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In this review, we explore the historical development and future
prospects of artificial intelligence (AI) and deep learning
in astronomy. We trace the evolution of connectionism in
astronomy through its three waves, from the early use of
multilayer perceptrons, to the rise of convolutional and recurrent
neural networks, and finally to the current era of unsupervised
and generative deep learning methods. With the exponential
growth of astronomical data, deep learning techniques offer an
unprecedented opportunity to uncover valuable insights and
tackle previously intractable problems. As we enter the
anticipated fourth wave of astronomical connectionism, we
argue for the adoption of GPT-like foundation models fine-tuned
for astronomical applications. Such models could harness the
wealth of high-quality, multimodal astronomical data to serve
state-of-the-art downstream tasks. To keep pace with
advancements driven by Big Tech, we propose a collaborative,
open-source approach within the astronomy community to
develop and maintain these foundation models, fostering a
symbiotic relationship between AI and astronomy that
capitalizes on the unique strengths of both fields.
1. Introduction
The concept of artificial intelligence (AI) can be traced back at least
350 years to Leibniz’s Dissertation on the Art of Combinations [1].
Inspired by Descartes and Llull, Leibniz posited that, through
the development of a ‘universal language’, all ideas could be
represented by the combination of a small set of fundamental
concepts, and that new concepts could be generated in a logical
fashion, potentially by some computing machine. Leibniz’s
ambitious vision (’let us calculate’) has not yet been realized,
but the quest to emulate human reasoning, or at least to build a
machine to mimic the computational and data processing
capabilities of the human brain, has persisted to this day.

It might be fair to say that the roots of AI stretch even as far
back as Llull’s medieval philosophy that inspired Leibniz [2,3].
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However, if we now consider AI to be a bona fide scientific discipline, then that discipline clearly

emerged in the post-war years of the twentieth century, following Turing’s simple enquiry ‘can
machines think?’ [4]. Somewhat philosophical in nature, Turing’s 1950 question succinctly articulates
the ambition of AI, but from a nuts and bolts standpoint it took a further 5 years from Turing’s query
for what one might call the first AI program—the so-called ‘Logic Theorist’—to be developed by
Allen Newell, Cliff Shaw and Herbert Simon. Funded by the Research and Development (RAND)
Corporation, the Logic Theorist was designed, in part, to emulate the role of a human mathematician,
in that it could automate the proof of mathematical theorems. This was a breakthrough in computer
science and the Logic Theorist was presented at the seminal Dartmouth Summer Research Project on
Artificial Intelligence (DSRPAI) conference in 1956, now regarded as the true birth of AI as a field.
Indeed, it was DSRPAI organizer John McCarthy who is credited with coining the term ‘artificial
intelligence’ [5].

Natural intrigue—andclearlyagooddeal of fear—of the ideaofAIhas inspiredpopularculturenoend, from
Dick’s Do Androids Dream Of Electric Sheep? to Crichton’s Westworld, Terminator’s ‘Skynet’ and beyond. Iain
M. Banks’s Galactic civilization known as ‘The Culture’ imagines a society run by powerful ‘Minds’ whose
intelligence and wisdom far exceeds that of humans, and where biological beings and machines of equivalent
sentience generally coexist peacefully, cooperatively and equitably. Science fiction notwithstanding, if these
dreams are even possible, we are still years away from a machine that can genuinely think for itself [6,7].
Nevertheless, the question of how one mathematically (and algorithmically) models the workings and inter-
relationships of biological neurons—neural networks—and the subsequent exploration of how they can find
utility as tools in the data analyst’s workshop is really what is being referred to when most people use the
term ‘AI’ today.1 While we must always be wary of hype and buzzwordism, it is the application of neural
networks—and the possibility of tackling hitherto intractable problems—that offers genuine reason for
excitement across many disparate fields of enquiry, including astronomy.

Astronomers have made use of artificial neural networks (ANNs) for over three decades. In 1994, Ofer
Lahav, an early trailblazer, wryly identified the ‘neuro-skeptics’—those resistant to the use of such
techniques in serious astrophysics research—and argued that ANNs ‘should be viewed as a general
statistical framework, rather than as an estoteric approach’ [8]. Unfortunately, this scepticism has persisted.
This is despite the recent upsurge in the use of neural networks (and machine learning in general) in the
field, as illustrated in figure 1. This scepticism also stands contrary to achievements within astronomy that
would not be possible without the use of ANNs, such as photometric redshift estimation (e.g. [9,10]),
astronomical object identification and clustering at scale (e.g. [11]) and entirely data-driven simulation (e.g.
[12,13]). Most of the criticism of machine learning techniques, and deep learning2 in particular, is levelled
at the perceived ‘black box’ nature of the methodology. In this review, we provide a primer on how deep
neural networks are constructed, and the mathematical rules governing their learning, which we hope will
serve as a useful resource for neuro-sceptics. Nevertheless, we must recognize that a unified theoretical
picture of how deep neural networks work does not yet exist. This remains a point of debate even within
the deep learning community. For example, Yann LeCun responding to Ali Rahimi’s ‘Test of Time’ award
talk at the 31st Conference on Neural Information Processing Systems (NIPS) remarked:
1An
2Dee
Ali gave an entertaining and well-delivered talk. But I fundamentally disagree with the message. The main
message was, in essence, that the current practice in machine learning is akin to ‘alchemy’ (his word). It’s
insulting, yes. But never mind that: It’s wrong! Ali complained about the lack of (theoretical) understanding of
many methods that are currently used in ML, particularly in deep learning ... Sticking to a set of methods just
because you can do theory about it, while ignoring a set of methods that empirically work better just because
you don’t (yet) understand them theoretically is akin to looking for your lost car keys under the street light
knowing you lost them someplace else. Yes, we need better understanding of our methods. But the correct
attitude is to attempt to fix the situation, not to insult a whole community for not having succeeded in fixing it
yet. This is like criticizing James Watt for not being Carnot or Helmholtz [14].
Philosophical concerns aside, LeCun’s fundamental point is that deep learning ‘works’ and therefore
we should use it, even if we do not fully understand it. If one were being uncharitable, we could make
similar arguments about the LCDM paradigm.

It is clear that in every field thatdeep learninghas infiltratedwehave seena reduction in theuseof specialist
knowledge, tobe replacedwithknowledgeautomaticallyderived fromdata.Wehavealreadyseen thisprocess
playout inmany ‘applieddeep learning’ fields suchas computerGo [15], protein folding [16], natural language
processing [17] and computer vision [18].We argue that astronomy’s data abundance corrals it onto a path no
d the term is regularly misused, not only erroneously, but often cynically.

p learning referring to the use of a network constructed of many layers of artificial neurons.
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Figure 1. Here we see the number of arXiv:astro-ph submissions per month that have abstracts or titles containing one or more of
the strings: ‘machine learning’, ‘ML’, ‘artificial intelligence’, ‘AI’, ‘deep learning’ or ‘neural network’. The raw data are in the public
domain and are available at https://www.kaggle.com/Cornell-University/arxiv.
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Figure 2. The data volume output of a selection of astronomical surveys over their lifetimes. We can see the astronomical survey
data volume doubles every 16 months. Data are taken from Zhang & Zhao [19].
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different to that trodden byother applied deep learning fields. This abundance is not a passing phase; the total
astronomical data volume is already large and will increase exponentially in the coming years. We illustrate
this in figure 2, where we present a selection of astronomical surveys and their estimated data volume
output over their lifetimes [19]. And this is not even considering data associated with ever larger and more
detailed numerical simulations (e.g. [20–22]). The current scale of the data volume already poses an issue
for astronomy as many classical methods rely on human supervision and specialist expertise, and the
increasing data volume will make exploring and exploiting these surveys through traditional human
supervised and semi-supervised means an intractable problem. Of serious concern is the possibility that we
will miss—or substantially delay—interesting and important discoveries simply due to our inability to
accurately and consistently interrogate astronomical data at scale. Deep learning has shown great promise
in automating information extraction in various data-intensive fields, and so is ideally poised as a solution
to the challenge of processing ultra-large-scale astronomical data. But we do not need to stop there. This

https://www.kaggle.com/Cornell-University/arxiv


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221454
4
review’s outlook ventures a step further, and argues that astronomy’s wealth of data should be considered a

unique opportunity, and not merely an albatross.
Since astronomical connectionism’s3 humble beginnings in the late 1980s, there have been numerous

excellent reviews on the application of artificial neural networks to astronomy (e.g. [23–25]). We take an
alternative approach to previous literature reviews and survey the field holistically, in an attempt to paint
astronomical connectionism’s ‘Big Picture’ with broad strokes. While we cannot possibly include all
works within astronomical connectionism,4 we hope that this review serves as a historical background
on astronomy’s ‘three waves’ of increasingly automated connectionism, as well as presenting a general
primer on neural networks that may assist those seeking to explore this fascinating topic for the first time.

In §§2 and 3, we explore initial work on multi-layer perceptrons within astronomy, where models
required manually selected emergent properties as input. In §§4 and 5, we explore the second wave,
which coincided with the dissemination of convolutional neural networks and recurrent neural
networks—models where the multi-layer perceptron’s manually selected inputs are replaced with raw
data ingestion. In the third wave that is happening now we are seeing the removal of human supervision
altogether with deep learning methods inferring labels and knowledge directly from the data, and we
explore this wave in §§6–8. Finally, in §9, we look to the future and predict that we will soon enter a
fourth wave of astronomical connectionism. We argue that if astronomy follows the pattern of other
applied deep learning fields we will see the removal of expertly crafted deep learning models, to be
replaced with fine-tuned versions of an all-encompassing ‘foundation’ model. As part of this fourth
wave, we argue for a symbiosis between astronomy and connectionism, a symbiosis predicated on
astronomy’s relative data wealth and deep learning’s insatiable data appetite. Many ultra-large datasets
in machine learning are proprietary or of poor quality, and so there is an opportunity for astronomers as
a community to develop and provide a high-quality multi-modal public dataset. In turn, this dataset
could be used to train an astronomical foundation model to serve state-of-the-art downstream tasks.
Owing to foundation models’ hunger for data and compute, a single astronomical research group could
not bring about such a model alone. Therefore, we conclude that astronomy as a discipline has slim
chance of keeping up with a research pace set by the Big Tech goliaths—that is, unless we follow the
examples of EleutherAI and HuggingFace and pool our resources in a grassroots open-source fashion.

Before moving on, we must first admit to our readers that we have not been entirely honest with
them. The abstract of this review has not been written by us. It was generated by prompting
OpenAI’s generative pretrained transformer 4 (‘GPT-4’) neural network-based foundation model with
this paper’s introduction [26,27]. To be precise, we prompted the GPT-4 engine provided by ‘ChatGPT
Plus’ with all the text in §1 up until this paragraph in raw LaTeX format. We then appended the
following prompt to the introduction text:
3Sin
a co
sym
cogn
4We
Write an abstract for the above text that will catch the reader’s eye, and make them interested in the paper. Make
the abstract 160 words or less, and touch on the value of GPT-like models in astronomy.
We did not alter the GPT-generated output whatsoever. We explore these foundation models and
their possible astronomical uses in more detail in §9.
2. A primer on artificial neurons
In 1943 McCulloch & Pitts [28] proposed the first computational model of a biological neuron (MP
neuron; [28]). Their model consisted of a set of binary inputs xi∈ {0, 1} and a single binary output
y∈ {0, 1}. Their model also defines a single ‘inhibitory’ input I [ f0, 1g that blocks output if I ¼ 1. If
the sum of the inputs exceeds a threshold value Q, the MP neuron ‘fires’ and outputs y = 1.
Mathematically, we can write the MP neuron function as

MPðxÞ ¼ 1 if
Pn

i¼1 xi . Q and I ¼ 0,
0 otherwise.

�
The MP neuron is quite a powerful abstraction. Single MP neurons can calculate simple Boolean
functions, and more complicated functions can be calculated when many MP neurons are chained
together. However, there is one show-stopping issue: the MP neuron is missing the capacity to learn.
ce its inception, AI research can be broadly categorized into two schools: ‘symbolic’ and ‘connectionist’. Symbolists see the mind as
llection of fully formed representations, and attempt to mimic human reasoning through a logical rule-based processing of these
bols. This approach contrasts with connectionist (or neural network-based) AI, which takes a bottom-up approach and simulates
ition by mimicking the way neurons in the human brain work.

refer the reader to figure 1!



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221454
5
Rosenblatt [29] addressed this by combining the MP neuron with Hebb’s neuronal wiring theory5 [30],

and we will explore a related training formulation in the next subsection.

2.1. The perceptron
This subsection aims to provide the reader a foundation and intuition for the gradient-based learning that
dominates contemporary neural network architectures. Therefore, we diverge from Rosenblatt’s original
learning algorithm and instead describe a gradient-based training algorithm. The interested reader will
find an analysis of Rosenblatt’s original learning algorithms in the ‘Mathematical analysis of learning in
the perceptron’ section of Rosenblatt [29].

Like the MP neuron, the perceptron takes a number of numeric inputs (xi). However, unlike the MP
neuron, each one of these inputs is multiplied by a corresponding weight (wi) signifying the
importance the perceptron assigns to a given input. As shown in figure 3, we can then sum this list
of products and pass it into an ‘activation function’. Let us use the Heaviside step function as our
activation function,

where x is a set of inputs, and w is a set of ‘weights’ that represent the importance of each input.
To concretize how we could train our perceptron, we will use an example. Let us say that we want to

automatically label a set of galaxy images as either ‘spiral’ or ‘elliptical’. To do this, we first need to
compile a training dataset of galaxy images. This training set would consist of spiral and elliptical
galaxies, and each image would have a ground truth label y—say ‘0’ for a spiral galaxy and ‘1’ for an
elliptical. To train our perceptron, we randomly choose one image from the training set, and feed it to
the perceptron, with the numerical value of each pixel corresponding to an input {x1,…, xN}. These
inputs are multiplied by their corresponding weight {w1,…, wN}. A bias term (b =w0 x0, where x0 = 1)
is also added to the inputs, which allows the neuron to shift its activation function linearly. Since we
do not want our perceptron to have any prior knowledge of the task, we initialize the weights at
random. The resulting products are then summed. Finally, our activation function H transforms w · x
and produces a prediction p. We then compare p with y via a ‘loss function,’ which is a function that
measures the difference between p and y. The loss can be any differentiable function, so for
illustration purposes we will define it here as the L1 loss: Lðy, pÞ ¼ jy� pj. Now that we can compare
with the ground truth, we need to work out how a change in one of our weights affects the loss (that
is, we want to find @L=@w). We can calculate this change with the chain rule

@L
@w

¼ @L
@p

@p
@w

, ð2:2Þ

and since p =H(w · x) and ∂p/∂w =H0xT we get

@L
@w

¼ @L
@p

� ðH0xTÞ,

where � is the distributive Hadamard product. Thus, we can update the weights to decrease the loss
function,

wnext ¼ w� h
@L
@w

¼ w� h
@L
@p

� ðH0xTÞ,
5Also known by the mantra ‘cells that fire together wire together’.
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where η is the learning rate.6 If we repeat this process our perceptron will get better and better at
classifying our galaxies!

While we provide the above example for illustrative purposes, we will need a more powerful
algorithm to produce a useful classifier of galaxy morphology. This need is perhaps most famously
discussed in Perceptrons: An Introduction to Computational Geometry ([31], e.g. §13.0). Minsky & Papert
show that the single-layer perceptron is only able to calculate linearly separable functions, among
other limitations. Their book (alongside a consensus that AI had failed to deliver on its early
grandiose promises) delivered a big blow to the connectionist school of artificial intelligence.7 In the
years following Minsky & Papert [31], governmental and industry funding was pulled from
connectionist research laboratories, ushering in the first ‘AI winter’.8

Yet, as exemplified in Rosenblatt ([36], §5.2, theorem 1) it was known at the time that multi-layer
perceptrons could calculate nonlinearly separable functions (such as the ‘exclusive or’). We can prove
intuitively that a set of neurons can calculate any function: a perceptron can perfectly emulate a NAND

gate (figure 4), and the singleton set fNANDg is functionally complete. Since we can combine a set of
NAND gates to calculate any function, we must also be able to combine a set of neurons to calculate any
function. This result is also explored in a more formal proof by both Cybenko [37] and Hornik et al.
[38]. They show that an infinitely wide neural network can calculate any function. Similarly, Lu et al.
[39] show that an infinitely deep neural network is a universal approximator. Such a group of
neurons is known as the multi-layer perceptron (MLP). Unfortunately, we cannot simply stack
perceptrons together as we are missing one vital ingredient: a way to train the network! At the time
of Minsky & Papert’s treatise on perceptrons, there was no widely known algorithm (in the West; see
[34]) that could train such a multi-layer network. In Minsky & Papert’s own words:
6The
only
smo
7See
8At
Nevertheless, we consider it to be an important research problem to elucidate (or reject) our intuitive judgment
that the extension [from one layer to many] is sterile. Perhaps some powerful convergence theorem will be
discovered, or some profound reason for the failure to produce an interesting ‘learning theorem’ for the
multilayered machine will be found. (Minsky & Papert [31], §13.2 on MLPs)
The field had to wait almost two decades for such an algorithm to become widespread. In the next
subsection, we will explore backpropagation, the algorithm that ultimately proved Minsky and Papert’s
intuition wrong.

2.2. The multi-layer perceptron
Grouping many artificial neurons together may result in something resembling figure 5. This network
consists of an input layer, two intermediate ‘hidden’ layers, and an output layer. As in the previous
eagle-eyed reader may have noticed that since the derivative of the Heaviside step function is the Dirac delta function, we will
update the perceptron’s weights on an incorrect prediction. If we want to also learn from positive examples, we need to use a
othly differentiable activation function. This is explored in the next subsection.

Olazaran [32] and Metz [33] for a closer look at the conflicts and personalities that shaped AI.

least, in the Western world. Connectionism continued in earnest in the Soviet Union [34,35].
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section, let us say that we want a classifier that can classify a set of galaxy images into elliptical and spiral
types. In an MLP similar to figure 5, a neuron would be assigned to each pixel in a galaxy image. Each
neuron would take the numeric value of that pixel, and propagate that signal forward into the network.
The next layer of neurons does the same, with the input being the previous layer’s output. This process
continues until we reach the output layer. In a binary classification task like our galaxy classifier, this
layer outputs a value between zero and one. Thus, if we define a spiral galaxy as zero, and an
elliptical galaxy as one, we would want the network output to be near zero for a spiral galaxy input
(and vice versa).

In §2.1, we found the change we needed to apply to a single neuron’s weights to make it learn from a
training example. We can train an MLP in a similar way by employing the reverse mode of automatic
differentiation (or backpropagation) to learn from our galaxy training dataset [40–42].9 We want our
9Some controversy surrounds backpropagation’s discovery. The Finnish computer scientist Linnainmaa proposed the reverse mode of
automatic differentiation and adapted the algorithm to run on computers in their 1970 (Finnish language) thesis [43]. They first
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network to learn when it makes both a correct and incorrect prediction, so we define our activation
function as a smoothed version of the Heaviside step function. This ensures that a signal is present in
the derivative no matter which values are input. This activation function is known as the ‘sigmoid’
function, and is shown in figure 6. As in §2.1, we define a loss function Lðy, pÞ that describes the
similarity between a ground truth (y) and a prediction (p). We also define a neuron’s activation
function as w(w · x) where w · x is the weighted sum of a neuron’s inputs. Following from equation (2.2)

@L
@wl

¼ @L
@pl

@pl

@wl
,

where l is a layer in the MLP. In the same way as in §2.1, we can calculate an MLP’s final layer’s (l = L)
weight updates in terms of known values

@L
@wL

¼ @L
@pL

� (w0
Lp

T
L�1), ð2:3Þ

where pL−1 are the outputs from the previous layer. To calculate the (L− 1)th layer’s weight updates, we
use the chain rule

@L
@wL�1

¼ @L
@pL

@pL
@pL�1

@pL�1

@wL�1
:

Likewise for the (L− n)th layer

@L
@wL�n

¼ @L
@pL

Yn
i¼1

@pLþ1�i

@pL�i

 !
@pL�n

@wL�n
:

Now we can start plugging in some known values. Since pl = wl(wl · pl−1), it follows that
@pl=@pl�1 ¼ w0

lw
T
l , and @pl=@wl ¼ w0

lp
T
l�1. So

@L
@wL�n

¼ @L
@pL

�
Yn
i¼1

w0
L�iw

T
L�i

 !
(w0

L�np
T
L�n�1): ð2:4Þ
published their findings in English in 1976. Werbos [41] then proposed applying an adaptation of Linnainmaa’s method to artificial
neural networks. Rumelhart et al. [42] showed experimentally that backpropagation can generate meaningful internal representations
within a neural network, and popularized the method. Here we will err on the side of caution and cite all three manuscripts. For
further reading, we recommend Schmidhuber [44] and Baydin et al. [45].
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Combining equation (2.3) with equation (2.4) we get the weight update algorithm for the (L− n)th layer

of the MLP

wnext ¼ w� h

@L
@pL

� (w0
Lp

T
L�1), for n ¼ 0,

@L
@pL

� Qn
i¼1 w

0
L�iw

T
L�i

� �
(w0

L�np
T
L�n�1), for n . 0:

(
ð2:5Þ

With this equation10 in hand, we can use the same technique described earlier in this section and in §2.1
to update the network’s weights with each galaxy image to decrease the loss function L. Again, as L is
minimized, our MLP will classify our elliptical and spiral galaxy images with increasing accuracy.
g/journal/rsos
R.Soc.Open

Sci.10:
3. Astronomy’s first wave of connectionism
Connectionism was first discussed within astronomy in the late 1980s, after the popularization of
backpropagation (see footnote 9) and the consequent passing of the first ‘AI winter’. Two radical
studies emerged in 1988 that recognized areas where astronomy could benefit from the use of ANNs
[51,52]. Together, they identified that astronomical object classification,11 and telescope scheduling
could be solved through the use of an ANN. These studies were followed by a rapid broadening of
the field, and the application of connectionism to many disparate astronomical use cases ([23] and
references therein). In this section, we will outline areas where MLPs found an early use in astronomy.
221454
3.1. Classification problems
Odewahn et al. [53] classified astronomical objects into star and galaxy types. These were taken from the
Palomar Sky Survey Automated Plate Scanner catalogue [54]. To compile their dataset, they first
extracted a set of emergent image parameters from the scanned observations. These parameters
included the diameter, ellipticity, area and plate transmission. The parameters were then used to train
both a linear perceptron and a feedforward MLP to classify the objects into stars or galaxies.
Odewahn et al. [53] found that their best performing model could classify galaxies with a
completeness of 95% for objects down to a magnitude less than 19.5. This work was followed by
many more studies on the star/galaxy classification problem (e.g. [55–58]). Galaxy morphological type
classification was explored in the early 1990s. Storrie-Lombardi & Lahav [59] describe an MLP that
takes as input a selected set of 13 galaxy summary statistics, and uses this information to classify a
galaxy into one of five morphological types. Storrie-Lombardi & Lahav [59] report a top one accuracy
of 64%, and a top two accuracy of 90%. This pilot study was followed by several studies from the
same group that confirmed that MLPs are effective automatic galaxy morphological classifiers ([60–
65], see §5 for a continuation of this line of research).

MLPs were also used in other classification tasks; here we highlight a few further areas where MLPs
were applied. Von Hippel et al. [66] classified stellar spectra into temperature types, and Klusch &
Napiwotzki [67] did the same for Morgan–Keenan system types. Chon [68] described the use of an
MLP to search for and classify muon events (and therefore neutrino observations) in the Sudbury
Neutrino Observatory. Quasar classification has been explored in several studies [69–71]. Seminally,
Carballo et al. [69] used an MLP to select quasar candidates given their radio flux, integrated-to-peak
flux ratio, photometry and point spread function in the red and blue bands, and their radio-optical
position separation. They found good agreement between their model and that of the decision tree
described in White et al. [72], confirming MLPs as a competitive alternative to more traditional
machine learning. As part of the Supernova Photometric Classification Challenge (SPCC, [73]),
Karpenka et al. [74] proposed the use of a neural network to classify supernovae into Type-1a/non-
Type-1a classes. To classify their light curves, they first used a hand-crafted fitting function, and then
trained their MLP on the fitted coefficients. They found that their model was competitive with other,
more complex models trained on the SPCC dataset. From the studies discussed in this section, we can
safely conclude that MLPs are effective classifiers of astronomical data, when given important
parameters extracted by an expert guide.
10If we examine equation (2.5) carefully, we can see why we add nonlinearities between the MLP layers; without activation functions
equation (2.5) collapses to the equivalent of a single layer MLP!
11Specifically, galaxies were discussed in Rappaport & Anderson [51] and point sources observed with the Infra-Red Astronomical
Satellite (IRAS) were discussed in Adorf & Johnston [52].
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3.2. Regression problems

MLPs were also used in regression problems. Angel et al. [75] applied them first to adaptive telescope
optics. They trained their MLP on 250 000 simulated in focus and out of focus observations of stars as
seen by the Multiple Mirror Telescope (MMT). From the flattened 13 × 13 pixel observations, their
network predicted the piston position and tilt required for each of the MMT’s mirrors to bring the
stars into focus. After the application of these corrections, the authors were able to recover the
original profile. In follow-up studies, Sandler et al. [76] and Lloyd-Hart et al. [77] proved that Angel
et al.’s MLP worked on the real MMT.

Photometric redshift estimation was explored in many concurrent studies (e.g. [9,10,65,78,79]). Firth
et al. [10] trained a neural network to predict the redshift of galaxies contained in the Sloan Digital Sky
Survey (SDSS) early data release [80]. The galaxies were input to the neural network as a set of summary
parameters, and the output was a single float representing the galaxy redshift. They found their network
attained a performance comparable to classical techniques. Extending and confirming the work by Firth
et al. [10], Ball et al. [65] used an MLP to predict the redshift of galaxies contained in the SDSS’s first data
release [81]. They also showed that MLPs were capable of predicting the galaxies’ spectral types and
morphological classifications.

Of course, MLPs have been usedmorewidely in astronomical regression tasks. Herewewill cherry pick
a few studies to show theMLP’s early breadth of use. Sunspot maxima predictionwas carried out by Koons
& Gorney [82]. They found their MLP-based method was capable of predicting the number of sunspots
when trained on previous cycles. Bailer-Jones et al. [83] predicted the effective temperature of a star from
its spectrum. Auld et al. [84,85] applied MLPs to cosmology, demonstrating that MLPs are capable of
predicting the cosmic microwave background power spectra and matter power spectra when given a set
of cosmological parameters. Nørgaard-Nielsen & Jørgensen [86] used an MLP to remove the foreground
from microwave temperature maps. From the studies discussed in this section, we can see that MLPs are
effective regressors of astronomical data, when given significant parameters extracted by an expert guide.
4. Contemporary supervised deep learning
There are some issues with MLPs. Primarily they do not scale well to high-dimensional datasets.
For example, if our dataset consists of images with 128 × 128 pixels, we will need 16 384 neurons in the
MLP’s input layer alone! As we move into the hidden layers, this scaling issue only gets worse. Also,
since MLPs must take an unrolled image as an input, they disregard any spatial properties of their
training images, and so either need a substantial amount of training data to classify or generate large
images,12 or an expert to extract descriptive features from the data in a preprocessing step. We can see
this issue writ large in the previous section—most of the MLP applications described in §3 require an
expert to extract features from the data for the network to then train on! This drawback is not ideal; what
if there are features within the raw data that are not present in these cherry-picked statistics? In that case,
it would be preferable to let the neural network take in the raw data as input, and then learn which
features are the most descriptive. We will discuss neural network architectures that solve both the MLP
scaling problem and the expert reliance problem in this section. After we have explored these
architectures in general, we will discuss their application to astronomical problems in §5.

4.1. Convolutional neural networks
Unlike the MLP described in the previous section, convolutional neural networks (CNNs; introduced in
Fukushima [46] and first combined with backpropagation in LeCun et al. [93]) do not entirely consist of
fully connected layers, where each neuron is connected to every neuron in the previous and subsequent
layers. Instead, the CNN (such as the one depicted in figure 7) uses convolutional layers in place of the
majority (or all) of the dense layers.

We can think of a convolutional layer as a set of learnt ‘feature filters’. These feature filters perform a
local transform on input imagery. In classical computer vision, these filters are hand crafted, and perform
a predetermined function, such as edge detection or blurring. By contrast, a CNN learns the optimal set
12At the height of the convolutional neural network architecture’s popularity in the mid-2010s, these were real problems. However,
with the growth of computing power and data in recent years we are seeing a resurgence of the more general MLP model (e.g.
[87–90]). This follows the prevailing trend in AI where the removal of human-crafted features and biases ultimately results in more
expressive models that learn such features and biases directly from data [91,92].
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of filters for its task (say, galaxy classification). Equation (4.1) shows two different convolution14 operators
being performed on an array.
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ð4:1Þ

In the above equation, the operation is represented as a matrix. In a CNN, the matrix is a set of neuronal
weights. As shown in figure 7, there are multiple feature maps in a convolutional layer, each containing a
set of weights independent to the other feature maps, and learning to extract a different feature. Owing to
the convolution operator’s inbuilt translational equivarience, these features can be detected by the
convolutional layer no matter where they are in the image. As in the MLP described in the previous
section, the weights are updated using backpropagation to minimize a loss function. We will discuss
astronomical applications of CNNs in §5, after we introduce modern CNN architectures.

4.2. Recurrent neural networks
Standard feedforward neural networks like theMLP (§2.2) andCNN (§4.1) generate a fixed-size vector given a
fixed-size input.15 But, what if wewant to classify or generate a variably sized vector? For example, we might
want to classify a galaxy’s morphology given its rotation curve. A rotation curve describes the velocity of a
galaxy’s visible stars versus their distance from the galaxy’s centre. Figure 8 shows a possible rotation
curve for Messier 81. A rotation curve’s length depends on the size of its galaxy, and due to this variable
length, and the fact that MLPs take a fixed-size input, we cannot easily use an MLP for classification.
Recurrent neural networks (RNNs), however, can take a variable length input and produce a variable
length output. An RNN differs from a feedforward MLP by having a hidden state that acts as a ‘memory’
store of previously seen information. As the RNN encounters new data, its weights are altered through the
backpropagation through time algorithm (BPTT; [97] and references therein. Also see footnote 9).

We can use an RNN similar to figure 9 to classify our rotation curves. We express the rotation curve as
a list {x1, x2,…, xN}, with each x being a measurement of the rotational velocity at a certain radius. Then
we feed this list into the RNN sequentially in the same way as shown in figure 9. The RNN will produce
an output for each x fed to it, but we ignore those until we feed in xN, the rotational velocity furthest from
the galaxy’s centre. When we feed in xN, the RNN produces a prediction pN, which we can then compare
with a ground truth yN via a loss function LN . In our case, y is an integer label representing the galaxy’s
morphological class. The comparison LNðyN , pNÞ is a function that represents the distance between the
RNN prediction and the ground truth. We can then reduce LNðyN , pNÞ by updating the RNN’s
13All astronomical objects shown in the neural network diagrams within this manuscript are generated via text prompts fed into a
latent diffusion neural network model [94].
14We must note that in equation (4.1) we follow most deep learning libraries and perform a cross-correlation and not a convolution.
However, since the weights are learnt, this does not matter; the neural network will simply learn a flipped representation of the
cross-correlation.
15As with any rule there are exceptions, such as CNNs containing a global average pooling layer [95].
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weights through BPTT so that the weights {wx, wp, wh} follow rLN downwards. As we do this, our RNN
will improve its galaxy classifications.

BPTT’s mathematical derivation is akin to the one we explored in §2.2, and we will quickly derive it
here for posterity. Let us first look at the forward propagation equations,

Ln ¼ jyn � pnj,
pn ¼ wðw p � hnÞ

and hn ¼ fðwh � hn�1 þwx � xnÞ:
From these we see that we need to express @Ln=@w p, @Ln=@wh and @Ln=@wx as known values to train the
network. @Ln=@w p is relatively easy; via the chain rule, and the fact that @pn=@w p ¼ w0hT

n

@Ln

@w p
¼ @Ln

@pn

@pn
@w p

,

¼ @Ln

@pn
� w0hT

n :

ð4:2Þ

@Ln=@wh is more tricky, so we will go step by step. We already know that

@Ln

@wh
¼ @Ln

@pn

@pn
@hn

@hn

@wh
: ð4:3Þ

However, we see in figure 9 that hn depends on hn−1, which depends on hn−2 (and so on). We also notice
that all the hidden states depend on wh. We therefore rewrite equation (4.3) to make this explicit,

@Ln

@wh
¼ @Ln

@pn

@pn
@hn

Xn
j¼1

@hn

@h j

@h j

@wh
,
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Xn
j¼1

Yn
i¼jþ1

@hi

@hi�1

0
@

1
A @h j

@wh
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We can now substitute in some known values,
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n
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j¼1
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j�1: ð4:4Þ

Finally, @Ln=@wx is derived in the same way as @Ln=@wh
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1
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ð4:5Þ

With @Ln=@w p, @Ln=@wh and @Ln=@wx in hand we can apply the same update rule shown in
equation (2.5).

Aside from many-to-one encoding, RNNs can produce many predictions given many inputs, or act
similarly to an MLP and produce one or many outputs given a single input. We will discuss the
application of recurrent neural networks to astronomical data in §5, after we introduce gated recurrent
neural networks.
0:221454
4.3. Sidestepping the vanishing gradient problem
In the early 1990s, researchers identified a major issue with the training of deep neural networks through
backpropagation. Hochreiter first formally examined the ‘vanishing gradient’ problem in their diploma
thesis (Hochreiter [98], see also later work by Bengio et al. [99]). Owing to the vanishing gradient
problem, it was widely believed that training very deep artificial neural networks from scratch via
backpropagation was impossible. In this section, we will explore what the vanishing gradient problem
is, and how contemporary end-to-end trained neural networks sidestep this issue.

First let us remind ourselves of the sigmoid activation function introduced in figure 6,

Equation (4.6) and its accompanying plot shows the output of a sigmoid function w and its derivative w0,
when given an input x.

Now, let us revisit the weight update rule for the (L− n)th layer of a feedforward MLP (equation (2.4))

@L
@wL�n

¼ @L
@pL

�
Yn
i¼1

w0
L�iw

T
L�i

 !
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

limn!1
Qn

i¼1
w0
L�iw

T
L�i¼ 0

(w0
L�np

T
L�n�1): ð4:7Þ

If w0 is typically less than one (as in equation (4.6) and most other saturating nonlinearities) the product
term in the above equation becomes an issue. In that case, we can see that the product rapidly goes to
zero as n (the number of layers) becomes large.16 If we study equation (4.4), we can see the same
16Likewise, if w0 is typically greater than one, the product term rapidly ‘explodes’ to infinity. This is known as the ‘exploding gradient’
problem, also first identified in Hochreiter [98].
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problem also plagues RNNs as we backpropagate through hidden states

@Ln

@wh
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� w0hT

n
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limn!1

Qn

i¼jþ1
f0wT

h,i¼ 0

f0hT
j�1: ð4:8Þ

Let us solidify this issue by reminding ourselves of equation (2.5)—the weight update rule for a
network trained through backpropagation

wnext ¼ w� h
@L
@w

: ð4:9Þ

Combining equation (4.9) and the limits defined in equations (4.7) and (4.8) results in the below weight
update rule in the limit n→∞.

lim
n!1wnext ¼ w: ð4:10Þ

Equation (4.10) shows that learning via backpropagation slows as we move deeper into the network. This
problem once again caused a loss of faith in the connectionist model, ushering in the second AI winter. It
took until 2012 for a new boom to begin. In the following three subsections, we will explore some of the
proposed partial solutions to the vanishing gradient problem and show how they came together to
contribute to the current deep learning boom.

4.3.1. Non-saturating activation functions

We can see in equations (4.8) and (4.7) that if w0 = 1 then the product term does not automatically go to
zero or infinity. If this is the case, why not simply design our activation function around this property?
The rectified linear unit (ReLU; [46,47]) is an activation function that does precisely this,17

The gradient of ReLU is unity if the inputs are above zero, exactly the propertywe needed tomitigate the
vanishing gradient problem. Similar non-saturating activation functions also share the ReLU gradient’s
useful property, see for example the exponential linear unit, Swish and Mish functions in figure 6.

4.3.2. Graphics processing unit acceleration

If we can speed up training, we can run an inefficient algorithm (such as backpropagation through
saturating activations) to completion in less time. One way to speed up training is by using hardware
that is specifically suited to the training of neural networks. Graphics processing units (GPUs) were
originally developed to render video games and other intensive graphical processing tasks. These
rendering tasks require a processor capable of massive parallelism. We have seen in the previous
sections that neural networks trained through backpropagation also require many small weight
update calculations. With this in mind, it is natural to try to accelerate deep neural networks using GPUs.
17ReLU is always zero if its inputs are less than 0, removing any signal for further training. This is known as the ‘dyingReLU’problem, but is
not as big of an issue as it first seems. Since contemporary deep neural networks are greatly overparametrized (see for example Frankle &
Carbin [100] and other work on the ‘lottery ticket hypothesis’) backpropagation through the ReLU activation function can act as a pruning
mechanism, creating sparse representations within the neural network and thus reducing training time even further [101].
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In 2004, Oh & Jung [102] were the first to use GPUs to accelerate an MLP model, reporting a 20×
performance increase on inference with an ‘ATI RADEON 9700 PRO’ GPU accelerated neural
network. Shortly after, Steinkrau et al. [103] showed that backpropagation can also benefit from GPU
acceleration, reporting a threefold performance increase in both training and inference. These two
breakthroughs were followed by a flurry of activity in the area (e.g. [104–107]), culminating in a
milestone victory for GPU accelerated neural networks at ImageNet 2012. AlexNet [108] won the
ImageNet classification and localization challenges [109], scoring an unprecedented top-5 classification
error of 16.4%, and a single object localization error of 34.2%. In both challenges, AlexNet scored over
10% better than the models in second place. Sutskever & Hinton’s winning network was a CNN [46]
trained through backpropagation [40,93], with ReLU activation [47] and dropout [110] as a
regularizer.18 The performance increase afforded by GPU-accelerated training enabled the network to
be trained from scratch via backpropagation in a reasonable amount of time. The discovery that it is
possible to train a neural network from scratch by using readily available hardware ultimately
resulted in the end of connectionism’s second winter, and ushered in the Cambrianesque deep
learning explosion of the mid-to-late 2010s and the 2020s (figure 10).
4.3.3. Gated recurrent neural networks and residual networks

The long short-term memory unit (LSTM, [112,113])19 mitigates the vanishing gradient problem by
introducing a new hidden state, the ‘cell state’ (cn), to the standard RNN architecture. This cell state
allows the network to learn long-range dependencies, and we will show why this is the case via a
brief derivation.20 First, as always, let us study figure 11 and write down the forward pass equation
for updating the cell state

cn ¼ f ðcn�1, hn�1, xnÞ þ gðhn�1, xnÞ,

where f ðcn�1, hn�1, xnÞ ¼ cn�1 � wðhn�1, xnÞ. For brevity we define wn = w(hn−1, xn).
18Dropout reduces the amount of neural network overfitting—where a network performs well on the training set at the expense of
performance on data it has not yet seen. One performs dropout by randomly removing a set of neurons at each training step, and
using all neurons at test time. This set-up essentially trains a large ensemble of sub-models, whose average prediction outperforms
that inferred by a single model.
19Compare also the gated recurrent unit (GRU, [114]).
20Here we loosely follow Bayer ([115], §1.3.4).
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Like the RNN case (equations (4.4) and (4.5)), we will need to find ∂cn/∂cn−1 to calculaterL. Therefore,

Thus, if we want to backpropagate to a cell state deep in the network, we must calculate

@cn
@cN

¼
Yn�N

i¼1

wi, n . N: ð4:12Þ

The product term above does not depend on the derivative of a saturating activation function, and so does
not automatically vanish asN goes to∞. This means that a gradient signal can be carried through the LSTM
cell state without losing amplitude and vanishing.21

We can use a technique derived from the LSTM to solve our vanishing gradient problem for deep
feedforward neural networks (as studied in §2.2). Srivastava et al. [118] do this by applying the concept
of the LSTM’s cell state to their deep convolutional ‘highway network’. The highway network uses gated
connections to modulate the gradient flow back through neuronal layers. Later work by He et al. [119]
introduces the residual network (ResNet) by taking a highway network and simplifying its connections.
They apply an elementwise addition (or ‘residual connection’) in place of the highway network’s gated
connection (figure 12a). One can go even further with residual connections, as Ronneberger et al. [120]
demonstrate with their U-Net model. The U-Net combines residual connections with an autoencoder-like
architecture (figure 12b). The U-Net has gone on to become the de facto network for many tasks that
require an input and output of the same size (such as segmentation, colourization and style transfer).
4.4. Translation, attention and transformers
Theoretically, gated RNNs (GRNNs) such as the LSTM can learn very long-range dependencies (see
equation (4.12) and its accompanying text). In practice, GRNNs tend to forget information about distant
inputs. This is because the GRNN lacks unmediated access to inputs beyond the immediate antecedent
as a consequence of its recurrent architecture. The problem is especially apparent in neural machine
21Which is great in theory. In practice, LSTMs still have trouble learning very long-range dependencies due to their reliance on
recurrent processing [116]. Transformer networks [117] are an architecture that uses the concept of attention to address this issue.
We will discuss transformer networks in §4.4.



h

x0 x1 x2

p
N

p
N – 1

p
N – 2

Figure 13. A sequence to sequence (Seq2Seq; [116]) model. A sequence x is input into a GRNN. The final hidden state (h) of the
input network is then passed into a second GRNN. The second GRNN then unrolls to predict an output sequence p. Owing to the
hidden state acting as an intermediary, x and p need not be of equal length.

f (x) + x

f(
x)

neuronal layer

neuronal layer

x

x

+

encoder
q(z�x)

decoder
p(x̂�z)

x̂

z

(a) (b)

r

r

Figure 12. Panel (a) shows the residual connection as originally introduced in He et al. [119]. Panel (b) shows an application of the
residual connection to an autoencoder-like U-Net architecture [120], in this case colourizing an astronomical object. Here, z is a
compressed shared representation of x and x̂.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221454
17
translation tasks that require knowledge of an entire sequence to produce an output, such as language to
language translation. Figure 13 shows such a sequence to sequence (Seq2Seq; [116]) model. Seq2Seq
translates between two sets of sequential data by sharing a hidden state between two GRNN units. In
figure 13, we can see that the shared information is bottlenecked by the hidden state. Therefore, to
resolve the GRNN ‘forgetting problem’ we must find a way to avoid any recursion, or serial processing
of input and output. We can do this by providing the neural network access to all input while it is
calculating an output. This was the primary motivation behind the transformer architecture [117,121].

Modern transformer architectures consist of a series of self-attention layers interspersed with other
layer types.22 Self-attention as described in Vaswani et al. [117] is shown in figure 14. Intuitively, it
captures the relationships between quanta within a data input. To perform self-attention, we first take an
input sequence

x ¼ x1 x2 � � � xn½ �,

where x can be any sequence, such as a sentence, a variable star’s time series, or an unravelled galaxy
image.23 This sequence has a maximum length (n) that must be defined at train time, but we can process
shorter sequences by masking out any surplus values so that they do not affect the loss. Here we will
follow the literature and refer to [x1,…, xn] as tokens. As we can see in figure 14, the input is passed
through a trainable pair of weight matrices Q (or ‘query’) and K (or ‘key’). The output matrices q and ky
22In the original transformer formulation described in Vaswani et al. [117], the network consisted of a connected ‘encoder’ and
‘decoder’ section much like a Seq2Seq model (figure 13). Later work has found this to be an unnecessary complication. For
example, the generative pretrained transformer (GPT) 2 and 3 models [17,122] consist of only decoder layers, and the bidirectional
encoder representations from transformers (BERT) model consists of only encoder layers [123].
23One can go very general with this, as DeepMind demonstrated with their ‘Gato’ transformer model [124]. Gato can predict sequences
for myriad tasks, from operating a physical robotic arm, to completing natural language sentences, to playing Atari games.
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are then multiplied together to yield

ðQ � xÞðK � xÞy ¼ qky ¼

Q1x1K1x1 Q1x1K2x2 � � � Q1x1Knxn
Q2x2K1x1 Q2x2K2x2 � � � Q2x2Knxn

..

. ..
. . .

. ..
.

QnxnK1x1 QnxnK2x2 � � � QnxnKnxn

2
6664

3
7775: ð4:13Þ

We can see that equation (4.13) describes the relationships between tokens within x. For example, if x1 is
similar semantically to x2, we would expect Q1x1K2x2 and Q2x2K1x1 to have a high value. We then
normalize qky to mitigate vanishing gradients (see footnote 16) and apply a softmax nonlinearity so that
the maximum weighting (or similarity) is one and the similarity values sum to unity.

Meanwhile, the input sequence x is passed through the neuronal layer V, resulting in a weighted
representation v,

V � x ¼ v ¼ V1x1 V2x2 � � � Vnxn½ �:

v is multiplied with the similarity matrix 6ðqky=
ffiffiffi
n

p Þ. This process weighs similar tokens within the
sequence higher, increasing their relative importance in later neuronal layers.

We will use an astronomical example to solidify our understanding of the self-attention mechanism.
Let us assume that our self-attention mechanism is attending to a natural language caption describing a
galaxy’s morphology that has been provided by a citizen scientist. The caption could be something like:
x ¼ Abarred galaxywith five spiral arms,
with each word acting as a separate token. Let us imagine that we put this prompt into our self-attention
mechanism,

ðQ � xÞðK � xÞy ¼ qky ¼

A barred galaxy with five spiral arms

A 0:7 0:2 0:1 0:0 0:0 0:0 0:0
barred 0:2 0:5 0:3 0:0 0:0 0:0 0:0
galaxy 0:1 0:3 0:5 0:1 0:0 0:0 0:0
with 0:0 0:0 0:1 0:8 0:1 0:0 0:0
five 0:0 0:0 0:0 0:1 0:6 0:3 0:0
spiral 0:0 0:0 0:0 0:0 0:3 0:5 0:2
arms 0:0 0:0 0:0 0:0 0:0 0:2 0:8

:

We can see that in the above matrix higher values have been assigned to pairs of words that are more
closely related within the sentence. For example, the weight between ‘barred’ and ‘galaxy’ is relatively
high (0.3), as the term ‘barred’ describes a feature of galaxy. Similarly, the weight between ‘five’ and

#"
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galaxy
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A

Figure 15. We can think of qky within self-attention as a graph of relationships between a prompt and itself. Each of the edges in
this graph represents the weight shared between a pair of tokens in the input sequence.
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‘spiral’ is also high (0.3), as these words together define the number of spiral arms in the galaxy.
Conversely, lower weights have been assigned to word pairs that are less related, such as ‘A’ and
‘with’ (0.0). As shown in figure 15, one can think of these relationships between tokens within our
sequence as a learnt mathematical graph.24 Now that we have calculated qky, we can use this matrix
to weigh our example sentence as shown in figure 14. This weighting gives the subsequent layers in
our neural network an awareness of the relationships between the tokens in our sequence.

5. Astronomy’s second wave of connectionism
Compared with classical connectionist approaches25 deep learning as outlined in §4 does not require an
extraction of emergent parameters to train its models. CNNs in particular are well suited to observing
raw information within image-based data. Likewise, RNNs are well suited to observing the full raw
information within a time series. Astronomy is rich with both types of data, and in this section we
will review the history of the application of CNN, RNN and transformer models to astronomical data.

5.1. Convolutional neural network applications
It did not take long after Krizhevsky et al. [108] established CNNs as the de facto image classification
network for astronomers to take notice: in 2014, they were applied in the search for pulsars [129] as
part of an ensemble of methods. Zhu et al. [129] found that their ensemble was highly effective, with
100% of their test set pulsar candidates being ranked within the top 961 of the 90 008 test candidates.
Shortly after, Hála [130] described the use of one-dimensional CNNs for a ternary classification
problem. They found that their model is capable of classifying one-dimensional spectra into quasars,
galaxies and stars to an impressive accuracy. CNNs have also been extensively used in galaxy
morphological classification. First on the scene was Dieleman et al. [131]. They used CNNs to classify
galaxy morphology parameters as defined in the Galaxy Zoo dataset [132] from galaxy imagery. They
observed their galaxies via the SDSS, and found a 99% consensus between the Galaxy Zoo labels, and
the CNN classifications. Huertas-Company et al. [133] showed that the CNN introduced in
Dieleman et al. [131] is equally applicable to the morphological classification of galaxies in the
CANDELS fields [134]. Likewise, Aniyan & Thorat [135] showed that CNNs are capable of classifying
radio galaxies. The combined work of Dieleman et al. [131], Huertas-Company et al. [133] and Aniyan
24This view demonstrates that transformers can be thought of as a class of graph neural network—a network that is tasked with
learning the relationships between nodes in a graph. One can also approach this task with a feed forward neural network (§2.2;
[125]), convolutional architecture (§4.1; [126,127]) or with a recurrent architecture (§4.3.3; [128]).
25This includes most MLP applications in astronomy, see §3.
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& Thorat [135] confirms that CNNs are equally applicable to visually dissimilar surveys, with little-to-no

modification. Looking a little further afield, Wilde et al. [136] used a deep CNN model to classify
simulated lensing events. They also applied some interpretability techniques to their data, using
occlusion mapping [137], gradient class activation mapping [138] and Google’s DeepDream to prove
that the CNN was indeed classifying via observing the gravitational lenses. Alternative CNN models
have also been used, such as the U-Net (figure 12b). The U-Net was initially developed to segment
biological imagery [120]. Its first use in astronomy was related: Akeret et al. [139] used a U-Net [120]
CNN to isolate via segmentation, and ultimately remove, radio frequency interference from radio
telescope data. Likewise, Berger & Stein [140] used a three-dimensional U-Net (V-Net; [141]) to
predict and segment out galaxy dark matter haloes in simulations, and Aragon-Calvo [142] used a
V-Net to segment out the cosmological filaments and walls that make up the large-scale structure of
the Universe. Hausen & Robertson [143] demonstrate that a U-Net is capable of performing pixelwise
semantic classification of objects in HST/CANDELS imagery, thus proving that U-Nets are capable of
useful work directly within large imaging surveys, particularly in the deblending of overlapping
objects, which is a perennial challenge in deep imaging. The U-Net in Lauritsen et al. [144] is used to
super-resolve simulated submillimetre observations. They found that the U-Net could successfully do
this when using a loss comprising the L1 loss and a custom loss that measures the distance between
predicted and ground truth point sources. Choma et al. [145] were the first to demonstrate that graph
convolutional neural networks (GCNNs) are useful within astronomical context. They showed that
their three-dimensional GCNN could classify signals from the IceCube neutrino observatory, and
found that it outperformed both a classical method, and a standard three-dimensional CNN.
Villanueva-Domingo et al. [146,147] demonstrated that EdgeNet—a class of GCNN—can estimate halo
masses when given the positions, velocities, stellar masses and radii of the host galaxies [148]. The
authors also demonstrated that EdgeNet can estimate the halo masses of both Andromeda and the
Milky Way. We must conclude from the studies described in this subsection that CNNs are effective
classifiers and regressors of image-based astronomical data.

5.2. Recurrent neural network applications
RNNs were first applied in astronomy very close to home; Aussem et al. [149] predicted atmospheric
seeing for observations from the European Southern Observatory’s Very Large Telescope, and the
prediction of geomagnetic storms given data on the solar wind was also explored in the mid-to-late
1990s and early 2000s ([150,151] and other work from the same group; [152]).

The first use of RNNs for classification in astronomy was carried out in a prescient study by
Brodrick et al. [153]. They describe the use of an RNN-like Elman network [154]. Their RNN was tasked
with the search for artificially generated narrowband radio signals that resemble those that may be
produced by an extraterrestrial civilization. They found that their model had a test set accuracy of 92%,
suggesting that RNNs could be a useful tool in the search for extraterrestrial intelligence. More than a
decade after Brodrick et al. [153], Charnock & Moss [155] used an LSTM (figure 11) to classify simulated
supernovae. They describe two classification problems. One, a binary classification between type-Ia and
non-type-Ia supernovae, and the other a classification between supernovae types I, II and III. For their
best performing model, they report an accuracy of more than 95% for their binary classification
problem, and an accuracy of over 90% for their trinary classification. This study cemented the
usefulness of RNNs for classification problems in astronomy. Charnock & Moss [155] were followed by
numerous projects studying the use of RNNs for classification of time-series astronomical data. A non-
exhaustive list of modern RNN use in astronomy includes: stochastically sampled variable star
classification [156], exoplanet instance segmentation [157], variable star/galaxy sequential imagery
classification [158] and gamma ray source classification [159]. We must conclude from these studies that
RNNs are effective classifiers of astronomical time series, provided that sufficient data are available.

Of course, recurrent networks are not limited to classification; they can also be used for regression
problems. First, Weddell & Webb [160] successfully used an echo state network [161] to predict the
point spread function of a target object in a wide field of view. Capizzi et al. [162] used an RNN to
inpaint missing NASA Kepler time series data for stellar objects. They found that their model could
recreate the missing time series to an excellent accuracy, suggesting that the RNN could internalize
information about the star it was trained on. As in the classification case, research into the use of
RNNs for regression problems picked up massively in the late 2010s, and here we will highlight a
selection of these studies that represent the range of RNN use cases. Shen et al. [163] used both an
LSTM and an autoencoder-based RNN to denoise gravitational wave data, and Morningstar et al.
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[164] used a recurrent inference machine to reconstruct gravitationally lensed galaxies. Liu et al. [165]

used an LSTM to predict solar flare activity. From these studies, similarly to the classification case
above, we can once again conclude that RNNs are effective regressors of astronomical time series.

RNNs have also been used in cases that are a little more unconventional. For example, Kügler et al.
[166] used an autoencoding RNN (specifically an echo state network) to extract representation
embeddings of variable main sequence stars. They find that these embeddings capture some emergent
properties of these variable stars, such as temperature and surface gravity, suggesting that clustering
within the embedding space could result in semantically meaningful variable star classification. We
will revisit this line of research when we explore representation learning within astronomy in detail in
§8. An example of more drastic cross-pollination between ideas within deep learning and those within
astronomy is Smith et al. [167]. They use an encoder–decoder network comprising a CNN encoder
and RNN decoder to predict surface brightness profiles of galaxies. This class of neural network was
previously used extensively within natural language image captioning, and by treating surface
brightness profiles as ‘captions’ their model was capable of prediction over 100× faster than the
previous classical, human-agent-based method.

5.3. Transformer applications
Although initially used for natural language, transformers have also been adapted for use in imagery, first
by Parmar et al. [168], and also in Dosovitskiy et al. [18]. To the best of our knowledge, transformers have
not yet been applied to astronomical imagery, but they have started to find use in time-series astronomy.
Donoso-Oliva et al. [169] used BERT [123] to generate a representation space for light curves in a self-
supervised manner. Morvan et al. [170] used an encoding transformer to denoise light curves from the
Transiting Exoplanet Survey Satellite (TESS, [171]) and show that the denoising surrogate task results in
an expressive embedding space. Pan et al. [172] also use a transformer model to analyse light curves for
exoplanets. Transformers have taken the fields of natural language processing and computer vision by
storm (§9), and so if we extrapolate from trends in other fields we expect to see many more examples of
transformers applied to astronomical use cases in the near future. We will revisit the transformer
architecture in the context of foundation models ([173] and references therein) and their possible future
astronomical applications in §9.

5.4. A problem with supervised learning
Supervised learning requires a high-quality labelled dataset to train a neural network. In turn, these datasets
require laborious human intervention to create, and so supervised data is in short supply. One can avoid this
issue by prompting the deep learning model to gather semantic information from entirely unlabelled data.
This learnt semantic information can then be accessed through a hidden descriptive ‘latent space’, and then
used for downstream tasks like data generation, classification and regression. Indeed, all of the networks
described previously in this review can be repurposed for non-supervised tasks, and in §§6 and 7 we will
explore some deep learning frameworks that do not require supervision.
6. Deep generative modelling
In this section, we discuss generative modelling within the context of astronomy. Unlike discriminative
models, generative models explicitly learn the distribution of classes in a dataset (figure 16). Once we
learn the distribution of data, we can use that knowledge to generate new synthetic data that
resembles that found in the training dataset. In the following subsections, we will explore in detail
three popular forms of deep generative model: the variational autoencoder (§6.1), the generative
adversarial network (§6.2) and the family of score-based (or diffusion) models (§6.3). Finally, in §8 we
discuss applications of deep generative modelling in astronomy.

6.1. (Variational) autoencoders
Autoencoders have long been a neural network architectural staple. In a sister paper to backpropagation’s
popularizer, Rumelhart et al. [174] demonstrate backpropagation within an autoencoder. Figure 17
demonstrates the basic neural network autoencoder architecture. An autoencoder is tasked with
recreating some input data, squeezing the input information (x) into a bottleneck latent vector (z) via a
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Figure 16. Here we show a possible latent space representation of a set of galaxies and a set of stars. A latent (or embedding)
space is a compressed representation of a set of objects where similar objects are clustered closer together than dissimilar objects.
While this space is often highly dimensional, here we project our latent space onto two dimensions for visualization purposes. In (a),
we see a generative model attempting to learn the probability distributions of the latent representation of a dataset that contains a
set of galaxies and a set of stars. In (b), we see a discriminative model attempting to learn the boundary that separates the star and
galaxy types.
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Figure 17. An autoencoder [174] attends to an image of a black hole. z is a latent vector and x is a sample from a training set. The
encoder, q learns to encode the incoming data into a latent vector while the decoder p takes as input z and attempts to recreate x.
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neural network qðzjxÞ. z is then expanded to an imitation of the input data (x̂) by a second neural network
pðx̂jzÞ. The standard autoencoder is trained via a reconstruction loss; LRðx, x̂Þ, where LRðx, x̂Þmeasures the
difference in pixelspace between x and x̂.

Naively, one would think that once trained, one could ‘just’ sample a new latent vector, and produce
novel imagery via the decoding neural network pðx̂jzÞ. We cannot do this, as autoencoders trained purely
via a reconstruction loss have no incentive to produce a smoothly interpolatable latent space. This means
we can use a standard autoencoder to embed and retrieve data contained in the training set, but cannot
use one to generate new data. To generate new data we require a smooth latent space, which variational
autoencoders (VAEs, figure 18) produce by design [175].

A VAE differs from the standard autoencoder by enforcing a spread in each training set samples’
latent vector. We can see in figure 18 how this is done; instead of directly predicting z the encoder q
predicts two vectors, μ and σ. z is then sampled stochastically via the equation

z ¼ mþ s� e, ð6:1Þ

where � is the Hadamard product, and e is noise generated externally to the neural network graph.26

This spread results in similar samples overlapping within the latent space, and therefore we end up
with a smooth latent space that we can interpolate through. However, currently there is no incentive
for the neural network to provide a coherent, compact global structure in the latent space. For that we
require a regularization term in the loss. This regularization is provided via the Kullback–Leibler (KL)
divergence, which is a measure of the difference between two probability distributions. A standard
VAE uses the KL divergence to push the latent distribution towards the standard normal distribution,
incentivizing a compact, continuous latent space. Hence, the final VAE loss is a combination of the
26To avoid breaking the backpropagation chain the VAE injects noise via an external parameter, e. This is described in Kingma &
Welling [175] as the ‘reparametrization trick’.
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Figure 18. A variational autoencoder [175] operates on a spiral galaxy. z is a latent vector and x is a sample from the training set.
The encoder, q learns to compress the incoming data into a latent vector that encodes the normal distribution. The decoder p takes
as input z and attempts to recreate x.
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reconstruction loss and KL divergence:

LVAE ¼ LRðx, x̂Þ þ KLðqðxjzÞkrÞ, ð6:2Þ
where ρ is some prior. In a standard VAE r ¼ N ð0, 1Þ.

In practice, VAEs are able to generate smooth and coherent samples, as they model the data
distribution explicitly, which also means that we can perform latent space arithmetic on the latent
vector—such as interpolation, reconstruction and anomaly detection [175]. Their explicit learning of
the latent vector (z) means that they can trivially be repurposed for semi-supervised, self-supervised
and supervised downstream tasks by manipulating z [176,177]. However, the quality of samples
generated by VAEs is lower than that of generative adversarial networks or score-based generative
models [178]. This reduction in quality is due to the VAE’s simple posterior q(z|x), but one can
mitigate this shortcoming by iteratively approaching a more complex posterior.27 To regularize the
latent space, VAEs require an assumption of the prior distribution which requires some knowledge of
the dataset, although often this can be set as ‘just’ a normal distribution as shown in equation (6.2).
6.2. Generative adversarial networks
Generative adversarial networks (GAN, [183]) can be thought of as a minimax game between two
competing neural networks. If we anthropomorphize, we can gain an intuition for how a GAN learns:
let us imagine an art forger and an art critic. The forger wants to paint paintings that are similar to
famous expensive works, and needs to fool the critic when selling these paintings. Meanwhile, the
critic wants to ensure that no reproductions are sold, and so they need to accurately determine
whether any painting is an original or a reproduction. At first, our forger is a poor painter, and so the
critic can easily identify our forger’s works. However, the forger learns from the critic’s choices and
produces more realistic paintings. As the forger’s paintings improve, the critic also learns better
methods for detecting forgeries. This minimax game incentivizes the critic to keep improving their
classifications, and the forger to keep improving their painting. If this continues, we get to a point
where the forger’s works are indiscernible from the real thing—the forger has learnt to perfectly
mimic the dataset! In a GAN, we name the critic the discriminator (D), and we name the forger the
generator (G).

In Goodfellow et al.’s original GAN formulation (figure 19a), G and D are neural networks (typically
CNNs, although other architectures can be used) that compete during training in a minimax game where
G aims to maximize the probability of D mispredicting that a generated datapoint is sampled from the
real dataset [183]. G takes as input a randomly sampled latent vector z, and outputs a synthetic datapoint
G(z). D takes either this synthetic datapoint, or a real datapoint x, and outputs D(G(z)) or D(x). This
output is the probability that the datapoint is drawn from the real dataset. To train the network, we
can write the GAN adversarial loss like so

LD ¼ �ðEx½logðDðxÞÞ� þ Ez½logð1�DðGðzÞÞÞ�Þ
27Interestingly, this iterative approximation is similar to the approach used in the training of score-based generative models and
diffusion models [179], and the similarities between the training methods of state of the art in VAE models and SBGMs are
striking. For example, the Vector-Quantized VAE, Very Deep VAE and the Nouveau VAE all use a hierarchical architecture that
iteratively injects latent codes that are used to produce finer and finer detail in the generated image [180–182].
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Figure 19. The GAN and Pix2Pix models. (a) A typical GAN according to Goodfellow et al. [183]. z is a noise vector, and x is a
sample from the training set. The discriminator learns to classify the incoming images as either fake or real, and the generator learns
to fool the discriminator by producing realistic fakes. (b) A Pix2Pix-like model with a U-Net generator [120,184]. The discriminator
learns to classify the incoming image tuples as either fake or real. Meanwhile, the generator learns to fool the discriminator by
approximating the colourization function mapping x→ y. Line mergers denote channel-wise concatenations.
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and

LG ¼ Ez½logð1�DðGðzÞÞÞ�,

where here we attempt to minimize both LD and LG. In practice, we train the networks by alternating
freezing the weights of G and backpropagating LD, and then freezing the weights of D and
backpropagating LG for each training batch. In this way, the networks’ weights are updated to follow
rwLG and rwLD downwards until the distribution of G(z) closely resembles that of the real dataset.
Once trained, G can be used to generate entirely novel synthetic data that closely resembles (but is not
identical to) the training set data.
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One can condition a GAN to guide the network towards a desired output image [185]. To do this, we

alter the adversarial loss so that it is conditioned on a label y

LD ¼ �ðEx½logðDðxjyÞÞ� þ Ez½logð1�DðGðzjyÞÞÞ�Þ
and

LG ¼ Ez½logð1�DðGðzjyÞÞÞ�:
As an example, if we set y as the redshift of the galaxies in the training set, we could use a conditional GAN
to guide the network to generate galaxies of a certain redshift. Furthermore, we are not restricted to
conditioning single values; GANs can also be conditioned on entire images. In figure 19b, we see that
the GAN adversarial loss can be used to translate between image domains [184]. In Isola et al.’s Pix2Pix
model, the generator takes as input an image x, and attempts to produce a related image y. Meanwhile,
the discriminator attempts to discern whether the (x, y) pair that it is given is sampled from the training
set, or the generator. Otherwise, Pix2Pix is trained in the same way as the standard GAN.

GANs are capable of generating high-quality, sharp and realistic samples [186,187]. They have long
been a sweetheart of the deep generative learning community, having been used for various state-of-the-
art applications, such as data embedding (e.g. [188]), style transfer (e.g. [189]), super-resolution (e.g.
[190]), and image inpaining and object removal (e.g. [191]). Unfortunately, however, GANs have some
downsides. They are quite difficult to train; maintaining the balance between the generator and
discriminator networks is challenging and requires careful fine-tuning [192]. G and D must work in
tandem and one cannot overpower the other or learning will cease. One of the most famous
symptoms of this imbalance is mode collapse, where G only generates a limited variety of samples
that reliably fool D. This instability during training makes it quite a time-consuming task to find a
stable network architecture if one is designing a GAN themselves. Finally, the GAN adversarial losses
are relative and so are not representative of the image quality. This is not the case for the VAE and
score-based generative model (SBGM) families of models.
6.3. Score-based generative modelling and diffusion models
Diffusion models were introduced by Sohl-Dickstein et al. [193] and were first shown to be capable of
producing high-quality synthetic samples by Ho et al. [194]. Diffusion models are part of a family of
generative deep learning models that employ denoising score matching via annealed Langevin
dynamic sampling (first explored by Hyvärinen [195] and Vincent [196]. More recent work can be
found in [194,197–200]). This family of SBGMs can generate imagery of a quality and diversity
surpassing state-of-the-art GAN models [183], a startling result considering the historic disparity in
interest and development between the two techniques [200–203]. SBGMs can super-resolve images
[204,205], translate between image domains [206], separate superimposed images [207] and in-paint
information [200,204].

Diffusion models define a diffusion process that projects a complex image domain space onto a
simple domain space. In the original formulation, this diffusion process is fixed to a predefined
Markov chain q(xt|xt−1) that adds a small amount of Gaussian noise with each step. As figure 20
shows, this ‘simple domain space’ can be noise sampled from a Gaussian distribution xT � N ð0, 1Þ.
6.3.1. Forward process

To slowly add Gaussian noise to our data, we define a Markov chain

qðx0...TÞ ¼ qðx0Þ
YT
t¼1

qðxt j xt�1Þ,

where x0 is an image sampled from the training set. The amount of noise added per step is controlled
with a variance schedule fbt [ ð0, 1ÞgTt¼1

qðxt j xt�1Þ ¼ N ðxt;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt

p
xt�1, bt1Þ: ð6:3Þ

This process is applied incrementally to the input image. Since we can define the above equation such
that it only depends on x0 we can immediately calculate an image representation x t for any t [194]. If
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Figure 20. It is easy (and achievable without learnt parameters) to add noise to an image, but more difficult to remove it. Diffusion
models attempt to learn an iterative removal process via training an appropriate neural network, puðxt�1 jxtÞ.
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we define αt = 1− βt and �at ¼
Qt

i¼1 ai:

xt ¼ ffiffiffiffiffi
at

p
xt�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
zt�1

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
atat�1

p
xt�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� atÞ þ atð1� at�1Þ

p
�zt�2

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
atat�1at�2

p
xt�3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� atat�1Þ þ atat�1ð1� at�2Þ

p
�zt�3

¼ � � �
¼ ffiffiffiffiffi

�at
p

x0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
z,

ð6:4Þ

where zt � N ð0, 1Þ and �z is a combination of Gaussians. Plugging the above expression into equation
(6.3) removes the xt−1 dependency and yields

qðxt j x0Þ ¼ N ðxt;
ffiffiffiffiffi
�at

p
x0, ð1� �atÞ1Þ: ð6:5Þ
6.3.2. Reverse process

Diffusion models attempt to reverse the forward process by applying a Markov chain with learnt
Gaussian transitions. These transitions can be learnt via an appropriate neural network, pu

puðx0...TÞ ¼ pðxTÞ
YT
t¼1

puðxt�1 j xtÞ

and

puðxt�1 j xtÞ ¼ N ðxt�1; muðxt, tÞ, Suðxt, tÞÞ:
While Suðxt, tÞ can be learnt (e.g. [201]), the Ho et al. [194] formulation fixes Su to an iteration-dependent
constant s2

t 1, where s2
t ¼ 1� at.
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By recognizing that diffusion models are a restricted class of hierarchical VAE,28 we see that we can

train pu by optimizing the evidence lower bound (ELBO, introduced in [175]) that can be written as a
summation over the KL divergences at each iteration step29

LELBO ¼Eq

h
DKLðqðxT j x0ÞkpðxTÞÞ

þ
X
t.1

DKLðqðxt�1 j xt, x0Þkpuðxt�1 j xtÞÞ þ log puðx0 j x1Þ
i
:

ð6:6Þ

In the Ho et al. [194] formulation, the first term in equation (6.6) is a constant during training and the final
term is modelled as an independent discrete decoder. This leaves the middle summation. Each summand
can be written as

Lðmt, muÞ ¼
1

2s2
t
kmtðxt, x0Þ � muðxt, tÞk2, ð6:7Þ

where mu is the neural network’s estimation of the forward process posterior mean μt. In practice, it
would be preferable to predict the noise addition in each iteration step (zt), as zt has a distribution that
by definition is centred about zero, with a well-defined variance. To this end, we can define mu as

muðxt, tÞ ¼
1ffiffiffiffiffi
at

p xt � 1� atffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p zuðxt, tÞ
� �

, ð6:8Þ

and by combining equations (6.7) and (6.8) we get

Lðzt, zuÞ ¼ 1
2s2

t

					 1ffiffiffiffiffi
at

p xt � 1� atffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p zt

� �
� 1ffiffiffiffiffi

at
p xt � 1� atffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �at
p zuðxt, tÞ

� �					
2

¼ ð1� atÞ2
2s2

tatð1� �atÞ kzt � zuðxt, tÞk2:
ð6:9Þ

Ho et al. [194] empirically found that a simplified version of the loss described in equation (6.9) results
in better sample quality. They use a simplified version of equation (6.9) as their loss, and optimize to
predict the noise required to reverse a forward process iteration step:

Lðzt, zuÞ ¼ kzt � zuðxt, tÞk2, where xt ¼
ffiffiffiffiffi
�at

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
zt: ð6:10Þ

By recognizing that zt ¼ s2
trxt log qðxt j xt�1Þ, we see that equation (6.10) is equivalent to denoising score

matching over t noise levels [196]. This connection establishes a link between diffusion models and other
SBGMs (such as [197,198,210]).

To run inference for the reverse process, one progressively removes the predicted noise zu from an
image. The predicted noise is weighted according to a variance schedule

xt�1 ¼ 1ffiffiffiffiffi
at

p xt � 1� atffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p zuðxt, tÞ
� �

þ stz:

If we take pðxTÞ � N ðxT ; 0, 1Þ, we can use pu to generate entirely novel data that are similar—but not
identical to—those found in the training set.

In practice, diffusion models are trained by sampling an integer value of t � Uð1, TÞ, where T is a
large value typically in the thousands. We then use equation (6.5) to sample an image xt that has had
noise added to it t times. The model then attempts to predict the exact noise required to reverse a
forward iteration time step—that is, the output of a neural network30 of the form zuðztjxt�1Þ. As
shown in figure 20, we can estimate xt by removing the predicted noise from xt−1. To optimize the
model, zt is compared via equation (6.10) with the actual noise required to reverse the forward
iteration, and this is the loss that is reduced during training. For a detailed astronomical example with
code, we direct the reader to Smith et al. [13].
28Denoising autoencoders (§6.1) have an interesting relationship with score-based generative (or diffusion) models. As a taster, Turner
[208] reframe diffusion models as a class of hierarchical denoising VAE, and Dieleman [209] show through a brief derivation that
diffusion models optimize the same loss as a denoising autoencoder.
29See appendix B in Sohl-Dickstein et al. [193] and appendix A in Ho et al. [194] for the full derivation.
30Typically, a U-Net; see §4.3.3 for more detail.
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6.3.3. Denoising diffusion implicit models

Ho, Jain and Abbeel’s diffusion model performs inference at a rate orders of magnitude slower than
single-shot generative models like the VAE (§6.1) or the GAN (§6.2). This is because diffusion models
need to sequentially reverse every step in the forward process Markov chain. Reducing the inference
time for diffusion models is an active area of research [199,211,212], and here we will review one
proposed solution to the problem; the denoising diffusion implicit model (DDIM, [213]).

Song et al. ([213], §§3–4) propose the following reparametrization of equation (6.4):

xt�1 ¼
ffiffiffiffiffiffiffiffiffi
�at�1

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at�1 � s2

t

q
zðtÞu þ stzt

¼ ffiffiffiffiffiffiffiffiffi
�at�1

p xt �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
zðtÞuffiffiffiffiffi

�at
p

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

x0 prediction

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at�1 � s2

t

q
zðtÞu|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vector towards xt

þ stzt|{z}
noise

,

where (t) is noted as a superscript to denote the output of the neural network zu at time step t. Intuitively,
the first term can be thought of as the prediction of the input image x0, given an iteration step t. The
second term can be thought of as a vector from xt−1 towards the current iteration step image xt. The
third term is random noise. If we substitute in xt from equation (6.10), we make this intuition explicit,

xt�1 ¼
ffiffiffiffiffiffiffiffiffi
�at�1

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at�1 � s2

t

q xt �
ffiffiffiffiffi
�at

p
x0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �at
p þ stz:

If we then set σt = 0, we remove the noise dependency and the forward process becomes deterministic,

qDDIMðxt�1 j xt, x0Þ ¼
ffiffiffiffiffiffiffiffiffi
�at�1

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at�1

p xt �
ffiffiffiffiffi
�at

p
x0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �at
p : ð6:11Þ

This means that DDIMs can deterministically map to and from the latent space, and so inherit all the
benefits of this property. For example, two objects sampled from similar latent vectors share high-
level properties, latent space arithmetic is possible, and we can perform meaningful interpolation
within this space. We demonstrate DDIM latent space interpolation in figure 21.

We can also subsample every τ number of steps at inference time, where τ is a set of evenly spaced
steps between 0 and T, the maximum number of steps in the forward process,

qDDIMðxti�1 j xti , x0Þ ¼
ffiffiffiffiffiffiffiffiffi
�at�1

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at�1

p xti �
ffiffiffiffiffi
�at

p
x0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �at
p : ð6:12Þ

As shown in Song et al. [213], this results in acceptable generations with a T/τ inference speed-up.
SBGMs have emerged as a promising alternative to GANs, VAEs and other generative models,

showcasing their ability to generate high-quality samples with a level of detail comparable to that of
the previous state of the art [201–203]. One of the key advantages of SBGMs is how easy they are to
train; they do not inherit any of the instability issues that plague GANs. However, SBGMs do have
their share of weaknesses. For instance, the SBGM sampling process is computationally expensive
and slow. This is because generating a single sample requires a pass through a learnt Markov chain
(figure 20), which can limit their practicality in certain applications. Finally, diffusion models and
other SBGMs have not been as extensively explored in the deep learning literature as VAEs and GANs
(although this is changing fast!). This leaves their applicability across various domains still under
investigation.
7. Representation learning
Self-supervised31 representation learning has recently exploded in popularity, with a slew of models
being developed in rapid succession (e.g. [214–219]). At its core, representation learning attempts to
produce semantically meaningful compressed representations (or embeddings) of complex highly
dimensional data. Aside from simply being a compression device, these embeddings can also be taken
and used in downstream tasks, like clustering, anomaly detection or classification.
31A model that employs self-supervised learning is one that obtains a supervisory signal from the data itself. ‘Self-supervised learning’
as a descriptor has largely superseded the older term ‘unsupervised learning’. This is because the older term suggests that there is no
supervisory signal at all—but the signal is there, just not explicitly defined by a human expert!



Figure 21. Meaningful latent space interpolation via a DDIM model [13,213]. This property comes ‘for free’ with most other
generative models; however, the denoising diffusion probabilistic model [194] requires a tweak to its sampling scheme
(equation (6.11)).
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In this section, we will describe two approaches to representation learning that are popular within
astronomy. The first approach uses contrastive learning as defined by the SimCLR model. The second
approach defines and uses a ‘surrogate task’ (such as autoencoding or next-value prediction) to train
a deep learning model, and extracts semantically meaningful representations from the subsequent
trained network.
n
Sci.10:221454
7.1. Contrastive learning
Figure 22 describes a simple contrastive learning model similar to SimCLR [214]. This model takes as
input a sample x from the training set, and augments it to produce AðxÞ. This augmentation is
performed in such a way that AðxÞ shares enough semantically meaningful data with x to belong to
the same class. In the contrastive learning literature ðx, AðxÞÞ is known as a positive pair. This positive
pair is passed to a Siamese neural network F, which projects the high-dimensional input data onto a
lower-dimensional ‘embedding space’. All other training set samples are assumed to belong to a
different class to x, and so can be combined with x to produce ‘negative pairs’. Once we produce
some embeddings we need to define a loss that clusters similar samples together, while
simultaneously pushing away dissimilar samples. Hadsell et al. [220] propose such a loss—the
maximum margin contrastive loss

Lðzi, z jÞ ¼ dyiy j dðzi, z jÞ þ ð1� dyiy jÞmaxð0, m� dðzi, z jÞÞ,

where δ is the Kronecker delta, zi and zj are embedding vectors,32 yi and yj are the class labels
for the embedding vectors, and m is the margin. d is a ‘distance metric’ (such as for example the
L1 loss) that reduces to zero in the case where its inputs are identical. If zi and zj are a positive
pair, the loss pulls the embeddings closer, and if they are a negative pair the loss pushes the
embeddings away from each other. The margin imposes an upper distance bound on dissimilar
embeddings.

While useful, the maximum margin contrastive loss does not take into account the embedding space
beyond the pair it is attending to in each training step. This limitation ultimately results in a less
expressive embedding space. The triplet loss [221] solves this issue by taking into account the broader
embedding space and simultaneously attracting a positive pair while repulsing a negative pair with
each training step,

Lðzi, z j, zkÞ ¼ maxð0, dðzi, z jÞ � dðzi, zkÞ þmÞ, ð7:1Þ
where zk is a sampled from a different class to zi, and zj is sampled from the same class as zi.

If we study equation (7.1), we see that it is possible to generalize our loss even further, taking into
account an arbitrary number of negative samples. The normalized temperature-scaled cross-entropy
loss (NT-Xent; [222]) does precisely this,

Lðzi, z jÞ ¼ �log
expðdðzi, z jÞ=T ÞP2N

k¼1ð1� dikÞ expðdðzi, zkÞ=T Þ

 !
, ð7:2Þ

where zi and zj are a positive embedding pair, and zi and zk are a negative pair. T is a ‘temperature’
hyperparameter introduced in Chen et al. [214] to help the model learn from hard negatives (negatives
closer to the anchor than the comparison positive, see figure 23b).
32All embeddings in this subsection are normalized.
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Figure 22. A simple contrastive learning model is applied to both imagery and sequential data. A is an augmentation pipeline. For
imagery, A could consist of random crops, noise addition, and colour jitter. For sequential data, A could consist of noise addition,
stochastic temporal shifting, and random data deletion. F is a function approximator that projects inputs onto an embedding space.
F is typically a neural network: when processing imagery, F could take the form of a CNN, and when processing sequential data
F could be an RNN. The loss L measures the distance between the embeddings FðxÞ ¼ zi and FðAðxÞÞ ¼ z j , and we train
by attempting to minimize this distance while maximizing the distance between dissimilar samples. (a) Possible application to
imagery. (b) Possible application to sequential data.
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Figure 23. (a) The triplet (equation (7.1)) and NT-Xent (equation (7.2)) losses simultaneously incentivize attraction between
embeddings sampled from the same class (zi and zj), and repulsion between embeddings sampled from different classes (zi
and zk). (b) Types of negative embeddings. zi and zj form a positive embedding pair. If a negative is closer than the current
positive it is considered a hard negative, if it lies within the margin it is considered a semi-hard negative, and if it is beyond
the margin it is considered an easy negative.
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7.2. Learning representations via a surrogate task
One can also learn representations via a surrogate task. A surrogate task is any task that is unrelated to
the network’s final use. However, in the process of learning to perform the surrogate task, the network
learns what is important, and what is unimportant about data within the training set. This information
can then be extracted in the form of learnt representations. If the surrogate task is general enough, these
representations will contain useful semantic information about the items in the dataset, and can then be
used for downstream applications.

Let us concretize this process by revisiting an example that we previously discussed in §4.2. Let us
imagine we have a large set of galaxy rotation curves that we want to extract embeddings from. We
could train an LSTM model (figure 24) on the task of predicting the next item in the rotation curve,
with the model only having access to the previous items in the profile. Once the LSTM model is
trained on this task, we can feed in a full, new rotation curve and repurpose the final hidden state as
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Figure 24. A hypothetical surrogate task for extracting rotation curve representations is shown. {x0,…, xN} is a set of observations
from a galaxy rotation curve, in order of radial distance from the galactic centre. {p1,…, pN} is the LSTM’s corresponding set of
predictions for {x1,…, xN}. h is the LSTM hidden state vector. See figure 11 for more about the internal workings of the LSTM. (a)
While training we feed in the galaxy rotation curve, and predict the next observation in its sequence. (b) While inferring we feed in
the full galaxy rotation curve, and extract the LSTM hidden state as a compressed representation embedding of the curve. Otherwise,
we ignore whatever output (i.e. {p1,…, pN}) the LSTM generates.
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a representative embedding. Note that this set-up does not rely on any external labels, only on the
rotation curve itself.33

We can generate embeddings via an autoencoding task. Again, let us use an astronomical example to
specify this and say that we want to extract embeddings from a set of galaxy observations. We could
repurpose a variational autoencoder for this, training it as normal as described in §6.1. However, once
the model is trained we would discard the decoding part of the network and only consider the
encoder. To generate embeddings, we would then simply pass in our galaxy images to the trained
encoder. The same process can be carried out by a GAN (§6.2). In the GAN case, we would discard
the generator after training and use the discriminator’s penultimate layer outputs as our embeddings.

Supervised networks can also be used to generate embeddings. If a network has been trained in a
supervised manner to classify or regress data, it will have learnt some properties about that data that
helps it to carry out its task. We can access these learnt representations by taking the outputs from a
trained network’s penultimate layer as an embedding.34
8. Astronomy’s third wave of connectionism
Since its astronomical debut in the mid-2010s [176],35 deep generative modelling has become a popular
subfield within astronomical connectionism. This popularity is driven by its inherent scalability; the lack
of a need for labelled data allows the methods to be repurposed for any dataset that might be at hand.
Self-supervised connectionism has been around for longer (i.e. [227]), but again has recently exploded in
33This self-supervised training set-up is similar to that used to train autoregressive foundation models. These models will be explored
in detail in §9.1.
34Interestingly, this process is used in the calculation for the Fréchet inception distance (FID) [223,224]. The FID acts as a measurement
of the visual similarity between two datasets. The FID works by taking the penultimate layer representations from a trained
Inception v. 3 model [225] for each dataset and calculating the distance between them.
35Also compare its companion paper [226].
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popularity due to its usefulness in wrangling enormous unlabelled datasets. This section is split into two

major parts. We will first outline the history of deep astronomical generative modelling in §8.1, and the
history of astronomical representation learning will be discussed in §8.2. Although representation
learning is the explicit goal for only the studies described in §8.2, it must be stressed that
representations can also be extracted from all the deep generative models described in §8.1.
publishing.org/journal/rsos
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Sci.10:221454
8.1. Deep astronomical generative modelling
Capturing genuine astronomical data demands accurate knowledge of telescope behaviour, equipment
features, environmental factors during observations and data reduction techniques. These complex
steps are often tailored to individual observation sets. However, there is an alternative to classical
simulation: leveraging examples from a specific survey allows for the development of a data-driven
method to simulate not only the astronomical signal but also the inherent characteristics of data. In
addition to this, deep learning models trained to replicate astronomical observations are much
cheaper to run than classical simulation and so can rapidly generate massive amounts of data; data
that can then be used for astronomical pipeline prototyping at scale, aiding the development of new
analysis methods, and for dataset augmentation. Data-driven simulation is made possible via the
power of deep generative models, and this section describes the history of their use within astronomy.

Seminally, Regier et al. [176] proposed the use of a VAE to model galaxy observations. They trained
their network on downscaled 69 × 69 crops of galaxies from a SDSS-sampled dataset containing 43 444
galaxies. They trained their network in the same way as described in §6.1, and find that the network
is capable of generating galaxies similar to those found in the training set. They also find that their
network produces semantically meaningful embeddings, noting that their galaxies are clustered by
orientation and morphological type. This same line of enquiry was followed by Ravanbakhsh et al.
[228], who showed that VAEs could be used to generate galaxies conditionally. Ravanbakhsh et al.
[228] also pioneered the use of GANs to generate galaxy imagery. Spindler et al. [177] used a VAE
combined with a Gaussian mixture model prior (see equation (6.2) and accompanying text) to
generate and cluster galaxy images into morphological types. While the previous studies in this
paragraph used images with relatively small pixel dimensions in their training set, Fussell & Moews
[229] and Holzschuh et al. [230] demonstrated that GANs are capable of generating large high-fidelity
galaxy observations. Fussell & Moews [229] achieved this with a stacked GAN architecture [231], and
Holzschuh et al. [230] use the related StyleGAN architecture [189] to the same end. Bretonnière et al.
[12] use a flow-based model36 [233,234] to conditionally simulate galaxy observations. They found that
their approach could produce more accurate simulations than the previous analytical approach, at the
cost of inference time. Relatedly, Smith et al. [13] use a diffusion model to generate large high-fidelity
galaxies. They trained their network on two datasets comprising galaxies as observed by the Dark
Energy Spectroscopic Instrument (DESI, [235]). One, a set of 306 006 galaxies catalogued in the SDSS
Data Release 7 [81,236,237], and the other a set of 1962 late-type galaxies, as catalogued in the
Photometry and Rotation curve OBservations from Extragalatic Surveys (PROBES, [238]) dataset.
PROBES contains well-resolved galaxies that exhibit spiral arms, bars and other features characteristic
of late-type galaxies. They found that their model produces galaxies that are both qualitatively and
statistically indistinguishable from those in the training set, proving that diffusion models are a
competitive alternative to the more established GAN and VAE models for astronomical simulation.
From all of these studies, we can conclude that deep generative models can internalize a model
capable of physically and morphologically describing galaxies.

Generative models have also been used to simulate astronomical data on larger scales. In a use case
tangential to galaxy generation, Smith & Geach [239] show that a Spatial-GAN [240] can simulate
arbitrarily wide field surveys. They train on the Hubble eXtreme Deep Field, and find that galaxies
‘detected’ within their model’s synthetic deep fields are statistically indistinguishable from the real
thing. Cosmological simulations have also been explored, with Rodriguez et al. [241] using a GAN to
generate cosmic web simulations at pace, and Mustafa et al. [242] generating weak lensing
convergence maps at a pace faster than classic simulations. Beyond GANs, Remy et al. [243]37 trained
a SBGM on simulated maps from MassiveNus [245], and found that their model was capable of
replicating these maps. They also demonstrated that their model was capable of producing a likely
36Flow-based models have not been discussed in detail in this review, but see Weng [232] for a magisterial introduction to the subject.
37This preliminary work has been subsequently extended in Remy et al. [244].
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spread in the posterior predictions. Finally, they demonstrate that a SBGM is capable of predicting the

mass map of the real Hubble Cosmic Evolution Survey (COSMOS) field [246].
The image domain translation abilities of GANs in a Pix2Pix-like formulation ([184], also see figure

19b) is particularly useful in astronomy. Schawinski et al. [247] demonstrated this use first by training a
Pix2Pix-like model to denoise astronomical data. They trained their network on 4550 galaxies sampled
from SDSS. The galaxies were convolved to increase the seeing, and speckle noise was added. The
GAN was tasked with reversing this process. They found that their method outperformed both blind
deconvolution, and Lucy–Richardson deconvolution. Generative models are also capable of separating
sources, as Stark et al. [248] demonstrate by using a Pix2Pix model to deblend a quasar’s point source
emission from the extended light of its host galaxy. Reiman & Göhre [249] use a similar model to
Stark et al. [248] to deblend overlapping galaxies.

At the time of writing, there are only three examples of score-based (or diffusion) modelling in the
astronomy literature [13,243,244].38 It is surprising that these studies are the only examples of score-
based modelling in astronomy, as SBGMs produce generations that rival that of state-of-the-art GAN
models, without drawbacks present in other models (like blurring in the case of VAEs, or mode
collapse and training instability in the case of GANs). SBGMs also have some natural uses in
astronomical data pipelines. For example, an implementation similar to Sasaki et al. [206] could be
used for survey-to-survey photometry translation similarly to Buncher et al. [254]. The source image
separation model described in Jayaram & Thickstun [207] has the obvious application as an
astronomical object deblender (i.e. [248,249,255]). To summarize, SBGMs are ripe for exploitation by
the astronomical community, and we hope to see much interest in this area in the coming years.

8.2. Self-supervised astronomical representation learning
In 1993, Serra-Ricart et al. [227] proposed using an autoencoder to learn embeddings for stars as observed
by the Two Micron Galactic Survey [256]. They first proved that their autoencoder model worked better
than principal component analysis (PCA) on the toy problem of separating Gaussian distributions, and
they then showed that their model also outperformed the classic PCA method on real data. More than 20
years later, Graff et al. [257]39 showed that autoencoders are also capable of capturing the properties of
galaxies as described in the Mapping Dark Matter Challenge [258] by demonstrating that embeddings
extracted from their autoencoder were beneficial for computing the ellipticities of their galaxies as a
downstream task. We are not limited to imagery; Yang & Li [259] show that an autoencoder can learn
representations that can then be used to train a neural network for the downstream task of estimating
stars’ atmospheric parameters, and Tsang & Schultz [260] demonstrate that an autoencoder can
generate embeddings that can then be used to classify variable star light curves. From these studies
we must conclude that neural networks trained via a surrogate task are capable of learning
semantically meaningful embeddings across astronomical domains.

Very recently, there has been work applying self-supervised contrastive learning models to galaxy
image clustering. Hayat et al. [11] trained SimCLR [214] on multi-band galaxy photometry from the
SDSS [81]. They show that the resulting embeddings capture useful information by directly using
them in a training set for a galaxy morphology classification model, and a redshift estimation model.
Similarly, Sarmiento et al. [261] trained SimCLR on integral field spectroscopy data captured from
galaxies in the Mapping Nearby Galaxies at Apache Point Observatory survey (MaNGA, [262]).
Again, they find that SimCLR produces semantically meaningful embeddings. Slijepcevic et al. [263]
demonstrate that the ‘Bootstrap Your Own Latent’ (BYOL, [216])40 contrastive learning model is
capable of learning semantically meaningful representations of radio galaxies. Their model is trained
on 100 000 Radio Galaxy Zoo galaxies, and inference is run on the 1256 galaxy strong Mirabest
dataset [264]. They find that embeddings derived from their model are semantically meaningful,
38Since the first posting of this review there have been several workshop papers presented at the 36th Conference on Neural
Information Processing Systems (NeurIPS 2022) on the application of SBGMs to astronomical problems (e.g. [250–252]). Here we
will highlight a particularly neat example of diffusion model application: Karchev et al. [251] tackle the inverse problem of strong-
lensing source reconstruction and prove that a denoising diffusion restoration model (DDRM, [253]) inference scheme alongside an
off-the-shelf ‘AstroDDPM’ model [13] can restore galaxies that have been through a lensing process. Remarkably, they achieved this
without any retraining or fine-tuning of the original AstroDDPM model, demonstrating that generalist pretrained score-based models
like that described in Smith et al. [13] can easily be repurposed for seemingly out-of-distribution downstream tasks. We will revisit
the idea of pretrained models that can be repurposed for downstream tasks when we discuss ‘foundation’ models in §9.
39See footnote 45 for commentary of this study in the context of astronomical foundation models.
40A contrastive learning framework that unlike SimCLR does not use negative samples to learn an embedding space.
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suggesting that self-supervised methods are transferable between disparate surveys. These studies show

that contrastive learning is applicable to imagery; further study will be required to demonstrate its
effectiveness with other types of astronomical data, such as time-series and volumetric data.
 lsocietypublishing.org/journal/rsos
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9. Foundation models: a fourth astroconnectionist wave?
This review has shown thus far that deep learning has found wide use in astronomy, a use predicated on
the availability of enormous amounts of computational power and data. This section looks to the future
and predicts an outcome if astronomy continues to follow in the footsteps of other applied deep learning
fields. In short, we predict and argue that astronomical connectionism will probably see the removal of
expertly crafted deep learning models, to be replaced with an all encompassing ‘foundation’ model. In
§9.1, we explore what foundation models are, and their context within deep learning. Section 9.2 then
contextualizes these models within astronomy, and suggests actions we can take as a community to
realize an astronomical foundation model. Finally, §9.3 demonstrates as a thought experiment a state-
of-the-art use case for an astronomical foundation model and explores other theoretical and practical
uses and implications within (and beyond) astronomy.
Sci.10:221454
9.1. Foundation models
Since its inception, connectionism has followed a path of greater compute and greater generality [91,92].
In that time, human-crafted biases have fallen by the wayside, to be replaced with models and techniques
that learn directly from data. Sutton [91] exemplifies this process via the field of speech recognition:
41Fo
adeq
rigo
in [2
mat
capa
42Th
In speech recognition, there was an early competition, sponsored by DARPA [Defense Advanced Research Projects
Agency], in the 1970s. Entrants included a host of special methods that took advantage of human knowledge—
knowledge of words, of phonemes, of the human vocal tract, etc. On the other side were newer methods that
were more statistical in nature and did much more computation, based on hidden Markov models (HMMs).
Again, the statistical methods won out over the human-knowledge-based methods. This led to a major change
in all of natural language processing, gradually over decades, where statistics and computation came to
dominate the field. The recent rise of deep learning in speech recognition is the most recent step in this
consistent direction. Deep learning methods rely even less on human knowledge, and use even more
computation, together with learning on huge training sets, to produce dramatically better speech recognition
systems. As in [computer Go and computer chess], researchers always tried to make systems that worked the
way the researchers thought their own minds worked—they tried to put that knowledge in their systems—but
it proved ultimately counterproductive, and a colossal waste of researcher’s time, when, through Moore’s Law,
massive computation became available and a means was found to put it to good use.
We are seeing this principle play out once again through a new paradigm shift in deep learning,
where even the underlying neural network architecture does not matter. Previously, neural networks
were adapted for a specific domain via inductive biases injected by researchers, such as convolutions
for computer vision, and recurrence for language processing. Now we are seeing transformer
networks (see §4.4 and [117]) competing41 in all deep learning domains applied or otherwise: from
language processing [17,123]42 to computer vision [18,168] to graph learning [267] to protein folding
[16] to astronomy [169,170,172]. The transformer’s versatility allows us to take a model trained on one
task and apply it to a similar yet different task, a process known as transfer learning. For example, we
could train a model on the ‘surrogate’ task of predicting the next word in a sequence, and then apply
that model to a similar yet different task of predicting the answer to a geography question. In this
example, the first model is known as a ‘foundation’ model, and the downstream model is derived
from it. This set-up brings with it some useful advantages. For example, if the foundation model is
improved, all downstream tasks also see improvement. Therefore, the need for only one model allows
researchers to pool their efforts in a way not possible when resources are split between many projects.

To train a foundation model, we first need to define a surrogate task. As labelled datasets are
expensive, and raw data are relatively cheap, the easiest and most scalable way to do this is via
r now! It may be that network architecture does not matter all that much at scale, and that any sufficiently large neural network is
uate. If this is true, we will see the simplest (and most scalable) architectures win out. Although this theory has not yet been
rously tested, we are currently seeing rumblings that suggest that this is the case (e.g. the section ‘Transformers are not special’
65]). Bo [266] stands as a particularly notable example of this hypothesis, showing that an attention-free RNN is capable of
ching the performance of a similarly scaled transformer network. Also see footnote 12 for commentary on the performance
bilities of MLPs and transformers.

ese models are collectively known in the literature as large language models, or LLMs.
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self-supervised learning.43 Self-supervised learning does not require a human to provide a labelled

dataset for training. Instead, the supervisory signal is generated automatically from the raw data. For
example, in the context of astronomy this task could be predicting a masked value in a variable star’s
light curve [169]. Another task could be using an autoencoder (§6.1) to replicate a galaxy observation
[177]. A further task could be training within a self-supervised framework, like contrastive learning
(§7.1). The important thing about self-supervised learning is that it does not require annotated data.
This means that we can leverage vast reserves of raw data (such as textbooks, scraped Internet text,
raw imagery, etc.).

Very large models trained on vast amounts of data demonstrate surprising emergent behaviour.
For instance, GPT-3 [17] is a 175 billion (B) parameter model that can be ‘prompted’ to perform a
novel task (see figure 25 for more on prompting foundation models). This ability was not shown at all
in GPT-3’s older, smaller 1.5B parameter sibling [122]. Furthermore, a meta-study described in Wei
et al. [269] found that larger models suddenly ‘unlock’ abilities such as arithmetic, translation and
understanding of figures of speech once they reach a certain scale. These findings suggest that
architectural changes are not required beyond scaling to perform many tasks in natural language
processing [92,270]. In figure 25, we see some results from Alayrac et al. [268], a model comprising an
LLM, and an image encoder. In this figure, we can see that the model is capable of arithmetic,
reading, counting and has a broad knowledge (albeit not ‘understanding’) of art, geography and
zoology,44 and literature. This model comprises a ResNet variant [119,272] to encode imagery, and the
Chinchilla LLM [273] to encode and generate text. Chinchilla (and therefore Flamingo) was trained
with the surrogate task of predicting the next word in a text sequence, and so none of the emergent
properties stated above were explicitly optimized for.

In the next subsection, we will state and explain the need for an astronomical foundation model,45 not
only for astronomy’s sake, but also for the sake of openness in deep learning research.
9.2. Scaling laws and data moats
Hoffmann et al. [273] suggested an update to the foundation model scaling law first proposed in Kaplan
et al. [275]. Their scaling law equation relates the size of a neural network model and the training dataset
size to the minimum achievable loss. Mathematically, the equation is

LminðN, DÞ ¼ A
Na|{z}

parameter term

þ B
Db|{z}

data term

þ E|{z}
dataset entropy

, ð9:1Þ

where E is a constant that represents the lowest possible loss, given a particular training dataset. N is the
number of trainable parameters within the neural network, and D is the size of the dataset in tokens (see
§4.4 for more about tokenization). We can see that when we have an infinitely large model trained on an
infinitely large dataset (i.e. N =D =∞), the only term remaining is the ‘dataset entropy’ constant, E. We
can therefore only reduce the loss by increasing the size of our model, or the size of our training set.

After fitting equation (9.1), Hoffmann et al. [273] find

LminðN, DÞ ¼ 406:4
N0:34 þ

410:7
D0:28 þ 1:69:

If we then plug in N and D for a selection of real foundation models we arrive at figure 26. We can see in
figure 26 that the model size term for real foundation models is far lower than the dataset size term. This
43For more on self-supervised learning, see §7.
44Interestingly, the authors of Flamingo first assumed that Flamingo’s prediction of the species range of its eponymous bird was
incorrect: flamingos are found in the Caribbean, South America, Africa, Europe and South Asia. However, they later realized that
the picture in figure 25 is of an American flamingo, which is specifically found in the Caribbean and South America, so the
network was right after all! See the reddit thread for the full context [271].
45Walmsley et al. [274] explore in a preliminary study a ‘galaxy foundation model’ trained on Galaxy Zoo labels, and corresponding
paired galaxy observations. They find that their pre-training is beneficial for training a network that performs a downstream task.
However, the idea has been around for far longer than that; possibly the first demonstration of an astronomical foundation model
was described 8 years earlier in Graff et al. [257]. Graff et al. [257] demonstrated that embeddings learnt with their autoencoding
SkyNet network can be used for downstream tasks, but they do not use the moniker ‘foundation model’ to describe SkyNet, as the
term had not yet been invented! Notably, neither study trains a model of the scale required to exhibit emergent properties or task
generalizability. These ‘blessings of scale’ require data and compute at a level that has not yet been seen within astronomical
connectionism.
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means that an increase in dataset size has the potential to reduce the minimum loss by a far larger
amount than a larger model would. Therefore, an obvious next step to improve these foundation
models further is by increasing their dataset size.

The largest dataset (MassiveText-English; [273]) in the comparison shown in figure 26 amounts to 1.4
trillion (T) tokens. However, this dataset is proprietary, being only available to researchers employed by
Google. The largest public text dataset available at the time of writing is The Pile [279], with a total size of
approximately 260B tokens. We could increase the size of these datasets by indefinitely scraping text data
from the surface web, but these data tend to be of low quality. Also, we have already exhausted some
important high-quality data reserves, like fundamental research papers, and open source code [280].
We also have to ask ourselves: what happens when generative models start to create data en masse,
and dump it indiscriminately onto the Internet? If a significant proportion of text in a dataset scraped
from the Internet is generated via an LLM, training on it will cause unforeseen issues and may
ultimately result in a model with worse performance. We must therefore ensure that the data are not
generated by a deep generative model. In addition to all this, the academy and the public at large will
never have access to the vast reserves of data contained in the deep web administered by ByteDance,
Google, Meta, Microsoft and other tech giants. For all these reasons, we will need to think outside the
box if we want to mine new high-quality data.

Enter the multi-modal foundation model. Reed et al. [124]46 demonstrated that a large transformer
neural network is capable of learning many tasks, from playing Atari, to captioning images, to
chatting, to operating a real robot arm. The model shares weights across all tasks, and decides at
inference time from context which task to predict. Importantly, Reed et al. [124] find that their model
follows the same scaling laws as other foundation models, and so multi-modal foundation models
have the same hunger for data that we see in figure 26. Even more astonishingly, Aghajanyan et al.
[282] find that a foundation model trained on concatenated independent datasets significantly
46Earlier work from Kaiser et al. [281] also demonstrated a deep learning model that could learn from disparate tasks; however, Gato is
the first model that achieves this while staying within a single deep learning paradigm.
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outperforms separately trained unimodal models once the neural networks reach a certain scale. We can
therefore augment our text datasets with high-quality, publicly available astronomical data.

The Vera Rubin Observatory’s 189 16 megapixel CCDs will observe 1000 science frames per night
while conducting the Legacy Survey of Space and Time (LSST) [283]. This amounts to 3 × 1012 pixels
per night, or approximately 12B tokens a night if we use the same tokenizing scheme as Dosovitskiy
et al.’s vision transformer [18]. After only 1 year of observing, the LSST will have produced 4.4T
tokens of raw data, larger than even the MassiveText-English dataset.47 These data, and other
astronomical data like it, could be compiled into a very large open dataset similar to EleutherAI’s Pile
[279]. This dataset would provide a way for academics employed outside of Big Tech to train and
research very large foundation models. Compiling a dataset like this would be difficult for a single
relatively under-resourced research group, but it could be accomplished via bazaar style open
development [284]. We have already seen this development model succeed in large open source
projects, the most famous of which is the Linux kernel. This development model has also been shown
to work within the field of deep learning by EleutherAI (e.g. [279,285,286]), and with HuggingFace’s
BigScience initiative [287]. Once compiled, we must ensure that progress is kept in the open, and that
the data are not simply absorbed into proprietary datasets—to do this we must give our dataset a
strong (viral) copyleft style licence.
47Of course, the reduced, useful data will be far smaller than our raw estimate here. The motivation behind this calculation is to show
that even a single astronomical survey rivals the largest text dataset in size. A compilation of all useful astronomical data would
certainly dwarf any contemporary text dataset, whether public or proprietary.
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Once the dataset is compiled all we need for training are some self-supervised surrogate tasks for our

‘astrofoundation’ model to attempt. These tasks could include predicting the next observation in a
variable star’s time sequence, predicting the low surface brightness profile of a galaxy, predicting a
galaxy’s morphological parameters or simply generating the next crop in a sequence of observations.48

As we will explore in the next subsection, these surrogate tasks do not need to be at all related to the
downstream tasks we will eventually use our model for. Once trained, our astrofoundation model will
inherit all the interesting properties that LLMs enjoy, such as few- to zero-shot generation and other
emergent behaviours.

9.3. The practical implications and uses of an astrofoundation model
This section explores the wider implications of a hypothetical astrofoundation model (§9.3.1), as well as
some practical astronomical uses (§9.3.2). In §9.3.3, we highlight one possible downstream task that
would be useful in astronomy; a conditional generative model for astronomical simulation.

9.3.1. Democratizing foundation models

The spring of 202349 has brought with it a shift in the global zeitgeist’s attention towards foundation
models in general, and the GPT family of large language models in particular. Leading the charge is
OpenAI’s ChatGPT, whose release has become a very public advertisement of the abilities that large
language models possess (figure 27). While impactful, we note that ChatGPT is ‘just’ a web interface
wrapper for versions of GPT-3 and GPT-4 that have been fine-tuned using human feedback [291,292].
ChatGPT’s popularity therefore suggests that there is a lot of latent general interest in deep learning
and foundation models, and that this interest can be realized through a convincing public
demonstration. Fully open development and dissemination of these models is perhaps the most public
demonstration there is. And we have indeed seen that the release of open source foundation models
leads to an explosion of innovation and interest.50 One particular example is the release and impact of
the ‘large language model [from] Meta AI’ (LLaMA; [293]). The LLaMAs are a collection of open
source LLMs, and the largest LLaMA has a comparable performance to GPT-3. Since LLaMA’s
release, an entire ecosystem of projects have spun up that use the model in innovative and interesting
ways (e.g. [294–297]). A similar story occurred in 2022 when StabilityAI released an open text-to-
image diffusion model based on latent diffusion [94]. The following flurry of activity far outstripped
the progress OpenAI made with their competing closed source DALL-E 2 model [203,298]. We believe
that a similar explosion of innovation to that seen with the release of the LLaMA and Stable Diffusion
models would lay in store for astronomy if an open astronomical foundation model is developed and
marketed effectively.

In mid-March GPT-4 was released [26]. Its accompanying ‘Technical Report’ contains no detail on the
model’s architecture, training set size, or training routine.51 The unashamed release of a closed model is
quite a worrying development for a field that has historically been built on open source and open
research. Of most concern is industrial actors within this space closing up shop as a reaction to the
open/closed model prisoner’s dilemma set by OpenAI. As figure 28 shows, industry has produced
the lion’s share of impactful deep learning models since the mid-2010s; if future developments are
kept hidden due to commercial pressure we will see a concentration of talent and innovation locked
away behind industry’s closed doors. Furthermore, the latest developments in foundation modelling
have the potential to significantly impact the global economy and workforce through pervasive
automation [173,300]. As automation increases, the concentration of power, expertise and economic
clout within large industrial actors will weaken the economic bargaining position of those that do not
have access to these technologies. This could result in a societal equilibrium where fewer and fewer
48This is essentially training the model to act as a physics simulator. Viewing foundation models as world simulators is not
unprecedented. This perspective has already been explored in the simulation of thousands of ‘social simulacra’ within a model
online community [288], and with the simulation of participants in classic (i.e. Milgram’s shock experiment, the Ultimatum Game)
and novel psychological studies [289].
49While we revisited this subsection for our review rebuttal.
50This is a specific example of the more general rule that ‘bazaar’ (public from conception) style open development outcompetes the
‘cathedral’ model (closed until release, or in this case closed even after release) on an equal playing field [284].
51Although if we extrapolate from the historical trend of LLM development, OpenAI’s general research culture and direction and the
time GPT-4 takes to run inference, we could arrive at the conclusion that GPT-4 is essentially a scaled-up ‘GPT-3’ model that follows a
Chinchilla-optimal scaling law (§9.2).
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people have access to economic and social opportunity. This is an equilibrium that Brynjolfsson [301]
memetically dubs the ‘Turing Trap’:
A fully automated economy could, in principle, be structured to redistribute the benefits from production widely,
even to those who are no longer strictly necessary for value creation. However, the beneficiaries would be in a
weak bargaining position to prevent a change in the distribution that left them with little or nothing. They
would depend precariously on the decisions of those in control of the technology. This opens the door to
increased concentration of wealth and power.
To avoid this trap, we must collectively work towards making foundation models—and by proxy the
latest fruits of automation—available to all. A copyleft foundation model trained on a copyleft dataset
(such as our hypothetical astronomical foundation model) would go some way towards reducing the
growing technological inequality between Big Tech and wider society.

With the above discussion in mind, we would like to revisit our brief analysis in §9.2 and restate and
emphasize the pressing need for an independent, verifiable, completely open and strong copyleft licensed

https://trends.google.co.uk/
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alternative to the closed foundationmodels controlled byOpenAI,Microsoft,Anthropic,Google andother Big

Tech conglomerates. While expensive, the compute is fairly easy to source—the paramount issue is that
foundation models require a huge amount of data to train them effectively. These models are usually
trained via a large amount of high-quality publicly unavailable textual data that is locked within the deep
web. Fortunately, however, §9.2 shows that a large amount of useful multi-modal data can be easily
sourced from astronomical observations. We can therefore conclude this subsection on a positive note—
astronomy is ideally poised to play an outsized role in the democratization of foundation models.

9.3.2. Possible astronomical use cases

In this subsection, we outline some possible exciting astronomical uses for our astrofoundation model.
Before we dive in, we must state that here we only skim the surface of this technology’s potential, and
we hope that—as evidenced by the LLaMA and Stable Diffusion ecosystems (§9.3.1)—there will be
many more use cases that we have not discussed here that would emerge from community
involvement. We divide this subsection into two parts. The first part talks about how a foundation
model could aid outreach, citizen science and cross-disciplinary collaboration, and the second part
discusses how the model could aid astronomical research.

9.3.2.1. Collaboration, citizen science and outreach
By providing a common platform for generating simulations and analysing data, a neural network-based
astrofoundation model would ease and facilitate collaboration between researchers in previously
disparate fields. In addition to this, any improvement in the underlying technology could easily be
integrated into field-specific (or field-agnostic) foundation models that could be used for tasks that
previously needed years of specialist training to operate. One example specific to astronomy is
astronomical simulation. A physically aware astrofoundation model could be used to simulate and
interrogate simulated astronomical events in much the same way that classical simulations do now
[20–22]. Section 9.3.3 describes in detail one framework that could facilitate such a model.

Themulti-modal trainingof neural networks lets usmake connections betweendatamodes thatwouldbe
impossible or difficult with current methods. As just one example, let us consider citizen science. In a citizen
scienceproject likeGalaxyZoo [132], citizen scientists are asked to label astronomical objectswithquantitative
labels. This can be an unintuitive process for someone untrained in astronomy. An astronomical foundation
model that has an awareness of natural language would allow participants to describe astronomical objects
using their ownwords. Thiswould reduce the need for specialized training and thereforewould increase the
accessibility of these projects. One could imagine a new Galaxy Zoo-like project where citizen scientists
provide natural language descriptions of galaxy morphologies. The foundation model could then process
and analyse these descriptions, which would eventually contribute to a more comprehensive
understanding of galaxy evolution.52

A foundationmodelwith astronomical knowledge could be used to develop chatbots capable of engaging
students, educators and the general public in conversations about astronomy. These chatbots could answer
questions, provide explanations, or even suggest personalized learning resources based on the user’s
interests and prior knowledge. This would widen and democratize access to astronomical knowledge, and
this easy access to astronomical knowledge could enthuse and help to recruit the next generation of
astronomers. Foundation models can already act as tutors, and commercial actors are currently working in
this space; the most notable examples being ‘Duolingo Max’ which provides users a personalized chatbot
for foreign language learning, and Khan Academy’s ‘Khanmigo’ which provides students a personal tutor
for their courses. Both Duolingo Max and Khanmigo are paid offerings powered by OpenAI’s GPT-4 API
[26], and so an open astronomical foundation model would provide wider access than a closed GPT-N
model that has been prompted to become astronomically aware.

9.3.2.2. Augmenting research
While the foundation model is necessarily trained on existing data, its ability to identify patterns and
relationships within the data can lead to new knowledge discovery, and a more efficient way to
process data that previously was difficult or time consuming. As discussed previously in §§6–8, an
astroconnectionist could use the foundation model to generate embeddings for a set of astronomical
52Work is already being done to realize this. For example, Bowles et al. [302] propose a semantic natural language labelling scheme for
the Galaxy Zoo evolutionary map of the universe project.
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objects. Like we discussed in §§6–8, these embeddings could be used for downstream astronomical tasks,

or could be placed into visualization pipelines like the t-distributed stochastic neighbour embedding
method [303,304]. Since the astronomical foundation model would be multi-modal, a researcher could
combine the embeddings of multiple datasets generated from entirely different instruments, giving
them a birds-eye view of their data that would currently be difficult to achieve. We can also use the
foundation model’s emergent abilities to our advantage; as shown in figure 25 we could use few-shot
learning and prompt the trained model with a few example pairs of inputs. For instance, we could
use pairs of input galaxy observations and corresponding output surface brightness profiles [167]. If
the astronomical foundation model is a few-shot learner (and is aware of a similar input–output
pairing within its training data), it would identify that the researcher wants to calculate the surface
brightness profiles of new galaxies. The researcher would then use the prompted model as a surface
brightness profile extractor, sidestepping the need for a specialized analytical or deep learning model
for such a task. This process is not limited to this example—it would work for any input–output pair
within a mode that the foundation model is aware of. Even better, this process would require no
retraining of the foundation model, it would only require the few-shot prompt at inference time.

Autonomous agents are no longer science fiction; task-driven autonomous agents powered by the
simulacra of a foundation model are capable of solving very general tasks when given only a high-
level prompt by a human operator [305,306]. One could therefore imagine a semi-automated research
pipeline, where an autonomous agent with astronomical knowledge is given access to a set of
astronomical data through an API. The agent would be prompted with a high-level research goal
(such as ‘find something interesting and surprising within this dataset’), and would then take steps to
achieve this task. These steps could include querying research papers for a literature review, searching
a large multi-modal astronomical dataset to find data that supports a theory, evoking and discussing
its findings with additional simulacra, or spinning up simulations to test a hypothesis [307]. While the
agent operates in the background, the human researcher would be able to provide high-level
interpretation of the results, and would be a steady hand providing guidance and refinement of a
more general research direction. In this way, an astronomical foundation model would provide the
tools to make all astronomers the principal investigator of their own powerful ‘AI lab’.
9.3.3. A new class of simulation

We would like to end this subsection with a tangible application of our hypothetical astrofoundation
model; a conditional generative model for astronomical simulation in the spirit of recent work on text-
to-image modelling (i.e. [94,308]). If we train an unconditional generative model, we cannot control its
output at inference time. This is an issue if we want to generate specific classes of observations to
train models for downstream tasks, such as redshift estimation, or galaxy-type classification. To
achieve a model capable of generating specific classes, one could simply train a conditional generative
model of the form

Gfðx̂ j z, yÞ, ð9:2Þ
where x̂ is a generated image, z is some noise that acts to capture all detail not encoded in y, and y is a
conditioning vector. As an example, y could contain a galaxy’s redshift or morphological type. However,
this means that we must be very specific when choosing y. Multi-modal modelling provides us the means
to sidestep this fundamental issue, and lets us play with fuzzy inputs.

As a thought experiment, let us consider Google’s recent ‘Imagen’model,53 and imagine how it could
be repurposed for an astronomical use case (figures 29 and 30, [308]). Imagen is a combination of a frozen
LLM (specifically T5-XXL; [310]) and a cascaded diffusion model ([309], also see §6.3). The LLM acts as a
language encoder, and then passes its generated latent space representations onto the diffusion model
as a conditioning vector. If we were to replace the frozen LLM with an ‘astrofoundation’ model (see
§9.1 and 9.2), we could leverage astronomy’s fundamentally multi-modal nature. For example, if our
astrofoundation model were trained to understand the Galaxy Zoo 2 (GZ2) morphological
classifications [311], we could take the GZ2 descriptors as y and their corresponding galaxy pair as x
and train on those.
53Naturally, no implementation is provided by Google. However, there is a fantastic MIT-licensed implementation of Imagen provided
by Phil Wang and others (https://github.com/lucidrains/imagen-pytorch), and StabilityAI has a similar trained open source model
released under the name ‘Stable Diffusion’ (https://github.com/Stability-AI/stablediffusion).

https://github.com/lucidrains/imagen-pytorch
https://github.com/Stability-AI/stablediffusion


A wall in a royal castle. There are two
paintings on the wall. The one on the
left a detailed oil painting of the royal
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raccoon queen.

A group of teddy bears in suits in
a corporate office celebrating the
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playing with a ball. The ball is made
of clouds too.
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ing at the gym.

Figure 29. Select 1024 × 1024 Imagen samples generated from text inputs. Below each image is its corresponding conditioning
text. Figure adapted from fig. A.2 in [308].

‘astrofoundation’
encoder

diffusion model
decoder

y ŷ

x̂

z

Figure 30. An Imagen-like model uses a frozen foundation model to encode text, and then uses that encoding to condition a
cascaded diffusion model of the form Gfðx̂ j z, ŷÞ [308,309]. Here we see one possible realization of this type of model in
astronomy. y is some kind of descriptive vector that can be paired with a ground truth image. For example, y could be the
surface brightness profile of a galaxy, or the summary statistics of a variable star light curve, or some cosmological parameters.
In general, y could be any vector that the astrofoundation model understands. ŷ is y’s projected latent space equivalent. Since
we do not need to train the foundation model here, training cost is far lower than for an equivalent end-to-end trained model.
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Once trained, our astronomical Imagen model could generate synthetic galaxies that resemble the real
galaxy observations that it was trained on. However, unlike an unconditional astronomical simulator, this
model would be capable of generating galaxies that specifically resemble a real galaxy that shares the
conditioning set of GZ2 parameters!

Unlike the conditional model described by equation (9.2), an astrofoundation-type model allows us to
be creative with the conditioning vector. For example, we could run the model in reverse to generate
representations that refer to a very specific astronomical object, and then generate many more objects
of that ‘class’ with injected features like satellite occlusion, a specific instrument response function, a
specific redshift, etc. (see work on ‘textual inversion’ by Gal et al. [312]). These simulations would
enable researchers to create tailored datasets for various research purposes, such as studying
particular galaxy types, morphologies or cosmological phenomena. We could even create a ‘Galaxy
Zoo’ type dataset that asks citizen scientists to describe galaxy morphology via natural language
(§9.3.2). This is possible since the encoding foundation model does not fundamentally care about
which form the caption takes. This approach would cut down on citizen scientist training cost due to
natural language’s inherent intuitiveness. Furthermore, as inference-time generation is relatively cheap,
a model like the one described in this section would allow astronomers to explore and test hypotheses
and scenarios more rapidly than they could if they used a classical simulation.
Sci.10:221454
10. Connectionism’s caveats
Thus far in this review we have been very optimistic about astronomical connectionism’s potential.
However, this does not mean that connectionism is without its pitfalls. Section 10.1 outlines some
practical downsides of astronomical connectionism, and discusses how a practitioner can mitigate
them. Owing to its importance, we dedicate §10.2 to the discussion of climate change and carbon
emissions, and illustrate connectionism’s impact with a case study on the carbon emissions of modern
large language and foundation models.
10.1. Possible practical pitfalls
As illustrated in figure 26, deep learning has an insatiable hunger for data. Acquiring and labelling data
for the training of deep learning models can be extraordinarily expensive and time-consuming. The
savvy astroconnectionist could mitigate this problem through self-supervised or generative learning
that does not require labelled data, and then repurposing learnt embeddings for more specialized
downstream tasks54 (see §§6–9). Related to this, rare or entirely unexpected astronomical events and
phenomena55 are by definition poorly sampled within any training data, and so a deep learning
model will have difficulty generalizing and internalizing these events. One solution is using an
anomaly detection method to find these rare phenomena. We direct the reader to Pang et al. [315] for
an excellent recent review of anomaly detection techniques.

Very large deep learning models can be expensive to train and run inference with. Some astronomical
applications, such as detecting transient events, require real-time processing of large volumes of data.
The computational complexity of deep learning models can pose challenges for their deployment in
these time-sensitive scenarios. In that case, it may be preferable to employ a fast, simple, classical
technique or to use a smaller deep learning model.

Astronomical data can be observed via a variety of different instruments (or simulations), and the
final output data can be processed by any number of post-processing pipelines. These pipelines each
have their own characteristics, idiosyncrasies and foibles, and so can appear very different when
propagated through a deep neural network. Also, the distribution of known celestial objects within a
survey may be influenced by observational biases or historical interests, and so careful inspection of
datasets is required to ensure that they are representative for the desired use case. In addition to care,
an astroconnectionist might employ domain adaptation techniques to ensure that their datasets are
representative for their downstream tasks [316]. Finally, as we explored in §9, it may even be enough
to simply train a very large deep learning model on a collection of datasets [282], but this approach is
currently out of reach for the average researcher.
54This process is also known as ‘transfer learning’.
55Such as Green Bean Galaxies [313], or SETI events akin to the ‘Wow!’ signal [314].
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The perennial criticism of deep learning is—of course—interpretability. As deep learning models are

highly parametrized it is difficult to understand why they arrive at a certain behaviour or decision. There
are many ways to sidestep this issue, and this paragraph will briefly outline some developments in this
direction that might be of use to a practitioner. Perhaps the gold standard for interpretability is a neural
network walking the user through its ‘thought’ process step-by-step with natural language, as a human
would do. Large language foundation models can do this, and this ability comes ‘for free’ with a
sufficiently large model and dataset [317]. Unfortunately, however, no such foundation model
currently exists that also has a deep knowledge of astronomy (§9) so we must be a little more creative.
Attentional mapping can be used to show which features the deep learning model are attending to
when producing an output, and this attentional mapping can be depicted as a heat map over our
data. Attentional mapping can be generated in several ways; for example, we could use a mechanism
like we discussed in §4.4 to highlight the most useful parts of an input datum for the model to
predict or generate its output. One can also use class activation mapping [231] to trace the outputs of
a fully convolutional neural network back to its inputs to see which parts of an input image are used
in a prediction. Occlusion mapping (and other perturbation techniques) can be used to visualize
attention for all architectures. Occlusion maps require us to occlude parts of an input datum and in
turn allow us observe how that affects the output prediction [137]. We can also apply certain
statistical methods to deep learning models to gain an insight into their inner workings. Stochastic
neural networks trained within the Bayesian paradigm (or ‘Bayesian neural networks’) can be used to
estimate the uncertainty in neural network predictions [318]. One does not need to have prior
knowledge of the dataset when training a Bayesian neural network; neural networks can make use of
approximate Bayesian computation techniques like likelihood-free inference to estimate the posterior
[319]. Besides these methods, many other deep interpretability pipelines are in use—far more than we
have space to go over here—and so we highly recommend Ras et al. [320] for a general and extensive
overview of the field of explainable deep learning.
10.2. Connectionism’s carbon crisis
The training of deep learning models in general requires a considerable amount of energy, and it is only
natural that the training of ultra-large foundation models significantly ups the ante. In this section, we
illustrate connectionism’s hunger for energy by estimating the total carbon footprint created in the
training of the GPT-356 and PaLM foundation models [17,270].

Let us start with the eminent GPT-3 model. Unfortunately, the total energy cost is not stated in Brown
et al. [17] but we can make a ballpark estimate using information from that work. GPT-3 was trained on a
high-performance computing cluster containing N = 10 000 NVIDIA V100 chips, and required a total
S ¼ 3:14� 1023 FLOPs to train to completion [17]. A single V100 has a throughput of C = 2.8 × 1013

FLOPS for half-precision floats, and so we can estimate GPT-3’s total training time in datacentre-
seconds as

S

C �N ¼ 3:14� 1023

2:8� 1012 � 104 ¼ 1:12� 106 s,

which is approximately 311 h. We know the thermal design power of a single V100 chip is 300W and so
we can safely assume a lower bound on the datacentre power usage as 3000 kW. Therefore, we estimate
the total power consumed while training GPT-3 as

3000 � 311 ¼ 933 000 kWh:

The emissions per kWh of the datacentre where GPT-3 was trained is 0.429 kg CO2e kWh−1 [321], leaving
us with a total emission of around 400 000 kg CO2e.

57

However, GPT-3 is already years old; so we will also estimate the energy used when training Google’s
state-of-the-art ‘PaLM’ foundation model. Chowdhery et al. [270] state: ‘We trained PaLM-540B on 6144
TPU v4 chips for 1200 hours and 3072 TPU v4 chips for 336 hours including some downtime and
repeated steps… [We found a] 378.5W measured system power per TPU v4 chip…’ We can therefore
56We would compare GPT-4, but OpenAI has neglected to disclose any information regarding the training routine of the network in
their ‘Technical Report’ [26].
57We must keep in mind that this estimate is a lower limit. We do not include CPU power, cooling or any other overheads in our
calculation, never mind the cost to do a full hyperparameter sweep!
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Figure 31. Here we contextualize the huge carbon footprints generated when training foundation models. The average person’s
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calculate PaLM’s total energy usage as

378:5 � ð6144 � 1200þ 3072 � 336Þ � 3 180 000 kWh:

If PaLM was trained on the same datacentre as GPT-3 (i.e. at an emissivity of 0.429 kg CO2e kWh−1), it
would have emitted a staggering 1 400 000 kg CO2e—quadruple the average person’s lifetime carbon
footprint [322] and approaching the annual emission of some small countries. Luckily, the datacentre
that PaLM was trained on was far greener than that used by OpenAI, and PaLM actually produced
approximately 270 000 kg CO2e [270], although this is still rather large. We contextualize our
calculated footprints visually in figure 31.

PaLM’s contribution to figure 31 demonstrates the importance of choosing and using datacentres that
run on clean energy sources when training deep learning models and make efficient use of heat output
(e.g. through recovery systems). Besides this, researchers can also take care when optimizing their neural
network models to reduce their carbon footprint. For instance by choosing hyperparameters through a
more efficient manual or randomized search, instead of via a brute force method [324]. As stated in
Strubell et al. [325] researchers can also combat redundant retraining of models (and thus unnecessary
energy usage) by ensuring that fully trained models, data and code are released under an open
licence. The publishing of a fully trained model’s energy usage, computation requirements and carbon
footprint also allows downstream researchers to determine whether replication of a work is
economically and environmentally viable. Calculating one’s energy usage in the spirit of openness
does not have to be difficult: we have been using the excellent and user-friendly ‘Machine Learning
CO2 Impact Calculator’ in our own work to calculate and publish the carbon footprint of our models
[326]. A recommendation of this review is that an environmental impact statement should become
standard practice in journal articles, conference presentations and proceedings when deep learning
models (or any high-performance computing (HPC)-heavy research for that matter) is used.
11. Final comments, or how we learnt to stop worrying and love
astronomy’s Big Data Era

To repeat our introductory statement: in every field that deep learning has infiltrated we have seen a
reduction in the use of specialist knowledge, to be replaced with knowledge automatically derived
from data. We have already seen this process play out in many disparate fields from computer Go
[15], to protein folding [16], to natural language processing [17], to computer vision [18]. This process
is already well known within the deep learning community as ‘The Bitter Lesson,’ a precept that is
summarized by the quote:
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The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation
are ultimately the most effective, and by a large margin. [91]
There is no reason to believe that astronomy is fundamentally different. Indeed, within this review we
have seen a narrative pointing to this conclusion (figure 32). Initial work on MLPs within astronomy
required manually selected emergent properties as input (e.g. [53,75]). With the advent of CNNs and
RNNs, these manually selected inputs gave way to raw data ingestion (e.g. [131,155]). Now we are
seeing the removal of human supervision altogether with deep learning methods inferring labels and
knowledge directly from the data (e.g. [170,177]). Ultimately, if astronomy follows in the footsteps of
other applied deep learning fields, we will see the removal of expertly crafted deep learning models,
to be replaced with fine-tuned versions of an all-encompassing ‘foundation’ model [173]. This process
is by no means a bad thing; the removal of human bias in the astronomical discovery process allows
us to find ‘unknown unknowns’ through serendipity [169,261]. Likewise, the ability to leverage data
allows us to directly generate and interrogate realistic yet synthetic observations, sidestepping the
need for an expensive and fragile classical simulation [13,239].

Astronomy’s relative data wealth gives us the opportunity to form a symbiotic relationship with the
cutting edge of deep learning research, an increasingly data hungry field [92,280]. Many ultra-large
datasets in machine learning are proprietary, and so the astronomical community has the opportunity
to step in and provide a high-quality multi-modal public dataset. In turn, this dataset could be used
to train an astronomical ‘foundation’ model that can be used for state-of-the-art downstream tasks
(such as astronomical simulation, see §9.3.3). Finally, following recent developments in connectionism
[17,273] most astronomers lack the resources to train models on the cutting edge of the field. If
astronomy is to have any chance of keeping up with the Big Tech goliaths, we must follow the
examples of EleutherAI and HuggingFace and pool our resources in a grassroots-style open source
fashion (§9). We leave this as a challenge for the community.
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galaxy icon shown in figure 16 is by Agata Kuczmińska and is reproduced here under the CC-BY-4.0 licence. We

https://www.kaggle.com/Cornell-University/arxiv


royalso
47
would like to thank Connor Stone, Micah Bowels and the anonymous reviewers for their helpful comments and

suggestions on the first draft of this manuscript.
Disclaimer. This study is an adaptation of work presented in chapters 1 and 5 of M.J.S.’s PhD thesis [327]. GPT-4 wrote
the abstract.
cietypublishin
References
g.org/journal/rsos
R.Soc.Open

Sci.10:221454
1. Leibniz GW. 1666 Dissertation on the art of
combinations. In Philosophical papers and letters
(ed. LE Loemker), pp. 73–84. Dordrecht, The
Netherlands: Springer.

2. Fidora A, Sierra C. 2011 Ramon Llull: from the
Ars Magna to artificial intelligence. Barcelona,
Spain: Artificial Intelligence Research Inst.

3. Gray J. 2016 ‘Let us Calculate!’ Leibniz, Llull,
and the computational imagination. See https://
publicdomainreview.org/essay/let-us-
calculateleibniz-llull-and-the-computational-
imagination.

4. Turing AM. 1950 I.—Computing machinery and
intelligence. Mind LIX, 433–460. (doi:10.1093/
mind/LIX.236.433)

5. Moor J. 2006 The Dartmouth College Artificial
Intelligence Conference: the next fifty years. AI
Mag. 27, 87.

6. Bostrom N. 2014 Superintelligence: paths,
dangers, strategies. Oxford, UK: Oxford
University Press.

7. Mitchell M. 2019 Artificial intelligence: a guide
for thinking humans. London, UK: Penguin
Books.

8. Lahav O. 1994 Artificial neural networks as non-
linear extensions of statistical methods in
astronomy. Vistas in Astron. 38, 251–256.
(doi:10.1016/0083-6656(94)90034-5)

9. Tagliaferri R, Longo G, Andreon S, Capozziello S,
Donalek C, Giordano G. 2003 Neural networks
for photometric redshifts evaluation. In Neural
nets (eds B Apolloni, M Marinaro, R Tagliaferri),
pp. 226–234. Berlin, Germany: Springer.

10. Firth AE, Lahav O, Somerville RS. 2003
Estimating photometric redshifts with artificial
neural networks. Mon. Not. R. Astron. Soc. 339,
1195–1202. (doi:10.1046/j.1365-8711.2003.
06271.x)

11. Hayat MA, Stein G, Harrington P, Lukić Z, Mustafa
M. 2021 Self-supervised representation learning
for astronomical images. Astrophys. J. Lett. 911,
L33. (doi:10.3847/2041-8213/abf2c7)

12. Bretonnière H et al. 2022 Euclid preparation –
XIII. Forecasts for galaxy morphology with the
Euclid Survey using deep generative models.
Astron. Astrophys. 657, A90.

13. Smith MJ, Geach JE, Jackson RA, Arora N, Stone
C, Courteau S. 2022 Realistic galaxy image
simulation via score-based generative models.
Mon. Not. R. Astron. Soc. 511, 1808–1818.
(doi:10.1093/mnras/stac130)

14. LeCun Y. 2017 My take on Ali Rahimi’s ’Test of
Time’ award talk at NIPS. Facebook. See https://
www2.isye.gatech.edu/~tzhao80/Yann_
Response.pdf.

15. Silver D et al. 2016 Mastering the game of Go
with deep neural networks and tree search.
Nature 529, 484–489. (doi:10.1038/
nature16961)
16. Jumper J et al. 2021 Highly accurate protein
structure prediction with AlphaFold. Nature 596,
583–589. (doi:10.1038/s41586-021-03819-2)

17. Brown T et al. 2020 Language models are few-
shot learners. In Advances in neural information
processing systems (eds H Larochelle, M
Ranzato, R Hadsell, M Balcan, H Lin), vol. 33,
pp. 1877–1901. Red Hook, NY: Curran
Associates, Inc.

18. Dosovitskiy A et al. 2020 An image is worth
16 × 16 words: transformers for image
recognition at scale. (http://arxiv.org/abs/2010.
11929)

19. Zhang Y, Zhao Y. 2015 Astronomy in the big
data era. Data Sci. J. 14, 11. (doi:10.5334/dsj-
2015-011)

20. Springel V et al. 2018 First results from the
IllustrisTNG simulations: matter and galaxy
clustering. Mon. Not. R. Astron. Soc. 475,
676–698. (doi:10.1093/mnras/stx3304)

21. Vogelsberger M, Marinacci F, Torrey P, Puchwein
E. 2020 Cosmological simulations of galaxy
formation. Nat. Rev. Phys. 2, 42–66. (doi:10.
1038/s42254-019-0127-2)

22. Angulo RE, Hahn O. 2022 Large-scale dark
matter simulations. Living Rev. Comput.
Astrophys. 8, 1–200. (doi:10.1007/s41115-021-
00013-z)

23. Miller AS. 1993 A review of neural network
applications in astronomy. Vistas in Astron. 36,
141–161. (doi:10.1016/0083-6656(93)90118-4)

24. Ball NM, Brunner RJ. 2010 Data mining and
machine learning in astronomy. Int. J. Modern
Phys. D 19, 1049–1106. (doi:10.1142/
S0218271810017160)

25. Huertas-Company M, Lanusse F. 2023 The Dawes
review 10: the impact of deep learning for the
analysis of galaxy surveys. Publ. Astron. Soc.
Australia 40, e001. (doi:10.1017/pasa.2022.55)

26. OpenAI. 2023 GPT-4 Technical Report. See
https://openai.com/research/gpt-4.

27. Bubeck S et al. 2023 Sparks of artificial general
intelligence: early experiments with GPT-4.
(http://arxiv.org/abs/2303.12712)

28. McCulloch W, Pitts W. 1943 A logical calculus
of ideas immanent in nervous activity. Bull.
Math. Biophys. 5, 127–147. (doi:10.1007/
BF02478259)

29. Rosenblatt F. 1958 The perceptron: a
probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65,
65–386. (doi:10.1037/h0042519)

30. Hebb DO. 1949 The organization of behavior: a
neuropsychological theory. New York, NY: Wiley.

31. Minsky M, Papert S. 1969 Perceptrons: an
introduction to computational geometry.
Cambridge, MA: MIT Press.

32. Olazaran M. 1996 A sociological study of the
official history of the perceptrons controversy.
Soc. Stud. Sci. 26(3), 611–659. (doi:10.1177/
030631296026003005)

33. Metz C. 2021 Genius makers: the mavericks who
brought AI to Google, Facebook, and the world.
New York, NY: Penguin Random House.

34. Ivakhnenko A, Lapa V. 1965 Cybernetic
predicting devices. USSR: CCM Information
Corporation.

35. Ivakhnenko A. 1971 Polynomial theory of
complex systems. IEEE Trans. Syst. Man Cybern.
SMC-1, 364–378. (doi:10.1109/TSMC.1971.
4308320)

36. Rosenblatt F. 1962 Principles of neurodynamics:
perceptrons and the theory of brain mechanisms.
Cornell Aeronautical Laboratory. Report no.
VG-1196-G-8. Spartan Books.

37. Cybenko G. 1989 Approximation by
superpositions of a sigmoidal function. Math.
Control Signals Syst. (MCSS) 2, 303–314. (doi:10.
1007/BF02551274)

38. Hornik K, Tinchcombe M, White H. 1991
Approximation capabilities of multilayer
feedforward networks. Neural Netw. 4,
251–257. (doi:10.1016/0893-6080(91)90009-T)

39. Lu Z, Pu H, Wang F, Hu Z, Wang L. 2017 The
expressive power of neural networks: a view
from the width. In Advances in neural
information processing systems (eds I Guyon, UV
Luxburg, S Bengio, H Wallach, R Fergus, S
Vishwanathan, R Garnett), vol. 30, pp. 6232–
6240. Red Hook, NY: Curran Associates, Inc.

40. Linnainmaa S. 1976 Taylor expansion of the
accumulated rounding error. BIT 16, 146–160.
(doi:10.1007/BF01931367)

41. Werbos PJ. 1981 Applications of advances in
nonlinear sensitivity analysis. In Proc. of the
10th IFIP Conf., NYC, 31 August–4 September,
pp. 762–770.

42. Rumelhart DE, Hinton GE, Williams RJ. 1986
Learning representations by back-propagating
errors. Nature 323, 533–536. (doi:10.1038/
323533a0)

43. Linnainmaa S. 1970 The representation of the
cumulative rounding error of an algorithm as a
Taylor expansion of the local rounding errors.
Master’s thesis, The University of Helsinki,
Finland. [In Finnish.]

44. Schmidhuber J. 2014 Deep learning in neural
networks: an overview. (http://arxiv.org/abs/
1404.7828).

45. Baydin AG, Pearlmutter BA, Radul AA, Siskind
JM. 2018 Automatic differentiation in machine
learning: a survey. J. Mach. Learn. Res. 18,
1–43.

46. Fukushima K. 1980 Neocognitron: a self-
organizing neural network model for a
mechanism of pattern recognition unaffected by
shift in position. Biol. Cybern 36, 193–202.
(doi:10.1007/BF00344251)

https://publicdomainreview.org/essay/let-us-calculateleibniz-llull-and-the-computational-imagination
https://publicdomainreview.org/essay/let-us-calculateleibniz-llull-and-the-computational-imagination
https://publicdomainreview.org/essay/let-us-calculateleibniz-llull-and-the-computational-imagination
https://publicdomainreview.org/essay/let-us-calculateleibniz-llull-and-the-computational-imagination
http://dx.doi.org/10.1093/mind/LIX.236.433
http://dx.doi.org/10.1093/mind/LIX.236.433
http://dx.doi.org/10.1016/0083-6656(94)90034-5
http://dx.doi.org/10.1046/j.1365-8711.2003.06271.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06271.x
http://dx.doi.org/10.3847/2041-8213/abf2c7
http://dx.doi.org/10.1093/mnras/stac130
https://www2.isye.gatech.edu/~tzhao80/Yann_Response.pdf
https://www2.isye.gatech.edu/~tzhao80/Yann_Response.pdf
https://www2.isye.gatech.edu/~tzhao80/Yann_Response.pdf
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/s41586-021-03819-2
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://dx.doi.org/10.5334/dsj-2015-011
http://dx.doi.org/10.5334/dsj-2015-011
http://dx.doi.org/10.1093/mnras/stx3304
http://dx.doi.org/10.1038/s42254-019-0127-2
http://dx.doi.org/10.1038/s42254-019-0127-2
http://dx.doi.org/10.1007/s41115-021-00013-z
http://dx.doi.org/10.1007/s41115-021-00013-z
https://doi.org/10.1016/0083-6656(93)90118-4
http://dx.doi.org/10.1142/S0218271810017160
http://dx.doi.org/10.1142/S0218271810017160
http://dx.doi.org/10.1017/pasa.2022.55
https://openai.com/research/gpt-4
http://arxiv.org/abs/2303.12712
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1177/030631296026003005
http://dx.doi.org/10.1177/030631296026003005
http://dx.doi.org/10.1109/TSMC.1971.4308320
http://dx.doi.org/10.1109/TSMC.1971.4308320
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1007/BF01931367
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://dx.doi.org/10.1007/BF00344251


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221454
48
47. Nair V, Hinton GE. 2010 Rectified linear units

improve restricted Boltzmann machines. In Proc.
of the 27th Int. Conf. on Machine Learning
ICML’10, Haifa, Israel, 21–24 June, pp. 807–
814. Madison, WI: Omnipress.

48. Clevert D, Unterthiner T, Hochreiter S. 2016 Fast
and accurate deep network learning by
exponential linear units (ELUs). In 4th Int. Conf.
on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, 2–4 May. (https://arxiv.org/
abs/1511.07289)

49. Ramachandran P, Zoph B, Le QV. 2017 Searching
for activation functions. (http://arxiv.org/abs/
1710.05941).

50. Misra D. 2019 Mish: a self regularized non-
monotonic activation function. (http://arxiv.org/
abs/1908.08681).

51. Rappaport B, Anderson K. 1988 Automated
galaxy recognition. In European Southern
Observatory Conf. and Workshop Proc., Garching,
Germany, 12–14 October, vol. 28, pp. 233–238.

52. Adorf HM, Johnston MD. 1988 Artificial neural nets
in astronomy. In Arbeitspapier der Gesellschaft für
Mathematik and Datenverarbeitung, vol. 329.

53. Odewahn SC, Stockwell EB, Pennington RL,
Humphreys RM, Zumach WA. 1992 Automated
star/galaxy discrimination with neural networks.
Astron. J. 103, 318. (doi:10.1086/116063)

54. Pennington RL, Humphreys RM, Odewahn SC,
Zumach W, Thurmes PM. 1993 The automated
plate scanner catalog of the palomar sky
survey. I. Scanning parameters and procedures
on JSTOR. Publ. Astron. Soc. Pac. 105, 521–526.
(doi:10.1086/133186)

55. Odewahn SC, Humphreys RM, Aldering G,
Thurmes P. 1993 Star-galaxy separation with a
neural network. ii. multiple Schmidt plate
fields. Publ. Astron. Soc. Pac. 105, 1354. (doi:10.
1086/133317)

56. Bazell D, Peng Y. 1998 A comparison of neural
network algorithms and preprocessing methods
for star-galaxy discrimination. Astrophys. J.
Suppl. Ser. 116, 47–55. (doi:10.1086/313098)

57. Bertin E, Arnouts S. 1996 SExtractor:
software for source extraction. Astron. Astrophys.
Suppl. Ser. 117, 393–404. (doi:10.1051/
aas:1996164)

58. Andreon S, Gargiulo G, Longo G, Tagliaferri R,
Capuano N. 2000 Wide field imaging—I.
Applications of neural networks to object
detection and star/galaxy classification. Mon.
Not. R. Astron. Soc. 319, 700–716. (doi:10.
1046/j.1365-8711.2000.03700.x)

59. Storrie-Lombardi MC, Lahav O. 1992
Morphological classification of galaxies by
artificial neural networks. Mon. Not. R. Astron.
Soc. 259, 8P–12P. (doi:10.1093/mnras/259.1.
8P)

60. Lahav O et al. 1995 Galaxies, human eyes, and
artificial neural networks. Science 267,
859–862. (doi:10.1126/science.267.5199.859)

61. Lahav O, Nairn A, Sodré Jr L, Storrie-Lombardi
MC. 1996 Neural computation as a tool for
galaxy classification: methods and examples.
Mon. Not. R. Astron. Soc. 283, 207–221.
(doi:10.1093/mnras/283.1.207)

62. Naim A, Lahav O. 1995 Automated
morphological classification of APM galaxies by
supervised artificial neural networks. Mon.
Not. R. Astron. Soc. 275, 567–590. (doi:10.
1093/mnras/275.3.567)

63. Naim A et al. 1995 A comparative study of
morphological classifications of APM galaxies.
Mon. Not. R. Astron. Soc. 274, 1107–1125.

64. Odewahn SC, Windhorst RA, Driver SP, Keel WC.
1996 ADS. Astrophys. J. Lett. 472, L13. (doi:10.
1086/310345)

65. Ball NM, Loveday J, Fukugita M, Nakamura O,
Okamura S, Brinkmann J, Brunner RJ. 2004
Galaxy types in the Sloan Digital Sky Survey
using supervised artificial neural networks. Mon.
Not. R. Astron. Soc. 348, 1038–1046. (doi:10.
1111/j.1365-2966.2004.07429.x)

66. von Hippel T, Storrie-Lombardi LJ, Storrie-
Lombardi MC, Irwin MJ. 1994 Automated
classification of stellar spectra—I. Initial results
with artificial neural networks. Mon.
Not. R. Astron. Soc. 269, 97–104. (doi:10.1093/
mnras/269.1.97)

67. Klusch M, Napiwotzki R. 1993 HNS: a hybrid
neural system and its use for the classification
of stars. Astron. Astrophys. 276, 309–319.

68. Chon MC. 1998 Muon physics and neural
network event classifier for the Sudbury
Neutrino Observatory. PhD thesis, University of
Guelph, Canada.

69. Carballo R, Cofiño AS, González-Serrano JI. 2004
Selection of quasar candidates from combined
radio and optical surveys using neural networks.
Mon. Not. R. Astron. Soc. 353, 211–220.
(doi:10.1111/j.1365-2966.2004.08056.x)

70. Claeskens JF, Smette A, Vandenbulcke L, Surdej
J. 2006 Identification and redshift determination
of quasi-stellar objects with medium-band
photometry: application to Gaia. Mon.
Not. R. Astron. Soc. 367, 879–904. (doi:10.
1111/j.1365-2966.2006.10024.x)

71. Carballo R, González-Serrano JI, Benn CR,
Jiménez-Luján F. 2008 Use of neural networks
for the identification of new z≥ 3.6 QSOs from
FIRST–SDSS DR5. Mon. Not. R. Astron. Soc.
391, 369–382. (doi:10.1111/j.1365-2966.2008.
13896.x)

72. White RL et al. 2000 The FIRST bright quasar
survey. II. 60 nights and 1200 spectra later.
Astrophys. J. Suppl. Ser. 126, 133–207. (doi:10.
1086/313300)

73. Kessler R et al. 2010 Results from the supernova
photometric classification challenge. Publ.
Astron. Soc. Pac. 122, 1415–1431. (doi:10.1086/
657607)

74. Karpenka NV, Feroz F, Hobson MP. 2013 A
simple and robust method for automated
photometric classification of supernovae using
neural networks. Mon. Not. R. Astron. Soc. 429,
1278–1285. (doi:10.1093/mnras/sts412)

75. Angel J, Wizinowich P, Lloyd-Hart M, Sandler D.
1990 Adaptive optics for array telescopes using
neural-network techniques. Nature 348,
221–224. (doi:10.1038/348221a0)

76. Sandler DG, Barrett TK, Palmer DA, Fugate RQ,
Wild WJ. 1991 Use of a neural network to
control an adaptive optics system for an
astronomical telescope. Nature 351, 300–302.
(doi:10.1038/351300a0)

77. Lloyd-Hart M, Wizinowich P, McLeod B,
Wittman D, Colucci D, Dekany R, McCarthy D,
Angel JRP, Sandler D. 1992 First results of an
on-line adaptive optics system with atmospheric
wavefront sensing by an artificial neural
network. Astrophys. J. Lett. 390, L41. (doi:10.
1086/186367)

78. Vanzella E et al. 2004 Photometric redshifts
with the multilayer perceptron neural network:
application to the HDF-S and SDSS. Astron.
Astrophys. 423, 761–776. (doi:10.1051/0004-
6361:20040176)

79. Collister AA, Lahav O. 2004 ANNz: estimating
photometric redshifts using artificial neural
networks. Publ. Astron. Soc. Pac. 116, 345–351.
(doi:10.1086/383254)

80. Stoughton C et al. 2002 Sloan digital sky survey:
early data release. Astron. J. 123, 485–548.
(doi:10.1086/324741)

81. York DG et al. 2000 The Sloan digital sky survey:
technical summary. Astron. J. 120, 1579–1587.
(doi:10.1086/301513)

82. Koons HC, Gorney DJ. 1990 A sunspot maximum
prediction using a neural network. Eos Trans.
Am. Geophys. Union 71, 677–688. (doi:10.1029/
EO071i018p00677-01)

83. Bailer-Jones CAL, Irwin M, Gilmore G, von
Hippel T. 1997 Physical parametrization of
stellar spectra: the neural network approach.
Mon. Not. R. Astron. Soc. 292, 157–166.
(doi:10.1093/mnras/292.1.157)

84. Auld T, Bridges M, Hobson MP, Gull SF. 2007
Fast cosmological parameter estimation using
neural networks. Mon. Not. R. Astron. Soc.: Lett.
376, L11–L15. (doi:10.1111/j.1745-3933.2006.
00276.x)

85. Auld T, Bridges M, Hobson MP. 2008 cosmonet:
fast cosmological parameter estimation in non-
flat models using neural networks. Mon.
Not. R. Astron. Soc. 387, 1575–1582. (doi:10.
1111/j.1365-2966.2008.13279.x)

86. Nørgaard-Nielsen HU, Jørgensen HE. 2008
Foreground removal from CMB temperature
maps using an MLP neural network. Astrophys.
Space Sci. 318, 195–206. (doi:10.1007/s10509-
008-9912-6)

87. Tolstikhin IO et al. 2021 MLP-Mixer: an all-MLP
architecture for vision. In Advances in neural
information processing systems (eds M Ranzato, A
Beygelzimer, Y Dauphin, P Liang, JW Vaughan),
vol. 34, pp. 24261–24272. Curran Associates, Inc.

88. Touvron H et al. 2021 ResMLP: feedforward
networks for image classification with data-
efficient training. (http://arxiv.org/abs/2105.
03404).

89. Liu H, Dai Z, So DR, Le QV. 2021 Pay attention
to MLPs. (http://arxiv.org/abs/2105.08050).

90. Melas-Kyriazi L. 2021 Do you even need
attention? A stack of feed-forward layers does
surprisingly well on ImageNet. (http://arxiv.org/
abs/2105.02723).

91. Sutton R. 2019 The bitter lesson. See http://
incompleteideas.net/IncIdeas/BitterLesson.html.

92. Branwen G. 2022 The scaling hypothesis. See
https://www.gwern.net/Scaling-hypothesis.

93. LeCun Y, Boser B, Denker JS, Henderson D,
Howard RE, Hubbard W, Jackel LD. 1989
Backpropagation applied to handwritten zip
code recognition. Neural Comput. 1, 541–551.
(doi:10.1162/neco.1989.1.4.541)

94. Rombach R, Blattmann A, Lorenz D, Esser P,
Ommer B. 2021 High-resolution image synthesis

https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1908.08681
http://arxiv.org/abs/1908.08681
http://dx.doi.org/10.1086/116063
http://dx.doi.org/10.1086/133186
https://doi.org/10.1086/133317
https://doi.org/10.1086/133317
http://dx.doi.org/10.1086/313098
http://dx.doi.org/10.1051/aas:1996164
http://dx.doi.org/10.1051/aas:1996164
http://dx.doi.org/10.1046/j.1365-8711.2000.03700.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03700.x
https://doi.org/10.1093/mnras/259.1.8P
https://doi.org/10.1093/mnras/259.1.8P
http://dx.doi.org/10.1126/science.267.5199.859
http://dx.doi.org/10.1093/mnras/283.1.207
http://dx.doi.org/10.1093/mnras/275.3.567
http://dx.doi.org/10.1093/mnras/275.3.567
http://dx.doi.org/10.1086/310345
http://dx.doi.org/10.1086/310345
http://dx.doi.org/10.1111/j.1365-2966.2004.07429.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07429.x
http://dx.doi.org/10.1093/mnras/269.1.97
http://dx.doi.org/10.1093/mnras/269.1.97
http://dx.doi.org/10.1111/j.1365-2966.2004.08056.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10024.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10024.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13896.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13896.x
https://doi.org/10.1086/313300
https://doi.org/10.1086/313300
http://dx.doi.org/10.1086/657607
http://dx.doi.org/10.1086/657607
http://dx.doi.org/10.1093/mnras/sts412
http://dx.doi.org/10.1038/348221a0
http://dx.doi.org/10.1038/351300a0
http://dx.doi.org/10.1086/186367
http://dx.doi.org/10.1086/186367
http://dx.doi.org/10.1051/0004-6361:20040176
http://dx.doi.org/10.1051/0004-6361:20040176
http://dx.doi.org/10.1086/383254
http://dx.doi.org/10.1086/324741
http://dx.doi.org/10.1086/301513
http://dx.doi.org/10.1029/EO071i018p00677-01
http://dx.doi.org/10.1029/EO071i018p00677-01
http://dx.doi.org/10.1093/mnras/292.1.157
http://dx.doi.org/10.1111/j.1745-3933.2006.00276.x
http://dx.doi.org/10.1111/j.1745-3933.2006.00276.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13279.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13279.x
http://dx.doi.org/10.1007/s10509-008-9912-6
http://dx.doi.org/10.1007/s10509-008-9912-6
http://arxiv.org/abs/2105.03404
http://arxiv.org/abs/2105.03404
http://arxiv.org/abs/2105.08050
http://arxiv.org/abs/2105.02723
http://arxiv.org/abs/2105.02723
http://incompleteideas.net/IncIdeas/BitterLesson.html
http://incompleteideas.net/IncIdeas/BitterLesson.html
https://www.gwern.net/Scaling-hypothesis
http://dx.doi.org/10.1162/neco.1989.1.4.541


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221454
49
with latent diffusion models. (http://arxiv.org/

abs/2112.10752).
95. Lin M, Chen Q, Yan S. 2013 Network in

network. (http://arxiv.org/abs/1312.4400).
96. Crawford K. 2015 Bright spiral galaxy M81. See

https://apod.nasa.gov/apod/ap151017.
html (accessed 16 July 2020).

97. Werbos PJ. 1990 Backpropagation through time:
what it does and how to do it. Proc. IEEE 78,
1550–1560. (doi:10.1109/5.58337)

98. Hochreiter S. 1991 Untersuchungen zu
dynamischen neuronalen Netzen (investigations
on dynamic neural networks). Diploma thesis,
The Technical University of Munich, Germany.
[In German.]

99. Bengio Y, Simard P, Frasconi P. 1994 Learning
long-term dependencies with gradient descent
is difficult. IEEE Trans. Neural Netw. 5, 157–166.
(doi:10.1109/72.279181)

100. Frankle J, Carbin M. 2018 The lottery ticket
hypothesis: finding sparse, trainable neural
networks. (http://arxiv.org/abs/1803.03635).

101. Glorot X, Bordes A, Bengio Y. 2011 Deep sparse
rectifier neural networks. In Proc. of the 14th
Int. Conf. on Artificial Intelligence and Statistics,
vol. 15 (eds G Gordon, D Dunson, M Dudík),
pp. 315–323. Fort Lauderdale, FL: Proceedings
of Machine Learning Research.

102. Oh K, Jung K. 2004 GPU implementation of
neural networks. Pattern Recognit. 37,
1311–1314. (doi:10.1016/j.patcog.2004.01.013)

103. Steinkrau D, Simard P, Buck I. 2005 Using GPUs
for machine learning algorithms. In Proc. of the
8th Int. Conf. on Document Analysis and
Recognition ICDAR ’05, Seoul, South Korea, 31
August–1 September, pp. 1115–1119. IEEE
Computer Society.

104. Chellapilla K, Puri S, Simard P. 2006 High
performance convolutional neural networks for
document processing. In Tenth Int. Workshop on
Frontiers in Handwriting Recognition La Baule
(France) (ed. G Lorette). Université de Rennes 1
Suvisoft. (http://www.suvisoft.com).

105. Raina R, Madhavan A, Ng AY. 2009 Large-scale
deep unsupervised learning using graphics
processors. In Proc. of the 26th Annual Int. Conf. on
Machine Learning ICML ’09, Montreal, Canada, 14–
18 June, pp. 873–880. New York, NY: Association
for Computing Machinery.

106. Cireşan D, Meier U, Gambardella LM, Schmidhuber J.
2010 Deep, big, simple neural nets for handwritten
digit recognition. Neural Comput. 22, 3207–3220.
(doi:10.1162/NECO_a_00052)

107. Cireşan D, Meier U, Masci J, Gambardella LM,
Schmidhuber J. 2011 Flexible, high performance
convolutional neural networks for image
classification. In IJCAI 2011, Proc. of the 22nd
Int. Joint Conf. on Artificial Intelligence,
Barcelona, Spain, 16–22 July 2011 (ed. T
Walsh), pp. 1237–1242. Washington, DC: IJCAI/
AAAI.

108. Krizhevsky A, Sutskever I, Hinton GE. 2012
ImageNet classification with deep convolutional
neural networks. In Advances in Neural
Information Processing Systems 25: 26th Annual
Conf. on Neural Information Processing Systems
2012. Proc. of a meeting held 3–6 December
2012, Lake Tahoe, NV, USA (eds PL Bartlett, FCN
Pereira,CJC Burges, L Bottou, KQ Weinberger), pp.
1106–1114. Association for Computing
Machinery.

109. Russakovsky O et al. 2015 ImageNet large scale
visual recognition challenge. Int. J. Comput. Vis.
(IJCV) 115, 211–252. (doi:10.1007/s11263-015-
0816-y)

110. Srivastava N, Hinton GE, Krizhevsky A, Sutskever
I, Salakhutdinov R. 2014 Dropout: a simple way
to prevent neural networks from overfitting.
J. Mach. Learn. Res. 15, 1929–1958.

111. Sevilla J, Heim L, Ho A, Besiroglu T, Hobbhahn
M, Villalobos P. 2022 Compute trends across
three eras of machine learning. (http://arxiv.
org/abs/2202.05924).

112. Hochreiter S, Schmidhuber J. 1997 Long short-
term memory. Neural Comput. 9, 1735–1780.
(doi:10.1162/neco.1997.9.8.1735)

113. Gers F, Schmidhuber J, Cummins F. 2000
Learning to forget: continual prediction with
LSTM. Neural Comput. 12, 2451–2471. (doi:10.
1162/089976600300015015)

114. Cho K, van Merrienboer B, Gulcehre C,
Bahdanau D, Bougares F, Schwenk H, Bengio Y.
2014 Learning phrase representations using
RNN encoder-decoder for statistical machine
translation. (http://arxiv.org/abs/1406.1078).

115. Bayer J. 2015 Learning sequence
representations. PhD thesis, Technical University
Munich, Germany.

116. Sutskever I, Vinyals O, Le QV. 2014 Sequence to
sequence learning with neural networks.
(http://arxiv.org/abs/1409.3215).

117. Vaswani A, Shazeer N, Parmar N, Uszkoreit J,
Jones L, Gomez AN, Kaiser L, Polosukhin I. 2017
Attention is all you need. (http://arxiv.org/abs/
1706.03762).

118. Srivastava RK, Greff K, Schmidhuber J. 2015
Highway networks. (http://arxiv.org/abs/1505.
00387).

119. He K, Zhang X, Ren S, Sun J. 2015 Deep residual
learning for image recognition. (http://arxiv.
org/abs/1512.03385).

120. Ronneberger O, Fischer P, Brox T. 2015 U-Net:
convolutional networks for biomedical image
segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015 –
18th Int. Conf. Munich, Germany, 5–9 October
2015, Proceedings, Part III vol. 9351. Lecture
Notes in Computer Science, pp. 234–241. Berlin,
Germany: Springer.

121. Bahdanau D, Cho K, Bengio Y. 2014
Neural machine translation by jointly learning
to align and translate. (http://arxiv.org/abs/
1409.0473).

122. Radford A, Wu J, Child R, Luan D, Amodei D,
Sutskever I. 2019 Language models are
unsupervised multitask learners. OpenAI
Whitepaper. See https://cdn.openai.com/better -
language - models/language_models_are_
unsupervised_multitask_learners.pdf.

123. Devlin J, Chang M, Lee K, Toutanova K. 2019
BERT: pre-training of deep bidirectional
transformers for language understanding. In Proc.
of the 2019 Conf. of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN,
2–7 June, vol. 1 (Long and Short Papers),
pp. 4171–4186. Minneapolis, MN: Association for
Computational Linguistics.
124. Reed S et al. 2022 A generalist agent. Trans.
Mach. Learn. Res. See http://arxiv.org/abs/2205.
06175

125. Gori M, Monfardini G, Scarselli F. 2005 A new
model for learning in graph domains. In Proc.
2005 IEEE Int. Joint Conf. on Neural Networks,
Montreal, Canada, 31 July–4 August, vol. 2,
pp. 729–734. New York, NY: IEEE.

126. Bruna J, Zaremba W, Szlam A, LeCun Y. 2013
Spectral networks and locally connected networks
on graphs. (http://arxiv.org/abs/1312.6203).

127. Kipf TN, Welling M. 2017 Semi-supervised
classification with graph convolutional
networks. In Int. Conf. on Learning
Representations. (https://openreview.net/forum?
id=SJU4ayYgl).

128. Li Y, Tarlow D, Brockschmidt M, Zemel R. 2015
Gated graph sequence neural networks. (http://
arxiv.org/abs/1511.05493).

129. Zhu WW et al. 2014 Searching for pulsars using
image pattern recognition. Astrophys. J. 781,
117. (doi:10.1088/0004-637X/781/2/117)

130. Hála P. 2014 Spectral classification using
convolutional neural networks. (http://arxiv.org/
abs/1412.8341).

131. Dieleman S, Willett KW, Dambre J. 2015
Rotation-invariant convolutional neural
networks for galaxy morphology prediction.
Mon. Not. R. Astron. Soc. 450, 1441–1459.
(doi:10.1093/mnras/stv632)

132. Raddick MJ, Bracey G, Gay PL, Lintott CJ, Murray
P, Schawinski K, Szalay AS, Vandenberg J. 2010
Galaxy Zoo: exploring the motivations of citizen
science volunteers. Astron. Educ. Rev. 9, 010103.
(doi:10.3847/AER2009036)

133. Huertas-Company M et al. 2015 A catalog of
visual-like morphologies in the 5 CANDELS fields
using deep learning. Astrophys. J. Suppl. Ser.
221, 8. (doi:10.1088/0067-0049/221/1/8)

134. Koekemoer AM et al. 2011 CANDELS: the cosmic
assembly near-infrared deep extragalactic legacy
survey—the Hubble Space Telescope
observations, imaging data products, and
mosaics. Astrophys. J. Suppl. Ser. 197, 36.
(doi:10.1088/0067-0049/197/2/36)

135. Aniyan AK, Thorat K. 2017 Classifying radio
galaxies with the convolutional neural network.
Astrophys. J. Suppl. Ser. 230, 20. (doi:10.3847/
1538-4365/aa7333)

136. Wilde J, Serjeant S, Bromley JM, Dickinson H,
Koopmans LVE, Metcalf RB. 2022 Detecting
gravitational lenses using machine learning:
exploring interpretability and sensitivity to rare
lensing configurations. Mon. Not. R. Astron. Soc.
512, 3464–3479. (doi:10.1093/mnras/stac562)

137. Zeiler MD, Fergus R. 2014 Visualizing and
understanding convolutional networks. In
Computer Vision – ECCV 2014 (eds D Fleet, T
Pajdla, B Schiele, T Tuytelaars), pp. 818–833.
Cham, Switzerland: Springer.

138. Selvaraju RR, Cogswell M, Das A, Vedantam R,
Parikh D, Batra D. 2016 Grad-CAM: visual
explanations from deep networks via gradient-
based localization. (http://arxiv.org/abs/1610.
02391).

139. Akeret J, Chang C, Lucchi A, Refregier A. 2017
Radio frequency interference mitigation using deep
convolutional neural networks. Astron. Comput. 18,
35–39. (doi:10.1016/j.ascom.2017.01.002)

http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/1312.4400
https://apod.nasa.gov/apod/ap151017.html
https://apod.nasa.gov/apod/ap151017.html
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1109/72.279181
http://arxiv.org/abs/1803.03635
http://dx.doi.org/10.1016/j.patcog.2004.01.013
http://www.suvisoft.com
http://dx.doi.org/10.1162/NECO_a_00052
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/2202.05924
http://arxiv.org/abs/2202.05924
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://cdn.openai.com/better - language - models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better - language - models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better - language - models/language_models_are_unsupervised_multitask_learners.pdf
http://arxiv.org/abs/2205.06175
http://arxiv.org/abs/2205.06175
http://arxiv.org/abs/1312.6203
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://dx.doi.org/10.1088/0004-637X/781/2/117
http://arxiv.org/abs/1412.8341
http://arxiv.org/abs/1412.8341
http://dx.doi.org/10.1093/mnras/stv632
https://doi.org/10.3847/AER2009036
http://dx.doi.org/10.1088/0067-0049/221/1/8
https://doi.org/10.1088/0067-0049/197/2/36
http://dx.doi.org/10.3847/1538-4365/aa7333
http://dx.doi.org/10.3847/1538-4365/aa7333
http://dx.doi.org/10.1093/mnras/stac562
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
http://dx.doi.org/10.1016/j.ascom.2017.01.002


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221454
50
140. Berger P, Stein G. 2019 A volumetric deep

convolutional neural network for simulation of
mock dark matter halo catalogues. Mon. Not. R.
Astron. Soc. 482, 2861–2871. (doi:10.1093/
mnras/sty2949)

141. Milletari F, Navab N, Ahmadi SA. 2016 V-Net:
fully convolutional neural networks for
volumetric medical image segmentation.
(http://arxiv.org/abs/1606.04797).

142. Aragon-Calvo MA. 2019 Classifying the large-
scale structure of the universe with deep neural
networks. Mon. Not. R. Astron. Soc. 484,
5771–5784. (doi:10.1093/mnras/stz393)

143. Hausen R, Robertson BE. 2020 Morpheus: a
deep learning framework for the pixel-level
analysis of astronomical image Data.
Astrophys. J. Suppl. Ser. 248, 20. (doi:10.3847/
1538-4365/ab8868)

144. Lauritsen L, Dickinson H, Bromley J, Serjeant S,
Lim CF, Gao ZK, Wang WH. 2021 Superresolving
Herschel imaging: a proof of concept using
deep neural networks. Mon. Not. R. Astron. Soc.
507, 1546–1556. (doi:10.1093/mnras/stab2195)

145. Choma N et al. 2018 Graph neural networks for
IceCube signal classification. (http://arxiv.org/
abs/1809.06166).

146. Villanueva-Domingo P, Villaescusa-Navarro F,
Genel S, Anglés-Alcázar D, Hernquist L,
Marinacci F, Spergel DN, Vogelsberger M,
Narayanan D. 2021 Weighing the milky way and
andromeda with artificial intelligence. (http://
arxiv.org/abs/2111.14874).

147. Villanueva-Domingo P et al. 2022 Inferring halo
masses with graph neural networks. Astrophys.
J. 935, 30. (doi:10.3847/1538-4357/ac7aa3)

148. Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM,
Solomon JM. 2018 Dynamic graph CNN for
learning on point clouds. (http://arxiv.org/abs/
1801.07829)

149. Aussem A, Murtagh F, Sarazin M. 1994
Dynamical recurrent neural networks and
pattern recognition methods for time series
prediction: application to seeing and
temperature forecasting in the context of ESO’s
VLT astronomical weather station. Vistas Astron.
38, 357–374. (doi:10.1016/0083-
6656(94)90047-7)

150. Wu JG, Lundstedt H. 1996 Prediction of
geomagnetic storms from solar wind data using
Elman recurrent neural networks. Geophys. Res.
Lett. 23, 319–322. (doi:10.1029/96GL00259)

151. Lundstedt H, Gleisner H, Wintoft P. 2002
Operational forecasts of the geomagnetic Dst
index. Geophys. Res. Lett. 29, 34–1–34–4.
(doi:10.1029/2002GL016151)

152. Vassiliadis D, Klimas AJ, Valdivia JA, Baker DN.
2000 The nonlinear dynamics of space weather.
Adv. Space Res. 26, 197–207. (doi:10.1016/
S0273-1177(99)01050-9)

153. Brodrick D, Taylor D, Diederich J. 2004 Recurrent
neural networks for narrowband signal
detection in the time-frequency domain. Symp.
Int. Astron. Union 213, 483–486. (doi:10.1017/
S0074180900193751)

154. Elman JL. 1990 Finding structure in time. Cogn.
Sci. 14, 179–211. (doi:10.1207/
s15516709cog1402_1)

155. Charnock T, Moss A. 2017 Deep recurrent neural
networks for supernovae classification.
Astrophys. J. Lett. 837, L28. (doi:10.3847/2041-
8213/aa603d)

156. Naul B, Bloom JS, Pérez F, van der Walt S. 2018
A recurrent neural network for classification of
unevenly sampled variable stars. Nat. Astron. 2,
151–155. (doi:10.1038/s41550-017-0321-z)

157. Gonzalez CAG, Absil O, Van Droogenbroeck M. 2018
Supervised detection of exoplanets in high-contrast
imaging sequences. Astron. Astrophys. 613, A71.
(doi:10.1051/0004-6361/201731961)

158. Carrasco-Davis R, Cabrera-Vives G, Förster F,
Estévez PA, Huijse P, Protopapas P, Reyes I,
Martinez-Palomera J, Donoso C. 2019 Deep
learning for image sequence classification of
astronomical events. Publ. Astron. Soc. Pac. 131,
108006. (doi:10.1088/1538-3873/aaef12)

159. Finke T, Krämer M, Manconi S. 2021
Classification of Fermi-LAT sources with deep
learning using energy and time spectra. Mon.
Not. R. Astron. Soc. 507, 4061–4073. (doi:10.
1093/mnras/stab2389)

160. Weddell SJ, Webb RY. 2008 Reservoir computing
for prediction of the spatially-variant point
spread function. IEEE J. Sel. Top. Signal Process.
2, 624–634. (doi:10.1109/JSTSP.2008.2004218)

161. Jaeger H, Haas H. 2004 Harnessing nonlinearity:
predicting chaotic systems and saving energy in
wireless communication. Science 304, 78–80.
(doi:10.1126/science.1091277)

162. Capizzi G, Napoli C, Paternò L. 2012 An
innovative hybrid neuro-wavelet method for
reconstruction of missing data in astronomical
photometric surveys. In Artificial intelligence and
soft computing (eds L Rutkowski, M
Korytkowski, R Scherer, R Tadeusiewicz, LA
Zadeh, JM Zurada), pp. 21–29. Berlin, Germany:
Springer.

163. Shen H, George D, Huerta EA, Zhao Z. 2019
Denoising gravitational waves with enhanced
deep recurrent denoising auto-encoders. In
ICASSP 2019 – 2019 IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), Brighton,
UK, 12–17 May, pp. 3237–3241. New York, NY:
IEEE.

164. Morningstar WR, Levasseur LP, Hezaveh YD,
Blandford R, Marshall P, Putzky P, Rueter TD,
Wechsler R, Welling M. 2019 Data-driven
reconstruction of gravitationally lensed galaxies
using recurrent inference machines. Astrophys. J.
883, 14. (doi:10.3847/1538-4357/ab35d7)

165. Liu H, Liu C, Wang JTL, Wang H. 2019
Predicting solar flares using a long short-term
memory network. Astrophys. J. 877, 121.
(doi:10.3847/1538-4357/ab1b3c)

166. Kügler SD, Gianniotis N, Polsterer KL. 2016 An
explorative approach for inspecting Kepler data.
Mon. Not. R. Astron. Soc. 455, 4399–4405.
(doi:10.1093/mnras/stv2604)

167. Smith MJ, Arora N, Stone C, Courteau S, Geach JE.
2021 Pix2Prof: fast extraction of sequential
information from galaxy imagery via a deep natural
language ’captioning’ model. Mon. Not. R. Astron.
Soc. 503, 96–105. (doi:10.1093/mnras/stab424)

168. Parmar N, Vaswani A, Uszkoreit J, Kaiser L,
Shazeer N, Ku A, Tran D. 2018 Image
transformer. In Proc. of the 35th Int. Conf. on
Machine Learning (eds J Dy, A Krause), vol. 80,
pp. 4055–4064. Proceedings of Machine
Learning Research.
169. Donoso-Oliva C, Becker I, Protopapas P, Cabrera-
Vives G, Vishnu M, Vardhan H. 2023 ASTROMER
– a transformer-based embedding for the
representation of light curves. Astron. Astrophys.
670, A54. (doi:10.1051/0004-6361/202243928)

170. Morvan M, Nikolaou N, Yip KH, Waldmann I.
2022 Don’t pay attention to the noise: learning
self-supervised representations of light curves
with a denoising time series transformer. arXiv.
See http://arxiv.org/abs/2207.02777.

171. Ricker GR et al. 2015 Transiting exoplanet survey
satellite (TESS). J. Astron. Telescopes Instrum. Syst.
1, 014003. (doi:10.1117/1.JATIS.1.1.014003)

172. Pan J, Ting YS, Yu J. 2022 Astroconformer:
inferring surface gravity of stars from stellar
light curves with transformer. (http://arxiv.org/
abs/2207.02787).

173. Bommasani R et al. 2021 On the opportunities
and risks of foundation models. (http://arxiv.
org/abs/2108.07258).

174. Rumelhart DE, Hinton GE, Williams RJ. 1986
Learning internal representations by error
propagation. In Parallel distributed
processing: explorations in the
microstructure of cognition: vol. 1: Foundations
(eds DE Rumelhart, JL McClelland, PDP Research
Group), ch. 4, pp. 318–362. Cambridge, MA:
MIT Press.

175. Kingma DP, Welling M. 2013 Auto-encoding
variational Bayes. (http://arxiv.org/abs/1312.
6114).

176. Regier J, McAuliffe J, Prabhat. 2015 A deep
generative model for astronomical images of
galaxies. In NIPS Workshop on Advances in
Approximate Bayesian Inference. See https://
regier.stat.lsa.umich.edu/assets/pdf/
regier2015deep.pdf.

177. Spindler A, Geach JE, Smith MJ. 2020
AstroVaDEr: astronomical variational deep
embedder for unsupervised morphological
classification of galaxies and synthetic image
generation. Mon. Not. R. Astron. Soc. 502, 985.
(doi:10.1093/mnras/staa3670)

178. Dosovitskiy A, Brox T. 2016 Generating images
with perceptual similarity metrics based on
deep networks. (http://arxiv.org/abs/1602.
02644).

179. Zhao S, Song J, Ermon S. 2017 Towards deeper
understanding of variational autoencoding
models. (http://arxiv.org/abs/1702.08658).

180. Oord A, Vinyals O, Kavukcuoglu K. 2017 Neural
discrete representation learning. (http://arxiv.
org/abs/1711.00937)

181. Vahdat A, Kautz J. 2020 NVAE: a deep
hierarchical variational autoencoder. Adv. Neural
Inf. Process. Syst. 33, 19 667–19 679.

182. Child R. 2020 Very deep VAEs generalize
autoregressive models and can outperform
them on images. (http://arxiv.org/abs/2011.
10650).

183. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B,
Warde-Farley D, Ozair S, Courville A, Bengio Y.
2014 Generative adversarial nets. In Advances in
neural information processing systems 27 (eds Z
Ghahramani, M Welling, C Cortes, ND Lawrence,
KQ Weinberger), pp. 2672–2680. Red Hook, NY:
Curran Associates, Inc.

184. Isola P, Zhu JY, Zhou T, Efros AA. 2016 Image-
to-image translation with conditional

https://doi.org/10.1093/mnras/sty2949
https://doi.org/10.1093/mnras/sty2949
http://arxiv.org/abs/1606.04797
http://dx.doi.org/10.1093/mnras/stz393
http://dx.doi.org/10.3847/1538-4365/ab8868
http://dx.doi.org/10.3847/1538-4365/ab8868
https://doi.org/10.1093/mnras/stab2195
http://arxiv.org/abs/1809.06166
http://arxiv.org/abs/1809.06166
http://arxiv.org/abs/2111.14874
http://arxiv.org/abs/2111.14874
http://dx.doi.org/10.3847/1538-4357/ac7aa3
http://arxiv.org/abs/1801.07829
http://arxiv.org/abs/1801.07829
http://dx.doi.org/10.1016/0083-6656(94)90047-7
http://dx.doi.org/10.1016/0083-6656(94)90047-7
https://doi.org/10.1029/96GL00259
https://doi.org/10.1029/2002GL016151
http://dx.doi.org/10.1016/S0273-1177(99)01050-9
http://dx.doi.org/10.1016/S0273-1177(99)01050-9
http://dx.doi.org/10.1017/S0074180900193751
http://dx.doi.org/10.1017/S0074180900193751
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.3847/2041-8213/aa603d
http://dx.doi.org/10.3847/2041-8213/aa603d
http://dx.doi.org/10.1038/s41550-017-0321-z
http://dx.doi.org/10.1051/0004-6361/201731961
http://dx.doi.org/10.1088/1538-3873/aaef12
http://dx.doi.org/10.1093/mnras/stab2389
http://dx.doi.org/10.1093/mnras/stab2389
http://dx.doi.org/10.1109/JSTSP.2008.2004218
http://dx.doi.org/10.1126/science.1091277
http://dx.doi.org/10.3847/1538-4357/ab35d7
http://dx.doi.org/10.3847/1538-4357/ab1b3c
http://dx.doi.org/10.1093/mnras/stv2604
http://dx.doi.org/10.1093/mnras/stab424
https://doi.org/10.1051/0004-6361/202243928
http://arxiv.org/abs/2207.02777
http://dx.doi.org/10.1117/1.JATIS.1.1.014003
http://arxiv.org/abs/2207.02787
http://arxiv.org/abs/2207.02787
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://regier.stat.lsa.umich.edu/assets/pdf/regier2015deep.pdf
https://regier.stat.lsa.umich.edu/assets/pdf/regier2015deep.pdf
https://regier.stat.lsa.umich.edu/assets/pdf/regier2015deep.pdf
http://dx.doi.org/10.1093/mnras/staa3670
http://arxiv.org/abs/1602.02644
http://arxiv.org/abs/1602.02644
http://arxiv.org/abs/1702.08658
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/2011.10650
http://arxiv.org/abs/2011.10650


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221454
51
adversarial networks. (http://arxiv.org/abs/1611.

07004).
185. Mirza M, Osindero S. 2014 Conditional

generative adversarial nets. (http://arxiv.org/
abs/1411.1784).

186. Brock A, Donahue J, Simonyan K. 2018 Large
scale GAN training for high fidelity natural
image synthesis. (http://arxiv.org/abs/1809.
11096)

187. Kang M, Zhu JY, Zhang R, Park J, Shechtman E,
Paris S, Park T. 2023 Scaling up GANs for text-
to-image synthesis. (http://arxiv.org/abs/2303.
05511).

188. Cheng J, Dong L, Lapata M. 2016 Long short-
term memory-networks for machine reading.
(http://arxiv.org/abs/1601.06733).

189. Karras T, Laine S, Aila T. 2018 A style-based
generator architecture for generative adversarial
networks. (http://arxiv.org/abs/1812.04948).

190. Ledig C et al. 2016 Photo-realistic single image
super-resolution using a generative adversarial
network. (http://arxiv.org/abs/1609.04802).

191. Yu J, Lin Z, Yang J, Shen X, Lu X, Huang TS. 2018
Generative image inpainting with contextual
attention. (http://arxiv.org/abs/1801.07892).

192. Weng L. 2019 From GAN to WGAN. (http://
arxiv.org/abs/1904.08994).

193. Sohl-Dickstein J, Weiss E, Maheswaranathan N,
Ganguli S. 2015 Deep unsupervised learning
using nonequilibrium thermodynamics. In Proc.
of the 32nd Int. Conf. on Machine Learning, Lille,
France, 6–11 July (eds F Bach, D Blei), vol. 37,
pp. 2256–2265. Proceedings of Machine
Learning Research.

194. Ho J, Jain A, Abbeel P. 2020 Denoising diffusion
probabilistic models. In Advances in neural
information processing systems (eds H
Larochelle, M Ranzato, R Hadsell, MF Balcan, H
Lin), vol. 33, pp. 6840–6851. Red Hook, NY:
Curran Associates, Inc.

195. Hyvärinen A. 2005 Estimation of non-
normalized statistical models by score matching.
J. Mach. Learn. Res. 6, 695–709.

196. Vincent P. 2011 A connection between scorematching
and denoising autoencoders. Neural Comput. 23,
1661–1674. (doi:10.1162/NECO_a_00142)

197. Song Y, Ermon S. 2020 Improved techniques for
training score-based generative models. In
Advances in neural information processing
systems (eds H Larochelle, M Ranzato, R Hadsell,
MF Balcan, H Lin), vol. 33, pp. 12 438–12 448.
Red Hook, NY: Curran Associates, Inc.

198. Jolicoeur-Martineau A, Piché-Taillefer R, Combes
RT, Mitliagkas I. 2020 Adversarial score
matching and improved sampling for image
generation. (http://arxiv.org/abs/2009.05475).

199. Jolicoeur-Martineau A, Li K, Piché-Taillefer R,
Kachman T, Mitliagkas I. 2021 Gotta go fast
when generating data with score-based models.
(http://arxiv.org/abs/2105.14080).

200. Song Y, Sohl-Dickstein J, Kingma DP, Kumar A,
Ermon S, Poole B. 2021 Score-based generative
modeling through stochastic differential
equations. In Int. Conf. on Learning
Representations. See https://openreview.net/
forum?id=PxTIG12RRHS.

201. Nichol A, Dhariwal P. 2021 Improved denoising
diffusion probabilistic models. (http://arxiv.org/
abs/2102.09672).
202. Dhariwal P, Nichol A. 2021 Diffusion models
beat GANs on image synthesis. (http://arxiv.org/
abs/2105.05233).

203. Ramesh A, Dhariwal P, Nichol A, Chu C, Chen M.
2022 Hierarchical text-conditional image
generation with CLIP latents. (http://arxiv.org/
abs/2204.06125)

204. Kadkhodaie Z, Simoncelli EP. 2020 Solving linear
inverse problems using the prior implicit in a
denoiser. (http://arxiv.org/abs/2007.13640).

205. Saharia C, Ho J, Chan W, Salimans T, Fleet DJ,
Norouzi M. 2021 Image super-resolution via
iterative refinement. (http://arxiv.org/abs/2104.
07636).

206. Sasaki H, Willcocks CG, Breckon TP. 2021 UNIT-
DDPM: UNpaired image translation with
denoising diffusion probabilistic models. (http://
arxiv.org/abs/2104.05358).

207. Jayaram V, Thickstun J. 2020 Source separation
with deep generative priors. (http://arxiv.org/
abs/2002.07942).

208. Turner A. 2021 Diffusion models as a kind of
VAE. See https://angusturner.github.io/
generative_models/2021/06/29/diffusion-
probabilistic-models-I.html.

209. Dieleman S. 2022 Diffusion models are
autoencoders. See https://benanne.github.io/
2022/01/31/diffusion.html.

210. Song Y, Ermon S. 2019 Generative modeling by
estimating gradients of the data distribution. In
Advances in neural information processing
systems (eds H Wallach, H Larochelle, A
Beygelzimer, F d’Alché-Buc, E Fox, R Garnett),
vol. 32. Red Hook, NY: Curran Associates, Inc.

211. Luhman E, Luhman T. 2021 Knowledge
distillation in iterative generative models for
improved sampling speed. (http://arxiv.org/abs/
2101.02388).

212. Watson D, Chan W, Ho J, Norouzi M. 2022
Learning fast samplers for diffusion models by
differentiating through sample quality. (http://
arxiv.org/abs/2202.05830).

213. Song J, Meng C, Ermon S. 2020 Denoising
diffusion implicit models. (http://arxiv.org/abs/
2010.02502).

214. Chen T, Kornblith S, Norouzi M, Hinton G. 2020
A simple framework for contrastive learning of
visual representations. (http://arxiv.org/abs/
2002.05709).

215. Chen T, Kornblith S, Swersky K, Norouzi M,
Hinton G. 2020 Big self-supervised models are
strong semi-supervised learners. (http://arxiv.
org/abs/2006.10029).

216. Grill JB et al. 2020 Bootstrap your own latent: a
new approach to self-supervised learning. In
NIPS’20: Proc. of the 34th Int. Conf. on Neural
Information Processing Systems, Online, 6–12
December, pp. 21271–21284. Red Hook, NY:
Curran Associates Inc.

217. He K, Fan H, Wu Y, Xie S, Girshick R. 2019
Momentum contrast for unsupervised visual
representation learning. (http://arxiv.org/abs/
1911.05722).

218. Chen X, Fan H, Girshick R, He K. 2020 Improved
baselines with momentum contrastive learning.
(http://arxiv.org/abs/2003.04297).

219. Durkan C, Murray I, Papamakarios G. 2020 On
contrastive learning for likelihood-free inference.
(http://arxiv.org/abs/2002.03712).
220. Hadsell R, Chopra S, LeCun Y. 2006
Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer
Society Conf. on Computer Vision and Pattern
Recognition (CVPR’06), Las Vegas, NV, 27–30
June, vol. 2, pp. 1735–1742. New York NY: IEEE.

221. Chechik G, Sharma V, Shalit U, Bengio S. 2010 Large
scale online learning of image similarity through
ranking. J. Mach. Learn. Res. 11, 1109–1135.
(doi:10.1007/978-3-642-02172-5_2)

222. Sohn K. 2016 Improved deep metric learning
with multi-class N-pair loss objective. In
Advances in neural information processing systems
(eds D Lee, M Sugiyama, U Luxburg, I Guyon, R
Garnett), vol. 29. Red Hook, NY: Curran
Associates, Inc.

223. Heusel M, Ramsauer H, Unterthiner T, Nessler B,
Hochreiter S. 2017 GANs trained by a two time-
scale update rule converge to a local Nash
equilibrium. In Advances in neural information
processing systems (eds I Guyon, UV Luxburg, S
Bengio, H Wallach, R Fergus, S Vishwanathan, R
Garnett), vol. 30. Red Hook, NY: Curran
Associates, Inc.

224. Seitzer M. 2020 pytorch-fid: FID score for
PyTorch, version 0.1.1 See https://github.com/
mseitzer/pytorch-fid.

225. Szegedy C, Vanhoucke V, Ioffe S, Shlens J,
Wojna Z. 2016 Rethinking the inception
architecture for computer vision. In Proc. of the
IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, 27–30 June.
New York, NY: IEEE.

226. Regier J, Miller A, McAuliffe J, Adams R,
Hoffman M, Lang D, Schlegel D, Prabhat. 2015
Celeste: variational inference for a generative
model of astronomical images. In Int. Conf. on
Machine Learning (ICML), Lille, France, 6–11
July, pp. 2095–2103. Proceedings of Machine
Learning Research.

227. Serra-Ricart M, Calbet X, Garrido L, Gaitan V.
1993 Multidimensional statistical analysis using
artificial neural networks: astronomical
applications. Astron. J. 106, 1685. (doi:10.1086/
116758)

228. Ravanbakhsh S, Lanusse F, Mandelbaum R,
Schneider J, Poczos B. 2016 Enabling dark energy
science with deep generative models of galaxy
images. (http://arxiv.org/abs/1609.05796).

229. Fussell L, Moews B. 2019 Forging new worlds:
high-resolution synthetic galaxies with chained
generative adversarial networks. Mon.
Not. R. Astron. Soc. 485, 3203–3214. (doi:10.
1093/mnras/stz602)

230. Holzschuh BJ, O’Riordan CM, Vegetti S,
Rodriguez-Gomez V, Thuerey N. 2022 Realistic
galaxy images and improved robustness in
machine learning tasks from generative
modelling. Mon. Not. R. Astron. Soc. 515,
652–677. (doi:10.1093/mnras/stac1188)

231. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba
A. 2016 Learning deep features for
discriminative localization. In Computer Vision
and Pattern Recognition, Las Vegas, NV, 27–30
June (ed. L O’Connor), pp. 2921–2929. Los
Alamitos, CA: IEEE Computer Society.

232. Weng L. 2018 Flow-based deep generative
models. See https://lilianweng.github.io/posts/
2018-10-13-flow-models/.

http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/2303.05511
http://arxiv.org/abs/2303.05511
http://arxiv.org/abs/1601.06733
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1801.07892
http://arxiv.org/abs/1904.08994
http://arxiv.org/abs/1904.08994
http://dx.doi.org/10.1162/NECO_a_00142
http://arxiv.org/abs/2009.05475
http://arxiv.org/abs/2105.14080
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
http://arxiv.org/abs/2102.09672
http://arxiv.org/abs/2102.09672
http://arxiv.org/abs/2105.05233
http://arxiv.org/abs/2105.05233
http://arxiv.org/abs/2204.06125
http://arxiv.org/abs/2204.06125
http://arxiv.org/abs/2007.13640
http://arxiv.org/abs/2104.07636
http://arxiv.org/abs/2104.07636
http://arxiv.org/abs/2104.05358
http://arxiv.org/abs/2104.05358
http://arxiv.org/abs/2002.07942
http://arxiv.org/abs/2002.07942
https://angusturner.github.io/generative_models/2021/06/29/diffusion-probabilistic-models-I.html
https://angusturner.github.io/generative_models/2021/06/29/diffusion-probabilistic-models-I.html
https://angusturner.github.io/generative_models/2021/06/29/diffusion-probabilistic-models-I.html
https://benanne.github.io/2022/01/31/diffusion.html
https://benanne.github.io/2022/01/31/diffusion.html
http://arxiv.org/abs/2101.02388
http://arxiv.org/abs/2101.02388
http://arxiv.org/abs/2202.05830
http://arxiv.org/abs/2202.05830
http://arxiv.org/abs/2010.02502
http://arxiv.org/abs/2010.02502
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2006.10029
http://arxiv.org/abs/2006.10029
http://arxiv.org/abs/1911.05722
http://arxiv.org/abs/1911.05722
http://arxiv.org/abs/2003.04297
http://arxiv.org/abs/2002.03712
http://dx.doi.org/10.1007/978-3-642-02172-5_2
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
http://dx.doi.org/10.1086/116758
http://dx.doi.org/10.1086/116758
http://arxiv.org/abs/1609.05796
http://dx.doi.org/10.1093/mnras/stz602
http://dx.doi.org/10.1093/mnras/stz602
http://dx.doi.org/10.1093/mnras/stac1188
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221454
52
233. Germain M, Gregor K, Murray I, Larochelle H.

2015 MADE: masked autoencoder for
distribution estimation. In Int. Conf. on Machine
Learning, Lille, France, 6–11 July, pp. 881–889.
PMLR.

234. Papamakarios G, Pavlakou T, Murray I. 2017
Masked autoregressive flow for density estimation.
In NIPS’17: Proc. of the 31st Int. Conf. on Neural
Information Processing Systems, Long Beach, CA, 4–
9 December, pp. 2335–2344. Red Hook, NY: Curran
Associates Inc.

235. Dey A et al. 2019 Overview of the DESI legacy
imaging surveys. Astron. J. 157, 168. (doi:10.
3847/1538-3881/ab089d)

236. Abazajian KN et al. 2009 The seventh data
release of the Sloan Digital Sky Survey.
Astrophys. J. Suppl. Ser. 182, 543–558. (doi:10.
1088/0067-0049/182/2/543)

237. Wilman DJ, Zibetti S, Budavári T. 2010 A
multiscale approach to environment and its
influence on the colour distribution of galaxies.
Mon. Not. R. Astron. Soc. 406, 1701–1720.
(doi:10.1111/j.1365-2966.2010.16845.x)

238. Stone C, Courteau S. 2019 The intrinsic scatter
of the radial acceleration relation. Astrophys. J.
882, 6. (doi:10.3847/1538-4357/ab3126)

239. Smith MJ, Geach JE. 2019 Generative deep
fields: arbitrarily sized, random synthetic
astronomical images through deep learning.
Mon. Not. R. Astron. Soc. 490, 4985–4990.
(doi:10.1093/mnras/stz2886)

240. Jetchev N, Bergmann U, Vollgraf R. 2016 Texture
synthesis with spatial generative adversarial
networks. (http://arxiv.org/abs/1611.08207).

241. Rodriguez AC, Kacprzak T, Lucchi A, Amara A,
Sgier R, Fluri J, Hofmann T, Refregier A. 2018
Fast cosmic web simulations with generative
adversarial networks. Comput. Astrophys.
Cosmol. 5, 4. (doi:10.1186/s40668-018-0026-4)

242. Mustafa M, Bard D, Bhimji W, Lukić Z, Al-Rfou
R, Kratochvil JM. 2019 CosmoGAN: creating
high-fidelity weak lensing convergence maps
using generative adversarial networks. Comput.
Astrophys. Cosmol. 6, 1. (doi:10.1186/s40668-
019-0029-9)

243. Remy B, Lanusse F, Ramzi Z, Liu J, Jeffrey N,
Starck JL. 2020 Probabilistic mapping of dark
matter by neural score matching. (http://arxiv.
org/abs/2011.08271).

244. Remy B, Lanusse F, Jeffrey N, Liu J, Starck JL,
Osato K, Schrabback T. 2023 Probabilistic mass-
mapping with neural score estimation. Astron.
Astrophys. 672, A51. (doi:10.1051/0004-6361/
202243054)

245. Liu J, Bird S, Matilla JMZ, Hill JC, Haiman Z,
Madhavacheril MS, Petri A, Spergel DN. 2018
MassiveNuS: cosmological massive neutrino
simulations. J. Cosmol. Astropart. Phys. 2018,
049. (doi:10.1088/1475-7516/2018/03/049)

246. Scoville N et al. 2007 COSMOS: Hubble Space
Telescope observations. Astrophys. J. Suppl. Ser.
172, 38–45. (doi:10.1086/516580)

247. Schawinski K, Zhang C, Zhang H, Fowler L,
Santhanam GK. 2017 Generative adversarial
networks recover features in astrophysical
images of galaxies beyond the deconvolution
limit. Mon. Not. R. Astron. Soc. 467, L110–L114.
(doi:10.1093/mnrasl/slx008)
248. Stark D et al. 2018 psfgan: a generative
adversarial network system for separating
quasar point sources and host galaxy light.
Mon. Not. R. Astron. Soc. 477, 2513–2527.
(doi:10.1093/mnras/sty764)

249. Reiman DM, Göhre BE. 2019 Deblending galaxy
superpositions with branched generative
adversarial networks. Mon. Not. R. Astron. Soc.
485, 2617–2627. (doi:10.1093/mnras/stz575)

250. Adam A, Coogan A, Malkin N, Legin R,
Perreault-Levasseur L, Hezaveh Y, Bengio Y.
2022 Posterior samples of source galaxies in
strong gravitational lenses with score-based
priors. (http://arxiv.org/abs/2211.03812).

251. Karchev K, Montel NA, Coogan A, Weniger C.
2022 Strong-lensing source reconstruction with
denoising diffusion restoration models. (http://
arxiv.org/abs/2211.04365).

252. Mudur N, Finkbeiner DP. 2022 Can denoising
diffusion probabilistic models generate realistic
astrophysical fields? (http://arxiv.org/abs/2211.
12444)

253. Kawar B, Elad M, Ermon S, Song J. 2022
Denoising diffusion restoration models. (http://
arxiv.org/abs/2211.04365).

254. Buncher B, Sharma AN, Carrasco-Kind M. 2021
Survey2Survey: a deep learning generative
model approach for cross-survey image
mapping. Mon. Not. R. Astron. Soc. 503,
777–796. (doi:10.1093/mnras/stab294)

255. Arcelin B, Doux C, Aubourg E, Roucelle C, and
LSST Dark Energy Science Collaboration. 2021
Deblending galaxies with variational
autoencoders: a joint multiband, multi-
instrument approach. Mon. Not. R. Astron. Soc.
500, 531–547. (doi:10.1093/mnras/staa3062)

256. Calbet X, Mahoney T, Hammersley P, Garzon F,
Selby M. 1993 ADS. Galactic bulges: Proc. of the
153rd Symp. of the Int. Astronomical Union held
in Ghent, Belgium, 17–22 August 1992. (eds H
DeJonghe, HJ Habing). International
Astronomical Union. Symposium no. 153,
p. 293. Dordrecht, The Netherlands: Kluwer
Academic Publishers.

257. Graff P, Feroz F, Hobson MP, Lasenby A. 2014
ADS. Mon. Not. R. Astron. Soc. 441, 1741–1759.
(doi:10.1093/mnras/stu642)

258. Kitching TD et al. 2015 Image analysis for
cosmology: shape measurement challenge
review & results from the Mapping Dark Matter
challenge. Astron. Comput. 10, 9–21. (doi:10.
1016/j.ascom.2014.12.004)

259. Yang T, Li X. 2015 An autoencoder of stellar
spectra and its application in automatically
estimating atmospheric parameters. Mon.
Not. R. Astron. Soc. 452, 158–168. (doi:10.
1093/mnras/stv1210)

260. Tsang BTH, Schultz WC. 2019 Deep neural
network classifier for variable stars with novelty
detection capability. Astrophys. J. Lett. 877, L14.
(doi:10.3847/2041-8213/ab212c)

261. Sarmiento R, Huertas-Company M, Knapen JH,
Sánchez SF, Sánchez HD, Drory N, Falcón-Barroso J.
2021 Capturing the physics of manga galaxies
with self-supervised machine learning. Astrophys.
J. 921, 177. (doi:10.3847/1538-4357/ac1dac)

262. Bundy K et al. 2014 Overview of the SDSS-IV
MaNGA survey: Mapping Nearby Galaxies at
Apache Point Observatory. Astrophys. J. 798, 7.
(doi:10.1088/0004-637X/798/1/7)

263. Slijepcevic IV, Scaife AMM, Walmsley M, Bowles
M. 2022 Learning useful representations for
radio astronomy ‘in the wild’ with contrastive
learning. (http://arxiv.org/abs/2207.08666).

264. Porter FAM. 2020 MiraBest batched dataset.
Zenodo. (doi:10.5281/zenodo.4288837)

265. Porby. 2022 Why I think strong general AI is
coming soon. See https://www.lesswrong.com/
posts/K4urTDkBbtNuLivJx/why-i-think-strong-
generalai-is-coming-soon.

266. Bo P. 2021 BlinkDL/RWKV-LM: 0.01. Version
0.01. See https://doi.org/10.5281/zenodo.
5196577.

267. Kim J, Nguyen TD, Min S, Cho S, Lee M, Lee H,
Hong S. 2022 Pure transformers are powerful
graph learners. (http://arxiv.org/abs/2207.
02505).

268. Alayrac J et al. 2022 Flamingo: a visual
language model for few-shot learning. (http://
arxiv.org/abs/2204.14198).

269. Wei J et al. 2022 Emergent abilities of large
language models. (http://arxiv.org/abs/2206.
07682).

270. Chowdhery A et al. 2022 PaLM: scaling
language modeling with pathways. (http://
arxiv.org/abs/2204.02311).

271. alumiqu and Agressive-Scheme-99. 2022 A
reddit argument about flamingos. See https:%
20//old.reddit.com/r/MachineLearning/
comments/ue2ptk/r_flamingo_a_%20visual_
language_model_for_fewshot/.

272. Brock A, De S, Smith SL, Simonyan K. 2021
High-performance large-scale image recognition
without normalization. (http://arxiv.org/abs/
2102.06171).

273. Hoffmann J et al. 2022 Training compute-
optimal large language models. (http://arxiv.
org/abs/2203.15556).

274. Walmsley M, Slijepcevic IV, Bowles M, Scaife
AMM. 2022 Towards galaxy foundation models
with hybrid contrastive learning. (http://arxiv.
org/abs/2206.11927).

275. Kaplan J et al. 2020 Scaling laws for neural
language models. (http://arxiv.org/abs/2001.
08361).

276. Thoppilan R et al. 2022 LaMDA: Language
Models for Dialog Applications. arXiv. (doi:10.
48550/arXiv.2201.08239)

277. Rae JW et al. 2021 Scaling Language Models:
Methods, Analysis & Insights from Training
Gopher. arXiv. (doi:10.48550/arXiv.2112.11446)

278. Smith S et al. 2022 Using DeepSpeed and
Megatron to Train Megatron-Turing NLG 530B, A
Large-Scale Generative Language Model. arXiv.
(doi:10.48550/arXiv.2201.11990)

279. Gao L et al. 2020 The Pile: an 800GB Dataset of
diverse text for language modeling. (http://
arxiv.org/abs/2101.00027)

280. Friel R. 2022 Chinchilla’s wild implications. See
https://www.alignmentforum.org/posts/
6Fpvch8RR29qLEWNH/chinchilla-s-wild-
implications.

281. Kaiser L, Gomez AN, Shazeer N, Vaswani A,
Parmar N, Jones L, Uszkoreit J. 2017 One model
to learn them all. (http://arxiv.org/abs/1706.
05137)

http://dx.doi.org/10.3847/1538-3881/ab089d
http://dx.doi.org/10.3847/1538-3881/ab089d
http://dx.doi.org/10.1088/0067-0049/182/2/543
http://dx.doi.org/10.1088/0067-0049/182/2/543
http://dx.doi.org/10.1111/j.1365-2966.2010.16845.x
http://dx.doi.org/10.3847/1538-4357/ab3126
http://dx.doi.org/10.1093/mnras/stz2886
http://arxiv.org/abs/1611.08207
http://dx.doi.org/10.1186/s40668-018-0026-4
http://dx.doi.org/10.1186/s40668-019-0029-9
http://dx.doi.org/10.1186/s40668-019-0029-9
http://arxiv.org/abs/2011.08271
http://arxiv.org/abs/2011.08271
http://dx.doi.org/10.1051/0004-6361/202243054
http://dx.doi.org/10.1051/0004-6361/202243054
http://dx.doi.org/10.1088/1475-7516/2018/03/049
https://doi.org/10.1086/516580
http://dx.doi.org/10.1093/mnrasl/slx008
http://dx.doi.org/10.1093/mnras/sty764
http://dx.doi.org/10.1093/mnras/stz575
http://arxiv.org/abs/2211.03812
http://arxiv.org/abs/2211.04365
http://arxiv.org/abs/2211.04365
http://arxiv.org/abs/2211.12444
http://arxiv.org/abs/2211.12444
http://arxiv.org/abs/2211.04365
http://arxiv.org/abs/2211.04365
http://dx.doi.org/10.1093/mnras/stab294
http://dx.doi.org/10.1093/mnras/staa3062
http://dx.doi.org/10.1093/mnras/stu642
http://dx.doi.org/10.1016/j.ascom.2014.12.004
http://dx.doi.org/10.1016/j.ascom.2014.12.004
http://dx.doi.org/10.1093/mnras/stv1210
http://dx.doi.org/10.1093/mnras/stv1210
http://dx.doi.org/10.3847/2041-8213/ab212c
http://dx.doi.org/10.3847/1538-4357/ac1dac
https://doi.org/10.1088/0004-637X/798/1/7
http://arxiv.org/abs/2207.08666
http://dx.doi.org/10.5281/zenodo.4288837
https://www.lesswrong.com/posts/K4urTDkBbtNuLivJx/why-i-think-strong-generalai-is-coming-soon
https://www.lesswrong.com/posts/K4urTDkBbtNuLivJx/why-i-think-strong-generalai-is-coming-soon
https://www.lesswrong.com/posts/K4urTDkBbtNuLivJx/why-i-think-strong-generalai-is-coming-soon
https://doi.org/10.5281/zenodo.5196577
https://doi.org/10.5281/zenodo.5196577
http://arxiv.org/abs/2207.02505
http://arxiv.org/abs/2207.02505
http://arxiv.org/abs/2204.14198
http://arxiv.org/abs/2204.14198
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https:%20//old.reddit.com/r/MachineLearning/comments/ue2ptk/r_flamingo_a_%20visual_language_model_for_fewshot/
https:%20//old.reddit.com/r/MachineLearning/comments/ue2ptk/r_flamingo_a_%20visual_language_model_for_fewshot/
https:%20//old.reddit.com/r/MachineLearning/comments/ue2ptk/r_flamingo_a_%20visual_language_model_for_fewshot/
https:%20//old.reddit.com/r/MachineLearning/comments/ue2ptk/r_flamingo_a_%20visual_language_model_for_fewshot/
http://arxiv.org/abs/2102.06171
http://arxiv.org/abs/2102.06171
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2206.11927
http://arxiv.org/abs/2206.11927
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
http://dx.doi.org/10.48550/arXiv.2201.08239
http://dx.doi.org/10.48550/arXiv.2201.08239
http://dx.doi.org/10.48550/arXiv.2112.11446
http://dx.doi.org/10.48550/arXiv.2201.11990
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://www.alignmentforum.org/posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications
https://www.alignmentforum.org/posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications
https://www.alignmentforum.org/posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications
http://arxiv.org/abs/1706.05137
http://arxiv.org/abs/1706.05137


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221454
53
282. Aghajanyan A et al. 2023 Scaling laws for

generative mixed-modal language models.
(http://arxiv.org/abs/2301.03728)

283. Ivezić Ž et al. 2019 LSST: from science drivers to
reference design and anticipated data products.
Astrophys. J. 873, 111.

284. Raymond ES. 1999 The cathedral and the
bazaar, 1st edn. Sebastopol, CA: O’Reilly &
Associates Inc.

285. Black S et al. 2022 GPT-NeoX-20B: an open-
source autoregressive language model. (http://
arxiv.org/abs/2204.06745).

286. Crowson K, Biderman S, Kornis D, Stander D,
Hallahan E, Castricato L, Raff E. 2022 VQGAN-
CLIP: open domain image generation and
editing with natural language guidance. (http://
arxiv.org/abs/2204.08583).

287. BigScience Workshop et al. 2022 BLOOM: A 176B-
Parameter Open-Access Multilingual Language
Model. (http://arxiv.org/abs/2211.05100).

288. Park JS, Popowski L, Cai CJ, Morris MR, Liang P,
Bernstein MS. 2022 Social simulacra: creating
populated prototypes for social computing
systems. (http://arxiv.org/abs/2208.04024).

289. Aher G, Arriaga RI, Kalai AT. 2022 Using large
language models to simulate multiple humans
and replicate human subject studies. (http://
arxiv.org/abs/2208.10264).

290. Radford A, Narasimhan K, Salimans T, Sutskever
I. 2018 Improving language understanding by
generative pre-training. OpenAI Whitepaper. See
https://cdn.openai.com/research-covers/
language-unsupervised/language_
understanding_paper.pdf.

291. Knox WB, Stone P. 2008 TAMER: training an
agent manually via evaluative reinforcement. In
2008 7th IEEE Int. Conf. on Development and
Learning, Monterey, CA, 9–12 August, pp. 292–
297. New York, NY: IEEE.

292. Ziegler DM, Stiennon N, Wu J, Brown TB,
Radford A, Amodei D, Christiano P, Irving G.
2019 Fine-tuning language models from human
preferences. (http://arxiv.org/abs/1909.08593).

293. Touvron H et al. 2023 LLaMA: open and
efficient foundation language models. (http://
arxiv.org/abs/2302.13971).

294. Taori R, Gulrajani I, Zhang T, Dubois Y, Li X,
Guestrin C, Liang P, Hashimoto TB. 2023
Stanford alpaca: an instruction-following LLaMA
model. See https://github.com/tatsu-lab/
stanford_alpaca (accessed 14 April 2023).

295. Chiang WL et al. 2023 Vicuna: an open-source
Chatbot impressing GPT-4 with 90%	 ChatGPT
Quality. See https://vicuna.lmsys.org (accessed
14 April 2023).

296. Geng X, Gudibande A, Liu H, Wallace E, Abbeel
P, Levine S, Song D. 2023 Koala: a dialogue
model for academic research. Blog post. See
https://bair.berkeley.edu/blog/2023/04/03/
koala/ (accessed 14 April 2023).

297. Beeching E, Belkada Y, Rasul K, Tunstall L, von
Werra L, Rajani N, Lambert N. 2023
StackLLaMA: an RL fine-tuned LLaMA model for
stack exchange question and answering. See
https://huggingface.co/blog/
stackllama (accessed 14 April 2023).

298. StabilityAI. 2023 Stable diffusion. See https://
github.com/Stability-AI/stablediffusion (accessed
14 April 2023).

299. Sevilla J et al. 2022 Parameter, compute and
data trends in machine learning. See https://
docs.google.com/spreadsheets/d/1AAIebjNsnJj_
uKALHbXNfn3_YsT6sHXtCU0q7OIPuc4/.

300. Eloundou T, Manning S, Mishkin P, Rock D. 2023
GPTs are GPTs: an early look at the labor market
impact potential of large language models.
(http://arxiv.org/abs/2206.07682).

301. Brynjolfsson E. 2022 The Turing trap: the
promise & peril of human-like artificial
intelligence. (http://arxiv.org/abs/2201.04200)

302. Bowles M et al. 2023 Radio Galaxy Zoo EMU:
towards a semantic radio galaxy morphology
taxonomy. Mon. Not. R. Astron. Soc. 522,
stad1021. (doi:10.1093/mnras/stad1021)

303. Hinton GE, Roweis S. 2002 Stochastic neighbor
embedding. In Advances in neural information
processing systems (eds S Becker, S Thrun,
K Obermayer), vol. 15. New York, NY: MIT Press.

304. van der Maaten L, Hinton G. 2008 Visualizing
data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605.

305. Park JS, O’Brien JC, Cai CJ, Morris MR, Liang P,
Bernstein MS. 2023 Generative agents:
interactive simulacra of human behavior.
(http://arxiv.org/abs/2304.03442).

306. Nakajima Y. 2023 Task-driven autonomous
agent utilizing GPT-4, Pinecone, and LangChain
for diverse applications. See https://
yoheinakajima.com/task-driven-autonomous-
agent-utilizing-gpt-4-pinecone-and-langchain-
for-diverse-applications (accessed 18 April
2023).

307. Liang Y et al. 2023 TaskMatrix.AI: completing
tasks by connecting foundation models with
millions of APIs. (http://arxiv.org/abs/2303.
16434).

308. Saharia C et al. 2022 Photorealistic text-to-
image diffusion models with deep language
understanding. (http://arxiv.org/abs/2205.
11487).

309. Ho J, Saharia C, Chan W, Fleet DJ, Norouzi M,
Salimans T. 2021 Cascaded diffusion models for
high fidelity image generation. (http://arxiv.
org/abs/2106.15282).

310. Tay Y et al. 2021 Scale efficiently: insights from
pre-training and fine-tuning transformers.
(http://arxiv.org/abs/2109.10686).

311. Willett KW et al. 2013 Galaxy Zoo 2: detailed
morphological classifications for 304 122
galaxies from the Sloan Digital Sky Survey. Mon.
Not. R. Astron. Soc. 435, 2835–2860. (doi:10.
1093/mnras/stt1458)

312. Gal R, Alaluf Y, Atzmon Y, Patashnik O, Bermano
AH, Chechik G, Cohen-Or D. 2022 An image is
worth one word: personalizing text-to-image
generation using textual inversion. (http://arxiv.
org/abs/2208.01618).

313. Schirmer M, Diaz R, Holhjem K, Levenson NA,
Winge C. 2013 A sample of Seyfert-2
galaxies with ultraluminous galaxy-wide
narrow-line regions: quasar light echoes?
Astrophys. J. 763, 60. (doi:10.1088/0004-637X/
763/1/60)

314. Kraus J. 1994 The tantalizing ‘Wow!’ signal ·
NRAO archives. See https://www.nrao.edu/
archives/items/show/3684 (accessed 11 April
2023).

315. Pang G, Shen C, Cao L, Hengel AVD. 2021
Deep learning for anomaly detection: a review.
ACM Comput. Surv. 54, 1–38. (doi:10.1145/
3439950)

316. Wang M, Deng W. 2018 Deep visual domain
adaptation: a survey. (http://arxiv.org/abs/1802.
03601).

317. Wei J, Wang X, Schuurmans D, Bosma M, Ichter
B, Xia F, Chi E, Le Q, Zhou D. 2022 Chain-of-
thought prompting elicits reasoning in large
language models. (http://arxiv.org/abs/2201.
11903).

318. Wang H, Yeung DY. 2020 A survey on Bayesian
deep learning. ACM Comput. Surv. 53, 1–37.
(doi:10.1145/3409383)

319. Tavare S, Balding DJ, Griffiths RC, Donnelly P.
1997 Inferring coalescence times from DNA
sequence data. Genetics 145, 505. (doi:10.1093/
genetics/145.2.505)

320. Ras G, Xie N, van Gerven M, Doran D. 2020
Explainable deep learning: a field guide for the
uninitiated. (http://arxiv.org/abs/2004.14545).

321. Patterson D, Gonzalez J, Le Q, Liang C, Munguia
LM, Rothchild D, So D, Texier M, Dean J. 2021
Carbon emissions and large neural
network training. (http://arxiv.org/abs/2104.
10350).

322. Friedlingstein P et al. 2022 Global carbon
budget 2021. Earth Syst. Sci. Data 14,
1917–2005. (doi:10.5194/essd-14-1917-2022)

323. Buberger J, Kersten A, Kuder M, Eckerle R, Weyh
T, Thiringer T. 2022 Total CO2-equivalent
life-cycle emissions from commercially
available passenger cars. Renew. Sustain. Energy
Rev. 159, 112158. (doi:10.1016/j.rser.2022.
112158)

324. Bergstra J, Bengio Y. 2012 Random search for
hyper-parameter optimization. J. Mach. Learn.
Res. 13, 281–305.

325. Strubell E, Ganesh A, McCallum A. 2019 Energy
and policy considerations for deep learning in
NLP. (http://arxiv.org/abs/1906.02243).

326. Lacoste A, Luccioni A, Schmidt V, Dandres T.
2019 Quantifying the carbon emissions of
machine learning. (http://arxiv.org/abs/1910.
09700).

327. Smith M. 2022 Using deep learning to explore
ultra-large scale astronomical datasets. PhD
thesis, University of Hertfordshire, UK.

http://arxiv.org/abs/2301.03728
http://arxiv.org/abs/2204.06745
http://arxiv.org/abs/2204.06745
http://arxiv.org/abs/2204.08583
http://arxiv.org/abs/2204.08583
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2208.04024
http://arxiv.org/abs/2208.10264
http://arxiv.org/abs/2208.10264
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://arxiv.org/abs/1909.08593
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://vicuna.lmsys.org
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://huggingface.co/blog/stackllama
https://huggingface.co/blog/stackllama
https://github.com/Stability-AI/stablediffusion
https://github.com/Stability-AI/stablediffusion
https://docs.google.com/spreadsheets/d/1AAIebjNsnJj_uKALHbXNfn3_YsT6sHXtCU0q7OIPuc4/
https://docs.google.com/spreadsheets/d/1AAIebjNsnJj_uKALHbXNfn3_YsT6sHXtCU0q7OIPuc4/
https://docs.google.com/spreadsheets/d/1AAIebjNsnJj_uKALHbXNfn3_YsT6sHXtCU0q7OIPuc4/
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2201.04200
https://doi.org/10.1093/mnras/stad1021
http://arxiv.org/abs/2304.03442
https://yoheinakajima.com/task-driven-autonomous-agent-utilizing-gpt-4-pinecone-and-langchain-for-diverse-applications
https://yoheinakajima.com/task-driven-autonomous-agent-utilizing-gpt-4-pinecone-and-langchain-for-diverse-applications
https://yoheinakajima.com/task-driven-autonomous-agent-utilizing-gpt-4-pinecone-and-langchain-for-diverse-applications
https://yoheinakajima.com/task-driven-autonomous-agent-utilizing-gpt-4-pinecone-and-langchain-for-diverse-applications
http://arxiv.org/abs/2303.16434
http://arxiv.org/abs/2303.16434
http://arxiv.org/abs/2205.11487
http://arxiv.org/abs/2205.11487
http://arxiv.org/abs/2106.15282
http://arxiv.org/abs/2106.15282
http://arxiv.org/abs/2109.10686
http://dx.doi.org/10.1093/mnras/stt1458
http://dx.doi.org/10.1093/mnras/stt1458
http://arxiv.org/abs/2208.01618
http://arxiv.org/abs/2208.01618
http://dx.doi.org/10.1088/0004-637X/763/1/60
http://dx.doi.org/10.1088/0004-637X/763/1/60
https://www.nrao.edu/archives/items/show/3684
https://www.nrao.edu/archives/items/show/3684
http://dx.doi.org/10.1145/3439950
http://dx.doi.org/10.1145/3439950
http://arxiv.org/abs/1802.03601
http://arxiv.org/abs/1802.03601
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://dx.doi.org/10.1145/3409383
https://doi.org/10.1093/genetics/145.2.505
https://doi.org/10.1093/genetics/145.2.505
http://arxiv.org/abs/2004.14545
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
https://doi.org/10.5194/essd-14-1917-2022
https://doi.org/10.1016/j.rser.2022.112158
https://doi.org/10.1016/j.rser.2022.112158
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1910.09700
http://arxiv.org/abs/1910.09700

	Astronomia ex machina: a history, primer and outlook on neural networks in astronomy
	Introduction
	A primer on artificial neurons
	The perceptron
	The multi-layer perceptron

	Astronomy’s first wave of connectionism
	Classification problems
	Regression problems

	Contemporary supervised deep learning
	Convolutional neural networks
	Recurrent neural networks
	Sidestepping the vanishing gradient problem
	Non-saturating activation functions
	Graphics processing unit acceleration
	Gated recurrent neural networks and residual networks

	Translation, attention and transformers

	Astronomy’s second wave of connectionism
	Convolutional neural network applications
	Recurrent neural network applications
	Transformer applications
	A problem with supervised learning

	Deep generative modelling
	(Variational) autoencoders
	Generative adversarial networks
	Score-based generative modelling and diffusion models
	Forward process
	Reverse process
	Denoising diffusion implicit models


	Representation learning
	Contrastive learning
	Learning representations via a surrogate task

	Astronomy’s third wave of connectionism
	Deep astronomical generative modelling
	Self-supervised astronomical representation learning

	Foundation models: a fourth astroconnectionist wave?
	Foundation models
	Scaling laws and data moats
	The practical implications and uses of an astrofoundation model
	Democratizing foundation models
	Possible astronomical use cases
	Collaboration, citizen science and outreach
	Augmenting research

	A new class of simulation


	Connectionism’s caveats
	Possible practical pitfalls
	Connectionism’s carbon crisis

	Final comments, or how we learnt to stop worrying and love astronomy’s Big Data Era
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	Acknowledgements
	Disclaimer
	References


