos ;

for(k=0;k<xi;k++) {

setcarC aDos»xyva1 [kj [0]) ;

setcdrC aoos,xyval [k] til) ;

apos++ ;

}

test = Mtapos - 11 ;

if (test != EOC)

per ror ("s t ODpea before EOC") ;

ret urn (p) ;

// converts a string of numbers of
// length nr to a decimal value

}

Conv(ar r

,

nr)

char arrf J / nr ; {

int j / sum ;

char ch ;

sum = ;

f o r (j = ; j < n r ; j + +) {

ch = arr [j] ;

sum = sum + ((ch - '0')*ten(nr - Cj+1))) ;

>

return (sum) ;

}

t en (n r)

int nr ; {

int j f sum ;

sum = 1 ;

for (j = ; j < nr ; j++)

sum = sum * 1 ;

ret urn (sum) ;

}

// returns 10**nr

ma i n (a rgc > argv)

int argc }

12a

char *argv U ; {

int n , * p , last f bigch ;

i n t k ;

char greekr Cyrillic;

infileCl7] = putfileC203 = argvUUO] ',

inf i 1 e (18] = outfile(21] = argvll] (11 ?

bi gch = 26 ;

greek = ;

Cyrillic = ;

if (inf i le [181 == 'G') {

if (infileU7] i= 'G') { bigch = 24,* greek = 1 ; >

}

if (infile(18] == 'C) Cyrillic = 1 ',

start() ;

getcard () ;

whi le (idh 1= ENOFONT) {

xi = ;

last = idh ;

kt r = kt r + 1 ;

cktr = cktr + 1 ;

while (idh == 1 ast) <

n = 7 ;

while ((templOl = cardtnJ) i= '\n') {

fop (k s i; k < 4; ktt)

temptk] = card[n + k] ;

n = n + 4 ;

p = &temp[2J ;

numl = cony(temp, 2) }

num2 = conv (p , 2) ?

i f ((csn w 1) && (n s: U)) {

if (numl > 50) numl = 100 - numl ;

C w = num 1 + num2 ',

}

e 1 se
<

xyvaltxilfOl = num 1 ;

x y va 1 t x i] II J = num2 ?

x i + + ;

}

>

get card () ;

}

i f ((cktr > bigch) && C f lag)) <

k t r = 9 7 ;

ckt r = ;

f 1 ag = ;

>

if ((num3 = no t num (1 as t)) == NOTNUM)

125

{

e

}

el se
{

P
k

}

pt r =

MC do
M [po

f (greek) posit = grkchC last) * 2. ',

else if (Cyrillic) posit = cyr(last) * 2

1 se pos it = ktr*2;

osit = which(num3) *

tr = o ;

bui 1 dch () ;

sit 1 = cw ;

sit + i] = Dtp ;

}

reset ()

// end of main...

i pa

APPENDIX D. FONT OUTPUT ROUTINES

A. VERIFYING THE VECTOR DATA

After all of the fonts had been converted into vector

form, "drawhf.c" was written to allow visual inspection of

each character in each font. This inspection ensured that

all of the data had been transformed correctly and was

available for further use in the vector to dot matrix

conversion. It also revealed several minor omissions that

had allowed special cases to slio through the vector genera-

tion program described in oaraqraph C of Appendix C.

This program is available as source code on directory

"/. fonts. 02/hershey" and is listed as "drawhf.c". The ob-

ject code Drogram used to display the characters on the TEK-

TRONIX 4014 is available on directory " / . f on t s . 1 /h f t oo 1

s
"

.

Any character from any of the fonts currently available can

be drawn by changing to the directory above and typing

"drawhf FONT", where FONT is a three-character code specify-

ing the font desired. Fonts available are:

HSR S i mo 1 e x Roman

HDR Duolex Roman

HCR Complex Roman

HTR Triplex Roman

HCI Comolex Italic
(

HTI Triolex Italic

127

HSS Simplex Script

HCS Comp 1 ex Script

HSG Simplex Greek

HCG Complex Greek

HGE Got h i c English

HGG Go t h i c German

HGI Gothic Ital i an

HCC Complex Cyrillic

Many special characters are available only in the com-

plex fonts; however/ the user is notified if the character

desired is not available in the font currently being

displayed. The size of the character drawn on the CRT can

be changed by adding a size Darameter to the program call/

i.e./' "drawhf FONT SIZE". If no "SIZE" parameter is given,

the orogram defaults to a value of eight; this size was

chosen because it made all of the vectors visible/ and be-

cause it minimized the distortion noticeable on the short

vectors used to aoproximate curves. Parameters larger than

20 and less than one will default to those values.

128

DRAWHF 17 M arc h 1977 DRAWHF

NAMt
drawhf — draw a Hershey font on the TEKTRONIX 4014

SYNOPSIS
drawhf < Hershey font > t size 3

DESCRIPTION
This program oraws characters from the selected
Hershey font on the TEKTRONIX 4014. The fonts must be
selected from the ^ i s t given on the oreceding pages.

The size of the character display on the CRT can be
Changed by executing the program with an optional size
parameter. This should be an integer between 1 and
20. The default value is 8.

FILES

SEE ALSO
ma keh f

BUGS
Only one character can be drawn at a time. It is also
necessary to terminate the program and re-execute it

to look at another font.

129

/* */

/* drawh f .

c

*/

/* */

Sdef i ne
#de f i ne
#de f i ne
#def i ne
#de f i ne
#def i ne
#def i ne

EOF
EOC
RES
X

Y

R

9999
031062
102a
512
512

1

int M(25bJ ,

fotr,
ptrJ

i nt c h 1 1 2] ;

char pat h [1 {

"/. fonts. 01 /hershey/— . v"
} ;

char f 1 aq ;

ma i n (a rgc , a rov)

i nt argc /

char *arqv U ? {

int x , y , ktr , x x , yy ;

int i» pr numl/ num2/ size ;

char ibufl20], io, k , stop t times ?

char do i t ?

initt(9b0) ;

term(3, RES) ;

path 119] = argv [1] El] ',

path C20] = argv til [21 ;

i f (argc = = 3) {

size = atoiC argv 121) ;

if (size > 20) size = 20 ;

else if (size <= 1) size = 1 ;

>

else s i ze = 8 ;

fptr = open(path, R) ;

k = read(fptr, M f 512)
,*

ibuftOl = '0'
;

whi)e (ibuf [01 1= '] ') {

i = ip = ;

flag = 1 ;

erase () ?

movabsC 1 00,800) ;

anmode () ;

130

pr i nt f

(

M
i nput the desired character followed by c/r: w

) ;

while ((ibuffip] = getcharO) 1= '\n')

i p + + ;

xx = x ;

yy = Y ;

mova-bs(xx,yy) ;

p = (numl = ibuf (01) <<1 ;

whi 1e (f lag) {

Stop = t i mes = 1 ?

ptr = M I p 1 J < < 1 ;

i f (otr ==) {

movabsC 100,200) ;

anmode () ?

pri nt

f

("SORRY: ' %c ' is not available in this font
ibuf [0J) ;

stop = ;

}

else k = seek(fptr, ptr,) ;

i f

i f

i f

100
100

while (stoo) {

doit = 1 ;

k = read(fptr, ibuf, 2)

x = ibuf [11 ;

y = ibuf t0] ;

(x > 50) x = x -

(y > 50) y = y -

(t i mes) {

x=xx+(x*
y = yy - (y *

movaos (x , y) ;

doit = ,*

times = ;

}

(x == 50) <

i f (y i=)

size)
size)

i f

i f (

else
>

y --
{

50) stop =

perror("bad y value...")

e 1 se
{

k = read(f pt r, ibuf, 2

if ((x = ibuf [1]) > 50
if ((y = ibuf [0]) > 50
x = xx + (x * size) ;

)

) X
—

X - 100
) V

-
y - 100

y = yy - Cy

movabs (x , y

)

* size)

}

else {

if (doi t)

{

X s XX + (X

y = yy - (y

drwabs (x , y

)

size)
size)

131

}

flag = ;

t send () ;

}

movabs(100, 150) ;

a n m o d e ())

pn'ntf ("enter c/r to continue*] c/r to exit:") ;

ip = o ;

while ((ibuftio] = getcharO) 1= '\n')

iott ;

>

erase () ;

f i n i 1 1 (, 7 5) ;

}

A sample of the CRT display from "drawhf" is located on

the following page.

B. VERIFYING DIGITIZED FONTS

"Prfont" is a font manipulation program designed to

display an entire digitized font file by walking through the

header table and plotting all of the characters that are de-

fined in the font. It will print out one font at a time or

as many as are needed* depending uoon the arguments. The

program accepts full oath names as input; these arguments

can be used in several ways, as is demonstrated by the exam-

ples given below. All of these are valid calls to "prfont":

1) prfont hCCl2 BDJ8

The user wants to display fonts HCC12 and BDJ8, both of

whicn must exist on directory "/. fonts. 01/font".

N
O

CD

3
O

<D

•P
U
ftJ

5m

10

^:
o

(D

0)

03

•P

•P

u A

X
0)

o
-p

\
o

0)

.p

o
u

o
-p

\
u

p

FIGURE D-l. "Drawhf" CRT Display

133

2) prfont /us r/doy 1 e/ f on t s/H*

The user desires to display all of the Hershey fonts lo-

cated on a specified ai rectory,

3) prfont SIGN41 HGG16 8DR25 HCG10 /us

r

/accord/ t emp

The user wants to display four files from directory

"/. fonts. 01/font" and a file called "temp" on directory

"/usr/mccord" .

Commands of the tyoe "prfont *" r "prfont H * "
/ and

"prfont BD*"/ will not display all of the fonts on the main

font directory, nor will they display any combination of

them. To disolay the entire collection of fonts or selected

groups of them, the user must chanae directories to

"/. fonts. 1/font H and tyoe "../prfont < ARG >", where ARG is

some font name combination of the form * f H*, MATH*, and so

on

.

"Prfont" will hanale soacing and oaqebreaks; and will

print the font file name with each font. with fonts above

40-42 point/ the oroaram may tell you that it is out of

memory and exit. It will suggest that you try a smaller

page width, which will cause your fonts to be plotted with

fewer characters per line.

1 \a

PRFONT 2 May 1977 PRFONT

NAME
prfont -- display a digitized font on the VERSATEC

plotter/printer

SYNOPSIS
prfont t-pagewiath] < SAIL font >

< complete path name >

< He rshey font >

DESCRIPTION
This program allows the user to disolay a complete di-
gitized font file on the VERSATEC olotter/pr inter/ so
that he can see how it will actually look. It is
especially useful in seeing whether or not a Hershey
font will be acceptable after digitization.

On fonts larger than 40-42 point/ it may be necessary
to decrease the pagewidth used by "prfont" to deter-
mine the size of its plot buffer. If this becomes
necessary^ the program will exit and suggest that you
try a smaller pagewidth. Pagewidth is initialized to
216 bytes.

FILES
/dev / r vp
/dev /sop

SEE ALSO
ma keh f / ed

f

BUGS
"prfont" occasionally prints some extra dots and lines
after completing the last character in the font direc-
tory.

1 ^5

/* */

/* orf ont .c */

/* */

#define SPACE 1 // one 1/4 inch
fcdefine TOP 230 // top margin
ffdefine PAGEHT 14*100
i n t roww f rows >

int 1 inecount PAGEHT;
int oagewth;
int prdev, pldev* infont;
int ht > max w * lhtr f p

;

int head/ t a i 1 > nodeotr;
int zero til , hdr [25b))

char * 1 p / *p

;

char if 014; char nl 012;
char header[40J { " / . font s . 1

/

font / " > ;

char prbuf(132], plbuf[264];
struct cnode {

int c C »*

char *opt r

;

char * 1 ot r

;

int rw;
int bytes ;

int Ik;
int rf t

;

int d r c

;

} c 1 i s t 1 1 2 8] ;

st rue t cnode *a

;

struct cnode *fsetU28]

vertical space

//char code
//-> 1 s t raster line
//-> next raster line
//raster line width
//bytes per raster line
//left kern
/ / rows f rom t od
//da t a row coun t

ma i n (a rgc / a rgv)

int argc; char **arqv; {

register int i> argptr;
char go;
argot r = 1

;

i f ((prdev=open ("/dev/spo" , 1)) < 0) {

orintf ("cannot open orinter");exit();}
i f C(pldev=open("/dev/rvp% 1)) < 0) {

printfC" cannot oDen plotter "
) ; e x i t () /

}

if (argvIUtOl == '-') {//reset pagewth
pagewth = atoi (&arqv [11 [11); go = 1 ; >

else { oagewth = 216; go = 0; >

i n i t () ;

while(--argc 1= go) {//process all files
p = argv la rgot r + aol ;

if (* p == •/'
) { //full pathname

if ((f p=open (a rgv

t

argot r +go] f)) < 0) {

or i nt f

(

"cannot ooen %s

"

r argv la rgpt r + gol)

;

e x i t () ; >

printf("%s ooened...."/argv[argptrtgoJ);

>

else { / /oreoena / f on t s . 1 / f ont

1 X u

i n

re
re
ch

i f

//

i

e

>

els
//

i f

p
fo

*P
//
wr
fo
1 i

wh

>

cl

//

i f

el

for(i = 16; (header [i] = *p + +) i= '\0';i++) ;

i f ((f D = open(header , 0)) < 0) {

DPintf ("cannot ooen %s M /header);exit();}
printf("%s opened ", header);
>

font = head = tail = nodeotr = roww = 0;
ad(fD,hdr,512); read(fo,&ht,2);
ad(fD,&maxw,2); readC f p* 8.1 ht » 2) }

eck(); //check for bad font file
(ht <= 82) {

set vert soac i nq
f (ht <= U0) rows = 2 ;

1 se rows = 3 ;

e row
Dgbk
(nroo
= prb
r(i=0
= nl

cent e

i t e (d
r(i =0

necou
i le (

get r

put r

i f (i

s =

i f f

m(ro
uf ;

; (*d

r f w

rdev
; i <2

nt =

1)

ow ()

OW ()

n f on

a ;

ont display won't fit
ws*ht + 40)) oagebreakO;
for(i=0;i<60;i++) *d++ = ' •;

+ + = arav (argpt r+gol [i J) != 'NO'M+t);

rite font name
, prbuf , i +62)

;

5;i+ +) w r i t e (p 1 dev , ze ro * 2)

;

+ 25;
{

> 127) break;

ose(fo); pr i nt f ("c

1

osed\n") ; argptr++;
i f need be / pgb k

(nroom(SPACE*2)) oagebreakO;
se soace(SPACE*2) ;

e x i t ()

;

}

ini t () (

regi s t er i n t i

;

for(i=0;i<128;i+t)
>

f set Ci 1 = iclistti);

oagebreakO { //page eject
i nt i ;

char err

;

err = c ve rs (o 1 dev t 020)

;

i f (e rr == -1) {

print f(" invalid filedes in oagebreak\n");
exi t () ;

>

for (i =0; i <T0P; i f +) w r i t e (p 1 dev , zero , 2)

;

1 i necount = TOP

;

}

qetrowO < //get a row of chars to plot

137

if (t

r

h

}

wh i 1

i

ail) {

oww = f set t + + tai 1
1 ->by t.es;

ead = tai 1 ++;

e (1) {

f(getdefO) <

if(roww + f set It a i 1

1

->by t es <= oagewth)
roww = + f set It a i 1 J ->by t es

;

else (tail--; + Hnfont; break;}
if (++infont > 12 7) break;
tai 1 ++;

}

else if(++infont > 127) break;

}

put row () {

regi st er
s t rue t en
f o r (h = ;

D = &p
Pt r =

for(l=
i f (

{

//plot the row of characters
int h,i,l; int t;

ode *pt r

;

h < h t ; h + +) {

lbuf [24] ;

fsettCt = head)];
nead; 1 <=tai 1 ; 1 ++

)

Dt r->drc) {

i f (h >= ot r->rf t && h

// 1
p-> next raster

1 p = ot r-> 1 pt r

;

//do it by bytes
forCi=0;i<ptr->bytes;i++)

o+ = *io++;
//uodate lotr for next pass
ptr->lptr =+ ptr->bytes;

>

//blank line
else f or (

i =0 ; i <pt r->by t es ; i ++) *d++

< Dt r->rf t +pt r->drc)

1 i ne

= o;

>

//b
e 1 s

Dt r

>

//plot
wr i t e

(

>

//row d 1

o

f o r (h = ; h

1 i necount
// f ree by
f or (i =t a i

i f (f se
f re

lank c harac t er
e for(i=0;i<otr->bytes;i++) *o++ = 0;

= fset(++t];

1 raster line of row of characters
Dldev/Dlbuf> roof (roww + 24))

;

tted/ plot some white soace
<5;h++) w r i t

e

(d 1 dev , ze ro t

2

)

;

=+ ht+5;
tes in reverse order
1 ; i > = head; i --)

t I i J - > o d t r)

e(f set fi 1 ->oot r) ;

>

i nt getdef () <

int blkCfbytc; register i;

i f (hdr li nf ont *2)) {

kc = (hdr Unfont*2J &0177400) >> 8;
kc =& 0377;
tc = hdr li nfont *2 + 1] /

(bike) { //ptr is in blks and bytes
seek(fp,blkc,3); seek(fp,bytc,l); }

se seek (

f

o

,

by t c t)

;

tnode()

;

>cc = infont; read (f p, &a-> rw , 2) J

ad(fo,&a->lk,2); read(fp,&a->rft,2);
ad(fp,&a->drcf 2)

;

>bytes = (a->rw%8 == 0) ? a->rw/8 : a->rw/8+l;
(fcheckO) { //check for bad char dimensions
if(a->drc) { //need bytes?/ call alloc

if((i=a->optr=a->lotr=alloc(a->drc*a->bytes))<0){
printf(M \nout of memory...");
printf ("use a smaller pagewidth\n M

);

e x i t () ; }

read(fp/a->lotr,a->drc*a->bytes) ;

>

return (1)

J

}

}

re t um () ;

bl
bl

by
i f

el

ge
a-
re
re
a-
i f

}

get node () {

if(nodeotr > 127) {

printf ("overflow");
a = f se t (nodeot r + +]

;

a->optr = a->lptr = 0;

}

e x i t () ; >

i nt roof (x

)

roof (x

)

int x; < //send plotter even U bytes only
if(x%2 == 0) return(x);
//for some reason 264 bytes crashes program
i f (x == 263) return(262) ;

*d = 0; return (++x);
}

= 0; return(ftx);

space (x

)

int x; { //plot x 1/4 inches space
int i ;

for(i=0;i<x*50;it+) write(pldev,zero,2);
1 i necoun t =+ x *50 ;

>

checkO { //print then exit on bad file
i f (ht < ! ! maxw < j ! 1 ht < ! J

nt > 25fa !! maxw > 256 !! lht > ht) {

print f ("bad file"); exitO;
>

}

i nt nroom (x

)

1 19

int x; { //rtn 1 there are not x plot lines
//left before bottom; otherwise/

ifUinecount x > PAGEHT) return(l);
else ret urn () ;

}

fcheckO { //if bad chardeff rtn to skip it

//otherwise; rtn 1 .

if ((a->rw<0 !! a->rw>255) J! (a->rft<0 \\ a->rft>255)
!! (a->lk<0 !! a->1k>255) !! Ca->drc<0 ',! a->drc>255)

) {

pri nt f

(

"\ni nval i d value for character ' %c ' \n" , i n f on t) ;

orintfCrw %d\trft %d\tlk %d\tdrc %d\n",a->rw,
a->rft,a->lk,a->drc);

re t urn () ;

}

else ret u rn (1) ;

}

C. USING THE DIGITIZED FONTS

"Signmkr" is a program with limited text processing

capabilities designee to fill an interim gap in the compu-

terized typesettino system at MPS. It was designed to give

the user a limited means of outoutting small files that re-

quired the use of the fonts from the data base; when a vir-

tual typesetter that will accept fonts with variable dimen-

sions is developed* the "signmkr" can be used as a novelty

program to generate signs and other small files that use ex-

otic fonts. "Signmkr" can center lines of text* leave blank

lines/ cause oagebreaks and oaragraphjng, and can change

font styles from line to line. The user may also insert

literal codes to have a certain special character used in

his output. The use of these commands is explained in the

next paragraph; unless otherwise indicated/ blanks are op-

tional after commands but are recommended in most cases to

140

improve readability.

Commands accepted by "signmkr" are listed below. The

letters "ESC precedinq each command represent the ASCII es-

cape character at octal code 033/ and "\n" is the standard

"newline" character (octal 012) used to represent carriage

return. Each of the following commands must begin at the

beginning of a line and some must be on lines by themselves.

a) ESCc < one line of text >

The "center" command centers one and only one line of

text/ and that line is the line immediately following the

command. This requires the user to use this command in each

line to be centered. If a line is too long to be centered/

then "signmkr" will inform the user of this and ignore the

line.

b) ESCf< SAIL font > ! < Hershev font > !

< complete path name >

The "change font" command allows the user to change the

font being used for tyDesetting; it must be used only at the

head of a line or on a line by itself. A blank must not be

left between the command and the new font name.

c) ESCpgNn

This is the "pageoreak" command and is similar to the

".bp" command usea in NROFF. It sends a form-feed signal to

141

the VE.RSATEC and re-positions the text to the too of a new

page. The command should be used on a line by itself.

d) ESCpp\n

The "begin paragraph" command indents the text line for

paragraphing. The size of the indent is determined by the

size of the current font. Like the "pagebreak" command/ it

should be on a line by itself.

e) ESCs< decimal number > ! < octal number >

The "space" command inserts blank lines within the text.

The height of the blank line is equal to the font height. A

blank must not be left between the command and the number.

The following command mav be used at any place within an in-

put line :

f) ESCo< octal nr > ! < decimal nr >

The "literal" command can be used to request a certain

octal or decimal code that will be used to access a charac-

ter within the current font. The command may be—used at any

point within a line, but it must not be followed by a blank.

This command is useful to access either characters that the

user may have inserted within a font file during an edit

session, or to access characters from a SAIL font whose

character codes correspond to control characters in ASCII.

142

Octal numbers begin with the character '0' and do not con-

tain the numbers 8 or 9, e.g./ 0176 and 0103.

Users with previous exoerience with text processing pro-

grams should have no trouble in adapting to "signmkr". How-

ever/ caution should be exercised when using the "ESCpp"

(paragraoh) and "ESCf" (change fonts) commands at the same

point in the input file. The two sequences of input lines

(a) ESCf BDR8
ESCpo\n
ESCf HTR30\n
< i npu t text >

(b) ESCf 3DR8
ESCf HTR30\n
ESCppNn
< i npu t text >

are not identical. Sequence (a) will set up the indentation

for the next paragraph assuming a font height of 8 point/

but the text will actually be set in 30 ooint type/ so the

indentation will not be obvious. Sequence (b) changes the

font height to 30 point and then indents based on that

height instead of 8 point.

143

SIGNMKR 12 May 1977 SIGNMKR

NAME
signmkr -- a orogram with limited text processing

ability; useful with small projects
that require exotic fonts? or for
making cute signs

SYNOPSIS
s i gnmk r < source file >

DESCRIPTION
This program is capable of limited typesetting func-
tions using commands described more fully above. It

reaas the inout text and commands from a file located
on the same ai rectory as the program, in most cases
"/.fonts. 1".

irthen designing input files for the signmaker* the user
should try to do as much of the formatting for the
output file as is possible. The signmaker will* in

general, give you back what you put in; it is very
good at truncating lines that are too long and at not
filling lines that may be too short.

Command Summary:
ESCc Center one line of text

ESCf

ESCpg

ESCpo

ESCs

ESCo

Change the current font

Cause a oagebreak

Begin a oaragraoh

Space down n lines

Interpret the following number as a

literal character code

FILES

SEE ALSO

BUGS

14a

/* */

/* s i gnmk r .c */

/* */

// top margin

base?
id, r

^define TOP 230
tfdefine PAGEHT 14*100
int row w

;

int si 0;

int p a g e w t h 216;
int linecount PAGEHT;
int pldevf infont/ in,
int ht» max w » 1 h t / fo»
int nodeotr, ODenbits;
int zero [32] , hdr (25toJ ;

char *lp, *o, *tr *n, *pl;
char esc 033; char blank 040; int c #

char header[40] <"/„ font s . 1 /font /'*
}

char pbuf[90], tbuf[90], p1buft264];
char f m a r k 1 1 2 8]

;

char font name (201 , ocharUO];
struct cnode {

int cc ;

char *oot r

;

int r w

;

int bytes ;

int Ik;
int r f t ;

int drc ;

} cl ist [1281 ;

struct cnode *a, *otr;
struct cnode *fchar(128]

//character code
//-> 1 st raster line
//raster line width
//bytes per raster line
//left kern
// rows f rom top
//data row count

ma i n

(

argc , argv)

int argc; char **argv; {

i f (argc < 2) ex i t () ;

else if ((i p =ooen(argv [1 J , 0)) < 0) {

printfC" cannot ooen % s "
, a r g v [1]) ; exitO;

>

ini t () ;

while (get 1 n()) put 1 n () ;

pri nt f ("c losed\n") ; exitO;
}

ini t () {

reg ister int i ;

i f

(

(pldev=0Den("/dev/rvD M
, 1)) < 0) {

Drintf ("cannot open plotter"); exitO;
>

for(i=0;i<l28;i+t) fchar[i] = 0;

n = fmark; for(i=0;i<128;i++) *n + t = -l;
fp = 0; cfont ("SAIL10") ; //default font

145

>

int getlnO { //rtn 1 if there's a line to
//be pi ot ted;ot herwi se>

char k ',

t = tbuf;
k = o;

while ((C*t = getchO) J= '\n') &&
(*t !s '\0')) <

if (k++ =: 89) { *t = »\n'; break; }

t + t;

}

if (*t == 'NO') return(O);
else ret urn (1)

;

}

putln() { //plot as much as can fit in PAGEWTH
reg ister int h # i i

roww = 0; pagewth s 2\b'f
if (si == 0) si = 24;
t = tbuf; p = pbu f

;

while (*t != '\n') {

if (*t == esc) { if (escharO) break; }

if (filcharO) break;
}

p = ' \n ;

if (t == tbuf) return; //null line in incut file
//check for room
if (nroomCht (ht / 1 + 1))) paqebrea«();
for(h=0;h<ht;h++) {

pi = &plbuf[sl); *pl = 0; openbits = 8;

ptr = fcharl*(o = pbuf)];
whi le (*p 1= '\n») {

r = pt r-> rw

;

if (pt r->drc) {

if(h >= ptr->rft && h < pt r->r f

t

+pt r->drc)

i = h - ptr->rft;
lp = ptr->optr t i*ptr->bytes;
whi le(r > 0) {

s h i f t () ; r = - 8 ; }

} el se {

1 p = zero;
whi le(r > 0) {

shiftO; r =- 8;>
>

} e 1 se {

1 p = zero

;

whi 1 e(r > 0) {

shiftO; r =- 8;}
}

ot r = f char (* + + pl ;

}

//plot one row raster line
wri te(ol devrolbuf/ roof (roww + sl *8))

;

>

146

}

//plot some white space
for(h=0;h < ht/10+l;h++)

write(oldev/zerof2);
linecount =+ h t + (h t / 1 + 1) ;

si = 0;

escharO { //esc- soe
i nt w h i , space;
char tt/ *tb, *teJ
if (t == tbuf) {(t == tbuf)

if ((c = **+
n = fontn
while ((

n + + ;

tt = *n;
*n = «\0 '

if ((tt
t = tb

> else if (c

n = oc ha r

base = (

*

while (nu
n + + ; t +

*n = '\0'

hi = oc t (

if (n room
oagebr

for (i =0;
wr i t e

(

1 inecount
t = tbuf;

> else if (c
n = oc ha r

base = (*

while (nu
n + + ; t +

t) =

ame

;

*n =

c i a 1 charac ters

= 'f') { //font change
t + + ;

= *t*+) 1= ' • && *n != '\n')

*n = \0
*t = ((i =

} else if (c

while (*++
tb = t ;

while (* + + t 1

while (*--t =

te = t; space
f or (t = tb; t < =

i f (hdr [*t *

space =+

else if (ha
space =+

*t = oao
> el se {

d r i n t f (
"

d r i n t f (
"

on t (f on t name)

;

\n') ! ! (*t == '\n')) {

ret urn (1) ; >

* s ') i //need space
+ ;

• ') ? 8 : 10 ;

= *t)) {

}

r) * ht ;

) {

); t = tbuf; return(l); }

; i ++)
v

,

zero t 2) ;

hi ;

u r n (1) ;

'o'H //no ascii eauivalent
+ ;

') ? 8 : io;
n = *t))) {

}

— r

t(ochar)) > -1 && i < 128) ? i

: b 1 ank ;

:3 'c') < //center this line
t == ' ') ;

; cf

uf

;

; t +

m (*n
+ ;

oc ha
(hi)

eak(
i <h i

p 1 de
= +

ret

; t +

m((*

+ ;

; t-
=

= ' \ n ') ;

= ' •) ;

= o;

te; t f +) {

2))

hdr(*t*21 2, 0377;
r [040*2]) <

hdr(040*21 & 0377;

inout error-- ");

\tundefined character. ..%c\n"/*t);

147

flushhC);
)

}

space = (soace%8 == 0) ? space/8 : SDace/8+i;
si = 132 - soace/2;
i f (s 1 < 2 a) {

printfC input error-- "
) ;

printf(H \ttoo many characters to center\n");
flushhC);

>

for(i=0;i<sl;it+) p 1 D u f t i 1 = ;

t = tb;
> else if (c == 'p') <

if ((c = * + + t) == 'g') {//pgbreak
pagebreakO; t = tbuf; return(l); }

else if (c == * p ') {//oaraqraph
f or (i =0; i <ht ; i +t

)

wri te(pldev>zero/2) ;

si = 2a + (2a * ht/120);
pagewth = oagewth - (2a * ht/120);
t = tbuf ; return (1) ;

}

else {

orintf (" invalid character folowing ") ;

print f (" ' ESCd 1

. . "
)

,*

exitO;
>

> e 1 se {

print f ("input error- ") ;

orintf("\tinvalid escape character... %c

"

t c

)

i

f 1 u s h h () ;

}

> else if ((c = * + + 1) == ' o '
) (//no ascii equiv

n = ochar ; t + + ?

base = (*t == '0 '
) ? 8 : 10 ;

while (num (
(*n = *t))) {

n + + ; t + + ; >

*n = '\0'; t--;
*t = ((i =oct (ochar)) > -1 && i < 128) ? i

: bl ank;
> else if (c == 'f') (//no font chg allowed here

print f ("change fonts at line head only ");

f

1

ushh () ;

} el se {

printf ("input error- ");

printf(M \t invalid escape character (X c) \ n "
, c) ;

pri nt f
("\t embedded within text • • .\n w

)

#

f

1

ushh() ;

)

re t urn () ;

i nt f i 1 char () { //move chars from tbuf to pbuf until
//PAGE !aTH exceeded/ replace nonexistent
//chars with blank? ow» exit

las

regi s t e r i nt i ;

i n f ont = * t ?

i f (hdr U nf ont *2])

if (fchartinfontl
getdef ();
if (roww+a->rw

roww =+

else { *o -

= = 0)

<= pagewth*8)
a-> rwj
' \ n

' ; return(l);}
} el

i f

se if (rowwt

f

char [i

n

font 1 ->rw <= pagewth*3)
roww =+ f c ha r (i n f ont] -> rw

;

else {*p = '\n'; return(l);}
else if (hdr [(infont=bl ank) *2)) <

*t = blank;
(fchar [i nfontl ==0) {

getdef () ;

if (roww+a->rw <= oagewth*8)
roww =+ 3->rwJ

else {*o = '\n'; return(l);>
else if (roww + fc har [i

n

font 1 -> rw <= pagewth*8)
roww = + fc har [i

n

font 1 -> rw

;

else <*p = '\n'; return(l);}
} else {

pri nt f

(

"character '%3o' not defined in %s",*t,
header)

;

f 1 u s h h ()

;

>

*o + + = *t + + ;

ret urn ()

;

}

}

c font
Ch
re
i f

}

fo
i f

}

pr
de
fo
re
re
i f

(g)
ar *g? { //q points to new font name
g i s t e r i n t i ;

(fp) (

printf(M closed\n"); close(fp);

r (i =16; (header [i] = *a+ +) 1= '\0';i++)
((fo =ooen(header, 0)) < 0) {

orintf (" cannot open %s"jheader); e x i t () ;

i n t f
(
" % S opened. ..."f header);

a 1 1 oc (nodept r) ; nodeptr = 0;

r(i=0;i<128;i++) f c h a r I i] = ;

ad(fp,hdr, 512) ; read (f

p

, &h t , 2)

;

ad (f p t 4max a t 2) ;

(checkO) {

printf("%s bad
ex i t () ;

read(fp, &1 ht , 2)

}

font file" rheader);

}

dea 1 1 oc (x)

i nt x ;

while

{

(x)

//free in reve r se
// of allocation

o roe r

1U9

i f (f char [fmark [--xl] ->opt r

)

f ree(fchar (fmark [x]

]

->optr) ;

}

oagebreakO { //Daqe eject
int i ;

char err J

err = c ve rs (p 1 dev / 020) ;

i f (err == -1) <

printf(" invalid filedes in pagebreak\n");
exi t ();
>

for (i=0; i <T0P; i ++) w r i t

e

(d 1 dev , zero , 2)

;

I inecount = TOP;
>

getdefO <

int blkC/bytc? register i;

blicc = (hdr [i nf ont*2] 8,0177400) >> 8;

bike =& 0377;
byte = hgr [i nf ont *2 + 1 1 ;

if (bike) {

seek(f p,b1 kc/ 3) ; seek (fp, byte , 1) # >

else seek (f

p

, by t c ,) ;

getnode () ;

a->cc = i nf ont ;

read(fp>&a->rw,2) ;

read(fp#&a->lk,2); read(fo,&a->rft,2);
read(fp»4a->drc/2) ;

a->bytes = (a->rw%8 == 0) ? a->rw/8 : a->rw/8+i;
if(a->drc) {

i f ((

i

=a->opt r = all oc (a->drc*a->bytes)) < 0) {

deal loc(nodeptr-l);

getdef(); return;
>

read(fo»a->oDtr,a->drc*a->bytes);
}

in = 0;

f or (i =0; i <nodeot r ; i ++) {

ifCfmarkCi] == infont) in + + ;

>

if(in == 0) fmark [nodeptr-11 = infont;
}

getnode () (

i f (nodept r > 127) {

DrintfCoverflow"); e x i t () ; >

a = f char t i

n

font] = &c 1 i s t [nodeot r + +] ;

a->ootr = 0;

>

i nt roof (x)

int xl {

x = (x%8 == 0) ? x/8 : x/8 + l;

if(x%2 == 0) return(x);

150

if(x == 263) return(262) ;

* + +pl = 0; return (+ + x) ;

}

i nt check () {

i f (h t < ! ! maxw <

ht > 120 ! ! maxw
else ret urn () ;

>

o : : iht
> 256 1

1

1

1

1

1

<

lht > ht) return(1)

;

i nt nroom (x

)

i nt x; {

ifdinecount x > PAGEHT) return(l);
else ret urn () ;

}

s h i f t () {

i n t t b ;

tb = *lo; tb =& 0377; tb =<< openbits;
i f (r > 7) {

*pl++ =! (tb & 0177400) >> 8;
*pl =& 0; *pl =| tb S. 0377;

> e 1 se {

i f C r <= openbits) <

*pl =! (tb % 0177400) >> 8;
openb its =- r

;

} else {

* d I + + =! (tb & 0177400) >> 8;
*d1 =& 0; *d1 =! tb & 0377;
ODenpits = 8- (r-ooenb i t s) ;

>

>

i p + + ;

)

i nt oc t (cp)

Char *cp; {

i n t i ; i = ;

base = (*cp == '0') ? 8 :

while (num(*cp) && *cp 1=

i = i *base + *cp + + - '

return (i)

;

10;
•\0'

)

i nt num (cp)

char cd! {

i f (base == 10 && (cp >= ' 0' && cd <= '9')) return(1) ;

if(base == 8 && (cp >= '0' && cp
i f (cp == '&'

! ! cp == '9'
) (

print*(M input error-- ");

printf("\t improper octal number.,
while (*t 1= '\n') du t c ha r (* t + +) ;

ex i t () ;

>

else return(O);

<= '7')) return(l);

%d%cp) ;

151

}

getchO {

char tt/S?
s = read(i p, &t t t 1) ;

If (! ss) return! '\0 '
) ;

else return(tt);
>

flushhO { //print bad input line and exit
while (*t i= '\n') pu t c har (*t ++)

;

e x i t () ;

>

152

APPENDIX E. HERSHEY FONTS AVAILABLE

The fonts listed below are currently available on

"/. fonts. 01/hershey" in vector form. They are used in this

form by "drawhf" » and they are converted to dot matrix form

from vectors b-y
" makehf". The 1 ^ fonts available are :

HSR -

HSG -

HSS -

HDR -

HCR -

HCG -

HCS -

HCI -

HCC -

HTR -

HTI -

HGE -

HGG -

HGI -

- S i mp lex Roman

Greek

Scriot

- Oup 1 ex Roman

- Comp 1 ex Roman

Greek

Script

Italic

Cyri 1 1 ic

- T r i d 1 ex Roman

Italic

- Gothic Enq 1 i sh

German

H Italian

The following cages provide a display of each font and

its character set. The last Dage of this appendix contains

a Quotation written in each font for comoarison and contrast

of the fonts.

153

X
2 EU

• * "&
1 •

CO

CD

EC

CO

\0
CO

m fcfl

<* a"
CO
C\]
£

rH

O CO\K
•

CQ

*« >
ff

E-*

* U
/**N CL

IO
fr$ X a

«*:
IT t;:

X 03

s «
X ffl

H-H u >^
hQ e tr»

a"

a a
e

PS

P3 Cfl

hQ <
a

2 0-

hQ R a
M

h-

1

p4 s

« 3

h
b
a

X
u

x *=

c- u
A 3
II

CO

*0
CO

co <-

c\2"

o N
• M

i a
+ t-
* w
Co*
^®

©
—
u
X

<o

@

A
II

V
• •

as
co

CD

<tf

CO
C\2

i—

i

o

b*

a
o

O
-O

b
i

+

=8=

CQ

N

^ <fl

a,

X w

H
Q
U
CD
< '

@ :

c-
'

A

CT

a
o
c

V
I IS

I I

co
j>

© co

I LO
a Tt

CO
C\2

OX)

CD

O

cd

i

+

N

>
D
E-<

Dh

o N

>
3

FIGURE E-l. Hershey Font Examples

15^

®
CO
w
S3

CO si

CD

U
Q
O
<
0-

00

m
<*

m
CM

N

X

>
3

O"
a
o
c

£

JZ

"O
*- O
O -Q

• N
I
>

+ s

W-CC
: a- Q_

®

o

m I

m «"

9 §
» s

J? S

ii a
en *

in u

n ss

nj N
-- gi

^K
I S

+ B

®
a
o
o
pa

W to

* s
B? g

C
£*.

Q
B

II

(s)

OS

« •

en
4>

'.H

Cq

L. 65

FIGURE E-l. (Continued)

155

©
CI

i

US *

10 -s

05

ttl a
o
s
£

Q
a

4 t

4.

»
"2

to iO

S>

I. B
a

o
ci
o

cz

o

<

o

x
?

3 ^

t>
; a

ii <*>

- t=

CD o
CO ^

Lf) !*
^j- -J

CN c^
<- 9-

O ^

. x
l

^
+ N
* -5-

- ©

CO
53

X~
O >>

b- x
LU 5

u -m

a
o

oo £

in -c

CM CD

"a

?s
a
N
x+

*

D
GO

a:

O
a.

?

eg 3

*
S.

ii i
"

£

co 5

CN o

+

L. ^

FIGURE E-l. (Continued)

156

©

** a

|> to

3 •

^ a.

II

*

N <u

^^

I

+
*

Or

N

H

©

O

W en

a
o
c

Q
U
m

CO -o

l>

* >

«3 CO

: or

FIGURE E-l. (Continued)

157

0) co ^ OJ 0) 4* <y

ft i- B H

FIGURE E-2. Hershev Font Comparisons

158

APPENDIX F. FONT/CHARACTER DIMENSIONS

Previous character

ends here ———

-

left

• kern •

character

— width —

Next character

begins here

r i gh t

«- kern -

T

Logical top

rous from top

i

base-

I ine

height

data row count

raster width

FIGURE F-l. Font dimensions

Logical bottom

This fiaure* taken from Reference U t displays the di-

mensions of fonts and characters that must be taken into ac-

count when setting type by comouter.

The most important characteristics of a font are its

height* the width of its widest character* and its logical

height. The values for height and logical height remain con-

159

stant throughout a font and are the real measure of compati-

bility among fonts* i.e./ in creating a new font; characters

from fonts of differing heights or logical heights cannot be

mi xed

.

Character width, raster width, and left kern are the

characteristic dimensions of characters. The right kern is

not listed, but may be comouted if desired. There are two

additional dimensions which play an important part in the

stored representation of the digitized character. These are

rows- f rom-t op (r f t) , a count of the blank raster lines from

the logical too of the character to the first non-blank row,

and the da t a-row-count (d re) , a count of the number of raster

lines that contain character information. The font height

minus the sum of rft plus drc provides the number of blank

lines that must be added after the last nonblank raster line

to complete the character.

Another important characteristic of a font is the base-

line. This is the distance from the logical top of the

character to the imaginary line on which the row of charac-

ters rests, although some characters may extend below this

line. All characters in a given font file have the same

height and baseline.

"Kerning" is a characteristic which occurs only when a

font has a non-zero left or right kern, so that the charac-

ter width is smaller than the raster width. Kerning allows

the computer to set some characters closer to others to

160

avoid leaving what apoears to be too much white space

between characters? of course; the computer must first make

some checks to ensure that no character overlays occur.

When setting a kernea font/ the typesetting program will

space ahead according to the character width and not the

raster width. Kerning occurs in only two of the SAIL fonts.

Neither the current version of the virtual typesetter nor

the typesetting program described in this guide deal with

kerning^ but font files and programs provide a place for the

left kern so that the concept may be fully implemented later

without reorganizing font file structure.

161

APPENDIX G. THE 'SAIL' FONTS

A. 'SAIL' FONTS AVAILABLE

All of the digitized fonts currently available are list-

ed below by typeface and style. Each of these is located on

directory "/. fonts. Ul/font" :

B0J8 - — 8 point Bodon

•

i Mathematical

BDR10 -- 10 ii H Roman

BDI10 -- 10 t« H Ital i c

BDJ10 — 10 H i« Mat hema t i ca

1

BOR10X -- 1Q
H H Bold

BDR12 -- 12 M H Roman

Bona -- 12 ii •i Ital i c

aoBia -- 12 ii I Bold

BDR15 — 15 ii •i Roman

BDI15 -- 15 ii n Ital i c

BDR25 -- 25 ii H Roman

NONS -- 10 ii Non i e Roman

NONSI -- 10 ii I Ital i c

NONSB -- 10 ii H Bold

NONSBI — 10 ii ii Bol d Italic

NONM -- 12 H H Roman

NONMI -- 12 H ii Ital i c

NONMB -- 12 n H Bold

162

NONMBI —

—

12

NONL — 14

NONLI — 14

NONLB — 14

NONLBI — 14

SAIL10 -- 10

SHD15 -- 15

SIGN22 -- 22

SIGN41 -- 41

GRFX10 -- 10

GRFX14 — 14

MATH10 -- 10

MATH13 -- 13

MATH 15 -- 15

MATH20 -- 20

MATH21 • _ 21

- 12 point Nonie Bold Italic

" Roman

Italic

Bold

Bold Italic

Delegate (similar to IBM Selectric)

Shadow

S i gn

S i gn

GraDh i c s

Graoh i c s

Math

Math

Math

Math

Math

B. 'SAIL' CHARACTER CODES

The SAIL character set and corresponding octal codes are

found on the next page* with the ASCII character set. A

blank indicates that no character exists for that code.

163

1 2 3 4 5 6 7

000 NUL i a (3 A -T € TT

010 X HT LF VT FF CR 00 a

020 c 3 n u V 3 ® •**

030 -»
**

* <, £ z V
040 SP 1

ti # % % %
f

050 () * +
>

-
• /

060 1 2 3 4 5 6 7

070 3 9 : j
< = > ?

100 jg A B C D E F G

110 H I J K L M N.

120 P Q R S T U V W
130 X Y Z [\] T «-

140 t a b c d e f s
150 h i J k 1 m n

160 p q r s t u V w
170 X y z { 1 ESC > BS

FIGURE G-l. SAIL Character Set

1 2 3 4 5 6 7

000 NUL SOH STX ETX EOT ENQ ACK BEL
010 BS HT NL VT NP CR SO SI
020 DLE DC1 DC2 DC3 DC4 NAK SYN ETB
030 CAN EM SUB ESC FS GS RS US
040 SP t

» # $ $ §
t

050 () * +
i

-
/

060 1 2 3 4 5 6 7

070 8 9
•

i
< 3 > ?

100 @ A B C D E F G
110 H I J K L M N
120 P Q R S T V W
120 X Y Z C \ 1 T *
130 i a b c d e f g
140 h i J k 1 m n
150 P q r s t u V w
160 X y z { 1

\
> DEL

FIGURE G-2. ASCII Character Set

16a

APPENDIX H. FINDING A FONT.

A. FONT LOCATION

All of the fonts and font manioulat ion routines are lo-

cated on a mountable file called "fonts. 01". To access this

file/ the following procedure is necessary after logging in:

% fsmount fonts. 01

/dev/fonts . 1

spcl aaaa
files bbbb
1 arge cccc
di rec dddd
i ndi r eeee
used ffff
f ree gggg
/dev/fonts. 01

/dev/f ont s . 1 mounted to directory /.fonts. 01

%

A complete description of the directory configuration is

given on the next page. Detailed explanations of the font

editor "edf" and the Hershey conversion program "makehf"

are given in Appendix A and in Chapter III respectively;

brief descriptions of these programs are also located with

the program listings in Appendixes A and B respectively.

The source programs/ a copy of "A User's Guide For Font

Manipulation at the Naval Postgraduate School"/ and instruc-

tions for acguiring both are contained on "fonts. 02"/ anoth-

er mountable file which is mounted and accessed in the same

manner as " fonts. 01".

165

B. MOUNTABLE FILE DESCRIPTION

The following diagrams describe the directory configura-

tions of "fonts. 01" and "fonts. 02". A H d" in a branch of

the tree indicates that the next name is a directory.

1. Fonts. 01

/. fonts .0

1

i

i

edf

HFOMT

makeh f

pr font

s i gnmk r

font

SAIL

fonts

Her shev

fonts

hershey hf tool

s

drawh f

cnv rt

mkvec

sail

t rans f i 1

e

1 i s t f o n t

The file called "HFONT" normally contains the most

recently created Hershey font r unless it was specifically

written to another directory. This process is explained in

Appendix B . All other d r o a r a m names that pertain to Hershey

fonts are exolained elsewhere in this report. "Transfile"

and "listfont" pertain to the conversion of SAIL fonts for

NPS use and are discussed in Reference 6.

166

2. Fonts. 02

/. fonts .02

he rshey

fnakehf .c

drawh f .c

cnvrt.c

mkvec .c

c ommon

S i gnm k r . c

orfont .

c

edf .c

sail

t nans f i 1 e . c

H st font .c

use rman

userqu i de

use renc

1

osures

pr i n t man

To obtain a oersonal cooy of the User's Guide, mount

both "fonts. 01" and "fonts. 02" and tyoe "sh

/. fonts. 02/userman/printman". The manual will be directed

to the line Drinter and the figures will be dotted on the

VERSATEC plotter/printer.

167

LIST OF REFERENCES

1. Barksdale, G.L. Jr. and Meyer, W.8., TPS Text Pro-
cessina System, Naval Postgraduate School, 1976.

2. B a r n e 1 1 , Michael P., Computer Typesetting , The M . I . T

.

Press, 1965.

3

.

Berg, N . Edward, Electronic Composition, Graphic Arts
Technical Foundation, op. 6:1-6:30, 1975.

4

.

Earnest, Les, Find A Font

»

Stanford University Artifi-
cial Intelligence Laboratory, 197b.

5. Hattery, Lowell H. and Bush, George Pw eds., Aut oma t i on
And Electronics In Publishing , Spartan Books, op 9-17,
1965.

6. McCord, B.S., An Enhancement Of The Computer Typesetting
Capabi 1 i t y Of UNIX , M.S. Thesis, Naval Postgraduate
School/ Monterey, California, 1977.

7. Ossanna, Joseph F., The MR OFF User's Manual , Bell Tele-
phone Laboratories, Incorporated, 197a.

8. Ossanna, Joseph F., The TROFF User's Manual , Bell Tele-
phone Laboratories, Incorporated, 197a.

9. R A M T E K GX-100A Programming Manual , Ramtek Corporation,
Appendix B, 197a.

10. Naval Postgraduate School Technical Memorandum, Elemen-
tary Magnetic Tape Usage Under QS/MVT At MPS , by Sharon
0. Raney, pp. b-8, November 197b.

11. Naval Postgraduate School Technical Note 0211-08, Pro-
cedures For Converting 7-Track Magnetic Tapes To 9-Track
Magnetic Tapes , 3rd ed., by Sharon D. Raney, pp 30-32,
Feb rua ry 1973.

12. Reference Manua 1 --G

r

aph i c s Display Unit , Vector General
Incorporated/ o. 2-12, 1973.

13. System Reference Manual , Hughes Aircraft Company, In-
dustrial Products Division Conooraohic Products, pp.
13-15, 41-45, 1974.

14 Terminal Control System, Tektronix Incorporated, Infor-

168

mation Display Division/ pp. 1-52/ 1974.

15. Thompson, K. and Richie* D.M., The UNIX Programmer's
Manua

1

t 6th e d . / Bell Telephone Laboratories^ Incor-
19 75.

16.

17

poratedf Chapter If

Wolcottr- Norman M. and Hilsenrath/ Joseph/ A CQNTRIBU-
TION TO COMPUTER TYPESETTI NG TE CH NIQU E S: Tables of Coor-
dinates for Hershev's Repertory of Occidental Type Fonts
and Graphic Symbols / National Bureau of Standards (Spe-
cial Publication a^a)/ op. 1-15/ 1976.

Hamming/ R.W./ Numerical Methods For Scientists And Err
qineers/ McGraw -Hill, Incorpo rated/ 1973.

18. Naval Postgraduate School Technical Report
NPS52Ba7706l/ A User's Guide To Font Creation And Mani-
pulation At The Naval Postgraduate School / G.L. darks-
dale/ Jr., P.M. Doyle/ B.S. M c Cord/ 1977.

169

INITIAL DISTRIBUTION LIST

1. Defense Documentation Center
Cameron Station
Alexanderia, Virginia 22314

No . Cop i es

2

2. Library, Code 0142
Naval Postgraduate School
Monterey/ California 93940

3. DeDartment Chairman, Code 52
Deoartment of Computer Science
Naval Postaraduate School
Monterey, California 93940

4. Professor Gerald L. Barksoale, Jr.,
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

Code 52Ba

5. LCDR Steohen T. H 11, USN, Code 52H1
Deoartment of Computer Science
Naval Postgraduate School
Monterey; California 93940

6. LI" Patrick M. Doyle, USN
58 Bluff St reet
Dubuaue, Iowa 52001

170

Thesis

D7215

c.l

Thesis
D7215
c.l

HQ353
Doyle

An adaptation of theHershey digitized char-
acter set for use in
computer graphics and
typesetting.

70353
Doyle

An adaptation of the

Hershey digitized char-
acter set for use in

computer graphics and
typesetting.

thesD7215

An adaptation of the Hershey digitized c

3 2768 002 00655 3
DUDLEY KNOX LIBRARY

